
MOSEK Optimizer API for Python
Release 9.2.7

MOSEK ApS

12 May 2020

Contents

1 Introduction 1
1.1 Why the Optimizer API for Python? . 2

2 Contact Information 3

3 License Agreement 4

4 Installation 6
4.1 Anaconda . 6
4.2 PIP and Wheels . 6
4.3 PyPy . 7
4.4 Manual installation . 7
4.5 Testing the Installation . 7
4.6 Troubleshooting . 7

5 Design Overview 9
5.1 Modeling . 9
5.2 “Hello World!” in MOSEK . 9

6 Optimization Tutorials 11
6.1 Linear Optimization . 11
6.2 Quadratic Optimization . 17
6.3 Conic Quadratic Optimization . 23
6.4 Power Cone Optimization . 26
6.5 Conic Exponential Optimization . 29
6.6 Semidefinite Optimization . 32
6.7 Integer Optimization . 38
6.8 Geometric Programming . 42
6.9 Library of basic functions . 46
6.10 Problem Modification and Reoptimization . 52
6.11 Parallel optimization . 56

7 Solver Interaction Tutorials 59
7.1 Accessing the solution . 59
7.2 Errors and exceptions . 62
7.3 Input/Output . 64
7.4 Setting solver parameters . 66
7.5 Retrieving information items . 67
7.6 Progress and data callback . 68
7.7 MOSEK OptServer . 70

8 Debugging Tutorials 73
8.1 Understanding optimizer log . 74
8.2 Addressing numerical issues . 77
8.3 Debugging infeasibility . 80
8.4 Python Console . 84

i

9 Advanced Numerical Tutorials 86
9.1 Solving Linear Systems Involving the Basis Matrix . 86
9.2 Calling BLAS/LAPACK Routines from MOSEK . 92
9.3 Computing a Sparse Cholesky Factorization . 94
9.4 Converting a quadratically constrained problem to conic form 97

10 Technical guidelines 101
10.1 Memory management and garbage collection . 101
10.2 Names . 101
10.3 Multithreading . 102
10.4 Efficiency . 102
10.5 The license system . 103
10.6 Deployment . 104

11 Case Studies 105
11.1 Portfolio Optimization . 105
11.2 Logistic regression . 128
11.3 Concurrent optimizer . 131

12 Problem Formulation and Solutions 135
12.1 Linear Optimization . 135
12.2 Conic Optimization . 138
12.3 Semidefinite Optimization . 142
12.4 Quadratic and Quadratically Constrained Optimization 143

13 Optimizers 145
13.1 Presolve . 145
13.2 Linear Optimization . 147
13.3 Conic Optimization - Interior-point optimizer . 153
13.4 The Optimizer for Mixed-integer Problems . 157

14 Additional features 162
14.1 Problem Analyzer . 162
14.2 Automatic Repair of Infeasible Problems . 163
14.3 Sensitivity Analysis . 167

15 API Reference 174
15.1 API Conventions . 174
15.2 Functions grouped by topic . 178
15.3 Class Env . 186
15.4 Class Task . 194
15.5 Exceptions . 267
15.6 Parameters grouped by topic . 267
15.7 Parameters (alphabetical list sorted by type) . 278
15.8 Response codes . 323
15.9 Enumerations . 341
15.10 Function Types . 365
15.11 Nonlinear interfaces (obsolete) . 366

16 Supported File Formats 368
16.1 The LP File Format . 369
16.2 The MPS File Format . 374
16.3 The OPF Format . 385
16.4 The CBF Format . 394
16.5 The PTF Format . 408
16.6 The Task Format . 412
16.7 The JSON Format . 413
16.8 The Solution File Format . 420

ii

17 List of examples 423

18 Interface changes 425
18.1 Backwards compatibility . 425
18.2 Functions . 425
18.3 Parameters . 427
18.4 Constants . 428
18.5 Response Codes . 429

Bibliography 432

Symbol Index 433

Index 448

iii

Chapter 1

Introduction

The MOSEK Optimization Suite 9.2.7 is a powerful software package capable of solving large-scale
optimization problems of the following kind:

• linear,

• conic:

– conic quadratic (also known as second-order cone),
– involving the exponential cone,
– involving the power cone,
– semidefinite,

• convex quadratic and quadratically constrained,

• integer.

In order to obtain an overview of features in the MOSEK Optimization Suite consult the product
introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all rela-
tions are linear. The tremendous success of both applications and theory of linear optimization can be
ascribed to the following factors:

• The required data are simple, i.e. just matrices and vectors.

• Convexity is guaranteed since the problem is convex by construction.

• Linear functions are trivially differentiable.

• There exist very efficient algorithms and software for solving linear problems.

• Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the
advantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

𝐴𝑥− 𝑏 ≥ 0.

In conic optimization this is replaced with a wider class of constraints

𝐴𝑥− 𝑏 ∈ 𝒦

where 𝒦 is a convex cone. For example in 3 dimensions 𝒦 may correspond to an ice cream cone. The
conic optimizer in MOSEK supports a number of different types of cones 𝒦, which allows a surprisingly
large number of nonlinear relations to be modeled, as described in the MOSEK Modeling Cookbook,
while preserving the nice algorithmic and theoretical properties of linear optimization.

1

https://docs.mosek.com/9.2/intro/index.html
https://docs.mosek.com/9.2/intro/index.html
https://docs.mosek.com/modeling-cookbook/index.html

1.1 Why the Optimizer API for Python?

The Optimizer API for Python provides an object-oriented interface to the MOSEK optimizers. This
object oriented design is common to Java, Python and .NET and is based on a thin class-based interface
to the native C optimizer API. The overhead introduced by this mapping is minimal.

The Optimizer API for Python can be used with any application running on recent Python 2 and 3
interpreters. It consists of a single mosek package which can be used in Python scripts and interactive
shells making it suited for fast prototyping and inspection of models.

The Optimizer API for Python provides access to:

• Linear Optimization (LO)

• Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)

• Power Cone Optimization

• Conic Exponential Optimization (CEO)

• Convex Quadratic and Quadratically Constrained Optimization (QO, QCQO)

• Semidefinite Optimization (SDO)

• Mixed-Integer Optimization (MIO)

as well as to additional functions for

• problem analysis,

• sensitivity analysis,

• infeasibility diagnostics,

• BLAS/LAPACK linear algebra routines.

2

Chapter 2

Contact Information

Phone +45 7174 9373
Website mosek.com
Email

sales@mosek.com Sales, pricing, and licensing
support@mosek.com Technical support, questions and bug reports
info@mosek.com Everything else.

Mailing Address
MOSEK ApS
Fruebjergvej 3
Symbion Science Park, Box 16
2100 Copenhagen O
Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger https://blog.mosek.com/
Google Group https://groups.google.com/forum/#!forum/mosek
Twitter https://twitter.com/mosektw
Google+ https://plus.google.com/+Mosek/posts
Linkedin https://www.linkedin.com/company/mosek-aps

In particular Twitter is used for news, updates and release announcements.

3

https://mosek.com/
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com
https://blog.mosek.com/
https://groups.google.com/forum/#!forum/mosek
https://twitter.com/mosektw
https://plus.google.com/+Mosek/posts
https://www.linkedin.com/company/mosek-aps

Chapter 3

License Agreement

Before using the MOSEK software, please read the license agreement available in the distribution
at <MSKHOME>/mosek/9.2/mosek-eula.pdf or on the MOSEK website https://mosek.com/products/
license-agreement.

MOSEK uses some third-party open-source libraries. Their license details follows.

zlib

MOSEK includes the zlib library obtained from the zlib website. The license agreement for zlib is
shown in Listing 3.1.

Listing 3.1: zlib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

fplib

MOSEK includes the floating point formatting library developed by David M. Gay obtained from
the netlib website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/**
*

(continues on next page)

4

https://mosek.com/products/license-agreement
https://mosek.com/products/license-agreement
http://zlib.org
http://www.netlib.org

(continued from previous page)

* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

Zstandard

MOSEK includes the Zstandard library developed by Facebook obtained from github/zstd. The
license agreement for Zstandard is shown in Listing 3.3.

Listing 3.3: Zstandard license.

BSD License

For Zstandard software

Copyright (c) 2016-present, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name Facebook nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

5

https://github.com/facebook/zstd

Chapter 4

Installation

In this section we discuss how to install and setup the MOSEK Optimizer API for Python.

Important: Before running this MOSEK interface please make sure that you:

• Installed MOSEK correctly. Some operating systems require extra steps. See the Installation
guide for instructions and common troubleshooting tips.

• Set up a license. See the Licensing guide for instructions.

Compatibility

The Optimizer API for Python requires Python with numpy. The supported versions of Python are
shown below:

Table 4.1: Supported Python versions.
Platform Python PyPy
Linux 64 bit 2.7, 3.6, 3.7, 3.8 2.7
Mac OS 64 bit 2.7, 3.6, 3.7, 3.8 2.7
Windows 64 bit 2.7, 3.6, 3.7, 3.8 2.7
Windows 32 bit 2.7, 3.6, 3.7 2.7

4.1 Anaconda

The MOSEK Optimization Suite can be installed as an Anaconda package, see https://anaconda.org/
MOSEK/mosek, for example by running

conda install -c mosek mosek

If you installed the MOSEK package as part of Anaconda, no additional setup is required.

4.2 PIP and Wheels

The MOSEK Optimization Suite can be installed as a Wheels package with PIP, using

pip install Mosek --user

(skip --user for a system-wide installation).
If you installed the MOSEK package with PIP, no additional setup is required.

6

https://docs.mosek.com/9.2/install/index.html
https://docs.mosek.com/9.2/install/index.html
https://docs.mosek.com/9.2/licensing/index.html
https://anaconda.org/MOSEK/mosek
https://anaconda.org/MOSEK/mosek

4.3 PyPy

To use MOSEK in PyPy install the MOSEK Python module from the directory <PLATFORM>/
purepython instead of <PLATFORM>/python as described below.

4.4 Manual installation

Locating files in the MOSEK Optimization Suite

The relevant files of the Optimizer API for Python are organized as reported in Table 4.2.

Table 4.2: Relevant files for the Optimizer API for Python.
Relative Path Description Label
<MSKHOME>/mosek/9.2/tools/platform/<PLATFORM>/python/
2

Python 2 install <PYTHON2DIR>

<MSKHOME>/mosek/9.2/tools/platform/<PLATFORM>/python/
3

Python 3 install <PYTHON3DIR>

<MSKHOME>/mosek/9.2/tools/examples/python Examples <EXDIR>
<MSKHOME>/mosek/9.2/tools/examples/data Additional data <MISCDIR>

where

• <MSKHOME> is the folder in which the MOSEK Optimization Suite has been installed,

• <PLATFORM> is the actual platform among those supported by MOSEK, i.e. win32x86, win64x86,
linux64x86 or osx64x86.

Manual install and setting up paths

To install MOSEK for Python run the <PYTHON2DIR>/setup.py or <PYTHON3DIR>/setup.py script
depending on the Python version you want to use. This will add the MOSEK module to your Python
distribution’s library of modules. The script accepts the standard options typical for Python setup
scripts. For instance, to install MOSEK for Python 3 in the user’s local library run:

$ python3 <PYTHON3DIR>/setup.py install --user

on Linux and Mac OS or

C:\> python3 <PYTHON3DIR>\setup.py install --user

on Windows.
For a system-wide installation drop the --user flag.

4.5 Testing the Installation

First of all, to check that the Optimizer API for Python was properly installed, start Python and try

import mosek

The installation can further be tested by running some of the enclosed examples. Open a terminal,
change folder to <EXDIR> and use Python to run a selected example, for instance:

python lo1.py

4.6 Troubleshooting

error: could not create ‘build’: Access is denied

If an attempt to install the Python interface results in an error such as

7

error: could not create 'build': Access is denied

then you have no write permissions to the folder where MOSEK is installed. This can happen for
example if the package was installed by an administrator, and a user is trying to set up the Python
interface. One solution is to install MOSEK in another location. Another solution is to specify the
location of the build folder in a place the user can write to, for example:

python setup.py build --build-base=SOME_FOLDER install --user

8

Chapter 5

Design Overview

5.1 Modeling

Optimizer API for Python is an interface for specifying optimization problems directly in matrix form.
It means that an optimization problem such as:

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 ≤ 𝑏,

𝑥 ∈ 𝒦

is specified by describing the matrix 𝐴, vectors 𝑏, 𝑐 and a list of cones 𝒦 directly.
The main characteristics of this interface are:

• Simplicity: once the problem data is assembled in matrix form, it is straightforward to input it
into the optimizer.

• Exploiting sparsity: data is entered in sparse format, enabling huge, sparse problems to be
defined and solved efficiently.

• Efficiency: the Optimizer API incurs almost no overhead between the user’s representation of the
problem and MOSEK’s internal one.

Optimizer API for Python does not aid with modeling. It is the user’s responsibility to express the
problem in MOSEK’s standard form, introducing, if necessary, auxiliary variables and constraints. See
Sec. 12 for the precise formulations of problems MOSEK solves.

5.2 “Hello World!” in MOSEK

Here we present the most basic workflow pattern when using Optimizer API for Python.

Creating an environment and task

Every interaction with MOSEK using Optimizer API for Python begins by creating a MOSEK
environment. It coordinates the access to MOSEK from the current process.

In most cases the user does not interact directly with the environment, except for creating opti-
mization tasks, which contain actual problem specifications and where optimization takes place. An
environment can host multiple tasks.

Defining tasks

After a task is created, the input data can be specified. An optimization problem consists of several
components; objective, objective sense, constraints, variable bounds etc. See Sec. 6 for basic tutorials on
how to specify and solve various types of optimization problems.

9

Retrieving the solutions

When the model is set up, the optimizer is invoked with the call to Task.optimize . When the
optimization is over, the user can check the results and retrieve numerical values. See further details in
Sec. 7.

We refer also to Sec. 7 for information about more advanced mechanisms of interacting with the
solver.

Source code example

Below is the most basic code sample that defines and solves a trivial optimization problem

minimize 𝑥
subject to 2.0 ≤ 𝑥 ≤ 3.0.

For simplicity the example does not contain any error or status checks.

Listing 5.1: “Hello World!” in MOSEK

from mosek import *;

x = [0.0]

with Env() as env: # Create Environment
with env.Task(0, 1) as task: # Create Task

task.appendvars(1) # 1 variable x
task.putcj(0, 1.0) # c_0 = 1.0
task.putvarbound(0, boundkey.ra, 2.0, 3.0) # 2.0 <= x <= 3.0
task.putobjsense(objsense.minimize) # minimize

task.optimize() # Optimize

task.getxx(soltype.itr, x) # Get solution
print("Solution x = {}".format(x[0])) # Print solution

10

Chapter 6

Optimization Tutorials

In this section we demonstrate how to set up basic types of optimization problems. Each short tutorial
contains a working example of formulating problems, defining variables and constraints and retrieving
solutions.

6.1 Linear Optimization

The simplest optimization problem is a purely linear problem. A linear optimization problem is a problem
of the following form:

Minimize or maximize the objective function

𝑛−1∑︁
𝑗=0

𝑐𝑗𝑥𝑗 + 𝑐𝑓

subject to the linear constraints

𝑙𝑐𝑘 ≤
𝑛−1∑︁
𝑗=0

𝑎𝑘𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

and the bounds

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1.

The problem description consists of the following elements:

• 𝑚 and 𝑛 — the number of constraints and variables, respectively,

• 𝑥 — the variable vector of length 𝑛,

• 𝑐 — the coefficient vector of length 𝑛

𝑐 =

⎡⎢⎣ 𝑐0
...

𝑐𝑛−1

⎤⎥⎦ ,

• 𝑐𝑓 — fixed term in the objective,

• 𝐴 — an 𝑚× 𝑛 matrix of coefficients

𝐴 =

⎡⎢⎣ 𝑎0,0 · · · 𝑎0,(𝑛−1)

... · · ·
...

𝑎(𝑚−1),0 · · · 𝑎(𝑚−1),(𝑛−1)

⎤⎥⎦ ,

11

• 𝑙𝑐 and 𝑢𝑐 — the lower and upper bounds on constraints,

• 𝑙𝑥 and 𝑢𝑥 — the lower and upper bounds on variables.

Please note that we are using 0 as the first index: 𝑥0 is the first element in variable vector 𝑥.

6.1.1 Example LO1
The following is an example of a small linear optimization problem:

maximize 3𝑥0 + 1𝑥1 + 5𝑥2 + 1𝑥3

subject to 3𝑥0 + 1𝑥1 + 2𝑥2 = 30,
2𝑥0 + 1𝑥1 + 3𝑥2 + 1𝑥3 ≥ 15,

2𝑥1 + 3𝑥3 ≤ 25,

(6.1)

under the bounds

0 ≤ 𝑥0 ≤ ∞,
0 ≤ 𝑥1 ≤ 10,
0 ≤ 𝑥2 ≤ ∞,
0 ≤ 𝑥3 ≤ ∞.

Solving the problem

To solve the problem above we go through the following steps:

1. Create an environment.

2. Create an optimization task.

3. Load a problem into the task object.

4. Optimization.

5. Extracting the solution.

Below we explain each of these steps.

Create an environment.

Before setting up the optimization problem, a MOSEK environment must be created. All tasks in
the program should share the same environment.

Make mosek environment
with mosek.Env() as env:

Create an optimization task.

Next, an empty task object is created:

Create a task object
with env.Task(0, 0) as task:

Attach a log stream printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

We also connect a call-back function to the task log stream. Messages related to the task are passed
to the call-back function. In this case the stream call-back function writes its messages to the standard
output stream. See Sec. 7.3.

Load a problem into the task object.

Before any problem data can be set, variables and constraints must be added to the problem via calls
to the functions Task.appendcons and Task.appendvars .

12

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

New variables can now be referenced from other functions with indexes in 0, . . . , numvar− 1 and new
constraints can be referenced with indexes in 0, . . . , numcon − 1. More variables and/or constraints can
be appended later as needed, these will be assigned indexes from numvar/numcon and up.

Next step is to set the problem data. We loop over each variable index 𝑗 = 0, . . . , numvar− 1 calling
functions to set problem data. We first set the objective coefficient 𝑐𝑗 = c[j] by calling the function
Task.putcj .

task.putcj(j, c[j])

Setting bounds on variables

The bounds on variables are stored in the arrays

Bound keys for variables
bkx = [mosek.boundkey.lo,

mosek.boundkey.ra,
mosek.boundkey.lo,
mosek.boundkey.lo]

Bound values for variables
blx = [0.0, 0.0, 0.0, 0.0]
bux = [+inf, 10.0, +inf, +inf]

and are set with calls to Task.putvarbound .

Set the bounds on variable j
blx[j] <= x_j <= bux[j]
task.putvarbound(j, bkx[j], blx[j], bux[j])

The Bound key stored in bkx specifies the type of the bound according to Table 6.1.

Table 6.1: Bound keys as defined in the enum boundkey.
Bound key Type of bound Lower bound Upper bound
boundkey.fx 𝑢𝑗 = 𝑙𝑗 Finite Identical to the lower bound
boundkey.fr Free −∞ +∞
boundkey.lo 𝑙𝑗 ≤ · · · Finite +∞
boundkey.ra 𝑙𝑗 ≤ · · · ≤ 𝑢𝑗 Finite Finite
boundkey.up · · · ≤ 𝑢𝑗 −∞ Finite

For instance bkx[0]= boundkey.lo means that 𝑥0 ≥ 𝑙𝑥0 . Finally, the numerical values of the bounds
on variables are given by

𝑙𝑥𝑗 = blx[j]

and

𝑢𝑥
𝑗 = bux[j].

Defining the linear constraint matrix.

Recall that in our example the 𝐴 matrix is given by

𝐴 =

⎡⎣ 3 1 2 0
2 1 3 1
0 2 0 3

⎤⎦ .

13

This matrix is stored in sparse format in the arrays:

asub = [[0, 1],
[0, 1, 2],
[0, 1],
[1, 2]]

aval = [[3.0, 2.0],
[1.0, 1.0, 2.0],
[2.0, 3.0],
[1.0, 3.0]]

The array aval[j] contains the non-zero values of column 𝑗 and asub[j] contains the row indices
of these non-zeros.

Using the function Task.putacol we set column 𝑗 of 𝐴

task.putacol(j, # Variable (column) index.
asub[j], # Row index of non-zeros in column j.
aval[j]) # Non-zero Values of column j.

There are many alternative formats for entering the 𝐴 matrix. See functions such as Task.putarow ,
Task.putarowlist , Task.putaijlist and similar.

Finally, the bounds on each constraint are set by looping over each constraint index 𝑖 =
0, . . . , numcon− 1

Set the bounds on constraints.
blc[i] <= constraint_i <= buc[i]

for i in range(numcon):
task.putconbound(i, bkc[i], blc[i], buc[i])

Optimization

After the problem is set-up the task can be optimized by calling the function Task.optimize .

task.optimize()

Extracting the solution.

After optimizing the status of the solution is examined with a call to Task.getsolsta . If the solution
status is reported as solsta.optimal the solution is extracted in the lines below:

xx = [0.] * numvar
task.getxx(mosek.soltype.bas, # Request the basic solution.

xx)

The Task.getxx function obtains the solution. MOSEK may compute several solutions depending
on the optimizer employed. In this example the basic solution is requested by setting the first argument
to soltype.bas .

Catching exceptions

We catch any exceptions thrown by MOSEK in the lines:

except mosek.Error as e:
print("ERROR: %s" % str(e.errno))
if e.msg is not None:

print("\t%s" % e.msg)
sys.exit(1)

The types of exceptions that MOSEK can throw can be seen in Sec. 15.5. See also Sec. 7.2.

14

Source code

The complete source code lo1.py of this example appears below. See also lo2.py for a version where
the 𝐴 matrix is entered row-wise.

Listing 6.1: Linear optimization example.

import sys
import mosek

Since the value of infinity is ignored, we define it solely
for symbolic purposes
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main():
Make mosek environment
with mosek.Env() as env:

Create a task object
with env.Task(0, 0) as task:

Attach a log stream printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

Bound keys for constraints
bkc = [mosek.boundkey.fx,

mosek.boundkey.lo,
mosek.boundkey.up]

Bound values for constraints
blc = [30.0, 15.0, -inf]
buc = [30.0, +inf, 25.0]

Bound keys for variables
bkx = [mosek.boundkey.lo,

mosek.boundkey.ra,
mosek.boundkey.lo,
mosek.boundkey.lo]

Bound values for variables
blx = [0.0, 0.0, 0.0, 0.0]
bux = [+inf, 10.0, +inf, +inf]

Objective coefficients
c = [3.0, 1.0, 5.0, 1.0]

Below is the sparse representation of the A
matrix stored by column.
asub = [[0, 1],

[0, 1, 2],
[0, 1],
[1, 2]]

aval = [[3.0, 2.0],
[1.0, 1.0, 2.0],
[2.0, 3.0],
[1.0, 3.0]]

numvar = len(bkx)
(continues on next page)

15

(continued from previous page)

numcon = len(bkc)

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

for j in range(numvar):
Set the linear term c_j in the objective.
task.putcj(j, c[j])

Set the bounds on variable j
blx[j] <= x_j <= bux[j]
task.putvarbound(j, bkx[j], blx[j], bux[j])

Input column j of A
task.putacol(j, # Variable (column) index.

asub[j], # Row index of non-zeros in column j.
aval[j]) # Non-zero Values of column j.

Set the bounds on constraints.
blc[i] <= constraint_i <= buc[i]

for i in range(numcon):
task.putconbound(i, bkc[i], blc[i], buc[i])

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.maximize)

Solve the problem
task.optimize()
Print a summary containing information
about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)

Get status information about the solution
solsta = task.getsolsta(mosek.soltype.bas)

if (solsta == mosek.solsta.optimal):
xx = [0.] * numvar
task.getxx(mosek.soltype.bas, # Request the basic solution.

xx)
print("Optimal solution: ")
for i in range(numvar):

print("x[" + str(i) + "]=" + str(xx[i]))
elif (solsta == mosek.solsta.dual_infeas_cer or

solsta == mosek.solsta.prim_infeas_cer):
print("Primal or dual infeasibility certificate found.\n")

elif solsta == mosek.solsta.unknown:
print("Unknown solution status")

else:
print("Other solution status")

call the main function
try:

main()
except mosek.Error as e:

print("ERROR: %s" % str(e.errno))
if e.msg is not None:

(continues on next page)

16

(continued from previous page)

print("\t%s" % e.msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

6.2 Quadratic Optimization

MOSEK can solve quadratic and quadratically constrained problems, as long as they are convex. This
class of problems can be formulated as follows:

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐𝑘 ≤ 1
2𝑥

𝑇𝑄𝑘𝑥 +
∑︀𝑛−1

𝑗=0 𝑎𝑘,𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1.

(6.2)

Without loss of generality it is assumed that 𝑄𝑜 and 𝑄𝑘 are all symmetric because

𝑥𝑇𝑄𝑥 =
1

2
𝑥𝑇 (𝑄 + 𝑄𝑇)𝑥.

This implies that a non-symmetric 𝑄 can be replaced by the symmetric matrix 1
2 (𝑄 + 𝑄𝑇).

The problem is required to be convex. More precisely, the matrix 𝑄𝑜 must be positive semi-definite
and the 𝑘th constraint must be of the form

𝑙𝑐𝑘 ≤ 1

2
𝑥𝑇𝑄𝑘𝑥 +

𝑛−1∑︁
𝑗=0

𝑎𝑘,𝑗𝑥𝑗 (6.3)

with a negative semi-definite 𝑄𝑘 or of the form

1

2
𝑥𝑇𝑄𝑘𝑥 +

𝑛−1∑︁
𝑗=0

𝑎𝑘,𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘.

with a positive semi-definite 𝑄𝑘. This implies that quadratic equalities are not allowed. Specifying a
non-convex problem will result in an error when the optimizer is called.

A matrix is positive semidefinite if all the eigenvalues of 𝑄 are nonnegative. An alternative statement
of the positive semidefinite requirement is

𝑥𝑇𝑄𝑥 ≥ 0, ∀𝑥.

If the convexity (i.e. semidefiniteness) conditions are not met MOSEK will not produce reliable results
or work at all.

6.2.1 Example: Quadratic Objective
We look at a small problem with linear constraints and quadratic objective:

minimize 𝑥2
1 + 0.1𝑥2

2 + 𝑥2
3 − 𝑥1𝑥3 − 𝑥2

subject to 1 ≤ 𝑥1 + 𝑥2 + 𝑥3

0 ≤ 𝑥.
(6.4)

The matrix formulation of (6.4) has:

𝑄𝑜 =

⎡⎣ 2 0 −1
0 0.2 0
−1 0 2

⎤⎦ , 𝑐 =

⎡⎣ 0
−1
0

⎤⎦ , 𝐴 =
[︀

1 1 1
]︀
,

17

with the bounds:

𝑙𝑐 = 1, 𝑢𝑐 = ∞, 𝑙𝑥 =

⎡⎣ 0
0
0

⎤⎦ and 𝑢𝑥 =

⎡⎣ ∞
∞
∞

⎤⎦
Please note the explicit 1

2 in the objective function of (6.2) which implies that diagonal elements must
be doubled in 𝑄, i.e. 𝑄11 = 2 even though 1 is the coefficient in front of 𝑥2

1 in (6.4).

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the quadratic objective

The quadratic objective is specified using the function Task.putqobj . Since 𝑄𝑜 is symmetric only
the lower triangular part of 𝑄𝑜 is inputted. In fact entries from above the diagonal may not appear in
the input.

The lower triangular part of the matrix 𝑄𝑜 is specified using an unordered sparse triplet format (for
details, see Sec. 15.1.4):

qsubi = [0, 1, 2, 2]
qsubj = [0, 1, 0, 2]
qval = [2.0, 0.2, -1.0, 2.0]

Please note that

• only non-zero elements are specified (any element not specified is 0 by definition),

• the order of the non-zero elements is insignificant, and

• only the lower triangular part should be specified.

Finally, this definition of 𝑄𝑜 is loaded into the task:

task.putqobj(qsubi, qsubj, qval)

Source code

Listing 6.2: Source code implementing problem (6.4).

import sys, os, mosek

Since the actual value of Infinity is ignored, we define it solely
for symbolic purposes:
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main():
Open MOSEK and create an environment and task
Make a MOSEK environment
with mosek.Env() as env:

Attach a printer to the environment
env.set_Stream(mosek.streamtype.log, streamprinter)

(continues on next page)

18

(continued from previous page)

Create a task
with env.Task() as task:

task.set_Stream(mosek.streamtype.log, streamprinter)
Set up and input bounds and linear coefficients
bkc = [mosek.boundkey.lo]
blc = [1.0]
buc = [inf]
numvar = 3
bkx = [mosek.boundkey.lo] * numvar
blx = [0.0] * numvar
bux = [inf] * numvar
c = [0.0, -1.0, 0.0]
asub = [[0], [0], [0]]
aval = [[1.0], [1.0], [1.0]]

numvar = len(bkx)
numcon = len(bkc)

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

for j in range(numvar):
Set the linear term c_j in the objective.
task.putcj(j, c[j])
Set the bounds on variable j
blx[j] <= x_j <= bux[j]
task.putvarbound(j, bkx[j], blx[j], bux[j])
Input column j of A
task.putacol(j, # Variable (column) index.

Row index of non-zeros in column j.
asub[j],
aval[j]) # Non-zero Values of column j.

for i in range(numcon):
task.putconbound(i, bkc[i], blc[i], buc[i])

Set up and input quadratic objective
qsubi = [0, 1, 2, 2]
qsubj = [0, 1, 0, 2]
qval = [2.0, 0.2, -1.0, 2.0]

task.putqobj(qsubi, qsubj, qval)

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.minimize)

Optimize
task.optimize()
Print a summary containing information
about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)

prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

Output a solution
xx = [0.] * numvar

(continues on next page)

19

(continued from previous page)

task.getxx(mosek.soltype.itr,
xx)

if solsta == mosek.solsta.optimal:
print("Optimal solution: %s" % xx)

elif solsta == mosek.solsta.dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif mosek.solsta.unknown:
print("Unknown solution status")

else:
print("Other solution status")

call the main function
try:

main()
except mosek.MosekException as e:

print("ERROR: %s" % str(e.errno))
if e.msg is not None:

import traceback
traceback.print_exc()
print("\t%s" % e.msg)

sys.exit(1)
except:

import traceback
traceback.print_exc()
sys.exit(1)

6.2.2 Example: Quadratic constraints
In this section we show how to solve a problem with quadratic constraints. Please note that quadratic
constraints are subject to the convexity requirement (6.3).

Consider the problem:

minimize 𝑥2
1 + 0.1𝑥2

2 + 𝑥2
3 − 𝑥1𝑥3 − 𝑥2

subject to 1 ≤ 𝑥1 + 𝑥2 + 𝑥3 − 𝑥2
1 − 𝑥2

2 − 0.1𝑥2
3 + 0.2𝑥1𝑥3,

𝑥 ≥ 0.

This is equivalent to

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥
subject to 1

2𝑥
𝑇𝑄0𝑥 + 𝐴𝑥 ≥ 𝑏,
𝑥 ≥ 0,

(6.5)

where

𝑄𝑜 =

⎡⎣ 2 0 −1
0 0.2 0
−1 0 2

⎤⎦ , 𝑐 =
[︀

0 −1 0
]︀𝑇

, 𝐴 =
[︀

1 1 1
]︀
, 𝑏 = 1.

𝑄0 =

⎡⎣ −2 0 0.2
0 −2 0

0.2 0 −0.2

⎤⎦ .

The linear parts and quadratic objective are set up the way described in the previous tutorial.

Setting up quadratic constraints

To add quadratic terms to the constraints we use the function Task.putqconk .

20

qsubi = [0, 1, 2, 2]
qsubj = [0, 1, 2, 0]
qval = [-2.0, -2.0, -0.2, 0.2]

put Q^0 in constraint with index 0.

task.putqconk(0, qsubi, qsubj, qval)

While Task.putqconk adds quadratic terms to a specific constraint, it is also possible to input all
quadratic terms in one chunk using the Task.putqcon function.

Source code

Listing 6.3: Implementation of the quadratically constrained prob-
lem (6.5).

import sys
import mosek

Since the actual value of Infinity is ignores, we define it solely
for symbolic purposes:
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main():
Make a MOSEK environment
with mosek.Env() as env:

Attach a printer to the environment
env.set_Stream(mosek.streamtype.log, streamprinter)

Create a task
with env.Task(0, 0) as task:

Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

Set up and input bounds and linear coefficients
bkc = [mosek.boundkey.lo]
blc = [1.0]
buc = [inf]

bkx = [mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey.lo]

blx = [0.0, 0.0, 0.0]
bux = [inf, inf, inf]

c = [0.0, -1.0, 0.0]

asub = [[0], [0], [0]]
aval = [[1.0], [1.0], [1.0]]

numvar = len(bkx)
numcon = len(bkc)
NUMANZ = 3
Append 'numcon' empty constraints.
The constraints will initially have no bounds.

(continues on next page)

21

(continued from previous page)

task.appendcons(numcon)

#Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

#Optionally add a constant term to the objective.
task.putcfix(0.0)

for j in range(numvar):
Set the linear term c_j in the objective.
task.putcj(j, c[j])
Set the bounds on variable j
blx[j] <= x_j <= bux[j]
task.putvarbound(j, bkx[j], blx[j], bux[j])
Input column j of A
task.putacol(j, # Variable (column) index.

Row index of non-zeros in column j.
asub[j],
aval[j]) # Non-zero Values of column j.

for i in range(numcon):
task.putconbound(i, bkc[i], blc[i], buc[i])

Set up and input quadratic objective

qsubi = [0, 1, 2, 2]
qsubj = [0, 1, 0, 2]
qval = [2.0, 0.2, -1.0, 2.0]

task.putqobj(qsubi, qsubj, qval)

The lower triangular part of the Q^0
matrix in the first constraint is specified.
This corresponds to adding the term
- x0^2 - x1^2 - 0.1 x2^2 + 0.2 x0 x2

qsubi = [0, 1, 2, 2]
qsubj = [0, 1, 2, 0]
qval = [-2.0, -2.0, -0.2, 0.2]

put Q^0 in constraint with index 0.

task.putqconk(0, qsubi, qsubj, qval)

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.minimize)

Optimize the task
task.optimize()

Print a summary containing information
about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)

prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

Output a solution
xx = [0.] * numvar
task.getxx(mosek.soltype.itr,

(continues on next page)

22

(continued from previous page)

xx)

if solsta == mosek.solsta.optimal:
print("Optimal solution: %s" % xx)

elif solsta == mosek.solsta.dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif mosek.solsta.unknown:
print("Unknown solution status")

else:
print("Other solution status")

call the main function
try:

main()
except mosek.MosekException as e:

print("ERROR: %s" % str(e.errno))
print("\t%s" % e.msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

6.3 Conic Quadratic Optimization

Conic optimization is a generalization of linear optimization, allowing constraints of the type

𝑥𝑡 ∈ 𝒦𝑡,

where 𝑥𝑡 is a subset of the problem variables and 𝒦𝑡 is a convex cone. Since the set R𝑛 of real numbers
is also a convex cone, we can simply write a compound conic constraint 𝑥 ∈ 𝒦 where 𝒦 = 𝒦1 × · · · × 𝒦𝑙

is a product of smaller cones and 𝑥 is the full problem variable.
MOSEK can solve conic quadratic optimization problems of the form

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ 𝒦,

where the domain restriction, 𝑥 ∈ 𝒦, implies that all variables are partitioned into convex cones

𝑥 = (𝑥0, 𝑥1, . . . , 𝑥𝑝−1), with 𝑥𝑡 ∈ 𝒦𝑡 ⊆ R𝑛𝑡 .

In this tutorial we describe how to use the two types of quadratic cones defined as:

• Quadratic cone:

𝒬𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 : 𝑥0 ≥

⎯⎸⎸⎷𝑛−1∑︁
𝑗=1

𝑥2
𝑗

⎫⎬⎭ .

• Rotated quadratic cone:

𝒬𝑛
r =

⎧⎨⎩𝑥 ∈ R𝑛 : 2𝑥0𝑥1 ≥
𝑛−1∑︁
𝑗=2

𝑥2
𝑗 , 𝑥0 ≥ 0, 𝑥1 ≥ 0

⎫⎬⎭ .

23

For other types of cones supported by MOSEK see Sec. 6.4, Sec. 6.5, Sec. 6.6. See Task.appendcone
for a list and definitions of available cone types. Different cone types can appear together in one opti-
mization problem.

For example, the following constraint:

(𝑥4, 𝑥0, 𝑥2) ∈ 𝒬3

describes a convex cone in R3 given by the inequality:

𝑥4 ≥
√︁
𝑥2
0 + 𝑥2

2.

Furthermore, each variable may belong to one cone at most. The constraint 𝑥𝑖 − 𝑥𝑗 = 0 would however
allow 𝑥𝑖 and 𝑥𝑗 to belong to different cones with same effect.

6.3.1 Example CQO1
Consider the following conic quadratic problem which involves some linear constraints, a quadratic cone
and a rotated quadratic cone.

minimize 𝑥4 + 𝑥5 + 𝑥6

subject to 𝑥1 + 𝑥2 + 2𝑥3 = 1,
𝑥1, 𝑥2, 𝑥3 ≥ 0,

𝑥4 ≥
√︀
𝑥2
1 + 𝑥2

2,
2𝑥5𝑥6 ≥ 𝑥2

3

(6.6)

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

A cone is defined using the function Task.appendcone :

task.appendcone(mosek.conetype.quad,
0.0,
[3, 0, 1])

The first argument selects the type of quadratic cone, in this case either conetype.quad for a
quadratic cone or conetype.rquad for a rotated quadratic cone. The second parameter is currently
ignored and passing 0.0 will work.

The last argument is a list of indexes of the variables appearing in the cone.
Variants of this method are available to append multiple cones at a time.

Source code

Listing 6.4: Source code solving problem (6.6).

import sys
import mosek

Since the actual value of Infinity is ignores, we define it solely
for symbolic purposes:
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

(continues on next page)

24

(continued from previous page)

sys.stdout.write(text)
sys.stdout.flush()

def main():
Make a MOSEK environment
with mosek.Env() as env:

Attach a printer to the environment
env.set_Stream(mosek.streamtype.log, streamprinter)

Create a task
with env.Task(0, 0) as task:

Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

bkc = [mosek.boundkey.fx]
blc = [1.0]
buc = [1.0]

c = [0.0, 0.0, 0.0,
1.0, 1.0, 1.0]

bkx = [mosek.boundkey.lo, mosek.boundkey.lo, mosek.boundkey.lo,
mosek.boundkey.fr, mosek.boundkey.fr, mosek.boundkey.fr]

blx = [0.0, 0.0, 0.0,
-inf, -inf, -inf]

bux = [inf, inf, inf,
inf, inf, inf]

asub = [[0], [0], [0]]
aval = [[1.0], [1.0], [2.0]]

numvar = len(bkx)
numcon = len(bkc)
NUMANZ = 4

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

#Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

for j in range(numvar):
Set the linear term c_j in the objective.

task.putcj(j, c[j])
Set the bounds on variable j
blx[j] <= x_j <= bux[j]

task.putvarbound(j, bkx[j], blx[j], bux[j])

for j in range(len(aval)):
Input column j of A

task.putacol(j, # Variable (column) index.
Row index of non-zeros in column j.
asub[j],
aval[j]) # Non-zero Values of column j.

for i in range(numcon):
task.putconbound(i, bkc[i], blc[i], buc[i])

Input the cones
task.appendcone(mosek.conetype.quad,

(continues on next page)

25

(continued from previous page)

0.0,
[3, 0, 1])

task.appendcone(mosek.conetype.rquad,
0.0,
[4, 5, 2])

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.minimize)

Optimize the task
task.optimize()
Print a summary containing information
about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)
prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

Output a solution
xx = [0.] * numvar
task.getxx(mosek.soltype.itr,

xx)

if solsta == mosek.solsta.optimal:
print("Optimal solution: %s" % xx)

elif solsta == mosek.solsta.dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif mosek.solsta.unknown:
print("Unknown solution status")

else:
print("Other solution status")

call the main function
try:

main()
except mosek.MosekException as e:

print("ERROR: %s" % str(e.errno))
print("\t%s" % e.msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

6.4 Power Cone Optimization

Conic optimization is a generalization of linear optimization, allowing constraints of the type

𝑥𝑡 ∈ 𝒦𝑡,

where 𝑥𝑡 is a subset of the problem variables and 𝒦𝑡 is a convex cone. Since the set R𝑛 of real numbers
is also a convex cone, we can simply write a compound conic constraint 𝑥 ∈ 𝒦 where 𝒦 = 𝒦1 × · · · × 𝒦𝑙

is a product of smaller cones and 𝑥 is the full problem variable.
MOSEK can solve conic optimization problems of the form

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ 𝒦,

26

where the domain restriction, 𝑥 ∈ 𝒦, implies that all variables are partitioned into convex cones

𝑥 = (𝑥0, 𝑥1, . . . , 𝑥𝑝−1), with 𝑥𝑡 ∈ 𝒦𝑡 ⊆ R𝑛𝑡 .

In this tutorial we describe how to use the power cone. The primal power cone of dimension 𝑛 with
parameter 0 < 𝛼 < 1 is defined as:

𝒫𝛼,1−𝛼
𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 : 𝑥𝛼
0𝑥

1−𝛼
1 ≥

⎯⎸⎸⎷𝑛−1∑︁
𝑖=2

𝑥2
𝑖 , 𝑥0, 𝑥1 ≥ 0

⎫⎬⎭ .

In particular, the most important special case is the three-dimensional power cone family:

𝒫𝛼,1−𝛼
3 =

{︀
𝑥 ∈ R3 : 𝑥𝛼

0𝑥
1−𝛼
1 ≥ |𝑥2|, 𝑥0, 𝑥1 ≥ 0

}︀
.

For example, the conic constraint (𝑥, 𝑦, 𝑧) ∈ 𝒫0.25,0.75
3 is equivalent to 𝑥0.25𝑦0.75 ≥ |𝑧|, or simply 𝑥𝑦3 ≥ 𝑧4

with 𝑥, 𝑦 ≥ 0.
MOSEK also supports the dual power cone:

(︀
𝒫𝛼,1−𝛼
𝑛

)︀*
=

⎧⎨⎩𝑥 ∈ R𝑛 :
(︁𝑥0

𝛼

)︁𝛼(︂ 𝑥1

1 − 𝛼

)︂1−𝛼

≥

⎯⎸⎸⎷𝑛−1∑︁
𝑖=2

𝑥2
𝑖 , 𝑥0, 𝑥1 ≥ 0

⎫⎬⎭ .

For other types of cones supported by MOSEK see Sec. 6.3, Sec. 6.5, Sec. 6.6. See Task.appendcone for
a list and definitions of available cone types. Different cone types can appear together in one optimization
problem.

Furthermore, each variable may belong to one cone at most. The constraint 𝑥𝑖 − 𝑥𝑗 = 0 would
however allow 𝑥𝑖 and 𝑥𝑗 to belong to different cones with same effect.

6.4.1 Example POW1
Consider the following optimization problem which involves powers of variables:

maximize 𝑥0.2𝑦0.8 + 𝑧0.4 − 𝑥
subject to 𝑥 + 𝑦 + 1

2𝑧 = 2,
𝑥, 𝑦, 𝑧 ≥ 0.

(6.7)

With (𝑥, 𝑦, 𝑧) = (𝑥0, 𝑥1, 𝑥2) we convert it into conic form using auxiliary variables as bounds for the
power expressions:

maximize 𝑥3 + 𝑥4 − 𝑥0

subject to 𝑥0 + 𝑥1 + 1
2𝑥2 = 2,

(𝑥0, 𝑥1, 𝑥3) ∈ 𝒫0.2,0.8
3 ,

(𝑥2, 𝑥5, 𝑥4) ∈ 𝒫0.4,0.6
3 ,

𝑥5 = 1.

(6.8)

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

A cone is defined using the function Task.appendcone :

task.appendcone(mosek.conetype.ppow, 0.2, [0, 1, 3])
task.appendcone(mosek.conetype.ppow, 0.4, [2, 5, 4])

27

The first argument selects the type of power cone, that is conetype.ppow . The second argument is
the cone parameter 𝛼. The remaining arguments list the variables which form the cone. Variants of this
method are available to append multiple cones at a time.

The code below produces the answer of (6.7) which is

[0.06389298 0.78308564 2.30604283]

Source code

Listing 6.5: Source code solving problem (6.7).

import sys
import mosek

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main():

Only a symbolic constant
inf = 0.0

Make a MOSEK environment
with mosek.Env() as env:

Attach a printer to the environment
env.set_Stream(mosek.streamtype.log, streamprinter)

Create a task
with env.Task(0, 0) as task:

Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

csub = [3, 4, 0]
cval = [1.0, 1.0, -1.0]
asub = [0, 1, 2]
aval = [1.0, 1.0, 0.5]
numvar, numcon = 6, 1

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

Set up the linear part of the problem
task.putclist(csub, cval)
task.putarow(0, asub, aval)
task.putvarboundslice(0, numvar, [mosek.boundkey.fr] * numvar, [inf] * numvar,␣

→˓[inf] * numvar)
task.putvarbound(5, mosek.boundkey.fx, 1.0, 1.0) # x_5 = 1
task.putconbound(0, mosek.boundkey.fx, 2.0, 2.0)

Input the cones
task.appendcone(mosek.conetype.ppow, 0.2, [0, 1, 3])
task.appendcone(mosek.conetype.ppow, 0.4, [2, 5, 4])

Input the objective sense (minimize/maximize)
(continues on next page)

28

(continued from previous page)

task.putobjsense(mosek.objsense.maximize)

Optimize the task
task.optimize()

Print a summary containing information
about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)
prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

Output a solution
xx = [0.] * numvar
task.getxx(mosek.soltype.itr,

xx)

if solsta == mosek.solsta.optimal:
print("Optimal solution: %s" % xx[0:3])

elif solsta == mosek.solsta.dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif mosek.solsta.unknown:
print("Unknown solution status")

else:
print("Other solution status")

call the main function
try:

main()
except mosek.MosekException as e:

print("ERROR: %s" % str(e.code))
if msg is not None:

print("\t%s" % e.msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

6.5 Conic Exponential Optimization

Conic optimization is a generalization of linear optimization, allowing constraints of the type

𝑥𝑡 ∈ 𝒦𝑡,

where 𝑥𝑡 is a subset of the problem variables and 𝒦𝑡 is a convex cone. Since the set R𝑛 of real numbers
is also a convex cone, we can simply write a compound conic constraint 𝑥 ∈ 𝒦 where 𝒦 = 𝒦1 × · · · × 𝒦𝑙

is a product of smaller cones and 𝑥 is the full problem variable.
MOSEK can solve conic optimization problems of the form

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ 𝒦,

where the domain restriction, 𝑥 ∈ 𝒦, implies that all variables are partitioned into convex cones

𝑥 = (𝑥0, 𝑥1, . . . , 𝑥𝑝−1), with 𝑥𝑡 ∈ 𝒦𝑡 ⊆ R𝑛𝑡 .

29

In this tutorial we describe how to use the primal exponential cone defined as:

𝐾exp =
{︀
𝑥 ∈ R3 : 𝑥0 ≥ 𝑥1 exp(𝑥2/𝑥1), 𝑥0, 𝑥1 ≥ 0

}︀
.

MOSEK also supports the dual exponential cone:

𝐾*
exp =

{︀
𝑠 ∈ R3 : 𝑠0 ≥ −𝑠2𝑒

−1 exp(𝑠1/𝑠2), 𝑠2 ≤ 0, 𝑠0 ≥ 0
}︀
.

For other types of cones supported by MOSEK see Sec. 6.3, Sec. 6.4, Sec. 6.6. See Task.appendcone for
a list and definitions of available cone types. Different cone types can appear together in one optimization
problem.

For example, the following constraint:

(𝑥4, 𝑥0, 𝑥2) ∈ 𝐾exp

describes a convex cone in R3 given by the inequalities:

𝑥4 ≥ 𝑥0 exp(𝑥2/𝑥0), 𝑥0, 𝑥4 ≥ 0.

Furthermore, each variable may belong to one cone at most. The constraint 𝑥𝑖 − 𝑥𝑗 = 0 would however
allow 𝑥𝑖 and 𝑥𝑗 to belong to different cones with same effect.

6.5.1 Example CEO1
Consider the following basic conic exponential problem which involves some linear constraints and an
exponential inequality:

minimize 𝑥0 + 𝑥1

subject to 𝑥0 + 𝑥1 + 𝑥2 = 1,
𝑥0 ≥ 𝑥1 exp(𝑥2/𝑥1),

𝑥0, 𝑥1 ≥ 0.

(6.9)

The conic form of (6.9) is:

minimize 𝑥0 + 𝑥1

subject to 𝑥0 + 𝑥1 + 𝑥2 = 1,
(𝑥0, 𝑥1, 𝑥2) ∈ 𝐾exp,

𝑥 ∈ R3.

(6.10)

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

A cone is defined using the function Task.appendcone :

task.appendcone(mosek.conetype.pexp,
0.0,
[0, 1, 2])

The first argument selects the type of exponential cone, that is conetype.pexp . The second param-
eter is currently ignored and passing 0.0 will work.

The last argument is a list of indexes of the variables appearing in the cone.
Variants of this method are available to append multiple cones at a time.

30

Source code

Listing 6.6: Source code solving problem (6.9).

import sys
import mosek

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main():

Only a symbolic constant
inf = 0.0

Make a MOSEK environment
with mosek.Env() as env:

Attach a printer to the environment
env.set_Stream(mosek.streamtype.log, streamprinter)

Create a task
with env.Task(0, 0) as task:

Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

c = [1.0, 1.0, 0.0]
a = [1.0, 1.0, 1.0]
numvar, numcon = 3, 1

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

Set up the linear part of the problem
task.putcslice(0, numvar, c)
task.putarow(0, [0, 1, 2], a)
task.putvarboundslice(0, numvar, [mosek.boundkey.fr] * numvar, [inf] * numvar,␣

→˓[inf] * numvar)
task.putconbound(0, mosek.boundkey.fx, 1.0, 1.0)

Input the cones
task.appendcone(mosek.conetype.pexp,

0.0,
[0, 1, 2])

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.minimize)

Optimize the task
task.optimize()
Print a summary containing information
about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)
prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

(continues on next page)

31

(continued from previous page)

Output a solution
xx = [0.] * numvar
task.getxx(mosek.soltype.itr,

xx)

if solsta == mosek.solsta.optimal:
print("Optimal solution: %s" % xx)

elif solsta == mosek.solsta.dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif mosek.solsta.unknown:
print("Unknown solution status")

else:
print("Other solution status")

call the main function
try:

main()
except mosek.MosekException as e:

print("ERROR: %s" % str(e.code))
if msg is not None:

print("\t%s" % e.msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

6.6 Semidefinite Optimization

Semidefinite optimization is a generalization of conic optimization, allowing the use of matrix variables
belonging to the convex cone of positive semidefinite matrices

𝒮𝑟
+ =

{︀
𝑋 ∈ 𝒮𝑟 : 𝑧𝑇𝑋𝑧 ≥ 0, ∀𝑧 ∈ R𝑟

}︀
,

where 𝒮𝑟 is the set of 𝑟 × 𝑟 real-valued symmetric matrices.
MOSEK can solve semidefinite optimization problems of the form

minimize
∑︀𝑛−1

𝑗=0 𝑐𝑗𝑥𝑗 +
∑︀𝑝−1

𝑗=0

⟨︀
𝐶𝑗 , 𝑋𝑗

⟩︀
+ 𝑐𝑓

subject to 𝑙𝑐𝑖 ≤
∑︀𝑛−1

𝑗=0 𝑎𝑖𝑗𝑥𝑗 +
∑︀𝑝−1

𝑗=0

⟨︀
𝐴𝑖𝑗 , 𝑋𝑗

⟩︀
≤ 𝑢𝑐

𝑖 , 𝑖 = 0, . . . ,𝑚− 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1,

𝑥 ∈ 𝒦, 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ , 𝑗 = 0, . . . , 𝑝− 1

where the problem has 𝑝 symmetric positive semidefinite variables 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ of dimension 𝑟𝑗 with

symmetric coefficient matrices 𝐶𝑗 ∈ 𝒮𝑟𝑗 and 𝐴𝑖,𝑗 ∈ 𝒮𝑟𝑗 . We use standard notation for the matrix inner
product, i.e., for 𝐴,𝐵 ∈ R𝑚×𝑛 we have

⟨𝐴,𝐵⟩ :=

𝑚−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝐴𝑖𝑗𝐵𝑖𝑗 .

We demonstrate the setup of semidefinite variables and the matrices 𝐶, 𝐴 on the following examples:

• Sec. 6.6.1: A problem with one semidefinite variable and linear and conic constraints.

• Sec. 6.6.2: A problem with two semidefinite variables with a linear constraint and bound.

32

6.6.1 Example SDO1
We consider the simple optimization problem with semidefinite and conic quadratic constraints:

minimize

⟨⎡⎣ 2 1 0
1 2 1
0 1 2

⎤⎦ , 𝑋

⟩
+ 𝑥0

subject to

⟨⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ , 𝑋

⟩
+ 𝑥0 = 1,

⟨⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ , 𝑋

⟩
+ 𝑥1 + 𝑥2 = 1/2,

𝑥0 ≥
√
𝑥1

2 + 𝑥2
2, 𝑋 ⪰ 0,

(6.11)

The problem description contains a 3-dimensional symmetric semidefinite variable which can be written
explicitly as:

𝑋 =

⎡⎣ 𝑋00 𝑋10 𝑋20

𝑋10 𝑋11 𝑋21

𝑋20 𝑋21 𝑋22

⎤⎦ ∈ 𝒮3
+,

and a conic quadratic variable (𝑥0, 𝑥1, 𝑥2) ∈ 𝒬3. The objective is to minimize

2(𝑋00 + 𝑋10 + 𝑋11 + 𝑋21 + 𝑋22) + 𝑥0,

subject to the two linear constraints

𝑋00 + 𝑋11 + 𝑋22 + 𝑥0 = 1,
𝑋00 + 𝑋11 + 𝑋22 + 2(𝑋10 + 𝑋20 + 𝑋21) + 𝑥1 + 𝑥2 = 1/2.

Setting up the linear and conic part

The linear and conic parts (constraints, variables, objective, cones) are set up using the methods
described in the relevant tutorials; Sec. 6.1, Sec. 6.3, Sec. 6.5, Sec. 6.4. Here we only discuss the aspects
directly involving semidefinite variables.

Appending semidefinite variables

First, we need to declare the number of semidefinite variables in the problem, similarly to the number
of linear variables and constraints. This is done with the function Task.appendbarvars .

task.appendbarvars(BARVARDIM)

Appending coefficient matrices

Coefficient matrices 𝐶𝑗 and 𝐴𝑖𝑗 are constructed as weighted combinations of sparse symmetric ma-
trices previously appended with the function Task.appendsparsesymmat .

symc = task.appendsparsesymmat(BARVARDIM[0],
barci,
barcj,
barcval)

syma0 = task.appendsparsesymmat(BARVARDIM[0],
barai[0],
baraj[0],
baraval[0])

syma1 = task.appendsparsesymmat(BARVARDIM[0],
(continues on next page)

33

(continued from previous page)

barai[1],
baraj[1],
baraval[1])

The arguments specify the dimension of the symmetric matrix, followed by its description in the
sparse triplet format. Only lower-triangular entries should be included. The function produces a unique
index of the matrix just entered in the collection of all coefficient matrices defined by the user.

After one or more symmetric matrices have been created using Task.appendsparsesymmat , we can
combine them to set up the objective matrix coefficient 𝐶𝑗 using Task.putbarcj , which forms a linear
combination of one or more symmetric matrices. In this example we form the objective matrix directly,
i.e. as a weighted combination of a single symmetric matrix.

task.putbarcj(0, [symc], [1.0])

Similarly, a constraint matrix coefficient 𝐴𝑖𝑗 is set up by the function Task.putbaraij .

task.putbaraij(0, 0, [syma0], [1.0])
task.putbaraij(1, 0, [syma1], [1.0])

Retrieving the solution

After the problem is solved, we read the solution using Task.getbarxj :

task.getbarxj(mosek.soltype.itr, 0, barx)

The function returns the half-vectorization of 𝑋𝑗 (the lower triangular part stacked as a column
vector), where the semidefinite variable index 𝑗 is passed as an argument.

Source code

Listing 6.7: Source code solving problem (6.11).

import sys
import mosek

Since the value of infinity is ignored, we define it solely
for symbolic purposes
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main():
Make mosek environment
with mosek.Env() as env:

Create a task object and attach log stream printer
with env.Task(0, 0) as task:

task.set_Stream(mosek.streamtype.log, streamprinter)

Bound keys for constraints
bkc = [mosek.boundkey.fx,

mosek.boundkey.fx]

Bound values for constraints
blc = [1.0, 0.5]

(continues on next page)

34

(continued from previous page)

buc = [1.0, 0.5]

Below is the sparse representation of the A
matrix stored by row.
asub = [[0],

[1, 2]]
aval = [[1.0],

[1.0, 1.0]]

conesub = [0, 1, 2]

barci = [0, 1, 1, 2, 2]
barcj = [0, 0, 1, 1, 2]
barcval = [2.0, 1.0, 2.0, 1.0, 2.0]

barai = [[0, 1, 2],
[0, 1, 2, 1, 2, 2]]

baraj = [[0, 1, 2],
[0, 0, 0, 1, 1, 2]]

baraval = [[1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]

numvar = 3
numcon = len(bkc)
BARVARDIM = [3]

Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

Append matrix variables of sizes in 'BARVARDIM'.
The variables will initially be fixed at zero.
task.appendbarvars(BARVARDIM)

Set the linear term c_0 in the objective.
task.putcj(0, 1.0)

for j in range(numvar):
Set the bounds on variable j
blx[j] <= x_j <= bux[j]
task.putvarbound(j, mosek.boundkey.fr, -inf, +inf)

for i in range(numcon):
Set the bounds on constraints.
blc[i] <= constraint_i <= buc[i]
task.putconbound(i, bkc[i], blc[i], buc[i])

Input row i of A
task.putarow(i, # Constraint (row) index.

asub[i], # Column index of non-zeros in constraint i.
aval[i]) # Non-zero values of row i.

Add the quadratic cone constraint
task.appendcone(mosek.conetype.quad,

0.0,
conesub)

(continues on next page)

35

(continued from previous page)

symc = task.appendsparsesymmat(BARVARDIM[0],
barci,
barcj,
barcval)

syma0 = task.appendsparsesymmat(BARVARDIM[0],
barai[0],
baraj[0],
baraval[0])

syma1 = task.appendsparsesymmat(BARVARDIM[0],
barai[1],
baraj[1],
baraval[1])

task.putbarcj(0, [symc], [1.0])

task.putbaraij(0, 0, [syma0], [1.0])
task.putbaraij(1, 0, [syma1], [1.0])

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.minimize)

Solve the problem and print summary
task.optimize()
task.solutionsummary(mosek.streamtype.msg)

Get status information about the solution
prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

if (solsta == mosek.solsta.optimal):
xx = [0.] * numvar
task.getxx(mosek.soltype.itr, xx)

lenbarvar = BARVARDIM[0] * (BARVARDIM[0] + 1) / 2
barx = [0.] * int(lenbarvar)
task.getbarxj(mosek.soltype.itr, 0, barx)

print("Optimal solution:\nx=%s\nbarx=%s" % (xx, barx))
elif (solsta == mosek.solsta.dual_infeas_cer or

solsta == mosek.solsta.prim_infeas_cer):
print("Primal or dual infeasibility certificate found.\n")

elif solsta == mosek.solsta.unknown:
print("Unknown solution status")

else:
print("Other solution status")

call the main function
try:

main()
except mosek.MosekException as e:

print("ERROR: %s" % str(e.errno))
if e.msg is not None:

print("\t%s" % e.msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

36

6.6.2 Example SDO2
We now demonstrate how to define more than one semidefinite variable using the following problem with
two matrix variables and two types of constraints:

minimize ⟨𝐶1, 𝑋1⟩ + ⟨𝐶2, 𝑋2⟩
subject to ⟨𝐴1, 𝑋1⟩ + ⟨𝐴2, 𝑋2⟩ = 𝑏,

(𝑋2)01 ≤ 𝑘,
𝑋1, 𝑋2 ⪰ 0.

(6.12)

In our example dim(𝑋1) = 3, dim(𝑋2) = 4, 𝑏 = 23, 𝑘 = −3 and

𝐶1 =

⎡⎣ 1 0 0
0 0 0
0 0 6

⎤⎦ , 𝐴1 =

⎡⎣ 1 0 1
0 0 0
1 0 2

⎤⎦ ,

𝐶2 =

⎡⎢⎢⎣
1 −3 0 0
−3 2 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎦ , 𝐴2 =

⎡⎢⎢⎣
0 1 0 0
1 −1 0 0
0 0 0 0
0 0 0 −3

⎤⎥⎥⎦ ,

are constant symmetric matrices.
Note that this problem does not contain any scalar variables, but they could be added in the same

fashion as in Sec. 6.6.1.
Other than in Sec. 6.6.1 we don’t append coefficient matrices separately but we directly input

all nonzeros in each constraint and all nonzeros in the objective at once. Every term of the form
(𝐴𝑖,𝑗)𝑘,𝑙(𝑋𝑗)𝑘,𝑙 is determined by four indices (𝑖, 𝑗, 𝑘, 𝑙) and a coefficient value 𝑣 = (𝐴𝑖,𝑗)𝑘,𝑙. Here 𝑖
is the number of the constraint in which the term appears, 𝑗 is the index of the semidefinite vari-
able it involves and (𝑘, 𝑙) is the position in that variable. This data is passed in the call to Task.
putbarablocktriplet . Note that only the lower triangular part should be specified explicitly, that is
one always has 𝑘 ≥ 𝑙. Semidefinite terms (𝐶𝑗)𝑘,𝑙(𝑋𝑗)𝑘,𝑙 of the objective are specified in the same way in
Task.putbarcblocktriplet but only include (𝑗, 𝑘, 𝑙) and 𝑣.

For explanations of other data structures used in the example see Sec. 6.6.1.
The code representing the above problem is shown below.

Listing 6.8: Implementation of model (6.12).

Make mosek environment
with Env() as env:

Create a task object and attach log stream printer
with env.Task(0, 0) as task:

Set log handler for debugging ootput
task.set_Stream(streamtype.log, streamprinter)

Append two symmetric variables of dimension 3, 4
barvardims = [3, 4]
task.appendbarvars(barvardims)

Semidefinite part of objective function
task.putbarcblocktriplet(

len(C1_v)+len(C2_v), # Number of entries
[0]*len(C1_v) + [1]*len(C2_v), # Which SDP variable (j)
C1_k + C2_k, # Entries: (k,l)->v
C1_l + C2_l,
C1_v + C2_v,
)

Append two constraints
task.appendcons(2)

(continues on next page)

37

(continued from previous page)

First constraint (equality)
task.putbarablocktriplet(

len(A1_v)+len(A2_v), # Number of entries
[0]*(len(A1_v)+len(A2_v)), # Which constraint (i = 0)
[0]*len(A1_v) + [1]*len(A2_v), # Which SDP variable (j)
A1_k + A2_k, # Entries: (k,l)->v
A1_l + A2_l,
A1_v + A2_v,
)

Second constraint (X2)_{1,2} <= k
task.putbarablocktriplet(

1, # Number of entries
[1], # Which constraint (i = 1)
[1], # Which SDP variable (j = 1)
[1], [0], [0.5] # Entries: (k,l)->v
)

Set bounds for constraints
task.putconboundlist([0,1], [boundkey.fx, boundkey.up],

[b, -inf],
[b, k])

Write the problem for human inspection
task.writedata("test.ptf")

Optimize
task.optimize()
task.solutionsummary(streamtype.msg)

Get status information about the solution
solsta = task.getsolsta(soltype.itr)

if solsta == solsta.optimal:
Assuming the optimization succeeded read solution
print("Solution (lower-triangular part vectorized): ")
for i in range(2):

dim = int(barvardims[i]*(barvardims[i]+1)/2)
X = [0.0] * dim
task.getbarxj(soltype.itr, i, X)
print("X{i} = {X}".format(i=i, X=X))

elif (solsta == solsta.dual_infeas_cer or
solsta == solsta.prim_infeas_cer):

print("Primal or dual infeasibility certificate found.\n")
elif solsta == solsta.unknown:

print("Unknown solution status")
else:

print("Other solution status")

6.7 Integer Optimization

An optimization problem where one or more of the variables are constrained to integer values is called a
(mixed) integer optimization problem. MOSEK supports integer variables in combination with linear,
quadratic and quadratically constrtained and conic problems (except semidefinite). See the previous
tutorials for an introduction to how to model these types of problems.

38

6.7.1 Example MILO1
We use the example

maximize 𝑥0 + 0.64𝑥1

subject to 50𝑥0 + 31𝑥1 ≤ 250,
3𝑥0 − 2𝑥1 ≥ −4,
𝑥0, 𝑥1 ≥ 0 and integer

(6.13)

to demonstrate how to set up and solve a problem with integer variables. It has the structure of a linear
optimization problem (see Sec. 6.1) except for integrality constraints on the variables. Therefore, only
the specification of the integer constraints requires something new compared to the linear optimization
problem discussed previously.

First, the integrality constraints are imposed using the function Task.putvartype :

task.putvartypelist([0, 1],
[mosek.variabletype.type_int,
mosek.variabletype.type_int])

Next, the example demonstrates how to set various useful parameters of the mixed-integer optimizer.
See Sec. 13.4 for details.

Set max solution time
task.putdouparam(mosek.dparam.mio_max_time, 60.0);

The complete source for the example is listed Listing 6.9. Please note that when Task.
getsolutionslice is called, the integer solution is requested by using soltype.itg . No dual solution
is defined for integer optimization problems.

Listing 6.9: Source code implementing problem (6.13).

import sys
import mosek

Since the actual value of Infinity is ignores, we define it solely
for symbolic purposes:
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main():
Make a MOSEK environment
with mosek.Env() as env:

Attach a printer to the environment
env.set_Stream(mosek.streamtype.log, streamprinter)

Create a task
with env.Task(0, 0) as task:

Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

bkc = [mosek.boundkey.up, mosek.boundkey.lo]
blc = [-inf, -4.0]
buc = [250.0, inf]

bkx = [mosek.boundkey.lo, mosek.boundkey.lo]
blx = [0.0, 0.0]
bux = [inf, inf]

(continues on next page)

39

(continued from previous page)

c = [1.0, 0.64]

asub = [[0, 1], [0, 1]]
aval = [[50.0, 3.0], [31.0, -2.0]]

numvar = len(bkx)
numcon = len(bkc)

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

#Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

for j in range(numvar):
Set the linear term c_j in the objective.
task.putcj(j, c[j])
Set the bounds on variable j
blx[j] <= x_j <= bux[j]
task.putvarbound(j, bkx[j], blx[j], bux[j])
Input column j of A
task.putacol(j, # Variable (column) index.

Row index of non-zeros in column j.
asub[j],
aval[j]) # Non-zero Values of column j.

task.putconboundlist(range(numcon), bkc, blc, buc)

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.maximize)

Define variables to be integers
task.putvartypelist([0, 1],

[mosek.variabletype.type_int,
mosek.variabletype.type_int])

Set max solution time
task.putdouparam(mosek.dparam.mio_max_time, 60.0);

Optimize the task
task.optimize()

Print a summary containing information
about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)

prosta = task.getprosta(mosek.soltype.itg)
solsta = task.getsolsta(mosek.soltype.itg)

Output a solution
xx = [0.] * numvar
task.getxx(mosek.soltype.itg, xx)

if solsta in [mosek.solsta.integer_optimal]:
print("Optimal solution: %s" % xx)

elif solsta == mosek.solsta.prim_feas:
print("Feasible solution: %s" % xx)

elif mosek.solsta.unknown:

(continues on next page)

40

(continued from previous page)

if prosta == mosek.prosta.prim_infeas_or_unbounded:
print("Problem status Infeasible or unbounded.\n")

elif prosta == mosek.prosta.prim_infeas:
print("Problem status Infeasible.\n")

elif prosta == mosek.prosta.unkown:
print("Problem status unkown.\n")

else:
print("Other problem status.\n")

else:
print("Other solution status")

call the main function
try:

main()
except mosek.MosekException as msg:

#print "ERROR: %s" % str(code)
if msg is not None:

print("\t%s" % msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

6.7.2 Specifying an initial solution
It is a common strategy to provide a starting feasible point (if one is known in advance) to the mixed-
integer solver. This can in many cases reduce solution time.

It is not necessary to specify the whole solution. MOSEK will attempt to use it to speed up the
computation. MOSEK will first try to construct a feasible solution by fixing integer variables to the
values provided by the user (rounding if necessary) and optimizing over the continuous variables. The
outcome of this process can be inspected via information items iinfitem.mio_construct_solution
and dinfitem.mio_construct_solution_obj , and via the Construct solution objective entry in
the log. We concentrate on a simple example below.

maximize 7𝑥0 + 10𝑥1 + 𝑥2 + 5𝑥3

subject to 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 ≤ 2.5
𝑥0, 𝑥1, 𝑥2 ∈ Z
𝑥0, 𝑥1, 𝑥2, 𝑥3 ≥ 0

(6.14)

Solution values can be set using Task.putsolution .

Listing 6.10: Implementation of problem (6.14) specifying an initial
solution.

Assign values to integer variables.
(We only set a slice of xx)
task.putxxslice(mosek.soltype.itg, 0, 3, [1.0, 1.0, 0.0])

The log output from the optimizer will in this case indicate that the inputted values were used to
construct an initial feasible solution:

Construct solution objective : 1.950000000000e+01

The same information can be obtained from the API:

Listing 6.11: Retrieving information about usage of initial solution

constr = task.getintinf(mosek.iinfitem.mio_construct_solution)
constrVal = task.getdouinf(mosek.dinfitem.mio_construct_solution_obj)
print("Initial solution utilization: {0}\nInitial solution objective: {1:.3f}\n

→˓".format(constr, constrVal))

41

6.7.3 Example MICO1
Integer variables can also be used arbitrarily in conic problems (except semidefinite). We refer to the
previous tutorials for how to set up a conic optimization problem. Here we present sample code that
sets up a simple optimization problem:

minimize 𝑥2 + 𝑦2

subject to 𝑥 ≥ 𝑒𝑦 + 3.8,
𝑥, 𝑦 integer.

(6.15)

The canonical conic formulation of (6.15) suitable for Optimizer API for Python is

minimize 𝑥0

subject to (𝑥0, 𝑥1, 𝑥2) ∈ 𝒬3 (𝑥0 ≥
√︀
𝑥2
1 + 𝑥2

2)
(𝑥3, 𝑥4, 𝑥5) ∈ 𝐾exp (𝑥3 ≥ 𝑥4 exp(𝑥5/𝑥4))
−𝑥1 + 𝑥3 = −3.8

𝑥4 = 1
𝑥2 − 𝑥5 = 0
𝑥1, 𝑥2 integer.

(6.16)

Listing 6.12: Implementation of problem (6.16).

with mosek.Env() as env:
with env.Task(0, 0) as task:

task.set_Stream(mosek.streamtype.log, streamprinter)

task.appendvars(6)
task.appendcons(3)
task.putvarboundsliceconst(0, 6, mosek.boundkey.fr, -0.0, 0.0)

Integrality constraints
task.putvartypelist([1,2], [mosek.variabletype.type_int]*2)

Set up the three auxiliary linear constraints
task.putaijlist([0,0,1,2,2],

[1,3,4,2,5],
[-1,1,1,1,-1])

task.putconboundslice(0, 3, [mosek.boundkey.fx]*3, [-3.8, 1, 0], [-3.8, 1, 0])

Objective
task.putobjsense(mosek.objsense.minimize)
task.putcj(0, 1)

Conic part of the problem
task.appendconesseq([mosek.conetype.quad, mosek.conetype.pexp], [0, 0], [3, 3], 0)

Optimize the task
task.optimize()
task.solutionsummary(mosek.streamtype.msg)

xx = [0, 0]
task.getxxslice(mosek.soltype.itg, 1, 3, xx)
print(xx)

Error and solution status handling were omitted for readability.

6.8 Geometric Programming

Geometric programs (GP) are a particular class of optimization problems which can be expressed in
special polynomial form as positive sums of generalized monomials. More precisely, a geometric problem

42

in canonical form is

minimize 𝑓0(𝑥)
subject to 𝑓𝑖(𝑥) ≤ 1, 𝑖 = 1, . . . ,𝑚,

𝑥𝑗 > 0, 𝑗 = 1, . . . , 𝑛,
(6.17)

where each 𝑓0, . . . , 𝑓𝑚 is a posynomial, that is a function of the form

𝑓(𝑥) =
∑︁
𝑘

𝑐𝑘𝑥
𝛼𝑘1
1 𝑥𝛼𝑘2

2 · · ·𝑥𝛼𝑘𝑛
𝑛

with arbitrary real 𝛼𝑘𝑖 and 𝑐𝑘 > 0. The standard way to formulate GPs in convex form is to introduce
a variable substitution

𝑥𝑖 = exp(𝑦𝑖).

Under this substitution all constraints in a GP can be reduced to the form

log(
∑︁
𝑘

exp(𝑎𝑇𝑘 𝑦 + 𝑏𝑘)) ≤ 0 (6.18)

involving a log-sum-exp bound. Moreover, constraints involving only a single monomial in 𝑥 can be even
more simply written as a linear inequality:

𝑎𝑇𝑘 𝑦 + 𝑏𝑘 ≤ 0

We refer to the MOSEK Modeling Cookbook and to [BKVH07] for more details on this reformulation. A
geometric problem formulated in convex form can be entered into MOSEK with the help of exponential
cones.

6.8.1 Example GP1
The following problem comes from [BKVH07] . Consider maximizing the volume of a ℎ × 𝑤 × 𝑑 box
subject to upper bounds on the area of the floor and of the walls and bounds on the ratios ℎ/𝑤 and 𝑑/𝑤:

maximize ℎ𝑤𝑑
subject to 2(ℎ𝑤 + ℎ𝑑) ≤ 𝐴wall,

𝑤𝑑 ≤ 𝐴floor,
𝛼 ≤ ℎ/𝑤 ≤ 𝛽,
𝛾 ≤ 𝑑/𝑤 ≤ 𝛿.

(6.19)

The decision variables in the problem are ℎ,𝑤, 𝑑. We make a substitution

ℎ = exp(𝑥), 𝑤 = exp(𝑦), 𝑑 = exp(𝑧)

after which (6.19) becomes

maximize 𝑥 + 𝑦 + 𝑧
subject to log(exp(𝑥 + 𝑦 + log(2/𝐴wall)) + exp(𝑥 + 𝑧 + log(2/𝐴wall))) ≤ 0,

𝑦 + 𝑧 ≤ log(𝐴floor),
log(𝛼) ≤ 𝑥− 𝑦 ≤ log(𝛽),
log(𝛾) ≤ 𝑧 − 𝑦 ≤ log(𝛿).

(6.20)

Next, we demonstrate how to implement a log-sum-exp constraint (6.18). It can be written as:

𝑢𝑘 ≥ exp(𝑎𝑇𝑘 𝑦 + 𝑏𝑘), (equiv. (𝑢𝑘, 1, 𝑎
𝑇
𝑘 𝑦 + 𝑏𝑘) ∈ 𝐾exp),∑︀

𝑘 𝑢𝑘 = 1.
(6.21)

This presentation requires one extra variable 𝑢𝑘 for each monomial appearing in the original posynomial
constraint. Another fixed variable 𝑡𝑘 = 1 stands for the second entry in the exponential cone.

43

https://docs.mosek.com/modeling-cookbook/index.html

Listing 6.13: Implementation of log-sum-exp as in (6.21).

Add a single log-sum-exp constraint sum(log(exp(z_i))) <= 0
Assume numExp variable triples are ordered as (u0,t0,z0,u1,t1,z1...)
starting from variable with index expStart

sum(u_i) = 1 as constraint number c, u_i unbounded
task.putarow(c, range(expStart, expStart + 3*numExp, 3), [1.0]*numExp)
task.putconbound(c, boundkey.fx, 1.0, 1.0)
task.putvarboundlistconst(range(expStart, expStart + 3*numExp, 3),

boundkey.fr, -inf, inf)

z_i unbounded
task.putvarboundlistconst(range(expStart + 2, expStart + 2 + 3*numExp, 3),

boundkey.fr, -inf, inf)

t_i = 1
task.putvarboundlistconst(range(expStart + 1, expStart + 1 + 3*numExp, 3),

boundkey.fx, 1.0, 1.0)

Every triple is in an exponential cone
task.appendconesseq([conetype.pexp]*numExp, [0.0]*numExp, [3]*numExp, expStart)

We can now use this function to assemble all constraints in the model. The linear part of the problem
is entered as in Sec. 6.1.

Listing 6.14: Source code solving problem (6.20).

def max_volume_box(Aw, Af, alpha, beta, gamma, delta):
Basic dimensions of our problem
numvar = 3 # Variables in original problem
numLinCon = 3 # Linear constraints in original problem
numExp = 2 # Number of exp-terms in the log-sum-exp constraint

Linear part of the problem
cval = [1, 1, 1]
asubi = [0, 0, 1, 1, 2, 2]
asubj = [1, 2, 0, 1, 2, 1]
aval = [1.0, 1.0, 1.0, -1.0, 1.0, -1.0]
bkc = [boundkey.up, boundkey.ra, boundkey.ra]
blc = [-inf, log(alpha), log(gamma)]
buc = [log(Af), log(beta), log(delta)]

Linear part setting up slack variables
for the linear expressions appearing inside exps
x_5 - x - y = log(2/Awall)
x_8 - x - z = log(2/Awall)
The slack indexes are convenient for defining exponential cones, see later
a2subi = [3, 3, 3, 4, 4, 4]
a2subj = [5, 0, 1, 8, 0, 2]
a2val = [1.0, -1.0, -1.0, 1.0, -1.0, -1.0]
b2kc = [boundkey.fx, boundkey.fx]
b2luc = [log(2/Aw), log(2/Aw)]

with Env() as env:
with env.Task(0, 0) as task:

task.set_Stream(streamtype.log, streamprinter)

Add variables and constraints
task.appendvars(numvar + 3*numExp)
task.appendcons(numLinCon + numExp + 1)

Objective is the sum of three first variables
(continues on next page)

44

(continued from previous page)

task.putobjsense(objsense.maximize)
task.putcslice(0, numvar, cval)
task.putvarboundsliceconst(0, numvar, boundkey.fr, -inf, inf)

Add the three linear constraints
task.putaijlist(asubi, asubj, aval)
task.putconboundslice(0, numvar, bkc, blc, buc)

Add linear constraints for the expressions appearing in exp(...)
task.putaijlist(a2subi, a2subj, a2val)
task.putconboundslice(numLinCon, numLinCon+numExp, b2kc, b2luc, b2luc)

c = numLinCon + numExp
expStart = numvar
Add a single log-sum-exp constraint sum(log(exp(z_i))) <= 0
Assume numExp variable triples are ordered as (u0,t0,z0,u1,t1,z1...)
starting from variable with index expStart

sum(u_i) = 1 as constraint number c, u_i unbounded
task.putarow(c, range(expStart, expStart + 3*numExp, 3), [1.0]*numExp)
task.putconbound(c, boundkey.fx, 1.0, 1.0)
task.putvarboundlistconst(range(expStart, expStart + 3*numExp, 3),

boundkey.fr, -inf, inf)

z_i unbounded
task.putvarboundlistconst(range(expStart + 2, expStart + 2 + 3*numExp, 3),

boundkey.fr, -inf, inf)

t_i = 1
task.putvarboundlistconst(range(expStart + 1, expStart + 1 + 3*numExp, 3),

boundkey.fx, 1.0, 1.0)

Every triple is in an exponential cone
task.appendconesseq([conetype.pexp]*numExp, [0.0]*numExp, [3]*numExp, expStart)

Solve and map to original h, w, d
task.optimize()
xyz = [0.0]*numvar
task.getxxslice(soltype.itr, 0, numvar, xyz)
return exp(xyz)

Given sample data we obtain the solution ℎ,𝑤, 𝑑 as follows:

45

Listing 6.15: Sample data for problem (6.19).

Aw, Af, alpha, beta, gamma, delta = 200.0, 50.0, 2.0, 10.0, 2.0, 10.0
h,w,d = max_volume_box(Aw, Af, alpha, beta, gamma, delta)
print("h={0:.3f}, w={1:.3f}, d={2:.3f}".format(h, w, d))

6.9 Library of basic functions

This section contains a library of small models of basic functions frequently appearing in optimization
models. It is essentially an implementation of the mathematical models from the MOSEK Modeling
Cookbook using Optimizer API for Python. These short code snippets can be seen as illustrative
examples, can be copy-pasted to other code, and can even be directly called when assembling optimization
models as we show in Sec. 6.9.6 (although this may be more suitable for prototyping; also note that
additional variables and constraints will be introduced and there is no error checking).

6.9.1 Variable and constraint management

Append variables

Adds a number of new variables. Returns the index of the first variable in the sequence.

Listing 6.16: New variables.

def msk_newvar(task, num): # free
v = task.getnumvar()
task.appendvars(num)
for i in range(num):

task.putvarbound(v+i, mosek.boundkey.fr, -inf, inf)
return v

def msk_newvar_fx(task, num, val): # fixed
v = task.getnumvar()
task.appendvars(num)
for i in range(num):

task.putvarbound(v+i, mosek.boundkey.fx, val, val)
return v

def msk_newvar_bin(task, num): # binary
v = task.getnumvar()
task.appendvars(num)
for i in range(num):

task.putvarbound(v+i, mosek.boundkey.ra, 0.0, 1.0)
task.putvartype(v+i, mosek.variabletype.type_int)

return v

Variable duplication

Declares equality of two variables, or returns an index of a new duplicate of an existing variable.

Listing 6.17: Duplicate variables.

x = y
def msk_equal(task, x, y):

c = msk_newcon(task, 1)
task.putaij(c, x, 1.0)
task.putaij(c, y, -1.0)
task.putconbound(c, mosek.boundkey.fx, 0.0, 0.0)

def msk_dup(task, x):
y = msk_newvar(task, 1)
msk_equal(task, x, y)
return y

46

https://docs.mosek.com/modeling-cookbook/index.html
https://docs.mosek.com/modeling-cookbook/index.html

Append constraints

Adds a number of new constraints. Returns the index of the first constraint in the sequence.

Listing 6.18: New constraints.

def msk_newcon(task, num):
c = task.getnumcon()
task.appendcons(num)
return c

6.9.2 Linear operations

Absolute value

𝑡 ≥ |𝑥|

Listing 6.19: Absolute value.

t >= |x|
def msk_abs(task, t, x):

c = msk_newcon(task, 2)
task.putaij(c, t, 1.0)
task.putaij(c, x, 1.0)
task.putconbound(c, mosek.boundkey.lo, 0.0, inf)
task.putaij(c+1, t, 1.0)
task.putaij(c+1, x, -1.0)
task.putconbound(c+1, mosek.boundkey.lo, 0.0, inf)

1-norm

𝑡 ≥
∑︀

𝑖 |𝑥𝑖|

Listing 6.20: 1-norm.

t >= sum(|x_i|), x is a list of variables
def msk_norm1(task, t, x):

n = len(x)
u = msk_newvar(task, n)
for i in range(n):

msk_abs(task, u+i, x[i])
c = msk_newcon(task, 1)
task.putarow(c, range(u, u+n), [-1.0]*n)
task.putaij(c, t, 1.0)
task.putconbound(c, mosek.boundkey.lo, 0.0, inf)

6.9.3 Quadratic and power operations

Square

𝑡 ≥ 𝑥2

Listing 6.21: Square.

t >= x^2
def msk_sq(task, t, x):

task.appendcone(mosek.conetype.rquad, 0.0, [msk_newvar_fx(task, 1, 0.5), t, x])

2-norm

𝑡 ≥
√︀∑︀

𝑖 𝑥
2
𝑖

47

Listing 6.22: 2-norm.

t >= sqrt(x_1^2 + ... + x_n^2) where x is a list of variables
def msk_norm2(task, t, x):

task.appendcone(mosek.conetype.quad, 0.0, [t] + x)

Powers

𝑡 ≥ |𝑥|𝑝, 𝑝 > 1

Listing 6.23: Power.

t >= |x|^p (where p>1)
def msk_pow(task, t, x, p):

task.appendcone(mosek.conetype.ppow, 1.0/p, [t, msk_newvar_fx(task, 1, 1.0), x])

𝑡 ≥ 1/𝑥𝑝, 𝑥 > 0, 𝑝 > 0

Listing 6.24: Power reciprocal.

t >= 1/x^p, x>0 (where p>0)
def msk_pow_inv(task, t, x, p):

task.appendcone(mosek.conetype.ppow, 1.0/(1.0+p), [t, x, msk_newvar_fx(task, 1, 1.0)])

p-norm

𝑡 ≥ (
∑︀

𝑖 |𝑥𝑖|𝑝)1/𝑝, 𝑝 > 1

Listing 6.25: 𝑝-norm.

t >= \|x\|_p (where p>1), x is a list of variables
def msk_pnorm(task, t, x, p):

n = len(x)
r = msk_newvar(task, n)
for i in range(n):

task.appendcone(mosek.conetype.ppow, 1.0-1.0/p, [t, r+i, x[i]])
c = msk_newcon(task, 1)
task.putarow(c, range(r, r+n), [-1.0]*n)
task.putaij(c, t, 1.0)
task.putconbound(c, mosek.boundkey.fx, 0.0, 0.0)

Geometric mean

𝑡 ≤ (𝑥1 · · · · · 𝑥𝑛)1/𝑛, 𝑥𝑖 > 0

48

Listing 6.26: Geometric mean.

|t| <= (x_1...x_n)^(1/n), x_i>=0, x is a list of variables of length >= 1
def msk_geo_mean(task, t, x):

n = len(x)
if n==1:

msk_abs(task, x[0], t)
else:

t2 = msk_newvar(task, 1)
task.appendcone(mosek.conetype.ppow, 1.0-1.0/n, [t2, x[n-1], t])
msk_geo_mean(task, msk_dup(task, t2), x[0:n-1])

6.9.4 Exponentials and logarithms

log

𝑡 ≤ log 𝑥, 𝑥 > 0

Listing 6.27: Logarithm.

t <= log(x), x>=0
def msk_log(task, t, x):

task.appendcone(mosek.conetype.pexp, 0.0, [x, msk_newvar_fx(task, 1, 1.0), t])

exp

𝑡 ≥ 𝑒𝑥

Listing 6.28: Exponential.

t >= exp(x)
def msk_exp(task, t, x):

task.appendcone(mosek.conetype.pexp, 0.0, [t, msk_newvar_fx(task, 1, 1.0), x])

Entropy

𝑡 ≥ 𝑥 log 𝑥, 𝑥 > 0

Listing 6.29: Entropy.

t >= x * log(x), x>=0
def msk_ent(task, t, x):

v = msk_newvar(task, 1)
c = msk_newcon(task, 1)
task.putaij(c, v, 1.0)
task.putaij(c, t, 1.0)
task.putconbound(c, mosek.boundkey.fx, 0.0, 0.0)
task.appendcone(mosek.conetype.pexp, 0.0, [msk_newvar_fx(task, 1, 1.0), x, v])

Relative entropy

𝑡 ≥ 𝑥 log 𝑥/𝑦, 𝑥, 𝑦 > 0

Listing 6.30: Relative entropy.

t >= x * log(x/y), x,y>=0
def msk_relent(task, t, x, y):

v = msk_newvar(task, 1)
c = msk_newcon(task, 1)
task.putaij(c, v, 1.0)

(continues on next page)

49

(continued from previous page)

task.putaij(c, t, 1.0)
task.putconbound(c, mosek.boundkey.fx, 0.0, 0.0)
task.appendcone(mosek.conetype.pexp, 0.0, [y, x, v])

Log-sum-exp

log
∑︀

𝑖 𝑒
𝑥𝑖 ≤ 𝑡

Listing 6.31: Log-sum-exp.

log(sum_i(exp(x_i))) <= t, where x is a list of variables
def msk_logsumexp(task, t, x):

n = len(x)
u = msk_newvar(task, n)
z = msk_newvar(task, n)
for i in range(n):

msk_exp(task, u+i, z+i)
c = msk_newcon(task, n)
for i in range(n):

task.putarow(c+i, [x[i], t, z+i], [1.0, -1.0, -1.0])
task.putconbound(c+i, mosek.boundkey.fx, 0.0, 0.0)

s = msk_newcon(task, 1)
task.putarow(s, range(u, u+n), [1.0]*n)
task.putconbound(s, mosek.boundkey.up, -inf, 1.0)

6.9.5 Integer Modeling

Semicontinuous variable

𝑥 ∈ {0} ∪ [𝑎, 𝑏], 𝑏 > 𝑎 > 0

Listing 6.32: Semicontinuous variable.

x = 0 or a <= x <= b
def msk_semicontinuous(task, x, a, b):

u = msk_newvar_bin(task, 1)
c = msk_newcon(task, 2)
task.putarow(c, [x, u], [1.0, -a])
task.putconbound(c, mosek.boundkey.lo, 0.0, inf)
task.putarow(c+1, [x, u], [1.0, -b])
task.putconbound(c+1, mosek.boundkey.up, -inf, 0.0)

Indicator variable

𝑥 ̸= 0 =⇒ 𝑡 = 1. We assume 𝑥 is a priori normalized so |𝑥𝑖| ≤ 1.

Listing 6.33: Indicator variable.

x!=0 implies t=1. Assumes that |x|<=1 in advance.
def msk_indicator(task, x):

t = msk_newvar_bin(task, 1)
msk_abs(task, t, x)
return t

Logical OR

At least one of the conditions is true.

50

Listing 6.34: Logical OR.

x OR y, where x, y are binary
def msk_logic_or(task, x, y):

c = msk_newcon(task, 1)
task.putarow(c, [x, y], [1.0, 1.0])
task.putconbound(c, mosek.boundkey.lo, 1.0, inf)

x_1 OR ... OR x_n, where x is sequence of variables
def msk_logic_or_vect(task, x):

c = msk_newcon(task, 1)
n = len(x)
task.putarow(c, x, [1.0]*n)
task.putconbound(c, mosek.boundkey.lo, 1.0, inf)

Logical NAND

At most one of the conditions is true (also known as SOS1).

Listing 6.35: Logical NAND.

at most one of x_1,...,x_n, where x is a binary vector (SOS1 constraint)
def msk_logic_sos1(task, x):

c = msk_newcon(task, 1)
n = len(x)
task.putarow(c, x, [1.0]*n)
task.putconbound(c, mosek.boundkey.up, -inf, 1.0)

NOT(x AND y), where x, y are binary
def msk_logic_nand(task, x, y):

c = msk_newcon(task, 1)
task.putarow(c, [x, y], [1.0, 1.0])
task.putconbound(c, mosek.boundkey.up, -inf, 1.0)

Cardinality bound

At most 𝑘 of the continuous variables are nonzero. We assume 𝑥 is a priori normalized so |𝑥𝑖| ≤ 1.

Listing 6.36: Cardinality bound.

At most k of entries in x are nonzero, assuming in advance that |x_i|<=1.
def msk_card(task, x, k):

n = len(x)
t = msk_newvar_bin(task, n)
for i in range(n):

msk_abs(task, t+i, x[i])
c = msk_newcon(task, 1)
task.putarow(c, range(t, t+n), [1.0]*n)
task.putconbound(c, mosek.boundkey.up, -inf, k)

6.9.6 Model assembly example
We now demonstrate how to quickly build a simple optimization model for the problem

maximize −
√︀

𝑥2 + 𝑦2 + log 𝑦 − 𝑥1.5,
subject to 𝑥 ≥ 𝑦 + 3,

(6.22)

or equivalently

maximize −𝑡0 + 𝑡1 − 𝑡2,
subject to 𝑥 ≥ 𝑦 + 3,

𝑡0 ≥
√︀
𝑥2 + 𝑦2,

𝑡1 ≤ log 𝑦,
𝑡2 ≥ 𝑥1.5.

51

Listing 6.37: Modeling (6.22).

def testExample():
env = mosek.Env()
task = env.Task()
x = msk_newvar(task, 1)
y = msk_newvar(task, 1)
t = msk_newvar(task, 3)

c = msk_newcon(task, 1)
task.putarow(c, [x, y], [1.0, -1.0])
task.putconbound(c, mosek.boundkey.lo, 3.0, inf)

msk_norm2(task, t+0, [x,y])
msk_log (task, t+1, msk_dup(task, y))
msk_pow (task, t+2, msk_dup(task, x), 1.5)

task.putclist(range(t, t+3), [-1.0, 1.0, -1.0])
task.putobjsense(mosek.objsense.maximize)

6.10 Problem Modification and Reoptimization

Often one might want to solve not just a single optimization problem, but a sequence of problems, each
differing only slightly from the previous one. This section demonstrates how to modify and re-optimize
an existing problem.

The example we study is a simple production planning model.
Problem modifications regarding variables, cones, objective function and constraints can be grouped

in categories:

• add/remove,

• coefficient modifications,

• bounds modifications.

Especially removing variables and constraints can be costly. Special care must be taken with respect
to constraints and variable indexes that may be invalidated.

Depending on the type of modification, MOSEK may be able to optimize the modified problem more
efficiently exploiting the information and internal state from the previous execution. After optimization,
the solution is always stored internally, and is available before next optimization. The former optimal
solution may be still feasible, but no longer optimal; or it may remain optimal if the modification of the
objective function was small. This special case is discussed in Sec. 14.3.

In general, MOSEK exploits dual information and availability of an optimal basis from the previous
execution. The simplex optimizer is well suited for exploiting an existing primal or dual feasible solution.
Restarting capabilities for interior-point methods are still not as reliable and effective as those for the
simplex algorithm. More information can be found in Chapter 10 of the book [Chv83] .

Parameter settings (see Sec. 7.4) can also be changed between optimizations.

6.10.1 Example: Production Planning
A company manufactures three types of products. Suppose the stages of manufacturing can be split into
three parts: Assembly, Polishing and Packing. In the table below we show the time required for each
stage as well as the profit associated with each product.

Product no. Assembly (minutes) Polishing (minutes) Packing (minutes) Profit ($)
0 2 3 2 1.50
1 4 2 3 2.50
2 3 3 2 3.00

52

With the current resources available, the company has 100, 000 minutes of assembly time, 50, 000
minutes of polishing time and 60, 000 minutes of packing time available per year. We want to know how
many items of each product the company should produce each year in order to maximize profit?

Denoting the number of items of each type by 𝑥0, 𝑥1 and 𝑥2, this problem can be formulated as a
linear optimization problem:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2

subject to 2𝑥0 + 4𝑥1 + 3𝑥2 ≤ 100000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 50000,
2𝑥0 + 3𝑥1 + 2𝑥2 ≤ 60000,

(6.23)

and

𝑥0, 𝑥1, 𝑥2 ≥ 0.

Code in Listing 6.38 loads and solves this problem.

Listing 6.38: Setting up and solving problem (6.23)

Create a MOSEK environment
with mosek.Env() as env:

Create a task
with env.Task(0, 0) as task:

Bound keys for constraints
bkc = [mosek.boundkey.up,

mosek.boundkey.up,
mosek.boundkey.up]

Bound values for constraints
blc = [-inf, -inf, -inf]
buc = [100000.0, 50000.0, 60000.0]
Bound keys for variables
bkx = [mosek.boundkey.lo,

mosek.boundkey.lo,
mosek.boundkey.lo]

Bound values for variables
blx = [0.0, 0.0, 0.0]
bux = [+inf, +inf, +inf]
Objective coefficients
csub = [0, 1, 2]
cval = [1.5, 2.5, 3.0]
We input the A matrix column-wise
asub contains row indexes
asub = [0, 1, 2,

0, 1, 2,
0, 1, 2]

acof contains coefficients
acof = [2.0, 3.0, 2.0,

4.0, 2.0, 3.0,
3.0, 3.0, 2.0]

aptrb and aptre contains the offsets into asub and acof where
columns start and end respectively
aptrb = [0, 3, 6]
aptre = [3, 6, 9]

numvar = len(bkx)
numcon = len(bkc)

Append the constraints
task.appendcons(numcon)

Append the variables.
task.appendvars(numvar)

(continues on next page)

53

(continued from previous page)

Input objective
task.putcfix(0.0)
task.putclist(csub, cval)

Put constraint bounds
task.putconboundslice(0, numcon, bkc, blc, buc)

Put variable bounds
task.putvarboundslice(0, numvar, bkx, blx, bux)

Input A non-zeros by columns
for j in range(numvar):

ptrb, ptre = aptrb[j], aptre[j]
task.putacol(j,

asub[ptrb:ptre],
acof[ptrb:ptre])

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.maximize)

Optimize the task
task.optimize()

Output a solution
xx = [0.] * numvar
task.getsolutionslice(mosek.soltype.bas,

mosek.solitem.xx,
0, numvar,
xx)

print("xx = {}".format(xx))

6.10.2 Changing the Linear Constraint Matrix
Suppose we want to change the time required for assembly of product 0 to 3 minutes. This corresponds
to setting 𝑎0,0 = 3, which is done by calling the function Task.putaij as shown below.

task.putaij(0, 0, 3.0)

The problem now has the form:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2

subject to 3𝑥0 + 4𝑥1 + 3𝑥2 ≤ 100000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 50000,
2𝑥0 + 3𝑥1 + 2𝑥2 ≤ 60000,

(6.24)

and

𝑥0, 𝑥1, 𝑥2 ≥ 0.

After this operation we can reoptimize the problem.

6.10.3 Appending Variables
We now want to add a new product with the following data:

Product no. Assembly (minutes) Polishing (minutes) Packing (minutes) Profit ($)
3 4 0 1 1.00

This corresponds to creating a new variable 𝑥3, appending a new column to the 𝐴 matrix and setting
a new term in the objective. We do this in Listing 6.39

54

Listing 6.39: How to add a new variable (column)

################### Add a new variable ######################
task.appendvars(1)
numvar+=1

Set bounds on new varaible
task.putvarbound(task.getnumvar() - 1,

mosek.boundkey.lo,
0,
+inf)

Change objective
task.putcj(task.getnumvar() - 1, 1.0)

Put new values in the A matrix
acolsub = [0, 2]
acolval = [4.0, 1.0]

task.putacol(task.getnumvar() - 1, # column index
acolsub,
acolval)

After this operation the new problem is:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2 + 1.0𝑥3

subject to 3𝑥0 + 4𝑥1 + 3𝑥2 + 4𝑥3 ≤ 100000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 50000,
2𝑥0 + 3𝑥1 + 2𝑥2 + 1𝑥3 ≤ 60000,

(6.25)

and

𝑥0, 𝑥1, 𝑥2, 𝑥3 ≥ 0.

6.10.4 Appending Constraints
Now suppose we want to add a new stage to the production process called Quality control for which
30000 minutes are available. The time requirement for this stage is shown below:

Product no. Quality control (minutes)
0 1
1 2
2 1
3 1

This corresponds to adding the constraint

𝑥0 + 2𝑥1 + 𝑥2 + 𝑥3 ≤ 30000

to the problem. This is done as follows.

Listing 6.40: Adding a new constraint.

############# Add a new constraint #######################
task.appendcons(1)
numcon+=1

Set bounds on new constraint
task.putconbound(task.getnumcon() - 1,

mosek.boundkey.up, -inf, 30000)

(continues on next page)

55

(continued from previous page)

Put new values in the A matrix
arowsub = [0, 1, 2, 3]
arowval = [1.0, 2.0, 1.0, 1.0]

task.putarow(task.getnumcon() - 1, # row index
arowsub,
arowval)

Again, we can continue with re-optimizing the modified problem.

6.10.5 Changing bounds
One typical reoptimization scenario is to change bounds. Suppose for instance that we must operate
with limited time resources, and we must change the upper bounds in the problem as follows:

Operation Time available (before) Time available (new)
Assembly 100000 80000
Polishing 50000 40000
Packing 60000 50000
Quality control 30000 22000

That means we would like to solve the problem:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2 + 1.0𝑥3

subject to 3𝑥0 + 4𝑥1 + 3𝑥2 + 4𝑥3 ≤ 80000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 40000,
2𝑥0 + 3𝑥1 + 2𝑥2 + 1𝑥3 ≤ 50000,
𝑥0 + 2𝑥1 + 𝑥2 + 𝑥3 ≤ 22000.

(6.26)

In this case all we need to do is redefine the upper bound vector for the constraints, as shown in the next
listing.

Listing 6.41: Change constraint bounds.

############# Change constraint bounds #######################
newbkc = [mosek.boundkey.up] * numcon
newblc = [-inf] * numcon
newbuc = [80000, 40000, 50000, 22000]

task.putconboundslice(0, numcon, newbkc, newblc, newbuc)

Again, we can continue with re-optimizing the modified problem.

6.10.6 Advanced hot-start
If the optimizer used the data from the previous run to hot-start the optimizer for reoptimization, this
will be indicated in the log:

Optimizer - hotstart : yes

When performing re-optimizations, instead of removing a basic variable it may be more efficient to
fix the variable at zero and then remove it when the problem is re-optimized and it has left the basis.
This makes it easier for MOSEK to restart the simplex optimizer.

6.11 Parallel optimization

In this section we demonstrate the simplest possible multi-threading setup to run multiple MOSEK
optimizations in parallel. All tasks must be created using the same MOSEK environment. One license
token checked out by the environment will be shared by the tasks.

We first define a simple method that runs a number of optimization tasks in parallel, using the
standard multi-threading setup available in the language.

56

Listing 6.42: Parallel optimization of a list of tasks.

A run method to optimize a single task
def runTask(num, task, res, trm):

try:
trm[num] = task.optimize();
res[num] = mosek.rescode.ok

except mosek.MosekException as e:
trm[num] = mosek.rescode.err_unknown
res[num] = e.errno

Takes a list of tasks and optimizes them in parallel threads. The
response code and termination code from each optimization is
stored in ``res`` and ``trm``.
def paropt(tasks):

n = len(tasks)
res = [mosek.rescode.err_unknown] * n
trm = [mosek.rescode.err_unknown] * n

Start parallel optimizations, one per task
jobs = [Thread(target=runTask, args=(i, tasks[i], res, trm)) for i in range(n)]
for j in jobs:

j.start()
for j in jobs:

j.join()

return res, trm

It remains to call the method with a few different tasks. When optimizing many task in parallel it
usually makes sense to solve each task using one thread to avoid additional multitasking overhead. When
all tasks complete we access the solutions in the standard way.

Listing 6.43: Calling the parallel optimizer.

Example of how to use ``paropt``.
Optimizes tasks whose names were read from command line.
def main(argv):

n = len(argv) - 1
tasks = []

with mosek.Env() as env:
for i in range(n):

t = mosek.Task(env, 0, 0)
t.readdata(argv[i+1])
Each task will be single-threaded
t.putintparam(mosek.iparam.intpnt_multi_thread, mosek.onoffkey.off)
tasks.append(t)

res, trm = paropt(tasks)

for i in range(n):
print("Task {0} res {1} trm {2} obj_val {3} time {4}".format(

i,
res[i],
trm[i],
tasks[i].getdouinf(mosek.dinfitem.intpnt_primal_obj),
tasks[i].getdouinf(mosek.dinfitem.optimizer_time)))

Another, slightly more advanced application of the parallel optimizer is presented in Sec. 11.3.
For a more in-depth treatment see the following sections:

• Case studies for more advanced and complicated optimization examples.

• Problem Formulation and Solutions for formal mathematical formulations of problems MOSEK

57

can solve, dual problems and infeasibility certificates.

58

Chapter 7

Solver Interaction Tutorials

In this section we cover the interaction with the solver.

7.1 Accessing the solution

This section contains important information about the status of the solver and the status of the solution,
which must be checked in order to properly interpret the results of the optimization.

7.1.1 Solver termination
The optimizer provides two status codes relevant for error handling:

• Response code of type rescode . It indicates if any unexpected error (such as an out of memory
error, licensing error etc.) has occurred. The expected value for a successful optimization is
rescode.ok .

• Termination code: It provides information about why the optimizer terminated, for instance if
a predefined time limit has been reached. These are not errors, but ordinary events that can be
expected (depending on parameter settings and the type of optimizer used).

If the optimization was successful then the method Task.optimize returns normally and its output
is the termination code. If an error occurs then the method throws an exception, which contains the
response code. See Sec. 7.2 for how to access it.

If a runtime error causes the program to crash during optimization, the first debugging step is to
enable logging and check the log output. See Sec. 7.3.

If the optimization completes successfully, the next step is to check the solution status, as explained
below.

7.1.2 Available solutions
MOSEK uses three kinds of optimizers and provides three types of solutions:

• basic solution from the simplex optimizer,

• interior-point solution from the interior-point optimizer,

• integer solution from the mixed-integer optimizer.

Under standard parameters settings the following solutions will be available for various problem types:

Table 7.1: Types of solutions available from MOSEK
Simplex opti-
mizer

Interior-point opti-
mizer

Mixed-integer opti-
mizer

Linear problem soltype.bas soltype.itr
Nonlinear continuous prob-
lem

soltype.itr

Problem with integer vari-
ables

soltype.itg

59

For linear problems the user can force a specific optimizer choice making only one of the two solutions
available. For example, if the user disables basis identification, then only the interior point solution will
be available for a linear problem. Numerical issues may cause one of the solutions to be unknown even
if another one is feasible.

Not all components of a solution are always available. For example, there is no dual solution for
integer problems and no dual conic variables from the simplex optimizer.

The user will always need to specify which solution should be accessed.

7.1.3 Problem and solution status
Assuming that the optimization terminated without errors, the next important step is to check the
problem and solution status. There is one for every type of solution, as explained above.

Problem status

Problem status (prosta) determines whether the problem is certified as feasible. Its values can
roughly be divided into the following broad categories:

• feasible — the problem is feasible. For continuous problems and when the solver is run with
default parameters, the feasibility status should ideally be prosta.prim_and_dual_feas .

• primal/dual infeasible — the problem is infeasible or unbounded or a combination of those.
The exact problem status will indicate the type of infeasibility.

• unknown — the solver was unable to reach a conclusion, most likely due to numerical issues.

Solution status

Solution status (solsta) provides the information about what the solution values actually contain.
The most important broad categories of values are:

• optimal (solsta.optimal) — the solution values are feasible and optimal.

• certificate — the solution is in fact a certificate of infeasibility (primal or dual, depending on the
solution).

• unknown/undefined — the solver could not solve the problem or this type of solution is not
available for a given problem.

Problem and solution status for each solution can be retrieved with Task.getprosta and Task.
getsolsta , respectively.

The solution status determines the action to be taken. For example, in some cases a suboptimal
solution may still be valuable and deserve attention. It is the user’s responsibility to check the status
and quality of the solution.

Typical status reports

Here are the most typical optimization outcomes described in terms of the problem and solution
statuses. Note that these do not cover all possible situations that can occur.

Table 7.2: Continuous problems (solution status for interior-point
and basic solution)

Outcome Problem status Solution status
Optimal prosta.

prim_and_dual_feas
solsta.optimal

Primal infeasible prosta.prim_infeas solsta.
prim_infeas_cer

Dual infeasible (unbounded) prosta.dual_infeas solsta.
dual_infeas_cer

Uncertain (stall, numerical issues, etc.) prosta.unknown solsta.unknown

60

Table 7.3: Integer problems (solution status for integer solution,
others undefined)

Outcome Problem status Solution status
Integer optimal prosta.prim_feas solsta.integer_optimal
Infeasible prosta.prim_infeas solsta.unknown
Integer feasible point prosta.prim_feas solsta.prim_feas
No conclusion prosta.unknown solsta.unknown

7.1.4 Retrieving solution values
After the meaning and quality of the solution (or certificate) have been established, we can query for the
actual numerical values. They can be accessed using:

• Task.getprimalobj , Task.getdualobj — the primal and dual objective value.

• Task.getxx — solution values for the variables.

• Task.getsolution — a full solution with primal and dual values

and many more specialized methods, see the API reference.

7.1.5 Source code example
Below is a source code example with a simple framework for assessing and retrieving the solution to a
conic optimization problem.

Listing 7.1: Sample framework for checking optimization result.

import mosek
import sys

A log message
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main(args):
filename = args[0] if len(args) >= 1 else "../data/cqo1.mps"

try:
Create environment and task
with mosek.Env() as env:

with env.Task(0, 0) as task:
(Optional) set a log stream
task.set_Stream(mosek.streamtype.log, streamprinter)

(Optional) uncomment to see what happens when solution status is unknown
task.putintparam(mosek.iparam.intpnt_max_iterations, 1)

In this example we read data from a file
task.readdata(filename)

Optimize
trmcode = task.optimize()
task.solutionsummary(mosek.streamtype.log)

We expect solution status OPTIMAL
solsta = task.getsolsta(mosek.soltype.itr)

if solsta == mosek.solsta.optimal:
Optimal solution. Fetch and print it.

(continues on next page)

61

(continued from previous page)

print("An optimal interior-point solution is located.")
numvar = task.getnumvar()
xx = [0.0] * numvar
task.getxx(mosek.soltype.itr, xx)
for i in range(numvar):

print("x[{0}] = {1}".format(i, xx[i]))

elif solsta == mosek.solsta.dual_infeas_cer:
print("Dual infeasibility certificate found.")

elif solsta == mosek.solsta.prim_infeas_cer:
print("Primal infeasibility certificate found.")

elif solsta == mosek.solsta.unknown:
The solutions status is unknown. The termination code
indicates why the optimizer terminated prematurely.
print("The solution status is unknown.")
symname, desc = mosek.Env.getcodedesc(trmcode)
print(" Termination code: {0} {1}".format(symname, desc))

else:
print("An unexpected solution status {0} is obtained.".format(str(solsta)))

except mosek.Error as e:
print("Unexpected error ({0}) {1}".format(e.errno, e.msg))

if __name__ == '__main__':
main(sys.argv[1:])

7.2 Errors and exceptions

Exceptions

Almost every function in Optimizer API for Python can throw an exception informing that the
requested operation was not performed correctly, and indicating the type of error that occurred. This is
the case in situations such as for instance:

• referencing a nonexisting variable (for example with too large index),

• defining an invalid value for a parameter,

• accessing an undefined solution,

• repeating a variable name, etc.

It is therefore a good idea to catch exceptions of type Error . The one case where it is extremely
important to do so is when Task.optimize is invoked. We will say more about this in Sec. 7.1.

The exception contains a response code (element of the enum rescode) and short diagnostic messages.
They can be accessed as in the following example.

try:
task.putdouparam(mosek.dparam.intpnt_co_tol_rel_gap, -1.0e-7)

except mosek.Error as e:
print("Response code {0}\nMessage {1}".format(e.errno, e.msg))

It will produce as output:

Response code rescode.err_param_is_too_small
Message The parameter value -1e-07 is too small for parameter 'MSK_DPAR_INTPNT_CO_TOL_
→˓REL_GAP'.

Another way to obtain a human-readable string corresponding to a response code is the method Env.
getcodedesc . A full list of exceptions, as well as response codes, can be found in the API reference.

62

Optimizer errors and warnings

The optimizer may also produce warning messages. They indicate non-critical but important events,
that will not prevent solver execution, but may be an indication that something in the optimization
problem might be improved. Warning messages are normally printed to a log stream (see Sec. 7.3). A
typical warning is, for example:

MOSEK warning 53: A numerically large upper bound value 6.6e+09 is specified for constraint
→˓'C69200' (46020).

Warnings can also be suppressed by setting the iparam.max_num_warnings parameter to zero, if
they are well-understood.

Error and solution status handling example

Below is a source code example with a simple framework for handling major errors when assessing
and retrieving the solution to a conic optimization problem.

Listing 7.2: Sample framework for checking optimization result.

import mosek
import sys

A log message
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main(args):
filename = args[0] if len(args) >= 1 else "../data/cqo1.mps"

try:
Create environment and task
with mosek.Env() as env:

with env.Task(0, 0) as task:
(Optional) set a log stream
task.set_Stream(mosek.streamtype.log, streamprinter)

(Optional) uncomment to see what happens when solution status is unknown
task.putintparam(mosek.iparam.intpnt_max_iterations, 1)

In this example we read data from a file
task.readdata(filename)

Optimize
trmcode = task.optimize()
task.solutionsummary(mosek.streamtype.log)

We expect solution status OPTIMAL
solsta = task.getsolsta(mosek.soltype.itr)

if solsta == mosek.solsta.optimal:
Optimal solution. Fetch and print it.
print("An optimal interior-point solution is located.")
numvar = task.getnumvar()
xx = [0.0] * numvar
task.getxx(mosek.soltype.itr, xx)
for i in range(numvar):

print("x[{0}] = {1}".format(i, xx[i]))

elif solsta == mosek.solsta.dual_infeas_cer:
print("Dual infeasibility certificate found.")

(continues on next page)

63

(continued from previous page)

elif solsta == mosek.solsta.prim_infeas_cer:
print("Primal infeasibility certificate found.")

elif solsta == mosek.solsta.unknown:
The solutions status is unknown. The termination code
indicates why the optimizer terminated prematurely.
print("The solution status is unknown.")
symname, desc = mosek.Env.getcodedesc(trmcode)
print(" Termination code: {0} {1}".format(symname, desc))

else:
print("An unexpected solution status {0} is obtained.".format(str(solsta)))

except mosek.Error as e:
print("Unexpected error ({0}) {1}".format(e.errno, e.msg))

if __name__ == '__main__':
main(sys.argv[1:])

7.3 Input/Output

The logging and I/O features are provided mainly by the MOSEK task and to some extent by the
MOSEK environment objects.

