mosek

MOSEK Fusion API for .NET
Release 9.2.41

MOSEK ApS

21 April 2021

Contents

Introduction
1.1 Why the Fusion API for NET? e

Contact Information

License Agreement

Installation

4.1 NET Core oo e e e
4.2 Manual installation L o
4.3 Testing the Installation and Compiling Examples.
4.4 Other platforms: .NET Core, Mono

Design Overview

Conic Modeling

6.1 Themodel
6.2 Variables
6.3 Linear algebrao
6.4 Constraints and objectiveo e
6.5 Matrices e e e e
6.6 Parameters e e e e e e e e e
6.7 Stacking and views e e e
6.8 Vectorization
6.9 Reoptimization L e

Optimization Tutorials

7.1 Linear Optimization
7.2 Conic Quadratic Optimization L
7.3 Power Cone Optimization i it e e e e e
7.4 Conic Exponential Optimization
7.5 Semidefinite Optimization
7.6 Integer Optimization e
7.7 Geometric Programming L Lo
7.8 Library of basic functions L
7.9 Model Parametrization and Reoptimization
7.10 Problem Modification and Reoptimization
Solver Interaction Tutorials

8.1 Accessing the solution L e
8.2 Errors and exceptions Lo L e e
8.3 Imput/Output e
8.4 Setting solver parameters oL Lo
8.5 Retrieving information items L. oL
8.6 Stopping the solver e
8.7 Progress and data callback o
8.8 Optimizer API Task e

11
11
12
12
13
14
15
15
16
17

18
18
20
23
26
28
33
36
38
43
46

8.9 MOSEK OptServero it e e e 63
9 Debugging Tutorials 64
9.1 Understanding optimizer log L L e 64
9.2 Addressing numerical iSsueso L L L oL e e 68
9.3 Debugging infeasibility L 70
9.4 Python Console e 74
10 Technical guidelines 77
10.1 Limitations o o e e e e e e 77
10.2 Memory management and garbage collection 0oL, T
10.3 Names o o e e e 78
10.4 Multithreading o . L oL e e 79
10.5 Efficiency o oL e e 79
10.6 The license system L e e e e 80
10.7 Deployment o L e e e 81
11 Case Studies 82
11.1 Portfolio Optimization 83
11.2 Primal Support-Vector Machine (SVM) o oL 94
11.3 2D Total Variation o e e e 97
11.4 Multiprocessor Scheduling L 103
11.5 Logistic regression L e e e 106
11.6 Inner and outer Lowner-John Ellipsoids 108
11.7 SUDOKU e 112
11.8 Travelling Salesman Problem (TSP) 116
11.9 Nearest Correlation Matrix Problem 0. 121
11.10 Semidefinite Relaxation of MIQCQO Problems 124
12 Problem Formulation and Solutions 128
12.1 Linear Optimization o .. o 0 i e e e 128
12.2 Conic Optimization e e 131
12.3 Semidefinite Optimization L 135
13 Optimizers 137
13.1 Presolve o e e e e e 137
13.2 Linear Optimization e 139
13.3 Conic Optimization - Interior-point optimizer 145
13.4 The Optimizer for Mixed-integer Problems 149
14 Fusion API Reference 154
14.1 Fusion API conventions e 154
14.2 Class list o e e 154
14.3 Parameters grouped by topic oL L L 234
14.4 Parameters (alphabetical list sorted by type) o oL 241
14.5 Enumerations L e e e e e e 267
14.6 Constants e e 269
14.7 Exceptions L e e e e e 290
14.8 Class LinAlg 0 e 295
15 Supported File Formats 299
15.1 The LP File Format e 300
15.2 The MPS File Format e 304
15.3 The OPF Format e 315
15.4 The CBF Format e e e e e e e e e 324
15.5 The PTF Format e e 338
15.6 The Task Format o . e 343
15.7 The JSON Format 343
15.8 The Solution File Format 350

ii

16 List of examples

17 Interface changes
17.1 Backwards compatibility L e
17.2 Parameters e e e e e e e e e

17.3 Constants
Bibliography
Symbol Index

Index

iii

353

355
355
356
357

358

359

362

Chapter 1

Introduction

The MOSEK Optimization Suite 9.2.41 is a powerful software package capable of solving large-scale
optimization problems of the following kind:

e linear,

e conic:

conic quadratic (also known as second-order cone),

involving the exponential cone,

involving the power cone,

semidefinite,
e convex quadratic and quadratically constrained,
e integer.

In order to obtain an overview of features in the MOSEK Optimization Suite consult the product
introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all rela-
tions are linear. The tremendous success of both applications and theory of linear optimization can be
ascribed to the following factors:

e The required data are simple, i.e. just matrices and vectors.

e Convexity is guaranteed since the problem is convex by construction.

e Linear functions are trivially differentiable.

e There exist very efficient algorithms and software for solving linear problems.
e Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the
advantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

Ax —b> 0.
In conic optimization this is replaced with a wider class of constraints

Az —-be K

where KC is a convexr cone. For example in 3 dimensions K may correspond to an ice cream cone. The
conic optimizer in MOSEK supports a number of different types of cones K, which allows a surprisingly
large number of nonlinear relations to be modeled, as described in the MOSEK Modeling Cookbook,
while preserving the nice algorithmic and theoretical properties of linear optimization.

https://docs.mosek.com/9.2/intro/index.html
https://docs.mosek.com/9.2/intro/index.html
https://docs.mosek.com/modeling-cookbook/index.html

1.1 Why the Fusion API for .NET?

Fusion is an object oriented API specifically designed to build conic optimization models in a simple and
expressive manner, using mainstream programming languages.

Fusion API

Python C++ Java .NET

With focus on usability and compactness, it helps the user focus on modeling instead of coding.

Typically a conic optimization model in Fusion can be developed in a fraction of the time compared
to using a low-level C API, but of course Fusion introduces a computational overhead compared to
customized C code. In most cases, however, the overhead is small compared to the overall solution
time. Moreover, parametrization makes it possible to construct a Fusion model once and then solve it
repeatedly for different inputs with almost no overhead.

We generally recommend that Fusion is used as a first step for building and verifying new models.
Often, the final Fusion implementation will be directly suited for production code, and otherwise it
readily provides a reference implementation for model verification. Fusion always yields readable and
easily portable code.

The Fusion API for .NET provides access to Conic Optimization, including;:

e Linear Optimization (LO)

Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)

e Power Cone Optimization

Conic Exponential Optimization (CEO)

Semidefinite Optimization (SDO)
e Mixed-Integer Optimization (MIO)

as well as to an auxiliary linear algebra library.

Convex Quadratic and Quadratically Constrained (QCQO) problems can be reformulated as Conic
Quadratic problems and subsequently solved using Fusion. This is the recommended approach, as
described in the MOSEK Modeling Cookbook and this whitepaper.

https://docs.mosek.com/modeling-cookbook/cqo.html#convex-quadratic-sets
https://docs.mosek.com/whitepapers/qmodel.pdf

Chapter 2

Contact

Information

Phone +45 7174 9373

Website mosek.com

Email
sales@mosek.com Sales, pricing, and licensing
support@mosek.com Technical support, questions and bug reports
info@mosek.com Everything else.

Mailing Address
MOSEK ApS

Fruebjergvej 3

Symbion Science Park, Box 16

2100 Copenhagen O

Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger

https://blog.mosek.com

Google Group | https://groups.google.com/forum /#!forum /mosek

Twitter https://twitter.com /mosektw
Linkedin https: //www.linkedin.com /company /mosek-aps
Youtube https://www.youtube.com /channel /UCvlyect EVLP31NXeD5mIbEw

In particular Twit

ter is used for news, updates and release announcements.

https://mosek.com/
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com
https://blog.mosek.com/
https://groups.google.com/forum/#!forum/mosek
https://twitter.com/mosektw
https://www.linkedin.com/company/mosek-aps
https://www.youtube.com/channel/UCvIyectEVLP31NXeD5mIbEw

Chapter 3

License Agreement

Before using the MOSEK software, please read the license agreement available in the distribution
at <MSKHOME>/mosek/9.2/mosek-eula.pdf or on the MOSEK website https://mosek.com /products
license-agreement.

MOSEK uses some third-party open-source libraries. Their license details follows.

zlib

MOSEK includes the zlib library obtained from the zlib website. The license agreement for zlib is
shown in Listing 3.1.

Listing 3.1: 2lib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu
fplib

MOSEK includes the floating point formatting library developed by David M. Gay obtained from
the netlib website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/**
*

(continues on next page)

https://mosek.com/products/license-agreement
https://mosek.com/products/license-agreement
http://zlib.org
http://www.netlib.org

(continued from previous page)

The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. 1IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

¥R X X X K K X X X X X X X ¥

***/

Zstandard

MOSEK includes the Zstandard library developed by Facebook obtained from github/zstd.

license agreement for Zstandard is shown in Listing 3.3.

Listing 3.3: Zstandard license.

The

BSD License
For Zstandard software
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name Facebook nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

https://github.com/facebook/zstd

Chapter 4

Installation

In this section we discuss how to install and setup the MOSEK Fusion API for .NET.

Important: Before running this MOSEK interface please make sure that you:

e Installed MOSEK correctly. Some operating systems require extra steps. See the Installation
guide for instructions and common troubleshooting tips.

e Set up a license. See the Licensing guide for instructions.

Compatibility

The Fusion API for .NET is compatible with the Microsoft .NET framework version 4.5 and later,
Mono v.1.2 and later, and .NET Core 2.0 and later.

4.1 .NET Core

The Fusion API for .NET can be installed as a cross-platform .NET Core package. The NuGet package
Mosek.9.2.41.nupkg is available for download from:

e our website https://mosek.com/downloads
e the NuGet repository https://www.nuget.org/packages/Mosek

Follow the instructions for your .NET Core toolchain to install the package from the repository.

4.2 Manual installation

Locating files in the MOSEK Optimization Suite

The relevant files of the Fusion API for .NET are organized as reported in Table 4.1.

Table 4.1: Relevant files for the Fusion API for .NET.

Relative Path Description Label

<MSKHOME>/mosek/9.2/tools/platform/<PLATFORM>/bin | Libraries <LIBDIR>

<MSKHOME>/mosek/9.2/tools/examples/fusion/dotnet Examples <EXDIR>

<MSKHOME>/mosek/9.2/tools/examples/fusion/data Additional data | <MISCDIR>
where

e <MSKHOME> is the folder in which the MOSEK Optimization Suite has been installed,

e <PLATFORM> is the actual platform among those supported by the MOSEK, i.e. win32x86,
win64x86.

https://docs.mosek.com/9.2/install/index.html
https://docs.mosek.com/9.2/install/index.html
https://docs.mosek.com/9.2/licensing/index.html
https://mosek.com/downloads
https://www.nuget.org/packages/Mosek/

Setting up paths

To compile a .NET program using MOSEK the correct path to mosekdotnet.dll must be provided.
For example, using the Microsoft .NET compiler this is done with the command line option

csc /r:"<LIBDIR>\mosekdotnet.dll" lol.cs

To run applications the system must be able to locate mosekdotnet.dll, either in the current direc-
tory or in the Global Assembly Cache.

4.3 Testing the Installation and Compiling Examples

This section describes how to verify that MOSEK has been installed correctly, and how to build and
execute the NET examples distributed with MOSEK.

Compiling and running from the command line

To compile an example, say 1lol, with the Microsoft .NET compiler, open a DOS box with paths for
Visual Studio set up (usually in the Start menu, the sub-menu for Visual Studio contains an entry that
starts a DOS box with everything set up).

To compile the example lol.cs distributed with MOSEK:

e Go to the examples directory <EXDIR>.

e To compile the code and produce an executable, type:

csc /r:"<LIBDIR>\mosekdotnet.dll" lol.cs ‘

or for Visual Basic:

’vbc /r:"<LIBDIR>\mosekdotnet.dll" lol.vb

e Copy mosekdotnet.dll into the directory where lol.exe was created, and run the program with:

lo1l

Compiling the examples using nmake

A makefile for use with nmake, named Makefile is available in <EXDIR>. To compile all examples
using this makefile use the command

make /f Makefile all

4.4 Other platforms: .NET Core, Mono

The library mosekdotnet.dll may be used from any .NET compatible language such as Visual Basic,
Microsoft C# or Microsoft Managed C++ and with .NET Core and Mono. Both the examples and
the library should also work with Mono on most 32-bit platforms. If the file mosekdotnet.dll is not
included in the MOSEK distribution for your platform, use mosekdotnet.dll included in the Windows
distribution.

Note that the library accesses methods in the native MOSEK library, which is considered unsafe
from a .NET point of view. This means that use of the library in certain restricted contexts is not
possible — building an ordinary application and running it from a local drive should not be a problem.

4.4.1 Mono

Mono is a free implementation if the .NET platform available at http://mono-project.com/. To use it
install MOSEK as described in the Installation Manual. Set the environment variable

http://mono-project.com/
https://docs.mosek.com/9.2/install/index.html

MONO_PATH

to point to mosekdotnet9_2.d11 for the 64-bit Mono. You should now be able to compile and run
the distributed .NET examples using Mono.

4.4.2 lronPython

It is possible to use the MOSEK .NET API interactively from .NET languages which implement a
command-line interpreter, for example IronPython, available at http://ironpython.net/. This can be
used to create and examine the problems and solutions from MOSEK more easily.

4.4.3 MOSEK and .NET Core

The MOSEK NuGet package Mosek.9.2.41.nupkg is a complete cross-platform .NET Core compatible
distribution that works on Windows, Linux and OS X. Assuming that the Mosek.9.2.41.nupkg file
has been downloaded in a directory local-nupkgs, modify the configuration file *.csproj to add the
following entry

<PropertyGroup>
<RestoreSources>$(RestoreSources) ;local-nupkgs</RestoreSources>
</PropertyGroup>

Now, add the dependency on MOSEK to the project:

dotnet add package Mosek

and the project using MOSEK API can be built:

dotnet build
dotnet run

Installation instructions for different .NET Core compatible environments may vary.

http://ironpython.net/

Chapter 5

Design Overview

Fusion is a result of many years of experience in conic optimization. It is a dedicated API for users
who want to enjoy a simpler experience interfacing with the solver. This applies to users who regularly
solve conic problems, and to new users who do not want to be too bothered with the technicalities of a
low-level optimizer. Fusion is designed for fast and clean prototyping of conic problems without suffering
excessive performance degradation.

Note that Fusion is an object-oriented framework for conic-optimization but it is not a general
purpose modeling language. The main design principles of Fusion are:

e Expressiveness: we try to make it nice! Despite not being a modeling language, Fusion yields
readable, easy to maintain code that closely resembles the mathematical formulation of the problem.

e Seamlessly multi-language : Fusion code can be ported across C+—+, Python, Java, .NET and
with only minimal adaptations to the syntax of each language.

e What you write is what MOSEK gets: A Fusion model is fed into the solver with (almost)
no additional transformations.

