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Chapter 1

Introduction

The MOSEK Optimization Suite 9.3.20 is a powerful software package capable of solving large-scale
optimization problems of the following kind:

• linear,

• conic:

– conic quadratic (also known as second-order cone),
– involving the exponential cone,
– involving the power cone,
– semidefinite,

• convex quadratic and quadratically constrained,

• integer.

In order to obtain an overview of features in the MOSEK Optimization Suite consult the product
introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all rela-
tions are linear. The tremendous success of both applications and theory of linear optimization can be
ascribed to the following factors:

• The required data are simple, i.e. just matrices and vectors.

• Convexity is guaranteed since the problem is convex by construction.

• Linear functions are trivially differentiable.

• There exist very efficient algorithms and software for solving linear problems.

• Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the
advantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

𝐴𝑥− 𝑏 ≥ 0.

In conic optimization this is replaced with a wider class of constraints

𝐴𝑥− 𝑏 ∈ 𝒦

where 𝒦 is a convex cone. For example in 3 dimensions 𝒦 may correspond to an ice cream cone. The
conic optimizer in MOSEK supports a number of different types of cones 𝒦, which allows a surprisingly
large number of nonlinear relations to be modeled, as described in the MOSEK Modeling Cookbook,
while preserving the nice algorithmic and theoretical properties of linear optimization.
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1.1 Why the Optimization Toolbox for MATLAB?

The Optimization Toolbox for MATLAB provides access to most of the functionality of MOSEK from
a MATLAB environment. In addition the toolbox includes functions that replace functions from the
MATLAB optimization toolbox available from MathWorks.

The Optimization Toolbox for MATLAB provides access to:

• Linear Optimization (LO)

• Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)

• Power Cone Optimization

• Conic Exponential Optimization (CEO)

• Convex Quadratic and Quadratically Constrained Optimization (QO, QCQO)

• Semidefinite Optimization (SDO)

• Mixed-Integer Optimization (MIO)

as well as to additional functions for:

• problem analysis,

• sensitivity analysis,

• infeasibility diagnostics.

2



Chapter 2

Contact Information

Phone +45 7174 9373
Website mosek.com
Email

sales@mosek.com Sales, pricing, and licensing
support@mosek.com Technical support, questions and bug reports
info@mosek.com Everything else.

Mailing Address
MOSEK ApS
Fruebjergvej 3
Symbion Science Park, Box 16
2100 Copenhagen O
Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger https://blog.mosek.com/
Google Group https://groups.google.com/forum/#!forum/mosek
Twitter https://twitter.com/mosektw
Linkedin https://www.linkedin.com/company/mosek-aps
Youtube https://www.youtube.com/channel/UCvIyectEVLP31NXeD5mIbEw

In particular Twitter is used for news, updates and release announcements.
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Chapter 3

License Agreement

Before using the MOSEK software, please read the license agreement available in the distribution
at <MSKHOME>/mosek/9.3/mosek-eula.pdf or on the MOSEK website https://mosek.com/products/
license-agreement.

MOSEK uses some third-party open-source libraries. Their license details follows.

zlib

MOSEK includes the zlib library obtained from the zlib website. The license agreement for zlib is shown
in Listing 3.1.

Listing 3.1: zlib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu
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fplib

MOSEK includes the floating point formatting library developed by David M. Gay obtained from the
netlib website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/****************************************************************
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***************************************************************/

Zstandard

MOSEK includes the Zstandard library developed by Facebook obtained from github/zstd. The license
agreement for Zstandard is shown in Listing 3.3.

Listing 3.3: Zstandard license.

BSD License

For Zstandard software

Copyright (c) 2016-present, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name Facebook nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(continues on next page)
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(continued from previous page)

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

mimalloc

MOSEK includes the mimalloc memory allocator library from github/mimalloc. The license agreement
for mimalloc is shown in Listing 3.4.

Listing 3.4: mimalloc license.

MIT License

Copyright (c) 2019 Microsoft Corporation, Daan Leijen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

blis

MOSEK includes the blis implementation of BLAS library from github/blis. The license agreement for
blis is shown in Listing 3.5.

Listing 3.5: blis license.

Copyright (C) 2018, The University of Texas at Austin
Copyright (C) 2016, Hewlett Packard Enterprise Development LP
Copyright (C) 2018 - 2019, Advanced Micro Devices, Inc.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

- Neither the name(s) of the copyright holder(s) nor the names of its
contributors may be used to endorse or promote products derived

(continues on next page)
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(continued from previous page)

from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

OpenBLAS

MOSEK includes the OpenBLAS implementation of BLAS library from github/OpenBLAS. The license
agreement for OpenBLAS is shown in Listing 3.6.

Listing 3.6: openblas license.

Copyright (c) 2011-2014, The OpenBLAS Project
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. Neither the name of the OpenBLAS project nor the names of
its contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

7
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Chapter 4

Installation

In this section we discuss how to install and setup the MOSEK Optimization Toolbox for MATLAB.

Important: Before running this MOSEK interface please make sure that you:

• Installed MOSEK correctly. Some operating systems require extra steps. See the Installation
guide for instructions and common troubleshooting tips.

• Set up a license. See the Licensing guide for instructions.

Compatibility

The Optimization Toolbox for MATLAB can be used with MATLAB version R2015a or newer on all
64-bit x86 platforms, that is win64x86, linux64x86 and osx64x86.

Locating files in the MOSEK Optimization Suite

The relevant files of the Optimization Toolbox for MATLAB are organized as reported in Table 4.1.

Table 4.1: Relevant files for the Optimization Toolbox for MAT-
LAB.

Relative Path Description Label
<MSKHOME>/mosek/9.3/toolbox/r2015a Toolbox <TOOLBOXDIR>
<MSKHOME>/mosek/9.3/toolbox/r2015aom Toolbox (without overloading) <TOOLBOXOMDIR>
<MSKHOME>/mosek/9.3/toolbox/examples Examples <EXDIR>
<MSKHOME>/mosek/9.3/toolbox/data Additional data <MISCDIR>

where <MSKHOME> is the folder in which the MOSEK Optimization Suite has been installed.

Setting up the paths

To use Optimization Toolbox for MATLAB the path to the toolbox directory must be added via the
addpath command in MATLAB. Use the command

addpath <MSKHOME>/mosek/9.3/toolbox/r2015a

or, if you do not want to overload functions such as linprog and quadprog from the MATLAB
Optimization Toolbox with their MOSEK versions, then write

addpath <MSKHOME>/mosek/9.3/toolbox/r2015aom

On the Windows platform the relevant paths are

addpath <MSKHOME>\mosek\9.3\toolbox\r2015a
addpath <MSKHOME>\mosek\9.3\toolbox\r2015aom

Alternatively, the path to Optimization Toolbox for MATLAB may be set from the command line
or it can be added to MATLAB permanently using the configuration file startup.m or from the FileSet
Path menu item. We refer to MATLAB documentation for details.
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4.1 Testing the installation

You can verify that Optimization Toolbox for MATLAB works by executing

mosekdiag

in MATLAB. This should produce a message similar to this:

>> mosekdiag
Matlab version : 9.2.0.538062 (R2017a)
Architecture : GLNXA64
mosekopt path : /home/user/somepath/toolbox/r2015a/mosekopt.mexa64
MOSEK version : 9.0.97
Test linear solve: Success
mosekopt works OK. You can use MOSEK in MATLAB.

or to:

mosekopt: /home/user/somepath/toolbox/r2015a/mosekopt.mexa64
Found MOSEK version : major(9), minor(0), revision(97)
mosekopt is working correctly.

If you only want to use Optimization Toolbox for MATLAB then warnings about non-availability of
the command-line interface can be ignored.

More advanced debug information can be obtained with:

mosekopt('debug(10)')

4.2 Troubleshooting

Missing library files such as libmosek64.9.0.dylib or similar

If you are using Mac OS and get an error such as

Library not loaded: libmosek64.9.0.dylib
Referenced from:
/Users/.../mosek/9.0/toolbox/r2015a/mosekopt.mexmaci64
Reason: image not found.

Error in callmosek>doCall (line 224)
[res,sol] = mosekopt('minimize info',prob,param);

then most likely you did not run the MOSEK installation script install.py found in the bin
directory. See also the Installation guide for details.

Windows, invalid MEX-file, cannot find shared libraries

If you are using Windows and get an error such as

Invalid MEX-file <MSKHOME>\Mosek\9.0\toolbox\r2015a\mosekopt.mexw64: The specified␣
→˓module could not be found.

then MATLAB cannot load the MOSEK shared libraries, because the folder containing them is
not in the system search path for DLLs. This can happen if MOSEK was installed manually and
not using the MSI installer. The solution is to add the path <MSKHOME>\mosek\9.3\tools\platform\
<PLATFORM>\bin to the system environment variable PATH. This can also be done per MATLAB session
by using the setenv command in MATLAB before using MOSEK, for example:

setenv('PATH', [getenv('PATH') ';C:\Users\username\mosek\9.0\tools\platform\win64x86\
→˓bin']);

See also the Installation guide for details.

9
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MATLAB String type is not supported

From R2017a MATLAB provides a new string type (with double quotes). It is not supported by the
Optimization Toolbox for MATLAB and may cause confusing error messages. For example the following
will give an error:

mosekopt("minimize", prob)

Return code - 1200 [MSK_RES_ERR_IN_ARGUMENT] [A function argument is incorrect.]

Always use old-fashioned character arrays (strings in single quotes).

MOSEK does not see new license file

If you updated your license file but MOSEK does not detect it then restart MATLAB. MOSEK is
caching the license and it will not notice the change in the license file on disk.

Undefined Function or Variable mosekopt

If you get the MATLAB error message

Undefined function or variable 'mosekopt'

you have not added the path to the Optimization Toolbox for MATLAB correctly as described above.

Invalid MEX-file

For certain versions of Windows and MATLAB, the path to MEX files cannot contain spaces. Therefore,
if you have installed MOSEK in C:\Program Files\Mosek and get a MATLAB error similar to:

Invalid MEX-file <MSKHOME>\Mosek\9.0\toolbox\r2015a\mosekopt.mexw64

try installing MOSEK in a different directory, for example C:\Users\<someuser >\ .

Output Arguments not assigned

If you encounter an error like

Error in ==> mosekopt at 1
function [r,res] = mosekopt(cmd,prob,param,callback)

Output argument "r" (and maybe others) not assigned during call to
"C:\Users\username\mosek\9.0\toolbox\r2015a\mosekopt.m>mosekopt".

then a mismatch between 32 and 64 bit versions of MOSEK and MATLAB is likely. From MATLAB
type

which mosekopt

which (for a successful installation) should point to a MEX file,

<MSKHOME>\mosek\9.0\toolbox\r2015a\mosekopt.mexw64

and not to a MATLAB .m file,

<MSKHOME>\mosek\9.0\toolbox\r2015a\mosekopt.m
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Security exception in MacOS 10.15+ (Catalina)

If an attempt to run MOSEK on Mac OS 10.15 (Catalina) and later produces security exceptions
(developer cannot be verified and similar) then use xattr to remove the quarantine attribute from
all MOSEK executables and binaries. This can be done in one go with

xattr -dr com.apple.quarantine mosek

where mosek is the folder which contains the full MOSEK installation or MOSEK binaries. See
https://themosekblog.blogspot.com/2019/12/macos-1015-catalina-mosek-installation.html for more in-
formation. If that does not help, use the system settings to allow running arbitrary unverified applica-
tions.
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Chapter 5

Design Overview

5.1 Modeling

Optimization Toolbox for MATLAB is an interface for specifying optimization problems directly in
matrix form. It means that an optimization problem such as:

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 ≤ 𝑏,

𝑥 ∈ 𝒦

or

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 ≤ 𝑏,

𝐹𝑥 + 𝑔 ∈ 𝒦

is specified by describing the matrices 𝐴, 𝐹 , vectors 𝑏, 𝑐, 𝑔 and a list of cones 𝒦 directly.
The main characteristics of this interface are:

• Simplicity: once the problem data is assembled in matrix form, it is straightforward to input it
into the optimizer.

• Exploiting sparsity: data is entered in sparse format, enabling huge, sparse problems to be
defined and solved efficiently.

• Efficiency: the API incurs almost no overhead between the user’s representation of the problem
and MOSEK’s internal one.

Optimization Toolbox for MATLAB does not aid with modeling. It is the user’s responsibility to
express the problem in MOSEK’s standard form, introducing, if necessary, auxiliary variables and
constraints. See Sec. 12 for the precise formulations of problems MOSEK solves.

5.2 “Hello World!” in MOSEK

Here we present the most basic workflow pattern when using Optimization Toolbox for MATLAB.

Create a prob structure

Optimization problems using Optimization Toolbox for MATLAB are specified using a prob structure
that describes the numerical data of the problem. In most cases it consists of matrices of floating-point
numbers.
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Retrieving the solutions

When the problem is set up, the optimizer is invoked with the call to mosekopt . The call will return a
response and a structure containing the solution to all variables. See further details in Sec. 7.

We refer also to Sec. 7 for information about more advanced mechanisms of interacting with the
solver.

Source code example

Below is the most basic code sample that defines and solves a trivial optimization problem

minimize 𝑥
subject to 2.0 ≤ 𝑥 ≤ 3.0.

For simplicity the example does not contain any error or status checks.

Listing 5.1: “Hello World!” in MOSEK

prob.a = sparse(0,1) % 0 linear constraints, 1 variable
prob.c = [1.0]' % Only objective coefficient
prob.blx= [2.0]' % Lower bound(s) on variable(s)
prob.bux= [3.0]' % Upper bound(s) on variable(s)

% Optimize
[r, res] = mosekopt('minimize', prob);

% Print answer
res.sol.itr.xx

13



Chapter 6

Optimization Tutorials

In this section we demonstrate how to set up basic types of optimization problems. Each short tutorial
contains a working example of formulating problems, defining variables and constraints and retrieving
solutions.

6.1 Linear Optimization

The simplest optimization problem is a purely linear problem. A linear optimization problem is a problem
of the following form:

Minimize or maximize the objective function

𝑛−1∑︁
𝑗=0

𝑐𝑗𝑥𝑗 + 𝑐𝑓

subject to the linear constraints

𝑙𝑐𝑘 ≤
𝑛−1∑︁
𝑗=0

𝑎𝑘𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

and the bounds

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1.

The problem description consists of the following elements:

• 𝑚 and 𝑛 — the number of constraints and variables, respectively,

• 𝑥 — the variable vector of length 𝑛,

• 𝑐 — the coefficient vector of length 𝑛

𝑐 =

⎡⎢⎣ 𝑐0
...

𝑐𝑛−1

⎤⎥⎦ ,

• 𝑐𝑓 — fixed term in the objective,

• 𝐴 — an 𝑚× 𝑛 matrix of coefficients

𝐴 =

⎡⎢⎣ 𝑎0,0 · · · 𝑎0,(𝑛−1)

... · · ·
...

𝑎(𝑚−1),0 · · · 𝑎(𝑚−1),(𝑛−1)

⎤⎥⎦ ,
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• 𝑙𝑐 and 𝑢𝑐 — the lower and upper bounds on constraints,

• 𝑙𝑥 and 𝑢𝑥 — the lower and upper bounds on variables.

Please note that we are using 0 as the first index: 𝑥0 is the first element in variable vector 𝑥.

6.1.1 Example LO1
The following is an example of a small linear optimization problem:

maximize 3𝑥0 + 1𝑥1 + 5𝑥2 + 1𝑥3

subject to 3𝑥0 + 1𝑥1 + 2𝑥2 = 30,
2𝑥0 + 1𝑥1 + 3𝑥2 + 1𝑥3 ≥ 15,

2𝑥1 + 3𝑥3 ≤ 25,

(6.1)

under the bounds

0 ≤ 𝑥0 ≤ ∞,
0 ≤ 𝑥1 ≤ 10,
0 ≤ 𝑥2 ≤ ∞,
0 ≤ 𝑥3 ≤ ∞.

Example: Linear optimization using msklpopt

A linear optimization problem such as (6.1) can be solved using the msklpopt function. The first step
in solving the example is to setup the data for problem (6.1) i.e. the 𝑐, 𝐴, etc. Afterwards the problem
is solved using an appropriate call to msklpopt .

Listing 6.1: Script implementing problem (6.1) using msklpopt .

function lo1()

c = [3 1 5 1]';
a = [[3 1 2 0];[2 1 3 1];[0 2 0 3]];
blc = [30 15 -inf]';
buc = [30 inf 25 ]';
blx = zeros(4,1);
bux = [inf 10 inf inf]';

[res] = msklpopt(c,a,blc,buc,blx,bux,[],'maximize');
sol = res.sol;

% Interior-point solution.

sol.itr.xx' % x solution.
sol.itr.sux' % Dual variables corresponding to buc.
sol.itr.slx' % Dual variables corresponding to blx.

% Basic solution.

sol.bas.xx' % x solution in basic solution.

Please note that:

• Infinite bounds are specified using -inf and inf. Moreover, using [] for bux, buc, blx or blc
means there are no bounds of the corresponding type.

• Retrieving different solution types is discussed in Sec. 7.1.
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Example: Linear optimization using mosekopt

The function msklpopt is just a wrapper around the mosekopt , which is the main interface to MOSEK
and is the only choice for more complicated problems, for instance with conic constraints. We demonstrate
how to solve (6.1) directly with mosekopt . The following MATLAB code demonstrate how to set up the
prob structure for the example (6.1) and solve the problem using mosekopt .

Listing 6.2: Script implementing problem (6.1) using mosekopt .

function lo2()
clear prob;

% Specify the c vector.
prob.c = [3 1 5 1]';

% Specify a in sparse format.
subi = [1 1 1 2 2 2 2 3 3];
subj = [1 2 3 1 2 3 4 2 4];
valij = [3 1 2 2 1 3 1 2 3];

prob.a = sparse(subi,subj,valij);

% Specify lower bounds of the constraints.
prob.blc = [30 15 -inf]';

% Specify upper bounds of the constraints.
prob.buc = [30 inf 25 ]';

% Specify lower bounds of the variables.
prob.blx = zeros(4,1);

% Specify upper bounds of the variables.
prob.bux = [inf 10 inf inf]';

% Perform the optimization.
[r,res] = mosekopt('maximize',prob);

% Show the optimal x solution.
res.sol.bas.xx

Please note that

• A MATLAB structure named prob containing all the relevant problem data is defined.

• All fields of this structure are optional except prob.a which is required to be a sparse matrix.
The dimension of this matrix determine the number of constraints and variables in the problem.

• Different parts of the solution can be accessed as described in Sec. 7.1.

Example: Linear optimization using linprog

MOSEK also provides a function linprog with a function of the same name from the MATLAB
Optimization Toolbox. Consult Sec. 10.1 for details.

Listing 6.3: Script implementing problem (6.1) using linprog .

f = - [3 1 5 1]'; % minus because we maximize
A = [[-2 -1 -3 -1]; [0 2 0 3]];
b = [-15 25]';
Aeq = [3 1 2 0];

(continues on next page)
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(continued from previous page)

beq = 30;
l = zeros(4,1);
u = [inf 10 inf inf]';

% Example of setting options for linprog
% Get default options
opt = mskoptimset('');
% Turn on diagnostic output
opt = mskoptimset(opt,'Diagnostics','on');
% Set a MOSEK option, in this case turn basic identification off.
opt = mskoptimset(opt,'MSK_IPAR_INTPNT_BASIS','MSK_OFF');
% Modify a MOSEK parameter with double value
opt = mskoptimset(opt,'MSK_DPAR_INTPNT_TOL_INFEAS',1e-12);

[x,fval,exitflag,output,lambda] = linprog(f,A,b,Aeq,beq,l,u,opt);

x
fval
exitflag
output
lambda

6.2 Quadratic Optimization

MOSEK can solve quadratic and quadratically constrained problems, as long as they are convex. This
class of problems can be formulated as follows:

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐𝑘 ≤ 1
2𝑥

𝑇𝑄𝑘𝑥 +
∑︀𝑛−1

𝑗=0 𝑎𝑘,𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1.

(6.2)

Without loss of generality it is assumed that 𝑄𝑜 and 𝑄𝑘 are all symmetric because

𝑥𝑇𝑄𝑥 =
1

2
𝑥𝑇 (𝑄 + 𝑄𝑇 )𝑥.

This implies that a non-symmetric 𝑄 can be replaced by the symmetric matrix 1
2 (𝑄 + 𝑄𝑇 ).

The problem is required to be convex. More precisely, the matrix 𝑄𝑜 must be positive semi-definite
and the 𝑘th constraint must be of the form

𝑙𝑐𝑘 ≤ 1

2
𝑥𝑇𝑄𝑘𝑥 +

𝑛−1∑︁
𝑗=0

𝑎𝑘,𝑗𝑥𝑗 (6.3)

with a negative semi-definite 𝑄𝑘 or of the form

1

2
𝑥𝑇𝑄𝑘𝑥 +

𝑛−1∑︁
𝑗=0

𝑎𝑘,𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘.

with a positive semi-definite 𝑄𝑘. This implies that quadratic equalities are not allowed. Specifying a
non-convex problem will result in an error when the optimizer is called.

A matrix is positive semidefinite if all the eigenvalues of 𝑄 are nonnegative. An alternative statement
of the positive semidefinite requirement is

𝑥𝑇𝑄𝑥 ≥ 0, ∀𝑥.

If the convexity (i.e. semidefiniteness) conditions are not met MOSEK will not produce reliable results
or work at all.
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6.2.1 Example: Quadratic Objective
We look at a small problem with linear constraints and quadratic objective:

minimize 𝑥2
1 + 0.1𝑥2

2 + 𝑥2
3 − 𝑥1𝑥3 − 𝑥2

subject to 1 ≤ 𝑥1 + 𝑥2 + 𝑥3

0 ≤ 𝑥.
(6.4)

The matrix formulation of (6.4) has:

𝑄𝑜 =

⎡⎣ 2 0 −1
0 0.2 0
−1 0 2

⎤⎦ , 𝑐 =

⎡⎣ 0
−1
0

⎤⎦ , 𝐴 =
[︀

1 1 1
]︀
,

with the bounds:

𝑙𝑐 = 1, 𝑢𝑐 = ∞, 𝑙𝑥 =

⎡⎣ 0
0
0

⎤⎦ and 𝑢𝑥 =

⎡⎣ ∞
∞
∞

⎤⎦
Please note the explicit 1

2 in the objective function of (6.2) which implies that diagonal elements must
be doubled in 𝑄, i.e. 𝑄11 = 2 even though 1 is the coefficient in front of 𝑥2

1 in (6.4).

Using mosekopt

In Listing 6.4 we show how to use mosekopt to solve problem (6.4). This is the preferred way.

Listing 6.4: How to solve problem (6.4) using mosekopt.

function qo2()

clear prob;

% c vector.
prob.c = [0 -1 0]';

% Define the data.

% First the lower triangular part of q in the objective
% is specified in a sparse format. The format is:
%
% Q(prob.qosubi(t),prob.qosubj(t)) = prob.qoval(t), t=1,...,4

prob.qosubi = [ 1 3 2 3]';
prob.qosubj = [ 1 1 2 3]';
prob.qoval = [ 2 -1 0.2 2]';

% a, the constraint matrix
subi = ones(3,1);
subj = 1:3;
valij = ones(3,1);

prob.a = sparse(subi,subj,valij);

% Lower bounds of constraints.
prob.blc = [1.0]';

% Upper bounds of constraints.
prob.buc = [inf]';

(continues on next page)
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(continued from previous page)

% Lower bounds of variables.
prob.blx = sparse(3,1);

% Upper bounds of variables.
prob.bux = []; % There are no bounds.

[r,res] = mosekopt('minimize',prob);

% Display return code.
fprintf('Return code: %d\n',r);

% Display primal solution for the constraints.
res.sol.itr.xc'

% Display primal solution for the variables.
res.sol.itr.xx'

This sequence of commands looks much like the one that was used to solve the linear optimization
example using mosekopt except that the definition of the 𝑄 matrix in prob. mosekopt requires that 𝑄
is specified in a sparse format. Indeed the vectors qosubi, qosubj, and qoval are used to specify the
coefficients of 𝑄 in the objective using the principle

𝑄qosubi(t),qosubj(t) = qoval(t), for 𝑡 = 1, . . . , length(qosubi).

An important observation is that due to 𝑄 being symmetric, only the lower triangular part of 𝑄 should
be specified.

Using mskqpopt

In Listing 6.5 we show how to use mskqpopt to solve problem (6.4).

Listing 6.5: Function solving problem (6.4) using mskqpopt.

function qo1()

% Set up Q.
q = [[2 0 -1];[0 0.2 0];[-1 0 2]];

% Set up the linear part of the problem.
c = [0 -1 0]';
a = ones(1,3);
blc = [1.0];
buc = [inf];
blx = sparse(3,1);
bux = [];

% Optimize the problem.
[res] = mskqpopt(q,c,a,blc,buc,blx,bux);

% Show the primal solution.
res.sol.itr.xx

It should be clear that the format for calling mskqpopt is very similar to calling msklpopt except
that the 𝑄 matrix is included as the first argument of the call. Similarly, the solution can be inspected
by viewing the res.sol field.

19



6.2.2 Example: Quadratic constraints
In this section we show how to solve a problem with quadratic constraints. Please note that quadratic
constraints are subject to the convexity requirement (6.3).

Consider the problem:

minimize 𝑥2
1 + 0.1𝑥2

2 + 𝑥2
3 − 𝑥1𝑥3 − 𝑥2

subject to 1 ≤ 𝑥1 + 𝑥2 + 𝑥3 − 𝑥2
1 − 𝑥2

2 − 0.1𝑥2
3 + 0.2𝑥1𝑥3,

𝑥 ≥ 0.

This is equivalent to

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥
subject to 1

2𝑥
𝑇𝑄0𝑥 + 𝐴𝑥 ≥ 𝑏,
𝑥 ≥ 0,

(6.5)

where

𝑄𝑜 =

⎡⎣ 2 0 −1
0 0.2 0
−1 0 2

⎤⎦ , 𝑐 =
[︀

0 −1 0
]︀𝑇

, 𝐴 =
[︀

1 1 1
]︀
, 𝑏 = 1.

𝑄0 =

⎡⎣ −2 0 0.2
0 −2 0

0.2 0 −0.2

⎤⎦ .

The linear parts and quadratic objective are set up the way described in the previous tutorial.

Setting up quadratic constraints

Listing 6.6: Script implementing problem (6.5).

function qcqo1()
clear prob;

% Specify the linear objective terms.
prob.c = [0, -1, 0];

% Specify the quadratic terms of the constraints.
prob.qcsubk = [1 1 1 1 ]';
prob.qcsubi = [1 2 3 3 ]';
prob.qcsubj = [1 2 3 1 ]';
prob.qcval = [-2.0 -2.0 -0.2 0.2]';

% Specify the quadratic terms of the objective.
prob.qosubi = [1 2 3 3 ]';
prob.qosubj = [1 2 3 1 ]';
prob.qoval = [2.0 0.2 2.0 -1.0]';

% Specify the linear constraint matrix
prob.a = [1 1 1];

% Specify the lower bounds
prob.blc = [1];
prob.blx = zeros(3,1);

[r,res] = mosekopt('minimize',prob);

% Display the solution.
fprintf('\nx:');
fprintf(' %-.4e',res.sol.itr.xx');
fprintf('\n||x||: %-.4e',norm(res.sol.itr.xx));
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6.3 Conic Quadratic Optimization

Conic optimization is a generalization of linear optimization, allowing constraints of the type

𝑥𝑡 ∈ 𝒦𝑡,

where 𝑥𝑡 is a subset of the problem variables and 𝒦𝑡 is a convex cone. Since the set R𝑛 of real numbers
is also a convex cone, we can simply write a compound conic constraint 𝑥 ∈ 𝒦 where 𝒦 = 𝒦1 × · · · × 𝒦𝑙

is a product of smaller cones and 𝑥 is the full problem variable.
MOSEK can solve conic quadratic optimization problems of the form

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ 𝒦,

where the domain restriction, 𝑥 ∈ 𝒦, implies that all variables are partitioned into convex cones

𝑥 = (𝑥0, 𝑥1, . . . , 𝑥𝑝−1), with 𝑥𝑡 ∈ 𝒦𝑡 ⊆ R𝑛𝑡 .

In this tutorial we describe how to use the two types of quadratic cones defined as:

• Quadratic cone:

𝒬𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 : 𝑥0 ≥

⎯⎸⎸⎷𝑛−1∑︁
𝑗=1

𝑥2
𝑗

⎫⎬⎭ .

• Rotated quadratic cone:

𝒬𝑛
r =

⎧⎨⎩𝑥 ∈ R𝑛 : 2𝑥0𝑥1 ≥
𝑛−1∑︁
𝑗=2

𝑥2
𝑗 , 𝑥0 ≥ 0, 𝑥1 ≥ 0

⎫⎬⎭ .

For other types of cones supported by MOSEK see Sec. 6.4, Sec. 6.5, Sec. 6.6. Different cone types
can appear together in one optimization problem.

For example, the following constraint:

(𝑥4, 𝑥0, 𝑥2) ∈ 𝒬3

describes a convex cone in R3 given by the inequality:

𝑥4 ≥
√︁
𝑥2
0 + 𝑥2

2.

Furthermore, each variable may belong to one cone at most. The constraint 𝑥𝑖 − 𝑥𝑗 = 0 would however
allow 𝑥𝑖 and 𝑥𝑗 to belong to different cones with same effect.

6.3.1 Example CQO1
Consider the following conic quadratic problem which involves some linear constraints, a quadratic cone
and a rotated quadratic cone.

minimize 𝑥4 + 𝑥5 + 𝑥6

subject to 𝑥1 + 𝑥2 + 2𝑥3 = 1,
𝑥1, 𝑥2, 𝑥3 ≥ 0,

𝑥4 ≥
√︀
𝑥2
1 + 𝑥2

2,
2𝑥5𝑥6 ≥ 𝑥2

3

(6.6)

The linear constraints are specified as if the problem was a linear problem whereas the cones are specified
using two index lists cones.subptr and cones.sub and list of cone-type identifiers cones.type. The
elements of all the cones are listed in cones.sub, and cones.subptr specifies the index of the first
element in cones.sub for each cone.

Listing 6.7 demonstrates how to solve the example (6.6) using MOSEK.
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Listing 6.7: Script implementing problem (6.6).

function cqo1()

clear prob;

[r, res] = mosekopt('symbcon');
% Specify the non-conic part of the problem.

prob.c = [0 0 0 1 1 1];
prob.a = sparse([1 1 2 0 0 0]);
prob.blc = 1;
prob.buc = 1;
prob.blx = [0 0 0 -inf -inf -inf];
prob.bux = inf*ones(6,1);

% Specify the cones.

prob.cones.type = [res.symbcon.MSK_CT_QUAD, res.symbcon.MSK_CT_RQUAD];
prob.cones.sub = [4, 1, 2, 5, 6, 3];
prob.cones.subptr = [1, 4];
% The field 'type' specifies the cone types, i.e., quadratic cone
% or rotated quadratic cone. The keys for the two cone types are MSK_CT_QUAD
% and MSK_CT_RQUAD, respectively.
%
% The fields 'sub' and 'subptr' specify the members of the cones,
% i.e., the above definitions imply that
% x(4) >= sqrt(x(1)^2+x(2)^2) and 2 * x(5) * x(6) >= x(3)^2.

% Optimize the problem.

[r,res]=mosekopt('minimize',prob);

% Display the primal solution.

res.sol.itr.xx'

6.4 Power Cone Optimization

Conic optimization is a generalization of linear optimization, allowing constraints of the type

𝑥𝑡 ∈ 𝒦𝑡,

where 𝑥𝑡 is a subset of the problem variables and 𝒦𝑡 is a convex cone. Since the set R𝑛 of real numbers
is also a convex cone, we can simply write a compound conic constraint 𝑥 ∈ 𝒦 where 𝒦 = 𝒦1 × · · · × 𝒦𝑙

is a product of smaller cones and 𝑥 is the full problem variable.
MOSEK can solve conic optimization problems of the form

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ 𝒦,

where the domain restriction, 𝑥 ∈ 𝒦, implies that all variables are partitioned into convex cones

𝑥 = (𝑥0, 𝑥1, . . . , 𝑥𝑝−1), with 𝑥𝑡 ∈ 𝒦𝑡 ⊆ R𝑛𝑡 .

22



In this tutorial we describe how to use the power cone. The primal power cone of dimension 𝑛 with
parameter 0 < 𝛼 < 1 is defined as:

𝒫𝛼,1−𝛼
𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 : 𝑥𝛼
0𝑥

1−𝛼
1 ≥

⎯⎸⎸⎷𝑛−1∑︁
𝑖=2

𝑥2
𝑖 , 𝑥0, 𝑥1 ≥ 0

⎫⎬⎭ .

In particular, the most important special case is the three-dimensional power cone family:

𝒫𝛼,1−𝛼
3 =

{︀
𝑥 ∈ R3 : 𝑥𝛼

0𝑥
1−𝛼
1 ≥ |𝑥2|, 𝑥0, 𝑥1 ≥ 0

}︀
.

For example, the conic constraint (𝑥, 𝑦, 𝑧) ∈ 𝒫0.25,0.75
3 is equivalent to 𝑥0.25𝑦0.75 ≥ |𝑧|, or simply 𝑥𝑦3 ≥ 𝑧4

with 𝑥, 𝑦 ≥ 0.
MOSEK also supports the dual power cone:

(︀
𝒫𝛼,1−𝛼
𝑛

)︀*
=

⎧⎨⎩𝑥 ∈ R𝑛 :
(︁𝑥0

𝛼

)︁𝛼(︂ 𝑥1

1 − 𝛼

)︂1−𝛼

≥

⎯⎸⎸⎷𝑛−1∑︁
𝑖=2

𝑥2
𝑖 , 𝑥0, 𝑥1 ≥ 0

⎫⎬⎭ .

For other types of cones supported by MOSEK see Sec. 6.3, Sec. 6.5, Sec. 6.6. Different cone types can
appear together in one optimization problem.

Furthermore, each variable may belong to one cone at most. The constraint 𝑥𝑖 − 𝑥𝑗 = 0 would
however allow 𝑥𝑖 and 𝑥𝑗 to belong to different cones with same effect.

6.4.1 Example POW1
Consider the following optimization problem which involves powers of variables:

maximize 𝑥0.2𝑦0.8 + 𝑧0.4 − 𝑥
subject to 𝑥 + 𝑦 + 1

2𝑧 = 2,
𝑥, 𝑦, 𝑧 ≥ 0.

(6.7)

With (𝑥, 𝑦, 𝑧) = (𝑥0, 𝑥1, 𝑥2) we convert it into conic form using auxiliary variables as bounds for the
power expressions:

maximize 𝑥3 + 𝑥4 − 𝑥0

subject to 𝑥0 + 𝑥1 + 1
2𝑥2 = 2,

(𝑥0, 𝑥1, 𝑥3) ∈ 𝒫0.2,0.8
3 ,

(𝑥2, 𝑥5, 𝑥4) ∈ 𝒫0.4,0.6
3 ,

𝑥5 = 1.

(6.8)

The linear constraints are specified as if the problem was a linear problem. The cone elements are
specified using two index lists cones.subptr and cones.sub. Cone-type identifiers appear in cones.
type, and the cone parameters 𝛼 are in cones.conepar. The elements of all the cones are listed in
cones.sub, and cones.subptr specifies the index of the first element in cones.sub for each cone.

Listing 6.8 demonstrates how to solve the example (6.7) using MOSEK. The solution is

[ 0.06389298 0.78308564 2.30604283 ]

Listing 6.8: Script implementing problem (6.7).

function pow1()

clear prob;

[r, res] = mosekopt('symbcon');
% Specify the non-conic part of the problem.

prob.c = [-1 0 0 1 1 0];
(continues on next page)
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prob.a = [1 1 0.5 0 0 0];
prob.blc = [2.0];
prob.buc = [2.0];
prob.blx = [-inf -inf -inf -inf -inf 1.0];
prob.bux = [ inf inf inf inf inf 1.0];

% Specify the cones.
prob.cones.type = [res.symbcon.MSK_CT_PPOW res.symbcon.MSK_CT_PPOW];
prob.cones.conepar= [0.2 0.4];
prob.cones.sub = [1 2 4 3 6 5];
prob.cones.subptr = [1 4];
% The field 'type' specifies the cone types, in this case power cones.
%
% The fields 'sub' and 'subptr' specify the members of the cones,
% i.e., the above definitions imply that
% (x(1), x(2), x(4)) and (x(3), x(6), x(5))
% are cones.
%
% The field 'conepar' specifies the alpha cone parameters (exponents)

% Optimize the problem.

[r,res]=mosekopt('maximize',prob);

% Display the primal solution.

res.sol.itr.xx'

6.5 Conic Exponential Optimization

Conic optimization is a generalization of linear optimization, allowing constraints of the type

𝑥𝑡 ∈ 𝒦𝑡,

where 𝑥𝑡 is a subset of the problem variables and 𝒦𝑡 is a convex cone. Since the set R𝑛 of real numbers
is also a convex cone, we can simply write a compound conic constraint 𝑥 ∈ 𝒦 where 𝒦 = 𝒦1 × · · · × 𝒦𝑙

is a product of smaller cones and 𝑥 is the full problem variable.
MOSEK can solve conic optimization problems of the form

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ 𝒦,

where the domain restriction, 𝑥 ∈ 𝒦, implies that all variables are partitioned into convex cones

𝑥 = (𝑥0, 𝑥1, . . . , 𝑥𝑝−1), with 𝑥𝑡 ∈ 𝒦𝑡 ⊆ R𝑛𝑡 .

In this tutorial we describe how to use the primal exponential cone defined as:

𝐾exp =
{︀
𝑥 ∈ R3 : 𝑥0 ≥ 𝑥1 exp(𝑥2/𝑥1), 𝑥0, 𝑥1 ≥ 0

}︀
.

MOSEK also supports the dual exponential cone:

𝐾*
exp =

{︀
𝑠 ∈ R3 : 𝑠0 ≥ −𝑠2𝑒

−1 exp(𝑠1/𝑠2), 𝑠2 ≤ 0, 𝑠0 ≥ 0
}︀
.

For other types of cones supported by MOSEK see Sec. 6.3, Sec. 6.4, Sec. 6.6. Different cone types can
appear together in one optimization problem.
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For example, the following constraint:

(𝑥4, 𝑥0, 𝑥2) ∈ 𝐾exp

describes a convex cone in R3 given by the inequalities:

𝑥4 ≥ 𝑥0 exp(𝑥2/𝑥0), 𝑥0, 𝑥4 ≥ 0.

Furthermore, each variable may belong to one cone at most. The constraint 𝑥𝑖 − 𝑥𝑗 = 0 would however
allow 𝑥𝑖 and 𝑥𝑗 to belong to different cones with same effect.

6.5.1 Example CEO1
Consider the following basic conic exponential problem which involves some linear constraints and an
exponential inequality:

minimize 𝑥0 + 𝑥1

subject to 𝑥0 + 𝑥1 + 𝑥2 = 1,
𝑥0 ≥ 𝑥1 exp(𝑥2/𝑥1),

𝑥0, 𝑥1 ≥ 0.

(6.9)

The conic form of (6.9) is:

minimize 𝑥0 + 𝑥1

subject to 𝑥0 + 𝑥1 + 𝑥2 = 1,
(𝑥0, 𝑥1, 𝑥2) ∈ 𝐾exp,

𝑥 ∈ R3.

(6.10)

The linear constraints are specified as if the problem was a linear problem whereas the cones are specified
using two index lists cones.subptr and cones.sub and list of cone-type identifiers cones.type. The
elements of all the cones are listed in cones.sub, and cones.subptr specifies the index of the first
element in cones.sub for each cone.

Listing 6.9 demonstrates how to solve the example (6.9) using MOSEK.

Listing 6.9: Script implementing problem (6.9).

function ceo1()

clear prob;

[r, res] = mosekopt('symbcon');
% Specify the non-conic part of the problem.

prob.c = [1 1 0];
prob.a = sparse([1 1 1]);
prob.blc = 1;
prob.buc = 1;
prob.blx = [-inf -inf -inf];
prob.bux = [ inf inf inf];

% Specify the cones.

prob.cones.type = [res.symbcon.MSK_CT_PEXP];
prob.cones.sub = [1, 2, 3];
prob.cones.subptr = [1];
% The field 'type' specifies the cone types, in this case an exponential
% cone with key MSK_CT_PEXP.
%
% The fields 'sub' and 'subptr' specify the members of the cones,

(continues on next page)
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% i.e., the above definitions imply that
% x(1) >= x(2)*exp(x(3)/x(2))

% Optimize the problem.

[r,res]=mosekopt('minimize',prob);

% Display the primal solution.

res.sol.itr.xx'

6.6 Semidefinite Optimization

Semidefinite optimization is a generalization of conic optimization, allowing the use of matrix variables
belonging to the convex cone of positive semidefinite matrices

𝒮𝑟
+ =

{︀
𝑋 ∈ 𝒮𝑟 : 𝑧𝑇𝑋𝑧 ≥ 0, ∀𝑧 ∈ R𝑟

}︀
,

where 𝒮𝑟 is the set of 𝑟 × 𝑟 real-valued symmetric matrices.
MOSEK can solve semidefinite optimization problems of the form

minimize
∑︀𝑛−1

𝑗=0 𝑐𝑗𝑥𝑗 +
∑︀𝑝−1

𝑗=0

⟨︀
𝐶𝑗 , 𝑋𝑗

⟩︀
+ 𝑐𝑓

subject to 𝑙𝑐𝑖 ≤
∑︀𝑛−1

𝑗=0 𝑎𝑖𝑗𝑥𝑗 +
∑︀𝑝−1

𝑗=0

⟨︀
𝐴𝑖𝑗 , 𝑋𝑗

⟩︀
≤ 𝑢𝑐

𝑖 , 𝑖 = 0, . . . ,𝑚− 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1,

𝑥 ∈ 𝒦, 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ , 𝑗 = 0, . . . , 𝑝− 1

where the problem has 𝑝 symmetric positive semidefinite variables 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ of dimension 𝑟𝑗 with

symmetric coefficient matrices 𝐶𝑗 ∈ 𝒮𝑟𝑗 and 𝐴𝑖,𝑗 ∈ 𝒮𝑟𝑗 . We use standard notation for the matrix inner
product, i.e., for 𝐴,𝐵 ∈ R𝑚×𝑛 we have

⟨𝐴,𝐵⟩ :=

𝑚−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝐴𝑖𝑗𝐵𝑖𝑗 .

We demonstrate the setup of semidefinite variables and the matrices 𝐶, 𝐴 on the following examples:

• Sec. 6.6.1: A problem with one semidefinite variable and linear and conic constraints.

• Sec. 6.6.2: A problem with two semidefinite variables with a linear constraint and bound.

6.6.1 Example SDO1
We consider the simple optimization problem with semidefinite and conic quadratic constraints:

minimize

⟨⎡⎣ 2 1 0
1 2 1
0 1 2

⎤⎦ , 𝑋

⟩
+ 𝑥0

subject to

⟨⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ , 𝑋

⟩
+ 𝑥0 = 1,

⟨⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ , 𝑋

⟩
+ 𝑥1 + 𝑥2 = 1/2,

𝑥0 ≥
√
𝑥1

2 + 𝑥2
2, 𝑋 ⪰ 0,

(6.11)

The problem description contains a 3-dimensional symmetric semidefinite variable which can be written
explicitly as:

𝑋 =

⎡⎣ 𝑋00 𝑋10 𝑋20

𝑋10 𝑋11 𝑋21

𝑋20 𝑋21 𝑋22

⎤⎦ ∈ 𝒮3
+,
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and a conic quadratic variable (𝑥0, 𝑥1, 𝑥2) ∈ 𝒬3. The objective is to minimize

2(𝑋00 + 𝑋10 + 𝑋11 + 𝑋21 + 𝑋22) + 𝑥0,

subject to the two linear constraints

𝑋00 + 𝑋11 + 𝑋22 + 𝑥0 = 1,
𝑋00 + 𝑋11 + 𝑋22 + 2(𝑋10 + 𝑋20 + 𝑋21) + 𝑥1 + 𝑥2 = 1/2.

Setting up the linear and conic part

The linear and conic parts (constraints, variables, objective, cones) are set up using the methods described
in the relevant tutorials; Sec. 6.1, Sec. 6.3, Sec. 6.5, Sec. 6.4. Here we only discuss the aspects directly
involving semidefinite variables.

Appending semidefinite variables

The dimensions of semidefinite variables are passed in prob.bardim.

Coefficients of semidefinite terms.

Every term of the form (𝐴𝑖,𝑗)𝑘,𝑙(𝑋𝑗)𝑘,𝑙 is determined by four indices (𝑖, 𝑗, 𝑘, 𝑙) and a coefficient value
𝑣 = (𝐴𝑖,𝑗)𝑘,𝑙. Here 𝑖 is the number of the constraint in which the term appears, 𝑗 is the index of
the semidefinite variable it involves and (𝑘, 𝑙) is the position in that variable. This data is passed in
the structure bara . Note that only the lower triangular part should be specified explicitly, that is one
always has 𝑘 ≥ 𝑙.

Semidefinite terms (𝐶𝑗)𝑘,𝑙(𝑋𝑗)𝑘,𝑙 of the objective are specified in the same way in barc but only
include (𝑗, 𝑘, 𝑙) and 𝑣.

Source code

Listing 6.10: Code implementing problem (6.11).

function sdo1()
[r, res] = mosekopt('symbcon');

prob.c = [1, 0, 0];

prob.bardim = [3];
prob.barc.subj = [1, 1, 1, 1, 1];
prob.barc.subk = [1, 2, 2, 3, 3];
prob.barc.subl = [1, 1, 2, 2, 3];
prob.barc.val = [2.0, 1.0, 2.0, 1.0, 2.0];

prob.blc = [1, 0.5];
prob.buc = [1, 0.5];

% It is a good practice to provide the correct
% dimmension of A as the last two arguments
% because it facilitates better error checking.
prob.a = sparse([1, 2, 2], [1, 2, 3], [1, 1, 1], 2, 3);
prob.bara.subi = [1, 1, 1, 2, 2, 2, 2, 2, 2];
prob.bara.subj = [1, 1, 1, 1, 1, 1, 1, 1, 1];
prob.bara.subk = [1, 2, 3, 1, 2, 3, 2, 3, 3];
prob.bara.subl = [1, 2, 3, 1, 1, 1, 2, 2, 3];
prob.bara.val = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];

prob.cones.type = [res.symbcon.MSK_CT_QUAD];
(continues on next page)
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prob.cones.sub = [1, 2, 3];
prob.cones.subptr = [1];

[r,res] = mosekopt('minimize info',prob);

X = zeros(3);
X([1,2,3,5,6,9]) = res.sol.itr.barx;
X = X + tril(X,-1)';

x = res.sol.itr.xx;

The solution 𝑥 is returned in res.sol.itr.xx and the numerical values of 𝑋𝑗 are returned in res.
sol.itr.barx; the lower triangular part of each 𝑋𝑗 is stacked column-by-column into an array, and each
array is then concatenated forming a single array res.sol.itr.barx representing 𝑋1, . . . , 𝑋𝑝. Similarly,
the dual semidefinite variables 𝑆𝑗 are recovered through res.sol.itr.bars.

6.6.2 Example SDO2
We now demonstrate how to define more than one semidefinite variable using the following problem with
two matrix variables and two types of constraints:

minimize ⟨𝐶1, 𝑋1⟩ + ⟨𝐶2, 𝑋2⟩
subject to ⟨𝐴1, 𝑋1⟩ + ⟨𝐴2, 𝑋2⟩ = 𝑏,

(𝑋2)01 ≤ 𝑘,
𝑋1, 𝑋2 ⪰ 0.

(6.12)

In our example dim(𝑋1) = 3, dim(𝑋2) = 4, 𝑏 = 23, 𝑘 = −3 and

𝐶1 =

⎡⎣ 1 0 0
0 0 0
0 0 6

⎤⎦ , 𝐴1 =

⎡⎣ 1 0 1
0 0 0
1 0 2

⎤⎦ ,

𝐶2 =

⎡⎢⎢⎣
1 −3 0 0
−3 2 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎦ , 𝐴2 =

⎡⎢⎢⎣
0 1 0 0
1 −1 0 0
0 0 0 0
0 0 0 −3

⎤⎥⎥⎦ ,

are constant symmetric matrices.
Note that this problem does not contain any scalar variables, but they could be added in the same

fashion as in Sec. 6.6.1.
For explanations of data structures used in the example see Sec. 6.6.1. Note that the field bardim is

used to specify that we have two semidefinite variables of dimensions 3 and 4.
The code representing the above problem is shown below.

Listing 6.11: Implementation of model (6.12).

% Sample data
C1 = [ 1 0 0; 0 0 0; 0 0 6 ];
A1 = [ 1 0 1; 0 0 0; 1 0 2 ];
C2 = [ 1 -3 0 0; -3 2 0 0; 0 0 1 0; 0 0 0 0 ];
A2 = [ 0 1 0 0; 1 -1 0 0; 0 0 0 0; 0 0 0 -3 ];
b = 23;
k = -3;

% The scalar part, as in linear optimization examples
prob.c = [];
prob.a = sparse([], [], [], 2, 0); % 2 constraints, no scalar variables
prob.blc = [b -inf]; % Bounds

(continues on next page)
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prob.buc = [b k];

% Dimensions of PSD variables
prob.bardim = [3, 4];

% Coefficients in the objective
[r1,c1,v1] = find(tril(C1));
[r2,c2,v2] = find(tril(C2));

prob.barc.subj = [repmat(1,length(v1),1); % Which PSD variable (j)
repmat(2,length(v2),1)];

prob.barc.subk = [r1; r2]; % Which matrix entry and␣
→˓value ((k,l)->v)
prob.barc.subl = [c1; c2];
prob.barc.val = [v1; v2];

% Coefficients in the constraints
[r1,c1,v1] = find(tril(A1));
[r2,c2,v2] = find(tril(A2));

prob.bara.subi = [ones(length(v1)+length(v2),1); % Which constraint (i)
2];

prob.bara.subj = [repmat(1,length(v1),1);
repmat(2,length(v2),1);
2]; % Which PSD variable (j)

prob.bara.subk = [r1; r2; 2]; % Which matrix entry and␣
→˓value ((k,l)->v)
prob.bara.subl = [c1; c2; 1];
prob.bara.val = [v1; v2; 0.5];

% Solve with log output
[r, res] = mosekopt('write(test.ptf) minimize echo(10)', prob);

% Retrieve the result assuming primal and dual feasible
X1 = zeros(3);
X1([1,2,3,5,6,9]) = res.sol.itr.barx(1:6);
X1 = X1 + tril(X1,-1)';

X2 = zeros(4);
X2([1,2,3,4,6,7,8,11,12,16]) = res.sol.itr.barx(7:16);
X2 = X2 + tril(X2,-1)';

X1
X2

The numerical values of 𝑋𝑗 are returned in res.sol.itr.barx; the lower triangular part of each 𝑋𝑗

is stacked column-by-column into an array, and each array is then concatenated forming a single array
res.sol.itr.barx representing 𝑋1, . . . , 𝑋𝑝. Similarly, the dual semidefinite variables 𝑆𝑗 are recovered
through res.sol.itr.bars.
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6.7 Affine conic constraints (new)

Optimization Toolbox for MATLAB can solve conic optimization problems in another format:

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒦,

where 𝐹 ∈ R𝑘×𝑛 and 𝑔 ∈ R𝑘 specify an affine conic constraint of length (dimension) 𝑘. Usually 𝒦 will
be a product of basic cones corresponding to individual constraints.

In this tutorial we demonstrate how to use the affine conic format. It supports all types of basic
cones available in MOSEK and can be combined with semidefinite variables as in Sec. 6.6.

6.7.1 Example AFFCO1
Consider the following simple optimization problem:

maximize 𝑥
1/3
1 + (𝑥1 + 𝑥2 + 0.1)1/4

subject to (𝑥1 − 0.5)2 + (𝑥2 − 0.6)2 ≤ 1,
𝑥1 − 𝑥2 ≤ 1.

(6.13)

Adding auxiliary variables we convert this problem into an equivalent conic form:

maximize 𝑡1 + 𝑡2
subject to (1, 𝑥1 − 0.5, 𝑥2 − 0.6) ∈ 𝒬3,

(𝑥1, 1, 𝑡1) ∈ 𝒫1/3,2/3
3 ,

(𝑥1 + 𝑥2 + 0.1, 1, 𝑡2) ∈ 𝒫1/4,3/4
3 ,

𝑥1 − 𝑥2 ≤ 1.

(6.14)

Note that each of the vectors constrained to a cone is in a natural way an affine combination of the
problem variables.

We first set up the linear part of the problem, including the number of variables, objective and all
bounds precisely as in Sec. 6.1. Cones will be defined using the cones structure. We construct the
matrices 𝐹, 𝑔 for each of the three cones. For example, the constraint (1, 𝑥1 − 0.5, 𝑥2 − 0.6) ∈ 𝒬3 is
written in matrix form as ⎡⎣ 0 0 0 0

1 0 0 0
0 1 0 0

⎤⎦
⎡⎢⎢⎣

𝑥1

𝑥2

𝑡1
𝑡2

⎤⎥⎥⎦+

⎡⎣ 1
−0.5
−0.6

⎤⎦ ∈ 𝒬3.

Below we set up the matrices and define the cone type as a quadratic cone of length 3:

% The quadratic cone
FQ = sparse([zeros(1,4); speye(2) zeros(2,2)]);
gQ = [1 -0.5 -0.6]';
cQ = [res.symbcon.MSK_CT_QUAD 3];

Next we demonstrate how to do the same for the second of the power cone constraints. Its affine
representation is:

⎡⎣ 1 1 0 0
0 0 0 0
0 0 0 1

⎤⎦
⎡⎢⎢⎣

𝑥1

𝑥2

𝑡1
𝑡2

⎤⎥⎥⎦+

⎡⎣ 0.1
1
0

⎤⎦ ∈ 𝒫1/4,3/4
3 .

The power cone is defined by its type, length, number of additional parameters (always equal to 2)
and the exponents 𝛼, 1 − 𝛼 appearing in the cone definition. In fact any pair of positive real numbers
proportional to (𝛼, 1 − 𝛼) may be used. They will be normalized to add up to 1:
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% The power cone for (x_1+x_2+0.1, 1, t_2) \in POW3^(1/4,3/4)
FP2 = sparse([1 1 zeros(1,2); zeros(1,4); zeros(1,2) 0 1]);
gP2 = [0.1 1 0]';
cP2 = [res.symbcon.MSK_CT_PPOW 3 2 1.0 3.0];

Once affine conic descriptions of all cones are ready it remains to stack them vertically into the matrix
𝐹 and vector 𝑔 and concatenate the cone descriptions in one list. Below is the full code for problem
(6.14).

Listing 6.12: Script implementing conic version of problem (6.13).

function affco1()

[rcode, res] = mosekopt('symbcon echo(0)');
prob = [];

% Variables [x1; x2; t1; t2]
prob.c = [0, 0, 1, 1];

% Linear inequality x_1 - x_2 <= 1
prob.a = sparse([1, -1, 0, 0]);
prob.buc = 1;
prob.blc = [];

% The quadratic cone
FQ = sparse([zeros(1,4); speye(2) zeros(2,2)]);
gQ = [1 -0.5 -0.6]';
cQ = [res.symbcon.MSK_CT_QUAD 3];

% The power cone for (x_1, 1, t_1) \in POW3^(1/3,2/3)
FP1 = sparse([1 0 zeros(1,2); zeros(1,4); zeros(1,2) 1 0]);
gP1 = [0 1 0]';
cP1 = [res.symbcon.MSK_CT_PPOW 3 2 1/3 2/3];

% The power cone for (x_1+x_2+0.1, 1, t_2) \in POW3^(1/4,3/4)
FP2 = sparse([1 1 zeros(1,2); zeros(1,4); zeros(1,2) 0 1]);
gP2 = [0.1 1 0]';
cP2 = [res.symbcon.MSK_CT_PPOW 3 2 1.0 3.0];

% All cones
prob.f = [FQ; FP1; FP2];
prob.g = [gQ; gP1; gP2];
prob.cones = [cQ cP1 cP2];

[r, res] = mosekopt('maximize', prob);

res.sol.itr.pobjval
res.sol.itr.xx(1:2)
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6.7.2 Example AFFCO2
Consider the following simple linear dynamical system. A point in R𝑛 moves along a trajectory given by
𝑧(𝑡) = 𝑧(0) exp(𝐴𝑡), where 𝑧(0) is the starting position and 𝐴 = Diag(𝑎1, . . . , 𝑎𝑛) is a diagonal matrix
with 𝑎𝑖 < 0. Find the time after which 𝑧(𝑡) is within euclidean distance 𝑑 from the origin. Denoting the
coordinates of the starting point by 𝑧(0) = (𝑧1, . . . , 𝑧𝑛) we can write this as an optimization problem in
one variable 𝑡:

minimize 𝑡

subject to
√︁∑︀

𝑖 (𝑧𝑖 exp(𝑎𝑖𝑡))
2 ≤ 𝑑,

which can be cast into conic form as:

minimize 𝑡
subject to (𝑑, 𝑧1𝑦1, . . . , 𝑧𝑛𝑦𝑛) ∈ 𝒬𝑛+1,

(𝑦𝑖, 1, 𝑎𝑖𝑡) ∈ 𝐾exp, 𝑖 = 1, . . . , 𝑛,
(6.15)

with variable vector 𝑥 = [𝑡, 𝑦1, . . . , 𝑦𝑛]𝑇 .
We assemble all conic constraints in the form

𝐹𝑥 + 𝑔 ∈ 𝒬𝑛+1 × (𝐾exp)𝑛.

For the conic quadratic constraint this representation is[︂
0 0𝑇𝑛
0𝑛 Diag(𝑧1, . . . , 𝑧𝑛)

]︂ [︂
𝑡
𝑦

]︂
+

[︂
𝑑
0𝑛

]︂
∈ 𝒬𝑛+1.

For the 𝑖-th exponential cone we have⎡⎣ 0 𝑒𝑇𝑖
0 0𝑛
𝑎𝑖 0𝑛

⎤⎦[︂ 𝑡
𝑦

]︂
+

⎡⎣ 0
1
0

⎤⎦ ∈ 𝐾exp,

where 𝑒𝑖 denotes a vector of length 𝑛 with a single 1 in position 𝑖.

Listing 6.13: Script implementing problem (6.15).

function t = firstHittingTime(n, z, a, d)

[rcode, res] = mosekopt('symbcon echo(0)');
prob = [];

% Variables [t, y1, ..., yn]
prob.a = sparse(0, n+1);
prob.c = [1 zeros(1,n)];

% Quadratic cone
FQ = diag([0; z]);
gQ = [d; zeros(n,1)];

% All exponential cones
FE = sparse([1:3:3*n 3:3:3*n], ...

[2:n+1 ones(1,n)], ...
[ones(1,n) a']);

gE = repmat([0; 1; 0], n, 1);

% Assemble input data
prob.f = [FQ; FE];
prob.g = [gQ; gE];
prob.cones = [res.symbcon.MSK_CT_QUAD n+1 repmat([res.symbcon.MSK_CT_PEXP 3], 1, n)];

(continues on next page)
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% Solve
[r, res] = mosekopt('minimize', prob);
t = res.sol.itr.xx(1)

6.8 Geometric Programming

Geometric programs (GP) are a particular class of optimization problems which can be expressed in
special polynomial form as positive sums of generalized monomials. More precisely, a geometric problem
in canonical form is

minimize 𝑓0(𝑥)
subject to 𝑓𝑖(𝑥) ≤ 1, 𝑖 = 1, . . . ,𝑚,

𝑥𝑗 > 0, 𝑗 = 1, . . . , 𝑛,
(6.16)

where each 𝑓0, . . . , 𝑓𝑚 is a posynomial, that is a function of the form

𝑓(𝑥) =
∑︁
𝑘

𝑐𝑘𝑥
𝛼𝑘1
1 𝑥𝛼𝑘2

2 · · ·𝑥𝛼𝑘𝑛
𝑛

with arbitrary real 𝛼𝑘𝑖 and 𝑐𝑘 > 0. The standard way to formulate GPs in convex form is to introduce
a variable substitution

𝑥𝑖 = exp(𝑦𝑖).

Under this substitution all constraints in a GP can be reduced to the form

log(
∑︁
𝑘

exp(𝑎𝑇𝑘 𝑦 + 𝑏𝑘)) ≤ 0 (6.17)

involving a log-sum-exp bound. Moreover, constraints involving only a single monomial in 𝑥 can be even
more simply written as a linear inequality:

𝑎𝑇𝑘 𝑦 + 𝑏𝑘 ≤ 0

We refer to the MOSEK Modeling Cookbook and to [BKVH07] for more details on this reformulation. A
geometric problem formulated in convex form can be entered into MOSEK with the help of exponential
cones.

6.8.1 Example GP1
The following problem comes from [BKVH07]. Consider maximizing the volume of a ℎ × 𝑤 × 𝑑 box
subject to upper bounds on the area of the floor and of the walls and bounds on the ratios ℎ/𝑤 and 𝑑/𝑤:

maximize ℎ𝑤𝑑
subject to 2(ℎ𝑤 + ℎ𝑑) ≤ 𝐴wall,

𝑤𝑑 ≤ 𝐴floor,
𝛼 ≤ ℎ/𝑤 ≤ 𝛽,
𝛾 ≤ 𝑑/𝑤 ≤ 𝛿.

(6.18)

The decision variables in the problem are ℎ,𝑤, 𝑑. We make a substitution

ℎ = exp(𝑥), 𝑤 = exp(𝑦), 𝑑 = exp(𝑧)

after which (6.18) becomes

maximize 𝑥 + 𝑦 + 𝑧
subject to log(exp(𝑥 + 𝑦 + log(2/𝐴wall)) + exp(𝑥 + 𝑧 + log(2/𝐴wall))) ≤ 0,

𝑦 + 𝑧 ≤ log(𝐴floor),
log(𝛼) ≤ 𝑥− 𝑦 ≤ log(𝛽),
log(𝛾) ≤ 𝑧 − 𝑦 ≤ log(𝛿).

(6.19)
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Next, we demonstrate how to implement a log-sum-exp constraint (6.17). It can be written as:

𝑢𝑘 ≥ exp(𝑎𝑇𝑘 𝑦 + 𝑏𝑘), (equiv. (𝑢𝑘, 1, 𝑎
𝑇
𝑘 𝑦 + 𝑏𝑘) ∈ 𝐾exp),∑︀

𝑘 𝑢𝑘 = 1.
(6.20)

This presentation requires one extra variable 𝑢𝑘 for each monomial appearing in the original posynomial
constraint. It is natural to express the cone membership using an affine conic constraint (see Sec. 6.7).
In this case: ⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0
0 0 0 0 0
1 1 0 0 0
0 0 0 0 1
0 0 0 0 0
1 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
𝑥
𝑦
𝑧
𝑢1

𝑢2

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
0
1

log(2/𝐴wall)
0
1

log(2/𝐴wall)

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ 𝐾exp ×𝐾exp.

We can now use this function to assemble all constraints in the model. The linear part of the problem
is entered as in Sec. 6.1.

Listing 6.14: Source code solving problem (6.19).

[r,res] = mosekopt('symbcon');

% Input data
Awall = 200;
Afloor = 50;
alpha = 2;
beta = 10;
gamma = 2;
delta = 10;

% Objective
prob = [];
prob.c = [1, 1, 1, 0, 0]';

% Linear constraints:
% [ 0 0 0 1 1 ] == 1
% [ 0 1 1 0 0 ] <= log(Afloor)
% [ 1 -1 0 0 0 ] in [log(alpha), log(beta)]
% [ 0 -1 1 0 0 ] in [log(gamma), log(delta)]
%
prob.a = [ 0 0 0 1 1;

0 1 1 0 0;
1 -1 0 0 0;
0 -1 1 0 0 ];

prob.blc = [ 1; -inf; log(alpha); log(gamma) ];
prob.buc = [ 1; log(Afloor); log(beta); log(delta) ];

prob.blx = [ -inf; -inf; -inf; -inf; -inf];
prob.bux = [ inf; inf; inf; inf; inf];

% The conic part FX+g \in Kexp x Kexp
% x y z u v
% [ 0 0 0 1 0 ] 0
% [ 0 0 0 0 0 ] 1 in Kexp
% [ 1 1 0 0 0 ] log(2/Awall)
%
% [ 0 0 0 0 1 ] 0

(continues on next page)
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% [ 0 0 0 0 0 ] 1 in Kexp
% [ 1 0 1 0 0 ] + log(2/Awall)
%
%
prob.f = sparse([0 0 0 1 0;

0 0 0 0 0;
1 1 0 0 0;
0 0 0 0 1;
0 0 0 0 0;
1 0 1 0 0]);

prob.g = [ 0; 1; log(2/Awall); 0; 1; log(2/Awall)];

prob.cones = [ res.symbcon.MSK_CT_PEXP, 3, res.symbcon.MSK_CT_PEXP, 3 ];

% Optimize and print results
[r,res]=mosekopt('maximize',prob);
exp(res.sol.itr.xx(1:3))

6.9 Integer Optimization

An optimization problem where one or more of the variables are constrained to integer values is called a
(mixed) integer optimization problem. MOSEK supports integer variables in combination with linear,
quadratic and quadratically constrtained and conic problems (except semidefinite). See the previous
tutorials for an introduction to how to model these types of problems.

6.9.1 Example MILO1
We use the example

maximize 𝑥0 + 0.64𝑥1

subject to 50𝑥0 + 31𝑥1 ≤ 250,
3𝑥0 − 2𝑥1 ≥ −4,
𝑥0, 𝑥1 ≥ 0 and integer

(6.21)

to demonstrate how to set up and solve a problem with integer variables. It has the structure of a linear
optimization problem (see Sec. 6.1) except for integrality constraints on the variables. Therefore, only
the specification of the integer constraints requires something new compared to the linear optimization
problem discussed previously.

The complete source for the example is listed in Listing 6.15.

Listing 6.15: How to solve problem (6.21).

function milo1()
clear prob
prob.c = [1 0.64];
prob.a = [[50 31];[3 -2]];
prob.blc = [-inf -4];
prob.buc = [250 inf];
prob.blx = [0 0];
prob.bux = [inf inf];

% Specify indexes of variables that are integer
% constrained.

prob.ints.sub = [1 2];
(continues on next page)
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% Optimize the problem.
[r,res] = mosekopt('maximize',prob);

try
% Display the optimal solution.
res.sol.int
res.sol.int.xx'

catch
fprintf('MSKERROR: Could not get solution')

end

Please note that compared to a linear optimization problem with no integer-constrained variables:

• The prob.ints.sub field is used to specify the indexes of the variables that are integer-constrained.

• The optimal integer solution is returned in the res.sol.int MATLAB structure.

MOSEK also provides a wrapper for the intlinprog function found in the MATLAB optimization
toolbox. This function solves linear problems wth integer variables; see the reference section for details.

6.9.2 Specifying an initial solution
It is a common strategy to provide a starting feasible point (if one is known in advance) to the mixed-
integer solver. This can in many cases reduce solution time.

It is not necessary to specify the whole solution. MOSEK will attempt to use it to speed up the
computation. MOSEK will first try to construct a feasible solution by fixing integer variables to the
values provided by the user (rounding if necessary) and optimizing over the continuous variables. The
outcome of this process can be inspected via information items "MSK_IINF_MIO_CONSTRUCT_SOLUTION"
and "MSK_DINF_MIO_CONSTRUCT_SOLUTION_OBJ" , and via the Construct solution objective entry
in the log. We concentrate on a simple example below.

maximize 7𝑥0 + 10𝑥1 + 𝑥2 + 5𝑥3

subject to 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 ≤ 2.5
𝑥0, 𝑥1, 𝑥2 ∈ Z
𝑥0, 𝑥1, 𝑥2, 𝑥3 ≥ 0

(6.22)

Solution values can be set using the appropriate fields in the problem structure.

Listing 6.16: Implementation of problem (6.22) specifying an initial
solution.

% Specify start guess for the integer variables.
prob.sol.int.xx = [1 1 0 nan]';

The log output from the optimizer will in this case indicate that the inputted values were used to
construct an initial feasible solution:

Construct solution objective : 1.950000000000e+01

The same information can be obtained from the API:

36



Listing 6.17: Retrieving information about usage of initial solution

res.info.MSK_IINF_MIO_CONSTRUCT_SOLUTION
res.info.MSK_DINF_MIO_CONSTRUCT_SOLUTION_OBJ

6.9.3 Example MICO1
Integer variables can also be used arbitrarily in conic problems (except semidefinite). We refer to the
previous tutorials for how to set up a conic optimization problem. Here we present sample code that
sets up a simple optimization problem:

minimize 𝑥2 + 𝑦2

subject to 𝑥 ≥ 𝑒𝑦 + 3.8,
𝑥, 𝑦 integer.

(6.23)

The canonical conic formulation of (6.23) suitable for Optimization Toolbox for MATLAB is

minimize 𝑡

subject to (𝑡, 𝑥, 𝑦) ∈ 𝒬3 (𝑡 ≥
√︀
𝑥2 + 𝑦2)

(𝑥− 3.8, 1, 𝑦) ∈ 𝐾exp (𝑥− 3.8 ≥ 𝑒𝑦)
𝑥, 𝑦 integer,
𝑡 ∈ R.

(6.24)

Listing 6.18: Implementation of problem (6.24).

[rcode, res] = mosekopt('symbcon echo(0)');
symbcon = res.symbcon;
clear prob

% The full variable is [t; x; y]
prob.c = [1 0 0];
prob.a = sparse(0,3); % No constraints

% Conic part of the problem
prob.f = sparse([ eye(3);

0 1 0;
0 0 0;
0 0 1 ]);

prob.g = [0 0 0 -3.8 1 0]';
prob.cones = [symbcon.MSK_CT_QUAD 3 symbcon.MSK_CT_PEXP 3];

% Specify indexes of variables that are integers
prob.ints.sub = [2 3];

% It is as always possible (but not required) to input an initial solution
% to start the mixed-integer solver.
prob.sol.int.xx = [0, 9, -1];

% Optimize the problem.
[r,res] = mosekopt('minimize',prob);

% The integer solution (x,y)
res.sol.int.xx(2:3)

Note that the conic constraints are described using the format 𝐹𝑥 + 𝑔 ∈ 𝒦, that is as affine conic
constraints. See Sec. 6.7 for details.

Error and solution status handling were omitted for readability.

37



6.10 Problem Modification and Reoptimization

Often one might want to solve not just a single optimization problem, but a sequence of problems, each
differing only slightly from the previous one. This section demonstrates how to modify and re-optimize
an existing problem.

The example we study is a simple production planning model.
Problem modifications regarding variables, cones, objective function and constraints can be grouped

in categories:

• add/remove,

• coefficient modifications,

• bounds modifications.

Especially removing variables and constraints can be costly. Special care must be taken with respect
to constraints and variable indexes that may be invalidated.

Depending on the type of modification, MOSEK may be able to optimize the modified problem more
efficiently exploiting the information and internal state from the previous execution. After optimization,
the solution is always stored internally, and is available before next optimization. The former optimal
solution may be still feasible, but no longer optimal; or it may remain optimal if the modification of the
objective function was small. This special case is discussed in Sec. 14.3.

In general, MOSEK exploits dual information and availability of an optimal basis from the previous
execution. The simplex optimizer is well suited for exploiting an existing primal or dual feasible solution.
Restarting capabilities for interior-point methods are still not as reliable and effective as those for the
simplex algorithm. More information can be found in Chapter 10 of the book [Chvatal83].

6.10.1 Example: Production Planning
A company manufactures three types of products. Suppose the stages of manufacturing can be split into
three parts: Assembly, Polishing and Packing. In the table below we show the time required for each
stage as well as the profit associated with each product.

Product no. Assembly (minutes) Polishing (minutes) Packing (minutes) Profit ($)
0 2 3 2 1.50
1 4 2 3 2.50
2 3 3 2 3.00

With the current resources available, the company has 100, 000 minutes of assembly time, 50, 000
minutes of polishing time and 60, 000 minutes of packing time available per year. We want to know how
many items of each product the company should produce each year in order to maximize profit?

Denoting the number of items of each type by 𝑥0, 𝑥1 and 𝑥2, this problem can be formulated as a
linear optimization problem:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2

subject to 2𝑥0 + 4𝑥1 + 3𝑥2 ≤ 100000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 50000,
2𝑥0 + 3𝑥1 + 2𝑥2 ≤ 60000,

(6.25)

and

𝑥0, 𝑥1, 𝑥2 ≥ 0.

Code in Listing 6.19 loads and solves this problem.

Listing 6.19: Setting up and solving problem (6.25)

% Specify the c vector.
prob.c = [1.5 2.5 3.0]';

(continues on next page)
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% Specify a in sparse format.
subi = [1 1 1 2 2 2 3 3 3];
subj = [1 2 3 1 2 3 1 2 3];
valij = [2 4 3 3 2 3 2 3 2];

prob.a = sparse(subi,subj,valij);

% Specify lower bounds of the constraints.
prob.blc = [-inf -inf -inf]';

% Specify upper bounds of the constraints.
prob.buc = [100000 50000 60000]';

% Specify lower bounds of the variables.
prob.blx = zeros(3,1);

% Specify upper bounds of the variables.
prob.bux = [inf inf inf]';

% Perform the optimization.
param.MSK_IPAR_OPTIMIZER = 'MSK_OPTIMIZER_FREE_SIMPLEX';
[r,res] = mosekopt('maximize',prob,param);

% Show the optimal x solution.
res.sol.bas.xx

6.10.2 Changing the Linear Constraint Matrix
Suppose we want to change the time required for assembly of product 0 to 3 minutes. This corresponds
to setting 𝑎0,0 = 3, which is done by directly modifying the A matrix of the problem, as shown below.

prob.a(1,1) = 3.0;

The problem now has the form:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2

subject to 3𝑥0 + 4𝑥1 + 3𝑥2 ≤ 100000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 50000,
2𝑥0 + 3𝑥1 + 2𝑥2 ≤ 60000,

(6.26)

and

𝑥0, 𝑥1, 𝑥2 ≥ 0.

After this operation we can reoptimize the problem.

6.10.3 Appending Variables
We now want to add a new product with the following data:

Product no. Assembly (minutes) Polishing (minutes) Packing (minutes) Profit ($)
3 4 0 1 1.00

This corresponds to creating a new variable 𝑥3, appending a new column to the 𝐴 matrix and setting
a new term in the objective. We do this in Listing 6.20
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Listing 6.20: How to add a new variable (column)

prob.c = [prob.c;1.0];
prob.a = [prob.a,sparse([4.0 0.0 1.0]')];
prob.blx = [prob.blx; 0.0];
prob.bux = [prob.bux; inf];

After this operation the new problem is:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2 + 1.0𝑥3

subject to 3𝑥0 + 4𝑥1 + 3𝑥2 + 4𝑥3 ≤ 100000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 50000,
2𝑥0 + 3𝑥1 + 2𝑥2 + 1𝑥3 ≤ 60000,

(6.27)

and

𝑥0, 𝑥1, 𝑥2, 𝑥3 ≥ 0.

6.10.4 Appending Constraints
Now suppose we want to add a new stage to the production process called Quality control for which
30000 minutes are available. The time requirement for this stage is shown below:

Product no. Quality control (minutes)
0 1
1 2
2 1
3 1

This corresponds to adding the constraint

𝑥0 + 2𝑥1 + 𝑥2 + 𝑥3 ≤ 30000

to the problem. This is done as follows.

Listing 6.21: Adding a new constraint.

prob.a = [prob.a;sparse([1.0 2.0 1.0 1.0])];
prob.blc = [prob.blc; -inf];
prob.buc = [prob.buc; 30000.0];

Again, we can continue with re-optimizing the modified problem.

6.10.5 Changing bounds
One typical reoptimization scenario is to change bounds. Suppose for instance that we must operate
with limited time resources, and we must change the upper bounds in the problem as follows:

Operation Time available (before) Time available (new)
Assembly 100000 80000
Polishing 50000 40000
Packing 60000 50000
Quality control 30000 22000

That means we would like to solve the problem:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2 + 1.0𝑥3

subject to 3𝑥0 + 4𝑥1 + 3𝑥2 + 4𝑥3 ≤ 80000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 40000,
2𝑥0 + 3𝑥1 + 2𝑥2 + 1𝑥3 ≤ 50000,
𝑥0 + 2𝑥1 + 𝑥2 + 𝑥3 ≤ 22000.

(6.28)

In this case all we need to do is redefine the upper bound vector for the constraints, as shown in the next
listing.
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Listing 6.22: Change constraint bounds.

prob.buc = [80000 40000 50000 22000]';
prob.sol = res.sol;
[r,res] = mosekopt('maximize',prob,param);
res.sol.bas.xx

Again, we can continue with re-optimizing the modified problem.

6.10.6 Advanced hot-start
In order to exploit the possibility of hot-starting the simplex algorithms it is necessary to pass the old
basic solution when the modified problem is re-optimized. Without this operation the optimizer will
simply start from scratch. Any subset of the basic solution may be provided, but to achieve the best
results all fields of res.sol.bas should be present, that is xx,xc,y,slx,sux,slc,suc,skx,skc.

Listing 6.23: Passing the full basic solution.

% Reoptimize with changed coefficient
% Use previous solution to perform very simple hot-start.
% This part can be skipped, but then the optimizer will start
% from scratch on the new problem, i.e. without any hot-start.
prob.sol = [];
prob.sol.bas = res.sol.bas;
[r,res] = mosekopt('maximize',prob,param);
res.sol.bas.xx

If the dimensions of the problem (number of variables, constraints) have changed, the lengths of all
fields have to be adjusted to be compatible with the reformulated problem. For example, here is an
adjustment when adding a new variable:

Listing 6.24: Adjusting lengths in the solution fields related to
variables.

% Reoptimize with a new variable and hot-start
% All parts of the solution must be extended to the new dimensions.
prob.sol = [];
prob.sol.bas = res.sol.bas;
prob.sol.bas.xx = [prob.sol.bas.xx; 0.0];
prob.sol.bas.slx = [prob.sol.bas.slx; 0.0];
prob.sol.bas.sux = [prob.sol.bas.sux; 0.0];
prob.sol.bas.skx = [prob.sol.bas.skx; 'UN'];
[r,res] = mosekopt('maximize',prob,param);
res.sol.bas.xx

If the optimizer used the data from the previous run to hot-start the optimizer for reoptimization,
this will be indicated in the log:

Optimizer - hotstart : yes

When performing re-optimizations, instead of removing a basic variable it may be more efficient to
fix the variable at zero and then remove it when the problem is re-optimized and it has left the basis.
This makes it easier for MOSEK to restart the simplex optimizer.

A more advanced discussion of hot-start is presented in Sec. 9.2.
For a more in-depth treatment see the following sections:

• Case studies for more advanced and complicated optimization examples.

• Problem Formulation and Solutions for formal mathematical formulations of problems MOSEK
can solve, dual problems and infeasibility certificates.
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Chapter 7

Solver Interaction Tutorials

In this section we cover the interaction with the solver.

7.1 Accessing the solution

This section contains important information about the status of the solver and the status of the solution,
which must be checked in order to properly interpret the results of the optimization.

7.1.1 Solver termination
The optimizer provides a response code of type rescode , relevant for error handling. It indicates if
any errors occurred in any phase of optimization (including processing input data). It will also indicate
system-related errors (such as an out of memory error, licensing error etc.). Finally, it will also indicate
if the optimizer terminated correctly, but for a non-standard reason, for example because it reached a
time limit or met another criterion set by the user. Such termination codes are not errors. The expected
value for a typical successful optimization without any special settings is "MSK_RES_OK" .

If a runtime error causes the program to crash during optimization, the first debugging step is to
enable logging and check the log output. See Sec. 7.3.

If the optimization completes successfully, the next step is to check the solution status, as explained
below.

7.1.2 Available solutions
MOSEK uses three kinds of optimizers and provides three types of solutions:

• basic solution from the simplex optimizer,

• interior-point solution from the interior-point optimizer,

• integer solution from the mixed-integer optimizer.

Under standard parameters settings the following solutions will be available for various problem types:

Table 7.1: Types of solutions available from MOSEK
Simplex opti-
mizer

Interior-point opti-
mizer

Mixed-integer opti-
mizer

Linear problem res.sol.bas res.sol.itr
Nonlinear continuous prob-
lem

res.sol.itr

Problem with integer vari-
ables

res.sol.int

For linear problems the user can force a specific optimizer choice making only one of the two solutions
available. For example, if the user disables basis identification, then only the interior point solution will
be available for a linear problem. Numerical issues may cause one of the solutions to be unknown even
if another one is feasible.
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Not all components of a solution are always available. For example, there is no dual solution for
integer problems and no dual conic variables from the simplex optimizer.

The user will always need to specify which solution should be accessed.

7.1.3 Problem and solution status
Assuming that the optimization terminated without errors, the next important step is to check the
problem and solution status. There is one for every type of solution, as explained above.

Problem status

Problem status (prosta ) determines whether the problem is certified as feasible. Its values can roughly
be divided into the following broad categories:

• feasible — the problem is feasible. For continuous problems and when the solver is run with
default parameters, the feasibility status should ideally be "MSK_PRO_STA_PRIM_AND_DUAL_FEAS" .

• primal/dual infeasible — the problem is infeasible or unbounded or a combination of those.
The exact problem status will indicate the type of infeasibility.

• unknown — the solver was unable to reach a conclusion, most likely due to numerical issues.

Solution status

Solution status (solsta ) provides the information about what the solution values actually contain. The
most important broad categories of values are:

• optimal ("MSK_SOL_STA_OPTIMAL" ) — the solution values are feasible and optimal.

• certificate — the solution is in fact a certificate of infeasibility (primal or dual, depending on the
solution).

• unknown/undefined — the solver could not solve the problem or this type of solution is not
available for a given problem.

Problem and solution status can be found in the fields prosta and solsta of a solution structure
solution , for instance res.sol.itr.prosta, res.sol.itr.solsta for the interior-point solution.

The solution status determines the action to be taken. For example, in some cases a suboptimal
solution may still be valuable and deserve attention. It is the user’s responsibility to check the status
and quality of the solution.

Typical status reports

Here are the most typical optimization outcomes described in terms of the problem and solution statuses.
Note that these do not cover all possible situations that can occur.

Table 7.2: Continuous problems (solution status for interior-point
and basic solution)

Outcome Problem status Solution status
Optimal "MSK_PRO_STA_PRIM_AND_DUAL_FEAS

"
"MSK_SOL_STA_OPTIMAL"

Primal infeasible "MSK_PRO_STA_PRIM_INFEAS"
"MSK_SOL_STA_PRIM_INFEAS_CER
"

Dual infeasible (unbounded) "MSK_PRO_STA_DUAL_INFEAS"
"MSK_SOL_STA_DUAL_INFEAS_CER
"

Uncertain (stall, numerical is-
sues, etc.)

"MSK_PRO_STA_UNKNOWN" "MSK_SOL_STA_UNKNOWN"
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Table 7.3: Integer problems (solution status for integer solution,
others undefined)

Outcome Problem status Solution status
Integer optimal "MSK_PRO_STA_PRIM_FEAS" "MSK_SOL_STA_INTEGER_OPTIMAL"
Infeasible "MSK_PRO_STA_PRIM_INFEAS" "MSK_SOL_STA_UNKNOWN"
Integer feasible point "MSK_PRO_STA_PRIM_FEAS" "MSK_SOL_STA_PRIM_FEAS"
No conclusion "MSK_PRO_STA_UNKNOWN" "MSK_SOL_STA_UNKNOWN"

7.1.4 Retrieving solution values
After the meaning and quality of the solution (or certificate) have been established, we can query for the
actual numerical values. They can be accessed using:

• res.sol.itr.pobjval, res.sol.itr.dobjval — the primal and dual objective value.

• res.sol.itr.xx — solution values for the variables.

• res.sol.itr.y, res.sol.itr.slx and so on — dual values for the linear constraints

and many other fields of the solution structure (replace itr with bas or int for other solution
types). Note that if the optimization failed then the res.sol field may not exist and attempting to
access it will cause an error.

7.1.5 Source code example
Below is a source code example with a simple framework for assessing and retrieving the solution to a
conic optimization problem.

Listing 7.1: Sample framework for checking optimization result.

function response(inputfile)

cmd = sprintf('read(%s)', inputfile)
% In this example we read the problem from file
[r, res] = mosekopt(cmd)

% Read was successful
if strcmp(res.rcodestr, 'MSK_RES_OK')

prob = res.prob;
param = []

% (Optionally) Uncomment the next line to get solution status Unknown
% param.MSK_IPAR_INTPNT_MAX_ITERATIONS = 1

% Perform the optimization.
[r, res] = mosekopt('minimize', prob, param);

% Expected result: The solution status of the interior-point solution is␣
→˓optimal.

% Check if we have non-error termination code or OK
if isempty(strfind(res.rcodestr, 'MSK_RES_ERR'))

solsta = strcat('MSK_SOL_STA_', res.sol.itr.solsta)

if strcmp(solsta, 'MSK_SOL_STA_OPTIMAL')
fprintf('An optimal interior-point solution is located:\n');

(continues on next page)
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res.sol.itr.xx

elseif strcmp(solsta, 'MSK_SOL_STA_DUAL_INFEASIBLE_CER')
fprintf('Dual infeasibility certificate found.');

elseif strcmp(solsta, 'MSK_SOL_STA_PRIMAL_INFEASIBLE_CER')
fprintf('Primal infeasibility certificate found.');

elseif strcmp(solsta, 'MSK_SOL_STA_UNKNOWN')
% The solutions status is unknown. The termination code
% indicates why the optimizer terminated prematurely.
fprintf('The solution status is unknown.\n');
fprintf('Termination code: %s (%d) %s.\n', res.rcodestr, res.rcode, res.

→˓rmsg);
else

fprintf('An unexpected solution status is obtained.');
end

else
fprintf('Error during optimization: %s (%d) %s.\n', res.rcodestr, res.rcode,

→˓ res.rmsg);
end

else
fprintf('Could not read input file, error: %s (%d) %s.\n', res.rcodestr, res.

→˓rcode, res.rmsg)
end

end

7.2 Errors and exceptions

Response codes

The function mosekopt and its variants return a response code (and its human-readable descrip-
tion), informing if optimization was performed correctly, and if not, what error occurred. The expected
response, indicating successful execution, is always "MSK_RES_OK" . Typical errors include:

• referencing a nonexisting variable (for example with too large index),

• incompatible dimensions of input data matrices,

• NaN in the input data,

• duplicate conic variable,

• error in the optimizer.

Some errors in data preprocessing, such as incorrect command or wrong parameter value will result
in mosekopt exiting without assigning output; the error message will just be printed out. For this reason
it may be a good idea to call mosekopt in a try-catch block. A full list of response codes, error, warning
and termination codes can be found in the API reference. For example, the following code

prob.a = sparse(0,1);
prob.c = [NaN];
[r, res] = mosekopt('minimize', prob);
res

will produce as output:
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res =

rcode: 1470
rmsg: 'The objective vector c contains an invalid value for variable '' (0).'

rcodestr: 'MSK_RES_ERR_NAN_IN_C'

Optimizer errors and warnings

The optimizer may also produce warning messages. They indicate non-critical but important events,
that will not prevent solver execution, but may be an indication that something in the optimization
problem might be improved. Warning messages are normally printed to a log stream (see Sec. 7.3). A
typical warning is, for example:

MOSEK warning 53: A numerically large upper bound value 6.6e+09 is specified for␣
→˓constraint 'C69200' (46020).

Warnings can also be suppressed by setting the MSK_IPAR_MAX_NUM_WARNINGS parameter to zero, if
they are well-understood.

Error and solution status handling example

Below is a source code example with a simple framework for handling major errors when assessing and
retrieving the solution to a conic optimization problem.

Listing 7.2: Sample framework for checking optimization result.

function response(inputfile)

cmd = sprintf('read(%s)', inputfile)
% In this example we read the problem from file
[r, res] = mosekopt(cmd)

% Read was successful
if strcmp(res.rcodestr, 'MSK_RES_OK')

prob = res.prob;
param = []

% (Optionally) Uncomment the next line to get solution status Unknown
% param.MSK_IPAR_INTPNT_MAX_ITERATIONS = 1

% Perform the optimization.
[r, res] = mosekopt('minimize', prob, param);

% Expected result: The solution status of the interior-point solution is␣
→˓optimal.

% Check if we have non-error termination code or OK
if isempty(strfind(res.rcodestr, 'MSK_RES_ERR'))

solsta = strcat('MSK_SOL_STA_', res.sol.itr.solsta)

if strcmp(solsta, 'MSK_SOL_STA_OPTIMAL')
fprintf('An optimal interior-point solution is located:\n');
res.sol.itr.xx

elseif strcmp(solsta, 'MSK_SOL_STA_DUAL_INFEASIBLE_CER')
fprintf('Dual infeasibility certificate found.');

(continues on next page)
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elseif strcmp(solsta, 'MSK_SOL_STA_PRIMAL_INFEASIBLE_CER')
fprintf('Primal infeasibility certificate found.');

elseif strcmp(solsta, 'MSK_SOL_STA_UNKNOWN')
% The solutions status is unknown. The termination code
% indicates why the optimizer terminated prematurely.
fprintf('The solution status is unknown.\n');
fprintf('Termination code: %s (%d) %s.\n', res.rcodestr, res.rcode, res.

→˓rmsg);
else

fprintf('An unexpected solution status is obtained.');
end

else
fprintf('Error during optimization: %s (%d) %s.\n', res.rcodestr, res.rcode,

→˓ res.rmsg);
end

else
fprintf('Could not read input file, error: %s (%d) %s.\n', res.rcodestr, res.

→˓rcode, res.rmsg)
end

end

7.3 Input/Output

7.3.1 Stream logging
By default the solver prints a log output analogous to the one produced by the command-line version of
MOSEK. Logging may be turned off using the command echo(0), for example:

[r, res] = mosekopt('minimize echo(0)', prob);

Log output may be redirected to a file using the command log, for example:

[r, res] = mosekopt('minimize log(fileName.txt)', prob);

Note that in recent versions of MATLAB the log is not displayed on screen until optimization is
completed, which may be an inconvenience for longer tasks. The log written to a file does not have this
issue.

Note also that leaving log output on can lead to a dramatic slowdown, visible especially on very small
problems.

It is also possible to register a user-defined callback function that will receive and handle all log
output, see the callback argument of mosekopt .
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7.3.2 Log verbosity
The logging verbosity can be controlled by setting the relevant parameters, as for instance

• MSK_IPAR_LOG ,

• MSK_IPAR_LOG_INTPNT ,

• MSK_IPAR_LOG_MIO ,

• MSK_IPAR_LOG_CUT_SECOND_OPT ,

• MSK_IPAR_LOG_SIM , and

• MSK_IPAR_LOG_SIM_MINOR .

Each parameter controls the output level of a specific functionality or algorithm. The main switch
is MSK_IPAR_LOG which affect the whole output. The actual log level for a specific functionality is
determined as the minimum between MSK_IPAR_LOG and the relevant parameter. For instance, the log
level for the output produce by the interior-point algorithm is tuned by the MSK_IPAR_LOG_INTPNT ; the
actual log level is defined by the minimum between MSK_IPAR_LOG and MSK_IPAR_LOG_INTPNT .

Tuning the solver verbosity may require adjusting several parameters. It must be noticed that verbose
logging is supposed to be of interest during debugging and tuning. When output is no more of interest, the
user can easily disable it globally with MSK_IPAR_LOG . Larger values of MSK_IPAR_LOG do not necessarily
result in increased output.

By default MOSEK will reduce the amount of log information after the first optimization on a given
problem. To get full log output on subsequent re-optimizations set MSK_IPAR_LOG_CUT_SECOND_OPT to
zero.

7.3.3 Saving a problem to a file
An optimization problem can be dumped to a file using the command write. The file format will be
determined from the filename’s extension. Supported formats are listed in Sec. 16 together with a table
of problem types supported by each.

For instance the problem can be written to an OPF file with

[r, res] = mosekopt('write(dump.opf)', prob);

All formats can be compressed with gzip by appending the .gz extension, for example

[r, res] = mosekopt('write(dump.task.gz)', prob);

When using MATLAB-like functions the file name can be set using the options structure, for exam-
ple:

opt.Write = 'problem.opf';
linprog(f,A,b,[],[],[],[],opt);

Some remarks:

• The problem is written to the file as it is represented in the underlying optimizer task, that is
including any auxiliary variables introduced by the MATLAB-to-C interface, if applicable.

• Unnamed variables are given generic names. It is therefore recommended to use meaningful variable
names if the problem file is meant to be human-readable.

• The task format is MOSEK’s native file format which contains all the problem data as well as
solver settings.
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7.3.4 Reading a problem from a file
A problem saved in any of the supported file formats can be read directly into a prob structure using
the command read. Afterwards the problem can be optimized, modified, etc.

[r, res] = mosekopt('read(dump.opf.gz)');
prob = res.prob;

7.4 Setting solver parameters

MOSEK comes with a large number of parameters that allows the user to tune the behavior of the
optimizer. The typical settings which can be changed with solver parameters include:

• choice of the optimizer for linear problems,

• choice of primal/dual solver,

• turning presolve on/off,

• turning heuristics in the mixed-integer optimizer on/off,

• level of multi-threading,

• feasibility tolerances,

• solver termination criteria,

• behaviour of the license manager,

and more. All parameters have default settings which will be suitable for most typical users.
The API reference contains:

• Full list of parameters

• List of parameters grouped by topic

Setting parameters

Each parameter is identified by a unique name and it can accept either integers, floating point values,
symbolic strings or symbolic values. Parameters are set in the structure param and passed as a separate
argument to mosekopt .

Some parameters can accept symbolic strings or symbolic values from a fixed set. The set of accepted
values for every parameter is provided in the API reference.

For example, the following piece of code sets up parameters which choose and tune the interior point
optimizer before solving a problem.

Listing 7.3: Parameter setting example.

% Set log level (integer parameter)
param.MSK_IPAR_LOG = 1;
% Select interior-point optimizer... (integer parameter)
param.MSK_IPAR_OPTIMIZER = 'MSK_OPTIMIZER_INTPNT';
% ... without basis identification (integer parameter)
param.MSK_IPAR_INTPNT_BASIS = 'MSK_BI_NEVER';
% Set relative gap tolerance (double parameter)
param.MSK_DPAR_INTPNT_CO_TOL_REL_GAP = 1.0e-7;

% Use in mosekopt
[r,resp] = mosekopt('minimize', prob, param);
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7.5 Retrieving information items

After the optimization the user has access to the solution as well as to a report containing a large amount
of additional information items. For example, one can obtain information about:

• timing: total optimization time, time spent in various optimizer subroutines, number of iterations,
etc.

• solution quality: feasibility measures, solution norms, constraint and bound violations, etc.

• problem structure: counts of variables of different types, constraints, nonzeros, etc.

• integer optimizer: integrality gap, objective bound, number of cuts, etc.

and more. Information items are numerical values of integer, long integer or double type. The full
list can be found in the API reference:

• Double

• Integer

• Long

Certain information items make sense, and are made available, also during the optimization process.
They can be accessed from a callback function, see Sec. 7.6 for details.

Remark

For efficiency reasons, not all information items are automatically computed after optimization. To force
all information items to be updated use the parameter MSK_IPAR_AUTO_UPDATE_SOL_INFO .

Retrieving the values

Values of information items are only returned if the info command is used in mosekopt . They are
available in the field res.info.

Each information item is identified by a unique name. The example below reads two pieces of data
from the solver: total optimization time and the number of interior-point iterations.

Listing 7.4: Information items example.

[r,res] = mosekopt('minimize info', prob);

res.info.MSK_DINF_OPTIMIZER_TIME
res.info.MSK_IINF_INTPNT_ITER

7.6 Progress and data callback

Callbacks are a very useful mechanism that allow the caller to track the progress of the MOSEK
optimizer. A callback function provided by the user is regularly called during the optimization and can
be used to

• obtain a customized log of the solver execution,

• collect information for debugging purposes or

• ask the solver to terminate.
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7.6.1 Data callback
In the data callback MOSEK passes a callback code and values of all information items to a user-
defined function. The callback function is called, in particular, at the beginning of each iteration of the
interior-point optimizer. For the simplex optimizers MSK_IPAR_LOG_SIM_FREQ controls how frequently
the call-back is called. Note that the callback is done quite frequently, which can lead to degraded
performance. If the information items are not required, the simpler progress callback may be a better
choice.

The callback is set by attaching a structure callback as a parameter in mosekopt . This structure
specifies a global callback function and can contain arbitrary user-defined data.

7.6.2 Progress callback
In the progress callback MOSEK provides a single code indicating the current stage of the optimization
process.

7.6.3 Working example: Data callback
The following example defines a data callback function that prints out some of the information items. It
interrupts the solver after a certain time limit.

Listing 7.5: An example of a data callback function.

function [r] = callback_handler(handle,where,info)

r = 0; % r should always be assigned a value.

if handle.symbcon.MSK_CALLBACK_BEGIN_INTPNT==where
disp(sprintf('Interior point optimizer started\n'));

end

if handle.symbcon.MSK_CALLBACK_END_INTPNT==where
disp(sprintf('Interior-point optimizer terminated\n'));
disp(sprintf('Interior-point primal obj.: %e\n', info.MSK_DINF_INTPNT_PRIMAL_OBJ));
disp(sprintf('Iterations: %d\n', info.MSK_IINF_INTPNT_ITER));

end

if handle.symbcon.MSK_CALLBACK_NEW_INT_MIO==where
disp(sprintf('New mixed-integer solution found\n'));
disp(sprintf('Best objective.: %e\n', info.MSK_DINF_MIO_OBJ_BOUND));

end

% Decide if to terminate the optimization
% Terminate when cputime > handle.maxtime
if info.MSK_DINF_INTPNT_TIME > handle.maxtime

r = 1;
else

r = 0;
end

Assuming that we have defined some problem prob the callback function is attached as follows:

Listing 7.6: Attaching the data callback function to the model.

% Define user defined handle.
[r,res] = mosekopt('echo(0) symbcon');
data.maxtime = 100.0;
data.symbcon = res.symbcon;

(continues on next page)
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callback.iter = 'callback_handler'; % Defined in callback_handler.m
callback.iterhandle = data;

% Perform the optimization.
[r,res] = mosekopt('minimize echo(0)',prob,[],callback);

7.7 MOSEK OptServer

MOSEK provides an easy way to offload optimization problem to a remote server. This section demon-
strates related functionalities from the client side, i.e. sending optimization tasks to the remote server
and retrieving solutions.

Setting up and configuring the remote server is described in a separate manual for the OptServer.

7.7.1 Synchronous Remote Optimization
In synchronous mode the client sends an optimization problem to the server and blocks, waiting for the
optimization to end. Once the result has been received, the program can continue. This is the simplest
mode all it takes is to provide the address of the server before starting optimization. The rest of the
code remains untouched.

Note that it is impossible to recover the job in case of a broken connection.

Source code example

Listing 7.7: Using the OptServer in synchronous mode.

function opt_server_sync(inputfile, addr)
clear prob;
clear param;
clear optserver;

% We read some problem from a file or set it up here
cmd = sprintf('read(%s)', inputfile);
[r,res] = mosekopt(cmd);
prob = res.prob;

% OptServer data
% "host" should be 'http://server:port`
optserver.host = addr;

% Perform the optimization with full log output.
[r,res] = mosekopt(sprintf('%s echo(10)', prob.objsense), prob, [], [], optserver);

% Use the optimal x solution.
xx = res.sol.bas.xx;
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Chapter 8

Debugging Tutorials

This collection of tutorials contains basic techniques for debugging optimization problems using tools
available in MOSEK: optimizer log, solution summary, infeasibility report, command-line tools. It is
intended as a first line of technical help for issues such as: Why do I get solution status unknown and
how can I fix it? Why is my model infeasible while it shouldn’t be? Should I change some parameters?
Can the model solve faster? etc.

