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Chapter 1

Introduction

The MOSEK Optimization Suite 9.0.81(BETA) is a powerful software package capable of solving large-
scale optimization problems of the following kind:

e linear,

e conic:

conic quadratic (also known as second-order cone),

involving the exponential cone,

involving the power cone,

semidefinite,
e convex quadratic and quadratically constrained,
e integer.

In order to obtain an overview of features in the MOSEK Optimization Suite consult the product
introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all rela-
tions are linear. The tremendous success of both applications and theory of linear optimization can be
ascribed to the following factors:

e The required data are simple, i.e. just matrices and vectors.

e Convexity is guaranteed since the problem is convex by construction.

e Linear functions are trivially differentiable.

e There exist very efficient algorithms and software for solving linear problems.
e Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the
advantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

Ax —b> 0.
In conic optimization this is replaced with a wider class of constraints

Az —-be K

where KC is a convexr cone. For example in 3 dimensions K may correspond to an ice cream cone. The
conic optimizer in MOSEK supports a number of different types of cones K, which allows a surprisingly
large number of nonlinear relations to be modeled, as described in the MOSEK Modeling Cookbook,
while preserving the nice algorithmic and theoretical properties of linear optimization.


https://docs.mosek.com/9.0/intro/index.html
https://docs.mosek.com/9.0/intro/index.html
https://docs.mosek.com/modeling-cookbook/index.html

1.1 Why the Fusion API for Java?

Fusion is an object oriented API specifically designed to build conic optimization models in a simple and
expressive manner, using mainstream programming languages.

Fusion API

Python C++ Java .NET

With focus on usability and compactness, it helps the user focus on modeling instead of coding.

Typically a conic optimization model in Fusion can be developed in a fraction of the time compared
to using a low-level C API, but of course Fusion introduces a computational overhead compared to
customized C code. In most cases, however, the overhead is small compared to the overall solution time,
and we generally recommend that Fusion is used as a first step for building and verifying new models.
Often, the final Fusion implementation will be directly suited for production code, and otherwise it
readily provides a reference implementation for model verification. Fusion always yields readable and
easily portable code.

The Fusion API for Java provides access to Conic Optimization, including:

e Linear Optimization (LO)

Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)

Power Cone Optimization

Conic Exponential Optimization (CEO)
e Semidefinite Optimization (SDO)
e Mixed-Integer Optimization (MIO)

as well as to an auxiliary linear algebra library.

Convex Quadratic and Quadratically Constrained (QCQO) problems can be reformulated as Conic
Quadratic problems and subsequently solved using Fusion. This is the recommended approach, as
described in the MOSEK Modeling Cookbook and this whitepaper.


https://docs.mosek.com/modeling-cookbook/cqo.html#convex-quadratic-sets
https://docs.mosek.com/whitepapers/qmodel.pdf

Chapter 2

Contact Information

Phone +45 7174 9373
Website mosek.com
Email

sales@mosek.com

Sales, pricing, and licensing

support@mosek.com

Technical support, questions and bug reports

info@mosek.com

Everything else.

Mailing Address

MOSEK ApS

Fruebjergvej 3

Symbion Science Park, Box 16

2100 Copenhagen O

Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger https://blog.mosek.com

Google Group | https://groups.google.com /forum /#!forum /mosek
Twitter https:/ /twitter.com /mosektw

Google+ https://plus.google.com /+Mosek /posts
Linkedin https://www.linkedin.com /company /mosek-aps

In particular Twitter is used for news, updates and release announcements.



https://mosek.com/
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com
https://blog.mosek.com/
https://groups.google.com/forum/#!forum/mosek
https://twitter.com/mosektw
https://plus.google.com/+Mosek/posts
https://www.linkedin.com/company/mosek-aps

Chapter 3

License Agreement

Before using the MOSEK software, please read the license agreement available in the distribution
at <MSKHOME>/mosek/9.0/mosek-eula.pdf or on the MOSEK website https://mosek.com /products
license-agreement.

MOSEK uses some third-party open-source libraries. Their license details follows.

zlib

MOSEK includes the zlib library obtained from the zlib website. The license agreement for zlib is
shown in Listing 3.1.

Listing 3.1: 2lib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu
fplib

MOSEK includes the floating point formatting library developed by David M. Gay obtained from
the netlib website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/****************************************************************
*

(continues on next page)



https://mosek.com/products/license-agreement
https://mosek.com/products/license-agreement
http://zlib.org
http://www.netlib.org

(continued from previous page)

The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. 1IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

¥R X X X K K X X X X X X X ¥

***************************************************************/

Zstandard

MOSEK includes the Zstandard library developed by Facebook obtained from github/zstd.

license agreement for Zstandard is shown in Listing 3.3.

Listing 3.3: Zstandard license.

The

BSD License
For Zstandard software
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name Facebook nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.



https://github.com/facebook/zstd

Chapter 4

Installation

In this section we discuss how to install and setup the MOSEK Fusion API for Java.

Important: Before running this MOSEK interface please make sure that you:

e Installed MOSEK correctly. Some operating systems require extra steps. See the Installation
guide for instructions and common troubleshooting tips.

e Set up a license. See the Licensing guide for instructions.

Compatibility
The Fusion API for Java is compatible with Java version 1.8 or later.

Locating files in the MOSEK Optimization Suite

The relevant files of the Fusion API for Java are organized as reported in Table 4.1.

Table 4.1: Relevant files for the Fusion API for Java.

Relative Path Description Label
<MSKHOME>/mosek/9.0/tools/platform/<PLATFORM>/bin | Libraries and jar file | <JARDIR>
<MSKHOME>/mosek/9.0/tools/examples/fusion/java Examples <EXDIR>
<MSKHOME>/mosek/9.0/tools/examples/fusion/data Additional data <MISCDIR>
where

e <MSKHOME> is the folder in which the MOSEK Optimization Suite has been installed,
e <PLATFORM> is the actual platform among those supported by MOSEK, i.e. win32x86, win64x86,
1inux64x86 or osx64x86.
Setting up paths

To compile and run a Java program using MOSEK the correct path to <JARDIR>/mosek. jar must
be provided in the Java classpath. This is usually set with the command line option

javac -d . -classpath <JARDIR>/mosek.jar lol.java
java -classpath .:<JARDIR>/mosek.jar com.mosek.example.lol

Alternatively, this can be set with the environment variable CLASSPATH. For more information about
specifying class libraries and compiling applications, see the full Java documentation at http://java.sun.
com/.


https://docs.mosek.com/9.0/install/index.html
https://docs.mosek.com/9.0/install/index.html
https://docs.mosek.com/9.0/licensing/index.html
http://java.sun.com/
http://java.sun.com/

4.1 Building Examples and Testing the Installation

This section describes how to verify that MOSEK has been installed correctly, and how to build and
execute the Java examples distributed with MOSEK.

4.1.1 Windows
Building and executing a program
To compile the example 1lol. java distributed with MOSEK:
e Open a DOS prompt and go to the examples directory <EXDIR>.

e To compile a Java program and produce the class files in the current directory, type

’javac -classpath <JARDIR>\mosek.jar -d . lol.java

e To run the compiled program, type

’java -classpath .:<JARDIR>\mosek.jar com.mosek.example.lol

Compiling with Microsoft NMake

The distributed examples can also be compiled using Microsoft NMake. This requires that paths
and environment is set up for Visual Studio tools (usually, the sub-menu containing Visual Studio also
contains a Visual Studio Command Prompt which take care of all the necessary setup).

To build the examples, open a DOS box and change directory to the examples directory <EXDIR>.
To compile all examples type

’nmake /f Makefile

This will compile all the classes into a jar file. To run all the examples type

’nmake /f Makefile test

4.1.2 Mac OS and Linux

Building and executing a program
To compile the example 1lo1l. java distributed with MOSEK:
e Open a console and go to the examples directory <EXDIR>.

e To compile a Java program and produce the class files in the current directory, type

’javac -classpath <JARDIR>/mosek.jar -d . lol.java

e To run the compiled program, type

’java -classpath .:<JARDIR>/mosek.jar com.mosek.example.lol

Compiling examples using make

The example directory contains makefiles for use with GNU Make. To build the examples, open a
prompt and change directory to the examples directory <EXDIR>. To compile all examples type

make -f Makefile

This will compile all the classes into a jar file. To run all the examples type



make test




Chapter 5

Design Overview

Fusion is a result of many years of experience in conic optimization. It is a dedicated API for users
who want to enjoy a simpler experience interfacing with the solver. This applies to users who regularly
solve conic problems, and to new users who do not want to be too bothered with the technicalities of a
low-level optimizer. Fusion is designed for fast and clean prototyping of conic problems without suffering
excessive performance degradation.

Note that Fusion is an object-oriented framework for conic-optimization but it is not a general
purpose modeling language. The main design principles of Fusion are:

e Expressiveness: we try to make it nice! Despite not being a modeling language, Fusion yields
readable, easy to maintain code that closely resembles the mathematical formulation of the problem.

e Seamlessly multi-language : Fusion code can be ported across C+—+, Python, Java, .NET and
with only minimal adaptations to the syntax of each language.

e What you write is what MOSEK gets: A Fusion model is fed into the solver with (almost)

no additional transformations.

Expressiveness

Suppose you have a conic quadratic optimization problem like the efficient frontier in portfolio opti-
mization:

maximize pTx — oy

subject to  eTz = w,
v > |Gz,
x> 0.

Its representation in Fusion is a direct translation of the mathematical model:

M.objective (ObjectiveSense.Maximize, Expr.sub(Expr.dot(mu, x), Expr.mul(alpha, gamma)));

M.constraint (Expr.sub(Expr.sum(x), w), Domain.equalsTo(0.0));
M.constraint (Expr.vstack(gamma, Expr.mul(G.transpose(), x)), Domain.inQCone());
M.constraint(x, Domain.greaterThan(0.0));

Seamless multi-language API

Fusion can easily be ported across the five supported languages. All functionalities and naming
conventions remain the same in all of them. This has some advantages:

e Simplifies code sharing between developers working in different languages.
e Improves code reusability.

e Simplifies the transition from R&D to production (for instance from fast-prototyping languages
used in R&D to more efficient ones used for high performance).




Here is the same code snippet (creation of a variable in the model) in all languages supported by
Fusion. Careful code design can generate models with only the necessary syntactic differences between
implementations.

’auto x= M->variable("x", 3, Domain::greaterThan(0.0)); // C++
’x = M.variable('x', 3, Domain.greaterThan(0.0)) # Python
’Variable x = M.variable("x", 3, Domain.greaterThan(0.0)) // Java
’Variable x = M.Variable("x", 3, Domain.GreaterThan(0.0)) // C#

What You Write is What MOSEK Gets

Fusion is not a modeling language. Instead it clearly defines the formulation the user must adhere to
and only provides functionalities required for that formulation. An important upshot is that Fusion will
not modify the problem provided by the user, except for introducing auxiliary variables required to fit
the problem into the format of the low-level optimizer API. In other words, the problem that is actually
solved is as close as possible to what the user writes.

For example, suppose the user defined a conic constraint

x> \/(21‘2 — 1'3)2 + (41‘3)2

Now the low-level API requires that all variables appearing in all conic constraints are different, and so
Fusion will have to replace the conic constraint with

1 O 0 X1
0 2 -1 T2 =Y,
0 0 4 I3

Y1 > /3 + 3.

Note, however, that to use the optimizer API directly the user would have to apply the same transforma-
tion! A similar situation happens when the user defines a number of linear constraints, which have to be
arranged into a large linear constraint matrix A, and so on. So, in effect, the Fusion mechanism only au-
tomates operations that the user would have to carry out anyway (using pencil and paper, presumably).
Otherwise the optimizer model is a direct copy of the Fusion model.

The main benefits of this approach are:

e The user knows what problem is actually being solved.
e Dual information is readily available for all variables and constraints.
e Only the necessary overhead.

e Better control over numerical stability.

10



Chapter 6

Conic Modeling

6.1 The model

A model built using Fusion is always a conic optimization problem and it is convex by definition. These
problems can be succinctly characterized as

minimize Tz

subject to Arx+be K (6.1)

where K is a product of the following basic types of cones:
e linear: R, Ry, {0},
quadratic: Q" = {x € R™ : x; > /a3 + - + 22},
e rotated quadratic: Q" = {x € R" : 2xy29 > 22+ --- + 22, 21,72 > 0},

e primal power cone: P&~ = {x € R™ : afay “ > \/z2+ -+ 12, x1,22 > 0}, or its dual,

e primal exponential: Kep = {x € R® : 21 > zyexp(z3/z2), x1,22 > 0}, or its dual,
o semidefinite:: S¢ = {X € R™" : X is symmmetric positive semidefinite}.

The main thing about a Fusion model is that it can be specified in a convenient way without explicitly
constructing the representation (6.1). Instead the user has access to variables which are used to construct
linear operators that appear in constraints. The cone types described above are the domains of those
constraints. A Fusion model can potentially contain many different building blocks of that kind. To
facilitate manipulations with a large number of variables Fusion defines various logical views of parts of
the model.

This section briefly summarizes the constructions and techniques available in Fusion. See Sec. 7 for a
basic tutorial and Sec. 11 for more advanced case studies. This section is only an introduction: detailed
specification of the methods and classes mentioned here can be found in the API reference.

A Fusion model is represented by the class Model and created by a simple construction

Model M = new Model();

The model object is the user’s interface to the optimization problem, used in particular for
e formulating the problem by defining variables, constraints and objective,
e solving the problem and retrieving the solution status and solutions,

e interacting with the solver: setting up parameters, registering for callbacks, performing I/0, ob-
taining detailed information from the optimizer etc.

e memory management.

Almost all elements of the model: variables, constraints and the model itself can be constructed with
or without names. If used, the names for each type of object must be unique. Choosing a good naming
convention can make the problem more readable when dumped to a file. Most Fusion components also
support some degree of pretty printing (toString method).

11



6.2 Variables

Continuous variables can be scalars, vectors or higher-dimensional arrays. The are added to the model
with the method Model.wvariable which returns a representing object of type Vartzable. The shape of a
variable (number of dimensions and length in each dimension) has to be specified at creation. Optionally
a variable may be created in a restricted domain (by default variables are unbounded, that is in R). For
instance, to declare a variable z € R’} we could write

’ Variable x = M.variable("x", n, Domain.greaterThan(0.)); ‘

A multi-dimensional variable is declared by specifying an array with all dimension sizes. Here is an
n X n variable:

’ Variable x = M.variable( new int[]{n,n}, Domain.unbounded() ) ;

The specification of dimensions can also be part of the domain, as in this declaration of a symmetric
positive semidefinite variable of dimension n:

’ Variable v = M.variable(Domain.inPSDCone(n)); ‘

Integer variables are specified with an additional domain modifier. To add an integer variable z €
[1,10] we write

’ Variable z = M.variable("z", Domain.integral (Domain.inRange(1.,10.)) );

The function Domain.binary is a shorthand for binary variables often appearing in combinatorial
problems:

Nt

’ Variable y = M.variable("y", Domain.binary()); ‘

Integrality requirement can be switched on and off using the methods Variable.makeInteger and
Variable.makeContinuous.

A domain usually allows to specify the number of objects to be created. For example here is a
definition of m symmetric positive semidefinite variables of dimension n each. The actual variable x will
be of shape m x n x n where each slice with fixed first coordinate is an n x n PSD:

Variable x = M.variable(Domain.inPSDCone(n, m));

The Variable object provides the primal (Variable.level) and dual (Variable.dual) solution
values of the variable after optimization, and it enters in the construction of linear expressions involving
the variable.

6.3 Linear algebra

Linear expressions are constructed combining variables and matrices by linear operators. The result is an
object that represents the linear expression itself. Fusion only allows for those combinations of operators
and arguments that yield linear functions of the variables. Expressions have shapes and dimensions in
the same fashion as variables. For instance, if z € R™ and A € R™*", then Az is a vector expression of
length m. Note, however, that the internal size of Ax is mn, because each entry is a linear combination
for which m coefficients have to be stored.

Expressions are concrete implementations of the virtual interface Ezpression. In typical situations,
however, all operations on expressions can be performed using the static methods and factory methods
of the class Ezpr.

12



Table 6.1: Linear Operators

Method Description

Ezpr.add Element-wise addition of two matrices
Ezpr. sudb Element-wise subtraction of two matrices
Ezpr.mul Matrix or matrix-scalar multiplication
Ezpr.neg Sign inversion

Ezpr.outer Vector outer-product

Ezpr.dot Dot product

Ezpr. sum Sum over a given dimension
Ezpr.mulElm Element-wise multiplication
Ezpr.mulDiag Sum over the diagonal of a matrix which is the result of a matrix multiplication
Ezpr.constTerm | Return a constant term

Operations on expressions must adhere to the rules of matrix algebra regarding dimensions; otherwise
a DimensionError exception will be thrown.

Expression can be composed, nested and used as building blocks in new expressions. For instance
Ax + By can be implemented as:

Expr.add( Expr.mul(A,x), Expr.mul(B,y) );

For operations involving multiple variables and expressions the users should consider list-based meth-
ods. For instance, a clean way to write z + y + 2z + w would be:

Expr.add( new Variable[]{x, y, z, w});

Note that a single variable (object of class Variable) can also be used as an expression. Once
constructed, expressions are immutable.

6.4 Constraints and objective

Constraints are declared within an optimization model using the method Model.constraint. Every
constraint in Fusion has the form

’ Ezpression belongs to a Domain. ‘

Objects of type Domain correspond roughly to the types of convex cones K mentioned at the beginning
of this section. For instance, the following set of linear constraints

r1 + 219 =0
+ X2 + x3 = (62)
Iy =0

could be declared as

o

double []1[]JA = new double[][] { 0,
0,
0

s

>

}
}’
}

s

1.0, 2.
0.0, 1.
1.0, 0.

O~ O
o O

, .0} };
Variable x = M.variable("x",3,Domain.unbounded());
Constraint ¢ = M.constraint( Expr.mul(A,x), Domain.equalsTo(0.0));

Note that the scalar domain Domain. equalsTo consisting of a single point 0 scales up to the dimension
of the expression and applies to all its elements. This allows many constraints to be comfortably expressed
in a vectorized form. See also Sec. 6.7.

The Constraint object provides the dual (Constraint.dual) value of the constraint after optimiza-
tion and the primal value of the constraint expression (Constraint.level).

The typical domains used to specify constraints are listed below. Note that they can also be used
directly at variable creation, whenever that makes sense.
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Type Domain
Linear equality Domain.equalsTo
inequality < Domain. lessThan
inequality > Domain.greaterThan
two-sided bound Domain.inRange
Conic Quadratic | quadratic cone Domain. infCone
rotated quadratic cone | Domain.inRotatedfCone
Other Conic exponential cone Domain. inPExpCone
power cone Domain. inPPowerCone ()
Semidefinite PSD matrix Domain. inPSDCone
Integral Integers in domain D Domain.integral (D)
{0,1} Domain.binary

Having discussed variables and constraints we can finish by defining the optimization objective with
Model.objective. The objective function is a scalar expression and the objective sense is specified by
the enumeration 0bjectiveSense as either minimize or mazimize. The typical linear objective function

¢TIz can be declared as

’ M.objective( ObjectiveSense.Minimize, Expr.dot(c,x) );

6.5 Matrices

At some point it becomes necessary to specify linear expressions such as Az where A is a (large) constant
data matrix. Such coefficient matrices can be represented in dense or sparse format. Dense matrices can
always be represented using the standard data structures for arrays and two-dimensional arrays built into
the language. Alternatively, or when sparsity can be exploited, matrices can be constructed as objects
of the class Matriz. This can have some advantages: a more generic code that can be ported across
platforms and can be used with both dense and sparse matrices without modifications.

Dense matrices are constructed with a variant of the static factory method Matriz.dense. The
values of all entries must be specified all at once and the resulting matrix is immutable. For example the
matrix

S

I
| —|
ot =
o
~ w
0
| I

can be defined with:

double[][] A= { {1.,2.,3.,4.}, {5.,6.,7.,8.} };
Matrix Ad= Matrix.dense(A);

or from a flattened representation:

double[] Af={ 1,2,3, 4,5,6,7,8 };
Matrix Aff= Matrix.dense(2,4,Af);

Sparse matrices are constructed with a variant of the static factory method Matriz. sparse. This is
both speed- and memory-efficient when the matrix has few nonzero entries. A matrix A in sparse format
is given by a list of triples (i, j,v), each defining one entry: A; ; = v. The order does not matter. The
entries not in the list are assumed to be 0. For example, take the matrix

1.0 0.0 0.0 2.0

A=100 30 00 40 |-

Assuming we number rows and columns from 0, the corresponding list of triplets is:
A ={(0,0,1.0),(0,3,2.0),(1,1,3.0),(1,3,4.0)}

The Fusion definition would be:
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int[] rows = { 0, 0, 1, 1 };
int[] cols = {0, 3, 1, 3 };
double[] values= { 1.0, 2.0, 3.0, 4.0 };

3

Matrix ms = Matrix.sparse(rows.length, cols.length, rows, cols, values);

The Matriz class provides more standard constructions such as the identity matrix, a constant value
matrix, block diagonal matrices etc.

6.6 Stacking and views

Fusion provides a way to construct logical views of parts of existing expressions or combinations of
existing expressions. They are still represented by objects of type Variable or Ezpression that refer
to the original ones. This can be useful in some scenarios:

e retrieving only the values of a few variables, and ignoring the remaining auxiliary ones,
e stacking vectors or matrices to perform various matrix operations,

e bundling a number of similar constraints into one; see Sec. 6.7,

e adding constraints between parts of the same variable, etc.

All these operations do not require new variables or expressions, but just lightweight logical views. In
what follows we will concentrate on expressions; the same techniques are available for variables. These
techniques will be familiar to the users of numerical tools such as Matlab or NumPy.

Picking and slicing

Ezpression.pick picks a subset of entries from a variable or expression. Special cases of picking are
Ezpression.index, which picks just one scalar entry and Ezpression.slice which picks a slice, that
is restricts each dimension to a subinterval. Slicing is a frequently used operation.

Fig. 6.1: Two dimensional slicing.

Both displayed regions are slices of the two-dimensional 4 x 4 expression, which can be selected as
follows:

Expression Axsl = Ax.slice(new int[]{0,0}, new int[]1{2,2});
Expression Axs2 = Ax.index(new int[]{3,3});

Reshaping

Expressions can be reshaped creating a view with the same number of coordinates arranged in a
different way. A particular example of this operation if flattening, which converts any multi-dimensional
expression into a one-dimensional vector.
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Stacking

Stacking refers to the concatenation of expressions to form a new larger one. For example, the next
figure depicts the vertical stacking of two vectors of shape 1 x 3 resulting in a matrix of shape 2 x 3.

allazla3 \ allazla3
7 b1lb2|p3

blbZ|b3

Expression c = Expr.vstack(new Expression[]{a, b});

Vertical stacking (Ezpr.vstack) of expressions of shapes dy x dy and d} x dy has shape (dy +d}) x ds.
Similarly, horizontal stacking (Ezpr.hstack) of expressions of shapes d; X dy and d; X d has shape
dy x (da+db). Fusion supports also more general versions of stacking for multi-dimensional variables, as
described in Ezpr.stack. A special case of stacking is repetition (Ezpr.repeat), equivalent to stacking
copies of the same expression.

6.7 Vectorization

Using Fusion one can compactly express sequences of similar constraints. For example, if we want to
express

Al'z':bi, iil,...,n

we can think of z; € R™,b; € RF as the columns of two matrices X = [€1,...,2,] € R™*" B =
[b1,...,b,] € R¥*" and write simply

AX -B=0.

Variable X = Var.hstack( new Variable[]{ xi[0], xil[1], xil[2], xi[3] } );
Expression B = Expr.hstack( new Expression[]{ bi[0], bil[1], bil[2], bi[3] } );

M.constraint (Expr.sub(Expr.mul(A, X), B), Domain.equalsTo(0.0));

In this example the domain Domain. equalsTo scales to apply to all the entries of the expression.

Another powerful case of vectorization and scaling domains is the ability to define a sequence of conic
constraints in one go. Suppose we want to find an upper bound on the 2-norm of a sequence of vectors,
that is we want to express

t> il i=1,...,n

Suppose that the vectors y; are arranged in the rows of a matrix Y. Then we can simply write:

Variable t = M.variable();

M.constraint (Expr.hstack(Var.vrepeat(t, n), Y), Domain.inQCone());

Here, again, the conic domain Domain.in{Cone is by default applied to each row of the matrix
separately, yielding the desired constraints in a loop-free way (the i-th row is (¢,y;)). The direction
along which conic constraints are created within multi-dimensional expressions can be changed with
Domain.azts.

We recommend vectorizing the code whenever possible. It is not only more elegant and portable but
also more efficient — loops are eliminated and the number of Fusion API calls is reduced.

6.8 Reoptimization

Between optimizations the user can modify the model in a few ways:
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e Add new constraints with Yodel. constraint. This is useful for solving a sequence of optimization
problems with more and more restrictions on the feasible set. See for example Sec. 11.8.

o Add new variables with Yodel.variable.

e Replace the objective with a new one. This is particularly useful when solving a sequence of
problems with the same data but different objectives, for instance in multi-objective optimization.
For simplicity, suppose we want to minimize f(x) = yx 4 By, for varying choices of v > 0. Then
we could write:

double[] gamma={0., 0.5, 1.03}; // Chotices for gamma
double beta = 2.0;

Variable x= M.variable("x", 1, Domain.greaterThan(0.));
Variable y= M.variable("y", 1, Domain.greaterThan(0.));
Expression beta_y = Expr.mul(beta,y);

for(int i=0;i<3;i++)
{
M.objective( ObjectiveSense.Minimize, Expr.add(Expr.mul(gammal[i],x), beta_y)
)
M.solve();
}

e Update part of the objective (Model.updatelbjective).

e Update an existing constraint or replace the constraint expression with a new one (Constraint.
update).

Otherwise all Fusion objects are immutable. See also Sec. 7.9 for an example.
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Chapter 7

Optimization Tutorials

In this section we demonstrate how to set up basic types of optimization problems. Each short tutorial
contains a working example of formulating problems, defining variables and constraints and retrieving
solutions.

7.1 Linear Optimization

The simplest optimization problem is a purely linear problem. A linear optimization problem is a problem
of the following form:
Minimize or maximize the objective function

n—1

§ o f
Ccjxj+c¢

Jj=0

subject to the linear constraints

n—1
ZESZaijj <us, k=0,...,m-—1,
j=0

and the bounds
i <zj<uj, j=0,...,n—1
The problem description consists of the following elements:
e m and n — the number of constraints and variables, respectively,

e r — the variable vector of length n,

e ¢ — the coefficient vector of length n

co
c= ,
Cn—1
e ¢/ — fixed term in the objective,
e A — an m x n matrix of coefficients
ao,0 T ag,(n—1)
A= : ,
A(m-1),0 " A(m-1),(n—1)
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e [ and u® — the lower and upper bounds on constraints,

e [7 and u” — the lower and upper bounds on variables.

Please note that we are using 0 as the first index: x¢ is the first element in variable vector .
The Fusion user does not need to specify all of the above elements explicitly — they will be assembled

from the Fusion model.

7.1.1 Example LO1

The following is an example of a small linear optimization problem:

maximize 3zg + lz; + Ddxe + lag

subject to 3xp + 1lxz; + 2x9 = 30, (7.1)
209 + 1z + 3x9 + 1lxzg > 15, ’
221 + 3z3 < 25,
under the bounds
0 S Zo S 0,
0 S I S 10,
0 < 2z < o0
0 < z3 < o0

We start our implementation in Fusion importing the relevant modules, i.e.

import mosek.fusion.x*;

Next we declare an optimization model creating an instance of the Model class:

try(Model M = new Model("lol"))

For this simple problem we are going to enter all the linear coefficients directly:

double[][] A =

{ new double[] { 3.0, 1.0, 2.0, 0.0 7},
new double[] { 2.0, 1.0, 3.0, 1.0 },
new double[] { 0.0, 2.0, 0.0, 3.0 }

};
double[] ¢ = { 3.0, 1.0, 5.0, 1.0 };

The variables appearing in problem (7.1) can be declared as one 4-dimensional variable:

Variable x = M.variable("x", 4, Domain.greaterThan(0.0));

|

At this point we already have variables with bounds 0 < z; < oo, because the domain is applied

element-wise to the entries of the variable vector. Next, we impose the upper bound on z1:

|

M.constraint(x.index (1), Domain.lessThan(10.0));

|

The linear constraints can now be entered one by one using the dot product of our variable with a

coefficient vector:

M.constraint("cl1", Expr.dot(A[0], x), Domain.equalsTo(30.0));
M.constraint ("c2", Expr.dot(A[1], x), Domain.greaterThan(15.0));
M.constraint ("c3", Expr.dot(A[2], x), Domain.lessThan(25.0));

We end the definition of our optimization model setting the objective function in the same way:

M.objective("obj", ObjectiveSense.Maximize, Expr.dot(c, x));

Finally, we only need to call the Xodel.solve method:

M.solve();

The solution values can be attained with the method Variable. level.
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double[] sol = x.level();
System.out.printf (" [x0,x1,x2,x3] = [%e, %e, %e, %hel\n", sol[0], sol[1], sol[2], sol[3]);

Listing 7.1: Fusion implementation of model (7.1).

package com.mosek.fusion.examples;
import mosek.fusion.x*;

public class lol {
public static void main(Stringl[] args)
throws SolutionError {
double[][] A =

{ new double[] { 3.0, 1.0, 2.0, 0.0 7},
new double[] { 2.0, 1.0, 3.0, 1.0 },
new double[] { 0.0, 2.0, 0.0, 3.0 }

}s
double[] ¢ = { 3.0, 1.0, 5.0, 1.0 I};

// Create a model with the name 'lol'
try(Model M = new Model("lol"))
{
// Create wariable 'z' of length 4
Variable x = M.variable("x", 4, Domain.greaterThan(0.0));

// Create constraints

M.constraint(x.index(1), Domain.lessThan(10.0));
M.constraint("c1", Expr.dot(A[0], x), Domain.equalsTo(30.0));
M.constraint ("c2", Expr.dot(A[1], x), Domain.greaterThan(15.0));
M.constraint ("c3", Expr.dot(A[2], x), Domain.lessThan(25.0));

// Set the objective function to (c~t * z)
M.objective("obj", ObjectiveSense.Maximize, Expr.dot(c, x));

// Solve the problem
M.solve();

// Get the solution wvalues
double[] sol = x.level();
System.out.printf (" [x0,x1,x2,x3] = [%e, %e, %e, %hel\n", sol[0], sol[1], sol[2], sol[3]);

7.2 Conic Quadratic Optimization

Conic optimization is a generalization of linear optimization, allowing constraints of the type
zt e Kt,

where ! is a subset of the problem variables and K, is a convex cone. Since the set R™ of real numbers
is also a convex cone, we can simply write a compound conic constraint z € IC where K =y X -+ X K
is a product of smaller cones and x is the full problem variable.

MOSEK can solve conic quadratic optimization problems of the form

minimize e+l
subject to ¢ < Ax < S,
r < T <t
x e,

where the domain restriction, x € IC, implies that all variables are partitioned into convex cones

r= (202 .. 2P7Y), with 2’ € K, C R™.
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In this tutorial we describe how to use the two types of quadratic cones defined as:

e Quadratic cone:

e Rotated quadratic cone:

n—1
o = xeR":Zxoxlzzx?, 0 >0, x>0
Jj=2

For other types of cones supported by MOSEK see Sec. 7.3, Sec. 7.4, Sec. 7.5. See Domain for a
list and definitions of available cone types. Different cone types can appear together in one optimization
problem.

For example, the following constraint:

(:1743 Zo, x2) € QS

describes a convex cone in R? given by the inequality:

T4 > \/:z:%—kz%.

In Fusion the coordinates of a cone are not restricted to single variables. They can be arbitrary linear
expressions, and an auxiliary variable will be substituted by Fusion in a way transparent to the user.

7.2.1 Example CQO1

Consider the following conic quadratic problem which involves some linear constraints, a quadratic cone
and a rotated quadratic cone.

minimize Y1 + Y2 + Y3

subject to x1 + x5 + 2.0z3 = 1.0,
T1,x2,T3 Z 0.0, (72)
(y1,21,22) € Q3,
(y2,y3,23) € Q3.

We start by creating the optimization model:

Model M = new Model("cqol");

We then define variables x and y. Two logical variables (aliases) z1 and z2 are introduced to model the
quadratic cones. These are not new variables, but map onto parts of x and y for the sake of convenience.

Variable x = M.variable("x", 3, Domain.greaterThan(0.0));
Variable y = M.variable("y", 3, Domain.unbounded()) ;

// Create the aliases

// z1 = [ y[o],z[0],z[1] ]

// and z2 = [ yl[1],yl[2],z[2] ]

Variable zl1 = Var.vstack(y.index(0), =x.slice(0, 2));
Variable z2 = Var.vstack(y.slice(l, 3), x.index(2));

The linear constraint is defined using the dot product:

// Create the constraint

// z[0] + z[1] + 2.0 z[2] = 1.0

double[] aval = new double[] {1.0, 1.0, 2.0};
M.constraint("lc", Expr.dot(aval, x), Domain.equalsTo(1.0));
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The conic constraints are defined using the logical views z1 and z2 created previously. Note that
this is a basic way of defining conic constraints, and that in practice they would have more complicated
structure.

// Create the constraints

// z1 belongs to C_3

// z2 belongs to K_3

// where C_3 and K_3 are respectively the quadratic and

// rotated quadratic cone of size 3, i.e.

// z1[0] >= sqrt(z1[1]-2 + z1[2]"2)

// and 2.0 22[0] z2[1] >= z2[2]"2

Constraint qcl = M.constraint("qcl", z1l, Domain.inQCone());
Constraint qc2 = M.constraint("qc2", z2, Domain.inRotated(Cone());

We only need the objective function:

// Set the objective function to (y[0] + y[1] + y[2])
M.objective("obj", ObjectiveSense.Minimize, Expr.sum(y));

Calling the Model.solve method invokes the solver:

M.writeTask("cqol.task");
M.solve();

The primal and dual solution values can be retrieved using Variable.level, Constraint.level
and Variable.dual, Constraint.dual, respectively:

// Get the linear solution values
double[] solx = x.level();
double[] soly = y.level();

// Get conic solution of gqcl
double[] qcllvl = qcl.level();
double[] qclsn = qcl.dual();

Listing 7.2: Fusion implementation of model (7.2).

package com.mosek.fusion.examples;
import mosek.fusion.x*;

public class cqol {
public static void main(String[] args)
throws SolutionError {
Model M = new Model("cqol");
try {
Variable x = M.variable("x", 3, Domain.greaterThan(0.0));
Variable y = M.variable("y", 3, Domain.unbounded()) ;

// Create the aliases

// z1 = [ y[o],z[0],z[1] ]

// and z2 = [ y[1],y[2],z[2] ]

Variable zl = Var.vstack(y.index(0), =x.slice(0, 2));
Variable z2 = Var.vstack(y.slice(l, 3), x.index(2));

// Create the constraint

// z[0] + x[1] + 2.0 z[2] = 1.0

double[] aval = new double[] {1.0, 1.0, 2.0};

M.constraint ("1lc", Expr.dot(aval, x), Domain.equalsTo(1.0));

// Create the constraints
// z1 belongs to C_3
// z2 belongs to K_3
// where C_3 and K_3 are respectively the quadratic and

(continues on next page)
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(continued from previous page)

// rotated quadratic cone of size 3, i.e.

// z1[0] >= sqrt(z1[1]-2 + 2z1[2]"2)

// and 2.0 z2[0] 22[1] >= z2[2]"2

Constraint qcl = M.constraint("qcl", zl, Domain.inQCone());
Constraint qc2 = M.constraint("qc2", z2, Domain.inRotatedQCone());

// Set the objective function to (y[0] + y[1] + y[2])
M.objective("obj", ObjectiveSense.Minimize, Expr.sum(y));

// Solve the problem
M.writeTask("cqol.task");
M.solve();

// Get the linear solution values

double[] solx = x.level();

double[] soly = y.level();

System.out.printf ("x1,x2,x3 = %e, %e, %e\n", solx[0], solx[1], solx[2]);
System.out.printf("yl,y2,y3 = %e, %e, %e\n", soly[0], soly[1], soly[2]);

// Get conic solution of qcl
double[] qcllvl = qcl.level();
double[] gclsn = gcl.dual();

System.out.printf("qcl levels = %e", qcllvl[0]);
for (int i = 1; i < qcllvl.length; ++i)

System.out.printf (", %e", qcllvl[il);
System.out.print ("\n") ;

System.out.printf("qcl dual conic var levels = %e", qclsn[0]);
for (int i = 1; i < gclsn.length; ++1i)

System.out.printf (", %e", qclsnl[i]);
System.out.print ("\n");

} finally {
M.dispose();

7.3 Power Cone Optimization
Conic optimization is a generalization of linear optimization, allowing constraints of the type
.CL't € ICt,

where z¢ is a subset of the problem variables and K; is a convex cone. Since the set R™ of real numbers
is also a convex cone, we can simply write a compound conic constraint « € K where K =1 X --- X K
is a product of smaller cones and z is the full problem variable.

MOSEK can solve conic optimization problems of the form

minimize e+l
subject to ¢ < Ax < S,
r < T < u®,
x e,

where the domain restriction, z € IC, implies that all variables are partitioned into convex cones

r= (202 .. 2Ph),  with ' € K; C R™.
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In this tutorial we describe how to use the power cone. The primal power cone of dimension n with
parameter 0 < a < 1 is defined as:

n—1

2
§ Zy, -TO,JHZO

=2

a,l—a __ n ., o l—«
Py =<z eR":zje;”" >

In particular, the most important special case is the three-dimensional power cone family:

P?’lfa = {x eR?: xﬁx%_o‘ > |xal, 0,21 > O}.
For example, the conic constraint (x,y, z) € Pg 25,075 4g equivalent to z
with z,y > 0.
MOSEK also supports the dual power cone:

(Pﬁ’l_a)* =JxeR": (%)a (1x1a)1_0‘ >

For other types of cones supported by MOSEK see Sec. 7.2, Sec. 7.4, Sec. 7.5. See Domain for a list
and definitions of available cone types. Different cone types can appear together in one optimization
problem.

In Fusion the coordinates of a cone are not restricted to single variables. They can be arbitrary linear
expressions, and an auxiliary variable will be substituted by Fusion in a way transparent to the user.

0.25 4

y*™ > |z|, or simply y® > 2

is L0,T1 ZO

7.3.1 Example POW1

Consider the following optimization problem which involves powers of variables:

maximize 292908 4204 — ¢
subject to T+y+iz = 2 (7.3)
z,y,z > 0.

With (z,y,2) = (20,21, 22) we convert it into conic form using auxiliary variables as bounds for the
power expressions:

maximize xr3 + x4 — X0

subject to xg+ 1 + %xg = 2,
(zo,71,73) € Py (7.4)
(22,25,71) € P§.4,0.6’
Irs = 1.

We start by creating the optimization model:

Model M = new Model("powl");

We then define the variable x corresponding to the original problem (7.3), and auxiliary variables
appearing in the conic reformulation (7.4).

Variable x = M.variable("x", 3, Domain.unbounded());
Variable x3 = M.variable();
Variable x4 = M.variable();

The linear constraint is defined using the dot product operator Ezpr.dot:

// Create the linear constraint
double[] aval = new double[] {1.0, 1.0, 0.5};
M.constraint (Expr.dot(x, aval), Domain.equalsTo(2.0));

The primal power cone is referred to via Domain. inPPowerCone with an appropriate list of variables
or expressions in each case.
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// Create the conic constraints
M.constraint (Var.vstack(x.slice(0,2), x3), Domain.inPPowerCone(0.2));
M.constraint (Expr.vstack(x.index(2), 1.0, x4), Domain.inPPowerCone(0.4));

We only need the objective function:

// Set the objective function
double[] cval = new double[] {1.0, 1.0, -1.0};
M.objective (ObjectiveSense.Maximize, Expr.dot(cval, Var.vstack(x3, x4, x.index(0))));

Calling the Model.solve method invokes the solver:

M.solve();

The primal and dual solution values can be retrieved using Variable.level, Constraint.level
and Variable.dual, Constraint.dual. Here we just display the primal solution

// Get the linear solution values
double[] solx = x.level();
System.out.printf("x, y, z = %e, %e, %e\n", solx[0], solx[1], solx[2]);

which is

[ 0.06389298 0.78308564 2.30604283 ]

Listing 7.3: Fusion implementation of model (7.3).

package com.mosek.fusion.examples;
import mosek.fusion.x*;

public class powl {
public static void main(String[] args)
throws SolutionError {
Model M = new Model("powl");
try {
Variable x = M.variable("x", 3, Domain.unbounded());
Variable x3 = M.variable();
Variable x4 = M.variable();

// Create the linear constraint
double[] aval = new double[] {1.0, 1.0, 0.53};
M.constraint (Expr.dot(x, aval), Domain.equalsTo(2.0));

// Create the conic constraints
M.constraint (Var.vstack(x.slice(0,2), x3), Domain.inPPowerCone(0.2));
M.constraint (Expr.vstack(x.index(2), 1.0, x4), Domain.inPPowerCone(0.4));

// Set the objective function
double[] cval = new double[] {1.0, 1.0, -1.0};
M.objective(ObjectiveSense.Maximize, Expr.dot(cval, Var.vstack(x3, x4, x.index(0))));

// Solve the problem
M.solve();

// Get the linear solution values

double[] solx = x.level();

System.out.printf("x, y, z = Je, %e, %e\n", solx[0], solx[1], solx[2]);
} finally {

M.dispose();
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7.4 Conic Exponential Optimization
Conic optimization is a generalization of linear optimization, allowing constraints of the type
zt e Ky,
where 2! is a subset of the problem variables and K; is a convex cone. Since the set R™ of real numbers
is also a convex cone, we can simply write a compound conic constraint « € K where K =1 X --- X K

is a product of smaller cones and z is the full problem variable.
MOSEK can solve conic optimization problems of the form

minimize e+
subject to ¢ < Ax < uc,
< T < u®,
ek,

where the domain restriction, z € IC, implies that all variables are partitioned into convex cones
r= (22" .. . 2P7), with 2" € K, C R™.
In this tutorial we describe how to use the primal exponential cone defined as:
Kexp = {x eR?: x>y exp(x2/x1), o, o1 > O}.
MOSEK also supports the dual exponential cone:
K:Xp = {s eR?: 59> —s9et exp(s1/s2), s2 <0,s0 > O}.

For other types of cones supported by MOSEK see Sec. 7.2, Sec. 7.3, Sec. 7.5. See Domain for a list
and definitions of available cone types. Different cone types can appear together in one optimization
problem.
For example, the following constraint:
(.%‘47 Zo, 1‘2) S Kexp
describes a convex cone in R? given by the inequalities:

x4 > xoexp(x2/To), To, x4 > 0.

In Fusion the coordinates of a cone are not restricted to single variables. They can be arbitrary linear
expressions, and an auxiliary variable will be substituted by Fusion in a way transparent to the user.

7.4.1 Example CEO1

Consider the following basic conic exponential problem which involves some linear constraints and an
exponential inequality:

minimize To + 21
subject to zg+x1+x2 = 1, (7.5)
ro > wyexp(ra/T1), '
Lo, L1 2 0.
The conic form of (7.5) is:
minimize To + 21
subject to xg+x1 +22 = 1, (7.6)
(x0a$17x2) E Kexpa '
r € RS

We start by creating the optimization model:
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Model M = new Model('"ceol");

We then define the variable x.

Variable x = M.variable("x", 3, Domain.unbounded());

The linear constraint is defined using the sum operator Ezpr. sum:

// Create the constraint
// z[0] + z[1] + z[2] = 1.0

M.constraint("lc", Expr.sum(x), Domain.equalsTo(1.0));

The conic exponential constraint in this case is very simple as it involves just the variable x. The
primal exponential cone is referred to via Domain.inPEzpCone, and it must be applied to a variable of
length 3 or an array of such variables. Note that this is a basic way of defining conic constraints, and
that in practice they would have more complicated structure.

// Create the conic ezponential constraint
Constraint expc = M.constraint("expc", x, Domain.inPExpCone()) ;

We only need the objective function:

// Set the objective function to (z[0] + z[1])
M.objective("obj", ObjectiveSense.Minimize, Expr.sum(x.slice(0,2)));

Calling the Model.solve method invokes the solver:

M.solve();

The primal and dual solution values can be retrieved using Vartable.level, Constraint.level
and Variable.dual, Constraint.dual , respectively:

// Get the linear solution values
double[] solx = x.level();

// Get conic solution of ezxpc
double[] expclvl = expc.level();
double[] expcsn = expc.dual();

Listing 7.4: Fusion implementation of model (7.5).

package com.mosek.fusion.examples;
import mosek.fusion.x*;

public class ceol {
public static void main(String[] args)
throws SolutionError {
Model M = new Model("ceol");
try {
Variable x = M.variable("x", 3, Domain.unbounded());

// Create the constraint
// z[0] + z[1] + z[2] = 1.0

M.constraint("lc", Expr.sum(x), Domain.equalsTo(1.0));

// Create the conic ezponential constraint
Constraint expc = M.constraint("expc", x, Domain.inPExpCone()) ;

// Set the objective function to (z[0] + z[1])
M.objective("obj", ObjectiveSense.Minimize, Expr.sum(x.slice(0,2)));

// Solve the problem
M.solve();

(continues on next page)
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// Get the linear solution values
double[] solx = x.level();
System.out.printf ("x1,x2,x3 = %e, %e, %e\n", solx[0], solx[1], solx[2]);

// Get conic solution of expc
double[] expclvl = expc.level();
double[] expcsn = expc.dual();

System.out.printf ("expc levels = Je", expclvl[0]);
for (int i = 1; i < expclvl.length; ++1i)

System.out.printf (", je", expclvl[i]);
System.out.print ("\n");

System.out.printf("expc dual conic var levels = %e", expcsnl[0]);
for (int i = 1; i < expcsn.length; ++i)

System.out.printf (", %e", expcsn[il);
System.out.print ("\n");

} finally {
M.dispose();

7.5 Semidefinite Optimization

Semidefinite optimization is a generalization of conic optimization, allowing the use of matrix variables
belonging to the convex cone of positive semidefinite matrices

j_:{XGST:zTXzz(), VZGRT},

where 8" is the set of r X r real-valued symmetric matrices.
MOSEK can solve semidefinite optimization problems of the form

minimize Z?:_ol ¢z + Z?;& (C;, X;)+c
subject to  I§ < Z?;OI a;;jx; + Z‘;’;é (A, X;) < u, i=0,...,m—1,
7 < Z; < wuj, j=0,....,n—-1,
a:EIC,YjGS:_j, j=0,....,p—1

where the problem has p symmetric positive semidefinite variables X; € S}’ of dimension r; with
symmetric coefficient matrices C; € 8”7 and A4; ; € S". We use standard notation for the matrix inner
product, i.e., for A, B € R™*" we have

In Fusion the user can enter the linear expressions in a more convenient way, without having to cast the
problem exactly in the above form.
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7.5.1 Example SDO1

We consider the simple optimization problem with semidefinite and conic quadratic constraints:

2 10
minimize < 1 2 1 ,X>+x0
0 1 2
1.0 0]
subject to 0 1 0|,X )4z = 1,
< 0 0 1 > (7.7)
11 1]
< 111 ,X>+:c1+:c2 = 1/2,
1 1 1

‘TO_E \/IIZ‘12+‘_'ZZ?, Yioa

The problem description contains a 3-dimensional symmetric semidefinite variable which can be written
explicitly as:

o Xoo Xlo Xzo
X = {10 {11 {21 ESi,
Xoo Xo1 X2
and a conic quadratic variable (zg,z1,22) € Q3. The objective is to minimize
2(X oo + X10 + X11 + Xo1 + X22) + @0,

subject to the two linear constraints

o o XOO +YE +Yi2 + o = 1,
Xoo+ X114+ Xoo +2(X10+Xoo+ Xo1) +a1 +22 = 1/2.

Our implementation in Fusion begins with creating a new model:

Model M = new Model("sdol");

We create a symmetric semidefinite variable X and another variable representing . For simplicity
we immediately declare that x belongs to a quadratic cone

Variable X = M.variable("X", Domain.inPSDCone(3));
Variable x = M.variable("x", Domain.inQCone(3));

In this elementary example we are going to create an explicit matrix representation of the problem

2 10 1 00 111
C=|12 1|,4=]010],4=|1191
0 1 2 00 1 111

and use it in the model via the dot product operation (-, -) which applies to matrices as well as to vectors.
This way we create each of the linear constraints and the objective as one expression.

// Objective
M.objective(ObjectiveSense.Minimize, Expr.add(Expr.dot(C, X), x.index(0)));

// Constraints

M.constraint("cl1", Expr.add(Expr.dot(Al, X), x.index(0)), Domain.equalsTo(1.0));

M.constraint ("c2", Expr.add(Expr.dot(A2, X), Expr.sum(x.slice(l, 3))), Domain.equalsTo(O0.
—5));

Now it remains to solve the problem with Yodel.solve.
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Listing 7.5: Fusion implementation of problem (7.7).

package com.mosek.fusion.examples;
import mosek.fusion.x*;

public class sdol {
public static void main(String[] args) throws SolutionError {
Model M = new Model('"sdol");
try {
// Setting up the wvartables
Variable X = M.variable("X", Domain.inPSDCone(3));
Variable x = M.variable("x", Domain.in(Cone(3));

// Setting up constant coefficient matrices

Matrix C = Matrix.dense ( new double[][] {{2., 1., 0.}, {1., 2., 1.}, {0., 1., 2.3} );
Matrix Al = Matrix.eye(3);

Matrix A2 = Matrix.ones(3,3);

// Objective
M.objective (ObjectiveSense.Minimize, Expr.add(Expr.dot(C, X), x.index(0)));

// Constraints

M.constraint("cl1", Expr.add(Expr.dot(Al, X), x.index(0)), Domain.equalsTo(1.0));

M.constraint ("c2", Expr.add(Expr.dot(A2, X), Expr.sum(x.slice(l, 3))), Domain.equalsTo(O0.
—5));

M.solve();

System.out.println(java.util.Arrays.toString( X.level() ));
System.out.println(java.util.Arrays.toString( x.level() ));
} finally {
M.dispose();
}
}
}

7.6 Integer Optimization

An optimization problem where one or more of the variables are constrained to integer values is called a
(mixed) integer optimization problem. MOSEK supports integer variables in combination with linear,
quadratic and quadratically constrtained and conic problems (except semidefinite). See the previous
tutorials for an introduction to how to model these types of problems.

7.6.1 Example MILO1

We use the example

maximize xg + 0.64x,

subject to 50z + 31x; < 250,
3$0 — 2.’1?1 Z —47
Tg,x1 >0 and integer

(7.8)

to demonstrate how to set up and solve a problem with integer variables. It has the structure of a linear
optimization problem (see Sec. 7.1) except for integrality constraints on the variables. Therefore, only
the specification of the integer constraints requires something new compared to the linear optimization
problem discussed previously.

First, the integrality constraints are imposed by modifying any existing domain with Domain.
tntegral:

Variable x = M.variable("x", 2, Domain.integral (Domain.greaterThan(0.0)));
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Another way to do this is to use the method Variable.makeInteger on a selected variable.
Next, the example demonstrates how to set various useful parameters of the mixed-integer optimizer.
See Sec. 13.4 for details.

// Set maz solution time
M.setSolverParam("mioMaxTime", 60.0);

// Set maz relative gap (to its default value)
M.setSolverParam("mioTolRelGap", le-4);

// Set maz absolute gap (to its default value)
M.setSolverParam("mioTolAbsGap", 0.0);

The complete source for the example is listed in Listing 7.6.

Listing 7.6: How to solve problem (7.8).

package com.mosek.fusion.examples;
import mosek.fusion.x*;

public class milol {
public static void main(String[] args)
throws SolutionError {
double[][] A = {
{ 50.0, 31.0 },
{3.0, -2.0}
3
double[] ¢ = { 1.0, 0.64 };

Model M = new Model("milol");
try {
Variable x = M.variable("x", 2, Domain.integral (Domain.greaterThan(0.0)));

// Create the constraints

// 50.0 z[0] + 31.0 z[1] <= 250.0

// 3.0 z[0] - 2.0 z[1] >= -4.0

M.constraint("c1", Expr.dot(A[0], x), Domain.lessThan(250.0));
M.constraint ("c2", Expr.dot(A[1], x), Domain.greaterThan(-4.0));

// Set maz solution time
M.setSolverParam("mioMaxTime", 60.0);

// Set maz relative gap (to its default value)
M.setSolverParam("mioTolRelGap", le-4);

// Set maz absolute gap (to its default value)
M.setSolverParam("mioTolAbsGap", 0.0);

// Set the objective function to (c¢°T * z)
M.objective("obj", ObjectiveSense.Maximize, Expr.dot(c, x));

// Solve the problem
M.solve();

// Get the solution walues

double[] sol = x.level();

System.out.printf ("x1,x2 = %e, %e\n", sol[0], sol[1]);

System.out.printf ("MIP rel gap = %.2f (%f)\n",
M.getSolverDoubleInfo("mioObjRelGap"),
M.getSolverDoubleInfo("mioObjAbsGap"));

} finally {
M.dispose();
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7.6.2 Specifying an initial solution

It is a common strategy to provide a starting feasible point (if one is known in advance) to the mixed-
integer solver. This can in many cases reduce solution time.

It is not necessary to specify the whole solution. MOSEK will attempt to use it to speed up
the computation. MOSEK will first try to construct a feasible solution by fixing integer variables
to the values provided by the user (rounding if necessary) and optimizing over the continuous vari-
ables. The outcome of this process can be inspected via information items "mioConstructSolution”
and "mioConstructSolutionObs", and via the Construct solution objective entry in the log. We
concentrate on a simple example below.

maximize Tz + 10x1 + x2 + Sx3

subject to o+ 1 +x2+ 23 < 2.5 (7.9)
20,T1,To €L ’
%o, T1,%2,73 > 0

Solution values can be set using Variable.setLevel .

Listing 7.7: Implementation of problem (7.9) specifying an initial
solution.

// Assign values to integer wariables.
// We only set a slice of

double[] init_sol = { 1, 1, 0 };
x.slice(0,3).setlLevel ( init_sol );

A more advanced application of Variable.setLevel is presented in the case study on Multiprocessor

scheduling.
The log output from the optimizer will in this case indicate that the inputted values were used to

construct an initial feasible solution:

Construct solution objective : 1.950000000000e+01

The same information can be obtained from the API:

Listing 7.8: Retrieving information about usage of initial solution

int constr = M.getSolverIntInfo("mioConstructSolution");

double constrVal = M.getSolverDoubleInfo("mioConstructSolutionObj") ;
System.out.println("Initial solution utilization: " + constr);
System.out.println("Initial solution objective: " + constrVal);

7.6.3 Example MICO1

Integer variables can also be used arbitrarily in conic problems (except semidefinite). We refer to the
previous tutorials for how to set up a conic optimization problem. Here we present sample code that
sets up a simple optimization problem:

minimize 22 + y?
subject to x> e¥ + 3.8, (7.10)

x,y integer.

The canonical conic formulation of (7.10) suitable for Fusion API for Java is

minimize ¢

subject to  (t,z,y) € Q3 (t> 22+ 9y?)
(x —38,1,y) € Kexp (r—3.8>¢Y) (7.11)
x,y integer,
teR.
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Listing 7.9: Implementation of problem (7.11).

package com.mosek.fusion.examples;
import mosek.fusion.x*;

public class micol {
public static void main(String[] args)
throws SolutionError {

Model M = new Model("micol");

try {
Variable x = M.variable(Domain.integral (Domain.unbounded())) ;
Variable y = M.variable(Domain.integral (Domain.unbounded()));
Variable t = M.variable();

M.constraint (Expr.vstack(t, x, y), Domain.in(Cone());
M.constraint (Expr.vstack (Expr.sub(x, 3.8), 1, y), Domain.inPExpCone()) ;

M.objective(ObjectiveSense.Minimize, t);
M.solve();
System.out.printf("x, y = %f, %f\n", x.level()[0], y.level()[0]);

} finally {
M.dispose();

Error and solution status handling were omitted for readability.

7.7 Geometric Programming

Geometric programs (GP) are a particular class of optimization problems which can be expressed in
special polynomial form as positive sums of generalized monomials. More precisely, a geometric problem
in canonical form is

minimize  fo(z)

subject to  fi(x) <1, i=1,...,m, (7.12)
z; >0, i=1...,n,
where each fy, ..., f,, is a posynomial, that is a function of the form

£@) = 3 cxaiiage - agen
k

with arbitrary real ay; and ¢, > 0. The standard way to formulate GPs in convex form is to introduce
a variable substitution

x; = exp(¥;)-
Under this substitution all constraints in a GP can be reduced to the form

log(D_exp(afy +bx)) <0 (7.13)
k

involving a log-sum-exp bound. Moreover, constraints involving only a single monomial in x can be even
more simply written as a linear inequality:

afy+b, <0
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We refer to the MOSEK Modeling Cookbook and to /[BK VH(7] for more details on this reformulation. A
geometric problem formulated in convex form can be entered into MOSEK with the help of exponential
cones.

7.7.1 Example GP1

The following problem comes from [BKVH07]. Consider maximizing the volume of a h x w x d box
subject to upper bounds on the area of the floor and of the walls and bounds on the ratios h/w and d/w:

maximize hwd
subject to  2(hw + hd) < Ayan,
wd < Afoor, (7.14)
a <h/w<p,
v <d/w<é.

The decision variables in the problem are h,w,d. We make a substitution
h = exp(x), w = exp(y), d = exp(=)
after which (7.14) becomes

maximize x4y -+ z

subject to log(exp(z 4+ y + 1og(2/Awan)) + exp(z + z + log(2/Awan))) < 0,
y+ 2z < log(Afoor), (7.15)
log(a) < & —y < log(B),
log(v) < z —y < log(d).

Next, we demonstrate how to implement a log-sum-exp constraint (7.13). It can be written as:

ug > exp(aly +by), (equiv. (uk,1,aly+ by) € Kexp),

Zkuk =1.

This presentation requires one extra variable uy for each monomial appearing in the original posynomial
constraint.

(7.16)

Listing 7.10: Implementation of log-sum-exp as in (7.16).

// Models log(sum(exp(dz+b))) <= 0.
// Each row of [A b] describes one of the exp-terms
public static void logsumexp(Model M,
double[][] A,
Variable X,
double[] b)

int k = A.length;
Variable u = M.variable(k);
M.constraint (Expr.sum(u), Domain.equalsTo(1.0));
M.constraint (Expr.hstack(u,
Expr.constTerm(k, 1.0),
Expr.add(Expr.mul (A, x), b)), Domain.inPExpCone());
}

We can now use this function to assemble all constraints in the model. The linear part of the problem
is entered as in Sec. 7.1.

Listing 7.11: Source code solving problem (7.15).

public static double[] max_volume_box(double Aw, double Af,
double alpha, double beta, double gamma, double delta)
throws SolutionError
{
Model M = new Model("max_vol_box");

(continues on next page)
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try {
Variable xyz = M.variable(3);
M.objective("Objective", ObjectiveSense.Maximize, Expr.sum(xyz));

logsumexp (M,
new double[][] {{1,1,0}, {1,0,1}},
Xyz,
new double[] {Math.log(2.0/Aw), Math.log(2.0/Aw)});

M.constraint (Expr.dot (new double[] {0,1,1}, xyz), Domain.lessThan(Math.log(Af)));

M.constraint (Expr.dot (new double[] {1,-1,0}, xyz), Domain.inRange(Math.log(alpha) ,Math.
—log(beta)));

M.constraint (Expr.dot (new double[] {0,-1,1}, xyz), Domain.inRange(Math.log(gamma) ,Math.
—log(delta)));

M.setLogHandler (new java.io.PrintWriter(System.out));
M.solve();

double[] xyzVal = xyz.level();
double[] hwdVal = new doublel[3];
for(int i=0; i<3; i++) hwdVal[i] = Math.exp(xyzVall[il);

return hwdVal;
} finally {
M.dispose();
}
¥

Given sample data we obtain the solution h,w, d as follows:

Listing 7.12: Sample data for problem (7.14).

public static void main(String[] args)
throws SolutionError

{
double Aw = 200.0;
double Af = 50.0;
double alpha = 2.0;
double beta = 10.0;
double gamma = 2.0;

double delta = 10.0;
double[] hwd = max_volume_box(Aw, Af, alpha, beta, gamma, delta);

System.out.format ("h=%.4f w=}.4f d=),.4f\n", hwd[0], hwd[1], hwd[2]);

7.8 Library of basic functions

This section contains a library of small models of basic functions frequently appearing in optimization
models. It is essentially an implementation of the mathematical models from the MOSEK Modeling
Cookbook using Fusion API for Java. These short code snippets can be seen as illustrative examples,
can be copy-pasted to other code, and can even be directly called when assembling optimization models
as we show in Sec. 7.8.6 (although this may be more suitable for prototyping; also note that additional
variables and constraints will be introduced and there is no error checking).
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7.8.1 Variable and constraint management
Variable duplication
r=Yy

Listing 7.13: Duplicate variables.

/)T =y
public static void dup(Model M, Variable x, Variable y) {
M.constraint (Expr.sub(x,y), Domain.equalsTo(0.0));

}

7.8.2 Linear operations
Absolute value
t> |zl

Listing 7.14: Absolute value.

// t >= |z, where t, © have the same shape

public static void abs(Model M, Variable t, Variable x) {
M.constraint (Expr.add(t,x), Domain.greaterThan(0.0));
M.constraint (Expr.sub(t,x), Domain.greaterThan(0.0));

}

1-norm
t> 32 |l
Listing 7.15: 1-norm.

// t >= sum( |z_il| ), = is a vector Variable

public static void normil(Model M, Variable t, Variable x) {
Variable u = M.variable(x.getShape(), Domain.unbounded());
abs(M, u, x);
M.constraint (Expr.sub(t, Expr.sum(u)), Domain.greaterThan(0.0));

}

7.8.3 Quadratic and power operations

Square

t>2?

Listing 7.16: Square.

// t >= 272
public static void sq(Model M, Variable t, Variable x) {
M.constraint (Expr.hstack(0.5, t, x), Domain.inRotated(QCone());

}

2-norm

t> /2]

Listing 7.17: 2-norm.

// t >= sqrt(z_1°2 + ... + ©_n"2) where = is a vector
public static void norm2(Model M, Variable t, Variable x) {

(continues on next page)

36




(continued from previous page)

M.constraint (Expr.vstack(t, x), Domain.inQCone());

}

Powers

t>|zP,p>1

Listing 7.18: Power.

// t >= |z/"p (where p>1)
public static void pow(Model M, Variable t, Variable x, double p) {
M.constraint (Expr.hstack(t, 1, x), Domain.inPPowerCone(1.0/p));

}

t>1/2P, x>0,p>0

Listing 7.19: Power reciprocal.

// t >= 1/]z]|"p, >0 (where p>0)
public static void pow_inv(Model M, Variable t, Variable x, double p) {
M.constraint (Expr.hstack(t, x, 1), Domain.inPPowerCone(1.0/(1.0+p)));

}

p-norm
t> (3, alP) /P, p > 1

Listing 7.20: p-norm.

// t >= \|z\|_p (where p>1), = ts a vector Variable
public static void pnorm(Model M, Variable t, Variable x, double p) {
int n = (int) x.getSize();
Variable r = M.variable(n);
M.constraint (Expr.sub(t, Expr.sum(r)), Domain.equalsTo(0.0));
M.constraint (Expr.hstack(Var.repeat(t,n), r, x), Domain.inPPowerCone(1.0-1.0/p));

Geometric mean

Listing 7.21: Geometric mean.

/7 It <= (z_1...2z_n)"(1/n), z_1>=0, = is a vector Variable of length >= 1
public static void geo_mean(Model M, Variable t, Variable x) {
int n = (int) x.getSize();
if (n==1) {
abs(M, x, t);
¥
else {
Variable t2 = M.variable();
M.constraint (Expr.hstack(t2, x.index(n-1), t), Domain.inPPowerCone(1.0-1.0/n));
geo_mean(M, t2, x.slice(O,n-1));

7.8.4 Exponentials and logarithms

log
t<logz, x>0
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Listing 7.22: Logarithm.

// t <= log(z), z>=0
public static void log(Model M, Variable t, Variable x) {
M.constraint (Expr.hstack(x, 1, t), Domain.inPExpCone());

}

exp

t>e”

Listing 7.23: Exponential.

// t >= ezxp(z)
public static void exp(Model M, Variable t, Variable x) {
M.constraint (Expr.hstack(t, 1, x), Domain.inPExpCone());

}

Entropy

t>xlogz, x>0

Listing 7.24: Entropy.

// t >=z * log(z), x>=0
public static void ent(Model M, Variable t, Variable x) {
M.constraint (Expr.hstack(l, x, Expr.neg(t)), Domain.inPExpCone());

}

Relative entropy
t>axlogzx/y, z,y >0

Listing 7.25: Relative entropy.

// t >=x * log(z/y), z,y>=0
public static void relent(Model M, Variable t, Variable x, Variable y) {

M.constraint (Expr.hstack(y, x, Expr.neg(t)), Domain.inPExpCone());
}

Log-sum-exp
log> e <t

Listing 7.26: Log-sum-exp.

// log( sum_i(exp(x_i)) ) <= t, where z is a vector
public static void logsumexp(Model M, Variable t, Variable x) {
int n = (int) x.getSize();
Variable u = M.variable(n);
M.constraint (Expr.hstack(u, Expr.constTerm(n, 1.0), Expr.sub(x, Var.repeat(t, n))), Domain.

<»inPExpCone () ;
M.constraint (Expr.sum(u), Domain.lessThan(1.0));

}

7.8.5 Integer Modeling
Semicontinuous variable

z€{0}U[a,b],b>a>0
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Listing 7.27: Semicontinuous variable.

// x =0 o0orac<=zx<=0b

public static void semicontinuous(Model M, Variable x, double a, double b) {
Variable u = M.variable(x.getShape(), Domain.binary());
M.constraint (Expr.sub(x, Expr.mul(a, u)), Domain.greaterThan(0.0));
M.constraint (Expr.sub(x, Expr.mul(b, u)), Domain.lessThan(0.0));

}

Indicator variable

x#0 = t=1. We assume z is a priori normalized so |z;| < 1.

Listing 7.28: Indicator variable.

// x!=0 implies t=1. Assumes that [z/<=1 in advance.

public static void indicator(Model M, Variable t, Variable x) {
M.constraint (t, Domain.inRange(0,1));
t.makeInteger();
abs(M, t, x);

}

Logical OR

At least one of the conditions is true.

Listing 7.29: Logical OR.

// x OR y, where z, y are binary

public static void logic_or(Model M, Variable x, Variable y) {
M.constraint (Expr.add(x, y), Domain.greaterThan(1.0));

}

// x_1 OR ... OR z_n, where = s a binary vector

public static void logic_or_vect(Model M, Variable x) {
M.constraint (Expr.sum(x), Domain.greaterThan(1.0));

}

Logical NAND

At most one of the conditions is true (also known as SOS1).

Listing 7.30: Logical NAND.

// at most one of z_1,...,z_n, where ¢ s a binary vector (S0S! constraint)

public static void logic_sosl(Model M, Variable x) {
M.constraint (Expr.sum(x), Domain.lessThan(1.0));

}

// NOT(z AND y), where z, y are binary

public static void logic_nand(Model M, Variable x, Variable y) {
M.constraint (Expr.add(x, y), Domain.lessThan(1.0));

}

Cardinality bound

At most k of the continuous variables are nonzero. We assume z is a priori normalized so |z;| < 1.

Listing 7.31: Cardinality bound.

// At most k of entries in x are monzero, assuming in advance [T_i[<=1.
public static void card(Model M, Variable x, int k) {

(continues on next page)
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(continued from previous page)

Variable t = M.variable(x.getShape(), Domain.binary());
abs(M, t, x);
M.constraint (Expr.sum(t), Domain.lessThan(k));

}

7.8.6 Model assembly example

We now demonstrate how to quickly build a simple optimization model for the problem

maximize —y/z2+y2 +logy — 2!, (7.17)
subject to = >y + 3, .

or equivalently

maximize —tg+ t1 — to,
subject to = >y+ 3,
to > \/ x? + y2a
t1 < logy,
to > 15,

Listing 7.32: Modeling (7.17).

public static void testExample() {
Model M = new Model();
Variable x = M.variable();
Variable y = M.variable();
Variable t = M.variable(3);

M.constraint (Expr.sub(x, y), Domain.greaterThan(3.0));
norm2(M, t.index(0), Var.vstack(x,y));

log (M, t.index(1), y);

pow (M, t.index(2), x, 1.5);

M.objective(ObjectiveSense.Maximize, Expr.dot(t, new double[]{-1,1,-1}));

7.9 Problem Modification and Reoptimization

Often one might want to solve not just a single optimization problem, but a sequence of problems, each
differing only slightly from the previous one. This section demonstrates how to modify and re-optimize
an existing problem. The example we study is a simple production planning model.

Problem modifications regarding variables, cones, objective function and constraints can be grouped
in categories:

e adding constraints and variables,
e modifying existing constraints.

Adding new variables and constraints is very easy. Modifications to existing constraints are more
cumbersome, and the user should consider whether it is not worth rebuilding the model from scratch
in such case. The amount of work required by Fusion to update the optimizer task may outweigh the
potential gains.

Depending on the type of modification, MOSEK may be able to optimize the modified problem more
efficiently exploiting the information and internal state from the previous execution. After optimization,
the solution is always stored internally, and is available before next optimization. The former optimal
solution may be still feasible, but no longer optimal; or it may remain optimal if the modification of the
objective function was small.

In general, MOSEK exploits dual information and availability of an optimal basis from the previous
execution. The simplex optimizer is well suited for exploiting an existing primal or dual feasible solution.
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Restarting capabilities for interior-point methods are still not as reliable and effective as those for the
simplex algorithm. More information can be found in Chapter 10 of the book [Chv83/.
Parameter settings (see Sec. 8.4) can also be changed between optimizations.

7.9.1 Example: Production Planning

A company manufactures three types of products. Suppose the stages of manufacturing can be split into
three parts: Assembly, Polishing and Packing. In the table below we show the time required for each
stage as well as the profit associated with each product.

Product no. | Assembly (minutes) | Polishing (minutes) | Packing (minutes) | Profit ($)
0 2 3 2 1.50
1 4 2 3 2.50
2 3 3 2 3.00

With the current resources available, the company has 100,000 minutes of assembly time, 50,000
minutes of polishing time and 60,000 minutes of packing time available per year. We want to know how
many items of each product the company should produce each year in order to maximize profit?

Denoting the number of items of each type by xg,z; and x5, this problem can be formulated as a
linear optimization problem:

maximize 1.5zg + 2521 + 3.0x9

subject to 2z + 4z + 3x2 < 100000, (7.18)
3rg + 2x1 + 3z < 50000, ’
29 + 31 + 2z < 60000,

and
Zo, 1,22 > 0.
Code in Listing 7.33 loads and solves this problem.

Listing 7.33: Setting up and solving problem (7.18)

doublel] c
double[][] A

new double[] { 1.5, 2.5, 3.0 };
new double[]1[] { {2, 4, 3},

{3, 2, 3},

{2, 3, 2} };
double[] b = new double[] { 100000.0, 50000.0, 60000.0 };
int numvar = c.length;
int  numcon = b.length;

// Create a model and input data

Model M = new Model();

Variable x = M.variable(numvar, Domain.greaterThan(0.0));
Constraint con = M.constraint (Expr.mul (A, x), Domain.lessThan(b));
M.objective (ObjectiveSense.Maximize, Expr.dot(c, x));

// Solve the problem

M.solve();

7.9.2 Changing the Linear Constraint Matrix

Suppose we want to change the time required for assembly of product 0 to 3 minutes. This corresponds
to setting ap,0 = 3. Now the Constraint provides the method Constraint.update, which can replace
the columns corresponding to a variable with new values (or to replace the whole constraint). In our
case the update we need is replacing 1 - x¢ with 3 - zg in the constraint with index 0.

con.index(0) .update (Expr.mul(3.0, x.index(0)), x.index(0));
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The problem now has the form:

and

maximize 1.5z
subject to  3xg
31‘0
231‘()

+ 2.5z7 + 3.0x9
+ 4.’E1 + 31’2
+ 21’1 + 3.’1?2
+ 3.731 + 2.’1}2

Zo,T1, T2 Z 0.

After this operation we can reoptimize the problem.

7.9.3 Appending Variables

We now want to add a new product with the following data:

< 100000,
< 50000,
< 60000,

Product no.

Assembly (minutes)

Polishing (minutes)

Packing (minutes)

Profit ($)

3

4

0

1

1.00

(7.19)

This corresponds to creating a new variable x3, appending a new column to the A matrix and setting
a new term in the objective. We do this in Listing 7.34

Listing 7.34: How to add a new variable (column)

JEkrxkkkkxkkkkx% Add a new variable F¥k kKKK KKKKKKKKKKKKKKKKKKKRRANK )

// Create a variable and a compound view of all wvariables

Variable x3 = M.variable(Domain.greaterThan(0.0));
Variable xNew = Var.vstack(x, x3);
// Add to the ezising constraint

con.update (Expr.mul (x3, new double[]{4, 0, 1}),x3);

// Change the objective to include z3

M.objective(ObjectiveSense.Maximize, Expr.dot(new double[]{1.5,2.5,3.0,1.0}, xNew));

After this operation the new problem is:

maximize 1.5z9 + 2. +

subject to  3zg + +

3270 + 21’1 —+ 3CE2
+ 31‘1 +

and

21‘0

41‘1

3.0z +
31‘2 +

5$1

2$2 +

Z0, 21, T2, 3 > 0.

7.9.4 Appending Constraints

1.0.133

4rz < 100000,
< 50000,

lzz < 60000,

(7.20)

Now suppose we want to add a new stage to the production process called Quality control for which
30000 minutes are available. The time requirement for this stage is shown below:

Product no. | Quality control (minutes)
0 1
1 2
2 1
3 1

This corresponds to adding the constraint

To + 221 + 22 + x3 < 30000

to the problem. This is done as follows.
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Listing 7.35: Adding a new constraint.

JEkkrkkxxkkkxkkxk Add a4 NEW CONSETAINE *kXKEKKKF KKK KKK AKKKARKKRRKAK )
Constraint con2 = M.constraint(Expr.dot(xNew, new double[]{1, 2, 1, 1}), Domain.
< 1essThan(30000.0));

Again, we can continue with re-optimizing the modified problem.

7.9.5 Changing bounds

One typical reoptimization scenario is to change bounds. Suppose for instance that we must operate
with limited time resources, and we must change the upper bounds in the problem as follows:

Operation Time available (before) | Time available (new)
Assembly 100000 80000
Polishing 50000 40000
Packing 60000 50000
Quality control | 30000 22000

That means we would like to solve the problem:

maximize 1.5z9 + 2521 + 3.0zo + 1.0x3

subject to 3z9 + 4x; + 3x2 + 4dxs < 80000,
3xzg + 2x1 + 319 < 40000, (7.21)
220 +  3r; + 2z + lxg < 50000,
X0 + 211 + T2 + xs3 < 22000.

Since Domain objects are immutable, we cannot change the constraints by simply updating the value
inside domains. To circumvent this, we add the differences between new and old bounds as fixed terms
to the constraint expression. That means, we effectively construct an equivalent problem:

maximize 1.5z9 + 2.5z7 + 3.0z + 1.0x3

subject to 3x9 4+ 4x; 4+ 3xz2 4+ 4xz3 + 20000 < 100000,
3xg + 21 + 3o 4+ 10000 < 50000, (7.22)
209 4+ 3x1 + 2z + 1lxz + 10000 < 60000,

The next listing shows how to do it.

Listing 7.36: Change constraint bounds.

JHEKERKKK KKK KKK K Change constraint bounds KEKKEKKKKKKKKKKKKK KKK RN KRN KN, )
// Assemble all constraints we previously defined into one

Constraint cAll = Constraint.vstack(con, con2);

// Change bounds by effectively updating fized terms with the difference
cAll.update(new double[]{20000, 10000, 10000, 8000});

Again, we can continue with re-optimizing the modified problem.

7.9.6 Advanced hot-start

If the optimizer used the data from the previous run to hot-start the optimizer for reoptimization, this
will be indicated in the log:

Optimizer - hotstart 1 yes

When performing re-optimizations, instead of removing a basic variable it may be more efficient to
fix the variable at zero and then remove it when the problem is re-optimized and it has left the basis.
This makes it easier for MOSEK to restart the simplex optimizer.

For a more in-depth treatment see the following sections:

e (uase studies for more advanced and complicated optimization examples.

e Problem Formulation and Solutions for formal mathematical formulations of problems MOSEK
can solve, dual problems and infeasibility certificates.
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Chapter 8

Solver Interaction Tutorials

In this section we cover the interaction with the solver.

8.1 Accessing the solution

This section contains important information about the status of the solver and the status of the solution,
which must be checked in order to properly interpret the results of the optimization.

8.1.1 Solver termination

If an error occurs during optimization then the method Model.solve will throw an exception of type
OptimizeError. The method FusionRuntimeEzception.toString will produce a description of the
error, if available. More about exceptions in Sec. 8.2.

If a runtime error causes the program to crash during optimization, the first debugging step is to
enable logging and check the log output. See Sec. 8.3.

If the optimization completes successfully, the next step is to check the solution status, as explained
below.

8.1.2 Available solutions

MOSEK uses three kinds of optimizers and provides three types of solutions:
e basic solution from the simplex optimizer,
e interior-point solution from the interior-point optimizer,
e integer solution from the mixed-integer optimizer.
Under standard parameters settings the following solutions will be available for various problem types:

Table 8.1: Types of solutions available from MOSEK

Simplex optimizer Interior-point opti- | Mixed-integer  opti-
mizer mizer
Linear problem SolutionType. SolutionType.
Basic Interior
Conic (nonlinear) problem SolutionType.
Interior
Problem with integer vari- SolutionType.
ables Integer

For linear problems the user can force a specific optimizer choice making only one of the two solutions
available. For example, if the user disables basis identification, then only the interior point solution will
be available for a linear problem. Numerical issues may cause one of the solutions to be unknown even
if another one is feasible.

Not all components of a solution are always available. For example, there is no dual solution for
integer problems and no dual conic variables from the simplex optimizer.
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The user will always need to specify which solution should be accessed.

Moreover, the user may be oblivious to the actual solution type by always referring to SolutionType.
Default, which will automatically select the best available solution, if there is more than one. Moreover,
the method Model.selectedSolution can be used to fix one solution type for all future references.
8.1.3 Problem and solution status
Assuming that the optimization terminated without errors, the next important step is to check the

problem and solution status. There is one for every type of solution, as explained above.

Problem status

Problem status (ProblemStatus, retrieved with Yodel.getProblemStatus) determines whether the
problem is certified as feasible. Its values can roughly be divided into the following broad categories:

e feasible — the problem is feasible. For continuous problems and when the solver is run with default
parameters, the feasibility status should ideally be ProblemStatus.PrimalAndDualFeasible.

e primal/dual infeasible — the problem is infeasible or unbounded or a combination of those.
The exact problem status will indicate the type of infeasibility.

e unknown — the solver was unable to reach a conclusion, most likely due to numerical issues.

Solution status

Solution status (SolutionStatus, retrieved with Model.getPrimalSolutionStatus and Model.
getDualSolutionStatus) provides the information about what the solution values actually contain.
The most important broad categories of values are:

e optimal (SolutionStatus.Optimal) — the solution values are feasible and optimal.

e certificate — the solution is in fact a certificate of infeasibility (primal or dual, depending on the
solution).

e unknown/undefined — the solver could not solve the problem or this type of solution is not
available for a given problem.

The solution status determines the action to be taken. For example, in some cases a suboptimal
solution may still be valuable and deserve attention. It is the user’s responsibility to check the status
and quality of the solution.

Typical status reports

Here are the most typical optimization outcomes described in terms of the problem and solution
statuses. Note that these do not cover all possible situations that can occur.

Table 8.2: Continuous problems (solution status for

SolutionType.Interior or SolutionType.Basic)

Outcome Problem status Solution status (pri- | Solution status
mal) (dual)

Optimal ProblemStatus. SolutionStatus. SolutionStatus.
PrimalAndDualFeasible Optimal Optimal

Primal infeasible ProblemStatus. SolutionStatus. SolutionStatus.
PrimalInfeasible Unknown Certificate

Dual infeasible (un- | ProblemStatus. SolutionStatus. SolutionStatus.

bounded) Duallnfeasible Certificate Unknown

Uncertain (stall, numeri- | ProblemStatus. Unknown SolutionStatus. SolutionStatus.

cal issues, etc.) Unknown Unknown
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Table 8.3: Integer problems (solution status for SolutionType.

Integer, others undefined)

Outcome Problem status Solution status (primal) | Solution status (dual)
Integer optimal ProblemStatus. SolutionStatus. SolutionStatus.
PrimalFeasible Optimal Unknoun
Infeasible ProblemStatus. SolutionStatus. SolutionStatus.
PrimallInfeasible Unknown Unknown
Integer feasible | ProblemStatus. SolutionStatus. SolutionStatus.
point PrimalFeasible Feasible Unknown
No conclusion ProblemStatus. Unknoun SolutionStatus. SolutionStatus.
Unknouwn Unknown

8.1.4 Retrieving solution values

After the meaning and quality of the solution (or certificate) have been established, we can query for the
actual numerical values. They can be accessed using:

e MNodel.primalObjValue, Model.dualObjValue — the primal and dual objective value.
e Variable.level — solution values for the variables.
e Constraint.level — values of the constraint expressions in the current solution.

e Constraint.dual, Vartable.dual — dual values.

Remark

By default only optimal solutions are returned. An attempt to access a solution with a weaker
status will result in an exception. This can be changed by choosing another level of acceptable solutions
with the method Model.acceptedSolutionStatus. In particular, this method must be called to enable
retrieving suboptimal solutions and infeasibility certificates. For instance, one could write

M.acceptedSolutionStatus (AccSolutionStatus.Feasible);

The current setting of acceptable solutions can be checked with Model. getdcceptedSolutionStatus.

8.2 Errors and exceptions

Exceptions

Almost every method in Fusion API for Java can throw an exception informing that the requested
operation was not performed correctly, and indicating the type of error that occurred. This is the case
in situations such as for instance:

e incompatible dimensions in a linear expression,
e defining an invalid value for a parameter,

e accessing an undefined solution,

e repeating a variable name, etc.

It is therefore a good idea to catch exceptions of type FusionEzception and its specific subclasses.
The one case where it is extremely important to do so is when Model.solve is invoked. We will say
more about this in Sec. 8.1.

The exception contains a short diagnostic message. They can be accessed as in the following example.

try {
M.setSolverParam("intpntCoTolRelGap", 1.01);
} catch (mosek.fusion.ParameterError e) {
System.out.println("Error: " + e.toString());

}
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It will produce as output:

Error: Invalid value for parameter (intpntCoTolRelGap)

Optimizer errors and warnings

The optimizer may also produce warning messages. They indicate non-critical but important events,
that will not prevent solver execution, but may be an indication that something in the optimization
problem might be improved. Warning messages are normally printed to a log stream (see Sec. 8.3). A
typical warning is, for example:

MOSEK warning 53: A numerically large upper bound value 6.6e+09 is specified for constraint
—'C69200"' (46020) .

8.3 Input/Output

The Model class is also a proxy for input/output operations related to an optimization model.

8.3.1 Stream logging

By default the solver runs silently and does not produce any output to the console or otherwise. However,
the log output can be redirected to a user-defined output stream or stream callback function. The log
output is analogous to the one produced by the command-line version of MOSEK.

To redirect all log messages use the method Model.setLogHandler. For instance, we can use the
standard output:

M.setLogHandler (new PrintWriter (System.out));

A log stream can be detached by passing NULL.

8.3.2 Log verbosity

The logging verbosity can be controlled by setting the relevant parameters, as for instance

® log,

logIntpnt,

® logMio,

logCutSecondlpt,
e logSim, and
e logSimMinor.

Each parameter controls the output level of a specific functionality or algorithm. The main switch is
log which affect the whole output. The actual log level for a specific functionality is determined as the
minimum between log and the relevant parameter. For instance, the log level for the output produce by
the interior-point algorithm is tuned by the logIntpnt; the actual log level is defined by the minimum
between log and logIntpnt.

Tuning the solver verbosity may require adjusting several parameters. It must be noticed that verbose
logging is supposed to be of interest during debugging and tuning. When output is no more of interest,
the user can easily disable it globally with log. Larger values of 1og do not necessarily result in increased
output.

By default MOSEK will reduce the amount of log information after the first optimization on a given
problem. To get full log output on subsequent re-optimizations set logCutSecondOpt to zero.
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8.3.3 Saving a problem to a file

An optimization model defined in Fusion can be dumped to a file using the method Model.writeTask.
The file format will be determined from the filename’s extension. Supported formats are listed in Sec.
15 together with a table of problem types supported by each.

For instance the problem can be written to an OPF file with

M.writeTask("dump.opf");

All formats can be compressed with gzip by appending the .gz extension, for example

M.writeTask("dump.task.gz");

Some remarks:

e The problem is written to the file as it is represented in the underlying optimizer task, that is
including auxiliary variables introduced by Fusion if necessary.

e Unnamed variables are given generic names. It is therefore recommended to use meaningful variable
names if the problem file is meant to be human-readable.

e The task format is MOSEK’s native file format which contains all the problem data as well as

solver settings.

8.3.4 Reading a problem from a file

It is not possible to read a file saved with Model.writeTask back into Fusion because the structure
of the high-level optimization model is not saved. However, such problem files can be solved with the
command-line tool or read by the low-level Optimizer APT if necessary. See the documentation of those
interfaces for details.

8.4 Setting solver parameters

MOSEK comes with a large number of parameters that allows the user to tune the behavior of the
optimizer. The typical settings which can be changed with solver parameters include:

e choice of the optimizer for linear problems,

e choice of primal/dual solver,

e turning presolve on/off,

e turning heuristics in the mixed-integer optimizer on/off,
e level of multi-threading,

e feasibility tolerances,

e solver termination criteria,

e behaviour of the license manager,

and more. All parameters have default settings which will be suitable for most typical users.
The API reference contains:

e Full list of parameters

e List of parameters grouped by topic
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Setting parameters

Each parameter is identified by a unique string name and it can accept either integers, floating point
values or symbolic strings. Parameters are set using the method Model.setSolverParam. Fusion will
try to convert the given argument to the exact expected type, and will raise an exception if that fails.

Some parameters accept only symbolic strings from a fixed set of values. The set of accepted values
for every parameter is provided in the API reference.

For example, the following piece of code sets up parameters which choose and tune the interior point
optimizer before solving a problem.

Listing 8.1: Parameter setting example.

// Set log level (integer parameter)

M.setSolverParam("log", 1);

// Select interior-point optimizer... (parameter with symbolic string values)
M.setSolverParam("optimizer", "intpnt");

// ... without basis identification (parameter with symbolic string values)
M.setSolverParam("intpntBasis", "never");

// Set relative gap tolerance (double parameter)
M.setSolverParam("intpntCoTolRelGap", 1.0e-7);

// The same in a different way
M.setSolverParam("intpntCoTolRelGap", "1.0e-7");

// Incorrect value

try {
M.setSolverParam("intpntCoTolRelGap", -1);

}

catch (mosek.fusion.ParameterError e) {
System.out.println("Wrong parameter value");

8.5 Retrieving information items

After the optimization the user has access to the solution as well as to a report containing a large amount
of additional information items. For example, one can obtain information about:

e timing: total optimization time, time spent in various optimizer subroutines, number of iterations,
etc.

e solution quality: feasibility measures, solution norms, constraint and bound violations, etc.
e problem structure: counts of variables of different types, constraints, nonzeros, etc.
e integer optimizer: integrality gap, objective bound, number of cuts, etc.

and more. Information items are numerical values of integer, long integer or double type. The full
list can be found in the API reference:

e Double information items
e [nteger information items
e Long information items

Certain information items make sense, and are made available, also during the optimization process.
They can be accessed from a callback function, see Sec. 8.7 for details.

Remark

For efficiency reasons, not all information items are automatically computed after optimization. To
force all information items to be updated use the parameter autoUpdateSolInfo.
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Retrieving the values

Values of information items are fetched using one of the methods
e Nodel.getSolverDoubleInfo for a double information item,

e Nodel.getSolverIntInfo for an integer information item,

e Nodel.getSolverLIntInfo for a long integer information item.

Each information item is identified by a unique name. The example below reads two pieces of data
from the solver: total optimization time and the number of interior-point iterations.

Listing 8.2: Information items example.

double tm = M.getSolverDoubleInfo("optimizerTime") ;
int it = M.getSolverIntInfo("intpntIter");

System.out.println("Time: " + tm);
System.out.println("Iterations: " + it);

8.6 Stopping the solver

The Model provides the method Model.breakSolver that notifies the solver that it must stop as soon as
possible. The solver will not terminate momentarily, as it only periodically checks for such notifications.
In any case, it will stop as soon as possible. The typical usage pattern of this method would be:

e build the optimization model M,

e create a separate thread in which M will run,

e break the solver by calling Xodel.breakSolver from the main thread.
Warnings and comments:

e It is recommended to use the solver parameters to set or modify standard built-in termination
criteria (such as maximal running time, solution tolerances etc.). See Sec. 8.4.

e More complicated user-defined termination criteria can be implemented within a callback function.
See Sec. 8.7.

e The state of the solver and solution after termination may be undefined.
e This operation is very language dependent and particular care must be taken to avoid stalling or
other undesired side effects.
8.6.1 Example: Setting a Time Limit

For the purpose of the tutorial we will implement a busy-waiting breaker with the time limit as a termi-

nation criterion. Note that in practice it would be better just to set the parameter optimizerMazTime.
Suppose we built a model M that is known to run for quite a long time (in the accompanying example

code we create a particular integer program). Then we could create a new thread solving the model:

Thread T = new Thread() { public void run() { M.solve(); } };

In the main thread we are going to check if a time limit has elapsed. After calling Model.breakSolver
we should wait for the solver thread to actually return. Altogether this scenario can be implemented as
follows:
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Listing 8.3: Stopping solver execution.

Thread T = new Thread() { public void run() { M.solve(); } };
T.start();

long TO = System.currentTimeMillis();
while (true) {
if (System.currentTimeMillis() - TO > timeout * 1000) {
System.out.println("Solver terminated due to timeout!");
M.breakSolver();
T.join();
break;
}
if (! T.isAlive()) {
System.out.println("Solver terminated before anything happened!");
T.join();
break;
}
X

8.7 Progress and data callback

Callbacks are a very useful mechanism that allow the caller to track the progress of the MOSEK
optimizer. A callback function provided by the user is regularly called during the optimization and can
be used to

e obtain a customized log of the solver execution,

e collect information for debugging purposes or

e ask the solver to terminate.

Fusion API for Java has the following callback mechanisms:

e progress callback, which provides only the basic status of the solver.

e data callback, which provides the solver status and a complete set of information items that

describe the progress of the optimizer in detail.

Warning

The callbacks functions must not invoke any functions of the solver, environment or task. Otherwise
the state of the solver and its outcome are undefined.

8.7.1 Data callback

In the data callback MOSEK passes a callback code and values of all information items to a user-
defined function. The callback function is called, in particular, at the beginning of each iteration of the
interior-point optimizer. For the simplex optimizers logSimFreq controls how frequently the call-back
is called. Note that the callback is done quite frequently, which can lead to degraded performance. If
the information items are not required, the simpler progress callback may be a better choice.

The data callback is set by calling the method Model.setDataCallbackHandler.

The callback function must be implemented by extending the abstract class mosek.DataCallback
(see the manual for Optimizer API for details) and implementing the method

public int callback(callbackcode caller,

doublel] douinf,
int[] intinf,
longl[] lintinf)

Arguments:

e caller - the status of the optimizer.
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e douinf - values of double information items.
e intinf - values of integer information items.
e lintinf - values of long information items.

Return value: Non-zero return value of the callback function indicates that the optimizer should
be terminated.

8.7.2 Progress callback

In the progress callback MOSEK provides a single code indicating the current stage of the optimization
process.

The callback is set by calling the method ¥Yodel.setCallbackHandler.

The callback function must be implemented by extending the abstract class mosek.Progress (see
the manual for Optimizer API for details) and implementing the method

public int progress(callbackcode caller)

Arguments:
e caller - the status of the optimizer.
Return value: Non-zero return value of the callback function indicates that the optimizer should

be terminated.

8.7.3 Working example: Data callback

The following example defines a data callback function that prints out some of the information items.
It interrupts the solver after a certain time limit. Note that the time limit refers to time spent in the
solver and does not include setting up the model in Fusion.

Listing 8.4: An example of a data callback function.

private static DataCallback makeUserCallback(final double maxtime,
final Model mod) {
return new DataCallback() {
public int callback(callbackcode caller,

doublel] douinf,
int[] intinf,
longl[] lintinf)
{
double opttime = 0.0;
int itrn;

double pobj, dobj, stime;

Formatter f = new Formatter(System.out) ;
switch (caller) {
case begin_intpnt:
f.format("Starting interior-point optimizer\n");

break;

case intpnt:
itrn = intinf[iinfitem.intpnt_iter.value 1;
pobj = douinf [dinfitem.intpnt_primal_obj.value];
dobj = douinf [dinfitem.intpnt_dual_obj.value 1];
stime = douinf[dinfitem.intpnt_time.value 1;

opttime = douinf[dinfitem.optimizer_time.value ];
f.format ("Iterations: %-3d\n", itrn);
f.format(" Elapsed time: %6.2f(%.2f)\n", opttime, stime);
f.format(" Primal obj.: %-18.6e Dual obj.: %-18.6e\n", pobj, dobj);
break;
case end_intpnt:
f.format("Interior-point optimizer finished.\n");

(continues on next page)
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(continued from previous page)

break;
case begin_primal_simplex:
f.format ("Primal simplex optimizer started.\n");

break;

case update_primal_simplex:
itrn = intinf[iinfitem.sim_primal_iter.value 1];
pobj = douinf [dinfitem.sim_obj.value 1;
stime = douinf[dinfitem.sim_time.value 1;
opttime = douinf[dinfitem.optimizer_time.value ];

f.format ("Iterations: %-3d\n", itrn);
f.format(" Elapsed time: %6.2f(%.2f)\n", opttime, stime);
f.format(" Obj.: %-18.6e\n", pobj );
break;
case end_primal_simplex:
f.format("Primal simplex optimizer finished.\n");
break;
case begin_dual_simplex:
f.format("Dual simplex optimizer started.\n");

break;

case update_dual_simplex:
itrn = intinf[iinfitem.sim_dual_iter.value 1;
pobj = douinf [dinfitem.sim_obj.value 1;
stime = douinf[dinfitem.sim_time.value 1;
opttime = douinf[dinfitem.optimizer_time.value 1];

f.format ("Iterations: %-3d\n", itrn);
f.format(" Elapsed time: %6.2f(%.2f)\n", opttime, stime);
f.format(" Obj.: %-18.6e\n", pobj);
break;
case end_dual_simplex:
f.format("Dual simplex optimizer finished.\n");
break;
case begin_bi:
f.format ("Basis identification started.\n");
break;
case end_bi:
f.format ("Basis identification finished.\n");
break;
default:
}
System.out.flush();
if (opttime >= maxtime) {
f.format ("MOSEK is spending too much time. Terminate it.\n");
System.out.flush();
return 1;
}
return O;
}
};
ks

Assuming that we have defined a model M and a time limit maxtime, the callback function is attached
as follows:
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Listing 8.5: Attaching the data callback function to the model.

M.setDataCallbackHandler ( makeUserCallback(maxtime, M) );

8.8 Optimizer API Task

This section is intended for advanced users and should normally never be followed unless advanced
debugging or very specialized functionalities are required.

The Model is a wrapper on top of an underlying MOSEK low-level optimizer task. Access to the
task is provided by the method Yodel. getTask. The functionalities available from the task are described
in the documentation of the relevant Optimizer API.

Warning

Note that the user gets access to the actual task in the model, and not its clone. Changing the state
of the task will most likely invalidate the Fusion model.
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Chapter 9

Debugging Tutorials

This collection of tutorials contains basic techniques for debugging optimization problems using tools
available in MOSEK: optimizer log, solution summary, infeasibility report, command-line tools. It is
intended as a first line of technical help for issues such as: Why do I get solution status unknown and
how can I fix it? Why is my model infeasible while it shouldn’t be? Should I change some parameters?
Can the model solve faster? etc.

The major steps when debugging a model are always:

e Enable log output. See Sec. 8.3.1 for how to do it. In the simplest case:

M.setLogHandler (new PrintWriter (System.out));

e Run the optimization and analyze the log output, see Sec. 9.1. In particular:

— check if the problem setup (number of constraints/variables etc.) matches your expectation.

— check solution summary and solution status.
e Dump the problem to disk if necessary to continue analysis. See Sec. 8.3.3.

— use a human-readable text format, such as *.opf if you want to check the problem structure
by hand. Assign names to variables and constraints to make them easier to identify.

’ M.writeTask("dump.opf"); ‘

— use the MOSEK native format *.task.gz when submitting a bug report or support question.

’ M.writeTask("dump.task.gz"); ‘

e Fix problem setup, improve the model, locate infeasibility or adjust parameters, depending on the
diagnosis.

See the following sections for details.

9.1 Understanding optimizer log

The optimizer produces a log which splits roughly into four sections:
1. summary of the input data,
2. presolve and other pre-optimize problem setup stages,
3. actual optimizer iterations,

4. solution summary.

In this tutorial we show how to analyze the most important parts of the log when initially debugging
a model: input data (1) and solution summary (4). For the iterations log (3) see Sec. 13.3.4 or Sec.
13.4.8.
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9.1.1 Input data

If MOSEK behaves very far from expectations it may be due to errors in problem setup. The log file
will begin with a summary of the structure of the problem, which looks for instance like:

Problem
Name
Objective sense ! max
Type : CONIC (conic optimization problem)
Constraints 1 20413
Cones : 2508
Scalar variables 1 20414
Matrix variables : 0
Integer variables : 0

This can be consulted to eliminate simple errors: wrong objective sense, wrong number of variables
etc. Note that Fusion, and third-party modeling tools can introduce additional variables and constraints
to the model. In the remaining MOSEK APIs the problem dimensions should match exactly what the
user specified.

If this is not sufficient a bit more information can be obtained by dumping the problem to a file
(see Sec. 9) and using the anapro option of any of the command line tools. This will produce a longer
summary similar to:

** Variables
scalar: 20414 integer: O matrix: O
low: 2082 up: 5014 ranged: O free: 12892 fixed: 426

**x Constraints

all: 20413

low: 10028 up: O ranged: O free: 0 fixed: 10385
** Cones

QUAD: 1 dims: 2865: 1

RQUAD: 2507 dims: 3: 2507

**x Problem data (numerics)

lcl nnz: 10028 min=2.09e-05 max=1.00e+00
A nnz: 597023 min=1.17e-10 max=1.00e+00
blx fin: 2508 min=-3.60e+09 max=2.75e+05
bux fin: 5440 min=0.00e+00 max=2.94e+08
blc fin: 20413 min=-7.61e+05 max=7.61e+05
buc fin: 10385 min=-5.00e-01 max=0.00e+00

Again, this can be used to detect simple errors, such as:

e Wrong type of cone was used or it has wrong dimension.

e The bounds for variables or constraints are incorrect or incomplete.
e The model is otherwise incomplete.

e Suspicious values of coefficients.

e For various data sizes the model does not scale as expected.

Finally saving the problem in a human-friendly text format such as LP or OPF (see Sec. 9) and
analyzing it by hand can reveal if the model is correct.

Warnings and errors
At this stage the user can encounter warnings which should not be ignored, unless they are well-

understood. They can also serve as hints as to numerical issues with the problem data. A typical
warning of this kind is
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MOSEK warning 53: A numerically large upper bound value 2.9e+08 is specified for variable
—'absh[107]' (2613).

Warnings do not stop the problem setup. If, on the other hand, an error occurs then the model will
become invalid. The user should make sure to test for errors/exceptions from all API calls that set up
the problem and validate the data. See Sec. 8.2 for more details.

9.1.2 Solution summary

The last item in the log is the solution summary.

Continuous problem

Optimal solution

A typical solution summary for a continuous (linear, conic, quadratic) problem looks like:

Problem status : PRIMAL_AND_DUAL_FEASIBLE

Solution status : OPTIMAL

Primal. obj: 8.7560516107e+01 nrm: le+02 Viol. con: 3e-12 var: 0e+00 cones: 3e-11
Dual. obj: 8.7560521345e+01 nrm: 1e+00 Viol. con: 5e-09 var: 9e-11 cones: 0e+00

It contains the following elements:
e Problem and solution status. For details see Sec. 8.1.3.

e A summary of the primal solution: objective value, infinity norm of the solution vector xx, maximal
violations of constraints, variable bounds and cones. The violation of a linear constraint such as
a’z < b is max(a’x — b,0). The violation of a conic constraint z € K is the distance dist(x, K).

e The same for the dual solution.

The features of the solution summary which characterize a very good and accurate solution and a
well-posed model are:

e Status: The solution status is OPTIMAL.

e Duality gap: The primal and dual objective values are (almost) identical, which proves the
solution is (almost) optimal.

e Norms: Ideally the norms of the solution and the objective values should not be too large. This of
course depends on the input data, but a huge solution norm can be an indicator of issues with the
scaling, conditioning and/or well-posedness of the model. It may also indicate that the problem is
borderline between feasibility and infeasibility and sensitive to small perturbations in this respect.

e Violations: The violations are close to zero, which proves the solution is (almost) feasible. Observe
that due to rounding errors it can be expected that the violations are proportional to the norm
(nrm:) of the solution. It is rarely the case that violations are exactly zero.

Solution status UNKNOWN

A typical example with solution status UNKNOWN due to numerical problems will look like:

Problem status : UNKNOWN
Solution status : UNKNOWN
Primal. obj: 1.3821656824e+01 nrm: le+01 Viol. con: 2e-03 var: 0e+00 cones: 0e+00
Dual. obj: 3.0119004098e-01 nrm: 5e+07 Viol. con: 4e-16 var: le-01 cones: 0e+00

Note that:

e The primal and dual objective are very different.

e The dual solution has very large norm.

e There are considerable violations so the solution is likely far from feasible.

Follow the hints in Sec. 9.2 to resolve the issue.
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Solution status UNKNOWN with a potentially useful solution

Solution status UNKNOWN does not necessarily mean that the solution is completely useless. It only
means that the solver was unable to make any more progress due to numerical difficulties, and it was not
able to reach the accuracy required by the termination criteria (see Sec. 13.3.2). Consider for instance:

Problem status : UNKNOWN
Solution status : UNKNOWN
Primal. obj: 3.4531019648e+04 nrm: le+05 Viol. con: 7e-02 var: 0e+00 cones: 0e+00
Dual. obj: 3.4529720645e+04 nrm: 8e+03 Viol. con: le-04 var: 2e-04 cones: 0e+00

Such a solution may still be useful, and it is always up to the user to decide. It may be a good enough
approximation of the optimal point. For example, the large constraint violation may be due to the fact
that one constraint contained a huge coeflicient.

Infeasibility certificate

A primal infeasibility certificate is stored in the dual variables:

Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 2.9238975853e+02 nrm: 6e+02 Viol. con: 0e+00 var: le-11 cones: 0e+00

It is a Farkas-type certificate as described in Sec. 12.2.2. In particular, for a good certificate:

e The dual objective is positive for a minimization problem, negative for a maximization problem.
Ideally it is well bounded away from zero.

e The norm is not too big and the violations are small (as for a solution).

If the model was not expected to be infeasible, the likely cause is an error in the problem formulation.
Use the hints in Sec. 9.1.1 and Sec. 9.3 to locate the issue.

Just like a solution, the infeasibility certificate can be of better or worse quality. The infeasibility
certificate above is very solid. However, there can be less clear-cut cases, such as for example:

Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 1.6378689238e-06 nrm: 6e+05 Viol. con: 7e-03 var: 2e-04 cones: 0e+00

This infeasibility certificate is more dubious because the dual objective is positive, but barely so in
comparison with the large violations. It also has rather large norm. This is more likely an indication
that the problem is borderline between feasibility and infeasibility or simply ill-posed and sensitive to
tiny variations in input data. See Sec. 9.3 and Sec. 9.2.

The same remarks apply to dual infeasibility (i.e. unboundedness) certificates. Here the primal
objective should be negative a minimization problem and positive for a maximization problem.

9.1.3 Mixed-integer problem

Optimal integer solution

For a mixed-integer problem there is no dual solution and a typical optimal solution report will look
as follows:

Problem status : PRIMAL_FEASIBLE
Solution status : INTEGER_OPTIMAL
Primal. obj: 6.0111122960e+06 nrm: 1le+03 Viol. con: 2e-13 var: 2e-14 itg: be-15

The interpretation of all elements is as for a continuous problem. The additional field itg denotes
the maximum violation of an integer variable from being an exact integer.

Feasible integer solution

If the solver found an integer solution but did not prove optimality, for instance because of a time
limit, the solution status will be PRIMAL_FEASIBLE:
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Problem status : PRIMAL_FEASIBLE
Solution status : PRIMAL_FEASIBLE
Primal. obj: 6.0114607792e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-13 itg: 4e-15

In this case it is valuable to go back to the optimizer summary to see how good the best solution is:

31 35 1 0 6.0114607792e+06 6.0078960892e+06 0.06 4.1

Objective of best integer solution : 6.011460779193e+06
Best objective bound : 6.007896089225e+06

In this case the best integer solution found has objective value 6.011460779193e+06, the best proved
lower bound is 6.007896089225e+06 and so the solution is guaranteed to be within 0.06% from optimum.
The same data can be obtained as information items through an API. See also Sec. 13.4 for more details.

Infeasible problem

If the problem is declared infeasible the summary is simply

Problem status : PRIMAL_INFEASIBLE
Solution status : UNKNOWN
Primal. obj: 0.0000000000e+00 nrm: Oe+00 Viol. con: 0e+00 var: 0e+00 itg: 0e+00

If infeasibility was not expected, consult Sec. 9.3.

9.2 Addressing numerical issues

The suggestions in this section should help diagnose and solve issues with numerical instability, in
particular UNKNOWN solution status or solutions with large violations. Since numerically stable models
tend to solve faster, following these hints can also dramatically shorten solution times.

We always recommend that issues of this kind are addressed by reformulating or rescaling the model,
since it is the modeler who has the best insight into the structure of the problem and can fix the cause
of the issue.

9.2.1 Formulating problems
Scaling

Make sure that all the data in the problem are of comparable orders of magnitude. This applies
especially to the linear constraint matrix. Use Sec. 9.1.1 if necessary. For example a report such as

|A] nnz: 597023 min=1.17e-6 max=2.21e+b

means that the ratio of largest to smallest elements in A is 10!, In this case the user should rescale
or reformulate the model to avoid such spread which makes it difficult for MOSEK to scale the problem
internally. In many cases it may be possible to change the units, i.e. express the model in terms of
rescaled variables (for instance work with millions of dollars instead of dollars, etc.).

Similarly, if the objective contains very different coefficients, say

maximize 102 + y

then it is likely to lead to inaccuracies. The objective will be dominated by the contribution from x and
y will become insignificant.

Removing huge bounds

Never use a very large number as replacement for co. Instead define the variable or constraint as
unbounded from below/above. Similarly, avoid artificial huge bounds if you expect they will not become
tight in the optimal solution.
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Avoiding linear dependencies

As much as possible try to avoid linear dependencies and near-linear dependencies in the model. See
Example 9.3.

Avoiding ill-posedness

Avoid continuous models which are ill-posed: the solution space is degenerate, for example consists
of a single point (technically, the Slater condition is not satisfied). In general, this refers to problems
which are borderline between feasible and infeasible. See Example 9.1.

Scaling the expected solution

Try to formulate the problem in such a way that the expected solution (both primal and dual) is not
very large. Consult the solution summary Sec. 9.1.2 to check the objective values or solution norms.

9.2.2 Further suggestions

Here are other simple suggestions that can help locate the cause of the issues. They can also be used as
hints for how to tune the optimizer if fixing the root causes of the issue is not possible.

e Remove the objective and solve the feasibility problem. This can reveal issues with the objective.

e Change the objective or change the objective sense from minimization to maximization (if appli-
cable). If the two objective values are almost identical, this may indicate that the feasible set is
very small, possibly degenerate.

e Perturb the data, for instance bounds, very slightly, and compare the results.

e For linear problems: solve the problem using a different optimizer by setting the parameter
optimizer and compare the results.

e Force the optimizer to solve the primal/dual versions of the problem by setting the parameter
intpntSolveForm or simSolveForm. MOSEK has a heuristic to decide whether to dualize, but
for some problems the guess is wrong an explicit choice may give better results.

e Solve the problem without presolve or some of its parts by setting the parameter presolvelUse,
see Sec. 13.1.

e Use different numbers of threads (numThreads) and compare the results. Very different results
indicate numerical issues resulting from round-off errors.

If the problem was dumped to a file, experimenting with various parameters is facilitated with the
MOSEK Command Line Tool or MOSEK Python Console Sec. 9.4.

9.2.3 Typical pitfalls

Example 9.1 (Ill-posedness). A toy example of this situation is the feasibility problem
(x—1)2<1, (z+1)?<1

whose only solution is x = 0 and moreover replacing any 1 on the right hand side by 1 — ¢ makes
the problem infeasible and replacing it by 1 4 € yields a problem whose solution set is an interval
(fully-dimensional). This is an example of ill-posedness.

Example 9.2 (Huge solution). If the norm of the expected solution is very large it may lead to
numerical issues or infeasibility. For example the problem

(1074, 2,10%) € Q3

may be declared infeasible because the expected solution must satisfy z > 5 -10°.
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Example 9.3 (Near linear dependency). Counsider the following problem:

minimize
subject to T1 + X2 = 1,
r3 + x4 = 1,
- — I3 = —1l+4e¢,
- To — T4 = —1,
T, o, T3, T4 Z O

If we add the equalities together we obtain:
0=¢

which is infeasible for any € # 0. Here infeasibility is caused by a linear dependency in the constraint
matrix coupled with a precision error represented by the ¢. Indeed if a problem contains linear
dependencies then the problem is either infeasible or contains redundant constraints. In the above
case any of the equality constraints can be removed while not changing the set of feasible solutions.
To summarize linear dependencies in the constraints can give rise to infeasible problems and therefore
it is better to avoid them.

Example 9.4 (Presolving very tight bounds). Next consider the problem

minimize
subject to x1 — 0.0lxs = 0,
T — 0.011}3 = O7
Tr3 — 0.01.134 = 0,
T1 > —1077,
Z1 S 10797
X4 > 10~*

Now the MOSEK presolve will, for the sake of efficiency, fix variables (and constraints) that have
tight bounds where tightness is controlled by the parameter presolveTolX. Since the bounds

1079 <2, <107°

are tight, presolve will set 1 = 0. It easy to see that this implies x4 = 0, which leads to the incorrect
conclusion that the problem is infeasible. However a tiny change of the value 10~ makes the problem
feasible. In general it is recommended to avoid ill-posed problems, but if that is not possible then one
solution is to reduce parameters such as presolveTolX to say 107'°. This will at least make sure
that presolve does not make the undesired reduction.

9.3 Debugging infeasibility

This section contains hints for debugging problems that are unexpectedly infeasible. It is always a good
idea to remove the objective, i.e. only solve a feasibility problem when debugging such issues.

9.3.1 Numerical issues

Infeasible problem status may be just an artifact of numerical issues appearing when the problem is
badly-scaled, barely feasible or otherwise ill-conditioned so that it is unstable under small perturbations
of the data or round-off errors. This may be visible in the solution summary if the infeasibility certificate
has poor quality. See Sec. 9.1.2 for how to diagnose that and Sec. 9.2 for possible hints. Sec. 9.2.3
contains examples of situations which may lead to infeasibility for numerical reasons.

We refer to Sec. 9.2 for further information on dealing with those sort of issues. For the rest of this
section we concentrate on the case when the solution summary leaves little doubt that the problem solved
by the optimizer actually is infeasible.
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9.3.2 Locating primal infeasibility

As an example of a primal infeasible problem consider minimizing the cost of transportation between a
number of production plants and stores: Each plant produces a fixed number of goods, and each store
has a fixed demand that must be met. Supply, demand and cost of transportation per unit are given in
Fig. 9.1.

Supply Demand
1 1100

200
300

1000
500

1000
500

Fig. 9.1: Supply, demand and cost of transportation.
The problem represented in Fig. 9.1 is infeasible, since the total demand
2300 = 1100 + 200 + 500 + 500
exceeds the total supply
2200 = 200 + 1000 + 1000

If we denote the number of transported goods from plant 7 to store j by z;;, the problem can be
formulated as the LP:

minimize 11 + 2x12 4+ dxes + 2T04 + x31 + 2133 + T3s
subject to sp: w1 + T2 < 200,
S1 ¢ I3 + Tog S 1000,
So : 31 + w33 + w34 < 1000,
di: 11 + 31 = 1100,
d2 : X112 = 200,
ds: To3 + X33 = 500,
d4 . T4 + T34 — 500,
9.1)

Solving problem (9.1) using MOSEK will result in an infeasibility status. The infeasibility certificate
is contained in the dual variables an can be accessed from an API. The variables and constraints with
nonzero solution values form an infeasible subproblem, which frequently is very small. See Sec. 12.1.2 or
Sec. 12.2.2 for detailed specifications of infeasibility certificates.

A short infeasibility report can also be printed to the log stream. It can be turned on by setting the
parameter MSK_IPAR_INFEAS_REPORT_AUTO to MSK_ON in the command-line tool. This causes MOSEK
to print a report on variables and constraints which are involved in infeasibility in the above sense,
i.e. have nonzero values in the certificate. The parameter MSK_IPAR_INFEAS_REPORT_LEVEL controls
the amount of information presented in the infeasibility report. The default value is 1. For the above
example the report is

62



MOSEK PRIMAL INFEASIBILITY REPORT.
Problem status: The problem is primal infeasible

The following constraints are involved in the primal infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper

0 s0 NONE 2.000000e+002 0.000000e+000 1.000000e+000
2 s2 NONE 1.000000e+003 0.000000e+000 1.000000e+000
3 d1 1.100000e+003 1.100000e+003 1.000000e+000 0.000000e+000
4 d2 2.000000e+002 2.000000e+002 1.000000e+000 0.000000e+000

The following bound constraints are involved in the infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper
8 x33 0.000000e+000 NONE 1.000000e+000 0.000000e+000
10 x34 0.000000e+000 NONE 1.000000e+000 0.000000e+000

The infeasibility report is divided into two sections corresponding to constraints and variables. It
is a selection of those lines from the problem solution which are important in understanding primal
infeasibility. In this case the constraints s0, s2, d1, d2 and variables x33, x34 are of importance because
of nonzero dual values. The columns Dual lower and Dual upper contain the values of dual variables
s7, 85, s and s in the primal infeasibility certificate (see Sec. 12.1.2).

In our example the certificate means that an appropriate linear combination of constraints s0, si1
with coefficient s{ = 1, constraints d1 and d2 with coefficient s — sf = 0 —1 = —1 and lower bounds
on x33 and x34 with coeflicient —sf = —1 gives a contradiction. Indeed, the combination of the four
involved constraints is x33 + 234 < —100 (as indicated in the introduction, the difference between supply
and demand).

It is also possible to extract the infeasible subproblem with the command-line tool. For an infeasible
problem called infeas.1lp the command:

mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.lp -info rinfeas.lp

will produce the file rinfeas.bas.inf.1lp which contains the infeasible subproblem. Because of its
size it may be easier to work with than the original problem file.

Returning to the transportation example, we discover that removing the fifth constraint x;o = 200
makes the problem feasible. Almost all undesired infeasibilities should be fixable at the modeling stage.

9.3.3 Locating dual infeasibility

A problem may also be dual infeasible. In this case the primal problem is usually unbounded, meaning
that feasible solutions exists such that the objective tends towards infinity. For example, consider the
problem

maximize 200y; + 1000y + 1000y3 + 1100y, + 200ys + 500y + 500y~

subject to NFys <L y1+ys <2, yo+ys <5, y2 +yr <2,
ystys <1, y3+ys <2, ys+yr <1
Y1,Y2,y3 <0

which is dual to (9.1) (and therefore is dual infeasible). The dual infeasibility report may look as follows:

MOSEK DUAL INFEASIBILITY REPORT.
Problem status: The problem is dual infeasible

The following constraints are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper bound
5 x33 -1.000000e+00 NONE 2.000000e+00
6 x34 -1.000000e+00 NONE 1.000000e+00

(continues on next page)
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(continued from previous page)

The following variables are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper bound
0 yi -1.000000e+00 2.000000e+02 NONE 0.000000e+00
2 y3 -1.000000e+00 1.000000e+03 NONE 0.000000e+00
3 y4 1.000000e+00 1.100000e+03 NONE NONE

4 y5 1.000000e+00 2.000000e+02 NONE NONE

Interior-point solution summary
Problem status : DUAL_INFEASIBLE
Solution status : DUAL_INFEASIBLE_CER
Primal. obj: 1.0000000000e+02 nrm: 1e+00 Viol. con: 0e+00 var: 0e+00

In the report we see that the variables y1, y3, y4, y5 and two constraints contribute to infeasibility
with non-zero values in the Activity column. Therefore

(yla v 7y7) = (_1a 0, _17 ]-7 13 070)
is the dual infeasibility certificate as in Sec. 12.1.2. This just means, that along the ray
(0,0,0,0,0,0,0) + t(yla s ay7) = (7t707 7t7t7t3070)7 t> Oa

which belongs to the feasible set, the objective value 100t can be arbitrarily large, i.e. the problem is
unbounded.
In the example problem we could

e Add a lower bound on y3. This will directly invalidate the certificate of dual infeasibility.
e Increase the objective coefficient of y3. Changing the coefficients sufficiently will invalidate the
inequality ¢’'y* > 0 and thus the certificate.
9.3.4 Suggestions

Primal infeasibility

When trying to understand what causes the unexpected primal infeasible status use the following
hints:

e Remove the objective function. This does not change the infeasibility status but simplifies the
problem, eliminating any possibility of issues related to the objective function.

e Remove cones, semidefinite variables and integer constraints. Solve only the linear part of the
problem. Typical simple modeling errors will lead to infeasibility already at this stage.

e Consider whether your problem has some obvious necessary conditions for feasibility and examine
if these are satisfied, e.g. total supply should be greater than or equal to total demand.

e Verify that coefficients and bounds are reasonably sized in your problem.

e See if there are any obvious contradictions, for instance a variable is bounded both in the variables
and constraints section, and the bounds are contradictory.

e Consider replacing suspicious equality constraints by inequalities. For instance, instead of 15 = 200
see what happens for x15 > 200 or z15 < 200.

e Relax bounds of the suspicious constraints or variables.

e For integer problems, remove integrality constraints on some/all variables and see if the problem
solves.
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e Form an elastic model: allow to violate constraints at a cost. Introduce slack variables and add
them to the objective as penalty. For instance, suppose we have a constraint

minimize Tz,

subject to aTz < b.

which might be causing infeasibility. Then create a new variable y and form the problem which
contains:

minimize cla+y,
subject to alx <b+y.

Solving this problem will reveal by how much the constraint needs to be relaxed in order to become
feasible. This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

e If you think you have a feasible solution or its part, fix all or some of the variables to those values.
Presolve will propagate them through the model and potentially reveal more localized sources of
infeasibility.

e Dump the problem in OPF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Dual infeasibility

When trying to understand what causes the unexpected dual infeasible status use the following hints:
e Verify that the objective coefficients are reasonably sized.

e Check if no bounds and constraints are missing, for example if all variables that should be nonneg-
ative have been declared as such etc.

e Strengthen bounds of the suspicious constraints or variables.

e Form an series of models with decreasing bounds on the objective, that is, instead of objective
minimize ¢!z
solve the problem with an additional constraint such as
e =-10°

and inspect the solution to figure out the mechanism behind arbitrarily decreasing objective values.
This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

e Dump the problem in OPF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Please note that modifying the problem to invalidate the reported certificate does not imply that the
problem becomes feasible — the reason for infeasibility may simply move, resulting a problem that is
still infeasible, but for a different reason. More often, the reported certificate can be used to give a hint
about errors or inconsistencies in the model that produced the problem.

9.4 Python Console
The MOSEK Python Console is an alternative to the MOSEK Command Line Tool. It can be used for

interactive loading, solving and debugging optimization problems stored in files, for example MOSEK
task files. It facilitates debugging techniques described in Sec. 9.
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9.4.1 Usage

The tool requires Python 2 or 3. The MOSEK interface for Python must be installed following the
installation instructions for Python API or Python Fusion API. In the basic case it should be sufficient
to execute the script

python setup.py install --user

in the directory containing the MOSEK Python module.

The Python Console is contained in the file mosekconsole.py in the folder with MOSEK binaries. It
can be copied to an arbitrary location. The file is also available for download here (mosekconsole.py).

To run the console in interactive mode use

’python mosekconsole.py ‘

To run the console in batch mode provide a semicolon-separated list of commands as the second
argument of the script, for example:

’python mosekconsole.py '"read data.task.gz; solve form=dual; writesol data" ‘

The script is written using the MOSEK Python API and can be extended by the user if more specific
functionality is required. We refer to the documentation of the Python API.

9.4.2 Examples

To read a problem from data.task.gz, solve it, and write solutions to data.sol, data.bas or data.itg:

read data.task.gz; solve; writesol data ‘

To convert between file formats:

read data.task.gz; write data.mps ‘

To set a parameter before solving:

’read data.task.gz; param INTPNT_CO_TOL_DFEAS 1le-9; solve" ‘

To list parameter values related to the mixed-integer optimizer in the task file:

’read data.task.gz; param MIO ‘

To print a summary of problem structure:

’read data.task.gz; anapro ‘

To solve a problem forcing the dual and switching off presolve:

’read data.task.gz; solve form=dual presolve=no

To write an infeasible subproblem to a file for debugging purposes:

’read data.task.gz; solve; infsub; write inf.opf

9.4.3 Full list of commands

Below is a brief description of all the available commands. Detailed information about a specific command
cmd and its options can be obtained with

help cmd
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Table 9.1: List of commands of the MOSEK Python Console.

Command

Description

help [command]

Print list of commands or info about a specific command

log filename

Save the session to a file

intro

Print MOSEK splashscreen

testlic

Test the license system

read filename

Load problem from file

reread

Reload last problem file

solve
[options]

Solve current problem

write filename

Write current problem to file

param [name

Set a parameter or get parameter values

[value]]

info [name] Get an information item

anapro Analyze problem data

hist Plot a histogram of problem data

anasol Analyze solutions

removeitg Remove integrality constraints

infsub Replace current problem with its infeasible subproblem
writesol Write solution(s) to file(s) with given basename
basename

delsol Remove all solutions from the task

exit Leave
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Chapter 10

Technical guidelines

This section contains some more in-depth technical guidelines for Fusion API for Java, not strictly
necessary for basic use of MOSEK.

10.1 Limitations

Fusion imposes some limitations on certain aspects of a model to ensure easier portability:

e Constraints and variables belong to a single model, and cannot as such be used (e.g. stacked) with
objects from other models.

e Most objects forming a Fusion model are immutable.
The limits on the model size in Fusion are as follows:

e The maximum number of variable elements is 23 — 1.
e The maximum size of a dimension is 23! — 1.

e The total size of an item (the product of dimensions) is limited to 262 — 1.

10.2 Memory management and garbage collection

Users who experience memory leaks using Fusion, especially:
e memory usage not decreasing after the solver terminates,
e memory usage increasing when solving a sequence of problems,

should make sure that the Model objects are properly garbage collected. Since each Model object
links to a MOSEK task resource in a linked library, it is sometimes the case that the garbage collector
is unable to reclaim it automatically. This means that substantial amounts of memory may be leaked.
For this reason it is very important to make sure that the Yodel object is disposed of manually when it
is not used any more. The necessary cleanup is performed by the method Model. dispose.

Model M = new Model();
try
{
// do something with M

}
finally
{

M.dispose();
}
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This construction assures that the Xodel. dispose method is called when the object goes out of scope,
even if an exception occurred. If this approach cannot be used, e.g. if the Model object is returned by
a factory function, one should explicitly call the Model.dispose method when the object is no longer
used.

Furthermore, if the Model class is extended, it is necessary to dispose of the superclass if the initial-
ization of the derived subclass fails. One can use a construction such as:

class MyModel extends Model
{
public MyModel()
{
super () ;
boolean finished = false;
try
{
//perform initialization here
finished = true;
X
finally
{
if (! finished)
dispose();

10.3 Names

All elements of an optimization problem in MOSEK (objective, constraints, variables, etc.) can be given
names. Assigning meaningful names to variables and constraints makes it much easier to understand
and debug optimization problems dumped to a file. On the other hand, note that assigning names can
substantially increase setup time, so it should be avoided in time-critical applications.

The Model object’s, variables’ and constraints’ constructors provide versions with a string name as
an optional parameter.

10.4 Multithreading

Thread safety

Sharing a Model object between threads is safe, as long as it is not accessed from more than one
thread at a time. Multiple XYodel objects can be used in parallel without any problems.

Parallelization

The interior-point and mixed-integer optimizers in MOSEK are parallelized. By default MOSEK
will automatically select the number of threads. However, the maximum number of threads allowed can
be changed by setting the parameter numThreads and related parameters. This should never exceed the
number of cores. See Sec. 13 and Sec. 13.4 for more details.

The speed-up obtained when using multiple threads is highly problem and hardware dependent. We
recommend experimenting with various thread numbers to determine the optimal settings. For small
problems using multiple threads may be counter-productive because of the associated overhead.

Determinism

By default the optimizer is run-to-run deterministic, which means that it will return the same answer
each time it is run on the same machine with the same input, the same parameter settings (including
number of threads) and no time limits.
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Setting the number of threads

The number of threads the optimizer uses can be changed with the parameter numThreads. If one
process will perform multiple optimizations, this value should be set before the first optimization. After
that the thread pool is reserved and fixed in size, so subsequent changes to numThreads will have no effect.
The only possibility at that point is to switch between multi-threaded and single-threaded interior-point
optimization using the parameter intpntMultiThread.

10.5 Efficiency

In some cases Fusion must reformulate the problem by adding auxiliary variables and constraints before
it can be represented in the optimizer’s internal format. This can cause a significant overhead. The
following guidelines can help speed up the process.

Decide between sparse and dense matrices

Deciding whether a matrix should be stored in dense or sparse format is not always trivial. First,
there are storage considerations. An n x m matrix with [ non zero entries, requires

e ~ n - m storage space in dense format,
e =~ 3| storage space in sparse (triplet) format.

Therefore if [ < n - m, then the sparse format has smaller memory requirements. Especially for very
sparse density matrices it will also yield much faster expression transformations. Also, this is the format
used ultimately by the underlying optimizer task. However, there are borderline cases in which these
advantages may vanish due to overhead spent creating the triplet representation.

Sparsity is a key feature of many optimization models and often occurs naturally. For instance, linear
constraints arising from networks or multi-period planning are typically sparse. Fusion does not detect
sparsity but leaves to the user the responsibility of choosing the most appropriate storage format.

Reduce the number of Fusion calls and level of nesting

A possible source of performance degradation is an excessive use of nested expressions resulting in a
large number of Fusion calls with small model updates, where instead the model could be updated in
larger chunks at once. In general, loop-free code and reduction of expression nesting are likely to be
more efficient. For example the expression

n
> A
=1

x; € Rk,Ai € Rka,

could be implemented in a loop as

Expression ee = Expr.constTerm(k, 0.);
for(int i=0;i<n;i++)
ee = Expr.add( ee, Expr.mul(A[i],x[i]) );

A better way is to store the intermediate expressions for A;x; and sum all of them in one step:

Expression[] prods = new Expression[n];
for(int i=0;i<n;i++) prods([i] = Expr.mul(A[i],x[i]);
Expression ee = Expr.add( prods );

Fusion design naturally promotes this sort of vectorized implementations. See Sec. 6.7 for more
examples.
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Do not fetch the whole solution if not necessary

Fetching a solution from a shaped variable produces a flat array of values. This means that some
reshaping has to take place and that the user gets all values even if they are potentially interested only
in some of them. In this case, it is better to create a slice variable holding the relevant elements and
fetch the solution for this subset. See Sec. 6.6. Fetching the full solution may cause an exception due to
memory exhaustion or platform-dependent constraints on array sizes.

Remove names

Variables, constraints and the objective function can be constructed with user-assigned names. While
this feature is very useful for debugging and improves the readability of both the code and of problems
dumped to files, it also introduces quite some overhead: Fusion must check and make sure that names
are unique. For optimal performance it is therefore recommended to not specify names at all.

10.6 The license system

MOSEK is a commercial product that always needs a valid license to work. MOSEK uses a third
party license manager to implement license checking. The number of license tokens provided determines
the number of optimizations that can be run simultaneously.

By default a license token remains checked out from the first optimization until the end of the
MOSEK session, i.e.

e a license token is checked out when the method Model.solve is called the first time, and
e the token is returned when the process exits.

Starting the optimization when no license tokens are available will result in an error.
Default behaviour of the license system can be changed in several ways:

e Setting the parameter cachelicense to "off" will force MOSEK to return the license token
immediately after the optimization completed.

e Setting the license wait flag with Model.putlicensewart or with the parameter licenselasit will
force MOSEK to wait until a license token becomes available instead of throwing an exception.

e Additional license checkouts and checkins can be performed manually through the underlying
MOSEK task and environment. See Sec. 8.8.

e The default path to the license file can be changed with Yodel.putlicensepath.

10.7 Deployment

When redistributing a Java application using the MOSEK Fusion API for Java 9.0.81(BETA), the
following libraries must be included:

64-bit Linux 64-bit Windows 32-bit Windows 64-bit Mac OS
libmosek64.s50.9.0 mosek64_9_0.d11 mosek9_0.d11 libmosek64.9.0.dylib
libcilkrts.so.5 cilkrts20.d11 cilkrts20.d11 libcilkrts.5.dylib

libmosekjava9_0.so | mosekjava9_0.dll | mosekjava9_0.dll | libmosekjava9_0.jnilib
libmosekxx9_0.so mosekxx9_0.d11 mosekxx9_0.d11 libmosekxx9_0.dylib

By default the Java interface will look for the binaries in the same directory as the . jar file, so they
should be placed in the same directory when redistributing.
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Chapter 11

Case Studies

In this section we present some case studies in which the Fusion API for Java is used to solve real-life
applications. These examples involve some more advanced modeling skills and possibly some input data.
The user is strongly recommended to first read the basic tutorials of Sec. 7 before going through these
advanced case studies.

e Portfolio Optimization

— Keywords: Markowitz model, variance, risk, efficient frontier, transaction cost, market im-
pact cost, cardinality constraints

— Type: Conic Quadratic, Power Cone, Mixed-Integer
e Primal SVM

— Keywords: machine learning, Support-Vector Machine, hyperplane separation, classifier

— Type: Conic Quadratic
e 2D Total Variation

— Keywords: denoising, total variation

— Type: Conic Quadratic
o Multi Processor Scheduling
— Keywords: scheduling, job allocation, feasible point heuristic
— Type: Mixed-Integer, Linear Optimization
o Logistic regression
— Keywords: machine learning, logistic regression, classifier, log-sum-exp, softplus, regulariza-
tion
— Type: Exponential Cone, Quadratic Cone
e Inner and outer Lowner-John Ellipsoids

— Keywords: volume optimization, ellipsoidal approximation, determinant, geometric mean,
eigenvalues

— Type: Power Cone, Semidefinite
e SUDOKU

— Keywords: combinatorial puzzle, binary variables, integer modeling

— Type: Integer Optimization, Linear Optimization
e Travelling Salesman

— Keywords: TSP, cycle elimination

— Type: Mixed-Integer, Linear Optimization
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o Nearest Correlation Matriz Problem

— Keywords: low-rank matrix approximation, trace, Frobenius norm, correlation matrix

— Type: Semidefinite
o Semidefinite relaxation of MIQCQO problems

— Keywords: integer quadratic problems, semidefinite relaxation, approximation, integer least
squares

— Type: Semidefinite, Mixed-Integer Conic Quadratic

11.1 Portfolio Optimization

In this section the Markowitz portfolio optimization problem and variants are implemented using Fusion
API for Java.

e Basic Markowitz model

Efficient frontier

Factor model and efficiency

Market impact costs

Transaction costs

Cardinality constraints

11.1.1 The Basic Model

The classical Markowitz portfolio optimization problem considers investing in n stocks or assets held
over a period of time. Let x; denote the amount invested in asset j, and assume a stochastic model
where the return of the assets is a random variable r with known mean

u=Er
and covariance
S=E(r—p)(r—pm"

T2 with mean (or expected return)

The return of the investment is also a random variable y = r
Ey= 1"z
and variance
E(y — Ey)? = 27>z
The standard deviation
VaTSe

is usually associated with risk.

The problem facing the investor is to rebalance the portfolio to achieve a good compromise between

risk and expected return, e.g., maximize the expected return subject to a budget constraint and an upper
bound (denoted 7) on the tolerable risk. This leads to the optimization problem

maximize ul'z
subject to eTe = w+elal,
e 2 (1L.1)
z > 0.
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The variables x denote the investment i.e. x; is the amount invested in asset j and x? is the initial
holding of asset j. Finally, w is the initial amount of cash available.

A popular choice is 2 = 0 and w = 1 because then z; may be interpreted as the relative amount of
the total portfolio that is invested in asset j.

Since e is the vector of all ones then

is the total investment. Clearly, the total amount invested must be equal to the initial wealth, which is

w + eTxO.

This leads to the first constraint

e r=w+e x.

The second constraint

TS < A2

ensures that the variance, is bounded by the parameter 2. Therefore, v specifies an upper bound of
the standard deviation (risk) the investor is willing to undertake. Finally, the constraint

J)jZO

excludes the possibility of short-selling. This constraint can of course be excluded if short-selling is
allowed.

The covariance matrix Y is positive semidefinite by definition and therefore there exist a matrix G
such that

¥ =GGT. (11.2)

In general the choice of G is not unique and one possible choice of G is the Cholesky factorization of X.
However, in many cases another choice is better for efficiency reasons as discussed in Sec. 11.1.3. For a
given G we have that

2Ty = 2TGGTx
= [l6Ta|”.

Hence, we may write the risk constraint as
T
72 ||Ghell
or equivalently
(.G"x) € QY

where Q"1 is the (n + 1)-dimensional quadratic cone. Therefore, problem (11.1) can be written as

T

maximize ux
subject to efer = w+elad,
('Y, GTCC) c Qn+1’ (11'3)
z > 0,
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which is a conic quadratic optimization problem that can easily be formulated and solved with Fusion
API for Java. Subsequently we will use the example data

0.1073
= | 0.0737
0.0627

and

0.2778 0.0387  0.0021
»=0.1-| 0.0387 0.1112 —0.0020
0.0021 —0.0020 0.0115

This implies

0.5271 0.0734  0.0040
GT =V0.1 0 0.3253 —0.0070
0 0 0.1069

Why a Conic Formulation?

Problem (11.1) is a convex quadratically constrained optimization problem that can be solved directly
using MOSEK. Why then reformulate it as a conic quadratic optimization problem (11.3)? The main
reason for choosing a conic model is that it is more robust and usually solves faster and more reliably. For
instance it is not always easy to numerically validate that the matrix ¥ in (11.1) is positive semidefinite
due to the presence of rounding errors. It is also very easy to make a mistake so ¥ becomes indefinite.
These problems are completely eliminated in the conic formulation.

Moreover, observe the constraint

6Tl <
more numerically robust than
TSz <42
for very small and very large values of v. Indeed, if say v ~ 10* then 72 ~ 10%, which introduces a

scaling issue in the model. Hence, using conic formulation we work with the standard deviation instead
of variance, which usually gives rise to a better scaled model.

Example code

Listing 11.1 demonstrates how the basic Markowitz model (11.3) is implemented.

Listing 11.1: Code implementing problem (11.3).

public static double BasicMarkowitz
( int n,

double[] mu,

double[][] GT,

double[] xO0,

double W,

double  gamma)
throws mosek.fusion.SolutionError {

Model M = new Model("Basic Markowitz");

try {
// Redirect log output from the solver to stdout for debugging.
// if uncommented.
//M.setLogHandler(new java.tio.PrintWriter(System.out));

// Defines the wariables (holdings). Shortselling is not allowed.

(continues on next page)
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(continued from previous page)

Variable x = M.variable("x", n, Domain.greaterThan(0.0));

// Mazimize expected return
M.objective("obj", ObjectiveSense.lMaximize, Expr.dot(mu, x));

// The amount invested must be identical to intial wealth
M.constraint ("budget", Expr.sum(x), Domain.equalsTo(w + sum(x0)));

// Imposes a bound on the risk
M.constraint ("risk", Expr.vstack(gamma, Expr.mul(GT, x)), Domain.in(Cone());

// Solves the model.
M.solve();

return dot(mu, x.level());
} finally {
M.dispose();
}
}

The source code should be self-explanatory except perhaps for

M.constraint ("risk", Expr.vstack(gamma, Expr.mul(GT, x)), Domain.in(Cone());

where the linear expression
(v.G"x)

is created using the Ezpr.vstack operator. Finally, the linear expression must lie in a quadratic cone
implying

7> 6T

11.1.2 The Efficient Frontier

The portfolio computed by the Markowitz model is efficient in the sense that there is no other portfolio
giving a strictly higher return for the same amount of risk. An effici