Expressiveness

Suppose you have a conic quadratic optimization problem like the efficient frontier in portfolio opti-
mization:

maximize pTx — oy
subject to eTz = w,
T
v 2 |G x|,
x> 0.

where p, G are input data and « is an input parameter whose value we want to change between many
optimizations. Its representation in Fusion is a direct translation of the mathematical model and could
look as follows:

Variable x = M.Variable(n);
Variable gamma = M.Variable();
Parameter alpha = M.Parameter();

M.Objective (ObjectiveSense.Maximize, Expr.Sub(Expr.Dot(mu, x), Expr.Mul(alpha, gamma)));
M.Constraint (Expr.Sub(Expr.Sum(x), w), Domain.EqualsTo(0.0));

M.Constraint (Expr.Vstack(gamma, Expr.Mul(G.Transpose(), x)), Domain.InQCone());
M.Constraint(x, Domain.GreaterThan(0.0));

Seamless multi-language API

Fusion can easily be ported across the five supported languages. All functionalities and naming
conventions remain the same in all of them. This has some advantages:

e Simplifies code sharing between developers working in different languages.
e Improves code reusability.

e Simplifies the transition from R&D to production (for instance from fast-prototyping languages
used in R&D to more efficient ones used for high performance).

Here is the same code snippet (creation of a variable in the model) in all languages supported by
Fusion. Careful code design can generate models with only the necessary syntactic differences between
implementations.

’auto x= M->variable("x", 3, Domain::greaterThan(0.0)); // C++
’x = M.variable('x', 3, Domain.greaterThan(0.0)) # Python
’Variable x = M.variable("x", 3, Domain.greaterThan(0.0)) // Java
’Variable x = M.Variable("x", 3, Domain.GreaterThan(0.0)) // C#

What You Write is What MOSEK Gets

Fusion is not a modeling language. Instead it clearly defines the formulation the user must adhere to
and only provides functionalities required for that formulation. An important upshot is that Fusion will
not modify the problem provided by the user, except for introducing auxiliary variables required to fit
the problem into the format of the low-level optimizer API. In other words, the problem that is actually
solved is as close as possible to what the user writes.

For example, suppose the user defined a conic constraint

x> \/(2.1‘2 — 113)2 + (4333)2.

Now the low-level API requires that all variables appearing in all conic constraints are different, and so
Fusion will have to replace the conic constraint with

1 0 0 I
0 2 -1 T2 =Y,
0 0 4 I3

Y1 > \/y3 + 3.

Note, however, that to use the optimizer API directly the user would have to apply the same transforma-
tion! A similar situation happens when the user defines a number of linear constraints, which have to be
arranged into a large linear constraint matrix A, and so on. So, in effect, the Fusion mechanism only au-
tomates operations that the user would have to carry out anyway (using pencil and paper, presumably).
Otherwise the optimizer model is a direct copy of the Fusion model.

The main benefits of this approach are:

e The user knows what problem is actually being solved.
e Dual information is readily available for all variables and constraints.
e Only the necessary overhead.

e Better control over numerical stability.

10

Chapter 6

Conic Modeling

6.1 The model

A model built using Fusion is always a conic optimization problem and it is convex by definition. These
problems can be succinctly characterized as

minimize Tz

subject to Az +be K (6.1)

where K is a product of the following basic types of cones:
e linear: R, Ry, {0},
quadratic: Q" = {zx € R" : x; > /a3 + - + 22},
rotated quadratic: Q" = {x € R™ : 2m1x9 > 23 + - + 22, 21,22 > 0},

e primal power cone: P&~ = {x € R™ : afay “ > /22 + -+ 22, x1,22 > 0}, or its dual,

e primal exponential: Kep = {x € R® : 21 > zyexp(z3/z2), x1,22 > 0}, or its dual,
o semidefinite:: ST = {X € R"*™ : X is symmmetric positive semidefinite}.

The main thing about a Fusion model is that it can be specified in a convenient way without explicitly
constructing the representation (6.1). Instead the user has access to variables which are used to construct
linear operators that appear in constraints. The cone types described above are the domains of those
constraints. A Fusion model can potentially contain many different building blocks of that kind. To
facilitate manipulations with a large number of variables Fusion defines various logical views of parts of
the model.

This section briefly summarizes the constructions and techniques available in Fusion. See Sec. 7 for a
basic tutorial and Sec. 11 for more advanced case studies. This section is only an introduction: detailed
specification of the methods and classes mentioned here can be found in the API reference.

A Fusion model is represented by the class Model and created by a simple construction

using (Model M = new Model())
{

The model object is the user’s interface to the optimization problem, used in particular for
e formulating the problem by defining variables, constraints and objective,
e solving the problem and retrieving the solution status and solutions,

e interacting with the solver: setting up parameters, registering for callbacks, performing I/O, ob-
taining detailed information from the optimizer etc.

e memory management.

Almost all elements of the model: variables, constraints and the model itself can be constructed with
or without names. If used, the names for each type of object must be unique. Choosing a good naming
convention can make the problem more readable when dumped to a file.

11

6.2 Variables

Continuous variables can be scalars, vectors or higher-dimensional arrays. The are added to the model
with the method Model. Variable which returns a representing object of type Vartzable. The shape of a
variable (number of dimensions and length in each dimension) has to be specified at creation. Optionally
a variable may be created in a restricted domain (by default variables are unbounded, that is in R). For
instance, to declare a variable z € R’} we could write

’ Variable x = M.Variable("x",n, Domain.GreaterThan(0.0));

A multi-dimensional variable is declared by specifying an array with all dimension sizes. Here is an
n X n variable:

’ Variable x = M.Variable(new int[]{n,n}, Domain.Unbounded()) ;

The specification of dimensions can also be part of the domain, as in this declaration of a symmetric
positive semidefinite variable of dimension n:

’ Variable v = M.Variable(Domain.InPSDCone(n)); ‘

Integer variables are specified with an additional domain modifier. To add an integer variable z €
[1,10] we write

’ Variable z = M.Variable("z", Domain.Integral (Domain.InRange(1.0,10.0))); ‘

The function Domain.Binary is a shorthand for binary variables often appearing in combinatorial
problems:

’ Variable y = M.Variable("y", Domain.Binary()); ‘

Integrality requirement can be switched on and off using the methods Variable.MakeInteger and
Variable.MakeContinuous.

A domain usually allows to specify the number of objects to be created. For example here is a
definition of m symmetric positive semidefinite variables of dimension n each. The actual variable x will
be of shape m x n x n where each slice with fixed first coordinate is an n x n PSD:

Variable x = M.Variable(Domain.InPSDCone(n, m));

The Variable object provides the primal (Variable.Level) and dual (Variable.Dual) solution
values of the variable after optimization, and it enters in the construction of linear expressions involving
the variable.

6.3 Linear algebra

Linear expressions are constructed combining variables and matrices by linear operators. The result is an
object that represents the linear expression itself. Fusion only allows for those combinations of operators
and arguments that yield linear functions of the variables. Expressions have shapes and dimensions in
the same fashion as variables. For instance, if z € R™ and A € R™*", then Az is a vector expression of
length m. Note, however, that the internal size of Ax is mn, because each entry is a linear combination
for which m coefficients have to be stored.

Expressions are concrete implementations of the virtual interface Ezpression. In typical situations,
however, all operations on expressions can be performed using the static methods and factory methods
of the class Ezpr.

12

Table 6.1: Linear Operators

Method Description

Ezpr.Add Element-wise addition of two matrices
Ezpr. Sub Element-wise subtraction of two matrices
Ezpr. Mul Matrix or matrix-scalar multiplication
Ezpr.Neg Sign inversion

Ezpr. Outer Vector outer-product

Ezpr.Dot Dot product

Ezpr. Sum Sum over a given dimension
Ezpr.MulElm Element-wise multiplication
Ezpr.MulDiag Sum over the diagonal of a matrix which is the result of a matrix multiplication
Ezpr.ConstTerm | Return a constant term

Operations on expressions must adhere to the rules of matrix algebra regarding dimensions; otherwise
a DimensionError exception will be thrown.

Expression can be composed, nested and used as building blocks in new expressions. For instance
Ax + By can be implemented as:

Expr.Add(Expr.Mul(A,x), Expr.Mul(B,y));

For operations involving multiple variables and expressions the users should consider list-based meth-
ods. For instance, a clean way to write z + y + 2z + w would be:

Expr.Add(new Variable[]{x, y, z, w});

Note that a single variable (object of class Variable) can also be used as an expression. Once
constructed, expressions are immutable.

6.4 Constraints and objective

Constraints are declared within an optimization model using the method Model.Constraint. Every
constraint in Fusion has the form

’ Ezpression belongs to a Domain. ‘

Objects of type Domain correspond roughly to the types of convex cones K mentioned at the beginning
of this section. For instance, the following set of linear constraints

r1 + 219 =0
+ X2 + x3 = (62)
Iy =0

could be declared as

double [,]A = new double[,] { { 1.0, 2.0, 0.0},
{ 0.0, 1.0, 1.0},
{1.0, 0.0, 0.0} };

Variable x = M.Variable("x",3,Domain.Unbounded());
Constraint ¢ = M.Constraint(Expr.Mul(A,x), Domain.EqualsTo(0.0));

Note that the scalar domain Domain. EqualsTo consisting of a single point 0 scales up to the dimension
of the expression and applies to all its elements. This allows many constraints to be comfortably expressed
in a vectorized form. See also Sec. 6.8.

The Constraint object provides the dual (Constraint.Dual) value of the constraint after optimiza-
tion and the primal value of the constraint expression (Constraint.Level).

The typical domains used to specify constraints are listed below. Note that they can also be used
directly at variable creation, whenever that makes sense.

13

Type Domain
Linear equality Domain.EqualsTo
inequality < Domain.LessThan
inequality > Domain.GreaterThan
two-sided bound Domain. InRange
Conic Quadratic | quadratic cone Domain. InfCone
rotated quadratic cone | Domain.InRotatedfCone
Other Conic exponential cone Domain. InPExpCone
power cone Domain. InPPowerCone ()
Semidefinite PSD matrix Domain. InPSDCone
Integral Integers in domain D Domain. Integral (D)
{0,1} Domain.Binary

Having discussed variables and constraints we can finish by defining the optimization objective with
Model.Objective. The objective function is a scalar expression and the objective sense is specified by
the enumeration 0bjectiveSense as either minimize or mazimize. The typical linear objective function

¢TIz can be declared as

’ M.Objective(ObjectiveSense.Minimize, Expr.Dot(c,x));

6.5 Matrices

At some point it becomes necessary to specify linear expressions such as Az where A is a (large) constant
data matrix. Such coefficient matrices can be represented in dense or sparse format. Dense matrices can
always be represented using the standard data structures for arrays and two-dimensional arrays built into
the language. Alternatively, or when sparsity can be exploited, matrices can be constructed as objects
of the class Matriz. This can have some advantages: a more generic code that can be ported across
platforms and can be used with both dense and sparse matrices without modifications.

Dense matrices are constructed with a variant of the static factory method Matriz.Dense. The
values of all entries must be specified all at once and the resulting matrix is immutable. For example the
matrix

S

I
| —|
ot =
o
~ w
0
| I

can be defined with:

double[,] A= new doublel[,]{ {1.0,2.0,3.0,4.0}, {5.0,6.0,7.0,8.0} };
Matrix Ad= Matrix.Dense(A);

or from a flattened representation:

double[] Af={ 1,2,3,4,5,6,7,8 };
Matrix Aff= Matrix.Dense(2,4,Af);

Sparse matrices are constructed with a variant of the static factory method Matriz. Sparse. This is
both speed- and memory-efficient when the matrix has few nonzero entries. A matrix A in sparse format
is given by a list of triples (i, j,v), each defining one entry: A; ; = v. The order does not matter. The
entries not in the list are assumed to be 0. For example, take the matrix

1.0 0.0 0.0 2.0

A=100 30 00 40 |-

Assuming we number rows and columns from 0, the corresponding list of triplets is:
A ={(0,0,1.0),(0,3,2.0),(1,1,3.0),(1,3,4.0)}

The Fusion definition would be:

14

int [] rows = {0, O, 1, 1}
int[] cols = {0, 3, 1, 3 };
double[] values= { 1.0, 2.0, 3.0, 4.0 };

Matrix ms = Matrix.Sparse(rows.Length, cols.Length, rows, cols, values);

The Matriz class provides more standard constructions such as the identity matrix, a constant value
matrix, block diagonal matrices etc.

6.6 Parameters

A parameter (Parameter) is a placeholder for a constant whose value should be specified before the model
is optimized. Parameters can have arbitrary shapes, just like variables, and can be used in any place
where using a constant, array or matrix of the same shape would be suitable. That means parameters
behave like expressions under additive operations and stacking, and can additionally be used in some
multiplicative operations where the result is affine in the optimization variables.

For example, we can create a parametrized constraint

plz+q<0,

where z € R?*, as follows:

Variable x = M.Variable("x", 4); // Variable

Parameter p = M.Parameter('"p", 4); // Parameter of shape [4]
Parameter q = M.Parameter(); // Scalar parameter

M.Constraint (Expr.Add (Expr.Dot(p, %), q), Domain.LessThan(0.0));

Later in the code we can initialize the parameters with actual values. For example

p.SetValue(new double[] {1,2,3,4});
q.SetValue(5);

will make the previously defined constraint evaluate to
Ty + 229 + 3x3 +4x4 + 5 <O0.

The values of parameters can be changed between optimizations. Therefore one parametrized model
with fixed structure can be used to solve many instances of the same optimization problem with varying
input data.

6.7 Stacking and views

Fusion provides a way to construct logical views of parts of existing expressions or combinations of
existing expressions. They are still represented by objects of type Variable or Ezpression that refer
to the original ones. This can be useful in some scenarios:

e retrieving only the values of a few variables, and ignoring the remaining auxiliary ones,
e stacking vectors or matrices to perform various matrix operations,

e bundling a number of similar constraints into one; see Sec. 6.8,

e adding constraints between parts of the same variable, etc.

All these operations do not require new variables or expressions, but just lightweight logical views. In
what follows we will concentrate on expressions; the same techniques are available for variables. These
techniques will be familiar to the users of numerical tools such as Matlab or NumPy.

15

Picking and slicing

Ezpression.Pick picks a subset of entries from a variable or expression. Special cases of picking are
Ezpression. Index, which picks just one scalar entry and Ezpression.Slice which picks a slice, that
is restricts each dimension to a subinterval. Slicing is a frequently used operation.

Fig. 6.1: Two dimensional slicing.

Both displayed regions are slices of the two-dimensional 4 x 4 expression, which can be selected as
follows:

Expression Axsl = Ax.Slice(new int[]{0,0}, new int[]1{2,2});
Expression Axs2 = Ax.Index(new int[]{3,3});

1]

Reshaping

Expressions can be reshaped creating a view with the same number of coordinates arranged in a
different way. A particular example of this operation if flattening, which converts any multi-dimensional
expression into a one-dimensional vector.

Stacking

Stacking refers to the concatenation of expressions to form a new larger one. For example, the next
figure depicts the vertical stacking of two vectors of shape 1 x 3 resulting in a matrix of shape 2 x 3.

allazlaZ \ allazla3
7 |bilpb2|p3

blbZ2|b3

Expression c¢ = Expr.Vstack(new Expression[]l{a, b}); ‘

Vertical stacking (Ezpr. Vstack) of expressions of shapes dy x dy and d} x dy has shape (dy +d}) x da.
Similarly, horizontal stacking (Ezpr.Hstack) of expressions of shapes d; X dy and d; X d has shape
dy x (dy+d}). Fusion supports also more general versions of stacking for multi-dimensional variables, as
described in Ezpr.Stack. A special case of stacking is repetition (Ezpr.Repeat), equivalent to stacking
copies of the same expression.