The major steps when debugging a model are always:

• Consult the log output. It is enabled by default, but if neccessary switch it on explicitly with:

[r, res] = mosekopt('minimize echo(10)', prob);

• Run the optimization and analyze the log output, see Sec. 8.1. In particular:

– check if the problem setup (number of constraints/variables etc.) matches your expectation.
– check solution summary and solution status.

• Dump the problem to disk if necessary to continue analysis. See Sec. 7.3.3.

– use a human-readable text format, such as *.opf if you want to check the problem structure
by hand. Assign names to variables and constraints to make them easier to identify.

[r, res] = mosekopt('write(dump.opf)', prob);

– use the MOSEK native format *.task.gz when submitting a bug report or support question.

[r, res] = mosekopt('write(dump.task.gz)', prob);

• Fix problem setup, improve the model, locate infeasibility or adjust parameters, depending on the
diagnosis.

See the following sections for details.

8.1 Understanding optimizer log

The optimizer produces a log which splits roughly into four sections:

1. summary of the input data,

2. presolve and other pre-optimize problem setup stages,

3. actual optimizer iterations,

4. solution summary.

In this tutorial we show how to analyze the most important parts of the log when initially debugging
a model: input data (1) and solution summary (4). For the iterations log (3) see Sec. 13.3.4 or Sec.
13.4.8.
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8.1.1 Input data
If MOSEK behaves very far from expectations it may be due to errors in problem setup. The log file
will begin with a summary of the structure of the problem, which looks for instance like:

Problem
Name :
Objective sense : max
Type : CONIC (conic optimization problem)
Constraints : 20413
Cones : 2508
Scalar variables : 20414
Matrix variables : 0
Integer variables : 0

This can be consulted to eliminate simple errors: wrong objective sense, wrong number of variables
etc. Note that Fusion, and third-party modeling tools can introduce additional variables and constraints
to the model. In the remaining MOSEK APIs the problem dimensions should match exactly what the
user specified.

If this is not sufficient a bit more information can be obtained by dumping the problem to a file
(see Sec. 8) and using the anapro option of any of the command line tools. This will produce a longer
summary similar to:

** Variables
scalar: 20414 integer: 0 matrix: 0
low: 2082 up: 5014 ranged: 0 free: 12892 fixed: 426

** Constraints
all: 20413
low: 10028 up: 0 ranged: 0 free: 0 fixed: 10385

** Cones
QUAD: 1 dims: 2865: 1
RQUAD: 2507 dims: 3: 2507

** Problem data (numerics)
|c| nnz: 10028 min=2.09e-05 max=1.00e+00
|A| nnz: 597023 min=1.17e-10 max=1.00e+00
blx fin: 2508 min=-3.60e+09 max=2.75e+05
bux fin: 5440 min=0.00e+00 max=2.94e+08
blc fin: 20413 min=-7.61e+05 max=7.61e+05
buc fin: 10385 min=-5.00e-01 max=0.00e+00

Again, this can be used to detect simple errors, such as:

• Wrong type of cone was used or it has wrong dimension.

• The bounds for variables or constraints are incorrect or incomplete.

• The model is otherwise incomplete.

• Suspicious values of coefficients.

• For various data sizes the model does not scale as expected.

Finally saving the problem in a human-friendly text format such as LP or OPF (see Sec. 8) and
analyzing it by hand can reveal if the model is correct.
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Warnings and errors

At this stage the user can encounter warnings which should not be ignored, unless they are well-
understood. They can also serve as hints as to numerical issues with the problem data. A typical
warning of this kind is

MOSEK warning 53: A numerically large upper bound value 2.9e+08 is specified for␣
→˓variable 'absh[107]' (2613).

Warnings do not stop the problem setup. If, on the other hand, an error occurs then the model will
become invalid. The user should make sure to test for errors/exceptions from all API calls that set up
the problem and validate the data. See Sec. 7.2 for more details.

8.1.2 Solution summary
The last item in the log is the solution summary.

Continuous problem

Optimal solution

A typical solution summary for a continuous (linear, conic, quadratic) problem looks like:

Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 8.7560516107e+01 nrm: 1e+02 Viol. con: 3e-12 var: 0e+00 ␣
→˓cones: 3e-11
Dual. obj: 8.7560521345e+01 nrm: 1e+00 Viol. con: 5e-09 var: 9e-11 ␣
→˓cones: 0e+00

It contains the following elements:

• Problem and solution status. For details see Sec. 7.1.3.

• A summary of the primal solution: objective value, infinity norm of the solution vector xx, maximal
violations of constraints, variable bounds and cones. The violation of a linear constraint such as
𝑎𝑇𝑥 ≤ 𝑏 is max(𝑎𝑇𝑥− 𝑏, 0). The violation of a conic constraint 𝑥 ∈ 𝒦 is the distance dist(𝑥,𝒦).

• The same for the dual solution.

The features of the solution summary which characterize a very good and accurate solution and a
well-posed model are:

• Status: The solution status is OPTIMAL.

• Duality gap: The primal and dual objective values are (almost) identical, which proves the
solution is (almost) optimal.

• Norms: Ideally the norms of the solution and the objective values should not be too large. This of
course depends on the input data, but a huge solution norm can be an indicator of issues with the
scaling, conditioning and/or well-posedness of the model. It may also indicate that the problem is
borderline between feasibility and infeasibility and sensitive to small perturbations in this respect.

• Violations: The violations are close to zero, which proves the solution is (almost) feasible. Observe
that due to rounding errors it can be expected that the violations are proportional to the norm
(nrm:) of the solution. It is rarely the case that violations are exactly zero.

55



Solution status UNKNOWN

A typical example with solution status UNKNOWN due to numerical problems will look like:

Problem status : UNKNOWN
Solution status : UNKNOWN
Primal. obj: 1.3821656824e+01 nrm: 1e+01 Viol. con: 2e-03 var: 0e+00 ␣
→˓cones: 0e+00
Dual. obj: 3.0119004098e-01 nrm: 5e+07 Viol. con: 4e-16 var: 1e-01 ␣
→˓cones: 0e+00

Note that:

• The primal and dual objective are very different.

• The dual solution has very large norm.

• There are considerable violations so the solution is likely far from feasible.

Follow the hints in Sec. 8.2 to resolve the issue.

Solution status UNKNOWN with a potentially useful solution

Solution status UNKNOWN does not necessarily mean that the solution is completely useless. It only means
that the solver was unable to make any more progress due to numerical difficulties, and it was not able
to reach the accuracy required by the termination criteria (see Sec. 13.3.2). Consider for instance:

Problem status : UNKNOWN
Solution status : UNKNOWN
Primal. obj: 3.4531019648e+04 nrm: 1e+05 Viol. con: 7e-02 var: 0e+00 ␣
→˓cones: 0e+00
Dual. obj: 3.4529720645e+04 nrm: 8e+03 Viol. con: 1e-04 var: 2e-04 ␣
→˓cones: 0e+00

Such a solution may still be useful, and it is always up to the user to decide. It may be a good enough
approximation of the optimal point. For example, the large constraint violation may be due to the fact
that one constraint contained a huge coefficient.

Infeasibility certificate

A primal infeasibility certificate is stored in the dual variables:

Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 2.9238975853e+02 nrm: 6e+02 Viol. con: 0e+00 var: 1e-11 ␣
→˓cones: 0e+00

It is a Farkas-type certificate as described in Sec. 12.2.2. In particular, for a good certificate:

• The dual objective is positive for a minimization problem, negative for a maximization problem.
Ideally it is well bounded away from zero.

• The norm is not too big and the violations are small (as for a solution).

If the model was not expected to be infeasible, the likely cause is an error in the problem formulation.
Use the hints in Sec. 8.1.1 and Sec. 8.3 to locate the issue.

Just like a solution, the infeasibility certificate can be of better or worse quality. The infeasibility
certificate above is very solid. However, there can be less clear-cut cases, such as for example:

Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 1.6378689238e-06 nrm: 6e+05 Viol. con: 7e-03 var: 2e-04 ␣
→˓cones: 0e+00
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This infeasibility certificate is more dubious because the dual objective is positive, but barely so in
comparison with the large violations. It also has rather large norm. This is more likely an indication
that the problem is borderline between feasibility and infeasibility or simply ill-posed and sensitive to
tiny variations in input data. See Sec. 8.3 and Sec. 8.2.

The same remarks apply to dual infeasibility (i.e. unboundedness) certificates. Here the primal
objective should be negative a minimization problem and positive for a maximization problem.

8.1.3 Mixed-integer problem

Optimal integer solution

For a mixed-integer problem there is no dual solution and a typical optimal solution report will look as
follows:

Problem status : PRIMAL_FEASIBLE
Solution status : INTEGER_OPTIMAL
Primal. obj: 6.0111122960e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-14 ␣
→˓itg: 5e-15

The interpretation of all elements is as for a continuous problem. The additional field itg denotes
the maximum violation of an integer variable from being an exact integer.

Feasible integer solution

If the solver found an integer solution but did not prove optimality, for instance because of a time limit,
the solution status will be PRIMAL_FEASIBLE:

Problem status : PRIMAL_FEASIBLE
Solution status : PRIMAL_FEASIBLE
Primal. obj: 6.0114607792e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-13 ␣
→˓itg: 4e-15

In this case it is valuable to go back to the optimizer summary to see how good the best solution is:

31 35 1 0 6.0114607792e+06 6.0078960892e+06 0.06 ␣
→˓ 4.1

Objective of best integer solution : 6.011460779193e+06
Best objective bound : 6.007896089225e+06

In this case the best integer solution found has objective value 6.011460779193e+06, the best proved
lower bound is 6.007896089225e+06 and so the solution is guaranteed to be within 0.06% from optimum.
The same data can be obtained as information items through an API. See also Sec. 13.4 for more details.

Infeasible problem

If the problem is declared infeasible the summary is simply

Problem status : PRIMAL_INFEASIBLE
Solution status : UNKNOWN
Primal. obj: 0.0000000000e+00 nrm: 0e+00 Viol. con: 0e+00 var: 0e+00 ␣
→˓itg: 0e+00

If infeasibility was not expected, consult Sec. 8.3.
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8.2 Addressing numerical issues

The suggestions in this section should help diagnose and solve issues with numerical instability, in
particular UNKNOWN solution status or solutions with large violations. Since numerically stable models
tend to solve faster, following these hints can also dramatically shorten solution times.

We always recommend that issues of this kind are addressed by reformulating or rescaling the model,
since it is the modeler who has the best insight into the structure of the problem and can fix the cause
of the issue.

8.2.1 Formulating problems

Scaling

Make sure that all the data in the problem are of comparable orders of magnitude. This applies especially
to the linear constraint matrix. Use Sec. 8.1.1 if necessary. For example a report such as

|A| nnz: 597023 min=1.17e-6 max=2.21e+5

means that the ratio of largest to smallest elements in A is 1011. In this case the user should rescale
or reformulate the model to avoid such spread which makes it difficult for MOSEK to scale the problem
internally. In many cases it may be possible to change the units, i.e. express the model in terms of
rescaled variables (for instance work with millions of dollars instead of dollars, etc.).

Similarly, if the objective contains very different coefficients, say

maximize 1010𝑥 + 𝑦

then it is likely to lead to inaccuracies. The objective will be dominated by the contribution from 𝑥 and
𝑦 will become insignificant.

Removing huge bounds

Never use a very large number as replacement for ∞. Instead define the variable or constraint as
unbounded from below/above. Similarly, avoid artificial huge bounds if you expect they will not become
tight in the optimal solution.

Avoiding linear dependencies

As much as possible try to avoid linear dependencies and near-linear dependencies in the model. See
Example 8.3.

Avoiding ill-posedness

Avoid continuous models which are ill-posed: the solution space is degenerate, for example consists of a
single point (technically, the Slater condition is not satisfied). In general, this refers to problems which
are borderline between feasible and infeasible. See Example 8.1.

Scaling the expected solution

Try to formulate the problem in such a way that the expected solution (both primal and dual) is not
very large. Consult the solution summary Sec. 8.1.2 to check the objective values or solution norms.
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8.2.2 Further suggestions
Here are other simple suggestions that can help locate the cause of the issues. They can also be used as
hints for how to tune the optimizer if fixing the root causes of the issue is not possible.

• Remove the objective and solve the feasibility problem. This can reveal issues with the objective.

• Change the objective or change the objective sense from minimization to maximization (if appli-
cable). If the two objective values are almost identical, this may indicate that the feasible set is
very small, possibly degenerate.

• Perturb the data, for instance bounds, very slightly, and compare the results.

• For linear problems: solve the problem using a different optimizer by setting the parameter
MSK_IPAR_OPTIMIZER and compare the results.

• Force the optimizer to solve the primal/dual versions of the problem by setting the parameter
MSK_IPAR_INTPNT_SOLVE_FORM or MSK_IPAR_SIM_SOLVE_FORM . MOSEK has a heuristic to decide
whether to dualize, but for some problems the guess is wrong an explicit choice may give better
results.

• Solve the problem without presolve or some of its parts by setting the parameter
MSK_IPAR_PRESOLVE_USE , see Sec. 13.1.

• Use different numbers of threads (MSK_IPAR_NUM_THREADS ) and compare the results. Very different
results indicate numerical issues resulting from round-off errors.

If the problem was dumped to a file, experimenting with various parameters is facilitated with the
MOSEK Command Line Tool or MOSEK Python Console Sec. 8.4.

8.2.3 Typical pitfalls

Example 8.1 (Ill-posedness). A toy example of this situation is the feasibility problem

(𝑥− 1)2 ≤ 1, (𝑥 + 1)2 ≤ 1

whose only solution is 𝑥 = 0 and moreover replacing any 1 on the right hand side by 1 − 𝜀 makes
the problem infeasible and replacing it by 1 + 𝜀 yields a problem whose solution set is an interval
(fully-dimensional). This is an example of ill-posedness.

Example 8.2 (Huge solution). If the norm of the expected solution is very large it may lead to
numerical issues or infeasibility. For example the problem

(10−4, 𝑥, 103) ∈ 𝒬3
r

may be declared infeasible because the expected solution must satisfy 𝑥 ≥ 5 · 109.

Example 8.3 (Near linear dependency). Consider the following problem:

minimize
subject to 𝑥1 + 𝑥2 = 1,

𝑥3 + 𝑥4 = 1,
− 𝑥1 − 𝑥3 = −1 + 𝜀,

− 𝑥2 − 𝑥4 = −1,
𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0.

If we add the equalities together we obtain:

0 = 𝜀
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which is infeasible for any 𝜀 ̸= 0. Here infeasibility is caused by a linear dependency in the constraint
matrix coupled with a precision error represented by the 𝜀. Indeed if a problem contains linear
dependencies then the problem is either infeasible or contains redundant constraints. In the above
case any of the equality constraints can be removed while not changing the set of feasible solutions.
To summarize linear dependencies in the constraints can give rise to infeasible problems and therefore
it is better to avoid them.

Example 8.4 (Presolving very tight bounds). Next consider the problem

minimize
subject to 𝑥1 − 0.01𝑥2 = 0,

𝑥2 − 0.01𝑥3 = 0,
𝑥3 − 0.01𝑥4 = 0,

𝑥1 ≥ −10−9,
𝑥1 ≤ 10−9,
𝑥4 ≥ 10−4.

Now the MOSEK presolve will, for the sake of efficiency, fix variables (and constraints) that have
tight bounds where tightness is controlled by the parameter MSK_DPAR_PRESOLVE_TOL_X . Since the
bounds

−10−9 ≤ 𝑥1 ≤ 10−9

are tight, presolve will set 𝑥1 = 0. It easy to see that this implies 𝑥4 = 0, which leads to the incorrect
conclusion that the problem is infeasible. However a tiny change of the value 10−9 makes the problem
feasible. In general it is recommended to avoid ill-posed problems, but if that is not possible then one
solution is to reduce parameters such as MSK_DPAR_PRESOLVE_TOL_X to say 10−10. This will at least
make sure that presolve does not make the undesired reduction.

8.3 Debugging infeasibility

This section contains hints for debugging problems that are unexpectedly infeasible. It is always a good
idea to remove the objective, i.e. only solve a feasibility problem when debugging such issues.

8.3.1 Numerical issues
Infeasible problem status may be just an artifact of numerical issues appearing when the problem is
badly-scaled, barely feasible or otherwise ill-conditioned so that it is unstable under small perturbations
of the data or round-off errors. This may be visible in the solution summary if the infeasibility certificate
has poor quality. See Sec. 8.1.2 for how to diagnose that and Sec. 8.2 for possible hints. Sec. 8.2.3
contains examples of situations which may lead to infeasibility for numerical reasons.

We refer to Sec. 8.2 for further information on dealing with those sort of issues. For the rest of this
section we concentrate on the case when the solution summary leaves little doubt that the problem solved
by the optimizer actually is infeasible.

8.3.2 Locating primal infeasibility
As an example of a primal infeasible problem consider minimizing the cost of transportation between a
number of production plants and stores: Each plant produces a fixed number of goods, and each store
has a fixed demand that must be met. Supply, demand and cost of transportation per unit are given in
Fig. 8.1.

The problem represented in Fig. 8.1 is infeasible, since the total demand

2300 = 1100 + 200 + 500 + 500

exceeds the total supply

2200 = 200 + 1000 + 1000
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Fig. 8.1: Supply, demand and cost of transportation.

If we denote the number of transported goods from plant 𝑖 to store 𝑗 by 𝑥𝑖𝑗 , the problem can be
formulated as the LP:

minimize 𝑥11 + 2𝑥12 + 5𝑥23 + 2𝑥24 + 𝑥31 + 2𝑥33 + 𝑥34

subject to 𝑠0 : 𝑥11 + 𝑥12 ≤ 200,
𝑠1 : 𝑥23 + 𝑥24 ≤ 1000,
𝑠2 : 𝑥31 + 𝑥33 + 𝑥34 ≤ 1000,
𝑑1 : 𝑥11 + 𝑥31 = 1100,
𝑑2 : 𝑥12 = 200,
𝑑3 : 𝑥23 + 𝑥33 = 500,
𝑑4 : 𝑥24 + 𝑥34 = 500,

𝑥𝑖𝑗 ≥ 0.

(8.1)

Solving problem (8.1) using MOSEK will result in an infeasibility status. The infeasibility certificate
is contained in the dual variables an can be accessed from an API. The variables and constraints with
nonzero solution values form an infeasible subproblem, which frequently is very small. See Sec. 12.1.2 or
Sec. 12.2.2 for detailed specifications of infeasibility certificates.

A short infeasibility report can also be printed to the log stream. It can be turned on by setting
the parameter MSK_IPAR_INFEAS_REPORT_AUTO to "MSK_ON" . This causes MOSEK to print a report on
variables and constraints which are involved in infeasibility in the above sense, i.e. have nonzero values
in the certificate. The parameter MSK_IPAR_INFEAS_REPORT_LEVEL controls the amount of information
presented in the infeasibility report. The default value is 1. For the above example the report is

MOSEK PRIMAL INFEASIBILITY REPORT.

Problem status: The problem is primal infeasible

The following constraints are involved in the primal infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper
0 s0 NONE 2.000000e+002 0.000000e+000 1.000000e+000
2 s2 NONE 1.000000e+003 0.000000e+000 1.000000e+000
3 d1 1.100000e+003 1.100000e+003 1.000000e+000 0.000000e+000
4 d2 2.000000e+002 2.000000e+002 1.000000e+000 0.000000e+000

The following bound constraints are involved in the infeasibility.

(continues on next page)
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(continued from previous page)

Index Name Lower bound Upper bound Dual lower Dual upper
8 x33 0.000000e+000 NONE 1.000000e+000 0.000000e+000
10 x34 0.000000e+000 NONE 1.000000e+000 0.000000e+000

The infeasibility report is divided into two sections corresponding to constraints and variables. It
is a selection of those lines from the problem solution which are important in understanding primal
infeasibility. In this case the constraints s0, s2, d1, d2 and variables x33, x34 are of importance because
of nonzero dual values. The columns Dual lower and Dual upper contain the values of dual variables
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠𝑥𝑙 and 𝑠𝑥𝑢 in the primal infeasibility certificate (see Sec. 12.1.2).

In our example the certificate means that an appropriate linear combination of constraints s0, s1
with coefficient 𝑠𝑐𝑢 = 1, constraints d1 and d2 with coefficient 𝑠𝑐𝑢 − 𝑠𝑐𝑙 = 0 − 1 = −1 and lower bounds
on x33 and x34 with coefficient −𝑠𝑥𝑙 = −1 gives a contradiction. Indeed, the combination of the four
involved constraints is 𝑥33 +𝑥34 ≤ −100 (as indicated in the introduction, the difference between supply
and demand).

It is also possible to extract the infeasible subproblem with the command-line tool. For an infeasible
problem called infeas.lp the command:

mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.lp -info rinfeas.lp

will produce the file rinfeas.bas.inf.lp which contains the infeasible subproblem. Because of its
size it may be easier to work with than the original problem file.

Returning to the transportation example, we discover that removing the fifth constraint 𝑥12 = 200
makes the problem feasible. Almost all undesired infeasibilities should be fixable at the modeling stage.

8.3.3 Locating dual infeasibility
A problem may also be dual infeasible. In this case the primal problem is usually unbounded, meaning
that feasible solutions exists such that the objective tends towards infinity. For example, consider the
problem

maximize 200𝑦1 + 1000𝑦2 + 1000𝑦3 + 1100𝑦4 + 200𝑦5 + 500𝑦6 + 500𝑦7
subject to 𝑦1 + 𝑦4 ≤ 1, 𝑦1 + 𝑦5 ≤ 2, 𝑦2 + 𝑦6 ≤ 5, 𝑦2 + 𝑦7 ≤ 2,

𝑦3 + 𝑦4 ≤ 1, 𝑦3 + 𝑦6 ≤ 2, 𝑦3 + 𝑦7 ≤ 1
𝑦1, 𝑦2, 𝑦3 ≤ 0

which is dual to (8.1) (and therefore is dual infeasible). The dual infeasibility report may look as follows:

MOSEK DUAL INFEASIBILITY REPORT.

Problem status: The problem is dual infeasible

The following constraints are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper␣
→˓bound
5 x33 -1.000000e+00 NONE 2.
→˓000000e+00
6 x34 -1.000000e+00 NONE 1.
→˓000000e+00

The following variables are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper␣
→˓bound
0 y1 -1.000000e+00 2.000000e+02 NONE 0.
→˓000000e+00
2 y3 -1.000000e+00 1.000000e+03 NONE 0.
→˓000000e+00

(continues on next page)
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3 y4 1.000000e+00 1.100000e+03 NONE NONE
4 y5 1.000000e+00 2.000000e+02 NONE NONE

Interior-point solution summary
Problem status : DUAL_INFEASIBLE
Solution status : DUAL_INFEASIBLE_CER
Primal. obj: 1.0000000000e+02 nrm: 1e+00 Viol. con: 0e+00 var: 0e+00

In the report we see that the variables y1, y3, y4, y5 and two constraints contribute to infeasibility
with non-zero values in the Activity column. Therefore

(𝑦1, . . . , 𝑦7) = (−1, 0,−1, 1, 1, 0, 0)

is the dual infeasibility certificate as in Sec. 12.1.2. This just means, that along the ray

(0, 0, 0, 0, 0, 0, 0) + 𝑡(𝑦1, . . . , 𝑦7) = (−𝑡, 0,−𝑡, 𝑡, 𝑡, 0, 0), 𝑡 > 0,

which belongs to the feasible set, the objective value 100𝑡 can be arbitrarily large, i.e. the problem is
unbounded.

In the example problem we could

• Add a lower bound on y3. This will directly invalidate the certificate of dual infeasibility.

• Increase the objective coefficient of y3. Changing the coefficients sufficiently will invalidate the
inequality 𝑐𝑇 𝑦* > 0 and thus the certificate.

8.3.4 Suggestions

Primal infeasibility

When trying to understand what causes the unexpected primal infeasible status use the following hints:

• Remove the objective function. This does not change the infeasibility status but simplifies the
problem, eliminating any possibility of issues related to the objective function.

• Remove cones, semidefinite variables and integer constraints. Solve only the linear part of the
problem. Typical simple modeling errors will lead to infeasibility already at this stage.

• Consider whether your problem has some obvious necessary conditions for feasibility and examine
if these are satisfied, e.g. total supply should be greater than or equal to total demand.

• Verify that coefficients and bounds are reasonably sized in your problem.

• See if there are any obvious contradictions, for instance a variable is bounded both in the variables
and constraints section, and the bounds are contradictory.

• Consider replacing suspicious equality constraints by inequalities. For instance, instead of 𝑥12 = 200
see what happens for 𝑥12 ≥ 200 or 𝑥12 ≤ 200.

• Relax bounds of the suspicious constraints or variables.

• For integer problems, remove integrality constraints on some/all variables and see if the problem
solves.

• Form an elastic model: allow to violate constraints at a cost. Introduce slack variables and add
them to the objective as penalty. For instance, suppose we have a constraint

minimize 𝑐𝑇𝑥,
subject to 𝑎𝑇𝑥 ≤ 𝑏.

which might be causing infeasibility. Then create a new variable 𝑦 and form the problem which
contains:

minimize 𝑐𝑇𝑥 + 𝑦,
subject to 𝑎𝑇𝑥 ≤ 𝑏 + 𝑦.
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Solving this problem will reveal by how much the constraint needs to be relaxed in order to become
feasible. This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

• If you think you have a feasible solution or its part, fix all or some of the variables to those values.
Presolve will propagate them through the model and potentially reveal more localized sources of
infeasibility.

• Dump the problem in OPF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Dual infeasibility

When trying to understand what causes the unexpected dual infeasible status use the following hints:

• Verify that the objective coefficients are reasonably sized.

• Check if no bounds and constraints are missing, for example if all variables that should be nonneg-
ative have been declared as such etc.

• Strengthen bounds of the suspicious constraints or variables.

• Form an series of models with decreasing bounds on the objective, that is, instead of objective

minimize 𝑐𝑇𝑥

solve the problem with an additional constraint such as

𝑐𝑇𝑥 = −105

and inspect the solution to figure out the mechanism behind arbitrarily decreasing objective values.
This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

• Dump the problem in OPF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Please note that modifying the problem to invalidate the reported certificate does not imply that the
problem becomes feasible — the reason for infeasibility may simply move, resulting a problem that is
still infeasible, but for a different reason. More often, the reported certificate can be used to give a hint
about errors or inconsistencies in the model that produced the problem.

8.4 Python Console

The MOSEK Python Console is an alternative to the MOSEK Command Line Tool. It can be used for
interactive loading, solving and debugging optimization problems stored in files, for example MOSEK
task files. It facilitates debugging techniques described in Sec. 8.

8.4.1 Usage
The tool requires Python 2 or 3. The MOSEK interface for Python must be installed following the
installation instructions for Python API or Python Fusion API. In the basic case it should be sufficient
to execute the script

python setup.py install --user

in the directory containing the MOSEK Python module.
The Python Console is contained in the file mosekconsole.py in the folder with MOSEK binaries. It

can be copied to an arbitrary location. The file is also available for download here (mosekconsole.py).
To run the console in interactive mode use
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python mosekconsole.py

To run the console in batch mode provide a semicolon-separated list of commands as the second
argument of the script, for example:

python mosekconsole.py "read data.task.gz; solve form=dual; writesol data"

The script is written using the MOSEK Python API and can be extended by the user if more specific
functionality is required. We refer to the documentation of the Python API.

8.4.2 Examples
To read a problem from data.task.gz, solve it, and write solutions to data.sol, data.bas or data.itg:

read data.task.gz; solve; writesol data

To convert between file formats:

read data.task.gz; write data.mps

To set a parameter before solving:

read data.task.gz; param INTPNT_CO_TOL_DFEAS 1e-9; solve"

To list parameter values related to the mixed-integer optimizer in the task file:

read data.task.gz; param MIO

To print a summary of problem structure:

read data.task.gz; anapro

To solve a problem forcing the dual and switching off presolve:

read data.task.gz; solve form=dual presolve=no

To write an infeasible subproblem to a file for debugging purposes:

read data.task.gz; solve; infsub; write inf.opf

8.4.3 Full list of commands
Below is a brief description of all the available commands. Detailed information about a specific command
cmd and its options can be obtained with

help cmd
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Table 8.1: List of commands of the MOSEK Python Console.
Command Description
help [command] Print list of commands or info about a specific command
log filename Save the session to a file
intro Print MOSEK splashscreen
testlic Test the license system
read filename Load problem from file
reread Reload last problem file
solve
[options]

Solve current problem

write filename Write current problem to file
param [name
[value]]

Set a parameter or get parameter values

paramdef Set all parameters to default values
paramdiff Show parameters with non-default values
info [name] Get an information item
anapro Analyze problem data
hist Plot a histogram of problem data
histsol Plot a histogram of the solutions
spy Plot the sparsity pattern of the A matrix
truncate
epsilon

Truncate small coefficients down to 0

resobj [fac] Rescale objective by a factor
anasol Analyze solutions
removeitg Remove integrality constraints
removecones Remove all cones and leave just the linear part
infsub Replace current problem with its infeasible subproblem
writesol
basename

Write solution(s) to file(s) with given basename

delsol Remove all solutions from the task
optserver
[url]

Use an OptServer to optimize

exit Leave
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Chapter 9

Advanced Numerical Tutorials

9.1 Converting a quadratically constrained problem to conic form

MOSEK employs the following form of quadratic problems:

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐𝑘 ≤ 1
2𝑥

𝑇𝑄𝑘𝑥 +
∑︀𝑛−1

𝑗=0 𝑎𝑘,𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1.

(9.1)

A conic quadratic constraint has the form

𝑥 ∈ 𝒬𝑛

in its most basic form where

𝒬𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 : 𝑥1 ≥

⎯⎸⎸⎷ 𝑛∑︁
𝑗=2

𝑥2
𝑗

⎫⎬⎭ .

A quadratic problem such as (9.1), if convex, can be reformulated in conic form. This is in fact the
reformulation MOSEK performs internally. It has many advantages:

• elegant duality theory for conic problems,

• reporting accurate dual information for quadratic inequalities is hard and/or computational ex-
pensive,

• it certifies that the original quadratic problem is indeed convex,

• modeling directly in conic form usually leads to a better model [And13] i.e. a faster solution time
and better numerical properties.

In addition, there are more types of conic constraints that can be combined with a quadratic cone,
for example semidefinite cones.

MOSEK offers a function that performs the conversion from quadratic to conic quadratic form
explicitly. Note that the reformulation is not unique. The approach followed by MOSEK is to introduce
additional variables, linear constraints and quadratic cones to obtain a larger but equivalent problem in
which the original variables are preserved.

In particular:

• all variables and constraints are kept in the problem,

• each quadratic constraint and quadratic terms in the objective generate one rotated quadratic cone,

• each quadratic constraint will contain no coefficients and upper/lower bounds will be set to ∞,−∞
respectively.

This allows the user to recover the original variable and constraint values, as well as their dual values,
with no conversion or additional effort.
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9.1.1 Quadratic Constraint Reformulation
Let us assume we want to convert the following quadratic constraint

𝑙 ≤ 1

2
𝑥𝑇𝑄𝑥 +

𝑛−1∑︁
𝑗=0

𝑎𝑗𝑥𝑗 ≤ 𝑢

to conic form. We first check whether 𝑙 = −∞ or 𝑢 = ∞, otherwise either the constraint can be dropped,
or the constraint is not convex. Thus let us consider the case

1

2
𝑥𝑇𝑄𝑥 +

𝑛−1∑︁
𝑗=0

𝑎𝑇𝑗 𝑥𝑗 ≤ 𝑢. (9.2)

Introducing an additional variable 𝑤 such that

𝑤 = 𝑢−
𝑛−1∑︁
𝑗=0

𝑎𝑇𝑗 𝑥𝑗 (9.3)

we obtain the equivalent form

1
2𝑥

𝑇𝑄𝑥 ≤ 𝑤,

𝑢−
∑︀𝑛−1

𝑗=0 𝑎𝑗𝑥𝑗 = 𝑤.

If 𝑄 is positive semidefinite, then there exists a matrix 𝐹 such that

𝑄 = 𝐹𝐹𝑇 (9.4)

and therefore we can write

‖𝐹𝑥‖2 ≤ 2𝑤,

𝑢−
∑︀𝑛−1

𝑗=0 𝑎𝑇𝑗 𝑥𝑗 = 𝑤.

Introducing an additional variable 𝑧 = 1, and setting 𝑦 = 𝐹𝑥 we obtain the conic formulation

(𝑤, 𝑧, 𝑦) ∈ 𝒬r ,
𝑧 = 1
𝑦 = 𝐹𝑥
𝑤 = 𝑢− 𝑎𝑇𝑥.

(9.5)

Summarizing, for each quadratic constraint involving 𝑡 variables, MOSEK introduces

1. a rotated quadratic cone of dimension 𝑡 + 2,

2. two additional variables for the cone roots,

3. 𝑡 additional variables to map the remaining part of the cone,

4. 𝑡 linear constraints.

A quadratic term in the objective is reformulated in a similar fashion. We refer to [And13] for a more
thorough discussion.

Example

Next we consider a simple problem with quadratic objective function:

minimize 1
2 (13𝑥2

0 + 17𝑥2
1 + 12𝑥2

2 + 24𝑥0𝑥1 + 12𝑥1𝑥2 − 4𝑥0𝑥2) − 22𝑥0 − 14.5𝑥1 + 12𝑥2 + 1
subject to −1 ≤ 𝑥0, 𝑥1, 𝑥2 ≤ 1

We can specify it in the human-readable OPF format.
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[comment]
An example of small QO problem from Boyd and Vandenberghe, "Convex Optimization",␣
→˓page 189 ex 4.3
The solution is (1,0.5,-1)
[/comment]

[variables]
x0 x1 x2
[/variables]

[objective min]
0.5 (13 x0^2 + 17 x1^2 + 12 x2^2 + 24 x0 * x1 + 12 x1 * x2 - 4 x0 * x2 ) - 22 x0 -␣
→˓14.5 x1 + 12 x2 + 1
[/objective]

[bounds]
[b] -1 <= * <= 1 [/b]
[/bounds]

The objective function is convex, the minimum is attained for 𝑥⋆ = (1, 0.5,−1). The conversion will
introduce first a variable 𝑥3 in the objective function such that 𝑥3 ≥ 1/2𝑥𝑇𝑄𝑥 and then convert the
latter directly in conic form. The converted problem follows:

minimize −22𝑥0 − 14.5𝑥1 + 12𝑥2 + 𝑥3 + 1
subject to 3.61𝑥0 + 3.33𝑥1 − 0.55𝑥2 − 𝑥6 = 0

+2.29𝑥1 + 3.42𝑥2 − 𝑥7 = 0
0.81𝑥1 − 𝑥8 = 0

−𝑥3 + 𝑥4 = 0
𝑥5 = 1

(𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8) ∈ 𝒬∇
−1 ≤ 𝑥0, 𝑥1, 𝑥2 ≤ 1

We obtain the reformulation as follows:

% prob is a quadratic problem
[r, res] = mosekopt('toconic prob', prob)
probConic = res.prob
mosekopt('write(conic.opf)', probConic)

and the output is:

[comment]
Written by MOSEK version 8.1.0.19
Date 21-08-17
Time 10:53:36

[/comment]

[hints]
[hint NUMVAR] 9 [/hint]
[hint NUMCON] 4 [/hint]
[hint NUMANZ] 11 [/hint]
[hint NUMQNZ] 0 [/hint]
[hint NUMCONE] 1 [/hint]

[/hints]

[variables disallow_new_variables]
x0000_x0 x0001_x1 x0002_x2 x0003 x0004
x0005 x0006 x0007 x0008

[/variables]
(continues on next page)
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(continued from previous page)

[objective minimize]
- 2.2e+01 x0000_x0 - 1.45e+01 x0001_x1 + 1.2e+01 x0002_x2 + x0003
+ 1e+00

[/objective]

[constraints]
[con c0000] 3.605551275463989e+00 x0000_x0 - 5.547001962252291e-01 x0002_x2 + 3.

→˓328201177351375e+00 x0001_x1 - x0006 = 0e+00 [/con]
[con c0001] 3.419401657060442e+00 x0002_x2 + 2.294598480395823e+00 x0001_x1 -␣

→˓x0007 = 0e+00 [/con]
[con c0002] 8.111071056538127e-01 x0001_x1 - x0008 = 0e+00 [/con]
[con c0003] - x0003 + x0004 = 0e+00 [/con]

[/constraints]

[bounds]
[b] -1e+00 <= x0000_x0,x0001_x1,x0002_x2 <= 1e+00 [/b]
[b] x0003,x0004 free [/b]
[b] x0005 = 1e+00 [/b]
[b] x0006,x0007,x0008 free [/b]
[cone rquad k0000] x0004, x0005, x0006, x0007, x0008 [/cone]

[/bounds]

We can clearly see that constraints c0000, c0001 and c0002 represent the original linear constraints
as in (9.4), while c0003 corresponds to (9.3). The cone roots are x0005 and x0004.

9.2 Advanced hot-start

In practice it frequently occurs that when an optimization problem has been solved, then the same
problem slightly modified should be reoptimized. Moreover, if it is just a small the modification, it can
be expected that the optimal solution to the original problem is a good approximation to the modified
problem. Therefore, it should be efficient to start the optimization of the modified problem from the
previous optimal solution.

Currently, the interior-point optimizer in MOSEK cannot take advantage of a previous optimal
solution, however, the simplex optimizer can exploit any basic solution.

We work with the simple linear problem:

minimize 𝑥1 + 2𝑥2

subject to 4 ≤ 𝑥1 + 𝑥3 ≤ 6,
1 ≤ 𝑥1 + 𝑥2,
0 ≤ 𝑥1, 𝑥2, 𝑥3.

9.2.1 Initial hot-start
A quick inspection of the problem indicates that (𝑥1, 𝑥3) = (1, 3) is an optimal solution. Hence, it seems
to be a good idea to let the initial basis consist of 𝑥1 and 𝑥3 and all the other variables be at their lower
bounds. This idea is used in the example code:

Listing 9.1: Passing the full basic solution.

% Specify an initial basic solution.
bas.skc = ['LL';'LL'];
bas.skx = ['BS';'LL';'BS'];
bas.xc = [4 1]';
bas.xx = [1 3 0]';

prob.sol.bas = bas;
(continues on next page)
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% Specify the problem data.
prob.c = [ 1 2 0]';
subi = [1 2 2 1];
subj = [1 1 2 3];
valij = [1.0 1.0 1.0 1.0];
prob.a = sparse(subi,subj,valij);
prob.blc = [4.0 1.0]';
prob.buc = [6.0 inf]';
prob.blx = sparse(3,1);
prob.bux = [];

% Use the primal simplex optimizer.
param.MSK_IPAR_OPTIMIZER = 'MSK_OPTIMIZER_PRIMAL_SIMPLEX';
[r,res] = mosekopt('minimize',prob,param)

Comments:

• In the example the dual solution is not defined. This is acceptable because the primal simplex
optimizer is used for the reoptimization and it does not exploit a dual solution. Otherwise it will
be important that a good dual solution is specified.

• The status keys bas.skc and bas.skx must contain only the entries BS, EQ, LL, UL, SB. Moreover,
e.g. EQ must be specified only for a fixed constraint or variable. LL and UL can be used only for a
variable that has a finite lower or upper bound respectively. For an explanation of status keys see
stakey .

• The number of constraints and variables defined to be basic must correspond exactly to the number
of constraints.

9.2.2 Adding a new variable
Next, assume we modify the problem by adding a new variable:

minimize 𝑥1 + 2𝑥2 − 𝑥4

subject to 4 ≤ 𝑥1 + 𝑥3 + 𝑥4 ≤ 6,
1 ≤ 𝑥1 + 𝑥2,
0 ≤ 𝑥1, 𝑥2, 𝑥3, 𝑥4.

In continuation of the previous example this problem can be solved as follows, using the full previous
basic solution in hot-start:

Listing 9.2: Hot-start when adding a new variable.

prob.c = [prob.c;-1.0];
prob.a = [prob.a,sparse([1.0 0.0]')];
prob.blx = sparse(4,1);

% Reuse the old optimal basic solution.
bas = res.sol.bas;

% Add to the status key.
bas.skx = [res.sol.bas.skx;'LL'];

% The new variable is at it lower bound.
bas.xx = [res.sol.bas.xx;0.0];
bas.slx = [res.sol.bas.slx;0.0];
bas.sux = [res.sol.bas.sux;0.0];

(continues on next page)

71



(continued from previous page)

prob.sol.bas = bas;

[rcode,res] = mosekopt('minimize',prob,param);

% The new primal optimal solution
res.sol.bas.xx'

9.2.3 Fixing a variable
In e.g. branch-and-bound methods for integer programming problems it is necessary to reoptimize the
problem after a variable has been fixed to a value. This can easily be achieved as follows:

Listing 9.3: Hot-start with a fixed variable.

prob.blx(4) = 1;
prob.bux = [inf inf inf 1]';

% Reuse the basis.
prob.sol.bas = res.sol.bas;

[rcode,res] = mosekopt('minimize',prob,param);

% Display the optimal solution.
res.sol.bas.xx'

9.2.4 Adding a new constraint
Now assume that the constraint

𝑥1 + 𝑥2 ≥ 2

should be added to the problem and the problem should be reoptimized. The following example demon-
strates how to do this.

Listing 9.4: Hot-start when adding a new constraint.

% Modify the problem.
prob.a = [prob.a;sparse([1.0 1.0 0.0 0.0])];
prob.blc = [prob.blc;2.0];
prob.buc = [prob.buc;inf];

% Obtain the previous optimal basis.
bas = res.sol.bas;

% Set the solution to the modified problem.
bas.skc = [bas.skc;'BS'];
bas.xc = [bas.xc;bas.xx(1)+bas.xx(2)];
bas.y = [bas.y;0.0];
bas.slc = [bas.slc;0.0];
bas.suc = [bas.suc;0.0];

% Reuse the basis.
prob.sol.bas = bas;

% Reoptimize.
[rcode,res] = mosekopt('minimize',prob,param);

(continues on next page)
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res.sol.bas.xx'

Please note that the slack variable corresponding to the new constraint is declared basic. This implies
that the new basis is nonsingular and can be reused.

9.2.5 Removing a constraint
We can remove a constraint in two ways:

• Set the bounds for the constraint to ±∞ as appropriate.

• Remove the corresponding row from prob.a and other parts of the data and update the basis.

In the following example we use the latter approach to again remove the constraint 𝑥1 + 𝑥2 ≥ 2.

Listing 9.5: Hot-start when removing a constraint.

% Modify the problem.
prob.a = prob.a(1:end-1,:);
prob.blc = prob.blc(1:end-1);
prob.buc = prob.buc(1:end-1);

% Obtain the previous optimal basis.
bas = res.sol.bas;

% Set the solution to the modified problem.
bas.skc = bas.skc(1:end-1,:);
bas.xc = bas.xc(1:end-1);
bas.y = bas.y(1:end-1);
bas.slc = bas.slc(1:end-1);
bas.suc = bas.suc(1:end-1);

% Reuse the basis.
prob.sol.bas = bas;

% Reoptimize.
[rcode,res] = mosekopt('minimize',prob,param);

res.sol.bas.xx'

9.2.6 Removing a variable
Similarly we can remove a variable in two ways:

• Fix the variable to zero.

• Remove the corresponding column from prob.a and other parts of the data and update the basis.

The following example uses the latter approach to remove 𝑥4.

Listing 9.6: Hot-start when removing a constraint.

% Modify the problem.
prob.c = prob.c(1:end-1);
prob.a = prob.a(:,1:end-1);
prob.blx = prob.blx(1:end-1);
prob.bux = prob.bux(1:end-1);

(continues on next page)
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% Obtain the previous optimal basis.
bas = res.sol.bas;

% Set the solution to the modified problem.
bas.xx = bas.xx(1:end-1);
bas.skx = bas.skx(1:end-1,:);
bas.slx = bas.slx(1:end-1);
bas.sux = bas.sux(1:end-1);

% Reuse the basis.
prob.sol.bas = bas;

% Reoptimize.
[rcode,res] = mosekopt('minimize',prob,param);

res.sol.bas.xx'
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Chapter 10

Technical guidelines

This section contains some more in-depth technical guidelines for Optimization Toolbox for MATLAB,
not strictly necessary for basic use of MOSEK.

10.1 Integration with MATLAB

The mosekopt MEX file

The central part of Optimization Toolbox for MATLAB is the mosekopt MEX file. It provides an
interface to MOSEK that is employed by all the other functions provided in the toolbox. Therefore, we
recommend to mosekopt function if possible because that give rise to the least overhead and provides
the maximum of features.

Compatibility with the MATLAB Optimization Toolbox

For compatibility with the MATLAB Optimization Toolbox, MOSEK provides the following functions:

• linprog : Solves linear optimization problems.

• intlinprog : Solves a linear optimization problem with integer constrained variables.

• quadprog : Solves quadratic optimization problems.

• lsqlin : Minimizes a least-squares objective with linear constraints.

• lsqnonneg : Minimizes a least-squares objective with nonnegativity constraints.

• mskoptimget : Getting an options structure for MATLAB compatible functions.

• mskoptimset : Setting up an options structure for MATLAB compatible functions.

These functions are described in detail in Sec. 15.2. The functions mskoptimget and mskoptimset
are not fully compatible with the MATLAB counterparts, optimget and optimset, so the MOSEK
versions should only be used in conjunction with the MOSEK implementations of linprog , etc., and
similarly optimget should be used in conjunction with the MATLAB implementations.

Caveats using the MATLAB compiler

When using MOSEK with the MATLAB compiler it is necessary manually:

• to remove mosekopt.m before compilation,

• copy the MEX file to the directory with MATLAB binary files and

• copy the mosekopt.m file back after compilation.
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10.2 Names

All elements of an optimization problem in MOSEK (objective, constraints, variables, etc.) can be given
names. Assigning meaningful names to variables and constraints makes it much easier to understand
and debug optimization problems dumped to a file. On the other hand, note that assigning names can
substantially increase setup time, so it should be avoided in time-critical applications.

Names of various elements of the problem are assigned using the names structure within an opti-
mization problem specification prob .

Note that file formats impose various restrictions on names, so not all names can be written verbatim
to each type of file. If at least one name cannot be written to a given format then generic names and
substitutions of offending characters will be used when saving to a file, resulting in a transformation of
all names in the problem. See Sec. 16.

10.3 Multithreading

Parallelization

The interior-point and mixed-integer optimizers in MOSEK are parallelized. By default MOSEK will
automatically select the number of threads. However, the maximum number of threads allowed can be
changed by setting the parameter MSK_IPAR_NUM_THREADS and related parameters. This should never
exceed the number of cores. See Sec. 13 and Sec. 13.4 for more details.

The speed-up obtained when using multiple threads is highly problem and hardware dependent. We
recommend experimenting with various thread numbers to determine the optimal settings. For small
problems using multiple threads may be counter-productive because of the associated overhead.

Determinism

By default the optimizer is run-to-run deterministic, which means that it will return the same answer
each time it is run on the same machine with the same input, the same parameter settings (including
number of threads) and no time limits.

Setting the number of threads

The number of threads the optimizer uses can be changed with the parameter MSK_IPAR_NUM_THREADS .
For conic problems (when the conic optimizer is used) the value set at the first optimization will

remain fixed through the lifetime of the process. The thread pool will be reserved once for all and
subsequent changes to MSK_IPAR_NUM_THREADS will have no effect. The only possibility at that point is
to switch between multi-threaded and single-threaded interior-point optimization using the parameter
MSK_IPAR_INTPNT_MULTI_THREAD .

The MATLAB Parallel Computing Toolbox

Running MOSEK with the MATLAB Parallel Computing Toolbox requires multiple MOSEK licenses,
since each thread runs a separate instance of the MOSEK optimizer. Each thread thus requires a
MOSEK license.

10.4 The license system

MOSEK is a commercial product that always needs a valid license to work. MOSEK uses a third
party license manager to implement license checking. The number of license tokens provided determines
the number of optimizations that can be run simultaneously.

By default a license token remains checked out from the first optimization until the end of the
MOSEK session, i.e.

• a license token is checked out when any MOSEK function involving optimization, as for instance
mosekopt , is called the first time and

• it is returned when MATLAB is terminated.
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Starting the optimization when no license tokens are available will result in an error.
Default behaviour of the license system can be changed in several ways:

• Setting the parameter MSK_IPAR_CACHE_LICENSE to "MSK_OFF" will force MOSEK to return the
license token immediately after the optimization completed.

• Setting the parameter MSK_IPAR_LICENSE_WAIT will force MOSEK to wait until a license token
becomes available instead of returning with an error.

• All licenses currently checked out and not in use can be released on demand using the nokeepenv
command of mosekopt .

mosekopt('nokeepenv');
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Chapter 11

Case Studies

In this section we present some case studies in which the Optimization Toolbox for MATLAB is used
to solve real-life applications. These examples involve some more advanced modeling skills and possibly
some input data. The user is strongly recommended to first read the basic tutorials of Sec. 6 before
going through these advanced case studies.

• Portfolio Optimization

– Keywords: Markowitz model, variance, risk, efficient frontier, transaction cost, market im-
pact cost, cardinality constraints

– Type: Conic Quadratic, Power Cone, Mixed-Integer

• Least squares and other norm minimization problems

– Keywords: Least squares, regression, 2-norm, 1-norm, p-norm, ridge, lasso

– Type: Conic Quadratic, Power Cone

• Robust linear optimization

– Keywords: Robust optimization, ellipsoidal uncertainty

– Type: Conic Quadratic

11.1 Portfolio Optimization

In this section the Markowitz portfolio optimization problem and variants are implemented using Opti-
mization Toolbox for MATLAB.

• Basic Markowitz model

• Efficient frontier

• Factor model and efficiency

• Market impact costs

• Transaction costs

• Cardinality constraints
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11.1.1 The Basic Model
The classical Markowitz portfolio optimization problem considers investing in 𝑛 stocks or assets held
over a period of time. Let 𝑥𝑗 denote the amount invested in asset 𝑗, and assume a stochastic model
where the return of the assets is a random variable 𝑟 with known mean

𝜇 = E𝑟

and covariance

Σ = E(𝑟 − 𝜇)(𝑟 − 𝜇)𝑇 .

The return of the investment is also a random variable 𝑦 = 𝑟𝑇𝑥 with mean (or expected return)

E𝑦 = 𝜇𝑇𝑥

and variance

E(𝑦 −E𝑦)2 = 𝑥𝑇 Σ𝑥.

The standard deviation
√
𝑥𝑇 Σ𝑥

is usually associated with risk.
The problem facing the investor is to rebalance the portfolio to achieve a good compromise between

risk and expected return, e.g., maximize the expected return subject to a budget constraint and an upper
bound (denoted 𝛾) on the tolerable risk. This leads to the optimization problem

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

𝑥𝑇 Σ𝑥 ≤ 𝛾2,
𝑥 ≥ 0.

(11.1)

The variables 𝑥 denote the investment i.e. 𝑥𝑗 is the amount invested in asset 𝑗 and 𝑥0
𝑗 is the initial

holding of asset 𝑗. Finally, 𝑤 is the initial amount of cash available.
A popular choice is 𝑥0 = 0 and 𝑤 = 1 because then 𝑥𝑗 may be interpreted as the relative amount of

the total portfolio that is invested in asset 𝑗.
Since 𝑒 is the vector of all ones then

𝑒𝑇𝑥 =

𝑛∑︁
𝑗=1

𝑥𝑗

is the total investment. Clearly, the total amount invested must be equal to the initial wealth, which is

𝑤 + 𝑒𝑇𝑥0.

This leads to the first constraint

𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0.

The second constraint

𝑥𝑇 Σ𝑥 ≤ 𝛾2
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ensures that the variance, is bounded by the parameter 𝛾2. Therefore, 𝛾 specifies an upper bound of
the standard deviation (risk) the investor is willing to undertake. Finally, the constraint

𝑥𝑗 ≥ 0

excludes the possibility of short-selling. This constraint can of course be excluded if short-selling is
allowed.

The covariance matrix Σ is positive semidefinite by definition and therefore there exist a matrix 𝐺
such that

Σ = 𝐺𝐺𝑇 . (11.2)

In general the choice of 𝐺 is not unique and one possible choice of 𝐺 is the Cholesky factorization of Σ.
However, in many cases another choice is better for efficiency reasons as discussed in Sec. 11.1.3. For a
given 𝐺 we have that

𝑥𝑇 Σ𝑥 = 𝑥𝑇𝐺𝐺𝑇𝑥

=
⃦⃦
𝐺𝑇𝑥

⃦⃦2
.

Hence, we may write the risk constraint as

𝛾 ≥
⃦⃦
𝐺𝑇𝑥

⃦⃦
or equivalently

(𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑛+1,

where 𝒬𝑛+1 is the (𝑛 + 1)-dimensional quadratic cone. Therefore, problem (11.1) can be written as

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

(𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑛+1,
𝑥 ≥ 0,

(11.3)

which is a conic quadratic optimization problem that can easily be formulated and solved with Opti-
mization Toolbox for MATLAB. Subsequently we will use the example data

𝜇 =

⎡⎣ 0.1073
0.0737
0.0627

⎤⎦
and

Σ = 0.1 ·

⎡⎣ 0.2778 0.0387 0.0021
0.0387 0.1112 −0.0020
0.0021 −0.0020 0.0115

⎤⎦ .

This implies

𝐺𝑇 =
√

0.1

⎡⎣ 0.5271 0.0734 0.0040
0 0.3253 −0.0070
0 0 0.1069

⎤⎦
Why a Conic Formulation?

Problem (11.1) is a convex quadratically constrained optimization problem that can be solved directly
using MOSEK. Why then reformulate it as a conic quadratic optimization problem (11.3)? The main
reason for choosing a conic model is that it is more robust and usually solves faster and more reliably. For
instance it is not always easy to numerically validate that the matrix Σ in (11.1) is positive semidefinite
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due to the presence of rounding errors. It is also very easy to make a mistake so Σ becomes indefinite.
These problems are completely eliminated in the conic formulation.

Moreover, observe the constraint ⃦⃦
𝐺𝑇𝑥

⃦⃦
≤ 𝛾

more numerically robust than

𝑥𝑇 Σ𝑥 ≤ 𝛾2

for very small and very large values of 𝛾. Indeed, if say 𝛾 ≈ 104 then 𝛾2 ≈ 108, which introduces a
scaling issue in the model. Hence, using conic formulation we work with the standard deviation instead
of variance, which usually gives rise to a better scaled model.

Example code

Listing 11.1 demonstrates how the basic Markowitz model (11.3) is implemented.

Listing 11.1: Code implementing problem (11.3).

function er = BasicMarkowitz(n,mu,GT,x0,w,gamma)

[rcode, res] = mosekopt('symbcon');
prob = [];

% Objective vector - expected return
prob.c = mu;

% The budget constraint - e'x = w + sum(x0)
prob.a = ones(1,n);
prob.blc = w + sum(x0);
prob.buc = w + sum(x0);

% Bounds exclude shortselling
prob.blx = zeros(n,1);
prob.bux = inf*ones(n,1);

% An affine conic constraint: [gamma, GT*x] in quadratic cone
prob.f = sparse([ zeros(1,n); GT ]);
prob.g = [gamma; zeros(n,1)];
prob.cones = [ res.symbcon.MSK_CT_QUAD n+1 ];

% Maximize problem and return the objective value
[rcode,res] = mosekopt('maximize echo(0)', prob, []);
x = res.sol.itr.xx;
er = mu'*x;

The source code should be self-explanatory except perhaps for

prob.f = sparse([ zeros(1,n); GT ]);
prob.g = [gamma; zeros(n,1)];
prob.cones = [ res.symbcon.MSK_CT_QUAD n+1 ];

where the constraint (︀
𝛾,𝐺𝑇𝑥

)︀
∈ 𝒬𝑛+1

is created as an affine conic constraint format of the form 𝐹𝑥 + 𝑔 ∈ 𝒦, in this specific case:[︂
0
𝐺𝑇

]︂
𝑥 +

[︂
𝛾
0

]︂
∈ 𝒬𝑛+1.
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11.1.2 The Efficient Frontier
The portfolio computed by the Markowitz model is efficient in the sense that there is no other portfolio
giving a strictly higher return for the same amount of risk. An efficient portfolio is also sometimes called
a Pareto optimal portfolio. Clearly, an investor should only invest in efficient portfolios and therefore it
may be relevant to present the investor with all efficient portfolios so the investor can choose the portfolio
that has the desired tradeoff between return and risk.

Given a nonnegative 𝛼 the problem

maximize 𝜇𝑇𝑥− 𝛼𝑥𝑇 Σ𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

𝑥 ≥ 0.
(11.4)

is one standard way to trade the expected return against penalizing variance. Note that, in contrast to
the previous example, we explicitly use the variance (‖𝐺𝑇𝑥‖22) rather than standard deviation (‖𝐺𝑇𝑥‖2),
therefore the conic model includes a rotated quadratic cone:

maximize 𝜇𝑇𝑥− 𝛼𝑠
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

(𝑠, 0.5, 𝐺𝑇𝑥) ∈ 𝑄𝑛+2
𝑟 (equiv. to 𝑠 ≥ ‖𝐺𝑇𝑥‖22 = 𝑥𝑇 Σ𝑥),

𝑥 ≥ 0.

(11.5)

The parameter 𝛼 specifies the tradeoff between expected return and variance. Ideally the problem (11.4)
should be solved for all values 𝛼 ≥ 0 but in practice it is impossible. Using the example data from Sec.
11.1.1, the optimal values of return and variance for several values of 𝛼 are shown in the figure.

Example code

Listing 11.2 demonstrates how to compute the efficient portfolios for several values of 𝛼.

Listing 11.2: Code for the computation of the efficient frontier
based on problem (11.4).

function frontier = EfficientFrontier(n,mu,GT,x0,w,alphas)

frontier = [];
[rcode, res] = mosekopt('symbcon');
prob = [];

% The budget constraint in terms of variables [x; s]
prob.a = [ones(1,n), 0.0];
prob.blc = w + sum(x0);
prob.buc = w + sum(x0);

% No shortselling
prob.blx = [zeros(n,1); -inf];
prob.bux = inf*ones(n+1,1);

% An affine conic constraint: [s, 0.5, GT*x] in rotated quadratic cone
% In matrix form
% [ 0 1] [ x ] [ 0 ]
% [ 0 0] [ ] + [ 0.5 ] \in Q_r
% [ GT 0] [ s ] [ 0 ]
prob.f = sparse([ [zeros(1,n), 1.0]; zeros(1, n+1); [GT, zeros(n,1)] ]);
prob.g = [ 0; 0.5; zeros(n, 1) ]
prob.cones = [ res.symbcon.MSK_CT_RQUAD n+2 ];

for alpha = alphas
% Objective mu'*x - alpha*s
prob.c = [mu; -alpha];

(continues on next page)
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Fig. 11.1: The efficient frontier for the sample data.
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[rcode,res] = mosekopt('maximize echo(0)',prob,[]);
x = res.sol.itr.xx(1:n);
s = res.sol.itr.xx(n+1);

frontier = [frontier; [alpha, mu'*x, s] ];
end

11.1.3 Factor model and efficiency
In practice it is often important to solve the portfolio problem very quickly. Therefore, in this section
we discuss how to improve computational efficiency at the modeling stage.

The computational cost is of course to some extent dependent on the number of constraints and
variables in the optimization problem. However, in practice a more important factor is the sparsity: the
number of nonzeros used to represent the problem. Indeed it is often better to focus on the number of
nonzeros in 𝐺 see (11.2) and try to reduce that number by for instance changing the choice of 𝐺.

In other words if the computational efficiency should be improved then it is always good idea to start
with focusing at the covariance matrix. As an example assume that

Σ = 𝐷 + 𝑉 𝑉 𝑇

where 𝐷 is a positive definite diagonal matrix. Moreover, 𝑉 is a matrix with 𝑛 rows and 𝑝 columns.
Such a model for the covariance matrix is called a factor model and usually 𝑝 is much smaller than 𝑛.
In practice 𝑝 tends to be a small number independent of 𝑛, say less than 100.

One possible choice for 𝐺 is the Cholesky factorization of Σ which requires storage proportional to
𝑛(𝑛 + 1)/2. However, another choice is

𝐺𝑇 =

[︂
𝐷1/2

𝑉 𝑇

]︂
because then

𝐺𝐺𝑇 = 𝐷 + 𝑉 𝑉 𝑇 .

This choice requires storage proportional to 𝑛 + 𝑝𝑛 which is much less than for the Cholesky choice of
𝐺. Indeed assuming 𝑝 is a constant storage requirements are reduced by a factor of 𝑛.

The example above exploits the so-called factor structure and demonstrates that an alternative choice
of 𝐺 may lead to a significant reduction in the amount of storage used to represent the problem. This
will in most cases also lead to a significant reduction in the solution time.

The lesson to be learned is that it is important to investigate how the covariance matrix is formed.
Given this knowledge it might be possible to make a special choice for 𝐺 that helps reducing the storage
requirements and enhance the computational efficiency. More details about this process can be found in
[And13].

11.1.4 Slippage Cost
The basic Markowitz model assumes that there are no costs associated with trading the assets and that
the returns of the assets are independent of the amount traded. Neither of those assumptions is usually
valid in practice. Therefore, a more realistic model is

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 +

∑︀𝑛
𝑗=1 𝑇𝑗(∆𝑥𝑗) = 𝑤 + 𝑒𝑇𝑥0,

𝑥𝑇 Σ𝑥 ≤ 𝛾2,
𝑥 ≥ 0.

(11.6)

Here ∆𝑥𝑗 is the change in the holding of asset 𝑗 i.e.

∆𝑥𝑗 = 𝑥𝑗 − 𝑥0
𝑗

and 𝑇𝑗(∆𝑥𝑗) specifies the transaction costs when the holding of asset 𝑗 is changed from its initial value.
In the next two sections we show two different variants of this problem with two nonlinear cost functions
𝑇 .
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11.1.5 Market Impact Costs
If the initial wealth is fairly small and no short selling is allowed, then the holdings will be small and the
traded amount of each asset must also be small. Therefore, it is reasonable to assume that the prices
of the assets are independent of the amount traded. However, if a large volume of an asset is sold or
purchased, the price, and hence return, can be expected to change. This effect is called market impact
costs. It is common to assume that the market impact cost for asset 𝑗 can be modeled by

𝑇𝑗(∆𝑥𝑗) = 𝑚𝑗 |∆𝑥𝑗 |3/2

where 𝑚𝑗 is a constant that is estimated in some way by the trader. See [GK00] [p. 452] for details.
From the Modeling Cookbook we know that 𝑡 ≥ |𝑧|3/2 can be modeled directly using the power cone
𝒫2/3,1/3
3 :

{(𝑡, 𝑧) : 𝑡 ≥ |𝑧|3/2} = {(𝑡, 𝑧) : (𝑡, 1, 𝑧) ∈ 𝒫2/3,1/3
3 }

Hence, it follows that
∑︀𝑛

𝑗=1 𝑇𝑗(∆𝑥𝑗) =
∑︀𝑛

𝑗=1 𝑚𝑗 |𝑥𝑗 − 𝑥0
𝑗 |3/2 can be modeled by

∑︀𝑛
𝑗=1 𝑚𝑗𝑡𝑗 under the

constraints

𝑧𝑗 = |𝑥𝑗 − 𝑥0
𝑗 |,

(𝑡𝑗 , 1, 𝑧𝑗) ∈ 𝒫2/3,1/3
3 .

Unfortunately this set of constraints is nonconvex due to the constraint

𝑧𝑗 = |𝑥𝑗 − 𝑥0
𝑗 | (11.7)

but in many cases the constraint may be replaced by the relaxed constraint

𝑧𝑗 ≥ |𝑥𝑗 − 𝑥0
𝑗 |, (11.8)

For instance if the universe of assets contains a risk free asset then

𝑧𝑗 > |𝑥𝑗 − 𝑥0
𝑗 | (11.9)

cannot hold for an optimal solution.
If the optimal solution has the property (11.9) then the market impact cost within the model is larger

than the true market impact cost and hence money are essentially considered garbage and removed by
generating transaction costs. This may happen if a portfolio with very small risk is requested because
the only way to obtain a small risk is to get rid of some of the assets by generating transaction costs.
We generally assume that this is not the case and hence the models (11.7) and (11.8) are equivalent.

The above observations lead to

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 + 𝑚𝑇 𝑡 = 𝑤 + 𝑒𝑇𝑥0,

(𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑛+1,

(𝑡𝑗 , 1, 𝑥𝑗 − 𝑥0
𝑗 ) ∈ 𝒫2/3,1/3

3 , 𝑗 = 1, . . . , 𝑛,
𝑥 ≥ 0.

(11.10)

The revised budget constraint

𝑒𝑇𝑥 + 𝑚𝑇 𝑡 = 𝑤 + 𝑒𝑇𝑥0

specifies that the initial wealth covers the investment and the transaction costs. It should be mentioned
that transaction costs of the form

𝑡𝑗 ≥ |𝑧𝑗 |𝑝

where 𝑝 > 1 is a real number can be modeled with the power cone as

(𝑡𝑗 , 1, 𝑧𝑗) ∈ 𝒫1/𝑝,1−1/𝑝
3 .

See the Modeling Cookbook for details.
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Example code

Listing 11.3 demonstrates how to compute an optimal portfolio when market impact cost are included.

Listing 11.3: Implementation of model (11.10).

function [x, t] = MarkowitzWithMarketImpact(n,mu,GT,x0,w,gamma,m)

[rcode, res] = mosekopt('symbcon');

% unrolled variable ordered as (x, t)
prob = [];
prob.c = [mu; zeros(n,1)];

In = speye(n);
On = sparse([],[],[],n,n);

% Linear part
% [ e' m' ] * [ x; t ] = w + e'*x0
prob.a = [ ones(1,n), m' ];
prob.blc = [ w + sum(x0) ];
prob.buc = [ w + sum(x0) ];

% No shortselling and no other bounds
prob.blx = [ zeros(n,1); -inf*ones(n,1) ];
prob.bux = inf*ones(2*n,1);

% Affine conic constraints representing [ gamma, GT*x ] in quadratic cone
prob.f = sparse([ zeros(1,2*n); [GT On] ]);
prob.g = [gamma; zeros(n,1)];
prob.cones = [ res.symbcon.MSK_CT_QUAD n+1 ];

% Extend the affine conic constraints
% with power cones representing t(i) >= |x(i)-x0(i)|^1.5
fi = [];
fj = [];
g = [];
fv = repmat([1; 1], n, 1);
for k=1:n

fi = [fi; 3*k-2; 3*k];
fj = [fj; n+k; k];
g = [g; 0; 1; -x0(k)];

end
prob.f = [prob.f; sparse(fi, fj, fv)];
prob.g = [prob.g; g];
prob.cones = [prob.cones repmat([res.symbcon.MSK_CT_PPOW, 3, 2, 2.0, 1.0], 1, n) ];

[rcode,res] = mosekopt('maximize echo(0)',prob,[]);

x = res.sol.itr.xx(1:n);
t = res.sol.itr.xx(n+(1:n));

In the last part of the code we extend the affine conic constraint with triples of the form (𝑡𝑘, 1, 𝑥𝑘−𝑥0
𝑘).

Such a triple is constructed as an affine conic constraint with:⎡⎣ 𝑒𝑇𝑛+𝑘

0
𝑒𝑇𝑘

⎤⎦ ·
[︂

𝑥
𝑡

]︂
+

⎡⎣ 0
1

−𝑥0
𝑘

⎤⎦
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where 𝑒𝑗 denotes the vector of length 2𝑛 with 1 at position 𝑗 and 0 otherwise. Membership of a sequence
of triples in power cones 𝒫2/3,1/3

3 is specified with the syntax:

prob.cones = [prob.cones repmat([res.symbcon.MSK_CT_PPOW, 3, 2, 2.0, 1.0], 1, n) ];

Note that the construction [res.symbcon.MSK_CT_PPOW, d, 2, a, b] creates a power done of di-
mension 𝑑 with exponents

𝑎

𝑎 + 𝑏
,

𝑏

𝑎 + 𝑏
.

11.1.6 Transaction Costs
Now assume there is a cost associated with trading asset 𝑗 given by

𝑇𝑗(∆𝑥𝑗) =

{︂
0, ∆𝑥𝑗 = 0,
𝑓𝑗 + 𝑔𝑗 |∆𝑥𝑗 |, otherwise.

Hence, whenever asset 𝑗 is traded we pay a fixed setup cost 𝑓𝑗 and a variable cost of 𝑔𝑗 per unit traded.
Given the assumptions about transaction costs in this section problem (11.6) may be formulated as

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 + 𝑓𝑇 𝑦 + 𝑔𝑇 𝑧 = 𝑤 + 𝑒𝑇𝑥0,

(𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑛+1,
𝑧𝑗 ≥ 𝑥𝑗 − 𝑥0

𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 ≥ 𝑥0

𝑗 − 𝑥𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 ≤ 𝑈𝑗𝑦𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑦𝑗 ∈ {0, 1}, 𝑗 = 1, . . . , 𝑛,
𝑥 ≥ 0.

(11.11)

First observe that

𝑧𝑗 ≥ |𝑥𝑗 − 𝑥0
𝑗 | = |∆𝑥𝑗 |.

We choose 𝑈𝑗 as some a priori upper bound on the amount of trading in asset 𝑗 and therefore if 𝑧𝑗 > 0
then 𝑦𝑗 = 1 has to be the case. This implies that the transaction cost for asset 𝑗 is given by

𝑓𝑗𝑦𝑗 + 𝑔𝑗𝑧𝑗 .

Example code

The following example code demonstrates how to compute an optimal portfolio when transaction costs
are included.

Listing 11.4: Code solving problem (11.11).

function [x, z, y] = MarkowitzWithTransactionsCost(n,mu,GT,x0,w,gamma,f,g)

[rcode, res] = mosekopt('symbcon');

% Upper bound on the traded amount
u = w+sum(x0);

% unrolled variable ordered as (x, z, y)
prob = [];
prob.c = [mu; zeros(2*n,1)];
In = speye(n);
On = sparse([],[],[],n,n);

(continues on next page)
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(continued from previous page)

% Linear constraints
% [ e' g' f' ] [ x ] = w + e'*x0
% [ I -I 0 ] * [ z ] <= x0
% [ I I 0 ] [ y ] >= x0
% [ 0 I -U ] <= 0
prob.a = [ [ones(1,n), g', f']; In -In On; In In On; On In -u*In ];
prob.blc = [ w + sum(x0); -inf*ones(n,1); x0; -inf*ones(n,1) ];
prob.buc = [ w + sum(x0); x0; inf*ones(n,1); zeros(n,1) ];

% No shortselling and the linear bound 0 <= y <= 1
prob.blx = [ zeros(n,1); -inf*ones(n,1); zeros(n,1) ];
prob.bux = [ inf*ones(2*n,1); ones(n,1) ];

% Affine conic constraints representing [ gamma, GT*x ] in quadratic cone
prob.f = sparse([ zeros(1,3*n); [GT On On]; ]);
prob.g = [gamma; zeros(n,1)];
prob.cones = [ res.symbcon.MSK_CT_QUAD n+1 ];

% Demand y to be integer (hence binary)
prob.ints.sub = 2*n+(1:n);

[rcode,res] = mosekopt('maximize echo(0)',prob,[]);

x = res.sol.int.xx(1:n);
z = res.sol.int.xx(n+(1:n));
y = res.sol.int.xx(2*n+(1:n));

11.1.7 Cardinality constraints
Another method to reduce costs involved with processing transactions is to only change positions in a
small number of assets. In other words, at most 𝑘 of the differences |∆𝑥𝑗 | = |𝑥𝑗 − 𝑥0

𝑗 | are allowed to be
non-zero, where 𝑘 is (much) smaller than the total number of assets 𝑛.

This type of constraint can be again modeled by introducing a binary variable 𝑦𝑗 which indicates if
∆𝑥𝑗 ̸= 0 and bounding the sum of 𝑦𝑗 . The basic Markowitz model then gets updated as follows:

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

(𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑛+1,
𝑧𝑗 ≥ 𝑥𝑗 − 𝑥0

𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 ≥ 𝑥0

𝑗 − 𝑥𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 ≤ 𝑈𝑗𝑦𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑦𝑗 ∈ {0, 1}, 𝑗 = 1, . . . , 𝑛,

𝑒𝑇 𝑦 ≤ 𝑘,
𝑥 ≥ 0,

(11.12)

were 𝑈𝑗 is some a priori chosen upper bound on the amount of trading in asset 𝑗.
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Example code

The following example code demonstrates how to compute an optimal portfolio with cardinality bounds.

Listing 11.5: Code solving problem (11.12).

function x = MarkowitzWithCardinality(n,mu,GT,x0,w,gamma,k)

[rcode, res] = mosekopt('symbcon');

% Upper bound on the traded amount
u = w+sum(x0);

% unrolled variable ordered as (x, z, y)
prob = [];
prob.c = [mu; zeros(2*n,1)];
In = speye(n);
On = sparse([],[],[],n,n);

% Linear constraints
% [ e' 0 0 ] = w + e'*x0
% [ I -I 0 ] [ x ] <= x0
% [ I I 0 ] * [ z ] >= x0
% [ 0 I -U ] [ y ] <= 0
% [ 0 0 e' ] <= k
prob.a = [ [ones(1,n), zeros(1,2*n)]; In -In On; In In On; On In -u*In; zeros(1,
→˓2*n) ones(1,n) ];
prob.blc = [ w + sum(x0); -inf*ones(n,1); x0; -inf*ones(n,1); 0 ];
prob.buc = [ w + sum(x0); x0; inf*ones(n,1); zeros(n,1); k ];

% No shortselling and the linear bound 0 <= y <= 1
prob.blx = [ zeros(n,1); -inf*ones(n,1); zeros(n,1) ];
prob.bux = [ inf*ones(2*n,1); ones(n,1) ];

% Affine conic constraints representing [ gamma, GT*x ] in quadratic cone
prob.f = sparse([ zeros(1,3*n); [GT On On]; ]);
prob.g = [gamma; zeros(n,1)];
prob.cones = [ res.symbcon.MSK_CT_QUAD n+1 ];

% Demand y to be integer (hence binary)
prob.ints.sub = 2*n+(1:n);

[rcode,res] = mosekopt('maximize echo(0)',prob,[]);

x = res.sol.int.xx(1:n);

If we solve our running example with 𝑘 = 1, 2, 3 then we get the following solutions, with increasing
expected returns:

Bound: 1 Expected return: 0,0627 Solution: 0,0000 0,0000 1,0000
Bound: 2 Expected return: 0,0669 Solution: 0,0939 0,0000 0,9061
Bound: 3 Expected return: 0,0685 Solution: 0,1010 0,1156 0,7834
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11.2 Least Squares and Other Norm Minimization Problems

A frequently occurring problem in statistics and in many other areas of science is a norm minimization
problem

minimize ‖𝐹𝑥− 𝑔‖,
subject to 𝐴𝑥 = 𝑏,

(11.13)

where 𝑥 ∈ R𝑛 and of course we can allow other types of constraints. The objective can involve various
norms: infinity norm, 1-norm, 2-norm, 𝑝-norms and so on. For instance the most popular case of
the 2-norm corresponds to the least squares linear regression, since it is equivalent to minimization of
‖𝐹𝑥− 𝑔‖22.

11.2.1 Least squares, 2-norm
In the case of the 2-norm we specify the problem directly in conic quadratic form

minimize 𝑡,
subject to (𝑡, 𝐹𝑥− 𝑔) ∈ 𝒬𝑘+1,

𝐴𝑥 = 𝑏.
(11.14)

The first constraint of the problem can be represented as an affine conic constraint. This leads to the
following model.

Listing 11.6: Script solving problem (11.14)

% Least squares regression
% minimize \|Fx-g\|_2
function x = norm_lse(F,g,A,b)
clear prob;
[r, res] = mosekopt('symbcon');
n = size(F,2);
k = size(g,1);
m = size(A,1);

% Linear constraints in [x; t]
prob.a = [A, zeros(m,1)];
prob.buc = b;
prob.blc = b;
prob.blx = -inf*ones(n+1,1);
prob.bux = inf*ones(n+1,1);
prob.c = [zeros(n,1); 1];

% Affine conic constraint
prob.f = sparse([zeros(1,n), 1; F, zeros(k,1)]);
prob.g = [0; -g];
prob.cones = [ res.symbcon.MSK_CT_QUAD k+1 ];

% Solve
[r, res] = mosekopt('minimize echo(0)', prob);
x = res.sol.itr.xx(1:n);
end
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11.2.2 Ridge regularisation
Regularisation is classically applied to reduce the impact of outliers and to control overfitting. In the
conic version of ridge (Tychonov) regression we consider the problem

minimize ‖𝐹𝑥− 𝑔‖2 + 𝛾‖𝑥‖2,
subject to 𝐴𝑥 = 𝑏,

(11.15)

which can be written explicitly as

minimize 𝑡1 + 𝛾𝑡2,
subject to (𝑡1, 𝐹𝑥− 𝑔) ∈ 𝒬𝑘+1,

(𝑡2, 𝑥) ∈ 𝒬𝑛+1,
𝐴𝑥 = 𝑏.

(11.16)

The implementation is a small extension of that from the previous section.

Listing 11.7: Script solving problem (11.16)

% Least squares regression with regularization
% minimize \|Fx-g\|_2 + gamma*\|x\|_2
function x = norm_lse_reg(F,g,A,b,gamma)
clear prob;
[r, res] = mosekopt('symbcon');
n = size(F,2);
k = size(g,1);
m = size(A,1);

% Linear constraints in [x; t1; t2]
prob.a = [A, zeros(m,2)];
prob.buc = b;
prob.blc = b;
prob.blx = -inf*ones(n+2,1);
prob.bux = inf*ones(n+2,1);
prob.c = [zeros(n,1); 1; gamma];

% Affine conic constraint
prob.f = sparse([zeros(1,n), 1, 0; ...

F, zeros(k,2); ...
zeros(1,n), 0, 1; ...
eye(n), zeros(n,2) ]);

prob.g = [0; -g; zeros(n+1,1)];
prob.cones = [ res.symbcon.MSK_CT_QUAD k+1 res.symbcon.MSK_CT_QUAD n+1 ];

% Solve
[r, res] = mosekopt('minimize echo(0)', prob);
x = res.sol.itr.xx(1:n);
end

Note that classically least squares problems are formulated as quadratic problems and then the
objective function would be written as

‖𝐹𝑥− 𝑔‖22 + 𝛾‖𝑥‖22.

This version can easily be obtained by replacing the quadratic cone with an appropriate rotated quadratic
cone in (11.16). Then they core of the implementation would change as follows:

Listing 11.8: Script solving classical quadratic ridge regression

prob.f = sparse([zeros(1,n), 1, 0; ...
zeros(1,n+2) ; ...

(continues on next page)
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F, zeros(k,2); ...
zeros(1,n), 0, 1; ...
zeros(1,n+2) ; ...
eye(n), zeros(n,2) ]);

prob.g = [0; 0.5; -g; 0; 0.5; zeros(n,1)];
prob.cones = [ res.symbcon.MSK_CT_RQUAD k+2 res.symbcon.MSK_CT_RQUAD n+2 ];

Fig. 11.2 shows the solution to a polynomial fitting problem for a few variants of least squares
regression with and without ridge regularization.

Fig. 11.2: Three fits to a dataset at various levels of regularization.

11.2.3 Lasso regularization
In lasso or least absolute shrinkage and selection operator the regularization term is the 1-norm of the
solution

minimize ‖𝐹𝑥− 𝑔‖2 + 𝛾‖𝑥‖1,
subject to 𝐴𝑥 = 𝑏.

(11.17)

This variant typically tends to give preference to sparser solutions, i.e. solutions where only a few elements
of 𝑥 are nonzero, and therefore it is used as an efficient approximation to the cardinality constrained
problem with an upper bound on the 0-norm of 𝑥. To see how it works we first implement (11.17) adding
the constraint 𝑡 ≥ ‖𝑥‖1 as a series of linear constraints

𝑢𝑖 ≥ −𝑥𝑖, 𝑢𝑖 ≥ 𝑥𝑖, 𝑡 ≥
∑︁

𝑢𝑖,

so that eventually the problem becomes

minimize 𝑡1 + 𝛾𝑡2,
subject to 𝑢 + 𝑥 ≥ 0,

𝑢− 𝑥 ≥ 0,
𝑡2 − 𝑒𝑇𝑢 ≥ 0,
𝐴𝑥 = 𝑏,
(𝑡1, 𝐹𝑥− 𝑔) ∈ 𝒬𝑘+1.

Listing 11.9: Script solving problem (11.17)

% Least squares regression with lasso regularization
% minimize \|Fx-g\|_2 + gamma*\|x\|_1

(continues on next page)
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function x = norm_lse_lasso(F,g,A,b,gamma)
clear prob;
[r, res] = mosekopt('symbcon');
n = size(F,2);
k = size(g,1);
m = size(A,1);

% Linear constraints in [x; u; t1; t2]
prob.a = [A, zeros(m,n+2) ; ...

eye(n), eye(n), zeros(n,2); ...
-eye(n), eye(n), zeros(n,2); ...
zeros(1,n) -ones(1,n), 0, 1 ];

prob.buc = [b; inf*ones(2*n+1,1)];
prob.blc = [b; zeros(2*n+1,1)];
prob.blx = -inf*ones(2*n+2,1);
prob.bux = inf*ones(2*n+2,1);
prob.c = [zeros(2*n,1); 1; gamma];

% Affine conic constraint
prob.f = sparse([zeros(1,2*n), 1, 0; F, zeros(k,n+2)]);
prob.g = [0; -g];
prob.cones = [ res.symbcon.MSK_CT_QUAD k+1 ];

% Solve
[r, res] = mosekopt('minimize echo(0)', prob);
x = res.sol.itr.xx(1:n);
end

The sparsity pattern of the solution of a large random regression problem can look for example as
follows:

Lasso regularization
Gamma 0.0100 density 99% |Fx-g|_2: 54.3722
Gamma 0.1000 density 87% |Fx-g|_2: 54.3939
Gamma 0.3000 density 67% |Fx-g|_2: 54.5319
Gamma 0.6000 density 40% |Fx-g|_2: 54.8379
Gamma 0.9000 density 26% |Fx-g|_2: 55.0720
Gamma 1.3000 density 12% |Fx-g|_2: 55.1903

11.2.4 p-norm minimization
Now we consider the minimization of the 𝑝-norm defined for 𝑝 > 1 as

‖𝑦‖𝑝 =

(︃∑︁
𝑖

|𝑦𝑖|𝑝
)︃1/𝑝

. (11.18)

We have the optimization problem:

minimize ‖𝐹𝑥− 𝑔‖𝑝,
subject to 𝐴𝑥 = 𝑏.

(11.19)

Increasing the value of 𝑝 forces stronger penalization of outliers as ultimately, when 𝑝 → ∞, the 𝑝-norm
‖𝑦‖𝑝 converges to the infinity norm ‖𝑦‖∞ of 𝑦. According to the Modeling Cookbook the 𝑝-norm bound
𝑡 ≥ ‖𝐹𝑥 − 𝑔‖𝑝 can be added to the model using a sequence of three-dimensional power cones and we
obtain an equivalent problem

minimize 𝑡

subject to (𝑟𝑖, 𝑡, (𝐹𝑥− 𝑔)𝑖) ∈ 𝒫1/𝑝,1−1/𝑝
3 ,

𝑒𝑇 𝑟 = 𝑡,
𝐴𝑥 = 𝑏.

(11.20)
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The power cones can be added one by one to the structure representing affine conic constraints. Each
power cone will require one 𝑟𝑖, one copy of 𝑡 and one row from 𝐹 and 𝑔. An alternative solution is to
create the vector

[𝑟1; . . . ; 𝑟𝑘; 𝑡; . . . ; 𝑡;𝐹𝑥− 𝑔]

and then reshuffle its elements into

[𝑟1; 𝑡;𝐹1𝑥− 𝑔1; . . . ; 𝑟𝑘; 𝑡;𝐹𝑘𝑥− 𝑔𝑘]

using an appropriate permutation matrix. This approach is demonstrated in the code below.

Listing 11.10: Script solving problem (11.20)

% P-norm minimization
% minimize \|Fx-g\|_p
function x = norm_p_norm(F,g,A,b,p)
clear prob;
[r, res] = mosekopt('symbcon');
n = size(F,2);
k = size(g,1);
m = size(A,1);

% Linear constraints in [x; r; t]
prob.a = [A, zeros(m,k+1); zeros(1,n), ones(1,k), -1];
prob.buc = [b; 0];
prob.blc = [b; 0];
prob.blx = -inf*ones(n+k+1,1);
prob.bux = inf*ones(n+k+1,1);
prob.c = [zeros(n+k,1); 1];

% Permutation matrix which picks triples (r_i, t, F_ix-g_i)
M = [];
for i=1:3

M = [M, sparse(i:3:3*k, 1:k, ones(k,1), 3*k, k)];
end

% Affine conic constraint
prob.f = M * sparse([zeros(k,n), eye(k), zeros(k,1); zeros(k,n+k), ones(k,1); F,␣
→˓zeros(k,k+1)]);
prob.g = M * [zeros(2*k,1); -g];
prob.cones = [ repmat([res.symbcon.MSK_CT_PPOW, 3, 2, 1.0, p-1], 1, k) ];

% Solve
[r, res] = mosekopt('minimize echo(0)', prob);
x = res.sol.itr.xx(1:n);
end

11.3 Robust linear Optimization

In most linear optimization examples discussed in this manual it is implicitly assumed that the problem
data, such as 𝑐 and 𝐴, is known with certainty. However, in practice this is seldom the case, e.g. the
data may just be roughly estimated, affected by measurement errors or be affected by random events.

In this section a robust linear optimization methodology is presented which removes the assumption
that the problem data is known exactly. Rather it is assumed that the data belongs to some set, i.e. a
box or an ellipsoid.

The computations are performed using the MOSEK optimization toolbox for MATLAB but could
equally well have been implemented using the MOSEK API.
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Fig. 11.3: 𝑝-norm minimizing fits of a polynomial of degree at most 5 to the data for various values of 𝑝.

This section is co-authored with A. Ben-Tal and A. Nemirovski. For further information about robust
linear optimization consult [BTN00], [BenTalN01].

11.3.1 Introductory Example
Consider the following toy-sized linear optimization problem: A company produces two kinds of drugs,
DrugI and DrugII, containing a specific active agent A, which is extracted from a raw materials that
should be purchased on the market. The drug production data are as follows:

Selling price $ per 1000 packs 6200 6900
Content of agent A gm per 100 packs 0.500 0.600
Production expenses
$ per 1000 packs
Manpower, hours 90.0 100.0
Equipment, hours 40.0 50.0
Operational cost, $ 700 800

There are two kinds of raw materials, RawI and RawII, which can be used as sources of the active
agent. The related data is as follows:

Raw material Purchasing price, Content of agent A,
RawI 100.00 0.01
RawII 199.90 0.02

Finally, the monthly resources dedicated to producing the drugs are as follows:

Budget,` Manpower Equipment Capacity of raw materials
100000 2000 800 1000

The problem is to find the production plan which maximizes the profit of the company, i.e. minimize
the purchasing and operational costs

100 · RawI + 199.90 · RawII + 700 · DrugI + 800 · DrugII

and maximize the income

6200 · DrugI + 6900 · DrugII

The problem can be stated as the following linear programming program:
Minimize

−{100 · RawI + 199.90 · RawII + 700 · DrugI + 800 · DrugII} + {6200 · DrugI + 6900 · DrugII} (11.21)
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subject to

0.01 · RawI + 0.02 · RawII− 0.500 · DrugI− 0.600 · DrugII ≥ 0 (𝑎)
RawI + RawII ≤ 1000 (𝑏)

90.0 · DrugI + 100.0 · DrugII ≤ 2000 (𝑐)
40.0 · DrugI + 50.0 · DrugII ≤ 800 (𝑑)

100.0 · RawI + 199.90 · RawII + 700 · DrugI + 800 · DrugII ≤ 100000 (𝑑)
RawI, RawII, DrugI, DrugII ≥ 0 (𝑒)

where the variables are the amounts RawI, RawII (in kg) of raw materials to be purchased and the
amounts DrugI, DrugII (in 1000 of packs) of drugs to be produced. The objective (11.21) denotes the
profit to be maximized, and the inequalities can be interpreted as follows:

• Balance of the active agent.

• Storage restriction.

• Manpower restriction.

• Equipment restriction.

• Ducget restriction.

Listing 11.11 is the MATLAB script which specifies the problem and solves it using the MOSEK
optimization toolbox:

Listing 11.11: Script rlo1.m.

function rlo1()

prob.c = [-100;-199.9;6200-700;6900-800];
prob.a = sparse([0.01,0.02,-0.500,-0.600;1,1,0,0;

0,0,90.0,100.0;0,0,40.0,50.0;100.0,199.9,700,800]);
prob.blc = [0;-inf;-inf;-inf;-inf];
prob.buc = [inf;1000;2000;800;100000];
prob.blx = [0;0;0;0];
prob.bux = [inf;inf;inf;inf];
[r,res] = mosekopt('maximize',prob);
xx = res.sol.itr.xx;
RawI = xx(1);
RawII = xx(2);
DrugI = xx(3);
DrugII = xx(4);

disp(sprintf('*** Optimal value: %8.3f',prob.c'*xx));
disp('*** Optimal solution:');
disp(sprintf('RawI: %8.3f',RawI));
disp(sprintf('RawII: %8.3f',RawII));
disp(sprintf('DrugI: %8.3f',DrugI));
disp(sprintf('DrugII: %8.3f',DrugII));

When executing this script, the following is displayed:

Listing 11.12: Output of script rlo1.m

*** Optimal value: 8819.658
*** Optimal solution:
RawI: 0.000
RawII: 438.789
DrugI: 17.552
DrugII: 0.000
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We see that the optimal solution promises the company a modest but quite respectful profit of 8.8%.
Please note that at the optimal solution the balance constraint is active: the production process utilizes
the full amount of the active agent contained in the raw materials.

11.3.2 Data Uncertainty and its Consequences.
Please note that not all problem data can be regarded as absolutely reliable; e.g. one can hardly believe
that the contents of the active agent in the raw materials are exactly the nominal data 0.01 gm/kg for RawI
and 0.02 gm/kg for RawII. In reality, these contents definitely vary around the indicated values. A natural
assumption here is that the actual contents of the active agent 𝑎𝑖 in RawI and 𝑎𝐼𝐼 in RawII are realizations
of random variables somehow distributed around the nominal contents 𝑎n𝑖 = 0.01 and 𝑎n𝐼𝐼 = 0.02. To
be more specific, assume that 𝑎𝑖 drifts in the 0.5% margin of 𝑎n𝑖 , i.e. it takes with probability 0.5 the
values from the interval 𝑎n𝑖 (1 ± 0.005) = 𝑎n𝑖 {0.00995; 0.01005}. Similarly, assume that 𝑎𝐼𝐼 drifts in the
2% margin of 𝑎n𝐼𝐼 , taking with probabilities 0.5 the values 𝑎n𝐼𝐼(1 ± 0.02) = 𝑎n𝑖 {0.0196; 0.0204}. How do
the perturbations of the contents of the active agent affect the production process?

The optimal solution prescribes to purchase 438.8 kg of RawII and to produce 17552 packs of DrugI.
With the above random fluctuations in the content of the active agent in RawII, this production plan,
with probability 0.5, will be infeasible – with this probability, the actual content of the active agent in
the raw materials will be less than required to produce the planned amount of DrugI. For the sake of
simplicity, assume that this difficulty is resolved in the simplest way: when the actual content of the
active agent in the raw materials is insufficient, the output of the drug is reduced accordingly. With this
policy, the actual production of DrugI becomes a random variable which takes, with probabilities 0.5,
the nominal value of 17552 packs and the 2% less value of 17201 packs. These 2% fluctuations in the
production affect the profit as well; the latter becomes a random variable taking, with probabilities 0.5,
the nominal value 8,820 and the 21% less value 6,929. The expected profit is 7,843, which is by 11% less
than the nominal profit 8,820 promised by the optimal solution of the problem.

We see that in our toy example that small (and in reality unavoidable) perturbations of the data may
make the optimal solution infeasible, and a straightforward adjustment to the actual solution values may
heavily affect the solution quality.

It turns out that the outlined phenomenon is found in many linear programs of practical origin. Usu-
ally, in these programs at least part of the data is not known exactly and can vary around its nominal
values, and these data perturbations can make the nominal optimal solution – the one corresponding
to the nominal data – infeasible. It turns out that the consequences of data uncertainty can be much
more severe than in our toy example. The analysis of linear optimization problems from the NETLIB
collection1 reported in [BTN00] demonstrates that for 13 of 94 NETLIB problems, already 0.01% pertur-
bations of “clearly uncertain” data can make the nominal optimal solution severely infeasible: with these
perturbations, the solution, with a non-negligible probability, violates some of the constraints by 50%
and more. It should be added that in the general case, in contrast to the toy example we have considered,
there is no evident way to adjust the optimal solution by a small modification to the actual values of the
data. Moreover there are cases when such an adjustment is impossible — in order to become feasible for
the perturbed data, the nominal optimal solution should be completely reshaped.

1 NETLIB is a collection of LP’s, mainly of the real world origin, which is a standard benchmark for evaluating LP
algorithms
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11.3.3 Robust Linear Optimization Methodology
A natural approach to handling data uncertainty in optimization is offered by the Robust Optimization
Methodology which, as applied to linear optimization, is as follows.

Uncertain Linear Programs and their Robust Counterparts.

Consider a linear optimization problem

minimize 𝑐𝑇𝑥
subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,
(11.22)

with the data (𝑐, 𝐴, 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥), and assume that this data is not known exactly; all we know is that
the data varies in a given uncertainty set 𝒰 . The simplest example is the one of interval uncertainty,
where every data entry can run through a given interval:

𝒰 = {(𝑐, 𝐴, 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥) :
(𝑐n − 𝑑𝑐,𝐴n − 𝑑𝐴, 𝑙n𝑐 − 𝑑𝑙𝑐, 𝑢

n
𝑐 − 𝑑𝑢𝑐, 𝑙

n
𝑥 − 𝑑𝑙𝑥, 𝑢

n
𝑥 − 𝑑𝑢𝑥) ≤ (𝑐, 𝐴, 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥)

≤ (𝑐n + 𝑑𝑐,𝐴n + 𝑑𝐴, 𝑙n𝑐 + 𝑑𝑙𝑐, 𝑢
n
𝑐 + 𝑑𝑢𝑐, 𝑙

n
𝑥 + 𝑑𝑙𝑥, 𝑢

n
𝑥 + 𝑑𝑢𝑥)}.

(11.23)

Here

(𝑐n, 𝐴n, 𝑙n𝑐 , 𝑢
n
𝑐 , 𝑙

n
𝑥 , 𝑢

n
𝑥 )

is the nominal data,

𝑑𝑐, 𝑑𝐴, 𝑑𝑙𝑐, 𝑑𝑢𝑐, 𝑑𝑙𝑥, 𝑑𝑢𝑥 ≥ 0

is the data perturbation bounds. Please note that some of the entries in the data perturbation bounds
can be zero, meaning that the corresponding data entries are certain (the expected values equals the
actual values).

• The family of instances (11.22) with data running through a given uncertainty set 𝒰 is called an
uncertain linear optimization problem.

• Vector 𝑥 is called a robust feasible solution to an uncertain linear optimization problem, if it remains
feasible for all realizations of the data from the uncertainty set, i.e. if

𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐, 𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥

for all

(𝑐, 𝐴, 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥) ∈ 𝒰 .

• If for some value 𝑡 we have 𝑐𝑇𝑥 ≤ 𝑡 for all realizations of the objective from the uncertainty set,
we say that robust value of the objective at 𝑥 does not exceed 𝑡.

The Robust Optimization methodology proposes to associate with an uncertain linear program its
robust counterpart (RC) which is the problem of minimizing the robust optimal value over the set of all
robust feasible solutions, i.e. the problem

min
𝑡,𝑥

{︀
𝑡 : 𝑐𝑇𝑥 ≤ 𝑡, 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐, 𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥∀(𝑐, 𝐴, 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥) ∈ 𝒰

}︀
. (11.24)

The optimal solution to (11.24) is treated as the uncertainty-immuned solution to the original uncertain
linear programming program.
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Robust Counterpart of an Uncertain Linear Optimization Problem with Interval Uncertainty

In general, the RC (11.24) of an uncertain linear optimization problem is not a linear optimization
problem since (11.24) has infinitely many linear constraints. There are, however, cases when (11.24) can
be rewritten equivalently as a linear programming program; in particular, this is the case for interval
uncertainty (11.23). Specifically, in the case of (11.23), the robust counterpart of uncertain linear program
is equivalent to the following linear program in variables 𝑥, 𝑦, 𝑡:

minimize 𝑡
subject to (𝑐n)𝑇𝑥 + (𝑑𝑐)𝑇 𝑦 − 𝑡 ≤ 0, (𝑎)

𝑙n𝑐 + 𝑑𝑙𝑐 ≤ (𝐴n)𝑥− (𝑑𝐴)𝑦, (𝑏)
(𝐴n)𝑥 + (𝑑𝐴)𝑦 ≤ 𝑢n

𝑐 − 𝑑𝑢𝑐, (𝑐)
0 ≤ 𝑥 + 𝑦, (𝑑)
0 ≤ −𝑥 + 𝑦, (𝑒)

𝑙n𝑥 + 𝑑𝑙𝑥 ≤ 𝑥 ≤ 𝑢n
𝑥 − 𝑑𝑢𝑥, (𝑓)

(11.25)

The origin of (11.25) is quite transparent: The constraints 𝑑 − 𝑒 in (11.25) linking 𝑥 and 𝑦 merely say
that 𝑦𝑖 ≥ |𝑥𝑖| for all 𝑖. With this in mind, it is evident that at every feasible solution to (11.25) the
entries in the vector

(𝐴n)𝑥− (𝑑𝐴)𝑦

are lower bounds on the entries of 𝐴𝑥 with 𝐴 from the uncertainty set (11.23), so that (𝑏) in (11.25)
ensures that 𝑙𝑐 ≤ 𝐴𝑥 for all data from the uncertainty set. Similarly, (𝑐), (𝑎) ans 𝑓 in (11.25) ensure, for
all data from the uncertainty set, that 𝐴𝑥 ≤ 𝑢𝑐, 𝑐𝑇𝑥 ≤ 𝑡, and that the entries in 𝑥 satisfy the required
lower and upper bounds, respectively.

Please note that at the optimal solution to (11.25), one clearly has 𝑦𝑗 = |𝑥𝑗 |. It follows that when
the bounds on the entries of 𝑥 impose nonnegativity (nonpositivity) of an entry 𝑥𝑗 , then there is no need
to introduce the corresponding additional variable 𝑦𝑖 — from the very beginning it can be replaced with
𝑥𝑗 , if 𝑥𝑗 is nonnegative, or with −𝑥𝑗 , if 𝑥𝑗 is nonpositive.

