Mo sek

MOSEK Optimizer API for C
Release 9.2.13

MOSEK ApS

23 June 2020

Contents

1 Introduction
1.1 Why the Optimizer API for C7

2 Contact Information
3 License Agreement

4 Installation

4.1 Testing the Installation and Compiling Examples.
5 Design Overview
5.1 Modeling L e e e e e
5.2 “Hello World!”” in MOSEK e
6 Optimization Tutorials
6.1 Linear Optimization e e e e e
6.2 Quadratic Optimization e
6.3 Conic Quadratic Optimization
6.4 Power Cone Optimization e
6.5 Conic Exponential Optimizationo o
6.6 Semidefinite Optimization L
6.7 Integer Optimization e
6.8 Geometric Programming 0oL oL
6.9 Library of basic functions Lo
6.10 Problem Modification and Reoptimization
6.11 Parallel optimization Lo e

7 Solver Interaction Tutorials

7.1 Accessing the solution
7.2 Errors and exceptions L Lo e
7.3 Input/Output e e
7.4 Setting solver parameters Lo e e e e
7.5 Retrieving information items oL oL o
7.6 Progress and data callback L
7.7 MOSEK OptServer ittt e e e e
8 Debugging Tutorials
8.1 Understanding optimizer log L
8.2 Addressing numerical iSsues Lo
8.3 Debugging infeasibility e
8.4 Python Console e
9 Advanced Numerical Tutorials
9.1 Solving Linear Systems Involving the Basis Matrix
9.2 Calling BLAS/LAPACK Routines from MOSEK
9.3 Computing a Sparse Cholesky Factorization
9.4 Converting a quadratically constrained problem to conic form

11
11
18
28
33
37
41
50
o7
61
68
74

76
76
80
83
84
86
86
89

93
94
97
100
104

10 Technical guidelines
10.1 Memory management and garbage collection00,
10.2 Names o o o e e e e e e
10.3 Multithreading oL
10.4 Efficiency o oL e
10.5 The license system o L L e e e e e e e e e
10.6 Deployment o .
10.7 Strings . . . oL e e e

11 Case Studies
11.1 Portfolio Optimization e
11.2 Logistic regression Lo e
11.3 Concurrent optimizero e e e e

12 Problem Formulation and Solutions
12.1 Linear Optimization o e
12.2 Conic Optimization e e
12.3 Semidefinite Optimization L e
12.4 Quadratic and Quadratically Constrained Optimization

13 Optimizers
13.1 Presolve o e e e
13.2 Linear Optimization o 0 e e
13.3 Conic Optimization - Interior-point optimizer
13.4 The Optimizer for Mixed-integer Problems

14 Additional features
14.1 Problem Analyzer L e
14.2 Automatic Repair of Infeasible Problems
14.3 Sensitivity Analysis L e

15 API Reference
15.1 API Conventions L o e
15.2 Functions grouped by topico L
15.3 Functions in alphabetical order L Lo
15.4 Parameters grouped by topic Lo L
15.5 Parameters (alphabetical list sorted by type) L.
15.6 Response codes. oo
15.7 Enumerationso e e e e e e e
15.8 Data Types o o o o e e e e
15.9 Function Types o o o e e e e e e
15.10 Nonlinear interfaces (obsolete) Lo

16 Supported File Formats
16.1 The LP File Format e e e e e e e
16.2 The MPS File Format e
16.3 The OPF Format e e
16.4 The CBF Format e e e
16.5 The PTF Format e e
16.6 The Task Format e e
16.7 The JSON Format e
16.8 The Solution File Formato

17 List of examples

18 Interface changes
18.1 Backwards compatibility L L
18.2 Functions e e e e e
18.3 Parameters L e e e e

ii

122
122
122
122
123
124
125
125

126
126
155
158

163
163
166
170
171

173
173
175
181
185

190
190
191
195

203
203
208
216
361
372
412
430
454
455
458

460
461
466
477
486
500
504
505
512

515

18.4 Constants e 520

18.5 Response Codes L e 521
Bibliography 524
Symbol Index 525
Index 541

iii

Chapter 1

Introduction

The MOSEK Optimization Suite 9.2.13 is a powerful software package capable of solving large-scale
optimization problems of the following kind:

e linear,

e conic:

conic quadratic (also known as second-order cone),

involving the exponential cone,

involving the power cone,

semidefinite,
e convex quadratic and quadratically constrained,
e integer.

In order to obtain an overview of features in the MOSEK Optimization Suite consult the product
introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all rela-
tions are linear. The tremendous success of both applications and theory of linear optimization can be
ascribed to the following factors:

e The required data are simple, i.e. just matrices and vectors.

e Convexity is guaranteed since the problem is convex by construction.

e Linear functions are trivially differentiable.

e There exist very efficient algorithms and software for solving linear problems.
e Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the
advantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

Ax —b> 0.
In conic optimization this is replaced with a wider class of constraints

Az —-be K

where KC is a convexr cone. For example in 3 dimensions K may correspond to an ice cream cone. The
conic optimizer in MOSEK supports a number of different types of cones K, which allows a surprisingly
large number of nonlinear relations to be modeled, as described in the MOSEK Modeling Cookbook,
while preserving the nice algorithmic and theoretical properties of linear optimization.

https://docs.mosek.com/9.2/intro/index.html
https://docs.mosek.com/9.2/intro/index.html
https://docs.mosek.com/modeling-cookbook/index.html

1.1 Why the Optimizer API for C?

The Optimizer API for C provides low-level access to all functionalities of MOSEK from any C com-
patible language. It consists of a single header file and a set of library files which an application must
link against when building. This interface has the smallest possible overhead, however other interfaces
might be considered more convenient to use for the project at hand.

The Optimizer API for C provides access to:

e Linear Optimization (LO)

Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)

Power Cone Optimization

Conic Exponential Optimization (CEO)

Convex Quadratic and Quadratically Constrained Optimization (QO, QCQO)

Semidefinite Optimization (SDO)
e Mixed-Integer Optimization (MIO)
as well as additional interfaces for:

e problem analysis,

e sensitivity analysis,

e infeasibility analysis,

e BLAS/LAPACK linear algebra routines.

Chapter 2

Contact Information

Phone +45 7174 9373
Website mosek.com
Email

sales@mosek.com

Sales, pricing, and licensing

support@mosek.com

Technical support, questions and bug reports

info@mosek.com

Everything else.

Mailing Address

MOSEK ApS

Fruebjergvej 3

Symbion Science Park, Box 16

2100 Copenhagen O

Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger https://blog.mosek.com

Google Group | https://groups.google.com /forum /#!forum /mosek
Twitter https:/ /twitter.com /mosektw

Google+ https://plus.google.com /+Mosek /posts
Linkedin https://www.linkedin.com /company /mosek-aps

In particular Twitter is used for news, updates and release announcements.

https://mosek.com/
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com
https://blog.mosek.com/
https://groups.google.com/forum/#!forum/mosek
https://twitter.com/mosektw
https://plus.google.com/+Mosek/posts
https://www.linkedin.com/company/mosek-aps

Chapter 3

License Agreement

Before using the MOSEK software, please read the license agreement available in the distribution
at <MSKHOME>/mosek/9.2/mosek-eula.pdf or on the MOSEK website https://mosek.com /products
license-agreement.

MOSEK uses some third-party open-source libraries. Their license details follows.

zlib

MOSEK includes the zlib library obtained from the zlib website. The license agreement for zlib is
shown in Listing 3.1.

Listing 3.1: 2lib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu
fplib

MOSEK includes the floating point formatting library developed by David M. Gay obtained from
the netlib website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/**
*

(continues on next page)

https://mosek.com/products/license-agreement
https://mosek.com/products/license-agreement
http://zlib.org
http://www.netlib.org

(continued from previous page)

The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. 1IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

¥R X X X K K X X X X X X X ¥

***/

Zstandard

MOSEK includes the Zstandard library developed by Facebook obtained from github/zstd.

license agreement for Zstandard is shown in Listing 3.3.

Listing 3.3: Zstandard license.

The

BSD License
For Zstandard software
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name Facebook nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

https://github.com/facebook/zstd

Chapter 4

Installation

In this section we discuss how to install and setup the MOSEK Optimizer API for C.

Important: Before running this MOSEK interface please make sure that you:

e Installed MOSEK correctly. Some operating systems require extra steps. See the Installation
guide for instructions and common troubleshooting tips.

e Set up a license. See the Licensing guide for instructions.

Compatibility

The Optimizer API for C is compatible with the following compiler tool chains:

Platform Supported compiler Framework

Linux 64 bit gee (> 4.5) glibe (> 2.12)

Mac OS 64 bit Xcode (> 5) MAC OS SDK (> 10.7)
Windows 32 and 64 bit | Visual Studio (> 2010)

In many cases older versions can also be used.

Locating files in the MOSEK Optimization Suite

The relevant files of the Optimizer API for C are organized as reported in Table 4.1.

Table 4.1: Relevant files for the Optimizer API for C.

Relative Path Description Label
<MSKHOME>/mosek/9.2/tools/platform/<PLATFORM>/h Header files <HEADERDIR>
<MSKHOME>/mosek/9.2/tools/platform/<PLATFORM>/bin | Libraries and DLLs | <LIBDIR>
<MSKHOME>/mosek/9.2/tools/examples/c Examples <EXDIR>
<MSKHOME>/mosek/9.2/tools/examples/data Additional data <MISCDIR>
where

e <MSKHOME> is the folder in which the MOSEK Optimization Suite has been installed,

e <PLATFORM> is the actual platform among those supported by MOSEK, i.e. win32x86, win64x86,
1inux64x86 or osx64x86.

Setting up the paths

To compile and link C code using the Optimizer API for C, the relevant path to the header file and
library must be included, and run-time dependencies must be resolved. Hence to compile, one should add
appropriate compiler and linker options. Details vary depending on the operating system and compiler.
See the Makefile included in the distribution under <MSKHOME>/mosek/9.2/tools/examples/c for a
full working example. Examples are given below.

https://docs.mosek.com/9.2/install/index.html
https://docs.mosek.com/9.2/install/index.html
https://docs.mosek.com/9.2/licensing/index.html

Linux

gcc file.c -o file -I<HEADERDIR> -L<LIBDIR> -Wl,-rpath-link,<LIBDIR> -Wl,-rpath=
—<LIBDIR> -1lmosek64

The shared library 1libmosek64.s0.9.2 must be available at runtime.

Windows, 64bit

cl.exe /I<HEADERDIR> file.c /link /LIBPATH:<LIBDIR> /out:file.exe mosek64_9_2.1ib

The shared library mosek64_9_2.d11 must be available at runtime.

Windows, 32bit

cl.exe /I<HEADERDIR> file.c /link /LIBPATH:<LIBDIR> /out:file.exe mosek9_2.lib

The shared library mosek9_2.d11 must be available at runtime.

Mac OS

clang file.c -o file -I<HEADERDIR> -L<LIBDIR> -W1l,-headerpad,128 -1lmosek64
install_name_tool -change libmosek64.9.2.dylib <LIBDIR>/libmosek64.9.2.dylib file

The shared library libmosek64.9.2.dylib must be registered and available at runtime.

4.1 Testing the Installation and Compiling Examples

This section describes how to verify that MOSEK has been installed correctly, and how to build and
execute the C examples distributed with MOSEK.

4.1.1 Windows

Compiling examples using NMake

The example directory <EXDIR> contains makefiles for use with Microsoft NMake. These makefiles
requires that the Visual Studio tool chain is setup. Usually, the submenu containing Visual Studio also
contains a Visual Studio Command Prompt which does the necessary setup.

To build the examples, open a DOS box and change directory to <EXDIR>. This directory contains a
makefile named Makefile. To compile all examples, run the command

’nmake /f Makefile all

|

To build only a single example instead of all examples, replace all by the corresponding executable
name. For example, to build lol.exe type

’nmake /f Makefile lol.exe

Compiling from command line

To compile and execute a distributed example, such as lol.c, do the following:

1.

Compile the example into an executable lol.exe (we assume that the Visual Studio C compiler
cl.exe is available). For 64-bit Windows:

cl <EXDIR>\lol.c /I <HEADERDIR> /link <LIBDIR>\mosek64_9_2.1ib

. To run the compiled example, enter

lol.exe

Adding MOSEK to a Visual Studio Project

The following walk-through is specific for Microsoft Visual Studio 2012, but may work for other
versions too. To compile a project linking to MOSEK in Visual Studio, the following steps are necessary:

1.
2.

10.

11.
12.

Create a project or open an existing project in Visual Studio.

In the Solution Explorer right-click on the relevant project and select Properties. This will
open the Property pages dialog.

In the selection box Configuration: select All Configurations.
In the tree-view open Configuration Properties — C/C++ — General.
In the properties click the Additional Include Directories field and select edit.

Click on the New Folder button and write the full path to the h header file or browse for the file.
For example, for 64-bit Windows use <HEADERDIR>.

Click OK.

Back in the Property Pages dialog select from the tree-view Configuration Properties —
Linker — Input.

In the properties view click in the Additional Dependencies field and select edit. This will open
the Additional Dependencies dialog.

Add the full path of the MOSEK 1ib. For example, for 64-bit Windows:
<LIBDIR>\mosek64_9_2.1lib

Click OK.

Back in the Property Pages dialog click OK.

If you have selected to link with the 64 bit version of MOSEK you must also target the 64-bit
platform. To do this follow the steps below:

1.
2.

Open the property pages for that project.
Click Configuration Manager to open the Configuration Manager Dialog Box.

Click the Active Solution Platform list, and then select the New option to open the New
Solution Platform Dialog Box.

Click the Type or select the new platform drop-down arrow, and then select the x64 platform.

Click OK. The platform you selected in the preceding step will appear under Active Solution
Platform in the Configuration Manager dialog box.

4.1.2 Mac OS and Linux

The example directory <EXDIR> contains makefiles for use with GNU Make. To build the examples enter

make -f Makefile all

To build one example instead of all examples, replace all by the corresponding executable name.
For example, to build the 1ol executable enter

’make -f Makefile lo1l

Chapter 5

Design Overview

5.1 Modeling

Optimizer API for C is an interface for specifying optimization problems directly in matrix form. It
means that an optimization problem such as:

minimize ¢’z
subject to Az < b,

reK

is specified by describing the matrix A, vectors b, ¢ and a list of cones IC directly.
The main characteristics of this interface are:

e Simplicity: once the problem data is assembled in matrix form, it is straightforward to input it
into the optimizer.

e Exploiting sparsity: data is entered in sparse format, enabling huge, sparse problems to be
defined and solved efficiently.

e Efficiency: the Optimizer API incurs almost no overhead between the user’s representation of the
problem and MOSEK’s internal one.

Optimizer API for C does not aid with modeling. It is the user’s responsibility to express the problem
in MOSEK’s standard form, introducing, if necessary, auxiliary variables and constraints. See Sec. 12
for the precise formulations of problems MOSEK solves.

5.2 “Hello World!” in MOSEK

Here we present the most basic workflow pattern when using Optimizer API for C.

Creating an environment and task

Every interaction with MOSEK using Optimizer API for C begins by creating a MOSEK envi-
ronment. It coordinates the access to MOSEK from the current process.

In most cases the user does not interact directly with the environment, except for creating opti-
mization tasks, which contain actual problem specifications and where optimization takes place. An
environment can host multiple tasks.

Defining tasks

After a task is created, the input data can be specified. An optimization problem consists of several
components; objective, objective sense, constraints, variable bounds etc. See Sec. 6 for basic tutorials on
how to specify and solve various types of optimization problems.

Retrieving the solutions

When the model is set up, the optimizer is invoked with the call to MSK_optimize. When the
optimization is over, the user can check the results and retrieve numerical values. See further details in
Sec. 7.

We refer also to Sec. 7 for information about more advanced mechanisms of interacting with the
solver.

Source code example
Below is the most basic code sample that defines and solves a trivial optimization problem

minimize
subject to 2.0 <z < 3.0.

For simplicity the example does not contain any error or status checks.

Listing 5.1: “Hello World!” in MOSEK

#ainclude "mosek.h"
#ainclude <stdio.h>

/* Error checking not included */
int main() {

MSKrescodee r, trmcode;

MSKenv_t env = NULL;

MSKtask_t task = NULL;

double xx = 0.0;

MSK_makeenv(&env, NULL); // Create environment
MSK_maketask(env, 0, 1, &task); // Create task

MSK_appendvars (task, 1); // 1 variable z
MSK_putcj(task, 0, 1.0); // c_0 =1.0
MSK_putvarbound(task, 0, MSK_BK_RA, 2.0, 3.0); // 2.0 <= x <= 3.0

MSK_putobjsense(task, MSK_OBJECTIVE_SENSE_MINIMIZE); // Minimize

MSK_optimizetrm(task, &trmcode); // Optimize
MSK_getxx (task, MSK_SOL_ITR, &xx); // Get solution
printf ("Solution x = %f\n", xx); // Print solution

MSK_deletetask(&task); // Clean up task
MSK_deleteenv(&env) ; // Clean up environment
return O;

10

Chapter 6

Optimization Tutorials

In this section we demonstrate how to set up basic types of optimization problems. Each short tutorial
contains a working example of formulating problems, defining variables and constraints and retrieving
solutions.

6.1 Linear Optimization

The simplest optimization problem is a purely linear problem. A linear optimization problem is a problem
of the following form:
Minimize or maximize the objective function

n—1

§ o f
Ccjxj+c¢

Jj=0

subject to the linear constraints

n—1
ZESZaijj <us, k=0,...,m-—1,
j=0

and the bounds
i <zj<uj, j=0,...,n—1
The problem description consists of the following elements:
e m and n — the number of constraints and variables, respectively,

e r — the variable vector of length n,

e ¢ — the coefficient vector of length n

co
c= ,
Cn—1
e ¢/ — fixed term in the objective,
e A — an m x n matrix of coefficients
ao,0 T ag,(n—1)
A= : ,
A(m-1),0 " A(m-1),(n—1)

11

e [and u® — the lower and upper bounds on constraints,

e [7 and u” — the lower and upper bounds on variables.

Please note that we are using 0 as the first index: x¢ is the first element in variable vector .

6.1.1 Example LO1

The following is an example of a small linear optimization problem:

maximize 3rg + lx1 + Dbdxe + lxg

subject to 3z + lz; + 29 = 30, (6.1)
21‘0 —+ 1(131 + 31’2 —+ 1:03 Z 157 ’
211 + 3z3 < 25,
under the bounds
0 S Zo S 0,
0 < z; < 10,
0 S) S 0,
0 < z3 < oo

Solving the problem

To solve the problem above we go through the following steps:
1. Create an environment.

2. Create an optimization task.

3. Load a problem into the task object.

4. Optimization.

5. Extracting the solution.

Below we explain each of these steps.

Create an environment.

Before setting up the optimization problem, a MOSEK environment must be created. All tasks in
the program should share the same environment.

r = MSK_makeenv(&env, NULL);

Create an optimization task.

Next, an empty task object is created:

/* Create the optimization task. */
r = MSK_maketask(env, numcon, numvar, &task);

/* Directs the log task stream to the 'printstr' function. */
if (r == MSK_RES_OK)
r = MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr);

We also connect a call-back function to the task log stream. Messages related to the task are passed
to the call-back function. In this case the stream call-back function writes its messages to the standard
output stream. See Sec. 7.3.

12

Load a problem into the task object.

Before any problem data can be set, variables and constraints must be added to the problem via calls
to the functions ¥SK_appendcons and MSK_appendvars.

/* Append 'numcon' empty constraints.

The constraints will initially have no bounds. */
if (r == MSK_RES_OK)

r = MSK_appendcons(task, numcon);

/* Append 'numvar' variables.

The variables will initially be fized at zero (z=0). */
if (r == MSK_RES_OK)

r = MSK_appendvars(task, numvar) ;

New variables can now be referenced from other functions with indexes in 0, ... ,numvar — 1 and new
constraints can be referenced with indexes in 0, ...,numcon — 1. More variables and/or constraints can
be appended later as needed, these will be assigned indexes from numvar/numcon and up.

Next step is to set the problem data. We loop over each variable index 7 = 0,...,numvar — 1 calling
functions to set problem data. We first set the objective coefficient ¢; = c[j] by calling the function
MSK_putcy.

/% Set the linear term c_j in the objective.*/
if (r == MSK_RES_0K)
r = MSK_putcj(task, j, c[jl);

Setting bounds on variables

The bounds on variables are stored in the arrays

const MSKboundkeye bkx[] = {MSK_BK_LO, MSK_BK_RA, MSK_BK_LO, MSK_BK_LO };
const double blx[] = {0.0, 0.0, 0.0, 0.0 };
const double bux[] = { +MSK_INFINITY, 10.0, +MSK_INFINITY, +MSK_INFINITY };

and are set with calls to MSK_putvarbound.

/* Set the bounds on wariable j.
blelj] <= z_j <= buzlj] */

if (r == MSK_RES_0K)
r = MSK_putvarbound(task,

j» /% Index of variable.*/

bkx[j]1, /* Bound key.*/

blx[j]1, /% Numerical value of lower bound.*/
bux[j1); /% Numerical value of upper bound.*/

The Bound key stored in bkx specifies the type of the bound according to Table 6.1.

Table 6.1: Bound keys as defined in the enum MSKboundkeye.

Bound key | Type of bound | Lower bound | Upper bound

MSK_BK_FX | u; =1, Finite Identical to the lower bound
MSK_BK_FR | Free —00 400

MSK_BK_LO Q <. Finite +0oo

MSK_BK_RA | l; <--- <y Finite Finite

MSK_BK_UP | --- < uy —00 Finite

For instance bkx [0]= MSK_BK_L0O means that xo > [§. Finally, the numerical values of the bounds
on variables are given by
l;-” = blx[j]
and

uj = bux[j].

13

Defining the linear constraint matrix.

Recall that in our example the A matrix is given by

A:

O N W
DO = =
S W N
w = O

This matrix is stored in sparse format in the arrays:

const MSKint32t aptrb[] = {0, 2, 5, 7},
aptrel[]l = {2, 5, 7, 9},
asub[] ={0, 1,
0, 1, 2,
0, 1,
1, 2
};
const double aval[]l] =4 3.0, 2.0,
1.0, 1.0, 2.0,
2.0, 3.0,
1.0, 3.0
};

The aptrb, aptre, asub, and aval arguments define the constraint matrix A in the column ordered
sparse format (for details, see Sec. 15.1.4).
Using the function ¥SK_putacol we set column j of A

r = MSK_putacol(task,

js /* Variable (column) indez.*/
aptre[j] - aptrb[jl, /# Number of non-zeros in column j.*/
asub + aptrb[jl, /* Pointer to row indezes of column j.*/

aval + aptrb[jl); /* Pointer to Values of column j.*/

There are many alternative formats for entering the A matrix. See functions such as MSK_putarow,
MSK_putarowlist, MSK_putaijlist and similar.

Finally, the bounds on each constraint are set by looping over each constraint index i =
0,...,numcon — 1

/* Set the bounds on constraints.

for i=1, ...,numcon : blc[i] <= constraint % <= buc[t] */
for (i = 0; i < numcon && r == MSK_RES_OK; ++i)

r = MSK_putconbound(task,

i, /% Index of constraint.*/

bkc[i], /* Bound key.*/

blc[il, /% Numerical value of lower bound.*/
bucl[il); /* Numerical value of upper bound.*/

Optimization

After the problem is set-up the task can be optimized by calling the function ¥SK_optimizetrm .

r = MSK_optimizetrm(task, &trmcode);

Extracting the solution.

After optimizing the status of the solution is examined with a call to MSK_getsolsta. If the solution
status is reported as MSK_SOL_STA_OPTIMAL the solution is extracted in the lines below:

MSK_getxx (task,
MSK_SOL_BAS, /* Request the basic solution. */
XX) ;

14

The MSK_getzz function obtains the solution. MOSEK may compute several solutions depending
on the optimizer employed. In this example the basic solution is requested by setting the first argument
to MSK_SOL_BAS.

Source code

The complete source code 1o1.c of this example appears below. See also 102.c for a version where
the A matrix is entered row-wise.

Listing 6.1: Linear optimization example.

#include <stdio.h>
#anclude "mosek.h"

/* This function prints log output from MOSEK to the terminal. */
static void MSKAPI printstr(void +*handle,
const char strl[])
{
printf ("Ys", str);
} /* printstr *x/

int main(int argc, const char *argv[])

{
const MSKint32t numvar = 4,
numcon = 3;
const double c[] = {3.0, 1.0, 5.0, 1.0};

/* Below is the sparse representation of the 4
matriz stored by column. */
const MSKint32t aptrb[] = {0, 2, 5, 7},
aptrel] = {2, 5, 7, 9},

asub[] =4{0, 1,
0, 1, 2,
0, 1,
1, 2
};
const double avall[] ={ 3.0, 2.0,
1.0, 1.0, 2.0,
2.0, 3.0,
1.0, 3.0
};
/* Bounds on constraints. */
const MSKboundkeye bkc[] = {MSK_BK_FX, MSK_BK_LO, MSK_BK_UP };
const double blc[] = {30.0, 15.0, -MSK_INFINITY};
const double buc[] = {30.0, +MSK_INFINITY, 25.0 };
/* Bounds on wariables. */
const MSKboundkeye bkx[] = {MSK_BK_LO, MSK_BK_RA, MSK_BK_LO, MSK_BK_LO };
const double blx[] = {0.0, 0.0, 0.0, 0.0 };
const double bux[] = { +MSK_INFINITY, 10.0, +MSK_INFINITY, +MSK_INFINITY };
MSKenv_t env = NULL;
MSKtask_t task = NULL;
MSKrescodee r;
MSKint32t i, js

/* Create the mosek environment. */
r = MSK_makeenv(&env, NULL);

if (r == MSK_RES_0OK)
{
/* Create the optimization task. */
r = MSK_maketask(env, numcon, numvar, &task);

(continues on next page)

15

(continued from previous page)

/* Directs the log task stream to the 'printstr' function. */
if (r == MSK_RES_O0K)
r = MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr);

/* Append 'numcon' empty constraints.

The constraints will initially have no bounds. */
if (r == MSK_RES_OK)

r = MSK_appendcons(task, numcon);

/* Append 'numvar' variables.

The variables will initially be fized at zero (z=0). */
if (r == MSK_RES_0K)

r = MSK_appendvars(task, numvar) ;

for (j = 0; j < numvar &% r == MSK_RES_OK; ++j)
{
/* Set the linear term c_j in the objective.*/
if (r == MSK_RES_OK)
r = MSK_putcj(task, j, c[jl);

/* Set the bounds on variable j.
ble[j] <= z_j <= buz[j] */

if (r == MSK_RES_OK)
r = MSK_putvarbound(task,

js /* Index of wariable.*/

bkx[j]1, /* Bound key.*/

blx[j]1, /* Numerical value of lower bound.*/
bux[j1); /* Numerical value of upper bound.*/

/* Input column j of A */
if (r == MSK_RES_0K)
r = MSK_putacol(task,
Js /* Variable (column) index.*/
aptre[jl - aptrb[jl, /* Number of non-zeros in column j.*/
asub + aptrb[jl, /# Pointer to row indewes of column j.*/
aval + aptrb[jl); /* Pointer to Values of column j.*/

}

/* Set the bounds on constraints.

for =1, ...,numcon : blc[i] <= constraint i <= buc[i] */
for (i = 0; i < numcon && r == MSK_RES_OK; ++i)

r = MSK_putconbound(task,

i, /* Index of constraint.*/

bkc[i], /% Bound key.*/

blc[il, /* Numerical value of lower bound.*/
buc[il); /% Numerical value of upper bound.*/

/* Mazimize objective function. */
if (r == MSK_RES_0K)
r = MSK_putobjsense(task, MSK_OBJECTIVE_SENSE_MAXIMIZE);

if (r == MSK_RES_0K)
{

MSKrescodee trmcode;

/* Run optimizer */
r = MSK_optimizetrm(task, &trmcode);

/* Print a summary containing information

(continues on next page)

16

(continued from previous page)

about the solution for debugging purposes. */
MSK_solutionsummary (task, MSK_STREAM_LOG);

if (r == MSK_RES_OK)
{
MSKsolstae solsta;

if (r == MSK_RES_O0K)
r = MSK_getsolsta(task,
MSK_SOL_BAS,

&solsta) ;
switch (solsta)
{
case MSK_SOL_STA_OPTIMAL:
{
double *xx = (double*) calloc(numvar, sizeof (double));
if (xx)
{
MSK_getxx (task,
MSK_SOL_BAS, /* Request the basic solution. */
XX) ;
printf ("Optimal primal solution\n");
for (j = 0; j < numvar; ++j)
printf ("x[%dl: %e\n", j, xx[j1);
free(xx);
T
else
r = MSK_RES_ERR_SPACE;
break;
}

case MSK_SOL_STA_DUAL_INFEAS_CER:
case MSK_SOL_STA_PRIM_INFEAS_CER:
printf("Primal or dual infeasibility certificate found.\n");
break;
case MSK_SOL_STA_UNKNOWN:
{
char symname [MSK_MAX_STR_LEN];
char desc[MSK_MAX_STR_LEN];

/* If the solutions status %s unknown, print the termination code
indicating why the optimizer terminated prematurely. */

MSK_getcodedesc(trmcode,

symname,
desc);

printf ("The solution status is unknown.\n");
printf ("The optimizer terminitated with code: %s\n", symname);
break;

}

default:
printf ("Other solution status.\n");
break;
}
}
}

if (r !'= MSK_RES_OK)

(continues on next page)

17

(continued from previous page)

{
/% In case of an error print error code and description. */
char symname [MSK_MAX_STR_LEN] ;
char desc[MSK_MAX_STR_LEN];
printf("An error occurred while optimizing.\n");
MSK_getcodedesc(r,
symname,
desc);
printf ("Error %s - '%s'\n", symname, desc);
}

/* Delete the task and the associated data. */
MSK_deletetask(&task) ;
}

/* Delete the environment and the associated data. */
MSK_deleteenv(&env) ;

return r;

6.2 Quadratic Optimization

MOSEK can solve quadratic and quadratically constrained problems, as long as they are convex. This
class of problems can be formulated as follows:

minimize %xTQ‘)x +cTa+cf
subject to 1§ < 1zTQFx+ Z;:Ol agr; < uf, k=0,...,m—1, (6.2)
S Z; < wj, j=0,...,n—1

Without loss of generality it is assumed that Q° and QF are all symmetric because
1
#"Qu = 52" (Q+ Q).

This implies that a non-symmetric Q can be replaced by the symmetric matrix 1(Q + Q7).
The problem is required to be convex. More precisely, the matrix (J° must be positive semi-definite
and the kth constraint must be of the form

1 n—1
;< ixTQka: + Z Qg T (6.3)
j=0

with a negative semi-definite Q* or of the form

-1
1 n
§xTQkx + Z ag,jT; < ug.
j=0
with a positive semi-definite Q¥. This implies that quadratic equalities are not allowed. Specifying a
non-convex problem will result in an error when the optimizer is called.

A matrix is positive semidefinite if all the eigenvalues of) are nonnegative. An alternative statement
of the positive semidefinite requirement is

xTQx >0, V.

If the convexity (i.e. semidefiniteness) conditions are not met MOSEK will not produce reliable results
or work at all.

18

6.2.1 Example: Quadratic Objective

We look at a small problem with linear constraints and quadratic objective:

minimize 2?2+ 0.12% + 23 — 21703 — 29
subject to 1< x7+ a9+ 3 (6.4)
0< =z

The matrix formulation of (6.4) has:

2 0o -1 0
Q° = 0 02 0 ,e=| —1 7A:[l 1 1},
-1 0 2 0
with the bounds:
0 00
fF=1lLu*=0c0,l"=| 0| andu” = | o©
0 00

Please note the explicit % in the objective function of (6.2) which implies that diagonal elements must
be doubled in @, i.e. Q11 = 2 even though 1 is the coefficient in front of 22 in (6.4).

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the quadratic objective

The quadratic objective is specified using the function ¥SK_putqobj. Since Q° is symmetric only the
lower triangular part of Q° is inputted. In fact entries from above the diagonal may not appear in the
input.

The lower triangular part of the matrix Q° is specified using an unordered sparse triplet format (for
details, see Sec. 15.1.4):

gsubi[0] = 0; qsubj[0] = 0; qval[0] = 2.0;
gsubi[1] = 1; qgsubj[1] = 1; qvallil]l = 0.2;
gsubi[2] = 2; gsubj[2] = 0; qvall2] = -1.0;
gsubi[3] = 2; qsubj[3] = 2; qvall3] = 2.0;

Please note that

e only non-zero elements are specified (any element not specified is 0 by definition),
e the order of the non-zero elements is insignificant, and

e only the lower triangular part should be specified.

Finally, this definition of Q° is loaded into the task:

r = MSK_putqobj(task, NUMQNZ, gsubi, gqsubj, qval);

Source code

19

Listing 6.2: Source code implementing problem (6.4).

#include <stdio.h>

#include "mosek.h" /¥ Include the MOSEK definition file.

#define NUMCON 1 /% Number of constraints.
#define NUMVAR 3 /¥ Number of wariables.
#define NUMANZ 3 /¥ Number of non-zeros in 4.
#define NUMQNZ 4 /* Number of mon-zeros in (.

static void MSKAPI printstr(void *handle,
const char strl[])

{
printf("%s", str);
} /* printstr */

int main(int argc, const char *argv[])

{
double cl] = {0.0, -1.0, 0.0%};
MSKboundkeye bkc[] = {MSK_BK_L0};
double blc[] = {1.0};
double buc[] = { +MSK_INFINITY };

MSKboundkeye bkx[] = {MSK_BK_LO,

MSK_BK_LO,
MSK_BK_LO
};
double blx[] = {0.0,
0.0,
0.0
};
double bux[] = { +MSK_INFINITY,
+MSK_INFINITY,
+MSK_INFINITY
};
MSKint32t aptrb[] = {0, 1, 2},
aptre[] = {1, 2, 3%},
asub[] = {0, 0, 0};
double avall[] = {1.0, 1.0, 1.0};
MSKint32t gsubi [NUMQNZ] ;
MSKint32t gsubj [NUMQNZ] ;
double qval [NUMQNZ] ;
MSKint32t i, j;
double xx [NUMVAR] ;
MSKenv_t env = NULL;
MSKtask_t task = NULL;

MSKrescodee r;

/* Create the mosek environment. */
r = MSK_makeenv(&env, NULL);

if (r == MSK_RES_0K)
{
/* Create the optimization task. */
r = MSK_maketask(env, NUMCON, NUMVAR, &task);

*/

*/
*/
*/

20

(continues on next page)

(continued from previous page)

if (r == MSK_RES_OK)

{
r = MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr);

/* Append 'NUMCON' empty constraints.

