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CHAPTER

ONE

INTRODUCTION

The MOSEK Optimization Suite 8.1.0.61 is a powerful software package capable of solving large-scale
optimization problems of the following kind:

e linear,

e conic quadratic (also known as second-order cone),
e convex quadratic,

e semidefinite,

e and general convex.

Integer constrained variables are supported for all problem classes except for semidefinite and general
convex problems. In order to obtain an overview of features in the MOSEK Optimization Suite consult
the product introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all relations
are linear. The tremendous success of both applications and theory of linear optimization can be ascribed
to the following factors:

e The required data are simple, i.e. just matrices and vectors.

e Convexity is guaranteed since the problem is convex by construction.

Linear functions are trivially differentiable.

There exist very efficient algorithms and software for solving linear problems.

Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the ad-
vantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

Az —-be K
where K = {y : y > 0}, i.e.,

Az — b=y,

y € K.

In conic optimization a wider class of convex sets K is allowed, for example in 3 dimensions I may
correspond to an ice cream cone. The conic optimizer in MOSEK supports three structurally different
types of cones K, which allows a surprisingly large number of nonlinear relations to be modelled (as
described in the MOSEK modeling cookbook), while preserving the nice algorithmic and theoretical
properties of linear optimization.



http://docs.mosek.com/8.1/intro/index.html
http://docs.mosek.com/modeling-cookbook/index.html
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1.1 Why the Optimizer API for Python?

The Optimizer API for Python provides an object-oriented interface to the MOSEK optimizers. This
object oriented design is common to Java, Python and .NET and is based on a thin class-based interface
to the native C optimizer API. The overhead introduced by this mapping is minimal.

Optimizer API

Python Java .NET

The Optimizer API for Python can be used with any application running on recent Python 2 and 3
interpreters. It consists of a single mosek package which can be used in Python scripts and interactive
shells making it suited for fast prototyping and inspection of models.

The Optimizer API for Python provides access to:
e Linear Optimization (LO)
e Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)
e Convex Quadratic and Quadratically Constrained Optimization (QCQO)
e Semidefinite Optimization (SDO)
as well as to additional functions for
e problem analysis,
e sensitivity analysis,
e infeasibility diagnostics,

e BLAS/LAPACK linear algebra routines.

2 Chapter 1. Introduction
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CONTACT INFORMATION

Phone +45 7174 9373

Website mosek.com

Email
sales@mosek.com Sales, pricing, and licensing
support@mosek.com Technical support, questions and bug reports
info@mosek.com Everything else.

Mailing Address
MOSEK ApS

Fruebjergvej 3

Symbion Science Park, Box 16

2100 Copenhagen O

Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger http:/ /blog.mosek.com

Google Group | https://groups.google.com /forum /#!forum /mosek
Twitter https:/ /twitter.com/mosektw

Google+ https://plus.google.com/+Mosek /posts
Linkedin https://www.linkedin.com /company/mosek-aps

In particular Twitter is used for news, updates and release announcements.



https://mosek.com/
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com
http://blog.mosek.com/
https://groups.google.com/forum/#!forum/mosek
https://twitter.com/mosektw
https://plus.google.com/+Mosek/posts
https://www.linkedin.com/company/mosek-aps
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LICENSE AGREEMENT

Before using the MOSEK software, please read the license agreement available in the distribution
at <MSKHOME>/mosek/8/mosek-eula.pdf or on the MOSEK website https://mosek.com/products
license-agreement.

MOSEK uses some third-party open-source libraries. Their license details follows.
zlib

MOSEK includes the zlib library obtained from the zlib website. The license agreement for z/ib is shown
in Listing 3.1.

Listing 3.1: 2lib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu
fplib

MOSEK includes the floating point formatting library developed by David M. Gay obtained from the
netlib website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/****************************************************************
*



https://mosek.com/products/license-agreement
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http://www.netlib.org
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The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

¥R K K K X X X X X X X X X ¥

***************************************************************/

6 Chapter 3. License Agreement
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INSTALLATION

In this section we discuss how to install and setup the MOSEK Optimizer API for Python.

Important: Before running this MOSEK interface please make sure that you:

e Installed MOSEK correctly. Some operating systems require extra steps. See the Installation
guide for instructions and common troubleshooting tips.

e Set up a license. See the Licensing guide for instructions.

Compatibility

The Optimizer API for Python requires Python
shown below:

with numpy. The supported versions of Python are

Platform

Python

PyPy2.7

Linux 64 bit

2.7, 3.5 and newer

Yes

Mac OS 64 bit

2.7, 3.5 and newer

Yes

Windows 32 and 64 bit

2.7, 3.5 and newer

Yes

4.1 Anaconda

MOSEK can be installed as an Anaconda package, see https:

ample by running

anaconda.org/ MOSEK /mosek, for ex-

conda install -c mosek mosek

If you installed the MOSEK package as part of Anaconda, no additional setup is required.

4.2 PIP and Wheels

MOSEK can be installed as a Wheels package with PIP, using

pip install -f https://download.mosek.com/stable/wheel/index.html Mosek --user

(skip --user for a system-wide installation).

If you installed the MOSEK package with PIP, no additional setup is required.



http://docs.mosek.com/8.1/install/index.html
http://docs.mosek.com/8.1/install/index.html
http://docs.mosek.com/8.1/licensing/index.html
https://anaconda.org/MOSEK/mosek
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4.3 Manual installation

Locating Files

The relevant files of the Optimizer API for Python are organized as reported in Table 4.1.

Table 4.1: Relevant files for the Optimizer API for Python.
Relative Path Description Label
<MSKHOME>/mosek/8/tools/platform/<PLATFORM>/python/2 | Python 2 install | <PYTHON2DIR>
<MSKHOME>/mosek/8/tools/platform/<PLATFORM>/python/3 | Python 3 install | <PYTHON3DIR>

<MSKHOME>/mosek/8/tools/examples/python Examples <EXDIR>
<MSKHOME>/mosek/8/tools/examples/data Additional data | <MISCDIR>
where

e <MSKHOME> is the folder in which the MOSEK package has been installed,

e <PLATFORM> is the actual platform among those supported by MOSEK, i.e. win32x86, win64x86,
1inux64x86 or osx64x86.

Manual install and setting up paths

To install MOSEK for Python run the <PYTHON2DIR>/setup.py or <PYTHON3DIR>/setup.py script
depending on the Python version you want to use. This will add the MOSEK module to your Python
distribution’s library of modules. The script accepts the standard options typical for Python setup
scripts. For instance, to install MOSEK for Python 3 in the user’s local library run:

’$ python3 <PYTHON3DIR>/setup.py install --user

on Linux and Mac OS or

’C:\> python3 <PYTHON3DIR>\setup.py install --user

on Windows.

For a system-wide installation drop the --user flag.

4.4 Testing the Installation

First of all, to check that the Optimizer API for Python was properly installed, start Python and try

import mosek

The installation can further be tested by running some of the enclosed examples. Open a terminal,
change folder to <EXDIR> and use Python to run a selected example, for instance:

’python lol.py

8 Chapter 4. Installation
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DESIGN OVERVIEW

5.1 Modelling

Optimizer API for Python is an interface for specifying optimization problems directly in matrix form.
It means that an optimization problem such as:
minimize ¢’z
subject to Az < b,
relk

is specified by describing the matrix A, vectors b, ¢ and a list of cones I directly.
The main characteristics of this interface are:

e Simplicity: once the problem data is assembled in matrix form, it is straightforward to input it
into the optimizer.

e Exploiting sparsity: data is entered in sparse format, enabling huge, sparse problems to be
defined and solved efficiently.

e Efficiency: the Optimizer API incurs almost no overhead between the user’s representation of the
problem and MOSEK’s internal one.

Optimizer API for Python does not aid with modeling. It is the user’s responsibility to express the
problem in MOSEK’s standard form, introducing, if necessary, auxiliary variables and constraints. See
Sec. 12 for the precise formulations of problems MOSEK solves.

5.2 “Hello World!” in MOSEK

Here we present the most basic workflow pattern when using Optimizer API for Python.

Creating an environment and task

Every interaction with MOSEK using Optimizer API for Python begins by creating a MOSEK envi-
ronment. It coordinates the access to MOSEK from the current process.

In most cases the user does not interact directly with the environment, except for creating optimization
tasks, which contain actual problem specifications and where optimization takes place. An environment
can host multiple tasks.

Defining tasks

After a task is created, the input data can be specified. An optimization problem consists of several
components; objective, objective sense, constraints, variable bounds etc. See Sec. 6 for basic tutorials on
how to specify and solve various types of optimization problems.
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Retrieving the solutions

When the model is set up, the optimizer is invoked with the call to Task.optimize. When the opti-
mization is over, the user can check the results and retrieve numerical values. See further details in Sec.

7.

We refer also to Sec. 7 for information about more advanced mechanisms of interacting with the solver

Source code example

Below is the most basic code sample that defines and solves a trivial optimization problem

minimize x
subject to 2.0 <z < 3.0.

For simplicity the example does not contain any error or status checks.

Listing 5.1: “Hello World!” in MOSEK

from mosek import *;

x=1[0.0]
with Env() as env: # Create Environment
with env.Task(0, 1) as task: # Create Task

task.appendvars (1) # 1 variable z
task.putcj (0, 1.0) #c.0=1.0
task.putvarbound(0, boundkey.ra, 2.0, 3.0) # 2.0 <=z <= 3.0
task.putobjsense(objsense.minimize) # minimize
task.optimize() # Optimize
task.getxx(soltype.itr, x) # Get solution
print("Solution x = {}".format(x[0])) # Print solution

10 Chapter 5. Design Overview
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OPTIMIZATION TUTORIALS

In this section we demonstrate how to set up basic types of optimization problems. Each short tutorial
contains a working example of formulating problems, defining variables and constraints and retrieving

solutions.

6.1 Linear Optimization

The simplest optimization problem is a purely linear problem. A linear optimization problem is a problem

of the following form:

Minimize or maximize the objective function

n—1

E . f
cjxj+ ¢

j=0

subject to the linear constraints

n—1

ZESZaijj <ug, k=0,...,m-—1,
=0
and the bounds
7 <z;<uj, j=0,...,n—1

The problem description consists of the following elements:
e m and n — the number of constraints and variables, respectively,
e r — the variable vector of length n,

e ¢ — the coefficient vector of length n

co
c= ,
Cn—1
e ¢/ — fixed term in the objective,
e A — an m x n matrix of coefficients
ao,0 T ag,(n—1)
A= :
Am-1),0 " A(m-1),(n—1)

11
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e [ and u® — the lower and upper bounds on constraints,

e [” and u® — the lower and upper bounds on variables.

Please note that we are using 0 as the first index: xg is the first element in variable vector x.

6.1.1 Example LO1

The following is an example of a small linear optimization problem:

maximize 3xzg + lxz; + bdrxe + lag
subject to 3xp + lxzy + 2x9

2%0 —+ 1;v1 —+ 31’2 + 1.’£3
2(E1 + 3.’1)5
under the bounds
0 S ) S 0,
0 S Z1 S 10)
O S T2 S o,
0 < z3 < oo

Solving the problem

To solve the problem above we go through the following steps:

1.
2.
3.
4.
d.

Create an environment.

Create an optimization task.

Load a problem into the task object.
Optimization.

Extracting the solution.

Below we explain each of these steps.

Create an environment.

INIV I

30,
15,
25,

(6.1)

Before setting up the optimization problem, a MOSEK environment must be created. All tasks in the
program should share the same environment.

# Make mosek environment
with mosek.Env() as env:

Create an optimization task.

Next, an empty task object is created:

# Create a task object

with env.Task(0, 0) as task:
# Attach a log stream printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

We also connect a call-back function to the task log stream. Messages related to the task are passed
to the call-back function. In this case the stream call-back function writes its messages to the standard
output stream.

12

Chapter 6. Optimization Tutorials
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Load a problem into the task object.

Before any problem data can be set, variables and constraints must be added to the problem via calls to
the functions Task. appendcons and Task.appendvars.

# Append 'nmumcon' empty constraints.
# The constraints will initially have no bounds.
task.appendcons (numcon)

# Append 'numvar' wvariables.
# The vartiables will initially be fized at zero (z=0).
task.appendvars (numvar)

New variables can now be referenced from other functions with indexes in 0,...,numvar — 1 and new
constraints can be referenced with indexes in 0, ...,numcon — 1. More variables and/or constraints can
be appended later as needed, these will be assigned indexes from numvar/numcon and up.

Next step is to set the problem data. We loop over each variable index 7 = 0,...,numvar — 1 calling
functions to set problem data. We first set the objective coefficient ¢; = c[j] by calling the function
Task.putcy.

task.putcj(j, c[jl)

Setting bounds on variables

The bounds on variables are stored in the arrays

# Bound keys for vartables

bkx = [mosek.boundkey.lo,
mosek.boundkey.ra,
mosek.boundkey.1lo,
mosek.boundkey.1lo]

# Bound values for wvartables
blx = [0.0, 0.0, 0.0, 0.0]
bux = [+inf, 10.0, +inf, +inf]

and are set with calls to Task.putvarbound.

# Set the bounds on variable j
# blz[j] <= z_j <= buz[j]
task.putvarbound(j, bkx[j], blx[jl, bux[jl)

The Bound key stored in bkx specifies the type of the bound according to Table 6.1.

Table 6.1: Bound keys as defined in the enum boundkey.

Bound key Type of bound | Lower bound | Upper bound

boundkey. fx | u; =1, Finite Identical to the lower bound
boundkey. fr | Free —00 +00

boundkey.lo | l; <--- Finite +o00

boundkey.ra | l; <--- <y Finite Finite

boundkey. up - < uy —00 Finite

)

For instance bkx [0]= boundkey. Lo means that xo > {§. Finally, the numerical values of the bounds on
variables are given by

17 = plx[j]

6.1. Linear Optimization 13
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and

uf = bux[j].

Defining the linear constraint matrix.

Recall that in our example the A matrix is given by

A:

SN W
N =
S W N
w = O

This matrix is stored in sparse format in the arrays:

asub = [[0, 1],

[o, 1, 21,

[o, 11,

[1, 211

[[3.0, 2.0],
[1.0, 1.0, 2.0],
[2.0, 3.0],
[1.0, 3.0]]

aval

The array aval[j] contains the non-zero values of column j and asub[j] contains the row index of
these non-zeros.

Using the function Task.putacol we set column j of A

task.putacol(j, # Variable (column) index.
asub[j], # Row index of mon-zeros in column j.
avall[jl) # Non-zero Values of column j.

There are many alternative formats for entering the A matrix. See functions such as Task.putarow,
Task.putarowlist, Task.putatjlist and similar.

Finally, the bounds on each constraint are set by looping over each constraint index ¢ = 0,...,numcon—1

# Set the bounds on constraints.
# blc[i] <= constraint_i <= buc[i]
for i in range(numcon):
task.putconbound (i, bkc[i], blc[i], bucl[il])

Optimization

After the problem is set-up the task can be optimized by calling the function Task.optimize.

task.optimize ()

Extracting the solution.

After optimizing the status of the solution is examined with a call to Task.getsolsta. If the solution
status is reported as solsta.optimal or solsta.near_optimal the solution is extracted in the lines
below:

xx = [0.] * numvar
task.getxx(mosek.soltype.bas, # Request the basic solution.
XX)

14 Chapter 6. Optimization Tutorials
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The Task.getzz function obtains the solution. MOSEK may compute several solutions depending on
the optimizer employed. In this example the basic solution is requested by setting the first argument to

soltype.bas.

Catching exceptions

We cache any exceptions thrown by MOSEK in the lines:

except mosek.Error as e:
print ("ERROR: 7s" % str(e.errno))
if e.msg is not None:
print("\t%s" 7 e.msg)
sys.exit (1)

The types of exceptions that MOSEK can throw can be seen in Sec. 16.8.

Source code

The complete source code lol.py of this example appears below. See als
the A matrix is entered row-wise.

Listing 6.1: Linear optimization example.