Another possible formulation of problem (11.25) is the following. Let

𝑙n𝑐 + 𝑑𝑙𝑐 = (𝐴n)𝑥− (𝑑𝐴)𝑦 − 𝑓, 𝑓 ≥ 0

then this equation is equivalent to (𝑎)− (𝑏) in (11.25). If (𝑙𝑐)𝑖 = −∞, then equation 𝑖 should be dropped
from the computations. Similarly,

−𝑥 + 𝑦 = 𝑔 ≥ 0

is equivalent to (𝑑) in (11.25). This implies that

𝑙n𝑐 + 𝑑𝑙𝑐 − (𝐴n)𝑥 + 𝑓 = −(𝑑𝐴)𝑦

and that

𝑦 = 𝑔 + 𝑥

Substituting these values into (11.25) gives

minimize 𝑡
subject to (𝑐n)𝑇𝑥 + (𝑑𝑐)𝑇 (𝑔 + 𝑥) − 𝑡 ≤ 0,

0 ≤ 𝑓,
2(𝐴n)𝑥 + (𝑑𝐴)(𝑔 + 𝑥) + 𝑓 + 𝑙n𝑐 + 𝑑𝑙𝑐 ≤ 𝑢n

𝑐 − 𝑑𝑢𝑐,
0 ≤ 𝑔,
0 ≤ 2𝑥 + 𝑔,

𝑙n𝑥 + 𝑑𝑙𝑥 ≤ 𝑥 ≤ 𝑢n
𝑥 − 𝑑𝑢𝑥,

which after some simplifications leads to

minimize 𝑡
subject to (𝑐n + 𝑑𝑐)𝑇𝑥 + (𝑑𝑐)𝑇 𝑔 − 𝑡 ≤ 0, (𝑎)

0 ≤ 𝑓, (𝑏)
2(𝐴n + 𝑑𝐴)𝑥 + (𝑑𝐴)𝑔 + 𝑓 − (𝑙n𝑐 + 𝑑𝑙𝑐) ≤ 𝑢n

𝑐 − 𝑑𝑢𝑐, (𝑐)
0 ≤ 𝑔, (𝑑)
0 ≤ 2𝑥 + 𝑔, (𝑒)

𝑙n𝑥 + 𝑑𝑙𝑥 ≤ 𝑥 ≤ 𝑢n
𝑥 − 𝑑𝑢𝑥, (𝑓)
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and

minimize 𝑡
subject to (𝑐n + 𝑑𝑐)𝑇𝑥 + (𝑑𝑐)𝑇 𝑔 − 𝑡 ≤ 0, (𝑎)

2(𝐴n + 𝑑𝐴)𝑥 + (𝑑𝐴)𝑔 + 𝑓 ≤ 𝑢n
𝑐 − 𝑑𝑢𝑐 + 𝑙n𝑐 + 𝑑𝑙𝑐, (𝑏)

0 ≤ 2𝑥 + 𝑔, (𝑐)
0 ≤ 𝑓, (𝑑)
0 ≤ 𝑔, (𝑒)

𝑙n𝑥 + 𝑑𝑙𝑥 ≤ 𝑥 ≤ 𝑢n
𝑥 − 𝑑𝑢𝑥. (𝑓)

(11.26)

Please note that this problem has more variables but much fewer constraints than (11.25). Therefore,
(11.26) is likely to be solved faster than (11.25). Note too that (11.26).𝑏 is trivially redundant if 𝑙n𝑥 +𝑑𝑙𝑥 ≥
0.

Introductory Example (continued)

Let us apply the Robust Optimization methodology to our drug production example presented in Sec.
11.3.1, assuming that the only uncertain data is the contents of the active agent in the raw materials,
and that these contents vary in 0.5% and 2% neighborhoods of the respective nominal values 0.01 and
0.02. With this assumption, the problem becomes an uncertain LP affected by interval uncertainty; the
robust counterpart (11.25) of this uncertain LP is the linear program

(Drug_RC) :
maximize
𝑡
subject to
𝑡 ≤ −100 · RawI− 199.9 · RawII + 5500 · DrugI + 6100 · DrugII
0.01 · 0.995 · RawI + 0.02 · 0.98 · RawII− 0.500 · DrugI− 0.600 · DrugII ≥ 0
RawI + RawII ≤ 1000
90.0 · DrugI + 100.0 · DrugII ≤ 2000
40.0 · DrugI + 50.0 · DrugII ≤ 800
100.0 · RawI + 199.90 · RawII + 700 · DrugI + 800 · DrugII ≤ 100000
RawI, RawII, DrugI, DrugII ≥ 0

(11.27)

Solving this problem with MOSEK we get the following output:

Listing 11.13: Output solving problem (11.27).

*** Optimal value: 8294.567
*** Optimal solution:
RawI: 877.732
RawII: 0.000
DrugI: 17.467
DrugII: 0.000

We see that the robust optimal solution we have built costs money – it promises a profit of just
8, 295 (cf. with the profit of 8, 820 promised by the nominal optimal solution). Please note, however,
that the robust optimal solution remains feasible whatever are the realizations of the uncertain data
from the uncertainty set in question, while the nominal optimal solution requires adjustment to this
data and, with this adjustment, results in the average profit of 7, 843, which is by 5.4% less than the
profit of ` 8,295 guaranteed by the robust optimal solution. Note too that the robust optimal solution
is significantly different from the nominal one: both solutions prescribe to produce the same drug DrugI
(in the amounts 17, 467 and 17, 552 packs, respectively) but from different raw materials, RawI in the
case of the robust solution and RawII in the case of the nominal solution. The reason is that although
the price per unit of the active agent for RawII is sligthly less than for RawI, the content of the agent
in RawI is more stable, so when possible fluctuations of the contents are taken into account, RawI turns
out to be more profitable than RawII.
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11.3.4 Random Uncertainty and Ellipsoidal Robust Counterpart
In some cases, it is natural to assume that the perturbations affecting different uncertain data entries
are random and independent of each other. In these cases, the robust counterpart based on the interval
model of uncertainty seems to be too conservative: Why should we expect that all the data will be
simultaneously driven to its most unfavorable values and immune the solution against this highly unlikely
situation? A less conservative approach is offered by the ellipsoidal model of uncertainty. To motivate
this model, let us seseee what happens with a particular linear constraint

𝑎𝑇𝑥 ≤ 𝑏 (11.28)

at a given candidate solution 𝑥 in the case when the vector 𝑎 of coefficients of the constraint is affected
by random perturbations:

𝑎 = 𝑎n + 𝜁, (11.29)

where 𝑎n is the vector of nominal coefficients and 𝜁 is a random perturbation vector with zero mean
and covariance matrix 𝑉𝑎. In this case the value of the left-hand side of (11.28), evaluated at a given 𝑥,
becomes a random variable with the expected value (𝑎n)𝑇𝑥 and the standard deviation

√︀
𝑥𝑇𝑉𝑎𝑥. Now

let us act as an engineer who believes that the value of a random variable never exceeds its mean plus
3 times the standard deviation; we do not intend to be that specific and replace 3 in the above rule by
a safety parameter Ω which will be in our control. Believing that the value of a random variable never
exceeds its mean plus Ω times the standard deviation, we conclude that a safe version of (11.28) is the
inequality

(𝑎n)𝑇𝑥 + Ω
√︀
𝑥𝑇𝑉𝑎𝑥 ≤ 𝑏. (11.30)

The word safe above admits a quantitative interpretation: If 𝑥 satisfies (11.30), one can bound from
above the probability of the event that random perturbations (11.29) result in violating the constraint
(11.28) evaluated at 𝑥. The bound in question depends on what we know about the distribution of 𝜁,
e.g.

• We always have the bound given by the Tschebyshev inequality: 𝑥 satisfies (11.30) ⇒

Prob
{︀
𝑎𝑇𝑥 > 𝑏

}︀
≤ 1

Ω2
.

• When 𝜁 is Gaussian, then the Tschebyshev bound can be improved to: 𝑥 satisfies (11.30) ⇒

Prob
{︀
𝑎𝑇𝑥 > 𝑏

}︀
≤ 1√

2𝜋

∫︁ ∞

Ω

exp{−𝑡2/2}𝑑𝑡 ≤ 0.5 exp{−Ω2/2}. (11.31)

• Assume that 𝜁 = 𝐷𝜉, where ∆ is certain 𝑛×𝑚 matrix, and 𝜉 = (𝜉1, . . . , 𝜉𝑚)𝑇 is a random vector
with independent coordinates 𝜉1, . . . , 𝜉𝑚 symmetrically distributed in the segment [−1, 1]. Setting
𝑉 = 𝐷𝐷𝑇 (V is a natural upper bound on the covariance matrix of 𝜁), one has: 𝑥 satisfies (11.30)
implies

Prob
{︀
𝑎𝑇𝑥 > 𝑏

}︀
≤ 0.5 exp{−Ω2/2}. (11.32)

Please note that in order to ensure the bounds in (11.31) and (11.32)) to be ≤ 10−6, it suffices to set
Ω = 5.13.

Now, assume that we are given a linear program affected by random perturbations:

minimize [𝑐n + 𝑑𝑐]𝑇𝑥
subject to (𝑙𝑐)𝑖 ≤ [𝑎n𝑖 + 𝑑𝑎𝑖]

𝑇𝑥 ≤ (𝑢𝑐)𝑖, 𝑖 = 1, . . . ,𝑚,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

(11.33)

where (𝑐n, {𝑎n𝑖 }𝑚𝑖=1, 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥) are the nominal data, and 𝑑𝑐, 𝑑𝑎𝑖 are random perturbations with zero
means3. Assume, for the sake of definiteness, that every one of the random perturbations 𝑑𝑐, 𝑑𝑎1, . . . , 𝑑𝑎𝑚

3 For the sake of simplicity, we assume that the bounds 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥 are not affected by uncertainty; extensions to the
case when it is not so are evident.
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satisfies either the assumption of item 2 or the assumption of item 3, and let 𝑉𝑐, 𝑉1, . . . , 𝑉𝑚 be the corre-
sponding (upper bounds on the) covariance matrices of the perturbations. Choosing a safety parameter
Ω and replacing the objective and the bodies of all the constraints by their safe bounds as explained
above, we arrive at the following optimization problem:

minimize 𝑡

subject to [𝑐n]𝑇𝑥 + Ω
√︀
𝑥𝑇𝑉𝑐𝑥 ≤ 𝑡,

(𝑙𝑐)𝑖 ≤ [𝑎n𝑖 ]𝑇𝑥− Ω
√︀
𝑥𝑇𝑉𝑎𝑖𝑥,

[𝑎n𝑖 ]𝑇𝑥 + Ω
√︀
𝑥𝑇𝑉𝑎𝑖

𝑥 ≤ (𝑢𝑐)𝑖, 𝑖 = 1, . . . ,𝑚,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

(11.34)

The relation between problems (11.34) and (11.33) is as follows:

• If (𝑥, 𝑡) is a feasible solution of (11.34), then with probability at least

𝑝 = 1 − (𝑚 + 1) exp{−Ω2/2}

x is feasible for randomly perturbed problem (11.33), and 𝑡 is an upper bound on the objective of (11.33)
evaluated at 𝑥.

• We see that if Ω is not too small (11.34) can be treated as a “safe version” of (11.33).

On the other hand, it is easily seen that (11.34) is nothing but the robust counterpart of the uncertain
linear optimization problem with the nominal data (𝑐n, {𝑎n𝑖 }𝑚𝑖=1, 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥) and the row-wise ellipsoidal
uncertainty given by the matrices 𝑉𝑐, 𝑉𝑎1

, . . . , 𝑉𝑎𝑚
. In the corresponding uncertainty set, the uncertainty

affects the coefficients of the objective and the constraint matrix only, and the perturbation vectors
affecting the objective and the vectors of coefficients of the linear constraints run, independently of each
other, through the respective ellipsoids

𝐸𝑐 ={︁
𝑑𝑐 = Ω𝑉

1/2
𝑐 𝑢 : 𝑢𝑇𝑢 ≤ 1

}︁
𝐸𝑎𝑖 ={︁

𝑑𝑎𝑖 = Ω𝑉
1/2
𝑎𝑖 𝑢 : 𝑢𝑇𝑢 ≤ 1

}︁
, 𝑖 = 1, . . . ,𝑚.

It turns out that in many cases the ellipsoidal model of uncertainty is significantly less conservative and
thus better suited for practice, than the interval model of uncertainty.

Last but not least, it should be mentioned that problem (11.34) is equivalent to a conic quadratic
program, specifically to the program

minimize 𝑡
subject to [𝑐n]𝑇𝑥 + Ω𝑧 ≤ 𝑡,

(𝑙𝑐)𝑖 ≤ [𝑎n𝑖 ]𝑇𝑥− Ω𝑧𝑖,
[𝑎n𝑖 ]𝑇𝑥 + Ω𝑧𝑖 ≤ (𝑢𝑐)𝑖, 𝑖 = 1, . . . ,𝑚,

0 = 𝑤 −𝐷𝑐𝑥
0 = 𝑤𝑖 −𝐷𝑎𝑖

𝑥, 𝑖 = 1, . . . ,𝑚,

0 ≤ 𝑧 −
√
𝑤𝑇𝑤,

0 ≤ 𝑧𝑖 −
√︀

(𝑤𝑖)𝑇𝑤𝑖, 𝑖 = 1, . . . ,𝑚,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

where 𝐷𝑐 and 𝐷𝑎𝑖
are matrices satisfying the relations

𝑉𝑐 = 𝐷𝑇
𝑐 𝐷𝑐, 𝑉𝑎𝑖 = 𝐷𝑇

𝑎𝑖
𝐷𝑎𝑖 , 𝑖 = 1, . . . ,𝑚.

Example: Interval and Ellipsoidal Robust Counterparts of Uncertain Linear Constraint with Indepen-
dent Random Perturbations of Coefficients

Consider a linear constraint

𝑙 ≤
𝑛∑︁

𝑗=1

𝑎𝑗𝑥𝑗 ≤ 𝑢 (11.35)
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and assume that the 𝑎𝑗 coefficients of the body of the constraint are uncertain and vary in intervals
𝑎n𝑗 ± 𝜎𝑗 . The worst-case_oriented model of uncertainty here is the interval one, and the corresponding
robust counterpart of the constraint is given by the system of linear inequalities

𝑙 ≤
∑︀𝑛

𝑗=1 𝑎
n
𝑗 𝑥𝑗 −

∑︀𝑛
𝑗=1 𝜎𝑗𝑦𝑗 ,∑︀𝑛

𝑗=1 𝑎
n
𝑗 𝑥𝑗 +

∑︀𝑛
𝑗=1 𝜎𝑗𝑦𝑗 ≤ 𝑢,

0 ≤ 𝑥𝑗 + 𝑦𝑗 ,
0 ≤ −𝑥𝑗 + 𝑦𝑗 , 𝑗 = 1, . . . , 𝑛.

(11.36)

Now, assume that we have reasons to believe that the true values of the coefficients 𝑎𝑗 are obtained
from their nominal values 𝑎n𝑗 by random perturbations, independent for different 𝑗 and symmetrically
distributed in the segments [-sigma_j,sigma_j]. With this assumption, we are in the situation of item 3
and can replace the uncertain constraint (11.35) with its ellipsoidal robust counterpart

𝑙 ≤
∑︀𝑛

𝑗=1 𝑎
n
𝑗 𝑥𝑗 − Ω𝑧,∑︀𝑛

𝑗=1 𝑎
n
𝑗 𝑥𝑗 + Ω𝑧 ≤ 𝑢,

0 ≤ 𝑧 −
√︁∑︀𝑛

𝑗=1 𝜎
2
𝑗𝑥

2
𝑗 .

(11.37)

Please note that with the model of random perturbations, a vector 𝑥 satisfying (11.37) satisfies a real-
ization of (11.35) with probability at least 1− exp{Ω2/2}; for Ω = 6. This probability is ≥ 1−1.5 ·10−8,
which for all practical purposes is the same as sayiong that 𝑥 satisfies all realizations of (11.35). On the
other hand, the uncertainty set associated with (11.36) is the box

𝐵 =
{︀
𝑎 = (𝑎1, . . . , 𝑎𝑛)𝑇 : 𝑎n𝑗 − 𝜎𝑗 ≤ 𝑎𝑗 ≤ 𝑎n𝑗 + 𝜎𝑗 , 𝑗 = 1, . . . , 𝑛

}︀
,

while the uncertainty set associated with (11.37) is the ellipsoid

𝐸(Ω) =

⎧⎨⎩𝑎 = (𝑎1, . . . , 𝑎𝑛)𝑇 :

𝑛∑︁
𝑗=1

(𝑎𝑗 − 𝑎n𝑗 )
2

𝜎2
𝑗 ≤ Ω2

⎫⎬⎭ .

For a moderate value of Ω, say Ω = 6, and 𝑛 ≥ 40, the ellipsoid 𝐸(Ω) in its diameter, typical linear
sizes, volume, etc. is incomparably less than the box 𝐵, the difference becoming more dramatic the
larger the dimension 𝑛 of the box and the ellipsoid. It follows that the ellipsoidal robust counterpart
(11.37) of the randomly perturbed uncertain constraint (11.35) is much less conservative than the interval
robust counterpart (11.36), while ensuring basically the same “robustness guarantees”. To illustrate this
important point, consider the following numerical examples:

There are 𝑛 different assets on the market. The return on 1 invested in asset 𝑗 is a random variable
distributed symmetrically in the segment [𝛿𝑗 − 𝜎𝑗 , 𝛿𝑗 + 𝜎𝑗 ], and the returns on different assets are in-
dependent of each other. The problem is to distribute ` 1 among the assets in order to get the largest
possible total return on the resulting portfolio.

A natural model of the problem is an uncertain linear optimization problem

maximize
∑︀𝑛

𝑗=1 𝑎𝑗𝑥𝑗

subject to
∑︀𝑛

𝑗=1 𝑥𝑗 = 1,

0 ≤ 𝑥𝑗 , 𝑗 = 1, . . . , 𝑛.

where 𝑎𝑗 are the uncertain returns of the assets. Both the nominal optimal solution (set all returns 𝑎𝑗
equal to their nominal values 𝛿𝑗) and the risk-neutral Stochastic Programming approach (maximize the
expected total return) result in the same solution: Our money should be invested in the most promising
asset(s) – the one(s) with the maximal nominal return. This solution, however, can be very unreliable
if, as is typically the case in reality, the most promising asset has the largest volatility 𝜎 and is in this
sense the most risky. To reduce the risk, one can use the Robust Counterpart approach which results in
the following optimization problems.
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The Interval Model of Uncertainty:

maximize 𝑡
subject to 0 ≤ −𝑡 +

∑︀𝑛
𝑗=1(𝛿𝑗 − 𝜎𝑗)𝑥𝑗 ,∑︀𝑛

𝑗=1 𝑥𝑗 = 1,

0 ≤ 𝑥𝑗 , 𝑗 = 1, . . . , 𝑛

(11.38)

and

The ellipsoidal Model of Uncertainty:}

maximize 𝑡
subject to 0 ≤ −𝑡 +

∑︀𝑛
𝑗=1(𝛿𝑗)𝑥𝑗 − Ω𝑧,

0 ≤ 𝑧 −
√︁∑︀𝑛

𝑗=1 𝜎
2
𝑗𝑥

2
𝑗 ,∑︀𝑛

𝑗=1 𝑥𝑗 = 1,

0 ≤ 𝑥𝑗 , 𝑗 = 1, . . . , 𝑛.

(11.39)

Note that the problem (11.39) is essentially the risk-averted portfolio model proposed in mid-50’s by
Markowitz.

The solution of (11.38) is evident — our `1 should be invested in the asset(s) with the largest possible
guaranteed return 𝛿𝑗−𝜎𝑗 . In contrast to this very conservative policy (which in reality prescribes to keep
the initial capital in a bank or in the most reliable, and thus low profit, assets), the optimal solution to
(11.39) prescribes a quite reasonable diversification of investments which allows to get much better total
return than (11.38) with basically zero risk2. To illustrate this, assume that there are 𝑛 = 300 assets
with the nominal returns (per year) varying from 1.04 (bank savings) to 2.00:

𝛿𝑗 = 1.04 + 0.96
𝑗 − 1

𝑛− 1
, 𝑗 = 1, 2, . . . , 𝑛 = 300

and volatilities varying from 0 for the bank savings to 1.2 for the most promising asset:

𝜎𝑗 = 1.152
𝑗 − 1

𝑛− 1
, 𝑗 = 1, . . . , 𝑛 = 300.

In Listing 11.14 a MATLAB script which builds the associated problem (11.39), solves it via the MOSEK
optimization toolbox, displays the resulting robust optimal value of the total return and the distribu-
tion of investments, and finally runs 10,000 simulations to get the distribution of the total return on
the resulting portfolio (in these simulations, the returns on all assets are uniformly distributed in the
corresponding intervals) is presented.

Listing 11.14: Script that implements problem (11.39).

function rlo2(n, Omega, draw)

n = str2num(n)
Omega = str2num(Omega)
draw

[r, res] = mosekopt('symbcon echo(0)');
sym = res.symbcon;

% Set nominal returns and volatilities
delta = (0.96/(n-1))*[0:1:n-1]+1.04;
sigma = (1.152/(n-1))*[0:1:n-1];

% Set mosekopt description of the problem
prob.c = [1;zeros(n+1,1)];
A = [-1, delta, -Omega; ...

(continues on next page)

2 Recall that in our discussion we have assumed the returns on different assets to be independent of each other. In
reality, this is not so and this is why diversification of investments, although reducing the risk, never eliminates it completely
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(continued from previous page)

0, ones(1,n), 0];
prob.a = sparse(A);
prob.blc = [0;1];
prob.buc = [inf;1];
prob.blx = [-inf;zeros(n,1);0];
prob.bux = inf*ones(n+2,1);
F = [zeros(1,n+1), 1; ...

zeros(n,1), diag(sigma), zeros(n,1)];
prob.f = sparse(F);
prob.cones = [ sym.MSK_CT_QUAD n+1 ];

% Run mosekopt
[r,res]=mosekopt('maximize echo(3)',prob);

xx = res.sol.itr.xx;
t = xx(1);

disp(sprintf('Robust optimal value: %5.4f',t));
x = max(xx(2:1+n),zeros(n,1));

if draw == true
% Display the solution
plot([1:1:n],x,'-m');
grid on;

disp('Press <Enter> to run simulations');
pause

% Run simulations

Nsim = 10000;
out = zeros(Nsim,1);
for i=1:Nsim,

returns = delta+(2*rand(1,n)-1).*sigma;
out(i) = returns*x;

end;
disp(sprintf('Actual returns over %d simulations:',Nsim));
disp(sprintf('Min=%5.4f Mean=%5.4f Max=%5.4f StD=%5.2f',...

min(out),mean(out),max(out),std(out)));
hist(out);

end

Here are the results displayed by the script:

Listing 11.15: Output of script rlo2.m.

Robust optimal value: 1.3428
Actual returns over 10000 simulations:
Min=1.5724 Mean=1.6965 Max=1.8245 StD= 0.03

Please note that with our set-up there is exactly one asset with guaranteed return greater than 1
– asset # 1 (bank savings, return 1.04, zero volatility). Consequently, the interval robust counterpart
(11.38) prescribes to put our ` #1 in the bank, thus getting a 4% profit. In contrast to this, the diversified
portfolio given by the optimal solution of (11.39) never yields profit less than 57.2%, and yields at average
a 69.67% profit with pretty low (0.03) standard deviation. We see that in favorable circumstances the
ellipsoidal robust counterpart of an uncertain linear program indeed is less conservative than, although
basically as reliable as, the interval robust counterpart.

Finally, let us compare our results with those given by the nominal optimal solution. The latter
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Fig. 11.4: Distribution of investments among the assets in the optimal solution of.
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prescribes to invest everything we have in the most promising asset (in our example this is the asset #
300 with a nominal return of 2.00 and volatility of 1.152). Assuming that the actual return is uniformly
distributed in the corresponding interval and running 10,000 simulations, we get the following results:

Nominal optimal value: 2.0000
Actual returns over 10000 simulations:
Min=0.8483 Mean=1.9918 Max=3.1519 StD= 0.66

We see that the nominal solution results in a portfolio which is much more risky, although better at
average, than the portfolio given by the robust solution.

Combined Interval-Ellipsoidal Robust Counterpart

We have considered the case when the coefficients 𝑎𝑗 of uncertain linear constraint (11.35) are affected by
uncorrelated random perturbations symmetrically distributed in given intervals [−𝜎𝑗 , 𝜎𝑗 ], and we have
discussed two ways to model the uncertainty:

• The interval uncertainty model (the uncertainty set 𝒰 is the box 𝐵), where we ignore the stochas-
tic nature of the perturbations and their independence. This model yields the Interval Robust
Counterpart (11.36);

• The ellipsoidal uncertainty model (𝒰 is the ellipsoid 𝐸(Ω)), which takes into account the stochastic
nature of data perturbations and yields the Ellipsoidal Robust Counterpart (11.37).

Please note that although for large 𝑛 the ellipsoid 𝐸(Ω) in its diameter, volume and average linear sizes
is incomparably smaller than the box 𝐵, in the case of Ω > 1 the ellipsoid 𝐸(Ω) in certain directions goes
beyond the box. E.g. the ellipsoid 𝐸(6), although much more narrow than 𝐵 in most of the directions,
is 6 times wider than 𝐵 in the directions of the coordinate axes. Intuition says that it hardly makes
sense to keep in the uncertainty set realizations of the data which are outside of 𝐵 and thus forbidden
by our model of perturbations, so in the situation under consideration the intersection of 𝐸(Ω) and 𝐵 is
a better model of the uncertainty set than the ellipsoid 𝐸(Ω) itself. What happens when the model of
the uncertainty set is the combined interval-ellipsoidal uncertainty 𝒰(Ω) = 𝐸(Ω) ∩𝐵?

First, it turns out that the RC of (11.35) corresponding to the uncertainty set 𝒰(Ω) is still given by
a system of linear and conic quadratic inequalities, specifically the system

𝑙 ≤
∑︀𝑛

𝑗=1 𝑎
n
𝑗 𝑥𝑗 −

∑︀𝑛
𝑗=1 𝜎𝑗𝑦𝑗 − Ω

√︁∑︀𝑛
𝑗=1 𝜎

2
𝑗𝑢

2
𝑗 ,∑︀𝑛

𝑗=1 𝑎
n
𝑗 𝑥𝑗 +

∑︀𝑛
𝑗=1 𝜎𝑗𝑧𝑗 + Ω

√︁∑︀𝑛
𝑗=1 𝜎

2
𝑗 𝑣

2
𝑗 ≤ 𝑢,

−𝑦𝑗 ≤ 𝑥𝑗 − 𝑢𝑗 ≤ 𝑦𝑗 , 𝑗 = 1, . . . , 𝑛,
−𝑧𝑗 ≤ 𝑥𝑗 − 𝑣𝑗 ≤ 𝑧𝑗 , 𝑗 = 1, . . . , 𝑛.

(11.40)

Second, it turns out that our intuition is correct: As a model of uncertainty, 𝑈(Ω) is as reliable as the
ellipsoid 𝐸(Ω). Specifically, if 𝑥 can be extended to a feasible solution of (11.40), then the probability
for 𝑥 to satisfy a realization of (11.35) is ≥ 1 − exp{−Ω2/2}.

The conclusion is that if we have reasons to assume that the perturbations of uncertain coefficients in
a constraint of an uncertain linear optimization problem are (a) random, (b) independent of each other,
and (c) symmetrically distributed in given intervals, then it makes sense to associate with this constraint
an interval-ellipsoidal model of uncertainty and use a system of linear and conic quadratic inequalities
(11.40). Please note that when building the robust counterpart of an uncertain linear optimization
problem, one can use different models of the uncertainty (e.g., interval, ellipsoidal, combined interval-
ellipsoidal) for different uncertain constraints within the same problem.
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Chapter 12

Problem Formulation and Solutions

In this chapter we will discuss the following issues:

• The formal, mathematical formulations of the problem types that MOSEK can solve and their
duals.

• The solution information produced by MOSEK.

• The infeasibility certificate produced by MOSEK if the problem is infeasible.

For the underlying mathematical concepts, derivations and proofs see the Modeling Cookbook or any
book on convex optimization. This chapter explains how the related data is organized specifically within
the MOSEK API.

12.1 Linear Optimization

MOSEK accepts linear optimization problems of the form

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

(12.1)

where

• 𝑚 is the number of constraints.

• 𝑛 is the number of decision variables.

• 𝑥 ∈ R𝑛 is a vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear part of the objective function.

• 𝑐𝑓 ∈ R is a constant term in the objective

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

Lower and upper bounds can be infinite, or in other words the corresponding bound may be omitted.
A primal solution (𝑥) is (primal) feasible if it satisfies all constraints in (12.1). If (12.1) has at least

one primal feasible solution, then (12.1) is said to be (primal) feasible. In case (12.1) does not have a
feasible solution, the problem is said to be (primal) infeasible
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12.1.1 Duality for Linear Optimization
Corresponding to the primal problem (12.1), there is a dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0.

(12.2)

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at 0,
and we use the convention that the product of the bound value and the corresponding dual variable is
0. This is equivalent to removing variable (𝑠𝑥𝑙 )𝑗 from the dual problem. In other words:

𝑙𝑥𝑗 = −∞ ⇒ (𝑠𝑥𝑙 )𝑗 = 0 and 𝑙𝑥𝑗 · (𝑠𝑥𝑙 )𝑗 = 0.

A solution

(𝑦, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢)

to the dual problem is feasible if it satisfies all the constraints in (12.2). If (12.2) has at least one feasible
solution, then (12.2) is (dual) feasible, otherwise the problem is (dual) infeasible.

A solution

(𝑥*, 𝑦*, (𝑠𝑐𝑙 )
*, (𝑠𝑐𝑢)*, (𝑠𝑥𝑙 )*, (𝑠𝑥𝑢)*)

is denoted a primal-dual feasible solution, if (𝑥*) is a solution to the primal problem (12.1) and
(𝑦*, (𝑠𝑐𝑙 )

*, (𝑠𝑐𝑢)*, (𝑠𝑥𝑙 )*, (𝑠𝑥𝑢)*) is a solution to the corresponding dual problem (12.2). We also define
an auxiliary vector

(𝑥𝑐)* := 𝐴𝑥*

containing the activities of linear constraints.
For a primal-dual feasible solution we define the duality gap as the difference between the primal and

the dual objective value,

𝑐𝑇𝑥* + 𝑐𝑓 −
{︀

(𝑙𝑐)𝑇 (𝑠𝑐𝑙 )
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙 )* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* + 𝑐𝑓

}︀
=
∑︀𝑚−1

𝑖=0 [(𝑠𝑐𝑙 )
*
𝑖 ((𝑥𝑐

𝑖 )
* − 𝑙𝑐𝑖 ) + (𝑠𝑐𝑢)*𝑖 (𝑢𝑐

𝑖 − (𝑥𝑐
𝑖 )

*)]

+
∑︀𝑛−1

𝑗=0

[︀
(𝑠𝑥𝑙 )*𝑗 (𝑥𝑗 − 𝑙𝑥𝑗 ) + (𝑠𝑥𝑢)*𝑗 (𝑢𝑥

𝑗 − 𝑥*
𝑗 )
]︀
≥ 0

(12.3)

where the first relation can be obtained by transposing and multiplying the dual constraints (12.2) by
𝑥* and (𝑥𝑐)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

It is well-known that a linear optimization problem has an optimal solution if and only if there exist
feasible primal-dual solution so that the duality gap is zero, or, equivalently, that the complementarity
conditions

(𝑠𝑐𝑙 )
*
𝑖 ((𝑥𝑐

𝑖 )
* − 𝑙𝑐𝑖 ) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑐𝑢)*𝑖 (𝑢𝑐
𝑖 − (𝑥𝑐

𝑖 )
*) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑥𝑙 )*𝑗 (𝑥*
𝑗 − 𝑙𝑥𝑗 ) = 0, 𝑗 = 0, . . . , 𝑛− 1,

(𝑠𝑥𝑢)*𝑗 (𝑢𝑥
𝑗 − 𝑥*

𝑗 ) = 0, 𝑗 = 0, . . . , 𝑛− 1,

are satisfied.
If (12.1) has an optimal solution and MOSEK solves the problem successfully, both the primal and

dual solution are reported, including a status indicating the exact state of the solution.
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12.1.2 Infeasibility for Linear Optimization

Primal Infeasible Problems

If the problem (12.1) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

(12.4)

such that the objective value is strictly positive, i.e. a solution

(𝑦*, (𝑠𝑐𝑙 )
*, (𝑠𝑐𝑢)*, (𝑠𝑥𝑙 )*, (𝑠𝑥𝑢)*)

to (12.4) so that

(𝑙𝑐)𝑇 (𝑠𝑐𝑙 )
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙 )* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* > 0.

Such a solution implies that (12.4) is unbounded, and that (12.1) is infeasible.

Dual Infeasible Problems

If the problem (12.2) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize 𝑐𝑇𝑥

subject to 𝑙̂𝑐 ≤ 𝐴𝑥 ≤ 𝑢̂𝑐,

𝑙̂𝑥 ≤ 𝑥 ≤ 𝑢̂𝑥,

(12.5)

where

𝑙̂𝑐𝑖 =

{︂
0 if 𝑙𝑐𝑖 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑐

𝑖 :=

{︂
0 if 𝑢𝑐

𝑖 < ∞,
∞ otherwise,

}︂
and

𝑙̂𝑥𝑗 =

{︂
0 if 𝑙𝑥𝑗 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑥

𝑗 :=

{︂
0 if 𝑢𝑥

𝑗 < ∞,
∞ otherwise,

}︂
such that

𝑐𝑇𝑥 < 0.

Such a solution implies that (12.5) is unbounded, and that (12.2) is infeasible.
In case that both the primal problem (12.1) and the dual problem (12.2) are infeasible, MOSEK

will report only one of the two possible certificates — which one is not defined (MOSEK returns the
first certificate found).

12.1.3 Minimalization vs. Maximalization
When the objective sense of problem (12.1) is maximization, i.e.

maximize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,
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the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (12.2). The dual problem thus takes the form

minimize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0.

This means that the duality gap, defined in (12.3) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0,

(12.6)

such that the objective value is strictly negative

(𝑙𝑐)𝑇 (𝑠𝑐𝑙 )
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙 )* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* < 0.

Similarly, the certificate of dual infeasibility is an 𝑥 satisfying the requirements of (12.5) such that
𝑐𝑇𝑥 > 0.

12.2 Conic Optimization

Conic optimization is an extension of linear optimization (see Sec. 12.1) allowing conic domains to be
specified for subsets of the problem variables. A conic optimization problem to be solved by MOSEK
can be written as

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ 𝒦,

(12.7)

where

• 𝑚 is the number of constraints.

• 𝑛 is the number of decision variables.

• 𝑥 ∈ R𝑛 is a vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear part of the objective function.

• 𝑐𝑓 ∈ R is a constant term in the objective

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

Lower and upper bounds can be infinite, or in other words the corresponding bound may be omitted.
The set 𝒦 is a Cartesian product of convex cones, namely 𝒦 = 𝒦1 × · · · × 𝒦𝑝. Having the domain

restriction 𝑥 ∈ 𝒦, is thus equivalent to

𝑥𝑡 ∈ 𝒦𝑡 ⊆ R𝑛𝑡 ,

where 𝑥 = (𝑥1, . . . , 𝑥𝑝) is a partition of the problem variables. Please note that the 𝑛-dimensional
Euclidean space R𝑛 is a cone itself, so simple linear variables are still allowed. The user only needs to
specify subsets of variables which belong to non-trivial cones.

In this section we discuss the formulations which apply to the following cones supported by MOSEK:
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• The set R𝑛.

• The zero cone {(0, . . . , 0)}.

• Quadratic cone

𝒬𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 : 𝑥1 ≥

⎯⎸⎸⎷ 𝑛∑︁
𝑗=2

𝑥2
𝑗

⎫⎬⎭ .

• Rotated quadratic cone

𝒬𝑛
r =

⎧⎨⎩𝑥 ∈ R𝑛 : 2𝑥1𝑥2 ≥
𝑛∑︁

𝑗=3

𝑥2
𝑗 , 𝑥1 ≥ 0, 𝑥2 ≥ 0

⎫⎬⎭ .

• Primal exponential cone

𝐾exp =
{︀
𝑥 ∈ R3 : 𝑥1 ≥ 𝑥2 exp(𝑥3/𝑥2), 𝑥1, 𝑥2 ≥ 0

}︀
as well as its dual

𝐾*
exp =

{︀
𝑥 ∈ R3 : 𝑥1 ≥ −𝑥3𝑒

−1 exp(𝑥2/𝑥3), 𝑥3 ≤ 0, 𝑥1 ≥ 0
}︀
.

• Primal power cone (with parameter 0 < 𝛼 < 1)

𝒫𝛼,1−𝛼
𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 : 𝑥𝛼
1𝑥

1−𝛼
2 ≥

⎯⎸⎸⎷ 𝑛∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭
as well as its dual

(𝒫𝛼,1−𝛼
𝑛 )* =

⎧⎨⎩𝑥 ∈ R𝑛 :
(︁𝑥1

𝛼

)︁𝛼(︂ 𝑥2

1 − 𝛼

)︂1−𝛼

≥

⎯⎸⎸⎷ 𝑛∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ .

MOSEK supports also the cone of positive semidefinite matrices. Since that is handled through a
separate interface, we discuss it in Sec. 12.3.

12.2.1 Duality for Conic Optimization
Corresponding to the primal problem (12.7), there is a dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝑠𝑥𝑛 = 𝑐

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑠𝑥𝑛 ∈ 𝒦*,

(12.8)

where the dual cone 𝒦* is a Cartesian product of the cones dual to 𝒦𝑡. In practice this means that 𝑠𝑥𝑛
has one entry for each entry in 𝑥. Please note that the dual problem of the dual problem is identical to
the original primal problem.

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at
0, and we use the convention that the product of the bound value and the corresponding dual variable
is 0. This is equivalent to removing variable (𝑠𝑥𝑙 )𝑗 from the dual problem. In other words:

𝑙𝑥𝑗 = −∞ ⇒ (𝑠𝑥𝑙 )𝑗 = 0 and 𝑙𝑥𝑗 · (𝑠𝑥𝑙 )𝑗 = 0.
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A solution

(𝑦, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢, 𝑠

𝑥
𝑛)

to the dual problem is feasible if it satisfies all the constraints in (12.8). If (12.8) has at least one feasible
solution, then (12.8) is (dual) feasible, otherwise the problem is (dual) infeasible.

A solution

(𝑥*, 𝑦*, (𝑠𝑐𝑙 )
*, (𝑠𝑐𝑢)*, (𝑠𝑥𝑙 )*, (𝑠𝑥𝑢)*, (𝑠𝑥𝑛)*)

is denoted a primal-dual feasible solution, if (𝑥*) is a solution to the primal problem (12.7) and
(𝑦*, (𝑠𝑐𝑙 )

*, (𝑠𝑐𝑢)*, (𝑠𝑥𝑙 )*, (𝑠𝑥𝑢)*, (𝑠𝑥𝑛)*) is a solution to the corresponding dual problem (12.8). We also define
an auxiliary vector

(𝑥𝑐)* := 𝐴𝑥*

containing the activities of linear constraints.
For a primal-dual feasible solution we define the duality gap as the difference between the primal and

the dual objective value,

𝑐𝑇𝑥* + 𝑐𝑓 −
{︀

(𝑙𝑐)𝑇 (𝑠𝑐𝑙 )
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙 )* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* + 𝑐𝑓

}︀
=
∑︀𝑚−1

𝑖=0 [(𝑠𝑐𝑙 )
*
𝑖 ((𝑥𝑐

𝑖 )
* − 𝑙𝑐𝑖 ) + (𝑠𝑐𝑢)*𝑖 (𝑢𝑐

𝑖 − (𝑥𝑐
𝑖 )

*)]

+
∑︀𝑛−1

𝑗=0

[︀
(𝑠𝑥𝑙 )*𝑗 (𝑥𝑗 − 𝑙𝑥𝑗 ) + (𝑠𝑥𝑢)*𝑗 (𝑢𝑥

𝑗 − 𝑥*
𝑗 )
]︀

+
∑︀𝑛−1

𝑗=0 (𝑠𝑥𝑛)*𝑗𝑥
*
𝑗 ≥ 0

(12.9)

where the first relation can be obtained by transposing and multiplying the dual constraints (12.2) by
𝑥* and (𝑥𝑐)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

It is well-known that, under some non-degeneracy assumptions that exclude ill-posed cases, a conic
optimization problem has an optimal solution if and only if there exist feasible primal-dual solution so
that the duality gap is zero, or, equivalently, that the complementarity conditions

(𝑠𝑐𝑙 )
*
𝑖 ((𝑥𝑐

𝑖 )
* − 𝑙𝑐𝑖 ) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑐𝑢)*𝑖 (𝑢𝑐
𝑖 − (𝑥𝑐

𝑖 )
*) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑥𝑙 )*𝑗 (𝑥*
𝑗 − 𝑙𝑥𝑗 ) = 0, 𝑗 = 0, . . . , 𝑛− 1,

(𝑠𝑥𝑢)*𝑗 (𝑢𝑥
𝑗 − 𝑥*

𝑗 ) = 0, 𝑗 = 0, . . . , 𝑛− 1,∑︀𝑛−1
𝑗=0 (𝑠𝑥𝑛)*𝑗𝑥

*
𝑗 = 0.

(12.10)

are satisfied.
If (12.7) has an optimal solution and MOSEK solves the problem successfully, both the primal and

dual solution are reported, including a status indicating the exact state of the solution.

12.2.2 Infeasibility for Conic Optimization

Primal Infeasible Problems

If the problem (12.7) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝑠𝑥𝑛 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑠𝑥𝑛 ∈ 𝒦*,

(12.11)

such that the objective value is strictly positive, i.e. a solution

(𝑦*, (𝑠𝑐𝑙 )
*, (𝑠𝑐𝑢)*, (𝑠𝑥𝑙 )*, (𝑠𝑥𝑢)*, (𝑠𝑥𝑛)*)
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to (12.11) so that

(𝑙𝑐)𝑇 (𝑠𝑐𝑙 )
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙 )* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* > 0.

Such a solution implies that (12.11) is unbounded, and that (12.7) is infeasible.

Dual Infeasible Problems

If the problem (12.8) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize 𝑐𝑇𝑥

subject to 𝑙̂𝑐 ≤ 𝐴𝑥 ≤ 𝑢̂𝑐,

𝑙̂𝑥 ≤ 𝑥 ≤ 𝑢̂𝑥,
𝑥 ∈ 𝐾,

(12.12)

where

𝑙̂𝑐𝑖 =

{︂
0 if 𝑙𝑐𝑖 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑐

𝑖 :=

{︂
0 if 𝑢𝑐

𝑖 < ∞,
∞ otherwise,

}︂
(12.13)

and

𝑙̂𝑥𝑗 =

{︂
0 if 𝑙𝑥𝑗 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑥

𝑗 :=

{︂
0 if 𝑢𝑥

𝑗 < ∞,
∞ otherwise,

}︂
(12.14)

such that

𝑐𝑇𝑥 < 0.

Such a solution implies that (12.12) is unbounded, and that (12.8) is infeasible.
In case that both the primal problem (12.7) and the dual problem (12.8) are infeasible, MOSEK

will report only one of the two possible certificates — which one is not defined (MOSEK returns the
first certificate found).

12.2.3 Minimalization vs. Maximalization
When the objective sense of problem (12.7) is maximization, i.e.

maximize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ 𝒦,

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (12.2). The dual problem thus takes the form

minimize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝑠𝑥𝑛 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0,

−𝑠𝑥𝑛 ∈ 𝒦*

This means that the duality gap, defined in (12.9) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝑠𝑥𝑛 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0,

−𝑠𝑥𝑛 ∈ 𝒦*

(12.15)
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such that the objective value is strictly negative

(𝑙𝑐)𝑇 (𝑠𝑐𝑙 )
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙 )* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* < 0.

Similarly, the certificate of dual infeasibility is an 𝑥 satisfying the requirements of (12.12) such that
𝑐𝑇𝑥 > 0.

12.3 Semidefinite Optimization

Semidefinite optimization is an extension of conic optimization (see Sec. 12.2) allowing positive semidefi-
nite matrix variables to be used in addition to the usual scalar variables. All the other parts of the input
are defined exactly as in Sec. 12.2, and the discussion from that section applies verbatim to all properties
of problems with semidefinite variables. We only briefly indicate how the corresponding formulae should
be modified with semidefinite terms.

A semidefinite optimization problem can be written as

minimize
∑︀𝑛−1

𝑗=0 𝑐𝑗𝑥𝑗 +
∑︀𝑝−1

𝑗=0

⟨︀
𝐶𝑗 , 𝑋𝑗

⟩︀
+ 𝑐𝑓

subject to 𝑙𝑐𝑖 ≤
∑︀𝑛−1

𝑗=0 𝑎𝑖𝑗𝑥𝑗 +
∑︀𝑝−1

𝑗=0

⟨︀
𝐴𝑖𝑗 , 𝑋𝑗

⟩︀
≤ 𝑢𝑐

𝑖 , 𝑖 = 0, . . . ,𝑚− 1

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1

𝑥 ∈ 𝒦,
𝑋𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 0, . . . , 𝑝− 1

(12.16)

where the problem has 𝑝 symmetric positive semidefinite variables 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ of dimension 𝑟𝑗 with

symmetric coefficient matrices 𝐶𝑗 ∈ 𝒮𝑟𝑗 and 𝐴𝑖,𝑗 ∈ 𝒮𝑟𝑗 . We use standard notation for the matrix inner
product, i.e., for 𝑈, 𝑉 ∈ R𝑚×𝑛 we have

⟨𝑈, 𝑉 ⟩ :=

𝑚−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝑈𝑖𝑗𝑉𝑖𝑗 .

As always we write 𝐴 = (𝑎𝑖,𝑗) for the linear coefficient matrix.

Duality

The definition of the dual problem (12.8) becomes:

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝑠𝑥𝑛 = 𝑐

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,

𝐶𝑗 −
∑︀𝑚−1

𝑖=0 𝑦𝑖𝐴𝑖𝑗 = 𝑆𝑗 , 𝑗 = 0, . . . , 𝑝− 1
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑠𝑥𝑛 ∈ 𝒦*,
𝑆𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 0, . . . , 𝑝− 1.

(12.17)

The duality gap (12.9) is computed as:

𝑐𝑇𝑥* + 𝑐𝑓 −
{︀

(𝑙𝑐)𝑇 (𝑠𝑐𝑙 )
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙 )* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* + 𝑐𝑓

}︀
=
∑︀𝑚−1

𝑖=0 [(𝑠𝑐𝑙 )
*
𝑖 ((𝑥𝑐

𝑖 )
* − 𝑙𝑐𝑖 ) + (𝑠𝑐𝑢)*𝑖 (𝑢𝑐

𝑖 − (𝑥𝑐
𝑖 )

*)]

+
∑︀𝑛−1

𝑗=0

[︀
(𝑠𝑥𝑙 )*𝑗 (𝑥𝑗 − 𝑙𝑥𝑗 ) + (𝑠𝑥𝑢)*𝑗 (𝑢𝑥

𝑗 − 𝑥*
𝑗 )
]︀

+
∑︀𝑛−1

𝑗=0 (𝑠𝑥𝑛)*𝑗𝑥
*
𝑗 +

∑︀𝑝−1
𝑗=0⟨𝑋𝑗 , 𝑆𝑗⟩ ≥ 0.

(12.18)

Complementarity conditions (12.10) include the additional relation:

⟨𝑋𝑗 , 𝑆𝑗⟩ = 0 𝑗 = 0, . . . , 𝑝− 1. (12.19)
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Infeasibility

A certificate of primal infeasibility (12.11) is now a feasible solution to:

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝑠𝑥𝑛 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,∑︀𝑚−1
𝑖=0 𝑦𝑖𝐴𝑖𝑗 + 𝑆𝑗 = 0, 𝑗 = 0, . . . , 𝑝− 1
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑠𝑥𝑛 ∈ 𝒦*,
𝑆𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 0, . . . , 𝑝− 1.

(12.20)

such that the objective value is strictly positive.
Similarly, a dual infeasibility certificate (12.12) is a feasible solution to

minimize
∑︀𝑛−1

𝑗=0 𝑐𝑗𝑥𝑗 +
∑︀𝑝−1

𝑗=0

⟨︀
𝐶𝑗 , 𝑋𝑗

⟩︀
subject to 𝑙̂𝑐𝑖 ≤

∑︀𝑛−1
𝑗=0 𝑎𝑖𝑗𝑥𝑗 +

∑︀𝑝−1
𝑗=0

⟨︀
𝐴𝑖𝑗 , 𝑋𝑗

⟩︀
≤ 𝑢̂𝑐

𝑖 , 𝑖 = 0, . . . ,𝑚− 1

𝑙̂𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢̂𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1

𝑥 ∈ 𝒦,
𝑋𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 0, . . . , 𝑝− 1

(12.21)

where the modified bounds are as in (12.13) and (12.14) and the objective value is strictly negative.

12.4 Quadratic and Quadratically Constrained Optimization

A convex quadratic and quadratically constrained optimization problem has the form

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐𝑘 ≤ 1
2𝑥

𝑇𝑄𝑘𝑥 +
∑︀𝑛−1

𝑗=0 𝑎𝑘𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1,

(12.22)

where all variables and bounds have the same meaning as for linear problems (see Sec. 12.1) and 𝑄𝑜 and
all 𝑄𝑘 are symmetric matrices. Moreover, for convexity, 𝑄𝑜 must be a positive semidefinite matrix and
𝑄𝑘 must satisfy

−∞ < 𝑙𝑐𝑘 ⇒ 𝑄𝑘 is negative semidefinite,
𝑢𝑐
𝑘 < ∞ ⇒ 𝑄𝑘 is positive semidefinite,

−∞ < 𝑙𝑐𝑘 ≤ 𝑢𝑐
𝑘 < ∞ ⇒ 𝑄𝑘 = 0.

The convexity requirement is very important and MOSEK checks whether it is fulfilled.

12.4.1 A Recommendation
Any convex quadratic optimization problem can be reformulated as a conic quadratic optimization prob-
lem, see Modeling Cookbook and [And13]. In fact MOSEK does such conversion internally as a part
of the solution process for the following reasons:

• the conic optimizer is numerically more robust than the one for quadratic problems.

• the conic optimizer is usually faster because quadratic cones are simpler than quadratic functions,
even though the conic reformulation usually has more constraints and variables than the original
quadratic formulation.

• it is easy to dualize the conic formulation if deemed worthwhile potentially leading to (huge)
computational savings.

However, instead of relying on the automatic reformulation we recommend to formulate the problem
as a conic problem from scratch because:
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• it saves the computational overhead of the reformulation including the convexity check. A conic
problem is convex by construction and hence no convexity check is needed for conic problems.

• usually the modeler can do a better reformulation than the automatic method because the modeler
can exploit the knowledge of the problem at hand.

To summarize we recommend to formulate quadratic problems and in particular quadratically con-
strained problems directly in conic form.

12.4.2 Duality for Quadratic and Quadratically Constrained Optimization
The dual problem corresponding to the quadratic and quadratically constrained optimization problem
(12.22) is given by

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 1
2𝑥

𝑇
{︁∑︀𝑚−1

𝑘=0 𝑦𝑘𝑄
𝑘 −𝑄𝑜

}︁
𝑥 + 𝑐𝑓

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 +
{︁∑︀𝑚−1

𝑘=0 𝑦𝑘𝑄
𝑘 −𝑄𝑜

}︁
𝑥 = 𝑐,

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0.

(12.23)

The dual problem is related to the dual problem for linear optimization (see Sec. 12.1.1), but depends
on the variable 𝑥 which in general can not be eliminated. In the solutions reported by MOSEK, the
value of 𝑥 is the same for the primal problem (12.22) and the dual problem (12.23).

12.4.3 Infeasibility for Quadratic Optimization
In case MOSEK finds a problem to be infeasible it reports a certificate of infeasibility. We write them
out explicitly for quadratic problems, that is when 𝑄𝑘 = 0 for all 𝑘 and quadratic terms appear only
in the objective 𝑄𝑜. In this case the constraints both in the primal and dual problem are linear, and
MOSEK produces for them the same infeasibility certificate as for linear problems.

The certificate of primal infeasibility is a solution to the problem (12.4) such that the objective value
is strictly positive.

The certificate of dual infeasibility is a solution to the problem (12.5) together with an additional
constraint

𝑄𝑜𝑥 = 0

such that the objective value is strictly negative.

12.5 Affine Conic Constraints

Optimization Toolbox for MATLAB allows conic problems to be specified in another format, namely
with affine conic constraints. A conic problem can thus be specified as:

minimize
∑︀𝑛

𝑗=1 𝑐𝑗𝑥𝑗 +
∑︀𝑝

𝑗=1

⟨︀
𝐶𝑗 , 𝑋𝑗

⟩︀
+ 𝑐𝑓

subject to 𝑙𝑐𝑖 ≤
∑︀𝑛

𝑗=1 𝑎𝑖𝑗𝑥𝑗 +
∑︀𝑝

𝑗=1

⟨︀
𝐴𝑖𝑗 , 𝑋𝑗

⟩︀
≤ 𝑢𝑐

𝑖 , 𝑖 = 1, . . . ,𝑚,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 1, . . . , 𝑛,

𝐹𝑥 + 𝑔 ∈ 𝒦,
𝑋𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 1, . . . , 𝑝

(12.24)

where all the data has the same meaning as in Sec. 12.2 and Sec. 12.3 and 𝐹 ∈ R𝑘×𝑛, 𝑔 ∈ R𝑘 specifiy
the affine conic constraint.
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Duality

The dual of problem (12.24) is

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 𝑦̇𝑇 𝑔 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 𝑐,

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,

𝐶𝑗 −
∑︀𝑚−1

𝑖=0 𝑦𝑖𝐴𝑖𝑗 = 𝑆𝑗 , 𝑗 = 0, . . . , 𝑝− 1
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑦̇ ∈ 𝒦*,
𝑆𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 0, . . . , 𝑝− 1.

(12.25)

Duality and infeasibility cerfificates behave analogously as in Sec. 12.2.

Remark

A problem of this form is internally converted into the problem:

minimize
∑︀𝑛

𝑗=1 𝑐𝑗𝑥𝑗 +
∑︀𝑝

𝑗=1

⟨︀
𝐶𝑗 , 𝑋𝑗

⟩︀
+ 𝑐𝑓

subject to 𝑙𝑐𝑖 ≤
∑︀𝑛

𝑗=1 𝑎𝑖𝑗𝑥𝑗 +
∑︀𝑝

𝑗=1

⟨︀
𝐴𝑖𝑗 , 𝑋𝑗

⟩︀
≤ 𝑢𝑐

𝑖 , 𝑖 = 1, . . . ,𝑚,

𝑔𝑖 ≤ 𝑧𝑖 −
∑︀𝑛

𝑗=1 𝑓𝑖𝑗𝑥𝑗 ≤ 𝑔𝑖 𝑖 = 1, . . . , 𝑘,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 1, . . . , 𝑛,

𝑧 ∈ 𝒦,
𝑋𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 1, . . . , 𝑝

(12.26)

which conforms with the format in Sec. 12.2 and Sec. 12.3. The reformulated problem has 𝑛+𝑘 variables,
𝑚 + 𝑘 linear constraints and in total 𝑘 variables in cones. The new columns and rows are appended
at the end of the original ones. If a problem with affine conic constraints is saved to a file then this
reformulation will be written.
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Chapter 13

Optimizers

The most essential part of MOSEK are the optimizers:

• primal simplex (linear problems),

• dual simplex (linear problems),

• interior-point (linear, quadratic and conic problems),

• mixed-integer (problems with integer variables).

The structure of a successful optimization process is roughly:

• Presolve

1. Elimination: Reduce the size of the problem.
2. Dualizer : Choose whether to solve the primal or the dual form of the problem.
3. Scaling : Scale the problem for better numerical stability.

• Optimization

1. Optimize: Solve the problem using selected method.
2. Terminate: Stop the optimization when specific termination criteria have been met.
3. Report : Return the solution or an infeasibility certificate.

The preprocessing stage is transparent to the user, but useful to know about for tuning purposes.
The purpose of the preprocessing steps is to make the actual optimization more efficient and robust. We
discuss the details of the above steps in the following sections.

13.1 Presolve

Before an optimizer actually performs the optimization the problem is preprocessed using the so-called
presolve. The purpose of the presolve is to

1. remove redundant constraints,

2. eliminate fixed variables,

3. remove linear dependencies,

4. substitute out (implied) free variables, and

5. reduce the size of the optimization problem in general.

After the presolved problem has been optimized the solution is automatically postsolved so that the
returned solution is valid for the original problem. Hence, the presolve is completely transparent. For
further details about the presolve phase, please see [AA95] and [AGMeszarosX96].

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If presolve consumes
too much time or memory compared to the reduction in problem size gained it may be disabled. This is
done by setting the parameter MSK_IPAR_PRESOLVE_USE to "MSK_PRESOLVE_MODE_OFF" . The two most
time-consuming steps of the presolve are
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• the eliminator, and

• the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.

Numerical issues in the presolve

During the presolve the problem is reformulated so that it hopefully solves faster. However, in rare
cases the presolved problem may be harder to solve then the original problem. The presolve may also
be infeasible although the original problem is not. If it is suspected that presolved problem is much
harder to solve than the original, we suggest to first turn the eliminator off by setting the parameter
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES to 0. If that does not help, then trying to turn entire
presolve off may help.

Since all computations are done in finite precision, the presolve employs some tolerances when con-
cluding a variable is fixed or a constraint is redundant. If it happens that MOSEK incorrectly con-
cludes a problem is primal or dual infeasible, then it is worthwhile to try to reduce the parameters
MSK_DPAR_PRESOLVE_TOL_X and MSK_DPAR_PRESOLVE_TOL_S . However, if reducing the parameters ac-
tually helps then this should be taken as an indication that the problem is badly formulated.

Eliminator

The purpose of the eliminator is to eliminate free and implied free variables from the problem using
substitution. For instance, given the constraints

𝑦 =
∑︀

𝑗 𝑥𝑗 ,

𝑦, 𝑥 ≥ 0,

y is an implied free variable that can be substituted out of the problem, if deemed worthwhile. If the elim-
inator consumes too much time or memory compared to the reduction in problem size gained it may be
disabled. This can be done by setting the parameter MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
to 0. In rare cases the eliminator may cause that the problem becomes much hard to solve.

Linear dependency checker

The purpose of the linear dependency check is to remove linear dependencies among the linear equalities.
For instance, the three linear equalities

𝑥1 + 𝑥2 + 𝑥3 = 1,
𝑥1 + 0.5𝑥2 = 0.5,
0.5𝑥2 + 𝑥3 = 0.5.

contain exactly one linear dependency. This implies that one of the constraints can be dropped with-
out changing the set of feasible solutions. Removing linear dependencies is in general a good idea
since it reduces the size of the problem. Moreover, the linear dependencies are likely to introduce
numerical problems in the optimization phase. It is best practice to build models without linear de-
pendencies, but that is not always easy for the user to control. If the linear dependencies are removed
at the modeling stage, the linear dependency check can safely be disabled by setting the parameter
MSK_IPAR_PRESOLVE_LINDEP_USE to "MSK_OFF" .

Dualizer

All linear, conic, and convex optimization problems have an equivalent dual problem associated with
them. MOSEK has built-in heuristics to determine if it is more efficient to solve the primal or dual
problem. The form (primal or dual) is displayed in the MOSEK log and available as an information
item from the solver. Should the internal heuristics not choose the most efficient form of the problem it
may be worthwhile to set the dualizer manually by setting the parameters:

• MSK_IPAR_INTPNT_SOLVE_FORM : In case of the interior-point optimizer.

• MSK_IPAR_SIM_SOLVE_FORM : In case of the simplex optimizer.

Note that currently only linear and conic (but not semidefinite) problems may be automatically
dualized.
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Scaling

Problems containing data with large and/or small coefficients, say 1.0𝑒 + 9 or 1.0𝑒 − 7, are often hard
to solve. Significant digits may be truncated in calculations with finite precision, which can result in
the optimizer relying on inaccurate data. Since computers work in finite precision, extreme coefficients
should be avoided. In general, data around the same order of magnitude is preferred, and we will refer to
a problem, satisfying this loose property, as being well-scaled. If the problem is not well scaled, MOSEK
will try to scale (multiply) constraints and variables by suitable constants. MOSEK solves the scaled
problem to improve the numerical properties.

The scaling process is transparent, i.e. the solution to the original problem is reported. It is important
to be aware that the optimizer terminates when the termination criterion is met on the scaled problem,
therefore significant primal or dual infeasibilities may occur after unscaling for badly scaled problems.
The best solution of this issue is to reformulate the problem, making it better scaled.

By default MOSEK heuristically chooses a suitable scaling. The scaling for interior-point
and simplex optimizers can be controlled with the parameters MSK_IPAR_INTPNT_SCALING and
MSK_IPAR_SIM_SCALING respectively.

13.2 Linear Optimization

13.2.1 Optimizer Selection
Two different types of optimizers are available for linear problems: The default is an interior-point
method, and the alternative is the simplex method (primal or dual). The optimizer can be selected using
the parameter MSK_IPAR_OPTIMIZER .

The Interior-point or the Simplex Optimizer?

Given a linear optimization problem, which optimizer is the best: the simplex or the interior-point
optimizer? It is impossible to provide a general answer to this question. However, the interior-point
optimizer behaves more predictably: it tends to use between 20 and 100 iterations, almost independently
of problem size, but cannot perform warm-start. On the other hand the simplex method can take
advantage of an initial solution, but is less predictable from cold-start. The interior-point optimizer is
used by default.

The Primal or the Dual Simplex Variant?

MOSEK provides both a primal and a dual simplex optimizer. Predicting which simplex optimizer is
faster is impossible, however, in recent years the dual optimizer has seen several algorithmic and com-
putational improvements, which, in our experience, make it faster on average than the primal version.
Still, it depends much on the problem structure and size. Setting the MSK_IPAR_OPTIMIZER parameter
to "MSK_OPTIMIZER_FREE_SIMPLEX" instructs MOSEK to choose one of the simplex variants automat-
ically.

To summarize, if you want to know which optimizer is faster for a given problem type, it is best to
try all the options.

13.2.2 The Interior-point Optimizer
The purpose of this section is to provide information about the algorithm employed in the MOSEK
interior-point optimizer for linear problems and about its termination criteria.
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The homogeneous primal-dual problem

In order to keep the discussion simple it is assumed that MOSEK solves linear optimization problems
of standard form

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ 0.
(13.1)

This is in fact what happens inside MOSEK; for efficiency reasons MOSEK converts the problem to
standard form before solving, then converts it back to the input form when reporting the solution.

Since it is not known beforehand whether problem (13.1) has an optimal solution, is primal infeasible
or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason
why MOSEK solves the so-called homogeneous model

𝐴𝑥− 𝑏𝜏 = 0,
𝐴𝑇 𝑦 + 𝑠− 𝑐𝜏 = 0,

−𝑐𝑇𝑥 + 𝑏𝑇 𝑦 − 𝜅 = 0,
𝑥, 𝑠, 𝜏, 𝜅 ≥ 0,

(13.2)

where 𝑦 and 𝑠 correspond to the dual variables in (13.1), and 𝜏 and 𝜅 are two additional scalar variables.
Note that the homogeneous model (13.2) always has solution since

(𝑥, 𝑦, 𝑠, 𝜏, 𝜅) = (0, 0, 0, 0, 0)

is a solution, although not a very interesting one. Any solution

(𝑥*, 𝑦*, 𝑠*, 𝜏*, 𝜅*)

to the homogeneous model (13.2) satisfies

𝑥*
𝑗𝑠

*
𝑗 = 0 and 𝜏*𝜅* = 0.

Moreover, there is always a solution that has the property 𝜏* + 𝜅* > 0.
First, assume that 𝜏* > 0 . It follows that

𝐴𝑥*

𝜏* = 𝑏,

𝐴𝑇 𝑦*

𝜏* + 𝑠*

𝜏* = 𝑐,

−𝑐𝑇 𝑥*

𝜏* + 𝑏𝑇 𝑦*

𝜏* = 0,
𝑥*, 𝑠*, 𝜏*, 𝜅* ≥ 0.

This shows that 𝑥*

𝜏* is a primal optimal solution and ( 𝑦*

𝜏* ,
𝑠*

𝜏* ) is a dual optimal solution; this is reported
as the optimal interior-point solution since

(𝑥, 𝑦, 𝑠) =

{︂
𝑥*

𝜏*
,
𝑦*

𝜏*
,
𝑠*

𝜏*

}︂
is a primal-dual optimal solution (see Sec. 12.1 for the mathematical background on duality and opti-
mality).

On other hand, if 𝜅* > 0 then

𝐴𝑥* = 0,
𝐴𝑇 𝑦* + 𝑠* = 0,

−𝑐𝑇𝑥* + 𝑏𝑇 𝑦* = 𝜅*,
𝑥*, 𝑠*, 𝜏*, 𝜅* ≥ 0.

This implies that at least one of

𝑐𝑇𝑥* < 0 (13.3)

or

𝑏𝑇 𝑦* > 0 (13.4)

is satisfied. If (13.3) is satisfied then 𝑥* is a certificate of dual infeasibility, whereas if (13.4) is satisfied
then 𝑦* is a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information re-
quired for a solution to the original problem is obtained. A solution to the homogeneous model can be
computed using a primal-dual interior-point algorithm [And09].

122



Interior-point Termination Criterion

For efficiency reasons it is not practical to solve the homogeneous model exactly. Hence, an exact optimal
solution or an exact infeasibility certificate cannot be computed and a reasonable termination criterion
has to be employed.

In the 𝑘-th iteration of the interior-point algorithm a trial solution

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘)

to homogeneous model is generated, where

𝑥𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘 > 0.

Optimal case

Whenever the trial solution satisfies the criterion⃦⃦⃦
𝐴𝑥𝑘

𝜏𝑘 − 𝑏
⃦⃦⃦
∞

≤ 𝜖𝑝(1 + ‖𝑏‖∞),⃦⃦⃦
𝐴𝑇 𝑦𝑘

𝜏𝑘 + 𝑠𝑘

𝜏𝑘 − 𝑐
⃦⃦⃦
∞

≤ 𝜖𝑑(1 + ‖𝑐‖∞), and

min
(︁

(𝑥𝑘)𝑇 𝑠𝑘

(𝜏𝑘)2
, | 𝑐

𝑇 𝑥𝑘

𝜏𝑘 − 𝑏𝑇 𝑦𝑘

𝜏𝑘 |
)︁

≤ 𝜖𝑔 max

(︂
1,

min(|𝑐𝑇 𝑥𝑘|,|𝑏𝑇 𝑦𝑘|)
𝜏𝑘

)︂
,

(13.5)

the interior-point optimizer is terminated and

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘)

𝜏𝑘

is reported as the primal-dual optimal solution. The interpretation of (13.5) is that the optimizer is
terminated if

• 𝑥𝑘

𝜏𝑘 is approximately primal feasible,

•
{︁

𝑦𝑘

𝜏𝑘 ,
𝑠𝑘

𝜏𝑘

}︁
is approximately dual feasible, and

• the duality gap is almost zero.

Dual infeasibility certificate

On the other hand, if the trial solution satisfies

−𝜖𝑖𝑐
𝑇𝑥𝑘 >

‖𝑐‖∞
max (1, ‖𝑏‖∞)

⃦⃦
𝐴𝑥𝑘

⃦⃦
∞

then the problem is declared dual infeasible and 𝑥𝑘 is reported as a certificate of dual infeasibility. The
motivation for this stopping criterion is as follows: First assume that

⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ = 0 ; then 𝑥𝑘 is an exact

certificate of dual infeasibility. Next assume that this is not the case, i.e.⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ > 0,

and define

𝑥̄ := 𝜖𝑖
max (1, ‖𝑏‖∞)

‖𝐴𝑥𝑘‖∞ ‖𝑐‖∞
𝑥𝑘.

It is easy to verify that

‖𝐴𝑥̄‖∞ = 𝜖𝑖
max (1, ‖𝑏‖∞)

‖𝑐‖∞
and − 𝑐𝑇 𝑥̄ > 1,

which shows 𝑥̄ is an approximate certificate of dual infeasibility, where 𝜀𝑖 controls the quality of the
approximation. A smaller value means a better approximation.
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Primal infeasibility certificate

Finally, if

𝜖𝑖𝑏
𝑇 𝑦𝑘 >

‖𝑏‖∞
max (1, ‖𝑐‖∞)

⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘

⃦⃦
∞

then 𝑦𝑘 is reported as a certificate of primal infeasibility.

Adjusting optimality criteria

It is possible to adjust the tolerances 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖 using parameters; see table for details.

Table 13.1: Parameters employed in termination criterion
ToleranceParameter name
𝜀𝑝 MSK_DPAR_INTPNT_TOL_PFEAS
𝜀𝑑 MSK_DPAR_INTPNT_TOL_DFEAS
𝜀𝑔 MSK_DPAR_INTPNT_TOL_REL_GAP
𝜀𝑖 MSK_DPAR_INTPNT_TOL_INFEAS

The default values of the termination tolerances are chosen such that for a majority of problems
appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the
tolerances usually is not worthwhile. However, an inspection of (13.5) reveals that the quality of the
solution depends on ‖𝑏‖∞ and ‖𝑐‖∞; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal
and dual feasibility at the same rate [And09]. This means that if the optimizer is stopped prematurely
then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that
in most cases all the tolerances, 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖, have to be relaxed together to achieve an effect.

The basis identification discussed in Sec. 13.2.2 requires an optimal solution to work well; hence basis
identification should be turned off if the termination criterion is relaxed.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

Basis Identification

An interior-point optimizer does not return an optimal basic solution unless the problem has a unique
primal and dual optimal solution. Therefore, the interior-point optimizer has an optional post-processing
step that computes an optimal basic solution starting from the optimal interior-point solution. More
information about the basis identification procedure may be found in [AY96]. In the following we provide
an overall idea of the procedure.

There are some cases in which a basic solution could be more valuable:

• a basic solution is often more accurate than an interior-point solution,

• a basic solution can be used to warm-start the simplex algorithm in case of reoptimization,

• a basic solution is in general more sparse, i.e. more variables are fixed to zero. This is partic-
ularly appealing when solving continuous relaxations of mixed integer problems, as well as in all
applications in which sparser solutions are preferred.

To illustrate how the basis identification routine works, we use the following trivial example:

minimize 𝑥 + 𝑦
subject to 𝑥 + 𝑦 = 1,

𝑥, 𝑦 ≥ 0.

It is easy to see that all feasible solutions are also optimal. In particular, there are two basic solutions,
namely

(𝑥*
1, 𝑦

*
1) = (1, 0),

(𝑥*
2, 𝑦

*
2) = (0, 1).

The interior point algorithm will actually converge to the center of the optimal set, i.e. to (𝑥*, 𝑦*) =
(1/2, 1/2) (to see this in MOSEK deactivate Presolve).
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In practice, when the algorithm gets close to the optimal solution, it is possible to construct in
polynomial time an initial basis for the simplex algorithm from the current interior point solution. This
basis is used to warm-start the simplex algorithm that will provide the optimal basic solution. In most
cases the constructed basis is optimal, or very few iterations are required by the simplex algorithm to
make it optimal and hence the final clean-up phase be short. However, for some cases of ill-conditioned
problems the additional simplex clean up phase may take of lot a time.

By default MOSEK performs a basis identification. However, if a basic solution is not needed, the
basis identification procedure can be turned off. The parameters

• MSK_IPAR_INTPNT_BASIS ,

• MSK_IPAR_BI_IGNORE_MAX_ITER , and

• MSK_IPAR_BI_IGNORE_NUM_ERROR

control when basis identification is performed.
The type of simplex algorithm to be used (primal/dual) can be tuned with the param-

eter MSK_IPAR_BI_CLEAN_OPTIMIZER , and the maximum number of iterations can be set with
MSK_IPAR_BI_MAX_ITERATIONS .

Finally, it should be mentioned that there is no guarantee on which basic solution will be returned.

The Interior-point Log

Below is a typical log output from the interior-point optimizer:

Optimizer - threads : 1
Optimizer - solved problem : the dual
Optimizer - Constraints : 2
Optimizer - Cones : 0
Optimizer - Scalar variables : 6 conic : 0
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 3 after factor : 3
Factor - dense dim. : 0 flops : 7.
→˓00e+001
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU ␣
→˓ TIME
0 1.0e+000 8.6e+000 6.1e+000 1.00e+000 0.000000000e+000 -2.208000000e+003 1.
→˓0e+000 0.00
1 1.1e+000 2.5e+000 1.6e-001 0.00e+000 -7.901380925e+003 -7.394611417e+003 2.
→˓5e+000 0.00
2 1.4e-001 3.4e-001 2.1e-002 8.36e-001 -8.113031650e+003 -8.055866001e+003 3.3e-
→˓001 0.00
3 2.4e-002 5.8e-002 3.6e-003 1.27e+000 -7.777530698e+003 -7.766471080e+003 5.7e-
→˓002 0.01
4 1.3e-004 3.2e-004 2.0e-005 1.08e+000 -7.668323435e+003 -7.668207177e+003 3.2e-
→˓004 0.01
5 1.3e-008 3.2e-008 2.0e-009 1.00e+000 -7.668000027e+003 -7.668000015e+003 3.2e-
→˓008 0.01
6 1.3e-012 3.2e-012 2.0e-013 1.00e+000 -7.667999994e+003 -7.667999994e+003 3.2e-
→˓012 0.01

The first line displays the number of threads used by the optimizer and the second line indicates if
the optimizer chose to solve the primal or dual problem (see MSK_IPAR_INTPNT_SOLVE_FORM ). The next
lines display the problem dimensions as seen by the optimizer, and the Factor... lines show various
statistics. This is followed by the iteration log.

Using the same notation as in Sec. 13.2.2 the columns of the iteration log have the following meaning:

• ITE: Iteration index 𝑘.
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• PFEAS:
⃦⃦
𝐴𝑥𝑘 − 𝑏𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards zero

but may stall at low level due to rounding errors.

• DFEAS:
⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘 − 𝑐𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards

zero but may stall at low level due to rounding errors.

• GFEAS: |− 𝑐𝑇𝑥𝑘 + 𝑏𝑇 𝑦𝑘 −𝜅𝑘| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

• PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to −1 if that is not the case.

• POBJ: 𝑐𝑇𝑥𝑘/𝜏𝑘. An estimate for the primal objective value.

• DOBJ: 𝑏𝑇 𝑦𝑘/𝜏𝑘. An estimate for the dual objective value.

• MU: (𝑥𝑘)𝑇 𝑠𝑘+𝜏𝑘𝜅𝑘

𝑛+1 . The numbers in this column should always converge to zero.

• TIME: Time spent since the optimization started.

13.2.3 The Simplex Optimizer
An alternative to the interior-point optimizer is the simplex optimizer. The simplex optimizer uses a
different method that allows exploiting an initial guess for the optimal solution to reduce the solution
time. Depending on the problem it may be faster or slower to use an initial guess; see Sec. 13.2.1 for a
discussion. MOSEK provides both a primal and a dual variant of the simplex optimizer.

Simplex Termination Criterion

The simplex optimizer terminates when it finds an optimal basic solution or an infeasibility certificate.
A basic solution is optimal when it is primal and dual feasible; see Sec. 12.1 for a definition of the primal
and dual problem. Due to the fact that computations are performed in finite precision MOSEK allows
violations of primal and dual feasibility within certain tolerances. The user can control the allowed
primal and dual tolerances with the parameters MSK_DPAR_BASIS_TOL_X and MSK_DPAR_BASIS_TOL_S .

Setting the parameter MSK_IPAR_OPTIMIZER to "MSK_OPTIMIZER_FREE_SIMPLEX" instructs
MOSEK to select automatically between the primal and the dual simplex optimizers. Hence, MOSEK
tries to choose the best optimizer for the given problem and the available solution. The same parameter
can also be used to force one of the variants.

Starting From an Existing Solution

When using the simplex optimizer it may be possible to reuse an existing solution and thereby reduce
the solution time significantly. When a simplex optimizer starts from an existing solution it is said to
perform a warm-start. If the user is solving a sequence of optimization problems by solving the problem,
making modifications, and solving again, MOSEK will warm-start automatically.

By default MOSEK uses presolve when performing a warm-start. If the optimizer only needs very
few iterations to find the optimal solution it may be better to turn off the presolve.

Numerical Difficulties in the Simplex Optimizers

Though MOSEK is designed to minimize numerical instability, completely avoiding it is impossible
when working in finite precision. MOSEK treats a “numerically unexpected behavior” event inside the
optimizer as a set-back. The user can define how many set-backs the optimizer accepts; if that number
is exceeded, the optimization will be aborted. Set-backs are a way to escape long sequences where the
optimizer tries to recover from an unstable situation.

Examples of set-backs are: repeated singularities when factorizing the basis matrix, repeated loss
of feasibility, degeneracy problems (no progress in objective) and other events indicating numerical
difficulties. If the simplex optimizer encounters a lot of set-backs the problem is usually badly scaled; in
such a situation try to reformulate it into a better scaled problem. Then, if a lot of set-backs still occur,
trying one or more of the following suggestions may be worthwhile:

• Raise tolerances for allowed primal or dual feasibility: increase the value of
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– MSK_DPAR_BASIS_TOL_X , and
– MSK_DPAR_BASIS_TOL_S .

• Raise or lower pivot tolerance: Change the MSK_DPAR_SIMPLEX_ABS_TOL_PIV parameter.

• Switch optimizer: Try another optimizer.

• Switch off crash: Set both MSK_IPAR_SIM_PRIMAL_CRASH and MSK_IPAR_SIM_DUAL_CRASH to 0.

• Experiment with other pricing strategies: Try different values for the parameters

– MSK_IPAR_SIM_PRIMAL_SELECTION and
– MSK_IPAR_SIM_DUAL_SELECTION .

• If you are using warm-starts, in rare cases switching off this feature may improve stability. This is
controlled by the MSK_IPAR_SIM_HOTSTART parameter.

• Increase maximum number of set-backs allowed controlled by MSK_IPAR_SIM_MAX_NUM_SETBACKS .

• If the problem repeatedly becomes infeasible try switching off the special degeneracy handling. See
the parameter MSK_IPAR_SIM_DEGEN for details.

The Simplex Log

Below is a typical log output from the simplex optimizer:

Optimizer - solved problem : the primal
Optimizer - Constraints : 667
Optimizer - Scalar variables : 1424 conic : 0
Optimizer - hotstart : no
ITER DEGITER(%) PFEAS DFEAS POBJ DOBJ ␣
→˓ TIME TOTTIME
0 0.00 1.43e+05 NA 6.5584140832e+03 NA ␣
→˓ 0.00 0.02
1000 1.10 0.00e+00 NA 1.4588289726e+04 NA ␣
→˓ 0.13 0.14
2000 0.75 0.00e+00 NA 7.3705564855e+03 NA ␣
→˓ 0.21 0.22
3000 0.67 0.00e+00 NA 6.0509727712e+03 NA ␣
→˓ 0.29 0.31
4000 0.52 0.00e+00 NA 5.5771203906e+03 NA ␣
→˓ 0.38 0.39
4533 0.49 0.00e+00 NA 5.5018458883e+03 NA ␣
→˓ 0.42 0.44

The first lines summarize the problem the optimizer is solving. This is followed by the iteration log,
with the following meaning:

• ITER: Number of iterations.

• DEGITER(%): Ratio of degenerate iterations.

• PFEAS: Primal feasibility measure reported by the simplex optimizer. The numbers should be 0 if
the problem is primal feasible (when the primal variant is used).

• DFEAS: Dual feasibility measure reported by the simplex optimizer. The number should be 0 if the
problem is dual feasible (when the dual variant is used).

• POBJ: An estimate for the primal objective value (when the primal variant is used).

• DOBJ: An estimate for the dual objective value (when the dual variant is used).

• TIME: Time spent since this instance of the simplex optimizer was invoked (in seconds).

• TOTTIME: Time spent since optimization started (in seconds).
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13.3 Conic Optimization - Interior-point optimizer

For conic optimization problems only an interior-point type optimizer is available.

13.3.1 The homogeneous primal-dual problem
The interior-point optimizer is an implementation of the so-called homogeneous and self-dual algorithm.
For a detailed description of the algorithm, please see [ART03]. In order to keep our discussion simple
we will assume that MOSEK solves a conic optimization problem of the form:

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ∈ 𝒦
(13.6)

where 𝐾 is a convex cone. The corresponding dual problem is

maximize 𝑏𝑇 𝑦
subject to 𝐴𝑇 𝑦 + 𝑠 = 𝑐,

𝑠 ∈ 𝒦*
(13.7)

where 𝒦* is the dual cone of 𝒦. See Sec. 12.2 for definitions.
Since it is not known beforehand whether problem (13.6) has an optimal solution, is primal infeasible

or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason
that MOSEK solves the so-called homogeneous model

𝐴𝑥− 𝑏𝜏 = 0,
𝐴𝑇 𝑦 + 𝑠− 𝑐𝜏 = 0,

−𝑐𝑇𝑥 + 𝑏𝑇 𝑦 − 𝜅 = 0,
𝑥 ∈ 𝒦,
𝑠 ∈ 𝒦*,

𝜏, 𝜅 ≥ 0,

(13.8)

where 𝑦 and 𝑠 correspond to the dual variables in (13.6), and 𝜏 and 𝜅 are two additional scalar variables.
Note that the homogeneous model (13.8) always has a solution since

(𝑥, 𝑦, 𝑠, 𝜏, 𝜅) = (0, 0, 0, 0, 0)

is a solution, although not a very interesting one. Any solution

(𝑥*, 𝑦*, 𝑠*, 𝜏*, 𝜅*)

to the homogeneous model (13.8) satisfies

(𝑥*)𝑇 𝑠* + 𝜏*𝜅* = 0

i.e. complementarity. Observe that 𝑥* ∈ 𝒦 and 𝑠* ∈ 𝒦* implies

(𝑥*)𝑇 𝑠* ≥ 0

and therefore

𝜏*𝜅* = 0.

since 𝜏*, 𝜅* ≥ 0. Hence, at least one of 𝜏* and 𝜅* is zero.
First, assume that 𝜏* > 0 and hence 𝜅* = 0. It follows that

𝐴𝑥*

𝜏* = 𝑏,

𝐴𝑇 𝑦*

𝜏* + 𝑠*

𝜏* = 𝑐,

−𝑐𝑇 𝑥*

𝜏* + 𝑏𝑇 𝑦*

𝜏* = 0,
𝑥*/𝜏* ∈ 𝒦,
𝑠*/𝜏* ∈ 𝒦*.
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This shows that 𝑥*

𝜏* is a primal optimal solution and ( 𝑦*

𝜏* ,
𝑠*

𝜏* ) is a dual optimal solution; this is reported
as the optimal interior-point solution since

(𝑥, 𝑦, 𝑠) =

(︂
𝑥*

𝜏*
,
𝑦*

𝜏*
,
𝑠*

𝜏*

)︂
is a primal-dual optimal solution.

On other hand, if 𝜅* > 0 then

𝐴𝑥* = 0,
𝐴𝑇 𝑦* + 𝑠* = 0,

−𝑐𝑇𝑥* + 𝑏𝑇 𝑦* = 𝜅*,
𝑥* ∈ 𝒦,
𝑠* ∈ 𝒦*.

This implies that at least one of

𝑐𝑇𝑥* < 0 (13.9)

or

𝑏𝑇 𝑦* > 0 (13.10)

holds. If (13.9) is satisfied, then 𝑥* is a certificate of dual infeasibility, whereas if (13.10) holds then 𝑦*

is a certificate of primal infeasibility.
In summary, by computing an appropriate solution to the homogeneous model, all information re-

quired for a solution to the original problem is obtained. A solution to the homogeneous model can be
computed using a primal-dual interior-point algorithm [And09].

13.3.2 Interior-point Termination Criterion
Since computations are performed in finite precision, and for efficiency reasons, it is not possible to solve
the homogeneous model exactly in general. Hence, an exact optimal solution or an exact infeasibility
certificate cannot be computed and a reasonable termination criterion has to be employed.

In every iteration 𝑘 of the interior-point algorithm a trial solution

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘)

to the homogeneous model is generated, where

𝑥𝑘 ∈ 𝒦, 𝑠𝑘 ∈ 𝒦*, 𝜏𝑘, 𝜅𝑘 > 0.

Therefore, it is possible to compute the values:

𝜌𝑘𝑝 = arg min𝜌

{︁
𝜌 |
⃦⃦⃦
𝐴𝑥𝑘

𝜏𝑘 − 𝑏
⃦⃦⃦
∞

≤ 𝜌𝜀𝑝(1 + ‖𝑏‖∞)
}︁
,

𝜌𝑘𝑑 = arg min𝜌

{︁
𝜌 |
⃦⃦⃦
𝐴𝑇 𝑦𝑘

𝜏𝑘 + 𝑠𝑘

𝜏𝑘 − 𝑐
⃦⃦⃦
∞

≤ 𝜌𝜀𝑑(1 + ‖𝑐‖∞)
}︁
,

𝜌𝑘𝑔 = arg min𝜌

{︂
𝜌 |
(︁

(𝑥𝑘)𝑇 𝑠𝑘

(𝜏𝑘)2
, | 𝑐

𝑇 𝑥𝑘

𝜏𝑘 − 𝑏𝑇 𝑦𝑘

𝜏𝑘 |
)︁
≤ 𝜌𝜀𝑔 max

(︂
1,

min(|𝑐𝑇 𝑥𝑘|,|𝑏𝑇 𝑦𝑘|)
𝜏𝑘

)︂}︂
,

𝜌𝑘𝑝𝑖 = arg min𝜌

{︀
𝜌 |
⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘

⃦⃦
∞ ≤ 𝜌𝜀𝑖𝑏

𝑇 𝑦𝑘, 𝑏𝑇 𝑦𝑘 > 0
}︀

and
𝜌𝑘𝑑𝑖 = arg min𝜌

{︀
𝜌 |
⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ ≤ −𝜌𝜀𝑖𝑐

𝑇𝑥𝑘, 𝑐𝑇𝑥𝑘 < 0
}︀
.

Note 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖 are nonnegative user specified tolerances.

Optimal Case

Observe 𝜌𝑘𝑝 measures how far 𝑥𝑘/𝜏𝑘 is from being a good approximate primal feasible solution. Indeed
if 𝜌𝑘𝑝 ≤ 1, then ⃦⃦⃦⃦

𝐴
𝑥𝑘

𝜏𝑘
− 𝑏

⃦⃦⃦⃦
∞

≤ 𝜀𝑝(1 + ‖𝑏‖∞). (13.11)
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This shows the violations in the primal equality constraints for the solution 𝑥𝑘/𝜏𝑘 is small compared to
the size of 𝑏 given 𝜀𝑝 is small.

Similarly, if 𝜌𝑘𝑑 ≤ 1, then (𝑦𝑘, 𝑠𝑘)/𝜏𝑘 is an approximate dual feasible solution. If in addition 𝜌𝑔 ≤ 1,
then the solution (𝑥𝑘, 𝑦𝑘, 𝑠𝑘)/𝜏𝑘 is approximate optimal because the associated primal and dual objective
values are almost identical.

In other words if max(𝜌𝑘𝑝, 𝜌
𝑘
𝑑, 𝜌

𝑘
𝑔) ≤ 1, then

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘)

𝜏𝑘

is an approximate optimal solution.

Dual Infeasibility Certificate

Next assume that 𝜌𝑘𝑑𝑖 ≤ 1 and hence⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ ≤ −𝜀𝑖𝑐

𝑇𝑥𝑘 and − 𝑐𝑇𝑥𝑘 > 0

holds. Now in this case the problem is declared dual infeasible and 𝑥𝑘 is reported as a certificate of dual
infeasibility. The motivation for this stopping criterion is as follows. Let

𝑥̄ :=
𝑥𝑘

−𝑐𝑇𝑥𝑘

and it is easy to verify that

‖𝐴𝑥̄‖∞ ≤ 𝜀𝑖 and 𝑐𝑇 𝑥̄ = −1

which shows 𝑥̄ is an approximate certificate of dual infeasibility, where 𝜀𝑖 controls the quality of the
approximation.

Primal Infeasiblity Certificate

Next assume that 𝜌𝑘𝑝𝑖 ≤ 1 and hence⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘

⃦⃦
∞ ≤ 𝜀𝑖𝑏

𝑇 𝑦𝑘 and 𝑏𝑇 𝑦𝑘 > 0

holds. Now in this case the problem is declared primal infeasible and (𝑦𝑘, 𝑠𝑘) is reported as a certificate
of primal infeasibility. The motivation for this stopping criterion is as follows. Let

𝑦 :=
𝑦𝑘

𝑏𝑇 𝑦𝑘
and 𝑠 :=

𝑠𝑘

𝑏𝑇 𝑦𝑘

and it is easy to verify that ⃦⃦
𝐴𝑇 𝑦 + 𝑠

⃦⃦
∞ ≤ 𝜀𝑖 and 𝑏𝑇 𝑦 = 1

which shows (𝑦𝑘, 𝑠𝑘) is an approximate certificate of dual infeasibility, where 𝜀𝑖 controls the quality of
the approximation.

13.3.3 Adjusting optimality criteria
It is possible to adjust the tolerances 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖 using parameters; see table for details.

Table 13.2: Parameters employed in termination criterion
ToleranceParameter name
𝜀𝑝 MSK_DPAR_INTPNT_CO_TOL_PFEAS
𝜀𝑑 MSK_DPAR_INTPNT_CO_TOL_DFEAS
𝜀𝑔 MSK_DPAR_INTPNT_CO_TOL_REL_GAP
𝜀𝑖 MSK_DPAR_INTPNT_CO_TOL_INFEAS
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The default values of the termination tolerances are chosen such that for a majority of problems
appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the
tolerances usually is not worthwhile. However, an inspection of (13.11) reveals that the quality of the
solution depends on ‖𝑏‖∞ and ‖𝑐‖∞; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal
and dual feasibility at the same rate [And09]. This means that if the optimizer is stopped prematurely
then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that
in most cases all the tolerances, 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖, have to be relaxed together to achieve an effect.

If the optimizer terminates without locating a solution that satisfies the termination crite-
ria, for example because of a stall or other numerical issues, then it will check if the solution
found up to that point satisfies the same criteria with all tolerances multiplied by the value of
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL . If this is the case, the solution is still declared as optimal.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

13.3.4 The Interior-point Log
Below is a typical log output from the interior-point optimizer:

Optimizer - threads : 20
Optimizer - solved problem : the primal
Optimizer - Constraints : 1
Optimizer - Cones : 2
Optimizer - Scalar variables : 6 conic : 6
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 1 after factor : 1
Factor - dense dim. : 0 flops : 1.
→˓70e+01
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU ␣
→˓ TIME
0 1.0e+00 2.9e-01 3.4e+00 0.00e+00 2.414213562e+00 0.000000000e+00 1.0e+00␣
→˓ 0.01
1 2.7e-01 7.9e-02 2.2e+00 8.83e-01 6.969257574e-01 -9.685901771e-03 2.7e-01␣
→˓ 0.01
2 6.5e-02 1.9e-02 1.2e+00 1.16e+00 7.606090061e-01 6.046141322e-01 6.5e-02␣
→˓ 0.01
3 1.7e-03 5.0e-04 2.2e-01 1.12e+00 7.084385672e-01 7.045122560e-01 1.7e-03␣
→˓ 0.01
4 1.4e-08 4.2e-09 4.9e-08 1.00e+00 7.071067941e-01 7.071067599e-01 1.4e-08␣
→˓ 0.01

The first line displays the number of threads used by the optimizer and the second line indicates if
the optimizer chose to solve the primal or dual problem (see MSK_IPAR_INTPNT_SOLVE_FORM ). The next
lines display the problem dimensions as seen by the optimizer, and the Factor... lines show various
statistics. This is followed by the iteration log.

Using the same notation as in Sec. 13.3.1 the columns of the iteration log have the following meaning:

• ITE: Iteration index 𝑘.

• PFEAS:
⃦⃦
𝐴𝑥𝑘 − 𝑏𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards zero

but may stall at low level due to rounding errors.

• DFEAS:
⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘 − 𝑐𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards

zero but may stall at low level due to rounding errors.

• GFEAS: |− 𝑐𝑇𝑥𝑘 + 𝑏𝑇 𝑦𝑘 −𝜅𝑘| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

• PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to −1 if that is not the case.
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• POBJ: 𝑐𝑇𝑥𝑘/𝜏𝑘. An estimate for the primal objective value.

• DOBJ: 𝑏𝑇 𝑦𝑘/𝜏𝑘. An estimate for the dual objective value.

• MU: (𝑥𝑘)𝑇 𝑠𝑘+𝜏𝑘𝜅𝑘

𝑛+1 . The numbers in this column should always converge to zero.

• TIME: Time spent since the optimization started (in seconds).

13.4 The Optimizer for Mixed-integer Problems

A problem is a mixed-integer optimization problem when one or more of the variables are constrained
to be integer valued. Readers unfamiliar with integer optimization are recommended to consult some
relevant literature, e.g. the book [Wol98] by Wolsey.

13.4.1 The Mixed-integer Optimizer Overview
MOSEK can solve mixed-integer

• linear,

• quadratic and quadratically constrained, and

• conic

problems, except for mixed-integer semidefinite problems. The mixed-integer optimizer is special-
ized for solving linear and conic optimization problems. Pure quadratic and quadratically constrained
problems are automatically converted to conic form.

By default the mixed-integer optimizer is run-to-run deterministic. This means that if a problem is
solved twice on the same computer with identical parameter settings and no time limit then the obtained
solutions will be identical. If a time limit is set then this may not be case since the time taken to solve
a problem is not deterministic. The mixed-integer optimizer is parallelized i.e. it can exploit multiple
cores during the optimization.

The solution process can be split into these phases:

1. Presolve: See Sec. 13.1.

2. Cut generation: Valid inequalities (cuts) are added to improve the lower bound.

3. Heuristic: Using heuristics the optimizer tries to guess a good feasible solution. Heuristics can
be controlled by the parameter MSK_IPAR_MIO_HEURISTIC_LEVEL .

4. Search: The optimal solution is located by branching on integer variables.

13.4.2 Relaxations and bounds
It is important to understand that, in a worst-case scenario, the time required to solve integer opti-
mization problems grows exponentially with the size of the problem (solving mixed-integer problems is
NP-hard). For instance, a problem with 𝑛 binary variables, may require time proportional to 2𝑛 . The
value of 2𝑛 is huge even for moderate values of 𝑛.

In practice this implies that the focus should be on computing a near-optimal solution quickly rather
than on locating an optimal solution. Even if the problem is only solved approximately, it is important
to know how far the approximate solution is from an optimal one. In order to say something about the
quality of an approximate solution the concept of relaxation is important.

Consider for example a mixed-integer optimization problem

𝑧* = minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ 0
𝑥𝑗 ∈ Z, ∀𝑗 ∈ 𝒥 .

(13.12)

132



It has the continuous relaxation

𝑧 = minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ 0
(13.13)

obtained simply by ignoring the integrality restrictions. The relaxation is a continuous problem, and
therefore much faster to solve to optimality with a linear (or, in the general case, conic) optimizer.
We call the optimal value 𝑧 the objective bound. The objective bound 𝑧 normally increases during the
solution search process when the continuous relaxation is gradually refined.

Moreover, if 𝑥̂ is any feasible solution to (13.12) and

𝑧 := 𝑐𝑇 𝑥̂

then

𝑧 ≤ 𝑧* ≤ 𝑧.

These two inequalities allow us to estimate the quality of the integer solution: it is no further away from
the optimum than 𝑧 − 𝑧 in terms of the objective value. Whenever a mixed-integer problem is solved
MOSEK reports this lower bound so that the quality of the reported solution can be evaluated.

13.4.3 Outer approximation for mixed-integer conic problems
The relaxations of mixed integer conic problems can be solved either as a nonlinear problem with the
interior point algorithm (default) or with a linear outer approximation algorithm. The type of relaxation
used can be set with MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION . The best value for this option is
highly problem dependent.

13.4.4 Randomization
A number of internal algorithms of the mixed-integer solver are dependend on random tie-breaking. The
random tie-breaking can have a significant impact on the path taken by the algorithm and the optimal
solution returned. The random seed can be set with the parameter MSK_IPAR_MIO_SEED .

13.4.5 Termination Criterion
In general, it is time consuming to find an exact feasible and optimal solution to an integer optimization
problem, though in many practical cases it may be possible to find a sufficiently good solution. The issue
of terminating the mixed-integer optimizer is rather delicate and the user has numerous possibilities of
influencing it with various parameters. The mixed-integer optimizer employs a relaxed feasibility and
optimality criterion to determine when a satisfactory solution is located.

A candidate solution that is feasible for the continuous relaxation is said to be an integer feasible
solution if the criterion

min(𝑥𝑗 − ⌊𝑥𝑗⌋, ⌈𝑥𝑗⌉ − 𝑥𝑗) ≤ 𝛿1 ∀𝑗 ∈ 𝒥

is satisfied, meaning that 𝑥𝑗 is at most 𝛿1 from the nearest integer.
Whenever the integer optimizer locates an integer feasible solution it will check if the criterion

𝑧 − 𝑧 ≤ max(𝛿2, 𝛿3 max(𝛿4, |𝑧|))

is satisfied. If this is the case, the integer optimizer terminates and reports the integer feasible solution
as an optimal solution.

All the 𝛿 tolerances discussed above can be adjusted using suitable parameters — see Table 13.3.

Table 13.3: Tolerances for the mixed-integer optimizer.
Tolerance Parameter name
𝛿1 MSK_DPAR_MIO_TOL_ABS_RELAX_INT
𝛿2 MSK_DPAR_MIO_TOL_ABS_GAP
𝛿3 MSK_DPAR_MIO_TOL_REL_GAP
𝛿4 MSK_DPAR_MIO_REL_GAP_CONST
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In Table 13.4 some other common parameters affecting the integer optimizer termination criterion
are shown.

Table 13.4: Other parameters affecting the integer optimizer ter-
mination criterion.

Parameter name Explanation
MSK_IPAR_MIO_MAX_NUM_BRANCHES Maximum number of branches allowed.
MSK_IPAR_MIO_MAX_NUM_RELAXS Maximum number of relaxations allowed.
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS Maximum number of feasible integer solutions allowed.

13.4.6 Speeding Up the Solution Process
As mentioned previously, in many cases it is not possible to find an optimal solution to an integer
optimization problem in a reasonable amount of time. Some suggestions to reduce the solution time are:

• Relax the termination criterion: In case the run time is not acceptable, the first thing to do is to
relax the termination criterion — see Sec. 13.4.5 for details.

• Specify a good initial solution: In many cases a good feasible solution is either known or easily
computed using problem-specific knowledge. If a good feasible solution is known, it is usually
worthwhile to use this as a starting point for the integer optimizer. See Sec. 6.9.2.

• Improve the formulation: A mixed-integer optimization problem may be impossible to solve in one
form and quite easy in another form. However, it is beyond the scope of this manual to discuss good
formulations for mixed-integer problems. For discussions on this topic see for example [Wol98].

13.4.7 Understanding Solution Quality
To determine the quality of the solution one should check the following:

• The problem status and solution status returned by MOSEK, as well as constraint violations in
case of suboptimal solutions.

• The optimality gap defined as

𝜖 = |(objective value of feasible solution) − (objective bound)| = |𝑧 − 𝑧|.

which measures how much the located solution can deviate from the optimal solution
to the problem. The optimality gap can be retrieved through the information item
"MSK_DINF_MIO_OBJ_ABS_GAP" . Often it is more meaningful to look at the relative optimality
gap normalized against the magnitude of the solution.

𝜖rel =
|𝑧 − 𝑧|

max(𝛿4, |𝑧|)
.

The relative optimality gap is available in the information item "MSK_DINF_MIO_OBJ_REL_GAP" .