The constraints will initially have no bounds. */
if (r == MSK_RES_OK)

r = MSK_appendcons(task, NUMCON);

/* Append 'NUMVAR' variables.

The wvariables will initially be fized at zero (z=0). */
if (r == MSK_RES_0K)

r = MSK_appendvars(task, NUMVAR);

/% Optionally add a constant term to the objective. */
if (r == MSK_RES_0K)

r = MSK_putcfix(task, 0.0);
for (j = 0; j < NUMVAR &% r == MSK_RES_OK; ++j)

{
/* Set the linear term c_j in the objective.*/
if (r == MSK_RES_O0K)
r = MSK_putcj(task, j, c[jl);
/% Set the bounds on wvartable j.
ble[j] <= z_j <= buz[j] */
if (r == MSK_RES_0K)
r = MSK_putvarbound(task,
J» /% Index of variable.*/
bkx[j], /* Bound key.*/
blx[j], /* Numerical value of lower bound.*/
bux[j1); /* Numerical value of upper bound.*/
/% Input column j of 4 */
if (r == MSK_RES_OK)
r = MSK_putacol(task,
j» /* Vartable (column) index.*/
aptre[j] - aptrb[jl, /# Number of non-zeros in column j.*/
asub + aptrb[jl, /* Pointer to row indexes of column j.*/
aval + aptrb[jl); /# Pointer to Values of column j.*/
}

/* Set the bounds on constraints.

for i=1, ...,NUMCON : blc[i] <= constraint i <= buc[i] */
for (i = 0; i < NUMCON && r == MSK_RES_OK; ++i)

r = MSK_putconbound(task,

i, /* Index of constraint.*/

bkc[i], /% Bound key.*/

blc[il, /* Numerical value of lower bound.*/
buc[il); /* Numerical value of upper bound.*/

if (r == MSK_RES_0K)
{
/*
* The lower triangular part of the §
¥ matriz in the objective ts specified.

*/
gsubi[0] = 0; qsubj[0] = 0; qvall0] = 2.0;
gsubi[1] = 1; qgsubj[1] = 1; qvalll]l = 0.2;

(continues on next page)

21

(continued from previous page)

gsubi [2]
gsubi [3]

2; gsubj[2]
2; gsubj[3]

0; qvall[2] =
2; qval[3]

[
N
e
o .
- O

/% Input the § for the objective. */

r = MSK_putqobj(task, NUMQNZ, gsubi, gqsubj, qval);

if (r == MSK_RES_OK)
{

MSKrescodee trmcode;

/* Run optimizer */
r = MSK_optimizetrm(task, &trmcode);

/% Print a summary containing information
about the solution for debugging purposes*/
MSK_solutionsummary (task, MSK_STREAM_MSG);

if (r == MSK_RES_0K)
{
MSKsolstae solsta;
int j;

MSK_getsolsta(task, MSK_SOL_ITR, &solsta);

switch (solsta)
{
case MSK_SOL_STA_OPTIMAL:
MSK_getxx (task,
MSK_SOL_ITR, /* Request the interior solution. */
Xx);

printf ("Optimal primal solution\n");
for (j = 0; j < NUMVAR; ++j)
printf ("x[%d]l: %e\n", j, xx[j1);

break;

case MSK_SOL_STA_DUAL_INFEAS_CER:

case MSK_SOL_STA_PRIM_INFEAS_CER:
printf ("Primal or dual infeasibility certificate found.\n");
break;

case MSK_SOL_STA_UNKNOWN:
printf ("The status of the solution could not be determined. Termination code: %d.
—\n", trmcode);
break;

default:
printf ("Other solution status.");
break;
}
}
else
{
printf ("Error while optimizing.\n");
}
}

if (r !'= MSK_RES_OK)

(continues on next page)

22

(continued from previous page)

/% In case of an error print error code and description. */
char symname [MSK_MAX_STR_LEN];
char desc[MSK_MAX_STR_LEN];

printf("An error occurred while optimizing.\n");
MSK_getcodedesc(r,
symname,
desc);
printf ("Error %s - 'Ys'\n", symname, desc);
}
}
MSK_deletetask(&task) ;
}
MSK_deleteenv(&env) ;

return (r);

} /* main */

6.2.2 Example: Quadratic constraints

In this section we show how to solve a problem with quadratic constraints. Please note that quadratic
constraints are subject to the convexity requirement (6.3).
Consider the problem:

minimize 22 +0.123 + 23 — x123 — 22
subject to 1 < x7+ 29+ 23— a:% — a:% — 0.1x§ + 0.2z 23,
x> 0.

This is equivalent to

minimize 127Q% 4 T«

3

subject to 327Q% + Az > b, (6.5)
x>0,
where
2 0 -1 ,
Q=0 02 0 |,e=[0 -1 0] ,A=[1 1 1],b=1

-1 0 2
-2 0 02
Q=] 0o -2 0
02 0 -0.2

The linear parts and quadratic objective are set up the way described in the previous tutorial.

Setting up quadratic constraints

To add quadratic terms to the constraints we use the function ¥SK_putqconk.

gsubi[0] = 0; qgsubj[0] = 0; qvall0] = -2.0;
gsubi[1] = 1; gsubjl[1] = 1; qvalll]l = -2.0;
gsubi[2] = 2; gsubjl[2] = 2; qvall2] = -0.2;
gsubi[3] = 2; qsubj[3] = 0; qvall3] = 0.2;

/% Put §~0 in constraint with index 0. */

r = MSK_putqconk(task,
0’

(continues on next page)

23

(continued from previous page)

4,

qsubi,
gsubj,
qval);

While MSK_putqconk adds quadratic terms to a specific constraint, it is also possible to input all
quadratic terms in one chunk using the MSK_putgcon function.

Source code

Listing 6.3: Implementation of the quadratically constrained prob-
lem (6.5).

#ainclude <stdio.h>

#include "mosek.h" /* Include the MOSEK definition file. */

#define NUMCON 1 /*
#define NUMVAR 3 /*
#define NUMANZ 3 /*
#define NUMQNZ 4 /*

Number of constraints.
Number of wvariables.
Number of mon-zeros in 4.
Number of mon-zeros in (.

static void MSKAPI printstr(void *handle,

{
printf("%s", str);
} /* printstr */

const char str[])

int main(int argc, const char *argv[])

{

MSKrescodee r;

double c[]

{0.0, -1.0, 0.0};

MSKboundkeye bkc[]l = {MSK_BK_LO};
double blc[l = {1.03};
double buc[] = { +MSK_INFINITY};
MSKboundkeye bkx[] = {MSK_BK_LO,
MSK_BK_LO,
MSK_BK_LO
}s
double blx[] = {0.0,
0.0,
0.0
};
double bux[] = { +MSK_INFINITY,
+MSK_INFINITY,
+MSK_INFINITY
};
MSKint32t aptrb[] = {0, 1, 2 },
aptre[] = {1, 2, 3%},
asub[] = { 0, 0, 0};
double avall[l] = { 1.0, 1.0, 1.0};
MSKint32t qsubi[NUMQNZ],
gsubj [NUMQNZ] ;
double qval [NUMQNZ] ;

*/
*/
*/
*/

24

(continues on next page)

(continued from previous page)

MSKint32t j, i
double xx [NUMVAR] ;
MSKenv_t env;
MSKtask_t task;

/* Create the mosek environment. */
r = MSK_makeenv(&env, NULL);

if (r == MSK_RES_0K)
{
/* Create the optimization task. */
r = MSK_maketask(env, NUMCON, NUMVAR, &task);

if (r == MSK_RES_OK)

{
r = MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr);

/% Append 'NUMCON' empty constraints.

The constraints will initially have no bounds. */
if (r == MSK_RES_OK)

r = MSK_appendcons(task, NUMCON);

/* Append 'NUMVAR' wariables.

The variables will initially be fized at zero (z=0). */
if (r == MSK_RES_0K)

r = MSK_appendvars(task, NUMVAR);

/% Optionally add a constant term to the objective. */
if (r == MSK_RES_0K)

r = MSK_putcfix(task, 0.0);
for (j = 0; j < NUMVAR &% r == MSK_RES_OK; ++3)

{
/* Set the linear term c_j in the objective.*/
if (r == MSK_RES_OK)
r = MSK_putcj(task, j, c[jl);
/% Set the bounds on wvartable j.
ble[j] <= z_j <= buzlj] */
if (r == MSK_RES_0K)
r = MSK_putvarbound(task,
i, /* Index of variable.*/
bkx[j]1, /* Bound key.*/
blx[j], /* Numerical value of lower bound.*/
bux[j1); /* Numerical value of upper bound.*/
/% Input column j of 4 */
if (r == MSK_RES_OK)
r = MSK_putacol(task,
js /* Variable (column) indez.*/
aptre[j] - aptrbl[jl, /# Number of non-zeros in column j.*/
asub + aptrb[jl, /# Pointer to row indezes of column j.*/
aval + aptrb[jl); /* Pointer to Values of column j.*/
}

/* Set the bounds on constraints.
for i=1, ...,NUMCON : blc[i] <= constraint i <= buc[i] */
for (i = 0; i < NUMCON && r == MSK_RES_OK; ++i)
r = MSK_putconbound(task,
i, /* Index of constraint.*/
bkc[i], /% Bound key.*/

(continues on next page)

25

(continued from previous page)

blc[i], /* Numerical value of lower bound.*/
buc[il); /% Numerical value of upper bound.*/

if (r == MSK_RES_OK)

{

/*

* The lower triangular part of the "o

* matriz in the objective ts specified.

*/
gsubi[0] = 0; qsubj[0] = 0; qvall0] = 2.0;
gsubi[1] = 1; gsubj[1] = 1; qvall[i]l = 0.2;
gsubi[2] = 2; gsubj[2] = 0; qvall2] = -1.0;
gsubi[3] = 2; qsubj[3] = 2; qvall3] = 2.0;

/* Input the "o for the objective. */

r = MSK_putqobj(task, NUMQNZ, gsubi, gsubj, qval);

}
if (r == MSK_RES_OK)
{

/*

* The lower triangular part of the {0

* matrixz in the first constraint is specified.
This corresponds to adding the term

-z 172 - 2_ 272 - 0.1 .32 + 0.2 x_1z_3

*/

gsubi[0] = 0; gsubj[0] = 0; qvall0] = -2.0;
gsubi[1] = 1; gsubjl[1] = 1; qvalll]l = -2.0;
gsubi[2] = 2; gsubj[2] = 2; qvall[2] = -0.2;
gsubi[3] = 2; qsubj[3] = 0; qvall3] = 0.2;

/* Put §~0 in constraint with index 0. */

r = MSK_putqconk(task,
0,
4,
gsubi,
gsubj,
qval);

if (r == MSK_RES_0K)
r = MSK_putobjsense(task, MSK_OBJECTIVE_SENSE_MINIMIZE);

if (r == MSK_RES_OK)
{

MSKrescodee trmcode;

/* Run optimizer */
r = MSK_optimizetrm(task, &trmcode);

/% Print a summary containing information
about the solution for debugging purposes*/
MSK_solutionsummary (task, MSK_STREAM_LOG) ;

if (r == MSK_RES_0K)
{
MSKsolstae solsta;

(continues on next page)

26

(continued from previous page)

int j;
MSK_getsolsta(task, MSK_SOL_ITR, &solsta);

switch (solsta)

{
case MSK_SOL_STA_OPTIMAL:

MSK_getxx(task,
MSK_SOL_ITR, /* Request the interior solution. */

XX);

printf("Optimal primal solution\n");
for (j = 0; j < NUMVAR; ++j)
printf ("x[%d]: %e\n", j, xx[jl);

break;

case MSK_SOL_STA_DUAL_INFEAS_CER:

case MSK_SOL_STA_PRIM_INFEAS_CER:
printf("Primal or dual infeasibility certificate found.\n");
break;

case MSK_SOL_STA_UNKNOWN:
printf("The status of the solution could not be determined. Termination code: %d.

—\n", trmcode);

break;
default:
printf ("Other solution status.");
break;
}
}
else
{
printf("Error while optimizing.\n");
}
}
if (r !'= MSK_RES_OK)
{
/% In case of an error print error code and description. */
char symname [MSK_MAX_STR_LEN];
char desc[MSK_MAX_STR_LEN];
printf("An error occurred while optimizing.\n");
MSK_getcodedesc(r,
symname,
desc) ;
printf ("Error %s - '%s'\n", symname, desc);
}
}

MSK_deletetask(&task) ;
}
MSK_deleteenv(&env) ;

return (r);

} /* main */

27

6.3 Conic Quadratic Optimization
Conic optimization is a generalization of linear optimization, allowing constraints of the type
zt e Ky,
where 2! is a subset of the problem variables and K; is a convex cone. Since the set R™ of real numbers
is also a convex cone, we can simply write a compound conic constraint z € IC where K =y x -+ X K

is a product of smaller cones and z is the full problem variable.
MOSEK can solve conic quadratic optimization problems of the form

minimize e+ cf
subject to ¢ < Ax < s,
r < T <t
x €K,

where the domain restriction, z € IC, implies that all variables are partitioned into convex cones
x= (202, .. 2P7h), with ' € K; C R™.

In this tutorial we describe how to use the two types of quadratic cones defined as:

e Quadratic cone:

e Rotated quadratic cone:

n—1
or = xER”:QmOxlzzm?, 0 >0, x>0
=2

For other types of cones supported by MOSEK see Sec. 6.4, Sec. 6.5, Sec. 6.6. See MSK_appendcone
for a list and definitions of available cone types. Different cone types can appear together in one opti-
mization problem.

For example, the following constraint:

(]"47 an'rQ) S QS

describes a convex cone in R? given by the inequality:

xy >\ 2k + 23

Furthermore, each variable may belong to one cone at most. The constraint x; — z; = 0 would however
allow z; and x; to belong to different cones with same effect.

6.3.1 Example CQO1

Consider the following conic quadratic problem which involves some linear constraints, a quadratic cone
and a rotated quadratic cone.

minimize T4+ T5 + Te
subject to x1 + z9 + 223
x1,T2,T3

Ty > /27 + 23,

2
2x576 > 75

AVANI
o
—

&

=
N

28

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

A cone is defined using the function ¥SK_appendcone:

csub[0] = 3;
csub[1] = 0;
csub[2] = 1;

r = MSK_appendcone(task,

MSK_CT_QUAD,

0.0, /* Can be set to 0.0 */
3,

csub) ;

The first argument selects the type of quadratic cone, in this case either #SK_CT_QUAD for a quadratic
cone or MSK_CT_RQUAD for a rotated quadratic cone. The second parameter is currently ignored and
passing 0.0 will work.

The next argument denotes the number of variables in the cone, in this case 3, and the last argument
is a list of indexes of the variables appearing in the cone.

Variants of this method are available to append multiple cones at a time.

Source code

Listing 6.4: Source code solving problem (6.6).

#1include <stdio.h>
#include "mosek.h" /* Include the MOSEK definition file. */

static void MSKAPI printstr(void *handle,
const char strl[])
{
printf("Ys", str);
} /* printstr */

int main(int argc, const char *argv[])
{

MSKrescodee r;

const MSKint32t numvar 6,

numcon = 1;
MSKboundkeye bkc[] = { MSK_BK_FX };
double blc[]l ={ 1.0 };
double bucll] = { 1.0 };
MSKboundkeye bkx[] = {MSK_BK_LO,
MSK_BK_LO,
MSK_BK_LO,
MSK_BK_FR,
MSK_BK_FR,
MSK_BK_FR
}s
double blx[] = {0.0,
0.0,
0.0

]

(continues on next page)

29

(continued from previous page)

-MSK_INFINITY,
-MSK_INFINITY,
-MSK_INFINITY
};
double bux[] = { +MSK_INFINITY,
+MSK_INFINITY,
+MSK_INFINITY,
+MSK_INFINITY,
+MSK_INFINITY,
+MSK_INFINITY

double cl] = {0.

MSKint32t aptrb[] {0, 1, 2, 3, 3, 3},
aptre[] = {1, 2, 3, 3, 3, 3},
asub[]l] = {0, 0, 0, 0};

double avall] {1.0, 1.0, 2.0};

MSKint32t i, j, csub[3];

MSKenv_t env = NULL;
MSKtask_t task NULL;

/* Create the mosek environment. */
r = MSK_makeenv(&env, NULL);

if (r == MSK_RES_OK)
{
/* Create the optimization task. */
r = MSK_maketask(env, numcon, numvar, &task);

if (r == MSK_RES_OK)
{

MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr);

/* Append 'numcon' empty constraints.
The constraints will tnitially have no bounds. */
if (r == MSK_RES_0K)

r = MSK_appendcons(task, numcon);

/* Append 'numvar' variables.
The variables will initially be fized at zero (z=0).
if (r == MSK_RES_OK)

r = MSK_appendvars(task, numvar) ;

for (j = 0; j < numvar && r == MSK_RES_OK; ++j)
{
/* Set the linear term c_j in the objective.*/
if (r == MSK_RES_0K)
r = MSK_putcj(task, j, c[jl);

/% Set the bounds on wvartiable j.
blelj] <= z_j <= buz[j] */

*/

30

(continues on next page)

(continued from previous page)

if (r == MSK_RES_OK)
r = MSK_putvarbound(task,

j /% Index of variable.*/

bkx[j]1, /* Bound key.*/

blx[j], /% Numerical value of lower bound.*/
bux[j1); /% Numerical value of upper bound.*/

/% Input column j of 4 */
if (r == MSK_RES_0K)
r = MSK_putacol(task,

js /* Vartable (column) index.*/
aptre[j] - aptrb[jl, /#* Number of non-zeros in column j.+*/
asub + aptrbl[j], /* Pointer to row indezes of column j.*/

aval + aptrb[jl); /# Pointer to Values of column j.*/

/* Set the bounds on constraints.

for =1, ...,numcon : blc[i] <= constraint % <= buc[t] */
for (i = 0; i < numcon && r == MSK_RES_OK; ++i)

r = MSK_putconbound(task,

i, /% Index of constraint.*/

bkc[i], /* Bound key.*/

blcl[i], /* Numerical value of lower bound.*/
buc[il); /% Numerical value of upper bound.*/

if (r == MSK_RES_OK)

{
/* Append the first cone. */
csub[0] = 3;
csub[1] = 0;
csub[2] = 1;
r = MSK_appendcone(task,
MSK_CT_QUAD,
0.0, /* Can be set to 0.0 */
3,
csub) ;
}
if (r == MSK_RES_OK)
{
/% Append the second cone. */
csub[0] = 4;
csub[1] = 5;
csub[2] = 2;
r = MSK_appendcone(task,
MSK_CT_RQUAD,
0.0,
3,
csub) ;
}

if (r == MSK_RES_O0K)
{

MSKrescodee trmcode;

/* Run optimizer */
r = MSK_optimizetrm(task, &trmcode);

(continues on next page)

31

(continued from previous page)

/% Print a summary containing information
about the solution for debugging purposes*/
MSK_solutionsummary (task, MSK_STREAM_MSG);

if (r == MSK_RES_0K)
{
MSKsolstae solsta;

MSK_getsolsta(task, MSK_SOL_ITR, &solsta);

switch (solsta)
{
case MSK_SOL_STA_OPTIMAL:
{
double *xx = NULL;

xx = calloc(numvar, sizeof(double));
if (xx)
{
MSK_getxx (task,
MSK_SOL_ITR, /* Request the interior solution. */
XX);

printf ("Optimal primal solution\n");
for (j = 0; j < numvar; ++j)
printf ("x[%d]: Je\n", j, xx[jl);
}
else
{
r = MSK_RES_ERR_SPACE;
}
free(xx);
}
break;
case MSK_SOL_STA_DUAL_INFEAS_CER:
case MSK_SOL_STA_PRIM_INFEAS_CER:
printf ("Primal or dual infeasibility certificate found.\n");
break;
case MSK_SOL_STA_UNKNOWN:
printf ("The status of the solution could not be determined. Termination code: %d.
—\n", trmcode);
break;
default:
printf ("Other solution status.");
break;
}
}
else
{
printf ("Error while optimizing.\n");
}
}

if (r !'= MSK_RES_OK)

{
/% In case of an error print error code and description. */
char symname [MSK_MAX_STR_LEN];
char desc[MSK_MAX_STR_LEN];

printf("An error occurred while optimizing.\n");

(continues on next page)

32

(continued from previous page)

MSK_getcodedesc(r,
symname,
desc);
printf ("Error %s - 'Ys'\n", symname, desc);
}
}
/* Delete the task and the associated data. */
MSK_deletetask(&task) ;
}

/* Delete the environment and the associated data. */
MSK_deleteenv(&env) ;

return (r);

} /* main */

6.4 Power Cone Optimization
Conic optimization is a generalization of linear optimization, allowing constraints of the type
xt c]Ct,

where zt is a subset of the problem variables and K; is a convex cone. Since the set R™ of real numbers
is also a convex cone, we can simply write a compound conic constraint x € X where = K1 X --- X K
is a product of smaller cones and z is the full problem variable.

MOSEK can solve conic optimization problems of the form

minimize e+l
subject to ¢ < Ax < uc,
r < T <
r e,

where the domain restriction, € IC, implies that all variables are partitioned into convex cones
r= (202, .. 2Ph), with ' € K; C R™.

In this tutorial we describe how to use the power cone. The primal power cone of dimension n with
parameter 0 < o < 1 is defined as:

a,l—a __ n. o, l-«a 2
Py =Sz eR":zga;” > E x7, xo,x1 >0
i=2

In particular, the most important special case is the three-dimensional power cone family:

Pel=® = {2 € R 1 afal™® > |ral, 20,21 > 0}

For example, the conic constraint (x,y, z) € 773 25075 i equivalent to x
with x,y > 0.

MOSEK also supports the dual power cone:

0.25 4

y*"™ > |2, or simply zy® > 2

(Py'=) =z eR": (@)a (- i 0,21 >0

« 1l -«

For other types of cones supported by MOSEK see Sec. 6.3, Sec. 6.5, Sec. 6.6. See MSK_appendcone for
a list and definitions of available cone types. Different cone types can appear together in one optimization
problem.

Furthermore, each variable may belong to one cone at most. The constraint z; — z; = 0 would
however allow z; and x; to belong to different cones with same effect.

33

6.4.1 Example POW1

Consider the following optimization problem which involves powers of variables:

maximize 292908 4 204 — ¢
subject to T+y+iz = 2 (6.7)
z,y,z > 0.

With (z,y,2) = (x9,21,22) we convert it into conic form using auxiliary variables as bounds for the
power expressions:

maximize T3+ T4 — To
subject to xo + x1 + %xz = 2,
(zo,21,23) € Py (6.8)
(22,25, 24) € ,Pé).4,0.6,
rs = 1.

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

A cone is defined using the function ¥SK_appendcone:

MSKint32t csub[2]1[3] = { {0, 1, 3}, {2, 5, 4} };
r = MSK_appendcone (task, MSK_CT_PPOW, 0.2, 3, csub[0]);
r = MSK_appendcone(task, MSK_CT_PPOW, 0.4, 3, csub[1]);

The first argument selects the type of power cone, that is ¥SK_CT_PP0OW. The second argument is the
cone parameter . The remaining arguments list the variables which form the cone. Variants of this
method are available to append multiple cones at a time.

The code below produces the answer of (6.7) which is

[0.06389298 0.78308564 2.30604283]

Source code

Listing 6.5: Source code solving problem (6.7).

#1include <stdio.h>
#include "mosek.h" /* Include the MOSEK definition file. */

static void MSKAPI printstr(void *handle,
const char str[])

{
printf("%s", str);

} /* printstr */

int main(int argc, const char *argv[])

{

MSKrescodee r;

const MSKint32t numvar = 6,
numcon

1]
e

MSKboundkeye bkx[6];

(continues on next page)

34

(continued from previous page)

double blx[6], bux[6];

double val[l] = { 1.0, 1.0, -1.0 };

MSKint32t sub[]

double avall]

{3,4,01%

{1.0, 1.0, 0.5 };

MSKint32t asub[] = { 0, 1, 2 };

MSKint32t i, j;

MSKenv_t env = NULL;

MSKtask_t task

NULL;

/* Create the mosek environment. */
r = MSK_makeenv(&env, NULL);

if (r == MSK_RES_OK)

/* Create the optimization task. */
r = MSK_maketask(env, numcon, numvar, &task);

if (r == MSK_RES_OK)
{
MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr);

/* Append 'numcon' empty constraints.
The constraints will tnitially have no bounds. */
if (r == MSK_RES_0K)

r = MSK_appendcons(task, numcon) ;

/* Append 'numvar' variables.
The variables will initially be fized at zero (z=0). */
if (r == MSK_RES_OK)

r = MSK_appendvars(task, numvar) ;

/* Set up the linear part */
MSK_putclist(task, 3, sub, val);
MSK_putarow(task, 0, 3, asub, aval);
MSK_putconbound (task, 0, MSK_BK_FX, 2.0, 2.0);
for(i=0;i<5;i++)
bkx[i] = MSK_BK_FR, blx[i] = -MSK_INFINITY, bux[i] = MSK_INFINITY;
bkx[5] = MSK_BK_FX, blx[5] = bux[5] = 1.0;
MSK_putvarboundslice(task, O, numvar, bkx, blx, bux);

if (r == MSK_RES_0K)
{
/% Append two power cones. */
MSKint32t csub[2][3] = { {0, 1, 3}, {2, 5, 4} };
r = MSK_appendcone(task, MSK_CT_PPOW, 0.2, 3, csub[0]);
r = MSK_appendcone (task, MSK_CT_PPOW, 0.4, 3, csub[1]);
}

MSK_putobjsense(task, MSK_OBJECTIVE_SENSE_MAXIMIZE) ;
if (r == MSK_RES_0K)
{

MSKrescodee trmcode;

/* Run optimizer */
r = MSK_optimizetrm(task, &trmcode);

(continues on next page)

35

(continued from previous page)

/* Print a summary containing information
about the solution for debugging purposes*/
MSK_solutionsummary (task, MSK_STREAM_MSG);

if (r == MSK_RES_0K)
{
MSKsolstae solsta;

MSK_getsolsta(task, MSK_SOL_ITR, &solsta);

switch (solsta)
{
case MSK_SOL_STA_OPTIMAL:
{
double *xx = NULL;

xx = calloc(numvar, sizeof (double));
if (xx)
{
MSK_getxx(task,
MSK_SOL_ITR, /* Request the interior solution. */
XX);

printf ("Optimal primal solution\n");
for (j = 0; j < 3; ++j)
printf("x[%d]: %e\n", j, xx[jl);
}
else
{
r = MSK_RES_ERR_SPACE;
}
free(xx);
}
break;
case MSK_SOL_STA_DUAL_INFEAS_CER:
case MSK_SOL_STA_PRIM_INFEAS_CER:
printf ("Primal or dual infeasibility certificate found.\n");
break;
case MSK_SOL_STA_UNKNOWN:
printf ("The status of the solution could not be determined. Termination code: %d.
—\n", trmcode);

break;
default:
printf ("Other solution status.");
break;
}
}
else
{
printf ("Error while optimizing.\n");
}
}

if (r != MSK_RES_0K)

{
/* In case of an error print error code and description. */
char symname [MSK_MAX_STR_LEN];
char desc[MSK_MAX_STR_LEN];

printf("An error occurred while optimizing.\n");
MSK_getcodedesc(r,

(continues on next page)

36

(continued from previous page)

symname,
desc);
printf ("Error %s - '%s'\n", symname, desc);
}
}
/* Delete the task and the associated data. */
MSK_deletetask(&task) ;
}

/* Delete the environment and the associated data. */
MSK_deleteenv(&env) ;

return (r);

} /* main */

6.5 Conic Exponential Optimization
Conic optimization is a generalization of linear optimization, allowing constraints of the type
zt e Ky,
where z! is a subset of the problem variables and K; is a convex cone. Since the set R™ of real numbers
is also a convex cone, we can simply write a compound conic constraint x € C where K = K1 X --- X K

is a product of smaller cones and z is the full problem variable.
MOSEK can solve conic optimization problems of the form

minimize e+
subject to ¢ < Ax < uc,
r < T < u®,
x ek,

where the domain restriction, x € IC, implies that all variables are partitioned into convex cones
r= (202, . 2P7Y), with 2’ € K, C R™.
In this tutorial we describe how to use the primal exponential cone defined as:
Kexp = {x eR?: 9> 2 exp(za/x1), xo,x1 > 0}.
MOSEK also supports the dual exponential cone:
Kip = {s ER3: 50 > —spe Lexp(sy/sa), s < 0,50 > O}.

For other types of cones supported by MOSEK see Sec. 6.3, Sec. 6.4, Sec. 6.6. See MSK_appendcone for
a list and definitions of available cone types. Different cone types can appear together in one optimization
problem.
For example, the following constraint:
(iE4, xo, x2) S chp
describes a convex cone in R? given by the inequalities:

x4 > xoexp(x2/To), To,T4 > 0.

Furthermore, each variable may belong to one cone at most. The constraint x; — z; = 0 would however
allow x; and x; to belong to different cones with same effect.

37

6.5.1 Example CEO1

Consider the following basic conic exponential problem which involves some linear constraints and an
exponential inequality:

minimize To + 21
subject to zg+z1+2x2 = 1, (6.9)
ro > wyexp(ra/T1), '
Zo, L1 2 0.
The conic form of (6.9) is:
minimize To + 21
subject to xg+x1 +22 = 1, (6.10)
(x0a$17x2) E Kexpa '
r € R3.

Setting up the linear part
The linear parts (constraints, variables, objective) are set up using exactly the same methods as for

linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

A cone is defined using the function ¥SK_appendcone:

csub[0] = 0;
csub[1] = 1;
csub[2] = 2;

r = MSK_appendcone (task,

MSK_CT_PEXP,

0.0, /* Can be set to 0.0 */
3,

csub);

The first argument selects the type of exponential cone, that is ¥SK_CT_PEXP. The second parameter
is currently ignored and passing 0.0 will work.

The next argument denotes the number of variables in the cone, which must be 3 for the exponential
cone, and the last argument is a list of indexes of the variables appearing in the cone.

Variants of this method are available to append multiple cones at a time.

Source code

Listing 6.6: Source code solving problem (6.9).

#1include <stdio.h>
#include "mosek.h" /* Include the MOSEK definition file. */

static void MSKAPI printstr(void *handle,
const char str[])
{
printf ("%s", str);
} /* printstr */

int main(int argc, const char *argv[])
{

MSKrescodee r;

(continues on next page)

38

(continued from previous page)

const MSKint32t numvar 3,
numcon

1]
-

MSKboundkeye bkc = MSK_BK_FX;
double blc = 1.0;
double buc = 1.0;

MSKboundkeye bkx[] = {MSK_BK_FR,
MSK_BK_FR,
MSK_BK_FR
};
double blx[] = {-MSK_INFINITY,
-MSK_INFINITY,
-MSK_INFINITY
}s
double bux[] = { +MSK_INFINITY,
+MSK_INFINITY,
+MSK_INFINITY

};
double cl] ={1.0,
1.0,
0.0
};
double all ={1.0, 1.0, 1.0};

MSKint32t asub[] = {0, 1, 2};
MSKint32t i, j, csub[3];

MSKenv_t env = NULL;
MSKtask_t task NULL;

/* Create the mosek environment. */
r = MSK_makeenv(&env, NULL);

if (r == MSK_RES_0OK)
{
/* Create the optimization task. */
r = MSK_maketask(env, numcon, numvar, &task);

if (r == MSK_RES_0K)
{

MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr);

/* Append 'numcon' empty constraints.
The constraints will initially have no bounds.
if (r == MSK_RES_0K)

r = MSK_appendcons(task, numcon);

/* Append 'numvar' variables.