7.3.1 Stream logging
By default the solver runs silently and does not produce any output to the console or otherwise. However,
the log output can be redirected to a user-defined output stream or stream callback function. The log
output is analogous to the one produced by the command-line version of MOSEK.

The log messages are partitioned in three streams:

• messages, streamtype.msg

• warnings, streamtype.wrn

• errors, streamtype.err

These streams are aggregated in the streamtype.log stream. A stream handler can be defined for
each stream separately.

A stream handler is simply a user-defined function of type streamfunc that accepts a string, for
example:

def myStream(msg):
sys.stdout.write(msg)
sys.stdout.flush()

It is attached to a stream as follows:

task.set_Stream(streamtype.log,myStream)

The stream can be detached by calling

task.set_Stream(streamtype.log,None)

After optimization is completed an additional short summary of the solution and optimization process
can be printed to any stream using the method Task.solutionsummary .

7.3.2 Log verbosity
The logging verbosity can be controlled by setting the relevant parameters, as for instance

64

• iparam.log ,

• iparam.log_intpnt ,

• iparam.log_mio ,

• iparam.log_cut_second_opt ,

• iparam.log_sim , and

• iparam.log_sim_minor .

Each parameter controls the output level of a specific functionality or algorithm. The main switch is
iparam.log which affect the whole output. The actual log level for a specific functionality is determined
as the minimum between iparam.log and the relevant parameter. For instance, the log level for the
output produce by the interior-point algorithm is tuned by the iparam.log_intpnt ; the actual log level
is defined by the minimum between iparam.log and iparam.log_intpnt .

Tuning the solver verbosity may require adjusting several parameters. It must be noticed that verbose
logging is supposed to be of interest during debugging and tuning. When output is no more of interest,
the user can easily disable it globally with iparam.log . Larger values of iparam.log do not necessarily
result in increased output.

By default MOSEK will reduce the amount of log information after the first optimization on a given
problem. To get full log output on subsequent re-optimizations set iparam.log_cut_second_opt to
zero.

7.3.3 Saving a problem to a file
An optimization problem can be dumped to a file using the method Task.writedata . The file format
will be determined from the extension of the filename. Supported formats are listed in Sec. 16 together
with a table of problem types supported by each.

For instance the problem can be written to an OPF file with

task.writedata("data.opf")

All formats can be compressed with gzip by appending the .gz extension, for example

task.writedata("data.task.gz")

Some remarks:

• Unnamed variables are given generic names. It is therefore recommended to use meaningful variable
names if the problem file is meant to be human-readable.

• The task format is MOSEK’s native file format which contains all the problem data as well as
solver settings.

7.3.4 Reading a problem from a file
A problem saved in any of the supported file formats can be read directly into a task using Task.
readdata . The task must be created in advance. Afterwards the problem can be optimized, modified,
etc. If the file contained solutions, then are also imported, but the status of any solution will be set to
solsta.unknown (solutions can also be read separately using Task.readsolution). If the file contains
parameters, they will be set accordingly.

task = env.Task()
try:

task.readdata("file.task.gz")
task.optimize()

except mosek.Error:
print("Problem reading the file")

65

7.4 Setting solver parameters

MOSEK comes with a large number of parameters that allows the user to tune the behavior of the
optimizer. The typical settings which can be changed with solver parameters include:

• choice of the optimizer for linear problems,

• choice of primal/dual solver,

• turning presolve on/off,

• turning heuristics in the mixed-integer optimizer on/off,

• level of multi-threading,

• feasibility tolerances,

• solver termination criteria,

• behaviour of the license manager,

and more. All parameters have default settings which will be suitable for most typical users.
The API reference contains:

• Full list of parameters

• List of parameters grouped by topic

Setting parameters

Each parameter is identified by a unique name. There are three types of parameters depending on
the values they take:

• Integer parameters. They take either either simple integer values or values from an enumeration
provided for readability and compatibility of the code. Set with Task.putintparam .

• Double (floating point) parameters. Set with Task.putdouparam .

• String parameters. Set with Task.putstrparam .

There are also parameter setting functions which operate fully on symbolic strings containing generic
command-line style names of parameters and their values. See the example below. The optimizer will
try to convert the given argument to the exact expected type, and will error if that fails.

If an incorrect value is provided then the parameter is left unchanged.
For example, the following piece of code sets up parameters which choose and tune the interior point

optimizer before solving a problem.

Listing 7.3: Parameter setting example.

Set log level (integer parameter)
task.putintparam(mosek.iparam.log, 1)
Select interior-point optimizer... (integer parameter)
task.putintparam(mosek.iparam.optimizer, mosek.optimizertype.intpnt)
... without basis identification (integer parameter)
task.putintparam(mosek.iparam.intpnt_basis, mosek.basindtype.never)
Set relative gap tolerance (double parameter)
task.putdouparam(mosek.dparam.intpnt_co_tol_rel_gap, 1.0e-7)

The same using explicit string names
task.putparam ("MSK_DPAR_INTPNT_CO_TOL_REL_GAP", "1.0e-7")
task.putnadouparam("MSK_DPAR_INTPNT_CO_TOL_REL_GAP", 1.0e-7)

Incorrect value
try:

task.putdouparam(mosek.dparam.intpnt_co_tol_rel_gap, -1.0)
except:

print('Wrong parameter value')

66

Reading parameter values

The functions Task.getintparam , Task.getdouparam , Task.getstrparam can be used to inspect
the current value of a parameter, for example:

param = task.getdouparam(mosek.dparam.intpnt_co_tol_rel_gap)
print('Current value for parameter intpnt_co_tol_rel_gap = {}'.format(param))

7.5 Retrieving information items

After the optimization the user has access to the solution as well as to a report containing a large amount
of additional information items. For example, one can obtain information about:

• timing: total optimization time, time spent in various optimizer subroutines, number of iterations,
etc.

• solution quality: feasibility measures, solution norms, constraint and bound violations, etc.

• problem structure: counts of variables of different types, constraints, nonzeros, etc.

• integer optimizer: integrality gap, objective bound, number of cuts, etc.

and more. Information items are numerical values of integer, long integer or double type. The full
list can be found in the API reference:

• Double

• Integer

• Long

Certain information items make sense, and are made available, also during the optimization process.
They can be accessed from a callback function, see Sec. 7.6 for details.

Remark

For efficiency reasons, not all information items are automatically computed after optimization. To
force all information items to be updated use the parameter iparam.auto_update_sol_info .

Retrieving the values

Values of information items are fetched using one of the methods

• Task.getdouinf for a double information item,

• Task.getintinf for an integer information item,

• Task.getlintinf for a long integer information item.

Each information item is identified by a unique name. The example below reads two pieces of data
from the solver: total optimization time and the number of interior-point iterations.

Listing 7.4: Information items example.

tm = task.getdouinf(mosek.dinfitem.optimizer_time)
it = task.getintinf(mosek.iinfitem.intpnt_iter)

print('Time: {0}\nIterations: {1}'.format(tm,it))

67

7.6 Progress and data callback

Callbacks are a very useful mechanism that allow the caller to track the progress of the MOSEK
optimizer. A callback function provided by the user is regularly called during the optimization and can
be used to

• obtain a customized log of the solver execution,

• collect information for debugging purposes or

• ask the solver to terminate.

Optimizer API for Python has the following callback mechanisms:

• progress callback, which provides only the basic status of the solver.

• data callback, which provides the solver status and a complete set of information items that
describe the progress of the optimizer in detail.

Warning

The callbacks functions must not invoke any functions of the solver, environment or task. Otherwise
the state of the solver and its outcome are undefined. The only exception is the possibility to retrieve
an integer solution, see below.

Retrieving mixed-integer solutions

If the mixed-integer optimizer is used, the callback will take place, in particular, every time an
improved integer solution is found. In that case it is possible to retrieve the current values of the best
integer solution from within the callback function. It can be useful for implementing complex termination
criteria for integer optimization. The example in Listing 7.5 shows how to do it by handling the callback
code callbackcode.new_int_mio .

7.6.1 Data callback
In the data callback MOSEK passes a callback code and values of all information items to a user-defined
function. The callback function is called, in particular, at the beginning of each iteration of the interior-
point optimizer. For the simplex optimizers iparam.log_sim_freq controls how frequently the call-back
is called. Note that the callback is done quite frequently, which can lead to degraded performance. If
the information items are not required, the simpler progress callback may be a better choice.

The callback is set by calling the method Task.set_InfoCallback and providing a handle to a
user-defined function callbackfunc .

Non-zero return value of the callback function indicates that the optimizer should be terminated.

7.6.2 Progress callback
In the progress callback MOSEK provides a single code indicating the current stage of the optimization
process.

The callback is set by calling the method Task.set_Progress and providing a handle to a user-
defined function progresscallbackfunc .

Non-zero return value of the callback function indicates that the optimizer should be terminated.

7.6.3 Working example: Data callback
The following example defines a data callback function that prints out some of the information items. It
interrupts the solver after a certain time limit.

68

Listing 7.5: An example of a data callback function.

def makeUserCallback(maxtime, task):
xx = numpy.zeros(task.getnumvar()) # Space for integer solutions

def userCallback(caller,
douinf,
intinf,
lintinf):

opttime = 0.0

if caller == callbackcode.begin_intpnt:
print("Starting interior-point optimizer")

elif caller == callbackcode.intpnt:
itrn = intinf[iinfitem.intpnt_iter]
pobj = douinf[dinfitem.intpnt_primal_obj]
dobj = douinf[dinfitem.intpnt_dual_obj]
stime = douinf[dinfitem.intpnt_time]
opttime = douinf[dinfitem.optimizer_time]

print("Iterations: %-3d" % itrn)
print(" Elapsed time: %6.2f(%.2f) " % (opttime, stime))
print(" Primal obj.: %-18.6e Dual obj.: %-18.6e" % (pobj, dobj))

elif caller == callbackcode.end_intpnt:
print("Interior-point optimizer finished.")

elif caller == callbackcode.begin_primal_simplex:
print("Primal simplex optimizer started.")

elif caller == callbackcode.update_primal_simplex:
itrn = intinf[iinfitem.sim_primal_iter]
pobj = douinf[dinfitem.sim_obj]
stime = douinf[dinfitem.sim_time]
opttime = douinf[dinfitem.optimizer_time]

print("Iterations: %-3d" % itrn)
print(" Elapsed time: %6.2f(%.2f)" % (opttime, stime))
print(" Obj.: %-18.6e" % pobj)

elif caller == callbackcode.end_primal_simplex:
print("Primal simplex optimizer finished.")

elif caller == callbackcode.begin_dual_simplex:
print("Dual simplex optimizer started.")

elif caller == callbackcode.update_dual_simplex:
itrn = intinf[iinfitem.sim_dual_iter]
pobj = douinf[dinfitem.sim_obj]
stime = douinf[dinfitem.sim_time]
opttime = douinf[dinfitem.optimizer_time]
print("Iterations: %-3d" % itrn)
print(" Elapsed time: %6.2f(%.2f)" % (opttime, stime))
print(" Obj.: %-18.6e" % pobj)

elif caller == callbackcode.end_dual_simplex:
print("Dual simplex optimizer finished.")

elif caller == callbackcode.new_int_mio:
print("New integer solution has been located.")
task.getxx(soltype.itg, xx)
print(xx)
print("Obj.: %f" % douinf[dinfitem.mio_obj_int])

else:
pass

if opttime >= maxtime:
mosek is spending too much time. Terminate it.
print("Terminating.")
return 1

(continues on next page)

69

(continued from previous page)

return 0
return userCallback

Assuming that we have defined a task task and a time limit maxtime, the callback function is attached
as follows:

Listing 7.6: Attaching the data callback function to the model.

usercallback = makeUserCallback(maxtime=0.05, task=task)
task.set_InfoCallback(usercallback)

7.7 MOSEK OptServer

MOSEK provides an easy way to offload optimization problem to a remote server. This section demon-
strates related functionalities from the client side, i.e. sending optimization tasks to the remote server
and retrieving solutions.

Setting up and configuring the remote server is described in a separate manual for the OptServer.

7.7.1 Synchronous Remote Optimization
In synchronous mode the client sends an optimization problem to the server and blocks, waiting for the
optimization to end. Once the result has been received, the program can continue. This is the simplest
mode all it takes is to provide the address of the server before starting optimization. The rest of the
code remains untouched.

Note that it is impossible to recover the job in case of a broken connection.

Source code example

Listing 7.7: Using the OptServer in synchronous mode.

import mosek
import sys

def streamprinter(msg):
sys.stdout.write(msg)
sys.stdout.flush()

if len(sys.argv) <= 2:
print("Missing argument, syntax is:")
print(" opt_server_sync inputfile serveraddr")

else:

inputfile = sys.argv[1]
addr = sys.argv[2]

Create the mosek environment.
with mosek.Env() as env:

Create a task object linked with the environment env.
We create it with 0 variables and 0 constraints initially,
since we do not know the size of the problem.
with env.Task(0, 0) as task:

task.set_Stream(mosek.streamtype.log, streamprinter)

We assume that a problem file was given as the first command
line argument (received in `argv')
task.readdata(inputfile)

(continues on next page)

70

(continued from previous page)

Set OptServer URL
task.putoptserverhost(addr)

Solve the problem remotely
trm = task.optimize()

Print a summary of the solution
task.solutionsummary(mosek.streamtype.log)

7.7.2 Asynchronous Remote Optimization
In asynchronous mode the client sends a job to the remote server and the execution of the client code
continues. In particular, it is the client’s responsibility to periodically check the optimization status and,
when ready, fetch the results. The client can also interrupt optimization. The most relevant methods
are:

• Task.asyncoptimize : Offload the optimization task to a solver server.

• Task.asyncpoll : Request information about the status of the remote job.

• Task.asyncgetresult : Request the results from a completed remote job.

• Task.asyncstop : Terminate a remote job.

Source code example

In the example below the program enters in a polling loop that regularly checks whether the result
of the optimization is available.

Listing 7.8: Using the OptServer in asynchronous mode.

import mosek
import sys
import time

def streamprinter(msg):
sys.stdout.write(msg)
sys.stdout.flush()

if len(sys.argv) != 5:
print("Missing argument, syntax is:")
print(" opt-server-async inputfile host port numpolls")

else:

filename = sys.argv[1]
host = sys.argv[2]
port = sys.argv[3]
numpolls = int(sys.argv[4])
token = None

with mosek.Env() as env:

with env.Task(0, 0) as task:

print("reading task from file")
task.readdata(filename)

print("Solve the problem remotely (async)")
token = task.asyncoptimize(host, port)

(continues on next page)

71

(continued from previous page)

print("Task token: %s" % token)

with env.Task(0, 0) as task:

task.readdata(filename)

task.set_Stream(mosek.streamtype.log, streamprinter)

i = 0

while i < numpolls:

time.sleep(0.1)

print("poll %d..." % i)
respavailable, res, trm = task.asyncpoll(host,

port,
token)

print("done!")

if respavailable:
print("solution available!")

respavailable, res, trm = task.asyncgetresult(host,
port,
token)

task.solutionsummary(mosek.streamtype.log)
break

i = i + 1

if i == numpolls:
print("max number of polls reached, stopping host.")
task.asyncstop(host, port, token)

72

Chapter 8

Debugging Tutorials

This collection of tutorials contains basic techniques for debugging optimization problems using tools
available in MOSEK: optimizer log, solution summary, infeasibility report, command-line tools. It is
intended as a first line of technical help for issues such as: Why do I get solution status unknown and
how can I fix it? Why is my model infeasible while it shouldn’t be? Should I change some parameters?
Can the model solve faster? etc.

The major steps when debugging a model are always:

• Enable log output. See Sec. 7.3.1 for how to do it. In the simplest case:

Create a log handler function:

def myStream(msg):
sys.stdout.write(msg)
sys.stdout.flush()

attach it to the log stream:

task.set_Stream(streamtype.log,myStream)

and include solution summary after the call to optimize:

task.optimize()
task.solutionsummary(streamtype.log)

• Run the optimization and analyze the log output, see Sec. 8.1. In particular:

– check if the problem setup (number of constraints/variables etc.) matches your expectation.

– check solution summary and solution status.

• Dump the problem to disk if necessary to continue analysis. See Sec. 7.3.3.

– use a human-readable text format, such as *.opf if you want to check the problem structure
by hand. Assign names to variables and constraints to make them easier to identify.

task.writedata("data.opf")

– use the MOSEK native format *.task.gz when submitting a bug report or support question.

task.writedata("data.task.gz")

• Fix problem setup, improve the model, locate infeasibility or adjust parameters, depending on the
diagnosis.

See the following sections for details.

73

8.1 Understanding optimizer log

The optimizer produces a log which splits roughly into four sections:

1. summary of the input data,

2. presolve and other pre-optimize problem setup stages,

3. actual optimizer iterations,

4. solution summary.

In this tutorial we show how to analyze the most important parts of the log when initially debugging
a model: input data (1) and solution summary (4). For the iterations log (3) see Sec. 13.3.4 or Sec.
13.4.8.

8.1.1 Input data
If MOSEK behaves very far from expectations it may be due to errors in problem setup. The log file
will begin with a summary of the structure of the problem, which looks for instance like:

Problem
Name :
Objective sense : max
Type : CONIC (conic optimization problem)
Constraints : 20413
Cones : 2508
Scalar variables : 20414
Matrix variables : 0
Integer variables : 0

This can be consulted to eliminate simple errors: wrong objective sense, wrong number of variables
etc. Note that Fusion, and third-party modeling tools can introduce additional variables and constraints
to the model. In the remaining MOSEK APIs the problem dimensions should match exactly what the
user specified.

If this is not sufficient a bit more information can be obtained by dumping the problem to a file (see
Sec. 8) and using the anapro option of any of the command line tools. It can also be done directly with
the function Task.analyzeproblem . This will produce a longer summary similar to:

** Variables
scalar: 20414 integer: 0 matrix: 0
low: 2082 up: 5014 ranged: 0 free: 12892 fixed: 426

** Constraints
all: 20413
low: 10028 up: 0 ranged: 0 free: 0 fixed: 10385

** Cones
QUAD: 1 dims: 2865: 1
RQUAD: 2507 dims: 3: 2507

** Problem data (numerics)
|c| nnz: 10028 min=2.09e-05 max=1.00e+00
|A| nnz: 597023 min=1.17e-10 max=1.00e+00
blx fin: 2508 min=-3.60e+09 max=2.75e+05
bux fin: 5440 min=0.00e+00 max=2.94e+08
blc fin: 20413 min=-7.61e+05 max=7.61e+05
buc fin: 10385 min=-5.00e-01 max=0.00e+00

Again, this can be used to detect simple errors, such as:

• Wrong type of cone was used or it has wrong dimension.

• The bounds for variables or constraints are incorrect or incomplete. Check if you defined bound
keys for all variables. A variable for which no bound was defined is by default fixed at 0.

74

• The model is otherwise incomplete.

• Suspicious values of coefficients.

• For various data sizes the model does not scale as expected.

Finally saving the problem in a human-friendly text format such as LP or OPF (see Sec. 8) and
analyzing it by hand can reveal if the model is correct.

Warnings and errors

At this stage the user can encounter warnings which should not be ignored, unless they are well-
understood. They can also serve as hints as to numerical issues with the problem data. A typical
warning of this kind is

MOSEK warning 53: A numerically large upper bound value 2.9e+08 is specified for variable
→˓'absh[107]' (2613).

Warnings do not stop the problem setup. If, on the other hand, an error occurs then the model will
become invalid. The user should make sure to test for errors/exceptions from all API calls that set up
the problem and validate the data. See Sec. 7.2 for more details.

8.1.2 Solution summary
The last item in the log is the solution summary. In the Optimizer API it is only printed by invoking
the function Task.solutionsummary .

Continuous problem

Optimal solution

A typical solution summary for a continuous (linear, conic, quadratic) problem looks like:

Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 8.7560516107e+01 nrm: 1e+02 Viol. con: 3e-12 var: 0e+00 cones: 3e-11
Dual. obj: 8.7560521345e+01 nrm: 1e+00 Viol. con: 5e-09 var: 9e-11 cones: 0e+00

It contains the following elements:

• Problem and solution status. For details see Sec. 7.1.3.

• A summary of the primal solution: objective value, infinity norm of the solution vector xx, maximal
violations of constraints, variable bounds and cones. The violation of a linear constraint such as
𝑎𝑇𝑥 ≤ 𝑏 is max(𝑎𝑇𝑥− 𝑏, 0). The violation of a conic constraint 𝑥 ∈ 𝒦 is the distance dist(𝑥,𝒦).

• The same for the dual solution.

The features of the solution summary which characterize a very good and accurate solution and a
well-posed model are:

• Status: The solution status is OPTIMAL.

• Duality gap: The primal and dual objective values are (almost) identical, which proves the
solution is (almost) optimal.

• Norms: Ideally the norms of the solution and the objective values should not be too large. This of
course depends on the input data, but a huge solution norm can be an indicator of issues with the
scaling, conditioning and/or well-posedness of the model. It may also indicate that the problem is
borderline between feasibility and infeasibility and sensitive to small perturbations in this respect.

• Violations: The violations are close to zero, which proves the solution is (almost) feasible. Observe
that due to rounding errors it can be expected that the violations are proportional to the norm
(nrm:) of the solution. It is rarely the case that violations are exactly zero.

75

Solution status UNKNOWN

A typical example with solution status UNKNOWN due to numerical problems will look like:

Problem status : UNKNOWN
Solution status : UNKNOWN
Primal. obj: 1.3821656824e+01 nrm: 1e+01 Viol. con: 2e-03 var: 0e+00 cones: 0e+00
Dual. obj: 3.0119004098e-01 nrm: 5e+07 Viol. con: 4e-16 var: 1e-01 cones: 0e+00

Note that:

• The primal and dual objective are very different.

• The dual solution has very large norm.

• There are considerable violations so the solution is likely far from feasible.

Follow the hints in Sec. 8.2 to resolve the issue.

Solution status UNKNOWN with a potentially useful solution

Solution status UNKNOWN does not necessarily mean that the solution is completely useless. It only
means that the solver was unable to make any more progress due to numerical difficulties, and it was not
able to reach the accuracy required by the termination criteria (see Sec. 13.3.2). Consider for instance:

Problem status : UNKNOWN
Solution status : UNKNOWN
Primal. obj: 3.4531019648e+04 nrm: 1e+05 Viol. con: 7e-02 var: 0e+00 cones: 0e+00
Dual. obj: 3.4529720645e+04 nrm: 8e+03 Viol. con: 1e-04 var: 2e-04 cones: 0e+00

Such a solution may still be useful, and it is always up to the user to decide. It may be a good enough
approximation of the optimal point. For example, the large constraint violation may be due to the fact
that one constraint contained a huge coefficient.

Infeasibility certificate

A primal infeasibility certificate is stored in the dual variables:

Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 2.9238975853e+02 nrm: 6e+02 Viol. con: 0e+00 var: 1e-11 cones: 0e+00

It is a Farkas-type certificate as described in Sec. 12.2.2. In particular, for a good certificate:

• The dual objective is positive for a minimization problem, negative for a maximization problem.
Ideally it is well bounded away from zero.

• The norm is not too big and the violations are small (as for a solution).

If the model was not expected to be infeasible, the likely cause is an error in the problem formulation.
Use the hints in Sec. 8.1.1 and Sec. 8.3 to locate the issue.

Just like a solution, the infeasibility certificate can be of better or worse quality. The infeasibility
certificate above is very solid. However, there can be less clear-cut cases, such as for example:

Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 1.6378689238e-06 nrm: 6e+05 Viol. con: 7e-03 var: 2e-04 cones: 0e+00

This infeasibility certificate is more dubious because the dual objective is positive, but barely so in
comparison with the large violations. It also has rather large norm. This is more likely an indication
that the problem is borderline between feasibility and infeasibility or simply ill-posed and sensitive to
tiny variations in input data. See Sec. 8.3 and Sec. 8.2.

The same remarks apply to dual infeasibility (i.e. unboundedness) certificates. Here the primal
objective should be negative a minimization problem and positive for a maximization problem.

76

8.1.3 Mixed-integer problem

Optimal integer solution

For a mixed-integer problem there is no dual solution and a typical optimal solution report will look
as follows:

Problem status : PRIMAL_FEASIBLE
Solution status : INTEGER_OPTIMAL
Primal. obj: 6.0111122960e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-14 itg: 5e-15

The interpretation of all elements is as for a continuous problem. The additional field itg denotes
the maximum violation of an integer variable from being an exact integer.

Feasible integer solution

If the solver found an integer solution but did not prove optimality, for instance because of a time
limit, the solution status will be PRIMAL_FEASIBLE:

Problem status : PRIMAL_FEASIBLE
Solution status : PRIMAL_FEASIBLE
Primal. obj: 6.0114607792e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-13 itg: 4e-15

In this case it is valuable to go back to the optimizer summary to see how good the best solution is:

31 35 1 0 6.0114607792e+06 6.0078960892e+06 0.06 4.1

Objective of best integer solution : 6.011460779193e+06
Best objective bound : 6.007896089225e+06

In this case the best integer solution found has objective value 6.011460779193e+06, the best proved
lower bound is 6.007896089225e+06 and so the solution is guaranteed to be within 0.06% from optimum.
The same data can be obtained as information items through an API. See also Sec. 13.4 for more details.

Infeasible problem

If the problem is declared infeasible the summary is simply

Problem status : PRIMAL_INFEASIBLE
Solution status : UNKNOWN
Primal. obj: 0.0000000000e+00 nrm: 0e+00 Viol. con: 0e+00 var: 0e+00 itg: 0e+00

If infeasibility was not expected, consult Sec. 8.3.

8.2 Addressing numerical issues

The suggestions in this section should help diagnose and solve issues with numerical instability, in
particular UNKNOWN solution status or solutions with large violations. Since numerically stable models
tend to solve faster, following these hints can also dramatically shorten solution times.

We always recommend that issues of this kind are addressed by reformulating or rescaling the model,
since it is the modeler who has the best insight into the structure of the problem and can fix the cause
of the issue.

8.2.1 Formulating problems

Scaling

Make sure that all the data in the problem are of comparable orders of magnitude. This applies
especially to the linear constraint matrix. Use Sec. 8.1.1 if necessary. For example a report such as

|A| nnz: 597023 min=1.17e-6 max=2.21e+5

77

means that the ratio of largest to smallest elements in A is 1011. In this case the user should rescale
or reformulate the model to avoid such spread which makes it difficult for MOSEK to scale the problem
internally. In many cases it may be possible to change the units, i.e. express the model in terms of
rescaled variables (for instance work with millions of dollars instead of dollars, etc.).

Similarly, if the objective contains very different coefficients, say

maximize 1010𝑥 + 𝑦

then it is likely to lead to inaccuracies. The objective will be dominated by the contribution from 𝑥 and
𝑦 will become insignificant.

Removing huge bounds

Never use a very large number as replacement for ∞. Instead define the variable or constraint as
unbounded from below/above. Similarly, avoid artificial huge bounds if you expect they will not become
tight in the optimal solution.

Avoiding linear dependencies

As much as possible try to avoid linear dependencies and near-linear dependencies in the model. See
Example 8.3.

Avoiding ill-posedness

Avoid continuous models which are ill-posed: the solution space is degenerate, for example consists
of a single point (technically, the Slater condition is not satisfied). In general, this refers to problems
which are borderline between feasible and infeasible. See Example 8.1.

Scaling the expected solution

Try to formulate the problem in such a way that the expected solution (both primal and dual) is not
very large. Consult the solution summary Sec. 8.1.2 to check the objective values or solution norms.

8.2.2 Further suggestions
Here are other simple suggestions that can help locate the cause of the issues. They can also be used as
hints for how to tune the optimizer if fixing the root causes of the issue is not possible.

• Remove the objective and solve the feasibility problem. This can reveal issues with the objective.

• Change the objective or change the objective sense from minimization to maximization (if appli-
cable). If the two objective values are almost identical, this may indicate that the feasible set is
very small, possibly degenerate.

• Perturb the data, for instance bounds, very slightly, and compare the results.

• For linear problems: solve the problem using a different optimizer by setting the parameter iparam.
optimizer and compare the results.

• Force the optimizer to solve the primal/dual versions of the problem by setting the parameter
iparam.intpnt_solve_form or iparam.sim_solve_form . MOSEK has a heuristic to decide
whether to dualize, but for some problems the guess is wrong an explicit choice may give better
results.

• Solve the problem without presolve or some of its parts by setting the parameter iparam.
presolve_use , see Sec. 13.1.

• Use different numbers of threads (iparam.num_threads) and compare the results. Very different
results indicate numerical issues resulting from round-off errors.

If the problem was dumped to a file, experimenting with various parameters is facilitated with the
MOSEK Command Line Tool or MOSEK Python Console Sec. 8.4.

78

8.2.3 Typical pitfalls

Example 8.1 (Ill-posedness). A toy example of this situation is the feasibility problem

(𝑥− 1)2 ≤ 1, (𝑥 + 1)2 ≤ 1

whose only solution is 𝑥 = 0 and moreover replacing any 1 on the right hand side by 1 − 𝜀 makes
the problem infeasible and replacing it by 1 + 𝜀 yields a problem whose solution set is an interval
(fully-dimensional). This is an example of ill-posedness.

Example 8.2 (Huge solution). If the norm of the expected solution is very large it may lead to
numerical issues or infeasibility. For example the problem

(10−4, 𝑥, 103) ∈ 𝒬3
r

may be declared infeasible because the expected solution must satisfy 𝑥 ≥ 5 · 109.

Example 8.3 (Near linear dependency). Consider the following problem:

minimize
subject to 𝑥1 + 𝑥2 = 1,

𝑥3 + 𝑥4 = 1,
− 𝑥1 − 𝑥3 = −1 + 𝜀,

− 𝑥2 − 𝑥4 = −1,
𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0.

If we add the equalities together we obtain:

0 = 𝜀

which is infeasible for any 𝜀 ̸= 0. Here infeasibility is caused by a linear dependency in the constraint
matrix coupled with a precision error represented by the 𝜀. Indeed if a problem contains linear
dependencies then the problem is either infeasible or contains redundant constraints. In the above
case any of the equality constraints can be removed while not changing the set of feasible solutions.
To summarize linear dependencies in the constraints can give rise to infeasible problems and therefore
it is better to avoid them.

Example 8.4 (Presolving very tight bounds). Next consider the problem

minimize
subject to 𝑥1 − 0.01𝑥2 = 0,

𝑥2 − 0.01𝑥3 = 0,
𝑥3 − 0.01𝑥4 = 0,

𝑥1 ≥ −10−9,
𝑥1 ≤ 10−9,
𝑥4 ≥ 10−4.

Now the MOSEK presolve will, for the sake of efficiency, fix variables (and constraints) that have
tight bounds where tightness is controlled by the parameter dparam.presolve_tol_x . Since the
bounds

−10−9 ≤ 𝑥1 ≤ 10−9

are tight, presolve will set 𝑥1 = 0. It easy to see that this implies 𝑥4 = 0, which leads to the incorrect
conclusion that the problem is infeasible. However a tiny change of the value 10−9 makes the problem

79

feasible. In general it is recommended to avoid ill-posed problems, but if that is not possible then one
solution is to reduce parameters such as dparam.presolve_tol_x to say 10−10. This will at least
make sure that presolve does not make the undesired reduction.

8.3 Debugging infeasibility

This section contains hints for debugging problems that are unexpectedly infeasible. It is always a good
idea to remove the objective, i.e. only solve a feasibility problem when debugging such issues.

8.3.1 Numerical issues
Infeasible problem status may be just an artifact of numerical issues appearing when the problem is
badly-scaled, barely feasible or otherwise ill-conditioned so that it is unstable under small perturbations
of the data or round-off errors. This may be visible in the solution summary if the infeasibility certificate
has poor quality. See Sec. 8.1.2 for how to diagnose that and Sec. 8.2 for possible hints. Sec. 8.2.3
contains examples of situations which may lead to infeasibility for numerical reasons.

We refer to Sec. 8.2 for further information on dealing with those sort of issues. For the rest of this
section we concentrate on the case when the solution summary leaves little doubt that the problem solved
by the optimizer actually is infeasible.

8.3.2 Locating primal infeasibility
As an example of a primal infeasible problem consider minimizing the cost of transportation between a
number of production plants and stores: Each plant produces a fixed number of goods, and each store
has a fixed demand that must be met. Supply, demand and cost of transportation per unit are given in
Fig. 8.1.

Supply Demand

1

2

5

2

1

2

1

Plant 1

Plant 2

Plant 3
Store 4

Store 3

Store 2

Store 1

1000

1000

200

500

500

200
1100

Fig. 8.1: Supply, demand and cost of transportation.

The problem represented in Fig. 8.1 is infeasible, since the total demand

2300 = 1100 + 200 + 500 + 500

exceeds the total supply

2200 = 200 + 1000 + 1000

If we denote the number of transported goods from plant 𝑖 to store 𝑗 by 𝑥𝑖𝑗 , the problem can be

80

formulated as the LP:

minimize 𝑥11 + 2𝑥12 + 5𝑥23 + 2𝑥24 + 𝑥31 + 2𝑥33 + 𝑥34

subject to 𝑠0 : 𝑥11 + 𝑥12 ≤ 200,
𝑠1 : 𝑥23 + 𝑥24 ≤ 1000,
𝑠2 : 𝑥31 + 𝑥33 + 𝑥34 ≤ 1000,
𝑑1 : 𝑥11 + 𝑥31 = 1100,
𝑑2 : 𝑥12 = 200,
𝑑3 : 𝑥23 + 𝑥33 = 500,
𝑑4 : 𝑥24 + 𝑥34 = 500,

𝑥𝑖𝑗 ≥ 0.

(8.1)

Solving problem (8.1) using MOSEK will result in an infeasibility status. The infeasibility certificate
is contained in the dual variables an can be accessed from an API. The variables and constraints with
nonzero solution values form an infeasible subproblem, which frequently is very small. See Sec. 12.1.2 or
Sec. 12.2.2 for detailed specifications of infeasibility certificates.

A short infeasibility report can also be printed to the log stream. It can be turned on by setting the
parameter iparam.infeas_report_auto to onoffkey.on . This causes MOSEK to print a report on
variables and constraints which are involved in infeasibility in the above sense, i.e. have nonzero values
in the certificate. The parameter iparam.infeas_report_level controls the amount of information
presented in the infeasibility report. The default value is 1. For the above example the report is

MOSEK PRIMAL INFEASIBILITY REPORT.

Problem status: The problem is primal infeasible

The following constraints are involved in the primal infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper
0 s0 NONE 2.000000e+002 0.000000e+000 1.000000e+000
2 s2 NONE 1.000000e+003 0.000000e+000 1.000000e+000
3 d1 1.100000e+003 1.100000e+003 1.000000e+000 0.000000e+000
4 d2 2.000000e+002 2.000000e+002 1.000000e+000 0.000000e+000

The following bound constraints are involved in the infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper
8 x33 0.000000e+000 NONE 1.000000e+000 0.000000e+000
10 x34 0.000000e+000 NONE 1.000000e+000 0.000000e+000

The infeasibility report is divided into two sections corresponding to constraints and variables. It
is a selection of those lines from the problem solution which are important in understanding primal
infeasibility. In this case the constraints s0, s2, d1, d2 and variables x33, x34 are of importance because
of nonzero dual values. The columns Dual lower and Dual upper contain the values of dual variables
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠𝑥𝑙 and 𝑠𝑥𝑢 in the primal infeasibility certificate (see Sec. 12.1.2).

In our example the certificate means that an appropriate linear combination of constraints s0, s1
with coefficient 𝑠𝑐𝑢 = 1, constraints d1 and d2 with coefficient 𝑠𝑐𝑢 − 𝑠𝑐𝑙 = 0 − 1 = −1 and lower bounds
on x33 and x34 with coefficient −𝑠𝑥𝑙 = −1 gives a contradiction. Indeed, the combination of the four
involved constraints is 𝑥33 +𝑥34 ≤ −100 (as indicated in the introduction, the difference between supply
and demand).

It is also possible to extract the infeasible subproblem with the command-line tool. For an infeasible
problem called infeas.lp the command:

mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.lp -info rinfeas.lp

will produce the file rinfeas.bas.inf.lp which contains the infeasible subproblem. Because of its
size it may be easier to work with than the original problem file.

Returning to the transportation example, we discover that removing the fifth constraint 𝑥12 = 200
makes the problem feasible. Almost all undesired infeasibilities should be fixable at the modeling stage.

81

8.3.3 Locating dual infeasibility
A problem may also be dual infeasible. In this case the primal problem is usually unbounded, meaning
that feasible solutions exists such that the objective tends towards infinity. For example, consider the
problem

maximize 200𝑦1 + 1000𝑦2 + 1000𝑦3 + 1100𝑦4 + 200𝑦5 + 500𝑦6 + 500𝑦7
subject to 𝑦1 + 𝑦4 ≤ 1, 𝑦1 + 𝑦5 ≤ 2, 𝑦2 + 𝑦6 ≤ 5, 𝑦2 + 𝑦7 ≤ 2,

𝑦3 + 𝑦4 ≤ 1, 𝑦3 + 𝑦6 ≤ 2, 𝑦3 + 𝑦7 ≤ 1
𝑦1, 𝑦2, 𝑦3 ≤ 0

which is dual to (8.1) (and therefore is dual infeasible). The dual infeasibility report may look as follows:

MOSEK DUAL INFEASIBILITY REPORT.

Problem status: The problem is dual infeasible

The following constraints are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper bound
5 x33 -1.000000e+00 NONE 2.000000e+00
6 x34 -1.000000e+00 NONE 1.000000e+00

The following variables are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper bound
0 y1 -1.000000e+00 2.000000e+02 NONE 0.000000e+00
2 y3 -1.000000e+00 1.000000e+03 NONE 0.000000e+00
3 y4 1.000000e+00 1.100000e+03 NONE NONE
4 y5 1.000000e+00 2.000000e+02 NONE NONE

Interior-point solution summary
Problem status : DUAL_INFEASIBLE
Solution status : DUAL_INFEASIBLE_CER
Primal. obj: 1.0000000000e+02 nrm: 1e+00 Viol. con: 0e+00 var: 0e+00

In the report we see that the variables y1, y3, y4, y5 and two constraints contribute to infeasibility
with non-zero values in the Activity column. Therefore

(𝑦1, . . . , 𝑦7) = (−1, 0,−1, 1, 1, 0, 0)

is the dual infeasibility certificate as in Sec. 12.1.2. This just means, that along the ray

(0, 0, 0, 0, 0, 0, 0) + 𝑡(𝑦1, . . . , 𝑦7) = (−𝑡, 0,−𝑡, 𝑡, 𝑡, 0, 0), 𝑡 > 0,

which belongs to the feasible set, the objective value 100𝑡 can be arbitrarily large, i.e. the problem is
unbounded.

In the example problem we could

• Add a lower bound on y3. This will directly invalidate the certificate of dual infeasibility.

• Increase the objective coefficient of y3. Changing the coefficients sufficiently will invalidate the
inequality 𝑐𝑇 𝑦* > 0 and thus the certificate.

8.3.4 Suggestions

Primal infeasibility

When trying to understand what causes the unexpected primal infeasible status use the following
hints:

• Remove the objective function. This does not change the infeasibility status but simplifies the
problem, eliminating any possibility of issues related to the objective function.

82

• Remove cones, semidefinite variables and integer constraints. Solve only the linear part of the
problem. Typical simple modeling errors will lead to infeasibility already at this stage.

• Consider whether your problem has some obvious necessary conditions for feasibility and examine
if these are satisfied, e.g. total supply should be greater than or equal to total demand.

• Verify that coefficients and bounds are reasonably sized in your problem.

• See if there are any obvious contradictions, for instance a variable is bounded both in the variables
and constraints section, and the bounds are contradictory.

• Consider replacing suspicious equality constraints by inequalities. For instance, instead of 𝑥12 = 200
see what happens for 𝑥12 ≥ 200 or 𝑥12 ≤ 200.

• Relax bounds of the suspicious constraints or variables.

• For integer problems, remove integrality constraints on some/all variables and see if the problem
solves.

• Remember that variables without explicitly initialized bounds are fixed at zero.

• Form an elastic model: allow to violate constraints at a cost. Introduce slack variables and add
them to the objective as penalty. For instance, suppose we have a constraint

minimize 𝑐𝑇𝑥,
subject to 𝑎𝑇𝑥 ≤ 𝑏.

which might be causing infeasibility. Then create a new variable 𝑦 and form the problem which
contains:

minimize 𝑐𝑇𝑥 + 𝑦,
subject to 𝑎𝑇𝑥 ≤ 𝑏 + 𝑦.

Solving this problem will reveal by how much the constraint needs to be relaxed in order to become
feasible. This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

• If you think you have a feasible solution or its part, fix all or some of the variables to those values.
Presolve will propagate them through the model and potentially reveal more localized sources of
infeasibility.

• Dump the problem in OPF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Dual infeasibility

When trying to understand what causes the unexpected dual infeasible status use the following hints:

• Verify that the objective coefficients are reasonably sized.

• Check if no bounds and constraints are missing, for example if all variables that should be nonneg-
ative have been declared as such etc.

• Strengthen bounds of the suspicious constraints or variables.

• Remember that constraints without explicitly initialized bounds are free (no bound).

• Form an series of models with decreasing bounds on the objective, that is, instead of objective

minimize 𝑐𝑇𝑥

solve the problem with an additional constraint such as

𝑐𝑇𝑥 = −105

and inspect the solution to figure out the mechanism behind arbitrarily decreasing objective values.
This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

83

• Dump the problem in OPF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Please note that modifying the problem to invalidate the reported certificate does not imply that the
problem becomes feasible — the reason for infeasibility may simply move, resulting a problem that is
still infeasible, but for a different reason. More often, the reported certificate can be used to give a hint
about errors or inconsistencies in the model that produced the problem.

8.4 Python Console

The MOSEK Python Console is an alternative to the MOSEK Command Line Tool. It can be used for
interactive loading, solving and debugging optimization problems stored in files, for example MOSEK
task files. It facilitates debugging techniques described in Sec. 8.

8.4.1 Usage
The tool requires Python 2 or 3. The MOSEK interface for Python must be installed following the
installation instructions for Python API or Python Fusion API. In the basic case it should be sufficient
to execute the script

python setup.py install --user

in the directory containing the MOSEK Python module.
The Python Console is contained in the file mosekconsole.py in the folder with MOSEK binaries. It

can be copied to an arbitrary location. The file is also available for download here (mosekconsole.py).
To run the console in interactive mode use

python mosekconsole.py

To run the console in batch mode provide a semicolon-separated list of commands as the second
argument of the script, for example:

python mosekconsole.py "read data.task.gz; solve form=dual; writesol data"

The script is written using the MOSEK Python API and can be extended by the user if more specific
functionality is required. We refer to the documentation of the Python API.

8.4.2 Examples
To read a problem from data.task.gz, solve it, and write solutions to data.sol, data.bas or data.itg:

read data.task.gz; solve; writesol data

To convert between file formats:

read data.task.gz; write data.mps

To set a parameter before solving:

read data.task.gz; param INTPNT_CO_TOL_DFEAS 1e-9; solve"

To list parameter values related to the mixed-integer optimizer in the task file:

read data.task.gz; param MIO

To print a summary of problem structure:

read data.task.gz; anapro

To solve a problem forcing the dual and switching off presolve:

read data.task.gz; solve form=dual presolve=no

To write an infeasible subproblem to a file for debugging purposes:

84

read data.task.gz; solve; infsub; write inf.opf

8.4.3 Full list of commands
Below is a brief description of all the available commands. Detailed information about a specific command
cmd and its options can be obtained with

help cmd

Table 8.1: List of commands of the MOSEK Python Console.
Command Description
help [command] Print list of commands or info about a specific command
log filename Save the session to a file
intro Print MOSEK splashscreen
testlic Test the license system
read filename Load problem from file
reread Reload last problem file
solve
[options]

Solve current problem

write filename Write current problem to file
param [name
[value]]

Set a parameter or get parameter values

paramdef Set all parameters to default values
paramdiff Show parameters with non-default values
info [name] Get an information item
anapro Analyze problem data
hist Plot a histogram of problem data
histsol Plot a histogram of the solutions
spy Plot the sparsity pattern of the A matrix
truncate
epsilon

Truncate small coefficients down to 0

resobj [fac] Rescale objective by a factor
anasol Analyze solutions
removeitg Remove integrality constraints
removecones Remove all cones and leave just the linear part
infsub Replace current problem with its infeasible subproblem
writesol
basename

Write solution(s) to file(s) with given basename

delsol Remove all solutions from the task
optserver
[url]

Use an OptServer to optimize

exit Leave

85

Chapter 9

Advanced Numerical Tutorials

9.1 Solving Linear Systems Involving the Basis Matrix

A linear optimization problem always has an optimal solution which is also a basic solution. In an optimal
basic solution there are exactly 𝑚 basic variables where 𝑚 is the number of rows in the constraint matrix
𝐴. Define

𝐵 ∈ R𝑚×𝑚

as a matrix consisting of the columns of 𝐴 corresponding to the basic variables. The basis matrix 𝐵 is
always non-singular, i.e.

det(𝐵) ̸= 0

or, equivalently, 𝐵−1 exists. This implies that the linear systems

𝐵�̄� = 𝑤 (9.1)

and

𝐵𝑇 �̄� = 𝑤 (9.2)

each have a unique solution for all 𝑤.
MOSEK provides functions for solving the linear systems (9.1) and (9.2) for an arbitrary 𝑤.
In the next sections we will show how to use MOSEK to

• identify the solution basis,

• solve arbitrary linear systems.

9.1.1 Basis identification
To use the solutions to (9.1) and (9.2) it is important to know how the basis matrix 𝐵 is constructed.

Internally MOSEK employs the linear optimization problem

maximize 𝑐𝑇𝑥
subject to 𝐴𝑥− 𝑥𝑐 = 0,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,
𝑙𝑐 ≤ 𝑥𝑐 ≤ 𝑢𝑐.

(9.3)

where

𝑥𝑐 ∈ R𝑚 and 𝑥 ∈ R𝑛.

The basis matrix is constructed of 𝑚 columns taken from[︀
𝐴 −𝐼

]︀
.

86

If variable 𝑥𝑗 is a basis variable, then the 𝑗-th column of 𝐴, denoted 𝑎:,𝑗 , will appear in 𝐵. Similarly,
if 𝑥𝑐

𝑖 is a basis variable, then the 𝑖-th column of −𝐼 will appear in the basis. The ordering of the basis
variables and therefore the ordering of the columns of 𝐵 is arbitrary. The ordering of the basis variables
may be retrieved by calling the function Task.initbasissolve . This function initializes data structures
for later use and returns the indexes of the basic variables in the array basis. The interpretation of the
basis is as follows. If we have

basis[𝑖] < numcon

then the 𝑖-th basis variable is

𝑥𝑐
basis[𝑖].

Moreover, the 𝑖-th column in 𝐵 will be the 𝑖-th column of −𝐼. On the other hand if

basis[𝑖] ≥ numcon,

then the 𝑖-th basis variable is the variable

𝑥basis[𝑖]−numcon

and the 𝑖-th column of 𝐵 is the column

𝐴:,(basis[𝑖]−numcon).

For instance if basis[0] = 4 and numcon = 5, then since basis[0] < numcon, the first basis variable is 𝑥𝑐
4.

Therefore, the first column of 𝐵 is the fourth column of −𝐼. Similarly, if basis[1] = 7, then the second
variable in the basis is 𝑥basis[1]−numcon = 𝑥2. Hence, the second column of 𝐵 is identical to 𝑎:,2.

An example

Consider the linear optimization problem:

minimize 𝑥0 + 𝑥1

subject to 𝑥0 + 2𝑥1 ≤ 2,
𝑥0 + 𝑥1 ≤ 6,

𝑥0, 𝑥1 ≥ 0.

(9.4)

Suppose a call to Task.initbasissolve returns an array basis so that

basis[0] = 1,
basis[1] = 2.

Then the basis variables are 𝑥𝑐
1 and 𝑥0 and the corresponding basis matrix 𝐵 is[︂

0 1
−1 1

]︂
.

Please note the ordering of the columns in 𝐵 .

Listing 9.1: A program showing how to identify the basis.

import mosek

def streamprinter(text):
sys.stdout.write(text)
sys.stdout.flush()

def main():
numcon = 2
numvar = 2

(continues on next page)

87

(continued from previous page)

Since the value infinity is never used, we define
'infinity' symbolic purposes only
infinity = 0

c = [1.0, 1.0]
ptrb = [0, 2]
ptre = [2, 3]
asub = [0, 1,

0, 1]
aval = [1.0, 1.0,

2.0, 1.0]
bkc = [mosek.boundkey.up,

mosek.boundkey.up]

blc = [-infinity,
-infinity]

buc = [2.0,
6.0]

bkx = [mosek.boundkey.lo,
mosek.boundkey.lo]

blx = [0.0,
0.0]

bux = [+infinity,
+infinity]

w1 = [2.0, 6.0]
w2 = [1.0, 0.0]

try:
with mosek.Env() as env:

with env.Task(0, 0) as task:
task.set_Stream(mosek.streamtype.log, streamprinter)
task.inputdata(numcon, numvar,

c,
0.0,
ptrb,
ptre,
asub,
aval,
bkc,
blc,
buc,
bkx,
blx,
bux)

task.putobjsense(mosek.objsense.maximize)
r = task.optimize()
if r != mosek.rescode.ok:

print("Mosek warning:", r)

basis = [0] * numcon
task.initbasissolve(basis)

#List basis variables corresponding to columns of B
varsub = [0, 1]

for i in range(numcon):
if basis[varsub[i]] < numcon:

print("Basis variable no %d is xc%d" % (i, basis[i]))

(continues on next page)

88

(continued from previous page)

else:
print("Basis variable no %d is x%d" %

(i, basis[i] - numcon))

solve Bx = w1
varsub contains index of non-zeros in b.
On return b contains the solution x and
varsub the index of the non-zeros in x.
nz = 2

nz = task.solvewithbasis(0, nz, varsub, w1)
print("nz = %s" % nz)
print("Solution to Bx = w1:")

for i in range(nz):
if basis[varsub[i]] < numcon:

print("xc %s = %s" % (basis[varsub[i]], w1[varsub[i]]))
else:

print("x%s = %s" %
(basis[varsub[i]] - numcon, w1[varsub[i]]))

Solve B^Tx = w2
nz = 1
varsub[0] = 0

nz = task.solvewithbasis(1, nz, varsub, w2)

print("Solution to B^Tx = w2:")

for i in range(nz):
if basis[varsub[i]] < numcon:

print("xc %s = %s" % (basis[varsub[i]], w2[varsub[i]]))
else:

print("x %s = %s" %
(basis[varsub[i]] - numcon, w2[varsub[i]]))

except Exception as e:
print(e)

if __name__ == '__main__':
main()

In the example above the linear system is solved using the optimal basis for (9.4) and the original
right-hand side of the problem. Thus the solution to the linear system is the optimal solution to the
problem. When running the example program the following output is produced.

basis[0] = 1
Basis variable no 0 is xc1.
basis[1] = 2
Basis variable no 1 is x0.

Solution to Bx = b:

x0 = 2.000000e+00
xc1 = -4.000000e+00

Solution to B^Tx = c:

x1 = -1.000000e+00
x0 = 1.000000e+00

89

Please note that the ordering of the basis variables is[︂
𝑥𝑐
1

𝑥0

]︂
and thus the basis is given by:

𝐵 =

[︂
0 1
−1 1

]︂
It can be verified that [︂

𝑥𝑐
1

𝑥0

]︂
=

[︂
−4
2

]︂
is a solution to [︂

0 1
−1 1

]︂ [︂
𝑥𝑐
1

𝑥0

]︂
=

[︂
2
6

]︂
.

9.1.2 Solving arbitrary linear systems
MOSEK can be used to solve an arbitrary (rectangular) linear system

𝐴𝑥 = 𝑏

using the Task.solvewithbasis function without optimizing the problem as in the previous example.
This is done by setting up an 𝐴 matrix in the task, setting all variables to basic and calling the Task.
solvewithbasis function with the 𝑏 vector as input. The solution is returned by the function.

An example

Below we demonstrate how to solve the linear system[︂
0 1
−1 1

]︂ [︂
𝑥0

𝑥1

]︂
=

[︂
𝑏1
𝑏2

]︂
(9.5)

with two inputs 𝑏 = (1,−2) and 𝑏 = (7, 0) .

import mosek

def setup(task,
aval,
asub,
ptrb,
ptre,
numvar,
basis):

Since the value infinity is never used, we define
'infinity' symbolic purposes only
infinity = 0

skx = [mosek.stakey.bas] * numvar
skc = [mosek.stakey.fix] * numvar

task.appendvars(numvar)
task.appendcons(numvar)

for i in range(len(asub)):
task.putacol(i, asub[i], aval[i])

for i in range(numvar):
(continues on next page)

90

(continued from previous page)

task.putconbound(i, mosek.boundkey.fx, 0.0, 0.0)

for i in range(numvar):
task.putvarbound(i,

mosek.boundkey.fr,
-infinity,
infinity)

Define a basic solution by specifying
status keys for variables & constraints.
task.deletesolution(mosek.soltype.bas);

task.putskcslice(mosek.soltype.bas, 0, numvar, skc);
task.putskxslice(mosek.soltype.bas, 0, numvar, skx);

task.initbasissolve(basis);

def main():
numcon = 2
numvar = 2

aval = [[-1.0],
[1.0, 1.0]]

asub = [[1],
[0, 1]]

ptrb = [0, 1]
ptre = [1, 3]

#int[] bsub = new int[numvar];
#double[] b = new double[numvar];
#int[] basis = new int[numvar];

with mosek.Env() as env:
with mosek.Task(env) as task:

Directs the log task stream to the user specified
method task_msg_obj.streamCB
task.set_Stream(mosek.streamtype.log,

lambda msg: sys.stdout.write(msg))
Put A matrix and factor A.
Call this function only once for a given task.

basis = [0] * numvar
b = [0.0, -2.0]
bsub = [0, 1]

setup(task,
aval,
asub,
ptrb,
ptre,
numvar,
basis)

now solve rhs
b = [1, -2]
bsub = [0, 1]
nz = task.solvewithbasis(0, 2, bsub, b)
print("\nSolution to Bx = b:\n")

(continues on next page)

91

(continued from previous page)

Print solution and show correspondents
to original variables in the problem
for i in range(nz):

if basis[bsub[i]] < numcon:
print("This should never happen")

else:
print("x%d = %d" % (basis[bsub[i]] - numcon, b[bsub[i]]))

b[0] = 7
bsub[0] = 0

nz = task.solvewithbasis(0, 1, bsub, b)

print("\nSolution to Bx = b:\n")
Print solution and show correspondents
to original variables in the problem
for i in range(nz):

if basis[bsub[i]] < numcon:
print("This should never happen")

else:
print("x%d = %d" % (basis[bsub[i]] - numcon, b[bsub[i]]))

if __name__ == "__main__":
try:

main()
except:

import traceback
traceback.print_exc()

The most important step in the above example is the definition of the basic solution, where we define
the status key for each variable. The actual values of the variables are not important and can be selected
arbitrarily, so we set them to zero. All variables corresponding to columns in the linear system we want
to solve are set to basic and the slack variables for the constraints, which are all non-basic, are set to
their bound.

The program produces the output:

Solution to Bx = b:

x1 = 1
x0 = 3

Solution to Bx = b:

x1 = 7
x0 = 7

9.2 Calling BLAS/LAPACK Routines from MOSEK

Sometimes users need to perform linear algebra operations that involve dense matrices and vectors.
Also MOSEK extensively uses high-performance linear algebra routines from the BLAS and LAPACK
packages and some of these routines are included in the package shipped to the users.

The MOSEK versions of BLAS/LAPACK routines:

• use MOSEK data types and return value conventions,

• preserve the BLAS/LAPACK naming convention.

Therefore the user can leverage on efficient linear algebra routines, with a simplified interface, with
no need for additional packages.

92

List of available routines

Table 9.1: BLAS routines available.
BLAS Name MOSEK function Math Expression
AXPY Env.axpy 𝑦 = 𝛼𝑥 + 𝑦
DOT Env.dot 𝑥𝑇 𝑦
GEMV Env.gemv 𝑦 = 𝛼𝐴𝑥 + 𝛽𝑦
GEMM Env.gemm 𝐶 = 𝛼𝐴𝐵 + 𝛽𝐶
SYRK Env.syrk 𝐶 = 𝛼𝐴𝐴𝑇 + 𝛽𝐶

Table 9.2: LAPACK routines available.
LAPACK Name MOSEK function Description
POTRF Env.potrf Cholesky factorization of a semidefinite symmetric matrix
SYEVD Env.syevd Eigenvalues and eigenvectors of a symmetric matrix
SYEIG Env.syeig Eigenvalues of a symmetric matrix

Source code examples

In Listing 9.2 we provide a simple working example. It has no practical meaning except showing how
to organize the input and call the methods.

Listing 9.2: Calling BLAS and LAPACK routines from Optimizer
API for Python.

import mosek

def print_matrix(x, r, c):
for i in range(r):

print([x[j * r + i] for j in range(c)])

with mosek.Env() as env:

n = 3
m = 2
k = 3

alpha = 2.0
beta = 0.5

x = [1.0, 1.0, 1.0]
y = [1.0, 2.0, 3.0]
z = [1.0, 1.0]
v = [0.0, 0.0]
#A has m=2 rows and k=3 cols
A = [1.0, 1.0, 2.0, 2.0, 3., 3.]
#B has k=3 rows and n=3 cols
B = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
C = [0.0 for i in range(n * m)]
D = [1.0, 1.0, 1.0, 1.0]
Q = [1.0, 0.0, 0.0, 2.0]

BLAS routines

xy = env.dot(n, x, y)
print("dot results= %f\n" % xy)

env.axpy(n, alpha, x, y)
print("\naxpy results is ")
print_matrix(y, 1, len(y))

(continues on next page)

93

(continued from previous page)

env.gemv(mosek.transpose.no, m, n, alpha, A, x, beta, z)
print("\ngemv results is ")
print_matrix(z, 1, len(z))

env.gemm(mosek.transpose.no, mosek.transpose.no,
m, n, k, alpha, A, B, beta, C)

print("\ngemm results is ")
print_matrix(C, m, n)

env.syrk(mosek.uplo.lo, mosek.transpose.no, m, k, alpha, A, beta, D)
print("\nsyrk results is")
print_matrix(D, m, m)

LAPACK routines

env.potrf(mosek.uplo.lo, m, Q)
print("\npotrf results is ")
print_matrix(Q, m, m)

env.syeig(mosek.uplo.lo, m, Q, v)
print("\nsyeig results is")
print_matrix(v, 1, m)

env.syevd(mosek.uplo.lo, m, Q, v)
print("\nsyevd results is")
print('v: ')
print_matrix(v, 1, m)
print('Q: ')
print_matrix(Q, m, m)

print("Exiting...")

9.3 Computing a Sparse Cholesky Factorization

Given a positive semidefinite symmetric (PSD) matrix

𝐴 ∈ R𝑛×𝑛

it is well known there exists a matrix 𝐿 such that

𝐴 = 𝐿𝐿𝑇 .

If the matrix 𝐿 is lower triangular then it is called a Cholesky factorization. Given 𝐴 is positive definite
(nonsingular) then 𝐿 is also nonsingular. A Cholesky factorization is useful for many reasons:

• A system of linear equations 𝐴𝑥 = 𝑏 can be solved by first solving the lower triangular system
𝐿𝑦 = 𝑏 followed by the upper triangular system 𝐿𝑇𝑥 = 𝑦.

• A quadratic term 𝑥𝑇𝐴𝑥 in a constraint or objective can be replaced with 𝑦𝑇 𝑦 for 𝑦 = 𝐿𝑇𝑥,
potentially leading to a more robust formulation (see [And13]).

Therefore, MOSEK provides a function that can compute a Cholesky factorization of a PSD matrix.
In addition a function for solving linear systems with a nonsingular lower or upper triangular matrix is
available.

In practice 𝐴 may be very large with 𝑛 is in the range of millions. However, then 𝐴 is typically sparse
which means that most of the elements in 𝐴 are zero, and sparsity can be exploited to reduce the cost

94

of computing the Cholesky factorization. The computational savings depend on the positions of zeros in
𝐴. For example, below a matrix 𝐴 is given together with a Cholesky factor up to 5 digits of accuracy:

𝐴 =

⎡⎢⎢⎣
4 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

⎤⎥⎥⎦ , 𝐿 =

⎡⎢⎢⎣
2.0000 0 0 0
0.5000 0.8660 0 0
0.5000 −0.2887 0.8165 0
0.5000 −0.2887 −0.4082 0.7071

⎤⎥⎥⎦ . (9.6)

However, if we symmetrically permute the rows and columns of 𝐴 using a permutation matrix 𝑃

𝑃 =

⎡⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤⎥⎥⎦ , 𝐴′ = 𝑃𝐴𝑃𝑇 =

⎡⎢⎢⎣
1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 4

⎤⎥⎥⎦ ,

then the Cholesky factorization of 𝐴′ = 𝐿′𝐿′𝑇 is

𝐿′ =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1

⎤⎥⎥⎦
which is sparser than 𝐿.

Computing a permutation matrix that leads to the sparsest Cholesky factorization or the minimal
amount of work is NP-hard. Good permutations can be chosen by using heuristics, such as the minimum
degree heuristic and variants. The function Env.computesparsecholesky provided by MOSEK for
computing a Cholesky factorization has a build in permutation aka. reordering heuristic. The following
code illustrates the use of Env.computesparsecholesky and Env.sparsetriangularsolvedense .

Listing 9.3: How to use the sparse Cholesky factorization routine
available in MOSEK.

try:
perm, diag, lnzc, lptrc, lensubnval, lsubc, lvalc = env.computesparsecholesky(

0, #Disable multithread
1, #User reordering heuristic
1.0e-14,#Singularity tolerance
anzc, aptrc, asubc, avalc)

printsparse(n, perm, diag, lnzc, lptrc, lensubnval, lsubc, lvalc)

x = [b[p] for p in perm] # Permuted b is stored as x.

Compute inv(L)*x.
env.sparsetriangularsolvedense(mosek.transpose.no,

lnzc, lptrc, lsubc, lvalc, x)

Compute inv(L^T)*x.
env.sparsetriangularsolvedense(mosek.transpose.yes,

lnzc, lptrc, lsubc, lvalc, x)

print("\nSolution Ax=b: x = ", numpy.array(
[x[j] for i in range(n) for j in range(n) if perm[j] == i]), "\n")

except:
raise

We can set up the data to recreate the matrix 𝐴 from (9.6):

Observe that anzc, aptrc, asubc and avalc only specify the lower
triangular part.
n = 4
anzc = [4, 1, 1, 1]

(continues on next page)

95

(continued from previous page)

asubc = [0, 1, 2, 3, 1, 2, 3]
aptrc = [0, 4, 5, 6]
avalc = [4.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
b = [13.0, 3.0, 4.0, 5.0]

and we obtain the following output:

Example with positive definite A.
P = [3 2 0 1]
diag(D) = [0.00 0.00 0.00 0.00]
L=
1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
1.00 1.00 1.41 0.00
0.00 0.00 0.71 0.71

Solution A x = b, x = [1.00 2.00 3.00 4.00]

The output indicates that with the permutation matrix

𝑃 =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

⎤⎥⎥⎦
there is a Cholesky factorization 𝑃𝐴𝑃𝑇 = 𝐿𝐿𝑇 , where

𝐿 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
1 1 1.4142 0
0 0 0.7071 0.7071

⎤⎥⎥⎦
The remaining part of the code solvers the linear system 𝐴𝑥 = 𝑏 for 𝑏 = [13, 3, 4, 5]𝑇 . The solution is
reported to be 𝑥 = [1, 2, 3, 4]𝑇 , which is correct.

The second example shows what happens when we compute a sparse Cholesky factorization of a
singular matrix. In this example 𝐴 is a rank 1 matrix

𝐴 =

⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ =

⎡⎣ 1
1
1

⎤⎦⎡⎣ 1
1
1

⎤⎦𝑇

(9.7)

#Example 2 - singular A
n = 3
anzc = [3, 2, 1]
asubc = [0, 1, 2, 1, 2, 2]
aptrc = [0, 3, 5]
avalc = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

Now we get the output

P = [0 2 1]
diag(D) = [0.00e+00 1.00e-14 1.00e-14]
L=
1.00e+00 0.00e+00 0.00e+00
1.00e+00 1.00e-07 0.00e+00
1.00e+00 0.00e+00 1.00e-07

which indicates the decomposition

𝑃𝐴𝑃𝑇 = 𝐿𝐿𝑇 −𝐷

96

where

𝑃 =

⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦ , 𝐿 =

⎡⎣ 1 0 0
1 10−7 0
1 0 10−7

⎤⎦ , 𝐷 =

⎡⎣ 1 0 0
0 10−14 0
0 0 10−14

⎤⎦ .

Since 𝐴 is only positive semdefinite, but not of full rank, some of diagonal elements of 𝐴 are boosted
to make it truely positive definite. The amount of boosting is passed as an argument to Env.
computesparsecholesky , in this case 10−14. Note that

𝑃𝐴𝑃𝑇 = 𝐿𝐿𝑇 −𝐷

where 𝐷 is a small matrix so the computed Cholesky factorization is exact of slightly perturbed 𝐴. In
general this is the best we can hope for in finite precision and when 𝐴 is singular or close to being
singular.

We will end this section by a word of caution. Computing a Cholesky factorization of a matrix that
is not of full rank and that is not suffciently well conditioned may lead to incorrect results i.e. a matrix
that is indefinite may declared positive semidefinite and vice versa.

9.4 Converting a quadratically constrained problem to conic form

MOSEK employs the following form of quadratic problems:

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐𝑘 ≤ 1
2𝑥

𝑇𝑄𝑘𝑥 +
∑︀𝑛−1

𝑗=0 𝑎𝑘,𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1.

(9.8)

A conic quadratic constraint has the form

𝑥 ∈ 𝒬𝑛

in its most basic form where

𝒬𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 : 𝑥1 ≥

⎯⎸⎸⎷ 𝑛∑︁
𝑗=2

𝑥2
𝑗

⎫⎬⎭ .

A quadratic problem such as (9.8), if convex, can be reformulated in conic form. This is in fact the
reformulation MOSEK performs internally. It has many advantages:

• elegant duality theory for conic problems,

• reporting accurate dual information for quadratic inequalities is hard and/or computational ex-
pensive,

• it certifies that the original quadratic problem is indeed convex,

• modeling directly in conic form usually leads to a better model [And13] i.e. a faster solution time
and better numerical properties.

In addition, there are more types of conic constraints that can be combined with a quadratic cone,
for example semidefinite cones.

MOSEK offers a function that performs the conversion from quadratic to conic quadratic form
explicitly. Note that the reformulation is not unique. The approach followed by MOSEK is to introduce
additional variables, linear constraints and quadratic cones to obtain a larger but equivalent problem in
which the original variables are preserved.

In particular:

• all variables and constraints are kept in the problem,

• each quadratic constraint and quadratic terms in the objective generate one rotated quadratic cone,

97

• each quadratic constraint will contain no coefficients and upper/lower bounds will be set to ∞,−∞
respectively.

This allows the user to recover the original variable and constraint values, as well as their dual values,
with no conversion or additional effort.

Note: Task.toconic modifies the input task in-place: this means that if the reformulation is not
possible, i.e. the problem is not conic representable, the state of the task is in general undefined. The
user should consider cloning the original task.

9.4.1 Quadratic Constraint Reformulation
Let us assume we want to convert the following quadratic constraint

𝑙 ≤ 1

2
𝑥𝑇𝑄𝑥 +

𝑛−1∑︁
𝑗=0

𝑎𝑗𝑥𝑗 ≤ 𝑢

to conic form. We first check whether 𝑙 = −∞ or 𝑢 = ∞, otherwise either the constraint can be dropped,
or the constraint is not convex. Thus let us consider the case

1

2
𝑥𝑇𝑄𝑥 +

𝑛−1∑︁
𝑗=0

𝑎𝑇𝑗 𝑥𝑗 ≤ 𝑢. (9.9)

Introducing an additional variable 𝑤 such that

𝑤 = 𝑢−
𝑛−1∑︁
𝑗=0

𝑎𝑇𝑗 𝑥𝑗 (9.10)

we obtain the equivalent form

1
2𝑥

𝑇𝑄𝑥 ≤ 𝑤,

𝑢−
∑︀𝑛−1

𝑗=0 𝑎𝑗𝑥𝑗 = 𝑤.

If 𝑄 is positive semidefinite, then there exists a matrix 𝐹 such that

𝑄 = 𝐹𝐹𝑇 (9.11)

and therefore we can write

‖𝐹𝑥‖2 ≤ 2𝑤,

𝑢−
∑︀𝑛−1

𝑗=0 𝑎𝑇𝑗 𝑥𝑗 = 𝑤.

Introducing an additional variable 𝑧 = 1, and setting 𝑦 = 𝐹𝑥 we obtain the conic formulation

(𝑤, 𝑧, 𝑦) ∈ 𝒬r ,
𝑧 = 1
𝑦 = 𝐹𝑥
𝑤 = 𝑢− 𝑎𝑇𝑥.

(9.12)

Summarizing, for each quadratic constraint involving 𝑡 variables, MOSEK introduces

1. a rotated quadratic cone of dimension 𝑡 + 2,

2. two additional variables for the cone roots,

3. 𝑡 additional variables to map the remaining part of the cone,

4. 𝑡 linear constraints.

A quadratic term in the objective is reformulated in a similar fashion. We refer to [And13] for a more
thorough discussion.

98

Example

Next we consider a simple problem with quadratic objective function:

minimize 1
2 (13𝑥2

0 + 17𝑥2
1 + 12𝑥2

2 + 24𝑥0𝑥1 + 12𝑥1𝑥2 − 4𝑥0𝑥2) − 22𝑥0 − 14.5𝑥1 + 12𝑥2 + 1
subject to −1 ≤ 𝑥0, 𝑥1, 𝑥2 ≤ 1

We can specify it in the human-readable OPF format.

[comment]
An example of small QO problem from Boyd and Vandenberghe, "Convex Optimization", page 189 ex␣
→˓4.3
The solution is (1,0.5,-1)
[/comment]

[variables]
x0 x1 x2
[/variables]

[objective min]
0.5 (13 x0^2 + 17 x1^2 + 12 x2^2 + 24 x0 * x1 + 12 x1 * x2 - 4 x0 * x2) - 22 x0 - 14.5 x1 +␣
→˓12 x2 + 1
[/objective]

[bounds]
[b] -1 <= * <= 1 [/b]
[/bounds]

The objective function is convex, the minimum is attained for 𝑥⋆ = (1, 0.5,−1). The conversion will
introduce first a variable 𝑥3 in the objective function such that 𝑥3 ≥ 1/2𝑥𝑇𝑄𝑥 and then convert the
latter directly in conic form. The converted problem follows:

minimize −22𝑥0 − 14.5𝑥1 + 12𝑥2 + 𝑥3 + 1
subject to 3.61𝑥0 + 3.33𝑥1 − 0.55𝑥2 − 𝑥6 = 0

+2.29𝑥1 + 3.42𝑥2 − 𝑥7 = 0
0.81𝑥1 − 𝑥8 = 0

−𝑥3 + 𝑥4 = 0
𝑥5 = 1

(𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8) ∈ 𝒬∇
−1 ≤ 𝑥0, 𝑥1, 𝑥2 ≤ 1

The model generated by Task.toconic is

[comment]
Written by MOSEK version 8.1.0.19
Date 21-08-17
Time 10:53:36

[/comment]

[hints]
[hint NUMVAR] 9 [/hint]
[hint NUMCON] 4 [/hint]
[hint NUMANZ] 11 [/hint]
[hint NUMQNZ] 0 [/hint]
[hint NUMCONE] 1 [/hint]

[/hints]

[variables disallow_new_variables]
x0000_x0 x0001_x1 x0002_x2 x0003 x0004
x0005 x0006 x0007 x0008

[/variables]

[objective minimize]
(continues on next page)

99

(continued from previous page)

- 2.2e+01 x0000_x0 - 1.45e+01 x0001_x1 + 1.2e+01 x0002_x2 + x0003
+ 1e+00

[/objective]

[constraints]
[con c0000] 3.605551275463989e+00 x0000_x0 - 5.547001962252291e-01 x0002_x2 + 3.

→˓328201177351375e+00 x0001_x1 - x0006 = 0e+00 [/con]
[con c0001] 3.419401657060442e+00 x0002_x2 + 2.294598480395823e+00 x0001_x1 - x0007 = 0e+00␣

→˓[/con]
[con c0002] 8.111071056538127e-01 x0001_x1 - x0008 = 0e+00 [/con]
[con c0003] - x0003 + x0004 = 0e+00 [/con]

[/constraints]

[bounds]
[b] -1e+00 <= x0000_x0,x0001_x1,x0002_x2 <= 1e+00 [/b]
[b] x0003,x0004 free [/b]
[b] x0005 = 1e+00 [/b]
[b] x0006,x0007,x0008 free [/b]
[cone rquad k0000] x0004, x0005, x0006, x0007, x0008 [/cone]

[/bounds]

We can clearly see that constraints c0000, c0001 and c0002 represent the original linear constraints
as in (9.11), while c0003 corresponds to (9.10). The cone roots are x0005 and x0004.

100

Chapter 10

Technical guidelines

This section contains some more in-depth technical guidelines for Optimizer API for Python, not strictly
necessary for basic use of MOSEK.

10.1 Memory management and garbage collection

Users who experience memory leaks, especially:

• memory usage not decreasing after the solver terminates,

• memory usage increasing when solving a sequence of problems,

should make sure that the Task objects are properly garbage collected. Since each Task object links
to a MOSEK task resource in a linked library, it is sometimes the case that the garbage collector is
unable to reclaim it automatically. This means that substantial amounts of memory may be leaked. For
this reason it is very important to make sure that the Task object is disposed of, either automatically
or manually, when it is not used any more.

The Task class supports the Context Manager protocol, so it will be destroyed properly when used
in a with statement:

with mosek.Env() as env:
with env.Task(0, 0) as task:

Build an optimization problem
...

If this is not possible, then the necessary cleanup is performed by the methods Task.__del__ and
Env.__del__ which should be called explicitly.

10.2 Names

All elements of an optimization problem in MOSEK (objective, constraints, variables, etc.) can be given
names. Assigning meaningful names to variables and constraints makes it much easier to understand
and debug optimization problems dumped to a file. On the other hand, note that assigning names can
substantially increase setup time, so it should be avoided in time-critical applications.

Names of various elements of the problem can be set and retrieved using various functions listed in
the Names section of Sec. 15.2.

Note that file formats impose various restrictions on names, so not all names can be written verbatim
to each type of file. If at least one name cannot be written to a given format then generic names and
substitutions of offending characters will be used when saving to a file, resulting in a transformation of
all names in the problem. See Sec. 16.

101

10.3 Multithreading

Thread safety

Sharing a task between threads is safe, as long as it is not accessed from more than one thread at a
time. Multiple tasks can be created and used in parallel without any problems.

Parallelization

The interior-point and mixed-integer optimizers in MOSEK are parallelized. By default MOSEK
will automatically select the number of threads. However, the maximum number of threads allowed can
be changed by setting the parameter iparam.num_threads and related parameters. This should never
exceed the number of cores. See Sec. 13 and Sec. 13.4 for more details.

The speed-up obtained when using multiple threads is highly problem and hardware dependent. We
recommend experimenting with various thread numbers to determine the optimal settings. For small
problems using multiple threads may be counter-productive because of the associated overhead.

Determinism

By default the optimizer is run-to-run deterministic, which means that it will return the same answer
each time it is run on the same machine with the same input, the same parameter settings (including
number of threads) and no time limits.

Setting the number of threads

The number of threads the optimizer uses can be changed with the parameter iparam.num_threads .
For conic problems (when the conic optimizer is used) the value set at the first optimization will

remain fixed through the lifetime of the process. The thread pool will be reserved once for all and
subsequent changes to iparam.num_threads will have no effect. The only possibility at that point is
to switch between multi-threaded and single-threaded interior-point optimization using the parameter
iparam.intpnt_multi_thread .

The parameter iparam.num_threads affects only the optimizer. It may be the case that numpy
is consuming more threads. In most cases this can be limited by setting the environment variable
MKL_NUM_THREADS. See the numpy documentation for more details.

10.4 Efficiency

Although MOSEK is implemented to handle memory efficiently, the user may have valuable knowledge
about a problem, which could be used to improve the performance of MOSEK This section discusses
some tricks and general advice that hopefully make MOSEK process your problem faster.

Reduce the number of function calls and avoid input loops

For example, instead of setting the entries in the linear constraint matrix one by one (Task.putaij)
define them all at once (Task.putaijlist) or in convenient large chunks (Task.putacollist etc.)

Use one environment only

If possible share the environment between several tasks. For most applications you need to create
only a single environment.

Read part of the solution

When fetching the solution, data has to be copied from the optimizer to the user’s data structures.
Instead of fetching the whole solution, consider fetching only the interesting part (see for example Task.
getxxslice and similar).

102

Avoiding memory fragmentation

MOSEK stores the optimization problem in internal data structures in the memory. Initially
MOSEK will allocate structures of a certain size, and as more items are added to the problem the
structures are reallocated. For large problems the same structures may be reallocated many times caus-
ing memory fragmentation. One way to avoid this is to give MOSEK an estimated size of your problem
using the functions:

• Task.putmaxnumvar . Estimate for the number of variables.

• Task.putmaxnumcon . Estimate for the number of constraints.

• Task.putmaxnumcone . Estimate for the number of cones.

• Task.putmaxnumbarvar . Estimate for the number of semidefinite matrix variables.

• Task.putmaxnumanz . Estimate for the number of non-zeros in 𝐴.

• Task.putmaxnumqnz . Estimate for the number of non-zeros in the quadratic terms.

None of these functions changes the problem, they only serve as hints. If the problem ends up growing
larger, the estimates are automatically increased.

Do not mix put- and get- functions

MOSEK will queue put- requests internally until a get- function is called. If put- and get- calls
are interleaved, the queue will have to be flushed more frequently, decreasing efficiency.

In general get- commands should not be called often (or at all) during problem setup.

Use the LIFO principle

When removing constraints and variables, try to use a LIFO (Last In First Out) approach. MOSEK
can more efficiently remove constraints and variables with a high index than a small index.

An alternative to removing a constraint or a variable is to fix it at 0, and set all relevant coefficients
to 0. Generally this will not have any impact on the optimization speed.

Add more constraints and variables than you need (now)

The cost of adding one constraint or one variable is about the same as adding many of them. There-
fore, it may be worthwhile to add many variables instead of one. Initially fix the unused variable at zero,
and then later unfix them as needed. Similarly, you can add multiple free constraints and then use them
as needed.

Do not remove basic variables

When performing re-optimizations, instead of removing a basic variable it may be more efficient to
fix the variable at zero and then remove it when the problem is re-optimized and it has left the basis.
This makes it easier for MOSEK to restart the simplex optimizer.

10.5 The license system

MOSEK is a commercial product that always needs a valid license to work. MOSEK uses a third
party license manager to implement license checking. The number of license tokens provided determines
the number of optimizations that can be run simultaneously.

By default a license token remains checked out from the first optimization until the end of the
MOSEK session, i.e.

• a license token is checked out when Task.optimize is first called, and

• it is returned when the MOSEK environment is deleted.

103

Calling Task.optimize from different threads using the same MOSEK environment only consumes
one license token.

Starting the optimization when no license tokens are available will result in an error.
Default behaviour of the license system can be changed in several ways:

• Setting the parameter iparam.cache_license to onoffkey.off will force MOSEK to return
the license token immediately after the optimization completed.

• Setting the license wait flag with the parameter iparam.license_wait will force MOSEK to wait
until a license token becomes available instead of returning with an error. The wait time between
checks can be set with Env.putlicensewait .

• Additional license checkouts and checkins can be performed with the functions Env.
checkinlicense and Env.checkoutlicense .

• Usually the license system is stopped automatically when the MOSEK library is unloaded. How-
ever, when the user explicitly unloads the library (using e.g. FreeLibrary), the license system
must be stopped before the library is unloaded. This can be done by calling the function Env.
licensecleanup as the last function call to MOSEK.

10.6 Deployment

When redistributing a Python application using the MOSEK Optimizer API for Python 9.2.7, the
following libraries must be included:

64-bit Linux 64-bit Windows 32-bit Windows 64-bit Mac OS
libmosek64.so.9.2 mosek64_9_2.dll mosek9_2.dll libmosek64.9.2.dylib
libcilkrts.so.5 cilkrts20.dll cilkrts20.dll libcilkrts.5.dylib
libmosekxx9_2.so mosekxx9_2.dll mosekxx9_2.dll libmosekxx9_2.dylib

Furthermore, one (or both) of the directories

• python/2/mosek for Python 2.x applications,

• python/3/mosek for Python 3.x applications.

must be included.
By default the MOSEK Python API will look for the binary libraries in the MOSEK module

directory, i.e. the directory containing __init__.py. Alternatively, if the binary libraries reside in
another directory, the application can pre-load the mosekxx library from another location before mosek
is imported, e.g. like this

import ctypes ; ctypes.CDLL('my/path/to/mosekxx.dll')

104

Chapter 11

Case Studies

In this section we present some case studies in which the Optimizer API for Python is used to solve
real-life applications. These examples involve some more advanced modeling skills and possibly some
input data. The user is strongly recommended to first read the basic tutorials of Sec. 6 before going
through these advanced case studies.

• Portfolio Optimization

– Keywords: Markowitz model, variance, risk, efficient frontier, transaction cost, market im-
pact cost

– Type: Conic Quadratic, Power Cone, Mixed-Integer Optimization

• Logistic regression

– Keywords: machine learning, logistic regression, classifier, log-sum-exp, softplus, regulariza-
tion

– Type: Exponential Cone, Quadratic Cone

• Concurrent Optimizer

– Keywords: Concurrent optimization

– Type: Linear Optimization, Mixed-Integer Optimization

11.1 Portfolio Optimization

In this section the Markowitz portfolio optimization problem and variants are implemented using the
MOSEK optimizer API.

• Basic Markowitz model

• Efficient frontier

• Factor model and efficiency

• Market impact costs

• Transaction costs

• Cardinality constraints

105

11.1.1 A Basic Portfolio Optimization Model
The classical Markowitz portfolio optimization problem considers investing in 𝑛 stocks or assets held
over a period of time. Let 𝑥𝑗 denote the amount invested in asset 𝑗, and assume a stochastic model
where the return of the assets is a random variable 𝑟 with known mean

𝜇 = E𝑟

and covariance

Σ = E(𝑟 − 𝜇)(𝑟 − 𝜇)𝑇 .

The return of the investment is also a random variable 𝑦 = 𝑟𝑇𝑥 with mean (or expected return)

E𝑦 = 𝜇𝑇𝑥

and variance

E(𝑦 −E𝑦)2 = 𝑥𝑇 Σ𝑥.

The standard deviation
√
𝑥𝑇 Σ𝑥

is usually associated with risk.
The problem facing the investor is to rebalance the portfolio to achieve a good compromise between

risk and expected return, e.g., maximize the expected return subject to a budget constraint and an upper
bound (denoted 𝛾) on the tolerable risk. This leads to the optimization problem

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

𝑥𝑇 Σ𝑥 ≤ 𝛾2,
𝑥 ≥ 0.

(11.1)

The variables 𝑥 denote the investment i.e. 𝑥𝑗 is the amount invested in asset 𝑗 and 𝑥0
𝑗 is the initial

holding of asset 𝑗. Finally, 𝑤 is the initial amount of cash available.
A popular choice is 𝑥0 = 0 and 𝑤 = 1 because then 𝑥𝑗 may be interpreted as the relative amount of

the total portfolio that is invested in asset 𝑗.
Since 𝑒 is the vector of all ones then

𝑒𝑇𝑥 =

𝑛∑︁
𝑗=1

𝑥𝑗

is the total investment. Clearly, the total amount invested must be equal to the initial wealth, which is

𝑤 + 𝑒𝑇𝑥0.

This leads to the first constraint

𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0.

The second constraint

𝑥𝑇 Σ𝑥 ≤ 𝛾2

106

ensures that the variance, is bounded by the parameter 𝛾2. Therefore, 𝛾 specifies an upper bound of
the standard deviation (risk) the investor is willing to undertake. Finally, the constraint

𝑥𝑗 ≥ 0

excludes the possibility of short-selling. This constraint can of course be excluded if short-selling is
allowed.

The covariance matrix Σ is positive semidefinite by definition and therefore there exist a matrix 𝐺
such that

Σ = 𝐺𝐺𝑇 . (11.2)

In general the choice of 𝐺 is not unique and one possible choice of 𝐺 is the Cholesky factorization of Σ.
However, in many cases another choice is better for efficiency reasons as discussed in Sec. 11.1.3. For a
given 𝐺 we have that

𝑥𝑇 Σ𝑥 = 𝑥𝑇𝐺𝐺𝑇𝑥

=
⃦⃦
𝐺𝑇𝑥

⃦⃦2
.

Hence, we may write the risk constraint as

𝛾 ≥
⃦⃦
𝐺𝑇𝑥

⃦⃦
or equivalently

(𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑛+1,

where 𝒬𝑛+1 is the (𝑛 + 1)-dimensional quadratic cone. Therefore, problem (11.1) can be written as

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

(𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑛+1,
𝑥 ≥ 0,

(11.3)

which is a conic quadratic optimization problem that can easily be formulated and solved with Optimizer
API for Python. Subsequently we will use the example data

𝜇 =

⎡⎣ 0.1073
0.0737
0.0627

⎤⎦
and

Σ = 0.1 ·

⎡⎣ 0.2778 0.0387 0.0021
0.0387 0.1112 −0.0020
0.0021 −0.0020 0.0115

⎤⎦ .

This implies

𝐺𝑇 =
√

0.1

⎡⎣ 0.5271 0.0734 0.0040
0 0.3253 −0.0070
0 0 0.1069

⎤⎦
Why a Conic Formulation?

Problem (11.1) is a convex quadratically constrained optimization problem that can be solved directly
using MOSEK. Why then reformulate it as a conic quadratic optimization problem (11.3)? The main
reason for choosing a conic model is that it is more robust and usually solves faster and more reliably. For
instance it is not always easy to numerically validate that the matrix Σ in (11.1) is positive semidefinite

107

due to the presence of rounding errors. It is also very easy to make a mistake so Σ becomes indefinite.
These problems are completely eliminated in the conic formulation.

Moreover, observe the constraint ⃦⃦
𝐺𝑇𝑥

⃦⃦
≤ 𝛾

more numerically robust than

𝑥𝑇 Σ𝑥 ≤ 𝛾2

for very small and very large values of 𝛾. Indeed, if say 𝛾 ≈ 104 then 𝛾2 ≈ 108, which introduces a
scaling issue in the model. Hence, using conic formulation we work with the standard deviation instead
of variance, which usually gives rise to a better scaled model.

Implementing the Portfolio Model

Creating a matrix formulation

The Optimizer API for Python requires that an optimization problem is entered in the following
standard form:

maximize 𝑐𝑇 �̂�
subject to 𝑙𝑐 ≤ 𝐴�̂� ≤ 𝑢𝑐,

𝑙𝑥 ≤ �̂� ≤ 𝑢𝑥,
�̂� ∈ 𝒦.

(11.4)

We refer to �̂� as the API variable. It means we need to reformulate (11.3). The first step is to introduce
auxiliary variables so that the conic constraint involves only unique variables:

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

𝐺𝑇𝑥− 𝑡 = 0,
[𝑠; 𝑡] ∈ 𝒬𝑛+1,

𝑥 ≥ 0,
𝑠 = 𝛾.

(11.5)

Here 𝑠 is an additional scalar variable and 𝑡 is a vector variable of dimension 𝑛. The next step is to
concatenate all the variables into one long variable vector:

�̂� = [𝑥; 𝑠; 𝑡] =

⎡⎣ 𝑥
𝑠
𝑡

⎤⎦ (11.6)

The details of the concatenation are specified below.

Table 11.1: Storage layout of the �̂� variable.
Variable Length Offset
𝑥 𝑛 0
𝑠 1 𝑛
𝑡 𝑛 𝑛 + 1

The offset determines where the variable starts. (Note that all variables are indexed from 0). For
instance

�̂�𝑛+1+𝑖 = 𝑡𝑖.

because the offset of the 𝑡 variable is 𝑛 + 1.

108

Given the ordering of the variables specified by (11.6) it is useful to visualize the linear constraints
(11.4) in an explicit block matrix form:

⎡⎢⎢⎣
1 0 0

−1
𝐺𝑇 0 −1

−1

⎤⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑥

𝑠

𝑡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎣
𝑤 + 𝑒𝑇𝑥0

0

⎤⎥⎥⎦ . (11.7)

In other words, we should define the specific components of the problem description as follows:

𝑐 =
[︀
𝜇𝑇 0 0𝑛

]︀𝑇
,

𝐴 =

[︂
𝑒𝑇 0 0𝑛
𝐺𝑇 0𝑛 −𝐼𝑛

]︂
,

𝑙𝑐 =
[︀
𝑤 + 𝑒𝑇𝑥0 0𝑛

]︀𝑇
,

𝑢𝑐 =
[︀
𝑤 + 𝑒𝑇𝑥0 0𝑛

]︀𝑇
,

𝑙𝑥 =
[︀

0𝑛 𝛾 −∞𝑛

]︀𝑇
,

𝑢𝑥 =
[︀
∞𝑛 𝛾 ∞𝑛

]︀𝑇
.

(11.8)

Source code example

From the block matrix form (11.7) and the explicit specification (11.8), using the offset information
in Table 11.1 it is easy to calculate the index and value of each entry of the linear constraint matrix.
The code below sets up the general optimization problem (11.5) and solves it for the example data. Of
course it is only necessary to set non-zero entries of the linear constraint matrix.

Listing 11.1: Code implementing model (11.5).

import mosek
import sys

def streamprinter(text):
sys.stdout.write("%s" % text),

if __name__ == '__main__':

n = 3
gamma = 0.05
mu = [0.1073, 0.0737, 0.0627]
GT = [[0.1667, 0.0232, 0.0013],

[0.0000, 0.1033, -0.0022],
[0.0000, 0.0000, 0.0338]]

x0 = [0.0, 0.0, 0.0]
w = 1.0

inf = 0.0 # This value has no significance

with mosek.Env() as env:
with env.Task(0, 0) as task:

task.set_Stream(mosek.streamtype.log, streamprinter)

Constraints.
task.appendcons(1 + n)

Total budget constraint - set bounds l^c = u^c
rtemp = w + sum(x0)
task.putconbound(0, mosek.boundkey.fx, rtemp, rtemp)
task.putconname(0, "budget")

(continues on next page)

109

(continued from previous page)

The remaining constraints GT * x - t = 0 - set bounds l^c = u^c
task.putconboundlist(range(1 + 0, 1 + n), [mosek.boundkey.fx] * n, [0.0] * n, [0.

→˓0] * n)
for j in range(1, 1 + n):

task.putconname(j, "GT[%d]" % j)

Variables.
task.appendvars(1 + 2 * n)

Offset of variables into the API variable.
offsetx = 0
offsets = n
offsett = n + 1

x variables.
Returns of assets in the objective
task.putclist(range(offsetx + 0, offsetx + n), mu)
Coefficients in the first row of A
task.putaijlist([0] * n, range(offsetx + 0, offsetx + n), [1.0] * n)
No short-selling - x^l = 0, x^u = inf
task.putvarboundslice(offsetx, offsetx + n, [mosek.boundkey.lo] * n, [0.0] * n,␣

→˓[inf] * n)
for j in range(0, n):

task.putvarname(offsetx + j, "x[%d]" % (1 + j))

s variable is a constant equal to gamma
task.putvarbound(offsets + 0, mosek.boundkey.fx, gamma, gamma)
task.putvarname(offsets + 0, "s")

t variables (t = GT*x).
Copying the GT matrix in the appropriate block of A
for j in range(0, n):

task.putaijlist(
[1 + j] * n, range(offsetx + 0, offsetx + n), GT[j])

Diagonal -1 entries in a block of A
task.putaijlist(range(1, n + 1), range(offsett + 0, offsett + n), [-1.0] * n)
Free - no bounds
task.putvarboundslice(offsett + 0, offsett + n, [mosek.boundkey.fr] * n, [-inf] *␣

→˓n, [inf] * n)
for j in range(0, n):

task.putvarname(offsett + j, "t[%d]" % (1 + j))

Define the cone spanned by variables (s, t), i.e. dimension = n + 1
task.appendcone(mosek.conetype.quad, 0.0, [offsets] + list(range(offsett, offsett␣

→˓+ n)))
task.putconename(0, "stddev")

task.putobjsense(mosek.objsense.maximize)

Dump the problem to a human readable OPF file.
task.writedata("dump.opf")

task.optimize()

Display solution summary for quick inspection of results.
task.solutionsummary(mosek.streamtype.msg)

Retrieve results
xx = [0.] * (n + 1)
task.getxxslice(mosek.soltype.itr, offsetx + 0, offsets + 1, xx)

(continues on next page)

110

(continued from previous page)

expret = sum(mu[j] * xx[j] for j in range(offsetx, offsetx + n))
stddev = xx[offsets]

print("\nExpected return %e for gamma %e\n" % (expret, stddev))

The above code produces the result:

Listing 11.2: Output from the solver.

Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 7.4766507287e-02 nrm: 1e+00 Viol. con: 2e-08 var: 0e+00 cones: 2e-

→˓08
Dual. obj: 7.4766554102e-02 nrm: 3e-01 Viol. con: 0e+00 var: 3e-08 cones:␣

→˓0e+00

Expected return 7.476651e-02 for gamma 5.000000e-02

Source code comments

The source code is a direct translation of the model (11.5) using the explicit block matrix specification
(11.8) but a few comments are nevertheless in place.

In the lines

Offset of variables into the API variable.
offsetx = 0
offsets = n
offsett = n + 1

offsets into the MOSEK API variable are stored as in Table 11.1. The code

Returns of assets in the objective
task.putclist(range(offsetx + 0, offsetx + n), mu)
Coefficients in the first row of A
task.putaijlist([0] * n, range(offsetx + 0, offsetx + n), [1.0] * n)
No short-selling - x^l = 0, x^u = inf
task.putvarboundslice(offsetx, offsetx + n, [mosek.boundkey.lo] * n, [0.0] * n,␣

→˓[inf] * n)
for j in range(0, n):

task.putvarname(offsetx + j, "x[%d]" % (1 + j))

sets up the data for 𝑥 variables. For instance

Returns of assets in the objective
task.putclist(range(offsetx + 0, offsetx + n), mu)

inputs the objective coefficients for the 𝑥 variables. Moreover, the code

for j in range(0, n):
task.putvarname(offsetx + j, "x[%d]" % (1 + j))

assigns meaningful names to the API variables. This is not needed but it makes debugging easier.
Note that the solution values are only accessed for the interesting variables; for instance the auxiliary

variable 𝑡 is omitted from this process.

Debugging Tips

Implementing an optimization model in Optimizer API for Python can be error-prone. In order to check
the code for accidental errors it is very useful to dump the problem to a file in a human readable form
for visual inspection. The line

111

Dump the problem to a human readable OPF file.
task.writedata("dump.opf")

does that and it produces a file with the content:

Listing 11.3: Problem (11.5) stored in OPF format.

[comment]
Written by MOSEK version 8.1.0.24
Date 11-09-17
Time 14:34:24

[/comment]

[hints]
[hint NUMVAR] 7 [/hint]
[hint NUMCON] 4 [/hint]
[hint NUMANZ] 12 [/hint]
[hint NUMQNZ] 0 [/hint]
[hint NUMCONE] 1 [/hint]

[/hints]

[variables disallow_new_variables]
'x[1]' 'x[2]' 'x[3]' s 't[1]'
't[2]' 't[3]'

[/variables]

[objective maximize]
1.073e-01 'x[1]' + 7.37e-02 'x[2]' + 6.270000000000001e-02 'x[3]'

[/objective]

[constraints]
[con 'budget'] 'x[1]' + 'x[2]' + 'x[3]' = 1e+00 [/con]
[con 'GT[1]'] 1.667e-01 'x[1]' + 2.32e-02 'x[2]' + 1.3e-03 'x[3]' - 't[1]' = 0e+00 [/con]
[con 'GT[2]'] 1.033e-01 'x[2]' - 2.2e-03 'x[3]' - 't[2]' = 0e+00 [/con]
[con 'GT[3]'] 3.38e-02 'x[3]' - 't[3]' = 0e+00 [/con]

[/constraints]

[bounds]
[b] 0e+00 <= 'x[1]','x[2]','x[3]' [/b]
[b] s = 5e-02 [/b]
[b] 't[1]','t[2]','t[3]' free [/b]
[cone quad 'stddev'] s, 't[1]', 't[2]', 't[3]' [/cone]

[/bounds]

Since the API variables have been given meaningful names it is easy to verify by hand that the model
is correct.

11.1.2 The efficient Frontier
The portfolio computed by the Markowitz model is efficient in the sense that there is no other portfolio
giving a strictly higher return for the same amount of risk. An efficient portfolio is also sometimes called
a Pareto optimal portfolio. Clearly, an investor should only invest in efficient portfolios and therefore it
may be relevant to present the investor with all efficient portfolios so the investor can choose the portfolio
that has the desired tradeoff between return and risk.

Given a nonnegative 𝛼 the problem

maximize 𝜇𝑇𝑥− 𝛼𝑥𝑇 Σ𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

𝑥 ≥ 0.
(11.9)

is one standard way to trade the expected return against penalizing variance. Note that, in contrast to
the previous example, we explicitly use the variance (‖𝐺𝑇𝑥‖22) rather than standard deviation (‖𝐺𝑇𝑥‖2),

112

therefore the conic model includes a rotated quadratic cone:

maximize 𝜇𝑇𝑥− 𝛼𝑠
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

𝐺𝑇𝑥− 𝑡 = 0,
𝑢 = 0.5,

(𝑠, 𝑢, 𝑡) ∈ 𝑄𝑛+2
𝑟 (evaluates to 𝑠 ≥ ‖𝐺𝑇𝑥‖22 = 𝑥𝑇 Σ𝑥),

𝑥 ≥ 0.

(11.10)

Ideally the problem (11.9) should be solved for all values 𝛼 ≥ 0 but in practice it is impossible. Using
the example data as before, the optimal values of return and variance for several values of 𝛼 are shown
below:

Listing 11.4: Results obtained solving problem (11.9) for different
values of 𝛼.

alpha exp ret variance
0.000e+00 1.073e-01 2.779e-02
2.500e-01 1.073e-01 2.779e-02
5.000e-01 1.073e-01 2.779e-02
7.500e-01 1.057e-01 2.554e-02
1.000e+00 9.965e-02 1.851e-02
1.500e+00 8.802e-02 8.850e-03
2.000e+00 8.213e-02 5.415e-03
2.500e+00 7.860e-02 3.826e-03
3.000e+00 7.625e-02 2.963e-03
3.500e+00 7.457e-02 2.442e-03
4.000e+00 7.331e-02 2.104e-03
4.500e+00 7.232e-02 1.873e-03

Source code example

The example code in Listing 11.5 demonstrates how to compute the efficient portfolios for several
values of 𝛼. The code is mostly similar to the one in Sec. 11.1.1, except the problem is re-optimized in
a loop for varying 𝛼.

Listing 11.5: Code implementing model (11.9).

import mosek

def streamprinter(text):
print("%s" % text),

if __name__ == '__main__':

n = 3
mu = [0.1073, 0.0737, 0.0627]
GT = [[0.1667, 0.0232, 0.0013],

[0.0000, 0.1033, -0.0022],
[0.0000, 0.0000, 0.0338]]

x0 = [0.0, 0.0, 0.0]
w = 1.0
alphas = [0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5]

inf = 0.0 # This value has no significance

with mosek.Env() as env:
with env.Task(0, 0) as task:

task.set_Stream(mosek.streamtype.log, streamprinter)

rtemp = w + sum(x0)
(continues on next page)

113

(continued from previous page)

Constraints.
task.appendcons(1 + n)
task.putconbound(0, mosek.boundkey.fx, rtemp, rtemp)
task.putconname(0, "budget")

task.putconboundlist(range(1 + 0, 1 + n), n *
[mosek.boundkey.fx], n * [0.0], n * [0.0])

for j in range(1, 1 + n):
task.putconname(j, "GT[%d]" % j)

Variables.
task.appendvars(2 + 2 * n)

offsetx = 0 # Offset of variable x into the API variable.
offsets = n # Offset of variable s into the API variable.
offsett = n + 1 # Offset of variable t into the API variable.
offsetu = 2*n + 1 # Offset of variable u into the API variable.

x variables.
task.putclist(range(offsetx + 0, offsetx + n), mu)
task.putaijlist(

n * [0], range(offsetx + 0, offsetx + n), n * [1.0])
for j in range(0, n):

task.putaijlist(
n * [1 + j], range(offsetx + 0, offsetx + n), GT[j])

task.putvarboundsliceconst(offsetx, offsetx + n, mosek.boundkey.lo, 0.0, inf)

for j in range(0, n):
task.putvarname(offsetx + j, "x[%d]" % (1 + j))

s variable.
task.putvarbound(offsets + 0, mosek.boundkey.fr, -inf, inf)
task.putvarname(offsets + 0, "s")

u variable.
task.putvarbound(offsetu + 0, mosek.boundkey.fx, 0.5, 0.5)
task.putvarname(offsetu + 0, "u")

t variables.
task.putaijlist(range(1, n + 1), range(offsett +

0, offsett + n), n * [-1.0])
task.putvarboundsliceconst(offsett, offsett + n, mosek.boundkey.fr, -inf, inf)
for j in range(0, n):

task.putvarname(offsett + j, "t[%d]" % (1 + j))

task.appendcone(mosek.conetype.rquad, 0.0,
[offsets, offsetu] + list(range(offsett, offsett + n)))

task.putconename(0, "variance")

task.putobjsense(mosek.objsense.maximize)

Turn all log output off.
task.putintparam(mosek.iparam.log, 0)

for alpha in alphas:
Dump the problem to a human readable OPF file.
#task.writedata("dump.opf")

task.putcj(offsets + 0, -alpha)

(continues on next page)

114

(continued from previous page)

task.optimize()

Display the solution summary for quick inspection of results.
task.solutionsummary(mosek.streamtype.msg)

solsta = task.getsolsta(mosek.soltype.itr)

if solsta in [mosek.solsta.optimal]:
expret = 0.0
x = [0.] * n
task.getxxslice(mosek.soltype.itr,

offsetx + 0, offsetx + n, x)
for j in range(0, n):

expret += mu[j] * x[j]

stddev = [0.]
task.getxxslice(mosek.soltype.itr,

offsets + 0, offsets + 1, stddev)

print("alpha = {0:.2e} exp. ret. = {1:.3e}, variance {2:.3e}".format(alpha,
→˓ expret, stddev[0]))

else:
print("An error occurred when solving for alpha=%e\n" % alpha)

11.1.3 Factor model and efficiency
In practice it is often important to solve the portfolio problem very quickly. Therefore, in this section
we discuss how to improve computational efficiency at the modeling stage.

The computational cost is of course to some extent dependent on the number of constraints and
variables in the optimization problem. However, in practice a more important factor is the sparsity: the
number of nonzeros used to represent the problem. Indeed it is often better to focus on the number of
nonzeros in 𝐺 see (11.2) and try to reduce that number by for instance changing the choice of 𝐺.

In other words if the computational efficiency should be improved then it is always good idea to start
with focusing at the covariance matrix. As an example assume that

Σ = 𝐷 + 𝑉 𝑉 𝑇

where 𝐷 is a positive definite diagonal matrix. Moreover, 𝑉 is a matrix with 𝑛 rows and 𝑝 columns.
Such a model for the covariance matrix is called a factor model and usually 𝑝 is much smaller than 𝑛.
In practice 𝑝 tends to be a small number independent of 𝑛, say less than 100.

One possible choice for 𝐺 is the Cholesky factorization of Σ which requires storage proportional to
𝑛(𝑛 + 1)/2. However, another choice is

𝐺𝑇 =

[︂
𝐷1/2

𝑉 𝑇

]︂
because then

𝐺𝐺𝑇 = 𝐷 + 𝑉 𝑉 𝑇 .

This choice requires storage proportional to 𝑛 + 𝑝𝑛 which is much less than for the Cholesky choice of
𝐺. Indeed assuming 𝑝 is a constant storage requirements are reduced by a factor of 𝑛.

The example above exploits the so-called factor structure and demonstrates that an alternative choice
of 𝐺 may lead to a significant reduction in the amount of storage used to represent the problem. This
will in most cases also lead to a significant reduction in the solution time.

The lesson to be learned is that it is important to investigate how the covariance matrix is formed.
Given this knowledge it might be possible to make a special choice for 𝐺 that helps reducing the storage
requirements and enhance the computational efficiency. More details about this process can be found in
[And13] .

115

11.1.4 Slippage Cost
The basic Markowitz model assumes that there are no costs associated with trading the assets and that
the returns of the assets are independent of the amount traded. Neither of those assumptions is usually
valid in practice. Therefore, a more realistic model is

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 +

∑︀𝑛
𝑗=1 𝐶𝑗 |𝑥𝑗 − 𝑥0

𝑗 | = 𝑤 + 𝑒𝑇𝑥0,

𝑥𝑇 Σ𝑥 ≤ 𝛾2,
𝑥 ≥ 0,

(11.11)

where the function

𝐶𝑗 |𝑥𝑗 − 𝑥0
𝑗 |

specifies the transaction costs when the holding of asset 𝑗 is changed from its initial value. In the next
two sections we show two different variants of this problem with two nonlinear cost functions 𝑇 .

11.1.5 Market Impact Costs
If the initial wealth is fairly small and no short selling is allowed, then the holdings will be small and the
traded amount of each asset must also be small. Therefore, it is reasonable to assume that the prices
of the assets are independent of the amount traded. However, if a large volume of an asset is sold or
purchased, the price, and hence return, can be expected to change. This effect is called market impact
costs. It is common to assume that the market impact cost for asset 𝑗 can be modeled by

𝐶𝑗 = 𝑚𝑗

√︁
|𝑥𝑗 − 𝑥0

𝑗 |

where 𝑚𝑗 is a constant that is estimated in some way by the trader. See [GK00] [p. 452] for details.
Hence, we have

𝐶𝑗(𝑥𝑗 − 𝑥0
𝑗) = 𝑚𝑗 |𝑥𝑗 − 𝑥0

𝑗 |
√︁
|𝑥𝑗 − 𝑥0

𝑗 | = 𝑚𝑗 |𝑥𝑗 − 𝑥0
𝑗 |3/2.

From the Modeling Cookbook we know that 𝑐 ≥ 𝑧3/2 can be modeled directly using the power cone
𝒫2/3,1/3
3 :

{(𝑐, 𝑧) : 𝑐 ≥ 𝑧3/2, 𝑧 ≥ 0} = {(𝑐, 𝑧) : (𝑐, 1, 𝑧) ∈ 𝒫2/3,1/3
3 }

Hence, it follows that we can write the model as

𝑧𝑗 = |𝑥𝑗 − 𝑥0
𝑗 |,

(𝑐𝑗 , 1, 𝑧𝑗) ∈ 𝒫2/3,1/3
3 ,∑︀𝑛

𝑗=1 𝐶𝑗 |𝑥𝑗 − 𝑥0
𝑗 | =

∑︀𝑛
𝑗=1 𝑐𝑗𝑚𝑗 .

Unfortunately this set of constraints is nonconvex due to the constraint

𝑧𝑗 = |𝑥𝑗 − 𝑥0
𝑗 | (11.12)

but in many cases the constraint may be replaced by the relaxed constraint

𝑧𝑗 ≥ |𝑥𝑗 − 𝑥0
𝑗 |, (11.13)

which is equivalent to

𝑧𝑗 ≥ 𝑥𝑗 − 𝑥0
𝑗 ,

𝑧𝑗 ≥ −(𝑥𝑗 − 𝑥0
𝑗).

(11.14)

For instance if the universe of assets contains a risk free asset then

𝑧𝑗 > |𝑥𝑗 − 𝑥0
𝑗 | (11.15)

116

https://docs.mosek.com/modeling-cookbook/index.html

cannot hold for an optimal solution.
If the optimal solution has the property (11.15) then the market impact cost within the model is larger

than the true market impact cost and hence money are essentially considered garbage and removed by
generating transaction costs. This may happen if a portfolio with very small risk is requested because
the only way to obtain a small risk is to get rid of some of the assets by generating transaction costs.
We generally assume that this is not the case and hence the models (11.12) and (11.13) are equivalent.

The above observations lead to
maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 + 𝑚𝑇 𝑐 = 𝑤 + 𝑒𝑇𝑥0,

[𝛾;𝐺𝑇𝑥] ∈ 𝒬𝑛+1,
𝑧𝑗 ≥ 𝑥𝑗 − 𝑥0

𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 ≥ 𝑥0

𝑗 − 𝑥𝑗 , 𝑗 = 1, . . . , 𝑛,

(𝑐𝑗 , 1, 𝑧𝑗) ∈ 𝒫2/3,1/3
3 , 𝑗 = 1, . . . , 𝑛,

𝑥 ≥ 0.

(11.16)

The revised budget constraint

𝑒𝑇𝑥 + 𝑚𝑇 𝑐 = 𝑤 + 𝑒𝑇𝑥0

specifies that the initial wealth covers the investment and the transaction costs. It should be mentioned
that transaction costs of the form

𝑡𝑗 ≥ 𝑧𝑝𝑗

where 𝑝 > 1 is a real number can be modeled with the power cone as

(𝑡𝑗 , 1, 𝑧𝑗) ∈ 𝒫1/𝑝,1−1/𝑝
3 .

See Modeling Cookbook for details.

Creating a matrix formulation

One more reformulation of (11.16) is needed to bring it to the standard form (11.4).

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 + 𝑚𝑇 𝑐 = 𝑤 + 𝑒𝑇𝑥0,

𝐺𝑇𝑥− 𝑡 = 0,
𝑧𝑗 − 𝑥𝑗 ≥ −𝑥0

𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 + 𝑥𝑗 ≥ 𝑥0

𝑗 , 𝑗 = 1, . . . , 𝑛,
(𝑠, 𝑡) ∈ 𝒬𝑛+1,

(𝑐𝑗 , 𝑓𝑗 , 𝑧𝑗) ∈ 𝒫2/3,1/3
3 , 𝑗 = 1, . . . , 𝑛,

𝑥 ≥ 0,
𝑓𝑗 = 1, 𝑗 = 1, . . . , 𝑛,
𝑠 = 𝛾,

(11.17)

where 𝑓 ∈ R𝑛 is an additional variable representing the unused coordinate in the power cone. The
formulation (11.17) is not the most compact possible, but it is easy to implement. MOSEK presolve
will automatically simplify it.

The first step in developing the implementation is to chose an ordering of the variables. We will
choose the following ordering:

�̂� = [𝑥; 𝑠; 𝑡; 𝑐; 𝑧; 𝑓]

Table 11.2 shows the mapping between the �̂� vector and the model variables.

Table 11.2: Storage layout for �̂�

Variable Length Offset
𝑥 𝑛 0
𝑠 1 𝑛
𝑡 𝑛 𝑛 + 1
𝑐 𝑛 2𝑛 + 1
𝑧 𝑛 3𝑛 + 1
𝑓 𝑛 4𝑛 + 1

117

https://docs.mosek.com/modeling-cookbook/index.html

The next step is to consider how the linear constraint matrix 𝐴 and the remaining data vectors are
laid out. Reusing the idea in Sec. 11.1.1 we can write the data in block matrix form and read off all the
required coordinates. This extension of the code setting up the constraint 𝐺𝑇𝑥− 𝑡 = 0 from Sec. 11.1.1
is shown below.

Source code example

The example code in Listing 11.6 demonstrates how to implement the model (11.17).