6.8 Vectorization

Using Fusion one can compactly express sequences of similar constraints. For example, if we want to
express

Al‘i:bi, i:l,...,n

we can think of x; € R™ b; € R¥ as the columns of two matrices X = [z1,...,2,] € R™*" B =
[b1,...,b,] € R¥*" and write simply

AX —-B=0.

16

Variable X = Var.Hstack(new Variable[]{ xi[0], xi[1], xi[2], xi[3] });
Expression B = Expr.Hstack(new Expression[]{ bi[0], bi[1], bi[2], bi[3] });

M.Constraint (Expr.Sub(Expr.Mul(A, X), B), Domain.EqualsTo(0.0));

In this example the domain Domain. EqualsTo scales to apply to all the entries of the expression.

Another powerful case of vectorization and scaling domains is the ability to define a sequence of conic
constraints in one go. Suppose we want to find an upper bound on the 2-norm of a sequence of vectors,
that is we want to express

Suppose that the vectors y; are arranged in the rows of a matrix Y. Then we can simply write:

Variable t = M.Variable();

M.Constraint (Expr.Hstack(Var.Vrepeat(t, n), Y), Domain.InQCone());

Here, again, the conic domain Domain.InfCone is by default applied to each row of the matrix
separately, yielding the desired constraints in a loop-free way (the i-th row is (¢,9;)). The direction
along which conic constraints are created within multi-dimensional expressions can be changed with
Domain. Azzs.

We recommend vectorizing the code whenever possible. It is not only more elegant and portable but
also more efficient — loops are eliminated and the number of Fusion API calls is reduced.

6.9 Reoptimization

Between optimizations the user can modify the model in a few ways:

e Set/change values of parameters (Parameter. SetValue). This is the recommended way to reopti-
mize multiple models identical structure and varying (parts of) input data. For simplicity, suppose
we want to minimize f(x) = ya + By, for varying choices of v > 0. Then we could write:

double[] gammaValues = new double[] {0.0, 0.5, 1.0}; // Chotices fory,
—gamma

double beta = 2.0;

Variable x= M.Variable("x", 1, Domain.GreaterThan(0.0));

Variable y= M.Variable("y", 1, Domain.GreaterThan(0.0));

Parameter gamma = M.Parameter("gamma");

M.Objective(ObjectiveSense.Minimize, Expr.Add(Expr.Mul(gamma, x), Expr.
—Mul(beta, y)));

for(int i=0;i<3;i++)

{
gamma . SetValue (gammaValues[i]);
M.Solve();

}

Add new constraints with Yodel.Constraint. This is useful for solving a sequence of optimization
problems with more and more restrictions on the feasible set. See for example Sec. 11.8.

Add new variables with Yodel. Variable or parameters with Xodel.Parameter.

Replace the objective with a completely new one (Model.Objective).

Update part of the objective (Xodel. UpdateObjective).

Update an existing constraint or replace the constraint expression with a new one (Constraint.
Update).

Otherwise all Fusion objects are immutable. See also Sec. 7.10 for more reoptimization examples.

17

Chapter 7

Optimization Tutorials

In this section we demonstrate how to set up basic types of optimization problems. Each short tutorial
contains a working example of formulating problems, defining variables and constraints and retrieving
solutions.

7.1 Linear Optimization

The simplest optimization problem is a purely linear problem. A linear optimization problem is a problem
of the following form:
Minimize or maximize the objective function

n—1

§ o f
Ccjxj+c¢

Jj=0

subject to the linear constraints

n—1
ZESZaijj <us, k=0,...,m-—1,
j=0

and the bounds
i <zj<uj, j=0,...,n—1
The problem description consists of the following elements:
e m and n — the number of constraints and variables, respectively,

e r — the variable vector of length n,

e ¢ — the coefficient vector of length n

co
c= ,
Cn—1
e ¢/ — fixed term in the objective,
e A — an m x n matrix of coefficients
ao,0 T ag,(n—1)
A= : ,
A(m-1),0 " A(m-1),(n—1)

18

e [and u® — the lower and upper bounds on constraints,

e [7 and u” — the lower and upper bounds on variables.

Please note that we are using 0 as the first index: x¢ is the first element in variable vector .
The Fusion user does not need to specify all of the above elements explicitly — they will be assembled
from the Fusion model.

7.1.1 Example LO1

The following is an example of a small linear optimization problem:

maximize 3zg + lz; + Ddxe + lag

subject to 3xp + 1lxz; + 2x9 = 30, (7.1)
209 + 1z + 3x9 + 1lxzg > 15, ’
221 + 3z3 < 25,
under the bounds
0 S Zo S 0,
0 S X1 § 10,
0 S Z2 S o0,
0 < z3 < o0

We start our implementation in Fusion importing the relevant modules, i.e.

|

using mosek.fusion;

Next we declare an optimization model creating an instance of the Model class:

Model M = new Model("lol");

For this simple problem we are going to enter all the linear coefficients directly:

double[][] A =

{ new double[] { 3.0, 1.0, 2.0, 0.0 },
new double[] { 2.0, 1.0, 3.0, 1.0 },
new double[] { 0.0, 2.0, 0.0, 3.0 }

};
double[] ¢ = { 3.0, 1.0, 5.0, 1.0 };

The variables appearing in problem (7.1) can be declared as one 4-dimensional variable:

Variable x = M.Variable("x", 4, Domain.GreaterThan(0.0));

|

At this point we already have variables with bounds 0 < z; < oo, because the domain is applied
element-wise to the entries of the variable vector. Next, we impose the upper bound on z1:

|

M.Constraint (x.Index(1), Domain.LessThan(10.0));

|

The linear constraints can now be entered one by one using the dot product of our variable with a
coefficient vector:

M.Constraint("c1", Expr.Dot(A[0], x), Domain.EqualsTo(30.0));
M.Constraint("c2", Expr.Dot(A[1], x), Domain.GreaterThan(15.0));
M.Constraint("c3", Expr.Dot(A[2], x), Domain.LessThan(25.0));

We end the definition of our optimization model setting the objective function in the same way:

M.Objective("obj", ObjectiveSense.Maximize, Expr.Dot(c, x));

Finally, we only need to call the Xodel. Solve method:

M.Solve();

The solution values can be attained with the method Variable.Level.

19

double[] sol = x.Level();
Console.WriteLine("[x0,x1,x2,x3] = [{0}, {1}, {2}, {3} 1", sol[0], sol[l]l, sol[2],,
—s0l[3]);

Listing 7.1: Fusion implementation of model (7.1).

using System;
using mosek.fusion;
namespace mosek.fusion.example
{
public class lol
{
public static void Main(string[] args)
{
double[]l[] A =
{ new double[] { 3.0,
new double[] { 2.0,
new double[] { 0.0
};
double[] ¢ = { 3.0, 1.0, 5.0, 1.0 };

N~ =
o O O
o W N

o O O
w = O

o o o
e

B

// Create a model with the name 'lol'
Model M = new Model("lol");

// Create wariable 'z' of length 4
Variable x = M.Variable("x", 4, Domain.GreaterThan(0.0));

// Create constraints
M.Constraint(x.Index(1), Domain.LessThan(10.0));

M.Constraint("cl1", Expr.Dot(A[0], x), Domain.EqualsTo(30.0));
M.Constraint("c2", Expr.Dot(A[1], x), Domain.GreaterThan(15.0));
M.Constraint("c3", Expr.Dot(A[2], x), Domain.LessThan(25.0));

// Set the objective function to (c°t * z)
M.Objective("obj", ObjectiveSense.Maximize, Expr.Dot(c, x));

// Solve the problem
M.Solve();

// Get the solution walues
double[] sol = x.Level();
Console.WriteLine("[x0,x1,x2,x3] = [{0}, {1}, {2}, {3} 1", sol[0], soll[1], soll[2],.
—so0l[3]);
}
}
}

7.2 Conic Quadratic Optimization
Conic optimization is a generalization of linear optimization, allowing constraints of the type
zt e Ky,
where ! is a subset of the problem variables and K; is a convex cone. Since the set R™ of real numbers

is also a convex cone, we can simply write a compound conic constraint x € IC where K = Iy X - -+ X K
is a product of smaller cones and z is the full problem variable.

20

MOSEK can solve conic quadratic optimization problems of the form

minimize e+ e
subject to ¢ < Ax < wuc,
< T < u®,
ek,

where the domain restriction, x € IC, implies that all variables are partitioned into convex cones
z= (202, .. 2P7Y), with 2’ € K, C R™.
In this tutorial we describe how to use the two types of quadratic cones defined as:

e Quadratic cone:

Q"= zeR": 2y >

e Rotated quadratic cone:

n—1
or = xeR”:Qmoxlzzx?, r9g>0, x1>0
j=2

For other types of cones supported by MOSEK see Sec. 7.3, Sec. 7.4, Sec. 7.5. See Domain for a
list and definitions of available cone types. Different cone types can appear together in one optimization
problem.

For example, the following constraint:

(fE4, Zo, x2) € Q3

describes a convex cone in R3 given by the inequality:

Xy > /23 + 23

In Fusion the coordinates of a cone are not restricted to single variables. They can be arbitrary linear
expressions, and an auxiliary variable will be substituted by Fusion in a way transparent to the user.

7.2.1 Example CQO1

Consider the following conic quadratic problem which involves some linear constraints, a quadratic cone
and a rotated quadratic cone.

minimize Y1 + Y2 + Y3

subject to x1 + x2 + 2.0z3 = 1.0,
T1,T2,T3 2 00, (72)
(yla m17:1"2) € Q3a
(y2,y3,73) € Q3.

We start by creating the optimization model:

using (Model M = new Model("cqol"))
{

We then define variables x and y. Two logical variables (aliases) z1 and z2 are introduced to model the
quadratic cones. These are not new variables, but map onto parts of x and y for the sake of convenience.

Variable x = M.Variable("x", 3, Domain.GreaterThan(0.0));
Variable y = M.Variable("y", 3, Domain.Unbounded());

// Create the aliases

// zl = [yl[o],z[0],z[1]]

// and z2 = [y[1],y[2],z[2]]

Variable z1 = Var.Vstack(y.Index(0), x.Slice(0, 2));
Variable z2 = Var.Vstack(y.Slice(1, 3), x.Index(2));

21

The linear constraint is defined using the dot product:

// Create the constraint

// z[0] + x[1] + 2.0 z[2] = 1.0

double[] aval = new double[] {1.0, 1.0, 2.0};
M.Constraint("lc", Expr.Dot(aval, x), Domain.EqualsTo(1.0));

The conic constraints are defined using the logical views z1 and 22 created previously. Note that
this is a basic way of defining conic constraints, and that in practice they would have more complicated
structure.

// Create the constraints

// z1 belongs to C_3

// z2 belongs to K_3

// where C_3 and K_3 are respectively the quadratic and

// rotated quadratic cone of size 3, %.e.

// 21[0] >= sqrt(z1[1]-2 + z1[2]"2)

// and 2.0 22[0] 22[1] >= z2[2]"2

Constraint qcl = M.Constraint("qcl", z1l.AsExpr(), Domain.InQCone());
Constraint qc2 = M.Constraint("qc2", z2.AsExpr(), Domain.InRotatedQCone());

We only need the objective function:

// Set the objective function to (y[0] + y[1] + y[2])
M.Objective("obj", ObjectiveSense.Minimize, Expr.Sum(y));

Calling the Model.Solve method invokes the solver:

M.Solve();

The primal and dual solution values can be retrieved using Variable.Level, Constraint.Level
and Variable.Dual, Constraint.Dual, respectively:

// Get the linear solution values
double[] solx = x.Level();
double[] soly = y.Level();

// Get conic solution of qcl
double[] qcllvl = qcl.Level();
double[] gclsn = qcl.Dual();

Listing 7.2: Fusion implementation of model (7.2).

using System;
using mosek.fusion;

namespace mosek.fusion.example

{
public class cqol
{
public static void Main(string[] args)
{
using (Model M = new Model("cqol"))
{

|
=

Variable x =
Variable y

.Variable("x", 3, Domain.GreaterThan(0.0));
.Variable("y", 3, Domain.Unbounded());

]
=

// Create the aliases

// zl = [yl[o],z[0],z[1]]

// and z2 = [y[1],y[2],z[2]]

Variable zl = Var.Vstack(y.Index(0), x.Slice(0, 2));
Variable z2 = Var.Vstack(y.Slice(l, 3), x.Index(2));

(continues on next page)

22

(continued from previous page)

// Create the constraint

// z[0] + z[1] + 2.0 z[2] = 1.0

double[] aval = new double[] {1.0, 1.0, 2.0};
M.Constraint("lc", Expr.Dot(aval, x), Domain.EqualsTo(1.0));

// Create the constraints

// z1 belongs to C_3

// z2 belongs to K_3

// where C_3 and K_3 are respectively the quadratic and

// rotated quadratic cone of size 3, i.e.

// 21[0] >= sqrt(z1[1]°2 + z1[2]"2)

// and 2.0 z2[0] z2[1] >= 2z2[2] "2

Constraint qcl = M.Constraint("qcl", zl1l.AsExpr(), Domain.InQCone());
Constraint qc2 = M.Constraint("qc2", z2.AsExpr(), Domain.InRotatedQCone());

// Set the objective function to (y[0] + y[1] + y[2])
M.Objective("obj", ObjectiveSense.Minimize, Expr.Sum(y));

// Solve the problem
M.Solve();

// Get the linear solution values
double[] solx = x.Level();
double[] soly = y.Level();
Console.WriteLine("x1,x2,x3
Console.WriteLine("y1l,y2,y3

{0}, {1}, {2}", solx[0], solx[1], solx[2]);
{03}, {1}, {2}", soly[0], soly[i], soly[2]);

// Get conic solution of gcl
double[] qcllvl = qcl.Level();
double[] qcisn = gcl.Dual();

Console.Write("qcl levels = {0}", qc1lvl[0]);
for (int i = 1; i < qcllvl.Length; ++i)

Console.Write(", {0}", qcllvl[i]);
Console.WriteLine();

Console.Write("qcl dual conic var levels = {0}", qclsn[0]);
for (int i = 1; i < qclsn.Length; ++i)

Console.Write(", {0}", qcisn[il);
Console.WriteLine();

7.3 Power Cone Optimization
Conic optimization is a generalization of linear optimization, allowing constraints of the type
zt S]Ct,

where ! is a subset of the problem variables and K; is a convex cone. Since the set R™ of real numbers
is also a convex cone, we can simply write a compound conic constraint « € K where K = IC; X -+ x K
is a product of smaller cones and z is the full problem variable.

MOSEK can solve conic optimization problems of the form

minimize e +cf
subject to ¢ < Ax <
r < T < u®,
x €L,

23

where the domain restriction, z € IC, implies that all variables are partitioned into convex cones
r= (2% .. 2P7h), with 2 € K, C R™.

In this tutorial we describe how to use the power cone. The primal power cone of dimension n with
parameter 0 < o < 1 is defined as:

a,l—a __ n. o l—«a
P =z eR" a5z ¢ >

In particular, the most important special case is the three-dimensional power cone family:

P5l ™" = {z € R* 12w}~ > |wal, wo, 71 > 0}.

