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CHAPTER

ONE

INTRODUCTION

The MOSEK Optimization Suite 8.1.0.76 is a powerful software package capable of solving large-scale
optimization problems of the following kind:

e linear,

e conic quadratic (also known as second-order cone),
e convex quadratic,

e semidefinite,

e and general convex.

Integer constrained variables are supported for all problem classes except for semidefinite and general
convex problems. In order to obtain an overview of features in the MOSEK Optimization Suite consult
the product introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all relations
are linear. The tremendous success of both applications and theory of linear optimization can be ascribed
to the following factors:

e The required data are simple, i.e. just matrices and vectors.

e Convexity is guaranteed since the problem is convex by construction.

Linear functions are trivially differentiable.

There exist very efficient algorithms and software for solving linear problems.

Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the ad-
vantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

Az —-be K
where K = {y : y > 0}, i.e.,

Az — b=y,

y € K.

In conic optimization a wider class of convex sets K is allowed, for example in 3 dimensions I may
correspond to an ice cream cone. The conic optimizer in MOSEK supports three structurally different
types of cones K, which allows a surprisingly large number of nonlinear relations to be modelled (as
described in the MOSEK modeling cookbook), while preserving the nice algorithmic and theoretical
properties of linear optimization.



http://docs.mosek.com/8.1/intro/index.html
http://docs.mosek.com/modeling-cookbook/index.html
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1.1 Why the Optimizer API for Java?

The Optimizer API for Java provides an object-oriented interface to the MOSEK optimizers. This
object oriented design is common to Java, Python and .NET and is based on a thin class-based interface
to the native C optimizer API. The overhead introduced by this mapping is minimal.

Optimizer API

Python Java .NET

The Optimizer API for Java can be used with any application running on the Oracle Java platform (and
possibly other Java implementations). It consists of a single class library mosek. jar and a set of library
files that must be available at runtime.

The Optimizer API for Java provides access to:
e Linear Optimization (LO)
e Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)
e Convex Quadratic and Quadratically Constrained Optimization (QCQO)
e Semidefinite Optimization (SDO)
as well as to additional functions for
e problem analysis,
e sensitivity analysis,
e infeasibility diagnostics,

e BLAS/LAPACK linear algebra routines.

2 Chapter 1. Introduction
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CONTACT INFORMATION

Phone +45 7174 9373

Website mosek.com

Email
sales@mosek.com Sales, pricing, and licensing
support@mosek.com Technical support, questions and bug reports
info@mosek.com Everything else.

Mailing Address
MOSEK ApS

Fruebjergvej 3

Symbion Science Park, Box 16

2100 Copenhagen O

Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger http:/ /blog.mosek.com

Google Group | https://groups.google.com /forum /#!forum /mosek
Twitter https:/ /twitter.com/mosektw

Google+ https://plus.google.com/+Mosek /posts
Linkedin https://www.linkedin.com /company/mosek-aps

In particular Twitter is used for news, updates and release announcements.



https://mosek.com/
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com
http://blog.mosek.com/
https://groups.google.com/forum/#!forum/mosek
https://twitter.com/mosektw
https://plus.google.com/+Mosek/posts
https://www.linkedin.com/company/mosek-aps
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LICENSE AGREEMENT

Before using the MOSEK software, please read the license agreement available in the distribution
at <MSKHOME>/mosek/8/mosek-eula.pdf or on the MOSEK website https://mosek.com/products
license-agreement.

MOSEK uses some third-party open-source libraries. Their license details follows.
zlib

MOSEK includes the zlib library obtained from the zlib website. The license agreement for z/ib is shown
in Listing 3.1.

Listing 3.1: 2lib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu
fplib

MOSEK includes the floating point formatting library developed by David M. Gay obtained from the
netlib website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/****************************************************************
*



https://mosek.com/products/license-agreement
https://mosek.com/products/license-agreement
http://zlib.org
http://www.netlib.org
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The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

¥R K K K X X X X X X X X X ¥

***************************************************************/

6 Chapter 3. License Agreement
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INSTALLATION

In this section we discuss how to install and setup the MOSEK Optimizer API for Java.

Important: Before running this MOSEK interface please make sure that you:

e Installed MOSEK correctly. Some operating systems require extra steps. See the Installation
guide for instructions and common troubleshooting tips.

e Set up a license. See the Licensing guide for instructions.

Compatibility

The Optimizer API for Java is compatible with Java version 1.7 or later.

Locating Files

The files in Optimizer API for Java are organized as reported in Table 4.1.

Table 4.1: Relevant files for the Optimizer API for Java.

Relative Path Description Label

<MSKHOME>/mosek/8/tools/platform/<PLATFORM>/bin | Libraries and jar file | <JARDIR>

<MSKHOME>/mosek/8/tools/examples/java Examples <EXDIR>

<MSKHOME>/mosek/8/tools/examples/data Additional data <MISCDIR>
where

e <MSKHOME> is the folder in which the MOSEK package has been installed,

e <PLATFORM> is the actual platform among those supported by MOSEK, i.e. win32x86, win64x86,
1inux64x86 or osx64x86.

Setting up paths

To compile and run a Java program using MOSEK the correct path to <JARDIR>/mosek. jar must be
provided in the Java classpath. This is usually set with the command line option

javac -d . -classpath <JARDIR>/mosek.jar lol.java
java -classpath .:<JARDIR>/mosek.jar com.mosek.example.lol

Alternatively, this can be set with the environment variable CLASSPATH. For more information about

specifying class libraries and compiling applications, see the full Java documentation at http://java.sun.
coml/ .



http://docs.mosek.com/8.1/install/index.html
http://docs.mosek.com/8.1/install/index.html
http://docs.mosek.com/8.1/licensing/index.html
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MOSEK Optimizer API for Java, Release 8.1.0.76

4.1 Building Examples and Testing the Installation

This section describes how to verify that MOSEK has been installed correctly, and how to build and
execute the Java examples distributed with MOSEK.

4.1.1 Windows

Building and executing a program

To compile the example lol. java distributed with MOSEK:
e Open a DOS prompt and go to the examples directory <EXDIR>.

e To compile a Java program and produce the class files in the current directory, type

’javac -classpath <JARDIR>\mosek.jar -d . lol.java

e To run the compiled program, type

’java -classpath .:<JARDIR>\mosek.jar com.mosek.example.lol

Compiling with Microsoft NMake

The distributed examples can also be compiled using Microsoft NMake. This requires that paths and
environment is set up for Visual Studio tools (usually, the sub-menu containing Visual Studio also
contains a Visual Studio Command Prompt which take care of all the necessary setup).

To build the examples, open a DOS box and change directory to the examples directory <EXDIR>. To
compile all examples type

’nmake /f Makefile

This will compile all the classes into a jar file. To run all the examples type

’nmake /f Makefile test

4.1.2 Mac OS and Linux

Building and executing a program

To compile the example 1lol. java distributed with MOSEK:
e Open a console and go to the examples directory <EXDIR>.

e To compile a Java program and produce the class files in the current directory, type

’javac -classpath <JARDIR>/mosek.jar -d . lol.java

e To run the compiled program, type

’java -classpath .:<JARDIR>/mosek.jar com.mosek.example.lol

8 Chapter 4. Installation
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Compiling examples using make

The example directory contains makefiles for use with GNU Make. To build the examples, open a prompt
and change directory to the examples directory <EXDIR>. To compile all examples type

’make -f Makefile

This will compile all the classes into a jar file. To run all the examples type

’make test

4.1. Building Examples and Testing the Installation 9
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DESIGN OVERVIEW

5.1 Modelling

Optimizer API for Java is an interface for specifying optimization problems directly in matrix form. It
means that an optimization problem such as:
minimize ¢’z
subject to Az < b,
relk

is specified by describing the matrix A, vectors b, ¢ and a list of cones I directly.
The main characteristics of this interface are:

e Simplicity: once the problem data is assembled in matrix form, it is straightforward to input it
into the optimizer.

e Exploiting sparsity: data is entered in sparse format, enabling huge, sparse problems to be
defined and solved efficiently.

e Efficiency: the Optimizer API incurs almost no overhead between the user’s representation of the
problem and MOSEK’s internal one.

Optimizer API for Java does not aid with modeling. It is the user’s responsibility to express the problem
in MOSEK’s standard form, introducing, if necessary, auxiliary variables and constraints. See Sec. 12
for the precise formulations of problems MIOSEK solves.

5.2 “Hello World!” in MOSEK

Here we present the most basic workflow pattern when using Optimizer API for Java.

Creating an environment and task

Every interaction with MOSEK using Optimizer API for Java begins by creating a MOSEK environ-
ment. It coordinates the access to MOSEK from the current process.

In most cases the user does not interact directly with the environment, except for creating optimization
tasks, which contain actual problem specifications and where optimization takes place. An environment
can host multiple tasks.

Defining tasks

After a task is created, the input data can be specified. An optimization problem consists of several
components; objective, objective sense, constraints, variable bounds etc. See Sec. 6 for basic tutorials on
how to specify and solve various types of optimization problems.

11
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Retrieving the solutions

When the model is set up, the optimizer is invoked with the call to Task.optimize. When the opti-
mization is over, the user can check the results and retrieve numerical values. See further details in Sec.

7.

We refer also to Sec. 7 for information about more advanced mechanisms of interacting with the solver

Source code example

Below is the most basic code sample that defines and solves a trivial optimization problem

minimize x
subject to 2.0 <z < 3.0.

For simplicity the example does not contain any error or status checks.

Listing 5.1: “Hello World!” in MOSEK

package com.mosek.example;
import mosek.x*;

public class helloworld {
public static void main(String[] args) {

double[] x = new double[1];

Env env = null;

Task task = null;

try {
env = new Env(); // Create Environment
task = new Task(env, 0, 1); // Create Task
task.appendvars(1); // 1 variable z
task.putcj(0, 1.0); // c_0 = 1.0
task.putvarbound (0, boundkey.ra, 2.0, 3.0); // 2.0 <=z <= 3.0
task.putobjsense (objsense.minimize) ; // minimize
task.optimize(); // Optimize
task.getxx (soltype.itr, x); // Get solution
System.out.println("Solution x = " + x[0]); // Print solution

}

finally { // Dispose of env and task just to be sure
task.dispose();
env.dispose();

}

}
}
12 Chapter 5. Design Overview
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OPTIMIZATION TUTORIALS

In this section we demonstrate how to set up basic types of optimization problems. Each short tutorial
contains a working example of formulating problems, defining variables and constraints and retrieving

solutions.

6.1 Linear Optimization

The simplest optimization problem is a purely linear problem. A linear optimization problem is a problem

of the following form:

Minimize or maximize the objective function

n—1

E . f
cjxj+ ¢

j=0

subject to the linear constraints

n—1

ZESZaijj <ug, k=0,...,m-—1,
=0
and the bounds
7 <z;<uj, j=0,...,n—1

The problem description consists of the following elements:
e m and n — the number of constraints and variables, respectively,
e r — the variable vector of length n,

e ¢ — the coefficient vector of length n

co
c= ,
Cn—1
e ¢/ — fixed term in the objective,
e A — an m x n matrix of coefficients
ao,0 T ag,(n—1)
A= :
Am-1),0 " A(m-1),(n—1)

13
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e [ and u® — the lower and upper bounds on constraints,
e [” and u® — the lower and upper bounds on variables.

Please note that we are using 0 as the first index: xg is the first element in variable vector x.

6.1.1 Example LO1

The following is an example of a small linear optimization problem:

maximize 3rg + lx;1 + Dbdxe + lzg

subject to 3z + lx; + 29 30,

21‘0 + 1131 + 31‘2 + 1583 Z 157 (61>
211 + 3x3 < 25,
under the bounds
0 S Zo S 0,
0 < z; < 10,
0 S T2 S o0,
0 < z3 < o0

Solving the problem

To solve the problem above we go through the following steps:
1. Create an environment.
2. Create an optimization task.
3. Load a problem into the task object.
4. Optimization.
5. Extracting the solution.

Below we explain each of these steps.

Create an environment.

Before setting up the optimization problem, a MOSEK environment must be created. All tasks in the
program should share the same environment.

try (mosek.Env env = new Env();

Create an optimization task.

Next, an empty task object is created:

mosek.Task task = new Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

We also connect a call-back function to the task log stream. Messages related to the task are passed
to the call-back function. In this case the stream call-back function writes its messages to the standard
output stream.

14 Chapter 6. Optimization Tutorials
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Load a problem into the task object.

Before any problem data can be set, variables and constraints must be added to the problem via calls to
the functions Task. appendcons and Task.appendvars.

// Append 'numcon' empty constraints.
// The constraints will initially have no bounds.
task.appendcons (numcon) ;

// Append 'numvar' variables.
// The variables will initially be fized at zero (z=0).
task.appendvars (numvar) ;

New variables can now be referenced from other functions with indexes in 0,...,numvar — 1 and new
constraints can be referenced with indexes in 0, ...,numcon — 1. More variables and/or constraints can
be appended later as needed, these will be assigned indexes from numvar/numcon and up.

Next step is to set the problem data. We loop over each variable index 7 = 0,...,numvar — 1 calling
functions to set problem data. We first set the objective coefficient ¢; = c[j] by calling the function
Task.putcy.

task.putcj(j, c[jl);

Setting bounds on variables

The bounds on variables are stored in the arrays

mosek.boundkey

bkx[] = {mosek.boundkey.lo,
mosek.boundkey.ra,
mosek.boundkey.lo,
mosek.boundkey.lo
};

double blx[] {

o

o O O
O O O O

}s
double bux[] = { +infinity,
10.0,
+infinity,
+infinity

};

and are set with calls to Task.putvarbound.

// Set the bounds on wvartiable j.
// blzl[g] <= z_j <= buz[j]
task.putvarbound(j, bkx[jl, blx[j], bux[jl);

The Bound key stored in bkx specifies the type of the bound according to Table 6.1.

Table 6.1: Bound keys as defined in the enum boundkey.

Bound key Type of bound | Lower bound | Upper bound

boundkey. fz | u; =1; Finite Identical to the lower bound
boundkey. fr | Free —00 +00

boundkey.lo | l; <--- Finite +00

boundkey.ra | l; <--- <y Finite Finite

boundkey.up | --- < uy —00 Finite

6.1. Linear Optimization 15
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For instance bkx [0]= boundkey. Lo means that xg > [§. Finally, the numerical values of the bounds on
variables are given by

17 = blx[j]
and
uf = bux[j].
Defining the linear constraint matrix.

Recall that in our example the A matrix is given by

A:

S NN W
[N
S W N
w = O

This matrix is stored in sparse format in the arrays:

int asub[] []
{0, 1},

{0, 1, 2},
{0, 1},

{1, 2%}

};
double avall[][]
{3.0, 2.0},
{1.0, 1.0, 2.0%},
{2.0, 3.0},
{1.0, 3.0}

};

{

I
~

The array aval[j] contains the non-zero values of column j and asub[j] contains the row index of
these non-zeros.

Using the function Task.putacol we set column j of A

task.putacol(j, /% Vartable (column) indez.*/
asub[j], /* Row index of mon-zeros im column j.*/
avalljl); /% Non-zero Values of column j. */

There are many alternative formats for entering the A matrix. See functions such as Task.putarow,
Task.putarowlist, Task.putatjlist and similar.

Finally, the bounds on each constraint are set by looping over each constraint index ¢ = 0, ..., numcon—1

// Set the bounds on constraints.

// blcl[i] <= constraint_i <= buc[i]

for (int i = 0; i < numcon; ++i)
task.putconbound (i, bkc[i], blc[i], buc[il);

Optimization

After the problem is set-up the task can be optimized by calling the function Task.optimize.

task.optimize();

16 Chapter 6. Optimization Tutorials
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Extracting the solution.

After optimizing the status of the solution is examined with a call to Task.getsolsta. If the solution
status is reported as solsta.optimal or solsta.near_optimal the solution is extracted in the lines
below:

task.getxx (mosek.soltype.bas, // Request the basic solution.
XX) ;

The Task. getzz function obtains the solution. MOSEK may compute several solutions depending on
the optimizer employed. In this example the basic solution is requested by setting the first argument to
soltype.bas.

Catching exceptions

We cache any exceptions thrown by MOSEK in the lines:

catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;

}

The types of exceptions that MOSEK can throw can be seen in Sec. 16.8.

Source code

The complete source code lol.java of this example appears below. See also 1o2.java for a version
where the A matrix is entered row-wise.

Listing 6.1: Linear optimization example.

package com.mosek.example;
import mosek.x*;

public class lol {
static final int numcon = 3;
static final int numvar = 4;

public static void main (Stringl[] args) {
// Since the walue of infinity ts ignored, we define it solely
// for symbolic purposes
double infinity = 0;

double c[] = {3.0, 1.0, 5.0, 1.0};
int asub[1[] = {
{0, 1},
{0, 1, 2},
{0, 13},
{1, 2}
3
double avalll[] = {
{3.0, 2.0},
{1.0, 1.0, 2.0%},
{2.0, 3.0},
{1.0, 3.0}
};
mosek. boundkey []
bkc = {mosek.boundkey.fx,

6.1. Linear Optimization 17
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mosek.boundkey.lo,
mosek.boundkey.up

}s
double blc[]

double bucl]

mosek.boundkey

{30.0,
15.0,
-infinity

s

{30.0,
+infinity,

25.0

I

bkx[] = {mosek.boundkey.lo,
mosek.boundkey.ra,
mosek.boundkey.lo,
mosek.boundkey.lo

}s
double blx[]

double bux[]

double[] xx =

try (mosek.Env

{

O O O O
O O O O

s
= { +infinity,
10.0,
+infinity,
+infinity
I

new double[numvar] ;

env = new Env();

mosek.Task task = new Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

// Append 'numcon' empty constraints.
// The constraints will initially have no bounds.
task.appendcons (numcon) ;

// Append 'numvar' variables.
// The vartables will initially be fized at zero (z=0).
task.appendvars (numvar) ;

for (int j =
// Set the

0; j < numvar; ++j) {
linear term c_j in the objective.

task.putcj(j, c[jl);

// Set the

bounds on wvariable j.

// blelg] <= z_j <= buz[j]
task.putvarbound(j, bkx[j], blx[jl, bux[jl);

// Input column j of A

task.putacol(j, /* Vartable (column) index.*/
asub[j], /% Row index of nmon-zeros in column j.*/
avall[jl); /* Non-zero Values of column j. */
}

// Set the bounds on constraints.

// bleli] <=

for (int i =

constraint_i <= bucl[i]
0; i < numcon; ++i)
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task.putconbound (i, bkc[i], blc[i], buc[il);

// Input the objective sense (minimize/mazimize)
task.putobjsense (mosek.objsense.maximize) ;

// Solve the problem
task.optimize();

// Print a summary containing information
// about the solution for debugging purposes
task.solutionsummary (mosek.streamtype.msg) ;

// Get status information about the solution
mosek.solsta solstal[] = new mosek.solstal1l];
task.getsolsta(mosek.soltype.bas, solsta);

switch (solstal0]) {
case optimal:
case near_optimal:
task.getxx (mosek.soltype.bas, // Request the basic solution.
XX) ;

System.out.println("Optimal primal solution\n");
for (int j = 0; j < numvar; ++j)
System.out.println ("x[" + j + "]:" + xx[j1);
break;
case dual_infeas_cer:
case prim_infeas_cer:
case near_dual_infeas_cer:
case near_prim_infeas_cer:
System.out.println("Primal or dual infeasibility certificate found.\n");
break;
case unknown:
System.out.println("Unknown solution status.\n");
break;
default:
System.out.println("Other solution status");
break;
}
}
catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;
Y
}
}

6.2 Quadratic Optimization

MOSEK can solve quadratic and quadratically constrained problems, as long as they are convex. This
class of problems can be formulated as follows:

minimize %xTQox +cTr+cf
subject to 1§ < 1aTQFx+ Z;LZ_Ol agjr; < uf, k=0,...,m—1, (6.2)
i < z; < wuj, j=0,...,n—1

Without loss of generality it is assumed that Q° and Q* are all symmetric because

TQux = %xT(Q + Q7).
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This implies that a non-symmetric @) can be replaced by the symmetric matrix %(Q + Q7).

The problem is required to be convex. More precisely, the matrix @° must be positive semi-definite and
the kth constraint must be of the form
1 n—1
i < 52" QFx + > anjx; (6.3)
j=0
with a negative semi-definite Q* or of the form

—1
1 T Nk S c
5% Qr+ E L 0TS < uj.
iz

with a positive semi-definite @Q¥. This implies that quadratic equalities are not allowed. Specifying a
non-convex problem will result in an error when the optimizer is called.

A matrix is positive semidefinite if all the eigenvalues of () are nonnegative. An alternative statement of
the positive semidefinite requirement is

xTQx >0, Vx.

If the convexity (i.e. semidefiniteness) conditions are not met MOSEK will not produce reliable results
or work at all.

6.2.1 Example: Quadratic Objective

We look at a small problem with linear constraints and quadratic objective:

minimize x% + 0.133% + x% — X1X3 — T2
subject to 1< xy+ a9+ 3 (6.4)
0< =

The matrix formulation (6.4) has:

2 0o -1 0
Q=] 0 02 0 |,e=|-1]|,A=[11 1],
-1 0 2 0
with the bounds:
0 00
fF=1Lu"=00,1"=| 0 | andu®” = | o0
0 00

Please note the explicit % in the objective function of (6.2) which implies that diagonal elements must
be doubled in @, i.e. Q1; = 2, whereas the coefficient in (6.4) is 1 in front of x2.

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up quadratic objective

The quadratic objective is specified using the function Task.putgobj. Since Q° is symmetric only the
lower triangular part of Q° is inputted. In fact entries from above the diagonal may not appear in the
input.

The lower triangular part of the matrix Q° is specified using an unordered sparse triplet format (for
details, see Sec. 16.1.4):
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int[] gsubi = {0, 1, 2, 2 };
int[] gsubj = {0, 1, 0,
double[] qval = {2.0, 0.2, -1.0, 2.0%};

N
[}

Please note that
e only non-zero elements are specified (any element not specified is 0 by definition),
e the order of the non-zero elements is insignificant, and
e only the lower triangular part should be specified.

Finally, this definition of Q° is loaded into the task:

task.putqobj(gqsubi, gsubj, qval);

Source code

Listing 6.2: Source code implementing problem (6.4).

package com.mosek.example;
import mosek.x*;

public class qol {

static final int numcon = 1; /* Number of comstraints. */
static final int numvar = 3;  /* Number of wvariables. */
static final int NUMANZ = 3; /* Number of numzeros in 4. */
static final int NUMQNZ = 4; /% Number of monzeros in . */

public static void main (String[] args) {
// Since the value infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = 0;
double[] ¢ = {0.0, -1.0, 0.0};

mosek.boundkey[] bkc = { mosek.boundkey.lo };
double[] blc = {1.0};
double[] buc = {infinity};

mosek.boundkey[] bkx = { mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey.lo
};
double[] blx = {0.0,
0.0,
0.0
3
double[] bux = {infinity,
infinity,
infinity

};

int [1[] asub = { {0}, {0}, {0} };
double[] [] aval { {1.0}, {1.0}, {1.0} };
double[] xx = new double[numvar];

try (Env env new Env();
Task task = new Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
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new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }1});
/% Give MOSEK an estimate of the size of the input data.
This %s done to increase the speed of inputting data.
However, it ts optional. */
/% Append 'numcon' empty constraints.
The constraints will initially have no bounds. */
task.appendcons (numcon) ;

/* Append 'numvar' variables.
The variables will initially be fized at zero (z=0). */
task.appendvars (numvar) ;

for (int j = 0; j < numvar; ++j) {
/% Set the linear term c_j in the objective.*/
task.putcj(j, c[jl);
/* Set the bounds on wvariable j.
blzl[j] <= z_j <= buz[j] */
task.putbound (mosek.accmode.var, j, bkx[jl, blx[jl, buxl[jl);
/* Input column j of 4 */

task.putacol(j, /* Variable (column) index.*/
asub[jl, /% Row index of non-zeros in column j.*/
avalljl); /* Non-zero Values of column j. */
}
/* Set the bounds on constraints.
for %=1, ...,numcon : blc[t] <= constraint © <= buc[i] */

for (int i = 0; i < numcon; ++i)
task.putbound (mosek.accmode.con, i, bkc[i], blc[il], buclil);

/¥
The lower triangular part of the {
matriz in the objective is specified.

*/
int[] gsubi = {0, 1, 2, 2 1}
int[] gsubj = {0, 1, 0, 2 };

double[] gqval = {2.0, 0.2, -1.0, 2.0};
/% Input the § for the objective. */
task.putqobj(gsubi, gsubj, qval);

/* Solve the problem */

mosek.rescode r = task.optimize();

System.out.println (" Mosek warning:" + r.toString());
// Print a summary containing information

//  about the solution for debugging purposes
task.solutionsummary (mosek.streamtype.msg) ;

mosek.solsta solstal] = new mosek.solstall];
/* Get status information about the solution */
task.getsolsta(mosek.soltype.itr, solsta);

/* Get the solution */
task.getxx(mosek.soltype.itr, // Intertor solution.
XX) ;

switch (solstal0]) {
case optimal:
case near_optimal:
System.out.println("Optimal primal solution\n");
for (int j = 0; j < numvar; ++j)
System.out.println ("x[" + j + "]:" + xx[j1);
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break;
case dual_infeas_cer:
case prim_infeas_cer:
case near_dual_infeas_cer:
case near_prim_infeas_cer:
System.out.println("Primal or dual infeasibility\n");
break;
case unknown:
System.out.println("Unknown solution status.\n");
break;
default:
System.out.println("Other solution status");
break;
}
Y
catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;
}
} /* Main */
}

6.2.2 Example: Quadratic constraints

In this section we show how to solve a problem with quadratic constraints. Please note that quadratic
constraints are subject to the convexity requirement (6.3).

Consider the problem:

minimize 2?2 4+ 0.12% + 23 — 21703 — 19
subject to 1 < x1+ 22+ 23— x% — 33% — O.lm?)) + 0.2z 23,
x > 0.

This is equivalent to

minimize %:ETQ"x +cTx

subject to  327Q% + Az > b, (6.5)
x>0,
where
2 0 -1 .
Q=0 02 0 |,e=[0 -1 0] ,A=[1 1 1],b=1

-1 0 2
-2 0 02
Q=] 0 -2 o0
0.2 0 -0.2

The linear parts and quadratic objective are set up the way described in the previous tutorial.

Setting up quadratic constraints

To add quadratic terms to the constraints we use the function Task.putqconk.

int[] gqsubi = {0, 1, 2, 2 };
int [] gsubj = {0, 1, 2, 0 };
double[] qval = { -2.0, -2.0, -0.2, 0.2};
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/* put §°0 in constraint with indez 0. */

task.putqconk (O,
gsubi,
gsubj,
qval);

While Task.putqconk adds quadratic terms to a specific constraint, it is also possible to input all
quadratic terms in one chunk using the Task.putgcon function.

Source code

Listing 6.3: Implementation of the quadratically constrained problem (6.5).

package com.mosek.example;
import mosek.x*;

public class qcqol {

static final int numcon = 1;  /* Number of constraints. */
static final int numvar = 3; /¥ Number of wariables. */
static final int NUMANZ = 3; /% Number of numzeros in 4. */
static final int NUMQNZ = 4; /* Number of monzeros in {. */

public static void main (String[] args) {

// Since the wvalue infinity is never used, we define
// 'infinity' symbolic purposes only

double infinity = 0;

double[] ¢ = {0.0, -1.0, 0.0};

mosek.boundkey [] bkc = {mosek.boundkey.lo};
double[] blc = {1.0};
double[] buc = {infinity};

mosek.boundkey[] bkx

= {mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey.lo

};

double[] blx = {0.0,
0.0,
0.0
3
double[] bux = {infinity,
infinity,
infinity
3

int [1[] asub = { {0}, {0}, {0} };
double[][] aval { {1.0}, {1.0}, {1.0} };

double[] xx = new double[numvar];

try (mosek.Env env = new mosek.Env();
mosek.Task task = new mosek.Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});
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/* Give MOSEK an estimate of the size of the input data.
This ts done to increase the speed of wnputting data.
However, it is optional. */

/* Append 'numcon' empty constraints.

The constraints will initially have no bounds. */
task.appendcons (numcon) ;

/* Append 'mnumvar' wvariables.
The variables will inttially be fized at zero (z=0). */
task.appendvars (numvar) ;

for (int j = 0; j < numvar; ++j) {
/* Set the linear term c_j in the objective.*/
task.putcj(j, c[jl);
/% Set the bounds on wvartiable j.
ble[j] <= z_j <= buz[j] */
task.putbound (mosek.accmode.var, j, bkx[jl, blx[jl, bux[jl);
/% Input column j of 4 */

task.putacol(j, /* Vartable (column) index.*/
asub[j]l, /% Row index of mon-zeros in column j.*/
avall[jl); /% Non-zero Values of column j. */
}
/% Set the bounds on constraints.
for t=1, ...,numcon : blc[i] <= constraint i <= buc[i] */

for (int i = 0; i < numcon; ++i)

task.putbound (mosek.accmode.con, i, bkc[i], blc[i], buclil);
/*

* The lower triangular part of the {

¥ matriz in the objective ts specified.

*/
int[] qosubi = { 0, 1, 2, 2 3}
int[] qosubj = { 0, 1, O, 2 };
double[] qoval = { 2.0, 0.2, -1.0, 2.0 };

/% Input the § for the objective. */
task.putqobj(qosubi, qosubj, goval);

/*
* The lower triangular part of the {~0
* matriz in the first constraint is specified.
* This corresponds to adding the term
* z0°2 - ¢172 - 0.1 z2°2 + 0.2 z0 z2

*/
int[] gsubi = {0, 1, 2, 2 };
int[] gsubj = {0, 1, 2, 0 I;
double[] qval = { -2.0, -2.0, -0.2, 0.2};

/* put 0 in constraint with index 0. */
task.putqconk (O,

gsubi,

gsubj,

qval);
task.putobjsense (mosek.objsense.minimize) ;

/* Solve the problem */

try {
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mosek.rescode termcode = task.optimize();
} catch (mosek.Warning e) {
System.out.println (" Mosek warning:");
System.out.println (e.toString ());
}
// Print a summary containing information
//  about the solution for debugging purposes
task.solutionsummary (mosek.streamtype.msg) ;

mosek.solsta solstal] = new mosek.solstal[l];
/* Get status information about the solution */
task.getsolsta(mosek.soltype.itr, solsta);

task.getxx(mosek.soltype.itr, // Intertior solution.
XX) ;
switch (solstal0]) {

case optimal:

case near_optimal:
System.out.println("Optimal primal solution\n");
for (int j = 0; j < numvar; ++j)

System.out.println ("x[" + j + "]:" + xx[j]);

break;

case dual_infeas_cer:

case prim_infeas_cer:

case near_dual_infeas_cer:

case near_prim_infeas_cer:
System.out.println("Primal or dual infeasibility.\n");
break;

case unknown:
System.out.println("Unknown solution status.\n");
break;

default:
System.out.println("Other solution status");
break;

}

catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.msg);
throw e;

}

} /# Main */
}

6.3 Conic Quadratic Optimization

Conic optimization is a generalization of linear optimization, allowing constraints of the type
t
X € lCt,
where z! is a subset of the problem variables and K; is a convex cone. Since the set R™ of real numbers

is also a convex cone, we can simply write a compound conic constraint x € IC where K = Iy X - -+ X K
is a product of smaller cones and z is the full problem variable.
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MOSEK can solve conic quadratic optimization problems of the form

minimize e+ el
subject to ¢ < Ax < uc,
r < T < u”,
x ek,

where the domain restriction, z € IC, implies that all variables are partitioned into convex cones
x= (2%, .. 2P7Y), with 2’ € K, CR™.

For convenience, a user defining a conic quadratic problem only needs to specify subsets of variables z!
belonging to quadratic cones. These are:

e Quadratic cone:

e Rotated quadratic cone:

n—1
o = xeR”:Qmoxlzzx?, xg>0, x1>0
i=2

For example, the following constraint:
(1’43 anxQ) € Q3
describes a convex cone in R3 given by the inequality:

xy > /23 + 23

Furthermore, each variable may belong to one cone at most. The constraint x; — z; = 0 would however
allow x; and z; to belong to different cones with same effect.

6.3.1 Example CQO1

Consider the following conic quadratic problem which involves some linear constraints, a quadratic cone
and a rotated quadratic cone.

minimize T4+ T5 + Tg
subject to x1 +xo+2x3 =
Ty, T2, T3 > 0, (6.6)

x4 > /2% + 23,
2x5x6 > mg
Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

A cone is defined using the function Task.appendcone:
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csub[0] = 3;
csub[1] = 0;
csub[2] = 1;

task.appendcone (mosek.conetype.quad,

csub) ;

0.0, /* For future use only, can be set to 0.0 */

The first argument selects the type of quadratic cone, in this case either conetype. quad for a quadratic
cone or conetype.rquad for a rotated quadratic cone. The second parameter is currently ignored and

passing 0.0 will work.

The last argument is a list of indexes of the variables appearing in the cone.

Variants of this method are available to append multiple cones at a time.

Source code

Listing 6.4: Source code solving problem (6.6).

package com.mosek.example;

import mosek.x*;

public class cqol {

static final int numcon =
static final int numvar

public static void main

double infinity =

0;

mosek.boundkey[] bkc

double[] blc = { 1.0 }
{1.01}

double[] buc

mosek.boundkey[] bkx

1;

s

(String[] args) throws java.lang.Exception {
// Since the value infinity is never used, we define
// 'infinity' symbolic purposes only

= { mosek.boundkey.fx };

>

>

= {mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey.fr,
mosek.boundkey.fr,
mosek.boundkey.fr
};
double[] blx = { 0.0,
0.0,
0.0,
-infinity,
-infinity,
-infinity
3
double[] bux = { +infinity,
+infinity,
+infinity,
+infinity,
+infinity,
+infinity
3
double[] ¢ =4{0.0,
0.0,
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0.0,
1.0,
1.0,
1.0
};
double[][] aval = {
{1.0},
{1.0},
{2.0}
};
int []1[] asub = {
{03,
{0},
{0}
};
int[] csub = new int[3];
double[] xx = new double[numvar];
// create a new environment object
try (Env env = new Env();

Task task = new Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

/% Give MOSEK an estimate of the size of the input data.
This %s done to increase the speed of inputting data.
However, it is optional. */
/* Append 'numcon' empty constraints.

The constraints will initially have no bounds. */
task.appendcons (numcon) ;

/* Append 'numvar' variables.
The variables will initially be fized at zero (z=0). */
task.appendvars (numvar) ;

/* Optionally add a constant term to the objective. */
task.putcfix(0.0);
for (int j = 0; j < numvar; ++j) {

/* Set the linear term c_j in the objective.*/

task.putci(j, c[jl);

/% Set the bounds on wvartiable j.

blazlj] <= z_j <= buz[j] */
task.putbound (mosek.accmode.var, j, bkx[j], blx[jl, bux[jl);

for (int j = 0; j < aval.length; ++j)
/* Input column j of A */

task.putacol(j, /* Vartable (column) index.*/
asub[j], /% Row index of non-zeros in column j.*/
avall[jl); /* Non-zero Values of column j. */

/* Set the bounds on constraints.
for t=1, ...,numcon : blc[i] <= constraint i <= buc[i] */
for (int i = 0; i < numcon; ++i)
task.putbound (mosek.accmode.con, i, bkc[i], blc[il, buclil);

csub[0] = 3;
csub[1] 0;

6.3. Conic Quadratic Optimization
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csub[2] = 1;
task.appendcone (mosek. conetype.quad,
0.0, /* For future use only, can be set to 0.0 */

csub) ;
csub[0] = 4;
csub[1] = 5;
csub[2] = 2;

task.appendcone (mosek.conetype.rquad, 0.0, csub);
task.putobjsense (mosek.objsense.minimize) ;

System.out.println ("optimize");

/* Solve the problem */

mosek.rescode r = task.optimize();

System.out.println (" Mosek warning:" + r.toString());
// Print a summary containing information

// about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg) ;

mosek.solsta solstal] = new mosek.solstall];

/* Get status information about the solution */
task.getsolsta(mosek.soltype.itr, solsta);

task.getxx (mosek.soltype.itr, // Interior solution.
XX) ;

switch (solstal0]) {
case optimal:
case near_optimal:
System.out.println("Optimal primal solution\n");
for (int j = 0; j < numvar; ++j)
System.out.println ("x[" + j + "]1:" + xx[jl);
break;
case dual_infeas_cer:
case prim_infeas_cer:
case near_dual_infeas_cer:
case near_prim_infeas_cer:
System.out.println("Primal or dual infeasibility.\n");
break;
case unknown:
System.out.println("Unknown solution status.\n");
break;
default:
System.out.println("Other solution status");
break;
}
} catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;
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6.4 Semidefinite Optimization
Semidefinite optimization is a generalization of conic quadratic optimization, allowing the use of matrix
variables belonging to the convex cone of positive semidefinite matrices
Si:{XEST:zTXZEO, VZERT},
where 8" is the set of r X r real-valued symmetric matrices.

MOSEK can solve semidefinite optimization problems of the form

minimize Z;:ol ¢jTj + Ei;é (Cj, X;) +¢
subject to 1§ < Z;:Ol a;xj + Z?;é (Aij, X5) < w, i=0,...,m—1,
lf < X < UJI‘; j=0,...,n—1,

where the problem has p symmetric positive semidefinite variables Yj € S:_j of dimension r; with
symmetric coefficient matrices C; € 8”7 and A4; ; € S"7. We use standard notation for the matrix inner
product, i.e., for A, B € R™*"™ we have

6.4.1 Example SDO1

We consider the simple optimization problem with semidefinite and conic quadratic constraints:

2 10
minimize < 1 2 1 ,X>—|—x0
0 1 2
10 0]
subject to 01 0|,X)4+xo = 1,
< 0 0 1 > (6.7)
101 1]
< 1 ]. ]. ,X>—|—$1—|—.132 = 1/2,
1 1 1

xO_Z \/Z'12+.;3?7 YEO,

The problem description contains a 3-dimensional symmetric semidefinite variable which can be written
explicitly as:

o Xoo X1 Xoo
X=| X1 Xu Xn | €8,
Xoo Xo1 Xoo

and a conic quadratic variable (zg,z1,22) € Q3. The objective is to minimize
2(X o0 + X10 + X11 + Xo1 + X22) + 20,
subject to the two linear constraints

. X+ Xu+ Xt = 1L
Xoo+ X1+ Xoo+2(Xi0+Xoo+Xo1) +x1+22 = 1/2.

Setting up the linear and quadratic part

The linear and quadratic parts (constraints, variables, objective, cones) are set up using the methods
described in the relevant tutorials; Sec. 6.1 and Sec. 6.3. Here we only discuss the aspects directly
involving semidefinite variables.
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Appending semidefinite variables

First, we need to declare the number of semidefinite variables in the problem, similarly to the number
of linear variables and constraints. This is done with the function Task.appendbarvars.

task.appendbarvars (dimbarvar) ;

Appending coefficient matrices

Coefficient matrices C; and A;; are constructed as weighted combinations of sparse symmetric matrices
previously appended with the function Task.appendsparsesymmat.

idx[0] = task.appendsparsesymmat (dimbarvar[0],
barc_i,
barc_j,
barc_v) ;

The arguments specify the dimension of the symmetric matrix, followed by its description in the sparse
triplet format. Only lower-triangular entries should be included. The function produces a unique index
of the matrix just entered in the collection of all coefficient matrices defined by the user.

After one or more symmetric matrices have been created using Task.appendsparsesymmat, we can
combine them to set up the objective matrix coefficient C; using Task.putbarcj, which forms a linear
combination of one or more symmetric matrices. In this example we form the objective matrix directly,
i.e. as a weighted combination of a single symmetric matrix.

’ task.putbarcj(0, idx, falpha);

Similarly, a constraint matrix coefficient A4;; is set up by the function Task.putbaraij.

’ task.putbaraij(0, 0, idx, falpha);

Retrieving the solution

After the problem is solved, we read the solution using Task.getbarzy:

task.getbarxj(mosek.soltype.itr, /* Request the interior solution. */
0,
barx) ;

The function returns the half-vectorization of Yj (the lower triangular part stacked as a column vector),
where the semidefinite variable index j is passed as an argument.

Source code

Listing 6.5: Source code solving problem (6.7).

package com.mosek.example;
import mosek.x*;

public class sdol {
public static void main(String[] argv) {

int numcon = 2; /% Number of constraints. */
int numvar = 3; /* Number of conic quadratic variables */
int numanz = 3; /# Number of non-zeros in 4 */
int numbarvar = 1; /# Number of semidefinite wvariables */
int dimbarvar[] = {3}; /* Dimension of semidefinite cone */
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int lenbarvar[] = {3 * (3 + 1) / 2}; /* Number of scalar SD variables */

mosek.boundkey bkc[] { mosek.boundkey.fx,

mosek.boundkey.fx

}s
doublel] blc =4{1.0, 0.5 };
doublel] buc =4{1.0, 0.5 };
int[] barc_i = {0, 1, 1, 2, 2},
barc_j = {0, 0, 1, 1, 2};
double[] barc_v = {2.0, 1.0, 2.0, 1.0, 2.0};
int[][] asub = {{0}, {1, 2}}; /* column subscripts of 4 */
double[][] aval = {{1.0}, {1.0, 1.0}};
int[][] bara_i = { {0, 1, 2%, {0, 1, 2, 1, 2, 21} 3,
bara_j ={ {0, 1, 2%, {0, o, O, 1, 1, 2} };
double[] [] bara_v = { {1.0, 1.0, 1.0}, {1.0, 1.0, 1.0, 1.0, 1.0, 1.0}};
int[] conesub = { 0, 1, 2};
try (Env env = new Env();
Task task = new Task(env, 0, 0)) {

// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

/* Append 'NUMCON' empty constraints.
The constraints will initially have no bounds. */
task.appendcons (numcon) ;

/% Append 'NUMVAR' wariables.
The variables will initially be fized at zero (z=0). */
task.appendvars (numvar) ;

/* Append 'NUMBARVAR' semidefinite variables. */
task.appendbarvars (dimbarvar) ;

/% Optionally add a constant term to the objective. */
task.putcfix(0.0);

/% Set the linear term c_j in the objective.*/
task.putcj(0, 1.0);

for (int j = 0; j < numvar; ++j)
task.putvarbound(j, mosek.boundkey.fr, -0.0, 0.0);

/* Set the linear term barc_j in the objective.*/
{

long[] idx = new longl[1];

double[] falpha = { 1.0 };

idx[0] = task.appendsparsesymmat (dimbarvar [0],
barc_i,
barc_j,
barc_v) ;

task.putbarcj(0, idx, falpha);

}

/* Set the bounds on constraints.

6.4. Semidefinite Optimization
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for =1, ...,numcon : blc[i] <= constraint % <= buc[i] */

for (int i = 0; i < numcon; ++i)

task.putconbound (i, /* Index of constraint.*/
bkc[i], /* Bound key.*/
blc[i], /% Numerical value of lower bound.*/
buc[il); /* Numerical value of upper bound.*/

/% Input A row by row */
for (int i = 0; i < numcon; ++i)
task.putarow(i,
asubl[i],
avall[i]);

/% Append the conic quadratic cone */
task.appendcone (mosek. conetype.quad,
0.0,

conesub) ;

/* Add the first row of bard */
{
long[] idx = new longl[1];
double[] falpha = {1.0};
task.appendsparsesymmat (dimbarvar [0],
bara_i[0],
bara_j[0],
bara_v[0],
idx) ;

task.putbaraij (0, 0, idx, falpha);

long[] idx = new longl[1];

double[] falpha = {1.0};

/% Add the second row of bard */

task.appendsparsesymmat (dimbarvar [0],
bara_i[1],
bara_j[1],
bara_v[1],
idx) ;

task.putbaraij (1, 0, idx, falpha);

/* Run optimizer */
task.optimize();

/* Print a summary containing information
about the solution for debugging purposes*/
task.solutionsummary (mosek.streamtype.msg);

mosek.solstal[] solsta = new mosek.solstal[l];
task.getsolsta (mosek.soltype.itr, solsta);

switch (solstal0]) {
case optimal:
case near_optimal:
double[] xx = new double[numvar] ;
double[] barx = new double[lenbarvar[0]];

task.getxx (mosek.soltype.itr, xx);
task.getbarxj(mosek.soltype.itr, /* Request the interior solution. */
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0,
barx) ;
System.out.println("Optimal primal solution");
for (int i = 0; i < numvar; ++i)
System.out.println("x[" + i + "] "+ xx[il);

for (int i = 0; i < lenbarvar[0]; ++i)
System.out.println("barx[" + i + "]: " + barx[i]);
break;
case dual_infeas_cer:
case prim_infeas_cer:
case near_dual_infeas_cer:
case near_prim_infeas_cer:
System.out.println("Primal or dual infeasibility certificate found.");
break;
case unknown:
System.out.println("The status of the solution could not be determined.");
break;
default:
System.out.println("Other solution status.");
break;

6.5 Integer Optimization

An optimization problem where one or more of the variables are constrained to integer values is called a
(mixed) integer optimization problem. MOSEK supports integer variables in combination with linear
and conic quadratic problems. See the previous tutorials for an introduction to how to model these types
of problems.

6.5.1 Example MILO1

We use the example

maximize xg + 0.64x,

subject to 50xg + 3lz; < 250,
3580 — 2351 Z —47
zg, 21 > 0 and integer

(6.8)

to demonstrate how to set up and solve a problem with integer variables. It has the structure of a linear
optimization problem (see Sec. 6.1) except for integrality constraints on the variables. Therefore, only
the specification of the integer constraints requires something new compared to the linear optimization
problem discussed previously.

First, the integrality constraints are imposed using the function Task.putvartype:

for (int j = 0; j < numvar; ++j)
task.putvartype(j, mosek.variabletype.type_int);

Next, the example demonstrates how to set various useful parameters of the mixed-integer optimizer.
See Sec. 14 for details.

/% Set maz solution time */
task.putdouparam(mosek.dparam.mio_max_time, 60.0);
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The complete source for the example is listed Listing 6.6. Please note that when Task.
getsolutionslice is called, the integer solution is requested by using soltype.itg. No dual solution
is defined for integer optimization problems.

Listing 6.6: Source code implementing problem (6.8).

package com.mosek.example;
import mosek.*;

public class milol {
static final int numcon = 2;
static final int numvar = 2;

public static void main (Stringl[] args) {
// Since the wvalue infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = 0;

mosek.boundkey[] bkc

= { mosek.boundkey.up, mosek.boundkey.lo };
double[] blc = { -infinity, -4.0 };
double[] buc = { 250.0, infinity };

mosek.boundkey[] bkx
= { mosek.boundkey.lo, mosek.boundkey.lo };

double[] blx = { 0.0, 0.0 };
double[] bux = { infinity, infinity };
double[] ¢ = {1.0, 0.64 };

int[1[] asub = { {0, 1}, {0, 1} }
double[]1[] aval = { {50.0, 3.0}, {31.0, -2.0} };
int[] ptrb = { 0, 2 };

int[] ptre = { 2, 4 };

double[] xx = new double[numvar];

try (Env env new Env();
Task task = new Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});
task.set_ItgSolutionCallback(
new mosek.ItgSolutionCallback() {
public void callback(double[] xx) {
System.out.print ("New integer solution: ");
for (double v : xx) System.out.print("" + v + " ");
System.out.println("");
}
I9N
/* Append 'numcon' empty constraints.
The constraints will initially have no bounds. */
task.appendcons (numcon) ;

/* Append 'mnumvar' wvariables.
The variables will initially be fized at zero (z=0). */

task.appendvars (numvar) ;

for (int j = 0; j < numvar; ++j) {
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/% Set the linear term c_j in the objective.*/
task.putcj(j, c[jl);
/% Set the bounds on wvartiable j.

blelj] <= z_j <= buzlj] */
task.putvarbound(j, bkx[j], blx[jl, bux[jl);
/% Input column j of 4 */

task.putacol(j, /% Vartable (column) indez.*/
asub[j], /* Row index of mon-zeros in column j.*/
avall[jl); /% Non-zero Values of column j. */
}
/* Set the bounds on constraints.
for =1, ...,numcon : blc[i] <= constraint % <= buc[t] */

for (int i = 0; i < numcon; ++i)
task.putconbound (i, bkc[i], blc[i], buc[il);

/* Specify integer variables. */
for (int j = 0; j < numvar; ++j)
task.putvartype(j, mosek.variabletype.type_int);

/* Set maz solution time */
task.putdouparam(mosek.dparam.mio_max_time, 60.0);

/* 4 mazimization problem */
task.putobjsense (mosek.objsense.maximize) ;
/* Solve the problem */

try {
task.optimize();

} catch (mosek.Warning e) {
System.out.println (" Mosek warning:");
System.out.println (e.toString ());

}

// Print a summary containing information

//  about the solution for debugging purposes

task.solutionsummary (mosek.streamtype.msg) ;

task.getxx(mosek.soltype.itg, // Integer solution.
XX) ;

mosek.solsta solstal] = new mosek.solstall];

/* Get status information about the solution */

task.getsolsta(mosek.soltype.itg, solsta);

switch (solstal0]) {
case integer_optimal:
case near_integer_optimal:
System.out.println("Optimal solution\n");
for (int j = 0; j < numvar; ++j)
System.out.println ("x[" + j + "]:" + xx[j1);
break;
case prim_feas:
System.out.println("Feasible solution\n");
for (int j = 0; j < numvar; ++j)
System.out.println ("x[" + j + "]1:" + xx[j1);
break;

case unknown:
mosek.prosta prostal] = new mosek.prostal[l];
task.getprosta(mosek.soltype.itg, prosta);
switch (prostal[0]) {
case prim_infeas_or_unbounded:
System.out.println("Problem status Infeasible or unbounded");
break;
case prim_infeas:

6.5.