Listing 11.6: Code implementing model (11.17).

import mosek

def streamprinter(text):
print("%s" % text),

if __name__ == '__main__':

n = 3
gamma = 0.05
mu = [0.1073, 0.0737, 0.0627]
GT = [[0.1667, 0.0232, 0.0013],

[0.0000, 0.1033, -0.0022],
[0.0000, 0.0000, 0.0338]]

x0 = [0.0, 0.0, 0.0]
w = 1.0
m = [0.01, 0.01, 0.01]

This value has no significance.
inf = 0.0

with mosek.Env() as env:
with env.Task(0, 0) as task:

task.set_Stream(mosek.streamtype.log, streamprinter)

rtemp = w
for j in range(0, n):

rtemp += x0[j]

Constraints.
task.appendcons(1 + 3 * n)
task.putconbound(0, mosek.boundkey.fx, rtemp, rtemp)
task.putconname(0, "budget")

task.putconboundlist(range(1 + 0, 1 + n), n *
[mosek.boundkey.fx], n * [0.0], n * [0.0])

for j in range(1, 1 + n):
task.putconname(j, "GT[%d]" % j)

task.putconboundlist(range(
1 + n, 1 + 2 * n), n * [mosek.boundkey.lo], [-x0[j] for j in range(0, n)], n *␣

→˓[inf])
for i in range(0, n):

task.putconname(1 + n + i, "zabs1[%d]" % (1 + i))

task.putconboundlist(range(1 + 2 * n, 1 + 3 * n),
n * [mosek.boundkey.lo], x0, n * [inf])

for i in range(0, n):
task.putconname(1 + 2 * n + i, "zabs2[%d]" % (1 + i))

Offset of variables into the API variable.
offsetx = 0

(continues on next page)

118

(continued from previous page)

offsets = n
offsett = n + 1
offsetc = 2 * n + 1
offsetz = 3 * n + 1
offsetf = 4 * n + 1

Variables.
task.appendvars(1 + 5 * n)

x variables.
task.putclist(range(offsetx + 0, offsetx + n), mu)
task.putaijlist(

n * [0], range(offsetx + 0, offsetx + n), n * [1.0])
for j in range(0, n):

task.putaijlist(
n * [1 + j], range(offsetx + 0, offsetx + n), GT[j])

task.putaij(1 + n + j, offsetx + j, -1.0)
task.putaij(1 + 2 * n + j, offsetx + j, 1.0)

task.putvarboundlist(
range(offsetx + 0, offsetx + n), n * [mosek.boundkey.lo], n * [0.0], n * [inf])

for j in range(0, n):
task.putvarname(offsetx + j, "x[%d]" % (1 + j))

s variable.
task.putvarbound(offsets + 0, mosek.boundkey.fx, gamma, gamma)
task.putvarname(offsets + 0, "s")

t variables.
task.putaijlist(range(1, n + 1), range(offsett +

0, offsett + n), n * [-1.0])
task.putvarboundlist(range(offsett + 0, offsett + n),

n * [mosek.boundkey.fr], n * [-inf], n * [inf])
for j in range(0, n):

task.putvarname(offsett + j, "t[%d]" % (1 + j))

c variables.
task.putaijlist(n * [0], range(offsetc, offsetc + n), m)
task.putvarboundlist(range(offsetc, offsetc + n),

n * [mosek.boundkey.fr], n * [-inf], n * [inf])
for j in range(0, n):

task.putvarname(offsetc + j, "c[%d]" % (1 + j))

z variables.
task.putaijlist(range(1 + 1 * n, 1 + 2 * n),

range(offsetz, offsetz + n), n * [1.0])
task.putaijlist(range(1 + 2 * n, 1 + 3 * n),

range(offsetz, offsetz + n), n * [1.0])
task.putvarboundlist(range(offsetz, offsetz + n),

n * [mosek.boundkey.fr], n * [-inf], n * [inf])
for j in range(0, n):

task.putvarname(offsetz + j, "z[%d]" % (1 + j))

f variables.
task.putvarboundlist(range(offsetf, offsetf + n),

n * [mosek.boundkey.fx], n * [1.0], n * [1.0])
for j in range(0, n):

task.putvarname(offsetf + j, "f[%d]" % (1 + j))

quadratic cone
task.appendcone(mosek.conetype.quad, 0.0, [

(continues on next page)

119

(continued from previous page)

offsets] + list(range(offsett, offsett + n)))
task.putconename(0, "stddev")

power cones
for k in range(0, n):

task.appendcone(mosek.conetype.ppow, 2.0/3.0,
[offsetc + k, offsetf + k, offsetz + k])

task.putconename(1 + k, "trans[%d]" % (1 + k))

task.putobjsense(mosek.objsense.maximize)

Turn all log output off.
task.putintparam(mosek.iparam.log,0)

Dump the problem to a human readable OPF file.
task.writedata("dump.opf")

task.optimize()

Display the solution summary for quick inspection of results.
task.solutionsummary(mosek.streamtype.msg)

expret = 0.0
x = [0.] * n
task.getxxslice(mosek.soltype.itr, offsetx + 0, offsetx + n, x)
for j in range(0, n):

expret += mu[j] * x[j]

stddev = [0.]
task.getxxslice(mosek.soltype.itr, offsets +

0, offsets + 1, stddev)

print("\nExpected return %e for gamma %e\n" % (expret, stddev[0]))

The example code above produces the result

Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 7.4390639578e-02 nrm: 1e+00 Viol. con: 1e-08 var: 0e+00 cones: 7e-

→˓09
Dual. obj: 7.4390755614e-02 nrm: 3e-01 Viol. con: 1e-19 var: 3e-08 cones:␣

→˓0e+00

Expected return 7.439064e-02 for gamma 5.000000e-02

If the problem is dumped to an OPF file, it has the following content.

Listing 11.7: OPF file for problem (11.17).

[comment]
Written by MOSEK version 9.0.0.31
Date 10-01-18
Time 12:10:24

[/comment]

[hints]
[hint NUMVAR] 16 [/hint]
[hint NUMCON] 10 [/hint]
[hint NUMANZ] 27 [/hint]
[hint NUMQNZ] 0 [/hint]

(continues on next page)

120

(continued from previous page)

[hint NUMCONE] 4 [/hint]
[/hints]

[variables disallow_new_variables]
'x[1]' 'x[2]' 'x[3]' s 't[1]'
't[2]' 't[3]' 'c[1]' 'c[2]' 'c[3]'
'z[1]' 'z[2]' 'z[3]' 'f[1]' 'f[2]'
'f[3]'

[/variables]

[objective maximize]
1.073e-01 'x[1]' + 7.37e-02 'x[2]' + 6.270000000000001e-02 'x[3]'

[/objective]

[constraints]
[con 'budget'] 'x[1]' + 'x[2]' + 'x[3]' + 1e-02 'c[1]' + 1e-02 'c[2]'

+ 1e-02 'c[3]' = 1e+00 [/con]
[con 'GT[1]'] 1.667e-01 'x[1]' + 2.32e-02 'x[2]' + 1.3e-03 'x[3]' - 't[1]' = 0e+00 [/con]
[con 'GT[2]'] 1.033e-01 'x[2]' - 2.2e-03 'x[3]' - 't[2]' = 0e+00 [/con]
[con 'GT[3]'] 3.38e-02 'x[3]' - 't[3]' = 0e+00 [/con]
[con 'zabs1[1]'] 0e+00 <= - 'x[1]' + 'z[1]' [/con]
[con 'zabs1[2]'] 0e+00 <= - 'x[2]' + 'z[2]' [/con]
[con 'zabs1[3]'] 0e+00 <= - 'x[3]' + 'z[3]' [/con]
[con 'zabs2[1]'] 0e+00 <= 'x[1]' + 'z[1]' [/con]
[con 'zabs2[2]'] 0e+00 <= 'x[2]' + 'z[2]' [/con]
[con 'zabs2[3]'] 0e+00 <= 'x[3]' + 'z[3]' [/con]

[/constraints]

[bounds]
[b] 0e+00 <= 'x[1]','x[2]','x[3]' [/b]
[b] s = 5e-02 [/b]
[b] 't[1]','t[2]','t[3]','c[1]','c[2]','c[3]' free [/b]
[b] 'z[1]','z[2]','z[3]' free [/b]
[b] 'f[1]','f[2]','f[3]' = 1e+00 [/b]
[cone quad 'stddev'] s, 't[1]', 't[2]', 't[3]' [/cone]
[cone ppow '6.666666666666666e-01' 'trans[1]'] 'c[1]', 'f[1]', 'z[1]' [/cone]
[cone ppow '6.666666666666666e-01' 'trans[2]'] 'c[2]', 'f[2]', 'z[2]' [/cone]
[cone ppow '6.666666666666666e-01' 'trans[3]'] 'c[3]', 'f[3]', 'z[3]' [/cone]

[/bounds]

The file verifies that the correct problem has been set up.

11.1.6 Transaction Costs
Now assume there is a cost associated with trading asset 𝑗 given by

𝑇𝑗(∆𝑥𝑗) =

{︂
0, ∆𝑥𝑗 = 0,
𝑓𝑗 + 𝑔𝑗 |∆𝑥𝑗 |, otherwise.

Here ∆𝑥𝑗 is the change in the holding of asset 𝑗 i.e.

∆𝑥𝑗 = 𝑥𝑗 − 𝑥0
𝑗 .

Hence, whenever asset 𝑗 is traded we pay a fixed setup cost 𝑓𝑗 and a variable cost of 𝑔𝑗 per unit traded.
This sort of cost function can be modeled using mixed-integer optimization, in particular using a binary
variable 𝑦𝑗 to indicate if asset 𝑗 is traded. Given the assumptions about transaction costs in this section
problem (11.11) may be formulated as

121

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 + 𝑓𝑇 𝑦 + 𝑔𝑇 𝑧 = 𝑤 + 𝑒𝑇𝑥0,

[𝛾;𝐺𝑇𝑥] ∈ 𝒬𝑛+1,
𝑧𝑗 ≥ 𝑥𝑗 − 𝑥0

𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 ≥ 𝑥0

𝑗 − 𝑥𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 ≤ 𝑈𝑗𝑦𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑦𝑗 ∈ {0, 1}, 𝑗 = 1, . . . , 𝑛,
𝑥 ≥ 0.

(11.18)

First observe that

𝑧𝑗 ≥ |𝑥𝑗 − 𝑥0
𝑗 | = |∆𝑥𝑗 |.

Here 𝑈𝑗 is some a priori chosen upper bound on the amount of trading in asset 𝑗 and therefore if 𝑧𝑗 > 0
then 𝑦𝑗 = 1 has to be the case. This implies that the transaction cost for asset 𝑗 is given by

𝑓𝑗𝑦𝑗 + 𝑔𝑗𝑧𝑗 .

In our problem a safe bound for each 𝑈𝑗 is the total initial wealth 𝑤 + 𝑒𝑇𝑥0, however knowing a tighter
bound may lead to shorter solution times.

Creating a matrix formulation

One more reformulation of (11.18) is needed to bring it to the standard form (11.4).

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 + 𝑓𝑇 𝑦 + 𝑔𝑇 𝑧 = 𝑤 + 𝑒𝑇𝑥0,

𝐺𝑇𝑥− 𝑡 = 0,
𝑧𝑗 − 𝑥𝑗 ≥ −𝑥0

𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 + 𝑥𝑗 ≥ 𝑥0

𝑗 , 𝑗 = 1, . . . , 𝑛,
(𝑠, 𝑡) ∈ 𝒬𝑛+1,

𝑧𝑗 − 𝑈𝑗𝑦𝑗 ≤ 0, 𝑗 = 1, . . . , 𝑛,
𝑥 ≥ 0,
𝑦𝑗 ∈ [0, 1], 𝑗 = 1, . . . , 𝑛,
𝑦𝑗 ∈ Z, 𝑗 = 1, . . . , 𝑛,
𝑠 = 𝛾.

(11.19)

We will choose the following ordering of variables:

�̂� = [𝑥; 𝑠; 𝑡; 𝑧; 𝑦]

Table 11.3 shows the mapping between the �̂� vector and the model variables.

Table 11.3: Storage layout for �̂�

Variable Length Offset
𝑥 𝑛 0
𝑠 1 𝑛
𝑡 𝑛 𝑛 + 1
𝑧 𝑛 2𝑛 + 1
𝑦 𝑛 3𝑛 + 1

The next step is to consider how the linear constraint matrix 𝐴 and the remaining data vectors are
laid out. Reusing the idea in Sec. 11.1.1 we can write the data in block matrix form and read off all the
required coordinates. This extension of the code setting up the constraint 𝐺𝑇𝑥− 𝑡 = 0 from Sec. 11.1.1
is shown below.

122

Example code

The following example code demonstrates how to compute an optimal portfolio when transaction
setup costs are included. Note that we are now solving a problem with integer variables, and therefore
the solution must be retrieved from soltype.itg rather than soltype.itr .

Listing 11.8: Code solving problem (11.18).

import mosek

def streamprinter(text):
print("%s" % text),

if __name__ == '__main__':

n = 3
gamma = 0.05
mu = [0.1073, 0.0737, 0.0627]
GT = [[0.1667, 0.0232, 0.0013],

[0.0000, 0.1033, -0.0022],
[0.0000, 0.0000, 0.0338]]

x0 = [0.0, 0.0, 0.0]
w = 1.0
f = [0.01, 0.01, 0.01]
g = [0.001, 0.001, 0.001]

This value has no significance.
inf = 0.0

with mosek.Env() as env:
with env.Task(0, 0) as task:

task.set_Stream(mosek.streamtype.log, streamprinter)

Total wealth
U = w + sum(x0)

Constraints.
task.appendcons(1 + 4 * n)
task.putconbound(0, mosek.boundkey.fx, U, U)
task.putconname(0, "budget")

task.putconboundlist(range(1 + 0, 1 + n), n *
[mosek.boundkey.fx], n * [0.0], n * [0.0])

for j in range(1, 1 + n):
task.putconname(j, "GT[%d]" % j)

task.putconboundlist(range(
1 + n, 1 + 2 * n), n * [mosek.boundkey.lo], [-x0[j] for j in range(0, n)], n *␣

→˓[inf])
for i in range(0, n):

task.putconname(1 + n + i, "zabs1[%d]" % (1 + i))

task.putconboundlist(range(1 + 2 * n, 1 + 3 * n),
n * [mosek.boundkey.lo], x0, n * [inf])

for i in range(0, n):
task.putconname(1 + 2 * n + i, "zabs2[%d]" % (1 + i))

task.putconboundlist(range(1 + 3 * n, 1 + 4 * n),
n * [mosek.boundkey.up], n * [-inf], n * [0.0])

for i in range(0, n):
task.putconname(1 + 3 * n + i, "ind[%d]" % (1 + i))

(continues on next page)

123

(continued from previous page)

Offset of variables into the API variable.
offsetx = 0
offsets = n
offsett = n + 1
offsetz = 2 * n + 1
offsety = 3 * n + 1

Variables.
task.appendvars(1 + 4 * n)

x variables.
task.putclist(range(offsetx + 0, offsetx + n), mu)
task.putaijlist(

n * [0], range(offsetx + 0, offsetx + n), n * [1.0])
for j in range(0, n):

task.putaijlist(
n * [1 + j], range(offsetx + 0, offsetx + n), GT[j])

task.putaij(1 + n + j, offsetx + j, -1.0)
task.putaij(1 + 2 * n + j, offsetx + j, 1.0)

task.putvarboundlist(
range(offsetx + 0, offsetx + n), n * [mosek.boundkey.lo], n * [0.0], n * [inf])

for j in range(0, n):
task.putvarname(offsetx + j, "x[%d]" % (1 + j))

s variable.
task.putvarbound(offsets + 0, mosek.boundkey.fx, gamma, gamma)
task.putvarname(offsets + 0, "s")

t variables.
task.putaijlist(range(1, n + 1), range(offsett +

0, offsett + n), n * [-1.0])
task.putvarboundlist(range(offsett + 0, offsett + n),

n * [mosek.boundkey.fr], n * [-inf], n * [inf])
for j in range(0, n):

task.putvarname(offsett + j, "t[%d]" % (1 + j))

z variables.
task.putaijlist(n * [0], range(offsetz, offsetz + n), g)
task.putaijlist(range(1 + 1 * n, 1 + 2 * n),

range(offsetz, offsetz + n), n * [1.0])
task.putaijlist(range(1 + 2 * n, 1 + 3 * n),

range(offsetz, offsetz + n), n * [1.0])
task.putaijlist(range(1 + 3 * n, 1 + 4 * n),

range(offsetz, offsetz + n), n * [1.0])
task.putvarboundlist(range(offsetz, offsetz + n),

n * [mosek.boundkey.fr], n * [-inf], n * [inf])
for j in range(0, n):

task.putvarname(offsetz + j, "z[%d]" % (1 + j))

y variables.
task.putaijlist(n * [0], range(offsety, offsety + n), f)
task.putaijlist(range(1 + 3 * n, 1 + 4 * n),

range(offsety, offsety + n), n * [-U])
task.putvarboundlist(range(offsety, offsety + n),

n * [mosek.boundkey.ra], n * [0.0], n * [1.0])
task.putvartypelist(range(offsety, offsety + n), n * [mosek.variabletype.type_int])
for j in range(0, n):

task.putvarname(offsety + j, "y[%d]" % (1 + j))

quadratic cone

(continues on next page)

124

(continued from previous page)

task.appendcone(mosek.conetype.quad, 0.0, [
offsets] + list(range(offsett, offsett + n)))

task.putconename(0, "stddev")

task.putobjsense(mosek.objsense.maximize)

Turn all log output off.
task.putintparam(mosek.iparam.log,0)

Dump the problem to a human readable OPF file.
task.writedata("dump.opf")

task.optimize()

Display the solution summary for quick inspection of results.
task.solutionsummary(mosek.streamtype.msg)

expret = 0.0
x = [0.] * n
task.getxxslice(mosek.soltype.itg, offsetx + 0, offsetx + n, x)
for j in range(0, n):

expret += mu[j] * x[j]

stddev = [0.]
task.getxxslice(mosek.soltype.itg, offsets +

0, offsets + 1, stddev)

print("\nExpected return %e for gamma %e\n" % (expret, stddev[0]))

11.1.7 Cardinality constraints
Another method to reduce costs involved with processing transactions is to only change positions in a
small number of assets. In other words, at most 𝑘 of the differences |∆𝑥𝑗 | = |𝑥𝑗 − 𝑥0

𝑗 | are allowed to be
non-zero, where 𝑘 is (much) smaller than the total number of assets 𝑛.

This type of constraint can be again modeled by introducing a binary variable 𝑦𝑗 which indicates if
∆𝑥𝑗 ̸= 0 and bounding the sum of 𝑦𝑗 . The basic Markowitz model then gets updated as follows:

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

[𝛾;𝐺𝑇𝑥] ∈ 𝒬𝑛+1,
𝑈𝑗𝑦𝑗 ≥ |𝑥𝑗 − 𝑥0

𝑗 |, 𝑗 = 1, . . . , 𝑛,
𝑦𝑗 ∈ {0, 1}, 𝑗 = 1, . . . , 𝑛,

𝑒𝑇 𝑦 ≤ 𝑘,
𝑥 ≥ 0,

(11.20)

were 𝑈𝑗 is some a priori chosen upper bound on the amount of trading in asset 𝑗. This guarantees
that |𝑥𝑗 − 𝑥0

𝑗 | forces 𝑦𝑗 = 1 and therefore 𝑒𝑇 𝑦 counts the number of assets in which we trade. In our
problem a safe bound for each 𝑈𝑗 is the total initial wealth 𝑤 + 𝑒𝑇𝑥0, however knowing a tighter bound
may lead to shorter solution times.

125

Creating a matrix formulation

One more reformulation of (11.20) is needed to bring it to the standard form (11.4).

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

𝐺𝑇𝑥− 𝑡 = 0,
𝑧𝑗 − 𝑥𝑗 ≥ −𝑥0

𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 + 𝑥𝑗 ≥ 𝑥0

𝑗 , 𝑗 = 1, . . . , 𝑛,
(𝑠, 𝑡) ∈ 𝒬𝑛+1,

𝑧𝑗 − 𝑈𝑗𝑦𝑗 ≤ 0, 𝑗 = 1, . . . , 𝑛,
𝑒𝑇 𝑦 ≤ 𝑘,
𝑥 ≥ 0,
𝑦𝑗 ∈ [0, 1], 𝑗 = 1, . . . , 𝑛,
𝑦𝑗 ∈ Z, 𝑗 = 1, . . . , 𝑛,
𝑠 = 𝛾.

(11.21)

We will choose the following ordering of variables:

�̂� = [𝑥; 𝑠; 𝑡; 𝑧; 𝑦]

Table 11.4 shows the mapping between the �̂� vector and the model variables.

Table 11.4: Storage layout for �̂�

Variable Length Offset
𝑥 𝑛 0
𝑠 1 𝑛
𝑡 𝑛 𝑛 + 1
𝑧 𝑛 2𝑛 + 1
𝑦 𝑛 3𝑛 + 1

The next step is to consider how the linear constraint matrix 𝐴 and the remaining data vectors are
laid out. Reusing the idea in Sec. 11.1.1 we can write the data in block matrix form and read off all the
required coordinates. This extension of the code setting up the constraint 𝐺𝑇𝑥− 𝑡 = 0 from Sec. 11.1.1
is shown below.

Example code

The following example code demonstrates how to compute an optimal portfolio with cardinality
bounds. Note that we are now solving a problem with integer variables, and therefore the solution must
be retrieved from soltype.itg .

Listing 11.9: Code solving problem (11.20).

def markowitz_with_card(n, x0, w, gamma, mu, GT, k):
with mosek.Env() as env:

with env.Task(0, 0) as task:
task.set_Stream(mosek.streamtype.log, streamprinter)

Total wealth
U = w + sum(x0)

Constraints.
task.appendcons(2 + 4 * n)
task.putconbound(0, mosek.boundkey.fx, U, U)
task.putconname(0, "budget")

task.putconbound(1 + 4 * n, mosek.boundkey.up, -inf, k)
task.putconname(0, "cardinality")

(continues on next page)

126

(continued from previous page)

task.putconboundlist(range(1 + 0, 1 + n), n *
[mosek.boundkey.fx], n * [0.0], n * [0.0])

for j in range(1, 1 + n):
task.putconname(j, "GT[%d]" % j)

task.putconboundlist(range(
1 + n, 1 + 2 * n), n * [mosek.boundkey.lo], [-x0[j] for j in range(0, n)], n *␣

→˓[inf])
for i in range(0, n):

task.putconname(1 + n + i, "zabs1[%d]" % (1 + i))

task.putconboundlist(range(1 + 2 * n, 1 + 3 * n),
n * [mosek.boundkey.lo], x0, n * [inf])

for i in range(0, n):
task.putconname(1 + 2 * n + i, "zabs2[%d]" % (1 + i))

task.putconboundlist(range(1 + 3 * n, 1 + 4 * n),
n * [mosek.boundkey.up], n * [-inf], n * [0.0])

for i in range(0, n):
task.putconname(1 + 3 * n + i, "ind[%d]" % (1 + i))

Offset of variables into the API variable.
offsetx = 0
offsets = n
offsett = n + 1
offsetz = 2 * n + 1
offsety = 3 * n + 1

Variables.
task.appendvars(1 + 4 * n)

x variables.
task.putclist(range(offsetx + 0, offsetx + n), mu)
task.putaijlist(n * [0], range(offsetx + 0, offsetx + n), n * [1.0])
for j in range(0, n):

task.putaijlist(n * [1 + j], range(offsetx + 0, offsetx + n), GT[j])
task.putaij(1 + n + j, offsetx + j, -1.0)
task.putaij(1 + 2 * n + j, offsetx + j, 1.0)

task.putvarboundlist(
range(offsetx + 0, offsetx + n), n * [mosek.boundkey.lo], n * [0.0], n * [inf])

for j in range(0, n):
task.putvarname(offsetx + j, "x[%d]" % (1 + j))

s variable.
task.putvarbound(offsets + 0, mosek.boundkey.fx, gamma, gamma)
task.putvarname(offsets + 0, "s")

t variables.
task.putaijlist(range(1, n + 1), range(offsett +

0, offsett + n), n * [-1.0])
task.putvarboundlist(range(offsett + 0, offsett + n),

n * [mosek.boundkey.fr], n * [-inf], n * [inf])
for j in range(0, n):

task.putvarname(offsett + j, "t[%d]" % (1 + j))

z variables.
task.putaijlist(range(1 + 1 * n, 1 + 2 * n),

range(offsetz, offsetz + n), n * [1.0])
task.putaijlist(range(1 + 2 * n, 1 + 3 * n),

range(offsetz, offsetz + n), n * [1.0])

(continues on next page)

127

(continued from previous page)

task.putaijlist(range(1 + 3 * n, 1 + 4 * n),
range(offsetz, offsetz + n), n * [1.0])

task.putvarboundlist(range(offsetz, offsetz + n),
n * [mosek.boundkey.fr], n * [-inf], n * [inf])

for j in range(0, n):
task.putvarname(offsetz + j, "z[%d]" % (1 + j))

y variables.
task.putaijlist(n * [1 + 4 * n], range(offsety, offsety + n), n * [1.0])
task.putaijlist(range(1 + 3 * n, 1 + 4 * n),

range(offsety, offsety + n), n * [-U])
task.putvarboundlist(range(offsety, offsety + n),

n * [mosek.boundkey.ra], n * [0.0], n * [1.0])
task.putvartypelist(range(offsety, offsety + n), n * [mosek.variabletype.type_int])
for j in range(0, n):

task.putvarname(offsety + j, "y[%d]" % (1 + j))

quadratic cone
task.appendcone(mosek.conetype.quad, 0.0, [

offsets] + list(range(offsett, offsett + n)))
task.putconename(0, "stddev")

task.putobjsense(mosek.objsense.maximize)

Turn all log output off.
task.putintparam(mosek.iparam.log,0)

Dump the problem to a human readable OPF file.
task.writedata("dump.opf")

task.optimize()

Display the solution summary for quick inspection of results.
task.solutionsummary(mosek.streamtype.msg)

xx = [0.] * n
task.getxxslice(mosek.soltype.itg, offsetx + 0, offsetx + n, xx)
return xx

If we solve our running example with 𝑘 = 1, 2, 3 then we get the following solutions, with increasing
expected returns:

Bound 1: x = 0.00000 0.00000 1.00000 Return: x = 0.06270
Bound 2: x = 0.25286 0.00000 0.74714 Return: x = 0.07398
Bound 3: x = 0.23639 0.13850 0.62511 Return: x = 0.07477

11.2 Logistic regression

Logistic regression is an example of a binary classifier, where the output takes one two values 0 or 1 for
each data point. We call the two values classes.

Formulation as an optimization problem

Define the sigmoid function

𝑆(𝑥) =
1

1 + exp(−𝑥)
.

Next, given an observation 𝑥 ∈ R𝑑 and a weights 𝜃 ∈ R𝑑 we set

ℎ𝜃(𝑥) = 𝑆(𝜃𝑇𝑥) =
1

1 + exp(−𝜃𝑇𝑥)
.

128

The weights vector 𝜃 is part of the setup of the classifier. The expression ℎ𝜃(𝑥) is interpreted as the
probability that 𝑥 belongs to class 1. When asked to classify 𝑥 the returned answer is

𝑥 ↦→

{︃
1 ℎ𝜃(𝑥) ≥ 1/2,

0 ℎ𝜃(𝑥) < 1/2.

When training a logistic regression algorithm we are given a sequence of training examples 𝑥𝑖, each
labelled with its class 𝑦𝑖 ∈ {0, 1} and we seek to find the weights 𝜃 which maximize the likelihood
function ∏︁

𝑖

ℎ𝜃(𝑥𝑖)
𝑦𝑖(1 − ℎ𝜃(𝑥𝑖))

1−𝑦𝑖 .

Of course every single 𝑦𝑖 equals 0 or 1, so just one factor appears in the product for each training data
point. By taking logarithms we can define the logistic loss function:

𝐽(𝜃) = −
∑︁

𝑖:𝑦𝑖=1

log(ℎ𝜃(𝑥𝑖)) −
∑︁

𝑖:𝑦𝑖=0

log(1 − ℎ𝜃(𝑥𝑖)).

The training problem with regularization (a standard technique to prevent overfitting) is now equivalent
to

min
𝜃

𝐽(𝜃) + 𝜆‖𝜃‖2.

This can equivalently be phrased as

minimize
∑︀

𝑖 𝑡𝑖 + 𝜆𝑟
subject to 𝑡𝑖 ≥ − log(ℎ𝜃(𝑥)) = log(1 + exp(−𝜃𝑇𝑥𝑖)) if 𝑦𝑖 = 1,

𝑡𝑖 ≥ − log(1 − ℎ𝜃(𝑥)) = log(1 + exp(𝜃𝑇𝑥𝑖)) if 𝑦𝑖 = 0,
𝑟 ≥ ‖𝜃‖2.

(11.22)

Implementation

As can be seen from (11.22) the key point is to implement the softplus bound 𝑡 ≥ log(1 + 𝑒𝑢), which
is the simplest example of a log-sum-exp constraint for two scalar variables 𝑡, 𝑢. This is equivalent to

exp(𝑢− 𝑡) + exp(−𝑡) ≤ 1

and further to

(𝑧1, 1, 𝑢− 𝑡) ∈ 𝐾exp (𝑧1 ≥ exp(𝑢− 𝑡)),
(𝑧2, 1,−𝑡) ∈ 𝐾exp (𝑧2 ≥ exp(−𝑡)),

𝑧1 + 𝑧2 ≤ 1.
(11.23)

To feed these constraints into MOSEK we add more auxiliary variables 𝑞1, 𝑞2, 𝑣1, 𝑣2 with constraints
(𝑧1, 𝑞1, 𝑣1) ∈ 𝐾exp, (𝑧2, 𝑞2, 𝑣2) ∈ 𝐾exp, 𝑞1 = 𝑞2 = 1, 𝑣1 = 𝑢− 𝑡 and 𝑣2 = −𝑡.

Listing 11.10: Implementation of 𝑡 ≥ log(1 + 𝑒𝑢) as in (11.23).

t_i >= log(1 + exp(u_i)), i = 0..n-1
Adds auxiliary variables and constraints
def softplus(task, t, u, n):

nvar = task.getnumvar()
ncon = task.getnumcon()
task.appendvars(6*n)
task.appendcons(3*n)
z1, z2, v1, v2, q1, q2 = nvar, nvar+n, nvar+2*n, nvar+3*n, nvar+4*n, nvar+5*n
zcon, v1con, v2con = ncon, ncon+n, ncon+2*n

z1 + z2 = 1
(continues on next page)

129

(continued from previous page)

task.putaijlist(range(zcon, zcon+n), range(z1, z1+n), [1]*n)
task.putaijlist(range(zcon, zcon+n), range(z2, z2+n), [1]*n)
u - t - v1 = 0
task.putaijlist(range(v1con, v1con+n), range(u, u+n), [1]*n)
task.putaijlist(range(v1con, v1con+n), range(t, t+n), [-1]*n)
task.putaijlist(range(v1con, v1con+n), range(v1, v1+n), [-1]*n)
- t - v2 = 0
task.putaijlist(range(v2con, v2con+n), range(t, t+n), [-1]*n)
task.putaijlist(range(v2con, v2con+n), range(v2, v2+n), [-1]*n)
Bounds for all constraints
task.putconboundslice(ncon, ncon+3*n, [boundkey.fx]*(3*n), [1]*n+[0]*(2*n),␣

→˓[1]*n+[0]*(2*n))
Bounds for variables
task.putvarboundsliceconst(nvar, nvar+4*n, boundkey.fr, -inf, inf)
task.putvarboundsliceconst(nvar+4*n, nvar+6*n, boundkey.fx, 1, 1)

Cones
for i in range(n):

task.appendcone(conetype.pexp, 0.0, [z1+i, q1+i, v1+i])
task.appendcone(conetype.pexp, 0.0, [z2+i, q2+i, v2+i])

Once we have this subroutine, it is easy to implement a function that builds the regularized loss
function model (11.22).

Listing 11.11: Implementation of (11.22).

Model logistic regression (regularized with full 2-norm of theta)
X - n x d matrix of data points
y - length n vector classifying training points
lamb - regularization parameter
def logisticRegression(env, X, y, lamb=1.0):

n, d = int(X.shape[0]), int(X.shape[1]) # num samples, dimension

with env.Task() as task:
Variables [r; theta; t; u]
nvar = 1+d+2*n
task.appendvars(nvar)
task.putvarboundsliceconst(0, nvar, boundkey.fr, -inf, inf)
r, theta, t, u, = 0, 1, 1+d, 1+d+n

Constraints: theta'*X +/- u = 0
task.appendcons(n)
task.putconboundsliceconst(0, n, boundkey.fx, 0.0, 0.0)

Objective lambda*r + sum(t)
task.putcj(r, lamb)
task.putclist(range(t, t+n), [1.0]*n)

The X block in theta'*X +/- u = 0
uCoeff = []
for i in range(n):

task.putaijlist([i]*d, range(theta, theta+d), X[i])
uCoeff.append(1 if y[i] == 1 else -1)

+/- coefficients in u depending on y
task.putaijlist(range(n), range(u, u+n), uCoeff)

Softplus function constraints
softplus(task, t, u, n)

Regularization
(continues on next page)

130

(continued from previous page)

task.appendconeseq(conetype.quad, 0.0, 1+d, r)

Solution
task.optimize()
xx = [0.0]*d
task.getxxslice(soltype.itr, theta, theta+d, xx)

return xx

Example: 2D dataset fitting

In the next figure we apply logistic regression to the training set of 2D points taken from the example
ex2data2.txt . The two-dimensional dataset was converted into a feature vector 𝑥 ∈ R28 using monomial
coordinates of degrees at most 6.

Fig. 11.1: Logistic regression example with none, medium and strong regularization (small, medium,
large 𝜆). Without regularization we get obvious overfitting.

11.3 Concurrent optimizer

The idea of the concurrent optimizer is to run multiple optimizations of the same problem simulta-
neously, and pick the one that provides the fastest or best answer. This approach is especially useful for
problems which require a very long time and it is hard to say in advance which optimizer or algorithm
will perform best.

The major applications of concurrent optimization we describe in this section are:

• Using the interior-point and simplex optimizers simultaneously on a linear problem. Note that
any solution present in the task will also be used for hot-starting the simplex algorithms. One
possible scenario would therefore be running a hot-start simplex in parallel with interior point,
taking advantage of both the stability of the interior-point method and the ability of the simplex
method to use an initial solution.

• Using multiple instances of the mixed-integer optimizer to solve many copies of one mixed-integer
problem. This is not in contradiction with the run-to-run determinism of MOSEK if a different
value of the MIO seed parameter iparam.mio_seed is set in each instance. As a result each setting
leads to a different optimizer run (each of them being deterministic in its own right).

The downloadable file contains usage examples of both kinds.

11.3.1 Common setup
We first define a method that runs a number of optimization tasks in parallel, using the standard
multithreading setup available in the language. All tasks register for a callback function which will
signal them to interrupt as soon as the first task completes successfully (with response code rescode.
ok).

131

https://www.r-bloggers.com/logistic-regression-regularized-with-optimization/

Listing 11.12: Simple callback function which signals the optimizer
to stop.

Defines a Mosek callback function whose only function
is to indicate if the optimizer should be stopped.
stop = False
firstStop = -1
def cbFun(code):

return 1 if stop else 0

When all remaining tasks respond to the stop signal, response codes and statuses are returned to the
caller, together with the index of the task which won the race.

Listing 11.13: A routine for parallel task race.

def runTask(num, task, res, trm):
global stop
global firstStop
try:

trm[num] = task.optimize();
res[num] = mosek.rescode.ok

except mosek.MosekException as e:
trm[num] = mosek.rescode.err_unknown
res[num] = e.errno

finally:
If this finished with success, inform other tasks to interrupt
if res[num] == mosek.rescode.ok:

if not stop:
firstStop = num

stop = True

def optimize(tasks):
n = len(tasks)
res = [mosek.rescode.err_unknown] * n
trm = [mosek.rescode.err_unknown] * n

Set a callback function
for t in tasks:

t.set_Progress(cbFun)

Start parallel optimizations, one per task
jobs = [Thread(target=runTask, args=(i, tasks[i], res, trm)) for i in range(n)]
for j in jobs:

j.start()
for j in jobs:

j.join()

For debugging, print res and trm codes for all optimizers
for i in range(n):

print("Optimizer {0} res {1} trm {2}".format(i, res[i], trm[i]))

return firstStop, res, trm

11.3.2 Linear optimization
We use the multithreaded setup to run the interior-point and simplex optimizers simultaneously on a
linear problem. The next methods simply clones the given task and sets a different optimizer for each.
The result is the clone which finished first.

132

Listing 11.14: Concurrent optimization with different optimizers.

def optimizeconcurrent(task, optimizers):
n = len(optimizers)
tasks = [mosek.Task(task) for _ in range(n)]

Choose various optimizers for cloned tasks
for i in range(n):

tasks[i].putintparam(mosek.iparam.optimizer, optimizers[i])

Solve tasks in parallel
firstOK, res, trm = optimize(tasks)

if firstOK >= 0:
return firstOK, tasks[firstOK], trm[firstOK], res[firstOK]

else:
return -1, None, None, None

It remains to call the method with a choice of optimizers, for example:

Listing 11.15: Calling concurrent linear optimization.

optimizers = [
mosek.optimizertype.conic,
mosek.optimizertype.dual_simplex,
mosek.optimizertype.primal_simplex

]

idx, t, trm, res = optimizeconcurrent(task, optimizers)

11.3.3 Mixed-integer optimization
We use the multithreaded setup to run many, differently seeded copies of the mixed-integer optimizer.
This approach is most useful for hard problems where we don’t expect an optimal solution in reasonable
time. The input task would typically contain a time limit. It is possible that all the cloned tasks reach
the time limit, in which case it doesn’t really mater which one terminated first. Instead we examine all
the task clones for the best objective value.

Listing 11.16: Concurrent optimization of a mixed-integer problem.

def optimizeconcurrentMIO(task, seeds):
n = len(seeds)
tasks = [mosek.Task(task) for _ in range(n)]

Choose various seeds for cloned tasks
for i in range(n):

tasks[i].putintparam(mosek.iparam.mio_seed, seeds[i])

Solve tasks in parallel
firstOK, res, trm = optimize(tasks)

if firstOK >= 0:
Pick the task that ended with res = ok
and contains an integer solution with best objective value
sense = task.getobjsense();
bestObj = 1.0e+10 if sense == mosek.objsense.minimize else -1.0e+10
bestPos = -1

for i in range(n):
print("{0} {1}".format(i,tasks[i].getprimalobj(mosek.soltype.itg)))

(continues on next page)

133

(continued from previous page)

for i in range(n):
if ((res[i] == mosek.rescode.ok) and

(tasks[i].getsolsta(mosek.soltype.itg) == mosek.solsta.prim_feas or
tasks[i].getsolsta(mosek.soltype.itg) == mosek.solsta.integer_optimal) and

((tasks[i].getprimalobj(mosek.soltype.itg) < bestObj)
if (sense == mosek.objsense.minimize) else

(tasks[i].getprimalobj(mosek.soltype.itg) > bestObj))):
bestObj = tasks[i].getprimalobj(mosek.soltype.itg)
bestPos = i

if bestPos >= 0:
return bestPos, tasks[bestPos], trm[bestPos], res[bestPos]

return -1, None, None, None

It remains to call the method with a choice of seeds, for example:

Listing 11.17: Calling concurrent integer optimization.

seeds = [42, 13, 71749373]

idx, t, trm, res = optimizeconcurrentMIO(task, seeds)

134

Chapter 12

Problem Formulation and Solutions

In this chapter we will discuss the following issues:

• The formal, mathematical formulations of the problem types that MOSEK can solve and their
duals.

• The solution information produced by MOSEK.

• The infeasibility certificate produced by MOSEK if the problem is infeasible.

For the underlying mathematical concepts, derivations and proofs see the Modeling Cookbook or any
book on convex optimization. This chapter explains how the related data is organized specifically within
the MOSEK API.

12.1 Linear Optimization

MOSEK accepts linear optimization problems of the form

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

(12.1)

where

• 𝑚 is the number of constraints.

• 𝑛 is the number of decision variables.

• 𝑥 ∈ R𝑛 is a vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear part of the objective function.

• 𝑐𝑓 ∈ R is a constant term in the objective

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

Lower and upper bounds can be infinite, or in other words the corresponding bound may be omitted.
A primal solution (𝑥) is (primal) feasible if it satisfies all constraints in (12.1). If (12.1) has at least

one primal feasible solution, then (12.1) is said to be (primal) feasible. In case (12.1) does not have a
feasible solution, the problem is said to be (primal) infeasible

135

https://docs.mosek.com/modeling-cookbook/index.html

12.1.1 Duality for Linear Optimization
Corresponding to the primal problem (12.1), there is a dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0.

(12.2)

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at 0,
and we use the convention that the product of the bound value and the corresponding dual variable is
0. This is equivalent to removing variable (𝑠𝑥𝑙)𝑗 from the dual problem. In other words:

𝑙𝑥𝑗 = −∞ ⇒ (𝑠𝑥𝑙)𝑗 = 0 and 𝑙𝑥𝑗 · (𝑠𝑥𝑙)𝑗 = 0.

A solution

(𝑦, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢)

to the dual problem is feasible if it satisfies all the constraints in (12.2). If (12.2) has at least one feasible
solution, then (12.2) is (dual) feasible, otherwise the problem is (dual) infeasible.

A solution

(𝑥*, 𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*)

is denoted a primal-dual feasible solution, if (𝑥*) is a solution to the primal problem (12.1) and
(𝑦*, (𝑠𝑐𝑙)

, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*) is a solution to the corresponding dual problem (12.2). We also define
an auxiliary vector

(𝑥𝑐)* := 𝐴𝑥*

containing the activities of linear constraints.
For a primal-dual feasible solution we define the duality gap as the difference between the primal and

the dual objective value,

𝑐𝑇𝑥* + 𝑐𝑓 −
{︀

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* + 𝑐𝑓

}︀
=
∑︀𝑚−1

𝑖=0 [(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) + (𝑠𝑐𝑢)*𝑖 (𝑢𝑐

𝑖 − (𝑥𝑐
𝑖)

*)]

+
∑︀𝑛−1

𝑗=0

[︀
(𝑠𝑥𝑙)*𝑗 (𝑥𝑗 − 𝑙𝑥𝑗) + (𝑠𝑥𝑢)*𝑗 (𝑢𝑥

𝑗 − 𝑥*
𝑗)
]︀
≥ 0

(12.3)

where the first relation can be obtained by transposing and multiplying the dual constraints (12.2) by
𝑥* and (𝑥𝑐)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

It is well-known that a linear optimization problem has an optimal solution if and only if there exist
feasible primal-dual solution so that the duality gap is zero, or, equivalently, that the complementarity
conditions

(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑐𝑢)*𝑖 (𝑢𝑐
𝑖 − (𝑥𝑐

𝑖)
*) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑥𝑙)*𝑗 (𝑥*
𝑗 − 𝑙𝑥𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,

(𝑠𝑥𝑢)*𝑗 (𝑢𝑥
𝑗 − 𝑥*

𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,

are satisfied.
If (12.1) has an optimal solution and MOSEK solves the problem successfully, both the primal and

dual solution are reported, including a status indicating the exact state of the solution.

12.1.2 Infeasibility for Linear Optimization

Primal Infeasible Problems

If the problem (12.1) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

136

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

(12.4)

such that the objective value is strictly positive, i.e. a solution

(𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*)

to (12.4) so that

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* > 0.

Such a solution implies that (12.4) is unbounded, and that (12.1) is infeasible.

Dual Infeasible Problems

If the problem (12.2) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize 𝑐𝑇𝑥

subject to �̂�𝑐 ≤ 𝐴𝑥 ≤ �̂�𝑐,

�̂�𝑥 ≤ 𝑥 ≤ �̂�𝑥,

(12.5)

where

�̂�𝑐𝑖 =

{︂
0 if 𝑙𝑐𝑖 > −∞,
−∞ otherwise,

}︂
and �̂�𝑐

𝑖 :=

{︂
0 if 𝑢𝑐

𝑖 < ∞,
∞ otherwise,

}︂
and

�̂�𝑥𝑗 =

{︂
0 if 𝑙𝑥𝑗 > −∞,
−∞ otherwise,

}︂
and �̂�𝑥

𝑗 :=

{︂
0 if 𝑢𝑥

𝑗 < ∞,
∞ otherwise,

}︂
such that

𝑐𝑇𝑥 < 0.

Such a solution implies that (12.5) is unbounded, and that (12.2) is infeasible.
In case that both the primal problem (12.1) and the dual problem (12.2) are infeasible, MOSEK

will report only one of the two possible certificates — which one is not defined (MOSEK returns the
first certificate found).

12.1.3 Minimalization vs. Maximalization
When the objective sense of problem (12.1) is maximization, i.e.

maximize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (12.2). The dual problem thus takes the form

minimize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0.

137

This means that the duality gap, defined in (12.3) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0,

(12.6)

such that the objective value is strictly negative

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* < 0.

Similarly, the certificate of dual infeasibility is an 𝑥 satisfying the requirements of (12.5) such that
𝑐𝑇𝑥 > 0.

12.2 Conic Optimization

Conic optimization is an extension of linear optimization (see Sec. 12.1) allowing conic domains to be
specified for subsets of the problem variables. A conic optimization problem to be solved by MOSEK
can be written as

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ 𝒦,

(12.7)

where

• 𝑚 is the number of constraints.

• 𝑛 is the number of decision variables.

• 𝑥 ∈ R𝑛 is a vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear part of the objective function.

• 𝑐𝑓 ∈ R is a constant term in the objective

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

Lower and upper bounds can be infinite, or in other words the corresponding bound may be omitted.
The set 𝒦 is a Cartesian product of convex cones, namely 𝒦 = 𝒦1 × · · · × 𝒦𝑝. Having the domain

restriction 𝑥 ∈ 𝒦, is thus equivalent to

𝑥𝑡 ∈ 𝒦𝑡 ⊆ R𝑛𝑡 ,

where 𝑥 = (𝑥1, . . . , 𝑥𝑝) is a partition of the problem variables. Please note that the 𝑛-dimensional
Euclidean space R𝑛 is a cone itself, so simple linear variables are still allowed. The user only needs to
specify subsets of variables which belong to non-trivial cones.

In this section we discuss the formulations which apply to the following cones supported by MOSEK:

• The set R𝑛.

• The zero cone {(0, . . . , 0)}.

• Quadratic cone

138

𝒬𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 : 𝑥1 ≥

⎯⎸⎸⎷ 𝑛∑︁
𝑗=2

𝑥2
𝑗

⎫⎬⎭ .

• Rotated quadratic cone

𝒬𝑛
r =

⎧⎨⎩𝑥 ∈ R𝑛 : 2𝑥1𝑥2 ≥
𝑛∑︁

𝑗=3

𝑥2
𝑗 , 𝑥1 ≥ 0, 𝑥2 ≥ 0

⎫⎬⎭ .

• Primal exponential cone

𝐾exp =
{︀
𝑥 ∈ R3 : 𝑥1 ≥ 𝑥2 exp(𝑥3/𝑥2), 𝑥1, 𝑥2 ≥ 0

}︀
as well as its dual

𝐾*
exp =

{︀
𝑥 ∈ R3 : 𝑥1 ≥ −𝑥3𝑒

−1 exp(𝑥2/𝑥3), 𝑥3 ≤ 0, 𝑥1 ≥ 0
}︀
.

• Primal power cone (with parameter 0 < 𝛼 < 1)

𝒫𝛼,1−𝛼
𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 : 𝑥𝛼
1𝑥

1−𝛼
2 ≥

⎯⎸⎸⎷ 𝑛∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭
as well as its dual

(𝒫𝛼,1−𝛼
𝑛)* =

⎧⎨⎩𝑥 ∈ R𝑛 :
(︁𝑥1

𝛼

)︁𝛼(︂ 𝑥2

1 − 𝛼

)︂1−𝛼

≥

⎯⎸⎸⎷ 𝑛∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ .

MOSEK supports also the cone of positive semidefinite matrices. Since that is handled through a
separate interface, we discuss it in Sec. 12.3.

12.2.1 Duality for Conic Optimization
Corresponding to the primal problem (12.7), there is a dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝑠𝑥𝑛 = 𝑐

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑠𝑥𝑛 ∈ 𝒦*,

(12.8)

where the dual cone 𝒦* is a Cartesian product of the cones dual to 𝒦𝑡. In practice this means that 𝑠𝑥𝑛
has one entry for each entry in 𝑥. Please note that the dual problem of the dual problem is identical to
the original primal problem.

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at
0, and we use the convention that the product of the bound value and the corresponding dual variable
is 0. This is equivalent to removing variable (𝑠𝑥𝑙)𝑗 from the dual problem. In other words:

𝑙𝑥𝑗 = −∞ ⇒ (𝑠𝑥𝑙)𝑗 = 0 and 𝑙𝑥𝑗 · (𝑠𝑥𝑙)𝑗 = 0.

A solution

(𝑦, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢, 𝑠

𝑥
𝑛)

to the dual problem is feasible if it satisfies all the constraints in (12.8). If (12.8) has at least one feasible
solution, then (12.8) is (dual) feasible, otherwise the problem is (dual) infeasible.

139

A solution

(𝑥*, 𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*, (𝑠𝑥𝑛)*)

is denoted a primal-dual feasible solution, if (𝑥*) is a solution to the primal problem (12.7) and
(𝑦*, (𝑠𝑐𝑙)

, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*, (𝑠𝑥𝑛)*) is a solution to the corresponding dual problem (12.8). We also define
an auxiliary vector

(𝑥𝑐)* := 𝐴𝑥*

containing the activities of linear constraints.
For a primal-dual feasible solution we define the duality gap as the difference between the primal and

the dual objective value,

𝑐𝑇𝑥* + 𝑐𝑓 −
{︀

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* + 𝑐𝑓

}︀
=
∑︀𝑚−1

𝑖=0 [(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) + (𝑠𝑐𝑢)*𝑖 (𝑢𝑐

𝑖 − (𝑥𝑐
𝑖)

*)]

+
∑︀𝑛−1

𝑗=0

[︀
(𝑠𝑥𝑙)*𝑗 (𝑥𝑗 − 𝑙𝑥𝑗) + (𝑠𝑥𝑢)*𝑗 (𝑢𝑥

𝑗 − 𝑥*
𝑗)
]︀

+
∑︀𝑛−1

𝑗=0 (𝑠𝑥𝑛)*𝑗𝑥
*
𝑗 ≥ 0

(12.9)

where the first relation can be obtained by transposing and multiplying the dual constraints (12.2) by
𝑥* and (𝑥𝑐)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

It is well-known that, under some non-degeneracy assumptions that exclude ill-posed cases, a conic
optimization problem has an optimal solution if and only if there exist feasible primal-dual solution so
that the duality gap is zero, or, equivalently, that the complementarity conditions

(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑐𝑢)*𝑖 (𝑢𝑐
𝑖 − (𝑥𝑐

𝑖)
*) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑥𝑙)*𝑗 (𝑥*
𝑗 − 𝑙𝑥𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,

(𝑠𝑥𝑢)*𝑗 (𝑢𝑥
𝑗 − 𝑥*

𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,∑︀𝑛−1
𝑗=0 (𝑠𝑥𝑛)*𝑗𝑥

*
𝑗 = 0.

(12.10)

are satisfied.
If (12.7) has an optimal solution and MOSEK solves the problem successfully, both the primal and

dual solution are reported, including a status indicating the exact state of the solution.

12.2.2 Infeasibility for Conic Optimization

Primal Infeasible Problems

If the problem (12.7) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝑠𝑥𝑛 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑠𝑥𝑛 ∈ 𝒦*,

(12.11)

such that the objective value is strictly positive, i.e. a solution

(𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*, (𝑠𝑥𝑛)*)

to (12.11) so that

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* > 0.

Such a solution implies that (12.11) is unbounded, and that (12.7) is infeasible.

140

Dual Infeasible Problems

If the problem (12.8) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize 𝑐𝑇𝑥

subject to �̂�𝑐 ≤ 𝐴𝑥 ≤ �̂�𝑐,

�̂�𝑥 ≤ 𝑥 ≤ �̂�𝑥,
𝑥 ∈ 𝐾,

(12.12)

where

�̂�𝑐𝑖 =

{︂
0 if 𝑙𝑐𝑖 > −∞,
−∞ otherwise,

}︂
and �̂�𝑐

𝑖 :=

{︂
0 if 𝑢𝑐

𝑖 < ∞,
∞ otherwise,

}︂
(12.13)

and

�̂�𝑥𝑗 =

{︂
0 if 𝑙𝑥𝑗 > −∞,
−∞ otherwise,

}︂
and �̂�𝑥

𝑗 :=

{︂
0 if 𝑢𝑥

𝑗 < ∞,
∞ otherwise,

}︂
(12.14)

such that

𝑐𝑇𝑥 < 0.

Such a solution implies that (12.12) is unbounded, and that (12.8) is infeasible.
In case that both the primal problem (12.7) and the dual problem (12.8) are infeasible, MOSEK

will report only one of the two possible certificates — which one is not defined (MOSEK returns the
first certificate found).

12.2.3 Minimalization vs. Maximalization
When the objective sense of problem (12.7) is maximization, i.e.

maximize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ 𝒦,

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (12.2). The dual problem thus takes the form

minimize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝑠𝑥𝑛 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0,

−𝑠𝑥𝑛 ∈ 𝒦*

This means that the duality gap, defined in (12.9) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝑠𝑥𝑛 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0,

−𝑠𝑥𝑛 ∈ 𝒦*

(12.15)

such that the objective value is strictly negative

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* < 0.

Similarly, the certificate of dual infeasibility is an 𝑥 satisfying the requirements of (12.12) such that
𝑐𝑇𝑥 > 0.

141

12.3 Semidefinite Optimization

Semidefinite optimization is an extension of conic optimization (see Sec. 12.2) allowing positive semidefi-
nite matrix variables to be used in addition to the usual scalar variables. All the other parts of the input
are defined exactly as in Sec. 12.2, and the discussion from that section applies verbatim to all properties
of problems with semidefinite variables. We only briefly indicate how the corresponding formulae should
be modified with semidefinite terms.

A semidefinite optimization problem can be written as

minimize
∑︀𝑛−1

𝑗=0 𝑐𝑗𝑥𝑗 +
∑︀𝑝−1

𝑗=0

⟨︀
𝐶𝑗 , 𝑋𝑗

⟩︀
+ 𝑐𝑓

subject to 𝑙𝑐𝑖 ≤
∑︀𝑛−1

𝑗=0 𝑎𝑖𝑗𝑥𝑗 +
∑︀𝑝−1

𝑗=0

⟨︀
𝐴𝑖𝑗 , 𝑋𝑗

⟩︀
≤ 𝑢𝑐

𝑖 , 𝑖 = 0, . . . ,𝑚− 1

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1

𝑥 ∈ 𝒦,
𝑋𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 0, . . . , 𝑝− 1

(12.16)

where the problem has 𝑝 symmetric positive semidefinite variables 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ of dimension 𝑟𝑗 with

symmetric coefficient matrices 𝐶𝑗 ∈ 𝒮𝑟𝑗 and 𝐴𝑖,𝑗 ∈ 𝒮𝑟𝑗 . We use standard notation for the matrix inner
product, i.e., for 𝑈, 𝑉 ∈ R𝑚×𝑛 we have

⟨𝑈, 𝑉 ⟩ :=

𝑚−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝑈𝑖𝑗𝑉𝑖𝑗 .

As always we write 𝐴 = (𝑎𝑖,𝑗) for the linear coefficient matrix.

Duality

The definition of the dual problem (12.8) becomes:

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝑠𝑥𝑛 = 𝑐

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,

𝐶𝑗 −
∑︀𝑚−1

𝑖=0 𝑦𝑖𝐴𝑖𝑗 = 𝑆𝑗 , 𝑗 = 0, . . . , 𝑝− 1
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑠𝑥𝑛 ∈ 𝒦*,
𝑆𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 0, . . . , 𝑝− 1.

(12.17)

The duality gap (12.9) is computed as:

𝑐𝑇𝑥* + 𝑐𝑓 −
{︀

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* + 𝑐𝑓

}︀
=
∑︀𝑚−1

𝑖=0 [(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) + (𝑠𝑐𝑢)*𝑖 (𝑢𝑐

𝑖 − (𝑥𝑐
𝑖)

*)]

+
∑︀𝑛−1

𝑗=0

[︀
(𝑠𝑥𝑙)*𝑗 (𝑥𝑗 − 𝑙𝑥𝑗) + (𝑠𝑥𝑢)*𝑗 (𝑢𝑥

𝑗 − 𝑥*
𝑗)
]︀

+
∑︀𝑛−1

𝑗=0 (𝑠𝑥𝑛)*𝑗𝑥
*
𝑗 +

∑︀𝑝−1
𝑗=0⟨𝑋𝑗 , 𝑆𝑗⟩ ≥ 0.

(12.18)

Complementarity conditions (12.10) include the additional relation:

⟨𝑋𝑗 , 𝑆𝑗⟩ = 0 𝑗 = 0, . . . , 𝑝− 1. (12.19)

Infeasibility

A certificate of primal infeasibility (12.11) is now a feasible solution to:

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝑠𝑥𝑛 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,∑︀𝑚−1
𝑖=0 𝑦𝑖𝐴𝑖𝑗 + 𝑆𝑗 = 0, 𝑗 = 0, . . . , 𝑝− 1
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑠𝑥𝑛 ∈ 𝒦*,
𝑆𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 0, . . . , 𝑝− 1.

(12.20)

142

such that the objective value is strictly positive.
Similarly, a dual infeasibility certificate (12.12) is a feasible solution to

minimize
∑︀𝑛−1

𝑗=0 𝑐𝑗𝑥𝑗 +
∑︀𝑝−1

𝑗=0

⟨︀
𝐶𝑗 , 𝑋𝑗

⟩︀
subject to �̂�𝑐𝑖 ≤

∑︀𝑛−1
𝑗=0 𝑎𝑖𝑗𝑥𝑗 +

∑︀𝑝−1
𝑗=0

⟨︀
𝐴𝑖𝑗 , 𝑋𝑗

⟩︀
≤ �̂�𝑐

𝑖 , 𝑖 = 0, . . . ,𝑚− 1

�̂�𝑥𝑗 ≤ 𝑥𝑗 ≤ �̂�𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1

𝑥 ∈ 𝒦,
𝑋𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 0, . . . , 𝑝− 1

(12.21)

where the modified bounds are as in (12.13) and (12.14) and the objective value is strictly negative.

12.4 Quadratic and Quadratically Constrained Optimization

A convex quadratic and quadratically constrained optimization problem has the form

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐𝑘 ≤ 1
2𝑥

𝑇𝑄𝑘𝑥 +
∑︀𝑛−1

𝑗=0 𝑎𝑘𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1,

(12.22)

where all variables and bounds have the same meaning as for linear problems (see Sec. 12.1) and 𝑄𝑜 and
all 𝑄𝑘 are symmetric matrices. Moreover, for convexity, 𝑄𝑜 must be a positive semidefinite matrix and
𝑄𝑘 must satisfy

−∞ < 𝑙𝑐𝑘 ⇒ 𝑄𝑘 is negative semidefinite,
𝑢𝑐
𝑘 < ∞ ⇒ 𝑄𝑘 is positive semidefinite,

−∞ < 𝑙𝑐𝑘 ≤ 𝑢𝑐
𝑘 < ∞ ⇒ 𝑄𝑘 = 0.

The convexity requirement is very important and MOSEK checks whether it is fulfilled.

12.4.1 A Recommendation
Any convex quadratic optimization problem can be reformulated as a conic quadratic optimization prob-
lem, see Modeling Cookbook and [And13] . In fact MOSEK does such conversion internally as a part
of the solution process for the following reasons:

• the conic optimizer is numerically more robust than the one for quadratic problems.

• the conic optimizer is usually faster because quadratic cones are simpler than quadratic functions,
even though the conic reformulation usually has more constraints and variables than the original
quadratic formulation.

• it is easy to dualize the conic formulation if deemed worthwhile potentially leading to (huge)
computational savings.

However, instead of relying on the automatic reformulation we recommend to formulate the problem
as a conic problem from scratch because:

• it saves the computational overhead of the reformulation including the convexity check. A conic
problem is convex by construction and hence no convexity check is needed for conic problems.

• usually the modeler can do a better reformulation than the automatic method because the modeler
can exploit the knowledge of the problem at hand.

To summarize we recommend to formulate quadratic problems and in particular quadratically con-
strained problems directly in conic form.

143

https://docs.mosek.com/modeling-cookbook/index.html

12.4.2 Duality for Quadratic and Quadratically Constrained Optimization
The dual problem corresponding to the quadratic and quadratically constrained optimization problem
(12.22) is given by

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 1
2𝑥

𝑇
{︁∑︀𝑚−1

𝑘=0 𝑦𝑘𝑄
𝑘 −𝑄𝑜

}︁
𝑥 + 𝑐𝑓

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 +
{︁∑︀𝑚−1

𝑘=0 𝑦𝑘𝑄
𝑘 −𝑄𝑜

}︁
𝑥 = 𝑐,

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0.

(12.23)

The dual problem is related to the dual problem for linear optimization (see Sec. 12.1.1), but depends
on the variable 𝑥 which in general can not be eliminated. In the solutions reported by MOSEK, the
value of 𝑥 is the same for the primal problem (12.22) and the dual problem (12.23).

12.4.3 Infeasibility for Quadratic Optimization
In case MOSEK finds a problem to be infeasible it reports a certificate of infeasibility. We write them
out explicitly for quadratic problems, that is when 𝑄𝑘 = 0 for all 𝑘 and quadratic terms appear only
in the objective 𝑄𝑜. In this case the constraints both in the primal and dual problem are linear, and
MOSEK produces for them the same infeasibility certificate as for linear problems.

The certificate of primal infeasibility is a solution to the problem (12.4) such that the objective value
is strictly positive.

The certificate of dual infeasibility is a solution to the problem (12.5) together with an additional
constraint

𝑄𝑜𝑥 = 0

such that the objective value is strictly negative.

144

Chapter 13

Optimizers

The most essential part of MOSEK are the optimizers:

• primal simplex (linear problems),

• dual simplex (linear problems),

• interior-point (linear, quadratic and conic problems),

• mixed-integer (problems with integer variables).

The structure of a successful optimization process is roughly:

• Presolve

1. Elimination: Reduce the size of the problem.
2. Dualizer : Choose whether to solve the primal or the dual form of the problem.
3. Scaling : Scale the problem for better numerical stability.

• Optimization

1. Optimize: Solve the problem using selected method.
2. Terminate: Stop the optimization when specific termination criteria have been met.
3. Report : Return the solution or an infeasibility certificate.

The preprocessing stage is transparent to the user, but useful to know about for tuning purposes.
The purpose of the preprocessing steps is to make the actual optimization more efficient and robust. We
discuss the details of the above steps in the following sections.

13.1 Presolve

Before an optimizer actually performs the optimization the problem is preprocessed using the so-called
presolve. The purpose of the presolve is to

1. remove redundant constraints,

2. eliminate fixed variables,

3. remove linear dependencies,

4. substitute out (implied) free variables, and

5. reduce the size of the optimization problem in general.

After the presolved problem has been optimized the solution is automatically postsolved so that the
returned solution is valid for the original problem. Hence, the presolve is completely transparent. For
further details about the presolve phase, please see [AA95] and [AGMX96] .

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If presolve consumes too
much time or memory compared to the reduction in problem size gained it may be disabled. This is done
by setting the parameter iparam.presolve_use to presolvemode.off . The two most time-consuming
steps of the presolve are

145

• the eliminator, and

• the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.

Numerical issues in the presolve

During the presolve the problem is reformulated so that it hopefully solves faster. However, in rare
cases the presolved problem may be harder to solve then the original problem. The presolve may also
be infeasible although the original problem is not. If it is suspected that presolved problem is much
harder to solve than the original, we suggest to first turn the eliminator off by setting the parameter
iparam.presolve_eliminator_max_num_tries to 0. If that does not help, then trying to turn entire
presolve off may help.

Since all computations are done in finite precision, the presolve employs some tolerances when con-
cluding a variable is fixed or a constraint is redundant. If it happens that MOSEK incorrectly concludes
a problem is primal or dual infeasible, then it is worthwhile to try to reduce the parameters dparam.
presolve_tol_x and dparam.presolve_tol_s . However, if reducing the parameters actually helps
then this should be taken as an indication that the problem is badly formulated.

Eliminator

The purpose of the eliminator is to eliminate free and implied free variables from the problem using
substitution. For instance, given the constraints

𝑦 =
∑︀

𝑗 𝑥𝑗 ,

𝑦, 𝑥 ≥ 0,

y is an implied free variable that can be substituted out of the problem, if deemed worthwhile. If the
eliminator consumes too much time or memory compared to the reduction in problem size gained it may
be disabled. This can be done by setting the parameter iparam.presolve_eliminator_max_num_tries
to 0. In rare cases the eliminator may cause that the problem becomes much hard to solve.

Linear dependency checker

The purpose of the linear dependency check is to remove linear dependencies among the linear equal-
ities. For instance, the three linear equalities

𝑥1 + 𝑥2 + 𝑥3 = 1,
𝑥1 + 0.5𝑥2 = 0.5,
0.5𝑥2 + 𝑥3 = 0.5.

contain exactly one linear dependency. This implies that one of the constraints can be dropped without
changing the set of feasible solutions. Removing linear dependencies is in general a good idea since it
reduces the size of the problem. Moreover, the linear dependencies are likely to introduce numerical
problems in the optimization phase. It is best practice to build models without linear dependencies,
but that is not always easy for the user to control. If the linear dependencies are removed at the
modeling stage, the linear dependency check can safely be disabled by setting the parameter iparam.
presolve_lindep_use to onoffkey.off .

Dualizer

All linear, conic, and convex optimization problems have an equivalent dual problem associated with
them. MOSEK has built-in heuristics to determine if it is more efficient to solve the primal or dual
problem. The form (primal or dual) is displayed in the MOSEK log and available as an information
item from the solver. Should the internal heuristics not choose the most efficient form of the problem it
may be worthwhile to set the dualizer manually by setting the parameters:

• iparam.intpnt_solve_form : In case of the interior-point optimizer.

• iparam.sim_solve_form : In case of the simplex optimizer.

Note that currently only linear and conic (but not semidefinite) problems may be automatically
dualized.

146

Scaling

Problems containing data with large and/or small coefficients, say 1.0𝑒+ 9 or 1.0𝑒−7, are often hard
to solve. Significant digits may be truncated in calculations with finite precision, which can result in
the optimizer relying on inaccurate data. Since computers work in finite precision, extreme coefficients
should be avoided. In general, data around the same order of magnitude is preferred, and we will refer to
a problem, satisfying this loose property, as being well-scaled. If the problem is not well scaled, MOSEK
will try to scale (multiply) constraints and variables by suitable constants. MOSEK solves the scaled
problem to improve the numerical properties.

The scaling process is transparent, i.e. the solution to the original problem is reported. It is important
to be aware that the optimizer terminates when the termination criterion is met on the scaled problem,
therefore significant primal or dual infeasibilities may occur after unscaling for badly scaled problems.
The best solution of this issue is to reformulate the problem, making it better scaled.

By default MOSEK heuristically chooses a suitable scaling. The scaling for interior-point and
simplex optimizers can be controlled with the parameters iparam.intpnt_scaling and iparam.
sim_scaling respectively.

13.2 Linear Optimization

13.2.1 Optimizer Selection
Two different types of optimizers are available for linear problems: The default is an interior-point
method, and the alternative is the simplex method (primal or dual). The optimizer can be selected using
the parameter iparam.optimizer .

The Interior-point or the Simplex Optimizer?

Given a linear optimization problem, which optimizer is the best: the simplex or the interior-point
optimizer? It is impossible to provide a general answer to this question. However, the interior-point
optimizer behaves more predictably: it tends to use between 20 and 100 iterations, almost independently
of problem size, but cannot perform warm-start. On the other hand the simplex method can take
advantage of an initial solution, but is less predictable from cold-start. The interior-point optimizer is
used by default.

The Primal or the Dual Simplex Variant?

MOSEK provides both a primal and a dual simplex optimizer. Predicting which simplex optimizer
is faster is impossible, however, in recent years the dual optimizer has seen several algorithmic and
computational improvements, which, in our experience, make it faster on average than the primal version.
Still, it depends much on the problem structure and size. Setting the iparam.optimizer parameter to
optimizertype.free_simplex instructs MOSEK to choose one of the simplex variants automatically.

To summarize, if you want to know which optimizer is faster for a given problem type, it is best to
try all the options.

13.2.2 The Interior-point Optimizer
The purpose of this section is to provide information about the algorithm employed in the MOSEK
interior-point optimizer for linear problems and about its termination criteria.

The homogeneous primal-dual problem

In order to keep the discussion simple it is assumed that MOSEK solves linear optimization problems
of standard form

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ 0.
(13.1)

This is in fact what happens inside MOSEK; for efficiency reasons MOSEK converts the problem to
standard form before solving, then converts it back to the input form when reporting the solution.

147

Since it is not known beforehand whether problem (13.1) has an optimal solution, is primal infeasible
or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason
why MOSEK solves the so-called homogeneous model

𝐴𝑥− 𝑏𝜏 = 0,
𝐴𝑇 𝑦 + 𝑠− 𝑐𝜏 = 0,

−𝑐𝑇𝑥 + 𝑏𝑇 𝑦 − 𝜅 = 0,
𝑥, 𝑠, 𝜏, 𝜅 ≥ 0,

(13.2)

where 𝑦 and 𝑠 correspond to the dual variables in (13.1), and 𝜏 and 𝜅 are two additional scalar variables.
Note that the homogeneous model (13.2) always has solution since

(𝑥, 𝑦, 𝑠, 𝜏, 𝜅) = (0, 0, 0, 0, 0)

is a solution, although not a very interesting one. Any solution

(𝑥*, 𝑦*, 𝑠*, 𝜏*, 𝜅*)

to the homogeneous model (13.2) satisfies

𝑥*
𝑗𝑠

*
𝑗 = 0 and 𝜏*𝜅* = 0.

Moreover, there is always a solution that has the property 𝜏* + 𝜅* > 0.
First, assume that 𝜏* > 0 . It follows that

𝐴𝑥*

𝜏* = 𝑏,

𝐴𝑇 𝑦*

𝜏* + 𝑠*

𝜏* = 𝑐,

−𝑐𝑇 𝑥*

𝜏* + 𝑏𝑇 𝑦*

𝜏* = 0,
𝑥*, 𝑠*, 𝜏*, 𝜅* ≥ 0.

This shows that 𝑥*

𝜏* is a primal optimal solution and (𝑦*

𝜏* ,
𝑠*

𝜏*) is a dual optimal solution; this is reported
as the optimal interior-point solution since

(𝑥, 𝑦, 𝑠) =

{︂
𝑥*

𝜏*
,
𝑦*

𝜏*
,
𝑠*

𝜏*

}︂
is a primal-dual optimal solution (see Sec. 12.1 for the mathematical background on duality and opti-
mality).

On other hand, if 𝜅* > 0 then

𝐴𝑥* = 0,
𝐴𝑇 𝑦* + 𝑠* = 0,

−𝑐𝑇𝑥* + 𝑏𝑇 𝑦* = 𝜅*,
𝑥*, 𝑠*, 𝜏*, 𝜅* ≥ 0.

This implies that at least one of

𝑐𝑇𝑥* < 0 (13.3)

or

𝑏𝑇 𝑦* > 0 (13.4)

is satisfied. If (13.3) is satisfied then 𝑥* is a certificate of dual infeasibility, whereas if (13.4) is satisfied
then 𝑦* is a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information re-
quired for a solution to the original problem is obtained. A solution to the homogeneous model can be
computed using a primal-dual interior-point algorithm [And09] .

148

Interior-point Termination Criterion

For efficiency reasons it is not practical to solve the homogeneous model exactly. Hence, an exact optimal
solution or an exact infeasibility certificate cannot be computed and a reasonable termination criterion
has to be employed.

In the 𝑘-th iteration of the interior-point algorithm a trial solution

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘)

to homogeneous model is generated, where

𝑥𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘 > 0.

Optimal case

Whenever the trial solution satisfies the criterion⃦⃦⃦
𝐴𝑥𝑘

𝜏𝑘 − 𝑏
⃦⃦⃦
∞

≤ 𝜖𝑝(1 + ‖𝑏‖∞),⃦⃦⃦
𝐴𝑇 𝑦𝑘

𝜏𝑘 + 𝑠𝑘

𝜏𝑘 − 𝑐
⃦⃦⃦
∞

≤ 𝜖𝑑(1 + ‖𝑐‖∞), and

min
(︁

(𝑥𝑘)𝑇 𝑠𝑘

(𝜏𝑘)2
, | 𝑐

𝑇 𝑥𝑘

𝜏𝑘 − 𝑏𝑇 𝑦𝑘

𝜏𝑘 |
)︁

≤ 𝜖𝑔 max

(︂
1,

min(|𝑐𝑇 𝑥𝑘|,|𝑏𝑇 𝑦𝑘|)
𝜏𝑘

)︂
,

(13.5)

the interior-point optimizer is terminated and

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘)

𝜏𝑘

is reported as the primal-dual optimal solution. The interpretation of (13.5) is that the optimizer is
terminated if

• 𝑥𝑘

𝜏𝑘 is approximately primal feasible,

•
{︁

𝑦𝑘

𝜏𝑘 ,
𝑠𝑘

𝜏𝑘

}︁
is approximately dual feasible, and

• the duality gap is almost zero.

Dual infeasibility certificate

On the other hand, if the trial solution satisfies

−𝜖𝑖𝑐
𝑇𝑥𝑘 >

‖𝑐‖∞
max (1, ‖𝑏‖∞)

⃦⃦
𝐴𝑥𝑘

⃦⃦
∞

then the problem is declared dual infeasible and 𝑥𝑘 is reported as a certificate of dual infeasibility. The
motivation for this stopping criterion is as follows: First assume that

⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ = 0 ; then 𝑥𝑘 is an exact

certificate of dual infeasibility. Next assume that this is not the case, i.e.⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ > 0,

and define

�̄� := 𝜖𝑖
max (1, ‖𝑏‖∞)

‖𝐴𝑥𝑘‖∞ ‖𝑐‖∞
𝑥𝑘.

It is easy to verify that

‖𝐴�̄�‖∞ = 𝜖𝑖
max (1, ‖𝑏‖∞)

‖𝑐‖∞
and − 𝑐𝑇 �̄� > 1,

which shows �̄� is an approximate certificate of dual infeasibility, where 𝜀𝑖 controls the quality of the
approximation. A smaller value means a better approximation.

149

Primal infeasibility certificate

Finally, if

𝜖𝑖𝑏
𝑇 𝑦𝑘 >

‖𝑏‖∞
max (1, ‖𝑐‖∞)

⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘

⃦⃦
∞

then 𝑦𝑘 is reported as a certificate of primal infeasibility.

Adjusting optimality criteria

It is possible to adjust the tolerances 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖 using parameters; see table for details.

Table 13.1: Parameters employed in termination criterion
ToleranceParameter name
𝜀𝑝 dparam.intpnt_tol_pfeas
𝜀𝑑 dparam.intpnt_tol_dfeas
𝜀𝑔 dparam.intpnt_tol_rel_gap
𝜀𝑖 dparam.intpnt_tol_infeas

The default values of the termination tolerances are chosen such that for a majority of problems
appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the
tolerances usually is not worthwhile. However, an inspection of (13.5) reveals that the quality of the
solution depends on ‖𝑏‖∞ and ‖𝑐‖∞; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal
and dual feasibility at the same rate [And09] . This means that if the optimizer is stopped prematurely
then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that
in most cases all the tolerances, 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖, have to be relaxed together to achieve an effect.

If the optimizer terminates without locating a solution that satisfies the termination criteria, for exam-
ple because of a stall or other numerical issues, then it will check if the solution found up to that point sat-
isfies the same criteria with all tolerances multiplied by the value of dparam.intpnt_co_tol_near_rel .
If this is the case, the solution is still declared as optimal.

The basis identification discussed in Sec. 13.2.2 requires an optimal solution to work well; hence basis
identification should be turned off if the termination criterion is relaxed.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

Basis Identification

An interior-point optimizer does not return an optimal basic solution unless the problem has a unique
primal and dual optimal solution. Therefore, the interior-point optimizer has an optional post-processing
step that computes an optimal basic solution starting from the optimal interior-point solution. More
information about the basis identification procedure may be found in [AY96] . In the following we provide
an overall idea of the procedure.

There are some cases in which a basic solution could be more valuable:

• a basic solution is often more accurate than an interior-point solution,

• a basic solution can be used to warm-start the simplex algorithm in case of reoptimization,

• a basic solution is in general more sparse, i.e. more variables are fixed to zero. This is partic-
ularly appealing when solving continuous relaxations of mixed integer problems, as well as in all
applications in which sparser solutions are preferred.

To illustrate how the basis identification routine works, we use the following trivial example:

minimize 𝑥 + 𝑦
subject to 𝑥 + 𝑦 = 1,

𝑥, 𝑦 ≥ 0.

It is easy to see that all feasible solutions are also optimal. In particular, there are two basic solutions,
namely

(𝑥*
1, 𝑦

*
1) = (1, 0),

(𝑥*
2, 𝑦

*
2) = (0, 1).

150

The interior point algorithm will actually converge to the center of the optimal set, i.e. to (𝑥*, 𝑦*) =
(1/2, 1/2) (to see this in MOSEK deactivate Presolve).

In practice, when the algorithm gets close to the optimal solution, it is possible to construct in
polynomial time an initial basis for the simplex algorithm from the current interior point solution. This
basis is used to warm-start the simplex algorithm that will provide the optimal basic solution. In most
cases the constructed basis is optimal, or very few iterations are required by the simplex algorithm to
make it optimal and hence the final clean-up phase be short. However, for some cases of ill-conditioned
problems the additional simplex clean up phase may take of lot a time.

By default MOSEK performs a basis identification. However, if a basic solution is not needed, the
basis identification procedure can be turned off. The parameters

• iparam.intpnt_basis ,

• iparam.bi_ignore_max_iter , and

• iparam.bi_ignore_num_error

control when basis identification is performed.
The type of simplex algorithm to be used (primal/dual) can be tuned with the parameter

iparam.bi_clean_optimizer , and the maximum number of iterations can be set with iparam.
bi_max_iterations .

Finally, it should be mentioned that there is no guarantee on which basic solution will be returned.

The Interior-point Log

Below is a typical log output from the interior-point optimizer:

Optimizer - threads : 1
Optimizer - solved problem : the dual
Optimizer - Constraints : 2
Optimizer - Cones : 0
Optimizer - Scalar variables : 6 conic : 0
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 3 after factor : 3
Factor - dense dim. : 0 flops : 7.00e+001
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 1.0e+000 8.6e+000 6.1e+000 1.00e+000 0.000000000e+000 -2.208000000e+003 1.0e+000 0.00
1 1.1e+000 2.5e+000 1.6e-001 0.00e+000 -7.901380925e+003 -7.394611417e+003 2.5e+000 0.00
2 1.4e-001 3.4e-001 2.1e-002 8.36e-001 -8.113031650e+003 -8.055866001e+003 3.3e-001 0.00
3 2.4e-002 5.8e-002 3.6e-003 1.27e+000 -7.777530698e+003 -7.766471080e+003 5.7e-002 0.01
4 1.3e-004 3.2e-004 2.0e-005 1.08e+000 -7.668323435e+003 -7.668207177e+003 3.2e-004 0.01
5 1.3e-008 3.2e-008 2.0e-009 1.00e+000 -7.668000027e+003 -7.668000015e+003 3.2e-008 0.01
6 1.3e-012 3.2e-012 2.0e-013 1.00e+000 -7.667999994e+003 -7.667999994e+003 3.2e-012 0.01

The first line displays the number of threads used by the optimizer and the second line indicates if
the optimizer chose to solve the primal or dual problem (see iparam.intpnt_solve_form). The next
lines display the problem dimensions as seen by the optimizer, and the Factor... lines show various
statistics. This is followed by the iteration log.

Using the same notation as in Sec. 13.2.2 the columns of the iteration log have the following meaning:

• ITE: Iteration index 𝑘.

• PFEAS:
⃦⃦
𝐴𝑥𝑘 − 𝑏𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards zero

but may stall at low level due to rounding errors.

• DFEAS:
⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘 − 𝑐𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards

zero but may stall at low level due to rounding errors.

• GFEAS: |− 𝑐𝑇𝑥𝑘 + 𝑏𝑇 𝑦𝑘 −𝜅𝑘| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

• PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to −1 if that is not the case.

151

• POBJ: 𝑐𝑇𝑥𝑘/𝜏𝑘. An estimate for the primal objective value.

• DOBJ: 𝑏𝑇 𝑦𝑘/𝜏𝑘. An estimate for the dual objective value.

• MU: (𝑥𝑘)𝑇 𝑠𝑘+𝜏𝑘𝜅𝑘

𝑛+1 . The numbers in this column should always converge to zero.

• TIME: Time spent since the optimization started.

13.2.3 The Simplex Optimizer
An alternative to the interior-point optimizer is the simplex optimizer. The simplex optimizer uses a
different method that allows exploiting an initial guess for the optimal solution to reduce the solution
time. Depending on the problem it may be faster or slower to use an initial guess; see Sec. 13.2.1 for a
discussion. MOSEK provides both a primal and a dual variant of the simplex optimizer.

Simplex Termination Criterion

The simplex optimizer terminates when it finds an optimal basic solution or an infeasibility certificate.
A basic solution is optimal when it is primal and dual feasible; see Sec. 12.1 for a definition of the primal
and dual problem. Due to the fact that computations are performed in finite precision MOSEK allows
violations of primal and dual feasibility within certain tolerances. The user can control the allowed
primal and dual tolerances with the parameters dparam.basis_tol_x and dparam.basis_tol_s .

Setting the parameter iparam.optimizer to optimizertype.free_simplex instructs MOSEK to
select automatically between the primal and the dual simplex optimizers. Hence, MOSEK tries to
choose the best optimizer for the given problem and the available solution. The same parameter can also
be used to force one of the variants.

Starting From an Existing Solution

When using the simplex optimizer it may be possible to reuse an existing solution and thereby reduce
the solution time significantly. When a simplex optimizer starts from an existing solution it is said to
perform a warm-start. If the user is solving a sequence of optimization problems by solving the problem,
making modifications, and solving again, MOSEK will warm-start automatically.

By default MOSEK uses presolve when performing a warm-start. If the optimizer only needs very
few iterations to find the optimal solution it may be better to turn off the presolve.

Numerical Difficulties in the Simplex Optimizers

Though MOSEK is designed to minimize numerical instability, completely avoiding it is impossible
when working in finite precision. MOSEK treats a “numerically unexpected behavior” event inside the
optimizer as a set-back. The user can define how many set-backs the optimizer accepts; if that number
is exceeded, the optimization will be aborted. Set-backs are a way to escape long sequences where the
optimizer tries to recover from an unstable situation.

Examples of set-backs are: repeated singularities when factorizing the basis matrix, repeated loss
of feasibility, degeneracy problems (no progress in objective) and other events indicating numerical
difficulties. If the simplex optimizer encounters a lot of set-backs the problem is usually badly scaled; in
such a situation try to reformulate it into a better scaled problem. Then, if a lot of set-backs still occur,
trying one or more of the following suggestions may be worthwhile:

• Raise tolerances for allowed primal or dual feasibility: increase the value of

– dparam.basis_tol_x , and

– dparam.basis_tol_s .

• Raise or lower pivot tolerance: Change the dparam.simplex_abs_tol_piv parameter.

• Switch optimizer: Try another optimizer.

• Switch off crash: Set both iparam.sim_primal_crash and iparam.sim_dual_crash to 0.

• Experiment with other pricing strategies: Try different values for the parameters

152

– iparam.sim_primal_selection and

– iparam.sim_dual_selection .

• If you are using warm-starts, in rare cases switching off this feature may improve stability. This is
controlled by the iparam.sim_hotstart parameter.

• Increase maximum number of set-backs allowed controlled by iparam.sim_max_num_setbacks .

• If the problem repeatedly becomes infeasible try switching off the special degeneracy handling. See
the parameter iparam.sim_degen for details.

The Simplex Log

Below is a typical log output from the simplex optimizer:

Optimizer - solved problem : the primal
Optimizer - Constraints : 667
Optimizer - Scalar variables : 1424 conic : 0
Optimizer - hotstart : no
ITER DEGITER(%) PFEAS DFEAS POBJ DOBJ TIME␣
→˓ TOTTIME
0 0.00 1.43e+05 NA 6.5584140832e+03 NA 0.00␣
→˓ 0.02
1000 1.10 0.00e+00 NA 1.4588289726e+04 NA 0.13␣
→˓ 0.14
2000 0.75 0.00e+00 NA 7.3705564855e+03 NA 0.21␣
→˓ 0.22
3000 0.67 0.00e+00 NA 6.0509727712e+03 NA 0.29␣
→˓ 0.31
4000 0.52 0.00e+00 NA 5.5771203906e+03 NA 0.38␣
→˓ 0.39
4533 0.49 0.00e+00 NA 5.5018458883e+03 NA 0.42␣
→˓ 0.44

The first lines summarize the problem the optimizer is solving. This is followed by the iteration log,
with the following meaning:

• ITER: Number of iterations.

• DEGITER(%): Ratio of degenerate iterations.

• PFEAS: Primal feasibility measure reported by the simplex optimizer. The numbers should be 0 if
the problem is primal feasible (when the primal variant is used).

• DFEAS: Dual feasibility measure reported by the simplex optimizer. The number should be 0 if the
problem is dual feasible (when the dual variant is used).

• POBJ: An estimate for the primal objective value (when the primal variant is used).

• DOBJ: An estimate for the dual objective value (when the dual variant is used).

• TIME: Time spent since this instance of the simplex optimizer was invoked (in seconds).

• TOTTIME: Time spent since optimization started (in seconds).

13.3 Conic Optimization - Interior-point optimizer

For conic optimization problems only an interior-point type optimizer is available.

153

13.3.1 The homogeneous primal-dual problem
The interior-point optimizer is an implementation of the so-called homogeneous and self-dual algorithm.
For a detailed description of the algorithm, please see [ART03] . In order to keep our discussion simple
we will assume that MOSEK solves a conic optimization problem of the form:

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ∈ 𝒦
(13.6)

where 𝐾 is a convex cone. The corresponding dual problem is

maximize 𝑏𝑇 𝑦
subject to 𝐴𝑇 𝑦 + 𝑠 = 𝑐,

𝑠 ∈ 𝒦*
(13.7)

where 𝒦* is the dual cone of 𝒦. See Sec. 12.2 for definitions.
Since it is not known beforehand whether problem (13.6) has an optimal solution, is primal infeasible

or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason
that MOSEK solves the so-called homogeneous model

𝐴𝑥− 𝑏𝜏 = 0,
𝐴𝑇 𝑦 + 𝑠− 𝑐𝜏 = 0,

−𝑐𝑇𝑥 + 𝑏𝑇 𝑦 − 𝜅 = 0,
𝑥 ∈ 𝒦,
𝑠 ∈ 𝒦*,

𝜏, 𝜅 ≥ 0,

(13.8)

where 𝑦 and 𝑠 correspond to the dual variables in (13.6), and 𝜏 and 𝜅 are two additional scalar variables.
Note that the homogeneous model (13.8) always has a solution since

(𝑥, 𝑦, 𝑠, 𝜏, 𝜅) = (0, 0, 0, 0, 0)

is a solution, although not a very interesting one. Any solution

(𝑥*, 𝑦*, 𝑠*, 𝜏*, 𝜅*)

to the homogeneous model (13.8) satisfies

(𝑥*)𝑇 𝑠* + 𝜏*𝜅* = 0

i.e. complementarity. Observe that 𝑥* ∈ 𝒦 and 𝑠* ∈ 𝒦* implies

(𝑥*)𝑇 𝑠* ≥ 0

and therefore

𝜏*𝜅* = 0.

since 𝜏*, 𝜅* ≥ 0. Hence, at least one of 𝜏* and 𝜅* is zero.
First, assume that 𝜏* > 0 and hence 𝜅* = 0. It follows that

𝐴𝑥*

𝜏* = 𝑏,

𝐴𝑇 𝑦*

𝜏* + 𝑠*

𝜏* = 𝑐,

−𝑐𝑇 𝑥*

𝜏* + 𝑏𝑇 𝑦*

𝜏* = 0,
𝑥*/𝜏* ∈ 𝒦,
𝑠*/𝜏* ∈ 𝒦*.

This shows that 𝑥*

𝜏* is a primal optimal solution and (𝑦*

𝜏* ,
𝑠*

𝜏*) is a dual optimal solution; this is reported
as the optimal interior-point solution since

(𝑥, 𝑦, 𝑠) =

(︂
𝑥*

𝜏*
,
𝑦*

𝜏*
,
𝑠*

𝜏*

)︂

154

is a primal-dual optimal solution.
On other hand, if 𝜅* > 0 then

𝐴𝑥* = 0,
𝐴𝑇 𝑦* + 𝑠* = 0,

−𝑐𝑇𝑥* + 𝑏𝑇 𝑦* = 𝜅*,
𝑥* ∈ 𝒦,
𝑠* ∈ 𝒦*.

This implies that at least one of

𝑐𝑇𝑥* < 0 (13.9)

or

𝑏𝑇 𝑦* > 0 (13.10)

holds. If (13.9) is satisfied, then 𝑥* is a certificate of dual infeasibility, whereas if (13.10) holds then 𝑦*

is a certificate of primal infeasibility.
In summary, by computing an appropriate solution to the homogeneous model, all information re-

quired for a solution to the original problem is obtained. A solution to the homogeneous model can be
computed using a primal-dual interior-point algorithm [And09] .

13.3.2 Interior-point Termination Criterion
Since computations are performed in finite precision, and for efficiency reasons, it is not possible to solve
the homogeneous model exactly in general. Hence, an exact optimal solution or an exact infeasibility
certificate cannot be computed and a reasonable termination criterion has to be employed.

In every iteration 𝑘 of the interior-point algorithm a trial solution

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘)

to the homogeneous model is generated, where

𝑥𝑘 ∈ 𝒦, 𝑠𝑘 ∈ 𝒦*, 𝜏𝑘, 𝜅𝑘 > 0.

Therefore, it is possible to compute the values:

𝜌𝑘𝑝 = arg min𝜌

{︁
𝜌 |
⃦⃦⃦
𝐴𝑥𝑘

𝜏𝑘 − 𝑏
⃦⃦⃦
∞

≤ 𝜌𝜀𝑝(1 + ‖𝑏‖∞)
}︁
,

𝜌𝑘𝑑 = arg min𝜌

{︁
𝜌 |
⃦⃦⃦
𝐴𝑇 𝑦𝑘

𝜏𝑘 + 𝑠𝑘

𝜏𝑘 − 𝑐
⃦⃦⃦
∞

≤ 𝜌𝜀𝑑(1 + ‖𝑐‖∞)
}︁
,

𝜌𝑘𝑔 = arg min𝜌

{︂
𝜌 |
(︁

(𝑥𝑘)𝑇 𝑠𝑘

(𝜏𝑘)2
, | 𝑐

𝑇 𝑥𝑘

𝜏𝑘 − 𝑏𝑇 𝑦𝑘

𝜏𝑘 |
)︁
≤ 𝜌𝜀𝑔 max

(︂
1,

min(|𝑐𝑇 𝑥𝑘|,|𝑏𝑇 𝑦𝑘|)
𝜏𝑘

)︂}︂
,

𝜌𝑘𝑝𝑖 = arg min𝜌

{︀
𝜌 |
⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘

⃦⃦
∞ ≤ 𝜌𝜀𝑖𝑏

𝑇 𝑦𝑘, 𝑏𝑇 𝑦𝑘 > 0
}︀

and
𝜌𝑘𝑑𝑖 = arg min𝜌

{︀
𝜌 |
⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ ≤ −𝜌𝜀𝑖𝑐

𝑇𝑥𝑘, 𝑐𝑇𝑥𝑘 < 0
}︀
.

Note 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖 are nonnegative user specified tolerances.

Optimal Case

Observe 𝜌𝑘𝑝 measures how far 𝑥𝑘/𝜏𝑘 is from being a good approximate primal feasible solution. Indeed
if 𝜌𝑘𝑝 ≤ 1, then ⃦⃦⃦⃦

𝐴
𝑥𝑘

𝜏𝑘
− 𝑏

⃦⃦⃦⃦
∞

≤ 𝜀𝑝(1 + ‖𝑏‖∞). (13.11)

This shows the violations in the primal equality constraints for the solution 𝑥𝑘/𝜏𝑘 is small compared to
the size of 𝑏 given 𝜀𝑝 is small.

Similarly, if 𝜌𝑘𝑑 ≤ 1, then (𝑦𝑘, 𝑠𝑘)/𝜏𝑘 is an approximate dual feasible solution. If in addition 𝜌𝑔 ≤ 1,
then the solution (𝑥𝑘, 𝑦𝑘, 𝑠𝑘)/𝜏𝑘 is approximate optimal because the associated primal and dual objective
values are almost identical.

155

In other words if max(𝜌𝑘𝑝, 𝜌
𝑘
𝑑, 𝜌

𝑘
𝑔) ≤ 1, then

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘)

𝜏𝑘

is an approximate optimal solution.

Dual Infeasibility Certificate

Next assume that 𝜌𝑘𝑑𝑖 ≤ 1 and hence⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ ≤ −𝜀𝑖𝑐

𝑇𝑥𝑘 and − 𝑐𝑇𝑥𝑘 > 0

holds. Now in this case the problem is declared dual infeasible and 𝑥𝑘 is reported as a certificate of dual
infeasibility. The motivation for this stopping criterion is as follows. Let

�̄� :=
𝑥𝑘

−𝑐𝑇𝑥𝑘

and it is easy to verify that

‖𝐴�̄�‖∞ ≤ 𝜀𝑖 and 𝑐𝑇 �̄� = −1

which shows �̄� is an approximate certificate of dual infeasibility, where 𝜀𝑖 controls the quality of the
approximation.

Primal Infeasiblity Certificate

Next assume that 𝜌𝑘𝑝𝑖 ≤ 1 and hence⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘

⃦⃦
∞ ≤ 𝜀𝑖𝑏

𝑇 𝑦𝑘 and 𝑏𝑇 𝑦𝑘 > 0

holds. Now in this case the problem is declared primal infeasible and (𝑦𝑘, 𝑠𝑘) is reported as a certificate
of primal infeasibility. The motivation for this stopping criterion is as follows. Let

𝑦 :=
𝑦𝑘

𝑏𝑇 𝑦𝑘
and 𝑠 :=

𝑠𝑘

𝑏𝑇 𝑦𝑘

and it is easy to verify that ⃦⃦
𝐴𝑇 𝑦 + 𝑠

⃦⃦
∞ ≤ 𝜀𝑖 and 𝑏𝑇 𝑦 = 1

which shows (𝑦𝑘, 𝑠𝑘) is an approximate certificate of dual infeasibility, where 𝜀𝑖 controls the quality of
the approximation.

13.3.3 Adjusting optimality criteria
It is possible to adjust the tolerances 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖 using parameters; see table for details.

Table 13.2: Parameters employed in termination criterion
ToleranceParameter name
𝜀𝑝 dparam.intpnt_co_tol_pfeas
𝜀𝑑 dparam.intpnt_co_tol_dfeas
𝜀𝑔 dparam.intpnt_co_tol_rel_gap
𝜀𝑖 dparam.intpnt_co_tol_infeas

The default values of the termination tolerances are chosen such that for a majority of problems
appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the
tolerances usually is not worthwhile. However, an inspection of (13.11) reveals that the quality of the
solution depends on ‖𝑏‖∞ and ‖𝑐‖∞; the smaller the norms are, the better the solution accuracy.

156

The interior-point method as implemented by MOSEK will converge toward optimality and primal
and dual feasibility at the same rate [And09] . This means that if the optimizer is stopped prematurely
then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that
in most cases all the tolerances, 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖, have to be relaxed together to achieve an effect.

If the optimizer terminates without locating a solution that satisfies the termination criteria, for exam-
ple because of a stall or other numerical issues, then it will check if the solution found up to that point sat-
isfies the same criteria with all tolerances multiplied by the value of dparam.intpnt_co_tol_near_rel .
If this is the case, the solution is still declared as optimal.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

13.3.4 The Interior-point Log
Below is a typical log output from the interior-point optimizer:

Optimizer - threads : 20
Optimizer - solved problem : the primal
Optimizer - Constraints : 1
Optimizer - Cones : 2
Optimizer - Scalar variables : 6 conic : 6
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 1 after factor : 1
Factor - dense dim. : 0 flops : 1.70e+01
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 1.0e+00 2.9e-01 3.4e+00 0.00e+00 2.414213562e+00 0.000000000e+00 1.0e+00 0.01
1 2.7e-01 7.9e-02 2.2e+00 8.83e-01 6.969257574e-01 -9.685901771e-03 2.7e-01 0.01
2 6.5e-02 1.9e-02 1.2e+00 1.16e+00 7.606090061e-01 6.046141322e-01 6.5e-02 0.01
3 1.7e-03 5.0e-04 2.2e-01 1.12e+00 7.084385672e-01 7.045122560e-01 1.7e-03 0.01
4 1.4e-08 4.2e-09 4.9e-08 1.00e+00 7.071067941e-01 7.071067599e-01 1.4e-08 0.01

The first line displays the number of threads used by the optimizer and the second line indicates if
the optimizer chose to solve the primal or dual problem (see iparam.intpnt_solve_form). The next
lines display the problem dimensions as seen by the optimizer, and the Factor... lines show various
statistics. This is followed by the iteration log.

Using the same notation as in Sec. 13.3.1 the columns of the iteration log have the following meaning:

• ITE: Iteration index 𝑘.

• PFEAS:
⃦⃦
𝐴𝑥𝑘 − 𝑏𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards zero

but may stall at low level due to rounding errors.

• DFEAS:
⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘 − 𝑐𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards

zero but may stall at low level due to rounding errors.

• GFEAS: |− 𝑐𝑇𝑥𝑘 + 𝑏𝑇 𝑦𝑘 −𝜅𝑘| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

• PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to −1 if that is not the case.

• POBJ: 𝑐𝑇𝑥𝑘/𝜏𝑘. An estimate for the primal objective value.

• DOBJ: 𝑏𝑇 𝑦𝑘/𝜏𝑘. An estimate for the dual objective value.

• MU: (𝑥𝑘)𝑇 𝑠𝑘+𝜏𝑘𝜅𝑘

𝑛+1 . The numbers in this column should always converge to zero.

• TIME: Time spent since the optimization started (in seconds).

13.4 The Optimizer for Mixed-integer Problems

A problem is a mixed-integer optimization problem when one or more of the variables are constrained
to be integer valued. Readers unfamiliar with integer optimization are recommended to consult some
relevant literature, e.g. the book [Wol98] by Wolsey.

157

13.4.1 The Mixed-integer Optimizer Overview
MOSEK can solve mixed-integer

• linear,

• quadratic and quadratically constrained, and

• conic

problems, except for mixed-integer semidefinite problems. The mixed-integer optimizer is special-
ized for solving linear and conic optimization problems. Pure quadratic and quadratically constrained
problems are automatically converted to conic form.

By default the mixed-integer optimizer is run-to-run deterministic. This means that if a problem is
solved twice on the same computer with identical parameter settings and no time limit then the obtained
solutions will be identical. If a time limit is set then this may not be case since the time taken to solve
a problem is not deterministic. The mixed-integer optimizer is parallelized i.e. it can exploit multiple
cores during the optimization.

The solution process can be split into these phases:

1. Presolve: See Sec. 13.1.

2. Cut generation: Valid inequalities (cuts) are added to improve the lower bound.

3. Heuristic: Using heuristics the optimizer tries to guess a good feasible solution. Heuristics can
be controlled by the parameter iparam.mio_heuristic_level .

4. Search: The optimal solution is located by branching on integer variables.

13.4.2 Relaxations and bounds
It is important to understand that, in a worst-case scenario, the time required to solve integer opti-
mization problems grows exponentially with the size of the problem (solving mixed-integer problems is
NP-hard). For instance, a problem with 𝑛 binary variables, may require time proportional to 2𝑛 . The
value of 2𝑛 is huge even for moderate values of 𝑛.

In practice this implies that the focus should be on computing a near-optimal solution quickly rather
than on locating an optimal solution. Even if the problem is only solved approximately, it is important
to know how far the approximate solution is from an optimal one. In order to say something about the
quality of an approximate solution the concept of relaxation is important.

Consider for example a mixed-integer optimization problem

𝑧* = minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ 0
𝑥𝑗 ∈ Z, ∀𝑗 ∈ 𝒥 .

(13.12)

It has the continuous relaxation
𝑧 = minimize 𝑐𝑇𝑥

subject to 𝐴𝑥 = 𝑏,
𝑥 ≥ 0

(13.13)

obtained simply by ignoring the integrality restrictions. The relaxation is a continuous problem, and
therefore much faster to solve to optimality with a linear (or, in the general case, conic) optimizer.
We call the optimal value 𝑧 the objective bound. The objective bound 𝑧 normally increases during the
solution search process when the continuous relaxation is gradually refined.

Moreover, if �̂� is any feasible solution to (13.12) and

𝑧 := 𝑐𝑇 �̂�

then

𝑧 ≤ 𝑧* ≤ 𝑧.

These two inequalities allow us to estimate the quality of the integer solution: it is no further away from
the optimum than 𝑧 − 𝑧 in terms of the objective value. Whenever a mixed-integer problem is solved
MOSEK reports this lower bound so that the quality of the reported solution can be evaluated.

158

13.4.3 Outer approximation for mixed-integer conic problems
The relaxations of mixed integer conic problems can be solved either as a nonlinear problem with the
interior point algorithm (default) or with a linear outer approximation algorithm. The type of relaxation
used can be set with iparam.mio_conic_outer_approximation . The best value for this option is highly
problem dependent.

13.4.4 Randomization
A number of internal algorithms of the mixed-integer solver are dependend on random tie-breaking. The
random tie-breaking can have a significant impact on the path taken by the algorithm and the optimal
solution returned. The random seed can be set with the parameter iparam.mio_seed .

13.4.5 Termination Criterion
In general, it is time consuming to find an exact feasible and optimal solution to an integer optimization
problem, though in many practical cases it may be possible to find a sufficiently good solution. The issue
of terminating the mixed-integer optimizer is rather delicate and the user has numerous possibilities of
influencing it with various parameters. The mixed-integer optimizer employs a relaxed feasibility and
optimality criterion to determine when a satisfactory solution is located.

A candidate solution that is feasible for the continuous relaxation is said to be an integer feasible
solution if the criterion

min(𝑥𝑗 − ⌊𝑥𝑗⌋, ⌈𝑥𝑗⌉ − 𝑥𝑗) ≤ 𝛿1 ∀𝑗 ∈ 𝒥

is satisfied, meaning that 𝑥𝑗 is at most 𝛿1 from the nearest integer.
Whenever the integer optimizer locates an integer feasible solution it will check if the criterion

𝑧 − 𝑧 ≤ max(𝛿2, 𝛿3 max(𝛿4, |𝑧|))

is satisfied. If this is the case, the integer optimizer terminates and reports the integer feasible solution
as an optimal solution.

All the 𝛿 tolerances discussed above can be adjusted using suitable parameters — see Table 13.3.

Table 13.3: Tolerances for the mixed-integer optimizer.
Tolerance Parameter name
𝛿1 dparam.mio_tol_abs_relax_int
𝛿2 dparam.mio_tol_abs_gap
𝛿3 dparam.mio_tol_rel_gap
𝛿4 dparam.mio_rel_gap_const

In Table 13.4 some other common parameters affecting the integer optimizer termination criterion
are shown.

Table 13.4: Other parameters affecting the integer optimizer ter-
mination criterion.

Parameter name Explanation
iparam.mio_max_num_branches Maximum number of branches allowed.
iparam.mio_max_num_relaxs Maximum number of relaxations allowed.
iparam.mio_max_num_solutions Maximum number of feasible integer solutions allowed.

13.4.6 Speeding Up the Solution Process
As mentioned previously, in many cases it is not possible to find an optimal solution to an integer
optimization problem in a reasonable amount of time. Some suggestions to reduce the solution time are:

• Relax the termination criterion: In case the run time is not acceptable, the first thing to do is to
relax the termination criterion — see Sec. 13.4.5 for details.

159

• Specify a good initial solution: In many cases a good feasible solution is either known or easily
computed using problem-specific knowledge. If a good feasible solution is known, it is usually
worthwhile to use this as a starting point for the integer optimizer. See Sec. 6.7.2.

• Improve the formulation: A mixed-integer optimization problem may be impossible to solve in one
form and quite easy in another form. However, it is beyond the scope of this manual to discuss good
formulations for mixed-integer problems. For discussions on this topic see for example [Wol98] .

13.4.7 Understanding Solution Quality
To determine the quality of the solution one should check the following:

• The problem status and solution status returned by MOSEK, as well as constraint violations in
case of suboptimal solutions.

• The optimality gap defined as

𝜖 = |(objective value of feasible solution) − (objective bound)| = |𝑧 − 𝑧|.

which measures how much the located solution can deviate from the optimal solution to
the problem. The optimality gap can be retrieved through the information item dinfitem.
mio_obj_abs_gap . Often it is more meaningful to look at the relative optimality gap normalized
against the magnitude of the solution.

𝜖rel =
|𝑧 − 𝑧|

max(𝛿4, |𝑧|)
.

The relative optimality gap is available in the information item dinfitem.mio_obj_rel_gap .

13.4.8 The Mixed-integer Log
Below is a typical log output from the mixed-integer optimizer:

Presolved problem: 6573 variables, 35728 constraints, 101258 non-zeros
Presolved problem: 0 general integer, 4294 binary, 2279 continuous
Clique table size: 1636
BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_OBJ BEST_RELAX_OBJ REL_GAP(%) TIME
0 1 0 0 NA 1.8218819866e+07 NA 1.6
0 1 0 0 1.8331557950e+07 1.8218819866e+07 0.61 3.5
0 1 0 0 1.8300507546e+07 1.8218819866e+07 0.45 4.3
Cut generation started.
0 2 0 0 1.8300507546e+07 1.8218819866e+07 0.45 5.3
Cut generation terminated. Time = 1.43
0 3 0 0 1.8286893047e+07 1.8231580587e+07 0.30 7.5
15 18 1 0 1.8286893047e+07 1.8231580587e+07 0.30 10.5
31 34 1 0 1.8286893047e+07 1.8231580587e+07 0.30 11.1
51 54 1 0 1.8286893047e+07 1.8231580587e+07 0.30 11.6
91 94 1 0 1.8286893047e+07 1.8231580587e+07 0.30 12.4
171 174 1 0 1.8286893047e+07 1.8231580587e+07 0.30 14.3
331 334 1 0 1.8286893047e+07 1.8231580587e+07 0.30 17.9

[...]

Objective of best integer solution : 1.825846762609e+07
Best objective bound : 1.823311032986e+07
Construct solution objective : Not employed
Construct solution # roundings : 0
User objective cut value : 0
Number of cuts generated : 117

Number of Gomory cuts : 108
Number of CMIR cuts : 9

(continues on next page)

160

(continued from previous page)

Number of branches : 4425
Number of relaxations solved : 4410
Number of interior point iterations: 25
Number of simplex iterations : 221131

The first lines contain a summary of the problem as seen by the optimizer. This is followed by the
iteration log. The columns have the following meaning:

• BRANCHES: Number of branches generated.

• RELAXS: Number of relaxations solved.

• ACT_NDS: Number of active branch bound nodes.

• DEPTH: Depth of the recently solved node.

• BEST_INT_OBJ: The best integer objective value, 𝑧.

• BEST_RELAX_OBJ: The best objective bound, 𝑧.

• REL_GAP(%): Relative optimality gap, 100% · 𝜖rel

• TIME: Time (in seconds) from the start of optimization.

Following that a summary of the optimization process is printed.

161

Chapter 14

Additional features

In this section we describe additional features and tools which enable more detailed analysis of optimiza-
tion problems with MOSEK.

14.1 Problem Analyzer

The problem analyzer prints a survey of the structure of the problem, with information about linear
constraints and objective, quadratic constraints, conic constraints and variables.

In the initial stages of model formulation the problem analyzer may be used as a quick way of
verifying that the model has been built or imported correctly. In later stages it can help revealing special
structures within the model that may be used to tune the optimizer’s performance or to identify the
causes of numerical difficulties.

The problem analyzer is run using Task.analyzeproblem . It prints its output to a log stream. The
output is similar to the one below (this is the problem survey of the aflow30a problem from the MIPLIB
2003 collection).

Analyzing the problem

*** Structural report
Dimensions
Constraints Variables Matrix var. Cones
479 842 0 0

Constraint and bound types
Free Lower Upper Ranged Fixed

Constraints: 0 0 421 0 58
Variables: 0 0 0 842 0

Integer constraint types
Binary General
421 0

*** Data report
Nonzeros Min Max

|cj|: 421 1.1e+01 5.0e+02
|Aij|: 2091 1.0e+00 1.0e+02

finite Min Max
|blci|: 58 1.0e+00 1.0e+01
|buci|: 479 0.0e+00 1.0e+01
|blxj|: 842 0.0e+00 0.0e+00
|buxj|: 842 1.0e+00 1.0e+02

*** Done analyzing the problem

The survey is divided into a structural and numerical report. The content should be self-explanatory.

162

14.2 Automatic Repair of Infeasible Problems

MOSEK provides an automatic repair tool for infeasible linear problems which we cover in this section.
Note that most infeasible models are so due to bugs which can (and should) be more reliably fixed
manually, using the knowledge of the model structure. We discuss this approach in Sec. 8.3.

14.2.1 Automatic repair
The main idea can be described as follows. Consider the linear optimization problem with 𝑚 constraints
and 𝑛 variables

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

which is assumed to be infeasible.
One way of making the problem feasible is to reduce the lower bounds and increase the upper bounds.

If the change is sufficiently large the problem becomes feasible. Now an obvious idea is to compute the
optimal relaxation by solving an optimization problem. The problem

minimize 𝑝(𝑣𝑐𝑙 , 𝑣
𝑐
𝑢, 𝑣

𝑥
𝑙 , 𝑣

𝑥
𝑢)

subject to 𝑙𝑐 − 𝑣𝑐𝑙 ≤ 𝐴𝑥 ≤ 𝑢𝑐 + 𝑣𝑐𝑢,
𝑙𝑥 − 𝑣𝑥𝑙 ≤ 𝑥 ≤ 𝑢𝑥 + 𝑣𝑥𝑢,

𝑣𝑐𝑙 , 𝑣
𝑐
𝑢, 𝑣

𝑥
𝑙 , 𝑣

𝑥
𝑢 ≥ 0

(14.1)

does exactly that. The additional variables (𝑣𝑐𝑙)𝑖, (𝑣𝑐𝑢)𝑖, (𝑣𝑥𝑙)𝑗 and (𝑣𝑐𝑢)𝑗 are elasticity variables because
they allow a constraint to be violated and hence add some elasticity to the problem. For instance, the
elasticity variable (𝑣𝑐𝑙)𝑖 controls how much the lower bound (𝑙𝑐)𝑖 should be relaxed to make the problem
feasible. Finally, the so-called penalty function

𝑝(𝑣𝑐𝑙 , 𝑣
𝑐
𝑢, 𝑣

𝑥
𝑙 , 𝑣

𝑥
𝑢)

is chosen so it penalizes changes to bounds. Given the weights

• 𝑤𝑐
𝑙 ∈ R𝑚 (associated with 𝑙𝑐),

• 𝑤𝑐
𝑢 ∈ R𝑚 (associated with 𝑢𝑐),

• 𝑤𝑥
𝑙 ∈ R𝑛 (associated with 𝑙𝑥),

• 𝑤𝑥
𝑢 ∈ R𝑛 (associated with 𝑢𝑥),

a natural choice is

𝑝(𝑣𝑐𝑙 , 𝑣
𝑐
𝑢, 𝑣

𝑥
𝑙 , 𝑣

𝑥
𝑢) = (𝑤𝑐

𝑙)
𝑇 𝑣𝑐𝑙 + (𝑤𝑐

𝑢)𝑇 𝑣𝑐𝑢 + (𝑤𝑥
𝑙)𝑇 𝑣𝑥𝑙 + (𝑤𝑥

𝑢)𝑇 𝑣𝑥𝑢.

Hence, the penalty function 𝑝() is a weighted sum of the elasticity variables and therefore the problem
(14.1) keeps the amount of relaxation at a minimum. Please observe that

• the problem (14.1) is always feasible.

• a negative weight implies problem (14.1) is unbounded. For this reason if the value of a weight is
negative MOSEK fixes the associated elasticity variable to zero. Clearly, if one or more of the
weights are negative, it may imply that it is not possible to repair the problem.

A simple choice of weights is to set them all to 1, but of course that does not take into account that
constraints may have different importance.

163

Caveats

Observe if the infeasible problem

minimize 𝑥 + 𝑧
subject to 𝑥 = −1,

𝑥 ≥ 0

is repaired then it will become unbounded. Hence, a repaired problem may not have an optimal solution.
Another and more important caveat is that only a minimal repair is performed i.e. the repair that

barely makes the problem feasible. Hence, the repaired problem is barely feasible and that sometimes
makes the repaired problem hard to solve.

Using the automatic repair tool

In this subsection we consider an infeasible linear optimization example:

minimize −10𝑥1 −9𝑥2,
subject to 7/10𝑥1 + 1𝑥2 ≤ 630,

1/2𝑥1 + 5/6𝑥2 ≤ 600,
1𝑥1 + 2/3𝑥2 ≤ 708,

1/10𝑥1 + 1/4𝑥2 ≤ 135,
𝑥1, 𝑥2 ≥ 0,

𝑥2 ≥ 650.

(14.2)

The function Task.primalrepair can be used to repair an infeasible problem. This can be used for
linear and conic optimization problems, possibly with integer variables.