0 102.py for a version where

import sys
import mosek

# Since the value of infinity is ignored, we define it solely
# for symbolic purposes
inf = 0.0

# Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)

sys.stdout.flush()

def main():
# Make mosek environment
with mosek.Env() as env:
# Create a task object
with env.Task(0, 0) as task:
# Attach a log stream printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

# Bound keys for constraints

bkc = [mosek.boundkey.fx,
mosek.boundkey.lo,
mosek . boundkey . up]

# Bound wvalues for constraints
blc = [30.0, 15.0, -inf]
buc = [30.0, +inf, 25.0]

# Bound keys for vartables

bkx = [mosek.boundkey.lo,
mosek.boundkey.ra,
mosek.boundkey.1lo,
mosek.boundkey.1lo]

# Bound values for wvartables

6.1. Linear Optimization
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blx = [0.0, 0.0, 0.0, 0.0]
bux = [+inf, 10.0, +inf, +inf]

# Objective coefficients
c=[3.0, 1.0, 5.0, 1.0]

# Below is the sparse representation of the 4
# matriz stored by column.

asub = [[0, 1],

o, 1, 21,

o, 11,

(1, 211

[[3.0, 2.0],

[1.0, 1.0, 2.0],

[2.0, 3.0],

[1.0, 3.0]]

aval

len(bkx)
len(bkc)

numvar
numcon

# Append 'nmumcon' empty constraints.
# The constraints will initially have no bounds.
task.appendcons (numcon)

# Append 'numvar' wvariables.
# The vartables will initially be fized at zero (z=0).
task.appendvars (numvar)

for j in range(numvar):
# Set the linear term c_j in the objective.
task.putcj(j, cl[jl)

# Set the bounds on variable j
# blzl[j] <= z_j <= buz[j]
task.putvarbound(j, bkx[jl, blx[jl, bux[j1)

# Input column j of 4

task.putacol(j, # Vartiable (column) index.
asub[j], # Row index of mon-zeros inm column j.
aval[jl) # Non-zero Values of column j.

# Set the bounds on constraints.
# blc[i] <= constraint_i <= buc[i]
for i in range(numcon):
task.putconbound (i, bkc[i], blc[i], buc[il])

# Input the objective sense (minimize/mazimize)
task.putobjsense (mosek.objsense.maximize)

# Solve the problem

task.optimize()

# Print a summary containing information

# about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)

# Get status information about the solution
solsta = task.getsolsta(mosek.soltype.bas)

if (solsta == mosek.solsta.optimal or
solsta == mosek.solsta.near_optimal):
xx = [0.] * numvar
task.getxx (mosek.soltype.bas, # Request the basic solution.
XX)
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print("Optimal solution: ")
for i in range(numvar):
print("x[" + str(i) + "]=" + str(xx[i]))

elif (solsta == mosek.solsta.dual_infeas_cer or
solsta == mosek.solsta.prim_infeas_cer or
solsta == mosek.solsta.near_dual_infeas_cer or
solsta == mosek.solsta.near_prim_infeas_cer):
print("Primal or dual infeasibility certificate found.\n")
elif solsta == mosek.solsta.unknown:
print ("Unknown solution status")
else:

print("Other solution status")

# call the main function
try:
main()
except mosek.Error as e:
print ("ERROR: 7s" % str(e.errno))
if e.msg is not None:
print ("\t/s"  e.msg)
sys.exit (1)
except:
import traceback
traceback.print_exc()
sys.exit (1)

6.2 Quadratic Optimization

MOSEK can solve quadratic and quadratically constrained problems, as long as they are convex. This
class of problems can be formulated as follows:

minimize %I‘TQOJC +cTx+cf
; c 1..THk n—1 e
subject to  If 22 QT+ 375 g ak,jT;
x .
I Z;

ug, k=0,....m—1, (6.2)

<
< u}”, 7=0,...,n—1.

VARV

Without loss of generality it is assumed that Q° and QF are all symmetric because
1
2T Qu = ixT(Q + Q1.
This implies that a non-symmetric () can be replaced by the symmetric matrix 2(Q + Q7).

The problem is required to be convex. More precisely, the matrix Q° must be positive semi-definite and
the kth constraint must be of the form
1 n—1
Ip < ixTQk:E + Z ak,;T; (6.3)
j=0
with a negative semi-definite Q¥ or of the form
1 n—1
imTQkx + Z ak;T; < Uug,.
j=0
with a positive semi-definite @Q¥. This implies that quadratic equalities are not allowed. Specifying a
non-convex problem will result in an error when the optimizer is called.

A matrix is positive semidefinite if all the eigenvalues of ) are nonnegative. An alternative statement of
the positive semidefinite requirement is

zTQx >0, Va.

If the convexity (i.e. semidefiniteness) conditions are not met MOSEK will not produce reliable results
or work at all.
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6.2.1 Example: Quadratic Objective

We look at a small problem with linear constraints and quadratic objective:

minimize x% + O.Ix% + x% — X1x3 — T2
subject to 1< x7 + a9+ 23 (6.4)
0< =z

The matrix formulation (6.4) has:

2 0o -1 0
Q° = 0 02 0 ,e=| —1 7A:[l 1 1},
-1 0 2 0
with the bounds:
0 00
°=1u"=00,l"=| 0| andu= | o0
0 00

Please note the explicit % in the objective function of (6.2) which implies that diagonal elements must
be doubled in @, i.e. Q11 = 2, whereas the coefficient in (6.4) is 1 in front of 2.

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up quadratic objective

The quadratic objective is specified using the function Task.putqobj. Since Q° is symmetric only the
lower triangular part of Q° is inputted. In fact entries from above the diagonal may not appear in the
input.

The lower triangular part of the matrix Q° is specified using an unordered sparse triplet format (for
details, see Sec. 16.1.4):

gsubi = [0, 1, 2, 2]
gsubj = [0, 1, 0, 2]
gqval = [2.0, 0.2, -1.0, 2.0]

Please note that
e only non-zero elements are specified (any element not specified is 0 by definition),
e the order of the non-zero elements is insignificant, and
e only the lower triangular part should be specified.

Finally, this definition of Q° is loaded into the task:

task.putqobj(gsubi, gqsubj, qval)

Source code
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Listing 6.2: Source code implementing problem (6.4).

import sys, os, mosek

# Since the actual value of Infinity is ignored, we define it solely
# for symbolic purposes:
inf = 0.0

# Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)

sys.stdout.flush()

def main():
# Open MOSEK and create an environment and task
# Make a MOSEK environment
with mosek.Env() as env:
# Attach a printer to the environment
env.set_Stream(mosek.streamtype.log, streamprinter)
# Create a task
with env.Task() as task:
task.set_Stream(mosek.streamtype.log, streamprinter)
# Set up and input bounds and linear coefficients
bkc = [mosek.boundkey.lo]
blc = [1.0]
buc = [inf]
numvar = 3
bkx = [mosek.boundkey.lo] * numvar
blx [0.0] * numvar
bux = [inf] * numvar
¢ = [0.0, -1.0, 0.0]
asub = [[0], [0], [0]]
aval = [[1.0], [1.0], [1.0]]

len(bkx)
numcon = len(bkc)

numvar

# Append 'nmumcon' empty constraints.
# The constraints will initially have no bounds.
task.appendcons (numcon)

# Append 'numvar' wvariables.
# The variables will initially be fized at zero (z=0).
task.appendvars (numvar)

for j in range(numvar):
# Set the linear term c_j in the objective.
task.putcj(j, c[jl)
# Set the bounds on variable j
# blzl[j] <= z_j <= buz[j]
task.putbound (mosek.accmode.var, j, bkx[jl, blx[jl, bux[jl)
# Input column j of 4

task.putacol(j, # Vartiable (column) index.
# Row indexz of non-zeros in column j.
asub[j],
avall[jl) # Non-zero Values of column j.

for i in range(numcon):
task.putbound (mosek.accmode.con, i, bkc[i], blc[i], buc[i])

# Set up and input quadratic objective
gsubi = [0, 1, 2, 2]
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gsubj = [0, 1, 0, 2]
qval = [2.0, 0.2, -1.0, 2.0]

task.putqobj(gsubi, gqsubj, qval)

# Input the objective sense (minimize/mazimize)
task.putobjsense(mosek.objsense.minimize)

# Optimize

task.optimize()

# Print a summary containing information

# about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)

prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

# Output a solution

xx = [0.] * numvar

task.getxx (mosek.soltype.itr,
XX)

if solsta == mosek.solsta.optimal or solsta == mosek.solsta.near_optimal:
print("Optimal solution: %s" % xx)

elif solsta == mosek.solsta.dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.near_dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.near_prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif mosek.solsta.unknown:
print ("Unknown solution status")

else:
print("Other solution status")

# call the main function
try:
main()
except mosek.MosekException as e:
print ("ERROR: 7s" % str(e.errno))
if e.msg is not None:
import traceback
traceback.print_exc()
print ("\t/s" % e.msg)
sys.exit (1)
except:
import traceback
traceback.print_exc()
sys.exit (1)

6.2.2 Example: Quadratic constraints

In this section we show how to solve a problem with quadratic constraints. Please note that quadratic
constraints are subject to the convexity requirement (6.3).

Consider the problem:

minimize 2?2 +0.123 + 23 — x123 — 22
subject to 1 < x1+ 29+ x3— a:% — x% — O.lx% + 0.2z 23,
x> 0.
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This is equivalent to

minimize 127Q°%z + Tz

subject to  327Q% + Az > b, (6.5)
x>0,
where
2 0 -1 T
Q=0 02 0 |,e=[0 -1 0] ,A=[1 1 1],b=1

-1 0 2
-2 0 02
Q=] 0 -2 0
02 0 -0.2

The linear parts and quadratic objective are set up the way described in the previous tutorial.

Setting up quadratic constraints

To add quadratic terms to the constraints we use the function Task.putgconk.

gsubi = [0, 1, 2, 2]
gsubj = [0, 1, 2, 0]
qval = [-2.0, -2.0, -0.2, 0.2]

# put §~0 in constraint with index 0.

task.putqconk(0, gsubi, gsubj, qval)

While Task.putqconk adds quadratic terms to a specific constraint, it is also possible to input all
quadratic terms in one chunk using the Task.putqcon function.

Source code

Listing 6.3: Implementation of the quadratically constrained problem (6.5).

import sys
import mosek

# Since the actual value of Infinity is ignores, we define it solely
# for symbolic purposes:
inf = 0.0

# Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)

sys.stdout.flush()

def main():
# Make a MOSEK environment
with mosek.Env() as env:
# Attach a printer to the environment
env.set_Stream(mosek.streamtype.log, streamprinter)

# Create a task

with env.Task(0, 0) as task:
# Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)
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# Set up and input bounds and linear coefficients
bkc = [mosek.boundkey.lo]

blc = [1.0]

buc = [inf]

bkx = [mosek.boundkey.lo,
mosek.boundkey.1lo,
mosek.boundkey . 1lo]

blx = [0.0, 0.0, 0.0]

bux = [inf, inf, inf]

c = [0.0, -1.0, 0.0]

asub = [[0], [0], [0]]
aval = [[1.0], [1.0], [1.0]]

numvar = len(bkx)

numcon = len(bkc)

NUMANZ = 3

# Append 'nmumcon' empty constraints.

# The constraints will initially have no bounds.
task.appendcons (numcon)

#Append 'numvar' wvariables.
# The vartables will initially be fized at zero (z=0).
task.appendvars (numvar)

#0ptionally add a constant term to the objective.
task.putcfix(0.0)

for j in range(numvar):
# Set the linear term c_j in the objective.
task.putcj(j, cl[jl)
# Set the bounds on wvariable j
# blz[j] <= z_j <= buz[j]
task.putbound (mosek.accmode.var, j, bkx[jl, blx[jl, bux[j])
# Input column j of A

task.putacol(j, # Variable (column) indez.
# Row index of mon-zeros in column j.
asub[j],
avall[jl) # Non-zero Values of column j.

for i in range(numcon):
task.putbound (mosek.accmode.con, i, bkc[il, blc[i], buc[i])

# Set up and input quadratic objective

gsubi = [0, 1, 2, 2]
gsubj = [0, 1, 0, 2]
qval = [2.0, 0.2, -1.0, 2.0]

task.putqobj(qsubi, gsubj, qval)

# The lower triangular part of the {°0
# matriz in the first constraint is specified.
# This corresponds to adding the term
# - 2072 - 172 - 0.1 2272 + 0.2 20 z2

gsubi = [0, 1, 2, 2]
gsubj = [0, 1, 2, 0]
qval = [-2.0, -2.0, -0.2, 0.2]
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# put ¢~0 in constraint with index 0.
task.putqconk(0, gqsubi, gsubj, qval)

# Input the objective sense (minimize/mazimize)
task.putobjsense (mosek.objsense.minimize)

# Optimize the task
task.optimize ()

# Print a summary containing information
# about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)

prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)
# Output a solution

xx = [0.] * numvar
task.getxx (mosek.soltype.itr,
XX)

if solsta mosek.solsta.optimal or solsta mosek.solsta.near_optimal:

print("Optimal solution: %s" % xx)
elif solsta mosek.solsta.dual_infeas_cer:

print("Primal or

elif solsta == mosek.

print("Primal or
elif solsta ==
print("Primal or

mosek.

dual infeasibility.\n")
solsta.prim_infeas_cer:
dual infeasibility.\n")
solsta.near_dual_infeas_cer:
dual infeasibility.\n")

elif solsta == mosek
print("Primal or
elif mosek.solsta.unknown:
print ("Unknown solution status")
else:

.solsta.near_prim_infeas_cer:
dual infeasibility.\n")

print("Other solution status")

# call the main function

try:
main()

except mosek.MosekException as e:
print ("ERROR: 7s" % str(e.errno))
print ("\t%s" J e.msg)
sys.exit (1)

except:
import traceback
traceback.print_exc()
sys.exit (1)

6.3 Conic Quadratic Optimization

Conic optimization is a generalization of linear optimization, allowing constraints of the type
t
z' e Ky,
where z! is a subset of the problem variables and K; is a convex cone. Since the set R™ of real numbers

is also a convex cone, we can simply write a compound conic constraint x € I where = Ky X --- X K
is a product of smaller cones and z is the full problem variable.
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MOSEK can solve conic quadratic optimization problems of the form

minimize e+ el
subject to ¢ < Ax < uc,
r < T < u”,

x ek,

where the domain restriction, z € IC, implies that all variables are partitioned into convex cones
x= (2%, .. 2P7Y), with 2’ € K, CR™.

For convenience, a user defining a conic quadratic problem only needs to specify subsets of variables z!
belonging to quadratic cones. These are:

e Quadratic cone:

e Rotated quadratic cone:

n—1
o = xeR”:Qmoxlzzx?, xg>0, x1>0
i=2

For example, the following constraint:
(1’43 anxQ) € Q3
describes a convex cone in R3 given by the inequality:

xy > /23 + 23

Furthermore, each variable may belong to one cone at most. The constraint x; — z; = 0 would however
allow x; and z; to belong to different cones with same effect.

6.3.1 Example CQO1

Consider the following conic quadratic problem which involves some linear constraints, a quadratic cone
and a rotated quadratic cone.

minimize T4+ T5 + Tg
subject to x1 +xo+2x3 =
Ty, T2, T3 > 0, (6.6)

x4 > /2% + 23,
2x5x6 > mg
Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

A cone is defined using the function Task.appendcone:
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task.appendcone (mosek.conetype.quad,
0.0,
(3, 0, 1

The first argument selects the type of quadratic cone, in this case either conetype. quad for a quadratic
cone or conetype.rquad for a rotated quadratic cone. The second parameter is currently ignored and
passing 0.0 will work.

The last argument is a list of indexes of the variables appearing in the cone.

Variants of this method are available to append multiple cones at a time.