Integer Optimization

37




MOSEK Optimizer API for Java, Release 8.1.0.76

System.out.println("Problem status Infeasible.");
break;
case unknown:
System.out.println("Problem status unknown.");
break;
default:
System.out.println("Other problem status.");
break;
}
break;
default:
System.out.println("Other solution status");
break;
}
Y
catch (mosek.Exception e) {
System.out.println ("An error or warning was encountered");
System.out.println (e.getMessage ());
throw e;

}

6.5.2 Specifying an initial solution

Solution time of can often be reduced by providing an initial solution for the solver. It is not necessary
to specify the whole solution. By setting the iparam.mio_construct_sol parameter to onoffkey.on
and inputting values for the integer variables only, MOSEK will be forced to compute the remaining
continuous variable values. If the specified integer solution is infeasible or incomplete, MOSEK will
simply ignore it.

We concentrate on a simple example below.

maximize Txg 4+ 10x1 4+ x2 + dx3
subject to xg+ 1 + T2 + 23 < 2.5
X0, T1,To €L
Lo, XL1,T2,T3 Z 0

(6.9)

Solution values can be set using Task.putzzslice and related methods.

Listing 6.7: Implementation of problem (6.9) specifying an initial solution.

// Construct an initial feasible solution from the

// values of the integer valuse specified

task.putintparam(mosek.iparam.mio_construct_sol,
mosek.onoffkey.on.value) ;

// Assign values 0,2,0 to integer variables
task.putxxslice (mosek.soltype.itg, O, 3, intxx);

The complete code is not very different from the first example and is available for download as
mioinitsol. java. For more details about this process see Sec. 14.

6.6 Problem Modification and Reoptimization

Often one might want to solve not just a single optimization problem, but a sequence of problems, each
differing only slightly from the previous one. This section demonstrates how to modify and re-optimize
an existing problem. The example we study is a simple production planning model.
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Problem modifications regarding variables, cones, objective function and constraints can be grouped in
categories:

e add/remove,
e coefficient modifications,
e bounds modifications.

Especially removing variables and constraints can be costly. Special care must be taken with respect to
constraints and variable indexes that may be invalidated.

Depending on the type of modification, MOSEK may be able to optimize the modified problem more
efficiently exploiting the information and internal state from the previous execution. After optimization,
the solution is always stored internally, and is available before next optimization. The former optimal
solution may be still feasible, but no longer optimal; or it may remain optimal if the modification of the
objective function was small. This special case is discussed in Sec. 15.3.

In general, MOSEK exploits dual information and availability of an optimal basis from the previous
execution. The simplex optimizer is well suited for exploiting an existing primal or dual feasible solution.
Restarting capabilities for interior-point methods are still not as reliable and effective as those for the
simplex algorithm. More information can be found in Chapter 10 of the book [Chv83].

Parameter settings (see Sec. 7.4) can also be changed between optimizations.

6.6.1 Example: Production Planning

A company manufactures three types of products. Suppose the stages of manufacturing can be split into
three parts: Assembly, Polishing and Packing. In the table below we show the time required for each
stage as well as the profit associated with each product.

Product no. | Assembly (minutes) | Polishing (minutes) | Packing (minutes) | Profit ($)
0 2 3 2 1.50
1 4 2 3 2.50
2 3 3 2 3.00

With the current resources available, the company has 100, 000 minutes of assembly time, 50, 000 minutes
of polishing time and 60,000 minutes of packing time available per year. We want to know how many
items of each product the company should produce each year in order to maximize profit?

Denoting the number of items of each type by g, x1 and x5, this problem can be formulated as a linear
optimization problem:

maximize 1.5zg9 + 2521 + 3.0x9

subject to 2z + 4z + 3x2 < 100000, (6.10)
39 + 2x1 + 3z < 50000, ’
29 + 31 + 2x5 < 60000,

and
Zo,T1,T2 Z 0.
Code in Listing 6.8 loads and solves this problem.

Listing 6.8: Setting up and solving problem (6.10)

// Since the value infinity is never used, we define
// 'infinity' symbolic purposes only

double infinity = O;
int numcon = 3;
int numvar = 3;
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double cll {1.5, 2.5, 3.0 };
mosek.boundkey  bkc[] = { mosek.boundkey.up,
mosek.boundkey.up,
mosek.boundkey.up
3
double blc[] = { -infinity,
-infinity,
-infinity
3
double buc[] = { 100000,
50000,
60000
};
mosek.boundkey  bkx[] = { mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey.lo

}s
double blx[] = { 0.0, 0.0, 0.0 };
double bux[] = { +infinity,
+infinity,
+infinity
};
int asub[J[] = {
{0, 1, 2},
{0, 1, 2},
{0, 1, 2}
};
double avall[l[] = {
{ 2.0, 3.0, 2.0 },
{4.0, 2.0, 3.0 },
{ 3.0, 3.0, 2.0 }
};
double[] xx = new double[numvar] ;

try (Env env = new Env();
Task task = new Task(env, 0, 0)) {
/* Append the constraints. */
task.appendcons (numcon) ;

/* Append the wvariables. */
task.appendvars (numvar) ;

/* Put C. */
for (int j = 0; j < numvar; ++j)
task.putcj(j, c[jl);

/* Put constraint bounds. */
for (int i = 0; i < numcon; ++i)

task.putbound (mosek.accmode.con, i, bkc[i], blc[i], buclil);

/* Put variable bounds. */
for (int j = 0; j < numvar; ++j)

task.putbound (mosek.accmode.var, j, bkx[jl, blx[jl, bux[jl);

/* Put 4. */
if ( numcon > 0 ) {
for (int j = 0; j < numvar; ++j)
task.putacol(j,
asub[j],
avall[jl);
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}

/* 4 mazimization problem */
task.putobjsense (mosek.objsense.maximize) ;
/* Solve the problem */

mosek.rescode termcode = task.optimize();

task.getxx(mosek.soltype.bas, // Request the basic solution.
XX) ;

6.6.2 Changing the Linear Constraint Matrix

Suppose we want to change the time required for assembly of product 0 to 3 minutes. This corresponds
to setting ag,o = 3, which is done by calling the function Task.putaij as shown below.

task.putaij(0, 0, 3.0); ‘

The problem now has the form:

maximize 1.5z9 + 2521 + 3.0x9

subject to  3x9 + 4x; 4+ 3z < 100000, (6.11)
3z + 221 + 3z < 50000, '
200 4+  3xz1 + 2z < 60000,

and
o, T1,T2 Z O

After this operation we can reoptimize the problem.

6.6.3 Appending Variables

We now want to add a new product with the following data:

Product no. | Assembly (minutes) | Polishing (minutes) | Packing (minutes) | Profit ($)
3 4 0 1 1.00

This corresponds to creating a new variable x3, appending a new column to the A matrix and setting a
new term in the objective. We do this in Listing 6.9

Listing 6.9: How to add a new variable (column)

JEEkEKFRF KRN KRN ERF* Add 0 new variable * ¥ KKk Kk kKKK KKKKKKKKKKKKKK KK KKK/
/% Get index of new variable. */

int[] varidx = new int[1];

task.getnumvar (varidx) ;

/* Append a new variable z_3 to the problem */
task.appendvars(1);
numvar++;

/% Set bounds on new varaible */
task.putbound (mosek.accmode.var,
varidx[0],
mosek.boundkey.lo,
0,
+infinity) ;
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/* Change objective */
task.putcj(varidx[0], 1.0);

/* Put new values in the A matriz */
int[] acolsub = new int[] {0, 2};
double[] acolval = new double[] {4.0, 1.0};

task.putacol(varidx[0], /* column index */
acolsub,
acolval) ;

After this operation the new problem is:

maximize 1.5z¢ + 2521 + 3.0z2 + 1.0x3
subject to 3zg + 41 + 3x2 + 4dxs
3xo +  2x +  3xy
20 4+ 3x1 4+ 2z + lzs

and

To,T1, T2, T3 > 0.

6.6.4 Appending Constraints

VARVANIYAN

100000,
50000,
60000,

(6.12)

Now suppose we want to add a new stage to the production process called Quality control for which
30000 minutes are available. The time requirement for this stage is shown below:

Product no. | Quality control (minutes)
0 1
1 2
2 1
3 1

This corresponds to adding the constraint
To + 221 + 22 + x3 < 30000
to the problem. This is done as follows.

Listing 6.10: Adding a new constraint.

JEKKEKKRKKRK KRN KKK RN, %¥ Add @ NeWw CONSETAINT k¥ k kKKK KKKKKKKKKKKKKK KKK X/

/% Get index of new constraint. */
int[] conidx = new int[1];
task.getnumcon (conidx) ;

/* Append a new constraint */
task.appendcons (1) ;
numcon++;

/% Set bounds on new constraint */
task.putconbound(conidx[0],
mosek.boundkey.up,
-infinity,
30000) ;

/* Put new values in the A matriz */
int[] arowsub = new int[] {0, 1, 2, 3 };
double[] arowval = new double[] {1.0, 2.0, 1.0, 1.0};
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task.putarow(conidx[0], /* row index */
arowsub,
arowval) ;

Again, we can continue with re-optimizing the modified problem.

6.7 Solution Analysis

The main purpose of MOSEK is to solve optimization problems and therefore the most fundamental
question to be asked is whether the solution reported by MOSEK is a solution to the desired optimization
problem.

There can be several reasons why it might be not case. The most prominent reasons are:

e A wrong problem. The problem inputted to MOSEK is simply not the right problem, i.e. some
of the data may have been corrupted or the model has been incorrectly built.

e Numerical issues. The problem is badly scaled or otherwise badly posed.
e Other reasons. E.g. not enough memory or an explicit user request to stop.

The first step in verifying that MOSEK reports the expected solution is to inspect the solution summary
generated by MOSEK (see Sec. 6.7.1). The solution summary provides information about

e the problem and solution statuses,
e objective value and infeasibility measures for the primal solution, and
e objective value and infeasibility measures for the dual solution, where applicable.

By inspecting the solution summary it can be verified that MOSEK produces a feasible solution, and,
in the continuous case, the optimality can be checked using the dual solution. Furthermore, the problem
itself ca be inspected using the problem analyzer discussed in Sec. 15.1.

If the summary reports conflicting information (e.g. a solution status that does not match the actual
solution), or the cause for terminating the solver before a solution was found cannot be traced back to
the reasons stated above, it may be caused by a bug in the solver; in this case, please contact MOSEK
support (see Sec. 2).

If it has been verified that MOSEK solves the problem correctly but the solution is still not as expected,
next step is to verify that the primal solution satisfies all the constraints. Hence, using the original
problem it must be determined whether the solution satisfies all the required constraints in the model.
For instance assume that the problem has the constraints

r1+2x0+23 <1,
T1,T2,73 > 0

and MOSEK reports the optimal solution
T, = To = x3 = 1.

Then clearly the solution violates the constraints. The most likely explanation is that the model does
not match the problem entered into MOSEK, for instance

Ty —2x9 + 23 <1
may have been inputted instead of
1+ 229 + a3 < 1.

A good way to debug such an issue is to dump the problem to OPF file and check whether the violated
constraint has been specified correctly.
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Verifying that a feasible solution is optimal can be harder. However, for continuous problems, i.e. prob-
lems without any integer constraints, optimality can verified using a dual solution. Normally, MOSEK
will report a dual solution; if that is feasible and has the same objective value as the primal solution,
then the primal solution must be optimal.

An alternative method is to find another primal solution that has better objective value than the one
reported to MOSEK. If that is possible then either the problem is badly posed or there is bug in
MOSEK.

6.7.1 The Solution Summary

Due to MOSEK employs finite precision floating point numbers then reported solution is an approximate
optimal solution. Therefore after solving an optimization problem it is relevant to investigate how good
an approximation the solution is. For a convex optimization problem that is an easy task because the
optimality conditions are:

e The primal solution must satisfy all the primal constraints.
e The dual solution much satisfy all the dual constraints.
e The primal and dual objective values must be identical.

Therefore, the MOSEK solution summary displays that information that makes it possible to verify the
optimality conditions. Indeed the solution summary reports how much primal and dual solutions violate
the primal and constraints respectively. In addition the objective values assoctaied with each solution
repoted.

In case of a linear optimization problem the solution summary may look like

Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -4.6475314286e+002 nrm: 5e+002 Viol. con: 1le-014 var: 1le-014
Dual. obj: -4.6475314543e+002 nrm: 1e+001 Viol. con: 4e-009 var: 4e-016

The interpreation of the solution summary is as follows:
e Information for the basic solution is reported.
e The problem status is primal and dual feasible which means the problem has an optimal solution.
e The solution status is optimal.

e Next information about the primal solution is reported. The information consists of the objective
value, the infinity norm of the primal solution and violation meassures. The violation for the
constraints (con:) is the maximal violation in any of the constraints. Whereas the violations for
the variables (var:) is the maximal bound violation for any of the variables. In this case the
primal violations for the constraints and variables are small meaning the solution is an almost
feasible solution. Observe due to the rounding errors it can be expected that the violations are
proportional to the size (nrm:) of the solution.

e Similarly for the dual solution the violations are small and hence the dual solution is almost feasible.
e Finally, it can be seen that the primal and dual objective values are almost identical.

To summarize in this case a primal and a dual solution only violate the primal and dual constraints
slightly. Moreover, the primal and dual objective values are almost identical and hence it can be concluded
that the reported solution is a good approximation to the optimal solution.

The reason the size (=norms) of the solution are shown is that it shows some about conditioning of the
problem because if the primal and/or dual solution has very large norm then the violations and objective
values are sensitive to small pertubations in the problem data. Therefore, the problem is unstable and
care should be taken before using the solution.

Observe the function Task.solutionsummary will print out the solution summary. In addition
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e the problem status can be obtained using Task.getprosta.
o the solution status can be obtained using Task.getsolsta.

e the primal constraint and variable violations can be obtained with Task.getpviolcon and Task.
getpuviolvar.

e the dual constraint and variable violations can be obtained with Task.getdviolcon and Task.
getdviolvar respectively.

e the primal and dual objective values can be obtained with Task.getprimalobj and Task.
getdualoby.

Now what happens if the problem does not have an optimal solution e.g. is primal infeasible. In such a
case the solution summary may look like

Interior-point solution summary
Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 6.7319732555€e+000 nrm: 8e+000 Viol. con: 3e-010 var: 2e-009

i.e. MOSEK reports that the solution is a certificate of primal infeasibility but a certificate of primal
infeasibility what does that mean? It means that the dual solution is a Farkas type certificate. Recall
Farkas’ Lemma says

Ax = b,
xr > 0
if and only if a y exists such that
ATy < 0,
Ty > 0. (6.13)

Observe the infeasibility certificate has the same form as a regular dual solution and therefore the
certificate is stored as a dual solution. In order to check quality of the primal infeasibility certificate
it should be checked whether satisfies (6.13). Hence, the dual objective value is b7y should be strictly
positive and the maximal violation in ATy < 0 should be a small. In this case we conclude the certificate
is of high quality because the dual objective is postive and large compared to the violations. Note the
Farkas certificate is a ray so any postive multiple of that ray is also certificate. This implies the absolute
of the value objective value and the violation is not relevant.

In the case a problem is dual infeasible then the solution summary may look like

Basic solution summary

Problem status : DUAL_INFEASIBLE

Solution status : DUAL_INFEASIBLE_CER

Primal. obj: -2.0000000000e-002 nrm: 1e+000 Viol. con: 0e+000 var: 0e+000

Observe when a solution is a certificate of dual infeasibility then the primal solution contains the cer-
tificate. Moreoever, given the problem is a minimization problem the objective value should be negative
and large compared to the worst violation if the certificate is strong.

Listing 6.11 shows how to use these function to determine the quality of the solution.

Listing 6.11: An example of solution quality analysis.

package com.mosek.example;
import mosek.*;

public class solutionquality {
public static void main (Stringl[] args) {
if (args.length == 0) {
System.out.println ("Missing argument, syntax is:");
System.out.println (" solutionquality inputfile");
} else {
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try (Env env new Env();
Task task = new Task(env, 0, 0)) {
task.set_Stream (mosek.streamtype.log,
new mosek.Stream() {
public void stream(String msg) { System.out.print(msg); }
b
// We assume that a problem file was given as the first command
// line argument (received in ‘args')
task.readdata (args[0]);

// Solve the problem
task.optimize ();

// System.Out.Println (a summary of the solution
task.solutionsummary (mosek.streamtype.log);

mosek.solsta solstal[] = new mosek.solstal[1];
task.getsolsta(mosek.soltype.bas, solsta);

double pobj[] = new double[1];

double pviolcon[] = new double[1];
double pviolvar[] = new double[1];
double pviolbarvar[] = new double[1];
double pviolcones[] = new double[1];
double pviolitg[] = new double[1];
double dobj[] = new double[1];

double dviolcon[] = new double[1];
double dviolvar[] = new double[1];
double dviolbarvar[] = new doublel[1];
double dviolcones[] = new double[1];

task.getsolutioninfo(mosek.soltype.bas,
pobj, pviolcon, pviolvar, pviolbarvar, pviolcones, pviolitg,
dobj, dviolcon, dviolvar, dviolbarvar, dviolcones);

switch (solstal0]) {
case optimal:
case near_optimal:

double abs_obj_gap = Math.abs(dobj[0] - pobj[0]);

double rel_obj_gap = abs_obj_gap / (1.0 + Math.min(Math.abs(pobj[0]), Math.
—abs(dobj[0])));

double max_primal_viol = Math.max(pviolcon[0], pviolvar[0]);

max_primal_viol = Math.max(max_primal_viol , pviolbarvar[0]);
max_primal_viol = Math.max(max_primal_viol , pviolcones[0]);
double max_dual_viol = Math.max(dviolcon[0], dviolvar[0]);
max_dual_viol = Math.max(max_dual_viol , dviolbarvar[0]);
max_dual_viol = Math.max(max_dual_viol , dviolcones[0]);

// Assume the application needs the solution to be within
// le-6 ofoptimality in an absolute sense. Another approach
// would be looking at the relative objective gap

System.out.println ("Customized solution information.\n");
System.out.println (" Absolute objective gap: " + abs_obj_gap);
System.out.println (" Relative objective gap: " + rel_obj_gap);
System.out.println (" Max primal violation : " + max_primal_viol);
System.out.println (" Max dual violation : " + max_dual_viol);

boolean accepted = true;

if ( rel_obj_gap > le-6 ) {
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System.out.println ("Warning: The relative objective gap is LARGE.");
accepted = false;

}

// We will accept a primal infeasibility of le-8 and
// dual infeasibility of le-6. These number should chosen problem
// dependent.
if ( max_primal_viol > le-8 ) {
System.out.println ("Warning: Primal violation is too LARGE");
accepted = false;

}

if (max_dual_viol > le-6 ) {
System.out.println ("Warning: Dual violation is too LARGE.");
accepted = false;

}

if ( accepted ) {
int numvar = task.getnumvar();
System.out.println ("Optimal primal solution");
double xj[] = new double[1];
for (int j = 0; j < numvar; j++) {
task.getxxslice(mosek.soltype.bas, j, j + 1, xj);
System.out.println ("x[" + j + "]: " + xj[0]);
}
} else {
// print etailed information about the solution
task.analyzesolution(mosek.streamtype.log, mosek.soltype.bas);
¥
break;

case dual_infeas_cer:
case prim_infeas_cer:
case near_dual_infeas_cer:
case near_prim_infeas_cer:
System.out.println ("Primal or dual infeasibility certificate found.");
break;
case unknown:
System.out.println ("The status of the solution is unknown.");
break;
default:
System.out.println ("Other solution status");
}
} catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;

6.7.2 The Solution Summary for Mixed-Integer Problems

The solution summary for a mixed-integer problem may look like

Listing 6.12: Example of solution summary for a mixed-integer problem.

Integer solution solution summary
Problem status : PRIMAL_FEASIBLE
Solution status : INTEGER_OPTIMAL
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Primal. obj: 3.4016000000e+005 nrm: 1e+000 Viol. con: 0e+000 var: 0e+000 itg: 3e-014

The main diffrence compared to thecontinous case covered previously is that no information about
the dual solution is provided. Simply because there is no dual solution available for a mixed integer
problem. In this case it can be seen that the solution is highly feasible because the violations are small.
Moreoever, the solution is denoted integer optimal. Observe itg: 3e-014 implies that all the integer
constrained variables are at most 3e — 014 from being an exact integer.

For a more in-depth treatment see the following sections:
e (use studies for more advanced and complicated optimization examples.

e Problem Formulation and Solutions for formal mathematical formulations of problems MOSEK
can solve, dual problems and infeasibility certificates.
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CHAPTER

SEVEN

SOLVER INTERACTION TUTORIALS

In this section we cover the interaction with the solver.

7.1 Accessing the solution

This section contains important information about the status of the solver and the status of the solution,
which must be checked in order to properly interpret the results of the optimization.

7.1.1 Solver termination

The optimizer provides two status codes relevant for error handling:

e Response code of type rescode. It indicates if any unexpected error (such as an out of memory
error, licensing error etc.) has occurred. The expected value for a successful optimization is
rescode. ok.

e Termination code: It provides information about why the optimizer terminated, for instance if
a predefined time limit has been reached. These are not errors, but ordinary events that can be
expected (depending on parameter settings and the type of optimizer used).

If the optimization was successful then the method Task.optimize returns normally and its output
is the termination code. If an error occurs then the method throws an exception, which contains the
response code. See Sec. 7.2 for how to access it.

If a runtime error causes the program to crash during optimization, the first debugging step is to enable
logging and check the log output. See Sec. 7.3.

If the optimization completes successfully, the next step is to check the solution status, as explained
below.

7.1.2 Available solutions

MOSEK uses three kinds of optimizers and provides three types of solutions:
e basic solution (BAS, from the simplex optimizer),
e interior-point solution (ITR, from the interior-point optimizer),
e integer solution (ITG, from the mixed-integer optimizer).

Under standard parameters settings the following solutions will be available for various problem types:
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Table 7.1: Types of solutions available from MOSEK

Simplex opti- | Interior-point opti- | Mixed-integer opti-
mizer mizer mizer

Linear problem soltype.bas soltype.itr

Nonlinear continuous prob- soltype.itr

lem

Problem with integer vari- soltype.itg

ables

For linear problems the user can force a specific optimizer choice making only one of the two solutions
available. For example, if the user disables basis identification, then only the interior point solution will
be available for a linear problem. Numerical issues may cause one of the solutions to be unknown even
if another one is feasible.

Not all components of a solution are always available. For example, there is no dual solution for integer
problems.

The user will always need to specify which solution should be accessed.

7.1.3 Problem and solution status

Assuming that the optimization terminated without errors, the next important step is to check the
problem and solution status. There is one for every type of solution, as explained above.

Problem status

Problem status (prosta, retrieved with Task.getprosta) determines whether the problem is certified
as feasible. Its values can roughly be divided into the following broad categories:

e feasible — the problem is feasible. For continuous problems and when the solver is run with
default parameters, the feasibility status should ideally be prosta.prim_and_dual_feas.

e primal/dual infeasible — the problem is infeasible or unbounded or a combination of those.
The exact problem status will indicate the type of infeasibility.

e unknown — the solver was unable to reach a conclusion, most likely due to numerical issues.

Solution status

Solution status (solsta, retrieved with Task.getsolsta) provides the information about what the
solution values actually contain. The most important broad categories of values are:

e optimal (solsta.optimal) — the solution values are feasible and optimal.

e near optimal (solsta.near_optimal) — the solution values are feasible and they were certified
to be at least nearly optimal up to some accuracy.

e certificate — the solution is in fact a certificate of infeasibility (primal or dual, depending on the
solution).

e unknown/undefined — the solver could not solve the problem or this type of solution is not
available for a given problem.

The solution status determines the action to be taken. For example, in some cases a suboptimal solution
may still be valuable and deserve attention. It is the user’s responsibility to check the status and quality
of the solution.
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Typical status reports

Here are the most typical optimization outcomes described in terms of the problem and solution statuses.
Note that these do not cover all possible situations that can occur.

Table 7.2: Continuous problems (solution status for soltype.itr
or soltype.bas)

Outcome Problem status Solution status
Optimal prosta. solsta.optimal
prim_and_dual_feas

Primal infeasible prosta.prim_infeas solsta.
prim_infeas_cer

Dual infeasible prosta.dual_infeas solsta.
dual_infeas_cer

Uncertain (stall, numerical issues, etc.) | prosta.unknown solsta.unknown

Table 7.3: Integer problems (solution status for soltype.itg, oth-
ers undefined)

Outcome Problem status Solution status

Integer optimal prosta.prim_feas solsta.integer_optimal
Infeasible prosta.prim_infeas | solsta.unknown

Integer feasible point | prosta.prim_feas solsta.prim_feas

No conclusion prosta.unknown solsta.unknown

7.1.4 Retrieving solution values
After the meaning and quality of the solution (or certificate) have been established, we can query for the
actual numerical values. They can be accessed with methods such as:

e Task.getprimaloby, Task.getdualobj — the primal and dual objective value.

e Task.getzz — solution values for the variables.

e Task.getsolution — a full solution with primal and dual values

and many more specialized methods, see the API reference.

7.1.5 Source code example

Below is a source code example with a simple framework for assessing and retrieving the solution to a
conic quadratic optimization problem.

Listing 7.1: Sample framework for checking optimization result.

package com.mosek.example;
import mosek.*;

public class response {
public static void main(String[] argv) {
StringBuffer symname = new StringBuffer();
StringBuffer desc = new StringBuffer();

String filename;
if (argv.length >=1) filename = argv[0];
else filename = "../data/cqol.mps";

// Create the task and environment
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try (Env env new Env();
Task task = new Task(env, 0, 0)) {

// (Optionally) attach the log handler to receive log information
/*
task.set_Stream(
streamtype. log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});
*/

// (Optionally) uncomment this line to ezperience solution status Unknown
// task.putintparam(iparam.intpnt_maz_iterations, 1);

// On this example we rTead an optimization problem from a file
task.readdata(filename) ;

// Perform optimization.
rescode trm = task.optimize();

// Handle solution status. We expect Optimal
solsta solsta = task.getsolsta(soltype.itr);

switch ( solsta ) {

case optimal:

case near_optimal:
// Fetch and print the solution
System.out.println("An optimal interior point solution is located.");
int numvar = task.getnumvar();
double[] xx = new double[numvar] ;
task.getxx(soltype.itr, xx);
for(int i = 0; i < numvar; i++)

System.out.println("x[" + i + "] = " + xx[i]);

break;

case dual_infeas_cer:

case near_dual_infeas_cer:
System.out.println("Dual infeasibility certificate found.");
break;

case prim_infeas_cer:

case near_prim_infeas_cer:
System.out.println("Primal infeasibility certificate found.");
break;

case unknown:
// The solutions status is unknown. The termination code
// indicates why the optimizer terminated prematurely.
System.out.println("The solution status is unknown.");
Env.getcodedesc(trm, symname, desc);

System.out.printf("  Termination code: %s %s\n", symname, desc);
break;

default:
System.out.println("Unexpected solution status " + solsta + "\n");
break;

}
}
catch (mosek.Error e) {
System.out.println("Unexpected error (" + e.code + ") " + e.msg);
}
}
}
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7.2 Errors and exceptions

Exceptions

Almost every function in Optimizer API for Java can throw an exception informing that the requested
operation was not performed correctly, and indicating the type of error that occurred. This is the case
in situations such as for instance:

e referencing a nonexisting variable (for example with too large index),
e defining an invalid value for a parameter,

e accessing an undefined solution,

e repeating a variable name, etc.

It is therefore a good idea to catch exceptions of type Error. The one case where it is extremely important
to do so is when Task.optimize is invoked. We will say more about this in Sec. 7.1.

The exception contains a response code (element of the enum rescode) and short diagnostic messages.
They can be accessed as in the following example.

try {
task.putdouparam(mosek.dparam.intpnt_co_tol_rel_gap, -1.0e-7);
b
catch (mosek.Exception e) {
mosek.rescode res = e.code;
System.out.println("Response code " + res + "\nMessage " + e.msg);

}

It will produce as output:

Response code rescode.err_param_is_too_small
Message The parameter value -1e-07 is too small for parameter 'MSK_DPAR_INTPNT_CO_TOL_
—REL_GAP'.

Another way to obtain a human-readable string corresponding to a response code is the method Enwv.
getcodedesc. A full list of exceptions, as well as response codes, can be found in the API reference.

Optimizer errors and warnings

The optimizer may also produce warning messages. They indicate non-critical but important events,
that will not prevent solver execution, but may be an indication that something in the optimization
problem might be improved. Warning messages are normally printed to a log stream (see Sec. 7.3). A
typical warning is, for example:

MOSEK warning 53: A numerically large upper bound value 6.6e+09 is specified for constraint
—'C69200" (46020) .

Warnings can also be suppressed by setting the iparam.maz_num_warnings parameter to zero, if they
are well-understood.

7.3 Input/Output

The logging and I/O features are provided mainly by the MOSEK task and to some extent by the
MOSEK environment objects.
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7.3.1 Stream logging

By default the solver runs silently and does not produce any output to the console or otherwise. However,
the log output can be redirected to a user-defined output stream or stream callback function. The log
output is analogous to the one produced by the command-line version of MOSEK.

The log messages are partitioned in three streams:
e 1messages, streamtype.msg
e warnings, streamtype.wrn
® crrors, streamtype.err

These streams are aggregated in the streamtype. log stream. A stream handler can be defined for each
stream separately.

The Stream class is used to receive text strings emitted to MOSEK’s output streams. Extending
Stream is the way to customize the solver output. When a Stream object is attached to a Task stream,
any text that is printed to that stream will be passed to the Stream. stream method. For example:

task.set_Stream(mosek.streamtype.log,
new mosek.Stream()

{
public void stream(String msg)
{
System.out.print (msg) ;
}
b;

The stream can be detached by calling

task.set_Stream(mosek.streamtype.log,
(mosek.Stream)null) ;

After optimization is completed an additional short summary of the solution and optimization process
can be printed to any stream using the method Task.solutionsummary.

7.3.2 Log verbosity

The logging verbosity can be controlled by setting the relevant parameters, as for instance
e iparam.log,
e iparam.log_intpnt,
e iparam.log_mio,
e tparam.log_cut_second_opt,
e iparam.log_sim, and
® iparam.log_sim_minor.

Each parameter controls the output level of a specific functionality or algorithm. The main switch is
iparam. Log which affect the whole output. The actual log level for a specific functionality is determined
as the minimum between iparam.log and the relevant parameter. For instance, the log level for the
output produce by the interior-point algorithm is tuned by the iparam. log_intpnt; the actual log level
is defined by the minimum between iparam.log and iparam.log_intpnt.

Tuning the solver verbosity may require adjusting several parameters. It must be noticed that verbose
logging is supposed to be of interest during debugging and tuning. When output is no more of interest,
the user can easily disable it globally with iparam. log. Larger values of iparam. log do not necessarily
result in increased output.
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By default MOSEK will reduce the amount of log information after the first optimization on a given
problem. To get full log output on subsequent re-optimizations set iparam.log_cut_second_opt to
Zero.

7.3.3 Saving a problem to a file

An optimization problem can be dumped to a file using the method Task.writedata. The file format
will be determined from the filename’s extension (unless the parameter iparam.write_data_format
specifies something else). Supported formats are listed in Sec. 17 together with a table of problem types
supported by each.

For instance the problem can be written to an OPF file with

task.writedata("data.opf");
task.optimize();

All formats can be compressed with gzip by appending the .gz extension, for example

task.writedata("data.task.gz");

Some remarks:

e Unnamed variables are given generic names. It is therefore recommended to use meaningful variable
names if the problem file is meant to be human-readable.

e The task format is MOSEK’s native file format which contains all the problem data as well as
solver settings.

7.3.4 Reading a problem from a file

A problem saved in any of the supported file formats can be read directly into a task using Task.
readdata. The task must be created in advance. Afterwards the problem can be optimized, modified,
etc. If the file contained solutions, then are also imported, but the status of any solution will be set to
solsta.unknown (solutions can also be read separately using Task.readsolution). If the file contains
parameters, they will be set accordingly.

task = new mosek.Task(env, 0, 0);
try {
task.readdata("file.task.gz");
task.optimize();
} catch (mosek.Exception e) {
System.out.println("Problem reading the file");
Y

7.4 Setting solver parameters

MOSEK comes with a large number of parameters that allows the user to tune the behavior of the
optimizer. The typical settings which can be changed with solver parameters include:

e choice of the optimizer for linear problems,
e choice of primal/dual solver,

e turning presolve on/off,

turning heuristics in the mixed-integer optimizer on/off,

level of multi-threading,

feasibility tolerances,
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e solver termination criteria,

e behaviour of the license manager,
and more. All parameters have default settings which will be suitable for most typical users.
The API reference contains:

e Full list of parameters

e List of parameters grouped by topic

Setting parameters

Each parameter is identified by a unique name. There are three types of parameters depending on the
values they take:

e Integer parameters. They take either either simple integer values or values from an enumeration
provided for readability and compatibility of the code. Set with Task.putintparam.

e Double (floating point) parameters. Set with Task.putdouparam.
e String parameters. Set with Task.putstrparam.

There are also parameter setting functions which operate fully on symbolic strings containing command-
line style names of parameters and their values. See the example below. The optimizer will try to convert
the given argument to the exact expected type, and will error if that fails.

If an incorrect value is provided then the parameter is left unchanged.

For example, the following piece of code sets up parameters which choose and tune the interior point
optimizer before solving a problem.

Listing 7.2: Parameter setting example.

// Set log level (integer parameter)

task.putintparam(mosek.iparam.log, 1);

// Select interior-point optimizer... (integer parameter)
task.putintparam(mosek.iparam.optimizer, mosek.optimizertype.intpnt.value);
// ... without basis tdentification (integer parameter)
task.putintparam(mosek.iparam.intpnt_basis, mosek.basindtype.never.value);
// Set relative gap tolerance (double parameter)
task.putdouparam(mosek.dparam.intpnt_co_tol_rel_gap, 1.0e-7);

// The same using ezplicit string names
task.putparam ("MSK_DPAR_INTPNT_CO_TOL_REL_GAP", "1.0e-7");
task.putnadouparam("MSK_DPAR_INTPNT_CO_TOL_REL_GAP", 1.0e-7 );

// Incorrect value
try {
task.putdouparam(mosek.dparam.intpnt_co_tol_rel_gap, -1.0);
X
catch (mosek.Error e) {
System.out.println("Wrong parameter value");

}

Reading parameter values

The functions Task.getintparam, Task.getdouparam, Task.getstrparam can be used to inspect the
current value of a parameter, for example:

double param = task.getdouparam(mosek.dparam.intpnt_co_tol_rel_gap);
System.out.println("Current value for parameter intpnt_co_tol_rel_gap = " + param);
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7.5 Retrieving information items

After the optimization the user has access to the solution as well as to a report containing a large amount
of additional information items. For example, one can obtain information about:

e timing: total optimization time, time spent in various optimizer subroutines, number of iterations,
etc.

e solution quality: feasibility measures, solution norms, constraint and bound violations, etc.
e problem structure: counts of variables of different types, constraints, nonzeros, etc.
e integer optimizer: integrality gap, objective bound, number of cuts, etc.

and more. Information items are numerical values of integer, long integer or double type. The full list
can be found in the API reference:

e Double
e Integer
e Long

Certain information items make sense, and are made available, also during the optimization process.
They can be accessed from a callback function, see Sec. 7.6 for details.

Remark

For efficiency reasons, not all information items are automatically computed after optimization. To force
all information items to be updated use the parameter <param.auto_update_sol_info.

Retrieving the values

Values of information items are fetched using one of the methods
e Task.getdouinf for a double information item,
o Task.getintinf for an integer information item,
e Task.getlintinf for a long integer information item.
Each information item is identified by a unique name. The example below reads two pieces of data from

the solver: total optimization time and the number of interior-point iterations.

Listing 7.3: Information items example.

double tm = task.getdouinf (mosek.dinfitem.optimizer_time);
task.getintinf (mosek.iinfitem.intpnt_iter);

int iter

System.out.println("Time: " + tm);
System.out.println("Iterations: " + iter);

7.6 Progress and data callback

Callbacks are a very useful mechanism that allow the caller to track the progress of the MOSEK
optimizer. A callback function provided by the user is regularly called during the optimization and can
be used to

e obtain a customized log of the solver execution,

e collect information for debugging purposes or
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e ask the solver to terminate.
Optimizer API for Java has the following callback mechanisms:
e progress callback, which provides only the basic status of the solver.

e data callback, which provides the solver status and a complete set of information items that
describe the progress of the optimizer in detail.

e integer solution callback, for reporting progress on a mixed-integer problem.

Warning

The callbacks functions must not invoke any functions of the solver, environment or task. Otherwise the
state of the solver and its outcome are undefined. The only exception is the possibility to retrieve an
integer solution, see below.

Retrieving mixed-integer solutions

If the mixed-integer optimizer is used, the callback will take place, in particular, every time an improved
integer solution is found. In that case it is possible to retrieve the current values of the best integer
solution from within the callback function. It can be useful for implementing complex termination
criteria for integer optimization. Note that there is a specialized callback class for retrieving only the
integer solution anyway.

7.6.1 Data callback

In the data callback MOSEK passes a callback code and values of all information items to a user-defined
function. The callback function is called, in particular, at the beginning of each iteration of the interior-
point optimizer. For the simplex optimizers tparam. log_sim_freq controls how frequently the call-back
is called. Note that the callback is done quite frequently, which can lead to degraded performance. If
the information items are not required, the simpler progress callback may be a better choice.

The callback is set by calling the method Task.set_InfoCallback. The callback function must be im-
plemented by extending the abstract class DataCallback and implementing the method DataCallback.
callback.

Non-zero return value of the callback function indicates that the optimizer should be terminated.

7.6.2 Progress callback
In the progress callback MOSEK provides a single code indicating the current stage of the optimization
process.

The callback is set by calling the method Task.set_Progress. The callback function must be imple-
mented by extending the abstract class Progress and implementing the method Progress.progress.

Non-zero return value of the callback function indicates that the optimizer should be terminated.

7.6.3 Integer solution callback

In this type of callback the user-defined callback function receives an updated solution every time the
mixed-integer optimizer improves the objective value. It can be useful for implementing complex termi-
nation criteria for integer optimization.
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Syntax

The callback is set by calling the method Task.set_ItgSolutionCallback. The callback function must
be implemented by extending the abstract class ItgSolutionCallback and implementing the method
ItgSolutionCallback.callback.

7.6.4 Working example: Data callback

The following example defines a data callback function that prints out some of the information items. It
interrupts the solver after a certain time limit.

Listing 7.4: An example of a data callback function.

private static DataCallback makeUserCallback(final double maxtime) {
return new DataCallback() {
public int callback(callbackcode caller,

double[] douinf,

int[] intinf,

longl[] lintinf) {
double opttime = 0.0;

int itrn;
double pobj, dobj, stime;

Formatter f = new Formatter(System.out) ;
switch (caller) {
case begin_intpnt:
f.format ("Starting interior-point optimizer\n");

break;

case intpnt:
itrn = intinf[iinfitem.intpnt_iter.value 1;
pobj = douinf [dinfitem.intpnt_primal_obj.value];
dobj = douinf [dinfitem.intpnt_dual_obj.value 1];
stime = douinf[dinfitem.intpnt_time.value 1;

opttime = douinf[dinfitem.optimizer_time.value 1;

f.format ("Iterations: %-3d\n", itrn);
f.format(" Time: %6.2f(%.2f) ", opttime, stime);
f.format(" Primal obj.: %-18.6e Dual obj.: %-18.6e\n", pobj, dobj);
break;
case end_intpnt:
f.format ("Interior-point optimizer finished.\n");
break;
case begin_primal_simplex:
f.format("Primal simplex optimizer started.\n");

break;

case update_primal_simplex:
itrn = intinf[iinfitem.sim_primal_iter.value ];
pobj = douinf [dinfitem.sim_obj.value 1;
stime = douinf[dinfitem.sim_time.value 1;
opttime = douinf[dinfitem.optimizer_time.value 1];

f.format ("Iterations: %-3d\n", itrn);
f.format(" Elapsed time: %6.2f(%.2f\n", opttime, stime);
f.format(" Obj.: %-18.6e", pobj );
break;
case end_primal_simplex:
f.format("Primal simplex optimizer finished.\n");
break;
case begin_dual_simplex:
f.format("Dual simplex optimizer started.\n");
break;
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case update_dual_simplex:

itrn = intinf[iinfitem.sim_dual_iter.value 1;
pobj = douinf [dinfitem.sim_obj.value 1;
stime = douinf[dinfitem.sim_time.value 1;
opttime = douinf[dinfitem.optimizer_time.value 1];

f.format ("Iterations: %-3d\n", itrn);
f.format(" Elapsed time: %6.2f(%.2f)\n", opttime, stime);
f.format(" Obj.: %-18.6e\n", pobj);
break;
case end_dual_simplex:
f.format("Dual simplex optimizer finished.\n");
break;
case begin_bi:
f.format ("Basis identification started.\n");
break;
case end_bi:
f.format ("Basis identification finished.\n");
break;
default:
}
System.out.flush();
if (opttime >= maxtime)
// mosek is spending too much time. Terminate <t.
return 1;

return O;
}
};
}

Assuming that we have defined a task task and a time limit maxtime, the callback function is attached
as follows:

Listing 7.5: Attaching the data callback function to the model.

task.set_InfoCallback(makeUserCallback (maxtime)) ;

7.7 MOSEK OptServer

MOSEK provides an easy way to offload optimization problem to a remote server in both synchronous
or asynchronous mode. This section describes related functionalities from the client side, i.e. sending
optimization tasks to the remote server and retrieving solutions.

Setting up and configuring the remote server is described in a separate manual for the OptServer.

7.7.1 Synchronous Remote Optimization

In synchronous mode the client sends an optimization problem to the server and blocks, waiting for the
optimization to end. Once the result has been received, the program can continue. This is the simplest
mode and requires very few modifications to existing code: instead of Task.optimize the user must
invoke Task.optimizermt with the host and port where the server is running and listening as additional
arguments. The rest of the code remains untouched.

Note that it is impossible to recover the job in case of a broken connection.

Source code example
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Listing 7.6: Using the OptServer in synchronous mode.

package com.mosek.example;
import mosek.x*;

public class opt_server_sync {
public static void main (String[] args) {
if (args.length == 0) {
System.out.println ("Missing argument, syntax is:");
System.out.println (" opt_server_sync inputfile host port numpolls");
} else {

String inputfile = args[0];

String host = args[1];
String port = args[2];
rescode trm[] = new rescodell];
try (Env env = new Env();

Task task = new Task(env, 0, 0)) {
task.set_Stream (mosek.streamtype.log,
new mosek.Stream() {

public void stream(String msg) { System.out.print(msg); }
b;

task.readdata (inputfile);
task.optimizermt (host, port, trm);

task.solutionsummary (mosek.streamtype.log);

7.7.2 Asynchronous Remote Optimization

In asynchronous mode the client sends a job to the remote server and the execution of the client code
continues. In particular, it is the client’s responsibility to periodically check the optimization status and,
when ready, fetch the results. The client can also interrupt optimization. The most relevant methods
are:

e Task.asyncoptimize : Offload the optimization task to a solver server.
e Task.asyncpoll : Request information about the status of the remote job.
e Task.asyncgetresult : Request the results from a completed remote job.

e Task.asyncstop : Terminate a remote job.

Source code example

In the example below the program enters in a polling loop that regularly checks whether the result of
the optimization is available.

Listing 7.7: Using the OptServer in asynchronous mode.

package com.mosek.example;
import mosek.x*;

public class opt_server_async {
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public static void main (String[] args) {
if (args.length == 0) {
System.out.println ("Missing argument, syntax is:");
System.out.println (" opt_server_async inputfile host port numpolls");
} else {

String inputfile = args[0];

String host = args[1];
String port = args[2];
int numpolls = Integer.parselnt(args([3]);

try (Env env = new Env()) {
String token;

try(Task task = new Task(env, 0, 0)) {
task.readdata (inputfile);
token = task.asyncoptimize (host, port);

System.out.printf ("Task token = %s\n", token);

try(Task task = new Task(env, 0, 0)) {
System.out.println("Reading input file...");

task.readdata (inputfile);
System.out.println("Setting log stream...");
task.set_Stream (mosek.streamtype.log,
new mosek.Stream() {

public void stream(String msg) { System.out.print(msg); }
b;
long start = System.currentTimeMillis();
System.out.println("Starting polling loop...");
int i = 0;
while ( true ) {

Thread.sleep(100);

System.out.printf ("poll %d...\n", 1i);

rescode trm[] = new rescodel[1];
rescode resp[] = new rescode[1];

boolean respavailable = task.asyncpoll( host,
port,
token,
resp,
trm) ;

System.out.println("polling done");

if (respavailable) {
System.out.println("solution available!");
task.asyncgetresult (host,
port,
token,
resp,
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trm) ;

task.solutionsummary (mosek.streamtype.log);
break;

}

it++;
if (i == numpolls) {
System.out.println("max num polls reached, stopping host.");
task.asyncstop (host, port, token);
break;

}

}
} catch (java.lang.Exception e) {
System.out.println("Something unexpected happend...");
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CHAPTER

EIGHT

NONLINEAR TUTORIALS

This chapter provides information about how to solve general convex nonlinear optimization problems
using MOSEK. By general nonlinear problems we mean those that cannot be formulated in conic or

convex quadratically constrained form.

In general we recommend not to use the general nonlinear optimizer unless absolutely necessary. The

reasons are:

e The algorithm employed for nonlinear optimization problems is not as efficient as the one employed
for conic problems. Conic problems have special structure that can be exploited to make the

optimizer faster and more robust.

e MOSEK has no way of checking whether the formulated problem is convex and if this assumption
is not satisfied the optimizer will not work.

e The nonlinear optimizer requires 1st and 2nd order derivative information which is often hard to

provide correctly.

Instead, we advise:

e Consider reformulating the problem to a conic quadratic optimization problem if at all possible. In
particular many problems involving polynomial terms can easily be reformulated to conic quadratic

form.

e Consider reformulating the problem to a separable optimization problem because that simplifies
the issue with verifying convexity and computing 1st and 2nd order derivatives significantly. In
most cases problems in separable form also solve faster because of the simpler structure of the

functions.

e Finally, if the problem cannot be reformulated in separable form use a modelling language like
AMPL or GAMS, which will perform all the preprocessing, computing function values and deriva-
tives. This eliminates an important source of errors. Therefore, it is strongly recommended to use
a modelling language at the prototype stage.

The Optimizer API for Java provides the following nonlinear interfaces:

8.1 Separable Convex (SCopt) Interface

The Optimizer API for Java provides a way to add simple non-linear functions composed from a limited
set of non-linear terms. Non-linear terms can be mixed with quadratic terms in objective and constraints.
We consider problems which can be formulated as:

minimize
subject to 1§ <
<

zo(x) +cTx
zi(z) +al'z
x

<
<

where z € R™ and each z; : R™ — R is separable, that is can be written as a sum

zi() = zig(x;).
j=1
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The interface implements a limited set of functions which can appear as z; ;. They are:

Table 8.1: Functions supported by the SCopt interface.

Separable function | Operator name | Name

fzln(x) ent Entropy function
fegrth exp Exponential function
fIn(gx + h) log Logarithm

flx+h)d pow Power function

where f,g,h € R are constants. This formulation does not guarantee convexity. For MOSEK to be

able to solve the problem, the following requirements must be met:

e If the objective is minimized, the sum of non-linear terms must be convex, otherwise it must be

concave.

e Any constraint bounded below must be concave, and any constraint bounded above must be convex.

e Each separable term must be twice differentiable within the bounds of the variable it is applied to.

Some simple rules can be followed to ensure that the problem satisfies MOSEK’s convexity and differ-
entiability requirements. First of all, for any variable z; used in a separable term, the variable bounds
must define a range within which the function is twice differentiable. These bounds are defined in Table

8.2.

Table 8.2: Safe bounds for functions in the SCopt interface.

Separable function | Operator name | Safe x bounds

fxln(zx) ent 0< .

fegzth exp —00 < T < 00.

fIn(gz + h) log Ifg>0: —h/g < =x.
Ifg<0:z<—h/g.

f(z+ h)9 pow If g > 0 and integer: —oco < < 0.
If g < 0 and integer: either —h < z or x < —h.
Otherwise: —h < .

To ensure convexity, we require that each z;(x) is either a sum of convex terms or a sum of concave
terms. Table 8.3 lists convexity conditions for the relevant ranges for f > 0 — changing the sign of f

switches concavity /convexity.

Table 8.3: Convexity conditions for functions in the SCopt inter-

face.

Separable function

Operator name

Convexity conditions

fzln(x) ent Convex within safe bounds.
fegth exp Convex for all z.

fln(gz + h) log Concave within safe bounds.
f(xz+ h)9 pow If g is even integer: convex

within safe bounds.

If g is odd integer:

e concave if (—oo, —h),

e convex if (—h,00)
If 0 < g < 1: concave within
safe bounds.

Otherwise: convex within safe
bounds.

A problem involving linear combinations of variables (such as In(x;+x2)), can be converted to a separable

problem using slack variables and additional equality constraints.
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8.1.1 Example

Consider the following separable convex problem:

minimize  exp(x2) — In(xq)
subject to g ln(xy) <0
xi/Z —x9 >0
3 <,z <1

(8.1)

Note that all nonlinear functions are well defined for = values satisfying the variable bounds strictly. This
assures that function evaluation errors will not occur during the optimization process because MOSEK.