Listing 14.1: An example of feasibility repair applied to problem
(14.2).

import sys
import mosek

Since the actual value of Infinity is ignores, we define it solely
for symbolic purposes:
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main(inputfile):
Make a MOSEK environment
with mosek.Env() as env:

with env.Task(0, 0) as task:
Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

Read data
task.readdata(inputfile)

task.putintparam(mosek.iparam.log_feas_repair, 3)

task.primalrepair(None, None, None, None)

sum_viol = task.getdouinf(mosek.dinfitem.primal_repair_penalty_obj)
print("Minimized sum of violations = %e" % sum_viol)

task.optimize()
(continues on next page)

164

(continued from previous page)

task.solutionsummary(mosek.streamtype.msg)

call the main function
try:

filename = "../data/feasrepair.lp"
if len(sys.argv) > 1:

filename = sys.argv[1]
main(filename)

except Exception as e:
print(e)
raise

The above code will produce the following log report:

MOSEK Version 9.0.0.25(ALPHA) (Build date: 2017-11-7 16:11:50)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86

Open file 'feasrepair.lp'
Reading started.
Reading terminated. Time: 0.00

Read summary
Type : LO (linear optimization problem)
Objective sense : min
Scalar variables : 2
Matrix variables : 0
Constraints : 4
Cones : 0
Time : 0.0

Problem
Name :
Objective sense : min
Type : LO (linear optimization problem)
Constraints : 4
Cones : 0
Scalar variables : 2
Matrix variables : 0
Integer variables : 0

Primal feasibility repair started.
Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 2
Eliminator terminated.
Eliminator - tries : 1 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem

Name :
Objective sense : min
Type : LO (linear optimization problem)
Constraints : 8
Cones : 0
Scalar variables : 14
Matrix variables : 0

(continues on next page)

165

(continued from previous page)

Integer variables : 0

Optimizer - threads : 20
Optimizer - solved problem : the primal
Optimizer - Constraints : 2
Optimizer - Cones : 0
Optimizer - Scalar variables : 5 conic : 0
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 3 after factor : 3
Factor - dense dim. : 0 flops : 5.00e+01
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 2.7e+01 1.0e+00 4.0e+00 1.00e+00 3.000000000e+00 0.000000000e+00 1.0e+00 0.00
1 2.5e+01 9.1e-01 1.4e+00 0.00e+00 8.711262850e+00 1.115287830e+01 2.4e+00 0.00
2 2.4e+00 8.8e-02 1.4e-01 -7.33e-01 4.062505701e+01 4.422203730e+01 2.3e-01 0.00
3 9.4e-02 3.4e-03 5.5e-03 1.33e+00 4.250700434e+01 4.258548510e+01 9.1e-03 0.00
4 2.0e-05 7.2e-07 1.1e-06 1.02e+00 4.249996599e+01 4.249998669e+01 1.9e-06 0.00
5 2.0e-09 7.2e-11 1.1e-10 1.00e+00 4.250000000e+01 4.250000000e+01 1.9e-10 0.00
Basis identification started.
Basis identification terminated. Time: 0.00
Optimizer terminated. Time: 0.01

Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 4.2500000000e+01 nrm: 6e+02 Viol. con: 1e-13 var: 0e+00
Dual. obj: 4.2499999999e+01 nrm: 2e+00 Viol. con: 0e+00 var: 9e-11

Optimal objective value of the penalty problem: 4.250000000000e+01

Repairing bounds.
Increasing the upper bound 1.35e+02 on constraint 'c4' (3) with 2.25e+01.
Decreasing the lower bound 6.50e+02 on variable 'x2' (4) with 2.00e+01.
Primal feasibility repair terminated.
Optimizer started.
Optimizer terminated. Time: 0.00

Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -5.6700000000e+03 nrm: 6e+02 Viol. con: 0e+00 var: 0e+00
Dual. obj: -5.6700000000e+03 nrm: 1e+01 Viol. con: 0e+00 var: 0e+00

Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -5.6700000000e+03 nrm: 6e+02 Viol. con: 0e+00 var: 0e+00
Dual. obj: -5.6700000000e+03 nrm: 1e+01 Viol. con: 0e+00 var: 0e+00

Optimizer summary
Optimizer - time: 0.00

Interior-point - iterations : 0 time: 0.00
Basis identification - time: 0.00

Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00

Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00

(continues on next page)

166

(continued from previous page)

Mixed integer - relaxations: 0 time: 0.00

It will also modify the task according to the optimal elasticity variables found. In this case the
optimal repair it is to increase the upper bound on constraint c4 by 22.5 and decrease the lower bound
on variable x2 by 20.

14.3 Sensitivity Analysis

Given an optimization problem it is often useful to obtain information about how the optimal objective
value changes when the problem parameters are perturbed. E.g, assume that a bound represents the
capacity of a machine. Now, it may be possible to expand the capacity for a certain cost and hence it is
worthwhile knowing what the value of additional capacity is. This is precisely the type of questions the
sensitivity analysis deals with.

Analyzing how the optimal objective value changes when the problem data is changed is called
sensitivity analysis.

References

The book [Chv83] discusses the classical sensitivity analysis in Chapter 10 whereas the book [RTV97]
presents a modern introduction to sensitivity analysis. Finally, it is recommended to read the short paper
[Wal00] to avoid some of the pitfalls associated with sensitivity analysis.

Warning: Currently, sensitivity analysis is only available for continuous linear optimization
problems. Moreover, MOSEK can only deal with perturbations of bounds and objective function
coefficients.

14.3.1 Sensitivity Analysis for Linear Problems

The Optimal Objective Value Function

Assume that we are given the problem

𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥, 𝑐) = minimize 𝑐𝑇𝑥
subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,
(14.3)

and we want to know how the optimal objective value changes as 𝑙𝑐𝑖 is perturbed. To answer this question
we define the perturbed problem for 𝑙𝑐𝑖 as follows

𝑓𝑙𝑐𝑖 (𝛽) = minimize 𝑐𝑇𝑥
subject to 𝑙𝑐 + 𝛽𝑒𝑖 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

where 𝑒𝑖 is the 𝑖-th column of the identity matrix. The function

𝑓𝑙𝑐𝑖 (𝛽) (14.4)

shows the optimal objective value as a function of 𝛽. Please note that a change in 𝛽 corresponds to a
perturbation in 𝑙𝑐𝑖 and hence (14.4) shows the optimal objective value as a function of varying 𝑙𝑐𝑖 with
the other bounds fixed.

It is possible to prove that the function (14.4) is a piecewise linear and convex function, i.e. its graph
may look like in Fig. 14.1 and Fig. 14.2.

Clearly, if the function 𝑓𝑙𝑐𝑖 (𝛽) does not change much when 𝛽 is changed, then we can conclude that
the optimal objective value is insensitive to changes in 𝑙𝑐𝑖 . Therefore, we are interested in the rate of
change in 𝑓𝑙𝑐𝑖 (𝛽) for small changes in 𝛽 — specifically the gradient

𝑓 ′
𝑙𝑐𝑖

(0),

167

f()β

0 ββ β1 2

Fig. 14.1: 𝛽 = 0 is in the interior of linearity interval.

f()β

0 βββ 21

Fig. 14.2: 𝛽 = 0 is a breakpoint.

168

which is called the shadow price related to 𝑙𝑐𝑖 . The shadow price specifies how the objective value changes
for small changes of 𝛽 around zero. Moreover, we are interested in the linearity interval

𝛽 ∈ [𝛽1, 𝛽2]

for which

𝑓 ′
𝑙𝑐𝑖

(𝛽) = 𝑓 ′
𝑙𝑐𝑖

(0).

Since 𝑓𝑙𝑐𝑖 is not a smooth function 𝑓 ′
𝑙𝑐𝑖

may not be defined at 0, as illustrated in Fig. 14.2. In this case
we can define a left and a right shadow price and a left and a right linearity interval.

The function 𝑓𝑙𝑐𝑖 considered only changes in 𝑙𝑐𝑖 . We can define similar functions for the remaining
parameters of the 𝑧 defined in (14.3) as well:

𝑓𝑙𝑐𝑖 (𝛽) = 𝑧(𝑙𝑐 + 𝛽𝑒𝑖, 𝑢
𝑐, 𝑙𝑥, 𝑢𝑥, 𝑐), 𝑖 = 1, . . . ,𝑚,

𝑓𝑢𝑐
𝑖
(𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐 + 𝛽𝑒𝑖, 𝑙

𝑥, 𝑢𝑥, 𝑐), 𝑖 = 1, . . . ,𝑚,
𝑓𝑙𝑥𝑗 (𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥 + 𝛽𝑒𝑗 , 𝑢

𝑥, 𝑐), 𝑗 = 1, . . . , 𝑛,

𝑓𝑢𝑥
𝑗
(𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥 + 𝛽𝑒𝑗 , 𝑐), 𝑗 = 1, . . . , 𝑛,

𝑓𝑐𝑗 (𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥, 𝑐 + 𝛽𝑒𝑗), 𝑗 = 1, . . . , 𝑛.

Given these definitions it should be clear how linearity intervals and shadow prices are defined for the
parameters 𝑢𝑐

𝑖 etc.

Equality Constraints

In MOSEK a constraint can be specified as either an equality constraint or a ranged constraint. If
some constraint 𝑒𝑐𝑖 is an equality constraint, we define the optimal value function for this constraint as

𝑓𝑒𝑐𝑖 (𝛽) = 𝑧(𝑙𝑐 + 𝛽𝑒𝑖, 𝑢
𝑐 + 𝛽𝑒𝑖, 𝑙

𝑥, 𝑢𝑥, 𝑐)

Thus for an equality constraint the upper and the lower bounds (which are equal) are perturbed simul-
taneously. Therefore, MOSEK will handle sensitivity analysis differently for a ranged constraint with
𝑙𝑐𝑖 = 𝑢𝑐

𝑖 and for an equality constraint.

The Basis Type Sensitivity Analysis

The classical sensitivity analysis discussed in most textbooks about linear optimization, e.g. [Chv83] , is
based on an optimal basis. This method may produce misleading results [RTV97] but is computationally
cheap. This is the type of sensitivity analysis implemented in MOSEK.

We will now briefly discuss the basis type sensitivity analysis. Given an optimal basic solution which
provides a partition of variables into basic and non-basic variables, the basis type sensitivity analysis
computes the linearity interval [𝛽1, 𝛽2] so that the basis remains optimal for the perturbed problem. A
shadow price associated with the linearity interval is also computed. However, it is well-known that an
optimal basic solution may not be unique and therefore the result depends on the optimal basic solution
employed in the sensitivity analysis. If the optimal objective value function has a breakpoint for 𝛽 = 0
then the basis type sensitivity method will only provide a subset of either the left or the right linearity
interval.

In summary, the basis type sensitivity analysis is computationally cheap but does not provide complete
information. Hence, the results of the basis type sensitivity analysis should be used with care.

Example: Sensitivity Analysis

As an example we will use the following transportation problem. Consider the problem of minimizing the
transportation cost between a number of production plants and stores. Each plant supplies a number of
goods and each store has a given demand that must be met. Supply, demand and cost of transportation
per unit are shown in Fig. 14.3.

If we denote the number of transported goods from location 𝑖 to location 𝑗 by 𝑥𝑖𝑗 , problem can be
formulated as the linear optimization problem of minimizing

1𝑥11 + 2𝑥12 + 5𝑥23 + 2𝑥24 + 1𝑥31 + 2𝑥33 + 1𝑥34

169

Supply Demand

1

2

5

2

1

2

1

Plant 1

Plant 2

Plant 3
Store 4

Store 3

Store 2

Store 1

1000

500

500

800

100

400

1200

Fig. 14.3: Supply, demand and cost of transportation.

subject to

𝑥11 + 𝑥12 ≤ 400,
𝑥23 + 𝑥24 ≤ 1200,

𝑥31 + 𝑥33 + 𝑥34 ≤ 1000,
𝑥11 + 𝑥31 = 800,

𝑥12 = 100,
𝑥23 + 𝑥33 = 500,

𝑥24 + 𝑥34 = 500,
𝑥11, 𝑥12, 𝑥23, 𝑥24, 𝑥31, 𝑥33, 𝑥34 ≥ 0.

(14.5)

The sensitivity parameters are shown in Table 14.1 and Table 14.2.

Table 14.1: Ranges and shadow prices related to bounds on con-
straints and variables.

Con. 𝛽1 𝛽2 𝜎1 𝜎2

1 −300.00 0.00 3.00 3.00
2 −700.00 +∞ 0.00 0.00
3 −500.00 0.00 3.00 3.00
4 −0.00 500.00 4.00 4.00
5 −0.00 300.00 5.00 5.00
6 −0.00 700.00 5.00 5.00
7 −500.00 700.00 2.00 2.00
Var. 𝛽1 𝛽2 𝜎1 𝜎2

𝑥11 −∞ 300.00 0.00 0.00
𝑥12 −∞ 100.00 0.00 0.00
𝑥23 −∞ 0.00 0.00 0.00
𝑥24 −∞ 500.00 0.00 0.00
𝑥31 −∞ 500.00 0.00 0.00
𝑥33 −∞ 500.00 0.00 0.00
𝑥34 −0.000000 500.00 2.00 2.00

170

Table 14.2: Ranges and shadow prices related to the objective co-
efficients.

Var. 𝛽1 𝛽2 𝜎1 𝜎2

𝑐1 −∞ 3.00 300.00 300.00
𝑐2 −∞ ∞ 100.00 100.00
𝑐3 −2.00 ∞ 0.00 0.00
𝑐4 −∞ 2.00 500.00 500.00
𝑐5 −3.00 ∞ 500.00 500.00
𝑐6 −∞ 2.00 500.00 500.00
𝑐7 −2.00 ∞ 0.00 0.00

Examining the results from the sensitivity analysis we see that for constraint number 1 we have
𝜎1 = 3 and 𝛽1 = −300, 𝛽2 = 0.

If the upper bound on constraint 1 is decreased by

𝛽 ∈ [0, 300]

then the optimal objective value will increase by the value

𝜎1𝛽 = 3𝛽.

14.3.2 Sensitivity Analysis with MOSEK
MOSEK provides the functions Task.primalsensitivity and Task.dualsensitivity for performing
sensitivity analysis. The code in Listing 14.2 gives an example of its use.

Listing 14.2: Example of sensitivity analysis with the MOSEK
Optimizer API for Python.

import sys
import mosek

Since the actual value of Infinity is ignores, we define it solely
for symbolic purposes:
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main():
Create a MOSEK environment
with mosek.Env() as env:

Attach a printer to the environment
env.set_Stream(mosek.streamtype.log, streamprinter)

Create a task
with env.Task(0, 0) as task:

Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

Set up data
bkc = [mosek.boundkey.up, mosek.boundkey.up,

mosek.boundkey.up, mosek.boundkey.fx,
mosek.boundkey.fx, mosek.boundkey.fx,

(continues on next page)

171

(continued from previous page)

mosek.boundkey.fx]
blc = [-inf, -inf, -inf, 800., 100., 500., 500.]
buc = [400., 1200., 1000., 800., 100., 500., 500.]

bkx = [mosek.boundkey.lo, mosek.boundkey.lo,
mosek.boundkey.lo, mosek.boundkey.lo,
mosek.boundkey.lo, mosek.boundkey.lo,
mosek.boundkey.lo]

c = [1.0, 2.0, 5.0, 2.0, 1.0, 2.0, 1.0]
blx = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
bux = [inf, inf, inf, inf, inf, inf, inf]

ptrb = [0, 2, 4, 6, 8, 10, 12]
ptre = [2, 4, 6, 8, 10, 12, 14]
sub = [0, 3, 0, 4, 1, 5, 1, 6, 2, 3, 2, 5, 2, 6]

val = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

numcon = len(bkc)
numvar = len(bkx)
numanz = len(val)

Input linear data
task.inputdata(numcon, numvar,

c, 0.0,
ptrb, ptre, sub, val,
bkc, blc, buc,
bkx, blx, bux)

Set objective sense
task.putobjsense(mosek.objsense.minimize)

Optimize
task.optimize()

Analyze upper bound on c1 and the equality constraint on c4
subi = [0, 3]
marki = [mosek.mark.up, mosek.mark.up]

Analyze lower bound on the variables x12 and x31
subj = [1, 4]
markj = [mosek.mark.lo, mosek.mark.lo]

leftpricei = [0., 0.]
rightpricei = [0., 0.]
leftrangei = [0., 0.]
rightrangei = [0., 0.]
leftpricej = [0., 0.]
rightpricej = [0., 0.]
leftrangej = [0., 0.]
rightrangej = [0., 0.]

task.primalsensitivity(subi,
marki,
subj,
markj,
leftpricei,
rightpricei,
leftrangei,
rightrangei,
leftpricej,

(continues on next page)

172

(continued from previous page)

rightpricej,
leftrangej,
rightrangej)

print('Results from sensitivity analysis on bounds:')
print('\tleftprice | rightprice | leftrange | rightrange ')
print('For constraints:')

for i in range(2):
print('\t%10f %10f %10f %10f' % (leftpricei[i],

rightpricei[i],
leftrangei[i],
rightrangei[i]))

print('For variables:')
for i in range(2):

print('\t%10f %10f %10f %10f' % (leftpricej[i],
rightpricej[i],
leftrangej[i],
rightrangej[i]))

leftprice = [0., 0.]
rightprice = [0., 0.]
leftrange = [0., 0.]
rightrange = [0., 0.]
subc = [2, 5]

task.dualsensitivity(subc,
leftprice,
rightprice,
leftrange,
rightrange)

print('Results from sensitivity analysis on objective coefficients:')

for i in range(2):
print('\t%10f %10f %10f %10f' % (leftprice[i],

rightprice[i],
leftrange[i],
rightrange[i]))

return None

call the main function
try:

main()
except mosek.MosekException as e:

print("ERROR: %s" % str(e.errno))
if e.msg is not None:

print("\t%s" % e.msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

173

Chapter 15

API Reference

This section contains the complete reference of the MOSEK Optimizer API for Python. It is organized
as follows:

• General API conventions.

• Methods:

– Class Env (The MOSEK environment)
– Class Task (An optimization task)
– Browse by topic

• Optimizer parameters:

– Double, Integer , String
– Full list
– Browse by topic

• Optimizer information items:

– Double , Integer , Long

• Optimizer response codes

• Enumerations

• Exceptions

• User-defined function types

• Nonlinear API (SCopt)

15.1 API Conventions

15.1.1 Function arguments

Naming Convention

In the definition of the MOSEK Optimizer API for Python a consistent naming convention has been
used. This implies that whenever for example numcon is an argument in a function definition it indicates
the number of constraints. In Table 15.1 the variable names used to specify the problem parameters are
listed.

174

Table 15.1: Naming conventions used in the MOSEK Optimizer
API for Python.

API name API type Dimension Related problem parameter
numcon int 𝑚
numvar int 𝑛
numcone int 𝑡
aptrb int[] numvar 𝑎𝑖𝑗
aptre int[] numvar 𝑎𝑖𝑗
asub int[] aptre[numvar-1] 𝑎𝑖𝑗
aval float[] aptre[numvar-1] 𝑎𝑖𝑗
c float[] numvar 𝑐𝑗
cfix float 𝑐𝑓

blc float[] numcon 𝑙𝑐𝑘
buc float[] numcon 𝑢𝑐

𝑘

blx float[] numvar 𝑙𝑥𝑘
bux float[] numvar 𝑢𝑥

𝑘

numqonz int 𝑞𝑜𝑖𝑗
qosubi int[] numqonz 𝑞𝑜𝑖𝑗
qosubj int[] numqonz 𝑞𝑜𝑖𝑗
qoval float[] numqonz 𝑞𝑜𝑖𝑗
numqcnz int 𝑞𝑘𝑖𝑗
qcsubk int[] numqcnz 𝑞𝑘𝑖𝑗
qcsubi int[] numqcnz 𝑞𝑘𝑖𝑗
qcsubj int[] numqcnz 𝑞𝑘𝑖𝑗
qcval float[] numqcnz 𝑞𝑘𝑖𝑗
bkc int[] numcon 𝑙𝑐𝑘 and 𝑢𝑐

𝑘

bkx int[] numvar 𝑙𝑥𝑘 and 𝑢𝑥
𝑘

The relation between the variable names and the problem parameters is as follows:

• The quadratic terms in the objective: 𝑞𝑜qosubi[t],qosubj[t] = qoval[t], 𝑡 = 0, . . . , numqonz− 1.

• The linear terms in the objective : 𝑐𝑗 = c[j], 𝑗 = 0, . . . , numvar− 1

• The fixed term in the objective : 𝑐𝑓 = cfix.

• The quadratic terms in the constraints: 𝑞
qcsubk[t]
qcsubi[t],qcsubj[t] = qcval[t], 𝑡 = 0, . . . , numqcnz− 1

• The linear terms in the constraints: 𝑎asub[t],j = aval[t], 𝑡 = ptrb[j], . . . , ptre[j] − 1, 𝑗 =
0, . . . , numvar− 1

Information about input/output arguments

The following are purely informational tags which indicate how MOSEK treats a specific function
argument.

• (input) An input argument. It is used to input data to MOSEK.

• (output) An output argument. It can be a user-preallocated data structure, a reference, a string
buffer etc. where MOSEK will output some data.

• (input/output) An input/output argument. MOSEK will read the data and overwrite it with
new/updated information.

15.1.2 Bounds
The bounds on the constraints and variables are specified using the variables bkc, blc, and buc. The
components of the integer array bkc specify the bound type according to Table 15.2

175

Table 15.2: Symbolic key for variable and constraint bounds.
Symbolic constant Lower bound Upper bound
boundkey.fx finite identical to the lower bound
boundkey.fr minus infinity plus infinity
boundkey.lo finite plus infinity
boundkey.ra finite finite
boundkey.up minus infinity finite

For instance bkc[2]=boundkey.lo means that −∞ < 𝑙𝑐2 and 𝑢𝑐
2 = ∞. Even if a variable or constraint

is bounded only from below, e.g. 𝑥 ≥ 0, both bounds are inputted or extracted; the irrelevant value is
ignored.

Finally, the numerical values of the bounds are given by

𝑙𝑐𝑘 = blc[k], 𝑘 = 0, . . . , numcon− 1

𝑢𝑐
𝑘 = buc[k], 𝑘 = 0, . . . , numcon− 1.

The bounds on the variables are specified using the variables bkx, blx, and bux in the same way. The
numerical values for the lower bounds on the variables are given by

𝑙𝑥𝑗 = blx[j], 𝑗 = 0, . . . , numvar− 1.

𝑢𝑥
𝑗 = bux[j], 𝑗 = 0, . . . , numvar− 1.

15.1.3 Vector Formats
Three different vector formats are used in the MOSEK API:

Full (dense) vector

This is simply an array where the first element corresponds to the first item, the second element to
the second item etc. For example to get the linear coefficients of the objective in task with numvar
variables, one would write

c = zeros(numvar,float)
task.getc(c)

Vector slice

A vector slice is a range of values from first up to and not including last entry in the vector, i.e.
for the set of indices i such that first <= i < last. For example, to get the bounds associated with
constrains 2 through 9 (both inclusive) one would write

upper_bound = zeros(8,float)
lower_bound = zeros(8,float)
bound_key = array([0] * 8)

task.getconboundslice(2, 10,
bound_key,lower_bound,upper_bound)

Sparse vector

A sparse vector is given as an array of indexes and an array of values. The indexes need not be
ordered. For example, to input a set of bounds associated with constraints number 1, 6, 3, and 9, one
might write

176

bound_index = [1, 6, 3, 9]
bound_key = [boundkey.fr,boundkey.lo,boundkey.up,boundkey.fx]
lower_bound = [0.0, -10.0, 0.0, 5.0]
upper_bound = [0.0, 0.0, 6.0, 5.0]
task.putconboundlist(bound_index,

bound_key,lower_bound,upper_bound)

15.1.4 Matrix Formats
The coefficient matrices in a problem are inputted and extracted in a sparse format. That means only
the nonzero entries are listed.

Unordered Triplets

In unordered triplet format each entry is defined as a row index, a column index and a coefficient. For
example, to input the 𝐴 matrix coefficients for 𝑎1,2 = 1.1, 𝑎3,3 = 4.3 , and 𝑎5,4 = 0.2 , one would write
as follows:

subi = array([1, 3, 5])
subj = array([2, 3, 4])
cof = array([1.1, 4.3, 0.2])
task.putaijlist(subi,subj,cof)

Please note that in some cases (like Task.putaijlist) only the specified indexes are modified — all
other are unchanged. In other cases (such as Task.putqconk) the triplet format is used to modify all
entries — entries that are not specified are set to 0.

Column or Row Ordered Sparse Matrix

In a sparse matrix format only the non-zero entries of the matrix are stored. MOSEK uses a sparse
packed matrix format ordered either by columns or rows. Here we describe the column-wise format. The
row-wise format is based on the same principle.

Column ordered sparse format

A sparse matrix in column ordered format is essentially a list of all non-zero entries read column by
column from left to right and from top to bottom within each column. The exact representation uses
four arrays:

• asub: Array of size equal to the number of nonzeros. List of row indexes.

• aval: Array of size equal to the number of nonzeros. List of non-zero entries of 𝐴 ordered by
columns.

• ptrb: Array of size numcol, where ptrb[j] is the position of the first value/index in aval/ asub
for the 𝑗-th column.

• ptre: Array of size numcol, where ptre[j] is the position of the last value/index plus one in aval
/ asub for the 𝑗-th column.

With this representation the values of a matrix 𝐴 with numcol columns are assigned using:

𝑎asub[𝑘],𝑗 = aval[𝑘] for 𝑗 = 0, . . . , numcol− 1, 𝑘 = ptrb[𝑗], . . . , ptre[𝑗] − 1.

As an example consider the matrix

𝐴 =

⎡⎢⎢⎣
1.1 1.3 1.4

2.2 2.5
3.1 3.4

4.4

⎤⎥⎥⎦ (15.1)

177

which can be represented in the column ordered sparse matrix format as

ptrb = [0, 2, 3, 5, 7],
ptre = [2, 3, 5, 7, 8],
asub = [0, 2, 1, 0, 3, 0, 2, 1],
aval = [1.1, 3.1, 2.2, 1.3, 4.4, 1.4, 3.4, 2.5].

Fig. 15.1 illustrates how the matrix 𝐴 in (15.1) is represented in column ordered sparse matrix format.

ptrb

ptre

asub

aval

0 2 3 5

2 3 5 7

0 2 1 0 3 0 1 2

1.1 3.1 2.2 1.3 4.4 1.4 3.4 2.5

Column 0 Column 1

Fig. 15.1: The matrix 𝐴 (15.1) represented in column ordered packed sparse matrix format.

Column ordered sparse format with nonzeros

Note that nzc[j] := ptre[j]-ptrb[j] is exactly the number of nonzero elements in the 𝑗-th column
of 𝐴. In some functions a sparse matrix will be represented using the equivalent dataset asub, aval,
ptrb, nzc. The matrix 𝐴 (15.1) would now be represented as:

ptrb = [0, 2, 3, 5, 7],
nzc = [2, 1, 2, 2, 1],
asub = [0, 2, 1, 0, 3, 0, 2, 1],
aval = [1.1, 3.1, 2.2, 1.3, 4.4, 1.4, 3.4, 2.5].

Row ordered sparse matrix

The matrix 𝐴 (15.1) can also be represented in the row ordered sparse matrix format as:

ptrb = [0, 3, 5, 7],
ptre = [3, 5, 7, 8],
asub = [0, 2, 3, 1, 4, 0, 3, 2],
aval = [1.1, 1.3, 1.4, 2.2, 2.5, 3.1, 3.4, 4.4].

15.2 Functions grouped by topic

Callback

• Task.set_InfoCallback – Receive callbacks with solver status and information during optimiza-
tion.

• Task.set_Progress – Receive callbacks about current status of the solver during optimization.

• Task.set_Stream – Directs all output from a task stream to a callback function.

• Infrequent: Env.set_Stream

178

Environment and task management

• Env.Env – Constructor of a new environment.

• Task.Task – Constructor of a new optimization task.

• Env.Task – Creates a new task.

• Task.puttaskname – Assigns a new name to the task.

• Infrequent: Task.__del__ , Env.__del__ , Task.commitchanges , Task.deletesolution , Task.
putmaxnumanz , Task.putmaxnumbarvar , Task.putmaxnumcon , Task.putmaxnumcone , Task.
putmaxnumqnz , Task.putmaxnumvar , Task.resizetask

Infeasibility diagnostic

• Task.getinfeasiblesubproblem – Obtains an infeasible subproblem.

• Task.primalrepair – Repairs a primal infeasible optimization problem by adjusting the bounds
on the constraints and variables.

Information items and statistics

• Task.getdouinf – Obtains a double information item.

• Task.getintinf – Obtains an integer information item.

• Task.getlintinf – Obtains a long integer information item.

• Task.updatesolutioninfo – Update the information items related to the solution.

Input/Output

• Task.writedata – Writes problem data to a file.

• Task.writesolution – Write a solution to a file.

• Infrequent: Task.readdata , Task.readdataformat , Task.readjsonstring , Task.
readlpstring , Task.readopfstring , Task.readparamfile , Task.readptfstring ,
Task.readsolution , Task.readsummary , Task.readtask , Task.writejsonsol , Task.
writeparamfile , Task.writetask

Inspecting the task

• Task.analyzeproblem – Analyze the data of a task.

• Task.getnumcon – Obtains the number of constraints.

• Task.getnumcone – Obtains the number of cones.

• Task.getnumvar – Obtains the number of variables.

• Infrequent: Task.analyzesolution , Task.getacol , Task.getacolnumnz , Task.getacolslice ,
Task.getacolslicenumnz , Task.getacolslicetrip , Task.getaij , Task.getapiecenumnz ,
Task.getarow , Task.getarownumnz , Task.getarowslice , Task.getarowslicenumnz , Task.
getarowslicetrip , Task.getbarablocktriplet , Task.getbaraidx , Task.getbaraidxij ,
Task.getbaraidxinfo , Task.getbarasparsity , Task.getbarcblocktriplet , Task.
getbarcidx , Task.getbarcidxinfo , Task.getbarcidxj , Task.getbarcsparsity , Task.
getbarvarname , Task.getbarvarnameindex , Task.getbarvarnamelen , Task.getc , Task.
getcfix , Task.getcj , Task.getclist , Task.getconbound , Task.getconboundslice ,

179

Task.getcone , Task.getconeinfo , Task.getconename , Task.getconenameindex , Task.
getconenamelen , Task.getconname , Task.getconnameindex , Task.getconnamelen ,
Task.getcslice , Task.getdimbarvarj , Task.getlenbarvarj , Task.getmaxnumanz , Task.
getmaxnumbarvar , Task.getmaxnumcon , Task.getmaxnumcone , Task.getmaxnumqnz , Task.
getmaxnumvar , Task.getnumanz , Task.getnumanz64 , Task.getnumbarablocktriplets , Task.
getnumbaranz , Task.getnumbarcblocktriplets , Task.getnumbarcnz , Task.getnumbarvar ,
Task.getnumconemem , Task.getnumintvar , Task.getnumparam , Task.getnumqconknz ,
Task.getnumqobjnz , Task.getnumsymmat , Task.getobjname , Task.getobjnamelen , Task.
getprobtype , Task.getqconk , Task.getqobj , Task.getqobjij , Task.getsparsesymmat ,
Task.getsymmatinfo , Task.gettaskname , Task.gettasknamelen , Task.getvarbound , Task.
getvarboundslice , Task.getvarname , Task.getvarnameindex , Task.getvarnamelen , Task.
getvartype , Task.getvartypelist , Task.readsummary

License system

• Env.checkoutlicense – Check out a license feature from the license server ahead of time.

• Env.putlicensedebug – Enables debug information for the license system.

• Env.putlicensepath – Set the path to the license file.

• Env.putlicensewait – Control whether mosek should wait for an available license if no license is
available.

• Infrequent: Env.checkinall , Env.checkinlicense , Env.licensecleanup , Env.
putlicensecode

Linear algebra

• Infrequent: Env.axpy , Env.computesparsecholesky , Env.dot , Env.gemm , Env.gemv , Env.
potrf , Env.sparsetriangularsolvedense , Env.syeig , Env.syevd , Env.syrk

Logging

• Task.linkfiletostream – Directs all output from a task stream to a file.

• Task.onesolutionsummary – Prints a short summary of a specified solution.

• Task.optimizersummary – Prints a short summary with optimizer statistics from last optimiza-
tion.

• Task.set_Stream – Directs all output from a task stream to a callback function.

• Task.solutionsummary – Prints a short summary of the current solutions.

• Infrequent: Env.echointro , Env.linkfiletostream , Env.set_Stream

Names

• Env.getcodedesc – Obtains a short description of a response code.

• Task.putbarvarname – Sets the name of a semidefinite variable.

• Task.putconename – Sets the name of a cone.

• Task.putconname – Sets the name of a constraint.

• Task.putobjname – Assigns a new name to the objective.

• Task.puttaskname – Assigns a new name to the task.

180

• Task.putvarname – Sets the name of a variable.

• Infrequent: Task.analyzenames , Task.generateconenames , Task.generateconnames ,
Task.generatevarnames , Task.getbarvarname , Task.getbarvarnameindex , Task.
getbarvarnamelen , Task.getconename , Task.getconenameindex , Task.getconenamelen ,
Task.getconname , Task.getconnameindex , Task.getconnamelen , Task.getobjname ,
Task.getobjnamelen , Task.getstrparam , Task.getstrparamlen , Task.gettaskname ,
Task.gettasknamelen , Task.getvarname , Task.getvarnameindex , Task.getvarnamelen ,
Task.isdouparname , Task.isintparname , Task.isstrparname , Task.strtoconetype , Task.
strtosk

Optimization

• Task.optimize – Optimizes the problem.

Parameters

• Task.putdouparam – Sets a double parameter.

• Task.putintparam – Sets an integer parameter.

• Task.putparam – Modifies the value of parameter.

• Task.putstrparam – Sets a string parameter.

• Task.setdefaults – Resets all parameter values.

• Infrequent: Task.getatruncatetol , Task.getdouparam , Task.getintparam , Task.
getnumparam , Task.getstrparam , Task.getstrparamlen , Task.isdouparname , Task.
isintparname , Task.isstrparname , Task.putnadouparam , Task.putnaintparam , Task.
putnastrparam , Task.readparamfile , Task.writeparamfile

Problem data - bounds

• Task.putconbound – Changes the bound for one constraint.

• Task.putconboundslice – Changes the bounds for a slice of the constraints.

• Task.putvarbound – Changes the bounds for one variable.

• Task.putvarboundslice – Changes the bounds for a slice of the variables.

• Infrequent: Task.chgconbound , Task.chgvarbound , Task.getconbound , Task.
getconboundslice , Task.getvarbound , Task.getvarboundslice , Task.inputdata , Task.
putconboundlist , Task.putconboundlistconst , Task.putconboundsliceconst , Task.
putvarboundlist , Task.putvarboundlistconst , Task.putvarboundsliceconst

Problem data - cones

• Task.appendcone – Appends a new conic constraint to the problem.

• Task.appendconesseq – Appends multiple conic constraints to the problem.

• Task.getnumcone – Obtains the number of cones.

• Task.putcone – Replaces a conic constraint.

• Task.putconename – Sets the name of a cone.

• Task.removecones – Removes a number of conic constraints from the problem.

• Infrequent: Task.appendconeseq , Task.generateconenames , Task.getcone , Task.
getconeinfo , Task.getconename , Task.getconenameindex , Task.getconenamelen , Task.
getmaxnumcone , Task.getnumconemem , Task.putmaxnumcone

181

Problem data - constraints

• Task.appendcons – Appends a number of constraints to the optimization task.

• Task.getnumcon – Obtains the number of constraints.

• Task.putconbound – Changes the bound for one constraint.

• Task.putconboundslice – Changes the bounds for a slice of the constraints.

• Task.putconname – Sets the name of a constraint.

• Task.removecons – Removes a number of constraints.

• Infrequent: Task.chgconbound , Task.generateconnames , Task.getconbound , Task.
getconboundslice , Task.getconname , Task.getconnameindex , Task.getconnamelen ,
Task.getmaxnumcon , Task.getnumqconknz , Task.getqconk , Task.inputdata , Task.
putconboundlist , Task.putconboundlistconst , Task.putconboundsliceconst , Task.
putmaxnumcon

Problem data - linear part

• Task.appendcons – Appends a number of constraints to the optimization task.

• Task.appendvars – Appends a number of variables to the optimization task.

• Task.getnumcon – Obtains the number of constraints.

• Task.putacol – Replaces all elements in one column of the linear constraint matrix.

• Task.putacolslice – Replaces all elements in a sequence of columns the linear constraint matrix.

• Task.putaij – Changes a single value in the linear coefficient matrix.

• Task.putaijlist – Changes one or more coefficients in the linear constraint matrix.

• Task.putarow – Replaces all elements in one row of the linear constraint matrix.

• Task.putarowslice – Replaces all elements in several rows the linear constraint matrix.

• Task.putcfix – Replaces the fixed term in the objective.

• Task.putcj – Modifies one linear coefficient in the objective.

• Task.putconbound – Changes the bound for one constraint.

• Task.putconboundslice – Changes the bounds for a slice of the constraints.

• Task.putconname – Sets the name of a constraint.

• Task.putcslice – Modifies a slice of the linear objective coefficients.

• Task.putobjname – Assigns a new name to the objective.

• Task.putobjsense – Sets the objective sense.

• Task.putvarbound – Changes the bounds for one variable.

• Task.putvarboundslice – Changes the bounds for a slice of the variables.

• Task.putvarname – Sets the name of a variable.

• Task.removecons – Removes a number of constraints.

• Task.removevars – Removes a number of variables.

182

• Infrequent: Task.chgconbound , Task.chgvarbound , Task.generateconnames , Task.
generatevarnames , Task.getacol , Task.getacolnumnz , Task.getacolslice , Task.
getacolslicenumnz , Task.getacolslicetrip , Task.getaij , Task.getapiecenumnz ,
Task.getarow , Task.getarownumnz , Task.getarowslice , Task.getarowslicenumnz , Task.
getarowslicetrip , Task.getatruncatetol , Task.getc , Task.getcfix , Task.getcj ,
Task.getclist , Task.getconbound , Task.getconboundslice , Task.getconname , Task.
getconnameindex , Task.getconnamelen , Task.getcslice , Task.getmaxnumanz , Task.
getmaxnumcon , Task.getmaxnumvar , Task.getnumanz , Task.getnumanz64 , Task.getobjsense ,
Task.getvarbound , Task.getvarboundslice , Task.getvarname , Task.getvarnameindex ,
Task.getvarnamelen , Task.inputdata , Task.putacollist , Task.putarowlist , Task.
putatruncatetol , Task.putclist , Task.putconboundlist , Task.putconboundlistconst ,
Task.putconboundsliceconst , Task.putvarboundlist , Task.putvarboundlistconst , Task.
putvarboundsliceconst

Problem data - objective

• Task.putbarcj – Changes one element in barc.

• Task.putcfix – Replaces the fixed term in the objective.

• Task.putcj – Modifies one linear coefficient in the objective.

• Task.putcslice – Modifies a slice of the linear objective coefficients.

• Task.putobjname – Assigns a new name to the objective.

• Task.putobjsense – Sets the objective sense.

• Task.putqobj – Replaces all quadratic terms in the objective.

• Task.putqobjij – Replaces one coefficient in the quadratic term in the objective.

• Infrequent: Task.putclist

Problem data - quadratic part

• Task.putqcon – Replaces all quadratic terms in constraints.

• Task.putqconk – Replaces all quadratic terms in a single constraint.

• Task.putqobj – Replaces all quadratic terms in the objective.

• Task.putqobjij – Replaces one coefficient in the quadratic term in the objective.

• Infrequent: Task.getmaxnumqnz , Task.getnumqconknz , Task.getnumqobjnz , Task.getqconk ,
Task.getqobj , Task.getqobjij , Task.putmaxnumqnz , Task.toconic

Problem data - semidefinite

• Task.appendbarvars – Appends semidefinite variables to the problem.

• Task.appendsparsesymmat – Appends a general sparse symmetric matrix to the storage of sym-
metric matrices.

• Task.appendsparsesymmatlist – Appends a general sparse symmetric matrix to the storage of
symmetric matrices.

• Task.putbaraij – Inputs an element of barA.

• Task.putbaraijlist – Inputs list of elements of barA.

• Task.putbararowlist – Replace a set of rows of barA

183

• Task.putbarcj – Changes one element in barc.

• Task.putbarvarname – Sets the name of a semidefinite variable.

• Infrequent: Task.getbarablocktriplet , Task.getbaraidx , Task.getbaraidxij , Task.
getbaraidxinfo , Task.getbarasparsity , Task.getbarcblocktriplet , Task.getbarcidx ,
Task.getbarcidxinfo , Task.getbarcidxj , Task.getbarcsparsity , Task.getdimbarvarj ,
Task.getlenbarvarj , Task.getmaxnumbarvar , Task.getnumbarablocktriplets ,
Task.getnumbaranz , Task.getnumbarcblocktriplets , Task.getnumbarcnz , Task.
getnumbarvar , Task.getnumsymmat , Task.getsparsesymmat , Task.getsymmatinfo ,
Task.putbarablocktriplet , Task.putbarcblocktriplet , Task.putmaxnumanz , Task.
putmaxnumbarvar , Task.removebarvars

Problem data - variables

• Task.appendvars – Appends a number of variables to the optimization task.

• Task.getnumvar – Obtains the number of variables.

• Task.putvarbound – Changes the bounds for one variable.

• Task.putvarboundslice – Changes the bounds for a slice of the variables.

• Task.putvarname – Sets the name of a variable.

• Task.putvartype – Sets the variable type of one variable.

• Task.removevars – Removes a number of variables.

• Infrequent: Task.chgvarbound , Task.generatevarnames , Task.getc , Task.getcj , Task.
getmaxnumvar , Task.getnumintvar , Task.getvarbound , Task.getvarboundslice , Task.
getvarname , Task.getvarnameindex , Task.getvarnamelen , Task.getvartype , Task.
getvartypelist , Task.putclist , Task.putmaxnumvar , Task.putvarboundlist , Task.
putvarboundlistconst , Task.putvarboundsliceconst , Task.putvartypelist

Remote optimization

• Task.asyncgetresult – Request a response from a remote job.

• Task.asyncoptimize – Offload the optimization task to a solver server.

• Task.asyncpoll – Requests information about the status of the remote job.

• Task.asyncstop – Request that the job identified by the token is terminated.

• Task.optimizermt – Offload the optimization task to a solver server.

• Task.putoptserverhost – Specify an OptServer for remote calls.

Responses, errors and warnings

• Env.getcodedesc – Obtains a short description of a response code.

Sensitivity analysis

• Task.dualsensitivity – Performs sensitivity analysis on objective coefficients.

• Task.primalsensitivity – Perform sensitivity analysis on bounds.

• Task.sensitivityreport – Creates a sensitivity report.

184

Solution - dual

• Task.getdualobj – Computes the dual objective value associated with the solution.

• Task.gety – Obtains the y vector for a solution.

• Task.getyslice – Obtains a slice of the y vector for a solution.

• Infrequent: Task.getreducedcosts , Task.getslc , Task.getslcslice , Task.getslx , Task.
getslxslice , Task.getsnx , Task.getsnxslice , Task.getsolution , Task.getsolutionslice ,
Task.getsuc , Task.getsucslice , Task.getsux , Task.getsuxslice , Task.putconsolutioni ,
Task.putslc , Task.putslcslice , Task.putslx , Task.putslxslice , Task.putsnx , Task.
putsnxslice , Task.putsolution , Task.putsolutionyi , Task.putsuc , Task.putsucslice ,
Task.putsux , Task.putsuxslice , Task.putvarsolutionj , Task.putyslice

Solution - primal

• Task.getprimalobj – Computes the primal objective value for the desired solution.

• Task.getxx – Obtains the xx vector for a solution.

• Task.getxxslice – Obtains a slice of the xx vector for a solution.

• Task.putxx – Sets the xx vector for a solution.

• Task.putxxslice – Sets a slice of the xx vector for a solution.

• Infrequent: Task.getsolution , Task.getsolutionslice , Task.getxc , Task.getxcslice ,
Task.putconsolutioni , Task.putsolution , Task.putvarsolutionj , Task.putxc , Task.
putxcslice , Task.puty

Solution - semidefinite

• Task.getbarsj – Obtains the dual solution for a semidefinite variable.

• Task.getbarsslice – Obtains the dual solution for a sequence of semidefinite variables.

• Task.getbarxj – Obtains the primal solution for a semidefinite variable.

• Task.getbarxslice – Obtains the primal solution for a sequence of semidefinite variables.

• Infrequent: Task.putbarsj , Task.putbarxj

Solution information

• Task.getdualobj – Computes the dual objective value associated with the solution.

• Task.getprimalobj – Computes the primal objective value for the desired solution.

• Task.getprosta – Obtains the problem status.

• Task.getpviolcon – Computes the violation of a primal solution associated to a constraint.

• Task.getpviolvar – Computes the violation of a primal solution for a list of scalar variables.

• Task.getsolsta – Obtains the solution status.

• Task.getsolutioninfo – Obtains information about of a solution.

• Task.onesolutionsummary – Prints a short summary of a specified solution.

• Task.solutiondef – Checks whether a solution is defined.

• Task.solutionsummary – Prints a short summary of the current solutions.

185

• Infrequent: Task.analyzesolution , Task.deletesolution , Task.getdualsolutionnorms ,
Task.getdviolbarvar , Task.getdviolcon , Task.getdviolcones , Task.getdviolvar , Task.
getprimalsolutionnorms , Task.getpviolbarvar , Task.getpviolcones , Task.getskc , Task.
getskcslice , Task.getskn , Task.getskx , Task.getskxslice , Task.getsolution , Task.
getsolutionslice , Task.putconsolutioni , Task.putskc , Task.putskcslice , Task.putskx ,
Task.putskxslice , Task.putsolution , Task.putsolutionyi , Task.putvarsolutionj

Solving systems with basis matrix

• Infrequent: Task.basiscond , Task.initbasissolve , Task.solvewithbasis

System, memory and debugging

• Infrequent: Task.checkmem , Task.getmemusage , Env.setupthreads

Versions

• Env.getversion – Obtains MOSEK version information.

15.3 Class Env
mosek.Env

The MOSEK global environment.
Env.Env

Env(licensefile=None, debugfile=None)

Constructor of a new environment.

Parameters
• licensefile (str) – License file to use. (input)
• debugfile (str) – File where the memory debugging log is written. (input)

Env.Task

def Task (numcon, numvar) -> task

def Task () -> task

Creates a new task.

Parameters
• numcon (int) – An optional hint about the maximal number of constraints in

the task. (input)
• numvar (int) – An optional hint about the maximal number of variables in the

task. (input)
Return task (Task) – A new task.

Env.__del__

def __del__ ()

Free the underlying native allocation.

186

Env.axpy

def axpy (n, alpha, x, y)

Adds 𝛼𝑥 to 𝑦, i.e. performs the update

𝑦 := 𝛼𝑥 + 𝑦.

Note that the result is stored overwriting 𝑦.

Parameters
• n (int) – Length of the vectors. (input)
• alpha (float) – The scalar that multiplies 𝑥. (input)
• x (float[]) – The 𝑥 vector. (input)
• y (float[]) – The 𝑦 vector. (input/output)

Groups Linear algebra

Env.checkinall

def checkinall ()

Check in all unused license features to the license token server.

Groups License system

Env.checkinlicense

def checkinlicense (feature)

Check in a license feature to the license server. By default all licenses consumed by functions using
a single environment are kept checked out for the lifetime of the MOSEK environment. This
function checks in a given license feature back to the license server immediately.

If the given license feature is not checked out at all, or it is in use by a call to Task.optimize ,
calling this function has no effect.

Please note that returning a license to the license server incurs a small overhead, so frequent calls
to this function should be avoided.

Parameters feature (mosek.feature) – Feature to check in to the license system.
(input)

Groups License system

Env.checkoutlicense

def checkoutlicense (feature)

Checks out a license feature from the license server. Normally the required license features will be
automatically checked out the first time they are needed by the function Task.optimize . This
function can be used to check out one or more features ahead of time.

The feature will remain checked out until the environment is deleted or the function Env.
checkinlicense is called.

If a given feature is already checked out when this function is called, the call has no effect.

Parameters feature (mosek.feature) – Feature to check out from the license system.
(input)

Groups License system

187

Env.computesparsecholesky

def computesparsecholesky (multithread, ordermethod, tolsingular, anzc, aptrc, asubc,␣
→˓avalc) -> perm, diag, lnzc, lptrc, lensubnval, lsubc, lvalc

The function computes a Cholesky factorization of a sparse positive semidefinite matrix. Sparsity
is exploited during the computations to reduce the amount of space and work required. Both the
input and output matrices are represented using the sparse format.
To be precise, given a symmetric matrix 𝐴 ∈ R𝑛×𝑛 the function computes a nonsingular lower
triangular matrix 𝐿, a diagonal matrix 𝐷 and a permutation matrix 𝑃 such that

𝐿𝐿𝑇 −𝐷 = 𝑃𝐴𝑃𝑇 .

If ordermethod is zero then reordering heuristics are not employed and 𝑃 is the identity.
If a pivot during the computation of the Cholesky factorization is less than

−𝜌 · max((𝑃𝐴𝑃𝑇)𝑗𝑗 , 1.0)

then the matrix is declared negative semidefinite. On the hand if a pivot is smaller than

𝜌 · max((𝑃𝐴𝑃𝑇)𝑗𝑗 , 1.0),

then 𝐷𝑗𝑗 is increased from zero to

𝜌 · max((𝑃𝐴𝑃𝑇)𝑗𝑗 , 1.0).

Therefore, if 𝐴 is sufficiently positive definite then 𝐷 will be the zero matrix. Here 𝜌 is set equal
to value of tolsingular.

Parameters
• multithread (int) – If nonzero then the function may exploit multiple threads.

(input)
• ordermethod (int) – If nonzero, then a sparsity preserving ordering will be

employed. (input)
• tolsingular (float) – A positive parameter controlling when a pivot is declared

zero. (input)
• anzc (int[]) – anzc[j] is the number of nonzeros in the 𝑗-th column of 𝐴.

(input)
• aptrc (int[]) – aptrc[j] is a pointer to the first element in column 𝑗 of 𝐴.

(input)
• asubc (int[]) – Row indexes for each column stored in increasing order. (input)
• avalc (float[]) – The value corresponding to row indexed stored in asubc.

(input)
Return

• perm (int[]) – Permutation array used to specify the permutation matrix 𝑃
computed by the function.

• diag (float[]) – The diagonal elements of matrix 𝐷.
• lnzc (int[]) – lnzc[j] is the number of non zero elements in column 𝑗 of 𝐿.
• lptrc (int[]) – lptrc[j] is a pointer to the first row index and value in column
𝑗 of 𝐿.

• lensubnval (int) – Number of elements in lsubc and lvalc.
• lsubc (int[]) – Row indexes for each column stored in increasing order.
• lvalc (float[]) – The values corresponding to row indexed stored in lsubc.

Groups Linear algebra

Env.dot

188

def dot (n, x, y) -> xty

Computes the inner product of two vectors 𝑥, 𝑦 of length 𝑛 ≥ 0, i.e

𝑥 · 𝑦 =

𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖.

Note that if 𝑛 = 0, then the result of the operation is 0.

Parameters
• n (int) – Length of the vectors. (input)
• x (float[]) – The 𝑥 vector. (input)
• y (float[]) – The 𝑦 vector. (input)

Return xty (float) – The result of the inner product between 𝑥 and 𝑦.
Groups Linear algebra

Env.echointro

def echointro (longver)

Prints an intro to message stream.

Parameters longver (int) – If non-zero, then the intro is slightly longer. (input)
Groups Logging

Env.gemm

def gemm (transa, transb, m, n, k, alpha, a, b, beta, c)

Performs a matrix multiplication plus addition of dense matrices. Given 𝐴, 𝐵 and 𝐶 of compatible
dimensions, this function computes

𝐶 := 𝛼𝑜𝑝(𝐴)𝑜𝑝(𝐵) + 𝛽𝐶

where 𝛼, 𝛽 are two scalar values. The function 𝑜𝑝(𝑋) denotes 𝑋 if transX is transpose.no , or
𝑋𝑇 if set to transpose.yes . The matrix 𝐶 has 𝑚 rows and 𝑛 columns, and the other matrices
must have compatible dimensions.

The result of this operation is stored in 𝐶.

Parameters
• transa (mosek.transpose) – Indicates whether the matrix 𝐴 must be trans-

posed. (input)
• transb (mosek.transpose) – Indicates whether the matrix 𝐵 must be trans-

posed. (input)
• m (int) – Indicates the number of rows of matrix 𝐶. (input)
• n (int) – Indicates the number of columns of matrix 𝐶. (input)
• k (int) – Specifies the common dimension along which 𝑜𝑝(𝐴) and 𝑜𝑝(𝐵) are

multiplied. For example, if neither 𝐴 nor 𝐵 are transposed, then this is the
number of columns in 𝐴 and also the number of rows in 𝐵. (input)

• alpha (float) – A scalar value multiplying the result of the matrix multiplica-
tion. (input)

• a (float[]) – The pointer to the array storing matrix 𝐴 in a column-major
format. (input)

• b (float[]) – The pointer to the array storing matrix 𝐵 in a column-major
format. (input)

• beta (float) – A scalar value that multiplies 𝐶. (input)

189

• c (float[]) – The pointer to the array storing matrix 𝐶 in a column-major
format. (input/output)

Groups Linear algebra

Env.gemv

def gemv (transa, m, n, alpha, a, x, beta, y)

Computes the multiplication of a scaled dense matrix times a dense vector, plus a scaled dense
vector. Precisely, if trans is transpose.no then the update is

𝑦 := 𝛼𝐴𝑥 + 𝛽𝑦,

and if trans is transpose.yes then

𝑦 := 𝛼𝐴𝑇𝑥 + 𝛽𝑦,

where 𝛼, 𝛽 are scalar values and 𝐴 is a matrix with 𝑚 rows and 𝑛 columns.

Note that the result is stored overwriting 𝑦.

Parameters
• transa (mosek.transpose) – Indicates whether the matrix 𝐴 must be trans-

posed. (input)
• m (int) – Specifies the number of rows of the matrix 𝐴. (input)
• n (int) – Specifies the number of columns of the matrix 𝐴. (input)
• alpha (float) – A scalar value multiplying the matrix 𝐴. (input)
• a (float[]) – A pointer to the array storing matrix 𝐴 in a column-major format.

(input)
• x (float[]) – A pointer to the array storing the vector 𝑥. (input)
• beta (float) – A scalar value multiplying the vector 𝑦. (input)
• y (float[]) – A pointer to the array storing the vector 𝑦. (input/output)

Groups Linear algebra

Env.getcodedesc

@staticmethod
def getcodedesc (code) -> symname, str

Obtains a short description of the meaning of the response code given by code.

Parameters code (mosek.rescode) – A valid MOSEK response code. (input)
Return

• symname (str) – Symbolic name corresponding to code.
• str (str) – Obtains a short description of a response code.

Groups Names, Responses, errors and warnings

Env.getversion

@staticmethod
def getversion () -> major, minor, revision

Obtains MOSEK version information.

Return
• major (int) – Major version number.
• minor (int) – Minor version number.

190

• revision (int) – Revision number.
Groups Versions

Env.licensecleanup

@staticmethod
def licensecleanup ()

Stops all threads and deletes all handles used by the license system. If this function is called, it
must be called as the last MOSEK API call. No other MOSEK API calls are valid after this.

Groups License system

Env.linkfiletostream

def linkfiletostream (whichstream, filename, append)

Sends all output from the stream defined by whichstream to the file given by filename.

Parameters
• whichstream (mosek.streamtype) – Index of the stream. (input)
• filename (str) – A valid file name. (input)
• append (int) – If this argument is 0 the file will be overwritten, otherwise it will

be appended to. (input)
Groups Logging

Env.potrf

def potrf (uplo, n, a)

Computes a Cholesky factorization of a real symmetric positive definite dense matrix.

Parameters
• uplo (mosek.uplo) – Indicates whether the upper or lower triangular part of

the matrix is stored. (input)
• n (int) – Dimension of the symmetric matrix. (input)
• a (float[]) – A symmetric matrix stored in column-major order. Only the lower

or the upper triangular part is used, accordingly with the uplo parameter. It
will contain the result on exit. (input/output)

Groups Linear algebra

Env.putlicensecode

def putlicensecode (code)

Input a runtime license code.

Parameters code (int[]) – A runtime license code. (input)
Groups License system

Env.putlicensedebug

def putlicensedebug (licdebug)

Enables debug information for the license system. If licdebug is non-zero, then MOSEK will
print debug info regarding the license checkout.

191

Parameters licdebug (int) – Whether license checkout debug info should be printed.
(input)

Groups License system

Env.putlicensepath

def putlicensepath (licensepath)

Set the path to the license file.

Parameters licensepath (str) – A path specifying where to search for the license.
(input)

Groups License system

Env.putlicensewait

def putlicensewait (licwait)

Control whether MOSEK should wait for an available license if no license is available. If licwait
is non-zero, then MOSEK will wait for licwait-1 milliseconds between each check for an available
license.

Parameters licwait (int) – Whether MOSEK should wait for a license if no license
is available. (input)

Groups License system

Env.set_Stream

def set_Stream (whichstream, callback)

Directs all output from a environment stream to a callback function.

Parameters
• whichstream (streamtype) – Index of the stream. (input)
• callback (streamfunc) – The callback function. (input)

Env.setupthreads

def setupthreads (numthreads)

Preallocates a thread pool for the interior-point and conic optimizers in the current process. This
function should only be called once per process, before first optimization. Future settings of the
parameter iparam.num_threads will be irrelevant for the conic optimizer.

Parameters numthreads (int) – Number of threads. (input)
Groups System, memory and debugging

Env.sparsetriangularsolvedense

def sparsetriangularsolvedense (transposed, lnzc, lptrc, lsubc, lvalc, b)

The function solves a triangular system of the form

𝐿𝑥 = 𝑏

or

𝐿𝑇𝑥 = 𝑏

where 𝐿 is a sparse lower triangular nonsingular matrix. This implies in particular that diagonals
in 𝐿 are nonzero.

192

Parameters
• transposed (mosek.transpose) – Controls whether to use with 𝐿 or 𝐿𝑇 . (in-

put)
• lnzc (int[]) – lnzc[j] is the number of nonzeros in column j. (input)
• lptrc (int[]) – lptrc[j] is a pointer to the first row index and value in column
j. (input)

• lsubc (int[]) – Row indexes for each column stored sequentially. Must be
stored in increasing order for each column. (input)

• lvalc (float[]) – The value corresponding to the row index stored in lsubc.
(input)

• b (float[]) – The right-hand side of linear equation system to be solved as a
dense vector. (input/output)

Groups Linear algebra

Env.syeig

def syeig (uplo, n, a, w)

Computes all eigenvalues of a real symmetric matrix 𝐴. Given a matrix 𝐴 ∈ R𝑛×𝑛 it returns a
vector 𝑤 ∈ R𝑛 containing the eigenvalues of 𝐴.

Parameters
• uplo (mosek.uplo) – Indicates whether the upper or lower triangular part is

used. (input)
• n (int) – Dimension of the symmetric input matrix. (input)
• a (float[]) – A symmetric matrix 𝐴 stored in column-major order. Only the

part indicated by uplo is used. (input)
• w (float[]) – Array of length at least n containing the eigenvalues of 𝐴. (output)

Groups Linear algebra

Env.syevd

def syevd (uplo, n, a, w)

Computes all the eigenvalues and eigenvectors a real symmetric matrix. Given the input matrix
𝐴 ∈ R𝑛×𝑛, this function returns a vector 𝑤 ∈ R𝑛 containing the eigenvalues of 𝐴 and it also
computes the eigenvectors of 𝐴. Therefore, this function computes the eigenvalue decomposition
of 𝐴 as

𝐴 = 𝑈𝑉 𝑈𝑇 ,

where 𝑉 = diag(𝑤) and 𝑈 contains the eigenvectors of 𝐴.

Note that the matrix 𝑈 overwrites the input data 𝐴.

Parameters
• uplo (mosek.uplo) – Indicates whether the upper or lower triangular part is

used. (input)
• n (int) – Dimension of the symmetric input matrix. (input)
• a (float[]) – A symmetric matrix 𝐴 stored in column-major order. Only the

part indicated by uplo is used. On exit it will be overwritten by the matrix 𝑈 .
(input/output)

• w (float[]) – Array of length at least n containing the eigenvalues of 𝐴. (output)
Groups Linear algebra

Env.syrk

193

def syrk (uplo, trans, n, k, alpha, a, beta, c)

Performs a symmetric rank-𝑘 update for a symmetric matrix.
Given a symmetric matrix 𝐶 ∈ R𝑛×𝑛, two scalars 𝛼, 𝛽 and a matrix 𝐴 of rank 𝑘 ≤ 𝑛, it computes
either

𝐶 := 𝛼𝐴𝐴𝑇 + 𝛽𝐶,

when trans is set to transpose.no and 𝐴 ∈ R𝑛×𝑘, or

𝐶 := 𝛼𝐴𝑇𝐴 + 𝛽𝐶,

when trans is set to transpose.yes and 𝐴 ∈ R𝑘×𝑛.
Only the part of 𝐶 indicated by uplo is used and only that part is updated with the result.

Parameters
• uplo (mosek.uplo) – Indicates whether the upper or lower triangular part of 𝐶

is used. (input)
• trans (mosek.transpose) – Indicates whether the matrix 𝐴 must be transposed.

(input)
• n (int) – Specifies the order of 𝐶. (input)
• k (int) – Indicates the number of rows or columns of 𝐴, depending on whether

or not it is transposed, and its rank. (input)
• alpha (float) – A scalar value multiplying the result of the matrix multiplica-

tion. (input)
• a (float[]) – The pointer to the array storing matrix 𝐴 in a column-major

format. (input)
• beta (float) – A scalar value that multiplies 𝐶. (input)
• c (float[]) – The pointer to the array storing matrix 𝐶 in a column-major

format. (input/output)
Groups Linear algebra

15.4 Class Task
mosek.Task

Represents an optimization task.
Task.Task

Task(env)

Task(env, numcon, numvar)

Task(other)

Constructor of a new optimization task.

Parameters
• env (Env) – Parent environment. (input)
• numcon (int) – An optional hint about the maximal number of constraints in

the task. (input)
• numvar (int) – An optional hint about the maximal number of variables in the

task. (input)
• other (Task) – A task that will be cloned. (input)

Task.__del__

194

def __del__ ()

Free the underlying native allocation.
Task.analyzenames

def analyzenames (whichstream, nametype)

The function analyzes the names and issues an error if a name is invalid.

Parameters
• whichstream (mosek.streamtype) – Index of the stream. (input)
• nametype (mosek.nametype) – The type of names e.g. valid in MPS or LP files.

(input)
Groups Names

Task.analyzeproblem

def analyzeproblem (whichstream)

The function analyzes the data of a task and writes out a report.

Parameters whichstream (mosek.streamtype) – Index of the stream. (input)
Groups Inspecting the task

Task.analyzesolution

def analyzesolution (whichstream, whichsol)

Print information related to the quality of the solution and other solution statistics.

By default this function prints information about the largest infeasibilites in the solution, the
primal (and possibly dual) objective value and the solution status.

Following parameters can be used to configure the printed statistics:

• iparam.ana_sol_basis enables or disables printing of statistics specific to the basis solution
(condition number, number of basic variables etc.). Default is on.

• iparam.ana_sol_print_violated enables or disables listing names of all constraints (both
primal and dual) which are violated by the solution. Default is off.

• dparam.ana_sol_infeas_tol is the tolerance defining when a constraint is considered vio-
lated. If a constraint is violated more than this, it will be listed in the summary.

Parameters
• whichstream (mosek.streamtype) – Index of the stream. (input)
• whichsol (mosek.soltype) – Selects a solution. (input)

Groups Solution information, Inspecting the task

Task.appendbarvars

def appendbarvars (dim)

Appends positive semidefinite matrix variables of dimensions given by dim to the problem.

Parameters dim (int[]) – Dimensions of symmetric matrix variables to be added.
(input)

Groups Problem data - semidefinite

Task.appendcone

195

def appendcone (ct, conepar, submem)

Appends a new conic constraint to the problem. Hence, add a constraint

�̂� ∈ 𝒦

to the problem, where 𝒦 is a convex cone. �̂� is a subset of the variables which will be specified by
the argument submem. Cone type is specified by ct.
Define

�̂� = 𝑥submem[0], . . . , 𝑥submem[nummem−1].

Depending on the value of ct this function appends one of the constraints:

• Quadratic cone (conetype.quad , requires nummem ≥ 1):

�̂�0 ≥

⎯⎸⎸⎷𝑖<nummem∑︁
𝑖=1

�̂�2
𝑖

• Rotated quadratic cone (conetype.rquad , requires nummem ≥ 2):

2�̂�0�̂�1 ≥
𝑖<nummem∑︁

𝑖=2

�̂�2
𝑖 , �̂�0, �̂�1 ≥ 0

• Primal exponential cone (conetype.pexp , requires nummem = 3):

�̂�0 ≥ �̂�1 exp(�̂�2/�̂�1), �̂�0, �̂�1 ≥ 0

• Primal power cone (conetype.ppow , requires nummem ≥ 2):

�̂�𝛼
0 �̂�

1−𝛼
1 ≥

⎯⎸⎸⎷𝑖<nummem∑︁
𝑖=2

�̂�2
𝑖 , �̂�0, �̂�1 ≥ 0

where 𝛼 is the cone parameter specified by conepar.
• Dual exponential cone (conetype.dexp , requires nummem = 3):

�̂�0 ≥ −�̂�2𝑒
−1 exp(�̂�1/�̂�2), �̂�2 ≤ 0, �̂�0 ≥ 0

• Dual power cone (conetype.dpow , requires nummem ≥ 2):(︂
�̂�0

𝛼

)︂𝛼(︂
�̂�1

1 − 𝛼

)︂1−𝛼

≥

⎯⎸⎸⎷𝑖<nummem∑︁
𝑖=2

�̂�2
𝑖 , �̂�0, �̂�1 ≥ 0

where 𝛼 is the cone parameter specified by conepar.
• Zero cone (conetype.zero):

�̂�𝑖 = 0 for all 𝑖

Please note that the sets of variables appearing in different conic constraints must be disjoint.
For an explained code example see Sec. 6.3, Sec. 6.5 or Sec. 6.4.

Parameters
• ct (mosek.conetype) – Specifies the type of the cone. (input)
• conepar (float) – For the power cone it denotes the exponent alpha. For other

cone types it is unused and can be set to 0. (input)
• submem (int[]) – Variable subscripts of the members in the cone. (input)

Groups Problem data - cones

Task.appendconeseq

196

def appendconeseq (ct, conepar, nummem, j)

Appends a new conic constraint to the problem, as in Task.appendcone . The function assumes
the members of cone are sequential where the first member has index j and the last j+nummem-1.

Parameters
• ct (mosek.conetype) – Specifies the type of the cone. (input)
• conepar (float) – For the power cone it denotes the exponent alpha. For other

cone types it is unused and can be set to 0. (input)
• nummem (int) – Number of member variables in the cone. (input)
• j (int) – Index of the first variable in the conic constraint. (input)

Groups Problem data - cones

Task.appendconesseq

def appendconesseq (ct, conepar, nummem, j)

Appends a number of conic constraints to the problem, as in Task.appendcone . The 𝑘th cone is
assumed to be of dimension nummem[k]. Moreover, it is assumed that the first variable of the first
cone has index 𝑗 and starting from there the sequentially following variables belong to the first
cone, then to the second cone and so on.

Parameters
• ct (mosek.conetype []) – Specifies the type of the cone. (input)
• conepar (float[]) – For the power cone it denotes the exponent alpha. For

other cone types it is unused and can be set to 0. (input)
• nummem (int[]) – Numbers of member variables in the cones. (input)
• j (int) – Index of the first variable in the first cone to be appended. (input)

Groups Problem data - cones

Task.appendcons

def appendcons (num)

Appends a number of constraints to the model. Appended constraints will be declared free. Please
note that MOSEK will automatically expand the problem dimension to accommodate the addi-
tional constraints.

Parameters num (int) – Number of constraints which should be appended. (input)
Groups Problem data - linear part , Problem data - constraints

Task.appendsparsesymmat

def appendsparsesymmat (dim, subi, subj, valij) -> idx

MOSEK maintains a storage of symmetric data matrices that is used to build 𝐶 and 𝐴. The
storage can be thought of as a vector of symmetric matrices denoted 𝐸. Hence, 𝐸𝑖 is a symmetric
matrix of certain dimension.

This function appends a general sparse symmetric matrix on triplet form to the vector 𝐸 of sym-
metric matrices. The vectors subi, subj, and valij contains the row subscripts, column subscripts
and values of each element in the symmetric matrix to be appended. Since the matrix that is ap-
pended is symmetric, only the lower triangular part should be specified. Moreover, duplicates are
not allowed.

Observe the function reports the index (position) of the appended matrix in 𝐸. This index should
be used for later references to the appended matrix.

Parameters

197

• dim (int) – Dimension of the symmetric matrix that is appended. (input)
• subi (int[]) – Row subscript in the triplets. (input)
• subj (int[]) – Column subscripts in the triplets. (input)
• valij (float[]) – Values of each triplet. (input)

Return idx (int) – Unique index assigned to the inputted matrix that can be used for
later reference.

Groups Problem data - semidefinite

Task.appendsparsesymmatlist

def appendsparsesymmatlist (dims, nz, subi, subj, valij, idx)

MOSEK maintains a storage of symmetric data matrices that is used to build 𝐶 and 𝐴. The
storage can be thought of as a vector of symmetric matrices denoted 𝐸. Hence, 𝐸𝑖 is a symmetric
matrix of certain dimension.

This function appends general sparse symmetric matrixes on triplet form to the vector 𝐸 of sym-
metric matrices. The vectors subi, subj, and valij contains the row subscripts, column subscripts
and values of each element in the symmetric matrix to be appended. Since the matrix that is ap-
pended is symmetric, only the lower triangular part should be specified. Moreover, duplicates are
not allowed.

Observe the function reports the index (position) of the appended matrix in 𝐸. This index should
be used for later references to the appended matrix.

Parameters
• dims (int[]) – Dimensions of the symmetric matrixes. (input)
• nz (int[]) – Number of nonzeros for each matrix. (input)
• subi (int[]) – Row subscript in the triplets. (input)
• subj (int[]) – Column subscripts in the triplets. (input)
• valij (float[]) – Values of each triplet. (input)
• idx (int[]) – Unique index assigned to the inputted matrix that can be used

for later reference. (output)
Groups Problem data - semidefinite

Task.appendvars

def appendvars (num)

Appends a number of variables to the model. Appended variables will be fixed at zero. Please note
that MOSEK will automatically expand the problem dimension to accommodate the additional
variables.

Parameters num (int) – Number of variables which should be appended. (input)
Groups Problem data - linear part , Problem data - variables

Task.asyncgetresult

def asyncgetresult (server, port, token) -> respavailable, resp, trm

Request a response from a remote job. If successful, solver response, termination code and solutions
are retrieved.

Parameters
• server (str) – Name or IP address of the solver server. (input)
• port (str) – Network port of the solver service. (input)
• token (str) – The task token. (input)

198

Return
• respavailable (int) – Indicates if a remote response is available. If this is not

true, resp and trm should be ignored.
• resp (mosek.rescode) – Is the response code from the remote solver.
• trm (mosek.rescode) – Is either rescode.ok or a termination response code.

Groups Remote optimization

Task.asyncoptimize

def asyncoptimize (server, port) -> token

Offload the optimization task to a solver server defined by server:port. The call will return
immediately and not wait for the result.

If the string parameter sparam.remote_access_token is not blank, it will be passed to the server
as authentication.

Parameters
• server (str) – Name or IP address of the solver server (input)
• port (str) – Network port of the solver service (input)

Return token (str) – Returns the task token
Groups Remote optimization

Task.asyncpoll

def asyncpoll (server, port, token) -> respavailable, resp, trm

Requests information about the status of the remote job.

Parameters
• server (str) – Name or IP address of the solver server (input)
• port (str) – Network port of the solver service (input)
• token (str) – The task token (input)

Return
• respavailable (int) – Indicates if a remote response is available. If this is not

true, resp and trm should be ignored.
• resp (mosek.rescode) – Is the response code from the remote solver.
• trm (mosek.rescode) – Is either rescode.ok or a termination response code.

Groups Remote optimization

Task.asyncstop

def asyncstop (server, port, token)

Request that the job identified by the token is terminated.

Parameters
• server (str) – Name or IP address of the solver server (input)
• port (str) – Network port of the solver service (input)
• token (str) – The task token (input)

Groups Remote optimization

Task.basiscond

199

def basiscond () -> nrmbasis, nrminvbasis

If a basic solution is available and it defines a nonsingular basis, then this function computes the
1-norm estimate of the basis matrix and a 1-norm estimate for the inverse of the basis matrix. The
1-norm estimates are computed using the method outlined in [Ste98] , pp. 388-391.

By definition the 1-norm condition number of a matrix 𝐵 is defined as

𝜅1(𝐵) := ‖𝐵‖1‖𝐵−1‖1.

Moreover, the larger the condition number is the harder it is to solve linear equation systems
involving 𝐵. Given estimates for ‖𝐵‖1 and ‖𝐵−1‖1 it is also possible to estimate 𝜅1(𝐵).

Return
• nrmbasis (float) – An estimate for the 1-norm of the basis.
• nrminvbasis (float) – An estimate for the 1-norm of the inverse of the basis.

Groups Solving systems with basis matrix

Task.checkmem

def checkmem (file, line)

Checks the memory allocated by the task.

Parameters
• file (str) – File from which the function is called. (input)
• line (int) – Line in the file from which the function is called. (input)

Groups System, memory and debugging

Task.chgconbound

def chgconbound (i, lower, finite, value)

Changes a bound for one constraint.

If lower is non-zero, then the lower bound is changed as follows:

new lower bound =

{︂
−∞, finite = 0,
value otherwise.

Otherwise if lower is zero, then

new upper bound =

{︂
∞, finite = 0,
value otherwise.

Please note that this function automatically updates the bound key for the bound, in particular,
if the lower and upper bounds are identical, the bound key is changed to fixed.

Parameters
• i (int) – Index of the constraint for which the bounds should be changed. (input)
• lower (int) – If non-zero, then the lower bound is changed, otherwise the upper

bound is changed. (input)
• finite (int) – If non-zero, then value is assumed to be finite. (input)
• value (float) – New value for the bound. (input)

Groups Problem data - bounds, Problem data - constraints, Problem data - linear part

Task.chgvarbound

200

def chgvarbound (j, lower, finite, value)

Changes a bound for one variable.

If lower is non-zero, then the lower bound is changed as follows:

new lower bound =

{︂
−∞, finite = 0,
value otherwise.

Otherwise if lower is zero, then

new upper bound =

{︂
∞, finite = 0,
value otherwise.

Please note that this function automatically updates the bound key for the bound, in particular,
if the lower and upper bounds are identical, the bound key is changed to fixed.

Parameters
• j (int) – Index of the variable for which the bounds should be changed. (input)
• lower (int) – If non-zero, then the lower bound is changed, otherwise the upper

bound is changed. (input)
• finite (int) – If non-zero, then value is assumed to be finite. (input)
• value (float) – New value for the bound. (input)

Groups Problem data - bounds, Problem data - variables, Problem data - linear part

Task.commitchanges

def commitchanges ()

Commits all cached problem changes to the task. It is usually not necessary to call this function
explicitly since changes will be committed automatically when required.

Groups Environment and task management

Task.deletesolution

def deletesolution (whichsol)

Undefine a solution and free the memory it uses.

Parameters whichsol (mosek.soltype) – Selects a solution. (input)
Groups Environment and task management , Solution information

Task.dualsensitivity

def dualsensitivity (subj, leftpricej, rightpricej, leftrangej, rightrangej)

Calculates sensitivity information for objective coefficients. The indexes of the coefficients to
analyze are

{subj[𝑖] | 𝑖 = 0, . . . , numj− 1}

The type of sensitivity analysis to perform (basis or optimal partition) is controlled by the param-
eter iparam.sensitivity_type .

For an example, please see Section Example: Sensitivity Analysis.

Parameters
• subj (int[]) – Indexes of objective coefficients to analyze. (input)
• leftpricej (float[]) – leftpricej[𝑗] is the left shadow price for the coefficient

with index subj[j]. (output)

201

• rightpricej (float[]) – rightpricej[𝑗] is the right shadow price for the co-
efficient with index subj[j]. (output)

• leftrangej (float[]) – leftrangej[𝑗] is the left range 𝛽1 for the coefficient
with index subj[j]. (output)

• rightrangej (float[]) – rightrangej[𝑗] is the right range 𝛽2 for the coefficient
with index subj[j]. (output)

Groups Sensitivity analysis

Task.generateconenames

def generateconenames (subk, fmt, dims, sp)

Generates systematic names for cone.

Parameters
• subk (int[]) – Indexes of the cone. (input)
• fmt (str) – The cone name formatting string. (input)
• dims (int[]) – Dimensions in the shape. (input)
• sp (int[]) – Items that should be named. (input)

Groups Names, Problem data - cones

Task.generateconnames

def generateconnames (subi, fmt, dims, sp)

Generates systematic names for constraints.

Parameters
• subi (int[]) – Indexes of the constraints. (input)
• fmt (str) – The constraint name formatting string. (input)
• dims (int[]) – Dimensions in the shape. (input)
• sp (int[]) – Items that should be named. (input)

Groups Names, Problem data - constraints, Problem data - linear part

Task.generatevarnames

def generatevarnames (subj, fmt, dims, sp)

Generates systematic names for variables.

Parameters
• subj (int[]) – Indexes of the variables. (input)
• fmt (str) – The variable name formatting string. (input)
• dims (int[]) – Dimensions in the shape. (input)
• sp (int[]) – Items that should be named. (input)

Groups Names, Problem data - variables, Problem data - linear part

Task.getacol

def getacol (j, subj, valj) -> nzj

Obtains one column of 𝐴 in a sparse format.

Parameters
• j (int) – Index of the column. (input)
• subj (int[]) – Row indices of the non-zeros in the column obtained. (output)

202

• valj (float[]) – Numerical values in the column obtained. (output)
Return nzj (int) – Number of non-zeros in the column obtained.
Groups Problem data - linear part , Inspecting the task

Task.getacolnumnz

def getacolnumnz (i) -> nzj

Obtains the number of non-zero elements in one column of 𝐴.

Parameters i (int) – Index of the column. (input)
Return nzj (int) – Number of non-zeros in the 𝑗-th column of 𝐴.
Groups Problem data - linear part , Inspecting the task

Task.getacolslice

def getacolslice (first, last, ptrb, ptre, sub, val)

Obtains a sequence of columns from 𝐴 in sparse format.

Parameters
• first (int) – Index of the first column in the sequence. (input)
• last (int) – Index of the last column in the sequence plus one. (input)
• ptrb (int[]) – ptrb[t] is an index pointing to the first element in the 𝑡-th

column obtained. (output)
• ptre (int[]) – ptre[t] is an index pointing to the last element plus one in the
𝑡-th column obtained. (output)

• sub (int[]) – Contains the row subscripts. (output)
• val (float[]) – Contains the coefficient values. (output)

Groups Problem data - linear part , Inspecting the task

Task.getacolslicenumnz

def getacolslicenumnz (first, last) -> numnz

Obtains the number of non-zeros in a slice of columns of 𝐴.

Parameters
• first (int) – Index of the first column in the sequence. (input)
• last (int) – Index of the last column plus one in the sequence. (input)

Return numnz (int) – Number of non-zeros in the slice.
Groups Problem data - linear part , Inspecting the task

Task.getacolslicetrip

def getacolslicetrip (first, last, subi, subj, val)

Obtains a sequence of columns from 𝐴 in sparse triplet format. The function returns the content
of all columns whose index j satisfies first <= j < last. The triplets corresponding to nonzero
entries are stored in the arrays subi, subj and val.

Parameters
• first (int) – Index of the first column in the sequence. (input)
• last (int) – Index of the last column in the sequence plus one. (input)
• subi (int[]) – Constraint subscripts. (output)
• subj (int[]) – Column subscripts. (output)

203

• val (float[]) – Values. (output)
Groups Problem data - linear part , Inspecting the task

Task.getaij

def getaij (i, j) -> aij

Obtains a single coefficient in 𝐴.

Parameters
• i (int) – Row index of the coefficient to be returned. (input)
• j (int) – Column index of the coefficient to be returned. (input)

Return aij (float) – The required coefficient 𝑎𝑖,𝑗 .
Groups Problem data - linear part , Inspecting the task

Task.getapiecenumnz

def getapiecenumnz (firsti, lasti, firstj, lastj) -> numnz

Obtains the number non-zeros in a rectangular piece of 𝐴, i.e. the number of elements in the set

{(𝑖, 𝑗) : 𝑎𝑖,𝑗 ̸= 0, firsti ≤ 𝑖 ≤ lasti− 1, firstj ≤ 𝑗 ≤ lastj− 1}

This function is not an efficient way to obtain the number of non-zeros in one row or column. In
that case use the function Task.getarownumnz or Task.getacolnumnz .

Parameters
• firsti (int) – Index of the first row in the rectangular piece. (input)
• lasti (int) – Index of the last row plus one in the rectangular piece. (input)
• firstj (int) – Index of the first column in the rectangular piece. (input)
• lastj (int) – Index of the last column plus one in the rectangular piece. (input)

Return numnz (int) – Number of non-zero 𝐴 elements in the rectangular piece.
Groups Problem data - linear part , Inspecting the task

Task.getarow

def getarow (i, subi, vali) -> nzi

Obtains one row of 𝐴 in a sparse format.

Parameters
• i (int) – Index of the row. (input)
• subi (int[]) – Column indices of the non-zeros in the row obtained. (output)
• vali (float[]) – Numerical values of the row obtained. (output)

Return nzi (int) – Number of non-zeros in the row obtained.
Groups Problem data - linear part , Inspecting the task

Task.getarownumnz

def getarownumnz (i) -> nzi

Obtains the number of non-zero elements in one row of 𝐴.

Parameters i (int) – Index of the row. (input)
Return nzi (int) – Number of non-zeros in the 𝑖-th row of 𝐴.
Groups Problem data - linear part , Inspecting the task

204

Task.getarowslice

def getarowslice (first, last, ptrb, ptre, sub, val)

Obtains a sequence of rows from 𝐴 in sparse format.

Parameters
• first (int) – Index of the first row in the sequence. (input)
• last (int) – Index of the last row in the sequence plus one. (input)
• ptrb (int[]) – ptrb[t] is an index pointing to the first element in the 𝑡-th row

obtained. (output)
• ptre (int[]) – ptre[t] is an index pointing to the last element plus one in the
𝑡-th row obtained. (output)

• sub (int[]) – Contains the column subscripts. (output)
• val (float[]) – Contains the coefficient values. (output)

Groups Problem data - linear part , Inspecting the task

Task.getarowslicenumnz

def getarowslicenumnz (first, last) -> numnz

Obtains the number of non-zeros in a slice of rows of 𝐴.

Parameters
• first (int) – Index of the first row in the sequence. (input)
• last (int) – Index of the last row plus one in the sequence. (input)

Return numnz (int) – Number of non-zeros in the slice.
Groups Problem data - linear part , Inspecting the task

Task.getarowslicetrip

def getarowslicetrip (first, last, subi, subj, val)

Obtains a sequence of rows from 𝐴 in sparse triplet format. The function returns the content of
all rows whose index i satisfies first <= i < last. The triplets corresponding to nonzero entries
are stored in the arrays subi, subj and val.

Parameters
• first (int) – Index of the first row in the sequence. (input)
• last (int) – Index of the last row in the sequence plus one. (input)
• subi (int[]) – Constraint subscripts. (output)
• subj (int[]) – Column subscripts. (output)
• val (float[]) – Values. (output)

Groups Problem data - linear part , Inspecting the task

Task.getatruncatetol

def getatruncatetol (tolzero)

Obtains the tolerance value set with Task.putatruncatetol .

Parameters tolzero (float[]) – All elements |𝑎𝑖,𝑗 | less than this tolerance is truncated
to zero. (output)

Groups Parameters, Problem data - linear part

205

Task.getbarablocktriplet

def getbarablocktriplet (subi, subj, subk, subl, valijkl) -> num

Obtains 𝐴 in block triplet form.

Parameters
• subi (int[]) – Constraint index. (output)
• subj (int[]) – Symmetric matrix variable index. (output)
• subk (int[]) – Block row index. (output)
• subl (int[]) – Block column index. (output)
• valijkl (float[]) – The numerical value associated with each block triplet.

(output)
Return num (int) – Number of elements in the block triplet form.
Groups Problem data - semidefinite, Inspecting the task

Task.getbaraidx

def getbaraidx (idx, sub, weights) -> i, j, num

Obtains information about an element in 𝐴. Since 𝐴 is a sparse matrix of symmetric matrices,
only the nonzero elements in 𝐴 are stored in order to save space. Now 𝐴 is stored vectorized i.e.
as one long vector. This function makes it possible to obtain information such as the row index
and the column index of a particular element of the vectorized form of 𝐴.

Please observe if one element of 𝐴 is inputted multiple times then it may be stored several times
in vectorized form. In that case the element with the highest index is the one that is used.

Parameters
• idx (int) – Position of the element in the vectorized form. (input)
• sub (int[]) – A list indexes of the elements from symmetric matrix storage that

appear in the weighted sum. (output)
• weights (float[]) – The weights associated with each term in the weighted

sum. (output)
Return

• i (int) – Row index of the element at position idx.
• j (int) – Column index of the element at position idx.
• num (int) – Number of terms in weighted sum that forms the element.

Groups Problem data - semidefinite, Inspecting the task

Task.getbaraidxij

def getbaraidxij (idx) -> i, j

Obtains information about an element in 𝐴. Since 𝐴 is a sparse matrix of symmetric matrices,
only the nonzero elements in 𝐴 are stored in order to save space. Now 𝐴 is stored vectorized i.e.
as one long vector. This function makes it possible to obtain information such as the row index
and the column index of a particular element of the vectorized form of 𝐴.

Please note that if one element of 𝐴 is inputted multiple times then it may be stored several times
in vectorized form. In that case the element with the highest index is the one that is used.

Parameters idx (int) – Position of the element in the vectorized form. (input)
Return

• i (int) – Row index of the element at position idx.
• j (int) – Column index of the element at position idx.

Groups Problem data - semidefinite, Inspecting the task

206

Task.getbaraidxinfo

def getbaraidxinfo (idx) -> num

Each nonzero element in 𝐴𝑖𝑗 is formed as a weighted sum of symmetric matrices. Using this
function the number of terms in the weighted sum can be obtained. See description of Task.
appendsparsesymmat for details about the weighted sum.

Parameters idx (int) – The internal position of the element for which information
should be obtained. (input)

Return num (int) – Number of terms in the weighted sum that form the specified
element in 𝐴.

Groups Problem data - semidefinite, Inspecting the task

Task.getbarasparsity

def getbarasparsity (idxij) -> numnz

The matrix 𝐴 is assumed to be a sparse matrix of symmetric matrices. This implies that many of
the elements in 𝐴 are likely to be zero matrices. Therefore, in order to save space, only nonzero
elements in 𝐴 are stored on vectorized form. This function is used to obtain the sparsity pattern
of 𝐴 and the position of each nonzero element in the vectorized form of 𝐴. From the index
detailed information about each nonzero 𝐴𝑖,𝑗 can be obtained using Task.getbaraidxinfo and
Task.getbaraidx .

Parameters idxij (int[]) – Position of each nonzero element in the vectorized form
of 𝐴. (output)

Return numnz (int) – Number of nonzero elements in 𝐴.
Groups Problem data - semidefinite, Inspecting the task

Task.getbarcblocktriplet

def getbarcblocktriplet (subj, subk, subl, valjkl) -> num

Obtains 𝐶 in block triplet form.

Parameters
• subj (int[]) – Symmetric matrix variable index. (output)
• subk (int[]) – Block row index. (output)
• subl (int[]) – Block column index. (output)
• valjkl (float[]) – The numerical value associated with each block triplet.

(output)
Return num (int) – Number of elements in the block triplet form.
Groups Problem data - semidefinite, Inspecting the task

Task.getbarcidx

def getbarcidx (idx, sub, weights) -> j, num

Obtains information about an element in 𝐶.

Parameters
• idx (int) – Index of the element for which information should be obtained.

(input)
• sub (int[]) – Elements appearing the weighted sum. (output)
• weights (float[]) – Weights of terms in the weighted sum. (output)

207

Return
• j (int) – Row index in 𝐶.
• num (int) – Number of terms in the weighted sum.

Groups Problem data - semidefinite, Inspecting the task

Task.getbarcidxinfo

def getbarcidxinfo (idx) -> num

Obtains the number of terms in the weighted sum that forms a particular element in 𝐶.

Parameters idx (int) – Index of the element for which information should be obtained.
The value is an index of a symmetric sparse variable. (input)

Return num (int) – Number of terms that appear in the weighted sum that forms the
requested element.

Groups Problem data - semidefinite, Inspecting the task

Task.getbarcidxj

def getbarcidxj (idx) -> j

Obtains the row index of an element in 𝐶.

Parameters idx (int) – Index of the element for which information should be obtained.
(input)

Return j (int) – Row index in 𝐶.
Groups Problem data - semidefinite, Inspecting the task

Task.getbarcsparsity

def getbarcsparsity (idxj) -> numnz

Internally only the nonzero elements of 𝐶 are stored in a vector. This function is used to obtain the
nonzero elements of 𝐶 and their indexes in the internal vector representation (in idx). From the
index detailed information about each nonzero 𝐶𝑗 can be obtained using Task.getbarcidxinfo
and Task.getbarcidx .

Parameters idxj (int[]) – Internal positions of the nonzeros elements in 𝐶. (output)
Return numnz (int) – Number of nonzero elements in 𝐶.
Groups Problem data - semidefinite, Inspecting the task

Task.getbarsj

def getbarsj (whichsol, j, barsj)

Obtains the dual solution for a semidefinite variable. Only the lower triangular part of 𝑆𝑗 is
returned because the matrix by construction is symmetric. The format is that the columns are
stored sequentially in the natural order.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• j (int) – Index of the semidefinite variable. (input)
• barsj (float[]) – Value of 𝑆𝑗 . (output)

Groups Solution - semidefinite

Task.getbarsslice

208

def getbarsslice (whichsol, first, last, slicesize, barsslice)

Obtains the dual solution for a sequence of semidefinite variables. The format is that matrices are
stored sequentially, and in each matrix the columns are stored as in Task.getbarsj .

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – Index of the first semidefinite variable in the slice. (input)
• last (int) – Index of the last semidefinite variable in the slice plus one. (input)
• slicesize (int) – Denotes the length of the array barsslice. (input)
• barsslice (float[]) – Dual solution values of symmetric matrix variables in

the slice, stored sequentially. (output)
Groups Solution - semidefinite

Task.getbarvarname

def getbarvarname (i) -> name

Obtains the name of a semidefinite variable.

Parameters i (int) – Index of the variable. (input)
Return name (str) – The requested name is copied to this buffer.
Groups Names, Inspecting the task

Task.getbarvarnameindex

def getbarvarnameindex (somename) -> asgn, index

Obtains the index of semidefinite variable from its name.

Parameters somename (str) – The name of the variable. (input)
Return

• asgn (int) – Non-zero if the name somename is assigned to some semidefinite
variable.

• index (int) – The index of a semidefinite variable with the name somename (if
one exists).

Groups Names, Inspecting the task

Task.getbarvarnamelen

def getbarvarnamelen (i) -> len

Obtains the length of the name of a semidefinite variable.

Parameters i (int) – Index of the variable. (input)
Return len (int) – Returns the length of the indicated name.
Groups Names, Inspecting the task

Task.getbarxj

def getbarxj (whichsol, j, barxj)

Obtains the primal solution for a semidefinite variable. Only the lower triangular part of 𝑋𝑗 is
returned because the matrix by construction is symmetric. The format is that the columns are
stored sequentially in the natural order.

Parameters

209

• whichsol (mosek.soltype) – Selects a solution. (input)
• j (int) – Index of the semidefinite variable. (input)
• barxj (float[]) – Value of 𝑋𝑗 . (output)

Groups Solution - semidefinite

Task.getbarxslice

def getbarxslice (whichsol, first, last, slicesize, barxslice)

Obtains the primal solution for a sequence of semidefinite variables. The format is that matrices
are stored sequentially, and in each matrix the columns are stored as in Task.getbarxj .

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – Index of the first semidefinite variable in the slice. (input)
• last (int) – Index of the last semidefinite variable in the slice plus one. (input)
• slicesize (int) – Denotes the length of the array barxslice. (input)
• barxslice (float[]) – Solution values of symmetric matrix variables in the

slice, stored sequentially. (output)
Groups Solution - semidefinite

Task.getc

def getc (c)

Obtains all objective coefficients 𝑐.

Parameters c (float[]) – Linear terms of the objective as a dense vector. The length
is the number of variables. (output)

Groups Problem data - linear part , Inspecting the task , Problem data - variables

Task.getcfix

def getcfix () -> cfix

Obtains the fixed term in the objective.

Return cfix (float) – Fixed term in the objective.
Groups Problem data - linear part , Inspecting the task

Task.getcj

def getcj (j) -> cj

Obtains one coefficient of 𝑐.

Parameters j (int) – Index of the variable for which the 𝑐 coefficient should be ob-
tained. (input)

Return cj (float) – The value of 𝑐𝑗 .
Groups Problem data - linear part , Inspecting the task , Problem data - variables

Task.getclist

def getclist (subj, c)

Obtains a sequence of elements in 𝑐.

210

Parameters
• subj (int[]) – A list of variable indexes. (input)
• c (float[]) – Linear terms of the requested list of the objective as a dense

vector. (output)
Groups Inspecting the task , Problem data - linear part

Task.getconbound

def getconbound (i) -> bk, bl, bu

Obtains bound information for one constraint.

Parameters i (int) – Index of the constraint for which the bound information should
be obtained. (input)

Return
• bk (mosek.boundkey) – Bound keys.
• bl (float) – Values for lower bounds.
• bu (float) – Values for upper bounds.

Groups Problem data - linear part , Inspecting the task , Problem data - bounds, Problem
data - constraints

Task.getconboundslice

def getconboundslice (first, last, bk, bl, bu)

Obtains bounds information for a slice of the constraints.

Parameters
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• bk (mosek.boundkey []) – Bound keys. (output)
• bl (float[]) – Values for lower bounds. (output)
• bu (float[]) – Values for upper bounds. (output)

Groups Problem data - linear part , Inspecting the task , Problem data - bounds, Problem
data - constraints

Task.getcone

def getcone (k, submem) -> ct, conepar, nummem

Obtains a cone.

Parameters
• k (int) – Index of the cone. (input)
• submem (int[]) – Variable subscripts of the members in the cone. (output)

Return
• ct (mosek.conetype) – Specifies the type of the cone.
• conepar (float) – For the power cone it denotes the exponent alpha. For other

cone types it is unused and can be set to 0.
• nummem (int) – Number of member variables in the cone.

Groups Inspecting the task , Problem data - cones

Task.getconeinfo

211

def getconeinfo (k) -> ct, conepar, nummem

Obtains information about a cone.

Parameters k (int) – Index of the cone. (input)
Return

• ct (mosek.conetype) – Specifies the type of the cone.
• conepar (float) – For the power cone it denotes the exponent alpha. For other

cone types it is unused and can be set to 0.
• nummem (int) – Number of member variables in the cone.

Groups Inspecting the task , Problem data - cones

Task.getconename

def getconename (i) -> name

Obtains the name of a cone.

Parameters i (int) – Index of the cone. (input)
Return name (str) – The required name.
Groups Names, Problem data - cones, Inspecting the task

Task.getconenameindex

def getconenameindex (somename) -> asgn, index

Checks whether the name somename has been assigned to any cone. If it has been assigned to a
cone, then the index of the cone is reported.

Parameters somename (str) – The name which should be checked. (input)
Return

• asgn (int) – Is non-zero if the name somename is assigned to some cone.
• index (int) – If the name somename is assigned to some cone, then index is the

index of the cone.
Groups Names, Problem data - cones, Inspecting the task

Task.getconenamelen

def getconenamelen (i) -> len

Obtains the length of the name of a cone.

Parameters i (int) – Index of the cone. (input)
Return len (int) – Returns the length of the indicated name.
Groups Names, Problem data - cones, Inspecting the task

Task.getconname

def getconname (i) -> name

Obtains the name of a constraint.

Parameters i (int) – Index of the constraint. (input)
Return name (str) – The required name.
Groups Names, Problem data - linear part , Problem data - constraints, Inspecting the

task

212

Task.getconnameindex

def getconnameindex (somename) -> asgn, index

Checks whether the name somename has been assigned to any constraint. If so, the index of the
constraint is reported.

Parameters somename (str) – The name which should be checked. (input)
Return

• asgn (int) – Is non-zero if the name somename is assigned to some constraint.
• index (int) – If the name somename is assigned to a constraint, then index is

the index of the constraint.
Groups Names, Problem data - linear part , Problem data - constraints, Inspecting the

task

Task.getconnamelen

def getconnamelen (i) -> len

Obtains the length of the name of a constraint.

Parameters i (int) – Index of the constraint. (input)
Return len (int) – Returns the length of the indicated name.
Groups Names, Problem data - linear part , Problem data - constraints, Inspecting the

task

Task.getcslice

def getcslice (first, last, c)

Obtains a sequence of elements in 𝑐.

Parameters
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• c (float[]) – Linear terms of the requested slice of the objective as a dense

vector. The length is last-first. (output)
Groups Inspecting the task , Problem data - linear part

Task.getdimbarvarj

def getdimbarvarj (j) -> dimbarvarj

Obtains the dimension of a symmetric matrix variable.

Parameters j (int) – Index of the semidefinite variable whose dimension is requested.
(input)

Return dimbarvarj (int) – The dimension of the 𝑗-th semidefinite variable.
Groups Inspecting the task , Problem data - semidefinite

Task.getdouinf

def getdouinf (whichdinf) -> dvalue

Obtains a double information item from the task information database.

213

Parameters whichdinf (mosek.dinfitem) – Specifies a double information item. (in-
put)

Return dvalue (float) – The value of the required double information item.
Groups Information items and statistics

Task.getdouparam

def getdouparam (param) -> parvalue

Obtains the value of a double parameter.

Parameters param (mosek.dparam) – Which parameter. (input)
Return parvalue (float) – Parameter value.
Groups Parameters

Task.getdualobj

def getdualobj (whichsol) -> dualobj

Computes the dual objective value associated with the solution. Note that if the solution is a
primal infeasibility certificate, then the fixed term in the objective value is not included.

Moreover, since there is no dual solution associated with an integer solution, an error will be
reported if the dual objective value is requested for the integer solution.

Parameters whichsol (mosek.soltype) – Selects a solution. (input)
Return dualobj (float) – Objective value corresponding to the dual solution.
Groups Solution information, Solution - dual

Task.getdualsolutionnorms

def getdualsolutionnorms (whichsol) -> nrmy, nrmslc, nrmsuc, nrmslx, nrmsux, nrmsnx,␣
→˓nrmbars

Compute norms of the dual solution.

Parameters whichsol (mosek.soltype) – Selects a solution. (input)
Return

• nrmy (float) – The norm of the 𝑦 vector.
• nrmslc (float) – The norm of the 𝑠𝑐𝑙 vector.
• nrmsuc (float) – The norm of the 𝑠𝑐𝑢 vector.
• nrmslx (float) – The norm of the 𝑠𝑥𝑙 vector.
• nrmsux (float) – The norm of the 𝑠𝑥𝑢 vector.
• nrmsnx (float) – The norm of the 𝑠𝑥𝑛 vector.
• nrmbars (float) – The norm of the 𝑆 vector.

Groups Solution information

Task.getdviolbarvar

def getdviolbarvar (whichsol, sub, viol)

Let (𝑆𝑗)
* be the value of variable 𝑆𝑗 for the specified solution. Then the dual violation of the

solution associated with variable 𝑆𝑗 is given by

max(−𝜆min(𝑆𝑗), 0.0).

Both when the solution is a certificate of primal infeasibility and when it is dual feasible solution
the violation should be small.

214

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• sub (int[]) – An array of indexes of 𝑋 variables. (input)
• viol (float[]) – viol[k] is the violation of the solution for the constraint
𝑆sub[𝑘] ∈ 𝒮+. (output)

Groups Solution information

Task.getdviolcon

def getdviolcon (whichsol, sub, viol)

The violation of the dual solution associated with the 𝑖-th constraint is computed as follows

max(𝜌((𝑠𝑐𝑙)
*
𝑖 , (𝑏

𝑐
𝑙)𝑖), 𝜌((𝑠𝑐𝑢)*𝑖 ,−(𝑏𝑐𝑢)𝑖), | − 𝑦𝑖 + (𝑠𝑐𝑙)

*
𝑖 − (𝑠𝑐𝑢)*𝑖 |)

where

𝜌(𝑥, 𝑙) =

{︂
−𝑥, 𝑙 > −∞,
|𝑥|, otherwise.

Both when the solution is a certificate of primal infeasibility or it is a dual feasible solution the
violation should be small.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• sub (int[]) – An array of indexes of constraints. (input)
• viol (float[]) – viol[k] is the violation of dual solution associated with the

constraint sub[k]. (output)
Groups Solution information

Task.getdviolcones

def getdviolcones (whichsol, sub, viol)

Let (𝑠𝑥𝑛)* be the value of variable (𝑠𝑥𝑛) for the specified solution. For simplicity let us assume that
𝑠𝑥𝑛 is a member of a quadratic cone, then the violation is computed as follows{︂

max(0, (‖𝑠𝑥𝑛‖*2:𝑛 − (𝑠𝑥𝑛)*1)/
√

2, (𝑠𝑥𝑛)* ≥ −‖(𝑠𝑥𝑛)*2:𝑛‖,
‖(𝑠𝑥𝑛)*‖, otherwise.

Both when the solution is a certificate of primal infeasibility or when it is a dual feasible solution
the violation should be small.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• sub (int[]) – An array of indexes of conic constraints. (input)
• viol (float[]) – viol[k] is the violation of the dual solution associated with

the conic constraint sub[k]. (output)
Groups Solution information

Task.getdviolvar

def getdviolvar (whichsol, sub, viol)

The violation of the dual solution associated with the 𝑗-th variable is computed as follows

max

(︃
𝜌((𝑠𝑥𝑙)*𝑗 , (𝑏

𝑥
𝑙)𝑗), 𝜌((𝑠𝑥𝑢)*𝑗 ,−(𝑏𝑥𝑢)𝑗), |

𝑛𝑢𝑚𝑐𝑜𝑛−1∑︁
𝑖=0

𝑎𝑖𝑗𝑦𝑖 + (𝑠𝑥𝑙)*𝑗 − (𝑠𝑥𝑢)*𝑗 − 𝜏𝑐𝑗 |

)︃

215

where

𝜌(𝑥, 𝑙) =

{︂
−𝑥, 𝑙 > −∞,
|𝑥|, otherwise

and 𝜏 = 0 if the solution is a certificate of primal infeasibility and 𝜏 = 1 otherwise. The formula
for computing the violation is only shown for the linear case but is generalized appropriately for
the more general problems. Both when the solution is a certificate of primal infeasibility or when
it is a dual feasible solution the violation should be small.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• sub (int[]) – An array of indexes of 𝑥 variables. (input)
• viol (float[]) – viol[k] is the violation of dual solution associated with the

variable sub[k]. (output)
Groups Solution information

Task.getinfeasiblesubproblem

def getinfeasiblesubproblem (whichsol) -> inftask

Given the solution is a certificate of primal or dual infeasibility then a primal or dual infeasible
subproblem is obtained respectively. The subproblem tends to be much smaller than the original
problem and hence it is easier to locate the infeasibility inspecting the subproblem than the original
problem.
For the procedure to be useful it is important to assign meaningful names to constraints, variables
etc. in the original task because those names will be duplicated in the subproblem.
The function is only applicable to linear and conic quadratic optimization problems.
For more information see Sec. 8.3 and Sec. 14.2.

Parameters whichsol (mosek.soltype) – Which solution to use when determining
the infeasible subproblem. (input)

Return inftask (Task) – A new task containing the infeasible subproblem.
Groups Infeasibility diagnostic

Task.getintinf

def getintinf (whichiinf) -> ivalue

Obtains an integer information item from the task information database.

Parameters whichiinf (mosek.iinfitem) – Specifies an integer information item. (in-
put)

Return ivalue (int) – The value of the required integer information item.
Groups Information items and statistics

Task.getintparam

def getintparam (param) -> parvalue

Obtains the value of an integer parameter.

Parameters param (mosek.iparam) – Which parameter. (input)
Return parvalue (int) – Parameter value.
Groups Parameters

Task.getlenbarvarj

216

def getlenbarvarj (j) -> lenbarvarj

Obtains the length of the 𝑗-th semidefinite variable i.e. the number of elements in the lower
triangular part.

Parameters j (int) – Index of the semidefinite variable whose length if requested.
(input)

Return lenbarvarj (int) – Number of scalar elements in the lower triangular part of
the semidefinite variable.

Groups Inspecting the task , Problem data - semidefinite

Task.getlintinf

def getlintinf (whichliinf) -> ivalue

Obtains a long integer information item from the task information database.

Parameters whichliinf (mosek.liinfitem) – Specifies a long information item. (in-
put)

Return ivalue (int) – The value of the required long integer information item.
Groups Information items and statistics

Task.getmaxnumanz

def getmaxnumanz () -> maxnumanz

Obtains number of preallocated non-zeros in 𝐴. When this number of non-zeros is reached
MOSEK will automatically allocate more space for 𝐴.

Return maxnumanz (int) – Number of preallocated non-zero linear matrix elements.
Groups Inspecting the task , Problem data - linear part

Task.getmaxnumbarvar

def getmaxnumbarvar () -> maxnumbarvar

Obtains maximum number of symmetric matrix variables for which space is currently preallocated.

Return maxnumbarvar (int) – Maximum number of symmetric matrix variables for
which space is currently preallocated.

Groups Inspecting the task , Problem data - semidefinite

Task.getmaxnumcon

def getmaxnumcon () -> maxnumcon

Obtains the number of preallocated constraints in the optimization task. When this number of
constraints is reached MOSEK will automatically allocate more space for constraints.

Return maxnumcon (int) – Number of preallocated constraints in the optimization task.
Groups Inspecting the task , Problem data - linear part , Problem data - constraints

Task.getmaxnumcone

def getmaxnumcone () -> maxnumcone

Obtains the number of preallocated cones in the optimization task. When this number of cones is
reached MOSEK will automatically allocate space for more cones.

217

Return maxnumcone (int) – Number of preallocated conic constraints in the optimiza-
tion task.

Groups Inspecting the task , Problem data - cones

Task.getmaxnumqnz

def getmaxnumqnz () -> maxnumqnz

Obtains the number of preallocated non-zeros for 𝑄 (both objective and constraints). When this
number of non-zeros is reached MOSEK will automatically allocate more space for 𝑄.

Return maxnumqnz (int) – Number of non-zero elements preallocated in quadratic co-
efficient matrices.

Groups Inspecting the task , Problem data - quadratic part

Task.getmaxnumvar

def getmaxnumvar () -> maxnumvar

Obtains the number of preallocated variables in the optimization task. When this number of
variables is reached MOSEK will automatically allocate more space for variables.

Return maxnumvar (int) – Number of preallocated variables in the optimization task.
Groups Inspecting the task , Problem data - linear part , Problem data - variables

Task.getmemusage

def getmemusage () -> meminuse, maxmemuse

Obtains information about the amount of memory used by a task.

Return
• meminuse (int) – Amount of memory currently used by the task.
• maxmemuse (int) – Maximum amount of memory used by the task until now.

Groups System, memory and debugging

Task.getnumanz

def getnumanz () -> numanz

Obtains the number of non-zeros in 𝐴.

Return numanz (int) – Number of non-zero elements in the linear constraint matrix.
Groups Inspecting the task , Problem data - linear part

Task.getnumanz64

def getnumanz64 () -> numanz

Obtains the number of non-zeros in 𝐴.

Return numanz (int) – Number of non-zero elements in the linear constraint matrix.
Groups Inspecting the task , Problem data - linear part

Task.getnumbarablocktriplets

218

def getnumbarablocktriplets () -> num

Obtains an upper bound on the number of elements in the block triplet form of 𝐴.

Return num (int) – An upper bound on the number of elements in the block triplet
form of 𝐴.

Groups Problem data - semidefinite, Inspecting the task

Task.getnumbaranz

def getnumbaranz () -> nz

Get the number of nonzero elements in 𝐴.

Return nz (int) – The number of nonzero block elements in 𝐴 i.e. the number of 𝐴𝑖𝑗

elements that are nonzero.
Groups Problem data - semidefinite, Inspecting the task

Task.getnumbarcblocktriplets

def getnumbarcblocktriplets () -> num

Obtains an upper bound on the number of elements in the block triplet form of 𝐶.

Return num (int) – An upper bound on the number of elements in the block triplet
form of 𝐶.

Groups Problem data - semidefinite, Inspecting the task

Task.getnumbarcnz

def getnumbarcnz () -> nz

Obtains the number of nonzero elements in 𝐶.

Return nz (int) – The number of nonzeros in 𝐶 i.e. the number of elements 𝐶𝑗 that
are nonzero.

Groups Problem data - semidefinite, Inspecting the task

Task.getnumbarvar

def getnumbarvar () -> numbarvar

Obtains the number of semidefinite variables.

Return numbarvar (int) – Number of semidefinite variables in the problem.
Groups Inspecting the task , Problem data - semidefinite

Task.getnumcon

def getnumcon () -> numcon

Obtains the number of constraints.

Return numcon (int) – Number of constraints.
Groups Problem data - linear part , Problem data - constraints, Inspecting the task

Task.getnumcone

219

def getnumcone () -> numcone

Obtains the number of cones.

Return numcone (int) – Number of conic constraints.
Groups Problem data - cones, Inspecting the task

Task.getnumconemem

def getnumconemem (k) -> nummem

Obtains the number of members in a cone.

Parameters k (int) – Index of the cone. (input)
Return nummem (int) – Number of member variables in the cone.
Groups Problem data - cones, Inspecting the task

Task.getnumintvar

def getnumintvar () -> numintvar

Obtains the number of integer-constrained variables.

Return numintvar (int) – Number of integer variables.
Groups Inspecting the task , Problem data - variables

Task.getnumparam

def getnumparam (partype) -> numparam

Obtains the number of parameters of a given type.

Parameters partype (mosek.parametertype) – Parameter type. (input)
Return numparam (int) – The number of parameters of type partype.
Groups Inspecting the task , Parameters

Task.getnumqconknz

def getnumqconknz (k) -> numqcnz

Obtains the number of non-zero quadratic terms in a constraint.

Parameters k (int) – Index of the constraint for which the number quadratic terms
should be obtained. (input)

Return numqcnz (int) – Number of quadratic terms.
Groups Inspecting the task , Problem data - constraints, Problem data - quadratic part

Task.getnumqobjnz

def getnumqobjnz () -> numqonz

Obtains the number of non-zero quadratic terms in the objective.

Return numqonz (int) – Number of non-zero elements in the quadratic objective terms.
Groups Inspecting the task , Problem data - quadratic part

Task.getnumsymmat

220

def getnumsymmat () -> num

Obtains the number of symmetric matrices stored in the vector 𝐸.

Return num (int) – The number of symmetric sparse matrices.
Groups Problem data - semidefinite, Inspecting the task

Task.getnumvar

def getnumvar () -> numvar

Obtains the number of variables.

Return numvar (int) – Number of variables.
Groups Inspecting the task , Problem data - variables

Task.getobjname

def getobjname () -> objname

Obtains the name assigned to the objective function.

Return objname (str) – Assigned the objective name.
Groups Inspecting the task , Names

Task.getobjnamelen

def getobjnamelen () -> len

Obtains the length of the name assigned to the objective function.

Return len (int) – Assigned the length of the objective name.
Groups Inspecting the task , Names

Task.getobjsense

def getobjsense () -> sense

Gets the objective sense of the task.

Return sense (mosek.objsense) – The returned objective sense.
Groups Problem data - linear part

Task.getprimalobj

def getprimalobj (whichsol) -> primalobj

Computes the primal objective value for the desired solution. Note that if the solution is an
infeasibility certificate, then the fixed term in the objective is not included.

Parameters whichsol (mosek.soltype) – Selects a solution. (input)
Return primalobj (float) – Objective value corresponding to the primal solution.
Groups Solution information, Solution - primal

Task.getprimalsolutionnorms

221

def getprimalsolutionnorms (whichsol) -> nrmxc, nrmxx, nrmbarx

Compute norms of the primal solution.

Parameters whichsol (mosek.soltype) – Selects a solution. (input)
Return

• nrmxc (float) – The norm of the 𝑥𝑐 vector.
• nrmxx (float) – The norm of the 𝑥 vector.
• nrmbarx (float) – The norm of the 𝑋 vector.

Groups Solution information

Task.getprobtype

def getprobtype () -> probtype

Obtains the problem type.

Return probtype (mosek.problemtype) – The problem type.
Groups Inspecting the task

Task.getprosta

def getprosta (whichsol) -> prosta

Obtains the problem status.

Parameters whichsol (mosek.soltype) – Selects a solution. (input)
Return prosta (mosek.prosta) – Problem status.
Groups Solution information

Task.getpviolbarvar

def getpviolbarvar (whichsol, sub, viol)

Computes the primal solution violation for a set of semidefinite variables. Let (𝑋𝑗)
* be the value

of the variable 𝑋𝑗 for the specified solution. Then the primal violation of the solution associated
with variable 𝑋𝑗 is given by

max(−𝜆min(𝑋𝑗), 0.0).

Both when the solution is a certificate of dual infeasibility or when it is primal feasible the violation
should be small.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• sub (int[]) – An array of indexes of 𝑋 variables. (input)
• viol (float[]) – viol[k] is how much the solution violates the constraint
𝑋sub[𝑘] ∈ 𝒮+. (output)

Groups Solution information

Task.getpviolcon

def getpviolcon (whichsol, sub, viol)

222

Computes the primal solution violation for a set of constraints. The primal violation of the solution
associated with the 𝑖-th constraint is given by

max(𝜏 𝑙𝑐𝑖 − (𝑥𝑐
𝑖)

*, (𝑥𝑐
𝑖)

* − 𝜏𝑢𝑐
𝑖), |

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑗=0

𝑎𝑖𝑗𝑥
*
𝑗 − 𝑥𝑐

𝑖 |)

where 𝜏 = 0 if the solution is a certificate of dual infeasibility and 𝜏 = 1 otherwise. Both when
the solution is a certificate of dual infeasibility and when it is primal feasible the violation should
be small. The above formula applies for the linear case but is appropriately generalized in other
cases.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• sub (int[]) – An array of indexes of constraints. (input)
• viol (float[]) – viol[k] is the violation associated with the solution for the

constraint sub[k]. (output)
Groups Solution information

Task.getpviolcones

def getpviolcones (whichsol, sub, viol)

Computes the primal solution violation for a set of conic constraints. Let 𝑥* be the value of the
variable 𝑥 for the specified solution. For simplicity let us assume that 𝑥 is a member of a quadratic
cone, then the violation is computed as follows{︂

max(0, ‖𝑥2:𝑛‖ − 𝑥1)/
√

2, 𝑥1 ≥ −‖𝑥2:𝑛‖,
‖𝑥‖, otherwise.