The variables will initially be fized at zero (z=0).

if (r == MSK_RES_0K)
r = MSK_appendvars(task, numvar) ;

/% Set up the linear part */
if (r == MSK_RES_O0K)
r = MSK_putcslice(task, O, numvar, c);
if (r == MSK_RES_0K)
r = MSK_putarow(task, O, numvar, asub, a);

*/

*/

39

(continues on next page)

(continued from previous page)

if (r == MSK_RES_OK)
r = MSK_putconbound(task, 0, bkc, blc, buc);
if (r == MSK_RES_0K)

r = MSK_putvarboundslice(task, O, numvar, bkx, blx, bux);

if (r == MSK_RES_OK)

{
/% Append an exponential cone. */
csub[0] = 0;
csub[1] = 1;
csub[2] = 2;

r = MSK_appendcone(task,

MSK_CT_PEXP,

0.0, /* Can be set to 0.0 */
3,

csub) ;

if (r == MSK_RES_0K)
{

MSKrescodee trmcode;

/* Run optimizer */
r = MSK_optimizetrm(task, &trmcode);

/% Print a summary containing information
about the solution for debugging purposes*/
MSK_solutionsummary (task, MSK_STREAM_MSG);

if (r == MSK_RES_OK)
{
MSKsolstae solsta;

MSK_getsolsta(task, MSK_SOL_ITR, &solsta);

switch (solsta)
{
case MSK_SOL_STA_OPTIMAL:
{
double *xx = NULL;

xx = calloc(numvar, sizeof (double));
if (xx)
{

MSK_getxx(task,

MSK_SOL_ITR, /* Request the interior solution. */

XX);

printf ("Optimal primal solution\n");
for (j = 0; j < numvar; ++j)
printf ("x[%d]l: Y%e\n", j, xx[jl1);
}
else
{
r = MSK_RES_ERR_SPACE;
}
free(xx);
}
break;
case MSK_SOL_STA_DUAL_INFEAS_CER:

40

(continues on next page)

(continued from previous page)

case MSK_SOL_STA_PRIM_INFEAS_CER:
printf ("Primal or dual infeasibility certificate found.\n");
break;
case MSK_SOL_STA_UNKNOWN:
printf("The status of the solution could not be determined. Termination code: %d.
<~ \n", trmcode);
break;
default:
printf ("Other solution status.");
break;
}
}
else
{
printf ("Error while optimizing.\n");
}
}

if (r !'= MSK_RES_OK)

{
/* In case of an error print error code and description. */
char symname [MSK_MAX_STR_LEN];
char desc[MSK_MAX_STR_LEN];

printf("An error occurred while optimizing.\n");
MSK_getcodedesc(r,
symname,
desc);
printf ("Error %s - '%s'\n", symname, desc);
}
}
/* Delete the task and the associated data. */
MSK_deletetask(&task) ;
}

/* Delete the environment and the associated data. */
MSK_deleteenv(&env) ;

return (r);

} /* main */

6.6 Semidefinite Optimization

Semidefinite optimization is a generalization of conic optimization, allowing the use of matrix variables
belonging to the convex cone of positive semidefinite matrices

T:{XEST:ZTXzEO, VzE]RT},

where 8" is the set of r X r real-valued symmetric matrices.
MOSEK can solve semidefinite optimization problems of the form

minimize Z;:ol ¢ + E;:é (Cj, X;) +¢
subject to If < MiTg aywy + 30070 (A, Xy) < wf, i=0,.,m =1,
S x; < wj, j=0,...,n—-1,
JIEIC,XjGSTj,]:O’,p—l

where the problem has p symmetric positive semidefinite variables Yj € Sf of dimension 7; with
symmetric coefficient matrices C; € 8" and A4; ; € S"i. We use standard notation for the matrix inner

41

product, i.e., for A, B € R™*" we have

We demonstrate the setup of semidefinite variables and the matrices C, A on the following examples:
e Sec. 6.6.1: A problem with one semidefinite variable and linear and conic constraints.

e Sec. 6.6.2: A problem with two semidefinite variables with a linear constraint and bound.

6.6.1 Example SDO1

We consider the simple optimization problem with semidefinite and conic quadratic constraints:

2 1 0
minimize < 1 2 1 ,X>+x0
0 1 2
1 0 0]
subject to 01 0|,X)+xo = 1,
< 0 0 1 > (6.11)
101 1]
< 111 ,X>+x1+x2 = 1/2,
1 1 1

x0 > VT2 + 222, X =0,

The problem description contains a 3-dimensional symmetric semidefinite variable which can be written
explicitly as:

o Xoo Xm 220
X=| X0 X1 Xn GSE))H
X200 Xo1 Xoo
and a conic quadratic variable (zg, 21, 22) € Q3. The objective is to minimize
2(X o0 + X10 + X11 + Xo1 + X22) + 20,

subject to the two linear constraints

o o XOO +YE +Y£2 + o = 1
Xoo+X11+Xoo+2(X10+Xoo+Xo1) +x1+22 = 1/2.

Setting up the linear and conic part

The linear and conic parts (constraints, variables, objective, cones) are set up using the methods
described in the relevant tutorials; Sec. 6.1, Sec. 6.3, Sec. 6.5, Sec. 6.4. Here we only discuss the aspects
directly involving semidefinite variables.

Appending semidefinite variables

First, we need to declare the number of semidefinite variables in the problem, similarly to the number
of linear variables and constraints. This is done with the function ¥SK_appendbarvars.

r = MSK_appendbarvars(task, NUMBARVAR, DIMBARVAR);

Appending coefficient matrices

Coefficient matrices C; and A;; are constructed as weighted combinations of sparse symmetric ma-
trices previously appended with the function #SK_appendsparsesymmat .

42

r = MSK_appendsparsesymmat (task,
DIMBARVAR[O],
5,
barc_i,
barc_j,
barc_v,
&idx) ;

The arguments specify the dimension of the symmetric matrix, followed by its description in the
sparse triplet format. Only lower-triangular entries should be included. The function produces a unique
index of the matrix just entered in the collection of all coefficient matrices defined by the user.

After one or more symmetric matrices have been created using MSK_appendsparsesymmat, we can
combine them to set up the objective matrix coefficient éj using MSK_putbarcy, which forms a linear
combination of one or more symmetric matrices. In this example we form the objective matrix directly,

i.e. as a weighted combination of a single symmetric matrix.

r = MSK_putbarcj(task, 0, 1, &idx, &falpha); ‘

Similarly, a constraint matrix coefficient A4;; is set up by the function #Sk_putbaraiy.

r = MSK_putbaraij(task, 0, O, 1, &idx, &falpha);

Retrieving the solution

After the problem is solved, we read the solution using ¥SK_getbarzy:

MSK_getbarxj (task,
MSK_SOL_ITR, /* Request the interior solution. */

O’
barx) ;

The function returns the half-vectorization of X, (the lower triangular part stacked as a column
vector), where the semidefinite variable index j is passed as an argument.

Source code

Listing 6.7: Source code solving problem (6.11).

#include <stdio.h>

#include "mosek.h" /* Include the MOSEK definition file. */
#define NUMCON 2 /* Number of constraints. */
#define NUMVAR 3 /* Number of comic quadratic variables */
#define NUMANZ 3 /¥ Number of non-zeros in 4 */
#define NUMBARVAR 1 /* Number of semidefinite wvariables */

static void MSKAPI printstr(void *handle,
const char str[])
{
printf("%s", str);
} /* printstr */

int main(int argc, const char *argv[])

{

MSKrescodee r;

{3}; /* Dimension of semidefinite cone */
{3 * (83 + 1) / 2}; /* Number of scalar SD variables #*/

MSKint32t DIMBARVARI[]
MSKint64t LENBARVAR[]

MSKboundkeye bkc[] = { MSK_BK_FX, MSK_BK_FX };

(continues on next page)

43

(continued from previous page)

double blc[] = { 1.0, 0.5 };
double bucl[] = { 1.0, 0.5 };
MSKint32t barc_i[]l = {0, 1, 1, 2, 2},
barc_jll = {0, 0, 1, 1, 2};
double barc_v[] = {2.0, 1.0, 2.0, 1.0, 2.0};
MSKint32t aptrb[] = {0, 1},
aptre[] = {1, 3},
asub/[] = {0, 1, 2}; /* column subscripts of 4 */
double avall] ={1.0, 1.0, 1.0};
MSKint32t bara_i[] = {0, 1, 2, 0, 1, 2, 1, 2, 2},
bara_j[l = {0, 1, 2, 0, 0, O, 1, 1, 2};
double bara_v[] = {t.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
MSKint32t conesub[] = {0, 1, 2};
MSKint32t i, j;
MSKint64t idx;
double falpha = 1.0;
MSKrealt *XX;
MSKrealt *barx;
MSKenv_t env = NULL;
MSKtask_t task = NULL;

/* Create the mosek environment. */
r = MSK_makeenv(&env, NULL);

if (r == MSK_RES_0K)
{
/* Create the optimization task. */
r = MSK_maketask(env, NUMCON, O, &task);

if (r == MSK_RES_OK)
{
MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr);

/* Append 'NUMCON' empty constraints.

The constraints will initially have no bounds. */
if (r == MSK_RES_0K)

r = MSK_appendcons(task, NUMCON) ;

/* Append 'NUMVAR' variables.
The variables will initially be fized at zero (z=0). */
if (r == MSK_RES_0K)

r = MSK_appendvars(task, NUMVAR);

/% Append 'NUMBARVAR' semidefinite variables. */
if (r == MSK_RES_OK) {

r = MSK_appendbarvars(task, NUMBARVAR, DIMBARVAR);
}

/% Optionally add a constant term to the objective. */
if (r == MSK_RES_0K)
r = MSK_putcfix(task, 0.0);

/% Set the linear term c_j in the objective.*/
if (r == MSK_RES_0K)
r = MSK_putcj(task, 0, 1.0);

1.0};

44

(continues on next page)

(continued from previous page)

for (j = 0; j < NUMVAR &% r == MSK_RES_OK; ++j)
r = MSK_putvarbound(task,
3s
MSK_BK_FR,
-MSK_INFINITY,
MSK_INFINITY);

/% Set the linear term barc_j in the objective.*/
if (r == MSK_RES_0K)
r = MSK_appendsparsesymmat (task,
DIMBARVAR[0],
5,
barc_i,
barc_j,
barc_v,
&idx);

if (r == MSK_RES_0K)
r = MSK_putbarcj(task, 0, 1, &idx, &falpha);

/* Set the bounds on constraints.

for =1, ...,NUMCON : blc[i] <= constraint % <= buc[i] */
for (i = 0; i < NUMCON && r == MSK_RES_OK; ++i)

r = MSK_putconbound(task,

i, /% Index of constraint.*/

bkc[i], /% Bound key.*/

blc[i], /% Numerical value of lower bound.*/
buc[il); /% Numerical value of upper bound.*/

/* Input 4 rTow by row */
for (1 = 0; i < NUMCON && r == MSK_RES_OK; ++i)
r = MSK_putarow(task,

i’

aptre[i] - aptrblil,
asub + aptrbl[il,
aval + aptrbl[il);

/* Append the conic quadratic cone */
if (r == MSK_RES_OK)
r = MSK_appendcone (task,
MSK_CT_QUAD,
0.0,
3,
conesub) ;

/% Add the first row of bard */
if (r == MSK_RES_0K)
r = MSK_appendsparsesymmat (task,

DIMBARVAR[0],
3,
bara_i,
bara_j,
bara_v,
&idx) ;

if (r == MSK_RES_OK)
r = MSK_putbaraij(task, 0, 0, 1, &idx, &falpha);

/* Add the second row of bard */
if (r == MSK_RES_0K)
r = MSK_appendsparsesymmat (task,

(continues on next page)

45

(continued from previous page)

DIMBARVAR[O0],
6,

bara_i + 3,
bara_j + 3,
bara_v + 3,
&idx) ;

if (r == MSK_RES_OK)
r = MSK_putbaraij(task, 1, 0, 1, &idx, &falpha);

if (r == MSK_RES_0K)
{

MSKrescodee trmcode;

/* Run optimizer */
r = MSK_optimizetrm(task, &trmcode);

/% Print a summary containing information
about the solution for debugging purposes*/
MSK_solutionsummary (task, MSK_STREAM_MSG);

if (r == MSK_RES_OK)
{
MSKsolstae solsta;

MSK_getsolsta(task, MSK_SOL_ITR, &solsta);

switch (solsta)
{
case MSK_SOL_STA_OPTIMAL:
xx = (MSKrealt *) MSK_calloctask(task, NUMVAR, sizeof (MSKrealt));
barx = (MSKrealt *) MSK_calloctask(task, LENBARVAR[O], sizeof (MSKrealt));

MSK_getxx(task,
MSK_SOL_ITR,
xXx) ;
MSK_getbarxj (task,
MSK_SOL_ITR, /* Request the interior solution. */
0,
barx) ;

printf ("Optimal primal solution\n");
for (i = 0; i < NUMVAR; ++i)
printf ("x[%d] % e\n", i, xx[il);

for (i = 0; i < LENBARVAR[O0]; ++i)
printf ("barx[/d]l: % e\n", i, barx[il);

MSK_freetask(task, xx);
MSK_freetask(task, barx);

break;

case MSK_SOL_STA_DUAL_INFEAS_CER:

case MSK_SOL_STA_PRIM_INFEAS_CER:
printf("Primal or dual infeasibility certificate found.\n");
break;

case MSK_SOL_STA_UNKNOWN:
printf ("The status of the solution could not be determined. Termination code: %d.
—\n", trmcode);

(continues on next page)

46

(continued from previous page)

break;

default:
printf ("Other solution status.");
break;
}
}
else
{
printf ("Error while optimizing.\n");
}
}

if (r != MSK_RES_OK)
{

/% In case of an error print error code and description.

char symname [MSK_MAX_STR_LEN];
char desc[MSK_MAX_STR_LEN];

printf("An error occurred while optimizing.\n");
MSK_getcodedesc(r,
symname,
desc);
printf ("Error %s - 'Js'\n", symname, desc);
}
}
/* Delete the task and the associated data. */
MSK_deletetask(&task);
}

/* Delete the environment and the associated data. */
MSK_deleteenv(&env) ;

return (r);

} /* main */

*/

6.6.2 Example SDO2

We now demonstrate how to define more than one semidefinite variable using the following problem with

two matrix variables and two types of constraints:

minimize (C7, X1) + (Ca, X2)

subject to <A1,Y1> + <A27,Y2> =
(X2)o1 <
X1,Xs =
In our example dim(X;) = 3, dim(X2) =4, b =23, k = —3 and
1 0 0] [1 0 1
Cr = 0 0|,Ay=|0 0 0
0 0 6 | |1 0 2
1 =3 0 0] o0 1
-3 2 0 0 1 -1
=19 o0 102 |0 o
0 0 0 0| 10 0

are constant symmetric matrices.

OO OO

o O O

(6.12)

Note that this problem does not contain any scalar variables, but they could be added in the same

fashion as in Sec. 6.6.1.

47

Other than in Sec. 6.6.1 we don’t append coefficient matrices separately but we directly input
all nonzeros in each constraint and all nonzeros in the objective at once. Every term of the form
(A;)k1(X)k, is determined by four indices (i,j,k,l) and a coefficient value v = (A; ;). Here
i is the number of the constraint in which the term appears, j is the index of the semidefinite
variable it involves and (k,l) is the position in that variable. This data is passed in the call to
MSK_putbarablocktriplet. Note that only the lower triangular part should be specified explicitly,
that is one always has k > [. Semidefinite terms (Cj);(X)k, of the objective are specified in the same
way in MSK_putbarcblocktriplet but only include (j,k,!) and v.

For explanations of other data structures used in the example see Sec. 6.6.1.

The code representing the above problem is shown below.

Listing 6.8: Implementation of model (6.12).

#1include <stdio.h>
#include "mosek.h" /* Include the MOSEK definition file. */

static void MSKAPI printstr(void *handle,
const char str[])

{
printf ("%s", str);
} /* printstr */

int main(int argc, const char *argv[])
{

MSKrescodee r;

/* Input data */

MSKint32t numbarvar = 2;

MSKint32t dimbarvar[] = {3, 4}; /* Dimension of semidefinite variables */

/* Objective coefficients concatenated */

MSKint32t cjil ={o0,0, 1, 1,1, 13} /* Which symmetric wvariable (j) */
MSKint32t Ck[l] ={0, 2,0, 1, 1, 2 }; /* Which entry (k,1)->v */
MSKint32t cifl ={o0, 2,0, 0,1, 23}

MSKrealt cvl[l] ={1.0, 6.0, 1.0, -3.0, 2.0, 1.0 };

/* Equality constraints coefficients concatenated */
MSKint32t Ai[] = {0, 0, O, O, O, O }; /* Which constraint (i = 0) */

MSKint32t Aj[1 ={0, 0,0, 1, 1, 13}; /% Which symmetric wvariable (j) */
MSKint32t Ax[1 ={o0, 2, 2, 1,1, 3}; /* Which entry (k,1)->v */
MSKint32t A1l = {0, 0, 2,0, 1, 33%;

MSKrealt Av[] = { 1.0, 1.0, 2.0, 1.0, -1.0, -3.0 };

/* The second constraint - one-term inequality */

MSKint32t A2i = 1; /* Which constraint (i = 1) */
MSKint32t A2j 1; /* Which symmetric variable (j
MSKint32t A2k = 1; /* Which entry A4(1,0) = 4(0,1)
MSKint32t A21 = 0;

MSKrealt A2v = 0.5;

1) */
0.5 %/

/* Constraint bounds and values */

MSKint32t numcon = 2;

MSKboundkeye bkc[] { MSK_BK_FX, MSK_BK_UP };
double blc[] { 23.0, -MSK_INFINITY };
double buc[] {23.0, -3.0 };

MSKint32t i, j, dim;
MSKrealt *barx;
MSKenv_t env = NULL;
MSKtask_t task = NULL;

/* Create the mosek environment. */

(continues on next page)

48

(continued from previous page)

r = MSK_makeenv(&env, NULL);

if (r == MSK_RES_0K)

{
/* Create the optimization task. */
r = MSK_maketask(env, 0, 0, &task);

if (r == MSK_RES_0OK)
{
MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr);

/* Append empty constraints.

The constraints will initially have no bounds. */
if (r == MSK_RES_OK)

r = MSK_appendcons(task, numcon) ;

/* Append semidefinite variables. */
if (r == MSK_RES_0K)
r = MSK_appendbarvars(task, numbarvar, dimbarvar);

/* Set objective (6 nonzeros).x*/
if (r == MSK_RES_OK)
r = MSK_putbarcblocktriplet(task, 6, Cj, Ck, Cl, Cv);

/% Set the equality constraint (6 nonzeros).*/
if (r == MSK_RES_0K)
r = MSK_putbarablocktriplet(task, 6, Ai, Aj, Ak, Al, Av);

/% Set the inequality constraint (1 nonzero).x*/
if (r == MSK_RES_OK)
r = MSK_putbarablocktriplet(task, 1, &A2i, &A2j, &A2k, &A21, &A2v);

/* Set constraint bounds */
if (r == MSK_RES_OK)
r = MSK_putconboundslice(task, 0, 2, bkc, blc, buc);

if (r == MSK_RES_0K)
{

MSKrescodee trmcode;

/* Run optimizer */
r = MSK_optimizetrm(task, &trmcode);
MSK_solutionsummary (task, MSK_STREAM_MSG);

if (r == MSK_RES_0K)
{
MSKsolstae solsta;

MSK_getsolsta(task, MSK_SOL_ITR, &solsta);

switch (solsta)
{
case MSK_SOL_STA_OPTIMAL:

/* Retrieve the soution for all symmetric variables */
printf("Solution (lower triangular part vectorized):\n");
for(i = 0; i < numbarvar; i++) {

dim = dimbarvar([i] * (dimbarvarl[i] + 1) / 2;

barx = (MSKrealt *) MSK_calloctask(task, dim, sizeof (MSKrealt));

MSK_getbarxj (task, MSK_SOL_ITR, i, barx);

(continues on next page)

49

(continued from previous page)

printf("X/d: ", i + 1);

for (j = 0; j < dim; ++j)
printf("%.3f ", barx[jl);

printf("\n");

MSK_freetask(task, barx);

break;

case MSK_SOL_STA_DUAL_INFEAS_CER:

case MSK_SOL_STA_PRIM_INFEAS_CER:
printf("Primal or dual infeasibility certificate found.\n");
break;

case MSK_SOL_STA_UNKNOWN:
printf("The status of the solution could not be determined. Termination code: %d.

—\n", trmcode);

break;
default:
printf ("Other solution status.");
break;
}
}
else
{
printf ("Error while optimizing.\n");
}
}
if (r != MSK_RES_OK)
{
/* In case of an error print error code and description. */
char symname [MSK_MAX_STR_LEN];
char desc[MSK_MAX_STR_LEN];
printf("An error occurred while optimizing.\n");
MSK_getcodedesc(r,
symname,
desc);
printf ("Error %s - 'Y%s'\n", symname, desc);
}
}

/* Delete the task and the associated data. */
MSK_deletetask(&task) ;
}

/* Delete the environment and the associated data. */
MSK_deleteenv(&env) ;

return (r);

} /* main */

6.7 Integer Optimization
An optimization problem where one or more of the variables are constrained to integer values is called a

(mixed) integer optimization problem. MOSEK supports integer variables in combination with linear,
quadratic and quadratically constrtained and conic problems (except semidefinite). See the previous

50

tutorials for an introduction to how to model these types of problems.

6.7.1 Example MILO1
We use the example

maximize xg + 0.64x,

subject to 50xg + 3lz; < 250,
3LEO - 21‘1 2 747 (613>
zg, 21 >0 and integer

to demonstrate how to set up and solve a problem with integer variables. It has the structure of a linear
optimization problem (see Sec. 6.1) except for integrality constraints on the variables. Therefore, only
the specification of the integer constraints requires something new compared to the linear optimization
problem discussed previously.

First, the integrality constraints are imposed using the function MSK_putvartype:

for (j = 0; j < numvar && r == MSK_RES_OK; ++j)
r = MSK_putvartype(task, j, MSK_VAR_TYPE_INT);

Next, the example demonstrates how to set various useful parameters of the mixed-integer optimizer.
See Sec. 13.4 for details.

/* Set maz solution time */

r = MSK_putdouparam(task,
MSK_DPAR_MIO_MAX_TIME,
60.0);

The complete source for the example is listed Listing 6.9. Please note that when
MSK_getsolutionslice is called, the integer solution is requested by using MSK_SOL_ITG. No dual
solution is defined for integer optimization problems.

Listing 6.9: Source code implementing problem (6.13).

#include <stdio.h>
#include "mosek.h" /* Include the MOSEK definition file. */

static void MSKAPI printstr(void *handle,
const char str[])

{
printf("%s", str);

} /* printstr */

int main(int argc, char *argv[])

{
const MSKint32t numvar = 2,
numcon = 2;
double c[] ={ 1.0, 0.64 };
MSKboundkeye bkc[] = { MSK_BK_UP, MSK_BK_LO };
double blc[] = { -MSK_INFINITY, -4.0 };
double buc[] = { 250.0, MSK_INFINITY };
MSKboundkeye bkx[] = { MSK_BK_LO, MSK_BK_LO };
double blx[] = { 0.0, 0.0 };
double bux[] = { MSK_INFINITY, MSK_INFINITY };

MSKint32t aptrb[l = { 0, 2 },

aptrel]l = { 2, 4 },

asub[] = { 0, 1, O, 1}
double avall[l = { 50.0, 3.0, 31.0, -2.0 };

MSKint32t i, js

(continues on next page)

51

(continued from previous page)

MSKenv_t env = NULL;
MSKtask_t task = NULL;
MSKrescodee r;

/* Create the mosek environment. */
r = MSK_makeenv(&env, NULL);

/* Check if return code is ok. */

if (r == MSK_RES_OK)

{
/* Create the optimization task. */
r = MSK_maketask(env, 0, 0, &task);

if (r == MSK_RES_OK)
r = MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr);

/* Append 'numcon' empty constraints.

The constraints will initially have no bounds. */
if (r == MSK_RES_OK)

r = MSK_appendcons(task, numcon);

/* Append 'numvar' variables.

The variables will initially be fized at zero (z=0). */
if (r == MSK_RES_0K)

r = MSK_appendvars(task, numvar);

/* Optionally add a constant term to the objective. */
if (r == MSK_RES_OK)

r = MSK_putcfix(task, 0.0);
for (j = 0; j < numvar &% r == MSK_RES_OK; ++j)
{

/* Set the linear term c_j in the objective.*/

if (r == MSK_RES_0K)

r = MSK_putcj(task, j, c[j]);

/% Set the bounds on wvariable j.
blezlj] <= z_j <= buzl[j] */

if (r == MSK_RES_0K)
r = MSK_putvarbound(task,

i, /* Index of wariable.*/

bkx[j]1, /* Bound key.*/

blx[j], /% Numerical value of lower bound.*/
bux[j1); /* Numerical value of upper bound.*/

/% Input column j of A */
if (r == MSK_RES_OK)
r = MSK_putacol(task,

J /* Vartable (column) index.*/
aptre[j] - aptrb[jl, /* Number of non-zeros in column j.*/
asub + aptrb[jl, /* Pointer to row indezes of column j.*/

aval + aptrb[jl); /* Pointer to Values of column j.*/

}

/* Set the bounds on constraints.
for =1, ...,numcon : blc[i] <= constraint % <= buc[t] */
for (i = 0; i < numcon && r == MSK_RES_OK; ++i)
r = MSK_putconbound(task,
i, /* Index of constraint.*/
bkc[i], /% Bound key.*/

(continues on next page)

52

(continued from previous page)

blc[il, /* Numerical value of lower bound.*/
buc[il); /% Numerical value of upper bound.*/

/* Specify integer variables. */
for (j = 0; j < numvar && r == MSK_RES_OK; ++j)
r = MSK_putvartype(task, j, MSK_VAR_TYPE_INT);

if (r == MSK_RES_0K)
r = MSK_putobjsense(task,
MSK_OBJECTIVE_SENSE_MAXIMIZE) ;

if (r == MSK_RES_0K)
/* Set maz solution time */
r = MSK_putdouparam(task,
MSK_DPAR_MIO_MAX_TIME,
60.0);

if (r == MSK_RES_0K)
{

MSKrescodee trmcode;

/* Run optimizer */
r = MSK_optimizetrm(task, &trmcode);

/* Print a summary containing information
about the solution for debugging purposes*/
MSK_solutionsummary (task, MSK_STREAM_MSG);

if (r == MSK_RES_0K)

{
MSKint32t j;
MSKsolstae solsta;
double *xx = NULL;

MSK_getsolsta(task, MSK_SOL_ITG, &solsta);

xx = calloc(numvar, sizeof (double));
if (xx)
{
switch (solsta)
{
case MSK_SOL_STA_INTEGER_OPTIMAL:
MSK_getxx (task,
MSK_SOL_ITG, /* Request the integer solution. */
xx) ;

printf ("Optimal solution.\n");
for (j = 0; j < numvar; ++j)
printf ("x[%d]: %e\n", j, xx[j1);
break;
case MSK_SOL_STA_PRIM_FEAS:
/% 4 feasible but not necessarily optimal solution was located. */
MSK_getxx (task, MSK_SOL_ITG, xx);

printf ("Feasible solution.\n");
for (j = 0; j < numvar; ++j)
printf ("x[%dl: %e\n", j, xx[j1);
break;
case MSK_SOL_STA_UNKNOWN:
{
MSKprostae prosta;

(continues on next page)

53

(continued from previous page)

MSK_getprosta(task, MSK_SOL_ITG, &prosta);
switch (prosta)
{
case MSK_PRO_STA_PRIM_INFEAS_OR_UNBOUNDED:
printf ("Problem status Infeasible or unbounded\n");
break;
case MSK_PRO_STA_PRIM_INFEAS:
printf ("Problem status Infeasible.\n");
break;
case MSK_PRO_STA_UNKNOWN:
printf ("Problem status unknown. Termination code %d.\n", trmcode);
break;
default:
printf ("Other problem status.");
break;
}
}
break;
default:
printf("Other solution status.");
break;
}
}
else
{
r = MSK_RES_ERR_SPACE;
}
free(xx);
}
}

if (r !'= MSK_RES_0K)

{
/% In case of an error print error code and description. */
char symname [MSK_MAX_STR_LEN] ;
char desc[MSK_MAX_STR_LEN];

printf("An error occurred while optimizing.\n");
MSK_getcodedesc(r,

symname,

desc);
printf ("Error %s - 'Js'\n", symname, desc);

}

MSK_deletetask(&task) ;

}
MSK_deleteenv(&env) ;

printf ("Return code: %d.\n", r);
return (r);

} /* main */

6.7.2 Specifying an initial solution

It is a common strategy to provide a starting feasible point (if one is known in advance) to the mixed-
integer solver. This can in many cases reduce solution time.

It is not necessary to specify the whole solution. MOSEK will attempt to use it to speed up the
computation. MOSEK will first try to construct a feasible solution by fixing integer variables to the
values provided by the user (rounding if necessary) and optimizing over the continuous variables. The
outcome of this process can be inspected via information items MSK_IINF_MIO_CONSTRUCT_SOLUTION
and MSK_DINF_MIO_CONSTRUCT_SOLUTION_OBJ, and via the Construct solution objective entry in

54

the log. We concentrate on a simple example below.

maximize Txg+ 1021 4+ x2 + Sx3

subject to xg+ 1 + 2o + 23 < 2.5
Xo,T1,T2 € Z
To,T1,T2,x3 > 0

(6.14)

Solution values can be set using ¥SK_putsolution .

Listing 6.10: Implementation of problem (6.14) specifying an initial
solution.

if (r == MSK_RES_OK)

{
/* Assign values to integer wvartiables
(we only set a slice of zz) */
double xxInit[] = {1.0, 1.0, 0.0};
r = MSK_putxxslice(task, MSK_SOL_ITG, O, 3, xxInit);
}

The log output from the optimizer will in this case indicate that the inputted values were used to
construct an initial feasible solution:

Construct solution objective : 1.950000000000e+01

The same information can be obtained from the API:

Listing 6.11: Retrieving information about usage of initial solution

MSK_getintinf (task, MSK_IINF_MIO_CONSTRUCT_SOLUTION, &constr);
MSK_getdouinf (task, MSK_DINF_MIO_CONSTRUCT_SOLUTION_OBJ, &constr_obj);
printf("Initial solution utilization: %d\nInitial solution objective: %.3f\n", constr,

—constr_obj);

6.7.3 Example MICO1

Integer variables can also be used arbitrarily in conic problems (except semidefinite). We refer to the
previous tutorials for how to set up a conic optimization problem. Here we present sample code that
sets up a simple optimization problem:
minimize 22 + y?
subject to z > e¥ 4 3.8, (6.15)
z,y integer.

The canonical conic formulation of (6.15) suitable for Optimizer API for C is

minimize o
subject to (wg,z1,12) € Q3 (xo > /2% + 23)
(x3,24,25) € Kexp (x3 > zyexp(zs/zy))
—r1+2x3 = —3.8 (616)
ry4 = 1
To—x5 = 0
T1,To integer.

Listing 6.12: Implementation of problem (6.16).

int main(int argc, char *argv[])

{

{ MSK_BK_FX, MSK_BK_FX, MSK_BK_FX };
{-3.8, 1, 0};

MSKboundkeye bkc[]
double be (]

(continues on next page)

55

(continued from previous page)

MSKvariabletypee vart[] = { MSK_VAR_TYPE_INT, MSK_VAR_TYPE_INT };
MSKint32t intsub[]l = { 1, 2 };

MSKint32t asubi[] = {0, 0, 1, 2, 2},

asubj[] = {1, 3, 4, 2, 5};
MSKrealt avall] {-1, 1, 1, 1, -1};
MSKint32t i, j;

MSKenv_t env = NULL;
MSKtask_t task = NULL;
MSKrescodee r, trm;

r = MSK_makeenv(&env, NULL);

if (r == MSK_RES_OK)
{
r = MSK_maketask(env, 0, 0, &task);

if (r == MSK_RES_OK)
r = MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr);

if (r == MSK_RES_0K)
r = MSK_appendvars(task, 6);

if (r == MSK_RES_0K)
r = MSK_appendcons(task, 3);

if (r == MSK_RES_O0K)
r = MSK_putvarboundsliceconst(task, 0, 6, MSK_BK_FR, -0.0, 0.0);

/% Integrality constraints */
if (r == MSK_RES_OK)
r = MSK_putvartypelist(task, 2, intsub, vart);

/* Linear part of the problem */
if (r == MSK_RES_OK)

r = MSK_putaijlist(task, 5, asubi, asubj, aval);
if (r == MSK_RES_OK)

r = MSK_putconboundslice(task, 0, 3, bkc, bc, bc);

/* Objective */
if (r == MSK_RES_OK)

r = MSK_putobjsense(task, MSK_OBJECTIVE_SENSE_MINIMIZE);
if (r == MSK_RES_OK)

r = MSK_putcj(task, 0, 1);

/* Conic part of the problem */
if (r == MSK_RES_OK)

r = MSK_appendconeseq(task, MSK_CT_QUAD, 0, 3, 0);
if (r == MSK_RES_O0K)

r = MSK_appendconeseq(task, MSK_CT_PEXP, 0, 3, 3);

/* Optimize the problem */
if (r == MSK_RES_OK)
r = MSK_optimizetrm(task, &trm);

if (r == MSK_RES_OK)
r = MSK_solutionsummary(task, MSK_STREAM_MSG);

if (r == MSK_RES_0K)
{

(continues on next page)

56

(continued from previous page)

MSKrealt xx[] = {0, 0};
r = MSK_getxxslice(task, MSK_SOL_ITG, 1, 3, xx);

if (r == MSK_RES_0K)
printf("x = %.2f, y = %.2f\n", xx[0], xx[1]);
}

if (task) MSK_deletetask(&task);
}

if (env) MSK_deleteenv(&env);
return r;

}

Error and solution status handling were omitted for readability.

6.8 Geometric Programming

Geometric programs (GP) are a particular class of optimization problems which can be expressed in
special polynomial form as positive sums of generalized monomials. More precisely, a geometric problem
in canonical form is

minimize fo(x)

subject to fi(x) <1, i=1,...,m, (6.17)
$j>0, 7=1,...,n,
where each fo,..., fin is a posynomial, that is a function of the form
f(l‘) _ Z Ckx?klxglkz L x%kn,
k

with arbitrary real ay; and ¢, > 0. The standard way to formulate GPs in convex form is to introduce
a variable substitution

x; = exp(y;).
Under this substitution all constraints in a GP can be reduced to the form

log(D_exp(afy +bx)) <0 (6.18)
k

involving a log-sum-exp bound. Moreover, constraints involving only a single monomial in = can be even
more simply written as a linear inequality:

a£y+bk§0

We refer to the MOSEK Modeling Cookbook and to [BKVH(07] for more details on this reformulation. A
geometric problem formulated in convex form can be entered into MOSEK with the help of exponential
cones.

6.8.1 Example GP1

The following problem comes from [BKVH07]. Consider maximizing the volume of a h x w x d box
subject to upper bounds on the area of the floor and of the walls and bounds on the ratios h/w and d/w:

maximize hwd
subject to 2(hw + hd) < Ayan,
wd < Agoor, (6.19)
a < hjw<p,
v <d/w <.

