Mo Ssek

MOSEK Optimizer APl for NET
Release 9.1.4

MOSEK ApS

25 October 2019

Contents

1 Introduction 1
1.1 Why the Optimizer API for NET? 2
2 Contact Information 3
3 License Agreement 4
4 Installation 6
4.1 Testing the Installation and Compiling Examples. 6
4.2 Other platforms: .NET Core, Mono 7
5 Design Overview 9
5.1 Modeling L e e e e 9
5.2 “Hello World!” in MOSEK e 9
6 Optimization Tutorials 11
6.1 Linear Optimization e e 11
6.2 Quadratic Optimization L 18
6.3 Conic Quadratic Optimization 25
6.4 Power Cone Optimization e 29
6.5 Conic Exponential Optimization o 33
6.6 Semidefinite Optimization L 36
6.7 Integer Optimization e 41
6.8 Geometric Programming oL L e 46
6.9 Library of basic functions L 50
6.10 Problem Modification and Reoptimization 56
6.11 Parallel optimization Lo L 61
7 Solver Interaction Tutorials 64
7.1 Accessing the solution L L 64
7.2 Errors and exceptions L Lo e 68
7.3 Input/Output 70
7.4 Setting solver parameters L oL L 72
7.5 Retrieving information items oL Lo 73
7.6 Progress and data callback L 74
7.7 MOSEK OptServer e e e e 7
8 Debugging Tutorials 81
8.1 Understanding optimizer log L e 82
8.2 Addressing numerical issueso Lo oL e 85
8.3 Debugging infeasibility 88
8.4 Python Console e 92
9 Advanced Numerical Tutorials 94
9.1 Solving Linear Systems Involving the Basis Matrix 94
9.2 Calling BLAS/LAPACK Routines from MOSEK 102
9.3 Computing a Sparse Cholesky Factorization 104
9.4 Converting a quadratically constrained problem to conic form 106

10 Technical guidelines
10.1 Memory management and garbage collection00,
10.2 Names o o o e e e e e e
10.3 Multithreading oL
10.4 Efficiency o oL e
10.5 The license system o L L e e e e e e e e e
10.6 Deployment o .

11 Case Studies
11.1 Portfolio Optimization e
11.2 Logistic regression Lo e e
11.3 Concurrent optimizer oL e e e e

12 Problem Formulation and Solutions
12.1 Linear Optimization e
12.2 Conic Optimization e
12.3 Semidefinite Optimization L L
12.4 Quadratic and Quadratically Constrained Optimization

13 Optimizers
13.1 Presolve o o e
13.2 Linear Optimization i e e e
13.3 Conic Optimization - Interior-point optimizer
13.4 The Optimizer for Mixed-integer Problems

14 Additional features
14.1 Problem Analyzer L e
14.2 Automatic Repair of Infeasible Problems, .
14.3 Sensitivity Analysis oL

15 API Reference
15.1 API Conventions o i e e e e e
15.2 Functions grouped by topico
15.3 Class Env o . o0 o e
15.4 Class Task o o L 0 o e
15.5 Exceptions e e e e e e
15.6 Parameters grouped by topic L L
15.7 Parameters (alphabetical list sorted by type)o L.
15.8 Response codes. o .o e e e
15.9 Enumerations Lo e e e e e
15.10 Class tyPes .« .« v v o v o e e e e e e e e e
15.11 Nonlinear interfaces (obsolete) L e

16 Supported File Formats
16.1 The LP File Format e e e e e e e
16.2 The MPS File Format e
16.3 The OPF Format e e
16.4 The CBF Format e e e
16.5 The PTF Format e e
16.6 The Task Format e e
16.7 The JSON Format e
16.8 The Solution File Formato

17 List of examples

18 Interface changes
18.1 Backwards compatibility L L
18.2 Functions e e e e e
18.3 Parameters L e e e e

ii

110
110
110
110
111
112
113

114
114
140
143

149
149
152
156
157

159
159
161
167
171

176
176
177
181

189
189
193
201
210
304
304
316
361
378
403
404

406
407
412
423
432
446
450
451
458

461

18.4 Constants e 466

18.5 Response Codes e e e e e e 467
Bibliography 469
Symbol Index 470
Index 485

iii

Chapter 1

Introduction

The MOSEK Optimization Suite 9.1.4 is a powerful software package capable of solving large-scale
optimization problems of the following kind:

e linear,

e conic:

conic quadratic (also known as second-order cone),

involving the exponential cone,

involving the power cone,

semidefinite,
e convex quadratic and quadratically constrained,
e integer.

In order to obtain an overview of features in the MOSEK Optimization Suite consult the product
introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all rela-
tions are linear. The tremendous success of both applications and theory of linear optimization can be
ascribed to the following factors:

e The required data are simple, i.e. just matrices and vectors.

e Convexity is guaranteed since the problem is convex by construction.

e Linear functions are trivially differentiable.

e There exist very efficient algorithms and software for solving linear problems.
e Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the
advantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

Ax —b> 0.
In conic optimization this is replaced with a wider class of constraints

Az —-be K

where KC is a convexr cone. For example in 3 dimensions K may correspond to an ice cream cone. The
conic optimizer in MOSEK supports a number of different types of cones K, which allows a surprisingly
large number of nonlinear relations to be modeled, as described in the MOSEK Modeling Cookbook,
while preserving the nice algorithmic and theoretical properties of linear optimization.

https://docs.mosek.com/9.1/intro/index.html
https://docs.mosek.com/9.1/intro/index.html
https://docs.mosek.com/modeling-cookbook/index.html

1.1 Why the Optimizer API for .NET?

The Optimizer API for .NET provides an object-oriented interface to the MOSEK optimizers. This
object oriented design is common to Java, Python and .NET and is based on a thin class-based interface
to the native C optimizer API. The overhead introduced by this mapping is minimal.

Optimizer API

Python Java .NET

The Optimizer API for .NET can be used with any application running on the Microsoft .NET
platform (and other .NET implementations like Mono and .NET Core). It consists of a single library,
mosekdotnet9_1.d11, containing classes and more in the mosek namespace.

The Optimizer API for .NET provides access to:

e Linear Optimization (LO)

Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)

Power Cone Optimization

Conic Exponential Optimization (CEO)

Convex Quadratic and Quadratically Constrained Optimization (QO, QCQO)

Semidefinite Optimization (SDO)
e Mixed-Integer Optimization (MIO)
as well as to additional functions for
e problem analysis,

e sensitivity analysis,

e infeasibility diagnostics,

e BLAS/LAPACK linear algebra routines.

Chapter 2

Contact Information

Phone +45 7174 9373
Website mosek.com
Email

sales@mosek.com

Sales, pricing, and licensing

support@mosek.com

Technical support, questions and bug reports

info@mosek.com

Everything else.

Mailing Address

MOSEK ApS

Fruebjergvej 3

Symbion Science Park, Box 16

2100 Copenhagen O

Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger https://blog.mosek.com

Google Group | https://groups.google.com /forum /#!forum /mosek
Twitter https:/ /twitter.com /mosektw

Google+ https://plus.google.com /+Mosek /posts
Linkedin https://www.linkedin.com /company /mosek-aps

In particular Twitter is used for news, updates and release announcements.

https://mosek.com/
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com
https://blog.mosek.com/
https://groups.google.com/forum/#!forum/mosek
https://twitter.com/mosektw
https://plus.google.com/+Mosek/posts
https://www.linkedin.com/company/mosek-aps

Chapter 3

License Agreement

Before using the MOSEK software, please read the license agreement available in the distribution
at <MSKHOME>/mosek/9.1/mosek-eula.pdf or on the MOSEK website https://mosek.com /products
license-agreement.

MOSEK uses some third-party open-source libraries. Their license details follows.

zlib

MOSEK includes the zlib library obtained from the zlib website. The license agreement for zlib is
shown in Listing 3.1.

Listing 3.1: 2lib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu
fplib

MOSEK includes the floating point formatting library developed by David M. Gay obtained from
the netlib website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/**
*

(continues on next page)

https://mosek.com/products/license-agreement
https://mosek.com/products/license-agreement
http://zlib.org
http://www.netlib.org

(continued from previous page)

The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. 1IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

¥R X X X K K X X X X X X X ¥

***/

Zstandard

MOSEK includes the Zstandard library developed by Facebook obtained from github/zstd.

license agreement for Zstandard is shown in Listing 3.3.

Listing 3.3: Zstandard license.

The

BSD License
For Zstandard software
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name Facebook nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

https://github.com/facebook/zstd

Chapter 4

Installation

In this section we discuss how to install and setup the MOSEK Optimizer API for .NET.

Important: Before running this MOSEK interface please make sure that you:

e Installed MOSEK correctly. Some operating systems require extra steps. See the Installation
guide for instructions and common troubleshooting tips.

e Set up a license. See the Licensing guide for instructions.

Compatibility

The Optimizer API for .NET is compatible with the Microsoft .NET framework version 4.5 and later,
Mono v.1.2 and later, and .NET Core 2.0 and later.

Locating files in the MOSEK Optimization Suite
The relevant files of the Optimizer API for .NET are organized as reported in Table 4.1.

Table 4.1: Relevant files for the Optimizer API for .NET.

Relative Path Description Label

<MSKHOME>/mosek/9.1/tools/platform/<PLATFORM>/bin | Libraries <LIBDIR>

<MSKHOME>/mosek/9.1/tools/examples/dotnet Examples <EXDIR>

<MSKHOME>/mosek/9.1/tools/examples/data Additional data | <MISCDIR>
where

e <MSKHOME> is the folder in which the MOSEK Optimization Suite has been installed,
e <PLATFORM> is the actual platform among those supported by the MOSEK, i.e. win32x86,
win64x86.

Setting up paths

To compile a .NET program using MOSEK the correct path to mosekdotnet.d1ll must be provided.
For example, using the Microsoft .NET compiler this is done with the command line option

’csc /r:"<LIBDIR>\mosekdotnet.d1ll" lol.cs

To run applications the system must be able to locate mosekdotnet.d1l, either in the current direc-
tory or in the Global Assembly Cache.

4.1 Testing the Installation and Compiling Examples

This section describes how to verify that MOSEK has been installed correctly, and how to build and
execute the .NET examples distributed with MOSEK.

https://docs.mosek.com/9.1/install/index.html
https://docs.mosek.com/9.1/install/index.html
https://docs.mosek.com/9.1/licensing/index.html

Compiling and running from the command line

To compile an example, say 1lol, with the Microsoft .NET compiler, open a DOS box with paths for
Visual Studio set up (usually in the Start menu, the sub-menu for Visual Studio contains an entry that
starts a DOS box with everything set up).

To compile the example 1o1.cs distributed with MOSEK:

e Go to the examples directory <EXDIR>.

e To compile the code and produce an executable, type:

’csc /r:"<LIBDIR>\mosekdotnet.dll" lol.cs

or for Visual Basic:

’vbc /r:"<LIBDIR>\mosekdotnet.dll" lol.vb

e Copy mosekdotnet.dll into the directory where lol.exe was created, and run the program with:

’101

|

Compiling the examples using nmake

A makefile for use with nmake, named Makefile is available in <EXDIR>. To compile all examples
using this makefile use the command

’make /f Makefile all

4.2 Other platforms: .NET Core, Mono

The library mosekdotnet.d1ll may be used from any .NET compatible language such as Visual Basic,
Microsoft C# or Microsoft Managed C++ and with .NET Core and Mono. Both the examples and
the library should also work with Mono on most 32-bit platforms. If the file mosekdotnet.dll is not
included in the MOSEK distribution for your platform, use mosekdotnet.d1l included in the Windows
distribution.

Note that the library accesses methods in the native MOSEK library, which is considered unsafe
from a .NET point of view. This means that use of the library in certain restricted contexts is not
possible — building an ordinary application and running it from a local drive should not be a problem.

4.2.1 Mono

Mono is a free implementation if the .NET platform available at http://mono-project.com/. To use it
install MOSEK as described in the Installation Manual. Set the environment variable

MONO_PATH

to point to mosekdotnet9_1.d11 for the 64-bit Mono. You should now be able to compile and run
the distributed .NET examples using Mono.

4.2.2 lronPython

It is possible to use the MOSEK .NET API interactively from .NET languages which implement a
command-line interpreter, for example IronPython, available at http://ironpython.net/. This can be
used to create and examine the problems and solutions from MOSEK more easily.

http://mono-project.com/
https://docs.mosek.com/9.1/install/index.html
http://ironpython.net/

4.2.3 MOSEK and .NET Core

The MOSEK NuGet package Mosek.9.1.4.nupkg is a complete cross-platform .NET Core compatible
distribution that works on Windows, Linux and OS X.

The NuGet package Mosek.9.1.4.nupkg is available for download from https://mosek.com
downloads. Assuming that the Mosek.9.1.4.nupkg file has been downloaded in a directory
local-nupkgs, modify the configuration file *.csproj to add the following entry

<PropertyGroup>
<RestoreSources>$(RestoreSources) ;local-nupkgs</RestoreSources>
</PropertyGroup>

Now, add the dependency on MOSEK to the project:

dotnet add package Mosek

and the project using MOSEK API can be built:

dotnet build
dotnet run

Installation instructions for different .NET Core compatible environments may vary.

https://mosek.com/downloads
https://mosek.com/downloads

Chapter 5

Design Overview

5.1 Modeling

Optimizer API for .NET is an interface for specifying optimization problems directly in matrix form. It
means that an optimization problem such as:

minimize ¢’z
subject to Az < b,

reK

is specified by describing the matrix A, vectors b, ¢ and a list of cones IC directly.
The main characteristics of this interface are:

e Simplicity: once the problem data is assembled in matrix form, it is straightforward to input it
into the optimizer.

e Exploiting sparsity: data is entered in sparse format, enabling huge, sparse problems to be
defined and solved efficiently.

e Efficiency: the Optimizer API incurs almost no overhead between the user’s representation of the
problem and MOSEK’s internal one.

Optimizer API for .NET does not aid with modeling. It is the user’s responsibility to express the
problem in MOSEK’s standard form, introducing, if necessary, auxiliary variables and constraints. See
Sec. 12 for the precise formulations of problems MOSEK solves.

5.2 “Hello World!” in MOSEK

Here we present the most basic workflow pattern when using Optimizer API for .NET.

Creating an environment and task

Every interaction with MOSEK using Optimizer API for .NET begins by creating a MOSEK
environment. It coordinates the access to MOSEK from the current process.

In most cases the user does not interact directly with the environment, except for creating opti-
mization tasks, which contain actual problem specifications and where optimization takes place. An
environment can host multiple tasks.

Defining tasks

After a task is created, the input data can be specified. An optimization problem consists of several
components; objective, objective sense, constraints, variable bounds etc. See Sec. 6 for basic tutorials on
how to specify and solve various types of optimization problems.

Retrieving the solutions

When the model is set up, the optimizer is invoked with the call to Task.optimize. When the
optimization is over, the user can check the results and retrieve numerical values. See further details in
Sec. 7.

We refer also to Sec. 7 for information about more advanced mechanisms of interacting with the
solver.

Source code example
Below is the most basic code sample that defines and solves a trivial optimization problem

minimize x
subject to 2.0 <z < 3.0.

For simplicity the example does not contain any error or status checks.

Listing 5.1: “Hello World!” in MOSEK

using mosek;
using System;

public class helloworld {
public static void Main() {

double[] x = new double[1];

using (Env env = new Env()) { // Create Environment
using (Task task = new Task(env, 0, 1)) { // Create Task

task.appendvars (1) ; // 1 variable =
task.putcj(0, 1.0); // c_0 = 1.0
task.putvarbound (0, boundkey.ra, 2.0, 3.0); // 2.0 <=z <= 3.0
task.putobjsense(objsense.minimize) ; // minimize
task.optimize(); // Optimize
task.getxx(soltype.itr, x); // Get solution
Console.WriteLine("Solution x = " + x[0]); // Print solution
}
}
}

10

Chapter 6

Optimization Tutorials

In this section we demonstrate how to set up basic types of optimization problems. Each short tutorial
contains a working example of formulating problems, defining variables and constraints and retrieving
solutions.

6.1 Linear Optimization

The simplest optimization problem is a purely linear problem. A linear optimization problem is a problem
of the following form:
Minimize or maximize the objective function

n—1

§ o f
Ccjxj+c¢

Jj=0

subject to the linear constraints

n—1
ZESZaijj <us, k=0,...,m-—1,
j=0

and the bounds
i <zj<uj, j=0,...,n—1
The problem description consists of the following elements:
e m and n — the number of constraints and variables, respectively,

e r — the variable vector of length n,

e ¢ — the coefficient vector of length n

co
c= ,
Cn—1
e ¢/ — fixed term in the objective,
e A — an m x n matrix of coefficients
ao,0 T ag,(n—1)
A= : ,
A(m-1),0 " A(m-1),(n—1)

11

e [and u® — the lower and upper bounds on constraints,

e [7 and u” — the lower and upper bounds on variables.

Please note that we are using 0 as the first index: x¢ is the first element in variable vector .

6.1.1 Example LO1

The following is an example of a small linear optimization problem:

maximize 3rg + lx1 + Dbdxe + lxg

subject to 3z + lz; + 29 = 30, (6.1)
21‘0 —+ 1(131 + 31’2 —+ 1$3 Z 157 ’
211 + 3z3 < 25,
under the bounds
0 S Zo S 0,
0 < z; < 10,
0 S) S 0,
0 < z3 < oo

Solving the problem

To solve the problem above we go through the following steps:
1. Create an environment.

2. Create an optimization task.

3. Load a problem into the task object.

4. Optimization.

5. Extracting the solution.

Below we explain each of these steps.

Create an environment.

Before setting up the optimization problem, a MOSEK environment must be created. All tasks in
the program should share the same environment.

// Make mosek environment.
using (mosek.Env env = new mosek.Env())

{

Create an optimization task.

Next, an empty task object is created:

// Create a task object.
using (mosek.Task task = new mosek.Task(env, 0, 0))
{
// Directs the log task stream to the user specified
// method msgclass.streamCB
task.set_Stream (mosek.streamtype.log, new msgclass (""));

We also connect a call-back function to the task log stream. Messages related to the task are passed
to the call-back function. In this case the stream call-back function writes its messages to the standard
output stream. See Sec. 7.3.

12

Load a problem into the task object.

Before any problem data can be set, variables and constraints must be added to the problem via calls
to the functions Task.appendcons and Task.appendvars.

// Append 'numcon' empty constraints.
// The constraints will initially have no bounds.
task.appendcons (numcon) ;

// Append 'numvar' variables.
// The variables will initially be fized at zero (z=0).
task.appendvars (numvar) ;

New variables can now be referenced from other functions with indexes in 0, . ..,numvar — 1 and new
constraints can be referenced with indexes in 0,...,numcon — 1. More variables and/or constraints can
be appended later as needed, these will be assigned indexes from numvar/numcon and up.

Next step is to set the problem data. We loop over each variable index j = 0,...,numvar — 1 calling
functions to set problem data. We first set the objective coefficient ¢; = c[j] by calling the function
Task.putcy.

task.putcj(j, c[jl);

Setting bounds on variables

The bounds on variables are stored in the arrays

mosek.boundkey[] bkx = {mosek.boundkey.lo,
mosek.boundkey.ra,
mosek.boundkey.lo,
mosek.boundkey.lo
};

double[] blx

]
-~
o

o O O
O O O O

};
bux = { +infinity,
10.0,
+infinity,
+infinity

};

double[]

and are set with calls to Task.putvarbound.

// Set the bounds on wvariable j.
// blelg] <= z_j5 <= buzlj]
task.putvarbound(j, bkx[jl, blx[jl, bux[j1);

The Bound key stored in bkx specifies the type of the bound according to Table 6.1.

Table 6.1: Bound keys as defined in the enum boundkey.

Bound key Type of bound | Lower bound | Upper bound

boundkey. fr | u; =1, Finite Identical to the lower bound
boundkey. fr | Free —00 +00

boundkey.lo | l; <- Finite +00

boundkey.ra | l; <--- <y Finite Finite

boundkey. up - <y —00 Finite

For instance bkx[0]= boundkey. lo means that xo > [§. Finally, the numerical values of the bounds
on variables are given by

17 = plx[j]

13

and

uf = bux[j].

Defining the linear constraint matrix.

Recall that in our example the A matrix is given by

A:

O N W
DO =
S W N
w = O

This matrix is stored in sparse format in the arrays:

int[J[] asub = {
new int[] {0, 1},
new int[] {0, 1, 2},
new int[] {0, 13},
new int[] {1, 2}
};
double[][] aval = {
new double[] {3.0, 2.0},
new double[] {1.0, 1.0, 2.0%},
new double[] {2.0, 3.0},
new double[] {1.0, 3.0}
};

The array aval[j] contains the non-zero values of column j and asub[j] contains the row indices
of these non-zeros.
Using the function Task.putacol we set column j of A

task.putacol(j, /* Variable (column) index.*/
asub[j], /* Row index of mon-zeros in column j.*/
avall[jl); /* Non-zero Values of column j. */

There are many alternative formats for entering the A matrix. See functions such as Task.putarow,
Task.putarowlist, Task.putaijlist and similar.

Finally, the bounds on each constraint are set by looping over each constraint index i =
0,...,numcon — 1

// Set the bounds on constraints.

// blcl[i] <= constraint_i <= buc[i]

for (int i = 0; i < numcon; ++i)
task.putconbound (i, bkc[i], blc[i], buc[il);

Optimization

After the problem is set-up the task can be optimized by calling the function Task.optimize.

task.optimize();

Extracting the solution.

After optimizing the status of the solution is examined with a call to Task. getsolsta. If the solution
status is reported as solsta.optimal the solution is extracted in the lines below:

task.getxx(mosek.soltype.bas, // Request the basic solution.
XX) ;

The Task.getzz function obtains the solution. MOSEK may compute several solutions depending
on the optimizer employed. In this example the basic solution is requested by setting the first argument
to soltype.bas.

14

Catching exceptions

We catch any exceptions thrown by MOSEK in the lines:

catch (mosek.Exception e) {
mosek.rescode res = e.Code;
Console.WriteLine("Response code {0}\nMessage {1}", res, e.Message);

}

The types of exceptions that MOSEK can throw can be seen in Sec. 15.5. See also Sec. 7.2.

Source code

The complete source code lol.cs of this example appears below. See also 102.cs for a version where
the A matrix is entered row-wise.

Listing 6.1: Linear optimization example.

using System;

namespace mosek.example

{
class msgclass : mosek.Stream
{
string prefix;
public msgclass (string prfx)
{
prefix = prfx;
}
public override void streamCB (string msg)
{
Console.Write ("{0}{1}", prefix, msg);
}
}
public class lol
{
public static void Main ()
{

const int numcon = 3;
const int numvar = 4;

// Since the value of infinity is ignored, we define it solely
// for symbolic purposes
double infinity = 0;

double[] c = {3.0, 1.0, 5.0, 1.0};
int[J[] asub = {
new int[] {0, 1},
new int[] {0, 1, 2},
new int[] {0, 1},
new int[] {1, 2}
}s
double[][] aval = {
new double[] {3.0, 2.0},
new double[] {1.0, 1.0, 2.0%},
new double[] {2.0, 3.0},
new double[] {1.0, 3.0}
}s

mosek.boundkey[] bkc = {mosek.boundkey.fx,
mosek.boundkey.lo,

(continues on next page)

15

(continued from previous page)

mosek.boundkey.up

};
double[] blc = {30.0,
15.0,
-infinity
};
double[] buc = {30.0,
+infinity,
25.0
}.

mosek.boundkey[] bkx = {mosek.boundkey.lo,
mosek.boundkey.ra,
mosek.boundkey.lo,
mosek.boundkey.lo

};
double[] blx = {0.0,
0.0,
0.0,
0.0
3
double[] bux = { +infinity,
10.0,
+infinity,
+infinity
3
try
{

// Make mosek environment.
using (mosek.Env env = new mosek.Env())
{
// Create a task object.
using (mosek.Task task = new mosek.Task(env, 0, 0))
{
// Directs the log task stream to the user specified
// method msgclass.streamCB
task.set_Stream (mosek.streamtype.log, new msgclass (""));

// Append 'numcon' empty constraints.
// The constraints will initially have no bounds.
task.appendcons (numcon) ;

// Append 'numvar' variables.
// The variables will initially be fized at zero (z=0).

task.appendvars (numvar) ;

for (int j = 0; j < numvar; ++j)

{
// Set the linear term c_j in the objective.
task.putcj(j, c[jl);
// Set the bounds on wvariable j.
// blalj] <= z_j <= buz[j]
task.putvarbound(j, bkx[jl, blx[jl, bux[jl);
// Input column j of A
task.putacol(j, /* Vartable (column) indez.*/
asub[j], /* Row index of non-zeros in column j.*/
avalljl); /* Non-zero Values of column j. */
}

(continues on next page)

16

(continued from previous page)

// Set the bounds on constraints.

// blel[i] <= constraint_i <= bucl[i]

for (int i = 0; i < numcon; ++i)
task.putconbound (i, bkc[i], blc[i], buc[il);

// Input the objective sense (minimize/mazimize)
task.putobjsense (mosek.objsense.maximize) ;

// Solve the problem
task.optimize();

// Print a summary containing information
// about the solution for debugging purposes
task.solutionsummary (mosek.streamtype.msg) ;

// Get status information about the solution
mosek.solsta solsta;

task.getsolsta(mosek.soltype.bas, out solsta);

switch (solsta)
{
case mosek.solsta.optimal:
double[] xx = new double[numvar];
task.getxx(mosek.soltype.bas, // Request the basic solution.
xXx) ;

Console.WriteLine ("Optimal primal solution\n");
for (int j = 0; j < numvar; ++j)
Console.WriteLine ("x[{0}]: {1}", j, xx[jl1);
break;
case mosek.solsta.dual_infeas_cer:
case mosek.solsta.prim_infeas_cer:
Console.WriteLine("Primal or dual infeasibility certificate found.\n");
break;
case mosek.solsta.unknown:
Console.WriteLine ("Unknown solution status.\n");
break;
default:
Console.WriteLine("Other solution status");
break;
¥
}
}
}
catch (mosek.Exception e) {
mosek.rescode res = e.Code;
Console.WriteLine("Response code {0}\nMessage {1}", res, e.Message);
}
}
¥
}

17

6.2 Quadratic Optimization

MOSEK can solve quadratic and quadratically constrained problems, as long as they are convex. This
class of problems can be formulated as follows:

minimize %xTQ"x +cTr+cf
subject to 1§ < 12TQFx+ Z;:Ol agz; < uf, k=0,...,m—1, (6.2)
S Z; < wj, j=0,...,n—1

Without loss of generality it is assumed that Q° and Q¥ are all symmetric because
1
"Qu = 52" (Q+ Q).

This implies that a non-symmetric @) can be replaced by the symmetric matrix %(Q + Q7).
The problem is required to be convex. More precisely, the matrix (° must be positive semi-definite
and the kth constraint must be of the form

1 n—1
7 < ia:TQka: + Z Qg T (6.3)
j=0

with a negative semi-definite Q* or of the form

-1
1 T Nk K c
59& Q x—|—jz_(:)ak,jxj < ug.

with a positive semi-definite Q*. This implies that quadratic equalities are not allowed. Specifying a
non-convex problem will result in an error when the optimizer is called.