Both when the solution is a certificate of dual infeasibility or when it is primal feasible the violation
should be small.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• sub (int[]) – An array of indexes of conic constraints. (input)
• viol (float[]) – viol[k] is the violation of the solution associated with the

conic constraint number sub[k]. (output)
Groups Solution information

Task.getpviolvar

def getpviolvar (whichsol, sub, viol)

Computes the primal solution violation associated to a set of variables. Let 𝑥*
𝑗 be the value of 𝑥𝑗

for the specified solution. Then the primal violation of the solution associated with variable 𝑥𝑗 is
given by

max(𝜏 𝑙𝑥𝑗 − 𝑥*
𝑗 , 𝑥*

𝑗 − 𝜏𝑢𝑥
𝑗 , 0).

where 𝜏 = 0 if the solution is a certificate of dual infeasibility and 𝜏 = 1 otherwise. Both when the
solution is a certificate of dual infeasibility and when it is primal feasible the violation should be
small.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• sub (int[]) – An array of indexes of 𝑥 variables. (input)
• viol (float[]) – viol[k] is the violation associated with the solution for the

variable 𝑥sub[k]. (output)

223

Groups Solution information

Task.getqconk

def getqconk (k, qcsubi, qcsubj, qcval) -> numqcnz

Obtains all the quadratic terms in a constraint. The quadratic terms are stored sequentially in
qcsubi, qcsubj, and qcval.

Parameters
• k (int) – Which constraint. (input)
• qcsubi (int[]) – Row subscripts for quadratic constraint matrix. (output)
• qcsubj (int[]) – Column subscripts for quadratic constraint matrix. (output)
• qcval (float[]) – Quadratic constraint coefficient values. (output)

Return numqcnz (int) – Number of quadratic terms.
Groups Inspecting the task , Problem data - quadratic part , Problem data - constraints

Task.getqobj

def getqobj (qosubi, qosubj, qoval) -> numqonz

Obtains the quadratic terms in the objective. The required quadratic terms are stored sequentially
in qosubi, qosubj, and qoval.

Parameters
• qosubi (int[]) – Row subscripts for quadratic objective coefficients. (output)
• qosubj (int[]) – Column subscripts for quadratic objective coefficients. (out-

put)
• qoval (float[]) – Quadratic objective coefficient values. (output)

Return numqonz (int) – Number of non-zero elements in the quadratic objective terms.
Groups Inspecting the task , Problem data - quadratic part

Task.getqobjij

def getqobjij (i, j) -> qoij

Obtains one coefficient 𝑞𝑜𝑖𝑗 in the quadratic term of the objective.

Parameters
• i (int) – Row index of the coefficient. (input)
• j (int) – Column index of coefficient. (input)

Return qoij (float) – The required coefficient.
Groups Inspecting the task , Problem data - quadratic part

Task.getreducedcosts

def getreducedcosts (whichsol, first, last, redcosts)

Computes the reduced costs for a slice of variables and returns them in the array redcosts i.e.

redcosts[𝑗 − first] = (𝑠𝑥𝑙)𝑗 − (𝑠𝑥𝑢)𝑗 , 𝑗 = first, . . . , last− 1 (15.2)

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – The index of the first variable in the sequence. (input)
• last (int) – The index of the last variable in the sequence plus 1. (input)

224

• redcosts (float[]) – The reduced costs for the required slice of variables. (out-
put)

Groups Solution - dual

Task.getskc

def getskc (whichsol, skc)

Obtains the status keys for the constraints.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• skc (mosek.stakey []) – Status keys for the constraints. (output)

Groups Solution information

Task.getskcslice

def getskcslice (whichsol, first, last, skc)

Obtains the status keys for a slice of the constraints.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• skc (mosek.stakey []) – Status keys for the constraints. (output)

Groups Solution information

Task.getskn

def getskn (whichsol, skn)

Obtains the status keys for the conic constraints.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• skn (mosek.stakey []) – Status keys for the conic constraints. (output)

Groups Solution information

Task.getskx

def getskx (whichsol, skx)

Obtains the status keys for the scalar variables.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• skx (mosek.stakey []) – Status keys for the variables. (output)

Groups Solution information

Task.getskxslice

def getskxslice (whichsol, first, last, skx)

Obtains the status keys for a slice of the scalar variables.

Parameters

225

• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• skx (mosek.stakey []) – Status keys for the variables. (output)

Groups Solution information

Task.getslc

def getslc (whichsol, slc)

Obtains the 𝑠𝑐𝑙 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• slc (float[]) – Dual variables corresponding to the lower bounds on the con-

straints. (output)
Groups Solution - dual

Task.getslcslice

def getslcslice (whichsol, first, last, slc)

Obtains a slice of the 𝑠𝑐𝑙 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• slc (float[]) – Dual variables corresponding to the lower bounds on the con-

straints. (output)
Groups Solution - dual

Task.getslx

def getslx (whichsol, slx)

Obtains the 𝑠𝑥𝑙 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• slx (float[]) – Dual variables corresponding to the lower bounds on the vari-

ables. (output)
Groups Solution - dual

Task.getslxslice

def getslxslice (whichsol, first, last, slx)

Obtains a slice of the 𝑠𝑥𝑙 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• slx (float[]) – Dual variables corresponding to the lower bounds on the vari-

ables. (output)

226

Groups Solution - dual

Task.getsnx

def getsnx (whichsol, snx)

Obtains the 𝑠𝑥𝑛 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• snx (float[]) – Dual variables corresponding to the conic constraints on the

variables. (output)
Groups Solution - dual

Task.getsnxslice

def getsnxslice (whichsol, first, last, snx)

Obtains a slice of the 𝑠𝑥𝑛 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• snx (float[]) – Dual variables corresponding to the conic constraints on the

variables. (output)
Groups Solution - dual

Task.getsolsta

def getsolsta (whichsol) -> solsta

Obtains the solution status.

Parameters whichsol (mosek.soltype) – Selects a solution. (input)
Return solsta (mosek.solsta) – Solution status.
Groups Solution information

Task.getsolution

def getsolution (whichsol, skc, skx, skn, xc, xx, y, slc, suc, slx, sux, snx) -> prosta,␣
→˓solsta

Obtains the complete solution.

Consider the case of linear programming. The primal problem is given by

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

and the corresponding dual problem is

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢
+(𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,

𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0.

227

A conic optimization problem has the same primal variables as in the linear case. Recall that the
dual of a conic optimization problem is given by:

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢
+(𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝑠𝑥𝑛 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑠𝑥𝑛 ∈ 𝒦*

The mapping between variables and arguments to the function is as follows:

• xx : Corresponds to variable 𝑥 (also denoted 𝑥𝑥).

• xc : Corresponds to 𝑥𝑐 := 𝐴𝑥.

• y : Corresponds to variable 𝑦.

• slc: Corresponds to variable 𝑠𝑐𝑙 .

• suc: Corresponds to variable 𝑠𝑐𝑢.

• slx: Corresponds to variable 𝑠𝑥𝑙 .

• sux: Corresponds to variable 𝑠𝑥𝑢.

• snx: Corresponds to variable 𝑠𝑥𝑛.

The meaning of the values returned by this function depend on the solution status returned in the
argument solsta. The most important possible values of solsta are:

• solsta.optimal : An optimal solution satisfying the optimality criteria for continuous prob-
lems is returned.

• solsta.integer_optimal : An optimal solution satisfying the optimality criteria for integer
problems is returned.

• solsta.prim_feas : A solution satisfying the feasibility criteria.

• solsta.prim_infeas_cer : A primal certificate of infeasibility is returned.

• solsta.dual_infeas_cer : A dual certificate of infeasibility is returned.

In order to retrieve the primal and dual values of semidefinite variables see Task.getbarxj and
Task.getbarsj .

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• skc (mosek.stakey []) – Status keys for the constraints. (output)
• skx (mosek.stakey []) – Status keys for the variables. (output)
• skn (mosek.stakey []) – Status keys for the conic constraints. (output)
• xc (float[]) – Primal constraint solution. (output)
• xx (float[]) – Primal variable solution. (output)
• y (float[]) – Vector of dual variables corresponding to the constraints. (output)
• slc (float[]) – Dual variables corresponding to the lower bounds on the con-

straints. (output)
• suc (float[]) – Dual variables corresponding to the upper bounds on the con-

straints. (output)
• slx (float[]) – Dual variables corresponding to the lower bounds on the vari-

ables. (output)
• sux (float[]) – Dual variables corresponding to the upper bounds on the vari-

ables. (output)
• snx (float[]) – Dual variables corresponding to the conic constraints on the

variables. (output)
Return

• prosta (mosek.prosta) – Problem status.

228

• solsta (mosek.solsta) – Solution status.
Groups Solution information, Solution - primal , Solution - dual

Task.getsolutioninfo

def getsolutioninfo (whichsol) -> pobj, pviolcon, pviolvar, pviolbarvar, pviolcone,␣
→˓pviolitg, dobj, dviolcon, dviolvar, dviolbarvar, dviolcone

Obtains information about a solution.

Parameters whichsol (mosek.soltype) – Selects a solution. (input)
Return

• pobj (float) – The primal objective value as computed by Task.getprimalobj .
• pviolcon (float) – Maximal primal violation of the solution associated with

the 𝑥𝑐 variables where the violations are computed by Task.getpviolcon .
• pviolvar (float) – Maximal primal violation of the solution for the 𝑥 variables

where the violations are computed by Task.getpviolvar .
• pviolbarvar (float) – Maximal primal violation of solution for the 𝑋 variables

where the violations are computed by Task.getpviolbarvar .
• pviolcone (float) – Maximal primal violation of solution for the conic con-

straints where the violations are computed by Task.getpviolcones .
• pviolitg (float) – Maximal violation in the integer constraints. The violation

for an integer variable 𝑥𝑗 is given by min(𝑥𝑗 − ⌊𝑥𝑗⌋, ⌈𝑥𝑗⌉ − 𝑥𝑗). This number is
always zero for the interior-point and basic solutions.

• dobj (float) – Dual objective value as computed by Task.getdualobj .
• dviolcon (float) – Maximal violation of the dual solution associated with the
𝑥𝑐 variable as computed by Task.getdviolcon .

• dviolvar (float) – Maximal violation of the dual solution associated with the
𝑥 variable as computed by Task.getdviolvar .

• dviolbarvar (float) – Maximal violation of the dual solution associated with
the 𝑆 variable as computed by Task.getdviolbarvar .

• dviolcone (float) – Maximal violation of the dual solution associated with the
dual conic constraints as computed by Task.getdviolcones .

Groups Solution information

Task.getsolutionslice

def getsolutionslice (whichsol, solitem, first, last, values)

Obtains a slice of one item from the solution. The format of the solution is exactly as in Task.
getsolution . The parameter solitem determines which of the solution vectors should be returned.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• solitem (mosek.solitem) – Which part of the solution is required. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• values (float[]) – The values in the required sequence are stored sequentially

in values. (output)
Groups Solution - primal , Solution - dual , Solution information

Task.getsparsesymmat

def getsparsesymmat (idx, subi, subj, valij)

229

Get a single symmetric matrix from the matrix store.

Parameters
• idx (int) – Index of the matrix to retrieve. (input)
• subi (int[]) – Row subscripts of the matrix non-zero elements. (output)
• subj (int[]) – Column subscripts of the matrix non-zero elements. (output)
• valij (float[]) – Coefficients of the matrix non-zero elements. (output)

Groups Problem data - semidefinite, Inspecting the task

Task.getstrparam

def getstrparam (param) -> len, parvalue

Obtains the value of a string parameter.

Parameters param (mosek.sparam) – Which parameter. (input)
Return

• len (int) – The length of the parameter value.
• parvalue (str) – Parameter value.

Groups Names, Parameters

Task.getstrparamlen

def getstrparamlen (param) -> len

Obtains the length of a string parameter.

Parameters param (mosek.sparam) – Which parameter. (input)
Return len (int) – The length of the parameter value.
Groups Names, Parameters

Task.getsuc

def getsuc (whichsol, suc)

Obtains the 𝑠𝑐𝑢 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• suc (float[]) – Dual variables corresponding to the upper bounds on the con-

straints. (output)
Groups Solution - dual

Task.getsucslice

def getsucslice (whichsol, first, last, suc)

Obtains a slice of the 𝑠𝑐𝑢 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• suc (float[]) – Dual variables corresponding to the upper bounds on the con-

straints. (output)
Groups Solution - dual

230

Task.getsux

def getsux (whichsol, sux)

Obtains the 𝑠𝑥𝑢 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• sux (float[]) – Dual variables corresponding to the upper bounds on the vari-

ables. (output)
Groups Solution - dual

Task.getsuxslice

def getsuxslice (whichsol, first, last, sux)

Obtains a slice of the 𝑠𝑥𝑢 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• sux (float[]) – Dual variables corresponding to the upper bounds on the vari-

ables. (output)
Groups Solution - dual

Task.getsymmatinfo

def getsymmatinfo (idx) -> dim, nz, type

MOSEK maintains a vector denoted by 𝐸 of symmetric data matrices. This function makes it
possible to obtain important information about a single matrix in 𝐸.

Parameters idx (int) – Index of the matrix for which information is requested. (input)
Return

• dim (int) – Returns the dimension of the requested matrix.
• nz (int) – Returns the number of non-zeros in the requested matrix.
• type (mosek.symmattype) – Returns the type of the requested matrix.

Groups Problem data - semidefinite, Inspecting the task

Task.gettaskname

def gettaskname () -> taskname

Obtains the name assigned to the task.

Return taskname (str) – Returns the task name.
Groups Names, Inspecting the task

Task.gettasknamelen

def gettasknamelen () -> len

Obtains the length the task name.

Return len (int) – Returns the length of the task name.

231

Groups Names, Inspecting the task

Task.getvarbound

def getvarbound (i) -> bk, bl, bu

Obtains bound information for one variable.

Parameters i (int) – Index of the variable for which the bound information should be
obtained. (input)

Return
• bk (mosek.boundkey) – Bound keys.
• bl (float) – Values for lower bounds.
• bu (float) – Values for upper bounds.

Groups Problem data - linear part , Inspecting the task , Problem data - bounds, Problem
data - variables

Task.getvarboundslice

def getvarboundslice (first, last, bk, bl, bu)

Obtains bounds information for a slice of the variables.

Parameters
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• bk (mosek.boundkey []) – Bound keys. (output)
• bl (float[]) – Values for lower bounds. (output)
• bu (float[]) – Values for upper bounds. (output)

Groups Problem data - linear part , Inspecting the task , Problem data - bounds, Problem
data - variables

Task.getvarname

def getvarname (j) -> name

Obtains the name of a variable.

Parameters j (int) – Index of a variable. (input)
Return name (str) – Returns the required name.
Groups Names, Problem data - linear part , Problem data - variables, Inspecting the

task

Task.getvarnameindex

def getvarnameindex (somename) -> asgn, index

Checks whether the name somename has been assigned to any variable. If so, the index of the
variable is reported.

Parameters somename (str) – The name which should be checked. (input)
Return

• asgn (int) – Is non-zero if the name somename is assigned to a variable.
• index (int) – If the name somename is assigned to a variable, then index is the

index of the variable.
Groups Names, Problem data - linear part , Problem data - variables, Inspecting the

task

232

Task.getvarnamelen

def getvarnamelen (i) -> len

Obtains the length of the name of a variable.

Parameters i (int) – Index of a variable. (input)
Return len (int) – Returns the length of the indicated name.
Groups Names, Problem data - linear part , Problem data - variables, Inspecting the

task

Task.getvartype

def getvartype (j) -> vartype

Gets the variable type of one variable.

Parameters j (int) – Index of the variable. (input)
Return vartype (mosek.variabletype) – Variable type of the 𝑗-th variable.
Groups Inspecting the task , Problem data - variables

Task.getvartypelist

def getvartypelist (subj, vartype)

Obtains the variable type of one or more variables. Upon return vartype[k] is the variable type
of variable subj[k].

Parameters
• subj (int[]) – A list of variable indexes. (input)
• vartype (mosek.variabletype []) – The variables types corresponding to the

variables specified by subj. (output)
Groups Inspecting the task , Problem data - variables

Task.getxc

def getxc (whichsol, xc)

Obtains the 𝑥𝑐 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• xc (float[]) – Primal constraint solution. (output)

Groups Solution - primal

Task.getxcslice

def getxcslice (whichsol, first, last, xc)

Obtains a slice of the 𝑥𝑐 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• xc (float[]) – Primal constraint solution. (output)

233

Groups Solution - primal

Task.getxx

def getxx (whichsol, xx)

Obtains the 𝑥𝑥 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• xx (float[]) – Primal variable solution. (output)

Groups Solution - primal

Task.getxxslice

def getxxslice (whichsol, first, last, xx)

Obtains a slice of the 𝑥𝑥 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• xx (float[]) – Primal variable solution. (output)

Groups Solution - primal

Task.gety

def gety (whichsol, y)

Obtains the 𝑦 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• y (float[]) – Vector of dual variables corresponding to the constraints. (output)

Groups Solution - dual

Task.getyslice

def getyslice (whichsol, first, last, y)

Obtains a slice of the 𝑦 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• y (float[]) – Vector of dual variables corresponding to the constraints. (output)

Groups Solution - dual

Task.initbasissolve

def initbasissolve (basis)

Prepare a task for use with the Task.solvewithbasis function.

This function should be called

234

• immediately before the first call to Task.solvewithbasis , and

• immediately before any subsequent call to Task.solvewithbasis if the task has been modi-
fied.

If the basis is singular i.e. not invertible, then the error rescode.err_basis_singular is reported.

Parameters basis (int[]) – The array of basis indexes to use. The array is interpreted
as follows: If basis[𝑖] ≤ 𝑛𝑢𝑚𝑐𝑜𝑛 − 1, then 𝑥𝑐

basis[𝑖] is in the basis at position 𝑖,
otherwise 𝑥basis[𝑖]−numcon is in the basis at position 𝑖. (output)

Groups Solving systems with basis matrix

Task.inputdata

def inputdata (maxnumcon, maxnumvar, c, cfix, aptrb, aptre, asub, aval, bkc, blc, buc,␣
→˓bkx, blx, bux)

Input the linear part of an optimization problem.

The non-zeros of 𝐴 are inputted column-wise in the format described in Section Column or Row
Ordered Sparse Matrix .

For an explained code example see Section Linear Optimization and Section Matrix Formats.

Parameters
• maxnumcon (int) – Number of preallocated constraints in the optimization task.

(input)
• maxnumvar (int) – Number of preallocated variables in the optimization task.

(input)
• c (float[]) – Linear terms of the objective as a dense vector. The length is the

number of variables. (input)
• cfix (float) – Fixed term in the objective. (input)
• aptrb (int[]) – Row or column start pointers. (input)
• aptre (int[]) – Row or column end pointers. (input)
• asub (int[]) – Coefficient subscripts. (input)
• aval (float[]) – Coefficient values. (input)
• bkc (mosek.boundkey []) – Bound keys for the constraints. (input)
• blc (float[]) – Lower bounds for the constraints. (input)
• buc (float[]) – Upper bounds for the constraints. (input)
• bkx (mosek.boundkey []) – Bound keys for the variables. (input)
• blx (float[]) – Lower bounds for the variables. (input)
• bux (float[]) – Upper bounds for the variables. (input)

Groups Problem data - linear part , Problem data - bounds, Problem data - constraints

Task.isdouparname

def isdouparname (parname) -> param

Checks whether parname is a valid double parameter name.

Parameters parname (str) – Parameter name. (input)
Return param (mosek.dparam) – Returns the parameter corresponding to the name, if

one exists.
Groups Parameters, Names

Task.isintparname

235

def isintparname (parname) -> param

Checks whether parname is a valid integer parameter name.

Parameters parname (str) – Parameter name. (input)
Return param (mosek.iparam) – Returns the parameter corresponding to the name, if

one exists.
Groups Parameters, Names

Task.isstrparname

def isstrparname (parname) -> param

Checks whether parname is a valid string parameter name.

Parameters parname (str) – Parameter name. (input)
Return param (mosek.sparam) – Returns the parameter corresponding to the name, if

one exists.
Groups Parameters, Names

Task.linkfiletostream

def linkfiletostream (whichstream, filename, append)

Directs all output from a task stream whichstream to a file filename.

Parameters
• whichstream (mosek.streamtype) – Index of the stream. (input)
• filename (str) – A valid file name. (input)
• append (int) – If this argument is 0 the output file will be overwritten, otherwise

it will be appended to. (input)
Groups Logging

Task.onesolutionsummary

def onesolutionsummary (whichstream, whichsol)

Prints a short summary of a specified solution.

Parameters
• whichstream (mosek.streamtype) – Index of the stream. (input)
• whichsol (mosek.soltype) – Selects a solution. (input)

Groups Logging , Solution information

Task.optimize

def optimize () -> trmcode

Calls the optimizer. Depending on the problem type and the selected optimizer this will call one of
the optimizers in MOSEK. By default the interior point optimizer will be selected for continuous
problems. The optimizer may be selected manually by setting the parameter iparam.optimizer .

Return trmcode (mosek.rescode) – Is either rescode.ok or a termination response
code.

Groups Optimization

Task.optimizermt

236

def optimizermt (server, port) -> trmcode

Offload the optimization task to a solver server defined by server:port. The call will block until
a result is available or the connection closes.

If the string parameter sparam.remote_access_token is not blank, it will be passed to the server
as authentication.

Parameters
• server (str) – Name or IP address of the solver server. (input)
• port (str) – Network port of the solver server. (input)

Return trmcode (mosek.rescode) – Is either rescode.ok or a termination response
code.

Groups Remote optimization

Task.optimizersummary

def optimizersummary (whichstream)

Prints a short summary with optimizer statistics from last optimization.

Parameters whichstream (mosek.streamtype) – Index of the stream. (input)
Groups Logging

Task.primalrepair

def primalrepair (wlc, wuc, wlx, wux)

The function repairs a primal infeasible optimization problem by adjusting the bounds on the
constraints and variables where the adjustment is computed as the minimal weighted sum of re-
laxations to the bounds on the constraints and variables. Observe the function only repairs the
problem but does not solve it. If an optimal solution is required the problem should be optimized
after the repair.

The function is applicable to linear and conic problems possibly with integer variables.

Observe that when computing the minimal weighted relaxation the termination tolerance specified
by the parameters of the task is employed. For instance the parameter iparam.mio_mode can be
used to make MOSEK ignore the integer constraints during the repair which usually leads to a
much faster repair. However, the drawback is of course that the repaired problem may not have
an integer feasible solution.

Note the function modifies the task in place. If this is not desired, then apply the function to a
cloned task.

Parameters
• wlc (float[]) – (𝑤𝑐

𝑙)𝑖 is the weight associated with relaxing the lower bound
on constraint 𝑖. If the weight is negative, then the lower bound is not relaxed.
Moreover, if the argument is NULL, then all the weights are assumed to be 1.
(input)

• wuc (float[]) – (𝑤𝑐
𝑢)𝑖 is the weight associated with relaxing the upper bound

on constraint 𝑖. If the weight is negative, then the upper bound is not relaxed.
Moreover, if the argument is NULL, then all the weights are assumed to be 1.
(input)

• wlx (float[]) – (𝑤𝑥
𝑙)𝑗 is the weight associated with relaxing the lower bound

on variable 𝑗. If the weight is negative, then the lower bound is not relaxed.
Moreover, if the argument is NULL, then all the weights are assumed to be 1.
(input)

237

• wux (float[]) – (𝑤𝑥
𝑙)𝑖 is the weight associated with relaxing the upper bound

on variable 𝑗. If the weight is negative, then the upper bound is not relaxed.
Moreover, if the argument is NULL, then all the weights are assumed to be 1.
(input)

Groups Infeasibility diagnostic

Task.primalsensitivity

def primalsensitivity (subi, marki, subj, markj, leftpricei, rightpricei, leftrangei,␣
→˓rightrangei, leftpricej, rightpricej, leftrangej, rightrangej)

Calculates sensitivity information for bounds on variables and constraints. For details on sensitivity
analysis, the definitions of shadow price and linearity interval and an example see Section Sensitivity
Analysis.
The type of sensitivity analysis to be performed (basis or optimal partition) is controlled by the
parameter iparam.sensitivity_type .

Parameters
• subi (int[]) – Indexes of constraints to analyze. (input)
• marki (mosek.mark []) – The value of marki[i] indicates for which bound of

constraint subi[i] sensitivity analysis is performed. If marki[i] = mark.up
the upper bound of constraint subi[i] is analyzed, and if marki[i] = mark.
lo the lower bound is analyzed. If subi[i] is an equality constraint, either
mark.lo or mark.up can be used to select the constraint for sensitivity analysis.
(input)

• subj (int[]) – Indexes of variables to analyze. (input)
• markj (mosek.mark []) – The value of markj[j] indicates for which bound of

variable subj[j] sensitivity analysis is performed. If markj[j] = mark.up the
upper bound of variable subj[j] is analyzed, and if markj[j] = mark.lo the
lower bound is analyzed. If subj[j] is a fixed variable, either mark.lo or mark.
up can be used to select the bound for sensitivity analysis. (input)

• leftpricei (float[]) – leftpricei[i] is the left shadow price for the bound
marki[i] of constraint subi[i]. (output)

• rightpricei (float[]) – rightpricei[i] is the right shadow price for the
bound marki[i] of constraint subi[i]. (output)

• leftrangei (float[]) – leftrangei[i] is the left range 𝛽1 for the bound
marki[i] of constraint subi[i]. (output)

• rightrangei (float[]) – rightrangei[i] is the right range 𝛽2 for the bound
marki[i] of constraint subi[i]. (output)

• leftpricej (float[]) – leftpricej[j] is the left shadow price for the bound
markj[j] of variable subj[j]. (output)

• rightpricej (float[]) – rightpricej[j] is the right shadow price for the
bound markj[j] of variable subj[j]. (output)

• leftrangej (float[]) – leftrangej[j] is the left range 𝛽1 for the bound
markj[j] of variable subj[j]. (output)

• rightrangej (float[]) – rightrangej[j] is the right range 𝛽2 for the bound
markj[j] of variable subj[j]. (output)

Groups Sensitivity analysis

Task.putacol

def putacol (j, subj, valj)

Change one column of the linear constraint matrix 𝐴. Resets all the elements in column 𝑗 to zero
and then sets

𝑎subj[𝑘],j = valj[𝑘], 𝑘 = 0, . . . , nzj− 1.

238

Parameters
• j (int) – Index of a column in 𝐴. (input)
• subj (int[]) – Row indexes of non-zero values in column 𝑗 of 𝐴. (input)
• valj (float[]) – New non-zero values of column 𝑗 in 𝐴. (input)

Groups Problem data - linear part

Task.putacollist

def putacollist (sub, ptrb, ptre, asub, aval)

Change a set of columns in the linear constraint matrix 𝐴 with data in sparse triplet format. The
requested columns are set to zero and then updated with:

for 𝑖 = 0, . . . , 𝑛𝑢𝑚− 1
𝑎asub[𝑘],sub[𝑖] = aval[𝑘], 𝑘 = ptrb[𝑖], . . . , ptre[𝑖] − 1.

Parameters
• sub (int[]) – Indexes of columns that should be replaced, no duplicates. (input)
• ptrb (int[]) – Array of pointers to the first element in each column. (input)
• ptre (int[]) – Array of pointers to the last element plus one in each column.

(input)
• asub (int[]) – Row indexes of new elements. (input)
• aval (float[]) – Coefficient values. (input)

Groups Problem data - linear part

Task.putacolslice

def putacolslice (first, last, ptrb, ptre, asub, aval)

Change a slice of columns in the linear constraint matrix 𝐴 with data in sparse triplet format. The
requested columns are set to zero and then updated with:

for 𝑖 = first, . . . , last− 1
𝑎asub[𝑘],𝑖 = aval[𝑘], 𝑘 = ptrb[𝑖], . . . , ptre[𝑖] − 1.

Parameters
• first (int) – First column in the slice. (input)
• last (int) – Last column plus one in the slice. (input)
• ptrb (int[]) – Array of pointers to the first element in each column. (input)
• ptre (int[]) – Array of pointers to the last element plus one in each column.

(input)
• asub (int[]) – Row indexes of new elements. (input)
• aval (float[]) – Coefficient values. (input)

Groups Problem data - linear part

Task.putaij

def putaij (i, j, aij)

Changes a coefficient in the linear coefficient matrix 𝐴 using the method

𝑎𝑖,𝑗 = aij.

Parameters
• i (int) – Constraint (row) index. (input)
• j (int) – Variable (column) index. (input)

239

• aij (float) – New coefficient for 𝑎𝑖,𝑗 . (input)
Groups Problem data - linear part

Task.putaijlist

def putaijlist (subi, subj, valij)

Changes one or more coefficients in 𝐴 using the method

𝑎subi[k],subj[k] = valij[k], 𝑘 = 0, . . . , 𝑛𝑢𝑚− 1.

Duplicates are not allowed.

Parameters
• subi (int[]) – Constraint (row) indices. (input)
• subj (int[]) – Variable (column) indices. (input)
• valij (float[]) – New coefficient values for 𝑎𝑖,𝑗 . (input)

Groups Problem data - linear part

Task.putarow

def putarow (i, subi, vali)

Change one row of the linear constraint matrix 𝐴. Resets all the elements in row 𝑖 to zero and
then sets

𝑎i,subi[𝑘] = vali[𝑘], 𝑘 = 0, . . . , nzi− 1.

Parameters
• i (int) – Index of a row in 𝐴. (input)
• subi (int[]) – Column indexes of non-zero values in row 𝑖 of 𝐴. (input)
• vali (float[]) – New non-zero values of row 𝑖 in 𝐴. (input)

Groups Problem data - linear part

Task.putarowlist

def putarowlist (sub, ptrb, ptre, asub, aval)

Change a set of rows in the linear constraint matrix 𝐴 with data in sparse triplet format. The
requested rows are set to zero and then updated with:

for 𝑖 = 0, . . . , 𝑛𝑢𝑚− 1
𝑎sub[𝑖],asub[𝑘] = aval[𝑘], 𝑘 = ptrb[𝑖], . . . , ptre[𝑖] − 1.

Parameters
• sub (int[]) – Indexes of rows that should be replaced, no duplicates. (input)
• ptrb (int[]) – Array of pointers to the first element in each row. (input)
• ptre (int[]) – Array of pointers to the last element plus one in each row. (input)
• asub (int[]) – Column indexes of new elements. (input)
• aval (float[]) – Coefficient values. (input)

Groups Problem data - linear part

Task.putarowslice

240

def putarowslice (first, last, ptrb, ptre, asub, aval)

Change a slice of rows in the linear constraint matrix 𝐴 with data in sparse triplet format. The
requested rows are set to zero and then updated with:

for 𝑖 = first, . . . , last− 1
𝑎sub[𝑖],asub[𝑘] = aval[𝑘], 𝑘 = ptrb[𝑖], . . . , ptre[𝑖] − 1.

Parameters
• first (int) – First row in the slice. (input)
• last (int) – Last row plus one in the slice. (input)
• ptrb (int[]) – Array of pointers to the first element in each row. (input)
• ptre (int[]) – Array of pointers to the last element plus one in each row. (input)
• asub (int[]) – Column indexes of new elements. (input)
• aval (float[]) – Coefficient values. (input)

Groups Problem data - linear part

Task.putatruncatetol

def putatruncatetol (tolzero)

Truncates (sets to zero) all elements in 𝐴 that satisfy

|𝑎𝑖,𝑗 | ≤ tolzero.

Parameters tolzero (float) – Truncation tolerance. (input)
Groups Problem data - linear part

Task.putbarablocktriplet

def putbarablocktriplet (num, subi, subj, subk, subl, valijkl)

Inputs the 𝐴 matrix in block triplet form.

Parameters
• num (int) – Number of elements in the block triplet form. (input)
• subi (int[]) – Constraint index. (input)
• subj (int[]) – Symmetric matrix variable index. (input)
• subk (int[]) – Block row index. (input)
• subl (int[]) – Block column index. (input)
• valijkl (float[]) – The numerical value associated with each block triplet.

(input)
Groups Problem data - semidefinite

Task.putbaraij

def putbaraij (i, j, sub, weights)

This function sets one element in the 𝐴 matrix.

Each element in the 𝐴 matrix is a weighted sum of symmetric matrices from the symmetric matrix
storage 𝐸, so 𝐴𝑖𝑗 is a symmetric matrix. By default all elements in 𝐴 are 0, so only non-zero
elements need be added. Setting the same element again will overwrite the earlier entry.

The symmetric matrices from 𝐸 are defined separately using the function Task.
appendsparsesymmat .

Parameters

241

• i (int) – Row index of 𝐴. (input)
• j (int) – Column index of 𝐴. (input)
• sub (int[]) – Indices in 𝐸 of the matrices appearing in the weighted sum for
𝐴𝑖𝑗 . (input)

• weights (float[]) – weights[k] is the coefficient of the sub[k]-th element of
𝐸 in the weighted sum forming 𝐴𝑖𝑗 . (input)

Groups Problem data - semidefinite

Task.putbaraijlist

def putbaraijlist (subi, subj, alphaptrb, alphaptre, matidx, weights)

This function sets a list of elements in the 𝐴 matrix.

Each element in the 𝐴 matrix is a weighted sum of symmetric matrices from the symmetric matrix
storage 𝐸, so 𝐴𝑖𝑗 is a symmetric matrix. By default all elements in 𝐴 are 0, so only non-zero
elements need be added. Setting the same element again will overwrite the earlier entry.

The symmetric matrices from 𝐸 are defined separately using the function Task.
appendsparsesymmat .

Parameters
• subi (int[]) – Row index of 𝐴. (input)
• subj (int[]) – Column index of 𝐴. (input)
• alphaptrb (int[]) – Start entries for terms in the weighted sum that forms 𝐴𝑖𝑗 .

(input)
• alphaptre (int[]) – End entries for terms in the weighted sum that forms 𝐴𝑖𝑗 .

(input)
• matidx (int[]) – Indices in 𝐸 of the matrices appearing in the weighted sum

for 𝐴𝑖𝑗 . (input)
• weights (float[]) – weights[k] is the coefficient of the sub[k]-th element of
𝐸 in the weighted sum forming 𝐴𝑖𝑗 . (input)

Groups Problem data - semidefinite

Task.putbararowlist

def putbararowlist (subi, ptrb, ptre, subj, nummat, matidx, weights)

This function replaces a list of rows in the 𝐴 matrix.

Parameters
• subi (int[]) – Row indexes of 𝐴. (input)
• ptrb (int[]) – Start of rows in 𝐴. (input)
• ptre (int[]) – End of rows in 𝐴. (input)
• subj (int[]) – Column index of 𝐴. (input)
• nummat (int[]) – Number of entries in weighted sum of matrixes. (input)
• matidx (int[]) – Matrix indexes for weighted sum of matrixes. (input)
• weights (float[]) – Weights for weighted sum of matrixes. (input)

Groups Problem data - semidefinite

Task.putbarcblocktriplet

def putbarcblocktriplet (num, subj, subk, subl, valjkl)

Inputs the 𝐶 matrix in block triplet form.

Parameters

242

• num (int) – Number of elements in the block triplet form. (input)
• subj (int[]) – Symmetric matrix variable index. (input)
• subk (int[]) – Block row index. (input)
• subl (int[]) – Block column index. (input)
• valjkl (float[]) – The numerical value associated with each block triplet.

(input)
Groups Problem data - semidefinite

Task.putbarcj

def putbarcj (j, sub, weights)

This function sets one entry in the 𝐶 vector.

Each element in the 𝐶 vector is a weighted sum of symmetric matrices from the symmetric matrix
storage 𝐸, so 𝐶𝑗 is a symmetric matrix. By default all elements in 𝐶 are 0, so only non-zero
elements need be added. Setting the same element again will overwrite the earlier entry.

The symmetric matrices from 𝐸 are defined separately using the function Task.
appendsparsesymmat .

Parameters
• j (int) – Index of the element in 𝐶 that should be changed. (input)
• sub (int[]) – Indices in 𝐸 of matrices appearing in the weighted sum for 𝐶𝑗

(input)
• weights (float[]) – weights[k] is the coefficient of the sub[k]-th element of
𝐸 in the weighted sum forming 𝐶𝑗 . (input)

Groups Problem data - semidefinite, Problem data - objective

Task.putbarsj

def putbarsj (whichsol, j, barsj)

Sets the dual solution for a semidefinite variable.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• j (int) – Index of the semidefinite variable. (input)
• barsj (float[]) – Value of 𝑆𝑗 . Format as in Task.getbarsj . (input)

Groups Solution - semidefinite

Task.putbarvarname

def putbarvarname (j, name)

Sets the name of a semidefinite variable.

Parameters
• j (int) – Index of the variable. (input)
• name (str) – The variable name. (input)

Groups Names, Problem data - semidefinite

Task.putbarxj

def putbarxj (whichsol, j, barxj)

Sets the primal solution for a semidefinite variable.

243

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• j (int) – Index of the semidefinite variable. (input)
• barxj (float[]) – Value of 𝑋𝑗 . Format as in Task.getbarxj . (input)

Groups Solution - semidefinite

Task.putcfix

def putcfix (cfix)

Replaces the fixed term in the objective by a new one.

Parameters cfix (float) – Fixed term in the objective. (input)
Groups Problem data - linear part , Problem data - objective

Task.putcj

def putcj (j, cj)

Modifies one coefficient in the linear objective vector 𝑐, i.e.

𝑐j = cj.

If the absolute value exceeds dparam.data_tol_c_huge an error is generated. If the absolute
value exceeds dparam.data_tol_cj_large , a warning is generated, but the coefficient is inputted
as specified.

Parameters
• j (int) – Index of the variable for which 𝑐 should be changed. (input)
• cj (float) – New value of 𝑐𝑗 . (input)

Groups Problem data - linear part , Problem data - objective

Task.putclist

def putclist (subj, val)

Modifies the coefficients in the linear term 𝑐 in the objective using the principle

𝑐subj[t] = val[t], 𝑡 = 0, . . . , 𝑛𝑢𝑚− 1.

If a variable index is specified multiple times in subj only the last entry is used. Data checks are
performed as in Task.putcj .

Parameters
• subj (int[]) – Indices of variables for which the coefficient in 𝑐 should be

changed. (input)
• val (float[]) – New numerical values for coefficients in 𝑐 that should be mod-

ified. (input)
Groups Problem data - linear part , Problem data - variables, Problem data - objective

Task.putconbound

def putconbound (i, bkc, blc, buc)

Changes the bounds for one constraint.
If the bound value specified is numerically larger than dparam.data_tol_bound_inf it is consid-
ered infinite and the bound key is changed accordingly. If a bound value is numerically larger than
dparam.data_tol_bound_wrn , a warning will be displayed, but the bound is inputted as specified.

244

Parameters
• i (int) – Index of the constraint. (input)
• bkc (mosek.boundkey) – New bound key. (input)
• blc (float) – New lower bound. (input)
• buc (float) – New upper bound. (input)

Groups Problem data - linear part , Problem data - constraints, Problem data - bounds

Task.putconboundlist

def putconboundlist (sub, bkc, blc, buc)

Changes the bounds for a list of constraints. If multiple bound changes are specified for a constraint,
then only the last change takes effect. Data checks are performed as in Task.putconbound .

Parameters
• sub (int[]) – List of constraint indexes. (input)
• bkc (mosek.boundkey []) – Bound keys for the constraints. (input)
• blc (float[]) – Lower bounds for the constraints. (input)
• buc (float[]) – Upper bounds for the constraints. (input)

Groups Problem data - linear part , Problem data - constraints, Problem data - bounds

Task.putconboundlistconst

def putconboundlistconst (sub, bkc, blc, buc)

Changes the bounds for one or more constraints. Data checks are performed as in Task.
putconbound .

Parameters
• sub (int[]) – List of constraint indexes. (input)
• bkc (mosek.boundkey) – New bound key for all constraints in the list. (input)
• blc (float) – New lower bound for all constraints in the list. (input)
• buc (float) – New upper bound for all constraints in the list. (input)

Groups Problem data - linear part , Problem data - constraints, Problem data - bounds

Task.putconboundslice

def putconboundslice (first, last, bkc, blc, buc)

Changes the bounds for a slice of the constraints. Data checks are performed as in Task.
putconbound .

Parameters
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• bkc (mosek.boundkey []) – Bound keys for the constraints. (input)
• blc (float[]) – Lower bounds for the constraints. (input)
• buc (float[]) – Upper bounds for the constraints. (input)

Groups Problem data - linear part , Problem data - constraints, Problem data - bounds

Task.putconboundsliceconst

def putconboundsliceconst (first, last, bkc, blc, buc)

Changes the bounds for a slice of the constraints. Data checks are performed as in Task.
putconbound .

245

Parameters
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• bkc (mosek.boundkey) – New bound key for all constraints in the slice. (input)
• blc (float) – New lower bound for all constraints in the slice. (input)
• buc (float) – New upper bound for all constraints in the slice. (input)

Groups Problem data - linear part , Problem data - constraints, Problem data - bounds

Task.putcone

def putcone (k, ct, conepar, submem)

Replaces a conic constraint.

Parameters
• k (int) – Index of the cone. (input)
• ct (mosek.conetype) – Specifies the type of the cone. (input)
• conepar (float) – For the power cone it denotes the exponent alpha. For other

cone types it is unused and can be set to 0. (input)
• submem (int[]) – Variable subscripts of the members in the cone. (input)

Groups Problem data - cones

Task.putconename

def putconename (j, name)

Sets the name of a cone.

Parameters
• j (int) – Index of the cone. (input)
• name (str) – The name of the cone. (input)

Groups Names, Problem data - cones

Task.putconname

def putconname (i, name)

Sets the name of a constraint.

Parameters
• i (int) – Index of the constraint. (input)
• name (str) – The name of the constraint. (input)

Groups Names, Problem data - constraints, Problem data - linear part

Task.putconsolutioni

def putconsolutioni (i, whichsol, sk, x, sl, su)

Sets the primal and dual solution information for a single constraint.

Parameters
• i (int) – Index of the constraint. (input)
• whichsol (mosek.soltype) – Selects a solution. (input)
• sk (mosek.stakey) – Status key of the constraint. (input)
• x (float) – Primal solution value of the constraint. (input)

246

• sl (float) – Solution value of the dual variable associated with the lower bound.
(input)

• su (float) – Solution value of the dual variable associated with the upper bound.
(input)

Groups Solution information, Solution - primal , Solution - dual

Task.putcslice

def putcslice (first, last, slice)

Modifies a slice in the linear term 𝑐 in the objective using the principle

𝑐j = slice[j− first], 𝑗 = 𝑓𝑖𝑟𝑠𝑡, .., 𝑙𝑎𝑠𝑡− 1

Data checks are performed as in Task.putcj .

Parameters
• first (int) – First element in the slice of 𝑐. (input)
• last (int) – Last element plus 1 of the slice in 𝑐 to be changed. (input)
• slice (float[]) – New numerical values for coefficients in 𝑐 that should be

modified. (input)
Groups Problem data - linear part , Problem data - objective

Task.putdouparam

def putdouparam (param, parvalue)

Sets the value of a double parameter.

Parameters
• param (mosek.dparam) – Which parameter. (input)
• parvalue (float) – Parameter value. (input)

Groups Parameters

Task.putintparam

def putintparam (param, parvalue)

Sets the value of an integer parameter.

Parameters
• param (mosek.iparam) – Which parameter. (input)
• parvalue (int) – Parameter value. (input)

Groups Parameters

Task.putmaxnumanz

def putmaxnumanz (maxnumanz)

Sets the number of preallocated non-zero entries in 𝐴.

MOSEK stores only the non-zero elements in the linear coefficient matrix 𝐴 and it cannot predict
how much storage is required to store 𝐴. Using this function it is possible to specify the number
of non-zeros to preallocate for storing 𝐴.

If the number of non-zeros in the problem is known, it is a good idea to set maxnumanz slightly
larger than this number, otherwise a rough estimate can be used. In general, if 𝐴 is inputted in
many small chunks, setting this value may speed up the data input phase.

247

It is not mandatory to call this function, since MOSEK will reallocate internal structures whenever
it is necessary.

The function call has no effect if both maxnumcon and maxnumvar are zero.

Parameters maxnumanz (int) – Number of preallocated non-zeros in 𝐴. (input)
Groups Environment and task management , Problem data - semidefinite

Task.putmaxnumbarvar

def putmaxnumbarvar (maxnumbarvar)

Sets the number of preallocated symmetric matrix variables in the optimization task. When this
number of variables is reached MOSEK will automatically allocate more space for variables.

It is not mandatory to call this function. It only gives a hint about the amount of data to preallocate
for efficiency reasons.

Please note that maxnumbarvar must be larger than the current number of symmetric matrix
variables in the task.

Parameters maxnumbarvar (int) – Number of preallocated symmetric matrix variables.
(input)

Groups Environment and task management , Problem data - semidefinite

Task.putmaxnumcon

def putmaxnumcon (maxnumcon)

Sets the number of preallocated constraints in the optimization task. When this number of con-
straints is reached MOSEK will automatically allocate more space for constraints.

It is never mandatory to call this function, since MOSEK will reallocate any internal structures
whenever it is required.

Please note that maxnumcon must be larger than the current number of constraints in the task.

Parameters maxnumcon (int) – Number of preallocated constraints in the optimization
task. (input)

Groups Environment and task management , Problem data - constraints

Task.putmaxnumcone

def putmaxnumcone (maxnumcone)

Sets the number of preallocated conic constraints in the optimization task. When this number of
conic constraints is reached MOSEK will automatically allocate more space for conic constraints.

It is not mandatory to call this function, since MOSEK will reallocate any internal structures
whenever it is required.

Please note that maxnumcon must be larger than the current number of conic constraints in the
task.

Parameters maxnumcone (int) – Number of preallocated conic constraints in the opti-
mization task. (input)

Groups Environment and task management , Problem data - cones

Task.putmaxnumqnz

def putmaxnumqnz (maxnumqnz)

248

Sets the number of preallocated non-zero entries in quadratic terms.

MOSEK stores only the non-zero elements in 𝑄. Therefore, MOSEK cannot predict how much
storage is required to store 𝑄. Using this function it is possible to specify the number non-zeros to
preallocate for storing 𝑄 (both objective and constraints).

It may be advantageous to reserve more non-zeros for 𝑄 than actually needed since it may improve
the internal efficiency of MOSEK, however, it is never worthwhile to specify more than the double
of the anticipated number of non-zeros in 𝑄.

It is not mandatory to call this function, since MOSEK will reallocate internal structures whenever
it is necessary.

Parameters maxnumqnz (int) – Number of non-zero elements preallocated in quadratic
coefficient matrices. (input)

Groups Environment and task management , Problem data - quadratic part

Task.putmaxnumvar

def putmaxnumvar (maxnumvar)

Sets the number of preallocated variables in the optimization task. When this number of variables
is reached MOSEK will automatically allocate more space for variables.

It is not mandatory to call this function. It only gives a hint about the amount of data to preallocate
for efficiency reasons.

Please note that maxnumvar must be larger than the current number of variables in the task.

Parameters maxnumvar (int) – Number of preallocated variables in the optimization
task. (input)

Groups Environment and task management , Problem data - variables

Task.putnadouparam

def putnadouparam (paramname, parvalue)

Sets the value of a named double parameter.

Parameters
• paramname (str) – Name of a parameter. (input)
• parvalue (float) – Parameter value. (input)

Groups Parameters

Task.putnaintparam

def putnaintparam (paramname, parvalue)

Sets the value of a named integer parameter.

Parameters
• paramname (str) – Name of a parameter. (input)
• parvalue (int) – Parameter value. (input)

Groups Parameters

Task.putnastrparam

def putnastrparam (paramname, parvalue)

Sets the value of a named string parameter.

Parameters

249

• paramname (str) – Name of a parameter. (input)
• parvalue (str) – Parameter value. (input)

Groups Parameters

Task.putobjname

def putobjname (objname)

Assigns a new name to the objective.

Parameters objname (str) – Name of the objective. (input)
Groups Problem data - linear part , Names, Problem data - objective

Task.putobjsense

def putobjsense (sense)

Sets the objective sense of the task.

Parameters sense (mosek.objsense) – The objective sense of the task. The values
objsense.maximize and objsense.minimize mean that the problem is maximized
or minimized respectively. (input)

Groups Problem data - linear part , Problem data - objective

Task.putoptserverhost

def putoptserverhost (host)

Specify an OptServer URL for remote calls. The URL should contain protocol, host and port in
the form http://server:port. If the URL is set using this function, all subsequent calls to any
MOSEK function that involves synchronous optimization will be sent to the specified OptServer
instead of being executed locally. Passing NULL deactivates this redirection.

Parameters host (str) – A URL specifying the optimization server to be used. (input)
Groups Remote optimization

Task.putparam

def putparam (parname, parvalue)

Checks if parname is valid parameter name. If it is, the parameter is assigned the value specified
by parvalue.

Parameters
• parname (str) – Parameter name. (input)
• parvalue (str) – Parameter value. (input)

Groups Parameters

Task.putqcon

def putqcon (qcsubk, qcsubi, qcsubj, qcval)

Replace all quadratic entries in the constraints. The list of constraints has the form

𝑙𝑐𝑘 ≤ 1

2

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑖=0

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑗=0

𝑞𝑘𝑖𝑗𝑥𝑖𝑥𝑗 +

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑗=0

𝑎𝑘𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1.

250

This function sets all the quadratic terms to zero and then performs the update:

𝑞
qcsubk[t]
qcsubi[t],qcsubj[t] = 𝑞

qcsubk[t]
qcsubj[t],qcsubi[t] = 𝑞

qcsubk[t]
qcsubj[t],qcsubi[t] + qcval[t],

for 𝑡 = 0, . . . , 𝑛𝑢𝑚𝑞𝑐𝑛𝑧 − 1.

Please note that:

• For large problems it is essential for the efficiency that the function Task.putmaxnumqnz is
employed to pre-allocate space.

• Only the lower triangular parts should be specified because the 𝑄 matrices are symmetric.
Specifying entries where 𝑖 < 𝑗 will result in an error.

• Only non-zero elements should be specified.

• The order in which the non-zero elements are specified is insignificant.

• Duplicate elements are added together as shown above. Hence, it is usually not recommended
to specify the same entry multiple times.

For a code example see Section Quadratic Optimization

Parameters
• qcsubk (int[]) – Constraint subscripts for quadratic coefficients. (input)
• qcsubi (int[]) – Row subscripts for quadratic constraint matrix. (input)
• qcsubj (int[]) – Column subscripts for quadratic constraint matrix. (input)
• qcval (float[]) – Quadratic constraint coefficient values. (input)

Groups Problem data - quadratic part

Task.putqconk

def putqconk (k, qcsubi, qcsubj, qcval)

Replaces all the quadratic entries in one constraint. This function performs the same operations
as Task.putqcon but only with respect to constraint number k and it does not modify the other
constraints. See the description of Task.putqcon for definitions and important remarks.

Parameters
• k (int) – The constraint in which the new 𝑄 elements are inserted. (input)
• qcsubi (int[]) – Row subscripts for quadratic constraint matrix. (input)
• qcsubj (int[]) – Column subscripts for quadratic constraint matrix. (input)
• qcval (float[]) – Quadratic constraint coefficient values. (input)

Groups Problem data - quadratic part

Task.putqobj

def putqobj (qosubi, qosubj, qoval)

Replace all quadratic terms in the objective. If the objective has the form

1

2

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑖=0

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑗=0

𝑞𝑜𝑖𝑗𝑥𝑖𝑥𝑗 +

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑗=0

𝑐𝑗𝑥𝑗 + 𝑐𝑓

then this function sets all the quadratic terms to zero and then performs the update:

𝑞𝑜qosubi[t],qosubj[t] = 𝑞𝑜qosubj[t],qosubi[t] = 𝑞𝑜qosubj[t],qosubi[t] + qoval[t],

for 𝑡 = 0, . . . , 𝑛𝑢𝑚𝑞𝑜𝑛𝑧 − 1.

See the description of Task.putqcon for important remarks and example.

251

Parameters
• qosubi (int[]) – Row subscripts for quadratic objective coefficients. (input)
• qosubj (int[]) – Column subscripts for quadratic objective coefficients. (input)
• qoval (float[]) – Quadratic objective coefficient values. (input)

Groups Problem data - quadratic part , Problem data - objective

Task.putqobjij

def putqobjij (i, j, qoij)

Replaces one coefficient in the quadratic term in the objective. The function performs the assign-
ment

𝑞𝑜𝑖𝑗 = 𝑞𝑜𝑗𝑖 = qoij.

Only the elements in the lower triangular part are accepted. Setting 𝑞𝑖𝑗 with 𝑗 > 𝑖 will cause an
error.

Please note that replacing all quadratic elements one by one is more computationally expensive
than replacing them all at once. Use Task.putqobj instead whenever possible.

Parameters
• i (int) – Row index for the coefficient to be replaced. (input)
• j (int) – Column index for the coefficient to be replaced. (input)
• qoij (float) – The new value for 𝑞𝑜𝑖𝑗 . (input)

Groups Problem data - quadratic part , Problem data - objective

Task.putskc

def putskc (whichsol, skc)

Sets the status keys for the constraints.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• skc (mosek.stakey []) – Status keys for the constraints. (input)

Groups Solution information

Task.putskcslice

def putskcslice (whichsol, first, last, skc)

Sets the status keys for a slice of the constraints.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• skc (mosek.stakey []) – Status keys for the constraints. (input)

Groups Solution information

Task.putskx

def putskx (whichsol, skx)

Sets the status keys for the scalar variables.

252

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• skx (mosek.stakey []) – Status keys for the variables. (input)

Groups Solution information

Task.putskxslice

def putskxslice (whichsol, first, last, skx)

Sets the status keys for a slice of the variables.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• skx (mosek.stakey []) – Status keys for the variables. (input)

Groups Solution information

Task.putslc

def putslc (whichsol, slc)

Sets the 𝑠𝑐𝑙 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• slc (float[]) – Dual variables corresponding to the lower bounds on the con-

straints. (input)
Groups Solution - dual

Task.putslcslice

def putslcslice (whichsol, first, last, slc)

Sets a slice of the 𝑠𝑐𝑙 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• slc (float[]) – Dual variables corresponding to the lower bounds on the con-

straints. (input)
Groups Solution - dual

Task.putslx

def putslx (whichsol, slx)

Sets the 𝑠𝑥𝑙 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• slx (float[]) – Dual variables corresponding to the lower bounds on the vari-

ables. (input)
Groups Solution - dual

253

Task.putslxslice

def putslxslice (whichsol, first, last, slx)

Sets a slice of the 𝑠𝑥𝑙 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• slx (float[]) – Dual variables corresponding to the lower bounds on the vari-

ables. (input)
Groups Solution - dual

Task.putsnx

def putsnx (whichsol, sux)

Sets the 𝑠𝑥𝑛 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• sux (float[]) – Dual variables corresponding to the upper bounds on the vari-

ables. (input)
Groups Solution - dual

Task.putsnxslice

def putsnxslice (whichsol, first, last, snx)

Sets a slice of the 𝑠𝑥𝑛 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• snx (float[]) – Dual variables corresponding to the conic constraints on the

variables. (input)
Groups Solution - dual

Task.putsolution

def putsolution (whichsol, skc, skx, skn, xc, xx, y, slc, suc, slx, sux, snx)

Inserts a solution into the task.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• skc (mosek.stakey []) – Status keys for the constraints. (input)
• skx (mosek.stakey []) – Status keys for the variables. (input)
• skn (mosek.stakey []) – Status keys for the conic constraints. (input)
• xc (float[]) – Primal constraint solution. (input)
• xx (float[]) – Primal variable solution. (input)
• y (float[]) – Vector of dual variables corresponding to the constraints. (input)
• slc (float[]) – Dual variables corresponding to the lower bounds on the con-

straints. (input)

254

• suc (float[]) – Dual variables corresponding to the upper bounds on the con-
straints. (input)

• slx (float[]) – Dual variables corresponding to the lower bounds on the vari-
ables. (input)

• sux (float[]) – Dual variables corresponding to the upper bounds on the vari-
ables. (input)

• snx (float[]) – Dual variables corresponding to the conic constraints on the
variables. (input)

Groups Solution information, Solution - primal , Solution - dual

Task.putsolutionyi

def putsolutionyi (i, whichsol, y)

Inputs the dual variable of a solution.

Parameters
• i (int) – Index of the dual variable. (input)
• whichsol (mosek.soltype) – Selects a solution. (input)
• y (float) – Solution value of the dual variable. (input)

Groups Solution information, Solution - dual

Task.putstrparam

def putstrparam (param, parvalue)

Sets the value of a string parameter.

Parameters
• param (mosek.sparam) – Which parameter. (input)
• parvalue (str) – Parameter value. (input)

Groups Parameters

Task.putsuc

def putsuc (whichsol, suc)

Sets the 𝑠𝑐𝑢 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• suc (float[]) – Dual variables corresponding to the upper bounds on the con-

straints. (input)
Groups Solution - dual

Task.putsucslice

def putsucslice (whichsol, first, last, suc)

Sets a slice of the 𝑠𝑐𝑢 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)

255

• suc (float[]) – Dual variables corresponding to the upper bounds on the con-
straints. (input)

Groups Solution - dual

Task.putsux

def putsux (whichsol, sux)

Sets the 𝑠𝑥𝑢 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• sux (float[]) – Dual variables corresponding to the upper bounds on the vari-

ables. (input)
Groups Solution - dual

Task.putsuxslice

def putsuxslice (whichsol, first, last, sux)

Sets a slice of the 𝑠𝑥𝑢 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• sux (float[]) – Dual variables corresponding to the upper bounds on the vari-

ables. (input)
Groups Solution - dual

Task.puttaskname

def puttaskname (taskname)

Assigns a new name to the task.

Parameters taskname (str) – Name assigned to the task. (input)
Groups Names, Environment and task management

Task.putvarbound

def putvarbound (j, bkx, blx, bux)

Changes the bounds for one variable.
If the bound value specified is numerically larger than dparam.data_tol_bound_inf it is consid-
ered infinite and the bound key is changed accordingly. If a bound value is numerically larger than
dparam.data_tol_bound_wrn , a warning will be displayed, but the bound is inputted as specified.

Parameters
• j (int) – Index of the variable. (input)
• bkx (mosek.boundkey) – New bound key. (input)
• blx (float) – New lower bound. (input)
• bux (float) – New upper bound. (input)

Groups Problem data - linear part , Problem data - variables, Problem data - bounds

Task.putvarboundlist

256

def putvarboundlist (sub, bkx, blx, bux)

Changes the bounds for one or more variables. If multiple bound changes are specified for a variable,
then only the last change takes effect. Data checks are performed as in Task.putvarbound .

Parameters
• sub (int[]) – List of variable indexes. (input)
• bkx (mosek.boundkey []) – Bound keys for the variables. (input)
• blx (float[]) – Lower bounds for the variables. (input)
• bux (float[]) – Upper bounds for the variables. (input)

Groups Problem data - linear part , Problem data - variables, Problem data - bounds

Task.putvarboundlistconst

def putvarboundlistconst (sub, bkx, blx, bux)

Changes the bounds for one or more variables. Data checks are performed as in Task.putvarbound .

Parameters
• sub (int[]) – List of variable indexes. (input)
• bkx (mosek.boundkey) – New bound key for all variables in the list. (input)
• blx (float) – New lower bound for all variables in the list. (input)
• bux (float) – New upper bound for all variables in the list. (input)

Groups Problem data - linear part , Problem data - variables, Problem data - bounds

Task.putvarboundslice

def putvarboundslice (first, last, bkx, blx, bux)

Changes the bounds for a slice of the variables. Data checks are performed as in Task.
putvarbound .

Parameters
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• bkx (mosek.boundkey []) – Bound keys for the variables. (input)
• blx (float[]) – Lower bounds for the variables. (input)
• bux (float[]) – Upper bounds for the variables. (input)

Groups Problem data - linear part , Problem data - variables, Problem data - bounds

Task.putvarboundsliceconst

def putvarboundsliceconst (first, last, bkx, blx, bux)

Changes the bounds for a slice of the variables. Data checks are performed as in Task.
putvarbound .

Parameters
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• bkx (mosek.boundkey) – New bound key for all variables in the slice. (input)
• blx (float) – New lower bound for all variables in the slice. (input)
• bux (float) – New upper bound for all variables in the slice. (input)

Groups Problem data - linear part , Problem data - variables, Problem data - bounds

257

Task.putvarname

def putvarname (j, name)

Sets the name of a variable.

Parameters
• j (int) – Index of the variable. (input)
• name (str) – The variable name. (input)

Groups Names, Problem data - variables, Problem data - linear part

Task.putvarsolutionj

def putvarsolutionj (j, whichsol, sk, x, sl, su, sn)

Sets the primal and dual solution information for a single variable.

Parameters
• j (int) – Index of the variable. (input)
• whichsol (mosek.soltype) – Selects a solution. (input)
• sk (mosek.stakey) – Status key of the variable. (input)
• x (float) – Primal solution value of the variable. (input)
• sl (float) – Solution value of the dual variable associated with the lower bound.

(input)
• su (float) – Solution value of the dual variable associated with the upper bound.

(input)
• sn (float) – Solution value of the dual variable associated with the conic con-

straint. (input)
Groups Solution information, Solution - primal , Solution - dual

Task.putvartype

def putvartype (j, vartype)

Sets the variable type of one variable.

Parameters
• j (int) – Index of the variable. (input)
• vartype (mosek.variabletype) – The new variable type. (input)

Groups Problem data - variables

Task.putvartypelist

def putvartypelist (subj, vartype)

Sets the variable type for one or more variables. If the same index is specified multiple times in
subj only the last entry takes effect.

Parameters
• subj (int[]) – A list of variable indexes for which the variable type should be

changed. (input)
• vartype (mosek.variabletype []) – A list of variable types that should be

assigned to the variables specified by subj. (input)
Groups Problem data - variables

258

Task.putxc

def putxc (whichsol, xc)

Sets the 𝑥𝑐 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• xc (float[]) – Primal constraint solution. (output)

Groups Solution - primal

Task.putxcslice

def putxcslice (whichsol, first, last, xc)

Sets a slice of the 𝑥𝑐 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• xc (float[]) – Primal constraint solution. (input)

Groups Solution - primal

Task.putxx

def putxx (whichsol, xx)

Sets the 𝑥𝑥 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• xx (float[]) – Primal variable solution. (input)

Groups Solution - primal

Task.putxxslice

def putxxslice (whichsol, first, last, xx)

Sets a slice of the 𝑥𝑥 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• xx (float[]) – Primal variable solution. (input)

Groups Solution - primal

Task.puty

def puty (whichsol, y)

Sets the 𝑦 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)

259

• y (float[]) – Vector of dual variables corresponding to the constraints. (input)
Groups Solution - primal

Task.putyslice

def putyslice (whichsol, first, last, y)

Sets a slice of the 𝑦 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• y (float[]) – Vector of dual variables corresponding to the constraints. (input)

Groups Solution - dual

Task.readdata

def readdata (filename)

Reads an optimization problem and associated data from a file.

Parameters filename (str) – A valid file name. (input)
Groups Input/Output

Task.readdataformat

def readdataformat (filename, format, compress)

Reads an optimization problem and associated data from a file.

Parameters
• filename (str) – A valid file name. (input)
• format (mosek.dataformat) – File data format. (input)
• compress (mosek.compresstype) – File compression type. (input)

Groups Input/Output

Task.readjsonstring

def readjsonstring (data)

Load task data from a JSON string, replacing any data that already exists in the task object. All
problem data, parameters and other settings are resorted, but if the string contains solutions, the
solution status after loading a file is set to unknown, even if it is optimal or otherwise well-defined.

Parameters data (str) – Problem data in text format. (input)
Groups Input/Output

Task.readlpstring

def readlpstring (data)

Load task data from a string in LP format, replacing any data that already exists in the task
object.

Parameters data (str) – Problem data in text format. (input)
Groups Input/Output

260

Task.readopfstring

def readopfstring (data)

Load task data from a string in OPF format, replacing any data that already exists in the task
object.

Parameters data (str) – Problem data in text format. (input)
Groups Input/Output

Task.readparamfile

def readparamfile (filename)

Reads MOSEK parameters from a file. Data is read from the file filename if it is a nonempty
string. Otherwise data is read from the file specified by sparam.param_read_file_name .

Parameters filename (str) – A valid file name. (input)
Groups Input/Output , Parameters

Task.readptfstring

def readptfstring (data)

Load task data from a PTF string, replacing any data that already exists in the task object. All
problem data, parameters and other settings are resorted, but if the string contains solutions, the
solution status after loading a file is set to unknown, even if it is optimal or otherwise well-defined.

Parameters data (str) – Problem data in text format. (input)
Groups Input/Output

Task.readsolution

def readsolution (whichsol, filename)

Reads a solution file and inserts it as a specified solution in the task. Data is read from the file
filename if it is a nonempty string. Otherwise data is read from one of the files specified by sparam.
bas_sol_file_name , sparam.itr_sol_file_name or sparam.int_sol_file_name depending on
which solution is chosen.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• filename (str) – A valid file name. (input)

Groups Input/Output

Task.readsummary

def readsummary (whichstream)

Prints a short summary of last file that was read.

Parameters whichstream (mosek.streamtype) – Index of the stream. (input)
Groups Input/Output , Inspecting the task

Task.readtask

261

def readtask (filename)

Load task data from a file, replacing any data that already exists in the task object. All problem
data, parameters and other settings are resorted, but if the file contains solutions, the solution
status after loading a file is set to unknown, even if it was optimal or otherwise well-defined when
the file was dumped.

See section The Task Format for a description of the Task format.

Parameters filename (str) – A valid file name. (input)
Groups Input/Output

Task.removebarvars

def removebarvars (subset)

The function removes a subset of the symmetric matrices from the optimization task. This implies
that the remaining symmetric matrices are renumbered.

Parameters subset (int[]) – Indexes of symmetric matrices which should be removed.
(input)

Groups Problem data - semidefinite

Task.removecones

def removecones (subset)

Removes a number of conic constraints from the problem. This implies that the remaining conic
constraints are renumbered. In general, it is much more efficient to remove a cone with a high
index than a low index.

Parameters subset (int[]) – Indexes of cones which should be removed. (input)
Groups Problem data - cones

Task.removecons

def removecons (subset)

The function removes a subset of the constraints from the optimization task. This implies that the
remaining constraints are renumbered.

Parameters subset (int[]) – Indexes of constraints which should be removed. (input)
Groups Problem data - constraints, Problem data - linear part

Task.removevars

def removevars (subset)

The function removes a subset of the variables from the optimization task. This implies that the
remaining variables are renumbered.

Parameters subset (int[]) – Indexes of variables which should be removed. (input)
Groups Problem data - variables, Problem data - linear part

Task.resizetask

def resizetask (maxnumcon, maxnumvar, maxnumcone, maxnumanz, maxnumqnz)

262

Sets the amount of preallocated space assigned for each type of data in an optimization task.

It is never mandatory to call this function, since it only gives a hint about the amount of data to
preallocate for efficiency reasons.

Please note that the procedure is destructive in the sense that all existing data stored in the task
is destroyed.

Parameters
• maxnumcon (int) – New maximum number of constraints. (input)
• maxnumvar (int) – New maximum number of variables. (input)
• maxnumcone (int) – New maximum number of cones. (input)
• maxnumanz (int) – New maximum number of non-zeros in 𝐴. (input)
• maxnumqnz (int) – New maximum number of non-zeros in all 𝑄 matrices. (input)

Groups Environment and task management

Task.sensitivityreport

def sensitivityreport (whichstream)

Reads a sensitivity format file from a location given by sparam.sensitivity_file_name and
writes the result to the stream whichstream. If sparam.sensitivity_res_file_name is set to a
non-empty string, then the sensitivity report is also written to a file of this name.

Parameters whichstream (mosek.streamtype) – Index of the stream. (input)
Groups Sensitivity analysis

Task.set_InfoCallback

def set_InfoCallback (callback)

Receive callbacks with solver status and information during optimization.

For example:

task.set_InfoCallback(lambda code,dinf,iinf,liinf: print("Called from: {0}".format(code)))

Parameters callback (callbackfunc) – The callback function. (input)

Task.set_Progress

def set_Progress (callback)

Receive callbacks about current status of the solver during optimization.

For example:

task.set_Progress(lambda code: print("Called from: {0}".format(code)))

Parameters callback (progresscallbackfunc) – The callback function. (input)

Task.set_Stream

def set_Stream (whichstream, callback)

Directs all output from a task stream to a callback function.

Parameters
• whichstream (streamtype) – Index of the stream. (input)
• callback (streamfunc) – The callback function. (input)

263

Task.setdefaults

def setdefaults ()

Resets all the parameters to their default values.

Groups Parameters

Task.solutiondef

def solutiondef (whichsol) -> isdef

Checks whether a solution is defined.

Parameters whichsol (mosek.soltype) – Selects a solution. (input)
Return isdef (int) – Is non-zero if the requested solution is defined.
Groups Solution information

Task.solutionsummary

def solutionsummary (whichstream)

Prints a short summary of the current solutions.

Parameters whichstream (mosek.streamtype) – Index of the stream. (input)
Groups Logging , Solution information

Task.solvewithbasis

def solvewithbasis (transp, numnz, sub, val) -> numnz

If a basic solution is available, then exactly 𝑛𝑢𝑚𝑐𝑜𝑛 basis variables are defined. These 𝑛𝑢𝑚𝑐𝑜𝑛
basis variables are denoted the basis. Associated with the basis is a basis matrix denoted 𝐵. This
function solves either the linear equation system

𝐵𝑋 = 𝑏 (15.3)

or the system

𝐵𝑇𝑋 = 𝑏 (15.4)

for the unknowns 𝑋, with 𝑏 being a user-defined vector. In order to make sense of the solution
𝑋 it is important to know the ordering of the variables in the basis because the ordering specifies
how 𝐵 is constructed. When calling Task.initbasissolve an ordering of the basis variables is
obtained, which can be used to deduce how MOSEK has constructed 𝐵. Indeed if the 𝑘-th basis
variable is variable 𝑥𝑗 it implies that

𝐵𝑖,𝑘 = 𝐴𝑖,𝑗 , 𝑖 = 0, . . . , 𝑛𝑢𝑚𝑐𝑜𝑛− 1.

Otherwise if the 𝑘-th basis variable is variable 𝑥𝑐
𝑗 it implies that

𝐵𝑖,𝑘 =

{︂
−1, 𝑖 = 𝑗,
0, 𝑖 ̸= 𝑗.

The function Task.initbasissolve must be called before a call to this function. Please note that
this function exploits the sparsity in the vector 𝑏 to speed up the computations.

Parameters

264

• transp (int) – If this argument is zero, then (15.3) is solved, if non-zero then
(15.4) is solved. (input)

• numnz (int) – As input it is the number of non-zeros in 𝑏. As output it is the
number of non-zeros in 𝑋. (input/output)

• sub (int[]) – As input it contains the positions of non-zeros in 𝑏. As output
it contains the positions of the non-zeros in 𝑋. It must have room for 𝑛𝑢𝑚𝑐𝑜𝑛
elements. (input/output)

• val (float[]) – As input it is the vector 𝑏 as a dense vector (although the
positions of non-zeros are specified in sub it is required that val[𝑖] = 0 when
𝑏[𝑖] = 0). As output val is the vector 𝑋 as a dense vector. It must have length
𝑛𝑢𝑚𝑐𝑜𝑛. (input/output)

Return numnz (int) – As input it is the number of non-zeros in 𝑏. As output it is the
number of non-zeros in 𝑋.

Groups Solving systems with basis matrix

Task.strtoconetype

def strtoconetype (str) -> conetype

Obtains cone type code corresponding to a cone type string.

Parameters str (str) – String corresponding to the cone type code conetype. (input)
Return conetype (mosek.conetype) – The cone type corresponding to the string str.
Groups Names

Task.strtosk

def strtosk (str) -> sk

Obtains the status key corresponding to an abbreviation string.

Parameters str (str) – A status key abbreviation string. (input)
Return sk (mosek.stakey) – Status key corresponding to the string.
Groups Names

Task.toconic

def toconic ()

This function tries to reformulate a given Quadratically Constrained Quadratic Optimization prob-
lem (QCQP) as a Conic Quadratic Optimization problem (CQO). The first step of the reformula-
tion is to convert the quadratic term of the objective function, if any, into a constraint. Then the
following steps are repeated for each quadratic constraint:

• a conic constraint is added along with a suitable number of auxiliary variables and constraints;

• the original quadratic constraint is not removed, but all its coefficients are zeroed out.

Note that the reformulation preserves all the original variables.

The conversion is performed in-place, i.e. the task passed as argument is modified on exit. That
also means that if the reformulation fails, i.e. the given QCQP is not representable as a CQO, then
the task has an undefined state. In some cases, users may want to clone the task to ensure a clean
copy is preserved.

Groups Problem data - quadratic part

Task.updatesolutioninfo

265

def updatesolutioninfo (whichsol)

Update the information items related to the solution.

Parameters whichsol (mosek.soltype) – Selects a solution. (input)
Groups Information items and statistics

Task.writedata

def writedata (filename)

Writes problem data associated with the optimization task to a file in one of the supported formats.
See Section Supported File Formats for the complete list.

The data file format is determined by the file name extension. To write in compressed format
append the extension .gz. E.g to write a gzip compressed MPS file use the extension mps.gz.

Please note that MPS, LP and OPF files require all variables to have unique names. If a task
contains no names, it is possible to write the file with automatically generated anonymous names
by setting the iparam.write_generic_names parameter to onoffkey.on .

Data is written to the file filename if it is a nonempty string. Otherwise data is written to the
file specified by sparam.data_file_name .

Parameters filename (str) – A valid file name. (input)
Groups Input/Output

Task.writejsonsol

def writejsonsol (filename)

Saves the current solutions and solver information items in a JSON file.

Parameters filename (str) – A valid file name. (input)
Groups Input/Output

Task.writeparamfile

def writeparamfile (filename)

Writes all the parameters to a parameter file.

Parameters filename (str) – A valid file name. (input)
Groups Input/Output , Parameters

Task.writesolution

def writesolution (whichsol, filename)

Saves the current basic, interior-point, or integer solution to a file.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• filename (str) – A valid file name. (input)

Groups Input/Output

Task.writetask

266

def writetask (filename)

Write a binary dump of the task data. This format saves all problem data, coefficients and param-
eter settings. See section The Task Format for a description of the Task format.

Parameters filename (str) – A valid file name. (input)
Groups Input/Output

15.5 Exceptions
MosekException

Base exception class for all MOSEK exceptions.
Error

Exception class used for all error response codes from MOSEK.

Implements MosekException

15.6 Parameters grouped by topic

Analysis

• dparam.ana_sol_infeas_tol

• iparam.ana_sol_basis

• iparam.ana_sol_print_violated

• iparam.log_ana_pro

Basis identification

• dparam.sim_lu_tol_rel_piv

• iparam.bi_clean_optimizer

• iparam.bi_ignore_max_iter

• iparam.bi_ignore_num_error

• iparam.bi_max_iterations

• iparam.intpnt_basis

• iparam.log_bi

• iparam.log_bi_freq

Conic interior-point method

• dparam.intpnt_co_tol_dfeas

• dparam.intpnt_co_tol_infeas

• dparam.intpnt_co_tol_mu_red

• dparam.intpnt_co_tol_near_rel

• dparam.intpnt_co_tol_pfeas

• dparam.intpnt_co_tol_rel_gap

267

Data check

• dparam.data_sym_mat_tol

• dparam.data_sym_mat_tol_huge

• dparam.data_sym_mat_tol_large

• dparam.data_tol_aij_huge

• dparam.data_tol_aij_large

• dparam.data_tol_bound_inf

• dparam.data_tol_bound_wrn

• dparam.data_tol_c_huge

• dparam.data_tol_cj_large

• dparam.data_tol_qij

• dparam.data_tol_x

• dparam.semidefinite_tol_approx

• iparam.check_convexity

• iparam.log_check_convexity

Data input/output

• iparam.infeas_report_auto

• iparam.log_file

• iparam.opf_write_header

• iparam.opf_write_hints

• iparam.opf_write_line_length

• iparam.opf_write_parameters

• iparam.opf_write_problem

• iparam.opf_write_sol_bas

• iparam.opf_write_sol_itg

• iparam.opf_write_sol_itr

• iparam.opf_write_solutions

• iparam.param_read_case_name

• iparam.param_read_ign_error

• iparam.ptf_write_transform

• iparam.read_debug

• iparam.read_keep_free_con

• iparam.read_lp_drop_new_vars_in_bou

• iparam.read_lp_quoted_names

• iparam.read_mps_format

268

• iparam.read_mps_width

• iparam.read_task_ignore_param

• iparam.sol_read_name_width

• iparam.sol_read_width

• iparam.write_bas_constraints

• iparam.write_bas_head

• iparam.write_bas_variables

• iparam.write_compression

• iparam.write_data_param

• iparam.write_free_con

• iparam.write_generic_names

• iparam.write_generic_names_io

• iparam.write_ignore_incompatible_items

• iparam.write_int_constraints

• iparam.write_int_head

• iparam.write_int_variables

• iparam.write_lp_full_obj

• iparam.write_lp_line_width

• iparam.write_lp_quoted_names

• iparam.write_lp_strict_format

• iparam.write_lp_terms_per_line

• iparam.write_mps_format

• iparam.write_mps_int

• iparam.write_precision

• iparam.write_sol_barvariables

• iparam.write_sol_constraints

• iparam.write_sol_head

• iparam.write_sol_ignore_invalid_names

• iparam.write_sol_variables

• iparam.write_task_inc_sol

• iparam.write_xml_mode

• sparam.bas_sol_file_name

• sparam.data_file_name

• sparam.debug_file_name

• sparam.int_sol_file_name

• sparam.itr_sol_file_name

269

• sparam.mio_debug_string

• sparam.param_comment_sign

• sparam.param_read_file_name

• sparam.param_write_file_name

• sparam.read_mps_bou_name

• sparam.read_mps_obj_name

• sparam.read_mps_ran_name

• sparam.read_mps_rhs_name

• sparam.sensitivity_file_name

• sparam.sensitivity_res_file_name

• sparam.sol_filter_xc_low

• sparam.sol_filter_xc_upr

• sparam.sol_filter_xx_low

• sparam.sol_filter_xx_upr

• sparam.stat_file_name

• sparam.stat_key

• sparam.stat_name

• sparam.write_lp_gen_var_name

Debugging

• iparam.auto_sort_a_before_opt

Dual simplex

• iparam.sim_dual_crash

• iparam.sim_dual_restrict_selection

• iparam.sim_dual_selection

Infeasibility report

• iparam.infeas_generic_names

• iparam.infeas_report_level

• iparam.log_infeas_ana

270

Interior-point method

• dparam.check_convexity_rel_tol

• dparam.intpnt_co_tol_dfeas

• dparam.intpnt_co_tol_infeas

• dparam.intpnt_co_tol_mu_red

• dparam.intpnt_co_tol_near_rel

• dparam.intpnt_co_tol_pfeas

• dparam.intpnt_co_tol_rel_gap

• dparam.intpnt_qo_tol_dfeas

• dparam.intpnt_qo_tol_infeas

• dparam.intpnt_qo_tol_mu_red

• dparam.intpnt_qo_tol_near_rel

• dparam.intpnt_qo_tol_pfeas

• dparam.intpnt_qo_tol_rel_gap

• dparam.intpnt_tol_dfeas

• dparam.intpnt_tol_dsafe

• dparam.intpnt_tol_infeas

• dparam.intpnt_tol_mu_red

• dparam.intpnt_tol_path

• dparam.intpnt_tol_pfeas

• dparam.intpnt_tol_psafe

• dparam.intpnt_tol_rel_gap

• dparam.intpnt_tol_rel_step

• dparam.intpnt_tol_step_size

• dparam.qcqo_reformulate_rel_drop_tol

• iparam.bi_ignore_max_iter

• iparam.bi_ignore_num_error

• iparam.intpnt_basis

• iparam.intpnt_diff_step

• iparam.intpnt_hotstart

• iparam.intpnt_max_iterations

• iparam.intpnt_max_num_cor

• iparam.intpnt_max_num_refinement_steps

• iparam.intpnt_off_col_trh

• iparam.intpnt_order_gp_num_seeds

• iparam.intpnt_order_method

271

• iparam.intpnt_purify

• iparam.intpnt_regularization_use

• iparam.intpnt_scaling

• iparam.intpnt_solve_form

• iparam.intpnt_starting_point

• iparam.log_intpnt

License manager

• iparam.cache_license

• iparam.license_debug

• iparam.license_pause_time

• iparam.license_suppress_expire_wrns

• iparam.license_trh_expiry_wrn

• iparam.license_wait

Logging

• iparam.log

• iparam.log_ana_pro

• iparam.log_bi

• iparam.log_bi_freq

• iparam.log_cut_second_opt

• iparam.log_expand

• iparam.log_feas_repair

• iparam.log_file

• iparam.log_include_summary

• iparam.log_infeas_ana

• iparam.log_intpnt

• iparam.log_local_info

• iparam.log_mio

• iparam.log_mio_freq

• iparam.log_order

• iparam.log_presolve

• iparam.log_response

• iparam.log_sensitivity

• iparam.log_sensitivity_opt

• iparam.log_sim

• iparam.log_sim_freq

• iparam.log_storage

272

Mixed-integer optimization

• dparam.mio_max_time

• dparam.mio_rel_gap_const

• dparam.mio_tol_abs_gap

• dparam.mio_tol_abs_relax_int

• dparam.mio_tol_feas

• dparam.mio_tol_rel_dual_bound_improvement

• dparam.mio_tol_rel_gap

• iparam.log_mio

• iparam.log_mio_freq

• iparam.mio_branch_dir

• iparam.mio_conic_outer_approximation

• iparam.mio_cut_clique

• iparam.mio_cut_cmir

• iparam.mio_cut_gmi

• iparam.mio_cut_implied_bound

• iparam.mio_cut_knapsack_cover

• iparam.mio_cut_selection_level

• iparam.mio_feaspump_level

• iparam.mio_heuristic_level

• iparam.mio_max_num_branches

• iparam.mio_max_num_relaxs

• iparam.mio_max_num_root_cut_rounds

• iparam.mio_max_num_solutions

• iparam.mio_node_optimizer

• iparam.mio_node_selection

• iparam.mio_perspective_reformulate

• iparam.mio_probing_level

• iparam.mio_propagate_objective_constraint

• iparam.mio_rins_max_nodes

• iparam.mio_root_optimizer

• iparam.mio_root_repeat_presolve_level

• iparam.mio_seed

• iparam.mio_vb_detection_level

273

Output information

• iparam.infeas_report_level

• iparam.license_suppress_expire_wrns

• iparam.license_trh_expiry_wrn

• iparam.log

• iparam.log_bi

• iparam.log_bi_freq

• iparam.log_cut_second_opt

• iparam.log_expand

• iparam.log_feas_repair

• iparam.log_file

• iparam.log_include_summary

• iparam.log_infeas_ana

• iparam.log_intpnt

• iparam.log_local_info

• iparam.log_mio

• iparam.log_mio_freq

• iparam.log_order

• iparam.log_response

• iparam.log_sensitivity

• iparam.log_sensitivity_opt

• iparam.log_sim

• iparam.log_sim_freq

• iparam.log_sim_minor

• iparam.log_storage

• iparam.max_num_warnings

Overall solver

• iparam.bi_clean_optimizer

• iparam.infeas_prefer_primal

• iparam.license_wait

• iparam.mio_mode

• iparam.optimizer

• iparam.presolve_level

• iparam.presolve_max_num_reductions

• iparam.presolve_use

274

• iparam.primal_repair_optimizer

• iparam.sensitivity_all

• iparam.sensitivity_optimizer

• iparam.sensitivity_type

• iparam.solution_callback

Overall system

• iparam.auto_update_sol_info

• iparam.intpnt_multi_thread

• iparam.license_wait

• iparam.log_storage

• iparam.mt_spincount

• iparam.num_threads

• iparam.remove_unused_solutions

• iparam.timing_level

• sparam.remote_access_token

Presolve

• dparam.presolve_tol_abs_lindep

• dparam.presolve_tol_aij

• dparam.presolve_tol_rel_lindep

• dparam.presolve_tol_s

• dparam.presolve_tol_x

• iparam.presolve_eliminator_max_fill

• iparam.presolve_eliminator_max_num_tries

• iparam.presolve_level

• iparam.presolve_lindep_abs_work_trh

• iparam.presolve_lindep_rel_work_trh

• iparam.presolve_lindep_use

• iparam.presolve_max_num_pass

• iparam.presolve_max_num_reductions

• iparam.presolve_use

Primal simplex

• iparam.sim_primal_crash

• iparam.sim_primal_restrict_selection

• iparam.sim_primal_selection

275

Progress callback

• iparam.solution_callback

Simplex optimizer

• dparam.basis_rel_tol_s

• dparam.basis_tol_s

• dparam.basis_tol_x

• dparam.sim_lu_tol_rel_piv

• dparam.simplex_abs_tol_piv

• iparam.basis_solve_use_plus_one

• iparam.log_sim

• iparam.log_sim_freq

• iparam.log_sim_minor

• iparam.sensitivity_optimizer

• iparam.sim_basis_factor_use

• iparam.sim_degen

• iparam.sim_dual_phaseone_method

• iparam.sim_exploit_dupvec

• iparam.sim_hotstart

• iparam.sim_hotstart_lu

• iparam.sim_max_iterations

• iparam.sim_max_num_setbacks

• iparam.sim_non_singular

• iparam.sim_primal_phaseone_method

• iparam.sim_refactor_freq

• iparam.sim_reformulation

• iparam.sim_save_lu

• iparam.sim_scaling

• iparam.sim_scaling_method

• iparam.sim_seed

• iparam.sim_solve_form

• iparam.sim_stability_priority

• iparam.sim_switch_optimizer

276

Solution input/output

• iparam.infeas_report_auto

• iparam.sol_filter_keep_basic

• iparam.sol_filter_keep_ranged

• iparam.sol_read_name_width

• iparam.sol_read_width

• iparam.write_bas_constraints

• iparam.write_bas_head

• iparam.write_bas_variables

• iparam.write_int_constraints

• iparam.write_int_head

• iparam.write_int_variables

• iparam.write_sol_barvariables

• iparam.write_sol_constraints

• iparam.write_sol_head

• iparam.write_sol_ignore_invalid_names

• iparam.write_sol_variables

• sparam.bas_sol_file_name

• sparam.int_sol_file_name

• sparam.itr_sol_file_name

• sparam.sol_filter_xc_low

• sparam.sol_filter_xc_upr

• sparam.sol_filter_xx_low

• sparam.sol_filter_xx_upr

Termination criteria

• dparam.basis_rel_tol_s

• dparam.basis_tol_s

• dparam.basis_tol_x

• dparam.intpnt_co_tol_dfeas

• dparam.intpnt_co_tol_infeas

• dparam.intpnt_co_tol_mu_red

• dparam.intpnt_co_tol_near_rel

• dparam.intpnt_co_tol_pfeas

• dparam.intpnt_co_tol_rel_gap

• dparam.intpnt_qo_tol_dfeas

277

• dparam.intpnt_qo_tol_infeas

• dparam.intpnt_qo_tol_mu_red

• dparam.intpnt_qo_tol_near_rel

• dparam.intpnt_qo_tol_pfeas

• dparam.intpnt_qo_tol_rel_gap

• dparam.intpnt_tol_dfeas

• dparam.intpnt_tol_infeas

• dparam.intpnt_tol_mu_red

• dparam.intpnt_tol_pfeas

• dparam.intpnt_tol_rel_gap

• dparam.lower_obj_cut

• dparam.lower_obj_cut_finite_trh

• dparam.mio_max_time

• dparam.mio_rel_gap_const

• dparam.mio_tol_rel_gap

• dparam.optimizer_max_time

• dparam.upper_obj_cut

• dparam.upper_obj_cut_finite_trh

• iparam.bi_max_iterations

• iparam.intpnt_max_iterations

• iparam.mio_max_num_branches

• iparam.mio_max_num_root_cut_rounds

• iparam.mio_max_num_solutions

• iparam.sim_max_iterations

Other

• iparam.compress_statfile

15.7 Parameters (alphabetical list sorted by type)

• Double parameters

• Integer parameters

• String parameters

278

15.7.1 Double parameters
dparam

The enumeration type containing all double parameters.
dparam.ana_sol_infeas_tol

If a constraint violates its bound with an amount larger than this value, the constraint name, index
and violation will be printed by the solution analyzer.

Default 1e-6
Accepted [0.0; +inf]
Example task.putdouparam(dparam.ana_sol_infeas_tol, 1e-6)
Generic name MSK_DPAR_ANA_SOL_INFEAS_TOL
Groups Analysis

dparam.basis_rel_tol_s
Maximum relative dual bound violation allowed in an optimal basic solution.

Default 1.0e-12
Accepted [0.0; +inf]
Example task.putdouparam(dparam.basis_rel_tol_s, 1.0e-12)
Generic name MSK_DPAR_BASIS_REL_TOL_S
Groups Simplex optimizer , Termination criteria

dparam.basis_tol_s
Maximum absolute dual bound violation in an optimal basic solution.

Default 1.0e-6
Accepted [1.0e-9; +inf]
Example task.putdouparam(dparam.basis_tol_s, 1.0e-6)
Generic name MSK_DPAR_BASIS_TOL_S
Groups Simplex optimizer , Termination criteria

dparam.basis_tol_x
Maximum absolute primal bound violation allowed in an optimal basic solution.

Default 1.0e-6
Accepted [1.0e-9; +inf]
Example task.putdouparam(dparam.basis_tol_x, 1.0e-6)
Generic name MSK_DPAR_BASIS_TOL_X
Groups Simplex optimizer , Termination criteria

dparam.check_convexity_rel_tol
This parameter controls when the full convexity check declares a problem to be non-convex. In-
creasing this tolerance relaxes the criteria for declaring the problem non-convex.

A problem is declared non-convex if negative (positive) pivot elements are detected in the Cholesky
factor of a matrix which is required to be PSD (NSD). This parameter controls how much this non-
negativity requirement may be violated.

If 𝑑𝑖 is the pivot element for column 𝑖, then the matrix 𝑄 is considered to not be PSD if:

𝑑𝑖 ≤ −|𝑄𝑖𝑖|check_convexity_rel_tol

Default 1e-10
Accepted [0; +inf]
Example task.putdouparam(dparam.check_convexity_rel_tol, 1e-10)
Generic name MSK_DPAR_CHECK_CONVEXITY_REL_TOL
Groups Interior-point method

279

dparam.data_sym_mat_tol
Absolute zero tolerance for elements in in symmetric matrices. If any value in a symmetric matrix
is smaller than this parameter in absolute terms MOSEK will treat the values as zero and generate
a warning.

Default 1.0e-12
Accepted [1.0e-16; 1.0e-6]
Example task.putdouparam(dparam.data_sym_mat_tol, 1.0e-12)
Generic name MSK_DPAR_DATA_SYM_MAT_TOL
Groups Data check

dparam.data_sym_mat_tol_huge
An element in a symmetric matrix which is larger than this value in absolute size causes an error.

Default 1.0e20
Accepted [0.0; +inf]
Example task.putdouparam(dparam.data_sym_mat_tol_huge, 1.0e20)
Generic name MSK_DPAR_DATA_SYM_MAT_TOL_HUGE
Groups Data check

dparam.data_sym_mat_tol_large
An element in a symmetric matrix which is larger than this value in absolute size causes a warning
message to be printed.

Default 1.0e10
Accepted [0.0; +inf]
Example task.putdouparam(dparam.data_sym_mat_tol_large, 1.0e10)
Generic name MSK_DPAR_DATA_SYM_MAT_TOL_LARGE
Groups Data check

dparam.data_tol_aij_huge
An element in 𝐴 which is larger than this value in absolute size causes an error.

Default 1.0e20
Accepted [0.0; +inf]
Example task.putdouparam(dparam.data_tol_aij_huge, 1.0e20)
Generic name MSK_DPAR_DATA_TOL_AIJ_HUGE
Groups Data check

dparam.data_tol_aij_large
An element in 𝐴 which is larger than this value in absolute size causes a warning message to be
printed.

Default 1.0e10
Accepted [0.0; +inf]
Example task.putdouparam(dparam.data_tol_aij_large, 1.0e10)
Generic name MSK_DPAR_DATA_TOL_AIJ_LARGE
Groups Data check

dparam.data_tol_bound_inf
Any bound which in absolute value is greater than this parameter is considered infinite.

Default 1.0e16
Accepted [0.0; +inf]
Example task.putdouparam(dparam.data_tol_bound_inf, 1.0e16)
Generic name MSK_DPAR_DATA_TOL_BOUND_INF
Groups Data check

280

dparam.data_tol_bound_wrn
If a bound value is larger than this value in absolute size, then a warning message is issued.

Default 1.0e8
Accepted [0.0; +inf]
Example task.putdouparam(dparam.data_tol_bound_wrn, 1.0e8)
Generic name MSK_DPAR_DATA_TOL_BOUND_WRN
Groups Data check

dparam.data_tol_c_huge
An element in 𝑐 which is larger than the value of this parameter in absolute terms is considered to
be huge and generates an error.

Default 1.0e16
Accepted [0.0; +inf]
Example task.putdouparam(dparam.data_tol_c_huge, 1.0e16)
Generic name MSK_DPAR_DATA_TOL_C_HUGE
Groups Data check

dparam.data_tol_cj_large
An element in 𝑐 which is larger than this value in absolute terms causes a warning message to be
printed.

Default 1.0e8
Accepted [0.0; +inf]
Example task.putdouparam(dparam.data_tol_cj_large, 1.0e8)
Generic name MSK_DPAR_DATA_TOL_CJ_LARGE
Groups Data check

dparam.data_tol_qij
Absolute zero tolerance for elements in 𝑄 matrices.

Default 1.0e-16
Accepted [0.0; +inf]
Example task.putdouparam(dparam.data_tol_qij, 1.0e-16)
Generic name MSK_DPAR_DATA_TOL_QIJ
Groups Data check

dparam.data_tol_x
Zero tolerance for constraints and variables i.e. if the distance between the lower and upper bound
is less than this value, then the lower and upper bound is considered identical.

Default 1.0e-8
Accepted [0.0; +inf]
Example task.putdouparam(dparam.data_tol_x, 1.0e-8)
Generic name MSK_DPAR_DATA_TOL_X
Groups Data check

dparam.intpnt_co_tol_dfeas
Dual feasibility tolerance used by the interior-point optimizer for conic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_co_tol_dfeas, 1.0e-8)
See also dparam.intpnt_co_tol_near_rel
Generic name MSK_DPAR_INTPNT_CO_TOL_DFEAS
Groups Interior-point method , Termination criteria, Conic interior-point method

281

dparam.intpnt_co_tol_infeas
Infeasibility tolerance used by the interior-point optimizer for conic problems. Controls when the
interior-point optimizer declares the model primal or dual infeasible. A small number means the
optimizer gets more conservative about declaring the model infeasible.

Default 1.0e-12
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_co_tol_infeas, 1.0e-12)
Generic name MSK_DPAR_INTPNT_CO_TOL_INFEAS
Groups Interior-point method , Termination criteria, Conic interior-point method

dparam.intpnt_co_tol_mu_red
Relative complementarity gap tolerance used by the interior-point optimizer for conic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_co_tol_mu_red, 1.0e-8)
Generic name MSK_DPAR_INTPNT_CO_TOL_MU_RED
Groups Interior-point method , Termination criteria, Conic interior-point method

dparam.intpnt_co_tol_near_rel
Optimality tolerance used by the interior-point optimizer for conic problems. If MOSEK cannot
compute a solution that has the prescribed accuracy then it will check if the solution found satisfies
the termination criteria with all tolerances multiplied by the value of this parameter. If yes, then
the solution is also declared optimal.

Default 1000
Accepted [1.0; +inf]
Example task.putdouparam(dparam.intpnt_co_tol_near_rel, 1000)
Generic name MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
Groups Interior-point method , Termination criteria, Conic interior-point method

dparam.intpnt_co_tol_pfeas
Primal feasibility tolerance used by the interior-point optimizer for conic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_co_tol_pfeas, 1.0e-8)
See also dparam.intpnt_co_tol_near_rel
Generic name MSK_DPAR_INTPNT_CO_TOL_PFEAS
Groups Interior-point method , Termination criteria, Conic interior-point method

dparam.intpnt_co_tol_rel_gap
Relative gap termination tolerance used by the interior-point optimizer for conic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_co_tol_rel_gap, 1.0e-8)
See also dparam.intpnt_co_tol_near_rel
Generic name MSK_DPAR_INTPNT_CO_TOL_REL_GAP
Groups Interior-point method , Termination criteria, Conic interior-point method

dparam.intpnt_qo_tol_dfeas
Dual feasibility tolerance used by the interior-point optimizer for quadratic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_qo_tol_dfeas, 1.0e-8)

282

See also dparam.intpnt_qo_tol_near_rel
Generic name MSK_DPAR_INTPNT_QO_TOL_DFEAS
Groups Interior-point method , Termination criteria

dparam.intpnt_qo_tol_infeas
Infeasibility tolerance used by the interior-point optimizer for quadratic problems. Controls when
the interior-point optimizer declares the model primal or dual infeasible. A small number means
the optimizer gets more conservative about declaring the model infeasible.

Default 1.0e-12
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_qo_tol_infeas, 1.0e-12)
Generic name MSK_DPAR_INTPNT_QO_TOL_INFEAS
Groups Interior-point method , Termination criteria

dparam.intpnt_qo_tol_mu_red
Relative complementarity gap tolerance used by the interior-point optimizer for quadratic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_qo_tol_mu_red, 1.0e-8)
Generic name MSK_DPAR_INTPNT_QO_TOL_MU_RED
Groups Interior-point method , Termination criteria

dparam.intpnt_qo_tol_near_rel
Optimality tolerance used by the interior-point optimizer for quadratic problems. If MOSEK
cannot compute a solution that has the prescribed accuracy then it will check if the solution found
satisfies the termination criteria with all tolerances multiplied by the value of this parameter. If
yes, then the solution is also declared optimal.

Default 1000
Accepted [1.0; +inf]
Example task.putdouparam(dparam.intpnt_qo_tol_near_rel, 1000)
Generic name MSK_DPAR_INTPNT_QO_TOL_NEAR_REL
Groups Interior-point method , Termination criteria

dparam.intpnt_qo_tol_pfeas
Primal feasibility tolerance used by the interior-point optimizer for quadratic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_qo_tol_pfeas, 1.0e-8)
See also dparam.intpnt_qo_tol_near_rel
Generic name MSK_DPAR_INTPNT_QO_TOL_PFEAS
Groups Interior-point method , Termination criteria

dparam.intpnt_qo_tol_rel_gap
Relative gap termination tolerance used by the interior-point optimizer for quadratic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_qo_tol_rel_gap, 1.0e-8)
See also dparam.intpnt_qo_tol_near_rel
Generic name MSK_DPAR_INTPNT_QO_TOL_REL_GAP
Groups Interior-point method , Termination criteria

dparam.intpnt_tol_dfeas
Dual feasibility tolerance used by the interior-point optimizer for linear problems.

283

Default 1.0e-8
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_tol_dfeas, 1.0e-8)
Generic name MSK_DPAR_INTPNT_TOL_DFEAS
Groups Interior-point method , Termination criteria

dparam.intpnt_tol_dsafe
Controls the initial dual starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly and/or the constraint or variable bounds are very large, then it might
be worthwhile to increase this value.

Default 1.0
Accepted [1.0e-4; +inf]
Example task.putdouparam(dparam.intpnt_tol_dsafe, 1.0)
Generic name MSK_DPAR_INTPNT_TOL_DSAFE
Groups Interior-point method

dparam.intpnt_tol_infeas
Infeasibility tolerance used by the interior-point optimizer for linear problems. Controls when the
interior-point optimizer declares the model primal or dual infeasible. A small number means the
optimizer gets more conservative about declaring the model infeasible.

Default 1.0e-10
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_tol_infeas, 1.0e-10)
Generic name MSK_DPAR_INTPNT_TOL_INFEAS
Groups Interior-point method , Termination criteria

dparam.intpnt_tol_mu_red
Relative complementarity gap tolerance used by the interior-point optimizer for linear problems.

Default 1.0e-16
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_tol_mu_red, 1.0e-16)
Generic name MSK_DPAR_INTPNT_TOL_MU_RED
Groups Interior-point method , Termination criteria

dparam.intpnt_tol_path
Controls how close the interior-point optimizer follows the central path. A large value of this
parameter means the central path is followed very closely. On numerically unstable problems it
may be worthwhile to increase this parameter.

Default 1.0e-8
Accepted [0.0; 0.9999]
Example task.putdouparam(dparam.intpnt_tol_path, 1.0e-8)
Generic name MSK_DPAR_INTPNT_TOL_PATH
Groups Interior-point method

dparam.intpnt_tol_pfeas
Primal feasibility tolerance used by the interior-point optimizer for linear problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_tol_pfeas, 1.0e-8)
Generic name MSK_DPAR_INTPNT_TOL_PFEAS
Groups Interior-point method , Termination criteria

284

dparam.intpnt_tol_psafe
Controls the initial primal starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly and/or the constraint or variable bounds are very large, then it may be
worthwhile to increase this value.

Default 1.0
Accepted [1.0e-4; +inf]
Example task.putdouparam(dparam.intpnt_tol_psafe, 1.0)
Generic name MSK_DPAR_INTPNT_TOL_PSAFE
Groups Interior-point method

dparam.intpnt_tol_rel_gap
Relative gap termination tolerance used by the interior-point optimizer for linear problems.

Default 1.0e-8
Accepted [1.0e-14; +inf]
Example task.putdouparam(dparam.intpnt_tol_rel_gap, 1.0e-8)
Generic name MSK_DPAR_INTPNT_TOL_REL_GAP
Groups Termination criteria, Interior-point method

dparam.intpnt_tol_rel_step
Relative step size to the boundary for linear and quadratic optimization problems.

Default 0.9999
Accepted [1.0e-4; 0.999999]
Example task.putdouparam(dparam.intpnt_tol_rel_step, 0.9999)
Generic name MSK_DPAR_INTPNT_TOL_REL_STEP
Groups Interior-point method

dparam.intpnt_tol_step_size
Minimal step size tolerance. If the step size falls below the value of this parameter, then the
interior-point optimizer assumes that it is stalled. In other words the interior-point optimizer does
not make any progress and therefore it is better to stop.

Default 1.0e-6
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_tol_step_size, 1.0e-6)
Generic name MSK_DPAR_INTPNT_TOL_STEP_SIZE
Groups Interior-point method

dparam.lower_obj_cut
If either a primal or dual feasible solution is found proving that the optimal objective value is outside
the interval [dparam.lower_obj_cut , dparam.upper_obj_cut], then MOSEK is terminated.

Default -1.0e30
Accepted [-inf; +inf]
Example task.putdouparam(dparam.lower_obj_cut, -1.0e30)
See also dparam.lower_obj_cut_finite_trh
Generic name MSK_DPAR_LOWER_OBJ_CUT
Groups Termination criteria

dparam.lower_obj_cut_finite_trh
If the lower objective cut is less than the value of this parameter value, then the lower objective
cut i.e. dparam.lower_obj_cut is treated as −∞.

Default -0.5e30
Accepted [-inf; +inf]
Example task.putdouparam(dparam.lower_obj_cut_finite_trh, -0.5e30)

285

Generic name MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH
Groups Termination criteria

dparam.mio_max_time
This parameter limits the maximum time spent by the mixed-integer optimizer. A negative number
means infinity.

Default -1.0
Accepted [-inf; +inf]
Example task.putdouparam(dparam.mio_max_time, -1.0)
Generic name MSK_DPAR_MIO_MAX_TIME
Groups Mixed-integer optimization, Termination criteria

dparam.mio_rel_gap_const
This value is used to compute the relative gap for the solution to an integer optimization problem.

Default 1.0e-10
Accepted [1.0e-15; +inf]
Example task.putdouparam(dparam.mio_rel_gap_const, 1.0e-10)
Generic name MSK_DPAR_MIO_REL_GAP_CONST
Groups Mixed-integer optimization, Termination criteria

dparam.mio_tol_abs_gap
Absolute optimality tolerance employed by the mixed-integer optimizer.

Default 0.0
Accepted [0.0; +inf]
Example task.putdouparam(dparam.mio_tol_abs_gap, 0.0)
Generic name MSK_DPAR_MIO_TOL_ABS_GAP
Groups Mixed-integer optimization

dparam.mio_tol_abs_relax_int
Absolute integer feasibility tolerance. If the distance to the nearest integer is less than this tolerance
then an integer constraint is assumed to be satisfied.

Default 1.0e-5
Accepted [1e-9; +inf]
Example task.putdouparam(dparam.mio_tol_abs_relax_int, 1.0e-5)
Generic name MSK_DPAR_MIO_TOL_ABS_RELAX_INT
Groups Mixed-integer optimization

dparam.mio_tol_feas
Feasibility tolerance for mixed integer solver.

Default 1.0e-6
Accepted [1e-9; 1e-3]
Example task.putdouparam(dparam.mio_tol_feas, 1.0e-6)
Generic name MSK_DPAR_MIO_TOL_FEAS
Groups Mixed-integer optimization

dparam.mio_tol_rel_dual_bound_improvement
If the relative improvement of the dual bound is smaller than this value, the solver will terminate
the root cut generation. A value of 0.0 means that the value is selected automatically.

Default 0.0
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.mio_tol_rel_dual_bound_improvement,

0.0)
Generic name MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT

286

Groups Mixed-integer optimization

dparam.mio_tol_rel_gap
Relative optimality tolerance employed by the mixed-integer optimizer.

Default 1.0e-4
Accepted [0.0; +inf]
Example task.putdouparam(dparam.mio_tol_rel_gap, 1.0e-4)
Generic name MSK_DPAR_MIO_TOL_REL_GAP
Groups Mixed-integer optimization, Termination criteria

dparam.optimizer_max_time
Maximum amount of time the optimizer is allowed to spent on the optimization. A negative number
means infinity.

Default -1.0
Accepted [-inf; +inf]
Example task.putdouparam(dparam.optimizer_max_time, -1.0)
Generic name MSK_DPAR_OPTIMIZER_MAX_TIME
Groups Termination criteria

dparam.presolve_tol_abs_lindep
Absolute tolerance employed by the linear dependency checker.

Default 1.0e-6
Accepted [0.0; +inf]
Example task.putdouparam(dparam.presolve_tol_abs_lindep, 1.0e-6)
Generic name MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP
Groups Presolve

dparam.presolve_tol_aij
Absolute zero tolerance employed for 𝑎𝑖𝑗 in the presolve.

Default 1.0e-12
Accepted [1.0e-15; +inf]
Example task.putdouparam(dparam.presolve_tol_aij, 1.0e-12)
Generic name MSK_DPAR_PRESOLVE_TOL_AIJ
Groups Presolve

dparam.presolve_tol_rel_lindep
Relative tolerance employed by the linear dependency checker.

Default 1.0e-10
Accepted [0.0; +inf]
Example task.putdouparam(dparam.presolve_tol_rel_lindep, 1.0e-10)
Generic name MSK_DPAR_PRESOLVE_TOL_REL_LINDEP
Groups Presolve

dparam.presolve_tol_s
Absolute zero tolerance employed for 𝑠𝑖 in the presolve.

Default 1.0e-8
Accepted [0.0; +inf]
Example task.putdouparam(dparam.presolve_tol_s, 1.0e-8)
Generic name MSK_DPAR_PRESOLVE_TOL_S
Groups Presolve

dparam.presolve_tol_x
Absolute zero tolerance employed for 𝑥𝑗 in the presolve.

287

Default 1.0e-8
Accepted [0.0; +inf]
Example task.putdouparam(dparam.presolve_tol_x, 1.0e-8)
Generic name MSK_DPAR_PRESOLVE_TOL_X
Groups Presolve

dparam.qcqo_reformulate_rel_drop_tol
This parameter determines when columns are dropped in incomplete Cholesky factorization during
reformulation of quadratic problems.

Default 1e-15
Accepted [0; +inf]
Example task.putdouparam(dparam.qcqo_reformulate_rel_drop_tol, 1e-15)
Generic name MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL
Groups Interior-point method

dparam.semidefinite_tol_approx
Tolerance to define a matrix to be positive semidefinite.

Default 1.0e-10
Accepted [1.0e-15; +inf]
Example task.putdouparam(dparam.semidefinite_tol_approx, 1.0e-10)
Generic name MSK_DPAR_SEMIDEFINITE_TOL_APPROX
Groups Data check

dparam.sim_lu_tol_rel_piv
Relative pivot tolerance employed when computing the LU factorization of the basis in the simplex
optimizers and in the basis identification procedure. A value closer to 1.0 generally improves
numerical stability but typically also implies an increase in the computational work.

Default 0.01
Accepted [1.0e-6; 0.999999]
Example task.putdouparam(dparam.sim_lu_tol_rel_piv, 0.01)
Generic name MSK_DPAR_SIM_LU_TOL_REL_PIV
Groups Basis identification, Simplex optimizer

dparam.simplex_abs_tol_piv
Absolute pivot tolerance employed by the simplex optimizers.

Default 1.0e-7
Accepted [1.0e-12; +inf]
Example task.putdouparam(dparam.simplex_abs_tol_piv, 1.0e-7)
Generic name MSK_DPAR_SIMPLEX_ABS_TOL_PIV
Groups Simplex optimizer

dparam.upper_obj_cut
If either a primal or dual feasible solution is found proving that the optimal objective value is outside
the interval [dparam.lower_obj_cut , dparam.upper_obj_cut], then MOSEK is terminated.

Default 1.0e30
Accepted [-inf; +inf]
Example task.putdouparam(dparam.upper_obj_cut, 1.0e30)
See also dparam.upper_obj_cut_finite_trh
Generic name MSK_DPAR_UPPER_OBJ_CUT
Groups Termination criteria

dparam.upper_obj_cut_finite_trh
If the upper objective cut is greater than the value of this parameter, then the upper objective cut
dparam.upper_obj_cut is treated as ∞.

288

Default 0.5e30
Accepted [-inf; +inf]
Example task.putdouparam(dparam.upper_obj_cut_finite_trh, 0.5e30)
Generic name MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH
Groups Termination criteria

15.7.2 Integer parameters
iparam

The enumeration type containing all integer parameters.
iparam.ana_sol_basis

Controls whether the basis matrix is analyzed in solution analyzer.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.ana_sol_basis, onoffkey.on)
Generic name MSK_IPAR_ANA_SOL_BASIS
Groups Analysis

iparam.ana_sol_print_violated
A parameter of the problem analyzer. Controls whether a list of violated constraints is printed. All
constraints violated by more than the value set by the parameter dparam.ana_sol_infeas_tol
will be printed.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.ana_sol_print_violated, onoffkey.off)
Generic name MSK_IPAR_ANA_SOL_PRINT_VIOLATED
Groups Analysis

iparam.auto_sort_a_before_opt
Controls whether the elements in each column of 𝐴 are sorted before an optimization is performed.
This is not required but makes the optimization more deterministic.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.auto_sort_a_before_opt, onoffkey.off)
Generic name MSK_IPAR_AUTO_SORT_A_BEFORE_OPT
Groups Debugging

iparam.auto_update_sol_info
Controls whether the solution information items are automatically updated after an optimization
is performed.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.auto_update_sol_info, onoffkey.off)
Generic name MSK_IPAR_AUTO_UPDATE_SOL_INFO
Groups Overall system

iparam.basis_solve_use_plus_one
If a slack variable is in the basis, then the corresponding column in the basis is a unit vector with
-1 in the right position. However, if this parameter is set to onoffkey.on , -1 is replaced by 1.

This has significance for the results returned by the Task.solvewithbasis function.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.basis_solve_use_plus_one, onoffkey.off)

289

Generic name MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE
Groups Simplex optimizer

iparam.bi_clean_optimizer
Controls which simplex optimizer is used in the clean-up phase. Anything else
than optimizertype.primal_simplex or optimizertype.dual_simplex is equivalent to
optimizertype.free_simplex .

Default free
Accepted free , intpnt , conic , primal_simplex , dual_simplex , free_simplex ,

mixed_int (see optimizertype)
Example task.putintparam(iparam.bi_clean_optimizer, optimizertype.free)
Generic name MSK_IPAR_BI_CLEAN_OPTIMIZER
Groups Basis identification, Overall solver

iparam.bi_ignore_max_iter
If the parameter iparam.intpnt_basis has the value basindtype.no_error and the interior-
point optimizer has terminated due to maximum number of iterations, then basis identification is
performed if this parameter has the value onoffkey.on .

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.bi_ignore_max_iter, onoffkey.off)
Generic name MSK_IPAR_BI_IGNORE_MAX_ITER
Groups Interior-point method , Basis identification

iparam.bi_ignore_num_error
If the parameter iparam.intpnt_basis has the value basindtype.no_error and the interior-
point optimizer has terminated due to a numerical problem, then basis identification is performed
if this parameter has the value onoffkey.on .