Source code

Listing 6.4: Source code solving problem (6.6).

import sys
import mosek

# Since the actual wvalue of Infinity is ignores, we define it solely
# for symbolic purposes:
inf = 0.0

# Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)

sys.stdout.flush()

def main():
# Make a MOSEK environment
with mosek.Env() as env:
# Attach a printer to the environment
env.set_Stream(mosek.streamtype.log, streamprinter)

# Create a task

with env.Task(0, 0) as task:
# Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

bkc = [mosek.boundkey.fx]
blc = [1.0]
buc = [1.0]

c = [0.0, 0.0, 0.0,
1.0, 1.0, 1.0]
bkx = [mosek.boundkey.lo, mosek.boundkey.lo, mosek.boundkey.lo,
mosek.boundkey.fr, mosek.boundkey.fr, mosek.boundkey.fr]
blx = [0.0, 0.0, 0.0,
-inf, -inf, -inf]

bux = [inf, inf, inf,
inf, inf, inf]
asub = [[0], [0], [0]]
aval = [[1.0], [1.0], [2.0]]

numvar = len(bkx)
numcon = len(bkc)
NUMANZ 4

# Append 'numcon' empty constraints.

6.3. Conic Quadratic Optimization 25




MOSEK Optimizer API for Python, Release 8.1.0.61

# The constraints will initially have no bounds.
task.appendcons (numcon)

#4ppend 'numvar' wvariables.
# The variables will initially be fized at zero (z=0).
task.appendvars (numvar)

for j in range(numvar) :
# Set the linear term c_j in the objective.
task.putcj(j, c[jl)
# Set the bounds on variable j
# blz[j] <= z_j <= buz[j]

task.putbound (mosek.accmode.var, j, bkx[jl, blx[jl, buxl[jl)

for j in range(len(aval)):
# Input column j of 4

task.putacol(j, # Variable (column) indez.
# Row index of non-zeros in column j.
asub[j],
aval[jl) # Non-zero Values of column j.

for i in range(numcon):

task.putbound (mosek.accmode.con, i, bkc[il, blc[i], buc[il)

# Input the cones
task.appendcone (mosek.conetype.quad,

0.0,

(3, 0, 1)
task.appendcone (mosek.conetype.rquad,
0.0,

(4, 5, 21)

# Input the objective sense (minimize/mazimize)
task.putobjsense (mosek.objsense.minimize)

# Optimize the task

task.optimize()

# Print a summary containing information

# about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)
prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

# Output a solution

xx = [0.] * numvar

task.getxx(mosek.soltype.itr,
XX)

if solsta == mosek.solsta.optimal or solsta == mosek.solsta.near_optimal:

print ("Optimal solution: %s" % xx)

elif solsta == mosek.solsta.dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.near_dual_infeas_cer:
print ("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.near_prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif mosek.solsta.unknown:
print ("Unknown solution status")

else:
print ("Other solution status")

# call the main function
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try:
main()

except mosek.MosekException as e:
print ("ERROR: Ys" 7 str(e.errno))
print ("\t%s" J e.msg)
sys.exit (1)

except:
import traceback
traceback.print_exc()
sys.exit (1)

6.4 Semidefinite Optimization

Semidefinite optimization is a generalization of conic quadratic optimization, allowing the use of matrix
variables belonging to the convex cone of positive semidefinite matrices

S ={XeS&:2"Xz2>0, VzeR"},

where 8" is the set of r X r real-valued symmetric matrices.

MOSEK can solve semidefinite optimization problems of the form

minimize Z?;Ol ¢z + Z;:é (C;, X))+
subject to 1§ < Z;l;ol a;;x; + Z;’;é <Zij,yj> < wf, i=0,...,m-—1,
i < Z; < wuj, j=0,...,n—-1,
reK,X; €87, j=0,....,p—1

where the problem has p symmetric positive semidefinite variables Yj € S:_j of dimension r; with
symmetric coefficient matrices C; € 8”7 and 4; ; € S"7. We use standard notation for the matrix inner
product, i.e., for A, B € R™*"™ we have

6.4.1 Example SDO1

We consider the simple optimization problem with semidefinite and conic quadratic constraints:

21 0
minimize < 1 2 1 ,X>+x0
0 1 2
1 0 0]
subject to 01 0|,X)4+xo = 1,
< 0 0 1 > (6.7)
f1 1 1]
< 111 ,X>+x1—|—x2 = 1/2,
1 1 1

‘rO_Z \/517124—(-17?7 Ytoa

The problem description contains a 3-dimensional symmetric semidefinite variable which can be written
explicitly as:

o Xoo Xlo Xzo
X=| Xw Xu Xa | €8,
Xoo Xo1 Xoo
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and a conic quadratic variable (zg, z1,22) € Q3. The objective is to minimize
2(Xo0 + X10 + X11 + Xo21 + X22) + o,
subject to the two linear constraints

. - ZOO +YE +yl2 +I(L = 1,
Xoo+ X1+ Xoo+2(Xio+Xoo+Xo1)+21+22 = 1/2.

Setting up the linear and quadratic part

The linear and quadratic parts (constraints, variables, objective, cones) are set up using the methods
described in the relevant tutorials; Sec. 6.1 and Sec. 6.3. Here we only discuss the aspects directly
involving semidefinite variables.

Appending semidefinite variables

First, we need to declare the number of semidefinite variables in the problem, similarly to the number
of linear variables and constraints. This is done with the function Task.appendbarvars.

task.appendbarvars (BARVARDIM)

Appending coefficient matrices

Coefficient matrices C; and A;; are constructed as weighted combinations of sparse symmetric matrices
previously appended with the function Task.appendsparsesymmat.

symc = task.appendsparsesymmat (BARVARDIM[O],
barci,
barcj,
barcval)

syma0 = task.appendsparsesymmat (BARVARDIM[O],
barail[0],
baraj[0],
baraval[0])

symal = task.appendsparsesymmat (BARVARDIM[O],
barail[1],
baraj[i],
baraval[1])

The arguments specify the dimension of the symmetric matrix, followed by its description in the sparse
triplet format. Only lower-triangular entries should be included. The function produces a unique index
of the matrix just entered in the collection of all coeflicient matrices defined by the user.

After one or more symmetric matrices have been created using Task.appendsparsesymmat, we can
combine them to set up the objective matrix coefficient 6]- using Task.putbarcy, which forms a linear
combination of one or more symmetric matrices. In this example we form the objective matrix directly,
i.e. as a weighted combination of a single symmetric matrix.

task.putbarcj(0, [symc], [1.0])

Similarly, a constraint matrix coefficient A4;; is set up by the function Task.putbaraij.
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task.putbaraij (0, 0, [symaO], [1.0])
task.putbaraij(l, 0, [symall, [1.0])

Retrieving the solution

After the problem is solved, we read the solution using Task.getbarzy:

task.getbarxj(mosek.soltype.itr, 0, barx)

The function returns the half-vectorization of Yj (the lower triangular part stacked as a column vector),
where the semidefinite variable index j is passed as an argument.

Source code

Listing 6.5: Source code solving problem (6.7).

import sys
import mosek

# Since the value of infinity is ignored, we define 1t solely
# for symbolic purposes
inf = 0.0

# Define a stream printer to gradb output from MOSEK
def streamprinter(text):

sys.stdout.write(text)

sys.stdout.flush()

def main():
# Make mosek environment
with mosek.Env() as env:

# Create a task object and attach log stream printer
with env.Task(0, 0) as task:
task.set_Stream(mosek.streamtype.log, streamprinter)

# Bound keys for constraints
bkc = [mosek.boundkey.fx,
mosek.boundkey . £x]

# Bound values for constraints
blc = [1.0, 0.5]
buc [1.0, 0.5]

# Below is the sparse representation of the 4
# matriz stored by row.

asub = [[0],
[1, 211
aval = [[1.0],
[1.0, 1.0]]

conesub = [0, 1, 2]

barci = [0, 1, 1, 2, 2]

barcj = [0, 0, 1, 1, 2]

barcval = [2.0, 1.0, 2.0, 1.0, 2.0]

barai = [[0, 1, 2],
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[0, 1, 2, 1, 2, 211
baraj = [[0, 1, 2],
[o, o, o, 1, 1, 211
baraval = [[1.0, 1.0, 1.0],
[t1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]

numvar = 3
numcon = len(bkc)
BARVARDIM = [3]

# Append 'numvar' wvariables.
# The variables will initially be fized at zero (z=0).
task.appendvars (numvar)

# Append 'numcon' empty constraints.
# The constraints will initially have no bounds.
task.appendcons (numcon)

# Append matriz variables of sizes in 'BARVARDIM'.
# The variables will tnitially be fized at zero.
task.appendbarvars (BARVARDIM)

# Set the linear term c_0 in the objective.
task.putcj(0, 1.0)

for j in range(numvar):
# Set the bounds on variable j
# blzl[j] <= z_j <= buz[j]
task.putvarbound(j, mosek.boundkey.fr, -inf, +inf)

for i in range(numcon):
# Set the bounds on constratints.
# blc[i] <= constraint_i <= buc[i]
task.putconbound (i, bkc[il, blc[il, buc[il)

# Input row % of 4

task.putarow(i, # Constraint (row) index.
# Column index of non-zeros in constraint j.
asub[il],
aval[il) # Non-zero wvalues of row j.

task.appendcone (mosek.conetype.quad,
0.0,
conesub)

symc = task.appendsparsesymmat (BARVARDIM[O],
barci,
barcj,
barcval)

syma0 = task.appendsparsesymmat (BARVARDIM[O],
barai[0],
baraj[0],
baraval[0])

symal = task.appendsparsesymmat (BARVARDIM[O],
barail[1],
baraj[i],
baraval[1])

task.putbarcj(0, [symc], [1.0])

task.putbaraij (0, 0, [symaO], [1.0])
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task.putbaraij (i, 0, [symall, [1.0])

# Input the objective sense (minimize/mazimize)
task.putobjsense(mosek.objsense.minimize)

# Solve the problem and print summary
task.optimize()
task.solutionsummary (mosek.streamtype.msg)

# Get status information about the solution
prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

if (solsta == mosek.solsta.optimal or
solsta == mosek.solsta.near_optimal):
xx = [0.] * numvar
task.getxx (mosek.soltype.itr, xx)

lenbarvar = BARVARDIM[O] * (BARVARDIM[O] + 1) / 2
barx = [0.] * int(lenbarvar)

task.getbarxj(mosek.soltype.itr, 0, barx)

print ("Optimal solution:\nx=Ys\nbarx=Js"  (xx, barx))

elif (solsta == mosek.solsta.dual_infeas_cer or
solsta == mosek.solsta.prim_infeas_cer or
solsta == mosek.solsta.near_dual_infeas_cer or
solsta == mosek.solsta.near_prim_infeas_cer):
print("Primal or dual infeasibility certificate found.\n")
elif solsta == mosek.solsta.unknown:

print ("Unknown solution status")
else:
print ("Other solution status")

# call the main function
try:
main()
except mosek.MosekException as e:
print ("ERROR: 7s" % str(e.errno))
if e.msg is not None:
print("\t%s" 7% e.msg)
sys.exit (1)
except:
import traceback
traceback.print_exc()
sys.exit (1)

6.5 Integer Optimization

An optimization problem where one or more of the variables are constrained to integer values is called a
(mixed) integer optimization problem. MOSEK supports integer variables in combination with linear
and conic quadratic problems. See the previous tutorials for an introduction to how to model these types
of problems.
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6.5.1 Example MILO1

We use the example

maximize g + 0.64x,

subject to 50xg + 31z < 250, (6.8)
3£C0 - 21’1 2 —47 ’
zg,x1 >0 and integer

to demonstrate how to set up and solve a problem with integer variables. It has the structure of a linear
optimization problem (see Sec. 6.1) except for integrality constraints on the variables. Therefore, only
the specification of the integer constraints requires something new compared to the linear optimization
problem discussed previously.

First, the integrality constraints are imposed using the function Task.putvartype:

task.putvartypelist ([0, 1],
[mosek.variabletype.type_int,
mosek.variabletype.type_int])

Next, the example demonstrates how to set various useful parameters of the mixed-integer optimizer.
See Sec. 14 for details.

# Set maz solution time
task.putdouparam(mosek.dparam.mio_max_time, 60.0);

The complete source for the example is listed Listing 6.6. Please note that when Task.
getsolutionslice is called, the integer solution is requested by using soltype.itg. No dual solution
is defined for integer optimization problems.

Listing 6.6: Source code implementing problem (6.8).

import sys
import mosek

# Since the actual value of Infinity is ignores, we define it solely
# for symbolic purposes:
inf = 0.0

# Define a stream printer to gradb output from MOSEK
def streamprinter(text):

sys.stdout.write(text)

sys.stdout.flush()

def main():
# Make a MOSEK environment
with mosek.Env() as env:
# Attach a printer to the environment
env.set_Stream(mosek.streamtype.log, streamprinter)

# Create a task

with env.Task(0, 0) as task:
# Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

bkc = [mosek.boundkey.up, mosek.boundkey.lo]
blc = [-inf, -4.0]
buc = [250.0, inf]

bkx = [mosek.boundkey.lo, mosek.boundkey.lo]
blx = [0.0, 0.0]
bux = [inf, inf]
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c=[1.0, 0.64]

asub = [[0, 1], [0, 111
aval = [[50.0, 3.0], [31.0, -2.0]]

numvar = len(bkx)
numcon = len(bkc)

# Append 'numcon' empty constraints.
# The constraints will initially have no bounds.
task.appendcons (numcon)

#lppend 'numvar' wvartables.
# The variables will initially be fized at zero (z=0).
task.appendvars (numvar)

for j in range(numvar):
# Set the linear term c_j in the objective.
task.putcj(j, c[jl)
# Set the bounds on variable j
# blzlj] <= z_j <= buzlj]
task.putvarbound(j, bkx[jl, blx[jl, bux[jl)
# Input column j of 4

task.putacol(j, # Variable (column) indez.
# Row index of mon-zeros in column j.
asub[j],
avalljl) # Non-zero Values of column j.

task.putconboundlist (range (numcon), bkc, blc, buc)

# Input the objective sense (minimize/mazimize)
task.putobjsense (mosek.objsense.maximize)

# Define variables to be integers

task.putvartypelist ([0, 1],
[mosek.variabletype.type_int,
mosek.variabletype.type_int])

# Set maz solution time
task.putdouparam(mosek.dparam.mio_max_time, 60.0);

# Optimize the task
task.optimize()

# Print a summary contatining information
# about the solution for debugging purposes
task.solutionsummary (mosek.streamtype.msg)

prosta = task.getprosta(mosek.soltype.itg)
solsta = task.getsolsta(mosek.soltype.itg)

# Output a solution
xx = [0.] * numvar
task.getxx(mosek.soltype.itg, xx)

if solsta in [mosek.solsta.integer_optimal, mosek.solsta.near_integer_optimal]:

print("Optimal solution: %s" % xx)

elif solsta == mosek.solsta.dual_infeas_cer:
print("Primal or dual infeasibility.\n")
elif solsta == mosek.solsta.prim_infeas_cer:

print("Primal or dual infeasibility.\n")

6.5.
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elif solsta == mosek.solsta.near_dual_infeas_cer:
print("Primal or dual infeasibility.\n")
elif solsta == mosek.solsta.near_prim_infeas_cer:

print("Primal or dual infeasibility.\n")
elif mosek.solsta.unknown:
if prosta == mosek.prosta.prim_infeas_or_unbounded:
print("Problem status Infeasible or unbounded.\n")
elif prosta == mosek.prosta.prim_infeas:
print("Problem status Infeasible.\n")
elif prosta == mosek.prosta.unkown:
print ("Problem status unkown.\n")
else:
print ("Other problem status.\n")
else:
print("Other solution status")

# call the main function
try:
main()
except mosek.MosekException as msg:
#print "ERROR: J)s" ] str(code)
if msg is not None:
print("\t%s" % msg)
sys.exit (1)
except:
import traceback
traceback.print_exc()
sys.exit(1)

6.5.2 Specifying an initial solution

Solution time of can often be reduced by providing an initial solution for the solver. It is not necessary
to specify the whole solution. By setting the iparam.mio_construct_sol parameter to onoffkey.on
and inputting values for the integer variables only, MOSEK will be forced to compute the remaining
continuous variable values. If the specified integer solution is infeasible or incomplete, MOSEK will
simply ignore it.