13.4.8 The Mixed-integer Log
Below is a typical log output from the mixed-integer optimizer:

Presolved problem: 6573 variables, 35728 constraints, 101258 non-zeros
Presolved problem: 0 general integer, 4294 binary, 2279 continuous
Clique table size: 1636
BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_OBJ BEST_RELAX_OBJ REL_GAP(
→˓%) TIME
0 1 0 0 NA 1.8218819866e+07 NA ␣
→˓ 1.6
0 1 0 0 1.8331557950e+07 1.8218819866e+07 0.61 ␣
→˓ 3.5

(continues on next page)
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0 1 0 0 1.8300507546e+07 1.8218819866e+07 0.45 ␣
→˓ 4.3
Cut generation started.
0 2 0 0 1.8300507546e+07 1.8218819866e+07 0.45 ␣
→˓ 5.3
Cut generation terminated. Time = 1.43
0 3 0 0 1.8286893047e+07 1.8231580587e+07 0.30 ␣
→˓ 7.5
15 18 1 0 1.8286893047e+07 1.8231580587e+07 0.30 ␣
→˓ 10.5
31 34 1 0 1.8286893047e+07 1.8231580587e+07 0.30 ␣
→˓ 11.1
51 54 1 0 1.8286893047e+07 1.8231580587e+07 0.30 ␣
→˓ 11.6
91 94 1 0 1.8286893047e+07 1.8231580587e+07 0.30 ␣
→˓ 12.4
171 174 1 0 1.8286893047e+07 1.8231580587e+07 0.30 ␣
→˓ 14.3
331 334 1 0 1.8286893047e+07 1.8231580587e+07 0.30 ␣
→˓ 17.9

[ ... ]

Objective of best integer solution : 1.825846762609e+07
Best objective bound : 1.823311032986e+07
Construct solution objective : Not employed
Construct solution # roundings : 0
User objective cut value : 0
Number of cuts generated : 117

Number of Gomory cuts : 108
Number of CMIR cuts : 9

Number of branches : 4425
Number of relaxations solved : 4410
Number of interior point iterations: 25
Number of simplex iterations : 221131

The first lines contain a summary of the problem as seen by the optimizer. This is followed by the
iteration log. The columns have the following meaning:

• BRANCHES: Number of branches generated.

• RELAXS: Number of relaxations solved.

• ACT_NDS: Number of active branch bound nodes.

• DEPTH: Depth of the recently solved node.

• BEST_INT_OBJ: The best integer objective value, 𝑧.

• BEST_RELAX_OBJ: The best objective bound, 𝑧.

• REL_GAP(%): Relative optimality gap, 100% · 𝜖rel

• TIME: Time (in seconds) from the start of optimization.

Following that a summary of the optimization process is printed.

135



Chapter 14

Additional features

In this section we describe additional features and tools which enable more detailed analysis of optimiza-
tion problems with MOSEK.

14.1 Problem Analyzer

The problem analyzer prints a survey of the structure of the problem, with information about linear
constraints and objective, quadratic constraints, conic constraints and variables.

In the initial stages of model formulation the problem analyzer may be used as a quick way of
verifying that the model has been built or imported correctly. In later stages it can help revealing special
structures within the model that may be used to tune the optimizer’s performance or to identify the
causes of numerical difficulties.

The problem analyzer is run using the mosekopt (’anapro’) command and produces output similar
to the following (this is the problem analyzer’s survey of the aflow30a problem from the MIPLIB 2003
collection).

Analyzing the problem

*** Structural report
Dimensions
Constraints Variables Matrix var. Cones
479 842 0 0

Constraint and bound types
Free Lower Upper Ranged Fixed

Constraints: 0 0 421 0 58
Variables: 0 0 0 842 0

Integer constraint types
Binary General
421 0

*** Data report
Nonzeros Min Max

|cj|: 421 1.1e+01 5.0e+02
|Aij|: 2091 1.0e+00 1.0e+02

# finite Min Max
|blci|: 58 1.0e+00 1.0e+01
|buci|: 479 0.0e+00 1.0e+01
|blxj|: 842 0.0e+00 0.0e+00
|buxj|: 842 1.0e+00 1.0e+02

(continues on next page)
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*** Done analyzing the problem

The survey is divided into a structural and numerical report. The content should be self-explanatory.

14.2 Automatic Repair of Infeasible Problems

MOSEK provides an automatic repair tool for infeasible linear problems which we cover in this section.
Note that most infeasible models are so due to bugs which can (and should) be more reliably fixed
manually, using the knowledge of the model structure. We discuss this approach in Sec. 8.3.

14.2.1 Automatic repair
The main idea can be described as follows. Consider the linear optimization problem with 𝑚 constraints
and 𝑛 variables

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

which is assumed to be infeasible.
One way of making the problem feasible is to reduce the lower bounds and increase the upper bounds.

If the change is sufficiently large the problem becomes feasible. Now an obvious idea is to compute the
optimal relaxation by solving an optimization problem. The problem

minimize 𝑝(𝑣𝑐𝑙 , 𝑣
𝑐
𝑢, 𝑣

𝑥
𝑙 , 𝑣

𝑥
𝑢)

subject to 𝑙𝑐 − 𝑣𝑐𝑙 ≤ 𝐴𝑥 ≤ 𝑢𝑐 + 𝑣𝑐𝑢,
𝑙𝑥 − 𝑣𝑥𝑙 ≤ 𝑥 ≤ 𝑢𝑥 + 𝑣𝑥𝑢,

𝑣𝑐𝑙 , 𝑣
𝑐
𝑢, 𝑣

𝑥
𝑙 , 𝑣

𝑥
𝑢 ≥ 0

(14.1)

does exactly that. The additional variables (𝑣𝑐𝑙 )𝑖, (𝑣𝑐𝑢)𝑖, (𝑣𝑥𝑙 )𝑗 and (𝑣𝑐𝑢)𝑗 are elasticity variables because
they allow a constraint to be violated and hence add some elasticity to the problem. For instance, the
elasticity variable (𝑣𝑐𝑙 )𝑖 controls how much the lower bound (𝑙𝑐)𝑖 should be relaxed to make the problem
feasible. Finally, the so-called penalty function

𝑝(𝑣𝑐𝑙 , 𝑣
𝑐
𝑢, 𝑣

𝑥
𝑙 , 𝑣

𝑥
𝑢)

is chosen so it penalizes changes to bounds. Given the weights

• 𝑤𝑐
𝑙 ∈ R𝑚 (associated with 𝑙𝑐 ),

• 𝑤𝑐
𝑢 ∈ R𝑚 (associated with 𝑢𝑐 ),

• 𝑤𝑥
𝑙 ∈ R𝑛 (associated with 𝑙𝑥 ),

• 𝑤𝑥
𝑢 ∈ R𝑛 (associated with 𝑢𝑥 ),

a natural choice is

𝑝(𝑣𝑐𝑙 , 𝑣
𝑐
𝑢, 𝑣

𝑥
𝑙 , 𝑣

𝑥
𝑢) = (𝑤𝑐

𝑙 )
𝑇 𝑣𝑐𝑙 + (𝑤𝑐

𝑢)𝑇 𝑣𝑐𝑢 + (𝑤𝑥
𝑙 )𝑇 𝑣𝑥𝑙 + (𝑤𝑥

𝑢)𝑇 𝑣𝑥𝑢.

Hence, the penalty function 𝑝() is a weighted sum of the elasticity variables and therefore the problem
(14.1) keeps the amount of relaxation at a minimum. Please observe that

• the problem (14.1) is always feasible.

• a negative weight implies problem (14.1) is unbounded. For this reason if the value of a weight is
negative MOSEK fixes the associated elasticity variable to zero. Clearly, if one or more of the
weights are negative, it may imply that it is not possible to repair the problem.

A simple choice of weights is to set them all to 1, but of course that does not take into account that
constraints may have different importance.
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Caveats

Observe if the infeasible problem

minimize 𝑥 + 𝑧
subject to 𝑥 = −1,

𝑥 ≥ 0

is repaired then it will become unbounded. Hence, a repaired problem may not have an optimal solution.
Another and more important caveat is that only a minimal repair is performed i.e. the repair that

barely makes the problem feasible. Hence, the repaired problem is barely feasible and that sometimes
makes the repaired problem hard to solve.

Using the automatic repair tool

In this subsection we consider an infeasible linear optimization example:

minimize −10𝑥1 −9𝑥2,
subject to 7/10𝑥1 + 1𝑥2 ≤ 630,

1/2𝑥1 + 5/6𝑥2 ≤ 600,
1𝑥1 + 2/3𝑥2 ≤ 708,

1/10𝑥1 + 1/4𝑥2 ≤ 135,
𝑥1, 𝑥2 ≥ 0,

𝑥2 ≥ 650.

(14.2)

The code following code will form the repaired problem and solve it.

Listing 14.1: An example of feasibility repair applied to problem
(14.2).

function feasrepairex1(inputfile)

cmd = sprintf('read(%s)', inputfile);
[r,res]=mosekopt(cmd);

res.prob.primalrepair = [];
res.prob.primalrepair.wux = [1,1];
res.prob.primalrepair.wlx = [1,1];
res.prob.primalrepair.wuc = [1,1,1,1];
res.prob.primalrepair.wlc = [1,1,1,1];

param.MSK_IPAR_LOG_FEAS_REPAIR = 3;
[r,res]=mosekopt('minimize primalrepair',res.prob,param);
fprintf('Return code: %d\n',r);

end

The parameter MSK_IPAR_LOG_FEAS_REPAIR controls the amount of log output from the repair. A
value of 2 causes the optimal repair to printed out. If the fields wlx, wux, wlc or wuc are not specified,
they are all assumed to be 1-vectors of appropriate dimensions.

The above code will produce the following log report:

MOSEK Version 9.0.0.25(ALPHA) (Build date: 2017-11-7 16:11:50)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86

Open file 'feasrepair.lp'
Reading started.
Reading terminated. Time: 0.00

(continues on next page)
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Read summary
Type : LO (linear optimization problem)
Objective sense : min
Scalar variables : 2
Matrix variables : 0
Constraints : 4
Cones : 0
Time : 0.0

Problem
Name :
Objective sense : min
Type : LO (linear optimization problem)
Constraints : 4
Cones : 0
Scalar variables : 2
Matrix variables : 0
Integer variables : 0

Primal feasibility repair started.
Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 2
Eliminator terminated.
Eliminator - tries : 1 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem

Name :
Objective sense : min
Type : LO (linear optimization problem)
Constraints : 8
Cones : 0
Scalar variables : 14
Matrix variables : 0
Integer variables : 0

Optimizer - threads : 20
Optimizer - solved problem : the primal
Optimizer - Constraints : 2
Optimizer - Cones : 0
Optimizer - Scalar variables : 5 conic : 0
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 3 after factor : 3
Factor - dense dim. : 0 flops : 5.
→˓00e+01
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU ␣
→˓ TIME
0 2.7e+01 1.0e+00 4.0e+00 1.00e+00 3.000000000e+00 0.000000000e+00 1.0e+00␣
→˓ 0.00

(continues on next page)
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1 2.5e+01 9.1e-01 1.4e+00 0.00e+00 8.711262850e+00 1.115287830e+01 2.4e+00␣
→˓ 0.00
2 2.4e+00 8.8e-02 1.4e-01 -7.33e-01 4.062505701e+01 4.422203730e+01 2.3e-01␣
→˓ 0.00
3 9.4e-02 3.4e-03 5.5e-03 1.33e+00 4.250700434e+01 4.258548510e+01 9.1e-03␣
→˓ 0.00
4 2.0e-05 7.2e-07 1.1e-06 1.02e+00 4.249996599e+01 4.249998669e+01 1.9e-06␣
→˓ 0.00
5 2.0e-09 7.2e-11 1.1e-10 1.00e+00 4.250000000e+01 4.250000000e+01 1.9e-10␣
→˓ 0.00
Basis identification started.
Basis identification terminated. Time: 0.00
Optimizer terminated. Time: 0.01

Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 4.2500000000e+01 nrm: 6e+02 Viol. con: 1e-13 var: 0e+00
Dual. obj: 4.2499999999e+01 nrm: 2e+00 Viol. con: 0e+00 var: 9e-11

Optimal objective value of the penalty problem: 4.250000000000e+01

Repairing bounds.
Increasing the upper bound 1.35e+02 on constraint 'c4' (3) with 2.25e+01.
Decreasing the lower bound 6.50e+02 on variable 'x2' (4) with 2.00e+01.
Primal feasibility repair terminated.
Optimizer started.
Optimizer terminated. Time: 0.00

Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -5.6700000000e+03 nrm: 6e+02 Viol. con: 0e+00 var: 0e+00
Dual. obj: -5.6700000000e+03 nrm: 1e+01 Viol. con: 0e+00 var: 0e+00

Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -5.6700000000e+03 nrm: 6e+02 Viol. con: 0e+00 var: 0e+00
Dual. obj: -5.6700000000e+03 nrm: 1e+01 Viol. con: 0e+00 var: 0e+00

Optimizer summary
Optimizer - time: 0.00

Interior-point - iterations : 0 time: 0.00
Basis identification - time: 0.00

Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00

Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00

Mixed integer - relaxations: 0 time: 0.00

It will also modify the task according to the optimal elasticity variables found. In this case the
optimal repair it is to increase the upper bound on constraint c4 by 22.5 and decrease the lower bound
on variable x2 by 20.
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14.3 Sensitivity Analysis

Given an optimization problem it is often useful to obtain information about how the optimal objective
value changes when the problem parameters are perturbed. E.g, assume that a bound represents the
capacity of a machine. Now, it may be possible to expand the capacity for a certain cost and hence it is
worthwhile knowing what the value of additional capacity is. This is precisely the type of questions the
sensitivity analysis deals with.

Analyzing how the optimal objective value changes when the problem data is changed is called
sensitivity analysis.

References

The book [Chvatal83] discusses the classical sensitivity analysis in Chapter 10 whereas the book [RTV97]
presents a modern introduction to sensitivity analysis. Finally, it is recommended to read the short paper
[Wal00] to avoid some of the pitfalls associated with sensitivity analysis.

Warning: Currently, sensitivity analysis is only available for continuous linear optimization
problems. Moreover, MOSEK can only deal with perturbations of bounds and objective function
coefficients.

14.3.1 Sensitivity Analysis for Linear Problems

The Optimal Objective Value Function

Assume that we are given the problem

𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥, 𝑐) = minimize 𝑐𝑇𝑥
subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,
(14.3)

and we want to know how the optimal objective value changes as 𝑙𝑐𝑖 is perturbed. To answer this question
we define the perturbed problem for 𝑙𝑐𝑖 as follows

𝑓𝑙𝑐𝑖 (𝛽) = minimize 𝑐𝑇𝑥
subject to 𝑙𝑐 + 𝛽𝑒𝑖 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

where 𝑒𝑖 is the 𝑖-th column of the identity matrix. The function

𝑓𝑙𝑐𝑖 (𝛽) (14.4)

shows the optimal objective value as a function of 𝛽. Please note that a change in 𝛽 corresponds to a
perturbation in 𝑙𝑐𝑖 and hence (14.4) shows the optimal objective value as a function of varying 𝑙𝑐𝑖 with
the other bounds fixed.

It is possible to prove that the function (14.4) is a piecewise linear and convex function, i.e. its graph
may look like in Fig. 14.1 and Fig. 14.2.

Clearly, if the function 𝑓𝑙𝑐𝑖 (𝛽) does not change much when 𝛽 is changed, then we can conclude that
the optimal objective value is insensitive to changes in 𝑙𝑐𝑖 . Therefore, we are interested in the rate of
change in 𝑓𝑙𝑐𝑖 (𝛽) for small changes in 𝛽 — specifically the gradient

𝑓 ′
𝑙𝑐𝑖

(0),

which is called the shadow price related to 𝑙𝑐𝑖 . The shadow price specifies how the objective value changes
for small changes of 𝛽 around zero. Moreover, we are interested in the linearity interval

𝛽 ∈ [𝛽1, 𝛽2]

for which

𝑓 ′
𝑙𝑐𝑖

(𝛽) = 𝑓 ′
𝑙𝑐𝑖

(0).
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Fig. 14.1: 𝛽 = 0 is in the interior of linearity interval.
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Fig. 14.2: 𝛽 = 0 is a breakpoint.
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Since 𝑓𝑙𝑐𝑖 is not a smooth function 𝑓 ′
𝑙𝑐𝑖

may not be defined at 0, as illustrated in Fig. 14.2. In this case
we can define a left and a right shadow price and a left and a right linearity interval.

The function 𝑓𝑙𝑐𝑖 considered only changes in 𝑙𝑐𝑖 . We can define similar functions for the remaining
parameters of the 𝑧 defined in (14.3) as well:

𝑓𝑙𝑐𝑖 (𝛽) = 𝑧(𝑙𝑐 + 𝛽𝑒𝑖, 𝑢
𝑐, 𝑙𝑥, 𝑢𝑥, 𝑐), 𝑖 = 1, . . . ,𝑚,

𝑓𝑢𝑐
𝑖
(𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐 + 𝛽𝑒𝑖, 𝑙

𝑥, 𝑢𝑥, 𝑐), 𝑖 = 1, . . . ,𝑚,
𝑓𝑙𝑥𝑗 (𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥 + 𝛽𝑒𝑗 , 𝑢

𝑥, 𝑐), 𝑗 = 1, . . . , 𝑛,

𝑓𝑢𝑥
𝑗
(𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥 + 𝛽𝑒𝑗 , 𝑐), 𝑗 = 1, . . . , 𝑛,

𝑓𝑐𝑗 (𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥, 𝑐 + 𝛽𝑒𝑗), 𝑗 = 1, . . . , 𝑛.

Given these definitions it should be clear how linearity intervals and shadow prices are defined for the
parameters 𝑢𝑐

𝑖 etc.

Equality Constraints

In MOSEK a constraint can be specified as either an equality constraint or a ranged constraint. If
some constraint 𝑒𝑐𝑖 is an equality constraint, we define the optimal value function for this constraint as

𝑓𝑒𝑐𝑖 (𝛽) = 𝑧(𝑙𝑐 + 𝛽𝑒𝑖, 𝑢
𝑐 + 𝛽𝑒𝑖, 𝑙

𝑥, 𝑢𝑥, 𝑐)

Thus for an equality constraint the upper and the lower bounds (which are equal) are perturbed simul-
taneously. Therefore, MOSEK will handle sensitivity analysis differently for a ranged constraint with
𝑙𝑐𝑖 = 𝑢𝑐

𝑖 and for an equality constraint.

The Basis Type Sensitivity Analysis

The classical sensitivity analysis discussed in most textbooks about linear optimization, e.g. [Chvatal83],
is based on an optimal basis. This method may produce misleading results [RTV97] but is computation-
ally cheap. This is the type of sensitivity analysis implemented in MOSEK.

We will now briefly discuss the basis type sensitivity analysis. Given an optimal basic solution which
provides a partition of variables into basic and non-basic variables, the basis type sensitivity analysis
computes the linearity interval [𝛽1, 𝛽2] so that the basis remains optimal for the perturbed problem. A
shadow price associated with the linearity interval is also computed. However, it is well-known that an
optimal basic solution may not be unique and therefore the result depends on the optimal basic solution
employed in the sensitivity analysis. If the optimal objective value function has a breakpoint for 𝛽 = 0
then the basis type sensitivity method will only provide a subset of either the left or the right linearity
interval.

In summary, the basis type sensitivity analysis is computationally cheap but does not provide complete
information. Hence, the results of the basis type sensitivity analysis should be used with care.

Example: Sensitivity Analysis

As an example we will use the following transportation problem. Consider the problem of minimizing the
transportation cost between a number of production plants and stores. Each plant supplies a number of
goods and each store has a given demand that must be met. Supply, demand and cost of transportation
per unit are shown in Fig. 14.3.

If we denote the number of transported goods from location 𝑖 to location 𝑗 by 𝑥𝑖𝑗 , problem can be
formulated as the linear optimization problem of minimizing

1𝑥11 + 2𝑥12 + 5𝑥23 + 2𝑥24 + 1𝑥31 + 2𝑥33 + 1𝑥34

subject to

𝑥11 + 𝑥12 ≤ 400,
𝑥23 + 𝑥24 ≤ 1200,

𝑥31 + 𝑥33 + 𝑥34 ≤ 1000,
𝑥11 + 𝑥31 = 800,

𝑥12 = 100,
𝑥23 + 𝑥33 = 500,

𝑥24 + 𝑥34 = 500,
𝑥11, 𝑥12, 𝑥23, 𝑥24, 𝑥31, 𝑥33, 𝑥34 ≥ 0.

(14.5)
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Fig. 14.3: Supply, demand and cost of transportation.

The sensitivity parameters are shown in Table 14.1 and Table 14.2.

Table 14.1: Ranges and shadow prices related to bounds on con-
straints and variables.

Con. 𝛽1 𝛽2 𝜎1 𝜎2

1 −300.00 0.00 3.00 3.00
2 −700.00 +∞ 0.00 0.00
3 −500.00 0.00 3.00 3.00
4 −0.00 500.00 4.00 4.00
5 −0.00 300.00 5.00 5.00
6 −0.00 700.00 5.00 5.00
7 −500.00 700.00 2.00 2.00
Var. 𝛽1 𝛽2 𝜎1 𝜎2

𝑥11 −∞ 300.00 0.00 0.00
𝑥12 −∞ 100.00 0.00 0.00
𝑥23 −∞ 0.00 0.00 0.00
𝑥24 −∞ 500.00 0.00 0.00
𝑥31 −∞ 500.00 0.00 0.00
𝑥33 −∞ 500.00 0.00 0.00
𝑥34 −0.000000 500.00 2.00 2.00

Table 14.2: Ranges and shadow prices related to the objective co-
efficients.

Var. 𝛽1 𝛽2 𝜎1 𝜎2

𝑐1 −∞ 3.00 300.00 300.00
𝑐2 −∞ ∞ 100.00 100.00
𝑐3 −2.00 ∞ 0.00 0.00
𝑐4 −∞ 2.00 500.00 500.00
𝑐5 −3.00 ∞ 500.00 500.00
𝑐6 −∞ 2.00 500.00 500.00
𝑐7 −2.00 ∞ 0.00 0.00
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Examining the results from the sensitivity analysis we see that for constraint number 1 we have
𝜎1 = 3 and 𝛽1 = −300, 𝛽2 = 0.

If the upper bound on constraint 1 is decreased by

𝛽 ∈ [0, 300]

then the optimal objective value will increase by the value

𝜎1𝛽 = 3𝛽.

14.3.2 Sensitivity Analysis with MOSEK
The following describe sensitivity analysis from the MATLAB toolbox.

On bounds

The index of bounds/variables to analyzed for sensitivity are specified in the following subfields of the
MATLAB structure prob:

• .prisen.cons.subu Indexes of constraints, where upper bounds are analyzed for sensitivity.

• .prisen.cons.subl Indexes of constraints, where lower bounds are analyzed for sensitivity.

• .prisen.vars.subu Indexes of variables, where upper bounds are analyzed for sensitivity.

• .prisen.vars.subl Indexes of variables, where lower bounds are analyzed for sensitivity.

• .duasen.sub Index of variables where coefficients are analyzed for sensitivity.

For an equality constraint, the index can be specified in either subu or subl. After calling mosekopt
the results are returned in the subfields prisen and duasen of res.

prisen

The field prisen is structured as follows:

• .cons: a MATLAB structure with subfields:

– .lr_bl Left value 𝛽1 in the linearity interval for a lower bound.

– .rr_bl Right value 𝛽2 in the linearity interval for a lower bound.

– .ls_bl Left shadow price 𝑠𝑙 for a lower bound.

– .rs_bl Right shadow price 𝑠𝑟 for a lower bound.

– .lr_bu Left value 𝛽1 in the linearity interval for an upper bound.

– .rr_bu Right value 𝛽2 in the linearity interval for an upper bound.

– .ls_bu Left shadow price 𝑠𝑙 for an upper bound.

– .rs_bu Right shadow price 𝑠𝑟 for an upper bound.

• .var: MATLAB structure with subfields:

– .lr_bl Left value 𝛽1 in the linearity interval for a lower bound on a varable.

– .rr_bl Right value 𝛽2 in the linearity interval for a lower bound on a varable.

– .ls_bl Left shadow price 𝑠𝑙 for a lower bound on a varable.

– .rs_bl Right shadow price 𝑠𝑟 for lower bound on a varable.

– .lr_bu Left value 𝛽1 in the linearity interval for an upper bound on a varable.

– .rr_bu Right value 𝛽2 in the linearity interval for an upper bound on a varable.

– .ls_bu Left shadow price 𝑠𝑙 for an upper bound on a varables.

– .rs_bu Right shadow price 𝑠𝑟 for an upper bound on a varables.
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duasen

The field duasen is structured as follows:

• .lr_c Left value 𝛽1 of linearity interval for an objective coefficient.

• .rr_c Right value 𝛽2 of linearity interval for an objective coefficient.

• .ls_c Left shadow price 𝑠𝑙 for an objective coefficients .

• .rs_c Right shadow price 𝑠𝑟 for an objective coefficients.

Example

Consider the problem defined in (14.5). Suppose we wish to perform sensitivity analysis on all bounds
and coefficients. The following example demonstrates this as well as the method for changing between
basic and full sensitivity analysis.

Listing 14.2: A script to perform sensitivity analysis on problem
(14.5).

function sensitivity()

clear prob;

% Obtain all symbolic constants
% defined by MOSEK.
[r,res] = mosekopt('symbcon');
sc = res.symbcon;

prob.blc = [-Inf, -Inf, -Inf, 800,100,500,500];
prob.buc = [ 400, 1200, 1000, 800,100,500,500];
prob.c = [1.0,2.0,5.0,2.0,1.0,2.0,1.0]';
prob.blx = [0.0,0.0,0.0,0.0,0.0,0.0,0.0];
prob.bux = [Inf,Inf,Inf,Inf, Inf,Inf,Inf];

subi = [ 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 6, 6, 7, 7];
subj = [ 1, 2, 3, 4, 5, 6, 7, 1, 5, 6, 3, 6, 4, 7];
val = [1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0];

prob.a = sparse(subi,subj,val);

% analyse upper bound 1:7
prob.prisen.cons.subl = [];
prob.prisen.cons.subu = [1:7];
% analyse lower bound on variables 1:7
prob.prisen.vars.subl = [1:7];
prob.prisen.vars.subu = [];
% analyse coeficient 1:7
prob.duasen.sub = [1:7];
[r,res] = mosekopt('minimize echo(0)',prob);

%Print results

fprintf('\nBasis sensitivity results:\n')
fprintf('\nSensitivity for bounds on constraints:\n')
for i = 1:length(prob.prisen.cons.subl)

fprintf (...
'con = %d, beta_1 = %.1f, beta_2 = %.1f, delta_1 = %.1f,delta_2 = %.1f\n', ...
prob.prisen.cons.subl(i),res.prisen.cons.lr_bl(i), ...

(continues on next page)
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res.prisen.cons.rr_bl(i),...
res.prisen.cons.ls_bl(i),...
res.prisen.cons.rs_bl(i));

end

for i = 1:length(prob.prisen.cons.subu)
fprintf (...
'con = %d, beta_1 = %.1f, beta_2 = %.1f, delta_1 = %.1f,delta_2 = %.1f\n', ...
prob.prisen.cons.subu(i),res.prisen.cons.lr_bu(i), ...
res.prisen.cons.rr_bu(i),...
res.prisen.cons.ls_bu(i),...
res.prisen.cons.rs_bu(i));

end
fprintf('Sensitivity for bounds on variables:\n')
for i = 1:length(prob.prisen.vars.subl)
fprintf (...
'var = %d, beta_1 = %.1f, beta_2 = %.1f, delta_1 = %.1f,delta_2 = %.1f\n', ...
prob.prisen.vars.subl(i),res.prisen.vars.lr_bl(i), ...
res.prisen.vars.rr_bl(i),...
res.prisen.vars.ls_bl(i),...
res.prisen.vars.rs_bl(i));

end

for i = 1:length(prob.prisen.vars.subu)
fprintf (...
'var = %d, beta_1 = %.1f, beta_2 = %.1f, delta_1 = %.1f,delta_2 = %.1f\n', ...
prob.prisen.vars.subu(i),res.prisen.vars.lr_bu(i), ...
res.prisen.vars.rr_bu(i),...
res.prisen.vars.ls_bu(i),...
res.prisen.vars.rs_bu(i));

end

fprintf('Sensitivity for coefficients in objective:\n')
for i = 1:length(prob.duasen.sub)

fprintf (...
'var = %d, beta_1 = %.1f, beta_2 = %.1f, delta_1 = %.1f,delta_2 = %.1f\n', ...
prob.duasen.sub(i),res.duasen.lr_c(i), ...
res.duasen.rr_c(i),...
res.duasen.ls_c(i),...
res.duasen.rs_c(i));

end

The output from running the example in Listing 14.2 is shown below.

Sensitivity for bounds on constraints:
con = 1, beta_1 = -300.0, beta_2 = 0.0, delta_1 = 3.0,delta_2 = 3.0
con = 2, beta_1 = -700.0, beta_2 = Inf, delta_1 = 0.0,delta_2 = 0.0
con = 3, beta_1 = -500.0, beta_2 = 0.0, delta_1 = 3.0,delta_2 = 3.0
con = 4, beta_1 = -0.0, beta_2 = 500.0, delta_1 = 4.0,delta_2 = 4.0
con = 5, beta_1 = -0.0, beta_2 = 300.0, delta_1 = 5.0,delta_2 = 5.0
con = 6, beta_1 = -0.0, beta_2 = 700.0, delta_1 = 5.0,delta_2 = 5.0
con = 7, beta_1 = -500.0, beta_2 = 700.0, delta_1 = 2.0,delta_2 = 2.0
Sensitivity for bounds on variables:
var = 1, beta_1 = Inf, beta_2 = 300.0, delta_1 = 0.0,delta_2 = 0.0
var = 2, beta_1 = Inf, beta_2 = 100.0, delta_1 = 0.0,delta_2 = 0.0
var = 3, beta_1 = Inf, beta_2 = 0.0, delta_1 = 0.0,delta_2 = 0.0
var = 4, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 0.0

(continues on next page)
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var = 5, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 0.0
var = 6, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 0.0
var = 7, beta_1 = -0.0, beta_2 = 500.0, delta_1 = 2.0,delta_2 = 2.0
Sensitivity for coefficients in objective:
var = 1, beta_1 = Inf, beta_2 = 3.0, delta_1 = 300.0,delta_2 = 300.0
var = 2, beta_1 = Inf, beta_2 = Inf, delta_1 = 100.0,delta_2 = 100.0
var = 3, beta_1 = -2.0, beta_2 = Inf, delta_1 = 0.0,delta_2 = 0.0
var = 4, beta_1 = Inf, beta_2 = 2.0, delta_1 = 500.0,delta_2 = 500.0
var = 5, beta_1 = -3.0, beta_2 = Inf, delta_1 = 500.0,delta_2 = 500.0
var = 6, beta_1 = Inf, beta_2 = 2.0, delta_1 = 500.0,delta_2 = 500.0
var = 7, beta_1 = -2.0, beta_2 = Inf, delta_1 = 0.0,delta_2 = 0.0
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Chapter 15

Toolbox API Reference

• General API conventions.

• Command reference:

– Complete list of functions
– mosekopt - the main interface
– Data structures

• Optimizer parameters:

– Double, Integer , String
– Full list
– Browse by topic

• Optimizer information items:

– Double , Integer , Long

• Optimizer response codes

• Constants

• Functions compatible with the MATLAB Optimization Toolbox

• Nonlinear API (mskenopt, mskscopt, mskgpopt)

15.1 API conventions

Problem setup

An optimization problem in Optimization Toolbox for MATLAB is specified using the prob structure.
The specification of numerical part of the data can be found in Sec. 15.3.1.

Constants

Constants mentioned in Sec. 15.7 and Sec. 15.5 can be used as strings or as symbolic constants. To get
the structure with all symbolic constants available execute:

[r, res] = mosekopt('symbcon');

They can later be used simply as, for example:

res.symbcon.MSK_IPAR_OPTIMIZER
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15.2 Command Reference

The MOSEK toolbox provides a set of functions to interface to the MOSEK solver.

Main interface

mosekopt is the main interface to MOSEK.

Helper functions

These functions provide an easy-to-use but less flexible interface than the mosekopt function. They are
just wrappers around the mosekopt interface written in MATLAB.

• msklpopt : Solves linear optimization problems.

• mskqpopt : Solves quadratic optimization problems.

Options

Functions for manipulating parameter values.

• mskoptimget : Get the solver parameters.

• mskoptimset : Set the solver parameters.

MATLAB Optimization Toolbox compatible functions.

Functions that override standard functions from the MATLAB Optimization Toolbox (the user may
choose not to install those).

• linprog : Solves linear optimization problems.

• quadprog : Solves quadratic optimization problems.

• intlinprog : Solves linear optimization problems with integer variables.

• lsqlin : Solves least-squares with linear constraints.

• lsqnonneg : Solves least-squares with non-negativity constraints.

15.2.1 Main Interface

rcode, res = mosekopt(cmd, prob, param, callback, optserver)
Solves an optimization problem. Data specifying the optimization problem can either be read from
a file or be inputted directly from MATLAB. It also makes it possible to write a file and provides
other functionalities.

The behavior is specified by the cmd parameter which recognizes the following commands:

• anapro: Runs the problem analyzer.

• echo(n): Controls how much log information is printed to the screen. n must be a nonnegative
integer, where 0 means silent. See Sec. 7.3.1.

• info: Return the complete task information database in res.info. See Sec. 7.5.

• param: Return the complete parameter database in res.param. See Sec. 7.4.

• primalrepair: Performs a primal feasibility repair. See Sec. 14.2.

• maximize: Maximize the objective.

• max : Sets the objective sense (similar to maximize), without performing an optimization.

• minimize: Minimize the objective.

• min: Sets the objective sense (similar to minimize), without performing an optimization.
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• nokeepenv: Delete the MOSEK environment after running the optimizer. This can increase
the license checkout overhead significantly and is therefore only intended as a debug feature.
Can also be used to delete the environment and release all licenses. See Sec. 10.4.

• read(name): Request that data is read from a file name. See Sec. 7.3.4.

• statuskeys(n): Controls the format of status keys (problem status, solution status etc.) in
the returned problem:

– statuskeys(0) – all the status keys are returned as strings,
– statuskeys(1) – all the status keys are returned as numeric codes.

• symbcon: Return the list of symbolic constants in res.symbcon.

• write(name): Write problem to the file name. See Sec. 7.3.3.

• log(name): Write solver log output to the file name. See Sec. 7.3.1.

• version: Return the MOSEK version numbers in res.version.

• debug(n): Prints debug information including license paths. n must be a nonnegative integer
which determines how much to print.

• toconic prob: Convert a quadratic problem to conic form. See Sec. 9.1.

Parameters
• cmd (string) – The commands to be executed. By default it takes the value
minimize.

• prob (prob ) – A structure containing the problem data. (optional)
• param (struct) – A structure specifying MOSEK parameters. See Sec. 7.4.

(optional)
• callback (callback ) – A MATLAB structure defining call-back data and func-

tions. See Sec. 7.6. (optional)
• optserver (optserver ) – A MATLAB structure specifying the OptServer to be

used for remote optimization. (optional)
Return

• rcode (rescode ) – A response code. See also Sec. 7.1.
• res (res ) – A structure containing solutions and other results from the call. See

Sec. 7.1.

15.2.2 Helper Functions

res = msklpopt(c, a, blc, buc, blx, bux, param, cmd)
Solves a linear optimization problem of the form

minimize 𝑐𝑇𝑥
subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

blc=[] and buc=[] mean that the lower and upper bounds are −∞ and +∞, respectively. The
same interpretation is used for blx and bux. The value -inf is allowed in blc and blx. Similarly,
inf is allowed in buc and bux.

Parameters
• c [in] (double[]) – The objective function vector.
• a [in] (double[][]) – A (preferably sparse) matrix.
• blc [in] (double[]) – Constraints lower bounds.
• buc [in] (double[]) – Constraints upper bounds.
• blx [in] (double[]) – Variables lower bounds.
• bux [in] (double[]) – Variables upper bounds.
• param [in] (struct) – MOSEK parameters. (optional)
• cmd [in] (string) – The command list. See mosekopt for a list of available

commands. (optional)
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Return res (res ) – Solution information.

res = mskqpopt(q, c, a, blc, buc, blx, bux, param, cmd)
Solves the optimization problem

minimize 1
2𝑥

𝑇𝑄𝑥 + 𝑐𝑇𝑥
subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

blc=[] and buc=[] mean that the lower and upper bounds are −∞ and +∞, respectively. The
same interpretation is used for blx and bux. The value -inf is allowed in blc and blx. Similarly,
inf is allowed in buc and bux.

Parameters
• q (double[]) – The matrix 𝑄, which must be symmetric positive semidefinite.
• c [in] (double[]) – The objective function vector.
• a (double[][]) – A (preferably) sparse matrix.
• blc [in] (double[]) – Constraints lower bounds.
• buc [in] (double[]) – Constraints upper bounds
• blx [in] (double[]) – Variables lower bounds
• bux [in] (double[]) – Variables upper bounds
• param [in] (struct) – MOSEK parameters. (optional)
• cmd [in] (string) – The command list. See mosekopt for a list of available

commands. (optional)
Return res (res ) – Solution information.

15.2.3 Options

val = mskoptimget(options, param, default)
Obtains the value of an optimization parameter. See the mskoptimset function for which param-
eters that can be set.

Parameters
• options [in] (struct) – The optimization options structure.
• param [in] (string) – Name of the optimization parameter for which the value

should be obtained.
• default [in] (string) – If param is not defined, the value of default is returned

instead. (optional)
Return val (list) – Value of the required option. If the option does not exist, then []

is returned unless the value default is defined in which case the default value is
returned.

options = mskoptimset(arg1, arg2, param1, value1, param2, value2, ...)
Obtains and modifies the optimization options structure. Only a subset of the fields in the opti-
mization structure recognized by the MATLAB Optimization Toolbox is recognized by MOSEK.
In addition the optimization options structure can be used to modify all the MOSEK specific
parameters defined in Sec. 15.5.

• .Diagnostics Used to control how much diagnostic information is printed. Following values
are accepted:

off No diagnostic information is printed.
on Diagnostic information is printed.

• .Display Defines what information is displayed. The following values are accepted:

off No output is displayed.
iter Some output is displayed for each iteration.
final Only the final output is displayed.
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• .MaxIter Maximum number of iterations allowed.

• .Write A file name to write the problem to. If equal to the empty string no file is written.
E.g the option Write(myfile.opf) writes the file myfile.opf in the opf format.

Parameters
• arg1 [in] (None) – Is allowed to be any of the following two things (optional):

– Any string — The same as using no argument.
– A structure — The argument is assumed to be a structure containing options,

which are copied to the return options.
• param1 [in] (string) – A string containing the name of a parameter that should

be modified. (optional)
• value1 [in] (None) – The new value assigned to the parameter with the name
param1. (optional)

• param2 [in] (None) – See param1. (optional)
• value2 [in] (None) – See value1. (optional)

Return options (struct) – The updated optimization options structure.

15.2.4 MATLAB Optimization Toolbox Compatible Functions.

x, fval, exitflag, output = intlinprog(f, intcon, A, b, B, c, l, u, options)
x, fval, exitflag, output = intlinprog(problem)

Solves the mixed-integer linear optimization problem:

minimize 𝑓𝑇𝑥
subject to 𝐴𝑥 ≤ 𝑏,

𝐵𝑥 = 𝑐,
𝑙 ≤ 𝑥 ≤ 𝑢,

𝑥(intcon) ∈ Z.

Parameters
• f [in] (double[]) – The objective function.
• intcon [in] (int[]) – The list of variables constrained to the set Z.
• A [in] (double[][]) – Constraint matrix for the inequalities. Use A=[] if there

are no inequalities.
• b [in] (double[]) – Right-hand side for the inequalities. Use b=[] if there are

no inequalities.
• B [in] (double[][]) – Constraint matrix for the equalities. (optional)
• c [in] (double[]) – Right-hand side for the equalities. (optional)
• l [in] (double[]) – Lower bounds for variables. Use -inf to represent infinite

lower bounds. (optional)
• u [in] (double[]) – Upper bounds for variables. Use inf to represent infinite

upper bounds. (optional)
• options [in] (struct) – An optimization options structure. See the
mskoptimset function for the definition of the optimization options structure
(optional). This function uses the options
– .Diagnostics
– .Display
– .MaxTime Time limit in seconds.
– .MaxNodes The maximum number of branch-and-bounds allowed.
– .Write Name of file to save the problem.

• problem [in] (struct) – A structure containing the fields f, intcon, A, b,
B, c, l, u and options.

Return
• x (double[]) – The solution 𝑥.
• fval (double) – The objective 𝑓𝑇𝑥.
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• exitflag (int) – A number which has the interpretation:
– 1 The function returned an integer feasible solution.
– −2 The problem is infeasible.
– −4 MaxNodes reached without converging.
– −5 MaxTime reached without converging.

x, fval, exitflag, output, lambda = linprog(f, A, b, B, c, l, u, options)
x, fval, exitflag, output, lambda = linprog(problem)

Solves the linear optimization problem:

minimize 𝑓𝑇𝑥
subject to 𝐴𝑥 ≤ 𝑏,

𝐵𝑥 = 𝑐,
𝑙 ≤ 𝑥 ≤ 𝑢.

Parameters
• f [in] (double[]) – The objective function.
• A [in] (double[][]) – Constraint matrix for the inequalities. Use 𝐴 = [] if there

are no inequalities.
• b [in] (double[]) – Right-hand side for the inequalities. Use 𝑏 = [] if there are

no inequalities.
• B [in] (double[][]) – Constraint matrix for the equalities. (optional)
• c [in] (double[]) – Right-hand side for the equalities. (optional)
• l [in] (double[]) – Lower bounds on the variables. Use -inf to represent infinite

lower bounds. (optional)
• u [in] (double[]) – Upper bounds on the variables. Use inf to represent infinite

upper bounds. (optional)
• options [in] (struct) – An optimization options structure (optional). See the
mskoptimset function for the definition of the optimization options structure.
This function uses the options
– .Diagnostics
– .Display
– .MaxIter
– .Simplex Choose the simplex algorithm: 'on' — the optimizer chooses wither

primal or dual simplex (as in "MSK_OPTIMIZER_FREE_SIMPLEX" ), 'primal' —
use primal simplex, 'dual' — use dual simplex. The 'primal' and 'dual'
values are specific for the MOSEK interface, and not present in the standard
MATLAB version.

– .Write Name of file to save the problem.
• problem [in] (struct) – structure containing the fields f, A, b, B, c, l, u and
options.

• output [in] (struct) – A structure with the following fields
– .iterations Number of interior-point iterations spent to reach the optimum.
– .algorithm Always defined as 'MOSEK'.

• lambda [in] (struct) – A struct with the following fields
– .lower Lagrange multipliers for lower bounds 𝑙.
– .upper Lagrange multipliers for upper bounds 𝑢.
– .ineqlin Lagrange multipliers for the inequalities.
– .eqlin Lagrange multipliers for the equalities.

Return
• x (double[]) – The optimal 𝑥 solution.
• fval (double) – The optimal objective value, i.e. 𝑓𝑇𝑥.
• exitflag (int) – A number which has the interpretation [in]:

– < 0 The problem is likely to be either primal or dual infeasible.
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– = 0 The maximum number of iterations was reached.
– > 0 𝑥 is an optimal solution.

x, resnorm, residual, exitflag, output, lambda = lsqlin(C, d, A, b, B, c, l, u, x0, options)
Solves the linear least squares problem:

minimize 1
2 ‖𝐶𝑥− 𝑑‖22

subject to 𝐴𝑥 ≤ 𝑏,
𝐵𝑥 = 𝑐,
𝑙 ≤ 𝑥 ≤ 𝑢.

Parameters
• C [in] (double[][]) – The matrix in the objective.
• d [in] (double[]) – The vector in the objective.
• A [in] (double[][]) – Constraint matrix for the inequalities. Use 𝐴 = [] if there

are no inequalities.
• b [in] (double[]) – Right-hand side for the inequalities. Use 𝑏 = [] if there are

no inequalities.
• B [in] (double[][]) – Constraint matrix for the equalities. (optional)
• c [in] (double[]) – Right-hand side for the equalities. (optional)
• l [in] (double[]) – Lower bounds on the variables. Use -inf to represent infinite

lower bounds. (optional)
• u [in] (double[]) – Upper bounds on the variables. Use inf to represent infinite

upper bounds. (optional)
• x0 [in] (double[]) – Ignored by MOSEK. (optional)
• options [in] (struct) – An optimization options structure (optional). See the

function mskoptimset function for the definition of the optimization options
structure. This function uses the options
– .Diagnostics
– .Display
– .MaxIter
– .Write

Return
• x (double[]) – The optimal 𝑥 solution.
• resnorm (double) – The squared norm of the optimal residuals, i.e. ‖𝐶𝑥− 𝑑‖22

evaluated at the optimal solution.
• residual (double) – The residual 𝐶𝑥− 𝑑.
• exitflag (int) – A scalar which has the interpretation:

– < 0 The problem is likely to be either primal or dual infeasible.
– = 0 The maximum number of iterations was reached.
– > 0 𝑥 is the optimal solution.

• output (struct) –
– .iterations Number of iterations spent to reach the optimum.
– .algorithm Always defined as 'MOSEK'.

• lambda (struct) –
– .lower Lagrange multipliers for lower bounds 𝑙.
– .upper Lagrange multipliers for upper bounds 𝑢.
– .ineqlin Lagrange multipliers for inequalities.
– .eqlin Lagrange multipliers for equalities.

x, resnorm, residual, exitflag, output, lambda = lsqnonneg(C, d, x0, options)
Solves the linear least squares problem:

minimize 1
2 ‖𝐶𝑥− 𝑑‖22

subject to 𝑥 ≥ 0.
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Parameters
• C [in] (double[][]) – The matrix in the objective.
• d [in] (double[]) – The vector in the objective.
• x0 [in] (double[]) – Ignored by MOSEK. (optional)
• options [in] (struct) – An optimization options structure (optional). See the
mskoptimset function for the definition of the optimization options structure.
This function uses the options
– .Diagnostics
– .Display
– .MaxIter
– .Write

Return
• x (double[]) – The 𝑥 solution.
• resnorm (double) – The squared norm of the optimal residuals, i.e. ‖𝐶𝑥− 𝑑‖22

evaluated at the optimal solution.
• exitflag (int) – A number which has the interpretation:

– < 0 The problem is likely to be either primal or dual infeasible.
– = 0 The maximum number of iterations was reached.
– > 0 𝑥 is optimal solution.

• output (struct) –
– .iterations Number of iterations spend to reach the optimum.
– .algorithm Always defined to be 'MOSEK'.

• lambda (struct) –
– .lower Lagrange multipliers for lower bounds 𝑙.
– .upper Lagrange multipliers for upper bounds 𝑢.
– .ineqlin Lagrange multipliers for inequalities.
– .eqlin Lagrange multipliers for equalities.

x, fval, exitflag, output, lambda = quadprog(H, f, A, b, B, c, l, u, x0, options)
Solves the quadratic optimization problem:

minimize 1
2𝑥

𝑇𝐻𝑥 + 𝑓𝑇𝑥
subject to 𝐴𝑥 ≤ 𝑏,

𝐵𝑥 = 𝑐,
𝑙 ≤ 𝑥 ≤ 𝑢.

Parameters
• H [in] (double[][]) – Hessian of the objective function. The matrix 𝐻 must

be symmetric positive semidefinite. Contrary to the MATLAB optimization
toolbox, MOSEK handles only the cases where 𝐻 is positive semidefinite. On
the other hand MOSEK always computes a global optimum.

• f [in] (double[]) – The linear term of the objective.
• A [in] (double[][]) – Constraint matrix for the inequalities. Use 𝐴 = [] if there

are no inequalities.
• b [in] (double[]) – Right-hand side for the inequalities. Use 𝑏 = [] if there are

no inequalities.
• B [in] (double[][]) – Constraint matrix for the equalities. (optional)
• c [in] (double[]) – Right-hand side for the equalities. (optional)
• l [in] (double[]) – Lower bounds on the variables. Use -inf to represent infinite

lower bounds. (optional)
• u [in] (double[]) – Upper bounds on the variables. Use inf to represent infinite

upper bounds. (optional)
• x0 [in] (double[]) – Ignored by MOSEK. (optional)
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• options [in] (struct) – An optimization options structure (optional). See the
mskoptimset function for the definition of the optimizations options structure.
This function uses the options
– .Diagnostics
– .Display
– .MaxIter
– .Write

Return
• x (double[]) – The 𝑥 solution.
• fval (double) – The optimal objective value i.e. 1

2𝑥
𝑇𝐻𝑥 + 𝑓𝑇𝑥.

• exitflag (int) – A scalar which has the interpretation:
– < 0 The problem is likely to be either primal or dual infeasible.
– = 0 The maximum number of iterations was reached.
– > 0 𝑥 is an optimal solution.

• output (struct) – A structure with the following fields
– .iterations Number of iterations spent to reach the optimum.
– .algorithm Always defined as 'MOSEK'.

• lambda (struct) – A structure with the following fields
– .lower Lagrange multipliers for lower bounds 𝑙.
– .upper Lagrange multipliers for upper bounds 𝑢.
– .ineqlin Lagrange multipliers for inequalities.
– .eqlin Lagrange multipliers for equalities.

15.3 Data Structures and Notation

We specify the notation and data structures used in the interface.

Problem definition

• prob — describes an optimization problem.

• cones — description of cones.

• names — names of objects in the optimization problem.

• barc , bara — description of the semidefinite part.

Solutions

• res — result returned by mosekopt .

• solver_solutions — solutions.

• solution — one solution.

Other

• primal_repair — used in feasibility repair.

• prisen , prisen_data , duasen — used in sensitivity analysis.

• callback — used to set up a callback function.

• optserver — used to set up remote optimization.
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15.3.1 Notation

Linear problem

A linear problem has the form:

minimize
∑︀𝑛

𝑗=1 𝑐𝑗𝑥𝑗 + 𝑐𝑓

subject to 𝑙𝑐𝑖 ≤
∑︀𝑛

𝑗=1 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑖 , 𝑖 = 1, . . . ,𝑚,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 1, . . . , 𝑛.

(15.1)

It has 𝑛 variables and 𝑚 linear constraints. See Sec. 12.1.

Conic problem

A conic problem is an extension of a linear problem and has the form:

minimize
∑︀𝑛

𝑗=1 𝑐𝑗𝑥𝑗 +
∑︀𝑝

𝑗=1

⟨︀
𝐶𝑗 , 𝑋𝑗

⟩︀
+ 𝑐𝑓

subject to 𝑙𝑐𝑖 ≤
∑︀𝑛

𝑗=1 𝑎𝑖𝑗𝑥𝑗 +
∑︀𝑝

𝑗=1

⟨︀
𝐴𝑖𝑗 , 𝑋𝑗

⟩︀
≤ 𝑢𝑐

𝑖 , 𝑖 = 1, . . . ,𝑚,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 1, . . . , 𝑛,

𝑥 ∈ 𝒦,
𝑋𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 1, . . . , 𝑝

(15.2)

It has 𝑛 variables, 𝑚 linear constraints, a cone 𝒦 (see below) and 𝑝 ≥ 0 semidefinite variables. See also
Sec. 12.2 (or Sec. 12.3 for SDP). The conic constraint

𝑥 ∈ 𝒦

means that a partitioning of 𝑥 belongs to a set of cones 𝒦 = 𝒦1 × . . .×𝒦𝑠, which can be one of:

• Quadratic cone

𝒬𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 : 𝑥1 ≥

⎯⎸⎸⎷ 𝑛∑︁
𝑗=2

𝑥2
𝑗

⎫⎬⎭ .

• Rotated quadratic cone

𝒬𝑛
r =

⎧⎨⎩𝑥 ∈ R𝑛 : 2𝑥1𝑥2 ≥
𝑛∑︁

𝑗=3

𝑥2
𝑗 , 𝑥1 ≥ 0, 𝑥2 ≥ 0

⎫⎬⎭ .

• Primal exponential cone

𝐾exp =
{︀
𝑥 ∈ R3 : 𝑥1 ≥ 𝑥2 exp(𝑥3/𝑥2), 𝑥1, 𝑥2 ≥ 0

}︀
as well as its dual

𝐾*
exp =

{︀
𝑥 ∈ R3 : 𝑥1 ≥ −𝑥3𝑒

−1 exp(𝑥2/𝑥3), 𝑥3 ≤ 0, 𝑥1 ≥ 0
}︀
.

• Primal power cone (with parameter 0 < 𝛼 < 1)

𝒫𝛼,1−𝛼
𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 : 𝑥𝛼
1𝑥

1−𝛼
2 ≥

⎯⎸⎸⎷ 𝑛∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭
as well as its dual

(𝒫𝛼,1−𝛼
𝑛 )* =

⎧⎨⎩𝑥 ∈ R𝑛 :
(︁𝑥1

𝛼

)︁𝛼(︂ 𝑥2

1 − 𝛼

)︂1−𝛼

≥

⎯⎸⎸⎷ 𝑛∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ .

• The set R𝑛.

• The zero cone {(0, . . . , 0)}.

Membership in the trivial cones does not have to be specified.

158



Conic problem with affine conic constraints

A conic problem with affine conic constraints is an extension of a linear problem and has the form:

minimize
∑︀𝑛

𝑗=1 𝑐𝑗𝑥𝑗 +
∑︀𝑝

𝑗=1

⟨︀
𝐶𝑗 , 𝑋𝑗

⟩︀
+ 𝑐𝑓

subject to 𝑙𝑐𝑖 ≤
∑︀𝑛

𝑗=1 𝑎𝑖𝑗𝑥𝑗 +
∑︀𝑝

𝑗=1

⟨︀
𝐴𝑖𝑗 , 𝑋𝑗

⟩︀
≤ 𝑢𝑐

𝑖 , 𝑖 = 1, . . . ,𝑚,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 1, . . . , 𝑛,

𝐹𝑥 + 𝑔 ∈ 𝒦,
𝑋𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 1, . . . , 𝑝

(15.3)

It has 𝑛 variables, 𝑚 linear constraints, a cone 𝒦 (see below) and 𝑝 ≥ 0 semidefinite variables. See also
Sec. 12.5.

The conic constraint

𝐹𝑥 + 𝑔 ∈ 𝒦

where 𝐹 ∈ R𝑘×𝑛 and 𝑔 ∈ R𝑘 means that an affine combination of 𝑥 belongs to a product of cones
𝒦 = 𝒦1 × . . .×𝒦𝑠 of total length (dimension) 𝑘. The available cone types are the same as above.

Quadratic and quadratically constrained problems

A problem with quadratic objective or constraints has the form:

minimize 1
2

∑︀𝑛
𝑖=1

∑︀𝑛
𝑗=1 𝑞

𝑜
𝑖𝑗𝑥𝑖𝑥𝑗 +

∑︀𝑛
𝑗=1 𝑐𝑗𝑥𝑗 + 𝑐𝑓

subject to 𝑙𝑐𝑖 ≤ 1
2

∑︀𝑛
𝑗=1

∑︀𝑛
𝑘=1 𝑞

𝑖
𝑗𝑘𝑥𝑗𝑥𝑘 +

∑︀𝑛
𝑗=1 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑢𝑐

𝑖 , 𝑖 = 1, . . . ,𝑚,

𝑙𝑥𝑗 ≤ 𝑥 ≤ 𝑢𝑥
𝑗 , 𝑗 = 1, . . . , 𝑛.

(15.4)

It has 𝑛 variables, and 𝑚 constraints. The matrix 𝑄𝑜 = (𝑞𝑜𝑖𝑗)𝑖=1,...,𝑛,𝑗=1,...,𝑛 must be symmetric positive
semidefinite. See also Sec. 12.4. Each of the matrices 𝑄𝑖 = (𝑞𝑖𝑗𝑘)𝑗=1,...,𝑛,𝑘=1,...,𝑛 for 𝑗 = 1 . . . ,𝑚 must be

• negative semidefinite if −∞ < 𝑙𝑐𝑖 , 𝑢𝑐
𝑖 = +∞,

• positive semidefinite if −∞ = 𝑙𝑐𝑖 , 𝑢𝑐
𝑖 < +∞,

• zero otherwise.

Mixed-integer problems

All problems without semidefinite variables may be integer-constrained, i.e., for some set 𝒥 ⊆ {1, . . . , 𝑛}
we require

𝑥𝑗 ∈ Z for all 𝑗 ∈ 𝒥 (15.5)

Minimization vs. Maximization

The objective of every problem can be maximized rather than minimized without any change. In case
of quadratic problems the matrix 𝑄𝑜 must be negative semidefinite.

Data specification in MATLAB

• The linear constraint matrix 𝐴 = (𝑎𝑖𝑗)𝑖=1...,𝑚,𝑗=1,...,𝑛 must be a sparse matrix. The dimensions of
𝐴 are used to determine the number of constraints 𝑚 and the number of variables 𝑛 in the problem.

• The symmetric matrices 𝑄𝑜, 𝑄𝑖, 𝐶𝑗 and 𝐴𝑖𝑗 are specified in sparse triplet format discarding zero
elements, and since they are symmetric, only the lower triangular parts should be specified. A
generic matrix 𝑀 specified in sparse triplet format is given by three arrays subi, subj and val of
the same length such that

𝑀subi[t],subj[t] = val[t], 𝑡 = 1, . . . , len(val)

• For a specification of the cones 𝒦 see cones .
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• For a specification of the semidefinite part see bara and barc .

The parameters of the optimization problem are stored using one or more subfields of the prob
structure using the naming convention in Table 15.1. Only a is obligatory. All other fields are optional
depending on what problem type is defined.

Table 15.1: The relation between fields and problem parameters
Field name Type Dimension Problem parameters
a sparse matrix 𝑚× 𝑛 𝑎𝑖𝑗
c double[] 𝑛 𝑐𝑗
cfix double 1 𝑐𝑓

blc double[] 𝑚 𝑙𝑐𝑖
buc double[] 𝑚 𝑢𝑐

𝑖

blx double[] 𝑛 𝑙𝑥𝑗
bux double[] 𝑛 𝑢𝑥

𝑗

ints.subs int[] |𝒥 | 𝒥
cones cones 𝒦
f sparse matrix 𝑘 × 𝑛 𝐹
g double[] 𝑘 𝑔
bardim int[] 𝑝 𝑟𝑗
barc barc 𝐶𝑗

bara bara 𝐴𝑖𝑗

qosubi int[] len(qoval) 𝑞𝑜𝑖𝑗 , sparse rep.
qosubj int[] len(qoval) 𝑞𝑜𝑖𝑗 , sparse rep.
qoval double[] len(qoval) 𝑞𝑜𝑖𝑗 , sparse rep.
qcsubk int[] len(qcval) 𝑞𝑘𝑖𝑗 , sparse rep.
qcsubi int[] len(qcval) 𝑞𝑘𝑖𝑗 , sparse rep.
qcsubj int[] len(qcval) 𝑞𝑘𝑖𝑗 , sparse rep.
qcval double[] len(qcval) 𝑞𝑘𝑖𝑗 , sparse rep.

The int type indicates that the field must contain an integer value, double indicates any real number.
This distinction is only a convenience for the reader — all actual data structures in MATLAB are ordinary
matrices/arrays of floating-point numbers.

The sparse representation of quadratic terms is:

𝑞𝑜qosubi(t),qoval(t) = qoval(t), 𝑡 = 1, 2, . . . , length(qoval),

𝑞
qcsubk(t)
qcsubi(t),qcsubj(t) = qcval(t), 𝑡 = 1, 2, . . . , length(qcval).

(15.6)

Since 𝑄𝑜, 𝑄𝑖 are by assumption symmetric, all elements are assumed to belong to the lower triangular
part. If an element is specified multiple times, the different elements are added together.

15.3.2 Data Types and Structures

prob
The prob data structure is used to communicate an optimization problem to MOSEK or for
MOSEK to return an optimization problem to the user. It defines an optimization problem using
a number of subfields. Most of the fields are optional, depending on what problem type is being
solved.

Fields
• names (names ) – A structure which contains the names of the problem, variables,

constraints and so on.
• a (double[][]) – The linear constraint matrix. It is obligatory, and its dimensions

define the number of variables and constraints. It must be a sparse matrix.
This field should always be defined, even if the problem does not have any con-
straints. In that case a sparse matrix having zero rows and the correct number
of columns is the appropriate definition of the field.

• c (double[]) – Linear term in the objective.
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• cfix (double) – Fixed term in the objective.
• blc (double[]) – Lower bounds of the constraints. −∞ denotes an infinite lower

bound. If the field is not defined or blc==[], then all the lower bounds are
assumed to be equal to −∞.

• buc (double[]) – Upper bounds of the constraints. ∞ denotes an infinite upper
bound. If the field is not defined or buc==[], then all the upper bounds are
assumed to be equal to ∞.

• blx (double[]) – Lower bounds on the variables. −∞ denotes an infinite lower
bound. If the field is not defined or blx==[], then all the lower bounds are
assumed to be equal to −∞.

• bux (double[]) – Upper bounds on the variables. ∞ denotes an infinite upper
bound. If the field is not defined or bux==[], then all the upper bounds are
assumed to be equal to ∞.

• bardim (int[]) – A list with the dimensions of the semidefinite variables.
• barc (barc ) – A structure for specifying 𝐶𝑗 .
• bara (bara ) – A structure for specifying 𝐴𝑖𝑗 .
• qosubi (int[]) – 𝑖 subscripts in the sparse specification of 𝑞𝑜𝑖𝑗 in 𝑄𝑜. See (15.6).
• qosubj (int[]) – 𝑗 subscripts in the sparse specification of 𝑞𝑜𝑖𝑗 in 𝑄𝑜. See (15.6).
• qoval (double[]) – Numerical values in the sparse specification of 𝑞𝑜𝑖𝑗 in 𝑄𝑜. See

(15.6).
• qcsubk (int[]) – 𝑘 subscripts in the sparse specification of 𝑞𝑘𝑖𝑗 in 𝑄𝑘. See (15.6)
• qcsubi (int[]) – 𝑖 subscripts in the sparse specification of 𝑞𝑘𝑖𝑗 in 𝑄𝑘. See (15.6)
• qcsubj (double[]) – 𝑗 subscripts in the sparse specification of 𝑞𝑘𝑖𝑗 in 𝑄𝑘. See

(15.6)
• qcval (double[]) – Numerical values in the sparse specification of 𝑞𝑘𝑖𝑗 in 𝑄𝑘. See

(15.6)
• f (double[][]) – The matrix of affine conic constraints. It must be a sparse matrix.
• g (double[]) – The constant term of affine conic constraints. If not present or
g==[] it is assumed 𝑔 = 0.

• ints.sub (int[]) – A list of indexes of integer-constrained variables. ints.sub is
identical to the set | in (15.5).

• cones (cones ) – A structure defining either the conic constraints in (15.2) or
the affine conic constraints in (15.3).

• sol (solver_solutions ) – A structure containing a guess on the optimal solu-
tion which some of the optimizers in MOSEK may exploit.

• primlarepair (primal_repair ) – Specification of primal feasibility repair. See
Sec. 14.2.1.

• prisen (prisen ) – Request sensitivity analysis. See Sec. 14.3.
• duasen (duasen ) – Request sensitivity analysis. See Sec. 14.3.

res
Contains a response from mosekopt .

Fields
• sol (solver_solutions ) – A structure containing solutions (if any).
• rcode (int) – The numerical response code from the solver. See Sec. 7.2.
• rcodestr (string) – The response code from the solver as a symbolic string. See

Sec. 7.2.
• rmsg (string) – A message explaining the error (if any). See Sec. 7.2.
• info (struct) – A structure containing information items (if requested by the

command info in mosekopt ). See Sec. 7.5.
• prob (prob ) – Contains the problem data, if the command read was used to

read a problem from a file. See Sec. 7.3.4.
• param (struct) – A structure which contains the complete MOSEK parameter

database (if requested by the command param in mosekopt ). See Sec. 7.4.
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• symbcon (struct) – A structure which contains symbolic constants and their
numerical values (if requested by the command symbcon in mosekopt ). See Sec.
15.7 and Sec. 15.6.

• version (struct) – A structure which contains the MOSEK version numbers (if
requested by the command version in mosekopt ).

• prisen (prisen ) – A structure with results of sensitivity analysis (if requested
by passing prisen data in prob). See Sec. 14.3.

• duasen (duasen ) – A structure with results of sensitivity analysis (if requested
by passing duasen data in prob). See Sec. 14.3.

solver_solutions
It contains informations about initial/final solutions. Availability of solutions depends on the
problem/algorithm type, see Sec. 7.1.2.

Fields
• itr (solution ) – Interior solution.
• bas (solution ) – Basic solution.
• int (solution ) – Integer solution.

solution
Stores information about one solution. See Sec. 7.1.2.

Fields
• prosta (string) – Problem status (prosta ).
• solsta (string) – Solution status (solsta ).
• skc (string[]) – Linear constraint status keys (stakey ).
• skx (string[]) – Variable status keys (stakey ).
• skn (string[]) – Conic constraint status keys (stakey , not in basic solution).
• xc (double[]) – Constraint activities, i.e., 𝑥𝑐 = 𝐴𝑥 where 𝑥 is the optimal solution.
• xx (double[]) – The optimal 𝑥 solution.
• barx (list) – Semidefinite variable solution (not in basic solution).
• y (double[]) – Identical to sol.slc-sol.suc (not in integer solution).
• slc (double[]) – Dual variable for constraint lower bounds (not in integer solu-

tion).
• suc (double[]) – Dual variable for constraint upper bounds (not in integer solu-

tion).
• slx (double[]) – Dual variable for variable lower bounds (not in integer solution).
• sux (double[]) – Dual variable for variable upper bounds (not in integer solution).
• snx (double[]) – Dual variable of conic constraints (not in basic or integer solu-

tion).
• doty (double[]) – Dual variables of affine conic constraints (not in basic or integer

solution).
• bars (list) – Dual variable of semidefinite domains (not in basic or integer solu-

tion).
• pobjval (double) – The primal objective value.
• dobjval (double) – The dual objective value (not in integer solution).

names
This structure is used to store all the names of individual items in the optimization problem such
as the constraints and the variables.

Fields
• name (string) – contains the problem name.
• obj (string) – contains the name of the objective.
• con (cell) – a cell array where names.con{i} contains the name of the 𝑖-th

constraint.
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• var (cell) – a cell array where names.var{j} contains the name of the 𝑗-th
variable.

• cone (cell) – a cell array where names.cone{t} contains the name of the 𝑡-th
conic constraint.

• barvar (cell) – a cell array where names.barvar{j} contains the name of the
𝑗-th semidefinite variable.

cones
Represents either conic constraints or affine conic constraints.

Conic constraints. For conic constraints 𝑥 ∈ 𝒦, where 𝒦 = 𝒦1 × · · · × 𝒦𝑠, cones is a structure
containing three or four fields:

• type (list) — An array with the cone type for each cone; see conetype .

• sub (int[]) — A concatenation of index lists of all the cones.

• subptr (int[]) — An array of pointers indicating the beginning of consecutive cones in sub.

• conepar (double[]) — An array of cone parameters; for a power cone this is the exponent 𝛼,
for other cone types the value is irrelevant. If the problem contains no power cones this field
is not required.

The arrays type and subptr (and conepar if present) must have the same length 𝑠. For every
𝑗 = 1, . . . , 𝑠 the vector 𝑥sub[subptr[j]:(subptr[j+1]−1)] belongs to a cone of type type[j] with parameter
conepar[j]. For example for the two cones

𝑥5 ≥
√︁

𝑥2
3 + 𝑥2

1, 𝑥0.3
6 𝑥0.7

4 ≥
√︁
𝑥2
2 + 𝑥2

7

the description could be:

cones.type = [res.symbcon.MSK_CT_QUAD, res.symbcon.MSK_CT_PPOW];
cones.sub = [5, 3, 1, 6, 4, 2, 7];
cones.subptr = [1, 4];
cones.conepar= [0.0, 0.3];

Affine conic constraints. For affine conic constraints 𝐹𝑥 + 𝑔 ∈ 𝒦, where 𝒦 = 𝒦1 × · · · × 𝒦𝑠,
cones is a list consisting of 𝑠 concatenated cone descriptions. If a cone requires no additional
parameters (quadratic, rotated quadratic, exponential, zero) then its description is

[type, len]

where type is the type (conetype ) and len is the length (dimension). The length must be present.
If a cone requires additional parameters (power cones) then its description has the form

[type, len, 𝑘, 𝑎1, . . . , 𝑎𝑘]

where 𝑘 ≥ 1 is an integer and 𝑎1, . . . , 𝑎𝑘 ∈ R are the additional parameters. For the power cone it
is required that 𝑘 = 2 and then a power cone with parameter 𝛼 = 𝑎1/(𝑎1 + 𝑎2) is constructed. For
example 𝒬5 × 𝒫0.4

4 could be defined as

cones = [res.symbcon.MSK_CT_QUAD 5 res.symbcon.MSK_CT_PPOW, 4, 2, 40.0, 60.0 ];

barc
Together with field bardim this structure specifies the symmetric matrices 𝐶𝑗 in the objective for
semidefinite problems.

The symmetric matrices are specified in block-triplet format as

[𝐶barc.subj(t)]barc.subk(t),barc.subl(t) = barc.val(t), 𝑡 = 1, 2, . . . , length(barc.subj).

Only the lower triangular parts of 𝐶𝑗 are specified, i.e., it is required that

barc.subk(t) ≥ barc.subl(t), 𝑡 = 1, 2, . . . , length(barc.subk),
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and that

1 ≤ barc.subk(t) ≤ bardim(barc.subj(t)), 𝑡 = 1, 2, . . . , length(barc.subj).,

All the structure fields must be arrays of the same length.

Fields
• subj (int[]) – Semidefinite variable indices 𝑗.
• subk (int[]) – 𝑘 subscripts of nonzeros elements.
• subl (int[]) – 𝑙 subscripts of nonzeros elements.
• val (double) – Numerical values.

bara
Together with the field bardim this structure specifies the symmetric matrices 𝐴𝑖𝑗 in the constraints
of semidefinite problems.

The symmetric matrices are specified in block-triplet format as

[𝐴bara.subi(t),bara.subj(t)]bara.subk(t),bara.subl(t) = bara.val(t), 𝑡 = 1, 2, . . . , length(bara.subi).

Only the lower triangular parts of 𝐴𝑖𝑗 are specified, i.e., it is required that

bara.subk(t) ≥ bara.subl(t), 𝑡 = 1, 2, . . . , length(bara.subk),

and that

1 ≤ bara.subk(t) ≤ bardim(bara.subj(t)), 𝑡 = 1, 2, . . . , length(bara.subj),

All the structure fields must be arrays of the same length.

Fields
• subi (int[]) – Constraint indices 𝑖.
• subj (int[]) – Semidefinite variable indices 𝑗.
• subk (int[]) – 𝑘 subscripts of nonzeros elements.
• subl (int[]) – 𝑙 subscripts of nonzeros elements.
• val (double[]) – Numerical values.

primal_repair
A structure holding data for primal feasibility repair. If either of the subfields is missing, it assumed
to be a vector with value 1 of appropriate dimension. See Sec. 14.2.1.

Fields
• wlc (double[]) – Weights for lower bounds on constraints.
• wuc (double[]) – Weights for upper bounds on constraints.
• wlx (double[]) – Weights for lower bounds on variables.
• wux (double[]) – Weights for upper bounds on variables.

prisen
A structure holding information about primal sensitivity analysis. See Sec. 14.3.

Fields
• cons (prisen_data ) – Constraints shadow prices.
• vars (prisen_data ) – Variables shadow prices.

prisen_data
A structure holding information about shadow prices of constraints or variables.

Fields
• subl (int[]) – Indices of variables/constraints to be analyzed for lower bounds.
• subu (int[]) – Indices of variables/constraints to be analyzed for upper bounds.
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• lr_bl (double[]) – Left value 𝛽1 in the linearity interval for a lower bound.
• rr_bl (double[]) – Right value 𝛽2 in the linearity interval for a lower bound.
• ls_bl (double[]) – Left shadow price 𝑠𝑙 for a lower bound.
• rs_bl (double[]) – Right shadow price 𝑠𝑟 for a lower bound.
• lr_bu (double[]) – Left value 𝛽1 in the linearity interval for an upper bound.
• rr_bu (double[]) – Right value 𝛽2 in the linearity interval for an upper bound.
• ls_bu (double[]) – Left shadow price 𝑠𝑙 for an upper bound.
• rs_bu (double[]) – Right shadow price 𝑠𝑟 for an upper bound.

duasen
A structure holding information about dual sensitivity analysis. See Sec. 14.3.

Fields
• sub (int[]) – Indices of variables to be analyzed.
• lr_c (double) – Left value 𝛽1 in linearity interval for an objective coefficient
• rr_c (double) – Right value 𝛽2 in linearity interval for an objective coefficient
• ls_c (double) – Left shadow price 𝑠𝑙 for an objective coefficient
• rs_c (double) – Right shadow price 𝑠𝑟 for an objective coefficient

callback
A structure containing callback information (all subfields are optional).

Fields
• loghandle (struct) – A data structure or just [].
• log (string) – Log handler. The name of a user-defined function which must

accept two input arguments, e.g.,

function myprint(handle,str)

where handle will be identical to callback.handle when myfunc is called, and
str is a string of text from the log.

• iterhandle (struct) – A data structure or just [].
• iter (string) – Progress callback handler. The name of a user-defined function

which must accept three input arguments,

function [r] = callback_handler(handle,where,info)

where handle will be identical to callback.iterhandle when the handler is
called, where indicates the current progress of the solver (callback ) and info
is the current information items list. See Sec. 7.6 for further details.

optserver
A structure containing information about the OptServer which should be used for remote opti-
mization.

Fields host (string) – URL of the OptServer in the form http://server:port.

15.4 Parameters grouped by topic

Analysis

• MSK_DPAR_ANA_SOL_INFEAS_TOL

• MSK_IPAR_ANA_SOL_BASIS

• MSK_IPAR_ANA_SOL_PRINT_VIOLATED

• MSK_IPAR_LOG_ANA_PRO
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Basis identification

• MSK_DPAR_SIM_LU_TOL_REL_PIV

• MSK_IPAR_BI_CLEAN_OPTIMIZER

• MSK_IPAR_BI_IGNORE_MAX_ITER

• MSK_IPAR_BI_IGNORE_NUM_ERROR

• MSK_IPAR_BI_MAX_ITERATIONS

• MSK_IPAR_INTPNT_BASIS

• MSK_IPAR_LOG_BI

• MSK_IPAR_LOG_BI_FREQ

Conic interior-point method

• MSK_DPAR_INTPNT_CO_TOL_DFEAS

• MSK_DPAR_INTPNT_CO_TOL_INFEAS

• MSK_DPAR_INTPNT_CO_TOL_MU_RED

• MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

• MSK_DPAR_INTPNT_CO_TOL_PFEAS

• MSK_DPAR_INTPNT_CO_TOL_REL_GAP

Data check

• MSK_DPAR_DATA_SYM_MAT_TOL

• MSK_DPAR_DATA_SYM_MAT_TOL_HUGE

• MSK_DPAR_DATA_SYM_MAT_TOL_LARGE

• MSK_DPAR_DATA_TOL_AIJ_HUGE

• MSK_DPAR_DATA_TOL_AIJ_LARGE

• MSK_DPAR_DATA_TOL_BOUND_INF

• MSK_DPAR_DATA_TOL_BOUND_WRN

• MSK_DPAR_DATA_TOL_C_HUGE

• MSK_DPAR_DATA_TOL_CJ_LARGE

• MSK_DPAR_DATA_TOL_QIJ

• MSK_DPAR_DATA_TOL_X

• MSK_DPAR_SEMIDEFINITE_TOL_APPROX

• MSK_IPAR_CHECK_CONVEXITY

• MSK_IPAR_LOG_CHECK_CONVEXITY
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Data input/output

• MSK_IPAR_INFEAS_REPORT_AUTO

• MSK_IPAR_LOG_FILE

• MSK_IPAR_OPF_WRITE_HEADER

• MSK_IPAR_OPF_WRITE_HINTS

• MSK_IPAR_OPF_WRITE_LINE_LENGTH

• MSK_IPAR_OPF_WRITE_PARAMETERS

• MSK_IPAR_OPF_WRITE_PROBLEM

• MSK_IPAR_OPF_WRITE_SOL_BAS

• MSK_IPAR_OPF_WRITE_SOL_ITG

• MSK_IPAR_OPF_WRITE_SOL_ITR

• MSK_IPAR_OPF_WRITE_SOLUTIONS

• MSK_IPAR_PARAM_READ_CASE_NAME

• MSK_IPAR_PARAM_READ_IGN_ERROR

• MSK_IPAR_PTF_WRITE_TRANSFORM

• MSK_IPAR_READ_DEBUG

• MSK_IPAR_READ_KEEP_FREE_CON

• MSK_IPAR_READ_LP_DROP_NEW_VARS_IN_BOU

• MSK_IPAR_READ_LP_QUOTED_NAMES

• MSK_IPAR_READ_MPS_FORMAT

• MSK_IPAR_READ_MPS_WIDTH

• MSK_IPAR_READ_TASK_IGNORE_PARAM

• MSK_IPAR_SOL_READ_NAME_WIDTH

• MSK_IPAR_SOL_READ_WIDTH

• MSK_IPAR_WRITE_BAS_CONSTRAINTS

• MSK_IPAR_WRITE_BAS_HEAD

• MSK_IPAR_WRITE_BAS_VARIABLES

• MSK_IPAR_WRITE_COMPRESSION

• MSK_IPAR_WRITE_DATA_PARAM

• MSK_IPAR_WRITE_FREE_CON

• MSK_IPAR_WRITE_GENERIC_NAMES

• MSK_IPAR_WRITE_GENERIC_NAMES_IO

• MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS

• MSK_IPAR_WRITE_INT_CONSTRAINTS

• MSK_IPAR_WRITE_INT_HEAD

• MSK_IPAR_WRITE_INT_VARIABLES
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• MSK_IPAR_WRITE_LP_FULL_OBJ

• MSK_IPAR_WRITE_LP_LINE_WIDTH

• MSK_IPAR_WRITE_LP_QUOTED_NAMES

• MSK_IPAR_WRITE_LP_STRICT_FORMAT

• MSK_IPAR_WRITE_LP_TERMS_PER_LINE

• MSK_IPAR_WRITE_MPS_FORMAT

• MSK_IPAR_WRITE_MPS_INT

• MSK_IPAR_WRITE_PRECISION

• MSK_IPAR_WRITE_SOL_BARVARIABLES

• MSK_IPAR_WRITE_SOL_CONSTRAINTS

• MSK_IPAR_WRITE_SOL_HEAD

• MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES

• MSK_IPAR_WRITE_SOL_VARIABLES

• MSK_IPAR_WRITE_TASK_INC_SOL

• MSK_IPAR_WRITE_XML_MODE

• MSK_SPAR_BAS_SOL_FILE_NAME

• MSK_SPAR_DATA_FILE_NAME

• MSK_SPAR_DEBUG_FILE_NAME

• MSK_SPAR_INT_SOL_FILE_NAME

• MSK_SPAR_ITR_SOL_FILE_NAME

• MSK_SPAR_MIO_DEBUG_STRING

• MSK_SPAR_PARAM_COMMENT_SIGN

• MSK_SPAR_PARAM_READ_FILE_NAME

• MSK_SPAR_PARAM_WRITE_FILE_NAME

• MSK_SPAR_READ_MPS_BOU_NAME

• MSK_SPAR_READ_MPS_OBJ_NAME

• MSK_SPAR_READ_MPS_RAN_NAME

• MSK_SPAR_READ_MPS_RHS_NAME

• MSK_SPAR_SENSITIVITY_FILE_NAME

• MSK_SPAR_SENSITIVITY_RES_FILE_NAME

• MSK_SPAR_SOL_FILTER_XC_LOW

• MSK_SPAR_SOL_FILTER_XC_UPR

• MSK_SPAR_SOL_FILTER_XX_LOW

• MSK_SPAR_SOL_FILTER_XX_UPR

• MSK_SPAR_STAT_FILE_NAME

• MSK_SPAR_STAT_KEY

• MSK_SPAR_STAT_NAME

• MSK_SPAR_WRITE_LP_GEN_VAR_NAME
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Debugging

• MSK_IPAR_AUTO_SORT_A_BEFORE_OPT

Dual simplex

• MSK_IPAR_SIM_DUAL_CRASH

• MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION

• MSK_IPAR_SIM_DUAL_SELECTION

Infeasibility report

• MSK_IPAR_INFEAS_GENERIC_NAMES

• MSK_IPAR_INFEAS_REPORT_LEVEL

• MSK_IPAR_LOG_INFEAS_ANA

Interior-point method

• MSK_DPAR_CHECK_CONVEXITY_REL_TOL

• MSK_DPAR_INTPNT_CO_TOL_DFEAS

• MSK_DPAR_INTPNT_CO_TOL_INFEAS

• MSK_DPAR_INTPNT_CO_TOL_MU_RED

• MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

• MSK_DPAR_INTPNT_CO_TOL_PFEAS

• MSK_DPAR_INTPNT_CO_TOL_REL_GAP

• MSK_DPAR_INTPNT_QO_TOL_DFEAS

• MSK_DPAR_INTPNT_QO_TOL_INFEAS

• MSK_DPAR_INTPNT_QO_TOL_MU_RED

• MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

• MSK_DPAR_INTPNT_QO_TOL_PFEAS

• MSK_DPAR_INTPNT_QO_TOL_REL_GAP

• MSK_DPAR_INTPNT_TOL_DFEAS

• MSK_DPAR_INTPNT_TOL_DSAFE

• MSK_DPAR_INTPNT_TOL_INFEAS

• MSK_DPAR_INTPNT_TOL_MU_RED

• MSK_DPAR_INTPNT_TOL_PATH

• MSK_DPAR_INTPNT_TOL_PFEAS

• MSK_DPAR_INTPNT_TOL_PSAFE

• MSK_DPAR_INTPNT_TOL_REL_GAP

• MSK_DPAR_INTPNT_TOL_REL_STEP

• MSK_DPAR_INTPNT_TOL_STEP_SIZE
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• MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL

• MSK_IPAR_BI_IGNORE_MAX_ITER

• MSK_IPAR_BI_IGNORE_NUM_ERROR

• MSK_IPAR_INTPNT_BASIS

• MSK_IPAR_INTPNT_DIFF_STEP

• MSK_IPAR_INTPNT_HOTSTART

• MSK_IPAR_INTPNT_MAX_ITERATIONS

• MSK_IPAR_INTPNT_MAX_NUM_COR

• MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS

• MSK_IPAR_INTPNT_OFF_COL_TRH

• MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS

• MSK_IPAR_INTPNT_ORDER_METHOD

• MSK_IPAR_INTPNT_PURIFY

• MSK_IPAR_INTPNT_REGULARIZATION_USE

• MSK_IPAR_INTPNT_SCALING

• MSK_IPAR_INTPNT_SOLVE_FORM

• MSK_IPAR_INTPNT_STARTING_POINT

• MSK_IPAR_LOG_INTPNT

License manager

• MSK_IPAR_CACHE_LICENSE

• MSK_IPAR_LICENSE_DEBUG

• MSK_IPAR_LICENSE_PAUSE_TIME

• MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS

• MSK_IPAR_LICENSE_TRH_EXPIRY_WRN

• MSK_IPAR_LICENSE_WAIT

Logging

• MSK_IPAR_LOG

• MSK_IPAR_LOG_ANA_PRO

• MSK_IPAR_LOG_BI

• MSK_IPAR_LOG_BI_FREQ

• MSK_IPAR_LOG_CUT_SECOND_OPT

• MSK_IPAR_LOG_EXPAND

• MSK_IPAR_LOG_FEAS_REPAIR

• MSK_IPAR_LOG_FILE
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• MSK_IPAR_LOG_INCLUDE_SUMMARY

• MSK_IPAR_LOG_INFEAS_ANA

• MSK_IPAR_LOG_INTPNT

• MSK_IPAR_LOG_LOCAL_INFO

• MSK_IPAR_LOG_MIO

• MSK_IPAR_LOG_MIO_FREQ

• MSK_IPAR_LOG_ORDER

• MSK_IPAR_LOG_PRESOLVE

• MSK_IPAR_LOG_RESPONSE

• MSK_IPAR_LOG_SENSITIVITY

• MSK_IPAR_LOG_SENSITIVITY_OPT

• MSK_IPAR_LOG_SIM

• MSK_IPAR_LOG_SIM_FREQ

• MSK_IPAR_LOG_STORAGE

Mixed-integer optimization

• MSK_DPAR_MIO_MAX_TIME

• MSK_DPAR_MIO_REL_GAP_CONST

• MSK_DPAR_MIO_TOL_ABS_GAP

• MSK_DPAR_MIO_TOL_ABS_RELAX_INT

• MSK_DPAR_MIO_TOL_FEAS

• MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT

• MSK_DPAR_MIO_TOL_REL_GAP

• MSK_IPAR_LOG_MIO

• MSK_IPAR_LOG_MIO_FREQ

• MSK_IPAR_MIO_BRANCH_DIR

• MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION

• MSK_IPAR_MIO_CUT_CLIQUE

• MSK_IPAR_MIO_CUT_CMIR

• MSK_IPAR_MIO_CUT_GMI

• MSK_IPAR_MIO_CUT_IMPLIED_BOUND

• MSK_IPAR_MIO_CUT_KNAPSACK_COVER

• MSK_IPAR_MIO_CUT_SELECTION_LEVEL

• MSK_IPAR_MIO_FEASPUMP_LEVEL

• MSK_IPAR_MIO_HEURISTIC_LEVEL

• MSK_IPAR_MIO_MAX_NUM_BRANCHES
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• MSK_IPAR_MIO_MAX_NUM_RELAXS

• MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS

• MSK_IPAR_MIO_MAX_NUM_SOLUTIONS

• MSK_IPAR_MIO_NODE_OPTIMIZER

• MSK_IPAR_MIO_NODE_SELECTION

• MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE

• MSK_IPAR_MIO_PROBING_LEVEL

• MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT

• MSK_IPAR_MIO_RINS_MAX_NODES

• MSK_IPAR_MIO_ROOT_OPTIMIZER

• MSK_IPAR_MIO_ROOT_REPEAT_PRESOLVE_LEVEL

• MSK_IPAR_MIO_SEED

• MSK_IPAR_MIO_VB_DETECTION_LEVEL

Output information

• MSK_IPAR_INFEAS_REPORT_LEVEL

• MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS

• MSK_IPAR_LICENSE_TRH_EXPIRY_WRN

• MSK_IPAR_LOG

• MSK_IPAR_LOG_BI

• MSK_IPAR_LOG_BI_FREQ

• MSK_IPAR_LOG_CUT_SECOND_OPT

• MSK_IPAR_LOG_EXPAND

• MSK_IPAR_LOG_FEAS_REPAIR

• MSK_IPAR_LOG_FILE

• MSK_IPAR_LOG_INCLUDE_SUMMARY

• MSK_IPAR_LOG_INFEAS_ANA

• MSK_IPAR_LOG_INTPNT

• MSK_IPAR_LOG_LOCAL_INFO

• MSK_IPAR_LOG_MIO

• MSK_IPAR_LOG_MIO_FREQ

• MSK_IPAR_LOG_ORDER

• MSK_IPAR_LOG_RESPONSE

• MSK_IPAR_LOG_SENSITIVITY

• MSK_IPAR_LOG_SENSITIVITY_OPT

• MSK_IPAR_LOG_SIM
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• MSK_IPAR_LOG_SIM_FREQ

• MSK_IPAR_LOG_SIM_MINOR

• MSK_IPAR_LOG_STORAGE

• MSK_IPAR_MAX_NUM_WARNINGS

Overall solver

• MSK_IPAR_BI_CLEAN_OPTIMIZER

• MSK_IPAR_INFEAS_PREFER_PRIMAL

• MSK_IPAR_LICENSE_WAIT

• MSK_IPAR_MIO_MODE

• MSK_IPAR_OPTIMIZER

• MSK_IPAR_PRESOLVE_LEVEL

• MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS

• MSK_IPAR_PRESOLVE_USE

• MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER

• MSK_IPAR_SENSITIVITY_ALL

• MSK_IPAR_SENSITIVITY_OPTIMIZER

• MSK_IPAR_SENSITIVITY_TYPE

• MSK_IPAR_SOLUTION_CALLBACK

Overall system

• MSK_IPAR_AUTO_UPDATE_SOL_INFO

• MSK_IPAR_INTPNT_MULTI_THREAD

• MSK_IPAR_LICENSE_WAIT

• MSK_IPAR_LOG_STORAGE

• MSK_IPAR_MT_SPINCOUNT

• MSK_IPAR_NUM_THREADS

• MSK_IPAR_REMOVE_UNUSED_SOLUTIONS

• MSK_IPAR_TIMING_LEVEL

• MSK_SPAR_REMOTE_ACCESS_TOKEN
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Presolve

• MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP

• MSK_DPAR_PRESOLVE_TOL_AIJ

• MSK_DPAR_PRESOLVE_TOL_REL_LINDEP

• MSK_DPAR_PRESOLVE_TOL_S

• MSK_DPAR_PRESOLVE_TOL_X

• MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL

• MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES

• MSK_IPAR_PRESOLVE_LEVEL

• MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH

• MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH

• MSK_IPAR_PRESOLVE_LINDEP_USE

• MSK_IPAR_PRESOLVE_MAX_NUM_PASS

• MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS

• MSK_IPAR_PRESOLVE_USE

Primal simplex

• MSK_IPAR_SIM_PRIMAL_CRASH

• MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION

• MSK_IPAR_SIM_PRIMAL_SELECTION

Progress callback

• MSK_IPAR_SOLUTION_CALLBACK

Simplex optimizer

• MSK_DPAR_BASIS_REL_TOL_S

• MSK_DPAR_BASIS_TOL_S

• MSK_DPAR_BASIS_TOL_X

• MSK_DPAR_SIM_LU_TOL_REL_PIV

• MSK_DPAR_SIMPLEX_ABS_TOL_PIV

• MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE

• MSK_IPAR_LOG_SIM

• MSK_IPAR_LOG_SIM_FREQ

• MSK_IPAR_LOG_SIM_MINOR

• MSK_IPAR_SENSITIVITY_OPTIMIZER

• MSK_IPAR_SIM_BASIS_FACTOR_USE

• MSK_IPAR_SIM_DEGEN
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• MSK_IPAR_SIM_DUAL_PHASEONE_METHOD

• MSK_IPAR_SIM_EXPLOIT_DUPVEC

• MSK_IPAR_SIM_HOTSTART

• MSK_IPAR_SIM_HOTSTART_LU

• MSK_IPAR_SIM_MAX_ITERATIONS

• MSK_IPAR_SIM_MAX_NUM_SETBACKS

• MSK_IPAR_SIM_NON_SINGULAR

• MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD

• MSK_IPAR_SIM_REFACTOR_FREQ

• MSK_IPAR_SIM_REFORMULATION

• MSK_IPAR_SIM_SAVE_LU

• MSK_IPAR_SIM_SCALING

• MSK_IPAR_SIM_SCALING_METHOD

• MSK_IPAR_SIM_SEED

• MSK_IPAR_SIM_SOLVE_FORM

• MSK_IPAR_SIM_STABILITY_PRIORITY

• MSK_IPAR_SIM_SWITCH_OPTIMIZER

Solution input/output

• MSK_IPAR_INFEAS_REPORT_AUTO

• MSK_IPAR_SOL_FILTER_KEEP_BASIC

• MSK_IPAR_SOL_FILTER_KEEP_RANGED

• MSK_IPAR_SOL_READ_NAME_WIDTH

• MSK_IPAR_SOL_READ_WIDTH

• MSK_IPAR_WRITE_BAS_CONSTRAINTS

• MSK_IPAR_WRITE_BAS_HEAD

• MSK_IPAR_WRITE_BAS_VARIABLES

• MSK_IPAR_WRITE_INT_CONSTRAINTS

• MSK_IPAR_WRITE_INT_HEAD

• MSK_IPAR_WRITE_INT_VARIABLES

• MSK_IPAR_WRITE_SOL_BARVARIABLES

• MSK_IPAR_WRITE_SOL_CONSTRAINTS

• MSK_IPAR_WRITE_SOL_HEAD

• MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES

• MSK_IPAR_WRITE_SOL_VARIABLES

• MSK_SPAR_BAS_SOL_FILE_NAME
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• MSK_SPAR_INT_SOL_FILE_NAME

• MSK_SPAR_ITR_SOL_FILE_NAME

• MSK_SPAR_SOL_FILTER_XC_LOW

• MSK_SPAR_SOL_FILTER_XC_UPR

• MSK_SPAR_SOL_FILTER_XX_LOW

• MSK_SPAR_SOL_FILTER_XX_UPR

Termination criteria

• MSK_DPAR_BASIS_REL_TOL_S

• MSK_DPAR_BASIS_TOL_S

• MSK_DPAR_BASIS_TOL_X

• MSK_DPAR_INTPNT_CO_TOL_DFEAS

• MSK_DPAR_INTPNT_CO_TOL_INFEAS

• MSK_DPAR_INTPNT_CO_TOL_MU_RED

• MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

• MSK_DPAR_INTPNT_CO_TOL_PFEAS

• MSK_DPAR_INTPNT_CO_TOL_REL_GAP

• MSK_DPAR_INTPNT_QO_TOL_DFEAS

• MSK_DPAR_INTPNT_QO_TOL_INFEAS

• MSK_DPAR_INTPNT_QO_TOL_MU_RED

• MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

• MSK_DPAR_INTPNT_QO_TOL_PFEAS

• MSK_DPAR_INTPNT_QO_TOL_REL_GAP

• MSK_DPAR_INTPNT_TOL_DFEAS

• MSK_DPAR_INTPNT_TOL_INFEAS

• MSK_DPAR_INTPNT_TOL_MU_RED

• MSK_DPAR_INTPNT_TOL_PFEAS

• MSK_DPAR_INTPNT_TOL_REL_GAP

• MSK_DPAR_LOWER_OBJ_CUT

• MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH

• MSK_DPAR_MIO_MAX_TIME

• MSK_DPAR_MIO_REL_GAP_CONST

• MSK_DPAR_MIO_TOL_REL_GAP

• MSK_DPAR_OPTIMIZER_MAX_TIME

• MSK_DPAR_UPPER_OBJ_CUT

• MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH
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• MSK_IPAR_BI_MAX_ITERATIONS

• MSK_IPAR_INTPNT_MAX_ITERATIONS

• MSK_IPAR_MIO_MAX_NUM_BRANCHES

• MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS

• MSK_IPAR_MIO_MAX_NUM_SOLUTIONS

• MSK_IPAR_SIM_MAX_ITERATIONS

Other

• MSK_IPAR_COMPRESS_STATFILE

15.5 Parameters (alphabetical list sorted by type)

• Double parameters

• Integer parameters

• String parameters

15.5.1 Double parameters

dparam
The enumeration type containing all double parameters.

MSK_DPAR_ANA_SOL_INFEAS_TOL
If a constraint violates its bound with an amount larger than this value, the constraint name, index
and violation will be printed by the solution analyzer.

Default 1e-6
Accepted [0.0; +inf]
Example param.MSK_DPAR_ANA_SOL_INFEAS_TOL = 1e-6
Groups Analysis

MSK_DPAR_BASIS_REL_TOL_S
Maximum relative dual bound violation allowed in an optimal basic solution.

Default 1.0e-12
Accepted [0.0; +inf]
Example param.MSK_DPAR_BASIS_REL_TOL_S = 1.0e-12
Groups Simplex optimizer , Termination criteria

MSK_DPAR_BASIS_TOL_S
Maximum absolute dual bound violation in an optimal basic solution.

Default 1.0e-6
Accepted [1.0e-9; +inf]
Example param.MSK_DPAR_BASIS_TOL_S = 1.0e-6
Groups Simplex optimizer , Termination criteria

MSK_DPAR_BASIS_TOL_X
Maximum absolute primal bound violation allowed in an optimal basic solution.

Default 1.0e-6
Accepted [1.0e-9; +inf]
Example param.MSK_DPAR_BASIS_TOL_X = 1.0e-6
Groups Simplex optimizer , Termination criteria
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MSK_DPAR_CHECK_CONVEXITY_REL_TOL
This parameter controls when the full convexity check declares a problem to be non-convex. In-
creasing this tolerance relaxes the criteria for declaring the problem non-convex.

A problem is declared non-convex if negative (positive) pivot elements are detected in the Cholesky
factor of a matrix which is required to be PSD (NSD). This parameter controls how much this non-
negativity requirement may be violated.

If 𝑑𝑖 is the pivot element for column 𝑖, then the matrix 𝑄 is considered to not be PSD if:

𝑑𝑖 ≤ −|𝑄𝑖𝑖|check_convexity_rel_tol

Default 1e-10
Accepted [0; +inf]
Example param.MSK_DPAR_CHECK_CONVEXITY_REL_TOL = 1e-10
Groups Interior-point method

MSK_DPAR_DATA_SYM_MAT_TOL
Absolute zero tolerance for elements in in symmetric matrices. If any value in a symmetric matrix
is smaller than this parameter in absolute terms MOSEK will treat the values as zero and generate
a warning.

Default 1.0e-12
Accepted [1.0e-16; 1.0e-6]
Example param.MSK_DPAR_DATA_SYM_MAT_TOL = 1.0e-12
Groups Data check

MSK_DPAR_DATA_SYM_MAT_TOL_HUGE
An element in a symmetric matrix which is larger than this value in absolute size causes an error.

Default 1.0e20
Accepted [0.0; +inf]
Example param.MSK_DPAR_DATA_SYM_MAT_TOL_HUGE = 1.0e20
Groups Data check

MSK_DPAR_DATA_SYM_MAT_TOL_LARGE
An element in a symmetric matrix which is larger than this value in absolute size causes a warning
message to be printed.

Default 1.0e10
Accepted [0.0; +inf]
Example param.MSK_DPAR_DATA_SYM_MAT_TOL_LARGE = 1.0e10
Groups Data check

MSK_DPAR_DATA_TOL_AIJ_HUGE
An element in 𝐴 which is larger than this value in absolute size causes an error.

Default 1.0e20
Accepted [0.0; +inf]
Example param.MSK_DPAR_DATA_TOL_AIJ_HUGE = 1.0e20
Groups Data check

MSK_DPAR_DATA_TOL_AIJ_LARGE
An element in 𝐴 which is larger than this value in absolute size causes a warning message to be
printed.

Default 1.0e10
Accepted [0.0; +inf]
Example param.MSK_DPAR_DATA_TOL_AIJ_LARGE = 1.0e10
Groups Data check
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MSK_DPAR_DATA_TOL_BOUND_INF
Any bound which in absolute value is greater than this parameter is considered infinite.

Default 1.0e16
Accepted [0.0; +inf]
Example param.MSK_DPAR_DATA_TOL_BOUND_INF = 1.0e16
Groups Data check

MSK_DPAR_DATA_TOL_BOUND_WRN
If a bound value is larger than this value in absolute size, then a warning message is issued.

Default 1.0e8
Accepted [0.0; +inf]
Example param.MSK_DPAR_DATA_TOL_BOUND_WRN = 1.0e8
Groups Data check

MSK_DPAR_DATA_TOL_C_HUGE
An element in 𝑐 which is larger than the value of this parameter in absolute terms is considered to
be huge and generates an error.

Default 1.0e16
Accepted [0.0; +inf]
Example param.MSK_DPAR_DATA_TOL_C_HUGE = 1.0e16
Groups Data check

MSK_DPAR_DATA_TOL_CJ_LARGE
An element in 𝑐 which is larger than this value in absolute terms causes a warning message to be
printed.

Default 1.0e8
Accepted [0.0; +inf]
Example param.MSK_DPAR_DATA_TOL_CJ_LARGE = 1.0e8
Groups Data check

MSK_DPAR_DATA_TOL_QIJ
Absolute zero tolerance for elements in 𝑄 matrices.

Default 1.0e-16
Accepted [0.0; +inf]
Example param.MSK_DPAR_DATA_TOL_QIJ = 1.0e-16
Groups Data check

MSK_DPAR_DATA_TOL_X
Zero tolerance for constraints and variables i.e. if the distance between the lower and upper bound
is less than this value, then the lower and upper bound is considered identical.

Default 1.0e-8
Accepted [0.0; +inf]
Example param.MSK_DPAR_DATA_TOL_X = 1.0e-8
Groups Data check

MSK_DPAR_INTPNT_CO_TOL_DFEAS
Dual feasibility tolerance used by the interior-point optimizer for conic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example param.MSK_DPAR_INTPNT_CO_TOL_DFEAS = 1.0e-8
See also MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
Groups Interior-point method , Termination criteria, Conic interior-point method
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MSK_DPAR_INTPNT_CO_TOL_INFEAS
Infeasibility tolerance used by the interior-point optimizer for conic problems. Controls when the
interior-point optimizer declares the model primal or dual infeasible. A small number means the
optimizer gets more conservative about declaring the model infeasible.

Default 1.0e-12
Accepted [0.0; 1.0]
Example param.MSK_DPAR_INTPNT_CO_TOL_INFEAS = 1.0e-12
Groups Interior-point method , Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_MU_RED
Relative complementarity gap tolerance used by the interior-point optimizer for conic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example param.MSK_DPAR_INTPNT_CO_TOL_MU_RED = 1.0e-8
Groups Interior-point method , Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
Optimality tolerance used by the interior-point optimizer for conic problems. If MOSEK cannot
compute a solution that has the prescribed accuracy then it will check if the solution found satisfies
the termination criteria with all tolerances multiplied by the value of this parameter. If yes, then
the solution is also declared optimal.

Default 1000
Accepted [1.0; +inf]
Example param.MSK_DPAR_INTPNT_CO_TOL_NEAR_REL = 1000
Groups Interior-point method , Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_PFEAS
Primal feasibility tolerance used by the interior-point optimizer for conic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example param.MSK_DPAR_INTPNT_CO_TOL_PFEAS = 1.0e-8
See also MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
Groups Interior-point method , Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_REL_GAP
Relative gap termination tolerance used by the interior-point optimizer for conic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example param.MSK_DPAR_INTPNT_CO_TOL_REL_GAP = 1.0e-8
See also MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
Groups Interior-point method , Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_QO_TOL_DFEAS
Dual feasibility tolerance used by the interior-point optimizer for quadratic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example param.MSK_DPAR_INTPNT_QO_TOL_DFEAS = 1.0e-8
See also MSK_DPAR_INTPNT_QO_TOL_NEAR_REL
Groups Interior-point method , Termination criteria

MSK_DPAR_INTPNT_QO_TOL_INFEAS
Infeasibility tolerance used by the interior-point optimizer for quadratic problems. Controls when
the interior-point optimizer declares the model primal or dual infeasible. A small number means
the optimizer gets more conservative about declaring the model infeasible.
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Default 1.0e-12
Accepted [0.0; 1.0]
Example param.MSK_DPAR_INTPNT_QO_TOL_INFEAS = 1.0e-12
Groups Interior-point method , Termination criteria

MSK_DPAR_INTPNT_QO_TOL_MU_RED
Relative complementarity gap tolerance used by the interior-point optimizer for quadratic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example param.MSK_DPAR_INTPNT_QO_TOL_MU_RED = 1.0e-8
Groups Interior-point method , Termination criteria

MSK_DPAR_INTPNT_QO_TOL_NEAR_REL
Optimality tolerance used by the interior-point optimizer for quadratic problems. If MOSEK
cannot compute a solution that has the prescribed accuracy then it will check if the solution found
satisfies the termination criteria with all tolerances multiplied by the value of this parameter. If
yes, then the solution is also declared optimal.

Default 1000
Accepted [1.0; +inf]
Example param.MSK_DPAR_INTPNT_QO_TOL_NEAR_REL = 1000
Groups Interior-point method , Termination criteria

MSK_DPAR_INTPNT_QO_TOL_PFEAS
Primal feasibility tolerance used by the interior-point optimizer for quadratic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example param.MSK_DPAR_INTPNT_QO_TOL_PFEAS = 1.0e-8
See also MSK_DPAR_INTPNT_QO_TOL_NEAR_REL
Groups Interior-point method , Termination criteria

MSK_DPAR_INTPNT_QO_TOL_REL_GAP
Relative gap termination tolerance used by the interior-point optimizer for quadratic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example param.MSK_DPAR_INTPNT_QO_TOL_REL_GAP = 1.0e-8
See also MSK_DPAR_INTPNT_QO_TOL_NEAR_REL
Groups Interior-point method , Termination criteria

MSK_DPAR_INTPNT_TOL_DFEAS
Dual feasibility tolerance used by the interior-point optimizer for linear problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example param.MSK_DPAR_INTPNT_TOL_DFEAS = 1.0e-8
Groups Interior-point method , Termination criteria

MSK_DPAR_INTPNT_TOL_DSAFE
Controls the initial dual starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly and/or the constraint or variable bounds are very large, then it might
be worthwhile to increase this value.

Default 1.0
Accepted [1.0e-4; +inf]
Example param.MSK_DPAR_INTPNT_TOL_DSAFE = 1.0
Groups Interior-point method
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MSK_DPAR_INTPNT_TOL_INFEAS
Infeasibility tolerance used by the interior-point optimizer for linear problems. Controls when the
interior-point optimizer declares the model primal or dual infeasible. A small number means the
optimizer gets more conservative about declaring the model infeasible.

Default 1.0e-10
Accepted [0.0; 1.0]
Example param.MSK_DPAR_INTPNT_TOL_INFEAS = 1.0e-10
Groups Interior-point method , Termination criteria

MSK_DPAR_INTPNT_TOL_MU_RED
Relative complementarity gap tolerance used by the interior-point optimizer for linear problems.

Default 1.0e-16
Accepted [0.0; 1.0]
Example param.MSK_DPAR_INTPNT_TOL_MU_RED = 1.0e-16
Groups Interior-point method , Termination criteria

MSK_DPAR_INTPNT_TOL_PATH
Controls how close the interior-point optimizer follows the central path. A large value of this
parameter means the central path is followed very closely. On numerically unstable problems it
may be worthwhile to increase this parameter.

Default 1.0e-8
Accepted [0.0; 0.9999]
Example param.MSK_DPAR_INTPNT_TOL_PATH = 1.0e-8
Groups Interior-point method

MSK_DPAR_INTPNT_TOL_PFEAS
Primal feasibility tolerance used by the interior-point optimizer for linear problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example param.MSK_DPAR_INTPNT_TOL_PFEAS = 1.0e-8
Groups Interior-point method , Termination criteria

MSK_DPAR_INTPNT_TOL_PSAFE
Controls the initial primal starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly and/or the constraint or variable bounds are very large, then it may be
worthwhile to increase this value.

Default 1.0
Accepted [1.0e-4; +inf]
Example param.MSK_DPAR_INTPNT_TOL_PSAFE = 1.0
Groups Interior-point method

MSK_DPAR_INTPNT_TOL_REL_GAP
Relative gap termination tolerance used by the interior-point optimizer for linear problems.

Default 1.0e-8
Accepted [1.0e-14; +inf]
Example param.MSK_DPAR_INTPNT_TOL_REL_GAP = 1.0e-8
Groups Termination criteria, Interior-point method

MSK_DPAR_INTPNT_TOL_REL_STEP
Relative step size to the boundary for linear and quadratic optimization problems.

Default 0.9999
Accepted [1.0e-4; 0.999999]
Example param.MSK_DPAR_INTPNT_TOL_REL_STEP = 0.9999
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Groups Interior-point method

MSK_DPAR_INTPNT_TOL_STEP_SIZE
Minimal step size tolerance. If the step size falls below the value of this parameter, then the
interior-point optimizer assumes that it is stalled. In other words the interior-point optimizer does
not make any progress and therefore it is better to stop.

Default 1.0e-6
Accepted [0.0; 1.0]
Example param.MSK_DPAR_INTPNT_TOL_STEP_SIZE = 1.0e-6
Groups Interior-point method

MSK_DPAR_LOWER_OBJ_CUT
If either a primal or dual feasible solution is found proving that the optimal objective value is
outside the interval [ MSK_DPAR_LOWER_OBJ_CUT , MSK_DPAR_UPPER_OBJ_CUT ], then MOSEK is
terminated.

Default -1.0e30
Accepted [-inf; +inf]
Example param.MSK_DPAR_LOWER_OBJ_CUT = -1.0e30
See also MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH
Groups Termination criteria

MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH
If the lower objective cut is less than the value of this parameter value, then the lower objective
cut i.e. MSK_DPAR_LOWER_OBJ_CUT is treated as −∞.

Default -0.5e30
Accepted [-inf; +inf]
Example param.MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH = -0.5e30
Groups Termination criteria

MSK_DPAR_MIO_MAX_TIME
This parameter limits the maximum time spent by the mixed-integer optimizer. A negative number
means infinity.

Default -1.0
Accepted [-inf; +inf]
Example param.MSK_DPAR_MIO_MAX_TIME = -1.0
Groups Mixed-integer optimization, Termination criteria

MSK_DPAR_MIO_REL_GAP_CONST
This value is used to compute the relative gap for the solution to an integer optimization problem.

Default 1.0e-10
Accepted [1.0e-15; +inf]
Example param.MSK_DPAR_MIO_REL_GAP_CONST = 1.0e-10
Groups Mixed-integer optimization, Termination criteria

MSK_DPAR_MIO_TOL_ABS_GAP
Absolute optimality tolerance employed by the mixed-integer optimizer.

Default 0.0
Accepted [0.0; +inf]
Example param.MSK_DPAR_MIO_TOL_ABS_GAP = 0.0
Groups Mixed-integer optimization

MSK_DPAR_MIO_TOL_ABS_RELAX_INT
Absolute integer feasibility tolerance. If the distance to the nearest integer is less than this tolerance
then an integer constraint is assumed to be satisfied.
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Default 1.0e-5
Accepted [1e-9; +inf]
Example param.MSK_DPAR_MIO_TOL_ABS_RELAX_INT = 1.0e-5
Groups Mixed-integer optimization

MSK_DPAR_MIO_TOL_FEAS
Feasibility tolerance for mixed integer solver.

Default 1.0e-6
Accepted [1e-9; 1e-3]
Example param.MSK_DPAR_MIO_TOL_FEAS = 1.0e-6
Groups Mixed-integer optimization

MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT
If the relative improvement of the dual bound is smaller than this value, the solver will terminate
the root cut generation. A value of 0.0 means that the value is selected automatically.

Default 0.0
Accepted [0.0; 1.0]
Example param.MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT = 0.0
Groups Mixed-integer optimization

MSK_DPAR_MIO_TOL_REL_GAP
Relative optimality tolerance employed by the mixed-integer optimizer.

Default 1.0e-4
Accepted [0.0; +inf]
Example param.MSK_DPAR_MIO_TOL_REL_GAP = 1.0e-4
Groups Mixed-integer optimization, Termination criteria

MSK_DPAR_OPTIMIZER_MAX_TIME
Maximum amount of time the optimizer is allowed to spent on the optimization. A negative number
means infinity.

Default -1.0
Accepted [-inf; +inf]
Example param.MSK_DPAR_OPTIMIZER_MAX_TIME = -1.0
Groups Termination criteria

MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP
Absolute tolerance employed by the linear dependency checker.

Default 1.0e-6
Accepted [0.0; +inf]
Example param.MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP = 1.0e-6
Groups Presolve

MSK_DPAR_PRESOLVE_TOL_AIJ
Absolute zero tolerance employed for 𝑎𝑖𝑗 in the presolve.

Default 1.0e-12
Accepted [1.0e-15; +inf]
Example param.MSK_DPAR_PRESOLVE_TOL_AIJ = 1.0e-12
Groups Presolve

MSK_DPAR_PRESOLVE_TOL_REL_LINDEP
Relative tolerance employed by the linear dependency checker.

Default 1.0e-10
Accepted [0.0; +inf]
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Example param.MSK_DPAR_PRESOLVE_TOL_REL_LINDEP = 1.0e-10
Groups Presolve

MSK_DPAR_PRESOLVE_TOL_S
Absolute zero tolerance employed for 𝑠𝑖 in the presolve.

Default 1.0e-8
Accepted [0.0; +inf]
Example param.MSK_DPAR_PRESOLVE_TOL_S = 1.0e-8
Groups Presolve

MSK_DPAR_PRESOLVE_TOL_X
Absolute zero tolerance employed for 𝑥𝑗 in the presolve.

Default 1.0e-8
Accepted [0.0; +inf]
Example param.MSK_DPAR_PRESOLVE_TOL_X = 1.0e-8
Groups Presolve

MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL
This parameter determines when columns are dropped in incomplete Cholesky factorization during
reformulation of quadratic problems.

Default 1e-15
Accepted [0; +inf]
Example param.MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL = 1e-15
Groups Interior-point method

MSK_DPAR_SEMIDEFINITE_TOL_APPROX
Tolerance to define a matrix to be positive semidefinite.

Default 1.0e-10
Accepted [1.0e-15; +inf]
Example param.MSK_DPAR_SEMIDEFINITE_TOL_APPROX = 1.0e-10
Groups Data check

MSK_DPAR_SIM_LU_TOL_REL_PIV
Relative pivot tolerance employed when computing the LU factorization of the basis in the simplex
optimizers and in the basis identification procedure. A value closer to 1.0 generally improves
numerical stability but typically also implies an increase in the computational work.

Default 0.01
Accepted [1.0e-6; 0.999999]
Example param.MSK_DPAR_SIM_LU_TOL_REL_PIV = 0.01
Groups Basis identification, Simplex optimizer

MSK_DPAR_SIMPLEX_ABS_TOL_PIV
Absolute pivot tolerance employed by the simplex optimizers.

Default 1.0e-7
Accepted [1.0e-12; +inf]
Example param.MSK_DPAR_SIMPLEX_ABS_TOL_PIV = 1.0e-7
Groups Simplex optimizer

MSK_DPAR_UPPER_OBJ_CUT
If either a primal or dual feasible solution is found proving that the optimal objective value is
outside the interval [ MSK_DPAR_LOWER_OBJ_CUT , MSK_DPAR_UPPER_OBJ_CUT ], then MOSEK is
terminated.

Default 1.0e30
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Accepted [-inf; +inf]
Example param.MSK_DPAR_UPPER_OBJ_CUT = 1.0e30
See also MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH
Groups Termination criteria

MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH
If the upper objective cut is greater than the value of this parameter, then the upper objective cut
MSK_DPAR_UPPER_OBJ_CUT is treated as ∞.

Default 0.5e30
Accepted [-inf; +inf]
Example param.MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH = 0.5e30
Groups Termination criteria

15.5.2 Integer parameters

iparam
The enumeration type containing all integer parameters.

MSK_IPAR_ANA_SOL_BASIS
Controls whether the basis matrix is analyzed in solution analyzer.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_ANA_SOL_BASIS = 'MSK_ON'
Groups Analysis

MSK_IPAR_ANA_SOL_PRINT_VIOLATED
A parameter of the problem analyzer. Controls whether a list of violated constraints is printed. All
constraints violated by more than the value set by the parameter MSK_DPAR_ANA_SOL_INFEAS_TOL
will be printed.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_ANA_SOL_PRINT_VIOLATED = 'MSK_OFF'
Groups Analysis

MSK_IPAR_AUTO_SORT_A_BEFORE_OPT
Controls whether the elements in each column of 𝐴 are sorted before an optimization is performed.
This is not required but makes the optimization more deterministic.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_AUTO_SORT_A_BEFORE_OPT = 'MSK_OFF'
Groups Debugging

MSK_IPAR_AUTO_UPDATE_SOL_INFO
Controls whether the solution information items are automatically updated after an optimization
is performed.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_AUTO_UPDATE_SOL_INFO = 'MSK_OFF'
Groups Overall system

MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE
If a slack variable is in the basis, then the corresponding column in the basis is a unit vector with
-1 in the right position. However, if this parameter is set to "MSK_ON" , -1 is replaced by 1.

Default "OFF"
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Accepted "ON" , "OFF"
Example param.MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE = 'MSK_OFF'
Groups Simplex optimizer

MSK_IPAR_BI_CLEAN_OPTIMIZER
Controls which simplex optimizer is used in the clean-up phase. Anything else than
"MSK_OPTIMIZER_PRIMAL_SIMPLEX" or "MSK_OPTIMIZER_DUAL_SIMPLEX" is equivalent to
"MSK_OPTIMIZER_FREE_SIMPLEX" .

Default "FREE"
Accepted "FREE" , "INTPNT" , "CONIC" , "PRIMAL_SIMPLEX" , "DUAL_SIMPLEX" ,

"FREE_SIMPLEX" , "MIXED_INT"
Example param.MSK_IPAR_BI_CLEAN_OPTIMIZER = 'MSK_OPTIMIZER_FREE'
Groups Basis identification, Overall solver

MSK_IPAR_BI_IGNORE_MAX_ITER
If the parameter MSK_IPAR_INTPNT_BASIS has the value "MSK_BI_NO_ERROR" and the interior-
point optimizer has terminated due to maximum number of iterations, then basis identification is
performed if this parameter has the value "MSK_ON" .

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_BI_IGNORE_MAX_ITER = 'MSK_OFF'
Groups Interior-point method , Basis identification

MSK_IPAR_BI_IGNORE_NUM_ERROR
If the parameter MSK_IPAR_INTPNT_BASIS has the value "MSK_BI_NO_ERROR" and the interior-
point optimizer has terminated due to a numerical problem, then basis identification is performed
if this parameter has the value "MSK_ON" .

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_BI_IGNORE_NUM_ERROR = 'MSK_OFF'
Groups Interior-point method , Basis identification

MSK_IPAR_BI_MAX_ITERATIONS
Controls the maximum number of simplex iterations allowed to optimize a basis after the basis
identification.

Default 1000000
Accepted [0; +inf]
Example param.MSK_IPAR_BI_MAX_ITERATIONS = 1000000
Groups Basis identification, Termination criteria

MSK_IPAR_CACHE_LICENSE
Specifies if the license is kept checked out for the lifetime of the MOSEK environ-
ment/model/process ("MSK_ON" ) or returned to the server immediately after the optimization
("MSK_OFF" ).

By default the license is checked out for the lifetime of the session at the start of first optimization.

Check-in and check-out of licenses have an overhead. Frequent communication with the license
server should be avoided.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_CACHE_LICENSE = 'MSK_ON'
Groups License manager

MSK_IPAR_CHECK_CONVEXITY
Specify the level of convexity check on quadratic problems.
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Default "FULL"
Accepted "NONE" , "SIMPLE" , "FULL"
Example param.MSK_IPAR_CHECK_CONVEXITY = 'MSK_CHECK_CONVEXITY_FULL'
Groups Data check

MSK_IPAR_COMPRESS_STATFILE
Control compression of stat files.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_COMPRESS_STATFILE = 'MSK_ON'

MSK_IPAR_INFEAS_GENERIC_NAMES
Controls whether generic names are used when an infeasible subproblem is created.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_INFEAS_GENERIC_NAMES = 'MSK_OFF'
Groups Infeasibility report

MSK_IPAR_INFEAS_PREFER_PRIMAL
If both certificates of primal and dual infeasibility are supplied then only the primal is used when
this option is turned on.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_INFEAS_PREFER_PRIMAL = 'MSK_ON'
Groups Overall solver

MSK_IPAR_INFEAS_REPORT_AUTO
Controls whether an infeasibility report is automatically produced after the optimization if the
problem is primal or dual infeasible.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_INFEAS_REPORT_AUTO = 'MSK_OFF'
Groups Data input/output , Solution input/output

MSK_IPAR_INFEAS_REPORT_LEVEL
Controls the amount of information presented in an infeasibility report. Higher values imply more
information.

Default 1
Accepted [0; +inf]
Example param.MSK_IPAR_INFEAS_REPORT_LEVEL = 1
Groups Infeasibility report , Output information

MSK_IPAR_INTPNT_BASIS
Controls whether the interior-point optimizer also computes an optimal basis.

Default "ALWAYS"
Accepted "NEVER" , "ALWAYS" , "NO_ERROR" , "IF_FEASIBLE" , "RESERVERED"
Example param.MSK_IPAR_INTPNT_BASIS = 'MSK_BI_ALWAYS'
See also MSK_IPAR_BI_IGNORE_MAX_ITER , MSK_IPAR_BI_IGNORE_NUM_ERROR ,

MSK_IPAR_BI_MAX_ITERATIONS , MSK_IPAR_BI_CLEAN_OPTIMIZER
Groups Interior-point method , Basis identification

MSK_IPAR_INTPNT_DIFF_STEP
Controls whether different step sizes are allowed in the primal and dual space.
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Default "ON"
Accepted

• "ON" : Different step sizes are allowed.
• "OFF" : Different step sizes are not allowed.

Example param.MSK_IPAR_INTPNT_DIFF_STEP = 'MSK_ON'
Groups Interior-point method

MSK_IPAR_INTPNT_HOTSTART
Currently not in use.

Default "NONE"
Accepted "NONE" , "PRIMAL" , "DUAL" , "PRIMAL_DUAL"
Example param.MSK_IPAR_INTPNT_HOTSTART = 'MSK_INTPNT_HOTSTART_NONE'
Groups Interior-point method

MSK_IPAR_INTPNT_MAX_ITERATIONS
Controls the maximum number of iterations allowed in the interior-point optimizer.

Default 400
Accepted [0; +inf]
Example param.MSK_IPAR_INTPNT_MAX_ITERATIONS = 400
Groups Interior-point method , Termination criteria

MSK_IPAR_INTPNT_MAX_NUM_COR
Controls the maximum number of correctors allowed by the multiple corrector procedure. A neg-
ative value means that MOSEK is making the choice.

Default -1
Accepted [-1; +inf]
Example param.MSK_IPAR_INTPNT_MAX_NUM_COR = -1
Groups Interior-point method

MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS
Maximum number of steps to be used by the iterative refinement of the search direction. A negative
value implies that the optimizer chooses the maximum number of iterative refinement steps.

Default -1
Accepted [-inf; +inf]
Example param.MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS = -1
Groups Interior-point method

MSK_IPAR_INTPNT_MULTI_THREAD
Controls whether the interior-point optimizers are allowed to employ multiple threads if more
threads is available.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_INTPNT_MULTI_THREAD = 'MSK_ON'
Groups Overall system

MSK_IPAR_INTPNT_OFF_COL_TRH
Controls how many offending columns are detected in the Jacobian of the constraint matrix.

0 no detection
1 aggressive detection
> 1 higher values mean less aggressive detection

Default 40
Accepted [0; +inf]
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Example param.MSK_IPAR_INTPNT_OFF_COL_TRH = 40
Groups Interior-point method

MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS
The GP ordering is dependent on a random seed. Therefore, trying several random seeds may lead
to a better ordering. This parameter controls the number of random seeds tried.

A value of 0 means that MOSEK makes the choice.

Default 0
Accepted [0; +inf]
Example param.MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS = 0
Groups Interior-point method

MSK_IPAR_INTPNT_ORDER_METHOD
Controls the ordering strategy used by the interior-point optimizer when factorizing the Newton
equation system.

Default "FREE"
Accepted "FREE" , "APPMINLOC" , "EXPERIMENTAL" , "TRY_GRAPHPAR" ,

"FORCE_GRAPHPAR" , "NONE"
Example param.MSK_IPAR_INTPNT_ORDER_METHOD = 'MSK_ORDER_METHOD_FREE'
Groups Interior-point method

MSK_IPAR_INTPNT_PURIFY
Currently not in use.

Default "NONE"
Accepted "NONE" , "PRIMAL" , "DUAL" , "PRIMAL_DUAL" , "AUTO"
Example param.MSK_IPAR_INTPNT_PURIFY = 'MSK_PURIFY_NONE'
Groups Interior-point method

MSK_IPAR_INTPNT_REGULARIZATION_USE
Controls whether regularization is allowed.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_INTPNT_REGULARIZATION_USE = 'MSK_ON'
Groups Interior-point method

MSK_IPAR_INTPNT_SCALING
Controls how the problem is scaled before the interior-point optimizer is used.

Default "FREE"
Accepted "FREE" , "NONE" , "MODERATE" , "AGGRESSIVE"
Example param.MSK_IPAR_INTPNT_SCALING = 'MSK_SCALING_FREE'
Groups Interior-point method

MSK_IPAR_INTPNT_SOLVE_FORM
Controls whether the primal or the dual problem is solved.

Default "FREE"
Accepted "FREE" , "PRIMAL" , "DUAL"
Example param.MSK_IPAR_INTPNT_SOLVE_FORM = 'MSK_SOLVE_FREE'
Groups Interior-point method

MSK_IPAR_INTPNT_STARTING_POINT
Starting point used by the interior-point optimizer.

Default "FREE"
Accepted "FREE" , "GUESS" , "CONSTANT" , "SATISFY_BOUNDS"
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Example param.MSK_IPAR_INTPNT_STARTING_POINT = 'MSK_STARTING_POINT_FREE'
Groups Interior-point method

MSK_IPAR_LICENSE_DEBUG
This option is used to turn on debugging of the license manager.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_LICENSE_DEBUG = 'MSK_OFF'
Groups License manager

MSK_IPAR_LICENSE_PAUSE_TIME
If MSK_IPAR_LICENSE_WAIT is "MSK_ON" and no license is available, then MOSEK sleeps a number
of milliseconds between each check of whether a license has become free.

Default 100
Accepted [0; 1000000]
Example param.MSK_IPAR_LICENSE_PAUSE_TIME = 100
Groups License manager

MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS
Controls whether license features expire warnings are suppressed.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS = 'MSK_OFF'
Groups License manager , Output information

MSK_IPAR_LICENSE_TRH_EXPIRY_WRN
If a license feature expires in a numbers of days less than the value of this parameter then a warning
will be issued.

Default 7
Accepted [0; +inf]
Example param.MSK_IPAR_LICENSE_TRH_EXPIRY_WRN = 7
Groups License manager , Output information

MSK_IPAR_LICENSE_WAIT
If all licenses are in use MOSEK returns with an error code. However, by turning on this parameter
MOSEK will wait for an available license.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_LICENSE_WAIT = 'MSK_OFF'
Groups Overall solver , Overall system, License manager

MSK_IPAR_LOG
Controls the amount of log information. The value 0 implies that all log information is suppressed.
A higher level implies that more information is logged.

Please note that if a task is employed to solve a sequence of optimization problems the value of
this parameter is reduced by the value of MSK_IPAR_LOG_CUT_SECOND_OPT for the second and any
subsequent optimizations.

Default 10
Accepted [0; +inf]
Example param.MSK_IPAR_LOG = 10
See also MSK_IPAR_LOG_CUT_SECOND_OPT
Groups Output information, Logging
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MSK_IPAR_LOG_ANA_PRO
Controls amount of output from the problem analyzer.

Default 1
Accepted [0; +inf]
Example param.MSK_IPAR_LOG_ANA_PRO = 1
Groups Analysis, Logging

MSK_IPAR_LOG_BI
Controls the amount of output printed by the basis identification procedure. A higher level implies
that more information is logged.

Default 1
Accepted [0; +inf]
Example param.MSK_IPAR_LOG_BI = 1
Groups Basis identification, Output information, Logging

MSK_IPAR_LOG_BI_FREQ
Controls how frequently the optimizer outputs information about the basis identification and how
frequent the user-defined callback function is called.

Default 2500
Accepted [0; +inf]
Example param.MSK_IPAR_LOG_BI_FREQ = 2500
Groups Basis identification, Output information, Logging

MSK_IPAR_LOG_CHECK_CONVEXITY
Controls logging in convexity check on quadratic problems. Set to a positive value to turn logging
on. If a quadratic coefficient matrix is found to violate the requirement of PSD (NSD) then a list
of negative (positive) pivot elements is printed. The absolute value of the pivot elements is also
shown.

Default 0
Accepted [0; +inf]
Example param.MSK_IPAR_LOG_CHECK_CONVEXITY = 0
Groups Data check

MSK_IPAR_LOG_CUT_SECOND_OPT
If a task is employed to solve a sequence of optimization problems, then the value of the log levels
is reduced by the value of this parameter. E.g MSK_IPAR_LOG and MSK_IPAR_LOG_SIM are reduced
by the value of this parameter for the second and any subsequent optimizations.

Default 1
Accepted [0; +inf]
Example param.MSK_IPAR_LOG_CUT_SECOND_OPT = 1
See also MSK_IPAR_LOG , MSK_IPAR_LOG_INTPNT , MSK_IPAR_LOG_MIO ,

MSK_IPAR_LOG_SIM
Groups Output information, Logging

MSK_IPAR_LOG_EXPAND
Controls the amount of logging when a data item such as the maximum number constrains is
expanded.

Default 0
Accepted [0; +inf]
Example param.MSK_IPAR_LOG_EXPAND = 0
Groups Output information, Logging
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MSK_IPAR_LOG_FEAS_REPAIR
Controls the amount of output printed when performing feasibility repair. A value higher than one
means extensive logging.

Default 1
Accepted [0; +inf]
Example param.MSK_IPAR_LOG_FEAS_REPAIR = 1
Groups Output information, Logging

MSK_IPAR_LOG_FILE
If turned on, then some log info is printed when a file is written or read.

Default 1
Accepted [0; +inf]
Example param.MSK_IPAR_LOG_FILE = 1
Groups Data input/output , Output information, Logging

MSK_IPAR_LOG_INCLUDE_SUMMARY
Not relevant for this API.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_LOG_INCLUDE_SUMMARY = 'MSK_OFF'
Groups Output information, Logging

MSK_IPAR_LOG_INFEAS_ANA
Controls amount of output printed by the infeasibility analyzer procedures. A higher level implies
that more information is logged.

Default 1
Accepted [0; +inf]
Example param.MSK_IPAR_LOG_INFEAS_ANA = 1
Groups Infeasibility report , Output information, Logging

MSK_IPAR_LOG_INTPNT
Controls amount of output printed by the interior-point optimizer. A higher level implies that
more information is logged.

Default 1
Accepted [0; +inf]
Example param.MSK_IPAR_LOG_INTPNT = 1
Groups Interior-point method , Output information, Logging

MSK_IPAR_LOG_LOCAL_INFO
Controls whether local identifying information like environment variables, filenames, IP addresses
etc. are printed to the log.

Note that this will only affect some functions. Some functions that specifically emit system infor-
mation will not be affected.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_LOG_LOCAL_INFO = 'MSK_ON'
Groups Output information, Logging

MSK_IPAR_LOG_MIO
Controls the log level for the mixed-integer optimizer. A higher level implies that more information
is logged.

Default 4
Accepted [0; +inf]
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Example param.MSK_IPAR_LOG_MIO = 4
Groups Mixed-integer optimization, Output information, Logging

MSK_IPAR_LOG_MIO_FREQ
Controls how frequent the mixed-integer optimizer prints the log line. It will print line every time
MSK_IPAR_LOG_MIO_FREQ relaxations have been solved.

Default 10
Accepted [-inf; +inf]
Example param.MSK_IPAR_LOG_MIO_FREQ = 10
Groups Mixed-integer optimization, Output information, Logging

MSK_IPAR_LOG_ORDER
If turned on, then factor lines are added to the log.

Default 1
Accepted [0; +inf]
Example param.MSK_IPAR_LOG_ORDER = 1
Groups Output information, Logging

MSK_IPAR_LOG_PRESOLVE
Controls amount of output printed by the presolve procedure. A higher level implies that more
information is logged.

Default 1
Accepted [0; +inf]
Example param.MSK_IPAR_LOG_PRESOLVE = 1
Groups Logging

MSK_IPAR_LOG_RESPONSE
Controls amount of output printed when response codes are reported. A higher level implies that
more information is logged.

Default 0
Accepted [0; +inf]
Example param.MSK_IPAR_LOG_RESPONSE = 0
Groups Output information, Logging

MSK_IPAR_LOG_SENSITIVITY
Controls the amount of logging during the sensitivity analysis.

• 0. Means no logging information is produced.

• 1. Timing information is printed.

• 2. Sensitivity results are printed.

Default 1
Accepted [0; +inf]
Example param.MSK_IPAR_LOG_SENSITIVITY = 1
Groups Output information, Logging

MSK_IPAR_LOG_SENSITIVITY_OPT
Controls the amount of logging from the optimizers employed during the sensitivity analysis. 0
means no logging information is produced.

Default 0
Accepted [0; +inf]
Example param.MSK_IPAR_LOG_SENSITIVITY_OPT = 0
Groups Output information, Logging
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MSK_IPAR_LOG_SIM
Controls amount of output printed by the simplex optimizer. A higher level implies that more
information is logged.

Default 4
Accepted [0; +inf]
Example param.MSK_IPAR_LOG_SIM = 4
Groups Simplex optimizer , Output information, Logging

MSK_IPAR_LOG_SIM_FREQ
Controls how frequent the simplex optimizer outputs information about the optimization and how
frequent the user-defined callback function is called.

Default 1000
Accepted [0; +inf]
Example param.MSK_IPAR_LOG_SIM_FREQ = 1000
Groups Simplex optimizer , Output information, Logging

MSK_IPAR_LOG_SIM_MINOR
Currently not in use.

Default 1
Accepted [0; +inf]
Example param.MSK_IPAR_LOG_SIM_MINOR = 1
Groups Simplex optimizer , Output information

MSK_IPAR_LOG_STORAGE
When turned on, MOSEK prints messages regarding the storage usage and allocation.

Default 0
Accepted [0; +inf]
Example param.MSK_IPAR_LOG_STORAGE = 0
Groups Output information, Overall system, Logging

MSK_IPAR_MAX_NUM_WARNINGS
Each warning is shown a limited number of times controlled by this parameter. A negative value
is identical to infinite number of times.

Default 10
Accepted [-inf; +inf]
Example param.MSK_IPAR_MAX_NUM_WARNINGS = 10
Groups Output information

MSK_IPAR_MIO_BRANCH_DIR
Controls whether the mixed-integer optimizer is branching up or down by default.

Default "FREE"
Accepted "FREE" , "UP" , "DOWN" , "NEAR" , "FAR" , "ROOT_LP" , "GUIDED" ,

"PSEUDOCOST"
Example param.MSK_IPAR_MIO_BRANCH_DIR = 'MSK_BRANCH_DIR_FREE'
Groups Mixed-integer optimization

MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION
If this option is turned on outer approximation is used when solving relaxations of conic problems;
otherwise interior point is used.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION = 'MSK_OFF'
Groups Mixed-integer optimization
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MSK_IPAR_MIO_CUT_CLIQUE
Controls whether clique cuts should be generated.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_MIO_CUT_CLIQUE = 'MSK_ON'
Groups Mixed-integer optimization

MSK_IPAR_MIO_CUT_CMIR
Controls whether mixed integer rounding cuts should be generated.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_MIO_CUT_CMIR = 'MSK_ON'
Groups Mixed-integer optimization

MSK_IPAR_MIO_CUT_GMI
Controls whether GMI cuts should be generated.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_MIO_CUT_GMI = 'MSK_ON'
Groups Mixed-integer optimization

MSK_IPAR_MIO_CUT_IMPLIED_BOUND
Controls whether implied bound cuts should be generated.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_MIO_CUT_IMPLIED_BOUND = 'MSK_OFF'
Groups Mixed-integer optimization

MSK_IPAR_MIO_CUT_KNAPSACK_COVER
Controls whether knapsack cover cuts should be generated.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_MIO_CUT_KNAPSACK_COVER = 'MSK_OFF'
Groups Mixed-integer optimization

MSK_IPAR_MIO_CUT_SELECTION_LEVEL
Controls how aggressively generated cuts are selected to be included in the relaxation.

• −1. The optimizer chooses the level of cut selection

• 0. Generated cuts less likely to be added to the relaxation

• 1. Cuts are more aggressively selected to be included in the relaxation

Default -1
Accepted [-1; +1]
Example param.MSK_IPAR_MIO_CUT_SELECTION_LEVEL = -1
Groups Mixed-integer optimization

MSK_IPAR_MIO_FEASPUMP_LEVEL
Controls the way the Feasibility Pump heuristic is employed by the mixed-integer optimizer.

• −1. The optimizer chooses how the Feasibility Pump is used

• 0. The Feasibility Pump is disabled

• 1. The Feasibility Pump is enabled with an effort to improve solution quality

• 2. The Feasibility Pump is enabled with an effort to reach feasibility early
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Default -1
Accepted [-1; 2]
Example param.MSK_IPAR_MIO_FEASPUMP_LEVEL = -1
Groups Mixed-integer optimization

MSK_IPAR_MIO_HEURISTIC_LEVEL
Controls the heuristic employed by the mixed-integer optimizer to locate an initial good integer
feasible solution. A value of zero means the heuristic is not used at all. A larger value than 0 means
that a gradually more sophisticated heuristic is used which is computationally more expensive. A
negative value implies that the optimizer chooses the heuristic. Normally a value around 3 to 5
should be optimal.

Default -1
Accepted [-inf; +inf]
Example param.MSK_IPAR_MIO_HEURISTIC_LEVEL = -1
Groups Mixed-integer optimization

MSK_IPAR_MIO_MAX_NUM_BRANCHES
Maximum number of branches allowed during the branch and bound search. A negative value
means infinite.

Default -1
Accepted [-inf; +inf]
Example param.MSK_IPAR_MIO_MAX_NUM_BRANCHES = -1
Groups Mixed-integer optimization, Termination criteria

MSK_IPAR_MIO_MAX_NUM_RELAXS
Maximum number of relaxations allowed during the branch and bound search. A negative value
means infinite.

Default -1
Accepted [-inf; +inf]
Example param.MSK_IPAR_MIO_MAX_NUM_RELAXS = -1
Groups Mixed-integer optimization

MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS
Maximum number of cut separation rounds at the root node.

Default 100
Accepted [0; +inf]
Example param.MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS = 100
Groups Mixed-integer optimization, Termination criteria

MSK_IPAR_MIO_MAX_NUM_SOLUTIONS
The mixed-integer optimizer can be terminated after a certain number of different feasible solutions
has been located. If this parameter has the value 𝑛 > 0, then the mixed-integer optimizer will be
terminated when 𝑛 feasible solutions have been located.

Default -1
Accepted [-inf; +inf]
Example param.MSK_IPAR_MIO_MAX_NUM_SOLUTIONS = -1
Groups Mixed-integer optimization, Termination criteria

MSK_IPAR_MIO_MODE
Controls whether the optimizer includes the integer restrictions when solving a (mixed) integer
optimization problem.

Default "SATISFIED"
Accepted "IGNORED" , "SATISFIED"
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Example param.MSK_IPAR_MIO_MODE = 'MSK_MIO_MODE_SATISFIED'
Groups Overall solver

MSK_IPAR_MIO_NODE_OPTIMIZER
Controls which optimizer is employed at the non-root nodes in the mixed-integer optimizer.

Default "FREE"
Accepted "FREE" , "INTPNT" , "CONIC" , "PRIMAL_SIMPLEX" , "DUAL_SIMPLEX" ,

"FREE_SIMPLEX" , "MIXED_INT"
Example param.MSK_IPAR_MIO_NODE_OPTIMIZER = 'MSK_OPTIMIZER_FREE'
Groups Mixed-integer optimization

MSK_IPAR_MIO_NODE_SELECTION
Controls the node selection strategy employed by the mixed-integer optimizer.

Default "FREE"
Accepted "FREE" , "FIRST" , "BEST" , "PSEUDO"
Example param.MSK_IPAR_MIO_NODE_SELECTION = 'MSK_MIO_NODE_SELECTION_FREE'
Groups Mixed-integer optimization

MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE
Enables or disables perspective reformulation in presolve.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE = 'MSK_ON'
Groups Mixed-integer optimization

MSK_IPAR_MIO_PROBING_LEVEL
Controls the amount of probing employed by the mixed-integer optimizer in presolve.

• −1. The optimizer chooses the level of probing employed

• 0. Probing is disabled

• 1. A low amount of probing is employed

• 2. A medium amount of probing is employed

• 3. A high amount of probing is employed

Default -1
Accepted [-1; 3]
Example param.MSK_IPAR_MIO_PROBING_LEVEL = -1
Groups Mixed-integer optimization

MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT
Use objective domain propagation.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT = 'MSK_OFF'
Groups Mixed-integer optimization

MSK_IPAR_MIO_RINS_MAX_NODES
Controls the maximum number of nodes allowed in each call to the RINS heuristic. The default
value of -1 means that the value is determined automatically. A value of zero turns off the heuristic.

Default -1
Accepted [-1; +inf]
Example param.MSK_IPAR_MIO_RINS_MAX_NODES = -1
Groups Mixed-integer optimization
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MSK_IPAR_MIO_ROOT_OPTIMIZER
Controls which optimizer is employed at the root node in the mixed-integer optimizer.

Default "FREE"
Accepted "FREE" , "INTPNT" , "CONIC" , "PRIMAL_SIMPLEX" , "DUAL_SIMPLEX" ,

"FREE_SIMPLEX" , "MIXED_INT"
Example param.MSK_IPAR_MIO_ROOT_OPTIMIZER = 'MSK_OPTIMIZER_FREE'
Groups Mixed-integer optimization

MSK_IPAR_MIO_ROOT_REPEAT_PRESOLVE_LEVEL
Controls whether presolve can be repeated at root node.

• −1. The optimizer chooses whether presolve is repeated

• 0. Never repeat presolve

• 1. Always repeat presolve

Default -1
Accepted [-1; 1]
Example param.MSK_IPAR_MIO_ROOT_REPEAT_PRESOLVE_LEVEL = -1
Groups Mixed-integer optimization

MSK_IPAR_MIO_SEED
Sets the random seed used for randomization in the mixed integer optimizer. Selecting a different
seed can change the path the optimizer takes to the optimal solution.

Default 42
Accepted [0; +inf]
Example param.MSK_IPAR_MIO_SEED = 42
Groups Mixed-integer optimization

MSK_IPAR_MIO_VB_DETECTION_LEVEL
Controls how much effort is put into detecting variable bounds.

• −1. The optimizer chooses

• 0. No variable bounds are detected

• 1. Only detect variable bounds that are directly represented in the problem

• 2. Detect variable bounds in probing

Default -1
Accepted [-1; +2]
Example param.MSK_IPAR_MIO_VB_DETECTION_LEVEL = -1
Groups Mixed-integer optimization

MSK_IPAR_MT_SPINCOUNT
Set the number of iterations to spin before sleeping.

Default 0
Accepted [0; 1000000000]
Example param.MSK_IPAR_MT_SPINCOUNT = 0
Groups Overall system

MSK_IPAR_NUM_THREADS
Controls the number of threads employed by the optimizer. If set to 0 the number of threads used
will be equal to the number of cores detected on the machine.

If using the conic optimizer, the value of this parameter set at first optimization remains constant
through the lifetime of the process. MOSEK will allocate a thread pool of given size, and changing
the parameter value later will have no effect. It will, however, remain possible to demand single-
threaded execution by setting MSK_IPAR_INTPNT_MULTI_THREAD .
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For the mixed-integer optimizer and interior-point linear optimizer there is no such restriction.

On the linuxaarch64 platform the settings only applies to the mixed-integer optimizer; the con-
tinuous optimizers are single-threaded.

Default 0
Accepted [0; +inf]
Example param.MSK_IPAR_NUM_THREADS = 0
Groups Overall system

MSK_IPAR_OPF_WRITE_HEADER
Write a text header with date and MOSEK version in an OPF file.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_OPF_WRITE_HEADER = 'MSK_ON'
Groups Data input/output

MSK_IPAR_OPF_WRITE_HINTS
Write a hint section with problem dimensions in the beginning of an OPF file.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_OPF_WRITE_HINTS = 'MSK_ON'
Groups Data input/output

MSK_IPAR_OPF_WRITE_LINE_LENGTH
Aim to keep lines in OPF files not much longer than this.

Default 80
Accepted [0; +inf]
Example param.MSK_IPAR_OPF_WRITE_LINE_LENGTH = 80
Groups Data input/output

MSK_IPAR_OPF_WRITE_PARAMETERS
Write a parameter section in an OPF file.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_OPF_WRITE_PARAMETERS = 'MSK_OFF'
Groups Data input/output

MSK_IPAR_OPF_WRITE_PROBLEM
Write objective, constraints, bounds etc. to an OPF file.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_OPF_WRITE_PROBLEM = 'MSK_ON'
Groups Data input/output

MSK_IPAR_OPF_WRITE_SOL_BAS
If MSK_IPAR_OPF_WRITE_SOLUTIONS is "MSK_ON" and a basic solution is defined, include the basic
solution in OPF files.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_OPF_WRITE_SOL_BAS = 'MSK_ON'
Groups Data input/output
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MSK_IPAR_OPF_WRITE_SOL_ITG
If MSK_IPAR_OPF_WRITE_SOLUTIONS is "MSK_ON" and an integer solution is defined, write the
integer solution in OPF files.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_OPF_WRITE_SOL_ITG = 'MSK_ON'
Groups Data input/output

MSK_IPAR_OPF_WRITE_SOL_ITR
If MSK_IPAR_OPF_WRITE_SOLUTIONS is "MSK_ON" and an interior solution is defined, write the
interior solution in OPF files.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_OPF_WRITE_SOL_ITR = 'MSK_ON'
Groups Data input/output

MSK_IPAR_OPF_WRITE_SOLUTIONS
Enable inclusion of solutions in the OPF files.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_OPF_WRITE_SOLUTIONS = 'MSK_OFF'
Groups Data input/output

MSK_IPAR_OPTIMIZER
The parameter controls which optimizer is used to optimize the task.

Default "FREE"
Accepted "FREE" , "INTPNT" , "CONIC" , "PRIMAL_SIMPLEX" , "DUAL_SIMPLEX" ,

"FREE_SIMPLEX" , "MIXED_INT"
Example param.MSK_IPAR_OPTIMIZER = 'MSK_OPTIMIZER_FREE'
Groups Overall solver

MSK_IPAR_PARAM_READ_CASE_NAME
If turned on, then names in the parameter file are case sensitive.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_PARAM_READ_CASE_NAME = 'MSK_ON'
Groups Data input/output

MSK_IPAR_PARAM_READ_IGN_ERROR
If turned on, then errors in parameter settings is ignored.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_PARAM_READ_IGN_ERROR = 'MSK_OFF'
Groups Data input/output

MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL
Controls the maximum amount of fill-in that can be created by one pivot in the elimination phase
of the presolve. A negative value means the parameter value is selected automatically.

Default -1
Accepted [-inf; +inf]
Example param.MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL = -1
Groups Presolve
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MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
Control the maximum number of times the eliminator is tried. A negative value implies MOSEK
decides.

Default -1
Accepted [-inf; +inf]
Example param.MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES = -1
Groups Presolve

MSK_IPAR_PRESOLVE_LEVEL
Currently not used.

Default -1
Accepted [-inf; +inf]
Example param.MSK_IPAR_PRESOLVE_LEVEL = -1
Groups Overall solver , Presolve

MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH
Controls linear dependency check in presolve. The linear dependency check is potentially compu-
tationally expensive.

Default 100
Accepted [-inf; +inf]
Example param.MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH = 100
Groups Presolve

MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH
Controls linear dependency check in presolve. The linear dependency check is potentially compu-
tationally expensive.

Default 100
Accepted [-inf; +inf]
Example param.MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH = 100
Groups Presolve

MSK_IPAR_PRESOLVE_LINDEP_USE
Controls whether the linear constraints are checked for linear dependencies.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_PRESOLVE_LINDEP_USE = 'MSK_ON'
Groups Presolve

MSK_IPAR_PRESOLVE_MAX_NUM_PASS
Control the maximum number of times presolve passes over the problem. A negative value implies
MOSEK decides.

Default -1
Accepted [-inf; +inf]
Example param.MSK_IPAR_PRESOLVE_MAX_NUM_PASS = -1
Groups Presolve

MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS
Controls the maximum number of reductions performed by the presolve. The value of the parameter
is normally only changed in connection with debugging. A negative value implies that an infinite
number of reductions are allowed.

Default -1
Accepted [-inf; +inf]
Example param.MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS = -1
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Groups Overall solver , Presolve

MSK_IPAR_PRESOLVE_USE
Controls whether the presolve is applied to a problem before it is optimized.

Default "FREE"
Accepted "OFF" , "ON" , "FREE"
Example param.MSK_IPAR_PRESOLVE_USE = 'MSK_PRESOLVE_MODE_FREE'
Groups Overall solver , Presolve

MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER
Controls which optimizer that is used to find the optimal repair.

Default "FREE"
Accepted "FREE" , "INTPNT" , "CONIC" , "PRIMAL_SIMPLEX" , "DUAL_SIMPLEX" ,

"FREE_SIMPLEX" , "MIXED_INT"
Example param.MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER = 'MSK_OPTIMIZER_FREE'
Groups Overall solver

MSK_IPAR_PTF_WRITE_TRANSFORM
If MSK_IPAR_PTF_WRITE_TRANSFORM is "MSK_ON" , constraint blocks with identifiable conic slacks
are transformed into conic constraints and the slacks are eliminated.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_PTF_WRITE_TRANSFORM = 'MSK_ON'
Groups Data input/output

MSK_IPAR_READ_DEBUG
Turns on additional debugging information when reading files.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_READ_DEBUG = 'MSK_OFF'
Groups Data input/output

MSK_IPAR_READ_KEEP_FREE_CON
Controls whether the free constraints are included in the problem.

Default "OFF"
Accepted

• "ON" : The free constraints are kept.
• "OFF" : The free constraints are discarded.

Example param.MSK_IPAR_READ_KEEP_FREE_CON = 'MSK_OFF'
Groups Data input/output

MSK_IPAR_READ_LP_DROP_NEW_VARS_IN_BOU
If this option is turned on, MOSEK will drop variables that are defined for the first time in the
bounds section.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_READ_LP_DROP_NEW_VARS_IN_BOU = 'MSK_OFF'
Groups Data input/output

MSK_IPAR_READ_LP_QUOTED_NAMES
If a name is in quotes when reading an LP file, the quotes will be removed.

Default "ON"
Accepted "ON" , "OFF"
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Example param.MSK_IPAR_READ_LP_QUOTED_NAMES = 'MSK_ON'
Groups Data input/output

MSK_IPAR_READ_MPS_FORMAT
Controls how strictly the MPS file reader interprets the MPS format.

Default "FREE"
Accepted "STRICT" , "RELAXED" , "FREE" , "CPLEX"
Example param.MSK_IPAR_READ_MPS_FORMAT = 'MSK_MPS_FORMAT_FREE'
Groups Data input/output

MSK_IPAR_READ_MPS_WIDTH
Controls the maximal number of characters allowed in one line of the MPS file.

Default 1024
Accepted [80; +inf]
Example param.MSK_IPAR_READ_MPS_WIDTH = 1024
Groups Data input/output

MSK_IPAR_READ_TASK_IGNORE_PARAM
Controls whether MOSEK should ignore the parameter setting defined in the task file and use
the default parameter setting instead.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_READ_TASK_IGNORE_PARAM = 'MSK_OFF'
Groups Data input/output

MSK_IPAR_REMOVE_UNUSED_SOLUTIONS
Removes unused solutions before the optimization is performed.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_REMOVE_UNUSED_SOLUTIONS = 'MSK_OFF'
Groups Overall system

MSK_IPAR_SENSITIVITY_ALL
Not applicable.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_SENSITIVITY_ALL = 'MSK_OFF'
Groups Overall solver

MSK_IPAR_SENSITIVITY_OPTIMIZER
Controls which optimizer is used for optimal partition sensitivity analysis.

Default "FREE_SIMPLEX"
Accepted "FREE" , "INTPNT" , "CONIC" , "PRIMAL_SIMPLEX" , "DUAL_SIMPLEX" ,

"FREE_SIMPLEX" , "MIXED_INT"
Example param.MSK_IPAR_SENSITIVITY_OPTIMIZER = 'MSK_OPTIMIZER_FREE_SIMPLEX'
Groups Overall solver , Simplex optimizer

MSK_IPAR_SENSITIVITY_TYPE
Controls which type of sensitivity analysis is to be performed.

Default "BASIS"
Accepted "BASIS"
Example param.MSK_IPAR_SENSITIVITY_TYPE = 'MSK_SENSITIVITY_TYPE_BASIS'
Groups Overall solver
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MSK_IPAR_SIM_BASIS_FACTOR_USE
Controls whether an LU factorization of the basis is used in a hot-start. Forcing a refactorization
sometimes improves the stability of the simplex optimizers, but in most cases there is a performance
penalty.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_SIM_BASIS_FACTOR_USE = 'MSK_ON'
Groups Simplex optimizer

MSK_IPAR_SIM_DEGEN
Controls how aggressively degeneration is handled.

Default "FREE"
Accepted "NONE" , "FREE" , "AGGRESSIVE" , "MODERATE" , "MINIMUM"
Example param.MSK_IPAR_SIM_DEGEN = 'MSK_SIM_DEGEN_FREE'
Groups Simplex optimizer

MSK_IPAR_SIM_DUAL_CRASH
Controls whether crashing is performed in the dual simplex optimizer. If this parameter is set to
𝑥, then a crash will be performed if a basis consists of more than (100− 𝑥) mod 𝑓𝑣 entries, where
𝑓𝑣 is the number of fixed variables.

Default 90
Accepted [0; +inf]
Example param.MSK_IPAR_SIM_DUAL_CRASH = 90
Groups Dual simplex

MSK_IPAR_SIM_DUAL_PHASEONE_METHOD
An experimental feature.

Default 0
Accepted [0; 10]
Example param.MSK_IPAR_SIM_DUAL_PHASEONE_METHOD = 0
Groups Simplex optimizer

MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION
The dual simplex optimizer can use a so-called restricted selection/pricing strategy to choose the
outgoing variable. Hence, if restricted selection is applied, then the dual simplex optimizer first
choose a subset of all the potential outgoing variables. Next, for some time it will choose the
outgoing variable only among the subset. From time to time the subset is redefined. A larger value
of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e.
a value of 0 implies that the restriction strategy is not applied at all.

Default 50
Accepted [0; 100]
Example param.MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION = 50
Groups Dual simplex

MSK_IPAR_SIM_DUAL_SELECTION
Controls the choice of the incoming variable, known as the selection strategy, in the dual simplex
optimizer.

Default "FREE"
Accepted "FREE" , "FULL" , "ASE" , "DEVEX" , "SE" , "PARTIAL"
Example param.MSK_IPAR_SIM_DUAL_SELECTION = 'MSK_SIM_SELECTION_FREE'
Groups Dual simplex

MSK_IPAR_SIM_EXPLOIT_DUPVEC
Controls if the simplex optimizers are allowed to exploit duplicated columns.
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Default "OFF"
Accepted "ON" , "OFF" , "FREE"
Example param.MSK_IPAR_SIM_EXPLOIT_DUPVEC = 'MSK_SIM_EXPLOIT_DUPVEC_OFF'
Groups Simplex optimizer

MSK_IPAR_SIM_HOTSTART
Controls the type of hot-start that the simplex optimizer perform.

Default "FREE"
Accepted "NONE" , "FREE" , "STATUS_KEYS"
Example param.MSK_IPAR_SIM_HOTSTART = 'MSK_SIM_HOTSTART_FREE'
Groups Simplex optimizer

MSK_IPAR_SIM_HOTSTART_LU
Determines if the simplex optimizer should exploit the initial factorization.

Default "ON"
Accepted

• "ON" : Factorization is reused if possible.
• "OFF" : Factorization is recomputed.

Example param.MSK_IPAR_SIM_HOTSTART_LU = 'MSK_ON'
Groups Simplex optimizer

MSK_IPAR_SIM_MAX_ITERATIONS
Maximum number of iterations that can be used by a simplex optimizer.

Default 10000000
Accepted [0; +inf]
Example param.MSK_IPAR_SIM_MAX_ITERATIONS = 10000000
Groups Simplex optimizer , Termination criteria

MSK_IPAR_SIM_MAX_NUM_SETBACKS
Controls how many set-backs are allowed within a simplex optimizer. A set-back is an event where
the optimizer moves in the wrong direction. This is impossible in theory but may happen due to
numerical problems.

Default 250
Accepted [0; +inf]
Example param.MSK_IPAR_SIM_MAX_NUM_SETBACKS = 250
Groups Simplex optimizer

MSK_IPAR_SIM_NON_SINGULAR
Controls if the simplex optimizer ensures a non-singular basis, if possible.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_SIM_NON_SINGULAR = 'MSK_ON'
Groups Simplex optimizer

MSK_IPAR_SIM_PRIMAL_CRASH
Controls whether crashing is performed in the primal simplex optimizer. In general, if a basis
consists of more than (100-this parameter value)% fixed variables, then a crash will be performed.

Default 90
Accepted [0; +inf]
Example param.MSK_IPAR_SIM_PRIMAL_CRASH = 90
Groups Primal simplex
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MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD
An experimental feature.

Default 0
Accepted [0; 10]
Example param.MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD = 0
Groups Simplex optimizer

MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION
The primal simplex optimizer can use a so-called restricted selection/pricing strategy to choose
the outgoing variable. Hence, if restricted selection is applied, then the primal simplex optimizer
first choose a subset of all the potential incoming variables. Next, for some time it will choose the
incoming variable only among the subset. From time to time the subset is redefined. A larger value
of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e.
a value of 0 implies that the restriction strategy is not applied at all.

Default 50
Accepted [0; 100]
Example param.MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION = 50
Groups Primal simplex

MSK_IPAR_SIM_PRIMAL_SELECTION
Controls the choice of the incoming variable, known as the selection strategy, in the primal simplex
optimizer.

Default "FREE"
Accepted "FREE" , "FULL" , "ASE" , "DEVEX" , "SE" , "PARTIAL"
Example param.MSK_IPAR_SIM_PRIMAL_SELECTION = 'MSK_SIM_SELECTION_FREE'
Groups Primal simplex

MSK_IPAR_SIM_REFACTOR_FREQ
Controls how frequent the basis is refactorized. The value 0 means that the optimizer determines
the best point of refactorization. It is strongly recommended NOT to change this parameter.

Default 0
Accepted [0; +inf]
Example param.MSK_IPAR_SIM_REFACTOR_FREQ = 0
Groups Simplex optimizer

MSK_IPAR_SIM_REFORMULATION
Controls if the simplex optimizers are allowed to reformulate the problem.

Default "OFF"
Accepted "ON" , "OFF" , "FREE" , "AGGRESSIVE"
Example param.MSK_IPAR_SIM_REFORMULATION = 'MSK_SIM_REFORMULATION_OFF'
Groups Simplex optimizer

MSK_IPAR_SIM_SAVE_LU
Controls if the LU factorization stored should be replaced with the LU factorization corresponding
to the initial basis.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_SIM_SAVE_LU = 'MSK_OFF'
Groups Simplex optimizer

MSK_IPAR_SIM_SCALING
Controls how much effort is used in scaling the problem before a simplex optimizer is used.

Default "FREE"
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Accepted "FREE" , "NONE" , "MODERATE" , "AGGRESSIVE"
Example param.MSK_IPAR_SIM_SCALING = 'MSK_SCALING_FREE'
Groups Simplex optimizer

MSK_IPAR_SIM_SCALING_METHOD
Controls how the problem is scaled before a simplex optimizer is used.

Default "POW2"
Accepted "POW2" , "FREE"
Example param.MSK_IPAR_SIM_SCALING_METHOD = 'MSK_SCALING_METHOD_POW2'
Groups Simplex optimizer

MSK_IPAR_SIM_SEED
Sets the random seed used for randomization in the simplex optimizers.

Default 23456
Accepted [0; 32749]
Example param.MSK_IPAR_SIM_SEED = 23456
Groups Simplex optimizer

MSK_IPAR_SIM_SOLVE_FORM
Controls whether the primal or the dual problem is solved by the primal-/dual-simplex optimizer.

Default "FREE"
Accepted "FREE" , "PRIMAL" , "DUAL"
Example param.MSK_IPAR_SIM_SOLVE_FORM = 'MSK_SOLVE_FREE'
Groups Simplex optimizer

MSK_IPAR_SIM_STABILITY_PRIORITY
Controls how high priority the numerical stability should be given.

Default 50
Accepted [0; 100]
Example param.MSK_IPAR_SIM_STABILITY_PRIORITY = 50
Groups Simplex optimizer

MSK_IPAR_SIM_SWITCH_OPTIMIZER
The simplex optimizer sometimes chooses to solve the dual problem instead of the primal problem.
This implies that if you have chosen to use the dual simplex optimizer and the problem is dualized,
then it actually makes sense to use the primal simplex optimizer instead. If this parameter is on
and the problem is dualized and furthermore the simplex optimizer is chosen to be the primal
(dual) one, then it is switched to the dual (primal).

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_SIM_SWITCH_OPTIMIZER = 'MSK_OFF'
Groups Simplex optimizer

MSK_IPAR_SOL_FILTER_KEEP_BASIC
If turned on, then basic and super basic constraints and variables are written to the solution file
independent of the filter setting.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_SOL_FILTER_KEEP_BASIC = 'MSK_OFF'
Groups Solution input/output

MSK_IPAR_SOL_FILTER_KEEP_RANGED
If turned on, then ranged constraints and variables are written to the solution file independent of
the filter setting.
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Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_SOL_FILTER_KEEP_RANGED = 'MSK_OFF'
Groups Solution input/output

MSK_IPAR_SOL_READ_NAME_WIDTH
When a solution is read by MOSEK and some constraint, variable or cone names contain blanks,
then a maximum name width much be specified. A negative value implies that no name contain
blanks.

Default -1
Accepted [-inf; +inf]
Example param.MSK_IPAR_SOL_READ_NAME_WIDTH = -1
Groups Data input/output , Solution input/output

MSK_IPAR_SOL_READ_WIDTH
Controls the maximal acceptable width of line in the solutions when read by MOSEK.

Default 1024
Accepted [80; +inf]
Example param.MSK_IPAR_SOL_READ_WIDTH = 1024
Groups Data input/output , Solution input/output

MSK_IPAR_SOLUTION_CALLBACK
Indicates whether solution callbacks will be performed during the optimization.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_SOLUTION_CALLBACK = 'MSK_OFF'
Groups Progress callback , Overall solver

MSK_IPAR_TIMING_LEVEL
Controls the amount of timing performed inside MOSEK.

Default 1
Accepted [0; +inf]
Example param.MSK_IPAR_TIMING_LEVEL = 1
Groups Overall system

MSK_IPAR_WRITE_BAS_CONSTRAINTS
Controls whether the constraint section is written to the basic solution file.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_WRITE_BAS_CONSTRAINTS = 'MSK_ON'
Groups Data input/output , Solution input/output

MSK_IPAR_WRITE_BAS_HEAD
Controls whether the header section is written to the basic solution file.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_WRITE_BAS_HEAD = 'MSK_ON'
Groups Data input/output , Solution input/output

MSK_IPAR_WRITE_BAS_VARIABLES
Controls whether the variables section is written to the basic solution file.

Default "ON"
Accepted "ON" , "OFF"
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Example param.MSK_IPAR_WRITE_BAS_VARIABLES = 'MSK_ON'
Groups Data input/output , Solution input/output

MSK_IPAR_WRITE_COMPRESSION
Controls whether the data file is compressed while it is written. 0 means no compression while
higher values mean more compression.

Default 9
Accepted [0; +inf]
Example param.MSK_IPAR_WRITE_COMPRESSION = 9
Groups Data input/output

MSK_IPAR_WRITE_DATA_PARAM
If this option is turned on the parameter settings are written to the data file as parameters.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_WRITE_DATA_PARAM = 'MSK_OFF'
Groups Data input/output

MSK_IPAR_WRITE_FREE_CON
Controls whether the free constraints are written to the data file.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_WRITE_FREE_CON = 'MSK_ON'
Groups Data input/output

MSK_IPAR_WRITE_GENERIC_NAMES
Controls whether generic names should be used instead of user-defined names when writing to the
data file.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_WRITE_GENERIC_NAMES = 'MSK_OFF'
Groups Data input/output

MSK_IPAR_WRITE_GENERIC_NAMES_IO
Index origin used in generic names.

Default 1
Accepted [0; +inf]
Example param.MSK_IPAR_WRITE_GENERIC_NAMES_IO = 1
Groups Data input/output

MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS
Controls if the writer ignores incompatible problem items when writing files.

Default "OFF"
Accepted

• "ON" : Ignore items that cannot be written to the current output file format.
• "OFF" : Produce an error if the problem contains items that cannot the written

to the current output file format.
Example param.MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS = 'MSK_OFF'
Groups Data input/output

MSK_IPAR_WRITE_INT_CONSTRAINTS
Controls whether the constraint section is written to the integer solution file.

Default "ON"
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Accepted "ON" , "OFF"
Example param.MSK_IPAR_WRITE_INT_CONSTRAINTS = 'MSK_ON'
Groups Data input/output , Solution input/output

MSK_IPAR_WRITE_INT_HEAD
Controls whether the header section is written to the integer solution file.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_WRITE_INT_HEAD = 'MSK_ON'
Groups Data input/output , Solution input/output

MSK_IPAR_WRITE_INT_VARIABLES
Controls whether the variables section is written to the integer solution file.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_WRITE_INT_VARIABLES = 'MSK_ON'
Groups Data input/output , Solution input/output

MSK_IPAR_WRITE_LP_FULL_OBJ
Write all variables, including the ones with 0-coefficients, in the objective.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_WRITE_LP_FULL_OBJ = 'MSK_ON'
Groups Data input/output

MSK_IPAR_WRITE_LP_LINE_WIDTH
Maximum width of line in an LP file written by MOSEK.

Default 80
Accepted [40; +inf]
Example param.MSK_IPAR_WRITE_LP_LINE_WIDTH = 80
Groups Data input/output

MSK_IPAR_WRITE_LP_QUOTED_NAMES
If this option is turned on, then MOSEK will quote invalid LP names when writing an LP file.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_WRITE_LP_QUOTED_NAMES = 'MSK_ON'
Groups Data input/output

MSK_IPAR_WRITE_LP_STRICT_FORMAT
Controls whether LP output files satisfy the LP format strictly.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_WRITE_LP_STRICT_FORMAT = 'MSK_OFF'
Groups Data input/output

MSK_IPAR_WRITE_LP_TERMS_PER_LINE
Maximum number of terms on a single line in an LP file written by MOSEK. 0 means unlimited.

Default 10
Accepted [0; +inf]
Example param.MSK_IPAR_WRITE_LP_TERMS_PER_LINE = 10
Groups Data input/output
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MSK_IPAR_WRITE_MPS_FORMAT
Controls in which format the MPS is written.

Default "FREE"
Accepted "STRICT" , "RELAXED" , "FREE" , "CPLEX"
Example param.MSK_IPAR_WRITE_MPS_FORMAT = 'MSK_MPS_FORMAT_FREE'
Groups Data input/output

MSK_IPAR_WRITE_MPS_INT
Controls if marker records are written to the MPS file to indicate whether variables are integer
restricted.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_WRITE_MPS_INT = 'MSK_ON'
Groups Data input/output

MSK_IPAR_WRITE_PRECISION
Controls the precision with which double numbers are printed in the MPS data file. In general it
is not worthwhile to use a value higher than 15.

Default 15
Accepted [0; +inf]
Example param.MSK_IPAR_WRITE_PRECISION = 15
Groups Data input/output

MSK_IPAR_WRITE_SOL_BARVARIABLES
Controls whether the symmetric matrix variables section is written to the solution file.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_WRITE_SOL_BARVARIABLES = 'MSK_ON'
Groups Data input/output , Solution input/output

MSK_IPAR_WRITE_SOL_CONSTRAINTS
Controls whether the constraint section is written to the solution file.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_WRITE_SOL_CONSTRAINTS = 'MSK_ON'
Groups Data input/output , Solution input/output

MSK_IPAR_WRITE_SOL_HEAD
Controls whether the header section is written to the solution file.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_WRITE_SOL_HEAD = 'MSK_ON'
Groups Data input/output , Solution input/output

MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES
Even if the names are invalid MPS names, then they are employed when writing the solution file.

Default "OFF"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES = 'MSK_OFF'
Groups Data input/output , Solution input/output

MSK_IPAR_WRITE_SOL_VARIABLES
Controls whether the variables section is written to the solution file.
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Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_WRITE_SOL_VARIABLES = 'MSK_ON'
Groups Data input/output , Solution input/output

MSK_IPAR_WRITE_TASK_INC_SOL
Controls whether the solutions are stored in the task file too.

Default "ON"
Accepted "ON" , "OFF"
Example param.MSK_IPAR_WRITE_TASK_INC_SOL = 'MSK_ON'
Groups Data input/output

MSK_IPAR_WRITE_XML_MODE
Controls if linear coefficients should be written by row or column when writing in the XML file
format.

Default "ROW"
Accepted "ROW" , "COL"
Example param.MSK_IPAR_WRITE_XML_MODE = 'MSK_WRITE_XML_MODE_ROW'
Groups Data input/output

15.5.3 String parameters

sparam
The enumeration type containing all string parameters.

MSK_SPAR_BAS_SOL_FILE_NAME
Name of the bas solution file.

Accepted Any valid file name.
Example param.MSK_SPAR_BAS_SOL_FILE_NAME = 'somevalue'
Groups Data input/output , Solution input/output

MSK_SPAR_DATA_FILE_NAME
Data are read and written to this file.

Accepted Any valid file name.
Example param.MSK_SPAR_DATA_FILE_NAME = 'somevalue'
Groups Data input/output

MSK_SPAR_DEBUG_FILE_NAME
MOSEK debug file.

Accepted Any valid file name.
Example param.MSK_SPAR_DEBUG_FILE_NAME = 'somevalue'
Groups Data input/output

MSK_SPAR_INT_SOL_FILE_NAME
Name of the int solution file.

Accepted Any valid file name.
Example param.MSK_SPAR_INT_SOL_FILE_NAME = 'somevalue'
Groups Data input/output , Solution input/output

MSK_SPAR_ITR_SOL_FILE_NAME
Name of the itr solution file.

Accepted Any valid file name.
Example param.MSK_SPAR_ITR_SOL_FILE_NAME = 'somevalue'
Groups Data input/output , Solution input/output
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MSK_SPAR_MIO_DEBUG_STRING
For internal debugging purposes.

Accepted Any valid string.
Example param.MSK_SPAR_MIO_DEBUG_STRING = 'somevalue'
Groups Data input/output

MSK_SPAR_PARAM_COMMENT_SIGN
Only the first character in this string is used. It is considered as a start of comment sign in the
MOSEK parameter file. Spaces are ignored in the string.

Default
%%

Accepted Any valid string.
Example param.MSK_SPAR_PARAM_COMMENT_SIGN = '%%'
Groups Data input/output

MSK_SPAR_PARAM_READ_FILE_NAME
Modifications to the parameter database is read from this file.

Accepted Any valid file name.
Example param.MSK_SPAR_PARAM_READ_FILE_NAME = 'somevalue'
Groups Data input/output

MSK_SPAR_PARAM_WRITE_FILE_NAME
The parameter database is written to this file.

Accepted Any valid file name.
Example param.MSK_SPAR_PARAM_WRITE_FILE_NAME = 'somevalue'
Groups Data input/output

MSK_SPAR_READ_MPS_BOU_NAME
Name of the BOUNDS vector used. An empty name means that the first BOUNDS vector is used.

Accepted Any valid MPS name.
Example param.MSK_SPAR_READ_MPS_BOU_NAME = 'somevalue'
Groups Data input/output

MSK_SPAR_READ_MPS_OBJ_NAME
Name of the free constraint used as objective function. An empty name means that the first
constraint is used as objective function.

Accepted Any valid MPS name.
Example param.MSK_SPAR_READ_MPS_OBJ_NAME = 'somevalue'
Groups Data input/output

MSK_SPAR_READ_MPS_RAN_NAME
Name of the RANGE vector used. An empty name means that the first RANGE vector is used.

Accepted Any valid MPS name.
Example param.MSK_SPAR_READ_MPS_RAN_NAME = 'somevalue'
Groups Data input/output

MSK_SPAR_READ_MPS_RHS_NAME
Name of the RHS used. An empty name means that the first RHS vector is used.

Accepted Any valid MPS name.
Example param.MSK_SPAR_READ_MPS_RHS_NAME = 'somevalue'
Groups Data input/output
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MSK_SPAR_REMOTE_ACCESS_TOKEN
An access token used to submit tasks to a remote MOSEK server. An access token is a random
32-byte string encoded in base64, i.e. it is a 44 character ASCII string.

Accepted Any valid string.
Example param.MSK_SPAR_REMOTE_ACCESS_TOKEN = 'somevalue'
Groups Overall system

MSK_SPAR_SENSITIVITY_FILE_NAME
If defined, MOSEK reads this file as a sensitivity analysis data file specifying the type of analysis
to be done.

Accepted Any valid string.
Example param.MSK_SPAR_SENSITIVITY_FILE_NAME = 'somevalue'
Groups Data input/output

MSK_SPAR_SENSITIVITY_RES_FILE_NAME

Accepted Any valid string.
Example param.MSK_SPAR_SENSITIVITY_RES_FILE_NAME = 'somevalue'
Groups Data input/output

MSK_SPAR_SOL_FILTER_XC_LOW
A filter used to determine which constraints should be listed in the solution file. A value of 0.5 means
that all constraints having xc[i]>0.5 should be listed, whereas +0.5 means that all constraints
having xc[i]>=blc[i]+0.5 should be listed. An empty filter means that no filter is applied.

Accepted Any valid filter.
Example param.MSK_SPAR_SOL_FILTER_XC_LOW = 'somevalue'
Groups Data input/output , Solution input/output

MSK_SPAR_SOL_FILTER_XC_UPR
A filter used to determine which constraints should be listed in the solution file. A value of 0.5
means that all constraints having xc[i]<0.5 should be listed, whereas -0.5 means all constraints
having xc[i]<=buc[i]-0.5 should be listed. An empty filter means that no filter is applied.

Accepted Any valid filter.
Example param.MSK_SPAR_SOL_FILTER_XC_UPR = 'somevalue'
Groups Data input/output , Solution input/output

MSK_SPAR_SOL_FILTER_XX_LOW
A filter used to determine which variables should be listed in the solution file. A value of “0.5” means
that all constraints having xx[j]>=0.5 should be listed, whereas “+0.5” means that all constraints
having xx[j]>=blx[j]+0.5 should be listed. An empty filter means no filter is applied.

Accepted Any valid filter.
Example param.MSK_SPAR_SOL_FILTER_XX_LOW = 'somevalue'
Groups Data input/output , Solution input/output

MSK_SPAR_SOL_FILTER_XX_UPR
A filter used to determine which variables should be listed in the solution file. A value of “0.5”
means that all constraints having xx[j]<0.5 should be printed, whereas “-0.5” means all constraints
having xx[j]<=bux[j]-0.5 should be listed. An empty filter means no filter is applied.

Accepted Any valid file name.
Example param.MSK_SPAR_SOL_FILTER_XX_UPR = 'somevalue'
Groups Data input/output , Solution input/output

MSK_SPAR_STAT_FILE_NAME
Statistics file name.
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Accepted Any valid file name.
Example param.MSK_SPAR_STAT_FILE_NAME = 'somevalue'
Groups Data input/output

MSK_SPAR_STAT_KEY
Key used when writing the summary file.

Accepted Any valid string.
Example param.MSK_SPAR_STAT_KEY = 'somevalue'
Groups Data input/output

MSK_SPAR_STAT_NAME
Name used when writing the statistics file.

Accepted Any valid XML string.
Example param.MSK_SPAR_STAT_NAME = 'somevalue'
Groups Data input/output

MSK_SPAR_WRITE_LP_GEN_VAR_NAME
Sometimes when an LP file is written additional variables must be inserted. They will have the
prefix denoted by this parameter.

Default xmskgen
Accepted Any valid string.
Example param.MSK_SPAR_WRITE_LP_GEN_VAR_NAME = 'xmskgen'
Groups Data input/output

15.6 Response codes

Response codes include:

• Termination codes

• Warnings

• Errors

The numerical code (in brackets) identifies the response in error messages and in the log output.
rescode

The enumeration type containing all response codes.

15.6.1 Termination

"MSK_RES_OK" (0)
No error occurred.

"MSK_RES_TRM_MAX_ITERATIONS" (10000)
The optimizer terminated at the maximum number of iterations.

"MSK_RES_TRM_MAX_TIME" (10001)
The optimizer terminated at the maximum amount of time.

"MSK_RES_TRM_OBJECTIVE_RANGE" (10002)
The optimizer terminated with an objective value outside the objective range.

"MSK_RES_TRM_MIO_NUM_RELAXS" (10008)
The mixed-integer optimizer terminated as the maximum number of relaxations was reached.

"MSK_RES_TRM_MIO_NUM_BRANCHES" (10009)
The mixed-integer optimizer terminated as the maximum number of branches was reached.

"MSK_RES_TRM_NUM_MAX_NUM_INT_SOLUTIONS" (10015)
The mixed-integer optimizer terminated as the maximum number of feasible solutions was reached.
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"MSK_RES_TRM_STALL" (10006)
The optimizer is terminated due to slow progress.

Stalling means that numerical problems prevent the optimizer from making reasonable progress
and that it makes no sense to continue. In many cases this happens if the problem is badly scaled
or otherwise ill-conditioned. There is no guarantee that the solution will be feasible or optimal.
However, often stalling happens near the optimum, and the returned solution may be of good
quality. Therefore, it is recommended to check the status of the solution. If the solution status is
optimal the solution is most likely good enough for most practical purposes.

Please note that if a linear optimization problem is solved using the interior-point optimizer with
basis identification turned on, the returned basic solution likely to have high accuracy, even though
the optimizer stalled.

Some common causes of stalling are a) badly scaled models, b) near feasible or near infeasible
problems.

"MSK_RES_TRM_USER_CALLBACK" (10007)
The optimizer terminated due to the return of the user-defined callback function.

"MSK_RES_TRM_MAX_NUM_SETBACKS" (10020)
The optimizer terminated as the maximum number of set-backs was reached. This indicates serious
numerical problems and a possibly badly formulated problem.

"MSK_RES_TRM_NUMERICAL_PROBLEM" (10025)
The optimizer terminated due to numerical problems.

"MSK_RES_TRM_INTERNAL" (10030)
The optimizer terminated due to some internal reason. Please contact MOSEK support.

"MSK_RES_TRM_INTERNAL_STOP" (10031)
The optimizer terminated for internal reasons. Please contact MOSEK support.

15.6.2 Warnings

"MSK_RES_WRN_OPEN_PARAM_FILE" (50)
The parameter file could not be opened.

"MSK_RES_WRN_LARGE_BOUND" (51)
A numerically large bound value is specified.

"MSK_RES_WRN_LARGE_LO_BOUND" (52)
A numerically large lower bound value is specified.

"MSK_RES_WRN_LARGE_UP_BOUND" (53)
A numerically large upper bound value is specified.

"MSK_RES_WRN_LARGE_CON_FX" (54)
An equality constraint is fixed to a numerically large value. This can cause numerical problems.

"MSK_RES_WRN_LARGE_CJ" (57)
A numerically large value is specified for one 𝑐𝑗 .

"MSK_RES_WRN_LARGE_AIJ" (62)
A numerically large value is specified for an 𝑎𝑖,𝑗 element in 𝐴. The parameter
MSK_DPAR_DATA_TOL_AIJ_LARGE controls when an 𝑎𝑖,𝑗 is considered large.

"MSK_RES_WRN_ZERO_AIJ" (63)
One or more zero elements are specified in A.

"MSK_RES_WRN_NAME_MAX_LEN" (65)
A name is longer than the buffer that is supposed to hold it.

"MSK_RES_WRN_SPAR_MAX_LEN" (66)
A value for a string parameter is longer than the buffer that is supposed to hold it.

"MSK_RES_WRN_MPS_SPLIT_RHS_VECTOR" (70)
An RHS vector is split into several nonadjacent parts in an MPS file.

"MSK_RES_WRN_MPS_SPLIT_RAN_VECTOR" (71)
A RANGE vector is split into several nonadjacent parts in an MPS file.

"MSK_RES_WRN_MPS_SPLIT_BOU_VECTOR" (72)
A BOUNDS vector is split into several nonadjacent parts in an MPS file.

"MSK_RES_WRN_LP_OLD_QUAD_FORMAT" (80)
Missing ‘/2’ after quadratic expressions in bound or objective.
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"MSK_RES_WRN_LP_DROP_VARIABLE" (85)
Ignored a variable because the variable was not previously defined. Usually this implies that a
variable appears in the bound section but not in the objective or the constraints.

"MSK_RES_WRN_NZ_IN_UPR_TRI" (200)
Non-zero elements specified in the upper triangle of a matrix were ignored.

"MSK_RES_WRN_DROPPED_NZ_QOBJ" (201)
One or more non-zero elements were dropped in the Q matrix in the objective.

"MSK_RES_WRN_IGNORE_INTEGER" (250)
Ignored integer constraints.

"MSK_RES_WRN_NO_GLOBAL_OPTIMIZER" (251)
No global optimizer is available.

"MSK_RES_WRN_MIO_INFEASIBLE_FINAL" (270)
The final mixed-integer problem with all the integer variables fixed at their optimal values is
infeasible.

"MSK_RES_WRN_SOL_FILTER" (300)
Invalid solution filter is specified.

"MSK_RES_WRN_UNDEF_SOL_FILE_NAME" (350)
Undefined name occurred in a solution.

"MSK_RES_WRN_SOL_FILE_IGNORED_CON" (351)
One or more lines in the constraint section were ignored when reading a solution file.

"MSK_RES_WRN_SOL_FILE_IGNORED_VAR" (352)
One or more lines in the variable section were ignored when reading a solution file.

"MSK_RES_WRN_TOO_FEW_BASIS_VARS" (400)
An incomplete basis has been specified. Too few basis variables are specified.

"MSK_RES_WRN_TOO_MANY_BASIS_VARS" (405)
A basis with too many variables has been specified.

"MSK_RES_WRN_LICENSE_EXPIRE" (500)
The license expires.

"MSK_RES_WRN_LICENSE_SERVER" (501)
The license server is not responding.

"MSK_RES_WRN_EMPTY_NAME" (502)
A variable or constraint name is empty. The output file may be invalid.

"MSK_RES_WRN_USING_GENERIC_NAMES" (503)
Generic names are used because a name is not valid. For instance when writing an LP file the
names must not contain blanks or start with a digit.

"MSK_RES_WRN_LICENSE_FEATURE_EXPIRE" (505)
The license expires.

"MSK_RES_WRN_PARAM_NAME_DOU" (510)
The parameter name is not recognized as a double parameter.

"MSK_RES_WRN_PARAM_NAME_INT" (511)
The parameter name is not recognized as a integer parameter.

"MSK_RES_WRN_PARAM_NAME_STR" (512)
The parameter name is not recognized as a string parameter.

"MSK_RES_WRN_PARAM_STR_VALUE" (515)
The string is not recognized as a symbolic value for the parameter.

"MSK_RES_WRN_PARAM_IGNORED_CMIO" (516)
A parameter was ignored by the conic mixed integer optimizer.

"MSK_RES_WRN_ZEROS_IN_SPARSE_ROW" (705)
One or more (near) zero elements are specified in a sparse row of a matrix. Since, it is redundant
to specify zero elements then it may indicate an error.

"MSK_RES_WRN_ZEROS_IN_SPARSE_COL" (710)
One or more (near) zero elements are specified in a sparse column of a matrix. It is redundant to
specify zero elements. Hence, it may indicate an error.

"MSK_RES_WRN_INCOMPLETE_LINEAR_DEPENDENCY_CHECK" (800)
The linear dependency check(s) is incomplete. Normally this is not an important warning unless
the optimization problem has been formulated with linear dependencies. Linear dependencies may
prevent MOSEK from solving the problem.
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"MSK_RES_WRN_ELIMINATOR_SPACE" (801)
The eliminator is skipped at least once due to lack of space.

"MSK_RES_WRN_PRESOLVE_OUTOFSPACE" (802)
The presolve is incomplete due to lack of space.

"MSK_RES_WRN_WRITE_CHANGED_NAMES" (803)
Some names were changed because they were invalid for the output file format.

"MSK_RES_WRN_WRITE_DISCARDED_CFIX" (804)
The fixed objective term could not be converted to a variable and was discarded in the output file.

"MSK_RES_WRN_DUPLICATE_CONSTRAINT_NAMES" (850)
Two constraint names are identical.

"MSK_RES_WRN_DUPLICATE_VARIABLE_NAMES" (851)
Two variable names are identical.

"MSK_RES_WRN_DUPLICATE_BARVARIABLE_NAMES" (852)
Two barvariable names are identical.

"MSK_RES_WRN_DUPLICATE_CONE_NAMES" (853)
Two cone names are identical.

"MSK_RES_WRN_ANA_LARGE_BOUNDS" (900)
This warning is issued by the problem analyzer, if one or more constraint or variable bounds are
very large. One should consider omitting these bounds entirely by setting them to +inf or -inf.

"MSK_RES_WRN_ANA_C_ZERO" (901)
This warning is issued by the problem analyzer, if the coefficients in the linear part of the objective
are all zero.

"MSK_RES_WRN_ANA_EMPTY_COLS" (902)
This warning is issued by the problem analyzer, if columns, in which all coefficients are zero, are
found.

"MSK_RES_WRN_ANA_CLOSE_BOUNDS" (903)
This warning is issued by problem analyzer, if ranged constraints or variables with very close upper
and lower bounds are detected. One should consider treating such constraints as equalities and
such variables as constants.

"MSK_RES_WRN_ANA_ALMOST_INT_BOUNDS" (904)
This warning is issued by the problem analyzer if a constraint is bound nearly integral.

"MSK_RES_WRN_QUAD_CONES_WITH_ROOT_FIXED_AT_ZERO" (930)
For at least one quadratic cone the root is fixed at (nearly) zero. This may cause problems such as
a very large dual solution. Therefore, it is recommended to remove such cones before optimizing
the problem, or to fix all the variables in the cone to 0.

"MSK_RES_WRN_RQUAD_CONES_WITH_ROOT_FIXED_AT_ZERO" (931)
For at least one rotated quadratic cone at least one of the root variables are fixed at (nearly) zero.
This may cause problems such as a very large dual solution. Therefore, it is recommended to
remove such cones before optimizing the problem, or to fix all the variables in the cone to 0.

"MSK_RES_WRN_EXP_CONES_WITH_VARIABLES_FIXED_AT_ZERO" (932)
For at least one exponential cone 𝑥 ≥ 𝑦 exp(𝑧/𝑦) either the variable 𝑥 or 𝑦 is fixed at (nearly)
zero. This may cause problems such as a very large dual solution. Therefore, it is recommended
to remove such cones before optimizing the problem, or to fix all the variables in the cone to 0.

"MSK_RES_WRN_POW_CONES_WITH_ROOT_FIXED_AT_ZERO" (933)
For at least one power cone at least one of the root variables are fixed at (nearly) zero. This may
cause problems such as a very large dual solution. Therefore, it is recommended to remove such
cones before optimizing the problem, or to fix all the variables in the cone to 0.

"MSK_RES_WRN_NO_DUALIZER" (950)
No automatic dualizer is available for the specified problem. The primal problem is solved.

"MSK_RES_WRN_SYM_MAT_LARGE" (960)
A numerically large value is specified for an 𝑒𝑖,𝑗 element in 𝐸. The parameter
MSK_DPAR_DATA_SYM_MAT_TOL_LARGE controls when an 𝑒𝑖,𝑗 is considered large.
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15.6.3 Errors

"MSK_RES_ERR_LICENSE" (1000)
Invalid license.

"MSK_RES_ERR_LICENSE_EXPIRED" (1001)
The license has expired.

"MSK_RES_ERR_LICENSE_VERSION" (1002)
The license is valid for another version of MOSEK.

"MSK_RES_ERR_SIZE_LICENSE" (1005)
The problem is bigger than the license.

"MSK_RES_ERR_PROB_LICENSE" (1006)
The software is not licensed to solve the problem.

"MSK_RES_ERR_FILE_LICENSE" (1007)
Invalid license file.

"MSK_RES_ERR_MISSING_LICENSE_FILE" (1008)
MOSEK cannot find license file or a token server. See the MOSEK licensing manual for details.

"MSK_RES_ERR_SIZE_LICENSE_CON" (1010)
The problem has too many constraints to be solved with the available license.

"MSK_RES_ERR_SIZE_LICENSE_VAR" (1011)
The problem has too many variables to be solved with the available license.

"MSK_RES_ERR_SIZE_LICENSE_INTVAR" (1012)
The problem contains too many integer variables to be solved with the available license.

"MSK_RES_ERR_OPTIMIZER_LICENSE" (1013)
The optimizer required is not licensed.

"MSK_RES_ERR_FLEXLM" (1014)
The FLEXlm license manager reported an error.

"MSK_RES_ERR_LICENSE_SERVER" (1015)
The license server is not responding.

"MSK_RES_ERR_LICENSE_MAX" (1016)
Maximum number of licenses is reached.

"MSK_RES_ERR_LICENSE_MOSEKLM_DAEMON" (1017)
The MOSEKLM license manager daemon is not up and running.

"MSK_RES_ERR_LICENSE_FEATURE" (1018)
A requested feature is not available in the license file(s). Most likely due to an incorrect license
system setup.

"MSK_RES_ERR_PLATFORM_NOT_LICENSED" (1019)
A requested license feature is not available for the required platform.

"MSK_RES_ERR_LICENSE_CANNOT_ALLOCATE" (1020)
The license system cannot allocate the memory required.

"MSK_RES_ERR_LICENSE_CANNOT_CONNECT" (1021)
MOSEK cannot connect to the license server. Most likely the license server is not up and running.

"MSK_RES_ERR_LICENSE_INVALID_HOSTID" (1025)
The host ID specified in the license file does not match the host ID of the computer.

"MSK_RES_ERR_LICENSE_SERVER_VERSION" (1026)
The version specified in the checkout request is greater than the highest version number the daemon
supports.

"MSK_RES_ERR_LICENSE_NO_SERVER_SUPPORT" (1027)
The license server does not support the requested feature. Possible reasons for this error include:

• The feature has expired.

• The feature’s start date is later than today’s date.

• The version requested is higher than feature’s the highest supported version.

• A corrupted license file.

Try restarting the license and inspect the license server debug file, usually called lmgrd.log.
"MSK_RES_ERR_LICENSE_NO_SERVER_LINE" (1028)

There is no SERVER line in the license file. All non-zero license count features need at least one
SERVER line.
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"MSK_RES_ERR_OLDER_DLL" (1035)
The dynamic link library is older than the specified version.

"MSK_RES_ERR_NEWER_DLL" (1036)
The dynamic link library is newer than the specified version.

"MSK_RES_ERR_LINK_FILE_DLL" (1040)
A file cannot be linked to a stream in the DLL version.

"MSK_RES_ERR_THREAD_MUTEX_INIT" (1045)
Could not initialize a mutex.

"MSK_RES_ERR_THREAD_MUTEX_LOCK" (1046)
Could not lock a mutex.

"MSK_RES_ERR_THREAD_MUTEX_UNLOCK" (1047)
Could not unlock a mutex.

"MSK_RES_ERR_THREAD_CREATE" (1048)
Could not create a thread. This error may occur if a large number of environments are created
and not deleted again. In any case it is a good practice to minimize the number of environments
created.

"MSK_RES_ERR_THREAD_COND_INIT" (1049)
Could not initialize a condition.

"MSK_RES_ERR_UNKNOWN" (1050)
Unknown error.

"MSK_RES_ERR_SPACE" (1051)
Out of space.

"MSK_RES_ERR_FILE_OPEN" (1052)
Error while opening a file.

"MSK_RES_ERR_FILE_READ" (1053)
File read error.

"MSK_RES_ERR_FILE_WRITE" (1054)
File write error.

"MSK_RES_ERR_DATA_FILE_EXT" (1055)
The data file format cannot be determined from the file name.

"MSK_RES_ERR_INVALID_FILE_NAME" (1056)
An invalid file name has been specified.

"MSK_RES_ERR_INVALID_SOL_FILE_NAME" (1057)
An invalid file name has been specified.

"MSK_RES_ERR_END_OF_FILE" (1059)
End of file reached.

"MSK_RES_ERR_NULL_ENV" (1060)
env is a NULL pointer.

"MSK_RES_ERR_NULL_TASK" (1061)
task is a NULL pointer.

"MSK_RES_ERR_INVALID_STREAM" (1062)
An invalid stream is referenced.

"MSK_RES_ERR_NO_INIT_ENV" (1063)
env is not initialized.

"MSK_RES_ERR_INVALID_TASK" (1064)
The task is invalid.

"MSK_RES_ERR_NULL_POINTER" (1065)
An argument to a function is unexpectedly a NULL pointer.

"MSK_RES_ERR_LIVING_TASKS" (1066)
All tasks associated with an enviroment must be deleted before the environment is deleted. There
are still some undeleted tasks.

"MSK_RES_ERR_BLANK_NAME" (1070)
An all blank name has been specified.

"MSK_RES_ERR_DUP_NAME" (1071)
The same name was used multiple times for the same problem item type.

"MSK_RES_ERR_FORMAT_STRING" (1072)
The name format string is invalid.
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"MSK_RES_ERR_INVALID_OBJ_NAME" (1075)
An invalid objective name is specified.

"MSK_RES_ERR_INVALID_CON_NAME" (1076)
An invalid constraint name is used.

"MSK_RES_ERR_INVALID_VAR_NAME" (1077)
An invalid variable name is used.

"MSK_RES_ERR_INVALID_CONE_NAME" (1078)
An invalid cone name is used.

"MSK_RES_ERR_INVALID_BARVAR_NAME" (1079)
An invalid symmetric matrix variable name is used.

"MSK_RES_ERR_SPACE_LEAKING" (1080)
MOSEK is leaking memory. This can be due to either an incorrect use of MOSEK or a bug.

"MSK_RES_ERR_SPACE_NO_INFO" (1081)
No available information about the space usage.

"MSK_RES_ERR_READ_FORMAT" (1090)
The specified format cannot be read.

"MSK_RES_ERR_MPS_FILE" (1100)
An error occurred while reading an MPS file.

"MSK_RES_ERR_MPS_INV_FIELD" (1101)
A field in the MPS file is invalid. Probably it is too wide.

"MSK_RES_ERR_MPS_INV_MARKER" (1102)
An invalid marker has been specified in the MPS file.

"MSK_RES_ERR_MPS_NULL_CON_NAME" (1103)
An empty constraint name is used in an MPS file.

"MSK_RES_ERR_MPS_NULL_VAR_NAME" (1104)
An empty variable name is used in an MPS file.

"MSK_RES_ERR_MPS_UNDEF_CON_NAME" (1105)
An undefined constraint name occurred in an MPS file.

"MSK_RES_ERR_MPS_UNDEF_VAR_NAME" (1106)
An undefined variable name occurred in an MPS file.

"MSK_RES_ERR_MPS_INV_CON_KEY" (1107)
An invalid constraint key occurred in an MPS file.

"MSK_RES_ERR_MPS_INV_BOUND_KEY" (1108)
An invalid bound key occurred in an MPS file.

"MSK_RES_ERR_MPS_INV_SEC_NAME" (1109)
An invalid section name occurred in an MPS file.

"MSK_RES_ERR_MPS_NO_OBJECTIVE" (1110)
No objective is defined in an MPS file.

"MSK_RES_ERR_MPS_SPLITTED_VAR" (1111)
All elements in a column of the 𝐴 matrix must be specified consecutively. Hence, it is illegal to
specify non-zero elements in 𝐴 for variable 1, then for variable 2 and then variable 1 again.

"MSK_RES_ERR_MPS_MUL_CON_NAME" (1112)
A constraint name was specified multiple times in the ROWS section.

"MSK_RES_ERR_MPS_MUL_QSEC" (1113)
Multiple QSECTIONs are specified for a constraint in the MPS data file.

"MSK_RES_ERR_MPS_MUL_QOBJ" (1114)
The Q term in the objective is specified multiple times in the MPS data file.

"MSK_RES_ERR_MPS_INV_SEC_ORDER" (1115)
The sections in the MPS data file are not in the correct order.

"MSK_RES_ERR_MPS_MUL_CSEC" (1116)
Multiple CSECTIONs are given the same name.

"MSK_RES_ERR_MPS_CONE_TYPE" (1117)
Invalid cone type specified in a CSECTION.

"MSK_RES_ERR_MPS_CONE_OVERLAP" (1118)
A variable is specified to be a member of several cones.

"MSK_RES_ERR_MPS_CONE_REPEAT" (1119)
A variable is repeated within the CSECTION.
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"MSK_RES_ERR_MPS_NON_SYMMETRIC_Q" (1120)
A non symmetric matrix has been speciefied.

"MSK_RES_ERR_MPS_DUPLICATE_Q_ELEMENT" (1121)
Duplicate elements is specfied in a 𝑄 matrix.

"MSK_RES_ERR_MPS_INVALID_OBJSENSE" (1122)
An invalid objective sense is specified.

"MSK_RES_ERR_MPS_TAB_IN_FIELD2" (1125)
A tab char occurred in field 2.

"MSK_RES_ERR_MPS_TAB_IN_FIELD3" (1126)
A tab char occurred in field 3.

"MSK_RES_ERR_MPS_TAB_IN_FIELD5" (1127)
A tab char occurred in field 5.

"MSK_RES_ERR_MPS_INVALID_OBJ_NAME" (1128)
An invalid objective name is specified.

"MSK_RES_ERR_LP_INCOMPATIBLE" (1150)
The problem cannot be written to an LP formatted file.

"MSK_RES_ERR_LP_EMPTY" (1151)
The problem cannot be written to an LP formatted file.

"MSK_RES_ERR_LP_DUP_SLACK_NAME" (1152)
The name of the slack variable added to a ranged constraint already exists.

"MSK_RES_ERR_WRITE_MPS_INVALID_NAME" (1153)
An invalid name is created while writing an MPS file. Usually this will make the MPS file unread-
able.

"MSK_RES_ERR_LP_INVALID_VAR_NAME" (1154)
A variable name is invalid when used in an LP formatted file.

"MSK_RES_ERR_LP_FREE_CONSTRAINT" (1155)
Free constraints cannot be written in LP file format.

"MSK_RES_ERR_WRITE_OPF_INVALID_VAR_NAME" (1156)
Empty variable names cannot be written to OPF files.

"MSK_RES_ERR_LP_FILE_FORMAT" (1157)
Syntax error in an LP file.

"MSK_RES_ERR_WRITE_LP_FORMAT" (1158)
Problem cannot be written as an LP file.

"MSK_RES_ERR_READ_LP_MISSING_END_TAG" (1159)
Syntax error in LP file. Possibly missing End tag.

"MSK_RES_ERR_LP_FORMAT" (1160)
Syntax error in an LP file.

"MSK_RES_ERR_WRITE_LP_NON_UNIQUE_NAME" (1161)
An auto-generated name is not unique.

"MSK_RES_ERR_READ_LP_NONEXISTING_NAME" (1162)
A variable never occurred in objective or constraints.

"MSK_RES_ERR_LP_WRITE_CONIC_PROBLEM" (1163)
The problem contains cones that cannot be written to an LP formatted file.

"MSK_RES_ERR_LP_WRITE_GECO_PROBLEM" (1164)
The problem contains general convex terms that cannot be written to an LP formatted file.

"MSK_RES_ERR_WRITING_FILE" (1166)
An error occurred while writing file

"MSK_RES_ERR_PTF_FORMAT" (1167)
Syntax error in an PTF file

"MSK_RES_ERR_OPF_FORMAT" (1168)
Syntax error in an OPF file

"MSK_RES_ERR_OPF_NEW_VARIABLE" (1169)
Introducing new variables is now allowed. When a [variables] section is present, it is not allowed
to introduce new variables later in the problem.

"MSK_RES_ERR_INVALID_NAME_IN_SOL_FILE" (1170)
An invalid name occurred in a solution file.

"MSK_RES_ERR_LP_INVALID_CON_NAME" (1171)
A constraint name is invalid when used in an LP formatted file.

223



"MSK_RES_ERR_OPF_PREMATURE_EOF" (1172)
Premature end of file in an OPF file.

"MSK_RES_ERR_JSON_SYNTAX" (1175)
Syntax error in an JSON data

"MSK_RES_ERR_JSON_STRING" (1176)
Error in JSON string.

"MSK_RES_ERR_JSON_NUMBER_OVERFLOW" (1177)
Invalid number entry - wrong type or value overflow.

"MSK_RES_ERR_JSON_FORMAT" (1178)
Error in an JSON Task file

"MSK_RES_ERR_JSON_DATA" (1179)
Inconsistent data in JSON Task file

"MSK_RES_ERR_JSON_MISSING_DATA" (1180)
Missing data section in JSON task file.

"MSK_RES_ERR_ARGUMENT_LENNEQ" (1197)
Incorrect length of arguments.

"MSK_RES_ERR_ARGUMENT_TYPE" (1198)
Incorrect argument type.

"MSK_RES_ERR_NUM_ARGUMENTS" (1199)
Incorrect number of function arguments.

"MSK_RES_ERR_IN_ARGUMENT" (1200)
A function argument is incorrect.

"MSK_RES_ERR_ARGUMENT_DIMENSION" (1201)
A function argument is of incorrect dimension.

"MSK_RES_ERR_SHAPE_IS_TOO_LARGE" (1202)
The size of the n-dimensional shape is too large.

"MSK_RES_ERR_INDEX_IS_TOO_SMALL" (1203)
An index in an argument is too small.

"MSK_RES_ERR_INDEX_IS_TOO_LARGE" (1204)
An index in an argument is too large.

"MSK_RES_ERR_PARAM_NAME" (1205)
The parameter name is not correct.

"MSK_RES_ERR_PARAM_NAME_DOU" (1206)
The parameter name is not correct for a double parameter.

"MSK_RES_ERR_PARAM_NAME_INT" (1207)
The parameter name is not correct for an integer parameter.

"MSK_RES_ERR_PARAM_NAME_STR" (1208)
The parameter name is not correct for a string parameter.

"MSK_RES_ERR_PARAM_INDEX" (1210)
Parameter index is out of range.

"MSK_RES_ERR_PARAM_IS_TOO_LARGE" (1215)
The parameter value is too large.

"MSK_RES_ERR_PARAM_IS_TOO_SMALL" (1216)
The parameter value is too small.

"MSK_RES_ERR_PARAM_VALUE_STR" (1217)
The parameter value string is incorrect.

"MSK_RES_ERR_PARAM_TYPE" (1218)
The parameter type is invalid.

"MSK_RES_ERR_INF_DOU_INDEX" (1219)
A double information index is out of range for the specified type.

"MSK_RES_ERR_INF_INT_INDEX" (1220)
An integer information index is out of range for the specified type.

"MSK_RES_ERR_INDEX_ARR_IS_TOO_SMALL" (1221)
An index in an array argument is too small.

"MSK_RES_ERR_INDEX_ARR_IS_TOO_LARGE" (1222)
An index in an array argument is too large.

"MSK_RES_ERR_INF_LINT_INDEX" (1225)
A long integer information index is out of range for the specified type.
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"MSK_RES_ERR_ARG_IS_TOO_SMALL" (1226)
The value of a argument is too small.

"MSK_RES_ERR_ARG_IS_TOO_LARGE" (1227)
The value of a argument is too large.

"MSK_RES_ERR_INVALID_WHICHSOL" (1228)
whichsol is invalid.

"MSK_RES_ERR_INF_DOU_NAME" (1230)
A double information name is invalid.

"MSK_RES_ERR_INF_INT_NAME" (1231)
An integer information name is invalid.

"MSK_RES_ERR_INF_TYPE" (1232)
The information type is invalid.

"MSK_RES_ERR_INF_LINT_NAME" (1234)
A long integer information name is invalid.

"MSK_RES_ERR_INDEX" (1235)
An index is out of range.

"MSK_RES_ERR_WHICHSOL" (1236)
The solution defined by whichsol does not exists.

"MSK_RES_ERR_SOLITEM" (1237)
The solution item number solitem is invalid. Please note that "MSK_SOL_ITEM_SNX" is invalid for
the basic solution.

"MSK_RES_ERR_WHICHITEM_NOT_ALLOWED" (1238)
whichitem is unacceptable.

"MSK_RES_ERR_MAXNUMCON" (1240)
The maximum number of constraints specified is smaller than the number of constraints in the
task.

"MSK_RES_ERR_MAXNUMVAR" (1241)
The maximum number of variables specified is smaller than the number of variables in the task.

"MSK_RES_ERR_MAXNUMBARVAR" (1242)
The maximum number of semidefinite variables specified is smaller than the number of semidefinite
variables in the task.

"MSK_RES_ERR_MAXNUMQNZ" (1243)
The maximum number of non-zeros specified for the 𝑄 matrices is smaller than the number of
non-zeros in the current 𝑄 matrices.

"MSK_RES_ERR_TOO_SMALL_MAX_NUM_NZ" (1245)
The maximum number of non-zeros specified is too small.

"MSK_RES_ERR_INVALID_IDX" (1246)
A specified index is invalid.

"MSK_RES_ERR_INVALID_MAX_NUM" (1247)
A specified index is invalid.

"MSK_RES_ERR_NUMCONLIM" (1250)
Maximum number of constraints limit is exceeded.

"MSK_RES_ERR_NUMVARLIM" (1251)
Maximum number of variables limit is exceeded.

"MSK_RES_ERR_TOO_SMALL_MAXNUMANZ" (1252)
The maximum number of non-zeros specified for 𝐴 is smaller than the number of non-zeros in the
current 𝐴.

"MSK_RES_ERR_INV_APTRE" (1253)
aptre[j] is strictly smaller than aptrb[j] for some j.

"MSK_RES_ERR_MUL_A_ELEMENT" (1254)
An element in 𝐴 is defined multiple times.

"MSK_RES_ERR_INV_BK" (1255)
Invalid bound key.

"MSK_RES_ERR_INV_BKC" (1256)
Invalid bound key is specified for a constraint.

"MSK_RES_ERR_INV_BKX" (1257)
An invalid bound key is specified for a variable.
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"MSK_RES_ERR_INV_VAR_TYPE" (1258)
An invalid variable type is specified for a variable.

"MSK_RES_ERR_SOLVER_PROBTYPE" (1259)
Problem type does not match the chosen optimizer.

"MSK_RES_ERR_OBJECTIVE_RANGE" (1260)
Empty objective range.

"MSK_RES_ERR_UNDEF_SOLUTION" (1265)
MOSEK has the following solution types:

• an interior-point solution,

• a basic solution,

• and an integer solution.

Each optimizer may set one or more of these solutions; e.g by default a successful optimization
with the interior-point optimizer defines the interior-point solution and, for linear problems, also
the basic solution. This error occurs when asking for a solution or for information about a solution
that is not defined.

"MSK_RES_ERR_BASIS" (1266)
An invalid basis is specified. Either too many or too few basis variables are specified.

"MSK_RES_ERR_INV_SKC" (1267)
Invalid value in skc.

"MSK_RES_ERR_INV_SKX" (1268)
Invalid value in skx.

"MSK_RES_ERR_INV_SKN" (1274)
Invalid value in skn.

"MSK_RES_ERR_INV_SK_STR" (1269)
Invalid status key string encountered.

"MSK_RES_ERR_INV_SK" (1270)
Invalid status key code.

"MSK_RES_ERR_INV_CONE_TYPE_STR" (1271)
Invalid cone type string encountered.

"MSK_RES_ERR_INV_CONE_TYPE" (1272)
Invalid cone type code is encountered.

"MSK_RES_ERR_INVALID_SURPLUS" (1275)
Invalid surplus.

"MSK_RES_ERR_INV_NAME_ITEM" (1280)
An invalid name item code is used.

"MSK_RES_ERR_PRO_ITEM" (1281)
An invalid problem is used.

"MSK_RES_ERR_INVALID_FORMAT_TYPE" (1283)
Invalid format type.

"MSK_RES_ERR_FIRSTI" (1285)
Invalid firsti.

"MSK_RES_ERR_LASTI" (1286)
Invalid lasti.

"MSK_RES_ERR_FIRSTJ" (1287)
Invalid firstj.

"MSK_RES_ERR_LASTJ" (1288)
Invalid lastj.

"MSK_RES_ERR_MAX_LEN_IS_TOO_SMALL" (1289)
A maximum length that is too small has been specified.

"MSK_RES_ERR_NONLINEAR_EQUALITY" (1290)
The model contains a nonlinear equality which defines a nonconvex set.

"MSK_RES_ERR_NONCONVEX" (1291)
The optimization problem is nonconvex.

"MSK_RES_ERR_NONLINEAR_RANGED" (1292)
Nonlinear constraints with finite lower and upper bound always define a nonconvex feasible set.
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"MSK_RES_ERR_CON_Q_NOT_PSD" (1293)
The quadratic constraint matrix is not positive semidefinite as expected for a con-
straint with finite upper bound. This results in a nonconvex problem. The parameter
MSK_DPAR_CHECK_CONVEXITY_REL_TOL can be used to relax the convexity check.

"MSK_RES_ERR_CON_Q_NOT_NSD" (1294)
The quadratic constraint matrix is not negative semidefinite as expected for a con-
straint with finite lower bound. This results in a nonconvex problem. The parameter
MSK_DPAR_CHECK_CONVEXITY_REL_TOL can be used to relax the convexity check.

"MSK_RES_ERR_OBJ_Q_NOT_PSD" (1295)
The quadratic coefficient matrix in the objective is not positive semidefinite as expected for a
minimization problem. The parameter MSK_DPAR_CHECK_CONVEXITY_REL_TOL can be used to relax
the convexity check.

"MSK_RES_ERR_OBJ_Q_NOT_NSD" (1296)
The quadratic coefficient matrix in the objective is not negative semidefinite as expected for a
maximization problem. The parameter MSK_DPAR_CHECK_CONVEXITY_REL_TOL can be used to relax
the convexity check.

"MSK_RES_ERR_ARGUMENT_PERM_ARRAY" (1299)
An invalid permutation array is specified.

"MSK_RES_ERR_CONE_INDEX" (1300)
An index of a non-existing cone has been specified.

"MSK_RES_ERR_CONE_SIZE" (1301)
A cone with incorrect number of members is specified.

"MSK_RES_ERR_CONE_OVERLAP" (1302)
One or more of the variables in the cone to be added is already member of another cone. Now
assume the variable is 𝑥𝑗 then add a new variable say 𝑥𝑘 and the constraint

𝑥𝑗 = 𝑥𝑘

and then let 𝑥𝑘 be member of the cone to be appended.
"MSK_RES_ERR_CONE_REP_VAR" (1303)

A variable is included multiple times in the cone.
"MSK_RES_ERR_MAXNUMCONE" (1304)

The value specified for maxnumcone is too small.
"MSK_RES_ERR_CONE_TYPE" (1305)

Invalid cone type specified.
"MSK_RES_ERR_CONE_TYPE_STR" (1306)

Invalid cone type specified.
"MSK_RES_ERR_CONE_OVERLAP_APPEND" (1307)

The cone to be appended has one variable which is already member of another cone.
"MSK_RES_ERR_REMOVE_CONE_VARIABLE" (1310)

A variable cannot be removed because it will make a cone invalid.
"MSK_RES_ERR_APPENDING_TOO_BIG_CONE" (1311)

Trying to append a too big cone.
"MSK_RES_ERR_CONE_PARAMETER" (1320)

An invalid cone parameter.
"MSK_RES_ERR_SOL_FILE_INVALID_NUMBER" (1350)

An invalid number is specified in a solution file.
"MSK_RES_ERR_HUGE_C" (1375)

A huge value in absolute size is specified for one 𝑐𝑗 .
"MSK_RES_ERR_HUGE_AIJ" (1380)

A numerically huge value is specified for an 𝑎𝑖,𝑗 element in 𝐴. The parameter
MSK_DPAR_DATA_TOL_AIJ_HUGE controls when an 𝑎𝑖,𝑗 is considered huge.

"MSK_RES_ERR_DUPLICATE_AIJ" (1385)
An element in the A matrix is specified twice.

"MSK_RES_ERR_LOWER_BOUND_IS_A_NAN" (1390)
The lower bound specified is not a number (nan).

"MSK_RES_ERR_UPPER_BOUND_IS_A_NAN" (1391)
The upper bound specified is not a number (nan).
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"MSK_RES_ERR_INFINITE_BOUND" (1400)
A numerically huge bound value is specified.

"MSK_RES_ERR_INV_QOBJ_SUBI" (1401)
Invalid value in qosubi.

"MSK_RES_ERR_INV_QOBJ_SUBJ" (1402)
Invalid value in qosubj.

"MSK_RES_ERR_INV_QOBJ_VAL" (1403)
Invalid value in qoval.

"MSK_RES_ERR_INV_QCON_SUBK" (1404)
Invalid value in qcsubk.

"MSK_RES_ERR_INV_QCON_SUBI" (1405)
Invalid value in qcsubi.

"MSK_RES_ERR_INV_QCON_SUBJ" (1406)
Invalid value in qcsubj.

"MSK_RES_ERR_INV_QCON_VAL" (1407)
Invalid value in qcval.

"MSK_RES_ERR_QCON_SUBI_TOO_SMALL" (1408)
Invalid value in qcsubi.

"MSK_RES_ERR_QCON_SUBI_TOO_LARGE" (1409)
Invalid value in qcsubi.

"MSK_RES_ERR_QOBJ_UPPER_TRIANGLE" (1415)
An element in the upper triangle of 𝑄𝑜 is specified. Only elements in the lower triangle should be
specified.

"MSK_RES_ERR_QCON_UPPER_TRIANGLE" (1417)
An element in the upper triangle of a 𝑄𝑘 is specified. Only elements in the lower triangle should
be specified.

"MSK_RES_ERR_FIXED_BOUND_VALUES" (1420)
A fixed constraint/variable has been specified using the bound keys but the numerical value of the
lower and upper bound is different.

"MSK_RES_ERR_TOO_SMALL_A_TRUNCATION_VALUE" (1421)
A too small value for the A trucation value is specified.

"MSK_RES_ERR_INVALID_OBJECTIVE_SENSE" (1445)
An invalid objective sense is specified.

"MSK_RES_ERR_UNDEFINED_OBJECTIVE_SENSE" (1446)
The objective sense has not been specified before the optimization.

"MSK_RES_ERR_Y_IS_UNDEFINED" (1449)
The solution item 𝑦 is undefined.

"MSK_RES_ERR_NAN_IN_DOUBLE_DATA" (1450)
An invalid floating point value was used in some double data.

"MSK_RES_ERR_NAN_IN_BLC" (1461)
𝑙𝑐 contains an invalid floating point value, i.e. a NaN.

"MSK_RES_ERR_NAN_IN_BUC" (1462)
𝑢𝑐 contains an invalid floating point value, i.e. a NaN.

"MSK_RES_ERR_NAN_IN_C" (1470)
𝑐 contains an invalid floating point value, i.e. a NaN.

"MSK_RES_ERR_NAN_IN_BLX" (1471)
𝑙𝑥 contains an invalid floating point value, i.e. a NaN.

"MSK_RES_ERR_NAN_IN_BUX" (1472)
𝑢𝑥 contains an invalid floating point value, i.e. a NaN.

"MSK_RES_ERR_INVALID_AIJ" (1473)
𝑎𝑖,𝑗 contains an invalid floating point value, i.e. a NaN or an infinite value.

"MSK_RES_ERR_INVALID_CJ" (1474)
𝑐𝑗 contains an invalid floating point value, i.e. a NaN or an infinite value.

"MSK_RES_ERR_SYM_MAT_INVALID" (1480)
A symmetric matrix contains an invalid floating point value, i.e. a NaN or an infinite value.

"MSK_RES_ERR_SYM_MAT_HUGE" (1482)
A symmetric matrix contains a huge value in absolute size. The parameter
MSK_DPAR_DATA_SYM_MAT_TOL_HUGE controls when an 𝑒𝑖,𝑗 is considered huge.

228



"MSK_RES_ERR_INV_PROBLEM" (1500)
Invalid problem type. Probably a nonconvex problem has been specified.

"MSK_RES_ERR_MIXED_CONIC_AND_NL" (1501)
The problem contains nonlinear terms conic constraints. The requested operation cannot be applied
to this type of problem.

"MSK_RES_ERR_GLOBAL_INV_CONIC_PROBLEM" (1503)
The global optimizer can only be applied to problems without semidefinite variables.

"MSK_RES_ERR_INV_OPTIMIZER" (1550)
An invalid optimizer has been chosen for the problem.

"MSK_RES_ERR_MIO_NO_OPTIMIZER" (1551)
No optimizer is available for the current class of integer optimization problems.

"MSK_RES_ERR_NO_OPTIMIZER_VAR_TYPE" (1552)
No optimizer is available for this class of optimization problems.

"MSK_RES_ERR_FINAL_SOLUTION" (1560)
An error occurred during the solution finalization.

"MSK_RES_ERR_FIRST" (1570)
Invalid first.

"MSK_RES_ERR_LAST" (1571)
Invalid index last. A given index was out of expected range.

"MSK_RES_ERR_SLICE_SIZE" (1572)
Invalid slice size specified.

"MSK_RES_ERR_NEGATIVE_SURPLUS" (1573)
Negative surplus.

"MSK_RES_ERR_NEGATIVE_APPEND" (1578)
Cannot append a negative number.

"MSK_RES_ERR_POSTSOLVE" (1580)
An error occurred during the postsolve. Please contact MOSEK support.

"MSK_RES_ERR_OVERFLOW" (1590)
A computation produced an overflow i.e. a very large number.

"MSK_RES_ERR_NO_BASIS_SOL" (1600)
No basic solution is defined.

"MSK_RES_ERR_BASIS_FACTOR" (1610)
The factorization of the basis is invalid.

"MSK_RES_ERR_BASIS_SINGULAR" (1615)
The basis is singular and hence cannot be factored.

"MSK_RES_ERR_FACTOR" (1650)
An error occurred while factorizing a matrix.

"MSK_RES_ERR_FEASREPAIR_CANNOT_RELAX" (1700)
An optimization problem cannot be relaxed.

"MSK_RES_ERR_FEASREPAIR_SOLVING_RELAXED" (1701)
The relaxed problem could not be solved to optimality. Please consult the log file for further details.

"MSK_RES_ERR_FEASREPAIR_INCONSISTENT_BOUND" (1702)
The upper bound is less than the lower bound for a variable or a constraint. Please correct this
before running the feasibility repair.

"MSK_RES_ERR_REPAIR_INVALID_PROBLEM" (1710)
The feasibility repair does not support the specified problem type.

"MSK_RES_ERR_REPAIR_OPTIMIZATION_FAILED" (1711)
Computation the optimal relaxation failed. The cause may have been numerical problems.

"MSK_RES_ERR_NAME_MAX_LEN" (1750)
A name is longer than the buffer that is supposed to hold it.

"MSK_RES_ERR_NAME_IS_NULL" (1760)
The name buffer is a NULL pointer.

"MSK_RES_ERR_INVALID_COMPRESSION" (1800)
Invalid compression type.

"MSK_RES_ERR_INVALID_IOMODE" (1801)
Invalid io mode.

"MSK_RES_ERR_NO_PRIMAL_INFEAS_CER" (2000)
A certificate of primal infeasibility is not available.
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"MSK_RES_ERR_NO_DUAL_INFEAS_CER" (2001)
A certificate of infeasibility is not available.

"MSK_RES_ERR_NO_SOLUTION_IN_CALLBACK" (2500)
The required solution is not available.

"MSK_RES_ERR_INV_MARKI" (2501)
Invalid value in marki.

"MSK_RES_ERR_INV_MARKJ" (2502)
Invalid value in markj.

"MSK_RES_ERR_INV_NUMI" (2503)
Invalid numi.

"MSK_RES_ERR_INV_NUMJ" (2504)
Invalid numj.

"MSK_RES_ERR_TASK_INCOMPATIBLE" (2560)
The Task file is incompatible with this platform. This results from reading a file on a 32 bit
platform generated on a 64 bit platform.

"MSK_RES_ERR_TASK_INVALID" (2561)
The Task file is invalid.

"MSK_RES_ERR_TASK_WRITE" (2562)
Failed to write the task file.

"MSK_RES_ERR_LU_MAX_NUM_TRIES" (2800)
Could not compute the LU factors of the matrix within the maximum number of allowed tries.

"MSK_RES_ERR_INVALID_UTF8" (2900)
An invalid UTF8 string is encountered.

"MSK_RES_ERR_INVALID_WCHAR" (2901)
An invalid wchar string is encountered.

"MSK_RES_ERR_NO_DUAL_FOR_ITG_SOL" (2950)
No dual information is available for the integer solution.

"MSK_RES_ERR_NO_SNX_FOR_BAS_SOL" (2953)
𝑠𝑥𝑛 is not available for the basis solution.

"MSK_RES_ERR_INTERNAL" (3000)
An internal error occurred. Please report this problem.

"MSK_RES_ERR_API_ARRAY_TOO_SMALL" (3001)
An input array was too short.

"MSK_RES_ERR_API_CB_CONNECT" (3002)
Failed to connect a callback object.

"MSK_RES_ERR_API_FATAL_ERROR" (3005)
An internal error occurred in the API. Please report this problem.

"MSK_RES_ERR_API_INTERNAL" (3999)
An internal fatal error occurred in an interface function.

"MSK_RES_ERR_SEN_FORMAT" (3050)
Syntax error in sensitivity analysis file.

"MSK_RES_ERR_SEN_UNDEF_NAME" (3051)
An undefined name was encountered in the sensitivity analysis file.

"MSK_RES_ERR_SEN_INDEX_RANGE" (3052)
Index out of range in the sensitivity analysis file.

"MSK_RES_ERR_SEN_BOUND_INVALID_UP" (3053)
Analysis of upper bound requested for an index, where no upper bound exists.

"MSK_RES_ERR_SEN_BOUND_INVALID_LO" (3054)
Analysis of lower bound requested for an index, where no lower bound exists.

"MSK_RES_ERR_SEN_INDEX_INVALID" (3055)
Invalid range given in the sensitivity file.

"MSK_RES_ERR_SEN_INVALID_REGEXP" (3056)
Syntax error in regexp or regexp longer than 1024.

"MSK_RES_ERR_SEN_SOLUTION_STATUS" (3057)
No optimal solution found to the original problem given for sensitivity analysis.

"MSK_RES_ERR_SEN_NUMERICAL" (3058)
Numerical difficulties encountered performing the sensitivity analysis.
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"MSK_RES_ERR_SEN_UNHANDLED_PROBLEM_TYPE" (3080)
Sensitivity analysis cannot be performed for the specified problem. Sensitivity analysis is only
possible for linear problems.

"MSK_RES_ERR_UNB_STEP_SIZE" (3100)
A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes
unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen
only if the problem is badly formulated. Please contact MOSEK support if this error occurs.

"MSK_RES_ERR_IDENTICAL_TASKS" (3101)
Some tasks related to this function call were identical. Unique tasks were expected.

"MSK_RES_ERR_AD_INVALID_CODELIST" (3102)
The code list data was invalid.

"MSK_RES_ERR_INTERNAL_TEST_FAILED" (3500)
An internal unit test function failed.

"MSK_RES_ERR_XML_INVALID_PROBLEM_TYPE" (3600)
The problem type is not supported by the XML format.

"MSK_RES_ERR_INVALID_AMPL_STUB" (3700)
Invalid AMPL stub.

"MSK_RES_ERR_INT64_TO_INT32_CAST" (3800)
A 64 bit integer could not be cast to a 32 bit integer.

"MSK_RES_ERR_SIZE_LICENSE_NUMCORES" (3900)
The computer contains more cpu cores than the license allows for.

"MSK_RES_ERR_INFEAS_UNDEFINED" (3910)
The requested value is not defined for this solution type.

"MSK_RES_ERR_NO_BARX_FOR_SOLUTION" (3915)
There is no 𝑋 available for the solution specified. In particular note there are no 𝑋 defined for the
basic and integer solutions.

"MSK_RES_ERR_NO_BARS_FOR_SOLUTION" (3916)
There is no 𝑠 available for the solution specified. In particular note there are no 𝑠 defined for the
basic and integer solutions.

"MSK_RES_ERR_BAR_VAR_DIM" (3920)
The dimension of a symmetric matrix variable has to be greater than 0.

"MSK_RES_ERR_SYM_MAT_INVALID_ROW_INDEX" (3940)
A row index specified for sparse symmetric matrix is invalid.

"MSK_RES_ERR_SYM_MAT_INVALID_COL_INDEX" (3941)
A column index specified for sparse symmetric matrix is invalid.

"MSK_RES_ERR_SYM_MAT_NOT_LOWER_TRINGULAR" (3942)
Only the lower triangular part of sparse symmetric matrix should be specified.

"MSK_RES_ERR_SYM_MAT_INVALID_VALUE" (3943)
The numerical value specified in a sparse symmetric matrix is not a floating point value.

"MSK_RES_ERR_SYM_MAT_DUPLICATE" (3944)
A value in a symmetric matric as been specified more than once.

"MSK_RES_ERR_INVALID_SYM_MAT_DIM" (3950)
A sparse symmetric matrix of invalid dimension is specified.

"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_SYM_MAT" (4000)
The file format does not support a problem with symmetric matrix variables.

"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_CFIX" (4001)
The file format does not support a problem with nonzero fixed term in c.

"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_RANGED_CONSTRAINTS" (4002)
The file format does not support a problem with ranged constraints.

"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_FREE_CONSTRAINTS" (4003)
The file format does not support a problem with free constraints.

"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_CONES" (4005)
The file format does not support a problem with conic constraints.

"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_NONLINEAR" (4010)
The file format does not support a problem with nonlinear terms.

"MSK_RES_ERR_DUPLICATE_CONSTRAINT_NAMES" (4500)
Two constraint names are identical.
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"MSK_RES_ERR_DUPLICATE_VARIABLE_NAMES" (4501)
Two variable names are identical.

"MSK_RES_ERR_DUPLICATE_BARVARIABLE_NAMES" (4502)
Two barvariable names are identical.

"MSK_RES_ERR_DUPLICATE_CONE_NAMES" (4503)
Two cone names are identical.

"MSK_RES_ERR_NON_UNIQUE_ARRAY" (5000)
An array does not contain unique elements.

"MSK_RES_ERR_ARGUMENT_IS_TOO_LARGE" (5005)
The value of a function argument is too large.

"MSK_RES_ERR_MIO_INTERNAL" (5010)
A fatal error occurred in the mixed integer optimizer. Please contact MOSEK support.

"MSK_RES_ERR_INVALID_PROBLEM_TYPE" (6000)
An invalid problem type.

"MSK_RES_ERR_UNHANDLED_SOLUTION_STATUS" (6010)
Unhandled solution status.

"MSK_RES_ERR_UPPER_TRIANGLE" (6020)
An element in the upper triangle of a lower triangular matrix is specified.

"MSK_RES_ERR_LAU_SINGULAR_MATRIX" (7000)
A matrix is singular.

"MSK_RES_ERR_LAU_NOT_POSITIVE_DEFINITE" (7001)
A matrix is not positive definite.

"MSK_RES_ERR_LAU_INVALID_LOWER_TRIANGULAR_MATRIX" (7002)
An invalid lower triangular matrix.

"MSK_RES_ERR_LAU_UNKNOWN" (7005)
An unknown error.

"MSK_RES_ERR_LAU_ARG_M" (7010)
Invalid argument m.

"MSK_RES_ERR_LAU_ARG_N" (7011)
Invalid argument n.

"MSK_RES_ERR_LAU_ARG_K" (7012)
Invalid argument k.

"MSK_RES_ERR_LAU_ARG_TRANSA" (7015)
Invalid argument transa.

"MSK_RES_ERR_LAU_ARG_TRANSB" (7016)
Invalid argument transb.

"MSK_RES_ERR_LAU_ARG_UPLO" (7017)
Invalid argument uplo.

"MSK_RES_ERR_LAU_ARG_TRANS" (7018)
Invalid argument trans.

"MSK_RES_ERR_LAU_INVALID_SPARSE_SYMMETRIC_MATRIX" (7019)
An invalid sparse symmetric matrix is specfified. Note only the lower triangular part with no
duplicates is specifed.

"MSK_RES_ERR_CBF_PARSE" (7100)
An error occurred while parsing an CBF file.

"MSK_RES_ERR_CBF_OBJ_SENSE" (7101)
An invalid objective sense is specified.

"MSK_RES_ERR_CBF_NO_VARIABLES" (7102)
No variables are specified.

"MSK_RES_ERR_CBF_TOO_MANY_CONSTRAINTS" (7103)
Too many constraints specified.

"MSK_RES_ERR_CBF_TOO_MANY_VARIABLES" (7104)
Too many variables specified.

"MSK_RES_ERR_CBF_NO_VERSION_SPECIFIED" (7105)
No version specified.

"MSK_RES_ERR_CBF_SYNTAX" (7106)
Invalid syntax.
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"MSK_RES_ERR_CBF_DUPLICATE_OBJ" (7107)
Duplicate OBJ keyword.

"MSK_RES_ERR_CBF_DUPLICATE_CON" (7108)
Duplicate CON keyword.

"MSK_RES_ERR_CBF_DUPLICATE_VAR" (7109)
Duplicate VAR keyword.

"MSK_RES_ERR_CBF_DUPLICATE_INT" (7110)
Duplicate INT keyword.

"MSK_RES_ERR_CBF_INVALID_VAR_TYPE" (7111)
Invalid variable type.

"MSK_RES_ERR_CBF_INVALID_CON_TYPE" (7112)
Invalid constraint type.

"MSK_RES_ERR_CBF_INVALID_DOMAIN_DIMENSION" (7113)
Invalid domain dimension.

"MSK_RES_ERR_CBF_DUPLICATE_OBJACOORD" (7114)
Duplicate index in OBJCOORD.

"MSK_RES_ERR_CBF_DUPLICATE_BCOORD" (7115)
Duplicate index in BCOORD.

"MSK_RES_ERR_CBF_DUPLICATE_ACOORD" (7116)
Duplicate index in ACOORD.

"MSK_RES_ERR_CBF_TOO_FEW_VARIABLES" (7117)
Too few variables defined.

"MSK_RES_ERR_CBF_TOO_FEW_CONSTRAINTS" (7118)
Too few constraints defined.

"MSK_RES_ERR_CBF_TOO_FEW_INTS" (7119)
Too few ints are specified.

"MSK_RES_ERR_CBF_TOO_MANY_INTS" (7120)
Too many ints are specified.

"MSK_RES_ERR_CBF_INVALID_INT_INDEX" (7121)
Invalid INT index.

"MSK_RES_ERR_CBF_UNSUPPORTED" (7122)
Unsupported feature is present.

"MSK_RES_ERR_CBF_DUPLICATE_PSDVAR" (7123)
Duplicate PSDVAR keyword.

"MSK_RES_ERR_CBF_INVALID_PSDVAR_DIMENSION" (7124)
Invalid PSDVAR dimension.

"MSK_RES_ERR_CBF_TOO_FEW_PSDVAR" (7125)
Too few variables defined.

"MSK_RES_ERR_CBF_INVALID_EXP_DIMENSION" (7126)
Invalid dimension of a exponential cone.

"MSK_RES_ERR_CBF_DUPLICATE_POW_CONES" (7130)
Multiple POWCONES specified.

"MSK_RES_ERR_CBF_DUPLICATE_POW_STAR_CONES" (7131)
Multiple POW*CONES specified.

"MSK_RES_ERR_CBF_INVALID_POWER" (7132)
Invalid power specified.

"MSK_RES_ERR_CBF_POWER_CONE_IS_TOO_LONG" (7133)
Power cone is too long.

"MSK_RES_ERR_CBF_INVALID_POWER_CONE_INDEX" (7134)
Invalid power cone index.

"MSK_RES_ERR_CBF_INVALID_POWER_STAR_CONE_INDEX" (7135)
Invalid power star cone index.

"MSK_RES_ERR_CBF_UNHANDLED_POWER_CONE_TYPE" (7136)
An unhandled power cone type.

"MSK_RES_ERR_CBF_UNHANDLED_POWER_STAR_CONE_TYPE" (7137)
An unhandled power star cone type.

"MSK_RES_ERR_CBF_POWER_CONE_MISMATCH" (7138)
The power cone does not match with it definition.
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"MSK_RES_ERR_CBF_POWER_STAR_CONE_MISMATCH" (7139)
The power star cone does not match with it definition.

"MSK_RES_ERR_CBF_INVALID_NUMBER_OF_CONES" (7740)
Invalid number of cones.

"MSK_RES_ERR_CBF_INVALID_DIMENSION_OF_CONES" (7741)
Invalid dimension of cones.

"MSK_RES_ERR_MIO_INVALID_ROOT_OPTIMIZER" (7700)
An invalid root optimizer was selected for the problem type.

"MSK_RES_ERR_MIO_INVALID_NODE_OPTIMIZER" (7701)
An invalid node optimizer was selected for the problem type.

"MSK_RES_ERR_TOCONIC_CONSTR_Q_NOT_PSD" (7800)
The matrix defining the quadratric part of constraint is not positive semidefinite.

"MSK_RES_ERR_TOCONIC_CONSTRAINT_FX" (7801)
The quadratic constraint is an equality, thus not convex.

"MSK_RES_ERR_TOCONIC_CONSTRAINT_RA" (7802)
The quadratic constraint has finite lower and upper bound, and therefore it is not convex.

"MSK_RES_ERR_TOCONIC_CONSTR_NOT_CONIC" (7803)
The constraint is not conic representable.

"MSK_RES_ERR_TOCONIC_OBJECTIVE_NOT_PSD" (7804)
The matrix defining the quadratric part of the objective function is not positive semidefinite.

"MSK_RES_ERR_SERVER_CONNECT" (8000)
Failed to connect to remote solver server. The server string or the port string were invalid, or the
server did not accept connection.

"MSK_RES_ERR_SERVER_PROTOCOL" (8001)
Unexpected message or data from solver server.

"MSK_RES_ERR_SERVER_STATUS" (8002)
Server returned non-ok HTTP status code

"MSK_RES_ERR_SERVER_TOKEN" (8003)
The job ID specified is incorrect or invalid

"MSK_RES_ERR_SERVER_PROBLEM_SIZE" (8008)
The size of the problem exceeds the dimensions permitted by the instance of the OptServer where
it was run.

15.7 Enumerations

basindtype
Basis identification

"MSK_BI_NEVER"
Never do basis identification.

"MSK_BI_ALWAYS"
Basis identification is always performed even if the interior-point optimizer terminates abnor-
mally.

"MSK_BI_NO_ERROR"
Basis identification is performed if the interior-point optimizer terminates without an error.

"MSK_BI_IF_FEASIBLE"
Basis identification is not performed if the interior-point optimizer terminates with a problem
status saying that the problem is primal or dual infeasible.

"MSK_BI_RESERVERED"
Not currently in use.

boundkey
Bound keys

"MSK_BK_LO"
The constraint or variable has a finite lower bound and an infinite upper bound.

"MSK_BK_UP"
The constraint or variable has an infinite lower bound and an finite upper bound.
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"MSK_BK_FX"
The constraint or variable is fixed.

"MSK_BK_FR"
The constraint or variable is free.

"MSK_BK_RA"
The constraint or variable is ranged.

mark
Mark

"MSK_MARK_LO"
The lower bound is selected for sensitivity analysis.

"MSK_MARK_UP"
The upper bound is selected for sensitivity analysis.

simdegen
Degeneracy strategies

"MSK_SIM_DEGEN_NONE"
The simplex optimizer should use no degeneration strategy.

"MSK_SIM_DEGEN_FREE"
The simplex optimizer chooses the degeneration strategy.

"MSK_SIM_DEGEN_AGGRESSIVE"
The simplex optimizer should use an aggressive degeneration strategy.

"MSK_SIM_DEGEN_MODERATE"
The simplex optimizer should use a moderate degeneration strategy.

"MSK_SIM_DEGEN_MINIMUM"
The simplex optimizer should use a minimum degeneration strategy.

transpose
Transposed matrix.

"MSK_TRANSPOSE_NO"
No transpose is applied.

"MSK_TRANSPOSE_YES"
A transpose is applied.

uplo
Triangular part of a symmetric matrix.

"MSK_UPLO_LO"
Lower part.

"MSK_UPLO_UP"
Upper part.

simreform
Problem reformulation.

"MSK_SIM_REFORMULATION_ON"
Allow the simplex optimizer to reformulate the problem.

"MSK_SIM_REFORMULATION_OFF"
Disallow the simplex optimizer to reformulate the problem.

"MSK_SIM_REFORMULATION_FREE"
The simplex optimizer can choose freely.

"MSK_SIM_REFORMULATION_AGGRESSIVE"
The simplex optimizer should use an aggressive reformulation strategy.

simdupvec
Exploit duplicate columns.

"MSK_SIM_EXPLOIT_DUPVEC_ON"
Allow the simplex optimizer to exploit duplicated columns.

"MSK_SIM_EXPLOIT_DUPVEC_OFF"
Disallow the simplex optimizer to exploit duplicated columns.
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"MSK_SIM_EXPLOIT_DUPVEC_FREE"
The simplex optimizer can choose freely.

simhotstart
Hot-start type employed by the simplex optimizer

"MSK_SIM_HOTSTART_NONE"
The simplex optimizer performs a coldstart.

"MSK_SIM_HOTSTART_FREE"
The simplex optimize chooses the hot-start type.

"MSK_SIM_HOTSTART_STATUS_KEYS"
Only the status keys of the constraints and variables are used to choose the type of hot-start.

intpnthotstart
Hot-start type employed by the interior-point optimizers.

"MSK_INTPNT_HOTSTART_NONE"
The interior-point optimizer performs a coldstart.

"MSK_INTPNT_HOTSTART_PRIMAL"
The interior-point optimizer exploits the primal solution only.

"MSK_INTPNT_HOTSTART_DUAL"
The interior-point optimizer exploits the dual solution only.

"MSK_INTPNT_HOTSTART_PRIMAL_DUAL"
The interior-point optimizer exploits both the primal and dual solution.

purify
Solution purification employed optimizer.

"MSK_PURIFY_NONE"
The optimizer performs no solution purification.

"MSK_PURIFY_PRIMAL"
The optimizer purifies the primal solution.

"MSK_PURIFY_DUAL"
The optimizer purifies the dual solution.

"MSK_PURIFY_PRIMAL_DUAL"
The optimizer purifies both the primal and dual solution.

"MSK_PURIFY_AUTO"
TBD

callbackcode
Progress callback codes

"MSK_CALLBACK_BEGIN_BI"
The basis identification procedure has been started.

"MSK_CALLBACK_BEGIN_CONIC"
The callback function is called when the conic optimizer is started.

"MSK_CALLBACK_BEGIN_DUAL_BI"
The callback function is called from within the basis identification procedure when the dual
phase is started.

"MSK_CALLBACK_BEGIN_DUAL_SENSITIVITY"
Dual sensitivity analysis is started.

"MSK_CALLBACK_BEGIN_DUAL_SETUP_BI"
The callback function is called when the dual BI phase is started.

"MSK_CALLBACK_BEGIN_DUAL_SIMPLEX"
The callback function is called when the dual simplex optimizer started.

"MSK_CALLBACK_BEGIN_DUAL_SIMPLEX_BI"
The callback function is called from within the basis identification procedure when the dual
simplex clean-up phase is started.

"MSK_CALLBACK_BEGIN_FULL_CONVEXITY_CHECK"
Begin full convexity check.
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"MSK_CALLBACK_BEGIN_INFEAS_ANA"
The callback function is called when the infeasibility analyzer is started.

"MSK_CALLBACK_BEGIN_INTPNT"
The callback function is called when the interior-point optimizer is started.

"MSK_CALLBACK_BEGIN_LICENSE_WAIT"
Begin waiting for license.

"MSK_CALLBACK_BEGIN_MIO"
The callback function is called when the mixed-integer optimizer is started.

"MSK_CALLBACK_BEGIN_OPTIMIZER"
The callback function is called when the optimizer is started.

"MSK_CALLBACK_BEGIN_PRESOLVE"
The callback function is called when the presolve is started.

"MSK_CALLBACK_BEGIN_PRIMAL_BI"
The callback function is called from within the basis identification procedure when the primal
phase is started.

"MSK_CALLBACK_BEGIN_PRIMAL_REPAIR"
Begin primal feasibility repair.

"MSK_CALLBACK_BEGIN_PRIMAL_SENSITIVITY"
Primal sensitivity analysis is started.

"MSK_CALLBACK_BEGIN_PRIMAL_SETUP_BI"
The callback function is called when the primal BI setup is started.

"MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX"
The callback function is called when the primal simplex optimizer is started.

"MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX_BI"
The callback function is called from within the basis identification procedure when the primal
simplex clean-up phase is started.

"MSK_CALLBACK_BEGIN_QCQO_REFORMULATE"
Begin QCQO reformulation.

"MSK_CALLBACK_BEGIN_READ"
MOSEK has started reading a problem file.

"MSK_CALLBACK_BEGIN_ROOT_CUTGEN"
The callback function is called when root cut generation is started.

"MSK_CALLBACK_BEGIN_SIMPLEX"
The callback function is called when the simplex optimizer is started.

"MSK_CALLBACK_BEGIN_SIMPLEX_BI"
The callback function is called from within the basis identification procedure when the simplex
clean-up phase is started.

"MSK_CALLBACK_BEGIN_TO_CONIC"
Begin conic reformulation.

"MSK_CALLBACK_BEGIN_WRITE"
MOSEK has started writing a problem file.

"MSK_CALLBACK_CONIC"
The callback function is called from within the conic optimizer after the information database
has been updated.

"MSK_CALLBACK_DUAL_SIMPLEX"
The callback function is called from within the dual simplex optimizer.

"MSK_CALLBACK_END_BI"
The callback function is called when the basis identification procedure is terminated.

"MSK_CALLBACK_END_CONIC"
The callback function is called when the conic optimizer is terminated.
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"MSK_CALLBACK_END_DUAL_BI"
The callback function is called from within the basis identification procedure when the dual
phase is terminated.

"MSK_CALLBACK_END_DUAL_SENSITIVITY"
Dual sensitivity analysis is terminated.

"MSK_CALLBACK_END_DUAL_SETUP_BI"
The callback function is called when the dual BI phase is terminated.

"MSK_CALLBACK_END_DUAL_SIMPLEX"
The callback function is called when the dual simplex optimizer is terminated.

"MSK_CALLBACK_END_DUAL_SIMPLEX_BI"
The callback function is called from within the basis identification procedure when the dual
clean-up phase is terminated.

"MSK_CALLBACK_END_FULL_CONVEXITY_CHECK"
End full convexity check.

"MSK_CALLBACK_END_INFEAS_ANA"
The callback function is called when the infeasibility analyzer is terminated.

"MSK_CALLBACK_END_INTPNT"
The callback function is called when the interior-point optimizer is terminated.

"MSK_CALLBACK_END_LICENSE_WAIT"
End waiting for license.

"MSK_CALLBACK_END_MIO"
The callback function is called when the mixed-integer optimizer is terminated.

"MSK_CALLBACK_END_OPTIMIZER"
The callback function is called when the optimizer is terminated.

"MSK_CALLBACK_END_PRESOLVE"
The callback function is called when the presolve is completed.

"MSK_CALLBACK_END_PRIMAL_BI"
The callback function is called from within the basis identification procedure when the primal
phase is terminated.

"MSK_CALLBACK_END_PRIMAL_REPAIR"
End primal feasibility repair.

"MSK_CALLBACK_END_PRIMAL_SENSITIVITY"
Primal sensitivity analysis is terminated.

"MSK_CALLBACK_END_PRIMAL_SETUP_BI"
The callback function is called when the primal BI setup is terminated.

"MSK_CALLBACK_END_PRIMAL_SIMPLEX"
The callback function is called when the primal simplex optimizer is terminated.

"MSK_CALLBACK_END_PRIMAL_SIMPLEX_BI"
The callback function is called from within the basis identification procedure when the primal
clean-up phase is terminated.

"MSK_CALLBACK_END_QCQO_REFORMULATE"
End QCQO reformulation.

"MSK_CALLBACK_END_READ"
MOSEK has finished reading a problem file.

"MSK_CALLBACK_END_ROOT_CUTGEN"
The callback function is called when root cut generation is terminated.

"MSK_CALLBACK_END_SIMPLEX"
The callback function is called when the simplex optimizer is terminated.

"MSK_CALLBACK_END_SIMPLEX_BI"
The callback function is called from within the basis identification procedure when the simplex
clean-up phase is terminated.
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"MSK_CALLBACK_END_TO_CONIC"
End conic reformulation.

"MSK_CALLBACK_END_WRITE"
MOSEK has finished writing a problem file.

"MSK_CALLBACK_IM_BI"
The callback function is called from within the basis identification procedure at an interme-
diate point.

"MSK_CALLBACK_IM_CONIC"
The callback function is called at an intermediate stage within the conic optimizer where the
information database has not been updated.

"MSK_CALLBACK_IM_DUAL_BI"
The callback function is called from within the basis identification procedure at an interme-
diate point in the dual phase.

"MSK_CALLBACK_IM_DUAL_SENSIVITY"
The callback function is called at an intermediate stage of the dual sensitivity analysis.

"MSK_CALLBACK_IM_DUAL_SIMPLEX"
The callback function is called at an intermediate point in the dual simplex optimizer.

"MSK_CALLBACK_IM_FULL_CONVEXITY_CHECK"
The callback function is called at an intermediate stage of the full convexity check.

"MSK_CALLBACK_IM_INTPNT"
The callback function is called at an intermediate stage within the interior-point optimizer
where the information database has not been updated.

"MSK_CALLBACK_IM_LICENSE_WAIT"
MOSEK is waiting for a license.

"MSK_CALLBACK_IM_LU"
The callback function is called from within the LU factorization procedure at an intermediate
point.

"MSK_CALLBACK_IM_MIO"
The callback function is called at an intermediate point in the mixed-integer optimizer.

"MSK_CALLBACK_IM_MIO_DUAL_SIMPLEX"
The callback function is called at an intermediate point in the mixed-integer optimizer while
running the dual simplex optimizer.

"MSK_CALLBACK_IM_MIO_INTPNT"
The callback function is called at an intermediate point in the mixed-integer optimizer while
running the interior-point optimizer.

"MSK_CALLBACK_IM_MIO_PRIMAL_SIMPLEX"
The callback function is called at an intermediate point in the mixed-integer optimizer while
running the primal simplex optimizer.

"MSK_CALLBACK_IM_ORDER"
The callback function is called from within the matrix ordering procedure at an intermediate
point.

"MSK_CALLBACK_IM_PRESOLVE"
The callback function is called from within the presolve procedure at an intermediate stage.

"MSK_CALLBACK_IM_PRIMAL_BI"
The callback function is called from within the basis identification procedure at an interme-
diate point in the primal phase.

"MSK_CALLBACK_IM_PRIMAL_SENSIVITY"
The callback function is called at an intermediate stage of the primal sensitivity analysis.

"MSK_CALLBACK_IM_PRIMAL_SIMPLEX"
The callback function is called at an intermediate point in the primal simplex optimizer.

"MSK_CALLBACK_IM_QO_REFORMULATE"
The callback function is called at an intermediate stage of the conic quadratic reformulation.
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"MSK_CALLBACK_IM_READ"
Intermediate stage in reading.

"MSK_CALLBACK_IM_ROOT_CUTGEN"
The callback is called from within root cut generation at an intermediate stage.

"MSK_CALLBACK_IM_SIMPLEX"
The callback function is called from within the simplex optimizer at an intermediate point.

"MSK_CALLBACK_IM_SIMPLEX_BI"
The callback function is called from within the basis identification procedure at an interme-
diate point in the simplex clean-up phase. The frequency of the callbacks is controlled by the
MSK_IPAR_LOG_SIM_FREQ parameter.

"MSK_CALLBACK_INTPNT"
The callback function is called from within the interior-point optimizer after the information
database has been updated.

"MSK_CALLBACK_NEW_INT_MIO"
The callback function is called after a new integer solution has been located by the mixed-
integer optimizer.

"MSK_CALLBACK_PRIMAL_SIMPLEX"
The callback function is called from within the primal simplex optimizer.

"MSK_CALLBACK_READ_OPF"
The callback function is called from the OPF reader.

"MSK_CALLBACK_READ_OPF_SECTION"
A chunk of 𝑄 non-zeros has been read from a problem file.

"MSK_CALLBACK_SOLVING_REMOTE"
The callback function is called while the task is being solved on a remote server.

"MSK_CALLBACK_UPDATE_DUAL_BI"
The callback function is called from within the basis identification procedure at an interme-
diate point in the dual phase.

"MSK_CALLBACK_UPDATE_DUAL_SIMPLEX"
The callback function is called in the dual simplex optimizer.

"MSK_CALLBACK_UPDATE_DUAL_SIMPLEX_BI"
The callback function is called from within the basis identification procedure at an interme-
diate point in the dual simplex clean-up phase. The frequency of the callbacks is controlled
by the MSK_IPAR_LOG_SIM_FREQ parameter.

"MSK_CALLBACK_UPDATE_PRESOLVE"
The callback function is called from within the presolve procedure.

"MSK_CALLBACK_UPDATE_PRIMAL_BI"
The callback function is called from within the basis identification procedure at an interme-
diate point in the primal phase.

"MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX"
The callback function is called in the primal simplex optimizer.

"MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX_BI"
The callback function is called from within the basis identification procedure at an interme-
diate point in the primal simplex clean-up phase. The frequency of the callbacks is controlled
by the MSK_IPAR_LOG_SIM_FREQ parameter.

"MSK_CALLBACK_WRITE_OPF"
The callback function is called from the OPF writer.

checkconvexitytype
Types of convexity checks.

"MSK_CHECK_CONVEXITY_NONE"
No convexity check.

"MSK_CHECK_CONVEXITY_SIMPLE"
Perform simple and fast convexity check.
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"MSK_CHECK_CONVEXITY_FULL"
Perform a full convexity check.

compresstype
Compression types

"MSK_COMPRESS_NONE"
No compression is used.

"MSK_COMPRESS_FREE"
The type of compression used is chosen automatically.

"MSK_COMPRESS_GZIP"
The type of compression used is gzip compatible.

"MSK_COMPRESS_ZSTD"
The type of compression used is zstd compatible.

conetype
Cone types

"MSK_CT_QUAD"
The cone is a quadratic cone.

"MSK_CT_RQUAD"
The cone is a rotated quadratic cone.

"MSK_CT_PEXP"
A primal exponential cone.

"MSK_CT_DEXP"
A dual exponential cone.

"MSK_CT_PPOW"
A primal power cone.

"MSK_CT_DPOW"
A dual power cone.

"MSK_CT_ZERO"
The zero cone.

nametype
Name types

"MSK_NAME_TYPE_GEN"
General names. However, no duplicate and blank names are allowed.

"MSK_NAME_TYPE_MPS"
MPS type names.

"MSK_NAME_TYPE_LP"
LP type names.

scopr
SCopt operator types

"MSK_OPR_ENT"
Entropy

"MSK_OPR_EXP"
Exponential

"MSK_OPR_LOG"
Logarithm

"MSK_OPR_POW"
Power

"MSK_OPR_SQRT"
Square root

symmattype
Cone types

"MSK_SYMMAT_TYPE_SPARSE"
Sparse symmetric matrix.
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dataformat
Data format types

"MSK_DATA_FORMAT_EXTENSION"
The file extension is used to determine the data file format.

"MSK_DATA_FORMAT_MPS"
The data file is MPS formatted.

"MSK_DATA_FORMAT_LP"
The data file is LP formatted.

"MSK_DATA_FORMAT_OP"
The data file is an optimization problem formatted file.

"MSK_DATA_FORMAT_FREE_MPS"
The data a free MPS formatted file.

"MSK_DATA_FORMAT_TASK"
Generic task dump file.

"MSK_DATA_FORMAT_PTF"
(P)retty (T)ext (F)format.

"MSK_DATA_FORMAT_CB"
Conic benchmark format,

"MSK_DATA_FORMAT_JSON_TASK"
JSON based task format.

dinfitem
Double information items

"MSK_DINF_BI_CLEAN_DUAL_TIME"
Time spent within the dual clean-up optimizer of the basis identification procedure since its
invocation.

"MSK_DINF_BI_CLEAN_PRIMAL_TIME"
Time spent within the primal clean-up optimizer of the basis identification procedure since
its invocation.

"MSK_DINF_BI_CLEAN_TIME"
Time spent within the clean-up phase of the basis identification procedure since its invocation.

"MSK_DINF_BI_DUAL_TIME"
Time spent within the dual phase basis identification procedure since its invocation.

"MSK_DINF_BI_PRIMAL_TIME"
Time spent within the primal phase of the basis identification procedure since its invocation.

"MSK_DINF_BI_TIME"
Time spent within the basis identification procedure since its invocation.

"MSK_DINF_INTPNT_DUAL_FEAS"
Dual feasibility measure reported by the interior-point optimizer. (For the interior-point
optimizer this measure is not directly related to the original problem because a homogeneous
model is employed.)

"MSK_DINF_INTPNT_DUAL_OBJ"
Dual objective value reported by the interior-point optimizer.

"MSK_DINF_INTPNT_FACTOR_NUM_FLOPS"
An estimate of the number of flops used in the factorization.

"MSK_DINF_INTPNT_OPT_STATUS"
A measure of optimality of the solution. It should converge to +1 if the problem has a primal-
dual optimal solution, and converge to −1 if the problem is (strictly) primal or dual infeasible.
If the measure converges to another constant, or fails to settle, the problem is usually ill-posed.

"MSK_DINF_INTPNT_ORDER_TIME"
Order time (in seconds).
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"MSK_DINF_INTPNT_PRIMAL_FEAS"
Primal feasibility measure reported by the interior-point optimizer. (For the interior-point
optimizer this measure is not directly related to the original problem because a homogeneous
model is employed).

"MSK_DINF_INTPNT_PRIMAL_OBJ"
Primal objective value reported by the interior-point optimizer.

"MSK_DINF_INTPNT_TIME"
Time spent within the interior-point optimizer since its invocation.

"MSK_DINF_MIO_CLIQUE_SEPARATION_TIME"
Separation time for clique cuts.

"MSK_DINF_MIO_CMIR_SEPARATION_TIME"
Separation time for CMIR cuts.

"MSK_DINF_MIO_CONSTRUCT_SOLUTION_OBJ"
If MOSEK has successfully constructed an integer feasible solution, then this item contains
the optimal objective value corresponding to the feasible solution.

"MSK_DINF_MIO_DUAL_BOUND_AFTER_PRESOLVE"
Value of the dual bound after presolve but before cut generation.

"MSK_DINF_MIO_GMI_SEPARATION_TIME"
Separation time for GMI cuts.

"MSK_DINF_MIO_IMPLIED_BOUND_TIME"
Separation time for implied bound cuts.

"MSK_DINF_MIO_KNAPSACK_COVER_SEPARATION_TIME"
Separation time for knapsack cover.

"MSK_DINF_MIO_OBJ_ABS_GAP"
Given the mixed-integer optimizer has computed a feasible solution and a bound on the
optimal objective value, then this item contains the absolute gap defined by

|(objective value of feasible solution) − (objective bound)|.

Otherwise it has the value -1.0.

"MSK_DINF_MIO_OBJ_BOUND"
The best known bound on the objective function. This value is undefined until at least one
relaxation has been solved: To see if this is the case check that "MSK_IINF_MIO_NUM_RELAX"
is strictly positive.

"MSK_DINF_MIO_OBJ_INT"
The primal objective value corresponding to the best integer feasible solution. Please
note that at least one integer feasible solution must have been located i.e. check
"MSK_IINF_MIO_NUM_INT_SOLUTIONS" .

"MSK_DINF_MIO_OBJ_REL_GAP"
Given that the mixed-integer optimizer has computed a feasible solution and a bound on the
optimal objective value, then this item contains the relative gap defined by

|(objective value of feasible solution) − (objective bound)|
max(𝛿, |(objective value of feasible solution)|)

.

where 𝛿 is given by the parameter MSK_DPAR_MIO_REL_GAP_CONST . Otherwise it has the value
−1.0.

"MSK_DINF_MIO_PROBING_TIME"
Total time for probing.

"MSK_DINF_MIO_ROOT_CUTGEN_TIME"
Total time for cut generation.

"MSK_DINF_MIO_ROOT_OPTIMIZER_TIME"
Time spent in the optimizer while solving the root node relaxation
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"MSK_DINF_MIO_ROOT_PRESOLVE_TIME"
Time spent presolving the problem at the root node.

"MSK_DINF_MIO_TIME"
Time spent in the mixed-integer optimizer.

"MSK_DINF_MIO_USER_OBJ_CUT"
If the objective cut is used, then this information item has the value of the cut.

"MSK_DINF_OPTIMIZER_TIME"
Total time spent in the optimizer since it was invoked.

"MSK_DINF_PRESOLVE_ELI_TIME"
Total time spent in the eliminator since the presolve was invoked.

"MSK_DINF_PRESOLVE_LINDEP_TIME"
Total time spent in the linear dependency checker since the presolve was invoked.

"MSK_DINF_PRESOLVE_TIME"
Total time (in seconds) spent in the presolve since it was invoked.

"MSK_DINF_PRIMAL_REPAIR_PENALTY_OBJ"
The optimal objective value of the penalty function.

"MSK_DINF_QCQO_REFORMULATE_MAX_PERTURBATION"
Maximum absolute diagonal perturbation occurring during the QCQO reformulation.

"MSK_DINF_QCQO_REFORMULATE_TIME"
Time spent with conic quadratic reformulation.

"MSK_DINF_QCQO_REFORMULATE_WORST_CHOLESKY_COLUMN_SCALING"
Worst Cholesky column scaling.

"MSK_DINF_QCQO_REFORMULATE_WORST_CHOLESKY_DIAG_SCALING"
Worst Cholesky diagonal scaling.

"MSK_DINF_RD_TIME"
Time spent reading the data file.

"MSK_DINF_SIM_DUAL_TIME"
Time spent in the dual simplex optimizer since invoking it.

"MSK_DINF_SIM_FEAS"
Feasibility measure reported by the simplex optimizer.

"MSK_DINF_SIM_OBJ"
Objective value reported by the simplex optimizer.

"MSK_DINF_SIM_PRIMAL_TIME"
Time spent in the primal simplex optimizer since invoking it.

"MSK_DINF_SIM_TIME"
Time spent in the simplex optimizer since invoking it.

"MSK_DINF_SOL_BAS_DUAL_OBJ"
Dual objective value of the basic solution. Updated if MSK_IPAR_AUTO_UPDATE_SOL_INFO is
set .

"MSK_DINF_SOL_BAS_DVIOLCON"
Maximal dual bound violation for 𝑥𝑐 in the basic solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_BAS_DVIOLVAR"
Maximal dual bound violation for 𝑥𝑥 in the basic solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_BAS_NRM_BARX"
Infinity norm of 𝑋 in the basic solution.

"MSK_DINF_SOL_BAS_NRM_SLC"
Infinity norm of 𝑠𝑐𝑙 in the basic solution.

"MSK_DINF_SOL_BAS_NRM_SLX"
Infinity norm of 𝑠𝑥𝑙 in the basic solution.
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"MSK_DINF_SOL_BAS_NRM_SUC"
Infinity norm of 𝑠𝑐𝑢 in the basic solution.

"MSK_DINF_SOL_BAS_NRM_SUX"
Infinity norm of 𝑠𝑋𝑢 in the basic solution.

"MSK_DINF_SOL_BAS_NRM_XC"
Infinity norm of 𝑥𝑐 in the basic solution.

"MSK_DINF_SOL_BAS_NRM_XX"
Infinity norm of 𝑥𝑥 in the basic solution.

"MSK_DINF_SOL_BAS_NRM_Y"
Infinity norm of 𝑦 in the basic solution.

"MSK_DINF_SOL_BAS_PRIMAL_OBJ"
Primal objective value of the basic solution. Updated if MSK_IPAR_AUTO_UPDATE_SOL_INFO
is set .

"MSK_DINF_SOL_BAS_PVIOLCON"
Maximal primal bound violation for 𝑥𝑐 in the basic solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_BAS_PVIOLVAR"
Maximal primal bound violation for 𝑥𝑥 in the basic solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITG_NRM_BARX"
Infinity norm of 𝑋 in the integer solution.

"MSK_DINF_SOL_ITG_NRM_XC"
Infinity norm of 𝑥𝑐 in the integer solution.

"MSK_DINF_SOL_ITG_NRM_XX"
Infinity norm of 𝑥𝑥 in the integer solution.

"MSK_DINF_SOL_ITG_PRIMAL_OBJ"
Primal objective value of the integer solution. Updated if MSK_IPAR_AUTO_UPDATE_SOL_INFO
is set .

"MSK_DINF_SOL_ITG_PVIOLBARVAR"
Maximal primal bound violation for 𝑋 in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITG_PVIOLCON"
Maximal primal bound violation for 𝑥𝑐 in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITG_PVIOLCONES"
Maximal primal violation for primal conic constraints in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITG_PVIOLITG"
Maximal violation for the integer constraints in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITG_PVIOLVAR"
Maximal primal bound violation for 𝑥𝑥 in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITR_DUAL_OBJ"
Dual objective value of the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITR_DVIOLBARVAR"
Maximal dual bound violation for 𝑋 in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITR_DVIOLCON"
Maximal dual bound violation for 𝑥𝑐 in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .
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"MSK_DINF_SOL_ITR_DVIOLCONES"
Maximal dual violation for dual conic constraints in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITR_DVIOLVAR"
Maximal dual bound violation for 𝑥𝑥 in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITR_NRM_BARS"
Infinity norm of 𝑆 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_BARX"
Infinity norm of 𝑋 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_SLC"
Infinity norm of 𝑠𝑐𝑙 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_SLX"
Infinity norm of 𝑠𝑥𝑙 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_SNX"
Infinity norm of 𝑠𝑥𝑛 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_SUC"
Infinity norm of 𝑠𝑐𝑢 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_SUX"
Infinity norm of 𝑠𝑋𝑢 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_XC"
Infinity norm of 𝑥𝑐 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_XX"
Infinity norm of 𝑥𝑥 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_Y"
Infinity norm of 𝑦 in the interior-point solution.

"MSK_DINF_SOL_ITR_PRIMAL_OBJ"
Primal objective value of the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITR_PVIOLBARVAR"
Maximal primal bound violation for 𝑋 in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITR_PVIOLCON"
Maximal primal bound violation for 𝑥𝑐 in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITR_PVIOLCONES"
Maximal primal violation for primal conic constraints in the interior-point solution. Updated
if MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITR_PVIOLVAR"
Maximal primal bound violation for 𝑥𝑥 in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_TO_CONIC_TIME"
Time spent in the last to conic reformulation.

feature
License feature

"MSK_FEATURE_PTS"
Base system.

"MSK_FEATURE_PTON"
Conic extension.

liinfitem
Long integer information items.
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"MSK_LIINF_BI_CLEAN_DUAL_DEG_ITER"
Number of dual degenerate clean iterations performed in the basis identification.

"MSK_LIINF_BI_CLEAN_DUAL_ITER"
Number of dual clean iterations performed in the basis identification.

"MSK_LIINF_BI_CLEAN_PRIMAL_DEG_ITER"
Number of primal degenerate clean iterations performed in the basis identification.

"MSK_LIINF_BI_CLEAN_PRIMAL_ITER"
Number of primal clean iterations performed in the basis identification.

"MSK_LIINF_BI_DUAL_ITER"
Number of dual pivots performed in the basis identification.

"MSK_LIINF_BI_PRIMAL_ITER"
Number of primal pivots performed in the basis identification.

"MSK_LIINF_INTPNT_FACTOR_NUM_NZ"
Number of non-zeros in factorization.

"MSK_LIINF_MIO_ANZ"
Number of non-zero entries in the constraint matrix of the probelm to be solved by the mixed-
integer optimizer.

"MSK_LIINF_MIO_INTPNT_ITER"
Number of interior-point iterations performed by the mixed-integer optimizer.

"MSK_LIINF_MIO_PRESOLVED_ANZ"
Number of non-zero entries in the constraint matrix of the problem after the mixed-integer
optimizer’s presolve.

"MSK_LIINF_MIO_SIMPLEX_ITER"
Number of simplex iterations performed by the mixed-integer optimizer.

"MSK_LIINF_RD_NUMANZ"
Number of non-zeros in A that is read.

"MSK_LIINF_RD_NUMQNZ"
Number of Q non-zeros.

iinfitem
Integer information items.

"MSK_IINF_ANA_PRO_NUM_CON"
Number of constraints in the problem.

"MSK_IINF_ANA_PRO_NUM_CON_EQ"
Number of equality constraints.

"MSK_IINF_ANA_PRO_NUM_CON_FR"
Number of unbounded constraints.

"MSK_IINF_ANA_PRO_NUM_CON_LO"
Number of constraints with a lower bound and an infinite upper bound.

"MSK_IINF_ANA_PRO_NUM_CON_RA"
Number of constraints with finite lower and upper bounds.

"MSK_IINF_ANA_PRO_NUM_CON_UP"
Number of constraints with an upper bound and an infinite lower bound.

"MSK_IINF_ANA_PRO_NUM_VAR"
Number of variables in the problem.

"MSK_IINF_ANA_PRO_NUM_VAR_BIN"
Number of binary (0-1) variables.

"MSK_IINF_ANA_PRO_NUM_VAR_CONT"
Number of continuous variables.

"MSK_IINF_ANA_PRO_NUM_VAR_EQ"
Number of fixed variables.

247



"MSK_IINF_ANA_PRO_NUM_VAR_FR"
Number of free variables.

"MSK_IINF_ANA_PRO_NUM_VAR_INT"
Number of general integer variables.

"MSK_IINF_ANA_PRO_NUM_VAR_LO"
Number of variables with a lower bound and an infinite upper bound.

"MSK_IINF_ANA_PRO_NUM_VAR_RA"
Number of variables with finite lower and upper bounds.

"MSK_IINF_ANA_PRO_NUM_VAR_UP"
Number of variables with an upper bound and an infinite lower bound.

"MSK_IINF_INTPNT_FACTOR_DIM_DENSE"
Dimension of the dense sub system in factorization.

"MSK_IINF_INTPNT_ITER"
Number of interior-point iterations since invoking the interior-point optimizer.

"MSK_IINF_INTPNT_NUM_THREADS"
Number of threads that the interior-point optimizer is using.

"MSK_IINF_INTPNT_SOLVE_DUAL"
Non-zero if the interior-point optimizer is solving the dual problem.

"MSK_IINF_MIO_ABSGAP_SATISFIED"
Non-zero if absolute gap is within tolerances.

"MSK_IINF_MIO_CLIQUE_TABLE_SIZE"
Size of the clique table.

"MSK_IINF_MIO_CONSTRUCT_SOLUTION"
This item informs if MOSEK constructed an initial integer feasible solution.

• -1: tried, but failed,
• 0: no partial solution supplied by the user,
• 1: constructed feasible solution.

"MSK_IINF_MIO_NODE_DEPTH"
Depth of the last node solved.

"MSK_IINF_MIO_NUM_ACTIVE_NODES"
Number of active branch and bound nodes.

"MSK_IINF_MIO_NUM_BRANCH"
Number of branches performed during the optimization.

"MSK_IINF_MIO_NUM_CLIQUE_CUTS"
Number of clique cuts.

"MSK_IINF_MIO_NUM_CMIR_CUTS"
Number of Complemented Mixed Integer Rounding (CMIR) cuts.

"MSK_IINF_MIO_NUM_GOMORY_CUTS"
Number of Gomory cuts.

"MSK_IINF_MIO_NUM_IMPLIED_BOUND_CUTS"
Number of implied bound cuts.

"MSK_IINF_MIO_NUM_INT_SOLUTIONS"
Number of integer feasible solutions that have been found.

"MSK_IINF_MIO_NUM_KNAPSACK_COVER_CUTS"
Number of clique cuts.

"MSK_IINF_MIO_NUM_RELAX"
Number of relaxations solved during the optimization.

"MSK_IINF_MIO_NUM_REPEATED_PRESOLVE"
Number of times presolve was repeated at root.

"MSK_IINF_MIO_NUMBIN"
Number of binary variables in the problem to be solved by the mixed-integer optimizer.
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"MSK_IINF_MIO_NUMBINCONEVAR"
Number of binary cone variables in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMCON"
Number of constraints in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMCONE"
Number of cones in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMCONEVAR"
Number of cone variables in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMCONT"
Number of continuous variables in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMCONTCONEVAR"
Number of continuous cone variables in the problem to be solved by the mixed-integer opti-
mizer.

"MSK_IINF_MIO_NUMDEXPCONES"
Number of dual exponential cones in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMDPOWCONES"
Number of dual power cones in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMINT"
Number of integer variables in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMINTCONEVAR"
Number of integer cone variables in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMPEXPCONES"
Number of primal exponential cones in the problem to be solved by the mixed-integer opti-
mizer.

"MSK_IINF_MIO_NUMPPOWCONES"
Number of primal power cones in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMQCONES"
Number of quadratic cones in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMRQCONES"
Number of rotated quadratic cones in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMVAR"
Number of variables in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_OBJ_BOUND_DEFINED"
Non-zero if a valid objective bound has been found, otherwise zero.

"MSK_IINF_MIO_PRESOLVED_NUMBIN"
Number of binary variables in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMBINCONEVAR"
Number of binary cone variables in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMCON"
Number of constraints in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMCONE"
Number of cones in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMCONEVAR"
Number of cone variables in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMCONT"
Number of continuous variables in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMCONTCONEVAR"
Number of continuous cone variables in the problem after the mixed-integer optimizer’s pre-
solve.

"MSK_IINF_MIO_PRESOLVED_NUMDEXPCONES"
Number of dual exponential cones in the problem after the mixed-integer optimizer’s presolve.
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"MSK_IINF_MIO_PRESOLVED_NUMDPOWCONES"
Number of dual power cones in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMINT"
Number of integer variables in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMINTCONEVAR"
Number of integer cone variables in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMPEXPCONES"
Number of primal exponential cones in the problem after the mixed-integer optimizer’s pre-
solve.

"MSK_IINF_MIO_PRESOLVED_NUMPPOWCONES"
Number of primal power cones in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMQCONES"
Number of quadratic cones in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMRQCONES"
Number of rotated quadratic cones in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMVAR"
Number of variables in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_RELGAP_SATISFIED"
Non-zero if relative gap is within tolerances.

"MSK_IINF_MIO_TOTAL_NUM_CUTS"
Total number of cuts generated by the mixed-integer optimizer.

"MSK_IINF_MIO_USER_OBJ_CUT"
If it is non-zero, then the objective cut is used.

"MSK_IINF_OPT_NUMCON"
Number of constraints in the problem solved when the optimizer is called.

"MSK_IINF_OPT_NUMVAR"
Number of variables in the problem solved when the optimizer is called

"MSK_IINF_OPTIMIZE_RESPONSE"
The response code returned by optimize.

"MSK_IINF_PURIFY_DUAL_SUCCESS"
Is nonzero if the dual solution is purified.

"MSK_IINF_PURIFY_PRIMAL_SUCCESS"
Is nonzero if the primal solution is purified.

"MSK_IINF_RD_NUMBARVAR"
Number of symmetric variables read.

"MSK_IINF_RD_NUMCON"
Number of constraints read.

"MSK_IINF_RD_NUMCONE"
Number of conic constraints read.

"MSK_IINF_RD_NUMINTVAR"
Number of integer-constrained variables read.

"MSK_IINF_RD_NUMQ"
Number of nonempty Q matrices read.

"MSK_IINF_RD_NUMVAR"
Number of variables read.

"MSK_IINF_RD_PROTYPE"
Problem type.

"MSK_IINF_SIM_DUAL_DEG_ITER"
The number of dual degenerate iterations.

"MSK_IINF_SIM_DUAL_HOTSTART"
If 1 then the dual simplex algorithm is solving from an advanced basis.
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"MSK_IINF_SIM_DUAL_HOTSTART_LU"
If 1 then a valid basis factorization of full rank was located and used by the dual simplex
algorithm.

"MSK_IINF_SIM_DUAL_INF_ITER"
The number of iterations taken with dual infeasibility.

"MSK_IINF_SIM_DUAL_ITER"
Number of dual simplex iterations during the last optimization.

"MSK_IINF_SIM_NUMCON"
Number of constraints in the problem solved by the simplex optimizer.

"MSK_IINF_SIM_NUMVAR"
Number of variables in the problem solved by the simplex optimizer.

"MSK_IINF_SIM_PRIMAL_DEG_ITER"
The number of primal degenerate iterations.

"MSK_IINF_SIM_PRIMAL_HOTSTART"
If 1 then the primal simplex algorithm is solving from an advanced basis.

"MSK_IINF_SIM_PRIMAL_HOTSTART_LU"
If 1 then a valid basis factorization of full rank was located and used by the primal simplex
algorithm.

"MSK_IINF_SIM_PRIMAL_INF_ITER"
The number of iterations taken with primal infeasibility.

"MSK_IINF_SIM_PRIMAL_ITER"
Number of primal simplex iterations during the last optimization.

"MSK_IINF_SIM_SOLVE_DUAL"
Is non-zero if dual problem is solved.

"MSK_IINF_SOL_BAS_PROSTA"
Problem status of the basic solution. Updated after each optimization.

"MSK_IINF_SOL_BAS_SOLSTA"
Solution status of the basic solution. Updated after each optimization.

"MSK_IINF_SOL_ITG_PROSTA"
Problem status of the integer solution. Updated after each optimization.

"MSK_IINF_SOL_ITG_SOLSTA"
Solution status of the integer solution. Updated after each optimization.

"MSK_IINF_SOL_ITR_PROSTA"
Problem status of the interior-point solution. Updated after each optimization.

"MSK_IINF_SOL_ITR_SOLSTA"
Solution status of the interior-point solution. Updated after each optimization.

"MSK_IINF_STO_NUM_A_REALLOC"
Number of times the storage for storing 𝐴 has been changed. A large value may indicates
that memory fragmentation may occur.

inftype
Information item types

"MSK_INF_DOU_TYPE"
Is a double information type.

"MSK_INF_INT_TYPE"
Is an integer.

"MSK_INF_LINT_TYPE"
Is a long integer.

iomode
Input/output modes

"MSK_IOMODE_READ"
The file is read-only.
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"MSK_IOMODE_WRITE"
The file is write-only. If the file exists then it is truncated when it is opened. Otherwise it is
created when it is opened.

"MSK_IOMODE_READWRITE"
The file is to read and write.

branchdir
Specifies the branching direction.
"MSK_BRANCH_DIR_FREE"

The mixed-integer optimizer decides which branch to choose.
"MSK_BRANCH_DIR_UP"

The mixed-integer optimizer always chooses the up branch first.
"MSK_BRANCH_DIR_DOWN"

The mixed-integer optimizer always chooses the down branch first.
"MSK_BRANCH_DIR_NEAR"

Branch in direction nearest to selected fractional variable.
"MSK_BRANCH_DIR_FAR"

Branch in direction farthest from selected fractional variable.
"MSK_BRANCH_DIR_ROOT_LP"

Chose direction based on root lp value of selected variable.
"MSK_BRANCH_DIR_GUIDED"

Branch in direction of current incumbent.
"MSK_BRANCH_DIR_PSEUDOCOST"

Branch based on the pseudocost of the variable.
miocontsoltype

Continuous mixed-integer solution type
"MSK_MIO_CONT_SOL_NONE"

No interior-point or basic solution are reported when the mixed-integer optimizer is used.
"MSK_MIO_CONT_SOL_ROOT"

The reported interior-point and basic solutions are a solution to the root node problem when
mixed-integer optimizer is used.

"MSK_MIO_CONT_SOL_ITG"
The reported interior-point and basic solutions are a solution to the problem with all integer
variables fixed at the value they have in the integer solution. A solution is only reported in
case the problem has a primal feasible solution.

"MSK_MIO_CONT_SOL_ITG_REL"
In case the problem is primal feasible then the reported interior-point and basic solutions are
a solution to the problem with all integer variables fixed at the value they have in the integer
solution. If the problem is primal infeasible, then the solution to the root node problem is
reported.

miomode
Integer restrictions
"MSK_MIO_MODE_IGNORED"

The integer constraints are ignored and the problem is solved as a continuous problem.
"MSK_MIO_MODE_SATISFIED"

Integer restrictions should be satisfied.
mionodeseltype

Mixed-integer node selection types
"MSK_MIO_NODE_SELECTION_FREE"

The optimizer decides the node selection strategy.
"MSK_MIO_NODE_SELECTION_FIRST"

The optimizer employs a depth first node selection strategy.
"MSK_MIO_NODE_SELECTION_BEST"

The optimizer employs a best bound node selection strategy.
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"MSK_MIO_NODE_SELECTION_PSEUDO"
The optimizer employs selects the node based on a pseudo cost estimate.

mpsformat
MPS file format type

"MSK_MPS_FORMAT_STRICT"
It is assumed that the input file satisfies the MPS format strictly.

"MSK_MPS_FORMAT_RELAXED"
It is assumed that the input file satisfies a slightly relaxed version of the MPS format.

"MSK_MPS_FORMAT_FREE"
It is assumed that the input file satisfies the free MPS format. This implies that spaces are
not allowed in names. Otherwise the format is free.

"MSK_MPS_FORMAT_CPLEX"
The CPLEX compatible version of the MPS format is employed.

objsense
Objective sense types

"MSK_OBJECTIVE_SENSE_MINIMIZE"
The problem should be minimized.

"MSK_OBJECTIVE_SENSE_MAXIMIZE"
The problem should be maximized.

onoffkey
On/off

"MSK_ON"
Switch the option on.

"MSK_OFF"
Switch the option off.

optimizertype
Optimizer types

"MSK_OPTIMIZER_CONIC"
The optimizer for problems having conic constraints.

"MSK_OPTIMIZER_DUAL_SIMPLEX"
The dual simplex optimizer is used.

"MSK_OPTIMIZER_FREE"
The optimizer is chosen automatically.

"MSK_OPTIMIZER_FREE_SIMPLEX"
One of the simplex optimizers is used.

"MSK_OPTIMIZER_INTPNT"
The interior-point optimizer is used.

"MSK_OPTIMIZER_MIXED_INT"
The mixed-integer optimizer.

"MSK_OPTIMIZER_PRIMAL_SIMPLEX"
The primal simplex optimizer is used.

orderingtype
Ordering strategies

"MSK_ORDER_METHOD_FREE"
The ordering method is chosen automatically.

"MSK_ORDER_METHOD_APPMINLOC"
Approximate minimum local fill-in ordering is employed.

"MSK_ORDER_METHOD_EXPERIMENTAL"
This option should not be used.

"MSK_ORDER_METHOD_TRY_GRAPHPAR"
Always try the graph partitioning based ordering.
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"MSK_ORDER_METHOD_FORCE_GRAPHPAR"
Always use the graph partitioning based ordering even if it is worse than the approximate
minimum local fill ordering.

"MSK_ORDER_METHOD_NONE"
No ordering is used.

presolvemode
Presolve method.

"MSK_PRESOLVE_MODE_OFF"
The problem is not presolved before it is optimized.

"MSK_PRESOLVE_MODE_ON"
The problem is presolved before it is optimized.

"MSK_PRESOLVE_MODE_FREE"
It is decided automatically whether to presolve before the problem is optimized.

parametertype
Parameter type

"MSK_PAR_INVALID_TYPE"
Not a valid parameter.

"MSK_PAR_DOU_TYPE"
Is a double parameter.

"MSK_PAR_INT_TYPE"
Is an integer parameter.

"MSK_PAR_STR_TYPE"
Is a string parameter.

problemitem
Problem data items

"MSK_PI_VAR"
Item is a variable.

"MSK_PI_CON"
Item is a constraint.

"MSK_PI_CONE"
Item is a cone.

problemtype
Problem types

"MSK_PROBTYPE_LO"
The problem is a linear optimization problem.

"MSK_PROBTYPE_QO"
The problem is a quadratic optimization problem.

"MSK_PROBTYPE_QCQO"
The problem is a quadratically constrained optimization problem.

"MSK_PROBTYPE_CONIC"
A conic optimization.

"MSK_PROBTYPE_MIXED"
General nonlinear constraints and conic constraints. This combination can not be solved by
MOSEK.

prosta
Problem status keys

"MSK_PRO_STA_UNKNOWN"
Unknown problem status.

"MSK_PRO_STA_PRIM_AND_DUAL_FEAS"
The problem is primal and dual feasible.

"MSK_PRO_STA_PRIM_FEAS"
The problem is primal feasible.
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"MSK_PRO_STA_DUAL_FEAS"
The problem is dual feasible.

"MSK_PRO_STA_PRIM_INFEAS"
The problem is primal infeasible.

"MSK_PRO_STA_DUAL_INFEAS"
The problem is dual infeasible.

"MSK_PRO_STA_PRIM_AND_DUAL_INFEAS"
The problem is primal and dual infeasible.

"MSK_PRO_STA_ILL_POSED"
The problem is ill-posed. For example, it may be primal and dual feasible but have a positive
duality gap.

"MSK_PRO_STA_PRIM_INFEAS_OR_UNBOUNDED"
The problem is either primal infeasible or unbounded. This may occur for mixed-integer
problems.

xmlwriteroutputtype
XML writer output mode

"MSK_WRITE_XML_MODE_ROW"
Write in row order.

"MSK_WRITE_XML_MODE_COL"
Write in column order.

rescodetype
Response code type

"MSK_RESPONSE_OK"
The response code is OK.

"MSK_RESPONSE_WRN"
The response code is a warning.

"MSK_RESPONSE_TRM"
The response code is an optimizer termination status.

"MSK_RESPONSE_ERR"
The response code is an error.

"MSK_RESPONSE_UNK"
The response code does not belong to any class.

scalingtype
Scaling type

"MSK_SCALING_FREE"
The optimizer chooses the scaling heuristic.

"MSK_SCALING_NONE"
No scaling is performed.

"MSK_SCALING_MODERATE"
A conservative scaling is performed.

"MSK_SCALING_AGGRESSIVE"
A very aggressive scaling is performed.

scalingmethod
Scaling method

"MSK_SCALING_METHOD_POW2"
Scales only with power of 2 leaving the mantissa untouched.

"MSK_SCALING_METHOD_FREE"
The optimizer chooses the scaling heuristic.

sensitivitytype
Sensitivity types

"MSK_SENSITIVITY_TYPE_BASIS"
Basis sensitivity analysis is performed.
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simseltype
Simplex selection strategy

"MSK_SIM_SELECTION_FREE"
The optimizer chooses the pricing strategy.

"MSK_SIM_SELECTION_FULL"
The optimizer uses full pricing.

"MSK_SIM_SELECTION_ASE"
The optimizer uses approximate steepest-edge pricing.

"MSK_SIM_SELECTION_DEVEX"
The optimizer uses devex steepest-edge pricing (or if it is not available an approximate steep-
edge selection).

"MSK_SIM_SELECTION_SE"
The optimizer uses steepest-edge selection (or if it is not available an approximate steep-edge
selection).

"MSK_SIM_SELECTION_PARTIAL"
The optimizer uses a partial selection approach. The approach is usually beneficial if the
number of variables is much larger than the number of constraints.

solitem
Solution items

"MSK_SOL_ITEM_XC"
Solution for the constraints.

"MSK_SOL_ITEM_XX"
Variable solution.

"MSK_SOL_ITEM_Y"
Lagrange multipliers for equations.

"MSK_SOL_ITEM_SLC"
Lagrange multipliers for lower bounds on the constraints.

"MSK_SOL_ITEM_SUC"
Lagrange multipliers for upper bounds on the constraints.

"MSK_SOL_ITEM_SLX"
Lagrange multipliers for lower bounds on the variables.

"MSK_SOL_ITEM_SUX"
Lagrange multipliers for upper bounds on the variables.

"MSK_SOL_ITEM_SNX"
Lagrange multipliers corresponding to the conic constraints on the variables.

solsta
Solution status keys

"MSK_SOL_STA_UNKNOWN"
Status of the solution is unknown.

"MSK_SOL_STA_OPTIMAL"
The solution is optimal.

"MSK_SOL_STA_PRIM_FEAS"
The solution is primal feasible.

"MSK_SOL_STA_DUAL_FEAS"
The solution is dual feasible.

"MSK_SOL_STA_PRIM_AND_DUAL_FEAS"
The solution is both primal and dual feasible.

"MSK_SOL_STA_PRIM_INFEAS_CER"
The solution is a certificate of primal infeasibility.

"MSK_SOL_STA_DUAL_INFEAS_CER"
The solution is a certificate of dual infeasibility.
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"MSK_SOL_STA_PRIM_ILLPOSED_CER"
The solution is a certificate that the primal problem is illposed.

"MSK_SOL_STA_DUAL_ILLPOSED_CER"
The solution is a certificate that the dual problem is illposed.

"MSK_SOL_STA_INTEGER_OPTIMAL"
The primal solution is integer optimal.

soltype
Solution types

"MSK_SOL_BAS"
The basic solution.

"MSK_SOL_ITR"
The interior solution.

"MSK_SOL_ITG"
The integer solution.

solveform
Solve primal or dual form

"MSK_SOLVE_FREE"
The optimizer is free to solve either the primal or the dual problem.

"MSK_SOLVE_PRIMAL"
The optimizer should solve the primal problem.

"MSK_SOLVE_DUAL"
The optimizer should solve the dual problem.

stakey
Status keys

"MSK_SK_UNK"
The status for the constraint or variable is unknown.

"MSK_SK_BAS"
The constraint or variable is in the basis.

"MSK_SK_SUPBAS"
The constraint or variable is super basic.

"MSK_SK_LOW"
The constraint or variable is at its lower bound.

"MSK_SK_UPR"
The constraint or variable is at its upper bound.

"MSK_SK_FIX"
The constraint or variable is fixed.

"MSK_SK_INF"
The constraint or variable is infeasible in the bounds.

startpointtype
Starting point types

"MSK_STARTING_POINT_FREE"
The starting point is chosen automatically.

"MSK_STARTING_POINT_GUESS"
The optimizer guesses a starting point.

"MSK_STARTING_POINT_CONSTANT"
The optimizer constructs a starting point by assigning a constant value to all primal and dual
variables. This starting point is normally robust.

"MSK_STARTING_POINT_SATISFY_BOUNDS"
The starting point is chosen to satisfy all the simple bounds on nonlinear variables. If this
starting point is employed, then more care than usual should employed when choosing the
bounds on the nonlinear variables. In particular very tight bounds should be avoided.

257



streamtype
Stream types

"MSK_STREAM_LOG"
Log stream. Contains the aggregated contents of all other streams. This means that a message
written to any other stream will also be written to this stream.

"MSK_STREAM_MSG"
Message stream. Log information relating to performance and progress of the optimization is
written to this stream.

"MSK_STREAM_ERR"
Error stream. Error messages are written to this stream.

"MSK_STREAM_WRN"
Warning stream. Warning messages are written to this stream.

value
Integer values

"MSK_MAX_STR_LEN"
Maximum string length allowed in MOSEK.

"MSK_LICENSE_BUFFER_LENGTH"
The length of a license key buffer.

variabletype
Variable types

"MSK_VAR_TYPE_CONT"
Is a continuous variable.

"MSK_VAR_TYPE_INT"
Is an integer variable.

15.8 Nonlinear interfaces (obsolete)

Important: This is a legacy document for users familiar with SCopt, DGopt, EXPopt, mskenopt,
mskscopt and mskgpopt from previous versions of MOSEK. These interfaces have now been removed.
We assume familiarity with documentation included in version 8. All problems expressible with this
interface can (and should) be reformulated using the exponential cone and power cones.

New users should formulate problems involving powers, logarithms and exponentials directly in conic
form.

Conversion tutorial

We recommend converting all nonlinear problems using SCopt, DGopt, EXPopt, mskenopt, mskscopt
and mskgpopt into conic form. Depending on the values of 𝑓, 𝑔, ℎ either the epigraph or hypograph of
a SCopt function if convex, and a bounding variable can be introduced following the basic rules below.
We assume all variables are within safe bounds where the SCopt operators are defined and convex. We
also assume 𝑓 > 0.

A more comprehensive modeling guide for these types of problems can be found in the MOSEK
Modeling Cookbook.
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Powers

Consider 𝑓(𝑥 + ℎ)𝑔. This can be reformulated using the power cone.

• If 𝑔 > 1 then 𝑡 ≥ 𝑓(𝑥 + ℎ)𝑔 is equivalent to (𝑡/𝑓)1/𝑔 ≥ |𝑥 + ℎ|, that is (𝑡/𝑓, 1, 𝑥 + ℎ) ∈ 𝒫1/𝑔,1−1/𝑔
3 .

• If 0 < 𝑔 < 1 then |𝑡| ≤ 𝑓(𝑥 + ℎ)𝑔 is equivalent to (𝑥 + ℎ, 1, 𝑡/𝑓) ∈ 𝒫𝑔,1−𝑔
3 .

• If 𝑔 < 0 then 𝑡 ≥ 𝑓(𝑥 + ℎ)𝑔 is equivalent to (𝑡/𝑓)(𝑥 + ℎ)−𝑔 ≥ 1, that is (𝑡/𝑓, 𝑥 + ℎ, 1) ∈
𝒫1/(1−𝑔),−𝑔/(1−𝑔)
3 .

Logarithm

The bound 𝑡 ≤ 𝑓 log(𝑔𝑥 + ℎ) is equivalent to (𝑔𝑥 + ℎ, 1, 𝑡/𝑓) ∈ 𝐾exp.

Entropy

The bound 𝑡 ≥ 𝑓𝑥 log 𝑥 is equivalent to (1, 𝑥,−𝑡/𝑓) ∈ 𝐾exp.

Exponential

The bound 𝑡 ≥ 𝑓 exp(𝑔𝑥 + ℎ) is equivalent to (𝑡/𝑓, 1, 𝑔𝑥 + ℎ) ∈ 𝐾exp.

Exponential optimization (EXPopt), Geometric programming (mskgpopt)

For a basic tutorial in geometric programming (GP) see Sec. 6.8.
An exponential optimization problem in standard form consists of constraints of the type:

𝑡 ≥ log

(︃∑︁
𝑖

exp(𝑎𝑇𝑖 𝑥 + 𝑏𝑖)

)︃
.

This log-sum-exp bound is equivalent to∑︁
𝑖

exp(𝑎𝑇𝑖 𝑥 + 𝑏𝑖 − 𝑡) ≤ 1

and requires bounding each exponential function as explained above.

Dual geometric optimization (DGopt)

The objective function of a dual geometric problem involves maximizing expressions of the form

𝑥 log
𝑐

𝑥
and 𝑥𝑖 log

𝑒𝑇𝑥

𝑥𝑖
,

which can be achieved using bounds 𝑡 ≤ 𝑥 log 𝑦
𝑥 , that is (𝑡, 𝑥, 𝑦) ∈ 𝐾exp.
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Chapter 16

Supported File Formats

MOSEK supports a range of problem and solution formats listed in Table 16.1 and Table 16.2. The Task
format is MOSEK‘s native binary format and it supports all features that MOSEK supports. The
OPF format is MOSEK‘s human-readable alternative that supports nearly all features (everything
except semidefinite problems). In general, text formats are significantly slower to read, but can be
examined and edited directly in any text editor.

Problem formats

Table 16.1: List of supported file formats for optimization prob-
lems. The column Conic refers to conic problems involving the
quadratic, rotated quadratic, power or exponential cone. The last
two columns indicate if the format supports solutions and optimizer
parameters.

Format Type Ext. Binary/Text LP QO Conic SDP Sol Param
LP lp plain text X X
MPS mps plain text X X X
OPF opf plain text X X X X X
PTF ptf plain text X X X X X
CBF cbf plain text X X X
Task format task binary X X X X X X
Jtask format jtask text X X X X X X

Solution formats

Table 16.2: List of supported solution formats.
Format Type Ext. Binary/Text Description
SOL sol plain text Interior Solution

bas plain text Basic Solution
int plain text Integer

Jsol format jsol text Solution
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Compression

MOSEK supports GZIP and Zstandard compression. Problem files with extension .gz (for GZIP) and
.zst (for Zstandard) are assumed to be compressed when read, and are automatically compressed when
written. For example, a file called

problem.mps.gz

will be considered as a GZIP compressed MPS file.

16.1 The LP File Format

MOSEK supports the LP file format with some extensions. The LP format is not a completely well-
defined standard and hence different optimization packages may interpret the same LP file in slightly
different ways. MOSEK tries to emulate as closely as possible CPLEX’s behavior, but tries to stay
backward compatible.

The LP file format can specify problems of the form

minimize/maximize 𝑐𝑇𝑥 + 1
2𝑞

𝑜(𝑥)
subject to 𝑙𝑐 ≤ 𝐴𝑥 + 1

2𝑞(𝑥) ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥𝒥 integer,

where

• 𝑥 ∈ R𝑛 is the vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear term in the objective.

• 𝑞𝑜 :∈ R𝑛 → R is the quadratic term in the objective where

𝑞𝑜(𝑥) = 𝑥𝑇𝑄𝑜𝑥

and it is assumed that

𝑄𝑜 = (𝑄𝑜)𝑇 .

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

• 𝑞 : R𝑛 → R is a vector of quadratic functions. Hence,

𝑞𝑖(𝑥) = 𝑥𝑇𝑄𝑖𝑥

where it is assumed that

𝑄𝑖 = (𝑄𝑖)𝑇 .

• 𝒥 ⊆ {1, 2, . . . , 𝑛} is an index set of the integer constrained variables.
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16.1.1 File Sections
An LP formatted file contains a number of sections specifying the objective, constraints, variable bounds,
and variable types. The section keywords may be any mix of upper and lower case letters.

Objective Function

The first section beginning with one of the keywords

max
maximum
maximize
min
minimum
minimize

defines the objective sense and the objective function, i.e.

𝑐𝑇𝑥 +
1

2
𝑥𝑇𝑄𝑜𝑥.

The objective may be given a name by writing

myname:

before the expressions. If no name is given, then the objective is named obj.
The objective function contains linear and quadratic terms. The linear terms are written as

4 x1 + x2 - 0.1 x3

and so forth. The quadratic terms are written in square brackets ([ ]/2) and are either squared or
multiplied as in the examples

x1^2

and

x1 * x2

There may be zero or more pairs of brackets containing quadratic expressions.
An example of an objective section is

minimize
myobj: 4 x1 + x2 - 0.1 x3 + [ x1^2 + 2.1 x1 * x2 ]/2

Please note that the quadratic expressions are multiplied with 1
2 , so that the above expression means

minimize 4𝑥1 + 𝑥2 − 0.1 · 𝑥3 + 1
2 (𝑥2

1 + 2.1 · 𝑥1 · 𝑥2)

If the same variable occurs more than once in the linear part, the coefficients are added, so that 4 x1 +
2 x1 is equivalent to 6 x1. In the quadratic expressions x1 * x2 is equivalent to x2 * x1 and, as in the
linear part, if the same variables multiplied or squared occur several times their coefficients are added.

Constraints

The second section beginning with one of the keywords

subj to
subject to
s.t.
st

defines the linear constraint matrix 𝐴 and the quadratic matrices 𝑄𝑖.
A constraint contains a name (optional), expressions adhering to the same rules as in the objective

and a bound:
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subject to
con1: x1 + x2 + [ x3^2 ]/2 <= 5.1

The bound type (here <=) may be any of <, <=, =, >, >= (< and <= mean the same), and the bound
may be any number.

In the standard LP format it is not possible to define more than one bound per line, but MOSEK
supports defining ranged constraints by using double-colon (::) instead of a single-colon (:) after the
constraint name, i.e.

−5 ≤ 𝑥1 + 𝑥2 ≤ 5 (16.1)

may be written as

con:: -5 < x_1 + x_2 < 5

By default MOSEK writes ranged constraints this way.
If the files must adhere to the LP standard, ranged constraints must either be split into upper

bounded and lower bounded constraints or be written as an equality with a slack variable. For example
the expression (16.1) may be written as

𝑥1 + 𝑥2 − 𝑠𝑙1 = 0, −5 ≤ 𝑠𝑙1 ≤ 5.

Bounds

Bounds on the variables can be specified in the bound section beginning with one of the keywords

bound
bounds

The bounds section is optional but should, if present, follow the subject to section. All variables
listed in the bounds section must occur in either the objective or a constraint.

The default lower and upper bounds are 0 and +∞ . A variable may be declared free with the keyword
free, which means that the lower bound is −∞ and the upper bound is +∞ . Furthermore it may be
assigned a finite lower and upper bound. The bound definitions for a given variable may be written in
one or two lines, and bounds can be any number or ±∞ (written as +inf/-inf/+infinity/-infinity)
as in the example

bounds
x1 free
x2 <= 5
0.1 <= x2
x3 = 42
2 <= x4 < +inf

Variable Types

The final two sections are optional and must begin with one of the keywords

bin
binaries
binary

and

gen
general

Under general all integer variables are listed, and under binary all binary (integer variables with
bounds 0 and 1) are listed:
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general
x1 x2
binary
x3 x4

Again, all variables listed in the binary or general sections must occur in either the objective or a
constraint.

Terminating Section

Finally, an LP formatted file must be terminated with the keyword

end

16.1.2 LP File Examples

Linear example lo1.lp

\ File: lo1.lp
maximize
obj: 3 x1 + x2 + 5 x3 + x4
subject to
c1: 3 x1 + x2 + 2 x3 = 30
c2: 2 x1 + x2 + 3 x3 + x4 >= 15
c3: 2 x2 + 3 x4 <= 25
bounds
0 <= x1 <= +infinity
0 <= x2 <= 10
0 <= x3 <= +infinity
0 <= x4 <= +infinity

end

Mixed integer example milo1.lp

maximize
obj: x1 + 6.4e-01 x2
subject to
c1: 5e+01 x1 + 3.1e+01 x2 <= 2.5e+02
c2: 3e+00 x1 - 2e+00 x2 >= -4e+00
bounds
0 <= x1 <= +infinity
0 <= x2 <= +infinity

general
x1 x2

end
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16.1.3 LP Format peculiarities

Comments

Anything on a line after a \ is ignored and is treated as a comment.

Names

A name for an objective, a constraint or a variable may contain the letters a-z, A-Z, the digits 0-9 and
the characters

!"#$%&()/,.;?@_'`|~

The first character in a name must not be a number, a period or the letter e or E. Keywords must
not be used as names.

MOSEK accepts any character as valid for names, except \0. A name that is not allowed in LP file
will be changed and a warning will be issued.

The algorithm for making names LP valid works as follows: The name is interpreted as an utf-8
string. For a Unicode character c:

• If c==_ (underscore), the output is __ (two underscores).

• If c is a valid LP name character, the output is just c.

• If c is another character in the ASCII range, the output is _XX, where XX is the hexadecimal code
for the character.

• If c is a character in the range 127-65535, the output is _uXXXX, where XXXX is the hexadecimal
code for the character.

• If c is a character above 65535, the output is _UXXXXXXXX, where XXXXXXXX is the hexadecimal
code for the character.

