
MOSEK Optimization Toolbox for
MATLAB

Release 8.1.0.51

MOSEK ApS

2018

CONTENTS

1 Introduction 1
1.1 Why the Optimization Toolbox for MATLAB? . 2

2 Contact Information 3

3 License Agreement 5

4 Installation 7
4.1 Testing the installation . 8

5 Guidelines 11
5.1 The MOSEK integration with MATLAB . 11
5.2 Caveats Using the MATLAB Compiler . 12
5.3 The license system . 12

6 Basic Tutorials 13
6.1 The Basics Tutorial . 14
6.2 Linear Optimization . 14
6.3 Conic Quadratic Optimization . 18
6.4 Semidefinite Optimization . 19
6.5 Quadratic Optimization . 21
6.6 Integer Optimization . 25
6.7 Optimizer Termination Handling . 26
6.8 Problem Modification and Reoptimization . 28
6.9 Solution Analysis . 31
6.10 Solver Parameters . 35

7 Nonlinear Tutorials 37
7.1 Separable Convex (SCopt) Interface . 37
7.2 Entropy Optimization . 39
7.3 Geometric Optimization . 40

8 Advanced Tutorials 43
8.1 Linear Least Squares and Related Norm Minimization Problems 43
8.2 Converting a quadratically constrained problem to conic form 50

9 Case Studies 55
9.1 Robust linear Optimization . 55
9.2 Geometric (posynomial) Optimization . 67

10 Managing I/O 73
10.1 Stream I/O . 73
10.2 File I/O . 73
10.3 Verbosity . 74

i

11 The Optimizers for Continuous Problems 75
11.1 Presolve . 75
11.2 Using Multiple Threads in an Optimizer . 77
11.3 Linear Optimization . 78
11.4 Conic Optimization . 85
11.5 Nonlinear Convex Optimization . 89

12 The Optimizer for Mixed-integer Problems 91
12.1 The Mixed-integer Optimizer Overview . 91
12.2 Relaxations and bounds . 91
12.3 Termination Criterion . 92
12.4 Speeding Up the Solution Process . 93
12.5 Understanding Solution Quality . 93
12.6 The Optimizer Log . 94

13 Problem Analyzer 95

14 Analyzing Infeasible Problems 99
14.1 Example: Primal Infeasibility . 99
14.2 Locating the cause of Primal Infeasibility . 100
14.3 Locating the Cause of Dual Infeasibility . 101
14.4 The Infeasibility Report . 101
14.5 Theory Concerning Infeasible Problems . 103
14.6 The Certificate of Primal Infeasibility . 103
14.7 The certificate of dual infeasibility . 104

15 Sensitivity Analysis 109
15.1 Sensitivity Analysis for Linear Problems . 109
15.2 Sensitivity Analysis with MOSEK . 115

16 Problem Formulation and Solutions 121
16.1 Linear Optimization . 121
16.2 Conic Quadratic Optimization . 124
16.3 Semidefinite Optimization . 126
16.4 Quadratic and Quadratically Constrained Optimization 128
16.5 General Convex Optimization . 129

17 Toolbox Reference 131
17.1 Command Reference . 131
17.2 Data Structures and Notation . 142
17.3 Parameters grouped by topic . 151
17.4 Parameters (alphabetical list sorted by type) . 162
17.5 Response codes . 199
17.6 Enumerations . 221

18 Supported File Formats 247
18.1 The LP File Format . 248
18.2 The MPS File Format . 253
18.3 The OPF Format . 265
18.4 The CBF Format . 274
18.5 The XML (OSiL) Format . 289
18.6 The Task Format . 289
18.7 The JSON Format . 290
18.8 The Solution File Format . 297

19 List of examples 301

20 Interface changes 303
20.1 Compatibility . 303
20.2 Parameters . 303

ii

20.3 Constants . 306
20.4 Response Codes . 310

Bibliography 313

Symbol Index 315

Index 327

iii

iv

CHAPTER

ONE

INTRODUCTION

The MOSEK Optimization Suite 8.1.0.51 is a powerful software package capable of solving large-scale
optimization problems of the following kind:

• linear,

• conic quadratic (also known as second-order cone),

• convex quadratic,

• semidefinite,

• and general convex.

Integer constrained variables are supported for all problem classes except for semidefinite and general
convex problems. In order to obtain an overview of features in the MOSEK Optimization Suite consult
the product introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all relations
are linear. The tremendous success of both applications and theory of linear optimization can be ascribed
to the following factors:

• The required data are simple, i.e. just matrices and vectors.

• Convexity is guaranteed since the problem is convex by construction.

• Linear functions are trivially differentiable.

• There exist very efficient algorithms and software for solving linear problems.

• Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the ad-
vantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

𝐴𝑥− 𝑏 ∈ 𝒦

where 𝒦 = {𝑦 : 𝑦 ≥ 0}, i.e.,

𝐴𝑥− 𝑏 = 𝑦,
𝑦 ∈ 𝒦.

In conic optimization a wider class of convex sets 𝒦 is allowed, for example in 3 dimensions 𝒦 may
correspond to an ice cream cone. The conic optimizer in MOSEK supports three structurally different
types of cones 𝒦, which allows a surprisingly large number of nonlinear relations to be modelled (as
described in the MOSEK modeling cookbook), while preserving the nice algorithmic and theoretical
properties of linear optimization.

1

http://docs.mosek.com/8.1/intro/index.html
http://docs.mosek.com/modeling-cookbook/index.html

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

1.1 Why the Optimization Toolbox for MATLAB?

The Optimization Toolbox for MATLAB provides access to most of the functionality of MOSEK from
a MATLAB environment. In addition the toolbox includes functions that replace functions from the
MATLAB optimization toolbox available from MathWorks.

The Optimization Toolbox for MATLAB provides access to:

• Linear Optimization (LO)

• Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)

• Convex Quadratic and Quadratically Constrained Optimization (QCQO)

• Semidefinite Optimization (SDO)

• Separable Convex Optimization (SCO)

as well as to additional functions for:

• problem analysis,

• sensitivity analysis,

• infeasibility diagnostics.

2 Chapter 1. Introduction

CHAPTER

TWO

CONTACT INFORMATION

Phone +45 7174 9373
Website mosek.com
Email

sales@mosek.com Sales, pricing, and licensing
support@mosek.com Technical support, questions and bug reports
info@mosek.com Everything else.

Mailing Address
MOSEK ApS
Fruebjergvej 3
Symbion Science Park, Box 16
2100 Copenhagen O
Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger http://blog.mosek.com/
Google Group https://groups.google.com/forum/#!forum/mosek
Twitter https://twitter.com/mosektw
Google+ https://plus.google.com/+Mosek/posts
Linkedin https://www.linkedin.com/company/mosek-aps

In particular Twitter is used for news, updates and release announcements.

3

https://mosek.com/
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com
http://blog.mosek.com/
https://groups.google.com/forum/#!forum/mosek
https://twitter.com/mosektw
https://plus.google.com/+Mosek/posts
https://www.linkedin.com/company/mosek-aps

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

4 Chapter 2. Contact Information

CHAPTER

THREE

LICENSE AGREEMENT

Before using the MOSEK software, please read the license agreement available in the distribution
at <MSKHOME>/mosek/8/mosek-eula.pdf or on the MOSEK website https://mosek.com/products/
license-agreement.

MOSEK uses some third-party open-source libraries. Their license details follows.

zlib

MOSEK includes the zlib library obtained from the zlib website. The license agreement for zlib is shown
in Listing 3.1.

Listing 3.1: zlib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

fplib

MOSEK includes the floating point formatting library developed by David M. Gay obtained from the
netlib website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/**
*

5

https://mosek.com/products/license-agreement
https://mosek.com/products/license-agreement
http://zlib.org
http://www.netlib.org

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

6 Chapter 3. License Agreement

CHAPTER

FOUR

INSTALLATION

In this section we discuss how to install and setup the MOSEK Optimization Toolbox for MATLAB.

Important: Before running this MOSEK interface please make sure that you:

• Installed MOSEK correctly. Some operating systems require extra steps. See the Installation
guide for instructions and common troubleshooting tips.

• Set up a license. See the Licensing guide for instructions.

Compatibility

The Optimization Toolbox for MATLAB can be used with MATLAB version r2014a or newer.

Locating Files

The files in Optimization Toolbox for MATLAB are organized as reported in Table 4.1.

Table 4.1: Relevant files for the Optimization Toolbox for MAT-
LAB.

Relative Path Description Label
<MSKHOME>/mosek/8/toolbox/r2014a Toolbox <TOOLBOXDIR>
<MSKHOME>/mosek/8/toolbox/r2014aom Toolbox (without overloading) <TOOLBOXOMDIR>
<MSKHOME>/mosek/8/toolbox/examples Examples <EXDIR>
<MSKHOME>/mosek/8/toolbox/data Additional data <MISCDIR>

where <MSKHOME> is the folder in which the MOSEK package has been installed.

Setting up the paths

To use Optimization Toolbox for MATLAB the path to the toolbox directory must be added via the
addpath command in MATLAB. Use the command

addpath <MSKHOME>/mosek/8/toolbox/r2014a

or, if you do not want to overload functions such as linprog and quadprog from the MATLAB Opti-
mization Toolbox with their MOSEK versions, then write

addpath <MSKHOME>/mosek/8/toolbox/r2014aom

On the Windows platform the relevant paths are

addpath <MSKHOME>\mosek\8\toolbox\r2014a
addpath <MSKHOME>\mosek\8\toolbox\r2014aom

7

http://docs.mosek.com/8.1/install/index.html
http://docs.mosek.com/8.1/install/index.html
http://docs.mosek.com/8.1/licensing/index.html

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Alternatively, the path to Optimization Toolbox for MATLAB may be set from the command line or it
can be added to MATLAB permanently using the configuration file startup.m or from the FileSet Path
menu item. We refer to MATLAB documentation for details.

4.1 Testing the installation

You can verify that Optimization Toolbox for MATLAB works by executing

mosekdiag

in MATLAB. This should produce a message similar to this:

Matlab version: 8.3.0.532 (R2014a)
Architecture : GLNXA64
Warning: The mosek optimizer could not be invoked from the command line. Most likely the path␣
→˓has not been configured correctly. The mosek optimizer can still be invoked from the MATLAB␣
→˓environment.
> In mosekdiag at 23
mosekopt: /home/andrea/mosek/8/toolbox/r2014a/mosekopt.mexa64

MOSEK Version 8.0.0.34(BETA) (Build date: 2016-8-16 00:52:47)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86

Found MOSEK version : major(8), minor(0), build(0), revision(34)
mosekopt is working correctly.
Warning: MOSEK Fusion is not configured correctly; check that mosek.jar is added to the␣
→˓javaclasspath.

Note: If you only want to use Optimization Toolbox for MATLAB then the warnings about command
line and Fusion interface can be ignored.

4.1.1 Troubleshooting

Missing library files such as libmosek64.8.1.dylib or similar

If you are using Mac OS and get an error such as

Library not loaded: libmosek64.8.1.dylib
Referenced from:
/Users/.../mosek/8/toolbox/r2014a/mosekopt.mexmaci64
Reason: image not found.

Error in callmosek>doCall (line 224)
[res,sol] = mosekopt('minimize info',prob,param);

then most likely you did not run the MOSEK installation script install.py found in the bin directory.
See also the Installation guide for details.

Undefined Function or Variable mosekopt

If you get the MATLAB error message

Undefined function or variable 'mosekopt'

8 Chapter 4. Installation

http://docs.mosek.com/8.1/install/index.html

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

you have not added the path to the Optimization Toolbox for MATLAB correctly as described above.

Invalid MEX-file

For certain versions of Windows and MATLAB, the path to MEX files cannot contain spaces. Therefore,
if you have installed MOSEK in C:\Program Files\Mosek and get a MATLAB error similar to:

Invalid MEX-file <MSKHOME>\Mosek\8\toolbox\r2014a\mosekopt.mexw64

try installing MOSEK in a different directory, for example C:\Users\<someuser >\ .

Output Arguments not assigned

If you encounter an error like

Error in ==> mosekpt at 1
function [r,res] = mosekopt(cmd,prob,param,callback)

Output argument "r" (and maybe others) not assigned during call to
"C:\Users\andrea\mosek\8\toolbox\r2014a\mosekopt.m>mosekopt".

then a mismatch between 32 and 64 bit versions of MOSEK and MATLAB is likely. From MATLAB
type

which mosekopt

which (for a succesful installation) should point to a MEX file,

<MSKHOME>\mosek\8\toolbox\r2014a\mosekopt.mexw64

and not to a MATLAB .m file,

<MSKHOME>\mosek\8\toolbox\r2014a\mosekopt.m

4.1. Testing the installation 9

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

10 Chapter 4. Installation

CHAPTER

FIVE

GUIDELINES

5.1 The MOSEK integration with MATLAB

In this section we provide some details concerning the integration of MOSEK with MATLAB. The
information in this section is not strictly necessary for basic use of the MOSEK optimization toolbox
for MATLAB.

5.1.1 The mosekopt MEX file

The central part of MOSEK optimization toolbox for MATLAB is the mosekopt MEX file. The mex
file provides an interface to MOSEK that is employed by all the other MOSEK MATLAB functions.
Therefore, we recommend to mosekopt function if possible because that give rise to the least overhead
and provides the maximum of features.

5.1.2 Controlling log-output from mosekopt

Solver log-output is controlled using the echo parameter for mosekopt . The output is directed to the
MATLAB console window. In newer versions of MATLAB (2015 or newer), the console output is not
displayed until after the solver has terminated, which is a nuisance for long-running optimization tasks.
As an accomodation, the log output can be copied to a log-file, using the log parameter for mosekopt .
This log-file can then be inspected during the optimization task.

5.1.3 Compatibility with the MATLAB Optimization Toolbox

For compatibility with the MATLAB Optimization Toolbox, MOSEK provides the following functions:

• linprog : Solves linear optimization problems.

• intlinprog : Solves a linear optimization problem with integer constrained variables.

• quadprog : Solves quadratic optimization problems.

• lsqlin : Minimizes a least-squares objective with linear constraints.

• lsqnonneg : Minimizes a least-squares objective with nonnegativity constraints.

• mskoptimget : Getting an options structure for MATLAB compatible functions.

• mskoptimset : Setting up an options structure for MATLAB compatible functions.

These functions are described in detail in Sec. 17.1. The functions mskoptimget and mskoptimset are
not fully compatible with the MATLAB counterparts, optimget and optimset, so the MOSEK versions
should only be used in conjuctions with the MOSEK implementations of linprog , etc., and similarly
optimget should be used in conjunction with the MATLAB implementations.

The corresponding MATLAB file for each function is located in the toolbox/solvers directory of the
MOSEK distribution.

11

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

5.1.4 MOSEK and the MATLAB Parallel Computing Toolbox

Running MOSEK with the MATLAB Parallel Computing Toolbox requires multiple MOSEK licenses,
since each thread runs a separate instance of the MOSEK optimizer. Each thread thus requires a
MOSEK license.

5.2 Caveats Using the MATLAB Compiler

When using MOSEK with the MATLAB compiler it is necessary manually

• to remove mosekopt.m before compilation,

• copy the MEX file to the directory with MATLAB binary files and

• copy the mosekopt.m file back after compilation.

5.3 The license system

MOSEK is requires a license when used which is implemented as follows

1. a license token is checked out when any MOSEK function involving optimization, as for instance
mosekopt is called the first time and

2. it is returned when MATLAB is terminated.

Now if the license should be checked in after use and hence be made available for another user then the
license caching should be disabled as follows

param.MSK_IPAR_CACHE_LICENSE = 'MSK_OFF'; % set parameter.
[r,res] = mosekopt('minimize',prob,param); % call

Alternatively the command

mosekopt('nokeepenv')

will free all unused MOSEK licenses.

By default an error will be returned if no license token is available. However, by setting the parameter
MSK_IPAR_LICENSE_WAIT MOSEK can be instructed to wait until a license token is available.

param.MSK_IPAR_LICENSE_WAIT = 'MSK_ON'; %set parameter.
[r,res] = mosekopt('minimize',prob,param); %call

12 Chapter 5. Guidelines

CHAPTER

SIX

BASIC TUTORIALS

In this section a number of examples is provided to demonstrate the functionality required for solving
linear, conic, semidefinite and quadratic problems as well as mixed integer problems.

• Basic tutorial : This is the simplest tutorial: it solves a linear optimization problem read from file.
It will show how

– setup the MOSEK environment and problem task,

– run the solver and

– check the optimization results.

• Linear optimization tutorial : It shows how to input a linear program. It will show how

– define variables and their bounds,

– define constraints and their bounds,

– define a linear objective function,

– input a linear program but rows or by column.

– retrieve the solution.

• Conic quadratic optimization tutorial : The basic steps needed to formulate a conic quadratic
program are introduced:

– define quadratic cones,

– assign the relevant variables to their cones.

• Semidefinite optimization tutorial : How to input semidefintite optimization problems is the topic
of this tutorial, and in particular how to

– input semidefinite matrices and in sparse format,

– add semidefinite matrix variable and

– formulate linear constraints and objective function based on matrix variables.

• Mixed-Integer optimization tutorial : This tutorial shows how integrality conditions can be speci-
fied.

• Quadratic optimization tutorial : It shows how to input quadratic terms in the objective function
and constraints.

• Response code tutorial : How to deal with the termination and solver status code is the topic of
this tutorial:

– what are termination and termination code,

– how to check for errors and

– which are the best practice to deal with them.

This is a very important tutorial, every user should go through it.

• Reoptimization tutorial : This tutorial gives information on how to

13

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

– modify linear constraints,

– add new variables/constraints and

– reoptimize the given problem, i.e. run the MOSEK optimizer again.

• Solution analysis : This tutorial shows how the user can analyze the solution returned by the
solver.

• Parameter setting tutorial : This tutorial shows how to set the solver parameters.

6.1 The Basics Tutorial

The simplest program using the MOSEK Matlab interface can be described shortly:

1. Load a problem into a problem structure (a task).

2. Optimize the problem.

3. Fetch the result.

Listing 6.1: A simple script that reads a problem from file and solves it.

%
% Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
% File : simple.m
%
% Purpose : To demonstrate how solve a problem
% read from file.
%

function simple(inputfile, solfile)

cmd = sprintf('read(%s)', inputfile)
% Read the problem from file
[rcode, res] = mosekopt(cmd)

% Perform the optimization.
[r,res] = mosekopt('minimize', res.prob);

% Show the optimal x solution.
res.sol.bas.xx

end

6.2 Linear Optimization

The simplest optimization problem is a purely linear problem. A linear optimization problem is a problem
of the following form:

Minimize or maximize the objective function

𝑛−1∑︁
𝑗=0

𝑐𝑗𝑥𝑗 + 𝑐𝑓

14 Chapter 6. Basic Tutorials

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

subject to the linear constraints

𝑙𝑐𝑘 ≤
𝑛−1∑︁
𝑗=0

𝑎𝑘𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

and the bounds

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1.

The problem description consists of the following elements:

• 𝑚 and 𝑛 — the number of constraints and variables, respectively,

• 𝑥 — the variable vector of length 𝑛,

• 𝑐 — the coefficient vector of length 𝑛

𝑐 =

⎡⎢⎣ 𝑐0
...

𝑐𝑛−1

⎤⎥⎦ ,

• 𝑐𝑓 — fixed term in the objective,

• 𝐴 — an 𝑚× 𝑛 matrix of coefficients

𝐴 =

⎡⎢⎣ 𝑎0,0 · · · 𝑎0,(𝑛−1)

... · · ·
...

𝑎(𝑚−1),0 · · · 𝑎(𝑚−1),(𝑛−1)

⎤⎥⎦ ,

• 𝑙𝑐 and 𝑢𝑐 — the lower and upper bounds on constraints,

• 𝑙𝑥 and 𝑢𝑥 — the lower and upper bounds on variables.

Please note that we are using 0 as the first index: 𝑥0 is the first element in variable vector 𝑥.

6.2.1 Example LO1

The following is an example of a small linear optimization problem:

maximize 3𝑥0 + 1𝑥1 + 5𝑥2 + 1𝑥3

subject to 3𝑥0 + 1𝑥1 + 2𝑥2 = 30,
2𝑥0 + 1𝑥1 + 3𝑥2 + 1𝑥3 ≥ 15,

2𝑥1 + 3𝑥3 ≤ 25,

(6.1)

under the bounds

0 ≤ 𝑥0 ≤ ∞,
0 ≤ 𝑥1 ≤ 10,
0 ≤ 𝑥2 ≤ ∞,
0 ≤ 𝑥3 ≤ ∞.

Example: Linear optimization using msklpopt

A linear optimization problem such as (6.1) can be solved using the msklpopt function. The first step
in solving the example (6.1) is to setup the data for problem (6.1) i.e. the 𝑐, 𝐴, etc. Afterwards the
problem is solved using an appropriate call to msklpopt .

6.2. Linear Optimization 15

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Listing 6.2: Script implementing problem (6.1).

function lo1()

c = [3 1 5 1]';
a = [[3 1 2 0];[2 1 3 1];[0 2 0 3]];
blc = [30 15 -inf]';
buc = [30 inf 25]';
blx = zeros(4,1);
bux = [inf 10 inf inf]';

[res] = msklpopt(c,a,blc,buc,blx,bux,[],'maximize');
sol = res.sol;

% Interior-point solution.

sol.itr.xx' % x solution.
sol.itr.sux' % Dual variables corresponding to buc.
sol.itr.slx' % Dual variables corresponding to blx.

% Basic solution.

sol.bas.xx' % x solution in basic solution.

Please note that

• Infinite bounds are specified using -inf and inf. Moreover, the bux = [] means that all upper
bounds 𝑢𝑥 are plus infinite.

• The lines after the msklpopt call can be omitted, but the purpose of those lines is to display
different parts of the solutions. The res.sol field contains one or more solutions. In this case both
the interior-point solution (sol.itr) and the basic solution (sol.bas) are defined.

Example: Linear optimization using mosekopt

The msklpopt function is in fact just a wrapper around the real optimization routine mosekopt . There-
fore, an alternative to using the msklpopt is to call mosekopt directly. In general, the syntax for a
mosekopt call is

[rcode,res] = mosekpt(cmd,prob,param)

The arguments prob and param are optional. The purpose of the arguments are as follows:

• cmd string telling mosekopt what to do, e.g. ’minimize info’ tells mosekopt that the objective
should be minimized and information about the optimization should be returned.

• prob : MATLAB structure specifying the problem that should be optimized.

• param : MATLAB structure specifying parameters controlling the behavior of the MOSEK opti-
mizer. However, in general it should not be necessary to change the parameters.

The following MATLAB commands demonstrate how to set up the prob structure for the example (6.1)
and solve the problem using mosekopt .

Listing 6.3: Script implementing problem (6.1) using mosekopt.

function lo2()
clear prob;

% Specify the c vector.
prob.c = [3 1 5 1]';

16 Chapter 6. Basic Tutorials

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

% Specify a in sparse format.
subi = [1 1 1 2 2 2 2 3 3];
subj = [1 2 3 1 2 3 4 2 4];
valij = [3 1 2 2 1 3 1 2 3];

prob.a = sparse(subi,subj,valij);

% Specify lower bounds of the constraints.
prob.blc = [30 15 -inf]';

% Specify upper bounds of the constraints.
prob.buc = [30 inf 25]';

% Specify lower bounds of the variables.
prob.blx = zeros(4,1);

% Specify upper bounds of the variables.
prob.bux = [inf 10 inf inf]';

% Perform the optimization.
[r,res] = mosekopt('maximize',prob);

% Show the optimal x solution.
res.sol.bas.xx

Please note that

• A MATLAB structure named prob containing all the relevant problem data is defined.

• All fields of this structure are optional except prob.a which is required to be a sparse matrix.

• Different parts of the solution can be viewed by inspecting the solution field res.sol.

Example: Linear optimization using linprog

MOSEK also provides a linprog function, which is compatible with the function provided by the
MATLAB toolbox, using the syntax

[x,fval,exitflag,output,lambda] = linprog(f,A,b,B,c,l,u,x0,options)

Several control parameters can be set using the options structure, for example,

options.Write = 'test.opf';
linprog(f,A,b,B,c,l,u,x0,options);

creates a human readable opf file of the problem, and

options.Write = 'test.task';
linprog(f,A,b,B,c,l,u,x0,options);

creates a binary task file which can be send to MOSEK for debugging assistance or reporting errors.

Consult Sec. 5.1 for details on using linprog and other compatibility functions.

Internally, the linprog function is just a wrapper for the mosekopt function, and is mainly intended
for compatibility reasons; advanced features are mainly available through the mosekopt function.

6.2. Linear Optimization 17

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

6.3 Conic Quadratic Optimization

Conic optimization is a generalization of linear optimization, allowing constraints of the type

𝑥𝑡 ∈ 𝒦𝑡,

where 𝑥𝑡 is a subset of the problem variables and 𝒦𝑡 is a convex cone. Since the set R𝑛 of real numbers
is also a convex cone, we can simply write a compound conic constraint 𝑥 ∈ 𝒦 where 𝒦 = 𝒦1 × · · · × 𝒦𝑙

is a product of smaller cones and 𝑥 is the full problem variable.

MOSEK can solve conic quadratic optimization problems of the form

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ 𝒦,

where the domain restriction, 𝑥 ∈ 𝒦, implies that all variables are partitioned into convex cones

𝑥 = (𝑥0, 𝑥1, . . . , 𝑥𝑝−1), with 𝑥𝑡 ∈ 𝒦𝑡 ⊆ R𝑛𝑡 .

For convenience, a user defining a conic quadratic problem only needs to specify subsets of variables 𝑥𝑡

belonging to quadratic cones. These are:

• Quadratic cone:

𝒬𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 : 𝑥0 ≥

⎯⎸⎸⎷𝑛−1∑︁
𝑗=1

𝑥2
𝑗

⎫⎬⎭ .

• Rotated quadratic cone:

𝒬𝑛
r =

⎧⎨⎩𝑥 ∈ R𝑛 : 2𝑥0𝑥1 ≥
𝑛−1∑︁
𝑗=2

𝑥2
𝑗 , 𝑥0 ≥ 0, 𝑥1 ≥ 0

⎫⎬⎭ .

For example, the following constraint:

(𝑥4, 𝑥0, 𝑥2) ∈ 𝒬3

describes a convex cone in R3 given by the inequality:

𝑥4 ≥
√︁
𝑥2
0 + 𝑥2

2.

Furthermore, each variable may belong to one cone at most. The constraint 𝑥𝑖 − 𝑥𝑗 = 0 would however
allow 𝑥𝑖 and 𝑥𝑗 to belong to different cones with same effect.

6.3.1 Example CQO1

Consider the following conic quadratic problem which involves some linear constraints, a quadratic cone
and a rotated quadratic cone.

minimize 𝑥4 + 𝑥5 + 𝑥6

subject to 𝑥1 + 𝑥2 + 2𝑥3 = 1,
𝑥1, 𝑥2, 𝑥3 ≥ 0,

𝑥4 ≥
√︀
𝑥2
1 + 𝑥2

2,
2𝑥5𝑥6 ≥ 𝑥2

3

(6.2)

The linear constraints are specified as if the problem was a linear problem whereas the cones are specified
using two index lists cones.subptr and cones.sub and list of cone-type identifiers cones.type. The
elements of all the cones are listed in cones.sub, and cones.subptr specifies the index of the first
element in cones.sub for each cone.

Listing 6.4 demonstrates how to solve the example (6.2) using MOSEK.

18 Chapter 6. Basic Tutorials

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Listing 6.4: Script implementing problem (6.2).

function cqo1()

clear prob;

[r, res] = mosekopt('symbcon');
% Specify the non-conic part of the problem.

prob.c = [0 0 0 1 1 1];
prob.a = sparse([1 1 2 0 0 0]);
prob.blc = 1;
prob.buc = 1;
prob.blx = [0 0 0 -inf -inf -inf];
prob.bux = inf*ones(6,1);

% Specify the cones.

prob.cones.type = [res.symbcon.MSK_CT_QUAD, res.symbcon.MSK_CT_RQUAD];
prob.cones.sub = [4, 1, 2, 5, 6, 3];
prob.cones.subptr = [1, 4];
% The field 'type' specifies the cone types, i.e., quadratic cone
% or rotated quadratic cone. The keys for the two cone types are MSK_CT_QUAD
% and MSK_CT_RQUAD, respectively.
%
% The fields 'sub' and 'subptr' specify the members of the cones,
% i.e., the above definitions imply that
% x(4) >= sqrt(x(1)^2+x(2)^2) and 2 * x(5) * x(6) >= x(3)^2.

% Optimize the problem.

[r,res]=mosekopt('minimize',prob);

% Display the primal solution.

res.sol.itr.xx'

Note in particular that:

• No variable can be member of more than one cone. This is not serious restriction — see the
following section.

• The R set is not specified explicitly.

6.4 Semidefinite Optimization

Semidefinite optimization is a generalization of conic quadratic optimization, allowing the use of matrix
variables belonging to the convex cone of positive semidefinite matrices

𝒮𝑟
+ =

{︀
𝑋 ∈ 𝒮𝑟 : 𝑧𝑇𝑋𝑧 ≥ 0, ∀𝑧 ∈ R𝑟

}︀
,

where 𝒮𝑟 is the set of 𝑟 × 𝑟 real-valued symmetric matrices.

MOSEK can solve semidefinite optimization problems of the form

minimize
∑︀𝑛−1

𝑗=0 𝑐𝑗𝑥𝑗 +
∑︀𝑝−1

𝑗=0

⟨︀
𝐶𝑗 , 𝑋𝑗

⟩︀
+ 𝑐𝑓

subject to 𝑙𝑐𝑖 ≤
∑︀𝑛−1

𝑗=0 𝑎𝑖𝑗𝑥𝑗 +
∑︀𝑝−1

𝑗=0

⟨︀
𝐴𝑖𝑗 , 𝑋𝑗

⟩︀
≤ 𝑢𝑐

𝑖 , 𝑖 = 0, . . . ,𝑚− 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1,

𝑥 ∈ 𝒦, 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ , 𝑗 = 0, . . . , 𝑝− 1

6.4. Semidefinite Optimization 19

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

where the problem has 𝑝 symmetric positive semidefinite variables 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ of dimension 𝑟𝑗 with

symmetric coefficient matrices 𝐶𝑗 ∈ 𝒮𝑟𝑗 and 𝐴𝑖,𝑗 ∈ 𝒮𝑟𝑗 . We use standard notation for the matrix inner
product, i.e., for 𝐴,𝐵 ∈ R𝑚×𝑛 we have

⟨𝐴,𝐵⟩ :=

𝑚−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝐴𝑖𝑗𝐵𝑖𝑗 .

6.4.1 Example SDO1

We consider the simple optimization problem with semidefinite and conic quadratic constraints:

minimize

⟨⎡⎣ 2 1 0
1 2 1
0 1 2

⎤⎦ , 𝑋

⟩
+ 𝑥0

subject to

⟨⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ , 𝑋

⟩
+ 𝑥0 = 1,

⟨⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ , 𝑋

⟩
+ 𝑥1 + 𝑥2 = 1/2,

𝑥0 ≥
√
𝑥1

2 + 𝑥2
2, 𝑋 ⪰ 0,

(6.3)

The problem description contains a 3-dimensional symmetric semidefinite variable which can be written
explicitly as:

𝑋 =

⎡⎣ 𝑋00 𝑋10 𝑋20

𝑋10 𝑋11 𝑋21

𝑋20 𝑋21 𝑋22

⎤⎦ ∈ 𝒮3
+,

and a conic quadratic variable (𝑥0, 𝑥1, 𝑥2) ∈ 𝒬3. The objective is to minimize

2(𝑋00 + 𝑋10 + 𝑋11 + 𝑋21 + 𝑋22) + 𝑥0,

subject to the two linear constraints

𝑋00 + 𝑋11 + 𝑋22 + 𝑥0 = 1,
𝑋00 + 𝑋11 + 𝑋22 + 2(𝑋10 + 𝑋20 + 𝑋21) + 𝑥1 + 𝑥2 = 1/2.

Listing 6.5 demonstrates how to solve this problem using MOSEK.

Listing 6.5: Code implementing problem (6.3).

function sdo1()
[r, res] = mosekopt('symbcon');

prob.c = [1, 0, 0];

prob.bardim = [3];
prob.barc.subj = [1, 1, 1, 1, 1];
prob.barc.subk = [1, 2, 2, 3, 3];
prob.barc.subl = [1, 1, 2, 2, 3];
prob.barc.val = [2.0, 1.0, 2.0, 1.0, 2.0];

prob.blc = [1, 0.5];
prob.buc = [1, 0.5];

% It is a good practice to provide the correct
% dimmension of A as the last two arguments
% because it facilitates better error checking.
prob.a = sparse([1, 2, 2], [1, 2, 3], [1, 1, 1], 2, 3);

20 Chapter 6. Basic Tutorials

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

prob.bara.subi = [1, 1, 1, 2, 2, 2, 2, 2, 2];
prob.bara.subj = [1, 1, 1, 1, 1, 1, 1, 1, 1];
prob.bara.subk = [1, 2, 3, 1, 2, 3, 2, 3, 3];
prob.bara.subl = [1, 2, 3, 1, 1, 1, 2, 2, 3];
prob.bara.val = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];

prob.cones.type = [res.symbcon.MSK_CT_QUAD];
prob.cones.sub = [1, 2, 3];
prob.cones.subptr = [1];

[r,res] = mosekopt('minimize info',prob);

X = zeros(3);
X([1,2,3,5,6,9]) = res.sol.itr.barx;
X = X + tril(X,-1)';

x = res.sol.itr.xx;

The solution 𝑥 is returned in res.sol.itr.xx and the numerical values of 𝑋𝑗 are returned in res.sol.
barx; the lower triangular part of each 𝑋𝑗 is stacked column-by-column into an array, and each array
is then concatenated forming a single array res.sol.itr.barx representing 𝑋1, . . . , 𝑋𝑝. Similarly, the
dual semidefinite variables 𝑆𝑗 are recovered through res.sol.itr.bars.

6.5 Quadratic Optimization

MOSEK can solve quadratic and quadratically constrained problems, as long as they are convex. This
class of problems can be formulated as follows:

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐𝑘 ≤ 1
2𝑥

𝑇𝑄𝑘𝑥 +
∑︀𝑛−1

𝑗=0 𝑎𝑘,𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1.

(6.4)

Without loss of generality it is assumed that 𝑄𝑜 and 𝑄𝑘 are all symmetric because

𝑥𝑇𝑄𝑥 =
1

2
𝑥𝑇 (𝑄 + 𝑄𝑇)𝑥.

This implies that a non-symmetric 𝑄 can be replaced by the symmetric matrix 1
2 (𝑄 + 𝑄𝑇).

The problem is required to be convex. More precisely, the matrix 𝑄𝑜 must be positive semi-definite and
the 𝑘th constraint must be of the form

𝑙𝑐𝑘 ≤ 1

2
𝑥𝑇𝑄𝑘𝑥 +

𝑛−1∑︁
𝑗=0

𝑎𝑘,𝑗𝑥𝑗 (6.5)

with a negative semi-definite 𝑄𝑘 or of the form

1

2
𝑥𝑇𝑄𝑘𝑥 +

𝑛−1∑︁
𝑗=0

𝑎𝑘,𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘.

with a positive semi-definite 𝑄𝑘. This implies that quadratic equalities are not allowed. Specifying a
non-convex problem will result in an error when the optimizer is called.

A matrix is positive semidefinite if all the eigenvalues of 𝑄 are nonnegative. An alternative statement of
the positive semidefinite requirement is

𝑥𝑇𝑄𝑥 ≥ 0, ∀𝑥.

If the convexity (i.e. semidefiniteness) conditions are not met MOSEK will not produce reliable results
or work at all.

6.5. Quadratic Optimization 21

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

6.5.1 Example: Quadratic Objective

We look at a small problem with linear constraints and quadratic objective:

minimize 𝑥2
1 + 0.1𝑥2

2 + 𝑥2
3 − 𝑥1𝑥3 − 𝑥2

subject to 1 ≤ 𝑥1 + 𝑥2 + 𝑥3

0 ≤ 𝑥.
(6.6)

The matrix formulation (6.6) has:

𝑄𝑜 =

⎡⎣ 2 0 −1
0 0.2 0
−1 0 2

⎤⎦ , 𝑐 =

⎡⎣ 0
−1
0

⎤⎦ , 𝐴 =
[︀

1 1 1
]︀
,

with the bounds:

𝑙𝑐 = 1, 𝑢𝑐 = ∞, 𝑙𝑥 =

⎡⎣ 0
0
0

⎤⎦ and 𝑢𝑥 =

⎡⎣ ∞
∞
∞

⎤⎦
Please note the explicit 1

2 in the objective function of (6.4) which implies that diagonal elements must
be doubled in 𝑄, i.e. 𝑄11 = 2, whereas the coefficient in (6.6) is 1 in front of 𝑥2

1.

Using mosekopt

In Listing 6.6 we show how to use mosekopt to solve problem (6.6). This is the preferred way.

Listing 6.6: How to solve problem (6.6) using mosekopt.

function qo2()

clear prob;

% c vector.
prob.c = [0 -1 0]';

% Define the data.

% First the lower triangular part of q in the objective
% is specified in a sparse format. The format is:
%
% Q(prob.qosubi(t),prob.qosubj(t)) = prob.qoval(t), t=1,...,4

prob.qosubi = [1 3 2 3]';
prob.qosubj = [1 1 2 3]';
prob.qoval = [2 -1 0.2 2]';

% a, the constraint matrix
subi = ones(3,1);
subj = 1:3;
valij = ones(3,1);

prob.a = sparse(subi,subj,valij);

% Lower bounds of constraints.
prob.blc = [1.0]';

% Upper bounds of constraints.
prob.buc = [inf]';

% Lower bounds of variables.
prob.blx = sparse(3,1);

22 Chapter 6. Basic Tutorials

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

% Upper bounds of variables.
prob.bux = []; % There are no bounds.

[r,res] = mosekopt('minimize',prob);

% Display return code.
fprintf('Return code: %d\n',r);

% Display primal solution for the constraints.
res.sol.itr.xc'

% Display primal solution for the variables.
res.sol.itr.xx'

This sequence of commands looks much like the one that was used to solve the linear optimization
example using mosekopt except that the definition of the 𝑄 matrix in prob. mosekopt requires that 𝑄
is specified in a sparse format. Indeed the vectors qosubi, qosubj, and qoval are used to specify the
coefficients of 𝑄 in the objective using the principle

𝑄qosubi(t),qosubj(t) = qoval(t), for 𝑡 = 1, . . . , length(qosubi).

An important observation is that due to 𝑄 being symmetric, only the lower triangular part of 𝑄 should
be specified.

Using mskqpopt

In Listing 6.7 we show how to use mskqpopt to solve problem (6.6).

Listing 6.7: Function solving problem (6.6) using mskqpopt.

function qo1()

% Set up Q.
q = [[2 0 -1];[0 0.2 0];[-1 0 2]];

% Set up the linear part of the problem.
c = [0 -1 0]';
a = ones(1,3);
blc = [1.0];
buc = [inf];
blx = sparse(3,1);
bux = [];

% Optimize the problem.
[res] = mskqpopt(q,c,a,blc,buc,blx,bux);

% Show the primal solution.
res.sol.itr.xx

It should be clear that the format for calling mskqpopt is very similar to calling msklpopt except that
the 𝑄 matrix is included as the first argument of the call. Similarly, the solution can be inspected by
viewing the res.sol field.

6.5.2 Example: Quadratic constraints

In this section we show how to solve a problem with quadratic constraints. Please note that quadratic
constraints are subject to the convexity requirement (6.5).

6.5. Quadratic Optimization 23

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Consider the problem:

minimize 𝑥2
1 + 0.1𝑥2

2 + 𝑥2
3 − 𝑥1𝑥3 − 𝑥2

subject to 1 ≤ 𝑥1 + 𝑥2 + 𝑥3 − 𝑥2
1 − 𝑥2

2 − 0.1𝑥2
3 + 0.2𝑥1𝑥3,

𝑥 ≥ 0.

This is equivalent to

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥
subject to 1

2𝑥
𝑇𝑄0𝑥 + 𝐴𝑥 ≥ 𝑏,
𝑥 ≥ 0,

(6.7)

where

𝑄𝑜 =

⎡⎣ 2 0 −1
0 0.2 0
−1 0 2

⎤⎦ , 𝑐 =
[︀

0 −1 0
]︀𝑇

, 𝐴 =
[︀

1 1 1
]︀
, 𝑏 = 1.

𝑄0 =

⎡⎣ −2 0 0.2
0 −2 0

0.2 0 −0.2

⎤⎦ .

The linear parts and quadratic objective are set up the way described in the previous tutorial.

Setting up quadratic constraints

Please note that there are quadratic terms in both constraints. This problem can be solved using
mosekopt as the following

Listing 6.8: Script implementing problem (6.7).

function qcqo1()
clear prob;

% Specify the linear objective terms.
prob.c = [0, -1, 0];

% Specify the quadratic terms of the constraints.
prob.qcsubk = [1 1 1 1]';
prob.qcsubi = [1 2 3 3]';
prob.qcsubj = [1 2 3 1]';
prob.qcval = [-2.0 -2.0 -0.2 0.2]';

% Specify the quadratic terms of the objective.
prob.qosubi = [1 2 3 3]';
prob.qosubj = [1 2 3 1]';
prob.qoval = [2.0 0.2 2.0 -1.0]';

% Specify the linear constraint matrix
prob.a = [1 1 1];

% Specify the lower bounds
prob.blc = [1];
prob.blx = zeros(3,1);

[r,res] = mosekopt('minimize',prob);

% Display the solution.
fprintf('\nx:');
fprintf(' %-.4e',res.sol.itr.xx');
fprintf('\n||x||: %-.4e',norm(res.sol.itr.xx));

24 Chapter 6. Basic Tutorials

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

6.6 Integer Optimization

An optimization problem where one or more of the variables are constrained to integer values is called a
(mixed) integer optimization problem. MOSEK supports integer variables in combination with linear
and conic quadratic problems. See the previous tutorials for an introduction to how to model these types
of problems.

6.6.1 Example MILO1

We use the example

maximize 𝑥0 + 0.64𝑥1

subject to 50𝑥0 + 31𝑥1 ≤ 250,
3𝑥0 − 2𝑥1 ≥ −4,
𝑥0, 𝑥1 ≥ 0 and integer

(6.8)

to demonstrate how to set up and solve a problem with integer variables. It has the structure of a linear
optimization problem (see Sec. 6.2) except for integrality constraints on the variables. Therefore, only
the specification of the integer constraints requires something new compared to the linear optimization
problem discussed previously.

The complete source for the example is listed in Listing 6.9.

Listing 6.9: How to solve problem (6.8).

function milo1()
clear prob
prob.c = [1 0.64];
prob.a = [[50 31];[3 -2]];
prob.blc = [-inf -4];
prob.buc = [250 inf];
prob.blx = [0 0];
prob.bux = [inf inf];

% Specify indexes of variables that are integer
% constrained.

prob.ints.sub = [1 2];

% Optimize the problem.
[r,res] = mosekopt('minimize',prob);

try
% Display the optimal solution.
res.sol.int
res.sol.int.xx'

catch
fprintf('MSKERROR: Could not get solution')

end

Please note that compared to a linear optimization problem with no integer-constrained variables:

• The prob.ints.sub field is used to specify the indexes of the variables that are integer-constrained.

• The optimal integer solution is returned in the res.sol.int MATLAB structure.

MOSEK also provides a wrapper for the intlinprog function found in the MATLAB optimization
toolbox. This function solves linear problems wth integer variables; see the reference section for details.

6.6. Integer Optimization 25

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

6.6.2 Specifying an initial solution

Solution time of can often be reduced by providing an initial solution for the solver. It is not necessary
to specify the whole solution. By setting the MSK_IPAR_MIO_CONSTRUCT_SOL parameter to "MSK_ON"
and inputting values for the integer variables only, MOSEK will be forced to compute the remaining
continuous variable values. If the specified integer solution is infeasible or incomplete, MOSEK will
simply ignore it.

We concentrate on a simple example below.

maximize 7𝑥0 + 10𝑥1 + 𝑥2 + 5𝑥3

subject to 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 ≤ 2.5
𝑥0, 𝑥1, 𝑥2 ∈ Z
𝑥0, 𝑥1, 𝑥2, 𝑥3 ≥ 0

(6.9)

Listing 6.10: Script solving problem (6.9).

function mioinitsol()
[r,res] = mosekopt('symbcon');
sc = res.symbcon;

clear prob

prob.c = [7 10 1 5];
prob.a = sparse([1 1 1 1]);
prob.blc = -[inf];
prob.buc = [2.5];
prob.blx = [0 0 0 0];
prob.bux = [inf inf inf inf];
prob.ints.sub = [1 2 3];

% Values for the integer variables are specified.
prob.sol.int.xx = [0 2 0 0]';

% Tell Mosek to construct a feasible solution from a given integer
% value.
param.MSK_IPAR_MIO_CONSTRUCT_SOL = sc.MSK_ON;

[r,res] = mosekopt('maximize',prob,param);

try
% Display the optimal solution.
res.sol.int.xx'

catch
fprintf('MSKERROR: Could not get solution')

end

6.7 Optimizer Termination Handling

After solving an optimization problem with MOSEK an approriate action must be taken depending on
the outcome. Usually the expected outcome is an optimal solution, but there may be several situations
where this is not the result. E.g., if the problem is infeasible or nearly so or if the solver ran out of
memory or stalled while optimizing, the result may not be as expected.

This section discusses what should be considered when an optimization has ended unsuccessfully.

Before continuing, let us consider the four status codes available in MOSEK that is relevant for the
error handing:

26 Chapter 6. Basic Tutorials

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• Termination code: It provides information about why the optimizer terminated. For instance if
a time limit has been specfied (this is common for mixed integer problems), the termination code
will tell if this termination limit was the cause of the termination. Note that reaching a prespecfied
time limit is not considered an exceptional case. It must be expected that this occurs occasionally.

• Response code: It is an information about the system status and the outcome of the call to a
MOSEK functionalities. This code is used to report the unexpected failures such as out of space.

The response code is the returned value of most functions of the API, and its type is rescode . See Sec.
17.5 for a list of possible return codes.

• Solution status: It contains information about the status of the solution, e.g., whether the
solution is optimal or a certificate of infeasibility.

• Problem status: It describes what MOSEK knows about the feasibility of the problem, i.e., if
the is problem feasible or infeasible.

The problem status is mostly used for integer problems. For continuous problems a problem status of,
say, infeasible will always mean that the solution is a certificate of infeasibility. For integer problems it
is not possible to provide a certificate, and thus a separate problem status is useful.

Note that if we want to report, e.g., that the optimizer terminated due to a time limit or because it
stalled but with a feasible solution, we have to consider both the termination code, and the solution
status.

The following pseudo code demonstrates a best practice way of dealing with the status codes.

• if (the solution status is as expected)

– The normal case:

Do whatever that was planned. Note the response code is ignored because the solution has
the expected status. Of course we may check the response anyway if we like.

• else

– Exceptional case:

Based on solution status, response and termination codes take appropriate action.

In Listing 6.11 the pseudo code is implemented. The idea of the example is to read an optimization
problem from a file, e.g., an MPS file and optimize it. Based on status codes an appropriate action is
taken, which in this case is to print a suitable message.

Listing 6.11: A typical code that handle MOSEK response code.

function response(inputfile, solfile)

cmd = sprintf('read(%s)', inputfile)
% Read the problem from file
[r, res] = mosekopt(cmd)

if strcmp(res.rcodestr , 'MSK_RES_OK')

% Perform the optimization.
[r,res] = mosekopt('minimize', res.prob);
r
res
%Expected result: The solution status of the basic solution is optimal.
if strcmp(res.rcodestr, 'MSK_RES_OK')

solsta = strcat('MSK_SOL_STA_', res.sol.itr.solsta)

if strcmp(solsta , 'MSK_SOL_STA_OPTIMAL') || ...
strcmp(solsta , 'MSK_SOL_STA_NEAR_OPTIMAL')

6.7. Optimizer Termination Handling 27

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

fprintf('An optimal basic solution is located.');

elseif strcmp(solsta , 'MSK_SOL_STA_DUAL_INFEAS_CER') || ...
strcmp(solsta , 'MSK_SOL_STA_NEAR_DUAL_INFEAS_CER')

fprintf('Dual infeasibility certificate found.');

elseif strcmp(solsta , 'MSK_SOL_STA_PRIM_INFEAS_CER') || ...
strcmp(soslta , 'MSK_SOL_STA_NEAR_PRIM_INFEAS_CER')

fprintf('Primal infeasibility certificate found.');

elseif strcmp(solsta , 'MSK_SOL_STA_UNKNOWN')

% The solutions status is unknown. The termination code
% indicates why the optimizer terminated prematurely.

fprintf('The solution status is unknown.');

if ~strcmp(res.rcodestr, 'MSK_RES_OK')

% A system failure e.g. out of space.
fprintf(' Response code: %s\n', res);

else

%No system failure e.g. an iteration limit is reached.
printf(' Termination code: %s\n', res);

end

else
fprintf('An unexpected solution status is obtained.');

end

else
fprintf('Could not obtain the solution status for the requested solution.');

end

fprintf('Return code: %d (0 means no error occurred.)\n',r);

end

6.8 Problem Modification and Reoptimization

Often one might want to solve not just a single optimization problem, but a sequence of problems, each
differing only slightly from the previous one. This section demonstrates how to modify and re-optimize
an existing problem. The example we study is a simple production planning model.