57

https://docs.mosek.com/modeling-cookbook/index.html

The decision variables in the problem are h, w,d. We make a substitution
h = exp(z),w = exp(y),d = exp(z)
after which (6.19) becomes

maximize = +y+ 2

subject to log(exp(x + y +log(2/Awan)) + exp(x + z + log(2/Awan))) <0,
y + 2z < log(Afioor), (6.20)
log(a) < & —y < log(p),
log(v) < z —y < log(d).

Next, we demonstrate how to implement a log-sum-exp constraint (6.18). It can be written as:

uy > exp(agy +b;), (equiv. (ug,1, afy +b) € Kexp)s

E:k’uk =1.

This presentation requires one extra variable uy for each monomial appearing in the original posynomial
constraint. Another fixed variable ¢, = 1 stands for the second entry in the exponential cone.

(6.21)

Listing 6.13: Implementation of log-sum-exp as in (6.21).

// Addd a single log-sum-exp constraint sum(log(exp(z_i))) <= 0
// Assume numErp variable triples are ordered as (u0,t0,z0,ul,t1,z1...)
// starting from variable with indez exzpStart

double *val = (double*) calloc(numExp, sizeof (double));

int *sub = (int*) calloc(numExp, sizeof(int));

MSKconetypee *ct = (MSKconetypee*) calloc(numExp, sizeof (MSKconetypee));
int *len = (int*) calloc(numExp, sizeof(int));

// sum(u_i) = 1 as constraint number c, u_% unbounded
for(i = 0; i < numExp; i++)
{ sub[i] = expStart + 3*i; val[i] = 1.0; }
if (r == MSK_RES_OK)
r = MSK_putarow(task, c, numExp, sub, val);
if (r == MSK_RES_OK)
r = MSK_putconbound(task, ¢, MSK_BK_FX, 1.0, 1.0);
if (r == MSK_RES_O0K)
r = MSK_putvarboundlistconst(task, numExp, sub, MSK_BK_FR, -MSK_INFINITY, MSK_INFINITY);

// z_1 unbounded
for(i = 0; i < numExp; i++) sub[i] = expStart + 3*i + 2;
if (r == MSK_RES_0OK)
r = MSK_putvarboundlistconst(task, numExp, sub, MSK_BK_FR, -MSK_INFINITY, MSK_INFINITY);

// toi o= 1
for(i = 0; i < numExp; i++) sub[i] = expStart + 3*i + 1;
if (r == MSK_RES_OK)
r = MSK_putvarboundlistconst(task, numExp, sub, MSK_BK_FX, 1, 1);

// Every triple is in an ezponential cone
for(i = 0; i < numExp; i++)
{ ct[i] = MSK_CT_PEXP; vall[i] = 0.0; len[i] = 3; }
if (r == MSK_RES_OK)
r = MSK_appendconesseq(task, numExp, ct, val, len, expStart);

free(val); free(sub); free(ct); free(len);

We can now use this function to assemble all constraints in the model. The linear part of the problem
is entered as in Sec. 6.1.

58

Listing 6.14: Source code solving problem (6.20).

int max_volume_box(double Aw, double Af,
double alpha, double beta, double gamma, double delta,
double hwd[])

{
// Basic dimensions of our problem
const int numvar = 3; // Variables in original problem
const int numLinCon = 3; // Linear constraints in original problem
const int numExp = 2; // Number of exzp-terms in the log-sum-exzp constraint

// Linear part of the problem

const double cvall[l] = {1, 1, 1};

const int asubil[] = {0, 0, 1, 1, 2, 2};

const int asubj[]l = {1, 2, 0, 1, 2, 1};

const int alen = 6;

const double avall[] = {1.0, 1.0, 1.0, -1.0, 1.0, -1.0%};

const MSKboundkeye bkc[] = {MSK_BK_UP, MSK_BK_RA, MSK_BK_RA};

const double blc[] = {-MSK_INFINITY, log(alpha), log(gamma)};
const double buc [] = {log(Af), log(beta), log(delta)};

// Linear part setting up slack variables

// for the linear expressions appearing inside exps

// x5 -z -y = log(2/4wall)

// z_8 -z - z = log(2/4wall)

// The slack tindezes are convenient for defining exzponential cones, see later

const int a2subil] = {3, 3, 3, 4, 4, 4};

const int a2subj[] = {5, 0, 1, 8, 0, 2};

const int a2len = 6;

const double a2vall[]l] = {1.0, -1.0, -1.0, 1.0, -1.0, -1.0};
const MSKboundkeye b2kc[] = {MSK_BK_FX, MSK_BK_FX};

const double b2luc[] = {log(2/Aw), log(2/Aw)};

MSKenv_t env = NULL;

MSKtask_t task = NULL;

MSKrescodee r, trmcode;

MSKsolstae solsta;

MSKint32t i;

double *xyz = (double*) calloc(numvar, sizeof(double));

r = MSK_makeenv(&env, NULL);

if (r == MSK_RES_OK)
r = MSK_maketask(env, 0, 0, &task);

if (r == MSK_RES_0OK)
r = MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr);

if (r == MSK_RES_0K)
r = MSK_appendvars(task, numvar + 3*numExp);

if (r == MSK_RES_0K)
r = MSK_appendcons(task, numLinCon + numExp + 1);

// Objective ts the sum of three first variables
if (r == MSK_RES_OK)
r = MSK_putobjsense(task, MSK_OBJECTIVE_SENSE_MAXIMIZE);
if (r == MSK_RES_OK)
r = MSK_putcslice(task, O, numvar, cval);
if (r == MSK_RES_0K)
r = MSK_putvarboundsliceconst(task, 0, numvar, MSK_BK_FR, -MSK_INFINITY, +MSK_INFINITY);

(continues on next page)

59

(continued from previous page)

// Add the three linear constraints
if (r == MSK_RES_OK)
r = MSK_putaijlist(task, alen, asubi, asubj, aval);
if (r == MSK_RES_OK)
r = MSK_putconboundslice(task, 0, numvar, bkc, blc, buc);

// Add linear constraints for the ezpressions appearing in ezp(...)
if (r == MSK_RES_0K)
r = MSK_putaijlist(task, a2len, a2subi, a2subj, a2val);
if (r == MSK_RES_0K)
r = MSK_putconboundslice(task, numLinCon, numLinCon+numExp, b2kc, b2luc, b2luc);

{
int ¢ = numLinCon + numExp;
int expStart = numvar;
// 4dd a single log-sum-ezp constraint sum(log(exp(z_i))) <= 0
// Assume numErp variable triples are ordered as (u0,t0,20,ul,t1,z1...)
// starting from variable with index expStart
double *val = (double*) calloc(numExp, sizeof (double));
int *sub = (int*) calloc(numExp, sizeof(int));
MSKconetypee #*ct = (MSKconetypeex) calloc(numExp, sizeof (MSKconetypee)) ;
int *len = (int*) calloc(numExp, sizeof (int));
// sum(u_i) = 1 as constraint number c, u_% unbounded
for(i = 0; i < numExp; i++)
{ sub[i] = expStart + 3xi; vall[i] = 1.0; }
if (r == MSK_RES_0K)
r = MSK_putarow(task, c, numExp, sub, val);
if (r == MSK_RES_OK)
r = MSK_putconbound(task, c, MSK_BK_FX, 1.0, 1.0);
if (r == MSK_RES_OK)
r = MSK_putvarboundlistconst(task, numExp, sub, MSK_BK_FR, -MSK_INFINITY, MSK_INFINITY);
// z_1 unbounded
for(i = 0; i < numExp; i++) sub[i] = expStart + 3*i + 2;
if (r == MSK_RES_0K)
r = MSK_putvarboundlistconst(task, numExp, sub, MSK_BK_FR, -MSK_INFINITY, MSK_INFINITY);
/) toi = 1
for(i = 0; i < numExp; i++) sub[i] = expStart + 3*i + 1;
if (r == MSK_RES_OK)
r = MSK_putvarboundlistconst(task, numExp, sub, MSK_BK_FX, 1, 1);
// Every triple ts in an exzponential cone
for(i = 0; i < numExp; i++)
{ ct[i] = MSK_CT_PEXP; vall[i] = 0.0; len[i] = 3; }
if (r == MSK_RES_O0K)
r = MSK_appendconesseq(task, numExp, ct, val, len, expStart);
free(val); free(sub); free(ct); free(len);
}

// Solve and map to original h, w, d
if (r == MSK_RES_OK)
r = MSK_optimizetrm(task, &trmcode);

if (r == MSK_RES_OK)
MSK_getsolsta(task, MSK_SOL_ITR, &solsta);

if (solsta == MSK_SOL_STA_OPTIMAL)
{

(continues on next page)

60

(continued from previous page)

if (r == MSK_RES_O0K)
r = MSK_getxxslice(task, MSK_SOL_ITR, O, numvar, xyz);
for(i = 0; i < numvar; i++) hwd[i] = exp(xyz[il);
}
else

{
printf("Solution not optimal, termination code %d.\n", trmcode);
r = trmcode;

}

free(xyz);
return r;

Given sample data we obtain the solution h,w, d as follows:

Listing 6.15: Sample data for problem (6.19).

int main()

{
const double Aw = 200.0;
const double Af = 50.0;
const double alpha = 2.0;
const double beta = 10.0;
const double gamma = 2.0;
const double delta = 10.0;

MSKrescodee r;
double hwd[3];

r = max_volume_box(Aw, Af, alpha, beta, gamma, delta, hwd);
printf ("Response code: %d\n", r);
if (r == MSK_RES_0K)
printf ("Solution h=Y,.4f w=},.4f d=J.4f\n", hwd[0], hwd[1], hwd[2]);

return r;

6.9 Library of basic functions

This section contains a library of small models of basic functions frequently appearing in optimization
models. It is essentially an implementation of the mathematical models from the MOSEK Modeling
Cookbook using Optimizer API for C. These short code snippets can be seen as illustrative examples,
can be copy-pasted to other code, and can even be directly called when assembling optimization models
as we show in Sec. 6.9.6 (although this may be more suitable for prototyping; also note that additional
variables and constraints will be introduced and there is no error checking).

6.9.1 Variable and constraint management

Append variables

Adds a number of new variables. Returns the index of the first variable in the sequence.

Listing 6.16: New variables.

int msk_newvar(MSKtask_t task, int num) { // free
int i, v;
MSK_getnumvar (task, &v);
MSK_appendvars (task, num);
for(i=0; i<num; i++)

(continues on next page)

61

https://docs.mosek.com/modeling-cookbook/index.html
https://docs.mosek.com/modeling-cookbook/index.html

(continued from previous page)

MSK_putvarbound(task, v+i, MSK_BK_FR, -inf, inf);

return v;

}

int msk_newvar_fx(MSKtask_t task, int num, double val) { // fized
int i, v;

MSK_getnumvar (task, &v);
MSK_appendvars (task, num) ;
for(i=0; i<num; i++)
MSK_putvarbound(task, v+i, MSK_BK_FX, val, val);

return v;

}

int msk_newvar_bin(MSKtask_t task, int num) { // binary
int i, v;

MSK_getnumvar (task, &v);

MSK_appendvars (task, num);

for(i=0; i<num; i++) {
MSK_putvarbound(task, v+i, MSK_BK_RA, 0.0, 1.0);
MSK_putvartype (task, v+i, MSK_VAR_TYPE_INT) ;

}

return v;

Variable duplication

Declares equality of two variables, or returns an index of a new duplicate of an existing variable.

Listing 6.17: Duplicate variables.

// =y
void msk_equal (MSKtask_t task, int x, int y) {
int c;

¢ = msk_newcon(task, 1);

MSK_putaij(task, c, x, 1.0);

MSK_putaij(task, c, y, -1.0);

MSK_putconbound (task, ¢, MSK_BK_FX, 0.0, 0.0);
}
int msk_dup(MSKtask_t task, int x) {

int y;

y = msk_newvar (task, 1);

msk_equal (task, x, y);

return y;

Append constraints

Adds a number of new constraints. Returns the index of the first constraint in the sequence.

Listing 6.18: New constraints.

int msk_newcon(MSKtask_t task, int num) {
int c;
MSK_getnumcon (task, &c);
MSK_appendcons (task, num);
return c;

6.9.2 Linear operations

Absolute value

t> |z

62

Listing 6.19: Absolute value.

/7t >= |zl
void msk_abs(MSKtask_t task, int t, int x) {
int c;

c = msk_newcon(task, 2);

MSK_putaij(task, c, t, 1.0);

MSK_putaij(task, c, x, 1.0);

MSK_putconbound (task, ¢, MSK_BK_LO, 0.0, inf);
MSK_putaij(task, c+1, t, 1.0);

MSK_putaij(task, c+1l, x, -1.0);
MSK_putconbound(task, c+1, MSK_BK_LO, 0.0, inf);

1-norm
t>> |wi

Listing 6.20: 1-norm.

// t >= sum(|z_t]), © is a list of wariables
void msk_norml (MSKtask_t task, int t, int n, int* x) {
int i, c, u;
u = msk_newvar(task, n);
for(i=0; i<n; i++) msk_abs(task, u+i, x[i]);
¢ = msk_newcon(task, 1);
for(i=0; i<mn; i++) MSK_putaij(task, c, u+i, -1.0);
MSK_putaij(task, c, t, 1.0);
MSK_putconbound (task, ¢, MSK_BK_LO, 0.0, inf);

6.9.3 Quadratic and power operations

Square

t > a2

Listing 6.21: Square.

// t >= x°2

void msk_sq(MSKtask_t task, int t, int x) {
int submem[3];
submem[0] = msk_newvar_fx(task, 1, 0.5), submem[1] = t, submem[2] = x;
MSK_appendcone (task, MSK_CT_RQUAD, 0.0, 3, submem);

}

2-norm
t> /28

Listing 6.22: 2-norm.

// t >= sqrt(z_1°2 + ... + ©_n"2) where = is a list of variables
void msk_norm2(MSKtask_t task, int t, int n, int* x) {

int* submem;

int i;

submem = (int*) MSK_calloctask(task, n+1, sizeof(int));

submem[0] = t;

for(i=0; i<n; i++) submem[i+1] = x[i];

MSK_appendcone (task, MSK_CT_QUAD, 0.0, n+1, submem);

(continues on next page)

63

(continued from previous page)

MSK_freetask(task, (void*)submem);
}

Powers

t>xP,p>1

Listing 6.23: Power.

// t >= |z/"p (where p>1)

void msk_pow(MSKtask_t task, int t, int x, double p) {
int submem[3];
submem[0] = t, submem[1] = msk_newvar_fx(task, 1, 1.0), submem[2] = x;
MSK_appendcone (task, MSK_CT_PPOW, 1.0/p, 3, submem);

}

t>1/aP, >0,p>0

Listing 6.24: Power reciprocal.

// t >= 1/z°p, z>0 (where p>0)

void msk_pow_inv(MSKtask_t task, int t, int x, double p) {
int submem[3];
submem[0] = t, submem[1] = x, submem[2] = msk_newvar_fx(task, 1, 1.0);
MSK_appendcone (task, MSK_CT_PPOW, 1.0/(1.0+p), 3, submem);

}

p-norm
E2 (5, i) 7, p> 1

Listing 6.25: p-norm.

// t >= \|z\|/_p (where p>1), z is a list of wvariables
void msk_pnorm(MSKtask_t task, int t, int n, int* x, double p) {
int i, r, c, submem[3];
r = msk_newvar(task, n);
for(i=0; i<n; i++) {
submem[0] = t, submem[1] = r+i, submem[2] = x[i];
MSK_appendcone (task, MSK_CT_PPOW, 1.0-1.0/p, 3, submem);
}
¢ = msk_newcon(task, 1);
for(i=0; i<n; i++)
MSK_putaij(task, c, r+i, -1.0);
MSK_putaij(task, c, t, 1.0);
MSK_putconbound (task, ¢, MSK_BK_FX, 0.0, 0.0);

Geometric mean

Listing 6.26: Geometric mean.

// 1t] <= (z_1...z_n)"~(1/n), ©_1>=0, = is a list of variables of Length >= 1
void msk_geo_mean(MSKtask_t task, int t, int n, int* x) {
if (n==1) msk_abs(task, x[0], t);
else {
int t2, submem[3];
t2 = msk_newvar(task, 1);

(continues on next page)

64

(continued from previous page)

submem[0] = t2, submem[1] = x[n-1], submem[2] = t;
MSK_appendcone (task, MSK_CT_PPOW, 1.0-1.0/n, 3, submem);
msk_geo_mean(task, msk_dup(task, t2), n-1, x);
}
}

6.9.4 Exponentials and logarithms

log
t<logxz, x>0

Listing 6.27: Logarithm.

// t <= log(z), x>=0

void msk_log(MSKtask_t task, int t, int x) {
int submem[3];
submem[0] = x, submem[1] = msk_newvar_fx(task, 1, 1.0), submem[2] = t;
MSK_appendcone (task, MSK_CT_PEXP, 0.0, 3, submem);

}

exp

t>e*

Listing 6.28: Exponential.

// t >= ezp(z)

void msk_exp(MSKtask_t task, int t, int x) {
int submem[3];
submem[0] = t, submem[1] = msk_newvar_fx(task, 1, 1.0), submem[2] = x;
MSK_appendcone (task, MSK_CT_PEXP, 0.0, 3, submem);

}

Entropy

t>xlogz, x>0

Listing 6.29: Entropy.

// t >=z * log(z), z>=0
void msk_ent (MSKtask_t task, int t, int x) {
int v, c, submem[3];
v = msk_newvar (task, 1);
c = msk_newcon(task, 1);
MSK_putaij(task, c, v, 1.0);
MSK_putaij(task, c, t, 1.0);
MSK_putconbound (task, ¢, MSK_BK_FX, 0.0, 0.0);
submem[0] = msk_newvar_fx(task, 1, 1.0), submem[1] = x, submem[2] = v;
MSK_appendcone (task, MSK_CT_PEXP, 0.0, 3, submem);

Relative entropy

t>zlogz/y, z,y>0

65

Listing 6.30: Relative entropy.

// t >=z * log(z/y), z,y>=0

void msk_relent (MSKtask_t task, int t, int x, int y) {
int v, c, submem[3];
v = msk_newvar (task, 1);
¢ = msk_newcon(task, 1);
MSK_putaij(task, c, v, 1.0);
MSK_putaij(task, c, t, 1.0);
MSK_putconbound (task, ¢, MSK_BK_FX, 0.0, 0.0);
submem[0] = y, submem[1] = x, submem[2] = v;
MSK_appendcone (task, MSK_CT_PEXP, 0.0, 3, submem);

Log-sum-exp
log> e <t

Listing 6.31: Log-sum-exp.

// log(sum_i(ezp(z_i))) <= t, where = is a list of wariables
void msk_logsumexp(MSKtask_t task, int t, int n, int* x) {
int z, u, c, s, i;
u = msk_newvar(task, n);
z = msk_newvar (task, n);
for(i=0; i<n; i++) msk_exp(task, u+i, z+i);
¢ = msk_newcon(task, n);
for(i=0; i<m; i++) {
MSK_putaij(task, c+i, x[i], 1.0);
MSK_putaij(task, c+i, t, -1.0);
MSK_putaij(task, c+i, z+i, -1.0);
MSK_putconbound (task, c+i, MSK_BK_FX, 0.0, 0.0);
}
s = msk_newcon(task, 1);
for(i=0; i<n; i++) MSK_putaij(task, s, u+i, 1.0);
MSK_putconbound(task, s, MSK_BK_UP, -inf, 1.0);

6.9.5 Integer Modeling
Semicontinuous variable

z€{0}U][a,b],b>a>0

Listing 6.32: Semicontinuous variable.

// =0 ora <= <=0»b

void msk_semicontinuous(MSKtask_t task, int x, double a, double b)
int u, c;
u = msk_newvar_bin(task, 1);
c = msk_newcon(task, 2);
MSK_putaij(task, c, x, 1.0);
MSK_putaij(task, c, u, -a);
MSK_putconbound (task, ¢, MSK_BK_LO, 0.0, inf);
MSK_putaij(task, c+1, x, 1.0);
MSK_putaij(task, c+1, u, -b);
MSK_putconbound(task, c+1, MSK_BK_UP, -inf, 0.0);

Indicator variable

x#0 = t=1. We assume z is a priori normalized so |z;| < 1.

66

Listing 6.33: Indicator variable.

// x!=0 implies t=1. Assumes that [z/<=1 in advance.
int msk_indicator(MSKtask_t task, int x) {

int t;

t = msk_newvar_bin(task, 1);

msk_abs(task, t, x);

return t;

Logical OR

At least one of the conditions is true.

Listing 6.34: Logical OR.

// = OR Yy, where z, y are binary
void msk_logic_or(MSKtask_t task, int x, int y) {
int c;
¢ = msk_newcon(task, 1);
MSK_putaij(task, c, x, 1.0);
MSK_putaij(task, c, y, 1.0);
MSK_putconbound (task, ¢, MSK_BK_LO, 1.0, inf);

}

// z_1 OR ... OR z_n, where T is sequence of wariables

void msk_logic_or_vect(MSKtask_t task, int n, int* x) {
int c, 1i;

¢ = msk_newcon(task, 1);
for(i=0; i<n; i++) MSK_putaij(task, c, x[i], 1.0);
MSK_putconbound(task, ¢, MSK_BK_LO, 1.0, inf);

Logical NAND

At most one of the conditions is true (also known as SOS1).

Listing 6.35: Logical NAND.

// at most ome of z_1,...,z_n, where = is a binary vector (S0S1 constraint)
void msk_logic_sosl(MSKtask_t task, int n, int* x) {
int c, 1i;

¢ = msk_newcon(task, 1);
for(i=0; i<n; i++) MSK_putaij(task, c, x[i], 1.0);
MSK_putconbound(task, ¢, MSK_BK_UP, -inf, 1.0);

}

// NOT(z AND y), where z, y are binary

void msk_logic_nand(MSKtask_t task, int x, int y) {
int c;
c = msk_newcon(task, 1);
MSK_putaij(task, c, x, 1.0);
MSK_putaij(task, c, y, 1.0);
MSK_putconbound(task, ¢, MSK_BK_UP, -inf, 1.0);

Cardinality bound

At most k of the continuous variables are nonzero. We assume z is a priori normalized so |z;| < 1.

67

Listing 6.36: Cardinality bound.

// At most k of entries in = are nonzero, assuming in advance that [z_i/[<=1.
void msk_card(MSKtask_t task, int n, int* x, int k) {

int t, i, c;

t = msk_newvar_bin(task, n);

for(i=0; i<m; i++) msk_abs(task, t+i, x[il]);

c = msk_newcon(task, 1);

for(i=0; i<n; i++) MSK_putaij(task, c, t+i, 1.0);

MSK_putconbound(task, c, MSK_BK_UP, -inf, k);

6.9.6 Model assembly example
We now demonstrate how to quickly build a simple optimization model for the problem

. _ 2 2 _ 1.5
maximize Va2 +y? +logy -z, (6.22)
subject to = >y + 3,

or equivalently

maximize —tg+ t1 — to,
subject to = >y+ 3,
to > \/ 22 + y27
t1 <logy,
ty > als.

Listing 6.37: Modeling (6.22).

MSK_makeemptytask(env, &task);

x = msk_newvar(task, 1);
msk_newvar(task, 1);
= msk_newvar (task, 3);

<
I

¢ = msk_newcon(task, 1);

MSK_putaij(task, c, x, 1.0);

MSK_putaij(task, c, y, -1.0);

MSK_putconbound (task, ¢, MSK_BK_LO, 3.0, inf);

sub[0] = x, sub[1] = y;

msk_norm2(task, t+0, 2, sub);

msk_log (task, t+1, msk_dup(task, y));
msk_pow (task, t+2, msk_dup(task, x), 1.5);

sub[0] = t, sub[1] = t+1, sub[2]
cj [0] = -1.0, cj [1] = 1.0, cj [2]
MSK_putclist(task, 3, sub, cj);
MSK_putobjsense (task, MSK_OBJECTIVE_SENSE_MAXIMIZE);

t+2;
-1.0;

6.10 Problem Modification and Reoptimization

Often one might want to solve not just a single optimization problem, but a sequence of problems, each
differing only slightly from the previous one. This section demonstrates how to modify and re-optimize
an existing problem.

The example we study is a simple production planning model.

Problem modifications regarding variables, cones, objective function and constraints can be grouped
in categories:

68

e add/remove,
e coefficient modifications,
e bounds modifications.

Especially removing variables and constraints can be costly. Special care must be taken with respect
to constraints and variable indexes that may be invalidated.

Depending on the type of modification, MOSEK may be able to optimize the modified problem more
efficiently exploiting the information and internal state from the previous execution. After optimization,
the solution is always stored internally, and is available before next optimization. The former optimal
solution may be still feasible, but no longer optimal; or it may remain optimal if the modification of the
objective function was small. This special case is discussed in Sec. 14.3.

In general, MOSEK exploits dual information and availability of an optimal basis from the previous
execution. The simplex optimizer is well suited for exploiting an existing primal or dual feasible solution.
Restarting capabilities for interior-point methods are still not as reliable and effective as those for the
simplex algorithm. More information can be found in Chapter 10 of the book [Chv83].

Parameter settings (see Sec. 7.4) can also be changed between optimizations.

6.10.1 Example: Production Planning

A company manufactures three types of products. Suppose the stages of manufacturing can be split into
three parts: Assembly, Polishing and Packing. In the table below we show the time required for each
stage as well as the profit associated with each product.

Product no. | Assembly (minutes) | Polishing (minutes) | Packing (minutes) | Profit ($)
0 2 3 2 1.50
1 4 2 3 2.50
2 3 3 2 3.00

With the current resources available, the company has 100,000 minutes of assembly time, 50,000
minutes of polishing time and 60,000 minutes of packing time available per year. We want to know how

many items of each product the company should produce each year in order to maximize profit?

Denoting the number of items of each type by xg,x; and x5, this problem can be formulated as a
linear optimization problem:

maximize 1.bzg + 2521 + 3.0x9

subject to 2z + 4z + 3x2 < 100000, (6.23)
39 + 2x1 + 3z < 50000, '
2z + 3z + 2z < 60000,

and

Lo, L1, X2 Z 0.

Code in Listing 6.38 loads and solves this problem.

Listing 6.38: Setting up and solving problem (6.23)

MSKint32t numvar = 3,
numcon = 3;
MSKint32t i, j;
double cll = {1.5, 2.5, 3.0};
MSKint32t ptrb[] = {0, 3, 6},
ptrel]l = {3, 6, 9},
asub[] = { 0, 1, 2,
o0, 1, 2,
0, 1, 2
};
double avall[] = { 2.0, 3.0, 2.0,

69

(continues on next page)

(continued from previous page)

MSKboundkeye bkc[] = {MSK_BK_UP, MSK_BK_UP, MSK_BK_UP

};

double blc[] = { -MSK_INFINITY, -MSK_INFINITY, -MSK_INFINITY};
double buc[] = {100000, 50000, 60000};

MSKboundkeye bkx[] = {MSK_BK_LO, MSK_BK_LO, MSK_BK_LO};
double blx[] = {0.0, 0.0, 0.0,};

double bux[] = { +MSK_INFINITY, +MSK_INFINITY, +MSK_INFINITY};
double *xx = NULL;

MSKenv_t env;

MSKtask_t task;

MSKint32t varidx, conidx;

MSKrescodee r,lr;

/* Create the mosek environment. */

T

= MSK_makeenv (&env,DEBUG 7 "" : NULL);

if (r == MSK_RES_OK)

{

/* Create the optimization task. */
r = MSK_maketask(env, numcon, numvar, &task);

/* Append the constraints. */
if (r == MSK_RES_0K)
r = MSK_appendcons(task, numcon) ;

/* Append the variables. */
if (r == MSK_RES_0K)
r = MSK_appendvars(task, numvar);

/* Put C. */
if (r == MSK_RES_OK)
r = MSK_putcfix(task, 0.0);

if (r == MSK_RES_OK)
for (j = 0; j < numvar; ++j)
r = MSK_putcj(task, j, c[j]);

/* Put constraint bounds. */
if (r == MSK_RES_OK)
for (i = 0; i < numcon; ++i)
r = MSK_putconbound(task, i, bkc[i], blc[i], buc[i]);

/* Put variable bounds. */
if (r == MSK_RES_0K)
for (j = 0; j < numvar; ++j)
r = MSK_putvarbound(task, j, bkx[jl, blx[jl, bux[jl);

/* Put A. */
if (r == MSK_RES_0K)
if (numcon > 0)
for (j = 0; j < numvar; ++j)
r = MSK_putacol(task,

Js
ptre[j] - ptrbl[jl,
asub + ptrb[j],
aval + ptrb[jl);

70

(continues on next page)

(continued from previous page)

if (r == MSK_RES_0K)
r = MSK_putobjsense(task,
MSK_OBJECTIVE_SENSE_MAXIMIZE) ;

if (r == MSK_RES_OK)
r = MSK_optimizetrm(task, NULL);

if (r == MSK_RES_0K)

{
xx = calloc(numvar, sizeof (double));
if ('xx)
r = MSK_RES_ERR_SPACE;
}

if (r == MSK_RES_0OK)
r = MSK_getxx(task,
MSK_SOL_BAS, /* Basic solution. */
XX) ;

6.10.2 Changing the Linear Constraint Matrix

Suppose we want to change the time required for assembly of product 0 to 3 minutes. This corresponds
to setting ag,0 = 3, which is done by calling the function ¥Sk_putaij as shown below.

if (r == MSK_RES_0K)
r = MSK_putaij(task, 0, 0, 3.0);

The problem now has the form:

maximize 1.bzg + 2.5x1 + 3.0x9

subject to 3z + 4z + 3x2 < 100000, (6.24)
3rg + 2x1 + 3z < 50000, '
2rg + 3z + 2z < 60000,

and
xo, T1, 22 > 0.
After this operation we can reoptimize the problem.

6.10.3 Appending Variables

We now want to add a new product with the following data:

Product no. | Assembly (minutes) | Polishing (minutes) | Packing (minutes) | Profit ($)
3 4 0 1 1.00

This corresponds to creating a new variable x3, appending a new column to the A matrix and setting
a new term in the objective. We do this in Listing 6.39

Listing 6.39: How to add a new variable (column)

JHEKERKKR KRNI RK KRN NN 2% Add a new variable *¥kkxkxkxkxkkkxkkkx¥¥x/
/* Get index of nmew variable, this should be 3 */
if (r == MSK_RES_0K)
r = MSK_getnumvar (task, &varidx);
/* Append a new variable z_3 to the problem */
if (r == MSK_RES_0K)
{

(continues on next page)

71

(continued from previous page)

r = MSK_appendvars(task, 1);
numvar-++;
}
/* Set bounds on new wvariable */
if (r == MSK_RES_0OK)
r = MSK_putvarbound(task,
varidx,
MSK_BK_LO,
O’
+MSK_INFINITY);

/* Change objective */
if (r == MSK_RES_OK)
r = MSK_putcj(task, varidx, 1.0);

/* Put new wvalues in the A matriz */
if (r == MSK_RES_OK)
{
MSKint32t acolsub[] = {0, 2};
double acolvall] {4.0, 1.0%};

r = MSK_putacol(task,
varidx, /* column index */
2, /* num nz in column*/
acolsub,
acolval);

After this operation the new problem is:

maximize 1.5z9 + 2521 + 3.0xs + 1.0z3

subject to 3z9 + 4x; + 3z + 4xs < 100000, (6.25)
3rg + 21 + 3xo < 50000, ’
20 4+ 3x1 4+ 2z + 1lzz < 60000,

and
Zo, %1, %2,23 > 0.

6.10.4 Appending Constraints

Now suppose we want to add a new stage to the production process called Quality control for which
30000 minutes are available. The time requirement for this stage is shown below:

Product no. | Quality control (minutes)
0 1
1 2
2 1
3 1

This corresponds to adding the constraint
xo + 221 + 22 + x3 < 30000

to the problem. This is done as follows.

72

Listing 6.40: Adding a new constraint.

JE FAFFAAFFAFFAFFAFF AAd G MEW CONSTTAINE *FF KK KA KKK FAKKAKKA K/
/* Get index of mew constraint*/
if (r == MSK_RES_0K)

r = MSK_getnumcon(task, &conidx);

/* Append a new constraint */
if (r == MSK_RES_0K)
{
r = MSK_appendcons(task, 1);
numcon++;

}

/* Set bounds on new constraint */
if (r == MSK_RES_OK)
r = MSK_putconbound(task,
conidx,
MSK_BK_UP,
-MSK_INFINITY,
30000) ;

/* Put new wvalues in the A matriz */

if (r == MSK_RES_OK)

{
MSKint32t arowsub[] = {0, 1, 2, 3 };
double arowvall[]l] = {1.0, 2.0, 1.0, 1.0};

r = MSK_putarow(task,
conidx, /* row indexz */
4, /* num nz in row*/
arowsub,
arowval) ;

}

Again, we can continue with re-optimizing the modified problem.

6.10.5 Changing bounds

One typical reoptimization scenario is to change bounds. Suppose for instance that we must operate

with limited time resources, and we must change the upper bounds in the problem as follows:

Operation Time available (before) | Time available (new)
Assembly 100000 80000
Polishing 50000 40000
Packing 60000 50000
Quality control | 30000 22000

That means we would like to solve the problem:

maximize 1.5z9 + 2.5z7 + 3.0z + 1.0x3
subject to 3x9 4+ 4x; 4+ 3z + dxg
3xo + 211 + 3x9
QIO %’ 3$1 ‘+ 2I2 +' 1$3
i) +— 2$1 To =+ I3

|

IAIAIAIA

80000,
40000,
50000,
22000.

(6.26)

In this case all we need to do is redefine the upper bound vector for the constraints, as shown in the next

listing.