The linear part of the problem is specified as usually. The nonlinear part is set using the function Task.
putSCeval. See the API reference for a description of the format. After that a standard invocation of
Task.optimize solves the problem. The API reference describes additional functions for reading and
writing SCopt terms from/to a file.

Listing 8.1: Implementation of problem (8.1).

package com.mosek.example;
import mosek.x*;

public class scoptl {
public static void main(String[] args) {
try (Env env new Env();
Task task = new Task(env, 0, 0)) {
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }1});

int numvar = 2;
2;
0.;

int numcon
double inf

mosek . boundkey []

bkc = new mosek.boundkey[] {
mosek.boundkey.up,
mosek.boundkey.lo

};

double[] blc = new double[] { -inf, .0 };
double[] buc = new double[] { .0, inf};

mosek.boundkey[] bkx = new mosek.boundkey[] {
mosek.boundkey.ra, mosek.boundkey.ra

};

double[] blx = new double[] {0.5, 0.5};
double[] bux = new double[] {1.0, 1.0};

task.appendvars (numvar) ;
task.appendcons (numcon) ;

task.putvarboundslice (0, numvar, bkx, blx, bux);
task.putconboundslice (0, numcon, bkc, blc, buc);

task.putaij(l, 1, -1.0);

mosek.scopr[] opro = new mosek.scopr[] {mosek.scopr.log, mosek.scopr.exp};
int[] oprjo = new int[] { 0, 13}
double[] oprfo = new double[] { -1.0, 1.0 };
double[] oprgo = new double[] { 1.0, 1.0 };
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double[] oprho = new double[] { 0.0, 0.0 };
mosek.scopr[] oprc = new mosek.scopr[] { mosek.scopr.ent, mosek.scopr.pow };
int[] opric = new int[] { o0, 13}
int[] oprjc = new int[] { 1, 0 };
double[] oprfc = new double[] { 1.0, 1.0 };
double[] oprgc = new double[] { .0, 0.5 };
double[] oprhc = new double[] { .0, 0.0 };

task.putSCeval (opro, oprjo, oprfo, oprgo, oprho,

oprc, opric, oprjc, oprfc, oprgc, oprhc);
task.putintparam(mosek.iparam.write_ignore_incompatible_items, 1);
task.writeSC("scoptl.sco", "scoptl.opf");

task.optimize();

double[] res = new double[numvar] ;
task.getsolutionslice(
mosek.soltype.itr,
mosek.solitem.xx,
0, numvar,
res);

System.out.print ("Solution is: [ " + res[0]);

for (int i = 1; i < numvar; ++i) System.out.print(", " + res[i]);
System.out.println(" 1");

catch (mosek.Exception e) {

System.out.println ("An error/warning was encountered");
System.out.println (e.toString());

throw e;
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CHAPTER

NINE

ADVANCED NUMERICAL TUTORIALS

MOSEK provides access to numerical linear algebra tools essential for more advanced applications.
They are described in this section.

9.1 Solving Linear Systems Involving the Basis Matrix

A linear optimization problem always has an optimal solution which is also a basic solution. In an optimal
basic solution there are exactly m basic variables where m is the number of rows in the constraint matrix
A. Define

B e R™*™

as a matrix consisting of the columns of A corresponding to the basic variables. The basis matrix B is
always non-singular, i.e.

det(B) #0

or, equivalently, B~! exists. This implies that the linear systems

and

each have a unique solution for all w.
MOSEK provides functions for solving the linear systems (9.1) and (9.2) for an arbitrary w.
In the next sections we will show how to use MOSEK to

e identify the solution basis,

e solve arbitrary linear systems.

9.1.1 Basis identification

To use the solutions to (9.1) and (9.2) it is important to know how the basis matrix B is constructed.

Internally MOSEK employs the linear optimization problem

T

maximize c'x

subject to Ax—2¢ = 0
o< - < 4 (9:3)
c < ¢ < wuc.

where

z¢ € R™ and x € R".
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The basis matrix is constructed of m columns taken from
(A —1].

If variable x; is a basis variable, then the j-th column of A, denoted a. ;, will appear in B. Similarly,
if ¢ is a basis variable, then the i-th column of —I will appear in the basis. The ordering of the basis
variables and therefore the ordering of the columns of B is arbitrary. The ordering of the basis variables
may be retrieved by calling the function

task.initbasissolve(basis);

This function initializes data structures for later use and returns the indexes of the basic variables in the
array basis. The interpretation of the basis is as follows. If

basis[i] < numcon,

then the i-th basis variable is . Moreover, the i-th column in B will be the ¢-th column of —I. On the
other hand if

basis[i] > numcon,
then the i-th basis variable is the variable
Tpasis|i]—numcon
and the i-th column of B is the column

Ag(basis[i] —numcon)

For instance if basis[0] = 4 and numcon = 5, then since basis[0] < numcon, the first basis variable is z§.
Therefore, the first column of B is the fourth column of —I. Similarly, if basis[l] = 7, then the second
variable in the basis iS Tyasis[1]—numcon = T2 Hence, the second column of B is identical to a. o.

An example

Consider the linear optimization problem:

minimize To + T
subject to xg+2x; < 2,
xo+zT1 <6, (94)
xo, 1 > 0.

Suppose a call to Task.initbasissolve returns an array basis so that

basis[0]
basis[1]

1)

Then the basis variables are z§ and zy and the corresponding basis matrix B is

0 1
-1 1|
Please note the ordering of the columns in B .

Listing 9.1: A program showing how to identify the basis.

package com.mosek.example;
import mosek.x*;

public class solvebasis {
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public static void

main(String[] args) {

// Since the value infinity is never used, we define

// 'infinity' sy
double
infinity = O;

double[] c =
int[] ptrb =
int[] ptre =
int[] asub =

double[] aval =

mosek . boundkey []

mosek.boundkey.

mosek.boundkey.
}s
double[] blc =
double[] buc =

mosek . boundkey []

mosek.boundkey.
mosek.boundkey.

};

double[] blx

double[] bux =

int numvar =
int numcon =

double[] wl =
double[] w2

try (Env env =
Task task
task.inputdata

([T
A
= N

mbolic purposes only

~
N =
o O
= e
o O

bkc = {
up,
up

{ -infinity,

-infinity
}s
{2.0,
6.0
}s
bkx = {
lo,
lo
{0.0,
0.0
}s
{ +infinity,
+infinity
}s
2;
2;
0, 6.0};
0, 0.0};

new Env();

new Task(env, 0, 0)) {

(numcon, numvar,
C,
0.0,
ptrb,
ptre,
asub,
aval,
bkc,
blc,
buc,
bkx,
blx,
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bux) ;
task.putobjsense (mosek.objsense.maximize) ;

System.out.println("optimize");

try {
task.optimize();

} catch (mosek.Warning e) {
System.out.println("Mosek warning:");
System.out.println(e.toString());

}

int[] basis = new int[numcon];
task.initbasissolve(basis);

//List basis vartables corresponding to columns of B
int[] varsub = {0, 1};
for (int i = 0; i < numcon; i++) {
System.out.println("Basis i:" + i + " Basis:" + basis[i]);
if (basis[varsub[i]] < numcon) {
System.out.println("Basis variable no " + i + " is xc" +
basis[i]);
} else {
int index = basis[i] - numcon;
System.out.println("Basis variable no " + i + " is x" +
index) ;

// solve Bz = wl

// wvarsub contains indexz of non-zeros in b.
// 0On return b contains the solution = and
// varsub the inder of the non-zeros in .

int[] nz = new int[1];
nz[0] = 2;

task.solvewithbasis(0, nz, varsub, wl);
System.out.println("nz =" + nz[0]);
System.out.println("\nSolution to Bx = wil:\n");

for (int i = 0; i < nz[0]; i++) {
if (basis[varsub[i]] < numcon) {

System.out.println("xc" + basis[varsub[il] + "=" + wil[varsub[i]l);
} else {
int index = basis[varsub[i]] - numcon;
System.out.println("x" + index + " = " + wil[varsubl[i]]);
}
}
// Solve B~Tz = w2
nz[0] = 2;
varsub[0] = 0;
varsub[1] = 1;

task.solvewithbasis (1, nz, varsub, w2);
System.out.println("\nSolution to B~Tx = w2:\n");

for (int i = 0; i < nz[0]; i++) {
if (basis[varsub[i]] < numcon) {
System.out.println("xc" + basis[varsub[i]] + " = " + w2[varsub[i]]);
} else {
int index = basis[varsub[i]] - numcon;
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System.out.println("x" + index + " = " + w2[varsub[i]]);
}
3

} catch (mosek.Exception e)
/% Catch both Error and Warning */

{
System.out.println("An error was encountered");
System.out.println(e.getMessage());
throw e;

}

b

In the example above the linear system is solved using the optimal basis for (9.4) and the original right-
hand side of the problem. Thus the solution to the linear system is the optimal solution to the problem.
When running the example program the following output is produced.

basis[0] = 1
Basis variable no 0 is xcl.
basis[1] = 2
Basis variable no 1 is xO.

Solution to Bx = b:

x0 = 2.000000e+00
xcl = -4.000000e+00

Solution to B"Tx = c:

x1
x0

-1.000000e+00
1.000000e+00

Please note that the ordering of the basis variables is

H

and thus the basis is given by:

It can be verified that

is a solution to

9.1.2 Solving arbitrary linear systems
MOSEK can be used to solve an arbitrary (rectangular) linear system
Az =b
using the Task.solwvewithbasis function without optimizing the problem as in the previous example.

This is done by setting up an A matrix in the task, setting all variables to basic and calling the Task.
solvewithbasts function with the b vector as input. The solution is returned by the function.
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An example

Below we demonstrate how to solve the linear system

][] o

with two inputs b = (1,—-2) and b = (7,0) .

package com.mosek.example;
import mosek.x*;

public class solvelinear {

static public void put_a(
mosek.Task task,
double[] [] aval,

int[][] asub,
int[] ptrb,
int[] ptre,

int numvar,
int[] basis ) {

// Since the wvalue infinity <s never used, we define
// 'infinity' symbolic purposes only

double

infinity = O;

mosek.stakey[] skx = new mosek.stakey [numvar];
mosek.stakey[] skc = new mosek.stakey [numvar];

for (int i = 0; i < numvar ; ++i) {
skx[i] = mosek.stakey.bas;
skc[i] = mosek.stakey.fix;

}

task.appendvars (numvar) ;
task.appendcons (numvar) ;

for (int i = 0; i < numvar ; ++i)
task.putacol(i,
asub[i],
avallil);

for (int i = 0 ; i < numvar ; ++i)
task.putconbound (
i,
mosek.boundkey.fx,
0.0,
0.0);

for (int i = 0 ; i < numvar ; ++i)
task.putvarbound (
i,
mosek.boundkey.fr,
-infinity,
infinity);

//task.makesolutionstatusunknown(mosek.soltype.bas);
/* Define a basic solution by specifying
status keys for wvariables & constraints. */

for (int i = 0 ; i < numvar ; ++i)
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task.putsolutioni (
mosek.accmode.var,
i,
mosek.soltype.bas,
skx[i],
0.0,
0.0,
0.0,
0.0);
for (int 1 = 0 ; i < numvar ; ++i)
task.putsolutioni (
mosek.accmode.con,
i,
mosek.soltype.bas,
skclil,
0.0,

>

o O O
o O O

3
)
task.initbasissolve(basis);

}

public static void main (Stringl[] argv) {
int numcon = 2;
int numvar = 2;

double[][] aval = {

{-1.0 3,

{ 1.0, 1.0}
}s
int []1[] asub = {

{ 113,

{ o, 1}
};
int [] ptrb = new int[] {0, 1};
int [] ptre = new int[] {1, 3};
int[] bsub = new int[numvar];
doublel] b = new double[numvar] ;
int[] basis = new int[numvar];

try (Env env new Env();
Task task = new Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.streamCB
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

/% Put A matriz and factor 4.
Call this function only once for a given task. */

put_a(
task,
aval,
asub,
ptrb,
ptre,
numvar,
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basis
)
/* now solve Ths */
b[0] = 1;
b[1] = -2;
bsub[0] = 0;
bsub[1] = 1;

int[] nz_ = { 2 };

task.solvewithbasis(0, nz_, bsub, b);

int nz = nz_[0];
System.out.println("\nSolution to Bx = b:\n");

/* Print solution and show correspondents
to original variables in the problem */
for (int i = 0; i < nz; ++i) {
if (basis[bsub[i]] < numcon)
System.out.println ("This should never happen");
else
System.out.println("x" + (basis[bsub[i]] - numcon) + " = " + b[bsub[i]]);

b[0] = 7;
bsub[0] 0;
nz_[0] = 1;
task.solvewithbasis(0, nz_, bsub, b);

nz = nz_[0];

System.out.println ("\nSolution to Bx = b:\n");
/% Print solution and show correspondents
to original variables in the problem */
for (int i = 0; i < nz; ++i) {
if (basis[bsub[i]] < numcon)
System.out.println("This should never happen");
else
System.out.println("x" + (basis[bsub[i]] - numcon) + " = " + b[bsub[i]l] );

The most important step in the above example is the definition of the basic solution, where we define
the status key for each variable. The actual values of the variables are not important and can be selected
arbitrarily, so we set them to zero. All variables corresponding to columns in the linear system we want
to solve are set to basic and the slack variables for the constraints, which are all non-basic, are set to
their bound.

The program produces the output:

Solution to Bx = b:
x1 =1
x0 = 3
Solution to Bx = b:
x1 =7
x0 =7
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9.2 Calling BLAS/LAPACK Routines from MOSEK

Sometimes users need to perform linear algebra operations that involve dense matrices and vectors.
Also MOSEK extensively uses high-performance linear algebra routines from the BLAS and LAPACK
packages and some of these routines are included in the package shipped to the users.

The MOSEK versions of BLAS/LAPACK routines:
e use MOSEK data types and return value conventions,
e preserve the BLAS/LAPACK naming convention.

Therefore the user can leverage on efficient linear algebra routines, with a simplified interface, with no
need for additional packages.

List of available routines

Table 9.1: BLAS routines available.

BLAS Name | MOSEK function | Math Expression
AXPY Env. azpy y=ar+y

DOT Env.dot Ty

GEMV Env. gemu y = aAx + Py
GEMM Env. gemm C =aAB+ pC
SYRK Env.syrk C = aAAT + pC

Table 9.2: LAPACK routines available.

LAPACK Name | MOSEK function | Description

POTRF Env.potrf Cholesky factorization of a semidefinite symmetric matrix
SYEVD Env.syevd Eigenvalues and eigenvectors of a symmetric matrix
SYEIG Env.syeig Eigenvalues of a symmetric matrix

Source code examples

In Listing 9.2 we provide a simple working example. It has no practical meaning except showing how to
organize the input and call the methods.

Listing 9.2: Calling BLAS and LAPACK routines from Optimizer API for Java.

package com.mosek.example;

public class blas_lapack {
static final int n = 3, m = 2, k = 3;

public static void main (Stringl[] args) {

double alpha = 2.0, beta = 0.5;

double[] x = {1., 1., 1.};
double[] y = {1., 2., 3.3};
double[] z = {1.0, 1.0};

/*4 has m=2 rows and k=3 cols*/
double[] A = {1., 1., 2., 2., 3., 3.};
/*B has k=3 rows and n=3 cols*/

double[] B = {1., 1., 1., 1., 1., 1., 1., 1., 1.};
double[] C={ 1., 2., 3., 4., 5., 6.};
double[] D = {1.0, 1.0, 1.0, 1.0%};
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double[] Q {1.0, 0.0, 0.0, 2.0%};
double[] v = new double[2];

double[] xy = {0.};

try (mosek.Env env = new mosek.Env()) {
/¥ routines*/

env.dot(n, x, y, xy);
env.axpy(n, alpha, x, y);
env.gemv (mosek.transpose.no, m, n, alpha, A, x, beta, z);
env.gemn(mosek.transpose.no, mosek.transpose.no, m, n, k, alpha, A, B, beta, C);
env.syrk(mosek.uplo.lo, mosek.transpose.no, m, k, alpha, A, beta, D);
/* LAPACK routines*/
env.potrf (mosek.uplo.lo, m, Q);
env.syeig(mosek.uplo.lo, m, Q, v);
env.syevd(mosek.uplo.lo, m, Q, v);
} catch (mosek.Exception e) {

System.out.println ("An error/warning was encountered");
System.out.println (e.toString());

9.3 Computing a Sparse Cholesky Factorization

Given a positive semidefinite symmetric (PSD) matrix
AeR™?

it is well known there exists a matrix L such that
A=LL".

If the matrix L is lower triangular then it is called a Cholesky factorization. Given A is positive definite
(nonsingular) then L is also nonsingular. A Cholesky factorization is useful for many reasons:

e A system of linear equations Ax = b can be solved by first solving the lower triangular system
Ly = b followed by the upper triangular system L7z = y.

e A quadratic term 7 Az in a constraint or objective can be replaced with y”y for y = LTz,

potentially leading to a more robust formulation (see [And13]).

Therefore, MOSEK provides a function that can compute a Cholesky factorization of a PSD matrix.
In addition a function for solving linear systems with a nonsingular lower or upper triangular matrix is
available.

In practice A may be very large with n is in the range of millions. However, then A is typically sparse
which means that most of the elements in A are zero, and sparsity can be exploited to reduce the cost
of computing the Cholesky factorization. The computational savings depend on the positions of zeros in
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A. For example, below a matrix A is given together with a Cholesky factor up to 5 digits of accuracy:

4 1 1 1 2.0000 0 0 0
1 1 0 0 0.5000 0.8660 0 0
A= 1 01 0]’ L= 0.5000 —0.2887 0.8165 0 (9-6)
1 0 01 0.5000 —0.2887 —0.4082 0.7071
However, if we symmetrically permute the rows and columns of A using a permutation matrix P
01 0 O 1 0 0 1
|10 0 10 ;o r [0 1 01
P= 00 0 1| AT=PAPT = 0O 0 1 1]’
1 0 0 0 1 1 1 4

then the Cholesky factorization of A’ = L'L'T is

100 0
, o100
F=1001 0

1111

which is sparser than L.

Computing a permutation matrix that leads to the sparsest Cholesky factorization or the minimal amount
of work is NP-hard. Good permutations can be chosen by using heuristics, such as the minimum degree
heuristic and variants. The function Env. computesparsecholesky provided by MOSEK for computing
a Cholesky factorization has a build in permutation aka. reordering heuristic. The following code
illustrates the use of Env. computesparsecholesky and Env.sparsetriangularsolvedense.

Listing 9.3: How to use the sparse Cholesky factorization routine available in MOSEK.

env. computesparsecholesky (0, //Disable multithreading
1, //Apply reordering heuristic
1.0e-14, //Singularity tolerance
anzc, aptrc, asubc, avalc,
perm, diag,
lnzc, lptrc, lemnsubnval, lsubc, lvalc);

printsparse(n, perm[0], diag[0], 1nzc[0], lptrc[0], lensubnval[0], 1lsubc[0], 1lvalc[0]);

/* Permuted b is stored as z. */
double[] x = new double[n];
for (int i = 0; i < m; i++) x[i] = blperm[0][i]];

/*Compute inv(L)*z.*/

env.sparsetriangularsolvedense (mosek.transpose.no, lnzc[0], lptrc[0], lsubc[O],
—1lvalc[0], x);

/*Compute inv(L"T)*xz.*/

env.sparsetriangularsolvedense (mosek.transpose.yes, 1lnzc[0], lptrc[0], lsubc[O0],
—1valc[0], x);

System.out.print("\nSolution A x = b, x = [ ");
for (int i = 0; i < n; i++)

for (int j = 0; j < mn; j++) if (perm[0][j] == i) System.out.print(x[j] + " ");
System.out.println("]J\n");

We can set up the data to recreate the matrix A from (9.6):

//0bserve that anzc, aptrc, asubc and avalc only specify the lower triangular part.

int n = 4;

int[] anzc = {4, 1, 1, 1};

int[] asubc ={0, 1, 2, 3, 1, 2, 3};

long[] aptrc = {0, 4, 5, 6};

double[] avalc = {4.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
double[] b = {13.0, 3.0, 4.0, 5.0%};
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and we obtain the following output:

Example with positive definite A.
P=[3201]

diag(D) = [ 0.00 0.00 0.00 0.00 ]
L=

1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
1.00 1.00 1.41 0.00
0.00 0.00 0.71 0.71

Solution A x = b, x = [ 1.00 2.00 3.00 4.00 1]

The output indicates that with the permutation matrix

0 01 0
0 0 01
P_Ol()O
1 0 0 0

there is a Cholesky factorization PAPT = LL” where

10 0 0
0 1 0 0
1 1 1.4142 0
0 0 0.7071 0.7071

The remaining part of the code solvers the linear system Az = b for b = [13,3,4,5]7. The solution is
reported to be x = [1,2, 3, 4], which is correct.

The second example shows what happens when we compute a sparse Cholesky factorization of a singular
matrix. In this example A is a rank 1 matrix

11 1 1 11"
A=|11 1 |=1]1 1 (9.7)
1 11 1 1
int n = 3;
int[] anzc = {3, 2, 1};
int[] asubc =4{0, 1, 2, 1, 2, 2};
long[] aptrc = {0, 3, 5, };
double[] avalc ={1.0, 1.0, 1.0, 1.0, 1.0, 1.03};
Now we get the output
P=[021]
diag(D) = [ 0.00e+00 1.00e-14 1.00e-14 ]
L=
1.00e+00 0.00e+00 0.00e+00
1.00e+00 1.00e-07 0.00e+00
1.00e+00 0.00e+00 1.00e-07
which indicates the decomposition
PAPT = LLT - D
where
1 00 1 0 0 1 0 0
P=|00 1|, L=|1 107 0 ., D=0 107 0
0 1 0 1 0 1077 0 0 10~ 14
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Since A is only positive semdefinite, but not of full rank, some of diagonal elements of A are boosted
to make it truely positive definite. The amount of boosting is passed as an argument to Env.
computesparsecholesky, in this case 10714, Note that

PAPT =LILT - D

where D is a small matrix so the computed Cholesky factorization is exact of slightly perturbed A. In
general this is the best we can hope for in finite precision and when A is singular or close to being
singular.

We will end this section by a word of caution. Computing a Cholesky factorization of a matrix that is
not of full rank and that is not suffciently well conditioned may lead to incorrect results i.e. a matrix
that is indefinite may declared positive semidefinite and vice versa.

9.4 Converting a quadratically constrained problem to conic form

MOSEK employs the following form of quadratic problems:

minimize %mTQox +cTr+cf
subject to 1§ < 1zTQFx+ 2?;01 arjr; < uf, k=0,...,m—1, (9.8)
S z; < wj, j=0,....,n—1

A conic quadratic constraint has the form
xeQn

in its most basic form where

A quadratic problem such as (9.8), if convex, can be reformulated in conic form. This is in fact the
reformulation MOSEK performs internally. It has many advantages:

e clegant duality theory for conic problems,

e reporting accurate dual information for quadratic inequalities is hard and/or computational ex-
pensive,

e it certifies that the original quadratic problem is indeed convex,

e modelling directly in conic form usually leads to a better model [And13] i.e. a faster solution time
and better numerical properties.

In addition, there are more types of conic constraints that can be combined with a quadratic cone, for
example semidefinite cones.

MOSEK offers a function that performs the conversion from quadratic to conic quadratic form explicitly.
Note that the reformulation is not unique. The approach followed by MOSEK is to introduce additional
variables, linear constraints and quadratic cones to obtain a larger but equivalent problem in which the
original variables are preserved.

In particular:
e all variables and constraints are kept in the problem,
e cach quadratic constraint and quadratic terms in the objective generate one rotated quadratic cone,

e each quadratic constraint will contain no coefficients and upper/lower bounds will be set to 0o, —co
respectively.
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This allows the user to recover the original variable and constraint values, as well as their dual values,
with no conversion or additional effort.

Note: Task.toconic modifies the input task in-place: this means that if the reformulation is not
possible, i.e. the problem is not conic representable, the state of the task is in general undefined. The
user should consider cloning the original task.

9.4.1 Quadratic Constraint Reformulation

Let us assume we want to convert the following quadratic constraint

-1
1 n
[ < §mTQx + Zajxj <u
j=0
to conic form. We first check whether [ = —oo or u = 0o, otherwise either the constraint can be dropped,

or the constraint is not convex. Thus let us consider the case

n—1

1
§xTQx + Z aJij < u. (9.9)
j=0
Introducing an additional variable w such that
n—1
w=u-— Z aijj (9.10)
§=0
we obtain the equivalent form
%xTQx < w,
u— Z;:Ol ajr; = w.

If @ is positive semidefinite, then there exists a matrix F such that
Q=FFT (9.11)

and therefore we can write

| #2]|> < 2w,

n—1 7
U — ijo a; xj

Introducing an additional variable z = 1, and setting y = Fx we obtain the conic formulation

w.

(w, z,y) €9,
z=1
Y= Fo (9.12)

’w:U7GJT$.

Summarizing, for each quadratic constraint involving ¢ variables, MOSEK introduces
1. a rotated quadratic cone of dimension ¢ + 2,
2. two additional variables for the cone roots,
3. t additional variables to map the remaining part of the cone,
4. t linear constraints.

A quadratic term in the objective is reformulated in a similar fashion. We refer to [And13/ for a more
thorough discussion.
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Example

Next we consider a simple problem with quadratic objective function:

minimize %(13968 + 1722 + 1223 + 242071 + 122129 — dw022) — 2270 — 14.521 + 1229 + 1
subject to —1 < xg, 21,22 <1

We can specify it in the human-readable OPF format.

[comment]

An example of small QO problem from Boyd and Vandenberghe, "Convex Optimization", page 189 ex
—~4.3

The solution is (1,0.5,-1)

[/comment]

[variables]
x0 x1 x2
[/variables]

[objective min]

0.5 (13 x072 + 17 x172 + 12 %272 + 24 x0 * x1 + 12 x1 * x2 - 4 x0 * x2 ) - 22 x0 - 14.5 x1 +
—12 x2 + 1

[/objective]

[bounds]
[b] -1 <= % <=1 [/b]
[/bounds]

The objective function is convex, the minimum is attained for 2* = (1,0.5,—1). The conversion will
introduce first a variable 23 in the objective function such that w3 > 1/227Qx and then convert the
latter directly in conic form. The converted problem follows:

minimize —22x9 — 14.521 + 1229 + 23 + 1
subject to 3.61zg + 3.33x1 — 0.55z5 — x5 = 0
+2.2921 + 3.4225 — 27 =0

0.81$1 — g = 0

—x34+1x4=0

Iy =1

(24,75, 76, 27, 78) € Qv

-1 < o, x1,T < 1

The model generated by Task.toconic is

[comment]
Written by MOSEK version 8.1.0.19
Date 21-08-17
Time 10:53:36

[/comment]

[hints]
[hint NUMVAR] 9 [/hint]
[hint NUMCON] 4 [/hint]
[hint NUMANZ] 11 [/hint]
[hint NUMQNZ] O [/hint]
[hint NUMCONE] 1 [/hint]
[/hints]

[variables disallow_new_variables]
x0000_x0 x0001_x1 x0002_x2 x0003 x0004
x0005 x0006 x0007 x0008

[/variables]
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[objective minimize]
- 2.2e+01 x0000_x0 - 1.45e+01 x0001_x1 + 1.2e+01 x0002_x2 + x0003
+ 1e+00

[/objective]

[constraints]

[con c0000] 3.605551275463989e+00 x0000_x0 - 5.547001962252291e-01 x0002_x2 + 3.
<,328201177351375e+00 x0001_x1 - x0006 = 0e+00 [/con]

[con c0001] 3.419401657060442e+00 x0002_x2 + 2.294598480395823e+00 x0001_x1 - x0007 = 0e+00,
—[/conl

[con c0002] 8.111071056538127e-01 x0001_x1 - x0008 = 0e+00 [/con]

[con c0003] - x0003 + x0004 = 0e+00 [/con]

[/constraints]
[bounds]
[b] -1e+00 <= x0000_x0,x0001_x1,x0002_x2 <= 1e+00 [/b]
[b] x0003,x0004 free [/b]
[b] x0005 = 1e+00 [/b]
[b] x0006,x0007,x0008 free [/bl
[cone rquad k0000] x0004, x0005, x0006, x0007, x0008 [/cone]
[/bounds]

We can clearly see that constraints c0000, c0001 and c0002 represent the original linear constraints as
in (9.11), while c0003 corresponds to (9.10). The cone roots are x0005 and x0004.
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CHAPTER

TEN

TECHNICAL GUIDELINES

This section contains some technical guidelines for the Optimizer API for Java users.
For modelling guidelines check one of the following sections:
e Sec. 13 for how to address numerical issues in modelling and how to tune the continuous optimizers.

e Scc. 14 for how to tune the mixed-integer optimizer.

10.1 Memory management and garbage collection

Users who experience memory leaks, especially:
e memory usage not decreasing after the solver terminates,
e memory usage increasing when solving a sequence of problems,

should make sure that the Task objects are properly garbage collected. Since each Task object links
to a MOSEK task resource in a linked library, it is sometimes the case that the garbage collector is
unable to reclaim it automatically. This means that substantial amounts of memory may be leaked. For
this reason it is very important to make sure that the Task object is disposed of, either automatically
or manually, when it is not used any more.

It is recommended to use a construction such as

try {
env = new mosek.Env();
task = new mosek.Task(env, 0,0);

/.
// ... optimization ...
/7
}
finally {
if (task !'= null) task.dispose();
if (env != null) env.dispose();
}

This construction assures that the Task.dispose method is called when the object goes out of scope,
even if an exception occurred. If this approach cannot be used, e.g. if the Task object is returned by a
factory function, one should explicitly call the Task. dispose method when the object is no longer used.
The same applies to the environment object.
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10.2 Multithreading

Thread safety

Sharing a task between threads is safe, as long as it is not accessed from more than one thread at a time.
Multiple tasks can be created and used in parallel without any problems.

Parallelization

The interior-point and mixed-integer optimizers in MOSEK are parallelized. By default MOSEK will
automatically select the number of threads. However, the maximum number of threads allowed can
be changed by setting the parameter iparam.num_threads and related parameters. This should never
exceed the number of cores. See Sec. 13 and Sec. 14 for more details for the two optimizer types.

The speed-up obtained when using multiple threads is highly problem and hardware dependent. We
recommend experimenting with various thread numbers to determine the optimal settings. For small
problems using multiple threads may be counter-productive because of the associated overhead.

By default the optimizer is run-to-run deterministic, which means that it will return the same answer
each time it is run on the same machine with the same input, the same parameter settings (including
number of threads) and no time limits.

10.3 Efficiency

Although MOSEK is implemented to handle memory efficiently, the user may have valuable knowledge
about a problem, which could be used to improve the performance of MOSEK This section discusses
some tricks and general advice that hopefully make MOSEK process your problem faster.

Reduce the number of function calls and avoid input loops

For example, instead of setting the entries in the linear constraint matrix one by one (Task.putaij)
define them all at once (Task.putaijlist) or in convenient large chunks (Task.putacollist etc.)

Use one environment only

If possible share the environment between several tasks. For most applications you need to create only
a single environment.

Read part of the solution

When fetching the solution, data has to be copied from the optimizer to the user’s data structures.
Instead of fetching the whole solution, consider fetching only the interesting part (see for example Task.
getzzslice and similar).

Avoiding memory fragmentation

MOSEK stores the optimization problem in internal data structures in the memory. Initially MOSEK
will allocate structures of a certain size, and as more items are added to the problem the structures are
reallocated. For large problems the same structures may be reallocated many times causing memory
fragmentation. One way to avoid this is to give MOSEK an estimated size of your problem using the
functions:
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e Task.putmaznumvar. Estimate for the number of variables.

e Task.putmaznumcon. Estimate for the number of constraints.

e Task.putmaznumcone. Estimate for the number of cones.

e Task.putmaznumbarvar. Estimate for the number of semidefinite matrix variables.
e Task.putmaznumanz. Estimate for the number of non-zeros in A.

e Task.putmaznumgnz. Estimate for the number of non-zeros in the quadratic terms.

None of these functions changes the problem, they only serve as hints. If the problem ends up growing
larger, the estimates are automatically increased.

Do not mix put- and get- functions

MOSEK will queue put- requests internally until a get- function is called. If put- and get- calls are
interleaved, the queue will have to be flushed more frequently, decreasing efficiency.

In general get- commands should not be called often (or at all) during problem setup.

Use the LIFO principle

When removing constraints and variables, try to use a LIFO (Last In First Out) approach. MOSEK
can more efficiently remove constraints and variables with a high index than a small index.

An alternative to removing a constraint or a variable is to fix it at 0, and set all relevant coefficients to
0. Generally this will not have any impact on the optimization speed.

Add more constraints and variables than you need (now)

The cost of adding one constraint or one variable is about the same as adding many of them. Therefore,
it may be worthwhile to add many variables instead of one. Initially fix the unused variable at zero, and
then later unfix them as needed. Similarly, you can add multiple free constraints and then use them as
needed.

Do not remove basic variables

When performing re-optimizations, instead of removing a basic variable it may be more efficient to fix
the variable at zero and then remove it when the problem is re-optimized and it has left the basis. This
makes it easier for MOSEK to restart the simplex optimizer.

10.4 The license system

MOSEK is a commercial product that always needs a valid license to work. MOSEK uses a third
party license manager to implement license checking. The number of license tokens provided determines
the number of optimizations that can be run simultaneously.

By default a license token remains checked out from the first optimization until the end of the MOSEK
session, i.e.

e a license token is checked out when Task.optimize is first called, and

e it is returned when the MOSEK environment is deleted.
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Calling Task.optimize from different threads using the same MOSEK environment only consumes one
license token.

Starting the optimization when no license tokens are available will result in an error.

Default behaviour of the license system can be changed in several ways:

e Setting the parameter iparam.cache_license to onoffkey.off will force MOSEK to return

the license token immediately after the optimization completed.

Setting the license wait flag with the parameter iparam. license_wait will force MOSEK to wait
until a license token becomes available instead of returning with an error. The wait time between
checks can be set with Env.putlicensewait.

Additional license checkouts and checkins can be performed with the functions Enwv.
checkinlicense and Env.checkoutlicense.

Usually the license system is stopped automatically when the MOSEK library is unloaded. How-
ever, when the user explicitly unloads the library (using e.g. FreeLibrary), the license system
must be stopped before the library is unloaded. This can be done by calling the function Env.
licensecleanup as the last function call to MOSEK.

10.5 Deployment

When redistributing a Java application using the MOSEK Optimizer API for Java 8.1.0.76, the following
libraries must be included:

64-bit Linux 64-bit Windows 32-bit Windows 64-bit Mac OS
libmosek64.s0.8.1 mosek64_8_1.d11 mosek8_1.d11 libmosek64.8.1.dylib
libiomp5.so libompbmd.dll libompbmd.dll

libcilkrts.so.5 cilkrts20.d11 cilkrts20.d11 libcilkrts.5.dylib
libmosekjava8_1.so mosekjava8_1.d11 mosekjava8_1.d11 libmosekjava8_1. jnilib
libmosekxx8_1.s0 mosekxx8_1.d11 mosekxx8_1.d11 libmosekxx8_1.dylib
libmosekscopt8_1.so | mosekscopt8_1.d1l1l | mosekscopt8_1.d11 | libmosekscopt8_1.dylib

By default the Java interface will look for the binaries in the same directory as the .jar file, so they
should be placed in the same directory when redistributing.
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CHAPTER

ELEVEN

CASE STUDIES

In this section we present some case studies in which the Optimizer API for Java is used to solve real-life
applications. These examples involve some more advanced modelling skills and possibly some input data.
The user is strongly recommended to first read the basic tutorials of Sec. 6 before going through these
advanced case studies.

Case Studies Type | Int. | Keywords
Portofolio Optimization | CQO | NO | Markowitz, Slippage, Market Impact

11.1 Portfolio Optimization

In this section the Markowitz portfolio optimization problem and variants are implemented using the
MOSEK optimizer API.

11.1.1 A Basic Portfolio Optimization Model

The classical Markowitz portfolio optimization problem considers investing in n stocks or assets held
over a period of time. Let x; denote the amount invested in asset j, and assume a stochastic model
where the return of the assets is a random variable r with known mean

u=Er
and covariance
S=E(r-pir-w"

T2 with mean (or expected return)

The return of the investment is also a random variable y = r
Ey= "z
and variance (or risk)

(y — By)? = 272z

The problem facing the investor is to rebalance the portfolio to achieve a good compromise between risk
and expected return, e.g., maximize the expected return subject to a budget constraint and an upper
bound (denoted ) on the tolerable risk. This leads to the optimization problem

maximize 'z
subject to eTe = w+elal,
e 2 (11.1)
z > 0.

The variables = denote the investment i.e. z; is the amount invested in asset j and xf is the initial
holding of asset j. Finally, w is the initial amount of cash available.
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A popular choice is 2° = 0 and w = 1 because then x; may be interpreted as the relative amount of the
total portfolio that is invested in asset j.

Since e is the vector of all ones then
n
T — .
e r = E x;
=1

is the total investment. Clearly, the total amount invested must be equal to the initial wealth, which is
w+ e 20,
This leads to the first constraint
er=w+te x.
The second constraint

2TYr < 72

ensures that the variance, or the risk, is bounded by ~2. Therefore, v specifies an upper bound of the
standard deviation the investor is willing to undertake. Finally, the constraint

zj >0

excludes the possibility of short-selling. This constraint can of course be excluded if short-selling is
allowed.

The covariance matrix ¥ is positive semidefinite by definition and therefore there exist a matrix G such
that

¥ =GaT. (11.2)

In general the choice of G is not unique and one possible choice of G is the Cholesky factorization of 3.
However, in many cases another choice is better for efficiency reasons as discussed in Sec. 11.1.3.

For a given G we have that

2TYr = 2TGGTzx
= ||loTa|".
Hence, we may write the risk constraint as
72 ||G" |

or equivalently
[v;GTx] € QnFL.

where Q"1 is the n + 1 dimensional quadratic cone. Therefore, problem (11.1) can be written as

maximize ul'z
subject to ele = w+elal,
[;GTa] € QY (11.3)
z > 0,

which is a conic quadratic optimization problem that can easily be solved using MOSEK.
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Example data

Subsequently we will use the following sample input taken from [CT07]. We set

0.1073
= | 0.0737
0.0627

and

0.2778 0.0387  0.0021
Y¥=0.11| 0.0387 0.1112 —-0.0020
0.0021 —0.0020 0.0115

This implies

0.5271 0.0734  0.0040
GT =01 0 0.3253  —0.0070

0 0 0.1069
using 5 significant digits. Moreover, let
0.0
=1 0.0
0.0
and
w=1.0

Why a Conic Formulation?

Problem (11.1) is a convex quadratically constrained optimization problem that can be solved directly
using MOSEK. Why then reformulate it as a conic quadratic optimization problem (11.3)? The main
reason for choosing a conic model is that it is more robust and usually solves faster and more reliably. For
instance it is not always easy to numerically validate that the matrix ¥ in (11.1) is positive semidefinite
due to the presence of rounding errors. It is also very easy to make a mistake so 3 becomes indefinite.
These problems are completely eliminated in the conic formulation.

Moreover, observe the constraint

IG" ]| <~
more numerically robust than

2I'Yr < 72

for very small and very large values of 7. Indeed, if say v ~ 10* then 2 ~ 10%, which introduces a
scaling issue in the model. Hence, using conic formulation we work with the standard deviation instead
of variance, which usually gives rise to a better scaled model.

Implementing the Portfolio Model
Creating a matrix formulation

The Optimizer API for Java requires that an optimization problem is entered in the following standard
form:

maximize cx
subject to ¢ < Az < uc,
Lsoos (11.4)
— - b
zeK
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We refer to & as the API variable. It means we need to reformulate (11.3). The first step is to introduce
auxiliary variables so that the conic constraint involves only unique variables:

maximize ula
subject to efe = w+elal,
GTe—t = 0,
;1] € Qv (11.5)
z > 0,
s = 7.

Here s is an additional scalar variable and t is a vector variable of dimension n. The next step is to
concatenate all the variables into one long variable vector:

x
T=lx;s5t)=| s (11.6)
t

The details of the concatenation are specified below.

Table 11.1: Storage layout of the & variable.

Variable | Length | Offset
x n 0
S 1 n
t n n+1

The offset determines where the variable starts. (Note that all variables are indexed from 0). For instance
Tny14i =t

because the offset of the ¢ variable is n + 1.

Given the ordering of the variables specified by (11.6) it is useful to visualize the linear constraints (11.4)
in an explicit block matrix form:

1 ‘ 0 ‘ 0 r w+ eTx
1 _
aT 0 _1 s | = 0 . (11.7)
-1 ;

In other words, we should define the specific components of the problem description as follows:

c = [n 0 0],
e 0 0,,
4 = G 0, -I, |’
e = [wtela® 0, ], (11.8)
u¢ = [ w+elz? 0, ]T,
= [ Op v —oop }Ta
u®t = [ 00p 7Y OOp ]

Source code example

From the block matrix form (11.7) and the explicit specification (11.8), using the offset information in
Table 11.1 it is easy to calculate the index and value of each entry of the linear constraint matrix. The
code below sets up the general optimization problem (11.3) and solves it for the example data. Of course
it is only necessary to set non-zero entries of the linear constraint matrix.
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Listing 11.1: Code implementing model (11.3).

package com.mosek.example;

public class case_portfolio_1 {
static final int n = 3;

public static void main (String[] args) {
// Since the value infinity is never used, we define
// 'infinity' for symbolic purposes only
double infinity = O;
double gamma = 0.05;
double[] mu = {0.1073, 0.0737, 0.0627};
double[]1[] GT = {

{0.1667, 0.0232, 0.0013},
{0.0000, 0.1033, -0.0022},
{0.0000, 0.0000, 0.0338}

};

double[] x0 = {0.0, 0.0, 0.0};
double w=1.0;

double  totalBudget;

int numvar = 2 * n + 1;
int numcon = n + 1;

//0ffset of wariables into the API wariable.
int offsetx = 0;

int offsets = n;

int offsett = n + 1;

try ( mosek.Env env = new mosek.Env ();
mosek.Task task = new mosek.Task (env, 0, 0) ) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }1});

// Constraints.
task.appendcons (numcon) ;

// Constraint bounds. Compute total budget.
totalBudget = w;
for (int i = 0; i < n; ++i)
{
totalBudget += x0[i];
/* Constraint bounds c~l = c™u = 0 */
task.putconbound(i + 1, mosek.boundkey.fx, 0.0, 0.0);
task.putconname(i + 1, "GT[" + (i + 1) + "]1");
}
/* The total budget comstraint c~l = c”u = totalBudget in first row of 4. */
task.putconbound (0, mosek.boundkey.fx, totalBudget, totalBudget);
task.putconname (0, "budget");

// Variables.
task.appendvars (numvar) ;

/* T variables. */
for (int j = 0; j < m; ++j)

{
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/% Return of asset j in the objective */

task.putcj(offsetx + j, muljl);

/% Coefficients in the first row of 4 */

task.putaij(0, offsetx + j, 1.0);

/* No short-selling - "L = 0, z"u = inf */
task.putvarbound(offsetx + j, mosek.boundkey.lo, 0.0, infinity);
task.putvarname (offsetx + j, "x[" + (j + 1) + "1");

/% s wariable is a constant equal to gamma. */
task.putvarbound (offsets, mosek.boundkey.fx, gamma, gamma) ;
task.putvarname (offsets, "s");

/* t variables (t = GT*z). */
for (int j = 0; j < nj; ++j)
{
/% Copying the GT matriz in the appropriate block of 4 */
for (int k = 0; k < n; ++k)
if ( GT[kI[j] '= 0.0 )
task.putaij(1 + k, offsetx + j, GT[k][jl);
/% Diagonal -1 entries in a block of 4 */
task.putaij(l + j, offsett + j, -1.0);
/* Free - no bounds */
task.putvarbound(offsett + j, mosek.boundkey.fr, -infinity, infinity);
task.putvarname (offsett + j, "t[" + (j + 1) + "1");

/* Define the cone spanned by (s, t), i.e. of dimension n + 1 */
int[] csub = new int[n + 1];
csub[0] = offsets;
for(int j = 0; j< m; j++) csub[j + 1] = offsett + j;
task.appendcone ( mosek.conetype.quad,
0.0, /* For future use only, can be set to 0.0 */
csub );
task.putconename (0, "stddev");

/* 4 mazimization problem */
task.putobjsense (mosek.objsense.maximize) ;

task.optimize();

/* Display solution summary for quick inspection of results */
task.solutionsummary (mosek.streamtype.log) ;

task.writedata("dump.opf");

/* Read the results */

double expret = 0.0, stddev = 0.0;

double[] xx = new double[n + 1];

task.getxxslice (mosek.soltype.itr, 0, offsets + 1, xx);
for (int j = 0; j < nj; ++j)

expret += mul[j] * xx[j + offsetx];

System.out.printf ("\nExpected return %e for gamma %e\n", expret, xx[offsets]);

The above code produces the result:
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Listing 11.2: Output from the solver.

Interior-point solution summary

Problem status : PRIMAL_AND_DUAL_FEASIBLE

Solution status : OPTIMAL

Primal. obj: 7.4766507287e-02 nrm: 1e+00 Viol. con: 2e-08 var: 0e+00 cones: 2e-
—08

Dual. obj: 7.4766554102e-02 nrm: 3e-01 Viol. con: 0e+00 var: 3e-08 cones:
—0e+00

Expected return 7.476651e-02 for gamma 5.000000e-02

Source code comments

The source code is a direct translation of the model (11.5) using the explicit block matrix specification
(11.8) but a few comments are nevertheless in place.

In the lines

//0ffset of variables into the API wariable.
int offsetx = 0;

int offsets = n;

int offsett n + 1;

offsets into the MOSEK API variable are stored as in Table 11.1. The code

/* © variables. */
for (int j = 0; j < nj; ++j)
{
/* Return of asset j in the objective */
task.putcj(offsetx + j, mul[jl);
/% Coefficients in the first row of 4 */
task.putaij (0, offsetx + j, 1.0);
/% No short-selling - ="l = 0, z"u = inf */
task.putvarbound (offsetx + j, mosek.boundkey.lo, 0.0, infinity);
task.putvarname (offsetx + j, "x[" + (j + 1) + "1");

sets up the data for x variables. For instance

/* Return of asset j in the objective */
task.putcj(offsetx + j, mul[jl);

inputs the objective coeflicients for the x variables. Moreover, the code

task.putvarname (offsetx + j, "x[" + (j + 1) + "1");

assigns meaningful names to the API variables. This is not needed but it makes debugging easier.

Note that the solution values are only accessed for the interesting variables; for instance the auxiliary
variable ¢ is omitted from this process.

Debugging Tips

Implementing an optimization model in Optimizer API for Java can be error-prone. In order to check
the code for accidental errors it is very useful to dump the problem to a file in a human readable form
for visual inspection. The line

task.writedata("dump.opf");
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does that and it produces a file with the content:

Listing 11.3: Problem (11.5) stored in OPF format.

[comment]
Written by MOSEK version 8.1.0.24
Date 11-09-17
Time 14:34:24

[/comment]

[hints]
[hint NUMVAR] 7 [/hint]
[hint NUMCON] 4 [/hint]
[hint NUMANZ] 12 [/hint]
[hint NUMQNZ] O [/hint]
[hint NUMCONE] 1 [/hint]
[/hints]

[variables disallow_new_variables]
'x[1]' 'x[2]"' 'x[3]' s 't[1]"
't[2]' 't[3]'

[/variables]

[objective maximize]
1.073e-01 'x[1]' + 7.37e-02 'x[2]' + 6.270000000000001e-02 'x[3]"'

[/objectivel
[constraints]
[con 'budget']l 'x[1]' + 'x[2]' + 'x[3]' = 1e+00 [/con]
[con 'GT[1]'] 1.667e-01 'x[1]' + 2.32e-02 'x[2]' + 1.3e-03 'x[3]' - 't[1]' = 0e+00 [/conl]
[con 'GT[2]'] 1.033e-01 'x[2]' - 2.2e-03 'x[3]' - '"t[2]' = 0e+00 [/con]
[con 'GT[3]'] 3.38e-02 'x[3]' - 't[3]' = 0e+00 [/con]
[/constraints]
[bounds]
[b] 0e+00 <= 'x[11','x[2]','x[3]"' [/b]
[b] s = 5e-02 [/b]
[b] 't[1]','t[2]','t[3]"' free [/b]
[cone quad 'stddev']l s, 't[1]', 't[2]', 't[3]' [/conel
[/bounds]

Since the API variables have been given meaningful names it is easy to verify by hand that the model is
correct.

11.1.2 The efficient Frontier

The portfolio computed by the Markowitz model is efficient in the sense that there is no other portfolio
giving a strictly higher return for the same amount of risk. An efficient portfolio is also sometimes called
a Pareto optimal portfolio. Clearly, an investor should only invest in efficient portfolios and therefore it
may be relevant to present the investor with all efficient portfolios so the investor can choose the portfolio
that has the desired tradeoff between return and risk. This leads to the concept of efficient frontier.