Problem modifications regarding variables, cones, objective function and constraints can be grouped in
categories:

• add/remove,

• coefficient modifications,

• bounds modifications.

Especially removing variables and constraints can be costly. Special care must be taken with respect to
constraints and variable indexes that may be invalidated.

Depending on the type of modification, MOSEK may be able to optimize the modified problem more
efficiently exploiting the information and internal state from the previous execution. After optimization,

28 Chapter 6. Basic Tutorials

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

the solution is always stored internally, and is available before next optimization. The former optimal
solution may be still feasible, but no longer optimal; or it may remain optimal if the modification of the
objective function was small. This special case is discussed in Sec. 15.

In general, MOSEK exploits dual information and availability of an optimal basis from the previous
execution. The simplex optimizer is well suited for exploiting an existing primal or dual feasible solution.
Restarting capabilities for interior-point methods are still not as reliable and effective as those for the
simplex algorithm. More information can be found in Chapter 10 of the book [Chv83] .

6.8.1 Example: Production Planning

A company manufactures three types of products. Suppose the stages of manufacturing can be split into
three parts: Assembly, Polishing and Packing. In the table below we show the time required for each
stage as well as the profit associated with each product.

Product no. Assembly (minutes) Polishing (minutes) Packing (minutes) Profit ($)
0 2 3 2 1.50
1 4 2 3 2.50
2 3 3 2 3.00

With the current resources available, the company has 100, 000 minutes of assembly time, 50, 000 minutes
of polishing time and 60, 000 minutes of packing time available per year. We want to know how many
items of each product the company should produce each year in order to maximize profit?

Denoting the number of items of each type by 𝑥0, 𝑥1 and 𝑥2, this problem can be formulated as a linear
optimization problem:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2

subject to 2𝑥0 + 4𝑥1 + 3𝑥2 ≤ 100000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 50000,
2𝑥0 + 3𝑥1 + 2𝑥2 ≤ 60000,

(6.10)

and

𝑥0, 𝑥1, 𝑥2 ≥ 0.

Code in Listing 6.12 loads and solves this problem.

Listing 6.12: Setting up and solving problem (6.10)

% Specify the c vector.
prob.c = [1.5 2.5 3.0]';

% Specify a in sparse format.
subi = [1 1 1 2 2 2 3 3 3];
subj = [1 2 3 1 2 3 1 2 3];
valij = [2 4 3 3 2 3 2 3 2];

prob.a = sparse(subi,subj,valij);

% Specify lower bounds of the constraints.
prob.blc = [-inf -inf -inf]';

% Specify upper bounds of the constraints.
prob.buc = [100000 50000 60000]';

% Specify lower bounds of the variables.
prob.blx = zeros(3,1);

% Specify upper bounds of the variables.

6.8. Problem Modification and Reoptimization 29

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

prob.bux = [inf inf inf]';

% Perform the optimization.
[r,res] = mosekopt('maximize',prob);

% Show the optimal x solution.
res.sol.bas.xx

6.8.2 Changing the Linear Constraint Matrix

Suppose we want to change the time required for assembly of product 0 to 3 minutes. This corresponds
to setting 𝑎0,0 = 3, which is done by directly modifying the A matrix of the problem, as shown below.

prob.a(1,1) = 3.0

The problem now has the form:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2

subject to 3𝑥0 + 4𝑥1 + 3𝑥2 ≤ 100000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 50000,
2𝑥0 + 3𝑥1 + 2𝑥2 ≤ 60000,

(6.11)

and

𝑥0, 𝑥1, 𝑥2 ≥ 0.

After this operation we can reoptimize the problem.

6.8.3 Appending Variables

We now want to add a new product with the following data:

Product no. Assembly (minutes) Polishing (minutes) Packing (minutes) Profit ($)
3 4 0 1 1.00

This corresponds to creating a new variable 𝑥3, appending a new column to the 𝐴 matrix and setting a
new term in the objective. We do this in Listing 6.13

Listing 6.13: How to add a new variable (column)

prob.c = [prob.c;1.0];
prob.a = [prob.a,sparse([4.0 0. 1.0]')];
prob.blx = zeros(4,1);
prob.bux = [prob.bux; inf]

After this operation the new problem is:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2 + 1.0𝑥3

subject to 3𝑥0 + 4𝑥1 + 3𝑥2 + 4𝑥3 ≤ 100000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 50000,
2𝑥0 + 3𝑥1 + 2𝑥2 + 1𝑥3 ≤ 60000,

(6.12)

and

𝑥0, 𝑥1, 𝑥2, 𝑥3 ≥ 0.

30 Chapter 6. Basic Tutorials

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

6.8.4 Appending Constraints

Now suppose we want to add a new stage to the production process called Quality control for which
30000 minutes are available. The time requirement for this stage is shown below:

Product no. Quality control (minutes)
0 1
1 2
2 1
3 1

This corresponds to adding the constraint

𝑥0 + 2𝑥1 + 𝑥2 + 𝑥3 ≤ 30000

to the problem. This is done as follows.

Listing 6.14: Adding a new constraint.

prob.a = [prob.a;sparse([1.0 2.0 1.0 1.0])];
prob.blc = [prob.blc;30000.0];
prob.buc = [prob.buc;-inf];

Again, we can continue with re-optimizing the modified problem.

6.9 Solution Analysis

The main purpose of MOSEK is to solve optimization problems and therefore the most fundamental
question to be asked is whether the solution reported by MOSEK is a solution to the desired optimization
problem.

There can be several reasons why it might be not case. The most prominent reasons are:

• A wrong problem. The problem inputted to MOSEK is simply not the right problem, i.e. some
of the data may have been corrupted or the model has been incorrectly built.

• Numerical issues. The problem is badly scaled or otherwise badly posed.

• Other reasons. E.g. not enough memory or an explicit user request to stop.

The first step in verifying that MOSEK reports the expected solution is to inspect the solution summary
generated by MOSEK (see Sec. 6.9.1). The solution summary provides information about

• the problem and solution statuses,

• objective value and infeasibility measures for the primal solution, and

• objective value and infeasibility measures for the dual solution, where applicable.

By inspecting the solution summary it can be verified that MOSEK produces a feasible solution, and,
in the continuous case, the optimality can be checked using the dual solution. Furthermore, the problem
itself ca be inspected using the problem analyzer discussed in Sec. 13.

If the summary reports conflicting information (e.g. a solution status that does not match the actual
solution), or the cause for terminating the solver before a solution was found cannot be traced back to
the reasons stated above, it may be caused by a bug in the solver; in this case, please contact MOSEK
support (see Sec. 2).

If it has been verified that MOSEK solves the problem correctly but the solution is still not as expected,
next step is to verify that the primal solution satisfies all the constraints. Hence, using the original

6.9. Solution Analysis 31

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

problem it must be determined whether the solution satisfies all the required constraints in the model.
For instance assume that the problem has the constraints

𝑥1 + 2𝑥2 + 𝑥3 ≤ 1,
𝑥1, 𝑥2, 𝑥3 ≥ 0

and MOSEK reports the optimal solution

𝑥1 = 𝑥2 = 𝑥3 = 1.

Then clearly the solution violates the constraints. The most likely explanation is that the model does
not match the problem entered into MOSEK, for instance

𝑥1 − 2𝑥2 + 𝑥3 ≤ 1

may have been inputted instead of

𝑥1 + 2𝑥2 + 𝑥3 ≤ 1.

A good way to debug such an issue is to dump the problem to OPF file and check whether the violated
constraint has been specified correctly.

Verifying that a feasible solution is optimal can be harder. However, for continuous problems, i.e. prob-
lems without any integer constraints, optimality can verified using a dual solution. Normally, MOSEK
will report a dual solution; if that is feasible and has the same objective value as the primal solution,
then the primal solution must be optimal.

An alternative method is to find another primal solution that has better objective value than the one
reported to MOSEK. If that is possible then either the problem is badly posed or there is bug in
MOSEK.

6.9.1 The Solution Summary

Due to MOSEK employs finite precision floating point numbers then reported solution is an approximate
optimal solution. Therefore after solving an optimization problem it is relevant to investigate how good
an approximation the solution is. For a convex optimization problem that is an easy task because the
optimality conditions are:

• The primal solution must satisfy all the primal constraints.

• The dual solution much satisfy all the dual constraints.

• The primal and dual objective values must be identical.

Therefore, the MOSEK solution summary displays that information that makes it possible to verify the
optimality conditions. Indeed the solution summary reports how much primal and dual solutions violate
the primal and constraints respectively. In addition the objective values assoctaied with each solution
repoted.

In case of a linear optimization problem the solution summary may look like

Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -4.6475314286e+002 nrm: 5e+002 Viol. con: 1e-014 var: 1e-014
Dual. obj: -4.6475314543e+002 nrm: 1e+001 Viol. con: 4e-009 var: 4e-016

The interpreation of the solution summary is as follows:

• Information for the basic solution is reported.

• The problem status is primal and dual feasible which means the problem has an optimal solution.

• The solution status is optimal.

32 Chapter 6. Basic Tutorials

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• Next information about the primal solution is reported. The information consists of the objective
value, the infinity norm of the primal solution and violation meassures. The violation for the
constraints (con:) is the maximal violation in any of the constraints. Whereas the violations for
the variables (var:) is the maximal bound violation for any of the variables. In this case the
primal violations for the constraints and variables are small meaning the solution is an almost
feasible solution. Observe due to the rounding errors it can be expected that the violations are
proportional to the size (nrm:) of the solution.

• Similarly for the dual solution the violations are small and hence the dual solution is almost feasible.

• Finally, it can be seen that the primal and dual objective values are almost identical.

To summarize in this case a primal and a dual solution only violate the primal and dual constraints
slightly. Moreover, the primal and dual objective values are almost identical and hence it can be concluded
that the reported solution is a good approximation to the optimal solution.

The reason the size (=norms) of the solution are shown is that it shows some about conditioning of the
problem because if the primal and/or dual solution has very large norm then the violations and objective
values are sensitive to small pertubations in the problem data. Therefore, the problem is unstable and
care should be taken before using the solution.

Now what happens if the problem does not have an optimal solution e.g. is primal infeasible. In such a
case the solution summary may look like

Interior-point solution summary
Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 6.7319732555e+000 nrm: 8e+000 Viol. con: 3e-010 var: 2e-009

i.e. MOSEK reports that the solution is a certificate of primal infeasibility but a certificate of primal
infeasibility what does that mean? It means that the dual solution is a Farkas type certificate. Recall
Farkas’ Lemma says

𝐴𝑥 = 𝑏,
𝑥 ≥ 0

if and only if a 𝑦 exists such that

𝐴𝑇 𝑦 ≤ 0,
𝑏𝑇 𝑦 > 0.

(6.13)

Observe the infeasibility certificate has the same form as a regular dual solution and therefore the
certificate is stored as a dual solution. In order to check quality of the primal infeasibility certificate
it should be checked whether satisfies (6.13). Hence, the dual objective value is 𝑏𝑇 𝑦 should be strictly
positive and the maximal violation in 𝐴𝑇 𝑦 ≤ 0 should be a small. In this case we conclude the certificate
is of high quality because the dual objective is postive and large compared to the violations. Note the
Farkas certificate is a ray so any postive multiple of that ray is also certificate. This implies the absolute
of the value objective value and the violation is not relevant.

In the case a problem is dual infeasible then the solution summary may look like

Basic solution summary
Problem status : DUAL_INFEASIBLE
Solution status : DUAL_INFEASIBLE_CER
Primal. obj: -2.0000000000e-002 nrm: 1e+000 Viol. con: 0e+000 var: 0e+000

Observe when a solution is a certificate of dual infeasibility then the primal solution contains the cer-
tificate. Moreoever, given the problem is a minimization problem the objective value should be negative
and large compared to the worst violation if the certificate is strong.

Listing 6.15 shows how to use these function to determine the quality of the solution.

6.9. Solution Analysis 33

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Listing 6.15: An example of solution quality analysis.

function solutionquality(data)

cmd = sprintf('read(%s)',data)
% Read the problem from file
[r, res] = mosekopt(cmd)

% Perform the optimization.
[r, res] = mosekopt('minimize', res.prob);

solsta = strcat('MSK_SOL_STA_', res.sol.itr.solsta);

if strcmp(solsta, 'MSK_SOL_STA_OPTIMAL') || strcmp(solsta, 'MSK_SOL_STA_NEAR_OPTIMAL')

sol = res.sol.itr
primalobj= sol.pobjval
dualobj= sol.dobjval

abs_obj_gap = abs(dualobj - primalobj);
rel_obj_gap = abs_obj_gap/(1.0 + min(abs(primalobj), abs(dualobj)));

% Assume the application needs the solution to be within
% 1e-6 optimality in an absolute sense. Another approach
% would be looking at the relative objective gap */

fprintf('\n\n');
fprintf('Customized solution information.\n');
fprintf(' Absolute objective gap: %e\n',abs_obj_gap);
fprintf(' Relative objective gap: %e\n',rel_obj_gap);

accepted = 1;

if (rel_obj_gap>1e-6)
fprintf('Warning: The relative objective gap is LARGE.\n');
accepted = 0;

end

if (accepted)
res.sol.itr.xx

else
% Print detailed information about the solution
r = MSK_analyzesolution(task,MSK_STREAM_LOG,whichsol);

end

elseif strcmp(solsta, 'MSK_SOL_STA_DUAL_INFEAS_CER') || ...
strcmp(solsta, 'MSK_SOL_STA_PRIM_INFEAS_CER') || ...
strcmp(solsta, 'MSK_SOL_STA_NEAR_DUAL_INFEAS_CER') || ...
strcmp(solsta, 'MSK_SOL_STA_NEAR_PRIM_INFEAS_CER')

fprintf('Primal or dual infeasibility certificate found.\n');

elseif strcmp(solsta, 'MSK_SOL_STA_UNKNOWN')
fprintf('The status of the solution is unknown.\n');

else
fprintf('Other solution status');

end

end

34 Chapter 6. Basic Tutorials

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

6.9.2 The Solution Summary for Mixed-Integer Problems

The solution summary for a mixed-integer problem may look like

Listing 6.16: Example of solution summary for a mixed-integer problem.

Integer solution solution summary
Problem status : PRIMAL_FEASIBLE
Solution status : INTEGER_OPTIMAL
Primal. obj: 3.4016000000e+005 nrm: 1e+000 Viol. con: 0e+000 var: 0e+000 itg: 3e-014

The main diffrence compared to thecontinous case covered previously is that no information about
the dual solution is provided. Simply because there is no dual solution available for a mixed integer
problem. In this case it can be seen that the solution is highly feasible because the violations are small.
Moreoever, the solution is denoted integer optimal. Observe itg: 3e-014 implies that all the integer
constrained variables are at most 3𝑒− 014 from being an exact integer.

6.10 Solver Parameters

The MOSEK API provides many parameters to tune and customize the solver behaviour. Parameters
are grouped depending on their type: integer, double or string. In general, it should not be necessary to
change any of the parameters but if required, it is easily done. A complete list of all parameters is found
in Sec. 17.4.

We will show how to access and set the integer parameter that define the logging verbosity of the solver,
i.e. MSK_IPAR_LOG , and the algorithm used by MOSEK, i.e. MSK_IPAR_OPTIMIZER .

Note: The very same concepts and procedures apply to string and double valued parameters.

To inspect the current value of a parameter, we can use the mosekopt command param:

[r,resp]=mosekopt('param');

To set a parameter we only need to make a structure with fields that corresponds to the parameters we
want to set:

param.MSK_IPAR_LOG = 1

param.MSK_IPAR_LOG = -1

The values for integer parameters are either simple integer values or enum values. Enumerations are
provided mainly to improve readability and ensure compatibility.

In the next lines we show how to set the algorithm used by MOSEK to solve linear optimization problem.
To that purpose we set the MSK_IPAR_OPTIMIZER parameter using a value from the optimizertype
enumeration: for instance we may decide to use the dual simplex algorithm, and thus

param.MSK_IPAR_OPTIMIZER = 'MSK_OPTIMIZER_DUAL_SIMPLEX'

For more information about other parameter related functions, please browse the API reference in Sec.
17.1.

The complete code for this tutorial follows in Listing 6.17.

Listing 6.17: Parameter setting example.

function r = parameters()

6.10. Solver Parameters 35

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

fprintf('Test MOSEK parameter get/set functions');

[r,resp]=mosekopt('param');

fprintf('Default value for parameter MSK_IPAR_LOG= %d\n', resp.param.MSK_IPAR_LOG)

fprintf(' setting to 1...');
param.MSK_IPAR_LOG = 1

fprintf(' setting to -1 ...');
param.MSK_IPAR_LOG = -1

fprintf(' selecting the dual simplex algorithm...');
param.MSK_IPAR_OPTIMIZER = 'MSK_OPTIMIZER_DUAL_SIMPLEX'

try
% Perform the optimization, but it should fail
[r,resp] = mosekopt('minimize', [] , param);

catch
fprintf('The value -1 for parameter MSK_IPAR_LOG has been correctly detected as wrong!')
r = 0
return

end

fprintf('The value -1 for parameter MSK_IPAR_LOG has NOT been correctly detected as wrong!')

r = 1

end

36 Chapter 6. Basic Tutorials

CHAPTER

SEVEN

NONLINEAR TUTORIALS

This chapter provides information about how to solve general convex nonlinear optimization problems
using MOSEK. By general nonlinear problems we mean those that cannot be formulated in conic or
convex quadratically constrained form.

In general we recommend not to use the general nonlinear optimizer unless absolutely necessary. The
reasons are:

• The algorithm employed for nonlinear optimization problems is not as efficient as the one employed
for conic problems. Conic problems have special structure that can be exploited to make the
optimizer faster and more robust.

• MOSEK has no way of checking whether the formulated problem is convex and if this assumption
is not satisfied the optimizer will not work.

• The nonlinear optimizer requires 1st and 2nd order derivative information which is often hard to
provide correctly.

Instead, we advise:

• Consider reformulating the problem to a conic quadratic optimization problem if at all possible. In
particular many problems involving polynomial terms can easily be reformulated to conic quadratic
form.

• Consider reformulating the problem to a separable optimization problem because that simplifies
the issue with verifying convexity and computing 1st and 2nd order derivatives significantly. In
most cases problems in separable form also solve faster because of the simpler structure of the
functions.

• Finally, if the problem cannot be reformulated in separable form use a modelling language like
AMPL or GAMS, which will perform all the preprocessing, computing function values and deriva-
tives. This eliminates an important source of errors. Therefore, it is strongly recommended to use
a modelling language at the prototype stage.

The Optimization Toolbox for MATLAB provides the following nonlinear interfaces:

7.1 Separable Convex (SCopt) Interface

The Optimization Toolbox for MATLAB provides a way to add simple non-linear functions composed
from a limited set of non-linear terms. Non-linear terms can be mixed with quadratic terms in objective
and constraints. We consider problems which can be formulated as:

minimize 𝑧0(𝑥) + 𝑐𝑇𝑥
subject to 𝑙𝑐𝑖 ≤ 𝑧𝑖(𝑥) + 𝑎𝑇𝑖 𝑥 ≤ 𝑢𝑐

𝑖 𝑖 = 1 . . .𝑚
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

where 𝑥 ∈ R𝑛 and each 𝑧𝑖 : R𝑛 → R is separable, that is can be written as a sum

𝑧𝑖(𝑥) =

𝑛∑︁
𝑗=1

𝑧𝑖,𝑗(𝑥𝑗).

37

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

The interface implements a limited set of functions which can appear as 𝑧𝑖,𝑗 . They are:

Table 7.1: Functions supported by the SCopt interface.
Separable function Operator name Name
𝑓𝑥 ln(𝑥) ent Entropy function
𝑓𝑒𝑔𝑥+ℎ exp Exponential function
𝑓 ln(𝑔𝑥 + ℎ) log Logarithm
𝑓(𝑥 + ℎ)𝑔 pow Power function

where 𝑓, 𝑔, ℎ ∈ R are constants. This formulation does not guarantee convexity. For MOSEK to be
able to solve the problem, the following requirements must be met:

• If the objective is minimized, the sum of non-linear terms must be convex, otherwise it must be
concave.

• Any constraint bounded below must be concave, and any constraint bounded above must be convex.

• Each separable term must be twice differentiable within the bounds of the variable it is applied to.

Some simple rules can be followed to ensure that the problem satisfies MOSEK’s convexity and differ-
entiability requirements. First of all, for any variable 𝑥𝑖 used in a separable term, the variable bounds
must define a range within which the function is twice differentiable. These bounds are defined in Table
7.2.

Table 7.2: Safe bounds for functions in the SCopt interface.
Separable function Operator name Safe 𝑥 bounds
𝑓𝑥 ln(𝑥) ent 0 < 𝑥.
𝑓𝑒𝑔𝑥+ℎ exp −∞ < 𝑥 < ∞.
𝑓 ln(𝑔𝑥 + ℎ) log If 𝑔 > 0: −ℎ/𝑔 < 𝑥.

If 𝑔 < 0: 𝑥 < −ℎ/𝑔.
𝑓(𝑥 + ℎ)𝑔 pow If 𝑔 > 0 and integer: −∞ < 𝑥 < ∞.

If 𝑔 < 0 and integer: either −ℎ < 𝑥 or 𝑥 < −ℎ.
Otherwise: −ℎ < 𝑥.

To ensure convexity, we require that each 𝑧𝑖(𝑥) is either a sum of convex terms or a sum of concave
terms. Table 7.3 lists convexity conditions for the relevant ranges for 𝑓 > 0 — changing the sign of 𝑓
switches concavity/convexity.

Table 7.3: Convexity conditions for functions in the SCopt inter-
face.

Separable function Operator name Convexity conditions
𝑓𝑥 ln(𝑥) ent Convex within safe bounds.
𝑓𝑒𝑔𝑥+ℎ exp Convex for all 𝑥.
𝑓 ln(𝑔𝑥 + ℎ) log Concave within safe bounds.
𝑓(𝑥 + ℎ)𝑔 pow If 𝑔 is even integer: convex

within safe bounds.
If 𝑔 is odd integer:

• concave if (−∞,−ℎ),
• convex if (−ℎ,∞)

If 0 < 𝑔 < 1: concave within
safe bounds.
Otherwise: convex within safe
bounds.

A problem involving linear combinations of variables (such as ln(𝑥1+𝑥2)), can be converted to a separable
problem using slack variables and additional equality constraints.

38 Chapter 7. Nonlinear Tutorials

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

7.1.1 Example

Consider the following separable convex problem:

minimize exp(𝑥2) − ln(𝑥1)
subject to 𝑥2 ln(𝑥2) ≤ 0

𝑥
1/2
1 − 𝑥2 ≥ 0

1
2 ≤ 𝑥1, 𝑥2 ≤ 1.

(7.1)

Note that all nonlinear functions are well defined for 𝑥 values satisfying the variable bounds strictly. This
assures that function evaluation errors will not occur during the optimization process because MOSEK.

The MOSEK Toolbox for MATLAB provides a simple interface for separable convex problem called
SCopt, and composed by a single function mskscopt .

When using the SCopt interface to solve problem (7.1), the linear part of the problem, such as a 𝑐 and
𝐴, is specified as usual using MATLAB vectors and matrices. However, the nonlinear functions must be
specified using five arrays which in the case of problem (7.1) can have the form:

opr = ['log'; 'exp'; 'ent'; 'pow'];
opri = [0 ; 0; 1; 2];
oprj = [1 ; 2; 2; 1];
oprf = [-1 ; 1; 1; 1];
oprg = [1 ; 1; 0; 0.5];
oprh = [0 ; 0; 0; 0];

Hence,

• opr(k,:) specifies the type of a nonlinear function,

• opri(k) specifies in which constraint the nonlinear function should be added (zero means objec-
tive),

• oprj(k) means that the nonlinear function should be applied to 𝑥𝑗 ,

• oprf(k), oprg(k) and oprh(k) are parameters used by the mskscopt function according to Table
7.1.

The i value indicates which constraint the nonlinear function belongs to. However, if i is identical to
zero, then the function belongs to the objective.

7.2 Entropy Optimization

An entropy optimization problem has the following form

minimize
∑︀𝑛

𝑗=1 𝑑𝑗𝑥𝑗 ln(𝑥𝑗) + 𝑐𝑇𝑥

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
0 ≤ 𝑥

where all the components of 𝑑 must be nonnegative, i.e. 𝑑𝑗 ≥ 0.

Example

An example of an entropy optimization problem is

minimize 𝑥1 ln(𝑥1) − 𝑥1 + 𝑥2 ln(𝑥2)
subject to 1 ≤ 𝑥1 + 𝑥2 ≤ 1,

0 ≤ 𝑥1, 𝑥2.

This problem can be solved using the mskenopt command as follows

7.2. Entropy Optimization 39

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Listing 7.1: Entropy optimization example.

function eo1()
d = [1 1]'
c = [-1 0]'
a = [1 1]
blc = 1
buc = 1
[res] = mskenopt(d,c,a,blc,buc)
res.sol.itr.xx

7.3 Geometric Optimization

A so-called geometric optimization problem can be stated as follows

minimize
∑︀

𝑘∈𝐽0
𝑐𝑘
∏︀𝑛

𝑗=1 𝑡
𝑎𝑘𝑗

𝑗

subject to
∑︀

𝑘∈𝐽𝑖
𝑐𝑘
∏︀𝑛

𝑗=1 𝑡
𝑎𝑘𝑗

𝑗 ≤ 1, 𝑖 = 1, . . . ,𝑚,

𝑡 > 0,

(7.2)

where it is assumed that

∪𝑚
𝑘=0𝐽𝑘 = {1, . . . , 𝑇}

and if 𝑖 ̸= 𝑗, then

𝐽𝑖 ∩ 𝐽𝑗 = ∅.

Hence, 𝐴 is a 𝑇 × 𝑛 matrix and 𝑐 is a vector of length 𝑡. In general, the problem (7.2) is very hard to
solve, but the posynomial case where

𝑐 > 0

is relatively easy. Using the variable transformation

𝑡𝑗 = 𝑒𝑥𝑗 (7.3)

we obtain the problem

minimize
∑︀

𝑘∈𝐽0
𝑐𝑘𝑒

𝑎𝑘:𝑥

subject to
∑︀

𝑘∈𝐽𝑖
𝑐𝑘𝑒

𝑎𝑘:𝑥 ≤ 1, 𝑖 = 1, . . . ,𝑚,

which is convex in 𝑥 for 𝑐 > 0. We apply the log function to obtain the equivalent problem

minimize log(
∑︀

𝑘∈𝐽0
𝑐𝑘𝑒

𝑎𝑘:𝑥)
subject to log(

∑︀
𝑘∈𝐽𝑖

𝑐𝑘𝑒
𝑎𝑘:𝑥) ≤ log(1), 𝑖 = 1, . . . ,𝑚,

(7.4)

which is also a convex optimization problem since log is strictly increasing. Hence, the problem (7.4)
can be solved by MOSEK.

For further details about geometric optimization we refer the reader to [BSS93] .

MOSEK cannot handle a geometric optimization problem directly, but the transformation (7.4) can
be solved using the MOSEK optimization toolbox function mskgpopt Please note that the solution to
the transformed problem can easily be converted into a solution to the original geometric optimization
problem using relation (7.3).

Subsequently, we will use the example

minimize 40𝑡−1
1 𝑡

− 1
2

2 𝑡−1
3 + 20𝑡1𝑡3 + 40𝑡1𝑡2𝑡3

subject to 1
3 𝑡

−2
1 𝑡−2

2 + 4
3 𝑡

1
2
2 𝑡

−1
3 ≤ 1,

0 < 𝑡1, 𝑡2, 𝑡3

(7.5)

40 Chapter 7. Nonlinear Tutorials

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

to demonstrate how a geometric optimization problem is solved using mskgpopt Please note that both
the objective and the constraint functions consist of a sum of simple terms. These terms can be specified
completely using the matrix

𝐴 =

⎡⎢⎢⎢⎢⎣
−1 −0.5 −1
1 0 1
1 1 1
−2 −2 0
0 0.5 −1

⎤⎥⎥⎥⎥⎦ ,

and the vectors

𝑐 =

⎡⎢⎢⎢⎢⎣
40
20
40
1
3
4
3

⎤⎥⎥⎥⎥⎦ and map =

⎡⎢⎢⎢⎢⎣
0
0
0
1
1

⎤⎥⎥⎥⎥⎦ .

The interpretation is this: Each row of 𝐴, 𝑐 describes one term, e.g. the first row of 𝐴 and the first
element of 𝑐 describe the first term in the objective function. The vector map indicated whether a term
belongs to the objective or to a constraint. If map𝑘 equals zero, the 𝑘th term belongs to the objective
function, otherwise it belongs to the map𝑘nth constraint.

Listing 7.2 demonstrates how the example is solved using mskgpopt .

Listing 7.2: Example on how to use mskgpopt.

%%
%
% Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
% File : go1.m
%
% Purpose : Demonstrates a simple geometric optimization problem.
%
%%

function go1()

c = [40 20 40 1/3 4/3]';
a = sparse([[-1 -0.5 -1];[1 0 1];...

[1 1 1];[-2 -2 0];[0 0.5 -1]]);
map = [0 0 0 1 1]';
[res] = mskgpopt(c,a,map);

fprintf('\nPrimal optimal solution to original gp:');
fprintf(' %e',exp(res.sol.itr.xx));
fprintf('\n\n');

% Compute the optimal objective value and
% the constraint activities.
v = c.*exp(a*res.sol.itr.xx);

% Add appropriate terms together.
f = sparse(map+1,1:5,ones(size(map)))*v;

% First objective value. Then constraint values.
fprintf('Objective value: %e\n',log(f(1)));
fprintf('Constraint values:');
fprintf(' %e',log(f(2:end)));
fprintf('\n\n');

% Dual multipliers (should be negative)
fprintf('Dual variables (should be negative):');

7.3. Geometric Optimization 41

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

fprintf(' %e',res.sol.itr.y);
fprintf('\n\n');

The code also computes the objective value and the constraint values at the optimal solution. Moreover,
the optimal dual Lagrange multipliers for the constraints are shown and the gradient of the Lagrange
function at the optimal point is computed. Feasibility of the computed solution can be checked as

max(res.sol.itr.xc) < = 0.0

or equivalently

exp(max(res.sol.itr.xc)) <= 1.0

Solving large scale problems

If you want to solve a large problem, i.e. a problem where 𝐴 has large dimensions, then 𝐴 must be sparse
or you will run out of space. Recall that a sparse matrix contains few non-zero elements, so if 𝐴 is a
sparse matrix, you should construct it using MATLAB’s sparse sparse as follows

A = sparse(subi,subj,valij);

where

𝑎subi[𝑘],subj[𝑘] = valij[𝑘].

For further details on the sparse function, please enter

help sparse

in MATLAB.

Preprocessing tip

Before solving a geometric optimization problem it is worthwhile to check if a column of the 𝐴 matrix
inputted to mskgpopt contains only positive elements. If this is the case, the corresponding variable 𝑡𝑖
can take the value zero in the optimal solution: This may cause problems for MOSEK so it is better to
remove such variables from the problem — doing so will have no influence on the optimal solution.

Reading and writing problems to a file

The functions mskgpread and mskgpwri can used to read and write geometric programming problems
to file, see the Command Reference in Sec. 17.1.

42 Chapter 7. Nonlinear Tutorials

CHAPTER

EIGHT

ADVANCED TUTORIALS

8.1 Linear Least Squares and Related Norm Minimization Prob-
lems

A frequently occurring problem in statistics and in many other areas of science is the problem

minimize‖𝐹𝑥− 𝑏‖ (8.1)

where 𝐹 and 𝑏 are a matrix and vector of appropriate dimensions. 𝑥 is the vector decision variables.
Typically, the norm used is the 1-norm, the 2-norm, or the infinity norm.

8.1.1 The Case of the 2-norm

Initially let us focus on the 2 norm. In this case (8.1) is identical to the quadratic optimization problem

minimize
1

2
𝑥𝑇𝐹𝑇𝐹𝑥 +

1

2
𝑏𝑇 𝑏− 𝑏𝑇𝐹𝑥 (8.2)

in the sense that the set of optimal solutions for the two problems coincides. This fact follows from

|𝐹𝑥− 𝑏|2 = (𝐹𝑥− 𝑏)𝑇 (𝐹𝑥− 𝑏)
𝑥𝑇𝐹𝑇𝐹𝑥 + 𝑏𝑇 𝑏 + 2𝑏𝑇𝐹𝑥.

Subsequently, it is demonstrated how the quadratic optimization problem (8.2) is solved using mosekopt .
In the example the problem data is read from a file, then data for the problem (8.2) is constructed and
finally the problem is solved.

Listing 8.1: Script solving problem (8.2)

function nrm1()
% Clear prob
clear prob;

F = [[0.4302 , 0.3516]; [0.6246, 0.3384]]
b = [0.6593, 0.9666]'

% Compute the fixed term in the objective.
prob.cfix = 0.5*b'*b

% Create the linear objective terms
prob.c = -F'*b;

% Create the quadratic terms. Please note that only the lower triangular
% part of f'*f is used.
[prob.qosubi,prob.qosubj,prob.qoval] = find(sparse(tril(F'*F)))

% Obtain the matrix dimensions.

43

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

[m,n] = size(F);

% Specify a.
prob.a = sparse(0,n);

[r,res] = mosekopt('minimize',prob);

% The optimality conditions are F'*(F x - b) = 0.
% Check if they are satisfied:

fprintf('\nnorm(f^T(fx-b)): %e\n',norm(F'*(F*res.sol.itr.xx-b)));

Often the 𝑥 variables must be within some bounds or satisfy some additional linear constraints. These
requirements can easily be incorporated into the problem (8.2). E.g. the constraint ‖𝑥‖∞ ≤ 1 can be
modeled as reported in Listing 8.2.

Listing 8.2: Script solving an extension of problem (8.2)

function nrm2()

F = [[0.4302 , 0.3516]; [0.6246, 0.3384]]
b = [0.6593, 0.9666]'

% Compute the fixed term in the objective.
prob.cfix = 0.5*b'*b

% Create the linear objective terms
prob.c = -F'*b;

% Create the quadratic terms. Please note that only the lower triangular
% part of f'*f is used.
[prob.qosubi,prob.qosubj,prob.qoval] = find(sparse(tril(F'*F)));

% Obtain the matrix dimensions.
[m,n] = size(F);

prob.blx = -ones(n,1);
prob.bux = ones(n,1);

% Specify a.
prob.a = sparse(0,n);

[r,res] = mosekopt('minimize',prob);

% Check if the solution is feasible.
norm(res.sol.itr.xx,inf)

8.1.2 The Case of the Infinity Norm

In some applications of the norm minimization problem (8.1) it is better to use the infinity norm than
the 2 norm. However, the problem (8.1) stated as an infinity norm problem is equivalent to the linear
optimization problem

minimize 𝜏
subject to 𝐹𝑥 + 𝜏𝑒− 𝑏 ≥ 0,

𝐹𝑥− 𝜏𝑒− 𝑏 ≤ 0,
(8.3)

where 𝑒 is the vector of ones of appropriate dimension. This implies that

𝜏𝑒 ≥ 𝐹𝑥− 𝑏
𝜏𝑒 ≥ −(𝐹𝑥− 𝑏)

44 Chapter 8. Advanced Tutorials

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

and hence at optimum

𝜏* = |𝐹𝑥* − 𝑏|∞

holds. Problem (8.3) is straightforward to solve, for instance using script as in Listing 8.3

Listing 8.3: Script solving problem (8.3).

function nrm3()
clear prob;

F = [[0.4302 , 0.3516]; [0.6246, 0.3384]]
b = [0.6593, 0.9666]'

% Obtain the matrix dimensions.
[m,n] = size(F);

prob.c = sparse(n+1,1,1.0,n+1,1);
prob.a = [[F,ones(m,1)];[F,-ones(m,1)]];
prob.blc = [b ; -inf*ones(m,1)];
prob.buc = [inf*ones(m,1); b];

[r,res] = mosekopt('minimize',prob);

% The optimal objective value is given by:
norm(F*res.sol.itr.xx(1:n)-b,inf)

8.1.3 The Case of the 1-norm

By definition, for the 1-norm we have that

‖𝐹𝑥− 𝑏‖1 =

𝑚∑︁
𝑖=1

|𝑓𝑖:𝑥− 𝑏𝑖|.

Therefore, the norm minimization problem can be formulated as follows

minimize
∑︀𝑚

𝑖=1 𝑡𝑖
subject to |𝑓𝑖:𝑥− 𝑏𝑖| = 𝑡𝑖, 𝑖 = 1, . . . ,𝑚,

which in turn is equivalent to

minimize
∑︀𝑚

𝑖=1 𝑡𝑖
subject to 𝑓𝑖:𝑥− 𝑏𝑖 ≤ 𝑡𝑖, 𝑖 = 1, . . . ,𝑚,

−(𝑓𝑖:𝑥− 𝑏𝑖) ≤ 𝑡𝑖, 𝑖 = 1, . . . ,𝑚.

The reader should verify that this is really the case. In matrix notation this problem can be expressed
as follows

minimize 𝑒𝑇 𝑡
subject to 𝐹𝑥− 𝑡𝑒 ≤ 𝑏,

𝐹𝑥 + 𝑡𝑒 ≥ 𝑏,
(8.4)

where 𝑒 = (1, . . . , 1)𝑇 . Next, this problem is solved in Listing 8.4.

Listing 8.4: Script solving problem (8.4).

function nrm4()
clear prob;

8.1. Linear Least Squares and Related Norm Minimization Problems 45

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

F = [[0.4302 , 0.3516]; [0.6246, 0.3384]]
b = [0.6593, 0.9666]'

% Obtain the matrix dimensions.
[m,n] = size(F);

prob.c = [sparse(n,1) ; ones(m,1)];
prob.a = [[F,-speye(m)] ; [F,speye(m)]];
prob.blc = [-inf*ones(m,1); b];
prob.buc = [b ; inf*ones(m,1)];

[r,res] = mosekopt('minimize',prob);

% The optimal objective value is given by:
norm(F*res.sol.itr.xx(1:n)-b,1)

A better formulation

It is possible to improve upon the formulation of the problem (8.3). Indeed problem (8.3) is equivalent
to

minimize
∑︀𝑚

𝑖=1 𝑡𝑖
subject to 𝑓𝑖:𝑥− 𝑏𝑖 − 𝑡𝑖 + 𝑣𝑖 = 0, 𝑖 = 1, . . . ,𝑚,

−(𝑓𝑖:𝑥− 𝑏𝑖) − 𝑡𝑖 ≤ 0, 𝑖 = 1, . . . ,𝑚,
𝑣𝑖 ≥ 0, 𝑖 = 1, . . . ,𝑚.

(8.5)

After eliminating the 𝑡 variables then this problem is equivalent to

minimize
∑︀𝑚

𝑖=1(𝑓𝑖:𝑥− 𝑏𝑖 + 𝑣𝑖)
subject to −2(𝑓𝑖:𝑥− 𝑏𝑖) − 𝑣𝑖 ≤ 0, 𝑖 = 1, . . . ,𝑚,

𝑣𝑖 ≥ 0, 𝑖 = 1, . . . ,𝑚.
(8.6)

Please note that this problem has only half the number of general constraints than problem (8.3) since
we have replaced constraints of the general form

𝑓𝑖:𝑥 ≤ 𝑏𝑖

with simpler constraints

𝑣𝑖 ≥ 0

which MOSEK treats in a special and highly efficient way. Furthermore MOSEK stores only the non-
zeros in the coefficient matrix of the constraints. This implies that the problem (8.6) is likely to require
much less space than the problem (8.5).

It is left as an exercise for the reader to implement this formulation in MATLAB.

More About Solving Linear Least Squares Problems

Linear least squares problems with and without linear side constraints appear very frequently in practice
and it is therefore important to know how such problems are solved efficiently using MOSEK. Now,
assume that the problem of interest is the linear least squares problem

minimize 1
2 ‖𝐹𝑥− 𝑓‖22

subject to 𝐴𝑥 = 𝑏,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

(8.7)

where 𝐹 and 𝐴 are matrices and the remaining quantities are vectors. 𝑥 is the vector of decision variables.
The problem (8.7) as stated is a convex quadratic optimization problem and can be solved as such.

46 Chapter 8. Advanced Tutorials

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

However, if 𝐹 has much fewer rows than columns then it will usually be more efficient to solve the
equivalent problem

minimize 1
2 ‖𝑧‖

2
2

subject to 𝐴𝑥 = 𝑏,
𝐹𝑥− 𝑧 = 𝑓,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

(8.8)

Please note that a number of new constraints and variables has been introduced which of course seems to
be disadvantageous but on the other hand the Hessian of the objective in problem (8.8) is much sparser
than in problem (8.7). Frequently this turns out to be more important for the computational efficiency
and therefore the latter formulation is usually the better one.

If 𝐹 has many more rows than columns, then formulation (8.8) is not attractive whereas the corresponding
dual problem is. Using the duality theory outlined in Sec. 16.5.1 we obtain the dual problem

maximize 𝑏𝑇 𝑦 + 𝑓𝑇 𝑦 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 + (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 1
2 ‖𝑧‖

2
2

subject to 𝐴𝑇 𝑦 + 𝐹𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0,
𝑧 − 𝑦 = 0,
𝑠𝑥𝑙 , 𝑠

𝑥
𝑢 ≥ 0

which can be simplified to

maximize 𝑏𝑇 𝑦 + 𝑓𝑇 𝑧 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 + (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 1
2 ‖𝑧‖

2
2

subject to 𝐴𝑇 𝑦 + 𝐹𝑇 𝑧 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0,
𝑠𝑥𝑙 , 𝑠

𝑥
𝑢 ≥ 0

(8.9)

after eliminating the 𝑦 variables. Here we use the convention that

𝑙𝑥𝑗 = −∞ ⇒ (𝑠𝑥𝑙)𝑗 = 0 and 𝑢𝑥
𝑗 = ∞ ⇒ (𝑠𝑥𝑢)𝑗 = 0.

In practice such fixed variables in 𝑠𝑥𝑙 and 𝑠𝑥𝑢 should be removed from the problem.

Given our assumptions the dual problem (8.9) will have much fewer constraints than the primal problem
(8.8); in general, the fewer constraints a problem contains, the more efficient MOSEK tends to be. A
question is: If the dual problem (8.9) is solved instead of the primal problem (8.8), how is the optimal
𝑥 solution obtained? It turns out that the dual variables corresponding to the constraint

𝐴𝑇 𝑦 + 𝐹𝑇 𝑧 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0

are the optimal 𝑥 solution. Therefore, due to the fact that MOSEK always reports this information as
the:

res.sol.itr.y

vector, the optimal 𝑥 solution can easily be obtained.

In the following code fragment, it is investigated whether it is attractive to solve the dual rather than
the primal problem for a concrete numerical example. This example has no linear equalities and 𝐹 is a
2000 by 400 matrix.

Listing 8.5: Comparison on whether the primal or the dual is more attractive to solve.

function nrm5()
F = repmat([[0.4302, 0.3516]; [0.6246, 0.3384]], 10, 1);
f = repmat([0.6593, 0.9666]', 10,1) ;
% Obtain the matrix dimensions.
[m,n] = size(F)

prob = [];

prob.qosubi = n+(1:m);
prob.qosubj = n+(1:m);

8.1. Linear Least Squares and Related Norm Minimization Problems 47

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

prob.qoval = ones(m,1);
prob.a = [F,-speye(m,m)];
prob.blc = f;
prob.buc = f;
blx = -ones(n,1);
bux = ones(n,1);
prob.blx = [blx;-inf*ones(m,1)];
prob.bux = [bux; inf*ones(m,1)];

fprintf('m=%d n=%d\n',m,n);

fprintf('First try\n');

tic
[rcode,res] = mosekopt('minimize',prob);

% Display the solution time.
fprintf('Time : %-.2f\n',toc);

try
% x solution:
x = res.sol.itr.xx;

% objective value:
fprintf('Objective value: %-6e\n', 0.5*norm(F*x(1:n)-f)^2);

% Check feasibility.
fprintf('Feasibility : %-6e\n',min(x(1:n)-blx(1:n)));

catch
fprintf('MSKERROR: Could not get solution')

end

% Clear prob.
prob=[];

%
% Next, we solve the dual problem.

% Index of lower bounds that are finite:
lfin = find(blx>-inf);

% Index of upper bounds that are finite:
ufin = find(bux<inf);

prob.qosubi = 1:m;
prob.qosubj = 1:m;
prob.qoval = -ones(m,1);
prob.c = [f;blx(lfin);-bux(ufin)];
prob.a = [F',...

sparse(lfin,(1:length(lfin))',...
ones(length(lfin),1),...
n,length(lfin)),...

sparse(ufin,(1:length(ufin))',...
-ones(length(ufin),1),...
n,length(ufin))];

prob.blc = sparse(n,1);
prob.buc = sparse(n,1);
prob.blx = [-inf*ones(m,1);...

sparse(length(lfin)+length(ufin),1)];
prob.bux = [];

fprintf('\n\nSecond try\n');
tic

48 Chapter 8. Advanced Tutorials

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

[rcode,res] = mosekopt('maximize',prob);

% Display the solution time.
fprintf('Time : %-.2f\n',toc);

try
% x solution:
x = res.sol.itr.y

% objective value:
fprintf('Objective value: %-6e\n',...

0.5*norm(F*x(1:n)-f)^2);

% Check feasibility.
fprintf('Feasibility : %-6e\n',...

min(x(1:n)-blx(1:n)));
catch

fprintf('MSKERROR: Could not get solution')
end

Here is the output produced:

Listing 8.6: Output of nrm5.m.

m=2000 n=400
First try
Time : 2.07
Objective value: 2.257945e+001
Feasibility : 1.466434e-009

Second try
Time : 0.47
Objective value: 2.257945e+001
Feasibility : 2.379134e-009

Both formulations produced a strictly feasible solution having the same objective value. Moreover, using
the dual formulation leads to a reduction in the solution time by about a factor 5: In this case we can
conclude that the dual formulation is far superior to the primal formulation of the problem.

8.1.4 Using Conic Optimization on Linear Least Squares Problems

Linear least squares problems can also be solved using conic optimization because the linear least squares
problem

minimize ‖𝐹𝑥− 𝑓‖2
subject to 𝐴𝑥 = 𝑏,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥

is equivalent to

minimize 𝑡
subject to 𝐴𝑥 = 𝑏,

𝐹𝑥− 𝑧 = 𝑓,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

‖𝑧‖2 ≤ 𝑡.

8.1. Linear Least Squares and Related Norm Minimization Problems 49

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

This problem is a conic quadratic optimization problem having one quadratic cone and the corresponding
dual problem is

maximize 𝑏𝑇 𝑦 + 𝑓𝑇 𝑦 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢
subject to 𝐴𝑇 𝑦 + 𝐹𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0,

−𝑦 + 𝑠𝑧 = 0,
𝑠𝑡 = 1,

‖𝑠𝑧‖ ≤ 𝑠𝑡,
𝑠𝑥𝑙 , 𝑠

𝑥
𝑢 ≥ 0

which can be reduced to

maximize 𝑏𝑇 𝑦 + 𝑓𝑇 𝑠𝑧 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢
subject to 𝐴𝑇 𝑦 − 𝐹𝑇 𝑠𝑧 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0,

𝑠𝑡 = 1,
‖𝑠𝑧‖ ≤ 𝑠𝑡,
𝑠𝑥𝑙 , 𝑠

𝑥
𝑢 ≥ 0.

Often the dual problem has much fewer constraints than the primal problem. In such cases it will be
more efficient to solve the dual problem and obtain the primal solution 𝑥 as the dual solution of the dual
problem.

8.2 Converting a quadratically constrained problem to conic form

MOSEK employs the following form of quadratic problems:

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐𝑘 ≤ 1
2𝑥

𝑇𝑄𝑘𝑥 +
∑︀𝑛−1

𝑗=0 𝑎𝑘,𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1.

(8.10)

A conic quadratic constraint has the form

𝑥 ∈ 𝒬𝑛

in its most basic form where

𝒬𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 : 𝑥1 ≥

⎯⎸⎸⎷ 𝑛∑︁
𝑗=2

𝑥2
𝑗

⎫⎬⎭ .

A quadratic problem such as (8.10), if convex, can be reformulated in conic form. This is in fact the
reformulation MOSEK performs internally. It has many advantages:

• elegant duality theory for conic problems,

• reporting accurate dual information for quadratic inequalities is hard and/or computational ex-
pensive,

• it certifies that the original quadratic problem is indeed convex,

• modelling directly in conic form usually leads to a better model [And13] i.e. a faster solution time
and better numerical properties.