Listing 6.41: Change constraint bounds.

/* KKKKKKK KK KKK KKK X (,‘ha,nge constraint bounds *¥kkkkkkkkkkkKkKkkk¥¥ */

if (r == MSK_RES_OK)

73

(continues on next page)

(continued from previous page)

{
MSKboundkeye newbkc[] = { MSK_BK_UP, MSK_BK_UP, MSK_BK_UP, MSK_BK_UP };
double newblc[] = { -MSK_INFINITY, -MSK_INFINITY, -MSK_INFINITY, -MSK_INFINITY };
double newbuc[] = { 80000, 40000, 50000, 22000 };
r = MSK_putconboundslice(task, O, numcon, newbkc, newblc, newbuc);
¥

Again, we can continue with re-optimizing the modified problem.

6.10.6 Advanced hot-start

If the optimizer used the data from the previous run to hot-start the optimizer for reoptimization, this
will be indicated in the log:

Optimizer - hotstart 1 yes

When performing re-optimizations, instead of removing a basic variable it may be more efficient to
fix the variable at zero and then remove it when the problem is re-optimized and it has left the basis.
This makes it easier for MOSEK to restart the simplex optimizer.

6.11 Parallel optimization

In this section we demonstrate the simplest possible multi-threading setup to run multiple MOSEK
optimizations in parallel. All tasks must be created using the same MOSEK environment. One license
token checked out by the environment will be shared by the tasks.

We first define a simple method that runs a number of optimization tasks in parallel, using the
standard multi-threading setup available in the language.

Listing 6.42: Parallel optimization of a list of tasks. (C++).

/#** Runs a single task */
void runTask(int num,
MSKtask_t task,
MSKrescodee *res,
MSKrescodee *trm)
{
*res = MSK_optimizetrm(task, trm);

}

/** Takes a list of tasks and optimizes then in parallel. The
response code and termination code from each optimization is
stored in "~"res’ " and " trm’

*/
void paropt(int n,
MSKtask_t *tasks,
MSKrescodee *res,
MSKrescodee *trm)
{
int i;

std::thread * jobs = new std::thread[n];

// Initialize
for(i = 0; i < n; ++i) {

res[i] = trm[i] = MSK_RES_ERR_UNKNOWN;

jobs[i] = std::thread(runTask, i, tasks[i], &(res[i]), &(trm[i]));
}

// Join all threads
for(i = 0; i < n; ++i) jobs[i].join();

(continues on next page)

74

(continued from previous page)

delete[] jobs;
}

It remains to call the method with a few different tasks. When optimizing many task in parallel it
usually makes sense to solve each task using one thread to avoid additional multitasking overhead. When
all tasks complete we access the solutions in the standard way.

Listing 6.43: Calling the parallel optimizer (C++).

/*% Ezample of how to use " “paropt .
Optimizes tasks whose names were read from command line.
*/
int main(int argc, char **argv)
{
MSKenv_t env;
int n = argc - 1;
MSKtask_t *tasks = new MSKtask_t[n];
MSKrescodee *res = new MSKrescodeel[n];
MSKrescodee *trm = new MSKrescodeel[n];

MSK_makeenv (&env, NULL);

for (int i = 0; i < nj; i++) {

MSK_makeemptytask(env, &(tasks[i]));

MSK_readdata(tasks[i], argv([i+1]);

// Each task will be single-threaded

MSK_putintparam(tasks[i], MSK_IPAR_INTPNT_MULTI_THREAD, MSK_OFF);
}

paropt(n, tasks, res, trm);

for(int i = 0; i < n; i++) {
double obj, tm;
MSK_getdouinf (tasks[i], MSK_DINF_INTPNT_PRIMAL_OBJ, &obj);
MSK_getdouinf (tasks[i], MSK_DINF_OPTIMIZER_TIME, &tm);

printf("Task %d res %d trm %d obj_val %.5f time %.5f\n",
i,
res[i],
trm[i],
obj,
tm) ;
}

for(int 1 = 0; i < mn; i++)
MSK_deletetask(&(tasks[i]));

delete[] tasks;

delete[] res;

delete[] trm;

MSK_deleteenv(&env) ;

return 0;

Another, slightly more advanced application of the parallel optimizer is presented in Sec. 11.3.
For a more in-depth treatment see the following sections:

e Case studies for more advanced and complicated optimization examples.

e Problem Formulation and Solutions for formal mathematical formulations of problems MOSEK
can solve, dual problems and infeasibility certificates.

(0]

Chapter 7

Solver Interaction Tutorials

In this section we cover the interaction with the solver.

7.1 Accessing the solution

This section contains important information about the status of the solver and the status of the solution,
which must be checked in order to properly interpret the results of the optimization.

7.1.1 Solver termination
The optimizer provides two status codes relevant for error handling:

e Response code of type ¥/SKrescodee. It indicates if any unexpected error (such as an out of
memory error, licensing error etc.) has occurred. The expected value for a successful optimization
is MSK_RES_OK.

e Termination code: It provides information about why the optimizer terminated, for instance if
a predefined time limit has been reached. These are not errors, but ordinary events that can be
expected (depending on parameter settings and the type of optimizer used).

To obtain both codes separately call the function #SK_optimizetrm to optimize the problem. When
using the simplified #SK_optimize the response code or termination code most relevant for the user will
be returned.

If a runtime error causes the program to crash during optimization, the first debugging step is to
enable logging and check the log output. See Sec. 7.3.

If the optimization completes successfully, the next step is to check the solution status, as explained
below.

7.1.2 Available solutions

MOSEK uses three kinds of optimizers and provides three types of solutions:
e basic solution from the simplex optimizer,
e interior-point solution from the interior-point optimizer,
e integer solution from the mixed-integer optimizer.

Under standard parameters settings the following solutions will be available for various problem types:

Table 7.1: Types of solutions available from MOSEK

Simplex opti- | Interior-point opti- | Mixed-integer opti-
mizer mizer mizer

Linear problem MSK_SOL_BAS MSK_SOL_ITR

Nonlinear continuous prob- MSK_SOL_ITR

lem

Problem with integer vari- MSK_SOL_ITG

ables

76

For linear problems the user can force a specific optimizer choice making only one of the two solutions
available. For example, if the user disables basis identification, then only the interior point solution will
be available for a linear problem. Numerical issues may cause one of the solutions to be unknown even
if another one is feasible.

Not all components of a solution are always available. For example, there is no dual solution for
integer problems and no dual conic variables from the simplex optimizer.

The user will always need to specify which solution should be accessed.

7.1.3 Problem and solution status
Assuming that the optimization terminated without errors, the next important step is to check the

problem and solution status. There is one for every type of solution, as explained above.

Problem status

Problem status (MSKkprostae) determines whether the problem is certified as feasible. Its values can
roughly be divided into the following broad categories:

e feasible — the problem is feasible. For continuous problems and when the solver is run with
default parameters, the feasibility status should ideally be ¥SK_PRO_STA_PRIM_AND_DUAL_FEAS.

e primal/dual infeasible — the problem is infeasible or unbounded or a combination of those.
The exact problem status will indicate the type of infeasibility.

e unknown — the solver was unable to reach a conclusion, most likely due to numerical issues.

Solution status

Solution status (MSKsolstae) provides the information about what the solution values actually con-
tain. The most important broad categories of values are:

e optimal (¥SK_SOL_STA_OPTIMAL) — the solution values are feasible and optimal.

e certificate — the solution is in fact a certificate of infeasibility (primal or dual, depending on the
solution).

e unknown/undefined — the solver could not solve the problem or this type of solution is not
available for a given problem.

Problem and solution status for each solution can be retrieved with WMSK_getprosta and
MSK_getsolsta, respectively.

The solution status determines the action to be taken. For example, in some cases a suboptimal
solution may still be valuable and deserve attention. It is the user’s responsibility to check the status
and quality of the solution.

Typical status reports

Here are the most typical optimization outcomes described in terms of the problem and solution
statuses. Note that these do not cover all possible situations that can occur.

Table 7.2: Continuous problems (solution status for interior-point
and basic solution)

Outcome Problem status Solution status

Optimal MSK_PRO_STA_PRIM_AND_DUAL_FREABSK_SOL_STA_OPTIMAL

Primal infeasible MSK_PRO_STA_PRIM_INFEAS MSK_SOL_STA_PRIM_INFEAS_CER
Dual infeasible (unbounded) MSK_PRO_STA_DUAL_INFEAS MSK_SOL_STA_DUAL_INFEAS_CER
Uncertain (stall, numerical issues, | MSK_PRO_STA_UNKNOWN MSK_SOL_STA_UNKNOWN

etc.)

7

Table 7.3: Integer problems (solution status for integer solution,
others undefined)

Outcome Problem status Solution status

Integer optimal MSK_PRO_STA_PRIM_FEAS MSK_SOL_STA_INTEGER_OPTIMAL
Infeasible MSK_PRO_STA_PRIM_INFEAS | MSK_SOL_STA_UNKNOWN
hmegerfea$bkapohn; MSK_PRO_STA_PRIM_FEAS MSK_SOL_STA_PRIM_FEAS

No conclusion MSK_PRO_STA_UNKNOWN MSK_SOL_STA_UNKNOWN

7.1.4 Retrieving solution values

After the meaning and quality of the solution (or certificate) have been established, we can query for the
actual numerical values. They can be accessed using:

e /SK_getprimalobyj, MSK_getdualobj — the primal and dual objective value.
e /SK_getzz — solution values for the variables.
o MSK_getsolution — a full solution with primal and dual values

and many more specialized methods, see the API reference.

7.1.5 Source code example

Below is a source code example with a simple framework for assessing and retrieving the solution to a
conic optimization problem.

Listing 7.1: Sample framework for checking optimization result.

#include <stdio.h>
#ainclude "mosek.h"

/* Log handler */
void MSKAPI printlog(void *ptr,
const char s[])

{
printf("%s", s);
}
int main(int argc, char const *argv[])
{
MSKenv_t env;

MSKtask_t task;
MSKrescodee r;

char symname [MSK_MAX_STR_LEN] ;
char desc [MSK_MAX_STR_LEN] ;
int i, numvar;

double *xx = NULL;

const char *filename;

if (argc >= 2) filename = argv[i];
else filename = "../data/cqol.mps";

// Create the environment
r = MSK_makeenv(&env, NULL);

if (r == MSK_RES_0K)
{
// Create the task
r = MSK_makeemptytask(env, &task);

// (Optionally) attach the log handler to Teceive log information

(continues on next page)

78

(continued from previous page)

// tf (r == MSK_RES_0K) MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printlog);

// (Optionally) uncomment this line to most likely see solution status Unknown
// MSK_putintparam(task, MSK_IPAR_INTPNT_MAX_ITERATIONS, 1);

// In this example we Tead an optimization problem from a file
r = MSK_readdata(task, filename);

if (r == MSK_RES_OK)

{
MSKrescodee trmcode;
MSKsolstae solsta;

// Do the optimization, and exzit in case of error
r = MSK_optimizetrm(task, &trmcode);

if (r !'= MSK_RES_OK) {
MSK_getcodedesc(r, symname, desc);
printf ("Error during optimization: %s %s\n", symname, desc);
exit(r);

}
MSK_solutionsummary (task, MSK_STREAM_LOG);
/% Expected result: The solution status of the interiot-point solution is optimal. */

if (MSK_RES_OK == MSK_getsolsta(task, MSK_SOL_ITR, &solsta))
{
switch (solsta)
{
case MSK_SOL_STA_OPTIMAL:
printf("An optimal interior-point solution is located.\n");

/* Read and print the variable values in the solution */
MSK_getnumvar (task, &numvar) ;
xx = calloc(numvar, sizeof (double));
MSK_getxx (task, MSK_SOL_ITR, xx);
for (i = 0; i < numvar; i++)
printf ("xx[/d] = %.41f\n", i, xx[i]);
free(xx);
break;

case MSK_SOL_STA_DUAL_INFEAS_CER:
printf("Dual infeasibility certificate found.\n");
break;

case MSK_SOL_STA_PRIM_INFEAS_CER:
printf ("Primal infeasibility certificate found.\n");
break;

case MSK_SOL_STA_UNKNOWN:
/* The solutions status is unknown. The termination code
indicating why the optimizer terminated prematurely. */
printf ("The solution status is unknown.\n");
/* No-error cause of termination e.g. an iteration limit %is reached. */
MSK_getcodedesc(trmcode, symname, desc);
printf(" Termination code: %s %s\n", symname, desc);
break;

default:
MSK_solstatostr(task, solsta, desc);

(continues on next page)

79

(continued from previous page)

printf ("An unexpected solution status %s with code %d is obtained.\n", desc,

—,solsta);
break;
}
}
else
printf ("Could not obtain the solution status for the requested solution.\n");
}
else {
MSK_getcodedesc(r, symname, desc);
printf("Optimization was not started because of error %s(%d): %s\n", symname, r, desc);
}

MSK_deletetask(&task) ;
}

MSK_deleteenv(&env) ;
return r;

}

7.2 Errors and exceptions

Response codes

Almost every function in Optimizer API for C returns a response code, which is an integer (imple-
mented as the enum ¥SKkrescodee), informing if the requested operation was performed correctly, and if
not, what error occurred. The expected response, indicating successful execution, is always MSK_RES_0K .
It is a good idea to check the response code every time to avoid silent fails such as for instance:

e referencing a nonexisting variable (for example with too large index),
e defining an invalid value for a parameter,

e accessing an undefined solution,

e repeating a variable name, etc.

The one case where it is extremely important to check the response code is during optimization, when
MSK_optimizetrm is invoked. We will say more about this in Sec. 7.1.

A numerical response code can be converted into a human-readable description using
MSK_getcodedesc. A full list of response codes, error, warning and termination codes can be found
in the API reference. For example, the following code

res = MSK_putdouparam(task, MSK_DPAR_INTPNT_CO_TOL_REL_GAP, -1.0e-7);
if (res !'= MSK_RES_OK) {

MSK_getcodedesc(res, symb, str);

printf ("Error %s(%d): %s\n", symb, res, str);
}

will produce as output:

Error MSK_RES_ERR_PARAM_IS_TOO_SMALL(1216): A parameter value is too small.

Optimizer errors and warnings

The optimizer may also produce warning messages. They indicate non-critical but important events,
that will not prevent solver execution, but may be an indication that something in the optimization
problem might be improved. Warning messages are normally printed to a log stream (see Sec. 7.3). A
typical warning is, for example:

80

MOSEK warning 53: A numerically large upper bound value 6.6e+09 is specified for constraint
~»'C69200' (46020) .

Warnings can also be suppressed by setting the MSK_IPAR_MAX_NUM_WARNINGS parameter to zero, if
they are well-understood.

The user can also register a dedicated callback function to handle all errors and warnings. This is
done with MSK_putresponsefunc.

Error and solution status handling example

Below is a source code example with a simple framework for handling major errors when assessing
and retrieving the solution to a conic optimization problem.

Listing 7.2: Sample framework for checking optimization result.

#ainclude <stdio.h>
#include "mosek.h"

/% Log handler */
void MSKAPI printlog(void *ptr,
const char s[])

{
printf("%s", s);
}
int main(int argc, char const *argv[])
{
MSKenv_t env;

MSKtask_t task;
MSKrescodee r;

char symname [MSK_MAX_STR_LEN] ;
char desc[MSK_MAX_STR_LEN] ;
int i, numvar;

double *xx = NULL;

const char *filename;

if (argc >= 2) filename = argv[i];
else filename = "../data/cqol.mps";

// Create the environment
r = MSK_makeenv(&env, NULL);

if (r == MSK_RES_0K)
{
// Create the task
r = MSK_makeemptytask(env, &task);

// (Optionally) attach the log handler to receive log information
// tf (v == MSK_RES_0K) MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printlog);

// (Optionally) uncomment this line to most likely see solution status Unknown
// MSK_putintparam(task, MSK_IPAR_INTPNT_MAX_ITERATIONS, 1);

// In this example we Tead an optimization problem from a file
r = MSK_readdata(task, filename);

if (r == MSK_RES_OK)
{

MSKrescodee trmcode;
MSKsolstae solsta;

// Do the optimization, and exit in case of error

(continues on next page)

81

(continued from previous page)

r = MSK_optimizetrm(task, &trmcode);

if (r !'= MSK_RES_OK) {
MSK_getcodedesc(r, symname, desc);
printf ("Error during optimization: %s %s\n", symname, desc);
exit(r);

}
MSK_solutionsummary (task, MSK_STREAM_LOG);
/% Expected result: The solution status of the interiot-point solution is optimal. */

if (MSK_RES_OK == MSK_getsolsta(task, MSK_SOL_ITR, &solsta))
{
switch (solsta)
{
case MSK_SOL_STA_OPTIMAL:
printf("An optimal interior-point solution is located.\n");

/* Read and print the variable values in the solution */
MSK_getnumvar (task, &numvar) ;
xx = calloc(numvar, sizeof (double));
MSK_getxx(task, MSK_SOL_ITR, xx);
for (i = 0; i < numvar; i++)
printf ("xx[%d] = J.41f\n", i, xx[i]);
free(xx);
break;

case MSK_SOL_STA_DUAL_INFEAS_CER:
printf("Dual infeasibility certificate found.\n");
break;

case MSK_SOL_STA_PRIM_INFEAS_CER:
printf ("Primal infeasibility certificate found.\n");
break;

case MSK_SOL_STA_UNKNOWN:
/* The solutions status is unknown. The termination code
indicating why the optimizer terminated prematurely. */
printf ("The solution status is unknown.\n");
/* No-error cause of termination e.g. an iteration limit is reached. */
MSK_getcodedesc(trmcode, symname, desc);
printf (" Termination code: %s %s\n", symname, desc);
break;

default:
MSK_solstatostr(task, solsta, desc);
printf ("An unexpected solution status %s with code %d is obtained.\n", desc,
—,solsta);

break;
}
}
else
printf ("Could not obtain the solution status for the requested solution.\n");
}
else {

MSK_getcodedesc(r, symname, desc);
printf("Optimization was not started because of error %s(%d): %s\n", symname, r, desc);

}

MSK_deletetask(&task) ;

(continues on next page)

82

(continued from previous page)

}

MSK_deleteenv(&env) ;
return r;

}

7.3 Input/Output

The logging and I/O features are provided mainly by the MOSEK task and to some extent by the
MOSEK environment objects.

7.3.1 Stream logging

By default the solver runs silently and does not produce any output to the console or otherwise. However,
the log output can be redirected to a user-defined output stream or stream callback function. The log
output is analogous to the one produced by the command-line version of MOSEK.

The log messages are partitioned in three streams:

e messages, MSK_STREAM_MSG
e warnings, MSK_STREAM_WRN
e errors, MSK_STREAM_ERR

These streams are aggregated in the ¥SK_STREAM_LOG stream. A stream handler can be defined for
each stream separately.

A stream handler is simply a user-defined function of type ¥SKstreamfunc that accepts a string, for
example:

static void MSKAPI printstr(void +*handle,
const char *str)
{
printf("Ys", str);
fflush(stdout) ;
}

It is attached to a stream as follows:

’MSK_linkfunctotaskstream(task, MSK_STREAM_L0OG, NULL, printstr); ‘

The stream can be detached by calling

’MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, NULL); ‘

A log stream can also be redirected to a file:

’MSK_linkfiletotaskstream(task, MSK_STREAM_LQOG, "mosek.log", 0); ‘

After optimization is completed an additional short summary of the solution and optimization process
can be printed to any stream using the method ¥SK_solutionsummary.

7.3.2 Log verbosity

The logging verbosity can be controlled by setting the relevant parameters, as for instance
o MSK_IPAR_LOG,
e MSK_IPAR_LOG_INTPNT,
o MSK_IPAR_LOG_MIO,

e MSK_IPAR_LOG_CUT_SECOND_OPT,

83

e MSK_IPAR_LOG_SIM, and
o MSK_IPAR_LOG_SIM_MINOR.

Each parameter controls the output level of a specific functionality or algorithm. The main switch
is MSK_IPAR_LOG which affect the whole output. The actual log level for a specific functionality is
determined as the minimum between ¥SK_IPAR_LOG and the relevant parameter. For instance, the log
level for the output produce by the interior-point algorithm is tuned by the ¥SK_IPAR_LOG_INTPNT; the
actual log level is defined by the minimum between MSK_IPAR_LOG and MSK_IPAR_LOG_INTPNT.

Tuning the solver verbosity may require adjusting several parameters. It must be noticed that verbose
logging is supposed to be of interest during debugging and tuning. When output is no more of interest, the
user can easily disable it globally with ¥SK_ITPAR_LOG. Larger values of MSK_IPAR_L0OG do not necessarily
result in increased output.

By default MOSEK will reduce the amount of log information after the first optimization on a given
problem. To get full log output on subsequent re-optimizations set MSK_IPAR_LOG_CUT_SECOND_OPT to
Zero.

7.3.3 Saving a problem to a file

An optimization problem can be dumped to a file using the method MSK_writedata. The file format
will be determined from the extension of the filename. Supported formats are listed in Sec. 16 together
with a table of problem types supported by each.

For instance the problem can be written to an OPF file with

MSK_writedata(task,"data.opf");

All formats can be compressed with gzip by appending the .gz extension, for example

MSK_writedata(task, "data.task.gz");

Some remarks:

e Unnamed variables are given generic names. It is therefore recommended to use meaningful variable
names if the problem file is meant to be human-readable.

e The task format is MOSEK’s native file format which contains all the problem data as well as
solver settings.

7.3.4 Reading a problem from a file

A problem saved in any of the supported file formats can be read directly into a task using #SK_readdata.
The task must be created in advance. Afterwards the problem can be optimized, modified, etc. If
the file contained solutions, then are also imported, but the status of any solution will be set to
MSK_SOL_STA_UNKNOWN (solutions can also be read separately using MSK_readsolution). If the file
contains parameters, they will be set accordingly.

res = MSK_maketask(env, 0,0, &task);
if (res == MSK_RES_0K)

res = MSK_readdata(task, "file.task.gz");
if (res == MSK_RES_OK)

res = MSK_optimize(task);

7.4 Setting solver parameters

MOSEK comes with a large number of parameters that allows the user to tune the behavior of the
optimizer. The typical settings which can be changed with solver parameters include:

e choice of the optimizer for linear problems,
e choice of primal/dual solver,

e turning presolve on/off,

84

turning heuristics in the mixed-integer optimizer on/off,

level of multi-threading,

feasibility tolerances,

solver termination criteria,
e behaviour of the license manager,

and more. All parameters have default settings which will be suitable for most typical users.
The API reference contains:

o Full list of parameters

e List of parameters grouped by topic

Setting parameters

Each parameter is identified by a unique name. There are three types of parameters depending on

the values they take:

e Integer parameters. They take either either simple integer values or values from an enumeration

provided for readability and compatibility of the code. Set with ¥SK_putintparam.
e Double (floating point) parameters. Set with MSK_putdouparam.

e String parameters. Set with MSK_putstrparam.

There are also parameter setting functions which operate fully on symbolic strings containing generic
command-line style names of parameters and their values. See the example below. The optimizer will

try to convert the given argument to the exact expected type, and will error if that fails.
If an incorrect value is provided then the parameter is left unchanged.

For example, the following piece of code sets up parameters which choose and tune the interior point

optimizer before solving a problem.

Listing 7.3: Parameter setting example.

// Set log level (integer parameter)
res = MSK_putintparam(task, MSK_IPAR_LOG, 1);

// Select interior-point optimizer... (integer parameter)
res = MSK_putintparam(task, MSK_IPAR_OPTIMIZER, MSK_OPTIMIZER_INTPNT);
// ... without basis tdentification (integer parameter)

res = MSK_putintparam(task, MSK_IPAR_INTPNT_BASIS, MSK_BI_NEVER);
// Set relative gap tolerance (double parameter)
res = MSK_putdouparam(task, MSK_DPAR_INTPNT_CO_TOL_REL_GAP, 1.0e-7);

// The same using ezplicit string names
res = MSK_putparam(task, "MSK_DPAR_INTPNT_CO_TOL_REL_GAP", "1.0e-7");
res = MSK_putnadouparam(task, "MSK_DPAR_INTPNT_CO_TOL_REL_GAP", 1.0e-7);

// Incorrect walue
res = MSK_putdouparam(task, MSK_DPAR_INTPNT_CO_TOL_REL_GAP, -1.0);
if (res != MSK_RES_OK)

printf ("Wrong parameter value\n");

Reading parameter values

The functions ¥SK_getintparam, MSK_getdouparam, MSK_getstrparam can be used to inspect the

current value of a parameter, for example:

res = MSK_getdouparam(task, MSK_DPAR_INTPNT_CO_TOL_REL_GAP, ¶m);
printf ("Current value for parameter MSK_DPAR_INTPNT_CO_TOL_REL_GAP = %e\n", param);

85

7.5 Retrieving information items

After the optimization the user has access to the solution as well as to a report containing a large amount
of additional information items. For example, one can obtain information about:

e timing: total optimization time, time spent in various optimizer subroutines, number of iterations,
etc.

e solution quality: feasibility measures, solution norms, constraint and bound violations, etc.
e problem structure: counts of variables of different types, constraints, nonzeros, etc.
e integer optimizer: integrality gap, objective bound, number of cuts, etc.

and more. Information items are numerical values of integer, long integer or double type. The full
list can be found in the API reference:

e Double
e Integer
e Long

Certain information items make sense, and are made available, also during the optimization process.
They can be accessed from a callback function, see Sec. 7.6 for details.

Remark

For efficiency reasons, not all information items are automatically computed after optimization. To
force all information items to be updated use the parameter ¥SK_IPAR_AUTO_UPDATE_SOL_INFO.

Retrieving the values

Values of information items are fetched using one of the methods
o MSK_getdouinf for a double information item,

o MSK_getintinf for an integer information item,

e MSK_getlintinf for a long integer information item.

Each information item is identified by a unique name. The example below reads two pieces of data
from the solver: total optimization time and the number of interior-point iterations.

Listing 7.4: Information items example.

res = MSK_getdouinf (task, MSK_DINF_OPTIMIZER_TIME, &tm) ;
MSK_getintinf (task, MSK_IINF_INTPNT_ITER, &iter);

res

printf("Time: %f\nIterations: %d\n", tm, iter);

7.6 Progress and data callback

Callbacks are a very useful mechanism that allow the caller to track the progress of the MOSEK
optimizer. A callback function provided by the user is regularly called during the optimization and can
be used to

e obtain a customized log of the solver execution,
e collect information for debugging purposes or

e ask the solver to terminate.

86

Warning

The callbacks functions must not invoke any functions of the solver, environment or task. Otherwise
the state of the solver and its outcome are undefined. The only exception is the possibility to retrieve
an integer solution, see below.

Retrieving mixed-integer solutions

If the mixed-integer optimizer is used, the callback will take place, in particular, every time an
improved integer solution is found. In that case it is possible to retrieve the current values of the best
integer solution from within the callback function. It can be useful for implementing complex termination
criteria for integer optimization. The example in Listing 7.5 shows how to do it by handling the callback
code MSK_CALLBACK_NEW_INT_MIO.

7.6.1 Data callback

In the data callback MOSEK passes a callback code and values of all information items to a user-
defined function. The callback function is called, in particular, at the beginning of each iteration of the
interior-point optimizer. For the simplex optimizers ¥SK_IPAR_LOG_SIM_FRE(controls how frequently
the call-back is called.

The callback is set by calling the function MSK_putcallbackfunc and providing a handle to a user-
defined function ¥SKcallbackfunc.

Non-zero return value of the callback function indicates that the optimizer should be terminated.

7.6.2 Working example: Data callback

The following example defines a data callback function that prints out some of the information items. It
interrupts the solver after a certain time limit.

Listing 7.5: An example of a data callback function.

static int MSKAPI usercallback (MSKtask_t task,
MSKuserhandle_t handle,
MSKcallbackcodee caller,

const MSKrealt * douinf,
const MSKint32t * intinf,
const MSKint64t * lintinf)

cbdata_t data = (cbdata_t) handle;
double maxtime = data->maxtime;
MSKrescodee r;

switch (caller)
{
case MSK_CALLBACK_BEGIN_INTPNT:
printf ("Starting interior-point optimizer\n");
break;
case MSK_CALLBACK_INTPNT:
printf("Iterations: %-3d Time: %6.2f(%.2f) ",
intinf [MSK_IINF_INTPNT_ITER],
douinf [MSK_DINF_OPTIMIZER_TIME],
douinf [MSK_DINF_INTPNT_TIME]) ;

printf("Primal obj.: %-18.6e Dual obj.: %-18.6e\n",
douinf [MSK_DINF_INTPNT_PRIMAL_OBJ],
douinf [MSK_DINF_INTPNT_DUAL_0BJ]);
break;
case MSK_CALLBACK_END_INTPNT:
printf("Interior-point optimizer finished.\n");
break;
case MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX:

(continues on next page)

87

(continued from previous page)

printf ("Primal simplex optimizer started.\n");
break;
case MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX:
printf("Iterations: %-3d ",
intinf [MSK_IINF_SIM_PRIMAL_ITER]);
printf(" Elapsed time: %6.2f(%.2f)\n",
douinf [MSK_DINF_OPTIMIZER_TIME],
douinf [MSK_DINF_SIM_TIME]);
printf("0bj.: %-18.6e\n",
douinf [MSK_DINF_SIM_O0BJ]);
break;
case MSK_CALLBACK_END_PRIMAL_SIMPLEX:
printf ("Primal simplex optimizer finished.\n");
break;
case MSK_CALLBACK_BEGIN_DUAL_SIMPLEX:
printf("Dual simplex optimizer started.\n");

break;
case MSK_CALLBACK_UPDATE_DUAL_SIMPLEX:
printf("Iterations: %-3d ", intinf [MSK_IINF_SIM_DUAL_ITER]);

printf(" Elapsed time: %6.2f(%.2f)\n",
douinf [MSK_DINF_OPTIMIZER_TIME],
douinf [MSK_DINF_SIM_TIME]);
printf("0bj.: %-18.6e\n", douinf [MSK_DINF_SIM_0BJ]);
break;
case MSK_CALLBACK_END_DUAL_SIMPLEX:
printf("Dual simplex optimizer finished.\n");
break;
case MSK_CALLBACK_NEW_INT_MIO:
printf("New integer solution has been located.\n");

r = MSK_getxx(task, MSK_SOL_ITG, data->xx);
if (r == MSK_RES_O0K) {
int i;
printf("xx = ");
for (i = 0; i < data->numvars; i++) printf("%1lf ", data->xx[i]);
printf("\nObj.: %f\n", douinf [MSK_DINF_MIO_OBJ_INT]);

}
default:
break;
}
if (douinf [MSK_DINF_OPTIMIZER_TIME] >= maxtime)
{
/* mosek is spending too much time.
Terminate it. */
return (1);
}

return (0);
} /* usercallback */

Assuming that we have defined a task task and a time limit maxtime, the callback function is attached
as follows:

Listing 7.6: Attaching the data callback function to the model.

data.maxtime = 0.05;
MSK_getnumvar (task, &data.numvars);
data.xx = MSK_callocenv(env, data.numvars, sizeof (double));

MSK_putcallbackfunc(task,

(continues on next page)

88

(continued from previous page)

usercallback,
(void *) &data);

7.7 MOSEK OptServer

MOSEK provides an easy way to offload optimization problem to a remote server. This section demon-
strates related functionalities from the client side, i.e. sending optimization tasks to the remote server
and retrieving solutions.

Setting up and configuring the remote server is described in a separate manual for the OptServer.

7.7.1 Synchronous Remote Optimization

In synchronous mode the client sends an optimization problem to the server and blocks, waiting for the
optimization to end. Once the result has been received, the program can continue. This is the simplest
mode all it takes is to provide the address of the server before starting optimization. The rest of the
code remains untouched.

Note that it is impossible to recover the job in case of a broken connection.

Source code example

Listing 7.7: Using the OptServer in synchronous mode.

#ainclude "mosek.h"

static void MSKAPI printstr(void *handle, const char str[])

{
printf("%s", str);
}
int main(int argc, const char * argv[])
{
MSKenv_t env = NULL;
MSKtask_t task = NULL;
MSKrescodee res = MSK_RES_OK;

MSKrescodee trm = MSK_RES_OK;

if (argec <= 2)

{
printf ("Missing argument, syntax is:\n");
printf(" opt_server_sync inputfile serveraddr\n");
}
else
{

// Create the mosek environment.

// The "NULL' arguments here, are used to specify customized
// memory allocators and a memory debug file. These can

// safely be ignored for now.

res = MSK_makeenv(&env, NULL);

// Create a task object linked with the environment env.
// We create it with 0 wvariables and 0 constraints wnitially,
// since we do not know the size of the problem.
if (res == MSK_RES_0K)
res = MSK_maketask(env, 0, 0, &task);

// Direct the task log stream to a user specified function
if (res == MSK_RES_OK)

(continues on next page)

89

(continued from previous page)

res = MSK_linkfunctotaskstream(task, MSK_STREAM_L0OG, NULL, printstr);

// We assume that a problem file was given as the first command
// line argument (received in ‘argv')
if (res == MSK_RES_0K)

res = MSK_readdata(task, argv[i]);

// Set OptServer URL
if (res == MSK_RES_OK)
res = MSK_putoptserverhost(task, argv[2]);

// Solve the problem remotely
if (res == MSK_RES_0K)
res = MSK_optimizetrm(task, &trm);

// Print a summary of the solution.
if (res == MSK_RES_0K)
res = MSK_solutionsummary(task, MSK_STREAM_LOG) ;

// Delete task and environment
MSK_deletetask(&task) ;
MSK_deleteenv (&env) ;

}

return res;

}

7.7.2 Asynchronous Remote Optimization

In asynchronous mode the client sends a job to the remote server and the execution of the client code
continues. In particular, it is the client’s responsibility to periodically check the optimization status and,
when ready, fetch the results. The client can also interrupt optimization. The most relevant methods
are:

MSK_asyncoptimize : Offload the optimization task to a solver server.