We concentrate on a simple example below.

maximize Txg 4+ 1021 + x2 + dxs
subject to xg+ 1 + T2+ 23 < 2.5
X0, T1,To €L
Lo, XL1,T2,T3 > 0

Solution values can be set using Task.putzzslice and related methods.

Listing 6.7: Implementation of problem (6.9) specifying an initial solution.

# Construct an initial feasible solution from the

# values of the integer wvaluse specified

task.putintparam(mosek.iparam.mio_construct_sol,
mosek.onoffkey.on)

# Assign values 0,2,0 to integer wvariables. Important to
# assign a value to all integer constrained variables.
task.putxxslice(mosek.soltype.itg, 0, 3, [0.0, 2.0, 0.0])

The complete code is not very different from the first example and is available for download as
mioinitsol.py. For more details about this process see Sec. 14.
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6.6 Problem Modification and Reoptimization

Often one might want to solve not just a single optimization problem, but a sequence of problems, each
differing only slightly from the previous one. This section demonstrates how to modify and re-optimize
an existing problem. The example we study is a simple production planning model.

Problem modifications regarding variables, cones, objective function and constraints can be grouped in
categories:

e add/remove,
e coefficient modifications,
e bounds modifications.

Especially removing variables and constraints can be costly. Special care must be taken with respect to
constraints and variable indexes that may be invalidated.

Depending on the type of modification, MOSEK may be able to optimize the modified problem more
efficiently exploiting the information and internal state from the previous execution. After optimization,
the solution is always stored internally, and is available before next optimization. The former optimal
solution may be still feasible, but no longer optimal; or it may remain optimal if the modification of the
objective function was small. This special case is discussed in Sec. 15.3.

In general, MOSEK exploits dual information and availability of an optimal basis from the previous
execution. The simplex optimizer is well suited for exploiting an existing primal or dual feasible solution.
Restarting capabilities for interior-point methods are still not as reliable and effective as those for the
simplex algorithm. More information can be found in Chapter 10 of the book /Chv83/.

Parameter settings (see Sec. 7.4) can also be changed between optimizations.

6.6.1 Example: Production Planning

A company manufactures three types of products. Suppose the stages of manufacturing can be split into
three parts: Assembly, Polishing and Packing. In the table below we show the time required for each
stage as well as the profit associated with each product.

Product no. | Assembly (minutes) | Polishing (minutes) | Packing (minutes) | Profit ($)
0 2 3 2 1.50
1 4 2 3 2.50
2 3 3 2 3.00

With the current resources available, the company has 100, 000 minutes of assembly time, 50, 000 minutes
of polishing time and 60,000 minutes of packing time available per year. We want to know how many
items of each product the company should produce each year in order to maximize profit?

Denoting the number of items of each type by zp,x1 and x5, this problem can be formulated as a linear
optimization problem:

maximize 1.5x9 + 2.5z7 + 3.02o
subject to 2x9 4+ 4x; 4+ 3z < 100000, (6.10)
3zp + 2r1 +  3xz2 < 50000, '
209 + 3x1 + 2zo < 60000,
and
.'L'O,.’,Ul,CC2ZO.
Code in Listing 6.8 loads and solves this problem.
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Listing 6.8: Setting up and solving problem (6.10)

# Create a MOSEK environment
with mosek.Env() as env:
# Create a task
with env.Task(0, 0) as task:
# Bound keys for constraints
bkc = [mosek.boundkey.up,
mosek.boundkey.up,
mosek.boundkey . up]
# Bound values for constraints
blc = [-inf, -inf, -inf]
buc = [100000.0, 50000.0, 60000.0]
# Bound keys for wvartiables
bkx = [mosek.boundkey.lo,
mosek.boundkey.1lo,
mosek.boundkey.1lo]
# Bound values for wvartables
blx = [0.0, 0.0, 0.0]
bux = [+inf, +inf, +inf]
# Objective coefficients
csub = [0, 1, 2]
cval = [1.5, 2.5, 3.0]
# We input the 4 matriz column-wise
# asub contains row indezes
asub = [0, 1, 2,
0, 1, 2,
0, 1, 2]
# acof contains coefficients
acof = [2.0, 3.0, 2.0,
4.0, 2.0, 3.0,
3.0, 3.0, 2.0]
# aptrdb and aptre contains the offsets into asub and acof where
# columns start and end respectively
aptrb = [0, 3, 6]
aptre = [3, 6, 9]

numvar = len(bkx)
numcon = len(bkc)

# Append the constraints
task.appendcons (numcon)

# Append the wvariables.
task.appendvars (numvar)

# Input objective
task.putcfix(0.0)
task.putclist(csub, cval)

# Put comnstraint bounds
task.putconboundslice (0, numcon, bkc, blc, buc)

# Put wvariable bounds
task.putvarboundslice (0, numvar, bkx, blx, bux)

# Input 4 non-zeros by columns
for j in range(numvar):
ptrb, ptre = aptrb[jl, aptrelj]
task.putacol(j,
asub[ptrb:ptre],
acof [ptrb:ptrel)
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# Input the objective sense (minimize/mazimize)
task.putobjsense (mosek.objsense.maximize)

# Optimize the task
task.optimize ()

# Output a solution

xx = [0.] * numvar

task.getsolutionslice(mosek.soltype.bas,
mosek.solitem.xx,
0, numvar,
XX)

print ("xx = {}".format (xx))

6.6.2 Changing the Linear Constraint Matrix

Suppose we want to change the time required for assembly of product 0 to 3 minutes. This corresponds
to setting ago = 3, which is done by calling the function Task.putaij as shown below.

task.putaij(0, 0, 3.0)

The problem now has the form:

and

maximize 1.5z9 + 2527 4+ 3.0z4
subject to  3zg + 4dx; + 3o
3o +  2x +  3xs
2xo + 3T + 2x9

Zo, 1,22 > 0.

After this operation we can reoptimize the problem.

6.6.3 Appending Variables

We now want to add a new product with the following data:

< 100000,
< 50000,
< 60000,

Product no. | Assembly (minutes) | Polishing (minutes)

Packing (minutes)

Profit ()

4 0

1

1.00

(6.11)

This corresponds to creating a new variable 3, appending a new column to the A matrix and setting a
new term in the objective. We do this in Listing 6.9

Listing 6.9: How to add a new variable (column)

HERRRRARRRRR AR AR RAS Add a new variable #H#HAAAAAAAAAAAHHHIIAS

task.appendvars (1)
numvar+=1

# Set bounds on new varaible
task.putbound (mosek.accmode.var,
task.getnumvar () - 1,
mosek.boundkey.lo,
0,
+inf)

6.6. Problem Modification and Reoptimization

37




MOSEK Optimizer API for Python, Release 8.1.0.61

# Change objective
task.putcj(task.getnumvar() - 1, 1.0)

# Put new wvalues in the 4 matriz
acolsub = [0, 2]
acolval = [4.0, 1.0]

task.putacol(task.getnumvar() - 1, # column indez
acolsub,
acolval)

After this operation the new problem is:

maximize 1.5z9 + 2521 + 3.0zs + 1.0x3

subject to 3xz¢9 + 4dx; 4+ 3xzo + 4z < 100000, (6.12)
39 + 2x1 + 319 < 50000, ’
2z +  3x +  2x9 + lxg < 60000,

and

L0, L1, T2, T3 > 0.

6.6.4 Appending Constraints

Now suppose we want to add a new stage to the production process called Quality control for which
30000 minutes are available. The time requirement for this stage is shown below:

Product no. | Quality control (minutes)
0 1
1 2
2 1
3 1

This corresponds to adding the constraint
To + 221 + 22 + x3 < 30000
to the problem. This is done as follows.

Listing 6.10: Adding a new constraint.

HEgppaRRa##AE Add a new constraint HEAHALHABAHHARAHHRRLHHE
task.appendcons (1)
numcon+=1

# Set bounds on new constraint
task.putconbound(task.getnumcon() - 1,
mosek.boundkey.up, -inf, 30000)

# Put new values in the 4 matriz
arowsub = [0, 1, 2, 3]
arowval = [1.0, 2.0, 1.0, 1.0]

task.putarow(task.getnumcon() - 1, # row indexz
arowsub,
arowval)

Again, we can continue with re-optimizing the modified problem.
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6.7 Solution Analysis

The main purpose of MOSEK is to solve optimization problems and therefore the most fundamental
question to be asked is whether the solution reported by MOSEK is a solution to the desired optimization
problem.

There can be several reasons why it might be not case. The most prominent reasons are:

e A wrong problem. The problem inputted to MOSEK is simply not the right problem, i.e. some
of the data may have been corrupted or the model has been incorrectly built.

e Numerical issues. The problem is badly scaled or otherwise badly posed.
e Other reasons. E.g. not enough memory or an explicit user request to stop.

The first step in verifying that MOSEK reports the expected solution is to inspect the solution summary
generated by MOSEK (see Sec. 6.7.1). The solution summary provides information about

e the problem and solution statuses,
e objective value and infeasibility measures for the primal solution, and
e objective value and infeasibility measures for the dual solution, where applicable.

By inspecting the solution summary it can be verified that MOSEK produces a feasible solution, and,
in the continuous case, the optimality can be checked using the dual solution. Furthermore, the problem
itself ca be inspected using the problem analyzer discussed in Sec. 15.1.

If the summary reports conflicting information (e.g. a solution status that does not match the actual
solution), or the cause for terminating the solver before a solution was found cannot be traced back to
the reasons stated above, it may be caused by a bug in the solver; in this case, please contact MOSEK
support (see Sec. 2).

If it has been verified that MOSEK solves the problem correctly but the solution is still not as expected,
next step is to verify that the primal solution satisfies all the constraints. Hence, using the original
problem it must be determined whether the solution satisfies all the required constraints in the model.
For instance assume that the problem has the constraints

z1+2x2+23 <1,
Z1,%2,23 > 0

and MOSEK reports the optimal solution
1 = X2 = T3 = 1.

Then clearly the solution violates the constraints. The most likely explanation is that the model does
not match the problem entered into MOSEK, for instance

T, —2x9 +23 <1
may have been inputted instead of
Ty 4 229 + 23 < 1.
A good way to debug such an issue is to dump the problem to OPF file and check whether the violated

constraint has been specified correctly.

Verifying that a feasible solution is optimal can be harder. However, for continuous problems, i.e. prob-
lems without any integer constraints, optimality can verified using a dual solution. Normally, MOSEK
will report a dual solution; if that is feasible and has the same objective value as the primal solution,
then the primal solution must be optimal.

An alternative method is to find another primal solution that has better objective value than the one
reported to MOSEK. If that is possible then either the problem is badly posed or there is bug in
MOSEK.
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6.7.1 The Solution Summary

Due to MOSEK employs finite precision floating point numbers then reported solution is an approximate
optimal solution. Therefore after solving an optimization problem it is relevant to investigate how good
an approximation the solution is. For a convex optimization problem that is an easy task because the
optimality conditions are:

e The primal solution must satisfy all the primal constraints.
e The dual solution much satisfy all the dual constraints.
e The primal and dual objective values must be identical.

Therefore, the MOSEK solution summary displays that information that makes it possible to verify the
optimality conditions. Indeed the solution summary reports how much primal and dual solutions violate
the primal and constraints respectively. In addition the objective values assoctaied with each solution
repoted.

In case of a linear optimization problem the solution summary may look like

Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -4.6475314286e+002 nrm: 5e+002 Viol. con: 1le-014 var: 1le-014
Dual. obj: -4.6475314543e+002 nrm: 1e+001  Viol. con: 4e-009 var: 4e-016

The interpreation of the solution summary is as follows:
e Information for the basic solution is reported.
e The problem status is primal and dual feasible which means the problem has an optimal solution.
e The solution status is optimal.

e Next information about the primal solution is reported. The information consists of the objective
value, the infinity norm of the primal solution and violation meassures. The violation for the
constraints (con:) is the maximal violation in any of the constraints. Whereas the violations for
the variables (var:) is the maximal bound violation for any of the variables. In this case the
primal violations for the constraints and variables are small meaning the solution is an almost
feasible solution. Observe due to the rounding errors it can be expected that the violations are
proportional to the size (nrm:) of the solution.

e Similarly for the dual solution the violations are small and hence the dual solution is almost feasible.
e Finally, it can be seen that the primal and dual objective values are almost identical.

To summarize in this case a primal and a dual solution only violate the primal and dual constraints
slightly. Moreover, the primal and dual objective values are almost identical and hence it can be concluded
that the reported solution is a good approximation to the optimal solution.

The reason the size (=norms) of the solution are shown is that it shows some about conditioning of the
problem because if the primal and/or dual solution has very large norm then the violations and objective
values are sensitive to small pertubations in the problem data. Therefore, the problem is unstable and
care should be taken before using the solution.

Observe the function Task.solutionsummary will print out the solution summary. In addition
e the problem status can be obtained using Task.getprosta.
e the solution status can be obtained using Task.getsolsta.

e the primal constraint and variable violations can be obtained with Task.getpviolcon and Task.
getpuviolvar.

o the dual constraint and variable violations can be obtained with Task.getdviolcon and Task.
getdviolvar respectively.
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e the primal and dual objective values can be obtained with Task.getprimalobj and Task.
getdualobdby.

Now what happens if the problem does not have an optimal solution e.g. is primal infeasible. In such a
case the solution summary may look like

Interior-point solution summary
Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 6.7319732555e+000 nrm: 8e+000 Viol. con: 3e-010 var: 2e-009

i.e. MOSEK reports that the solution is a certificate of primal infeasibility but a certificate of primal
infeasibility what does that mean? It means that the dual solution is a Farkas type certificate. Recall
Farkas’ Lemma says

Ax = b,
z > 0
if and only if a y exists such that
ATy < 0,
bT;J = (6.13)

Observe the infeasibility certificate has the same form as a regular dual solution and therefore the
certificate is stored as a dual solution. In order to check quality of the primal infeasibility certificate
it should be checked whether satisfies (6.13). Hence, the dual objective value is b7y should be strictly
positive and the maximal violation in A7y < 0 should be a small. In this case we conclude the certificate
is of high quality because the dual objective is postive and large compared to the violations. Note the
Farkas certificate is a ray so any postive multiple of that ray is also certificate. This implies the absolute
of the value objective value and the violation is not relevant.

In the case a problem is dual infeasible then the solution summary may look like

Basic solution summary

Problem status : DUAL_INFEASIBLE

Solution status : DUAL_INFEASIBLE_CER

Primal. obj: -2.0000000000e-002 nrm: 1e+000 Viol. con: 0e+000 var: 0e+000

Observe when a solution is a certificate of dual infeasibility then the primal solution contains the cer-
tificate. Moreoever, given the problem is a minimization problem the objective value should be negative
and large compared to the worst violation if the certificate is strong.

Listing 6.11 shows how to use these function to determine the quality of the solution.