In addition, there are more types of conic constraints that can be combined with a quadratic cone, for
example semidefinite cones.

MOSEK offers a function that performs the conversion from quadratic to conic quadratic form explicitly.
Note that the reformulation is not unique. The approach followed by MOSEK is to introduce additional
variables, linear constraints and quadratic cones to obtain a larger but equivalent problem in which the
original variables are preserved.

In particular:

50 Chapter 8. Advanced Tutorials

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• all variables and constraints are kept in the problem,

• each quadratic constraint and quadratic terms in the objective generate one rotated quadratic cone,

• each quadratic constraint will contain no coefficients and upper/lower bounds will be set to ∞,−∞
respectively.

This allows the user to recover the original variable and constraint values, as well as their dual values,
with no conversion or additional effort.

8.2.1 Quadratic Constraint Reformulation

Let us assume we want to convert the following quadratic constraint

𝑙 ≤ 1

2
𝑥𝑇𝑄𝑥 +

𝑛−1∑︁
𝑗=0

𝑎𝑗𝑥𝑗 ≤ 𝑢

to conic form. We first check whether 𝑙 = −∞ or 𝑢 = ∞, otherwise either the constraint can be dropped,
or the constraint is not convex. Thus let us consider the case

1

2
𝑥𝑇𝑄𝑥 +

𝑛−1∑︁
𝑗=0

𝑎𝑇𝑗 𝑥𝑗 ≤ 𝑢. (8.11)

Introducing an additional variable 𝑤 such that

𝑤 = 𝑢−
𝑛−1∑︁
𝑗=0

𝑎𝑇𝑗 𝑥𝑗 (8.12)

we obtain the equivalent form

1
2𝑥

𝑇𝑄𝑥 ≤ 𝑤,

𝑢−
∑︀𝑛−1

𝑗=0 𝑎𝑗𝑥𝑗 = 𝑤.

If 𝑄 is positive semidefinite, then there exists a matrix 𝐹 such that

𝑄 = 𝐹𝐹𝑇 (8.13)

and therefore we can write

‖𝐹𝑥‖2 ≤ 2𝑤,

𝑢−
∑︀𝑛−1

𝑗=0 𝑎𝑇𝑗 𝑥𝑗 = 𝑤.

Introducing an additional variable 𝑧 = 1, and setting 𝑦 = 𝐹𝑥 we obtain the conic formulation

(𝑤, 𝑧, 𝑦) ∈ 𝒬r ,
𝑧 = 1
𝑦 = 𝐹𝑥
𝑤 = 𝑢− 𝑎𝑇𝑥.

(8.14)

Summarizing, for each quadratic constraint involving 𝑡 variables, MOSEK introduces

1. a rotated quadratic cone of dimension 𝑡 + 2,

2. two additional variables for the cone roots,

3. 𝑡 additional variables to map the remaining part of the cone,

4. 𝑡 linear constraints.

A quadratic term in the objective is reformulated in a similar fashion. We refer to [And13] for a more
thorough discussion.

8.2. Converting a quadratically constrained problem to conic form 51

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Example

Next we consider a simple problem with quadratic objective function:

minimize 1
2 (13𝑥2

0 + 17𝑥2
1 + 12𝑥2

2 + 24𝑥0𝑥1 + 12𝑥1𝑥2 − 4𝑥0𝑥2) − 22𝑥0 − 14.5𝑥1 + 12𝑥2 + 1
subject to −1 ≤ 𝑥0, 𝑥1, 𝑥2 ≤ 1

We can specify it in the human-readable OPF format.

[comment]
An example of small QO problem from Boyd and Vandenberghe, "Convex Optimization", page 189 ex␣
→˓4.3
The solution is (1,0.5,-1)
[/comment]

[variables]
x0 x1 x2
[/variables]

[objective min]
0.5 (13 x0^2 + 17 x1^2 + 12 x2^2 + 24 x0 * x1 + 12 x1 * x2 - 4 x0 * x2) - 22 x0 - 14.5 x1 +␣
→˓12 x2 + 1
[/objective]

[bounds]
[b] -1 <= * <= 1 [/b]
[/bounds]

The objective function is convex, the minimum is attained for 𝑥⋆ = (1, 0.5,−1). The conversion will
introduce first a variable 𝑥3 in the objective function such that 𝑥3 ≥ 1/2𝑥𝑇𝑄𝑥 and then convert the
latter directly in conic form. The converted problem follows:

minimize −22𝑥0 − 14.5𝑥1 + 12𝑥2 + 𝑥3 + 1
subject to 3.61𝑥0 + 3.33𝑥1 − 0.55𝑥2 − 𝑥6 = 0

+2.29𝑥1 + 3.42𝑥2 − 𝑥7 = 0
0.81𝑥1 − 𝑥8 = 0

−𝑥3 + 𝑥4 = 0
𝑥5 = 1

(𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8) ∈ 𝒬∇
−1 ≤ 𝑥0, 𝑥1, 𝑥2 ≤ 1

We obtain the reformulation as follows:

[r, res] = mosekopt('read(quad.opf)')
probQuad = res.prob
[r, res2] = mosekopt('toconic prob', probQuad)
probConic = res2.prob
mosekopt('write(conic.opf)', probConic)

and the output is:

[comment]
Written by MOSEK version 8.1.0.19
Date 21-08-17
Time 10:53:36

[/comment]

[hints]
[hint NUMVAR] 9 [/hint]
[hint NUMCON] 4 [/hint]
[hint NUMANZ] 11 [/hint]
[hint NUMQNZ] 0 [/hint]

52 Chapter 8. Advanced Tutorials

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

[hint NUMCONE] 1 [/hint]
[/hints]

[variables disallow_new_variables]
x0000_x0 x0001_x1 x0002_x2 x0003 x0004
x0005 x0006 x0007 x0008

[/variables]

[objective minimize]
- 2.2e+01 x0000_x0 - 1.45e+01 x0001_x1 + 1.2e+01 x0002_x2 + x0003
+ 1e+00

[/objective]

[constraints]
[con c0000] 3.605551275463989e+00 x0000_x0 - 5.547001962252291e-01 x0002_x2 + 3.

→˓328201177351375e+00 x0001_x1 - x0006 = 0e+00 [/con]
[con c0001] 3.419401657060442e+00 x0002_x2 + 2.294598480395823e+00 x0001_x1 - x0007 = 0e+00␣

→˓[/con]
[con c0002] 8.111071056538127e-01 x0001_x1 - x0008 = 0e+00 [/con]
[con c0003] - x0003 + x0004 = 0e+00 [/con]

[/constraints]

[bounds]
[b] -1e+00 <= x0000_x0,x0001_x1,x0002_x2 <= 1e+00 [/b]
[b] x0003,x0004 free [/b]
[b] x0005 = 1e+00 [/b]
[b] x0006,x0007,x0008 free [/b]
[cone rquad k0000] x0004, x0005, x0006, x0007, x0008 [/cone]

[/bounds]

We can clearly see that constraints c0000, c0001 and c0002 represent the original linear constraints as
in (8.13), while c0003 corresponds to (8.12). The cone roots are x0005 and x0004.

8.2. Converting a quadratically constrained problem to conic form 53

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

54 Chapter 8. Advanced Tutorials

CHAPTER

NINE

CASE STUDIES

In this section we present some case studies in which the Optimization Toolbox for MATLAB is used to
solve real-life applications. These examples involve some more advanced modelling skills and possibly
some input data. The user is strongly recommended to first read the basic tutorials of Sec. 6 before
going through these advanced case studies.

Case Studies Type Int. Keywords
Robust linear optimization CQO NO Robust optimization
Geometric optimization EXPOPT NO Polynomial optimization

9.1 Robust linear Optimization

In most linear optimization examples discussed in this manual it is implicitly assumed that the problem
data, such as 𝑐 and 𝐴, is known with certainty. However, in practice this is seldom the case, e.g. the
data may just be roughly estimated, affected by measurement errors or be affected by random events.

In this section a robust linear optimization methodology is presented which removes the assumption that
the problem data is known exactly. Rather it is assumed that the data belongs to some set, i.e. a box
or an ellipsoid.

The computations are performed using the MOSEK optimization toolbox for MATLAB but could
equally well have been implemented using the MOSEK API.

This section is co-authored with A. Ben-Tal and A. Nemirovski. For further information about robust
linear optimization consult [BTN00] , [BenTalN01] .

9.1.1 Introductory Example

Consider the following toy-sized linear optimization problem: A company produces two kinds of drugs,
DrugI and DrugII, containing a specific active agent A, which is extracted from a raw materials that
should be purchased on the market. The drug production data are as follows:

Selling price $ per 1000 packs 6200 6900
Content of agent A gm per 100 packs 0.500 0.600
Production expenses
$ per 1000 packs
Manpower, hours 90.0 100.0
Equipment, hours 40.0 50.0
Operational cost, $ 700 800

There are two kinds of raw materials, RawI and RawII, which can be used as sources of the active agent.
The related data is as follows:

55

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Raw material Purchasing price, Content of agent A,
RawI 100.00 0.01
RawII 199.90 0.02

Finally, the monthly resources dedicated to producing the drugs are as follows:

Budget,‘ Manpower Equipment Capacity of raw materials
100000 2000 800 1000

The problem is to find the production plan which maximizes the profit of the company, i.e. minimize
the purchasing and operational costs

100 · RawI + 199.90 · RawII + 700 · DrugI + 800 · DrugII

and maximize the income

6200 · DrugI + 6900 · DrugII

The problem can be stated as the following linear programming program:

Minimize

−{100 · RawI + 199.90 · RawII + 700 · DrugI + 800 · DrugII} + {6200 · DrugI + 6900 · DrugII} (9.1)

subject to

0.01 · RawI + 0.02 · RawII− 0.500 · DrugI− 0.600 · DrugII ≥ 0 (𝑎)
RawI + RawII ≤ 1000 (𝑏)

90.0 · DrugI + 100.0 · DrugII ≤ 2000 (𝑐)
40.0 · DrugI + 50.0 · DrugII ≤ 800 (𝑑)

100.0 · RawI + 199.90 · RawII + 700 · DrugI + 800 · DrugII ≤ 100000 (𝑑)
RawI, RawII, DrugI, DrugII ≥ 0 (𝑒)

where the variables are the amounts RawI, RawII (in kg) of raw materials to be purchased and the
amounts DrugI, DrugII (in 1000 of packs) of drugs to be produced. The objective (9.1) denotes the
profit to be maximized, and the inequalities can be interpreted as follows:

• Balance of the active agent.

• Storage restriction.

• Manpower restriction.

• Equipment restriction.

• Ducget restriction.

Listing 9.1 is the MATLAB script which specifies the problem and solves it using the MOSEK opti-
mization toolbox:

Listing 9.1: Script rlo1.m.

function rlo1()

prob.c = [-100;-199.9;6200-700;6900-800];
prob.a = sparse([0.01,0.02,-0.500,-0.600;1,1,0,0;

0,0,90.0,100.0;0,0,40.0,50.0;100.0,199.9,700,800]);
prob.blc = [0;-inf;-inf;-inf;-inf];
prob.buc = [inf;1000;2000;800;100000];
prob.blx = [0;0;0;0];
prob.bux = [inf;inf;inf;inf];
[r,res] = mosekopt('maximize',prob);

56 Chapter 9. Case Studies

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

xx = res.sol.itr.xx;
RawI = xx(1);
RawII = xx(2);
DrugI = xx(3);
DrugII = xx(4);

disp(sprintf('*** Optimal value: %8.3f',prob.c'*xx));
disp('*** Optimal solution:');
disp(sprintf('RawI: %8.3f',RawI));
disp(sprintf('RawII: %8.3f',RawII));
disp(sprintf('DrugI: %8.3f',DrugI));
disp(sprintf('DrugII: %8.3f',DrugII));

When executing this script, the following is displayed:

Listing 9.2: Output of script rlo1.m

*** Optimal value: 8819.658
*** Optimal solution:
RawI: 0.000
RawII: 438.789
DrugI: 17.552
DrugII: 0.000

We see that the optimal solution promises the company a modest but quite respectful profit of 8.8%.
Please note that at the optimal solution the balance constraint is active: the production process utilizes
the full amount of the active agent contained in the raw materials.

9.1.2 Data Uncertainty and its Consequences.

Please note that not all problem data can be regarded as absolutely reliable; e.g. one can hardly believe
that the contents of the active agent in the raw materials are exactly the nominal data 0.01 gm/kg for RawI
and 0.02 gm/kg for RawII. In reality, these contents definitely vary around the indicated values. A natural
assumption here is that the actual contents of the active agent 𝑎𝑖 in RawI and 𝑎𝐼𝐼 in RawII are realizations
of random variables somehow distributed around the nominal contents 𝑎n𝑖 = 0.01 and 𝑎n𝐼𝐼 = 0.02. To
be more specific, assume that 𝑎𝑖 drifts in the 0.5% margin of 𝑎n𝑖 , i.e. it takes with probability 0.5 the
values from the interval 𝑎n𝑖 (1 ± 0.005) = 𝑎n𝑖 {0.00995; 0.01005}. Similarly, assume that 𝑎𝐼𝐼 drifts in the
2% margin of 𝑎n𝐼𝐼 , taking with probabilities 0.5 the values 𝑎n𝐼𝐼(1 ± 0.02) = 𝑎n𝑖 {0.0196; 0.0204}. How do
the perturbations of the contents of the active agent affect the production process?

The optimal solution prescribes to purchase 438.8 kg of RawII and to produce 17552 packs of DrugI.
With the above random fluctuations in the content of the active agent in RawII, this production plan,
with probability 0.5, will be infeasible – with this probability, the actual content of the active agent in
the raw materials will be less than required to produce the planned amount of DrugI. For the sake of
simplicity, assume that this difficulty is resolved in the simplest way: when the actual content of the
active agent in the raw materials is insufficient, the output of the drug is reduced accordingly. With this
policy, the actual production of DrugI becomes a random variable which takes, with probabilities 0.5,
the nominal value of 17552 packs and the 2% less value of 17201 packs. These 2% fluctuations in the
production affect the profit as well; the latter becomes a random variable taking, with probabilities 0.5,
the nominal value 8,820 and the 21% less value 6,929. The expected profit is 7,843, which is by 11% less
than the nominal profit 8,820 promised by the optimal solution of the problem.

We see that in our toy example that small (and in reality unavoidable) perturbations of the data may
make the optimal solution infeasible, and a straightforward adjustment to the actual solution values may
heavily affect the solution quality.

It turns out that the outlined phenomenon is found in many linear programs of practical origin. Usually, in
these programs at least part of the data is not known exactly and can vary around its nominal values, and
these data perturbations can make the nominal optimal solution – the one corresponding to the nominal
data – infeasible. It turns out that the consequences of data uncertainty can be much more severe than

9.1. Robust linear Optimization 57

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

in our toy example. The analysis of linear optimization problems from the NETLIB collection1 reported
in [BTN00] demonstrates that for 13 of 94 NETLIB problems, already 0.01% perturbations of “clearly
uncertain” data can make the nominal optimal solution severely infeasible: with these perturbations, the
solution, with a non-negligible probability, violates some of the constraints by 50% and more. It should
be added that in the general case, in contrast to the toy example we have considered, there is no evident
way to adjust the optimal solution by a small modification to the actual values of the data. Moreover
there are cases when such an adjustment is impossible — in order to become feasible for the perturbed
data, the nominal optimal solution should be completely reshaped.

9.1.3 Robust Linear Optimization Methodology

A natural approach to handling data uncertainty in optimization is offered by the Robust Optimization
Methodology which, as applied to linear optimization, is as follows.

Uncertain Linear Programs and their Robust Counterparts.

Consider a linear optimization problem

minimize 𝑐𝑇𝑥
subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,
(9.2)

with the data (𝑐, 𝐴, 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥), and assume that this data is not known exactly; all we know is that
the data varies in a given uncertainty set 𝒰 . The simplest example is the one of interval uncertainty,
where every data entry can run through a given interval:

𝒰 = {(𝑐, 𝐴, 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥) :
(𝑐n − 𝑑𝑐,𝐴n − 𝑑𝐴, 𝑙n𝑐 − 𝑑𝑙𝑐, 𝑢

n
𝑐 − 𝑑𝑢𝑐, 𝑙

n
𝑥 − 𝑑𝑙𝑥, 𝑢

n
𝑥 − 𝑑𝑢𝑥) ≤ (𝑐, 𝐴, 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥)

≤ (𝑐n + 𝑑𝑐,𝐴n + 𝑑𝐴, 𝑙n𝑐 + 𝑑𝑙𝑐, 𝑢
n
𝑐 + 𝑑𝑢𝑐, 𝑙

n
𝑥 + 𝑑𝑙𝑥, 𝑢

n
𝑥 + 𝑑𝑢𝑥)}.

(9.3)

Here

(𝑐n, 𝐴n, 𝑙n𝑐 , 𝑢
n
𝑐 , 𝑙

n
𝑥 , 𝑢

n
𝑥)

is the nominal data,

𝑑𝑐, 𝑑𝐴, 𝑑𝑙𝑐, 𝑑𝑢𝑐, 𝑑𝑙𝑥, 𝑑𝑢𝑥 ≥ 0

is the data perturbation bounds. Please note that some of the entries in the data perturbation bounds
can be zero, meaning that the corresponding data entries are certain (the expected values equals the
actual values).

• The family of instances (9.2) with data running through a given uncertainty set 𝒰 is called an
uncertain linear optimization problem.

• Vector 𝑥 is called a robust feasible solution to an uncertain linear optimization problem, if it remains
feasible for all realizations of the data from the uncertainty set, i.e. if

𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐, 𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥

for all

(𝑐, 𝐴, 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥) ∈ 𝒰 .

• If for some value 𝑡 we have 𝑐𝑇𝑥 ≤ 𝑡 for all realizations of the objective from the uncertainty set,
we say that robust value of the objective at 𝑥 does not exceed 𝑡.

1 NETLIB is a collection of LP’s, mainly of the real world origin, which is a standard benchmark for evaluating LP
algorithms

58 Chapter 9. Case Studies

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

The Robust Optimization methodology proposes to associate with an uncertain linear program its robust
counterpart (RC) which is the problem of minimizing the robust optimal value over the set of all robust
feasible solutions, i.e. the problem

min
𝑡,𝑥

{︀
𝑡 : 𝑐𝑇𝑥 ≤ 𝑡, 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐, 𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥∀(𝑐, 𝐴, 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥) ∈ 𝒰

}︀
. (9.4)

The optimal solution to (9.4) is treated as the uncertainty-immuned solution to the original uncertain
linear programming program.

Robust Counterpart of an Uncertain Linear Optimization Problem with Interval Uncertainty

In general, the RC (9.4) of an uncertain linear optimization problem is not a linear optimization problem
since (9.4) has infinitely many linear constraints. There are, however, cases when (9.4) can be rewritten
equivalently as a linear programming program; in particular, this is the case for interval uncertainty
(9.3). Specifically, in the case of (9.3), the robust counterpart of uncertain linear program is equivalent
to the following linear program in variables 𝑥, 𝑦, 𝑡:

minimize 𝑡
subject to (𝑐n)𝑇𝑥 + (𝑑𝑐)𝑇 𝑦 − 𝑡 ≤ 0, (𝑎)

𝑙n𝑐 + 𝑑𝑙𝑐 ≤ (𝐴n)𝑥− (𝑑𝐴)𝑦, (𝑏)
(𝐴n)𝑥 + (𝑑𝐴)𝑦 ≤ 𝑢n

𝑐 − 𝑑𝑢𝑐, (𝑐)
0 ≤ 𝑥 + 𝑦, (𝑑)
0 ≤ −𝑥 + 𝑦, (𝑒)

𝑙n𝑥 + 𝑑𝑙𝑥 ≤ 𝑥 ≤ 𝑢n
𝑥 − 𝑑𝑢𝑥, (𝑓)

(9.5)

The origin of (9.5) is quite transparent: The constraints 𝑑 − 𝑒 in (9.5) linking 𝑥 and 𝑦 merely say that
𝑦𝑖 ≥ |𝑥𝑖| for all 𝑖. With this in mind, it is evident that at every feasible solution to (9.5) the entries in
the vector

(𝐴n)𝑥− (𝑑𝐴)𝑦

are lower bounds on the entries of 𝐴𝑥 with 𝐴 from the uncertainty set (9.3), so that (𝑏) in (9.5) ensures
that 𝑙𝑐 ≤ 𝐴𝑥 for all data from the uncertainty set. Similarly, (𝑐), (𝑎) ans 𝑓 in (9.5) ensure, for all data
from the uncertainty set, that 𝐴𝑥 ≤ 𝑢𝑐, 𝑐𝑇𝑥 ≤ 𝑡, and that the entries in 𝑥 satisfy the required lower and
upper bounds, respectively.

Please note that at the optimal solution to (9.5), one clearly has 𝑦𝑗 = |𝑥𝑗 |. It follows that when the
bounds on the entries of 𝑥 impose nonnegativity (nonpositivity) of an entry 𝑥𝑗 , then there is no need to
introduce the corresponding additional variable 𝑦𝑖 — from the very beginning it can be replaced with
𝑥𝑗 , if 𝑥𝑗 is nonnegative, or with −𝑥𝑗 , if 𝑥𝑗 is nonpositive.

Another possible formulation of problem (9.5) is the following. Let

𝑙n𝑐 + 𝑑𝑙𝑐 = (𝐴n)𝑥− (𝑑𝐴)𝑦 − 𝑓, 𝑓 ≥ 0

then this equation is equivalent to (𝑎) − (𝑏) in (9.5). If (𝑙𝑐)𝑖 = −∞, then equation 𝑖 should be dropped
from the computations. Similarly,

−𝑥 + 𝑦 = 𝑔 ≥ 0

is equivalent to (𝑑) in (9.5). This implies that

𝑙n𝑐 + 𝑑𝑙𝑐 − (𝐴n)𝑥 + 𝑓 = −(𝑑𝐴)𝑦

and that

𝑦 = 𝑔 + 𝑥

9.1. Robust linear Optimization 59

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Substituting these values into (9.5) gives

minimize 𝑡
subject to (𝑐n)𝑇𝑥 + (𝑑𝑐)𝑇 (𝑔 + 𝑥) − 𝑡 ≤ 0,

0 ≤ 𝑓,
2(𝐴n)𝑥 + (𝑑𝐴)(𝑔 + 𝑥) + 𝑓 + 𝑙n𝑐 + 𝑑𝑙𝑐 ≤ 𝑢n

𝑐 − 𝑑𝑢𝑐,
0 ≤ 𝑔,
0 ≤ 2𝑥 + 𝑔,

𝑙n𝑥 + 𝑑𝑙𝑥 ≤ 𝑥 ≤ 𝑢n
𝑥 − 𝑑𝑢𝑥,

which after some simplifications leads to

minimize 𝑡
subject to (𝑐n + 𝑑𝑐)𝑇𝑥 + (𝑑𝑐)𝑇 𝑔 − 𝑡 ≤ 0, (𝑎)

0 ≤ 𝑓, (𝑏)
2(𝐴n + 𝑑𝐴)𝑥 + (𝑑𝐴)𝑔 + 𝑓 − (𝑙n𝑐 + 𝑑𝑙𝑐) ≤ 𝑢n

𝑐 − 𝑑𝑢𝑐, (𝑐)
0 ≤ 𝑔, (𝑑)
0 ≤ 2𝑥 + 𝑔, (𝑒)

𝑙n𝑥 + 𝑑𝑙𝑥 ≤ 𝑥 ≤ 𝑢n
𝑥 − 𝑑𝑢𝑥, (𝑓)

and

minimize 𝑡
subject to (𝑐n + 𝑑𝑐)𝑇𝑥 + (𝑑𝑐)𝑇 𝑔 − 𝑡 ≤ 0, (𝑎)

2(𝐴n + 𝑑𝐴)𝑥 + (𝑑𝐴)𝑔 + 𝑓 ≤ 𝑢n
𝑐 − 𝑑𝑢𝑐 + 𝑙n𝑐 + 𝑑𝑙𝑐, (𝑏)

0 ≤ 2𝑥 + 𝑔, (𝑐)
0 ≤ 𝑓, (𝑑)
0 ≤ 𝑔, (𝑒)

𝑙n𝑥 + 𝑑𝑙𝑥 ≤ 𝑥 ≤ 𝑢n
𝑥 − 𝑑𝑢𝑥. (𝑓)

(9.6)

Please note that this problem has more variables but much fewer constraints than (9.5). Therefore, (9.6)
is likely to be solved faster than (9.5). Note too that (9.6).𝑏 is trivially redundant if 𝑙n𝑥 + 𝑑𝑙𝑥 ≥ 0.

Introductory Example (continued)

Let us apply the Robust Optimization methodology to our drug production example presented in Sec.
9.1.1, assuming that the only uncertain data is the contents of the active agent in the raw materials,
and that these contents vary in 0.5% and 2% neighborhoods of the respective nominal values 0.01 and
0.02. With this assumption, the problem becomes an uncertain LP affected by interval uncertainty; the
robust counterpart (9.5) of this uncertain LP is the linear program

(Drug_RC) :
maximize
𝑡
subject to
𝑡 ≤ −100 · RawI− 199.9 · RawII + 5500 · DrugI + 6100 · DrugII
0.01 · 0.995 · RawI + 0.02 · 0.98 · RawII− 0.500 · DrugI− 0.600 · DrugII ≥ 0
RawI + RawII ≤ 1000
90.0 · DrugI + 100.0 · DrugII ≤ 2000
40.0 · DrugI + 50.0 · DrugII ≤ 800
100.0 · RawI + 199.90 · RawII + 700 · DrugI + 800 · DrugII ≤ 100000
RawI, RawII, DrugI, DrugII ≥ 0

(9.7)

Solving this problem with MOSEK we get the following output:

Listing 9.3: Output solving problem (9.7).

*** Optimal value: 8294.567
*** Optimal solution:
RawI: 877.732

60 Chapter 9. Case Studies

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

RawII: 0.000
DrugI: 17.467
DrugII: 0.000

We see that the robust optimal solution we have built costs money – it promises a profit of just 8, 295
(cf. with the profit of 8, 820 promised by the nominal optimal solution). Please note, however, that the
robust optimal solution remains feasible whatever are the realizations of the uncertain data from the
uncertainty set in question, while the nominal optimal solution requires adjustment to this data and,
with this adjustment, results in the average profit of 7, 843, which is by 5.4% less than the profit of ‘ 8,295
guaranteed by the robust optimal solution. Note too that the robust optimal solution is significantly
different from the nominal one: both solutions prescribe to produce the same drug DrugI (in the amounts
17, 467 and 17, 552 packs, respectively) but from different raw materials, RawI in the case of the robust
solution and RawII in the case of the nominal solution. The reason is that although the price per unit
of the active agent for RawII is sligthly less than for RawI, the content of the agent in RawI is more
stable, so when possible fluctuations of the contents are taken into account, RawI turns out to be more
profitable than RawII.

9.1.4 Random Uncertainty and Ellipsoidal Robust Counterpart

In some cases, it is natural to assume that the perturbations affecting different uncertain data entries
are random and independent of each other. In these cases, the robust counterpart based on the interval
model of uncertainty seems to be too conservative: Why should we expect that all the data will be
simultaneously driven to its most unfavorable values and immune the solution against this highly unlikely
situation? A less conservative approach is offered by the ellipsoidal model of uncertainty. To motivate
this model, let us seseee what happens with a particular linear constraint

𝑎𝑇𝑥 ≤ 𝑏 (9.8)

at a given candidate solution 𝑥 in the case when the vector 𝑎 of coefficients of the constraint is affected
by random perturbations:

𝑎 = 𝑎n + 𝜁, (9.9)

where 𝑎n is the vector of nominal coefficients and 𝜁 is a random perturbation vector with zero mean
and covariance matrix 𝑉𝑎. In this case the value of the left-hand side of (9.8), evaluated at a given 𝑥,
becomes a random variable with the expected value (𝑎n)𝑇𝑥 and the standard deviation

√︀
𝑥𝑇𝑉𝑎𝑥. Now

let us act as an engineer who believes that the value of a random variable never exceeds its mean plus
3 times the standard deviation; we do not intend to be that specific and replace 3 in the above rule by
a safety parameter Ω which will be in our control. Believing that the value of a random variable never
exceeds its mean plus Ω times the standard deviation, we conclude that a safe version of (9.8) is the
inequality

(𝑎n)𝑇𝑥 + Ω
√︀
𝑥𝑇𝑉𝑎𝑥 ≤ 𝑏. (9.10)

The word safe above admits a quantitative interpretation: If 𝑥 satisfies (9.10), one can bound from
above the probability of the event that random perturbations (9.9) result in violating the constraint
(9.8) evaluated at 𝑥. The bound in question depends on what we know about the distribution of 𝜁, e.g.

• We always have the bound given by the Tschebyshev inequality: 𝑥 satisfies (9.10) ⇒

Prob
{︀
𝑎𝑇𝑥 > 𝑏

}︀
≤ 1

Ω2
.

• When 𝜁 is Gaussian, then the Tschebyshev bound can be improved to: 𝑥 satisfies (9.10) ⇒

Prob
{︀
𝑎𝑇𝑥 > 𝑏

}︀
≤ 1√

2𝜋

∫︁ ∞

Ω

exp{−𝑡2/2}𝑑𝑡 ≤ 0.5 exp{−Ω2/2}. (9.11)

9.1. Robust linear Optimization 61

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• Assume that 𝜁 = 𝐷𝜉, where ∆ is certain 𝑛×𝑚 matrix, and 𝜉 = (𝜉1, . . . , 𝜉𝑚)𝑇 is a random vector
with independent coordinates 𝜉1, . . . , 𝜉𝑚 symmetrically distributed in the segment [−1, 1]. Setting
𝑉 = 𝐷𝐷𝑇 (V is a natural upper bound on the covariance matrix of 𝜁), one has: 𝑥 satisfies (9.10)
implies

Prob
{︀
𝑎𝑇𝑥 > 𝑏

}︀
≤ 0.5 exp{−Ω2/2}. (9.12)

Please note that in order to ensure the bounds in (9.11) and (9.12)) to be ≤ 10−6, it suffices to set
Ω = 5.13.

Now, assume that we are given a linear program affected by random perturbations:

minimize [𝑐n + 𝑑𝑐]𝑇𝑥
subject to (𝑙𝑐)𝑖 ≤ [𝑎n𝑖 + 𝑑𝑎𝑖]

𝑇𝑥 ≤ (𝑢𝑐)𝑖, 𝑖 = 1, . . . ,𝑚,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

(9.13)

where (𝑐n, {𝑎n𝑖 }𝑚𝑖=1, 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥) are the nominal data, and 𝑑𝑐, 𝑑𝑎𝑖 are random perturbations with zero
means3. Assume, for the sake of definiteness, that every one of the random perturbations 𝑑𝑐, 𝑑𝑎1, . . . , 𝑑𝑎𝑚
satisfies either the assumption of item 2 or the assumption of item 3, and let 𝑉𝑐, 𝑉1, . . . , 𝑉𝑚 be the corre-
sponding (upper bounds on the) covariance matrices of the perturbations. Choosing a safety parameter
Ω and replacing the objective and the bodies of all the constraints by their safe bounds as explained
above, we arrive at the following optimization problem:

minimize 𝑡

subject to [𝑐n]𝑇𝑥 + Ω
√︀
𝑥𝑇𝑉𝑐𝑥 ≤ 𝑡,

(𝑙𝑐)𝑖 ≤ [𝑎n𝑖]𝑇𝑥− Ω
√︀
𝑥𝑇𝑉𝑎𝑖

𝑥,

[𝑎n𝑖]𝑇𝑥 + Ω
√︀
𝑥𝑇𝑉𝑎𝑖

𝑥 ≤ (𝑢𝑐)𝑖, 𝑖 = 1, . . . ,𝑚,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

(9.14)

The relation between problems (9.14) and (9.13) is as follows:

• If (𝑥, 𝑡) is a feasible solution of (9.14), then with probability at least

𝑝 = 1 − (𝑚 + 1) exp{−Ω2/2}

x is feasible for randomly perturbed problem (9.13), and 𝑡 is an upper bound on the objective of (9.13)
evaluated at 𝑥.

• We see that if Ω is not too small (9.14) can be treated as a “safe version” of (9.13).

On the other hand, it is easily seen that (9.14) is nothing but the robust counterpart of the uncertain
linear optimization problem with the nominal data (𝑐n, {𝑎n𝑖 }𝑚𝑖=1, 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥) and the row-wise ellipsoidal
uncertainty given by the matrices 𝑉𝑐, 𝑉𝑎1

, . . . , 𝑉𝑎𝑚
. In the corresponding uncertainty set, the uncertainty

affects the coefficients of the objective and the constraint matrix only, and the perturbation vectors
affecting the objective and the vectors of coefficients of the linear constraints run, independently of each
other, through the respective ellipsoids

𝐸𝑐 ={︁
𝑑𝑐 = Ω𝑉

1/2
𝑐 𝑢 : 𝑢𝑇𝑢 ≤ 1

}︁
𝐸𝑎𝑖 ={︁

𝑑𝑎𝑖 = Ω𝑉
1/2
𝑎𝑖 𝑢 : 𝑢𝑇𝑢 ≤ 1

}︁
, 𝑖 = 1, . . . ,𝑚.

It turns out that in many cases the ellipsoidal model of uncertainty is significantly less conservative and
thus better suited for practice, than the interval model of uncertainty.

3 For the sake of simplicity, we assume that the bounds 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥 are not affected by uncertainty; extensions to the
case when it is not so are evident.

62 Chapter 9. Case Studies

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Last but not least, it should be mentioned that problem (9.14) is equivalent to a conic quadratic program,
specifically to the program

minimize 𝑡
subject to [𝑐n]𝑇𝑥 + Ω𝑧 ≤ 𝑡,

(𝑙𝑐)𝑖 ≤ [𝑎n𝑖]𝑇𝑥− Ω𝑧𝑖,
[𝑎n𝑖]𝑇𝑥 + Ω𝑧𝑖 ≤ (𝑢𝑐)𝑖, 𝑖 = 1, . . . ,𝑚,

0 = 𝑤 −𝐷𝑐𝑥
0 = 𝑤𝑖 −𝐷𝑎𝑖

𝑥, 𝑖 = 1, . . . ,𝑚,

0 ≤ 𝑧 −
√
𝑤𝑇𝑤,

0 ≤ 𝑧𝑖 −
√︀

(𝑤𝑖)𝑇𝑤𝑖, 𝑖 = 1, . . . ,𝑚,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

where 𝐷𝑐 and 𝐷𝑎𝑖
are matrices satisfying the relations

𝑉𝑐 = 𝐷𝑇
𝑐 𝐷𝑐, 𝑉𝑎𝑖

= 𝐷𝑇
𝑎𝑖
𝐷𝑎𝑖

, 𝑖 = 1, . . . ,𝑚.

Example: Interval and Ellipsoidal Robust Counterparts of Uncertain Linear Constraint with Indepen-
dent Random Perturbations of Coefficients

Consider a linear constraint

𝑙 ≤
𝑛∑︁

𝑗=1

𝑎𝑗𝑥𝑗 ≤ 𝑢 (9.15)

and assume that the 𝑎𝑗 coefficients of the body of the constraint are uncertain and vary in intervals
𝑎n𝑗 ± 𝜎𝑗 . The worst-case_oriented model of uncertainty here is the interval one, and the corresponding
robust counterpart of the constraint is given by the system of linear inequalities

𝑙 ≤
∑︀𝑛

𝑗=1 𝑎
n
𝑗 𝑥𝑗 −

∑︀𝑛
𝑗=1 𝜎𝑗𝑦𝑗 ,∑︀𝑛

𝑗=1 𝑎
n
𝑗 𝑥𝑗 +

∑︀𝑛
𝑗=1 𝜎𝑗𝑦𝑗 ≤ 𝑢,

0 ≤ 𝑥𝑗 + 𝑦𝑗 ,
0 ≤ −𝑥𝑗 + 𝑦𝑗 , 𝑗 = 1, . . . , 𝑛.

(9.16)

Now, assume that we have reasons to believe that the true values of the coefficients 𝑎𝑗 are obtained
from their nominal values 𝑎n𝑗 by random perturbations, independent for different 𝑗 and symmetrically
distributed in the segments [-sigma_j,sigma_j]. With this assumption, we are in the situation of item 3
and can replace the uncertain constraint (9.15) with its ellipsoidal robust counterpart

𝑙 ≤
∑︀𝑛

𝑗=1 𝑎
n
𝑗 𝑥𝑗 − Ω𝑧,∑︀𝑛

𝑗=1 𝑎
n
𝑗 𝑥𝑗 + Ω𝑧 ≤ 𝑢,

0 ≤ 𝑧 −
√︁∑︀𝑛

𝑗=1 𝜎
2
𝑗𝑥

2
𝑗 .

(9.17)

Please note that with the model of random perturbations, a vector 𝑥 satisfying (9.17) satisfies a realization
of (9.15) with probability at least 1 − exp{Ω2/2}; for Ω = 6. This probability is ≥ 1 − 1.5 · 10−8, which
for all practical purposes is the same as sayiong that 𝑥 satisfies all realizations of (9.15). On the other
hand, the uncertainty set associated with (9.16) is the box

𝐵 =
{︀
𝑎 = (𝑎1, . . . , 𝑎𝑛)𝑇 : 𝑎n𝑗 − 𝜎𝑗 ≤ 𝑎𝑗 ≤ 𝑎n𝑗 + 𝜎𝑗 , 𝑗 = 1, . . . , 𝑛

}︀
,

while the uncertainty set associated with (9.17) is the ellipsoid

𝐸(Ω) =

⎧⎨⎩𝑎 = (𝑎1, . . . , 𝑎𝑛)𝑇 :

𝑛∑︁
𝑗=1

(𝑎𝑗 − 𝑎n𝑗)
2

𝜎2
𝑗 ≤ Ω2

⎫⎬⎭ .

For a moderate value of Ω, say Ω = 6, and 𝑛 ≥ 40, the ellipsoid 𝐸(Ω) in its diameter, typical linear
sizes, volume, etc. is incomparably less than the box 𝐵, the difference becoming more dramatic the
larger the dimension 𝑛 of the box and the ellipsoid. It follows that the ellipsoidal robust counterpart

9.1. Robust linear Optimization 63

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

(9.17) of the randomly perturbed uncertain constraint (9.15) is much less conservative than the interval
robust counterpart (9.16), while ensuring basically the same “robustness guarantees”. To illustrate this
important point, consider the following numerical examples:

There are 𝑛 different assets on the market. The return on 1 invested in asset 𝑗 is a random variable
distributed symmetrically in the segment [𝛿𝑗 − 𝜎𝑗 , 𝛿𝑗 + 𝜎𝑗], and the returns on different assets are in-
dependent of each other. The problem is to distribute ‘ 1 among the assets in order to get the largest
possible total return on the resulting portfolio.

A natural model of the problem is an uncertain linear optimization problem

maximize
∑︀𝑛

𝑗=1 𝑎𝑗𝑥𝑗

subject to
∑︀𝑛

𝑗=1 𝑥𝑗 = 1,

0 ≤ 𝑥𝑗 , 𝑗 = 1, . . . , 𝑛.

where 𝑎𝑗 are the uncertain returns of the assets. Both the nominal optimal solution (set all returns 𝑎𝑗
equal to their nominal values 𝛿𝑗) and the risk-neutral Stochastic Programming approach (maximize the
expected total return) result in the same solution: Our money should be invested in the most promising
asset(s) – the one(s) with the maximal nominal return. This solution, however, can be very unreliable
if, as is typically the case in reality, the most promising asset has the largest volatility 𝜎 and is in this
sense the most risky. To reduce the risk, one can use the Robust Counterpart approach which results in
the following optimization problems.

The Interval Model of Uncertainty:

maximize 𝑡
subject to 0 ≤ −𝑡 +

∑︀𝑛
𝑗=1(𝛿𝑗 − 𝜎𝑗)𝑥𝑗 ,∑︀𝑛

𝑗=1 𝑥𝑗 = 1,

0 ≤ 𝑥𝑗 , 𝑗 = 1, . . . , 𝑛

(9.18)

and

The ellipsoidal Model of Uncertainty:}

maximize 𝑡
subject to 0 ≤ −𝑡 +

∑︀𝑛
𝑗=1(𝛿𝑗)𝑥𝑗 − Ω𝑧,

0 ≤ 𝑧 −
√︁∑︀𝑛

𝑗=1 𝜎
2
𝑗𝑥

2
𝑗 ,∑︀𝑛

𝑗=1 𝑥𝑗 = 1,

0 ≤ 𝑥𝑗 , 𝑗 = 1, . . . , 𝑛.

(9.19)

Note that the problem (9.19) is essentially the risk-averted portfolio model proposed in mid-50’s by
Markowitz.

The solution of (9.18) is evident — our ‘1 should be invested in the asset(s) with the largest possible
guaranteed return 𝛿𝑗−𝜎𝑗 . In contrast to this very conservative policy (which in reality prescribes to keep
the initial capital in a bank or in the most reliable, and thus low profit, assets), the optimal solution to
(9.19) prescribes a quite reasonable diversification of investments which allows to get much better total
return than (9.18) with basically zero risk2. To illustrate this, assume that there are 𝑛 = 300 assets with
the nominal returns (per year) varying from 1.04 (bank savings) to 2.00:

𝛿𝑗 = 1.04 + 0.96
𝑗 − 1

𝑛− 1
, 𝑗 = 1, 2, . . . , 𝑛 = 300

2 Recall that in our discussion we have assumed the returns on different assets to be independent of each other. In
reality, this is not so and this is why diversification of investments, although reducing the risk, never eliminates it completely

64 Chapter 9. Case Studies

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

and volatilities varying from 0 for the bank savings to 1.2 for the most promising asset:

𝜎𝑗 = 1.152
𝑗 − 1

𝑛− 1
, 𝑗 = 1, . . . , 𝑛 = 300.

In Listing 9.4 a MATLAB script which builds the associated problem (9.19), solves it via the MOSEK
optimization toolbox, displays the resulting robust optimal value of the total return and the distribu-
tion of investments, and finally runs 10,000 simulations to get the distribution of the total return on
the resulting portfolio (in these simulations, the returns on all assets are uniformly distributed in the
corresponding intervals) is presented.

Listing 9.4: Script that implements problem (9.19).

function rlo2(n, Omega, draw)

n = str2num(n)
Omega = str2num(Omega)
draw

% Set nominal returns and volatilities
delta = (0.96/(n-1))*[0:1:n-1]+1.04;
sigma = (1.152/(n-1))*[0:1:n-1];

% Set mosekopt description of the problem
prob.c = -[1;zeros(2*n+1,1)];
A = [-1,ones(1,n)+delta,-Omega,zeros(1,n);zeros(n+1,2*n+2)];
for j=1:n,

% Body of the constraint y(j) - sigma(j)*x(j) = 0:
A(j+1,j+1) = -sigma(j);
A(j+1,2+n+j) = 1;

end;
A(n+2,2:n+1) = ones(1,n);
prob.a = sparse(A);
prob.blc = [zeros(n+1,1);1];
prob.buc = [inf;zeros(n,1);1];
prob.blx = [-inf;zeros(n,1);0;zeros(n,1)];
prob.bux = inf*ones(2*n+2,1);
prob.cones = cell(1,1);
prob.cones{1}.type = 'MSK_CT_QUAD';
prob.cones{1}.sub = [n+2;[n+3:1:2*n+2]'];

% Run mosekopt
[r,res]=mosekopt('minimize echo(1)',prob);

if draw == true
% Display the solution
xx = res.sol.itr.xx;
t = xx(1);

disp(sprintf('Robust optimal value: %5.4f',t));
x = max(xx(2:1+n),zeros(n,1));
plot([1:1:n],x,'-m');
grid on;

disp('Press <Enter> to run simulations');
pause

% Run simulations

Nsim = 10000;
out = zeros(Nsim,1);
for i=1:Nsim,

returns = delta+(2*rand(1,n)-1).*sigma;
out(i) = returns*x;

9.1. Robust linear Optimization 65

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

end;
disp(sprintf('Actual returns over %d simulations:',Nsim));
disp(sprintf('Min=%5.4f Mean=%5.4f Max=%5.4f StD=%5.2f',...

min(out),mean(out),max(out),std(out)));
hist(out);

end

Here are the results displayed by the script:

Listing 9.5: Output of script rlo2.m.

Robust optimal value: 1.3428
Actual returns over 10000 simulations:
Min=1.5724 Mean=1.6965 Max=1.8245 StD= 0.03

Fig. 9.1: Distribution of investments among the assets in the optimal solution of.

Please note that with our set-up there is exactly one asset with guaranteed return greater than 1 – asset
1 (bank savings, return 1.04, zero volatility). Consequently, the interval robust counterpart (9.18)
prescribes to put our ‘ #1 in the bank, thus getting a 4% profit. In contrast to this, the diversified
portfolio given by the optimal solution of (9.19) never yields profit less than 57.2%, and yields at average
a 69.67% profit with pretty low (0.03) standard deviation. We see that in favorable circumstances the
ellipsoidal robust counterpart of an uncertain linear program indeed is less conservative than, although
basically as reliable as, the interval robust counterpart.

Finally, let us compare our results with those given by the nominal optimal solution. The latter prescribes
to invest everything we have in the most promising asset (in our example this is the asset # 300 with a
nominal return of 2.00 and volatility of 1.152). Assuming that the actual return is uniformly distributed
in the corresponding interval and running 10,000 simulations, we get the following results:

66 Chapter 9. Case Studies

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Nominal optimal value: 2.0000
Actual returns over 10000 simulations:
Min=0.8483 Mean=1.9918 Max=3.1519 StD= 0.66

We see that the nominal solution results in a portfolio which is much more risky, although better at
average, than the portfolio given by the robust solution.

Combined Interval-Ellipsoidal Robust Counterpart

We have considered the case when the coefficients 𝑎𝑗 of uncertain linear constraint (9.15) are affected by
uncorrelated random perturbations symmetrically distributed in given intervals [−𝜎𝑗 , 𝜎𝑗], and we have
discussed two ways to model the uncertainty:

• The interval uncertainty model (the uncertainty set 𝒰 is the box 𝐵), where we ignore the stochas-
tic nature of the perturbations and their independence. This model yields the Interval Robust
Counterpart (9.16);

• The ellipsoidal uncertainty model (𝒰 is the ellipsoid 𝐸(Ω)), which takes into account the stochastic
nature of data perturbations and yields the Ellipsoidal Robust Counterpart (9.17).

Please note that although for large 𝑛 the ellipsoid 𝐸(Ω) in its diameter, volume and average linear sizes
is incomparably smaller than the box 𝐵, in the case of Ω > 1 the ellipsoid 𝐸(Ω) in certain directions goes
beyond the box. E.g. the ellipsoid 𝐸(6), although much more narrow than 𝐵 in most of the directions,
is 6 times wider than 𝐵 in the directions of the coordinate axes. Intuition says that it hardly makes
sense to keep in the uncertainty set realizations of the data which are outside of 𝐵 and thus forbidden
by our model of perturbations, so in the situation under consideration the intersection of 𝐸(Ω) and 𝐵 is
a better model of the uncertainty set than the ellipsoid 𝐸(Ω) itself. What happens when the model of
the uncertainty set is the combined interval-ellipsoidal uncertainty 𝒰(Ω) = 𝐸(Ω) ∩𝐵?

First, it turns out that the RC of (9.15) corresponding to the uncertainty set 𝒰(Ω) is still given by a
system of linear and conic quadratic inequalities, specifically the system

𝑙 ≤
∑︀𝑛

𝑗=1 𝑎
n
𝑗 𝑥𝑗 −

∑︀𝑛
𝑗=1 𝜎𝑗𝑦𝑗 − Ω

√︁∑︀𝑛
𝑗=1 𝜎

2
𝑗𝑢

2
𝑗 ,∑︀𝑛

𝑗=1 𝑎
n
𝑗 𝑥𝑗 +

∑︀𝑛
𝑗=1 𝜎𝑗𝑧𝑗 + Ω

√︁∑︀𝑛
𝑗=1 𝜎

2
𝑗 𝑣

2
𝑗 ≤ 𝑢,

−𝑦𝑗 ≤ 𝑥𝑗 − 𝑢𝑗 ≤ 𝑦𝑗 , 𝑗 = 1, . . . , 𝑛,
−𝑧𝑗 ≤ 𝑥𝑗 − 𝑣𝑗 ≤ 𝑧𝑗 , 𝑗 = 1, . . . , 𝑛.

(9.20)

Second, it turns out that our intuition is correct: As a model of uncertainty, 𝑈(Ω) is as reliable as the
ellipsoid 𝐸(Ω). Specifically, if 𝑥 can be extended to a feasible solution of (9.20), then the probability for
𝑥 to satisfy a realization of (9.15) is ≥ 1 − exp{−Ω2/2}.