MSK_asyncpoll : Request information about the status of the remote job.

MSK_asyncgetresult : Request the results from a completed remote job.

MSK_asyncstop : Terminate a remote job.

Source code example

In the example below the program enters in a polling loop that regularly checks whether the result
of the optimization is available.

Listing 7.8: Using the OptServer in asynchronous mode.

#ainclude "mosek.h"
#1fdef _WIN32
#ainclude "windows.h"
#else

#include "unistd.h"
#endaf

static void MSKAPI printstr(void *handle, const char str[])
{

printf("%s", str);
}

int main(int argc, char * argv[])

(continues on next page)

90

(continued from previous page)

char token[33];

int numpolls = 10;
int i=0;

MSKbooleant respavailable;

MSKenv_t env NULL;
MSKtask_t task = NULL;

MSKrescodee res = MSK_RES_OK;

MSKrescodee trm;

MSKrescodee resp;

const char * filename = "../data/25fv47.mps";
const char * host = "karise";

const char * port = "30080";

if (argc < 5)

{
fprintf(stderr, "Syntax: opt_server_async filename host port numpolls\n");
return O;

}

if (argc > 1) filename = argv[1];

if (argc > 2) host = argv[2];

if (argc > 2) port = argv[3];

if (argc > 4) numpolls = atoi(argv[4]);

res = MSK_makeenv(&env, NULL);

if (res == MSK_RES_OK)
res = MSK_maketask(env, 0, 0, &task);
if (res == MSK_RES_0K)
res = MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr);

if (res == MSK_RES_OK)
res = MSK_readdata(task, filename);

res = MSK_asyncoptimize(task,
host,
port,
token) ;

MSK_deletetask(&task) ;

printf("token = %s\n", token);

if (res == MSK_RES_0OK)
res = MSK_maketask(env, 0, 0, &task);

if (res == MSK_RES_0OK)
res = MSK_readdata(task, filename);

if (res == MSK_RES_OK)
res = MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr);

for (i = 0; i < numpolls && res == MSK_RES_OK ; i++)
{
#if __linux__
sleep(1);

(continues on next page)

91

(continued from previous page)

#elif defined(_WIN32)
Sleep(1000) ;
#endaf

printf("poll %d\n ", 1i);

res = MSK_asyncpoll(task,
host,
port,
token,
&respavailable,
&resp,
&trm) ;

puts("polling done");

if (respavailable)
{

puts("solution available!");

res = MSK_asyncgetresult(task,
host,
port,
token,
&respavailable,
&resp,
&trm) ;

MSK_solutionsummary (task, MSK_STREAM_LOG);
break;

}

if (1 == numpolls)

{
printf ("max num polls reached, stopping %s", host);
MSK_asyncstop(task, host, port, token);

}

MSK_deletetask(&task) ;
MSK_deleteenv(&env) ;
printf("%s:%d: Result = Jd\n", __FILE

—_ -

return res;

LINE__, res); fflush(stdout);

92

Chapter 8

Debugging Tutorials

This collection of tutorials contains basic techniques for debugging optimization problems using tools
available in MOSEK: optimizer log, solution summary, infeasibility report, command-line tools. It is
intended as a first line of technical help for issues such as: Why do I get solution status unknown and
how can I fix it? Why is my model infeasible while it shouldn’t be? Should I change some parameters?
Can the model solve faster? etc.

The major steps when debugging a model are always:

e Enable log output. See Sec. 7.3.1 for how to do it. In the simplest case:

Create a log handler function:

static void MSKAPI printstr(void *handle,
const char *str)
{
printf("%s", str);
fflush(stdout);
}

attach it to the log stream:

MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr);

and include solution summary after the call to optimize:

res = MSK_optimize(task);
MSK_solutionsummary(task, MSK_STREAM_LOG) ;

e Run the optimization and analyze the log output, see Sec. 8.1. In particular:

— check if the problem setup (number of constraints/variables etc.) matches your expectation.

— check solution summary and solution status.
e Dump the problem to disk if necessary to continue analysis. See Sec. 7.3.3.

— use a human-readable text format, such as *.opf if you want to check the problem structure
by hand. Assign names to variables and constraints to make them easier to identify.

’ MSK_writedata(task,"data.opf");

— use the MOSEK native format *.task.gz when submitting a bug report or support question.

’ MSK_writedata(task, "data.task.gz");

e Fix problem setup, improve the model, locate infeasibility or adjust parameters, depending on the
diagnosis.

See the following sections for details.

93

8.1 Understanding optimizer log

The optimizer produces a log which splits roughly into four sections:
1. summary of the input data,
2. presolve and other pre-optimize problem setup stages,
3. actual optimizer iterations,
4. solution summary.

In this tutorial we show how to analyze the most important parts of the log when initially debugging
a model: input data (1) and solution summary (4). For the iterations log (3) see Sec. 13.3.4 or Sec.
13.4.8.

8.1.1 Input data

If MOSEK behaves very far from expectations it may be due to errors in problem setup. The log file
will begin with a summary of the structure of the problem, which looks for instance like:

Problem
Name
Objective sense ! max
Type : CONIC (conic optimization problem)
Constraints : 20413
Cones : 2508
Scalar variables 1 20414
Matrix variables : 0
Integer variables : 0

This can be consulted to eliminate simple errors: wrong objective sense, wrong number of variables
etc. Note that Fusion, and third-party modeling tools can introduce additional variables and constraints
to the model. In the remaining MOSEK APIs the problem dimensions should match exactly what the
user specified.

If this is not sufficient a bit more information can be obtained by dumping the problem to a file (see
Sec. 8) and using the anapro option of any of the command line tools. It can also be done directly with
the function MSK_analyzeproblem. This will produce a longer summary similar to:

*x Variables
scalar: 20414 integer: 0 matrix: O
low: 2082 up: 5014 ranged: O free: 12892 fixed: 426

**x Constraints

all: 20413

low: 10028 up: O ranged: O free: 0 fixed: 10385
** Cones

QUAD: 1 dims: 2865: 1

RQUAD: 2507 dims: 3: 2507

** Problem data (numerics)

lcl nnz: 10028 min=2.09e-05 max=1.00e+00
|A] nnz: 597023 min=1.17e-10 max=1.00e+00
blx fin: 2508 min=-3.60e+09 max=2.75e+05
bux fin: 5440 min=0.00e+00 max=2.94e+08
blc fin: 20413 min=-7.61e+05 max=7.61e+05
buc fin: 10385 min=-5.00e-01 max=0.00e+00

Again, this can be used to detect simple errors, such as:
e Wrong type of cone was used or it has wrong dimension.

e The bounds for variables or constraints are incorrect or incomplete. Check if you defined bound
keys for all variables. A variable for which no bound was defined is by default fixed at 0.

94

e The model is otherwise incomplete.
e Suspicious values of coefficients.
e For various data sizes the model does not scale as expected.

Finally saving the problem in a human-friendly text format such as LP or OPF (see Sec. 8) and
analyzing it by hand can reveal if the model is correct.

Warnings and errors

At this stage the user can encounter warnings which should not be ignored, unless they are well-
understood. They can also serve as hints as to numerical issues with the problem data. A typical
warning of this kind is

MOSEK warning 53: A numerically large upper bound value 2.9e+08 is specified for variable
— 'absh[107]' (2613).

Warnings do not stop the problem setup. If, on the other hand, an error occurs then the model will
become invalid. The user should make sure to test for errors/exceptions from all API calls that set up
the problem and validate the data. See Sec. 7.2 for more details.

8.1.2 Solution summary

The last item in the log is the solution summary. In the Optimizer API it is only printed by invoking
the function MSK_solutionsummary.

Continuous problem

Optimal solution

A typical solution summary for a continuous (linear, conic, quadratic) problem looks like:

Problem status : PRIMAL_AND_DUAL_FEASIBLE

Solution status : OPTIMAL

Primal. obj: 8.7560516107e+01 nrm: le+02 Viol. con: 3e-12 var: 0e+00 cones: 3e-11
Dual. obj: 8.7560521345e+01 nrm: 1e+00 Viol. con: 5e-09 var: 9e-11 cones: 0e+00

It contains the following elements:
e Problem and solution status. For details see Sec. 7.1.3.

e A summary of the primal solution: objective value, infinity norm of the solution vector xx, maximal
violations of constraints, variable bounds and cones. The violation of a linear constraint such as
a’z < b is max(a’x — b,0). The violation of a conic constraint z € K is the distance dist(x, K).

e The same for the dual solution.

The features of the solution summary which characterize a very good and accurate solution and a
well-posed model are:

e Status: The solution status is OPTIMAL.

e Duality gap: The primal and dual objective values are (almost) identical, which proves the
solution is (almost) optimal.

e Norms: Ideally the norms of the solution and the objective values should not be too large. This of
course depends on the input data, but a huge solution norm can be an indicator of issues with the
scaling, conditioning and/or well-posedness of the model. It may also indicate that the problem is
borderline between feasibility and infeasibility and sensitive to small perturbations in this respect.

e Violations: The violations are close to zero, which proves the solution is (almost) feasible. Observe
that due to rounding errors it can be expected that the violations are proportional to the norm
(nrm:) of the solution. It is rarely the case that violations are exactly zero.

95

Solution status UNKNOWN

A typical example with solution status UNKNOWN due to numerical problems will look like:

Problem status : UNKNOWN
Solution status : UNKNOWN
Primal. obj: 1.3821656824e+01 nrm: le+01 Viol. con: 2e-03 var: 0e+00 cones: 0e+00
Dual. obj: 3.0119004098e-01 nrm: 5e+07 Viol. «con: 4e-16 var: le-01 cones: 0e+00

Note that:

e The primal and dual objective are very different.

e The dual solution has very large norm.

e There are considerable violations so the solution is likely far from feasible.

Follow the hints in Sec. 8.2 to resolve the issue.

Solution status UNKNOWN with a potentially useful solution

Solution status UNKNOWN does not necessarily mean that the solution is completely useless. It only
means that the solver was unable to make any more progress due to numerical difficulties, and it was not
able to reach the accuracy required by the termination criteria (see Sec. 13.3.2). Consider for instance:

Problem status : UNKNOWN
Solution status : UNKNOWN
Primal. obj: 3.4531019648e+04 nrm: le+05 Viol. con: 7e-02 var: 0e+00 cones: 0e+00
Dual. obj: 3.4529720645e+04 nrm: 8e+03 Viol. <con: 1le-04 var: 2e-04 cones: 0e+00

Such a solution may still be useful, and it is always up to the user to decide. It may be a good enough
approximation of the optimal point. For example, the large constraint violation may be due to the fact
that one constraint contained a huge coefficient.

Infeasibility certificate

A primal infeasibility certificate is stored in the dual variables:

Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 2.9238975853e+02 nrm: 6e+02 Viol. con: 0e+00 var: le-11 cones: 0e+00

It is a Farkas-type certificate as described in Sec. 12.2.2. In particular, for a good certificate:

e The dual objective is positive for a minimization problem, negative for a maximization problem.
Ideally it is well bounded away from zero.

e The norm is not too big and the violations are small (as for a solution).

If the model was not expected to be infeasible, the likely cause is an error in the problem formulation.
Use the hints in Sec. 8.1.1 and Sec. 8.3 to locate the issue.

Just like a solution, the infeasibility certificate can be of better or worse quality. The infeasibility
certificate above is very solid. However, there can be less clear-cut cases, such as for example:

Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 1.6378689238e-06 nrm: 6e+05 Viol. con: 7e-03 var: 2e-04 cones: 0e+00

This infeasibility certificate is more dubious because the dual objective is positive, but barely so in
comparison with the large violations. It also has rather large norm. This is more likely an indication
that the problem is borderline between feasibility and infeasibility or simply ill-posed and sensitive to
tiny variations in input data. See Sec. 8.3 and Sec. 8.2.

The same remarks apply to dual infeasibility (i.e. unboundedness) certificates. Here the primal
objective should be negative a minimization problem and positive for a maximization problem.

96

8.1.3 Mixed-integer problem
Optimal integer solution

For a mixed-integer problem there is no dual solution and a typical optimal solution report will look
as follows:

Problem status : PRIMAL_FEASIBLE
Solution status : INTEGER_OPTIMAL
Primal. obj: 6.0111122960e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-14 itg: be-15

The interpretation of all elements is as for a continuous problem. The additional field itg denotes
the maximum violation of an integer variable from being an exact integer.

Feasible integer solution

If the solver found an integer solution but did not prove optimality, for instance because of a time
limit, the solution status will be PRIMAL_FEASIBLE:

Problem status : PRIMAL_FEASIBLE
Solution status : PRIMAL_FEASIBLE
Primal. obj: 6.0114607792e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-13 itg: 4e-15

In this case it is valuable to go back to the optimizer summary to see how good the best solution is:

31 35 1 0 6.0114607792e+06 6.0078960892e+06 0.06 4.1

Objective of best integer solution : 6.011460779193e+06
Best objective bound : 6.007896089225e+06

In this case the best integer solution found has objective value 6.011460779193e+06, the best proved
lower bound is 6.007896089225e+06 and so the solution is guaranteed to be within 0.06% from optimum.
The same data can be obtained as information items through an API. See also Sec. 13.4 for more details.

Infeasible problem

If the problem is declared infeasible the summary is simply

Problem status : PRIMAL_INFEASIBLE
Solution status : UNKNOWN
Primal. obj: 0.0000000000e+00 nrm: Oe+00 Viol. con: 0e+00 var: 0e+00 itg: 0e+00

If infeasibility was not expected, consult Sec. 8.3.

8.2 Addressing numerical issues

The suggestions in this section should help diagnose and solve issues with numerical instability, in
particular UNKNOWN solution status or solutions with large violations. Since numerically stable models
tend to solve faster, following these hints can also dramatically shorten solution times.

We always recommend that issues of this kind are addressed by reformulating or rescaling the model,
since it is the modeler who has the best insight into the structure of the problem and can fix the cause
of the issue.

8.2.1 Formulating problems
Scaling

Make sure that all the data in the problem are of comparable orders of magnitude. This applies
especially to the linear constraint matrix. Use Sec. 8.1.1 if necessary. For example a report such as

|A] nnz: 597023 min=1.17e-6 max=2.21e+5

97

means that the ratio of largest to smallest elements in A is 10''. In this case the user should rescale
or reformulate the model to avoid such spread which makes it difficult for MOSEK to scale the problem
internally. In many cases it may be possible to change the units, i.e. express the model in terms of
rescaled variables (for instance work with millions of dollars instead of dollars, etc.).

Similarly, if the objective contains very different coefficients, say

maximize 102 4+ y

then it is likely to lead to inaccuracies. The objective will be dominated by the contribution from z and
y will become insignificant.

Removing huge bounds

Never use a very large number as replacement for co. Instead define the variable or constraint as
unbounded from below /above. Similarly, avoid artificial huge bounds if you expect they will not become
tight in the optimal solution.

Avoiding linear dependencies

As much as possible try to avoid linear dependencies and near-linear dependencies in the model. See
Example 8.3.

Avoiding ill-posedness

Avoid continuous models which are ill-posed: the solution space is degenerate, for example consists
of a single point (technically, the Slater condition is not satisfied). In general, this refers to problems
which are borderline between feasible and infeasible. See Example 8.1.

Scaling the expected solution

Try to formulate the problem in such a way that the expected solution (both primal and dual) is not
very large. Consult the solution summary Sec. 8.1.2 to check the objective values or solution norms.

8.2.2 Further suggestions

Here are other simple suggestions that can help locate the cause of the issues. They can also be used as
hints for how to tune the optimizer if fixing the root causes of the issue is not possible.

e Remove the objective and solve the feasibility problem. This can reveal issues with the objective.

e Change the objective or change the objective sense from minimization to maximization (if appli-
cable). If the two objective values are almost identical, this may indicate that the feasible set is
very small, possibly degenerate.

e Perturb the data, for instance bounds, very slightly, and compare the results.

e For linear problems: solve the problem using a different optimizer by setting the parameter
MSK_IPAR_OPTIMIZER and compare the results.

e Force the optimizer to solve the primal/dual versions of the problem by setting the parameter
MSK_IPAR_INTPNT_SOLVE_FORM or MSK_IPAR_SIM_SOLVE_FORM. MOSEK has a heuristic to decide
whether to dualize, but for some problems the guess is wrong an explicit choice may give better
results.

e Solve the problem without presolve or some of its parts by setting the parameter
MSK_IPAR_PRESOLVE_USE, see Sec. 13.1.

e Use different numbers of threads (¥Sk_IPAR_NUM_THREADS) and compare the results. Very different
results indicate numerical issues resulting from round-off errors.

If the problem was dumped to a file, experimenting with various parameters is facilitated with the
MOSEK Command Line Tool or MOSEK Python Console Sec. 8.4.

98

8.2.3 Typical pitfalls

Example 8.1 (Ill-posedness). A toy example of this situation is the feasibility problem
(x—1)2<1, (z+1)<1
whose only solution is * = 0 and moreover replacing any 1 on the right hand side by 1 — ¢ makes

the problem infeasible and replacing it by 1 + € yields a problem whose solution set is an interval
(fully-dimensional). This is an example of ill-posedness.

Example 8.2 (Huge solution). If the norm of the expected solution is very large it may lead to
numerical issues or infeasibility. For example the problem

(1074, 2,10%) € Q3

may be declared infeasible because the expected solution must satisfy = > 5 -10°.

Example 8.3 (Near linear dependency). Counsider the following problem:

minimize
subject to T+ o = 1,
Zs3 + x4y = 17
— X — T3 = 71 —+ g,
— X9 — x4 = -1,
1, To, T3, gy > 0

If we add the equalities together we obtain:
0=¢

which is infeasible for any € # 0. Here infeasibility is caused by a linear dependency in the constraint
matrix coupled with a precision error represented by the . Indeed if a problem contains linear
dependencies then the problem is either infeasible or contains redundant constraints. In the above
case any of the equality constraints can be removed while not changing the set of feasible solutions.
To summarize linear dependencies in the constraints can give rise to infeasible problems and therefore
it is better to avoid them.

Example 8.4 (Presolving very tight bounds). Next consider the problem

minimize
subject to x1 —0.0lxs = 0,
To — 0.01333 = 0,
T3 — 0.01$4 = O7
1 > —1077,
T S 10797
T4 > 10~4.

Now the MOSEK presolve will, for the sake of efficiency, fix variables (and constraints) that have
tight bounds where tightness is controlled by the parameter ¥SK_DPAR_PRESOLVE_TOL_X. Since the
bounds

—107% <2, <107?

are tight, presolve will set 1 = 0. It easy to see that this implies x4 = 0, which leads to the incorrect
conclusion that the problem is infeasible. However a tiny change of the value 10~ makes the problem

99

feasible. In general it is recommended to avoid ill-posed problems, but if that is not possible then one
solution is to reduce parameters such as MSK_DPAR_PRESOLVE_TOL_X to say 10710, This will at least
make sure that presolve does not make the undesired reduction.

8.3 Debugging infeasibility

This section contains hints for debugging problems that are unexpectedly infeasible. It is always a good
idea to remove the objective, i.e. only solve a feasibility problem when debugging such issues.

8.3.1 Numerical issues

Infeasible problem status may be just an artifact of numerical issues appearing when the problem is
badly-scaled, barely feasible or otherwise ill-conditioned so that it is unstable under small perturbations
of the data or round-off errors. This may be visible in the solution summary if the infeasibility certificate
has poor quality. See Sec. 8.1.2 for how to diagnose that and Sec. 8.2 for possible hints. Sec. 8.2.3
contains examples of situations which may lead to infeasibility for numerical reasons.

We refer to Sec. 8.2 for further information on dealing with those sort of issues. For the rest of this
section we concentrate on the case when the solution summary leaves little doubt that the problem solved
by the optimizer actually is infeasible.

8.3.2 Locating primal infeasibility

As an example of a primal infeasible problem consider minimizing the cost of transportation between a
number of production plants and stores: Each plant produces a fixed number of goods, and each store
has a fixed demand that must be met. Supply, demand and cost of transportation per unit are given in
Fig. 8.1.

Supply Demand
1100
200
200
1000 ‘
500
1000
500

Fig. 8.1: Supply, demand and cost of transportation.
The problem represented in Fig. 8.1 is infeasible, since the total demand
2300 = 1100 + 200 + 500 + 500
exceeds the total supply
2200 = 200 + 1000 + 1000

If we denote the number of transported goods from plant ¢ to store j by z;;, the problem can be

100

formulated as the LP:

minimize r11 + 21‘12 + 51’23 + 2.’1324 + 31 + 21333 + T34

subject to sg: x11 + X192 < 200,
S1 ¢ 23 + T24 < 1000,
So x31 + w33 + w3 < 1000,
di: x11 + X331 = 1100,
dg . xr12 = 200,
ds : T2z + x33 = 500,
dy : To4a + x34 = 500,

Tij Z 0.

(8.1)

Solving problem (8.1) using MOSEK will result in an infeasibility status. The infeasibility certificate
is contained in the dual variables an can be accessed from an API. The variables and constraints with
nonzero solution values form an infeasible subproblem, which frequently is very small. See Sec. 12.1.2 or
Sec. 12.2.2 for detailed specifications of infeasibility certificates.

A short infeasibility report can also be printed to the log stream. It can be turned on by setting
the parameter MSK_IPAR_INFEAS_REPORT_AUTO to MSK_ON. This causes MOSEK to print a report on
variables and constraints which are involved in infeasibility in the above sense, i.e. have nonzero values
in the certificate. The parameter ¥SK_IPAR_INFEAS_REPORT_LEVEL controls the amount of information
presented in the infeasibility report. The default value is 1. For the above example the report is

MOSEK PRIMAL INFEASIBILITY REPORT.
Problem status: The problem is primal infeasible

The following constraints are involved in the primal infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper

0 s0 NONE 2.000000e+002 0.000000e+000 1.000000e+000
2 s2 NONE 1.000000e+003 0.000000e+000 1.000000e+000
3 d1 1.100000e+003 1.100000e+003 1.000000e+000 0.000000e+000
4 d2 2.000000e+002 2.000000e+002 1.000000e+000 0.000000e+000

The following bound constraints are involved in the infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper
8 x33 0.000000e+000 NONE 1.000000e+000 0.000000e+000
10 x34 0.000000e+000 NONE 1.000000e+000 0.000000e+000

The infeasibility report is divided into two sections corresponding to constraints and variables. It
is a selection of those lines from the problem solution which are important in understanding primal
infeasibility. In this case the constraints s0, s2, d1, d2 and variables x33, x34 are of importance because
of nonzero dual values. The columns Dual lower and Dual upper contain the values of dual variables
s, 5, s and s7 in the primal infeasibility certificate (see Sec. 12.1.2).

In our example the certificate means that an appropriate linear combination of constraints s0, s1
with coefficient si, = 1, constraints d1 and d2 with coefficient s, — sf = 0 — 1 = —1 and lower bounds
on x33 and x34 with coefficient —sf = —1 gives a contradiction. Indeed, the combination of the four
involved constraints is x33 + z34 < —100 (as indicated in the introduction, the difference between supply
and demand).

It is also possible to extract the infeasible subproblem with the command-line tool. For an infeasible
problem called infeas.lp the command:

mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.lp -info rinfeas.lp

will produce the file rinfeas.bas.inf.1lp which contains the infeasible subproblem. Because of its
size it may be easier to work with than the original problem file.

Returning to the transportation example, we discover that removing the fifth constraint x15 = 200
makes the problem feasible. Almost all undesired infeasibilities should be fixable at the modeling stage.

101

8.3.3 Locating dual infeasibility

A problem may also be dual infeasible. In this case the primal problem is usually unbounded, meaning
that feasible solutions exists such that the objective tends towards infinity. For example, consider the
problem

maximize 200y; + 1000y + 1000y3 + 1100y, + 200ys5 + 500y + 500y~

subject to Y1+ <1, y1+ys <2, yo+ys <5, yo+yr <2
Ys+tya <1, ys+ys <2, ys+tyrs <1
Y1,Y2,¥3 < 0

which is dual to (8.1) (and therefore is dual infeasible). The dual infeasibility report may look as follows:

MOSEK DUAL INFEASIBILITY REPORT.
Problem status: The problem is dual infeasible

The following constraints are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper bound
5 x33 -1.000000e+00 NONE 2.000000e+00
6 x34 -1.000000e+00 NONE 1.000000e+00

The following variables are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper bound
0 yi -1.000000e+00 2.000000e+02 NONE 0.000000e+00
2 y3 -1.000000e+00 1.000000e+03 NONE 0.000000e+00
3 y4 1.000000e+00 1.100000e+03 NONE NONE

4 y5 1.000000e+00 2.000000e+02 NONE NONE

Interior-point solution summary
Problem status : DUAL_INFEASIBLE
Solution status : DUAL_INFEASIBLE_CER
Primal. obj: 1.0000000000e+02 nrm: 1le+00 Viol. con: 0e+00 var: 0e+00

In the report we see that the variables y1, y3, y4, y5 and two constraints contribute to infeasibility
with non-zero values in the Activity column. Therefore

(yla R y7) = (_la 07 _17 1a 1) 070)
is the dual infeasibility certificate as in Sec. 12.1.2. This just means, that along the ray
(0,0,0,0,0,0,0) + t(y1,...,y7) = (—¢,0,—1,¢,t,0,0), t > 0,

which belongs to the feasible set, the objective value 100t can be arbitrarily large, i.e. the problem is
unbounded.
In the example problem we could

e Add a lower bound on y3. This will directly invalidate the certificate of dual infeasibility.
e Increase the objective coefficient of y3. Changing the coeflicients sufficiently will invalidate the
inequality ¢Ty* > 0 and thus the certificate.
8.3.4 Suggestions

Primal infeasibility

When trying to understand what causes the unexpected primal infeasible status use the following
hints:

e Remove the objective function. This does not change the infeasibility status but simplifies the
problem, eliminating any possibility of issues related to the objective function.

102

Remove cones, semidefinite variables and integer constraints. Solve only the linear part of the
problem. Typical simple modeling errors will lead to infeasibility already at this stage.

Consider whether your problem has some obvious necessary conditions for feasibility and examine
if these are satisfied, e.g. total supply should be greater than or equal to total demand.

Verify that coefficients and bounds are reasonably sized in your problem.

See if there are any obvious contradictions, for instance a variable is bounded both in the variables
and constraints section, and the bounds are contradictory.

Consider replacing suspicious equality constraints by inequalities. For instance, instead of 15 = 200
see what happens for x12 > 200 or x12 < 200.

Relax bounds of the suspicious constraints or variables.

For integer problems, remove integrality constraints on some/all variables and see if the problem
solves.

Remember that variables without explicitly initialized bounds are fixed at zero.

Form an elastic model: allow to violate constraints at a cost. Introduce slack variables and add
them to the objective as penalty. For instance, suppose we have a constraint

minimize e,

subject to aTa <b.

which might be causing infeasibility. Then create a new variable y and form the problem which
contains:

minimize cTx+y,
subject to aTx <b+y.

Solving this problem will reveal by how much the constraint needs to be relaxed in order to become
feasible. This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

If you think you have a feasible solution or its part, fix all or some of the variables to those values.
Presolve will propagate them through the model and potentially reveal more localized sources of
infeasibility.

Dump the problem in OPF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Dual infeasibility

When trying to understand what causes the unexpected dual infeasible status use the following hints:

Verify that the objective coefficients are reasonably sized.

Check if no bounds and constraints are missing, for example if all variables that should be nonneg-
ative have been declared as such etc.

Strengthen bounds of the suspicious constraints or variables.
Remember that constraints without explicitly initialized bounds are free (no bound).

Form an series of models with decreasing bounds on the objective, that is, instead of objective
minimize ¢’z

solve the problem with an additional constraint such as
e =-10°

and inspect the solution to figure out the mechanism behind arbitrarily decreasing objective values.
This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

103

e Dump the problem in OPF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Please note that modifying the problem to invalidate the reported certificate does not imply that the
problem becomes feasible — the reason for infeasibility may simply move, resulting a problem that is
still infeasible, but for a different reason. More often, the reported certificate can be used to give a hint
about errors or inconsistencies in the model that produced the problem.

8.4 Python Console

The MOSEK Python Console is an alternative to the MOSEK Command Line Tool. It can be used for
interactive loading, solving and debugging optimization problems stored in files, for example MOSEK
task files. It facilitates debugging techniques described in Sec. 8.

8.4.1 Usage

The tool requires Python 2 or 3. The MOSEK interface for Python must be installed following the
installation instructions for Python API or Python Fusion API. In the basic case it should be sufficient
to execute the script

python setup.py install --user

in the directory containing the MOSEK Python module.

The Python Console is contained in the file mosekconsole.py in the folder with MOSEK binaries. It
can be copied to an arbitrary location. The file is also available for download here (mosekconsole.py).

To run the console in interactive mode use

’python mosekconsole.py ‘

To run the console in batch mode provide a semicolon-separated list of commands as the second
argument of the script, for example:

’python mosekconsole.py '"read data.task.gz; solve form=dual; writesol data" ‘

The script is written using the MOSEK Python API and can be extended by the user if more specific
functionality is required. We refer to the documentation of the Python API.

8.4.2 Examples

To read a problem from data.task.gz, solve it, and write solutions to data.sol, data.bas or data.itg:

’read data.task.gz; solve; writesol data ‘

To convert between file formats:

’read data.task.gz; write data.mps ‘

To set a parameter before solving:

’read data.task.gz; param INTPNT_CO_TOL_DFEAS 1le-9; solve" ‘

To list parameter values related to the mixed-integer optimizer in the task file:

’read data.task.gz; param MIO ‘

To print a summary of problem structure:

read data.task.gz; anapro ‘

To solve a problem forcing the dual and switching off presolve:

read data.task.gz; solve form=dual presolve=no ‘

To write an infeasible subproblem to a file for debugging purposes:

104

read data.task.gz; solve; infsub; write inf.opf

8.4.3 Full list of commands

Below is a brief description of all the available commands. Detailed information about a specific command

cmd and its options can be obtained with

help cmd

Table 8.1: List of commands of the MOSEK Python Console.

Command

Description

help [command]

Print list of commands or info about a specific command

log filename

Save the session to a file

intro

Print MOSEK splashscreen

testlic Test the license system
read filename Load problem from file
reread Reload last problem file
solve Solve current problem
[options]

write filename

Write current problem to file

param [name

Set a parameter or get parameter values

[valuel]

paramdef Set all parameters to default values
paramdiff Show parameters with non-default values

info [name] Get an information item

anapro Analyze problem data

hist Plot a histogram of problem data

histsol Plot a histogram of the solutions

spy Plot the sparsity pattern of the A matrix
truncate Truncate small coefficients down to 0

epsilon

resobj [fac] Rescale objective by a factor

anasol Analyze solutions

removeitg Remove integrality constraints

removecones Remove all cones and leave just the linear part
infsub Replace current problem with its infeasible subproblem
writesol Write solution(s) to file(s) with given basename
basename

delsol Remove all solutions from the task

optserver Use an OptServer to optimize

[url]

exit Leave

105

Chapter 9

Advanced Numerical Tutorials

9.1 Solving Linear Systems Involving the Basis Matrix

A linear optimization problem always has an optimal solution which is also a basic solution. In an optimal
basic solution there are exactly m basic variables where m is the number of rows in the constraint matrix
A. Define

B c Rmxm

as a matrix consisting of the columns of A corresponding to the basic variables. The basis matrix B is
always non-singular, i.e.

det(B) # 0
or, equivalently, B! exists. This implies that the linear systems
Br=w (9.1)

and

each have a unique solution for all w.
MOSEK provides functions for solving the linear systems (9.1) and (9.2) for an arbitrary w.
In the next sections we will show how to use MOSEK to

e identify the solution basis,

e solve arbitrary linear systems.

9.1.1 Basis identification

To use the solutions to (9.1) and (9.2) it is important to know how the basis matrix B is constructed.
Internally MOSEK employs the linear optimization problem

T

maximize cx
subject to Ax —2¢ = 0,
c < ¢ < wc.

where
z¢ € R™ and x € R".
The basis matrix is constructed of m columns taken from

(A4 -1].

If variable x; is a basis variable, then the j-th column of A, denoted a. ;, will appear in B. Similarly,
if ¢ is a basis variable, then the i-th column of —I will appear in the basis. The ordering of the basis
variables and therefore the ordering of the columns of B is arbitrary. The ordering of the basis variables
may be retrieved by calling the function ¥SK_initbasissolve. This function initializes data structures
for later use and returns the indexes of the basic variables in the array basis. The interpretation of the
basis is as follows. If we have

basis[i] < numcon

then the i-th basis variable is
Thasisli]-

Moreover, the i-th column in B will be the i-th column of —I. On the other hand if

basis[i] > numcon,
then the i-th basis variable is the variable

ZTpasis[i]—numcon

and the i-th column of B is the column

A (basis[i] —nuncon) -
For instance if basis[0] = 4 and numcon = 5, then since basis[0] < numcon, the first basis variable is z§.

Therefore, the first column of B is the fourth column of —7. Similarly, if basis[l] = 7, then the second
variable in the basis is Tyasis[1]—numcon = T2 Hence, the second column of B is identical to a. o.

An example

Consider the linear optimization problem:

minimize To + 21
; 2 < 2
subject to g +2z; < 2, (9.4)
To + X1 S 67
o, L1 Z 0

Suppose a call to #SK_initbasissolve returns an array basis so that

basis [0]
basis[1]

1)

Then the basis variables are z{ and zy and the corresponding basis matrix B is

0 1
-1 1|
Please note the ordering of the columns in B .

Listing 9.1: A program showing how to identify the basis.