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.bi_ignore_num_error, onoffkey.off)
Generic name MSK_IPAR_BI_IGNORE_NUM_ERROR
Groups Interior-point method , Basis identification

iparam.bi_max_iterations
Controls the maximum number of simplex iterations allowed to optimize a basis after the basis
identification.

Default 1000000
Accepted [0; +inf]
Example task.putintparam(iparam.bi_max_iterations, 1000000)
Generic name MSK_IPAR_BI_MAX_ITERATIONS
Groups Basis identification, Termination criteria

iparam.cache_license
Specifies if the license is kept checked out for the lifetime of the MOSEK environ-
ment/model/process (onoffkey.on) or returned to the server immediately after the optimization
(onoffkey.off).

By default the license is checked out for the lifetime of the MOSEK environment by the first call
to Task.optimize .

Check-in and check-out of licenses have an overhead. Frequent communication with the license
server should be avoided.

Default on
Accepted on , off (see onoffkey)

290

Example task.putintparam(iparam.cache_license, onoffkey.on)
Generic name MSK_IPAR_CACHE_LICENSE
Groups License manager

iparam.check_convexity
Specify the level of convexity check on quadratic problems.

Default full
Accepted none , simple , full (see checkconvexitytype)
Example task.putintparam(iparam.check_convexity, checkconvexitytype.

full)
Generic name MSK_IPAR_CHECK_CONVEXITY
Groups Data check

iparam.compress_statfile
Control compression of stat files.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.compress_statfile, onoffkey.on)
Generic name MSK_IPAR_COMPRESS_STATFILE

iparam.infeas_generic_names
Controls whether generic names are used when an infeasible subproblem is created.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.infeas_generic_names, onoffkey.off)
Generic name MSK_IPAR_INFEAS_GENERIC_NAMES
Groups Infeasibility report

iparam.infeas_prefer_primal
If both certificates of primal and dual infeasibility are supplied then only the primal is used when
this option is turned on.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.infeas_prefer_primal, onoffkey.on)
Generic name MSK_IPAR_INFEAS_PREFER_PRIMAL
Groups Overall solver

iparam.infeas_report_auto
Controls whether an infeasibility report is automatically produced after the optimization if the
problem is primal or dual infeasible.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.infeas_report_auto, onoffkey.off)
Generic name MSK_IPAR_INFEAS_REPORT_AUTO
Groups Data input/output , Solution input/output

iparam.infeas_report_level
Controls the amount of information presented in an infeasibility report. Higher values imply more
information.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.infeas_report_level, 1)
Generic name MSK_IPAR_INFEAS_REPORT_LEVEL

291

Groups Infeasibility report , Output information

iparam.intpnt_basis
Controls whether the interior-point optimizer also computes an optimal basis.

Default always
Accepted never , always , no_error , if_feasible , reservered (see basindtype)
Example task.putintparam(iparam.intpnt_basis, basindtype.always)
See also iparam.bi_ignore_max_iter , iparam.bi_ignore_num_error , iparam.

bi_max_iterations , iparam.bi_clean_optimizer
Generic name MSK_IPAR_INTPNT_BASIS
Groups Interior-point method , Basis identification

iparam.intpnt_diff_step
Controls whether different step sizes are allowed in the primal and dual space.

Default on
Accepted

• on : Different step sizes are allowed.
• off : Different step sizes are not allowed.

Example task.putintparam(iparam.intpnt_diff_step, onoffkey.on)
Generic name MSK_IPAR_INTPNT_DIFF_STEP
Groups Interior-point method

iparam.intpnt_hotstart
Currently not in use.

Default none
Accepted none , primal , dual , primal_dual (see intpnthotstart)
Example task.putintparam(iparam.intpnt_hotstart, intpnthotstart.none)
Generic name MSK_IPAR_INTPNT_HOTSTART
Groups Interior-point method

iparam.intpnt_max_iterations
Controls the maximum number of iterations allowed in the interior-point optimizer.

Default 400
Accepted [0; +inf]
Example task.putintparam(iparam.intpnt_max_iterations, 400)
Generic name MSK_IPAR_INTPNT_MAX_ITERATIONS
Groups Interior-point method , Termination criteria

iparam.intpnt_max_num_cor
Controls the maximum number of correctors allowed by the multiple corrector procedure. A neg-
ative value means that MOSEK is making the choice.

Default -1
Accepted [-1; +inf]
Example task.putintparam(iparam.intpnt_max_num_cor, -1)
Generic name MSK_IPAR_INTPNT_MAX_NUM_COR
Groups Interior-point method

iparam.intpnt_max_num_refinement_steps
Maximum number of steps to be used by the iterative refinement of the search direction. A negative
value implies that the optimizer chooses the maximum number of iterative refinement steps.

Default -1
Accepted [-inf; +inf]
Example task.putintparam(iparam.intpnt_max_num_refinement_steps, -1)

292

Generic name MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS
Groups Interior-point method

iparam.intpnt_multi_thread
Controls whether the interior-point optimizers are allowed to employ multiple threads if more
threads is available.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.intpnt_multi_thread, onoffkey.on)
Generic name MSK_IPAR_INTPNT_MULTI_THREAD
Groups Overall system

iparam.intpnt_off_col_trh
Controls how many offending columns are detected in the Jacobian of the constraint matrix.

0 no detection
1 aggressive detection
> 1 higher values mean less aggressive detection

Default 40
Accepted [0; +inf]
Example task.putintparam(iparam.intpnt_off_col_trh, 40)
Generic name MSK_IPAR_INTPNT_OFF_COL_TRH
Groups Interior-point method

iparam.intpnt_order_gp_num_seeds
The GP ordering is dependent on a random seed. Therefore, trying several random seeds may lead
to a better ordering. This parameter controls the number of random seeds tried.

A value of 0 means that MOSEK makes the choice.

Default 0
Accepted [0; +inf]
Example task.putintparam(iparam.intpnt_order_gp_num_seeds, 0)
Generic name MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS
Groups Interior-point method

iparam.intpnt_order_method
Controls the ordering strategy used by the interior-point optimizer when factorizing the Newton
equation system.

Default free
Accepted free , appminloc , experimental , try_graphpar , force_graphpar , none

(see orderingtype)
Example task.putintparam(iparam.intpnt_order_method, orderingtype.free)
Generic name MSK_IPAR_INTPNT_ORDER_METHOD
Groups Interior-point method

iparam.intpnt_purify
Currently not in use.

Default none
Accepted none , primal , dual , primal_dual , auto (see purify)
Example task.putintparam(iparam.intpnt_purify, purify.none)
Generic name MSK_IPAR_INTPNT_PURIFY
Groups Interior-point method

293

iparam.intpnt_regularization_use
Controls whether regularization is allowed.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.intpnt_regularization_use, onoffkey.on)
Generic name MSK_IPAR_INTPNT_REGULARIZATION_USE
Groups Interior-point method

iparam.intpnt_scaling
Controls how the problem is scaled before the interior-point optimizer is used.

Default free
Accepted free , none , moderate , aggressive (see scalingtype)
Example task.putintparam(iparam.intpnt_scaling, scalingtype.free)
Generic name MSK_IPAR_INTPNT_SCALING
Groups Interior-point method

iparam.intpnt_solve_form
Controls whether the primal or the dual problem is solved.

Default free
Accepted free , primal , dual (see solveform)
Example task.putintparam(iparam.intpnt_solve_form, solveform.free)
Generic name MSK_IPAR_INTPNT_SOLVE_FORM
Groups Interior-point method

iparam.intpnt_starting_point
Starting point used by the interior-point optimizer.

Default free
Accepted free , guess , constant , satisfy_bounds (see startpointtype)
Example task.putintparam(iparam.intpnt_starting_point, startpointtype.

free)
Generic name MSK_IPAR_INTPNT_STARTING_POINT
Groups Interior-point method

iparam.license_debug
This option is used to turn on debugging of the license manager.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.license_debug, onoffkey.off)
Generic name MSK_IPAR_LICENSE_DEBUG
Groups License manager

iparam.license_pause_time
If iparam.license_wait is onoffkey.on and no license is available, then MOSEK sleeps a
number of milliseconds between each check of whether a license has become free.

Default 100
Accepted [0; 1000000]
Example task.putintparam(iparam.license_pause_time, 100)
Generic name MSK_IPAR_LICENSE_PAUSE_TIME
Groups License manager

iparam.license_suppress_expire_wrns
Controls whether license features expire warnings are suppressed.

294

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.license_suppress_expire_wrns, onoffkey.

off)
Generic name MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS
Groups License manager , Output information

iparam.license_trh_expiry_wrn
If a license feature expires in a numbers of days less than the value of this parameter then a warning
will be issued.

Default 7
Accepted [0; +inf]
Example task.putintparam(iparam.license_trh_expiry_wrn, 7)
Generic name MSK_IPAR_LICENSE_TRH_EXPIRY_WRN
Groups License manager , Output information

iparam.license_wait
If all licenses are in use MOSEK returns with an error code. However, by turning on this parameter
MOSEK will wait for an available license.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.license_wait, onoffkey.off)
Generic name MSK_IPAR_LICENSE_WAIT
Groups Overall solver , Overall system, License manager

iparam.log
Controls the amount of log information. The value 0 implies that all log information is suppressed.
A higher level implies that more information is logged.

Please note that if a task is employed to solve a sequence of optimization problems the value of
this parameter is reduced by the value of iparam.log_cut_second_opt for the second and any
subsequent optimizations.

Default 10
Accepted [0; +inf]
Example task.putintparam(iparam.log, 10)
See also iparam.log_cut_second_opt
Generic name MSK_IPAR_LOG
Groups Output information, Logging

iparam.log_ana_pro
Controls amount of output from the problem analyzer.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.log_ana_pro, 1)
Generic name MSK_IPAR_LOG_ANA_PRO
Groups Analysis, Logging

iparam.log_bi
Controls the amount of output printed by the basis identification procedure. A higher level implies
that more information is logged.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.log_bi, 1)
Generic name MSK_IPAR_LOG_BI

295

Groups Basis identification, Output information, Logging

iparam.log_bi_freq
Controls how frequently the optimizer outputs information about the basis identification and how
frequent the user-defined callback function is called.

Default 2500
Accepted [0; +inf]
Example task.putintparam(iparam.log_bi_freq, 2500)
Generic name MSK_IPAR_LOG_BI_FREQ
Groups Basis identification, Output information, Logging

iparam.log_check_convexity
Controls logging in convexity check on quadratic problems. Set to a positive value to turn logging
on. If a quadratic coefficient matrix is found to violate the requirement of PSD (NSD) then a list
of negative (positive) pivot elements is printed. The absolute value of the pivot elements is also
shown.

Default 0
Accepted [0; +inf]
Example task.putintparam(iparam.log_check_convexity, 0)
Generic name MSK_IPAR_LOG_CHECK_CONVEXITY
Groups Data check

iparam.log_cut_second_opt
If a task is employed to solve a sequence of optimization problems, then the value of the log levels
is reduced by the value of this parameter. E.g iparam.log and iparam.log_sim are reduced by
the value of this parameter for the second and any subsequent optimizations.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.log_cut_second_opt, 1)
See also iparam.log , iparam.log_intpnt , iparam.log_mio , iparam.log_sim
Generic name MSK_IPAR_LOG_CUT_SECOND_OPT
Groups Output information, Logging

iparam.log_expand
Controls the amount of logging when a data item such as the maximum number constrains is
expanded.

Default 0
Accepted [0; +inf]
Example task.putintparam(iparam.log_expand, 0)
Generic name MSK_IPAR_LOG_EXPAND
Groups Output information, Logging

iparam.log_feas_repair
Controls the amount of output printed when performing feasibility repair. A value higher than one
means extensive logging.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.log_feas_repair, 1)
Generic name MSK_IPAR_LOG_FEAS_REPAIR
Groups Output information, Logging

iparam.log_file
If turned on, then some log info is printed when a file is written or read.

296

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.log_file, 1)
Generic name MSK_IPAR_LOG_FILE
Groups Data input/output , Output information, Logging

iparam.log_include_summary
If on, then the solution summary will be printed by Task.optimize , so a separate call to Task.
solutionsummary is not necessary.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.log_include_summary, onoffkey.off)
Generic name MSK_IPAR_LOG_INCLUDE_SUMMARY
Groups Output information, Logging

iparam.log_infeas_ana
Controls amount of output printed by the infeasibility analyzer procedures. A higher level implies
that more information is logged.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.log_infeas_ana, 1)
Generic name MSK_IPAR_LOG_INFEAS_ANA
Groups Infeasibility report , Output information, Logging

iparam.log_intpnt
Controls amount of output printed by the interior-point optimizer. A higher level implies that
more information is logged.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.log_intpnt, 1)
Generic name MSK_IPAR_LOG_INTPNT
Groups Interior-point method , Output information, Logging

iparam.log_local_info
Controls whether local identifying information like environment variables, filenames, IP addresses
etc. are printed to the log.

Note that this will only affect some functions. Some functions that specifically emit system infor-
mation will not be affected.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.log_local_info, onoffkey.on)
Generic name MSK_IPAR_LOG_LOCAL_INFO
Groups Output information, Logging

iparam.log_mio
Controls the log level for the mixed-integer optimizer. A higher level implies that more information
is logged.

Default 4
Accepted [0; +inf]
Example task.putintparam(iparam.log_mio, 4)
Generic name MSK_IPAR_LOG_MIO
Groups Mixed-integer optimization, Output information, Logging

297

iparam.log_mio_freq
Controls how frequent the mixed-integer optimizer prints the log line. It will print line every time
iparam.log_mio_freq relaxations have been solved.

Default 10
Accepted [-inf; +inf]
Example task.putintparam(iparam.log_mio_freq, 10)
Generic name MSK_IPAR_LOG_MIO_FREQ
Groups Mixed-integer optimization, Output information, Logging

iparam.log_order
If turned on, then factor lines are added to the log.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.log_order, 1)
Generic name MSK_IPAR_LOG_ORDER
Groups Output information, Logging

iparam.log_presolve
Controls amount of output printed by the presolve procedure. A higher level implies that more
information is logged.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.log_presolve, 1)
Generic name MSK_IPAR_LOG_PRESOLVE
Groups Logging

iparam.log_response
Controls amount of output printed when response codes are reported. A higher level implies that
more information is logged.

Default 0
Accepted [0; +inf]
Example task.putintparam(iparam.log_response, 0)
Generic name MSK_IPAR_LOG_RESPONSE
Groups Output information, Logging

iparam.log_sensitivity
Controls the amount of logging during the sensitivity analysis.

• 0. Means no logging information is produced.

• 1. Timing information is printed.

• 2. Sensitivity results are printed.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.log_sensitivity, 1)
Generic name MSK_IPAR_LOG_SENSITIVITY
Groups Output information, Logging

iparam.log_sensitivity_opt
Controls the amount of logging from the optimizers employed during the sensitivity analysis. 0
means no logging information is produced.

Default 0
Accepted [0; +inf]

298

Example task.putintparam(iparam.log_sensitivity_opt, 0)
Generic name MSK_IPAR_LOG_SENSITIVITY_OPT
Groups Output information, Logging

iparam.log_sim
Controls amount of output printed by the simplex optimizer. A higher level implies that more
information is logged.

Default 4
Accepted [0; +inf]
Example task.putintparam(iparam.log_sim, 4)
Generic name MSK_IPAR_LOG_SIM
Groups Simplex optimizer , Output information, Logging

iparam.log_sim_freq
Controls how frequent the simplex optimizer outputs information about the optimization and how
frequent the user-defined callback function is called.

Default 1000
Accepted [0; +inf]
Example task.putintparam(iparam.log_sim_freq, 1000)
Generic name MSK_IPAR_LOG_SIM_FREQ
Groups Simplex optimizer , Output information, Logging

iparam.log_sim_minor
Currently not in use.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.log_sim_minor, 1)
Generic name MSK_IPAR_LOG_SIM_MINOR
Groups Simplex optimizer , Output information

iparam.log_storage
When turned on, MOSEK prints messages regarding the storage usage and allocation.

Default 0
Accepted [0; +inf]
Example task.putintparam(iparam.log_storage, 0)
Generic name MSK_IPAR_LOG_STORAGE
Groups Output information, Overall system, Logging

iparam.max_num_warnings
Each warning is shown a limited number of times controlled by this parameter. A negative value
is identical to infinite number of times.

Default 10
Accepted [-inf; +inf]
Example task.putintparam(iparam.max_num_warnings, 10)
Generic name MSK_IPAR_MAX_NUM_WARNINGS
Groups Output information

iparam.mio_branch_dir
Controls whether the mixed-integer optimizer is branching up or down by default.

Default free
Accepted free , up , down , near , far , root_lp , guided , pseudocost (see

branchdir)
Example task.putintparam(iparam.mio_branch_dir, branchdir.free)

299

Generic name MSK_IPAR_MIO_BRANCH_DIR
Groups Mixed-integer optimization

iparam.mio_conic_outer_approximation
If this option is turned on outer approximation is used when solving relaxations of conic problems;
otherwise interior point is used.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.mio_conic_outer_approximation,

onoffkey.off)
Generic name MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION
Groups Mixed-integer optimization

iparam.mio_cut_clique
Controls whether clique cuts should be generated.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.mio_cut_clique, onoffkey.on)
Generic name MSK_IPAR_MIO_CUT_CLIQUE
Groups Mixed-integer optimization

iparam.mio_cut_cmir
Controls whether mixed integer rounding cuts should be generated.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.mio_cut_cmir, onoffkey.on)
Generic name MSK_IPAR_MIO_CUT_CMIR
Groups Mixed-integer optimization

iparam.mio_cut_gmi
Controls whether GMI cuts should be generated.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.mio_cut_gmi, onoffkey.on)
Generic name MSK_IPAR_MIO_CUT_GMI
Groups Mixed-integer optimization

iparam.mio_cut_implied_bound
Controls whether implied bound cuts should be generated.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.mio_cut_implied_bound, onoffkey.off)
Generic name MSK_IPAR_MIO_CUT_IMPLIED_BOUND
Groups Mixed-integer optimization

iparam.mio_cut_knapsack_cover
Controls whether knapsack cover cuts should be generated.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.mio_cut_knapsack_cover, onoffkey.off)
Generic name MSK_IPAR_MIO_CUT_KNAPSACK_COVER
Groups Mixed-integer optimization

300

iparam.mio_cut_selection_level
Controls how aggressively generated cuts are selected to be included in the relaxation.

• −1. The optimizer chooses the level of cut selection
• 0. Generated cuts less likely to be added to the relaxation
• 1. Cuts are more aggressively selected to be included in the relaxation

Default -1
Accepted [-1; +1]
Example task.putintparam(iparam.mio_cut_selection_level, -1)
Generic name MSK_IPAR_MIO_CUT_SELECTION_LEVEL
Groups Mixed-integer optimization

iparam.mio_feaspump_level
Controls the way the Feasibility Pump heuristic is employed by the mixed-integer optimizer.

• −1. The optimizer chooses how the Feasibility Pump is used
• 0. The Feasibility Pump is disabled
• 1. The Feasibility Pump is enabled with an effort to improve solution quality
• 2. The Feasibility Pump is enabled with an effort to reach feasibility early

Default -1
Accepted [-1; 2]
Example task.putintparam(iparam.mio_feaspump_level, -1)
Generic name MSK_IPAR_MIO_FEASPUMP_LEVEL
Groups Mixed-integer optimization

iparam.mio_heuristic_level
Controls the heuristic employed by the mixed-integer optimizer to locate an initial good integer
feasible solution. A value of zero means the heuristic is not used at all. A larger value than 0 means
that a gradually more sophisticated heuristic is used which is computationally more expensive. A
negative value implies that the optimizer chooses the heuristic. Normally a value around 3 to 5
should be optimal.

Default -1
Accepted [-inf; +inf]
Example task.putintparam(iparam.mio_heuristic_level, -1)
Generic name MSK_IPAR_MIO_HEURISTIC_LEVEL
Groups Mixed-integer optimization

iparam.mio_max_num_branches
Maximum number of branches allowed during the branch and bound search. A negative value
means infinite.

Default -1
Accepted [-inf; +inf]
Example task.putintparam(iparam.mio_max_num_branches, -1)
Generic name MSK_IPAR_MIO_MAX_NUM_BRANCHES
Groups Mixed-integer optimization, Termination criteria

iparam.mio_max_num_relaxs
Maximum number of relaxations allowed during the branch and bound search. A negative value
means infinite.

Default -1
Accepted [-inf; +inf]
Example task.putintparam(iparam.mio_max_num_relaxs, -1)
Generic name MSK_IPAR_MIO_MAX_NUM_RELAXS

301

Groups Mixed-integer optimization

iparam.mio_max_num_root_cut_rounds
Maximum number of cut separation rounds at the root node.

Default 100
Accepted [0; +inf]
Example task.putintparam(iparam.mio_max_num_root_cut_rounds, 100)
Generic name MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS
Groups Mixed-integer optimization, Termination criteria

iparam.mio_max_num_solutions
The mixed-integer optimizer can be terminated after a certain number of different feasible solutions
has been located. If this parameter has the value 𝑛 > 0, then the mixed-integer optimizer will be
terminated when 𝑛 feasible solutions have been located.

Default -1
Accepted [-inf; +inf]
Example task.putintparam(iparam.mio_max_num_solutions, -1)
Generic name MSK_IPAR_MIO_MAX_NUM_SOLUTIONS
Groups Mixed-integer optimization, Termination criteria

iparam.mio_mode
Controls whether the optimizer includes the integer restrictions when solving a (mixed) integer
optimization problem.

Default satisfied
Accepted ignored , satisfied (see miomode)
Example task.putintparam(iparam.mio_mode, miomode.satisfied)
Generic name MSK_IPAR_MIO_MODE
Groups Overall solver

iparam.mio_node_optimizer
Controls which optimizer is employed at the non-root nodes in the mixed-integer optimizer.

Default free
Accepted free , intpnt , conic , primal_simplex , dual_simplex , free_simplex ,

mixed_int (see optimizertype)
Example task.putintparam(iparam.mio_node_optimizer, optimizertype.free)
Generic name MSK_IPAR_MIO_NODE_OPTIMIZER
Groups Mixed-integer optimization

iparam.mio_node_selection
Controls the node selection strategy employed by the mixed-integer optimizer.

Default free
Accepted free , first , best , pseudo (see mionodeseltype)
Example task.putintparam(iparam.mio_node_selection, mionodeseltype.

free)
Generic name MSK_IPAR_MIO_NODE_SELECTION
Groups Mixed-integer optimization

iparam.mio_perspective_reformulate
Enables or disables perspective reformulation in presolve.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.mio_perspective_reformulate, onoffkey.

on)

302

Generic name MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE
Groups Mixed-integer optimization

iparam.mio_probing_level
Controls the amount of probing employed by the mixed-integer optimizer in presolve.

• −1. The optimizer chooses the level of probing employed

• 0. Probing is disabled

• 1. A low amount of probing is employed

• 2. A medium amount of probing is employed

• 3. A high amount of probing is employed

Default -1
Accepted [-1; 3]
Example task.putintparam(iparam.mio_probing_level, -1)
Generic name MSK_IPAR_MIO_PROBING_LEVEL
Groups Mixed-integer optimization

iparam.mio_propagate_objective_constraint
Use objective domain propagation.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.mio_propagate_objective_constraint,

onoffkey.off)
Generic name MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT
Groups Mixed-integer optimization

iparam.mio_rins_max_nodes
Controls the maximum number of nodes allowed in each call to the RINS heuristic. The default
value of -1 means that the value is determined automatically. A value of zero turns off the heuristic.

Default -1
Accepted [-1; +inf]
Example task.putintparam(iparam.mio_rins_max_nodes, -1)
Generic name MSK_IPAR_MIO_RINS_MAX_NODES
Groups Mixed-integer optimization

iparam.mio_root_optimizer
Controls which optimizer is employed at the root node in the mixed-integer optimizer.

Default free
Accepted free , intpnt , conic , primal_simplex , dual_simplex , free_simplex ,

mixed_int (see optimizertype)
Example task.putintparam(iparam.mio_root_optimizer, optimizertype.free)
Generic name MSK_IPAR_MIO_ROOT_OPTIMIZER
Groups Mixed-integer optimization

iparam.mio_root_repeat_presolve_level
Controls whether presolve can be repeated at root node.

• −1. The optimizer chooses whether presolve is repeated

• 0. Never repeat presolve

• 1. Always repeat presolve

Default -1
Accepted [-1; 1]
Example task.putintparam(iparam.mio_root_repeat_presolve_level, -1)

303

Generic name MSK_IPAR_MIO_ROOT_REPEAT_PRESOLVE_LEVEL
Groups Mixed-integer optimization

iparam.mio_seed
Sets the random seed used for randomization in the mixed integer optimizer. Selecting a different
seed can change the path the optimizer takes to the optimal solution.

Default 42
Accepted [0; +inf]
Example task.putintparam(iparam.mio_seed, 42)
Generic name MSK_IPAR_MIO_SEED
Groups Mixed-integer optimization

iparam.mio_vb_detection_level
Controls how much effort is put into detecting variable bounds.

• −1. The optimizer chooses

• 0. No variable bounds are detected

• 1. Only detect variable bounds that are directly represented in the problem

• 2. Detect variable bounds in probing

Default -1
Accepted [-1; +2]
Example task.putintparam(iparam.mio_vb_detection_level, -1)
Generic name MSK_IPAR_MIO_VB_DETECTION_LEVEL
Groups Mixed-integer optimization

iparam.mt_spincount
Set the number of iterations to spin before sleeping.

Default 0
Accepted [0; 1000000000]
Example task.putintparam(iparam.mt_spincount, 0)
Generic name MSK_IPAR_MT_SPINCOUNT
Groups Overall system

iparam.num_threads
Controls the number of threads employed by the optimizer. If set to 0 the number of threads used
will be equal to the number of cores detected on the machine.

If using the conic optimizer, the value of this parameter set at first optimization remains constant
through the lifetime of the process. MOSEK will allocate a thread pool of given size, and changing
the parameter value later will have no effect. It will, however, remain possible to demand single-
threaded execution by setting iparam.intpnt_multi_thread .

For the mixed-integer optimizer and interior-point linear optimizer there is no such restriction.

Default 0
Accepted [0; +inf]
Example task.putintparam(iparam.num_threads, 0)
Generic name MSK_IPAR_NUM_THREADS
Groups Overall system

iparam.opf_write_header
Write a text header with date and MOSEK version in an OPF file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.opf_write_header, onoffkey.on)

304

Generic name MSK_IPAR_OPF_WRITE_HEADER
Groups Data input/output

iparam.opf_write_hints
Write a hint section with problem dimensions in the beginning of an OPF file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.opf_write_hints, onoffkey.on)
Generic name MSK_IPAR_OPF_WRITE_HINTS
Groups Data input/output

iparam.opf_write_line_length
Aim to keep lines in OPF files not much longer than this.

Default 80
Accepted [0; +inf]
Example task.putintparam(iparam.opf_write_line_length, 80)
Generic name MSK_IPAR_OPF_WRITE_LINE_LENGTH
Groups Data input/output

iparam.opf_write_parameters
Write a parameter section in an OPF file.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.opf_write_parameters, onoffkey.off)
Generic name MSK_IPAR_OPF_WRITE_PARAMETERS
Groups Data input/output

iparam.opf_write_problem
Write objective, constraints, bounds etc. to an OPF file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.opf_write_problem, onoffkey.on)
Generic name MSK_IPAR_OPF_WRITE_PROBLEM
Groups Data input/output

iparam.opf_write_sol_bas
If iparam.opf_write_solutions is onoffkey.on and a basic solution is defined, include the basic
solution in OPF files.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.opf_write_sol_bas, onoffkey.on)
Generic name MSK_IPAR_OPF_WRITE_SOL_BAS
Groups Data input/output

iparam.opf_write_sol_itg
If iparam.opf_write_solutions is onoffkey.on and an integer solution is defined, write the
integer solution in OPF files.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.opf_write_sol_itg, onoffkey.on)
Generic name MSK_IPAR_OPF_WRITE_SOL_ITG
Groups Data input/output

305

iparam.opf_write_sol_itr
If iparam.opf_write_solutions is onoffkey.on and an interior solution is defined, write the
interior solution in OPF files.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.opf_write_sol_itr, onoffkey.on)
Generic name MSK_IPAR_OPF_WRITE_SOL_ITR
Groups Data input/output

iparam.opf_write_solutions
Enable inclusion of solutions in the OPF files.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.opf_write_solutions, onoffkey.off)
Generic name MSK_IPAR_OPF_WRITE_SOLUTIONS
Groups Data input/output

iparam.optimizer
The parameter controls which optimizer is used to optimize the task.

Default free
Accepted free , intpnt , conic , primal_simplex , dual_simplex , free_simplex ,

mixed_int (see optimizertype)
Example task.putintparam(iparam.optimizer, optimizertype.free)
Generic name MSK_IPAR_OPTIMIZER
Groups Overall solver

iparam.param_read_case_name
If turned on, then names in the parameter file are case sensitive.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.param_read_case_name, onoffkey.on)
Generic name MSK_IPAR_PARAM_READ_CASE_NAME
Groups Data input/output

iparam.param_read_ign_error
If turned on, then errors in parameter settings is ignored.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.param_read_ign_error, onoffkey.off)
Generic name MSK_IPAR_PARAM_READ_IGN_ERROR
Groups Data input/output

iparam.presolve_eliminator_max_fill
Controls the maximum amount of fill-in that can be created by one pivot in the elimination phase
of the presolve. A negative value means the parameter value is selected automatically.

Default -1
Accepted [-inf; +inf]
Example task.putintparam(iparam.presolve_eliminator_max_fill, -1)
Generic name MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL
Groups Presolve

306

iparam.presolve_eliminator_max_num_tries
Control the maximum number of times the eliminator is tried. A negative value implies MOSEK
decides.

Default -1
Accepted [-inf; +inf]
Example task.putintparam(iparam.presolve_eliminator_max_num_tries, -1)
Generic name MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
Groups Presolve

iparam.presolve_level
Currently not used.

Default -1
Accepted [-inf; +inf]
Example task.putintparam(iparam.presolve_level, -1)
Generic name MSK_IPAR_PRESOLVE_LEVEL
Groups Overall solver , Presolve

iparam.presolve_lindep_abs_work_trh
Controls linear dependency check in presolve. The linear dependency check is potentially compu-
tationally expensive.

Default 100
Accepted [-inf; +inf]
Example task.putintparam(iparam.presolve_lindep_abs_work_trh, 100)
Generic name MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH
Groups Presolve

iparam.presolve_lindep_rel_work_trh
Controls linear dependency check in presolve. The linear dependency check is potentially compu-
tationally expensive.

Default 100
Accepted [-inf; +inf]
Example task.putintparam(iparam.presolve_lindep_rel_work_trh, 100)
Generic name MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH
Groups Presolve

iparam.presolve_lindep_use
Controls whether the linear constraints are checked for linear dependencies.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.presolve_lindep_use, onoffkey.on)
Generic name MSK_IPAR_PRESOLVE_LINDEP_USE
Groups Presolve

iparam.presolve_max_num_pass
Control the maximum number of times presolve passes over the problem. A negative value implies
MOSEK decides.

Default -1
Accepted [-inf; +inf]
Example task.putintparam(iparam.presolve_max_num_pass, -1)
Generic name MSK_IPAR_PRESOLVE_MAX_NUM_PASS
Groups Presolve

307

iparam.presolve_max_num_reductions
Controls the maximum number of reductions performed by the presolve. The value of the parameter
is normally only changed in connection with debugging. A negative value implies that an infinite
number of reductions are allowed.

Default -1
Accepted [-inf; +inf]
Example task.putintparam(iparam.presolve_max_num_reductions, -1)
Generic name MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS
Groups Overall solver , Presolve

iparam.presolve_use
Controls whether the presolve is applied to a problem before it is optimized.

Default free
Accepted off , on , free (see presolvemode)
Example task.putintparam(iparam.presolve_use, presolvemode.free)
Generic name MSK_IPAR_PRESOLVE_USE
Groups Overall solver , Presolve

iparam.primal_repair_optimizer
Controls which optimizer that is used to find the optimal repair.

Default free
Accepted free , intpnt , conic , primal_simplex , dual_simplex , free_simplex ,

mixed_int (see optimizertype)
Example task.putintparam(iparam.primal_repair_optimizer, optimizertype.

free)
Generic name MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER
Groups Overall solver

iparam.ptf_write_transform
If iparam.ptf_write_transform is onoffkey.on , constraint blocks with identifiable conic slacks
are transformed into conic constraints and the slacks are eliminated.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.ptf_write_transform, onoffkey.on)
Generic name MSK_IPAR_PTF_WRITE_TRANSFORM
Groups Data input/output

iparam.read_debug
Turns on additional debugging information when reading files.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.read_debug, onoffkey.off)
Generic name MSK_IPAR_READ_DEBUG
Groups Data input/output

iparam.read_keep_free_con
Controls whether the free constraints are included in the problem.

Default off
Accepted

• on : The free constraints are kept.
• off : The free constraints are discarded.

Example task.putintparam(iparam.read_keep_free_con, onoffkey.off)

308

Generic name MSK_IPAR_READ_KEEP_FREE_CON
Groups Data input/output

iparam.read_lp_drop_new_vars_in_bou
If this option is turned on, MOSEK will drop variables that are defined for the first time in the
bounds section.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.read_lp_drop_new_vars_in_bou, onoffkey.

off)
Generic name MSK_IPAR_READ_LP_DROP_NEW_VARS_IN_BOU
Groups Data input/output

iparam.read_lp_quoted_names
If a name is in quotes when reading an LP file, the quotes will be removed.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.read_lp_quoted_names, onoffkey.on)
Generic name MSK_IPAR_READ_LP_QUOTED_NAMES
Groups Data input/output

iparam.read_mps_format
Controls how strictly the MPS file reader interprets the MPS format.

Default free
Accepted strict , relaxed , free , cplex (see mpsformat)
Example task.putintparam(iparam.read_mps_format, mpsformat.free)
Generic name MSK_IPAR_READ_MPS_FORMAT
Groups Data input/output

iparam.read_mps_width
Controls the maximal number of characters allowed in one line of the MPS file.

Default 1024
Accepted [80; +inf]
Example task.putintparam(iparam.read_mps_width, 1024)
Generic name MSK_IPAR_READ_MPS_WIDTH
Groups Data input/output

iparam.read_task_ignore_param
Controls whether MOSEK should ignore the parameter setting defined in the task file and use
the default parameter setting instead.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.read_task_ignore_param, onoffkey.off)
Generic name MSK_IPAR_READ_TASK_IGNORE_PARAM
Groups Data input/output

iparam.remove_unused_solutions
Removes unused solutions before the optimization is performed.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.remove_unused_solutions, onoffkey.off)
Generic name MSK_IPAR_REMOVE_UNUSED_SOLUTIONS
Groups Overall system

309

iparam.sensitivity_all
If set to onoffkey.on , then Task.sensitivityreport analyzes all bounds and variables instead
of reading a specification from the file.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.sensitivity_all, onoffkey.off)
Generic name MSK_IPAR_SENSITIVITY_ALL
Groups Overall solver

iparam.sensitivity_optimizer
Controls which optimizer is used for optimal partition sensitivity analysis.

Default free_simplex
Accepted free , intpnt , conic , primal_simplex , dual_simplex , free_simplex ,

mixed_int (see optimizertype)
Example task.putintparam(iparam.sensitivity_optimizer, optimizertype.

free_simplex)
Generic name MSK_IPAR_SENSITIVITY_OPTIMIZER
Groups Overall solver , Simplex optimizer

iparam.sensitivity_type
Controls which type of sensitivity analysis is to be performed.

Default basis
Accepted basis (see sensitivitytype)
Example task.putintparam(iparam.sensitivity_type, sensitivitytype.

basis)
Generic name MSK_IPAR_SENSITIVITY_TYPE
Groups Overall solver

iparam.sim_basis_factor_use
Controls whether an LU factorization of the basis is used in a hot-start. Forcing a refactorization
sometimes improves the stability of the simplex optimizers, but in most cases there is a performance
penalty.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.sim_basis_factor_use, onoffkey.on)
Generic name MSK_IPAR_SIM_BASIS_FACTOR_USE
Groups Simplex optimizer

iparam.sim_degen
Controls how aggressively degeneration is handled.

Default free
Accepted none , free , aggressive , moderate , minimum (see simdegen)
Example task.putintparam(iparam.sim_degen, simdegen.free)
Generic name MSK_IPAR_SIM_DEGEN
Groups Simplex optimizer

iparam.sim_dual_crash
Controls whether crashing is performed in the dual simplex optimizer. If this parameter is set to
𝑥, then a crash will be performed if a basis consists of more than (100− 𝑥) mod 𝑓𝑣 entries, where
𝑓𝑣 is the number of fixed variables.

Default 90
Accepted [0; +inf]
Example task.putintparam(iparam.sim_dual_crash, 90)

310

Generic name MSK_IPAR_SIM_DUAL_CRASH
Groups Dual simplex

iparam.sim_dual_phaseone_method
An experimental feature.

Default 0
Accepted [0; 10]
Example task.putintparam(iparam.sim_dual_phaseone_method, 0)
Generic name MSK_IPAR_SIM_DUAL_PHASEONE_METHOD
Groups Simplex optimizer

iparam.sim_dual_restrict_selection
The dual simplex optimizer can use a so-called restricted selection/pricing strategy to choose the
outgoing variable. Hence, if restricted selection is applied, then the dual simplex optimizer first
choose a subset of all the potential outgoing variables. Next, for some time it will choose the
outgoing variable only among the subset. From time to time the subset is redefined. A larger value
of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e.
a value of 0 implies that the restriction strategy is not applied at all.

Default 50
Accepted [0; 100]
Example task.putintparam(iparam.sim_dual_restrict_selection, 50)
Generic name MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION
Groups Dual simplex

iparam.sim_dual_selection
Controls the choice of the incoming variable, known as the selection strategy, in the dual simplex
optimizer.

Default free
Accepted free , full , ase , devex , se , partial (see simseltype)
Example task.putintparam(iparam.sim_dual_selection, simseltype.free)
Generic name MSK_IPAR_SIM_DUAL_SELECTION
Groups Dual simplex

iparam.sim_exploit_dupvec
Controls if the simplex optimizers are allowed to exploit duplicated columns.

Default off
Accepted on , off , free (see simdupvec)
Example task.putintparam(iparam.sim_exploit_dupvec, simdupvec.off)
Generic name MSK_IPAR_SIM_EXPLOIT_DUPVEC
Groups Simplex optimizer

iparam.sim_hotstart
Controls the type of hot-start that the simplex optimizer perform.

Default free
Accepted none , free , status_keys (see simhotstart)
Example task.putintparam(iparam.sim_hotstart, simhotstart.free)
Generic name MSK_IPAR_SIM_HOTSTART
Groups Simplex optimizer

iparam.sim_hotstart_lu
Determines if the simplex optimizer should exploit the initial factorization.

Default on
Accepted

311

• on : Factorization is reused if possible.
• off : Factorization is recomputed.

Example task.putintparam(iparam.sim_hotstart_lu, onoffkey.on)
Generic name MSK_IPAR_SIM_HOTSTART_LU
Groups Simplex optimizer

iparam.sim_max_iterations
Maximum number of iterations that can be used by a simplex optimizer.

Default 10000000
Accepted [0; +inf]
Example task.putintparam(iparam.sim_max_iterations, 10000000)
Generic name MSK_IPAR_SIM_MAX_ITERATIONS
Groups Simplex optimizer , Termination criteria

iparam.sim_max_num_setbacks
Controls how many set-backs are allowed within a simplex optimizer. A set-back is an event where
the optimizer moves in the wrong direction. This is impossible in theory but may happen due to
numerical problems.

Default 250
Accepted [0; +inf]
Example task.putintparam(iparam.sim_max_num_setbacks, 250)
Generic name MSK_IPAR_SIM_MAX_NUM_SETBACKS
Groups Simplex optimizer

iparam.sim_non_singular
Controls if the simplex optimizer ensures a non-singular basis, if possible.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.sim_non_singular, onoffkey.on)
Generic name MSK_IPAR_SIM_NON_SINGULAR
Groups Simplex optimizer

iparam.sim_primal_crash
Controls whether crashing is performed in the primal simplex optimizer. In general, if a basis
consists of more than (100-this parameter value)% fixed variables, then a crash will be performed.

Default 90
Accepted [0; +inf]
Example task.putintparam(iparam.sim_primal_crash, 90)
Generic name MSK_IPAR_SIM_PRIMAL_CRASH
Groups Primal simplex

iparam.sim_primal_phaseone_method
An experimental feature.

Default 0
Accepted [0; 10]
Example task.putintparam(iparam.sim_primal_phaseone_method, 0)
Generic name MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD
Groups Simplex optimizer

iparam.sim_primal_restrict_selection
The primal simplex optimizer can use a so-called restricted selection/pricing strategy to choose
the outgoing variable. Hence, if restricted selection is applied, then the primal simplex optimizer
first choose a subset of all the potential incoming variables. Next, for some time it will choose the
incoming variable only among the subset. From time to time the subset is redefined. A larger value
of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e.
a value of 0 implies that the restriction strategy is not applied at all.

312

Default 50
Accepted [0; 100]
Example task.putintparam(iparam.sim_primal_restrict_selection, 50)
Generic name MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION
Groups Primal simplex

iparam.sim_primal_selection
Controls the choice of the incoming variable, known as the selection strategy, in the primal simplex
optimizer.

Default free
Accepted free , full , ase , devex , se , partial (see simseltype)
Example task.putintparam(iparam.sim_primal_selection, simseltype.free)
Generic name MSK_IPAR_SIM_PRIMAL_SELECTION
Groups Primal simplex

iparam.sim_refactor_freq
Controls how frequent the basis is refactorized. The value 0 means that the optimizer determines
the best point of refactorization. It is strongly recommended NOT to change this parameter.

Default 0
Accepted [0; +inf]
Example task.putintparam(iparam.sim_refactor_freq, 0)
Generic name MSK_IPAR_SIM_REFACTOR_FREQ
Groups Simplex optimizer

iparam.sim_reformulation
Controls if the simplex optimizers are allowed to reformulate the problem.

Default off
Accepted on , off , free , aggressive (see simreform)
Example task.putintparam(iparam.sim_reformulation, simreform.off)
Generic name MSK_IPAR_SIM_REFORMULATION
Groups Simplex optimizer

iparam.sim_save_lu
Controls if the LU factorization stored should be replaced with the LU factorization corresponding
to the initial basis.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.sim_save_lu, onoffkey.off)
Generic name MSK_IPAR_SIM_SAVE_LU
Groups Simplex optimizer

iparam.sim_scaling
Controls how much effort is used in scaling the problem before a simplex optimizer is used.

Default free
Accepted free , none , moderate , aggressive (see scalingtype)
Example task.putintparam(iparam.sim_scaling, scalingtype.free)
Generic name MSK_IPAR_SIM_SCALING
Groups Simplex optimizer

iparam.sim_scaling_method
Controls how the problem is scaled before a simplex optimizer is used.

Default pow2
Accepted pow2 , free (see scalingmethod)

313

Example task.putintparam(iparam.sim_scaling_method, scalingmethod.pow2)
Generic name MSK_IPAR_SIM_SCALING_METHOD
Groups Simplex optimizer

iparam.sim_seed
Sets the random seed used for randomization in the simplex optimizers.

Default 23456
Accepted [0; 32749]
Example task.putintparam(iparam.sim_seed, 23456)
Generic name MSK_IPAR_SIM_SEED
Groups Simplex optimizer

iparam.sim_solve_form
Controls whether the primal or the dual problem is solved by the primal-/dual-simplex optimizer.

Default free
Accepted free , primal , dual (see solveform)
Example task.putintparam(iparam.sim_solve_form, solveform.free)
Generic name MSK_IPAR_SIM_SOLVE_FORM
Groups Simplex optimizer

iparam.sim_stability_priority
Controls how high priority the numerical stability should be given.

Default 50
Accepted [0; 100]
Example task.putintparam(iparam.sim_stability_priority, 50)
Generic name MSK_IPAR_SIM_STABILITY_PRIORITY
Groups Simplex optimizer

iparam.sim_switch_optimizer
The simplex optimizer sometimes chooses to solve the dual problem instead of the primal problem.
This implies that if you have chosen to use the dual simplex optimizer and the problem is dualized,
then it actually makes sense to use the primal simplex optimizer instead. If this parameter is on
and the problem is dualized and furthermore the simplex optimizer is chosen to be the primal
(dual) one, then it is switched to the dual (primal).

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.sim_switch_optimizer, onoffkey.off)
Generic name MSK_IPAR_SIM_SWITCH_OPTIMIZER
Groups Simplex optimizer

iparam.sol_filter_keep_basic
If turned on, then basic and super basic constraints and variables are written to the solution file
independent of the filter setting.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.sol_filter_keep_basic, onoffkey.off)
Generic name MSK_IPAR_SOL_FILTER_KEEP_BASIC
Groups Solution input/output

iparam.sol_filter_keep_ranged
If turned on, then ranged constraints and variables are written to the solution file independent of
the filter setting.

Default off

314

Accepted on , off (see onoffkey)
Example task.putintparam(iparam.sol_filter_keep_ranged, onoffkey.off)
Generic name MSK_IPAR_SOL_FILTER_KEEP_RANGED
Groups Solution input/output

iparam.sol_read_name_width
When a solution is read by MOSEK and some constraint, variable or cone names contain blanks,
then a maximum name width much be specified. A negative value implies that no name contain
blanks.

Default -1
Accepted [-inf; +inf]
Example task.putintparam(iparam.sol_read_name_width, -1)
Generic name MSK_IPAR_SOL_READ_NAME_WIDTH
Groups Data input/output , Solution input/output

iparam.sol_read_width
Controls the maximal acceptable width of line in the solutions when read by MOSEK.

Default 1024
Accepted [80; +inf]
Example task.putintparam(iparam.sol_read_width, 1024)
Generic name MSK_IPAR_SOL_READ_WIDTH
Groups Data input/output , Solution input/output

iparam.solution_callback
Indicates whether solution callbacks will be performed during the optimization.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.solution_callback, onoffkey.off)
Generic name MSK_IPAR_SOLUTION_CALLBACK
Groups Progress callback , Overall solver

iparam.timing_level
Controls the amount of timing performed inside MOSEK.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.timing_level, 1)
Generic name MSK_IPAR_TIMING_LEVEL
Groups Overall system

iparam.write_bas_constraints
Controls whether the constraint section is written to the basic solution file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_bas_constraints, onoffkey.on)
Generic name MSK_IPAR_WRITE_BAS_CONSTRAINTS
Groups Data input/output , Solution input/output

iparam.write_bas_head
Controls whether the header section is written to the basic solution file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_bas_head, onoffkey.on)

315

Generic name MSK_IPAR_WRITE_BAS_HEAD
Groups Data input/output , Solution input/output

iparam.write_bas_variables
Controls whether the variables section is written to the basic solution file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_bas_variables, onoffkey.on)
Generic name MSK_IPAR_WRITE_BAS_VARIABLES
Groups Data input/output , Solution input/output

iparam.write_compression
Controls whether the data file is compressed while it is written. 0 means no compression while
higher values mean more compression.

Default 9
Accepted [0; +inf]
Example task.putintparam(iparam.write_compression, 9)
Generic name MSK_IPAR_WRITE_COMPRESSION
Groups Data input/output

iparam.write_data_param
If this option is turned on the parameter settings are written to the data file as parameters.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_data_param, onoffkey.off)
Generic name MSK_IPAR_WRITE_DATA_PARAM
Groups Data input/output

iparam.write_free_con
Controls whether the free constraints are written to the data file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_free_con, onoffkey.on)
Generic name MSK_IPAR_WRITE_FREE_CON
Groups Data input/output

iparam.write_generic_names
Controls whether generic names should be used instead of user-defined names when writing to the
data file.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_generic_names, onoffkey.off)
Generic name MSK_IPAR_WRITE_GENERIC_NAMES
Groups Data input/output

iparam.write_generic_names_io
Index origin used in generic names.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.write_generic_names_io, 1)
Generic name MSK_IPAR_WRITE_GENERIC_NAMES_IO
Groups Data input/output

316

iparam.write_ignore_incompatible_items
Controls if the writer ignores incompatible problem items when writing files.

Default off
Accepted

• on : Ignore items that cannot be written to the current output file format.
• off : Produce an error if the problem contains items that cannot the written to

the current output file format.
Example task.putintparam(iparam.write_ignore_incompatible_items,

onoffkey.off)
Generic name MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS
Groups Data input/output

iparam.write_int_constraints
Controls whether the constraint section is written to the integer solution file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_int_constraints, onoffkey.on)
Generic name MSK_IPAR_WRITE_INT_CONSTRAINTS
Groups Data input/output , Solution input/output

iparam.write_int_head
Controls whether the header section is written to the integer solution file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_int_head, onoffkey.on)
Generic name MSK_IPAR_WRITE_INT_HEAD
Groups Data input/output , Solution input/output

iparam.write_int_variables
Controls whether the variables section is written to the integer solution file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_int_variables, onoffkey.on)
Generic name MSK_IPAR_WRITE_INT_VARIABLES
Groups Data input/output , Solution input/output

iparam.write_lp_full_obj
Write all variables, including the ones with 0-coefficients, in the objective.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_lp_full_obj, onoffkey.on)
Generic name MSK_IPAR_WRITE_LP_FULL_OBJ
Groups Data input/output

iparam.write_lp_line_width
Maximum width of line in an LP file written by MOSEK.

Default 80
Accepted [40; +inf]
Example task.putintparam(iparam.write_lp_line_width, 80)
Generic name MSK_IPAR_WRITE_LP_LINE_WIDTH
Groups Data input/output

317

iparam.write_lp_quoted_names
If this option is turned on, then MOSEK will quote invalid LP names when writing an LP file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_lp_quoted_names, onoffkey.on)
Generic name MSK_IPAR_WRITE_LP_QUOTED_NAMES
Groups Data input/output

iparam.write_lp_strict_format
Controls whether LP output files satisfy the LP format strictly.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_lp_strict_format, onoffkey.off)
Generic name MSK_IPAR_WRITE_LP_STRICT_FORMAT
Groups Data input/output

iparam.write_lp_terms_per_line
Maximum number of terms on a single line in an LP file written by MOSEK. 0 means unlimited.

Default 10
Accepted [0; +inf]
Example task.putintparam(iparam.write_lp_terms_per_line, 10)
Generic name MSK_IPAR_WRITE_LP_TERMS_PER_LINE
Groups Data input/output

iparam.write_mps_format
Controls in which format the MPS is written.

Default free
Accepted strict , relaxed , free , cplex (see mpsformat)
Example task.putintparam(iparam.write_mps_format, mpsformat.free)
Generic name MSK_IPAR_WRITE_MPS_FORMAT
Groups Data input/output

iparam.write_mps_int
Controls if marker records are written to the MPS file to indicate whether variables are integer
restricted.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_mps_int, onoffkey.on)
Generic name MSK_IPAR_WRITE_MPS_INT
Groups Data input/output

iparam.write_precision
Controls the precision with which double numbers are printed in the MPS data file. In general it
is not worthwhile to use a value higher than 15.

Default 15
Accepted [0; +inf]
Example task.putintparam(iparam.write_precision, 15)
Generic name MSK_IPAR_WRITE_PRECISION
Groups Data input/output

iparam.write_sol_barvariables
Controls whether the symmetric matrix variables section is written to the solution file.

318

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_sol_barvariables, onoffkey.on)
Generic name MSK_IPAR_WRITE_SOL_BARVARIABLES
Groups Data input/output , Solution input/output

iparam.write_sol_constraints
Controls whether the constraint section is written to the solution file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_sol_constraints, onoffkey.on)
Generic name MSK_IPAR_WRITE_SOL_CONSTRAINTS
Groups Data input/output , Solution input/output

iparam.write_sol_head
Controls whether the header section is written to the solution file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_sol_head, onoffkey.on)
Generic name MSK_IPAR_WRITE_SOL_HEAD
Groups Data input/output , Solution input/output

iparam.write_sol_ignore_invalid_names
Even if the names are invalid MPS names, then they are employed when writing the solution file.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_sol_ignore_invalid_names,

onoffkey.off)
Generic name MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES
Groups Data input/output , Solution input/output

iparam.write_sol_variables
Controls whether the variables section is written to the solution file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_sol_variables, onoffkey.on)
Generic name MSK_IPAR_WRITE_SOL_VARIABLES
Groups Data input/output , Solution input/output

iparam.write_task_inc_sol
Controls whether the solutions are stored in the task file too.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_task_inc_sol, onoffkey.on)
Generic name MSK_IPAR_WRITE_TASK_INC_SOL
Groups Data input/output

iparam.write_xml_mode
Controls if linear coefficients should be written by row or column when writing in the XML file
format.

Default row
Accepted row , col (see xmlwriteroutputtype)
Example task.putintparam(iparam.write_xml_mode, xmlwriteroutputtype.

row)
Generic name MSK_IPAR_WRITE_XML_MODE
Groups Data input/output

319

15.7.3 String parameters
sparam

The enumeration type containing all string parameters.
sparam.bas_sol_file_name

Name of the bas solution file.

Accepted Any valid file name.
Example task.putstrparam(sparam.bas_sol_file_name, "somevalue")
Generic name MSK_SPAR_BAS_SOL_FILE_NAME
Groups Data input/output , Solution input/output

sparam.data_file_name
Data are read and written to this file.

Accepted Any valid file name.
Example task.putstrparam(sparam.data_file_name, "somevalue")
Generic name MSK_SPAR_DATA_FILE_NAME
Groups Data input/output

sparam.debug_file_name
MOSEK debug file.

Accepted Any valid file name.
Example task.putstrparam(sparam.debug_file_name, "somevalue")
Generic name MSK_SPAR_DEBUG_FILE_NAME
Groups Data input/output

sparam.int_sol_file_name
Name of the int solution file.

Accepted Any valid file name.
Example task.putstrparam(sparam.int_sol_file_name, "somevalue")
Generic name MSK_SPAR_INT_SOL_FILE_NAME
Groups Data input/output , Solution input/output

sparam.itr_sol_file_name
Name of the itr solution file.

Accepted Any valid file name.
Example task.putstrparam(sparam.itr_sol_file_name, "somevalue")
Generic name MSK_SPAR_ITR_SOL_FILE_NAME
Groups Data input/output , Solution input/output

sparam.mio_debug_string
For internal debugging purposes.

Accepted Any valid string.
Example task.putstrparam(sparam.mio_debug_string, "somevalue")
Generic name MSK_SPAR_MIO_DEBUG_STRING
Groups Data input/output

sparam.param_comment_sign
Only the first character in this string is used. It is considered as a start of comment sign in the
MOSEK parameter file. Spaces are ignored in the string.

Default
%%

Accepted Any valid string.
Example task.putstrparam(sparam.param_comment_sign, "%%")

320

Generic name MSK_SPAR_PARAM_COMMENT_SIGN
Groups Data input/output

sparam.param_read_file_name
Modifications to the parameter database is read from this file.

Accepted Any valid file name.
Example task.putstrparam(sparam.param_read_file_name, "somevalue")
Generic name MSK_SPAR_PARAM_READ_FILE_NAME
Groups Data input/output

sparam.param_write_file_name
The parameter database is written to this file.

Accepted Any valid file name.
Example task.putstrparam(sparam.param_write_file_name, "somevalue")
Generic name MSK_SPAR_PARAM_WRITE_FILE_NAME
Groups Data input/output

sparam.read_mps_bou_name
Name of the BOUNDS vector used. An empty name means that the first BOUNDS vector is used.

Accepted Any valid MPS name.
Example task.putstrparam(sparam.read_mps_bou_name, "somevalue")
Generic name MSK_SPAR_READ_MPS_BOU_NAME
Groups Data input/output

sparam.read_mps_obj_name
Name of the free constraint used as objective function. An empty name means that the first
constraint is used as objective function.

Accepted Any valid MPS name.
Example task.putstrparam(sparam.read_mps_obj_name, "somevalue")
Generic name MSK_SPAR_READ_MPS_OBJ_NAME
Groups Data input/output

sparam.read_mps_ran_name
Name of the RANGE vector used. An empty name means that the first RANGE vector is used.

Accepted Any valid MPS name.
Example task.putstrparam(sparam.read_mps_ran_name, "somevalue")
Generic name MSK_SPAR_READ_MPS_RAN_NAME
Groups Data input/output

sparam.read_mps_rhs_name
Name of the RHS used. An empty name means that the first RHS vector is used.

Accepted Any valid MPS name.
Example task.putstrparam(sparam.read_mps_rhs_name, "somevalue")
Generic name MSK_SPAR_READ_MPS_RHS_NAME
Groups Data input/output

sparam.remote_access_token
An access token used to submit tasks to a remote MOSEK server. An access token is a random
32-byte string encoded in base64, i.e. it is a 44 character ASCII string.

Accepted Any valid string.
Example task.putstrparam(sparam.remote_access_token, "somevalue")
Generic name MSK_SPAR_REMOTE_ACCESS_TOKEN
Groups Overall system

321

sparam.sensitivity_file_name
If defined Task.sensitivityreport reads this file as a sensitivity analysis data file specifying the
type of analysis to be done.

Accepted Any valid string.
Example task.putstrparam(sparam.sensitivity_file_name, "somevalue")
Generic name MSK_SPAR_SENSITIVITY_FILE_NAME
Groups Data input/output

sparam.sensitivity_res_file_name
If this is a nonempty string, then Task.sensitivityreport writes results to this file.

Accepted Any valid string.
Example task.putstrparam(sparam.sensitivity_res_file_name, "somevalue")
Generic name MSK_SPAR_SENSITIVITY_RES_FILE_NAME
Groups Data input/output

sparam.sol_filter_xc_low
A filter used to determine which constraints should be listed in the solution file. A value of 0.5 means
that all constraints having xc[i]>0.5 should be listed, whereas +0.5 means that all constraints
having xc[i]>=blc[i]+0.5 should be listed. An empty filter means that no filter is applied.

Accepted Any valid filter.
Example task.putstrparam(sparam.sol_filter_xc_low, "somevalue")
Generic name MSK_SPAR_SOL_FILTER_XC_LOW
Groups Data input/output , Solution input/output

sparam.sol_filter_xc_upr
A filter used to determine which constraints should be listed in the solution file. A value of 0.5
means that all constraints having xc[i]<0.5 should be listed, whereas -0.5 means all constraints
having xc[i]<=buc[i]-0.5 should be listed. An empty filter means that no filter is applied.

Accepted Any valid filter.
Example task.putstrparam(sparam.sol_filter_xc_upr, "somevalue")
Generic name MSK_SPAR_SOL_FILTER_XC_UPR
Groups Data input/output , Solution input/output

sparam.sol_filter_xx_low
A filter used to determine which variables should be listed in the solution file. A value of “0.5” means
that all constraints having xx[j]>=0.5 should be listed, whereas “+0.5” means that all constraints
having xx[j]>=blx[j]+0.5 should be listed. An empty filter means no filter is applied.

Accepted Any valid filter.
Example task.putstrparam(sparam.sol_filter_xx_low, "somevalue")
Generic name MSK_SPAR_SOL_FILTER_XX_LOW
Groups Data input/output , Solution input/output

sparam.sol_filter_xx_upr
A filter used to determine which variables should be listed in the solution file. A value of “0.5”
means that all constraints having xx[j]<0.5 should be printed, whereas “-0.5” means all constraints
having xx[j]<=bux[j]-0.5 should be listed. An empty filter means no filter is applied.

Accepted Any valid file name.
Example task.putstrparam(sparam.sol_filter_xx_upr, "somevalue")
Generic name MSK_SPAR_SOL_FILTER_XX_UPR
Groups Data input/output , Solution input/output

sparam.stat_file_name
Statistics file name.

322

Accepted Any valid file name.
Example task.putstrparam(sparam.stat_file_name, "somevalue")
Generic name MSK_SPAR_STAT_FILE_NAME
Groups Data input/output

sparam.stat_key
Key used when writing the summary file.

Accepted Any valid string.
Example task.putstrparam(sparam.stat_key, "somevalue")
Generic name MSK_SPAR_STAT_KEY
Groups Data input/output

sparam.stat_name
Name used when writing the statistics file.

Accepted Any valid XML string.
Example task.putstrparam(sparam.stat_name, "somevalue")
Generic name MSK_SPAR_STAT_NAME
Groups Data input/output

sparam.write_lp_gen_var_name
Sometimes when an LP file is written additional variables must be inserted. They will have the
prefix denoted by this parameter.

Default xmskgen
Accepted Any valid string.
Example task.putstrparam(sparam.write_lp_gen_var_name, "xmskgen")
Generic name MSK_SPAR_WRITE_LP_GEN_VAR_NAME
Groups Data input/output

15.8 Response codes

Response codes include:

• Termination codes

• Warnings

• Errors

The numerical code (in brackets) identifies the response in error messages and in the log output.
rescode

The enumeration type containing all response codes.

15.8.1 Termination
rescode.ok (0)

No error occurred.
rescode.trm_max_iterations (10000)

The optimizer terminated at the maximum number of iterations.
rescode.trm_max_time (10001)

The optimizer terminated at the maximum amount of time.
rescode.trm_objective_range (10002)

The optimizer terminated with an objective value outside the objective range.
rescode.trm_mio_num_relaxs (10008)

The mixed-integer optimizer terminated as the maximum number of relaxations was reached.
rescode.trm_mio_num_branches (10009)

The mixed-integer optimizer terminated as the maximum number of branches was reached.

323

rescode.trm_num_max_num_int_solutions (10015)
The mixed-integer optimizer terminated as the maximum number of feasible solutions was reached.

rescode.trm_stall (10006)
The optimizer is terminated due to slow progress.

Stalling means that numerical problems prevent the optimizer from making reasonable progress
and that it makes no sense to continue. In many cases this happens if the problem is badly scaled
or otherwise ill-conditioned. There is no guarantee that the solution will be feasible or optimal.
However, often stalling happens near the optimum, and the returned solution may be of good
quality. Therefore, it is recommended to check the status of the solution. If the solution status is
optimal the solution is most likely good enough for most practical purposes.

Please note that if a linear optimization problem is solved using the interior-point optimizer with
basis identification turned on, the returned basic solution likely to have high accuracy, even though
the optimizer stalled.

Some common causes of stalling are a) badly scaled models, b) near feasible or near infeasible
problems.

rescode.trm_user_callback (10007)
The optimizer terminated due to the return of the user-defined callback function.

rescode.trm_max_num_setbacks (10020)
The optimizer terminated as the maximum number of set-backs was reached. This indicates serious
numerical problems and a possibly badly formulated problem.

rescode.trm_numerical_problem (10025)
The optimizer terminated due to numerical problems.

rescode.trm_internal (10030)
The optimizer terminated due to some internal reason. Please contact MOSEK support.

rescode.trm_internal_stop (10031)
The optimizer terminated for internal reasons. Please contact MOSEK support.

15.8.2 Warnings
rescode.wrn_open_param_file (50)

The parameter file could not be opened.
rescode.wrn_large_bound (51)

A numerically large bound value is specified.
rescode.wrn_large_lo_bound (52)

A numerically large lower bound value is specified.
rescode.wrn_large_up_bound (53)

A numerically large upper bound value is specified.
rescode.wrn_large_con_fx (54)

An equality constraint is fixed to a numerically large value. This can cause numerical problems.
rescode.wrn_large_cj (57)

A numerically large value is specified for one 𝑐𝑗 .
rescode.wrn_large_aij (62)

A numerically large value is specified for an 𝑎𝑖,𝑗 element in 𝐴. The parameter dparam.
data_tol_aij_large controls when an 𝑎𝑖,𝑗 is considered large.

rescode.wrn_zero_aij (63)
One or more zero elements are specified in A.

rescode.wrn_name_max_len (65)
A name is longer than the buffer that is supposed to hold it.

rescode.wrn_spar_max_len (66)
A value for a string parameter is longer than the buffer that is supposed to hold it.

rescode.wrn_mps_split_rhs_vector (70)
An RHS vector is split into several nonadjacent parts in an MPS file.

rescode.wrn_mps_split_ran_vector (71)
A RANGE vector is split into several nonadjacent parts in an MPS file.

rescode.wrn_mps_split_bou_vector (72)
A BOUNDS vector is split into several nonadjacent parts in an MPS file.

324

rescode.wrn_lp_old_quad_format (80)
Missing ‘/2’ after quadratic expressions in bound or objective.

rescode.wrn_lp_drop_variable (85)
Ignored a variable because the variable was not previously defined. Usually this implies that a
variable appears in the bound section but not in the objective or the constraints.

rescode.wrn_nz_in_upr_tri (200)
Non-zero elements specified in the upper triangle of a matrix were ignored.

rescode.wrn_dropped_nz_qobj (201)
One or more non-zero elements were dropped in the Q matrix in the objective.

rescode.wrn_ignore_integer (250)
Ignored integer constraints.

rescode.wrn_no_global_optimizer (251)
No global optimizer is available.

rescode.wrn_mio_infeasible_final (270)
The final mixed-integer problem with all the integer variables fixed at their optimal values is
infeasible.

rescode.wrn_sol_filter (300)
Invalid solution filter is specified.

rescode.wrn_undef_sol_file_name (350)
Undefined name occurred in a solution.

rescode.wrn_sol_file_ignored_con (351)
One or more lines in the constraint section were ignored when reading a solution file.

rescode.wrn_sol_file_ignored_var (352)
One or more lines in the variable section were ignored when reading a solution file.

rescode.wrn_too_few_basis_vars (400)
An incomplete basis has been specified. Too few basis variables are specified.

rescode.wrn_too_many_basis_vars (405)
A basis with too many variables has been specified.

rescode.wrn_license_expire (500)
The license expires.

rescode.wrn_license_server (501)
The license server is not responding.

rescode.wrn_empty_name (502)
A variable or constraint name is empty. The output file may be invalid.

rescode.wrn_using_generic_names (503)
Generic names are used because a name is not valid. For instance when writing an LP file the
names must not contain blanks or start with a digit.

rescode.wrn_license_feature_expire (505)
The license expires.

rescode.wrn_param_name_dou (510)
The parameter name is not recognized as a double parameter.

rescode.wrn_param_name_int (511)
The parameter name is not recognized as a integer parameter.

rescode.wrn_param_name_str (512)
The parameter name is not recognized as a string parameter.

rescode.wrn_param_str_value (515)
The string is not recognized as a symbolic value for the parameter.

rescode.wrn_param_ignored_cmio (516)
A parameter was ignored by the conic mixed integer optimizer.

rescode.wrn_zeros_in_sparse_row (705)
One or more (near) zero elements are specified in a sparse row of a matrix. Since, it is redundant
to specify zero elements then it may indicate an error.

rescode.wrn_zeros_in_sparse_col (710)
One or more (near) zero elements are specified in a sparse column of a matrix. It is redundant to
specify zero elements. Hence, it may indicate an error.

rescode.wrn_incomplete_linear_dependency_check (800)
The linear dependency check(s) is incomplete. Normally this is not an important warning unless

325

the optimization problem has been formulated with linear dependencies. Linear dependencies may
prevent MOSEK from solving the problem.

rescode.wrn_eliminator_space (801)
The eliminator is skipped at least once due to lack of space.

rescode.wrn_presolve_outofspace (802)
The presolve is incomplete due to lack of space.

rescode.wrn_write_changed_names (803)
Some names were changed because they were invalid for the output file format.

rescode.wrn_write_discarded_cfix (804)
The fixed objective term could not be converted to a variable and was discarded in the output file.

rescode.wrn_duplicate_constraint_names (850)
Two constraint names are identical.

rescode.wrn_duplicate_variable_names (851)
Two variable names are identical.

rescode.wrn_duplicate_barvariable_names (852)
Two barvariable names are identical.

rescode.wrn_duplicate_cone_names (853)
Two cone names are identical.

rescode.wrn_ana_large_bounds (900)
This warning is issued by the problem analyzer, if one or more constraint or variable bounds are
very large. One should consider omitting these bounds entirely by setting them to +inf or -inf.

rescode.wrn_ana_c_zero (901)
This warning is issued by the problem analyzer, if the coefficients in the linear part of the objective
are all zero.

rescode.wrn_ana_empty_cols (902)
This warning is issued by the problem analyzer, if columns, in which all coefficients are zero, are
found.

rescode.wrn_ana_close_bounds (903)
This warning is issued by problem analyzer, if ranged constraints or variables with very close upper
and lower bounds are detected. One should consider treating such constraints as equalities and
such variables as constants.

rescode.wrn_ana_almost_int_bounds (904)
This warning is issued by the problem analyzer if a constraint is bound nearly integral.

rescode.wrn_quad_cones_with_root_fixed_at_zero (930)
For at least one quadratic cone the root is fixed at (nearly) zero. This may cause problems such as
a very large dual solution. Therefore, it is recommended to remove such cones before optimizing
the problem, or to fix all the variables in the cone to 0.

rescode.wrn_rquad_cones_with_root_fixed_at_zero (931)
For at least one rotated quadratic cone at least one of the root variables are fixed at (nearly) zero.
This may cause problems such as a very large dual solution. Therefore, it is recommended to
remove such cones before optimizing the problem, or to fix all the variables in the cone to 0.

rescode.wrn_exp_cones_with_variables_fixed_at_zero (932)
For at least one exponential cone 𝑥 ≥ 𝑦 exp(𝑧/𝑦) either the variable 𝑥 or 𝑦 is fixed at (nearly)
zero. This may cause problems such as a very large dual solution. Therefore, it is recommended
to remove such cones before optimizing the problem, or to fix all the variables in the cone to 0.

rescode.wrn_pow_cones_with_root_fixed_at_zero (933)
For at least one power cone at least one of the root variables are fixed at (nearly) zero. This may
cause problems such as a very large dual solution. Therefore, it is recommended to remove such
cones before optimizing the problem, or to fix all the variables in the cone to 0.

rescode.wrn_no_dualizer (950)
No automatic dualizer is available for the specified problem. The primal problem is solved.

rescode.wrn_sym_mat_large (960)
A numerically large value is specified for an 𝑒𝑖,𝑗 element in 𝐸. The parameter dparam.
data_sym_mat_tol_large controls when an 𝑒𝑖,𝑗 is considered large.

326

15.8.3 Errors
rescode.err_license (1000)

Invalid license.
rescode.err_license_expired (1001)

The license has expired.
rescode.err_license_version (1002)

The license is valid for another version of MOSEK.
rescode.err_size_license (1005)

The problem is bigger than the license.
rescode.err_prob_license (1006)

The software is not licensed to solve the problem.
rescode.err_file_license (1007)

Invalid license file.
rescode.err_missing_license_file (1008)

MOSEK cannot find license file or a token server. See the MOSEK licensing manual for details.
rescode.err_size_license_con (1010)

The problem has too many constraints to be solved with the available license.
rescode.err_size_license_var (1011)

The problem has too many variables to be solved with the available license.
rescode.err_size_license_intvar (1012)

The problem contains too many integer variables to be solved with the available license.
rescode.err_optimizer_license (1013)

The optimizer required is not licensed.
rescode.err_flexlm (1014)

The FLEXlm license manager reported an error.
rescode.err_license_server (1015)

The license server is not responding.
rescode.err_license_max (1016)

Maximum number of licenses is reached.
rescode.err_license_moseklm_daemon (1017)

The MOSEKLM license manager daemon is not up and running.
rescode.err_license_feature (1018)

A requested feature is not available in the license file(s). Most likely due to an incorrect license
system setup.

rescode.err_platform_not_licensed (1019)
A requested license feature is not available for the required platform.

rescode.err_license_cannot_allocate (1020)
The license system cannot allocate the memory required.

rescode.err_license_cannot_connect (1021)
MOSEK cannot connect to the license server. Most likely the license server is not up and running.

rescode.err_license_invalid_hostid (1025)
The host ID specified in the license file does not match the host ID of the computer.

rescode.err_license_server_version (1026)
The version specified in the checkout request is greater than the highest version number the daemon
supports.

rescode.err_license_no_server_support (1027)
The license server does not support the requested feature. Possible reasons for this error include:

• The feature has expired.

• The feature’s start date is later than today’s date.

• The version requested is higher than feature’s the highest supported version.

• A corrupted license file.

Try restarting the license and inspect the license server debug file, usually called lmgrd.log.
rescode.err_license_no_server_line (1028)

There is no SERVER line in the license file. All non-zero license count features need at least one
SERVER line.

327

rescode.err_older_dll (1035)
The dynamic link library is older than the specified version.

rescode.err_newer_dll (1036)
The dynamic link library is newer than the specified version.

rescode.err_link_file_dll (1040)
A file cannot be linked to a stream in the DLL version.

rescode.err_thread_mutex_init (1045)
Could not initialize a mutex.

rescode.err_thread_mutex_lock (1046)
Could not lock a mutex.

rescode.err_thread_mutex_unlock (1047)
Could not unlock a mutex.

rescode.err_thread_create (1048)
Could not create a thread. This error may occur if a large number of environments are created
and not deleted again. In any case it is a good practice to minimize the number of environments
created.

rescode.err_thread_cond_init (1049)
Could not initialize a condition.

rescode.err_unknown (1050)
Unknown error.

rescode.err_space (1051)
Out of space.

rescode.err_file_open (1052)
Error while opening a file.

rescode.err_file_read (1053)
File read error.

rescode.err_file_write (1054)
File write error.

rescode.err_data_file_ext (1055)
The data file format cannot be determined from the file name.

rescode.err_invalid_file_name (1056)
An invalid file name has been specified.

rescode.err_invalid_sol_file_name (1057)
An invalid file name has been specified.

rescode.err_end_of_file (1059)
End of file reached.

rescode.err_null_env (1060)
env is a NULL pointer.

rescode.err_null_task (1061)
task is a NULL pointer.

rescode.err_invalid_stream (1062)
An invalid stream is referenced.

rescode.err_no_init_env (1063)
env is not initialized.

rescode.err_invalid_task (1064)
The task is invalid.

rescode.err_null_pointer (1065)
An argument to a function is unexpectedly a NULL pointer.

rescode.err_living_tasks (1066)
All tasks associated with an enviroment must be deleted before the environment is deleted. There
are still some undeleted tasks.

rescode.err_blank_name (1070)
An all blank name has been specified.

rescode.err_dup_name (1071)
The same name was used multiple times for the same problem item type.

rescode.err_format_string (1072)
The name format string is invalid.

328

rescode.err_invalid_obj_name (1075)
An invalid objective name is specified.

rescode.err_invalid_con_name (1076)
An invalid constraint name is used.

rescode.err_invalid_var_name (1077)
An invalid variable name is used.

rescode.err_invalid_cone_name (1078)
An invalid cone name is used.

rescode.err_invalid_barvar_name (1079)
An invalid symmetric matrix variable name is used.

rescode.err_space_leaking (1080)
MOSEK is leaking memory. This can be due to either an incorrect use of MOSEK or a bug.

rescode.err_space_no_info (1081)
No available information about the space usage.

rescode.err_read_format (1090)
The specified format cannot be read.

rescode.err_mps_file (1100)
An error occurred while reading an MPS file.

rescode.err_mps_inv_field (1101)
A field in the MPS file is invalid. Probably it is too wide.

rescode.err_mps_inv_marker (1102)
An invalid marker has been specified in the MPS file.

rescode.err_mps_null_con_name (1103)
An empty constraint name is used in an MPS file.

rescode.err_mps_null_var_name (1104)
An empty variable name is used in an MPS file.

rescode.err_mps_undef_con_name (1105)
An undefined constraint name occurred in an MPS file.

rescode.err_mps_undef_var_name (1106)
An undefined variable name occurred in an MPS file.

rescode.err_mps_inv_con_key (1107)
An invalid constraint key occurred in an MPS file.

rescode.err_mps_inv_bound_key (1108)
An invalid bound key occurred in an MPS file.

rescode.err_mps_inv_sec_name (1109)
An invalid section name occurred in an MPS file.

rescode.err_mps_no_objective (1110)
No objective is defined in an MPS file.

rescode.err_mps_splitted_var (1111)
All elements in a column of the 𝐴 matrix must be specified consecutively. Hence, it is illegal to
specify non-zero elements in 𝐴 for variable 1, then for variable 2 and then variable 1 again.

rescode.err_mps_mul_con_name (1112)
A constraint name was specified multiple times in the ROWS section.

rescode.err_mps_mul_qsec (1113)
Multiple QSECTIONs are specified for a constraint in the MPS data file.

rescode.err_mps_mul_qobj (1114)
The Q term in the objective is specified multiple times in the MPS data file.

rescode.err_mps_inv_sec_order (1115)
The sections in the MPS data file are not in the correct order.

rescode.err_mps_mul_csec (1116)
Multiple CSECTIONs are given the same name.

rescode.err_mps_cone_type (1117)
Invalid cone type specified in a CSECTION.

rescode.err_mps_cone_overlap (1118)
A variable is specified to be a member of several cones.

rescode.err_mps_cone_repeat (1119)
A variable is repeated within the CSECTION.

329

rescode.err_mps_non_symmetric_q (1120)
A non symmetric matrix has been speciefied.

rescode.err_mps_duplicate_q_element (1121)
Duplicate elements is specfied in a 𝑄 matrix.

rescode.err_mps_invalid_objsense (1122)
An invalid objective sense is specified.

rescode.err_mps_tab_in_field2 (1125)
A tab char occurred in field 2.

rescode.err_mps_tab_in_field3 (1126)
A tab char occurred in field 3.

rescode.err_mps_tab_in_field5 (1127)
A tab char occurred in field 5.

rescode.err_mps_invalid_obj_name (1128)
An invalid objective name is specified.

rescode.err_lp_incompatible (1150)
The problem cannot be written to an LP formatted file.

rescode.err_lp_empty (1151)
The problem cannot be written to an LP formatted file.

rescode.err_lp_dup_slack_name (1152)
The name of the slack variable added to a ranged constraint already exists.

rescode.err_write_mps_invalid_name (1153)
An invalid name is created while writing an MPS file. Usually this will make the MPS file unread-
able.

rescode.err_lp_invalid_var_name (1154)
A variable name is invalid when used in an LP formatted file.

rescode.err_lp_free_constraint (1155)
Free constraints cannot be written in LP file format.

rescode.err_write_opf_invalid_var_name (1156)
Empty variable names cannot be written to OPF files.

rescode.err_lp_file_format (1157)
Syntax error in an LP file.

rescode.err_write_lp_format (1158)
Problem cannot be written as an LP file.

rescode.err_read_lp_missing_end_tag (1159)
Syntax error in LP file. Possibly missing End tag.

rescode.err_lp_format (1160)
Syntax error in an LP file.

rescode.err_write_lp_non_unique_name (1161)
An auto-generated name is not unique.

rescode.err_read_lp_nonexisting_name (1162)
A variable never occurred in objective or constraints.

rescode.err_lp_write_conic_problem (1163)
The problem contains cones that cannot be written to an LP formatted file.

rescode.err_lp_write_geco_problem (1164)
The problem contains general convex terms that cannot be written to an LP formatted file.

rescode.err_writing_file (1166)
An error occurred while writing file

rescode.err_ptf_format (1167)
Syntax error in an PTF file

rescode.err_opf_format (1168)
Syntax error in an OPF file

rescode.err_opf_new_variable (1169)
Introducing new variables is now allowed. When a [variables] section is present, it is not allowed
to introduce new variables later in the problem.

rescode.err_invalid_name_in_sol_file (1170)
An invalid name occurred in a solution file.

rescode.err_lp_invalid_con_name (1171)
A constraint name is invalid when used in an LP formatted file.

330

rescode.err_opf_premature_eof (1172)
Premature end of file in an OPF file.

rescode.err_json_syntax (1175)
Syntax error in an JSON data

rescode.err_json_string (1176)
Error in JSON string.

rescode.err_json_number_overflow (1177)
Invalid number entry - wrong type or value overflow.

rescode.err_json_format (1178)
Error in an JSON Task file

rescode.err_json_data (1179)
Inconsistent data in JSON Task file

rescode.err_json_missing_data (1180)
Missing data section in JSON task file.

rescode.err_argument_lenneq (1197)
Incorrect length of arguments.

rescode.err_argument_type (1198)
Incorrect argument type.

rescode.err_num_arguments (1199)
Incorrect number of function arguments.

rescode.err_in_argument (1200)
A function argument is incorrect.

rescode.err_argument_dimension (1201)
A function argument is of incorrect dimension.

rescode.err_shape_is_too_large (1202)
The size of the n-dimensional shape is too large.

rescode.err_index_is_too_small (1203)
An index in an argument is too small.

rescode.err_index_is_too_large (1204)
An index in an argument is too large.

rescode.err_param_name (1205)
The parameter name is not correct.

rescode.err_param_name_dou (1206)
The parameter name is not correct for a double parameter.

rescode.err_param_name_int (1207)
The parameter name is not correct for an integer parameter.

rescode.err_param_name_str (1208)
The parameter name is not correct for a string parameter.

rescode.err_param_index (1210)
Parameter index is out of range.

rescode.err_param_is_too_large (1215)
The parameter value is too large.

rescode.err_param_is_too_small (1216)
The parameter value is too small.

rescode.err_param_value_str (1217)
The parameter value string is incorrect.

rescode.err_param_type (1218)
The parameter type is invalid.

rescode.err_inf_dou_index (1219)
A double information index is out of range for the specified type.

rescode.err_inf_int_index (1220)
An integer information index is out of range for the specified type.

rescode.err_index_arr_is_too_small (1221)
An index in an array argument is too small.

rescode.err_index_arr_is_too_large (1222)
An index in an array argument is too large.

rescode.err_inf_lint_index (1225)
A long integer information index is out of range for the specified type.

331

rescode.err_arg_is_too_small (1226)
The value of a argument is too small.

rescode.err_arg_is_too_large (1227)
The value of a argument is too large.

rescode.err_invalid_whichsol (1228)
whichsol is invalid.

rescode.err_inf_dou_name (1230)
A double information name is invalid.

rescode.err_inf_int_name (1231)
An integer information name is invalid.

rescode.err_inf_type (1232)
The information type is invalid.

rescode.err_inf_lint_name (1234)
A long integer information name is invalid.

rescode.err_index (1235)
An index is out of range.

rescode.err_whichsol (1236)
The solution defined by whichsol does not exists.

rescode.err_solitem (1237)
The solution item number solitem is invalid. Please note that solitem.snx is invalid for the
basic solution.

rescode.err_whichitem_not_allowed (1238)
whichitem is unacceptable.

rescode.err_maxnumcon (1240)
The maximum number of constraints specified is smaller than the number of constraints in the
task.

rescode.err_maxnumvar (1241)
The maximum number of variables specified is smaller than the number of variables in the task.

rescode.err_maxnumbarvar (1242)
The maximum number of semidefinite variables specified is smaller than the number of semidefinite
variables in the task.

rescode.err_maxnumqnz (1243)
The maximum number of non-zeros specified for the 𝑄 matrices is smaller than the number of
non-zeros in the current 𝑄 matrices.

rescode.err_too_small_max_num_nz (1245)
The maximum number of non-zeros specified is too small.

rescode.err_invalid_idx (1246)
A specified index is invalid.

rescode.err_invalid_max_num (1247)
A specified index is invalid.

rescode.err_numconlim (1250)
Maximum number of constraints limit is exceeded.

rescode.err_numvarlim (1251)
Maximum number of variables limit is exceeded.

rescode.err_too_small_maxnumanz (1252)
The maximum number of non-zeros specified for 𝐴 is smaller than the number of non-zeros in the
current 𝐴.

rescode.err_inv_aptre (1253)
aptre[j] is strictly smaller than aptrb[j] for some j.

rescode.err_mul_a_element (1254)
An element in 𝐴 is defined multiple times.

rescode.err_inv_bk (1255)
Invalid bound key.

rescode.err_inv_bkc (1256)
Invalid bound key is specified for a constraint.

rescode.err_inv_bkx (1257)
An invalid bound key is specified for a variable.

332

rescode.err_inv_var_type (1258)
An invalid variable type is specified for a variable.

rescode.err_solver_probtype (1259)
Problem type does not match the chosen optimizer.

rescode.err_objective_range (1260)
Empty objective range.

rescode.err_undef_solution (1265)
MOSEK has the following solution types:

• an interior-point solution,

• a basic solution,

• and an integer solution.

Each optimizer may set one or more of these solutions; e.g by default a successful optimization
with the interior-point optimizer defines the interior-point solution and, for linear problems, also
the basic solution. This error occurs when asking for a solution or for information about a solution
that is not defined.

rescode.err_basis (1266)
An invalid basis is specified. Either too many or too few basis variables are specified.

rescode.err_inv_skc (1267)
Invalid value in skc.

rescode.err_inv_skx (1268)
Invalid value in skx.

rescode.err_inv_skn (1274)
Invalid value in skn.

rescode.err_inv_sk_str (1269)
Invalid status key string encountered.

rescode.err_inv_sk (1270)
Invalid status key code.

rescode.err_inv_cone_type_str (1271)
Invalid cone type string encountered.

rescode.err_inv_cone_type (1272)
Invalid cone type code is encountered.

rescode.err_invalid_surplus (1275)
Invalid surplus.

rescode.err_inv_name_item (1280)
An invalid name item code is used.

rescode.err_pro_item (1281)
An invalid problem is used.

rescode.err_invalid_format_type (1283)
Invalid format type.

rescode.err_firsti (1285)
Invalid firsti.

rescode.err_lasti (1286)
Invalid lasti.

rescode.err_firstj (1287)
Invalid firstj.

rescode.err_lastj (1288)
Invalid lastj.

rescode.err_max_len_is_too_small (1289)
A maximum length that is too small has been specified.

rescode.err_nonlinear_equality (1290)
The model contains a nonlinear equality which defines a nonconvex set.

rescode.err_nonconvex (1291)
The optimization problem is nonconvex.

rescode.err_nonlinear_ranged (1292)
Nonlinear constraints with finite lower and upper bound always define a nonconvex feasible set.

333

rescode.err_con_q_not_psd (1293)
The quadratic constraint matrix is not positive semidefinite as expected for a constraint
with finite upper bound. This results in a nonconvex problem. The parameter dparam.
check_convexity_rel_tol can be used to relax the convexity check.

rescode.err_con_q_not_nsd (1294)
The quadratic constraint matrix is not negative semidefinite as expected for a constraint
with finite lower bound. This results in a nonconvex problem. The parameter dparam.
check_convexity_rel_tol can be used to relax the convexity check.

rescode.err_obj_q_not_psd (1295)
The quadratic coefficient matrix in the objective is not positive semidefinite as expected for a
minimization problem. The parameter dparam.check_convexity_rel_tol can be used to relax
the convexity check.

rescode.err_obj_q_not_nsd (1296)
The quadratic coefficient matrix in the objective is not negative semidefinite as expected for a
maximization problem. The parameter dparam.check_convexity_rel_tol can be used to relax
the convexity check.

rescode.err_argument_perm_array (1299)
An invalid permutation array is specified.

rescode.err_cone_index (1300)
An index of a non-existing cone has been specified.

rescode.err_cone_size (1301)
A cone with incorrect number of members is specified.

rescode.err_cone_overlap (1302)
One or more of the variables in the cone to be added is already member of another cone. Now
assume the variable is 𝑥𝑗 then add a new variable say 𝑥𝑘 and the constraint

𝑥𝑗 = 𝑥𝑘

and then let 𝑥𝑘 be member of the cone to be appended.
rescode.err_cone_rep_var (1303)

A variable is included multiple times in the cone.
rescode.err_maxnumcone (1304)

The value specified for maxnumcone is too small.
rescode.err_cone_type (1305)

Invalid cone type specified.
rescode.err_cone_type_str (1306)

Invalid cone type specified.
rescode.err_cone_overlap_append (1307)

The cone to be appended has one variable which is already member of another cone.
rescode.err_remove_cone_variable (1310)

A variable cannot be removed because it will make a cone invalid.
rescode.err_appending_too_big_cone (1311)

Trying to append a too big cone.
rescode.err_cone_parameter (1320)

An invalid cone parameter.
rescode.err_sol_file_invalid_number (1350)

An invalid number is specified in a solution file.
rescode.err_huge_c (1375)

A huge value in absolute size is specified for one 𝑐𝑗 .
rescode.err_huge_aij (1380)

A numerically huge value is specified for an 𝑎𝑖,𝑗 element in 𝐴. The parameter dparam.
data_tol_aij_huge controls when an 𝑎𝑖,𝑗 is considered huge.

rescode.err_duplicate_aij (1385)
An element in the A matrix is specified twice.

rescode.err_lower_bound_is_a_nan (1390)
The lower bound specified is not a number (nan).

rescode.err_upper_bound_is_a_nan (1391)
The upper bound specified is not a number (nan).

334

rescode.err_infinite_bound (1400)
A numerically huge bound value is specified.

rescode.err_inv_qobj_subi (1401)
Invalid value in qosubi.

rescode.err_inv_qobj_subj (1402)
Invalid value in qosubj.

rescode.err_inv_qobj_val (1403)
Invalid value in qoval.

rescode.err_inv_qcon_subk (1404)
Invalid value in qcsubk.

rescode.err_inv_qcon_subi (1405)
Invalid value in qcsubi.

rescode.err_inv_qcon_subj (1406)
Invalid value in qcsubj.

rescode.err_inv_qcon_val (1407)
Invalid value in qcval.

rescode.err_qcon_subi_too_small (1408)
Invalid value in qcsubi.

rescode.err_qcon_subi_too_large (1409)
Invalid value in qcsubi.

rescode.err_qobj_upper_triangle (1415)
An element in the upper triangle of 𝑄𝑜 is specified. Only elements in the lower triangle should be
specified.

rescode.err_qcon_upper_triangle (1417)
An element in the upper triangle of a 𝑄𝑘 is specified. Only elements in the lower triangle should
be specified.

rescode.err_fixed_bound_values (1420)
A fixed constraint/variable has been specified using the bound keys but the numerical value of the
lower and upper bound is different.

rescode.err_too_small_a_truncation_value (1421)
A too small value for the A trucation value is specified.

rescode.err_invalid_objective_sense (1445)
An invalid objective sense is specified.

rescode.err_undefined_objective_sense (1446)
The objective sense has not been specified before the optimization.

rescode.err_y_is_undefined (1449)
The solution item 𝑦 is undefined.

rescode.err_nan_in_double_data (1450)
An invalid floating point value was used in some double data.

rescode.err_nan_in_blc (1461)
𝑙𝑐 contains an invalid floating point value, i.e. a NaN.

rescode.err_nan_in_buc (1462)
𝑢𝑐 contains an invalid floating point value, i.e. a NaN.

rescode.err_nan_in_c (1470)
𝑐 contains an invalid floating point value, i.e. a NaN.

rescode.err_nan_in_blx (1471)
𝑙𝑥 contains an invalid floating point value, i.e. a NaN.

rescode.err_nan_in_bux (1472)
𝑢𝑥 contains an invalid floating point value, i.e. a NaN.

rescode.err_invalid_aij (1473)
𝑎𝑖,𝑗 contains an invalid floating point value, i.e. a NaN or an infinite value.

rescode.err_sym_mat_invalid (1480)
A symmetric matrix contains an invalid floating point value, i.e. a NaN or an infinite value.

rescode.err_sym_mat_huge (1482)
A symmetric matrix contains a huge value in absolute size. The parameter dparam.
data_sym_mat_tol_huge controls when an 𝑒𝑖,𝑗 is considered huge.

rescode.err_inv_problem (1500)
Invalid problem type. Probably a nonconvex problem has been specified.

335

rescode.err_mixed_conic_and_nl (1501)
The problem contains nonlinear terms conic constraints. The requested operation cannot be applied
to this type of problem.

rescode.err_global_inv_conic_problem (1503)
The global optimizer can only be applied to problems without semidefinite variables.

rescode.err_inv_optimizer (1550)
An invalid optimizer has been chosen for the problem.

rescode.err_mio_no_optimizer (1551)
No optimizer is available for the current class of integer optimization problems.

rescode.err_no_optimizer_var_type (1552)
No optimizer is available for this class of optimization problems.

rescode.err_final_solution (1560)
An error occurred during the solution finalization.

rescode.err_first (1570)
Invalid first.

rescode.err_last (1571)
Invalid index last. A given index was out of expected range.

rescode.err_slice_size (1572)
Invalid slice size specified.

rescode.err_negative_surplus (1573)
Negative surplus.

rescode.err_negative_append (1578)
Cannot append a negative number.

rescode.err_postsolve (1580)
An error occurred during the postsolve. Please contact MOSEK support.

rescode.err_overflow (1590)
A computation produced an overflow i.e. a very large number.

rescode.err_no_basis_sol (1600)
No basic solution is defined.

rescode.err_basis_factor (1610)
The factorization of the basis is invalid.

rescode.err_basis_singular (1615)
The basis is singular and hence cannot be factored.

rescode.err_factor (1650)
An error occurred while factorizing a matrix.

rescode.err_feasrepair_cannot_relax (1700)
An optimization problem cannot be relaxed.

rescode.err_feasrepair_solving_relaxed (1701)
The relaxed problem could not be solved to optimality. Please consult the log file for further details.

rescode.err_feasrepair_inconsistent_bound (1702)
The upper bound is less than the lower bound for a variable or a constraint. Please correct this
before running the feasibility repair.

rescode.err_repair_invalid_problem (1710)
The feasibility repair does not support the specified problem type.

rescode.err_repair_optimization_failed (1711)
Computation the optimal relaxation failed. The cause may have been numerical problems.

rescode.err_name_max_len (1750)
A name is longer than the buffer that is supposed to hold it.

rescode.err_name_is_null (1760)
The name buffer is a NULL pointer.

rescode.err_invalid_compression (1800)
Invalid compression type.

rescode.err_invalid_iomode (1801)
Invalid io mode.

rescode.err_no_primal_infeas_cer (2000)
A certificate of primal infeasibility is not available.

rescode.err_no_dual_infeas_cer (2001)
A certificate of infeasibility is not available.

336

rescode.err_no_solution_in_callback (2500)
The required solution is not available.

rescode.err_inv_marki (2501)
Invalid value in marki.

rescode.err_inv_markj (2502)
Invalid value in markj.

rescode.err_inv_numi (2503)
Invalid numi.

rescode.err_inv_numj (2504)
Invalid numj.

rescode.err_task_incompatible (2560)
The Task file is incompatible with this platform. This results from reading a file on a 32 bit
platform generated on a 64 bit platform.

rescode.err_task_invalid (2561)
The Task file is invalid.

rescode.err_task_write (2562)
Failed to write the task file.

rescode.err_lu_max_num_tries (2800)
Could not compute the LU factors of the matrix within the maximum number of allowed tries.

rescode.err_invalid_utf8 (2900)
An invalid UTF8 string is encountered.

rescode.err_invalid_wchar (2901)
An invalid wchar string is encountered.

rescode.err_no_dual_for_itg_sol (2950)
No dual information is available for the integer solution.

rescode.err_no_snx_for_bas_sol (2953)
𝑠𝑥𝑛 is not available for the basis solution.

rescode.err_internal (3000)
An internal error occurred. Please report this problem.

rescode.err_api_array_too_small (3001)
An input array was too short.

rescode.err_api_cb_connect (3002)
Failed to connect a callback object.

rescode.err_api_fatal_error (3005)
An internal error occurred in the API. Please report this problem.

rescode.err_api_internal (3999)
An internal fatal error occurred in an interface function.

rescode.err_sen_format (3050)
Syntax error in sensitivity analysis file.

rescode.err_sen_undef_name (3051)
An undefined name was encountered in the sensitivity analysis file.

rescode.err_sen_index_range (3052)
Index out of range in the sensitivity analysis file.

rescode.err_sen_bound_invalid_up (3053)
Analysis of upper bound requested for an index, where no upper bound exists.

rescode.err_sen_bound_invalid_lo (3054)
Analysis of lower bound requested for an index, where no lower bound exists.

rescode.err_sen_index_invalid (3055)
Invalid range given in the sensitivity file.

rescode.err_sen_invalid_regexp (3056)
Syntax error in regexp or regexp longer than 1024.

rescode.err_sen_solution_status (3057)
No optimal solution found to the original problem given for sensitivity analysis.

rescode.err_sen_numerical (3058)
Numerical difficulties encountered performing the sensitivity analysis.

rescode.err_sen_unhandled_problem_type (3080)
Sensitivity analysis cannot be performed for the specified problem. Sensitivity analysis is only
possible for linear problems.

337

rescode.err_unb_step_size (3100)
A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes
unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen
only if the problem is badly formulated. Please contact MOSEK support if this error occurs.

rescode.err_identical_tasks (3101)
Some tasks related to this function call were identical. Unique tasks were expected.

rescode.err_ad_invalid_codelist (3102)
The code list data was invalid.

rescode.err_internal_test_failed (3500)
An internal unit test function failed.

rescode.err_xml_invalid_problem_type (3600)
The problem type is not supported by the XML format.

rescode.err_invalid_ampl_stub (3700)
Invalid AMPL stub.

rescode.err_int64_to_int32_cast (3800)
A 64 bit integer could not be cast to a 32 bit integer.

rescode.err_size_license_numcores (3900)
The computer contains more cpu cores than the license allows for.

rescode.err_infeas_undefined (3910)
The requested value is not defined for this solution type.

rescode.err_no_barx_for_solution (3915)
There is no 𝑋 available for the solution specified. In particular note there are no 𝑋 defined for the
basic and integer solutions.

rescode.err_no_bars_for_solution (3916)
There is no 𝑠 available for the solution specified. In particular note there are no 𝑠 defined for the
basic and integer solutions.

rescode.err_bar_var_dim (3920)
The dimension of a symmetric matrix variable has to be greater than 0.

rescode.err_sym_mat_invalid_row_index (3940)
A row index specified for sparse symmetric matrix is invalid.

rescode.err_sym_mat_invalid_col_index (3941)
A column index specified for sparse symmetric matrix is invalid.

rescode.err_sym_mat_not_lower_tringular (3942)
Only the lower triangular part of sparse symmetric matrix should be specified.

rescode.err_sym_mat_invalid_value (3943)
The numerical value specified in a sparse symmetric matrix is not a floating point value.

rescode.err_sym_mat_duplicate (3944)
A value in a symmetric matric as been specified more than once.

rescode.err_invalid_sym_mat_dim (3950)
A sparse symmetric matrix of invalid dimension is specified.

rescode.err_invalid_file_format_for_sym_mat (4000)
The file format does not support a problem with symmetric matrix variables.

rescode.err_invalid_file_format_for_cfix (4001)
The file format does not support a problem with nonzero fixed term in c.

rescode.err_invalid_file_format_for_ranged_constraints (4002)
The file format does not support a problem with ranged constraints.

rescode.err_invalid_file_format_for_free_constraints (4003)
The file format does not support a problem with free constraints.

rescode.err_invalid_file_format_for_cones (4005)
The file format does not support a problem with conic constraints.

rescode.err_invalid_file_format_for_nonlinear (4010)
The file format does not support a problem with nonlinear terms.

rescode.err_duplicate_constraint_names (4500)
Two constraint names are identical.

rescode.err_duplicate_variable_names (4501)
Two variable names are identical.

rescode.err_duplicate_barvariable_names (4502)
Two barvariable names are identical.

338

rescode.err_duplicate_cone_names (4503)
Two cone names are identical.

rescode.err_non_unique_array (5000)
An array does not contain unique elements.

rescode.err_argument_is_too_large (5005)
The value of a function argument is too large.

rescode.err_mio_internal (5010)
A fatal error occurred in the mixed integer optimizer. Please contact MOSEK support.

rescode.err_invalid_problem_type (6000)
An invalid problem type.

rescode.err_unhandled_solution_status (6010)
Unhandled solution status.

rescode.err_upper_triangle (6020)
An element in the upper triangle of a lower triangular matrix is specified.

rescode.err_lau_singular_matrix (7000)
A matrix is singular.

rescode.err_lau_not_positive_definite (7001)
A matrix is not positive definite.

rescode.err_lau_invalid_lower_triangular_matrix (7002)
An invalid lower triangular matrix.

rescode.err_lau_unknown (7005)
An unknown error.

rescode.err_lau_arg_m (7010)
Invalid argument m.

rescode.err_lau_arg_n (7011)
Invalid argument n.

rescode.err_lau_arg_k (7012)
Invalid argument k.

rescode.err_lau_arg_transa (7015)
Invalid argument transa.

rescode.err_lau_arg_transb (7016)
Invalid argument transb.

rescode.err_lau_arg_uplo (7017)
Invalid argument uplo.

rescode.err_lau_arg_trans (7018)
Invalid argument trans.

rescode.err_lau_invalid_sparse_symmetric_matrix (7019)
An invalid sparse symmetric matrix is specfified. Note only the lower triangular part with no
duplicates is specifed.

rescode.err_cbf_parse (7100)
An error occurred while parsing an CBF file.

rescode.err_cbf_obj_sense (7101)
An invalid objective sense is specified.

rescode.err_cbf_no_variables (7102)
No variables are specified.

rescode.err_cbf_too_many_constraints (7103)
Too many constraints specified.

rescode.err_cbf_too_many_variables (7104)
Too many variables specified.

rescode.err_cbf_no_version_specified (7105)
No version specified.

rescode.err_cbf_syntax (7106)
Invalid syntax.

rescode.err_cbf_duplicate_obj (7107)
Duplicate OBJ keyword.

rescode.err_cbf_duplicate_con (7108)
Duplicate CON keyword.

339

rescode.err_cbf_duplicate_var (7109)
Duplicate VAR keyword.

rescode.err_cbf_duplicate_int (7110)
Duplicate INT keyword.

rescode.err_cbf_invalid_var_type (7111)
Invalid variable type.

rescode.err_cbf_invalid_con_type (7112)
Invalid constraint type.

rescode.err_cbf_invalid_domain_dimension (7113)
Invalid domain dimension.

rescode.err_cbf_duplicate_objacoord (7114)
Duplicate index in OBJCOORD.

rescode.err_cbf_duplicate_bcoord (7115)
Duplicate index in BCOORD.

rescode.err_cbf_duplicate_acoord (7116)
Duplicate index in ACOORD.

rescode.err_cbf_too_few_variables (7117)
Too few variables defined.

rescode.err_cbf_too_few_constraints (7118)
Too few constraints defined.

rescode.err_cbf_too_few_ints (7119)
Too few ints are specified.

rescode.err_cbf_too_many_ints (7120)
Too many ints are specified.

rescode.err_cbf_invalid_int_index (7121)
Invalid INT index.

rescode.err_cbf_unsupported (7122)
Unsupported feature is present.

rescode.err_cbf_duplicate_psdvar (7123)
Duplicate PSDVAR keyword.

rescode.err_cbf_invalid_psdvar_dimension (7124)
Invalid PSDVAR dimension.

rescode.err_cbf_too_few_psdvar (7125)
Too few variables defined.

rescode.err_cbf_invalid_exp_dimension (7126)
Invalid dimension of a exponential cone.

rescode.err_cbf_duplicate_pow_cones (7130)
Multiple POWCONES specified.

rescode.err_cbf_duplicate_pow_star_cones (7131)
Multiple POW*CONES specified.

rescode.err_cbf_invalid_power (7132)
Invalid power specified.

rescode.err_cbf_power_cone_is_too_long (7133)
Power cone is too long.

rescode.err_cbf_invalid_power_cone_index (7134)
Invalid power cone index.

rescode.err_cbf_invalid_power_star_cone_index (7135)
Invalid power star cone index.

rescode.err_cbf_unhandled_power_cone_type (7136)
An unhandled power cone type.

rescode.err_cbf_unhandled_power_star_cone_type (7137)
An unhandled power star cone type.

rescode.err_cbf_power_cone_mismatch (7138)
The power cone does not match with it definition.

rescode.err_cbf_power_star_cone_mismatch (7139)
The power star cone does not match with it definition.

rescode.err_cbf_invalid_number_of_cones (7740)
Invalid number of cones.

340

rescode.err_cbf_invalid_dimension_of_cones (7741)
Invalid dimension of cones.

rescode.err_mio_invalid_root_optimizer (7700)
An invalid root optimizer was selected for the problem type.

rescode.err_mio_invalid_node_optimizer (7701)
An invalid node optimizer was selected for the problem type.

rescode.err_toconic_constr_q_not_psd (7800)
The matrix defining the quadratric part of constraint is not positive semidefinite.

rescode.err_toconic_constraint_fx (7801)
The quadratic constraint is an equality, thus not convex.

rescode.err_toconic_constraint_ra (7802)
The quadratic constraint has finite lower and upper bound, and therefore it is not convex.

rescode.err_toconic_constr_not_conic (7803)
The constraint is not conic representable.

rescode.err_toconic_objective_not_psd (7804)
The matrix defining the quadratric part of the objective function is not positive semidefinite.

rescode.err_server_connect (8000)
Failed to connect to remote solver server. The server string or the port string were invalid, or the
server did not accept connection.

rescode.err_server_protocol (8001)
Unexpected message or data from solver server.

rescode.err_server_status (8002)
Server returned non-ok HTTP status code

rescode.err_server_token (8003)
The job ID specified is incorrect or invalid

rescode.err_server_problem_size (8008)
The size of the problem exceeds the dimensions permitted by the instance of the OptServer where
it was run.

15.9 Enumerations
basindtype

Basis identification

basindtype.never
Never do basis identification.

basindtype.always
Basis identification is always performed even if the interior-point optimizer terminates abnor-
mally.

basindtype.no_error
Basis identification is performed if the interior-point optimizer terminates without an error.

basindtype.if_feasible
Basis identification is not performed if the interior-point optimizer terminates with a problem
status saying that the problem is primal or dual infeasible.

basindtype.reservered
Not currently in use.

boundkey
Bound keys

boundkey.lo
The constraint or variable has a finite lower bound and an infinite upper bound.

boundkey.up
The constraint or variable has an infinite lower bound and an finite upper bound.

boundkey.fx
The constraint or variable is fixed.

boundkey.fr
The constraint or variable is free.

341

boundkey.ra
The constraint or variable is ranged.

mark
Mark

mark.lo
The lower bound is selected for sensitivity analysis.

mark.up
The upper bound is selected for sensitivity analysis.

simdegen
Degeneracy strategies

simdegen.none
The simplex optimizer should use no degeneration strategy.

simdegen.free
The simplex optimizer chooses the degeneration strategy.

simdegen.aggressive
The simplex optimizer should use an aggressive degeneration strategy.

simdegen.moderate
The simplex optimizer should use a moderate degeneration strategy.

simdegen.minimum
The simplex optimizer should use a minimum degeneration strategy.

transpose
Transposed matrix.

transpose.no
No transpose is applied.

transpose.yes
A transpose is applied.

uplo
Triangular part of a symmetric matrix.

uplo.lo
Lower part.

uplo.up
Upper part.

simreform
Problem reformulation.

simreform.on
Allow the simplex optimizer to reformulate the problem.

simreform.off
Disallow the simplex optimizer to reformulate the problem.

simreform.free
The simplex optimizer can choose freely.

simreform.aggressive
The simplex optimizer should use an aggressive reformulation strategy.

simdupvec
Exploit duplicate columns.

simdupvec.on
Allow the simplex optimizer to exploit duplicated columns.

simdupvec.off
Disallow the simplex optimizer to exploit duplicated columns.

simdupvec.free
The simplex optimizer can choose freely.

simhotstart
Hot-start type employed by the simplex optimizer

342

simhotstart.none
The simplex optimizer performs a coldstart.

simhotstart.free
The simplex optimize chooses the hot-start type.

simhotstart.status_keys
Only the status keys of the constraints and variables are used to choose the type of hot-start.

intpnthotstart
Hot-start type employed by the interior-point optimizers.

intpnthotstart.none
The interior-point optimizer performs a coldstart.

intpnthotstart.primal
The interior-point optimizer exploits the primal solution only.

intpnthotstart.dual
The interior-point optimizer exploits the dual solution only.

intpnthotstart.primal_dual
The interior-point optimizer exploits both the primal and dual solution.

purify
Solution purification employed optimizer.

purify.none
The optimizer performs no solution purification.

purify.primal
The optimizer purifies the primal solution.

purify.dual
The optimizer purifies the dual solution.

purify.primal_dual
The optimizer purifies both the primal and dual solution.

purify.auto
TBD

callbackcode
Progress callback codes

callbackcode.begin_bi
The basis identification procedure has been started.

callbackcode.begin_conic
The callback function is called when the conic optimizer is started.

callbackcode.begin_dual_bi
The callback function is called from within the basis identification procedure when the dual
phase is started.

callbackcode.begin_dual_sensitivity
Dual sensitivity analysis is started.

callbackcode.begin_dual_setup_bi
The callback function is called when the dual BI phase is started.

callbackcode.begin_dual_simplex
The callback function is called when the dual simplex optimizer started.

callbackcode.begin_dual_simplex_bi
The callback function is called from within the basis identification procedure when the dual
simplex clean-up phase is started.

callbackcode.begin_full_convexity_check
Begin full convexity check.

callbackcode.begin_infeas_ana
The callback function is called when the infeasibility analyzer is started.

callbackcode.begin_intpnt
The callback function is called when the interior-point optimizer is started.

343

callbackcode.begin_license_wait
Begin waiting for license.

callbackcode.begin_mio
The callback function is called when the mixed-integer optimizer is started.

callbackcode.begin_optimizer
The callback function is called when the optimizer is started.

callbackcode.begin_presolve
The callback function is called when the presolve is started.

callbackcode.begin_primal_bi
The callback function is called from within the basis identification procedure when the primal
phase is started.

callbackcode.begin_primal_repair
Begin primal feasibility repair.

callbackcode.begin_primal_sensitivity
Primal sensitivity analysis is started.

callbackcode.begin_primal_setup_bi
The callback function is called when the primal BI setup is started.

callbackcode.begin_primal_simplex
The callback function is called when the primal simplex optimizer is started.

callbackcode.begin_primal_simplex_bi
The callback function is called from within the basis identification procedure when the primal
simplex clean-up phase is started.

callbackcode.begin_qcqo_reformulate
Begin QCQO reformulation.

callbackcode.begin_read
MOSEK has started reading a problem file.

callbackcode.begin_root_cutgen
The callback function is called when root cut generation is started.

callbackcode.begin_simplex
The callback function is called when the simplex optimizer is started.

callbackcode.begin_simplex_bi
The callback function is called from within the basis identification procedure when the simplex
clean-up phase is started.

callbackcode.begin_to_conic
Begin conic reformulation.

callbackcode.begin_write
MOSEK has started writing a problem file.

callbackcode.conic
The callback function is called from within the conic optimizer after the information database
has been updated.

callbackcode.dual_simplex
The callback function is called from within the dual simplex optimizer.

callbackcode.end_bi
The callback function is called when the basis identification procedure is terminated.

callbackcode.end_conic
The callback function is called when the conic optimizer is terminated.

callbackcode.end_dual_bi
The callback function is called from within the basis identification procedure when the dual
phase is terminated.

callbackcode.end_dual_sensitivity
Dual sensitivity analysis is terminated.

344

callbackcode.end_dual_setup_bi
The callback function is called when the dual BI phase is terminated.

callbackcode.end_dual_simplex
The callback function is called when the dual simplex optimizer is terminated.

callbackcode.end_dual_simplex_bi
The callback function is called from within the basis identification procedure when the dual
clean-up phase is terminated.

callbackcode.end_full_convexity_check
End full convexity check.

callbackcode.end_infeas_ana
The callback function is called when the infeasibility analyzer is terminated.

callbackcode.end_intpnt
The callback function is called when the interior-point optimizer is terminated.

callbackcode.end_license_wait
End waiting for license.

callbackcode.end_mio
The callback function is called when the mixed-integer optimizer is terminated.

callbackcode.end_optimizer
The callback function is called when the optimizer is terminated.

callbackcode.end_presolve
The callback function is called when the presolve is completed.

callbackcode.end_primal_bi
The callback function is called from within the basis identification procedure when the primal
phase is terminated.

callbackcode.end_primal_repair
End primal feasibility repair.

callbackcode.end_primal_sensitivity
Primal sensitivity analysis is terminated.

callbackcode.end_primal_setup_bi
The callback function is called when the primal BI setup is terminated.

callbackcode.end_primal_simplex
The callback function is called when the primal simplex optimizer is terminated.

callbackcode.end_primal_simplex_bi
The callback function is called from within the basis identification procedure when the primal
clean-up phase is terminated.

callbackcode.end_qcqo_reformulate
End QCQO reformulation.

callbackcode.end_read
MOSEK has finished reading a problem file.

callbackcode.end_root_cutgen
The callback function is called when root cut generation is terminated.

callbackcode.end_simplex
The callback function is called when the simplex optimizer is terminated.

callbackcode.end_simplex_bi
The callback function is called from within the basis identification procedure when the simplex
clean-up phase is terminated.

callbackcode.end_to_conic
End conic reformulation.

callbackcode.end_write
MOSEK has finished writing a problem file.

