
MOSEK Optimization Suite
Release 9.3.8

MOSEK ApS

27 October 2021

Contents

1 Overview 1

2 Interfaces 3

3 Remote optimization 8

4 Contact Information 9

i

Chapter 1

Overview

The problem

minimize 1𝑥1 + 2𝑥2

subject to 𝑥1 + 𝑥2 = 1,
𝑥1, 𝑥2 ≥ 0

is an example of a linear optimization problem. Now finding a solution to this particular problem is
easy. However, in general such optimization problems may be very large. Here enters the MOSEK
Optimization Suite which is a software package for solving large optimization problems with many
constraints and variables. In addition to optimization algorithms the MOSEK Optimization Suite
provides interfaces to mainstream programming languages such as C, Java, MATLAB, .NET, Python
and R.

MOSEK Optimization Suite is a software package for efficient solving of a more general class of
conic problems, problems which can be converted into conic form, and their mixed-integer versions.
Below are the typical constraints and expressions which can be modeled using conic form:

• Conic Quadratic Optimization: 𝑡 ≥ 𝑥2, sums of squares, 2-norm 𝑡 ≥ ‖𝑥‖2, variance, ‖𝐴𝑥− 𝑏‖2.

• Power Cone Optimization: powers 𝑥𝑝, geometric mean, products 𝑥𝛼𝑦𝛽 , 𝑝-norm.

• Exponential Cone: 𝑒𝑥, ln𝑥, log-sum-exp, entropy 𝑥 ln𝑥, relative entropy, geometric programming.

• Semidefinite Optimization: 𝑋 ⪰ 0 is positive semidefinite.

1.1 Problem types

Table 1.1 summarizes the types of optimization problem that are solvable by the MOSEK Optimization
Suite.

Table 1.1: Summary of optimization problem types that can be
solved with the MOSEK Optimization Suite.

Problem type Available algorithms Mixed-Integer Multi-threaded (3)
Linear Optimization (LO) Primal and Dual Simplex Yes No

Interior-point Yes Yes
Convex Quadratic and Quadratically Constrained (QO, QCQO) (1) (2) Interior-point Yes Yes
Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO) Interior-point Yes Yes
Power Cone Optimization Interior-point Yes Yes
Conic Exponential Optimization (CEO) Interior-point Yes Yes
Semidefinite Optimization (SDO) Interior-point No Yes

Remarks:

• (1) Quadratic and quadratically constrained problems cannot be expressed with the object-oriented
Fusion interface which is designed to handle conic problems only. However, such problems always
can (and should) be translated into Conic Quadratic form and then passed to Fusion.

1

• (2) The Rmosek interface for R only support quadratic objective but not quadratic constraints.

• (3) Applies to x86 platforms. On linuxaarch64 only the branch and bound MIP solver is paral-
lelized, while the interior-point solver is single-threaded.

1.2 Capabilities

The MOSEK Optimization Suite includes (details depend on the platform, see Release notes):

• the low-level optimizer API for C, Java, .NET and Python.

• the object-oriented Fusion API for C++, Java, .NET and Python.

• an optimization toolbox for MATLAB.

• an Rmosek package for R.

• an interface to AMPL.

• a command line tool.

• optimizer server for remote optimization.

We also maintain an unofficial interface for Julia, see https://github.com/JuliaOpt/Mosek.jl.
Fig. 1.1 illustrates the relationship between the parts.

Fig. 1.1: An overview of the API and interfaces available in the MOSEK Optimization Suite.

In addition MOSEK Optimization Suite provides

• sensitivity analysis for linear problems.

• infeasibility diagnostic tools.

• problem analyses for diagnosing numerical issues in input data.

• reading and writing optimization problems and solutions from/to files.

Most large optimization problems are very sparse i.e. most of the input data consists of zeros.
Therefore, the APIs and optimization algorithms in MOSEK Optimization Suite is designed to exploit
sparsity to reduce both storage and time.

2

https://docs.mosek.com/9.3/releasenotes/platform-support.html
https://github.com/JuliaOpt/Mosek.jl

Chapter 2

Interfaces

2.1 The matrix orientated interfaces

An interface is said to be matrix orientated if it allows inputting optimization problems of the form

minimize 𝑐𝑇𝑥

subject to 𝐴𝑥

⎡⎣ ≤
=
≥

⎤⎦ 𝑏

where the vectors 𝑐 and 𝑏 and matrix 𝐴 are parts of input. This form is close to the form employed
by the optimization algorithm and hence this type of interface has low computational overhead. The
disadvantage of a matrix orientated interface is that the problem description is quite different from the
formulation the modeler thinks about. Therefore, a lot of work goes into casting the problem into the
matrix form. This recasting is typically time consuming and error prone.

For instance consider the problem

minimize 𝑐𝑇 𝑦 + 𝑡
subject to 𝐹𝑦 = 𝑏,

𝐺𝑦 − 𝑧 = 0,
𝑡 ≥ ‖𝑧‖ ,
𝑦 ≥ 0.