#include "mosek.h'"

static void MSKAPI printstr(void *handle,
const char str[])
{
printf ("%s", str);
} /* printstr */

int main(int argc, const char *argv[])

(continues on next page)

107

(continued from previous page)

MSKenv_t env;

MSKtask_t task;

MSKint32t numcon = 2, numvar = 2;
double cl] = q{1.0, 1.0};

MSKint32t ptrb[] = {0, 2},
ptrell = {2, 3};
MSKint32t asub[] = {0, 1, 0, 1};

double avall[] = {1.0, 1.0, 2.0, 1.0};
MSKboundkeye bkc[] = { MSK_BK_UP, MSK_BK_UP };

double blc[] = { -MSK_INFINITY, -MSK_INFINITY };
double buc[]l] = {2.0, 6.0%};

MSKboundkeye bkx[] = { MSK_BK_LO, MSK_BK_LO };

double blx[] = {0.0, 0.0};

double bux[] = { +MSK_INFINITY, +MSK_INFINITY};
MSKrescodee r = MSK_RES_OK;

MSKint32t i, nz;

double wl] = {2.0, 6.0};

MSKint32t sub[l = {0, 1};
MSKint32t *basis;

if (r == MSK_RES_0OK)
r = MSK_makeenv(&env, NULL);

if (r == MSK_RES_OK)
r = MSK_makeemptytask(env, &task);

if (r == MSK_RES_OK)
MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr);

if (r == MSK_RES_OK)
r = MSK_inputdata(task, numcon, numvar, numcon, numvar,
c, 0.0,
ptrb, ptre, asub, aval, bkc, blc, buc, bkx, blx, bux);

if (r == MSK_RES_OK)
r = MSK_putobjsense(task, MSK_OBJECTIVE_SENSE_MAXIMIZE);

if (r == MSK_RES_0K)
r = MSK_optimizetrm(task, NULL);

if (r == MSK_RES_0OK)
basis = MSK_calloctask(task, numcon, sizeof (MSKint32t));

if (r == MSK_RES_OK)
r = MSK_initbasissolve(task, basis);

/* List basis variables corresponding to columns of B */
for (i = 0; i < numcon && r == MSK_RES_OK; ++i)

{
printf("basis[%d] = %d\n", i, basis[i]);
if (basis[sub[i]] < numcon)
printf("Basis variable no %d is xcld.\n", i, basis[i]);
else
printf("Basis variable no %d is x%d.\n", i, basis[i] - numcon);
}
nz = 2;

/* solve Bz = w */
/* sub contains indexz of non-zeros in w.

(continues on next page)

108

(continued from previous page)

On return w contains the solution = and sub
the index of the non-zeros in .
*/
if (r == MSK_RES_0K)
r = MSK_solvewithbasis(task, 0, &nz, sub, w);

if (r == MSK_RES_OK)
{
printf("\nSolution to Bx = w:\n\n");

/* Print solution and b. */

for (i = 0; i < nz; ++i)

{
if (basis[sub[i]] < numcon)
printf("xckd = %e\n", basis[sub[il] , wlsub[ill);
else
printf("x)d = %e\n", basis[sub[i]l] - numcon , w[sub[i]ll);
}

}

/* Solve B°Ty =uw */

nz = 1; /% Only one element in sub is nonzero. */
sub[0] = 1; /% Only w[1] is nonzero. */

w[0]
wl1]

0;
0:

B

1
0
1

if (r == MSK_RES_0K)
r = MSK_solvewithbasis(task, 1, &nz, sub, w);

if (r == MSK_RES_OK)
{
printf ("\nSolution to B°T y = w:\n\n");
/* Print solution and y. */
for (i = 0; i < nz; ++i)
printf("y’%d = %e\n", sub[i], wlsub[i]l);
}

return (r);

}Y/* main */

In the example above the linear system is solved using the optimal basis for (9.4) and the original
right-hand side of the problem. Thus the solution to the linear system is the optimal solution to the
problem. When running the example program the following output is produced.

basis[0] = 1
Basis variable no 0 is xcl.
basis[1] = 2
Basis variable no 1 is xO.

Solution to Bx = b:

x0 = 2.000000e+00
xcl = -4.000000e+00

Solution to B"Tx = c:

1]

-1.000000e+00
1.000000e+00

x1
x0

109

Please note that the ordering of the basis variables is

)

and thus the basis is given by:

It can be verified that

is a solution to
0 1 x| |2
-1 1 Zo o 6)
9.1.2 Solving arbitrary linear systems
MOSEK can be used to solve an arbitrary (rectangular) linear system
Ax =1
using the MSK_solvewithbasis function without optimizing the problem as in the previous exam-

ple. This is done by setting up an A matrix in the task, setting all variables to basic and calling
the MSK_solvewithbasis function with the b vector as input. The solution is returned by the function.

An example

Below we demonstrate how to solve the linear system

][] 0

with two inputs b = (1, —2) and b = (7,0) .

#ainclude "mosek.h"

static void MSKAPI printstr(void *handle,
const char strl[l)
{
printf("Ys", str);
} /* printstr */

static MSKrescodee setup(MSKtask_t task,
double *aval,
MSKint32t *asub,
MSKint32t *ptrb,
MSKint32t *ptre,
MSKint32t numvar,
MSKint32t *basis)

MSKint32t i, js
MSKrescodee r = MSK_RES_0OK;
MSKstakeye *skx = NULL , *skc = NULL;

skx = (MSKstakeye *) calloc(numvar, sizeof (MSKstakeye));

(continues on next page)

110

(continued from previous page)

if (skx == NULL && numvar)
r = MSK_RES_ERR_SPACE;

skc = (MSKstakeye *) calloc(numvar, sizeof (MSKstakeye)) ;
if (skc == NULL && numvar)
r = MSK_RES_ERR_SPACE;

for (i = 0; i < numvar && r == MSK_RES_OK; ++i)
{

skx[i] = MSK_SK_BAS;

skc[i] = MSK_SK_FIX;
}

/* Create a coefficient matriz and right hand
side with the data from the linear system */
if (r == MSK_RES_OK)
r = MSK_appendvars(task, numvar);

if (r == MSK_RES_0K)
r = MSK_appendcons(task, numvar) ;

for (i = 0; i < numvar && r == MSK_RES_OK; ++i)
r = MSK_putacol(task, i, ptre[i] - ptrb[il, asub + ptrb[i], aval + ptrb[il);

for (i = 0; i < numvar && r == MSK_RES_OK; ++i)
r = MSK_putconbound(task, i, MSK_BK_FX, 0, 0);

for (i = 0; i < numvar && r == MSK_RES_OK; ++i)
r = MSK_putvarbound(task, i, MSK_BK_FR, -MSK_INFINITY, MSK_INFINITY);

/* Allocate space for the solution and set status to unknown */

if (r == MSK_RES_OK)
r = MSK_deletesolution(task, MSK_SOL_BAS);

/* Setup status keys. That is all that <s needed. */
if (r == MSK_RES_0K)
r = MSK_putskcslice(task, MSK_SOL_BAS, 0O, numvar, skc);

if (r == MSK_RES_0K)
r = MSK_putskxslice(task, MSK_SOL_BAS, 0, numvar, skx);

if (r == MSK_RES_OK)
r = MSK_initbasissolve(task, basis);

free(skx);
free(skc);

return (r);

#define NUMCON 2
#define NUMVAR 2

int main(int argc, const char *argv[])

{
const MSKint32t numvar = NUMCON,
numcon = NUMVAR; /* we must have numvar == numcon */
MSKenv_t env;
MSKtask_t task;

(continues on next page)

111

(continued from previous page)

MSKrescodee r = MSK_RES_OK;

MSKint32t i, nz;

double avall[]l] = { -1.0, 1.0, 1.0};
MSKint32t asub[] = {1, 0, 1};
MSKint32t ptrb[l = {0, 1};

MSKint32t ptre[l = {1, 3};

MSKint32t bsub [NUMCON] ;

double b [NUMCON] ;

MSKint32t *basis = NULL;

if (r == MSK_RES_0OK)
r = MSK_makeenv(&env, NULL);

if (r == MSK_RES_0K)
r = MSK_makeemptytask(env, &task);

if (r == MSK_RES_OK)
MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr);

basis = (MSKint32t *) calloc(numcon, sizeof (MSKint32t));
if (basis == NULL && numvar)
r = MSK_RES_ERR_SPACE;

/% setup: Put A matriz and factor 4.
Call this function only once for a given task. */
if (r == MSK_RES_OK)
r = setup(task,

aval,
asub,
ptrb,
ptre,
numvar,
basis
)

/* now solve rhs */

b[0] = 1;

b[1] = -2;

bsub[0] = 0;

bsub[1] = 1;

nz = 2;

if (r == MSK_RES_OK)
r = MSK_solvewithbasis(task, 0, &nz, bsub, b);

if (r == MSK_RES_0K)
{
printf ("\nSolution to Bx = b:\n\n");
/* Print solution and show correspondents
to original variables in the problem */
for (i = 0; i < nz; ++i)
{
if (basis[bsub[i]] < numcon)
printf ("This should never happen\n");
else
printf("x/d = %e\n", basis[bsub[i]] - numcon , b[bsub[i]]);
}
}

b[0] = 7;
bsub[0] = 0;

(continues on next page)

112

(continued from previous page)

nz = 1;

if (r == MSK_RES_OK)
r = MSK_solvewithbasis(task, 0, &nz, bsub, b);

if (r == MSK_RES_OK)
{
printf ("\nSolution to Bx = b:\n\n");
/* Print solution and show correspondents
to original variables in the problem */
for (i = 0; i < nz; ++i)
{
if (basis[bsub[i]] < numcon)
printf ("This should never happen\n");
else
printf ("x%d = %e\n", basis[bsub[i]l] - numcon , b[bsub[il]);
}
}

free(basis);
return r;

}

The most important step in the above example is the definition of the basic solution, where we define
the status key for each variable. The actual values of the variables are not important and can be selected
arbitrarily, so we set them to zero. All variables corresponding to columns in the linear system we want
to solve are set to basic and the slack variables for the constraints, which are all non-basic, are set to
their bound.

The program produces the output:

Solution to Bx = b:

x1 =1
x0 = 3
Solution to Bx = b:
x1 =17
x0 =7

9.2 Calling BLAS/LAPACK Routines from MOSEK

Sometimes users need to perform linear algebra operations that involve dense matrices and vectors.
Also MOSEK extensively uses high-performance linear algebra routines from the BLAS and LAPACK
packages and some of these routines are included in the package shipped to the users.

The MOSEK versions of BLAS/LAPACK routines:

e use MOSEK data types and return value conventions,
e preserve the BLAS/LAPACK naming convention.

Therefore the user can leverage on efficient linear algebra routines, with a simplified interface, with
no need for additional packages.

113

List of available routines

Table 9.1: BLAS routines

available.

BLAS Name | MOSEK function | Math Expression
AXPY MSK_azpy y=axr+vy

DOT MSK_dot 2Ty

GEMV MSK_gemu y = Az + By
GEMM MSK_gemm C=aAB+ pC
SYRK MSK_syrk C = aAAT + pC

Table 9.2: LAPACK routines available.

LAPACK Name | MOSEK function | Description

POTRF MSK_potrf Cholesky factorization of a semidefinite symmetric matrix
SYEVD MSK_syevd Eigenvalues and eigenvectors of a symmetric matrix
SYEIG MSK_syeig Eigenvalues of a symmetric matrix

Source code examples

In Listing 9.2 we provide a simple working example. It has no practical meaning except showing how
to organize the input and call the methods.

Listing 9.2: Calling BLAS and LAPACK routines from Optimizer

API for C.

#include

{
MSKint32t i, j;
for (i = 0; i <
{
for (j = 0; j

printf ("%f ",

printf("\n");
}

}

int main(int argc

{

MSKrescodee r
MSKenv_t env

const MSKint32t

MSKrealt

alpha =

"mosek.h"
void print_matrix(MSKrealt* x, MSKint32t r, MSKint32t c)

r; i++)

< c; j++)
x[j » r + il);

, char* argv[])

MSK_RES_OK;
NULL;

2.0, beta = 0.5;

MSKrealt
MSKrealt
MSKrealt
MSKrealt
MSKrealt
MSKrealt
MSKrealt
MSKrealt
MSKrealt

MSKrealt

x[]
y[]
z[]
Al]
B[]
cl]
D[]
Qrl
v[]

Xy

= {1.
= {1.
= {1.
= {1.
= {1.
= {1.
= {1.
= {1.
= {o.

. e .

-

“ v .

O O O O O O O oo

-

1.
.0,
.0};

O O Nk = P, N

0
0
0

.0,
0
0

0,

>

M

B

B

3

1.0};
3.0};

O O WKk N

(continues on next page)

114

(continued from previous page)

/* BLAS routines*/

r = MSK_makeenv(&env, NULL);

printf ("n=Y%d m=/d k=%d\n", m, n, k);
printf ("alpha=/,f\n", alpha);

printf ("beta=Jf\n", beta);

r = MSK_dot(env, n, x, y, &xy);
printf("dot results= %f r=/d\n", xy, r);

print_matrix(x, 1, n);
print_matrix(y, 1, n);

r = MSK_axpy(env, n, alpha, x, y);
puts("axpy results is");
print_matrix(y, 1, n);

r = MSK_gemv(env, MSK_TRANSPOSE_NO, m, n, alpha, A, x, beta, z);
printf("gemv results is (r=}d) \n", r);
print_matrix(z, 1, m);

r = MSK_gemm(env, MSK_TRANSPOSE_NO, MSK_TRANSPOSE_NO, m, n, k, alpha, A, B, beta, C);
printf("gemm results is (r=%d) \n", r);
print_matrix(C, m, n);

r = MSK_syrk(env, MSK_UPLO_LO, MSK_TRANSPOSE_NO, m, k, 1., A, beta, D);
printf ("syrk results is (r=d) \n", r);
print_matrix(D, m, m);

/* LAPACK routines*/

r = MSK_potrf(env, MSK_UPLO_LO, m, Q);
printf ("potrf results is (r=%d) \n", r);
print_matrix(Q, m, m);

r = MSK_syeig(env, MSK_UPLO_LO, m, Q, v);
printf("syeig results is (r=Jd) \n", r);
print_matrix(v, 1, m);

r = MSK_syevd(env, MSK_UPLO_LO, m, Q, v);
printf("syevd results is (r=)d) \n", r);
print_matrix(v, 1, m);
print_matrix(Q, m, m);

/* Delete the environment and the associated data. */
MSK_deleteenv(&env) ;

return r;

9.3 Computing a Sparse Cholesky Factorization
Given a positive semidefinite symmetric (PSD) matrix

A c Rnxn
it is well known there exists a matrix L such that

A=LL"T.

115

If the matrix L is lower triangular then it is called a Cholesky factorization. Given A is positive definite
(nonsingular) then L is also nonsingular. A Cholesky factorization is useful for many reasons:

e A system of linear equations Ax = b can be solved by first solving the lower triangular system
Ly = b followed by the upper triangular system LTz = y.

e A quadratic term z”7 Az in a constraint or objective can be replaced with yTy for y = LTx,
potentially leading to a more robust formulation (see [And13/).

Therefore, MOSEK provides a function that can compute a Cholesky factorization of a PSD matrix.
In addition a function for solving linear systems with a nonsingular lower or upper triangular matrix is
available.

In practice A may be very large with n is in the range of millions. However, then A is typically sparse
which means that most of the elements in A are zero, and sparsity can be exploited to reduce the cost
of computing the Cholesky factorization. The computational savings depend on the positions of zeros in
A. For example, below a matrix A is given together with a Cholesky factor up to 5 digits of accuracy:

4 1 1 1 2.0000 0 0 0
1100 0.5000 0.8660 0 0

A= 101 0|’ L= 0.5000 —0.2887 0.8165 0 ' (9:6)
1 0 0 1 0.5000 —0.2887 —0.4082 0.7071

However, if we symmetrically permute the rows and columns of A using a permutation matrix P

0100 100 1
oo 10 , ooaer |01 01
P=lyg oo 1| =P =g o1 1|

100 0 11 1 4

then the Cholesky factorization of A’ = L'L'T is

100 0
, o100
F=1001 0

1111

which is sparser than L.

Computing a permutation matrix that leads to the sparsest Cholesky factorization or the minimal
amount of work is NP-hard. Good permutations can be chosen by using heuristics, such as the minimum
degree heuristic and variants. The function MSK_computesparsecholesky provided by MOSEK for
computing a Cholesky factorization has a build in permutation aka. reordering heuristic. The following
code illustrates the use of ¥SK_computesparsecholesky and MSK_sparsetriangularsolvedense.

Listing 9.3: How to use the sparse Cholesky factorization routine
available in MOSEK.

r = MSK_computesparsecholesky(env,
0, /* Disable multithreading */
1, /* Apply a reordering heuristic */
1.0e-14, /* Singularity tolerance */
n, anzc, aptrc, asubc, avalc,
&perm, &diag, &lnzc, &lptrc, &lensubnval, &lsubc, &lvalc);

if (r == MSK_RES_0OK)
{
MSKint32t i, j;
MSKrealt *x;
printsparse(n, perm, diag, lnzc, lptrc, lensubnval, lsubc, lvalc);

x = MSK_callocenv(env, n, sizeof (MSKrealt));
if (%)
{

(continues on next page)

116

(continued from previous page)

/* Permuted b is stored as z. */
for (i = 0; i < n; ++i) x[i] = blperm[il];

/% Compute inv(L)*z. */
r = MSK_sparsetriangularsolvedense(env, MSK_TRANSPOSE_NO, n,
lnzc, lptrc, lensubnval, lsubc, lvalc, x);

if (r == MSK_RES_0K) {
/* Compute inv(L"T)*z. */
r = MSK_sparsetriangularsolvedense(env, MSK_TRANSPOSE_YES, n,
lnzc, lptrc, lemsubnval, lsubc, lvalc, x);
printf("\nSolution A x = b, x = [");
for (i = 0; i < n; i++)
for (j = 0; j < n; j++) if (perm[j] == i) printf("%.2f ", x[j1);
printf("]J\n");

}
MSK_freeenv(env, x);
}
else
printf("Out of space while creating x.\n");
}
else

printf ("Cholesky computation failed: %d\n", (int) r);

We can set up the data to recreate the matrix A from (9.6):

const MSKint32t n = 4; // Data from the example in the text
//0bserve that anzc, aptrc, asubc and avalc only specify the lower triangular part.
const MSKint32t anzc[] = {4, 1, 1, 1},
asubc[] = {0, 1, 2, 3, 1, 2, 3};
const MSKint64t aptrc[] {0, 4, 5, 6};
const MSKrealt avalc[] = {4.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0},

b[] = {13.0, 3.0, 4.0, 5.0%};
MSKint32t *perm = NULL, *lnzc = NULL, *lsubc = NULL;
MSKint64t lensubnval, *1lptrc = NULL;
MSKrealt *diag = NULL, *lvalc = NULL;

and we obtain the following output:

Example with positive definite A.
P=[3201]
diag(D) = [0.00 0.00 0.00 0.00 1

L=
1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
1.00 1.00 1.41 0.00
0.00 0.00 0.71 0.71

Solution A x = b, x = [1.00 2.00 3.00 4.00]

The output indicates that with the permutation matrix

= o O O
o= OO
o O O
OO = O

there is a Cholesky factorization PAPT = LLT, where

0 0 0
1 0 0
1 1.4142 0
0 0.7071 0.7071

O~ O

117

The remaining part of the code solvers the linear system Az = b for b = [13,3,4,5]7. The solution is
reported to be x = [1,2, 3, 4], which is correct.

The second example shows what happens when we compute a sparse Cholesky factorization of a
singular matrix. In this example A is a rank 1 matrix

T

1 1 1 1 1
A=|1 1 1| =|1 1 (9.7)
1 1 1 1 1
const MSKint32t n = 3;
const MSKint32t anzc[] = {3, 2, 1},
asubc[] = {0, 1, 2, 1, 2, 2};
const MSKint64t aptrc[] = {0, 3, 5};
const MSKrealt avalc[] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
MSKint32t #perm = NULL, *lnzc = NULL, *lsubc = NULL;
MSKint64t lensubnval, *1lptrc = NULL;
MSKrealt *diag = NULL, *lvalc = NULL;
Now we get the output
P=[021]
diag(D) = [0.00e+00 1.00e-14 1.00e-14]
L=
1.00e+00 0.00e+00 0.00e+00
1.00e+00 1.00e-07 0.00e+00
1.00e+00 0.00e+00 1.00e-07
which indicates the decomposition
PAPT = LLT - D
where
1 0 0 1 0 0 1 0 0
P=|00 1|, L=|1 107 0 |, D=|0 100 0
01 0 1 0 10-7 0 0 10—

Since A is only positive semdefinite, but not of full rank, some of diagonal elements of A are
boosted to make it truely positive definite. The amount of boosting is passed as an argument to
MSK_computesparsecholesky, in this case 1074, Note that

PAPT =LLT - D

where D is a small matrix so the computed Cholesky factorization is exact of slightly perturbed A. In
general this is the best we can hope for in finite precision and when A is singular or close to being
singular.

We will end this section by a word of caution. Computing a Cholesky factorization of a matrix that
is not of full rank and that is not suffciently well conditioned may lead to incorrect results i.e. a matrix
that is indefinite may declared positive semidefinite and vice versa.

9.4 Converting a quadratically constrained problem to conic form

MOSEK employs the following form of quadratic problems:

minimize %xTQOx +cTr+¢f
subject to 1§ < 1zTQFx+ Z;:Ol arjr; < uf, k=0,...,m—1, (9.8)
S x; < wj, j=0,....,n-1

A conic quadratic constraint has the form

re Q"

118

in its most basic form where

A quadratic problem such as (9.8), if convex, can be reformulated in conic form. This is in fact the
reformulation MOSEK performs internally. It has many advantages:

e elegant duality theory for conic problems,

e reporting accurate dual information for quadratic inequalities is hard and/or computational ex-
pensive,

e it certifies that the original quadratic problem is indeed convex,

e modeling directly in conic form usually leads to a better model [And13/ i.e. a faster solution time
and better numerical properties.

In addition, there are more types of conic constraints that can be combined with a quadratic cone,
for example semidefinite cones.

MOSEK offers a function that performs the conversion from quadratic to conic quadratic form
explicitly. Note that the reformulation is not unique. The approach followed by MOSEK is to introduce
additional variables, linear constraints and quadratic cones to obtain a larger but equivalent problem in
which the original variables are preserved.

In particular:

e all variables and constraints are kept in the problem,
e cach quadratic constraint and quadratic terms in the objective generate one rotated quadratic cone,

e cach quadratic constraint will contain no coefficients and upper /lower bounds will be set to oo, —co
respectively.

This allows the user to recover the original variable and constraint values, as well as their dual values,
with no conversion or additional effort.

Note: MSK_toconic modifies the input task in-place: this means that if the reformulation is not
possible, i.e. the problem is not conic representable, the state of the task is in general undefined. The
user should consider cloning the original task.

9.4.1 Quadratic Constraint Reformulation

Let us assume we want to convert the following quadratic constraint

1 n—1
[< ixTQx—l— Zajxj <
§=0
to conic form. We first check whether | = —oo or u = oo, otherwise either the constraint can be dropped,

or the constraint is not convex. Thus let us consider the case
1 n—1
ixTQx + Z a;‘-rxj < u. (9.9)
=0
Introducing an additional variable w such that
n—1
w=u-— Z a;‘-rxj (9.10)
§j=0

we obtain the equivalent form

H\»—A

S

QO

8

I IA
kS

If Q is positive semidefinite, then there exists a matrix F such that
Q=FF" (9.11)
and therefore we can write
IFz|?
u— Z;ZOI aj x;

Introducing an additional variable z = 1, and setting y = Fx we obtain the conic formulation

2w,

I IA

w.

(w>Zyil/) S QT?

z=1

y=Fa (9.12)
T

w=u-—a .
Summarizing, for each quadratic constraint involving ¢ variables, MOSEK introduces
1. a rotated quadratic cone of dimension ¢ + 2,
2. two additional variables for the cone roots,
3. t additional variables to map the remaining part of the cone,
4. t linear constraints.

A quadratic term in the objective is reformulated in a similar fashion. We refer to [And13] for a more
thorough discussion.

Example

Next we consider a simple problem with quadratic objective function:

minimize %(131'(2) + 1722 + 1223 + 242071 + 1221209 — dw022) — 2270 — 14.521 + 1229 + 1
subject to —1 < xg,x1,22 <1

We can specify it in the human-readable OPF format.

[comment]

An example of small QO problem from Boyd and Vandenberghe, "Convex Optimization", page 189 ex
4.3

The solution is (1,0.5,-1)

[/comment]

[variables]
x0 x1 x2
[/variables]

[objective min]

0.5 (13 x072 + 17 x1°2 + 12 %272 + 24 x0 * x1 + 12 x1 * x2 - 4 x0 * x2) - 22 x0 - 14.5 x1 +,
—12 x2 + 1

[/objectivel

[bounds]
[b] -1 <= % <=1 [/b]
[/bounds]

The objective function is convex, the minimum is attained for * = (1,0.5, —1). The conversion will
introduce first a variable 23 in the objective function such that w3 > 1/227Qx and then convert the
latter directly in conic form. The converted problem follows:

minimize —22x9 — 14.521 + 1229 + 23 + 1
subject to 3.61zg + 3.33x1 — 0.55z5 — 26 = 0
+2.2921 + 3.4225 — 27 =0

0.81$1 — g = 0

—x34+ x4 =0

Is =1

(24,75, 76, 27, 78) € Qv

-1 < Zo,x1,T2 < 1

120

The model generated by ¥SK_toconic is

[comment]
Written by MOSEK version 8.1.0.19
Date 21-08-17
Time 10:53:36

[/comment]

[hints]
[hint NUMVAR] 9 [/hint]
[hint NUMCON] 4 [/hint]
[hint NUMANZ] 11 [/hint]
[hint NUMQNZ] O [/hint]
[hint NUMCONE] 1 [/hint]
[/hints]

[variables disallow_new_variables]
x0000_x0 x0001_x1 x0002_x2 x0003 x0004
x0005 x0006 x0007 x0008

[/variables]

[objective minimize]
- 2.2e+01 x0000_x0 - 1.45e+01 x0001_x1 + 1.2e+01 x0002_x2 + x0003
+ 1e+00

[/objectivel

[constraints]

[con c0000] 3.605551275463989e+00 x0000_x0 - 5.547001962252291e-01 x0002_x2 + 3.
<,328201177351375e+00 x0001_x1 - x0006 = 0e+00 [/con]

[con c0001] 3.419401657060442e+00 x0002_x2 + 2.294598480395823e+00 x0001_x1 - x0007 = 0e+00,
—[/con]

[con c0002] 8.111071056538127e-01 x0001_x1 - x0008 = 0e+00 [/con]

[con c0003] - x0003 + x0004 = 0e+00 [/con]

[/constraints]
[bounds]
[b] -1e+00 <= x0000_x0,x0001_x1,x0002_x2 <= 1e+00 [/b]
[b] x0003,x0004 free [/b]
[b] x0005 = 1e+00 [/b]
[b] x0006,x0007,%x0008 free [/b]
[cone rquad k0000] x0004, x0005, x0006, x0007, x0008 [/conel
[/bounds]

We can clearly see that constraints c0000, c0001 and c0002 represent the original linear constraints
as in (9.11), while c0003 corresponds to (9.10). The cone roots are x0005 and x0004.

121

Chapter 10

Technical guidelines

This section contains some more in-depth technical guidelines for Optimizer API for C, not strictly
necessary for basic use of MOSEK.

10.1 Memory management and garbage collection

Users who experience memory leaks, especially:
e memory usage not decreasing after the solver terminates,
e memory usage increasing when solving a sequence of problems,

should make sure that the memory used by the task is released when the task is no longer needed.
This is done with the method MSK_deletetask. The same applies to the environment when it is no
longer needed.

MSK_deletetask(&task) ;
MSK_deleteenv(&env) ;

10.2 Names

All elements of an optimization problem in MOSEK (objective, constraints, variables, etc.) can be given
names. Assigning meaningful names to variables and constraints makes it much easier to understand
and debug optimization problems dumped to a file. On the other hand, note that assigning names can
substantially increase setup time, so it should be avoided in time-critical applications.

Names of various elements of the problem can be set and retrieved using various functions listed in
the Names section of Sec. 15.2.

Note that file formats impose various restrictions on names, so not all names can be written verbatim
to each type of file. If at least one name cannot be written to a given format then generic names and
substitutions of offending characters will be used when saving to a file, resulting in a transformation of
all names in the problem. See Sec. 16.

10.3 Multithreading

Thread safety

Sharing a task between threads is safe, as long as it is not accessed from more than one thread at a
time. Multiple tasks can be created and used in parallel without any problems.

Parallelization

The interior-point and mixed-integer optimizers in MOSEK are parallelized. By default MOSEK
will automatically select the number of threads. However, the maximum number of threads allowed can

122

be changed by setting the parameter ¥SK_IPAR_NUM_THREADS and related parameters. This should never
exceed the number of cores. See Sec. 13 and Sec. 13.4 for more details.

The speed-up obtained when using multiple threads is highly problem and hardware dependent. We
recommend experimenting with various thread numbers to determine the optimal settings. For small
problems using multiple threads may be counter-productive because of the associated overhead.

Determinism

By default the optimizer is run-to-run deterministic, which means that it will return the same answer
each time it is run on the same machine with the same input, the same parameter settings (including
number of threads) and no time limits.

Setting the number of threads

The number of threads the optimizer uses can be changed with the parameter
MSK_IPAR_NUM_THREADS.

For conic problems (when the conic optimizer is used) the value set at the first optimization will
remain fixed through the lifetime of the process. The thread pool will be reserved once for all and
subsequent changes to MSK_IPAR_NUM_THREADS will have no effect. The only possibility at that point is
to switch between multi-threaded and single-threaded interior-point optimization using the parameter
MSK_IPAR_INTPNT_MULTI_THREAD.

10.4 Efficiency

Although MOSEK is implemented to handle memory efficiently, the user may have valuable knowledge
about a problem, which could be used to improve the performance of MOSEK This section discusses
some tricks and general advice that hopefully make MOSEK process your problem faster.

Reduce the number of function calls and avoid input loops

For example, instead of setting the entries in the linear constraint matrix one by one (MSK_putaiyj)
define them all at once (MSK_putaijlist) or in convenient large chunks (MSK_putacollist etc.)

Use one environment only

If possible share the environment between several tasks. For most applications you need to create
only a single environment.

Read part of the solution

When fetching the solution, data has to be copied from the optimizer to the user’s data struc-
tures. Instead of fetching the whole solution, consider fetching only the interesting part (see for example
MSK_getzzslice and similar).

Avoiding memory fragmentation

MOSEK stores the optimization problem in internal data structures in the memory. Initially
MOSEK will allocate structures of a certain size, and as more items are added to the problem the
structures are reallocated. For large problems the same structures may be reallocated many times caus-
ing memory fragmentation. One way to avoid this is to give MOSEK an estimated size of your problem
using the functions:

o MSK_putmaznumvar. Estimate for the number of variables.
o VSK_putmaznumcon. Estimate for the number of constraints.
o MSK_putmaznumcone. Estimate for the number of cones.

o VSK_putmaznumbarvar. Estimate for the number of semidefinite matrix variables.

123

e /SK_putmaznumanz. Estimate for the number of non-zeros in A.
e VMSK_putmaznumgnz. Estimate for the number of non-zeros in the quadratic terms.

None of these functions changes the problem, they only serve as hints. If the problem ends up growing
larger, the estimates are automatically increased.

Do not mix put- and get- functions

MOSEK will queue put- requests internally until a get- function is called. If put- and get- calls
are interleaved, the queue will have to be flushed more frequently, decreasing efficiency.
In general get- commands should not be called often (or at all) during problem setup.

Use the LIFO principle

When removing constraints and variables, try to use a LIFO (Last In First Out) approach. MOSEK
can more efficiently remove constraints and variables with a high index than a small index.

An alternative to removing a constraint or a variable is to fix it at 0, and set all relevant coefficients
to 0. Generally this will not have any impact on the optimization speed.

Add more constraints and variables than you need (now)

The cost of adding one constraint or one variable is about the same as adding many of them. There-
fore, it may be worthwhile to add many variables instead of one. Initially fix the unused variable at zero,
and then later unfix them as needed. Similarly, you can add multiple free constraints and then use them
as needed.

Do not remove basic variables

When performing re-optimizations, instead of removing a basic variable it may be more efficient to
fix the variable at zero and then remove it when the problem is re-optimized and it has left the basis.
This makes it easier for MOSEK to restart the simplex optimizer.

10.5 The license system

MOSEK is a commercial product that always needs a valid license to work. MOSEK uses a third
party license manager to implement license checking. The number of license tokens provided determines
the number of optimizations that can be run simultaneously.

By default a license token remains checked out from the first optimization until the end of the
MOSEK session, i.e.

e a license token is checked out when MSK_optimize is first called, and
e it is returned when the MOSEK environment is deleted.

Calling ¥SK_optimize from different threads using the same MOSEK environment only consumes
one license token.

Starting the optimization when no license tokens are available will result in an error.

Default behaviour of the license system can be changed in several ways:

e Setting the parameter MSK_IPAR_CACHE_LICENSE to MSK_OFF will force MOSEK to return the
license token immediately after the optimization completed.

e Setting the license wait flag with the parameter ¥SK_IPAR_LICENSE_WAIT will force MOSEK to
wait until a license token becomes available instead of returning with an error. The wait time
between checks can be set with ¥SK_putlicensewait.

e Additional license checkouts and checkins can be performed with the functions
MSK_checkinlicense and MSK_checkoutlicense.

124

e Usually the license system is stopped automatically when the MOSEK library is unloaded.
However, when the user explicitly unloads the library (using e.g. FreeLibrary), the license sys-
tem must be stopped before the library is unloaded. This can be done by calling the function
MSK_licensecleanup as the last function call to MOSEK.