For example, the conic constraint (x,y, z) € 7?3? 25,075 g equivalent to x

with z,y > 0.
MOSEK also supports the dual power cone:

oty = drems (2)(722)

o 11—«

0.25 4

Y97 > |z|, or simply xy® > 2

For other types of cones supported by MOSEK see Sec. 7.2, Sec. 7.4, Sec. 7.5. See Domain for a list
and definitions of available cone types. Different cone types can appear together in one optimization
problem.

In Fusion the coordinates of a cone are not restricted to single variables. They can be arbitrary linear
expressions, and an auxiliary variable will be substituted by Fusion in a way transparent to the user.

7.3.1 Example POW1

Consider the following optimization problem which involves powers of variables:

maximize 292908 4204 — ¢
subject to THy+iz = 2 (7.3)
z,y,z > 0.

With (z,y,z) = (xo,21,22) we convert it into conic form using auxiliary variables as bounds for the
power expressions:

maximize r3 4+ x4 — T
subject to xg+ 1 + %xz = 2,
(330, X1, 333) S 73:?'270'8, (74)
(z2,25,24) € P§'4’0'6,
rs = 1.

We start by creating the optimization model:

using (Model M = new Model("powl"))
{

We then define the variable x corresponding to the original problem (7.3), and auxiliary variables
appearing in the conic reformulation (7.4).

M.Variable("x", 3, Domain.Unbounded());
M.Variable();
M.Variable();

Variable x
Variable x3
Variable x4

The linear constraint is defined using the dot product operator Ezpr.Dot:

// Create the linear constraint
double[] aval = new double[] {1.0, 1.0, 0.5};
M.Constraint (Expr.Dot(x, aval), Domain.EqualsTo(2.0));

24

The primal power cone is referred to via Domain. InPPowerCone with an appropriate list of variables
or expressions in each case.

// Create the ezponential conic constraint

// Create the conic constraints

M.Constraint (Var.Vstack(x.Slice(0,2), x3), Domain.InPPowerCone(0.2));
M.Constraint (Expr.Vstack(x.Index(2), 1.0, x4), Domain.InPPowerCone(0.4));

We only need the objective function:

// Set the objective function
double[] cval = new double[] {1.0, 1.0, -1.03};
M.Objective(ObjectiveSense.Maximize, Expr.Dot(cval, Var.Vstack(x3, x4, x.Index(0))));

Calling the Model.Solve method invokes the solver:

M.Solve();

The primal and dual solution values can be retrieved using Variable.Level, Constraint.Level
and Variable.Dual, Constraint.Dual. Here we just display the primal solution

double[] solx = x.Level();
Console.WriteLine("x,y,z = {0}, {1}, {2}", solx[0], solx[1], solx[2]);

which is

[0.06389298 0.78308564 2.30604283]

Listing 7.3: Fusion implementation of model (7.3).

using System;
using mosek.fusion;

namespace mosek.fusion.example

{
public class powl
{
public static void Main(string[] args)
{
using (Model M = new Model("powl"))
{

Variable x M.Variable("x", 3, Domain.Unbounded());
Variable x3 = M.Variable();
Variable x4 = M.Variable();

// Create the linear constraint
double[] aval = new double[] {1.0, 1.0, 0.5};
M.Constraint (Expr.Dot(x, aval), Domain.EqualsTo(2.0));

// Create the exzponential conic constraint

// Create the conic constraints

M.Constraint (Var.Vstack(x.Slice(0,2), x3), Domain.InPPowerCone(0.2));
M.Constraint (Expr.Vstack(x.Index(2), 1.0, x4), Domain.InPPowerCone(0.4));

// Set the objective function
double[] cval = new double[] {1.0, 1.0, -1.0};
M.Objective(ObjectiveSense.Maximize, Expr.Dot(cval, Var.Vstack(x3, x4, x.Index(0))));

// Solve the problem
M.Solve();

// Get the linear solution values
double[] solx = x.Level();

(continues on next page)

25

(continued from previous page)

Console.WriteLine("x,y,z = {0}, {1}, {2}", solx[0], solx[1], solx[2]);
}
}
}
}

7.4 Conic Exponential Optimization
Conic optimization is a generalization of linear optimization, allowing constraints of the type
zt e Ky,
where zt is a subset of the problem variables and K; is a convex cone. Since the set R™ of real numbers
is also a convex cone, we can simply write a compound conic constraint x € C where L = K1 X --- X K

is a product of smaller cones and z is the full problem variable.
MOSEK can solve conic optimization problems of the form

minimize e+l
subject to ¢ < Ax < uc,
r < T < u®,
ek,

where the domain restriction, x € IC, implies that all variables are partitioned into convex cones
z= (202, .. 2P7Y), with ' € K, C R™.
In this tutorial we describe how to use the primal exponential cone defined as:
Kexp = {:L’ eR?: 9> 2 exp(za/x1), xo,x1 > 0}.
MOSEK also supports the dual exponential cone:
Kip = {s ER3: 50 > —spe Lexp(sy/sa), s < 0,50 > O}.

For other types of cones supported by MOSEK see Sec. 7.2, Sec. 7.3, Sec. 7.5. See Domain for a list
and definitions of available cone types. Different cone types can appear together in one optimization
problem.

For example, the following constraint:

(ZL’4, Zo, 1'2) S chp
describes a convex cone in R3 given by the inequalities:
x4 > xo exp(z2/w0), To, 74 > 0.

In Fusion the coordinates of a cone are not restricted to single variables. They can be arbitrary linear
expressions, and an auxiliary variable will be substituted by Fusion in a way transparent to the user.

7.4.1 Example CEO1

Consider the following basic conic exponential problem which involves some linear constraints and an
exponential inequality:

minimize To + X1
subject to zg+ 1 +x2 = 1, (7.5)
xg > xiexp(xa/zy), ’
z9,71 = 0.

26

The conic form of (7.5) is:

minimize To + X1
subject to zg+x1+x2 = 1, (7.6)
(130,£E1,$2) S Kexp, ’
z € RS

We start by creating the optimization model:

using (Model M = new Model("ceol"))
{

We then define the variable x.

Variable x = M.Variable("x", 3, Domain.Unbounded());

The linear constraint is defined using the sum operator Ezpr. Sum:

// Create the constraint
// z[0] + z[1] + z[2] = 1.0
M.Constraint("1lc", Expr.Sum(x), Domain.EqualsTo(1.0));

The conic exponential constraint in this case is very simple as it involves just the variable x. The
primal exponential cone is referred to via Domain. InPEzpCone, and it must be applied to a variable of
length 3 or an array of such variables. Note that this is a basic way of defining conic constraints, and
that in practice they would have more complicated structure.

// Create the ezponential conic constraint
Constraint expc = M.Constraint("expc", x, Domain.InPExpCone());

We only need the objective function:

// Set the objective function to (z[0] + z[1])
M.Objective("obj", ObjectiveSense.Minimize, Expr.Sum(x.Slice(0,2)));

Calling the Model.Solve method invokes the solver:

M.Solve();

The primal and dual solution values can be retrieved using Variable.Level, Constraint.Level
and Variable.Dual, Constraint.Dual, respectively:

// Get the linear solution values
double[] solx = x.Level();

// Get conic solution of ezxpc
double[] expclvl = expc.Level();
double[] expcsn = expc.Dual();

Listing 7.4: Fusion implementation of model (7.5).

using System;
using mosek.fusion;

namespace mosek.fusion.example

{
public class ceol
{
public static void Main(string[] args)
{
using (Model M = new Model("ceol"))
{

Variable x = M.Variable("x", 3, Domain.Unbounded());

(continues on next page)

27

(continued from previous page)

// Create the constraint
// z[0] + z[1] + z[2] = 1.0
M.Constraint("lc", Expr.Sum(x), Domain.EqualsTo(1.0));

// Create the exzponential conic constraint
Constraint expc = M.Constraint("expc", x, Domain.InPExpCone());

// Set the objective function to (z[0] + z[1])
M.Objective("obj", ObjectiveSense.Minimize, Expr.Sum(x.Slice(0,2)));

// Solve the problem
M.Solve();

// Get the linear solution values
double[] solx = x.Level();
Console.WriteLine("x1,x2,x3 = {0}, {1}, {2}", solx[0], solx[1], solx[2]);

// Get conic solution of ezpc
double[] expclvl = expc.Level();
double[] expcsn = expc.Dual();

Console.Write("expc levels = {0}", expclvl[0]);
for (int i = 1; i < expclvl.Length; ++i)

Console.Write(", {0}", expclvl[i]);
Console.WriteLine();

Console.Write("expc dual conic var levels = {0}", expcsn[0]);
for (int i = 1; i < expcsn.Length; ++i)

Console.Write(", {0}", expcsn[il);
Console.WriteLine();

7.5 Semidefinite Optimization

Semidefinite optimization is a generalization of conic optimization, allowing the use of matrix variables
belonging to the convex cone of positive semidefinite matrices

Sjr:{XEST:zTXzZO, VzERT},

where 8" is the set of r x r real-valued symmetric matrices.
MOSEK can solve semidefinite optimization problems of the form

minimize Z;l;ol cjri+ Z?;& (C;, X))+ ¢
subject to I§ < E;:Ol a;jr; + Z?;é (A, X)) < u, i=0,...,m—1,
i < x; < wj, j=0,....,n-1,
rekK,X; €87, j=0,....,p—1

where the problem has p symmetric positive semidefinite variables X; € S}’ of dimension r; with
symmetric coefficient matrices C; € 8" and A4; ; € S"i. We use standard notation for the matrix inner
product, i.e., for A, B € R™*" we have

m—1n—1

<A,B> = Z ZA”B”

i=0 j=0

In Fusion the user can enter the linear expressions in a more convenient way, without having to cast the
problem exactly in the above form.

28

We demonstrate the setup of semidefinite variables and the matrices C, A on the following examples:

e Sec. 7.5.1: A problem with one semidefinite variable and linear and conic constraints.
e Sec. 7.5.2: A problem with two semidefinite variables with a linear constraint and bound.

e Sec. 7.5.3: Shows how to efficiently set up many semidefinite variables of the same dimension.

7.5.1 Example SDO1

We consider the simple optimization problem with semidefinite and conic quadratic constraints:

2 10
minimize < 1 2 1 ,X>+x0
0 1 2
1 0 0]
subject to 01 0|,X)+4+xo = 1,
< 0 0 1 > (7.7)
11 1]
< 111 ,X>+x1+x2 = 1/2,
1 1 1

xo > VT2 + 222, X =0,

The problem description contains a 3-dimensional symmetric semidefinite variable which can be written
explicitly as:

o Xoo Xm 220
X=| Xy Xuu Xo | € SE))H
Xoo Xo1 Xoo

and a conic quadratic variable (zg, 21, 22) € @3. The objective is to minimize
2(Xo0 + X10 + X11 + Xo1 + Xo22) + 20,
subject to the two linear constraints

o L A;?bo +‘j§1} +-j§gg-+ To = 1,
Xoo+X11+Xoo+2(X10+ Xoo+Xo1) +21 +22 = 1/2.

Our implementation in Fusion begins with creating a new model:

using (Model M = new Model("sdol"))

We create a symmetric semidefinite variable X and another variable representing x. For simplicity
we immediately declare that x belongs to a quadratic cone

Variable X = M.Variable("X", Domain.InPSDCone(3));
Variable x = M.Variable("x", Domain.InQCone(3));

In this elementary example we are going to create an explicit matrix representation of the problem

- 2 1 0 B 1 00 B 1 11
C=1121]|,4=[010],A4=|111
01 2 0 0 1 1 11

and use it in the model via the dot product operation (-, -) which applies to matrices as well as to vectors.

This way we create each of the linear constraints and the objective as one expression.

// Objective
M.Objective(ObjectiveSense.Minimize, Expr.Add(Expr.Dot(C, X), x.Index(0)));

// Constraints

M.Constraint("cl1", Expr.Add(Expr.Dot(Al, X), x.Index(0)), Domain.EqualsTo(1.0));

M.Constraint("c2", Expr.Add(Expr.Dot(A2, X), Expr.Sum(x.Slice(l, 3))),
Domain.EqualsTo(0.5));

Now it remains to solve the problem with Model. Solve.

29

Listing 7.5: Fusion implementation of problem (7.7).

using System;
using mosek.fusion;

namespace mosek.fusion.example

{
public class sdol
{
public static void Main(string[] args)
{
using (Model M = new Model("sdol"))
{
// Setting up the variables
Variable X = M.Variable("X", Domain.InPSDCone(3));
Variable x = M.Variable("x", Domain.InQCone(3));
// Setting up constant coefficient matrices
Matrix C = Matrix.Demnse (new double[,] { {2, 1, 0}, {1, 2, 1}, {0, 1, 2}});
Matrix Al = Matrix.Eye(3);
Matrix A2 = Matrix.Ones(3,3);
// Objective
M.Objective(ObjectiveSense.Minimize, Expr.Add(Expr.Dot(C, X), x.Index(0)));
// Constraints
M.Constraint("cl1", Expr.Add(Expr.Dot(Al, X), x.Index(0)), Domain.EqualsTo(1.0));
M.Constraint("c2", Expr.Add(Expr.Dot(A2, X), Expr.Sum(x.Slice(l, 3))),
Domain.EqualsTo(0.5));
M.Solve();
Console.WriteLine("[{0}]", (new Utils.StringBuffer()).A(X.Level()).ToString());
Console.WriteLine("[{0}]", (new Utils.StringBuffer()).A(x.Level()).ToString());
}
}
}
}

7.5.2 Example SDO2

We now demonstrate how to define more than one semidefinite variable using the following problem with
two matrix variables and two types of constraints:

minimize (Cy, X1) 4 (C2, X2)

subject to (A1, X1) + (42, X2) = b, (7.8)
(X2)o1 < K, '
X, X, = 0.
In our example dim(X;) = 3, dim(X2) =4, b =23, k = —3 and
1 0 0] [1 0 1
Cl = 0 O 7A1 - O O 0 3
0 0 6 | |1 0 2
1 =3 0 0] [0 1 0 o0
-3 2 0 0 1 -1 0 O
=19 0o 102 0o 0 0 0|
0 0 0 0| 10 0 0 =3

are constant symmetric matrices.

30

Note that this problem does not contain any scalar variables, but they could be added in the same

fashion as in Sec. 7.5.1.
The code representing the above problem is shown below.

Listing 7.6: Implementation of model (7.8).

using System;
using mosek.fusion;

namespace mosek.fusion.example
{
public class sdo2
{
public static void Main(string[] args)

{

// Sample data in sparse, symmetric triplet format
int [] Ci_k = {0, 2};

int[] ci_1 = {0, 2};

double[] Ci_v = {1, 6};

int[] Al x = {0, 2, 0
int[] A1 = {0, 0, 2
double[] Al_v = {1, 1, 1, 2};
int[] c2_k = {0, 1, 0
int[] c2_1 =40, 0, 1
double[] C2_v = {1, -3, -3, 2, 1};
int[] A2 x = {1, 0, 1, 3};
int[] A2_1 = {0, 1, 1, 3};
double[] A2_v = {1, 1, -1, -3};
double b 23;

double k = -3;

// Convert input data into Fusion sparse matrices

Matrix C1 = Matrix.Sparse(3, 3, Ci_k, C1_1, Cl_v);
Matrix C2 = Matrix.Sparse(4, 4, C2_k, C2_1, C2_v);
Matrix Al = Matrix.Sparse(3, 3, Al_k, A1_1, Al_v);
Matrix A2 = Matrix.Sparse(4, 4, A2_k, A2_1, A2_v);

using (Model M = new Model("sdo2"))

{
// Two semidefinite variables
Variable X1 = M.Variable(Domain.InPSDCone(3));
Variable X2 = M.Variable(Domain.InPSDCone(4));

// Objective
M.0Objective(ObjectiveSense.Minimize, Expr.Add(Expr.Dot(C1,X1), Expr.Dot(C2,X2)));

// Equality constraint
M.Constraint (Expr.Add (Expr.Dot (A1,X1), Expr.Dot(A2,X2)), Domain.EqualsTo(b));

// Inequality constraint
M.Constraint (X2.Index(new int[] {0,1}), Domain.LessThan(k));

// Solve
M.SetLogHandler (Console.Out) ;
M.Solve();

// Print solution

Console.WriteLine("Solution (vectorized):");

Console.WriteLine("[{0}]", (new Utils.StringBuffer()).A(X1.Level()).ToString());
Console.WriteLine("[{0}]", (new Utils.StringBuffer()).A(X2.Level()).ToString());

(continues on next page)

31

(continued from previous page)

7.5.3 Example SDO3

Here we demonstrate how to use the facilities provided in Fusion to set up a model with many semidef-
inite variables of the same dimension more efficiently than via looping. We consider a problem with n
semidefinite variables of dimension d and k constraints:

minimize > tr(Xy)
subject to Zj<Aij,yj) >b;, i=1,...,k, (7.9)
Y] i 0] = 17 HERAS)

with symmetric data matrices A;;.
The key construction is:

Listing 7.7: Creating a stack of semidefinite variables.

Variable X = M.Variable(Domain.InPSDCone(d, n));

It creates n symmetric, semidefinite matrix variables of dimension d arranged in a single variable
object X of shape (n,d, d). Individual matrix variables can be accessed as slices from (¢, 0,0) to (i+1,d, d)
(reshaped into shape (d,d) if necessary). It is also possible to operate on the full variable X when
constructing expressions that involve entries of all the semidefinite matrices in a natural way. The source
code example illustrates both these approaches.

Listing 7.8: Implementation of model (7.9).

using System;
using mosek.fusion;

namespace mosek.fusion.example
{

public class sdo3

{

// A helper method computing a semidefinite slice of a 3-dim variable
public static Variable Slice(Variable X, int d, int j) {
return
X.Slice(new int[] {j,0,0}, new int[] {j+1,d,d})
.Reshape(new int[] {d,d});

}
public static void Main(string[] args)
{

// Sample input data

int n = 100;

int d = 4;

int k = 3;

double[]l b = {9,10,11};
double[][,] A = new double[n*k][,];
var rand = new Random();
for(int i=0; i<nxk; i++) {

A[i] = new doubleld,d];

for(int s1=0; si1<d; si++)

for(int s2=0; s2<=s1; s2++)
A[i][s1,s2] = A[i]l[s2,s1] = rand.NextDouble();

(continues on next page)

32

(continued from previous page)

// Create a model with n semidefinite variables od dimension d = d
using (Model M = new Model("sdo3"))
{

Variable X = M.Variable(Domain.InPSDCone(d, n));

// Pick indezes of diagonal entries for the objective
int[,] alldiag = new int[d*n,3];
for(int j=0; j<n; j++) for(int s=0; s<d; s++) {
alldiag[j*d+s,0] = j;
alldiag[j*d+s,1] = alldiag[j*d+s,2] = s;
}
M.Objective(ObjectiveSense.Minimize, Expr.Sum(X.Pick(alldiag)));

// Each constraint is a sum of inner products
// Each semidefinite wvariable is a slice of X
for(int i=0; i< k; i++) {
Expression[] addlist = new Expression[n];
for(int j=0; j<m; j++)
addlist[j] = Expr.Dot(A[i*n+j], Slice(X, d, j));
M.Constraint (Expr.Add(addlist), Domain.GreaterThan(b[i]));

}

// Solve

M.SetLogHandler (Console.QOut) ; // Add logging
M.WriteTask("sdo3.ptf"); // Save problem in readable format
M.Solve();

// Get results. Each wvariable is a slice of X
Console.WriteLine ("Contributing variables:");
for(int j=0; j<m; j++) {
double[] Xj = Slice(X, d, j).Level();
double maxval = 0;
for(int s=0; s<dxd; s++) maxval = Math.Max(maxval, Xj[s]);
if (maxval > 1le-6) {
Console.WriteLine("X" + j + "=");
for(int s1=0; si<d; si++) {
for(int s2=0; s2<d; s2++)
Console.Write(Xj[sixd+s1] + " ");
Console.WriteLine();

7.6 Integer Optimization

An optimization problem where one or more of the variables are constrained to integer values is called a
(mixed) integer optimization problem. MOSEK supports integer variables in combination with linear,
quadratic and quadratically constrtained and conic problems (except semidefinite). See the previous
tutorials for an introduction to how to model these types of problems.

33

7.6.1 Example MILO1

We use the example

maximize xg + 0.64x,

subject to 50xg + 31z < 250,
3.T0 — 2.’131 > —4,
To,x1 >0 and integer

(7.10)

to demonstrate how to set up and solve a problem with integer variables. It has the structure of a linear
optimization problem (see Sec. 7.1) except for integrality constraints on the variables. Therefore, only
the specification of the integer constraints requires something new compared to the linear optimization
problem discussed previously.

First, the integrality constraints are imposed by modifying any existing domain with Domain.
Integral:

Variable x = M.Variable("x", 2, Domain.Integral (Domain.GreaterThan(0.0)));

Another way to do this is to use the method Variable.MakeInteger on a selected variable.
Next, the example demonstrates how to set various useful parameters of the mixed-integer optimizer.
See Sec. 13.4 for details.

// Set maz solution time
M.SetSolverParam("mioMaxTime", 60.0);

// Set maz relative gap (to its default value)
M.SetSolverParam("mioTolRelGap", le-4);

// Set maz absolute gap (to its default value)
M.SetSolverParam("mioTolAbsGap", 0.0);

The complete source for the example is listed in Listing 7.9.

Listing 7.9: How to solve problem (7.10).

using System;
using mosek.fusion;

namespace mosek.fusion.example
{
public class milol
{
public static void Main(string[] args)
{
double[][] A =
{ new double[] { 50.0, 31.0 },
new double[] { 3.0, -2.0}

};

double[] ¢ = { 1.0, 0.64 };

using (Model M = new Model("milol"))
{

Variable x = M.Variable("x", 2, Domain.Integral(Domain.GreaterThan(0.0)));

// Create the constraints

// 50.0 z[0] + 31.0 z[1] <= 250.0

// 3.0 ¢[0] - 2.0 z[1] >= -4.0

M.Constraint("cl1", Expr.Dot(A[0], x), Domain.LessThan(250.0));
M.Constraint("c2", Expr.Dot(A[1], x), Domain.GreaterThan(-4.0));

// Set maz solution time
M.SetSolverParam("mioMaxTime", 60.0);

// Set maz relative gap (to its default value)
M.SetSolverParam("mioTolRelGap", le-4);

// Set maz absolute gap (to its default value)
M.SetSolverParam("mioTolAbsGap", 0.0);

(continues on next page)

34

(continued from previous page)

// Set the objective function to (c°T * z)
M.Objective("obj", ObjectiveSense.Maximize, Expr.Dot(c, x));

// Solve the problem
M.Solve();

// Get the solution values

double[] sol = x.Level();

Console.WriteLine("x1,x2 = {0}, {1}", sol[0], sol[1]);

double miorelgap = M.GetSolverDoubleInfo("mioObjRelGap");

double mioabsgap = M.GetSolverDoubleInfo("mioObjAbsGap");
Console.WriteLine("MIP rel gap = {0} ({0})", miorelgap, mioabsgap);

7.6.2 Specifying an initial solution

It is a common strategy to provide a starting feasible point (if one is known in advance) to the mixed-
integer solver. This can in many cases reduce solution time.

It is not necessary to specify the whole solution. MOSEK will attempt to use it to speed up
the computation. MOSEK will first try to construct a feasible solution by fixing integer variables
to the values provided by the user (rounding if necessary) and optimizing over the continuous vari-
ables. The outcome of this process can be inspected via information items "mioConstructSolution”
and "mioConstructSolutionObs", and via the Construct solution objective entry in the log. We
concentrate on a simple example below.

maximize Txg+ 10x1 + x5 + dx3

subject to o+ 1+ 22+ 23 <2.5 (7.11)
X0, T1,Ty €L ’
Lo, XL1,T2,T3 Z 0

Solution values can be set using Variable.SetLevel .

Listing 7.10: Implementation of problem (7.11) specifying an initial
solution.

// Assign values to integer wvariables.
// We only set a slice of z

double[] init_sol = { 1, 1, 0 };
x.Slice(0,3) .SetLevel(init_sol);

A more advanced application of Variable.SetLevel is presented in the case study on Multiprocessor
scheduling.

The log output from the optimizer will in this case indicate that the inputted values were used to
construct an initial feasible solution:

Construct solution objective : 1.950000000000e+01

The same information can be obtained from the API:

Listing 7.11: Retrieving information about usage of initial solution

int constr = M.GetSolverIntInfo("mioConstructSolution");

double constrVal = M.GetSolverDoubleInfo("mioConstructSolutionObj");
Console.WriteLine("Initial solution utilization: " + constr);
Console.WriteLine("Initial solution objective: " + constrVal);

35

7.6.3 Example MICO1

Integer variables can also be used arbitrarily in conic problems (except semidefinite). We refer to the
previous tutorials for how to set up a conic optimization problem. Here we present sample code that
sets up a simple optimization problem:
minimize 22 + y?
subject to x> e¥ + 3.8, (7.12)
z,y integer.

The canonical conic formulation of (7.12) suitable for Fusion API for .NET is

minimize ¢

subject to (t,z,y) € Q3 (t > /22 +y?)
(x—38,1,y) € Kexp (z—38>¢Y) (7.13)
x,y integer,
teR.

Listing 7.12: Implementation of problem (7.13).

using System;
using mosek.fusion;

namespace mosek.fusion.example

{
public class micol
{
public static void Main(string[] args)
{
using (Model M = new Model("micol"))
{
Variable x = M.Variable(Domain.Integral (Domain.Unbounded()));
Variable y = M.Variable(Domain.Integral (Domain.Unbounded())) ;
Variable t = M.Variable();
M.Constraint (Expr.Vstack(t, x, y), Domain.InQCone());
M.Constraint (Expr.Vstack (Expr.Sub(x, 3.8), 1, y), Domain.InPExpCone());
M.Objective(ObjectiveSense.Minimize, t);
M.Solve();
Console.WriteLine("x, y = {0}, {1}", x.Level() [0], y.Level()[0]);
}
}
}
}

Error and solution status handling were omitted for readability.

7.7 Geometric Programming

Geometric programs (GP) are a particular class of optimization problems which can be expressed in
special polynomial form as positive sums of generalized monomials. More precisely, a geometric problem
in canonical form is

minimize fo(z)

subject to fi(x) <1, i=1,...,m, (7.14)
z; >0, ji=1...,n,
where each fy, ..., [, is a posynomial, that is a function of the form

f(x) _ Z Ckxtllmmgkz CogQkn
k

36

with arbitrary real ay; and ¢ > 0. The standard way to formulate GPs in convex form is to introduce
a variable substitution

x; = exp(y;)-
Under this substitution all constraints in a GP can be reduced to the form

log(D_exp(afy +bx)) <0 (7.15)
k
involving a log-sum-exp bound. Moreover, constraints involving only a single monomial in x can be even
more simply written as a linear inequality:

a%ﬁ/ﬁ-bk <0

We refer to the MOSEK Modeling Cookbook and to /[BK VH07] for more details on this reformulation. A
geometric problem formulated in convex form can be entered into MOSEK with the help of exponential
cones.

7.7.1 Example GP1

The following problem comes from /[BKVH(7/. Consider maximizing the volume of a h x w x d box
subject to upper bounds on the area of the floor and of the walls and bounds on the ratios h/w and d/w:

maximize hwd
subject to 2(hw + hd) < Ayan,
wd < Aﬂoora (716)
a <h/w<g,
v <d/w <.

The decision variables in the problem are h,w,d. We make a substitution
h = exp(z),w = exp(y), d = exp(z)
after which (7.16) becomes

maximize = +y+ 2

subject to log(exp(x + y + log(2/Awan)) + exp(x + z + log(2/Awan))) <0,
y+z< log(Aﬂoor)7 (717)
log(ar) < & —y < log(B),
log(v) < z —y < log(d).

Next, we demonstrate how to implement a log-sum-exp constraint (7.15). It can be written as:

ug > explary +by), (equiv. (u,1,aly+ br) € Kexp),
E:k'uk =1.

This presentation requires one extra variable uy for each monomial appearing in the original posynomial
constraint.

(7.18)

Listing 7.13: Implementation of log-sum-exp as in (7.18).

// Models log(sum(exp(dz+b))) <= 0.
// Each row of [A b] describes one of the ezp-terms
public static void logsumexp(Model M,
double[,] A,
Variable X,
double[]l D)

int k = A.GetLength(0);
Variable u = M.Variable(k);
M.Constraint (Expr.Sum(u), Domain.EqualsTo(1.0));
M.Constraint (Expr.Hstack(u,
Expr.ConstTerm(k, 1.0),
Expr.Add(Expr.Mul(A, x), b)), Domain.InPExpCone());

37

https://docs.mosek.com/modeling-cookbook/index.html

We can now use this function to assemble all constraints in the model. The linear part of the problem
is entered as in Sec. 7.1.

Listing 7.14: Source code solving problem (7.17).

public static double[] max_volume_box(double Aw, double Af,
double alpha, double beta, double gamma, double
—delta)
{
using (Model M = new Model("max_vol_box"))
{
Variable xyz = M.Variable(3);
M.0Objective("Objective", ObjectiveSense.Maximize, Expr.Sum(xyz));

logsumexp (M,
new double[,] {{1,1,0}, {1,0,1}},
Xyz,
new double[] {System.Math.Log(2.0/Aw), System.Math.Log(2.0/Aw)});

M.Constraint (Expr.Dot (new double[] {0,1,1}, xyz), Domain.LessThan(System.Math.

M.Constraint (Expr.Dot (new double[] {1,-1,0}, xyz), Domain.InRange(System.Math.
—Log(alpha),System.Math.Log(beta)));

M.Constraint (Expr.Dot (new double[] {0,-1,1}, xyz), Domain.InRange(System.Math.
—Log(gamma) ,System.Math.Log(delta)));

M.SetLogHandler (Console.QOut) ;
M.Solve();

double[] xyzVal = xyz.Level();
double[] hwdVal = new double[3];
for(int i=0; i<3; i++) hwdVal[i] = System.Math.Exp(xyzVall[il);

return hwdVal;
}
}

Given sample data we obtain the solution h,w, d as follows:

Listing 7.15: Sample data for problem (7.16).

public static void Main(String[] args)

{
double Aw = 200.0;
double Af = 50.0;
double alpha = 2.0;
double beta = 10.0;

double gamma = 2.0;
double delta 10.0;

double[] hwd = max_volume_box(Aw, Af, alpha, beta, gamma, delta);

Console.WriteLine("h={0:f4} w={1:f4} d={2:f4}", hwd[0], hwd[1], hwd[2]);

7.8 Library of basic functions

This section contains a library of small models of basic functions frequently appearing in optimization
models. It is essentially an implementation of the mathematical models from the MOSEK Modeling
Cookbook using Fusion API for .NET. These short code snippets can be seen as illustrative examples,
can be copy-pasted to other code, and can even be directly called when assembling optimization models
as we show in Sec. 7.8.6 (although this may be more suitable for prototyping; also note that additional

38

https://docs.mosek.com/modeling-cookbook/index.html
https://docs.mosek.com/modeling-cookbook/index.html

variables and constraints will be introduced and there is no error checking).

7.8.1 Variable and constraint management
Variable duplication
r=Yy

Listing 7.16: Duplicate variables.

/=y
public static void dup(Model M, Variable x, Variable y) {

M.Constraint (Expr.Sub(x,y), Domain.EqualsTo(0.0));
}

7.8.2 Linear operations

Absolute value
t > |z|

Listing 7.17: Absolute value.

// t >= |z|, where t, = have the same shape

public static void abs(Model M, Variable t, Variable x) {
M.Constraint (Expr.Add(t,x), Domain.GreaterThan(0.0));
M.Constraint (Expr.Sub(t,x), Domain.GreaterThan(0.0));

}

1-norm
> Zi |]

Listing 7.18: 1-norm.

// t >= sum([z_4i]), = is a wector Variable

public static void normil(Model M, Variable t, Variable x) {
Variable u = M.Variable(x.GetShape(), Domain.Unbounded());
abs(M, u, x);
M.Constraint (Expr.Sub(t, Expr.Sum(u)), Domain.GreaterThan(0.0));

}

7.8.3 Quadratic and power operations

Square

t > 2?2

Listing 7.19: Square.

// t >=x°2
public static void sq(Model M, Variable t, Variable x) {
M.Constraint (Expr.Hstack(0.5, t, x), Domain.InRotatedQCone());

}

2-norm

t> /27

39

Listing 7.20: 2-norm.

// t >= sqrt(z_1°2 + ... + z_n"2) where = is a vector
public static void norm2(Model M, Variable t, Variable x) {
M.Constraint (Expr.Vstack(t, x), Domain.InQCone());

}

Powers
t=zfP,p>1

Listing 7.21: Power.

// t >= |z|"p (where p>1)
public static void pow(Model M, Variable t, Variable x, double p) {
M.Constraint (Expr.Hstack(t, 1, x), Domain.InPPowerCone(1.0/p));

}

t>1/aP, 2 >0,p>0

Listing 7.22: Power reciprocal.

// t >= 1/]z|"p, >0 (where p>0)
public static void pow_inv(Model M, Variable t, Variable x, double p) {
M.Constraint (Expr.Hstack(t, x, 1), Domain.InPPowerCone(1.0/(1.0+p)));

}

p-norm
t> (3, alP) /P, p > 1

Listing 7.23: p-norm.

// t >= \lz\/_p (where p>1), z is a vector Variable
public static void pnorm(Model M, Variable t, Variable x, double p) {
int n = (int) x.GetSize();
Variable r = M.Variable(n);
M.Constraint (Expr.Sub(t, Expr.Sum(r)), Domain.EqualsTo(0.0));
M.Constraint (Expr.Hstack(Var.Repeat(t,n), r, x), Domain.InPPowerCone(1.0-1.0/p));

Geometric mean

Listing 7.24: Geometric mean.

// It] <= (z_1...z_n)"~(1/n), z_i>=0, = is a vector Variable of length >= 1
public static void geo_mean(Model M, Variable t, Variable x) {
int n = (int) x.GetSize();
if (n==1) {
abs(M, x, t);
}
else {

Variable t2 = M.Variable();
M.Constraint (Expr.Hstack(t2, x.Index(n-1), t), Domain.InPPowerCone(1.0-1.0/n));

geo_mean(M, t2, x.Slice(0,n-1));

40

7.8.4 Exponentials and logarithms

log
t<logz, x>0

Listing 7.25: Logarithm.

// t <= log(z), =>=0
public static void log(Model M, Variable t, Variable x) {
M.Constraint (Expr.Hstack(x, 1, t), Domain.InPExpCone());

}

exp

t>e”

Listing 7.26: Exponential.

// t >= exp(z)
public static void exp(Model M, Variable t, Variable x) {
M.Constraint (Expr.Hstack(t, 1, x), Domain.InPExpCone());

}

Entropy

t>xlogz, x>0

Listing 7.27: Entropy.

// t >=x * log(z), ©>=0
public static void ent(Model M, Variable t, Variable x) {
M.Constraint (Expr.Hstack(l, x, Expr.Neg(t)), Domain.InPExpCone());

}

Relative entropy

t>zlogzx/y, x,y>0

Listing 7.28: Relative entropy.

/)t >=z * log(z/y), z,y>=0
public static void relent(Model M, Variable t, Variable x, Variable y) {
M.Constraint (Expr.Hstack(y, x, Expr.Neg(t)), Domain.InPExpCone());

}

Log-sum-exp
log>, e <t

Listing 7.29: Log-sum-exp.

// log(sum_i(ezp(z_i))) <= t, where z is a vector
public static void logsumexp(Model M, Variable t, Variable x) {
int n = (int) x.GetSize();
Variable u = M.Variable(n);
M.Constraint (Expr.Hstack(u, Expr.ConstTerm(n, 1.0), Expr.Sub(x, Var.Repeat(t, n))),,
—Domain.InPExpCone()) ;
M.Constraint (Expr.Sum(u), Domain.LessThan(1.0));

}

41

7.8.5 Integer Modeling

Semicontinuous variable

x€{0}U][a,b],b>a>0

Listing 7.30: Semicontinuous variable.

// =0 o0orac<=gz<=b

public static void semicontinuous(Model M, Variable x, double a, double b) {
Variable u = M.Variable(x.GetShape(), Domain.Binary());
M.Constraint (Expr.Sub(x, Expr.Mul(a, u)), Domain.GreaterThan(0.0));
M.Constraint (Expr.Sub(x, Expr.Mul(b, u)), Domain.LessThan(0.0));

}

Indicator variable

x#0 = t=1. We assume z is a priori normalized so |z;| < 1.

Listing 7.31: Indicator variable.

// x!=0 implies t=1. Assumes that [z/<=1 in advance.

public static void indicator(Model M, Variable t, Variable x) {
M.Constraint(t, Domain.InRange(0,1));
t.MakeInteger();
abs(M, t, x);

}

Logical OR

At least one of the conditions is true.

Listing 7.32: Logical OR.

// = OR Yy, where z, y are binary

public static void logic_or(Model M, Variable x, Variable y) {
M.Constraint (Expr.Add(x, y), Domain.GreaterThan(1.0));

}

// z_1 OR ... OR z_n, where z %is a binary vector

public static void logic_or_vect(Model M, Variable x) {
M.Constraint (Expr.Sum(x), Domain.GreaterThan(1.0));

}

Logical NAND

At most one of the conditions is true (also known as SOS1).

Listing 7.33: Logical NAND.

// at most onme of z_1,...,z_n, where = s a binary vector (S0S1 Constraint)

public static void logic_sosl(Model M, Variable x) {
M.Constraint (Expr.Sum(x), Domain.LessThan(1.0));

}

// NOT(z AND y), where z, y are binary

public static void logic_nand(Model M, Variable x, Variable y) {
M.Constraint (Expr.Add(x, y), Domain.LessThan(1.0));

}

Cardinality bound

At most k of the continuous variables are nonzero. We assume z is a priori normalized so |z;| < 1.

42

Listing 7.34: Cardinality bound.

// At most k of entries in z are nonzero, assuming in advance [z_i/[<=1.
public static void card(Model M, Variable x, int k) {

Variable t = M.Variable(x.GetShape(), Domain.Binary());

abs(M, t, x);

M.Constraint (Expr.Sum(t), Domain.LessThan(k));
}

7.8.6 Model assembly example
We now demonstrate how to quickly build a simple optimization model for the problem

maximize —\/m +logy —z'?, (7.19)
subject to = >y + 3, '

or equivalently

maximize —tg+ t1 — to,
subject to = >y+ 3,
to > \/ 22 + Zl/27
t1 <logy,
ty > ald.

Listing 7.35: Modeling (7.19).

public static void testExample() {
Model M = new Model();
Variable x = M.Variable();
Variable y = M.Variable();
Variable t = M.Variable(3);

M.Constraint (Expr.Sub(x, y), Domain.GreaterThan(3.0));
norm2(M, t.Index(0), Var.Vstack(x,y));

log (M, t.Index(1), y);

pow (M, t.Index(2), x, 1.5);

M.Objective(ObjectiveSense.Maximize, Expr.Dot(t, new double[]{-1,1,-1}));

7.9 Model Parametrization and Reoptimization

This tutorial demonstrates how to construct a model with a fixed structure and reoptimize it by chang-
ing some of the input data. If you instead want to dynamically modify the model structure between
optimizations by adding variables, constraints etc., see the other reoptimization tutorial Sec. 7.10.

For this tutorial we solve the following variant of linear regression with elastic net regularization:

minimize, ||Az — bl + A1]|z||1 + A2|lz||2

where A € R™*" b € R™. The optimization variable is x € R™ and A1, Ao are two nonnegative numbers
indicating the tradeoff between the linear regression objective, a lasso (¢1-norm) penalty and a ridge
(¢2-norm) regularization. The representation of this problem compatible with MOSEK input format is

minimize ¢+ X\ >, pi + Aog

subject to (t, Az —b) € Q™
Pi Z |.Z‘1|, 1= 1,...,n,
(q,r) € QL.

43

7.9.1 Creating a model

Before creating a parametrized model we should analyze which parts of the model are fixed once for all,
and which parts do we intend to change between optimizations. Here we make the following assumption:

e the matrix A will not change,
e we want to solve the problem for many target vectors b,
e we want to experiment with different tradeoffs A1, Ao.

That leads us to construct the model with A provided from the start as fixed input and declare
b, A1, A2 as parameters. The initial model construction is shown below. Parameters are objects of type
Parameter, created with the method Model.Parameter. We exploit the fact that parameters can have
shapes, just like variables and expressions, and that they can be used everywhere within an expression
where a constant of the same shape would be suitable.

Listing 7.36: Constructing a parametrized model.

public static Model initializeModel(int m, int n, double[,] A) {
Model M = new Model();
Variable x = M.Variable("x", n);

// t >= [Az-b[/_2 where b is a parameter

Parameter b = M.Parameter("b", m);

Variable t = M.Variable();

M.Constraint (Expr.Vstack(t, Expr.Sub(Expr.Mul(A, x), b)), Domain.InQCone());

// p_i o >= |z_il, i=1..n
Variable p = M.Variable(n);
M.Constraint (Expr.Hstack(p, x), Domain.InQCone());

// q >= |z]_2
Variable q = M.Variable();
M.Constraint (Expr.Vstack(q, x), Domain.InQCone());

// Objective, parametrized with lambdal, lambdaZ2

// t + lambdal#*sum(p) + lambdal+*q

Parameter lambdal = M.Parameter("lambdal");

Parameter lambda2 = M.Parameter ("lambda2");

Expression obj = Expr.Add(new Expression[] {t, Expr.Mul(lambdal, Expr.Sum(p)), Expr.
—Mul (lambda2, @)});

M.0Objective(ObjectiveSense.Minimize, obj);

// Return the ready model
return M;

}

For the purpose of the example we take

1 2
3 4
A= -2 -1
-4 -3

and we initialize the parametrized model:

Listing 7.37: Initializing the model

//Create a small example

int m = 4;

int n = 2;

double[,] A = { {t.0, 2.0},
{3.0, 4.0%},

(continues on next page)

44

(continued from previous page)

{-2.0, -1.03},
{-4.0, -3.0} };
double[] sol;
Model M = initializeModel(m, n, A);

// For conventience retrieve some elements of the model
Parameter b = M.GetParameter("b");

Parameter lambdal = M.GetParameter("lambdal");
Parameter lambda2 = M.GetParameter ("lambda2");
Variable x = M.GetVariable("x");

We made sure to keep references to the interesting elements of the model, in particular the parameter
objects we are about to set values of.

7.9.2 Setting parameters

For the first solve we use
b=10.1,1.2, —1.1,3.0]T, A1 =0.1, Ay =0.01.

Parameters are set with method Parameter.SetValue. We set the parameters and solve the model as
follows:

Listing 7.38: Setting parameters and solving the model.

// First solwe

b.SetValue(new double[]{0.1, 1.2, -1.1, 3.0});
lambdal.SetValue(0.1);

lambda2.SetValue(0.01);

M.Solve();
sol = x.Level();
Console.WriteLine("Objective {0}, solution {1}, {2}", M.PrimalObjValue(), sol[0],

—s0l1[1]);

7.9.3 Changing parameters

Let us say we now want to increase the weight of the lasso penalty in order to favor sparser solutions.
We can simply change that parameter, leave the other ones unchanged, and resolve:

Listing 7.39: Changing a parameter and resolving

// Increase lambdal
lambdal.SetValue(0.5);

M.Solve();
sol = x.Level();
Console.WriteLine("Objective {0}, solution {1}, {2}", M.PrimalObjValue(), sol[0],

—s0l1[1]);

Next, we might want to solve a few instances of the problem for another value of b. Again, we reset
the relevant parameters and solve:

Listing 7.40: Changing parameters and resolving

// Now change the data completely
b.SetValue(new double[] {1.0, 1.0, 1.0, 1.0});
lambdal.SetValue(0.0);

lambda2.SetValue(0.0);

M.Solve();

(continues on next page)

45

(continued from previous page)

sol = x.Level();
Console.WriteLine("Objective {0}, solution {1}, {2}", M.PrimalObjValue(), sol[0],
—s01[1]);

// And increase lamdaZ2
lambda2.SetValue(1.4145);

M.Solve();

sol = x.Level();

Console.WriteLine("Objective {0}, solution {1}, {2}", M.PrimalObjValue(), sol[0],
—s0l1[1]);

7.9.4 Additional remarks

e Domains cannot be parametrized, therefore to parametrize a bound, such as z > p, it is necessary
to write it as x —p > 0.

e Coeflicients appearing at semidefinite terms cannot be parametrized. If it is necessary to have a
parametrized expression such as pX; ;, introduce an auxiliary scalar variable x = X; ; and use px
in the model.

e Parametrized models can be found in the following examples: alan.cs, portfolio_2_frontier.
cs, portfolio_5_card.cs, total_variation.cs.

7.10 Problem Modification and Reoptimization

This tutorial demonstrates how to modify a model by adding new elements and changing existing ones.
If instead you want to create one model of fixed structure and reoptimize it for changing input data, see
Sec. 7.9.

The example we study is a simple production planning model.

Problem modifications regarding variables, cones, objective function and constraints can be grouped
in categories:

e adding constraints and variables,
e modifying existing constraints.

Adding new variables and constraints is very easy. Modifications to existing constraints are more
cumbersome, and the user should consider whether it is not worth rebuilding the model from scratch
in such case. The amount of work required by Fusion to update the optimizer task may outweigh the
potential gains.

Depending on the type of modification, MOSEK may be able to optimize the modified problem more
efficiently exploiting the information and internal state from the previous execution. After optimization,
the solution is always stored internally, and is available before next optimization. The former optimal
solution may be still feasible, but no longer optimal; or it may remain optimal if the modification of the
objective function was small.

In general, MOSEK exploits dual information and availability of an optimal basis from the previous
execution. The simplex optimizer is well suited for exploiting an existing primal or dual feasible solution.
Restarting capabilities for interior-point methods are still not as reliable and effective as those for the
simplex algorithm. More information can be found in Chapter 10 of the book [Chv83].

Parameter settings (see Sec. 8.4) can also be changed between optimizations.

7.10.1 Example: Production Planning

A company manufactures three types of products. Suppose the stages of manufacturing can be split into
three parts: Assembly, Polishing and Packing. In the table below we show the time required for each
stage as well as the profit associated with each product.

46

Product no. | Assembly (minutes) | Polishing (minutes) | Packing (minutes) | Profit ($)
0 2 3 2 1.50
1 4 2 3 2.50
2 3 3 2 3.00

With the current resources available, the company has 100,000 minutes of assembly time, 50,000
minutes of polishing time and 60,000 minutes of packing time available per year. We want to know how
many items of each product the company should produce each year in order to maximize profit?

Denoting the number of items of each type by xg,z; and x5, this problem can be formulated as a
linear optimization problem:

maximize 1.5zg9 + 2.5x;1 + 3.0x2

subject to 2z + 4x; + 3xo < 100000, (7.20)
3z + 221 + 3z < 50000, '
29 + 31 + 2x2 < 60000,

and
zo, x1, 2 2 0.
Code in Listing 7.41 loads and solves this problem.

Listing 7.41: Setting up and solving problem (7.20)

double[] ¢ = new double[] { 1.5, 2.5, 3.0 };
double[,] A = new doublel[,] { {2, 4, 3},

{3’ 2’ 3})
{2, 3, 2} };
double[] b = new double[] { 100000.0, 50000.0, 60000.0 };

int numvar = c.Length;
int numcon = b.Length;

// Create a model and input data

Variable x = M.Variable(numvar, Domain.GreaterThan(0.0));
Constraint con = M.Constraint (Expr.Mul(A, x), Domain.LessThan(b));
M.0Objective(ObjectiveSense.Maximize, Expr.Dot(c, x));

// Solve the problem

M.Solve();

7.10.2 Changing the Linear Constraint Matrix

Suppose we want to change the time required for assembly of product 0 to 3 minutes. This corresponds
to setting ag,0 = 3. Now the Constraint provides the method Constraint.Update, which can replace
the columns corresponding to a variable with new values (or to replace the whole constraint). In our
case the update we need is replacing 1 - x¢ with 3 - 2y in the constraint with index 0.

con.Index(0).Update(Expr.Mul(3.0, x.Index(0)), x.Index(0));

The problem now has the form:

maximize 1.5z9 + 2.5x;1 + 3.0x9

subject to 3xp + 4x; 4+ 3z < 100000, (7.21)
3z + 221 + 3z < 50000, '
200 4+ 3xz1 + 2z < 60000,

and
Zo,T1,T2 Z 0.

After this operation we can reoptimize the problem.

47

7.10.3 Appending Variables

We now want to add a new product with the following data:

Product no. | Assembly (minutes) | Polishing (minutes) | Packing (minutes) | Profit ($)

3 4 0 1 1.00

This corresponds to creating a new variable x3, appending a new column to the A matrix and setting
a new term in the objective. We do this in Listing 7.42

Listing 7.42: How to add a new variable (column)

Jrxkxkxkrkrkrkrk Add a mew variable *¥kkkkkkKEKKKKKKKKKKKKKKKKK KK KK)

// Create a variable and a compound view of all variables

Variable x3 = M.Variable(Domain.GreaterThan(0.0));

Variable xNew = Var.Vstack(x, x3);

// 4dd to the ezising constraint

con.Update (Expr .Mul (x3, new double[]{4, 0, 1}), x3);

// Change the objective to include z3

M.Objective(ObjectiveSense.Maximize, Expr.Dot(new double[]{1.5,2.5,3.0,1.0}, xNew));

After this operation the new problem is:

and

maximize 1.5z9 + 2.521 + 3.0x2 + 1.0x3

subject to 3xg 4+ 4x; 4+ 3z + 4dxzz < 100000, (7.22)
3xg + 211 + 3o < 50000, ’
2{E0 —+ 31‘1 —+ 21‘2 + 1I3 S 60000,

Zo,T1, T2, 3 > 0.

7.10.4 Appending Constraints

Now suppose we want to add a new stage to the production process called Quality control for which
30000 minutes are available. The time requirement for this stage is shown below:

Product no. | Quality control (minutes)
0 1
1 2
2 1
3 1

This corresponds to adding the constraint

To + 221 + 22 + x3 < 30000

to the problem. This is done as follows.

Listing 7.43: Adding a new constraint.

JEKkEKFRK KRN ENRNE* Add Q@ NEW CONSETAINT ¥ ¥k kKK KKK KKKKKKKKKKKKKK KKK KKK/
Constraint con2 = M.Constraint (Expr.Dot(xNew, new double[]{1, 2, 1, 1}), Domain.

—LessThan(30000.0));

Again, we can continue with re-optimizing the modified problem.

7.10.5 Changing bounds

One typical reoptimization scenario is to change bounds. Suppose for instance that we must operate
with limited time resources, and we must change the upper bounds in the problem as follows:

48

Operation Time available (before)

Time available (new)

Assembly 100000 80000

Polishing 50000 40000

Packing 60000 50000

Quality control | 30000 22000

That means we would like to solve the problem:

maximize 1.5z9 + 2.5x;1 + 3.0xs + 1.0x3

subject to 3zy 4+ 4x1 + 3z + 4dxz < 80000,
3rg + 2x1 4+ 3xo < 40000,
2(E0 + 3£C1 + 21’2 +].5173 < 50000,
Xo + 2x + T2 + T3 < 22000.

(7.23)

Since Domain objects are immutable, we cannot change the constraints by simply updating the value
inside domains. To circumvent this, we add the differences between new and old bounds as fixed terms

to the constraint expression. That means, we effectively construct an equivalent problem:

maximize 1.bzg + 2521 + 3.0x9
subject to 3xzg + 4dx; + 3o
3o + 2z + 3x9
2x0 + 3r; + 2z
o + 21 4+ @2

The next listing shows how to do it.

+ 101’3
+ 4%3
+ 1z
+ T3

20000
10000
10000
8000

++ 4+

Listing 7.44: Change constraint bounds.

INIAINIA

100000,
50000,
60000,
30000.

(7.24)

[HRRRFRFRFRFRARAXF Change cONSTTAINt DOUNAS *F*k*k* kX kKKK KKK KK FHFRKN NN/
// Assemble all constraints we previously defined into one
Constraint cAll = Constraint.Vstack(con, con2);
// Change bounds by effectively updating fized terms with the difference
cAll.Update(new double[]1{20000, 10000, 10000, 8000});

Again, we can continue with re-optimizing the modified problem.

7.10.6 Advanced hot-start

If the optimizer used the data from the previous run to hot-start the optimizer for reoptimization, this

will be indicated in the log:

Optimizer - hotstart : yes

When performing re-optimizations, instead of removing a basic variable it may be more efficient to
fix the variable at zero and then remove it when the problem is re-optimized and it has left the basis.
This makes it easier for MOSEK to restart the simplex optimizer.

For a more in-depth treatment see the following sections:

e (ase studies for more advanced and complicated optimization examples.

e Problem Formulation and Solutions for formal mathematical formulations of problems MOSEK
can solve, dual problems and infeasibility certificates.

49

Chapter 8

Solver Interaction Tutorials

In this section we cover the interaction with the solver.

8.1 Accessing the solution

This section contains important information about the status of the solver and the status of the solution,
which must be checked in order to properly interpret the results of the optimization.

8.1.1 Solver termination

If an error occurs during optimization then the method Model.Solve will throw an exception of type
OptimizeError. The method FusionRuntimeEzception.ToString will produce a description of the
error, if available. More about exceptions in Sec. 8.2.

If a runtime error causes the program to crash during optimization, the first debugging step is to
enable logging and check the log output. See Sec. 8.3.

If the optimization completes successfully, the next step is to check the solution status, as explained
below.

8.1.2 Available solutions

MOSEK uses three kinds of optimizers and provides three types of solutions:
e basic solution from the simplex optimizer,
e interior-point solution from the interior-point optimizer,
e integer solution from the mixed-integer optimizer.
Under standard parameters settings the following solutions will be available for various problem types:

Table 8.1: Types of solutions available from MOSEK

Simplex optimizer Interior-point opti- | Mixed-integer opti-
mizer mizer
Linear problem SolutionType. SolutionType.
Basic Interior
Conic (nonlinear) problem SolutionType.
Interior
Problem with integer vari- SolutionType.
ables Integer

For linear problems the user can force a specific optimizer choice making only one of the two solutions
available. For example, if the user disables basis identification, then only the interior point solution will
be available for a linear problem. Numerical issues may cause one of the solutions to be unknown even
if another one is feasible.

Not all components of a solution are always available. For example, there is no dual solution for
integer problems and no dual conic variables from the simplex optimizer.

50

The user will always need to specify which solution should be accessed.

Moreover, the user may be oblivious to the actual solution type by always referring to SolutionType.
Default, which will automatically select the best available solution, if there is more than one. Moreover,
the method Model.SelectedSolution can be used to fix one solution type for all future references.
8.1.3 Problem and solution status
Assuming that the optimization terminated without errors, the next important step is to check the

problem and solution status. There is one for every type of solution, as explained above.

Problem status

Problem status (ProblemStatus, retrieved with Yodel.GetProblemStatus) determines whether the
problem is certified as feasible. Its values can roughly be divided into the following broad categories:

e feasible — the problem is feasible. For continuous problems and when the solver is run with default
parameters, the feasibility status should ideally be ProblemStatus.PrimalAndDualFeasible.

e primal/dual infeasible — the problem is infeasible or unbounded or a combination of those.
The exact problem status will indicate the type of infeasibility.

e unknown — the solver was unable to reach a conclusion, most likely due to numerical issues.

Solution status

Solution status (SolutionStatus, retrieved with Model.GetPrimalSolutionStatus and Model.
GetDualSolutionStatus) provides the information about what the solution values actually contain.
The most important broad categories of values are:

e optimal (SolutionStatus.Optimal) — the solution values are feasible and optimal.

e certificate — the solution is in fact a certificate of infeasibility (primal or dual, depending on the
solution).

e unknown/undefined — the solver could not solve the problem or this type of solution is not
available for a given problem.

The solution status determines the action to be taken. For example, in some cases a suboptimal
solution may still be valuable and deserve attention. It is the user’s responsibility to check the status
and quality of the solution.

Typical status reports

Here are the most typical optimization outcomes described in terms of the problem and solution
statuses. Note that these do not cover all possible situations that can occur.

Table 8.2: Continuous problems (solution status for

SolutionType.Interior or SolutionType.Basic)

Outcome Problem status Solution status (pri- | Solution status
mal) (dual)

Optimal ProblemStatus. SolutionStatus. SolutionStatus.
PrimalAndDualFeasible Optimal Optimal

Primal infeasible ProblemStatus. SolutionStatus. SolutionStatus.
PrimalInfeasible Unknown Certificate

Dual infeasible (un- | ProblemStatus. SolutionStatus. SolutionStatus.

bounded) Duallnfeasible Certificate Unknown

Uncertain (stall, numeri- | ProblemStatus. Unknown SolutionStatus. SolutionStatus.

cal issues, etc.) Unknown Unknown

51

Table 8.3: Integer problems (solution status for SolutionType.

Integer, others undefined)

Outcome Problem status Solution status (primal) | Solution status (dual)
Integer optimal ProblemStatus. SolutionStatus. SolutionStatus.
PrimalFeasible Optimal Unknoun
Infeasible ProblemStatus. SolutionStatus. SolutionStatus.
PrimallInfeasible Unknown Unknown
Integer feasible | ProblemStatus. SolutionStatus. SolutionStatus.
point PrimalFeasible Feasible Unknown
No conclusion ProblemStatus. Unknoun SolutionStatus. SolutionStatus.
Unknouwn Unknown

8.1.4 Retrieving solution values

After the meaning and quality of the solution (or certificate) have been established, we can query for the
actual numerical values. They can be accessed using:

e Model.PrimalObjValue, Model.DualObjValue — the primal and dual objective value.
e Variable.Level — solution values for the variables.
e Constraint.Level — values of the constraint expressions in the current solution.

e Constraint.Dual, Vartable.Dual — dual values.

Remark

By default only optimal solutions are returned. An attempt to access a solution with a weaker
status will result in an exception. This can be changed by choosing another level of acceptable solutions
with the method Model.AcceptedSolutionStatus. In particular, this method must be called to enable
retrieving suboptimal solutions and infeasibility certificates. For instance, one could write

M.AcceptedSolutionStatus(fusion.AccSolutionStatus.Feasible);

The current setting of acceptable solutions can be checked with Model. GetdcceptedSolutionStatus.

8.1.5 Source code example

Below is a source code example with a simple framework for assessing and retrieving the solution to a
conic optimization problem.

Listing 8.1: Sample framework for checking optimization result.

public static void Main(String[] argv) {
Model M = new Model();

// (Optional) set a log stream
// M.SetLogHandler(Console.Out);

// (Optional) uncomment to see what happens when solution status is unknown
// M.SetSolverParam("intpntMazIterations”, 1);

// In this example we set up a small conic problem
SetupExample (M) ;

// Optimize
try
{

M.Solve();

(continues on next page)

52

(continued from previous page)

// We expect solution status OPTIMAL (this is also default)
M.AcceptedSolutionStatus(AccSolutionStatus.Optimal);

Variable x = M.GetVariable("x");
long xsize = x.GetSize();
double[] xVal = x.Level();
Console.Write("Optimal value of x = ");
for(int i = 0; i < xsize; ++i)
Console.Write(xVall[i] + " ");
Console.WriteLine("\nOptimal primal objective: " + M.PrimalObjValue());
// .. continue analyzing the solution

}
catch (OptimizeError e)
{
Console.WriteLine("Optimization failed. Error: " + e.ToString());
}
catch (SolutionError)
{
// The solution with at least the expected status was not avatilable.
// We try to diagnoze why.
Console.WriteLine("Requested solution was not available.");
ProblemStatus prosta = M.GetProblemStatus();
switch(prosta)
{
case ProblemStatus.Duallnfeasible:
Console.WriteLine("Dual infeasibility certificate found.");
break;

case ProblemStatus.PrimalInfeasible:
Console.WriteLine("Primal infeasibility certificate found.");
break;

case ProblemStatus.Unknown:
// The solutions status ts unknown. The termination code
// indicates why the optimizer terminated prematurely.
Console.WriteLine("The solution status is unknown.");
StringBuilder symname = new StringBuilder();
StringBuilder desc = new StringBuilder();
Env.getcodedesc((rescode)M.GetSolverIntInfo("optimizeResponse"), symname, desc);
Console.WriteLine(" Termination code: {0} {1}", symname, desc);
break;

default:
Console.WriteLine("Another unexpected problem status: " + prosta);
break;
}
3

catch (Exception e)

{

Console.WriteLine("Unexpected error: " + e.ToString());

}

M.Dispose();
}

53

8.2 Errors and exceptions

Exceptions

Almost every method in Fusion API for .NET can throw an exception informing that the requested
operation was not performed correctly, and indicating the type of error that occurred. This is the case
in situations such as for instance:

e incompatible dimensions in a linear expression,
e defining an invalid value for a parameter,

e accessing an undefined solution,

e repeating a variable name, etc.

It is therefore a good idea to catch exceptions of type FusionExzception and its specific subclasses.
The one case where it is extremely important to do so is when Model.Solve is invoked. We will say
more about this in Sec. 8.1.

The exception contains a short diagnostic message. They can be accessed as in the following example.

try {
M.SetSolverParam("intpntCoTolRelGap", 1.01);

} catch (mosek.fusion.ParameterError e) {
Console.WriteLine("Error: {0}", e.ToString());

}

It will produce as output:

Error: Invalid value for parameter (intpntCoTolRelGap)

Optimizer errors and warnings

The optimizer may also produce warning messages. They indicate non-critical but important events,
that will not prevent solver execution, but may be an indication that something in the optimization
problem might be improved. Warning messages are normally printed to a log stream (see Sec. 8.3). A
typical warning is, for example:

MOSEK warning 53: A numerically large upper bound value 6.6e+09 is specified for constraint
—'C69200" (46020) .

Error and solution status handling example

Below is a source code example with a simple framework for handling major errors when assessing
and retrieving the solution to a conic optimization problem.

Listing 8.2: Sample framework for checking optimization result.

public static void Main(String[]l argv) {
Model M = new Model();

// (Optional) set a log stream
// M.SetLogHandler(Console.Out);

// (Optional) uncomment to see what happens when solution status is unknown
// M.SetSolverParam("intpntMazIterations”, 1);

// In this exzample we set up a small conic problem
SetupExample (M) ;

// Optimize

(continues on next page)

54

(continued from previous page)

try
{
M.Solve();

// We expect solution status OPTIMAL (this is also default)
M.AcceptedSolutionStatus(AccSolutionStatus.Optimal);

Variable x = M.GetVariable("x");
long xsize = x.GetSize();
double[] xVal = x.Level();
Console.Write("Optimal value of x = ");
for(int i = 0; i < xsize; ++i)
Console.Write(xVall[i] + " ");
Console.WriteLine("\nOptimal primal objective: " + M.PrimalObjValue());

// .. continue analyzing the solution
}
catch (OptimizeError e)
{
Console.WriteLine("Optimization failed. Error: " + e.ToString());
}
catch (SolutionError)
{
// The solution with at least the exzpected status was mot available.
// We try to diagnoze why.
Console.WriteLine("Requested solution was not available.");
ProblemStatus prosta = M.GetProblemStatus();
switch(prosta)
{
case ProblemStatus.DualInfeasible:
Console.WriteLine("Dual infeasibility certificate found.");
break;
case ProblemStatus.Primallnfeasible:
Console.WriteLine("Primal infeasibility certificate found.");
break;
case ProblemStatus.Unknown:
// The solutions status is unknown. The termination code
// indicates why the optimizer terminated prematurely.
Console.WriteLine("The solution status is unknown.");
StringBuilder symname = new StringBuilder();
StringBuilder desc = new StringBuilder();
Env.getcodedesc((rescode)M.GetSolverIntInfo("optimizeResponse"), symname, desc);
Console.WriteLine(" Termination code: {0} {1}", symname, desc);
break;
default:
Console.WriteLine("Another unexpected problem status: " + prosta);
break;
}
}
catch (Exception e)
{
Console.WriteLine("Unexpected error: " + e.ToString());
}

M.Dispose();
}

55

8.3 Input/Output

The Model class is also a proxy for input/output operations related to an optimization model.

8.3.1 Stream logging

By default the solver runs silently and does not produce any output to the console or otherwise. However,
the log output can be redirected to a user-defined output stream or stream callback function. The log
output is analogous to the one produced by the command-line version of MOSEK.

To redirect all log messages use the method Model.SetLogHandler. For instance, we can use the
standard output:

M.SetLogHandler (Console.Qut) ;

A log stream can be detached by passing NULL.

8.3.2 Log verbosity

The logging verbosity can be controlled by setting the relevant parameters, as for instance
e log,
e logIntpnt,
e logMio,
e logCutSecondlpt,
e logSim, and
e logSimMinor.

Each parameter controls the output level of a specific functionality or algorithm. The main switch is
log which affect the whole output. The actual log level for a specific functionality is determined as the
minimum between log and the relevant parameter. For instance, the log level for the output produce by
the interior-point algorithm is tuned by the logIntpnt; the actual log level is defined by the minimum
between log and logIntpnt.

Tuning the solver verbosity may require adjusting several parameters. It must be noticed that verbose
logging is supposed to be of interest during debugging and tuning. When output is no more of interest,
the user can easily disable it globally with log. Larger values of 1og do not necessarily result in increased
output.

By default MOSEK will reduce the amount of log information after the first optimization on a given
problem. To get full log output on subsequent re-optimizations set logCutSecondOpt to zero.

8.3.3 Saving a problem to a file

An optimization model defined in Fusion can be dumped to a file using the method Model. WriteTask.
The file format will be determined from the filename’s extension. Supported formats are listed in Sec.
15 together with a table of problem types supported by each.

For instance the problem can be written to an OPF file with

M.WriteTask("dump.opf");

All formats can be compressed with gzip by appending the .gz extension, for example

M.WriteTask("dump.task.gz");

Some remarks:

e The problem is written to the file as it is represented in the underlying optimizer task, that is
including auxiliary variables introduced by Fusion if necessary.

e Unnamed variables are given generic names. It is therefore recommended to use meaningful variable
names if the problem file is meant to be human-readable.

56

e The task format is MOSEK’s native file format which contains all the problem data as well as
solver settings.

8.3.4 Reading a problem from a file

It is not possible to read a file saved with Model.WriteTask back into Fusion because the structure
of the high-level optimization model is not saved. However, such problem files can be solved with the
command-line tool or read by the low-level Optimizer APT if necessary. See the documentation of those
interfaces for details.

8.4 Setting solver parameters

MOSEK comes with a large number of parameters that allows the user to tune the behavior of the
optimizer. The typical settings which can be changed with solver parameters include:

e choice of the optimizer for linear problems,

e choice of primal/dual solver,

e turning presolve on/off,

e turning heuristics in the mixed-integer optimizer on/off,
o level of multi-threading,

o feasibility tolerances,

e solver termination criteria,

e behaviour of the license manager,

and more. All parameters have default settings which will be suitable for most typical users.
The API reference contains:

e Full list of parameters

e List of parameters grouped by topic

Setting parameters

Each parameter is identified by a unique string name and it can accept either integers, floating point
values or symbolic strings. Parameters are set using the method Model.SetSolverParam. Fusion will
try to convert the given argument to the exact expected type, and will raise an exception if that fails.

Some parameters accept only symbolic strings from a fixed set of values. The set of accepted values
for every parameter is provided in the API reference.

For example, the following piece of code sets up parameters which choose and tune the interior point
optimizer before solving a problem.

Listing 8.3: Parameter setting example.

// Set log level (integer parameter)

M.SetSolverParam("log", 1);

// Select interior-point optimizer... (parameter with symbolic string values)
M.SetSolverParam("optimizer", "intpnt");

// ... without basis tdentification (parameter with symbolic string values)
M.SetSolverParam("intpntBasis", "never");

// Set relative gap tolerance (double parameter)
M.SetSolverParam("intpntCoTolRelGap", 1.0e-7);

// The same in a different way
// M.SetSolverParam("intpntCoTolRelGap", "1.0e-7");

(continues on next page)

57

(continued from previous page)

// Incorrect value
try {
M.SetSolverParam("intpntCoTolRelGap", -1);
}
catch (mosek.fusion.ParameterError e) {
Console.WriteLine("Wrong parameter value");

}

8.5 Retrieving information items

After the optimization the user has access to the solution as well as to a report containing a large amount
of additional information items. For example, one can obtain information about:

e timing: total optimization time, time spent in various optimizer subroutines, number of iterations,
etc.

e solution quality: feasibility measures, solution norms, constraint and bound violations, etc.
e problem structure: counts of variables of different types, constraints, nonzeros, etc.
e integer optimizer: integrality gap, objective bound, number of cuts, etc.

and more. Information items are numerical values of integer, long integer or double type. The full
list can be found in the API reference:

e Double information items
e Integer information items
e Long information items

Certain information items make sense, and are made available, also during the optimization process.
They can be accessed from a callback function, see Sec. 8.7 for details.

Remark

For efficiency reasons, not all information items are automatically computed after optimization. To
force all information items to be updated use the parameter autoUpdateSolInfo.

Retrieving the values

Values of information items are fetched using one of the methods
e Model.GetSolverDoublelInfo for a double information item,

e Model.GetSolverIntInfo for an integer information item,

e Model.GetSolverLIntInfo for a long integer information item.

Each information item is identified by a unique name. The example below reads two pieces of data
from the solver: total optimization time and the number of interior-point iterations.

Listing 8.4: Information items example.

double tm = M.GetSolverDoubleInfo("optimizerTime");
int it = M.GetSolverIntInfo("intpntIter");

Console.WriteLine("Time: " + tm);
Console.WriteLine("Iterations: " + it);

58

8.6 Stopping the solver

The Model provides the method Model.BreakSolver that notifies the solver that it must stop as soon as
possible. The solver will not terminate momentarily, as it only periodically checks for such notifications.
In any case, it will stop as soon as possible. The typical usage pattern of this method would be:

e build the optimization model M,

e create a separate thread in which M will run,

e break the solver by calling Yodel.BreakSolver from the main thread.
Warnings and comments:

e It is recommended to use the solver parameters to set or modify standard built-in termination
criteria (such as maximal running time, solution tolerances etc.). See Sec. 8.4.

e More complicated user-defined termination criteria can be implemented within a callback function.
See Sec. 8.7.

e The state of the solver and solution after termination may be undefined.

e This operation is very language dependent and particular care must be taken to avoid stalling or
other undesired side effects.

8.6.1 Example: Setting a Time Limit

For the purpose of the tutorial we will implement a busy-waiting breaker with the time limit as a termi-

nation criterion. Note that in practice it would be better just to set the parameter optimizerMazTime.
Suppose we built a model M that is known to run for quite a long time (in the accompanying example

code we create a particular integer program). Then we could create a new thread solving the model:

var T = new Thread(new ThreadStart(M.Solve));

In the main thread we are going to check if a time limit has elapsed. After calling Model.BreakSolver
we should wait for the solver thread to actually return. Altogether this scenario can be implemented as
follows:

Listing 8.5: Stopping solver execution.

var T = new Thread(new ThreadStart(M.Solve));
T.Start();

Stopwatch w = new Stopwatch(); w.Start();
while (true)

{

if (w.ElapsedMilliseconds > timeout * 1000)

{
Console.WriteLine("Solver terminated due to timeout!");
M.BreakSolver();
T.Join();
break;

¥

if (! T.IsAlive) {
Console.WriteLine("Solver terminated before anything happened!");
T.Join();
break;
}
}

59

8.7 Progress and data callback

Callbacks are a very useful mechanism that allow the caller to track the progress of the MOSEK
optimizer. A callback function provided by the user is regularly called during the optimization and can
be used to

e obtain a customized log of the solver execution,

e collect information for debugging purposes or

e ask the solver to terminate.

Fusion API for .NET has the following callback mechanisms:

e progress callback, which provides only the basic status of the solver.

e data callback, which provides the solver status and a complete set of information items that

describe the progress of the optimizer in detail.

Warning

The callbacks functions must not invoke any functions of the solver, environment or task. Otherwise
the state of the solver and its outcome are undefined.

8.7.1 Data callback

In the data callback MOSEK passes a callback code and values of all information items to a user-
defined function. The callback function is called, in particular, at the beginning of each iteration of the
interior-point optimizer. For the simplex optimizers logSimFreq controls how frequently the call-back
is called. Note that the callback is done quite frequently, which can lead to degraded performance. If
the information items are not required, the simpler progress callback may be a better choice.

The data callback is set by calling the method Model.SetDataCallbackHandler.

The callback function must be implemented by extending the abstract class mosek.DataCallback
(see the manual for Optimizer API for details) and implementing the method

public override int callback(callbackcode caller,

double[] douinf,
int[] intinf,
longl[] lintinf)

Arguments:

e caller - the status of the optimizer.

e douinf - values of double information items.

e intinf - values of integer information items.

e lintinf - values of long information items.

Return value: Non-zero return value of the callback function indicates that the optimizer should
be terminated.
8.7.2 Progress callback

In the progress callback MOSEK provides a single code indicating the current stage of the optimization
process.

The callback is set by calling the method Yodel.SetCallbackHandler.

The callback function must be implemented by extending the abstract class mosek.Progress (see
the manual for Optimizer API for details) and implementing the method

public override int progressCB(callbackcode caller)

Arguments:

60

e caller - the status of the optimizer.

Return value: Non-zero return value of the callback function indicates that the optimizer should

be terminated.

8.7.3 Working example: Data callback

The following example defines a data callback function that prints out some of the information items.
It interrupts the solver after a certain time limit. Note that the time limit refers to time spent in the
solver and does not include setting up the model in Fusion.

Listing 8.6: An example of a data callback function.

class myCallback :

{

double maxtime;

Model M;

mosek.DataCallback

public myCallback(double maxtime_,

{

Model M_)

maxtime = maxtime_;

M= M_;
¥

public override int callback(callbackcode caller,

double opttime

int itrn;

double[]
int[]
long(]

= 0.0;

double pobj, dobj, stime;

switch (caller)

{

case callbackcode.begin_intpnt:
Console.WriteLine("Starting interior-point optimizer");

break;

case callbackcode.intpnt:

itrn
pobj
dobj
stime
opttime

Console.
Console.
Console.

break;

intinf[(int) iinfitem
douinf [(int) dinfitem.
douinf[(int) dinfitem.
douinf [(int) dinfitem.
douinf [(int) dinfitem.

douinf,
intinf,
lintinf)

.intpnt_iter 1;

intpnt_primal_obj];
intpnt_dual_obj 1;
intpnt_time 1;
optimizer_time];

WriteLine("Iterations: {0,-3}", itrmn);

WriteLine ("
WriteLine ("

case callbackcode.end_intpnt:
Console.WriteLine("Interior-point optimizer finished.");

break;

Elapsed: Time: {0,6:F2}({1:F2})", opttime, stime);
Primal obj.

: {0,-18:E6} Dual obj.: {1,018:E6}e", pobj, dobj);

case callbackcode.begin_primal_simplex:
Console.WriteLine("Primal simplex optimizer started.");

break;

case callbackcode.update_primal_simplex:

itrn
pobj
stime
opttime

intinf[(int) iinfitem.
douinf [