The conclusion is that if we have reasons to assume that the perturbations of uncertain coefficients in a
constraint of an uncertain linear optimization problem are (a) random, (b) independent of each other, and
(c) symmetrically distributed in given intervals, then it makes sense to associate with this constraint an
interval-ellipsoidal model of uncertainty and use a system of linear and conic quadratic inequalities (9.20).
Please note that when building the robust counterpart of an uncertain linear optimization problem, one
can use different models of the uncertainty (e.g., interval, ellipsoidal, combined interval-ellipsoidal) for
different uncertain constraints within the same problem.

9.2 Geometric (posynomial) Optimization

9.2.1 Problem Definition

A geometric optimization problem can be stated as follows

minimize
∑︀

𝑘∈𝐽0
𝑐𝑘
∏︀𝑛−1

𝑗=0 𝑡
𝑎𝑘𝑗

𝑗

subject to
∑︀

𝑘∈𝐽𝑖
𝑐𝑘
∏︀𝑛−1

𝑗=0 𝑡
𝑎𝑘𝑗

𝑗 ≤ 1, 𝑖 = 1, . . . ,𝑚,

𝑡 > 0,

(9.21)

9.2. Geometric (posynomial) Optimization 67

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

where it is assumed that

∪𝑚
𝑘=0𝐽𝑘 = {1, . . . , 𝑇}

and if 𝑖 ̸= 𝑗, then

𝐽𝑖 ∩ 𝐽𝑗 = ∅.

Hence, 𝐴 is a 𝑇 × 𝑛 matrix and 𝑐 is a vector of length 𝑇 . Given 𝑐𝑘 > 0 then

𝑐𝑘

𝑛−1∏︁
𝑗=0

𝑡
𝑎𝑘𝑗

𝑗

is called a monomial. A sum of monomials i.e.∑︁
𝑘∈𝐽𝑖

𝑐𝑘

𝑛−1∏︁
𝑗=0

𝑡
𝑎𝑘𝑗

𝑗

is called a posynomial posynomial In general, problem (9.21) is very hard to solve. However, the posyn-
omial case where it is required that

𝑐 > 0

is relatively easy. The reason is that using a simple variable transformation a convex optimization
problem can be obtained. Indeed using the variable transformation

𝑡𝑗 = 𝑒𝑥𝑗

we obtain the problem

minimize
∑︀

𝑘∈𝐽0
𝑐𝑘𝑒

∑︀𝑛−1
𝑗=0 𝑎𝑘𝑗𝑥𝑗

subject to
∑︀

𝑘∈𝐽𝑖
𝑐𝑘𝑒

∑︀𝑛−1
𝑗=0 𝑎𝑘𝑗𝑥𝑗 ≤ 1, 𝑖 = 1, . . . ,𝑚,

(9.22)

which is a convex optimization problem that can be solved using MOSEK. We will call

𝑐𝑡𝑒
{∑︀𝑛−1

𝑗=0 𝑎𝑡𝑗𝑥𝑗} = 𝑒{log(𝑐𝑡)+
∑︀𝑛−1

𝑗=0 𝑎𝑡𝑗𝑥𝑗}

a term and hence the number of terms is 𝑇 .

As stated, problem (9.22) is non-separable. However, using

𝑣𝑡 = log(𝑐𝑡) +

𝑛−1∑︁
𝑗=0

𝑎𝑡𝑗𝑥𝑗

we obtain the separable problem

minimize
∑︀

𝑡∈𝐽0
𝑒𝑣𝑡

subject to
∑︀

𝑡∈𝐽𝑖
𝑒𝑣𝑡 ≤ 1, 𝑖 = 1, . . . ,𝑚,∑︀𝑛−1

𝑗=0 𝑎𝑡𝑗𝑥𝑗 − 𝑣𝑡 = − log(𝑐𝑡), 𝑡 = 0, . . . , 𝑇,

which is a separable convex optimization problem.

A warning about this approach is that the exponential function 𝑒𝑥 is only numerically well-defined for
values of 𝑥 in a small interval around 0 since 𝑒𝑥 grows very rapidly as 𝑥 becomes larger. Therefore
numerical problems may arise when solving the problem on this form.

Applications

A large number of practical applications, particularly in electrical circuit design, can be cast as a geo-
metric optimization problem. We will not review these applications here but rather refer the reader to
[BKVH04] and the references therein.

68 Chapter 9. Case Studies

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Further Information

More information about geometric optimization problems is located in [BSS93] , [BP76] , [BKVH04] .

Modeling tricks

A lot of tricks that can be used for modeling posynomial optimization problems are described in
[BKVH04] . Therefore, in this section we cover only one important case.

Equalities

In general, equalities are not allowed in (9.21), i.e.

∑︁
𝑘∈𝐽𝑖

𝑐𝑘

𝑛−1∏︁
𝑗=0

𝑡
𝑎𝑘𝑗

𝑗 = 1

is not allowed. However, a monomial equality is not a problem. Indeed consider the example

𝑥𝑦𝑧−1 = 1

of a monomial equality. The equality is identical to

1 ≤ 𝑥𝑦𝑧−1 ≤ 1

which in turn is identical to the two inequalities

𝑥𝑦𝑧−1 ≤ 1,
1

𝑥𝑦𝑧−1 = 𝑥−1𝑦−1𝑧 ≤ 1.

Hence, it is possible to model a monomial equality using two inequalities.

9.2.2 Problematic Formulations

Certain formulations of geometric optimization problems may cause problems for the algorithms imple-
mented in MOSEK. Basically there are two kinds of problems that may occur:

• The solution vector is finite, but an optimal objective value can only be a approximated.

• The optimal objective value is finite but implies that a variable in the solution is infinite.

Finite Unattainable Solution

The following problem illustrates an unattainable solution:

minimize 𝑥2𝑦
subject to 𝑥𝑦 ≤ 1,

𝑥, 𝑦 > 0.

Clearly, the optimal objective value is 0 but because of the constraint the 𝑥, 𝑦 > 0 constraint this value
can never be attained: To see why this is a problem, remember that MOSEK substitutes 𝑥 = 𝑒𝑡𝑥 and
𝑦 = 𝑒𝑡𝑦 and solves the problem as

minimize 𝑒2𝑡𝑥𝑒𝑡𝑦

subject to 𝑒𝑡𝑥𝑒𝑡𝑦 ≤ 1,
𝑡𝑥, 𝑡𝑦 ∈ R.

The optimal solution implies that 𝑡𝑥 = −∞ or 𝑡𝑦 = −∞, and thus it is unattainable.

Now, the issue should be clear: If a variable 𝑥 appears only with nonnegative exponents, then fixing
𝑥 = 0 will minimize all terms in which it appears — but such a solution cannot be attained.

9.2. Geometric (posynomial) Optimization 69

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Infinite Solution

A similar problem will occur if a finite optimal objective value requires a variable to be infinite. This
can be illustrated by the following example:

minimize 𝑥−2

subject to 𝑥−1 ≤ 1,
𝑥 > 0,

which is a valid geometric programming problem. In this case the optimal objective is 0, but this requires
𝑥 = ∞, which is unattainable.

Again, this specific case will appear if a variable 𝑥 appears only with negative exponents in the problem,
implying that each term in which it appears can be minimized for 𝑥 → ∞.

9.2.3 An Example

Consider the example

minimize 𝑥−1𝑦

subject to 𝑥2𝑦−
1
2 + 3𝑦

1
2 𝑧−1 ≤ 1,

𝑥𝑦−1 = 𝑧2,
−𝑥 ≤ − 1

10 ,
𝑥 ≤ 3,

𝑥, 𝑦, 𝑧 > 0,

which is not a geometric optimization problem. However, using the obvious transformations we obtain
the problem

minimize 𝑥−1𝑦

subject to 𝑥2𝑦−
1
2 + 3𝑦

1
2 𝑧−1 ≤ 1,

𝑥𝑦−1𝑧−2 ≤ 1,
𝑥−1𝑦𝑧2 ≤ 1,
1
10𝑥

−1 ≤ 1,
1
3𝑥 ≤ 1,

𝑥, 𝑦, 𝑧 > 0,

(9.23)

which is a geometric optimization problem.

9.2.4 Solving the Example

The problem (9.23) can be defined and solved in the MOSEK toolbox as shown in Listing 9.6.

Listing 9.6: Script implementing problem (9.23).

function go2()
c = [1 1 3 1 1 0.1 1/3]';
a = sparse([[-1 1 0];

[2 -0.5 0];
[0 0.5 -1];
[1 -1 -2];
[-1 1 2];
[-1 0 0];
[1 0 0]]);

map = [0 1 1 2 3 4 5]';
[res] = mskgpopt(c,a,map);

fprintf('\nPrimal optimal solution to original gp:');
fprintf(' %e',exp(res.sol.itr.xx));

70 Chapter 9. Case Studies

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

fprintf('\n\n');

% Compute the optimal objective value and
% the constraint activities.
v = c.*exp(a*res.sol.itr.xx);

% Add appropriate terms together.
f = sparse(map+1,1:7,ones(size(map)))*v;

% First objective value. Then constraint values.
fprintf('Objective value: %e\n',log(f(1)));
fprintf('Constraint values:');
fprintf(' %e',log(f(2:end)));
fprintf('\n\n');

% Dual multipliers (should be negative)
fprintf('Dual variables (should be negative):');
fprintf(' %e',res.sol.itr.y);
fprintf('\n\n');

9.2.5 Exporting to a File

It’s possible to write a geometric optimization problem to a file with the command:

mskgpwri(c,a,map,filename)

This file format is compatible with the mskenopt command line tool. See the MOSEK Tools User’s
manual for details on mskenopt . This file format can be useful for sending debug information to MOSEK
or for testing. It’s also possible to read the above format with the command:

[c,a,map] = mskgpread(filename)

9.2. Geometric (posynomial) Optimization 71

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

72 Chapter 9. Case Studies

CHAPTER

TEN

MANAGING I/O

The main purpose of this chapter is to give an overview on the logging and I/O features provided by the
MOSEK package.

• Sec. 10.1 contains information about the log streams provided by MOSEK.

• File I/O is discussed in Sec. 10.2.

• How to tune the logging verbosity is the topic of Sec. 10.3.

10.1 Stream I/O

MOSEK execution produces a certain amount of loggging at environment and task level. This means
that the logging from each environement and task can be isolated from the others.

The log messages are partitioned in three streams:

• messages

• warnings

• errors

These streams are aggregated in the log stream.

10.2 File I/O

MOSEK supports a range of problem and solution formats listed in Sec. 18. One such format is
MOSEK’s native binary Task format which supports all features that MOSEK supports.

The file format used in I/O operations is deduced from extension - as in problemname.task - unless the
parameter MSK_IPAR_WRITE_DATA_FORMAT is specified to something else. Problem files with an additional
.gz extension - as in problemname.task.gz - are moreover assumed to use GZIP compression, and are
automatically compressed, respectively decompressed, when written or read.

Example

If something is wrong with a problem or a solution, one option is to output the problem to the human-
readable OPF format and inspect it by hand. For instance, one may use the mosekopt function to write
the problem to a file immediately before optimizing it:

% Write the data defined by prob to an OPF file
% named datafile.mps
mosekopt('write(datafile.opf)',prob);

73

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

This will write the problem in prob to the file datafile.opf.

When using MATLAB-like functions, as for instance linprog , control parameters can be set using the
options structure, for example,

options.Write = 'test.opf';
linprog(f,A,b,B,c,l,u,x0,options);

which will also write the problem to an opf-formatted file before optimizing.

10.3 Verbosity

The logging verbosity can be controlled by setting the relevant paramenters, as for instance

• MSK_IPAR_LOG ,

• MSK_IPAR_LOG_INTPNT ,

• MSK_IPAR_LOG_MIO ,

• MSK_IPAR_LOG_CUT_SECOND_OPT ,

• MSK_IPAR_LOG_SIM , and

• MSK_IPAR_LOG_SIM_MINOR .

Each parameter control the output level of a specific functionality or algorithm. The main switch
is MSK_IPAR_LOG which affect the whole output. The actual log level for a specific functionality is
determined as the minimum between MSK_IPAR_LOG and the relevant parameter. For instance, the log
level for the output produce by the interior-point algorithm is tuned by the MSK_IPAR_LOG_INTPNT : the
actual log level is defined by the minimum between MSK_IPAR_LOG and MSK_IPAR_LOG_INTPNT .

Tuning the solver verbosity may require adjusting several parameters. It must be noticed that verbose
logging is supposed to be of interest during debugging and tuning, and it is consider the default setting.
When output is no more of interest, user can easily disable using MSK_IPAR_LOG .

Moreover, it must be understood that larger values of MSK_IPAR_LOG do not necessarily result in an
increased output.

By default MOSEK will reduce the amount of log information after the first optimization on a given
task. To get full log output on subsequent optimizations set MSK_IPAR_LOG_CUT_SECOND_OPT to zero.

74 Chapter 10. Managing I/O

CHAPTER

ELEVEN

THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

The most essential part of MOSEK are the optimizers. This chapter describes the optimizers for the
class of continuous problems without integer variables, that is:

• linear problems,

• conic problems (quadratic and semidefinite),

• general convex problems.

MOSEK offers an interior-point optimizer for each class of problems and also a simplex optimizer for
linear problems. The structure of a successful optimization process is roughly:

• Presolve

1. Elimination: Reduce the size of the problem.

2. Dualizer : Choose whether to solve the primal or the dual form of the problem.

3. Scaling : Scale the problem for better numerical stability.

• Optimization

1. Optimize: Solve the problem using selected method.

2. Terminate: Stop the optimization when specific termination criteria have been met.

3. Report : Return the solution or an infeasibility certificate.

The preprocessing stage is transparent to the user, but useful to know about for tuning purposes. The
purpose of the preprocessing steps is to make the actual optimization more efficient and robust. We
discuss the details of the above steps in the following sections.

11.1 Presolve

Before an optimizer actually performs the optimization the problem is preprocessed using the so-called
presolve. The purpose of the presolve is to

1. remove redundant constraints,

2. eliminate fixed variables,

3. remove linear dependencies,

4. substitute out (implied) free variables, and

5. reduce the size of the optimization problem in general.

After the presolved problem has been optimized the solution is automatically postsolved so that the
returned solution is valid for the original problem. Hence, the presolve is completely transparent. For
further details about the presolve phase, please see [AA95] and [AGMX96] .

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If presolve consumes too
much time or memory compared to the reduction in problem size gained it may be disabled. This is

75

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

done by setting the parameter MSK_IPAR_PRESOLVE_USE to "MSK_PRESOLVE_MODE_OFF" . The two most
time-consuming steps of the presolve are

• the eliminator, and

• the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.

Numerical issues in the presolve

During the presolve the problem is reformulated so that it hopefully solves faster. However, in rare
cases the presolved problem may be harder to solve then the original problem. The presolve may also
be infeasible although the original problem is not. If it is suspected that presolved problem is much
harder to solve than the original, we suggest to first turn the eliminator off by setting the parameter
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES to 0. If that does not help, then trying to turn entire
presolve off may help.

Since all computations are done in finite precision, the presolve employs some tolerances when con-
cluding a variable is fixed or a constraint is redundant. If it happens that MOSEK incorrectly con-
cludes a problem is primal or dual infeasible, then it is worthwhile to try to reduce the parameters
MSK_DPAR_PRESOLVE_TOL_X and MSK_DPAR_PRESOLVE_TOL_S . However, if reducing the parameters ac-
tually helps then this should be taken as an indication that the problem is badly formulated.

Eliminator

The purpose of the eliminator is to eliminate free and implied free variables from the problem using
substitution. For instance, given the constraints

𝑦 =
∑︀

𝑗 𝑥𝑗 ,

𝑦, 𝑥 ≥ 0,

y is an implied free variable that can be substituted out of the problem, if deemed worthwhile. If the elim-
inator consumes too much time or memory compared to the reduction in problem size gained it may be
disabled. This can be done by setting the parameter MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
to 0. In rare cases the eliminator may cause that the problem becomes much hard to solve.

Linear dependency checker

The purpose of the linear dependency check is to remove linear dependencies among the linear equalities.
For instance, the three linear equalities

𝑥1 + 𝑥2 + 𝑥3 = 1,
𝑥1 + 0.5𝑥2 = 0.5,
0.5𝑥2 + 𝑥3 = 0.5.

contain exactly one linear dependency. This implies that one of the constraints can be dropped with-
out changing the set of feasible solutions. Removing linear dependencies is in general a good idea
since it reduces the size of the problem. Moreover, the linear dependencies are likely to introduce
numerical problems in the optimization phase. It is best practice to build models without linear de-
pendencies, but that is not always easy for the user to control. If the linear dependencies are removed
at the modelling stage, the linear dependency check can safely be disabled by setting the parameter
MSK_IPAR_PRESOLVE_LINDEP_USE to "MSK_OFF" .

Dualizer

All linear, conic, and convex optimization problems have an equivalent dual problem associated with
them. MOSEK has built-in heuristics to determine if it is more efficient to solve the primal or dual

76 Chapter 11. The Optimizers for Continuous Problems

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

problem. The form (primal or dual) is displayed in the MOSEK log and available as an information
item from the solver. Should the internal heuristics not choose the most efficient form of the problem it
may be worthwhile to set the dualizer manually by setting the parameters:

• MSK_IPAR_INTPNT_SOLVE_FORM : In case of the interior-point optimizer.

• MSK_IPAR_SIM_SOLVE_FORM : In case of the simplex optimizer.

Note that currently only linear and conic quadratic problems may be automatically dualized.

Scaling

Problems containing data with large and/or small coefficients, say 1.0𝑒 + 9 or 1.0𝑒 − 7, are often hard
to solve. Significant digits may be truncated in calculations with finite precision, which can result in
the optimizer relying on inaccurate data. Since computers work in finite precision, extreme coefficients
should be avoided. In general, data around the same order of magnitude is preferred, and we will refer to
a problem, satisfying this loose property, as being well-scaled. If the problem is not well scaled, MOSEK
will try to scale (multiply) constraints and variables by suitable constants. MOSEK solves the scaled
problem to improve the numerical properties.

The scaling process is transparent, i.e. the solution to the original problem is reported. It is important
to be aware that the optimizer terminates when the termination criterion is met on the scaled problem,
therefore significant primal or dual infeasibilities may occur after unscaling for badly scaled problems.
The best solution of this issue is to reformulate the problem, making it better scaled.

By default MOSEK heuristically chooses a suitable scaling. The scaling for interior-point
and simplex optimizers can be controlled with the parameters MSK_IPAR_INTPNT_SCALING and
MSK_IPAR_SIM_SCALING respectively.

11.2 Using Multiple Threads in an Optimizer

Multithreading in interior-point optimizers

The interior-point optimizers in MOSEK have been parallelized. This means that if you solve linear,
quadratic, conic, or general convex optimization problem using the interior-point optimizer, you can
take advantage of multiple CPU’s. By default MOSEK will automatically select the number of threads
to be employed when solving the problem. However, the maximum number of threads employed can
be changed by setting the parameter MSK_IPAR_NUM_THREADS . This should never exceed the number of
cores on the computer.

The speed-up obtained when using multiple threads is highly problem and hardware dependent, and con-
sequently, it is advisable to compare single threaded and multi threaded performance for the given prob-
lem type to determine the optimal settings. For small problems, using multiple threads is not be worth-
while and may even be counter productive because of the additional coordination overhead. Therefore, it
may be advantageous to disable multithreading using the parameter MSK_IPAR_INTPNT_MULTI_THREAD .

The interior-point optimizer parallelizes big tasks such linear algebra computations.

Thread Safety

The MOSEK API is thread-safe provided that a task is only modified or accessed from one thread at
any given time. Also accessing two or more separate tasks from threads at the same time is safe. Sharing
an environment between threads is safe.

11.2. Using Multiple Threads in an Optimizer 77

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Determinism

The optimizers are run-to-run deterministic which means if a problem is solved twice on the same
computer using the same parameter setting and exactly the same input then exactly the same results is
obtained. One restriction is that no time limits must be imposed because the time taken to perform an
operation on a computer is dependent on many factors such as the current workload.

11.3 Linear Optimization

11.3.1 Optimizer Selection

Two different types of optimizers are available for linear problems: The default is an interior-point
method, and the alternative is the simplex method (primal or dual). The optimizer can be selected using
the parameter MSK_IPAR_OPTIMIZER .

The Interior-point or the Simplex Optimizer?

Given a linear optimization problem, which optimizer is the best: the simplex or the interior-point
optimizer? It is impossible to provide a general answer to this question. However, the interior-point
optimizer behaves more predictably: it tends to use between 20 and 100 iterations, almost independently
of problem size, but cannot perform warm-start. On the other hand the simplex method can take
advantage of an initial solution, but is less predictable from cold-start. The interior-point optimizer is
used by default.

The Primal or the Dual Simplex Variant?

MOSEK provides both a primal and a dual simplex optimizer. Predicting which simplex optimizer is
faster is impossible, however, in recent years the dual optimizer has seen several algorithmic and com-
putational improvements, which, in our experience, make it faster on average than the primal version.
Still, it depends much on the problem structure and size. Setting the MSK_IPAR_OPTIMIZER parameter
to "MSK_OPTIMIZER_FREE_SIMPLEX" instructs MOSEK to choose one of the simplex variants automat-
ically.

To summarize, if you want to know which optimizer is faster for a given problem type, it is best to try
all the options.

11.3.2 The Interior-point Optimizer

The purpose of this section is to provide information about the algorithm employed in the MOSEK
interior-point optimizer for linear problems and about its termination criteria.

The homogeneous primal-dual problem

In order to keep the discussion simple it is assumed that MOSEK solves linear optimization problems
of standard form

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ 0.
(11.1)

This is in fact what happens inside MOSEK; for efficiency reasons MOSEK converts the problem to
standard form before solving, then converts it back to the input form when reporting the solution.

78 Chapter 11. The Optimizers for Continuous Problems

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Since it is not known beforehand whether problem (11.1) has an optimal solution, is primal infeasible or
is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason why
MOSEK solves the so-called homogeneous model

𝐴𝑥− 𝑏𝜏 = 0,
𝐴𝑇 𝑦 + 𝑠− 𝑐𝜏 = 0,

−𝑐𝑇𝑥 + 𝑏𝑇 𝑦 − 𝜅 = 0,
𝑥, 𝑠, 𝜏, 𝜅 ≥ 0,

(11.2)

where 𝑦 and 𝑠 correspond to the dual variables in (11.1), and 𝜏 and 𝜅 are two additional scalar variables.
Note that the homogeneous model (11.2) always has solution since

(𝑥, 𝑦, 𝑠, 𝜏, 𝜅) = (0, 0, 0, 0, 0)

is a solution, although not a very interesting one. Any solution

(𝑥*, 𝑦*, 𝑠*, 𝜏*, 𝜅*)

to the homogeneous model (11.2) satisfies

𝑥*
𝑗𝑠

*
𝑗 = 0 and 𝜏*𝜅* = 0.

Moreover, there is always a solution that has the property 𝜏* + 𝜅* > 0.

First, assume that 𝜏* > 0 . It follows that

𝐴𝑥*

𝜏* = 𝑏,

𝐴𝑇 𝑦*

𝜏* + 𝑠*

𝜏* = 𝑐,

−𝑐𝑇 𝑥*

𝜏* + 𝑏𝑇 𝑦*

𝜏* = 0,
𝑥*, 𝑠*, 𝜏*, 𝜅* ≥ 0.

This shows that 𝑥*

𝜏* is a primal optimal solution and (𝑦*

𝜏* ,
𝑠*

𝜏*) is a dual optimal solution; this is reported
as the optimal interior-point solution since

(𝑥, 𝑦, 𝑠) =

{︂
𝑥*

𝜏*
,
𝑦*

𝜏*
,
𝑠*

𝜏*

}︂
is a primal-dual optimal solution (see Sec. 16.1 for the mathematical background on duality and opti-
mality).

On other hand, if 𝜅* > 0 then

𝐴𝑥* = 0,
𝐴𝑇 𝑦* + 𝑠* = 0,

−𝑐𝑇𝑥* + 𝑏𝑇 𝑦* = 𝜅*,
𝑥*, 𝑠*, 𝜏*, 𝜅* ≥ 0.

This implies that at least one of

𝑐𝑇𝑥* < 0 (11.3)

or

𝑏𝑇 𝑦* > 0 (11.4)

is satisfied. If (11.3) is satisfied then 𝑥* is a certificate of dual infeasibility, whereas if (11.4) is satisfied
then 𝑦* is a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information required
for a solution to the original problem is obtained. A solution to the homogeneous model can be computed
using a primal-dual interior-point algorithm [And09] .

11.3. Linear Optimization 79

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Interior-point Termination Criterion

For efficiency reasons it is not practical to solve the homogeneous model exactly. Hence, an exact optimal
solution or an exact infeasibility certificate cannot be computed and a reasonable termination criterion
has to be employed.

In the 𝑘-th iteration of the interior-point algorithm a trial solution

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘)

to homogeneous model is generated, where

𝑥𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘 > 0.

Optimal case

Whenever the trial solution satisfies the criterion⃦⃦⃦
𝐴𝑥𝑘

𝜏𝑘 − 𝑏
⃦⃦⃦
∞

≤ 𝜖𝑝(1 + ‖𝑏‖∞),⃦⃦⃦
𝐴𝑇 𝑦𝑘

𝜏𝑘 + 𝑠𝑘

𝜏𝑘 − 𝑐
⃦⃦⃦
∞

≤ 𝜖𝑑(1 + ‖𝑐‖∞), and

min
(︁

(𝑥𝑘)𝑇 𝑠𝑘

(𝜏𝑘)2
, | 𝑐

𝑇 𝑥𝑘

𝜏𝑘 − 𝑏𝑇 𝑦𝑘

𝜏𝑘 |
)︁

≤ 𝜖𝑔 max

(︂
1,

min(|𝑐𝑇 𝑥𝑘|,|𝑏𝑇 𝑦𝑘|)
𝜏𝑘

)︂
,

(11.5)

the interior-point optimizer is terminated and

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘)

𝜏𝑘

is reported as the primal-dual optimal solution. The interpretation of (11.5) is that the optimizer is
terminated if

• 𝑥𝑘

𝜏𝑘 is approximately primal feasible,

•
{︁

𝑦𝑘

𝜏𝑘 ,
𝑠𝑘

𝜏𝑘

}︁
is approximately dual feasible, and

• the duality gap is almost zero.

Dual infeasibility certificate

On the other hand, if the trial solution satisfies

−𝜖𝑖𝑐
𝑇𝑥𝑘 >

‖𝑐‖∞
max (1, ‖𝑏‖∞)

⃦⃦
𝐴𝑥𝑘

⃦⃦
∞

then the problem is declared dual infeasible and 𝑥𝑘 is reported as a certificate of dual infeasibility. The
motivation for this stopping criterion is as follows: First assume that

⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ = 0 ; then 𝑥𝑘 is an exact

certificate of dual infeasibility. Next assume that this is not the case, i.e.⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ > 0,

and define

�̄� := 𝜖𝑖
max (1, ‖𝑏‖∞)

‖𝐴𝑥𝑘‖∞ ‖𝑐‖∞
𝑥𝑘.

It is easy to verify that

‖𝐴�̄�‖∞ = 𝜖𝑖
max (1, ‖𝑏‖∞)

‖𝑐‖∞
and − 𝑐𝑇 �̄� > 1,

which shows �̄� is an approximate certificate of dual infeasibility, where 𝜀𝑖 controls the quality of the
approximation. A smaller value means a better approximation.

80 Chapter 11. The Optimizers for Continuous Problems

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Primal infeasibility certificate

Finally, if

𝜖𝑖𝑏
𝑇 𝑦𝑘 >

‖𝑏‖∞
max (1, ‖𝑐‖∞)

⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘

⃦⃦
∞

then 𝑦𝑘 is reported as a certificate of primal infeasibility.

Adjusting optimality criteria and near optimality

It is possible to adjust the tolerances 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖 using parameters; see table for details.

Table 11.1: Parameters employed in termination criterion
ToleranceParameter name
𝜀𝑝 MSK_DPAR_INTPNT_TOL_PFEAS
𝜀𝑑 MSK_DPAR_INTPNT_TOL_DFEAS
𝜀𝑔 MSK_DPAR_INTPNT_TOL_REL_GAP
𝜀𝑖 MSK_DPAR_INTPNT_TOL_INFEAS

The default values of the termination tolerances are chosen such that for a majority of problems appearing
in practice it is not possible to achieve much better accuracy. Therefore, tightening the tolerances usually
is not worthwhile. However, an inspection of (11.5) reveals that the quality of the solution depends on
‖𝑏‖∞ and ‖𝑐‖∞; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal and
dual feasibility at the same rate [And09] . This means that if the optimizer is stopped prematurely then
it is very unlikely that either the primal or dual solution is feasible. Another consequence is that in most
cases all the tolerances, 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖, have to be relaxed together to achieve an effect.

In some cases the interior-point method terminates having found a solution not too far from meeting the
optimality condition (11.5). A solution is defined as near optimal if scaling the termination tolerances
𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑔 by the same factor 𝜀𝑛 ∈ [1.0,+∞] makes the condition (11.5) satisfied. A near optimal
solution is therefore of lower quality but still potentially valuable. If for instance the solver stalls, i.e.
it can make no more significant progress towards the optimal solution, a near optimal solution could be
available and be good enough for the user. Near infeasibility certificates are defined similarly. The value
of 𝜀𝑛 can be adjusted with the parameter MSK_DPAR_INTPNT_CO_TOL_NEAR_REL .

The basis identification discussed in Sec. 11.3.2 requires an optimal solution to work well; hence basis
identification should be turned off if the termination criterion is relaxed.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

Basis Identification

An interior-point optimizer does not return an optimal basic solution unless the problem has a unique
primal and dual optimal solution. Therefore, the interior-point optimizer has an optional post-processing
step that computes an optimal basic solution starting from the optimal interior-point solution. More
information about the basis identification procedure may be found in [AY96] . In the following we provide
an overall idea of the procedure.

There are some cases in which a basic solution could be more valuable:

• a basic solution is often more accurate than an interior-point solution,

• a basic solution can be used to warm-start the simplex algorithm in case of reoptimization,

• a basic solution is in general more sparse, i.e. more variables are fixed to zero. This is partic-
ularly appealing when solving continuous relaxations of mixed integer problems, as well as in all
applications in which sparser solutions are preferred.

11.3. Linear Optimization 81

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

To illustrate how the basis identification routine works, we use the following trivial example:

minimize 𝑥 + 𝑦
subject to 𝑥 + 𝑦 = 1,

𝑥, 𝑦 ≥ 0.

It is easy to see that all feasible solutions are also optimal. In particular, there are two basic solutions,
namely

(𝑥*
1, 𝑦

*
1) = (1, 0),

(𝑥*
2, 𝑦

*
2) = (0, 1).

The interior point algorithm will actually converge to the center of the optimal set, i.e. to (𝑥*, 𝑦*) =
(1/2, 1/2) (to see this in MOSEK deactivate Presolve).

In practice, when the algorithm gets close to the optimal solution, it is possible to construct in polynomial
time an initial basis for the simplex algorithm from the current interior point solution. This basis is used
to warm-start the simplex algorithm that will provide the optimal basic solution. In most cases the
constructed basis is optimal, or very few iterations are required by the simplex algorithm to make it
optimal and hence the final clean-up phase be short. However, for some cases of ill-conditioned problems
the additional simplex clean up phase may take of lot a time.

By default MOSEK performs a basis identification. However, if a basic solution is not needed, the basis
identification procedure can be turned off. The parameters

• MSK_IPAR_INTPNT_BASIS ,

• MSK_IPAR_BI_IGNORE_MAX_ITER , and

• MSK_IPAR_BI_IGNORE_NUM_ERROR

control when basis identification is performed.

The type of simplex algorithm to be used (primal/dual) can be tuned with the parame-
ter MSK_IPAR_BI_CLEAN_OPTIMIZER , and the maximum number of iterations can be set with
MSK_IPAR_BI_MAX_ITERATIONS .

Finally, it should be mentioned that there is no guarantee on which basic solution will be returned.

The Interior-point Log

Below is a typical log output from the interior-point optimizer:

Optimizer - threads : 1
Optimizer - solved problem : the dual
Optimizer - Constraints : 2
Optimizer - Cones : 0
Optimizer - Scalar variables : 6 conic : 0
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 3 after factor : 3
Factor - dense dim. : 0 flops : 7.00e+001
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 1.0e+000 8.6e+000 6.1e+000 1.00e+000 0.000000000e+000 -2.208000000e+003 1.0e+000 0.00
1 1.1e+000 2.5e+000 1.6e-001 0.00e+000 -7.901380925e+003 -7.394611417e+003 2.5e+000 0.00
2 1.4e-001 3.4e-001 2.1e-002 8.36e-001 -8.113031650e+003 -8.055866001e+003 3.3e-001 0.00
3 2.4e-002 5.8e-002 3.6e-003 1.27e+000 -7.777530698e+003 -7.766471080e+003 5.7e-002 0.01
4 1.3e-004 3.2e-004 2.0e-005 1.08e+000 -7.668323435e+003 -7.668207177e+003 3.2e-004 0.01
5 1.3e-008 3.2e-008 2.0e-009 1.00e+000 -7.668000027e+003 -7.668000015e+003 3.2e-008 0.01
6 1.3e-012 3.2e-012 2.0e-013 1.00e+000 -7.667999994e+003 -7.667999994e+003 3.2e-012 0.01

The first line displays the number of threads used by the optimizer and the second line tells that the
optimizer chose to solve the dual problem rather than the primal problem. The next line displays the

82 Chapter 11. The Optimizers for Continuous Problems

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

problem dimensions as seen by the optimizer, and the Factor... lines show various statistics. This is
followed by the iteration log.

Using the same notation as in Sec. 11.3.2 the columns of the iteration log have the following meaning:

• ITE: Iteration index 𝑘.

• PFEAS:
⃦⃦
𝐴𝑥𝑘 − 𝑏𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards zero

but may stall at low level due to rounding errors.

• DFEAS:
⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘 − 𝑐𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards

zero but may stall at low level due to rounding errors.

• GFEAS: |− 𝑐𝑇𝑥𝑘 + 𝑏𝑇 𝑦𝑘 −𝜅𝑘| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

• PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to −1 if that is not the case.

• POBJ: 𝑐𝑇𝑥𝑘/𝜏𝑘. An estimate for the primal objective value.

• DOBJ: 𝑏𝑇 𝑦𝑘/𝜏𝑘. An estimate for the dual objective value.

• MU: (𝑥𝑘)𝑇 𝑠𝑘+𝜏𝑘𝜅𝑘

𝑛+1 . The numbers in this column should always converge to zero.

• TIME: Time spent since the optimization started.

11.3.3 The Simplex Optimizer

An alternative to the interior-point optimizer is the simplex optimizer. The simplex optimizer uses a
different method that allows exploiting an initial guess for the optimal solution to reduce the solution
time. Depending on the problem it may be faster or slower to use an initial guess; see Sec. 11.3.1 for a
discussion. MOSEK provides both a primal and a dual variant of the simplex optimizer.

Simplex Termination Criterion

The simplex optimizer terminates when it finds an optimal basic solution or an infeasibility certificate.
A basic solution is optimal when it is primal and dual feasible; see Sec. 16.1 for a definition of the primal
and dual problem. Due to the fact that computations are performed in finite precision MOSEK allows
violations of primal and dual feasibility within certain tolerances. The user can control the allowed
primal and dual tolerances with the parameters MSK_DPAR_BASIS_TOL_X and MSK_DPAR_BASIS_TOL_S .

Setting the parameter MSK_IPAR_OPTIMIZER to "MSK_OPTIMIZER_FREE_SIMPLEX" instructs MOSEK
to select automatically between the primal and the dual simplex optimizers. Hence, MOSEK tries to
choose the best optimizer for the given problem and the available solution. The same parameter can also
be used to force one of the variants.

Starting From an Existing Solution

When using the simplex optimizer it may be possible to reuse an existing solution and thereby reduce
the solution time significantly. When a simplex optimizer starts from an existing solution it is said to
perform a warm-start. If the user is solving a sequence of optimization problems by solving the problem,
making modifications, and solving again, MOSEK will warm-start automatically.

By default MOSEK uses presolve when performing a warm-start. If the optimizer only needs very few
iterations to find the optimal solution it may be better to turn off the presolve.

11.3. Linear Optimization 83

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Numerical Difficulties in the Simplex Optimizers

Though MOSEK is designed to minimize numerical instability, completely avoiding it is impossible
when working in finite precision. MOSEK treats a “numerically unexpected behavior” event inside the
optimizer as a set-back. The user can define how many set-backs the optimizer accepts; if that number
is exceeded, the optimization will be aborted. Set-backs are a way to escape long sequences where the
optimizer tries to recover from an unstable situation.

Examples of set-backs are: repeated singularities when factorizing the basis matrix, repeated loss of
feasibility, degeneracy problems (no progress in objective) and other events indicating numerical difficul-
ties. If the simplex optimizer encounters a lot of set-backs the problem is usually badly scaled; in such a
situation try to reformulate it into a better scaled problem. Then, if a lot of set-backs still occur, trying
one or more of the following suggestions may be worthwhile:

• Raise tolerances for allowed primal or dual feasibility: increase the value of

– MSK_DPAR_BASIS_TOL_X , and

– MSK_DPAR_BASIS_TOL_S .

• Raise or lower pivot tolerance: Change the MSK_DPAR_SIMPLEX_ABS_TOL_PIV parameter.

• Switch optimizer: Try another optimizer.

• Switch off crash: Set both MSK_IPAR_SIM_PRIMAL_CRASH and MSK_IPAR_SIM_DUAL_CRASH to 0.

• Experiment with other pricing strategies: Try different values for the parameters

– MSK_IPAR_SIM_PRIMAL_SELECTION and

– MSK_IPAR_SIM_DUAL_SELECTION .

• If you are using warm-starts, in rare cases switching off this feature may improve stability. This is
controlled by the MSK_IPAR_SIM_HOTSTART parameter.

• Increase maximum number of set-backs allowed controlled by MSK_IPAR_SIM_MAX_NUM_SETBACKS .

• If the problem repeatedly becomes infeasible try switching off the special degeneracy handling. See
the parameter MSK_IPAR_SIM_DEGEN for details.

The Simplex Log

Below is a typical log output from the simplex optimizer:

Optimizer - solved problem : the primal
Optimizer - Constraints : 667
Optimizer - Scalar variables : 1424 conic : 0
Optimizer - hotstart : no
ITER DEGITER(%) PFEAS DFEAS POBJ DOBJ TIME␣
→˓ TOTTIME
0 0.00 1.43e+05 NA 6.5584140832e+03 NA 0.00␣
→˓ 0.02
1000 1.10 0.00e+00 NA 1.4588289726e+04 NA 0.13␣
→˓ 0.14
2000 0.75 0.00e+00 NA 7.3705564855e+03 NA 0.21␣
→˓ 0.22
3000 0.67 0.00e+00 NA 6.0509727712e+03 NA 0.29␣
→˓ 0.31
4000 0.52 0.00e+00 NA 5.5771203906e+03 NA 0.38␣
→˓ 0.39
4533 0.49 0.00e+00 NA 5.5018458883e+03 NA 0.42␣
→˓ 0.44

The first lines summarize the problem the optimizer is solving. This is followed by the iteration log, with
the following meaning:

84 Chapter 11. The Optimizers for Continuous Problems

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• ITER: Number of iterations.

• DEGITER(%): Ratio of degenerate iterations.

• PFEAS: Primal feasibility measure reported by the simplex optimizer. The numbers should be 0 if
the problem is primal feasible (when the primal variant is used).

• DFEAS: Dual feasibility measure reported by the simplex optimizer. The number should be 0 if the
problem is dual feasible (when the dual variant is used).

• POBJ: An estimate for the primal objective value (when the primal variant is used).

• DOBJ: An estimate for the dual objective value (when the dual variant is used).

• TIME: Time spent since this instance of the simplex optimizer was invoked (in seconds).

• TOTTIME: Time spent since optimization started (in seconds).

11.4 Conic Optimization

For conic optimization problems only an interior-point type optimizer is available.

11.4.1 The Interior-point optimizer

The homogeneous primal-dual problem

The interior-point optimizer is an implementation of the so-called homogeneous and self-dual algorithm.
For a detailed description of the algorithm, please see [ART03] . In order to keep our discussion simple
we will assume that MOSEK solves a conic optimization problem of the form:

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ∈ 𝒦
(11.6)

where 𝐾 is a convex cone. The corresponding dual problem is

maximize 𝑏𝑇 𝑦
subject to 𝐴𝑇 𝑦 + 𝑠 = 𝑐,

𝑥 ∈ 𝒦*
(11.7)

where 𝒦* is the dual cone of 𝒦. See Sec. 16.2 for definitions.

Since it is not known beforehand whether problem (11.6) has an optimal solution, is primal infeasible or
is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason that
MOSEK solves the so-called homogeneous model

𝐴𝑥− 𝑏𝜏 = 0,
𝐴𝑇 𝑦 + 𝑠− 𝑐𝜏 = 0,

−𝑐𝑇𝑥 + 𝑏𝑇 𝑦 − 𝜅 = 0,
𝑥 ∈ 𝒦,
𝑠 ∈ 𝒦*,

𝜏, 𝜅 ≥ 0,

(11.8)

where 𝑦 and 𝑠 correspond to the dual variables in (11.6), and 𝜏 and 𝜅 are two additional scalar variables.
Note that the homogeneous model (11.8) always has a solution since

(𝑥, 𝑦, 𝑠, 𝜏, 𝜅) = (0, 0, 0, 0, 0)

is a solution, although not a very interesting one. Any solution

(𝑥*, 𝑦*, 𝑠*, 𝜏*, 𝜅*)

11.4. Conic Optimization 85

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

to the homogeneous model (11.8) satisfies

(𝑥*)𝑇 𝑠* + 𝜏*𝜅* = 0

i.e. complementarity. Observe that 𝑥* ∈ 𝒦 and 𝑠* ∈ 𝒦* implies

(𝑥*)𝑇 𝑠* ≥ 0

and therefore

𝜏*𝜅* = 0.

since 𝜏*, 𝜅* ≥ 0. Hence, at least one of 𝜏* and 𝜅* is zero.

First, assume that 𝜏* > 0 and hence 𝜅* = 0. It follows that

𝐴𝑥*

𝜏* = 𝑏,

𝐴𝑇 𝑦*

𝜏* + 𝑠*

𝜏* = 𝑐,

−𝑐𝑇 𝑥*

𝜏* + 𝑏𝑇 𝑦*

𝜏* = 0,
𝑥*/𝜏* ∈ 𝒦,
𝑠*/𝜏* ∈ 𝒦*.

This shows that 𝑥*

𝜏* is a primal optimal solution and (𝑦*

𝜏* ,
𝑠*

𝜏*) is a dual optimal solution; this is reported
as the optimal interior-point solution since

(𝑥, 𝑦, 𝑠) =

(︂
𝑥*

𝜏*
,
𝑦*

𝜏*
,
𝑠*

𝜏*

)︂
is a primal-dual optimal solution.

On other hand, if 𝜅* > 0 then

𝐴𝑥* = 0,
𝐴𝑇 𝑦* + 𝑠* = 0,

−𝑐𝑇𝑥* + 𝑏𝑇 𝑦* = 𝜅*,
𝑥* ∈ 𝒦,
𝑠* ∈ 𝒦*.

This implies that at least one of

𝑐𝑇𝑥* < 0 (11.9)

or

𝑏𝑇 𝑦* > 0 (11.10)

holds. If (11.9) is satisfied, then 𝑥* is a certificate of dual infeasibility, whereas if (11.10) holds then 𝑦*

is a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information required
for a solution to the original problem is obtained. A solution to the homogeneous model can be computed
using a primal-dual interior-point algorithm [And09] .

Interior-point Termination Criterion

Since computations are performed in finite precision, and for efficiency reasons, it is not possible to solve
the homogeneous model exactly in general. Hence, an exact optimal solution or an exact infeasibility
certificate cannot be computed and a reasonable termination criterion has to be employed.

In every iteration 𝑘 of the interior-point algorithm a trial solution

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘)

86 Chapter 11. The Optimizers for Continuous Problems

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

to the homogeneous model is generated, where

𝑥𝑘 ∈ 𝒦, 𝑠𝑘 ∈ 𝒦*, 𝜏𝑘, 𝜅𝑘 > 0.

Therefore, it is possible to compute the values:

𝜌𝑘𝑝 = arg min𝜌

{︁
𝜌 |
⃦⃦⃦
𝐴𝑥𝑘

𝜏𝑘 − 𝑏
⃦⃦⃦
∞

≤ 𝜌𝜀𝑝(1 + ‖𝑏‖∞)
}︁
,

𝜌𝑘𝑑 = arg min𝜌

{︁
𝜌 |
⃦⃦⃦
𝐴𝑇 𝑦𝑘

𝜏𝑘 + 𝑠𝑘

𝜏𝑘 − 𝑐
⃦⃦⃦
∞

≤ 𝜌𝜀𝑑(1 + ‖𝑐‖∞)
}︁
,

𝜌𝑘𝑔 = arg min𝜌

{︂
𝜌 |
(︁

(𝑥𝑘)𝑇 𝑠𝑘

(𝜏𝑘)2
, | 𝑐

𝑇 𝑥𝑘

𝜏𝑘 − 𝑏𝑇 𝑦𝑘

𝜏𝑘 |
)︁
≤ 𝜌𝜀𝑔 max

(︂
1,

min(|𝑐𝑇 𝑥𝑘|,|𝑏𝑇 𝑦𝑘|)
𝜏𝑘

)︂}︂
,

𝜌𝑘𝑝𝑖 = arg min𝜌

{︀
𝜌 |
⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘

⃦⃦
∞ ≤ 𝜌𝜀𝑖𝑏

𝑇 𝑦𝑘, 𝑏𝑇 𝑦𝑘 > 0
}︀

and
𝜌𝑘𝑑𝑖 = arg min𝜌

{︀
𝜌 |
⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ ≤ −𝜌𝜀𝑖𝑐

𝑇𝑥𝑘, 𝑐𝑇𝑥𝑘 < 0
}︀
.

Note 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖 are nonnegative user specified tolerances.

Optimal Case

Observe 𝜌𝑘𝑝 measures how far 𝑥𝑘/𝜏𝑘 is from being a good approximate primal feasible solution. Indeed
if 𝜌𝑘𝑝 ≤ 1, then ⃦⃦⃦⃦

𝐴
𝑥𝑘

𝜏𝑘
− 𝑏

⃦⃦⃦⃦
∞

≤ 𝜀𝑝(1 + ‖𝑏‖∞). (11.11)

This shows the violations in the primal equality constraints for the solution 𝑥𝑘/𝜏𝑘 is small compared to
the size of 𝑏 given 𝜀𝑝 is small.

Similarly, if 𝜌𝑘𝑑 ≤ 1, then (𝑦𝑘, 𝑠𝑘)/𝜏𝑘 is an approximate dual feasible solution. If in addition 𝜌𝑔 ≤ 1, then
the solution (𝑥𝑘, 𝑦𝑘, 𝑠𝑘)/𝜏𝑘 is approximate optimal because the associated primal and dual objective
values are almost identical.

In other words if max(𝜌𝑘𝑝, 𝜌
𝑘
𝑑, 𝜌

𝑘
𝑔) ≤ 1, then

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘)

𝜏𝑘

is an approximate optimal solution.

Dual Infeasibility Certificate

Next assume that 𝜌𝑘𝑑𝑖 ≤ 1 and hence⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ ≤ −𝜀𝑖𝑐

𝑇𝑥𝑘 and − 𝑐𝑇𝑥𝑘 > 0

holds. Now in this case the problem is declared dual infeasible and 𝑥𝑘 is reported as a certificate of dual
infeasibility. The motivation for this stopping criterion is as follows. Let

�̄� :=
𝑥𝑘

−𝑐𝑇𝑥𝑘

and it is easy to verify that

‖𝐴�̄�‖∞ ≤ 𝜀𝑖 and 𝑐𝑇 �̄� = −1

which shows �̄� is an approximate certificate of dual infeasibility, where 𝜀𝑖 controls the quality of the
approximation.

11.4. Conic Optimization 87

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Primal Infeasiblity Certificate

Next assume that 𝜌𝑘𝑝𝑖 ≤ 1 and hence⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘

⃦⃦
∞ ≤ 𝜀𝑖𝑏

𝑇 𝑦𝑘 and 𝑏𝑇 𝑦𝑘 > 0

holds. Now in this case the problem is declared primal infeasible and (𝑦𝑘, 𝑠𝑘) is reported as a certificate
of primal infeasibility. The motivation for this stopping criterion is as follows. Let

𝑦 :=
𝑦𝑘

𝑏𝑇 𝑦𝑘
and 𝑠 :=

𝑠𝑘

𝑏𝑇 𝑦𝑘

and it is easy to verify that ⃦⃦
𝐴𝑇 𝑦 + 𝑠

⃦⃦
∞ ≤ 𝜀𝑖 and 𝑏𝑇 𝑦 = 1

which shows (𝑦𝑘, 𝑠𝑘) is an approximate certificate of dual infeasibility, where 𝜀𝑖 controls the quality of
the approximation.