345

callbackcode.im_bi
The callback function is called from within the basis identification procedure at an interme-
diate point.

callbackcode.im_conic
The callback function is called at an intermediate stage within the conic optimizer where the
information database has not been updated.

callbackcode.im_dual_bi
The callback function is called from within the basis identification procedure at an interme-
diate point in the dual phase.

callbackcode.im_dual_sensivity
The callback function is called at an intermediate stage of the dual sensitivity analysis.

callbackcode.im_dual_simplex
The callback function is called at an intermediate point in the dual simplex optimizer.

callbackcode.im_full_convexity_check
The callback function is called at an intermediate stage of the full convexity check.

callbackcode.im_intpnt
The callback function is called at an intermediate stage within the interior-point optimizer
where the information database has not been updated.

callbackcode.im_license_wait
MOSEK is waiting for a license.

callbackcode.im_lu
The callback function is called from within the LU factorization procedure at an intermediate
point.

callbackcode.im_mio
The callback function is called at an intermediate point in the mixed-integer optimizer.

callbackcode.im_mio_dual_simplex
The callback function is called at an intermediate point in the mixed-integer optimizer while
running the dual simplex optimizer.

callbackcode.im_mio_intpnt
The callback function is called at an intermediate point in the mixed-integer optimizer while
running the interior-point optimizer.

callbackcode.im_mio_primal_simplex
The callback function is called at an intermediate point in the mixed-integer optimizer while
running the primal simplex optimizer.

callbackcode.im_order
The callback function is called from within the matrix ordering procedure at an intermediate
point.

callbackcode.im_presolve
The callback function is called from within the presolve procedure at an intermediate stage.

callbackcode.im_primal_bi
The callback function is called from within the basis identification procedure at an interme-
diate point in the primal phase.

callbackcode.im_primal_sensivity
The callback function is called at an intermediate stage of the primal sensitivity analysis.

callbackcode.im_primal_simplex
The callback function is called at an intermediate point in the primal simplex optimizer.

callbackcode.im_qo_reformulate
The callback function is called at an intermediate stage of the conic quadratic reformulation.

callbackcode.im_read
Intermediate stage in reading.

callbackcode.im_root_cutgen
The callback is called from within root cut generation at an intermediate stage.

346

callbackcode.im_simplex
The callback function is called from within the simplex optimizer at an intermediate point.

callbackcode.im_simplex_bi
The callback function is called from within the basis identification procedure at an interme-
diate point in the simplex clean-up phase. The frequency of the callbacks is controlled by the
iparam.log_sim_freq parameter.

callbackcode.intpnt
The callback function is called from within the interior-point optimizer after the information
database has been updated.

callbackcode.new_int_mio
The callback function is called after a new integer solution has been located by the mixed-
integer optimizer.

callbackcode.primal_simplex
The callback function is called from within the primal simplex optimizer.

callbackcode.read_opf
The callback function is called from the OPF reader.

callbackcode.read_opf_section
A chunk of 𝑄 non-zeros has been read from a problem file.

callbackcode.solving_remote
The callback function is called while the task is being solved on a remote server.

callbackcode.update_dual_bi
The callback function is called from within the basis identification procedure at an interme-
diate point in the dual phase.

callbackcode.update_dual_simplex
The callback function is called in the dual simplex optimizer.

callbackcode.update_dual_simplex_bi
The callback function is called from within the basis identification procedure at an interme-
diate point in the dual simplex clean-up phase. The frequency of the callbacks is controlled
by the iparam.log_sim_freq parameter.

callbackcode.update_presolve
The callback function is called from within the presolve procedure.

callbackcode.update_primal_bi
The callback function is called from within the basis identification procedure at an interme-
diate point in the primal phase.

callbackcode.update_primal_simplex
The callback function is called in the primal simplex optimizer.

callbackcode.update_primal_simplex_bi
The callback function is called from within the basis identification procedure at an interme-
diate point in the primal simplex clean-up phase. The frequency of the callbacks is controlled
by the iparam.log_sim_freq parameter.

callbackcode.write_opf
The callback function is called from the OPF writer.

checkconvexitytype
Types of convexity checks.

checkconvexitytype.none
No convexity check.

checkconvexitytype.simple
Perform simple and fast convexity check.

checkconvexitytype.full
Perform a full convexity check.

compresstype
Compression types

347

compresstype.none
No compression is used.

compresstype.free
The type of compression used is chosen automatically.

compresstype.gzip
The type of compression used is gzip compatible.

compresstype.zstd
The type of compression used is zstd compatible.

conetype
Cone types

conetype.quad
The cone is a quadratic cone.

conetype.rquad
The cone is a rotated quadratic cone.

conetype.pexp
A primal exponential cone.

conetype.dexp
A dual exponential cone.

conetype.ppow
A primal power cone.

conetype.dpow
A dual power cone.

conetype.zero
The zero cone.

nametype
Name types

nametype.gen
General names. However, no duplicate and blank names are allowed.

nametype.mps
MPS type names.

nametype.lp
LP type names.

scopr
SCopt operator types

scopr.ent
Entropy

scopr.exp
Exponential

scopr.log
Logarithm

scopr.pow
Power

scopr.sqrt
Square root

symmattype
Cone types

symmattype.sparse
Sparse symmetric matrix.

dataformat
Data format types

dataformat.extension
The file extension is used to determine the data file format.

348

dataformat.mps
The data file is MPS formatted.

dataformat.lp
The data file is LP formatted.

dataformat.op
The data file is an optimization problem formatted file.

dataformat.free_mps
The data a free MPS formatted file.

dataformat.task
Generic task dump file.

dataformat.ptf
(P)retty (T)ext (F)format.

dataformat.cb
Conic benchmark format,

dataformat.json_task
JSON based task format.

dinfitem
Double information items

dinfitem.bi_clean_dual_time
Time spent within the dual clean-up optimizer of the basis identification procedure since its
invocation.

dinfitem.bi_clean_primal_time
Time spent within the primal clean-up optimizer of the basis identification procedure since
its invocation.

dinfitem.bi_clean_time
Time spent within the clean-up phase of the basis identification procedure since its invocation.

dinfitem.bi_dual_time
Time spent within the dual phase basis identification procedure since its invocation.

dinfitem.bi_primal_time
Time spent within the primal phase of the basis identification procedure since its invocation.

dinfitem.bi_time
Time spent within the basis identification procedure since its invocation.

dinfitem.intpnt_dual_feas
Dual feasibility measure reported by the interior-point optimizer. (For the interior-point
optimizer this measure is not directly related to the original problem because a homogeneous
model is employed.)

dinfitem.intpnt_dual_obj
Dual objective value reported by the interior-point optimizer.

dinfitem.intpnt_factor_num_flops
An estimate of the number of flops used in the factorization.

dinfitem.intpnt_opt_status
A measure of optimality of the solution. It should converge to +1 if the problem has a primal-
dual optimal solution, and converge to −1 if the problem is (strictly) primal or dual infeasible.
If the measure converges to another constant, or fails to settle, the problem is usually ill-posed.

dinfitem.intpnt_order_time
Order time (in seconds).

dinfitem.intpnt_primal_feas
Primal feasibility measure reported by the interior-point optimizer. (For the interior-point
optimizer this measure is not directly related to the original problem because a homogeneous
model is employed).

dinfitem.intpnt_primal_obj
Primal objective value reported by the interior-point optimizer.

349

dinfitem.intpnt_time
Time spent within the interior-point optimizer since its invocation.

dinfitem.mio_clique_separation_time
Separation time for clique cuts.

dinfitem.mio_cmir_separation_time
Separation time for CMIR cuts.

dinfitem.mio_construct_solution_obj
If MOSEK has successfully constructed an integer feasible solution, then this item contains
the optimal objective value corresponding to the feasible solution.

dinfitem.mio_dual_bound_after_presolve
Value of the dual bound after presolve but before cut generation.

dinfitem.mio_gmi_separation_time
Separation time for GMI cuts.

dinfitem.mio_implied_bound_time
Separation time for implied bound cuts.

dinfitem.mio_knapsack_cover_separation_time
Separation time for knapsack cover.

dinfitem.mio_obj_abs_gap
Given the mixed-integer optimizer has computed a feasible solution and a bound on the
optimal objective value, then this item contains the absolute gap defined by

|(objective value of feasible solution) − (objective bound)|.

Otherwise it has the value -1.0.

dinfitem.mio_obj_bound
The best known bound on the objective function. This value is undefined until at least one
relaxation has been solved: To see if this is the case check that iinfitem.mio_num_relax is
strictly positive.

dinfitem.mio_obj_int
The primal objective value corresponding to the best integer feasible solution. Please note
that at least one integer feasible solution must have been located i.e. check iinfitem.
mio_num_int_solutions .

dinfitem.mio_obj_rel_gap
Given that the mixed-integer optimizer has computed a feasible solution and a bound on the
optimal objective value, then this item contains the relative gap defined by

|(objective value of feasible solution) − (objective bound)|
max(𝛿, |(objective value of feasible solution)|)

.

where 𝛿 is given by the parameter dparam.mio_rel_gap_const . Otherwise it has the value
−1.0.

dinfitem.mio_probing_time
Total time for probing.

dinfitem.mio_root_cutgen_time
Total time for cut generation.

dinfitem.mio_root_optimizer_time
Time spent in the optimizer while solving the root node relaxation

dinfitem.mio_root_presolve_time
Time spent presolving the problem at the root node.

dinfitem.mio_time
Time spent in the mixed-integer optimizer.

dinfitem.mio_user_obj_cut
If the objective cut is used, then this information item has the value of the cut.

350

dinfitem.optimizer_time
Total time spent in the optimizer since it was invoked.

dinfitem.presolve_eli_time
Total time spent in the eliminator since the presolve was invoked.

dinfitem.presolve_lindep_time
Total time spent in the linear dependency checker since the presolve was invoked.

dinfitem.presolve_time
Total time (in seconds) spent in the presolve since it was invoked.

dinfitem.primal_repair_penalty_obj
The optimal objective value of the penalty function.

dinfitem.qcqo_reformulate_max_perturbation
Maximum absolute diagonal perturbation occurring during the QCQO reformulation.

dinfitem.qcqo_reformulate_time
Time spent with conic quadratic reformulation.

dinfitem.qcqo_reformulate_worst_cholesky_column_scaling
Worst Cholesky column scaling.

dinfitem.qcqo_reformulate_worst_cholesky_diag_scaling
Worst Cholesky diagonal scaling.

dinfitem.rd_time
Time spent reading the data file.

dinfitem.sim_dual_time
Time spent in the dual simplex optimizer since invoking it.

dinfitem.sim_feas
Feasibility measure reported by the simplex optimizer.

dinfitem.sim_obj
Objective value reported by the simplex optimizer.

dinfitem.sim_primal_time
Time spent in the primal simplex optimizer since invoking it.

dinfitem.sim_time
Time spent in the simplex optimizer since invoking it.

dinfitem.sol_bas_dual_obj
Dual objective value of the basic solution. Updated if iparam.auto_update_sol_info is set
or by the method Task.updatesolutioninfo .

dinfitem.sol_bas_dviolcon
Maximal dual bound violation for 𝑥𝑐 in the basic solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_bas_dviolvar
Maximal dual bound violation for 𝑥𝑥 in the basic solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_bas_nrm_barx
Infinity norm of 𝑋 in the basic solution.

dinfitem.sol_bas_nrm_slc
Infinity norm of 𝑠𝑐𝑙 in the basic solution.

dinfitem.sol_bas_nrm_slx
Infinity norm of 𝑠𝑥𝑙 in the basic solution.

dinfitem.sol_bas_nrm_suc
Infinity norm of 𝑠𝑐𝑢 in the basic solution.

dinfitem.sol_bas_nrm_sux
Infinity norm of 𝑠𝑋𝑢 in the basic solution.

dinfitem.sol_bas_nrm_xc
Infinity norm of 𝑥𝑐 in the basic solution.

351

dinfitem.sol_bas_nrm_xx
Infinity norm of 𝑥𝑥 in the basic solution.

dinfitem.sol_bas_nrm_y
Infinity norm of 𝑦 in the basic solution.

dinfitem.sol_bas_primal_obj
Primal objective value of the basic solution. Updated if iparam.auto_update_sol_info is
set or by the method Task.updatesolutioninfo .

dinfitem.sol_bas_pviolcon
Maximal primal bound violation for 𝑥𝑐 in the basic solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_bas_pviolvar
Maximal primal bound violation for 𝑥𝑥 in the basic solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itg_nrm_barx
Infinity norm of 𝑋 in the integer solution.

dinfitem.sol_itg_nrm_xc
Infinity norm of 𝑥𝑐 in the integer solution.

dinfitem.sol_itg_nrm_xx
Infinity norm of 𝑥𝑥 in the integer solution.

dinfitem.sol_itg_primal_obj
Primal objective value of the integer solution. Updated if iparam.auto_update_sol_info is
set or by the method Task.updatesolutioninfo .

dinfitem.sol_itg_pviolbarvar
Maximal primal bound violation for 𝑋 in the integer solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itg_pviolcon
Maximal primal bound violation for 𝑥𝑐 in the integer solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itg_pviolcones
Maximal primal violation for primal conic constraints in the integer solution. Updated if
iparam.auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itg_pviolitg
Maximal violation for the integer constraints in the integer solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itg_pviolvar
Maximal primal bound violation for 𝑥𝑥 in the integer solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itr_dual_obj
Dual objective value of the interior-point solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itr_dviolbarvar
Maximal dual bound violation for 𝑋 in the interior-point solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itr_dviolcon
Maximal dual bound violation for 𝑥𝑐 in the interior-point solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itr_dviolcones
Maximal dual violation for dual conic constraints in the interior-point solution. Updated if
iparam.auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itr_dviolvar
Maximal dual bound violation for 𝑥𝑥 in the interior-point solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

352

dinfitem.sol_itr_nrm_bars
Infinity norm of 𝑆 in the interior-point solution.

dinfitem.sol_itr_nrm_barx
Infinity norm of 𝑋 in the interior-point solution.

dinfitem.sol_itr_nrm_slc
Infinity norm of 𝑠𝑐𝑙 in the interior-point solution.

dinfitem.sol_itr_nrm_slx
Infinity norm of 𝑠𝑥𝑙 in the interior-point solution.

dinfitem.sol_itr_nrm_snx
Infinity norm of 𝑠𝑥𝑛 in the interior-point solution.

dinfitem.sol_itr_nrm_suc
Infinity norm of 𝑠𝑐𝑢 in the interior-point solution.

dinfitem.sol_itr_nrm_sux
Infinity norm of 𝑠𝑋𝑢 in the interior-point solution.

dinfitem.sol_itr_nrm_xc
Infinity norm of 𝑥𝑐 in the interior-point solution.

dinfitem.sol_itr_nrm_xx
Infinity norm of 𝑥𝑥 in the interior-point solution.

dinfitem.sol_itr_nrm_y
Infinity norm of 𝑦 in the interior-point solution.

dinfitem.sol_itr_primal_obj
Primal objective value of the interior-point solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itr_pviolbarvar
Maximal primal bound violation for 𝑋 in the interior-point solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itr_pviolcon
Maximal primal bound violation for 𝑥𝑐 in the interior-point solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itr_pviolcones
Maximal primal violation for primal conic constraints in the interior-point solution. Updated
if iparam.auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itr_pviolvar
Maximal primal bound violation for 𝑥𝑥 in the interior-point solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.to_conic_time
Time spent in the last to conic reformulation.

feature
License feature

feature.pts
Base system.

feature.pton
Conic extension.

liinfitem
Long integer information items.

liinfitem.bi_clean_dual_deg_iter
Number of dual degenerate clean iterations performed in the basis identification.

liinfitem.bi_clean_dual_iter
Number of dual clean iterations performed in the basis identification.

liinfitem.bi_clean_primal_deg_iter
Number of primal degenerate clean iterations performed in the basis identification.

353

liinfitem.bi_clean_primal_iter
Number of primal clean iterations performed in the basis identification.

liinfitem.bi_dual_iter
Number of dual pivots performed in the basis identification.

liinfitem.bi_primal_iter
Number of primal pivots performed in the basis identification.

liinfitem.intpnt_factor_num_nz
Number of non-zeros in factorization.

liinfitem.mio_anz
Number of non-zero entries in the constraint matrix of the probelm to be solved by the mixed-
integer optimizer.

liinfitem.mio_intpnt_iter
Number of interior-point iterations performed by the mixed-integer optimizer.

liinfitem.mio_presolved_anz
Number of non-zero entries in the constraint matrix of the problem after the mixed-integer
optimizer’s presolve.

liinfitem.mio_simplex_iter
Number of simplex iterations performed by the mixed-integer optimizer.

liinfitem.rd_numanz
Number of non-zeros in A that is read.

liinfitem.rd_numqnz
Number of Q non-zeros.

iinfitem
Integer information items.

iinfitem.ana_pro_num_con
Number of constraints in the problem. This value is set by Task.analyzeproblem .

iinfitem.ana_pro_num_con_eq
Number of equality constraints. This value is set by Task.analyzeproblem .

iinfitem.ana_pro_num_con_fr
Number of unbounded constraints. This value is set by Task.analyzeproblem .

iinfitem.ana_pro_num_con_lo
Number of constraints with a lower bound and an infinite upper bound. This value is set by
Task.analyzeproblem .

iinfitem.ana_pro_num_con_ra
Number of constraints with finite lower and upper bounds. This value is set by Task.
analyzeproblem .

iinfitem.ana_pro_num_con_up
Number of constraints with an upper bound and an infinite lower bound. This value is set by
Task.analyzeproblem .

iinfitem.ana_pro_num_var
Number of variables in the problem. This value is set by Task.analyzeproblem .

iinfitem.ana_pro_num_var_bin
Number of binary (0-1) variables. This value is set by Task.analyzeproblem .

iinfitem.ana_pro_num_var_cont
Number of continuous variables. This value is set by Task.analyzeproblem .

iinfitem.ana_pro_num_var_eq
Number of fixed variables. This value is set by Task.analyzeproblem .

iinfitem.ana_pro_num_var_fr
Number of free variables. This value is set by Task.analyzeproblem .

iinfitem.ana_pro_num_var_int
Number of general integer variables. This value is set by Task.analyzeproblem .

354

iinfitem.ana_pro_num_var_lo
Number of variables with a lower bound and an infinite upper bound. This value is set by
Task.analyzeproblem .

iinfitem.ana_pro_num_var_ra
Number of variables with finite lower and upper bounds. This value is set by Task.
analyzeproblem .

iinfitem.ana_pro_num_var_up
Number of variables with an upper bound and an infinite lower bound. This value is set by
Task.analyzeproblem .

iinfitem.intpnt_factor_dim_dense
Dimension of the dense sub system in factorization.

iinfitem.intpnt_iter
Number of interior-point iterations since invoking the interior-point optimizer.

iinfitem.intpnt_num_threads
Number of threads that the interior-point optimizer is using.

iinfitem.intpnt_solve_dual
Non-zero if the interior-point optimizer is solving the dual problem.

iinfitem.mio_absgap_satisfied
Non-zero if absolute gap is within tolerances.

iinfitem.mio_clique_table_size
Size of the clique table.

iinfitem.mio_construct_solution
This item informs if MOSEK constructed an initial integer feasible solution.

• -1: tried, but failed,
• 0: no partial solution supplied by the user,
• 1: constructed feasible solution.

iinfitem.mio_node_depth
Depth of the last node solved.

iinfitem.mio_num_active_nodes
Number of active branch and bound nodes.

iinfitem.mio_num_branch
Number of branches performed during the optimization.

iinfitem.mio_num_clique_cuts
Number of clique cuts.

iinfitem.mio_num_cmir_cuts
Number of Complemented Mixed Integer Rounding (CMIR) cuts.

iinfitem.mio_num_gomory_cuts
Number of Gomory cuts.

iinfitem.mio_num_implied_bound_cuts
Number of implied bound cuts.

iinfitem.mio_num_int_solutions
Number of integer feasible solutions that have been found.

iinfitem.mio_num_knapsack_cover_cuts
Number of clique cuts.

iinfitem.mio_num_relax
Number of relaxations solved during the optimization.

iinfitem.mio_num_repeated_presolve
Number of times presolve was repeated at root.

iinfitem.mio_numbin
Number of binary variables in the problem to be solved by the mixed-integer optimizer.

355

iinfitem.mio_numbinconevar
Number of binary cone variables in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numcon
Number of constraints in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numcone
Number of cones in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numconevar
Number of cone variables in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numcont
Number of continuous variables in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numcontconevar
Number of continuous cone variables in the problem to be solved by the mixed-integer opti-
mizer.

iinfitem.mio_numdexpcones
Number of dual exponential cones in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numdpowcones
Number of dual power cones in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numint
Number of integer variables in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numintconevar
Number of integer cone variables in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numpexpcones
Number of primal exponential cones in the problem to be solved by the mixed-integer opti-
mizer.

iinfitem.mio_numppowcones
Number of primal power cones in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numqcones
Number of quadratic cones in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numrqcones
Number of rotated quadratic cones in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numvar
Number of variables in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_obj_bound_defined
Non-zero if a valid objective bound has been found, otherwise zero.

iinfitem.mio_presolved_numbin
Number of binary variables in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numbinconevar
Number of binary cone variables in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numcon
Number of constraints in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numcone
Number of cones in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numconevar
Number of cone variables in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numcont
Number of continuous variables in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numcontconevar
Number of continuous cone variables in the problem after the mixed-integer optimizer’s pre-
solve.

iinfitem.mio_presolved_numdexpcones
Number of dual exponential cones in the problem after the mixed-integer optimizer’s presolve.

356

iinfitem.mio_presolved_numdpowcones
Number of dual power cones in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numint
Number of integer variables in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numintconevar
Number of integer cone variables in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numpexpcones
Number of primal exponential cones in the problem after the mixed-integer optimizer’s pre-
solve.

iinfitem.mio_presolved_numppowcones
Number of primal power cones in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numqcones
Number of quadratic cones in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numrqcones
Number of rotated quadratic cones in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numvar
Number of variables in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_relgap_satisfied
Non-zero if relative gap is within tolerances.

iinfitem.mio_total_num_cuts
Total number of cuts generated by the mixed-integer optimizer.

iinfitem.mio_user_obj_cut
If it is non-zero, then the objective cut is used.

iinfitem.opt_numcon
Number of constraints in the problem solved when the optimizer is called.

iinfitem.opt_numvar
Number of variables in the problem solved when the optimizer is called

iinfitem.optimize_response
The response code returned by optimize.

iinfitem.purify_dual_success
Is nonzero if the dual solution is purified.

iinfitem.purify_primal_success
Is nonzero if the primal solution is purified.

iinfitem.rd_numbarvar
Number of symmetric variables read.

iinfitem.rd_numcon
Number of constraints read.

iinfitem.rd_numcone
Number of conic constraints read.

iinfitem.rd_numintvar
Number of integer-constrained variables read.

iinfitem.rd_numq
Number of nonempty Q matrices read.

iinfitem.rd_numvar
Number of variables read.

iinfitem.rd_protype
Problem type.

iinfitem.sim_dual_deg_iter
The number of dual degenerate iterations.

iinfitem.sim_dual_hotstart
If 1 then the dual simplex algorithm is solving from an advanced basis.

357

iinfitem.sim_dual_hotstart_lu
If 1 then a valid basis factorization of full rank was located and used by the dual simplex
algorithm.

iinfitem.sim_dual_inf_iter
The number of iterations taken with dual infeasibility.

iinfitem.sim_dual_iter
Number of dual simplex iterations during the last optimization.

iinfitem.sim_numcon
Number of constraints in the problem solved by the simplex optimizer.

iinfitem.sim_numvar
Number of variables in the problem solved by the simplex optimizer.

iinfitem.sim_primal_deg_iter
The number of primal degenerate iterations.

iinfitem.sim_primal_hotstart
If 1 then the primal simplex algorithm is solving from an advanced basis.

iinfitem.sim_primal_hotstart_lu
If 1 then a valid basis factorization of full rank was located and used by the primal simplex
algorithm.

iinfitem.sim_primal_inf_iter
The number of iterations taken with primal infeasibility.

iinfitem.sim_primal_iter
Number of primal simplex iterations during the last optimization.

iinfitem.sim_solve_dual
Is non-zero if dual problem is solved.

iinfitem.sol_bas_prosta
Problem status of the basic solution. Updated after each optimization.

iinfitem.sol_bas_solsta
Solution status of the basic solution. Updated after each optimization.

iinfitem.sol_itg_prosta
Problem status of the integer solution. Updated after each optimization.

iinfitem.sol_itg_solsta
Solution status of the integer solution. Updated after each optimization.

iinfitem.sol_itr_prosta
Problem status of the interior-point solution. Updated after each optimization.

iinfitem.sol_itr_solsta
Solution status of the interior-point solution. Updated after each optimization.

iinfitem.sto_num_a_realloc
Number of times the storage for storing 𝐴 has been changed. A large value may indicates
that memory fragmentation may occur.

inftype
Information item types

inftype.dou_type
Is a double information type.

inftype.int_type
Is an integer.

inftype.lint_type
Is a long integer.

iomode
Input/output modes

iomode.read
The file is read-only.

358

iomode.write
The file is write-only. If the file exists then it is truncated when it is opened. Otherwise it is
created when it is opened.

iomode.readwrite
The file is to read and write.

branchdir
Specifies the branching direction.
branchdir.free

The mixed-integer optimizer decides which branch to choose.
branchdir.up

The mixed-integer optimizer always chooses the up branch first.
branchdir.down

The mixed-integer optimizer always chooses the down branch first.
branchdir.near

Branch in direction nearest to selected fractional variable.
branchdir.far

Branch in direction farthest from selected fractional variable.
branchdir.root_lp

Chose direction based on root lp value of selected variable.
branchdir.guided

Branch in direction of current incumbent.
branchdir.pseudocost

Branch based on the pseudocost of the variable.
miocontsoltype

Continuous mixed-integer solution type
miocontsoltype.none

No interior-point or basic solution are reported when the mixed-integer optimizer is used.
miocontsoltype.root

The reported interior-point and basic solutions are a solution to the root node problem when
mixed-integer optimizer is used.

miocontsoltype.itg
The reported interior-point and basic solutions are a solution to the problem with all integer
variables fixed at the value they have in the integer solution. A solution is only reported in
case the problem has a primal feasible solution.

miocontsoltype.itg_rel
In case the problem is primal feasible then the reported interior-point and basic solutions are
a solution to the problem with all integer variables fixed at the value they have in the integer
solution. If the problem is primal infeasible, then the solution to the root node problem is
reported.

miomode
Integer restrictions
miomode.ignored

The integer constraints are ignored and the problem is solved as a continuous problem.
miomode.satisfied

Integer restrictions should be satisfied.
mionodeseltype

Mixed-integer node selection types
mionodeseltype.free

The optimizer decides the node selection strategy.
mionodeseltype.first

The optimizer employs a depth first node selection strategy.
mionodeseltype.best

The optimizer employs a best bound node selection strategy.

359

mionodeseltype.pseudo
The optimizer employs selects the node based on a pseudo cost estimate.

mpsformat
MPS file format type

mpsformat.strict
It is assumed that the input file satisfies the MPS format strictly.

mpsformat.relaxed
It is assumed that the input file satisfies a slightly relaxed version of the MPS format.

mpsformat.free
It is assumed that the input file satisfies the free MPS format. This implies that spaces are
not allowed in names. Otherwise the format is free.

mpsformat.cplex
The CPLEX compatible version of the MPS format is employed.

objsense
Objective sense types

objsense.minimize
The problem should be minimized.

objsense.maximize
The problem should be maximized.

onoffkey
On/off

onoffkey.on
Switch the option on.

onoffkey.off
Switch the option off.

optimizertype
Optimizer types

optimizertype.conic
The optimizer for problems having conic constraints.

optimizertype.dual_simplex
The dual simplex optimizer is used.

optimizertype.free
The optimizer is chosen automatically.

optimizertype.free_simplex
One of the simplex optimizers is used.

optimizertype.intpnt
The interior-point optimizer is used.

optimizertype.mixed_int
The mixed-integer optimizer.

optimizertype.primal_simplex
The primal simplex optimizer is used.

orderingtype
Ordering strategies

orderingtype.free
The ordering method is chosen automatically.

orderingtype.appminloc
Approximate minimum local fill-in ordering is employed.

orderingtype.experimental
This option should not be used.

orderingtype.try_graphpar
Always try the graph partitioning based ordering.

360

orderingtype.force_graphpar
Always use the graph partitioning based ordering even if it is worse than the approximate
minimum local fill ordering.

orderingtype.none
No ordering is used.

presolvemode
Presolve method.

presolvemode.off
The problem is not presolved before it is optimized.

presolvemode.on
The problem is presolved before it is optimized.

presolvemode.free
It is decided automatically whether to presolve before the problem is optimized.

parametertype
Parameter type

parametertype.invalid_type
Not a valid parameter.

parametertype.dou_type
Is a double parameter.

parametertype.int_type
Is an integer parameter.

parametertype.str_type
Is a string parameter.

problemitem
Problem data items

problemitem.var
Item is a variable.

problemitem.con
Item is a constraint.

problemitem.cone
Item is a cone.

problemtype
Problem types

problemtype.lo
The problem is a linear optimization problem.

problemtype.qo
The problem is a quadratic optimization problem.

problemtype.qcqo
The problem is a quadratically constrained optimization problem.

problemtype.conic
A conic optimization.

problemtype.mixed
General nonlinear constraints and conic constraints. This combination can not be solved by
MOSEK.

prosta
Problem status keys

prosta.unknown
Unknown problem status.

prosta.prim_and_dual_feas
The problem is primal and dual feasible.

prosta.prim_feas
The problem is primal feasible.

361

prosta.dual_feas
The problem is dual feasible.

prosta.prim_infeas
The problem is primal infeasible.

prosta.dual_infeas
The problem is dual infeasible.

prosta.prim_and_dual_infeas
The problem is primal and dual infeasible.

prosta.ill_posed
The problem is ill-posed. For example, it may be primal and dual feasible but have a positive
duality gap.

prosta.prim_infeas_or_unbounded
The problem is either primal infeasible or unbounded. This may occur for mixed-integer
problems.

xmlwriteroutputtype
XML writer output mode

xmlwriteroutputtype.row
Write in row order.

xmlwriteroutputtype.col
Write in column order.

rescodetype
Response code type

rescodetype.ok
The response code is OK.

rescodetype.wrn
The response code is a warning.

rescodetype.trm
The response code is an optimizer termination status.

rescodetype.err
The response code is an error.

rescodetype.unk
The response code does not belong to any class.

scalingtype
Scaling type

scalingtype.free
The optimizer chooses the scaling heuristic.

scalingtype.none
No scaling is performed.

scalingtype.moderate
A conservative scaling is performed.

scalingtype.aggressive
A very aggressive scaling is performed.

scalingmethod
Scaling method

scalingmethod.pow2
Scales only with power of 2 leaving the mantissa untouched.

scalingmethod.free
The optimizer chooses the scaling heuristic.

sensitivitytype
Sensitivity types

sensitivitytype.basis
Basis sensitivity analysis is performed.

362

simseltype
Simplex selection strategy

simseltype.free
The optimizer chooses the pricing strategy.

simseltype.full
The optimizer uses full pricing.

simseltype.ase
The optimizer uses approximate steepest-edge pricing.

simseltype.devex
The optimizer uses devex steepest-edge pricing (or if it is not available an approximate steep-
edge selection).

simseltype.se
The optimizer uses steepest-edge selection (or if it is not available an approximate steep-edge
selection).

simseltype.partial
The optimizer uses a partial selection approach. The approach is usually beneficial if the
number of variables is much larger than the number of constraints.

solitem
Solution items

solitem.xc
Solution for the constraints.

solitem.xx
Variable solution.

solitem.y
Lagrange multipliers for equations.

solitem.slc
Lagrange multipliers for lower bounds on the constraints.

solitem.suc
Lagrange multipliers for upper bounds on the constraints.

solitem.slx
Lagrange multipliers for lower bounds on the variables.

solitem.sux
Lagrange multipliers for upper bounds on the variables.

solitem.snx
Lagrange multipliers corresponding to the conic constraints on the variables.

solsta
Solution status keys

solsta.unknown
Status of the solution is unknown.

solsta.optimal
The solution is optimal.

solsta.prim_feas
The solution is primal feasible.

solsta.dual_feas
The solution is dual feasible.

solsta.prim_and_dual_feas
The solution is both primal and dual feasible.

solsta.prim_infeas_cer
The solution is a certificate of primal infeasibility.

solsta.dual_infeas_cer
The solution is a certificate of dual infeasibility.

363

solsta.prim_illposed_cer
The solution is a certificate that the primal problem is illposed.

solsta.dual_illposed_cer
The solution is a certificate that the dual problem is illposed.

solsta.integer_optimal
The primal solution is integer optimal.

soltype
Solution types

soltype.bas
The basic solution.

soltype.itr
The interior solution.

soltype.itg
The integer solution.

solveform
Solve primal or dual form

solveform.free
The optimizer is free to solve either the primal or the dual problem.

solveform.primal
The optimizer should solve the primal problem.

solveform.dual
The optimizer should solve the dual problem.

stakey
Status keys

stakey.unk
The status for the constraint or variable is unknown.

stakey.bas
The constraint or variable is in the basis.

stakey.supbas
The constraint or variable is super basic.

stakey.low
The constraint or variable is at its lower bound.

stakey.upr
The constraint or variable is at its upper bound.

stakey.fix
The constraint or variable is fixed.

stakey.inf
The constraint or variable is infeasible in the bounds.

startpointtype
Starting point types

startpointtype.free
The starting point is chosen automatically.

startpointtype.guess
The optimizer guesses a starting point.

startpointtype.constant
The optimizer constructs a starting point by assigning a constant value to all primal and dual
variables. This starting point is normally robust.

startpointtype.satisfy_bounds
The starting point is chosen to satisfy all the simple bounds on nonlinear variables. If this
starting point is employed, then more care than usual should employed when choosing the
bounds on the nonlinear variables. In particular very tight bounds should be avoided.

364

streamtype
Stream types

streamtype.log
Log stream. Contains the aggregated contents of all other streams. This means that a message
written to any other stream will also be written to this stream.

streamtype.msg
Message stream. Log information relating to performance and progress of the optimization is
written to this stream.

streamtype.err
Error stream. Error messages are written to this stream.

streamtype.wrn
Warning stream. Warning messages are written to this stream.

value
Integer values

value.max_str_len
Maximum string length allowed in MOSEK.

value.license_buffer_length
The length of a license key buffer.

variabletype
Variable types

variabletype.type_cont
Is a continuous variable.

variabletype.type_int
Is an integer variable.

15.10 Function Types
callbackfunc

def callbackfunc (code, dinf, iinf, liinf) -> stop

The progress and information callback function is a user-defined function which will be called by
MOSEK occasionally during the optimization process. In particular, the callback function is
called at the beginning of each iteration in the interior-point optimizer. For the simplex optimizers
iparam.log_sim_freq controls how frequently the callback is called.

The user must not call any MOSEK function directly or indirectly from the callback function.
The only exception is the possibility to retrieve an integer solution, see Progress and data callback .

Parameters
• code (callbackcode) – Callback code indicating current operation of the solver.

(input)
• dinf (float[]) – Array of double information items. (input)
• iinf (int[]) – Array of integer information items. (input)
• liinf (int[]) – Array of long integer information items. (input)

Return stop (int) – Non-zero if the optimizer should be terminated; zero otherwise.

progresscallbackfunc

def progresscallbackfunc (code) -> stop

The progress callback function is a user-defined function which will be called by MOSEK occasion-
ally during the optimization process. In particular, the callback function is called at the beginning
of each iteration in the interior-point optimizer. For the simplex optimizers iparam.log_sim_freq
controls how frequently the callback is called.

365

The user must not call any MOSEK function directly or indirectly from the callback function. If
the progress callback function returns a non-zero value, the optimization process is terminated.

Parameters code (mosek.callbackcode) – Callback code indicating the current status
of the solver. (input)

Return stop (int) – Non-zero if the optimizer should be terminated; zero otherwise.

streamfunc

def streamfunc (msg)

The message-stream callback function is a user-defined function which can be linked to any of the
MOSEK streams. Doing so, the function is called whenever MOSEK sends a message to the
stream.

The user must not call any MOSEK function directly or indirectly from the callback function.

Parameters msg (str) – A string containing the message. (input)

15.11 Nonlinear interfaces (obsolete)

Important: This is a legacy document for users familiar with SCopt, DGopt, EXPopt, mskenopt,
mskscopt and mskgpopt from previous versions of MOSEK. These interfaces have now been removed.
We assume familiarity with documentation included in version 8. All problems expressible with this
interface can (and should) be reformulated using the exponential cone and power cones.

New users should formulate problems involving powers, logarithms and exponentials directly in conic
form.

Conversion tutorial

We recommend converting all nonlinear problems using SCopt, DGopt, EXPopt, mskenopt, mskscopt
and mskgpopt into conic form. Depending on the values of 𝑓, 𝑔, ℎ either the epigraph or hypograph of
a SCopt function if convex, and a bounding variable can be introduced following the basic rules below.
We assume all variables are within safe bounds where the SCopt operators are defined and convex. We
also assume 𝑓 > 0.

A more comprehensive modeling guide for these types of problems can be found in the MOSEK
Modeling Cookbook.

Powers

Consider 𝑓(𝑥 + ℎ)𝑔. This can be reformulated using the power cone.

• If 𝑔 > 1 then 𝑡 ≥ 𝑓(𝑥 + ℎ)𝑔 is equivalent to (𝑡/𝑓)1/𝑔 ≥ |𝑥 + ℎ|, that is (𝑡/𝑓, 1, 𝑥 + ℎ) ∈ 𝒫1/𝑔,1−1/𝑔
3 .

• If 0 < 𝑔 < 1 then |𝑡| ≤ 𝑓(𝑥 + ℎ)𝑔 is equivalent to (𝑥 + ℎ, 1, 𝑡/𝑓) ∈ 𝒫𝑔,1−𝑔
3 .

• If 𝑔 < 0 then 𝑡 ≥ 𝑓(𝑥 + ℎ)𝑔 is equivalent to (𝑡/𝑓)(𝑥 + ℎ)−𝑔 ≥ 1, that is (𝑡/𝑓, 𝑥 + ℎ, 1) ∈
𝒫1/(1−𝑔),−𝑔/(1−𝑔)
3 .

Logarithm

The bound 𝑡 ≤ 𝑓 log(𝑔𝑥 + ℎ) is equivalent to (𝑔𝑥 + ℎ, 1, 𝑡/𝑓) ∈ 𝐾exp.

Entropy

The bound 𝑡 ≥ 𝑓𝑥 log 𝑥 is equivalent to (1, 𝑥,−𝑡/𝑓) ∈ 𝐾exp.

366

https://docs.mosek.com/modeling-cookbook/index.html

Exponential

The bound 𝑡 ≥ 𝑓 exp(𝑔𝑥 + ℎ) is equivalent to (𝑡/𝑓, 1, 𝑔𝑥 + ℎ) ∈ 𝐾exp.

Exponential optimization (EXPopt), Geometric programming (mskgpopt)

For a basic tutorial in geometric programming (GP) see Sec. 6.8.
An exponential optimization problem in standard form consists of constraints of the type:

𝑡 ≥ log

(︃∑︁
𝑖

exp(𝑎𝑇𝑖 𝑥 + 𝑏𝑖)

)︃
.

This log-sum-exp bound is equivalent to∑︁
𝑖

exp(𝑎𝑇𝑖 𝑥 + 𝑏𝑖 − 𝑡) ≤ 1

and requires bounding each exponential function as explained above.

Dual geometric optimization (DGopt)

The objective function of a dual geometric problem involves maximizing expressions of the form

𝑥 log
𝑐

𝑥
and 𝑥𝑖 log

𝑒𝑇𝑥

𝑥𝑖
,

which can be achieved using bounds 𝑡 ≤ 𝑥 log 𝑦
𝑥 , that is (𝑡, 𝑥, 𝑦) ∈ 𝐾exp.

367

Chapter 16

Supported File Formats

MOSEK supports a range of problem and solution formats listed in Table 16.1 and Table 16.2. The Task
format is MOSEK’s native binary format and it supports all features that MOSEK supports. The
OPF format is MOSEK’s human-readable alternative that supports nearly all features (everything
except semidefinite problems). In general, text formats are significantly slower to read, but can be
examined and edited directly in any text editor.

Problem formats

Table 16.1: List of supported file formats for optimization prob-
lems. The column Conic refers to conic problems involving the
quadratic, rotated quadratic, power or exponential cone. The last
two columns indicate if the format supports solutions and optimizer
parameters.

Format Type Ext. Binary/Text LP QO Conic SDP Sol Param
LP lp plain text X X
MPS mps plain text X X X
OPF opf plain text X X X X X
PTF ptf plain text X X X X X
CBF cbf plain text X X X
Task format task binary X X X X X X
Jtask format jtask text X X X X X X

Solution formats

Table 16.2: List of supported solution formats.
Format Type Ext. Binary/Text Description
SOL sol plain text Interior Solution

bas plain text Basic Solution
int plain text Integer

Jsol format jsol text Solution

Compression

MOSEK supports GZIP and Zstandard compression. Problem files with extension .gz (for GZIP)
and .zst (for Zstandard) are assumed to be compressed when read, and are automatically compressed
when written. For example, a file called

problem.mps.gz

will be considered as a GZIP compressed MPS file.

368

16.1 The LP File Format

MOSEK supports the LP file format with some extensions. The LP format is not a completely well-
defined standard and hence different optimization packages may interpret the same LP file in slightly
different ways. MOSEK tries to emulate as closely as possible CPLEX’s behavior, but tries to stay
backward compatible.

The LP file format can specify problems of the form

minimize/maximize 𝑐𝑇𝑥 + 1
2𝑞

𝑜(𝑥)
subject to 𝑙𝑐 ≤ 𝐴𝑥 + 1

2𝑞(𝑥) ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥𝒥 integer,

where

• 𝑥 ∈ R𝑛 is the vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear term in the objective.

• 𝑞𝑜 :∈ R𝑛 → R is the quadratic term in the objective where

𝑞𝑜(𝑥) = 𝑥𝑇𝑄𝑜𝑥

and it is assumed that

𝑄𝑜 = (𝑄𝑜)𝑇 .

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

• 𝑞 : R𝑛 → R is a vector of quadratic functions. Hence,

𝑞𝑖(𝑥) = 𝑥𝑇𝑄𝑖𝑥

where it is assumed that

𝑄𝑖 = (𝑄𝑖)𝑇 .

• 𝒥 ⊆ {1, 2, . . . , 𝑛} is an index set of the integer constrained variables.

16.1.1 File Sections
An LP formatted file contains a number of sections specifying the objective, constraints, variable bounds,
and variable types. The section keywords may be any mix of upper and lower case letters.

Objective Function

The first section beginning with one of the keywords

max
maximum
maximize
min
minimum
minimize

369

defines the objective sense and the objective function, i.e.

𝑐𝑇𝑥 +
1

2
𝑥𝑇𝑄𝑜𝑥.

The objective may be given a name by writing

myname:

before the expressions. If no name is given, then the objective is named obj.
The objective function contains linear and quadratic terms. The linear terms are written as

4 x1 + x2 - 0.1 x3

and so forth. The quadratic terms are written in square brackets ([]/2) and are either squared or
multiplied as in the examples

x1^2

and

x1 * x2

There may be zero or more pairs of brackets containing quadratic expressions.
An example of an objective section is

minimize
myobj: 4 x1 + x2 - 0.1 x3 + [x1^2 + 2.1 x1 * x2]/2

Please note that the quadratic expressions are multiplied with 1
2 , so that the above expression means

minimize 4𝑥1 + 𝑥2 − 0.1 · 𝑥3 + 1
2 (𝑥2

1 + 2.1 · 𝑥1 · 𝑥2)

If the same variable occurs more than once in the linear part, the coefficients are added, so that 4 x1 +
2 x1 is equivalent to 6 x1. In the quadratic expressions x1 * x2 is equivalent to x2 * x1 and, as in the
linear part, if the same variables multiplied or squared occur several times their coefficients are added.

Constraints

The second section beginning with one of the keywords

subj to
subject to
s.t.
st

defines the linear constraint matrix 𝐴 and the quadratic matrices 𝑄𝑖.
A constraint contains a name (optional), expressions adhering to the same rules as in the objective

and a bound:

subject to
con1: x1 + x2 + [x3^2]/2 <= 5.1

The bound type (here <=) may be any of <, <=, =, >, >= (< and <= mean the same), and the bound
may be any number.

In the standard LP format it is not possible to define more than one bound per line, but MOSEK
supports defining ranged constraints by using double-colon (::) instead of a single-colon (:) after the
constraint name, i.e.

−5 ≤ 𝑥1 + 𝑥2 ≤ 5 (16.1)

may be written as

con:: -5 < x_1 + x_2 < 5

370

By default MOSEK writes ranged constraints this way.
If the files must adhere to the LP standard, ranged constraints must either be split into upper

bounded and lower bounded constraints or be written as an equality with a slack variable. For example
the expression (16.1) may be written as

𝑥1 + 𝑥2 − 𝑠𝑙1 = 0, −5 ≤ 𝑠𝑙1 ≤ 5.

Bounds

Bounds on the variables can be specified in the bound section beginning with one of the keywords

bound
bounds

The bounds section is optional but should, if present, follow the subject to section. All variables
listed in the bounds section must occur in either the objective or a constraint.

The default lower and upper bounds are 0 and +∞ . A variable may be declared free with the keyword
free, which means that the lower bound is −∞ and the upper bound is +∞ . Furthermore it may be
assigned a finite lower and upper bound. The bound definitions for a given variable may be written in
one or two lines, and bounds can be any number or ±∞ (written as +inf/-inf/+infinity/-infinity)
as in the example

bounds
x1 free
x2 <= 5
0.1 <= x2
x3 = 42
2 <= x4 < +inf

Variable Types

The final two sections are optional and must begin with one of the keywords

bin
binaries
binary

and

gen
general

Under general all integer variables are listed, and under binary all binary (integer variables with
bounds 0 and 1) are listed:

general
x1 x2
binary
x3 x4

Again, all variables listed in the binary or general sections must occur in either the objective or a
constraint.

Terminating Section

Finally, an LP formatted file must be terminated with the keyword

end

371

16.1.2 LP File Examples

Linear example lo1.lp

\ File: lo1.lp
maximize
obj: 3 x1 + x2 + 5 x3 + x4
subject to
c1: 3 x1 + x2 + 2 x3 = 30
c2: 2 x1 + x2 + 3 x3 + x4 >= 15
c3: 2 x2 + 3 x4 <= 25
bounds
0 <= x1 <= +infinity
0 <= x2 <= 10
0 <= x3 <= +infinity
0 <= x4 <= +infinity

end

Mixed integer example milo1.lp

maximize
obj: x1 + 6.4e-01 x2
subject to
c1: 5e+01 x1 + 3.1e+01 x2 <= 2.5e+02
c2: 3e+00 x1 - 2e+00 x2 >= -4e+00
bounds
0 <= x1 <= +infinity
0 <= x2 <= +infinity

general
x1 x2

end

16.1.3 LP Format peculiarities

Comments

Anything on a line after a \ is ignored and is treated as a comment.

Names

A name for an objective, a constraint or a variable may contain the letters a-z, A-Z, the digits 0-9 and
the characters

!"#$%&()/,.;?@_'`|~

The first character in a name must not be a number, a period or the letter e or E. Keywords must
not be used as names.

MOSEK accepts any character as valid for names, except \0. A name that is not allowed in LP file
will be changed and a warning will be issued.

The algorithm for making names LP valid works as follows: The name is interpreted as an utf-8
string. For a Unicode character c:

• If c==_ (underscore), the output is __ (two underscores).

• If c is a valid LP name character, the output is just c.

• If c is another character in the ASCII range, the output is _XX, where XX is the hexadecimal code
for the character.

• If c is a character in the range 127-65535, the output is _uXXXX, where XXXX is the hexadecimal
code for the character.

372

• If c is a character above 65535, the output is _UXXXXXXXX, where XXXXXXXX is the hexadecimal
code for the character.

Invalid utf-8 substrings are escaped as _XX', and if a name starts with a period, e or E, that character
is escaped as _XX.

Variable Bounds

Specifying several upper or lower bounds on one variable is possible but MOSEK uses only the tightest
bounds. If a variable is fixed (with =), then it is considered the tightest bound.

MOSEK Extensions to the LP Format

Some optimization software packages employ a more strict definition of the LP format than the one used
by MOSEK. The limitations imposed by the strict LP format are the following:

• Quadratic terms in the constraints are not allowed.

• Names can be only 16 characters long.

• Lines must not exceed 255 characters in length.

To get around some of the inconveniences converting from other problem formats, MOSEK allows
lines to contain 1024 characters and names may have any length (shorter than the 1024 characters).

If an LP formatted file created by MOSEK should satisfy the strict definition, then the parameter
iparam.write_lp_strict_format should be set; note, however, that some problems cannot be written
correctly as a strict LP formatted file. For instance, all names are truncated to 16 characters and hence
they may lose their uniqueness and change the problem.

Internally in MOSEK names may contain any (printable) character, many of which can-
not be used in LP names. Setting the parameters iparam.read_lp_quoted_names and iparam.
write_lp_quoted_names allows MOSEK to use quoted names. The first parameter tells MOSEK
to remove quotes from quoted names e.g, "x1", when reading LP formatted files. The second parameter
tells MOSEK to put quotes around any semi-illegal name (names beginning with a number or a period)
and fully illegal name (containing illegal characters). As double quote is a legal character in the LP
format, quoting semi-illegal names makes them legal in the pure LP format as long as they are still
shorter than 16 characters. Fully illegal names are still illegal in a pure LP file.

The strict LP format

The LP format is not a formal standard and different vendors have slightly different interpretations of
the LP format. To make MOSEK’s definition of the LP format more compatible with the definitions
of other vendors set the parameter iparam.write_lp_strict_format to onoffkey.on .

This setting may lead to truncation of some names and hence to an invalid LP file. The simple
solution to this problem is to set the parameter iparam.write_generic_names to onoffkey.on which
will cause all names to be renamed systematically in the output file.

Formatting of an LP File

A few parameters control the visual formatting of LP files written by MOSEK in order to make it easier
to read the files. These parameters are

• iparam.write_lp_line_width sets the maximum number of characters on a single line. The
default value is 80 corresponding roughly to the width of a standard text document.

• iparam.write_lp_terms_per_line sets the maximum number of terms per line; a term means
a sign, a coefficient, and a name (for example + 42 elephants). The default value is 0, meaning
that there is no maximum.

Unnamed Constraints

Reading and writing an LP file with MOSEK may change it superficially. If an LP file contains
unnamed constraints or objective these are given their generic names when the file is read (however
unnamed constraints in MOSEK are written without names).

373

16.2 The MPS File Format

MOSEK supports the standard MPS format with some extensions. For a detailed description of the
MPS format see the book by Nazareth [Naz87] .

16.2.1 MPS File Structure
The version of the MPS format supported by MOSEK allows specification of an optimization problem
of the form

maximize/minimize 𝑐𝑇𝑥 + 𝑞0(𝑥)
𝑙𝑐 ≤ 𝐴𝑥 + 𝑞(𝑥) ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ 𝒦,
𝑥𝒥 integer,

(16.2)

where

• 𝑥 ∈ R𝑛 is the vector of decision variables.

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

• 𝑞 : R𝑛 → R is a vector of quadratic functions. Hence,

𝑞𝑖(𝑥) =
1

2
𝑥𝑇𝑄𝑖𝑥

where it is assumed that 𝑄𝑖 = (𝑄𝑖)𝑇 . Please note the explicit 1
2 in the quadratic term and that 𝑄𝑖

is required to be symmetric. The same applies to 𝑞0.

• 𝒦 is a convex cone.

• 𝒥 ⊆ {1, 2, . . . , 𝑛} is an index set of the integer-constrained variables.

• 𝑐 is the vector of objective coefficients.

An MPS file with one row and one column can be illustrated like this:

* 1 2 3 4 5 6
*23456789012345678901234567890123456789012345678901234567890
NAME [name]
OBJSENSE

[objsense]
OBJNAME [objname]
ROWS
? [cname1]

COLUMNS
[vname1] [cname1] [value1] [cname2] [value2]

RHS
[name] [cname1] [value1] [cname2] [value2]

RANGES
[name] [cname1] [value1] [cname2] [value2]

QSECTION [cname1]
[vname1] [vname2] [value1] [vname3] [value2]

QMATRIX
[vname1] [vname2] [value1]

(continues on next page)

374

(continued from previous page)

QUADOBJ
[vname1] [vname2] [value1]

QCMATRIX [cname1]
[vname1] [vname2] [value1]

BOUNDS
?? [name] [vname1] [value1]

CSECTION [kname1] [value1] [ktype]
[vname1]

ENDATA

Here the names in capitals are keywords of the MPS format and names in brackets are custom defined
names or values. A couple of notes on the structure:

• Fields: All items surrounded by brackets appear in fields. The fields named “valueN” are numerical
values. Hence, they must have the format

[+|-]XXXXXXX.XXXXXX[[e|E][+|-]XXX]

where

X = [0|1|2|3|4|5|6|7|8|9].

• Sections: The MPS file consists of several sections where the names in capitals indicate the begin-
ning of a new section. For example, COLUMNS denotes the beginning of the columns section.

• Comments: Lines starting with an * are comment lines and are ignored by MOSEK.

• Keys: The question marks represent keys to be specified later.

• Extensions: The sections QSECTION and CSECTION are specific MOSEK extensions of the MPS
format. The sections QMATRIX, QUADOBJ and QCMATRIX are included for sake of compatibility with
other vendors extensions to the MPS format.

• The standard MPS format is a fixed format, i.e. everything in the MPS file must be within certain
fixed positions. MOSEK also supports a free format. See Sec. 16.2.5 for details.

Linear example lo1.mps

A concrete example of a MPS file is presented below:

* File: lo1.mps
NAME lo1
OBJSENSE

MAX
ROWS
N obj
E c1
G c2
L c3

COLUMNS
x1 obj 3
x1 c1 3
x1 c2 2
x2 obj 1
x2 c1 1
x2 c2 1
x2 c3 2
x3 obj 5
x3 c1 2
x3 c2 3
x4 obj 1
x4 c2 1

(continues on next page)

375

(continued from previous page)

x4 c3 3
RHS

rhs c1 30
rhs c2 15
rhs c3 25

RANGES
BOUNDS
UP bound x2 10

ENDATA

Subsequently each individual section in the MPS format is discussed.

NAME (optional)

In this section a name ([name]) is assigned to the problem.

OBJSENSE (optional)

This is an optional section that can be used to specify the sense of the objective function. The OBJSENSE
section contains one line at most which can be one of the following:

MIN
MINIMIZE
MAX
MAXIMIZE

It should be obvious what the implication is of each of these four lines.

OBJNAME (optional)

This is an optional section that can be used to specify the name of the row that is used as objective
function. objname should be a valid row name.

ROWS

A record in the ROWS section has the form

? [cname1]

where the requirements for the fields are as follows:

Field Starting Position Max Width required Description
? 2 1 Yes Constraint key
[cname1] 5 8 Yes Constraint name

Hence, in this section each constraint is assigned a unique name denoted by [cname1]. Please note
that [cname1] starts in position 5 and the field can be at most 8 characters wide. An initial key ? must
be present to specify the type of the constraint. The key can have values E, G, L, or N with the following
interpretation:

Constraint type 𝑙𝑐𝑖 𝑢𝑐
𝑖

E (equal) finite = 𝑙𝑐𝑖
G (greater) finite ∞
L (lower) −∞ finite
N (none) −∞ ∞

In the MPS format the objective vector is not specified explicitly, but one of the constraints having
the key N will be used as the objective vector 𝑐 . In general, if multiple N type constraints are specified,
then the first will be used as the objective vector 𝑐, unless something else was specified in the section
OBJNAME.

376

COLUMNS

In this section the elements of 𝐴 are specified using one or more records having the form:

[vname1] [cname1] [value1] [cname2] [value2]

where the requirements for each field are as follows:

Field Starting Position Max Width required Description
[vname1] 5 8 Yes Variable name
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

Hence, a record specifies one or two elements 𝑎𝑖𝑗 of 𝐴 using the principle that [vname1] and [cname1]
determines 𝑗 and 𝑖 respectively. Please note that [cname1] must be a constraint name specified in the
ROWS section. Finally, [value1] denotes the numerical value of 𝑎𝑖𝑗 . Another optional element is specified
by [cname2], and [value2] for the variable specified by [vname1]. Some important comments are:

• All elements belonging to one variable must be grouped together.

• Zero elements of 𝐴 should not be specified.

• At least one element for each variable should be specified.

RHS (optional)

A record in this section has the format

[name] [cname1] [value1] [cname2] [value2]

where the requirements for each field are as follows:

Field Starting Position Max Width required Description
[name] 5 8 Yes Name of the RHS vector
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

The interpretation of a record is that [name] is the name of the RHS vector to be specified. In general,
several vectors can be specified. [cname1] denotes a constraint name previously specified in the ROWS
section. Now, assume that this name has been assigned to the 𝑖 -h constraint and 𝑣1 denotes the value
specified by [value1], then the interpretation of 𝑣1 is:

Constraint 𝑙𝑐𝑖 𝑢𝑐
𝑖

E 𝑣1 𝑣1
G 𝑣1
L 𝑣1
N

An optional second element is specified by [cname2] and [value2] and is interpreted in the same
way. Please note that it is not necessary to specify zero elements, because elements are assumed to be
zero.

RANGES (optional)

A record in this section has the form

[name] [cname1] [value1] [cname2] [value2]

377

where the requirements for each fields are as follows:

Field Starting Position Max Width required Description
[name] 5 8 Yes Name of the RANGE vector
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

The records in this section are used to modify the bound vectors for the constraints, i.e. the values
in 𝑙𝑐 and 𝑢𝑐 . A record has the following interpretation:[name] is the name of the RANGE vector and
[cname1] is a valid constraint name. Assume that [cname1] is assigned to the 𝑖-th constraint and let
𝑣1 be the value specified by [value1], then a record has the interpretation:

Constraint type Sign of 𝑣1 𝑙𝑐𝑖 𝑢𝑐
𝑖

E − 𝑢𝑐
𝑖 + 𝑣1

E + 𝑙𝑐𝑖 + 𝑣1
G − or + 𝑙𝑐𝑖 + |𝑣1|
L − or + 𝑢𝑐

𝑖 − |𝑣1|
N

Another constraint bound can optionally be modified using [cname2] and [value2] the same way.

QSECTION (optional)

Within the QSECTION the label [cname1] must be a constraint name previously specified in the ROWS
section. The label [cname1] denotes the constraint to which the quadratic terms belong. A record in
the QSECTION has the form

[vname1] [vname2] [value1] [vname3] [value2]

where the requirements for each field are:

Field Starting Position Max Width required Description
[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value
[vname3] 40 8 No Variable name
[value2] 50 12 No Numerical value

A record specifies one or two elements in the lower triangular part of the 𝑄𝑖 matrix where [cname1]
specifies the 𝑖 . Hence, if the names [vname1] and [vname2] have been assigned to the 𝑘-th and 𝑗-th
variable, then 𝑄𝑖

𝑘𝑗 is assigned the value given by [value1] An optional second element is specified in
the same way by the fields [vname1], [vname3], and [value2].

The example

minimize −𝑥2 + 1
2 (2𝑥2

1 − 2𝑥1𝑥3 + 0.2𝑥2
2 + 2𝑥2

3)
subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,

𝑥 ≥ 0

has the following MPS file representation

* File: qo1.mps
NAME qo1
ROWS
N obj
G c1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0

(continues on next page)

378

(continued from previous page)

x3 c1 1.0
RHS

rhs c1 1.0
QSECTION obj

x1 x1 2.0
x1 x3 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Regarding the QSECTIONs please note that:

• Only one QSECTION is allowed for each constraint.

• The QSECTIONs can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QSECTION must already be specified in the COLUMNS section.

• All entries specified in a QSECTION are assumed to belong to the lower triangular part of the
quadratic term of 𝑄 .

QMATRIX/QUADOBJ (optional)

The QMATRIX and QUADOBJ sections allow to define the quadratic term of the objective function. They
differ in how the quadratic term of the objective function is stored:

• QMATRIX stores all the nonzeros coefficients, without taking advantage of the symmetry of the 𝑄
matrix.

• QUADOBJ stores the upper diagonal nonzero elements of the 𝑄 matrix.

A record in both sections has the form:

[vname1] [vname2] [value1]

where the requirements for each field are:

Field Starting Position Max Width required Description
[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value

A record specifies one elements of the 𝑄 matrix in the objective function . Hence, if the names
[vname1] and [vname2] have been assigned to the 𝑘-th and 𝑗-th variable, then 𝑄𝑘𝑗 is assigned the value
given by [value1]. Note that a line must appear for each off-diagonal coefficient if using a QMATRIX
section, while only one entry is required in a QUADOBJ section. The quadratic part of the objective
function will be evaluated as 1/2𝑥𝑇𝑄𝑥.

The example

minimize −𝑥2 + 1
2 (2𝑥2

1 − 2𝑥1𝑥3 + 0.2𝑥2
2 + 2𝑥2

3)
subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,

𝑥 ≥ 0

has the following MPS file representation using QMATRIX

* File: qo1_matrix.mps
NAME qo1_qmatrix
ROWS
N obj
G c1

COLUMNS
x1 c1 1.0
x2 obj -1.0

(continues on next page)

379

(continued from previous page)

x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0

QMATRIX
x1 x1 2.0
x1 x3 -1.0
x3 x1 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

or the following using QUADOBJ

* File: qo1_quadobj.mps
NAME qo1_quadobj
ROWS
N obj
G c1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0

QUADOBJ
x1 x1 2.0
x1 x3 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Please also note that:

• A QMATRIX/QUADOBJ section can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QMATRIX/QUADOBJ section must already be specified in the
COLUMNS section.

QCMATRIX (optional)

A QCMATRIX section allows to specify the quadratic part of a given constraint. Within the QCMATRIX the
label [cname1] must be a constraint name previously specified in the ROWS section. The label [cname1]
denotes the constraint to which the quadratic term belongs. A record in the QSECTION has the form

[vname1] [vname2] [value1]

where the requirements for each field are:

Field Starting Position Max Width required Description
[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value

A record specifies an entry of the 𝑄𝑖 matrix where [cname1] specifies the 𝑖. Hence, if the names
[vname1] and [vname2] have been assigned to the 𝑘-th and 𝑗-th variable, then 𝑄𝑖

𝑘𝑗 is assigned the value
given by [value1]. Moreover, the quadratic term is represented as 1/2𝑥𝑇𝑄𝑥.

The example

minimize 𝑥2

subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,
1
2 (−2𝑥1𝑥3 + 0.2𝑥2

2 + 2𝑥2
3) ≤ 10,

𝑥 ≥ 0

380

has the following MPS file representation

* File: qo1.mps
NAME qo1
ROWS
N obj
G c1
L q1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0
rhs q1 10.0

QCMATRIX q1
x1 x1 2.0
x1 x3 -1.0
x3 x1 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Regarding the QCMATRIXs please note that:

• Only one QCMATRIX is allowed for each constraint.

• The QCMATRIXs can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QSECTION must already be specified in the COLUMNS section.

• QCMATRIX does not exploit the symmetry of 𝑄: an off-diagonal entry (𝑖, 𝑗) should appear twice.

BOUNDS (optional)

In the BOUNDS section changes to the default bounds vectors 𝑙𝑥 and 𝑢𝑥 are specified. The default bounds
vectors are 𝑙𝑥 = 0 and 𝑢𝑥 = ∞ . Moreover, it is possible to specify several sets of bound vectors. A
record in this section has the form

?? [name] [vname1] [value1]

where the requirements for each field are:

Field Starting Position Max Width Required Description
?? 2 2 Yes Bound key
[name] 5 8 Yes Name of the BOUNDS vector
[vname1] 15 8 Yes Variable name
[value1] 25 12 No Numerical value

Hence, a record in the BOUNDS section has the following interpretation:[name] is the name of the
bound vector and [vname1] is the name of the variable for which the bounds are modified by the record.
?? and [value1] are used to modify the bound vectors according to the following table:

?? 𝑙𝑥𝑗 𝑢𝑥
𝑗 Made integer (added to 𝒥)

FR −∞ ∞ No
FX 𝑣1 𝑣1 No
LO 𝑣1 unchanged No
MI −∞ unchanged No
PL unchanged ∞ No
UP unchanged 𝑣1 No
BV 0 1 Yes
LI ⌈𝑣1⌉ unchanged Yes
UI unchanged ⌊𝑣1⌋ Yes

381

Here 𝑣1 is the value specified by [value1].

CSECTION (optional)

The purpose of the CSECTION is to specify the conic constraint

𝑥 ∈ 𝒦

in (16.2). It is assumed that 𝒦 satisfies the following requirements. Let

𝑥𝑡 ∈ R𝑛𝑡

, 𝑡 = 1, . . . , 𝑘

be vectors comprised of parts of the decision variables 𝑥 so that each decision variable is a member of
exactly one vector 𝑥𝑡, for example

𝑥1 =

⎡⎣ 𝑥1

𝑥4

𝑥7

⎤⎦ and 𝑥2 =

⎡⎢⎢⎣
𝑥6

𝑥5

𝑥3

𝑥2

⎤⎥⎥⎦ .

Next define

𝒦 :=
{︀
𝑥 ∈ R𝑛 : 𝑥𝑡 ∈ 𝒦𝑡, 𝑡 = 1, . . . , 𝑘

}︀
where 𝒦𝑡 must have one of the following forms:

• R set:

𝒦𝑡 = R𝑛𝑡

.

• Zero cone:

𝒦𝑡 = {0} ⊆ R𝑛𝑡

. (16.3)

• Quadratic cone:

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 𝑥1 ≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=2

𝑥2
𝑗

⎫⎬⎭ . (16.4)

• Rotated quadratic cone:

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 2𝑥1𝑥2 ≥
𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ . (16.5)

• Primal exponential cone:

𝒦𝑡 =
{︀
𝑥 ∈ R3 : 𝑥1 ≥ 𝑥2 exp(𝑥3/𝑥2), 𝑥1, 𝑥2 ≥ 0

}︀
. (16.6)

• Primal power cone (with parameter 0 < 𝛼 < 1):

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 𝑥𝛼
1𝑥

1−𝛼
2 ≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ . (16.7)

• Dual exponential cone:

𝒦𝑡 =
{︀
𝑥 ∈ R3 : 𝑥1 ≥ −𝑥3𝑒

−1 exp(𝑥2/𝑥3), 𝑥3 ≤ 0, 𝑥1 ≥ 0
}︀
. (16.8)

382

• Dual power cone (with parameter 0 < 𝛼 < 1):

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

:
(︁𝑥1

𝛼

)︁𝛼(︂ 𝑥2

1 − 𝛼

)︂1−𝛼

≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ . (16.9)

In general, membership in the R set is not specified. If a variable is not a member of any other cone
then it is assumed to be a member of the R cone.

Next, let us study an example. Assume that the power cone

𝑥
1/3
4 𝑥

2/3
5 ≥ |𝑥8|

and the rotated quadratic cone

2𝑥3𝑥7 ≥ 𝑥2
1 + 𝑥2

0, 𝑥3, 𝑥7 ≥ 0,

should be specified in the MPS file. One CSECTION is required for each cone and they are specified as
follows:

* 1 2 3 4 5 6
*23456789012345678901234567890123456789012345678901234567890
CSECTION konea 3e-1 PPOW
x4
x5
x8
CSECTION koneb 0.0 RQUAD
x7
x3
x1
x0

In general, a CSECTION header has the format

CSECTION [kname1] [value1] [ktype]

where the requirements for each field are as follows:

Field Starting Position Max Width Required Description
[kname1] 15 8 Yes Name of the cone
[value1] 25 12 No Cone parameter
[ktype] 40 Yes Type of the cone.

The possible cone type keys are:

[ktype] Members [value1] Interpretation.
ZERO ≥ 0 unused Zero cone (16.3).
QUAD ≥ 1 unused Quadratic cone (16.4).
RQUAD ≥ 2 unused Rotated quadratic cone (16.5).
PEXP 3 unused Primal exponential cone (16.6).
PPOW ≥ 2 𝛼 Primal power cone (16.7).
DEXP 3 unused Dual exponential cone (16.8).
DPOW ≥ 2 𝛼 Dual power cone (16.9).

A record in the CSECTION has the format

[vname1]

where the requirements for each field are

Field Starting Position Max Width required Description
[vname1] 5 8 Yes A valid variable name

A variable must occur in at most one CSECTION.

383

ENDATA

This keyword denotes the end of the MPS file.

16.2.2 Integer Variables
Using special bound keys in the BOUNDS section it is possible to specify that some or all of the variables
should be integer-constrained i.e. be members of 𝒥 . However, an alternative method is available. This
method is available only for backward compatibility and we recommend that it is not used. This method
requires that markers are placed in the COLUMNS section as in the example:

COLUMNS
x1 obj -10.0 c1 0.7
x1 c2 0.5 c3 1.0
x1 c4 0.1
* Start of integer-constrained variables.
MARK000 'MARKER' 'INTORG'
x2 obj -9.0 c1 1.0
x2 c2 0.8333333333 c3 0.66666667
x2 c4 0.25
x3 obj 1.0 c6 2.0
MARK001 'MARKER' 'INTEND'
* End of integer-constrained variables.

Please note that special marker lines are used to indicate the start and the end of the integer variables.
Furthermore be aware of the following

• All variables between the markers are assigned a default lower bound of 0 and a default upper
bound of 1. This may not be what is intended. If it is not intended, the correct bounds
should be defined in the BOUNDS section of the MPS formatted file.

• MOSEK ignores field 1, i.e. MARK0001 and MARK001, however, other optimization systems require
them.

• Field 2, i.e. MARKER, must be specified including the single quotes. This implies that no row can
be assigned the name MARKER.

• Field 3 is ignored and should be left blank.

• Field 4, i.e. INTORG and INTEND, must be specified.

• It is possible to specify several such integer marker sections within the COLUMNS section.

16.2.3 General Limitations
• An MPS file should be an ASCII file.

16.2.4 Interpretation of the MPS Format
Several issues related to the MPS format are not well-defined by the industry standard. However,
MOSEK uses the following interpretation:

• If a matrix element in the COLUMNS section is specified multiple times, then the multiple entries are
added together.

• If a matrix element in a QSECTION section is specified multiple times, then the multiple entries are
added together.

384

16.2.5 The Free MPS Format
MOSEK supports a free format variation of the MPS format. The free format is similar to the MPS file
format but less restrictive, e.g. it allows longer names. However, a name must not contain any blanks.

Moreover, by default a line in the MPS file must not contain more than 1024 characters. By modifying
the parameter iparam.read_mps_width an arbitrary large line width will be accepted.

The free MPS format is default. To change to the strict and other formats use the parameter iparam.
read_mps_format .

16.3 The OPF Format

The Optimization Problem Format (OPF) is an alternative to LP and MPS files for specifying optimiza-
tion problems. It is row-oriented, inspired by the CPLEX LP format.

Apart from containing objective, constraints, bounds etc. it may contain complete or partial solutions,
comments and extra information relevant for solving the problem. It is designed to be easily read and
modified by hand and to be forward compatible with possible future extensions.

Intended use

The OPF file format is meant to replace several other files:

• The LP file format: Any problem that can be written as an LP file can be written as an OPF file
too; furthermore it naturally accommodates ranged constraints and variables as well as arbitrary
characters in names, fixed expressions in the objective, empty constraints, and conic constraints.

• Parameter files: It is possible to specify integer, double and string parameters along with the
problem (or in a separate OPF file).

• Solution files: It is possible to store a full or a partial solution in an OPF file and later reload it.

16.3.1 The File Format
The format uses tags to structure data. A simple example with the basic sections may look like this:

[comment]
This is a comment. You may write almost anything here...
[/comment]

This is a single-line comment.

[objective min 'myobj']
x + 3 y + x^2 + 3 y^2 + z + 1
[/objective]

[constraints]
[con 'con01'] 4 <= x + y [/con]
[/constraints]

[bounds]
[b] -10 <= x,y <= 10 [/b]

[cone quad] x,y,z [/cone]
[/bounds]

A scope is opened by a tag of the form [tag] and closed by a tag of the form [/tag]. An opening
tag may accept a list of unnamed and named arguments, for examples:

[tag value] tag with one unnamed argument [/tag]
[tag arg=value] tag with one named argument [/tag]

Unnamed arguments are identified by their order, while named arguments may appear in any order,
but never before an unnamed argument. The value can be a quoted, single-quoted or double-quoted
text string, i.e.

385

[tag 'value'] single-quoted value [/tag]
[tag arg='value'] single-quoted value [/tag]
[tag "value"] double-quoted value [/tag]
[tag arg="value"] double-quoted value [/tag]

16.3.2 Sections
The recognized tags are

[comment]

A comment section. This can contain almost any text: Between single quotes (’) or double quotes (")
any text may appear. Outside quotes the markup characters ([and]) must be prefixed by backslashes.
Both single and double quotes may appear alone or inside a pair of quotes if it is prefixed by a backslash.

[objective]

The objective function: This accepts one or two parameters, where the first one (in the above example
min) is either min or max (regardless of case) and defines the objective sense, and the second one (above
myobj), if present, is the objective name. The section may contain linear and quadratic expressions.

If several objectives are specified, all but the last are ignored.

[constraints]

This does not directly contain any data, but may contain subsections con defining a linear constraint.

[con]

Defines a single constraint; if an argument is present ([con NAME]) this is used as the name of the
constraint, otherwise it is given a null-name. The section contains a constraint definition written as
linear and quadratic expressions with a lower bound, an upper bound, with both or with an equality.
Examples:

[constraints]
[con 'con1'] 0 <= x + y [/con]
[con 'con2'] 0 >= x + y [/con]
[con 'con3'] 0 <= x + y <= 10 [/con]
[con 'con4'] x + y = 10 [/con]
[/constraints]

Constraint names are unique. If a constraint is specified which has the same name as a previously
defined constraint, the new constraint replaces the existing one.

[bounds]

This does not directly contain any data, but may contain subsections b (linear bounds on variables)
and cone (cones).

[b]

Bound definition on one or several variables separated by comma (,). An upper or lower bound on a
variable replaces any earlier defined bound on that variable. If only one bound (upper or lower) is given
only this bound is replaced. This means that upper and lower bounds can be specified separately. So
the OPF bound definition:

[b] x,y >= -10 [/b]
[b] x,y <= 10 [/b]

results in the bound −10 ≤ 𝑥, 𝑦 ≤ 10.

386

[cone]

Specifies a cone. A cone is defined as a sequence of variables which belong to a single unique cone.
The supported cone types are:

• quad: a quadratic cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of the form

𝑥2
1 ≥

𝑛∑︁
𝑖=2

𝑥2
𝑖 , 𝑥1 ≥ 0.

• rquad: a rotated quadratic cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of the form

2𝑥1𝑥2 ≥
𝑛∑︁

𝑖=3

𝑥2
𝑖 , 𝑥1, 𝑥2 ≥ 0.

• pexp: primal exponential cone of 3 variables 𝑥1, 𝑥2, 𝑥3 defines a constraint of the form

𝑥1 ≥ 𝑥2 exp(𝑥3/𝑥2), 𝑥1, 𝑥2 ≥ 0.

• ppow with parameter 0 < 𝛼 < 1: primal power cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint
of the form

𝑥𝛼
1𝑥

1−𝛼
2 ≥

⎯⎸⎸⎷ 𝑛∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0.

• dexp: dual exponential cone of 3 variables 𝑥1, 𝑥2, 𝑥3 defines a constraint of the form

𝑥1 ≥ −𝑥3𝑒
−1 exp(𝑥2/𝑥3), 𝑥3 ≤ 0, 𝑥1 ≥ 0.

• dpow with parameter 0 < 𝛼 < 1: dual power cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of
the form

(︁𝑥1

𝛼

)︁𝛼(︂ 𝑥2

1 − 𝛼

)︂1−𝛼

≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0.

• zero: zero cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of the form

𝑥1 = · · · = 𝑥𝑛 = 0

A [bounds]-section example:

[bounds]
[b] 0 <= x,y <= 10 [/b] # ranged bound
[b] 10 >= x,y >= 0 [/b] # ranged bound
[b] 0 <= x,y <= inf [/b] # using inf
[b] x,y free [/b] # free variables
Let (x,y,z,w) belong to the cone K
[cone rquad] x,y,z,w [/cone] # rotated quadratic cone
[cone ppow '3e-01' 'a'] x1, x2, x3 [/cone] # power cone with alpha=1/3 and name 'a'
[/bounds]

By default all variables are free.

[variables]

This defines an ordering of variables as they should appear in the problem. This is simply a space-
separated list of variable names.

387

[integer]

This contains a space-separated list of variables and defines the constraint that the listed variables
must be integer-valued.

[hints]

This may contain only non-essential data; for example estimates of the number of variables, con-
straints and non-zeros. Placed before all other sections containing data this may reduce the time spent
reading the file.

In the hints section, any subsection which is not recognized by MOSEK is simply ignored. In this
section a hint is defined as follows:

[hint ITEM] value [/hint]

The hints recognized by MOSEK are:

• numvar (number of variables),

• numcon (number of linear/quadratic constraints),

• numanz (number of linear non-zeros in constraints),

• numqnz (number of quadratic non-zeros in constraints).

[solutions]

This section can contain a set of full or partial solutions to a problem. Each solution must be specified
using a [solution]-section, i.e.

[solutions]
[solution]...[/solution] #solution 1
[solution]...[/solution] #solution 2
#other solutions....
[solution]...[/solution] #solution n
[/solutions]

The syntax of a [solution]-section is the following:

[solution SOLTYPE status=STATUS]...[/solution]

where SOLTYPE is one of the strings

• interior, a non-basic solution,

• basic, a basic solution,

• integer, an integer solution,

and STATUS is one of the strings

• UNKNOWN,

• OPTIMAL,

• INTEGER_OPTIMAL,

• PRIM_FEAS,

• DUAL_FEAS,

• PRIM_AND_DUAL_FEAS,

• NEAR_OPTIMAL,

• NEAR_PRIM_FEAS,

388

• NEAR_DUAL_FEAS,

• NEAR_PRIM_AND_DUAL_FEAS,

• PRIM_INFEAS_CER,

• DUAL_INFEAS_CER,

• NEAR_PRIM_INFEAS_CER,

• NEAR_DUAL_INFEAS_CER,

• NEAR_INTEGER_OPTIMAL.

Most of these values are irrelevant for input solutions; when constructing a solution for simplex
hot-start or an initial solution for a mixed integer problem the safe setting is UNKNOWN.

A [solution]-section contains [con] and [var] sections. Each [con] and [var] section defines
solution information for a single variable or constraint, specified as list of KEYWORD/value pairs, in any
order, written as

KEYWORD=value

Allowed keywords are as follows:

• sk. The status of the item, where the value is one of the following strings:

– LOW, the item is on its lower bound.
– UPR, the item is on its upper bound.
– FIX, it is a fixed item.
– BAS, the item is in the basis.
– SUPBAS, the item is super basic.
– UNK, the status is unknown.
– INF, the item is outside its bounds (infeasible).

• lvl Defines the level of the item.

• sl Defines the level of the dual variable associated with its lower bound.

• su Defines the level of the dual variable associated with its upper bound.

• sn Defines the level of the variable associated with its cone.

• y Defines the level of the corresponding dual variable (for constraints only).

A [var] section should always contain the items sk, lvl, sl and su. Items sl and su are not required
for integer solutions.

A [con] section should always contain sk, lvl, sl, su and y.
An example of a solution section

[solution basic status=UNKNOWN]
[var x0] sk=LOW lvl=5.0 [/var]
[var x1] sk=UPR lvl=10.0 [/var]
[var x2] sk=SUPBAS lvl=2.0 sl=1.5 su=0.0 [/var]

[con c0] sk=LOW lvl=3.0 y=0.0 [/con]
[con c0] sk=UPR lvl=0.0 y=5.0 [/con]
[/solution]

• [vendor] This contains solver/vendor specific data. It accepts one argument, which is a vendor
ID – for MOSEK the ID is simply mosek – and the section contains the subsection parameters
defining solver parameters. When reading a vendor section, any unknown vendor can be safely
ignored. This is described later.

Comments using the # may appear anywhere in the file. Between the # and the following line-break
any text may be written, including markup characters.

389

16.3.3 Numbers
Numbers, when used for parameter values or coefficients, are written in the usual way by the printf
function. That is, they may be prefixed by a sign (+ or -) and may contain an integer part, decimal part
and an exponent. The decimal point is always . (a dot). Some examples are

1
1.0
.0
1.
1e10
1e+10
1e-10

Some invalid examples are

e10 # invalid, must contain either integer or decimal part
. # invalid
.e10 # invalid

More formally, the following standard regular expression describes numbers as used:

[+|-]?([0-9]+[.][0-9]*|[.][0-9]+)([eE][+|-]?[0-9]+)?

16.3.4 Names
Variable names, constraint names and objective name may contain arbitrary characters, which in some
cases must be enclosed by quotes (single or double) that in turn must be preceded by a backslash.
Unquoted names must begin with a letter (a-z or A-Z) and contain only the following characters: the
letters a-z and A-Z, the digits 0-9, braces ({ and }) and underscore (_).

Some examples of legal names:

an_unquoted_name
another_name{123}
'single quoted name'
"double quoted name"
"name with \\"quote\\" in it"
"name with []s in it"

16.3.5 Parameters Section
In the vendor section solver parameters are defined inside the parameters subsection. Each parameter
is written as

[p PARAMETER_NAME] value [/p]

where PARAMETER_NAME is replaced by a MOSEK parameter name, usually of the form MSK_IPAR_.
.., MSK_DPAR_... or MSK_SPAR_..., and the value is replaced by the value of that parameter; both
integer values and named values may be used. Some simple examples are

[vendor mosek]
[parameters]
[p MSK_IPAR_OPF_MAX_TERMS_PER_LINE] 10 [/p]
[p MSK_IPAR_OPF_WRITE_PARAMETERS] MSK_ON [/p]
[p MSK_DPAR_DATA_TOL_BOUND_INF] 1.0e18 [/p]
[/parameters]
[/vendor]

16.3.6 Writing OPF Files from MOSEK
To write an OPF file then make sure the file extension is .opf.

Then modify the following parameters to define what the file should contain:

390

iparam.opf_write_sol_bas Include basic solution, if defined.
iparam.opf_write_sol_itg Include integer solution, if defined.
iparam.opf_write_sol_itr Include interior solution, if defined.
iparam.
opf_write_solutions

Include solutions if they are defined. If this is off, no solutions are
included.

iparam.opf_write_header Include a small header with comments.
iparam.opf_write_problem Include the problem itself — objective, constraints and bounds.
iparam.
opf_write_parameters

Include all parameter settings.

iparam.opf_write_hints Include hints about the size of the problem.

16.3.7 Examples
This section contains a set of small examples written in OPF and describing how to formulate linear,
quadratic and conic problems.

Linear Example lo1.opf

Consider the example:

maximize 3𝑥0 + 1𝑥1 + 5𝑥2 + 1𝑥3

subject to 3𝑥0 + 1𝑥1 + 2𝑥2 = 30,
2𝑥0 + 1𝑥1 + 3𝑥2 + 1𝑥3 ≥ 15,

2𝑥1 + 3𝑥3 ≤ 25,

having the bounds

0 ≤ 𝑥0 ≤ ∞,
0 ≤ 𝑥1 ≤ 10,
0 ≤ 𝑥2 ≤ ∞,
0 ≤ 𝑥3 ≤ ∞.

In the OPF format the example is displayed as shown in Listing 16.1.

Listing 16.1: Example of an OPF file for a linear problem.

[comment]
The lo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 4 [/hint]
[hint NUMCON] 3 [/hint]
[hint NUMANZ] 9 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2 x3 x4

[/variables]

[objective maximize 'obj']
3 x1 + x2 + 5 x3 + x4

[/objective]

[constraints]
[con 'c1'] 3 x1 + x2 + 2 x3 = 30 [/con]
[con 'c2'] 2 x1 + x2 + 3 x3 + x4 >= 15 [/con]
[con 'c3'] 2 x2 + 3 x4 <= 25 [/con]

[/constraints]

(continues on next page)

391

(continued from previous page)

[bounds]
[b] 0 <= * [/b]
[b] 0 <= x2 <= 10 [/b]

[/bounds]

Quadratic Example qo1.opf

An example of a quadratic optimization problem is

minimize 𝑥2
1 + 0.1𝑥2

2 + 𝑥2
3 − 𝑥1𝑥3 − 𝑥2

subject to 1 ≤ 𝑥1 + 𝑥2 + 𝑥3,
𝑥 ≥ 0.

This can be formulated in opf as shown below.

Listing 16.2: Example of an OPF file for a quadratic problem.

[comment]
The qo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 3 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 3 [/hint]
[hint NUMQNZ] 4 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2 x3

[/variables]

[objective minimize 'obj']
The quadratic terms are often written with a factor of 1/2 as here,
but this is not required.

- x2 + 0.5 (2.0 x1 ^ 2 - 2.0 x3 * x1 + 0.2 x2 ^ 2 + 2.0 x3 ^ 2)
[/objective]

[constraints]
[con 'c1'] 1.0 <= x1 + x2 + x3 [/con]

[/constraints]

[bounds]
[b] 0 <= * [/b]

[/bounds]

Conic Quadratic Example cqo1.opf

Consider the example:

minimize 𝑥3 + 𝑥4 + 𝑥5

subject to 𝑥0 + 𝑥1 + 2𝑥2 = 1,
𝑥0, 𝑥1, 𝑥2 ≥ 0,

𝑥3 ≥
√︀
𝑥2
0 + 𝑥2

1,
2𝑥4𝑥5 ≥ 𝑥2

2.

Please note that the type of the cones is defined by the parameter to [cone ...]; the content of the
cone-section is the names of variables that belong to the cone. The resulting OPF file is in Listing 16.3.

392

Listing 16.3: Example of an OPF file for a conic quadratic problem.

[comment]
The cqo1 example in OPF format.

[/comment]

[hints]
[hint NUMVAR] 6 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 3 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2 x3 x4 x5 x6

[/variables]

[objective minimize 'obj']
x4 + x5 + x6

[/objective]

[constraints]
[con 'c1'] x1 + x2 + 2e+00 x3 = 1e+00 [/con]

[/constraints]

[bounds]
We let all variables default to the positive orthant
[b] 0 <= * [/b]

...and change those that differ from the default
[b] x4,x5,x6 free [/b]

Define quadratic cone: x4 >= sqrt(x1^2 + x2^2)
[cone quad 'k1'] x4, x1, x2 [/cone]

Define rotated quadratic cone: 2 x5 x6 >= x3^2
[cone rquad 'k2'] x5, x6, x3 [/cone]

[/bounds]

Mixed Integer Example milo1.opf

Consider the mixed integer problem:

maximize 𝑥0 + 0.64𝑥1

subject to 50𝑥0 + 31𝑥1 ≤ 250,
3𝑥0 − 2𝑥1 ≥ −4,
𝑥0, 𝑥1 ≥ 0 and integer

This can be implemented in OPF with the file in Listing 16.4.

Listing 16.4: Example of an OPF file for a mixed-integer linear
problem.

[comment]
The milo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 2 [/hint]
[hint NUMCON] 2 [/hint]
[hint NUMANZ] 4 [/hint]

[/hints]
(continues on next page)

393

(continued from previous page)

[variables disallow_new_variables]
x1 x2

[/variables]

[objective maximize 'obj']
x1 + 6.4e-1 x2

[/objective]

[constraints]
[con 'c1'] 5e+1 x1 + 3.1e+1 x2 <= 2.5e+2 [/con]
[con 'c2'] -4 <= 3 x1 - 2 x2 [/con]

[/constraints]

[bounds]
[b] 0 <= * [/b]

[/bounds]

[integer]
x1 x2

[/integer]

16.4 The CBF Format

This document constitutes the technical reference manual of the Conic Benchmark Format with file exten-
sion: .cbf or .CBF. It unifies linear, second-order cone (also known as conic quadratic) and semidefinite
optimization with mixed-integer variables. The format has been designed with benchmark libraries in
mind, and therefore focuses on compact and easily parsable representations. The problem structure is
separated from the problem data, and the format moreover facilitates benchmarking of hotstart capability
through sequences of changes.

16.4.1 How Instances Are Specified
This section defines the spectrum of conic optimization problems that can be formulated in terms of the
keywords of the CBF format.

In the CBF format, conic optimization problems are considered in the following form:

min /max 𝑔𝑜𝑏𝑗

𝑔𝑖 ∈ 𝒦𝑖, 𝑖 ∈ ℐ,
s.t. 𝐺𝑖 ∈ 𝒦𝑖, 𝑖 ∈ ℐ𝑃𝑆𝐷,

𝑥𝑗 ∈ 𝒦𝑗 , 𝑗 ∈ 𝒥 ,
𝑋𝑗 ∈ 𝒦𝑗 , 𝑗 ∈ 𝒥 𝑃𝑆𝐷.

(16.10)

• Variables are either scalar variables, 𝑥𝑗 for 𝑗 ∈ 𝒥 , or variables, 𝑋𝑗 for 𝑗 ∈ 𝒥 𝑃𝑆𝐷. Scalar variables
can also be declared as integer.

• Constraints are affine expressions of the variables, either scalar-valued 𝑔𝑖 for 𝑖 ∈ ℐ, or matrix-
valued 𝐺𝑖 for 𝑖 ∈ ℐ𝑃𝑆𝐷

𝑔𝑖 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹𝑖𝑗 , 𝑋𝑗⟩ +
∑︁
𝑗∈𝒥

𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖,

𝐺𝑖 =
∑︁
𝑗∈𝒥

𝑥𝑗𝐻𝑖𝑗 + 𝐷𝑖.

• The objective function is a scalar-valued affine expression of the variables, either to be minimized
or maximized. We refer to this expression as 𝑔𝑜𝑏𝑗

𝑔𝑜𝑏𝑗 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹 𝑜𝑏𝑗
𝑗 , 𝑋𝑗⟩ +

∑︁
𝑗∈𝒥

𝑎𝑜𝑏𝑗𝑗 𝑥𝑗 + 𝑏𝑜𝑏𝑗 .

394

CBF format can represent the following cones 𝒦:

• Free domain - A cone in the linear family defined by

{𝑥 ∈ R𝑛}, for 𝑛 ≥ 1.

• Positive orthant - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 ≥ 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

• Negative orthant - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 ≤ 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

• Fixpoint zero - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 = 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

• Quadratic cone - A cone in the second-order cone family defined by

{︂(︂
𝑝
𝑥

)︂
∈ R× R𝑛−1, 𝑝2 ≥ 𝑥𝑇𝑥, 𝑝 ≥ 0

}︂
, for 𝑛 ≥ 2.

• Rotated quadratic cone - A cone in the second-order cone family defined by

⎧⎨⎩
⎛⎝ 𝑝

𝑞
𝑥

⎞⎠ ∈ R× R× R𝑛−2, 2𝑝𝑞 ≥ 𝑥𝑇𝑥, 𝑝 ≥ 0, 𝑞 ≥ 0

⎫⎬⎭ , for 𝑛 ≥ 3.

16.4.2 The Structure of CBF Files
This section defines how information is written in the CBF format, without being specific about the type
of information being communicated.

All information items belong to exactly one of the three groups of information. These information
groups, and the order they must appear in, are:

1. File format.

2. Problem structure.

3. Problem data.

The first group, file format, provides information on how to interpret the file. The second group,
problem structure, provides the information needed to deduce the type and size of the problem instance.
Finally, the third group, problem data, specifies the coefficients and constants of the problem instance.

Information items

The format is composed as a list of information items. The first line of an information item is the
KEYWORD, revealing the type of information provided. The second line - of some keywords only - is the
HEADER, typically revealing the size of information that follows. The remaining lines are the BODY holding
the actual information to be specified.

395

KEYWORD
BODY

KEYWORD
HEADER
BODY

The KEYWORD determines how each line in the HEADER and BODY is structured. Moreover, the number
of lines in the BODY follows either from the KEYWORD, the HEADER, or from another information item
required to precede it.

Embedded hotstart-sequences

A sequence of problem instances, based on the same problem structure, is within a single file. This
is facilitated via the CHANGE within the problem data information group, as a separator between the
information items of each instance. The information items following a CHANGE keyword are appending
to, or changing (e.g., setting coefficients back to their default value of zero), the problem data of the
preceding instance.

The sequence is intended for benchmarking of hotstart capability, where the solvers can reuse their
internal state and solution (subject to the achieved accuracy) as warmpoint for the succeeding instance.
Whenever this feature is unsupported or undesired, the keyword CHANGE should be interpreted as the
end of file.

File encoding and line width restrictions

The format is based on the US-ASCII printable character set with two extensions as listed below.
Note, by definition, that none of these extensions can be misinterpreted as printable US-ASCII characters:

• A line feed marks the end of a line, carriage returns are ignored.

• Comment-lines may contain unicode characters in UTF-8 encoding.

The line width is restricted to 512 bytes, with 3 bytes reserved for the potential carriage return, line
feed and null-terminator.

Integers and floating point numbers must follow the ISO C decimal string representation in the
standard C locale. The format does not impose restrictions on the magnitude of, or number of significant
digits in numeric data, but the use of 64-bit integers and 64-bit IEEE 754 floating point numbers should
be sufficient to avoid loss of precision.

Comment-line and whitespace rules

The format allows single-line comments respecting the following rule:

• Lines having first byte equal to ’#’ (US-ASCII 35) are comments, and should be ignored. Comments
are only allowed between information items.

Given that a line is not a comment-line, whitespace characters should be handled according to the
following rules:

• Leading and trailing whitespace characters should be ignored.

– The seperator between multiple pieces of information on one line, is either one or more whites-
pace characters.

• Lines containing only whitespace characters are empty, and should be ignored. Empty lines are
only allowed between information items.

396

16.4.3 Problem Specification

The problem structure

The problem structure defines the objective sense, whether it is minimization and maximization. It
also defines the index sets, 𝒥 , 𝒥 𝑃𝑆𝐷, ℐ and ℐ𝑃𝑆𝐷, which are all numbered from zero, {0, 1, . . .}, and
empty until explicitly constructed.

• Scalar variables are constructed in vectors restricted to a conic domain, such as (𝑥0, 𝑥1) ∈ R2
+,

(𝑥2, 𝑥3, 𝑥4) ∈ 𝒬3, etc. In terms of the Cartesian product, this generalizes to

𝑥 ∈ 𝒦𝑛1
1 ×𝒦𝑛2

2 × · · · × 𝒦𝑛𝑘

𝑘

which in the CBF format becomes:

VAR
n k
K1 n1
K2 n2
...
Kk nk

where
∑︀

𝑖 𝑛𝑖 = 𝑛 is the total number of scalar variables. The list of supported cones is found in
Table 16.3. Integrality of scalar variables can be specified afterwards.

• PSD variables are constructed one-by-one. That is, 𝑋𝑗 ⪰ 0𝑛𝑗×𝑛𝑗 for 𝑗 ∈ 𝒥 𝑃𝑆𝐷, constructs a
matrix-valued variable of size 𝑛𝑗 ×𝑛𝑗 restricted to be symmetric positive semidefinite. In the CBF
format, this list of constructions becomes:

PSDVAR
N
n1
n2
...
nN

where 𝑁 is the total number of PSD variables.

• Scalar constraints are constructed in vectors restricted to a conic domain, such as (𝑔0, 𝑔1) ∈ R2
+,

(𝑔2, 𝑔3, 𝑔4) ∈ 𝒬3, etc. In terms of the Cartesian product, this generalizes to

𝑔 ∈ 𝒦𝑚1
1 ×𝒦𝑚2

2 × · · · × 𝒦𝑚𝑘

𝑘

which in the CBF format becomes:

CON
m k
K1 m1
K2 m2
..
Kk mk

where
∑︀

𝑖 𝑚𝑖 = 𝑚 is the total number of scalar constraints. The list of supported cones is found
in Table 16.3.

• PSD constraints are constructed one-by-one. That is, 𝐺𝑖 ⪰ 0𝑚𝑖×𝑚𝑖 for 𝑖 ∈ ℐ𝑃𝑆𝐷, constructs a
matrix-valued affine expressions of size 𝑚𝑖 ×𝑚𝑖 restricted to be symmetric positive semidefinite.
In the CBF format, this list of constructions becomes

PSDCON
M
m1
m2
..
mM

397

where 𝑀 is the total number of PSD constraints.

With the objective sense, variables (with integer indications) and constraints, the definitions of the
many affine expressions follow in problem data.

Problem data

The problem data defines the coefficients and constants of the affine expressions of the problem
instance. These are considered zero until explicitly defined, implying that instances with no keywords
from this information group are, in fact, valid. Duplicating or conflicting information is a failure to
comply with the standard. Consequently, two coefficients written to the same position in a matrix (or
to transposed positions in a symmetric matrix) is an error.

The affine expressions of the objective, 𝑔𝑜𝑏𝑗 , of the scalar constraints, 𝑔𝑖, and of the PSD constraints,
𝐺𝑖, are defined separately. The following notation uses the standard trace inner product for matrices,
⟨𝑋,𝑌 ⟩ =

∑︀
𝑖,𝑗 𝑋𝑖𝑗𝑌𝑖𝑗 .

• The affine expression of the objective is defined as

𝑔𝑜𝑏𝑗 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹 𝑜𝑏𝑗
𝑗 , 𝑋𝑗⟩ +

∑︁
𝑗∈𝒥

𝑎𝑜𝑏𝑗𝑗 𝑥𝑗 + 𝑏𝑜𝑏𝑗 ,

in terms of the symmetric matrices, 𝐹 𝑜𝑏𝑗
𝑗 , and scalars, 𝑎𝑜𝑏𝑗𝑗 and 𝑏𝑜𝑏𝑗 .

• The affine expressions of the scalar constraints are defined, for 𝑖 ∈ ℐ, as

𝑔𝑖 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹𝑖𝑗 , 𝑋𝑗⟩ +
∑︁
𝑗∈𝒥

𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖,

in terms of the symmetric matrices, 𝐹𝑖𝑗 , and scalars, 𝑎𝑖𝑗 and 𝑏𝑖.

• The affine expressions of the PSD constraints are defined, for 𝑖 ∈ ℐ𝑃𝑆𝐷, as

𝐺𝑖 =
∑︁
𝑗∈𝒥

𝑥𝑗𝐻𝑖𝑗 + 𝐷𝑖,

in terms of the symmetric matrices, 𝐻𝑖𝑗 and 𝐷𝑖.

List of cones

The format uses an explicit syntax for symmetric positive semidefinite cones as shown above. For
scalar variables and constraints, constructed in vectors, the supported conic domains and their minimum
sizes are given as follows.

Table 16.3: Cones available in the CBF format
Name CBF keyword Cone family
Free domain F linear
Positive orthant L+ linear
Negative orthant L- linear
Fixpoint zero L= linear
Quadratic cone Q second-order
Rotated quadratic cone QR second-order

16.4.4 File Format Keywords

VER

Description: The version of the Conic Benchmark Format used to write the file.
HEADER: None
BODY: One line formatted as:

398

INT

This is the version number.
Must appear exactly once in a file, as the first keyword.

OBJSENSE

Description: Define the objective sense.
HEADER: None
BODY: One line formatted as:

STR

having MIN indicates minimize, and MAX indicates maximize. Capital letters are required.
Must appear exactly once in a file.

PSDVAR

Description: Construct the PSD variables.
HEADER: One line formatted as:

INT

This is the number of PSD variables in the problem.
BODY: A list of lines formatted as:

INT

This indicates the number of rows (equal to the number of columns) in the matrix-valued PSD
variable. The number of lines should match the number stated in the header.

VAR

Description: Construct the scalar variables.
HEADER: One line formatted as:

INT INT

This is the number of scalar variables, followed by the number of conic domains they are restricted
to.

BODY: A list of lines formatted as:

STR INT

This indicates the cone name (see Table 16.3), and the number of scalar variables restricted to this
cone. These numbers should add up to the number of scalar variables stated first in the header. The
number of lines should match the second number stated in the header.

INT

Description: Declare integer requirements on a selected subset of scalar variables.
HEADER: one line formatted as:

INT

This is the number of integer scalar variables in the problem.
BODY: a list of lines formatted as:

INT

This indicates the scalar variable index 𝑗 ∈ 𝒥 . The number of lines should match the number stated
in the header.

Can only be used after the keyword VAR.

399

PSDCON

Description: Construct the PSD constraints.
HEADER: One line formatted as:

INT

This is the number of PSD constraints in the problem.
BODY: A list of lines formatted as:

INT

This indicates the number of rows (equal to the number of columns) in the matrix-valued affine
expression of the PSD constraint. The number of lines should match the number stated in the header.

Can only be used after these keywords: PSDVAR, VAR.

CON

Description: Construct the scalar constraints.
HEADER: One line formatted as:

INT INT

This is the number of scalar constraints, followed by the number of conic domains they restrict to.
BODY: A list of lines formatted as:

STR INT

This indicates the cone name (see Table 16.3), and the number of affine expressions restricted to this
cone. These numbers should add up to the number of scalar constraints stated first in the header. The
number of lines should match the second number stated in the header.

Can only be used after these keywords: PSDVAR, VAR

OBJFCOORD

Description: Input sparse coordinates (quadruplets) to define the symmetric matrices 𝐹 𝑜𝑏𝑗
𝑗 , as used in

the objective.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT INT REAL

This indicates the PSD variable index 𝑗 ∈ 𝒥 𝑃𝑆𝐷, the row index, the column index and the coefficient
value. The number of lines should match the number stated in the header.

OBJACOORD

Description: Input sparse coordinates (pairs) to define the scalars, 𝑎𝑜𝑏𝑗𝑗 , as used in the objective.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT REAL

This indicates the scalar variable index 𝑗 ∈ 𝒥 and the coefficient value. The number of lines should
match the number stated in the header.

400

OBJBCOORD

Description: Input the scalar, 𝑏𝑜𝑏𝑗 , as used in the objective.
HEADER: None.
BODY: One line formatted as:

REAL

This indicates the coefficient value.

FCOORD

Description: Input sparse coordinates (quintuplets) to define the symmetric matrices, 𝐹𝑖𝑗 , as used in the
scalar constraints.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT INT INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ, the PSD variable index 𝑗 ∈ 𝒥 𝑃𝑆𝐷, the row index,
the column index and the coefficient value. The number of lines should match the number stated in the
header.

ACOORD

Description: Input sparse coordinates (triplets) to define the scalars, 𝑎𝑖𝑗 , as used in the scalar constraints.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ, the scalar variable index 𝑗 ∈ 𝒥 and the coefficient
value. The number of lines should match the number stated in the header.

BCOORD

Description: Input sparse coordinates (pairs) to define the scalars, 𝑏𝑖, as used in the scalar constraints.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ and the coefficient value. The number of lines should
match the number stated in the header.

HCOORD

Description: Input sparse coordinates (quintuplets) to define the symmetric matrices, 𝐻𝑖𝑗 , as used in
the PSD constraints.

HEADER: One line formatted as:

INT

401

This is the number of coordinates to be specified.
BODY: A list of lines formatted as

INT INT INT INT REAL

This indicates the PSD constraint index 𝑖 ∈ ℐ𝑃𝑆𝐷, the scalar variable index 𝑗 ∈ 𝒥 , the row index,
the column index and the coefficient value. The number of lines should match the number stated in the
header.

DCOORD

Description: Input sparse coordinates (quadruplets) to define the symmetric matrices, 𝐷𝑖, as used in
the PSD constraints.

HEADER: One line formatted as

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT INT REAL

This indicates the PSD constraint index 𝑖 ∈ ℐ𝑃𝑆𝐷, the row index, the column index and the coefficient
value. The number of lines should match the number stated in the header.

CHANGE

Start of a new instance specification based on changes to the previous. Can be interpreted as the end of
file when the hotstart-sequence is unsupported or undesired.

BODY: None
Header: None

16.4.5 CBF Format Examples

Minimal Working Example

The conic optimization problem (16.11) , has three variables in a quadratic cone - first one is integer -
and an affine expression in domain 0 (equality constraint).

minimize 5.1𝑥0

subject to 6.2𝑥1 + 7.3𝑥2 − 8.4 ∈ {0}
𝑥 ∈ 𝒬3, 𝑥0 ∈ Z.

(16.11)

Its formulation in the Conic Benchmark Format begins with the version of the CBF format used, to
safeguard against later revisions.

VER
1

Next follows the problem structure, consisting of the objective sense, the number and domain of
variables, the indices of integer variables, and the number and domain of scalar-valued affine expressions
(i.e., the equality constraint).

OBJSENSE
MIN

VAR
3 1
Q 3

INT
1
0

(continues on next page)

402

(continued from previous page)

CON
1 1
L= 1

Finally follows the problem data, consisting of the coefficients of the objective, the coefficients of the
constraints, and the constant terms of the constraints. All data is specified on a sparse coordinate form.

OBJACOORD
1
0 5.1

ACOORD
2
0 1 6.2
0 2 7.3

BCOORD
1
0 -8.4

This concludes the example.

Mixing Linear, Second-order and Semidefinite Cones

The conic optimization problem (16.12), has a semidefinite cone, a quadratic cone over unordered
subindices, and two equality constraints.

minimize

⟨⎡⎣ 2 1 0
1 2 1
0 1 2

⎤⎦ , 𝑋1

⟩
+ 𝑥1

subject to

⟨⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ , 𝑋1

⟩
+ 𝑥1 = 1.0 ,

⟨⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ , 𝑋1

⟩
+ 𝑥0 + 𝑥2 = 0.5 ,

𝑥1 ≥
√︀
𝑥2
0 + 𝑥2

2 ,
𝑋1 ⪰ 0 .

(16.12)

The equality constraints are easily rewritten to the conic form, (𝑔0, 𝑔1) ∈ {0}2, by moving constants such
that the right-hand-side becomes zero. The quadratic cone does not fit under the VAR keyword in this
variable permutation. Instead, it takes a scalar constraint (𝑔2, 𝑔3, 𝑔4) = (𝑥1, 𝑥0, 𝑥2) ∈ 𝒬3, with scalar
variables constructed as (𝑥0, 𝑥1, 𝑥2) ∈ R3. Its formulation in the CBF format is reported in the following
list

File written using this version of the Conic Benchmark Format:
| Version 1.
VER
1

The sense of the objective is:
| Minimize.
OBJSENSE
MIN

One PSD variable of this size:
| Three times three.
PSDVAR
1
3

(continues on next page)

403

(continued from previous page)

Three scalar variables in this one conic domain:
| Three are free.
VAR
3 1
F 3

Five scalar constraints with affine expressions in two conic domains:
| Two are fixed to zero.
| Three are in conic quadratic domain.
CON
5 2
L= 2
Q 3

Five coordinates in F^{obj}_j coefficients:
| F^{obj}[0][0,0] = 2.0
| F^{obj}[0][1,0] = 1.0
| and more...
OBJFCOORD
5
0 0 0 2.0
0 1 0 1.0
0 1 1 2.0
0 2 1 1.0
0 2 2 2.0

One coordinate in a^{obj}_j coefficients:
| a^{obj}[1] = 1.0
OBJACOORD
1
1 1.0

Nine coordinates in F_ij coefficients:
| F[0,0][0,0] = 1.0
| F[0,0][1,1] = 1.0
| and more...
FCOORD
9
0 0 0 0 1.0
0 0 1 1 1.0
0 0 2 2 1.0
1 0 0 0 1.0
1 0 1 0 1.0
1 0 2 0 1.0
1 0 1 1 1.0
1 0 2 1 1.0
1 0 2 2 1.0

Six coordinates in a_ij coefficients:
| a[0,1] = 1.0
| a[1,0] = 1.0
| and more...
ACOORD
6
0 1 1.0
1 0 1.0
1 2 1.0
2 1 1.0
3 0 1.0
4 2 1.0

(continues on next page)

404

(continued from previous page)

Two coordinates in b_i coefficients:
| b[0] = -1.0
| b[1] = -0.5
BCOORD
2
0 -1.0
1 -0.5

Mixing Semidefinite Variables and Linear Matrix Inequalities

The standard forms in semidefinite optimization are usually based either on semidefinite variables or
linear matrix inequalities. In the CBF format, both forms are supported and can even be mixed as
shown in.

minimize
⟨[︂

1 0
0 1

]︂
, 𝑋1

⟩
+ 𝑥1 + 𝑥2 + 1

subject to
⟨[︂

0 1
1 0

]︂
, 𝑋1

⟩
− 𝑥1 − 𝑥2 ≥ 0.0 ,

𝑥1

[︂
0 1
1 3

]︂
+ 𝑥2

[︂
3 1
1 0

]︂
−
[︂

1 0
0 1

]︂
⪰ 0 ,

𝑋1 ⪰ 0 .

(16.13)

Its formulation in the CBF format is written in what follows

File written using this version of the Conic Benchmark Format:
| Version 1.
VER
1

The sense of the objective is:
| Minimize.
OBJSENSE
MIN

One PSD variable of this size:
| Two times two.
PSDVAR
1
2

Two scalar variables in this one conic domain:
| Two are free.
VAR
2 1
F 2

One PSD constraint of this size:
| Two times two.
PSDCON
1
2

One scalar constraint with an affine expression in this one conic domain:
| One is greater than or equal to zero.
CON
1 1
L+ 1

Two coordinates in F^{obj}_j coefficients:
(continues on next page)

405

(continued from previous page)

| F^{obj}[0][0,0] = 1.0
| F^{obj}[0][1,1] = 1.0
OBJFCOORD
2
0 0 0 1.0
0 1 1 1.0

Two coordinates in a^{obj}_j coefficients:
| a^{obj}[0] = 1.0
| a^{obj}[1] = 1.0
OBJACOORD
2
0 1.0
1 1.0

One coordinate in b^{obj} coefficient:
| b^{obj} = 1.0
OBJBCOORD
1.0

One coordinate in F_ij coefficients:
| F[0,0][1,0] = 1.0
FCOORD
1
0 0 1 0 1.0

Two coordinates in a_ij coefficients:
| a[0,0] = -1.0
| a[0,1] = -1.0
ACOORD
2
0 0 -1.0
0 1 -1.0

Four coordinates in H_ij coefficients:
| H[0,0][1,0] = 1.0
| H[0,0][1,1] = 3.0
| and more...
HCOORD
4
0 0 1 0 1.0
0 0 1 1 3.0
0 1 0 0 3.0
0 1 1 0 1.0

Two coordinates in D_i coefficients:
| D[0][0,0] = -1.0
| D[0][1,1] = -1.0
DCOORD
2
0 0 0 -1.0
0 1 1 -1.0

Optimization Over a Sequence of Objectives

The linear optimization problem (16.14), is defined for a sequence of objectives such that hotstarting
from one to the next might be advantages.

maximize𝑘 𝑔𝑜𝑏𝑗𝑘

subject to 50𝑥0 + 31 ≤ 250 ,
3𝑥0 − 2𝑥1 ≥ −4 ,
𝑥 ∈ R2

+,

(16.14)

406

given,

1. 𝑔𝑜𝑏𝑗0 = 𝑥0 + 0.64𝑥1.

2. 𝑔𝑜𝑏𝑗1 = 1.11𝑥0 + 0.76𝑥1.

3. 𝑔𝑜𝑏𝑗2 = 1.11𝑥0 + 0.85𝑥1.

Its formulation in the CBF format is reported in Listing 16.5.

Listing 16.5: Problem (16.14) in CBF format.

File written using this version of the Conic Benchmark Format:
| Version 1.
VER
1

The sense of the objective is:
| Maximize.
OBJSENSE
MAX

Two scalar variables in this one conic domain:
| Two are nonnegative.
VAR
2 1
L+ 2

Two scalar constraints with affine expressions in these two conic domains:
| One is in the nonpositive domain.
| One is in the nonnegative domain.
CON
2 2
L- 1
L+ 1

Two coordinates in a^{obj}_j coefficients:
| a^{obj}[0] = 1.0
| a^{obj}[1] = 0.64
OBJACOORD
2
0 1.0
1 0.64

Four coordinates in a_ij coefficients:
| a[0,0] = 50.0
| a[1,0] = 3.0
| and more...
ACOORD
4
0 0 50.0
1 0 3.0
0 1 31.0
1 1 -2.0

Two coordinates in b_i coefficients:
| b[0] = -250.0
| b[1] = 4.0
BCOORD
2
0 -250.0
1 4.0

(continues on next page)

407

(continued from previous page)

New problem instance defined in terms of changes.
CHANGE

Two coordinate changes in a^{obj}_j coefficients. Now it is:
| a^{obj}[0] = 1.11
| a^{obj}[1] = 0.76
OBJACOORD
2
0 1.11
1 0.76

New problem instance defined in terms of changes.
CHANGE

One coordinate change in a^{obj}_j coefficients. Now it is:
| a^{obj}[0] = 1.11
| a^{obj}[1] = 0.85
OBJACOORD
1
1 0.85

16.5 The PTF Format

The PTF format is a new human-readable, natural text format. Its features and structure are similar to
the OPF format, with the difference that the PTF format does support semidefinite terms.

16.5.1 The overall format
The format is indentation based, where each section is started by a head line and followed by a section
body with deeper indentation that the head line. For example:

Header line
Body line 1
Body line 1
Body line 1

Section can also be nested:

Header line A
Body line in A
Header line A.1

Body line in A.1
Body line in A.1

Body line in A

The indentation of blank lines is ignored, so a subsection can contain a blank line with no indentation.
The character # defines a line comment and anything between the # character and the end of the line is
ignored.

In a PTF file, the first section must be a Task section. The order of the remaining section is arbitrary,
and sections may occur multiple times or not at all.

MOSEK will ignore any top-level section it does not recognize.

Names

In the description of the format we use following definitions for name strings:

NAME: PLAIN_NAME | QUOTED_NAME
PLAIN_NAME: [a-zA-Z_] [a-zA-Z0-9_-.!|]
QUOTED_NAME: "'" ([^'\\\r\n] | "\\" ([\\rn] | "x" [0-9a-fA-F] [0-9a-fA-F]))* "'"

408

Expressions

An expression is a sum of terms. A term is either a linear term (a coefficient and a variable name, where
the coefficient can be left out if it is 1.0), or a matrix inner product.

An expression:

EXPR: EMPTY | [+-]? TERM ([+-] TERM)*
TERM: LINEAR_TERM | MATRIX_TERM

A linear term

LINEAR_TERM: FLOAT? NAME

A matrix term

MATRIX_TERM: "<" FLOAT? NAME ([+-] FLOAT? NAME)* ";" NAME ">"

Here the right-hand name is the name of a (semidefinite) matrix variable, and the left-hand side is a
sum of symmetric matrixes. The actual matrixes are defined in a separate section.