Given a nonnegative « the optimization problem

T

maximize p*r—as
subject to elx = w+elal
[S' GTSC} c Qn-‘,—l ’ (11'9)
T > 0.

computes an efficient portfolio which maximizes expected return while minimizing risk, where the tradeoff
between the two is controlled by «. Ideally the problem (11.9) should be solved for all values a > 0 but
in practice that is impossible.
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For the example data from Sec. 11.1.1, the optimal values of return and risk for a range of as are listed
below:

Listing 11.4: Results obtained solving problem (11.9) for different values of «.

alpha exp ret std dev

0.000e+000 1.073e-001 7.261e-001
2.500e-001 1.033e-001 1.499e-001
5.000e-001 6.976e-002 3.735e-002
7.500e-001 6.766e-002 3.383e-002
1.000e+000 6.679e-002 3.281e-002
1.500e+000 6.599e-002 3.214e-002
2.000e+000 6.560e-002 3.192e-002
2.500e+000 6.537e-002 3.181e-002
3.000e+000 6.522e-002 3.176e-002
3.500e+000 6.512e-002 3.173e-002
4.000e+000 6.503e-002 3.170e-002
4.500e+000 6.497e-002 3.169e-002

Source code example

The example code in Listing 11.5 demonstrates how to compute the efficient portfolios for several values
of a. The code is mostly similar to the one in Sec. 11.1.1, except the problem is re-optimized in a loop
for varying o.

Listing 11.5: Code implementing model (11.9).

package com.mosek.example;
import mosek.x*;

public class case_portfolio_2 {
static final int n = 3;

public static void main (String[] args) {
// Since the wvalue infinity ts never used, we define
// 'infinity' symbolic purposes only
double infinity = 0;
double gamma = 0.05;
double[] mu {0.1073, 0.0737, 0.0627};
double[][] GT = {

{0.1667, 0.0232, 0.0013},
{0.0000, 0.1033, -0.0022},
{0.0000, 0.0000, 0.0338}

}s

double[] x0 = {0.0, 0.0, 0.0};

double w=1.0;

double[] alphas = {0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5};
int numalphas = 12;

int numvar = 2 * n + 1;
int numcon = n + 1;

//0ffset of variables into the API wariable.
int offsetx = 0;

int offsets = n;

int offsett n + 1;

try ( Env env = new mosek.Env ();
Task task = new mosek.Task (env, 0, 0) ) {
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// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

//Constraints.
task.appendcons (numcon) ;
for (int i = 1; i <= n; ++i) {
w += x0[1 - 1];
task.putconbound (i, mosek.boundkey.fx, 0., 0.);
task.putconname (i, "GT[" + i + "]");
}
task.putconbound (0, mosek.boundkey.fx, w, w);
task.putconname (0, "budget");

//Variables.
task.appendvars (numvar) ;

int[] xindx = {offsetx + 0, offsetx + 1, offsetx + 2};
task.putclist(xindx, mu);

for (int i = 0; i < n; ++i) {
for (int j = i; j < m; ++j)
task.putaij(i + 1, offsetx + j, GT[i][j1);

task.putaij(i + 1, offsett + i, -1.0);
task.putvarbound (offsetx + i, mosek.boundkey.lo, 0., 0.);

task.putvarname (offsetx + i, "x[" + (i + 1) + "1");
task.putvarname (offsett + i, "t[" + (i + 1) + "I");
task.putvarbound (offsett + i, mosek.boundkey.fr, 0., 0.);
}
task.putvarbound (offsets, mosek.boundkey.fr, gamma, gamma) ;
task.putvarname (offsets, "s");

double[] e = {1.0, 1.0, 1.0};
task.putarow(0, xindx, e);

//Cones.
int[] csub = {offsets, offsett + 0, offsett + 1, offsett + 2};
task.appendcone ( mosek.conetype.quad,
0.0, /* For future use only, can be set to 0.0 */
csub) ;
task.putconename (0, "stddev");

/% 4 mazimization problem */
task.putobjsense (mosek.objsense.maximize) ;

//task.writedata("dump.opf");

try {
//Turn all log output off.
task.putintparam(mosek.iparam.log, 0);

System.out.printf("%-12s %-12s 7-12s", "alpha", "exp ret", "std dev");
for (int k = 0; k < numalphas; ++k) {
task.putcj(offsets, -alphas[k]);
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task.optimize();
task.solutionsummary (mosek.streamtype.log) ;

double expret = 0.0, stddev = 0.0;
double[] xx = new double[numvar] ;

task.getxx(mosek.soltype.itr, xx);

for (int j = 0; j < m; ++j)
expret += mul[j] * xx[j + offsetx];

System.out.printf("%-12.3e ¥%-12.3e %-12.3e\n", alphas[k], expret, xx[offsets]);

}
System.out.println("");

} catch (mosek.Warning mw) {
System.out.println (" Mosek warning:");
System.out.println (mw.toString ());

}

} catch ( mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString ());
throw e;

}

}
}

11.1.3 Improving the Computational Efficiency
In practice it is often important to solve the portfolio problem very quickly. Therefore, in this section
we discuss how to improve computational efficiency at the modelling stage.

The computational cost is of course to some extent dependent on the number of constraints and variables
in the optimization problem. However, in practice a more important factor is the sparsity: the number
of nonzeros used to represent the problem. Indeed it is often better to focus on the number of nonzeros
in G see (11.2) and try to reduce that number by for instance changing the choice of G.

In other words if the computational efficiency should be improved then it is always good idea to start
with focusing at the covariance matrix. As an example assume that

Y=D+4+VVT

where D is a positive definite diagonal matrix. Moreover, V is a matrix with n rows and p columns.
Such a model for the covariance matrix is called a factor model and usually p is much smaller than n.
In practice p tends to be a small number independent of n, say less than 100.

One possible choice for G is the Cholesky factorization of ¥ which requires storage proportional to
n(n + 1)/2. However, another choice is
GT _ |: D1/2 :|

VT
because then
GGT =D+ VvVT,

This choice requires storage proportional to n 4+ pn which is much less than for the Cholesky choice of
G. Indeed assuming p is a constant storage requirements are reduced by a factor of n.

The example above exploits the so-called factor structure and demonstrates that an alternative choice
of G may lead to a significant reduction in the amount of storage used to represent the problem. This
will in most cases also lead to a significant reduction in the solution time.
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The lesson to be learned is that it is important to investigate how the covariance matrix is formed.
Given this knowledge it might be possible to make a special choice for G that helps reducing the storage
requirements and enhance the computational efficiency. More details about this process can be found in
[And13].

11.1.4 Slippage Cost

The basic Markowitz model assumes that there are no costs associated with trading the assets and that
the returns of the assets are independent of the amount traded. Neither of those assumptions is usually
valid in practice. Therefore, a more realistic model is

maximize p'w
. n
subject to eTx + 37| Cj(x; —THC?) = w2+ ela®, (11.10)
¥z < o
r = 0,

where the function
0
Cj(zj —x j)

specifies the transaction costs when the holding of asset j is changed from its initial value.

11.1.5 Market Impact Costs

If the initial wealth is fairly small and no short selling is allowed, then the holdings will be small and the
traded amount of each asset must also be small. Therefore, it is reasonable to assume that the prices
of the assets are independent of the amount traded. However, if a large volume of an asset is sold or
purchased, the price, and hence return, can be expected to change. This effect is called market impact
costs. It is common to assume that the market impact cost for asset j can be modelled by

Cj =my/lz; — af]

where m; is a constant that is estimated in some way by the trader. See /[GK(00] [p. 452| for details.

Hence, we have
Cyla; —af) = myla; — x|\ /lo; — 29| = myla; — afP2.
From /[MOSEKApS12] it is known that
{(c,2) 1 ¢> 232 2> 0 ={(c,2) : (v,¢,2),(2,1/8,v) € Q°}
where Qﬁ is the 3-dimensional rotated quadratic cone. Hence, it follows

zj = |Ij 7"E9|7
(Ujacjas_j)7(zjal/87v6) € QE;L
Zj:l Cj(z; _Ij) :ijl Cj-

Unfortunately this set of constraints is nonconvex due to the constraint
zj = |x; — x| (11.11)
but in many cases the constraint may be replaced by the relaxed constraint

2 > |aj — ajl, (11.12)

which is equivalent to

> . 20
KA A (11.13)

zj > —(z; — 7).
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For instance if the universe of assets contains a risk free asset then

zj > |z — | (11.14)

cannot hold for an optimal solution.

If the optimal solution has the property (11.14) then the market impact cost within the model is larger
than the true market impact cost and hence money are essentially considered garbage and removed by
generating transaction costs. This may happen if a portfolio with very small risk is requested because
the only way to obtain a small risk is to get rid of some of the assets by generating transaction costs.
We generally assume that this is not the case and hence the models (11.11) and (11.12) are equivalent.

The above observations lead to
T

maximize whx
subject to Tz +mTe = w+elal,
[GTa] e
zj > xj—ay,  j=1,...,n, (11.15)
Zj > x(;f‘rja j=1, » Ty
[Uj;cj;zj]’[zj;l/&vj] € Qﬁ, J=1 ) 1
x > 0.
The revised budget constraint
T T,.0

efx+m c=w+ex

specifies that the initial wealth covers the investment and the transaction costs. Moreover, v and z are
3/2

auxiliary variables that model the market impact cost so that z; > |z; — 2] and ¢; > z;

It should be mentioned that transaction costs of the form
cj > zf /a

where p and ¢ are both integers and p > ¢ can be modelled using quadratic cones. See [MOSEKApS12|
for details.

Creating a matrix formulation

One more reformulation of (11.15) is needed to bring it to the standard form (11.4).

maximize ul'z
subject to eTz+mTe = w+elal,
GTe—t = 0,
ZJ _‘rJ 2 —"E‘?, .7 ]-7 N,
zj + > ay, j=1,...,n,
[jscjs 2] = [fins fi2s fis] = 0, j=1....m, (11.16)
[2j;0;v;] — 95,13 95,2:95,8] = [0;-1/8;0], j=1,....m,
[s;t] € Qrt,
[fis fi25 £i8] € Q3 i=1....n,
(95,13 95,25 95,3] € o3 j=1,...,n,
T > 0,
s = s

where f, g € R"*3. The additional variables f and g are introduced to ensure that each variable appears
at most once in any cone.

The formulation (11.16) is not the most compact possible, but it is easy to implement. MOSEK presolve
will automatically simplify it.

The first step in developing the implementation is to chose an ordering of the variables. We will choose
the following ordering:

& =[5 5860523 [ ]
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Table 11.2 shows the mapping between the & vector and the model variables.

Table 11.2: Storage layout for the &

Variable | Length | Offset
T n 0

s 1 n

t n n+1

c n 2n+1
v n n+1
z n n+1
foT 3n 5n+1
g()T 3n 8n + 1

The next step is to consider how the linear constraint matrix A and the remaining data vectors are laid
out. Reusing the idea in Sec. 11.1.1 we can write the data in block matrix form and read off all the
required coordinates. This extension of the code setting up the constraint Gz — ¢ = 0 from Sec. 11.1.1

is shown below.

Source code example

The example code in Listing 11.6 demonstrates how to implement the model (11.16).

Listing 11.6: Code implementing model (11.16).

package com.mosek.example;

public class case_portfolio_3 {
static final int n = 3;

public static void main (Stringl[] args) {

// Since the wvalue infinity is never used, we define

// 'infinity' symbolic purposes only
double infinity = O;
double gamma = 0.05;

double[] mu = {0.1073, 0.0737, 0.0627};

double[][] GT = {
{0.1667, 0.0232, 0.0013},
{0.0000, 0.1033, -0.0022},
{0.0000, 0.0000, 0.0338%}

};
double[] x0 = {0.0, 0.0, 0.0};
double w=1.0;

1.0;
double[] m = {0.01, 0.01, 0.01};

int offsetx = 0O;

int offsets = offsetx + n;
int offsett = offsets + 1;
int offsetc = offsett + n;
int offsetv = offsetc + n;
int offsetz = offsetv + n;
int offsetf = offsetz + n;
int offsetg = offsetf + 3 * n;

int numvar = offsetg + 3 * n;

int offset_con_budget = 0;

int offset_con_gx_t = offset_con_budget + 1;
int offset_con_absl = offset_con_gx_t + n;
int offset_con_abs2 = offset_con_absl + n;
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int offset_con_f = offset_con_abs2 + n;
int offset_con_g = offset_con_f + 3 * n;

int numcon = 1 + 3 * n + 2 * 3 * n;

try ( mosek.Env env = new mosek.Env ();
mosek.Task task = new mosek.Task (env, 0, 0) ) {

// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }1});

//Set up constraint bounds, names and variable coefficients
task.appendcons (numcon) ;
for (int i = 0; i < n; ++i) {
w += x0[i];
task.putconbound (offset_con_gx_t + i, mosek.boundkey.fx, 0., 0.);
task.putconname (offset_con_gx_t + i, "GT[" + (i + 1) + "]");

task.putconbound (offset_con_absl + i, mosek.boundkey.lo, -x0[i], infinity);
task.putconname (offset_con_absl + i, "zabsi[" + (i + 1) + "]");

task.putconbound (offset_con_abs2 + i, mosek.boundkey.lo, x0[i], infinity);
task.putconname (offset_con_abs2 + i, "zabs2[" + (i + 1) + "]");

for (int j = 0; j < 3; ++j) {
task.putconbound(offset_con_f + 3 * i + j, mosek.boundkey.fx, 0., 0.);
task.putconname (offset_con_f + 3 * i + j, "f[" + (L + 1) + "," + (§ + 1) + "1");

task.putconbound(offset_con_g + 3 * i + j, mosek.boundkey.fx, 0., 0.);
task.putconname (offset_con_g + 3 * i + j, "g[" + (1 + 1) + "," + (J + 1) + "I");

}

task.putconbound(offset_con_g + 3 * i + 1, mosek.boundkey.fx, -1. / 8, -1. / 8.);
}
// ex=w+ ezl
task.putconbound(offset_con_budget, mosek.boundkey.fx, w, w);
task.putconname (offset_con_budget, "budget");

//Variables.
task.appendvars (numvar) ;

//the objective function coefficients
int[] xindx = {offsetx + 0, offsetx + 1, offsetx + 2};
task.putclist(xindx, mu);

double[] one_m_one = {1.0, -1.0};
double[] one_one = {1.0, 1.0%};

//set up variable bounds and names
for (int i = 0; i < n; ++i) {
task.putvarbound(offsetx + i, mosek.boundkey.lo, 0., infinity);
task.putvarbound(offsett + i, mosek.boundkey.fr, infinity, infinity);
task.putvarbound(offsetc + i, mosek.boundkey.fr, infinity, infinity);
task.putvarbound(offsetz + i, mosek.boundkey.fr, infinity, infinity);
task.putvarbound(offsetv + i, mosek.boundkey.fr, infinity, infinity);
for (int j = 0; j < 3; ++j) {
task.putvarbound(offsetf + j + i * 3, mosek.boundkey.fr, infinity, infinity);
task.putvarbound (offsetg + j + i * 3, mosek.boundkey.fr, infinity, infinity);
}
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task.putvarname (offsetx + i, "x[" + (i + 1) + "1");

task.putvarname (offsett + i, "t[" + (i + 1) + "I");

task.putvarname (offsetc + i, "c[" + (i + 1) + "1");

task.putvarname (offsetz + i, "z[" + (i + 1) + "1");

task.putvarname (offsetv + i, "v[" + (i + 1) + "1");

for (int j = 0; j < 3; ++j) {
task.putvarname (offsetf + j + i * 3, "f[" + (i + 1) + "," + (§ + 1) + "1");
task.putvarname (offsetg + j + i * 3, "g[" + (i + 1) + "," + (§ + 1) + "1");

}

for ( int j = i; j < mn; ++j)
task.putaij(offset_con_gx_t + i, j, GT[i][j1);

task.putaij(offset_con_gx_t + i, offsett + i, -1.0);

task.putaij(offset_con_budget, offsetx + i, 1.0);
task.putaij(offset_con_budget, offsetc + i, m[i]);

// z_j - z_j >= -z0_j

int[] indxl = {offsetz + i, offsetx + il};
task.putarow(offset_con_absl + i, indxl, one_m_one);
// z_j + x_j >= +z0_j

int[] indx2 = {offsetz + i, offsetx + il};
task.putarow(offset_con_abs2 + i, indx2, one_one);

int[] indxfl = { offsetv + i, offsetf + i * 3};
task.putarow(offset_con_f + 3 * i, indxfl, one_m_one);
int[] indxf2 = {offsetc + i, offsetf + i * 3 + 1};
task.putarow(offset_con_f + 1 + 3 * i, indxf2, one_m_one);
int[] indxf3 = {offsetz + i, offsetf + i * 3 + 2};
task.putarow(offset_con_f + 2 + 3 * i, indxf3, one_m_one);

int[] indxgl = {offsetz + i, offsetg + i * 3};
task.putarow(offset_con_g + 3 * i, indxgl, one_m_one);

task.putaij(offset_con_g + 3 * i + 1, offsetg + i * 3 + 1, -1.);

int[] indxg3 = {offsetv + i, offsetg + i * 3 + 2};
task.putarow(offset_con_g + 3 * i + 2, indxg3, one_m_omne);
}
task.putvarbound (offsets, mosek.boundkey.fx, gamma, gamma) ;
task.putvarname (offsets, "s");

//Cones.
int conecount = 0;

int[] csub = {offsets, offsett + O, offsett + 1, offsett + 2};
task.appendcone (mosek.conetype.quad, 0.0, csub);
task.putconename (conecount, "stddev");

++conecount;

for (int j = 0; j < n; ++j, ++conecount) {
int[] coneindx = {offsetf + j * 3 , offsetf + j * 3 + 1, offsetf + j * 3 + 2};
task.appendcone (mosek.conetype.rquad, 0.0, coneindx);
task.putconename (conecount, "f[" + (j + 1) + "]");

}

for (int j = 0; j < n; ++j, ++conecount) {
int[] coneindx = {offsetg + j * 3 , offsetg + j * 3 + 1, offsetg + j * 3 + 2};
task.appendcone (mosek.conetype.rquad, 0.0, coneindx);
task.putconename (conecount, "g[" + (j + 1) + "1");

}

/* A mazimization problem */
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task.putobjsense (mosek.objsense.maximize) ;

/% Solve the problem */

try {
//Turn all log output off.
//task.putintparam(mosek. iparam.log,0);

//task.writedata("dump.opf");
task.optimize();
task.solutionsummary (mosek.streamtype.log) ;

double expret = 0.0, stddev = 0.0;
double[] xx = new double[numvar] ;

task.getxx (mosek.soltype.itr, xx);

for (int j = 0; j < n; ++j)
expret += mul[j] * xx[j + offsetx];

System.out.printf ("Expected return %e for gamma %e\n\n", expret, xx[offsets]);

} catch (mosek.Warning mw) {
System.out.println (" Mosek warning:");
System.out.println (mw.toString ());

}

} catch ( mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString ());
throw e;

}

}
}

The example code above produces the result

Interior-point solution summary

Problem status : PRIMAL_AND_DUAL_FEASIBLE

Solution status : OPTIMAL

Primal. obj: 7.4390660847e-02 nrm: 1e+00 Viol. con: 6e-09 var: 0e+00 cones: 4e-
‘*}09

Dual. obj: 7.4390675795e-02 nrm: 3e-01 Viol. con: 1le-19 var: 8e-09 cones:
—0e+00

Expected return 7.439066e-02 for gamma 5.000000e-02

If the problem is dumped to an OPF file, it has the following content.

Listing 11.7: OPF file for problem (11.16).

[comment]
Written by MOSEK version 8.1.0.24
Date 12-09-17
Time 12:34:27

[/comment]

[hints]
[hint NUMVAR] 34 [/hint]
[hint NUMCON] 28 [/hint]
[hint NUMANZ] 60 [/hint]
[hint NUMQNZ] O [/hint]
[hint NUMCONE] 7 [/hint]
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[/hints]

[variables disallow_new_variables]
'x[11' 'x[2]' 'x[3]' s 't[1]"'
't[2]" 't[3]' 'c[1]' 'c[2]"' 'c[3]"'
'v[1]' 'v[2]' 'v([3]' 'z[1]' 'z[2]"'
'z[3]' 'f[1,1]" '£[1,2]"' '£[1,3]' 'f[2,1]"
'f[2,2]' 'f[2,3]' 'f[3,1]' 'f[3,2]' 'f[3,3]"'
'gl1,1]" 'gl1,2]' 'gl1,3]1' 'gl2,1]"' 'gl[2,2]"'
'gl2,3]" 'gl3,1]1"' 'gl3,2]' 'gl3,3]"'
[/variables]

[objective maximize]
1.073e-01 'x[1]' + 7.37e-02 'x[2]' + 6.270000000000001e-02 'x[3]"'
[/objective]

[constraints]
[con 'budget'] 'x[1]' + 'x[2]' + 'x[3]' + 1e-02 'c[1]' + 1e-02 'c[2]'
+ 1e-02 'c[3]' = 1e+00 [/con]

[con 'GT[1]'] 1.667e-01 'x[1]' + 2.32e-02 'x[2]' + 1.3e-03 'x[3]"' - 't[1]' = 0e+00 [/con]
[con 'GT[2]'] 1.033e-01 'x[2]' - 2.2e-03 'x[3]' - 't[2]' = 0e+00 [/con]

[con 'GT[3]'] 3.38e-02 'x[3]' - 't[3]' = 0e+00 [/con]

[con 'zabs1[1]'] 0e+00 <= - 'x[1]' + 'z[1]' [/con]

[con 'zabs1[2]'] 0e+00 <= - 'x[2]' + 'z[2]' [/con]

[con 'zabs1[3]'] 0e+00 <= - 'x[3]' + 'z[3]' [/con]

[con 'zabs2[1]'] 0e+00 <= 'x[1]' + 'z[1]"' [/con]
[con 'zabs2[2]'] 0e+00 <= 'x[2]' + 'z[2]"' [/con]
[con 'zabs2[3]'] 0e+00 <= 'x[3]' + 'z[3]' [/conl

[con 'f[1,1]'] ‘'v[1]' - '£f[1,1]' = 0e+00 [/conl]
[con '"f[1,2]'] ‘'c[1]' - 'f[1,2]"' = 0e+00 [/con]
[con 'f[1,3]'] '=z[1]' - '£[1,3]' = 0e+00 [/con]
[con 'f[2,1]'] 'v[2]' - 'f[2,1]' = 0e+00 [/conl]
[con 'f[2,2]'] 'c[2]' - 'f[2,2]' = 0e+00 [/con]
[con 'f[2,3]'] 'z[2]' - 'f[2,3]' = 0e+00 [/con]
[con 'f[3,1]'] 'vI[3]' - 'f[3,1]' = 0e+00 [/conl]
[con 'f[3,2]'] 'c[3]' - '"f[3,2]"' = 0e+00 [/con]
[con 'f[3,3]'] 'z[3]' - 'f[3,3]' = 0e+00 [/con]
[con 'g[1,11'] 'z[1]' - 'gl[1,1]' = 0e+00 [/conl
[con 'g[1,2]'] - 'g[1,2]' = -1.25e-01 [/con]
[con 'g[1,3]1'] ‘'v[1]' - 'gl[1,3]' = 0e+00 [/conl
[con 'g[2,1]1'] 'z[2]' - 'gl[2,1]' = 0e+00 [/conl
[con 'g[2,2]'] - 'gl[2,2]' = -1.25e-01 [/con]
[con 'g[2,3]1'] 'v[2]' - 'gl[2,3]' = 0e+00 [/conl
[con 'g[3,11'] 'z[3]' - 'gl[3,1]' = 0e+00 [/conl
[con 'g[3,2]'] - 'gl[3,2]' = -1.25e-01 [/con]
[con 'g[3,3]1'] 'v[3]' - 'gl3,3]' = 0e+00 [/conl
[/constraints]
[bounds]
[b] Oe+00 <= 'x[11','x[2]','x[3]"' [/b]
[b] s = b5e-02 [/b]
[b] t1],e[2] 0, 't 03], 'e[1] !, 'c[2] ", 'c[3]"' free [/b]
[b] 'v[1]','v[2]"','v[3]"','z[1]",'z[2]"','z[3]"' free [/b]
[b] ‘fl1,1]','f[1,2]"','£[1,3]"','f[2,1]"','f[2,2]"','f[2,3]"' free [/b]
[b] 'f[3,1]','f[3,2]','f[3,3]','g[l,l]','g[l,Q]','g[1,3]' free [/b]

[b]

'gl2,11','gl2,2]1",'gl2,3]1",'g[3,1]1"','g[3,2]"','gl[3,3]" free [/b]

[cone quad 'stddev']l s, 't[1]', 't[2]', 't[3]' [/conel

[cone rquad 'f[1]'] 'f£[1,1]', 'f[1,2]', '£[1,3]' [/comel
[cone rquad 'f[2]'] 'f[2,1]', 'f[2,2]', '£[2,3]' [/comel
[cone rquad '£[3]'] '£[3,1]', '£[3,2]', 'f£[3,3]' [/conel
[cone rquad 'gl[1]'] 'gl1,1]', 'gl1,2]', 'gl1,3]"' [/conel
[cone rquad 'gl[2]'] 'gl2,1]', 'gl2,2]', 'gl[2,3]"' [/conel
[cone rquad 'g[3]'] 'gl3,11', 'gl3,2]', 'gl[3,3]' [/conel
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[/bounds]

The file verifies that the correct problem has been set up.
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CHAPTER

TWELVE

PROBLEM FORMULATION AND SOLUTIONS

In this chapter we will discuss the following issues:

e The formal, mathematical formulations of the problem types that MOSEK can solve and their
duals.

e The solution information produced by MOSEK.
e The infeasibility certificate produced by MOSEK if the problem is infeasible.

12.1 Linear Optimization

A linear optimization problem can be written as

minimize e+ ef
subject to ¢ < Az < S, (12.1)
r < T < u®,

where
e m is the number of constraints.
e 1 is the number of decision variables.
e z € R" is a vector of decision variables.
e ¢ € R” is the linear part of the objective function.
e A € R™*™ ig the constraint matrix.
e [ € R™ is the lower limit on the activity for the constraints.
e y° € R™ is the upper limit on the activity for the constraints.
e [ € R” is the lower limit on the activity for the variables.
e u” € R" is the upper limit on the activity for the variables.

A primal solution (z) is (primal) feasible if it satisfies all constraints in (12.1). If (12.1) has at least one
primal feasible solution, then (12.1) is said to be (primal) feasible.

In case (12.1) does not have a feasible solution, the problem is said to be (primal) infeasible

12.1.1 Duality for Linear Optimization

Corresponding to the primal problem (12.1), there is a dual problem

maximize  (1)Tsf — (u)Ts¢ + (1%)Ts¥ — (u®)T's% + ¢f

T T oT
. ATy +si =8y ¢ (12.2)
subject to —y+si—s;, = 0,
s7,s5,s7,8s¢ = 0.
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If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at 0,
and we use the convention that the product of the bound value and the corresponding dual variable is
0. E.g.

lj=-0c0 = (sf)j=0and[j-(s7); =0.

This is equivalent to removing variable (s7); from the dual problem. A solution

(875 80 515 54)

to the dual problem is feasible if it satisfies all the constraints in (12.2). If (12.2) has at least one feasible
solution, then (12.2) is (dual) feasible, otherwise the problem is (dual) infeasible.

A Primal-dual Feasible Solution

A solution
C C LT T
(xvyvsl75u75lasu)

is denoted a primal-dual feasible solution, if (x) is a solution to the primal problem (12.1) and

(y, 87,85, 87, s5) is a solution to the corresponding dual problem (12.2).

The Duality Gap

Let
(@, 5% (s1), (s3)", (s7)", (s2)")
be a primal-dual feasible solution, and let
()" = Ax™.

For a primal-dual feasible solution we define the duality gap as the difference between the primal and
the dual objective value,

Tar e - {(lC)T( — (u) " (s5)" + (1) (s7)* = ()" (s5)* + ¢ }
=) [( ) (( 9 =15+ (s ”) (uf — (2f )*)] (12.3)
Zn([ _Z"K +(5 U —ac)}

where the first relation can be obtained by transposing and multiplying the dual constraints (12.2) by
xz* and (z°)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

An Optimal Solution

It is well-known that a linear optimization problem has an optimal solution if and only if there exist fea-
sible primal and dual solutions so that the duality gap is zero, or, equivalently, that the complementarity
conditions

Slc):(xf)*_lzc) = Oa Z_Ow--am 17
(s0)i(uf —(2f)") = 0, i=0,....m—1,
(s7);j(x; =15) = 0, j=0,...,n—1,
(sp)j(uj —2x) = 0, j=0,...,n—1,

are satisfied.

If (12.1) has an optimal solution and MOSEK solves the problem successfully, both the primal and dual
solution are reported, including a status indicating the exact state of the solution.
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12.1.2 Infeasibility for Linear Optimization

Primal Infeasible Problems

If the problem (12.1) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem
maximize  (1°)7sf — (u®)TsS + (1%)Ts? — (u®)TsZ
subject to
ATy + 57 — 52 =0, (12.4)
—y + sj — 55 =0,
8808150 2 0,

such that the objective value is strictly positive, i.e. a solution
(v ()", (s0)7 (s7)% (s3)")
to (12.4) so that
)T ()" = ()T (s5)* + ()T (s7)" — (u™) T (s5)" > 0.

Such a solution implies that (12.4) is unbounded, and that its dual is infeasible. As the constraints to
the dual of (12.4) are identical to the constraints of problem (12.1), we thus have that problem (12.1) is
also infeasible.

Dual Infeasible Problems

If the problem (12.2) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

T

minimize c'x
subject to ¢ < Az < 4° (12.5)
T < x < a®,
where
o 0 if [§ > —o0 ) 0 ifuf <o
Cc __ 1 ) "(}, — 7 )
L _{ —oo otherwise, } and i : { oo otherwise, }
and
- 0 if T > —o0 0 ifu? <o
%= g d 4% := g oo
J { —o0 otherwise, } anc. { oo otherwise, }
such that

Tz <.

Such a solution implies that (12.5) is unbounded, and that its dual is infeasible. As the constraints to
the dual of (12.5) are identical to the constraints of problem (12.2), we thus have that problem (12.2) is
also infeasible.

Primal and Dual Infeasible Case

In case that both the primal problem (12.1) and the dual problem (12.2) are infeasible, MOSEK will
report only one of the two possible certificates — which one is not defined (MOSEK returns the first
certificate found).
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Minimalization vs. Maximalization

When the objective sense of problem (12.1) is maximization, i.e.

maximize e+ ef
subject to ¢ < Az < uc,
r < T < u®,

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (12.2). The dual problem thus takes the form

minimize  (1°)7sf — (u®)T'sS + (1%)7s¥ — (u®)T'sZ + cf
subject to
ATy +s7 — 5% =,
-y + 57 — 55, =0,
sy, 85,87, 55 < 0.

This means that the duality gap, defined in (12.3) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system

ATy + 87 — 5% =0,
—y+s7—s;, =0, (12.6)
S?a sfu sfa Sﬁ S 07
such that the objective value is strictly negative
)T ()" = ()T (s5)* + ()T (s7)* — (u™) T (s5)" < 0.
.

Similarly, the certificate of dual infeasibility is an z satisfying the requirements of (12.5) such that
T
cx>0.

12.2 Conic Quadratic Optimization

Conic quadratic optimization is an extension of linear optimization (see Sec. 12.1) allowing conic domains
to be specified for subsets of the problem variables. A conic quadratic optimization problem can be
written as

minimize e+ ef
subject to ¢ < Ax < uc,
o< - < (12.7)
x ek,

where set K is a Cartesian product of convex cones, namely K = Ky x --- x K,. Having the domain
restriction, x € I, is thus equivalent to

II}t S ICt g Rnt,
where x = (z!,...,2P) is a partition of the problem variables. Please note that the n-dimensional
Euclidean space R™ is a cone itself, so simple linear variables are still allowed.
MOSEK supports only a limited number of cones, specifically:
e The R™ set.

e The quadratic cone:

e The rotated quadratic cone:
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n
or = xGR":2x1x222x?, 1 >0, x22>0
—

Although these cones may seem to provide only limited expressive power they can be used to model a
wide range of problems as demonstrated in [MOSEKApS12].

12.2.1 Duality for Conic Quadratic Optimization

The dual problem corresponding to the conic quadratic optimization problem (12.7) is given by

maximize  (19)Ts¢ — (u®)TsS + (1%)Ts¥ — (u®)TsZ + ¢f
subject to
ATy 4+ s7 — s +s2 =c
—y + sf — 55 =0,
s7,85,87, 85 >0,
sy e Kr,

(12.8)

where the dual cone K* is a Cartesian product of the cones
Kr=K] x- x K,

where each KC; is the dual cone of ;. For the cone types MOSEK can handle, the relation between the
primal and dual cone is given as follows:

e The R™ set:
Ki=R" & Ki={seR": s=0}.

e The quadratic cone:

Ki=9Q" & Ki=Q"=qsecR":5 >

e The rotated quadratic cone:

Nt
Ki=9r & Ki=9Q%= SERnt:QSLSQZZS?, s1>0, s3>0
=3

Please note that the dual problem of the dual problem is identical to the original primal problem.

12.2.2 Infeasibility for Conic Quadratic Optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of infeasibility. This works
exactly as for linear problems (see Sec. 12.1.2).

Primal Infeasible Problems

If the problem (12.7) is infeasible, MOSEK will report a certificate of primal infeasibility: The dual
solution reported is the certificate of infeasibility, and the primal solution is undefined.

A certificate of primal infeasibility is a feasible solution to the problem

maximize  (1¢)Ts§ — (u®)TsS + (1%)Ts¥ — (u®)Ts

subject to
ATy + s7 — s% + s = 0,
—y + s — 55, = 0,
7,86, 87, st > 0,
sy € K,

such that the objective value is strictly positive.
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Dual infeasible problems

If the problem (12.8) is infeasible, MOSEK will report a certificate of dual infeasibility: The primal
solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the problem

T

minimize c'x
subject to ¢ < Ax < ac,
r < T < 4%,
z €K,
where
- 0 if [§ > —o0 e 0 ifuf<oo
5= oo T and 45 = v
—oo otherwise, oo otherwise,
and

jr 0 if 7 > —o0, and 4% — 0 ifuj <oo,
7| —oo otherwise, J 7] oo otherwise,

such that the objective value is strictly negative.

12.3 Semidefinite Optimization

Semidefinite optimization is an extension of conic quadratic optimization (see Sec. 12.2) allowing pos-
itive semidefinite matrix variables to be used in addition to the usual scalar variables. A semidefinite
optimization problem can be written as

minimize Z;L;Ol ¢y + Z?;é (C;, X))+
subject to  I§ < Z;L;Ol a;jxj + Z?;Ol (Ai;, X)) <, i=0,....m—1 (12.9)
S Z; < wuj, j=0,...,n-1
e, X; €S8, j=0,...,p—1

where the problem has p symmetric positive semidefinite variables Yj € S:_j of dimension r; with
symmetric coefficient matrices C; € 8”7 and A4; ; € S"7. We use standard notation for the matrix inner
product, i.e., for U,V € R™*" we have

m—1n—1

i=0 j=0

With semidefinite optimization we can model a wide range of problems as demonstrated in
[MOSEKApS12].

12.3.1 Duality for Semidefinite Optimization

The dual problem corresponding to the semidefinite optimization problem (12.9) is given by

maximize  (19)Ts¢ — (u®)TsS + (1%)Ts¥ — (u®)TsZ + ¢f
subject to
c— ATy + 5% — sF = %,
Cj—ZfLOyiAij:Sj, jIO,...,p—l (1210)
sf— 5o =y,
sy, 85,587,808 >0,

st ek, S;e8Y7, j=0,...,p—1
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where A € R™*™, A;; = a;;, which is similar to the dual problem for conic quadratic optimization (see
Sec. 12.2.1), except for the addition of dual constraints

<Cj — ZyiAij> S S:_J
=0

Note that the dual of the dual problem is identical to the original primal problem.

12.3.2 Infeasibility for Semidefinite Optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of the infeasibility. This works
exactly as for linear problems (see Sec. 12.1.2).

Primal Infeasible Problems

If the problem (12.9) is infeasible, MOSEK will report a certificate of primal infeasibility: The dual
solution reported is a certificate of infeasibility, and the primal solution is undefined.

A certificate of primal infeasibility is a feasible solution to the problem

maximize (ZC)TSZC — (u)Ts¢ + (l”)Tsf — (u)TsT
subject to
ATy+sf—sﬁ+st:07
Z?;oli‘/iAij'f‘Sj:O, j=0,...,p—1
—y+si—s;,=0,
5,85, 7, 5% > 0,
st e Kx, SjeS:_j, j=0,...,p—1

such that the objective value is strictly positive.

Dual Infeasible Problems

If the problem (12.10) is infeasible, MOSEK will report a certificate of dual infeasibility: The primal
solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the problem

minimize >0 ¢y + 2020 (Ch, Xy)
subject to  [f < doio @iy + Z?;& (Aij, X;) < 4, i=0,...,m—1
< x < 4",
rek, X;e8Y, j=0,...,p—1
where
- 0 if [§ >;—o0 0 ifuf<;00
(.Z — 2 ) ) "? — 2 ) )
L { —oo otherwise, and - a;: { oo otherwise,
and
- 0 if 1% >;—o0 0 ifu? <500
¥ = J ’, ’ d o% = J ’ ’
J { —oo otherwise, anc. 4 { oo otherwise,

such that the objective value is strictly negative.
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12.4 Quadratic and Quadratically Constrained Optimization

A convex quadratic and quadratically constrained optimization problem has the form

minimize %xTQ‘)x +cTx+cf
subject to I < %.TTQkI + Z;:Ol agjr; < uf, k=0,...,m—1, (12.11)
S xj < wf, j=0,...,n—1,

where Q° and all Q* are symmetric matrices. Moreover, for convexity, Q° must be a positive semidefinite
matrix and Q¥ must satisfy

—oo < Iy = QF is negative semidefinite,
ug < oo = Q" is positive semidefinite,
—co<lf <uf <oo = QF=0.

The convexity requirement is very important and MOSEK checks whether it is fulfilled.

12.4.1 A Recommendation

Any convex quadratic optimization problem can be reformulated as a conic quadratic optimization prob-
lem, see [MOSEKApS12] and in particular [And13/. In fact MOSEK does such conversion internally
as a part of the solution process for the following reasons:

e the conic optimizer is numerically more robust than the one for quadratic problems.

e the conic optimizer is usually faster because quadratic cones are simpler than quadratic functions,
even though the conic reformulation usually has more constraints and variables than the original
quadratic formulation.

e it is easy to dualize the conic formulation if deemed worthwhile potentially leading to (huge)
computational savings.

However, instead of relying on the automatic reformulation we recommend to formulate the problem as
a conic problem from scratch because:

e it saves the computational overhead of the reformulation including the convexity check. A conic
problem is convex by construction and hence no convexity check is needed for conic problems.

e usually the modeller can do a better reformulation than the automatic method because the modeller
can exploit the knowledge of the problem at hand.

To summarize we recommend to formulate quadratic problems and in particular quadratically constrained
problems directly in conic form.

12.4.2 Duality for Quadratic and Quadratically Constrained Optimization

The dual problem corresponding to the quadratic and quadratically constrained optimization problem
(12.11) is given by

maximize (1%)7sf — (u®)7sS + (1%)Tsp — (u®)Ts2 + a7 {ZZ!OI UL QF — QO} r+cf

subject to ATy + 57 — 5% + {E;n:_ol Y@ — QO} r=c, (12.12)
—y+si— s, =0,
sy, s0,s7,80 > 0.

The dual problem is related to the dual problem for linear optimization (see Sec. 12.1.1), but depends
on the variable x which in general can not be eliminated. In the solutions reported by MOSEK, the
value of z is the same for the primal problem (12.11) and the dual problem (12.12).
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12.4.3 Infeasibility for Quadratic and Quadratically Constrained Optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of infeasibility. This works
exactly as for linear problems (see Sec. 12.1.2).

Primal Infeasible Problems

If the problem (12.11) with all Q¥ = 0 is infeasible, MOSEK will report a certificate of primal infeasi-
bility. As the constraints are the same as for a linear problem, the certificate of infeasibility is the same
as for linear optimization (see Sec. 12.1.2).

Dual Infeasible Problems

If the problem (12.12) with all Q¥ = 0 is dual infeasible, MOSEK will report a certificate of dual
infeasibility. The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the problem

minimize 'z
subject to ¢ < Ax < 4f,
0 < Q2 < 0,
< z < 4%
where
- 0 if [§ > —c0 0 ifuf<oo
- i 7 qc = i ’
li { —oo otherwise, } and i : { oo otherwise, }
and

- 0 if 1% > -0 0 ifu? <oo

T _ J ’ 0% = J ’

L { —oo otherwise, } and @ : { oo otherwise, }
such that the objective value is strictly negative.

12.5 General Convex Optimization

The general nonlinear optimizer (which may be available for all or some types of nonlinear problems
depending on the interface), solves smooth (twice differentiable) convex nonlinear optimization problems
of the form

minimize f@)+cTx+cf
subject to I¢ < g(x) + Ax < uS,
< T < u®,

where
e m is the number of constraints.
e n is the number of decision variables.
e z € R" is a vector of decision variables.
e ¢ € R” is the linear part objective function.
e A € R™*™ ig the constraint matrix.
e [ € R™ is the lower limit on the activity for the constraints.

e y° € R™ is the upper limit on the activity for the constraints.
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e [ € R" is the lower limit on the activity for the variables.
e y” € R" is the upper limit on the activity for the variables.
e f:R™ — R is a nonlinear function.

e g:R"™ — R™ is a nonlinear vector function.

This means that the i-th constraint has the form

The linear term Az is not included in g(z) since it can be handled much more efficiently as a separate
entity when optimizing.

The nonlinear functions f and g must be smooth in all © € [I7;u®]. Moreover, f(z) must be a convex
function and g;(z) must satisfy

-0 <Il§f = g(x)is concave,
uf < oo = g;(x) is convex,
—co<lf<uf<oo = gi(x)=0.

7
7

12.5.1 Duality for General convex Optimization

Similarly to the linear case, MOSEK reports dual information in the general nonlinear case. Indeed in
this case the Lagrange function is defined by

L(z,s5,85,87,82) = f(z)+cTa+cf
—(s))" (g(x) + Az —1°) = (s5)" (u® — g(z) — Ax)
—(s7)" (= 17) = (s7)" (u* — ),

and the dual problem is given by

maximize L(z, S, 85,87, su)
subject to  V,L(,s{, s, st,s5)T = 0,
C (& x xr
S5 Su 51+ 5u 2 0,

which is equivalent to

maximize  (19)Ts¢ — (u®)TsS + (1%)Ts¥ — (u®)TsZ + ¢f
+f(@) = g(x)'y = (Vf(2)" = Vg(2)Ty)"a
subject to ATy + 57 — s — (Vf(2)T = Vg(z)Ty) = ¢
—y + sj — s, = 0,
87,585,878, > 0.

In this context we use the following definition for scalar functions

and accordingly for vector functions

V91 (.’E)

Vgm (x )
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CHAPTER
THIRTEEN

THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

The most essential part of MOSEK are the optimizers. This chapter describes the optimizers for the
class of continuous problems without integer variables, that is:

e linear problems,
e conic problems (quadratic and semidefinite),
e general convex problems.

MOSEK offers an interior-point optimizer for each class of problems and also a simplex optimizer for
linear problems. The structure of a successful optimization process is roughly:

e Presolve
1. Elimination: Reduce the size of the problem.
2. Dualizer: Choose whether to solve the primal or the dual form of the problem.
3. Scaling: Scale the problem for better numerical stability.
e Optimization
1. Optimize: Solve the problem using selected method.
2. Terminate: Stop the optimization when specific termination criteria have been met.
3. Report: Return the solution or an infeasibility certificate.

The preprocessing stage is transparent to the user, but useful to know about for tuning purposes. The
purpose of the preprocessing steps is to make the actual optimization more efficient and robust. We
discuss the details of the above steps in the following sections.

13.1 Presolve

Before an optimizer actually performs the optimization the problem is preprocessed using the so-called
presolve. The purpose of the presolve is to

1. remove redundant constraints,

2. eliminate fixed variables,

3. remove linear dependencies,

4. substitute out (implied) free variables, and

5. reduce the size of the optimization problem in general.

After the presolved problem has been optimized the solution is automatically postsolved so that the
returned solution is valid for the original problem. Hence, the presolve is completely transparent. For
further details about the presolve phase, please see [AA95] and [AGMX96].

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If presolve consumes too
much time or memory compared to the reduction in problem size gained it may be disabled. This is done

119



MOSEK Optimizer API for Java, Release 8.1.0.76

by setting the parameter iparam.presolve_use to presolvemode.off. The two most time-consuming
steps of the presolve are

e the eliminator, and
e the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.

Numerical issues in the presolve

During the presolve the problem is reformulated so that it hopefully solves faster. However, in rare
cases the presolved problem may be harder to solve then the original problem. The presolve may also
be infeasible although the original problem is not. If it is suspected that presolved problem is much
harder to solve than the original, we suggest to first turn the eliminator off by setting the parameter
iparam.presolve_eliminator_maz_num_tries to 0. If that does not help, then trying to turn entire
presolve off may help.

Since all computations are done in finite precision, the presolve employs some tolerances when concluding
a variable is fixed or a constraint is redundant. If it happens that MOSEK incorrectly concludes a
problem is primal or dual infeasible, then it is worthwhile to try to reduce the parameters dparam.
presolve_tol_z and dparam.presolve_tol_s. However, if reducing the parameters actually helps
then this should be taken as an indication that the problem is badly formulated.

Eliminator
The purpose of the eliminator is to eliminate free and implied free variables from the problem using
substitution. For instance, given the constraints

Y
Y,z

vl

Zj Ly
0,

y is an implied free variable that can be substituted out of the problem, if deemed worthwhile. If the
eliminator consumes too much time or memory compared to the reduction in problem size gained it may
be disabled. This can be done by setting the parameter iparam. presolve_eliminator_maz_num_tries
to 0. In rare cases the eliminator may cause that the problem becomes much hard to solve.

Linear dependency checker

The purpose of the linear dependency check is to remove linear dependencies among the linear equalities.
For instance, the three linear equalities

T1+zo4+23 = 1,
z1 4+ 0.5z = 0.5,
0.52x9 +x3 = 0.5.

contain exactly one linear dependency. This implies that one of the constraints can be dropped without
changing the set of feasible solutions. Removing linear dependencies is in general a good idea since it
reduces the size of the problem. Moreover, the linear dependencies are likely to introduce numerical
problems in the optimization phase. It is best practice to build models without linear dependencies,
but that is not always easy for the user to control. If the linear dependencies are removed at the
modelling stage, the linear dependency check can safely be disabled by setting the parameter iparam.
presolve_lindep_use to onoffkey.off.

Dualizer

All linear, conic, and convex optimization problems have an equivalent dual problem associated with
them. MOSEK has built-in heuristics to determine if it is more efficient to solve the primal or dual
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problem. The form (primal or dual) is displayed in the MOSEK log and available as an information
item from the solver. Should the internal heuristics not choose the most efficient form of the problem it
may be worthwhile to set the dualizer manually by setting the parameters:

e iparam.intpnt_solve_ form: In case of the interior-point optimizer.
e iparam.sim_solve_form: In case of the simplex optimizer.

Note that currently only linear and conic quadratic problems may be automatically dualized.

Scaling

Problems containing data with large and/or small coefficients, say 1.0e + 9 or 1.0e — 7, are often hard
to solve. Significant digits may be truncated in calculations with finite precision, which can result in
the optimizer relying on inaccurate data. Since computers work in finite precision, extreme coefficients
should be avoided. In general, data around the same order of magnitude is preferred, and we will refer to
a problem, satisfying this loose property, as being well-scaled. If the problem is not well scaled, MOSEK
will try to scale (multiply) constraints and variables by suitable constants. MOSEK solves the scaled
problem to improve the numerical properties.

The scaling process is transparent, i.e. the solution to the original problem is reported. It is important
to be aware that the optimizer terminates when the termination criterion is met on the scaled problem,
therefore significant primal or dual infeasibilities may occur after unscaling for badly scaled problems.
The best solution of this issue is to reformulate the problem, making it better scaled.

By default MOSEK heuristically chooses a suitable scaling. The scaling for interior-point and simplex
optimizers can be controlled with the parameters iparam.intpnt_scaling and iparam.sim_scaling
respectively.

13.2 Using Multiple Threads in an Optimizer

Multithreading in interior-point optimizers

The interior-point optimizers in MOSEK have been parallelized. This means that if you solve linear,
quadratic, conic, or general convex optimization problem using the interior-point optimizer, you can take
advantage of multiple CPU’s. By default MOSEK will automatically select the number of threads to
be employed when solving the problem. However, the maximum number of threads employed can be
changed by setting the parameter iparam.num_threads. This should never exceed the number of cores
on the computer.

The speed-up obtained when using multiple threads is highly problem and hardware dependent, and con-
sequently, it is advisable to compare single threaded and multi threaded performance for the given prob-
lem type to determine the optimal settings. For small problems, using multiple threads is not be worth-
while and may even be counter productive because of the additional coordination overhead. Therefore,
it may be advantageous to disable multithreading using the parameter iparam. intpnt_multi_thread.

The interior-point optimizer parallelizes big tasks such linear algebra computations.

Thread Safety

The MOSEK API is thread-safe provided that a task is only modified or accessed from one thread at
any given time. Also accessing two or more separate tasks from threads at the same time is safe. Sharing
an environment between threads is safe.
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Determinism

The optimizers are run-to-run deterministic which means if a problem is solved twice on the same
computer using the same parameter setting and exactly the same input then exactly the same results is
obtained. One restriction is that no time limits must be imposed because the time taken to perform an
operation on a computer is dependent on many factors such as the current workload.

13.3 Linear Optimization

13.3.1 Optimizer Selection

Two different types of optimizers are available for linear problems: The default is an interior-point
method, and the alternative is the simplex method (primal or dual). The optimizer can be selected using
the parameter iparam.optimizer.

The Interior-point or the Simplex Optimizer?

Given a linear optimization problem, which optimizer is the best: the simplex or the interior-point
optimizer? It is impossible to provide a general answer to this question. However, the interior-point
optimizer behaves more predictably: it tends to use between 20 and 100 iterations, almost independently
of problem size, but cannot perform warm-start. On the other hand the simplex method can take
advantage of an initial solution, but is less predictable from cold-start. The interior-point optimizer is
used by default.

The Primal or the Dual Simplex Variant?

MOSEK provides both a primal and a dual simplex optimizer. Predicting which simplex optimizer
is faster is impossible, however, in recent years the dual optimizer has seen several algorithmic and
computational improvements, which, in our experience, make it faster on average than the primal version.
Still, it depends much on the problem structure and size. Setting the iparam.optimizer parameter to
optimizertype. free_simplez instructs MOSEK to choose one of the simplex variants automatically.

To summarize, if you want to know which optimizer is faster for a given problem type, it is best to try
all the options.

13.3.2 The Interior-point Optimizer

The purpose of this section is to provide information about the algorithm employed in the MOSEK
interior-point optimizer for linear problems and about its termination criteria.

The homogeneous primal-dual problem

In order to keep the discussion simple it is assumed that MOSEK solves linear optimization problems
of standard form

minimize T
subject to Ax = b, (13.1)
xz > 0.

This is in fact what happens inside MOSEK; for efficiency reasons MOSEK converts the problem to
standard form before solving, then converts it back to the input form when reporting the solution.
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Since it is not known beforehand whether problem (13.1) has an optimal solution, is primal infeasible or
is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason why
MOSEK solves the so-called homogeneous model

Axr —br = 0,
ATy+s—cr = 0,

—cTe4+bTy—x = 0, (13.2)
z,8, 7,k > 0

)

where y and s correspond to the dual variables in (13.1), and 7 and & are two additional scalar variables.
Note that the homogeneous model (13.2) always has solution since

(z,y,s,7,k) = (0,0,0,0,0)
is a solution, although not a very interesting one. Any solution
(", 4", 8%, 7, K*)
to the homogeneous model (13.2) satisfies

T;S;

; ;zoandT*/{*zo.

Moreover, there is always a solution that has the property 7* + x* > 0.

First, assume that 7 > 0 . It follows that

Az b,
Ty" "
x Y —
—C Py + b ey = 0,
¥ s, k* > 0.
This shows that f— is a primal optimal solution and (ﬁ—*, %) is a dual optimal solution; this is reported

as the optimal interior-point solution since

Jf* y* S*
(x,y,s): F5F7F

is a primal-dual optimal solution (see Sec. 12.1 for the mathematical background on duality and opti-
mality).

On other hand, if k* > 0 then
Azx*
ATy* +S*
_ch* + bTy*

|
ox o0

Vvl

T, 8%, T K
This implies that at least one of
cl'z* <0 (13.3)
or
bly* >0 (13.4)

is satisfied. If (13.3) is satisfied then a* is a certificate of dual infeasibility, whereas if (13.4) is satisfied
then y* is a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information required
for a solution to the original problem is obtained. A solution to the homogeneous model can be computed
using a primal-dual interior-point algorithm [And09/.
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Interior-point Termination Criterion

For efficiency reasons it is not practical to solve the homogeneous model exactly. Hence, an exact optimal
solution or an exact infeasibility certificate cannot be computed and a reasonable termination criterion
has to be employed.

In the k-th iteration of the interior-point algorithm a trial solution
(", 9", 8", 7" KY)
to homogeneous model is generated, where
¥ sk kR > 0.
Optimal case

Whenever the trial solution satisfies the criterion

|aze —o| < e@+iblL),
ATY 458 ¢ < (it ely), and (13.5)
min (St 152~ ) < egma (1, 0D ),
the interior-point optimizer is terminated and
(2", 9", s*)
Tk

is reported as the primal-dual optimal solution. The interpretation of (13.5) is that the optimizer is
terminated if

° f—f is approximately primal feasible,

° {f—:, f_—i} is approximately dual feasible, and

e the duality gap is almost zero.

Dual infeasibility certificate

On the other hand, if the trial solution satisfies

_ T k el k
G (1 ) 14 e

then the problem is declared dual infeasible and z* is reported as a certificate of dual infeasibility. The
motivation for this stopping criterion is as follows: First assume that HAJ:I“HOO =0 ; then 2 is an exact
certificate of dual infeasibility. Next assume that this is not the case, i.e.

|42 >0

and define
_max (1) .
“TAZF] Tell

It is easy to verify that

max (1, [[b]] )
lelloo

which shows Z is an approximate certificate of dual infeasibility, where ¢; controls the quality of the
approximation. A smaller value means a better approximation.

[AZ]| o, = € Tr> 1,

and —c'T >
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Primal infeasibility certificate
Finally, if
'bT k ||b||oo AT k k
eyt > —— e [|ATy 4 57
ellos)
then y* is reported as a certificate of primal infeasibility.
Adjusting optimality criteria and near optimality
It is possible to adjust the tolerances €,, €4, €4 and ¢; using parameters; see table for details.

Table 13.1: Parameters employed in termination criterion

ToleranceParameter | name

Ep dparam.intpnt_tol_pfeas
€d dparam.intpnt_tol_dfeas
Eg dparam.intpnt_tol_rel_gap
€ dparam.intpnt_tol_infeas

The default values of the termination tolerances are chosen such that for a majority of problems appearing
in practice it is not possible to achieve much better accuracy. Therefore, tightening the tolerances usually
is not worthwhile. However, an inspection of (13.5) reveals that the quality of the solution depends on
[1b]| . and ||c||,; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal and
dual feasibility at the same rate [And09/. This means that if the optimizer is stopped prematurely then
it is very unlikely that either the primal or dual solution is feasible. Another consequence is that in most
cases all the tolerances, €,, €4, €4 and ¢;, have to be relaxed together to achieve an effect.

In some cases the interior-point method terminates having found a solution not too far from meeting the
optimality condition (13.5). A solution is defined as near optimal if scaling the termination tolerances
€p, €d, €4 and g4 by the same factor ¢,, € [1.0, +00] makes the condition (13.5) satisfied. A near optimal
solution is therefore of lower quality but still potentially valuable. If for instance the solver stalls, i.e.
it can make no more significant progress towards the optimal solution, a near optimal solution could be
available and be good enough for the user. Near infeasibility certificates are defined similarly. The value
of €, can be adjusted with the parameter dparam. intpnt_co_tol_near_rel.

The basis identification discussed in Sec. 13.3.2 requires an optimal solution to work well; hence basis
identification should be turned off if the termination criterion is relaxed.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

Basis Identification

An interior-point optimizer does not return an optimal basic solution unless the problem has a unique
primal and dual optimal solution. Therefore, the interior-point optimizer has an optional post-processing
step that computes an optimal basic solution starting from the optimal interior-point solution. More
information about the basis identification procedure may be found in /AY96/. In the following we provide
an overall idea of the procedure.

There are some cases in which a basic solution could be more valuable:
e a basic solution is often more accurate than an interior-point solution,
e a basic solution can be used to warm-start the simplex algorithm in case of reoptimization,

e a basic solution is in general more sparse, i.e. more variables are fixed to zero. This is partic-
ularly appealing when solving continuous relaxations of mixed integer problems, as well as in all
applications in which sparser solutions are preferred.
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To illustrate how the basis identification routine works, we use the following trivial example:

minimize T4y
subject to x4y 1,
z,y > 0.

It is easy to see that all feasible solutions are also optimal. In particular, there are two basic solutions,
namely

(1,

0= (1,0,
5 = (0,1).

) )

The interior point algorithm will actually converge to the center of the optimal set, i.e. to (z*,y*) =
(1/2,1/2) (to see this in MOSEK deactivate Presolve).

In practice, when the algorithm gets close to the optimal solution, it is possible to construct in polynomial
time an initial basis for the simplex algorithm from the current interior point solution. This basis is used
to warm-start the simplex algorithm that will provide the optimal basic solution. In most cases the
constructed basis is optimal, or very few iterations are required by the simplex algorithm to make it
optimal and hence the final clean-up phase be short. However, for some cases of ill-conditioned problems
the additional simplex clean up phase may take of lot a time.

By default MOSEK performs a basis identification. However, if a basic solution is not needed, the basis
identification procedure can be turned off. The parameters

e iparam.intpnt_basis,
° iparam.bi_ignore_mam_iter,and
e iparam.bi_tignore_num_error
control when basis identification is performed.

The type of simplex algorithm to be used (primal/dual) can be tuned with the parameter
iparam.bi_clean_optimizer, and the maximum number of iterations can be set with iparam.
bi_maz_iterations.

Finally, it should be mentioned that there is no guarantee on which basic solution will be returned.

The Interior-point Log

Below is a typical log output from the interior-point optimizer:

Optimizer - threads 1

Optimizer - solved problem : the dual

Optimizer - Constraints 2

Optimizer - Cones : 0

Optimizer - Scalar variables : 6 conic : 0
Optimizer - Semi-definite variables: 0 scalarized : 0

Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 3 after factor : 3

Factor - dense dim. : 0 flops : 7.00e+001
ITE PFEAS DFEAS GFEAS PRSTATUS  POBJ DOBJ MU TIME
0 1.0e+000 8.6e+000 6.1e+000 1.00e+000 0.000000000e+000 -2.208000000e+003 1.0e+000 0.00
1 1.1e+000 2.5e+000 1.6e-001 0.00e+000 -7.901380925e+003 -7.394611417e+003 2.5e+000 0.00
2 1.4e-001 3.4e-001 2.1e-002 8.36e-001 -8.113031650e+003 -8.055866001e+003 3.3e-001 0.00
3 2.4e-002 5.8e-002 3.6e-003 1.27e+000 -7.777530698e+003 -7.766471080e+003 5.7e-002 0.01
4 1.3e-004 3.2e-004 2.0e-005 1.08e+000 -7.668323435e+003 -7.668207177e+003 3.2e-004 0.01
5 1.3e-008 3.2e-008 2.0e-009 1.00e+000 -7.668000027e+003 -7.668000015e+003 3.2e-008 0.01
6 1.3e-012 3.2e-012 2.0e-013 1.00e+000 -7.667999994e+003 -7.667999994e+003 3.2e-012 0.01

The first line displays the number of threads used by the optimizer and the second line tells that the
optimizer chose to solve the dual problem rather than the primal problem. The next line displays the
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problem dimensions as seen by the optimizer, and the Factor. .. lines show various statistics. This is
followed by the iteration log.

Using the same notation as in Sec. 13.3.2 the columns of the iteration log have the following meaning:
e ITE: Iteration index k.

e PFEAS: HAQEk — kaHOO . The numbers in this column should converge monotonically towards zero
but may stall at low level due to rounding errors.

e DFEAS: ||ATyk + 8% —crk ||Oo . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

e GFEAS: | —cTz* +bTy* — k¥| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

e PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to —1 if that is not the case.

e POBJ: cT'z¥ /7%, An estimate for the primal objective value.

e DOBJ: bT'y* /7%, An estimate for the dual objective value.

ENT _k

c k _k
® MU: (w);# . The numbers in this column should always converge to zero.

TIME: Time spent since the optimization started.

13.3.3 The Simplex Optimizer

An alternative to the interior-point optimizer is the simplex optimizer. The simplex optimizer uses a
different method that allows exploiting an initial guess for the optimal solution to reduce the solution
time. Depending on the problem it may be faster or slower to use an initial guess; see Sec. 13.3.1 for a
discussion. MOSEK provides both a primal and a dual variant of the simplex optimizer.

Simplex Termination Criterion

The simplex optimizer terminates when it finds an optimal basic solution or an infeasibility certificate.
A basic solution is optimal when it is primal and dual feasible; see Sec. 12.1 for a definition of the primal
and dual problem. Due to the fact that computations are performed in finite precision MOSEK allows
violations of primal and dual feasibility within certain tolerances. The user can control the allowed
primal and dual tolerances with the parameters dparam.basis_tol_z and dparam.basis_tol_s.

Setting the parameter tparam.optimizer to optimizertype. free_simplez instructs MOSEK to se-
lect automatically between the primal and the dual simplex optimizers. Hence, MOSEK tries to choose
the best optimizer for the given problem and the available solution. The same parameter can also be
used to force one of the variants.

Starting From an Existing Solution

When using the simplex optimizer it may be possible to reuse an existing solution and thereby reduce
the solution time significantly. When a simplex optimizer starts from an existing solution it is said to
perform a warm-start. If the user is solving a sequence of optimization problems by solving the problem,
making modifications, and solving again, MOSEK will warm-start automatically.

By default MOSEK uses presolve when performing a warm-start. If the optimizer only needs very few
iterations to find the optimal solution it may be better to turn off the presolve.
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Numerical Difficulties in the Simplex Optimizers

Though MOSEK is designed to minimize numerical instability, completely avoiding it is impossible
when working in finite precision. MOSEK treats a “numerically unexpected behavior” event inside the
optimizer as a set-back. The user can define how many set-backs the optimizer accepts; if that number
is exceeded, the optimization will be aborted. Set-backs are a way to escape long sequences where the
optimizer tries to recover from an unstable situation.

Examples of set-backs are: repeated singularities when factorizing the basis matrix, repeated loss of
feasibility, degeneracy problems (no progress in objective) and other events indicating numerical difficul-
ties. If the simplex optimizer encounters a lot of set-backs the problem is usually badly scaled; in such a
situation try to reformulate it into a better scaled problem. Then, if a lot of set-backs still occur, trying
one or more of the following suggestions may be worthwhile:

e Raise tolerances for allowed primal or dual feasibility: increase the value of
— dparam.basis_tol_z, and
— dparam.basis_tol_s.
e Raise or lower pivot tolerance: Change the dparam.simplez_abs_tol_piv parameter.
e Switch optimizer: Try another optimizer.
e Switch off crash: Set both iparam.sim_primal_crash and iparam.sim_dual_crash to 0.
e Experiment with other pricing strategies: Try different values for the parameters
— iparam.sim_primal_selection and
— iparam.sim_dual_selection.

e If you are using warm-starts, in rare cases switching off this feature may improve stability. This is
controlled by the iparam.sim_hotstart parameter.

e Increase maximum number of set-backs allowed controlled by iparam.sim_maz_num_setbacks.

e If the problem repeatedly becomes infeasible try switching off the special degeneracy handling. See
the parameter iparam.sim_degen for details.

The Simplex Log

Below is a typical log output from the simplex optimizer:

Optimizer - solved problem : the primal

Optimizer - Constraints T 667

Optimizer - Scalar variables 1 1424 conic : 0

Optimizer - hotstart : no

ITER DEGITER(%) PFEAS DFEAS POBJ DOBJ TIME,
. TOTTIME

0 0.00 1.43e+05 NA 6.5584140832e+03 NA 0.00,
o 0.02

1000 1.10 0.00e+00 NA 1.4588289726e+04 NA 0.13,
— 0.14

2000 0.75 0.00e+00 NA 7.3705564855e+03 NA 0.21,
- 0.22

3000 0.67 0.00e+00 NA 6.0509727712e+03 NA 0.29,
o 0.31

4000 0.52 0.00e+00 NA 5.5771203906e+03 NA 0.38,
— 0.39

4533 0.49 0.00e+00 NA 5.5018458883e+03 NA 0.42,
o 0.44

The first lines summarize the problem the optimizer is solving. This is followed by the iteration log, with
the following meaning:
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e ITER: Number of iterations.
e DEGITER(%): Ratio of degenerate iterations.

e PFEAS: Primal feasibility measure reported by the simplex optimizer. The numbers should be 0 if
the problem is primal feasible (when the primal variant is used).

e DFEAS: Dual feasibility measure reported by the simplex optimizer. The number should be 0 if the
problem is dual feasible (when the dual variant is used).

e POBJ: An estimate for the primal objective value (when the primal variant is used).
e DOBJ: An estimate for the dual objective value (when the dual variant is used).
e TIME: Time spent since this instance of the simplex optimizer was invoked (in seconds).

e TOTTIME: Time spent since optimization started (in seconds).

13.4 Conic Optimization

For conic optimization problems only an interior-point type optimizer is available.

13.4.1 The Interior-point optimizer

The homogeneous primal-dual problem

The interior-point optimizer is an implementation of the so-called homogeneous and self-dual algorithm.
For a detailed description of the algorithm, please see [ART03]. In order to keep our discussion simple
we will assume that MOSEK solves a conic optimization problem of the form:

T

minimize c'x
subject to Az = b, (13.6)
reK

where K is a convex cone. The corresponding dual problem is

maximize bT'y
subject to ATy +s = ¢, (13.7)
xeK*

where K* is the dual cone of K. See Sec. 12.2 for definitions.

Since it is not known beforehand whether problem (13.6) has an optimal solution, is primal infeasible or
is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason that
MOSEK solves the so-called homogeneous model

Ax —br = 0,
ATy+s—cr = 0,
Tz +bly—k = 0,
r e K (13.8)
s € K*
.k > 0

7

where y and s correspond to the dual variables in (13.6), and 7 and k are two additional scalar variables.
Note that the homogeneous model (13.8) always has a solution since

(‘T7 Y,8,T, KZ) = (07 07 07 07 0)
is a solution, although not a very interesting one. Any solution

(x*ay*as*uT*a"{'*)
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to the homogeneous model (13.8) satisfies
(@) Ts* + 7°k* = 0
i.e. complementarity. Observe that * € I and s* € I* implies
(x*)Ts* >0
and therefore
T'R* = 0.
since 7%, k* > 0. Hence, at least one of 7* and k* is zero.

First, assume that 7* > 0 and hence k* = 0. It follows that

AZ = b,

Ty s~
—TE T =,
/" e K,
s*/t* e K*.

This shows that f— is a primal optimal solution and (f—*, j—*) is a dual optimal solution; this is reported

as the optimal interior-point solution since

(LIZ‘,y7S): Fa?vﬁ

is a primal-dual optimal solution.

On other hand, if k* > 0 then

Ax* = 0,
ATy + 5% = 0,
—cTac* +bTy* — I{*,
¢ e K,
s* e K*.
This implies that at least one of
c'z* <0 (13.9)
or
"y >0 (13.10)

holds. If (13.9) is satisfied, then z* is a certificate of dual infeasibility, whereas if (13.10) holds then y*
is a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information required
for a solution to the original problem is obtained. A solution to the homogeneous model can be computed
using a primal-dual interior-point algorithm [And09].

Interior-point Termination Criterion

Since computations are performed in finite precision, and for efficiency reasons, it is not possible to solve
the homogeneous model exactly in general. Hence, an exact optimal solution or an exact infeasibility
certificate cannot be computed and a reasonable termination criterion has to be employed.

In every iteration k of the interior-point algorithm a trial solution

($k7yk, SkaTk> "ik)
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to the homogeneous model is generated, where
ot e K, s e K*, 7%, kF > 0.

Therefore, it is possible to compute the values:

. k
pI’f = arg min, {p| Af—k—b‘oo Spsp(1+\\b||oo)}7

. 2k k
ph = arg min, {p| ATY + 5 ch Spsd(1+”c||oo)}7

o0
AT & . . T,k T,k

Pt = arg min, {p | ((UE(TL); 7‘{%1» _ bifk |) < pegmax | 1, I‘W) } :
pgi = arg minp {P | ATyk +Sk||oo < peibTyk, bTyk > ()} and
phi = argmin, {p| ||AzF| < —peicTaF, Tab <0}.

Note €, 4,64 and €; are nonnegative user specified tolerances.

Optimal Case

Observe pf measures how far ¥ /7% is from being a good approximate primal feasible solution. Indeed
if p]; <1, then

J?k
[ -0 <0+ (13.11)

oo

This shows the violations in the primal equality constraints for the solution 2* /7% is small compared to
the size of b given ¢, is small.

Similarly, if p% < 1, then (y*, s*)/7* is an approximate dual feasible solution. If in addition p, < 1, then
the solution (z*,y*,s%)/7% is approximate optimal because the associated primal and dual objective
values are almost identical.

In other words if max(p];, ok, p’;) < 1, then
(2", 9", s*)
Tk

is an approximate optimal solution.

Dual Infeasibility Certificate

Next assume that p¥ <1 and hence

HAkaoo < —aichk and —cTzF >0
holds. Now in this case the problem is declared dual infeasible and z* is reported as a certificate of dual
infeasibility. The motivation for this stopping criterion is as follows. Let

. ar
7=y
and it is easy to verify that
|AZ|| <e;and 'z =1

which shows Z is an approximate certificate of dual infeasibility, where ¢; controls the quality of the
approximation.
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Primal Infeasiblity Certificate

Next assume that p’;i < 1 and hence
HATyk + skHoo < g;bTy* and bTy* > 0
holds. Now in this case the problem is declared primal infeasible and (y*, s*) is reported as a certificate
of primal infeasibility. The motivation for this stopping criterion is as follows. Let
k k

Y= Y and 5:=
Tk Tk

and it is easy to verify that
HATQ + EHOO <gand blg=1

which shows (y*,s*) is an approximate certificate of dual infeasibility, where &; controls the quality of
the approximation.

Adjusting optimality criteria and near optimality
It is possible to adjust the tolerances €, €4, €4 and €; using parameters; see table for details.

Table 13.2: Parameters employed in termination criterion

ToleranceParameter | name

Ep dparam.intpnt_co_tol_pfeas
&d dparam.intpnt_co_tol_dfeas
Eg dparam.intpnt_co_tol_rel_gap
&4 dparam.intpnt_co_tol_infeas

The default values of the termination tolerances are chosen such that for a majority of problems appearing
in practice it is not possible to achieve much better accuracy. Therefore, tightening the tolerances usually
is not worthwhile. However, an inspection of (13.11) reveals that the quality of the solution depends on
[1b]| . and ||c[|; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal and
dual feasibility at the same rate [And09/. This means that if the optimizer is stopped prematurely then
it is very unlikely that either the primal or dual solution is feasible. Another consequence is that in most
cases all the tolerances, €, €4, €4 and ¢;, have to be relaxed together to achieve an effect.

In some cases the interior-point method terminates having found a solution not too far from meeting the
optimality condition (13.11). A solution is defined as near optimal if scaling the termination tolerances
€p, €d; €g and g4 by the same factor €, € [1.0,400] makes the condition (13.11) satisfied. A near optimal
solution is therefore of lower quality but still potentially valuable. If for instance the solver stalls, i.e.
it can make no more significant progress towards the optimal solution, a near optimal solution could be
available and be good enough for the user. Near infeasibility certificates are defined similarly. The value
of €, can be adjusted with the parameter dparam. intpnt_co_tol_near_rel.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

The Interior-point Log

Below is a typical log output from the interior-point optimizer:

Optimizer - threads : 20
Optimizer - solved problem : the primal
Optimizer - Constraints 1
Optimizer - Cones 2
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Optimizer Scalar variables : 6 conic 6
Optimizer Semi-definite variables: O scalarized : 0

Factor setup time : 0.00 dense det. time : 0.00
Factor ML order time : 0.00 GP order time 0.00
Factor nonzeros before factor : 1 after factor 1

Factor dense dim. H¢ flops : 1.70e+01
ITE PFEAS DFEAS GFEAS PRSTATUS  POBJ DOBJ MU TIME
0 1.0e+00 2.9e-01 3.4e+00 0.00e+00 2.414213562e+00  0.000000000e+00 1.0e+00 0.01
1 2.7e-01 7.9e-02 2.2e+00 8.83e-01 6.969257574e-01  -9.685901771e-03 2.7e-01 0.01
2 6.5e-02 1.9e-02 1.2e+00 1.16e+00 7.606090061e-01  6.046141322e-01 6.5e-02 0.01
3 1.7e-03 b5.0e-04 2.2e-01 1.12e+00 7.084385672e-01  7.045122560e-01 1.7e-03 0.01
4 1.4e-08 4.2e-09 4.9e-08 1.00e+00 7.071067941e-01  7.071067599e-01 1.4e-08 0.01

The first line displays the number of threads used by the optimizer and the second line tells that the
optimizer chose to solve the dual problem rather than the primal problem. The next line displays the
problem dimensions as seen by the optimizer, and the Factor. .. lines show various statistics. This is
followed by the iteration log.

Using the same notation as in Sec. 13.4.1 the columns of the iteration log have the following meaning:
e ITE: Iteration index k.

e PFEAS: ||Az" — br"|| . The numbers in this column should converge monotonically towards zero
but may stall at low level due to rounding errors.

e DFEAS: ||ATy’C + sk —erk ||Oo . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

e GFEAS: | —cT'z% 4+ bTy* — k*| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

e PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to —1 if that is not the case.

e POBJ: ¢Tz¥ /7%, An estimate for the primal objective value.
e DOBJ: bT'y*/7%. An estimate for the dual objective value.

k)TSk-‘erFv'k

o MU: & =1 . The numbers in this column should always converge to zero.

e TIME: Time spent since the optimization started (in seconds).

13.5 Nonlinear Convex Optimization

13.5.1 The Interior-point Optimizer

For general convex optimization problems an interior-point type optimizer is available. The interior-point
optimizer is an implementation of the homogeneous and self-dual algorithm. For a detailed description
of the algorithm, please see [AY98/, [AY99].

The Convexity Requirement
Continuous nonlinear problems are required to be convex. For quadratic problems MOSEK tests this
requirement before optimizing. Specifying a non-convex problem results in an error message.
The following parameters are available to control the convexity check:
e iparam.check_convexity: Turn convexity check on/off.
e dparam.check_convexity_rel_tol: Tolerance for convexity check.

e iparam.log_check_convezity: Turn on more log information for debugging.
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The Differentiability Requirement

The nonlinear optimizer in MOSEK requires both first order and second order derivatives. This of
course implies care should be taken when solving problems involving non-differentiable functions.

For instance, the function

fla) =a?
is differentiable everywhere whereas the function

fl@)= vz

is only differentiable for z > 0 . In order to make sure that MOSEK evaluates the functions at points
where they are differentiable, the function domains must be defined by setting appropriate variable
bounds.

In general, if a variable is not ranged MOSEK will only evaluate that variable at points strictly within
the bounds. Hence, imposing the bound

x>0

in the case of 1/ is sufficient to guarantee that the function will only be evaluated in points where it is
differentiable.

However, if a function is defined on a closed range, specifying the variable bounds is not sufficient.
Consider the function

(13.12)

In this case the bounds
0<z<1

will not guarantee that MOSEK only evaluates the function for z strictly between 0 and 1 .
To force MOSEK to strictly satisfy both bounds on ranged variables set the parameter iparam.
tntpni_starting_point to startpointtype.satisfy_bounds.

For efficiency reasons it may be better to reformulate the problem than to force MOSEK to observe
ranged bounds strictly. For instance, (13.12) can be reformulated as follows

fl@) = 5+5
0 = 1-z—y
0 < =z
0 < .

Interior-point Termination Criteria

The parameters controlling when the general convex interior-point optimizer terminates are shown in
Table 13.3.

Table 13.3: Parameters employed in termination criteria.

Parameter name Purpose

dparam. intpnt_nl_tol_pfeas Controls primal feasibility

dparam. intpnt_nl_tol_dfeas Controls dual feasibility

dparam. intpnt_nl_tol_rel_gap | Controls relative gap

dparam. intpnt_tol_infeas Controls when the problem is declared infeasible
dparam.intpnt_nl_tol_mu_red Controls when the complementarity is reduced enough
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FOURTEEN

THE OPTIMIZER FOR MIXED-INTEGER PROBLEMS

A problem is a mixed-integer optimization problem when one or more of the variables are constrained
to be integer valued. Readers unfamiliar with integer optimization are recommended to consult some
relevant literature, e.g. the book [Wol98] by Wolsey.

14.1 The Mixed-integer Optimizer Overview

MOSEK can solve mixed-integer
e linear,
e quadratic and quadratically constrained, and
e conic quadratic

problems, at least as long as they do not contain both quadratic objective or constraints and conic
constraints at the same time. The mixed-integer optimizer is specialized for solving linear and conic op-
timization problems. Pure quadratic and quadratically constrained problems are automatically converted
to conic form.

By default the mixed-integer optimizer is run-to-run deterministic. This means that if a problem is
solved twice on the same computer with identical parameter settings and no time limit then the obtained
solutions will be identical. If a time limit is set then this may not be case since the time taken to solve
a problem is not deterministic. The mixed-integer optimizer is parallelized i.e. it can exploit multiple
cores during the optimization.

The solution process can be split into these phases:
1. Presolve: See Sec. 13.1.
2. Cut generation: Valid inequalities (cuts) are added to improve the lower bound.

3. Heuristic: Using heuristics the optimizer tries to guess a good feasible solution. Heuristics can
be controlled by the parameter iparam.mio_heuristic_level.

4. Search: The optimal solution is located by branching on integer variables.

14.2 Relaxations and bounds

It is important to understand that, in a worst-case scenario, the time required to solve integer opti-
mization problems grows exponentially with the size of the problem (solving mixed-integer problems is
NP-hard). For instance, a problem with n binary variables, may require time proportional to 2" . The
value of 2™ is huge even for moderate values of n.

In practice this implies that the focus should be on computing a near-optimal solution quickly rather
than on locating an optimal solution. Even if the problem is only solved approximately, it is important
to know how far the approximate solution is from an optimal one. In order to say something about the
quality of an approximate solution the concept of relazation is important.
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Consider for example a mixed-integer optimization problem

z* = minimize Tz
subject to Ax = b,
2> 0 (14.1)
x; € Z, vieJ.
It has the continuous relaxation

zZ = minimize Tz
subject to Az = b, (14.2)

z>0

obtained simply by ignoring the integrality restrictions. The relaxation is a continuous problem, and
therefore much faster to solve to optimality with a linear (or, in the general case, conic) optimizer.
We call the optimal value z the objective bound. The objective bound z normally increases during the
solution search process when the continuous relaxation is gradually refined.

Moreover, if  is any feasible solution to (14.1) and

T3

w
I
Q

then
2 <z <z

These two inequalities allow us to estimate the quality of the integer solution: it is no further away from
the optimum than Z — z in terms of the objective value. Whenever a mixed-integer problem is solved
MOSEK reports this lower bound so that the quality of the reported solution can be evaluated.

14.3 Termination Criterion

In general, it is time consuming to find an exact feasible and optimal solution to an integer optimization
problem, though in many practical cases it may be possible to find a sufficiently good solution. The issue
of terminating the mixed-integer optimizer is rather delicate and the user has numerous possibilities of
influencing it with various parameters. The mixed-integer optimizer employs a relaxed feasibility and
optimality criterion to determine when a satisfactory solution is located.

A candidate solution that is feasible for the continuous relaxation is said to be an integer feasible solution
if the criterion

min(xj — I_l‘jJ, ’—Jﬁj-‘ — l‘j) <6 Vj eJ

is satisfied, meaning that z; is at most ¢; from the nearest integer.

Whenever the integer optimizer locates an integer feasible solution it will check if the criterion
Z — 2 < max(ds, 63 max(10719 | 2]))

is satisfied. If this is the case, the integer optimizer terminates and reports the integer feasible solution
as an optimal solution. If an optimal solution cannot be located after the time specified by the parameter
dparam.mio_disable_term_time (in seconds), it may be advantageous to relax the termination criteria,
and they become replaced with

W

— 2z < max(dy, 65 max(10719|2)).

Any solution satisfying those will now be reported as near optimal and the solver will be terminated
(note that since this criterion depends on timing, the optimizer will not be run to run deterministic).

All the § tolerances discussed above can be adjusted using suitable parameters — see Table 14.1.
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Table 14.1: Tolerances for the mixed-integer optimizer.

Tolerance | Parameter name

o1 dparam.mio_tol_abs_relazx_int
O dparam.mio_tol_abs_gap

03 dparam.mio_tol_rel_gap

04 dparam.mio_near_tol_abs_gap
s dparam.mio_near_tol_rel_gap

In Table 14.2 some other common parameters affecting the integer optimizer termination criterion are
shown. Please note that if the effect of a parameter is delayed, the associated termination criterion is
applied only after some time, specified by the dparam.mio_disable_term_time parameter.

Table 14.2: Other parameters affecting the integer optimizer ter-
mination criterion.

Parameter name De- Explanation

layed
iparam.mio_maz_num_branches | Yes Maximum number of branches allowed.
iparam.mio_mazr_num_relaxs Yes Maximum number of relaxations allowed.
iparam. Yes Maximum number of feasible integer solutions allowed.
mto_maz_num_solutions

14.4 Speeding Up the Solution Process

As mentioned previously, in many cases it is not possible to find an optimal solution to an integer
optimization problem in a reasonable amount of time. Some suggestions to reduce the solution time are:

e Relax the termination criterion: In case the run time is not acceptable, the first thing to do is to
relax the termination criterion — see Sec. 14.3 for details.

e Specify a good initial solution: In many cases a good feasible solution is either known or easily
computed using problem-specific knowledge. If a good feasible solution is known, it is usually
worthwhile to use this as a starting point for the integer optimizer.

e Improve the formulation: A mixed-integer optimization problem may be impossible to solve in one
form and quite easy in another form. However, it is beyond the scope of this manual to discuss good
formulations for mixed-integer problems. For discussions on this topic see for example [TW0l98].

14.5 Understanding Solution Quality

To determine the quality of the solution one should check the following:

e The problem status and solution status returned by MOSEK, as well as constraint violations in
case of suboptimal solutions.

e The optimality gap defined as
¢ = |(objective value of feasible solution) — (objective bound)| = |Z — z|.

which measures how much the located solution can deviate from the optimal solution to
the problem. The optimality gap can be retrieved through the information item dinfitem.
mio_obj_abs_gap. Often it is more meaningful to look at the relative optimality gap normalized
against the magnitude of the solution.

|z — 2]

The relative optimality gap is available in dinfitem.mio_obj_rel_gap.
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14.6 The Optimizer Log

Below is a typical log output from the mixed-integer optimizer:

Presolved problem: 6573 variables, 35728 constraints, 101258 non-zeros
Presolved problem: O general integer, 4294 binary, 2279 continuous
Clique table size: 1636

BRANCHES RELAXS  ACT_NDS DEPTH BEST_INT_0BJ BEST_RELAX_OBJ REL_GAP(%) TIME
0 1 0 0 NA 1.8218819866e+07 NA 1.6
0 1 0 0 1.8331557950e+07 1.8218819866e+07 0.61 3.5
0 1 0 0 1.8300507546e+07 1.8218819866e+07 0.45 4.3
Cut generation started.

0 2 0 0 1.8300507546e+07 1.8218819866e+07 0.45 5.3
Cut generation terminated. Time = 1.43

0 3 0 0 1.8286893047e+07 1.8231580587e+07 0.30 7.5
15 18 1 0 1.8286893047e+07 1.8231580587e+07 0.30 10.5
31 34 1 0 1.8286893047e+07 1.8231580587e+07 0.30 11.1
51 54 1 0 1.8286893047e+07 1.8231580587e+07 0.30 11.6
91 94 1 0 1.8286893047e+07 1.8231580587e+07 0.30 12.4
171 174 1 0 1.8286893047e+07 1.8231580587e+07 0.30 14.3
331 334 1 0 1.8286893047e+07 1.8231580587e+07 0.30 17.9
[...1

1.825846762609e+07
1.823311032986e+07
: Not employed

Objective of best integer solution :
Best objective bound
Construct solution objective

Construct solution # roundings : 0
User objective cut value : 0
Number of cuts generated : 117
Number of Gomory cuts : 108
Number of CMIR cuts : 9
Number of branches 1 4425
Number of relaxations solved 1 4410

Number of interior point iterations: 25
Number of simplex iteratioms 1 221131

The first lines contain a summary of the problem as seen by the optimizer. This is followed by the
iteration log. The columns have the following meaning:

e BRANCHES: Number of branches generated.

e RELAXS: Number of relaxations solved.

e ACT_NDS: Number of active branch bound nodes.

e DEPTH: Depth of the recently solved node.

e BEST_INT_0BJ: The best integer objective value, Z.

e BEST_RELAX_0BJ: The best objective bound, z.

e REL_GAP(%): Relative optimality gap, 100% - €yel

e TIME: Time (in seconds) from the start of optimization.

Following that a summary of the optimization process is printed.
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ADDITIONAL FEATURES

In this section we describe additional features and tools which enable more detailed analysis of optimiza-
tion problems with MOSEK.

15.1 Problem Analyzer

The problem analyzer prints a detailed survey of the
e linear constraints and objective
e quadratic constraints
e conic constraints
e variables
of the model.

In the initial stages of model formulation the problem analyzer may be used as a quick way of verifying
that the model has been built or imported correctly. In later stages it can help revealing special structures
within the model that may be used to tune the optimizer’s performance or to identify the causes of
numerical difficulties.

The problem analyzer is run using Task.analyzeproblem. It produces output similar to the one below
(this is the problem survey of the aflow30a problem from the MIPLIB 2003 collection).

Analyzing the problem

Constraints Bounds Variables
upper bd: 421 ranged : all cont: 421
fixed : 58 bin : 421

Objective, min cx

range: min |c|: 0.00000 min |c|>0: 11.0000 max |c|: 500.000
distrib: lcl vars
0 421
(11, 100) 150
[100, 500] 271

Constraint matrix A has
479 rows (constraints)
842 columns (variables)
2091 (0.518449%) nonzero entries (coefficients)

Row nonzeros, A_i
range: min A_i: 2 (0.23753%) max A_i: 34 (4.038%)
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distrib: Ai rows
2 421
[8, 15] 20
[16, 31] 30
[32, 34] 8
Column nonzeros, Alj

range: min Alj: 2 (0.417537%)

distrib: Alj cols
2 435
3 407

A nonzeros, A(ij)
range: min |[A(ij)|: 1.00000

distrib: A(ij) coeffs
[1, 10) 1670
[10, 100] 421

rows
87.89
4.18
6.26
1.67

max Alj:

cols’
51.66
48.34

acch
87.89
92.07
98.33
100.00

3 (0.626305%)
acch
51.66
100.00

max |A(ij)|: 100.000

Constraint bounds,
distrib: bl
0

[1, 10]

Variable bounds, 1lb <= x <= ub

distrib: bl
0

[1, 10)

[10, 100]

1b <= Ax <= ub

1bs

58

1bs
842

ubs
421
58

ubs

421
421

The survey is divided into six different sections, each described below. To keep the presentation short
with focus on key elements. The analyzer generally attempts to display information on issues relevant
for the current model only: e.g., if the model does not have any conic constraints (this is the case in the

example above) or any integer variables, those parts of the analysis will not appear.

General Characteristics

The first part of the survey consists of a brief summary of the model’s linear and quadratic constraints
(indexed by i) and variables (indexed by j). The summary is divided into three subsections:

Constraints

e upper bd The number of upper bounded constraints, 27;01 a;jr; < ug

lower bd The number of lower bounded constraints, {§ < Z;L;Ol Qi T

n—1

[ ]
e ranged The number of ranged constraints, [ < Z;:Ol ai;z; < ug
e fixed The number of fixed constraints, If = > 7" a;;z; = uf
e free The number of free constraints
Bounds

e upper bd The number of upper bounded variables, z; < u
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lower bd The number of lower bounded variables, Ij < x;

ranged The number of ranged variables, I < z; < u;”

e fixed The number of fixed variables, [y = x; = uj

free The number of free variables

Variables

e cont The number of continuous variables, z; € R
e bin The number of binary variables, z; € {0,1}
e int The number of general integer variables, z; € Z

Only constraints, bounds and domains actually in the model will be reported on; if all entities in a section
turn out to be of the same kind, the number will be replaced by all for brevity.

Objective

The second part of the survey focuses on (the linear part of) the objective, summarizing the optimization
sense and the coefficients’ absolute value range and distribution. The number of 0 (zero) coefficients is
singled out (if any such variables are in the problem).

The range is displayed using three terms:
e min |c| The minimum absolute value among all coeffecients
e min |c|>0 The minimum absolute value among the nonzero coefficients
e max |c| The maximum absolute value among the coefficients
If some of these extrema turn out to be equal, the display is shortened accordingly:
e If min |c| is greater than zero, the min |c|>0 term is obsolete and will not be displayed

e If only one or two different coefficients occur this will be displayed using all and an explicit listing
of the coefficients

The absolute value distribution is displayed as a table summarizing the numbers by orders of magnitude
(with a ratio of 10). Again, the number of variables with a coefficient of 0 (if any) is singled out. Each line
of the table is headed by an interval (half-open intervals including their lower bounds), and is followed
by the number of variables with their objective coefficient in this interval. Intervals with no elements are
skipped.

Linear Constraints

The third part of the survey displays information on the nonzero coefficients of the linear constraint
matrix.

Following a brief summary of the matrix dimensions and the number of nonzero coefficients in total,
three sections provide further details on how the nonzero coefficients are distributed by row-wise count
(A_i), by column-wise count (A|j), and by absolute value (|A(ij) |). Each section is headed by a brief
display of the distribution’s range (min and max), and for the row/column-wise counts the corresponding
densities are displayed too (in parentheses).

The distribution tables single out three particularly interesting counts: zero, one, and two nonzeros per
row/column; the remaining row/column nonzeros are displayed by orders of magnitude (ratio 2). For
each interval the relative and accumulated relative counts are also displayed.

Note that constraints may have both linear and quadratic terms, but the empty rows and columns
reported in this part of the survey relate to the linear terms only. If empty rows and/or columns
are found in the linear constraint matrix, the problem is analyzed further in order to determine if the
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corresponding constraints have any quadratic terms or the corresponding variables are used in conic or
quadratic constraints.

The distribution of the absolute values, |A(ij) |, is displayed just as for the objective coefficients de-
scribed above.

Constraint and Variable Bounds

The fourth part of the survey displays distributions for the absolute values of the finite lower and upper
bounds for both constraints and variables. The number of bounds at 0 is singled out and, otherwise,
displayed by orders of magnitude (with a ratio of 10).

Quadratic Constraints

The fifth part of the survey displays distributions for the nonzero elements in the gradient of the quadratic
constraints, i.e. the nonzero row counts for the column vectors Qx . The table is similar to the tables
for the linear constraints’ nonzero row and column counts described in the survey’s third part.

Quadratic constraints may also have a linear part, but that will be included in the linear constraints
survey; this means that if a problem has one or more pure quadratic constraints, part three of the survey
will report the number of linear constraint rows with 0 (zero) nonzeros. Likewise, variables that appear
in quadratic terms only will be reported as empty columns (0 nonzeros) in the linear constraint report.

Conic Constraints

The last part of the survey summarizes the model’s conic constraints. For each of the two types of cones,
quadratic and rotated quadratic, the total number of cones are reported, and the distribution of the
cones’ dimensions are displayed using intervals. Cones dimensions of 2, 3, and 4 are singled out.

15.2 Analyzing Infeasible Problems

When developing and implementing a new optimization model, the first attempts will often be either
infeasible, due to specification of inconsistent constraints, or unbounded, if important constraints have
been left out.

In this section we will

e go over an example demonstrating how to locate infeasible constraints using the MOSEK infeasi-
bility report tool,

e discuss in more general terms which properties may cause infeasibilities, and

e present the more formal theory of infeasible and unbounded problems.

15.2.1 Example: Primal Infeasibility
A problem is said to be primal infeasible if no solution exists that satisfies all the constraints of the
problem.

As an example of a primal infeasible problem consider the problem of minimizing the cost of transporta-
tion between a number of production plants and stores: Each plant produces a fixed number of goods,
and each store has a fixed demand that must be met. Supply, demand and cost of transportation per
unit are given in Fig. 15.1.

The problem represented in Fig. 15.1 is infeasible, since the total demand

2300 = 1100 + 200 + 500 + 500
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Supply Demand
1100
200
200
1000
500
1000
500

Fig. 15.1: Supply, demand and cost of transportation.

exceeds the total supply
2200 = 200 + 1000 + 1000

If we denote the number of transported goods from plant ¢ to store j by x;; , the problem can be
formulated as the LP:

minimize 11 + 2x12 + Sxo3 4+ 2xoy + w31 + 2733 + X34
subject to T11 + T2 S 200,
Taz  + T2 < 1000,
r31 + w33 + w34 < 1000,
11 + x31 = 1100,
T12 = 200,
Toz + T33 = 500,
T4 + T34 = 500,

(15.1)

Solving problem (15.1) using MOSEK will result in a solution, a solution status and a problem status.
Among the log output from the execution of MOSEK on the above problem are the lines:

Basic solution
Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER

The first line indicates that the problem status is primal infeasible. The second line says that a certificate
of the infeasibility was found. The certificate is returned in place of the solution to the problem.

15.2.2 Locating the cause of Primal Infeasibility

Usually a primal infeasible problem status is caused by a mistake in formulating the problem and therefore
the question arises: What is the cause of the infeasible status? When trying to answer this question, it
is often advantageous to follow these steps:

e Remove the objective function. This does not change the infeasibility status but simplifies the
problem, eliminating any possibility of issues related to the objective function.

e Consider whether your problem has some necessary conditions for feasibility and examine if these
are satisfied, e.g. total supply should be greater than or equal to total demand.
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e Verify that coefficients and bounds are reasonably sized in your problem.

If the problem is still primal infeasible, some of the constraints must be relaxed or removed completely.
The MOSEK infeasibility report (Sec. 15.2.4) may assist you in finding the constraints causing the
infeasibility.

Possible ways of relaxing your problem nclude:
e Increasing (decreasing) upper (lower) bounds on variables and constraints.
e Removing suspected constraints from the problem.

Returning to the transportation example, we discover that removing the fifth constraint
12 = 200

makes the problem feasible.

15.2.3 Locating the Cause of Dual Infeasibility

A problem may also be dual infeasible. In this case the primal problem is often unbounded, meaning that
feasbile solutions exists such that the objective tends towards infinity. An example of a dual infeasible
and primal unbounded problem is:

minimize T
subject to x1 < 5.

To resolve a dual infeasibility the primal problem must be made more restricted by
e Adding upper or lower bounds on variables or constraints.
e Removing variables.

e Changing the objective.

A cautionary note

The problem

minimize 0

subject to 0< 2,
$j§$j+1, jzla"'7n_17
Ty, < —1

is clearly infeasible. Moreover, if any one of the constraints is dropped, then the problem becomes
feasible.

This illustrates the worst case scenario where all, or at least a significant portion of the constraints
are involved in causing infeasibility. Hence, it may not always be easy or possible to pinpoint a few
constraints responsible for infeasibility.

15.2.4 The Infeasibility Report

MOSEK includes functionality for diagnosing the cause of a primal or a dual infeasibility. It can be
turned on by setting the iparam. infeas_report_auto to onoffkey.on. This causes MOSEK to print
a report on variables and constraints involved in the infeasibility.

The <param.infeas_report_level parameter controls the amount of information presented in the
infeasibility report. The default value is 1.
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Example: Primal Infeasibility
We will keep working with the problem (15.1) written in LP format:

Listing 15.1: The code for problem (15.1).

\
\ An example of an infeasible linear problem.
\
minimize
obj: + 1 x11 + 2 x12
+ 5 x23 + 2 x24
+1x31 +2x33 +1 x34

st
sO: + x11 + x12 <= 200
sl: + x23 + x24 <= 1000
s2: + x31 + x33 + x34 <= 1000
dl: + x11 + x31 = 1100
d2: + x12 = 200
d3: + x23 + x33 = 500
d4: + x24 + x34 = 500

bounds

end

Example: Dual Infeasibility
The following problem is dual to (15.1) and therefore it is dual infeasible.

Listing 15.2: The dual of problem (15.1).

maximize + 200 y1 + 1000 y2 + 1000 y3 + 1100 y4 + 200 y5 + 500 y6 + 500 y7

subject to
x11: yl+y4 < 1
x12: yl+yb < 2
x23: y2+y6 < 5
x24: y2+y7 < 2
x31: y3+y4 < 1
x33: y3+y6 < 2
x34: y3+y7 < 1

bounds
-inf <= y1 < 0
-inf <= y2 <0
-inf <= y3 < 0
y4 free
y5 free
y6 free
y7 free

end

This can be verified by proving that
(yla e 797) = <_17 01 _17 17 1) 070)

is a certificate of dual infeasibility (see Sec. 12.1.2) as we can see from this report:

MOSEK DUAL INFEASIBILITY REPORT.
Problem status: The problem is dual infeasible

The following constraints are involved in the infeasibility.

15.2. Analyzing Infeasible Problems

145




MOSEK Optimizer API for Java, Release 8.1.0.76

Index Name Activity Objective Lower bound Upper bound
5 x33 -1.000000e+00 NONE 2.000000e+00
6 x34 -1.000000e+00 NONE 1.000000e+00

The following variables are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper bound
0 yi -1.000000e+00 2.000000e+02 NONE 0.000000e+00
2 y3 -1.000000e+00 1.000000e+03 NONE 0.000000e+00
3 y4 1.000000e+00 1.100000e+03 NONE NONE

4 y5 1.000000e+00 2.000000e+02 NONE NONE

Interior-point solution summary
Problem status : DUAL_INFEASIBLE
Solution status : DUAL_INFEASIBLE_CER
Primal. obj: 1.0000000000e+02 nrm: 1e+00 Viol.

con: 0e+00 var: 0e+00

Let y* denote the reported primal solution. MOSEK states
e that the problem is dual infeasible,
e that the reported solution is a certificate of dual infeasibility, and
e that the infeasibility measure for y* is approximately zero.

Since the original objective was maximization, we have that ¢'y* > 0. See Sec. 12.1.2 for how to interpret
the parameter values in the infeasibility report for a linear program. We see that the variables y1, y3,
y4, y5 and the constraints x33 and x34 contribute to infeasibility with non-zero values in the Activity
column.

One possible strategy to fir the infeasibility is to modify the problem so that the certificate of infeasibility
becomes invalid. In this case we could do one the following things:

e Add a lower bound on y3. This will directly invalidate the certificate of dual infeasibility.

e Increase the object coefficient of y3. Changing the coefficients sufficiently will invalidate the in-
equality ¢”y* > 0 and thus the certificate.

e Add lower bounds on x11 or x31. This will directly invalidate the certificate of infeasibility.

Please note that modifying the problem to invalidate the reported certificate does not imply that the
problem becomes dual feasible — the reason for infeasibility may simply move, resulting a problem that
is still infeasible, but for a different reason.

More often, the reported certificate can be used to give a hint about errors or inconsistencies in the
model that produced the problem.

15.2.5 Theory Concerning Infeasible Problems

This section discusses the theory of infeasibility certificates and how MOSEK uses a certificate to
produce an infeasibility report. In general, MOSEK solves the problem

minimize T+l
subject to ¢ < Ax < uc, (15.2)
r < T < u®
where the corresponding dual problem is
maximize (19)Ts8 — (ue)TsS,
HEY st — () sy + o
subject to ATy + s7 — % = ¢ (15.3)
—y + sj — s, = 0,

C C x x
sy, 85,87,85 <0.
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We use the convension that for any bound that is not finite, the corresponding dual variable is fixed at
zero (and thus will have no influence on the dual problem). For example

l;v = —00 = (Sf)j =0

15.2.6 The Certificate of Primal Infeasibility

A certificate of primal infeasibility is any solution to the homogenized dual problem
maximize  (19)7sf — (u)TsS
()T s — (u?)Ts
subject to ATy + sF — ¢ = 0,
—y + sj — s, = 0,
87,585,587, 85 < 0.

with a positive objective value. That is, (s{*, sS*, s7*, s%*) is a certificate of primal infeasibility if

(ZC)TSf* _ (uc)TSZ* + (lz)Tszc* _ (ux)TSi* >0
and

ATy 4 s7* — 5% = 0,

u

—y + s — 55 = 0,

u

Cx Ok LTk LTk
s, s, st so < 0.

The well-known Farkas Lemma tells us that (15.2) is infeasible if and only if a certificate of primal
infeasibility exists.

Let (s§*, s0*, s7*, sT*) be a certificate of primal infeasibility then
(s7")i > 0((sy")i > 0)

implies that the lower (upper) bound on the 4 th constraint is important for the infeasibility. Furthermore,
(s7%); > 0((sE°); > 0)

implies that the lower (upper) bound on the j th variable is important for the infeasibility.

15.2.7 The certificate of dual infeasibility

A certificate of dual infeasibility is any solution to the problem

minimize - c'x
subject to ¢
ia:

INIA
8

IAIA
NI
8 -

with negative objective value, where we use the definitions

. 0, l§ > —o0, e 0, uf <oo,
©" 1 —oo, otherwise, [’ " | oo, otherwise,

and

= 0 7 > —o0 _ 0 u? < 00
[ — ? 7 I [ — 9 7 9
i { —o00, otherwise, } and 4 : { 00, otherwise. }

Stated differently, a certificate of dual infeasibility is any x* such that

~ e < 0,
l© < Azr < af, (15.4)
o< g < ®
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The well-known Farkas Lemma tells us that (15.3) is infeasible if and only if a certificate of dual infea-
sibility exists.

Note that if * is a certificate of dual infeasibility then for any j such that
z; <0,

variable j is involved in the dual infeasibility.

15.3 Sensitivity Analysis

Given an optimization problem it is often useful to obtain information about how the optimal objective
value changes when the problem parameters are perturbed. E.g, assume that a bound represents the
capacity of a machine. Now, it may be possible to expand the capacity for a certain cost and hence it is
worthwhile knowing what the value of additional capacity is. This is precisely the type of questions the
sensitivity analysis deals with.

Analyzing how the optimal objective value changes when the problem data is changed is called sensitivity
analysis.

References

The book [Chu83] discusses the classical sensitivity analysis in Chapter 10 whereas the book [RTV97/
presents a modern introduction to sensitivity analysis. Finally, it is recommended to read the short
paper [Wal00] to avoid some of the pitfalls associated with sensitivity analysis.

Warning: Currently, sensitivity analysis is only available for continuous linear optimization prob-
lems. Moreover, MOSEK can only deal with perturbations of bounds and objective function coeffi-
cients.

15.3.1 Sensitivity Analysis for Linear Problems

The Optimal Objective Value Function

Assume that we are given the problem

z(I¢us " u” ¢) = minimize
subject to [¢
lCE

:1;0
8 8

ue, (15.5)

INIA
8
IAIA
N

8

and we want to know how the optimal objective value changes as [{ is perturbed. To answer this question
we define the perturbed problem for [ as follows

fie(B) = minimize '
subject to °+ fe; < Az < uf,
I < z< Ut
where e; is the i-th column of the identity matrix. The function
fie(B) (15.6)

shows the optimal objective value as a function of 8. Please note that a change in § corresponds to a
perturbation in I§ and hence (15.6) shows the optimal objective value as a function of varying If with
the other bounds fixed.

It is possible to prove that the function (15.6) is a piecewise linear and convex function, i.e. its graph
may look like in Fig. 15.2 and Fig. 15.3.
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f(B) A

A
\J

B1 0 B, B

Fig. 15.2: 8 =0 is in the interior of linearity interval.

fCB) A

A
\J

B1 0 |32 B

Fig. 15.3: 8 =0 is a breakpoint.
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Clearly, if the function fie(8) does not change much when 3 is changed, then we can conclude that the
optimal objective value is insensitive to changes in [{. Therefore, we are interested in the rate of change
in fie(3) for small changes in 3 — specifically the gradient

fl/;r (0)7

which is called the shadow price related to [§. The shadow price specifies how the objective value changes
for small changes of 5 around zero. Moreover, we are interested in the linearity interval

B € [B1,B2]
for which
fl/g(ﬂ) = fl/g(0)~

Since fe is not a smooth function f{- may not be defined at 0, as illustrated in Fig. 15.3. In this case
we can define a left and a right shadow price and a left and a right linearity interval.

The function fje considered only changes in If. We can define similar functions for the remaining
parameters of the z defined in (15.5) as well:

fie (B) 2(1° + Be, us, I u®,¢), i=1,...,m,
fue(B) = 2(1°u°+ Bei, 1%, u”,c), i=1,....m,
fl;”(ﬁ) = Z(lcvucalz"—ﬂejvuzvc), j:1a~~-7n;
fur(B) = =2(1°us 1%, u” + Bej,c), j=1,...,n,
fe;(B) = =z2(%us 1% u” c+ Pej), j=1,...,n.

Given these definitions it should be clear how linearity intervals and shadow prices are defined for the
parameters u; etc.

Equality Constraints

In MOSEK a constraint can be specified as either an equality constraint or a ranged constraint. If some
constraint ef is an equality constraint, we define the optimal value function for this constraint as

fee(B) = 2(I° + Bei, u® + Bei, 1", u”, c)

Thus for an equality constraint the upper and the lower bounds (which are equal) are perturbed simul-
taneously. Therefore, MOSEK will handle sensitivity analysis differently for a ranged constraint with
¢ = u§ and for an equality constraint.

The Basis Type Sensitivity Analysis

The classical sensitivity analysis discussed in most textbooks about linear optimization, e.g. [Chv83],
is based on an optimal basic solution or, equivalently, on an optimal basis. This method may produce
misleading results [RTV97] but is computationally cheap. Therefore, and for historical reasons, this
method is available in MOSEK.

We will now briefly discuss the basis type sensitivity analysis. Given an optimal basic solution which
provides a partition of variables into basic and non-basic variables, the basis type sensitivity analysis
computes the linearity interval [31, f2] so that the basis remains optimal for the perturbed problem. A
shadow price associated with the linearity interval is also computed. However, it is well-known that
an optimal basic solution may not be unique and therefore the result depends on the optimal basic
solution employed in the sensitivity analysis. This implies that the computed interval is only a subset
of the largest interval for which the shadow price is constant. Furthermore, the optimal objective value
function might have a breakpoint for § = 0. In this case the basis type sensitivity method will only
provide a subset of either the left or the right linearity interval.

In summary, the basis type sensitivity analysis is computationally cheap but does not provide complete
information. Hence, the results of the basis type sensitivity analysis should be used with care.
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The Optimal Partition Type Sensitivity Analysis

Another method for computing the complete linearity interval is called the optimal partition type sen-
sitivity analysis. The main drawback of the optimal partition type sensitivity analysis is that it is
computationally expensive compared to the basis type analysis. This type of sensitivity analysis is
currently provided as an experimental feature in MOSEK.

Given the optimal primal and dual solutions to (15.5), i.e. * and ((s{)*, (s5)*, (s¥)*, (s2)*) the optimal
objective value is given by

The left and right shadow prices o1 and o for [§ are given by this pair of optimization problems:

01 = minimize el's¢
subject to AT (8§ — s8) + s7 — s = ¢
(17 (s5) — () (s5) + (1) (s7) = ()T (s2) = =",
sy, 85,857,852 0
and
02 = maximize el's¢
subject to AT (8§ — s8) + s7 — s = ¢
)" (s7) = (o) () + I7) T (s7) = (™) T (s) = 2%,

C C C T
sy, 85, 87,85 > 0.

These two optimization problems make it easy to interpret the shadow Indeed, if

((sP)*, (s5)*, (s7)*, (s%)*) is an arbitrary optimal solution then

price.

(s1); € [o1,02].

Next, the linearity interval 31, 82] for I is computed by solving the two optimization problems

/1 = minimize 8
subject to ¢+ Be; < Ax <
e —of =
" < x <
and
B2 maximize 153
subject to ¢+ Be; < Ax <
cTe—o9f =
" < x <

The linearity intervals and shadow prices for u

C T
79 l]7

and uj are computed similarly to I.

The left and right shadow prices for c¢; denoted o1 and o2 respectively are computed as follows:

T

01 = minimize €
subject to [+ Be; < Ax < uf,
T = z¥,
" < z < u"
and
0o = maximize eij
subject to [°+ fBe; < Ax < uf
e = 2%,
[* < < wu”.

Once again the above two optimization problems make it easy to interpret the shadow prices. Indeed, if
z* is an arbitrary primal optimal solution, then

(E; € [01,0’2}.
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The linearity interval [, 2] for a ¢; is computed as follows:

f1 = minimize B
subject to AT (s — ) + s — s = ¢+ fe;,
()T (sF) = ()T (s5) + (1) (s7) — ()T (s5) =B < 2
s7,85,57,80 >0
and
B2 = maximize B
subject to AT (s§ — 85) + sF — % = c+ Pej,
()T (sF) = ()T (s5) + (1) (s7) — (u)T(s5) =028 < 2

C C C T
sy, 80,587,802 0.

Example: Sensitivity Analysis

As an example we will use the following transportation problem. Consider the problem of minimizing the
transportation cost between a number of production plants and stores. Each plant supplies a number of
goods and each store has a given demand that must be met. Supply, demand and cost of transportation
per unit are shown in Fig. 15.4.

Supply Demand

800
400
100
1200 ‘ DN
500
1000
500

Fig. 15.4: Supply, demand and cost of transportation.

If we denote the number of transported goods from location ¢ to location j by x;;, problem can be
formulated as the linear optimization problem of minimizing

15811 + 25812 + 55823 + 2$24 + 1$31 + 2:633 + 13334

subject to

400,
1200,
1000,
800,
100,
500,
500,
0.

11 + 12
T2z + T4
T31 + x33 + T34
Z11 + z3n
T12

I IAIAIA

(15.7)

T2z + Z33
Toa + T34
Z11, Z12, x23, Z24, Z31, 33, T34

vVl

The sensitivity parameters are shown in Table 15.1 and Table 15.2 for the basis type analysis and in
Table 15.3 and Table 15.4 for the optimal partition type analysis.
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Table 15.1: Ranges and shadow prices related to bounds on con-
straints and variables: results for the basis type sensitivity analysis.

Table 15.2: Ranges and shadow prices related to bounds on con-
straints and variables: results for the optimal partition type sensi-

Con. | B1 B2 01 02

1 —300.00 0.00 3.00 | 3.00
2 —700.00 +o00 0.00 | 0.00
3 —500.00 0.00 3.00 | 3.00
4 —0.00 500.00 | 4.00 | 4.00
5 —0.00 300.00 | 5.00 | 5.00
6 —0.00 700.00 | 5.00 | 5.00
7 —500.00 700.00 | 2.00 | 2.00
Var. | 1 B2 01 02

T11 —00 300.00 | 0.00 | 0.00
T12 —00 100.00 | 0.00 | 0.00
To3 —00 0.00 0.00 | 0.00
Loy —00 500.00 | 0.00 | 0.00
T3] —00 500.00 | 0.00 | 0.00
33 —00 500.00 | 0.00 | 0.00
T34 —0.000000 | 500.00 | 2.00 | 2.00

tivity analysis.

Con. | 3 B2 01 02

1 —300.00 | 500.00 | 3.00 1.00
2 —700.00 | 400 —0.00 | —0.00
3 —500.00 | 500.00 | 3.00 1.00
4 —500.00 | 500.00 | 2.00 4.00
) —100.00 | 300.00 | 3.00 5.00
6 —500.00 | 700.00 | 3.00 5.00
7 —500.00 | 700.00 | 2.00 2.00
Var. | 3 B2 01 02
T11 —00 300.00 | 0.00 0.00
T12 —00 100.00 | 0.00 0.00
T23 —00 500.00 | 0.00 2.00
Toy —00 500.00 | 0.00 0.00
T31 —00 500.00 | 0.00 0.00
T33 —00 500.00 | 0.00 0.00
T34 —00 500.00 | 0.00 2.00
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Table 15.3: Ranges and shadow prices related to the objective co-
efficients: results for the basis type sensitivity analysis.

Var. | B B2 01 02

c1 —00 3.00 | 300.00 | 300.00
Ca —00 00 100.00 | 100.00
c3 —2.00 | o0 0.00 0.00
cq —00 2.00 | 500.00 | 500.00
cs —3.00 | oo 500.00 | 500.00
Cg —00 2.00 | 500.00 | 500.00
cy —2.00 | oo 0.00 0.00

Table 15.4: Ranges and shadow prices related to the objective co-
efficients: results for the optimal partition type sensitivity analysis.

Var. | B B2 o1 o2

c1 —00 3.00 | 300.00 | 300.00
Co —00 00 100.00 | 100.00
c3 —2.00 | o© 0.00 0.00
cq —00 2.00 | 500.00 | 500.00
cs —3.00 | oo 500.00 | 500.00
Cg —00 2.00 | 500.00 | 500.00
c7 —2.00 | © 0.00 0.00

Examining the results from the optimal partition type sensitivity analysis we see that for constraint
number 1 we have 01 = 3, 09 = 1 and 7 = —300, 2 = 500. Therefore, we have a left linearity interval
of [-300,0] and a right interval of [0,500]. The corresponding left and right shadow prices are 3 and 1
respectively. This implies that if the upper bound on constraint 1 increases by

B €0, /1] = [0,500]
then the optimal objective value will decrease by the value
o983 =1p.
Correspondingly, if the upper bound on constraint 1 is decreased by
B € [0,300]
then the optimal objective value will increase by the value

Ulﬁ = Sﬁ

15.3.2 Sensitivity Analysis with MOSEK

MOSEK provides the functions Task.primalsensitivity and Task.dualsensitivity for performing
sensitivity analysis. The code in Listing 15.3 gives an example of its use.
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Listing 15.3: Example of sensitivity analysis with the MOSEK Optimizer API for Java.

package com.mosek.example;
import mosek.x*;

public class sensitivity {
public static void main (String[] args) {

// Since the wvalue infinity is never used, we define

// 'infinity' symbolic purposes only
double
infinity = O;

try (Env env new Env();
Task task = new Task(env, 0, 0)) {
mosek.boundkey[] bkc = {
mosek.boundkey.up, mosek.
mosek.boundkey.up, mosek.
mosek.boundkey.fx, mosek.
mosek.boundkey.fx
3
mosek.boundkey[] bkx
mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey.lo
};
int[] ptrb = {0, 2, 4, 6, 8, 10, 12};
int[] ptre = {2, 4, 6, 8, 10, 12, 14};
int[] sub = {0, 3, 0, 4, 1, 5, 1, 6, 2,
double[] blc = { -infinity, -infinity,
-infinity, 800, 100, 500,
};

boundkey.
boundkey.
boundkey.

up,
fx,
fx,

= {

mosek.
mosek.
mosek.

lo,
lo,
lo,

boundkey.
boundkey.
boundkey.

35

double[] buc = {400, 1200, 1000, 800, 100,
double[] ¢ = {1.0, 2.0, 5.0, 2.0, 1.0, 2.
double[] blx = {0.0, 0.0, 0.0, 0.0, 0.0, O.
double[] bux = {infinity, infinity,
infinity, infinity,
infinity, infinity,
infinity
};
double[] val = {1.0, 1.0, 1.0, 1.0, 1.0, 1.
1.0, 1.0, 1.0, 1.0, 1.0, 1
};
int numcon = 7; /* Number of constraints.
int numvar = 7; /* Number of wvariables.
int NUMANZ = 14; /* Number of non-zeros in
// Directs the log task stream to the user

// method task_msg_obj.print
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()

2, 5, 2, 6};
500
500, 500};
0, 1.0%};
0, 0.0%};
0, 1.0,
.0, 1.0
*/
*/
4. */
specified

{ public void stream(String msg) { System.out.print(msg); }});

task.inputdata(numcon, numvar,
C,
0.0,
ptrb,
ptre,
sub,
val,
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bkc,
blc,
buc,
bkx,
blx,
bux) ;

/* A mazimization problem */
task.putobjsense (mosek.objsense.minimize) ;

task.optimize();

/* Analyze upper bound on cl and the equality constraint on cf */
int subil[] = {0, 3};
mosek.mark marki[] = {mosek.mark.up, mosek.mark.up};

/* Analyze lower bound on the variables z12 and 31 */
int subj[] = {1, 4};
mosek.mark markj[] = {mosek.mark.lo, mosek.mark.lo};

double[] leftpricei = new double[2];
double[] rightpricei = new double[2];
double[] leftrangei = new double[2];
double[] rightrangei = new double[2];
double[] leftpricej = new double[2];
double[] rightpricej = new double[2];
double[] leftrangej = new double[2];
double[] rightrangej = new double[2];

task.primalsensitivity( subi,
marki,
subj,
markj,
leftpricei,
rightpricei,
leftrangei,
rightrangei,
leftpricej,
rightpricej,
leftrangej,
rightrangej);

System.out.println("Results from sensitivity analysis on bounds:\n");

System.out.println("For constraints:\n");
for (int i = 0; 1 < 2; ++i)

System.out.print("leftprice = " + leftpriceili] +

" rightprice = " + rightpriceil[i] +
" leftrange = " + leftrangeili] +
" rightrange = " + rightrangeil[i] + "\n");
System.out.print ("For variables:\n");
for (int i = 0; i < 2; ++i)
System.out.print("leftprice = " + leftpricejl[i] +
" rightprice = " + rightpricej[i] +
" leftrange = " + leftrangej[i] +
" rightrange = " + rightrangej[i] + "\n");

double[] leftprice = new double[2];
double[] rightprice = new double[2];
double[] leftrange = new double[2];
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double[] rightrange = new double[2];
int subc[] = {2, 5};

task.dualsensitivity( subc,
leftprice,
rightprice,
leftrange,
rightrange

)

System.out.println(
"Results from sensitivity analysis on objective coefficients:"

)5
for (int i = 0; 1 < 2; ++i)
System.out.print("leftprice = " + leftpricel[i] +
" rightprice = " + rightprice[i] +
" leftrange = " + leftrange[i] +
" rightrange = " + rightrange[i] + "\n");

} catch (mosek.Exception e)
/* Catch both mosek.Error and mosek.Warning */

System.out.println ("An error or warning was encountered");
System.out.println (e.getMessage ());
throw e;
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CHAPTER

SIXTEEN

APl REFERENCE

This section contains the complete reference of the MOSEK Optimizer API for Java. It is organized as

follows:

e General API conventions.

e Methods:
— Class Env (The MOSEK environment)
— Class Task (An optimization task)
— Browse by topic

e Optimizer parameters:
— Double, Integer, String
— Full list
— Browse by topic

e Optimizer information items:
— Double, Integer, Long

e Optimizer response codes

o FEnumerations

o Fuxceptions

o User-defined class types

e Nonlinear API (SCopt)

16.1 API Conventions

16.1.1 Function arguments

Naming Convention

In the definition of the MOSEK Optimizer API for Java a consistent naming convention has been used.
This implies that whenever for example numcon is an argument in a function definition it indicates the
number of constraints. In Table 16.1 the variable names used to specify the problem parameters are

listed.
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Table 16.1: Naming conventions used in the MOSEK Optimizer
API for Java.

API name | API type Dimension Related problem parameter
numcon int m
numvar int n
numcone int t
numgonz int 4
qgosubi int [] numgonz 95
qgosubj int[] numgonz 95

qoval double[] | numgonz 95

c double[] | numvar c;j

cfix double ot
numqcnz int qu
gcsubk int[] qcnz qu
qcsubi int[] qcnz qlkJ
qcsubj int [] qcnz qu

qcval double[] | gcnz qu

aptrb int [] numvar aij

aptre int [] numvar aij

asub int[] aptre [numvar-1] | a;;

aval double[] | aptre[numvar-1] | a;;

bkc int[] numcon 7 and uf
blc double[] | numcon Z

buc double[] | numcon ug,

bkx int[] numvar ¥ and uf
blx double[] | numvar i

bux double[] | numvar uy

The relation between the variable names and the problem parameters is as follows:

e The quadratic terms in the objective: gosubi[tmosubj ) = qoval[t], t=0,...,numgonz — 1.

e The linear terms in the objective : ¢; = c[j], 7 =0,...,numvar —1

e The fixed term in the objective : ¢/ = cfix.

e The quadratic terms in the constraints: q:zzzsf[[:]],qcsubj [y = dcval [t], t=0,...,numgcnz — 1

e The linear terms in the constraints: Gasuwft),; = avallt], ¢ = ptrb[j],...,ptre[j] — 1, j =
0,...,numvar — 1

Passing arguments by reference

An argument described as T by reference indicates that the function interprets its given argument as a
reference to a variable of type T. This usually means that the argument is used to output or update a
value of type T. For example, suppose we have a function documented as

’void foo (..., int[] nzc, ...)

e nzc (int by reference) — The number of nonzero elements in the matrix. (output)

Then it could be called as follows.

int nzc = new int[1];
foo (..., nzc, ...)
System.out.println("The number of nonzero elements: ", nzc[0])
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Information about input/output arguments

The following are purely informational tags which indicate how MOSEK treats a specific function
argument.

e (input) An input argument. It is used to input data to MOSEK.

e (output) An output argument. It can be a user-preallocated data structure, a reference, a string
buffer etc. where MOSEK will output some data.

e (input/output) An input/output argument. MOSEK will read the data and overwrite it with
new /updated information.

16.1.2 Bounds

The bounds on the constraints and variables are specified using the variables bkc, blc, and buc. The
components of the integer array bkc specify the bound type according to Table 16.2

Table 16.2: Symbolic key for variable and constraint bounds.

Symbolic constant | Lower bound Upper bound

boundkey. fz

finite

identical to the lower bound

boundkey. fr

minus infinity

plus infinity

boundkey. lo

finite

plus infinity

boundkey.ra

finite

finite

boundkey. up

minus infinity

finite

For instance bkc[2]=boundkey. lo means that —oo < I§ and u§ = oco. Even if a variable or constraint
is bounded only from below, e.g. x > 0, both bounds are inputted or extracted; the irrelevant value is
ignored.

Finally, the numerical values of the bounds are given by

L =Dblclk], k=0,...,numcon — 1

uj, =buclk], k=0,...,numcon — 1.

The bounds on the variables are specified using the variables bkx, blx, and bux in the same way. The
numerical values for the lower bounds on the variables are given by
I =blx[j], j=0,...,numvar — 1.

uj =bux[j], j=0,...,numvar — 1.

16.1.3 Vector Formats

Three different vector formats are used in the MOSEK API:

Full (dense) vector

This is simply an array where the first element corresponds to the first item, the second element to the
second item etc. For example to get the linear coefficients of the objective in task with numvar variables,
one would write

double[] ¢ = new double[numvar] ;
task.getc(c);
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Vector slice

A vector slice is a range of values from first up to and not including last entry in the vector, i.e.
for the set of indices i such that first <= i < last. For example, to get the bounds associated with
constrains 2 through 9 (both inclusive) one would write

double[] upper_bound = new double[8];
double[] lower_bound = new double[8];
mosek.boundkey bound_key[]
= new mosek.boundkey[8];
task.getboundslice (mosek.accmode.con, 2,10,
bound_key,lower_bound,upper_bound);

Sparse vector

A sparse vector is given as an array of indexes and an array of values. The indexes need not be ordered.
For example, to input a set of bounds associated with constraints number 1, 6, 3, and 9, one might write

int[] bound_index = {1, 6, 3, 9 };
mosek.boundkey[] bound_key
= { mosek.boundkey.fr,
mosek.boundkey.lo,
mosek.boundkey.up,
mosek.boundkey.fx };
double[] lower_bound = { 0.0, -10.0, 0.0, 5.0 };
double[] upper_bound = { 0.0, 0.0, 6.0, 5.0 };
task.putboundlist (mosek.accmode.con, bound_index,
bound_key,lower_bound,upper_bound);

16.1.4 Matrix Formats

The coefficient matrices in a problem are inputted and extracted in a sparse format. That means only
the nonzero entries are listed.

Unordered Triplets

In unordered triplet format each entry is defined as a row index, a column index and a coefficient. For
example, to input the A matrix coeflicients for a;2 = 1.1,a33 = 4.3 , and a5 4 = 0.2 , one would write
as follows:

int[] subi = { 1, 3, 513
int[] subj = { 2, 3, 413
double[] cof = { 1.1, 4.3, 0.2 };

task.putaijlist(subi,subj,cof);

Please note that in some cases (like Task.putaijlist) only the specified indexes are modified — all
other are unchanged. In other cases (such as Task.putqconk) the triplet format is used to modify all
entries — entries that are not specified are set to 0.

Column or Row Ordered Sparse Matrix

In a sparse matrix format only the non-zero entries of the matrix are stored. MOSEK uses a sparse
packed matrix format ordered either by columns or rows. Here we describe the column-wise format. The
row-wise format is based on the same principle.
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Column ordered sparse format

A sparse matrix in column ordered format is essentially a list of all non-zero entries read column by
column from left to right and from top to bottom within each column. The exact representation uses
four arrays:

e asub: Array of size equal to the number of nonzeros. List of row indexes.

e aval: Array of size equal to the number of nonzeros. List of non-zero entries of A ordered by
columns.

e ptrb: Array of size numcol, where ptrb[j] is the position of the first value/index in aval/ asub
for the j-th column.

e ptre: Array of size numcol, where ptre[j] is the position of the last value/index plus one in aval
/ asub for the j-th column.

With this representation the values of a matrix A with numcol columns are assigned using:
Qasun[k],; = avallk] for j=0,...,numcol —1, k = ptrb[j],...,ptre[j] — 1.

As an example consider the matrix

1.1 1.3 14
2.2 2.5
A=131 3.4 (16.1)

4.4

which can be represented in the column ordered sparse matrix format as

ptrb = [0,2,3,5,7],

ptre = [2,3,5,7,8],

asub = [0,2,1,0,3,0,2,1],

aval = [1.1,3.1,2.2,1.3,4.4,1.4,3.4,2.5].

Fig. 16.1 illustrates how the matrix A in (16.1) is represented in column ordered sparse matrix format.

ptrb 0 2 3 5 e o o

ptre zl(s 5 7
| \

asub | ¢ 2 1 0 3 0 1 2 o o

aval |11 |31 22 13 faa Jra |34 |25 . . e

Column 0 Column 1

Fig. 16.1: The matrix A (16.1) represented in column ordered packed sparse matrix format.

Column ordered sparse format with nonzeros

Note that nzc[j] := ptrel[jl-ptrb[j] is exactly the number of nonzero elements in the j-th column
of A. In some functions a sparse matrix will be represented using the equivalent dataset asub, aval,
ptrb, nzc. The matrix A (16.1) would now be represented as:

ptrb = [0,2,3,5,7],

nzce = [2,1,2,2,1],

asub = [0,2,1,0,3,0,2,1],

aval = [1.1,3.1,2.2,1.3,4.4,1.4,3.4,2.5|.
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Row ordered sparse matrix

The matrix A (16.1) can also be represented in the row ordered sparse matrix format as:

ptrb = [073a5,7]a

ptre = [3,5,7,8],

asub = [0,2,3,1,4,0,3,2],

aval = [L1.1,1.3,1.4,2.2,2.5,3.1,3.4,4.4].

9

16.2 Functions grouped by topic

Basis matrix

e Infrequent: Task.basiscond, Task.initbasissolve, Task.solvewithbasis

Bound data

e Task.putconbound — Changes the bound for one constraint.

e Task.putconboundlist — Changes the bounds of a list of constraints.

e Task.putconboundslice — Changes the bounds for a slice of the constraints.
e Task.putvarbound — Changes the bound for one variable.

e Task.putvarboundlist — Changes the bounds of a list of variables.

o Infrequent: Task.chgconbound, Task.chgvarbound, Task.getconbound, Task.
getconboundslice, Task.getvarbound, Task.getvarboundslice

e Deprecated: Fask-—ehgbound, TFask-getbound, TFask-getboundsltice, Task—putbound,
Task-putboundtist, Fask-putboundstice

Conic constraint data

e Task.appendcone — Appends a new conic constraint to the problem.
e Task.putcone — Replaces a conic constraint.
e Task.removecones — Removes a number of conic constraints from the problem.

o Infrequent: Task.appendconeseq, Task.appendconesseq, Task.getcone, Task.getconeinfo,
Task.getnumcone, Task.getnumconemem

Data file

e Task.readsolution — Reads a solution from a file.
e Task.writedata — Writes problem data to a file.
o Task.writesolution — Write a solution to a file.

e Infrequent: Task.readdata, Task.readdataformat, Task.readparamfile, Task.
writejsonsol, Task.writeparamfile
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Environment management

Env.licensecleanup — Stops all threads and delete all handles used by the license system.
Env.putlicensedebug — Enables debug information for the license system.
Env.putlicensepath — Set the path to the license file.

Env.putlicensewait — Control whether mosek should wait for an available license if no license is
available.

Infrequent: Env.checkinall, Env.checkinlicense, Env.checkoutlicense, Env.
putlicensecode

Infeasibility diagnostics

Task.getinfeasiblesubproblem — Obtains an infeasible subproblem.

Task.primalrepair — Repairs a primal infeasible optimization problem by adjusting the bounds
on the constraints and variables.

Linear algebra

Env.azpy — Computes vector addition and multiplication by a scalar.
Env.computesparsecholesky — Computes a Cholesky factorization of sparse matrix.
Env.dot — Computes the inner product of two vectors.

Env.gemm — Performs a dense matrix multiplication.

Env.gemv — Computes dense matrix times a dense vector product.

Env.potrf — Computes a Cholesky factorization of a dense matrix.
Env.sparsetriangularsolvedense — Solves a sparse triangular system of linear equations.
Env.syeig — Computes all eigenvalues of a symmetric dense matrix.

Env. syevd — Computes all the eigenvalues and eigenvectors of a symmetric dense matrix, and thus
its eigenvalue decomposition.

Env.syrk — Performs a rank-k update of a symmetric matrix.

Linear constraint data

Task.appendcons — Appends a number of constraints to the optimization task.
Task. getnumcon — Obtains the number of constraints.
Task.putconboundslice — Changes the bounds for a slice of the constraints.
Task.removecons — Removes a number of constraints.

Infrequent: Task.getmaznumcon

Logging

Task. linkfiletostream — Directs all output from a task stream to a file.

Infrequent: Env.linkfiletostream
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Memory

o Infrequent: Task.checkmem, Task.getmemusage

Naming

e Task.putbarvarname — Sets the name of a semidefinite variable.
e Task.putconename — Sets the name of a cone.

e Task.putconname — Sets the name of a constraint.

e Task.putobjname — Assigns a new name to the objective.

e Task.puttaskname — Assigns a new name to the task.

e Task.putvarname — Sets the name of a variable.

o Infrequent: Task.getbarvarname, Task.getbarvarnameindexr, Task.getbarvarnamelen, Task.
getconename, Task.getconenameindex, Task.getconenamelen, Task.getconname, Task.
getconnameindex, Task.getconnamelen, Task.getobjname, Task.getobjnamelen, Task.
gettaskname, Task.gettasknamelen, Task.getvarname, Task.getvarnameindex, Task.
getvarnamelen

Objective data

e Task.putcfiz — Replaces the fixed term in the objective.
e Task.putobjsense — Sets the objective sense.

o Infrequent: Task.getobjsense

Optimization

e Task.optimize — Optimizes the problem.

Optimizer statistics

e Task.getdouinf — Obtains a double information item.
e Task.getintinf — Obtains an integer information item.
e Task.getlintinf — Obtains a long integer information item.

o Infrequent: Task.getinfindex, Task.getinfmaz, Task.getinfname

Parameter management

o Infrequent: Task.getnumparam, Task.getparammaz, Task.getparamname, Task.isdouparname,
Task.isintparname, Task.isstrparname, Task.setdefaults

Parameters (get)

o Infrequent: Task.getdouparam, Task.getintparam, Task.getstrparam, Task.getstrparamlen
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Parameters (put)

e Task.putdouparam — Sets a double parameter.
e Task.putintparam — Sets an integer parameter.

e Task.putstrparam — Sets a string parameter.

o Infrequent: Task.putnadouparam, Task.putnaintparam, Task.putnastrparam, Task.putparam

Scalar variable data

e Task.appendvars — Appends a number of variables to the optimization task.

e Task.getnumvar — Obtains the number of variables.

e Task.putacol — Replaces all elements in one column of the linear constraint matrix.

e Task.putaij — Changes a single value in the linear coefficient matrix.

e Task.putarow — Replaces all elements in one row of the linear constraint matrix.
e Task.putcj — Modifies one linear coefficient in the objective.

e Task.putqcon — Replaces all quadratic terms in constraints.

e Task.putqconk — Replaces all quadratic terms in a single constraint.

e Task.putqobj — Replaces all quadratic terms in the objective.

e Task.putqobjij — Replaces one coefficient in the quadratic term in the objective.
e Task.putvarboundslice — Changes the bounds for a slice of the variables.

e Task.putvartype — Sets the variable type of one variable.

e Task.removevars — Removes a number of variables.

e Infrequent: Task.commitchanges, Task.getacol, Task.getacolnumnz,
getacolslicetrip, Task.getazy, Task.getarow, Task.getarownumnz,
getarowslicetrip, Task.getc, Task.getcfixz, Task.getcj, Task.getcslice,
getlenbarvarjy, Task.getmaznumanz, Task.getmaznumqnz, Task.getmaznumvar,
getnumanz, Task. getnumanz6/, Task.getnumintvar, Task.getnumgconknz,

Task.
Task.
Task.
Task.
Task.

getnumgobjnz, Task.getnumsymmat, Task.getqconk, Task.getqobj, Task.getqobjij,
Task.getsparsesymmat, Task.getsymmatinfo, Task.getvartype, Task.getvartypelist,

Task.putacollist, Task.putacolslice, Task.putaijlist, Task.putarowlist,

Task.

putarowslice, Task.putclist, Task.putcslice, Task.putmaznumanz, Task.putmaznumqnz,

Task.putmaznumvar, Task.putvartypelist

o Deprecated: Task—getastice
Sensitivity analysis

e Task.dualsensitivity — Performs sensitivity analysis on objective coefficients.
e Task.primalsensitivity — Perform sensitivity analysis on bounds.

e Task.senstitivityreport — Creates a sensitivity report.

Solution (get)

e Task.getbarsjy — Obtains the dual solution for a semidefinite variable.

e Task.getbarzy — Obtains the primal solution for a semidefinite variable.
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e Task.getskcslice — Obtains the status keys for a slice of the constraints.

e Task.getskxslice — Obtains the status keys for a slice of the scalar variables.
e Task.getslcslice — Obtains a slice of the slc vector for a solution.

e Task.getslzslice — Obtains a slice of the slx vector for a solution.

e Task.getsnzslice — Obtains a slice of the snx vector for a solution.

e Task.getsucslice — Obtains a slice of the suc vector for a solution.

e Task.getsuzslice — Obtains a slice of the sux vector for a solution.

e Task.getzcslice — Obtains a slice of the xc vector for a solution.

e Task.getzzslice — Obtains a slice of the xx vector for a solution.

e Task.getyslice — Obtains a slice of the y vector for a solution.

o Infrequent: Task.getreducedcosts, Task.getskc, Task.getskz, Task.getslc, Task.getslz,
Task.getsnz, Task.getsolution, Task.getsolutionslice, Task.getsuc, Task.getsuzx,
Task.getzc, Task.getzz, Task.gety

o Deprecated: Task-—getsotutiont

Solution (put)

e Task.putbarsj — Sets the dual solution for a semidefinite variable.

e Task.putbarzjy — Sets the primal solution for a semidefinite variable.
e Task.putskcslice — Sets the status keys for a slice of the constraints.
e Task.putskzslice — Sets the status keys for a slice of the variables.
e Task.putslcslice — Sets a slice of the slc vector for a solution.

e Task.putslzslice — Sets a slice of the slx vector for a solution.

e Task.putsnzslice — Sets a slice of the snx vector for a solution.

e Task.putsolution — Inserts a solution.

e Task.putsucslice — Sets a slice of the suc vector for a solution.

e Task.putsuzslice — Sets a slice of the sux vector for a solution.

e Task.putzcslice — Sets a slice of the xc vector for a solution.

e Task.putzzslice — Obtains a slice of the xx vector for a solution.

e Task.putyslice — Sets a slice of the y vector for a solution.

o Infrequent: Task.putskc, Task.putskz, Task.putslc, Task.putslz, Task.putsnz, Task.
putsuc, Task.putsux, Task.putzc, Task.putzz, Task.puty

o Deprecated: Task—putsotutiont

Solution information

e Task.getdualobj — Computes the dual objective value associated with the solution.

e Task.getdualsolutionnorms — Compute norms of the dual solution.

e Task.getdviolbarvar — Computes the violation of dual solution for a set of semidefinite variables.
e Task.getdviolcon — Computes the violation of a dual solution associated with a set of constraints.

e Task.getdviolcones — Computes the violation of a solution for set of dual conic constraints.
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Task.getdviolvar — Computes the violation of a dual solution associated with a set of scalar
variables.

Task.getprimalobs — Computes the primal objective value for the desired solution.
Task.getprimalsolutionnorms — Compute norms of the primal solution.
Task.getprosta — Obtains the problem status.

Task.getpviolbarvar — Computes the violation of a primal solution for a list of semidefinite
variables.

Task.getpuiolcon — Computes the violation of a primal solution associated to a constraint.
Task.getpviolcones — Computes the violation of a solution for set of conic constraints.
Task.getpviolvar — Computes the violation of a primal solution for a list of scalar variables.
Task.getsolsta — Obtains the solution status.

Task.getsolutioninfo — Obtains information about of a solution.

Task.solutiondef — Checks whether a solution is defined.

Symmetric matrix variable data

Task

Task

Task. appendbarvars — Appends semidefinite variables to the problem.

Task.appendsparsesymmat — Appends a general sparse symmetric matrix to the storage of sym-
metric matrices.

Task.putbaraij — Inputs an element of barA.
Task.putbarcj — Changes one element in barc.

Infrequent: Task.getbarablocktriplet, Task.getbaraidz, Task.getbaraidziyj,
Task.getbaratdzinfo, Task.getbarasparstty, Task.getbarcblocktriplet, Task.
getbarcidz, Task.getbarcidzinfo, Task.getbarcidzy, Task.getbarcsparsity,
Task.getdimbarvarj, Task.getmaznumbarvar, Task.getnumbarablocktiriplets, Task.
getnumbaranz, Task.getnumbarcblocktiriplets, Task.getnumbarcnz, Task.getnumbarvar,
Task.putbarablocktriplet, Task.putbarcblocktriplet, Task.putmaznumbarvar, Task.
removebarvars

diagnostics

Task.checkconvezity — Checks if a quadratic optimization problem is convex.
Task.getprobtype — Obtains the problem type.
Task.onesolutionsummary — Prints a short summary of a specified solution.

Task.optimizersummary — Prints a short summary with optimizer statistics from last optimiza-
tion.

Task.solutionsummary — Prints a short summary of the current solutions.
Task.updatesolutioninfo — Update the information items related to the solution.

Infrequent: Task.analyzenames, Task.analyzeproblem, Task.analyzesolution, Env.
echointro, Task.readsummary

management

Infrequent: Task.deletesolution, Env.getcodedesc, Task.getmaznumcone, Task.inputdata,
Task.putmaznumcon, Task.putmaznumcone
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Other

e Task.asyncgetresult — Request a response from a remote job.

o Task.asyncoptimize — Offload the optimization task to a solver server.

e Task.asyncpoll — Requests information about the status of the remote job.
e Task.asyncstop — Request that the job identified by the token is terminated.
e Task.dispose — Free the underlying native allocation.

e Env.dispose — Free the underlying native allocation.

e Env.getversion — Obtains MOSEK version information.

e Task.optimizermt — Offload the optimization task to a solver server.

e Task.putsolutionysi — Inputs the dual variable of a solution.

e Task.readtask — Load task data from a file.

e Task.restizetask — Resizes an optimization task.

e Task.set_InfoCallback — Receive callbacks with solver status and information during optimiza-
tion.

e Task.set_ItgSolutionCallback — Receive callbacks with solution updates from the mixed-integer
optimizer.

e Task.set_Progress — Receive callbacks about current status of the solver during optimization.
e Task.set_Stream — Directs all output from a task stream to a callback object.

e Envu.set_Stream — Directs all output from an environment stream to a callback object.

e Task.toconic — In-place reformulation of a QCQP to a COP

e Task.unset_Progress — Deactivates all user callback functions.

e Task.writetask — Write a complete binary dump of the task data.

e Infrequent: Task.getapiecenumnz, Task.strtoconetype, Task.strtosk

o Deprecated: Task—getasticenumns

16.3 Class Env

mosek.Env

The MOSEK global environment.

Env.Env

’Env()

’ Env(String dbgfile)

Constructor of a new environment.

Parameters dbgfile (String) — File where the memory debugging log is written. (in-
put)
Env.axpy
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void axpy
(int n,
double alpha,
double[] x,
double[] y)

Adds ax to y, i.e. performs the update
Yy :i=oar+y.

Note that the result is stored overwriting y.
Parameters
e n (int) — Length of the vectors. (input)
e alpha (double) — The scalar that multiplies z. (input)
e x (double[]) — The x vector. (input)
e y (double[]) — The y vector. (input/output)
Groups Linear algebra

Env.checkinall

void checkinall ()

Check in all unused license features to the license token server.
Groups Environment management

Env.checkinlicense

void checkinlicense (mosek.feature feature)

Check in a license feature to the license server. By default all licenses consumed by functions using
a single environment are kept checked out for the lifetime of the MOSEK environment. This
function checks in a given license feature back to the license server immediately.

If the given license feature is not checked out at all, or it is in use by a call to Task.optimize,
calling this function has no effect.

Please note that returning a license to the license server incurs a small overhead, so frequent calls
to this function should be avoided.

Parameters feature (mosek. feature) — Feature to check in to the license system.
(input)
Groups Environment management

Env.checkoutlicense

void checkoutlicense (mosek.feature feature)

Checks out a license feature from the license server. Normally the required license features will be
automatically checked out the first time they are needed by the function Task.optimize. This
function can be used to check out one or more features ahead of time.

The feature will remain checked out until the environment is deleted or the function Env.
checkinlicense is called.

If a given feature is already checked out when this function is called, the call has no effect.

16.3. Class Env 171



MOSEK Optimizer API for Java, Release 8.1.0.76

Parameters feature (mosek. feature) — Feature to check out from the license system.
(input)
Groups Environment management

Env.computesparsecholesky

void computesparsecholesky

(int multithread,
int ordermethod,
double tolsingular,
int[] anzc,
long[] aptrc,
int[] asubc,
double[] avalc,
int[1[] perm,
double[][] diag,
int[][] 1nzc,
long[][] lptrc,
long[] lensubnval,
int[][] 1subc,
double[][] 1lvalc)

The function computes a Cholesky factorization of a sparse positive semidefinite matrix. Sparsity
is exploited during the computations to reduce the amount of space and work required. Both the
input and output matrices are represented using the sparse format.

To be precise, given a symmetric matrix A € R™*" the function computes a nonsingular lower
triangular matrix L, a diagonal matrix D and a permutation matrix P such that

LLT — D= PAPT.

If ordermethod is zero then reordering heuristics are not employed and P is the identity.

If a pivot during the computation of the Cholesky factorization is less than
—p-max((PAPT);;,1.0)
then the matrix is declared negative semidefinite. On the hand if a pivot is smaller than
p- rnax((PAPT)jj7 1.0),
then D;; is increased from zero to
p-max((PAPT);;,1.0).
Therefore, if A is sufficiently positive definite then D will be the zero matrix. Here p is set equal
to value of tolsingular.

Parameters

e multithread (int) — If nonzero then the function may exploit multiple threads.
(input)

e ordermethod (int) — If nonzero, then a sparsity preserving ordering will be
employed. (input)

e tolsingular (double) — A positive parameter controlling when a pivot is de-

clared zero. (input)

e anzc (int[]) — anzc[j] is the number of nonzeros in the j-th column of A.
(input)

e aptrc (longl]) — aptrc[j] is a pointer to the first element in column j of A.
(input)
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asubc (int [1) — Row indexes for each column stored in increasing order. (input)

avalc (double[]) — The value corresponding to row indexed stored in asubc.
(input)

perm (int[]1 by reference) — Permutation array used to specify the permutation
matrix P computed by the function. (output)

diag (double[] by reference) — The diagonal elements of matrix D. (output)

lnzc (int[] by reference) — 1nzc[j] is the number of non zero elements in
column j of L. (output)

lptrc (long[] by reference) — lptrc[j] is a pointer to the first row index and
value in column j of L. (output)

lensubnval (long by reference) — Number of elements in lsubc and lvalc.
(output)

1subc (int[]1 by reference) — Row indexes for each column stored in increasing
order. (output)

lvalc (double[] by reference) — The values corresponding to row indexed stored
in 1subc. (output)

Groups Linear algebra

Env.dispose

void dispose()

Free the underlying native allocation.

Env.dot

void dot
(int n,
double[] x,
double[] vy,
double[] xty)

Computes the inner product of two vectors x,y of length n > 0, i.e

n
-y = szyz
i=1

Note that if n = 0, then the result of the operation is 0.

Parameters

e n (int) — Length of the vectors. (input)
e x (double[]) — The x vector. (input)
e y (double[]) — The y vector. (input)

e xty (double by reference) — The result of the inner product between x and y.

(output)

Groups Linear algebra

Env.echointro

void echointro (int longver)

Prints an intro to message stream.
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Parameters longver (int) — If non-zero, then the intro is slightly longer. (input)
Groups Task diagnostics

Env.gemm

void gemm
(mosek.transpose transa,
mosek.transpose transb,
int m,
int n,
int k,
double alpha,
double[] a,
double[] b,
double beta,
double[] c)

Performs a matrix multiplication plus addition of dense matrices. Given A, B and C' of compatible
dimensions, this function computes

C := aop(A)op(B) + BC

where «, 8 are two scalar values. The function op(X) denotes X if transX is transpose.no, or
X7 if set to transpose.yes. The matrix C' has m rows and n columns, and the other matrices
must have compatible dimensions.

The result of this operation is stored in C.
Parameters

e transa (mosek.transpose) — Indicates whether the matrix A must be trans-
posed. (input)

e transb (mosek.transpose) — Indicates whether the matrix B must be trans-
posed. (input)

e m (int) — Indicates the number of rows of matrix C. (input)
e n (int) — Indicates the number of columns of matrix C. (input)

e k (int) — Specifies the common dimension along which op(A) and op(B) are
multiplied. For example, if neither A nor B are transposed, then this is the
number of columns in A and also the number of rows in B. (input)

e alpha (double) — A scalar value multiplying the result of the matrix multiplica-
tion. (input)

e a (double[]) — The pointer to the array storing matrix A in a column-major
format. (input)

e b (double[]) — The pointer to the array storing matrix B in a column-major
format. (input)

e beta (double) — A scalar value that multiplies C'. (input)

e ¢ (double[]) — The pointer to the array storing matrix C in a column-major
format. (input/output)

Groups Linear algebra

Env.gemv

void gemv
(mosek.transpose transa,
int m,
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int n,
double alpha,
double[] a,
double[] x,
double beta,
double[] y)

Computes the multiplication of a scaled dense matrix times a dense vector, plus a scaled dense
vector. Precisely, if trans is transpose.no then the update is

y = aAzr + Py,
and if trans is transpose.yes then
y = aAlz + By,

where «, 8 are scalar values and A is a matrix with m rows and n columns.
Note that the result is stored overwriting y.
Parameters

e transa (mosek.transpose) — Indicates whether the matrix A must be trans-
posed. (input)

m (int) — Specifies the number of rows of the matrix A. (input)

n (int) — Specifies the number of columns of the matrix A. (input)

alpha (double) — A scalar value multiplying the matrix A. (input)

a (double[l) — A pointer to the array storing matrix A in a column-major
format. (input)

x (double[]) — A pointer to the array storing the vector x. (input)

beta (double) — A scalar value multiplying the vector y. (input)
e y (double[]) — A pointer to the array storing the vector y. (input/output)
Groups Linear algebra

Env.getcodedesc

static void getcodedesc
(mosek.rescode code,
StringBuffer symname,
StringBuffer str)

Obtains a short description of the meaning of the response code given by code.
Parameters
e code (mosek.rescode) — A valid MOSEK response code. (input)
e symname (StringBuffer) — Symbolic name corresponding to code. (output)
e str (StringBuffer) — Obtains a short description of a response code. (output)
Groups Task management

Env.getversion

static void getversion
(int[] major,
int[] minor,
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int[] build,
int[] revision)

Obtains MOSEK version information.
Parameters
e major (int by reference) — Major version number. (output)
e minor (int by reference) — Minor version number. (output)
e build (int by reference) — Build number. (output)
e revision (int by reference) — Revision number. (output)

Env.licensecleanup

static void licensecleanup ()

Stops all threads and deletes all handles used by the license system. If this function is called, it
must be called as the last MOSEK API call. No other MOSEK API calls are valid after this.