Invalid utf-8 substrings are escaped as _XX', and if a name starts with a period, e or E, that character
is escaped as _XX.

Variable Bounds

Specifying several upper or lower bounds on one variable is possible but MOSEK uses only the tightest
bounds. If a variable is fixed (with =), then it is considered the tightest bound.

MOSEK Extensions to the LP Format

Some optimization software packages employ a more strict definition of the LP format than the one used
by MOSEK. The limitations imposed by the strict LP format are the following:

• Quadratic terms in the constraints are not allowed.

• Names can be only 16 characters long.

• Lines must not exceed 255 characters in length.

To get around some of the inconveniences converting from other problem formats, MOSEK allows
lines to contain 1024 characters and names may have any length (shorter than the 1024 characters).

If an LP formatted file created by MOSEK should satisfy the strict definition, then the parameter
MSK_IPAR_WRITE_LP_STRICT_FORMAT should be set; note, however, that some problems cannot be writ-
ten correctly as a strict LP formatted file. For instance, all names are truncated to 16 characters and
hence they may lose their uniqueness and change the problem.

Internally in MOSEK names may contain any (printable) character, many of which can-
not be used in LP names. Setting the parameters MSK_IPAR_READ_LP_QUOTED_NAMES and
MSK_IPAR_WRITE_LP_QUOTED_NAMES allows MOSEK to use quoted names. The first parameter tells
MOSEK to remove quotes from quoted names e.g, "x1", when reading LP formatted files. The second
parameter tells MOSEK to put quotes around any semi-illegal name (names beginning with a number
or a period) and fully illegal name (containing illegal characters). As double quote is a legal character in
the LP format, quoting semi-illegal names makes them legal in the pure LP format as long as they are
still shorter than 16 characters. Fully illegal names are still illegal in a pure LP file.
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The strict LP format

The LP format is not a formal standard and different vendors have slightly different interpretations of
the LP format. To make MOSEK’s definition of the LP format more compatible with the definitions
of other vendors set the parameter MSK_IPAR_WRITE_LP_STRICT_FORMAT to "MSK_ON" .

This setting may lead to truncation of some names and hence to an invalid LP file. The simple
solution to this problem is to set the parameter MSK_IPAR_WRITE_GENERIC_NAMES to "MSK_ON" which
will cause all names to be renamed systematically in the output file.

Formatting of an LP File

A few parameters control the visual formatting of LP files written by MOSEK in order to make it easier
to read the files. These parameters are

• MSK_IPAR_WRITE_LP_LINE_WIDTH sets the maximum number of characters on a single line. The
default value is 80 corresponding roughly to the width of a standard text document.

• MSK_IPAR_WRITE_LP_TERMS_PER_LINE sets the maximum number of terms per line; a term means
a sign, a coefficient, and a name (for example + 42 elephants). The default value is 0, meaning
that there is no maximum.

Unnamed Constraints

Reading and writing an LP file with MOSEK may change it superficially. If an LP file contains
unnamed constraints or objective these are given their generic names when the file is read (however
unnamed constraints in MOSEK are written without names).

16.2 The MPS File Format

MOSEK supports the standard MPS format with some extensions. For a detailed description of the
MPS format see the book by Nazareth [Naz87].

16.2.1 MPS File Structure
The version of the MPS format supported by MOSEK allows specification of an optimization problem
of the form

maximize/minimize 𝑐𝑇𝑥 + 𝑞0(𝑥)
𝑙𝑐 ≤ 𝐴𝑥 + 𝑞(𝑥) ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ 𝒦,
𝑥𝒥 integer,

(16.2)

where

• 𝑥 ∈ R𝑛 is the vector of decision variables.

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

• 𝑞 : R𝑛 → R is a vector of quadratic functions. Hence,

𝑞𝑖(𝑥) =
1

2
𝑥𝑇𝑄𝑖𝑥

where it is assumed that 𝑄𝑖 = (𝑄𝑖)𝑇 . Please note the explicit 1
2 in the quadratic term and that 𝑄𝑖

is required to be symmetric. The same applies to 𝑞0.
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• 𝒦 is a convex cone.

• 𝒥 ⊆ {1, 2, . . . , 𝑛} is an index set of the integer-constrained variables.

• 𝑐 is the vector of objective coefficients.

An MPS file with one row and one column can be illustrated like this:

* 1 2 3 4 5 6
*23456789012345678901234567890123456789012345678901234567890
NAME [name]
OBJSENSE

[objsense]
OBJNAME [objname]
ROWS
? [cname1]

COLUMNS
[vname1] [cname1] [value1] [cname2] [value2]

RHS
[name] [cname1] [value1] [cname2] [value2]

RANGES
[name] [cname1] [value1] [cname2] [value2]

QSECTION [cname1]
[vname1] [vname2] [value1] [vname3] [value2]

QMATRIX
[vname1] [vname2] [value1]

QUADOBJ
[vname1] [vname2] [value1]

QCMATRIX [cname1]
[vname1] [vname2] [value1]

BOUNDS
?? [name] [vname1] [value1]

CSECTION [kname1] [value1] [ktype]
[vname1]

ENDATA

Here the names in capitals are keywords of the MPS format and names in brackets are custom defined
names or values. A couple of notes on the structure:

• Fields: All items surrounded by brackets appear in fields. The fields named “valueN” are numerical
values. Hence, they must have the format

[+|-]XXXXXXX.XXXXXX[[e|E][+|-]XXX]

where

X = [0|1|2|3|4|5|6|7|8|9].

• Sections: The MPS file consists of several sections where the names in capitals indicate the begin-
ning of a new section. For example, COLUMNS denotes the beginning of the columns section.

• Comments: Lines starting with an * are comment lines and are ignored by MOSEK.

• Keys: The question marks represent keys to be specified later.

• Extensions: The sections QSECTION and CSECTION are specific MOSEK extensions of the MPS
format. The sections QMATRIX, QUADOBJ and QCMATRIX are included for sake of compatibility with
other vendors extensions to the MPS format.

• The standard MPS format is a fixed format, i.e. everything in the MPS file must be within certain
fixed positions. MOSEK also supports a free format. See Sec. 16.2.5 for details.
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Linear example lo1.mps

A concrete example of a MPS file is presented below:

* File: lo1.mps
NAME lo1
OBJSENSE

MAX
ROWS
N obj
E c1
G c2
L c3

COLUMNS
x1 obj 3
x1 c1 3
x1 c2 2
x2 obj 1
x2 c1 1
x2 c2 1
x2 c3 2
x3 obj 5
x3 c1 2
x3 c2 3
x4 obj 1
x4 c2 1
x4 c3 3

RHS
rhs c1 30
rhs c2 15
rhs c3 25

RANGES
BOUNDS
UP bound x2 10

ENDATA

Subsequently each individual section in the MPS format is discussed.

NAME (optional)

In this section a name ([name]) is assigned to the problem.

OBJSENSE (optional)

This is an optional section that can be used to specify the sense of the objective function. The OBJSENSE
section contains one line at most which can be one of the following:

MIN
MINIMIZE
MAX
MAXIMIZE

It should be obvious what the implication is of each of these four lines.
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OBJNAME (optional)

This is an optional section that can be used to specify the name of the row that is used as objective
function. objname should be a valid row name.

ROWS

A record in the ROWS section has the form

? [cname1]

where the requirements for the fields are as follows:

Field Starting Position Max Width required Description
? 2 1 Yes Constraint key
[cname1] 5 8 Yes Constraint name

Hence, in this section each constraint is assigned a unique name denoted by [cname1]. Please note
that [cname1] starts in position 5 and the field can be at most 8 characters wide. An initial key ? must
be present to specify the type of the constraint. The key can have values E, G, L, or N with the following
interpretation:

Constraint type 𝑙𝑐𝑖 𝑢𝑐
𝑖

E (equal) finite = 𝑙𝑐𝑖
G (greater) finite ∞
L (lower) −∞ finite
N (none) −∞ ∞

In the MPS format the objective vector is not specified explicitly, but one of the constraints having
the key N will be used as the objective vector 𝑐 . In general, if multiple N type constraints are specified,
then the first will be used as the objective vector 𝑐, unless something else was specified in the section
OBJNAME.

COLUMNS

In this section the elements of 𝐴 are specified using one or more records having the form:

[vname1] [cname1] [value1] [cname2] [value2]

where the requirements for each field are as follows:

Field Starting Position Max Width required Description
[vname1] 5 8 Yes Variable name
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

Hence, a record specifies one or two elements 𝑎𝑖𝑗 of 𝐴 using the principle that [vname1] and [cname1]
determines 𝑗 and 𝑖 respectively. Please note that [cname1] must be a constraint name specified in the
ROWS section. Finally, [value1] denotes the numerical value of 𝑎𝑖𝑗 . Another optional element is specified
by [cname2], and [value2] for the variable specified by [vname1]. Some important comments are:

• All elements belonging to one variable must be grouped together.

• Zero elements of 𝐴 should not be specified.

• At least one element for each variable should be specified.
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RHS (optional)

A record in this section has the format

[name] [cname1] [value1] [cname2] [value2]

where the requirements for each field are as follows:

Field Starting Position Max Width required Description
[name] 5 8 Yes Name of the RHS vector
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

The interpretation of a record is that [name] is the name of the RHS vector to be specified. In general,
several vectors can be specified. [cname1] denotes a constraint name previously specified in the ROWS
section. Now, assume that this name has been assigned to the 𝑖 -h constraint and 𝑣1 denotes the value
specified by [value1], then the interpretation of 𝑣1 is:

Constraint 𝑙𝑐𝑖 𝑢𝑐
𝑖

E 𝑣1 𝑣1
G 𝑣1
L 𝑣1
N

An optional second element is specified by [cname2] and [value2] and is interpreted in the same
way. Please note that it is not necessary to specify zero elements, because elements are assumed to be
zero.

RANGES (optional)

A record in this section has the form

[name] [cname1] [value1] [cname2] [value2]

where the requirements for each fields are as follows:

Field Starting Position Max Width required Description
[name] 5 8 Yes Name of the RANGE vector
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

The records in this section are used to modify the bound vectors for the constraints, i.e. the values
in 𝑙𝑐 and 𝑢𝑐 . A record has the following interpretation:[name] is the name of the RANGE vector and
[cname1] is a valid constraint name. Assume that [cname1] is assigned to the 𝑖-th constraint and let
𝑣1 be the value specified by [value1], then a record has the interpretation:

Constraint type Sign of 𝑣1 𝑙𝑐𝑖 𝑢𝑐
𝑖

E − 𝑢𝑐
𝑖 + 𝑣1

E + 𝑙𝑐𝑖 + 𝑣1
G − or + 𝑙𝑐𝑖 + |𝑣1|
L − or + 𝑢𝑐

𝑖 − |𝑣1|
N

Another constraint bound can optionally be modified using [cname2] and [value2] the same way.
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QSECTION (optional)

Within the QSECTION the label [cname1] must be a constraint name previously specified in the ROWS
section. The label [cname1] denotes the constraint to which the quadratic terms belong. A record in
the QSECTION has the form

[vname1] [vname2] [value1] [vname3] [value2]

where the requirements for each field are:

Field Starting Position Max Width required Description
[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value
[vname3] 40 8 No Variable name
[value2] 50 12 No Numerical value

A record specifies one or two elements in the lower triangular part of the 𝑄𝑖 matrix where [cname1]
specifies the 𝑖 . Hence, if the names [vname1] and [vname2] have been assigned to the 𝑘-th and 𝑗-th
variable, then 𝑄𝑖

𝑘𝑗 is assigned the value given by [value1] An optional second element is specified in
the same way by the fields [vname1], [vname3], and [value2].

The example

minimize −𝑥2 + 1
2 (2𝑥2

1 − 2𝑥1𝑥3 + 0.2𝑥2
2 + 2𝑥2

3)
subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,

𝑥 ≥ 0

has the following MPS file representation

* File: qo1.mps
NAME qo1
ROWS
N obj
G c1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0

QSECTION obj
x1 x1 2.0
x1 x3 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Regarding the QSECTIONs please note that:

• Only one QSECTION is allowed for each constraint.

• The QSECTIONs can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QSECTION must already be specified in the COLUMNS section.

• All entries specified in a QSECTION are assumed to belong to the lower triangular part of the
quadratic term of 𝑄 .
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QMATRIX/QUADOBJ (optional)

The QMATRIX and QUADOBJ sections allow to define the quadratic term of the objective function. They
differ in how the quadratic term of the objective function is stored:

• QMATRIX stores all the nonzeros coefficients, without taking advantage of the symmetry of the 𝑄
matrix.

• QUADOBJ stores the upper diagonal nonzero elements of the 𝑄 matrix.

A record in both sections has the form:

[vname1] [vname2] [value1]

where the requirements for each field are:

Field Starting Position Max Width required Description
[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value

A record specifies one elements of the 𝑄 matrix in the objective function . Hence, if the names
[vname1] and [vname2] have been assigned to the 𝑘-th and 𝑗-th variable, then 𝑄𝑘𝑗 is assigned the value
given by [value1]. Note that a line must appear for each off-diagonal coefficient if using a QMATRIX
section, while only one entry is required in a QUADOBJ section. The quadratic part of the objective
function will be evaluated as 1/2𝑥𝑇𝑄𝑥.

The example

minimize −𝑥2 + 1
2 (2𝑥2

1 − 2𝑥1𝑥3 + 0.2𝑥2
2 + 2𝑥2

3)
subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,

𝑥 ≥ 0

has the following MPS file representation using QMATRIX

* File: qo1_matrix.mps
NAME qo1_qmatrix
ROWS
N obj
G c1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0

QMATRIX
x1 x1 2.0
x1 x3 -1.0
x3 x1 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

or the following using QUADOBJ

* File: qo1_quadobj.mps
NAME qo1_quadobj
ROWS
N obj
G c1

(continues on next page)
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(continued from previous page)

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0

QUADOBJ
x1 x1 2.0
x1 x3 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Please also note that:

• A QMATRIX/QUADOBJ section can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QMATRIX/QUADOBJ section must already be specified in the
COLUMNS section.

QCMATRIX (optional)

A QCMATRIX section allows to specify the quadratic part of a given constraint. Within the QCMATRIX the
label [cname1] must be a constraint name previously specified in the ROWS section. The label [cname1]
denotes the constraint to which the quadratic term belongs. A record in the QSECTION has the form

[vname1] [vname2] [value1]

where the requirements for each field are:

Field Starting Position Max Width required Description
[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value

A record specifies an entry of the 𝑄𝑖 matrix where [cname1] specifies the 𝑖. Hence, if the names
[vname1] and [vname2] have been assigned to the 𝑘-th and 𝑗-th variable, then 𝑄𝑖

𝑘𝑗 is assigned the value
given by [value1]. Moreover, the quadratic term is represented as 1/2𝑥𝑇𝑄𝑥.

The example

minimize 𝑥2

subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,
1
2 (−2𝑥1𝑥3 + 0.2𝑥2

2 + 2𝑥2
3) ≤ 10,

𝑥 ≥ 0

has the following MPS file representation

* File: qo1.mps
NAME qo1
ROWS
N obj
G c1
L q1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

(continues on next page)
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(continued from previous page)

RHS
rhs c1 1.0
rhs q1 10.0

QCMATRIX q1
x1 x1 2.0
x1 x3 -1.0
x3 x1 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Regarding the QCMATRIXs please note that:

• Only one QCMATRIX is allowed for each constraint.

• The QCMATRIXs can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QSECTION must already be specified in the COLUMNS section.

• QCMATRIX does not exploit the symmetry of 𝑄: an off-diagonal entry (𝑖, 𝑗) should appear twice.

BOUNDS (optional)

In the BOUNDS section changes to the default bounds vectors 𝑙𝑥 and 𝑢𝑥 are specified. The default bounds
vectors are 𝑙𝑥 = 0 and 𝑢𝑥 = ∞ . Moreover, it is possible to specify several sets of bound vectors. A
record in this section has the form

?? [name] [vname1] [value1]

where the requirements for each field are:

Field Starting Position Max Width Required Description
?? 2 2 Yes Bound key
[name] 5 8 Yes Name of the BOUNDS vector
[vname1] 15 8 Yes Variable name
[value1] 25 12 No Numerical value

Hence, a record in the BOUNDS section has the following interpretation:[name] is the name of the
bound vector and [vname1] is the name of the variable for which the bounds are modified by the record.
?? and [value1] are used to modify the bound vectors according to the following table:

?? 𝑙𝑥𝑗 𝑢𝑥
𝑗 Made integer (added to 𝒥 )

FR −∞ ∞ No
FX 𝑣1 𝑣1 No
LO 𝑣1 unchanged No
MI −∞ unchanged No
PL unchanged ∞ No
UP unchanged 𝑣1 No
BV 0 1 Yes
LI ⌈𝑣1⌉ unchanged Yes
UI unchanged ⌊𝑣1⌋ Yes

Here 𝑣1 is the value specified by [value1].
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CSECTION (optional)

The purpose of the CSECTION is to specify the conic constraint

𝑥 ∈ 𝒦

in (16.2). It is assumed that 𝒦 satisfies the following requirements. Let

𝑥𝑡 ∈ R𝑛𝑡

, 𝑡 = 1, . . . , 𝑘

be vectors comprised of parts of the decision variables 𝑥 so that each decision variable is a member of
exactly one vector 𝑥𝑡, for example

𝑥1 =

⎡⎣ 𝑥1

𝑥4

𝑥7

⎤⎦ and 𝑥2 =

⎡⎢⎢⎣
𝑥6

𝑥5

𝑥3

𝑥2

⎤⎥⎥⎦ .

Next define

𝒦 :=
{︀
𝑥 ∈ R𝑛 : 𝑥𝑡 ∈ 𝒦𝑡, 𝑡 = 1, . . . , 𝑘

}︀
where 𝒦𝑡 must have one of the following forms:

• R set:

𝒦𝑡 = R𝑛𝑡

.

• Zero cone:

𝒦𝑡 = {0} ⊆ R𝑛𝑡

. (16.3)

• Quadratic cone:

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 𝑥1 ≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=2

𝑥2
𝑗

⎫⎬⎭ . (16.4)

• Rotated quadratic cone:

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 2𝑥1𝑥2 ≥
𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ . (16.5)

• Primal exponential cone:

𝒦𝑡 =
{︀
𝑥 ∈ R3 : 𝑥1 ≥ 𝑥2 exp(𝑥3/𝑥2), 𝑥1, 𝑥2 ≥ 0

}︀
. (16.6)

• Primal power cone (with parameter 0 < 𝛼 < 1):

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 𝑥𝛼
1𝑥

1−𝛼
2 ≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ . (16.7)

• Dual exponential cone:

𝒦𝑡 =
{︀
𝑥 ∈ R3 : 𝑥1 ≥ −𝑥3𝑒

−1 exp(𝑥2/𝑥3), 𝑥3 ≤ 0, 𝑥1 ≥ 0
}︀
. (16.8)

• Dual power cone (with parameter 0 < 𝛼 < 1):

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

:
(︁𝑥1

𝛼

)︁𝛼(︂ 𝑥2

1 − 𝛼

)︂1−𝛼

≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ . (16.9)
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In general, membership in the R set is not specified. If a variable is not a member of any other cone
then it is assumed to be a member of the R cone.

Next, let us study an example. Assume that the power cone

𝑥
1/3
4 𝑥

2/3
5 ≥ |𝑥8|

and the rotated quadratic cone

2𝑥3𝑥7 ≥ 𝑥2
1 + 𝑥2

0, 𝑥3, 𝑥7 ≥ 0,

should be specified in the MPS file. One CSECTION is required for each cone and they are specified as
follows:

* 1 2 3 4 5 6
*23456789012345678901234567890123456789012345678901234567890
CSECTION konea 3e-1 PPOW
x4
x5
x8
CSECTION koneb 0.0 RQUAD
x7
x3
x1
x0

In general, a CSECTION header has the format

CSECTION [kname1] [value1] [ktype]

where the requirements for each field are as follows:

Field Starting Position Max Width Required Description
[kname1] 15 8 Yes Name of the cone
[value1] 25 12 No Cone parameter
[ktype] 40 Yes Type of the cone.

The possible cone type keys are:

[ktype] Members [value1] Interpretation.
ZERO ≥ 0 unused Zero cone (16.3).
QUAD ≥ 1 unused Quadratic cone (16.4).
RQUAD ≥ 2 unused Rotated quadratic cone (16.5).
PEXP 3 unused Primal exponential cone (16.6).
PPOW ≥ 2 𝛼 Primal power cone (16.7).
DEXP 3 unused Dual exponential cone (16.8).
DPOW ≥ 2 𝛼 Dual power cone (16.9).

A record in the CSECTION has the format

[vname1]

where the requirements for each field are

Field Starting Position Max Width required Description
[vname1] 5 8 Yes A valid variable name

A variable must occur in at most one CSECTION.
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ENDATA

This keyword denotes the end of the MPS file.

16.2.2 Integer Variables
Using special bound keys in the BOUNDS section it is possible to specify that some or all of the variables
should be integer-constrained i.e. be members of 𝒥 . However, an alternative method is available. This
method is available only for backward compatibility and we recommend that it is not used. This method
requires that markers are placed in the COLUMNS section as in the example:

COLUMNS
x1 obj -10.0 c1 0.7
x1 c2 0.5 c3 1.0
x1 c4 0.1
* Start of integer-constrained variables.
MARK000 'MARKER' 'INTORG'
x2 obj -9.0 c1 1.0
x2 c2 0.8333333333 c3 0.66666667
x2 c4 0.25
x3 obj 1.0 c6 2.0
MARK001 'MARKER' 'INTEND'
* End of integer-constrained variables.

Please note that special marker lines are used to indicate the start and the end of the integer variables.
Furthermore be aware of the following

• All variables between the markers are assigned a default lower bound of 0 and a default upper
bound of 1. This may not be what is intended. If it is not intended, the correct bounds
should be defined in the BOUNDS section of the MPS formatted file.

• MOSEK ignores field 1, i.e. MARK0001 and MARK001, however, other optimization systems require
them.

• Field 2, i.e. MARKER, must be specified including the single quotes. This implies that no row can
be assigned the name MARKER.

• Field 3 is ignored and should be left blank.

• Field 4, i.e. INTORG and INTEND, must be specified.

• It is possible to specify several such integer marker sections within the COLUMNS section.

16.2.3 General Limitations
• An MPS file should be an ASCII file.

16.2.4 Interpretation of the MPS Format
Several issues related to the MPS format are not well-defined by the industry standard. However,
MOSEK uses the following interpretation:

• If a matrix element in the COLUMNS section is specified multiple times, then the multiple entries are
added together.

• If a matrix element in a QSECTION section is specified multiple times, then the multiple entries are
added together.
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16.2.5 The Free MPS Format
MOSEK supports a free format variation of the MPS format. The free format is similar to the MPS file
format but less restrictive, e.g. it allows longer names. However, a name must not contain any blanks.

Moreover, by default a line in the MPS file must not contain more than 1024 characters. By modifying
the parameter MSK_IPAR_READ_MPS_WIDTH an arbitrary large line width will be accepted.

The free MPS format is default. To change to the strict and other formats use the parameter
MSK_IPAR_READ_MPS_FORMAT .

16.3 The OPF Format

The Optimization Problem Format (OPF) is an alternative to LP and MPS files for specifying optimiza-
tion problems. It is row-oriented, inspired by the CPLEX LP format.

Apart from containing objective, constraints, bounds etc. it may contain complete or partial solutions,
comments and extra information relevant for solving the problem. It is designed to be easily read and
modified by hand and to be forward compatible with possible future extensions.

Intended use

The OPF file format is meant to replace several other files:

• The LP file format: Any problem that can be written as an LP file can be written as an OPF file
too; furthermore it naturally accommodates ranged constraints and variables as well as arbitrary
characters in names, fixed expressions in the objective, empty constraints, and conic constraints.

• Parameter files: It is possible to specify integer, double and string parameters along with the
problem (or in a separate OPF file).

• Solution files: It is possible to store a full or a partial solution in an OPF file and later reload it.

16.3.1 The File Format
The format uses tags to structure data. A simple example with the basic sections may look like this:

[comment]
This is a comment. You may write almost anything here...
[/comment]

# This is a single-line comment.

[objective min 'myobj']
x + 3 y + x^2 + 3 y^2 + z + 1
[/objective]

[constraints]
[con 'con01'] 4 <= x + y [/con]
[/constraints]

[bounds]
[b] -10 <= x,y <= 10 [/b]

[cone quad] x,y,z [/cone]
[/bounds]

A scope is opened by a tag of the form [tag] and closed by a tag of the form [/tag]. An opening
tag may accept a list of unnamed and named arguments, for examples:

[tag value] tag with one unnamed argument [/tag]
[tag arg=value] tag with one named argument [/tag]
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Unnamed arguments are identified by their order, while named arguments may appear in any order,
but never before an unnamed argument. The value can be a quoted, single-quoted or double-quoted
text string, i.e.

[tag 'value'] single-quoted value [/tag]
[tag arg='value'] single-quoted value [/tag]
[tag "value"] double-quoted value [/tag]
[tag arg="value"] double-quoted value [/tag]

16.3.2 Sections
The recognized tags are

[comment]

A comment section. This can contain almost any text: Between single quotes (’) or double quotes (")
any text may appear. Outside quotes the markup characters ([ and ]) must be prefixed by backslashes.
Both single and double quotes may appear alone or inside a pair of quotes if it is prefixed by a backslash.

[objective]

The objective function: This accepts one or two parameters, where the first one (in the above example
min) is either min or max (regardless of case) and defines the objective sense, and the second one (above
myobj), if present, is the objective name. The section may contain linear and quadratic expressions.

If several objectives are specified, all but the last are ignored.

[constraints]

This does not directly contain any data, but may contain subsections con defining a linear constraint.

[con]

Defines a single constraint; if an argument is present ([con NAME]) this is used as the name of the
constraint, otherwise it is given a null-name. The section contains a constraint definition written as
linear and quadratic expressions with a lower bound, an upper bound, with both or with an equality.
Examples:

[constraints]
[con 'con1'] 0 <= x + y [/con]
[con 'con2'] 0 >= x + y [/con]
[con 'con3'] 0 <= x + y <= 10 [/con]
[con 'con4'] x + y = 10 [/con]
[/constraints]

Constraint names are unique. If a constraint is specified which has the same name as a previously
defined constraint, the new constraint replaces the existing one.

[bounds]

This does not directly contain any data, but may contain subsections b (linear bounds on variables) and
cone (cones).
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[b]

Bound definition on one or several variables separated by comma (,). An upper or lower bound on a
variable replaces any earlier defined bound on that variable. If only one bound (upper or lower) is given
only this bound is replaced. This means that upper and lower bounds can be specified separately. So
the OPF bound definition:

[b] x,y >= -10 [/b]
[b] x,y <= 10 [/b]

results in the bound −10 ≤ 𝑥, 𝑦 ≤ 10.

[cone]

Specifies a cone. A cone is defined as a sequence of variables which belong to a single unique cone. The
supported cone types are:

• quad: a quadratic cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of the form

𝑥2
1 ≥

𝑛∑︁
𝑖=2

𝑥2
𝑖 , 𝑥1 ≥ 0.

• rquad: a rotated quadratic cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of the form

2𝑥1𝑥2 ≥
𝑛∑︁

𝑖=3

𝑥2
𝑖 , 𝑥1, 𝑥2 ≥ 0.

• pexp: primal exponential cone of 3 variables 𝑥1, 𝑥2, 𝑥3 defines a constraint of the form

𝑥1 ≥ 𝑥2 exp(𝑥3/𝑥2), 𝑥1, 𝑥2 ≥ 0.

• ppow with parameter 0 < 𝛼 < 1: primal power cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint
of the form

𝑥𝛼
1𝑥

1−𝛼
2 ≥

⎯⎸⎸⎷ 𝑛∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0.

• dexp: dual exponential cone of 3 variables 𝑥1, 𝑥2, 𝑥3 defines a constraint of the form

𝑥1 ≥ −𝑥3𝑒
−1 exp(𝑥2/𝑥3), 𝑥3 ≤ 0, 𝑥1 ≥ 0.

• dpow with parameter 0 < 𝛼 < 1: dual power cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of
the form (︁𝑥1

𝛼

)︁𝛼(︂ 𝑥2

1 − 𝛼

)︂1−𝛼

≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0.

• zero: zero cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of the form

𝑥1 = · · · = 𝑥𝑛 = 0

A [bounds]-section example:

[bounds]
[b] 0 <= x,y <= 10 [/b] # ranged bound
[b] 10 >= x,y >= 0 [/b] # ranged bound
[b] 0 <= x,y <= inf [/b] # using inf
[b] x,y free [/b] # free variables
# Let (x,y,z,w) belong to the cone K
[cone rquad] x,y,z,w [/cone] # rotated quadratic cone
[cone ppow '3e-01' 'a'] x1, x2, x3 [/cone] # power cone with alpha=1/3 and name 'a'
[/bounds]

By default all variables are free.
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[variables]

This defines an ordering of variables as they should appear in the problem. This is simply a space-
separated list of variable names.

[integer]

This contains a space-separated list of variables and defines the constraint that the listed variables must
be integer-valued.

[hints]

This may contain only non-essential data; for example estimates of the number of variables, constraints
and non-zeros. Placed before all other sections containing data this may reduce the time spent reading
the file.

In the hints section, any subsection which is not recognized by MOSEK is simply ignored. In this
section a hint is defined as follows:

[hint ITEM] value [/hint]

The hints recognized by MOSEK are:

• numvar (number of variables),

• numcon (number of linear/quadratic constraints),

• numanz (number of linear non-zeros in constraints),

• numqnz (number of quadratic non-zeros in constraints).

[solutions]

This section can contain a set of full or partial solutions to a problem. Each solution must be specified
using a [solution]-section, i.e.

[solutions]
[solution]...[/solution] #solution 1
[solution]...[/solution] #solution 2
#other solutions....
[solution]...[/solution] #solution n
[/solutions]

The syntax of a [solution]-section is the following:

[solution SOLTYPE status=STATUS]...[/solution]

where SOLTYPE is one of the strings

• interior, a non-basic solution,

• basic, a basic solution,

• integer, an integer solution,

and STATUS is one of the strings

• UNKNOWN,

• OPTIMAL,

• INTEGER_OPTIMAL,

• PRIM_FEAS,

• DUAL_FEAS,

• PRIM_AND_DUAL_FEAS,
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• NEAR_OPTIMAL,

• NEAR_PRIM_FEAS,

• NEAR_DUAL_FEAS,

• NEAR_PRIM_AND_DUAL_FEAS,

• PRIM_INFEAS_CER,

• DUAL_INFEAS_CER,

• NEAR_PRIM_INFEAS_CER,

• NEAR_DUAL_INFEAS_CER,

• NEAR_INTEGER_OPTIMAL.

Most of these values are irrelevant for input solutions; when constructing a solution for simplex
hot-start or an initial solution for a mixed integer problem the safe setting is UNKNOWN.

A [solution]-section contains [con] and [var] sections. Each [con] and [var] section defines
solution information for a single variable or constraint, specified as list of KEYWORD/value pairs, in any
order, written as

KEYWORD=value

Allowed keywords are as follows:

• sk. The status of the item, where the value is one of the following strings:

– LOW, the item is on its lower bound.

– UPR, the item is on its upper bound.

– FIX, it is a fixed item.

– BAS, the item is in the basis.

– SUPBAS, the item is super basic.

– UNK, the status is unknown.

– INF, the item is outside its bounds (infeasible).

• lvl Defines the level of the item.

• sl Defines the level of the dual variable associated with its lower bound.

• su Defines the level of the dual variable associated with its upper bound.

• sn Defines the level of the variable associated with its cone.

• y Defines the level of the corresponding dual variable (for constraints only).

A [var] section should always contain the items sk, lvl, sl and su. Items sl and su are not required
for integer solutions.

A [con] section should always contain sk, lvl, sl, su and y.
An example of a solution section

[solution basic status=UNKNOWN]
[var x0] sk=LOW lvl=5.0 [/var]
[var x1] sk=UPR lvl=10.0 [/var]
[var x2] sk=SUPBAS lvl=2.0 sl=1.5 su=0.0 [/var]

[con c0] sk=LOW lvl=3.0 y=0.0 [/con]
[con c0] sk=UPR lvl=0.0 y=5.0 [/con]
[/solution]
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• [vendor] This contains solver/vendor specific data. It accepts one argument, which is a vendor
ID – for MOSEK the ID is simply mosek – and the section contains the subsection parameters
defining solver parameters. When reading a vendor section, any unknown vendor can be safely
ignored. This is described later.

Comments using the # may appear anywhere in the file. Between the # and the following line-break
any text may be written, including markup characters.

16.3.3 Numbers
Numbers, when used for parameter values or coefficients, are written in the usual way by the printf
function. That is, they may be prefixed by a sign (+ or -) and may contain an integer part, decimal part
and an exponent. The decimal point is always . (a dot). Some examples are

1
1.0
.0
1.
1e10
1e+10
1e-10

Some invalid examples are

e10 # invalid, must contain either integer or decimal part
. # invalid
.e10 # invalid

More formally, the following standard regular expression describes numbers as used:

[+|-]?([0-9]+[.][0-9]*|[.][0-9]+)([eE][+|-]?[0-9]+)?

16.3.4 Names
Variable names, constraint names and objective name may contain arbitrary characters, which in some
cases must be enclosed by quotes (single or double) that in turn must be preceded by a backslash.
Unquoted names must begin with a letter (a-z or A-Z) and contain only the following characters: the
letters a-z and A-Z, the digits 0-9, braces ({ and }) and underscore (_).

Some examples of legal names:

an_unquoted_name
another_name{123}
'single quoted name'
"double quoted name"
"name with \\"quote\\" in it"
"name with []s in it"

16.3.5 Parameters Section
In the vendor section solver parameters are defined inside the parameters subsection. Each parameter
is written as

[p PARAMETER_NAME] value [/p]

where PARAMETER_NAME is replaced by a MOSEK parameter name, usually of the form MSK_IPAR_.
.., MSK_DPAR_... or MSK_SPAR_..., and the value is replaced by the value of that parameter; both
integer values and named values may be used. Some simple examples are
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[vendor mosek]
[parameters]
[p MSK_IPAR_OPF_MAX_TERMS_PER_LINE] 10 [/p]
[p MSK_IPAR_OPF_WRITE_PARAMETERS] MSK_ON [/p]
[p MSK_DPAR_DATA_TOL_BOUND_INF] 1.0e18 [/p]
[/parameters]
[/vendor]

16.3.6 Writing OPF Files from MOSEK
To write an OPF file then make sure the file extension is .opf.

Then modify the following parameters to define what the file should contain:

MSK_IPAR_OPF_WRITE_SOL_BAS Include basic solution, if defined.
MSK_IPAR_OPF_WRITE_SOL_ITG Include integer solution, if defined.
MSK_IPAR_OPF_WRITE_SOL_ITR Include interior solution, if defined.
MSK_IPAR_OPF_WRITE_SOLUTIONS Include solutions if they are defined. If this is off, no solutions are

included.
MSK_IPAR_OPF_WRITE_HEADER Include a small header with comments.
MSK_IPAR_OPF_WRITE_PROBLEM Include the problem itself — objective, constraints and bounds.
MSK_IPAR_OPF_WRITE_PARAMETERSInclude all parameter settings.
MSK_IPAR_OPF_WRITE_HINTS Include hints about the size of the problem.

16.3.7 Examples
This section contains a set of small examples written in OPF and describing how to formulate linear,
quadratic and conic problems.

Linear Example lo1.opf

Consider the example:

maximize 3𝑥0 + 1𝑥1 + 5𝑥2 + 1𝑥3

subject to 3𝑥0 + 1𝑥1 + 2𝑥2 = 30,
2𝑥0 + 1𝑥1 + 3𝑥2 + 1𝑥3 ≥ 15,

2𝑥1 + 3𝑥3 ≤ 25,

having the bounds

0 ≤ 𝑥0 ≤ ∞,
0 ≤ 𝑥1 ≤ 10,
0 ≤ 𝑥2 ≤ ∞,
0 ≤ 𝑥3 ≤ ∞.

In the OPF format the example is displayed as shown in Listing 16.1.

Listing 16.1: Example of an OPF file for a linear problem.

[comment]
The lo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 4 [/hint]
[hint NUMCON] 3 [/hint]
[hint NUMANZ] 9 [/hint]

[/hints]

(continues on next page)
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(continued from previous page)

[variables disallow_new_variables]
x1 x2 x3 x4

[/variables]

[objective maximize 'obj']
3 x1 + x2 + 5 x3 + x4

[/objective]

[constraints]
[con 'c1'] 3 x1 + x2 + 2 x3 = 30 [/con]
[con 'c2'] 2 x1 + x2 + 3 x3 + x4 >= 15 [/con]
[con 'c3'] 2 x2 + 3 x4 <= 25 [/con]

[/constraints]

[bounds]
[b] 0 <= * [/b]
[b] 0 <= x2 <= 10 [/b]

[/bounds]

Quadratic Example qo1.opf

An example of a quadratic optimization problem is

minimize 𝑥2
1 + 0.1𝑥2

2 + 𝑥2
3 − 𝑥1𝑥3 − 𝑥2

subject to 1 ≤ 𝑥1 + 𝑥2 + 𝑥3,
𝑥 ≥ 0.

This can be formulated in opf as shown below.

Listing 16.2: Example of an OPF file for a quadratic problem.

[comment]
The qo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 3 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 3 [/hint]
[hint NUMQNZ] 4 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2 x3

[/variables]

[objective minimize 'obj']
# The quadratic terms are often written with a factor of 1/2 as here,
# but this is not required.

- x2 + 0.5 ( 2.0 x1 ^ 2 - 2.0 x3 * x1 + 0.2 x2 ^ 2 + 2.0 x3 ^ 2 )
[/objective]

[constraints]
[con 'c1'] 1.0 <= x1 + x2 + x3 [/con]

[/constraints]

(continues on next page)

285



(continued from previous page)

[bounds]
[b] 0 <= * [/b]

[/bounds]

Conic Quadratic Example cqo1.opf

Consider the example:

minimize 𝑥3 + 𝑥4 + 𝑥5

subject to 𝑥0 + 𝑥1 + 2𝑥2 = 1,
𝑥0, 𝑥1, 𝑥2 ≥ 0,

𝑥3 ≥
√︀
𝑥2
0 + 𝑥2

1,
2𝑥4𝑥5 ≥ 𝑥2

2.

Please note that the type of the cones is defined by the parameter to [cone ...]; the content of the
cone-section is the names of variables that belong to the cone. The resulting OPF file is in Listing 16.3.

Listing 16.3: Example of an OPF file for a conic quadratic problem.

[comment]
The cqo1 example in OPF format.

[/comment]

[hints]
[hint NUMVAR] 6 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 3 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2 x3 x4 x5 x6

[/variables]

[objective minimize 'obj']
x4 + x5 + x6

[/objective]

[constraints]
[con 'c1'] x1 + x2 + 2e+00 x3 = 1e+00 [/con]

[/constraints]

[bounds]
# We let all variables default to the positive orthant
[b] 0 <= * [/b]

# ...and change those that differ from the default
[b] x4,x5,x6 free [/b]

# Define quadratic cone: x4 >= sqrt( x1^2 + x2^2 )
[cone quad 'k1'] x4, x1, x2 [/cone]

# Define rotated quadratic cone: 2 x5 x6 >= x3^2
[cone rquad 'k2'] x5, x6, x3 [/cone]

[/bounds]

286



Mixed Integer Example milo1.opf

Consider the mixed integer problem:

maximize 𝑥0 + 0.64𝑥1

subject to 50𝑥0 + 31𝑥1 ≤ 250,
3𝑥0 − 2𝑥1 ≥ −4,
𝑥0, 𝑥1 ≥ 0 and integer

This can be implemented in OPF with the file in Listing 16.4.

Listing 16.4: Example of an OPF file for a mixed-integer linear
problem.

[comment]
The milo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 2 [/hint]
[hint NUMCON] 2 [/hint]
[hint NUMANZ] 4 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2

[/variables]

[objective maximize 'obj']
x1 + 6.4e-1 x2

[/objective]

[constraints]
[con 'c1'] 5e+1 x1 + 3.1e+1 x2 <= 2.5e+2 [/con]
[con 'c2'] -4 <= 3 x1 - 2 x2 [/con]

[/constraints]

[bounds]
[b] 0 <= * [/b]

[/bounds]

[integer]
x1 x2

[/integer]
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16.4 The CBF Format

This document constitutes the technical reference manual of the Conic Benchmark Format with file exten-
sion: .cbf or .CBF. It unifies linear, second-order cone (also known as conic quadratic) and semidefinite
optimization with mixed-integer variables. The format has been designed with benchmark libraries in
mind, and therefore focuses on compact and easily parsable representations. The problem structure is
separated from the problem data, and the format moreover facilitates benchmarking of hotstart capability
through sequences of changes.

16.4.1 How Instances Are Specified
This section defines the spectrum of conic optimization problems that can be formulated in terms of the
keywords of the CBF format.

In the CBF format, conic optimization problems are considered in the following form:

min /max 𝑔𝑜𝑏𝑗

𝑔𝑖 ∈ 𝒦𝑖, 𝑖 ∈ ℐ,
s.t. 𝐺𝑖 ∈ 𝒦𝑖, 𝑖 ∈ ℐ𝑃𝑆𝐷,

𝑥𝑗 ∈ 𝒦𝑗 , 𝑗 ∈ 𝒥 ,
𝑋𝑗 ∈ 𝒦𝑗 , 𝑗 ∈ 𝒥 𝑃𝑆𝐷.

(16.10)

• Variables are either scalar variables, 𝑥𝑗 for 𝑗 ∈ 𝒥 , or variables, 𝑋𝑗 for 𝑗 ∈ 𝒥 𝑃𝑆𝐷. Scalar variables
can also be declared as integer.

• Constraints are affine expressions of the variables, either scalar-valued 𝑔𝑖 for 𝑖 ∈ ℐ, or matrix-
valued 𝐺𝑖 for 𝑖 ∈ ℐ𝑃𝑆𝐷

𝑔𝑖 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹𝑖𝑗 , 𝑋𝑗⟩ +
∑︁
𝑗∈𝒥

𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖,

𝐺𝑖 =
∑︁
𝑗∈𝒥

𝑥𝑗𝐻𝑖𝑗 + 𝐷𝑖.

• The objective function is a scalar-valued affine expression of the variables, either to be minimized
or maximized. We refer to this expression as 𝑔𝑜𝑏𝑗

𝑔𝑜𝑏𝑗 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹 𝑜𝑏𝑗
𝑗 , 𝑋𝑗⟩ +

∑︁
𝑗∈𝒥

𝑎𝑜𝑏𝑗𝑗 𝑥𝑗 + 𝑏𝑜𝑏𝑗 .

CBF format can represent the following cones 𝒦:

• Free domain - A cone in the linear family defined by

{𝑥 ∈ R𝑛}, for 𝑛 ≥ 1.

• Positive orthant - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 ≥ 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

• Negative orthant - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 ≤ 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

• Fixpoint zero - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 = 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.
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• Quadratic cone - A cone in the second-order cone family defined by

{︂(︂
𝑝
𝑥

)︂
∈ R× R𝑛−1, 𝑝2 ≥ 𝑥𝑇𝑥, 𝑝 ≥ 0

}︂
, for 𝑛 ≥ 2.

• Rotated quadratic cone - A cone in the second-order cone family defined by

⎧⎨⎩
⎛⎝ 𝑝

𝑞
𝑥

⎞⎠ ∈ R× R× R𝑛−2, 2𝑝𝑞 ≥ 𝑥𝑇𝑥, 𝑝 ≥ 0, 𝑞 ≥ 0

⎫⎬⎭ , for 𝑛 ≥ 3.

16.4.2 The Structure of CBF Files
This section defines how information is written in the CBF format, without being specific about the type
of information being communicated.

All information items belong to exactly one of the three groups of information. These information
groups, and the order they must appear in, are:

1. File format.

2. Problem structure.

3. Problem data.

The first group, file format, provides information on how to interpret the file. The second group,
problem structure, provides the information needed to deduce the type and size of the problem instance.
Finally, the third group, problem data, specifies the coefficients and constants of the problem instance.

Information items

The format is composed as a list of information items. The first line of an information item is the
KEYWORD, revealing the type of information provided. The second line - of some keywords only - is the
HEADER, typically revealing the size of information that follows. The remaining lines are the BODY holding
the actual information to be specified.

KEYWORD
BODY

KEYWORD
HEADER
BODY

The KEYWORD determines how each line in the HEADER and BODY is structured. Moreover, the number
of lines in the BODY follows either from the KEYWORD, the HEADER, or from another information item
required to precede it.

Embedded hotstart-sequences

A sequence of problem instances, based on the same problem structure, is within a single file. This
is facilitated via the CHANGE within the problem data information group, as a separator between the
information items of each instance. The information items following a CHANGE keyword are appending
to, or changing (e.g., setting coefficients back to their default value of zero), the problem data of the
preceding instance.

The sequence is intended for benchmarking of hotstart capability, where the solvers can reuse their
internal state and solution (subject to the achieved accuracy) as warmpoint for the succeeding instance.
Whenever this feature is unsupported or undesired, the keyword CHANGE should be interpreted as the
end of file.
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File encoding and line width restrictions

The format is based on the US-ASCII printable character set with two extensions as listed below. Note,
by definition, that none of these extensions can be misinterpreted as printable US-ASCII characters:

• A line feed marks the end of a line, carriage returns are ignored.

• Comment-lines may contain unicode characters in UTF-8 encoding.

The line width is restricted to 512 bytes, with 3 bytes reserved for the potential carriage return, line
feed and null-terminator.

Integers and floating point numbers must follow the ISO C decimal string representation in the
standard C locale. The format does not impose restrictions on the magnitude of, or number of significant
digits in numeric data, but the use of 64-bit integers and 64-bit IEEE 754 floating point numbers should
be sufficient to avoid loss of precision.

Comment-line and whitespace rules

The format allows single-line comments respecting the following rule:

• Lines having first byte equal to ’#’ (US-ASCII 35) are comments, and should be ignored. Comments
are only allowed between information items.

Given that a line is not a comment-line, whitespace characters should be handled according to the
following rules:

• Leading and trailing whitespace characters should be ignored.

– The seperator between multiple pieces of information on one line, is either one or more whites-
pace characters.

• Lines containing only whitespace characters are empty, and should be ignored. Empty lines are
only allowed between information items.

16.4.3 Problem Specification

The problem structure

The problem structure defines the objective sense, whether it is minimization and maximization. It also
defines the index sets, 𝒥 , 𝒥 𝑃𝑆𝐷, ℐ and ℐ𝑃𝑆𝐷, which are all numbered from zero, {0, 1, . . .}, and empty
until explicitly constructed.

• Scalar variables are constructed in vectors restricted to a conic domain, such as (𝑥0, 𝑥1) ∈ R2
+,

(𝑥2, 𝑥3, 𝑥4) ∈ 𝒬3, etc. In terms of the Cartesian product, this generalizes to

𝑥 ∈ 𝒦𝑛1
1 ×𝒦𝑛2

2 × · · · × 𝒦𝑛𝑘

𝑘

which in the CBF format becomes:

VAR
n k
K1 n1
K2 n2
...
Kk nk

where
∑︀

𝑖 𝑛𝑖 = 𝑛 is the total number of scalar variables. The list of supported cones is found in
Table 16.3. Integrality of scalar variables can be specified afterwards.

• PSD variables are constructed one-by-one. That is, 𝑋𝑗 ⪰ 0𝑛𝑗×𝑛𝑗 for 𝑗 ∈ 𝒥 𝑃𝑆𝐷, constructs a
matrix-valued variable of size 𝑛𝑗 ×𝑛𝑗 restricted to be symmetric positive semidefinite. In the CBF
format, this list of constructions becomes:
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PSDVAR
N
n1
n2
...
nN

where 𝑁 is the total number of PSD variables.

• Scalar constraints are constructed in vectors restricted to a conic domain, such as (𝑔0, 𝑔1) ∈ R2
+,

(𝑔2, 𝑔3, 𝑔4) ∈ 𝒬3, etc. In terms of the Cartesian product, this generalizes to

𝑔 ∈ 𝒦𝑚1
1 ×𝒦𝑚2

2 × · · · × 𝒦𝑚𝑘

𝑘

which in the CBF format becomes:

CON
m k
K1 m1
K2 m2
..
Kk mk

where
∑︀

𝑖 𝑚𝑖 = 𝑚 is the total number of scalar constraints. The list of supported cones is found
in Table 16.3.

• PSD constraints are constructed one-by-one. That is, 𝐺𝑖 ⪰ 0𝑚𝑖×𝑚𝑖 for 𝑖 ∈ ℐ𝑃𝑆𝐷, constructs a
matrix-valued affine expressions of size 𝑚𝑖 ×𝑚𝑖 restricted to be symmetric positive semidefinite.
In the CBF format, this list of constructions becomes

PSDCON
M
m1
m2
..
mM

where 𝑀 is the total number of PSD constraints.

With the objective sense, variables (with integer indications) and constraints, the definitions of the
many affine expressions follow in problem data.

Problem data

The problem data defines the coefficients and constants of the affine expressions of the problem instance.
These are considered zero until explicitly defined, implying that instances with no keywords from this
information group are, in fact, valid. Duplicating or conflicting information is a failure to comply with
the standard. Consequently, two coefficients written to the same position in a matrix (or to transposed
positions in a symmetric matrix) is an error.

The affine expressions of the objective, 𝑔𝑜𝑏𝑗 , of the scalar constraints, 𝑔𝑖, and of the PSD constraints,
𝐺𝑖, are defined separately. The following notation uses the standard trace inner product for matrices,
⟨𝑋,𝑌 ⟩ =

∑︀
𝑖,𝑗 𝑋𝑖𝑗𝑌𝑖𝑗 .

• The affine expression of the objective is defined as

𝑔𝑜𝑏𝑗 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹 𝑜𝑏𝑗
𝑗 , 𝑋𝑗⟩ +

∑︁
𝑗∈𝒥

𝑎𝑜𝑏𝑗𝑗 𝑥𝑗 + 𝑏𝑜𝑏𝑗 ,

in terms of the symmetric matrices, 𝐹 𝑜𝑏𝑗
𝑗 , and scalars, 𝑎𝑜𝑏𝑗𝑗 and 𝑏𝑜𝑏𝑗 .

291



• The affine expressions of the scalar constraints are defined, for 𝑖 ∈ ℐ, as

𝑔𝑖 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹𝑖𝑗 , 𝑋𝑗⟩ +
∑︁
𝑗∈𝒥

𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖,

in terms of the symmetric matrices, 𝐹𝑖𝑗 , and scalars, 𝑎𝑖𝑗 and 𝑏𝑖.

• The affine expressions of the PSD constraints are defined, for 𝑖 ∈ ℐ𝑃𝑆𝐷, as

𝐺𝑖 =
∑︁
𝑗∈𝒥

𝑥𝑗𝐻𝑖𝑗 + 𝐷𝑖,

in terms of the symmetric matrices, 𝐻𝑖𝑗 and 𝐷𝑖.

List of cones

The format uses an explicit syntax for symmetric positive semidefinite cones as shown above. For scalar
variables and constraints, constructed in vectors, the supported conic domains and their minimum sizes
are given as follows.

Table 16.3: Cones available in the CBF format
Name CBF keyword Cone family
Free domain F linear
Positive orthant L+ linear
Negative orthant L- linear
Fixpoint zero L= linear
Quadratic cone Q second-order
Rotated quadratic cone QR second-order

16.4.4 File Format Keywords

VER

Description: The version of the Conic Benchmark Format used to write the file.
HEADER: None
BODY: One line formatted as:

INT

This is the version number.
Must appear exactly once in a file, as the first keyword.

OBJSENSE

Description: Define the objective sense.
HEADER: None
BODY: One line formatted as:

STR

having MIN indicates minimize, and MAX indicates maximize. Capital letters are required.
Must appear exactly once in a file.
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PSDVAR

Description: Construct the PSD variables.
HEADER: One line formatted as:

INT

This is the number of PSD variables in the problem.
BODY: A list of lines formatted as:

INT

This indicates the number of rows (equal to the number of columns) in the matrix-valued PSD
variable. The number of lines should match the number stated in the header.

VAR

Description: Construct the scalar variables.
HEADER: One line formatted as:

INT INT

This is the number of scalar variables, followed by the number of conic domains they are restricted
to.

BODY: A list of lines formatted as:

STR INT

This indicates the cone name (see Table 16.3), and the number of scalar variables restricted to this
cone. These numbers should add up to the number of scalar variables stated first in the header. The
number of lines should match the second number stated in the header.

INT

Description: Declare integer requirements on a selected subset of scalar variables.
HEADER: one line formatted as:

INT

This is the number of integer scalar variables in the problem.
BODY: a list of lines formatted as:

INT

This indicates the scalar variable index 𝑗 ∈ 𝒥 . The number of lines should match the number stated
in the header.

Can only be used after the keyword VAR.

PSDCON

Description: Construct the PSD constraints.
HEADER: One line formatted as:

INT

This is the number of PSD constraints in the problem.
BODY: A list of lines formatted as:

INT

This indicates the number of rows (equal to the number of columns) in the matrix-valued affine
expression of the PSD constraint. The number of lines should match the number stated in the header.

Can only be used after these keywords: PSDVAR, VAR.
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CON

Description: Construct the scalar constraints.
HEADER: One line formatted as:

INT INT

This is the number of scalar constraints, followed by the number of conic domains they restrict to.
BODY: A list of lines formatted as:

STR INT

This indicates the cone name (see Table 16.3), and the number of affine expressions restricted to this
cone. These numbers should add up to the number of scalar constraints stated first in the header. The
number of lines should match the second number stated in the header.

Can only be used after these keywords: PSDVAR, VAR

OBJFCOORD

Description: Input sparse coordinates (quadruplets) to define the symmetric matrices 𝐹 𝑜𝑏𝑗
𝑗 , as used in

the objective.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT INT REAL

This indicates the PSD variable index 𝑗 ∈ 𝒥 𝑃𝑆𝐷, the row index, the column index and the coefficient
value. The number of lines should match the number stated in the header.

OBJACOORD

Description: Input sparse coordinates (pairs) to define the scalars, 𝑎𝑜𝑏𝑗𝑗 , as used in the objective.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT REAL

This indicates the scalar variable index 𝑗 ∈ 𝒥 and the coefficient value. The number of lines should
match the number stated in the header.

OBJBCOORD

Description: Input the scalar, 𝑏𝑜𝑏𝑗 , as used in the objective.
HEADER: None.
BODY: One line formatted as:

REAL

This indicates the coefficient value.
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FCOORD

Description: Input sparse coordinates (quintuplets) to define the symmetric matrices, 𝐹𝑖𝑗 , as used in the
scalar constraints.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT INT INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ, the PSD variable index 𝑗 ∈ 𝒥 𝑃𝑆𝐷, the row index,
the column index and the coefficient value. The number of lines should match the number stated in the
header.

ACOORD

Description: Input sparse coordinates (triplets) to define the scalars, 𝑎𝑖𝑗 , as used in the scalar constraints.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ, the scalar variable index 𝑗 ∈ 𝒥 and the coefficient
value. The number of lines should match the number stated in the header.

BCOORD

Description: Input sparse coordinates (pairs) to define the scalars, 𝑏𝑖, as used in the scalar constraints.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ and the coefficient value. The number of lines should
match the number stated in the header.

HCOORD

Description: Input sparse coordinates (quintuplets) to define the symmetric matrices, 𝐻𝑖𝑗 , as used in
the PSD constraints.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as

INT INT INT INT REAL

This indicates the PSD constraint index 𝑖 ∈ ℐ𝑃𝑆𝐷, the scalar variable index 𝑗 ∈ 𝒥 , the row index,
the column index and the coefficient value. The number of lines should match the number stated in the
header.
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DCOORD

Description: Input sparse coordinates (quadruplets) to define the symmetric matrices, 𝐷𝑖, as used in
the PSD constraints.

HEADER: One line formatted as

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT INT REAL

This indicates the PSD constraint index 𝑖 ∈ ℐ𝑃𝑆𝐷, the row index, the column index and the coefficient
value. The number of lines should match the number stated in the header.

CHANGE

Start of a new instance specification based on changes to the previous. Can be interpreted as the end of
file when the hotstart-sequence is unsupported or undesired.

BODY: None
Header: None

16.4.5 CBF Format Examples

Minimal Working Example

The conic optimization problem (16.11) , has three variables in a quadratic cone - first one is integer -
and an affine expression in domain 0 (equality constraint).

minimize 5.1𝑥0

subject to 6.2𝑥1 + 7.3𝑥2 − 8.4 ∈ {0}
𝑥 ∈ 𝒬3, 𝑥0 ∈ Z.

(16.11)

Its formulation in the Conic Benchmark Format begins with the version of the CBF format used, to
safeguard against later revisions.

VER
1

Next follows the problem structure, consisting of the objective sense, the number and domain of
variables, the indices of integer variables, and the number and domain of scalar-valued affine expressions
(i.e., the equality constraint).

OBJSENSE
MIN

VAR
3 1
Q 3

INT
1
0

CON
1 1
L= 1

Finally follows the problem data, consisting of the coefficients of the objective, the coefficients of the
constraints, and the constant terms of the constraints. All data is specified on a sparse coordinate form.
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OBJACOORD
1
0 5.1

ACOORD
2
0 1 6.2
0 2 7.3

BCOORD
1
0 -8.4

This concludes the example.

Mixing Linear, Second-order and Semidefinite Cones

The conic optimization problem (16.12), has a semidefinite cone, a quadratic cone over unordered
subindices, and two equality constraints.

minimize

⟨⎡⎣ 2 1 0
1 2 1
0 1 2

⎤⎦ , 𝑋1

⟩
+ 𝑥1

subject to

⟨⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ , 𝑋1

⟩
+ 𝑥1 = 1.0 ,

⟨⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ , 𝑋1

⟩
+ 𝑥0 + 𝑥2 = 0.5 ,

𝑥1 ≥
√︀
𝑥2
0 + 𝑥2

2 ,
𝑋1 ⪰ 0 .

(16.12)

The equality constraints are easily rewritten to the conic form, (𝑔0, 𝑔1) ∈ {0}2, by moving constants such
that the right-hand-side becomes zero. The quadratic cone does not fit under the VAR keyword in this
variable permutation. Instead, it takes a scalar constraint (𝑔2, 𝑔3, 𝑔4) = (𝑥1, 𝑥0, 𝑥2) ∈ 𝒬3, with scalar
variables constructed as (𝑥0, 𝑥1, 𝑥2) ∈ R3. Its formulation in the CBF format is reported in the following
list

# File written using this version of the Conic Benchmark Format:
# | Version 1.
VER
1

# The sense of the objective is:
# | Minimize.
OBJSENSE
MIN

# One PSD variable of this size:
# | Three times three.
PSDVAR
1
3

# Three scalar variables in this one conic domain:
# | Three are free.
VAR
3 1

(continues on next page)
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F 3

# Five scalar constraints with affine expressions in two conic domains:
# | Two are fixed to zero.
# | Three are in conic quadratic domain.
CON
5 2
L= 2
Q 3

# Five coordinates in F^{obj}_j coefficients:
# | F^{obj}[0][0,0] = 2.0
# | F^{obj}[0][1,0] = 1.0
# | and more...
OBJFCOORD
5
0 0 0 2.0
0 1 0 1.0
0 1 1 2.0
0 2 1 1.0
0 2 2 2.0

# One coordinate in a^{obj}_j coefficients:
# | a^{obj}[1] = 1.0
OBJACOORD
1
1 1.0

# Nine coordinates in F_ij coefficients:
# | F[0,0][0,0] = 1.0
# | F[0,0][1,1] = 1.0
# | and more...
FCOORD
9
0 0 0 0 1.0
0 0 1 1 1.0
0 0 2 2 1.0
1 0 0 0 1.0
1 0 1 0 1.0
1 0 2 0 1.0
1 0 1 1 1.0
1 0 2 1 1.0
1 0 2 2 1.0

# Six coordinates in a_ij coefficients:
# | a[0,1] = 1.0
# | a[1,0] = 1.0
# | and more...
ACOORD
6
0 1 1.0
1 0 1.0
1 2 1.0
2 1 1.0
3 0 1.0
4 2 1.0

(continues on next page)
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# Two coordinates in b_i coefficients:
# | b[0] = -1.0
# | b[1] = -0.5
BCOORD
2
0 -1.0
1 -0.5

Mixing Semidefinite Variables and Linear Matrix Inequalities

The standard forms in semidefinite optimization are usually based either on semidefinite variables or
linear matrix inequalities. In the CBF format, both forms are supported and can even be mixed as
shown in.

minimize
⟨[︂

1 0
0 1

]︂
, 𝑋1

⟩
+ 𝑥1 + 𝑥2 + 1

subject to
⟨[︂

0 1
1 0

]︂
, 𝑋1

⟩
− 𝑥1 − 𝑥2 ≥ 0.0 ,

𝑥1

[︂
0 1
1 3

]︂
+ 𝑥2

[︂
3 1
1 0

]︂
−
[︂

1 0
0 1

]︂
⪰ 0 ,

𝑋1 ⪰ 0 .

(16.13)

Its formulation in the CBF format is written in what follows

# File written using this version of the Conic Benchmark Format:
# | Version 1.
VER
1

# The sense of the objective is:
# | Minimize.
OBJSENSE
MIN

# One PSD variable of this size:
# | Two times two.
PSDVAR
1
2

# Two scalar variables in this one conic domain:
# | Two are free.
VAR
2 1
F 2

# One PSD constraint of this size:
# | Two times two.
PSDCON
1
2

# One scalar constraint with an affine expression in this one conic domain:
# | One is greater than or equal to zero.
CON
1 1

(continues on next page)
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L+ 1

# Two coordinates in F^{obj}_j coefficients:
# | F^{obj}[0][0,0] = 1.0
# | F^{obj}[0][1,1] = 1.0
OBJFCOORD
2
0 0 0 1.0
0 1 1 1.0

# Two coordinates in a^{obj}_j coefficients:
# | a^{obj}[0] = 1.0
# | a^{obj}[1] = 1.0
OBJACOORD
2
0 1.0
1 1.0

# One coordinate in b^{obj} coefficient:
# | b^{obj} = 1.0
OBJBCOORD
1.0

# One coordinate in F_ij coefficients:
# | F[0,0][1,0] = 1.0
FCOORD
1
0 0 1 0 1.0

# Two coordinates in a_ij coefficients:
# | a[0,0] = -1.0
# | a[0,1] = -1.0
ACOORD
2
0 0 -1.0
0 1 -1.0

# Four coordinates in H_ij coefficients:
# | H[0,0][1,0] = 1.0
# | H[0,0][1,1] = 3.0
# | and more...
HCOORD
4
0 0 1 0 1.0
0 0 1 1 3.0
0 1 0 0 3.0
0 1 1 0 1.0

# Two coordinates in D_i coefficients:
# | D[0][0,0] = -1.0
# | D[0][1,1] = -1.0
DCOORD
2
0 0 0 -1.0
0 1 1 -1.0
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Optimization Over a Sequence of Objectives

The linear optimization problem (16.14), is defined for a sequence of objectives such that hotstarting
from one to the next might be advantages.

maximize𝑘 𝑔𝑜𝑏𝑗𝑘

subject to 50𝑥0 + 31 ≤ 250 ,
3𝑥0 − 2𝑥1 ≥ −4 ,
𝑥 ∈ R2

+,

(16.14)

given,

1. 𝑔𝑜𝑏𝑗0 = 𝑥0 + 0.64𝑥1.

2. 𝑔𝑜𝑏𝑗1 = 1.11𝑥0 + 0.76𝑥1.

3. 𝑔𝑜𝑏𝑗2 = 1.11𝑥0 + 0.85𝑥1.

Its formulation in the CBF format is reported in Listing 16.5.

Listing 16.5: Problem (16.14) in CBF format.

# File written using this version of the Conic Benchmark Format:
# | Version 1.
VER
1

# The sense of the objective is:
# | Maximize.
OBJSENSE
MAX

# Two scalar variables in this one conic domain:
# | Two are nonnegative.
VAR
2 1
L+ 2

# Two scalar constraints with affine expressions in these two conic domains:
# | One is in the nonpositive domain.
# | One is in the nonnegative domain.
CON
2 2
L- 1
L+ 1

# Two coordinates in a^{obj}_j coefficients:
# | a^{obj}[0] = 1.0
# | a^{obj}[1] = 0.64
OBJACOORD
2
0 1.0
1 0.64

# Four coordinates in a_ij coefficients:
# | a[0,0] = 50.0
# | a[1,0] = 3.0
# | and more...
ACOORD
4

(continues on next page)
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0 0 50.0
1 0 3.0
0 1 31.0
1 1 -2.0

# Two coordinates in b_i coefficients:
# | b[0] = -250.0
# | b[1] = 4.0
BCOORD
2
0 -250.0
1 4.0

# New problem instance defined in terms of changes.
CHANGE

# Two coordinate changes in a^{obj}_j coefficients. Now it is:
# | a^{obj}[0] = 1.11
# | a^{obj}[1] = 0.76
OBJACOORD
2
0 1.11
1 0.76

# New problem instance defined in terms of changes.
CHANGE

# One coordinate change in a^{obj}_j coefficients. Now it is:
# | a^{obj}[0] = 1.11
# | a^{obj}[1] = 0.85
OBJACOORD
1
1 0.85

16.5 The PTF Format

The PTF format is a new human-readable, natural text format. Its features and structure are similar to
the OPF format, with the difference that the PTF format does support semidefinite terms.

16.5.1 The overall format
The format is indentation based, where each section is started by a head line and followed by a section
body with deeper indentation that the head line. For example:

Header line
Body line 1
Body line 1
Body line 1

Section can also be nested:

Header line A
Body line in A
Header line A.1

Body line in A.1
(continues on next page)
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Body line in A.1
Body line in A

The indentation of blank lines is ignored, so a subsection can contain a blank line with no indentation.
The character # defines a line comment and anything between the # character and the end of the line is
ignored.

In a PTF file, the first section must be a Task section. The order of the remaining section is arbitrary,
and sections may occur multiple times or not at all.

MOSEK will ignore any top-level section it does not recognize.

Names

In the description of the format we use following definitions for name strings:

NAME: PLAIN_NAME | QUOTED_NAME
PLAIN_NAME: [a-zA-Z_] [a-zA-Z0-9_-.!|]
QUOTED_NAME: "'" ( [^'\\\r\n] | "\\" ( [\\rn] | "x" [0-9a-fA-F] [0-9a-fA-F] ) )* "'"

Expressions

An expression is a sum of terms. A term is either a linear term (a coefficient and a variable name, where
the coefficient can be left out if it is 1.0), or a matrix inner product.

An expression:

EXPR: EMPTY | [+-]? TERM ( [+-] TERM )*
TERM: LINEAR_TERM | MATRIX_TERM

A linear term

LINEAR_TERM: FLOAT? NAME

A matrix term

MATRIX_TERM: "<" FLOAT? NAME ( [+-] FLOAT? NAME)* ";" NAME ">"

Here the right-hand name is the name of a (semidefinite) matrix variable, and the left-hand side is a
sum of symmetric matrixes. The actual matrixes are defined in a separate section.

Expressions can span multiple lines by giving subsequent lines a deeper indentation.
For example following two section are equivalent:

# Everything on one line:
x1 + x2 + x3 + x4

# Split into multiple lines:
x1

+ x2
+ x3
+ x4
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16.5.2 Task section
The first section of the file must be a Task. The text in this section is not used and may contain
comments, or meta-information from the writer or about the content.

Format:

Task NAME
Anything goes here...

NAME is a the task name.

16.5.3 Objective section
The Objective section defines the objective name, sense and function. The format:

"Objective" NAME?
( "Minimize" | "Maximize" ) EXPR

For example:

Objective 'obj'
Minimize x1 + 0.2 x2 + < M1 ; X1 >

16.5.4 Constraints section
The constraints section defines a series of constraints. A constraint defines a term 𝐴 · 𝑥 + 𝑏 ∈ 𝐾. For
linear constraints A is just one row, while for conic constraints it can be multiple rows. If a constraint
spans multiple rows these can either be written inline separated by semi-colons, or each expression in a
separete sub-section.

Simple linear constraints:

"Constraints"
NAME? "[" [-+] (FLOAT | "Inf") (";" [-+] (FLOAT | "Inf") )? "]" EXPR

If the brackets contain two values, they are used as upper and lower bounds. It they contain one
value the constraint is an equality.

For example:

Constraints
'c1' [0;10] x1 + x2 + x3
[0] x1 + x2 + x3

Constraint blocks put the expression either in a subsection or inline. The cone type (domain) is
written in the brackets, and MOSEK currently supports following types:

• SOC(N) Second order cone of dimension N

• RSOC(N) Rotated second order cone of dimension N

• PSD(N) Symmetric positive semidefinite cone of dimension N. This contains N*(N+1)/2 elements.

• PEXP Primal exponential cone of dimension 3

• DEXP Dual exponential cone of dimension 3

• PPOW(N,P) Primal power cone of dimension N with parameter P

• DPOW(N,P) Dual power cone of dimension N with parameter P

• ZERO(N) The zero-cone of dimension N.

"Constraints"
NAME? "[" DOMAIN "]" EXPR_LIST
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For example:

Constraints
'K1' [SOC(3)] x1 + x2 ; x2 + x3 ; x3 + x1
'K2' [RSOC(3)]

x1 + x2
x2 + x3
x3 + x1

16.5.5 Variables section
Any variable used in an expression must be defined in a variable section. The variable section defines
each variable domain.

"Variables"
NAME "[" [-+] (FLOAT | "Inf") (";" [-+] (FLOAT | "Inf") )? "]"
NAME "[" DOMAIN "]" NAMES

For example, a linear variable

Variables
x1 [0;Inf]

As with constraints, members of a conic domain can be listed either inline or in a subsection:

Variables
k1 [SOC(3)] x1 ; x2 ; x3
k2 [RSOC(3)]

x1
x2
x3

16.5.6 Integer section
This section contains a list of variables that are integral. For example:

Integer
x1 x2 x3

16.5.7 SymmetricMatrixes section
This section defines the symmetric matrixes used for matrix coefficients in matrix inner product terms.
The section lists named matrixes, each with a size and a number of non-zeros. Only non-zeros in the
lower triangular part should be defined.

"SymmetricMatrixes"
NAME "SYMMAT" "(" INT ")" ( "(" INT "," INT "," FLOAT ")" )*
...

For example:

SymmetricMatrixes
M1 SYMMAT(3) (0,0,1.0) (1,1,2.0) (2,1,0.5)
M2 SYMMAT(3)

(0,0,1.0)
(1,1,2.0)
(2,1,0.5)
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16.5.8 Solutions section
Each subsection defines a solution. A solution defines for each constraint and for each variable exactly
one primal value and either one (for conic domains) or two (for linear domains) dual values. The values
follow the same logic as in the MOSEK C API. A primal and a dual solution status defines the meaning
of the values primal and dual (solution, certificate, unknown, etc.)

The format is this:

"Solutions"
"Solution" WHICHSOL

"ProblemStatus" PROSTA PROSTA?
"SolutionStatus" SOLSTA SOLSTA?
"Objective" FLOAT FLOAT
"Variables"

# Linear variable status: level, slx, sux
NAME "[" STATUS "]" FLOAT (FLOAT FLOAT)?
# Conic variable status: level, snx
NAME

"[" STATUS "]" FLOAT FLOAT?
...

"Constraints"
# Linear variable status: level, slx, sux
NAME "[" STATUS "]" FLOAT (FLOAT FLOAT)?
# Conic variable status: level, snx
NAME

"[" STATUS "]" FLOAT FLOAT?
...

Following values for WHICHSOL are supported:

• interior Interior solution, the result of an interior-point solver.

• basic Basic solution, as produced by a simplex solver.

• integer Integer solution, the solution to a mixed-integer problem. This does not define a dual
solution.

Following values for PROSTA are supported:

• unknown The problem status is unknown

• feasible The problem has been proven feasible

• infeasible The problem has been proven infeasible

• illposed The problem has been proved to be ill posed

• infeasible_or_unbounded The problem is infeasible or unbounded

Following values for SOLSTA are supported:

• unknown The solution status is unknown

• feasible The solution is feasible

• optimal The solution is optimal

• infeas_cert The solution is a certificate of infeasibility

• illposed_cert The solution is a certificate of illposedness

Following values for STATUS are supported:

• unknown The value is unknown

• super_basic The value is super basic
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• at_lower The value is basic and at its lower bound

• at_upper The value is basic and at its upper bound

• fixed The value is basic fixed

• infinite The value is at infinity

16.6 The Task Format

The Task format is MOSEK‘s native binary format. It contains a complete image of a MOSEK task,
i.e.

• Problem data: Linear, conic, semidefinite and quadratic data

• Problem item names: Variable names, constraints names, cone names etc.

• Parameter settings

• Solutions

There are a few things to be aware of:

• Status of a solution read from a file will always be unknown.

• Parameter settings in a task file always override any parameters set on the command line or in a
parameter file.

The format is based on the TAR (USTar) file format. This means that the individual pieces of data
in a .task file can be examined by unpacking it as a TAR file. Please note that the inverse may not
work: Creating a file using TAR will most probably not create a valid MOSEK Task file since the order
of the entries is important.

16.7 The JSON Format

MOSEK provides the possibility to read/write problems in valid JSON format.
JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for humans

to read and write. It is easy for machines to parse and generate. It is based on a subset of the JavaScript
Programming Language, Standard ECMA-262 3rd Edition - December 1999. JSON is a text format
that is completely language independent but uses conventions that are familiar to programmers of the
C-family of languages, including C, C++, C#, Java, JavaScript, Perl, Python, and many others. These
properties make JSON an ideal data-interchange language.

The official JSON website http://www.json.org provides plenty of information along with the format
definition.

MOSEK defines two JSON-like formats:

• jtask

• jsol

Despite being text-based human-readable formats, jtask and jsol files will include no indentation and
no new-lines, in order to keep the files as compact as possible. We therefore strongly advise to use JSON
viewer tools to inspect jtask and jsol files.
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16.7.1 jtask format
It stores a problem instance. The jtask format contains the same information as a task format . Even
though a jtask file is human-readable, we do not recommend users to create it by hand, but to rely on
MOSEK.

16.7.2 jsol format
It stores a problem solution. The jsol format contains all solutions and information items.

16.7.3 A jtask example
In Listing 16.6 we present a file in the jtask format that corresponds to the sample problem from lo1.lp.
The listing has been formatted for readability.

Listing 16.6: A formatted jtask file for the lo1.lp example.

{
"$schema":"http://mosek.com/json/schema#",
"Task/INFO":{

"taskname":"lo1",
"numvar":4,
"numcon":3,
"numcone":0,
"numbarvar":0,
"numanz":9,
"numsymmat":0,
"mosekver":[

8,
0,
0,
9

]
},
"Task/data":{

"var":{
"name":[

"x1",
"x2",
"x3",
"x4"

],
"bk":[

"lo",
"ra",
"lo",
"lo"

],
"bl":[

0.0,
0.0,
0.0,
0.0

],
"bu":[

1e+30,
1e+1,
1e+30,

(continues on next page)
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1e+30
],
"type":[

"cont",
"cont",
"cont",
"cont"

]
},
"con":{

"name":[
"c1",
"c2",
"c3"

],
"bk":[

"fx",
"lo",
"up"

],
"bl":[

3e+1,
1.5e+1,

-1e+30
],
"bu":[

3e+1,
1e+30,
2.5e+1

]
},
"objective":{

"sense":"max",
"name":"obj",
"c":{

"subj":[
0,
1,
2,
3

],
"val":[

3e+0,
1e+0,
5e+0,
1e+0

]
},
"cfix":0.0

},
"A":{

"subi":[
0,
0,
0,
1,

(continues on next page)
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1,
1,
1,
2,
2

],
"subj":[

0,
1,
2,
0,
1,
2,
3,
1,
3

],
"val":[

3e+0,
1e+0,
2e+0,
2e+0,
1e+0,
3e+0,
1e+0,
2e+0,
3e+0

]
}

},
"Task/parameters":{

"iparam":{
"ANA_SOL_BASIS":"ON",
"ANA_SOL_PRINT_VIOLATED":"OFF",
"AUTO_SORT_A_BEFORE_OPT":"OFF",
"AUTO_UPDATE_SOL_INFO":"OFF",
"BASIS_SOLVE_USE_PLUS_ONE":"OFF",
"BI_CLEAN_OPTIMIZER":"OPTIMIZER_FREE",
"BI_IGNORE_MAX_ITER":"OFF",
"BI_IGNORE_NUM_ERROR":"OFF",
"BI_MAX_ITERATIONS":1000000,
"CACHE_LICENSE":"ON",
"CHECK_CONVEXITY":"CHECK_CONVEXITY_FULL",
"COMPRESS_STATFILE":"ON",
"CONCURRENT_NUM_OPTIMIZERS":2,
"CONCURRENT_PRIORITY_DUAL_SIMPLEX":2,
"CONCURRENT_PRIORITY_FREE_SIMPLEX":3,
"CONCURRENT_PRIORITY_INTPNT":4,
"CONCURRENT_PRIORITY_PRIMAL_SIMPLEX":1,
"FEASREPAIR_OPTIMIZE":"FEASREPAIR_OPTIMIZE_NONE",
"INFEAS_GENERIC_NAMES":"OFF",
"INFEAS_PREFER_PRIMAL":"ON",
"INFEAS_REPORT_AUTO":"OFF",
"INFEAS_REPORT_LEVEL":1,
"INTPNT_BASIS":"BI_ALWAYS",
"INTPNT_DIFF_STEP":"ON",

(continues on next page)
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"INTPNT_FACTOR_DEBUG_LVL":0,
"INTPNT_FACTOR_METHOD":0,
"INTPNT_HOTSTART":"INTPNT_HOTSTART_NONE",
"INTPNT_MAX_ITERATIONS":400,
"INTPNT_MAX_NUM_COR":-1,
"INTPNT_MAX_NUM_REFINEMENT_STEPS":-1,
"INTPNT_OFF_COL_TRH":40,
"INTPNT_ORDER_METHOD":"ORDER_METHOD_FREE",
"INTPNT_REGULARIZATION_USE":"ON",
"INTPNT_SCALING":"SCALING_FREE",
"INTPNT_SOLVE_FORM":"SOLVE_FREE",
"INTPNT_STARTING_POINT":"STARTING_POINT_FREE",
"LIC_TRH_EXPIRY_WRN":7,
"LICENSE_DEBUG":"OFF",
"LICENSE_PAUSE_TIME":0,
"LICENSE_SUPPRESS_EXPIRE_WRNS":"OFF",
"LICENSE_WAIT":"OFF",
"LOG":10,
"LOG_ANA_PRO":1,
"LOG_BI":4,
"LOG_BI_FREQ":2500,
"LOG_CHECK_CONVEXITY":0,
"LOG_CONCURRENT":1,
"LOG_CUT_SECOND_OPT":1,
"LOG_EXPAND":0,
"LOG_FACTOR":1,
"LOG_FEAS_REPAIR":1,
"LOG_FILE":1,
"LOG_HEAD":1,
"LOG_INFEAS_ANA":1,
"LOG_INTPNT":4,
"LOG_MIO":4,
"LOG_MIO_FREQ":1000,
"LOG_OPTIMIZER":1,
"LOG_ORDER":1,
"LOG_PRESOLVE":1,
"LOG_RESPONSE":0,
"LOG_SENSITIVITY":1,
"LOG_SENSITIVITY_OPT":0,
"LOG_SIM":4,
"LOG_SIM_FREQ":1000,
"LOG_SIM_MINOR":1,
"LOG_STORAGE":1,
"MAX_NUM_WARNINGS":10,
"MIO_BRANCH_DIR":"BRANCH_DIR_FREE",
"MIO_CONSTRUCT_SOL":"OFF",
"MIO_CUT_CLIQUE":"ON",
"MIO_CUT_CMIR":"ON",
"MIO_CUT_GMI":"ON",
"MIO_CUT_KNAPSACK_COVER":"OFF",
"MIO_HEURISTIC_LEVEL":-1,
"MIO_MAX_NUM_BRANCHES":-1,
"MIO_MAX_NUM_RELAXS":-1,
"MIO_MAX_NUM_SOLUTIONS":-1,
"MIO_MODE":"MIO_MODE_SATISFIED",
"MIO_MT_USER_CB":"ON",

(continues on next page)
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"MIO_NODE_OPTIMIZER":"OPTIMIZER_FREE",
"MIO_NODE_SELECTION":"MIO_NODE_SELECTION_FREE",
"MIO_PERSPECTIVE_REFORMULATE":"ON",
"MIO_PROBING_LEVEL":-1,
"MIO_RINS_MAX_NODES":-1,
"MIO_ROOT_OPTIMIZER":"OPTIMIZER_FREE",
"MIO_ROOT_REPEAT_PRESOLVE_LEVEL":-1,
"MT_SPINCOUNT":0,
"NUM_THREADS":0,
"OPF_MAX_TERMS_PER_LINE":5,
"OPF_WRITE_HEADER":"ON",
"OPF_WRITE_HINTS":"ON",
"OPF_WRITE_PARAMETERS":"OFF",
"OPF_WRITE_PROBLEM":"ON",
"OPF_WRITE_SOL_BAS":"ON",
"OPF_WRITE_SOL_ITG":"ON",
"OPF_WRITE_SOL_ITR":"ON",
"OPF_WRITE_SOLUTIONS":"OFF",
"OPTIMIZER":"OPTIMIZER_FREE",
"PARAM_READ_CASE_NAME":"ON",
"PARAM_READ_IGN_ERROR":"OFF",
"PRESOLVE_ELIMINATOR_MAX_FILL":-1,
"PRESOLVE_ELIMINATOR_MAX_NUM_TRIES":-1,
"PRESOLVE_LEVEL":-1,
"PRESOLVE_LINDEP_ABS_WORK_TRH":100,
"PRESOLVE_LINDEP_REL_WORK_TRH":100,
"PRESOLVE_LINDEP_USE":"ON",
"PRESOLVE_MAX_NUM_REDUCTIONS":-1,
"PRESOLVE_USE":"PRESOLVE_MODE_FREE",
"PRIMAL_REPAIR_OPTIMIZER":"OPTIMIZER_FREE",
"QO_SEPARABLE_REFORMULATION":"OFF",
"READ_DATA_COMPRESSED":"COMPRESS_FREE",
"READ_DATA_FORMAT":"DATA_FORMAT_EXTENSION",
"READ_DEBUG":"OFF",
"READ_KEEP_FREE_CON":"OFF",
"READ_LP_DROP_NEW_VARS_IN_BOU":"OFF",
"READ_LP_QUOTED_NAMES":"ON",
"READ_MPS_FORMAT":"MPS_FORMAT_FREE",
"READ_MPS_WIDTH":1024,
"READ_TASK_IGNORE_PARAM":"OFF",
"SENSITIVITY_ALL":"OFF",
"SENSITIVITY_OPTIMIZER":"OPTIMIZER_FREE_SIMPLEX",
"SENSITIVITY_TYPE":"SENSITIVITY_TYPE_BASIS",
"SIM_BASIS_FACTOR_USE":"ON",
"SIM_DEGEN":"SIM_DEGEN_FREE",
"SIM_DUAL_CRASH":90,
"SIM_DUAL_PHASEONE_METHOD":0,
"SIM_DUAL_RESTRICT_SELECTION":50,
"SIM_DUAL_SELECTION":"SIM_SELECTION_FREE",
"SIM_EXPLOIT_DUPVEC":"SIM_EXPLOIT_DUPVEC_OFF",
"SIM_HOTSTART":"SIM_HOTSTART_FREE",
"SIM_HOTSTART_LU":"ON",
"SIM_INTEGER":0,
"SIM_MAX_ITERATIONS":10000000,
"SIM_MAX_NUM_SETBACKS":250,
"SIM_NON_SINGULAR":"ON",

(continues on next page)
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"SIM_PRIMAL_CRASH":90,
"SIM_PRIMAL_PHASEONE_METHOD":0,
"SIM_PRIMAL_RESTRICT_SELECTION":50,
"SIM_PRIMAL_SELECTION":"SIM_SELECTION_FREE",
"SIM_REFACTOR_FREQ":0,
"SIM_REFORMULATION":"SIM_REFORMULATION_OFF",
"SIM_SAVE_LU":"OFF",
"SIM_SCALING":"SCALING_FREE",
"SIM_SCALING_METHOD":"SCALING_METHOD_POW2",
"SIM_SOLVE_FORM":"SOLVE_FREE",
"SIM_STABILITY_PRIORITY":50,
"SIM_SWITCH_OPTIMIZER":"OFF",
"SOL_FILTER_KEEP_BASIC":"OFF",
"SOL_FILTER_KEEP_RANGED":"OFF",
"SOL_READ_NAME_WIDTH":-1,
"SOL_READ_WIDTH":1024,
"SOLUTION_CALLBACK":"OFF",
"TIMING_LEVEL":1,
"WRITE_BAS_CONSTRAINTS":"ON",
"WRITE_BAS_HEAD":"ON",
"WRITE_BAS_VARIABLES":"ON",
"WRITE_DATA_COMPRESSED":0,
"WRITE_DATA_FORMAT":"DATA_FORMAT_EXTENSION",
"WRITE_DATA_PARAM":"OFF",
"WRITE_FREE_CON":"OFF",
"WRITE_GENERIC_NAMES":"OFF",
"WRITE_GENERIC_NAMES_IO":1,
"WRITE_IGNORE_INCOMPATIBLE_CONIC_ITEMS":"OFF",
"WRITE_IGNORE_INCOMPATIBLE_ITEMS":"OFF",
"WRITE_IGNORE_INCOMPATIBLE_NL_ITEMS":"OFF",
"WRITE_IGNORE_INCOMPATIBLE_PSD_ITEMS":"OFF",
"WRITE_INT_CONSTRAINTS":"ON",
"WRITE_INT_HEAD":"ON",
"WRITE_INT_VARIABLES":"ON",
"WRITE_LP_FULL_OBJ":"ON",
"WRITE_LP_LINE_WIDTH":80,
"WRITE_LP_QUOTED_NAMES":"ON",
"WRITE_LP_STRICT_FORMAT":"OFF",
"WRITE_LP_TERMS_PER_LINE":10,
"WRITE_MPS_FORMAT":"MPS_FORMAT_FREE",
"WRITE_MPS_INT":"ON",
"WRITE_PRECISION":15,
"WRITE_SOL_BARVARIABLES":"ON",
"WRITE_SOL_CONSTRAINTS":"ON",
"WRITE_SOL_HEAD":"ON",
"WRITE_SOL_IGNORE_INVALID_NAMES":"OFF",
"WRITE_SOL_VARIABLES":"ON",
"WRITE_TASK_INC_SOL":"ON",
"WRITE_XML_MODE":"WRITE_XML_MODE_ROW"

},
"dparam":{

"ANA_SOL_INFEAS_TOL":1e-6,
"BASIS_REL_TOL_S":1e-12,
"BASIS_TOL_S":1e-6,
"BASIS_TOL_X":1e-6,
"CHECK_CONVEXITY_REL_TOL":1e-10,

(continues on next page)

313



(continued from previous page)

"DATA_TOL_AIJ":1e-12,
"DATA_TOL_AIJ_HUGE":1e+20,
"DATA_TOL_AIJ_LARGE":1e+10,
"DATA_TOL_BOUND_INF":1e+16,
"DATA_TOL_BOUND_WRN":1e+8,
"DATA_TOL_C_HUGE":1e+16,
"DATA_TOL_CJ_LARGE":1e+8,
"DATA_TOL_QIJ":1e-16,
"DATA_TOL_X":1e-8,
"FEASREPAIR_TOL":1e-10,
"INTPNT_CO_TOL_DFEAS":1e-8,
"INTPNT_CO_TOL_INFEAS":1e-10,
"INTPNT_CO_TOL_MU_RED":1e-8,
"INTPNT_CO_TOL_NEAR_REL":1e+3,
"INTPNT_CO_TOL_PFEAS":1e-8,
"INTPNT_CO_TOL_REL_GAP":1e-7,
"INTPNT_NL_MERIT_BAL":1e-4,
"INTPNT_NL_TOL_DFEAS":1e-8,
"INTPNT_NL_TOL_MU_RED":1e-12,
"INTPNT_NL_TOL_NEAR_REL":1e+3,
"INTPNT_NL_TOL_PFEAS":1e-8,
"INTPNT_NL_TOL_REL_GAP":1e-6,
"INTPNT_NL_TOL_REL_STEP":9.95e-1,
"INTPNT_QO_TOL_DFEAS":1e-8,
"INTPNT_QO_TOL_INFEAS":1e-10,
"INTPNT_QO_TOL_MU_RED":1e-8,
"INTPNT_QO_TOL_NEAR_REL":1e+3,
"INTPNT_QO_TOL_PFEAS":1e-8,
"INTPNT_QO_TOL_REL_GAP":1e-8,
"INTPNT_TOL_DFEAS":1e-8,
"INTPNT_TOL_DSAFE":1e+0,
"INTPNT_TOL_INFEAS":1e-10,
"INTPNT_TOL_MU_RED":1e-16,
"INTPNT_TOL_PATH":1e-8,
"INTPNT_TOL_PFEAS":1e-8,
"INTPNT_TOL_PSAFE":1e+0,
"INTPNT_TOL_REL_GAP":1e-8,
"INTPNT_TOL_REL_STEP":9.999e-1,
"INTPNT_TOL_STEP_SIZE":1e-6,
"LOWER_OBJ_CUT":-1e+30,
"LOWER_OBJ_CUT_FINITE_TRH":-5e+29,
"MIO_DISABLE_TERM_TIME":-1e+0,
"MIO_MAX_TIME":-1e+0,
"MIO_MAX_TIME_APRX_OPT":6e+1,
"MIO_NEAR_TOL_ABS_GAP":0.0,
"MIO_NEAR_TOL_REL_GAP":1e-3,
"MIO_REL_GAP_CONST":1e-10,
"MIO_TOL_ABS_GAP":0.0,
"MIO_TOL_ABS_RELAX_INT":1e-5,
"MIO_TOL_FEAS":1e-6,
"MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT":0.0,
"MIO_TOL_REL_GAP":1e-4,
"MIO_TOL_X":1e-6,
"OPTIMIZER_MAX_TIME":-1e+0,
"PRESOLVE_TOL_ABS_LINDEP":1e-6,
"PRESOLVE_TOL_AIJ":1e-12,
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"PRESOLVE_TOL_REL_LINDEP":1e-10,
"PRESOLVE_TOL_S":1e-8,
"PRESOLVE_TOL_X":1e-8,
"QCQO_REFORMULATE_REL_DROP_TOL":1e-15,
"SEMIDEFINITE_TOL_APPROX":1e-10,
"SIM_LU_TOL_REL_PIV":1e-2,
"SIMPLEX_ABS_TOL_PIV":1e-7,
"UPPER_OBJ_CUT":1e+30,
"UPPER_OBJ_CUT_FINITE_TRH":5e+29

},
"sparam":{

"BAS_SOL_FILE_NAME":"",
"DATA_FILE_NAME":"examples/tools/data/lo1.mps",
"DEBUG_FILE_NAME":"",
"INT_SOL_FILE_NAME":"",
"ITR_SOL_FILE_NAME":"",
"MIO_DEBUG_STRING":"",
"PARAM_COMMENT_SIGN":"%%",
"PARAM_READ_FILE_NAME":"",
"PARAM_WRITE_FILE_NAME":"",
"READ_MPS_BOU_NAME":"",
"READ_MPS_OBJ_NAME":"",
"READ_MPS_RAN_NAME":"",
"READ_MPS_RHS_NAME":"",
"SENSITIVITY_FILE_NAME":"",
"SENSITIVITY_RES_FILE_NAME":"",
"SOL_FILTER_XC_LOW":"",
"SOL_FILTER_XC_UPR":"",
"SOL_FILTER_XX_LOW":"",
"SOL_FILTER_XX_UPR":"",
"STAT_FILE_NAME":"",
"STAT_KEY":"",
"STAT_NAME":"",
"WRITE_LP_GEN_VAR_NAME":"XMSKGEN"

}
}

}

16.8 The Solution File Format

MOSEK provides several solution files depending on the problem type and the optimizer used:

• basis solution file (extension .bas) if the problem is optimized using the simplex optimizer or basis
identification is performed,

• interior solution file (extension .sol) if a problem is optimized using the interior-point optimizer
and no basis identification is required,

• integer solution file (extension .int) if the problem contains integer constrained variables.

All solution files have the format:

NAME : <problem name>
PROBLEM STATUS : <status of the problem>
SOLUTION STATUS : <status of the solution>
OBJECTIVE NAME : <name of the objective function>
PRIMAL OBJECTIVE : <primal objective value corresponding to the solution>

(continues on next page)
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DUAL OBJECTIVE : <dual objective value corresponding to the solution>
CONSTRAINTS
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER
? <name> ?? <a value> <a value> <a value> <a value> <a value>
VARIABLES
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER ␣
→˓CONIC DUAL
? <name> ?? <a value> <a value> <a value> <a value> <a value>
→˓<a value>

In the example the fields ? and <> will be filled with problem and solution specific information. As
can be observed a solution report consists of three sections, i.e.

• HEADER In this section, first the name of the problem is listed and afterwards the problem and
solution status are shown. Next the primal and dual objective values are displayed.

• CONSTRAINTS For each constraint 𝑖 of the form

𝑙𝑐𝑖 ≤
𝑛∑︁

𝑗=1

𝑎𝑖𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑖 , (16.15)

the following information is listed:

– INDEX: A sequential index assigned to the constraint by MOSEK
– NAME: The name of the constraint assigned by the user.
– AT: The status of the constraint. In Table 16.4 the possible values of the status keys and

their interpretation are shown.

Table 16.4: Status keys.
Status key Interpretation
UN Unknown status
BS Is basic
SB Is superbasic
LL Is at the lower limit (bound)
UL Is at the upper limit (bound)
EQ Lower limit is identical to upper limit
** Is infeasible i.e. the lower limit is greater than the upper limit.

– ACTIVITY: the quantity
∑︀𝑛

𝑗=1 𝑎𝑖𝑗𝑥
*
𝑗 , where 𝑥* is the value of the primal solution.

– LOWER LIMIT: the quantity 𝑙𝑐𝑖 (see (16.15).)
– UPPER LIMIT: the quantity 𝑢𝑐

𝑖 (see (16.15).)
– DUAL LOWER: the dual multiplier corresponding to the lower limit on the constraint.
– DUAL UPPER: the dual multiplier corresponding to the upper limit on the constraint.

• VARIABLES The last section of the solution report lists information about the variables. This
information has a similar interpretation as for the constraints. However, the column with
the header CONIC DUAL is included for problems having one or more conic constraints. This
column shows the dual variables corresponding to the conic constraints.
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Example: lo1.sol

In Listing 16.7 we show the solution file for the lo1.opf problem.

Listing 16.7: An example of .sol file.

NAME :
PROBLEM STATUS : PRIMAL_AND_DUAL_FEASIBLE
SOLUTION STATUS : OPTIMAL
OBJECTIVE NAME : obj
PRIMAL OBJECTIVE : 8.33333333e+01
DUAL OBJECTIVE : 8.33333332e+01

CONSTRAINTS
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT ␣
→˓ DUAL LOWER DUAL UPPER
0 c1 EQ 3.00000000000000e+01 3.00000000e+01 3.
→˓00000000e+01 -0.00000000000000e+00 -2.49999999741653e+00
1 c2 SB 5.33333333049187e+01 1.50000000e+01 NONE ␣
→˓ 2.09159033069640e-10 -0.00000000000000e+00
2 c3 UL 2.49999999842049e+01 NONE 2.
→˓50000000e+01 -0.00000000000000e+00 -3.33333332895108e-01

VARIABLES
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT ␣
→˓ DUAL LOWER DUAL UPPER
0 x1 LL 1.67020427038537e-09 0.00000000e+00 NONE ␣
→˓ -4.49999999528054e+00 -0.00000000000000e+00
1 x2 LL 2.93510446211883e-09 0.00000000e+00 1.
→˓00000000e+01 -2.16666666494915e+00 6.20868657679896e-10
2 x3 SB 1.49999999899424e+01 0.00000000e+00 NONE ␣
→˓ -8.79123177245553e-10 -0.00000000000000e+00
3 x4 SB 8.33333332273115e+00 0.00000000e+00 NONE ␣
→˓ -1.69795978848200e-09 -0.00000000000000e+00
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Chapter 17

List of examples

List of examples shipped in the distribution of Optimization Toolbox for MATLAB:

Table 17.1: List of distributed examples
File Description
advs.m Advanced simplex hot-start examples
affco1.m A simple problem using affine conic constraints
affco2.m A simple problem using affine conic constraints
callback.m An example of data/progress callback
callback_handler.
m

Log handler definition for callback.m

ceo1.m A simple conic exponential problem
cqo1.m A simple conic quadratic problem
feasrepairex1.
m

A simple example of how to repair an infeasible problem

gp1.m A simple geometric program (GP) in conic form
lo1.m A simple linear problem using msklpopt
lo2.m A simple linear problem using mosekopt
lo3.m A simple linear problem using linprog
mico1.m A simple mixed-integer conic problem
milo1.m A simple mixed-integer linear problem
mioinitsol.m A simple mixed-integer linear problem with an initial guess
normex.m Demonstrates least squares and other norm minimization problems
opt_server_sync.
m

Uses MOSEK OptServer to solve an optimization problem synchronously

parameters.m Shows how to set optimizer parameters and read information items
portfolio_1_basic.
m

Portfolio optimization - basic Markowitz model

portfolio_2_frontier.
m

Portfolio optimization - efficient frontier

portfolio_3_impact.
m

Portfolio optimization - market impact costs

portfolio_4_transcost.
m

Portfolio optimization - transaction costs

portfolio_5_card.
m

Portfolio optimization - cardinality constraints

pow1.m A simple power cone problem
qcqo1.m A simple quadratically constrained quadratic problem
qo1.m A simple quadratic problem
qo2.m A simple quadratic problem
reoptimization.
m

Demonstrate how to modify and re-optimize a linear problem

continues on next page
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Table 17.1 – continued from previous page
File Description
response.m Demonstrates proper response handling
rlo1.m Robust linear optimization example, part 1
rlo2.m Robust linear optimization example, part 2
sdo1.m A simple semidefinite problem with one matrix variable and a quadratic cone
sdo2.m A simple semidefinite problem with two matrix variables
sensitivity.m Sensitivity analysis performed on a small linear problem
sensitivity2.m Sensitivity analysis performed on a small linear problem
simple.m A simple I/O example: read problem from a file, solve and write solutions
solutionquality.
m

Demonstrates how to examine the quality of a solution

Additional examples can be found on the MOSEK website and in other MOSEK publications.
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Chapter 18

Interface changes

The section shows interface-specific changes to the MOSEK Optimization Toolbox for MATLAB in
version 9.3 compared to version 8. See the release notes for general changes and new features of the
MOSEK Optimization Suite.

18.1 Backwards compatibility

• Parameters. Users who set parameters to tune the performance and numerical properties of the
solver (termination criteria, tolerances, solving primal or dual, presolve etc.) are recommended to
reevaluate such tuning. It may be that other, or default, parameter settings will be more beneficial
in the current version. The hints in Sec. 8 may be useful for some cases.

• Remove all Near solution statuses i.e. MSK_SOL_STA_NEAR_OPTIMAL,
MSK_SOL_STA_NEAR_PRIM_INFEAS_CER, etc. See Sec. 13.3.3.

• All functions related to the general nonlinear optimizer and Scopt have been removed. See Sec.
15.8.

18.2 New API

Introduced a possibility to specify affine conic constraints i.e. conic constraints of the form 𝐹𝑥+ 𝑔 ∈ 𝐾
directly. See Sec. 6.7 and Sec. 12.5 for details.

18.3 Parameters

Added

• MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS

• MSK_IPAR_INTPNT_PURIFY

• MSK_IPAR_LOG_INCLUDE_SUMMARY

• MSK_IPAR_LOG_LOCAL_INFO

• MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION

• MSK_IPAR_MIO_FEASPUMP_LEVEL

• MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS

• MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT

• MSK_IPAR_MIO_SEED

• MSK_IPAR_OPF_WRITE_LINE_LENGTH
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• MSK_IPAR_PRESOLVE_MAX_NUM_PASS

• MSK_IPAR_PTF_WRITE_TRANSFORM

• MSK_IPAR_SIM_SEED

• MSK_IPAR_WRITE_COMPRESSION

Removed

• MSK_DPAR_DATA_TOL_AIJ

• MSK_DPAR_INTPNT_NL_MERIT_BAL

• MSK_DPAR_INTPNT_NL_TOL_DFEAS

• MSK_DPAR_INTPNT_NL_TOL_MU_RED

• MSK_DPAR_INTPNT_NL_TOL_NEAR_REL

• MSK_DPAR_INTPNT_NL_TOL_PFEAS

• MSK_DPAR_INTPNT_NL_TOL_REL_GAP

• MSK_DPAR_INTPNT_NL_TOL_REL_STEP

• MSK_DPAR_MIO_DISABLE_TERM_TIME

• MSK_DPAR_MIO_NEAR_TOL_ABS_GAP

• MSK_DPAR_MIO_NEAR_TOL_REL_GAP

• MSK_IPAR_MIO_CONSTRUCT_SOL

• MSK_IPAR_MIO_MT_USER_CB

• MSK_IPAR_OPF_MAX_TERMS_PER_LINE

• MSK_IPAR_READ_DATA_COMPRESSED

• MSK_IPAR_READ_DATA_FORMAT

• MSK_IPAR_WRITE_DATA_COMPRESSED

• MSK_IPAR_WRITE_DATA_FORMAT

18.4 Constants

Added

• "MSK_COMPRESS_ZSTD"

• "MSK_CT_DEXP"

• "MSK_CT_DPOW"

• "MSK_CT_PEXP"

• "MSK_CT_PPOW"

• "MSK_CT_ZERO"

• "MSK_DATA_FORMAT_PTF"
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• "MSK_IINF_MIO_NUMBIN"

• "MSK_IINF_MIO_NUMBINCONEVAR"

• "MSK_IINF_MIO_NUMCONE"

• "MSK_IINF_MIO_NUMCONEVAR"

• "MSK_IINF_MIO_NUMCONT"

• "MSK_IINF_MIO_NUMCONTCONEVAR"

• "MSK_IINF_MIO_NUMDEXPCONES"

• "MSK_IINF_MIO_NUMDPOWCONES"

• "MSK_IINF_MIO_NUMINTCONEVAR"

• "MSK_IINF_MIO_NUMPEXPCONES"

• "MSK_IINF_MIO_NUMPPOWCONES"

• "MSK_IINF_MIO_NUMQCONES"

• "MSK_IINF_MIO_NUMRQCONES"

• "MSK_IINF_MIO_PRESOLVED_NUMBINCONEVAR"

• "MSK_IINF_MIO_PRESOLVED_NUMCONE"

• "MSK_IINF_MIO_PRESOLVED_NUMCONEVAR"

• "MSK_IINF_MIO_PRESOLVED_NUMCONTCONEVAR"

• "MSK_IINF_MIO_PRESOLVED_NUMDEXPCONES"

• "MSK_IINF_MIO_PRESOLVED_NUMDPOWCONES"

• "MSK_IINF_MIO_PRESOLVED_NUMINTCONEVAR"

• "MSK_IINF_MIO_PRESOLVED_NUMPEXPCONES"

• "MSK_IINF_MIO_PRESOLVED_NUMPPOWCONES"

• "MSK_IINF_MIO_PRESOLVED_NUMQCONES"

• "MSK_IINF_MIO_PRESOLVED_NUMRQCONES"

• "MSK_IINF_PURIFY_DUAL_SUCCESS"

• "MSK_IINF_PURIFY_PRIMAL_SUCCESS"

• "MSK_LIINF_MIO_ANZ"

Removed

• MSK_DATAFORMAT_XML

• MSK_DINFITEM_MIO_HEURISTIC_TIME

• MSK_DINFITEM_MIO_OPTIMIZER_TIME

• MSK_IINFITEM_MIO_CONSTRUCT_NUM_ROUNDINGS

• MSK_IINFITEM_MIO_INITIAL_SOLUTION
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• MSK_IINFITEM_MIO_NEAR_ABSGAP_SATISFIED

• MSK_IINFITEM_MIO_NEAR_RELGAP_SATISFIED

• MSK_LIINFITEM_MIO_SIM_MAXITER_SETBACKS

• MSK_MIONODESELTYPE_HYBRID

• MSK_MIONODESELTYPE_WORST

• MSK_PROBLEMTYPE_GECO

• MSK_PROSTA_NEAR_DUAL_FEAS

• MSK_PROSTA_NEAR_PRIM_AND_DUAL_FEAS

• MSK_PROSTA_NEAR_PRIM_FEAS

• MSK_SENSITIVITYTYPE_OPTIMAL_PARTITION

• MSK_SOLSTA_NEAR_DUAL_FEAS

• MSK_SOLSTA_NEAR_DUAL_INFEAS_CER

• MSK_SOLSTA_NEAR_INTEGER_OPTIMAL

• MSK_SOLSTA_NEAR_OPTIMAL

• MSK_SOLSTA_NEAR_PRIM_AND_DUAL_FEAS

• MSK_SOLSTA_NEAR_PRIM_FEAS

• MSK_SOLSTA_NEAR_PRIM_INFEAS_CER

18.5 Response Codes

Added

• "MSK_RES_ERR_APPENDING_TOO_BIG_CONE"

• "MSK_RES_ERR_CBF_DUPLICATE_POW_CONES"

• "MSK_RES_ERR_CBF_DUPLICATE_POW_STAR_CONES"

• "MSK_RES_ERR_CBF_INVALID_DIMENSION_OF_CONES"

• "MSK_RES_ERR_CBF_INVALID_EXP_DIMENSION"

• "MSK_RES_ERR_CBF_INVALID_NUMBER_OF_CONES"

• "MSK_RES_ERR_CBF_INVALID_POWER"

• "MSK_RES_ERR_CBF_INVALID_POWER_CONE_INDEX"

• "MSK_RES_ERR_CBF_INVALID_POWER_STAR_CONE_INDEX"

• "MSK_RES_ERR_CBF_POWER_CONE_IS_TOO_LONG"

• "MSK_RES_ERR_CBF_POWER_CONE_MISMATCH"

• "MSK_RES_ERR_CBF_POWER_STAR_CONE_MISMATCH"

• "MSK_RES_ERR_CBF_UNHANDLED_POWER_CONE_TYPE"

• "MSK_RES_ERR_CBF_UNHANDLED_POWER_STAR_CONE_TYPE"

• "MSK_RES_ERR_CONE_PARAMETER"
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• "MSK_RES_ERR_FORMAT_STRING"

• "MSK_RES_ERR_INVALID_CJ"

• "MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_CFIX"

• "MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_FREE_CONSTRAINTS"

• "MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_NONLINEAR"

• "MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_RANGED_CONSTRAINTS"

• "MSK_RES_ERR_NUM_ARGUMENTS"

• "MSK_RES_ERR_PTF_FORMAT"

• "MSK_RES_ERR_SERVER_PROBLEM_SIZE"

• "MSK_RES_ERR_SHAPE_IS_TOO_LARGE"

• "MSK_RES_ERR_SLICE_SIZE"

• "MSK_RES_ERR_TOO_SMALL_A_TRUNCATION_VALUE"

• "MSK_RES_WRN_EXP_CONES_WITH_VARIABLES_FIXED_AT_ZERO"

• "MSK_RES_WRN_POW_CONES_WITH_ROOT_FIXED_AT_ZERO"

Removed

• MSK_RES_ERR_CANNOT_CLONE_NL

• MSK_RES_ERR_CANNOT_HANDLE_NL

• MSK_RES_ERR_INVALID_ACCMODE

• MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_GENERAL_NL

• MSK_RES_ERR_NONLINEAR_FUNCTIONS_NOT_ALLOWED

• MSK_RES_ERR_NR_ARGUMENTS

• MSK_RES_ERR_OPEN_DL

• MSK_RES_ERR_USER_FUNC_RET

• MSK_RES_ERR_USER_FUNC_RET_DATA

• MSK_RES_ERR_USER_NLO_EVAL

• MSK_RES_ERR_USER_NLO_EVAL_HESSUBI

• MSK_RES_ERR_USER_NLO_EVAL_HESSUBJ

• MSK_RES_ERR_USER_NLO_FUNC

• MSK_RES_TRM_MIO_NEAR_ABS_GAP

• MSK_RES_TRM_MIO_NEAR_REL_GAP

• MSK_RES_WRN_CONSTRUCT_INVALID_SOL_ITG

• MSK_RES_WRN_CONSTRUCT_NO_SOL_ITG

• MSK_RES_WRN_CONSTRUCT_SOLUTION_INFEAS

• MSK_RES_WRN_NO_NONLINEAR_FUNCTION_WRITE

324



Bibliography

[AA95] E. D. Andersen and K. D. Andersen. Presolving in linear programming. Math. Programming,
71(2):221–245, 1995.

[AGMeszarosX96] E. D. Andersen, J. Gondzio, Cs. Mészáros, and X. Xu. Implementation of interior
point methods for large scale linear programming. In T. Terlaky, editor, Interior-point
methods of mathematical programming, pages 189–252. Kluwer Academic Publishers, 1996.

[ART03] E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual interior-point
method for conic quadratic optimization. Math. Programming, February 2003.

[AY96] E. D. Andersen and Y. Ye. Combining interior-point and pivoting algorithms. Management
Sci., 42(12):1719–1731, December 1996.

[And09] Erling D. Andersen. The homogeneous and self-dual model and algorithm for linear opti-
mization. Technical Report TR-1-2009, MOSEK ApS, 2009. URL: http://docs.mosek.com/
whitepapers/homolo.pdf.

[And13] Erling D. Andersen. On formulating quadratic functions in optimization models. Technical
Report TR-1-2013, MOSEK ApS, 2013. Last revised 23-feb-2016. URL: http://docs.mosek.
com/whitepapers/qmodel.pdf.

[BTN00] A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems contami-
nated with uncertain data. Math. Programming, 88(3):411–424, 2000.

[BKVH07] S. Boyd, S.J. Kim, L. Vandenberghe, and A. Hassibi. A Tutorial on Geomet-
ric Programming. Optimization and Engineering, 8(1):67–127, 2007. Available at
http://www.stanford.edu/ boyd/gp_tutorial.html.

[Chvatal83] V. Chvátal. Linear programming. W.H. Freeman and Company, 1983.

[GK00] Richard C. Grinold and Ronald N. Kahn. Active portfolio management. McGraw-Hill, New
York, 2 edition, 2000.

[Naz87] J. L. Nazareth. Computer Solution of Linear Programs. Oxford University Press, New York,
1987.

[RTV97] C. Roos, T. Terlaky, and J. -Ph. Vial. Theory and algorithms for linear optimization: an
interior point approach. John Wiley and Sons, New York, 1997.

[Wal00] S. W. Wallace. Decision making under uncertainty: is sensitivity of any use. Oper. Res.,
48(1):20–25, January 2000.

[Wol98] L. A. Wolsey. Integer programming. John Wiley and Sons, 1998.

[BenTalN01] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization: Analysis, Algo-
rithms, and Engineering Applications. MPS/SIAM Series on Optimization. SIAM, 2001.

325

http://docs.mosek.com/whitepapers/homolo.pdf
http://docs.mosek.com/whitepapers/homolo.pdf
http://docs.mosek.com/whitepapers/qmodel.pdf
http://docs.mosek.com/whitepapers/qmodel.pdf


Symbol Index

Enumerations
basindtype, 234
"MSK_BI_RESERVERED", 234
"MSK_BI_NO_ERROR", 234
"MSK_BI_NEVER", 234
"MSK_BI_IF_FEASIBLE", 234
"MSK_BI_ALWAYS", 234
boundkey, 234
"MSK_BK_UP", 234
"MSK_BK_RA", 235
"MSK_BK_LO", 234
"MSK_BK_FX", 234
"MSK_BK_FR", 235
branchdir, 252
"MSK_BRANCH_DIR_UP", 252
"MSK_BRANCH_DIR_ROOT_LP", 252
"MSK_BRANCH_DIR_PSEUDOCOST", 252
"MSK_BRANCH_DIR_NEAR", 252
"MSK_BRANCH_DIR_GUIDED", 252
"MSK_BRANCH_DIR_FREE", 252
"MSK_BRANCH_DIR_FAR", 252
"MSK_BRANCH_DIR_DOWN", 252
callbackcode, 236
"MSK_CALLBACK_WRITE_OPF", 240
"MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX_BI",

240
"MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX", 240
"MSK_CALLBACK_UPDATE_PRIMAL_BI", 240
"MSK_CALLBACK_UPDATE_PRESOLVE", 240
"MSK_CALLBACK_UPDATE_DUAL_SIMPLEX_BI", 240
"MSK_CALLBACK_UPDATE_DUAL_SIMPLEX", 240
"MSK_CALLBACK_UPDATE_DUAL_BI", 240
"MSK_CALLBACK_SOLVING_REMOTE", 240
"MSK_CALLBACK_READ_OPF_SECTION", 240
"MSK_CALLBACK_READ_OPF", 240
"MSK_CALLBACK_PRIMAL_SIMPLEX", 240
"MSK_CALLBACK_NEW_INT_MIO", 240
"MSK_CALLBACK_INTPNT", 240
"MSK_CALLBACK_IM_SIMPLEX_BI", 240
"MSK_CALLBACK_IM_SIMPLEX", 240
"MSK_CALLBACK_IM_ROOT_CUTGEN", 240
"MSK_CALLBACK_IM_READ", 240
"MSK_CALLBACK_IM_QO_REFORMULATE", 239
"MSK_CALLBACK_IM_PRIMAL_SIMPLEX", 239
"MSK_CALLBACK_IM_PRIMAL_SENSIVITY", 239
"MSK_CALLBACK_IM_PRIMAL_BI", 239
"MSK_CALLBACK_IM_PRESOLVE", 239
"MSK_CALLBACK_IM_ORDER", 239

"MSK_CALLBACK_IM_MIO_PRIMAL_SIMPLEX", 239
"MSK_CALLBACK_IM_MIO_INTPNT", 239
"MSK_CALLBACK_IM_MIO_DUAL_SIMPLEX", 239
"MSK_CALLBACK_IM_MIO", 239
"MSK_CALLBACK_IM_LU", 239
"MSK_CALLBACK_IM_LICENSE_WAIT", 239
"MSK_CALLBACK_IM_INTPNT", 239
"MSK_CALLBACK_IM_FULL_CONVEXITY_CHECK", 239
"MSK_CALLBACK_IM_DUAL_SIMPLEX", 239
"MSK_CALLBACK_IM_DUAL_SENSIVITY", 239
"MSK_CALLBACK_IM_DUAL_BI", 239
"MSK_CALLBACK_IM_CONIC", 239
"MSK_CALLBACK_IM_BI", 239
"MSK_CALLBACK_END_WRITE", 239
"MSK_CALLBACK_END_TO_CONIC", 238
"MSK_CALLBACK_END_SIMPLEX_BI", 238
"MSK_CALLBACK_END_SIMPLEX", 238
"MSK_CALLBACK_END_ROOT_CUTGEN", 238
"MSK_CALLBACK_END_READ", 238
"MSK_CALLBACK_END_QCQO_REFORMULATE", 238
"MSK_CALLBACK_END_PRIMAL_SIMPLEX_BI", 238
"MSK_CALLBACK_END_PRIMAL_SIMPLEX", 238
"MSK_CALLBACK_END_PRIMAL_SETUP_BI", 238
"MSK_CALLBACK_END_PRIMAL_SENSITIVITY", 238
"MSK_CALLBACK_END_PRIMAL_REPAIR", 238
"MSK_CALLBACK_END_PRIMAL_BI", 238
"MSK_CALLBACK_END_PRESOLVE", 238
"MSK_CALLBACK_END_OPTIMIZER", 238
"MSK_CALLBACK_END_MIO", 238
"MSK_CALLBACK_END_LICENSE_WAIT", 238
"MSK_CALLBACK_END_INTPNT", 238
"MSK_CALLBACK_END_INFEAS_ANA", 238
"MSK_CALLBACK_END_FULL_CONVEXITY_CHECK",

238
"MSK_CALLBACK_END_DUAL_SIMPLEX_BI", 238
"MSK_CALLBACK_END_DUAL_SIMPLEX", 238
"MSK_CALLBACK_END_DUAL_SETUP_BI", 238
"MSK_CALLBACK_END_DUAL_SENSITIVITY", 238
"MSK_CALLBACK_END_DUAL_BI", 237
"MSK_CALLBACK_END_CONIC", 237
"MSK_CALLBACK_END_BI", 237
"MSK_CALLBACK_DUAL_SIMPLEX", 237
"MSK_CALLBACK_CONIC", 237
"MSK_CALLBACK_BEGIN_WRITE", 237
"MSK_CALLBACK_BEGIN_TO_CONIC", 237
"MSK_CALLBACK_BEGIN_SIMPLEX_BI", 237
"MSK_CALLBACK_BEGIN_SIMPLEX", 237
"MSK_CALLBACK_BEGIN_ROOT_CUTGEN", 237
"MSK_CALLBACK_BEGIN_READ", 237

326



"MSK_CALLBACK_BEGIN_QCQO_REFORMULATE", 237
"MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX_BI", 237
"MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX", 237
"MSK_CALLBACK_BEGIN_PRIMAL_SETUP_BI", 237
"MSK_CALLBACK_BEGIN_PRIMAL_SENSITIVITY",

237
"MSK_CALLBACK_BEGIN_PRIMAL_REPAIR", 237
"MSK_CALLBACK_BEGIN_PRIMAL_BI", 237
"MSK_CALLBACK_BEGIN_PRESOLVE", 237
"MSK_CALLBACK_BEGIN_OPTIMIZER", 237
"MSK_CALLBACK_BEGIN_MIO", 237
"MSK_CALLBACK_BEGIN_LICENSE_WAIT", 237
"MSK_CALLBACK_BEGIN_INTPNT", 237
"MSK_CALLBACK_BEGIN_INFEAS_ANA", 237
"MSK_CALLBACK_BEGIN_FULL_CONVEXITY_CHECK",

236
"MSK_CALLBACK_BEGIN_DUAL_SIMPLEX_BI", 236
"MSK_CALLBACK_BEGIN_DUAL_SIMPLEX", 236
"MSK_CALLBACK_BEGIN_DUAL_SETUP_BI", 236
"MSK_CALLBACK_BEGIN_DUAL_SENSITIVITY", 236
"MSK_CALLBACK_BEGIN_DUAL_BI", 236
"MSK_CALLBACK_BEGIN_CONIC", 236
"MSK_CALLBACK_BEGIN_BI", 236
checkconvexitytype, 240
"MSK_CHECK_CONVEXITY_SIMPLE", 240
"MSK_CHECK_CONVEXITY_NONE", 240
"MSK_CHECK_CONVEXITY_FULL", 240
compresstype, 241
"MSK_COMPRESS_ZSTD", 241
"MSK_COMPRESS_NONE", 241
"MSK_COMPRESS_GZIP", 241
"MSK_COMPRESS_FREE", 241
conetype, 241
"MSK_CT_ZERO", 241
"MSK_CT_RQUAD", 241
"MSK_CT_QUAD", 241
"MSK_CT_PPOW", 241
"MSK_CT_PEXP", 241
"MSK_CT_DPOW", 241
"MSK_CT_DEXP", 241
dataformat, 242
"MSK_DATA_FORMAT_TASK", 242
"MSK_DATA_FORMAT_PTF", 242
"MSK_DATA_FORMAT_OP", 242
"MSK_DATA_FORMAT_MPS", 242
"MSK_DATA_FORMAT_LP", 242
"MSK_DATA_FORMAT_JSON_TASK", 242
"MSK_DATA_FORMAT_FREE_MPS", 242
"MSK_DATA_FORMAT_EXTENSION", 242
"MSK_DATA_FORMAT_CB", 242
dinfitem, 242
"MSK_DINF_TO_CONIC_TIME", 246
"MSK_DINF_SOL_ITR_PVIOLVAR", 246
"MSK_DINF_SOL_ITR_PVIOLCONES", 246
"MSK_DINF_SOL_ITR_PVIOLCON", 246
"MSK_DINF_SOL_ITR_PVIOLBARVAR", 246
"MSK_DINF_SOL_ITR_PRIMAL_OBJ", 246
"MSK_DINF_SOL_ITR_NRM_Y", 246

"MSK_DINF_SOL_ITR_NRM_XX", 246
"MSK_DINF_SOL_ITR_NRM_XC", 246
"MSK_DINF_SOL_ITR_NRM_SUX", 246
"MSK_DINF_SOL_ITR_NRM_SUC", 246
"MSK_DINF_SOL_ITR_NRM_SNX", 246
"MSK_DINF_SOL_ITR_NRM_SLX", 246
"MSK_DINF_SOL_ITR_NRM_SLC", 246
"MSK_DINF_SOL_ITR_NRM_BARX", 246
"MSK_DINF_SOL_ITR_NRM_BARS", 246
"MSK_DINF_SOL_ITR_DVIOLVAR", 246
"MSK_DINF_SOL_ITR_DVIOLCONES", 246
"MSK_DINF_SOL_ITR_DVIOLCON", 245
"MSK_DINF_SOL_ITR_DVIOLBARVAR", 245
"MSK_DINF_SOL_ITR_DUAL_OBJ", 245
"MSK_DINF_SOL_ITG_PVIOLVAR", 245
"MSK_DINF_SOL_ITG_PVIOLITG", 245
"MSK_DINF_SOL_ITG_PVIOLCONES", 245
"MSK_DINF_SOL_ITG_PVIOLCON", 245
"MSK_DINF_SOL_ITG_PVIOLBARVAR", 245
"MSK_DINF_SOL_ITG_PRIMAL_OBJ", 245
"MSK_DINF_SOL_ITG_NRM_XX", 245
"MSK_DINF_SOL_ITG_NRM_XC", 245
"MSK_DINF_SOL_ITG_NRM_BARX", 245
"MSK_DINF_SOL_BAS_PVIOLVAR", 245
"MSK_DINF_SOL_BAS_PVIOLCON", 245
"MSK_DINF_SOL_BAS_PRIMAL_OBJ", 245
"MSK_DINF_SOL_BAS_NRM_Y", 245
"MSK_DINF_SOL_BAS_NRM_XX", 245
"MSK_DINF_SOL_BAS_NRM_XC", 245
"MSK_DINF_SOL_BAS_NRM_SUX", 245
"MSK_DINF_SOL_BAS_NRM_SUC", 245
"MSK_DINF_SOL_BAS_NRM_SLX", 244
"MSK_DINF_SOL_BAS_NRM_SLC", 244
"MSK_DINF_SOL_BAS_NRM_BARX", 244
"MSK_DINF_SOL_BAS_DVIOLVAR", 244
"MSK_DINF_SOL_BAS_DVIOLCON", 244
"MSK_DINF_SOL_BAS_DUAL_OBJ", 244
"MSK_DINF_SIM_TIME", 244
"MSK_DINF_SIM_PRIMAL_TIME", 244
"MSK_DINF_SIM_OBJ", 244
"MSK_DINF_SIM_FEAS", 244
"MSK_DINF_SIM_DUAL_TIME", 244
"MSK_DINF_RD_TIME", 244
"MSK_DINF_QCQO_REFORMULATE_WORST_CHOLESKY_DIAG_SCALING",

244
"MSK_DINF_QCQO_REFORMULATE_WORST_CHOLESKY_COLUMN_SCALING",

244
"MSK_DINF_QCQO_REFORMULATE_TIME", 244
"MSK_DINF_QCQO_REFORMULATE_MAX_PERTURBATION",

244
"MSK_DINF_PRIMAL_REPAIR_PENALTY_OBJ", 244
"MSK_DINF_PRESOLVE_TIME", 244
"MSK_DINF_PRESOLVE_LINDEP_TIME", 244
"MSK_DINF_PRESOLVE_ELI_TIME", 244
"MSK_DINF_OPTIMIZER_TIME", 244
"MSK_DINF_MIO_USER_OBJ_CUT", 244
"MSK_DINF_MIO_TIME", 244
"MSK_DINF_MIO_ROOT_PRESOLVE_TIME", 243

327



"MSK_DINF_MIO_ROOT_OPTIMIZER_TIME", 243
"MSK_DINF_MIO_ROOT_CUTGEN_TIME", 243
"MSK_DINF_MIO_PROBING_TIME", 243
"MSK_DINF_MIO_OBJ_REL_GAP", 243
"MSK_DINF_MIO_OBJ_INT", 243
"MSK_DINF_MIO_OBJ_BOUND", 243
"MSK_DINF_MIO_OBJ_ABS_GAP", 243
"MSK_DINF_MIO_KNAPSACK_COVER_SEPARATION_TIME",

243
"MSK_DINF_MIO_IMPLIED_BOUND_TIME", 243
"MSK_DINF_MIO_GMI_SEPARATION_TIME", 243
"MSK_DINF_MIO_DUAL_BOUND_AFTER_PRESOLVE",

243
"MSK_DINF_MIO_CONSTRUCT_SOLUTION_OBJ", 243
"MSK_DINF_MIO_CMIR_SEPARATION_TIME", 243
"MSK_DINF_MIO_CLIQUE_SEPARATION_TIME", 243
"MSK_DINF_INTPNT_TIME", 243
"MSK_DINF_INTPNT_PRIMAL_OBJ", 243
"MSK_DINF_INTPNT_PRIMAL_FEAS", 242
"MSK_DINF_INTPNT_ORDER_TIME", 242
"MSK_DINF_INTPNT_OPT_STATUS", 242
"MSK_DINF_INTPNT_FACTOR_NUM_FLOPS", 242
"MSK_DINF_INTPNT_DUAL_OBJ", 242
"MSK_DINF_INTPNT_DUAL_FEAS", 242
"MSK_DINF_BI_TIME", 242
"MSK_DINF_BI_PRIMAL_TIME", 242
"MSK_DINF_BI_DUAL_TIME", 242
"MSK_DINF_BI_CLEAN_TIME", 242
"MSK_DINF_BI_CLEAN_PRIMAL_TIME", 242
"MSK_DINF_BI_CLEAN_DUAL_TIME", 242
dparam, 177
feature, 246
"MSK_FEATURE_PTS", 246
"MSK_FEATURE_PTON", 246
iinfitem, 247
"MSK_IINF_STO_NUM_A_REALLOC", 251
"MSK_IINF_SOL_ITR_SOLSTA", 251
"MSK_IINF_SOL_ITR_PROSTA", 251
"MSK_IINF_SOL_ITG_SOLSTA", 251
"MSK_IINF_SOL_ITG_PROSTA", 251
"MSK_IINF_SOL_BAS_SOLSTA", 251
"MSK_IINF_SOL_BAS_PROSTA", 251
"MSK_IINF_SIM_SOLVE_DUAL", 251
"MSK_IINF_SIM_PRIMAL_ITER", 251
"MSK_IINF_SIM_PRIMAL_INF_ITER", 251
"MSK_IINF_SIM_PRIMAL_HOTSTART_LU", 251
"MSK_IINF_SIM_PRIMAL_HOTSTART", 251
"MSK_IINF_SIM_PRIMAL_DEG_ITER", 251
"MSK_IINF_SIM_NUMVAR", 251
"MSK_IINF_SIM_NUMCON", 251
"MSK_IINF_SIM_DUAL_ITER", 251
"MSK_IINF_SIM_DUAL_INF_ITER", 251
"MSK_IINF_SIM_DUAL_HOTSTART_LU", 251
"MSK_IINF_SIM_DUAL_HOTSTART", 250
"MSK_IINF_SIM_DUAL_DEG_ITER", 250
"MSK_IINF_RD_PROTYPE", 250
"MSK_IINF_RD_NUMVAR", 250
"MSK_IINF_RD_NUMQ", 250

"MSK_IINF_RD_NUMINTVAR", 250
"MSK_IINF_RD_NUMCONE", 250
"MSK_IINF_RD_NUMCON", 250
"MSK_IINF_RD_NUMBARVAR", 250
"MSK_IINF_PURIFY_PRIMAL_SUCCESS", 250
"MSK_IINF_PURIFY_DUAL_SUCCESS", 250
"MSK_IINF_OPTIMIZE_RESPONSE", 250
"MSK_IINF_OPT_NUMVAR", 250
"MSK_IINF_OPT_NUMCON", 250
"MSK_IINF_MIO_USER_OBJ_CUT", 250
"MSK_IINF_MIO_TOTAL_NUM_CUTS", 250
"MSK_IINF_MIO_RELGAP_SATISFIED", 250
"MSK_IINF_MIO_PRESOLVED_NUMVAR", 250
"MSK_IINF_MIO_PRESOLVED_NUMRQCONES", 250
"MSK_IINF_MIO_PRESOLVED_NUMQCONES", 250
"MSK_IINF_MIO_PRESOLVED_NUMPPOWCONES", 250
"MSK_IINF_MIO_PRESOLVED_NUMPEXPCONES", 250
"MSK_IINF_MIO_PRESOLVED_NUMINTCONEVAR", 250
"MSK_IINF_MIO_PRESOLVED_NUMINT", 250
"MSK_IINF_MIO_PRESOLVED_NUMDPOWCONES", 249
"MSK_IINF_MIO_PRESOLVED_NUMDEXPCONES", 249
"MSK_IINF_MIO_PRESOLVED_NUMCONTCONEVAR",

249
"MSK_IINF_MIO_PRESOLVED_NUMCONT", 249
"MSK_IINF_MIO_PRESOLVED_NUMCONEVAR", 249
"MSK_IINF_MIO_PRESOLVED_NUMCONE", 249
"MSK_IINF_MIO_PRESOLVED_NUMCON", 249
"MSK_IINF_MIO_PRESOLVED_NUMBINCONEVAR", 249
"MSK_IINF_MIO_PRESOLVED_NUMBIN", 249
"MSK_IINF_MIO_OBJ_BOUND_DEFINED", 249
"MSK_IINF_MIO_NUMVAR", 249
"MSK_IINF_MIO_NUMRQCONES", 249
"MSK_IINF_MIO_NUMQCONES", 249
"MSK_IINF_MIO_NUMPPOWCONES", 249
"MSK_IINF_MIO_NUMPEXPCONES", 249
"MSK_IINF_MIO_NUMINTCONEVAR", 249
"MSK_IINF_MIO_NUMINT", 249
"MSK_IINF_MIO_NUMDPOWCONES", 249
"MSK_IINF_MIO_NUMDEXPCONES", 249
"MSK_IINF_MIO_NUMCONTCONEVAR", 249
"MSK_IINF_MIO_NUMCONT", 249
"MSK_IINF_MIO_NUMCONEVAR", 249
"MSK_IINF_MIO_NUMCONE", 249
"MSK_IINF_MIO_NUMCON", 249
"MSK_IINF_MIO_NUMBINCONEVAR", 249
"MSK_IINF_MIO_NUMBIN", 248
"MSK_IINF_MIO_NUM_REPEATED_PRESOLVE", 248
"MSK_IINF_MIO_NUM_RELAX", 248
"MSK_IINF_MIO_NUM_KNAPSACK_COVER_CUTS", 248
"MSK_IINF_MIO_NUM_INT_SOLUTIONS", 248
"MSK_IINF_MIO_NUM_IMPLIED_BOUND_CUTS", 248
"MSK_IINF_MIO_NUM_GOMORY_CUTS", 248
"MSK_IINF_MIO_NUM_CMIR_CUTS", 248
"MSK_IINF_MIO_NUM_CLIQUE_CUTS", 248
"MSK_IINF_MIO_NUM_BRANCH", 248
"MSK_IINF_MIO_NUM_ACTIVE_NODES", 248
"MSK_IINF_MIO_NODE_DEPTH", 248
"MSK_IINF_MIO_CONSTRUCT_SOLUTION", 248

328



"MSK_IINF_MIO_CLIQUE_TABLE_SIZE", 248
"MSK_IINF_MIO_ABSGAP_SATISFIED", 248
"MSK_IINF_INTPNT_SOLVE_DUAL", 248
"MSK_IINF_INTPNT_NUM_THREADS", 248
"MSK_IINF_INTPNT_ITER", 248
"MSK_IINF_INTPNT_FACTOR_DIM_DENSE", 248
"MSK_IINF_ANA_PRO_NUM_VAR_UP", 248
"MSK_IINF_ANA_PRO_NUM_VAR_RA", 248
"MSK_IINF_ANA_PRO_NUM_VAR_LO", 248
"MSK_IINF_ANA_PRO_NUM_VAR_INT", 248
"MSK_IINF_ANA_PRO_NUM_VAR_FR", 247
"MSK_IINF_ANA_PRO_NUM_VAR_EQ", 247
"MSK_IINF_ANA_PRO_NUM_VAR_CONT", 247
"MSK_IINF_ANA_PRO_NUM_VAR_BIN", 247
"MSK_IINF_ANA_PRO_NUM_VAR", 247
"MSK_IINF_ANA_PRO_NUM_CON_UP", 247
"MSK_IINF_ANA_PRO_NUM_CON_RA", 247
"MSK_IINF_ANA_PRO_NUM_CON_LO", 247
"MSK_IINF_ANA_PRO_NUM_CON_FR", 247
"MSK_IINF_ANA_PRO_NUM_CON_EQ", 247
"MSK_IINF_ANA_PRO_NUM_CON", 247
inftype, 251
"MSK_INF_LINT_TYPE", 251
"MSK_INF_INT_TYPE", 251
"MSK_INF_DOU_TYPE", 251
intpnthotstart, 236
"MSK_INTPNT_HOTSTART_PRIMAL_DUAL", 236
"MSK_INTPNT_HOTSTART_PRIMAL", 236
"MSK_INTPNT_HOTSTART_NONE", 236
"MSK_INTPNT_HOTSTART_DUAL", 236
iomode, 251
"MSK_IOMODE_WRITE", 251
"MSK_IOMODE_READWRITE", 252
"MSK_IOMODE_READ", 251
iparam, 186
liinfitem, 246
"MSK_LIINF_RD_NUMQNZ", 247
"MSK_LIINF_RD_NUMANZ", 247
"MSK_LIINF_MIO_SIMPLEX_ITER", 247
"MSK_LIINF_MIO_PRESOLVED_ANZ", 247
"MSK_LIINF_MIO_INTPNT_ITER", 247
"MSK_LIINF_MIO_ANZ", 247
"MSK_LIINF_INTPNT_FACTOR_NUM_NZ", 247
"MSK_LIINF_BI_PRIMAL_ITER", 247
"MSK_LIINF_BI_DUAL_ITER", 247
"MSK_LIINF_BI_CLEAN_PRIMAL_ITER", 247
"MSK_LIINF_BI_CLEAN_PRIMAL_DEG_ITER", 247
"MSK_LIINF_BI_CLEAN_DUAL_ITER", 247
"MSK_LIINF_BI_CLEAN_DUAL_DEG_ITER", 246
mark, 235
"MSK_MARK_UP", 235
"MSK_MARK_LO", 235
miocontsoltype, 252
"MSK_MIO_CONT_SOL_ROOT", 252
"MSK_MIO_CONT_SOL_NONE", 252
"MSK_MIO_CONT_SOL_ITG_REL", 252
"MSK_MIO_CONT_SOL_ITG", 252
miomode, 252

"MSK_MIO_MODE_SATISFIED", 252
"MSK_MIO_MODE_IGNORED", 252
mionodeseltype, 252
"MSK_MIO_NODE_SELECTION_PSEUDO", 253
"MSK_MIO_NODE_SELECTION_FREE", 252
"MSK_MIO_NODE_SELECTION_FIRST", 252
"MSK_MIO_NODE_SELECTION_BEST", 252
mpsformat, 253
"MSK_MPS_FORMAT_STRICT", 253
"MSK_MPS_FORMAT_RELAXED", 253
"MSK_MPS_FORMAT_FREE", 253
"MSK_MPS_FORMAT_CPLEX", 253
nametype, 241
"MSK_NAME_TYPE_MPS", 241
"MSK_NAME_TYPE_LP", 241
"MSK_NAME_TYPE_GEN", 241
objsense, 253
"MSK_OBJECTIVE_SENSE_MINIMIZE", 253
"MSK_OBJECTIVE_SENSE_MAXIMIZE", 253
onoffkey, 253
"MSK_ON", 253
"MSK_OFF", 253
optimizertype, 253
"MSK_OPTIMIZER_PRIMAL_SIMPLEX", 253
"MSK_OPTIMIZER_MIXED_INT", 253
"MSK_OPTIMIZER_INTPNT", 253
"MSK_OPTIMIZER_FREE_SIMPLEX", 253
"MSK_OPTIMIZER_FREE", 253
"MSK_OPTIMIZER_DUAL_SIMPLEX", 253
"MSK_OPTIMIZER_CONIC", 253
orderingtype, 253
"MSK_ORDER_METHOD_TRY_GRAPHPAR", 253
"MSK_ORDER_METHOD_NONE", 254
"MSK_ORDER_METHOD_FREE", 253
"MSK_ORDER_METHOD_FORCE_GRAPHPAR", 253
"MSK_ORDER_METHOD_EXPERIMENTAL", 253
"MSK_ORDER_METHOD_APPMINLOC", 253
parametertype, 254
"MSK_PAR_STR_TYPE", 254
"MSK_PAR_INVALID_TYPE", 254
"MSK_PAR_INT_TYPE", 254
"MSK_PAR_DOU_TYPE", 254
presolvemode, 254
"MSK_PRESOLVE_MODE_ON", 254
"MSK_PRESOLVE_MODE_OFF", 254
"MSK_PRESOLVE_MODE_FREE", 254
problemitem, 254
"MSK_PI_VAR", 254
"MSK_PI_CONE", 254
"MSK_PI_CON", 254
problemtype, 254
"MSK_PROBTYPE_QO", 254
"MSK_PROBTYPE_QCQO", 254
"MSK_PROBTYPE_MIXED", 254
"MSK_PROBTYPE_LO", 254
"MSK_PROBTYPE_CONIC", 254
prosta, 254
"MSK_PRO_STA_UNKNOWN", 254

329



"MSK_PRO_STA_PRIM_INFEAS_OR_UNBOUNDED", 255
"MSK_PRO_STA_PRIM_INFEAS", 255
"MSK_PRO_STA_PRIM_FEAS", 254
"MSK_PRO_STA_PRIM_AND_DUAL_INFEAS", 255
"MSK_PRO_STA_PRIM_AND_DUAL_FEAS", 254
"MSK_PRO_STA_ILL_POSED", 255
"MSK_PRO_STA_DUAL_INFEAS", 255
"MSK_PRO_STA_DUAL_FEAS", 254
purify, 236
"MSK_PURIFY_PRIMAL_DUAL", 236
"MSK_PURIFY_PRIMAL", 236
"MSK_PURIFY_NONE", 236
"MSK_PURIFY_DUAL", 236
"MSK_PURIFY_AUTO", 236
rescode, 216
rescodetype, 255
"MSK_RESPONSE_WRN", 255
"MSK_RESPONSE_UNK", 255
"MSK_RESPONSE_TRM", 255
"MSK_RESPONSE_OK", 255
"MSK_RESPONSE_ERR", 255
scalingmethod, 255
"MSK_SCALING_METHOD_POW2", 255
"MSK_SCALING_METHOD_FREE", 255
scalingtype, 255
"MSK_SCALING_NONE", 255
"MSK_SCALING_MODERATE", 255
"MSK_SCALING_FREE", 255
"MSK_SCALING_AGGRESSIVE", 255
scopr, 241
"MSK_OPR_SQRT", 241
"MSK_OPR_POW", 241
"MSK_OPR_LOG", 241
"MSK_OPR_EXP", 241
"MSK_OPR_ENT", 241
sensitivitytype, 255
"MSK_SENSITIVITY_TYPE_BASIS", 255
simdegen, 235
"MSK_SIM_DEGEN_NONE", 235
"MSK_SIM_DEGEN_MODERATE", 235
"MSK_SIM_DEGEN_MINIMUM", 235
"MSK_SIM_DEGEN_FREE", 235
"MSK_SIM_DEGEN_AGGRESSIVE", 235
simdupvec, 235
"MSK_SIM_EXPLOIT_DUPVEC_ON", 235
"MSK_SIM_EXPLOIT_DUPVEC_OFF", 235
"MSK_SIM_EXPLOIT_DUPVEC_FREE", 235
simhotstart, 236
"MSK_SIM_HOTSTART_STATUS_KEYS", 236
"MSK_SIM_HOTSTART_NONE", 236
"MSK_SIM_HOTSTART_FREE", 236
simreform, 235
"MSK_SIM_REFORMULATION_ON", 235
"MSK_SIM_REFORMULATION_OFF", 235
"MSK_SIM_REFORMULATION_FREE", 235
"MSK_SIM_REFORMULATION_AGGRESSIVE", 235
simseltype, 255
"MSK_SIM_SELECTION_SE", 256

"MSK_SIM_SELECTION_PARTIAL", 256
"MSK_SIM_SELECTION_FULL", 256
"MSK_SIM_SELECTION_FREE", 256
"MSK_SIM_SELECTION_DEVEX", 256
"MSK_SIM_SELECTION_ASE", 256
solitem, 256
"MSK_SOL_ITEM_Y", 256
"MSK_SOL_ITEM_XX", 256
"MSK_SOL_ITEM_XC", 256
"MSK_SOL_ITEM_SUX", 256
"MSK_SOL_ITEM_SUC", 256
"MSK_SOL_ITEM_SNX", 256
"MSK_SOL_ITEM_SLX", 256
"MSK_SOL_ITEM_SLC", 256
solsta, 256
"MSK_SOL_STA_UNKNOWN", 256
"MSK_SOL_STA_PRIM_INFEAS_CER", 256
"MSK_SOL_STA_PRIM_ILLPOSED_CER", 256
"MSK_SOL_STA_PRIM_FEAS", 256
"MSK_SOL_STA_PRIM_AND_DUAL_FEAS", 256
"MSK_SOL_STA_OPTIMAL", 256
"MSK_SOL_STA_INTEGER_OPTIMAL", 257
"MSK_SOL_STA_DUAL_INFEAS_CER", 256
"MSK_SOL_STA_DUAL_ILLPOSED_CER", 257
"MSK_SOL_STA_DUAL_FEAS", 256
soltype, 257
"MSK_SOL_ITR", 257
"MSK_SOL_ITG", 257
"MSK_SOL_BAS", 257
solveform, 257
"MSK_SOLVE_PRIMAL", 257
"MSK_SOLVE_FREE", 257
"MSK_SOLVE_DUAL", 257
sparam, 213
stakey, 257
"MSK_SK_UPR", 257
"MSK_SK_UNK", 257
"MSK_SK_SUPBAS", 257
"MSK_SK_LOW", 257
"MSK_SK_INF", 257
"MSK_SK_FIX", 257
"MSK_SK_BAS", 257
startpointtype, 257
"MSK_STARTING_POINT_SATISFY_BOUNDS", 257
"MSK_STARTING_POINT_GUESS", 257
"MSK_STARTING_POINT_FREE", 257
"MSK_STARTING_POINT_CONSTANT", 257
streamtype, 257
"MSK_STREAM_WRN", 258
"MSK_STREAM_MSG", 258
"MSK_STREAM_LOG", 258
"MSK_STREAM_ERR", 258
symmattype, 241
"MSK_SYMMAT_TYPE_SPARSE", 241
transpose, 235
"MSK_TRANSPOSE_YES", 235
"MSK_TRANSPOSE_NO", 235
uplo, 235

330



"MSK_UPLO_UP", 235
"MSK_UPLO_LO", 235
value, 258
"MSK_MAX_STR_LEN", 258
"MSK_LICENSE_BUFFER_LENGTH", 258
variabletype, 258
"MSK_VAR_TYPE_INT", 258
"MSK_VAR_TYPE_CONT", 258
xmlwriteroutputtype, 255
"MSK_WRITE_XML_MODE_ROW", 255
"MSK_WRITE_XML_MODE_COL", 255

Functions
intlinprog, 153
linprog, 154
lsqlin, 155
lsqnonneg, 155
mosekopt, 150
msklpopt, 151
mskoptimget, 152
mskoptimset, 152
mskqpopt, 152
quadprog, 156

Parameters
Double parameters, 177
MSK_DPAR_ANA_SOL_INFEAS_TOL, 177
MSK_DPAR_BASIS_REL_TOL_S, 177
MSK_DPAR_BASIS_TOL_S, 177
MSK_DPAR_BASIS_TOL_X, 177
MSK_DPAR_CHECK_CONVEXITY_REL_TOL, 177
MSK_DPAR_DATA_SYM_MAT_TOL, 178
MSK_DPAR_DATA_SYM_MAT_TOL_HUGE, 178
MSK_DPAR_DATA_SYM_MAT_TOL_LARGE, 178
MSK_DPAR_DATA_TOL_AIJ_HUGE, 178
MSK_DPAR_DATA_TOL_AIJ_LARGE, 178
MSK_DPAR_DATA_TOL_BOUND_INF, 178
MSK_DPAR_DATA_TOL_BOUND_WRN, 179
MSK_DPAR_DATA_TOL_C_HUGE, 179
MSK_DPAR_DATA_TOL_CJ_LARGE, 179
MSK_DPAR_DATA_TOL_QIJ, 179
MSK_DPAR_DATA_TOL_X, 179
MSK_DPAR_INTPNT_CO_TOL_DFEAS, 179
MSK_DPAR_INTPNT_CO_TOL_INFEAS, 179
MSK_DPAR_INTPNT_CO_TOL_MU_RED, 180
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL, 180
MSK_DPAR_INTPNT_CO_TOL_PFEAS, 180
MSK_DPAR_INTPNT_CO_TOL_REL_GAP, 180
MSK_DPAR_INTPNT_QO_TOL_DFEAS, 180
MSK_DPAR_INTPNT_QO_TOL_INFEAS, 180
MSK_DPAR_INTPNT_QO_TOL_MU_RED, 181
MSK_DPAR_INTPNT_QO_TOL_NEAR_REL, 181
MSK_DPAR_INTPNT_QO_TOL_PFEAS, 181
MSK_DPAR_INTPNT_QO_TOL_REL_GAP, 181
MSK_DPAR_INTPNT_TOL_DFEAS, 181
MSK_DPAR_INTPNT_TOL_DSAFE, 181
MSK_DPAR_INTPNT_TOL_INFEAS, 182
MSK_DPAR_INTPNT_TOL_MU_RED, 182

MSK_DPAR_INTPNT_TOL_PATH, 182
MSK_DPAR_INTPNT_TOL_PFEAS, 182
MSK_DPAR_INTPNT_TOL_PSAFE, 182
MSK_DPAR_INTPNT_TOL_REL_GAP, 182
MSK_DPAR_INTPNT_TOL_REL_STEP, 182
MSK_DPAR_INTPNT_TOL_STEP_SIZE, 183
MSK_DPAR_LOWER_OBJ_CUT, 183
MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 183
MSK_DPAR_MIO_MAX_TIME, 183
MSK_DPAR_MIO_REL_GAP_CONST, 183
MSK_DPAR_MIO_TOL_ABS_GAP, 183
MSK_DPAR_MIO_TOL_ABS_RELAX_INT, 183
MSK_DPAR_MIO_TOL_FEAS, 184
MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT,

184
MSK_DPAR_MIO_TOL_REL_GAP, 184
MSK_DPAR_OPTIMIZER_MAX_TIME, 184
MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP, 184
MSK_DPAR_PRESOLVE_TOL_AIJ, 184
MSK_DPAR_PRESOLVE_TOL_REL_LINDEP, 184
MSK_DPAR_PRESOLVE_TOL_S, 185
MSK_DPAR_PRESOLVE_TOL_X, 185
MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL, 185
MSK_DPAR_SEMIDEFINITE_TOL_APPROX, 185
MSK_DPAR_SIM_LU_TOL_REL_PIV, 185
MSK_DPAR_SIMPLEX_ABS_TOL_PIV, 185
MSK_DPAR_UPPER_OBJ_CUT, 185
MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH, 186
Integer parameters, 186
MSK_IPAR_ANA_SOL_BASIS, 186
MSK_IPAR_ANA_SOL_PRINT_VIOLATED, 186
MSK_IPAR_AUTO_SORT_A_BEFORE_OPT, 186
MSK_IPAR_AUTO_UPDATE_SOL_INFO, 186
MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE, 186
MSK_IPAR_BI_CLEAN_OPTIMIZER, 187
MSK_IPAR_BI_IGNORE_MAX_ITER, 187
MSK_IPAR_BI_IGNORE_NUM_ERROR, 187
MSK_IPAR_BI_MAX_ITERATIONS, 187
MSK_IPAR_CACHE_LICENSE, 187
MSK_IPAR_CHECK_CONVEXITY, 187
MSK_IPAR_COMPRESS_STATFILE, 188
MSK_IPAR_INFEAS_GENERIC_NAMES, 188
MSK_IPAR_INFEAS_PREFER_PRIMAL, 188
MSK_IPAR_INFEAS_REPORT_AUTO, 188
MSK_IPAR_INFEAS_REPORT_LEVEL, 188
MSK_IPAR_INTPNT_BASIS, 188
MSK_IPAR_INTPNT_DIFF_STEP, 188
MSK_IPAR_INTPNT_HOTSTART, 189
MSK_IPAR_INTPNT_MAX_ITERATIONS, 189
MSK_IPAR_INTPNT_MAX_NUM_COR, 189
MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS,

189
MSK_IPAR_INTPNT_MULTI_THREAD, 189
MSK_IPAR_INTPNT_OFF_COL_TRH, 189
MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS, 190
MSK_IPAR_INTPNT_ORDER_METHOD, 190
MSK_IPAR_INTPNT_PURIFY, 190
MSK_IPAR_INTPNT_REGULARIZATION_USE, 190

331



MSK_IPAR_INTPNT_SCALING, 190
MSK_IPAR_INTPNT_SOLVE_FORM, 190
MSK_IPAR_INTPNT_STARTING_POINT, 190
MSK_IPAR_LICENSE_DEBUG, 191
MSK_IPAR_LICENSE_PAUSE_TIME, 191
MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS, 191
MSK_IPAR_LICENSE_TRH_EXPIRY_WRN, 191
MSK_IPAR_LICENSE_WAIT, 191
MSK_IPAR_LOG, 191
MSK_IPAR_LOG_ANA_PRO, 191
MSK_IPAR_LOG_BI, 192
MSK_IPAR_LOG_BI_FREQ, 192
MSK_IPAR_LOG_CHECK_CONVEXITY, 192
MSK_IPAR_LOG_CUT_SECOND_OPT, 192
MSK_IPAR_LOG_EXPAND, 192
MSK_IPAR_LOG_FEAS_REPAIR, 192
MSK_IPAR_LOG_FILE, 193
MSK_IPAR_LOG_INCLUDE_SUMMARY, 193
MSK_IPAR_LOG_INFEAS_ANA, 193
MSK_IPAR_LOG_INTPNT, 193
MSK_IPAR_LOG_LOCAL_INFO, 193
MSK_IPAR_LOG_MIO, 193
MSK_IPAR_LOG_MIO_FREQ, 194
MSK_IPAR_LOG_ORDER, 194
MSK_IPAR_LOG_PRESOLVE, 194
MSK_IPAR_LOG_RESPONSE, 194
MSK_IPAR_LOG_SENSITIVITY, 194
MSK_IPAR_LOG_SENSITIVITY_OPT, 194
MSK_IPAR_LOG_SIM, 194
MSK_IPAR_LOG_SIM_FREQ, 195
MSK_IPAR_LOG_SIM_MINOR, 195
MSK_IPAR_LOG_STORAGE, 195
MSK_IPAR_MAX_NUM_WARNINGS, 195
MSK_IPAR_MIO_BRANCH_DIR, 195
MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION, 195
MSK_IPAR_MIO_CUT_CLIQUE, 196
MSK_IPAR_MIO_CUT_CMIR, 196
MSK_IPAR_MIO_CUT_GMI, 196
MSK_IPAR_MIO_CUT_IMPLIED_BOUND, 196
MSK_IPAR_MIO_CUT_KNAPSACK_COVER, 196
MSK_IPAR_MIO_CUT_SELECTION_LEVEL, 196
MSK_IPAR_MIO_FEASPUMP_LEVEL, 196
MSK_IPAR_MIO_HEURISTIC_LEVEL, 197
MSK_IPAR_MIO_MAX_NUM_BRANCHES, 197
MSK_IPAR_MIO_MAX_NUM_RELAXS, 197
MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS, 197
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS, 197
MSK_IPAR_MIO_MODE, 197
MSK_IPAR_MIO_NODE_OPTIMIZER, 198
MSK_IPAR_MIO_NODE_SELECTION, 198
MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE, 198
MSK_IPAR_MIO_PROBING_LEVEL, 198
MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT,

198
MSK_IPAR_MIO_RINS_MAX_NODES, 198
MSK_IPAR_MIO_ROOT_OPTIMIZER, 198
MSK_IPAR_MIO_ROOT_REPEAT_PRESOLVE_LEVEL,

199

MSK_IPAR_MIO_SEED, 199
MSK_IPAR_MIO_VB_DETECTION_LEVEL, 199
MSK_IPAR_MT_SPINCOUNT, 199
MSK_IPAR_NUM_THREADS, 199
MSK_IPAR_OPF_WRITE_HEADER, 200
MSK_IPAR_OPF_WRITE_HINTS, 200
MSK_IPAR_OPF_WRITE_LINE_LENGTH, 200
MSK_IPAR_OPF_WRITE_PARAMETERS, 200
MSK_IPAR_OPF_WRITE_PROBLEM, 200
MSK_IPAR_OPF_WRITE_SOL_BAS, 200
MSK_IPAR_OPF_WRITE_SOL_ITG, 200
MSK_IPAR_OPF_WRITE_SOL_ITR, 201
MSK_IPAR_OPF_WRITE_SOLUTIONS, 201
MSK_IPAR_OPTIMIZER, 201
MSK_IPAR_PARAM_READ_CASE_NAME, 201
MSK_IPAR_PARAM_READ_IGN_ERROR, 201
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL, 201
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES,

201
MSK_IPAR_PRESOLVE_LEVEL, 202
MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH, 202
MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH, 202
MSK_IPAR_PRESOLVE_LINDEP_USE, 202
MSK_IPAR_PRESOLVE_MAX_NUM_PASS, 202
MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS, 202
MSK_IPAR_PRESOLVE_USE, 203
MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER, 203
MSK_IPAR_PTF_WRITE_TRANSFORM, 203
MSK_IPAR_READ_DEBUG, 203
MSK_IPAR_READ_KEEP_FREE_CON, 203
MSK_IPAR_READ_LP_DROP_NEW_VARS_IN_BOU, 203
MSK_IPAR_READ_LP_QUOTED_NAMES, 203
MSK_IPAR_READ_MPS_FORMAT, 204
MSK_IPAR_READ_MPS_WIDTH, 204
MSK_IPAR_READ_TASK_IGNORE_PARAM, 204
MSK_IPAR_REMOVE_UNUSED_SOLUTIONS, 204
MSK_IPAR_SENSITIVITY_ALL, 204
MSK_IPAR_SENSITIVITY_OPTIMIZER, 204
MSK_IPAR_SENSITIVITY_TYPE, 204
MSK_IPAR_SIM_BASIS_FACTOR_USE, 205
MSK_IPAR_SIM_DEGEN, 205
MSK_IPAR_SIM_DUAL_CRASH, 205
MSK_IPAR_SIM_DUAL_PHASEONE_METHOD, 205
MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION, 205
MSK_IPAR_SIM_DUAL_SELECTION, 205
MSK_IPAR_SIM_EXPLOIT_DUPVEC, 205
MSK_IPAR_SIM_HOTSTART, 206
MSK_IPAR_SIM_HOTSTART_LU, 206
MSK_IPAR_SIM_MAX_ITERATIONS, 206
MSK_IPAR_SIM_MAX_NUM_SETBACKS, 206
MSK_IPAR_SIM_NON_SINGULAR, 206
MSK_IPAR_SIM_PRIMAL_CRASH, 206
MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD, 206
MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION, 207
MSK_IPAR_SIM_PRIMAL_SELECTION, 207
MSK_IPAR_SIM_REFACTOR_FREQ, 207
MSK_IPAR_SIM_REFORMULATION, 207
MSK_IPAR_SIM_SAVE_LU, 207

332



MSK_IPAR_SIM_SCALING, 207
MSK_IPAR_SIM_SCALING_METHOD, 208
MSK_IPAR_SIM_SEED, 208
MSK_IPAR_SIM_SOLVE_FORM, 208
MSK_IPAR_SIM_STABILITY_PRIORITY, 208
MSK_IPAR_SIM_SWITCH_OPTIMIZER, 208
MSK_IPAR_SOL_FILTER_KEEP_BASIC, 208
MSK_IPAR_SOL_FILTER_KEEP_RANGED, 208
MSK_IPAR_SOL_READ_NAME_WIDTH, 209
MSK_IPAR_SOL_READ_WIDTH, 209
MSK_IPAR_SOLUTION_CALLBACK, 209
MSK_IPAR_TIMING_LEVEL, 209
MSK_IPAR_WRITE_BAS_CONSTRAINTS, 209
MSK_IPAR_WRITE_BAS_HEAD, 209
MSK_IPAR_WRITE_BAS_VARIABLES, 209
MSK_IPAR_WRITE_COMPRESSION, 210
MSK_IPAR_WRITE_DATA_PARAM, 210
MSK_IPAR_WRITE_FREE_CON, 210
MSK_IPAR_WRITE_GENERIC_NAMES, 210
MSK_IPAR_WRITE_GENERIC_NAMES_IO, 210
MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS,

210
MSK_IPAR_WRITE_INT_CONSTRAINTS, 210
MSK_IPAR_WRITE_INT_HEAD, 211
MSK_IPAR_WRITE_INT_VARIABLES, 211
MSK_IPAR_WRITE_LP_FULL_OBJ, 211
MSK_IPAR_WRITE_LP_LINE_WIDTH, 211
MSK_IPAR_WRITE_LP_QUOTED_NAMES, 211
MSK_IPAR_WRITE_LP_STRICT_FORMAT, 211
MSK_IPAR_WRITE_LP_TERMS_PER_LINE, 211
MSK_IPAR_WRITE_MPS_FORMAT, 211
MSK_IPAR_WRITE_MPS_INT, 212
MSK_IPAR_WRITE_PRECISION, 212
MSK_IPAR_WRITE_SOL_BARVARIABLES, 212
MSK_IPAR_WRITE_SOL_CONSTRAINTS, 212
MSK_IPAR_WRITE_SOL_HEAD, 212
MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES,

212
MSK_IPAR_WRITE_SOL_VARIABLES, 212
MSK_IPAR_WRITE_TASK_INC_SOL, 213
MSK_IPAR_WRITE_XML_MODE, 213
String parameters, 213
MSK_SPAR_BAS_SOL_FILE_NAME, 213
MSK_SPAR_DATA_FILE_NAME, 213
MSK_SPAR_DEBUG_FILE_NAME, 213
MSK_SPAR_INT_SOL_FILE_NAME, 213
MSK_SPAR_ITR_SOL_FILE_NAME, 213
MSK_SPAR_MIO_DEBUG_STRING, 214
MSK_SPAR_PARAM_COMMENT_SIGN, 214
MSK_SPAR_PARAM_READ_FILE_NAME, 214
MSK_SPAR_PARAM_WRITE_FILE_NAME, 214
MSK_SPAR_READ_MPS_BOU_NAME, 214
MSK_SPAR_READ_MPS_OBJ_NAME, 214
MSK_SPAR_READ_MPS_RAN_NAME, 214
MSK_SPAR_READ_MPS_RHS_NAME, 214
MSK_SPAR_REMOTE_ACCESS_TOKEN, 214
MSK_SPAR_SENSITIVITY_FILE_NAME, 215
MSK_SPAR_SENSITIVITY_RES_FILE_NAME, 215

MSK_SPAR_SOL_FILTER_XC_LOW, 215
MSK_SPAR_SOL_FILTER_XC_UPR, 215
MSK_SPAR_SOL_FILTER_XX_LOW, 215
MSK_SPAR_SOL_FILTER_XX_UPR, 215
MSK_SPAR_STAT_FILE_NAME, 215
MSK_SPAR_STAT_KEY, 216
MSK_SPAR_STAT_NAME, 216
MSK_SPAR_WRITE_LP_GEN_VAR_NAME, 216

Response codes
Termination, 216
"MSK_RES_OK", 216
"MSK_RES_TRM_INTERNAL", 217
"MSK_RES_TRM_INTERNAL_STOP", 217
"MSK_RES_TRM_MAX_ITERATIONS", 216
"MSK_RES_TRM_MAX_NUM_SETBACKS", 217
"MSK_RES_TRM_MAX_TIME", 216
"MSK_RES_TRM_MIO_NUM_BRANCHES", 216
"MSK_RES_TRM_MIO_NUM_RELAXS", 216
"MSK_RES_TRM_NUM_MAX_NUM_INT_SOLUTIONS",

216
"MSK_RES_TRM_NUMERICAL_PROBLEM", 217
"MSK_RES_TRM_OBJECTIVE_RANGE", 216
"MSK_RES_TRM_STALL", 216
"MSK_RES_TRM_USER_CALLBACK", 217
Warnings, 217
"MSK_RES_WRN_ANA_ALMOST_INT_BOUNDS", 219
"MSK_RES_WRN_ANA_C_ZERO", 219
"MSK_RES_WRN_ANA_CLOSE_BOUNDS", 219
"MSK_RES_WRN_ANA_EMPTY_COLS", 219
"MSK_RES_WRN_ANA_LARGE_BOUNDS", 219
"MSK_RES_WRN_DROPPED_NZ_QOBJ", 218
"MSK_RES_WRN_DUPLICATE_BARVARIABLE_NAMES",

219
"MSK_RES_WRN_DUPLICATE_CONE_NAMES", 219
"MSK_RES_WRN_DUPLICATE_CONSTRAINT_NAMES",

219
"MSK_RES_WRN_DUPLICATE_VARIABLE_NAMES", 219
"MSK_RES_WRN_ELIMINATOR_SPACE", 218
"MSK_RES_WRN_EMPTY_NAME", 218
"MSK_RES_WRN_EXP_CONES_WITH_VARIABLES_FIXED_AT_ZERO",

219
"MSK_RES_WRN_IGNORE_INTEGER", 218
"MSK_RES_WRN_INCOMPLETE_LINEAR_DEPENDENCY_CHECK",

218
"MSK_RES_WRN_LARGE_AIJ", 217
"MSK_RES_WRN_LARGE_BOUND", 217
"MSK_RES_WRN_LARGE_CJ", 217
"MSK_RES_WRN_LARGE_CON_FX", 217
"MSK_RES_WRN_LARGE_LO_BOUND", 217
"MSK_RES_WRN_LARGE_UP_BOUND", 217
"MSK_RES_WRN_LICENSE_EXPIRE", 218
"MSK_RES_WRN_LICENSE_FEATURE_EXPIRE", 218
"MSK_RES_WRN_LICENSE_SERVER", 218
"MSK_RES_WRN_LP_DROP_VARIABLE", 217
"MSK_RES_WRN_LP_OLD_QUAD_FORMAT", 217
"MSK_RES_WRN_MIO_INFEASIBLE_FINAL", 218
"MSK_RES_WRN_MPS_SPLIT_BOU_VECTOR", 217

333



"MSK_RES_WRN_MPS_SPLIT_RAN_VECTOR", 217
"MSK_RES_WRN_MPS_SPLIT_RHS_VECTOR", 217
"MSK_RES_WRN_NAME_MAX_LEN", 217
"MSK_RES_WRN_NO_DUALIZER", 219
"MSK_RES_WRN_NO_GLOBAL_OPTIMIZER", 218
"MSK_RES_WRN_NZ_IN_UPR_TRI", 218
"MSK_RES_WRN_OPEN_PARAM_FILE", 217
"MSK_RES_WRN_PARAM_IGNORED_CMIO", 218
"MSK_RES_WRN_PARAM_NAME_DOU", 218
"MSK_RES_WRN_PARAM_NAME_INT", 218
"MSK_RES_WRN_PARAM_NAME_STR", 218
"MSK_RES_WRN_PARAM_STR_VALUE", 218
"MSK_RES_WRN_POW_CONES_WITH_ROOT_FIXED_AT_ZERO",

219
"MSK_RES_WRN_PRESOLVE_OUTOFSPACE", 219
"MSK_RES_WRN_QUAD_CONES_WITH_ROOT_FIXED_AT_ZERO",

219
"MSK_RES_WRN_RQUAD_CONES_WITH_ROOT_FIXED_AT_ZERO",

219
"MSK_RES_WRN_SOL_FILE_IGNORED_CON", 218
"MSK_RES_WRN_SOL_FILE_IGNORED_VAR", 218
"MSK_RES_WRN_SOL_FILTER", 218
"MSK_RES_WRN_SPAR_MAX_LEN", 217
"MSK_RES_WRN_SYM_MAT_LARGE", 219
"MSK_RES_WRN_TOO_FEW_BASIS_VARS", 218
"MSK_RES_WRN_TOO_MANY_BASIS_VARS", 218
"MSK_RES_WRN_UNDEF_SOL_FILE_NAME", 218
"MSK_RES_WRN_USING_GENERIC_NAMES", 218
"MSK_RES_WRN_WRITE_CHANGED_NAMES", 219
"MSK_RES_WRN_WRITE_DISCARDED_CFIX", 219
"MSK_RES_WRN_ZERO_AIJ", 217
"MSK_RES_WRN_ZEROS_IN_SPARSE_COL", 218
"MSK_RES_WRN_ZEROS_IN_SPARSE_ROW", 218
Errors, 220
"MSK_RES_ERR_AD_INVALID_CODELIST", 231
"MSK_RES_ERR_API_ARRAY_TOO_SMALL", 230
"MSK_RES_ERR_API_CB_CONNECT", 230
"MSK_RES_ERR_API_FATAL_ERROR", 230
"MSK_RES_ERR_API_INTERNAL", 230
"MSK_RES_ERR_APPENDING_TOO_BIG_CONE", 227
"MSK_RES_ERR_ARG_IS_TOO_LARGE", 225
"MSK_RES_ERR_ARG_IS_TOO_SMALL", 224
"MSK_RES_ERR_ARGUMENT_DIMENSION", 224
"MSK_RES_ERR_ARGUMENT_IS_TOO_LARGE", 232
"MSK_RES_ERR_ARGUMENT_LENNEQ", 224
"MSK_RES_ERR_ARGUMENT_PERM_ARRAY", 227
"MSK_RES_ERR_ARGUMENT_TYPE", 224
"MSK_RES_ERR_BAR_VAR_DIM", 231
"MSK_RES_ERR_BASIS", 226
"MSK_RES_ERR_BASIS_FACTOR", 229
"MSK_RES_ERR_BASIS_SINGULAR", 229
"MSK_RES_ERR_BLANK_NAME", 221
"MSK_RES_ERR_CBF_DUPLICATE_ACOORD", 233
"MSK_RES_ERR_CBF_DUPLICATE_BCOORD", 233
"MSK_RES_ERR_CBF_DUPLICATE_CON", 233
"MSK_RES_ERR_CBF_DUPLICATE_INT", 233
"MSK_RES_ERR_CBF_DUPLICATE_OBJ", 232
"MSK_RES_ERR_CBF_DUPLICATE_OBJACOORD", 233

"MSK_RES_ERR_CBF_DUPLICATE_POW_CONES", 233
"MSK_RES_ERR_CBF_DUPLICATE_POW_STAR_CONES",

233
"MSK_RES_ERR_CBF_DUPLICATE_PSDVAR", 233
"MSK_RES_ERR_CBF_DUPLICATE_VAR", 233
"MSK_RES_ERR_CBF_INVALID_CON_TYPE", 233
"MSK_RES_ERR_CBF_INVALID_DIMENSION_OF_CONES",

234
"MSK_RES_ERR_CBF_INVALID_DOMAIN_DIMENSION",

233
"MSK_RES_ERR_CBF_INVALID_EXP_DIMENSION",

233
"MSK_RES_ERR_CBF_INVALID_INT_INDEX", 233
"MSK_RES_ERR_CBF_INVALID_NUMBER_OF_CONES",

234
"MSK_RES_ERR_CBF_INVALID_POWER", 233
"MSK_RES_ERR_CBF_INVALID_POWER_CONE_INDEX",

233
"MSK_RES_ERR_CBF_INVALID_POWER_STAR_CONE_INDEX",

233
"MSK_RES_ERR_CBF_INVALID_PSDVAR_DIMENSION",

233
"MSK_RES_ERR_CBF_INVALID_VAR_TYPE", 233
"MSK_RES_ERR_CBF_NO_VARIABLES", 232
"MSK_RES_ERR_CBF_NO_VERSION_SPECIFIED", 232
"MSK_RES_ERR_CBF_OBJ_SENSE", 232
"MSK_RES_ERR_CBF_PARSE", 232
"MSK_RES_ERR_CBF_POWER_CONE_IS_TOO_LONG",

233
"MSK_RES_ERR_CBF_POWER_CONE_MISMATCH", 233
"MSK_RES_ERR_CBF_POWER_STAR_CONE_MISMATCH",

233
"MSK_RES_ERR_CBF_SYNTAX", 232
"MSK_RES_ERR_CBF_TOO_FEW_CONSTRAINTS", 233
"MSK_RES_ERR_CBF_TOO_FEW_INTS", 233
"MSK_RES_ERR_CBF_TOO_FEW_PSDVAR", 233
"MSK_RES_ERR_CBF_TOO_FEW_VARIABLES", 233
"MSK_RES_ERR_CBF_TOO_MANY_CONSTRAINTS", 232
"MSK_RES_ERR_CBF_TOO_MANY_INTS", 233
"MSK_RES_ERR_CBF_TOO_MANY_VARIABLES", 232
"MSK_RES_ERR_CBF_UNHANDLED_POWER_CONE_TYPE",

233
"MSK_RES_ERR_CBF_UNHANDLED_POWER_STAR_CONE_TYPE",

233
"MSK_RES_ERR_CBF_UNSUPPORTED", 233
"MSK_RES_ERR_CON_Q_NOT_NSD", 227
"MSK_RES_ERR_CON_Q_NOT_PSD", 226
"MSK_RES_ERR_CONE_INDEX", 227
"MSK_RES_ERR_CONE_OVERLAP", 227
"MSK_RES_ERR_CONE_OVERLAP_APPEND", 227
"MSK_RES_ERR_CONE_PARAMETER", 227
"MSK_RES_ERR_CONE_REP_VAR", 227
"MSK_RES_ERR_CONE_SIZE", 227
"MSK_RES_ERR_CONE_TYPE", 227
"MSK_RES_ERR_CONE_TYPE_STR", 227
"MSK_RES_ERR_DATA_FILE_EXT", 221
"MSK_RES_ERR_DUP_NAME", 221
"MSK_RES_ERR_DUPLICATE_AIJ", 227

334



"MSK_RES_ERR_DUPLICATE_BARVARIABLE_NAMES",
232

"MSK_RES_ERR_DUPLICATE_CONE_NAMES", 232
"MSK_RES_ERR_DUPLICATE_CONSTRAINT_NAMES",

231
"MSK_RES_ERR_DUPLICATE_VARIABLE_NAMES", 231
"MSK_RES_ERR_END_OF_FILE", 221
"MSK_RES_ERR_FACTOR", 229
"MSK_RES_ERR_FEASREPAIR_CANNOT_RELAX", 229
"MSK_RES_ERR_FEASREPAIR_INCONSISTENT_BOUND",

229
"MSK_RES_ERR_FEASREPAIR_SOLVING_RELAXED",

229
"MSK_RES_ERR_FILE_LICENSE", 220
"MSK_RES_ERR_FILE_OPEN", 221
"MSK_RES_ERR_FILE_READ", 221
"MSK_RES_ERR_FILE_WRITE", 221
"MSK_RES_ERR_FINAL_SOLUTION", 229
"MSK_RES_ERR_FIRST", 229
"MSK_RES_ERR_FIRSTI", 226
"MSK_RES_ERR_FIRSTJ", 226
"MSK_RES_ERR_FIXED_BOUND_VALUES", 228
"MSK_RES_ERR_FLEXLM", 220
"MSK_RES_ERR_FORMAT_STRING", 221
"MSK_RES_ERR_GLOBAL_INV_CONIC_PROBLEM", 229
"MSK_RES_ERR_HUGE_AIJ", 227
"MSK_RES_ERR_HUGE_C", 227
"MSK_RES_ERR_IDENTICAL_TASKS", 231
"MSK_RES_ERR_IN_ARGUMENT", 224
"MSK_RES_ERR_INDEX", 225
"MSK_RES_ERR_INDEX_ARR_IS_TOO_LARGE", 224
"MSK_RES_ERR_INDEX_ARR_IS_TOO_SMALL", 224
"MSK_RES_ERR_INDEX_IS_TOO_LARGE", 224
"MSK_RES_ERR_INDEX_IS_TOO_SMALL", 224
"MSK_RES_ERR_INF_DOU_INDEX", 224
"MSK_RES_ERR_INF_DOU_NAME", 225
"MSK_RES_ERR_INF_INT_INDEX", 224
"MSK_RES_ERR_INF_INT_NAME", 225
"MSK_RES_ERR_INF_LINT_INDEX", 224
"MSK_RES_ERR_INF_LINT_NAME", 225
"MSK_RES_ERR_INF_TYPE", 225
"MSK_RES_ERR_INFEAS_UNDEFINED", 231
"MSK_RES_ERR_INFINITE_BOUND", 227
"MSK_RES_ERR_INT64_TO_INT32_CAST", 231
"MSK_RES_ERR_INTERNAL", 230
"MSK_RES_ERR_INTERNAL_TEST_FAILED", 231
"MSK_RES_ERR_INV_APTRE", 225
"MSK_RES_ERR_INV_BK", 225
"MSK_RES_ERR_INV_BKC", 225
"MSK_RES_ERR_INV_BKX", 225
"MSK_RES_ERR_INV_CONE_TYPE", 226
"MSK_RES_ERR_INV_CONE_TYPE_STR", 226
"MSK_RES_ERR_INV_MARKI", 230
"MSK_RES_ERR_INV_MARKJ", 230
"MSK_RES_ERR_INV_NAME_ITEM", 226
"MSK_RES_ERR_INV_NUMI", 230
"MSK_RES_ERR_INV_NUMJ", 230
"MSK_RES_ERR_INV_OPTIMIZER", 229

"MSK_RES_ERR_INV_PROBLEM", 228
"MSK_RES_ERR_INV_QCON_SUBI", 228
"MSK_RES_ERR_INV_QCON_SUBJ", 228
"MSK_RES_ERR_INV_QCON_SUBK", 228
"MSK_RES_ERR_INV_QCON_VAL", 228
"MSK_RES_ERR_INV_QOBJ_SUBI", 228
"MSK_RES_ERR_INV_QOBJ_SUBJ", 228
"MSK_RES_ERR_INV_QOBJ_VAL", 228
"MSK_RES_ERR_INV_SK", 226
"MSK_RES_ERR_INV_SK_STR", 226
"MSK_RES_ERR_INV_SKC", 226
"MSK_RES_ERR_INV_SKN", 226
"MSK_RES_ERR_INV_SKX", 226
"MSK_RES_ERR_INV_VAR_TYPE", 225
"MSK_RES_ERR_INVALID_AIJ", 228
"MSK_RES_ERR_INVALID_AMPL_STUB", 231
"MSK_RES_ERR_INVALID_BARVAR_NAME", 222
"MSK_RES_ERR_INVALID_CJ", 228
"MSK_RES_ERR_INVALID_COMPRESSION", 229
"MSK_RES_ERR_INVALID_CON_NAME", 222
"MSK_RES_ERR_INVALID_CONE_NAME", 222
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_CFIX",

231
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_CONES",

231
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_FREE_CONSTRAINTS",

231
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_NONLINEAR",

231
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_RANGED_CONSTRAINTS",

231
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_SYM_MAT",

231
"MSK_RES_ERR_INVALID_FILE_NAME", 221
"MSK_RES_ERR_INVALID_FORMAT_TYPE", 226
"MSK_RES_ERR_INVALID_IDX", 225
"MSK_RES_ERR_INVALID_IOMODE", 229
"MSK_RES_ERR_INVALID_MAX_NUM", 225
"MSK_RES_ERR_INVALID_NAME_IN_SOL_FILE", 223
"MSK_RES_ERR_INVALID_OBJ_NAME", 221
"MSK_RES_ERR_INVALID_OBJECTIVE_SENSE", 228
"MSK_RES_ERR_INVALID_PROBLEM_TYPE", 232
"MSK_RES_ERR_INVALID_SOL_FILE_NAME", 221
"MSK_RES_ERR_INVALID_STREAM", 221
"MSK_RES_ERR_INVALID_SURPLUS", 226
"MSK_RES_ERR_INVALID_SYM_MAT_DIM", 231
"MSK_RES_ERR_INVALID_TASK", 221
"MSK_RES_ERR_INVALID_UTF8", 230
"MSK_RES_ERR_INVALID_VAR_NAME", 222
"MSK_RES_ERR_INVALID_WCHAR", 230
"MSK_RES_ERR_INVALID_WHICHSOL", 225
"MSK_RES_ERR_JSON_DATA", 224
"MSK_RES_ERR_JSON_FORMAT", 224
"MSK_RES_ERR_JSON_MISSING_DATA", 224
"MSK_RES_ERR_JSON_NUMBER_OVERFLOW", 224
"MSK_RES_ERR_JSON_STRING", 224
"MSK_RES_ERR_JSON_SYNTAX", 224
"MSK_RES_ERR_LAST", 229

335



"MSK_RES_ERR_LASTI", 226
"MSK_RES_ERR_LASTJ", 226
"MSK_RES_ERR_LAU_ARG_K", 232
"MSK_RES_ERR_LAU_ARG_M", 232
"MSK_RES_ERR_LAU_ARG_N", 232
"MSK_RES_ERR_LAU_ARG_TRANS", 232
"MSK_RES_ERR_LAU_ARG_TRANSA", 232
"MSK_RES_ERR_LAU_ARG_TRANSB", 232
"MSK_RES_ERR_LAU_ARG_UPLO", 232
"MSK_RES_ERR_LAU_INVALID_LOWER_TRIANGULAR_MATRIX",

232
"MSK_RES_ERR_LAU_INVALID_SPARSE_SYMMETRIC_MATRIX",

232
"MSK_RES_ERR_LAU_NOT_POSITIVE_DEFINITE",

232
"MSK_RES_ERR_LAU_SINGULAR_MATRIX", 232
"MSK_RES_ERR_LAU_UNKNOWN", 232
"MSK_RES_ERR_LICENSE", 220
"MSK_RES_ERR_LICENSE_CANNOT_ALLOCATE", 220
"MSK_RES_ERR_LICENSE_CANNOT_CONNECT", 220
"MSK_RES_ERR_LICENSE_EXPIRED", 220
"MSK_RES_ERR_LICENSE_FEATURE", 220
"MSK_RES_ERR_LICENSE_INVALID_HOSTID", 220
"MSK_RES_ERR_LICENSE_MAX", 220
"MSK_RES_ERR_LICENSE_MOSEKLM_DAEMON", 220
"MSK_RES_ERR_LICENSE_NO_SERVER_LINE", 220
"MSK_RES_ERR_LICENSE_NO_SERVER_SUPPORT",

220
"MSK_RES_ERR_LICENSE_SERVER", 220
"MSK_RES_ERR_LICENSE_SERVER_VERSION", 220
"MSK_RES_ERR_LICENSE_VERSION", 220
"MSK_RES_ERR_LINK_FILE_DLL", 221
"MSK_RES_ERR_LIVING_TASKS", 221
"MSK_RES_ERR_LOWER_BOUND_IS_A_NAN", 227
"MSK_RES_ERR_LP_DUP_SLACK_NAME", 223
"MSK_RES_ERR_LP_EMPTY", 223
"MSK_RES_ERR_LP_FILE_FORMAT", 223
"MSK_RES_ERR_LP_FORMAT", 223
"MSK_RES_ERR_LP_FREE_CONSTRAINT", 223
"MSK_RES_ERR_LP_INCOMPATIBLE", 223
"MSK_RES_ERR_LP_INVALID_CON_NAME", 223
"MSK_RES_ERR_LP_INVALID_VAR_NAME", 223
"MSK_RES_ERR_LP_WRITE_CONIC_PROBLEM", 223
"MSK_RES_ERR_LP_WRITE_GECO_PROBLEM", 223
"MSK_RES_ERR_LU_MAX_NUM_TRIES", 230
"MSK_RES_ERR_MAX_LEN_IS_TOO_SMALL", 226
"MSK_RES_ERR_MAXNUMBARVAR", 225
"MSK_RES_ERR_MAXNUMCON", 225
"MSK_RES_ERR_MAXNUMCONE", 227
"MSK_RES_ERR_MAXNUMQNZ", 225
"MSK_RES_ERR_MAXNUMVAR", 225
"MSK_RES_ERR_MIO_INTERNAL", 232
"MSK_RES_ERR_MIO_INVALID_NODE_OPTIMIZER",

234
"MSK_RES_ERR_MIO_INVALID_ROOT_OPTIMIZER",

234
"MSK_RES_ERR_MIO_NO_OPTIMIZER", 229
"MSK_RES_ERR_MISSING_LICENSE_FILE", 220

"MSK_RES_ERR_MIXED_CONIC_AND_NL", 229
"MSK_RES_ERR_MPS_CONE_OVERLAP", 222
"MSK_RES_ERR_MPS_CONE_REPEAT", 222
"MSK_RES_ERR_MPS_CONE_TYPE", 222
"MSK_RES_ERR_MPS_DUPLICATE_Q_ELEMENT", 223
"MSK_RES_ERR_MPS_FILE", 222
"MSK_RES_ERR_MPS_INV_BOUND_KEY", 222
"MSK_RES_ERR_MPS_INV_CON_KEY", 222
"MSK_RES_ERR_MPS_INV_FIELD", 222
"MSK_RES_ERR_MPS_INV_MARKER", 222
"MSK_RES_ERR_MPS_INV_SEC_NAME", 222
"MSK_RES_ERR_MPS_INV_SEC_ORDER", 222
"MSK_RES_ERR_MPS_INVALID_OBJ_NAME", 223
"MSK_RES_ERR_MPS_INVALID_OBJSENSE", 223
"MSK_RES_ERR_MPS_MUL_CON_NAME", 222
"MSK_RES_ERR_MPS_MUL_CSEC", 222
"MSK_RES_ERR_MPS_MUL_QOBJ", 222
"MSK_RES_ERR_MPS_MUL_QSEC", 222
"MSK_RES_ERR_MPS_NO_OBJECTIVE", 222
"MSK_RES_ERR_MPS_NON_SYMMETRIC_Q", 222
"MSK_RES_ERR_MPS_NULL_CON_NAME", 222
"MSK_RES_ERR_MPS_NULL_VAR_NAME", 222
"MSK_RES_ERR_MPS_SPLITTED_VAR", 222
"MSK_RES_ERR_MPS_TAB_IN_FIELD2", 223
"MSK_RES_ERR_MPS_TAB_IN_FIELD3", 223
"MSK_RES_ERR_MPS_TAB_IN_FIELD5", 223
"MSK_RES_ERR_MPS_UNDEF_CON_NAME", 222
"MSK_RES_ERR_MPS_UNDEF_VAR_NAME", 222
"MSK_RES_ERR_MUL_A_ELEMENT", 225
"MSK_RES_ERR_NAME_IS_NULL", 229
"MSK_RES_ERR_NAME_MAX_LEN", 229
"MSK_RES_ERR_NAN_IN_BLC", 228
"MSK_RES_ERR_NAN_IN_BLX", 228
"MSK_RES_ERR_NAN_IN_BUC", 228
"MSK_RES_ERR_NAN_IN_BUX", 228
"MSK_RES_ERR_NAN_IN_C", 228
"MSK_RES_ERR_NAN_IN_DOUBLE_DATA", 228
"MSK_RES_ERR_NEGATIVE_APPEND", 229
"MSK_RES_ERR_NEGATIVE_SURPLUS", 229
"MSK_RES_ERR_NEWER_DLL", 221
"MSK_RES_ERR_NO_BARS_FOR_SOLUTION", 231
"MSK_RES_ERR_NO_BARX_FOR_SOLUTION", 231
"MSK_RES_ERR_NO_BASIS_SOL", 229
"MSK_RES_ERR_NO_DUAL_FOR_ITG_SOL", 230
"MSK_RES_ERR_NO_DUAL_INFEAS_CER", 229
"MSK_RES_ERR_NO_INIT_ENV", 221
"MSK_RES_ERR_NO_OPTIMIZER_VAR_TYPE", 229
"MSK_RES_ERR_NO_PRIMAL_INFEAS_CER", 229
"MSK_RES_ERR_NO_SNX_FOR_BAS_SOL", 230
"MSK_RES_ERR_NO_SOLUTION_IN_CALLBACK", 230
"MSK_RES_ERR_NON_UNIQUE_ARRAY", 232
"MSK_RES_ERR_NONCONVEX", 226
"MSK_RES_ERR_NONLINEAR_EQUALITY", 226
"MSK_RES_ERR_NONLINEAR_RANGED", 226
"MSK_RES_ERR_NULL_ENV", 221
"MSK_RES_ERR_NULL_POINTER", 221
"MSK_RES_ERR_NULL_TASK", 221
"MSK_RES_ERR_NUM_ARGUMENTS", 224

336



"MSK_RES_ERR_NUMCONLIM", 225
"MSK_RES_ERR_NUMVARLIM", 225
"MSK_RES_ERR_OBJ_Q_NOT_NSD", 227
"MSK_RES_ERR_OBJ_Q_NOT_PSD", 227
"MSK_RES_ERR_OBJECTIVE_RANGE", 226
"MSK_RES_ERR_OLDER_DLL", 220
"MSK_RES_ERR_OPF_FORMAT", 223
"MSK_RES_ERR_OPF_NEW_VARIABLE", 223
"MSK_RES_ERR_OPF_PREMATURE_EOF", 223
"MSK_RES_ERR_OPTIMIZER_LICENSE", 220
"MSK_RES_ERR_OVERFLOW", 229
"MSK_RES_ERR_PARAM_INDEX", 224
"MSK_RES_ERR_PARAM_IS_TOO_LARGE", 224
"MSK_RES_ERR_PARAM_IS_TOO_SMALL", 224
"MSK_RES_ERR_PARAM_NAME", 224
"MSK_RES_ERR_PARAM_NAME_DOU", 224
"MSK_RES_ERR_PARAM_NAME_INT", 224
"MSK_RES_ERR_PARAM_NAME_STR", 224
"MSK_RES_ERR_PARAM_TYPE", 224
"MSK_RES_ERR_PARAM_VALUE_STR", 224
"MSK_RES_ERR_PLATFORM_NOT_LICENSED", 220
"MSK_RES_ERR_POSTSOLVE", 229
"MSK_RES_ERR_PRO_ITEM", 226
"MSK_RES_ERR_PROB_LICENSE", 220
"MSK_RES_ERR_PTF_FORMAT", 223
"MSK_RES_ERR_QCON_SUBI_TOO_LARGE", 228
"MSK_RES_ERR_QCON_SUBI_TOO_SMALL", 228
"MSK_RES_ERR_QCON_UPPER_TRIANGLE", 228
"MSK_RES_ERR_QOBJ_UPPER_TRIANGLE", 228
"MSK_RES_ERR_READ_FORMAT", 222
"MSK_RES_ERR_READ_LP_MISSING_END_TAG", 223
"MSK_RES_ERR_READ_LP_NONEXISTING_NAME", 223
"MSK_RES_ERR_REMOVE_CONE_VARIABLE", 227
"MSK_RES_ERR_REPAIR_INVALID_PROBLEM", 229
"MSK_RES_ERR_REPAIR_OPTIMIZATION_FAILED",

229
"MSK_RES_ERR_SEN_BOUND_INVALID_LO", 230
"MSK_RES_ERR_SEN_BOUND_INVALID_UP", 230
"MSK_RES_ERR_SEN_FORMAT", 230
"MSK_RES_ERR_SEN_INDEX_INVALID", 230
"MSK_RES_ERR_SEN_INDEX_RANGE", 230
"MSK_RES_ERR_SEN_INVALID_REGEXP", 230
"MSK_RES_ERR_SEN_NUMERICAL", 230
"MSK_RES_ERR_SEN_SOLUTION_STATUS", 230
"MSK_RES_ERR_SEN_UNDEF_NAME", 230
"MSK_RES_ERR_SEN_UNHANDLED_PROBLEM_TYPE",

230
"MSK_RES_ERR_SERVER_CONNECT", 234
"MSK_RES_ERR_SERVER_PROBLEM_SIZE", 234
"MSK_RES_ERR_SERVER_PROTOCOL", 234
"MSK_RES_ERR_SERVER_STATUS", 234
"MSK_RES_ERR_SERVER_TOKEN", 234
"MSK_RES_ERR_SHAPE_IS_TOO_LARGE", 224
"MSK_RES_ERR_SIZE_LICENSE", 220
"MSK_RES_ERR_SIZE_LICENSE_CON", 220
"MSK_RES_ERR_SIZE_LICENSE_INTVAR", 220
"MSK_RES_ERR_SIZE_LICENSE_NUMCORES", 231
"MSK_RES_ERR_SIZE_LICENSE_VAR", 220

"MSK_RES_ERR_SLICE_SIZE", 229
"MSK_RES_ERR_SOL_FILE_INVALID_NUMBER", 227
"MSK_RES_ERR_SOLITEM", 225
"MSK_RES_ERR_SOLVER_PROBTYPE", 226
"MSK_RES_ERR_SPACE", 221
"MSK_RES_ERR_SPACE_LEAKING", 222
"MSK_RES_ERR_SPACE_NO_INFO", 222
"MSK_RES_ERR_SYM_MAT_DUPLICATE", 231
"MSK_RES_ERR_SYM_MAT_HUGE", 228
"MSK_RES_ERR_SYM_MAT_INVALID", 228
"MSK_RES_ERR_SYM_MAT_INVALID_COL_INDEX",

231
"MSK_RES_ERR_SYM_MAT_INVALID_ROW_INDEX",

231
"MSK_RES_ERR_SYM_MAT_INVALID_VALUE", 231
"MSK_RES_ERR_SYM_MAT_NOT_LOWER_TRINGULAR",

231
"MSK_RES_ERR_TASK_INCOMPATIBLE", 230
"MSK_RES_ERR_TASK_INVALID", 230
"MSK_RES_ERR_TASK_WRITE", 230
"MSK_RES_ERR_THREAD_COND_INIT", 221
"MSK_RES_ERR_THREAD_CREATE", 221
"MSK_RES_ERR_THREAD_MUTEX_INIT", 221
"MSK_RES_ERR_THREAD_MUTEX_LOCK", 221
"MSK_RES_ERR_THREAD_MUTEX_UNLOCK", 221
"MSK_RES_ERR_TOCONIC_CONSTR_NOT_CONIC", 234
"MSK_RES_ERR_TOCONIC_CONSTR_Q_NOT_PSD", 234
"MSK_RES_ERR_TOCONIC_CONSTRAINT_FX", 234
"MSK_RES_ERR_TOCONIC_CONSTRAINT_RA", 234
"MSK_RES_ERR_TOCONIC_OBJECTIVE_NOT_PSD",

234
"MSK_RES_ERR_TOO_SMALL_A_TRUNCATION_VALUE",

228
"MSK_RES_ERR_TOO_SMALL_MAX_NUM_NZ", 225
"MSK_RES_ERR_TOO_SMALL_MAXNUMANZ", 225
"MSK_RES_ERR_UNB_STEP_SIZE", 231
"MSK_RES_ERR_UNDEF_SOLUTION", 226
"MSK_RES_ERR_UNDEFINED_OBJECTIVE_SENSE",

228
"MSK_RES_ERR_UNHANDLED_SOLUTION_STATUS",

232
"MSK_RES_ERR_UNKNOWN", 221
"MSK_RES_ERR_UPPER_BOUND_IS_A_NAN", 227
"MSK_RES_ERR_UPPER_TRIANGLE", 232
"MSK_RES_ERR_WHICHITEM_NOT_ALLOWED", 225
"MSK_RES_ERR_WHICHSOL", 225
"MSK_RES_ERR_WRITE_LP_FORMAT", 223
"MSK_RES_ERR_WRITE_LP_NON_UNIQUE_NAME", 223
"MSK_RES_ERR_WRITE_MPS_INVALID_NAME", 223
"MSK_RES_ERR_WRITE_OPF_INVALID_VAR_NAME",

223
"MSK_RES_ERR_WRITING_FILE", 223
"MSK_RES_ERR_XML_INVALID_PROBLEM_TYPE", 231
"MSK_RES_ERR_Y_IS_UNDEFINED", 228

Structures
bara, 164
barc, 163

337



callback, 165
cones, 163
duasen, 165
names, 162
optserver, 165
primal_repair, 164
prisen, 164
prisen_data, 164
prob, 160
res, 161
solution, 162
solver_solutions, 162

338



Index

A
affine conic constraint, 30
analysis

infeasibility, 137
asset, see portfolio optimization

B
basic

solution, 42
basis identification, 124
basis type

sensitivity analysis, 143
bound

constraint, 14, 108, 111
linear optimization, 14
variable, 14, 108, 111

C
callback, 50
cardinality constraints, 88
CBF format, 287
certificate, 43

dual, 110, 114
primal, 110, 113

Cholesky factorization, 84
complementarity, 109, 113
cone

dual, 112
dual exponential, 24
exponential, 24
power, 22
quadratic, 21
rotated quadratic, 21
semidefinite, 26

conic exponential optimization, 24
conic optimization, 21, 22, 24, 30, 111, 117

interior-point, 128
termination criteria, 129

conic quadratic optimization, 21
Conic quadratic reformulation, 67
constraint

bound, 14, 108, 111
linear optimization, 14
matrix, 14, 108, 111
quadratic, 116

correlation matrix, 79
covariance matrix, see correlation matrix
cut, 132

D
determinism, 76
dual

certificate, 110, 114
cone, 112
feasible, 109
infeasible, 109, 110, 114
problem, 109, 112, 115
solution, 44
variable, 109, 112

duality
conic, 112
linear, 109
semidefinite, 115

dualizer, 120

E
efficient frontier, 82
eliminator, 120
error

optimization, 42
errors, 45
example

qo1, 17
quadratic objective, 17

exceptions, 45
exponential cone, 24

F
factor model, 84
feasible

dual, 109
primal, 108, 122, 128
problem, 108

format, 48
CBF, 287
json, 307
LP, 261
MPS, 266
OPF, 278
PTF, 302
sol, 315
task, 307

G
geometric programming, 33
GP, 33

339



H
hot-start, 126

I
I/O, 48
infeasibility, 43, 110, 113

analysis, 137
linear optimization, 110
repair, 137
semidefinite, 116

infeasible
dual, 109, 110, 114
primal, 108, 110, 113, 122, 129
problem, 108, 110, 116

information item, 50, 51
installation, 7

path setup, 8
requirements, 7
troubleshooting, 7, 9

integer
optimizer, 132
solution, 42
variable, 35

integer feasible
solution, 133

integer optimization, 35, 132
cut, 132
initial solution, 36
objective bound, 132
optimality gap, 134
relaxation, 132
termination criteria, 133
tolerance, 133

integer optimizer
logging, 134

interior-point
conic optimization, 128
linear optimization, 121
logging, 125, 131
optimizer, 121, 128
solution, 42
termination criteria, 123, 129

J
json format, 307

L
license, 76
linear constraint matrix, 14
linear dependency, 120
linear optimization, 14, 108

bound, 14
constraint, 14
infeasibility, 110
interior-point, 121
objective, 14
simplex, 126
termination criteria, 123, 126

variable, 14
linearity interval, 141
logging, 47

integer optimizer, 134
interior-point, 125, 131
optimizer, 125, 127, 131
simplex, 127

LP format, 261

M
market impact cost, 85
Markowitz model, 79
matrix

constraint, 14, 108, 111
semidefinite, 26
symmetric, 26

MIP, see integer optimization
mixed-integer, see integer
mixed-integer optimization, see integer opti-

mization
modeling

design, 11
MPS format, 266

free, 277

N
near-optimal

solution, 133
numerical issues

presolve, 120
scaling, 120
simplex, 126

O
objective, 108, 111

linear optimization, 14
objective bound, 132
OPF format, 278
optimal

solution, 43
optimality gap, 134
optimization

conic, 111, 117
conic quadratic, 111, 117
error, 42
linear, 14, 108
semidefinite, 115

optimizer
determinism, 76
integer, 132
interior-point, 121, 128
interrupt, 50
logging, 125, 127, 131
selection, 120, 121
simplex, 126

P
parallelization, 76
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parameter, 49
simplex, 126

Pareto optimality, 79
portfolio optimization, 78

cardinality constraints, 88
efficient frontier, 82
factor model, 84
market impact cost, 85
Markowitz model, 79
Pareto optimality, 79
slippage cost, 84
transaction cost, 87

positive semidefinite, 17
power cone, 22
power cone optimization, 22
presolve, 119

eliminator, 120
linear dependency check, 120
numerical issues, 120

primal
certificate, 110, 113
feasible, 108, 122, 128
infeasible, 108, 110, 113, 122, 129
problem, 109, 112, 115
solution, 44, 108

primal-dual
problem, 122, 128
solution, 109

problem
dual, 109, 112, 115
feasible, 108
infeasible, 108, 110, 116
load, 49
primal, 109, 112, 115
primal-dual, 122, 128
save, 48
status, 42
unbounded, 110, 114

PTF format, 302

Q
qo1

example, 17
quadratic

constraint, 116
quadratic cone, 21
quadratic objective

example, 17
quadratic optimization, 116
quality

solution, 134

R
relaxation, 132
repair

infeasibility, 137
response code, 45
rotated quadratic cone, 21

S
scaling, 120
semidefinite

cone, 26
infeasibility, 116
matrix, 26
variable, 26

semidefinite optimization, 26, 115
sensitivity analysis, 141

basis type, 143
shadow price, 141
simplex

linear optimization, 126
logging, 127
numerical issues, 126
optimizer, 126
parameter, 126
termination criteria, 126

slippage cost, 84
sol format, 315
solution

basic, 42
dual, 44
file format, 315
integer, 42
integer feasible, 133
interior-point, 42
near-optimal, 133
optimal, 43
primal, 44, 108
primal-dual, 109
quality, 134
retrieve, 42
status, 43

status
problem, 42
solution, 43

symmetric
matrix, 26

T
task format, 307
termination, 42
termination criteria, 50

conic optimization, 129
integer optimization, 133
interior-point, 123, 129
linear optimization, 123, 126
simplex, 126
tolerance, 124, 130, 133

thread, 76
time limit, 50
tolerance

integer optimization, 133
termination criteria, 124, 130, 133

transaction cost, 87
troubleshooting

installation, 7
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U
unbounded

problem, 110, 114
user callback, see callback

V
variable, 108, 111

bound, 14, 108, 111
dual, 109, 112
integer, 35
linear optimization, 14
semidefinite, 26
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