Expressions can span multiple lines by giving subsequent lines a deeper indentation.
For example following two section are equivalent:

Everything on one line:
x1 + x2 + x3 + x4

Split into multiple lines:
x1

+ x2
+ x3
+ x4

16.5.2 Task section
The first section of the file must be a Task. The text in this section is not used and may contain
comments, or meta-information from the writer or about the content.

Format:

Task NAME
Anything goes here...

NAME is a the task name.

16.5.3 Objective section
The Objective section defines the objective name, sense and function. The format:

"Objective" NAME?
("Minimize" | "Maximize") EXPR

For example:

Objective 'obj'
Minimize x1 + 0.2 x2 + < M1 ; X1 >

16.5.4 Constraints section
The constraints section defines a series of constraints. A constraint defines a term 𝐴 · 𝑥 + 𝑏 ∈ 𝐾. For
linear constraints A is just one row, while for conic constraints it can be multiple rows. If a constraint
spans multiple rows these can either be written inline separated by semi-colons, or each expression in a
separete sub-section.

Simple linear constraints:

409

"Constraints"
NAME? "[" [-+] (FLOAT | "Inf") (";" [-+] (FLOAT | "Inf"))? "]" EXPR

If the brackets contain two values, they are used as upper and lower bounds. It they contain one
value the constraint is an equality.

For example:

Constraints
'c1' [0;10] x1 + x2 + x3
[0] x1 + x2 + x3

Constraint blocks put the expression either in a subsection or inline. The cone type (domain) is
written in the brackets, and MOSEK currently supports following types:

• SOC(N) Second order cone of dimension N

• RSOC(N) Rotated second order cone of dimension N

• PSD(N) Symmetric positive semidefinite cone of dimension N. This contains N*(N+1)/2 elements.

• PEXP Primal exponential cone of dimension 3

• DEXP Dual exponential cone of dimension 3

• PPOW(N,P) Primal power cone of dimension N with parameter P

• DPOW(N,P) Dual power cone of dimension N with parameter P

• ZERO(N) The zero-cone of dimension N.

"Constraints"
NAME? "[" DOMAIN "]" EXPR_LIST

For example:

Constraints
'K1' [SOC(3)] x1 + x2 ; x2 + x3 ; x3 + x1
'K2' [RSOC(3)]

x1 + x2
x2 + x3
x3 + x1

16.5.5 Variables section
Any variable used in an expression must be defined in a variable section. The variable section defines
each variable domain.

"Variables"
NAME "[" [-+] (FLOAT | "Inf") (";" [-+] (FLOAT | "Inf"))? "]"
NAME "[" DOMAIN "]" NAMES

For example, a linear variable

Variables
x1 [0;Inf]

As with constraints, members of a conic domain can be listed either inline or in a subsection:

Variables
k1 [SOC(3)] x1 ; x2 ; x3
k2 [RSOC(3)]

x1
x2
x3

410

16.5.6 Integer section
This section contains a list of variables that are integral. For example:

Integer
x1 x2 x3

16.5.7 SymmetricMatrixes section
This section defines the symmetric matrixes used for matrix coefficients in matrix inner product terms.
The section lists named matrixes, each with a size and a number of non-zeros. Only non-zeros in the
lower triangular part should be defined.

"SymmetricMatrixes"
NAME "SYMMAT" "(" INT ")" ("(" INT "," INT "," FLOAT ")")*
...

For example:

SymmetricMatrixes
M1 SYMMAT(3) (0,0,1.0) (1,1,2.0) (2,1,0.5)
M2 SYMMAT(3)

(0,0,1.0)
(1,1,2.0)
(2,1,0.5)

16.5.8 Solutions section
Each subsection defines a solution. A solution defines for each constraint and for each variable exactly
one primal value and either one (for conic domains) or two (for linear domains) dual values. The values
follow the same logic as in the MOSEK C API. A primal and a dual solution status defines the meaning
of the values primal and dual (solution, certificate, unknown, etc.)

The format is this:

"Solutions"
"Solution" WHICHSOL

"ProblemStatus" PROSTA PROSTA?
"SolutionStatus" SOLSTA SOLSTA?
"Objective" FLOAT FLOAT
"Variables"

Linear variable status: level, slx, sux
NAME "[" STATUS "]" FLOAT (FLOAT FLOAT)?
Conic variable status: level, snx
NAME

"[" STATUS "]" FLOAT FLOAT?
...

"Constraints"
Linear variable status: level, slx, sux
NAME "[" STATUS "]" FLOAT (FLOAT FLOAT)?
Conic variable status: level, snx
NAME

"[" STATUS "]" FLOAT FLOAT?
...

Following values for WHICHSOL are supported:

• interior Interior solution, the result of an interior-point solver.

• basic Basic solution, as produced by a simplex solver.

• integer Integer solution, the solution to a mixed-integer problem. This does not define a dual
solution.

Following values for PROSTA are supported:

411

• unknown The problem status is unknown

• feasible The problem has been proven feasible

• infeasible The problem has been proven infeasible

• illposed The problem has been proved to be ill posed

• infeasible_or_unbounded The problem is infeasible or unbounded

Following values for SOLSTA are supported:

• unknown The solution status is unknown

• feasible The solution is feasible

• optimal The solution is optimal

• infeas_cert The solution is a certificate of infeasibility

• illposed_cert The solution is a certificate of illposedness

Following values for STATUS are supported:

• unknown The value is unknown

• super_basic The value is super basic

• at_lower The value is basic and at its lower bound

• at_upper The value is basic and at its upper bound

• fixed The value is basic fixed

• infinite The value is at infinity

16.6 The Task Format

The Task format is MOSEK’s native binary format. It contains a complete image of a MOSEK task,
i.e.

• Problem data: Linear, conic, semidefinite and quadratic data

• Problem item names: Variable names, constraints names, cone names etc.

• Parameter settings

• Solutions

There are a few things to be aware of:

• Status of a solution read from a file will always be unknown.

• Parameter settings in a task file always override any parameters set on the command line or in a
parameter file.

The format is based on the TAR (USTar) file format. This means that the individual pieces of data
in a .task file can be examined by unpacking it as a TAR file. Please note that the inverse may not
work: Creating a file using TAR will most probably not create a valid MOSEK Task file since the order
of the entries is important.

412

16.7 The JSON Format

MOSEK provides the possibility to read/write problems in valid JSON format.
JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for humans

to read and write. It is easy for machines to parse and generate. It is based on a subset of the JavaScript
Programming Language, Standard ECMA-262 3rd Edition - December 1999. JSON is a text format
that is completely language independent but uses conventions that are familiar to programmers of the
C-family of languages, including C, C++, C#, Java, JavaScript, Perl, Python, and many others. These
properties make JSON an ideal data-interchange language.

The official JSON website http://www.json.org provides plenty of information along with the format
definition.

MOSEK defines two JSON-like formats:

• jtask

• jsol

Despite being text-based human-readable formats, jtask and jsol files will include no indentation and
no new-lines, in order to keep the files as compact as possible. We therefore strongly advise to use JSON
viewer tools to inspect jtask and jsol files.

16.7.1 jtask format
It stores a problem instance. The jtask format contains the same information as a task format . Even
though a jtask file is human-readable, we do not recommend users to create it by hand, but to rely on
MOSEK.

16.7.2 jsol format
It stores a problem solution. The jsol format contains all solutions and information items.

You can write a jsol file using Task.writejsonsol . You can not read a jsol file into MOSEK.

16.7.3 A jtask example
In Listing 16.6 we present a file in the jtask format that corresponds to the sample problem from lo1.lp.
The listing has been formatted for readability.

Listing 16.6: A formatted jtask file for the lo1.lp example.

{
"$schema":"http://mosek.com/json/schema#",
"Task/INFO":{

"taskname":"lo1",
"numvar":4,
"numcon":3,
"numcone":0,
"numbarvar":0,
"numanz":9,
"numsymmat":0,
"mosekver":[

8,
0,
0,
9

]
},
"Task/data":{

"var":{
"name":[

"x1",
"x2",

(continues on next page)

413

http://www.json.org

(continued from previous page)

"x3",
"x4"

],
"bk":[

"lo",
"ra",
"lo",
"lo"

],
"bl":[

0.0,
0.0,
0.0,
0.0

],
"bu":[

1e+30,
1e+1,
1e+30,
1e+30

],
"type":[

"cont",
"cont",
"cont",
"cont"

]
},
"con":{

"name":[
"c1",
"c2",
"c3"

],
"bk":[

"fx",
"lo",
"up"

],
"bl":[

3e+1,
1.5e+1,

-1e+30
],
"bu":[

3e+1,
1e+30,
2.5e+1

]
},
"objective":{

"sense":"max",
"name":"obj",
"c":{

"subj":[
0,
1,
2,
3

],
"val":[

(continues on next page)

414

(continued from previous page)

3e+0,
1e+0,
5e+0,
1e+0

]
},
"cfix":0.0

},
"A":{

"subi":[
0,
0,
0,
1,
1,
1,
1,
2,
2

],
"subj":[

0,
1,
2,
0,
1,
2,
3,
1,
3

],
"val":[

3e+0,
1e+0,
2e+0,
2e+0,
1e+0,
3e+0,
1e+0,
2e+0,
3e+0

]
}

},
"Task/parameters":{

"iparam":{
"ANA_SOL_BASIS":"ON",
"ANA_SOL_PRINT_VIOLATED":"OFF",
"AUTO_SORT_A_BEFORE_OPT":"OFF",
"AUTO_UPDATE_SOL_INFO":"OFF",
"BASIS_SOLVE_USE_PLUS_ONE":"OFF",
"BI_CLEAN_OPTIMIZER":"OPTIMIZER_FREE",
"BI_IGNORE_MAX_ITER":"OFF",
"BI_IGNORE_NUM_ERROR":"OFF",
"BI_MAX_ITERATIONS":1000000,
"CACHE_LICENSE":"ON",
"CHECK_CONVEXITY":"CHECK_CONVEXITY_FULL",
"COMPRESS_STATFILE":"ON",
"CONCURRENT_NUM_OPTIMIZERS":2,
"CONCURRENT_PRIORITY_DUAL_SIMPLEX":2,
"CONCURRENT_PRIORITY_FREE_SIMPLEX":3,

(continues on next page)

415

(continued from previous page)

"CONCURRENT_PRIORITY_INTPNT":4,
"CONCURRENT_PRIORITY_PRIMAL_SIMPLEX":1,
"FEASREPAIR_OPTIMIZE":"FEASREPAIR_OPTIMIZE_NONE",
"INFEAS_GENERIC_NAMES":"OFF",
"INFEAS_PREFER_PRIMAL":"ON",
"INFEAS_REPORT_AUTO":"OFF",
"INFEAS_REPORT_LEVEL":1,
"INTPNT_BASIS":"BI_ALWAYS",
"INTPNT_DIFF_STEP":"ON",
"INTPNT_FACTOR_DEBUG_LVL":0,
"INTPNT_FACTOR_METHOD":0,
"INTPNT_HOTSTART":"INTPNT_HOTSTART_NONE",
"INTPNT_MAX_ITERATIONS":400,
"INTPNT_MAX_NUM_COR":-1,
"INTPNT_MAX_NUM_REFINEMENT_STEPS":-1,
"INTPNT_OFF_COL_TRH":40,
"INTPNT_ORDER_METHOD":"ORDER_METHOD_FREE",
"INTPNT_REGULARIZATION_USE":"ON",
"INTPNT_SCALING":"SCALING_FREE",
"INTPNT_SOLVE_FORM":"SOLVE_FREE",
"INTPNT_STARTING_POINT":"STARTING_POINT_FREE",
"LIC_TRH_EXPIRY_WRN":7,
"LICENSE_DEBUG":"OFF",
"LICENSE_PAUSE_TIME":0,
"LICENSE_SUPPRESS_EXPIRE_WRNS":"OFF",
"LICENSE_WAIT":"OFF",
"LOG":10,
"LOG_ANA_PRO":1,
"LOG_BI":4,
"LOG_BI_FREQ":2500,
"LOG_CHECK_CONVEXITY":0,
"LOG_CONCURRENT":1,
"LOG_CUT_SECOND_OPT":1,
"LOG_EXPAND":0,
"LOG_FACTOR":1,
"LOG_FEAS_REPAIR":1,
"LOG_FILE":1,
"LOG_HEAD":1,
"LOG_INFEAS_ANA":1,
"LOG_INTPNT":4,
"LOG_MIO":4,
"LOG_MIO_FREQ":1000,
"LOG_OPTIMIZER":1,
"LOG_ORDER":1,
"LOG_PRESOLVE":1,
"LOG_RESPONSE":0,
"LOG_SENSITIVITY":1,
"LOG_SENSITIVITY_OPT":0,
"LOG_SIM":4,
"LOG_SIM_FREQ":1000,
"LOG_SIM_MINOR":1,
"LOG_STORAGE":1,
"MAX_NUM_WARNINGS":10,
"MIO_BRANCH_DIR":"BRANCH_DIR_FREE",
"MIO_CONSTRUCT_SOL":"OFF",
"MIO_CUT_CLIQUE":"ON",
"MIO_CUT_CMIR":"ON",
"MIO_CUT_GMI":"ON",
"MIO_CUT_KNAPSACK_COVER":"OFF",
"MIO_HEURISTIC_LEVEL":-1,
"MIO_MAX_NUM_BRANCHES":-1,

(continues on next page)

416

(continued from previous page)

"MIO_MAX_NUM_RELAXS":-1,
"MIO_MAX_NUM_SOLUTIONS":-1,
"MIO_MODE":"MIO_MODE_SATISFIED",
"MIO_MT_USER_CB":"ON",
"MIO_NODE_OPTIMIZER":"OPTIMIZER_FREE",
"MIO_NODE_SELECTION":"MIO_NODE_SELECTION_FREE",
"MIO_PERSPECTIVE_REFORMULATE":"ON",
"MIO_PROBING_LEVEL":-1,
"MIO_RINS_MAX_NODES":-1,
"MIO_ROOT_OPTIMIZER":"OPTIMIZER_FREE",
"MIO_ROOT_REPEAT_PRESOLVE_LEVEL":-1,
"MT_SPINCOUNT":0,
"NUM_THREADS":0,
"OPF_MAX_TERMS_PER_LINE":5,
"OPF_WRITE_HEADER":"ON",
"OPF_WRITE_HINTS":"ON",
"OPF_WRITE_PARAMETERS":"OFF",
"OPF_WRITE_PROBLEM":"ON",
"OPF_WRITE_SOL_BAS":"ON",
"OPF_WRITE_SOL_ITG":"ON",
"OPF_WRITE_SOL_ITR":"ON",
"OPF_WRITE_SOLUTIONS":"OFF",
"OPTIMIZER":"OPTIMIZER_FREE",
"PARAM_READ_CASE_NAME":"ON",
"PARAM_READ_IGN_ERROR":"OFF",
"PRESOLVE_ELIMINATOR_MAX_FILL":-1,
"PRESOLVE_ELIMINATOR_MAX_NUM_TRIES":-1,
"PRESOLVE_LEVEL":-1,
"PRESOLVE_LINDEP_ABS_WORK_TRH":100,
"PRESOLVE_LINDEP_REL_WORK_TRH":100,
"PRESOLVE_LINDEP_USE":"ON",
"PRESOLVE_MAX_NUM_REDUCTIONS":-1,
"PRESOLVE_USE":"PRESOLVE_MODE_FREE",
"PRIMAL_REPAIR_OPTIMIZER":"OPTIMIZER_FREE",
"QO_SEPARABLE_REFORMULATION":"OFF",
"READ_DATA_COMPRESSED":"COMPRESS_FREE",
"READ_DATA_FORMAT":"DATA_FORMAT_EXTENSION",
"READ_DEBUG":"OFF",
"READ_KEEP_FREE_CON":"OFF",
"READ_LP_DROP_NEW_VARS_IN_BOU":"OFF",
"READ_LP_QUOTED_NAMES":"ON",
"READ_MPS_FORMAT":"MPS_FORMAT_FREE",
"READ_MPS_WIDTH":1024,
"READ_TASK_IGNORE_PARAM":"OFF",
"SENSITIVITY_ALL":"OFF",
"SENSITIVITY_OPTIMIZER":"OPTIMIZER_FREE_SIMPLEX",
"SENSITIVITY_TYPE":"SENSITIVITY_TYPE_BASIS",
"SIM_BASIS_FACTOR_USE":"ON",
"SIM_DEGEN":"SIM_DEGEN_FREE",
"SIM_DUAL_CRASH":90,
"SIM_DUAL_PHASEONE_METHOD":0,
"SIM_DUAL_RESTRICT_SELECTION":50,
"SIM_DUAL_SELECTION":"SIM_SELECTION_FREE",
"SIM_EXPLOIT_DUPVEC":"SIM_EXPLOIT_DUPVEC_OFF",
"SIM_HOTSTART":"SIM_HOTSTART_FREE",
"SIM_HOTSTART_LU":"ON",
"SIM_INTEGER":0,
"SIM_MAX_ITERATIONS":10000000,
"SIM_MAX_NUM_SETBACKS":250,
"SIM_NON_SINGULAR":"ON",
"SIM_PRIMAL_CRASH":90,

(continues on next page)

417

(continued from previous page)

"SIM_PRIMAL_PHASEONE_METHOD":0,
"SIM_PRIMAL_RESTRICT_SELECTION":50,
"SIM_PRIMAL_SELECTION":"SIM_SELECTION_FREE",
"SIM_REFACTOR_FREQ":0,
"SIM_REFORMULATION":"SIM_REFORMULATION_OFF",
"SIM_SAVE_LU":"OFF",
"SIM_SCALING":"SCALING_FREE",
"SIM_SCALING_METHOD":"SCALING_METHOD_POW2",
"SIM_SOLVE_FORM":"SOLVE_FREE",
"SIM_STABILITY_PRIORITY":50,
"SIM_SWITCH_OPTIMIZER":"OFF",
"SOL_FILTER_KEEP_BASIC":"OFF",
"SOL_FILTER_KEEP_RANGED":"OFF",
"SOL_READ_NAME_WIDTH":-1,
"SOL_READ_WIDTH":1024,
"SOLUTION_CALLBACK":"OFF",
"TIMING_LEVEL":1,
"WRITE_BAS_CONSTRAINTS":"ON",
"WRITE_BAS_HEAD":"ON",
"WRITE_BAS_VARIABLES":"ON",
"WRITE_DATA_COMPRESSED":0,
"WRITE_DATA_FORMAT":"DATA_FORMAT_EXTENSION",
"WRITE_DATA_PARAM":"OFF",
"WRITE_FREE_CON":"OFF",
"WRITE_GENERIC_NAMES":"OFF",
"WRITE_GENERIC_NAMES_IO":1,
"WRITE_IGNORE_INCOMPATIBLE_CONIC_ITEMS":"OFF",
"WRITE_IGNORE_INCOMPATIBLE_ITEMS":"OFF",
"WRITE_IGNORE_INCOMPATIBLE_NL_ITEMS":"OFF",
"WRITE_IGNORE_INCOMPATIBLE_PSD_ITEMS":"OFF",
"WRITE_INT_CONSTRAINTS":"ON",
"WRITE_INT_HEAD":"ON",
"WRITE_INT_VARIABLES":"ON",
"WRITE_LP_FULL_OBJ":"ON",
"WRITE_LP_LINE_WIDTH":80,
"WRITE_LP_QUOTED_NAMES":"ON",
"WRITE_LP_STRICT_FORMAT":"OFF",
"WRITE_LP_TERMS_PER_LINE":10,
"WRITE_MPS_FORMAT":"MPS_FORMAT_FREE",
"WRITE_MPS_INT":"ON",
"WRITE_PRECISION":15,
"WRITE_SOL_BARVARIABLES":"ON",
"WRITE_SOL_CONSTRAINTS":"ON",
"WRITE_SOL_HEAD":"ON",
"WRITE_SOL_IGNORE_INVALID_NAMES":"OFF",
"WRITE_SOL_VARIABLES":"ON",
"WRITE_TASK_INC_SOL":"ON",
"WRITE_XML_MODE":"WRITE_XML_MODE_ROW"

},
"dparam":{

"ANA_SOL_INFEAS_TOL":1e-6,
"BASIS_REL_TOL_S":1e-12,
"BASIS_TOL_S":1e-6,
"BASIS_TOL_X":1e-6,
"CHECK_CONVEXITY_REL_TOL":1e-10,
"DATA_TOL_AIJ":1e-12,
"DATA_TOL_AIJ_HUGE":1e+20,
"DATA_TOL_AIJ_LARGE":1e+10,
"DATA_TOL_BOUND_INF":1e+16,
"DATA_TOL_BOUND_WRN":1e+8,
"DATA_TOL_C_HUGE":1e+16,

(continues on next page)

418

(continued from previous page)

"DATA_TOL_CJ_LARGE":1e+8,
"DATA_TOL_QIJ":1e-16,
"DATA_TOL_X":1e-8,
"FEASREPAIR_TOL":1e-10,
"INTPNT_CO_TOL_DFEAS":1e-8,
"INTPNT_CO_TOL_INFEAS":1e-10,
"INTPNT_CO_TOL_MU_RED":1e-8,
"INTPNT_CO_TOL_NEAR_REL":1e+3,
"INTPNT_CO_TOL_PFEAS":1e-8,
"INTPNT_CO_TOL_REL_GAP":1e-7,
"INTPNT_NL_MERIT_BAL":1e-4,
"INTPNT_NL_TOL_DFEAS":1e-8,
"INTPNT_NL_TOL_MU_RED":1e-12,
"INTPNT_NL_TOL_NEAR_REL":1e+3,
"INTPNT_NL_TOL_PFEAS":1e-8,
"INTPNT_NL_TOL_REL_GAP":1e-6,
"INTPNT_NL_TOL_REL_STEP":9.95e-1,
"INTPNT_QO_TOL_DFEAS":1e-8,
"INTPNT_QO_TOL_INFEAS":1e-10,
"INTPNT_QO_TOL_MU_RED":1e-8,
"INTPNT_QO_TOL_NEAR_REL":1e+3,
"INTPNT_QO_TOL_PFEAS":1e-8,
"INTPNT_QO_TOL_REL_GAP":1e-8,
"INTPNT_TOL_DFEAS":1e-8,
"INTPNT_TOL_DSAFE":1e+0,
"INTPNT_TOL_INFEAS":1e-10,
"INTPNT_TOL_MU_RED":1e-16,
"INTPNT_TOL_PATH":1e-8,
"INTPNT_TOL_PFEAS":1e-8,
"INTPNT_TOL_PSAFE":1e+0,
"INTPNT_TOL_REL_GAP":1e-8,
"INTPNT_TOL_REL_STEP":9.999e-1,
"INTPNT_TOL_STEP_SIZE":1e-6,
"LOWER_OBJ_CUT":-1e+30,
"LOWER_OBJ_CUT_FINITE_TRH":-5e+29,
"MIO_DISABLE_TERM_TIME":-1e+0,
"MIO_MAX_TIME":-1e+0,
"MIO_MAX_TIME_APRX_OPT":6e+1,
"MIO_NEAR_TOL_ABS_GAP":0.0,
"MIO_NEAR_TOL_REL_GAP":1e-3,
"MIO_REL_GAP_CONST":1e-10,
"MIO_TOL_ABS_GAP":0.0,
"MIO_TOL_ABS_RELAX_INT":1e-5,
"MIO_TOL_FEAS":1e-6,
"MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT":0.0,
"MIO_TOL_REL_GAP":1e-4,
"MIO_TOL_X":1e-6,
"OPTIMIZER_MAX_TIME":-1e+0,
"PRESOLVE_TOL_ABS_LINDEP":1e-6,
"PRESOLVE_TOL_AIJ":1e-12,
"PRESOLVE_TOL_REL_LINDEP":1e-10,
"PRESOLVE_TOL_S":1e-8,
"PRESOLVE_TOL_X":1e-8,
"QCQO_REFORMULATE_REL_DROP_TOL":1e-15,
"SEMIDEFINITE_TOL_APPROX":1e-10,
"SIM_LU_TOL_REL_PIV":1e-2,
"SIMPLEX_ABS_TOL_PIV":1e-7,
"UPPER_OBJ_CUT":1e+30,
"UPPER_OBJ_CUT_FINITE_TRH":5e+29

},
"sparam":{

(continues on next page)

419

(continued from previous page)

"BAS_SOL_FILE_NAME":"",
"DATA_FILE_NAME":"examples/tools/data/lo1.mps",
"DEBUG_FILE_NAME":"",
"INT_SOL_FILE_NAME":"",
"ITR_SOL_FILE_NAME":"",
"MIO_DEBUG_STRING":"",
"PARAM_COMMENT_SIGN":"%%",
"PARAM_READ_FILE_NAME":"",
"PARAM_WRITE_FILE_NAME":"",
"READ_MPS_BOU_NAME":"",
"READ_MPS_OBJ_NAME":"",
"READ_MPS_RAN_NAME":"",
"READ_MPS_RHS_NAME":"",
"SENSITIVITY_FILE_NAME":"",
"SENSITIVITY_RES_FILE_NAME":"",
"SOL_FILTER_XC_LOW":"",
"SOL_FILTER_XC_UPR":"",
"SOL_FILTER_XX_LOW":"",
"SOL_FILTER_XX_UPR":"",
"STAT_FILE_NAME":"",
"STAT_KEY":"",
"STAT_NAME":"",
"WRITE_LP_GEN_VAR_NAME":"XMSKGEN"

}
}

}

16.8 The Solution File Format

MOSEK provides several solution files depending on the problem type and the optimizer used:

• basis solution file (extension .bas) if the problem is optimized using the simplex optimizer or basis
identification is performed,

• interior solution file (extension .sol) if a problem is optimized using the interior-point optimizer
and no basis identification is required,

• integer solution file (extension .int) if the problem contains integer constrained variables.

All solution files have the format:

NAME : <problem name>
PROBLEM STATUS : <status of the problem>
SOLUTION STATUS : <status of the solution>
OBJECTIVE NAME : <name of the objective function>
PRIMAL OBJECTIVE : <primal objective value corresponding to the solution>
DUAL OBJECTIVE : <dual objective value corresponding to the solution>
CONSTRAINTS
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER
? <name> ?? <a value> <a value> <a value> <a value> <a value>
VARIABLES
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER CONIC␣
→˓DUAL
? <name> ?? <a value> <a value> <a value> <a value> <a value> <a value>

In the example the fields ? and <> will be filled with problem and solution specific information. As
can be observed a solution report consists of three sections, i.e.

• HEADER In this section, first the name of the problem is listed and afterwards the problem and
solution status are shown. Next the primal and dual objective values are displayed.

420

• CONSTRAINTS For each constraint 𝑖 of the form

𝑙𝑐𝑖 ≤
𝑛∑︁

𝑗=1

𝑎𝑖𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑖 , (16.15)

the following information is listed:
– INDEX: A sequential index assigned to the constraint by MOSEK
– NAME: The name of the constraint assigned by the user.
– AT: The status of the constraint. In Table 16.4 the possible values of the status keys and

their interpretation are shown.

Table 16.4: Status keys.
Status key Interpretation
UN Unknown status
BS Is basic
SB Is superbasic
LL Is at the lower limit (bound)
UL Is at the upper limit (bound)
EQ Lower limit is identical to upper limit
** Is infeasible i.e. the lower limit is greater than the upper limit.

– ACTIVITY: the quantity
∑︀𝑛

𝑗=1 𝑎𝑖𝑗𝑥
*
𝑗 , where 𝑥* is the value of the primal solution.

– LOWER LIMIT: the quantity 𝑙𝑐𝑖 (see (16.15).)
– UPPER LIMIT: the quantity 𝑢𝑐

𝑖 (see (16.15).)
– DUAL LOWER: the dual multiplier corresponding to the lower limit on the constraint.
– DUAL UPPER: the dual multiplier corresponding to the upper limit on the constraint.

• VARIABLES The last section of the solution report lists information about the variables. This
information has a similar interpretation as for the constraints. However, the column with
the header CONIC DUAL is included for problems having one or more conic constraints. This
column shows the dual variables corresponding to the conic constraints.

Example: lo1.sol

In Listing 16.7 we show the solution file for the lo1.opf problem.

Listing 16.7: An example of .sol file.

NAME :
PROBLEM STATUS : PRIMAL_AND_DUAL_FEASIBLE
SOLUTION STATUS : OPTIMAL
OBJECTIVE NAME : obj
PRIMAL OBJECTIVE : 8.33333333e+01
DUAL OBJECTIVE : 8.33333332e+01

CONSTRAINTS
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT ␣
→˓DUAL LOWER DUAL UPPER
0 c1 EQ 3.00000000000000e+01 3.00000000e+01 3.00000000e+01 -0.
→˓00000000000000e+00 -2.49999999741653e+00
1 c2 SB 5.33333333049187e+01 1.50000000e+01 NONE 2.
→˓09159033069640e-10 -0.00000000000000e+00
2 c3 UL 2.49999999842049e+01 NONE 2.50000000e+01 -0.
→˓00000000000000e+00 -3.33333332895108e-01

VARIABLES
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT ␣
→˓DUAL LOWER DUAL UPPER
0 x1 LL 1.67020427038537e-09 0.00000000e+00 NONE -4.
→˓49999999528054e+00 -0.00000000000000e+00

(continues on next page)

421

(continued from previous page)

1 x2 LL 2.93510446211883e-09 0.00000000e+00 1.00000000e+01 -2.
→˓16666666494915e+00 6.20868657679896e-10
2 x3 SB 1.49999999899424e+01 0.00000000e+00 NONE -8.
→˓79123177245553e-10 -0.00000000000000e+00
3 x4 SB 8.33333332273115e+00 0.00000000e+00 NONE -1.
→˓69795978848200e-09 -0.00000000000000e+00

422

Chapter 17

List of examples

List of examples shipped in the distribution of Optimizer API for Python:

Table 17.1: List of distributed examples
File Description
blas_lapack.py Demonstrates the MOSEK interface to BLAS/LAPACK linear algebra routines
callback.py An example of data/progress callback
ceo1.py A simple conic exponential problem
concurrent1.py Implementation of a concurrent optimizer for linear and mixed-integer problems
cqo1.py A simple conic quadratic problem
feasrepairex1.
py

A simple example of how to repair an infeasible problem

gp1.py A simple geometric program (GP) in conic form
lo1.py A simple linear problem
lo2.py A simple linear problem
logistic.py Implements logistic regression and simple log-sum-exp (CEO)
mico1.py A simple mixed-integer conic problem
milo1.py A simple mixed-integer linear problem
mioinitsol.py A simple mixed-integer linear problem with an initial guess
modelLib.py Library of implementations of basic functions
opt_server_async.
py

Uses MOSEK OptServer to solve an optimization problem asynchronously

opt_server_sync.
py

Uses MOSEK OptServer to solve an optimization problem synchronously

parallel.py Demonstrates parallel optimization
parameters.py Shows how to set optimizer parameters and read information items
portfolio_1_basic.
py

Portfolio optimization - basic Markowitz model

portfolio_2_frontier.
py

Portfolio optimization - efficient frontier

portfolio_3_impact.
py

Portfolio optimization - market impact costs

portfolio_4_transcost.
py

Portfolio optimization - transaction costs

portfolio_5_card.
py

Portfolio optimization - cardinality constraints

pow1.py A simple power cone problem
qcqo1.py A simple quadratically constrained quadratic problem
qo1.py A simple quadratic problem
reoptimization.
py

Demonstrate how to modify and re-optimize a linear problem

response.py Demonstrates proper response handling
Continued on next page

423

Table 17.1 – continued from previous page
File Description
sdo1.py A simple semidefinite problem with one matrix variable and a quadratic cone
sdo2.py A simple semidefinite problem with two matrix variables
sensitivity.py Sensitivity analysis performed on a small linear problem
simple.py A simple I/O example: read problem from a file, solve and write solutions
solutionquality.
py

Demonstrates how to examine the quality of a solution

solvebasis.py Demonstrates solving a linear system with the basis matrix
solvelinear.py Demonstrates solving a general linear system
sparsecholesky.
py

Shows how to find a Cholesky factorization of a sparse matrix

Additional examples can be found on the MOSEK website and in other MOSEK publications.

424

Chapter 18

Interface changes

The section shows interface-specific changes to the MOSEK Optimizer API for Python in version 9.2
compared to version 8. See the release notes for general changes and new features of the MOSEK
Optimization Suite.

18.1 Backwards compatibility

• Parameters. Users who set parameters to tune the performance and numerical properties of the
solver (termination criteria, tolerances, solving primal or dual, presolve etc.) are recommended to
reevaluate such tuning. It may be that other, or default, parameter settings will be more beneficial
in the current version. The hints in Sec. 8 may be useful for some cases.

• All functions using the enum accmode were removed. Use corresponding separate functions for
manipulating variables and constraints. For example, instead of

task.putbound(accmode.var, ...);
task.putbound(accmode.con, ...);

use

task.putvarbound(...);
task.putconbound(...);

and so on.

• Removed all Near problem and solution statuses i.e. solsta.near_optimal, solsta.
near_prim_infeas_cer, etc. See Sec. 13.3.3.

• All functions related to the general nonlinear optimizer and Scopt have been removed. See Sec.
15.11.

18.2 Functions

Added

• Env.setupthreads

• Task.appendsparsesymmatlist

• Task.generateconenames

• Task.generateconnames

• Task.generatevarnames

• Task.getacolslice

425

https://docs.mosek.com/9.2/releasenotes/index.html

• Task.getacolslicenumnz

• Task.getarowslice

• Task.getarowslicenumnz

• Task.getatruncatetol

• Task.getbarsslice

• Task.getbarxslice

• Task.getclist

• Task.getskn

• Task.putatruncatetol

• Task.putbaraijlist

• Task.putbararowlist

• Task.putconboundlistconst

• Task.putconboundsliceconst

• Task.putconsolutioni

• Task.putoptserverhost

• Task.putvarboundlistconst

• Task.putvarboundsliceconst

• Task.putvarsolutionj

• Task.readjsonstring

• Task.readlpstring

• Task.readopfstring

• Task.readptfstring

Removed

• Task.checkconvexity

• Task.chgbound

• Task.getaslice

• Task.getaslicenumnz

• Task.getbound

• Task.getboundslice

• Task.getsolutioni

• Task.printdata

• Task.putbound

• Task.putboundlist

• Task.putboundslice

• Task.putsolutioni

426

18.3 Parameters

Added

• iparam.intpnt_order_gp_num_seeds

• iparam.intpnt_purify

• iparam.log_include_summary

• iparam.log_local_info

• iparam.mio_conic_outer_approximation

• iparam.mio_feaspump_level

• iparam.mio_max_num_root_cut_rounds

• iparam.mio_propagate_objective_constraint

• iparam.mio_seed

• iparam.opf_write_line_length

• iparam.presolve_max_num_pass

• iparam.ptf_write_transform

• iparam.sim_seed

• iparam.write_compression

Removed

• dparam.data_tol_aij

• dparam.intpnt_nl_merit_bal

• dparam.intpnt_nl_tol_dfeas

• dparam.intpnt_nl_tol_mu_red

• dparam.intpnt_nl_tol_near_rel

• dparam.intpnt_nl_tol_pfeas

• dparam.intpnt_nl_tol_rel_gap

• dparam.intpnt_nl_tol_rel_step

• dparam.mio_disable_term_time

• dparam.mio_near_tol_abs_gap

• dparam.mio_near_tol_rel_gap

• iparam.mio_construct_sol

• iparam.mio_mt_user_cb

• iparam.opf_max_terms_per_line

• iparam.read_data_compressed

• iparam.read_data_format

• iparam.write_data_compressed

• iparam.write_data_format

427

18.4 Constants

Added

• compresstype.zstd

• conetype.dexp

• conetype.dpow

• conetype.pexp

• conetype.ppow

• conetype.zero

• dataformat.ptf

• iinfitem.mio_numbin

• iinfitem.mio_numbinconevar

• iinfitem.mio_numcone

• iinfitem.mio_numconevar

• iinfitem.mio_numcont

• iinfitem.mio_numcontconevar

• iinfitem.mio_numdexpcones

• iinfitem.mio_numdpowcones

• iinfitem.mio_numintconevar

• iinfitem.mio_numpexpcones

• iinfitem.mio_numppowcones

• iinfitem.mio_numqcones

• iinfitem.mio_numrqcones

• iinfitem.mio_presolved_numbinconevar

• iinfitem.mio_presolved_numcone

• iinfitem.mio_presolved_numconevar

• iinfitem.mio_presolved_numcontconevar

• iinfitem.mio_presolved_numdexpcones

• iinfitem.mio_presolved_numdpowcones

• iinfitem.mio_presolved_numintconevar

• iinfitem.mio_presolved_numpexpcones

• iinfitem.mio_presolved_numppowcones

• iinfitem.mio_presolved_numqcones

• iinfitem.mio_presolved_numrqcones

• iinfitem.purify_dual_success

• iinfitem.purify_primal_success

• liinfitem.mio_anz

428

Removed

• constant.dataformat.xml

• constant.dinfitem.mio_heuristic_time

• constant.dinfitem.mio_optimizer_time

• constant.iinfitem.mio_construct_num_roundings

• constant.iinfitem.mio_initial_solution

• constant.iinfitem.mio_near_absgap_satisfied

• constant.iinfitem.mio_near_relgap_satisfied

• constant.liinfitem.mio_sim_maxiter_setbacks

• constant.mionodeseltype.hybrid

• constant.mionodeseltype.worst

• constant.problemtype.geco

• constant.prosta.near_dual_feas

• constant.prosta.near_prim_and_dual_feas

• constant.prosta.near_prim_feas

• constant.sensitivitytype.optimal_partition

• constant.solsta.near_dual_feas

• constant.solsta.near_dual_infeas_cer

• constant.solsta.near_integer_optimal

• constant.solsta.near_optimal

• constant.solsta.near_prim_and_dual_feas

• constant.solsta.near_prim_feas

• constant.solsta.near_prim_infeas_cer

18.5 Response Codes

Added

• rescode.err_appending_too_big_cone

• rescode.err_cbf_duplicate_pow_cones

• rescode.err_cbf_duplicate_pow_star_cones

• rescode.err_cbf_invalid_dimension_of_cones

• rescode.err_cbf_invalid_exp_dimension

• rescode.err_cbf_invalid_number_of_cones

• rescode.err_cbf_invalid_power

• rescode.err_cbf_invalid_power_cone_index

429

• rescode.err_cbf_invalid_power_star_cone_index

• rescode.err_cbf_power_cone_is_too_long

• rescode.err_cbf_power_cone_mismatch

• rescode.err_cbf_power_star_cone_mismatch

• rescode.err_cbf_unhandled_power_cone_type

• rescode.err_cbf_unhandled_power_star_cone_type

• rescode.err_cone_parameter

• rescode.err_format_string

• rescode.err_invalid_file_format_for_cfix

• rescode.err_invalid_file_format_for_free_constraints

• rescode.err_invalid_file_format_for_nonlinear

• rescode.err_invalid_file_format_for_ranged_constraints

• rescode.err_num_arguments

• rescode.err_ptf_format

• rescode.err_server_problem_size

• rescode.err_shape_is_too_large

• rescode.err_slice_size

• rescode.err_too_small_a_truncation_value

• rescode.wrn_exp_cones_with_variables_fixed_at_zero

• rescode.wrn_pow_cones_with_root_fixed_at_zero

Removed

• rescode.err_cannot_clone_nl

• rescode.err_cannot_handle_nl

• rescode.err_invalid_accmode

• rescode.err_invalid_file_format_for_general_nl

• rescode.err_nonlinear_functions_not_allowed

• rescode.err_nr_arguments

• rescode.err_open_dl

• rescode.err_user_func_ret

• rescode.err_user_func_ret_data

• rescode.err_user_nlo_eval

• rescode.err_user_nlo_eval_hessubi

• rescode.err_user_nlo_eval_hessubj

• rescode.err_user_nlo_func

430

• rescode.trm_mio_near_abs_gap

• rescode.trm_mio_near_rel_gap

• rescode.wrn_construct_invalid_sol_itg

• rescode.wrn_construct_no_sol_itg

• rescode.wrn_construct_solution_infeas

• rescode.wrn_no_nonlinear_function_write

431

Bibliography

[AA95] E. D. Andersen and K. D. Andersen. Presolving in linear programming. Math. Programming,
71(2):221–245, 1995.

[AGMX96] E. D. Andersen, J. Gondzio, Cs. Mészáros, and X. Xu. Implementation of interior point meth-
ods for large scale linear programming. In T. Terlaky, editor, Interior-point methods of mathematical
programming, pages 189–252. Kluwer Academic Publishers, 1996.

[ART03] E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual interior-point method
for conic quadratic optimization. Math. Programming, February 2003.

[AY96] E. D. Andersen and Y. Ye. Combining interior-point and pivoting algorithms. Management Sci.,
42(12):1719–1731, December 1996.

[And09] Erling D. Andersen. The homogeneous and self-dual model and algorithm for linear optimiza-
tion. Technical Report TR-1-2009, MOSEK ApS, 2009. URL: http://docs.mosek.com/whitepapers/
homolo.pdf.

[And13] Erling D. Andersen. On formulating quadratic functions in optimization models. Technical
Report TR-1-2013, MOSEK ApS, 2013. Last revised 23-feb-2016. URL: http://docs.mosek.com/
whitepapers/qmodel.pdf.

[BKVH07] S. Boyd, S.J. Kim, L. Vandenberghe, and A. Hassibi. A Tutorial on Geo-
metric Programming. Optimization and Engineering, 8(1):67–127, 2007. Available at
http://www.stanford.edu/~boyd/gp_tutorial.html.

[Chv83] V. Chvátal. Linear programming. W.H. Freeman and Company, 1983.

[GK00] Richard C. Grinold and Ronald N. Kahn. Active portfolio management. McGraw-Hill, New York,
2 edition, 2000.

[Naz87] J. L. Nazareth. Computer Solution of Linear Programs. Oxford University Press, New York,
1987.

[RTV97] C. Roos, T. Terlaky, and J. -Ph. Vial. Theory and algorithms for linear optimization: an
interior point approach. John Wiley and Sons, New York, 1997.

[Ste98] G. W. Stewart. Matrix Algorithms. Volume 1: Basic decompositions. SIAM, 1998.

[Wal00] S. W. Wallace. Decision making under uncertainty: is sensitivity of any use. Oper. Res.,
48(1):20–25, January 2000.

[Wol98] L. A. Wolsey. Integer programming. John Wiley and Sons, 1998.

432

http://docs.mosek.com/whitepapers/homolo.pdf
http://docs.mosek.com/whitepapers/homolo.pdf
http://docs.mosek.com/whitepapers/qmodel.pdf
http://docs.mosek.com/whitepapers/qmodel.pdf

Symbol Index

Classes
Env, 186
Env.Task, 186
Env.syrk, 193
Env.syevd, 193
Env.syeig, 193
Env.sparsetriangularsolvedense, 192
Env.setupthreads, 192
Env.set_Stream, 192
Env.putlicensewait, 192
Env.putlicensepath, 192
Env.putlicensedebug, 191
Env.putlicensecode, 191
Env.potrf, 191
Env.linkfiletostream, 191
Env.licensecleanup, 191
Env.getversion, 190
Env.getcodedesc, 190
Env.gemv, 190
Env.gemm, 189
Env.Env, 186
Env.echointro, 189
Env.dot, 188
Env.computesparsecholesky, 187
Env.checkoutlicense, 187
Env.checkinlicense, 187
Env.checkinall, 187
Env.axpy, 186
Env.__del__, 186
Task, 194
Task.writetask, 266
Task.writesolution, 266
Task.writeparamfile, 266
Task.writejsonsol, 266
Task.writedata, 266
Task.updatesolutioninfo, 265
Task.toconic, 265
Task.Task, 194
Task.strtosk, 265
Task.strtoconetype, 265
Task.solvewithbasis, 264
Task.solutionsummary, 264
Task.solutiondef, 264
Task.setdefaults, 264
Task.set_Stream, 263
Task.set_Progress, 263
Task.set_InfoCallback, 263
Task.sensitivityreport, 263

Task.resizetask, 262
Task.removevars, 262
Task.removecons, 262
Task.removecones, 262
Task.removebarvars, 262
Task.readtask, 261
Task.readsummary, 261
Task.readsolution, 261
Task.readptfstring, 261
Task.readparamfile, 261
Task.readopfstring, 261
Task.readlpstring, 260
Task.readjsonstring, 260
Task.readdataformat, 260
Task.readdata, 260
Task.putyslice, 260
Task.puty, 259
Task.putxxslice, 259
Task.putxx, 259
Task.putxcslice, 259
Task.putxc, 258
Task.putvartypelist, 258
Task.putvartype, 258
Task.putvarsolutionj, 258
Task.putvarname, 257
Task.putvarboundsliceconst, 257
Task.putvarboundslice, 257
Task.putvarboundlistconst, 257
Task.putvarboundlist, 256
Task.putvarbound, 256
Task.puttaskname, 256
Task.putsuxslice, 256
Task.putsux, 256
Task.putsucslice, 255
Task.putsuc, 255
Task.putstrparam, 255
Task.putsolutionyi, 255
Task.putsolution, 254
Task.putsnxslice, 254
Task.putsnx, 254
Task.putslxslice, 253
Task.putslx, 253
Task.putslcslice, 253
Task.putslc, 253
Task.putskxslice, 253
Task.putskx, 252
Task.putskcslice, 252
Task.putskc, 252
Task.putqobjij, 252

433

Task.putqobj, 251
Task.putqconk, 251
Task.putqcon, 250
Task.putparam, 250
Task.putoptserverhost, 250
Task.putobjsense, 250
Task.putobjname, 250
Task.putnastrparam, 249
Task.putnaintparam, 249
Task.putnadouparam, 249
Task.putmaxnumvar, 249
Task.putmaxnumqnz, 248
Task.putmaxnumcone, 248
Task.putmaxnumcon, 248
Task.putmaxnumbarvar, 248
Task.putmaxnumanz, 247
Task.putintparam, 247
Task.putdouparam, 247
Task.putcslice, 247
Task.putconsolutioni, 246
Task.putconname, 246
Task.putconename, 246
Task.putcone, 246
Task.putconboundsliceconst, 245
Task.putconboundslice, 245
Task.putconboundlistconst, 245
Task.putconboundlist, 245
Task.putconbound, 244
Task.putclist, 244
Task.putcj, 244
Task.putcfix, 244
Task.putbarxj, 243
Task.putbarvarname, 243
Task.putbarsj, 243
Task.putbarcj, 243
Task.putbarcblocktriplet, 242
Task.putbararowlist, 242
Task.putbaraijlist, 242
Task.putbaraij, 241
Task.putbarablocktriplet, 241
Task.putatruncatetol, 241
Task.putarowslice, 240
Task.putarowlist, 240
Task.putarow, 240
Task.putaijlist, 240
Task.putaij, 239
Task.putacolslice, 239
Task.putacollist, 239
Task.putacol, 238
Task.primalsensitivity, 238
Task.primalrepair, 237
Task.optimizersummary, 237
Task.optimizermt, 236
Task.optimize, 236
Task.onesolutionsummary, 236
Task.linkfiletostream, 236
Task.isstrparname, 236
Task.isintparname, 235

Task.isdouparname, 235
Task.inputdata, 235
Task.initbasissolve, 234
Task.getyslice, 234
Task.gety, 234
Task.getxxslice, 234
Task.getxx, 234
Task.getxcslice, 233
Task.getxc, 233
Task.getvartypelist, 233
Task.getvartype, 233
Task.getvarnamelen, 233
Task.getvarnameindex, 232
Task.getvarname, 232
Task.getvarboundslice, 232
Task.getvarbound, 232
Task.gettasknamelen, 231
Task.gettaskname, 231
Task.getsymmatinfo, 231
Task.getsuxslice, 231
Task.getsux, 231
Task.getsucslice, 230
Task.getsuc, 230
Task.getstrparamlen, 230
Task.getstrparam, 230
Task.getsparsesymmat, 229
Task.getsolutionslice, 229
Task.getsolutioninfo, 229
Task.getsolution, 227
Task.getsolsta, 227
Task.getsnxslice, 227
Task.getsnx, 227
Task.getslxslice, 226
Task.getslx, 226
Task.getslcslice, 226
Task.getslc, 226
Task.getskxslice, 225
Task.getskx, 225
Task.getskn, 225
Task.getskcslice, 225
Task.getskc, 225
Task.getreducedcosts, 224
Task.getqobjij, 224
Task.getqobj, 224
Task.getqconk, 224
Task.getpviolvar, 223
Task.getpviolcones, 223
Task.getpviolcon, 222
Task.getpviolbarvar, 222
Task.getprosta, 222
Task.getprobtype, 222
Task.getprimalsolutionnorms, 221
Task.getprimalobj, 221
Task.getobjsense, 221
Task.getobjnamelen, 221
Task.getobjname, 221
Task.getnumvar, 221
Task.getnumsymmat, 220

434

Task.getnumqobjnz, 220
Task.getnumqconknz, 220
Task.getnumparam, 220
Task.getnumintvar, 220
Task.getnumconemem, 220
Task.getnumcone, 219
Task.getnumcon, 219
Task.getnumbarvar, 219
Task.getnumbarcnz, 219
Task.getnumbarcblocktriplets, 219
Task.getnumbaranz, 219
Task.getnumbarablocktriplets, 218
Task.getnumanz64, 218
Task.getnumanz, 218
Task.getmemusage, 218
Task.getmaxnumvar, 218
Task.getmaxnumqnz, 218
Task.getmaxnumcone, 217
Task.getmaxnumcon, 217
Task.getmaxnumbarvar, 217
Task.getmaxnumanz, 217
Task.getlintinf, 217
Task.getlenbarvarj, 216
Task.getintparam, 216
Task.getintinf, 216
Task.getinfeasiblesubproblem, 216
Task.getdviolvar, 215
Task.getdviolcones, 215
Task.getdviolcon, 215
Task.getdviolbarvar, 214
Task.getdualsolutionnorms, 214
Task.getdualobj, 214
Task.getdouparam, 214
Task.getdouinf, 213
Task.getdimbarvarj, 213
Task.getcslice, 213
Task.getconnamelen, 213
Task.getconnameindex, 212
Task.getconname, 212
Task.getconenamelen, 212
Task.getconenameindex, 212
Task.getconename, 212
Task.getconeinfo, 211
Task.getcone, 211
Task.getconboundslice, 211
Task.getconbound, 211
Task.getclist, 210
Task.getcj, 210
Task.getcfix, 210
Task.getc, 210
Task.getbarxslice, 210
Task.getbarxj, 209
Task.getbarvarnamelen, 209
Task.getbarvarnameindex, 209
Task.getbarvarname, 209
Task.getbarsslice, 208
Task.getbarsj, 208
Task.getbarcsparsity, 208

Task.getbarcidxj, 208
Task.getbarcidxinfo, 208
Task.getbarcidx, 207
Task.getbarcblocktriplet, 207
Task.getbarasparsity, 207
Task.getbaraidxinfo, 207
Task.getbaraidxij, 206
Task.getbaraidx, 206
Task.getbarablocktriplet, 205
Task.getatruncatetol, 205
Task.getarowslicetrip, 205
Task.getarowslicenumnz, 205
Task.getarowslice, 205
Task.getarownumnz, 204
Task.getarow, 204
Task.getapiecenumnz, 204
Task.getaij, 204
Task.getacolslicetrip, 203
Task.getacolslicenumnz, 203
Task.getacolslice, 203
Task.getacolnumnz, 203
Task.getacol, 202
Task.generatevarnames, 202
Task.generateconnames, 202
Task.generateconenames, 202
Task.dualsensitivity, 201
Task.deletesolution, 201
Task.commitchanges, 201
Task.chgvarbound, 200
Task.chgconbound, 200
Task.checkmem, 200
Task.basiscond, 199
Task.asyncstop, 199
Task.asyncpoll, 199
Task.asyncoptimize, 199
Task.asyncgetresult, 198
Task.appendvars, 198
Task.appendsparsesymmatlist, 198
Task.appendsparsesymmat, 197
Task.appendcons, 197
Task.appendconesseq, 197
Task.appendconeseq, 196
Task.appendcone, 195
Task.appendbarvars, 195
Task.analyzesolution, 195
Task.analyzeproblem, 195
Task.analyzenames, 195
Task.__del__, 194

Enumerations
basindtype, 341
basindtype.reservered, 341
basindtype.no_error, 341
basindtype.never, 341
basindtype.if_feasible, 341
basindtype.always, 341
boundkey, 341
boundkey.up, 341

435

boundkey.ra, 341
boundkey.lo, 341
boundkey.fx, 341
boundkey.fr, 341
branchdir, 359
branchdir.up, 359
branchdir.root_lp, 359
branchdir.pseudocost, 359
branchdir.near, 359
branchdir.guided, 359
branchdir.free, 359
branchdir.far, 359
branchdir.down, 359
callbackcode, 343
callbackcode.write_opf, 347
callbackcode.update_primal_simplex_bi, 347
callbackcode.update_primal_simplex, 347
callbackcode.update_primal_bi, 347
callbackcode.update_presolve, 347
callbackcode.update_dual_simplex_bi, 347
callbackcode.update_dual_simplex, 347
callbackcode.update_dual_bi, 347
callbackcode.solving_remote, 347
callbackcode.read_opf_section, 347
callbackcode.read_opf, 347
callbackcode.primal_simplex, 347
callbackcode.new_int_mio, 347
callbackcode.intpnt, 347
callbackcode.im_simplex_bi, 347
callbackcode.im_simplex, 347
callbackcode.im_root_cutgen, 346
callbackcode.im_read, 346
callbackcode.im_qo_reformulate, 346
callbackcode.im_primal_simplex, 346
callbackcode.im_primal_sensivity, 346
callbackcode.im_primal_bi, 346
callbackcode.im_presolve, 346
callbackcode.im_order, 346
callbackcode.im_mio_primal_simplex, 346
callbackcode.im_mio_intpnt, 346
callbackcode.im_mio_dual_simplex, 346
callbackcode.im_mio, 346
callbackcode.im_lu, 346
callbackcode.im_license_wait, 346
callbackcode.im_intpnt, 346
callbackcode.im_full_convexity_check, 346
callbackcode.im_dual_simplex, 346
callbackcode.im_dual_sensivity, 346
callbackcode.im_dual_bi, 346
callbackcode.im_conic, 346
callbackcode.im_bi, 345
callbackcode.end_write, 345
callbackcode.end_to_conic, 345
callbackcode.end_simplex_bi, 345
callbackcode.end_simplex, 345
callbackcode.end_root_cutgen, 345
callbackcode.end_read, 345
callbackcode.end_qcqo_reformulate, 345

callbackcode.end_primal_simplex_bi, 345
callbackcode.end_primal_simplex, 345
callbackcode.end_primal_setup_bi, 345
callbackcode.end_primal_sensitivity, 345
callbackcode.end_primal_repair, 345
callbackcode.end_primal_bi, 345
callbackcode.end_presolve, 345
callbackcode.end_optimizer, 345
callbackcode.end_mio, 345
callbackcode.end_license_wait, 345
callbackcode.end_intpnt, 345
callbackcode.end_infeas_ana, 345
callbackcode.end_full_convexity_check, 345
callbackcode.end_dual_simplex_bi, 345
callbackcode.end_dual_simplex, 345
callbackcode.end_dual_setup_bi, 344
callbackcode.end_dual_sensitivity, 344
callbackcode.end_dual_bi, 344
callbackcode.end_conic, 344
callbackcode.end_bi, 344
callbackcode.dual_simplex, 344
callbackcode.conic, 344
callbackcode.begin_write, 344
callbackcode.begin_to_conic, 344
callbackcode.begin_simplex_bi, 344
callbackcode.begin_simplex, 344
callbackcode.begin_root_cutgen, 344
callbackcode.begin_read, 344
callbackcode.begin_qcqo_reformulate, 344
callbackcode.begin_primal_simplex_bi, 344
callbackcode.begin_primal_simplex, 344
callbackcode.begin_primal_setup_bi, 344
callbackcode.begin_primal_sensitivity, 344
callbackcode.begin_primal_repair, 344
callbackcode.begin_primal_bi, 344
callbackcode.begin_presolve, 344
callbackcode.begin_optimizer, 344
callbackcode.begin_mio, 344
callbackcode.begin_license_wait, 344
callbackcode.begin_intpnt, 343
callbackcode.begin_infeas_ana, 343
callbackcode.begin_full_convexity_check,

343
callbackcode.begin_dual_simplex_bi, 343
callbackcode.begin_dual_simplex, 343
callbackcode.begin_dual_setup_bi, 343
callbackcode.begin_dual_sensitivity, 343
callbackcode.begin_dual_bi, 343
callbackcode.begin_conic, 343
callbackcode.begin_bi, 343
checkconvexitytype, 347
checkconvexitytype.simple, 347
checkconvexitytype.none, 347
checkconvexitytype.full, 347
compresstype, 347
compresstype.zstd, 348
compresstype.none, 347
compresstype.gzip, 348

436

compresstype.free, 348
conetype, 348
conetype.zero, 348
conetype.rquad, 348
conetype.quad, 348
conetype.ppow, 348
conetype.pexp, 348
conetype.dpow, 348
conetype.dexp, 348
dataformat, 348
dataformat.task, 349
dataformat.ptf, 349
dataformat.op, 349
dataformat.mps, 348
dataformat.lp, 349
dataformat.json_task, 349
dataformat.free_mps, 349
dataformat.extension, 348
dataformat.cb, 349
dinfitem, 349
dinfitem.to_conic_time, 353
dinfitem.sol_itr_pviolvar, 353
dinfitem.sol_itr_pviolcones, 353
dinfitem.sol_itr_pviolcon, 353
dinfitem.sol_itr_pviolbarvar, 353
dinfitem.sol_itr_primal_obj, 353
dinfitem.sol_itr_nrm_y, 353
dinfitem.sol_itr_nrm_xx, 353
dinfitem.sol_itr_nrm_xc, 353
dinfitem.sol_itr_nrm_sux, 353
dinfitem.sol_itr_nrm_suc, 353
dinfitem.sol_itr_nrm_snx, 353
dinfitem.sol_itr_nrm_slx, 353
dinfitem.sol_itr_nrm_slc, 353
dinfitem.sol_itr_nrm_barx, 353
dinfitem.sol_itr_nrm_bars, 352
dinfitem.sol_itr_dviolvar, 352
dinfitem.sol_itr_dviolcones, 352
dinfitem.sol_itr_dviolcon, 352
dinfitem.sol_itr_dviolbarvar, 352
dinfitem.sol_itr_dual_obj, 352
dinfitem.sol_itg_pviolvar, 352
dinfitem.sol_itg_pviolitg, 352
dinfitem.sol_itg_pviolcones, 352
dinfitem.sol_itg_pviolcon, 352
dinfitem.sol_itg_pviolbarvar, 352
dinfitem.sol_itg_primal_obj, 352
dinfitem.sol_itg_nrm_xx, 352
dinfitem.sol_itg_nrm_xc, 352
dinfitem.sol_itg_nrm_barx, 352
dinfitem.sol_bas_pviolvar, 352
dinfitem.sol_bas_pviolcon, 352
dinfitem.sol_bas_primal_obj, 352
dinfitem.sol_bas_nrm_y, 352
dinfitem.sol_bas_nrm_xx, 351
dinfitem.sol_bas_nrm_xc, 351
dinfitem.sol_bas_nrm_sux, 351
dinfitem.sol_bas_nrm_suc, 351

dinfitem.sol_bas_nrm_slx, 351
dinfitem.sol_bas_nrm_slc, 351
dinfitem.sol_bas_nrm_barx, 351
dinfitem.sol_bas_dviolvar, 351
dinfitem.sol_bas_dviolcon, 351
dinfitem.sol_bas_dual_obj, 351
dinfitem.sim_time, 351
dinfitem.sim_primal_time, 351
dinfitem.sim_obj, 351
dinfitem.sim_feas, 351
dinfitem.sim_dual_time, 351
dinfitem.rd_time, 351
dinfitem.qcqo_reformulate_worst_cholesky_diag_scaling,

351
dinfitem.qcqo_reformulate_worst_cholesky_column_scaling,

351
dinfitem.qcqo_reformulate_time, 351
dinfitem.qcqo_reformulate_max_perturbation,

351
dinfitem.primal_repair_penalty_obj, 351
dinfitem.presolve_time, 351
dinfitem.presolve_lindep_time, 351
dinfitem.presolve_eli_time, 351
dinfitem.optimizer_time, 350
dinfitem.mio_user_obj_cut, 350
dinfitem.mio_time, 350
dinfitem.mio_root_presolve_time, 350
dinfitem.mio_root_optimizer_time, 350
dinfitem.mio_root_cutgen_time, 350
dinfitem.mio_probing_time, 350
dinfitem.mio_obj_rel_gap, 350
dinfitem.mio_obj_int, 350
dinfitem.mio_obj_bound, 350
dinfitem.mio_obj_abs_gap, 350
dinfitem.mio_knapsack_cover_separation_time,

350
dinfitem.mio_implied_bound_time, 350
dinfitem.mio_gmi_separation_time, 350
dinfitem.mio_dual_bound_after_presolve, 350
dinfitem.mio_construct_solution_obj, 350
dinfitem.mio_cmir_separation_time, 350
dinfitem.mio_clique_separation_time, 350
dinfitem.intpnt_time, 350
dinfitem.intpnt_primal_obj, 349
dinfitem.intpnt_primal_feas, 349
dinfitem.intpnt_order_time, 349
dinfitem.intpnt_opt_status, 349
dinfitem.intpnt_factor_num_flops, 349
dinfitem.intpnt_dual_obj, 349
dinfitem.intpnt_dual_feas, 349
dinfitem.bi_time, 349
dinfitem.bi_primal_time, 349
dinfitem.bi_dual_time, 349
dinfitem.bi_clean_time, 349
dinfitem.bi_clean_primal_time, 349
dinfitem.bi_clean_dual_time, 349
dparam, 279
feature, 353

437

feature.pts, 353
feature.pton, 353
iinfitem, 354
iinfitem.sto_num_a_realloc, 358
iinfitem.sol_itr_solsta, 358
iinfitem.sol_itr_prosta, 358
iinfitem.sol_itg_solsta, 358
iinfitem.sol_itg_prosta, 358
iinfitem.sol_bas_solsta, 358
iinfitem.sol_bas_prosta, 358
iinfitem.sim_solve_dual, 358
iinfitem.sim_primal_iter, 358
iinfitem.sim_primal_inf_iter, 358
iinfitem.sim_primal_hotstart_lu, 358
iinfitem.sim_primal_hotstart, 358
iinfitem.sim_primal_deg_iter, 358
iinfitem.sim_numvar, 358
iinfitem.sim_numcon, 358
iinfitem.sim_dual_iter, 358
iinfitem.sim_dual_inf_iter, 358
iinfitem.sim_dual_hotstart_lu, 358
iinfitem.sim_dual_hotstart, 357
iinfitem.sim_dual_deg_iter, 357
iinfitem.rd_protype, 357
iinfitem.rd_numvar, 357
iinfitem.rd_numq, 357
iinfitem.rd_numintvar, 357
iinfitem.rd_numcone, 357
iinfitem.rd_numcon, 357
iinfitem.rd_numbarvar, 357
iinfitem.purify_primal_success, 357
iinfitem.purify_dual_success, 357
iinfitem.optimize_response, 357
iinfitem.opt_numvar, 357
iinfitem.opt_numcon, 357
iinfitem.mio_user_obj_cut, 357
iinfitem.mio_total_num_cuts, 357
iinfitem.mio_relgap_satisfied, 357
iinfitem.mio_presolved_numvar, 357
iinfitem.mio_presolved_numrqcones, 357
iinfitem.mio_presolved_numqcones, 357
iinfitem.mio_presolved_numppowcones, 357
iinfitem.mio_presolved_numpexpcones, 357
iinfitem.mio_presolved_numintconevar, 357
iinfitem.mio_presolved_numint, 357
iinfitem.mio_presolved_numdpowcones, 356
iinfitem.mio_presolved_numdexpcones, 356
iinfitem.mio_presolved_numcontconevar, 356
iinfitem.mio_presolved_numcont, 356
iinfitem.mio_presolved_numconevar, 356
iinfitem.mio_presolved_numcone, 356
iinfitem.mio_presolved_numcon, 356
iinfitem.mio_presolved_numbinconevar, 356
iinfitem.mio_presolved_numbin, 356
iinfitem.mio_obj_bound_defined, 356
iinfitem.mio_numvar, 356
iinfitem.mio_numrqcones, 356
iinfitem.mio_numqcones, 356

iinfitem.mio_numppowcones, 356
iinfitem.mio_numpexpcones, 356
iinfitem.mio_numintconevar, 356
iinfitem.mio_numint, 356
iinfitem.mio_numdpowcones, 356
iinfitem.mio_numdexpcones, 356
iinfitem.mio_numcontconevar, 356
iinfitem.mio_numcont, 356
iinfitem.mio_numconevar, 356
iinfitem.mio_numcone, 356
iinfitem.mio_numcon, 356
iinfitem.mio_numbinconevar, 355
iinfitem.mio_numbin, 355
iinfitem.mio_num_repeated_presolve, 355
iinfitem.mio_num_relax, 355
iinfitem.mio_num_knapsack_cover_cuts, 355
iinfitem.mio_num_int_solutions, 355
iinfitem.mio_num_implied_bound_cuts, 355
iinfitem.mio_num_gomory_cuts, 355
iinfitem.mio_num_cmir_cuts, 355
iinfitem.mio_num_clique_cuts, 355
iinfitem.mio_num_branch, 355
iinfitem.mio_num_active_nodes, 355
iinfitem.mio_node_depth, 355
iinfitem.mio_construct_solution, 355
iinfitem.mio_clique_table_size, 355
iinfitem.mio_absgap_satisfied, 355
iinfitem.intpnt_solve_dual, 355
iinfitem.intpnt_num_threads, 355
iinfitem.intpnt_iter, 355
iinfitem.intpnt_factor_dim_dense, 355
iinfitem.ana_pro_num_var_up, 355
iinfitem.ana_pro_num_var_ra, 355
iinfitem.ana_pro_num_var_lo, 354
iinfitem.ana_pro_num_var_int, 354
iinfitem.ana_pro_num_var_fr, 354
iinfitem.ana_pro_num_var_eq, 354
iinfitem.ana_pro_num_var_cont, 354
iinfitem.ana_pro_num_var_bin, 354
iinfitem.ana_pro_num_var, 354
iinfitem.ana_pro_num_con_up, 354
iinfitem.ana_pro_num_con_ra, 354
iinfitem.ana_pro_num_con_lo, 354
iinfitem.ana_pro_num_con_fr, 354
iinfitem.ana_pro_num_con_eq, 354
iinfitem.ana_pro_num_con, 354
inftype, 358
inftype.lint_type, 358
inftype.int_type, 358
inftype.dou_type, 358
intpnthotstart, 343
intpnthotstart.primal_dual, 343
intpnthotstart.primal, 343
intpnthotstart.none, 343
intpnthotstart.dual, 343
iomode, 358
iomode.write, 358
iomode.readwrite, 359

438

iomode.read, 358
iparam, 289
liinfitem, 353
liinfitem.rd_numqnz, 354
liinfitem.rd_numanz, 354
liinfitem.mio_simplex_iter, 354
liinfitem.mio_presolved_anz, 354
liinfitem.mio_intpnt_iter, 354
liinfitem.mio_anz, 354
liinfitem.intpnt_factor_num_nz, 354
liinfitem.bi_primal_iter, 354
liinfitem.bi_dual_iter, 354
liinfitem.bi_clean_primal_iter, 353
liinfitem.bi_clean_primal_deg_iter, 353
liinfitem.bi_clean_dual_iter, 353
liinfitem.bi_clean_dual_deg_iter, 353
mark, 342
mark.up, 342
mark.lo, 342
miocontsoltype, 359
miocontsoltype.root, 359
miocontsoltype.none, 359
miocontsoltype.itg_rel, 359
miocontsoltype.itg, 359
miomode, 359
miomode.satisfied, 359
miomode.ignored, 359
mionodeseltype, 359
mionodeseltype.pseudo, 360
mionodeseltype.free, 359
mionodeseltype.first, 359
mionodeseltype.best, 359
mpsformat, 360
mpsformat.strict, 360
mpsformat.relaxed, 360
mpsformat.free, 360
mpsformat.cplex, 360
nametype, 348
nametype.mps, 348
nametype.lp, 348
nametype.gen, 348
objsense, 360
objsense.minimize, 360
objsense.maximize, 360
onoffkey, 360
onoffkey.on, 360
onoffkey.off, 360
optimizertype, 360
optimizertype.primal_simplex, 360
optimizertype.mixed_int, 360
optimizertype.intpnt, 360
optimizertype.free_simplex, 360
optimizertype.free, 360
optimizertype.dual_simplex, 360
optimizertype.conic, 360
orderingtype, 360
orderingtype.try_graphpar, 360
orderingtype.none, 361

orderingtype.free, 360
orderingtype.force_graphpar, 360
orderingtype.experimental, 360
orderingtype.appminloc, 360
parametertype, 361
parametertype.str_type, 361
parametertype.invalid_type, 361
parametertype.int_type, 361
parametertype.dou_type, 361
presolvemode, 361
presolvemode.on, 361
presolvemode.off, 361
presolvemode.free, 361
problemitem, 361
problemitem.var, 361
problemitem.cone, 361
problemitem.con, 361
problemtype, 361
problemtype.qo, 361
problemtype.qcqo, 361
problemtype.mixed, 361
problemtype.lo, 361
problemtype.conic, 361
prosta, 361
prosta.unknown, 361
prosta.prim_infeas_or_unbounded, 362
prosta.prim_infeas, 362
prosta.prim_feas, 361
prosta.prim_and_dual_infeas, 362
prosta.prim_and_dual_feas, 361
prosta.ill_posed, 362
prosta.dual_infeas, 362
prosta.dual_feas, 361
purify, 343
purify.primal_dual, 343
purify.primal, 343
purify.none, 343
purify.dual, 343
purify.auto, 343
rescode, 323
rescodetype, 362
rescodetype.wrn, 362
rescodetype.unk, 362
rescodetype.trm, 362
rescodetype.ok, 362
rescodetype.err, 362
scalingmethod, 362
scalingmethod.pow2, 362
scalingmethod.free, 362
scalingtype, 362
scalingtype.none, 362
scalingtype.moderate, 362
scalingtype.free, 362
scalingtype.aggressive, 362
scopr, 348
scopr.sqrt, 348
scopr.pow, 348
scopr.log, 348

439

scopr.exp, 348
scopr.ent, 348
sensitivitytype, 362
sensitivitytype.basis, 362
simdegen, 342
simdegen.none, 342
simdegen.moderate, 342
simdegen.minimum, 342
simdegen.free, 342
simdegen.aggressive, 342
simdupvec, 342
simdupvec.on, 342
simdupvec.off, 342
simdupvec.free, 342
simhotstart, 342
simhotstart.status_keys, 343
simhotstart.none, 342
simhotstart.free, 343
simreform, 342
simreform.on, 342
simreform.off, 342
simreform.free, 342
simreform.aggressive, 342
simseltype, 362
simseltype.se, 363
simseltype.partial, 363
simseltype.full, 363
simseltype.free, 363
simseltype.devex, 363
simseltype.ase, 363
solitem, 363
solitem.y, 363
solitem.xx, 363
solitem.xc, 363
solitem.sux, 363
solitem.suc, 363
solitem.snx, 363
solitem.slx, 363
solitem.slc, 363
solsta, 363
solsta.unknown, 363
solsta.prim_infeas_cer, 363
solsta.prim_illposed_cer, 363
solsta.prim_feas, 363
solsta.prim_and_dual_feas, 363
solsta.optimal, 363
solsta.integer_optimal, 364
solsta.dual_infeas_cer, 363
solsta.dual_illposed_cer, 364
solsta.dual_feas, 363
soltype, 364
soltype.itr, 364
soltype.itg, 364
soltype.bas, 364
solveform, 364
solveform.primal, 364
solveform.free, 364
solveform.dual, 364

sparam, 320
stakey, 364
stakey.upr, 364
stakey.unk, 364
stakey.supbas, 364
stakey.low, 364
stakey.inf, 364
stakey.fix, 364
stakey.bas, 364
startpointtype, 364
startpointtype.satisfy_bounds, 364
startpointtype.guess, 364
startpointtype.free, 364
startpointtype.constant, 364
streamtype, 364
streamtype.wrn, 365
streamtype.msg, 365
streamtype.log, 365
streamtype.err, 365
symmattype, 348
symmattype.sparse, 348
transpose, 342
transpose.yes, 342
transpose.no, 342
uplo, 342
uplo.up, 342
uplo.lo, 342
value, 365
value.max_str_len, 365
value.license_buffer_length, 365
variabletype, 365
variabletype.type_int, 365
variabletype.type_cont, 365
xmlwriteroutputtype, 362
xmlwriteroutputtype.row, 362
xmlwriteroutputtype.col, 362

Exceptions
Error, 267
MosekException, 267

Parameters
Double parameters, 279
dparam.ana_sol_infeas_tol, 279
dparam.basis_rel_tol_s, 279
dparam.basis_tol_s, 279
dparam.basis_tol_x, 279
dparam.check_convexity_rel_tol, 279
dparam.data_sym_mat_tol, 279
dparam.data_sym_mat_tol_huge, 280
dparam.data_sym_mat_tol_large, 280
dparam.data_tol_aij_huge, 280
dparam.data_tol_aij_large, 280
dparam.data_tol_bound_inf, 280
dparam.data_tol_bound_wrn, 280
dparam.data_tol_c_huge, 281
dparam.data_tol_cj_large, 281
dparam.data_tol_qij, 281

440

dparam.data_tol_x, 281
dparam.intpnt_co_tol_dfeas, 281
dparam.intpnt_co_tol_infeas, 281
dparam.intpnt_co_tol_mu_red, 282
dparam.intpnt_co_tol_near_rel, 282
dparam.intpnt_co_tol_pfeas, 282
dparam.intpnt_co_tol_rel_gap, 282
dparam.intpnt_qo_tol_dfeas, 282
dparam.intpnt_qo_tol_infeas, 283
dparam.intpnt_qo_tol_mu_red, 283
dparam.intpnt_qo_tol_near_rel, 283
dparam.intpnt_qo_tol_pfeas, 283
dparam.intpnt_qo_tol_rel_gap, 283
dparam.intpnt_tol_dfeas, 283
dparam.intpnt_tol_dsafe, 284
dparam.intpnt_tol_infeas, 284
dparam.intpnt_tol_mu_red, 284
dparam.intpnt_tol_path, 284
dparam.intpnt_tol_pfeas, 284
dparam.intpnt_tol_psafe, 284
dparam.intpnt_tol_rel_gap, 285
dparam.intpnt_tol_rel_step, 285
dparam.intpnt_tol_step_size, 285
dparam.lower_obj_cut, 285
dparam.lower_obj_cut_finite_trh, 285
dparam.mio_max_time, 286
dparam.mio_rel_gap_const, 286
dparam.mio_tol_abs_gap, 286
dparam.mio_tol_abs_relax_int, 286
dparam.mio_tol_feas, 286
dparam.mio_tol_rel_dual_bound_improvement,

286
dparam.mio_tol_rel_gap, 287
dparam.optimizer_max_time, 287
dparam.presolve_tol_abs_lindep, 287
dparam.presolve_tol_aij, 287
dparam.presolve_tol_rel_lindep, 287
dparam.presolve_tol_s, 287
dparam.presolve_tol_x, 287
dparam.qcqo_reformulate_rel_drop_tol, 288
dparam.semidefinite_tol_approx, 288
dparam.sim_lu_tol_rel_piv, 288
dparam.simplex_abs_tol_piv, 288
dparam.upper_obj_cut, 288
dparam.upper_obj_cut_finite_trh, 288
Integer parameters, 289
iparam.ana_sol_basis, 289
iparam.ana_sol_print_violated, 289
iparam.auto_sort_a_before_opt, 289
iparam.auto_update_sol_info, 289
iparam.basis_solve_use_plus_one, 289
iparam.bi_clean_optimizer, 290
iparam.bi_ignore_max_iter, 290
iparam.bi_ignore_num_error, 290
iparam.bi_max_iterations, 290
iparam.cache_license, 290
iparam.check_convexity, 291
iparam.compress_statfile, 291

iparam.infeas_generic_names, 291
iparam.infeas_prefer_primal, 291
iparam.infeas_report_auto, 291
iparam.infeas_report_level, 291
iparam.intpnt_basis, 292
iparam.intpnt_diff_step, 292
iparam.intpnt_hotstart, 292
iparam.intpnt_max_iterations, 292
iparam.intpnt_max_num_cor, 292
iparam.intpnt_max_num_refinement_steps, 292
iparam.intpnt_multi_thread, 293
iparam.intpnt_off_col_trh, 293
iparam.intpnt_order_gp_num_seeds, 293
iparam.intpnt_order_method, 293
iparam.intpnt_purify, 293
iparam.intpnt_regularization_use, 293
iparam.intpnt_scaling, 294
iparam.intpnt_solve_form, 294
iparam.intpnt_starting_point, 294
iparam.license_debug, 294
iparam.license_pause_time, 294
iparam.license_suppress_expire_wrns, 294
iparam.license_trh_expiry_wrn, 295
iparam.license_wait, 295
iparam.log, 295
iparam.log_ana_pro, 295
iparam.log_bi, 295
iparam.log_bi_freq, 296
iparam.log_check_convexity, 296
iparam.log_cut_second_opt, 296
iparam.log_expand, 296
iparam.log_feas_repair, 296
iparam.log_file, 296
iparam.log_include_summary, 297
iparam.log_infeas_ana, 297
iparam.log_intpnt, 297
iparam.log_local_info, 297
iparam.log_mio, 297
iparam.log_mio_freq, 297
iparam.log_order, 298
iparam.log_presolve, 298
iparam.log_response, 298
iparam.log_sensitivity, 298
iparam.log_sensitivity_opt, 298
iparam.log_sim, 299
iparam.log_sim_freq, 299
iparam.log_sim_minor, 299
iparam.log_storage, 299
iparam.max_num_warnings, 299
iparam.mio_branch_dir, 299
iparam.mio_conic_outer_approximation, 300
iparam.mio_cut_clique, 300
iparam.mio_cut_cmir, 300
iparam.mio_cut_gmi, 300
iparam.mio_cut_implied_bound, 300
iparam.mio_cut_knapsack_cover, 300
iparam.mio_cut_selection_level, 300
iparam.mio_feaspump_level, 301

441

iparam.mio_heuristic_level, 301
iparam.mio_max_num_branches, 301
iparam.mio_max_num_relaxs, 301
iparam.mio_max_num_root_cut_rounds, 302
iparam.mio_max_num_solutions, 302
iparam.mio_mode, 302
iparam.mio_node_optimizer, 302
iparam.mio_node_selection, 302
iparam.mio_perspective_reformulate, 302
iparam.mio_probing_level, 303
iparam.mio_propagate_objective_constraint,

303
iparam.mio_rins_max_nodes, 303
iparam.mio_root_optimizer, 303
iparam.mio_root_repeat_presolve_level, 303
iparam.mio_seed, 304
iparam.mio_vb_detection_level, 304
iparam.mt_spincount, 304
iparam.num_threads, 304
iparam.opf_write_header, 304
iparam.opf_write_hints, 305
iparam.opf_write_line_length, 305
iparam.opf_write_parameters, 305
iparam.opf_write_problem, 305
iparam.opf_write_sol_bas, 305
iparam.opf_write_sol_itg, 305
iparam.opf_write_sol_itr, 305
iparam.opf_write_solutions, 306
iparam.optimizer, 306
iparam.param_read_case_name, 306
iparam.param_read_ign_error, 306
iparam.presolve_eliminator_max_fill, 306
iparam.presolve_eliminator_max_num_tries,

306
iparam.presolve_level, 307
iparam.presolve_lindep_abs_work_trh, 307
iparam.presolve_lindep_rel_work_trh, 307
iparam.presolve_lindep_use, 307
iparam.presolve_max_num_pass, 307
iparam.presolve_max_num_reductions, 307
iparam.presolve_use, 308
iparam.primal_repair_optimizer, 308
iparam.ptf_write_transform, 308
iparam.read_debug, 308
iparam.read_keep_free_con, 308
iparam.read_lp_drop_new_vars_in_bou, 309
iparam.read_lp_quoted_names, 309
iparam.read_mps_format, 309
iparam.read_mps_width, 309
iparam.read_task_ignore_param, 309
iparam.remove_unused_solutions, 309
iparam.sensitivity_all, 310
iparam.sensitivity_optimizer, 310
iparam.sensitivity_type, 310
iparam.sim_basis_factor_use, 310
iparam.sim_degen, 310
iparam.sim_dual_crash, 310
iparam.sim_dual_phaseone_method, 311

iparam.sim_dual_restrict_selection, 311
iparam.sim_dual_selection, 311
iparam.sim_exploit_dupvec, 311
iparam.sim_hotstart, 311
iparam.sim_hotstart_lu, 311
iparam.sim_max_iterations, 312
iparam.sim_max_num_setbacks, 312
iparam.sim_non_singular, 312
iparam.sim_primal_crash, 312
iparam.sim_primal_phaseone_method, 312
iparam.sim_primal_restrict_selection, 312
iparam.sim_primal_selection, 313
iparam.sim_refactor_freq, 313
iparam.sim_reformulation, 313
iparam.sim_save_lu, 313
iparam.sim_scaling, 313
iparam.sim_scaling_method, 313
iparam.sim_seed, 314
iparam.sim_solve_form, 314
iparam.sim_stability_priority, 314
iparam.sim_switch_optimizer, 314
iparam.sol_filter_keep_basic, 314
iparam.sol_filter_keep_ranged, 314
iparam.sol_read_name_width, 315
iparam.sol_read_width, 315
iparam.solution_callback, 315
iparam.timing_level, 315
iparam.write_bas_constraints, 315
iparam.write_bas_head, 315
iparam.write_bas_variables, 316
iparam.write_compression, 316
iparam.write_data_param, 316
iparam.write_free_con, 316
iparam.write_generic_names, 316
iparam.write_generic_names_io, 316
iparam.write_ignore_incompatible_items, 316
iparam.write_int_constraints, 317
iparam.write_int_head, 317
iparam.write_int_variables, 317
iparam.write_lp_full_obj, 317
iparam.write_lp_line_width, 317
iparam.write_lp_quoted_names, 317
iparam.write_lp_strict_format, 318
iparam.write_lp_terms_per_line, 318
iparam.write_mps_format, 318
iparam.write_mps_int, 318
iparam.write_precision, 318
iparam.write_sol_barvariables, 318
iparam.write_sol_constraints, 319
iparam.write_sol_head, 319
iparam.write_sol_ignore_invalid_names, 319
iparam.write_sol_variables, 319
iparam.write_task_inc_sol, 319
iparam.write_xml_mode, 319
String parameters, 320
sparam.bas_sol_file_name, 320
sparam.data_file_name, 320
sparam.debug_file_name, 320

442

sparam.int_sol_file_name, 320
sparam.itr_sol_file_name, 320
sparam.mio_debug_string, 320
sparam.param_comment_sign, 320
sparam.param_read_file_name, 321
sparam.param_write_file_name, 321
sparam.read_mps_bou_name, 321
sparam.read_mps_obj_name, 321
sparam.read_mps_ran_name, 321
sparam.read_mps_rhs_name, 321
sparam.remote_access_token, 321
sparam.sensitivity_file_name, 322
sparam.sensitivity_res_file_name, 322
sparam.sol_filter_xc_low, 322
sparam.sol_filter_xc_upr, 322
sparam.sol_filter_xx_low, 322
sparam.sol_filter_xx_upr, 322
sparam.stat_file_name, 322
sparam.stat_key, 323
sparam.stat_name, 323
sparam.write_lp_gen_var_name, 323

Response codes
Termination, 323
rescode.ok, 323
rescode.trm_internal, 324
rescode.trm_internal_stop, 324
rescode.trm_max_iterations, 323
rescode.trm_max_num_setbacks, 324
rescode.trm_max_time, 323
rescode.trm_mio_num_branches, 323
rescode.trm_mio_num_relaxs, 323
rescode.trm_num_max_num_int_solutions, 323
rescode.trm_numerical_problem, 324
rescode.trm_objective_range, 323
rescode.trm_stall, 324
rescode.trm_user_callback, 324
Warnings, 324
rescode.wrn_ana_almost_int_bounds, 326
rescode.wrn_ana_c_zero, 326
rescode.wrn_ana_close_bounds, 326
rescode.wrn_ana_empty_cols, 326
rescode.wrn_ana_large_bounds, 326
rescode.wrn_dropped_nz_qobj, 325
rescode.wrn_duplicate_barvariable_names,

326
rescode.wrn_duplicate_cone_names, 326
rescode.wrn_duplicate_constraint_names, 326
rescode.wrn_duplicate_variable_names, 326
rescode.wrn_eliminator_space, 326
rescode.wrn_empty_name, 325
rescode.wrn_exp_cones_with_variables_fixed_at_zero,

326
rescode.wrn_ignore_integer, 325
rescode.wrn_incomplete_linear_dependency_check,

325
rescode.wrn_large_aij, 324
rescode.wrn_large_bound, 324

rescode.wrn_large_cj, 324
rescode.wrn_large_con_fx, 324
rescode.wrn_large_lo_bound, 324
rescode.wrn_large_up_bound, 324
rescode.wrn_license_expire, 325
rescode.wrn_license_feature_expire, 325
rescode.wrn_license_server, 325
rescode.wrn_lp_drop_variable, 325
rescode.wrn_lp_old_quad_format, 324
rescode.wrn_mio_infeasible_final, 325
rescode.wrn_mps_split_bou_vector, 324
rescode.wrn_mps_split_ran_vector, 324
rescode.wrn_mps_split_rhs_vector, 324
rescode.wrn_name_max_len, 324
rescode.wrn_no_dualizer, 326
rescode.wrn_no_global_optimizer, 325
rescode.wrn_nz_in_upr_tri, 325
rescode.wrn_open_param_file, 324
rescode.wrn_param_ignored_cmio, 325
rescode.wrn_param_name_dou, 325
rescode.wrn_param_name_int, 325
rescode.wrn_param_name_str, 325
rescode.wrn_param_str_value, 325
rescode.wrn_pow_cones_with_root_fixed_at_zero,

326
rescode.wrn_presolve_outofspace, 326
rescode.wrn_quad_cones_with_root_fixed_at_zero,

326
rescode.wrn_rquad_cones_with_root_fixed_at_zero,

326
rescode.wrn_sol_file_ignored_con, 325
rescode.wrn_sol_file_ignored_var, 325
rescode.wrn_sol_filter, 325
rescode.wrn_spar_max_len, 324
rescode.wrn_sym_mat_large, 326
rescode.wrn_too_few_basis_vars, 325
rescode.wrn_too_many_basis_vars, 325
rescode.wrn_undef_sol_file_name, 325
rescode.wrn_using_generic_names, 325
rescode.wrn_write_changed_names, 326
rescode.wrn_write_discarded_cfix, 326
rescode.wrn_zero_aij, 324
rescode.wrn_zeros_in_sparse_col, 325
rescode.wrn_zeros_in_sparse_row, 325
Errors, 327
rescode.err_ad_invalid_codelist, 338
rescode.err_api_array_too_small, 337
rescode.err_api_cb_connect, 337
rescode.err_api_fatal_error, 337
rescode.err_api_internal, 337
rescode.err_appending_too_big_cone, 334
rescode.err_arg_is_too_large, 332
rescode.err_arg_is_too_small, 331
rescode.err_argument_dimension, 331
rescode.err_argument_is_too_large, 339
rescode.err_argument_lenneq, 331
rescode.err_argument_perm_array, 334
rescode.err_argument_type, 331

443

rescode.err_bar_var_dim, 338
rescode.err_basis, 333
rescode.err_basis_factor, 336
rescode.err_basis_singular, 336
rescode.err_blank_name, 328
rescode.err_cbf_duplicate_acoord, 340
rescode.err_cbf_duplicate_bcoord, 340
rescode.err_cbf_duplicate_con, 339
rescode.err_cbf_duplicate_int, 340
rescode.err_cbf_duplicate_obj, 339
rescode.err_cbf_duplicate_objacoord, 340
rescode.err_cbf_duplicate_pow_cones, 340
rescode.err_cbf_duplicate_pow_star_cones,

340
rescode.err_cbf_duplicate_psdvar, 340
rescode.err_cbf_duplicate_var, 339
rescode.err_cbf_invalid_con_type, 340
rescode.err_cbf_invalid_dimension_of_cones,

340
rescode.err_cbf_invalid_domain_dimension,

340
rescode.err_cbf_invalid_exp_dimension, 340
rescode.err_cbf_invalid_int_index, 340
rescode.err_cbf_invalid_number_of_cones,

340
rescode.err_cbf_invalid_power, 340
rescode.err_cbf_invalid_power_cone_index,

340
rescode.err_cbf_invalid_power_star_cone_index,

340
rescode.err_cbf_invalid_psdvar_dimension,

340
rescode.err_cbf_invalid_var_type, 340
rescode.err_cbf_no_variables, 339
rescode.err_cbf_no_version_specified, 339
rescode.err_cbf_obj_sense, 339
rescode.err_cbf_parse, 339
rescode.err_cbf_power_cone_is_too_long, 340
rescode.err_cbf_power_cone_mismatch, 340
rescode.err_cbf_power_star_cone_mismatch,

340
rescode.err_cbf_syntax, 339
rescode.err_cbf_too_few_constraints, 340
rescode.err_cbf_too_few_ints, 340
rescode.err_cbf_too_few_psdvar, 340
rescode.err_cbf_too_few_variables, 340
rescode.err_cbf_too_many_constraints, 339
rescode.err_cbf_too_many_ints, 340
rescode.err_cbf_too_many_variables, 339
rescode.err_cbf_unhandled_power_cone_type,

340
rescode.err_cbf_unhandled_power_star_cone_type,

340
rescode.err_cbf_unsupported, 340
rescode.err_con_q_not_nsd, 334
rescode.err_con_q_not_psd, 333
rescode.err_cone_index, 334
rescode.err_cone_overlap, 334

rescode.err_cone_overlap_append, 334
rescode.err_cone_parameter, 334
rescode.err_cone_rep_var, 334
rescode.err_cone_size, 334
rescode.err_cone_type, 334
rescode.err_cone_type_str, 334
rescode.err_data_file_ext, 328
rescode.err_dup_name, 328
rescode.err_duplicate_aij, 334
rescode.err_duplicate_barvariable_names,

338
rescode.err_duplicate_cone_names, 338
rescode.err_duplicate_constraint_names, 338
rescode.err_duplicate_variable_names, 338
rescode.err_end_of_file, 328
rescode.err_factor, 336
rescode.err_feasrepair_cannot_relax, 336
rescode.err_feasrepair_inconsistent_bound,

336
rescode.err_feasrepair_solving_relaxed, 336
rescode.err_file_license, 327
rescode.err_file_open, 328
rescode.err_file_read, 328
rescode.err_file_write, 328
rescode.err_final_solution, 336
rescode.err_first, 336
rescode.err_firsti, 333
rescode.err_firstj, 333
rescode.err_fixed_bound_values, 335
rescode.err_flexlm, 327
rescode.err_format_string, 328
rescode.err_global_inv_conic_problem, 336
rescode.err_huge_aij, 334
rescode.err_huge_c, 334
rescode.err_identical_tasks, 338
rescode.err_in_argument, 331
rescode.err_index, 332
rescode.err_index_arr_is_too_large, 331
rescode.err_index_arr_is_too_small, 331
rescode.err_index_is_too_large, 331
rescode.err_index_is_too_small, 331
rescode.err_inf_dou_index, 331
rescode.err_inf_dou_name, 332
rescode.err_inf_int_index, 331
rescode.err_inf_int_name, 332
rescode.err_inf_lint_index, 331
rescode.err_inf_lint_name, 332
rescode.err_inf_type, 332
rescode.err_infeas_undefined, 338
rescode.err_infinite_bound, 334
rescode.err_int64_to_int32_cast, 338
rescode.err_internal, 337
rescode.err_internal_test_failed, 338
rescode.err_inv_aptre, 332
rescode.err_inv_bk, 332
rescode.err_inv_bkc, 332
rescode.err_inv_bkx, 332
rescode.err_inv_cone_type, 333

444

rescode.err_inv_cone_type_str, 333
rescode.err_inv_marki, 337
rescode.err_inv_markj, 337
rescode.err_inv_name_item, 333
rescode.err_inv_numi, 337
rescode.err_inv_numj, 337
rescode.err_inv_optimizer, 336
rescode.err_inv_problem, 335
rescode.err_inv_qcon_subi, 335
rescode.err_inv_qcon_subj, 335
rescode.err_inv_qcon_subk, 335
rescode.err_inv_qcon_val, 335
rescode.err_inv_qobj_subi, 335
rescode.err_inv_qobj_subj, 335
rescode.err_inv_qobj_val, 335
rescode.err_inv_sk, 333
rescode.err_inv_sk_str, 333
rescode.err_inv_skc, 333
rescode.err_inv_skn, 333
rescode.err_inv_skx, 333
rescode.err_inv_var_type, 332
rescode.err_invalid_aij, 335
rescode.err_invalid_ampl_stub, 338
rescode.err_invalid_barvar_name, 329
rescode.err_invalid_compression, 336
rescode.err_invalid_con_name, 329
rescode.err_invalid_cone_name, 329
rescode.err_invalid_file_format_for_cfix,

338
rescode.err_invalid_file_format_for_cones,

338
rescode.err_invalid_file_format_for_free_constraints,

338
rescode.err_invalid_file_format_for_nonlinear,

338
rescode.err_invalid_file_format_for_ranged_constraints,

338
rescode.err_invalid_file_format_for_sym_mat,

338
rescode.err_invalid_file_name, 328
rescode.err_invalid_format_type, 333
rescode.err_invalid_idx, 332
rescode.err_invalid_iomode, 336
rescode.err_invalid_max_num, 332
rescode.err_invalid_name_in_sol_file, 330
rescode.err_invalid_obj_name, 328
rescode.err_invalid_objective_sense, 335
rescode.err_invalid_problem_type, 339
rescode.err_invalid_sol_file_name, 328
rescode.err_invalid_stream, 328
rescode.err_invalid_surplus, 333
rescode.err_invalid_sym_mat_dim, 338
rescode.err_invalid_task, 328
rescode.err_invalid_utf8, 337
rescode.err_invalid_var_name, 329
rescode.err_invalid_wchar, 337
rescode.err_invalid_whichsol, 332
rescode.err_json_data, 331

rescode.err_json_format, 331
rescode.err_json_missing_data, 331
rescode.err_json_number_overflow, 331
rescode.err_json_string, 331
rescode.err_json_syntax, 331
rescode.err_last, 336
rescode.err_lasti, 333
rescode.err_lastj, 333
rescode.err_lau_arg_k, 339
rescode.err_lau_arg_m, 339
rescode.err_lau_arg_n, 339
rescode.err_lau_arg_trans, 339
rescode.err_lau_arg_transa, 339
rescode.err_lau_arg_transb, 339
rescode.err_lau_arg_uplo, 339
rescode.err_lau_invalid_lower_triangular_matrix,

339
rescode.err_lau_invalid_sparse_symmetric_matrix,

339
rescode.err_lau_not_positive_definite, 339
rescode.err_lau_singular_matrix, 339
rescode.err_lau_unknown, 339
rescode.err_license, 327
rescode.err_license_cannot_allocate, 327
rescode.err_license_cannot_connect, 327
rescode.err_license_expired, 327
rescode.err_license_feature, 327
rescode.err_license_invalid_hostid, 327
rescode.err_license_max, 327
rescode.err_license_moseklm_daemon, 327
rescode.err_license_no_server_line, 327
rescode.err_license_no_server_support, 327
rescode.err_license_server, 327
rescode.err_license_server_version, 327
rescode.err_license_version, 327
rescode.err_link_file_dll, 328
rescode.err_living_tasks, 328
rescode.err_lower_bound_is_a_nan, 334
rescode.err_lp_dup_slack_name, 330
rescode.err_lp_empty, 330
rescode.err_lp_file_format, 330
rescode.err_lp_format, 330
rescode.err_lp_free_constraint, 330
rescode.err_lp_incompatible, 330
rescode.err_lp_invalid_con_name, 330
rescode.err_lp_invalid_var_name, 330
rescode.err_lp_write_conic_problem, 330
rescode.err_lp_write_geco_problem, 330
rescode.err_lu_max_num_tries, 337
rescode.err_max_len_is_too_small, 333
rescode.err_maxnumbarvar, 332
rescode.err_maxnumcon, 332
rescode.err_maxnumcone, 334
rescode.err_maxnumqnz, 332
rescode.err_maxnumvar, 332
rescode.err_mio_internal, 339
rescode.err_mio_invalid_node_optimizer, 341
rescode.err_mio_invalid_root_optimizer, 341

445

rescode.err_mio_no_optimizer, 336
rescode.err_missing_license_file, 327
rescode.err_mixed_conic_and_nl, 335
rescode.err_mps_cone_overlap, 329
rescode.err_mps_cone_repeat, 329
rescode.err_mps_cone_type, 329
rescode.err_mps_duplicate_q_element, 330
rescode.err_mps_file, 329
rescode.err_mps_inv_bound_key, 329
rescode.err_mps_inv_con_key, 329
rescode.err_mps_inv_field, 329
rescode.err_mps_inv_marker, 329
rescode.err_mps_inv_sec_name, 329
rescode.err_mps_inv_sec_order, 329
rescode.err_mps_invalid_obj_name, 330
rescode.err_mps_invalid_objsense, 330
rescode.err_mps_mul_con_name, 329
rescode.err_mps_mul_csec, 329
rescode.err_mps_mul_qobj, 329
rescode.err_mps_mul_qsec, 329
rescode.err_mps_no_objective, 329
rescode.err_mps_non_symmetric_q, 329
rescode.err_mps_null_con_name, 329
rescode.err_mps_null_var_name, 329
rescode.err_mps_splitted_var, 329
rescode.err_mps_tab_in_field2, 330
rescode.err_mps_tab_in_field3, 330
rescode.err_mps_tab_in_field5, 330
rescode.err_mps_undef_con_name, 329
rescode.err_mps_undef_var_name, 329
rescode.err_mul_a_element, 332
rescode.err_name_is_null, 336
rescode.err_name_max_len, 336
rescode.err_nan_in_blc, 335
rescode.err_nan_in_blx, 335
rescode.err_nan_in_buc, 335
rescode.err_nan_in_bux, 335
rescode.err_nan_in_c, 335
rescode.err_nan_in_double_data, 335
rescode.err_negative_append, 336
rescode.err_negative_surplus, 336
rescode.err_newer_dll, 328
rescode.err_no_bars_for_solution, 338
rescode.err_no_barx_for_solution, 338
rescode.err_no_basis_sol, 336
rescode.err_no_dual_for_itg_sol, 337
rescode.err_no_dual_infeas_cer, 336
rescode.err_no_init_env, 328
rescode.err_no_optimizer_var_type, 336
rescode.err_no_primal_infeas_cer, 336
rescode.err_no_snx_for_bas_sol, 337
rescode.err_no_solution_in_callback, 336
rescode.err_non_unique_array, 339
rescode.err_nonconvex, 333
rescode.err_nonlinear_equality, 333
rescode.err_nonlinear_ranged, 333
rescode.err_null_env, 328
rescode.err_null_pointer, 328

rescode.err_null_task, 328
rescode.err_num_arguments, 331
rescode.err_numconlim, 332
rescode.err_numvarlim, 332
rescode.err_obj_q_not_nsd, 334
rescode.err_obj_q_not_psd, 334
rescode.err_objective_range, 333
rescode.err_older_dll, 327
rescode.err_opf_format, 330
rescode.err_opf_new_variable, 330
rescode.err_opf_premature_eof, 330
rescode.err_optimizer_license, 327
rescode.err_overflow, 336
rescode.err_param_index, 331
rescode.err_param_is_too_large, 331
rescode.err_param_is_too_small, 331
rescode.err_param_name, 331
rescode.err_param_name_dou, 331
rescode.err_param_name_int, 331
rescode.err_param_name_str, 331
rescode.err_param_type, 331
rescode.err_param_value_str, 331
rescode.err_platform_not_licensed, 327
rescode.err_postsolve, 336
rescode.err_pro_item, 333
rescode.err_prob_license, 327
rescode.err_ptf_format, 330
rescode.err_qcon_subi_too_large, 335
rescode.err_qcon_subi_too_small, 335
rescode.err_qcon_upper_triangle, 335
rescode.err_qobj_upper_triangle, 335
rescode.err_read_format, 329
rescode.err_read_lp_missing_end_tag, 330
rescode.err_read_lp_nonexisting_name, 330
rescode.err_remove_cone_variable, 334
rescode.err_repair_invalid_problem, 336
rescode.err_repair_optimization_failed, 336
rescode.err_sen_bound_invalid_lo, 337
rescode.err_sen_bound_invalid_up, 337
rescode.err_sen_format, 337
rescode.err_sen_index_invalid, 337
rescode.err_sen_index_range, 337
rescode.err_sen_invalid_regexp, 337
rescode.err_sen_numerical, 337
rescode.err_sen_solution_status, 337
rescode.err_sen_undef_name, 337
rescode.err_sen_unhandled_problem_type, 337
rescode.err_server_connect, 341
rescode.err_server_problem_size, 341
rescode.err_server_protocol, 341
rescode.err_server_status, 341
rescode.err_server_token, 341
rescode.err_shape_is_too_large, 331
rescode.err_size_license, 327
rescode.err_size_license_con, 327
rescode.err_size_license_intvar, 327
rescode.err_size_license_numcores, 338
rescode.err_size_license_var, 327

446

rescode.err_slice_size, 336
rescode.err_sol_file_invalid_number, 334
rescode.err_solitem, 332
rescode.err_solver_probtype, 333
rescode.err_space, 328
rescode.err_space_leaking, 329
rescode.err_space_no_info, 329
rescode.err_sym_mat_duplicate, 338
rescode.err_sym_mat_huge, 335
rescode.err_sym_mat_invalid, 335
rescode.err_sym_mat_invalid_col_index, 338
rescode.err_sym_mat_invalid_row_index, 338
rescode.err_sym_mat_invalid_value, 338
rescode.err_sym_mat_not_lower_tringular,

338
rescode.err_task_incompatible, 337
rescode.err_task_invalid, 337
rescode.err_task_write, 337
rescode.err_thread_cond_init, 328
rescode.err_thread_create, 328
rescode.err_thread_mutex_init, 328
rescode.err_thread_mutex_lock, 328
rescode.err_thread_mutex_unlock, 328
rescode.err_toconic_constr_not_conic, 341
rescode.err_toconic_constr_q_not_psd, 341
rescode.err_toconic_constraint_fx, 341
rescode.err_toconic_constraint_ra, 341
rescode.err_toconic_objective_not_psd, 341
rescode.err_too_small_a_truncation_value,

335
rescode.err_too_small_max_num_nz, 332
rescode.err_too_small_maxnumanz, 332
rescode.err_unb_step_size, 337
rescode.err_undef_solution, 333
rescode.err_undefined_objective_sense, 335
rescode.err_unhandled_solution_status, 339
rescode.err_unknown, 328
rescode.err_upper_bound_is_a_nan, 334
rescode.err_upper_triangle, 339
rescode.err_whichitem_not_allowed, 332
rescode.err_whichsol, 332
rescode.err_write_lp_format, 330
rescode.err_write_lp_non_unique_name, 330
rescode.err_write_mps_invalid_name, 330
rescode.err_write_opf_invalid_var_name, 330
rescode.err_writing_file, 330
rescode.err_xml_invalid_problem_type, 338
rescode.err_y_is_undefined, 335

447

Index

A
analysis

infeasibility, 162
attaching

streams, 14

B
basic

solution, 59
basis identification, 86, 150
basis type

sensitivity analysis, 169
BLAS, 92
bound

constraint, 11, 135, 138
linear optimization, 11
variable, 11, 135, 138

C
callback, 68
cardinality constraints, 51, 125
CBF format, 394
ceo1

example, 30
certificate, 60

dual, 137, 141
primal, 136, 140

Cholesky factorization, 94, 115
column ordered

matrix format, 177
complementarity, 136, 140
concurrent optimizer, 131
cone

dual, 139
dual exponential, 29
exponential, 29
power, 26
quadratic, 23
rotated quadratic, 23
semidefinite, 32

conic exponential optimization, 29
conic optimization, 23, 26, 29, 138

interior-point, 153
termination criteria, 155

conic problem
example, 24, 27, 30

conic quadratic optimization, 23
Conic quadratic reformulation, 97
constraint

bound, 11, 135, 138
linear optimization, 11
matrix, 11, 135, 138
quadratic, 143

correlation matrix, 106
covariance matrix, see correlation matrix
cqo1

example, 24
cut, 158

D
defining

objective, 14
determinism, 102
dual

certificate, 137, 141
cone, 139
feasible, 136
infeasible, 136, 137, 141
problem, 136, 139, 142
solution, 61
variable, 136, 139

duality
conic, 139
linear, 136
semidefinite, 142

dualizer, 146

E
efficient frontier, 112
eliminator, 146
entropy, 49

relative, 49
error

optimization, 59
errors, 62
example

ceo1, 30
conic problem, 24, 27, 30
cqo1, 24
lo1, 14
pow1, 27
qo1, 17
quadratic objective, 17

exceptions, 62
exponential, 49
exponential cone, 29

F
factor model, 115

448

feasible
dual, 136
primal, 135, 148, 154
problem, 135

format, 65
CBF, 394
json, 412
LP, 368
MPS, 373
OPF, 385
PTF, 408
sol, 420
task, 412

full
vector format, 176

G
geometric mean, 48
geometric programming, 42
GP, 42

H
hot-start, 152

I
I/O, 65
infeasibility, 60, 136, 140

analysis, 162
linear optimization, 136
repair, 162
semidefinite, 142

infeasible
dual, 136, 137, 141
primal, 135, 136, 140, 148, 155
problem, 135, 136, 142

information item, 67, 68
installation, 5

Conda, 6
PIP, 6
requirements, 5
setup script, 7
troubleshooting, 5

integer
optimizer, 157
solution, 59
variable, 38

integer feasible
solution, 159

integer optimization, 38, 157
cut, 158
initial solution, 41
objective bound, 158
optimality gap, 160
parameter, 39
relaxation, 158
termination criteria, 159
tolerance, 159

integer optimizer

logging, 160
interior-point

conic optimization, 153
linear optimization, 147
logging, 151, 157
optimizer, 147, 153
solution, 59
termination criteria, 149, 155

J
json format, 412

L
LAPACK, 92
license, 103
linear

objective, 14
linear constraint matrix, 11
linear dependency, 146
linear optimization, 11, 135

bound, 11
constraint, 11
infeasibility, 136
interior-point, 147
objective, 11
simplex, 152
termination criteria, 149, 152
variable, 11

linearity interval, 169
lo1

example, 14
log-sum-exp, 50, 129
logarithm, 49
logging, 64

integer optimizer, 160
interior-point, 151, 157
optimizer, 151, 153, 157
simplex, 153

logistic regression, 128
LP format, 368

M
machine learning

logistic regression, 128
market impact cost, 116
Markowitz

model, 105
Markowitz model, 106

portfolio optimization, 105
matrix

constraint, 11, 135, 138
semidefinite, 32
symmetric, 32

matrix format
column ordered, 177
row ordered, 177
triplets, 177

memory management, 101

449

MIP, see integer optimization
mixed-integer, see integer
mixed-integer optimization, see integer optimiza-

tion
model

Markowitz, 105
portfolio optimization, 105

modeling
design, 8

monomial, 48
MPS format, 373

free, 384

N
near-optimal

solution, 159
norm

1-norm, 47
2-norm, 47
p-norm, 48

numerical issues
presolve, 146
scaling, 146
simplex, 152

numpy, 102

O
objective, 135, 138

defining, 14
linear, 14
linear optimization, 11

objective bound, 158
OPF format, 385
optimal

solution, 60
optimality gap, 160
optimization

conic, 138
conic quadratic, 138
error, 59
linear, 11, 135
semidefinite, 142

optimizer
concurrent, 131
determinism, 102
integer, 157
interior-point, 147, 153
interrupt, 68
logging, 151, 153, 157
parallel, 56
selection, 146, 147
simplex, 152

P
parallel optimization, 56, 131
parallelization, 102
parameter, 66

integer optimization, 39

simplex, 152
Pareto optimality, 106
portfolio optimization

cardinality constraints, 51, 125
efficient frontier, 112
factor model, 115
market impact cost, 116
Markowitz model, 106
model, 105
Pareto optimality, 106
slippage cost, 116
transaction cost, 121

positive semidefinite, 17
pow1

example, 27
power, 48
power cone, 26
power cone optimization, 26
presolve, 145

eliminator, 146
linear dependency check, 146
numerical issues, 146

primal
certificate, 136, 140
feasible, 135, 148, 154
infeasible, 135, 136, 140, 148, 155
problem, 136, 139, 142
solution, 61, 135

primal-dual
problem, 147, 154
solution, 136

problem
dual, 136, 139, 142
feasible, 135
infeasible, 135, 136, 142
load, 65
primal, 136, 139, 142
primal-dual, 147, 154
save, 65
status, 59
unbounded, 137, 141

PTF format, 408

Q
qo1

example, 17
quadratic

constraint, 143
quadratic cone, 23
quadratic objective

example, 17
quadratic optimization, 143
quality

solution, 160

R
regression

logistic, 128

450

relaxation, 158
repair

infeasibility, 162
response code, 62
rotated quadratic cone, 23
row ordered

matrix format, 177

S
scaling, 146
semicontinuous variable, 50
semidefinite

cone, 32
infeasibility, 142
matrix, 32
variable, 32

semidefinite optimization, 32, 142
sensitivity analysis, 167

basis type, 169
setup script, 7
shadow price, 169
simplex

linear optimization, 152
logging, 153
numerical issues, 152
optimizer, 152
parameter, 152
termination criteria, 152

slippage cost, 116
softplus, 50
sol format, 420
solution

basic, 59
dual, 61
file format, 420
integer, 59
integer feasible, 159
interior-point, 59
near-optimal, 159
optimal, 60
primal, 61, 135
primal-dual, 136
quality, 160
retrieve, 59
status, 14, 60

solving linear system, 90
sparse

vector format, 176
sparse vector, 176
status

problem, 59
solution, 14, 60

streams
attaching, 14

symmetric
matrix, 32

T
task format, 412
termination, 59
termination criteria, 68

conic optimization, 155
integer optimization, 159
interior-point, 149, 155
linear optimization, 149, 152
simplex, 152
tolerance, 150, 156, 159

thread, 102
time limit, 68
tolerance

integer optimization, 159
termination criteria, 150, 156, 159

transaction cost, 121
triplets

matrix format, 177
troubleshooting

installation, 5

U
unbounded

problem, 137, 141
user callback, see callback

V
variable, 135, 138

bound, 11, 135, 138
dual, 136, 139
integer, 38
linear optimization, 11
semicontinuous, 50
semidefinite, 32

vector format
full, 176
sparse, 176

451

	Introduction
	Why the Optimizer API for Python?

	Contact Information
	License Agreement
	Installation
	Anaconda
	PIP and Wheels
	PyPy
	Manual installation
	Testing the Installation
	Troubleshooting

	Design Overview
	Modeling
	“Hello World!” in MOSEK

	Optimization Tutorials
	Linear Optimization
	Quadratic Optimization
	Conic Quadratic Optimization
	Power Cone Optimization
	Conic Exponential Optimization
	Semidefinite Optimization
	Integer Optimization
	Geometric Programming
	Library of basic functions
	Problem Modification and Reoptimization
	Parallel optimization

	Solver Interaction Tutorials
	Accessing the solution
	Errors and exceptions
	Input/Output
	Setting solver parameters
	Retrieving information items
	Progress and data callback
	MOSEK OptServer

	Debugging Tutorials
	Understanding optimizer log
	Addressing numerical issues
	Debugging infeasibility
	Python Console

	Advanced Numerical Tutorials
	Solving Linear Systems Involving the Basis Matrix
	Calling BLAS/LAPACK Routines from MOSEK
	Computing a Sparse Cholesky Factorization
	Converting a quadratically constrained problem to conic form

	Technical guidelines
	Memory management and garbage collection
	Names
	Multithreading
	Efficiency
	The license system
	Deployment

	Case Studies
	Portfolio Optimization
	Logistic regression
	Concurrent optimizer

	Problem Formulation and Solutions
	Linear Optimization
	Conic Optimization
	Semidefinite Optimization
	Quadratic and Quadratically Constrained Optimization

	Optimizers
	Presolve
	Linear Optimization
	Conic Optimization - Interior-point optimizer
	The Optimizer for Mixed-integer Problems

	Additional features
	Problem Analyzer
	Automatic Repair of Infeasible Problems
	Sensitivity Analysis

	API Reference
	API Conventions
	Functions grouped by topic
	Class Env
	Class Task
	Exceptions
	Parameters grouped by topic
	Parameters (alphabetical list sorted by type)
	Response codes
	Enumerations
	Function Types
	Nonlinear interfaces (obsolete)

	Supported File Formats
	The LP File Format
	The MPS File Format
	The OPF Format
	The CBF Format
	The PTF Format
	The Task Format
	The JSON Format
	The Solution File Format

	List of examples
	Interface changes
	Backwards compatibility
	Functions
	Parameters
	Constants
	Response Codes

	Bibliography
	Symbol Index
	Index