Adjusting optimality criteria and near optimality

It is possible to adjust the tolerances 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖 using parameters; see table for details.

Table 11.2: Parameters employed in termination criterion
ToleranceParameter name
𝜀𝑝 MSK_DPAR_INTPNT_CO_TOL_PFEAS
𝜀𝑑 MSK_DPAR_INTPNT_CO_TOL_DFEAS
𝜀𝑔 MSK_DPAR_INTPNT_CO_TOL_REL_GAP
𝜀𝑖 MSK_DPAR_INTPNT_CO_TOL_INFEAS

The default values of the termination tolerances are chosen such that for a majority of problems appearing
in practice it is not possible to achieve much better accuracy. Therefore, tightening the tolerances usually
is not worthwhile. However, an inspection of (11.11) reveals that the quality of the solution depends on
‖𝑏‖∞ and ‖𝑐‖∞; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal and
dual feasibility at the same rate [And09] . This means that if the optimizer is stopped prematurely then
it is very unlikely that either the primal or dual solution is feasible. Another consequence is that in most
cases all the tolerances, 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖, have to be relaxed together to achieve an effect.

In some cases the interior-point method terminates having found a solution not too far from meeting the
optimality condition (11.11). A solution is defined as near optimal if scaling the termination tolerances
𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑔 by the same factor 𝜀𝑛 ∈ [1.0,+∞] makes the condition (11.11) satisfied. A near optimal
solution is therefore of lower quality but still potentially valuable. If for instance the solver stalls, i.e.
it can make no more significant progress towards the optimal solution, a near optimal solution could be
available and be good enough for the user. Near infeasibility certificates are defined similarly. The value
of 𝜀𝑛 can be adjusted with the parameter MSK_DPAR_INTPNT_CO_TOL_NEAR_REL .

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

The Interior-point Log

Below is a typical log output from the interior-point optimizer:

Optimizer - threads : 20
Optimizer - solved problem : the primal
Optimizer - Constraints : 1
Optimizer - Cones : 2

88 Chapter 11. The Optimizers for Continuous Problems

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Optimizer - Scalar variables : 6 conic : 6
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 1 after factor : 1
Factor - dense dim. : 0 flops : 1.70e+01
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 1.0e+00 2.9e-01 3.4e+00 0.00e+00 2.414213562e+00 0.000000000e+00 1.0e+00 0.01
1 2.7e-01 7.9e-02 2.2e+00 8.83e-01 6.969257574e-01 -9.685901771e-03 2.7e-01 0.01
2 6.5e-02 1.9e-02 1.2e+00 1.16e+00 7.606090061e-01 6.046141322e-01 6.5e-02 0.01
3 1.7e-03 5.0e-04 2.2e-01 1.12e+00 7.084385672e-01 7.045122560e-01 1.7e-03 0.01
4 1.4e-08 4.2e-09 4.9e-08 1.00e+00 7.071067941e-01 7.071067599e-01 1.4e-08 0.01

The first line displays the number of threads used by the optimizer and the second line tells that the
optimizer chose to solve the dual problem rather than the primal problem. The next line displays the
problem dimensions as seen by the optimizer, and the Factor... lines show various statistics. This is
followed by the iteration log.

Using the same notation as in Sec. 11.4.1 the columns of the iteration log have the following meaning:

• ITE: Iteration index 𝑘.

• PFEAS:
⃦⃦
𝐴𝑥𝑘 − 𝑏𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards zero

but may stall at low level due to rounding errors.

• DFEAS:
⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘 − 𝑐𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards

zero but may stall at low level due to rounding errors.

• GFEAS: |− 𝑐𝑇𝑥𝑘 + 𝑏𝑇 𝑦𝑘 −𝜅𝑘| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

• PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to −1 if that is not the case.

• POBJ: 𝑐𝑇𝑥𝑘/𝜏𝑘. An estimate for the primal objective value.

• DOBJ: 𝑏𝑇 𝑦𝑘/𝜏𝑘. An estimate for the dual objective value.

• MU: (𝑥𝑘)𝑇 𝑠𝑘+𝜏𝑘𝜅𝑘

𝑛+1 . The numbers in this column should always converge to zero.

• TIME: Time spent since the optimization started (in seconds).

11.5 Nonlinear Convex Optimization

11.5.1 The Interior-point Optimizer

For general convex optimization problems an interior-point type optimizer is available. The interior-point
optimizer is an implementation of the homogeneous and self-dual algorithm. For a detailed description
of the algorithm, please see [AY98] , [AY99] .

The Convexity Requirement

Continuous nonlinear problems are required to be convex. For quadratic problems MOSEK tests this
requirement before optimizing. Specifying a non-convex problem results in an error message.

The following parameters are available to control the convexity check:

• MSK_IPAR_CHECK_CONVEXITY : Turn convexity check on/off.

• MSK_DPAR_CHECK_CONVEXITY_REL_TOL : Tolerance for convexity check.

• MSK_IPAR_LOG_CHECK_CONVEXITY : Turn on more log information for debugging.

11.5. Nonlinear Convex Optimization 89

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

The Differentiability Requirement

The nonlinear optimizer in MOSEK requires both first order and second order derivatives. This of
course implies care should be taken when solving problems involving non-differentiable functions.

For instance, the function

𝑓(𝑥) = 𝑥2

is differentiable everywhere whereas the function

𝑓(𝑥) =
√
𝑥

is only differentiable for 𝑥 > 0 . In order to make sure that MOSEK evaluates the functions at points
where they are differentiable, the function domains must be defined by setting appropriate variable
bounds.

In general, if a variable is not ranged MOSEK will only evaluate that variable at points strictly within
the bounds. Hence, imposing the bound

𝑥 ≥ 0

in the case of
√
𝑥 is sufficient to guarantee that the function will only be evaluated in points where it is

differentiable.

However, if a function is defined on a closed range, specifying the variable bounds is not sufficient.
Consider the function

𝑓(𝑥) =
1

𝑥
+

1

1 − 𝑥
. (11.12)

In this case the bounds

0 ≤ 𝑥 ≤ 1

will not guarantee that MOSEK only evaluates the function for 𝑥 strictly between 0 and 1
. To force MOSEK to strictly satisfy both bounds on ranged variables set the parameter
MSK_IPAR_INTPNT_STARTING_POINT to "MSK_STARTING_POINT_SATISFY_BOUNDS" .

For efficiency reasons it may be better to reformulate the problem than to force MOSEK to observe
ranged bounds strictly. For instance, (11.12) can be reformulated as follows

𝑓(𝑥) = 1
𝑥 + 1

𝑦

0 = 1 − 𝑥− 𝑦
0 ≤ 𝑥
0 ≤ 𝑦.

Interior-point Termination Criteria

The parameters controlling when the general convex interior-point optimizer terminates are shown in
Table 11.3.

Table 11.3: Parameters employed in termination criteria.
Parameter name Purpose
MSK_DPAR_INTPNT_NL_TOL_PFEAS Controls primal feasibility
MSK_DPAR_INTPNT_NL_TOL_DFEAS Controls dual feasibility
MSK_DPAR_INTPNT_NL_TOL_REL_GAP Controls relative gap
MSK_DPAR_INTPNT_TOL_INFEAS Controls when the problem is declared infeasible
MSK_DPAR_INTPNT_NL_TOL_MU_RED Controls when the complementarity is reduced enough

90 Chapter 11. The Optimizers for Continuous Problems

CHAPTER

TWELVE

THE OPTIMIZER FOR MIXED-INTEGER PROBLEMS

A problem is a mixed-integer optimization problem when one or more of the variables are constrained
to be integer valued. Readers unfamiliar with integer optimization are recommended to consult some
relevant literature, e.g. the book [Wol98] by Wolsey.

12.1 The Mixed-integer Optimizer Overview

MOSEK can solve mixed-integer

• linear,

• quadratic and quadratically constrained, and

• conic quadratic

problems, at least as long as they do not contain both quadratic objective or constraints and conic
constraints at the same time. The mixed-integer optimizer is specialized for solving linear and conic op-
timization problems. Pure quadratic and quadratically constrained problems are automatically converted
to conic form.

By default the mixed-integer optimizer is run-to-run deterministic. This means that if a problem is
solved twice on the same computer with identical parameter settings and no time limit then the obtained
solutions will be identical. If a time limit is set then this may not be case since the time taken to solve
a problem is not deterministic. The mixed-integer optimizer is parallelized i.e. it can exploit multiple
cores during the optimization.

The solution process can be split into these phases:

1. Presolve: See Sec. 11.1.

2. Cut generation: Valid inequalities (cuts) are added to improve the lower bound.

3. Heuristic: Using heuristics the optimizer tries to guess a good feasible solution. Heuristics can
be controlled by the parameter MSK_IPAR_MIO_HEURISTIC_LEVEL .

4. Search: The optimal solution is located by branching on integer variables.

12.2 Relaxations and bounds

It is important to understand that, in a worst-case scenario, the time required to solve integer opti-
mization problems grows exponentially with the size of the problem (solving mixed-integer problems is
NP-hard). For instance, a problem with 𝑛 binary variables, may require time proportional to 2𝑛 . The
value of 2𝑛 is huge even for moderate values of 𝑛.

In practice this implies that the focus should be on computing a near-optimal solution quickly rather
than on locating an optimal solution. Even if the problem is only solved approximately, it is important
to know how far the approximate solution is from an optimal one. In order to say something about the
quality of an approximate solution the concept of relaxation is important.

91

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Consider for example a mixed-integer optimization problem

𝑧* = minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ 0
𝑥𝑗 ∈ Z, ∀𝑗 ∈ 𝒥 .

(12.1)

It has the continuous relaxation

𝑧 = minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ 0
(12.2)

obtained simply by ignoring the integrality restrictions. The relaxation is a continuous problem, and
therefore much faster to solve to optimality with a linear (or, in the general case, conic) optimizer.
We call the optimal value 𝑧 the objective bound. The objective bound 𝑧 normally increases during the
solution search process when the continuous relaxation is gradually refined.

Moreover, if �̂� is any feasible solution to (12.1) and

𝑧 := 𝑐𝑇 �̂�

then

𝑧 ≤ 𝑧* ≤ 𝑧.

These two inequalities allow us to estimate the quality of the integer solution: it is no further away from
the optimum than 𝑧 − 𝑧 in terms of the objective value. Whenever a mixed-integer problem is solved
MOSEK reports this lower bound so that the quality of the reported solution can be evaluated.

12.3 Termination Criterion

In general, it is time consuming to find an exact feasible and optimal solution to an integer optimization
problem, though in many practical cases it may be possible to find a sufficiently good solution. The issue
of terminating the mixed-integer optimizer is rather delicate and the user has numerous possibilities of
influencing it with various parameters. The mixed-integer optimizer employs a relaxed feasibility and
optimality criterion to determine when a satisfactory solution is located.

A candidate solution that is feasible for the continuous relaxation is said to be an integer feasible solution
if the criterion

min(𝑥𝑗 − ⌊𝑥𝑗⌋, ⌈𝑥𝑗⌉ − 𝑥𝑗) ≤ 𝛿1 ∀𝑗 ∈ 𝒥

is satisfied, meaning that 𝑥𝑗 is at most 𝛿1 from the nearest integer.

Whenever the integer optimizer locates an integer feasible solution it will check if the criterion

𝑧 − 𝑧 ≤ max(𝛿2, 𝛿3 max(10−10, |𝑧|))

is satisfied. If this is the case, the integer optimizer terminates and reports the integer feasible solution
as an optimal solution. If an optimal solution cannot be located after the time specified by the param-
eter MSK_DPAR_MIO_DISABLE_TERM_TIME (in seconds), it may be advantageous to relax the termination
criteria, and they become replaced with

𝑧 − 𝑧 ≤ max(𝛿4, 𝛿5 max(10−10, |𝑧|)).

Any solution satisfying those will now be reported as near optimal and the solver will be terminated
(note that since this criterion depends on timing, the optimizer will not be run to run deterministic).

All the 𝛿 tolerances discussed above can be adjusted using suitable parameters — see Table 12.1.

92 Chapter 12. The Optimizer for Mixed-integer Problems

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Table 12.1: Tolerances for the mixed-integer optimizer.
Tolerance Parameter name
𝛿1 MSK_DPAR_MIO_TOL_ABS_RELAX_INT
𝛿2 MSK_DPAR_MIO_TOL_ABS_GAP
𝛿3 MSK_DPAR_MIO_TOL_REL_GAP
𝛿4 MSK_DPAR_MIO_NEAR_TOL_ABS_GAP
𝛿5 MSK_DPAR_MIO_NEAR_TOL_REL_GAP

In Table 12.2 some other common parameters affecting the integer optimizer termination criterion are
shown. Please note that if the effect of a parameter is delayed, the associated termination criterion is
applied only after some time, specified by the MSK_DPAR_MIO_DISABLE_TERM_TIME parameter.

Table 12.2: Other parameters affecting the integer optimizer ter-
mination criterion.

Parameter name De-
layed

Explanation

MSK_IPAR_MIO_MAX_NUM_BRANCHES Yes Maximum number of branches allowed.
MSK_IPAR_MIO_MAX_NUM_RELAXS Yes Maximum number of relaxations allowed.
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS Yes Maximum number of feasible integer solutions al-

lowed.

12.4 Speeding Up the Solution Process

As mentioned previously, in many cases it is not possible to find an optimal solution to an integer
optimization problem in a reasonable amount of time. Some suggestions to reduce the solution time are:

• Relax the termination criterion: In case the run time is not acceptable, the first thing to do is to
relax the termination criterion — see Sec. 12.3 for details.

• Specify a good initial solution: In many cases a good feasible solution is either known or easily
computed using problem-specific knowledge. If a good feasible solution is known, it is usually
worthwhile to use this as a starting point for the integer optimizer.

• Improve the formulation: A mixed-integer optimization problem may be impossible to solve in one
form and quite easy in another form. However, it is beyond the scope of this manual to discuss good
formulations for mixed-integer problems. For discussions on this topic see for example [Wol98] .

12.5 Understanding Solution Quality

To determine the quality of the solution one should check the following:

• The problem status and solution status returned by MOSEK, as well as constraint violations in
case of suboptimal solutions.

• The optimality gap defined as

𝜖 = |(objective value of feasible solution) − (objective bound)| = |𝑧 − 𝑧|.

which measures how much the located solution can deviate from the optimal solution
to the problem. The optimality gap can be retrieved through the information item
"MSK_DINF_MIO_OBJ_ABS_GAP" . Often it is more meaningful to look at the relative optimality
gap normalized against the magnitude of the solution.

𝜖rel =
|𝑧 − 𝑧|

max(10−10, |𝑧|)
.

The relative optimality gap is available in "MSK_DINF_MIO_OBJ_REL_GAP" .

12.4. Speeding Up the Solution Process 93

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

12.6 The Optimizer Log

Below is a typical log output from the mixed-integer optimizer:

Presolved problem: 6573 variables, 35728 constraints, 101258 non-zeros
Presolved problem: 0 general integer, 4294 binary, 2279 continuous
Clique table size: 1636
BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_OBJ BEST_RELAX_OBJ REL_GAP(%) TIME
0 1 0 0 NA 1.8218819866e+07 NA 1.6
0 1 0 0 1.8331557950e+07 1.8218819866e+07 0.61 3.5
0 1 0 0 1.8300507546e+07 1.8218819866e+07 0.45 4.3
Cut generation started.
0 2 0 0 1.8300507546e+07 1.8218819866e+07 0.45 5.3
Cut generation terminated. Time = 1.43
0 3 0 0 1.8286893047e+07 1.8231580587e+07 0.30 7.5
15 18 1 0 1.8286893047e+07 1.8231580587e+07 0.30 10.5
31 34 1 0 1.8286893047e+07 1.8231580587e+07 0.30 11.1
51 54 1 0 1.8286893047e+07 1.8231580587e+07 0.30 11.6
91 94 1 0 1.8286893047e+07 1.8231580587e+07 0.30 12.4
171 174 1 0 1.8286893047e+07 1.8231580587e+07 0.30 14.3
331 334 1 0 1.8286893047e+07 1.8231580587e+07 0.30 17.9

[...]

Objective of best integer solution : 1.825846762609e+07
Best objective bound : 1.823311032986e+07
Construct solution objective : Not employed
Construct solution # roundings : 0
User objective cut value : 0
Number of cuts generated : 117

Number of Gomory cuts : 108
Number of CMIR cuts : 9

Number of branches : 4425
Number of relaxations solved : 4410
Number of interior point iterations: 25
Number of simplex iterations : 221131

The first lines contain a summary of the problem as seen by the optimizer. This is followed by the
iteration log. The columns have the following meaning:

• BRANCHES: Number of branches generated.

• RELAXS: Number of relaxations solved.

• ACT_NDS: Number of active branch bound nodes.

• DEPTH: Depth of the recently solved node.

• BEST_INT_OBJ: The best integer objective value, 𝑧.

• BEST_RELAX_OBJ: The best objective bound, 𝑧.

• REL_GAP(%): Relative optimality gap, 100% · 𝜖rel
• TIME: Time (in seconds) from the start of optimization.

Following that a summary of the optimization process is printed.

94 Chapter 12. The Optimizer for Mixed-integer Problems

CHAPTER

THIRTEEN

PROBLEM ANALYZER

The problem analyzer prints a detailed survey of the

• linear constraints and objective

• quadratic constraints

• conic constraints

• variables

of the model.

In the initial stages of model formulation the problem analyzer may be used as a quick way of verifying
that the model has been built or imported correctly. In later stages it can help revealing special structures
within the model that may be used to tune the optimizer’s performance or to identify the causes of
numerical difficulties.

The problem analyzer is run using the mosekopt (’anapro’) command and produces something similar
to the following (this is the problem analyzer’s survey of the aflow30a problem from the MIPLIB 2003
collection).

Analyzing the problem

Constraints Bounds Variables
upper bd: 421 ranged : all cont: 421
fixed : 58 bin : 421

Objective, min cx
range: min |c|: 0.00000 min |c|>0: 11.0000 max |c|: 500.000

distrib: |c| vars
0 421

[11, 100) 150
[100, 500] 271

Constraint matrix A has
479 rows (constraints)
842 columns (variables)

2091 (0.518449%) nonzero entries (coefficients)

Row nonzeros, A_i
range: min A_i: 2 (0.23753%) max A_i: 34 (4.038%)

distrib: A_i rows rows% acc%
2 421 87.89 87.89

[8, 15] 20 4.18 92.07
[16, 31] 30 6.26 98.33
[32, 34] 8 1.67 100.00

95

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Column nonzeros, A|j
range: min A|j: 2 (0.417537%) max A|j: 3 (0.626305%)

distrib: A|j cols cols% acc%
2 435 51.66 51.66
3 407 48.34 100.00

A nonzeros, A(ij)
range: min |A(ij)|: 1.00000 max |A(ij)|: 100.000

distrib: A(ij) coeffs
[1, 10) 1670

[10, 100] 421

Constraint bounds, lb <= Ax <= ub
distrib: |b| lbs ubs

0 421
[1, 10] 58 58

Variable bounds, lb <= x <= ub
distrib: |b| lbs ubs

0 842
[1, 10) 421

[10, 100] 421

The survey is divided into six different sections, each described below. To keep the presentation short
with focus on key elements. The analyzer generally attempts to display information on issues relevant
for the current model only: e.g., if the model does not have any conic constraints (this is the case in the
example above) or any integer variables, those parts of the analysis will not appear.

General Characteristics

The first part of the survey consists of a brief summary of the model’s linear and quadratic constraints
(indexed by 𝑖) and variables (indexed by 𝑗). The summary is divided into three subsections:

Constraints

• upper bd The number of upper bounded constraints,
∑︀𝑛−1

𝑗=0 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑖

• lower bd The number of lower bounded constraints, 𝑙𝑐𝑖 ≤
∑︀𝑛−1

𝑗=0 𝑎𝑖𝑗𝑥𝑗

• ranged The number of ranged constraints, 𝑙𝑐𝑖 ≤
∑︀𝑛−1

𝑗=0 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑖

• fixed The number of fixed constraints, 𝑙𝑐𝑖 =
∑︀𝑛−1

𝑗=0 𝑎𝑖𝑗𝑥𝑗 = 𝑢𝑐
𝑖

• free The number of free constraints

Bounds

• upper bd The number of upper bounded variables, 𝑥𝑗 ≤ 𝑢𝑥
𝑗

• lower bd The number of lower bounded variables, 𝑙𝑥𝑘 ≤ 𝑥𝑗

• ranged The number of ranged variables, 𝑙𝑥𝑘 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗

• fixed The number of fixed variables, 𝑙𝑥𝑘 = 𝑥𝑗 = 𝑢𝑥
𝑗

• free The number of free variables

96 Chapter 13. Problem Analyzer

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Variables

• cont The number of continuous variables, 𝑥𝑗 ∈ R

• bin The number of binary variables, 𝑥𝑗 ∈ {0, 1}

• int The number of general integer variables, 𝑥𝑗 ∈ Z

Only constraints, bounds and domains actually in the model will be reported on; if all entities in a section
turn out to be of the same kind, the number will be replaced by all for brevity.

Objective

The second part of the survey focuses on (the linear part of) the objective, summarizing the optimization
sense and the coefficients’ absolute value range and distribution. The number of 0 (zero) coefficients is
singled out (if any such variables are in the problem).

The range is displayed using three terms:

• min |c| The minimum absolute value among all coeffecients

• min |c|>0 The minimum absolute value among the nonzero coefficients

• max |c| The maximum absolute value among the coefficients

If some of these extrema turn out to be equal, the display is shortened accordingly:

• If min |c| is greater than zero, the min |c|>0 term is obsolete and will not be displayed

• If only one or two different coefficients occur this will be displayed using all and an explicit listing
of the coefficients

The absolute value distribution is displayed as a table summarizing the numbers by orders of magnitude
(with a ratio of 10). Again, the number of variables with a coefficient of 0 (if any) is singled out. Each line
of the table is headed by an interval (half-open intervals including their lower bounds), and is followed
by the number of variables with their objective coefficient in this interval. Intervals with no elements are
skipped.

Linear Constraints

The third part of the survey displays information on the nonzero coefficients of the linear constraint
matrix.

Following a brief summary of the matrix dimensions and the number of nonzero coefficients in total,
three sections provide further details on how the nonzero coefficients are distributed by row-wise count
(A_i), by column-wise count (A|j), and by absolute value (|A(ij)|). Each section is headed by a brief
display of the distribution’s range (min and max), and for the row/column-wise counts the corresponding
densities are displayed too (in parentheses).

The distribution tables single out three particularly interesting counts: zero, one, and two nonzeros per
row/column; the remaining row/column nonzeros are displayed by orders of magnitude (ratio 2). For
each interval the relative and accumulated relative counts are also displayed.

Note that constraints may have both linear and quadratic terms, but the empty rows and columns
reported in this part of the survey relate to the linear terms only. If empty rows and/or columns
are found in the linear constraint matrix, the problem is analyzed further in order to determine if the
corresponding constraints have any quadratic terms or the corresponding variables are used in conic or
quadratic constraints.

The distribution of the absolute values, |A(ij)|, is displayed just as for the objective coefficients de-
scribed above.

97

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Constraint and Variable Bounds

The fourth part of the survey displays distributions for the absolute values of the finite lower and upper
bounds for both constraints and variables. The number of bounds at 0 is singled out and, otherwise,
displayed by orders of magnitude (with a ratio of 10).

Quadratic Constraints

The fifth part of the survey displays distributions for the nonzero elements in the gradient of the quadratic
constraints, i.e. the nonzero row counts for the column vectors 𝑄𝑥 . The table is similar to the tables
for the linear constraints’ nonzero row and column counts described in the survey’s third part.

Quadratic constraints may also have a linear part, but that will be included in the linear constraints
survey; this means that if a problem has one or more pure quadratic constraints, part three of the survey
will report the number of linear constraint rows with 0 (zero) nonzeros. Likewise, variables that appear
in quadratic terms only will be reported as empty columns (0 nonzeros) in the linear constraint report.

Conic Constraints

The last part of the survey summarizes the model’s conic constraints. For each of the two types of cones,
quadratic and rotated quadratic, the total number of cones are reported, and the distribution of the
cones’ dimensions are displayed using intervals. Cones dimensions of 2, 3, and 4 are singled out.

98 Chapter 13. Problem Analyzer

CHAPTER

FOURTEEN

ANALYZING INFEASIBLE PROBLEMS

When developing and implementing a new optimization model, the first attempts will often be either
infeasible, due to specification of inconsistent constraints, or unbounded, if important constraints have
been left out.

In this section we will

• go over an example demonstrating how to locate infeasible constraints using the MOSEK infeasi-
bility report tool,

• discuss in more general terms which properties may cause infeasibilities, and

• present the more formal theory of infeasible and unbounded problems.

14.1 Example: Primal Infeasibility

A problem is said to be primal infeasible if no solution exists that satisfies all the constraints of the
problem.

As an example of a primal infeasible problem consider the problem of minimizing the cost of transporta-
tion between a number of production plants and stores: Each plant produces a fixed number of goods,
and each store has a fixed demand that must be met. Supply, demand and cost of transportation per
unit are given in Fig. 14.1.

Supply Demand

1

2

5

2

1

2

1

Plant 1

Plant 2

Plant 3
Store 4

Store 3

Store 2

Store 1

1000

1000

200

500

500

200
1100

Fig. 14.1: Supply, demand and cost of transportation.

The problem represented in Fig. 14.1 is infeasible, since the total demand

2300 = 1100 + 200 + 500 + 500

99

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

exceeds the total supply

2200 = 200 + 1000 + 1000

If we denote the number of transported goods from plant 𝑖 to store 𝑗 by 𝑥𝑖𝑗 , the problem can be
formulated as the LP:

minimize 𝑥11 + 2𝑥12 + 5𝑥23 + 2𝑥24 + 𝑥31 + 2𝑥33 + 𝑥34

subject to 𝑥11 + 𝑥12 ≤ 200,
𝑥23 + 𝑥24 ≤ 1000,

𝑥31 + 𝑥33 + 𝑥34 ≤ 1000,
𝑥11 + 𝑥31 = 1100,

𝑥12 = 200,
𝑥23 + 𝑥33 = 500,

𝑥24 + 𝑥34 = 500,
𝑥𝑖𝑗 ≥ 0.

(14.1)

Solving problem (14.1) using MOSEK will result in a solution, a solution status and a problem status.
Among the log output from the execution of MOSEK on the above problem are the lines:

Basic solution
Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER

The first line indicates that the problem status is primal infeasible. The second line says that a certificate
of the infeasibility was found. The certificate is returned in place of the solution to the problem.

14.2 Locating the cause of Primal Infeasibility

Usually a primal infeasible problem status is caused by a mistake in formulating the problem and therefore
the question arises: What is the cause of the infeasible status? When trying to answer this question, it
is often advantageous to follow these steps:

• Remove the objective function. This does not change the infeasibility status but simplifies the
problem, eliminating any possibility of issues related to the objective function.

• Consider whether your problem has some necessary conditions for feasibility and examine if these
are satisfied, e.g. total supply should be greater than or equal to total demand.

• Verify that coefficients and bounds are reasonably sized in your problem.

If the problem is still primal infeasible, some of the constraints must be relaxed or removed completely.
The MOSEK infeasibility report (Sec. 14.4) may assist you in finding the constraints causing the
infeasibility.

Possible ways of relaxing your problem nclude:

• Increasing (decreasing) upper (lower) bounds on variables and constraints.

• Removing suspected constraints from the problem.

Returning to the transportation example, we discover that removing the fifth constraint

𝑥12 = 200

makes the problem feasible.

100 Chapter 14. Analyzing Infeasible Problems

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

14.3 Locating the Cause of Dual Infeasibility

A problem may also be dual infeasible. In this case the primal problem is often unbounded, meaning that
feasbile solutions exists such that the objective tends towards infinity. An example of a dual infeasible
and primal unbounded problem is:

minimize 𝑥1

subject to 𝑥1 ≤ 5.

To resolve a dual infeasibility the primal problem must be made more restricted by

• Adding upper or lower bounds on variables or constraints.

• Removing variables.

• Changing the objective.

14.3.1 A cautionary note

The problem

minimize 0
subject to 0 ≤ 𝑥1,

𝑥𝑗 ≤ 𝑥𝑗+1, 𝑗 = 1, . . . , 𝑛− 1,
𝑥𝑛 ≤ −1

is clearly infeasible. Moreover, if any one of the constraints is dropped, then the problem becomes
feasible.

This illustrates the worst case scenario where all, or at least a significant portion of the constraints
are involved in causing infeasibility. Hence, it may not always be easy or possible to pinpoint a few
constraints responsible for infeasibility.

14.4 The Infeasibility Report

MOSEK includes functionality for diagnosing the cause of a primal or a dual infeasibility. It can be
turned on by setting the MSK_IPAR_INFEAS_REPORT_AUTO to "MSK_ON" . This causes MOSEK to print
a report on variables and constraints involved in the infeasibility.

The MSK_IPAR_INFEAS_REPORT_LEVEL parameter controls the amount of information presented in the
infeasibility report. The default value is 1.

14.4.1 Example: Primal Infeasibility

We will keep working with the problem (14.1) written in LP format:

Listing 14.1: The code for problem (14.1).

\
\ An example of an infeasible linear problem.
\
minimize
obj: + 1 x11 + 2 x12

+ 5 x23 + 2 x24
+ 1 x31 + 2 x33 + 1 x34

st
s0: + x11 + x12 <= 200
s1: + x23 + x24 <= 1000
s2: + x31 + x33 + x34 <= 1000

14.3. Locating the Cause of Dual Infeasibility 101

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

d1: + x11 + x31 = 1100
d2: + x12 = 200
d3: + x23 + x33 = 500
d4: + x24 + x34 = 500

bounds
end

14.4.2 Example: Dual Infeasibility

The following problem is dual to (14.1) and therefore it is dual infeasible.

Listing 14.2: The dual of problem (14.1).

maximize + 200 y1 + 1000 y2 + 1000 y3 + 1100 y4 + 200 y5 + 500 y6 + 500 y7
subject to

x11: y1+y4 < 1
x12: y1+y5 < 2
x23: y2+y6 < 5
x24: y2+y7 < 2
x31: y3+y4 < 1
x33: y3+y6 < 2
x34: y3+y7 < 1

bounds
-inf <= y1 < 0
-inf <= y2 < 0
-inf <= y3 < 0
y4 free
y5 free
y6 free
y7 free

end

This can be verified by proving that

(𝑦1, . . . , 𝑦7) = (−1, 0,−1, 1, 1, 0, 0)

is a certificate of dual infeasibility (see Sec. 16.1.2) as we can see from this report:

MOSEK DUAL INFEASIBILITY REPORT.

Problem status: The problem is dual infeasible

The following constraints are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper bound
5 x33 -1.000000e+00 NONE 2.000000e+00
6 x34 -1.000000e+00 NONE 1.000000e+00

The following variables are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper bound
0 y1 -1.000000e+00 2.000000e+02 NONE 0.000000e+00
2 y3 -1.000000e+00 1.000000e+03 NONE 0.000000e+00
3 y4 1.000000e+00 1.100000e+03 NONE NONE
4 y5 1.000000e+00 2.000000e+02 NONE NONE

Interior-point solution summary
Problem status : DUAL_INFEASIBLE
Solution status : DUAL_INFEASIBLE_CER
Primal. obj: 1.0000000000e+02 nrm: 1e+00 Viol. con: 0e+00 var: 0e+00

102 Chapter 14. Analyzing Infeasible Problems

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Let 𝑦* denote the reported primal solution. MOSEK states

• that the problem is dual infeasible,

• that the reported solution is a certificate of dual infeasibility, and

• that the infeasibility measure for 𝑦* is approximately zero.

Since the original objective was maximization, we have that 𝑐𝑇 𝑦* > 0. See Sec. 16.1.2 for how to interpret
the parameter values in the infeasibility report for a linear program. We see that the variables y1, y3,
y4, y5 and the constraints x33 and x34 contribute to infeasibility with non-zero values in the Activity
column.

One possible strategy to fix the infeasibility is to modify the problem so that the certificate of infeasibility
becomes invalid. In this case we could do one the following things:

• Add a lower bound on y3. This will directly invalidate the certificate of dual infeasibility.

• Increase the object coefficient of y3. Changing the coefficients sufficiently will invalidate the in-
equality 𝑐𝑇 𝑦* > 0 and thus the certificate.

• Add lower bounds on x11 or x31. This will directly invalidate the certificate of infeasibility.

Please note that modifying the problem to invalidate the reported certificate does not imply that the
problem becomes dual feasible — the reason for infeasibility may simply move, resulting a problem that
is still infeasible, but for a different reason.

More often, the reported certificate can be used to give a hint about errors or inconsistencies in the
model that produced the problem.

14.5 Theory Concerning Infeasible Problems

This section discusses the theory of infeasibility certificates and how MOSEK uses a certificate to
produce an infeasibility report. In general, MOSEK solves the problem

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥

(14.2)

where the corresponding dual problem is

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢
+(𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,

𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0.

(14.3)

We use the convension that for any bound that is not finite, the corresponding dual variable is fixed at
zero (and thus will have no influence on the dual problem). For example

𝑙𝑥𝑗 = −∞ ⇒ (𝑠𝑥𝑙)𝑗 = 0

14.6 The Certificate of Primal Infeasibility

A certificate of primal infeasibility is any solution to the homogenized dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢
+(𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,

𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0.

14.5. Theory Concerning Infeasible Problems 103

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

with a positive objective value. That is, (𝑠𝑐*𝑙 , 𝑠𝑐*𝑢 , 𝑠𝑥*𝑙 , 𝑠𝑥*𝑢) is a certificate of primal infeasibility if

(𝑙𝑐)𝑇 𝑠𝑐*𝑙 − (𝑢𝑐)𝑇 𝑠𝑐*𝑢 + (𝑙𝑥)𝑇 𝑠𝑥*𝑙 − (𝑢𝑥)𝑇 𝑠𝑥*𝑢 > 0

and

𝐴𝑇 𝑦 + 𝑠𝑥*𝑙 − 𝑠𝑥*𝑢 = 0,
−𝑦 + 𝑠𝑐*𝑙 − 𝑠𝑐*𝑢 = 0,
𝑠𝑐*𝑙 , 𝑠𝑐*𝑢 , 𝑠𝑥*𝑙 , 𝑠𝑥*𝑢 ≤ 0.

The well-known Farkas Lemma tells us that (14.2) is infeasible if and only if a certificate of primal
infeasibility exists.

Let (𝑠𝑐*𝑙 , 𝑠𝑐*𝑢 , 𝑠𝑥*𝑙 , 𝑠𝑥*𝑢) be a certificate of primal infeasibility then

(𝑠𝑐*𝑙)𝑖 > 0((𝑠𝑐*𝑢)𝑖 > 0)

implies that the lower (upper) bound on the 𝑖 th constraint is important for the infeasibility. Furthermore,

(𝑠𝑥*𝑙)𝑗 > 0((𝑠𝑥*𝑢)𝑖 > 0)

implies that the lower (upper) bound on the 𝑗 th variable is important for the infeasibility.

14.7 The certificate of dual infeasibility

A certificate of dual infeasibility is any solution to the problem

minimize 𝑐𝑇𝑥
subject to �̄�𝑐 ≤ 𝐴𝑥 ≤ �̄�𝑐,

�̄�𝑥 ≤ 𝑥 ≤ �̄�𝑥

with negative objective value, where we use the definitions

�̄�𝑐𝑖 :=

{︂
0, 𝑙𝑐𝑖 > −∞,
−∞, otherwise,

}︂
, �̄�𝑐

𝑖 :=

{︂
0, 𝑢𝑐

𝑖 < ∞,
∞, otherwise,

}︂
and

�̄�𝑥𝑖 :=

{︂
0, 𝑙𝑥𝑖 > −∞,
−∞, otherwise,

}︂
and �̄�𝑥

𝑖 :=

{︂
0, 𝑢𝑥

𝑖 < ∞,
∞, otherwise.

}︂
Stated differently, a certificate of dual infeasibility is any 𝑥* such that

𝑐𝑇𝑥* < 0,
�̄�𝑐 ≤ 𝐴𝑥* ≤ �̄�𝑐,
�̄�𝑥 ≤ 𝑥* ≤ �̄�𝑥

(14.4)

The well-known Farkas Lemma tells us that (14.3) is infeasible if and only if a certificate of dual infea-
sibility exists.

Note that if 𝑥* is a certificate of dual infeasibility then for any 𝑗 such that

𝑥*
𝑗 ≤ 0,

variable 𝑗 is involved in the dual infeasibility.

The code in Listing 14.3 will form the repaired problem and solve it.

104 Chapter 14. Analyzing Infeasible Problems

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Listing 14.3: Feasibility repair example.

function feasrepairex1(inputfile)

cmd = sprintf('read(%s)', inputfile);
[r,res]=mosekopt(cmd);

res.prob.primalrepair = [];
res.prob.primalrepair.wux = [1,1];
res.prob.primalrepair.wlx = [1,1];
res.prob.primalrepair.wuc = [1,1,1,1];
res.prob.primalrepair.wlc = [1,1,1,1];

param.MSK_IPAR_LOG_FEAS_REPAIR = 3;
[r,res]=mosekopt('minimize primalrepair',res.prob,param);
fprintf('Return code: %d\n',r);

end

The parameter MSK_IPAR_LOG_FEAS_REPAIR controls the amount of log output from the repair. A value
of 2 causes the optimal repair to printed out. If the fields wlx, wux, wlc or wuc are not specified, they
are all assumed to be 1-vectors of appropriate dimensions.

The output from running the commands above is:

MOSEK Version 8.0.0.32(BETA) (Build date: 2016-7-17 10:54:55)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86

Open file '../feasrepair.lp'
Reading started.
Reading terminated. Time: 0.00

MOSEK Version 8.0.0.32(BETA) (Build date: 2016-7-17 10:54:55)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86

Problem
Name :
Objective sense : min
Type : LO (linear optimization problem)
Constraints : 4
Cones : 0
Scalar variables : 2
Matrix variables : 0
Integer variables : 0

Primal feasibility repair started.
Optimizer started.
Interior-point optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 2
Eliminator terminated.
Eliminator - tries : 1 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Optimizer - threads : 20
Optimizer - solved problem : the primal
Optimizer - Constraints : 2

14.7. The certificate of dual infeasibility 105

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Optimizer - Cones : 0
Optimizer - Scalar variables : 5 conic : 0
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 3 after factor : 3
Factor - dense dim. : 0 flops : 5.00e+01
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 2.7e+01 1.0e+00 4.0e+00 1.00e+00 3.000000000e+00 0.000000000e+00 1.0e+00 0.00
1 2.5e+01 9.1e-01 1.4e+00 0.00e+00 8.711262850e+00 1.115287830e+01 2.4e+00 0.00
2 2.4e+00 8.8e-02 1.4e-01 -7.33e-01 4.062505701e+01 4.422203730e+01 2.3e-01 0.00
3 9.4e-02 3.4e-03 5.5e-03 1.33e+00 4.250700434e+01 4.258548510e+01 9.1e-03 0.00
4 2.0e-05 7.2e-07 1.1e-06 1.02e+00 4.249996599e+01 4.249998669e+01 1.9e-06 0.00
5 2.0e-09 7.2e-11 1.1e-10 1.00e+00 4.250000000e+01 4.250000000e+01 1.9e-10 0.00
Basis identification started.
Primal basis identification phase started.
ITER TIME
0 0.00
Primal basis identification phase terminated. Time: 0.00
Dual basis identification phase started.
ITER TIME
0 0.00
Dual basis identification phase terminated. Time: 0.00
Basis identification terminated. Time: 0.00
Interior-point optimizer terminated. Time: 0.01.

Optimizer terminated. Time: 0.03
Basic solution summary

Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 4.2500000000e+01 nrm: 6e+02 Viol. con: 1e-13 var: 0e+00
Dual. obj: 4.2499999999e+01 nrm: 2e+00 Viol. con: 0e+00 var: 9e-11

Optimal objective value of the penalty problem: 4.250000000000e+01

Repairing bounds.
Increasing the upper bound -2.25e+01 on constraint 'c4' (3) with 1.35e+02.
Decreasing the lower bound 6.50e+02 on variable 'x2' (4) with 2.00e+01.
Primal feasibility repair terminated.
Optimizer started.
Presolve started.
Presolve terminated. Time: 0.00
Optimizer terminated. Time: 0.00

Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -5.6700000000e+03 nrm: 6e+02 Viol. con: 0e+00 var: 0e+00
Dual. obj: -5.6700000000e+03 nrm: 1e+01 Viol. con: 0e+00 var: 0e+00

Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -5.6700000000e+03 nrm: 6e+02 Viol. con: 0e+00 var: 0e+00
Dual. obj: -5.6700000000e+03 nrm: 1e+01 Viol. con: 0e+00 var: 0e+00

Optimizer summary
Optimizer - time: 0.00

Interior-point - iterations : 0 time: 0.00
Basis identification - time: 0.00

Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00

Simplex - time: 0.00

106 Chapter 14. Analyzing Infeasible Problems

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00

Mixed integer - relaxations: 0 time: 0.00

reports the optimal repair. In this case it is to increase the upper bound on constraint c4 by 1.35e2 and
decrease the lower bound on variable x2 by 20.

14.7. The certificate of dual infeasibility 107

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

108 Chapter 14. Analyzing Infeasible Problems

CHAPTER

FIFTEEN

SENSITIVITY ANALYSIS

Given an optimization problem it is often useful to obtain information about how the optimal objective
value changes when the problem parameters are perturbed. E.g, assume that a bound represents the
capacity of a machine. Now, it may be possible to expand the capacity for a certain cost and hence it is
worthwhile knowing what the value of additional capacity is. This is precisely the type of questions the
sensitivity analysis deals with.

Analyzing how the optimal objective value changes when the problem data is changed is called sensitivity
analysis.

References

The book [Chv83] discusses the classical sensitivity analysis in Chapter 10 whereas the book [RTV97]
presents a modern introduction to sensitivity analysis. Finally, it is recommended to read the short
paper [Wal00] to avoid some of the pitfalls associated with sensitivity analysis.

Warning: Currently, sensitivity analysis is only available for continuous linear optimization prob-
lems. Moreover, MOSEK can only deal with perturbations of bounds and objective function coeffi-
cients.

15.1 Sensitivity Analysis for Linear Problems

15.1.1 The Optimal Objective Value Function

Assume that we are given the problem

𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥, 𝑐) = minimize 𝑐𝑇𝑥
subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,
(15.1)

and we want to know how the optimal objective value changes as 𝑙𝑐𝑖 is perturbed. To answer this question
we define the perturbed problem for 𝑙𝑐𝑖 as follows

𝑓𝑙𝑐𝑖 (𝛽) = minimize 𝑐𝑇𝑥
subject to 𝑙𝑐 + 𝛽𝑒𝑖 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

where 𝑒𝑖 is the 𝑖-th column of the identity matrix. The function

𝑓𝑙𝑐𝑖 (𝛽) (15.2)

shows the optimal objective value as a function of 𝛽. Please note that a change in 𝛽 corresponds to a
perturbation in 𝑙𝑐𝑖 and hence (15.2) shows the optimal objective value as a function of varying 𝑙𝑐𝑖 with
the other bounds fixed.

109

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

It is possible to prove that the function (15.2) is a piecewise linear and convex function, i.e. its graph
may look like in Fig. 15.1 and Fig. 15.2.

f()β

0 ββ β1 2

Fig. 15.1: 𝛽 = 0 is in the interior of linearity interval.

Clearly, if the function 𝑓𝑙𝑐𝑖 (𝛽) does not change much when 𝛽 is changed, then we can conclude that the
optimal objective value is insensitive to changes in 𝑙𝑐𝑖 . Therefore, we are interested in the rate of change
in 𝑓𝑙𝑐𝑖 (𝛽) for small changes in 𝛽 — specifically the gradient

𝑓 ′
𝑙𝑐𝑖

(0),

which is called the shadow price related to 𝑙𝑐𝑖 . The shadow price specifies how the objective value changes
for small changes of 𝛽 around zero. Moreover, we are interested in the linearity interval

𝛽 ∈ [𝛽1, 𝛽2]

for which

𝑓 ′
𝑙𝑐𝑖

(𝛽) = 𝑓 ′
𝑙𝑐𝑖

(0).

Since 𝑓𝑙𝑐𝑖 is not a smooth function 𝑓 ′
𝑙𝑐𝑖

may not be defined at 0, as illustrated in Fig. 15.2. In this case
we can define a left and a right shadow price and a left and a right linearity interval.

The function 𝑓𝑙𝑐𝑖 considered only changes in 𝑙𝑐𝑖 . We can define similar functions for the remaining
parameters of the 𝑧 defined in (15.1) as well:

𝑓𝑙𝑐𝑖 (𝛽) = 𝑧(𝑙𝑐 + 𝛽𝑒𝑖, 𝑢
𝑐, 𝑙𝑥, 𝑢𝑥, 𝑐), 𝑖 = 1, . . . ,𝑚,

𝑓𝑢𝑐
𝑖
(𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐 + 𝛽𝑒𝑖, 𝑙

𝑥, 𝑢𝑥, 𝑐), 𝑖 = 1, . . . ,𝑚,
𝑓𝑙𝑥𝑗 (𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥 + 𝛽𝑒𝑗 , 𝑢

𝑥, 𝑐), 𝑗 = 1, . . . , 𝑛,

𝑓𝑢𝑥
𝑗
(𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥 + 𝛽𝑒𝑗 , 𝑐), 𝑗 = 1, . . . , 𝑛,

𝑓𝑐𝑗 (𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥, 𝑐 + 𝛽𝑒𝑗), 𝑗 = 1, . . . , 𝑛.

Given these definitions it should be clear how linearity intervals and shadow prices are defined for the
parameters 𝑢𝑐

𝑖 etc.

Equality Constraints

In MOSEK a constraint can be specified as either an equality constraint or a ranged constraint. If some
constraint 𝑒𝑐𝑖 is an equality constraint, we define the optimal value function for this constraint as

𝑓𝑒𝑐𝑖 (𝛽) = 𝑧(𝑙𝑐 + 𝛽𝑒𝑖, 𝑢
𝑐 + 𝛽𝑒𝑖, 𝑙

𝑥, 𝑢𝑥, 𝑐)

110 Chapter 15. Sensitivity Analysis

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

f()β

0 βββ 21

Fig. 15.2: 𝛽 = 0 is a breakpoint.

Thus for an equality constraint the upper and the lower bounds (which are equal) are perturbed simul-
taneously. Therefore, MOSEK will handle sensitivity analysis differently for a ranged constraint with
𝑙𝑐𝑖 = 𝑢𝑐

𝑖 and for an equality constraint.

15.1.2 The Basis Type Sensitivity Analysis

The classical sensitivity analysis discussed in most textbooks about linear optimization, e.g. [Chv83] ,
is based on an optimal basic solution or, equivalently, on an optimal basis. This method may produce
misleading results [RTV97] but is computationally cheap. Therefore, and for historical reasons, this
method is available in MOSEK.

We will now briefly discuss the basis type sensitivity analysis. Given an optimal basic solution which
provides a partition of variables into basic and non-basic variables, the basis type sensitivity analysis
computes the linearity interval [𝛽1, 𝛽2] so that the basis remains optimal for the perturbed problem. A
shadow price associated with the linearity interval is also computed. However, it is well-known that
an optimal basic solution may not be unique and therefore the result depends on the optimal basic
solution employed in the sensitivity analysis. This implies that the computed interval is only a subset
of the largest interval for which the shadow price is constant. Furthermore, the optimal objective value
function might have a breakpoint for 𝛽 = 0. In this case the basis type sensitivity method will only
provide a subset of either the left or the right linearity interval.

In summary, the basis type sensitivity analysis is computationally cheap but does not provide complete
information. Hence, the results of the basis type sensitivity analysis should be used with care.

15.1.3 The Optimal Partition Type Sensitivity Analysis

Another method for computing the complete linearity interval is called the optimal partition type sen-
sitivity analysis. The main drawback of the optimal partition type sensitivity analysis is that it is
computationally expensive compared to the basis type analysis. This type of sensitivity analysis is
currently provided as an experimental feature in MOSEK.

Given the optimal primal and dual solutions to (15.1), i.e. 𝑥* and ((𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*) the optimal

15.1. Sensitivity Analysis for Linear Problems 111

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

objective value is given by

𝑧* := 𝑐𝑇𝑥*.