Listing 6.11: An example of solution quality analysis.

import sys
import mosek

def streamprinter (msg):
sys.stdout.write(msg)
sys.stdout.flush()

if len(sys.argv) <= 1:
print("Missing argument, syntax is:")
print(" solutionquality inputfile")
else:
try:
# Create the mosek environment.
with mosek.Env() as env:
# Create a task object linked with the environment env.
# We create it with 0 wvariables and 0 constraints initially,
# since we do not know the size of the problem.
with env.Task(0, 0) as task:
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task.set_Stream(mosek.streamtype.log, streamprinter)

# We assume that a problem file was given as the first command
# line argument (received in “argv')
task.readdata(sys.argv[1])

# Solve the problem
task.optimize()

# Print a summary of the solution
task.solutionsummary (mosek.streamtype.log)

whichsol = mosek.soltype.bas
solsta = task.getsolsta(whichsol)

pobj, pviolcon, pviolvar, pviolbarvar, pviolcones, pviolitg, \
dobj, dviolcon, dviolvar, dviolbarvar, dviolcones = \
task.getsolutioninfo(whichsol)

if solsta in [mosek.solsta.optimal, mosek.solsta.near_optimal]:

abs_obj_gap = abs(dobj - pobj)
rel_obj_gap = abs_obj_gap / \

(1.0 + min(abs(pobj), abs(dobj)))
max_primal_viol = max(pviolcon, pviolvar)
max_primal_viol = max(max_primal_viol, pviolbarvar)
max_primal_viol = max(max_primal_viol, pviolcones)

max_dual_viol = max(dviolcon, dviolvar)
max_dual_viol = max(max_dual_viol, dviolbarvar)
max_dual_viol = max(max_dual_viol, dviolcones)

# Assume the application needs the solution to be within
# le-6 ofoptimality in an absolute sense. Another approach
# would be looking at the relative objective gap

print ("\n\n")
print ("Customized solution information.\n")

print (" Absolute objective gap: %e\n" 7, abs_obj_gap)
print(" Relative objective gap: %e\n" 7, rel_obj_gap)
print (" Max primal violation : %e\n" 7, max_primal_viol)

print(" Max dual violation : %e\n" % max_dual_viol)
accepted = True

if rel_obj_gap > le-6:
print ("Warning: The relative objective gap is LARGE.")
accepted = False

# We will accept a primal infeasibility of 1e-8 and
# dual infeasibility of le-6. These number should chosen problem
# dependent.
if max_primal_viol > le-8:
print("Warning: Primal violation is too LARGE")
accepted = False

if max_dual_viol > le-6:
print("Warning: Dual violation is too LARGE.")

accepted = False

if accepted:

42 Chapter 6. Optimization Tutorials




MOSEK Optimizer API for Python, Release 8.1.0.61

numvar = task.getnumvar ()

print("Optimal primal solution")

xj = [0.]

for j in range(numvar):
task.getxxslice(whichsol, j, j + 1, xj)
print ("x[%d]: Z%e\n" % (j, xj[01))

else:
#Print detailed information about the solution
task.analyzesolution(mosek.streamtype.log, whichsol)

elif solsta in [mosek.solsta.dual_infeas_cer, mosek.solsta.prim_infeas_cer,
mosek.solsta.near_dual_infeas_cer, mosek.solsta.near_prim_
—infeas_cer]:

print ("Primal or dual infeasibility certificate found.")

elif solsta == mosek.solsta.unkwown:

print("The status of the solution is unknown.")
else:

print ("Other solution status")

except mosek.Error as e:
print(e)

6.7.2 The Solution Summary for Mixed-Integer Problems

The solution summary for a mixed-integer problem may look like

Listing 6.12: Example of solution summary for a mixed-integer problem.

Integer solution solution summary
Problem status : PRIMAL_FEASIBLE
Solution status : INTEGER_OPTIMAL
Primal. obj: 3.4016000000e+005 nrm: 1e+000 Viol. con: 0e+000 var: 0e+000 itg: 3e-014

The main diffrence compared to thecontinous case covered previously is that no information about
the dual solution is provided. Simply because there is no dual solution available for a mixed integer
problem. In this case it can be seen that the solution is highly feasible because the violations are small.
Moreoever, the solution is denoted integer optimal. Observe itg: 3e-014 implies that all the integer
constrained variables are at most 3e — 014 from being an exact integer.

For a more in-depth treatment see the following sections:
e (se studies for more advanced and complicated optimization examples.

e Problem Formulation and Solutions for formal mathematical formulations of problems MOSEK
can solve, dual problems and infeasibility certificates.
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CHAPTER

SEVEN

SOLVER INTERACTION TUTORIALS

In this section we cover the interaction with the solver.

7.1 Accessing the solution

This section contains important information about the status of the solver and the status of the solution,
which must be checked in order to properly interpret the results of the optimization.

7.1.1 Solver termination

The optimizer provides two status codes relevant for error handling:

e Response code of type rescode. It indicates if any unexpected error (such as an out of memory
error, licensing error etc.) has occurred. The expected value for a successful optimization is
rescode. ok.

e Termination code: It provides information about why the optimizer terminated, for instance if
a predefined time limit has been reached. These are not errors, but ordinary events that can be
expected (depending on parameter settings and the type of optimizer used).

If the optimization was successful then the method Task.optimize returns normally and its output
is the termination code. If an error occurs then the method throws an exception, which contains the
response code. See Sec. 7.2 for how to access it.

If a runtime error causes the program to crash during optimization, the first debugging step is to enable
logging and check the log output. See Sec. 7.3.

If the optimization completes successfully, the next step is to check the solution status, as explained
below.

7.1.2 Available solutions

MOSEK uses three kinds of optimizers and provides three types of solutions:
e basic solution (BAS, from the simplex optimizer),
e interior-point solution (ITR, from the interior-point optimizer),
e integer solution (ITG, from the mixed-integer optimizer).

Under standard parameters settings the following solutions will be available for various problem types:

45



MOSEK Optimizer API for Python, Release 8.1.0.61

Table 7.1: Types of solutions available from MOSEK

Simplex opti- | Interior-point opti- | Mixed-integer opti-
mizer mizer mizer

Linear problem soltype.bas soltype.itr

Nonlinear continuous prob- soltype.itr

lem

Problem with integer vari- soltype.itg

ables

For linear problems the user can force a specific optimizer choice making only one of the two solutions
available. For example, if the user disables basis identification, then only the interior point solution will
be available for a linear problem. Numerical issues may cause one of the solutions to be unknown even
if another one is feasible.

Not all components of a solution are always available. For example, there is no dual solution for integer
problems.

The user will always need to specify which solution should be accessed.

7.1.3 Problem and solution status

Assuming that the optimization terminated without errors, the next important step is to check the
problem and solution status. There is one for every type of solution, as explained above.

Problem status

Problem status (prosta, retrieved with Task.getprosta) determines whether the problem is certified
as feasible. Its values can roughly be divided into the following broad categories:

e feasible — the problem is feasible. For continuous problems and when the solver is run with
default parameters, the feasibility status should ideally be prosta.prim_and_dual_feas.

e primal/dual infeasible — the problem is infeasible or unbounded or a combination of those.
The exact problem status will indicate the type of infeasibility.

e unknown — the solver was unable to reach a conclusion, most likely due to numerical issues.

Solution status

Solution status (solsta, retrieved with Task.getsolsta) provides the information about what the
solution values actually contain. The most important broad categories of values are:

e optimal (solsta.optimal) — the solution values are feasible and optimal.

e near optimal (solsta.near_optimal) — the solution values are feasible and they were certified
to be at least nearly optimal up to some accuracy.

e certificate — the solution is in fact a certificate of infeasibility (primal or dual, depending on the
solution).

e unknown/undefined — the solver could not solve the problem or this type of solution is not
available for a given problem.

The solution status determines the action to be taken. For example, in some cases a suboptimal solution
may still be valuable and deserve attention. It is the user’s responsibility to check the status and quality
of the solution.
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Typical status reports

Here are the most typical optimization outcomes described in terms of the problem and solution statuses.

Note that these do not cover all possible situations that can occur.

Table 7.2: Continuous problems (solution status for soltype.itr

or soltype.bas)

Outcome

Problem status

Solution status

Optimal

prosta.
prim_and_dual_feas

solsta.optimal

Primal infeasible

prosta.prim_infeas

solsta.
prim_infeas_cer

Dual infeasible

prosta.dual_infeas

solsta.
dual_infeas_cer

Uncertain (stall, numerical issues, etc.)

prosta.unknown

solsta.unknown

Table 7.3: Integer problems (solution status for soltype.

ers undefined)

itg, oth-

Outcome Problem status Solution status
Integer optimal prosta.prim_feas solsta.integer_optimal
Infeasible prosta.prim_infeas | solsta.unknown

Integer feasible point | prosta.prim_feas

solsta.prim_feas

No conclusion

prosta.unknown

solsta.unknown

7.1.4 Retrieving solution values

After the meaning and quality of the solution (or certificate) have been established, we can query for the

actual numerical values. They can be accessed with methods such as:

e Task.getprimaloby, Task.getdualobj — the primal and dual objective value.

e Task.getzz — solution values for the variables.

e Task.getsolution — a full solution with primal and dual values

and many more specialized methods, see the API reference.

7.1.5 Source code example

Below is a source code example with a simple framework for assessing and retrieving the solution to a

conic quadratic optimization problem.

Listing 7.1: Sample framework for checking optimization result.

import mosek
import sys

# 4 log message

def streamprinter(text):
sys.stdout.write(text)
sys.stdout.flush()

def main(args):

filename = args[0] if len(args) >= 1 else "../data/cqol.mps"

try:
# Create environment and task

7.1. Accessing the solution
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with mosek.Env() as env:
with env.Task(0, 0) as task:
# (Optional) set a log stream
# task.set_Stream(mosek.streamtype.log, streamprinter)

# (Optional) uncomment to see what happens when solution status is unknown
#task.putintparam(mosek. iparam. intpnt_maz_iterations, 1)

# In this example we read data from a file
task.readdata(filename)

# Optimize
trmcode = task.optimize()

# We expect solution status OPTINAL
solsta = task.getsolsta(mosek.soltype.itr)

if solsta in [mosek.solsta.optimal,
mosek.solsta.near_optimal]:
# Optimal solution. Fetch and print <t.
print("An optimal interior-point solution is located.")
numvar = task.getnumvar ()
xx = [ 0.0 ] * numvar
task.getxx(mosek.soltype.itr, xx)
for i in range(numvar):
print ("x[{0}] = {1}".format(i, xx[i]))

elif solsta in [mosek.solsta.dual_infeas_cer,
mosek.solsta.near_dual_infeas_cer]:
print("Dual infeasibility certificate found.")

elif solsta in [mosek.solsta.prim_infeas_cer,
mosek.solsta.near_prim_infeas_cer]:
print("Primal infeasibility certificate found.")

elif solsta == mosek.solsta.unknown:
# The solutions status ts unknown. The termination code
# indicates why the optimizer terminated prematurely.
print("The solution status is unknown.")
symname, desc = mosek.Env.getcodedesc(trmcode)
print("  Termination code: {0} {1}".format(symname, desc))

else:
print ("An unexpected solution status {0} is obtained.".format(str(solsta)))

except mosek.Error as e:
print ("Unexpected error ({0}) {1}".format(e.errno, e.msg))

if __name__ == '__main__

main(sys.argv[1:])

7.2 Errors and exceptions

Exceptions

Almost every function in Optimizer API for Python can throw an exception informing that the requested
operation was not performed correctly, and indicating the type of error that occurred. This is the case
in situations such as for instance:

e referencing a nonexisting variable (for example with too large index),
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e defining an invalid value for a parameter,
e accessing an undefined solution,
e repeating a variable name, etc.

It is therefore a good idea to catch exceptions of type Error. The one case where it is extremely important
to do so is when Task.optimize is invoked. We will say more about this in Sec. 7.1.

The exception contains a response code (element of the enum rescode) and short diagnostic messages.
They can be accessed as in the following example.

try:
task.putdouparam(mosek.dparam.intpnt_co_tol_rel_gap, -1.0e-7)
except mosek.Error as e:
print ("Response code {0}\nMessage {1}".format(e.errno, e.msg))

It will produce as output:

Response code rescode.err_param_is_too_small
Message The parameter value -1e-07 is too small for parameter 'MSK_DPAR_INTPNT_CO_TOL_
—REL_GAP'.

Another way to obtain a human-readable string corresponding to a response code is the method Enwv.
getcodedesc. A full list of exceptions, as well as response codes, can be found in the API reference.

Optimizer errors and warnings

The optimizer may also produce warning messages. They indicate non-critical but important events,
that will not prevent solver execution, but may be an indication that something in the optimization
problem might be improved. Warning messages are normally printed to a log stream (see Sec. 7.3). A
typical warning is, for example:

MOSEK warning 53: A numerically large upper bound value 6.6e+09 is specified for constraint
—'C69200"' (46020) .

Warnings can also be suppressed by setting the iparam.maz_num_warnings parameter to zero, if they
are well-understood.

7.3 Input/Output

The logging and I/O features are provided mainly by the MOSEK task and to some extent by the
MOSEK environment objects.

7.3.1 Stream logging

By default the solver runs silently and does not produce any output to the console or otherwise. However,
the log output can be redirected to a user-defined output stream or stream callback function. The log
output is analogous to the one produced by the command-line version of MOSEK.

The log messages are partitioned in three streams:
e messages, streamtype.msg
e warnings, streamtype.wrn

® crrors, streamtype.err
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These streams are aggregated in the streamtype. log stream. A stream handler can be defined for each
stream separately.

A stream handler is simply a user-defined function of type streamfunc that accepts a string, for example:

def myStream(msg) :
sys.stdout.write(msg)
sys.stdout.flush()

It is attached to a stream as follows:

’task.set_Stream(streamtype.log,myStream)

The stream can be detached by calling

’task.set_Stream(None)

After optimization is completed an additional short summary of the solution and optimization process
can be printed to any stream using the method Task. solutionsummary.

7.3.2 Log verbosity

The logging verbosity can be controlled by setting the relevant parameters, as for instance
e iparam.log,
e iparam.log_intpnt,
e tparam.log_mio,
e iparam.log_cut_second_opt,
e iparam.log_sim, and
® tparam.log_sim_minor.

Each parameter controls the output level of a specific functionality or algorithm. The main switch is
iparam. Log which affect the whole output. The actual log level for a specific functionality is determined
as the minimum between iparam.log and the relevant parameter. For instance, the log level for the
output produce by the interior-point algorithm is tuned by the <param. log_intpnt; the actual log level
is defined by the minimum between iparam.log and iparam.log_intpnt.

Tuning the solver verbosity may require adjusting several parameters. It must be noticed that verbose
logging is supposed to be of interest during debugging and tuning. When output is no more of interest,
the user can easily disable it globally with zparam. log. Larger values of iparam. log do not necessarily
result in increased output.

By default MOSEK will reduce the amount of log information after the first optimization on a given
problem. To get full log output on subsequent re-optimizations set iparam.log_cut_second_opt to
Zero.

7.3.3 Saving a problem to a file

An optimization problem can be dumped to a file using the method Task.writedata. The file format
will be determined from the filename’s extension (unless the parameter iparam.write_data_format
specifies something else). Supported formats are listed in Sec. 17 together with a table of problem types
supported by each.

For instance the problem can be written to an OPF file with

task.writedata("data.opf")
task.optimize ()
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All formats can be compressed with gzip by appending the .gz extension, for example

task.writedata("data.task.gz")

Some remarks:

e Unnamed variables are given generic names. It is therefore recommended to use meaningful variable
names if the problem file is meant to be human-readable.

e The task format is MOSEK’s native file format which contains all the problem data as well as
solver settings.

7.3.4 Reading a problem from a file

A problem saved in any of the supported file formats can be read directly into a task using Task.
readdata. The task must be created in advance. Afterwards the problem can be optimized, modified,
etc. If the file contained solutions, then are also imported, but the status of any solution will be set to
solsta.unknown (solutions can also be read separately using Task.readsolution). If the file contains
parameters, they will be set accordingly.

task = env.Task()

try:
task.readdata("file.task.gz")
task.optimize()

except mosek.Exception:
print("Problem reading the file")

7.4 Setting solver parameters

MOSEK comes with a large number of parameters that allows the user to tune the behavior of the
optimizer. The typical settings which can be changed with solver parameters include:

e choice of the optimizer for linear problems,

e choice of primal/dual solver,

e turning presolve on/off,

e turning heuristics in the mixed-integer optimizer on/off,

e level of multi-threading,

e feasibility tolerances,

e solver termination criteria,

e behaviour of the license manager,
and more. All parameters have default settings which will be suitable for most typical users.
The API reference contains:

o Full list of parameters

e List of parameters grouped by topic

Setting parameters

Each parameter is identified by a unique name. There are three types of parameters depending on the
values they take:

e Integer parameters. They take either either simple integer values or values from an enumeration
provided for readability and compatibility of the code. Set with Task.putintparam.
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e Double (floating point) parameters. Set with Task.putdouparam.
e String parameters. Set with Task.putstrparam.