A matrix is positive semidefinite if all the eigenvalues of) are nonnegative. An alternative statement
of the positive semidefinite requirement is

mTQ;v >0, V.

If the convexity (i.e. semidefiniteness) conditions are not met MOSEK will not produce reliable results
or work at all.

6.2.1 Example: Quadratic Objective

We look at a small problem with linear constraints and quadratic objective:

minimize 2?4+ 0.12% + 23 — 21703 — 29
subject to 1< x7+ a9+ 3 (6.4)
0< =z

The matrix formulation of (6.4) has:

2 0o -1 0
Q° = 0 02 0 ,e=| —1 7A:[l 1 1},
-1 0 2 0
with the bounds:
0 00
fF=1lLu"=0c0,l"=| 0| andu” = | o©
0 00

Please note the explicit % in the objective function of (6.2) which implies that diagonal elements must
be doubled in Q, i.e. Q11 =2 even though 1 is the coefficient in front of 2% in (6.4).

18

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the quadratic objective

The quadratic objective is specified using the function Task.putqobj. Since Q° is symmetric only
the lower triangular part of Q° is inputted. In fact entries from above the diagonal may not appear in
the input.

The lower triangular part of the matrix @Q° is specified using an unordered sparse triplet format (for
details, see Sec. 15.1.4):

int[] gsubi = {0, 1, 2, 2}
int[] gsubj = {0, 1, 0, 2 };
double[] gqval = {2.0, 0.2, -1.0, 2.0};

Please note that

e only non-zero elements are specified (any element not specified is 0 by definition),
e the order of the non-zero elements is insignificant, and

e only the lower triangular part should be specified.

Finally, this definition of Q° is loaded into the task:

task.putqobj(gsubi, qsubj, qval);

Source code

Listing 6.2: Source code implementing problem (6.4).

using System;

namespace mosek.example

{
class msgclass : mosek.Stream
{
string prefix;
public msgclass (string prfx)
{
prefix = prfx;
}
public override void streamCB (string msg)
{
Console.Write ("{0}{1}", prefix, msg);
}
}

public class qol
{
public static void Main ()
{
// Since the value infinity is never used, we define
// 'infinity' symbolic purposes only
const double infinity = 0;
const int numcon = 1; /* Number of constraints. */
const int numvar = 3; /* Number of wvariables. */

(continues on next page)

19

(continued from previous page)

double[] ¢ = {0.0, -1.0, 0.0%};

mosek.boundkey[] bkc = {mosek.boundkey.lo};
double[] blc = {1.0};
double[] buc = {infinityl};

mosek.boundkey[] bkx = {mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey.1lo

}s
double[] blx = {0.0,
0.0,
0.0
};
double[] bux = { +infinity,
+infinity,
+infinity
};

int [1[] asub = { new int[] {0}, new int[] {0}, new int[] {0}};
double[][] aval { new double[] {1.0}, new double[] {1.0}, new double[] {1.0}};

mosek.Task task = null;
mosek.Env env = null;
double[] xx = new double[numvar];
try
{
// Make mosek environment.
env = new mosek.Env ();
// Create a task object linked with the environment env.
task = new mosek.Task (env, 0, 0);
// Directs the log task stream to the user specified
// method task_msg_obj.streamCB
task.set_Stream (mosek.streamtype.log, new msgclass (""));

/% Give MOSEK an estimate of the size of the input data.
This 2s done to increase the speed of inputting data.
However, it is optional. */

/% Append 'numcon' empty constraints.

The constraints will initially have no bounds. */
task.appendcons (numcon) ;

/% Append 'numvar' variables.
The wvariables will initially be fized at zero (z=0). */

task.appendvars (numvar) ;

for (int j = 0; j < numvar; ++j)

{
/* Set the linear term c_j in the objective.*/
task.putcj(j, c[jl);
/% Set the bounds on wvartable j.
blzlj] <= z_j <= buz[j] */
task.putvarbound(j, bkx[jl, blx[jl, bux[j1);
/* Input column j of 4 */
task.putacol(j, /* Variable (column) index.*/
asub[j], /* Row indez of mon-zeros in column