The left and right shadow prices 𝜎1 and 𝜎2 for 𝑙𝑐𝑖 are given by this pair of optimization problems:

𝜎1 = minimize 𝑒𝑇𝑖 𝑠
𝑐
𝑙

subject to 𝐴𝑇 (𝑠𝑐𝑙 − 𝑠𝑐𝑢) + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
(𝑙𝑐)𝑇 (𝑠𝑐𝑙) − (𝑢𝑐)𝑇 (𝑠𝑐𝑢) + (𝑙𝑥)𝑇 (𝑠𝑥𝑙) − (𝑢𝑥)𝑇 (𝑠𝑥𝑢) = 𝑧*,

𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑐
𝑙 , 𝑠

𝑥
𝑢 ≥ 0

and
𝜎2 = maximize 𝑒𝑇𝑖 𝑠

𝑐
𝑙

subject to 𝐴𝑇 (𝑠𝑐𝑙 − 𝑠𝑐𝑢) + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
(𝑙𝑐)𝑇 (𝑠𝑐𝑙) − (𝑢𝑐)𝑇 (𝑠𝑐𝑢) + (𝑙𝑥)𝑇 (𝑠𝑥𝑙) − (𝑢𝑥)𝑇 (𝑠𝑥𝑢) = 𝑧*,

𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑐
𝑙 , 𝑠

𝑥
𝑢 ≥ 0.

These two optimization problems make it easy to interpret the shadow price. Indeed, if
((𝑠𝑐𝑙)

, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*) is an arbitrary optimal solution then

(𝑠𝑐𝑙)
*
𝑖 ∈ [𝜎1, 𝜎2].

Next, the linearity interval [𝛽1, 𝛽2] for 𝑙𝑐𝑖 is computed by solving the two optimization problems

𝛽1 = minimize 𝛽
subject to 𝑙𝑐 + 𝛽𝑒𝑖 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑐𝑇𝑥− 𝜎1𝛽 = 𝑧*,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

and
𝛽2 = maximize 𝛽

subject to 𝑙𝑐 + 𝛽𝑒𝑖 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑐𝑇𝑥− 𝜎2𝛽 = 𝑧*,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

The linearity intervals and shadow prices for 𝑢𝑐
𝑖 , 𝑙

𝑥
𝑗 , and 𝑢𝑥

𝑗 are computed similarly to 𝑙𝑐𝑖 .

The left and right shadow prices for 𝑐𝑗 denoted 𝜎1 and 𝜎2 respectively are computed as follows:

𝜎1 = minimize 𝑒𝑇𝑗 𝑥
subject to 𝑙𝑐 + 𝛽𝑒𝑖 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑐𝑇𝑥 = 𝑧*,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

and
𝜎2 = maximize 𝑒𝑇𝑗 𝑥

subject to 𝑙𝑐 + 𝛽𝑒𝑖 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑐𝑇𝑥 = 𝑧*,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

Once again the above two optimization problems make it easy to interpret the shadow prices. Indeed, if
𝑥* is an arbitrary primal optimal solution, then

𝑥*
𝑗 ∈ [𝜎1, 𝜎2].

The linearity interval [𝛽1, 𝛽2] for a 𝑐𝑗 is computed as follows:

𝛽1 = minimize 𝛽
subject to 𝐴𝑇 (𝑠𝑐𝑙 − 𝑠𝑐𝑢) + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐 + 𝛽𝑒𝑗 ,

(𝑙𝑐)𝑇 (𝑠𝑐𝑙) − (𝑢𝑐)𝑇 (𝑠𝑐𝑢) + (𝑙𝑥)𝑇 (𝑠𝑥𝑙) − (𝑢𝑥)𝑇 (𝑠𝑥𝑢) − 𝜎1𝛽 ≤ 𝑧*,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑐
𝑙 , 𝑠

𝑥
𝑢 ≥ 0

and
𝛽2 = maximize 𝛽

subject to 𝐴𝑇 (𝑠𝑐𝑙 − 𝑠𝑐𝑢) + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐 + 𝛽𝑒𝑗 ,
(𝑙𝑐)𝑇 (𝑠𝑐𝑙) − (𝑢𝑐)𝑇 (𝑠𝑐𝑢) + (𝑙𝑥)𝑇 (𝑠𝑥𝑙) − (𝑢𝑥)𝑇 (𝑠𝑥𝑢) − 𝜎2𝛽 ≤ 𝑧*,

𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑐
𝑙 , 𝑠

𝑥
𝑢 ≥ 0.

112 Chapter 15. Sensitivity Analysis

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

15.1.4 Example: Sensitivity Analysis

As an example we will use the following transportation problem. Consider the problem of minimizing the
transportation cost between a number of production plants and stores. Each plant supplies a number of
goods and each store has a given demand that must be met. Supply, demand and cost of transportation
per unit are shown in Fig. 15.3.

Supply Demand

1

2

5

2

1

2

1

Plant 1

Plant 2

Plant 3
Store 4

Store 3

Store 2

Store 1

1000

500

500

800

100

400

1200

Fig. 15.3: Supply, demand and cost of transportation.

If we denote the number of transported goods from location 𝑖 to location 𝑗 by 𝑥𝑖𝑗 , problem can be
formulated as the linear optimization problem of minimizing

1𝑥11 + 2𝑥12 + 5𝑥23 + 2𝑥24 + 1𝑥31 + 2𝑥33 + 1𝑥34

subject to

𝑥11 + 𝑥12 ≤ 400,
𝑥23 + 𝑥24 ≤ 1200,

𝑥31 + 𝑥33 + 𝑥34 ≤ 1000,
𝑥11 + 𝑥31 = 800,

𝑥12 = 100,
𝑥23 + 𝑥33 = 500,

𝑥24 + 𝑥34 = 500,
𝑥11, 𝑥12, 𝑥23, 𝑥24, 𝑥31, 𝑥33, 𝑥34 ≥ 0.

(15.3)

The sensitivity parameters are shown in Table 15.1 and Table 15.2 for the basis type analysis and in
Table 15.3 and Table 15.4 for the optimal partition type analysis.

15.1. Sensitivity Analysis for Linear Problems 113

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Table 15.1: Ranges and shadow prices related to bounds on con-
straints and variables: results for the basis type sensitivity analysis.

Con. 𝛽1 𝛽2 𝜎1 𝜎2

1 −300.00 0.00 3.00 3.00
2 −700.00 +∞ 0.00 0.00
3 −500.00 0.00 3.00 3.00
4 −0.00 500.00 4.00 4.00
5 −0.00 300.00 5.00 5.00
6 −0.00 700.00 5.00 5.00
7 −500.00 700.00 2.00 2.00
Var. 𝛽1 𝛽2 𝜎1 𝜎2

𝑥11 −∞ 300.00 0.00 0.00
𝑥12 −∞ 100.00 0.00 0.00
𝑥23 −∞ 0.00 0.00 0.00
𝑥24 −∞ 500.00 0.00 0.00
𝑥31 −∞ 500.00 0.00 0.00
𝑥33 −∞ 500.00 0.00 0.00
𝑥34 −0.000000 500.00 2.00 2.00

Table 15.2: Ranges and shadow prices related to bounds on con-
straints and variables: results for the optimal partition type sensi-
tivity analysis.

Con. 𝛽1 𝛽2 𝜎1 𝜎2

1 −300.00 500.00 3.00 1.00
2 −700.00 +∞ −0.00 −0.00
3 −500.00 500.00 3.00 1.00
4 −500.00 500.00 2.00 4.00
5 −100.00 300.00 3.00 5.00
6 −500.00 700.00 3.00 5.00
7 −500.00 700.00 2.00 2.00
Var. 𝛽1 𝛽2 𝜎1 𝜎2

𝑥11 −∞ 300.00 0.00 0.00
𝑥12 −∞ 100.00 0.00 0.00
𝑥23 −∞ 500.00 0.00 2.00
𝑥24 −∞ 500.00 0.00 0.00
𝑥31 −∞ 500.00 0.00 0.00
𝑥33 −∞ 500.00 0.00 0.00
𝑥34 −∞ 500.00 0.00 2.00

114 Chapter 15. Sensitivity Analysis

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Table 15.3: Ranges and shadow prices related to the objective co-
efficients: results for the basis type sensitivity analysis.

Var. 𝛽1 𝛽2 𝜎1 𝜎2

𝑐1 −∞ 3.00 300.00 300.00
𝑐2 −∞ ∞ 100.00 100.00
𝑐3 −2.00 ∞ 0.00 0.00
𝑐4 −∞ 2.00 500.00 500.00
𝑐5 −3.00 ∞ 500.00 500.00
𝑐6 −∞ 2.00 500.00 500.00
𝑐7 −2.00 ∞ 0.00 0.00

Table 15.4: Ranges and shadow prices related to the objective co-
efficients: results for the optimal partition type sensitivity analysis.

Var. 𝛽1 𝛽2 𝜎1 𝜎2

𝑐1 −∞ 3.00 300.00 300.00
𝑐2 −∞ ∞ 100.00 100.00
𝑐3 −2.00 ∞ 0.00 0.00
𝑐4 −∞ 2.00 500.00 500.00
𝑐5 −3.00 ∞ 500.00 500.00
𝑐6 −∞ 2.00 500.00 500.00
𝑐7 −2.00 ∞ 0.00 0.00

Examining the results from the optimal partition type sensitivity analysis we see that for constraint
number 1 we have 𝜎1 = 3, 𝜎2 = 1 and 𝛽1 = −300, 𝛽2 = 500. Therefore, we have a left linearity interval
of [−300, 0] and a right interval of [0, 500]. The corresponding left and right shadow prices are 3 and 1
respectively. This implies that if the upper bound on constraint 1 increases by

𝛽 ∈ [0, 𝛽1] = [0, 500]

then the optimal objective value will decrease by the value

𝜎2𝛽 = 1𝛽.

Correspondingly, if the upper bound on constraint 1 is decreased by

𝛽 ∈ [0, 300]

then the optimal objective value will increase by the value

𝜎1𝛽 = 3𝛽.

15.2 Sensitivity Analysis with MOSEK

The following describe sensitivity analysis from the MATLAB toolbox.

15.2. Sensitivity Analysis with MOSEK 115

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

15.2.1 On bounds

The index of bounds/variables to analyzed for sensitivity are specified in the following subfields of the
MATLAB structure prob:

• .prisen.cons.subu Indexes of constraints, where upper bounds are analyzed for sensitivity.

• .prisen.cons.subl Indexes of constraints, where lower bounds are analyzed for sensitivity.

• .prisen.vars.subu Indexes of variables, where upper bounds are analyzed for sensitivity.

• .prisen.vars.subl Indexes of variables, where lower bounds are analyzed for sensitivity.

• .duasen.sub Index of variables where coefficients are analyzed for sensitivity.

For an equality constraint, the index can be specified in either subu or subl. After calling

[r,res] = mosekopt('minimize',prob)

the results are returned in the subfields prisen and duasen of res.

15.2.2 prisen

The field prisen is structured as follows:

• .cons: a MATLAB structure with subfields:

– .lr_bl Left value 𝛽1 in the linearity interval for a lower bound.

– .rr_bl Right value 𝛽2 in the linearity interval for a lower bound.

– .ls_bl Left shadow price 𝑠𝑙 for a lower bound.

– .rs_bl Right shadow price 𝑠𝑟 for a lower bound.

– .lr_bu Left value 𝛽1 in the linearity interval for an upper bound.

– .rr_bu Right value 𝛽2 in the linearity interval for an upper bound.

– .ls_bu Left shadow price 𝑠𝑙 for an upper bound.

– .rs_bu Right shadow price 𝑠𝑟 for an upper bound.

• .var: MATLAB structure with subfields:

– .lr_bl Left value 𝛽1 in the linearity interval for a lower bound on a varable.

– .rr_bl Right value 𝛽2 in the linearity interval for a lower bound on a varable.

– .ls_bl Left shadow price 𝑠𝑙 for a lower bound on a varable.

– .rs_bl Right shadow price 𝑠𝑟 for lower bound on a varable.

– .lr_bu Left value 𝛽1 in the linearity interval for an upper bound on a varable.

– .rr_bu Right value 𝛽2 in the linearity interval for an upper bound on a varable.

– .ls_bu Left shadow price 𝑠𝑙 for an upper bound on a varables.

– .rs_bu Right shadow price 𝑠𝑟 for an upper bound on a varables.

duasen

The field duasen is structured as follows:

• .lr_c Left value 𝛽1 of linearity interval for an objective coefficient.

• .rr_c Right value 𝛽2 of linearity interval for an objective coefficient.

• .ls_c Left shadow price 𝑠𝑙 for an objective coefficients .

116 Chapter 15. Sensitivity Analysis

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• .rs_c Right shadow price 𝑠𝑟 for an objective coefficients.

15.2.3 Selecting Analysis Type

The type (basis or optimal partition) of analysis to be performed can be selected by set-
ting the parameter MSK_IPAR_SENSITIVITY_TYPE to "MSK_SENSITIVITY_TYPE_BASIS" or
"MSK_SENSITIVITY_TYPE_OPTIMAL_PARTITION" . as seen in the following example.

Example

Consider the problem defined in (15.3). Suppose we wish to perform sensitivity analysis on all bounds
and coefficients. The following example demonstrates this as well as the method for changing between
basic and full sensitivity analysis.

Listing 15.1: A script to perform sensitivity analysis on problem (15.3).

function sensitivity()

clear prob;

% Obtain all symbolic constants
% defined by MOSEK.
[r,res] = mosekopt('symbcon');
sc = res.symbcon;

prob.blc = [-Inf, -Inf, -Inf, 800,100,500,500];
prob.buc = [400, 1200, 1000, 800,100,500,500];
prob.c = [1.0,2.0,5.0,2.0,1.0,2.0,1.0]';
prob.blx = [0.0,0.0,0.0,0.0,0.0,0.0,0.0];
prob.bux = [Inf,Inf,Inf,Inf, Inf,Inf,Inf];

subi = [1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 6, 6, 7, 7];
subj = [1, 2, 3, 4, 5, 6, 7, 1, 5, 6, 3, 6, 4, 7];
val = [1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0];

prob.a = sparse(subi,subj,val);

% analyse upper bound 1:7
prob.prisen.cons.subl = [];
prob.prisen.cons.subu = [1:7];
% analyse lower bound on variables 1:7
prob.prisen.vars.subl = [1:7];
prob.prisen.vars.subu = [];
% analyse coeficient 1:7
prob.duasen.sub = [1:7];
%Select basis sensitivity analysis and optimize.
param.MSK_IPAR_SENSITIVITY_TYPE=sc.MSK_SENSITIVITY_TYPE_BASIS;
[r,res] = mosekopt('minimize echo(0)',prob,param);
results(1) = res;
% Select optimal partition sensitivity analysis and optimize.
param.MSK_IPAR_SENSITIVITY_TYPE=sc.MSK_SENSITIVITY_TYPE_OPTIMAL_PARTITION;
[r,res] = mosekopt('minimize echo(0)',prob,param);
results(2) = res;
%Print results
for m = [1:2]

if m == 1
fprintf('\nBasis sensitivity results:\n')

else
fprintf('\nOptimal partition sensitivity results:\n')

end

15.2. Sensitivity Analysis with MOSEK 117

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

fprintf('\nSensitivity for bounds on constraints:\n')
for i = 1:length(prob.prisen.cons.subl)

fprintf (...
'con = %d, beta_1 = %.1f, beta_2 = %.1f, delta_1 = %.1f,delta_2 = %.1f\n', ...
prob.prisen.cons.subu(i),results(m).prisen.cons.lr_bu(i), ...
results(m).prisen.cons.rr_bu(i),...
results(m).prisen.cons.ls_bu(i),...
results(m).prisen.cons.rs_bu(i));

end

for i = 1:length(prob.prisen.cons.subu)
fprintf (...
'con = %d, beta_1 = %.1f, beta_2 = %.1f, delta_1 = %.1f,delta_2 = %.1f\n', ...
prob.prisen.cons.subu(i),results(m).prisen.cons.lr_bu(i), ...
results(m).prisen.cons.rr_bu(i),...
results(m).prisen.cons.ls_bu(i),...
results(m).prisen.cons.rs_bu(i));

end
fprintf('Sensitivity for bounds on variables:\n')
for i = 1:length(prob.prisen.vars.subl)
fprintf (...
'var = %d, beta_1 = %.1f, beta_2 = %.1f, delta_1 = %.1f,delta_2 = %.1f\n', ...
prob.prisen.vars.subl(i),results(m).prisen.vars.lr_bl(i), ...
results(m).prisen.vars.rr_bl(i),...
results(m).prisen.vars.ls_bl(i),...
results(m).prisen.vars.rs_bl(i));

end

for i = 1:length(prob.prisen.vars.subu)
fprintf (...
'var = %d, beta_1 = %.1f, beta_2 = %.1f, delta_1 = %.1f,delta_2 = %.1f\n', ...
prob.prisen.vars.subu(i),results(m).prisen.vars.lr_bu(i), ...
results(m).prisen.vars.rr_bu(i),...
results(m).prisen.vars.ls_bu(i),...
results(m).prisen.vars.rs_bu(i));

end

fprintf('Sensitivity for coefficients in objective:\n')
for i = 1:length(prob.duasen.sub)

fprintf (...
'var = %d, beta_1 = %.1f, beta_2 = %.1f, delta_1 = %.1f,delta_2 = %.1f\n', ...
prob.duasen.sub(i),results(m).duasen.lr_c(i), ...
results(m).duasen.rr_c(i),...
results(m).duasen.ls_c(i),...
results(m).duasen.rs_c(i));

end
end

The output from running the example in Listing 15.1 is shown below.

Basis sensitivity results:

Sensitivity for bounds on constraints:
con = 1, beta_1 = -300.0, beta_2 = 0.0, delta_1 = 3.0,delta_2 = 3.0
con = 2, beta_1 = -700.0, beta_2 = Inf, delta_1 = 0.0,delta_2 = 0.0
con = 3, beta_1 = -500.0, beta_2 = 0.0, delta_1 = 3.0,delta_2 = 3.0
con = 4, beta_1 = -0.0, beta_2 = 500.0, delta_1 = 4.0,delta_2 = 4.0
con = 5, beta_1 = -0.0, beta_2 = 300.0, delta_1 = 5.0,delta_2 = 5.0
con = 6, beta_1 = -0.0, beta_2 = 700.0, delta_1 = 5.0,delta_2 = 5.0
con = 7, beta_1 = -500.0, beta_2 = 700.0, delta_1 = 2.0,delta_2 = 2.0
Sensitivity for bounds on variables:
var = 1, beta_1 = Inf, beta_2 = 300.0, delta_1 = 0.0,delta_2 = 0.0
var = 2, beta_1 = Inf, beta_2 = 100.0, delta_1 = 0.0,delta_2 = 0.0

118 Chapter 15. Sensitivity Analysis

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

var = 3, beta_1 = Inf, beta_2 = 0.0, delta_1 = 0.0,delta_2 = 0.0
var = 4, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 0.0
var = 5, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 0.0
var = 6, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 0.0
var = 7, beta_1 = -0.0, beta_2 = 500.0, delta_1 = 2.0,delta_2 = 2.0
Sensitivity for coefficients in objective:
var = 1, beta_1 = Inf, beta_2 = 3.0, delta_1 = 300.0,delta_2 = 300.0
var = 2, beta_1 = Inf, beta_2 = Inf, delta_1 = 100.0,delta_2 = 100.0
var = 3, beta_1 = -2.0, beta_2 = Inf, delta_1 = 0.0,delta_2 = 0.0
var = 4, beta_1 = Inf, beta_2 = 2.0, delta_1 = 500.0,delta_2 = 500.0
var = 5, beta_1 = -3.0, beta_2 = Inf, delta_1 = 500.0,delta_2 = 500.0
var = 6, beta_1 = Inf, beta_2 = 2.0, delta_1 = 500.0,delta_2 = 500.0
var = 7, beta_1 = -2.0, beta_2 = Inf, delta_1 = 0.0,delta_2 = 0.0

Optimal partition sensitivity results:

Sensitivity for bounds on constraints:
con = 1, beta_1 = -300.0, beta_2 = 500.0, delta_1 = 3.0,delta_2 = 1.0
con = 2, beta_1 = -700.0, beta_2 = Inf, delta_1 = -0.0,delta_2 = -0.0
con = 3, beta_1 = -500.0, beta_2 = 500.0, delta_1 = 3.0,delta_2 = 1.0
con = 4, beta_1 = -500.0, beta_2 = 500.0, delta_1 = 2.0,delta_2 = 4.0
con = 5, beta_1 = -100.0, beta_2 = 300.0, delta_1 = 3.0,delta_2 = 5.0
con = 6, beta_1 = -500.0, beta_2 = 700.0, delta_1 = 3.0,delta_2 = 5.0
con = 7, beta_1 = -500.0, beta_2 = 700.0, delta_1 = 2.0,delta_2 = 2.0
Sensitivity for bounds on variables:
var = 1, beta_1 = Inf, beta_2 = 300.0, delta_1 = 0.0,delta_2 = 0.0
var = 2, beta_1 = Inf, beta_2 = 100.0, delta_1 = 0.0,delta_2 = 0.0
var = 3, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 2.0
var = 4, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 0.0
var = 5, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 0.0
var = 6, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 0.0
var = 7, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 2.0
Sensitivity for coefficients in objective:
var = 1, beta_1 = Inf, beta_2 = 3.0, delta_1 = 300.0,delta_2 = 300.0
var = 2, beta_1 = Inf, beta_2 = Inf, delta_1 = 100.0,delta_2 = 100.0
var = 3, beta_1 = -2.0, beta_2 = Inf, delta_1 = 0.0,delta_2 = 0.0
var = 4, beta_1 = Inf, beta_2 = 2.0, delta_1 = 500.0,delta_2 = 500.0
var = 5, beta_1 = -3.0, beta_2 = Inf, delta_1 = 500.0,delta_2 = 500.0
var = 6, beta_1 = Inf, beta_2 = 2.0, delta_1 = 500.0,delta_2 = 500.0
var = 7, beta_1 = -2.0, beta_2 = Inf, delta_1 = 0.0,delta_2 = 0.0

15.2. Sensitivity Analysis with MOSEK 119

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

120 Chapter 15. Sensitivity Analysis

CHAPTER

SIXTEEN

PROBLEM FORMULATION AND SOLUTIONS

In this chapter we will discuss the following issues:

• The formal, mathematical formulations of the problem types that MOSEK can solve and their
duals.

• The solution information produced by MOSEK.

• The infeasibility certificate produced by MOSEK if the problem is infeasible.

16.1 Linear Optimization

A linear optimization problem can be written as

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

(16.1)

where

• 𝑚 is the number of constraints.

• 𝑛 is the number of decision variables.

• 𝑥 ∈ R𝑛 is a vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear part of the objective function.

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

A primal solution (𝑥) is (primal) feasible if it satisfies all constraints in (16.1). If (16.1) has at least one
primal feasible solution, then (16.1) is said to be (primal) feasible.

In case (16.1) does not have a feasible solution, the problem is said to be (primal) infeasible

16.1.1 Duality for Linear Optimization

Corresponding to the primal problem (16.1), there is a dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0.

(16.2)

121

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at 0,
and we use the convention that the product of the bound value and the corresponding dual variable is
0. E.g.

𝑙𝑥𝑗 = −∞ ⇒ (𝑠𝑥𝑙)𝑗 = 0 and 𝑙𝑥𝑗 · (𝑠𝑥𝑙)𝑗 = 0.

This is equivalent to removing variable (𝑠𝑥𝑙)𝑗 from the dual problem. A solution

(𝑦, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢)

to the dual problem is feasible if it satisfies all the constraints in (16.2). If (16.2) has at least one feasible
solution, then (16.2) is (dual) feasible, otherwise the problem is (dual) infeasible.

A Primal-dual Feasible Solution

A solution

(𝑥, 𝑦, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢)

is denoted a primal-dual feasible solution, if (𝑥) is a solution to the primal problem (16.1) and
(𝑦, 𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢) is a solution to the corresponding dual problem (16.2).

The Duality Gap

Let

(𝑥*, 𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*)

be a primal-dual feasible solution, and let

(𝑥𝑐)* := 𝐴𝑥*.

For a primal-dual feasible solution we define the duality gap as the difference between the primal and
the dual objective value,

𝑐𝑇𝑥* + 𝑐𝑓 −
{︀

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* + 𝑐𝑓

}︀
=
∑︀𝑚−1

𝑖=0 [(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) + (𝑠𝑐𝑢)*𝑖 (𝑢𝑐

𝑖 − (𝑥𝑐
𝑖)

*)]

+
∑︀𝑛−1

𝑗=0

[︀
(𝑠𝑥𝑙)*𝑗 (𝑥𝑗 − 𝑙𝑥𝑗) + (𝑠𝑥𝑢)*𝑗 (𝑢𝑥

𝑗 − 𝑥*
𝑗)
]︀
≥ 0

(16.3)

where the first relation can be obtained by transposing and multiplying the dual constraints (16.2) by
𝑥* and (𝑥𝑐)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

An Optimal Solution

It is well-known that a linear optimization problem has an optimal solution if and only if there exist fea-
sible primal and dual solutions so that the duality gap is zero, or, equivalently, that the complementarity
conditions

(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑐𝑢)*𝑖 (𝑢𝑐
𝑖 − (𝑥𝑐

𝑖)
*) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑥𝑙)*𝑗 (𝑥*
𝑗 − 𝑙𝑥𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,

(𝑠𝑥𝑢)*𝑗 (𝑢𝑥
𝑗 − 𝑥*

𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,

are satisfied.

If (16.1) has an optimal solution and MOSEK solves the problem successfully, both the primal and dual
solution are reported, including a status indicating the exact state of the solution.

122 Chapter 16. Problem Formulation and Solutions

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

16.1.2 Infeasibility for Linear Optimization

Primal Infeasible Problems

If the problem (16.1) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

(16.4)

such that the objective value is strictly positive, i.e. a solution

(𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*)

to (16.4) so that

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* > 0.

Such a solution implies that (16.4) is unbounded, and that its dual is infeasible. As the constraints to
the dual of (16.4) are identical to the constraints of problem (16.1), we thus have that problem (16.1) is
also infeasible.

Dual Infeasible Problems

If the problem (16.2) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize 𝑐𝑇𝑥

subject to �̂�𝑐 ≤ 𝐴𝑥 ≤ �̂�𝑐,

�̂�𝑥 ≤ 𝑥 ≤ �̂�𝑥,

(16.5)

where

�̂�𝑐𝑖 =

{︂
0 if 𝑙𝑐𝑖 > −∞,
−∞ otherwise,

}︂
and �̂�𝑐

𝑖 :=

{︂
0 if 𝑢𝑐

𝑖 < ∞,
∞ otherwise,

}︂
and

�̂�𝑥𝑗 =

{︂
0 if 𝑙𝑥𝑗 > −∞,
−∞ otherwise,

}︂
and �̂�𝑥

𝑗 :=

{︂
0 if 𝑢𝑥

𝑗 < ∞,
∞ otherwise,

}︂
such that

𝑐𝑇𝑥 < 0.

Such a solution implies that (16.5) is unbounded, and that its dual is infeasible. As the constraints to
the dual of (16.5) are identical to the constraints of problem (16.2), we thus have that problem (16.2) is
also infeasible.

Primal and Dual Infeasible Case

In case that both the primal problem (16.1) and the dual problem (16.2) are infeasible, MOSEK will
report only one of the two possible certificates — which one is not defined (MOSEK returns the first
certificate found).

16.1. Linear Optimization 123

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Minimalization vs. Maximalization

When the objective sense of problem (16.1) is maximization, i.e.

maximize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (16.2). The dual problem thus takes the form

minimize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0.

This means that the duality gap, defined in (16.3) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0,

(16.6)

such that the objective value is strictly negative

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* < 0.

Similarly, the certificate of dual infeasibility is an 𝑥 satisfying the requirements of (16.5) such that
𝑐𝑇𝑥 > 0.

16.2 Conic Quadratic Optimization

Conic quadratic optimization is an extension of linear optimization (see Sec. 16.1) allowing conic domains
to be specified for subsets of the problem variables. A conic quadratic optimization problem can be
written as

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ 𝒦,

(16.7)

where set 𝒦 is a Cartesian product of convex cones, namely 𝒦 = 𝒦1 × · · · × 𝒦𝑝. Having the domain
restriction, 𝑥 ∈ 𝒦, is thus equivalent to

𝑥𝑡 ∈ 𝒦𝑡 ⊆ R𝑛𝑡 ,

where 𝑥 = (𝑥1, . . . , 𝑥𝑝) is a partition of the problem variables. Please note that the 𝑛-dimensional
Euclidean space R𝑛 is a cone itself, so simple linear variables are still allowed.

MOSEK supports only a limited number of cones, specifically:

• The R𝑛 set.

• The quadratic cone:

𝒬𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 : 𝑥1 ≥

⎯⎸⎸⎷ 𝑛∑︁
𝑗=2

𝑥2
𝑗

⎫⎬⎭ .

• The rotated quadratic cone:

124 Chapter 16. Problem Formulation and Solutions

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

𝒬𝑛
r =

⎧⎨⎩𝑥 ∈ R𝑛 : 2𝑥1𝑥2 ≥
𝑛∑︁

𝑗=3

𝑥2
𝑗 , 𝑥1 ≥ 0, 𝑥2 ≥ 0

⎫⎬⎭ .

Although these cones may seem to provide only limited expressive power they can be used to model a
wide range of problems as demonstrated in [MOSEKApS12] .

16.2.1 Duality for Conic Quadratic Optimization

The dual problem corresponding to the conic quadratic optimization problem (16.7) is given by

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝑠𝑥𝑛 = 𝑐

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑠𝑥𝑛 ∈ 𝒦*,

(16.8)

where the dual cone 𝒦* is a Cartesian product of the cones

𝒦* = 𝒦*
1 × · · · × 𝒦*

𝑝,

where each 𝒦*
𝑡 is the dual cone of 𝒦𝑡. For the cone types MOSEK can handle, the relation between the

primal and dual cone is given as follows:

• The R𝑛 set:

𝒦𝑡 = R𝑛𝑡 ⇔ 𝒦*
𝑡 = {𝑠 ∈ R𝑛𝑡 : 𝑠 = 0} .

• The quadratic cone:

𝒦𝑡 = 𝒬𝑛𝑡 ⇔ 𝒦*
𝑡 = 𝒬𝑛𝑡 =

⎧⎨⎩𝑠 ∈ R𝑛𝑡 : 𝑠1 ≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=2

𝑠2𝑗

⎫⎬⎭ .

• The rotated quadratic cone:

𝒦𝑡 = 𝒬𝑛𝑡
r ⇔ 𝒦*

𝑡 = 𝒬𝑛𝑡
r =

⎧⎨⎩𝑠 ∈ R𝑛𝑡 : 2𝑠1𝑠2 ≥
𝑛𝑡∑︁
𝑗=3

𝑠2𝑗 , 𝑠1 ≥ 0, 𝑠2 ≥ 0

⎫⎬⎭ .

Please note that the dual problem of the dual problem is identical to the original primal problem.

16.2.2 Infeasibility for Conic Quadratic Optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of infeasibility. This works
exactly as for linear problems (see Sec. 16.1.2).

Primal Infeasible Problems

If the problem (16.7) is infeasible, MOSEK will report a certificate of primal infeasibility: The dual
solution reported is the certificate of infeasibility, and the primal solution is undefined.

A certificate of primal infeasibility is a feasible solution to the problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝑠𝑥𝑛 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑠𝑥𝑛 ∈ 𝒦*,

such that the objective value is strictly positive.

16.2. Conic Quadratic Optimization 125

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Dual infeasible problems

If the problem (16.8) is infeasible, MOSEK will report a certificate of dual infeasibility: The primal
solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the problem

minimize 𝑐𝑇𝑥

subject to �̂�𝑐 ≤ 𝐴𝑥 ≤ �̂�𝑐,

�̂�𝑥 ≤ 𝑥 ≤ �̂�𝑥,
𝑥 ∈ 𝒦,

where

�̂�𝑐𝑖 =

{︂
0 if 𝑙𝑐𝑖 > −∞,
−∞ otherwise,

}︂
and �̂�𝑐

𝑖 :=

{︂
0 if 𝑢𝑐

𝑖 < ∞,
∞ otherwise,

}︂
and

�̂�𝑥𝑗 =

{︂
0 if 𝑙𝑥𝑗 > −∞,
−∞ otherwise,

}︂
and �̂�𝑥

𝑗 :=

{︂
0 if 𝑢𝑥

𝑗 < ∞,
∞ otherwise,

}︂
such that the objective value is strictly negative.

16.3 Semidefinite Optimization

Semidefinite optimization is an extension of conic quadratic optimization (see Sec. 16.2) allowing pos-
itive semidefinite matrix variables to be used in addition to the usual scalar variables. A semidefinite
optimization problem can be written as

minimize
∑︀𝑛−1

𝑗=0 𝑐𝑗𝑥𝑗 +
∑︀𝑝−1

𝑗=0

⟨︀
𝐶𝑗 , 𝑋𝑗

⟩︀
+ 𝑐𝑓

subject to 𝑙𝑐𝑖 ≤
∑︀𝑛−1

𝑗=0 𝑎𝑖𝑗𝑥𝑗 +
∑︀𝑝−1

𝑗=0

⟨︀
𝐴𝑖𝑗 , 𝑋𝑗

⟩︀
≤ 𝑢𝑐

𝑖 , 𝑖 = 0, . . . ,𝑚− 1

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1

𝑥 ∈ 𝒦, 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ , 𝑗 = 0, . . . , 𝑝− 1

(16.9)

where the problem has 𝑝 symmetric positive semidefinite variables 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ of dimension 𝑟𝑗 with

symmetric coefficient matrices 𝐶𝑗 ∈ 𝒮𝑟𝑗 and 𝐴𝑖,𝑗 ∈ 𝒮𝑟𝑗 . We use standard notation for the matrix inner
product, i.e., for 𝑈, 𝑉 ∈ R𝑚×𝑛 we have

⟨𝑈, 𝑉 ⟩ :=

𝑚−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝑈𝑖𝑗𝑉𝑖𝑗 .

With semidefinite optimization we can model a wide range of problems as demonstrated in
[MOSEKApS12] .

16.3.1 Duality for Semidefinite Optimization

The dual problem corresponding to the semidefinite optimization problem (16.9) is given by

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝑐−𝐴𝑇 𝑦 + 𝑠𝑥𝑢 − 𝑠𝑥𝑙 = 𝑠𝑥𝑛,
𝐶𝑗 −

∑︀𝑚
𝑖=0 𝑦𝑖𝐴𝑖𝑗 = 𝑆𝑗 , 𝑗 = 0, . . . , 𝑝− 1

𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 𝑦,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑠𝑥𝑛 ∈ 𝒦*, 𝑆𝑗 ∈ 𝒮𝑟𝑗
+ , 𝑗 = 0, . . . , 𝑝− 1

(16.10)

126 Chapter 16. Problem Formulation and Solutions

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

where 𝐴 ∈ R𝑚×𝑛, 𝐴𝑖𝑗 = 𝑎𝑖𝑗 , which is similar to the dual problem for conic quadratic optimization (see
Sec. 16.2.1), except for the addition of dual constraints(︃

𝐶𝑗 −
𝑚∑︁
𝑖=0

𝑦𝑖𝐴𝑖𝑗

)︃
∈ 𝒮𝑟𝑗

+ .

Note that the dual of the dual problem is identical to the original primal problem.

16.3.2 Infeasibility for Semidefinite Optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of the infeasibility. This works
exactly as for linear problems (see Sec. 16.1.2).

Primal Infeasible Problems

If the problem (16.9) is infeasible, MOSEK will report a certificate of primal infeasibility: The dual
solution reported is a certificate of infeasibility, and the primal solution is undefined.

A certificate of primal infeasibility is a feasible solution to the problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝑠𝑥𝑛 = 0,∑︀𝑚−1
𝑖=0 𝑦𝑖𝐴𝑖𝑗 + 𝑆𝑗 = 0, 𝑗 = 0, . . . , 𝑝− 1

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑠𝑥𝑛 ∈ 𝒦*, 𝑆𝑗 ∈ 𝒮𝑟𝑗
+ , 𝑗 = 0, . . . , 𝑝− 1

such that the objective value is strictly positive.

Dual Infeasible Problems

If the problem (16.10) is infeasible, MOSEK will report a certificate of dual infeasibility: The primal
solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the problem

minimize
∑︀𝑛−1

𝑗=0 𝑐𝑗𝑥𝑗 +
∑︀𝑝−1

𝑗=0

⟨︀
𝐶𝑗 , 𝑋𝑗

⟩︀
subject to �̂�𝑐𝑖 ≤

∑︀𝑛
𝑗=1 𝑎𝑖𝑗𝑥𝑗 +

∑︀𝑝−1
𝑗=0

⟨︀
𝐴𝑖𝑗 , 𝑋𝑗

⟩︀
≤ �̂�𝑐

𝑖 , 𝑖 = 0, . . . ,𝑚− 1

�̂�𝑥 ≤ 𝑥 ≤ �̂�𝑥,
𝑥 ∈ 𝒦, 𝑋𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 0, . . . , 𝑝− 1

where

�̂�𝑐𝑖 =

{︂
0 if 𝑙𝑐𝑖 >;−∞,
−∞ otherwise, and �̂�𝑐

𝑖 :=

{︂
0 if 𝑢𝑐

𝑖 <;∞,
∞ otherwise,

and

�̂�𝑥𝑗 =

{︂
0 if 𝑙𝑥𝑗 >;−∞,
−∞ otherwise, and �̂�𝑥

𝑗 :=

{︂
0 if 𝑢𝑥

𝑗 <;∞,
∞ otherwise,

such that the objective value is strictly negative.

16.3. Semidefinite Optimization 127

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

16.4 Quadratic and Quadratically Constrained Optimization

A convex quadratic and quadratically constrained optimization problem has the form

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐𝑘 ≤ 1
2𝑥

𝑇𝑄𝑘𝑥 +
∑︀𝑛−1

𝑗=0 𝑎𝑘𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1,

(16.11)

where 𝑄𝑜 and all 𝑄𝑘 are symmetric matrices. Moreover, for convexity, 𝑄𝑜 must be a positive semidefinite
matrix and 𝑄𝑘 must satisfy

−∞ < 𝑙𝑐𝑘 ⇒ 𝑄𝑘 is negative semidefinite,
𝑢𝑐
𝑘 < ∞ ⇒ 𝑄𝑘 is positive semidefinite,

−∞ < 𝑙𝑐𝑘 ≤ 𝑢𝑐
𝑘 < ∞ ⇒ 𝑄𝑘 = 0.

The convexity requirement is very important and MOSEK checks whether it is fulfilled.

16.4.1 A Recommendation

Any convex quadratic optimization problem can be reformulated as a conic quadratic optimization prob-
lem, see [MOSEKApS12] and in particular [And13] . In fact MOSEK does such conversion internally
as a part of the solution process for the following reasons:

• the conic optimizer is numerically more robust than the one for quadratic problems.

• the conic optimizer is usually faster because quadratic cones are simpler than quadratic functions,
even though the conic reformulation usually has more constraints and variables than the original
quadratic formulation.

• it is easy to dualize the conic formulation if deemed worthwhile potentially leading to (huge)
computational savings.

However, instead of relying on the automatic reformulation we recommend to formulate the problem as
a conic problem from scratch because:

• it saves the computational overhead of the reformulation including the convexity check. A conic
problem is convex by construction and hence no convexity check is needed for conic problems.

• usually the modeller can do a better reformulation than the automatic method because the modeller
can exploit the knowledge of the problem at hand.

To summarize we recommend to formulate quadratic problems and in particular quadratically constrained
problems directly in conic form.

16.4.2 Duality for Quadratic and Quadratically Constrained Optimization

The dual problem corresponding to the quadratic and quadratically constrained optimization problem
(16.11) is given by

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 1
2𝑥

𝑇
{︁∑︀𝑚−1

𝑘=0 𝑦𝑘𝑄
𝑘 −𝑄𝑜

}︁
𝑥 + 𝑐𝑓

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 +
{︁∑︀𝑚−1

𝑘=0 𝑦𝑘𝑄
𝑘 −𝑄𝑜

}︁
𝑥 = 𝑐,

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0.

(16.12)

The dual problem is related to the dual problem for linear optimization (see Sec. 16.1.1), but depends
on the variable 𝑥 which in general can not be eliminated. In the solutions reported by MOSEK, the
value of 𝑥 is the same for the primal problem (16.11) and the dual problem (16.12).

128 Chapter 16. Problem Formulation and Solutions

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

16.4.3 Infeasibility for Quadratic and Quadratically Constrained Optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of infeasibility. This works
exactly as for linear problems (see Sec. 16.1.2).

Primal Infeasible Problems

If the problem (16.11) with all 𝑄𝑘 = 0 is infeasible, MOSEK will report a certificate of primal infeasi-
bility. As the constraints are the same as for a linear problem, the certificate of infeasibility is the same
as for linear optimization (see Sec. 16.1.2).

Dual Infeasible Problems

If the problem (16.12) with all 𝑄𝑘 = 0 is dual infeasible, MOSEK will report a certificate of dual
infeasibility. The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the problem

minimize 𝑐𝑇𝑥

subject to �̂�𝑐 ≤ 𝐴𝑥 ≤ �̂�𝑐,
0 ≤ 𝑄𝑜𝑥 ≤ 0,

�̂�𝑥 ≤ 𝑥 ≤ �̂�𝑥,

where

�̂�𝑐𝑖 =

{︂
0 if 𝑙𝑐𝑖 > −∞,
−∞ otherwise,

}︂
and �̂�𝑐

𝑖 :=

{︂
0 if 𝑢𝑐

𝑖 < ∞,
∞ otherwise,

}︂
and

�̂�𝑥𝑗 =

{︂
0 if 𝑙𝑥𝑗 > −∞,
−∞ otherwise,

}︂
and �̂�𝑥

𝑗 :=

{︂
0 if 𝑢𝑥

𝑗 < ∞,
∞ otherwise,

}︂
such that the objective value is strictly negative.

16.5 General Convex Optimization

The general nonlinear optimizer (which may be available for all or some types of nonlinear problems
depending on the interface), solves smooth (twice differentiable) convex nonlinear optimization problems
of the form

minimize 𝑓(𝑥) + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝑔(𝑥) + 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

where

• 𝑚 is the number of constraints.

• 𝑛 is the number of decision variables.

• 𝑥 ∈ R𝑛 is a vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear part objective function.

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

16.5. General Convex Optimization 129

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

• 𝑓 : R𝑛 → R is a nonlinear function.

• 𝑔 : R𝑛 → R𝑚 is a nonlinear vector function.

This means that the 𝑖-th constraint has the form

𝑙𝑐𝑖 ≤ 𝑔𝑖(𝑥) +

𝑛∑︁
𝑗=1

𝑎𝑖𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑖 .

The linear term 𝐴𝑥 is not included in 𝑔(𝑥) since it can be handled much more efficiently as a separate
entity when optimizing.

The nonlinear functions 𝑓 and 𝑔 must be smooth in all 𝑥 ∈ [𝑙𝑥;𝑢𝑥]. Moreover, 𝑓(𝑥) must be a convex
function and 𝑔𝑖(𝑥) must satisfy

−∞ < 𝑙𝑐𝑖 ⇒ 𝑔𝑖(𝑥) is concave,
𝑢𝑐
𝑖 < ∞ ⇒ 𝑔𝑖(𝑥) is convex,

−∞ < 𝑙𝑐𝑖 ≤ 𝑢𝑐
𝑖 < ∞ ⇒ 𝑔𝑖(𝑥) = 0.

16.5.1 Duality for General convex Optimization

Similarly to the linear case, MOSEK reports dual information in the general nonlinear case. Indeed in
this case the Lagrange function is defined by

𝐿(𝑥, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢) := 𝑓(𝑥) + 𝑐𝑇𝑥 + 𝑐𝑓

−(𝑠𝑐𝑙)
𝑇 (𝑔(𝑥) + 𝐴𝑥− 𝑙𝑐) − (𝑠𝑐𝑢)𝑇 (𝑢𝑐 − 𝑔(𝑥) −𝐴𝑥)

−(𝑠𝑥𝑙)𝑇 (𝑥− 𝑙𝑥) − (𝑠𝑥𝑢)𝑇 (𝑢𝑥 − 𝑥),

and the dual problem is given by

maximize 𝐿(𝑥, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢)

subject to ∇𝑥𝐿(𝑥, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢)𝑇 = 0,

𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

which is equivalent to

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

+𝑓(𝑥) − 𝑔(𝑥)𝑇 𝑦 − (∇𝑓(𝑥)𝑇 −∇𝑔(𝑥)𝑇 𝑦)𝑇𝑥
subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 − (∇𝑓(𝑥)𝑇 −∇𝑔(𝑥)𝑇 𝑦) = 𝑐,

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0.

In this context we use the following definition for scalar functions

∇𝑓(𝑥) =
[︁
𝜕𝑓(𝑥)
𝜕𝑥1

, . . . , 𝜕𝑓(𝑥)
𝜕𝑥𝑛

]︁
,

and accordingly for vector functions

∇𝑔(𝑥) =

⎡⎢⎣ ∇𝑔1(𝑥)
...

∇𝑔𝑚(𝑥)

⎤⎥⎦ .

130 Chapter 16. Problem Formulation and Solutions

CHAPTER

SEVENTEEN

TOOLBOX REFERENCE

17.1 Command Reference

The MOSEK toolbox provides a set of functions to interface to the MOSEK solver.

Main interface

mosekopt is the main interface to MOSEK.

Helper functions

These functions provide an easy-to-use but less flexible interface than the mosekopt function. In fact
these procedures are just wrappers around the mosekopt interface and they are defined in MATLAB
m-files.

• msklpopt : Solves linear optimization problems.

• mskqpopt : Solves quadratic optimization problems.

• mskenopt : Solves entropy optimization problems.

• mskgpopt : Solves geometric optimization problems.

• mskscopt : Solves separable convex optimization problems.

I/O

• mskgpwri : Write a geometric optimization problem to file.

• mskgpread : Read a geometric optimization problem from file.

Options

• mskoptimget : Get the solver parameters.

• mskoptimset : Set the solver parameters.

MATLAB optimization toolbox compatible functions.

• linprog : Solves linear optimization problems.

• quadprog : Solves quadratic optimization problems.

• intlinprog : Solves linear optimization problems with integer variables.

131

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• lsqlin : Solves least-squares with linear constraints.

• lsqnonneg : Solves least-squares with non-negativity constraints.

17.1.1 Main Interface

rcode, res = mosekopt(cmd, prob, param, callback)
Solves an optimization problem. Data specifying the optimization problem can either be read from
a file or be inputted directly from MATLAB. It also makes possible to write a file.

The following command strings are recognized for the cmd parameter:

• anapro: Runs the problem analyzer.

• echo(n): Controls how much information is echoed to the screen. n must be a nonnegative
integer, where 0 means that no information is displayed and 3 means that all information is
displayed.

• info: Return the complete task information database in the field info of a res struct.

• param: Return the complete parameter database in res.param.

• primalrepair: Performs a primal feasibility repair. See Sec. 14 for details.

• maximize: Maximize the objective.

• max : Sets the objective sense (similar to .maximize), without performing an optimization.

• minimize: Minimize the objective.

• min: Sets the objective sense (similar to .minimize), without performing an optimization.

• nokeepenv: Delete the MOSEK environment after each run. This can increase the license
checkout overhead significantly and is therefore only intended as a debug feature.

• read(name): Request that data is read from a file name.

• statuskeys(n): Controls the format of status keys (problem status, solution status etc.) in
the returned problem:

– statuskeys(0) – all the status keys are returned as strings,

– statuskeys(1) – all the status keys are returned as numeric codes.

• symbcon: Return the symbcon data structure in res.symbcon. See structure symbcon for
details.

• write(name): Write problem to the file name.

• log(name): Write solver log-output to the file name.

• version: Return the MOSEK version numbers in res.version.

Parameters

• cmd [in] (string) – The commands to be executed. By default it takes the value
minimize.

• prob [in] (prob) – [optional] a structure containing the problem data.

• param [in] (struct) – [optional] a structure which is used to specify algorithmic
parameters to MOSEK. The fields of param must be valid MOSEK parameter
names. Moreover, the values corresponding to the fields must be of a valid type,
i.e. the value of a string parameter must be a string, the value of an integer
paramter must be an integer etc.

• callback [in] (callback) – [optional] A MATLAB structure defining call-back
data and functions.

Return

132 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• rcode (rescode) – Return code. The interpretation of the value of the return
code is listed in Sec. 17.6.

• res (res) – [optional] Solution obtained by the interior-point algorithm.

17.1.2 Helper Functions

res = msklpopt(c, a, blc, buc, blx, bux, param, cmd)
Solves a linear optimization problem of the form

𝑚𝑖𝑛 𝑐𝑇𝑥
𝑠𝑡.

𝑏𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑏𝑢𝑐
𝑏𝑢𝑥 ≤ 𝑥 ≤ 𝑏𝑢𝑥.

Note: lc=[] and buc=[] means that the lower and upper bounds are plus and minus infinite
respectively. The same interpretation is used for blx and bux. Note -inf is allowed in blc and
blx. Similarly, inf is allowed in buc and bux.

Parameters

• c [in] (double[]) – The objective function vector.

• a [in] (double[][]) – A (preferably sparse) matrix.

• blc [in] (double[]) – Constraints lower bounds.

• buc [in] (double[]) – Constraints upper bounds.

• blx [in] (double[]) – Variables lower bounds.

• bux [in] (double[]) – Variables upper bounds.

• param [in] (list) – New MOSEK parameters.

• cmd [in] (list) – [optional] The command list. See mosekopt for a list of avail-
able commands.

Return res (res) – [optional] Solution information.

res = mskqpopt(q, c, a, blc, buc, blx, bux, param, cmd)
Solves the optimization problem

min 1
2𝑥

𝑇𝑄𝑥 + 𝑐𝑇𝑥
𝑠𝑡.

𝑏𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑏𝑢𝑐
𝑏𝑙𝑥 ≤ 𝑥 ≤ 𝑏𝑢𝑥

Note: blc=[] and buc=[] means that the lower and upper bounds are plus and minus infinite
respectively. The same interpretation is used for blx and bux. Note -inf is allowed in blc and blx.
Similarly, inf is allowed in buc and bux.

Parameters

• q (double[]) – It is assumed that q is a symmetric positive semi-definite matrix.

• c [in] (double[]) – A vector.

• a (float[][]) – A (preferably) sparse matrix.

• blc [in] (double[]) – Constraints lower bounds.

17.1. Command Reference 133

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• buc [in] (double[]) – Constraints upper bounds

• blx [in] (double[]) – Variables lower bounds

• bux [in] (double[]) – Variables upper bounds

• param [in] (list) – MOSEK parameters.

• cmd [in] (string) – [optional] The command list. See mosekopt for a list of
available commands.

Return res (res) – [optional] Solution information.

res = mskenopt(d, c, a, blc, buc, param, cmd)
Solves the entropy optimization problem

min 𝑑𝑇 (
∑︀

𝑥𝑖𝑙𝑛(𝑥𝑖)) + 𝑐𝑇𝑥
s.t. 𝑏𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑏𝑢𝑐

𝑥 ∈ R𝑛
+

It is required that 𝑑 ≥ 0.0.

Parameters

• d [in] (double[]) – A vector of non negative values.

• c [in] (double[]) – A vector.

• a [in] (double[][]) – A (preferably) sparse matrix.

• blc [in] (double[]) – [optional] Constraints lower bounds.

• buc [in] (double[]) – [optional] Constraints Upper bounds.

• param [in] (list) – [optional] MOSEK parameters.

• cmd [in] (list) – [optional] MOSEK commands. See mosekopt for a list of
available commands.

Return res (res) – [optional] Solution information.

res = mskgpopt(c, a, map, param, cmd)
Solves the posynomial version of the geometric optimization problem in exponential form:

min log(𝑠𝑢𝑚(𝑘 ∈ 𝑓𝑖𝑛𝑑(𝑚𝑎𝑝 == 0), 𝑐(𝑘) * 𝑒𝑥𝑝(𝑎(𝑘, :) * 𝑥))
𝑠𝑡. log(𝑠𝑢𝑚(𝑘 ∈ 𝑓𝑖𝑛𝑑(𝑚𝑎𝑝 == 𝑖), 𝑐(𝑘) * 𝑒𝑥𝑝(𝑎(𝑘, :) * 𝑥)) <= 0, 𝑓𝑜𝑟𝑘 = 1, ...,𝑚𝑎𝑥(𝑚𝑎𝑝)

(17.1)

It is required that 𝑐 > 0.0. See Sec. 7.3.

Parameters

• c [in] (double[]) – A vector.

• a [in] (double[][]) – A (preferably) sparse matrix.

• map (int[][]) – Corresponds to the set 𝐽 in Sec. 7.3.

• param [in] (list) – [optional] MOSEK parameters.

• cmd [in] (list) – [optional] The command list. See mosekopt for a list of avail-
able commands.

Return res (res) – [optional] Solution information.

See also mskgpwri , mskgpread

res = mskscopt(opr, opri, oprj, oprf, oprg, c, a, blc, buc, blx, bux, param, cmd)
Solves separable convex optimization problems on the form

min 𝑐𝑇𝑥 +
∑︀

𝑗 𝑓𝑗(𝑥𝑗)

s.t. 𝑏𝑙𝑐 ≤ 𝑎𝑥 +
∑︀

𝑗 𝑔𝑘𝑗(𝑥𝑗) ≤ 𝑏𝑢𝑐(𝑘), 𝑘 = 1, ..., 𝑠𝑖𝑧𝑒(𝑎)

𝑏𝑙𝑥 ≤ 𝑥 ≤ 𝑏𝑢𝑥

134 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

The nonlinear functions 𝑓𝑗 and 𝑔𝑘𝑗 are specified using opr, opri, oprj oprf, oprg as follows.
For all k between 1 and length(opri) then following nonlinear expression

if opr(k,:)=='ent'
oprf(k) * x(oprj(k)) * log(x(oprj(k)))

elseif if opr(k,:)=='exp'
oprf(k) * exp(oprg(k)*x(oprj(k)))

elseif if opr(k,:)=='log'
oprf(k) * log(x(oprj(k)))

elseif if opr(k,:)=='pow'
oprf(k) * x(oprj(k))^oprg(k)

else
An invalid operator has been specified.

Is added to the objective if opri(k)=0. Otherwise it is added to constraint opri(k).

Parameters

• c [in] (double[]) – Is a vector.

• a [in] (double[][]) – Is a (preferably) sparse matrix.

• blc [in] (double[]) – [optional] Lower bounds on constraints.

• buc [in] (double[]) – [optional] Upper bounds on constraints.

• blx [in] (double[]) – [optional] Lower bounds on variables.

• bux [in] (double[]) – [optional] Upper bounds on variables.

• param [in] (list) – [optional] MOSEK parameters.

• cmd [in] (list) – [optional] The command list. See mosekopt for a list of avail-
able commands.

Return res (res) – [optional] Solution information.

17.1.3 I/O

c, a, map = mskgpread(filename)
This function reads a Geometric Programming (gp) problem from a file compatible with the
mskenopt command tool.

Parameters filename [in] (string) – The name of the file to read.

Return

• c (double[]) – Objective function coefficients. See problem (17.1).

• a (double[]) – Linear constraints coefficients. See problem (17.1).

• map (struct) – Data in the same format accepted by mskgpopt .

mskgpwri(c, a, map, filename)
This function writes a Geometric Programming (gp) problem to a file in a format compatible with
the mskenopt command tool.

Parameters

• c [in] (double[]) – Objective function coefficients. See problem (17.1).

• a [in] (double[]) – Linear constraints coefficients. See problem (17.1).

• map [in] (struct) – Data in the same format accepted by mskgpopt .

• filename (string) – The output file name.

17.1. Command Reference 135

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

17.1.4 Options

val = mskoptimget(options, param, default)
Obtains a value of an optimization parameter. See the mskoptimset function for which parameters
that can be set.

Parameters

• options [in] (struct) – The optimization options structure.

• param [in] (string) – Name of the optimization parameter for which the value
should be obtained.

• default [in] (string) – [optional] If param is not defined, the value of default
is returned instead.

Return val (list) – Value of the required option. If the option does not exist, then []
is returned unless the value default is defined in which case the default value is
returned.

options = mskoptimset(arg1, arg2, param1, value1, param2, value2, ...)
Obtains and modifies the optimization options structure. Only a subset of the fields in the opti-
mization structure recognized by the MATLAB optimization toolbox is recognized by MOSEK.
In addition the optimization options structure can be used to modify all the MOSEK specific
parameters defined in Sec. 17.4.

• .Diagnostics Used to control how much diagnostic information is printed. Following values
are accepted:

off No diagnostic information is printed.
on Diagnostic information is printed.

• .Display Defines what information is displayed. The following values are accepted:

off No output is displayed.
iter Some output is displayed for each iteration.
final Only the final output is displayed.

• .MaxIter Maximum number of iterations allowed.

• .Write A filename to write the problem to. If equal to the empty string no file is written.
E.g the option Write(myfile.opf) writes the file myfile.opf in the opf format.

Parameters

• arg1 [in] (None) – [optional] Is allowed to be any of the following two things
[in]:

– Any string The same as using no argument.

– A structure The argument is assumed to be a structure containing options,
which are copied to the return options.

• param1 [in] (string) – [optional] A string containing the name of a parameter
that should be modified.

• value1 [in] (None) – [optional] The new value assigned to the parameter with
the name param1.

• param2 [in] (None) – [optional] See param1.

• value2 [in] (None) – [optional] See value1.

Return options (struct) – The updated optimization options structure.

136 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

17.1.5 MATLAB Optimization Toolbox Compatible Functions.

x, fval, exitflag, output = intlinprog(f, A, b, B, c, x0, options)
x, fval, exitflag, output = intlinprog(problem)

Solves the binary linear optimization problem:

minimize 𝑓𝑇𝑥
subject to 𝐴𝑥 ≤ 𝑏,

𝐵𝑥 = 𝑐,
𝑥 ∈ {0, 1}𝑛

Parameters

• f [in] (double[]) – The objective function.

• A [in] (double[][]) – Constraint matrix for the inequalities. Use A=[] if there
are no inequalities.

• b [in] (double[]) – Right-hand side for the inequalities. Use b=[] if there are
no inequalities.

• B [in] (double[][]) – [optional] Constraint matrix for the equalities. Use B=[] if
there are no equalities.

• c [in] (double[]) – [optional] Right-hand side for the equalities. Use c=[] if
there are no equalities.

• x0 [in] (double[]) – [optional] A feasible starting point.

• options [in] (struct) – [optional] An optimization options structure. See the
mskoptimset function for the definition of the optimization options structure.
intlinprog uses the options

– .Diagnostics

– .Display

– .MaxTime The maximum number of seconds in the solution-time

– .MaxNodes The maximum number of branch-and-bounds allowed

– .Write Filename of problem file to save.

• problem [in] (struct) – A structure containing the fields f, A, b, B, c, x0
and options.

Return

• x (double[]) – The solution 𝑥.

• fval (double) – The objective 𝑓𝑇𝑥.

• exitflag (int) – A number which has the interpretation:

– 1 The function returned an integer feasible solution.

– −2 The problem is infeasible.

– −4 maxNodes reached without converging.

– −5 maxTime reached without converging.

x, fval, exitflag, output, lambda = linprog(f, A, b, B, c, l, u, x0, options)
x, fval, exitflag, output, lambda = linprog(problem)

Solves the linear optimization problem:

minimize 𝑓𝑇𝑥
subject to 𝐴𝑥 ≤ 𝑏,

𝐵𝑥 = 𝑐,
𝑙 ≤ 𝑥 ≤ 𝑢.

17.1. Command Reference 137

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Parameters

• f [in] (double[]) – The objective function.

• A [in] (double[][]) – Constraint matrix for the inequalities. Use 𝐴 = [] if there
are no inequalities.

• b [in] (double[]) – Right-hand side for the inequalities. Use 𝑏 = [] if there are
no inequalities.

• B [in] (double[][]) – [optional] Constraint matrix for the equalities. Use 𝐵 = []
if there are no equalities.

• c [in] (double[]) – [optional] Right-hand side for the equalities. Use 𝑐 = [] if
there are no equalities.

• l [in] (double[]) – [optional] Lower bounds on the variables. Use −∞ to rep-
resent infinite lower bounds.

• u [in] (double[]) – [optional] Upper bounds on the variables. Use ∞ to represent
infinite upper bounds.

• x0 [in] (double[]) – [optional] An initial guess for the starting point. Only used
for the primal simplex algorithm. For more advanced warm-starting (e.g., using
dual simplex), use mosekopt directly.

• options [in] (struct) – [optional] An optimization options structure. See the
mskoptimset function for the definition of the optimization options structure.
linprog uses the options

– .Diagnostics

– .Display

– .MaxIter

– .Simplex Valid values are 'on', 'primal' or 'dual'. If Simplex is 'on' then
MOSEK will use either a primal or dual simplex solver (similar as specifying
"MSK_OPTIMIZER_FREE_SIMPLEX" in mosekopt ; otherwise either a primal or
dual simplex algorithm is used. Note, that the 'primal' and 'dual' values are
specific for the MOSEK interface, and not present in the standard MATLAB
version.

– .Write Filename of problem file (e.g., 'prob.opf') to be saved. This is useful
for reporting bugs or problems.

• problem [in] (struct) – structure containing the fields f, A, b, B, c, l, u, x0 and
options.

• output [in] (struct) – A struct with the following fields

– .iterations Number of iterations spent to reach the optimum.

– .algorithm Always defined as ’large-scale [in]: interior-point’.

• lambda [in] (struct) – A struct with the following fields

– .lower Lagrange multipliers for lower bounds 𝑙.

– .upper Lagrange multipliers for upper bounds 𝑢.

– .ineqlin Lagrange multipliers for the inequalities.

– .eqlin Lagrange multipliers for the equalities.

Return

• x (double[]) – The optimal 𝑥 solution.

• fval (double) – The optimal objective value, i.e. 𝑓𝑇𝑥.

• exitflag (int) – A number which has the interpretation [in]:

138 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

– < 0 The problem is likely to be either primal or dual infeasible.

– = 0 The maximum number of iterations was reached.

– > 0 𝑥 is an optimal solution.

x, resnorm, residual, exitflag, output, lambda = lsqlin(C, d, A, b, B, c, l, u, x0, options)
Solves the linear least squares problem:

minimize 1
2 ‖𝐶𝑥− 𝑑‖22

subject to 𝐴𝑥 ≤ 𝑏,
𝐵𝑥 = 𝑐,
𝑙 ≤ 𝑥 ≤ 𝑢.

(17.2)

Parameters

• C [in] (double[][]) – A matrix. See problem (17.2) for the purpose of the argu-
ment.

• d [in] (double[]) – A vector. See problem (17.2) for the purpose of the argument.

• A [in] (double[][]) – Constraint matrix for the inequalities. Use 𝐴 = [] if there
are no inequalities.

• b [in] (double[]) – Right-hand side for the inequalities. Use 𝑏 = [] if there are
no inequalities.

• B [in] (double[][]) – [optional] Constraint matrix for the equalities. Use 𝐵 = []
if there are no equalities.

• c [in] (double[]) – [optional] Right-hand side for the equalities. Use 𝑐 = [] if
there are no equalities.

• l [in] (double[]) – [optional] Lower bounds on the variables. Use −∞ to rep-
resent infinite lower bounds.

• u [in] (double[]) – [optional] Upper bounds on the variables. Use ∞ to represent
infinite lower bounds.

• x0 [in] (double[]) – [optional] An initial guess for the starting point. This
information is ignored by MOSEK

• options [in] (struct) – [optional] An optimization options structure. See the
function mskoptimset function for the definition of the optimization options
structure. lsqlin uses the options

– .Diagnostics

– .Display

– .MaxIter

– .Write

Return

• x (double[]) – The optimal 𝑥 solution.

• resnorm (double) – The squared norm of the optimal residuals, i.e. ‖𝐶𝑥− 𝑑‖2
evaluated at the optimal solution.

• residual (double) – The residual 𝐶𝑥− 𝑑.

• exitflag (int) – A scalar which has the interpretation:

– < 0 The problem is likely to be either primal or dual infeasible.

– = 0 The maximum number of iterations was reached.

– > 0 𝑥 is the optimal solution.

• output (struct) –

17.1. Command Reference 139

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

– .iterations Number of iterations spent to reach the optimum.

– .algorithm Always defined as ’large-scale: interior-point’.

• lambda (struct) –

– .lower Lagrange multipliers for lower bounds 𝑙.

– .upper Lagrange multipliers for upper bounds 𝑢.

– .ineqlin Lagrange multipliers for inequalities.

– .eqlin Lagrange multipliers for equalities.

x, resnorm, residual, exitflag, output, lambda = lsqnonneg(C, d, x0, options)
Solves the linear least squares problem:

minimize 1
2 ‖𝐶𝑥− 𝑑‖22

subject to 𝑥 ≥ 0.
(17.3)

This procedure just provides an easy interface to lsqlin . Indeed all the procedure does is to call
lsqlin with the appropriate arguments.

Parameters

• C [in] (double[][]) – See problem (17.3).

• d [in] (double[]) – See problem (17.3).

• x0 [in] (double[]) – [optional] An initial guess for the starting point. This
information is ignored by MOSEK

• options [in] (struct) – [optional] An optimizations options structure. See the
mskoptimset function for the definition of the optimization options structure.
lsqlin uses the options

– .Diagnostics

– .Display

– .MaxIter

– .Write

Return

• x (double[]) – The 𝑥 solution.

• resnorm (double) – The squared norm of the optimal residuals, i.e. .. math::
left| Cx-d right|^2

evaluated at the optimal solution.

• residual (double) – The residual 𝐶𝑥− 𝑑.

• exitflag (int) – A number which has the interpretation:

– < 0 The problem is likely to be either primal or dual infeasible.

– = 0 The maximum number of iterations was reached.

– > 0 𝑥 is optimal solution.

• output (struct) –

– .iterations Number of iterations spend to reach the optimum.

– .algorithm Always defined to be ’large-scale: interior-point’.

• lambda (struct) –

– .lower Lagrange multipliers for lower bounds 𝑙.

– .upper Lagrange multipliers for upper bounds 𝑢.

140 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

– .ineqlin Lagrange multipliers for inequalities.

– .eqlin Lagrange multipliers for equalities.

x, fval, exitflag, output, lambda = quadprog(H, f, A, b, B, c, l, u, x0, options)
Solves the quadratic optimization problem:

minimize 1
2𝑥

𝑇𝐻𝑥 + 𝑓𝑇𝑥
subject to 𝐴𝑥 ≤ 𝑏,

𝐵𝑥 = 𝑐,
𝑙 ≤ 𝑥 ≤ 𝑢.

(17.4)

Parameters

• H [in] (double[][]) – Hessian of the objective function. 𝐻 must be a symmetric
matrix. Contrary to the MATLAB optimization toolbox, MOSEK handles only
the cases where 𝐻 is positive semidefinite. On the other hand MOSEK always
computes a global optimum, i.e. the objective function has to be strictly convex.

• f [in] (double[]) – See (17.4) for the definition.

• A [in] (double[][]) – Constraint matrix for the inequalities. Use 𝐴 = [] if there
are no inequalities.

• b [in] (double[]) – Right-hand side for the nequalities. Use 𝑏 = [] if there are
no inequalities.

• B [in] (double[][]) – [optional] Constraint matrix for the equalities. Use 𝐵 = []
if there are no equalities.

• c [in] (double[]) – [optional] Right-hand side for the equalities. Use 𝑐 = [] if
there are no equalities.

• l [in] (double[]) – [optional] Lower bounds on the variables. Use −∞ to rep-
resent infinite lower bounds.

• u [in] (double[]) – [optional] Upper bounds on the variables. Use ∞ to represent
infinite upper bounds.

• x0 [in] (double[]) – [optional] An initial guess for the starting point. This
information is ignored by MOSEK

• options [in] (struct) – [optional] An optimization options structure. See the
mskoptimset function for the definition of the optimizations options structure.
quadprog uses the options

– .Diagnostics

– .Display

– .MaxIter

– .Write

Return

• x (double[]) – The 𝑥 solution.

• fval (double) – The optimal objective value i.e. 1
2𝑥

𝑇𝐻𝑥 + 𝑓𝑇𝑥.

• exitflag (int) – A scalar which has the interpretation:

– < 0 The problem is likely to be either primal or dual infeasible.

– = 0 The maximum number of iterations was reached.

– > 0 𝑥 is an optimal solution.

• output (struct) – A structure with the following fields

– .iterations Number of iterations spent to reach the optimum.

17.1. Command Reference 141

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

– .algorithm Always defined as ’large-scale: interior-point’.

• lambda (struct) – A structure with the following fields

– .lower Lagrange multipliers for lower bounds 𝑙.

– .upper Lagrange multipliers for upper bounds 𝑢.

– .ineqlin Lagrange multipliers for inequalities.

– .eqlin Lagrange multipliers for equalities.

17.2 Data Structures and Notation

The data structures employed by MOSEK are discussed in this section, along with the used notation.

The data structures and types used are the following:

• prob

• names

• cones

• barc

• bara

• solver_solutions

• solution

• res

• prisen

• cprisen

• vprisen

• duasen

• info

• symbcon

• callback

17.2.1 Notation

MOSEK solves linear, quadratic, quadratically constrained, and conic optimization problems. The
simplest of those is a linear problem, which is posed in MOSEK as

minimize
∑︀𝑛

𝑗=1 𝑐𝑗𝑥𝑗 + 𝑐𝑓

subject to 𝑙𝑐𝑖 ≤
∑︀𝑛

𝑗=1 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑖 , 𝑖 = 1, . . . ,𝑚,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 1, . . . , 𝑛.

An extension is a linear conic problem where the variables can belong to quadratic or semidefinite cones.
A conic problem in MOSEK has the form

minimize
∑︀𝑛

𝑗=1 𝑐𝑗𝑥𝑗 +
∑︀𝑝

𝑗=1

⟨︀
𝐶𝑗 , 𝑋𝑗

⟩︀
+ 𝑐𝑓

subject to 𝑙𝑐𝑖 ≤
∑︀𝑛

𝑗=1 𝑎𝑖𝑗𝑥𝑗 +
∑︀𝑝

𝑗=1

⟨︀
𝐴𝑖𝑗 , 𝑋𝑗

⟩︀
≤ 𝑢𝑐

𝑖 , 𝑖 = 1, . . . ,𝑚,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 1, . . . , 𝑛,

𝑥 ∈ 𝒦, 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ , 𝑗 = 1, . . . , 𝑝

142 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

where the conic constraint

𝑥 ∈ 𝒦 (17.5)

means that a partitioning of 𝑥 belongs to a set of quadratic cones (elaborated below). Further, the
problem has 𝑝 symmetric positive semidefinite variables 𝑋𝑗 ∈ 𝒮𝑟𝑗

+ of dimension 𝑟𝑗 with symmetric
coefficient matrices 𝐶𝑗 ∈ 𝒮𝑟𝑗 and 𝐴𝑖,𝑗 ∈ 𝒮𝑟𝑗 .

Alternatively, MOSEK can solve convex quadratically constrained quadratic problems

minimize 1
2

∑︀𝑛
𝑖=1

∑︀𝑛
𝑗=1 𝑞

𝑜
𝑖𝑗𝑥𝑖𝑥𝑗 +

∑︀𝑛
𝑗=1 𝑐𝑗𝑥𝑗 + 𝑐𝑓

subject to 𝑙𝑐𝑖 ≤ 1
2

∑︀𝑛
𝑗=1

∑︀𝑛
𝑘=1 𝑞

𝑖
𝑗𝑘𝑥𝑗𝑥𝑘 +

∑︀𝑛
𝑗=1 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑢𝑐

𝑖 , 𝑖 = 1, . . . ,𝑚,

𝑙𝑥𝑗 ≤ 𝑥 ≤ 𝑢𝑥
𝑗 , 𝑗 = 1, . . . , 𝑛.

The matrix

𝑄𝑜 =

⎡⎢⎣ 𝑞𝑜11 · · · 𝑞𝑜1𝑛
... · · ·

...
𝑞0𝑛1 · · · 𝑞𝑜𝑛𝑛

⎤⎥⎦
must be symmetric positive semidefinite and the matrix

𝑄𝑖 =

⎡⎢⎣ 𝑞𝑖11 · · · 𝑞𝑖1𝑛
... · · ·

...
𝑞𝑖𝑛1 · · · 𝑞𝑖𝑛𝑛

⎤⎥⎦
must be either symmetric negative semidefinite with the 𝑖th constraint

𝑙𝑐𝑖 ≤
1

2

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝑞𝑖𝑗,𝑘𝑥𝑗𝑥𝑘 +

𝑛∑︁
𝑗=1

𝑎𝑖,𝑗𝑥𝑗 ,

or 𝑄𝑖 must be symmetric positive semidefinite with the 𝑖th constraint

1

2

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝑞𝑖𝑗,𝑘𝑥𝑗𝑥𝑘 +

𝑛∑︁
𝑗=1

𝑎𝑖,𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑖 .

Note that the if the quadratic terms 𝑄𝑖 are absent, the problem reduces to a standard quadratic opti-
mization problem.

Finally, some variables may be integer-constrained, i.e.,

𝑥𝑗 integer-constrained for all 𝑗 ∈ | (17.6)

where 𝑥𝑗 (and possibly 𝑋𝑗) are the decision variables and all the other quantities are the parameters of
the problem and they are presented below:

• Since 𝑄𝑜 and 𝑄𝑖 are symmetric, only the lower triangular part should be specified.

• The coefficients 𝑐𝑗 are coefficients for the linear term 𝑐𝑗𝑥𝑗 in the objective.

• 𝑐𝑓 is a constant term in the objective, i.e., independent of all variables.

• The constraint matrix 𝐴 is given by

𝐴 =

⎡⎢⎣ 𝑎11 · · · 𝑎1𝑛
... · · ·

...
𝑎𝑚1 · · · 𝑎𝑚𝑛

⎤⎥⎦ .

In MOSEK it is assumed that 𝐴 is a sparse matrix, i.e. most of the coefficients in 𝐴 are zero. Therefore,
only non-zeros elements in 𝐴 are stored and worked with. This usually saves a lot of storage and speeds
up the computations.

17.2. Data Structures and Notation 143

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• The symmetric matrices 𝐶𝑗 are coefficient matrices for the linear term tr(𝐶𝑗𝑋𝑗) in the objective
for semidefinite problems. The matrices are specified in triplet format discarding zero elements,
and since they are symmetric, only the lower triangular parts should be specified.

• The constraint matrices 𝐴𝑖𝑗 are symmetric matrices used in the constraints

𝑙𝑐𝑖 ≤
𝑛∑︁

𝑗=1

𝑎𝑖𝑗𝑥𝑗 +

𝑝∑︁
𝑗=1

⟨︀
𝐴𝑖𝑗 , 𝑋𝑗

⟩︀
≤ 𝑢𝑐

𝑖 , 𝑖 = 1, . . . ,𝑚,

for semidefinite problems. The matrices are specifed in triplet format discard zero elements, and
since they are symmetric only the lower triangulars should be specified.

– 𝑙𝑐 specifies the lower bounds of the constraints.

– 𝑢𝑐 specifies the upper bounds of the constraints.

– 𝑙𝑥 specifies the lower bounds on the variables 𝑥.

– 𝑢𝑥 specifies the upper bounds on the variables 𝑥.

• In conic problems, a partitioning of 𝑥 belongs to a set of free variables and quadratic cones. Let

𝑥𝑡 ∈ R𝑛𝑡

, 𝑡 = 1, . . . , 𝑘

be vectors comprised of disjoint subsets of the decision variables 𝑥 (each decision variable is a field
of exactly one 𝑥𝑡), e.g.,

𝑥1 =

⎡⎣ 𝑥1

𝑥4

𝑥7

⎤⎦ and 𝑥2 =

⎡⎢⎢⎣
𝑥6

𝑥5

𝑥3

𝑥2

⎤⎥⎥⎦ .

Next, define

𝒦 :=
{︀
𝑥 ∈ R𝑛 : 𝑥𝑡 ∈ 𝒦𝑡, 𝑡 = 1, . . . , 𝑘

}︀
where 𝒦𝑡 must have one of the following forms

• Free variables:

𝒦𝑡 = {𝑥 ∈ R𝑛𝑡

}.

• Quadratic cones:

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 𝑥1 ≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=2

𝑥2
𝑗

⎫⎬⎭ .

• Rotated quadratic cones:

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 2𝑥1𝑥2 ≥
𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ .

The parameters of the optimization problem are stored using one or more subfields of the prob structure
using the naming convention in Table 17.1.

144 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Table 17.1: The relation between fields and problem parameters
Field name Type Dimension Optional Problem parameter
qosubi int length(qoval) Yes 𝑞𝑜𝑖𝑗
qosubj int length(qoval) Yes 𝑞𝑜𝑖𝑗
qoval double length(qoval) Yes 𝑞𝑜𝑖𝑗
c double 𝑛 Yes 𝑐𝑗
qcsubk int length(qcval) Yes 𝑞𝑝𝑖𝑗
qcsubi int length(qcval) Yes 𝑞𝑝𝑖𝑗
qcsubj int length(qcval) Yes 𝑞𝑝𝑖𝑗
qcval double length(qcval) Yes 𝑞𝑝𝑖𝑗
a Sparse matrix 𝑚𝑛 No 𝑎𝑖𝑗
bardim int 𝑝 Yes 𝑟𝑗
barc MATLAB struct Yes 𝐶𝑗

bara MATLAB struct Yes 𝐴𝑖𝑗

blc double 𝑚 Yes 𝑙𝑐𝑘
buc double 𝑚 Yes 𝑢𝑐

𝑘

blx double 𝑛 Yes 𝑙𝑥𝑘
bux double 𝑛 Yes 𝑢𝑥

𝑘

ints MATLAB struct ||| Yes |
cones MATLAB cell 𝑘 Yes 𝒦

In Table 17.1 all the parameters are listed with their corresponding type. The int type indicates that
the field must contain an integer value, double indicates a real number. The relationship between 𝑄𝑜

and 𝑄𝑝 and the subfields of the prob structure is as follows:

• The quadratic terms in the objective:

𝑞𝑜qosubi(t),qoval(t) = qoval(t), 𝑡 = 1, 2, . . . , length(qoval). (17.7)

Since 𝑄𝑜 by assumption is symmetric, all elements are assumed to belong to the lower triangular
part. If an element is specified multiple times, the different elements are added together.

• The quadratic terms in the constraints:

𝑞
qcsubk(t)
qcsubi(t),qcsubj(t) = qcval(t), 𝑡 = 1, 2, . . . , length(qcval). (17.8)

Since 𝑄𝑝 by assumption is symmetric, all elements are assumed to belong to the lower triangular
part. If an element is specified multiple times, the different elements are added together.

17.2.2 Data Types and Structures

prob
The prob data structure is used to communicate an optimization problem to MOSEK or for
MOSEK to return an optimization problem to the user. It defines an optimization problem using
a number of subfields.

Fields

• names (string) – A structure which contains the problem name, the name of the
objective, and so forth.

• qosubi (int[]) – 𝑖 subscript for element 𝑞𝑜𝑖𝑗 in 𝑄𝑜. See (17.7).

• qosubj (int[]) – 𝑗 subscript for element 𝑞𝑜𝑖𝑗 in 𝑄𝑜. See (17.7).

• qoval (double[]) – Numerical value for element 𝑞𝑜𝑖𝑗 in 𝑄𝑜. See (17.7).

• qcsubk (int[]) – 𝑘 subscript for element 𝑞𝑝𝑖𝑗 in 𝑄𝑝. See (17.8)

• qcsubi (int[]) – 𝑖 subscript for element 𝑞𝑝𝑖𝑗 in 𝑄𝑝. See (17.8)

17.2. Data Structures and Notation 145

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• qcsubj (double[]) – 𝑗 subscript for element 𝑞𝑝𝑖𝑗 in 𝑄𝑝. See (17.8)

• qcval (double[]) – Numerical value for element 𝑞𝑝𝑖𝑗 in 𝑄𝑝. See (17.8)

• c (double[]) – Linear term in the objective.

• a (double[][]) – The constraint matrix. It must be a sparse matrix having
the number of rows and columns equivalent to the number of constraints and
variables in the problem. This field should always be defined, even if the problem
does not have any constraints. In that case a sparse matrix having zero rows
and the correct number of columns is the appropriate definition of the field.

• blc (double[]) – Lower bounds of the constraints. −∞ denotes an infinite lower
bound. If the field is not defined or blc==[], then all the lower bounds are
assumed to be equal to −∞.

• bardim (int[]) – A list with the dimensions of the semidefinite variables.

• barc (barc) – A structure for specifying 𝐶𝑗 .

• bara (bara) – A structure for specifying 𝐴𝑖𝑗 .

• buc (double[]) – Upper bounds of the constraints. ∞ denotes an infinite upper
bound. If the field is not defined or buc==[], then all the upper bounds are
assumed to be equal to ∞.

• blx (double[]) – Lower bounds on the variables. −∞ denotes an infinite lower
bound. If the field is not defined or blx==[], then all the lower bounds are
assumed to be equal to −∞.

• bux (double[]) – Upper bounds on the variables. ∞ denotes an infinite upper
bound. If the field is not defined or bux==[], then all the upper bounds are
assumed to be equal to ∞.

• ints (struct) – A structure which has the subfields

– .sub A one-dimensional array containing the indexes of the integer-constrained
variables. ints.sub is identical to the set | in (17.6).

– .pri A one dimensional array of the same length as ints.sub. The ints.
pri(k) is the branching priority assigned to variable index ints.sub(k).

• cones (cones) – A structure defining the conic constraints (17.5).

• sol (solver_solutions) – A structure containing a guess on the optimal solution
which some of the optimizers in MOSEK may exploit.

• primalrepair (struct) – A structure used for primal feasibility repair which can
optimally contain either of the subfields:

– .wlc Weights for lower bounds on constraints.

– .wuc Weights for upper bounds on constraints.

– .wlx Weights for lower bounds on variables.

– .wlc Weights for upper bounds on variables.

If either of the subfields is missing, it assumed to be a vector with value 1 of
appropriate dimension.

• prisen (prisen) – A structure which has the subfields:

res

Fields

• sol (solver_solutions) – A structure holding available solutions (if any)

146 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• info (struct) – A structure containing the task information database which con-
tains various task related information such as the number of iterations used to
solve the problem. However, this field is only defined if info appeared in the cmd
command when mosekopt is invoked.

• param (list) – A structure which contain the complete MOSEK parameter
database. However, this field is defined only if the param command is present in
cmd when mosekopt is invoked.

• prob (prob) – Contains the problem data if the problem data was read from a
file.

names
This structure is used to store all the names of individual items in the optimization problem such
as the constraints and the variables.

Fields

• name (string) – contains the problem name.

• obj (string) – contains the name of the objective.

• con (cell) – a cell array where names.con{i} contains the name of the 𝑖th con-
straint.

• var (cell) – a cell array where names.var{j} contains the name of the 𝑗th vari-
able.

• barvar (cell) – a cell array where names.barvar{j} contains the name of the
𝑗th semidefinite variable.

• cone (cell) – a cell array where names.cone{t} contains the name of the 𝑡th
conic constraint.

cones
A MATLAB structure representing details about cones.

For example the quadratic cone

𝑥5 ≥
√︀

𝑥3
2 + 𝑥1

2

and rotated quadratic cone

2𝑥6𝑥4 ≥ 𝑥2
2 + 𝑥2

7

would be specified using the two arrays

cones.type = [0, 1];
cones.sub = [5, 3, 1, 6, 4, 2, 7];
cones.subptr = [1, 4];

Fields

• type (list) – An array with the cone types for each cone; "MSK_CT_QUAD" or
"MSK_CT_RQUAD" , indicating if the cone is a quadratic cone or a rotated quadratic
cone.

• sub (int[]) – An array of variable indexes specifying which variables are fields of
the cones. The array is a concatenation of index lists of all the cones.

• subptr (int[]) – An array of pointers into cones.sub indicating the beginning of
the different cone index-sets.

barc
Together with field bardim this structure specifies the symmetric matrices 𝐶𝑗 in the objective for
semidefinite problems.

17.2. Data Structures and Notation 147

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

The symmetric matrices are specified in block-triplet format as

[𝐶barc.subj(t)]barc.subk(t),barc.subl(t) = barc.val(t), 𝑡 = 1, 2, . . . , length(barc.subj).

Only the lower triangular parts of 𝐶𝑗 are specified, i.e., it is required that

barc.subk(t) ≥ barc.subl(t), 𝑡 = 1, 2, . . . , length(barc.subk),

and that

1 ≤ barc.subk(t) ≤ bardim(barc.subj(t)), 𝑡 = 1, 2, . . . , length(barc.subj).,

All the structure fields must be arrays of the same length.

Fields

• subj (int[]) – Semidefinite variable indices 𝑗.

• subk (int[]) – Subscripts of nonzeros elements.

• subl (int[]) – Subscripts of nonzeros elements.

• val (double) – Numerical values.

bara
Together with the field bardim this structure specifies the symmetric matrices 𝐴𝑖𝑗 in the constraints
of semidefinite problems.

The symmetric matrices are specified in block-triplet format as

[𝐴bara.subi(t),bara.subj(t)]bara.subk(t),bara.subl(t) = bara.val(t), 𝑡 = 1, 2, . . . , length(bara.subi).

Only the lower triangular parts of 𝐴𝑖𝑗 are specified, i.e., it is required that

bara.subk(t) ≥ bara.subl(t), 𝑡 = 1, 2, . . . , length(bara.subk),

and that

1 ≤ bara.subk(t) ≤ bardim(bara.subj(t)), 𝑡 = 1, 2, . . . , length(bara.subj),

Fields

• subi (int) – Constraint indices 𝑖.

• subj (int) – Semidefinite variable indices 𝑗.

• subk (int[]) – Subscripts of nonzeros elements.

• subl (int[]) – Subscripts of nonzeros elements.

• val (double[]) – Numerical values.

solver_solutions
A structure used to store one or more solutions to an optimization problem. The structure has one
subfield for each possible solution type.

Fields

• itr (solution) – Interior (point) solution computed by the interior-point opti-
mizer.

• bas (solution) – Basic solution computed by the simplex optimizers and basis
identification procedure.

• int (solution) – Integer solution computed by the mixed-integer optimizer.

148 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

solution
Stores information about a solution returned by the solve.

The fields .skn and .snx cannot occur in the .bas and .int solutions. In addition the fields .y,
.slc, .suc, .slx, and .sux cannot occur in the .int solution since integer problems does not have
a well-defined dual problem, and hence no dual solution.

Fields

• prosta (prosta) – Problem status.

• solsta (solsta) – Solution status.

• skc (stakey) – Enumraint status keys.

• skx (stakey) – Variable status keys.

• skn (stakey) – Conic status keys.

• xc (double[]) – Constraint activities, i.e., 𝑥𝑐 = 𝐴𝑥 where 𝑥 is the optimal solution.

• xx (double[]) – The optimal 𝑥 solution.

• barx (list) – The optimal solution of 𝑋𝑗 , 𝑗 = 1, 2, . . . , length(bardim).

• bars (list) – The optimal solution of 𝑆𝑗 , 𝑗 = 1, 2, . . . , length(bardim).

• y (double[]) – Identical to sol.slc-sol.suc.

• slc (double[]) – Dual solution corresponding to the lower constraint bounds.

• suc (double[]) – Dual solution corresponding to the upper constraint bounds.

• slx (double[]) – Dual solution corresponding to the lower variable bounds.

• sux (double[]) – Dual solution corresponding to the upper variable bounds.

• snx (double[]) – Dual solution corresponding to the conic constraint.

• pobjval (double) – The primal objective value.

prisen
Results of the primal sensitivity analysis.

Fields

• cons (cprisen) – Constraints shadow prices.

• var (vprisen) – Variable shadow prices

• sub (int[]) – Index of variables where coefficients are analysed for sensitivity.

cprisen
A structure holding information about constraint shadow prices.

Fields

• lr_bl (double) – Left value 𝛽1 in the linearity interval for a lower bound.

• rr_bl (double) – Right value 𝛽2 in the linearity interval for a lower bound.

• ls_bl (double) – Left shadow price 𝑠𝑙 for a lower bound.

• rs_bl (double) – Right shadow price 𝑠𝑟 for a lower bound.

• lr_bu (double) – Left value 𝛽1 in the linearity interval for an upper bound.

• rr_bu (double) – Right value 𝛽2 in the linearity interval for an upper bound.

• ls_bu (double) – Left shadow price 𝑠𝑙 for an upper bound.

• rs_bu (double) – Right shadow price 𝑠𝑟 for an upper bound.

vprisen
A structure holding information about variable shadow prices.

17.2. Data Structures and Notation 149

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Fields

• lr_bl (double) – Left value 𝛽1 in the linearity interval for a lower bound on a
variable

• rr_bl (double) – Right value 𝛽2 in the linearity interval for a lower bound on a
variable

• ls_bl (double) – Left shadow price 𝑠𝑙 for a lower bound on a variable

• rs_bl (double) – Right shadow price 𝑠𝑟 for a lower bound on a variable

• lr_bu (double) – Left value 𝛽1 in the linearity interval for an upper bound on a
variable

• rr_bu (double) – Right value 𝛽2 in the linearity interval for an upper bound on
a variable

• ls_bu (double) – Left shadow price 𝑠𝑙 for an upper bound on a variable

• rs_bu (double) – Right shadow price 𝑠𝑟 for an upper bound on a variable.

duasen
Results of dual the sensitivity analysis.

Fields

• lr_c (double) – Left value 𝛽1 in linearity interval for an objective coefficient

• rr_c (double) – Right value 𝛽2 in linearity interval for an objective coefficient

• ls_c (double) – Left shadow price 𝑠𝑙 for an objective coefficient

• rs_c (double) – Right shadow price 𝑠𝑟 for an objective coefficient

info
info is a MATLAB structure containing a subfield for each item in the MOSEK optimization
task database, e.g., the info.dinfitem.bi_time field specifies the amount of time spent in the
basis identification in the last optimization. See dinfitem and iinfitem for all the items in the
task information database are listed.

symbcon
A MATLAB structure containing a subfield for each MOSEK symbolic constant, e.g., the field
symbcon.dinfitem.bi_time specifies the value of the symbolic constant "MSK_DINF_BI_TIME" .
In Sec. 17.6 allthe symbolic constants are listed.

callback
A structure containing callback information (all subfields are optional).

Fields

• loghandle (struct) – A data structure or just [].

• log (string) – The name of a user-defined function which must accept two input
arguments, e.g.,

function myfunc(handle,str)

where handle will be identical to callback.handle when myfunc is called, and
str is a string of text from the log file.

• iterhandle (struct) – A data structure or just [].

• iter (string) – The name of a user-defined function which must accept three
input arguments,

function myfunc(handle,where,info)

150 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

where handle will be identical to callback.iterhandle when myfunc is called,
where indicates the current progress of the colver and info is the current infor-
mation database. See info for further details.