10.6 Deployment

When redistributing a C application using the MOSEK Optimizer API for C 9.2.13, the following
libraries must be included:

64-bit Linux 64-bit Windows 32-bit Windows | 64-bit Mac OS
libmosek64.s0.9.2 | mosek64_9_2.d11 | mosek9_2.d11 libmosek64.9.2.dylib
libcilkrts.so.5 cilkrts20.d1l1 cilkrts20.d1ll | libcilkrts.5.dylib

10.7 Strings

MOSEK supports Unicode strings. All arguments of type char * are allowed to be UTF8 encoded
strings (http://en.wikipedia.org/wiki/UTF-8). Please note that

e an ASCII string is always a valid UTFS string, and
e an UTFS string is stored in a char array.

It is possible to convert between wchar_t strings and UTF8 strings using the functions
MSK_wchartoutf8 and MSK_ut f8towchar. A working example is provided in the example file unicode. c.

125

http://en.wikipedia.org/wiki/UTF-8

Chapter 11

Case Studies

In this section we present some case studies in which the Optimizer API for C is used to solve real-life
applications. These examples involve some more advanced modeling skills and possibly some input data.
The user is strongly recommended to first read the basic tutorials of Sec. 6 before going through these
advanced case studies.

e Portfolio Optimization

— Keywords: Markowitz model, variance, risk, efficient frontier, transaction cost, market im-
pact cost

— Type: Conic Quadratic, Power Cone, Mixed-Integer Optimization
e Logistic regression

— Keywords: machine learning, logistic regression, classifier, log-sum-exp, softplus, regulariza-
tion

— Type: Exponential Cone, Quadratic Cone

e Concurrent Optimizer

— Keywords: Concurrent optimization

— Type: Linear Optimization, Mixed-Integer Optimization

11.1 Portfolio Optimization

In this section the Markowitz portfolio optimization problem and variants are implemented using the
MOSEK optimizer API.

e Basic Markowitz model

Efficient frontier

Factor model and efficiency

Market impact costs

Transaction costs

Cardinality constraints

126

11.1.1 A Basic Portfolio Optimization Model

The classical Markowitz portfolio optimization problem considers investing in n stocks or assets held
over a period of time. Let z; denote the amount invested in asset j, and assume a stochastic model
where the return of the assets is a random variable r with known mean

uw=Er
and covariance

S=E(r-pr-m

T2 with mean (or expected return)

The return of the investment is also a random variable y = r
Ey= "z
and variance
E(y — Ey)? = 27>z
The standard deviation
VaTSe

is usually associated with risk.

The problem facing the investor is to rebalance the portfolio to achieve a good compromise between

risk and expected return, e.g., maximize the expected return subject to a budget constraint and an upper
bound (denoted 7) on the tolerable risk. This leads to the optimization problem

maximize 'z
subject to eTe = w+elal,
T < A2 (11.1)
z > 0.

The variables x denote the investment i.e. x; is the amount invested in asset j and x? is the initial
holding of asset j. Finally, w is the initial amount of cash available.

A popular choice is 2% = 0 and w = 1 because then z; may be interpreted as the relative amount of
the total portfolio that is invested in asset j.

Since e is the vector of all ones then

n
T — .
e r= g T;
Jj=1

is the total investment. Clearly, the total amount invested must be equal to the initial wealth, which is

w + eTxO.

This leads to the first constraint

eer=w-+e x.

The second constraint

tTYr < A2

127

ensures that the variance, is bounded by the parameter 2. Therefore, v specifies an upper bound of
the standard deviation (risk) the investor is willing to undertake. Finally, the constraint

J)j>0

excludes the possibility of short-selling. This constraint can of course be excluded if short-selling is
allowed.

The covariance matrix X is positive semidefinite by definition and therefore there exist a matrix G
such that

¥ =GGT. (11.2)

In general the choice of G is not unique and one possible choice of G is the Cholesky factorization of 3.
However, in many cases another choice is better for efficiency reasons as discussed in Sec. 11.1.3. For a
given G we have that

2T'Yr = 2TGGTzx
= ||&Ta|’.

Hence, we may write the risk constraint as
7z |G e
or equivalently
(.G"z) € Q"

where Q"1 is the (n + 1)-dimensional quadratic cone. Therefore, problem (11.1) can be written as

maximize ul'z
; T, _ T .0
mbleio | ATE = wree i
z > 0,

which is a conic quadratic optimization problem that can easily be formulated and solved with Optimizer
API for C. Subsequently we will use the example data

0.1073
= | 0.0737
0.0627

and

0.2778 0.0387 0.0021
¥=0.1-| 0.0387 0.1112 —-0.0020
0.0021 —0.0020 0.0115

This implies

0.5271 0.0734 0.0040
GT =+v0.1 0 0.3253 —0.0070
0 0 0.1069

Why a Conic Formulation?

Problem (11.1) is a convex quadratically constrained optimization problem that can be solved directly
using MOSEK. Why then reformulate it as a conic quadratic optimization problem (11.3)7 The main
reason for choosing a conic model is that it is more robust and usually solves faster and more reliably. For
instance it is not always easy to numerically validate that the matrix ¥ in (11.1) is positive semidefinite

128

due to the presence of rounding errors. It is also very easy to make a mistake so ¥ becomes indefinite.
These problems are completely eliminated in the conic formulation.
Moreover, observe the constraint

IGT2] <~
more numerically robust than
tT8r <42

for very small and very large values of 7. Indeed, if say v ~ 10* then 2 ~ 10%, which introduces a
scaling issue in the model. Hence, using conic formulation we work with the standard deviation instead
of variance, which usually gives rise to a better scaled model.

Implementing the Portfolio Model

Creating a matrix formulation

The Optimizer API for C requires that an optimization problem is entered in the following standard
form:

maximize cx
subject to ¢ < Az < uc,
r < T < u® (11.4)
— f— b
zeK.

We refer to & as the API variable. It means we need to reformulate (11.3). The first step is to introduce
auxiliary variables so that the conic constraint involves only unique variables:

maximize ul'z
subject to eTe = w+elal,
GTz—t = 0,
sl e gt (11.5)
z > 0,
s = .

Here s is an additional scalar variable and t is a vector variable of dimension n. The next step is to
concatenate all the variables into one long variable vector:

x
T=[z;st] = | s (11.6)
t

The details of the concatenation are specified below.

Table 11.1: Storage layout of the 2 variable.

Variable | Length | Offset
T n 0
s 1 n
t n n+1

The offset determines where the variable starts. (Note that all variables are indexed from 0). For
instance

Ent14i = ti-

because the offset of the ¢ variable is n + 1.

129

Given the ordering of the variables specified by (11.6) it is useful to visualize the linear constraints
(11.4) in an explicit block matrix form:

1 ‘ 0 ‘ 0 r w+ eTx
] _
aT 0 _1 s | = 0 . (11.7)
-1 ;

In other words, we should define the specific components of the problem description as follows:

c = ,uT 0 0,]T,
A - el 0 0,
- GT o0, I, |’
I [w+eTa® 0,], (11.8)
u¢ = [w+elz% 0,]T,
Fo= [0n v —oon |,
u® = [oon v oo]T

Source code example

From the block matrix form (11.7) and the explicit specification (11.8), using the offset information
in Table 11.1 it is easy to calculate the index and value of each entry of the linear constraint matrix.
The code below sets up the general optimization problem (11.5) and solves it for the example data. Of
course it is only necessary to set non-zero entries of the linear constraint matrix.

Listing 11.1: Code implementing model (11.5).

#include <math.h>
#include <stdio.h>
#ainclude "mosek.h"

#define MOSEKCALL(_r,_call) <f ((_r)==MSK_RES_0K) (_r) = (_call)

static void MSKAPI printstr(void *handle,
const char strl[])

{
printf("Ys", str);
} /* printstr */

int main(int argc, const char **argv)

{
char buf [128];
double expret = 0.0,
stddev = 0.0,
Xj;
const MSKint32t n = 3;
const MSKrealt gamma = 0.05;

{0.1073, 0.0737, 0.0627};
{{0.1667, 0.0232, 0.0013},
{0.0000, 0.1033, -0.0022},
{0.0000, 0.0000, 0.0338}};
{0.0, 0.0, 0.0%};

const MSKrealt mul]
const MSKrealt GT[][3]

const MSKrealt =xO0[3]

const MSKrealt w =1.0;
MSKrealt rtemp;
MSKenv_t env;

(continues on next page)

130

(continued from previous page)

MSKint32t k, i, j, offsetx, offsets, offsett, *sub;
MSKrescodee res = MSK_RES_O0K, trmcode;
MSKtask_t task;

/* Initial setup. */

env = NULL;

task = NULL;

MOSEKCALL (res, MSK_makeenv(&env, NULL));

MOSEKCALL(res, MSK_maketask(env, 0, 0, &task));

MOSEKCALL (res, MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr));

/* Total budget */

rtemp = w;

for (j = 0; j < n; ++j)
rtemp += x0[j];

/* Constraints. */
MOSEKCALL (res, MSK_appendcons(task, 1 + n));

/* Total budget constraint - set bounds l~°c = u~c */

MOSEKCALL (res, MSK_putconbound(task, O, MSK_BK_FX, rtemp, rtemp));
sprintf (buf, "%s", "budget");

MOSEKCALL(res, MSK_putconname(task, 0, buf));

/* The remaining constraints GT * ¢ - t = 0 - set bounds l°c = u~c*/
for (i = 0; i < n; ++i)

{
MOSEKCALL (res, MSK_putconbound(task, 1 + i, MSK_BK_FX, 0.0, 0.0));
sprintf (buf, "GT[%d]", 1 + 1);
MOSEKCALL (res, MSK_putconname(task, 1 + i, buf));

}

/* Variables. */
MOSEKCALL (res, MSK_appendvars(task, 1 + 2 * n));

offsetx = 0; /* O0ffset of wariable = into the API wariable. */
offsets = n; /* O0ffset of wvartable = into the API wariable. */
offsett = n + 1; /* Offset of wariable t into the API wvariable. */

/* ¢ variables. */
for (j = 0; j < n; ++j)

{
/* Return of asset j in the objective */
MOSEKCALL (res, MSK_putcj(task, offsetx + j, mul[jl));
/* Coefficients in the first row of 4 */
MOSEKCALL (res, MSK_putaij(task, 0, offsetx + j, 1.0));
/* No short-selling - "l = 0, z"u = inf */
MOSEKCALL (res, MSK_putvarbound(task, offsetx + j, MSK_BK_LO, 0.0, MSK_INFINITY));
sprintf (buf, "x[%d]", 1 + j);
MOSEKCALL (res, MSK_putvarname(task, offsetx + j, buf));
}

/* s vartable is a constant equal to gamma. */

MOSEKCALL (res, MSK_putvarbound(task, offsets + O, MSK_BK_FX, gamma, gamma));
sprintf (buf, "s");

MOSEKCALL (res, MSK_putvarname(task, offsets + 0, buf));

/* t vartables (t = GT*z). */
for (j = 0; j < mn; ++j)
{
/* Copying the GT matriz in the appropriate block of 4 */

(continues on next page)

131

(continued from previous page)

for (k = 0; k < n; ++k)

if (GT[kI[j] !'= 0.0)

MOSEKCALL(res, MSK_putaij(task, 1 + k, offsetx + j, GT[k][j]));

/* Diagonal -1 entries in a block of 4 */
MOSEKCALL (res, MSK_putaij(task, 1 + j, offsett + j, -1.0));
/* Free - no bounds */
MOSEKCALL (res, MSK_putvarbound(task, offsett + j, MSK_BK_FR, -MSK_INFINITY, MSK_INFINITY));
sprintf (buf, "t[%d]l", 1 + j);
MOSEKCALL (res, MSK_putvarname(task, offsett + j, buf));

}
if (res == MSK_RES_OK)
{
/* Define the cone spanned by variables (s, t), i.e. dimension = n + 1 */
MSKint32t *sub = (MSKint32t *) MSK_calloctask(task, n + 1, sizeof (MSKint32t));
if (sub)
{
/% Copy indices of wariables involved in the conic constraint */
sub[0] = offsets + 0;
for (j = 0; j < n; ++j)
sub[j + 1] = offsett + j;
MOSEKCALL (res, MSK_appendcone(task, MSK_CT_QUAD, 0.0, n + 1, sub));
MOSEKCALL (res, MSK_putconename(task, 0, "stddev"));
MSK_freetask(task, sub);
}
else
res = MSK_RES_ERR_SPACE;
}

MOSEKCALL (res, MSK_putobjsense(task, MSK_OBJECTIVE_SENSE_MAXIMIZE));

#if 0

/* No log output */

MOSEKCALL (res, MSK_putintparam(task, MSK_IPAR_LOG, 0));
#endif

#if 0
/* Dump the problem to a human readable OPF file. */
MOSEKCALL (res, MSK_writedata(task, "dump.opf"));
#endif

MOSEKCALL (res, MSK_optimizetrm(task, &trmcode));

#aif 1
/* Display the solution summary for quick inspection of results. */
MSK_solutionsummary (task, MSK_STREAM_MSG);

#endif

if (res == MSK_RES_OK)
{

expret = 0.0;

stddev 0.0;

/* Read the z variables one by one and compute ezpected return. */
/% Can also be obtained as value of the objective. */
for (j = 0; j < n; ++j)
{
MOSEKCALL (res, MSK_getxxslice(task, MSK_SOL_ITR, offsetx + j, offsetx + j + 1, &xj));

(continues on next page)

132

(continued from previous page)

expret += mul[j] * xj;

}

/* Read the value of s. This should be gamma. */
MOSEKCALL (res, MSK_getxxslice(task, MSK_SOL_ITR, offsets + 0, offsets + 1, &stddev));

printf ("\nExpected return %e for gamma %e\n", expret, stddev);

}

if (task != NULL)
MSK_deletetask(&task) ;

if (env '= NULL)
MSK_deleteenv(&env) ;

return (0);

The above code produces the result:

Listing 11.2: Output from the solver.

Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL

Primal. obj: 7.4766507287e-02 nrm: 1e+00 Viol. con: 2e-08 var: 0e+00 cones:
—08
Dual. obj: 7.4766554102e-02 nrm: 3e-01 Viol. con: 0e+00 var: 3e-08 cones:,

—0e+00

Expected return 7.476651e-02 for gamma 5.000000e-02

2e-

Source code comments

The source code is a direct translation of the model (11.5) using the explicit block matrix specification

(11.8) but a few comments are nevertheless in place.
The code uses a macro which can be defined as follows:

’#define MOSEKCALL(_7r,_call) ((_r)==MSK_RES_O0K ? ((_r) = (_call)) : ((_r) = (_r)));

and then used as a method of hiding multiple if statements and hence making the code more compact:

MOSEKCALL (res, MSK_optimize(task));

//is the same as
if (res == MSK_RES_OK)
res = MSK_optimize(task);

In the lines

offsetx = 0; /* O0ffset of wvariable z into the API wariable. */
offsets = n; /* Offset of variable z into the API variable. */
offsett = n + 1; /* Offset of wvariable t into the API wariable. */

offsets into the MOSEK API variable are stored as in Table 11.1. The code

for (j = 0; j < nj; ++j)
{
/* Return of asset j in the objective */
MOSEKCALL (res, MSK_putcj(task, offsetx + j, mul[jl));
/* Coefficients in the first row of 4 */
MOSEKCALL (res, MSK_putaij(task, 0, offsetx + j, 1.0));

(continues on next page)

133

(continued from previous page)

/% No short-selling - ="l = 0, z"u = inf */
MOSEKCALL (res, MSK_putvarbound(task, offsetx + j, MSK_BK_LO, 0.0, MSK_INFINITY));
sprintf (buf, "x[%d]l", 1 + j);
MOSEKCALL (res, MSK_putvarname(task, offsetx + j, buf));
}

sets up the data for x variables. For instance

/* Return of asset j in the objective */
MOSEKCALL (res, MSK_putcj(task, offsetx + j, mul[jl));

inputs the objective coefficients for the x variables. Moreover, the code

sprintf (buf, "x[%d]", 1 + j);
MOSEKCALL (res, MSK_putvarname(task, offsetx + j, buf));

assigns meaningful names to the API variables. This is not needed but it makes debugging easier.
Note that the solution values are only accessed for the interesting variables; for instance the auxiliary
variable ¢ is omitted from this process.

Debugging Tips

Implementing an optimization model in Optimizer API for C can be error-prone. In order to check the
code for accidental errors it is very useful to dump the problem to a file in a human readable form for
visual inspection. The line

/* Dump the problem to a human readable OPF file. */
MOSEKCALL (res, MSK_writedata(task, "dump.opf"));

does that and it produces a file with the content:

Listing 11.3: Problem (11.5) stored in OPF format.

[comment]
Written by MOSEK version 8.1.0.24
Date 11-09-17
Time 14:34:24

[/comment]

[hints]
[hint NUMVAR] 7 [/hint]
[hint NUMCON] 4 [/hint]
[hint NUMANZ] 12 [/hint]
[hint NUMQNZ] O [/hint]
[hint NUMCONE] 1 [/hint]
[/hints]

[variables disallow_new_variables]
'x[1]' 'x[2]" 'x[3]' s 't[1]"
't[2]' 't[3]"

[/variables]

[objective maximize]
1.073e-01 'x[1]' + 7.37e-02 'x[2]' + 6.270000000000001e-02 'x[3]"'

[/objective]
[constraints]
[con 'budget'] 'x[1]' + 'x[2]' + 'x[3]' = 1e+00 [/con]
[con 'GT[1]'] 1.667e-01 'x[1]' + 2.32e-02 'x[2]' + 1.3e-03 'x[3]' - 't[1]' = 0e+00 [/con]
[con 'GT[2]'] 1.033e-01 'x[2]' - 2.2e-03 'x[3]' - 't[2]' = 0e+00 [/con]
[con 'GT[3]'] 3.38e-02 'x[3]' - 't[3]' = 0e+00 [/con]
[/constraints]

(continues on next page)

134

(continued from previous page)

[bounds]

[b] 0e+00 <= 'x[1]','x[2]','x[3]"' [/b]

[b] s = 5e-02 [/b]

[b] "t[1]','t[2]"','t[3]"' free [/Db]

[cone quad 'stddev'] s, 't[1]', 't[2]', 't[3]' [/conmel
[/bounds]

Since the API variables have been given meaningful names it is easy to verify by hand that the model
is correct.

11.1.2 The efficient Frontier

The portfolio computed by the Markowitz model is efficient in the sense that there is no other portfolio
giving a strictly higher return for the same amount of risk. An efficient portfolio is also sometimes called
a Pareto optimal portfolio. Clearly, an investor should only invest in efficient portfolios and therefore it
may be relevant to present the investor with all efficient portfolios so the investor can choose the portfolio
that has the desired tradeoff between return and risk.

Given a nonnegative « the problem

maximize plx — azx? Y
subject to eTx =w 4 eT2?, (11.9)

x> 0.

is one standard way to trade the expected return against penalizing variance. Note that, in contrast to
the previous example, we explicitly use the variance (||GT z||3) rather than standard deviation (||GTz||2),
therefore the conic model includes a rotated quadratic cone:

maximize p’lx — as

subject to eTe = w+elal,
GTe—t = 0,
W~ 0s (11.10)
(s,u,t) € Qnt2 (evaluates to s > ||GTz|3 = 2T%7),
z > 0.

Ideally the problem (11.9) should be solved for all values & > 0 but in practice it is impossible. Using
the example data as before, the optimal values of return and variance for several values of « are shown
below:

Listing 11.4: Results obtained solving problem (11.9) for different

values of a.
alpha exp ret variance
0.000e+00 1.073e-01 2.779e-02
2.500e-01 1.073e-01 2.779e-02
5.000e-01 1.073e-01 2.779e-02
7.500e-01 1.057e-01 2.554e-02
1.000e+00 9.965e-02 1.851e-02
1.500e+00 8.802e-02 8.850e-03
2.000e+00 8.213e-02 5.415e-03
2.500e+00 7.860e-02 3.826e-03
3.000e+00 7.625e-02 2.963e-03
3.500e+00 7.457e-02 2.442e-03
4.000e+00 7.331e-02 2.104e-03
4.500e+00 7.232e-02 1.873e-03

Source code example

The example code in Listing 11.5 demonstrates how to compute the efficient portfolios for several
values of a. The code is mostly similar to the one in Sec. 11.1.1, except the problem is re-optimized in
a loop for varying a.

135

Listing 11.5: Code implementing model (11.9).

#include <math.h>
#ainclude <stdio.h>
#ainclude "mosek.h"

#define MOSEKCALL(_r,_call)
#define LOGLEVEL

static void MSKAPI printstr(void

{
printf("%s", str);
} /* printstr */

if ((_r)==MSK_RES_0K) (_r) = (_call)
0

*handle,
const char str[])

int main(int argc, const char **argv)

{
char buf [128];
const MSKint32t n = 3,
numalpha = 12;
const double mu[] = {0.1073, 0.0737, 0.0627},
x0[3] = {0.0, 0.0, 0.0},
w =1.0,
alphas[12] = {0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5},
GT[1[3] = {{0.1667, 0.0232, 0.0013},
{0.0000, 0.1033, -0.0022},
{0.0000, 0.0000, 0.0338}
};
MSKenv_t env;
MSKint32t k, i, j, offsetx, offsets, offsett, offsetu;
MSKrescodee res = MSK_RES_OK, lres;
MSKtask_t task;
MSKrealt XJjs
MSKsolstae solsta;

/* Initial setup. */
env = NULL;
task = NULL;

/* Replace "" with NULL in production. */
MOSEKCALL (res, MSK_makeenv(&env, ""));

MOSEKCALL(res, MSK_maketask(env, 0, 0, &task));
MOSEKCALL (res, MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL,

/* Constraints. */

MOSEKCALL (res, MSK_appendcons(task, 1 + n));

MOSEKCALL (res, MSK_putconbound(task, O, MSK_BK_FX, 1.0, 1.0));
sprintf (buf, "%s", "budget");

MOSEKCALL (res, MSK_putconname(task, 0, buf));

for (i = 0; i < mn; ++i)

{
MOSEKCALL (res, MSK_putconbound(task, 1 + i, MSK_BK_FX, 0.0, 0.0));
sprintf (buf, "GT[/d]l", 1 + i);
MOSEKCALL (res, MSK_putconname(task, 1 + i, buf));

}

/* Variables. */
MOSEKCALL (res, MSK_appendvars(task, 2 + 2 * n));

printstr));

136

(continues on next page)

(continued from previous page)

offsetx = 0; /* Offset of wartiable = into the API wariable. */
offsets = n; /* O0ffset of wvariable s into the API variable. */
offsett = n + 1; /* Offset of wariable t into the API wvariable. */
offsetu = 2xn + 1; /* Offset of wariable u into the API wariable. */

/* = variables. */
for (j = 0; j < nj; ++j)

{
MOSEKCALL(res, MSK_putcj(task, offsetx + j, mul[jl));
MOSEKCALL (res, MSK_putaij(task, 0, offsetx + j, 1.0));
for (k = 0; k < n; ++k)
if (GT[k][j1 '= 0.0)
MOSEKCALL (res, MSK_putaij(task, 1 + k, offsetx + j, GT[kI[j1));
MOSEKCALL (res, MSK_putvarbound(task, offsetx + j, MSK_BK_LO, 0.0, MSK_INFINITY));
sprintf (buf, "x[%d]", 1 + j);
MOSEKCALL (res, MSK_putvarname(task, offsetx + j, buf));
}

/* s variable. */

MOSEKCALL (res, MSK_putvarbound(task, offsets + 0, MSK_BK_FR, -MSK_INFINITY, MSK_INFINITY));
sprintf (buf, "s");

MOSEKCALL(res, MSK_putvarname(task, offsets + 0, buf));

/* t variables. */
for (j = 0; j < n; ++j)
{
MOSEKCALL(res, MSK_putaij(task, 1 + j, offsett + j, -1.0));
MOSEKCALL (res, MSK_putvarbound(task, offsett + j, MSK_BK_FR, -MSK_INFINITY, MSK_INFINITY));
sprintf (buf, "t[%d]l", 1 + j);
MOSEKCALL (res, MSK_putvarname(task, offsett + j, buf));
}

/* u variable. */

MOSEKCALL (res, MSK_putvarbound(task, offsetu + 0, MSK_BK_FX, 0.5, 0.5));
sprintf (buf, "u");

MOSEKCALL (res, MSK_putvarname(task, offsetu + 0, buf));

if (res == MSK_RES_OK)

{
/* sub should be n+2 long i.e. the dimmension of the cone. */
MSKint32t *sub = (MSKint32t *) MSK_calloctask(task, n + 2, sizeof (MSKint32t));
if (sub)
{
sub[0] = offsets + 0;
sub[1] = offsetu + 0;
for (j = 0; j < nj; ++j)
sub[j + 2] = offsett + j;
MOSEKCALL (res, MSK_appendcone(task, MSK_CT_RQUAD, 0.0, n + 2, sub));
MOSEKCALL (res, MSK_putconename(task, 0, "variance"));
MSK_freetask(task, sub);
}
else
res = MSK_RES_ERR_SPACE;
}

MOSEKCALL (res, MSK_putobjsense(task, MSK_OBJECTIVE_SENSE_MAXIMIZE));

(continues on next page)

137

(continued from previous page)

/* Set the log level */
MOSEKCALL (res, MSK_putintparam(task, MSK_IPAR_LOG, LOGLEVEL));

printf("%-12s %-12s %-12s\n", "alpha", "exp ret", "variance");
for (k = 0; k < numalpha && res==MSK_RES_OK; ++k)
{

const double alpha = alphas[k];

MSKrescodee trmcode;

/* Sets the objective function coefficient for s. */
MOSEKCALL (res, MSK_putcj(task, offsets + 0, -alpha));

MOSEKCALL (res, MSK_optimizetrm(task, &trmcode));
MOSEKCALL (res, MSK_getsolsta(task, MSK_SOL_ITR, &solsta));

if (solsta == MSK_SOL_STA_OPTIMAL)

{
double expret = 0.0,
stddev;
for (j = 0; j < n; ++j)
{
MOSEKCALL (res, MSK_getxxslice(task, MSK_SOL_ITR, offsetx + j, offsetx + j + 1, &xj));
expret += mul[j] * xj;
}
MOSEKCALL (res, MSK_getxxslice(task, MSK_SOL_ITR, offsets + 0, offsets + 1, &stddev));
printf("%-12.3e 7-12.3e %-12.3e\n", alpha, expret, stddev);
}
else
{
printf("An error occurred when solving for alpha=je\n", alpha);
}
}
lres = MSK_deletetask(&task);
res = res==MSK_RES_OK 7 lres : res;

lres = MSK_deleteenv(&env) ;
res==MSK_RES_OK 7 lres : res;

res

return (res);

11.1.3 Factor model and efficiency

In practice it is often important to solve the portfolio problem very quickly. Therefore, in this section
we discuss how to improve computational efficiency at the modeling stage.

The computational cost is of course to some extent dependent on the number of constraints and
variables in the optimization problem. However, in practice a more important factor is the sparsity: the
number of nonzeros used to represent the problem. Indeed it is often better to focus on the number of
nonzeros in G see (11.2) and try to reduce that number by for instance changing the choice of G.

In other words if the computational efficiency should be improved then it is always good idea to start
with focusing at the covariance matrix. As an example assume that

Y=D+VvVVT

where D is a positive definite diagonal matrix. Moreover, V is a matrix with n rows and p columns.
Such a model for the covariance matrix is called a factor model and usually p is much smaller than n.

138

In practice p tends to be a small number independent of n, say less than 100.
One possible choice for G is the Cholesky factorization of ¥ which requires storage proportional to
n(n + 1)/2. However, another choice is

D1/2
=[]

because then
GGT =D +VvVT.

This choice requires storage proportional to n 4+ pn which is much less than for the Cholesky choice of
G. Indeed assuming p is a constant storage requirements are reduced by a factor of n.

The example above exploits the so-called factor structure and demonstrates that an alternative choice
of G may lead to a significant reduction in the amount of storage used to represent the problem. This
will in most cases also lead to a significant reduction in the solution time.

The lesson to be learned is that it is important to investigate how the covariance matrix is formed.
Given this knowledge it might be possible to make a special choice for G that helps reducing the storage
requirements and enhance the computational efficiency. More details about this process can be found in
[And13].

11.1.4 Slippage Cost

The basic Markowitz model assumes that there are no costs associated with trading the assets and that
the returns of the assets are independent of the amount traded. Neither of those assumptions is usually
valid in practice. Therefore, a more realistic model is

maximize ul'z
; T n 0 _ T..0
subject to e’ x + > i, Cjlz; —Tx]| = w2—|—e x”, (11.11)
' dx < A7,
z > 0,
where the function
0
Cjlz; — aj]

specifies the transaction costs when the holding of asset j is changed from its initial value. In the next
two sections we show two different variants of this problem with two nonlinear cost functions T

11.1.5 Market Impact Costs

If the initial wealth is fairly small and no short selling is allowed, then the holdings will be small and the
traded amount of each asset must also be small. Therefore, it is reasonable to assume that the prices
of the assets are independent of the amount traded. However, if a large volume of an asset is sold or
purchased, the price, and hence return, can be expected to change. This effect is called market impact
costs. It is common to assume that the market impact cost for asset j can be modeled by

Cj =my/la; — af]

where m; is a constant that is estimated in some way by the trader. See /GK00] [p. 452] for details.

Hence, we have
Cj(x; — a)) = myla; — af|y/|o; — 28] = myla; —)P/,

From the Modeling Cookbook we know that ¢ > 23/2 can be modeled directly using the power cone
P/,

((e2):e> 2322500 ={(c,2) : (,1,2) € P§/3’1/3}

139

https://docs.mosek.com/modeling-cookbook/index.html

Hence, it follows that we can write the model as

i = |ij - $?|,
2/3,1/3
. (Cj,l,Zj(')) 67)3:1 / 5
> =1 Cjlzy — 2§l =320 ¢ymy.

Unfortunately this set of constraints is nonconvex due to the constraint
zj = |z — j|

but in many cases the constraint may be replaced by the relaxed constraint
2 2 |v; — ajl,

which is equivalent to

, .0
Zj 2> T xj, .
zj > —(z; — 2

).

For instance if the universe of assets contains a risk free asset then

zj > |y — x|

cannot hold for an optimal solution.

(11.12)

(11.13)

(11.14)

(11.15)

If the optimal solution has the property (11.15) then the market impact cost within the model is larger
than the true market impact cost and hence money are essentially considered garbage and removed by
generating transaction costs. This may happen if a portfolio with very small risk is requested because
the only way to obtain a small risk is to get rid of some of the assets by generating transaction costs.
We generally assume that this is not the case and hence the models (11.12) and (11.13) are equivalent.

The above observations lead to

maximize ulx
subject to efx+mTc = w+eT2f,
[v;GTz] € QY
zZj = T — x?, j=1,.
Zj > -T(]) — Ty, j=1
(Cj,l,Zj) S P§/3,1/3’ 1,.
xz > 0.
The revised budget constraint
elx + mle=w + el 0

specifies that the initial wealth covers the investment and the transaction costs

that transaction costs of the form
tj > 2%
where p > 1 is a real number can be modeled with the power cone as

See Modeling Cookbook for details.

140

(11.16)

. It should be mentioned

https://docs.mosek.com/modeling-cookbook/index.html

Creating a matrix formulation

One more reformulation of (11.16) is needed to bring it to the standard form (11.4).

maximize ul'z
subject to eTz+mTc = w+eTad,
GTe—t = 0,
Zj T > _1'?’ J=1 5 Ty
Zj +xj > 9, j=1,...,n,
(s,8) € Qi (11.17)
2/3,1/3 .
(¢5, fj,25) € P i=1,. . n,
x > 0,
f] = 17 j:17""n7
$ = s

where f € R" is an additional variable representing the unused coordinate in the power cone. The
formulation (11.17) is not the most compact possible, but it is easy to implement. MOSEK presolve
will automatically simplify it.

The first step in developing the implementation is to chose an ordering of the variables. We will
choose the following ordering:

&= (258t ¢; 25 f]
Table 11.2 shows the mapping between the & vector and the model variables.

Table 11.2: Storage layout for &

Variable | Length | Offset
T n 0

s 1 n

t n n+1

c n 2n+1
z n 3n+1
f n dn+1

The next step is to consider how the linear constraint matrix A and the remaining data vectors are
laid out. Reusing the idea in Sec. 11.1.1 we can write the data in block matrix form and read off all the
required coordinates. This extension of the code setting up the constraint G'z — ¢ = 0 from Sec. 11.1.1
is shown below.

Source code example

The example code in Listing 11.6 demonstrates how to implement the model (11.17).

Listing 11.6: Code implementing model (11.17).

#include <math.h>
#include <stdio.h>

#1include "mosek.h'"

#define MOSEKCALL(_r,_call) <if ((_r)==MSK_RES_0K) (_r) = (_call)
static void MSKAPI printstr(void *handle,
const char str[])
{
printf("%s", str);
} /* printstr */

int main(int argc, const char **argv)

{

(continues on next page)

141

(continued from previous page)

char buf [128] ;
const MSKint32t n = 3;
const double w =1.0,
x0[] = {0.0, 0.0, 0.0},

gamma = 0.05,

mu[] = {0.1073, 0.0737, 0.0627},
m[] = {0.01, 0.01, 0.01},
GT[1[3] = {{0.1667, 0.0232, 0.0013},
{0.0000, 0.1033, -0.0022},
{0.0000, 0.0000, 0.0338}
};
double expret,
stddev,
Xj;
MSKenv_t env;
MSKint32t k, i, j,

offsetx, offsets, offsett, offsetc,
offsetz, offsetf;
MSKrescodee res = MSK_RES_OK, trmcode;
MSKtask_t task;

/* Initial setup. */

env = NULL;

task = NULL;

MOSEKCALL (res, MSK_makeenv(&env, NULL));

MOSEKCALL (res, MSK_maketask(env, 0, 0, &task));

MOSEKCALL (res, MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr))