1LV S] ¢

MOSEK Command Line Tools
Release 9.2.19

MOSEK ApS

24 August 2020

Contents

1 Introduction

1.1

Why the Command Line Tools? 0.

2 Contact Information

3 License Agreement

4 Installation

4.1

Testing the installation o L e

5 The Command Line Tool

5.1 Introduction e e
5.2 Files. . . o Lo e
5.3 Example
5.4 Solver Parameters
5.5 Command Line Arguments
5.6 The license system L Lo e e e
6 The MOSEK-bundled AMPL shell
6.1 Locating the AMPL shell
6.2 Anexample. e e e e e
6.3 Retrieving solutions L e
6.4 Optimizer options L e
6.5 Hot-start e
6.6 Infeasibility report oL L
6.7 Sensitivity analysis e e
6.8 Using the command line version of the AMPL interface
6.9 amplpy e e e e e e
7 Debugging Tutorials
7.1 Understanding optimizer log e
7.2 Addressing numerical issueso oL oL Lo
7.3 Debugging infeasibility
7.4 Python Console e
8 Problem Formulation and Solutions
8.1 Linear Optimization e e
8.2 Conic Optimization e
8.3 Semidefinite Optimization. e
8.4 Quadratic and Quadratically Constrained Optimization
9 Optimizers
9.1 Presolve e e
9.2 Linear Optimization e e
9.3 Conic Optimization - Interior-point optimizer
9.4 The Optimizer for Mixed-integer Problems

14
14
14
16
17
18
20
20
21
22

23
23
27
29
33

36
36
39
43
44

10 Additional features

10.1 Problem Analyzer L
10.2 Automatic Repair of Infeasible Problems
10.3 Sensitivity Analysis oL

11 API Reference

11.1 Parameters grouped by topic L
11.2 Parameters (alphabetical list sorted by type) o L.

11.3 Response codes .
11.4 Constants

12 Supported File Formats
12.1 The LP File Format e e e e e e e e e e
12.2 The MPS File Format e

12.3 The OPF Format
12.4 The CBF Format
12.5 The PTF Format
12.6 The Task Format

12.7 The JSON Format e

12.8 The Solution File
13 List of examples

14 Interface changes

Format e

14.1 Backwards compatibility e

14.2 Parameters . . .
14.3 Constants
14.4 Response Codes

Bibliography
Symbol Index

Index

ii

63
63
64
67

74
74
86
125
143

166
167
172
183
192
206
210
211
218

221

222
222
222
223
225

227

228

235

Chapter 1

Introduction

The MOSEK Optimization Suite 9.2.19 is a powerful software package capable of solving large-scale
optimization problems of the following kind:

e linear,

e conic:

conic quadratic (also known as second-order cone),

involving the exponential cone,

involving the power cone,

semidefinite,
e convex quadratic and quadratically constrained,
e integer.

In order to obtain an overview of features in the MOSEK Optimization Suite consult the product
introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all rela-
tions are linear. The tremendous success of both applications and theory of linear optimization can be
ascribed to the following factors:

e The required data are simple, i.e. just matrices and vectors.

e Convexity is guaranteed since the problem is convex by construction.

e Linear functions are trivially differentiable.

e There exist very efficient algorithms and software for solving linear problems.
e Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the
advantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

Ax —b> 0.
In conic optimization this is replaced with a wider class of constraints

Az —-be K

where KC is a convexr cone. For example in 3 dimensions K may correspond to an ice cream cone. The
conic optimizer in MOSEK supports a number of different types of cones K, which allows a surprisingly
large number of nonlinear relations to be modeled, as described in the MOSEK Modeling Cookbook,
while preserving the nice algorithmic and theoretical properties of linear optimization.

https://docs.mosek.com/9.2/intro/index.html
https://docs.mosek.com/9.2/intro/index.html
https://docs.mosek.com/modeling-cookbook/index.html

1.1 Why the Command Line Tools?

The MOSEK capabilities can be accessed from the command line without the need to use any program-
ming language. The user can input optimization problems using files in a variety of formats, or via the
AMPL language shell.

The Command Line Tools provides access to:

e Linear Optimization (LO)

Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)

Power Cone Optimization

Conic Exponential Optimization (CEO)

Convex Quadratic and Quadratically Constrained Optimization (QO, QCQO)

Semidefinite Optimization (SDO)
e Mixed-Integer Optimization (MIO)
as well as to additional utilities for:

e problem analysis,

e sensitivity analysis,

e infeasibility diagnostics.

Chapter 2

Contact

Information

Phone +45 7174 9373

Website mosek.com

Email
sales@mosek.com Sales, pricing, and licensing
support@mosek.com Technical support, questions and bug reports
info@mosek.com Everything else.

Mailing Address
MOSEK ApS

Fruebjergvej 3

Symbion Science Park, Box 16

2100 Copenhagen O

Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger

https://blog.mosek.com

Google Group | https://groups.google.com/forum /#!forum /mosek

Twitter https://twitter.com /mosektw
Linkedin https: //www.linkedin.com /company /mosek-aps
Youtube https://www.youtube.com /channel /UCvlyect EVLP31NXeD5mIbEw

In particular Twit

ter is used for news, updates and release announcements.

https://mosek.com/
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com
https://blog.mosek.com/
https://groups.google.com/forum/#!forum/mosek
https://twitter.com/mosektw
https://www.linkedin.com/company/mosek-aps
https://www.youtube.com/channel/UCvIyectEVLP31NXeD5mIbEw

Chapter 3

License Agreement

Before using the MOSEK software, please read the license agreement available in the distribution
at <MSKHOME>/mosek/9.2/mosek-eula.pdf or on the MOSEK website https://mosek.com /products
license-agreement.

MOSEK uses some third-party open-source libraries. Their license details follows.

zlib

MOSEK includes the zlib library obtained from the zlib website. The license agreement for zlib is
shown in Listing 3.1.

Listing 3.1: 2lib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu
fplib

MOSEK includes the floating point formatting library developed by David M. Gay obtained from
the netlib website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/**
*

(continues on next page)

https://mosek.com/products/license-agreement
https://mosek.com/products/license-agreement
http://zlib.org
http://www.netlib.org

(continued from previous page)

The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. 1IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

¥R X X X K K X X X X X X X ¥

***/

Zstandard

MOSEK includes the Zstandard library developed by Facebook obtained from github/zstd.

license agreement for Zstandard is shown in Listing 3.3.

Listing 3.3: Zstandard license.

The

BSD License
For Zstandard software
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name Facebook nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

https://github.com/facebook/zstd

Chapter 4

Installation

In this section we discuss how to install and setup the MOSEK Command Line Tools.

Important: Before running this MOSEK interface please make sure that you:

e Installed MOSEK correctly. Some operating systems require extra steps. See the Installation
guide for instructions and common troubleshooting tips.

e Set up a license. See the Licensing guide for instructions.

Locating files in the MOSEK Optimization Suite
The relevant files of the Command Line Tools are organized as reported in Table 4.1.

Table 4.1: Relevant files for the Command Line Tools.

Relative Path Description Label

<MSKHOME>/mosek/9.2/tools/platform/<PLATFORM>/bin Binaries <BINDIR>

<MSKHOME>/mosek/9.2/tools/platform/<PLATFORM>/bin/mosek | Mosek executable

<MSKHOME>/mosek/9.2/tools/examples/data Examples <EXDIR>
where

e <MSKHOME> is the folder in which the MOSEK Optimization Suite has been installed,
e <PLATFORM> is the actual platform among those supported by MOSEK, i.e. win32x86, win64x86,
1inux64x86 or osx64x86.
Setting up paths

The executable file is ready for use. It may be convenient to add the directory <BINDIR> to the
environment variable PATH, and then MOSEK can simply be used by typing

’mosek

in the command line.

4.1 Testing the installation

To test that Command Line Tools has been installed correctly go to the examples directory <EXDIR> and
run MOSEK on any of the input files, for example 1o1.mps:

’mosek lol.mps

Is should produce output similar to:

https://docs.mosek.com/9.2/install/index.html
https://docs.mosek.com/9.2/install/index.html
https://docs.mosek.com/9.2/licensing/index.html

MOSEK Version 8.0.0.53 (Build date: 2017-1-12 22:21:45)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86

Open file 'lol.mps'
Reading started.

[....]

Optimizer started.
Interior-point optimizer started.

[....]

Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 8.3333333280e+01 nrm: 5e+01 Viol. con: 1e-08 var: 0e+00
Dual. obj: 8.3333333242e+01 nrm: 4e+00 Viol. con: 2e-10 var: 5e-09

Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 8.3333333333e+01 nrm: 5e+01 Viol. con: 7e-15 var: 0e+00
Dual. obj: 8.3333333245e+01 nrm: 4e+00 Viol. con: 2e-10 var: 5e-09

Open file 'lol.sol'
Start writing.
done writing. Time: 0.00

Open file 'lol.bas'
Start writing.

done writing. Time: 0.00

Return code - 0 [MSK_RES_OK]

Chapter 5

The Command Line Tool

5.1 Introduction

The MOSEK command line tool is used to solve optimization problems from the operating system
command line. It is invoked as follows

’mosek [options] [filename]

where both [options] and [filename] are optional arguments:

e [options] consists of command line arguments that modify the behavior of MOSEK. They are
listed in Sec. 5.5. In particular, options can be used to set optimizer parameters.

e [filename] is a file describing the optimization problem. The MOSEK command line accepts
files in any of the supported file formats or in the AMPL .nl format.

If no arguments are given, MOSEK will display a splash screen and exit.

user@host:~$ mosek/8/tools/platform/linux64x86/bin/mosek
MOSEK Version 8.0.0.32(BETA) (Build date: 2016-7-12 10:29:26)

Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86

*** No input file specified. No optimization is performed.

Return code - 0 [MSK_RES_OK]

5.2 Files

The MOSEK command line tool communicates with the user via files and prints some execution logs
and solution summary to the terminal.

Input files

Optimization problems are read from files. See Sec. 12 for details.

File format conversion

To convert between two file formats supported by MOSEK use the option -z together with -out
to specify the target file name. The target file type must support the problem type of the source file,
otherwise the conversion will be partial. For instance in case a MPS file must be converted in a more
readable OPF format, the following line can be used

mosek -x -out lol.opf lol.mps

With the -z option the solver will not actually solve the problem.

Output files
Solutions are written to files:
e .bas - basic solution,
e .sol - interior point solution,
e .itg - integer solution (the only available solution for mixed-integer problems).

For linear problems both the basic and interior point solution may be present. Infeasibility certificates
are stored in the same files. See Sec. 12.8 for details.

5.3 Example

To solve a problem stored in file, say 1ol.mps, write:

’mosek lol.mps

The solver will
e read lol.mps from disk,
e solve the problem and display the solution log and

e store the relevant solution files if any solution exists; file content explained in Sec. 12.8.

MOSEK Version 8.0.0.34(BETA) (Build date: 2016-8-24 00:51:13)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86

Open file '/home/andrea/mosek/8/tools/examples/data/lol.mps'
Reading started.

Using 'obj' as objective vector

Read 13 number of A nonzeros in 0.00 seconds.

Using 'rhs' as rhs vector

Using 'bound' as bound vector

Reading terminated. Time: 0.00

Read summary
Type : LO (linear optimization problem)
Objective sense : max
Scalar variables :
Matrix variables :
Constraints
Cones
Time

O O W O B

Problem
Name : loil
Objective sense ! max
Type : LO (linear optimization problem)
Constraints
Cones
Scalar variables
Matrix variables
Integer variables

O O P O Ww

(continues on next page)

(continued from previous page)

Optimizer started.

Interior-point optimizer started.
Presolve started.

Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.

Freed constraints in eliminator : O
Eliminator terminated.
Eliminator - tries 1 time : 0.00
Lin. dep. - tries 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Optimizer - threads 2
Optimizer - solved problem : the primal
Optimizer - Constraints : 3
Optimizer - Cones H¢
Optimizer - Scalar variables : 6 conic : 0
Optimizer - Semi-definite variables: 0O scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 6 after factor : 6
Factor - dense dim. ¢ flops : 1.06e+02
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 8.0e+00 3.2e+00 3.5e+00 1.00e+00 1.000000000e+01 0.000000000e+00 1.0e+00 0.01
1 4.2e+00 2.5e+00 4.7e-01 0.00e+00 3.093970927e+01 2.766058702e+01 2.6e+00 0.01
2 4.2e-01 2.5e-01 4.6e-02 -1.82e-02 6.511676243e+01 6.308843559e+01 2.6e-01 0.01
3 3.6e-02 2.1e-02 3.9e-03 5.84e-01 8.096141239e+01 8.061962333e+01 2.2e-02 0.01
4 1.5e-05 9.1e-06 1.7e-06 9.43e-01 8.333280389e+01 8.333241803e+01 9.2e-06 0.01
5 1.5e-09 9.1le-10 1.7e-10 1.00e+00 8.333333328e+01 8.333333324e+01 9.2e-10 0.01
Basis identification started.
Primal basis identification phase started.
ITER TIME
0 0.00
Primal basis identification phase terminated. Time: 0.00
Dual basis identification phase started.
ITER TIME
0 0.00
Dual basis identification phase terminated. Time: 0.00
Basis identification terminated. Time: 0.00
Interior-point optimizer terminated. Time: 0.01.
Optimizer terminated. Time: 0.02
Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 8.3333333280e+01 nrm: 5e+01 Viol. con: 1e-08 var: 0e+00
Dual. obj: 8.3333333242e+01 nrm: 4e+00 Viol. con: 2e-10 var: 5e-09
Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 8.3333333333e+01 nrm: 5e+01 Viol. con: 7e-15 var: 0e+00
Dual. obj: 8.3333333245e+01 nrm: 4e+00 Viol. con: 2e-10 var: 5e-09
Optimizer summary
Optimizer - time: 0.02
Interior-point - iterations : 5 time: 0.01
Basis identification - time: 0.00
Primal - iterations : O time: 0.00
Dual - iterations : O time: 0.00

(continues on next page)

10

(continued from previous page)

Clean primal - iterations : O time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : O time: 0.00
Dual simplex - iterations : 0O time: 0.00
Mixed integer - relaxations: 0 time: 0.00

Open file '/home/andrea/mosek/8/tools/examples/data/lol.sol’
Start writing.
done writing. Time: 0.00

Open file '/home/andrea/mosek/8/tools/examples/data/lol.bas'’
Start writing.
done writing. Time: 0.00

Return code - 0 [MSK_RES_OK]

5.4 Solver Parameters

MOSEK comes with a large number of parameters that allows the user to tune the behavior of the
optimizer. The typical settings which can be changed with solver parameters include:

e choice of the optimizer for linear problems,

e choice of primal/dual solver,

e turning presolve on/off,

e turning heuristics in the mixed-integer optimizer on/off,
e level of multi-threading,

o feasibility tolerances,

e solver termination criteria,

e behaviour of the license manager,

and more. All parameters have default settings which will be suitable for most typical users. Each
parameter is identified by a unique string name and it can accept either integers or symbolic names,
floating point values or symbolic strings. Please refer to Sec. 11.2 for the complete list of available solver
parameters.

5.4.1 Setting from command line

Setting solver parameters is possible using the command line option -d.If multiple parameters must be
specified, option -d must be repeated for each one. For example, the next command will switch off
presolve, set a feasibility tolerance and solve the problem from lo1l.opf:

mosek -d MSK_IPAR_PRESOLVE_USE MSK_OFF -d MSK_DPAR_INTPNT_TOL_PFEAS 1.0e-8 lol.opf

5.4.2 Using the Parameter File

Solver parameters can also be set using a parameter file, for example:

BEGIN MOSEK

% This is a comment.

% The subsequent line tells MOSEK that an optimal

% basis should be computed by the interior-point optimizer.

MSK_IPAR_PRESOLVE_USE MSK_OFF
MSK_DPAR_INTPNT_TOL_PFEAS 1.0e-9
END MOSEK

11

The syntax of the parameter file must obey a few simple rules:

e The file must begin with BEGIN MOSEK and end with END MOSEK.

e Empty lines and lines starting from a % sign are ignored.

e Each line contains a valid MOSEK parameter name followed by its value.

The parameter file can have any name. Assuming it has been called mosek.par, it can be used using
the -p option as follows:

’mosek -p mosek.par afiro.mps

Command-line parameters override those from the parameter file in case of repetition. For instance

’mosek -p mosek.par -d MSK_DPAR_INTPNT_TOL_PFEAS 1.0e-8 afiro.mps

will set MSK_DPAR_INTPNT_TOL_PFEAS to 108 using the value provided on the command line.

5.5 Command Line Arguments

The following list shows the available command-line arguments for MOSEK:
-anapro
Analyze the problem data.
-anasoli <name>
Analyze the initial solution name e.g. -anasoli bas.
-anasolo <name>
Analyze the final solution name e.g. -anasolo itg.
-a
MOSEK is started in AMPL mode.
-basi <name>
Input basic solution file name.
-baso <name>
Output basic solution file name.
-d <name> <value>
Define the value value for the MOSEK parameter name.
-dbgmem <name>
Name of memory debug file.
-f
Complete license information is printed.
-h, -7
Help.
-inti <name>
Input integer solution file name.
-into <name>
Output integer solution file name.
-itri <name>
Input interior point solution file name.
-itro <name>
Output interior point solution file name.
-info <name>
Infeasible subproblem output file name.
-infrepo <name>
Feasibility reparation output file.
-1,-L <dir>
dir is the directory where the MOSEK license file mosek.1lic is located.
-max
The problem is maximized.
-min
The problem is minimized.

12

-n
Ignore errors in subsequent parameter settings.
-optserv <url>
Use an OptServer specified by an URL of the form http://host:port.
-out <name>
Write the task to a data file named name. See Sec. 12.
-p <name>, -pari <name>
Name of the input parameter file.
-paro <name>
Name of the output parameter file.
-primalrepair
Repair a primal infeasible problem. See Sec. 10.2.
-r
If the option is present, the program returns —1 if an error occurred, otherwise 0.
-removeitg
Removes all integer constraints after reading the problem.
-rout <name>
If the option is present, the program writes the return code to file name.
-q <name>
Name of an optional log file.
-sen <file>
Perform sensitivity analysis based on file.
-silent
As little information as possible is send to the terminal.
-toconic
Translate to conic form after reading.

-v
MOSEK version is printed and no optimization is performed.
-W
If this options is on, then MOSEK will wait for a license.
-X

Do not run the optimizer. Useful for converting between file formats.

List all possible solver parameters with default value, lower bound and upper bound (if applicable).

5.6 The license system

MOSEK is a commercial product that always needs a valid license to work. MOSEK uses a third
party license manager to implement license checking. The number of license tokens provided determines
the number of optimizations that can be run simultaneously.

By default a license token remains checked out for the whole execution of the command line tool. If the
license is not unlimited, then the number of tokens determines the maximal number of processes that can
run simultaneously. In this case setting the license wait flag with the parameter #SK_IPAR_LICENSE_WAIT
will force MOSEK to wait until a license token becomes available instead of returning with an error.

13

Chapter 6

The MOSEK-bundled AMPL shell

AMPL is a modeling language for specifying linear and nonlinear optimization models in a natural
way. AMPL also makes it easy to solve the problem and e.g. display the solution or part of it. We
will not discuss the specifics of the AMPL language here but instead refer the reader to [FGKO03/,
http://ampl.com/BOOK /download.html and the AMPL website http://www.ampl.com.

AMPL cannot solve optimization problems by itself but requires a link to an optimizer. The MOSEK
distribution includes:

e An AMPL link which makes it possible to use MOSEK as an optimizer within AMPL. The link
can be used from any AMPL shell.

e The full, official AMPL shell repackaged under the name mampl. This is sold as a separate product,
and it can be hooked to other optimizers as well.

Note:

e To use MOSEK from AMPL you need to set up the system path to the MOSEK command line
tool.

e It is possible to specify problems in AMPL that cannot be solved by MOSEK. The optimization
problem must be a smooth convex optimization problem as discussed in Sec. 8.

For the remainder of this section we refer to the MOSEK-bundled mampl as the AMPL interpreter
of choice. However, the tutorial applies also to any other standard AMPL shell available to the user.

6.1 Locating the AMPL shell

If <MSKHOME> is the folder in which the MOSEK Optimization Suite has been installed then the AMPL
binary is located in

<MSKHOME>/mosek/9.2/tools/platform/<PLATFORM>/bin/mampl
for Linux and OSX users (PLATFORM must be among 1inux64x86, 0sx64x86), and under
<MSKHOME>\mosek\9.2\tools\platform\<PLATFORM>\bin\mampl

for Windows users (PLATFORM must be among win32x86, win64x86).

6.2 An example
In many instances, you can successfully apply MOSEK simply by specifying the model and data, setting

the solver option to MOSEK, and typing solve.
Consider a simple linear optimization problem formulated as an AMPL model in Listing 6.1.

14

http://ampl.com/BOOK/download.html
http://www.ampl.com

Listing 6.1: An example of an optimization problem in AMPL

language.

set NUTR ordered;
set FOOD ordered;

param cost {FOOD} >= 0;
param f_min {FOOD} >= 0, default O;
param f_max {j in FOOD} >= f_min[j], default Infinity;

param n_min {NUTR} >= 0, default O;
param n_max {i in NUTR} >= n_min[i], default Infinity;

param amt {NUTR,FO0OD} >= O;

minimize Total_Cost: sum {j in FOOD} cost([j] * Buyl[jl;

minimize Nutr_Amt {i in NUTR}: sum {j in FOOD} amt([i,j] * Buyl[jl;

subject to Diet {i in NUTR}:
n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];

We can specify the input data using an input file again following the AMPL syntax, as in Listing 6.2.

Listing 6.2: An example of data for an optimization problem using

AMPL language.

param: FOOD: cost f_min f_max :=
"Quarter Pounder w/ Cheese" 1.84
"McLean Deluxe w/ Cheese" 2.19
"Big Mac" 1.84
"Filet-0-Fish" 1.44
"McGrilled Chicken" 2.29
"Fries, small" T7
"Sausage McMuffin" 1.29
"1% Lowfat Milk" .60
"Orange Juice" .72 . .
param: NUTR: n_min n_max :=
Cal 2000 .
Carbo 350 375
Protein 55
VitA 100
VitC 100
Calc 100 .
Iron 100 .

param amt (tr):

Cal Carbo Protein VitA VitC Calc

"Quarter Pounder w/ Cheese" 510 34 28 15 6
"McLean Deluxe w/ Cheese" 370 35 24 15 10
"Big Mac" 500 42 25 6 2
"Filet-0-Fish" 370 38 14 2 0
"McGrilled Chicken" 400 42 31 8 15

30
20
25
15
15

Iron :

20
20
20
10

8

15

(continues on next page)

(continued from previous page)

"Fries, small" 220 26 3 0 15 0 2
"Sausage McMuffin" 345 27 15 4 0 20 15
"1% Lowfat Milk" 110 12 9 10 4 30 0
"Orange Juice" 80 20 1 2 120 2 2

Invoke the AMPL shell:

mampl

and type in the commands:

ampl: model diet.mod;
ampl: data diet.dat;

ampl: option solver mosek;
ampl: solve;

The resulting output is:

MOSEK finished.
Problem status

PRIMAL_AND_DUAL_FEASIBLE

Solution status - OPTIMAL
Primal objective - 14.8557377
Dual objective - 14.8557377

Objective = Total_Cost

6.3 Retrieving solutions

6.3.1 Status codes

The AMPL parameter solve_result_num is used to indicate the outcome of the optimization process.
It is used as follows

ampl: display solve_result_num

Please refer to table Table 6.1 for possible values of this parameter.

Table 6.1: Interpretation of solve_result_num.

Value | Message

0 the solution is optimal.

100 suboptimal primal solution.

101 superoptimal (dual feasible) solution.
150 the solution is near optimal.

200 primal infeasible problem.
300 dual infeasible problem.

400 too many iterations.
500 solution status is unknown.
501 ill-posed problem, solution status is unknown.

> 501 | Mapped MOSEK response code. See note below.

MOSEK response codes are mapped to AMPL return codes greater than 501. In order to get the
actual response code the base value 501 must be subtracted. For example: the AMPL return code 502
corresponds to MOSEK response code 1.

6.3.2 Which solution is returned

MOSEK can produce three types of solutions: basic, interior point and integer. The solution returned
to AMPL is determined according to the following rules:

e For problems containing integer variables only the integer solution is available and it is returned.

16

e For nonlinear problems only the interior point solution is available and it is returned.

e For linear problems, if both basic and interior point solution are available, then the basic solution
is returned. Otherwise the only available solution is returned.

6.4 Optimizer options

6.4.1 The MOSEK parameter database

The MOSEK optimizer can be controller using solver parameters, as described in Sec. 5.4. These
parameters can be modified within AMPL as shown in the example below:

ampl: model diet.mod;

ampl: data diet.dat;

ampl: option solver mosek;

ampl: option mosek_options

ampl? 'msk_ipar_optimizer = msk_optimizer_primal_simplex \
ampl? msk_ipar_sim_max_iterations = 100000';

ampl: solve;

In the example above a string called mosek_options is created which contains the parameter settings.
Each parameter setting has the format

parameter_name = value

where parameter_name is a valid MOSEK parameter name. See Sec. 11.2 for a description of all
valid MOSEK parameters.
An alternative way of specifying the parameters is

ampl: option mosek_options
ampl? 'msk_ipar_optimizer = msk_optimizer_primal_simplex'
ampl? 'msk_ipar_sim_max_iterations = 100000';

New parameters can also be appended to an existing option string as shown below.

ampl: option mosek_options $mosek_options
ampl? ' msk_ipar_sim_print_freq = O msk_ipar_sim_max_iterations = 1000';

The expression $mosek_options expands to the current value of the option. Line two in the example
appends an additional value msk_ipar_sim_max_iterations to the option string.

6.4.2 Options
MOSEK recognizes the following AMPL options.
outlev

Controls the amount of printed output. 0 means no printed output and a higher value means pro-
gressively more output. An example of setting outlev is as follows:

ampl: option mosek_options 'outlev=2'j;

wantsol

Controls the solution information generated when run in standalone mode (called without the argu-
ment -AMPL). It should be constructed as the sum of

to write a .sol file

to print the primal variable values

to print the dual variable values

to suppress printing the solution message

QO = DN =

We refer the reader to the AMPL manual [FGK03] for more details.

17

6.4.3 Passing variable names to MOSEK

AMPL assigns meaningful names to all the constraints and variables. Since MOSEK uses item names
in error and log messages, it may be useful to pass the AMPL names to MOSEK. This can be achieved
with the command:

ampl: option auxfiles rc;
ampl: solve;

6.5 Hot-start

Frequently, a sequence of optimization problems is solved where each problem differs only slightly from
the previous problem. In that case it may be advantageous to use the previous optimal solution to
warm-start the optimizer. Such a facility is available in MOSEK only when the simplex optimizer is
used.

The warm-start facility exploits the AMPL variable suffix sstatus to communicate the optimal basis
back to AMPL, and AMPL uses this facility to communicate an initial basis to MOSEK. The following
example demonstrates this feature.

ampl: model diet.mod;

ampl: data diet.dat;

ampl: option solver mosek;

ampl: option mosek_options

ampl? 'msk_ipar_optimizer = msk_optimizer_primal_simplex outlev=2';
ampl: solve;

ampl: display Buy.sstatus;

ampl: solve;

The resulting output is:

Accepted: msk_ipar_optimizer MSK_OPTIMIZER_PRIMAL_SIMPLEX

Accepted: outlev =2

Computer - Platform : Linux/64-X86

Computer - CPU type : Intel-P4

MOSEK - task name :

MOSEK - objective sense : min

MOSEK - problem type : L0 (linear optimization problem)

MOSEK - constraints 7 variables : 9
MOSEK - integer variables : 0

Optimizer started.

Simplex optimizer started.

Presolve started.

Linear dependency checker started.
Linear dependency checker terminated.
Presolve - Stk. size (kb) : 0O

Eliminator - tries : 0 time : 0.00
Eliminator - elim's : 0

Lin. dep. - tries 1 time : 0.00

Lin. dep. - number : 0

Presolve terminated. Time: 0.00

Primal simplex optimizer started.

Primal simplex optimizer setup started.

Primal simplex optimizer setup terminated.

Optimizer - solved problem : the primal

Optimizer - constraints 7 variables : 9

Optimizer - hotstart : no

ITER DEGITER(%) PFEAS DFEAS POBJ DOBJ TIME,
— TOTTIME

0 0.00 1.40e+03 NA 1.2586666667e+01 NA 0.00,
— 0.01

(continues on next page)

18

(continued from previous page)

3 0.00
o 0.01
Primal simplex optimizer terminated.

0.00e+00 NA

1.4855737705e+01

Simplex optimizer terminated. Time: 0.00.

Optimizer terminated. Time: 0.01
Return code - 0 [MSK_RES_OK]

NA

0.00

MOSEK finished.
Problem status

: PRIMAL_AND_DUAL_FEASIBLE

Solution status : OPTIMAL
Primal objective 14.8557377
Dual objective 14.8557377

Objective = Total_Cost

Buy.sstatus [*] :=
'Quarter Pounder w/

Cheese' Dbas

'McLean Deluxe w/ Cheese' low

'Big Mac' low
Filet-0-Fish low

'McGrilled Chicken' low
'Fries, small' Dbas
'Sausage McMuffin' 1low

'1% Lowfat Milk' bas

'Orange Juice' 1low

Accepted: msk_ipar_optimizer
Accepted: outlev

Basic solution

Problem status : UNKNOWN

Solution status : UNKNOWN

Primal - objective: 1.4855737705e+01
Dual - objective: 0.0000000000e+00

Computer - Platform
Computer - CPU type

MOSEK - task name

MOSEK - objective sense
MOSEK - problem type
MOSEK - constraints

MOSEK - integer variables
Optimizer started.

Simplex optimizer started.
Presolve started.
Presolve - Stk.
Eliminator - tries
Eliminator - elim's

size (kb) : 0O

Lin. dep. - tries
Lin. dep. - number
Presolve terminated. Time: 0.00

Primal simplex optimizer started.

eq.
eq.

infeas.:
infeas.:

= MSK_OPTIMIZER_PRIMAL_SIMPLEX
=2

: Linux/64-X86

Intel-P4

: min

o O O o

Primal simplex optimizer setup started.
Primal simplex optimizer setup terminated.

Optimizer - solved problem
Optimizer - constraints
Optimizer - hotstart
Optimizer - Num. basic
Optimizer - Valid bas. fac.
ITER DEGITER(%) PFEAS
— TOTTIME
0 0.00 0.00e+00 NA

0.00e+00 NA

: L0 (linear optimization problem)
7
: 0

variables

time

time

: the primal

7

1 yes

A

: no
DFEAS

variables

Basis rank
POBJ DOBJ
1.4855737705e+01 NA

1.4855737705e+01 NA

3.97e+03 max bound infeas.: 2.00e+03
7.14e-01 max bound infeas.: 0.00e+00

: 0.00

: 0.00

TIME,,

0.00y,

0.00,

19

(continues on next page)

(continued from previous page)

Primal simplex optimizer terminated.
Simplex optimizer terminated. Time: 0.00.
Optimizer terminated. Time: 0.01

Return code - 0 [MSK_RES_O0K]

MOSEK finished.

Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL

Primal objective : 14.8557377

Dual objective : 14.8557377

Objective = Total_Cost

Please note that the second solve takes fewer iterations since the previous optimal basis is reused.

6.6 Infeasibility report

For linear optimization problems without any integer constrained variables MOSEK can generate an
infeasibility report automatically. The report provides important information about the infeasibility.
The generation of the infeasibility report is turned on using the parameter setting

option auxfiles rc;
option mosek_options 'msk_ipar_infeas_report_auto=msk_on';

For further details about infeasibility report see Sec. 10.2.

6.7 Sensitivity analysis

MOSEK can calculate sensitivity information for the objective and constraints. To enable sensitivity
information set the option:

sensitivity = 1

Results are returned in variable/constraint suffixes as follows:

e .down Smallest value of objective coefficient /right hand side before the optimal basis changes.
e .up Largest value of objective coefficient /right hand side before the optimal basis changes.

e .current Current value of objective coefficient/right hand side.

For ranged constraints sensitivity information is returned only for the lower bound.
The example below returns sensitivity information on the diet model.

ampl: model diet.mod;

ampl: data diet.dat;

ampl: option solver mosek;

ampl: option mosek_options 'sensitivity=1';

ampl: solve;

#display sensitivity information and current solution.
ampl: display _var.down,_var.current,_var.up,_var;
#display sensitivity information and optimal dual values.
ampl: display _con.down,_con.current,_con.up,_con;

The resulting output is:

Return code - 0 [MSK_RES_O0K]

MOSEK finished.

Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL

Primal objective : 14.8557377

(continues on next page)

20

(continued from previous page)

Dual objective : 14.8557377

suffix up OUT;

suffix down OUT;
suffix current OUT;
Objective = Total_Cost

: _var.down _var.current _var.up _var i=
1 1.37385 1.84 1.86075 4.38525

2 1.8677 2.19 Infinity 0

3 1.82085 1.84 Infinity 0

4 1.35466 1.44 Infinity 0

5 1.57633 2.29 Infinity 0

6 0.094 0.77 0.794851 6.14754

7 1.22759 1.29 Infinity 0

8 0.57559 0.6 0.910769 3.42213

9 0.657279 0.72 Infinity 0

ampl: display _con.down,_con.current,_con.up,_con;

: _con.down _con.current _con.up _con 1=
1 -Infinity 2000 3965.37 0

2 297.6 350 375 0.0277049

3 -Infinity 55 172.029 0

4 63.0531 100 195.388 0.0267541

5 -Infinity 100 132.213 0

6 -Infinity 100 234.221 0

7 17.6923 100 142.821 0.0248361

6.8 Using the command line version of the AMPL interface

AMPL can generate a data file containing the optimization problem and all relevant information which
can then be read and solved by the MOSEK command line tool.
When the problem has been loaded into AMPL, the commands

ampl: option auxfiles rc;
ampl: write bprob;

will make AMPL write the appropriate data files, i.e.

prob.nl
prob.col
prob.row

Then the problem can be solved using the command line version of MOSEK as follows

mosek prob.nl outlev=10 -a

The option -a indicates that MOSEK is invoked in AMPL mode. When MOSEK is invoked in
AMPL mode the standard MOSEK command line options should appear after the -a option except
for the file name which should be the first argument. As the above example demonstrates MOSEK

accepts command line options following the AMPL convention. To see which command line arguments
MOSEK accepts in AMPL mode write:

mosek -= -a

For linear, quadratic and quadratically constrained problems a text file representation of the problem
can be obtained by performing one of the following conversions:

mosek prob.nl -a -x -out prob.mps
mosek prob.nl -a -x -out prob.opf
mosek prob.nl -a -x -out prob.lp

21

6.9 amplpy

It is possible to use the MOSEK-bundled AMPL from amplpy (https://pypi.org/project/amplpy/). In
order to do this rename mampl to ampl (or create a symbolic link) and initialize the AMPL object using
the path to the MOSEK binaries folder, for example:

ampl = AMPL(Environment ('somepath/mosek/current/tools/platform/linux64x86/bin'))
ampl.setOption('solver', 'mosek')

ampl .setOption('mosek_options', 'outlev=2 msk_ipar_num_threads=2') # Ezample of parameter,
—setting

In case of problems with initializing the environment, try setting the system environment variable
LM_LICENSE_FILE to the MOSEK license file path.

22

https://pypi.org/project/amplpy/

Chapter 7

Debugging Tutorials

This collection of tutorials contains basic techniques for debugging optimization problems using tools
available in MOSEK: optimizer log, solution summary, infeasibility report, command-line tools. It is
intended as a first line of technical help for issues such as: Why do I get solution status unknown and
how can I fix it? Why is my model infeasible while it shouldn’t be? Should I change some parameters?
Can the model solve faster? etc.

The major steps when debugging a model are always:
e Consult the log output.

e Run the optimization and analyze the log output, see Sec. 7.1. In particular:

— check if the problem setup (number of constraints/variables etc.) matches your expectation.

— check solution summary and solution status.
e Dump the problem to disk if necessary to continue analysis.

— use a human-readable text format, such as *.opf if you want to check the problem structure
by hand. Assign names to variables and constraints to make them easier to identify.

— use the MOSEK native format *.task.gz when submitting a bug report or support question.

e Fix problem setup, improve the model, locate infeasibility or adjust parameters, depending on the
diagnosis.

See the following sections for details.

7.1 Understanding optimizer log

The optimizer produces a log which splits roughly into four sections:
1. summary of the input data,
2. presolve and other pre-optimize problem setup stages,
3. actual optimizer iterations,
4. solution summary.
In this tutorial we show how to analyze the most important parts of the log when initially debugging

a model: input data (1) and solution summary (4). For the iterations log (3) see Sec. 9.3.4 or Sec. 9.4.8.

7.1.1 Input data

If MOSEK behaves very far from expectations it may be due to errors in problem setup. The log file
will begin with a summary of the structure of the problem, which looks for instance like:

23

Problem

Name

Objective sense ! max

Type : CONIC (conic optimization problem)
Constraints 1 20413

Cones : 2508

Scalar variables 1 20414

Matrix variables : 0

Integer variables : 0

This can be consulted to eliminate simple errors: wrong objective sense, wrong number of variables
etc. Note that Fusion, and third-party modeling tools can introduce additional variables and constraints
to the model. In the remaining MOSEK APIs the problem dimensions should match exactly what the
user specified.

If this is not sufficient a bit more information can be obtained by dumping the problem to a file
(see Sec. 7) and using the anapro option of any of the command line tools. This will produce a longer
summary similar to:

** Variables
scalar: 20414 integer: 0 matrix: O
low: 2082 up: 5014 ranged: O free: 12892 fixed: 426

**x Constraints

all: 20413

low: 10028 up: O ranged: O free: 0 fixed: 10385
** Cones

QUAD: 1 dims: 2865: 1

RQUAD: 2507 dims: 3: 2507

** Problem data (numerics)

lcl nnz: 10028 min=2.09e-05 max=1.00e+00
|A] nnz: 597023 min=1.17e-10 max=1.00e+00
blx fin: 2508 min=-3.60e+09 max=2.75e+05
bux fin: 5440 min=0.00e+00 max=2.94e+08
blc fin: 20413 min=-7.61e+05 max=7.61e+05
buc fin: 10385 min=-5.00e-01 max=0.00e+00

Again, this can be used to detect simple errors, such as:

e Wrong type of cone was used or it has wrong dimension.

e The bounds for variables or constraints are incorrect or incomplete.

e The model is otherwise incomplete.

e Suspicious values of coefficients.

e For various data sizes the model does not scale as expected.

Finally saving the problem in a human-friendly text format such as LP or OPF (see Sec. 7) and

analyzing it by hand can reveal if the model is correct.

Warnings and errors

At this stage the user can encounter warnings which should not be ignored, unless they are well-
understood. They can also serve as hints as to numerical issues with the problem data. A typical
warning of this kind is

MOSEK warning 53: A numerically large upper bound value 2.9e+08 is specified for variable
—'absh[107]' (2613).

Warnings do not stop the problem setup. If, on the other hand, an error occurs then the model will
become invalid. The user should make sure to test for errors/exceptions from all API calls that set up
the problem and validate the data.

24

7.1.2 Solution summary

The last item in the log is the solution summary.

Continuous problem

Optimal solution

A typical solution summary for a continuous (linear, conic, quadratic) problem looks like:

Problem status : PRIMAL_AND_DUAL_FEASIBLE

Solution status : OPTIMAL

Primal. obj: 8.7560516107e+01 nrm: le+02 Viol. con: 3e-12 var: 0e+00 cones: 3e-11
Dual. obj: 8.7560521345e+01 nrm: 1e+00 Viol. con: 5e-09 var: 9e-11 cones: 0e+00

It contains the following elements:
e Problem and solution status.

e A summary of the primal solution: objective value, infinity norm of the solution vector xx, maximal
violations of constraints, variable bounds and cones. The violation of a linear constraint such as
a’z < b is max(a’x — b,0). The violation of a conic constraint z € K is the distance dist(x, K).

e The same for the dual solution.

The features of the solution summary which characterize a very good and accurate solution and a
well-posed model are:

e Status: The solution status is OPTIMAL.

e Duality gap: The primal and dual objective values are (almost) identical, which proves the
solution is (almost) optimal.

e Norms: Ideally the norms of the solution and the objective values should not be too large. This of
course depends on the input data, but a huge solution norm can be an indicator of issues with the
scaling, conditioning and/or well-posedness of the model. It may also indicate that the problem is
borderline between feasibility and infeasibility and sensitive to small perturbations in this respect.

e Violations: The violations are close to zero, which proves the solution is (almost) feasible. Observe
that due to rounding errors it can be expected that the violations are proportional to the norm
(nrm:) of the solution. It is rarely the case that violations are exactly zero.

Solution status UNKNOWN

A typical example with solution status UNKNOWN due to numerical problems will look like:

Problem status : UNKNOWN
Solution status : UNKNOWN
Primal. obj: 1.3821656824e+01 nrm: le+01 Viol. con: 2e-03 var: 0e+00 cones: 0e+00
Dual. obj: 3.0119004098e-01 nrm: 5e+07 Viol. «con: 4e-16 var: le-01 cones: 0e+00

Note that:

e The primal and dual objective are very different.

e The dual solution has very large norm.

e There are considerable violations so the solution is likely far from feasible.

Follow the hints in Sec. 7.2 to resolve the issue.

25

Solution status UNKNOWN with a potentially useful solution

Solution status UNKNOWN does not necessarily mean that the solution is completely useless. It only
means that the solver was unable to make any more progress due to numerical difficulties, and it was not
able to reach the accuracy required by the termination criteria (see Sec. 9.3.2). Consider for instance:

Problem status : UNKNOWN
Solution status : UNKNOWN
Primal. obj: 3.4531019648e+04 nrm: le+05 Viol. con: 7e-02 var: 0e+00 cones: 0e+00
Dual. obj: 3.4529720645e+04 nrm: 8e+03 Viol. con: le-04 var: 2e-04 cones: 0e+00

Such a solution may still be useful, and it is always up to the user to decide. It may be a good enough
approximation of the optimal point. For example, the large constraint violation may be due to the fact
that one constraint contained a huge coeflicient.

Infeasibility certificate

A primal infeasibility certificate is stored in the dual variables:

Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 2.9238975853e+02 nrm: 6e+02 Viol. con: 0e+00 var: le-11 cones: 0e+00

It is a Farkas-type certificate as described in Sec. 8.2.2. In particular, for a good certificate:

e The dual objective is positive for a minimization problem, negative for a maximization problem.
Ideally it is well bounded away from zero.

e The norm is not too big and the violations are small (as for a solution).

If the model was not expected to be infeasible, the likely cause is an error in the problem formulation.
Use the hints in Sec. 7.1.1 and Sec. 7.3 to locate the issue.

Just like a solution, the infeasibility certificate can be of better or worse quality. The infeasibility
certificate above is very solid. However, there can be less clear-cut cases, such as for example:

Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 1.6378689238e-06 nrm: 6e+05 Viol. con: 7e-03 var: 2e-04 cones: 0e+00

This infeasibility certificate is more dubious because the dual objective is positive, but barely so in
comparison with the large violations. It also has rather large norm. This is more likely an indication
that the problem is borderline between feasibility and infeasibility or simply ill-posed and sensitive to
tiny variations in input data. See Sec. 7.3 and Sec. 7.2.

The same remarks apply to dual infeasibility (i.e. unboundedness) certificates. Here the primal
objective should be negative a minimization problem and positive for a maximization problem.

7.1.3 Mixed-integer problem

Optimal integer solution

For a mixed-integer problem there is no dual solution and a typical optimal solution report will look
as follows:

Problem status : PRIMAL_FEASIBLE
Solution status : INTEGER_OPTIMAL
Primal. obj: 6.0111122960e+06 nrm: 1le+03 Viol. con: 2e-13 var: 2e-14 itg: be-15

The interpretation of all elements is as for a continuous problem. The additional field itg denotes
the maximum violation of an integer variable from being an exact integer.

Feasible integer solution

If the solver found an integer solution but did not prove optimality, for instance because of a time
limit, the solution status will be PRIMAL_FEASIBLE:

26

Problem status : PRIMAL_FEASIBLE
Solution status : PRIMAL_FEASIBLE
Primal. obj: 6.0114607792e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-13 itg: 4e-15

In this case it is valuable to go back to the optimizer summary to see how good the best solution is:

31 35 1 0 6.0114607792e+06 6.0078960892e+06 0.06 4.1

Objective of best integer solution : 6.011460779193e+06
Best objective bound : 6.007896089225e+06

In this case the best integer solution found has objective value 6.011460779193e+06, the best proved
lower bound is 6.007896089225e+06 and so the solution is guaranteed to be within 0.06% from optimum.
The same data can be obtained as information items through an API. See also Sec. 9.4 for more details.

Infeasible problem

If the problem is declared infeasible the summary is simply

Problem status : PRIMAL_INFEASIBLE
Solution status : UNKNOWN
Primal. obj: 0.0000000000e+00 nrm: Oe+00 Viol. con: 0e+00 var: 0e+00 itg: 0e+00

If infeasibility was not expected, consult Sec. 7.3.

7.2 Addressing numerical issues

The suggestions in this section should help diagnose and solve issues with numerical instability, in
particular UNKNOWN solution status or solutions with large violations. Since numerically stable models
tend to solve faster, following these hints can also dramatically shorten solution times.

We always recommend that issues of this kind are addressed by reformulating or rescaling the model,
since it is the modeler who has the best insight into the structure of the problem and can fix the cause
of the issue.

7.2.1 Formulating problems
Scaling

Make sure that all the data in the problem are of comparable orders of magnitude. This applies
especially to the linear constraint matrix. Use Sec. 7.1.1 if necessary. For example a report such as

|A] nnz: 597023 min=1.17e-6 max=2.21e+b

means that the ratio of largest to smallest elements in A is 10!, In this case the user should rescale
or reformulate the model to avoid such spread which makes it difficult for MOSEK to scale the problem
internally. In many cases it may be possible to change the units, i.e. express the model in terms of
rescaled variables (for instance work with millions of dollars instead of dollars, etc.).

Similarly, if the objective contains very different coefficients, say

maximize 102 + y

then it is likely to lead to inaccuracies. The objective will be dominated by the contribution from x and
y will become insignificant.

Removing huge bounds

Never use a very large number as replacement for co. Instead define the variable or constraint as
unbounded from below/above. Similarly, avoid artificial huge bounds if you expect they will not become
tight in the optimal solution.

27

Avoiding linear dependencies

As much as possible try to avoid linear dependencies and near-linear dependencies in the model. See
Example 7.3.

Avoiding ill-posedness

Avoid continuous models which are ill-posed: the solution space is degenerate, for example consists
of a single point (technically, the Slater condition is not satisfied). In general, this refers to problems
which are borderline between feasible and infeasible. See Example 7.1.

Scaling the expected solution

Try to formulate the problem in such a way that the expected solution (both primal and dual) is not
very large. Consult the solution summary Sec. 7.1.2 to check the objective values or solution norms.