There are also parameter setting functions which operate fully on symbolic strings containing command-
line style names of parameters and their values. See the example below. The optimizer will try to convert
the given argument to the exact expected type, and will error if that fails.

If an incorrect value is provided then the parameter is left unchanged.
For example, the following piece of code sets up parameters which choose and tune the interior point

optimizer before solving a problem.

Listing 7.2: Parameter setting example.

# Set log level (integer parameter)
task.putintparam(mosek.iparam.log, 1)

# Select interior-point optimizer... (integer parameter)
task.putintparam(mosek.iparam.optimizer, mosek.optimizertype.intpnt)
# ... without basis tdentification (integer parameter)
task.putintparam(mosek.iparam.intpnt_basis, mosek.basindtype.never)
# Set relative gap tolerance (double parameter)
task.putdouparam(mosek.dparam.intpnt_co_tol_rel_gap, 1.0e-7)

# The same using explicit string names
task.putparam ("MSK_DPAR_INTPNT_CO_TOL_REL_GAP", "1.0e-7")
task.putnadouparam("MSK_DPAR_INTPNT_CO_TOL_REL_GAP", 1.0e-7 )

# Incorrect wvalue
try:

task.putdouparam(mosek.dparam. intpnt_co_tol_rel_gap, -1.0)
except:

print('Wrong parameter value')

Reading parameter values

The functions Task.getintparam, Task.getdouparam, Task.getstrparam can be used to inspect the
current value of a parameter, for example:

param = task.getdouparam(mosek.dparam.intpnt_co_tol_rel_gap)
print('Current value for parameter intpnt_co_tol_rel_gap = {}'.format(param))

7.5 Retrieving information items

After the optimization the user has access to the solution as well as to a report containing a large amount
of additional information items. For example, one can obtain information about:

e timing: total optimization time, time spent in various optimizer subroutines, number of iterations,
etc.

e solution quality: feasibility measures, solution norms, constraint and bound violations, etc.
e problem structure: counts of variables of different types, constraints, nonzeros, etc.
e integer optimizer: integrality gap, objective bound, number of cuts, etc.

and more. Information items are numerical values of integer, long integer or double type. The full list
can be found in the API reference:

e Double

e Integer
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e Long

Certain information items make sense, and are made available, also during the optimization process.
They can be accessed from a callback function, see Sec. 7.6 for details.

Remark

For efficiency reasons, not all information items are automatically computed after optimization. To force
all information items to be updated use the parameter iparam.auto_update_sol_info.

Retrieving the values

Values of information items are fetched using one of the methods
e Task.getdouinf for a double information item,
o Task.getintinf for an integer information item,
e Task.getlintinf for a long integer information item.
Each information item is identified by a unique name. The example below reads two pieces of data from

the solver: total optimization time and the number of interior-point iterations.

Listing 7.3: Information items example.

tm = task.getdouinf (mosek.dinfitem.optimizer_time)
it = task.getintinf (mosek.iinfitem.intpnt_iter)

print('Time: {O}\nIterations: {1}'.format(tm,it))

7.6 Progress and data callback

Callbacks are a very useful mechanism that allow the caller to track the progress of the MOSEK
optimizer. A callback function provided by the user is regularly called during the optimization and can
be used to

e obtain a customized log of the solver execution,
e collect information for debugging purposes or
e ask the solver to terminate.
Optimizer API for Python has the following callback mechanisms:
e progress callback, which provides only the basic status of the solver.

e data callback, which provides the solver status and a complete set of information items that
describe the progress of the optimizer in detail.

Warning

The callbacks functions must not invoke any functions of the solver, environment or task. Otherwise the
state of the solver and its outcome are undefined. The only exception is the possibility to retrieve an
integer solution, see below.
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Retrieving mixed-integer solutions

If the mixed-integer optimizer is used, the callback will take place, in particular, every time an improved
integer solution is found. In that case it is possible to retrieve the current values of the best integer
solution from within the callback function. It can be useful for implementing complex termination
criteria for integer optimization. The example in Listing 7.4 shows how to do it by handling the callback
code callbackcode.new_int_mio.

7.6.1 Data callback

In the data callback MOSEK passes a callback code and values of all information items to a user-defined
function. The callback function is called, in particular, at the beginning of each iteration of the interior-
point optimizer. For the simplex optimizers ¢param. log_sim_freq controls how frequently the call-back
is called. Note that the callback is done quite frequently, which can lead to degraded performance. If
the information items are not required, the simpler progress callback may be a better choice.

The callback is set by calling the method Task.set_InfoCallback and providing a handle to a user-
defined function callbackfunc.

Non-zero return value of the callback function indicates that the optimizer should be terminated.

7.6.2 Progress callback

In the progress callback MOSEK provides a single code indicating the current stage of the optimization
process.

The callback is set by calling the method Task.set_Progress and providing a handle to a user-defined
function progresscallbackfunc.

Non-zero return value of the callback function indicates that the optimizer should be terminated.

7.6.3 Working example: Data callback

The following example defines a data callback function that prints out some of the information items. It
interrupts the solver after a certain time limit.

Listing 7.4: An example of a data callback function.

def makeUserCallback(maxtime, task):
xx = numpy.zeros (task.getnumvar()) # Space for integer solutions

def userCallback(caller,
douinf,
intinf,
lintinf):
opttime = 0.0

if caller == callbackcode.begin_intpnt:
print("Starting interior-point optimizer")
elif caller == callbackcode.intpnt:
itrn = intinf[iinfitem.intpnt_iter]
pobj = douinf [dinfitem.intpnt_primal_obj]
dobj = douinf [dinfitem.intpnt_dual_obj]
stime = douinf [dinfitem.intpnt_time]
opttime = douinf[dinfitem.optimizer_time]

print("Iterations: 7%-3d" % itrn)
print(" Elapsed time: 76.2f(%.2f) " 7, (opttime, stime))
print (" Primal obj.: %-18.6e Dual obj.: 7%-18.6e" % (pobj, dobj))
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elif caller == callbackcode.end_intpnt:

print ("Interior-point optimizer finished.")
elif caller == callbackcode.begin_primal_simplex:

print("Primal simplex optimizer started.")
elif caller == callbackcode.update_primal_simplex:

itrn = intinf[iinfitem.sim_primal_iter]

pobj = douinf [dinfitem.sim_obj]

stime = douinf [dinfitem.sim_time]

opttime = douinf[dinfitem.optimizer_time]

print ("Iterations: %-3d" % itrn)
print(" Elapsed time: %6.2f(%.2f)" 7 (opttime, stime))
print(" O0Obj.: %-18.6e" 7 pobj)

elif caller == callbackcode.end_primal_simplex:
print("Primal simplex optimizer finished.")

elif caller == callbackcode.begin_dual_simplex:
print("Dual simplex optimizer started.")

elif caller == callbackcode.update_dual_simplex:
itrn = intinf[iinfitem.sim_dual_iter]
pobj = douinf [dinfitem.sim_obj]
stime = douinf[dinfitem.sim_time]
opttime = douinf[dinfitem.optimizer_time]
print("Iterations: 7%-3d" % itrn)
print(" Elapsed time: 7%6.2f(%.2f)" 7 (opttime, stime))
print(" Obj.: %-18.6e" 7 pobj)

elif caller == callbackcode.end_dual_simplex:
print("Dual simplex optimizer finished.")
elif caller == callbackcode.new_int_mio:

print ("New integer solution has been located.")

task.getxx(soltype.itg, xx)

print (xx)

print ("Obj.: %f" % douinf[dinfitem.mio_obj_int])
else:

pass

if opttime >= maxtime:
# mosek 1is spending too much time. Terminate %t
print ("Terminating.")
return 1

return 0O
return userCallback

Assuming that we have defined a task task and a time limit maxtime, the callback function is attached
as follows:

Listing 7.5: Attaching the data callback function to the model.

usercallback = makeUserCallback(maxtime=0.05, task=task)
task.set_InfoCallback(usercallback)

7.7 MOSEK OptServer

MOSEK provides an easy way to offload optimization problem to a remote server in both synchronous
or asynchronous mode. This section describes related functionalities from the client side, i.e. sending
optimization tasks to the remote server and retrieving solutions.

Setting up and configuring the remote server is described in a separate manual for the OptServer.
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7.7.1 Synchronous Remote Optimization

In synchronous mode the client sends an optimization problem to the server and blocks, waiting for the
optimization to end. Once the result has been received, the program can continue. This is the simplest
mode and requires very few modifications to existing code: instead of Task.optimize the user must
invoke Task.optimizermt with the host and port where the server is running and listening as additional
arguments. The rest of the code remains untouched.

Note that it is impossible to recover the job in case of a broken connection.
Source code example

Listing 7.6: Using the OptServer in synchronous mode.

import mosek
import sys

def streamprinter(msg):
sys.stdout.write(msg)
sys.stdout.flush()

if len(sys.argv) <= 3:

print ("Missing argument, syntax is:")

print(" opt_server_sync inputfile host port")
else:

inputfile = sys.argv[1]
host = sys.argv[2]
port = sys.argv[3]

# Create the mosek environment.
with mosek.Env() as env:

# Create a task object linked with the environment env.

# We create it with 0 vartables and 0 constraints initially,

# since we do not know the size of the problem.

with env.Task(0, 0) as task:
task.set_Stream(mosek.streamtype.log, streamprinter)

# We assume that a problem file was given as the first command
# line argument (received in ‘argv')
task.readdata(inputfile)

# Solve the problem remotely
task.optimizermt (host, port)

# Print a summary of the solution
task.solutionsummary(mosek.streamtype.log)

7.7.2 Asynchronous Remote Optimization

In asynchronous mode the client sends a job to the remote server and the execution of the client code
continues. In particular, it is the client’s responsibility to periodically check the optimization status and,
when ready, fetch the results. The client can also interrupt optimization. The most relevant methods
are:

e Task.asyncoptimize : Offload the optimization task to a solver server.
e Task.asyncpoll : Request information about the status of the remote job.

e Task.asyncgetresult : Request the results from a completed remote job.
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e Task.asyncstop : Terminate a remote job.

Source code example

In the example below the program enters in a polling loop that regularly checks whether the result of

the optimization is available.

Listing 7.7: Using the OptServer in asynchronous mode.

import mosek
import sys
import time

def streamprinter(msg):

sys.stdout.write(msg)

sys.stdout.flush()

if len(sys.argv) != 5:

print("Missing argument, syntax is:")

print(" opt-server-async inputfile host port numpolls")

else:

filename = sys.argv[1]

host = sys.argv[2]
port = sys.argv[3]

numpolls = int(sys.argv[4])

token = None

with mosek.Env() as env:
with env.Task(0, 0) as task:

print("reading task from file")
task.readdata(filename)

print("Solve the problem remotely (async)")
token = task.asyncoptimize(host, port)

print("Task token: 7s" 7 token)
with env.Task(0, 0) as task:

task.readdata(filename)

task.set_Stream(mosek.streamtype.log, streamprinter)

i=20

while i < numpolls:
time.sleep(0.1)

print("poll Jd..." 7% i)
respavailable, trm, res

print("done!")

if respavailable:

task.asyncpoll (host,

port,
token)

print("solution available!")

respavailable, trm, res

= task.asyncgetresult (host,
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port,
token)

task.solutionsummary(mosek.streamtype.log)

break
i=1i+1
if i == numpolls:

print("max number of polls reached, stopping host.")
task.asyncstop(host, port, token)
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CHAPTER

EIGHT

NONLINEAR TUTORIALS

This chapter provides information about how to solve general convex nonlinear optimization problems
using MOSEK. By general nonlinear problems we mean those that cannot be formulated in conic or

convex quadratically constrained form.

In general we recommend not to use the general nonlinear optimizer unless absolutely necessary. The

reasons are:

e The algorithm employed for nonlinear optimization problems is not as efficient as the one employed
for conic problems. Conic problems have special structure that can be exploited to make the

optimizer faster and more robust.

e MOSEK has no way of checking whether the formulated problem is convex and if this assumption
is not satisfied the optimizer will not work.

e The nonlinear optimizer requires 1st and 2nd order derivative information which is often hard to

provide correctly.

Instead, we advise:

e Consider reformulating the problem to a conic quadratic optimization problem if at all possible. In
particular many problems involving polynomial terms can easily be reformulated to conic quadratic

form.

e Consider reformulating the problem to a separable optimization problem because that simplifies
the issue with verifying convexity and computing 1st and 2nd order derivatives significantly. In
most cases problems in separable form also solve faster because of the simpler structure of the

functions.

e Finally, if the problem cannot be reformulated in separable form use a modelling language like
AMPL or GAMS, which will perform all the preprocessing, computing function values and deriva-
tives. This eliminates an important source of errors. Therefore, it is strongly recommended to use
a modelling language at the prototype stage.

The Optimizer API for Python provides the following nonlinear interfaces:

8.1 Separable Convex (SCopt) Interface

The Optimizer API for Python provides a way to add simple non-linear functions composed from a
limited set of non-linear terms. Non-linear terms can be mixed with quadratic terms in objective and
constraints. We consider problems which can be formulated as:

minimize
subject to 1§ <
<

where z € R™ and each z; : R™ — R is separable, that is can be written as a sum

zo(x) +cTx
zi(z) +al'z
x

<
<

zi() = zig(x;).
j=1
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The interface implements a limited set of functions which can appear as z; ;. They are:

Table 8.1: Functions supported by the SCopt interface.

Separable function | Operator name | Name

fzln(x) ent Entropy function
fegrth exp Exponential function
fIn(gx + h) log Logarithm

flx+h)d pow Power function

where f,g,h € R are constants. This formulation does not guarantee convexity. For MOSEK to be

able to solve the problem, the following requirements must be met:

e If the objective is minimized, the sum of non-linear terms must be convex, otherwise it must be

concave.

e Any constraint bounded below must be concave, and any constraint bounded above must be convex.

e Each separable term must be twice differentiable within the bounds of the variable it is applied to.

Some simple rules can be followed to ensure that the problem satisfies MOSEK’s convexity and differ-
entiability requirements. First of all, for any variable z; used in a separable term, the variable bounds
must define a range within which the function is twice differentiable. These bounds are defined in Table

8.2.

Table 8.2: Safe bounds for functions in the SCopt interface.

Separable function | Operator name | Safe x bounds

fxln(zx) ent 0< .

fegzth exp —00 < T < 00.

fIn(gz + h) log Ifg>0: —h/g < =x.
Ifg<0:z<—h/g.

f(z+ h)9 pow If g > 0 and integer: —oco < < 0.
If g < 0 and integer: either —h < z or x < —h.
Otherwise: —h < .

To ensure convexity, we require that each z;(x) is either a sum of convex terms or a sum of concave
terms. Table 8.3 lists convexity conditions for the relevant ranges for f > 0 — changing the sign of f

switches concavity /convexity.

Table 8.3: Convexity conditions for functions in the SCopt inter-

face.

Separable function

Operator name

Convexity conditions

fzln(x) ent Convex within safe bounds.
fegth exp Convex for all z.

fln(gz + h) log Concave within safe bounds.
f(xz+ h)9 pow If g is even integer: convex

within safe bounds.

If g is odd integer:

e concave if (—oo, —h),

e convex if (—h,00)
If 0 < g < 1: concave within
safe bounds.

Otherwise: convex within safe
bounds.

A problem involving linear combinations of variables (such as In(x;+x2)), can be converted to a separable

problem using slack variables and additional equality constraints.
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8.1.1 Example

Consider the following separable convex problem:

minimize  exp(x2) — In(xq)
subject to g ln(xy) <0
xiﬁ —x9 >0
3 <,z <1

(8.1)

Note that all nonlinear functions are well defined for = values satisfying the variable bounds strictly. This
assures that function evaluation errors will not occur during the optimization process because MOSEK.

The linear part of the problem is specified as usually. The nonlinear part is set using the function Task.
putSCeval. See the API reference for a description of the format. After that a standard invocation of
Task.optimize solves the problem. The API reference describes additional functions for reading and
writing SCopt terms from/to a file.