Observe the problem has three variables i.e. 𝑦, 𝑧 and 𝑡. In order to solve the problem with a matrix
orientated interface these variables must be mapped to a single variable 𝑥, the matrix 𝐴 has to be formed
out of 𝐹 , 𝐺, and so on. This can be cumbersome.

The different matrix orientated interfaces available in the MOSEK Optimization Suite are discussed
subsequently.

2.1.1 The Optimizer API
The C Optimizer Application Programming Interface (API) is the core of the MOSEK Optimization
Suite because it contains optimization algorithms and a matrix orientated interface that can be used
from any C compatible programming language. The C Optimizer API is the most comprehensive API
and all other APIs are built on top of that. Hence, it is also the interface with lowest computational
overhead.

The code sample

for (j = 0; j < numvar && r == MSK_RES_OK; ++j)
{

/* Set the linear term c_j in the objective.*/
if (r == MSK_RES_OK)

r = MSK_putcj(task, j, c[j]);

(continues on next page)

3

(continued from previous page)

/* Set the bounds on variable j.
blx[j] <= x_j <= bux[j] */

if (r == MSK_RES_OK)
r = MSK_putvarbound(task,

j, /* Index of variable.*/
bkx[j], /* Bound key.*/
blx[j], /* Numerical value of lower bound.*/
bux[j]); /* Numerical value of upper bound.*/

/* Input column j of A */
if (r == MSK_RES_OK)

r = MSK_putacol(task,
j, /* Variable (column) index.*/
aptre[j] - aptrb[j], /* Number of non-zeros in column j.*/
asub + aptrb[j], /* Pointer to row indexes of column j.*/
aval + aptrb[j]); /* Pointer to Values of column j.*/

}

illustrates how to input the vector 𝑐 and matrix 𝐴. This should provide the flavour of the interface.
Almost all the functionality of the C optimizer API is also available for

• Java,

• Python and

• .NET.

A common feature of all the optimizer APIs is a low performance overhead.
One could say the Optimizer API for C is the fastest whereas Python is the easiest to use. On the

other hand the Java and .NET optimizer APIs add very low extra overhead compared to using the C
optimizer API.

2.1.2 The Optimization Toolbox for MATLAB
MATLAB is a popular platform for numerical computing which is also used to solve optimization prob-
lems such as constrained least squares problems. MOSEK provides its own Optimization Toolbox for
MATLAB that gives access to most of the Optimizer API functionalities, plus some specialized drivers.

The following code

c = [3 1 5 1]';
a = [[3 1 2 0];[2 1 3 1];[0 2 0 3]];
blc = [30 15 -inf]';
buc = [30 inf 25]';
blx = zeros(4,1);
bux = [inf 10 inf inf]';

[res] = msklpopt(c,a,blc,buc,blx,bux,[],'maximize');
sol = res.sol;

illustrates how to solve a linear optimization problem using the toolbox. Some of the main advantages
of using MATLAB compared to say C are: no memory management required and direct operations with
sparse vectors and matrices.

There is a MATLAB Optimization Toolbox available from the company MathWorks. For convenience
the MOSEK Optimization Toolbox for MATLAB provides functions compatible with those in the
MATLAB Optimization Toolbox, e.g.

• linprog: Solves linear optimization problems.

• intlinprog: Solves a linear optimization problem with integer variables.

• quadprog: Solves quadratic optimization problems.

4

• lsqlin: Minimizes a least-squares objective with linear constraints.

• lsqnonneg: Minimizes a least-squares objective with nonnegativity constraints.

In general the MOSEK Optimization Toolbox for MATLAB is not capable of handling all the
problem types that the MATLAB Optimization Toolbox can deal with and vice versa. For instance only
MOSEK can deal with conic optimization problems.

2.1.3 Rmosek
Rmosek is a simple R interface to the MOSEK solver. For more information see the documentation of
the Rmosek package.

2.1.4 The Command Line Tool
The MOSEK Optimization Suite includes a command line tool that allows to use MOSEK directly.
This is quite convenient in many situations:

• testing the license setup,

• performing tests bypassing any API,

• benchmarking the solver without involving API calling.

• solving an optimization problem stored in a file,

• performing infeasibility analysis on a problem dumped to disk from an API.

2.2 An object orientated interface

An object orientated interface deals directly with variable and constraint objects and the implemented
model can be made similar to the model the modeler/user have in mind. This typically reduces the time
to build a correct optimization dramatically.

2.2.1 The Fusion API
The MOSEK Fusion API is an object orientated API for expressing conic optimization problems on
the form

minimize 𝑐𝑇𝑥
subject to 𝐴𝑖𝑥+ 𝑏 ∈ 𝐾𝑖 ∀𝑖.

where 𝐾𝑖 is a convex cone i.e. a quadratic, rotated quadratic, exponential or semidefinite cone. Although
not shown it is possible to have multiple variables and each variable can be multi-dimensional.

Perhaps surprisingly most convex optimization problems occurring in practice can be expressed in
conic form. The advantages of the conic form are

• the problem is convex by construction.

• the problem description is explicit.

• it is not necessary for the user to provide derivative information e.g. gradients.

• almost all the concepts known from linear optimization, like duality, generalize to conic problems.