7.2.2 Further suggestions

Here are other simple suggestions that can help locate the cause of the issues. They can also be used as
hints for how to tune the optimizer if fixing the root causes of the issue is not possible.

e Remove the objective and solve the feasibility problem. This can reveal issues with the objective.

e Change the objective or change the objective sense from minimization to maximization (if appli-
cable). If the two objective values are almost identical, this may indicate that the feasible set is
very small, possibly degenerate.

e Perturb the data, for instance bounds, very slightly, and compare the results.

e For linear problems: solve the problem using a different optimizer by setting the parameter
MSK_IPAR_OPTIMIZER and compare the results.

e Force the optimizer to solve the primal/dual versions of the problem by setting the parameter
MSK_IPAR_INTPNT_SOLVE_FORM or MSK_IPAR_SIM_SOLVE_FORM. MOSEK has a heuristic to decide
whether to dualize, but for some problems the guess is wrong an explicit choice may give better
results.

e Solve the problem without presolve or some of its parts by setting the parameter
MSK_IPAR_PRESOLVE_USE, see Sec. 9.1.

e Use different numbers of threads (¥SK_IPAR_NUM_THREADS) and compare the results. Very different
results indicate numerical issues resulting from round-off errors.

If the problem was dumped to a file, experimenting with various parameters is facilitated with the
MOSEK Command Line Tool or MOSEK Python Console Sec. 7.4.

7.2.3 Typical pitfalls

Example 7.1 (Ill-posedness). A toy example of this situation is the feasibility problem
(x—1)2<1, (z+1)><1
whose only solution is * = 0 and moreover replacing any 1 on the right hand side by 1 — ¢ makes

the problem infeasible and replacing it by 1 4 ¢ yields a problem whose solution set is an interval
(fully-dimensional). This is an example of ill-posedness.

28

Example 7.2 (Huge solution). If the norm of the expected solution is very large it may lead to
numerical issues or infeasibility. For example the problem

(107%,2,10%) € Q3

may be declared infeasible because the expected solution must satisfy = > 5 -10°.

Example 7.3 (Near linear dependency). Consider the following problem:

minimize
subject to r1 + X9 = 1,
I3 + T4 = 1,
- x1 — 3 = —1+c¢,
— To — T4 = —1,
1, o, s, Ty Z 0

If we add the equalities together we obtain:
0=¢

which is infeasible for any € # 0. Here infeasibility is caused by a linear dependency in the constraint
matrix coupled with a precision error represented by the . Indeed if a problem contains linear
dependencies then the problem is either infeasible or contains redundant constraints. In the above
case any of the equality constraints can be removed while not changing the set of feasible solutions.
To summarize linear dependencies in the constraints can give rise to infeasible problems and therefore
it is better to avoid them.

Example 7.4 (Presolving very tight bounds). Next consider the problem

minimize
subject to x1 —0.0lzy = 0,
zo —0.0lz3 = 0,
r3 —0.0lxy = 0,
T1 > —1079,
X < 1077,
T4 > 10~

Now the MOSEK presolve will, for the sake of efficiency, fix variables (and constraints) that have
tight bounds where tightness is controlled by the parameter ¥SK_DPAR_PRESOLVE_TOL_X. Since the
bounds

—107% <z, <107?

are tight, presolve will set 1 = 0. It easy to see that this implies x4 = 0, which leads to the incorrect
conclusion that the problem is infeasible. However a tiny change of the value 10~ makes the problem
feasible. In general it is recommended to avoid ill-posed problems, but if that is not possible then one
solution is to reduce parameters such as MSK_DPAR_PRESOLVE_TOL_X to say 10710, This will at least
make sure that presolve does not make the undesired reduction.

7.3 Debugging infeasibility

This section contains hints for debugging problems that are unexpectedly infeasible. It is always a good
idea to remove the objective, i.e. only solve a feasibility problem when debugging such issues.

29

7.3.1 Numerical issues

Infeasible problem status may be just an artifact of numerical issues appearing when the problem is
badly-scaled, barely feasible or otherwise ill-conditioned so that it is unstable under small perturbations
of the data or round-off errors. This may be visible in the solution summary if the infeasibility certificate
has poor quality. See Sec. 7.1.2 for how to diagnose that and Sec. 7.2 for possible hints. Sec. 7.2.3
contains examples of situations which may lead to infeasibility for numerical reasons.

We refer to Sec. 7.2 for further information on dealing with those sort of issues. For the rest of this
section we concentrate on the case when the solution summary leaves little doubt that the problem solved
by the optimizer actually is infeasible.

7.3.2 Locating primal infeasibility

As an example of a primal infeasible problem consider minimizing the cost of transportation between a
number of production plants and stores: Each plant produces a fixed number of goods, and each store
has a fixed demand that must be met. Supply, demand and cost of transportation per unit are given in
Fig. 7.1.

Supply Demand
1100
200
200
1000 ‘
500
1000
500

Fig. 7.1: Supply, demand and cost of transportation.
The problem represented in Fig. 7.1 is infeasible, since the total demand
2300 = 1100 + 200 + 500 + 500
exceeds the total supply
2200 = 200 + 1000 + 1000

If we denote the number of transported goods from plant 7 to store j by z;;, the problem can be
formulated as the LP:

minimize 11 + 2x12 4+ Dxrey + 2T04 + x31 + 2133 + T3s
subject to sp: w1 + T2 < 200,
S1 ¢ I3 + Tog S 1000,
So : 31 + w33 + w3a < 1000,
di: 11 + x31 = 1100,
d2 : X192 = 200,
d3 : T3 + I33 = 500,
d4 : Toq + T34 = 500,
zi; 2> 0
(7.1)

30

Solving problem (7.1) using MOSEK will result in an infeasibility status. The infeasibility certificate
is contained in the dual variables an can be accessed from an API. The variables and constraints with
nonzero solution values form an infeasible subproblem, which frequently is very small. See Sec. 8.1.2 or
Sec. 8.2.2 for detailed specifications of infeasibility certificates.

A short infeasibility report can also be printed to the log stream. It can be turned on by setting
the parameter MSK_IPAR_INFEAS_REPORT_AUTO to MSK_0ON. This causes MOSEK to print a report on
variables and constraints which are involved in infeasibility in the above sense, i.e. have nonzero values
in the certificate. The parameter MSK_IPAR_INFEAS_REPORT_LEVEL controls the amount of information
presented in the infeasibility report. The default value is 1. For the above example the report is

MOSEK PRIMAL INFEASIBILITY REPORT.
Problem status: The problem is primal infeasible

The following constraints are involved in the primal infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper

0 s0 NONE 2.000000e+002 0.000000e+000 1.000000e+000
2 s2 NONE 1.000000e+003 0.000000e+000 1.000000e+000
3 d1i 1.100000e+003 1.100000e+003 1.000000e+000 0.000000e+000
4 d2 2.000000e+002 2.000000e+002 1.000000e+000 0.000000e+000

The following bound constraints are involved in the infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper
8 x33 0.000000e+000 NONE 1.000000e+000 0.000000e+000
10 x34 0.000000e+000 NONE 1.000000e+000 0.000000e+000

The infeasibility report is divided into two sections corresponding to constraints and variables. It
is a selection of those lines from the problem solution which are important in understanding primal
infeasibility. In this case the constraints s0, s2, d1, d2 and variables x33, x34 are of importance because
of nonzero dual values. The columns Dual lower and Dual upper contain the values of dual variables
sf, s5, s and s in the primal infeasibility certificate (see Sec. 8.1.2).

In our example the certificate means that an appropriate linear combination of constraints s0, s1
with coefficient s{ = 1, constraints d1 and d2 with coefficient s, — sf = 0 —1 = —1 and lower bounds
on x33 and x34 with coefficient —sf = —1 gives a contradiction. Indeed, the combination of the four
involved constraints is x33 + x34 < —100 (as indicated in the introduction, the difference between supply
and demand).

It is also possible to extract the infeasible subproblem with the command-line tool. For an infeasible
problem called infeas.1lp the command:

mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.lp -info rinfeas.lp

will produce the file rinfeas.bas.inf.1lp which contains the infeasible subproblem. Because of its
size it may be easier to work with than the original problem file.

Returning to the transportation example, we discover that removing the fifth constraint x1o = 200
makes the problem feasible. Almost all undesired infeasibilities should be fixable at the modeling stage.

7.3.3 Locating dual infeasibility

A problem may also be dual infeasible. In this case the primal problem is usually unbounded, meaning
that feasible solutions exists such that the objective tends towards infinity. For example, consider the
problem

maximize
subject to

20041 + 1000ys + 1000ys + 1100y4 + 200ys + 500y + 500y7
y1+y <1, y1+ys <2, y2+ys <9, Y2 +yr < 2,

Y3+t ya <1, ys+yes <2, ys+yr <1

Y1,Y2,y3 <0

which is dual to (7.1) (and therefore is dual infeasible). The dual infeasibility report may look as follows:

31

MOSEK DUAL INFEASIBILITY REPORT.

Problem status: The problem is dual infeasible

The following constraints are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper bound
5 x33 -1.000000e+00 NONE 2.000000e+00
6 x34 -1.000000e+00 NONE 1.000000e+00

The following variables are involved in

the infeasibility.

Index Name Activity Objective Lower bound Upper bound
0 yi -1.000000e+00 2.000000e+02 NONE 0.000000e+00
2 y3 -1.000000e+00 1.000000e+03 NONE 0.000000e+00
3 y4 1.000000e+00 1.100000e+03 NONE NONE

4 y5 1.000000e+00 2.000000e+02 NONE NONE

Interior-point solution summary
Problem status : DUAL_INFEASIBLE
Solution status : DUAL_INFEASIBLE_CER

Primal. obj: 1.0000000000e+02 nrm: 1e+00 Viol. con: 0e+00 var: 0e+00

In the report we see that the variables y1, y3, y4, y5 and two constraints contribute to infeasibility
with non-zero values in the Activity column. Therefore

(yla s ay7) = (_1a 07 _17]-7 13 070)
is the dual infeasibility certificate as in Sec. 8.1.2. This just means, that along the ray

(0,0,0,0,0,0,0) + t(y1,...,y7) = (—¢,0,—1,¢,t,0,0), t > 0,

which belongs to the feasible set, the objective value 100t can be arbitrarily large, i.e. the problem is
unbounded.
In the example problem we could

e Add a lower bound on y3. This will directly invalidate the certificate of dual infeasibility.
e Increase the objective coefficient of y3. Changing the coefficients sufficiently will invalidate the
inequality ¢”y* > 0 and thus the certificate.
7.3.4 Suggestions

Primal infeasibility

When trying to understand what causes the unexpected primal infeasible status use the following
hints:

e Remove the objective function. This does not change the infeasibility status but simplifies the
problem, eliminating any possibility of issues related to the objective function.

e Remove cones, semidefinite variables and integer constraints. Solve only the linear part of the
problem. Typical simple modeling errors will lead to infeasibility already at this stage.

e Consider whether your problem has some obvious necessary conditions for feasibility and examine
if these are satisfied, e.g. total supply should be greater than or equal to total demand.

e Verify that coefficients and bounds are reasonably sized in your problem.

e See if there are any obvious contradictions, for instance a variable is bounded both in the variables
and constraints section, and the bounds are contradictory.

e Consider replacing suspicious equality constraints by inequalities. For instance, instead of 1o = 200
see what happens for x15 > 200 or z15 < 200.

32

Relax bounds of the suspicious constraints or variables.

For integer problems, remove integrality constraints on some/all variables and see if the problem
solves.

Form an elastic model: allow to violate constraints at a cost. Introduce slack variables and add
them to the objective as penalty. For instance, suppose we have a constraint

minimize Tz,

subject to aTa <b.

which might be causing infeasibility. Then create a new variable y and form the problem which
contains:

minimize cTx+y,
subject to aTx <b+y.

Solving this problem will reveal by how much the constraint needs to be relaxed in order to become
feasible. This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

If you think you have a feasible solution or its part, fix all or some of the variables to those values.
Presolve will propagate them through the model and potentially reveal more localized sources of
infeasibility.

Dump the problem in OPF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Dual infeasibility

When trying to understand what causes the unexpected dual infeasible status use the following hints:

Verify that the objective coefficients are reasonably sized.

Check if no bounds and constraints are missing, for example if all variables that should be nonneg-
ative have been declared as such etc.

Strengthen bounds of the suspicious constraints or variables.
Form an series of models with decreasing bounds on the objective, that is, instead of objective

minimize ¢’z

solve the problem with an additional constraint such as
e =-10°

and inspect the solution to figure out the mechanism behind arbitrarily decreasing objective values.
This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

Dump the problem in OPF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Please note that modifying the problem to invalidate the reported certificate does not imply that the
problem becomes feasible — the reason for infeasibility may simply move, resulting a problem that is
still infeasible, but for a different reason. More often, the reported certificate can be used to give a hint
about errors or inconsistencies in the model that produced the problem.

7.4 Python Console

The MOSEK Python Console is an alternative to the MOSEK Command Line Tool. It can be used for
interactive loading, solving and debugging optimization problems stored in files, for example MOSEK
task files. It facilitates debugging techniques described in Sec. 7.

33

7.4.1 Usage

The tool requires Python 2 or 3. The MOSEK interface for Python must be installed following the
installation instructions for Python API or Python Fusion API. In the basic case it should be sufficient
to execute the script

python setup.py install --user

in the directory containing the MOSEK Python module.

The Python Console is contained in the file mosekconsole.py in the folder with MOSEK binaries. It
can be copied to an arbitrary location. The file is also available for download here (mosekconsole.py).

To run the console in interactive mode use

’python mosekconsole.py ‘

To run the console in batch mode provide a semicolon-separated list of commands as the second
argument of the script, for example:

’python mosekconsole.py '"read data.task.gz; solve form=dual; writesol data" ‘

The script is written using the MOSEK Python API and can be extended by the user if more specific
functionality is required. We refer to the documentation of the Python API.

7.4.2 Examples

To read a problem from data.task.gz, solve it, and write solutions to data.sol, data.bas or data.itg:

read data.task.gz; solve; writesol data ‘

To convert between file formats:

read data.task.gz; write data.mps ‘

To set a parameter before solving:

’read data.task.gz; param INTPNT_CO_TOL_DFEAS 1le-9; solve" ‘

To list parameter values related to the mixed-integer optimizer in the task file:

’read data.task.gz; param MIO ‘

To print a summary of problem structure:

’read data.task.gz; anapro ‘

To solve a problem forcing the dual and switching off presolve:

’read data.task.gz; solve form=dual presolve=no

To write an infeasible subproblem to a file for debugging purposes:

’read data.task.gz; solve; infsub; write inf.opf

7.4.3 Full list of commands

Below is a brief description of all the available commands. Detailed information about a specific command
cmd and its options can be obtained with

help cmd

34

Table 7.1: List of commands of the MOSEK Python Console.

Command

Description

help [command]

Print list of commands or info about a specific command

log filename

Save the session to a file

intro

Print MOSEK splashscreen

testlic

Test the license system

read filename

Load problem from file

reread

Reload last problem file

solve
[options]

Solve current problem

write filename

Write current problem to file

param [name

Set a parameter or get parameter values

[value]]

paramdef Set all parameters to default values
paramdiff Show parameters with non-default values

info [name] Get an information item

anapro Analyze problem data

hist Plot a histogram of problem data

histsol Plot a histogram of the solutions

spy Plot the sparsity pattern of the A matrix
truncate Truncate small coefficients down to 0

epsilon

resobj [fac] Rescale objective by a factor

anasol Analyze solutions

removeitg Remove integrality constraints

removecones Remove all cones and leave just the linear part
infsub Replace current problem with its infeasible subproblem
writesol Write solution(s) to file(s) with given basename
basename

delsol Remove all solutions from the task

optserver Use an OptServer to optimize

[url]

exit Leave

35

Chapter 8

Problem Formulation and Solutions

In this chapter we will discuss the following issues:

e The formal, mathematical formulations of the problem types that MOSEK can solve and their
duals.

e The solution information produced by MOSEK.
e The infeasibility certificate produced by MOSEK if the problem is infeasible.