Groups Environment management

Env.linkfiletostream

void linkfiletostream
(mosek.streamtype whichstream,
String filename,
int append)

Sends all output from the stream defined by whichstream to the file given by filename.
Parameters
e whichstream (mosek.streamtype) — Index of the stream. (input)
e filename (String) — A valid file name. (input)

e append (int) — If this argument is 0 the file will be overwritten, otherwise it will
be appended to. (input)

Groups Logging

Env.potrf

void potrf
(mosek.uplo uplo,
int n,
double[] a)

Computes a Cholesky factorization of a real symmetric positive definite dense matrix.

Parameters

e uplo (mosek.uplo) — Indicates whether the upper or lower triangular part of
the matrix is stored. (input)

e n (int) — Dimension of the symmetric matrix. (input)

e a (double[]) — A symmetric matrix stored in column-major order. Only the
lower or the upper triangular part is used, accordingly with the uplo parameter.
It will contain the result on exit. (input/output)

Groups Linear algebra
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Env.putlicensecode

void putlicensecode (int[] code)

Input a runtime license code.
Parameters code (int[]) — A runtime license code. (input)
Groups Environment management

Env.putlicensedebug

void putlicensedebug (int licdebug)

Enables debug information for the license system. If 1icdebug is non-zero, then MOSEK will
print debug info regarding the license checkout.

Parameters licdebug (int) — Whether license checkout debug info should be printed.
(input)
Groups Environment management

Env.putlicensepath

’void putlicensepath (String licensepath)

Set the path to the license file.

Parameters licensepath (String) — A path specifying where to search for the license.
(input)
Groups Environment management

Env.putlicensewait

void putlicensewait (int licwait)

Control whether MOSEK should wait for an available license if no license is available. If licwait
is non-zero, then MOSEK will wait for 1icwait-1 milliseconds between each check for an available
license.

Parameters licwait (int) — Whether MOSEK should wait for a license if no license
is available. (input)

Groups FEnvironment management

Env.set_Stream

void set_Stream
(mosek.streamtype whichstream,
mosek.Stream callback)

Directs all output from an environment stream to a callback object.

Can for example be called as:

env.set_Stream(mosek.streamtype.log, new Stream() { public void stream(String s) { System.
—out.print(s); } } );

Parameters

e whichstream (streamtype) — Index of the stream. (input)
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e callback (Stream) — The callback object. (input)

Env.sparsetriangularsolvedense

void sparsetriangularsolvedense
(mosek.transpose transposed,
int[] 1nzc,
long[] 1lptrc,
int[] 1subc,
double[] 1lvalc,
double[] b)

The function solves a triangular system of the form
Lz =10
or
LTz =b
where L is a sparse lower triangular nonsingular matrix. This implies in particular that diagonals
in L are nonzero.

Parameters

e transposed (mosek.transpose) — Controls whether to use with L or LT. (in-
put)

e 1nzc (int[]) — 1nzc[j] is the number of nonzeros in column j. (input)

e Iptrc (longl[l) — 1ptrc[j] is a pointer to the first row index and value in
column j. (input)

e 1lsubc (int[]) — Row indexes for each column stored sequentially. Must be
stored in increasing order for each column. (input)

e lvalc (double[]) — The value corresponding to the row index stored in lsubc.
(input)

e b (double[]) — The right-hand side of linear equation system to be solved as a
dense vector. (input/output)

Groups Linear algebra

Env.syeig

void syeig
(mosek.uplo uplo,
int n,
double[] a,
double[] w)

Computes all eigenvalues of a real symmetric matrix A. Given a matrix A € R™*™ it returns a
vector w € R™ containing the eigenvalues of A.

Parameters

e uplo (mosek.uplo) — Indicates whether the upper or lower triangular part is
used. (input)

e n (int) — Dimension of the symmetric input matrix. (input)

e a (double[]) — A symmetric matrix A stored in column-major order. Only the
part indicated by uplo is used. (input)
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e w (double[]) — Array of length at least n containing the eigenvalues of A. (out-
put)

Groups Linear algebra

Env.syevd

void syevd
(mosek.uplo uplo,
int n,
double[] a,
double[] w)

Computes all the eigenvalues and eigenvectors a real symmetric matrix. Given the input matrix
A € R™ "™ this function returns a vector w € R"™ containing the eigenvalues of A and it also

computes the eigenvectors of A. Therefore, this function computes the eigenvalue decomposition
of A as

A=UvUT,
where V' = diag(w) and U contains the eigenvectors of A.
Note that the matrix U overwrites the input data A.
Parameters

e uplo (mosek.uplo) — Indicates whether the upper or lower triangular part is
used. (input)

e n (int) — Dimension of the symmetric input matrix. (input)

e a (double[]) — A symmetric matrix A stored in column-major order. Only the
part indicated by uplo is used. On exit it will be overwritten by the matrix U.
(input/output)

e w (double[]) — Array of length at least n containing the eigenvalues of A. (out-
put)
Groups Linear algebra

Env.syrk

void syrk
(mosek.uplo uplo,
mosek.transpose trans,
int n,
int k,
double alpha,
double[] a,
double beta,
double[] c)

Performs a symmetric rank-k update for a symmetric matrix.

Given a symmetric matrix C' € R"*"  two scalars «,  and a matrix A of rank k < n, it computes
either

C :=aAAT + jC,
when trans is set to transpose.no and A € R"*¥ or

C:=aA"A+BC,
when trans is set to transpose.yes and A € RFX™,

Only the part of C' indicated by uplo is used and only that part is updated with the result.

16.3. Class Env 179



MOSEK Optimizer API for Java, Release 8.1.0.76

Parameters

e uplo (mosek.uplo) — Indicates whether the upper or lower triangular part of C'
is used. (input)

e trans (mosek. transpose)— Indicates whether the matrix A must be transposed.
(input)
e n (int) — Specifies the order of C. (input)

e k (int) — Indicates the number of rows or columns of A, depending on whether
or not it is transposed, and its rank. (input)

e alpha (double) — A scalar value multiplying the result of the matrix multiplica-
tion. (input)

e a (double[]) — The pointer to the array storing matrix A in a column-major
format. (input)

e beta (double) — A scalar value that multiplies C. (input)

e c (double[]) — The pointer to the array storing matrix C' in a column-major
format. (input/output)

Groups Linear algebra

16.4 Class Task

mosek.Task
Represents an optimization task.

Task.Task

Task (mosek.Env env)

Task(
mosek.Env env,
int numcon,
int numvar)

Task (mosek.Task task)

Constructor of a new optimization task.
Parameters
e env (Env) — Parent environment. (input)

e numcon (int) — An optional hint about the maximal number of constraints in
the task. (input)

e numvar (int) — An optional hint about the maximal number of variables in the
task. (input)

e task (Task) — A task that will be cloned. (input)

Task.analyzenames

void analyzenames
(mosek.streamtype whichstream,
mosek.nametype nametype)

The function analyzes the names and issues an error if a name is invalid.
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Parameters
e whichstream (mosek.streamtype) — Index of the stream. (input)

e nametype (mosek.nametype) — The type of names e.g. valid in MPS or LP files.
(input)
Groups Task diagnostics

Task.analyzeproblem

void analyzeproblem (mosek.streamtype whichstream)

The function analyzes the data of a task and writes out a report.

Parameters whichstream (mosek.streamtype) — Index of the stream. (input)
Groups Task diagnostics

Task.analyzesolution

void analyzesolution
(mosek.streamtype whichstream,
mosek.soltype whichsol)

Print information related to the quality of the solution and other solution statistics.

By default this function prints information about the largest infeasibilites in the solution, the
primal (and possibly dual) objective value and the solution status.

Following parameters can be used to configure the printed statistics:

e iparam.ana_sol_basis enables or disables printing of statistics specific to the basis solution
(condition number, number of basic variables etc.). Default is on.

e iparam.ana_sol_print_violated enables or disables listing names of all constraints (both
primal and dual) which are violated by the solution. Default is off.

e dparam.ana_sol_infeas_tol is the tolerance defining when a constraint is considered vio-

lated. If a constraint is violated more than this, it will be listed in the summary.

Parameters

e whichstream (mosek.streamtype) — Index of the stream. (input)
e whichsol (mosek.soltype) — Selects a solution. (input)

Groups Task diagnostics

Task.appendbarvars

’void appendbarvars (int[] dim)

Appends positive semidefinite matrix variables of dimensions given by dim to the problem.

Parameters dim (int[]) — Dimensions of symmetric matrix variables to be added.
(input)

Groups Symmetric matriz variable data

Task.appendcone
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void appendcone
(mosek. conetype ct,
double conepar,
int[] submem)

Appends a new conic constraint to the problem. Hence, add a constraint
zek

to the problem where /C is a convex cone. & is a subset of the variables which will be specified by
the argument submem.

Depending on the value of ct this function appends a normal (conetype. quad) or rotated quadratic
cone (conetype.rquad).

Define
L = Zsubmen[0]5 * - + » Lsubmem[nummen—1]+

Depending on the value of ct this function appends one of the constraints:

e Quadratic cone (conetype.quad) :

e Rotated quadratic cone (conetype.rquad) :

7<nummem

28021 > E &2, #0,41 >0
=2

Please note that the sets of variables appearing in different conic constraints must be disjoint.
For an explained code example see Section Conic Quadratic Optimization.
Parameters
e ct (mosek.conetype) — Specifies the type of the cone. (input)

e conepar (double) — This argument is currently not used. It can be set to 0
(input)
e submen (int[]) — Variable subscripts of the members in the cone. (input)

Groups Conic constraint data

Task.appendconeseq

void appendconeseq
(mosek.conetype ct,
double conepar,
int nummem,
int j)

Appends a new conic constraint to the problem, as in Task.appendcone. The function assumes
the members of cone are sequential where the first member has index j and the last j+nummem-1.

Parameters
e ct (mosek.conetype) — Specifies the type of the cone. (input)

e conepar (double) — This argument is currently not used. It can be set to 0
(input)
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e nummen (int) — Number of member variables in the cone. (input)
¢ j (int) — Index of the first variable in the conic constraint. (input)

Groups Conic constraint data

Task.appendconesseq

void appendconesseq
(mosek.conetype[] ct,
double[] conepar,
int[] nummem,
int j)

Appends a number of conic constraints to the problem, as in Task.appendcone. The kth cone is
assumed to be of dimension nummem[k]. Moreover, it is assumed that the first variable of the first
cone has index j and starting from there the sequentially following variables belong to the first
cone, then to the second cone and so on.

Parameters
e ct (mosek.conetype [1) — Specifies the type of the cone. (input)

e conepar (double[]) — This argument is currently not used. It can be set to 0
(input)
e nummen (int[]) — Numbers of member variables in the cones. (input)

e j (int) — Index of the first variable in the first cone to be appended. (input)

Groups Conic constraint data

Task.appendcons

void appendcons (int num)

Appends a number of constraints to the model. Appended constraints will be declared free. Please
note that MOSEK will automatically expand the problem dimension to accommodate the addi-
tional constraints.

Parameters num (int) — Number of constraints which should be appended. (input)

Groups Linear constraint data

Task.appendsparsesymmat

void appendsparsesymmat
(int dim,
int[] subi,
int[] subj,
double[] wvalij,
long[] idx)

long appendsparsesymmat
(int dim,
int[] subi,
int[] subj,
double[] valij)

MOSEK maintains a storage of symmetric data matrices that is used to build C' and A. The
storage can be thought of as a vector of symmetric matrices denoted E. Hence, E; is a symmetric
matrix of certain dimension.
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This function appends a general sparse symmetric matrix on triplet form to the vector E of sym-
metric matrices. The vectors subi, subj, and valij contains the row subscripts, column subscripts
and values of each element in the symmetric matrix to be appended. Since the matrix that is ap-
pended is symmetric, only the lower triangular part should be specified. Moreover, duplicates are

not allowed.

Observe the function reports the index (position) of the appended matrix in F. This index should
be used for later references to the appended matrix.

Parameters

dim (int) — Dimension of the symmetric matrix that is appended. (input)
subi (int[]) — Row subscript in the triplets. (input)

subj (int[]) — Column subscripts in the triplets. (input)

valij (double[]) — Values of each triplet. (input)

idx (long by reference) — Unique index assigned to the inputted matrix that can
be used for later reference. (output)

Return (long) — Unique index assigned to the inputted matrix that can be used for
later reference.

Groups Symmetric matriz variable data

Task.appendvars

void appendvars (int num)

Appends a number of variables to the model. Appended variables will be fixed at zero. Please note
that MOSEK will automatically expand the problem dimension to accommodate the additional

variables.

Parameters num (int) — Number of variables which should be appended. (input)

Groups Scalar variable data

Task.asyncgetresult

void asyncgetresult
(String server,
String port,
String token,
boolean[] respavailable,
mosek.rescode[] resp,
mosek.rescode[] trm)

boolean asyncgetresult
(String server,
String port,
String token,
mosek.rescode[] resp,
mosek.rescode[] trm)

Request a response from a remote job. If successful, solver response, termination code and solutions
are retrieved.

Parameters

e server (String) — Name or IP address of the solver server. (input)

e port (String) — Network port of the solver service. (input)

e token (String) — The task token. (input)
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e respavailable (boolean by reference) — Indicates if a remote response is avail-
able. If this is not true, resp and trm should be ignored. (output)

e resp (mosek.rescode by reference) — Is the response code from the remote
solver. (output)

e trm (mosek.rescode by reference) — Is either rescode.ok or a termination
response code. (output)

Return (boolean) — Indicates if a remote response is available. If this is not true, resp
and trm should be ignored.

Task.asyncoptimize

void asyncoptimize
(String server,
String port,
StringBuffer token)

String asyncoptimize
(String server,
String port)

Offload the optimization task to a solver server defined by server:port. The call will return
immediately and not wait for the result.

If the string parameter sparam.remote_access_token is not blank, it will be passed to the server
as authentication.

Parameters
e server (String) — Name or IP address of the solver server (input)
e port (String) — Network port of the solver service (input)
e token (StringBuffer) — Returns the task token (output)

Return (String) — Returns the task token

Task.asyncpoll

void asyncpoll
(String server,
String port,
String token,
boolean[] respavailable,
mosek.rescode[] resp,
mosek.rescode[] trm)

boolean asyncpoll
(String server,
String port,
String token,
mosek.rescode[] resp,
mosek.rescode[] trm)

Requests information about the status of the remote job.
Parameters
e server (String) — Name or IP address of the solver server (input)
e port (String) — Network port of the solver service (input)

e token (String) — The task token (input)
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e respavailable (boolean by reference) — Indicates if a remote response is avail-
able. If this is not true, resp and trm should be ignored. (output)

e resp (mosek.rescode by reference) — Is the response code from the remote
solver. (output)

e trm (mosek.rescode by reference) — Is either rescode.ok or a termination
response code. (output)

Return (boolean) — Indicates if a remote response is available. If this is not true, resp
and trm should be ignored.

Task.asyncstop

void asyncstop
(String server,
String port,
String token)

Request that the job identified by the token is terminated.
Parameters
e server (String) — Name or IP address of the solver server (input)
e port (String) — Network port of the solver service (input)
e token (String) — The task token (input)

Task.basiscond

void basiscond
(double[] nrmbasis,
double[] nrminvbasis)

If a basic solution is available and it defines a nonsingular basis, then this function computes the
1-norm estimate of the basis matrix and a 1-norm estimate for the inverse of the basis matrix. The
1-norm estimates are computed using the method outlined in /Ste98/, pp. 388-391.

By definition the 1-norm condition number of a matrix B is defined as
-1
k1(B) = || Bl | B~ |1
Moreover, the larger the condition number is the harder it is to solve linear equation systems
involving B. Given estimates for || B||; and ||[B~!|; it is also possible to estimate k1 (B).
Parameters

e nrmbasis (double by reference) — An estimate for the 1-norm of the basis. (out-
put)

e nrminvbasis (double by reference) — An estimate for the 1-norm of the inverse
of the basis. (output)

Groups Basis matriz

Task.checkconvexity

void checkconvexity ()

This function checks if a quadratic optimization problem is convex. The amount of checking is
controlled by iparam. check_convezity.

The function reports an error if the problem is not convex.
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Groups Task diagnostics

Task.checkmem

void checkmem
(String file,
int line)

Checks the memory allocated by the task.
Parameters
e file (String) — File from which the function is called. (input)
e line (int) — Line in the file from which the function is called. (input)

Groups Memory

Task-—ehgbound Deprecated

void chgbound
(mosek.accmode accmode,
int i,
int lower,
int finite,
double value)

Changes a bound for one constraint or variable. If accmode equals accmode. con, a constraint
bound is changed, otherwise a variable bound is changed.

If lower is non-zero, then the lower bound is changed as follows:

—oo, finite =0,

new lower bound = .
value otherwise.

Otherwise if lower is zero, then

00, finite =0,

new upper bound = { value otherwise.

Please note that this function automatically updates the bound key for bound, in particular, if the
lower and upper bounds are identical, the bound key is changed to fixed.

Parameters

e accmode (mosek.accmode) — Defines if operations are performed row-wise
(constraint-oriented) or column-wise (variable-oriented). (input)

e i (int) — Index of the constraint or variable for which the bounds should be
changed. (input)

e lower (int) — If non-zero, then the lower bound is changed, otherwise the upper
bound is changed. (input)

e finite (int) — If non-zero, then value is assumed to be finite. (input)
e value (double) — New value for the bound. (input)
Groups Bound data
Task.chgconbound

void chgconbound
(int i,
int lower,
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int finite,
double value)

Changes a bound for one constraint.

If lower is non-zero, then the lower bound is changed as follows:

—00, finite =0,

new lower bound = .
value otherwise.

Otherwise if lower is zero, then

0, finite =0,

new upper bound = { value otherwise.

Please note that this function automatically updates the bound key for the bound, in particular,
if the lower and upper bounds are identical, the bound key is changed to fixed.

Parameters
e i (int)— Index of the constraint for which the bounds should be changed. (input)

e lower (int) — If non-zero, then the lower bound is changed, otherwise the upper
bound is changed. (input)

e finite (int) — If non-zero, then value is assumed to be finite. (input)
e value (double) — New value for the bound. (input)
Groups Bound data

Task.chgvarbound

void chgvarbound
(int j,
int lower,
int finite,
double value)

Changes a bound for one variable.

If lower is non-zero, then the lower bound is changed as follows:

—00, finite =0,

new lower bound = .
value otherwise.

Otherwise if lower is zero, then

0, finite =0,

new upper bound = { value otherwise.

Please note that this function automatically updates the bound key for the bound, in particular,
if the lower and upper bounds are identical, the bound key is changed to fixed.

Parameters
e j (int) — Index of the variable for which the bounds should be changed. (input)

e lower (int) — If non-zero, then the lower bound is changed, otherwise the upper
bound is changed. (input)

e finite (int) — If non-zero, then value is assumed to be finite. (input)
e value (double) — New value for the bound. (input)

Groups Bound data
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Task.commitchanges

void commitchanges ()

Commits all cached problem changes to the task. It is usually not necessary to call this function
explicitly since changes will be committed automatically when required.

Groups Scalar variable data

Task.deletesolution

void deletesolution (mosek.soltype whichsol)

Undefine a solution and free the memory it uses.
Parameters whichsol (mosek.soltype) — Selects a solution. (input)
Groups Task management

Task.dispose

void dispose()

Free the underlying native allocation.

Task.dualsensitivity

void dualsensitivity
(int[] subj,
double[] leftpricej,
double[] rightpricej,
double[] leftrangej,
double[] rightrangej)

Calculates sensitivity information for objective coefficients. The indexes of the coefficients to
analyze are

{subj[é] | i =0,...,numj — 1}
The type of sensitivity analysis to perform (basis or optimal partition) is controlled by the param-
eter zparam.sensitivity_type.
For an example, please see Section Fxample: Sensitivity Analysis.
Parameters
e subj (int[]) — Indexes of objective coefficients to analyze. (input)

e leftpricej (double[]) — leftpricej[j] is the left shadow price for the coeffi-
cient with index subj[j]. (output)

e rightpricej (double[]) — rightpricej[j] is the right shadow price for the
coefficient with index subj[j]. (output)

e leftrangej (double[]) — leftrangej[j] is the left range 51 for the coefficient
with index subj[j]. (output)

e rightrangej (double[]) — rightrangej[j] is the right range By for the coeffi-
cient with index subj[j]. (output)

Groups Sensitivity analysis

Task.getacol
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void getacol
(int j,
int[] nzj,
int[] subj,
double[] valj)

Obtains one column of A in a sparse format.
Parameters
e j (int) — Index of the column. (input)
e nzj (int by reference) — Number of non-zeros in the column obtained. (output)
e subj (int[]) — Row indices of the non-zeros in the column obtained. (output)
e valj (double[]) — Numerical values in the column obtained. (output)
Groups Scalar variable data

Task.getacolnumnz

void getacolnumnz
(int 1,
int[] nzj)

int getacolnumnz (int i)

Obtains the number of non-zero elements in one column of A.
Parameters
e i (int) — Index of the column. (input)
e nzj (int by reference) — Number of non-zeros in the j-th column of A. (output)
Return (int) — Number of non-zeros in the j-th column of A.
Groups Scalar variable data

Task.getacolslicetrip

void getacolslicetrip
(int first,
int last,
int[] subi,
int[] subj,
double[] val)

Obtains a sequence of columns from A in sparse triplet format. The function returns the content
of all columns whose index j satisfies first <= j < last. The triplets corresponding to nonzero
entries are stored in the arrays subi, subj and val.

Parameters
e first (int) — Index of the first column in the sequence. (input)
e last (int) — Index of the last column in the sequence plus one. (input)
e subi (int[]) — Constraint subscripts. (output)
e subj (int[]) — Column subscripts. (output)
e val (double[]) — Values. (output)

Groups Scalar variable data
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Task.getaij

void getaij
(int i,
int j,
double[] aij)

double getaij
(int 1,
int j)

Obtains a single coefficient in A.
Parameters
e i (int) — Row index of the coefficient to be returned. (input)
e j (int) — Column index of the coefficient to be returned. (input)
e aij (double by reference) — The required coefficient a; ;. (output)
Return (double) — The required coefficient a; ;.
Groups Scalar variable data

Task.getapiecenumnz

void getapiecenumnz
(int firsti,
int lasti,
int firstj,
int lastj,
int[] numnz)

int getapiecenumnz
(int firsti,
int lasti,
int firstj,
int lastj)

Obtains the number non-zeros in a rectangular piece of A, i.e. the number of elements in the set

{(4,7) + a;; #0, firsti <i < lasti—1, firstj <j <lastj—1}

This function is not an efficient way to obtain the number of non-zeros in one row or column. In

that case use the function Task.getarownumnz or Task.getacolnumnz.
Parameters

firsti (int) — Index of the first row in the rectangular piece. (input)

lasti (int) — Index of the last row plus one in the rectangular piece. (input)

firstj (int) — Index of the first column in the rectangular piece. (input)

lastj (int) — Index of the last column plus one in the rectangular piece. (input)

e numnz (int by reference) — Number of non-zero A elements in the rectangular
piece. (output)

Return (int) — Number of non-zero A elements in the rectangular piece.

Task.getarow
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void getarow
(int i,
int[] nzi,
int[] subi,
double[] vali)

Obtains one row of A in a sparse format.
Parameters
e i (int) — Index of the row. (input)
e nzi (int by reference) — Number of non-zeros in the row obtained. (output)
e subi (int[]) — Column indices of the non-zeros in the row obtained. (output)
e vali (double[]) — Numerical values of the row obtained. (output)
Groups Scalar variable data

Task.getarownumnz

void getarownumnz
(int 1,
int[] nzi)

int getarownumnz (int i)

Obtains the number of non-zero elements in one row of A.
Parameters
e i (int) — Index of the row. (input)
e nzi (int by reference) — Number of non-zeros in the i-th row of A. (output)
Return (int) — Number of non-zeros in the i-th row of A.
Groups Scalar variable data

Task.getarowslicetrip

void getarowslicetrip
(int first,
int last,
int[] subi,
int[] subj,
double[] val)

Obtains a sequence of rows from A in sparse triplet format. The function returns the content of
all rows whose index i satisfies first <= i < last. The triplets corresponding to nonzero entries
are stored in the arrays subi, subj and val.

Parameters
e first (int) — Index of the first row in the sequence. (input)
e last (int) — Index of the last row in the sequence plus one. (input)
e subi (int[]) — Constraint subscripts. (output)
e subj (int[]) — Column subscripts. (output)
e val (double[]) — Values. (output)

Groups Scalar variable data
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Task-getastiee Deprecated

void getaslice

int first,
int last,
int[] ptrb,
int[] ptre,
int[] sub,
double[] val)

(mosek.accmode accmode,

void getaslice

int first,
int last,
long[] ptrb,
long[] ptre,
int[] sub,
double[] val)

(mosek.accmode accmode,

Obtains a sequence of rows or columns from A in sparse format.

Parameters

e accmode (mosek.accmode) — Defines whether a column slice or a row slice is

requested. (input)

e first (int) — Index of the first row or column in the sequence. (input)

e last (int) — Index of the last row or column in the sequence plus one. (input)

e ptrb (int[]) — ptrb[t] is an index pointing to the first element in the ¢-th row

or column obtained. (output)

e ptrb (longl[]) — ptrb[t] is an index pointing to the first element in the ¢t-th
row or column obtained. (output)

e ptre (int[]) — ptrelt] is an index pointing to the last element plus one in the
t-th row or column obtained. (output)

e ptre (long[]l) — ptrelt] is an index pointing to the last element plus one in
the ¢-th row or column obtained. (output)

e sub (int[]) — Contains the row or column subscripts. (output)

Groups Scalar variable data

Task-getasticenumnz Deprecated

val (double[]) — Contains the coefficient values. (output)

int first,
int last,
long[] numnz)

void getaslicenumnz
(mosek.accmode accmode,

int first,
int last)

long getaslicenumnz
(mosek.accmode accmode,

Obtains the number of non-zeros in a slice of rows or columns of A.

Parameters
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e accmode (mosek.accmode) — Defines whether non-zeros are counted in a column
slice or a row slice. (input)

e first (int) — Index of the first row or column in the sequence. (input)

e last (int) — Index of the last row or column plus one in the sequence. (input)

e numnz (long by reference) — Number of non-zeros in the slice. (output)
Return (long) — Number of non-zeros in the slice.

Task.getbarablocktriplet

void getbarablocktriplet
(long[] num,
int[] subi,
int[] subj,
int[] subk,
int[] subl,
double[] valijkl)

long getbarablocktriplet
(int[] subi,
int[] subj,
int[] subk,
int[] subl,
double[] valijkl)

Obtains A in block triplet form.
Parameters
e num (long by reference) — Number of elements in the block triplet form. (output)
e subi (int[]) — Constraint index. (output)
e subj (int[]) — Symmetric matrix variable index. (output)
e subk (int[]) — Block row index. (output)
e subl (int[]1) — Block column index. (output)

e valijkl (double[]) — The numerical value associated with each block triplet.
(output)

Return (long) — Number of elements in the block triplet form.
Groups Symmetric matriz variable data

Task.getbaraidx

void getbaraidx
(long idx,
int(] i,
int[] j,
long[] num,
long[] sub,
double[] weights)

long getbaraidx
(long idx,
int[] i,
int[] j,
long[] sub,
double[] weights)
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Obtains information about an element in A. Since A is a sparse matrix of symmetric matrices,
only the nonzero elements in A are stored in order to save space. Now A is stored vectorized i.e.
as one long vector. This function makes it possible to obtain information such as the row index
and the column index of a particular element of the vectorized form of A.

Please observe if one element of A is inputted multiple times then it may be stored several times
in vectorized form. In that case the element with the highest index is the one that is used.

Parameters

e idx (long) — Position of the element in the vectorized form. (input)

i (int by reference) — Row index of the element at position idx. (output)

j (int by reference) — Column index of the element at position idx. (output)

e num (long by reference) — Number of terms in weighted sum that forms the
element. (output)

e sub (long[]l) — A list indexes of the elements from symmetric matrix storage
that appear in the weighted sum. (output)

e weights (double[]) — The weights associated with each term in the weighted
sum. (output)

Return (long) — Number of terms in weighted sum that forms the element.

Groups Symmetric matriz variable data

Task.getbaraidxij

void getbaraidxij
(long idx,
int(] i,
int[] j)

Obtains information about an element in A. Since A is a sparse matrix of symmetric matrices,
only the nonzero elements in A are stored in order to save space. Now A is stored vectorized i.e.
as one long vector. This function makes it possible to obtain information such as the row index
and the column index of a particular element of the vectorized form of A.

Please note that if one element of A is inputted multiple times then it may be stored several times
in vectorized form. In that case the element with the highest index is the one that is used.

Parameters
e idx (long) — Position of the element in the vectorized form. (input)
e i (int by reference) — Row index of the element at position idx. (output)
e j (int by reference) — Column index of the element at position idx. (output)

Groups Symmetric matriz variable data

Task.getbaraidxinfo

void getbaraidxinfo
(long idx,
long[] num)

long getbaraidxinfo (long idx)

Each nonzero element in Zij is formed as a weighted sum of symmetric matrices. Using this
function the number of terms in the weighted sum can be obtained. See description of Task.
appendsparsesymmat for details about the weighted sum.
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Parameters

e idx (long) — The internal position of the element for which information should

be obtained. (input)

e num (long by reference) — Number of terms in the weighted sum that form the

specified element in A. (output)

Return (long) -~ Number of terms in the weighted sum that form the specified element
in A.

Groups Symmetric matriz variable data

Task.getbarasparsity

void getbarasparsity
(long[] numnz,
long[] idxij)

The matrix A is assumed to be a sparse matrix of symmetric matrices. This implies that many of
the elements in A are likely to be zero matrices. Therefore, in order to save space, only nonzero
elements in A are stored on vectorized form. This function is used to obtain the sparsity pattern
of A and the position of each nonzero element in the vectorized form of A. From the index
detailed information about each nonzero A;; can be obtained using Task.getbaraidzinfo and
Task.getbaraidz.

Parameters

e numnz (long by reference) — Number of nonzero elements in A. (output)

idxij (long[]) — Position of each nonzero element in the vectorized form of A.
(output)

Groups Symmetric matriz variable data

Task.getbarcblocktriplet

void getbarcblocktriplet
(long[] num,
int[] subj,
int[] subk,
int[] subl,
double[] wvaljkl)

long getbarcblocktriplet
(int[] subj,
int[] subk,
int[] subl,
double[] wvaljkl)

Obtains C in block triplet form.

Parameters

num (long by reference) — Number of elements in the block triplet form. (output)
subj (int[]) — Symmetric matrix variable index. (output)

subk (int[]) — Block row index. (output)

subl (int[]1) — Block column index. (output)

valjkl (double[]) — The numerical value associated with each block triplet.
(output)

Return (long) — Number of elements in the block triplet form.
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Groups Symmetric matriz variable data

Task.getbarcidx

void getbarcidx
(long idx,
int[] j,
long[] num,
long[] sub,
double[] weights)

Obtains information about an element in C.
Parameters
e idx (long) — Index of the element for which information should be obtained.
(input)
e j (int by reference) — Row index in C. (output)
e num (long by reference) — Number of terms in the weighted sum. (output)
e sub (long[]) — Elements appearing the weighted sum. (output)
e weights (double[]) — Weights of terms in the weighted sum. (output)

Groups Symmetric matriz variable data

Task.getbarcidxinfo

void getbarcidxinfo
(long idx,
long[] num)

long getbarcidxinfo (long idx)

Obtains the number of terms in the weighted sum that forms a particular element in C.

Parameters

e idx (long) — Index of the element for which information should be obtained.
The value is an index of a symmetric sparse variable. (input)

e num (long by reference) — Number of terms that appear in the weighted sum
that forms the requested element. (output)

Return (long) — Number of terms that appear in the weighted sum that forms the
requested element.

Groups Symmetric matriz variable data

Task.getbarcidxj

void getbarcidxj
(long idx,
int[] j)

Obtains the row index of an element in C.

Parameters
e idx (long) — Index of the element for which information should be obtained.
(input)

e j (int by reference) — Row index in C. (output)
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Groups Symmetric matriz variable data

Task.getbarcsparsity

void getbarcsparsity
(long[] numnz,
long[] idxj)

Internally only the nonzero elements of C are stored in a vector. This function is used to obtain the
nonzero elements of C' and their indexes in the internal vector representation (in idx). From the
index detailed information about each nonzero C; can be obtained using Task.getbarcidzinfo
and Task.getbarcidz.

Parameters
e numnz (long by reference) — Number of nonzero elements in C. (output)
e idxj (long[]) — Internal positions of the nonzeros elements in C. (output)

Groups Symmetric matriz variable data

Task.getbars]j

void getbarsj
(mosek.soltype whichsol,
int j,
double[] barsj)

Obtains the dual solution for a semidefinite variable. Only the lower triangular part of S; is
returned because the matrix by construction is symmetric. The format is that the columns are
stored sequentially in the natural order.

Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e j (int) — Index of the semidefinite variable. (input)
e barsj (double[]) — Value of S;. (output)

Groups Solution (get)

Task.getbarvarname

void getbarvarname
(int i,
StringBuffer name)

String getbarvarname (int i)

Obtains the name of a semidefinite variable.
Parameters
e i (int) — Index of the variable. (input)
e name (StringBuffer) — The requested name is copied to this buffer. (output)
Return (String) — The requested name is copied to this buffer.

Groups Naming

Task.getbarvarnameindex
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void getbarvarnameindex
(String somename,
int[] asgn,
int[] index)

int getbarvarnameindex
(String somename,
int[] asgn)

Obtains the index of semidefinite variable from its name.
Parameters
e somename (String) — The name of the variable. (input)

e asgn (int by reference) — Non-zero if the name somename is assigned to some
semidefinite variable. (output)

e index (int by reference) — The index of a semidefinite variable with the name
somename (if one exists). (output)

Return (int) — The index of a semidefinite variable with the name somename (if one
exists).

Groups Naming

Task.getbarvarnamelen

void getbarvarnamelen
(int i,
int[] len)

int getbarvarnamelen (int i)

Obtains the length of the name of a semidefinite variable.
Parameters
e i (int) — Index of the variable. (input)
e len (int by reference) — Returns the length of the indicated name. (output)
Return (int) — Returns the length of the indicated name.
Groups Naming

Task.getbarx]j

void getbarxj
(mosek.soltype whichsol,
int j,
double[] barxj)

Obtains the primal solution for a semidefinite variable. Only the lower triangular part of X; is
returned because the matrix by construction is symmetric. The format is that the columns are
stored sequentially in the natural order.

Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e j (int) — Index of the semidefinite variable. (input)
e barxj (double[]) — Value of X;. (output)

Groups Solution (get)
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Task-getbound Deprecated

void getbound
(mosek.accmode accmode,
int i,
mosek.boundkey[] bk,
double[] bl,
double[] bu)

Obtains bound information for one constraint or variable.
Parameters

e accmode (mosek.accmode) — Defines if operations are performed row-wise
(constraint-oriented) or column-wise (variable-oriented). (input)

e i (int) — Index of the constraint or variable for which the bound information
should be obtained. (input)

e bk (mosek.boundkey by reference) — Bound keys. (output)
e bl (double by reference) — Values for lower bounds. (output)
e bu (double by reference) — Values for upper bounds. (output)

Groups Bound data
Task-getboundstiee Deprecated

void getboundslice
(mosek.accmode accmode,
int first,
int last,
mosek.boundkey[] bk,
double[] bl,
double[] bu)

Obtains bounds information for a slice of variables or constraints.
Parameters

e accmode (mosek.accmode) — Defines if operations are performed row-wise
(constraint-oriented) or column-wise (variable-oriented). (input)

first (int) — First index in the sequence. (input)

last (int) — Last index plus 1 in the sequence. (input)

bk (mosek.boundkey [1) — Bound keys. (output)

bl (double[]) — Values for lower bounds. (output)
e bu (double[]) — Values for upper bounds. (output)
Groups Bound data

Task.getc

void getc (double[] c)

Obtains all objective coefficients c.

Parameters c (double[]) — Linear terms of the objective as a dense vector. The length
is the number of variables. (output)

Groups Scalar variable data
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Task.getcfix

’void getcfix (double[] cfix) ‘

double getcfix () ‘

Obtains the fixed term in the objective.
Parameters cfix (double by reference) — Fixed term in the objective. (output)
Return (double) — Fixed term in the objective.
Groups Scalar variable data

Task.getc]

void getcj
(int j,
double[] cj)

Obtains one coefficient of c.

Parameters
e j (int) — Index of the variable for which the ¢ coefficient should be obtained.
(input)
e cj (double by reference) — The value of ¢;. (output)
Groups Scalar variable data

Task.getconbound

void getconbound
(int 1,
mosek.boundkey[] bk,
double[] bl,
double[] bu)

Obtains bound information for one constraint.

Parameters

e i (int) — Index of the constraint for which the bound information should be
obtained. (input)

e bk (mosek.boundkey by reference) — Bound keys. (output)

e bl (double by reference) — Values for lower bounds. (output)

e bu (double by reference) — Values for upper bounds. (output)
Groups Bound data

Task.getconboundslice

void getconboundslice
(int first,
int last,
mosek.boundkey[] bk,
double[] bl,
double[] bu)

Obtains bounds information for a slice of the constraints.
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Parameters
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)
e bk (mosek.boundkey [1) — Bound keys. (output)
e bl (double[]) — Values for lower bounds. (output)
e bu (double[]) — Values for upper bounds. (output)
Groups Bound data

Task.getcone

void getcone
(int k,
mosek.conetypel] ct,
double[] conepar,
int[] nummem,
int[] submem)

Obtains a cone.
Parameters
e k (int) — Index of the cone. (input)
e ct (mosek.conetype by reference) — Specifies the type of the cone. (output)

e conepar (double by reference) — This argument is currently not used. It can be
set to 0 (output)

e nummenm (int by reference) — Number of member variables in the cone. (output)
e submen (int[]) — Variable subscripts of the members in the cone. (output)
Groups Conic constraint data

Task.getconeinfo

void getconeinfo
(int k,
mosek.conetype[] ct,
double[] conepar,
int[] nummem)

Obtains information about a cone.
Parameters
e k (int) — Index of the cone. (input)
e ct (mosek.conetype by reference) — Specifies the type of the cone. (output)

e conepar (double by reference) — This argument is currently not used. It can be
set to 0 (output)

e nummen (int by reference) — Number of member variables in the cone. (output)
Groups Conic constraint data

Task.getconename

void getconename
(int i,
StringBuffer name)
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String getconename (int i)

Obtains the name of a cone.
Parameters
e i (int) — Index of the cone. (input)
e name (StringBuffer) — The required name. (output)
Return (String) — The required name.
Groups Naming

Task.getconenameindex

void getconenameindex
(String somename,
int[] asgn,
int[] index)

int getconenameindex
(String somename,
int[] asgn)

Checks whether the name somename has been assigned to any cone. If it has been assigned to a
cone, then the index of the cone is reported.

Parameters
e somename (String) — The name which should be checked. (input)

e asgn (int by reference) — Is non-zero if the name somename is assigned to some
cone. (output)

e index (int by reference) — If the name somename is assigned to some cone, then
index is the index of the cone. (output)

Return (int) — If the name somename is assigned to some cone, then index is the index
of the cone.

Groups Naming

Task.getconenamelen

void getconenamelen
(int 1,
int[] len)

int getconenamelen (int i)

Obtains the length of the name of a cone.
Parameters
e i (int) — Index of the cone. (input)
e len (int by reference) — Returns the length of the indicated name. (output)
Return (int) — Returns the length of the indicated name.

Groups Naming
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Task.getconname

void getconname
(int i,
StringBuffer name)

String getconname (int i)

Obtains the name of a constraint.
Parameters
e i (int) — Index of the constraint. (input)
e name (StringBuffer) — The required name. (output)
Return (String) — The required name.
Groups Naming

Task.getconnameindex

void getconnameindex
(String somename,
int[] asgn,
int[] index)

int getconnameindex
(String somename,
int[] asgn)

Checks whether the name somename has been assigned to any constraint. If so, the index of the
constraint is reported.

Parameters
e somename (String) — The name which should be checked. (input)

e asgn (int by reference) — Is non-zero if the name somename is assigned to some
constraint. (output)

e index (int by reference) — If the name somename is assigned to a constraint,
then index is the index of the constraint. (output)

Return (int) — If the name somename is assigned to a constraint, then index is the
index of the constraint.

Groups Naming

Task.getconnamelen

void getconnamelen
(int 1,
int[] len)

int getconnamelen (int i)

Obtains the length of the name of a constraint.
Parameters
e i (int) — Index of the constraint. (input)

e len (int by reference) — Returns the length of the indicated name. (output)
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Return (int) — Returns the length of the indicated name.
Groups Naming

Task.getcslice

void getcslice
(int first,
int last,
double[] c)

Obtains a sequence of elements in c.
Parameters
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)

e ¢ (double[]) — Linear terms of the requested slice of the objective as a dense
vector. The length is last-first. (output)

Groups Scalar variable data

Task.getdimbarvarj

void getdimbarvarj
(int j,
int[] dimbarvarj)

int getdimbarvarj (int j)

Obtains the dimension of a symmetric matrix variable.
Parameters
e j (int) —Index of the semidefinite variable whose dimension is requested. (input)

e dimbarvarj (int by reference) — The dimension of the j-th semidefinite variable.
(output)

Return (int) — The dimension of the j-th semidefinite variable.
Groups Symmetric matriz variable data

Task.getdouinf

void getdouinf
(mosek.dinfitem whichdinf,
double[] dvalue)

double getdouinf (mosek.dinfitem whichdinf)

Obtains a double information item from the task information database.
Parameters
e whichdinf (mosek.dinfitem) — Specifies a double information item. (input)

e dvalue (double by reference) — The value of the required double information
item. (output)

Return (double) — The value of the required double information item.

Groups Optimizer statistics
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Task.getdouparam

void getdouparam
(mosek.dparam param,
double[] parvalue)

double getdouparam (mosek.dparam param)

Obtains the value of a double parameter.
Parameters
e param (mosek.dparam) — Which parameter. (input)
e parvalue (double by reference) — Parameter value. (output)
Return (double) — Parameter value.
Groups Parameters (get)
Task.getdualobj

void getdualobj
(mosek.soltype whichsol,
double[] dualobj)

Computes the dual objective value associated with the solution. Note that if the solution is a
primal infeasibility certificate, then the fixed term in the objective value is not included.

Moreover, since there is no dual solution associated with an integer solution, an error will be
reported if the dual objective value is requested for the integer solution.

Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)

e dualobj (double by reference) — Objective value corresponding to the dual so-
lution. (output)

Groups Solution information

Task.getdualsolutionnorms

void getdualsolutionnorms
(mosek.soltype whichsol,
double[] nrmy,
double[] nrmslc,
double[] nrmsuc,
double[] nrmslx,
double[] nrmsux,
double[] nrmsnx,
double[] nrmbars)

Compute norms of the dual solution.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e nrmy (double by reference) — The norm of the y vector. (output)
e nrmslc (double by reference) — The norm of the s§ vector. (output)
e nrmsuc (double by reference) — The norm of the s¢ vector. (output)

e nrmslx (double by reference) — The norm of the sf vector. (output)
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e nrmsux (double by reference) — The norm of the s¥ vector. (output)

e nrmsnx (double by reference) — The norm of the s% vector. (output)

e nrmbars (double by reference) — The norm of the S vector. (output)
Groups Solution information

Task.getdviolbarvar

void getdviolbarvar
(mosek.soltype whichsol,
int[] sub,
double[] viol)

Let (S;)* be the value of variable S for the specified solution. Then the dual violation of the
solution associated with variable S is given by

max(—Amin(S;), 0.0).
Both when the solution is a certificate of primal infeasibility and when it is dual feasible solution
the violation should be small.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e sub (int[]) — An array of indexes of X variables. (input)

e viol (double[]) — viol[k] is the violation of the solution for the constraint
Ssulk] € Sy (output)

Groups Solution information

Task.getdviolcon

void getdviolcon
(mosek.soltype whichsol,
int[] sub,
double[] viol)

The violation of the dual solution associated with the i-th constraint is computed as follows
max(p((s7)i, (07)i), p((s5)7, —(03)i)s | —wi + (s7)i — (su)il)

where
ple.D) = { |_1:3|C,’ i)‘;e;vi?s,e.
Both when the solution is a certificate of primal infeasibility or it is a dual feasible solution the
violation should be small.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e sub (int[]) — An array of indexes of constraints. (input)

e viol (double[]) — viol[k] is the violation of dual solution associated with the
constraint sub[k]. (output)

Groups Solution information

Task.getdviolcones
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void getdviolcones
(mosek.soltype whichsol,
int[] sub,
double[] viol)

Task.

Let (s%)* be the value of variable (s%) for the specified solution. For simplicity let us assume that
s¥ is a member of a quadratic cone, then the violation is computed as follows

{ max(0, ([[s 115, — (s7)1)/v2, (s7)" = =ll(s7)3.0ll,

Il(s3)* I, otherwise.

Both when the solution is a certificate of primal infeasibility or when it is a dual feasible solution
the violation should be small.

Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e sub (int[]) — An array of indexes of conic constraints. (input)

e viol (double[]) — viol[k] is the violation of the dual solution associated with
the conic constraint sub[k]. (output)

Groups Solution information

getdviolvar

void getdviolvar
(mosek.soltype whichsol,
int[] sub,
double[] viol)

Task.

The violation of the dual solution associated with the j-th variable is computed as follows

max (P((Sf);v (6F)7)s p((s2)5 = (B0)3) | D 7 aigyi + (s7); — (84)7 — TCj)

1=0

where

(@,1) = —x, 1> —o0,
PAE L) = |z|, otherwise

and 7 = 0 if the solution is a certificate of primal infeasibility and 7 = 1 otherwise. The formula
for computing the violation is only shown for the linear case but is generalized appropriately for
the more general problems. Both when the solution is a certificate of primal infeasibility or when
it is a dual feasible solution the violation should be small.

Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e sub (int[]) — An array of indexes of x variables. (input)

e viol (double[]) — viol[k] is the violation of dual solution associated with the
variable sub[k]. (output)

Groups Solution information

getinfeasiblesubproblem

void getinfeasiblesubproblem
(mosek.soltype whichsol,
Task[] inftask)
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Task getinfeasiblesubproblem (mosek.soltype whichsol)

Given the solution is a certificate of primal or dual infeasibility then a primal or dual infeasible
subproblem is obtained respectively. The subproblem tends to be much smaller than the original
problem and hence it is easier to locate the infeasibility inspecting the subproblem than the original
problem.

For the procedure to be useful it is important to assign meaningful names to constraints, variables
etc. in the original task because those names will be duplicated in the subproblem.

The function is only applicable to linear and conic quadratic optimization problems.
For more information see Section Analyzing Infeasible Problems.
Parameters

e whichsol (mosek.soltype) — Which solution to use when determining the in-
feasible subproblem. (input)

e inftask (Task by reference) — A new task containing the infeasible subproblem.
(output)

Return (Task) — A new task containing the infeasible subproblem.
Groups Infeasibility diagnostics

Task.getinfindex

void getinfindex
(mosek.inftype inftype,
String infname,
int[] infindex)

Obtains the index of a named information item.
Parameters
e inftype (mosek.inftype) — Type of the information item. (input)
e infname (String) — Name of the information item. (input)
e infindex (int by reference) — The item index. (output)
Groups Optimizer statistics

Task.getinfmax

void getinfmax
(mosek.inftype inftype,
int[] infmax)

Obtains the maximum index of an information item of a given type inftype plus 1.
Parameters
e inftype (mosek.inftype) — Type of the information item. (input)
e infmax (int[]) — The maximum index (plus 1) requested. (output)
Groups Optimizer statistics

Task.getinfname
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void getinfname
(mosek.inftype inftype,
int whichinf,
StringBuffer infname)

Obtains the name of an information item.
Parameters
e inftype (mosek.inftype) — Type of the information item. (input)
e whichinf (int) — An information item. (input)
e infname (StringBuffer) — Name of the information item. (output)
Groups Optimizer statistics

Task.getintinf

void getintinf
(mosek.iinfitem whichiinf,
int[] ivalue)

int getintinf (mosek.iinfitem whichiinf)

Obtains an integer information item from the task information database.
Parameters
e whichiinf (mosek.iinfitem) — Specifies an integer information item. (input)

e ivalue (int by reference) — The value of the required integer information item.
(output)

Return (int) — The value of the required integer information item.
Groups Optimizer statistics

Task.getintparam

void getintparam
(mosek.iparam param,
int[] parvalue)

int getintparam (mosek.iparam param)

Obtains the value of an integer parameter.
Parameters
e param (mosek. iparam) — Which parameter. (input)
e parvalue (int by reference) — Parameter value. (output)
Return (int) — Parameter value.
Groups Parameters (get)

Task.getlenbarvarj

void getlenbarvarj
(int j,
long[] lenbarvarj)
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long getlenbarvarj (int j)

Obtains the length of the j-th semidefinite variable i.e. the number of elements in the lower
triangular part.

Parameters
e j (int) — Index of the semidefinite variable whose length if requested. (input)

e lenbarvarj (long by reference) — Number of scalar elements in the lower trian-
gular part of the semidefinite variable. (output)

Return (long) — Number of scalar elements in the lower triangular part of the semidef-
inite variable.

Groups Scalar variable data

Task.getlintinf

void getlintinf
(mosek.liinfitem whichliinf,
long[] ivalue)

long getlintinf (mosek.liinfitem whichliinf)

Obtains a long integer information item from the task information database.
Parameters
e whichliinf (mosek.liinfitem) — Specifies a long information item. (input)

e ivalue (long by reference) — The value of the required long integer information
item. (output)

Return (long) — The value of the required long integer information item.
Groups Optimizer statistics

Task.getmaxnumanz

’ void getmaxnumanz (long[] maxnumanz)

long getmaxnumanz ()

Obtains number of preallocated non-zeros in A. When this number of non-zeros is reached
MOSEK will automatically allocate more space for A.

Parameters maxnumanz (long by reference) — Number of preallocated non-zero linear
matrix elements. (output)

Return (long) — Number of preallocated non-zero linear matrix elements.
Groups Scalar variable data

Task.getmaxnumbarvar

void getmaxnumbarvar (int[] maxnumbarvar)

int getmaxnumbarvar ()

Obtains maximum number of symmetric matrix variables for which space is currently preallocated.

Parameters maxnumbarvar (int by reference) — Maximum number of symmetric matrix
variables for which space is currently preallocated. (output)
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Return (int) — Maximum number of symmetric matrix variables for which space is
currently preallocated.

Groups Symmetric matriz variable data

Task.getmaxnumcon

void getmaxnumcon (int[] maxnumcon)

Obtains the number of preallocated constraints in the optimization task. When this number of
constraints is reached MOSEK will automatically allocate more space for constraints.

Parameters maxnumcon (int by reference) — Number of preallocated constraints in the
optimization task. (output)

Groups Linear constraint data

Task.getmaxnumcone

void getmaxnumcone (int[] maxnumcone)

Obtains the number of preallocated cones in the optimization task. When this number of cones is
reached MOSEK will automatically allocate space for more cones.

Parameters maxnumcone (int by reference) — Number of preallocated conic constraints
in the optimization task. (output)

Groups Task management

Task.getmaxnumqnz

void getmaxnumgnz (long[] maxnumgnz)

Obtains the number of preallocated non-zeros for @ (both objective and constraints). When this
number of non-zeros is reached MOSEK will automatically allocate more space for Q.

Parameters maxnumqnz (long by reference) — Number of non-zero elements preallocated
in quadratic coefficient matrices. (output)

Groups Scalar variable data

Task.getmaxnumvar

void getmaxnumvar (int[] maxnumvar)

Obtains the number of preallocated variables in the optimization task. When this number of
variables is reached MOSEK will automatically allocate more space for variables.

Parameters maxnumvar (int by reference) — Number of preallocated variables in the
optimization task. (output)

Groups Scalar variable data

Task.getmemusage

void getmemusage
(long[] meminuse,
long[] maxmemuse)

Obtains information about the amount of memory used by a task.

Parameters
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e meminuse (long by reference) — Amount of memory currently used by the task.
(output)

e maxmemuse (long by reference) — Maximum amount of memory used by the task
until now. (output)

Groups Memory

Task.getnumanz

’void getnumanz (int[] numanz)

int getnumanz ()

Obtains the number of non-zeros in A.

Parameters numanz (int by reference) — Number of non-zero elements in the linear
constraint matrix. (output)

Return (int) — Number of non-zero elements in the linear constraint matrix.
Groups Scalar variable data

Task.getnumanz64

void getnumanz64 (long[] numanz)

llong getnumanz64 ()

Obtains the number of non-zeros in A.

Parameters numanz (long by reference) — Number of non-zero elements in the linear
constraint matrix. (output)

Return (long) — Number of non-zero elements in the linear constraint matrix.
Groups Scalar variable data

Task.getnumbarablocktriplets

void getnumbarablocktriplets (long[] num)

long getnumbarablocktriplets ()

Obtains an upper bound on the number of elements in the block triplet form of A.

Parameters num (long by 7@627‘6271(16) — An upper bound on the number of elements in
the block triplet form of A. (output)

Return (long) — An upper bound on the number of elements in the block triplet form
of A.

Groups Symmetric matriz variable data

Task.getnumbaranz

’void getnumbaranz (longl[] nz)

llong getnumbaranz ()

Get the number of nonzero elements in A.
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Parameters nz (long by reference) — The number of nonzero block elements in Alie.
the number of A;; elements that are nonzero. (output)

Return (long) — The number of nonzero block elements in A i.e. the number of A;;
elements that are nonzero.

Groups Symmetric matriz variable data

Task.getnumbarcblocktriplets

’void getnumbarcblocktriplets (long[] num)

llong getnumbarcblocktriplets ()

Obtains an upper bound on the number of elements in the block triplet form of C.

Parameters num (long by rﬂfm’ence) — An upper bound on the number of elements in
the block triplet form of C. (output)

Return (long) — An upper bound on the number of elements in the block triplet form
of C.

Groups Symmetric matriz variable data

Task.getnumbarcnz

void getnumbarcnz (long[] nz)

llong getnumbarcnz ()

Obtains the number of nonzero elements in C.

Parameters nz (long by reference) — The number of nonzeros in C i.e. the number of
elements C'; that are nonzero. (output)

Return (long) — The number of nonzeros in C i.e. the number of elements C; that are
nonzero.

Groups Symmetric matriz variable data

Task.getnumbarvar

’void getnumbarvar (int[] numbarvar)

int getnumbarvar ()

Obtains the number of semidefinite variables.

Parameters numbarvar (int by reference) — Number of semidefinite variables in the
problem. (output)

Return (int) — Number of semidefinite variables in the problem.
Groups Symmetric matriz variable data

Task.getnumcon

’void getnumcon (int[] numcon)

’int getnumcon ()

Obtains the number of constraints.
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Parameters numcon (int by reference) — Number of constraints. (output)
Return (int) — Number of constraints.
Groups Linear constraint data

Task.getnumcone

’void getnumcone (int[] numcone) ‘

int getnumcone () ‘

Obtains the number of cones.

Parameters numcone (int by reference) — Number of conic constraints. (output)
Return (int) — Number of conic constraints.
Groups Conic constraint data

Task.getnumconemem

void getnumconemem
(int k,
int [] nummem)

Obtains the number of members in a cone.
Parameters
e k (int) — Index of the cone. (input)

e nummenm (int by reference) — Number of member variables in the cone. (output)
Groups Conic constraint data

Task.getnumintvar

void getnumintvar (int[] numintvar) ‘

Obtains the number of integer-constrained variables.

Parameters numintvar (int by reference) — Number of integer variables. (output)
Groups Scalar variable data

Task.getnumparam

void getnumparam
(mosek.parametertype partype,
int[] numparam)

Obtains the number of parameters of a given type.
Parameters
e partype (mosek.parametertype) — Parameter type. (input)

e numparam (int by reference) — The number of parameters of type partype. (out-
put)

Groups Parameter management

Task.getnumgconknz
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void getnumqconknz
(int k,
long[] numgcnz)

long getnumgconknz (int k)

Obtains the number of non-zero quadratic terms in a constraint.
Parameters

e k (int) — Index of the constraint for which the number quadratic terms should
be obtained. (input)

e numqcnz (long by reference) — Number of quadratic terms. (output)
Return (long) — Number of quadratic terms.
Groups Scalar variable data

Task.getnumqobjnz

void getnumgobjnz (long[] numgonz)

llong getnumgobjnz ()

Obtains the number of non-zero quadratic terms in the objective.

Parameters numgonz (long by reference) — Number of non-zero elements in the
quadratic objective terms. (output)

Return (long) — Number of non-zero elements in the quadratic objective terms.
Groups Scalar variable data

Task.getnumsymmat

void getnumsymmat (long[] num)

Obtains the number of symmetric matrices stored in the vector E.

Parameters num (long by reference) — The number of symmetric sparse matrices. (out-
put)
Groups Scalar variable data

Task.getnumvar

’void getnumvar (int[] numvar)

int getnumvar ()

Obtains the number of variables.
Parameters numvar (int by reference) — Number of variables. (output)
Return (int) — Number of variables.
Groups Scalar variable data

Task.getobjname

void getobjname (StringBuffer objname)
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String getobjname ()

Obtains the name assigned to the objective function.
Parameters objname (StringBuffer) — Assigned the objective name. (output)
Return (String) — Assigned the objective name.
Groups Naming

Task.getobjnamelen

’void getobjnamelen (int[] len)

’int getobjnamelen ()

Obtains the length of the name assigned to the objective function.

Parameters len (int by reference) — Assigned the length of the objective name. (out-
put)

Return (int) — Assigned the length of the objective name.

Groups Naming

Task.getobjsense

void getobjsense (mosek.objsense[] sense)

’mosek.objsense getobjsense ()

Gets the objective sense of the task.

Parameters sense (mosek.objsense by reference) — The returned objective sense.
(output)

Return (mosek.objsense) — The returned objective sense.
Groups Objective data

Task.getparammax

void getparammax
(mosek.parametertype partype,
int[] parammax)

Obtains the maximum index of a parameter of type partype plus 1.
Parameters
e partype (mosek.parametertype) — Parameter type. (input)

e parammax (int by reference) — The maximum index (plus 1) of the given param-
eter type. (output)

Groups Parameter management

Task.getparamname

void getparamname
(mosek.parametertype partype,
int param,
StringBuffer parname)
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Obtains the name for a parameter param of type partype.
Parameters
e partype (mosek.parametertype) — Parameter type. (input)
e param (int) — Which parameter. (input)
e parname (StringBuffer) — Parameter name. (output)
Groups Parameter management

Task.getprimalobj

void getprimalobj
(mosek.soltype whichsol,
double[] primalobj)

double getprimalobj (mosek.soltype whichsol)

Computes the primal objective value for the desired solution. Note that if the solution is an
infeasibility certificate, then the fixed term in the objective is not included.

Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)

e primalobj (double by reference) — Objective value corresponding to the primal
solution. (output)

Return (double) — Objective value corresponding to the primal solution.
Groups Solution information

Task.getprimalsolutionnorms

void getprimalsolutionnorms
(mosek.soltype whichsol,
double[] nrmxc,
double[] nrmxx,
double[] nrmbarx)

Compute norms of the primal solution.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e nrmxc (double by reference) — The norm of the x¢ vector. (output)
e nrmxx (double by reference) — The norm of the x vector. (output)
e nrmbarx (double by reference) — The norm of the X vector. (output)
Groups Solution information

Task.getprobtype

’void getprobtype (mosek.problemtype[] probtype)

mosek.problemtype getprobtype ()

Obtains the problem type.

Parameters probtype (mosek.problemtype by reference) — The problem type. (out-
put)
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Return (mosek.problemtype) — The problem type.
Groups Task diagnostics

Task.getprosta

void getprosta
(mosek.soltype whichsol,
mosek.prostal] prosta)

mosek.prosta getprosta (mosek.soltype whichsol)

Obtains the problem status.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e prosta (mosek.prosta by reference) — Problem status. (output)
Return (mosek.prosta) — Problem status.
Groups Solution information

Task.getpviolbarvar

void getpviolbarvar
(mosek.soltype whichsol,
int[] sub,
double[] viol)

Computes the primal solution violation for a set of semidefinite variables. Let (X;)* be the value
of the variable X ; for the specified solution. Then the primal violation of the solution associated
with variable X; is given by

max(—Amin(X;), 0.0).
Both when the solution is a certificate of dual infeasibility or when it is primal feasible the violation
should be small.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e sub (int[]) — An array of indexes of X variables. (input)

e viol (double[]) — viol[k] is how much the solution violates the constraint
Xsu[k] € St (output)

Groups Solution information

Task.getpviolcon

void getpviolcon
(mosek.soltype whichsol,
int[] sub,
double[] viol)

Computes the primal solution violation for a set of constraints. The primal violation of the solution
associated with the i-th constraint is given by

numuvar—1

max(7l{ — (25)%, ()" —7uf), | Y aya; —af))
j=0
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Task.

where 7 = 0 if the solution is a certificate of dual infeasibility and 7 = 1 otherwise. Both when
the solution is a certificate of dual infeasibility and when it is primal feasible the violation should
be small. The above formula applies for the linear case but is appropriately generalized in other
cases.

Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e sub (int[]) — An array of indexes of constraints. (input)

e viol (double[]) — viol[k] is the violation associated with the solution for the
constraint sub[k]. (output)

Groups Solution information

getpviolcones

void getpviolcones
(mosek.soltype whichsol,
int[] sub,
double[] viol)

Task.

Computes the primal solution violation for a set of conic constraints. Let x* be the value of the
variable z for the specified solution. For simplicity let us assume that x is a member of a quadratic
cone, then the violation is computed as follows

{ maX(O> ||(E2n|| - 1'1)/\/5, x1 2 _”532:71”7

|z, otherwise.

Both when the solution is a certificate of dual infeasibility or when it is primal feasible the violation
should be small.

Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e sub (int[]) — An array of indexes of conic constraints. (input)

e viol (double[]) — viol[k] is the violation of the solution associated with the
conic constraint number sub[k]. (output)

Groups Solution information

getpviolvar

void getpviolvar
(mosek.soltype whichsol,
int[] sub,
double[] viol)

Computes the primal solution violation associated to a set of variables. Let z7 be the value of z;
for the specified solution. Then the primal violation of the solution associated with variable x; is
given by

max(7l] —x}, ¥j —Tuj, 0).

where 7 = 0 if the solution is a certificate of dual infeasibility and 7 = 1 otherwise. Both when the
solution is a certificate of dual infeasibility and when it is primal feasible the violation should be
small.

Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)

e sub (int[]) — An array of indexes of x variables. (input)
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e viol (double[]) — viol[k] is the violation associated with the solution for the
variable Zguppg. (output)

Groups Solution information

Task.getqconk

void getqconk
(int k,
long[] numgcnz,
int[] qcsubi,
int[] qcsubj,
double[] qcval)

long getqconk
(int k,
int[] qcsubi,
int[] qcsubj,
double[] qcval)

Obtains all the quadratic terms in a constraint. The quadratic terms are stored sequentially in
gcsubi, qcsubj, and qcval.

Parameters
e k (int) — Which constraint. (input)
e numqcnz (long by reference) — Number of quadratic terms. (output)
e gcsubi (int[1) — Row subscripts for quadratic constraint matrix. (output)
e gcsubj (int[1) — Column subscripts for quadratic constraint matrix. (output)
e qgcval (double[]) — Quadratic constraint coeflicient values. (output)
Return (long) — Number of quadratic terms.
Groups Scalar variable data

Task.getqobj

void getqobj
(long[] numqonz,
int[] qosubi,
int[] qosubj,
double[] qoval)

Obtains the quadratic terms in the objective. The required quadratic terms are stored sequentially
in qosubi, qosubj, and qoval.

Parameters

e numqonz (long by reference) — Number of non-zero elements in the quadratic
objective terms. (output)

e gosubi (int[]) — Row subscripts for quadratic objective coefficients. (output)

e gosubj (int[]) — Column subscripts for quadratic objective coefficients. (out-
put)
e goval (double[]) — Quadratic objective coefficient values. (output)

Groups Scalar variable data

Task.getqobjij
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void getqobjij
(int i,
int j,
double[] qoij)

Obtains one coefficient ¢7; in the quadratic term of the objective.
Parameters
e i (int) — Row index of the coefficient. (input)
e j (int) — Column index of coefficient. (input)
e qoij (double by reference) — The required coefficient. (output)

Groups Scalar variable data

Task.getreducedcosts

void getreducedcosts
(mosek.soltype whichsol,
int first,
int last,
double[] redcosts)

Computes the reduced costs for a slice of variables and returns them in the array redcosts i.e.
redcosts[j — first] = (s7); — (si);, j = first,...,last — 1 (16.2)

Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e first (int) — The index of the first variable in the sequence. (input)
e last (int) — The index of the last variable in the sequence plus 1. (input)

e redcosts (double[]) — The reduced costs for the required slice of variables.
(output)

Groups Solution (get)

Task.getskc

void getskc
(mosek.soltype whichsol,
mosek.stakey[] skc)

Obtains the status keys for the constraints.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
o skc (mosek. stakey []) — Status keys for the constraints. (output)
Groups Solution (get)

Task.getskcslice

void getskcslice
(mosek.soltype whichsol,
int first,
int last,
mosek.stakey[] skc)
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Obtains the status keys for a slice of the constraints.

Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)
e skc (mosek.stakey []) — Status keys for the constraints. (output)

Groups Solution (get)

Task.getskx

void getskx
(mosek.soltype whichsol,
mosek.stakey[] skx)

Obtains the status keys for the scalar variables.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
o skx (mosek.stakey [1) — Status keys for the variables. (output)
Groups Solution (get)

Task.getskxslice

void getskxslice
(mosek.soltype whichsol,
int first,
int last,
mosek.stakey[] skx)

Obtains the status keys for a slice of the scalar variables.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)
e skx (mosek.stakey [1) — Status keys for the variables. (output)
Groups Solution (get)

Task.getslc

void getslc
(mosek.soltype whichsol,
double[] slc)

Obtains the sf vector for a solution.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)

e slc (double[]) — Dual variables corresponding to the lower bounds on the con-
straints. (output)

Groups Solution (get)
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Task.getslcslice

void getslcslice
(mosek.soltype whichsol,
int first,
int last,
double[] slc)

Obtains a slice of the s} vector for a solution.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)

e slc (double[]) — Dual variables corresponding to the lower bounds on the con-
straints. (output)

Groups Solution (get)

Task.getslx

void getslx
(mosek.soltype whichsol,
double[] slx)

Obtains the s vector for a solution.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)

e slx (double[]) — Dual variables corresponding to the lower bounds on the vari-
ables. (output)

Groups Solution (get)

Task.getslxslice

void getslxslice
(mosek.soltype whichsol,
int first,
int last,
double[] slx)

Obtains a slice of the s vector for a solution.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)

e slx (double[]) — Dual variables corresponding to the lower bounds on the vari-
ables. (output)

Groups Solution (get)

Task.getsnx
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void getsnx
(mosek.soltype whichsol,
double[] snx)

Obtains the s vector for a solution.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)

e snx (double[]) — Dual variables corresponding to the conic constraints on the
variables. (output)

Groups Solution (get)

Task.getsnxslice

void getsnxslice
(mosek.soltype whichsol,
int first,
int last,
double[] snx)

Obtains a slice of the s vector for a solution.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)

e snx (double[]) — Dual variables corresponding to the conic constraints on the
variables. (output)

Groups Solution (get)

Task.getsolsta

void getsolsta
(mosek.soltype whichsol,
mosek.solsta[] solsta)

mosek.solsta getsolsta (mosek.soltype whichsol)

Obtains the solution status.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e solsta (mosek.solsta by reference) — Solution status. (output)
Return (mosek.solsta) — Solution status.
Groups Solution information

Task.getsolution

void getsolution
(mosek.soltype whichsol,
mosek.prostal[] prosta,
mosek.solstal[] solsta,
mosek.stakey[] skc,
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mosek.stakey[] skx,
mosek.stakey[] skn,
double[] xc,
double[] xx,
doublel[] vy,
double[] slc,
double[] suc,
double[] slx,
double[] sux,
double[] snx)

Obtains the complete solution.

Consider the case of linear programming. The primal problem is given by

minimize e+ cf
subject to ¢ < Ax <
< x <
and the corresponding dual problem is
maximize (19T s¢ — (u)T's
+(A)sp = (u) sy + !
subject to ATy + 57 — s
—Ytsi—sy

C C T xr
87,855,878, > 0.

A conic optimization problem has the same primal variables as
dual of a conic optimization problem is given by:

maximize (19)Ts8 — (ue)Ts,
H(I) st — (ut) sy + ¢!
subject to ATy + s7 — s% + s
Y+ 5] — 5,
sy e K*

in the linear case

Vol

The mapping between variables and arguments to the function is as follows:

e xx : Corresponds to variable = (also denoted z%).
e xc : Corresponds to x¢ := Ax.

e y : Corresponds to variable y.

e slc: Corresponds to variable sj.

e suc: Corresponds to variable s,.

e slx: Corresponds to variable sf.

e sux: Corresponds to variable s7.

e snx: Corresponds to variable s?.

. Recall that the

The meaning of the values returned by this function depend on the solution status returned in the

argument solsta. The most important possible values of solsta are:

e solsta.optimal : An optimal solution satisfying the optimality criteria for continuous prob-

lems is returned.

e solsta.integer_optimal : An optimal solution satisfying the optimality criteria for integer

problems is returned.

e solsta.prim_feas : A solution satisfying the feasibility criteria.

e solsta.prim_infeas_cer : A primal certificate of infeasibility is returned.

226

Chapter 16. API Reference




MOSEK Optimizer API for Java, Release 8.1.0.76

e solsta.dual_infeas_cer : A dual certificate of infeasibility is returned.

In order to retrieve the primal and dual values of semidefinite variables see Task.getbarzj and
Task.getbarsy.

Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e prosta (mosek.prosta by reference) — Problem status. (output)
e solsta (mosek.solsta by reference) — Solution status. (output)
o skc (mosek.stakey [1) — Status keys for the constraints. (output)
e skx (mosek.stakey [1) — Status keys for the variables. (output)
e skn (mosek.stakey []) — Status keys for the conic constraints. (output)
e xc (double[]) — Primal constraint solution. (output)
e xx (double[]) — Primal variable solution. (output)

e y (double[]) — Vector of dual variables corresponding to the constraints. (out-
put)

e slc (double[]) — Dual variables corresponding to the lower bounds on the con-
straints. (output)

e suc (double[]) — Dual variables corresponding to the upper bounds on the
constraints. (output)

e slx (double[]) — Dual variables corresponding to the lower bounds on the vari-
ables. (output)

e sux (double[]) — Dual variables corresponding to the upper bounds on the
variables. (output)

e snx (double[]) — Dual variables corresponding to the conic constraints on the
variables. (output)

Groups Solution (get)
Task-getselutiont Deprecated

void getsolutioni
(mosek.accmode accmode,
int i,
mosek.soltype whichsol,
mosek.stakey[] sk,
double[] x,
double[] s1,
double[] su,
double[] sn)

Obtains the primal and dual solution information for a single constraint or variable.
Parameters

e accmode (mosek.accmode) — Defines whether solution information for a con-
straint or for a variable is retrieved. (input)

i (int) — Index of the constraint or variable. (input)

e whichsol (mosek.soltype) — Selects a solution. (input)
o sk (mosek.stakey by reference) — Status key of the constraint of variable. (out-
put)

x (double by reference) — Solution value of the primal variable. (output)
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sl (double by reference) — Solution value of the dual variable associated with
the lower bound. (output)

su (double by reference) — Solution value of the dual variable associated with
the upper bound. (output)

sn (double by reference) — Solution value of the dual variable associated with
the cone constraint. (output)

Groups Solution (get)

Task.getsolutioninfo

void getsolutioninfo
(mosek.soltype whichsol,

double[]
double[]
double[]
double[]
double[]
double[]
double[]
double[]
double[]
double[]
double[]

pobj,
pviolcon,
pviolvar,
pviolbarvar,
pviolcone,
pviolitg,
dobj,
dviolcon,
dviolvar,
dviolbarvar,
dviolcone)

Obtains information about a solution.

Parameters

whichsol (mosek.soltype) — Selects a solution. (input)

pobj (double by reference) — The primal objective value as computed by Task.
getprimaloby. (output)

pviolcon (double by reference) — Maximal primal violation of the solution
associated with the x¢ variables where the violations are computed by Task.
getpuiolcon. (output)

pviolvar (double by reference) — Maximal primal violation of the solution for
the x variables where the violations are computed by Task.getpviolvar. (out-

put)

pviolbarvar (double by reference) — Maximal primal violation of solution for
the X variables where the violations are computed by Task.getpviolbarvar.
(output)

pviolcone (double by reference) — Maximal primal violation of solution for the
conic constraints where the violations are computed by Task.getpuviolcones.
(output)

pviolitg (double by reference) — Maximal violation in the integer constraints.
The violation for an integer variable x; is given by min(z; — |z, ], [z;] — z;).
This number is always zero for the interior-point and basic solutions. (output)

dobj (double by reference) — Dual objective value as computed by Task.
getdualobj. (output)

dviolcon (double by reference) — Maximal violation of the dual solution asso-
ciated with the x¢ variable as computed by Task.getdviolcon. (output)

dviolvar (double by reference) — Maximal violation of the dual solution asso-
ciated with the = variable as computed by Task.getdviolvar. (output)
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e dviolbarvar (double by reference) — Maximal violation of the dual solution
associated with the S variable as computed by Task.getdviolbarvar. (output)

e dviolcone (double by reference) — Maximal violation of the dual solution as-
sociated with the dual conic constraints as computed by Task.getdviolcones.
(output)

Groups Solution information

Task.getsolutionslice

void getsolutionslice
(mosek.soltype whichsol,
mosek.solitem solitem,
int first,
int last,
double[] wvalues)

Obtains a slice of one item from the solution. The format of the solution is exactly as in Task.
getsolution. The parameter solitem determines which of the solution vectors should be returned.

Parameters

whichsol (mosek.soltype) — Selects a solution. (input)

solitem (mosek.solitem) — Which part of the solution is required. (input)

first (int) — First index in the sequence. (input)

last (int) — Last index plus 1 in the sequence. (input)

values (double[]) — The values in the required sequence are stored sequentially
in values. (output)

Groups Solution (get)

Task.getsparsesymmat

void getsparsesymmat
(long idx,
int[] subi,
int[] subj,
double[] valij)

Get a single symmetric matrix from the matrix store.
Parameters
e idx (long) — Index of the matrix to retrieve. (input)
e subi (int[]) — Row subscripts of the matrix non-zero elements. (output)
e subj (int[]) — Column subscripts of the matrix non-zero elements. (output)
e valij (double[]) — Coefficients of the matrix non-zero elements. (output)
Groups Scalar variable data

Task.getstrparam

void getstrparam
(mosek.sparam param,
int[] 1len,
StringBuffer parvalue)
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String getstrparam
(mosek.sparam param,
int[] len)

Obtains the value of a string parameter.
Parameters
e param (mosek.sparam) — Which parameter. (input)
e len (int by reference) — The length of the parameter value. (output)
e parvalue (StringBuffer) — Parameter value. (output)
Return (String) — Parameter value.
Groups Parameters (get)

Task.getstrparamlen

void getstrparamlen
(mosek.sparam param,
int[] len)

int getstrparamlen (mosek.sparam param)

Obtains the length of a string parameter.
Parameters
e param (mosek.sparam) — Which parameter. (input)
e len (int by reference) — The length of the parameter value. (output)
Return (int) — The length of the parameter value.
Groups Parameters (get)

Task.getsuc

void getsuc
(mosek.soltype whichsol,
double[] suc)

Obtains the s¢ vector for a solution.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)

e suc (double[]) — Dual variables corresponding to the upper bounds on the
constraints. (output)

Groups Solution (get)

Task.getsucslice

void getsucslice
(mosek.soltype whichsol,
int first,
int last,
double[] suc)

Obtains a slice of the s vector for a solution.

Parameters
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e whichsol (mosek.soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)

e suc (double[]) — Dual variables corresponding to the upper bounds on the
constraints. (output)

Groups Solution (get)

Task.getsux

void getsux
(mosek.soltype whichsol,
double[] sux)

Obtains the s vector for a solution.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)

e sux (double[]) — Dual variables corresponding to the upper bounds on the
variables. (output)

Groups Solution (get)

Task.getsuxslice

void getsuxslice
(mosek.soltype whichsol,
int first,
int last,
double[] sux)

Obtains a slice of the s vector for a solution.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)

e sux (double[]) — Dual variables corresponding to the upper bounds on the
variables. (output)

Groups Solution (get)

Task.getsymmatinfo

void getsymmatinfo
(long idx,
int[] dim,
long[] nz,
mosek.symmattype[] type)

MOSEK maintains a vector denoted by E of symmetric data matrices. This function makes it
possible to obtain important information about a single matrix in E.

Parameters
e idx (long) — Index of the matrix for which information is requested. (input)

e dim (int by reference) — Returns the dimension of the requested matrix. (output)
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e nz (long by reference) — Returns the number of non-zeros in the requested ma-
trix. (output)

e type (mosek.symmattype by reference) — Returns the type of the requested
matrix. (output)

Groups Scalar variable data

Task.gettaskname

’void gettaskname (StringBuffer taskname)

’String gettaskname ()

Obtains the name assigned to the task.
Parameters taskname (StringBuffer) — Returns the task name. (output)
Return (String) — Returns the task name.
Groups Naming

Task.gettasknamelen

’void gettasknamelen (int[] len)

int gettasknamelen ()

Obtains the length the task name.
Parameters len (int by reference) — Returns the length of the task name. (output)
Return (int) — Returns the length of the task name.
Groups Naming

Task.getvarbound

void getvarbound
(int i,
mosek.boundkey[] bk,
double[] bl,
double[] bu)

Obtains bound information for one variable.
Parameters

e i (int) — Index of the variable for which the bound information should be ob-
tained. (input)

e bk (mosek.boundkey by reference) — Bound keys. (output)

e bl (double by reference) — Values for lower bounds. (output)

e bu (double by reference) — Values for upper bounds. (output)
Groups Bound data

Task.getvarboundslice

void getvarboundslice
(int first,
int last,

232 Chapter 16. API Reference



MOSEK Optimizer API for Java, Release 8.1.0.76

mosek.boundkey[] bk,
double[] b1,
double[] bu)

Obtains bounds information for a slice of the variables.
Parameters
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)
e bk (mosek.boundkey [1) — Bound keys. (output)
e bl (double[]) — Values for lower bounds. (output)
e bu (double[]) — Values for upper bounds. (output)
Groups Bound data

Task.getvarname

void getvarname
(int j,
StringBuffer name)

String getvarname (int j)

Obtains the name of a variable.
Parameters
e j (int) — Index of a variable. (input)
e name (StringBuffer) — Returns the required name. (output)
Return (String) — Returns the required name.
Groups Naming

Task.getvarnameindex

void getvarnameindex
(String somename,
int[] asgn,
int[] index)

int getvarnameindex
(String somename,
int[] asgn)

Checks whether the name somename has been assigned to any variable. If so, the index of the
variable is reported.

Parameters
e somename (String) — The name which should be checked. (input)

e asgn (int by reference) — Is non-zero if the name somename is assigned to a
variable. (output)

e index (int by reference) — If the name somename is assigned to a variable, then
index is the index of the variable. (output)

Return (int) — If the name somename is assigned to a variable, then index is the index
of the variable.
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Groups Naming

Task.getvarnamelen

void getvarnamelen
(int i,
int[] len)

int getvarnamelen (int i)

Obtains the length of the name of a variable.

Parameters
e i (int) — Index of a variable. (input)

e len (int by reference) — Returns the length of the indicated name. (output)
Return (int) — Returns the length of the indicated name.
Groups Naming

Task.getvartype

void getvartype
(int j,
mosek.variabletype[] vartype)

mosek.variabletype getvartype (int j)

Gets the variable type of one variable.
Parameters
e j (int) — Index of the variable. (input)

e vartype (mosek.variabletype by reference) — Variable type of the j-th vari-
able. (output)

Return (mosek.variabletype) — Variable type of the j-th variable.
Groups Scalar variable data

Task.getvartypelist

void getvartypelist
(int[] subj,
mosek.variabletype[] vartype)

Obtains the variable type of one or more variables. Upon return vartype [k] is the variable type
of variable subj [k].

Parameters
e subj (int[]1) — A list of variable indexes. (input)

e vartype (mosek.variabletype [1) — The variables types corresponding to the
variables specified by subj. (output)

Groups Scalar variable data

Task.getxc
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void getxc
(mosek.soltype whichsol,
double[] xc)

Task.

Obtains the z¢ vector for a solution.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e xc (double[]) — Primal constraint solution. (output)
Groups Solution (get)

getxcslice

void getxcslice
(mosek.soltype whichsol,
int first,
int last,
double[] xc)

Task.

Obtains a slice of the z¢ vector for a solution.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)
e xc (double[]) — Primal constraint solution. (output)
Groups Solution (get)

getxx

void getxx
(mosek.soltype whichsol,
double[] xx)

Task.

Obtains the z”* vector for a solution.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e xx (double[]) — Primal variable solution. (output)
Groups Solution (get)

getxxslice

void getxxslice
(mosek.soltype whichsol,
int first,
int last,
double[] xx)

Obtains a slice of the % vector for a solution.
Parameters

e whichsol (mosek.soltype) — Selects a solution. (input)
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e first (int) — First index in the sequence. (input)

e last (int) — Last index plus 1 in the sequence. (input)

e xx (double[]) — Primal variable solution. (output)
Groups Solution (get)

Task.gety

void gety
(mosek.soltype whichsol,
double[] y)

Obtains the y vector for a solution.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)

e y (double[]) — Vector of dual variables corresponding to the constraints. (out-
put)
Groups Solution (get)

Task.getyslice

void getyslice
(mosek.soltype whichsol,
int first,
int last,
double[] y)

Obtains a slice of the y vector for a solution.
Parameters
e whichsol (mosek.soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)

e y (double[]) — Vector of dual variables corresponding to the constraints. (out-
put)
Groups Solution (get)

Task.initbasissolve

void initbasissolve (int[] basis)

Prepare a task for use with the Task.solvewithbasis function.
This function should be called
e immediately before the first call to Task.solvewithbasis, and

e immediately before any subsequent call to Task.solvewithbasts if the task has been modi-
fied.

If the basis is singular i.e. not invertible, then the error rescode. err_basis_singular is reported.

Parameters basis (int[]) — The array of basis indexes to use. The array is interpreted
as follows: If basis[i] < numcon — 1, then xgasis[i] is in the basis at position 1,
otherwise Tpasis[ij—nuncon 1S i the basis at position i. (output)
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Groups Basis matriz

Task.inputdata

void inputdata
(int maxnumcon,
int maxnumvar,
double[] c,
double cfix,
int[] aptrb,
int[] aptre,
int[] asub,
double[] aval,
mosek.boundkey[] bkc,
double[] blc,
double[] buc,
mosek.boundkey[] bkx,
double[] blx,
double[] bux)

void inputdata
(int maxnumcon,
int maxnumvar,
double[] c,
double cfix,
long[] aptrb,
long[] aptre,
int[] asub,
double[] aval,
mosek.boundkey[] bkc,
double[] blc,
double[] buc,
mosek.boundkey[] bkx,
double[] blx,
double[] bux)

Input the linear part of an optimization task in one function call.

Parameters

maxnumcon (int) — Number of preallocated constraints in the optimization task.
(input)
maxnumvar (int) — Number of preallocated variables in the optimization task.
(input)

¢ (double[]) — Linear terms of the objective as a dense vector. The length is
the number of variables. (input)

cfix (double) — Fixed term in the objective. (input)

aptrb (int[]1) — Row or column start pointers. (input)

aptrb (long[l) — Row or column start pointers. (input)

aptre (int[]) — Row or column end pointers. (input)

aptre (long[]) — Row or column end pointers. (input)

asub (int[]1) — Coefficient subscripts. (input)

aval (double[]) — Coeflicient values. (input)

bkc (mosek.boundkey []1) — Bound keys for the constraints. (input)

blc (double[]) — Lower bounds for the constraints. (input)
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e buc (double[]) — Upper bounds for the constraints. (input)
e bkx (mosek.boundkey [1) — Bound keys for the variables. (input)
e blx (double[]) — Lower bounds for the variables. (input)

bux (double[]) — Upper bounds for the variables. (input)
Groups 7Tusk management

Task.isdouparname

void isdouparname
(String parname,
mosek.dparam[] param)

Checks whether parname is a valid double parameter name.
Parameters
e parname (String) — Parameter name. (input)

e param (mosek.dparam by reference) — Returns the parameter corresponding to
the name, if one exists. (output)

Groups Parameter management

Task.isintparname

void isintparname
(String parname,
mosek.iparam[] param)

Checks whether parname is a valid integer parameter name.
Parameters
e parname (String) — Parameter name. (input)

e param (mosek.iparam by reference) — Returns the parameter corresponding to
the name, if one exists. (output)

Groups Parameter management

Task.isstrparname

void isstrparname
(String parname,
mosek.sparam[] param)

Checks whether parname is a valid string parameter name.
Parameters
e parname (String) — Parameter name. (input)

e param (mosek.sparam by reference) — Returns the parameter corresponding to
the name, if one exists. (output)

Groups Parameter management

Task.linkfiletostream
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void linkfiletostream
(mosek.streamtype whichstream,
String filename,
int append)

Directs all output from a task stream whichstream to a file filename.
Parameters
e whichstream (mosek.streamtype) — Index of the stream. (input)
e filename (String) — A valid file name. (input)

e append (int) — If this argument is 0 the output file will be overwritten, otherwise
it will be appended to. (input)

Groups Logging

Task.onesolutionsummary

void onesolutionsummary
(mosek.streamtype whichstream,
mosek.soltype whichsol)

Prints a short summary of a specified solution.
Parameters
e whichstream (mosek.streamtype) — Index of the stream. (input)
e whichsol (mosek.soltype) — Selects a solution. (input)
Groups Tusk diagnostics

Task.optimize

void optimize (mosek.rescode[] trmcode)

’mosek.rescode optimize ()

Calls the optimizer. Depending on the problem type and the selected optimizer this will call one of
the optimizers in MOSEK. By default the interior point optimizer will be selected for continuous
problems. The optimizer may be selected manually by setting the parameter iparam. optimizer.

Parameters trmcode (mosek.rescode by reference) — Is either rescode. ok or a ter-
mination response code. (output)

Return (mosek.rescode) — Is either rescode. ok or a termination response code.
Groups Optimization

Task.optimizermt

void optimizermt
(String server,
String port,
mosek.rescode[] trmcode)

Offload the optimization task to a solver server defined by server:port. The call will block until
a result is available or the connection closes.

If the string parameter sparam.remote_access_token is not blank, it will be passed to the server
as authentication.
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Parameters
e server (String) — Name or IP address of the solver server. (input)
e port (String) — Network port of the solver server. (input)

e trmcode (mosek.rescode by reference) —Is either rescode. ok or a termination
response code. (output)

Task.optimizersummary

void optimizersummary (mosek.streamtype whichstream)

Prints a short summary with optimizer statistics from last optimization.
Parameters whichstream (mosek.streamtype) — Index of the stream. (input)
Groups Task diagnostics

Task.primalrepair

void primalrepair
(double[] wlc,
double[] wuc,
double[] wlx,
double[] wux)

The function repairs a primal infeasible optimization problem by adjusting the bounds on the
constraints and variables where the adjustment is computed as the minimal weighted sum of re-
laxations to the bounds on the constraints and variables. Observe the function only repairs the
problem but does not solve it. If an optimal solution is required the problem should be optimized
after the repair.

The function is applicable to linear and conic problems possibly with integer variables.

Observe that when computing the minimal weighted relaxation the termination tolerance specified
by the parameters of the task is employed. For instance the parameter iparam.mio_mode can be
used to make MOSEK ignore the integer constraints during the repair which usually leads to a
much faster repair. However, the drawback is of course that the repaired problem may not have
an integer feasible solution.

Note the function modifies the task in place. If this is not desired, then apply the function to a
cloned task.

Parameters

e wlc (double[]l) — (wf); is the weight associated with relaxing the lower bound
on constraint 7. If the weight is negative, then the lower bound is not relaxed.
Moreover, if the argument is NULL, then all the weights are assumed to be 1.
(input)

e wuc (double[]) — (wf); is the weight associated with relaxing the upper bound
on constraint ¢. If the weight is negative, then the upper bound is not relaxed.
Moreover, if the argument is NULL, then all the weights are assumed to be 1.
(input)

e wlx (double[]) — (w}); is the weight associated with relaxing the lower bound
on variable j. If the weight is negative, then the lower bound is not relaxed.
Moreover, if the argument is NULL, then all the weights are assumed to be 1.
(input)

e wux (double[]) - (w}); is the weight associated with relaxing the upper bound
on variable j. If the weight is negative, then the upper bound is not relaxed.
Moreover, if the argument is NULL, then all the weights are assumed to be 1.
(input)
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Groups [nfeasibility diagnostics

Task.primalsensitivity

double[]
double[]
double[]
double[]
double[]
double[]
double[]
double[]

void primalsensitivity
(int[] subi,
mosek.mark[] marki,
int[] subj,
mosek.mark[] markj,

leftpricei,
rightpricei,
leftrangei,
rightrangei,
leftpricej,
rightpricej,
leftrangej,
rightrangej)

Calculates sensitivity information for bounds on variables and constraints. For details on sensitivity
analysis, the definitions of shadow price and linearity interval and an example see Section Sensitivity

Analysis.

The type of sensitivity analysis to be performed (basis or optimal partition) is controlled by the
parameter iparam.sensitivity_type.

Parameters

subi (int[]) — Indexes of constraints to analyze. (input)

marki (mosek.mark [1) — The value of markil[i] indicates for which bound of
constraint subi[i] sensitivity analysis is performed. If marki[i] = mark.up
the upper bound of constraint subi[i] is analyzed, and if marki[i]l = mark.
lo the lower bound is analyzed. If subil[i] is an equality constraint, either
mark.lo or mark.up can be used to select the constraint for sensitivity analysis.
(input)

subj (int[]) — Indexes of variables to analyze. (input)

markj (mosek.mark [1) — The value of markj[j] indicates for which bound of
variable subj[j] sensitivity analysis is performed. If markj[j] = mark.up the
upper bound of variable subj[j] is analyzed, and if markj[j] = mark.lo the
lower bound is analyzed. If subj[j] is a fixed variable, either mark. Lo or mark.
up can be used to select the bound for sensitivity analysis. (input)

leftpricei (double[]) — leftpriceil[i] is the left shadow price for the bound
marki[i] of constraint subi[il. (output)

rightpricei (double[]) — rightpriceili] is the right shadow price for the
bound marki[i] of constraint subi[i]. (output)

leftrangei (double[]) — leftrangeilil] is the left range (1 for the bound
marki[i] of constraint subi[i]. (output)

rightrangei (double[]) — rightrangeil[i] is the right range S5 for the bound
marki[i] of constraint subi[i]. (output)

leftpricej (double[]) — leftpricej[j] is the left shadow price for the bound
markj[j] of variable subj[j]. (output)

rightpricej (double[]) — rightpricej[j] is the right shadow price for the
bound markj[j] of variable subj[j]. (output)

leftrangej (double[]) — leftrangej[j] is the left range 31 for the bound
markj[j] of variable subj[j]. (output)
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e rightrangej (double[]) — rightrangej[j] is the right range /35 for the bound

markj[j] of variable subj[j]. (output)

Groups Sensitiwity analysis

Task.putacol

void putacol
(int j,
int[] subj,
double[] valj)

Change one column of the linear constraint matrix A. Resets all the elements in column j to zero

and then sets

Parameters

e j (int) — Index of a column in A. (input)

Osubj[k],j = valj [k]v

k=0,...,nzj — 1.

e subj (int[]) — Row indexes of non-zero values in column j of A. (input)

e valj (double[]) — New non-zero values of column j in A. (input)

Groups Scalar variable data

Task.putacollist

void putacollist
(int[] sub,
int[] ptrb,
int[] ptre,
int[] asub,
double[] aval)

Change a set of columns in the linear constraint matrix A with data in sparse triplet format. The

requested columns are set to zero and then updated with:

Parameters

1 =0,...,num—1

Qasublk],subli] = aval[kL k= ptrb [Z]a s

,ptreli] — 1.

e sub (int[]) — Indexes of columns that should be replaced, no duplicates. (input)

e ptrb (int[]1) — Array of pointers to the first element in each column. (input)

e ptre (int[]) — Array of pointers to the last element plus one in each column.

(input)
e asub (int[]) — Row indexes of new elements. (input)
e aval (double[]) — Coefficient values. (input)

Groups Scalar variable data

Task.putacolslice

void putacolslice
(int first,
int last,
int[] ptrb,
int[] ptre,
int[] asub,
double[] aval)
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void putacolslice
(int first,
int last,
long[] ptrb,
long[] ptre,
int[] asub,
double[] aval)

Change a slice of columns in the linear constraint matrix A with data in sparse triplet format. The

requested columns are set to zero and then updated with:

for ¢=first,...,last—1
Qasub[k],; = avallk], k = ptrb[i],..., ptre[i] — 1.
Parameters
e first (int) — First column in the slice. (input)
e last (int) — Last column plus one in the slice. (input)
e ptrb (int[]) — Array of pointers to the first element in each column. (input)
(

e ptrb (long[]l) — Array of pointers to the first element in each column. (input)

e ptre (int[]) — Array of pointers to the last element plus one in each column.

(input)

e ptre (long[]) — Array of pointers to the last element plus one in each column.

(input)
e asub (int[]) — Row indexes of new elements. (input)
e aval (double[]) — Coefficient values. (input)
Groups Scalar variable data

Task.putaij

void putaij
(int i,
int j,
double aij)

Changes a coefficient in the linear coeflicient matrix A using the method
a;; =aij.
Parameters
e i (int) — Constraint (row) index. (input)
e j (int) — Variable (column) index. (input)
e aij (double) - New coefficient for a; ;. (input)
Groups Scalar variable data

Task.putaijlist

void putaijlist
(int[] subi,
int[] subj,
double[] valij)
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Changes one or more coefficients in A using the method
Qsubife],subjf] = valijlk], k=0,...,num — 1.

Duplicates are not allowed.
Parameters
e subi (int[]) — Constraint (row) indices. (input)
e subj (int[]) — Variable (column) indices. (input)
e valij (double[]) - New coefficient values for a; ;. (input)
Groups Scalar variable data

Task.putarow

void putarow
(int 1,
int[] subi,
double[] vali)

Change one row of the linear constraint matrix A. Resets all the elements in row i to zero and
then sets

ai’subi[k] = Vali[k], k= O, e 7].'lZ:i. — 1.

Parameters
e i (int) — Index of a row in A. (input)
e subi (int[]) — Column indexes of non-zero values in row i of A. (input)
e vali (double[]) — New non-zero values of row i in A. (input)

Groups Scalar variable data

Task.putarowlist

void putarowlist
(int[] sub,
int[] ptrb,
int[] ptre,
int[] asub,
double[] aval)

Change a set of rows in the linear constraint matrix A with data in sparse triplet format. The
requested rows are set to zero and then updated with:

for i=0,...,num—1
Usub[i],asublk] = aval[k], k= ptrbli],...,ptreli] — 1.
Parameters
e sub (int[]) — Indexes of rows that should be replaced, no duplicates. (input)
e ptrb (int[]) — Array of pointers to the first element in each row. (input)
e ptre (int[]) — Array of pointers to the last element plus one in each row. (input)
e asub (int[]) — Column indexes of new elements. (input)
e aval (double[]) — Coefficient values. (input)

Groups Scalar variable data
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Task.putarowslice

void putarowslice
(int first,
int last,
int[] ptrb,
int[] ptre,
int[] asub,
double[] aval)

void putarowslice
(int first,
int last,
long[] ptrb,
long[] ptre,
int[] asub,
double[] aval)

Change a slice of rows in the linear constraint matrix A with data in sparse triplet format. The
requested columns are set to zero and then updated with:

for ¢=first,...,last—1
sub[i],asublk] = aval[k], &k =ptrbli],...,ptreli] — 1.

Parameters

first (int) — First row in the slice. (input)

last (int) — Last row plus one in the slice. (input)

ptrb (int[]) — Array of pointers to the first element in each row. (input)
ptrb (long[]) — Array of pointers to the first element in each row. (input)
ptre (int [1) — Array of pointers to the last element plus one in each row. (input)

ptre (longl[]) — Array of pointers to the last element plus one in each row.
(input)
asub (int[]) — Column indexes of new elements. (input)

aval (double[]) — Coefficient values. (input)

Groups Scalar variable data

Task.putbarablocktriplet

void putbarablocktriplet
(long num,
int[] subi,
int[] subj,
int[] subk,
int[] subl,
double[] valijkl)

Inputs the A matrix in block triplet form.

Parameters

num (long) — Number of elements in the block triplet form. (input)
subi (int[]) — Constraint index. (input)
subj (int[]) — Symmetric matrix variable index. (input)

subk (int[]) — Block row index. (input)
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e subl (int[]) — Block column index. (input)

e valijkl (double[]) — The numerical value associated with each block triplet.
(input)
Groups Symmetric matriz variable data

Task.putbaraij

void putbaraij
(int i,
int j,
long[] sub,
double[] weights)

This function sets one element in the A matrix.

Each element in the A matrix is a weighted sum of symmetric matrices from the symmetric matrix
storage F, so A;; is a symmetric matrix. By default all elements in A are 0, so only non-zero
elements need be added. Setting the same element again will overwrite the earlier entry.

The symmetric matrices from F are defined separately using the function Task.
appendsparsesymmat .

Parameters
e i (int) — Row index of A. (input)
e j (int) — Column index of A. (input)

e sub (1ongll) — Indices in E of the matrices appearing in the weighted sum for
A;;. (input)

e weights (double[]) — weights [k] is the coefficient of the sub[k]-th element of
E in the weighted sum forming A4,;. (input)

Groups Symmetric matriz variable data

Task.putbarcblocktriplet

void putbarcblocktriplet
(long num,
int[] subj,
int[] subk,
int[] subl,
double[] valjkl)

Inputs the C matrix in block triplet form.
Parameters
e num (long) — Number of elements in the block triplet form. (input)
e subj (int[]) — Symmetric matrix variable index. (input)
e subk (int[]) — Block row index. (input)
e subl (int[]) — Block column index. (input)

e valjkl (double[]) — The numerical value associated with each block triplet.
(input)
Groups Symmetric matriz variable data

Task.putbarcj
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voi