• a powerful solution algorithm exists.

A typical model in Fusion is a direct reflection of the mathematical formulation of the problem. For
example, here is a code sample in Python:

5

def BasicMarkowitz(n,mu,GT,x0,w,gamma):

with Model("Basic Markowitz") as M:

Redirect log output from the solver to stdout for debugging.
if uncommented.
M.setLogHandler(sys.stdout)

Defines the variables (holdings). Shortselling is not allowed.
x = M.variable("x", n, Domain.greaterThan(0.0))

Maximize expected return
M.objective('obj', ObjectiveSense.Maximize, Expr.dot(mu,x))

The amount invested must be identical to initial wealth
M.constraint('budget', Expr.sum(x), Domain.equalsTo(w+sum(x0)))

Imposes a bound on the risk
M.constraint('risk', Expr.vstack(gamma,Expr.mul(GT,x)), Domain.inQCone())

Solves the model.
M.solve()

return np.dot(mu,x.level())

It is a very compact and straightforward mapping of the mathematical model to code, which looks
similar in all other languages supporting Fusion.

Fusion is a thin layer on top of the Optimizer API and it uses objects to represent

• multi-dimensional variables,

• linear operators and

• domains (typical bounds or cones).

Fusion has been designed with the following principles in mind:

• Expressive: Fusion yields readable code.

• Seamlessly multi-language: A Fusion model can easily be ported from one supported language and
to another supported language.

• Predictability: Fusion does very little transformations to the problem before sending the problem
to MOSEK. The advantage is that the problem solved is predictable for Fusion user.

• Efficiency: Fusion should only add moderate computational overhead compared to using the opti-
mizer APIs.

Currently, Fusion is available for

• Python,

• Java,

• .NET,

• C++ (except Windows 32bit).

Fusion is ideal for fast prototyping of models and in many cases fast enough for production use.
However, it should be mentioned that the Python Fusion is noticeably slower than its counterparts
in other languages. However, the Python Fusion is extremely convenient to use and ideal for fast
prototyping.

6

2.3 Modeling languages

There exist several modeling languages such as

• AMPL and

• GAMS

that make it easy to build optimization models that look almost like the one the modeler has in
mind. Hence, the big advantage of modeling languages is convenience and prototyping optimization
models is typically extremely fast. In a MOSEK context modeling languages have a big advantage for
general nonlinear models because they compute all derivative information such as gradients and Hessians
needed by MOSEK. Therefore, it is strongly recommended to use a modeling language for prototyping
nonlinear convex models because the possibilities for errors are reduced dramatically.

The drawbacks of modeling languages are

• they do not integrate so well with common programming languages.

• they do not support conic optimization very well if at all.

• they can add nontrivial computational overhead.

2.3.1 AMPL
The MOSEK command line tool provides a link to AMPL. Please consult the MOSEK command line
tool documentation for how to use it.

2.3.2 GAMS
MOSEK can be used with the modeling language GAMS. However, a special link must be purchased
from GAMS in order to do that. GAMS also provides documentation for how to use MOSEK from
GAMS.

7

Chapter 3

Remote optimization

3.1 The OptServer

Since version 8 MOSEK is able to off-load optimization problems remotely to a listening server both
in a synchronous and asynchronous way. The OptServer is a simple server that accepts and executes
optimization problems from a MOSEK client or using HTTP commands.

The main functionalities are

• receive optimization problems using HTTP/HTTPS protocol,

• accept incoming problem in any file format supported by MOSEK,

• OptServer also acts as a tiny web server to provide a minimal GUI for management.

Observe the OptServer is only available for Linux 64bit platform but can be used from any client
platform. The OptServer is distributed as a binary along with a few Python scripts that can be easily
modified by the user.

8

Chapter 4

Contact Information

Phone +45 7174 9373
Website mosek.com
Email

sales@mosek.com Sales, pricing, and licensing
support@mosek.com Technical support, questions and bug reports
info@mosek.com Everything else.

Mailing Address
MOSEK ApS
Fruebjergvej 3
Symbion Science Park, Box 16
2100 Copenhagen O
Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger https://blog.mosek.com/
Google Group https://groups.google.com/forum/#!forum/mosek
Twitter https://twitter.com/mosektw
Linkedin https://www.linkedin.com/company/mosek-aps
Youtube https://www.youtube.com/channel/UCvIyectEVLP31NXeD5mIbEw

In particular Twitter is used for news, updates and release announcements.

9

https://mosek.com/
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com
https://blog.mosek.com/
https://groups.google.com/forum/#!forum/mosek
https://twitter.com/mosektw
https://www.linkedin.com/company/mosek-aps
https://www.youtube.com/channel/UCvIyectEVLP31NXeD5mIbEw

	Overview
	Problem types
	Capabilities

	Interfaces
	The matrix orientated interfaces
	The Optimizer API
	The Optimization Toolbox for MATLAB
	Rmosek
	The Command Line Tool

	An object orientated interface
	The Fusion API

	Modeling languages
	AMPL
	GAMS

	Remote optimization
	The OptServer

	Contact Information