For the underlying mathematical concepts, derivations and proofs see the Modeling Cookbook or any
book on convex optimization. This chapter explains how the related data is organized specifically within
the MOSEK API.

8.1 Linear Optimization

MOSEK accepts linear optimization problems of the form

minimize e+ cf
subject to ¢ < Az < (8.1)
r < T < u®,

where
e m is the number of constraints.
e n is the number of decision variables.
e z € R" is a vector of decision variables.
e ¢ € R” is the linear part of the objective function.
e ¢/ € R is a constant term in the objective

o A c R™*™ js the constraint matrix.

[¢ € R™ is the lower limit on the activity for the constraints.

u® € R™ is the upper limit on the activity for the constraints.
e [€ R” is the lower limit on the activity for the variables.
e y” € R" is the upper limit on the activity for the variables.

Lower and upper bounds can be infinite, or in other words the corresponding bound may be omitted.

A primal solution (z) is (primal) feasible if it satisfies all constraints in (8.1). If (8.1) has at least one
primal feasible solution, then (8.1) is said to be (primal) feasible. In case (8.1) does not have a feasible
solution, the problem is said to be (primal) infeasible

36

https://docs.mosek.com/modeling-cookbook/index.html

8.1.1 Duality for Linear Optimization
Corresponding to the primal problem (8.1), there is a dual problem

maximize (1)Ts§ — (u®)Ts¢ + (1%)Ts¥ — (u®)Ts% + ¢/

T T _ oT
. Avtsi—s = ¢ (8.2
subject to —y+si—s;, = 0,
87,585,587, 85 > 0.

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at 0,
and we use the convention that the product of the bound value and the corresponding dual variable is
0. This is equivalent to removing variable (sf); from the dual problem. In other words:

[j=-0c0 = (sf)j=0and[j-(s); =0.

A solution

(Y, 575 8% 57+ 5u)

to the dual problem is feasible if it satisfies all the constraints in (8.2). If (8.2) has at least one feasible
solution, then (8.2) is (dual) feasible, otherwise the problem is (dual) infeasible.
A solution

(=", 5%, (s1)7, (s)", (s7)", (s2)")
is denoted a primal-dual feasible solution, if (x*) is a solution to the primal problem (8.1) and

(y*, (s£)*, (sS)*, (s7)*, (s%)*) is a solution to the corresponding dual problem (8.2). We also define an
auxiliary vector

(z)* := Az™

containing the activities of linear constraints.
For a primal-dual feasible solution we define the duality gap as the difference between the primal and
the dual objective value,

ch* + le _ {(ZC)T(SZC)* _ (uc)T(sch)* 4 (Zz)T(Slz)* _ (Uz)T(Si)* + Cf}
= Z?!ol [(s7)7 (@)™ = 1) + (s0)7 (i = (2)7)] (8.3)
+ 22500 [(s7)5 (e = 17) + (s32); (uf —)] 2 0

where the first relation can be obtained by transposing and multiplying the dual constraints (8.2) by
z* and (z°)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

It is well-known that a linear optimization problem has an optimal solution if and only if there exist
feasible primal-dual solution so that the duality gap is zero, or, equivalently, that the complementarity
conditions

sP)F((x)* =15 = 0, i=0,...,m—1,
(s9)i(u§ — (2f)") = 0, i=0,....m—1,
(s7)i(zx —=1%) = 0, j:: ey —1,
(su)j(uj—z3) = 0, j=0,...,n—1,

are satisfied.
If (8.1) has an optimal solution and MOSEK solves the problem successfully, both the primal and
dual solution are reported, including a status indicating the exact state of the solution.
8.1.2 Infeasibility for Linear Optimization
Primal Infeasible Problems

If the problem (8.1) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

37

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (1¢)7s¢ — (u®)T'sS + (1%)TsF — (u®) T2
subject to
ATy + 87 — s =0, (8.4)
—y + 57 — 55 =0,
Slca 5737 Slwa SzzL Z Oa

such that the objective value is strictly positive, i.e. a solution
(" (s1)", (s0)™, (s7)", (%))
to (8.4) so that
)T ()" = ()T (s5)* + ()T (s7)* — (u™) T (s5)" > 0.
Such a solution implies that (8.4) is unbounded, and that (8.1) is infeasible.

Dual Infeasible Problems

If the problem (8.2) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

T

minimize c'x
subject to ¢ < Az < 4f, (8.5)
T < x < a®,
where
B 0 if [§ > —c0 0 ifuf <o
- i 7 qc = i ’
L { —o00 otherwise, } and - d;: { oo otherwise, }
and
5 0 if ¥ > —o0 0 ifuf <o
T _ J ’ 0T = J ’
L { —o00 otherwise, } and - 4j : { oo otherwise, }
such that

Tz < 0.

Such a solution implies that (8.5) is unbounded, and that (8.2) is infeasible.

In case that both the primal problem (8.1) and the dual problem (8.2) are infeasible, MOSEK will
report only one of the two possible certificates — which one is not defined (MOSEK returns the first
certificate found).

8.1.3 Minimalization vs. Maximalization

When the objective sense of problem (8.1) is maximization, i.e.

maximize e+ ef
subject to ¢ < Ax < uc,
r < T < u”,

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (8.2). The dual problem thus takes the form

minimize (1¢)7s¢ — (u®)TsS + (1%)Ts¥ — (u®) s + ¢f
subject to
ATy + sF — 8% =,
-y + 57 — 55, =0,
87,585,857, 85 < 0.

38

This means that the duality gap, defined in (8.3) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system

ATy +s7 — s =0,
—y+sf—s5 =0, (8.6)
Slc7 Si, Sll-a SqJ;, S 07
such that the objective value is strictly negative

)T (sP)" = (u) T (s5)™ + (1) (s7)" = (u™) " (s1)" < 0.

Similarly, the certificate of dual infeasibility is an x satisfying the requirements of (8.5) such that ¢’z > 0.

8.2 Conic Optimization

Conic optimization is an extension of linear optimization (see Sec. 8.1) allowing conic domains to be
specified for subsets of the problem variables. A conic optimization problem to be solved by MOSEK
can be written as

minimize e+ ef
subject to ¢ < Ax < uf,
x €K,

where
e m is the number of constraints.
e 7 is the number of decision variables.
e x € R™ is a vector of decision variables.
e c € R” is the linear part of the objective function.
e ¢/ € R is a constant term in the objective

o A c R™X™ is the constraint matrix.

[¢ € R™ is the lower limit on the activity for the constraints.

u® € R™ is the upper limit on the activity for the constraints.
e [* € R” is the lower limit on the activity for the variables.
e y” € R" is the upper limit on the activity for the variables.

Lower and upper bounds can be infinite, or in other words the corresponding bound may be omitted.
The set K is a Cartesian product of convex cones, namely K = Ky x --- x K,. Having the domain
restriction x € K, is thus equivalent to

IL’t S ICt Q Rnt,

where x = (z!,...,2P) is a partition of the problem variables. Please note that the n-dimensional
Euclidean space R™ is a cone itself, so simple linear variables are still allowed. The user only needs to
specify subsets of variables which belong to non-trivial cones.

In this section we discuss the formulations which apply to the following cones supported by MOSEK:

e The set R".
e The zero cone {(0,...,0)}.

e Quadratic cone

39

e Rotated quadratic cone

e Primal exponential cone
Kexp = {x eR?: x> 29 exp(rs/xa), x1,T2 > O}
as well as its dual
K' = {x €R3: x> —zze texp(za/23), x3 <02 > O} .

exp

e Primal power cone (with parameter 0 < a < 1)

777({"1_“ =<{zecR": x‘f‘x{a > E x?, 1, T2 > 0
Jj=3

as well as its dual

(Pyiey =Jwern: (2" (2 >1a >

MOSEK supports also the cone of positive semidefinite matrices. Since that is handled through a
separate interface, we discuss it in Sec. 8.3.

8.2.1 Duality for Conic Optimization
Corresponding to the primal problem (8.7), there is a dual problem

maximize (1¢)Ts¢ — (u®)TsS + (1%)Ts¥ — (u®)Ts% + ¢f
subject to
ATy +s7 — s +s% =c
—y+si—s; =0,
7, 85,87, 85 >0,
sy € K,

where the dual cone K* is a Cartesian product of the cones dual to K;. In practice this means that s,
has one entry for each entry in x. Please note that the dual problem of the dual problem is identical to
the original primal problem.

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at
0, and we use the convention that the product of the bound value and the corresponding dual variable
is 0. This is equivalent to removing variable (s7); from the dual problem. In other words:

lj=-0c0 = (sf);=0andl[] (s7); =0.

A solution
C C xT T xr
(y7sl75ua8l S Sn)

u’

to the dual problem is feasible if it satisfies all the constraints in (8.8). If (8.8) has at least one feasible
solution, then (8.8) is (dual) feasible, otherwise the problem is (dual) infeasible.

40

A solution
(@ y", (D)5 (55)", (s7)%, ()" (s0)")

is denoted a primal-dual feasible solution, if (x*) is a solution to the primal problem (8.7) and
(y*, (s£)*, (sS)*, (s7)*, (s2)*, (s¥)*) is a solution to the corresponding dual problem (8.8). We also define
an auxiliary vector

(z)* := Az™

containing the activities of linear constraints.
For a primal-dual feasible solution we define the duality gap as the difference between the primal and
the dual objective value,

T 4 ef — {197 (57)" — ()T ()" + ()7 (57)" = (u)T ()" + o}
= S () (@) = 1)+ (50); (u = (a5)")] (59
#3550 (575 (s = 1)+ ()5 (0 = 3)] + 553 ()55 = 0

where the first relation can be obtained by transposing and multiplying the dual constraints (8.2) by
z* and (2°)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

It is well-known that, under some non-degeneracy assumptions that exclude ill-posed cases, a conic
optimization problem has an optimal solution if and only if there exist feasible primal-dual solution so
that the duality gap is zero, or, equivalently, that the complementarity conditions

(S?):((l‘g)* - l;) = Oa 1= O? <, M= 17
(s0)i(uf —(2§)") = 0, i=0,....,m—1,
(D)5 —=13) = 0, j=0,....,n—1, (8.10)
(sp)j(uj —xx) = 0, j O7 n—1,
n—1 €T\ *k %
Ej:o (Sn)jxj 0.

are satisfied.
If (8.7) has an optimal solution and MOSEK solves the problem successfully, both the primal and
dual solution are reported, including a status indicating the exact state of the solution.

8.2.2 Infeasibility for Conic Optimization
Primal Infeasible Problems

If the problem (8.7) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (1¢)7s¢ — (u®)TsS + (1%)Ts¥ — (u®)Ts®
subject to
ATy + s7 — s% + 5% =0,
—y + 57 — sc =0,
Sla8u75l7 u > 0
sy € K,

(8.11)

such that the objective value is strictly positive, i.e. a solution
(v (s0)", (s2)7 (s7)% (s0)", (7))
o (8.11) so that
)T (s7)* — ()T (s5)* + (1) (s7)" = (u™) " (s3)" > 0.

Such a solution implies that (8.11) is unbounded, and that (8.7) is infeasible.

41

Dual Infeasible Problems

If the problem (8.8) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

T

minimize c'x
subject to ¢ < Ax < ac, (8.12)
= < x < 4, '
z €K,
where
- 0 if [§ > —c0 0 ifuf <o
c __ 1 ’ AQ — 7 9’
li _{ —oo otherwise, } and i : { oo otherwise, } (8.13)
and
- 0 if 1% > —c0 0 ifuf<oo
s _ J ’ A = J ’
L { —o00 otherwise, } and - 4j : { oo otherwise, } (8.14)
such that
'z <o.

Such a solution implies that (8.12) is unbounded, and that (8.8) is infeasible.

In case that both the primal problem (8.7) and the dual problem (8.8) are infeasible, MOSEK will
report only one of the two possible certificates — which one is not defined (MOSEK returns the first
certificate found).

8.2.3 Minimalization vs. Maximalization

When the objective sense of problem (8.7) is maximization, i.e.

maximize e +cf
subject to ¢ < Ax < uc,
r < T < u®,
z €K,

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (8.2). The dual problem thus takes the form

minimize (1°)Ts¢ — (u®)TsS + (1%)Ts¥ — (u®)Ts2 + f
subject to ATy + 57 — s% + 5% =,
—y + sj — 55 =0,
SisSus 5158y <0,
—st e K*

This means that the duality gap, defined in (8.9) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system

ATy + 57 — s% + 5% =0,

—y+ sy — s =0,
.57, 8% <0, (8.15)
—sr e K*

such that the objective value is strictly negative
)T ()" = ()T (s5)* + ()T (s7)* — (u™) T (s5)" < 0.

Similarly, the certificate of dual infeasibility is an z satisfying the requirements of (8.12) such that
T
c'z>0.

42

8.3 Semidefinite Optimization

Semidefinite optimization is an extension of conic optimization (see Sec. 8.2) allowing positive semidefinite
matrix variables to be used in addition to the usual scalar variables. All the other parts of the input are
defined exactly as in Sec. 8.2, and the discussion from that section applies verbatim to all properties of
problems with semidefinite variables. We only briefly indicate how the corresponding formulae should
be modified with semidefinite terms.

A semidefinite optimization problem can be written as

minimize > Ocjx] Py < X+
subject to [§ < ZJ Oa”x]—i—z <sz X;) < wf, i=0,...,m—1
7 < T < wf, j=0,...,n—1 (8.16)
x €K,
X;esy, j=0,...,p—1

where the problem has p symmetric positive semidefinite variables Y € Sf of dimension r; with
symmetric coefficient matrices C; € 8" and A4; ; € S"i. We use standard notation for the matrix inner
product, i.e., for U,V € R™*" we have

i=0 j=0
As always we write A = (a;,;) for the linear coefficient matrix.
Duality
The definition of the dual problem (8.8) becomes:

maximize (1¢)Ts¢ — (u®)TsS + (1%)Ts¥ — (u)Ts2 + f

subject to
ATy +s7 — st +s =c¢
—y +sj —s; =0,
Cy - Y Ay = 5, j=0,....p—1 (8.17)
s7,85,s7,85 >0,
sﬁE/C*,
S; eS8y, j=0,...,p— 1

The duality gap (8.9) is computed as:
Ta el — (1) (6" — ()T (55" + (1) (57)" — () (s5)" +)
= SR s0): (@) — 1) + (s u — (x£)°) o (5.18)
+ 3000 [P (s — 1) + (s2)5 (uf — 2)] + 270 (i) + 2250 (X 5, 95) 2 0

Complementarity conditions (8.10) include the additional relation:

(X;,8;)=0 j=0,...,p—1 (8.19)

Infeasibility

A certificate of primal infeasibility (8.11) is now a feasible solution to:

maximize (1¢)7s§ — (u®)TsS 4+ (17)Ts7 — (u*)T's
subject to
ATy + 87 — 5% + 5% =0,
-y +sj —s5 =0,

Z:nzll ylz” +§ :0’]:O77p_ 1 (820)
sy, 80,871,850 >0,
sy € K*,
S; eS8y, j=0,...,p—1.

43

such that the objective value is strictly positive.
Similarly, a dual infeasibility certificate (8.12) is a feasible solution to

minimize A Z?:_ol ¢z + Zf;é (C;,X;)
subject to I§ < Z;:()l ai; T + Zf;é <Zij,yj> < uf, i=0,...,m-—1
iz < x; < af, j=0,...,n—1 (8.21)
z ek,
X; eS8y, j=0,...,p—1

where the modified bounds are as in (8.13) and (8.14) and the objective value is strictly negative.

8.4 Quadratic and Quadratically Constrained Optimization

A convex quadratic and quadratically constrained optimization problem has the form

minimize %ITQOI +cTr+¢f
subject to I < %xTka + Z;Z(} agjr; < wuf, k=0,...,m—1, (8.22)
S Z; < wuj, j=0,...,n—-1,

where all variables and bounds have the same meaning as for linear problems (see Sec. 8.1) and Q° and
all Q* are symmetric matrices. Moreover, for convexity, Q° must be a positive semidefinite matrix and
QF must satisfy

—o0o <l¢ = QF is negative semidefinite,
u§ < oo = QF is positive semidefinite,
—co<lf <uf <oo = QF=0.

The convexity requirement is very important and MOSEK checks whether it is fulfilled.

8.4.1 A Recommendation

Any convex quadratic optimization problem can be reformulated as a conic quadratic optimization prob-
lem, see Modeling Cookbook and [And13]. In fact MOSEK does such conversion internally as a part
of the solution process for the following reasons:

e the conic optimizer is numerically more robust than the one for quadratic problems.

e the conic optimizer is usually faster because quadratic cones are simpler than quadratic functions,
even though the conic reformulation usually has more constraints and variables than the original
quadratic formulation.

e it is easy to dualize the conic formulation if deemed worthwhile potentially leading to (huge)
computational savings.

However, instead of relying on the automatic reformulation we recommend to formulate the problem
as a conic problem from scratch because:

e it saves the computational overhead of the reformulation including the convexity check. A conic
problem is convex by construction and hence no convexity check is needed for conic problems.

e usually the modeler can do a better reformulation than the automatic method because the modeler
can exploit the knowledge of the problem at hand.

To summarize we recommend to formulate quadratic problems and in particular quadratically con-
strained problems directly in conic form.

44

https://docs.mosek.com/modeling-cookbook/index.html

8.4.2 Duality for Quadratic and Quadratically Constrained Optimization

The dual problem corresponding to the quadratic and quadratically constrained optimization problem
(8.22) is given by

maximize (1°)7s§ — (u®)TsS + (1%)Tsf — (u®)Ts2 + 27 {Z;n;ol yQF — QO} x+cf

subject to ATy + s — s2 + {Z;n;ol yrQF — QO} T =c (8.23)
—y+ 57— s, =0,
87,855,878y > 0.

The dual problem is related to the dual problem for linear optimization (see Sec. 8.1.1), but depends on
the variable x which in general can not be eliminated. In the solutions reported by MOSEK, the value
of x is the same for the primal problem (8.22) and the dual problem (8.23).

8.4.3 Infeasibility for Quadratic Optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of infeasibility. We write them
out explicitly for quadratic problems, that is when Q* = 0 for all ¥ and quadratic terms appear only
in the objective Q°. In this case the constraints both in the primal and dual problem are linear, and
MOSEK produces for them the same infeasibility certificate as for linear problems.

The certificate of primal infeasibility is a solution to the problem (8.4) such that the objective value
is strictly positive.

The certificate of dual infeasibility is a solution to the problem (8.5) together with an additional
constraint

QR°x=0

such that the objective value is strictly negative.

45

Chapter 9
Optimizers

The most essential part of MOSEK are the optimizers:
e primal simplex (linear problems),
e dual simplex (linear problems),
e interior-point (linear, quadratic and conic problems),
e mized-integer (problems with integer variables).
The structure of a successful optimization process is roughly:
e Presolve

1. Elimination: Reduce the size of the problem.
2. Dualizer: Choose whether to solve the primal or the dual form of the problem.

3. Scaling: Scale the problem for better numerical stability.
e Optimization

1. Optimize: Solve the problem using selected method.
2. Terminate: Stop the optimization when specific termination criteria have been met.
3. Report: Return the solution or an infeasibility certificate.
The preprocessing stage is transparent to the user, but useful to know about for tuning purposes.

The purpose of the preprocessing steps is to make the actual optimization more efficient and robust. We
discuss the details of the above steps in the following sections.

9.1 Presolve
Before an optimizer actually performs the optimization the problem is preprocessed using the so-called
presolve. The purpose of the presolve is to

1. remove redundant constraints,

2. eliminate fixed variables,

3. remove linear dependencies,

4. substitute out (implied) free variables, and

5. reduce the size of the optimization problem in general.

After the presolved problem has been optimized the solution is automatically postsolved so that the
returned solution is valid for the original problem. Hence, the presolve is completely transparent. For
further details about the presolve phase, please see [AA95] and [AGMX96].

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If presolve consumes
too much time or memory compared to the reduction in problem size gained it may be disabled. This
is done by setting the parameter ¥SK_IPAR_PRESOLVE_USE to MSK_PRESOLVE_MODE_OFF. The two most
time-consuming steps of the presolve are

46

e the eliminator, and

e the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.

Numerical issues in the presolve

During the presolve the problem is reformulated so that it hopefully solves faster. However, in rare
cases the presolved problem may be harder to solve then the original problem. The presolve may also
be infeasible although the original problem is not. If it is suspected that presolved problem is much
harder to solve than the original, we suggest to first turn the eliminator off by setting the parameter
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES to 0. If that does not help, then trying to turn entire
presolve off may help.

Since all computations are done in finite precision, the presolve employs some tolerances when con-
cluding a variable is fixed or a constraint is redundant. If it happens that MOSEK incorrectly con-
cludes a problem is primal or dual infeasible, then it is worthwhile to try to reduce the parameters
MSK_DPAR_PRESOLVE_TOL_X and MSK_DPAR_PRESOLVE_TOL_S. However, if reducing the parameters ac-
tually helps then this should be taken as an indication that the problem is badly formulated.

Eliminator

The purpose of the eliminator is to eliminate free and implied free variables from the problem using
substitution. For instance, given the constraints

y,xr = 0,

y is an implied free variable that can be substituted out of the problem, if deemed worthwhile. If the elim-
inator consumes too much time or memory compared to the reduction in problem size gained it may be
disabled. This can be done by setting the parameter ¥SK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES

to 0. In rare cases the eliminator may cause that the problem becomes much hard to solve.

Linear dependency checker

The purpose of the linear dependency check is to remove linear dependencies among the linear equal-
ities. For instance, the three linear equalities

I =+ X2 —+ I3 =].,
z1 4+ 0.5z = 0.5,
0.5z0 +23 = 0.5.

contain exactly one linear dependency. This implies that one of the constraints can be dropped with-
out changing the set of feasible solutions. Removing linear dependencies is in general a good idea
since it reduces the size of the problem. Moreover, the linear dependencies are likely to introduce
numerical problems in the optimization phase. It is best practice to build models without linear de-
pendencies, but that is not always easy for the user to control. If the linear dependencies are removed
at the modeling stage, the linear dependency check can safely be disabled by setting the parameter
MSK_IPAR_PRESOLVE_LINDEP_USE to MSK_OFF.

Dualizer

All linear, conic, and convex optimization problems have an equivalent dual problem associated with
them. MOSEK has built-in heuristics to determine if it is more efficient to solve the primal or dual
problem. The form (primal or dual) is displayed in the MOSEK log and available as an information
item from the solver. Should the internal heuristics not choose the most efficient form of the problem it
may be worthwhile to set the dualizer manually by setting the parameters:

e MSK_IPAR_INTPNT_SOLVE_FORM: In case of the interior-point optimizer.

e MSK_IPAR_SIM_SOLVE_FORM: In case of the simplex optimizer.

Note that currently only linear and conic (but not semidefinite) problems may be automatically
dualized.

47

Scaling

Problems containing data with large and/or small coefficients, say 1.0e +9 or 1.0e — 7, are often hard
to solve. Significant digits may be truncated in calculations with finite precision, which can result in
the optimizer relying on inaccurate data. Since computers work in finite precision, extreme coefficients
should be avoided. In general, data around the same order of magnitude is preferred, and we will refer to
a problem, satisfying this loose property, as being well-scaled. If the problem is not well scaled, MOSEK
will try to scale (multiply) constraints and variables by suitable constants. MOSEK solves the scaled
problem to improve the numerical properties.

The scaling process is transparent, i.e. the solution to the original problem is reported. It is important
to be aware that the optimizer terminates when the termination criterion is met on the scaled problem,
therefore significant primal or dual infeasibilities may occur after unscaling for badly scaled problems.
The best solution of this issue is to reformulate the problem, making it better scaled.

By default MOSEK heuristically chooses a suitable scaling. The scaling for interior-point
and simplex optimizers can be controlled with the parameters MSK_IPAR_INTPNT_SCALING and
MSK_IPAR_SIM_SCALING respectively.

9.2 Linear Optimization

9.2.1 Optimizer Selection

Two different types of optimizers are available for linear problems: The default is an interior-point
method, and the alternative is the simplex method (primal or dual). The optimizer can be selected using
the parameter ¥SK_IPAR_OPTIMIZER.

The Interior-point or the Simplex Optimizer?

Given a linear optimization problem, which optimizer is the best: the simplex or the interior-point
optimizer? It is impossible to provide a general answer to this question. However, the interior-point
optimizer behaves more predictably: it tends to use between 20 and 100 iterations, almost independently
of problem size, but cannot perform warm-start. On the other hand the simplex method can take
advantage of an initial solution, but is less predictable from cold-start. The interior-point optimizer is
used by default.

The Primal or the Dual Simplex Variant?

MOSEK provides both a primal and a dual simplex optimizer. Predicting which simplex optimizer
is faster is impossible, however, in recent years the dual optimizer has seen several algorithmic and
computational improvements, which, in our experience, make it faster on average than the primal version.
Still, it depends much on the problem structure and size. Setting the ¥SK_IPAR_OPTIMIZER parameter to
MSK_OPTIMIZER_FREE_SIMPLEX instructs MOSEK to choose one of the simplex variants automatically.

To summarize, if you want to know which optimizer is faster for a given problem type, it is best to
try all the options.

9.2.2 The Interior-point Optimizer
The purpose of this section is to provide information about the algorithm employed in the MOSEK
interior-point optimizer for linear problems and about its termination criteria.

The homogeneous primal-dual problem

In order to keep the discussion simple it is assumed that MOSEK solves linear optimization problems
of standard form

minimize Tz
subject to Ax = b, (9.1
x> 0.

This is in fact what happens inside MOSEK; for efficiency reasons MOSEK converts the problem to
standard form before solving, then converts it back to the input form when reporting the solution.

48

Since it is not known beforehand whether problem (9.1) has an optimal solution, is primal infeasible
or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason
why MOSEK solves the so-called homogeneous model

Ax —br = 0,
ATy+s—cr = 0,

—cTe4+bTy—x = 0, (9.2)
r,s, 7,k > 0

)

where y and s correspond to the dual variables in (9.1), and 7 and & are two additional scalar variables.
Note that the homogeneous model (9.2) always has solution since

(z,y,s,7,k) = (0,0,0,0,0)
is a solution, although not a very interesting one. Any solution
(&*, 4", 8%, 7, K*)
to the homogeneous model (9.2) satisfies

T;S;

; ;zoandT*/{*zo.

Moreover, there is always a solution that has the property 7* + k* > 0.
First, assume that 7 > 0 . It follows that

*

AZ b,
Ty" 5
Fe R o
—C = + ey =)
T T
¥ s, 7 k* > 0.

This shows that f—* is a primal optimal solution and ('Z—*, j—;) is a dual optimal solution; this is reported
as the optimal interior-point solution since

(.’L‘,y,S): FaF7F

is a primal-dual optimal solution (see Sec. 8.1 for the mathematical background on duality and optimal-
ity).
On other hand, if k* > 0 then

Ax* =

ATy* +8* _
—CTLL'*-FbTy*
T, 8%, T K*

oxn o0

Vol

This implies that at least one of

cl'z* <0 (9.3)
or

bIy* >0 (9.4)

is satisfied. If (9.3) is satisfied then z* is a certificate of dual infeasibility, whereas if (9.4) is satisfied
then y* is a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information re-
quired for a solution to the original problem is obtained. A solution to the homogeneous model can be
computed using a primal-dual interior-point algorithm [And09].

49

Interior-point Termination Criterion

For efficiency reasons it is not practical to solve the homogeneous model exactly. Hence, an exact optimal
solution or an exact infeasibility certificate cannot be computed and a reasonable termination criterion
has to be employed.

In the k-th iteration of the interior-point algorithm a trial solution

E o,k & _k Kk
(@, y", ", TV KY)
to homogeneous model is generated, where

zk s* R kE > 0.

Optimal case

Whenever the trial solution satisfies the criterion

|z -] < e+,
ATL 45 _ < all+]lel), and (9.5)
min (S50 [45 S) < gqom (1, 2R,
the interior-point optimizer is terminated and
(z*,y*, s%)
-k

is reported as the primal-dual optimal solution. The interpretation of (9.5) is that the optimizer is

terminated if

zF

o =
Tk

is approximately primal feasible,
° {Z—:, f_—i} is approximately dual feasible, and

e the duality gap is almost zero.

Dual infeasibility certificate
On the other hand, if the trial solution satisfies

Tk el k
> e T 14 e

then the problem is declared dual infeasible and z* is reported as a certificate of dual infeasibility. The
motivation for this stopping criterion is as follows: First assume that HAa:kHOO =0 ; then 2" is an exact
certificate of dual infeasibility. Next assume that this is not the case, i.e.

142*(|, >0,

and define
o max(L)
[Az*]| o [lell o

It is easy to verify that

~max (1, [b]])

1Az, = € T
* 7 el

and —c' 7z > 1,

which shows Z is an approximate certificate of dual infeasibility, where ¢; controls the quality of the
approximation. A smaller value means a better approximation.

50

Primal infeasibility certificate
Finally, if

EibT’yk > ||b||oo) ||ATyk +SkHOO

o0

then y* is reported as a certificate of primal infeasibility.

Adjusting optimality criteria

It is possible to adjust the tolerances €, €4, €4 and ¢; using parameters; see table for details.

Table 9.1: Parameters employed in termination criterion

ToleranceParameter | name

Ep MSK_DPAR_INTPNT_TOL_PFEAS
g4 MSK_DPAR_INTPNT_TOL_DFEAS
Eg MSK_DPAR_INTPNT_TOL_REL_GAP
Ei MSK_DPAR_INTPNT_TOL_INFEAS

The default values of the termination tolerances are chosen such that for a majority of problems
appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the
tolerances usually is not worthwhile. However, an inspection of (9.5) reveals that the quality of the
solution depends on [|b]| , and ||c||,; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal
and dual feasibility at the same rate [And09/. This means that if the optimizer is stopped prematurely
then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that
in most cases all the tolerances, €,, €4, €4 and ¢;, have to be relaxed together to achieve an effect.

If the optimizer terminates without locating a solution that satisfies the termination crite-
ria, for example because of a stall or other numerical issues, then it will check if the solution
found up to that point satisfies the same criteria with all tolerances multiplied by the value of
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL. If this is the case, the solution is still declared as optimal.

The basis identification discussed in Sec. 9.2.2 requires an optimal solution to work well; hence basis
identification should be turned off if the termination criterion is relaxed.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

Basis ldentification

An interior-point optimizer does not return an optimal basic solution unless the problem has a unique
primal and dual optimal solution. Therefore, the interior-point optimizer has an optional post-processing
step that computes an optimal basic solution starting from the optimal interior-point solution. More
information about the basis identification procedure may be found in /AY96/. In the following we provide
an overall idea of the procedure.

There are some cases in which a basic solution could be more valuable:

e a basic solution is often more accurate than an interior-point solution,
e a basic solution can be used to warm-start the simplex algorithm in case of reoptimization,

e a basic solution is in general more sparse, i.e. more variables are fixed to zero. This is partic-
ularly appealing when solving continuous relaxations of mixed integer problems, as well as in all
applications in which sparser solutions are preferred.

To illustrate how the basis identification routine works, we use the following trivial example:

minimize T+y
subject to zx+y = 1,
z,y > 0.

It is easy to see that all feasible solutions are also optimal. In particular, there are two basic solutions,
namely

The interior point algorithm will actually converge to the center of the optimal set, i.e. to (z*,y*) =
(1/2,1/2) (to see this in MOSEK deactivate Presolve).

In practice, when the algorithm gets close to the optimal solution, it is possible to construct in
polynomial time an initial basis for the simplex algorithm from the current interior point solution. This
basis is used to warm-start the simplex algorithm that will provide the optimal basic solution. In most
cases the constructed basis is optimal, or very few iterations are required by the simplex algorithm to
make it optimal and hence the final clean-up phase be short. However, for some cases of ill-conditioned
problems the additional simplex clean up phase may take of lot a time.

By default MOSEK performs a basis identification. However, if a basic solution is not needed, the
basis identification procedure can be turned off. The parameters

o MSK_IPAR_INTPNT_BASIS,
e MSK_IPAR_BI_IGNORE_MAX_ITER, and
e MSK_IPAR_BI_IGNORE_NUM_ERROR

control when basis identification is performed.

The type of simplex algorithm to be used (primal/dual) can be tuned with the param-
eter MSK_IPAR_BI_CLEAN_OPTIMIZER, and the maximum number of iterations can be set with
MSK_IPAR_BI_MAX_ITERATIONS.

Finally, it should be mentioned that there is no guarantee on which basic solution will be returned.

The Interior-point Log

Below is a typical log output from the interior-point optimizer:

Optimizer - threads 1

Optimizer - solved problem : the dual

Optimizer - Constraints : 2

Optimizer - Cones H¢

Optimizer - Scalar variables : 6 conic 0
Optimizer - Semi-definite variables: 0O scalarized 0

Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 3 after factor 3

Factor - dense dim. H) flops : 7.00e+001
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 1.0e+000 8.6e+000 6.1e+000 1.00e+000 0.000000000e+000 -2.208000000e+003 1.0e+000 0.00
1 1.1e+000 2.5e+000 1.6e-001 0.00e+000 -7.901380925e+003 -7.394611417e+003 2.5e+000 0.00
2 1.4e-001 3.4e-001 2.1e-002 8.36e-001 -8.113031650e+003 -8.055866001e+003 3.3e-001 0.00
3 2.4e-002 5.8e-002 3.6e-003 1.27e+000 -7.777530698e+003 -7.766471080e+003 5.7e-002 0.01
4 1.3e-004 3.2e-004 2.0e-005 1.08e+000 -7.668323435e+003 -7.668207177e+003 3.2e-004 0.01
5 1.3e-008 3.2e-008 2.0e-009 1.00e+000 -7.668000027e+003 -7.668000015e+003 3.2e-008 0.01
6 1.3e-012 3.2e-012 2.0e-013 1.00e+000 -7.667999994e+003 -7.667999994e+003 3.2e-012 0.01

The first line displays the number of threads used by the optimizer and the second line indicates if
the optimizer chose to solve the primal or dual problem (see MSK_IPAR_INTPNT_SOLVE_FORN). The next
lines display the problem dimensions as seen by the optimizer, and the Factor... lines show various
statistics. This is followed by the iteration log.

Using the same notation as in Sec. 9.2.2 the columns of the iteration log have the following meaning:

e ITE: Iteration index k.

e PFEAS: HA:rk — kaHOC . The numbers in this column should converge monotonically towards zero
but may stall at low level due to rounding errors.

e DFEAS: ||ATyk + sk —er* ||OQ . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

e GFEAS: | —cTa* +bTy* — k¥| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

e PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to —1 if that is not the case.

52

POBJ: c’'z¥ /7. An estimate for the primal objective value.

DOBJ: bTy* /7%. An estimate for the dual objective value.

MU (:Ck)TSk-i-TkRk

=1 . The numbers in this column should always converge to zero.

e TIME: Time spent since the optimization started.

9.2.3 The Simplex Optimizer

An alternative to the interior-point optimizer is the simplex optimizer. The simplex optimizer uses a
different method that allows exploiting an initial guess for the optimal solution to reduce the solution
time. Depending on the problem it may be faster or slower to use an initial guess; see Sec. 9.2.1 for a
discussion. MOSEK provides both a primal and a dual variant of the simplex optimizer.

Simplex Termination Criterion

The simplex optimizer terminates when it finds an optimal basic solution or an infeasibility certificate.
A Dbasic solution is optimal when it is primal and dual feasible; see Sec. 8.1 for a definition of the primal
and dual problem. Due to the fact that computations are performed in finite precision MOSEK allows
violations of primal and dual feasibility within certain tolerances. The user can control the allowed
primal and dual tolerances with the parameters #SK_DPAR_BASIS_TOL_X and MSK_DPAR_BASIS_TOL_S.

Setting the parameter ¥SK_IPAR_OPTIMIZER to MSK_OPTIMIZER_FREE_SIMPLEX instructs MOSEK
to select automatically between the primal and the dual simplex optimizers. Hence, MOSEK tries to
choose the best optimizer for the given problem and the available solution. The same parameter can also
be used to force one of the variants.

Starting From an Existing Solution

When using the simplex optimizer it may be possible to reuse an existing solution and thereby reduce
the solution time significantly. When a simplex optimizer starts from an existing solution it is said to
perform a warm-start. If the user is solving a sequence of optimization problems by solving the problem,
making modifications, and solving again, MOSEK will warm-start automatically.

By default MOSEK uses presolve when performing a warm-start. If the optimizer only needs very
few iterations to find the optimal solution it may be better to turn off the presolve.

Numerical Difficulties in the Simplex Optimizers

Though MOSEK is designed to minimize numerical instability, completely avoiding it is impossible
when working in finite precision. MOSEK treats a “numerically unexpected behavior” event inside the
optimizer as a set-back. The user can define how many set-backs the optimizer accepts; if that number
is exceeded, the optimization will be aborted. Set-backs are a way to escape long sequences where the
optimizer tries to recover from an unstable situation.

Examples of set-backs are: repeated singularities when factorizing the basis matrix, repeated loss
of feasibility, degeneracy problems (no progress in objective) and other events indicating numerical
difficulties. If the simplex optimizer encounters a lot of set-backs the problem is usually badly scaled; in
such a situation try to reformulate it into a better scaled problem. Then, if a lot of set-backs still occur,
trying one or more of the following suggestions may be worthwhile:

e Raise tolerances for allowed primal or dual feasibility: increase the value of

— MSK_DPAR_BASIS_TOL_X, and
— MSK_DPAR_BASIS_TOL_S.

Raise or lower pivot tolerance: Change the MSK_DPAR_SIMPLEX_ABS_TOL_PIV parameter.

Switch optimizer: Try another optimizer.

Switch off crash: Set both ¥MSK_IPAR_SIM_PRIMAL_CRASH and MSK_IPAR_SIM_DUAL_CRASH to 0.

e Experiment with other pricing strategies: Try different values for the parameters

53

— MSK_IPAR_SIM_PRIMAL_SELECTION and
— MSK_IPAR_SIM_DUAL_SELECTION.

If you are using warm-starts, in rare cases switching off this feature may improve stability. This is
controlled by the MSK_IPAR_SIM_HOTSTART parameter.

Increase maximum number of set-backs allowed controlled by MSK_IPAR_SIM_MAX_NUM_SETBACKS.

If the problem repeatedly becomes infeasible try switching off the special degeneracy handling. See
the parameter MSK_IPAR_SIM_DEGEN for details.

The Simplex Log

Below is a typical log output from the simplex optimizer:

Optimizer - solved problem : the primal

Optimizer - Constraints : 667

Optimizer - Scalar variables 1 1424 conic : 0

Optimizer - hotstart : no

ITER DEGITER(%) PFEAS DFEAS POBJ DOBJ TIME
— TOTTIME

0 0.00 1.43e+05 NA 6.5584140832e+03 NA 0.00,
— 0.02

1000 1.10 0.00e+00 NA 1.4588289726e+04 NA 0.13,
— 0.14

2000 0.75 0.00e+00 NA 7.3705564855e+03 NA 0.21,
- 0.22

3000 0.67 0.00e+00 NA 6.0509727712e+03 NA 0.29,
— 0.31

4000 0.52 0.00e+00 NA 5.5771203906e+03 NA 0.38,
— 0.39

4533 0.49 0.00e+00 NA 5.5018458883e+03 NA 0.42,
— 0.44

The first lines summarize the problem the optimizer is solving. This is followed by the iteration log,
with the following meaning:

ITER: Number of iterations.
DEGITER(%): Ratio of degenerate iterations.

PFEAS: Primal feasibility measure reported by the simplex optimizer. The numbers should be 0 if
the problem is primal feasible (when the primal variant is used).

DFEAS: Dual feasibility measure reported by the simplex optimizer. The number should be 0 if the
problem is dual feasible (when the dual variant is used).

POBJ: An estimate for the primal objective value (when the primal variant is used).
DOBJ: An estimate for the dual objective value (when the dual variant is used).
TIME: Time spent since this instance of the simplex optimizer was invoked (in seconds).

TOTTIME: Time spent since optimization started (in seconds).

9.3 Conic Optimization - Interior-point optimizer

For conic optimization problems only an interior-point type optimizer is available.

54

9.3.1 The homogeneous primal-dual problem

The interior-point optimizer is an implementation of the so-called homogeneous and self-dual algorithm.
For a detailed description of the algorithm, please see [ART03/. In order to keep our discussion simple
we will assume that MOSEK solves a conic optimization problem of the form:

minimize T
subject to Az = b, (9.6)
reK

where K is a convex cone. The corresponding dual problem is

maximize by
subject to ATy +s = ¢, (9.7
s e K*

where IC* is the dual cone of K. See Sec. 8.2 for definitions.

Since it is not known beforehand whether problem (9.6) has an optimal solution, is primal infeasible
or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason
that MOSEK solves the so-called homogeneous model

Ax —br = 0,
ATy4+s—cr = 0,
—cTr+bTy—k = 0,
€ K (9.8)
s € K*
.k > 0

9

where y and s correspond to the dual variables in (9.6), and 7 and k are two additional scalar variables.
Note that the homogeneous model (9.8) always has a solution since

(x,y,s,7,k) = (0,0,0,0,0)
is a solution, although not a very interesting one. Any solution
(@*,y*, 8%, 7%, K¥)
to the homogeneous model (9.8) satisfies
(@) Ts* + 75" = 0
i.e. complementarity. Observe that * € K and s* € * implies
(z")Ts* >0
and therefore
T'R* = 0.

since 7%, k* > 0. Hence, at least one of 7* and k* is zero.
First, assume that 7* > 0 and hence x* = 0. It follows that

AZ =,
Ty, &
AR
_cTz" A
cE+0t s = 0,
x*/m* e K,
s*/t* e K*.

This shows that ﬁ— is a primal optimal solution and (Z—, j—) is a dual optimal solution; this is reported
as the optimal interior-point solution since

* y* s*
(z,y,s) = g R s

55

is a primal-dual optimal solution.
On other hand, if x* > 0 then

Ax* = 0,
ATy + 5% = 0,
_ch* +bTy* — :‘i*,
z* e K,
s* e K*.
This implies that at least one of
cl'z* <0 (9.9)
or
bIy* >0 (9.10)

holds. If (9.9) is satisfied, then z* is a certificate of dual infeasibility, whereas if (9.10) holds then y* is
a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information re-
quired for a solution to the original problem is obtained. A solution to the homogeneous model can be
computed using a primal-dual interior-point algorithm [And09].

9.3.2 Interior-point Termination Criterion

Since computations are performed in finite precision, and for efficiency reasons, it is not possible to solve
the homogeneous model exactly in general. Hence, an exact optimal solution or an exact infeasibility
certificate cannot be computed and a reasonable termination criterion has to be employed.

In every iteration k of the interior-point algorithm a trial solution

(mk7 yk7 Sk? Tk? Hk:)
to the homogeneous model is generated, where

ot e K, s e K*, 7%, kF > 0.

Therefore, it is possible to compute the values:

. k
oy = argmin, {p| A% —b| <pe,(+ b0}

. EoS
pk = argmin, {p| AT%—l—%—CH §105d(1—|—|\c||00)}7

> s T .k T,k

p’; = arg min, {p ‘ ((z(’;f);k, C:}fk B bigk |) < peymax (1, mm(|CITk|’|b”)> } ,
p’éi = argmin, {p| |ATy* +s*|__ < pedTy*, bTy* > 0} and
pki = argmin, {p| ||Az"|| < —peic"aF, Tat <0},

Note €,,,£4,€4 and €; are nonnegative user specified tolerances.

Optimal Case

Observe p’; measures how far z¥ /7% is from being a good approximate primal feasible solution. Indeed

if p’; <1, then

J?k
HAk - b” < ep(1+ [b]l). (9.11)

T

This shows the violations in the primal equality constraints for the solution #* /7% is small compared to
the size of b given ¢, is small.

Similarly, if p% < 1, then (y*, s*)/7* is an approximate dual feasible solution. If in addition p, < 1,
then the solution (z*,y*, s¥) /7% is approximate optimal because the associated primal and dual objective
values are almost identical.

56

In other words if max(p’;, p’;“ p’;) <1, then

(z*, y*, s%)

Tk

is an approximate optimal solution.

Dual Infeasibility Certificate
Next assume that p% < 1 and hence
HAmkHoo < —EiCT.Tk and —cTzF >0

holds. Now in this case the problem is declared dual infeasible and z* is reported as a certificate of dual
infeasibility. The motivation for this stopping criterion is as follows. Let

b
7=y
and it is easy to verify that
|Az||, <e;and ¢z =1

which shows Z is an approximate certificate of dual infeasibility, where ¢; controls the quality of the
approximation.

Primal Infeasiblity Certificate
Next assume that p’;i < 1 and hence
HATy]C + skHoo < g;bTy* and bTy* >0
holds. Now in this case the problem is declared primal infeasible and (y*, s*) is reported as a certificate

of primal infeasibility. The motivation for this stopping criterion is as follows. Let

Y= yk ds:.= s*
= and 5 :=
Y byt bT gk

and it is easy to verify that
HATQ + §||Oo <gandblg=1
which shows (y*,s*) is an approximate certificate of dual infeasibility, where &; controls the quality of
the approximation.
9.3.3 Adjusting optimality criteria
It is possible to adjust the tolerances €, €4, €4 and €; using parameters; see table for details.

Table 9.2: Parameters employed in termination criterion

ToleranceParameter | name

Ep MSK_DPAR_INTPNT_CO_TOL_PFEAS
£d MSK_DPAR_INTPNT_CO_TOL_DFEAS
Eg MSK_DPAR_INTPNT_CO_TOL_REL_GAP
E; MSK_DPAR_INTPNT_CO_TOL_INFEAS

The default values of the termination tolerances are chosen such that for a majority of problems
appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the
tolerances usually is not worthwhile. However, an inspection of (9.11) reveals that the quality of the
solution depends on [|b]|, and ||c||,; the smaller the norms are, the better the solution accuracy.

57

The interior-point method as implemented by MOSEK will converge toward optimality and primal
and dual feasibility at the same rate [And09/. This means that if the optimizer is stopped prematurely
then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that
in most cases all the tolerances, €,, €4, €4 and €;, have to be relaxed together to achieve an effect.

If the optimizer terminates without locating a solution that satisfies the termination crite-
ria, for example because of a stall or other numerical issues, then it will check if the solution
found up to that point satisfies the same criteria with all tolerances multiplied by the value of
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL. If this is the case, the solution is still declared as optimal.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

9.3.4 The Interior-point Log

Below is a typical log output from the interior-point optimizer:

Optimizer - threads : 20

Optimizer - solved problem : the primal

Optimizer - Constraints 1

Optimizer - Cones : 2

Optimizer - Scalar variables 6 conic 6
Optimizer - Semi-definite variables: 0O scalarized : 0

Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 1 after factor 1

Factor - dense dim. : 0 flops : 1.70e+01
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 1.0e+00 2.9e-01 3.4e+00 0.00e+00 2.414213562e+00 0.000000000e+00 1.0e+00 0.01
1 2.7e-01 7.9e-02 2.2e¢+00 8.83e-01 6.969257574e-01 -9.685901771e-03 2.7e-01 0.01
2 6.5e-02 1.9e-02 1.2e+00 1.16e+00 7.606090061e-01 6.046141322e-01 6.5e-02 0.01
3 1.7e-03 5.0e-04 2.2e-01 1.12e+00 7.084385672e-01 7.045122560e-01 1.7e-03 0.01
4 1.4e-08 4.2e-09 4.9e-08 1.00e+00 7.071067941e-01 7.071067599e-01 1.4e-08 0.01

The first line displays the number of threads used by the optimizer and the second line indicates if
the optimizer chose to solve the primal or dual problem (see MSK_IPAR_INTPNT_SOLVE_FORN). The next
lines display the problem dimensions as seen by the optimizer, and the Factor... lines show various
statistics. This is followed by the iteration log.

Using the same notation as in Sec. 9.3.1 the columns of the iteration log have the following meaning:

ITE: Iteration index k.

PFEAS: HAmk - kaHoo . The numbers in this column should converge monotonically towards zero
but may stall at low level due to rounding errors.

DFEAS: ||ATyk + sk —crk ||Oo . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

GFEAS: | — cTz* +bTy* — k*| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to —1 if that is not the case.

POBJ: cTa¥ /7. An estimate for the primal objective value.

DOBJ: bT'y* /7%. An estimate for the dual objective value.

MU: (:Ek)TSkJerK/k

—n1 . The numbers in this column should always converge to zero.

TIME: Time spent since the optimization started (in seconds).

9.4 The Optimizer for Mixed-integer Problems

A problem is a mixed-integer optimization problem when one or more of the variables are constrained
to be integer valued. Readers unfamiliar with integer optimization are recommended to consult some
relevant literature, e.g. the book [Wol98] by Wolsey.

58

9.4.1 The Mixed-integer Optimizer Overview
MOSEK can solve mixed-integer

e linear,
e quadratic and quadratically constrained, and
e conic

problems, except for mixed-integer semidefinite problems. The mixed-integer optimizer is special-
ized for solving linear and conic optimization problems. Pure quadratic and quadratically constrained
problems are automatically converted to conic form.

By default the mixed-integer optimizer is run-to-run deterministic. This means that if a problem is
solved twice on the same computer with identical parameter settings and no time limit then the obtained
solutions will be identical. If a time limit is set then this may not be case since the time taken to solve
a problem is not deterministic. The mixed-integer optimizer is parallelized i.e. it can exploit multiple
cores during the optimization.

The solution process can be split into these phases:

1. Presolve: See Sec. 9.1.
2. Cut generation: Valid inequalities (cuts) are added to improve the lower bound.

3. Heuristic: Using heuristics the optimizer tries to guess a good feasible solution. Heuristics can
be controlled by the parameter MSK_IPAR_MIO_HEURISTIC_LEVEL.

4. Search: The optimal solution is located by branching on integer variables.

9.4.2 Relaxations and bounds

It is important to understand that, in a worst-case scenario, the time required to solve integer opti-
mization problems grows exponentially with the size of the problem (solving mixed-integer problems is
NP-hard). For instance, a problem with n binary variables, may require time proportional to 2" . The
value of 2™ is huge even for moderate values of n.

In practice this implies that the focus should be on computing a near-optimal solution quickly rather
than on locating an optimal solution. Even if the problem is only solved approximately, it is important
to know how far the approximate solution is from an optimal one. In order to say something about the
quality of an approximate solution the concept of relazation is important.

Consider for example a mixed-integer optimization problem

* T

z* = minimize c'x
subject to Ax = b,
2> 0 (9.12)
z; € Z, VieJ.
It has the continuous relaxation

z = minimize Tz
subject to Az = b, (9.13)

x>0

obtained simply by ignoring the integrality restrictions. The relaxation is a continuous problem, and
therefore much faster to solve to optimality with a linear (or, in the general case, conic) optimizer.
We call the optimal value z the objective bound. The objective bound z normally increases during the
solution search process when the continuous relaxation is gradually refined.

Moreover, if & is any feasible solution to (9.12) and

z:=c''%
then

2 <z <z

These two inequalities allow us to estimate the quality of the integer solution: it is no further away from
the optimum than Z — z in terms of the objective value. Whenever a mixed-integer problem is solved
MOSEK reports this lower bound so that the quality of the reported solution can be evaluated.

59

9.4.3 Outer approximation for mixed-integer conic problems

The relaxations of mixed integer conic problems can be solved either as a nonlinear problem with the
interior point algorithm (default) or with a linear outer approximation algorithm. The type of relaxation
used can be set with MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION. The best value for this option is
highly problem dependent.

9.4.4 Randomization

A number of internal algorithms of the mixed-integer solver are dependend on random tie-breaking. The
random tie-breaking can have a significant impact on the path taken by the algorithm and the optimal
solution returned. The random seed can be set with the parameter ¥SK_IPAR_MIO_SEED.

9.4.5 Termination Criterion

In general, it is time consuming to find an exact feasible and optimal solution to an integer optimization
problem, though in many practical cases it may be possible to find a sufficiently good solution. The issue
of terminating the mixed-integer optimizer is rather delicate and the user has numerous possibilities of
influencing it with various parameters. The mixed-integer optimizer employs a relaxed feasibility and
optimality criterion to determine when a satisfactory solution is located.

A candidate solution that is feasible for the continuous relaxation is said to be an integer feasible
solution if the criterion

min(z; — [z;], [z;] —;) <6 VieJ

is satisfied, meaning that z; is at most ¢; from the nearest integer.
Whenever the integer optimizer locates an integer feasible solution it will check if the criterion

zZ — z < max(dq, 63 max(dy, |Z]))

is satisfied. If this is the case, the integer optimizer terminates and reports the integer feasible solution
as an optimal solution.
All the § tolerances discussed above can be adjusted using suitable parameters — see Table 9.3.

Table 9.3: Tolerances for the mixed-integer optimizer.

Tolerance | Parameter name

01 MSK_DPAR_MIO_TOL_ABS_RELAX_INT
0o MSK_DPAR_MIO_TOL_ABS_GAP

03 MSK_DPAR_MIO_TOL_REL_GAP

04 MSK_DPAR_MIO_REL_GAP_CONST

In Table 9.4 some other common parameters affecting the integer optimizer termination criterion are
shown.

Table 9.4: Other parameters affecting the integer optimizer termi-
nation criterion.

Parameter name Explanation

MSK_IPAR_MIO_MAX_NUM_BRANCHES Maximum number of branches allowed.
MSK_IPAR_MIO_MAX_NUM_RELAXS Maximum number of relaxations allowed.
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS | Maximum number of feasible integer solutions allowed.

9.4.6 Speeding Up the Solution Process

As mentioned previously, in many cases it is not possible to find an optimal solution to an integer
optimization problem in a reasonable amount of time. Some suggestions to reduce the solution time are:

e Relax the termination criterion: In case the run time is not acceptable, the first thing to do is to
relax the termination criterion — see Sec. 9.4.5 for details.

60

e Specify a good initial solution: In many cases a good feasible solution is either known or easily
computed using problem-specific knowledge. If a good feasible solution is known, it is usually
worthwhile to use this as a starting point for the integer optimizer.

e Improve the formulation: A mixed-integer optimization problem may be impossible to solve in one
form and quite easy in another form. However, it is beyond the scope of this manual to discuss good
formulations for mixed-integer problems. For discussions on this topic see for example [Wol98].

9.4.7 Understanding Solution Quality
To determine the quality of the solution one should check the following:

e The problem status and solution status returned by MOSEK, as well as constraint violations in
case of suboptimal solutions.

e The optimality gap defined as
e = |(objective value of feasible solution) — (objective bound)| = |Z — z|.

which measures how much the located solution can deviate from the optimal solution
to the problem. The optimality gap can be retrieved through the information item
MSK_DINF_MIO_0BJ_ABS_GAP. Often it is more meaningful to look at the relative optimality gap
normalized against the magnitude of the solution.

The relative optimality gap is available in the information item MSK_DINF_MIO_0BJ_REL_GAP.

9.4.8 The Mixed-integer Log

Below is a typical log output from the mixed-integer optimizer:

Presolved problem: 6573 variables, 35728 constraints, 101258 non-zeros
Presolved problem: O general integer, 4294 binary, 2279 continuous
Clique table size: 1636

BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_0BJ BEST_RELAX_OBJ REL_GAP(%) TIME
0 1 0 0 NA 1.8218819866e+07 NA 1.6
0 1 0 0 1.8331557950e+07 1.8218819866e+07 0.61 3.5
0 1 0 0 1.8300507546e+07 1.8218819866e+07 0.45 4.3
Cut generation started.
0 2 0 0 1.8300507546e+07 1.8218819866e+07 0.45 5.3
Cut generation terminated. Time = 1.43
0 3 0 0 1.8286893047e+07 1.8231580587e+07 0.30 7.5
15 18 1 0 1.8286893047e+07 1.8231580587e+07 0.30 10.5
31 34 1 0 1.8286893047e+07 1.8231580587e+07 0.30 11.1
51 54 1 0 1.8286893047e+07 1.8231580587e+07 0.30 11.6
91 94 1 0 1.8286893047e+07 1.8231580587e+07 0.30 12.4
171 174 1 0 1.8286893047e+07 1.8231580587e+07 0.30 14.3
331 334 1 0 1.8286893047e+07 1.8231580587e+07 0.30 17.9
[...1
Objective of best integer solution : 1.825846762609e+07
Best objective bound 1 1.823311032986e+07
Construct solution objective : Not employed
Construct solution # roundings : 0
User objective cut value : 0
Number of cuts generated : 117

Number of Gomory cuts : 108

Number of CMIR cuts : 9

(continues on next page)

61

(continued from previous page)

Number of branches 1 4425
Number of relaxations solved 1 4410
Number of interior point iterations: 25
Number of simplex iteratioms : 221131

The first lines contain a summary of the problem as seen by the optimizer. This is followed by the
iteration log. The columns have the following meaning:

e BRANCHES: Number of branches generated.

e RELAXS: Number of relaxations solved.

e ACT_NDS: Number of active branch bound nodes.

e DEPTH: Depth of the recently solved node.

e BEST_INT_0BJ: The best integer objective value, Z.

e BEST_RELAX_0BJ: The best objective bound, z.

e REL_GAP(%): Relative optimality gap, 100% - €e1

e TIME: Time (in seconds) from the start of optimization.

Following that a summary of the optimization process is printed.

62

Chapter 10

Additional features

In this section we describe additional features and tools which enable more detailed analysis of optimiza-
tion problems with MOSEK.

10.1 Problem Analyzer

The problem analyzer prints a survey of the structure of the problem, with information about linear
constraints and objective, quadratic constraints, conic constraints and variables.

In the initial stages of model formulation the problem analyzer may be used as a quick way of
verifying that the model has been built or imported correctly. In later stages it can help revealing special
structures within the model that may be used to tune the optimizer’s performance or to identify the
causes of numerical difficulties.

The problem analyzer is run from the command line using the -anapro argument and produces
output similar to the following (this is the problem analyzer’s survey of the aflow30a problem from the
MIPLIB 2003 collection.)

Analyzing the problem

*** Structural report

Dimensions
Constraints Variables Matrix var. Cones
479 842 0 0

Constraint and bound types

Free Lower Upper Ranged Fixed
Constraints: O 0 421 0 58
Variables: O 0 0 842 0

Integer constraint types
Binary General
421 0

*** Data report

Nonzeros Min Max
lcjl: 421 1.1e+01 5.0e+02
[Aijl: 2091 1.0e+00 1.0e+02
finite Min Max
|blcil: 58 1.0e+00 1.0e+01
|bucil: 479 0.0e+00 1.0e+01
Iblxjl: 842 0.0e+00 0.0e+00
|buxjl: 842 1.0e+00 1.0e+02

*** Done analyzing the problem

The survey is divided into a structural and numerical report. The content should be self-explanatory.

63

10.2 Automatic Repair of Infeasible Problems

MOSEK provides an automatic repair tool for infeasible linear problems which we cover in this section.
Note that most infeasible models are so due to bugs which can (and should) be more reliably fixed
manually, using the knowledge of the model structure. We discuss this approach in Sec. 7.3.

10.2.1 Automatic repair

The main idea can be described as follows. Consider the linear optimization problem with m constraints
and n variables

minimize e+ ef
subject to ¢ < Ax < uc,
r < T < u®

which is assumed to be infeasible.

One way of making the problem feasible is to reduce the lower bounds and increase the upper bounds.
If the change is sufficiently large the problem becomes feasible. Now an obvious idea is to compute the
optimal relaxation by solving an optimization problem. The problem

minimize p(vf, vy, vif,v)
subject to 1 —vf < Az < ut g (10.1)
o —yf < x < w4l '

C C xT xT
v, v, vf, 05 > 0

does exactly that. The additional variables (vf);, (vS):, (v]); and (vS); are elasticity variables because
they allow a constraint to be violated and hence add some elasticity to the problem. For instance, the
elasticity variable (vf); controls how much the lower bound (I¢); should be relaxed to make the problem
feasible. Finally, the so-called penalty function

p(f's v, V5 vy)

is chosen so it penalizes changes to bounds. Given the weights
e wi € R™ (associated with [¢),
e w’ € R™ (associated with u®),
e wi € R" (associated with [*),

e w¥ € R™ (associated with u®),
a natural choice is
p(vf, vg,of vi) = (wi) o + (wi) ol + (wf) o + (wi) Ty
Hence, the penalty function p() is a weighted sum of the elasticity variables and therefore the problem
(10.1) keeps the amount of relaxation at a minimum. Please observe that
e the problem (10.1) is always feasible.

e a negative weight implies problem (10.1) is unbounded. For this reason if the value of a weight is
negative MIOSEK fixes the associated elasticity variable to zero. Clearly, if one or more of the
weights are negative, it may imply that it is not possible to repair the problem.

A simple choice of weights is to set them all to 1, but of course that does not take into account that
constraints may have different importance.

64

Caveats

Observe if the infeasible problem

minimize x4+ z
subject to x =
T > 0

is repaired then it will become unbounded. Hence, a repaired problem may not have an optimal solution.

Another and more important caveat is that only a minimal repair is performed i.e. the repair that
barely makes the problem feasible. Hence, the repaired problem is barely feasible and that sometimes
makes the repaired problem hard to solve.

Using the automatic repair tool

In this subsection we consider an infeasible linear optimization example:

minimize —10z; —9z5,
subject to 7/10x; + laxs < 630,
1/22, + 5/6z2 < 600,
1o, + 2/3z, < 708, (10.2)
/1021 + 1/ < 135,
x1, 2 > 0
To > 650.

The problem (10.2) is contained in a file:

Listing 10.1: Problem (10.2) in LP format.

minimize
obj: - 10 x1 - 9 x2
st
cl: + 7e-01 x1 + x2 <= 630
c2: + be-01 x1 + 8.333333333e-01 x2 <= 600
c3: + x1 + 6.6666667e-01 x2 <= 708
c4: + 1le-01 x1 + 2.5e-01 x2 <= 135
bounds
x2 >= 650
end

Given the assumption that all weights are 1 the command

mosek -primalrepair -d MSK_IPAR_LOG_FEAS_REPAIR 3 feasrepair.lp

will form the repaired problem and solve it. The parameter ¥SK_IPAR_LOG_FEAS_REPAIR controls
the amount of log output from the repair. A value of 2 causes the optimal repair to printed out. The
output from running the above command is:

MOSEK Version 9.0.0.25(ALPHA) (Build date: 2017-11-7 16:11:50)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86

Open file 'feasrepair.lp'
Reading started.

Reading terminated. Time: 0.00

Read summary

Type : LO (linear optimization problem)
Objective sense : min

Scalar variables : 2

Matrix variables : O

Constraints H

Cones 0

(continues on next page)

65

(continued from previous page)

Time : 0.0

Problem
Name

Objective sense : min

Type : LO (linear optimization problem)
Constraints

Cones

Scalar variables
Matrix variables
Integer variables

O O N O

Primal feasibility repair started.
Optimizer started.

Presolve started.

Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.

Freed constraints in eliminator : 2
Eliminator terminated.