Listing 8.1: Implementation of problem (8.1).

import sys
import mosek

def streamprinter(text):
sys.stdout.write(text)
sys.stdout.flush()

def main():
with mosek.Env() as env:
env.set_Stream(mosek.streamtype.log, streamprinter)
with env.Task(0, 0) as task:
task.set_Stream(mosek.streamtype.log, streamprinter)

numvar = 2
2

numcon
inf = 0.

bkc = [mosek.boundkey.up,
mosek.boundkey.lo]

blc = [-inf, 0.]

buc = [0., inf]

bkx = [mosek.boundkey.ra] * numvar
blx = [0.5] * numvar
bux = [1.0] * numvar

task.appendvars (numvar)
task.appendcons (numcon)

task.putvarboundslice(0, numvar, bkx, blx, bux)
task.putconboundslice (0, numcon, bkc, blc, buc)

task.putaij(1, 1, -1.0)

opro = [mosek.scopr.log, mosek.scopr.exp]
oprjo = [0, 1]

oprfo [-1.0, 1.0]

oprgo [1.0, 1.0]

oprho = [0.0, 0.0]

oprc = [mosek.scopr.ent, mosek.scopr.pow]
opric = [0, 1]
oprjc = [1, 0]
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main()

oprfc

oprgc
oprhc

[1.0, 1.0]
= [0.0, 0.5]
[0.0, 0.0]

task.putSCeval (opro, oprjo, oprfo, oprgo, oprho,
oprc, opric, oprjc, oprfc, oprgc, oprhc)

task.optimize()

res =

[0.0] * numvar

task.getsolutionslice(
mosek.soltype.itr,
mosek.solitem.xx,

0,

numvar,

res)

print("Solution is: %s" 7 res)

task.putintparam(
mosek.iparam.write_ignore_incompatible_items, mosek.onoffkey.on)

task.writeSC("scprob.sc", "scprob.opf")
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CHAPTER

NINE

ADVANCED NUMERICAL TUTORIALS

MOSEK provides access to numerical linear algebra tools essential for more advanced applications.
They are described in this section.

9.1 Solving Linear Systems Involving the Basis Matrix

A linear optimization problem always has an optimal solution which is also a basic solution. In an optimal
basic solution there are exactly m basic variables where m is the number of rows in the constraint matrix
A. Define

B e R™*™

as a matrix consisting of the columns of A corresponding to the basic variables. The basis matrix B is
always non-singular, i.e.

det(B) #0

or, equivalently, B~! exists. This implies that the linear systems

and

each have a unique solution for all w.
MOSEK provides functions for solving the linear systems (9.1) and (9.2) for an arbitrary w.
In the next sections we will show how to use MOSEK to

e identify the solution basis,

e solve arbitrary linear systems.

9.1.1 Basis identification

To use the solutions to (9.1) and (9.2) it is important to know how the basis matrix B is constructed.

Internally MOSEK employs the linear optimization problem

T

maximize c'x

subject to Ax—2¢ = 0
o< - < 4 (9:3)
c < ¢ < wuc.

where

z¢ € R™ and x € R".
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The basis matrix is constructed of m columns taken from
(A —1].

If variable x; is a basis variable, then the j-th column of A, denoted a. ;, will appear in B. Similarly,
if ¢ is a basis variable, then the i-th column of —I will appear in the basis. The ordering of the basis
variables and therefore the ordering of the columns of B is arbitrary. The ordering of the basis variables
may be retrieved by calling the function

task.initbasissolve(basis)

This function initializes data structures for later use and returns the indexes of the basic variables in the
array basis. The interpretation of the basis is as follows. If

basis[i] < numcon,

then the i-th basis variable is . Moreover, the i-th column in B will be the ¢-th column of —I. On the
other hand if

basis[i] > numcon,
then the i-th basis variable is the variable
Tpasis|i]—numcon
and the ¢-th column of B is the column
A, (vasis[i]—numcon)-
For instance if basis[0] = 4 and numcon = 5, then since basis[0] < numcon, the first basis variable is z§.

Therefore, the first column of B is the fourth column of —I. Similarly, if basis[l] = 7, then the second
variable in the basis iS Tyasis[1]—numcon = T2 Hence, the second column of B is identical to a. o.

An example

Consider the linear optimization problem:

minimize To + T
subject to xg+2x; < 2,
xo+zT1 <6, (94)
xo, 1 > 0.

Suppose a call to Task.initbasissolve returns an array basis so that

basis[0]
basis[1]

1)

Then the basis variables are z{ and zy and the corresponding basis matrix B is

0 1
-1 1|
Please note the ordering of the columns in B .

Listing 9.1: A program showing how to identify the basis.

import mosek

def streamprinter(text):
sys.stdout.write(text)
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sys.stdout.flush()

def main():
numcon = 2
numvar = 2
# Since the value infinity is never used, we define
# 'anfinity' symbolic purposes only
infinity = O
c=[1.0, 1.0]
ptrb = [0, 2]
ptre = [2, 3]
asub = [0, 1,
0, 11
aval = [1.0, 1.0,
2.0, 1.0]
bkc = [mosek.boundkey.up,
mosek.boundkey .up]
blc = [-infinity,
-infinity]
buc = [2.0,
6.0]
bkx = [mosek.boundkey.lo,
mosek.boundkey.1lo]
blx = [0.0,
0.0]
bux = [+infinity,
+infinity]
wil = [2.0, 6.0]
w2 = [1.0, 0.0]
try:
with mosek.Env() as env:
with env.Task(0, 0) as task:
task.set_Stream(mosek.streamtype.log, streamprinter)
task.inputdata(numcon, numvar,
c,
0.0,
ptrb,
ptre,
asub,
aval,
bkc,
blc,
buc,
bkx,
blx,
bux)
task.putobjsense (mosek.objsense.maximize)
r = task.optimize()
if r != mosek.rescode.ok:
print("Mosek warning:", r)
basis = [0] * numcon
task.initbasissolve(basis)
#List basis variables corresponding to columns of B
varsub = [0, 1]
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for i in range(numcon):
if basis[varsub[i]l] < numcon:
print("Basis variable no %d is xc%d" % (i, basis[i]))
else:
print("Basis variable no %d is x%d" %
(i, basis[i] - numcon))

# solve Bz = wl

# varsub contains indexr of non-zeros in b.
# O0On return b contains the solution z and
# varsub the index of the non-zeros in .
nz = 2

nz = task.solvewithbasis(0, nz, varsub, wi)
print("nz = 7s" 7, nz)
print("Solution to Bx = wil:")

for i in range(nz):
if basis[varsub[i]] < numcon:
print("xc %s = %s" % (basis[varsub[i]], wl[varsub[il]))
else:
print("x%s = %s" %
(basis[varsub[i]] - numcon, wil[varsub[i]]))

# Solve BTz = w2
nz = 1
varsub[0] = 0O

nz = task.solvewithbasis(l, nz, varsub, w2)
print("Solution to B~Tx = w2:")

for i in range(nz):
if basis[varsub[i]] < numcon:
print("xc %s = %s" % (basis[varsub[i]], w2[varsub[ill))
else:
print("x %s = %s" %
(basis[varsub[i]] - numcon, w2[varsubl[i]]))
except Exception as e:
print(e)

if __name == '__main_

main()

In the example above the linear system is solved using the optimal basis for (9.4) and the original right-
hand side of the problem. Thus the solution to the linear system is the optimal solution to the problem.
When running the example program the following output is produced.

basis[0] = 1
Basis variable no 0 is xcl.
basis[1] = 2

Basis variable no 1 is xO.

Solution to Bx = b:

x0 = 2.000000e+00
xcl = -4.000000e+00

Solution to B~Tx = c:

x1 -1.000000e+00
x0 = 1.000000e+00
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Please note that the ordering of the basis variables is

H

and thus the basis is given by:

It can be verified that

is a solution to

9.1.2 Solving arbitrary linear systems

MOSEK can be used to solve an arbitrary (rectangular) linear system
Ax =1
using the Task.solwvewithbasis function without optimizing the problem as in the previous example.

This is done by setting up an A matrix in the task, setting all variables to basic and calling the Task.
solvewithbasis function with the b vector as input. The solution is returned by the function.

An example

Below we demonstrate how to solve the linear system

o] 63

with two inputs b = (1, —2) and b = (7,0) .

import mosek

def put_a(task,
aval,
asub,
ptrb,
ptre,
numvar,
basis):
# Since the value tnfinity is never used, we define
# 'infinity' symbolic purposes only
infinity = 0

skx = [mosek.stakey.bas] * numvar
skc = [mosek.stakey.fix] * numvar

task.appendvars (numvar)
task.appendcons (numvar)

for i in range(len(asub)):
task.putacol(i, asub[i], avall[il)
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for i in range(numvar):
task.putconbound (i, mosek.boundkey.fx, 0.0, 0.0)

for i in range(numvar):
task.putvarbound(i,
mosek.boundkey.fr,
-infinity,
infinity)

# Define a basic solution by specifying
# status keys for wvariables & constraints.

for i in range(numvar):
task.putsolutioni(mosek.accmode.var,

i,
mosek.soltype.bas,
skx[i],
0.0,
0.0,
0.0,
0.0)

for i in range(numvar):
task.putsolutioni(mosek.accmode.con,
i,
mosek.soltype.bas,
skc[i],
0.0,

B

o O O

.0
.0,
.0)

task.initbasissolve(basis)

def main():
numcon = 2
numvar = 2

aval = [[-1.0],
[1.0, 1.0]]
asub = [[1],
[0, 111

ptrb = [0, 1]
ptre = [1, 3]

#int[] bsub = new int[numvar];
#double[] b = new double[numvar];
#int[] basis = new int/[numvar];

with mosek.Env() as env:
with mosek.Task(env) as task:
# Directs the log task stream to the user specified
# method task_msg_obj.streamCB
task.set_Stream(mosek.streamtype.log,
lambda msg: sys.stdout.write(msg))
# Put A matriz and factor 4.
# Call this function only once for a given task.

basis = [0] * numvar
b = [0.0, -2.0]
bsub = [0, 1]
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if

_name_
try:

put_a(task,
aval,
asub,
ptrb,
ptre,
numvar,
basis)

# now solve Ths

b= [1, -2]

bsub = [0, 1]

nz = task.solvewithbasis(0, 2, bsub, b)
print ("\nSolution to Bx = b:\n")

# Print solution and show correspondents
# to original variables in the problem
for i in range(nz):
if basis[bsub[i]] < numcon:
print ("This should never happen")
else:
print("x%d = %d" % (basis[bsub[i]l] - numcon, b[bsub[i]]))

b[0] =7
bsub[0] = 0

nz = task.solvewithbasis(0, 1, bsub, b)

print("\nSolution to Bx = b:\n")
# Print solution and show correspondents
# to original variables in the problem
for i in range(nz):
if basis[bsub[i]] < numcon:
print("This should never happen")
else:
print("x%d = %d" % (basis[bsub[i]l] - numcon, b[bsub[i]]))

== "__main__":

main()

except

import traceback
traceback.print_exc()

The most important step in the above example is the definition of the basic solution, where we define
the status key for each variable. The actual values of the variables are not important and can be selected
arbitrarily, so we set them to zero. All variables corresponding to columns in the linear system we want
to solve are set to basic and the slack variables for the constraints, which are all non-basic, are set to

their bound.

The program produces the output:

Solution to Bx = b:
x1 =1
x0 = 3
Solution to Bx = b:

x1 =7
x0 =7
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9.2 Calling BLAS/LAPACK Routines from MOSEK

Sometimes users need to perform linear algebra operations that involve dense matrices and vectors.
Also MOSEK extensively uses high-performance linear algebra routines from the BLAS and LAPACK
packages and some of these routines are included in the package shipped to the users.

The MOSEK versions of BLAS/LAPACK routines:

e use MOSEK data types and return value conventions,

e preserve the BLAS/LAPACK naming convention.

Therefore the user can leverage on efficient linear algebra routines, with a simplified interface, with no
need for additional packages.

List of available routines

Table 9.1: BLAS routines available.

BLAS Name | MOSEK function | Math Expression
AXPY Env. azpy y=ar+y

DOT Env.dot Ty

GEMV Env. gemu y = aAx + Py
GEMM Env. gemm C =aAB+ pC
SYRK Env.syrk C = aAAT + pC

Table 9.2: LAPACK routines available.

LAPACK Name | MOSEK function | Description

POTRF Env.potrf Cholesky factorization of a semidefinite symmetric matrix
SYEVD Env.syevd Eigenvalues of a symmetric matrix

SYEIG Env.syeig Eigenvalues and eigenvectors of a symmetric matrix

Source code examples

In Listing 9.2 we provide a simple working example. It has no practical meaning except showing how to
organize the input and call the methods.

Listing 9.2: Calling BLAS and LAPACK routines from Optimizer API for Python.

import mosek
def print_matrix(x, r, c):
for i in range(r):

print([x[j * r + i] for j in range(c)])

with mosek.Env() as env:

n =3

m= 2

k=3

alpha = 2.0

beta = 0.5
x=[1.0, 1.0, 1.0]
y = [1.0, 2.0, 3.0]
z = [1.0, 1.0]

v = [0.0, 0.0]
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#4 has m=2 rows and k=3 cols

A=1[1.0, 1.0, 2.0, 2.0, 3., 3.]

#B has k=3 rows and n=3 cols

B=1[t1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
C = [0.0 for i in range(n * m)]

D=1[1.0, 1.0, 1.0, 1.0]

Q=1[1.0, 0.0, 0.0, 2.0]

# BLAS routines

xy = env.dot(n, x, y)
print("dot results= %f\n" % xy)

env.axpy(n, alpha, x, y)
print("\naxpy results is ")
print_matrix(y, 1, len(y))

env.gemv(mosek.transpose.no, m, n, alpha, A, x, beta, z)
print("\ngemv results is ")
print_matrix(z, 1, len(z))

env.gemm(mosek.transpose.no, mosek.transpose.no,
m, n, k, alpha, A, B, beta, C)

print("\ngemm results is ")

print_matrix(C, m, n)

env.syrk(mosek.uplo.lo, mosek.transpose.no, m, k, alpha, A, beta, D)
print("\nsyrk results is")
print_matrix(D, m, m)

# LAPACK routines

env.potrf (mosek.uplo.lo, m, Q)
print("\npotrf results is ")
print_matrix(Q, m, m)

env.syeig(mosek.uplo.lo, m, Q, v)
print("\nsyeig results is")
print_matrix(v, 1, m)

env.syevd(mosek.uplo.lo, m, Q, v)
print("\nsyevd results is")
print('v: ')

print_matrix(v, 1, m)

print('Q: ')

print_matrix(Q, m, m)

print ("Exiting...")

9.3 Computing a Sparse Cholesky Factorization

Given a positive semidefinite symmetric (PSD) matrix
AeR™?
it is well known there exists a matrix L such that

A=LL".

9.3. Computing a Sparse Cholesky Factorization
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If the matrix L is lower triangular then it is called a Cholesky factorization. Given A is positive definite
(nonsingular) then L is also nonsingular. A Cholesky factorization is useful for many reasons:

e A system of linear equations Az = b can be solved by first solving the lower triangular system
Ly = b followed by the upper triangular system L7z = y.

e A quadratic term z”7 Az in a constraint or objective can be replaced with yTy for y = L7x,

potentially leading to a more robust formulation (see [And13/).

Therefore, MOSEK provides a function that can compute a Cholesky factorization of a PSD matrix.
In addition a function for solving linear systems with a nonsingular lower or upper triangular matrix is
available.

In practice A may be very large with n is in the range of millions. However, then A is typically sparse
which means that most of the elements in A are zero, and sparsity can be exploited to reduce the cost
of computing the Cholesky factorization. The computational savings depend on the positions of zeros in
A. For example, below a matrix A is given together with a Cholesky factor up to 5 digits of accuracy:

4 1 11 2.0000 0 0 0
11 00 0.5000  0.8660 0 0

A= 10 1 0|’ L= 0.5000 —0.2887 0.8165 0 (9:6)
1 0 01 0.5000 —0.2887 —0.4082 0.7071

However, if we symmetrically permute the rows and columns of A using a permutation matrix P

0100 1001
oo 10 y ooaer |01 01
P=lg oo 1| A=PAP =14 g 1 1|

100 0 11 1 4

then the Cholesky factorization of A’ = L'L'" is

100 0
, 1o 10 0
=100 10

1111

which is sparser than L.

Computing a permutation matrix that leads to the sparsest Cholesky factorization or the minimal amount
of work is NP-hard. Good permutations can be chosen by using heuristics, such as the minimum degree
heuristic and variants. The function Env. computesparsecholesky provided by MOSEK for computing
a Cholesky factorization has a build in permutation aka. reordering heuristic. The following code
illustrates the use of Env. computesparsecholesky and Env.sparsetriangularsolvedense.

Listing 9.3: How to use the sparse Cholesky factorization routine available in MOSEK.

try:
perm, diag, lnzc, lptrc, lensubnval, lsubc, lvalc = env.computesparsecholesky(
0, #Disable multithread
1, #User reordering heuristic

1.0e-14, #Singularity tolerance
anzc, aptrc, asubc, avalc)

printsparse(n, perm, diag, lnzc, lptrc, lensubnval, lsubc, lvalc)
x = [blp] for p in perm] # Permuted b is stored as x.

# Compute inv(L)*x.

env.sparsetriangularsolvedense (mosek.transpose.no,

lnzc, lptrc, lsubc, lvalc, x)

# Compute inv(L"T)*z.
env.sparsetriangularsolvedense (mosek.transpose.yes,
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lnzc, lptrc, lsubc, lvalc, x)

print ("\nSolution Ax=b: x = ", numpy.array(
[x[j] for i in range(n) for j in range(n) if perm[j] == i]), "\n")
except:
raise

We can set up the data to recreate the matrix A from (9.6):

# Observe that anzc, aptrc, asubc and avalc only spectify the lower
# triangular part.

n=4

anzc = [4, 1, 1, 1]

asubc = [0, 1, 2, 3, 1, 2, 3]

aptrc = [0, 4, 5, 6]

avalc = [4.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

b = [13.0, 3.0, 4.0, 5.0]

and we obtain the following output:

Example with positive definite A.
P=[3201]
diag(D) = [ 0.00 0.00 0.00 0.00 1

L=

1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
1.00 1.00 1.41 0.00
0.00 0.00 0.71 0.71

Solution A x = b, x = [ 1.00 2.00 3.00 4.00 ]

The output indicates that with the permutation matrix

-0 o O
o~ O O
S O O
o o= O

there is a Cholesky factorization PAPT = LLT, where

1 0 0 0

0 1 0 0
L= 1 1 1.4142 0

0 0 0.7071 0.7071

The remaining part of the code solvers the linear system Az = b for b = [13,3,4,5]7. The solution is

reported to be x = [1,2, 3, 4], which is correct.

The second example shows what happens when we compute a sparse Cholesky factorization of a singular

matrix. In this example A is a rank 1 matrix

111 1117177
A=|111|=]1 1 (9.7)
1 1 1 1 1
#Ezample 2 - singular 4
n=3
anzc = [3, 2, 1]
asubc = [0, 1, 2, 1, 2, 2]
aptrc = [0, 3, 5]
avalc = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
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Now we get the output

P=[021]
diag(D) = [ 0.00e+00 1.00e-14 1.00e-14 ]
L=

1.00e+00 0.00e+00 0.00e+00
1.00e+00 1.00e-07 0.00e+00
1.00e+00 0.00e+00 1.00e-07

which indicates the decomposition

PAPT =LILT - D

where
1 0 0 1 0 0 1 0 0
P=|00 1|, L=|1 1077 0 , D=0 1074 0
01 0 1 0 10~7 0 0 10~14

Since A is only positive semdefinite, but not of full rank, some of diagonal elements of A are boosted
to make it truely positive definite. The amount of boosting is passed as an argument to Env.
computesparsecholesky, in this case 10714, Note that

PAPT = LI - D

where D is a small matrix so the computed Cholesky factorization is exact of slightly perturbed A. In
general this is the best we can hope for in finite precision and when A is singular or close to being
singular.

We will end this section by a word of caution. Computing a Cholesky factorization of a matrix that is
not of full rank and that is not suffciently well conditioned may lead to incorrect results i.e. a matrix
that is indefinite may declared positive semidefinite and vice versa.

9.4 Converting a quadratically constrained problem to conic form

MOSEK employs the following form of quadratic problems:

minimize %xTQOx +cTr+cf
subject to 1§ < 12TQFx+ Z;:Ol agjx; < wug, k=0,...,m—1, (9.8)
i < Z; < wuj, j=0,....,n—-1

A conic quadratic constraint has the form

in its most basic form where

A quadratic problem such as (9.8), if convex, can be reformulated in conic form. This is in fact the
reformulation MOSEK performs internally. It has many advantages:

e clegant duality theory for conic problems,

e reporting accurate dual information for quadratic inequalities is hard and/or computational ex-
pensive,

e it certifies that the original quadratic problem is indeed convex,

e modelling directly in conic form usually leads to a better model [And13] i.e. a faster solution time
and better numerical properties.
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In addition, there are more types of conic constraints that can be combined with a quadratic cone, for
example semidefinite cones.

MOSEK offers a function that performs the conversion from quadratic to conic quadratic form explicitly.
Note that the reformulation is not unique. The approach followed by MOSEK is to introduce additional
variables, linear constraints and quadratic cones to obtain a larger but equivalent problem in which the
original variables are preserved.

In particular:
e all variables and constraints are kept in the problem,
e cach quadratic constraint and quadratic terms in the objective generate one rotated quadratic cone,

e each quadratic constraint will contain no coefficients and upper/lower bounds will be set to 0o, —co
respectively.

This allows the user to recover the original variable and constraint values, as well as their dual values,
with no conversion or additional effort.

Note: Task.toconic modifies the input task in-place: this means that if the reformulation is not
possible, i.e. the problem is not conic representable, the state of the task is in general undefined. The
user should consider cloning the original task.

9.4.1 Quadratic Constraint Reformulation

Let us assume we want to convert the following quadratic constraint

n—1

1
[ < aa:TQx—i— Zajxj <u
j=0
to conic form. We first check whether | = —oo or u = 0o, otherwise either the constraint can be dropped,
or the constraint is not convex. Thus let us consider the case
1 n—1
§xTQ33 + Z aijj < u. (9.9)
j=0
Introducing an additional variable w such that
n—1
w=u-— Z aijj (9.10)
j=0
we obtain the equivalent form
%xTQx < w,
n—1
u—3 iy ajz; = w.

If Q is positive semidefinite, then there exists a matrix F' such that
Q=FF" (9.11)

and therefore we can write

Introducing an additional variable z = 1, and setting y = F'x we obtain the conic formulation

(w,2,y) €9,

z=1

J— Fu (9.12)
T

w=u—a T.

Summarizing, for each quadratic constraint involving ¢ variables, MOSEK introduces
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1. a rotated quadratic cone of dimension ¢ + 2,

2. two additional variables for the cone roots,

3. t additional variables to map the remaining part of the cone,
4. t linear constraints.

A quadratic term in the objective is reformulated in a similar fashion. We refer to [And13/ for a more
thorough discussion.

Example

Next we consider a simple problem with quadratic objective function:

minimize (1323 + 1727 + 1223 + 24zgz + 122122 — dz022) — 22230 — 14.521 + 1225 + 1

subject to —1 < xzg,x1,22 <1

We can specify it in the human-readable OPF format.

[comment]

An example of small QO problem from Boyd and Vandenberghe, "Convex Optimization", page 189 ex
4.3

The solution is (1,0.5,-1)

[/comment]

[variables]
x0 x1 x2
[/variables]

[objective min]

0.5 (13 x0"2 + 17 x172 + 12 x272 + 24 x0 * x1 + 12 x1 * x2 - 4 x0 * x2 ) - 22 x0 - 14.5 x1 +
—12 x2 + 1

[/objective]

[bounds]
[b] -1 <= % <=1 [/b]
[/bounds]

The objective function is convex, the minimum is attained for a* = (1,0.5,—1). The conversion will
introduce first a variable 23 in the objective function such that w3 > 1/227Qx and then convert the
latter directly in conic form. The converted problem follows:

minimize —22x9 — 14521 + 1229 + 23 + 1
subject to 3.61xg + 3.33x1 — 0.5529 — 26 =0
+2.2921 + 3.4229 — 27 =0

0.811‘1 — g = 0

—x3+ x4 = 0

I5 — 1

(w4, x5, 26,27, 28) € Qv

-1 < o, T1,T2 < 1

The model generated by Task.toconic is

[comment]
Written by MOSEK version 8.1.0.19
Date 21-08-17
Time 10:53:36

[/comment]

[hints]
[hint NUMVAR] 9 [/hint]
[hint NUMCON] 4 [/hint]
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[hint NUMANZ] 11 [/hint]

[hint NUMQNZ] O [/hint]

[hint NUMCONE] 1 [/hint]
[/hints]

[variables disallow_new_variables]
x0000_x0 x0001_x1 x0002_x2 x0003 x0004
x0005 x0006 x0007 x0008

[/variables]

[objective minimize]
- 2.2e+01 x0000_x0 - 1.45e+01 x0001_x1 + 1.2e+01 x0002_x2 + x0003
+ 1e+00

[/objectivel

[constraints]

[con c0000] 3.605551275463989e+00 x0000_x0 - 5.547001962252291e-01 x0002_x2 + 3.
<,328201177351375e+00 x0001_x1 - x0006 = 0e+00 [/con]

[con c0001] 3.419401657060442e+00 x0002_x2 + 2.294598480395823e+00 x0001_x1 - x0007 = 0e+00,
< [/con]

[con c0002] 8.111071056538127e-01 x0001_x1 - x0008 = 0e+00 [/con]

[con c0003] - x0003 + x0004 = 0e+00 [/con]

[/constraints]
[bounds]
[b] -1e+00 <= x0000_x0,x0001_x1,x0002_x2 <= 1e+00 [/b]
[b] x0003,x0004 free [/b]
[b] x0005 = 1e+00 [/b]
[b] x0006,x0007,x0008 free [/b]
[cone rquad k0000] %0004, x0005, x0006, x0007, x0008 [/cone]
[/bounds]

We can clearly see that constraints c0000, c0001 and c0002 represent the original linear constraints as
in (9.11), while c0003 corresponds to (9.10). The cone roots are x0005 and x0004.
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CHAPTER

TEN

TECHNICAL GUIDELINES

This section contains some technical guidelines for the Optimizer API for Python users.
For modelling guidelines check one of the following sections:
e Sec. 13 for how to address numerical issues in modelling and how to tune the continuous optimizers.

e Sec. 14 for how to tune the mixed-integer optimizer.

10.1 Memory management and garbage collection

Users who experience memory leaks, especially:
e memory usage not decreasing after the solver terminates,
e memory usage increasing when solving a sequence of problems,

should make sure that the Task objects are properly garbage collected. Since each Task object links
to a MOSEK task resource in a linked library, it is sometimes the case that the garbage collector is
unable to reclaim it automatically. This means that substantial amounts of memory may be leaked. For
this reason it is very important to make sure that the Task object is disposed of, either automatically
or manually, when it is not used any more.

The Task class supports the Context Manager protocol, so it will be destroyed properly when used in a
with statement:

with mosek.Env() as env:
with env.Task(0, 0) as task:
# Build an optimization problem
# ...

If this is not possible, then the necessary cleanup is performed by the methods Task.__del__ and
Env.__del__ which should be called explicitly.

10.2 Multithreading

Thread safety

Sharing a task between threads is safe, as long as it is not accessed from more than one thread at a time.
Multiple tasks can be created and used in parallel without any problems.

Parallelization

The interior-point and mixed-integer optimizers in MOSEK are parallelized. By default MOSEK will
automatically select the number of threads. However, the maximum number of threads allowed can
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be changed by setting the parameter iparam.num_threads and related parameters. This should never
exceed the number of cores. See Sec. 13 and Sec. 14 for more details for the two optimizer types.

The speed-up obtained when using multiple threads is highly problem and hardware dependent. We
recommend experimenting with various thread numbers to determine the optimal settings. For small
problems using multiple threads may be counter-productive because of the associated overhead.

By default the optimizer is run-to-run deterministic, which means that it will return the same answer
each time it is run on the same machine with the same input, the same parameter settings (including
number of threads) and no time limits.

10.3 Efficiency

Although MOSEK is implemented to handle memory efficiently, the user may have valuable knowledge
about a problem, which could be used to improve the performance of MOSEK This section discusses
some tricks and general advice that hopefully make MOSEK process your problem faster.

Reduce the number of function calls and avoid input loops

For example, instead of setting the entries in the linear constraint matrix one by one (Task.putaij)
define them all at once (Task.putaijlist) or in convenient large chunks (Task.putacollist etc.)

Use one environment only

If possible share the environment between several tasks. For most applications you need to create only
a single environment.

Read part of the solution

When fetching the solution, data has to be copied from the optimizer to the user’s data structures.
Instead of fetching the whole solution, consider fetching only the interesting part (see for example Task.
getzzslice and similar).

Avoiding memory fragmentation

MOSEK stores the optimization problem in internal data structures in the memory. Initially MOSEK
will allocate structures of a certain size, and as more items are added to the problem the structures are
reallocated. For large problems the same structures may be reallocated many times causing memory
fragmentation. One way to avoid this is to give MOSEK an estimated size of your problem using the
functions:

e Task.putmaznumvar. Estimate for the number of variables.

e Task.putmaznumcon. Estimate for the number of constraints.

e Task.putmaznumcone. Estimate for the number of cones.

e Task.putmaznumbarvar. Estimate for the number of semidefinite matrix variables.
e Task.putmaznumanz. Estimate for the number of non-zeros in A.

e Task.putmaznumgnz. Estimate for the number of non-zeros in the quadratic terms.

None of these functions changes the problem, they only serve as hints. If the problem ends up growing
larger, the estimates are automatically increased.
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Do not mix put- and get- functions

MOSEK will queue put- requests internally until a get- function is called. If put- and get- calls are
interleaved, the queue will have to be flushed more frequently, decreasing efficiency.

In general get- commands should not be called often (or at all) during problem setup.

Use the LIFO principle

When removing constraints and variables, try to use a LIFO (Last In First Out) approach. MOSEK
can more efficiently remove constraints and variables with a high index than a small index.

An alternative to removing a constraint or a variable is to fix it at 0, and set all relevant coefficients to
0. Generally this will not have any impact on the optimization speed.

Add more constraints and variables than you need (now)

The cost of adding one constraint or one variable is about the same as adding many of them. Therefore,
it may be worthwhile to add many variables instead of one. Initially fix the unused variable at zero, and
then later unfix them as needed. Similarly, you can add multiple free constraints and then use them as
needed.

Do not remove basic variables

When performing re-optimizations, instead of removing a basic variable it may be more efficient to fix
the variable at zero and then remove it when the problem is re-optimized and it has left the basis. This
makes it easier for MOSEK to restart the simplex optimizer.

10.4 The license system

MOSEK is a commercial product that always needs a valid license to work. MOSEK uses a third
party license manager to implement license checking. The number of license tokens provided determines
the number of optimizations that can be run simultaneously.

By default a license token remains checked out from the first optimization until the end of the MOSEK
session, i.e.

e a license token is checked out when Task.optimize is first called, and
e it is returned when the MOSEK environment is deleted.

Calling Task.optimize from different threads using the same MOSEK environment only consumes one
license token.

Starting the optimization when no license tokens are available will result in an error.
Default behaviour of the license system can be changed in several ways:

o Setting the parameter tparam.cache_license to onoffkey.off will force MOSEK to return
the license token immediately after the optimization completed.

e Setting the license wait flag with the parameter iparam. license_wazt will force MOSEK to wait
until a license token becomes available instead of returning with an error. The wait time between
checks can be set with Env.putlicensewait.

e Additional license checkouts and ch