17.3 Parameters grouped by topic

Analysis

• MSK_DPAR_ANA_SOL_INFEAS_TOL

• MSK_IPAR_ANA_SOL_BASIS

• MSK_IPAR_ANA_SOL_PRINT_VIOLATED

• MSK_IPAR_LOG_ANA_PRO

Basis identification

• MSK_DPAR_SIM_LU_TOL_REL_PIV

• MSK_IPAR_BI_CLEAN_OPTIMIZER

• MSK_IPAR_BI_IGNORE_MAX_ITER

• MSK_IPAR_BI_IGNORE_NUM_ERROR

• MSK_IPAR_BI_MAX_ITERATIONS

• MSK_IPAR_INTPNT_BASIS

• MSK_IPAR_LOG_BI

• MSK_IPAR_LOG_BI_FREQ

Conic interior-point method

• MSK_DPAR_INTPNT_CO_TOL_DFEAS

• MSK_DPAR_INTPNT_CO_TOL_INFEAS

• MSK_DPAR_INTPNT_CO_TOL_MU_RED

• MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

• MSK_DPAR_INTPNT_CO_TOL_PFEAS

• MSK_DPAR_INTPNT_CO_TOL_REL_GAP

Data check

• MSK_DPAR_DATA_SYM_MAT_TOL

• MSK_DPAR_DATA_SYM_MAT_TOL_HUGE

• MSK_DPAR_DATA_SYM_MAT_TOL_LARGE

• MSK_DPAR_DATA_TOL_AIJ

• MSK_DPAR_DATA_TOL_AIJ_HUGE

• MSK_DPAR_DATA_TOL_AIJ_LARGE

• MSK_DPAR_DATA_TOL_BOUND_INF

17.3. Parameters grouped by topic 151

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• MSK_DPAR_DATA_TOL_BOUND_WRN

• MSK_DPAR_DATA_TOL_C_HUGE

• MSK_DPAR_DATA_TOL_CJ_LARGE

• MSK_DPAR_DATA_TOL_QIJ

• MSK_DPAR_DATA_TOL_X

• MSK_DPAR_SEMIDEFINITE_TOL_APPROX

• MSK_IPAR_CHECK_CONVEXITY

• MSK_IPAR_LOG_CHECK_CONVEXITY

Data input/output

• MSK_IPAR_INFEAS_REPORT_AUTO

• MSK_IPAR_LOG_FILE

• MSK_IPAR_OPF_MAX_TERMS_PER_LINE

• MSK_IPAR_OPF_WRITE_HEADER

• MSK_IPAR_OPF_WRITE_HINTS

• MSK_IPAR_OPF_WRITE_PARAMETERS

• MSK_IPAR_OPF_WRITE_PROBLEM

• MSK_IPAR_OPF_WRITE_SOL_BAS

• MSK_IPAR_OPF_WRITE_SOL_ITG

• MSK_IPAR_OPF_WRITE_SOL_ITR

• MSK_IPAR_OPF_WRITE_SOLUTIONS

• MSK_IPAR_PARAM_READ_CASE_NAME

• MSK_IPAR_PARAM_READ_IGN_ERROR

• MSK_IPAR_READ_DATA_COMPRESSED

• MSK_IPAR_READ_DATA_FORMAT

• MSK_IPAR_READ_DEBUG

• MSK_IPAR_READ_KEEP_FREE_CON

• MSK_IPAR_READ_LP_DROP_NEW_VARS_IN_BOU

• MSK_IPAR_READ_LP_QUOTED_NAMES

• MSK_IPAR_READ_MPS_FORMAT

• MSK_IPAR_READ_MPS_WIDTH

• MSK_IPAR_READ_TASK_IGNORE_PARAM

• MSK_IPAR_SOL_READ_NAME_WIDTH

• MSK_IPAR_SOL_READ_WIDTH

• MSK_IPAR_WRITE_BAS_CONSTRAINTS

• MSK_IPAR_WRITE_BAS_HEAD

• MSK_IPAR_WRITE_BAS_VARIABLES

• MSK_IPAR_WRITE_DATA_COMPRESSED

• MSK_IPAR_WRITE_DATA_FORMAT

152 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• MSK_IPAR_WRITE_DATA_PARAM

• MSK_IPAR_WRITE_FREE_CON

• MSK_IPAR_WRITE_GENERIC_NAMES

• MSK_IPAR_WRITE_GENERIC_NAMES_IO

• MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS

• MSK_IPAR_WRITE_INT_CONSTRAINTS

• MSK_IPAR_WRITE_INT_HEAD

• MSK_IPAR_WRITE_INT_VARIABLES

• MSK_IPAR_WRITE_LP_FULL_OBJ

• MSK_IPAR_WRITE_LP_LINE_WIDTH

• MSK_IPAR_WRITE_LP_QUOTED_NAMES

• MSK_IPAR_WRITE_LP_STRICT_FORMAT

• MSK_IPAR_WRITE_LP_TERMS_PER_LINE

• MSK_IPAR_WRITE_MPS_FORMAT

• MSK_IPAR_WRITE_MPS_INT

• MSK_IPAR_WRITE_PRECISION

• MSK_IPAR_WRITE_SOL_BARVARIABLES

• MSK_IPAR_WRITE_SOL_CONSTRAINTS

• MSK_IPAR_WRITE_SOL_HEAD

• MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES

• MSK_IPAR_WRITE_SOL_VARIABLES

• MSK_IPAR_WRITE_TASK_INC_SOL

• MSK_IPAR_WRITE_XML_MODE

• MSK_SPAR_BAS_SOL_FILE_NAME

• MSK_SPAR_DATA_FILE_NAME

• MSK_SPAR_DEBUG_FILE_NAME

• MSK_SPAR_INT_SOL_FILE_NAME

• MSK_SPAR_ITR_SOL_FILE_NAME

• MSK_SPAR_MIO_DEBUG_STRING

• MSK_SPAR_PARAM_COMMENT_SIGN

• MSK_SPAR_PARAM_READ_FILE_NAME

• MSK_SPAR_PARAM_WRITE_FILE_NAME

• MSK_SPAR_READ_MPS_BOU_NAME

• MSK_SPAR_READ_MPS_OBJ_NAME

• MSK_SPAR_READ_MPS_RAN_NAME

• MSK_SPAR_READ_MPS_RHS_NAME

• MSK_SPAR_SENSITIVITY_FILE_NAME

• MSK_SPAR_SENSITIVITY_RES_FILE_NAME

• MSK_SPAR_SOL_FILTER_XC_LOW

17.3. Parameters grouped by topic 153

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• MSK_SPAR_SOL_FILTER_XC_UPR

• MSK_SPAR_SOL_FILTER_XX_LOW

• MSK_SPAR_SOL_FILTER_XX_UPR

• MSK_SPAR_STAT_FILE_NAME

• MSK_SPAR_STAT_KEY

• MSK_SPAR_STAT_NAME

• MSK_SPAR_WRITE_LP_GEN_VAR_NAME

Debugging

• MSK_IPAR_AUTO_SORT_A_BEFORE_OPT

Dual simplex

• MSK_IPAR_SIM_DUAL_CRASH

• MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION

• MSK_IPAR_SIM_DUAL_SELECTION

Infeasibility report

• MSK_IPAR_INFEAS_GENERIC_NAMES

• MSK_IPAR_INFEAS_REPORT_LEVEL

• MSK_IPAR_LOG_INFEAS_ANA

Interior-point method

• MSK_DPAR_CHECK_CONVEXITY_REL_TOL

• MSK_DPAR_INTPNT_CO_TOL_DFEAS

• MSK_DPAR_INTPNT_CO_TOL_INFEAS

• MSK_DPAR_INTPNT_CO_TOL_MU_RED

• MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

• MSK_DPAR_INTPNT_CO_TOL_PFEAS

• MSK_DPAR_INTPNT_CO_TOL_REL_GAP

• MSK_DPAR_INTPNT_NL_MERIT_BAL

• MSK_DPAR_INTPNT_NL_TOL_DFEAS

• MSK_DPAR_INTPNT_NL_TOL_MU_RED

• MSK_DPAR_INTPNT_NL_TOL_NEAR_REL

• MSK_DPAR_INTPNT_NL_TOL_PFEAS

• MSK_DPAR_INTPNT_NL_TOL_REL_GAP

• MSK_DPAR_INTPNT_NL_TOL_REL_STEP

• MSK_DPAR_INTPNT_QO_TOL_DFEAS

• MSK_DPAR_INTPNT_QO_TOL_INFEAS

154 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• MSK_DPAR_INTPNT_QO_TOL_MU_RED

• MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

• MSK_DPAR_INTPNT_QO_TOL_PFEAS

• MSK_DPAR_INTPNT_QO_TOL_REL_GAP

• MSK_DPAR_INTPNT_TOL_DFEAS

• MSK_DPAR_INTPNT_TOL_DSAFE

• MSK_DPAR_INTPNT_TOL_INFEAS

• MSK_DPAR_INTPNT_TOL_MU_RED

• MSK_DPAR_INTPNT_TOL_PATH

• MSK_DPAR_INTPNT_TOL_PFEAS

• MSK_DPAR_INTPNT_TOL_PSAFE

• MSK_DPAR_INTPNT_TOL_REL_GAP

• MSK_DPAR_INTPNT_TOL_REL_STEP

• MSK_DPAR_INTPNT_TOL_STEP_SIZE

• MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL

• MSK_IPAR_BI_IGNORE_MAX_ITER

• MSK_IPAR_BI_IGNORE_NUM_ERROR

• MSK_IPAR_INTPNT_BASIS

• MSK_IPAR_INTPNT_DIFF_STEP

• MSK_IPAR_INTPNT_HOTSTART

• MSK_IPAR_INTPNT_MAX_ITERATIONS

• MSK_IPAR_INTPNT_MAX_NUM_COR

• MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS

• MSK_IPAR_INTPNT_OFF_COL_TRH

• MSK_IPAR_INTPNT_ORDER_METHOD

• MSK_IPAR_INTPNT_REGULARIZATION_USE

• MSK_IPAR_INTPNT_SCALING

• MSK_IPAR_INTPNT_SOLVE_FORM

• MSK_IPAR_INTPNT_STARTING_POINT

• MSK_IPAR_LOG_INTPNT

License manager

• MSK_IPAR_CACHE_LICENSE

• MSK_IPAR_LICENSE_DEBUG

• MSK_IPAR_LICENSE_PAUSE_TIME

• MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS

• MSK_IPAR_LICENSE_TRH_EXPIRY_WRN

• MSK_IPAR_LICENSE_WAIT

17.3. Parameters grouped by topic 155

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Logging

• MSK_IPAR_LOG

• MSK_IPAR_LOG_ANA_PRO

• MSK_IPAR_LOG_BI

• MSK_IPAR_LOG_BI_FREQ

• MSK_IPAR_LOG_CUT_SECOND_OPT

• MSK_IPAR_LOG_EXPAND

• MSK_IPAR_LOG_FEAS_REPAIR

• MSK_IPAR_LOG_FILE

• MSK_IPAR_LOG_INFEAS_ANA

• MSK_IPAR_LOG_INTPNT

• MSK_IPAR_LOG_MIO

• MSK_IPAR_LOG_MIO_FREQ

• MSK_IPAR_LOG_ORDER

• MSK_IPAR_LOG_PRESOLVE

• MSK_IPAR_LOG_RESPONSE

• MSK_IPAR_LOG_SENSITIVITY

• MSK_IPAR_LOG_SENSITIVITY_OPT

• MSK_IPAR_LOG_SIM

• MSK_IPAR_LOG_SIM_FREQ

• MSK_IPAR_LOG_STORAGE

Mixed-integer optimization

• MSK_DPAR_MIO_DISABLE_TERM_TIME

• MSK_DPAR_MIO_MAX_TIME

• MSK_DPAR_MIO_NEAR_TOL_ABS_GAP

• MSK_DPAR_MIO_NEAR_TOL_REL_GAP

• MSK_DPAR_MIO_REL_GAP_CONST

• MSK_DPAR_MIO_TOL_ABS_GAP

• MSK_DPAR_MIO_TOL_ABS_RELAX_INT

• MSK_DPAR_MIO_TOL_FEAS

• MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT

• MSK_DPAR_MIO_TOL_REL_GAP

• MSK_IPAR_LOG_MIO

• MSK_IPAR_LOG_MIO_FREQ

• MSK_IPAR_MIO_BRANCH_DIR

• MSK_IPAR_MIO_CONSTRUCT_SOL

• MSK_IPAR_MIO_CUT_CLIQUE

156 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• MSK_IPAR_MIO_CUT_CMIR

• MSK_IPAR_MIO_CUT_GMI

• MSK_IPAR_MIO_CUT_IMPLIED_BOUND

• MSK_IPAR_MIO_CUT_KNAPSACK_COVER

• MSK_IPAR_MIO_CUT_SELECTION_LEVEL

• MSK_IPAR_MIO_HEURISTIC_LEVEL

• MSK_IPAR_MIO_MAX_NUM_BRANCHES

• MSK_IPAR_MIO_MAX_NUM_RELAXS

• MSK_IPAR_MIO_MAX_NUM_SOLUTIONS

• MSK_IPAR_MIO_NODE_OPTIMIZER

• MSK_IPAR_MIO_NODE_SELECTION

• MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE

• MSK_IPAR_MIO_PROBING_LEVEL

• MSK_IPAR_MIO_RINS_MAX_NODES

• MSK_IPAR_MIO_ROOT_OPTIMIZER

• MSK_IPAR_MIO_ROOT_REPEAT_PRESOLVE_LEVEL

• MSK_IPAR_MIO_VB_DETECTION_LEVEL

Nonlinear convex method

• MSK_DPAR_INTPNT_NL_MERIT_BAL

• MSK_DPAR_INTPNT_NL_TOL_DFEAS

• MSK_DPAR_INTPNT_NL_TOL_MU_RED

• MSK_DPAR_INTPNT_NL_TOL_NEAR_REL

• MSK_DPAR_INTPNT_NL_TOL_PFEAS

• MSK_DPAR_INTPNT_NL_TOL_REL_GAP

• MSK_DPAR_INTPNT_NL_TOL_REL_STEP

• MSK_DPAR_INTPNT_TOL_INFEAS

• MSK_IPAR_CHECK_CONVEXITY

• MSK_IPAR_LOG_CHECK_CONVEXITY

Output information

• MSK_IPAR_INFEAS_REPORT_LEVEL

• MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS

• MSK_IPAR_LICENSE_TRH_EXPIRY_WRN

• MSK_IPAR_LOG

• MSK_IPAR_LOG_BI

• MSK_IPAR_LOG_BI_FREQ

• MSK_IPAR_LOG_CUT_SECOND_OPT

17.3. Parameters grouped by topic 157

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• MSK_IPAR_LOG_EXPAND

• MSK_IPAR_LOG_FEAS_REPAIR

• MSK_IPAR_LOG_FILE

• MSK_IPAR_LOG_INFEAS_ANA

• MSK_IPAR_LOG_INTPNT

• MSK_IPAR_LOG_MIO

• MSK_IPAR_LOG_MIO_FREQ

• MSK_IPAR_LOG_ORDER

• MSK_IPAR_LOG_RESPONSE

• MSK_IPAR_LOG_SENSITIVITY

• MSK_IPAR_LOG_SENSITIVITY_OPT

• MSK_IPAR_LOG_SIM

• MSK_IPAR_LOG_SIM_FREQ

• MSK_IPAR_LOG_SIM_MINOR

• MSK_IPAR_LOG_STORAGE

• MSK_IPAR_MAX_NUM_WARNINGS

Overall solver

• MSK_IPAR_BI_CLEAN_OPTIMIZER

• MSK_IPAR_INFEAS_PREFER_PRIMAL

• MSK_IPAR_LICENSE_WAIT

• MSK_IPAR_MIO_MODE

• MSK_IPAR_OPTIMIZER

• MSK_IPAR_PRESOLVE_LEVEL

• MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS

• MSK_IPAR_PRESOLVE_USE

• MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER

• MSK_IPAR_SENSITIVITY_ALL

• MSK_IPAR_SENSITIVITY_OPTIMIZER

• MSK_IPAR_SENSITIVITY_TYPE

• MSK_IPAR_SOLUTION_CALLBACK

Overall system

• MSK_IPAR_AUTO_UPDATE_SOL_INFO

• MSK_IPAR_INTPNT_MULTI_THREAD

• MSK_IPAR_LICENSE_WAIT

• MSK_IPAR_LOG_STORAGE

• MSK_IPAR_MIO_MT_USER_CB

158 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• MSK_IPAR_MT_SPINCOUNT

• MSK_IPAR_NUM_THREADS

• MSK_IPAR_REMOVE_UNUSED_SOLUTIONS

• MSK_IPAR_TIMING_LEVEL

• MSK_SPAR_REMOTE_ACCESS_TOKEN

Presolve

• MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP

• MSK_DPAR_PRESOLVE_TOL_AIJ

• MSK_DPAR_PRESOLVE_TOL_REL_LINDEP

• MSK_DPAR_PRESOLVE_TOL_S

• MSK_DPAR_PRESOLVE_TOL_X

• MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL

• MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES

• MSK_IPAR_PRESOLVE_LEVEL

• MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH

• MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH

• MSK_IPAR_PRESOLVE_LINDEP_USE

• MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS

• MSK_IPAR_PRESOLVE_USE

Primal simplex

• MSK_IPAR_SIM_PRIMAL_CRASH

• MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION

• MSK_IPAR_SIM_PRIMAL_SELECTION

Progress callback

• MSK_IPAR_SOLUTION_CALLBACK

Simplex optimizer

• MSK_DPAR_BASIS_REL_TOL_S

• MSK_DPAR_BASIS_TOL_S

• MSK_DPAR_BASIS_TOL_X

• MSK_DPAR_SIM_LU_TOL_REL_PIV

• MSK_DPAR_SIMPLEX_ABS_TOL_PIV

• MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE

• MSK_IPAR_LOG_SIM

• MSK_IPAR_LOG_SIM_FREQ

17.3. Parameters grouped by topic 159

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• MSK_IPAR_LOG_SIM_MINOR

• MSK_IPAR_SENSITIVITY_OPTIMIZER

• MSK_IPAR_SIM_BASIS_FACTOR_USE

• MSK_IPAR_SIM_DEGEN

• MSK_IPAR_SIM_DUAL_PHASEONE_METHOD

• MSK_IPAR_SIM_EXPLOIT_DUPVEC

• MSK_IPAR_SIM_HOTSTART

• MSK_IPAR_SIM_HOTSTART_LU

• MSK_IPAR_SIM_MAX_ITERATIONS

• MSK_IPAR_SIM_MAX_NUM_SETBACKS

• MSK_IPAR_SIM_NON_SINGULAR

• MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD

• MSK_IPAR_SIM_REFACTOR_FREQ

• MSK_IPAR_SIM_REFORMULATION

• MSK_IPAR_SIM_SAVE_LU

• MSK_IPAR_SIM_SCALING

• MSK_IPAR_SIM_SCALING_METHOD

• MSK_IPAR_SIM_SOLVE_FORM

• MSK_IPAR_SIM_STABILITY_PRIORITY

• MSK_IPAR_SIM_SWITCH_OPTIMIZER

Solution input/output

• MSK_IPAR_INFEAS_REPORT_AUTO

• MSK_IPAR_SOL_FILTER_KEEP_BASIC

• MSK_IPAR_SOL_FILTER_KEEP_RANGED

• MSK_IPAR_SOL_READ_NAME_WIDTH

• MSK_IPAR_SOL_READ_WIDTH

• MSK_IPAR_WRITE_BAS_CONSTRAINTS

• MSK_IPAR_WRITE_BAS_HEAD

• MSK_IPAR_WRITE_BAS_VARIABLES

• MSK_IPAR_WRITE_INT_CONSTRAINTS

• MSK_IPAR_WRITE_INT_HEAD

• MSK_IPAR_WRITE_INT_VARIABLES

• MSK_IPAR_WRITE_SOL_BARVARIABLES

• MSK_IPAR_WRITE_SOL_CONSTRAINTS

• MSK_IPAR_WRITE_SOL_HEAD

• MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES

• MSK_IPAR_WRITE_SOL_VARIABLES

• MSK_SPAR_BAS_SOL_FILE_NAME

160 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• MSK_SPAR_INT_SOL_FILE_NAME

• MSK_SPAR_ITR_SOL_FILE_NAME

• MSK_SPAR_SOL_FILTER_XC_LOW

• MSK_SPAR_SOL_FILTER_XC_UPR

• MSK_SPAR_SOL_FILTER_XX_LOW

• MSK_SPAR_SOL_FILTER_XX_UPR

Termination criteria

• MSK_DPAR_BASIS_REL_TOL_S

• MSK_DPAR_BASIS_TOL_S

• MSK_DPAR_BASIS_TOL_X

• MSK_DPAR_INTPNT_CO_TOL_DFEAS

• MSK_DPAR_INTPNT_CO_TOL_INFEAS

• MSK_DPAR_INTPNT_CO_TOL_MU_RED

• MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

• MSK_DPAR_INTPNT_CO_TOL_PFEAS

• MSK_DPAR_INTPNT_CO_TOL_REL_GAP

• MSK_DPAR_INTPNT_NL_TOL_DFEAS

• MSK_DPAR_INTPNT_NL_TOL_MU_RED

• MSK_DPAR_INTPNT_NL_TOL_NEAR_REL

• MSK_DPAR_INTPNT_NL_TOL_PFEAS

• MSK_DPAR_INTPNT_NL_TOL_REL_GAP

• MSK_DPAR_INTPNT_QO_TOL_DFEAS

• MSK_DPAR_INTPNT_QO_TOL_INFEAS

• MSK_DPAR_INTPNT_QO_TOL_MU_RED

• MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

• MSK_DPAR_INTPNT_QO_TOL_PFEAS

• MSK_DPAR_INTPNT_QO_TOL_REL_GAP

• MSK_DPAR_INTPNT_TOL_DFEAS

• MSK_DPAR_INTPNT_TOL_INFEAS

• MSK_DPAR_INTPNT_TOL_MU_RED

• MSK_DPAR_INTPNT_TOL_PFEAS

• MSK_DPAR_INTPNT_TOL_REL_GAP

• MSK_DPAR_LOWER_OBJ_CUT

• MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH

• MSK_DPAR_MIO_DISABLE_TERM_TIME

• MSK_DPAR_MIO_MAX_TIME

• MSK_DPAR_MIO_NEAR_TOL_REL_GAP

• MSK_DPAR_MIO_REL_GAP_CONST

17.3. Parameters grouped by topic 161

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• MSK_DPAR_MIO_TOL_REL_GAP

• MSK_DPAR_OPTIMIZER_MAX_TIME

• MSK_DPAR_UPPER_OBJ_CUT

• MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH

• MSK_IPAR_BI_MAX_ITERATIONS

• MSK_IPAR_INTPNT_MAX_ITERATIONS

• MSK_IPAR_MIO_MAX_NUM_BRANCHES

• MSK_IPAR_MIO_MAX_NUM_SOLUTIONS

• MSK_IPAR_SIM_MAX_ITERATIONS

Other

• MSK_IPAR_COMPRESS_STATFILE

17.4 Parameters (alphabetical list sorted by type)

• Double parameters

• Integer parameters

• String parameters

17.4.1 Double parameters

dparam
The enumeration type containing all double parameters.

MSK_DPAR_ANA_SOL_INFEAS_TOL
If a constraint violates its bound with an amount larger than this value, the constraint name, index
and violation will be printed by the solution analyzer.

Default 1e-6

Accepted [0.0; +inf]

Groups Analysis

MSK_DPAR_BASIS_REL_TOL_S
Maximum relative dual bound violation allowed in an optimal basic solution.

Default 1.0e-12

Accepted [0.0; +inf]

Groups Simplex optimizer , Termination criteria

MSK_DPAR_BASIS_TOL_S
Maximum absolute dual bound violation in an optimal basic solution.

Default 1.0e-6

Accepted [1.0e-9; +inf]

Groups Simplex optimizer , Termination criteria

MSK_DPAR_BASIS_TOL_X
Maximum absolute primal bound violation allowed in an optimal basic solution.

Default 1.0e-6

162 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Accepted [1.0e-9; +inf]

Groups Simplex optimizer , Termination criteria

MSK_DPAR_CHECK_CONVEXITY_REL_TOL
This parameter controls when the full convexity check declares a problem to be non-convex. In-
creasing this tolerance relaxes the criteria for declaring the problem non-convex.

A problem is declared non-convex if negative (positive) pivot elements are detected in the Cholesky
factor of a matrix which is required to be PSD (NSD). This parameter controls how much this non-
negativity requirement may be violated.

If 𝑑𝑖 is the pivot element for column 𝑖, then the matrix 𝑄 is considered to not be PSD if:

𝑑𝑖 ≤ −|𝑄𝑖𝑖|check_convexity_rel_tol

Default 1e-10

Accepted [0; +inf]

Groups Interior-point method

MSK_DPAR_DATA_SYM_MAT_TOL
Absolute zero tolerance for elements in in suymmetric matrixes. If any value in a symmetric matrix
is smaller than this parameter in absolute terms MOSEK will treat the values as zero and generate
a warning.

Default 1.0e-12

Accepted [1.0e-16; 1.0e-6]

Groups Data check

MSK_DPAR_DATA_SYM_MAT_TOL_HUGE
An element in a symmetric matrix which is larger than this value in absolute size causes an error.

Default 1.0e20

Accepted [0.0; +inf]

Groups Data check

MSK_DPAR_DATA_SYM_MAT_TOL_LARGE
An element in a symmetric matrix which is larger than this value in absolute size causes a warning
message to be printed.

Default 1.0e10

Accepted [0.0; +inf]

Groups Data check

MSK_DPAR_DATA_TOL_AIJ
Absolute zero tolerance for elements in 𝐴. If any value 𝐴𝑖𝑗 is smaller than this parameter in
absolute terms MOSEK will treat the values as zero and generate a warning.

Default 1.0e-12

Accepted [1.0e-16; 1.0e-6]

Groups Data check

MSK_DPAR_DATA_TOL_AIJ_HUGE
An element in 𝐴 which is larger than this value in absolute size causes an error.

Default 1.0e20

Accepted [0.0; +inf]

Groups Data check

17.4. Parameters (alphabetical list sorted by type) 163

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

MSK_DPAR_DATA_TOL_AIJ_LARGE
An element in 𝐴 which is larger than this value in absolute size causes a warning message to be
printed.

Default 1.0e10

Accepted [0.0; +inf]

Groups Data check

MSK_DPAR_DATA_TOL_BOUND_INF
Any bound which in absolute value is greater than this parameter is considered infinite.

Default 1.0e16

Accepted [0.0; +inf]

Groups Data check

MSK_DPAR_DATA_TOL_BOUND_WRN
If a bound value is larger than this value in absolute size, then a warning message is issued.

Default 1.0e8

Accepted [0.0; +inf]

Groups Data check

MSK_DPAR_DATA_TOL_C_HUGE
An element in 𝑐 which is larger than the value of this parameter in absolute terms is considered to
be huge and generates an error.

Default 1.0e16

Accepted [0.0; +inf]

Groups Data check

MSK_DPAR_DATA_TOL_CJ_LARGE
An element in 𝑐 which is larger than this value in absolute terms causes a warning message to be
printed.

Default 1.0e8

Accepted [0.0; +inf]

Groups Data check

MSK_DPAR_DATA_TOL_QIJ
Absolute zero tolerance for elements in 𝑄 matrices.

Default 1.0e-16

Accepted [0.0; +inf]

Groups Data check

MSK_DPAR_DATA_TOL_X
Zero tolerance for constraints and variables i.e. if the distance between the lower and upper bound
is less than this value, then the lower and upper bound is considered identical.

Default 1.0e-8

Accepted [0.0; +inf]

Groups Data check

MSK_DPAR_INTPNT_CO_TOL_DFEAS
Dual feasibility tolerance used by the conic interior-point optimizer.

Default 1.0e-8

Accepted [0.0; 1.0]

164 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Groups Interior-point method , Termination criteria, Conic interior-point method

See also MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

MSK_DPAR_INTPNT_CO_TOL_INFEAS
Controls when the conic interior-point optimizer declares the model primal or dual infeasible. A
small number means the optimizer gets more conservative about declaring the model infeasible.

Default 1.0e-10

Accepted [0.0; 1.0]

Groups Interior-point method , Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_MU_RED
Relative complementarity gap feasibility tolerance used by the conic interior-point optimizer.

Default 1.0e-8

Accepted [0.0; 1.0]

Groups Interior-point method , Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
If MOSEK cannot compute a solution that has the prescribed accuracy, then it will multiply the
termination tolerances with value of this parameter. If the solution then satisfies the termination
criteria, then the solution is denoted near optimal, near feasible and so forth.

Default 1000

Accepted [1.0; +inf]

Groups Interior-point method , Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_PFEAS
Primal feasibility tolerance used by the conic interior-point optimizer.

Default 1.0e-8

Accepted [0.0; 1.0]

Groups Interior-point method , Termination criteria, Conic interior-point method

See also MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

MSK_DPAR_INTPNT_CO_TOL_REL_GAP
Relative gap termination tolerance used by the conic interior-point optimizer.

Default 1.0e-7

Accepted [0.0; 1.0]

Groups Interior-point method , Termination criteria, Conic interior-point method

See also MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

MSK_DPAR_INTPNT_NL_MERIT_BAL
Controls if the complementarity and infeasibility is converging to zero at about equal rates.

Default 1.0e-4

Accepted [0.0; 0.99]

Groups Interior-point method , Nonlinear convex method

MSK_DPAR_INTPNT_NL_TOL_DFEAS
Dual feasibility tolerance used when a nonlinear model is solved.

Default 1.0e-8

Accepted [0.0; 1.0]

Groups Interior-point method , Termination criteria, Nonlinear convex method

17.4. Parameters (alphabetical list sorted by type) 165

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

MSK_DPAR_INTPNT_NL_TOL_MU_RED
Relative complementarity gap tolerance for the nonlinear solver.

Default 1.0e-12

Accepted [0.0; 1.0]

Groups Interior-point method , Termination criteria, Nonlinear convex method

MSK_DPAR_INTPNT_NL_TOL_NEAR_REL
If the MOSEK nonlinear interior-point optimizer cannot compute a solution that has the pre-
scribed accuracy, then it will multiply the termination tolerances with value of this parameter. If
the solution then satisfies the termination criteria, then the solution is denoted near optimal, near
feasible and so forth.

Default 1000.0

Accepted [1.0; +inf]

Groups Interior-point method , Termination criteria, Nonlinear convex method

MSK_DPAR_INTPNT_NL_TOL_PFEAS
Primal feasibility tolerance used when a nonlinear model is solved.

Default 1.0e-8

Accepted [0.0; 1.0]

Groups Interior-point method , Termination criteria, Nonlinear convex method

MSK_DPAR_INTPNT_NL_TOL_REL_GAP
Relative gap termination tolerance for nonlinear problems.

Default 1.0e-6

Accepted [1.0e-14; +inf]

Groups Termination criteria, Interior-point method , Nonlinear convex method

MSK_DPAR_INTPNT_NL_TOL_REL_STEP
Relative step size to the boundary for general nonlinear optimization problems.

Default 0.995

Accepted [1.0e-4; 0.9999999]

Groups Interior-point method , Nonlinear convex method

MSK_DPAR_INTPNT_QO_TOL_DFEAS
Dual feasibility tolerance used when the interior-point optimizer is applied to a quadratic optimiza-
tion problem..

Default 1.0e-8

Accepted [0.0; 1.0]

Groups Interior-point method , Termination criteria

See also MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

MSK_DPAR_INTPNT_QO_TOL_INFEAS
Controls when the conic interior-point optimizer declares the model primal or dual infeasible. A
small number means the optimizer gets more conservative about declaring the model infeasible.

Default 1.0e-10

Accepted [0.0; 1.0]

Groups Interior-point method , Termination criteria

MSK_DPAR_INTPNT_QO_TOL_MU_RED
Relative complementarity gap feasibility tolerance used when interior-point optimizer is applied to
a quadratic optimization problem.

166 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Default 1.0e-8

Accepted [0.0; 1.0]

Groups Interior-point method , Termination criteria

MSK_DPAR_INTPNT_QO_TOL_NEAR_REL
If MOSEK cannot compute a solution that has the prescribed accuracy, then it will multiply the
termination tolerances with value of this parameter. If the solution then satisfies the termination
criteria, then the solution is denoted near optimal, near feasible and so forth.

Default 1000

Accepted [1.0; +inf]

Groups Interior-point method , Termination criteria

MSK_DPAR_INTPNT_QO_TOL_PFEAS
Primal feasibility tolerance used when the interior-point optimizer is applied to a quadratic opti-
mization problem.

Default 1.0e-8

Accepted [0.0; 1.0]

Groups Interior-point method , Termination criteria

See also MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

MSK_DPAR_INTPNT_QO_TOL_REL_GAP
Relative gap termination tolerance used when the interior-point optimizer is applied to a quadratic
optimization problem.

Default 1.0e-8

Accepted [0.0; 1.0]

Groups Interior-point method , Termination criteria

See also MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

MSK_DPAR_INTPNT_TOL_DFEAS
Dual feasibility tolerance used for linear optimization problems.

Default 1.0e-8

Accepted [0.0; 1.0]

Groups Interior-point method , Termination criteria

MSK_DPAR_INTPNT_TOL_DSAFE
Controls the initial dual starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly and/or the constraint or variable bounds are very large, then it might
be worthwhile to increase this value.

Default 1.0

Accepted [1.0e-4; +inf]

Groups Interior-point method

MSK_DPAR_INTPNT_TOL_INFEAS
Controls when the optimizer declares the model primal or dual infeasible. A small number means
the optimizer gets more conservative about declaring the model infeasible.

Default 1.0e-10

Accepted [0.0; 1.0]

Groups Interior-point method , Termination criteria, Nonlinear convex method

MSK_DPAR_INTPNT_TOL_MU_RED
Relative complementarity gap tolerance for linear problems.

17.4. Parameters (alphabetical list sorted by type) 167

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Default 1.0e-16

Accepted [0.0; 1.0]

Groups Interior-point method , Termination criteria

MSK_DPAR_INTPNT_TOL_PATH
Controls how close the interior-point optimizer follows the central path. A large value of this
parameter means the central is followed very closely. On numerical unstable problems it may be
worthwhile to increase this parameter.

Default 1.0e-8

Accepted [0.0; 0.9999]

Groups Interior-point method

MSK_DPAR_INTPNT_TOL_PFEAS
Primal feasibility tolerance used for linear optimization problems.

Default 1.0e-8

Accepted [0.0; 1.0]

Groups Interior-point method , Termination criteria

MSK_DPAR_INTPNT_TOL_PSAFE
Controls the initial primal starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly and/or the constraint or variable bounds are very large, then it may be
worthwhile to increase this value.

Default 1.0

Accepted [1.0e-4; +inf]

Groups Interior-point method

MSK_DPAR_INTPNT_TOL_REL_GAP
Relative gap termination tolerance for linear problems.

Default 1.0e-8

Accepted [1.0e-14; +inf]

Groups Termination criteria, Interior-point method

MSK_DPAR_INTPNT_TOL_REL_STEP
Relative step size to the boundary for linear and quadratic optimization problems.

Default 0.9999

Accepted [1.0e-4; 0.999999]

Groups Interior-point method

MSK_DPAR_INTPNT_TOL_STEP_SIZE
Minimal step size tolerance. If the step size falls below the value of this parameter, then the
interior-point optimizer assumes that it is stalled. In other words the interior-point optimizer does
not make any progress and therefore it is better stop.

Default 1.0e-6

Accepted [0.0; 1.0]

Groups Interior-point method

MSK_DPAR_LOWER_OBJ_CUT
If either a primal or dual feasible solution is found proving that the optimal objective value is
outside, the interval [MSK_DPAR_LOWER_OBJ_CUT , MSK_DPAR_UPPER_OBJ_CUT], then MOSEK is
terminated.

Default -1.0e30

168 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Accepted [-inf; +inf]

Groups Termination criteria

See also MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH

MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH
If the lower objective cut is less than the value of this parameter value, then the lower objective
cut i.e. MSK_DPAR_LOWER_OBJ_CUT is treated as −∞.

Default -0.5e30

Accepted [-inf; +inf]

Groups Termination criteria

MSK_DPAR_MIO_DISABLE_TERM_TIME

This parameter specifies the number of seconds 𝑛 during which the termination
criteria governed by

• MSK_IPAR_MIO_MAX_NUM_RELAXS

• MSK_IPAR_MIO_MAX_NUM_BRANCHES

• MSK_DPAR_MIO_NEAR_TOL_ABS_GAP

• MSK_DPAR_MIO_NEAR_TOL_REL_GAP

is disabled since the beginning of the optimization.

A negative value is identical to infinity i.e. the termination criteria are never checked.

Default -1.0

Accepted [-inf; +inf]

Groups Mixed-integer optimization, Termination criteria

See also MSK_IPAR_MIO_MAX_NUM_RELAXS , MSK_IPAR_MIO_MAX_NUM_BRANCHES ,
MSK_DPAR_MIO_NEAR_TOL_ABS_GAP , MSK_DPAR_MIO_NEAR_TOL_REL_GAP

MSK_DPAR_MIO_MAX_TIME
This parameter limits the maximum time spent by the mixed-integer optimizer. A negative number
means infinity.

Default -1.0

Accepted [-inf; +inf]

Groups Mixed-integer optimization, Termination criteria

MSK_DPAR_MIO_NEAR_TOL_ABS_GAP
Relaxed absolute optimality tolerance employed by the mixed-integer optimizer. This termination
criteria is delayed. See MSK_DPAR_MIO_DISABLE_TERM_TIME for details.

Default 0.0

Accepted [0.0; +inf]

Groups Mixed-integer optimization

See also MSK_DPAR_MIO_DISABLE_TERM_TIME

MSK_DPAR_MIO_NEAR_TOL_REL_GAP
The mixed-integer optimizer is terminated when this tolerance is satisfied. This termination criteria
is delayed. See MSK_DPAR_MIO_DISABLE_TERM_TIME for details.

Default 1.0e-3

Accepted [0.0; +inf]

17.4. Parameters (alphabetical list sorted by type) 169

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Groups Mixed-integer optimization, Termination criteria

See also MSK_DPAR_MIO_DISABLE_TERM_TIME

MSK_DPAR_MIO_REL_GAP_CONST
This value is used to compute the relative gap for the solution to an integer optimization problem.

Default 1.0e-10

Accepted [1.0e-15; +inf]

Groups Mixed-integer optimization, Termination criteria

MSK_DPAR_MIO_TOL_ABS_GAP
Absolute optimality tolerance employed by the mixed-integer optimizer.

Default 0.0

Accepted [0.0; +inf]

Groups Mixed-integer optimization

MSK_DPAR_MIO_TOL_ABS_RELAX_INT
Absolute integer feasibility tolerance. If the distance to the nearest integer is less than this tolerance
then an integer constraint is assumed to be satisfied.

Default 1.0e-5

Accepted [1e-9; +inf]

Groups Mixed-integer optimization

MSK_DPAR_MIO_TOL_FEAS
Feasibility tolerance for mixed integer solver.

Default 1.0e-6

Accepted [1e-9; 1e-3]

Groups Mixed-integer optimization

MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT
If the relative improvement of the dual bound is smaller than this value, the solver will terminate
the root cut generation. A value of 0.0 means that the value is selected automatically.

Default 0.0

Accepted [0.0; 1.0]

Groups Mixed-integer optimization

MSK_DPAR_MIO_TOL_REL_GAP
Relative optimality tolerance employed by the mixed-integer optimizer.

Default 1.0e-4

Accepted [0.0; +inf]

Groups Mixed-integer optimization, Termination criteria

MSK_DPAR_OPTIMIZER_MAX_TIME
Maximum amount of time the optimizer is allowed to spent on the optimization. A negative number
means infinity.

Default -1.0

Accepted [-inf; +inf]

Groups Termination criteria

MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP
Absolute tolerance employed by the linear dependency checker.

Default 1.0e-6

170 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Accepted [0.0; +inf]

Groups Presolve

MSK_DPAR_PRESOLVE_TOL_AIJ
Absolute zero tolerance employed for 𝑎𝑖𝑗 in the presolve.

Default 1.0e-12

Accepted [1.0e-15; +inf]

Groups Presolve

MSK_DPAR_PRESOLVE_TOL_REL_LINDEP
Relative tolerance employed by the linear dependency checker.

Default 1.0e-10

Accepted [0.0; +inf]

Groups Presolve

MSK_DPAR_PRESOLVE_TOL_S
Absolute zero tolerance employed for 𝑠𝑖 in the presolve.

Default 1.0e-8

Accepted [0.0; +inf]

Groups Presolve

MSK_DPAR_PRESOLVE_TOL_X
Absolute zero tolerance employed for 𝑥𝑗 in the presolve.

Default 1.0e-8

Accepted [0.0; +inf]

Groups Presolve

MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL
This parameter determines when columns are dropped in incomplete Cholesky factorization during
reformulation of quadratic problems.

Default 1e-15

Accepted [0; +inf]

Groups Interior-point method

MSK_DPAR_SEMIDEFINITE_TOL_APPROX
Tolerance to define a matrix to be positive semidefinite.

Default 1.0e-10

Accepted [1.0e-15; +inf]

Groups Data check

MSK_DPAR_SIM_LU_TOL_REL_PIV
Relative pivot tolerance employed when computing the LU factorization of the basis in the simplex
optimizers and in the basis identification procedure.

A value closer to 1.0 generally improves numerical stability but typically also implies an increase
in the computational work.

Default 0.01

Accepted [1.0e-6; 0.999999]

Groups Basis identification, Simplex optimizer

MSK_DPAR_SIMPLEX_ABS_TOL_PIV
Absolute pivot tolerance employed by the simplex optimizers.

17.4. Parameters (alphabetical list sorted by type) 171

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Default 1.0e-7

Accepted [1.0e-12; +inf]

Groups Simplex optimizer

MSK_DPAR_UPPER_OBJ_CUT
If either a primal or dual feasible solution is found proving that the optimal objective value is
outside, the interval [MSK_DPAR_LOWER_OBJ_CUT , MSK_DPAR_UPPER_OBJ_CUT], then MOSEK is
terminated.

Default 1.0e30

Accepted [-inf; +inf]

Groups Termination criteria

See also MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH

MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH
If the upper objective cut is greater than the value of this parameter, then the upper objective cut
MSK_DPAR_UPPER_OBJ_CUT is treated as ∞.

Default 0.5e30

Accepted [-inf; +inf]

Groups Termination criteria

17.4.2 Integer parameters

iparam
The enumeration type containing all integer parameters.

MSK_IPAR_ANA_SOL_BASIS
Controls whether the basis matrix is analyzed in solution analyzer.

Default "ON"

Accepted "ON" , "OFF"

Groups Analysis

MSK_IPAR_ANA_SOL_PRINT_VIOLATED
Controls whether a list of violated constraints is printed.

All constraints violated by more than the value set by the parameter
MSK_DPAR_ANA_SOL_INFEAS_TOL will be printed.

Default "OFF"

Accepted "ON" , "OFF"

Groups Analysis

MSK_IPAR_AUTO_SORT_A_BEFORE_OPT
Controls whether the elements in each column of 𝐴 are sorted before an optimization is performed.
This is not required but makes the optimization more deterministic.

Default "OFF"

Accepted "ON" , "OFF"

Groups Debugging

MSK_IPAR_AUTO_UPDATE_SOL_INFO
Controls whether the solution information items are automatically updated after an optimization
is performed.

Default "OFF"

172 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Accepted "ON" , "OFF"

Groups Overall system

MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE
If a slack variable is in the basis, then the corresponding column in the basis is a unit vector with
-1 in the right position. However, if this parameter is set to "MSK_ON" , -1 is replaced by 1.

Default "OFF"

Accepted "ON" , "OFF"

Groups Simplex optimizer

MSK_IPAR_BI_CLEAN_OPTIMIZER
Controls which simplex optimizer is used in the clean-up phase.

Default "FREE"

Accepted "FREE" , "INTPNT" , "CONIC" , "PRIMAL_SIMPLEX" , "DUAL_SIMPLEX" ,
"FREE_SIMPLEX" , "MIXED_INT"

Groups Basis identification, Overall solver

MSK_IPAR_BI_IGNORE_MAX_ITER
If the parameter MSK_IPAR_INTPNT_BASIS has the value "MSK_BI_NO_ERROR" and the interior-
point optimizer has terminated due to maximum number of iterations, then basis identification is
performed if this parameter has the value "MSK_ON" .

Default "OFF"

Accepted "ON" , "OFF"

Groups Interior-point method , Basis identification

MSK_IPAR_BI_IGNORE_NUM_ERROR
If the parameter MSK_IPAR_INTPNT_BASIS has the value "MSK_BI_NO_ERROR" and the interior-
point optimizer has terminated due to a numerical problem, then basis identification is performed
if this parameter has the value "MSK_ON" .

Default "OFF"

Accepted "ON" , "OFF"

Groups Interior-point method , Basis identification

MSK_IPAR_BI_MAX_ITERATIONS
Controls the maximum number of simplex iterations allowed to optimize a basis after the basis
identification.

Default 1000000

Accepted [0; +inf]

Groups Basis identification, Termination criteria

MSK_IPAR_CACHE_LICENSE
Specifies if the license is kept checked out for the lifetime of the mosek environment ("MSK_ON")
or returned to the server immediately after the optimization ("MSK_OFF").

By default the license is checked out for the lifetime of the MOSEK environment by the first call
to the optimizer.

Check-in and check-out of licenses have an overhead. Frequent communication with the license
server should be avoided.

Default "ON"

Accepted "ON" , "OFF"

Groups License manager

17.4. Parameters (alphabetical list sorted by type) 173

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

MSK_IPAR_CHECK_CONVEXITY
Specify the level of convexity check on quadratic problems.

Default "FULL"

Accepted "NONE" , "SIMPLE" , "FULL"

Groups Data check , Nonlinear convex method

MSK_IPAR_COMPRESS_STATFILE
Control compression of stat files.

Default "ON"

Accepted "ON" , "OFF"

MSK_IPAR_INFEAS_GENERIC_NAMES
Controls whether generic names are used when an infeasible subproblem is created.

Default "OFF"

Accepted "ON" , "OFF"

Groups Infeasibility report

MSK_IPAR_INFEAS_PREFER_PRIMAL
If both certificates of primal and dual infeasibility are supplied then only the primal is used when
this option is turned on.

Default "ON"

Accepted "ON" , "OFF"

Groups Overall solver

MSK_IPAR_INFEAS_REPORT_AUTO
Controls whether an infeasibility report is automatically produced after the optimization if the
problem is primal or dual infeasible.

Default "OFF"

Accepted "ON" , "OFF"

Groups Data input/output , Solution input/output

MSK_IPAR_INFEAS_REPORT_LEVEL
Controls the amount of information presented in an infeasibility report. Higher values imply more
information.

Default 1

Accepted [0; +inf]

Groups Infeasibility report , Output information

MSK_IPAR_INTPNT_BASIS
Controls whether the interior-point optimizer also computes an optimal basis.

Default "ALWAYS"

Accepted "NEVER" , "ALWAYS" , "NO_ERROR" , "IF_FEASIBLE" , "RESERVERED"

Groups Interior-point method , Basis identification

See also MSK_IPAR_BI_IGNORE_MAX_ITER , MSK_IPAR_BI_IGNORE_NUM_ERROR ,
MSK_IPAR_BI_MAX_ITERATIONS , MSK_IPAR_BI_CLEAN_OPTIMIZER

MSK_IPAR_INTPNT_DIFF_STEP
Controls whether different step sizes are allowed in the primal and dual space.

Default "ON"

Accepted

174 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• "ON" : Different step sizes are allowed.

• "OFF" : Different step sizes are not allowed.

Groups Interior-point method

MSK_IPAR_INTPNT_HOTSTART
Currently not in use.

Default "NONE"

Accepted "NONE" , "PRIMAL" , "DUAL" , "PRIMAL_DUAL"

Groups Interior-point method

MSK_IPAR_INTPNT_MAX_ITERATIONS
Controls the maximum number of iterations allowed in the interior-point optimizer.

Default 400

Accepted [0; +inf]

Groups Interior-point method , Termination criteria

MSK_IPAR_INTPNT_MAX_NUM_COR
Controls the maximum number of correctors allowed by the multiple corrector procedure. A neg-
ative value means that MOSEK is making the choice.

Default -1

Accepted [-1; +inf]

Groups Interior-point method

MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS
Maximum number of steps to be used by the iterative refinement of the search direction. A negative
value implies that the optimizer chooses the maximum number of iterative refinement steps.

Default -1

Accepted [-inf; +inf]

Groups Interior-point method

MSK_IPAR_INTPNT_MULTI_THREAD
Controls whether the interior-point optimizers are allowed to employ multiple threads if more
threads is available.

Default "ON"

Accepted "ON" , "OFF"

Groups Overall system

MSK_IPAR_INTPNT_OFF_COL_TRH
Controls how many offending columns are detected in the Jacobian of the constraint matrix.

0 no detection
1 aggressive detection
> 1 higher values mean less aggressive detection

Default 40

Accepted [0; +inf]

Groups Interior-point method

MSK_IPAR_INTPNT_ORDER_METHOD
Controls the ordering strategy used by the interior-point optimizer when factorizing the Newton
equation system.

17.4. Parameters (alphabetical list sorted by type) 175

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Default "FREE"

Accepted "FREE" , "APPMINLOC" , "EXPERIMENTAL" , "TRY_GRAPHPAR" ,
"FORCE_GRAPHPAR" , "NONE"

Groups Interior-point method

MSK_IPAR_INTPNT_REGULARIZATION_USE
Controls whether regularization is allowed.

Default "ON"

Accepted "ON" , "OFF"

Groups Interior-point method

MSK_IPAR_INTPNT_SCALING
Controls how the problem is scaled before the interior-point optimizer is used.

Default "FREE"

Accepted "FREE" , "NONE" , "MODERATE" , "AGGRESSIVE"

Groups Interior-point method

MSK_IPAR_INTPNT_SOLVE_FORM
Controls whether the primal or the dual problem is solved.

Default "FREE"

Accepted "FREE" , "PRIMAL" , "DUAL"

Groups Interior-point method

MSK_IPAR_INTPNT_STARTING_POINT
Starting point used by the interior-point optimizer.

Default "FREE"

Accepted "FREE" , "GUESS" , "CONSTANT" , "SATISFY_BOUNDS"

Groups Interior-point method

MSK_IPAR_LICENSE_DEBUG
This option is used to turn on debugging of the license manager.

Default "OFF"

Accepted "ON" , "OFF"

Groups License manager

MSK_IPAR_LICENSE_PAUSE_TIME
If MSK_IPAR_LICENSE_WAIT= "MSK_ON" and no license is available, then MOSEK sleeps a number
of milliseconds between each check of whether a license has become free.

Default 100

Accepted [0; 1000000]

Groups License manager

MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS
Controls whether license features expire warnings are suppressed.

Default "OFF"

Accepted "ON" , "OFF"

Groups License manager , Output information

MSK_IPAR_LICENSE_TRH_EXPIRY_WRN
If a license feature expires in a numbers days less than the value of this parameter then a warning
will be issued.

176 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Default 7

Accepted [0; +inf]

Groups License manager , Output information

MSK_IPAR_LICENSE_WAIT
If all licenses are in use MOSEK returns with an error code. However, by turning on this parameter
MOSEK will wait for an available license.

Default "OFF"

Accepted "ON" , "OFF"

Groups Overall solver , Overall system, License manager

MSK_IPAR_LOG
Controls the amount of log information. The value 0 implies that all log information is suppressed.
A higher level implies that more information is logged.

Please note that if a task is employed to solve a sequence of optimization problems the value of
this parameter is reduced by the value of MSK_IPAR_LOG_CUT_SECOND_OPT for the second and any
subsequent optimizations.

Default 10

Accepted [0; +inf]

Groups Output information, Logging

See also MSK_IPAR_LOG_CUT_SECOND_OPT

MSK_IPAR_LOG_ANA_PRO
Controls amount of output from the problem analyzer.

Default 1

Accepted [0; +inf]

Groups Analysis, Logging

MSK_IPAR_LOG_BI
Controls the amount of output printed by the basis identification procedure. A higher level implies
that more information is logged.

Default 1

Accepted [0; +inf]

Groups Basis identification, Output information, Logging

MSK_IPAR_LOG_BI_FREQ
Controls how frequent the optimizer outputs information about the basis identification and how
frequent the user-defined callback function is called.

Default 2500

Accepted [0; +inf]

Groups Basis identification, Output information, Logging

MSK_IPAR_LOG_CHECK_CONVEXITY
Controls logging in convexity check on quadratic problems. Set to a positive value to turn logging
on. If a quadratic coefficient matrix is found to violate the requirement of PSD (NSD) then a list
of negative (positive) pivot elements is printed. The absolute value of the pivot elements is also
shown.

Default 0

Accepted [0; +inf]

Groups Data check , Nonlinear convex method

17.4. Parameters (alphabetical list sorted by type) 177

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

MSK_IPAR_LOG_CUT_SECOND_OPT
If a task is employed to solve a sequence of optimization problems, then the value of the log levels
is reduced by the value of this parameter. E.g MSK_IPAR_LOG and MSK_IPAR_LOG_SIM are reduced
by the value of this parameter for the second and any subsequent optimizations.

Default 1

Accepted [0; +inf]

Groups Output information, Logging

See also MSK_IPAR_LOG , MSK_IPAR_LOG_INTPNT , MSK_IPAR_LOG_MIO ,
MSK_IPAR_LOG_SIM

MSK_IPAR_LOG_EXPAND
Controls the amount of logging when a data item such as the maximum number constrains is
expanded.

Default 0

Accepted [0; +inf]

Groups Output information, Logging

MSK_IPAR_LOG_FEAS_REPAIR
Controls the amount of output printed when performing feasibility repair. A value higher than one
means extensive logging.

Default 1

Accepted [0; +inf]

Groups Output information, Logging

MSK_IPAR_LOG_FILE
If turned on, then some log info is printed when a file is written or read.

Default 1

Accepted [0; +inf]

Groups Data input/output , Output information, Logging

MSK_IPAR_LOG_INFEAS_ANA
Controls amount of output printed by the infeasibility analyzer procedures. A higher level implies
that more information is logged.

Default 1

Accepted [0; +inf]

Groups Infeasibility report , Output information, Logging

MSK_IPAR_LOG_INTPNT
Controls amount of output printed by the interior-point optimizer. A higher level implies that
more information is logged.

Default 1

Accepted [0; +inf]

Groups Interior-point method , Output information, Logging

MSK_IPAR_LOG_MIO
Controls the log level for the mixed-integer optimizer. A higher level implies that more information
is logged.

Default 4

Accepted [0; +inf]

Groups Mixed-integer optimization, Output information, Logging

178 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

MSK_IPAR_LOG_MIO_FREQ
Controls how frequent the mixed-integer optimizer prints the log line. It will print line every time
MSK_IPAR_LOG_MIO_FREQ relaxations have been solved.

Default 10

Accepted [-inf; +inf]

Groups Mixed-integer optimization, Output information, Logging

MSK_IPAR_LOG_ORDER
If turned on, then factor lines are added to the log.

Default 1

Accepted [0; +inf]

Groups Output information, Logging

MSK_IPAR_LOG_PRESOLVE
Controls amount of output printed by the presolve procedure. A higher level implies that more
information is logged.

Default 1

Accepted [0; +inf]

Groups Logging

MSK_IPAR_LOG_RESPONSE
Controls amount of output printed when response codes are reported. A higher level implies that
more information is logged.

Default 0

Accepted [0; +inf]

Groups Output information, Logging

MSK_IPAR_LOG_SENSITIVITY
Controls the amount of logging during the sensitivity analysis.

0. Means no logging information is produced.

1. Timing information is printed.

2. Sensitivity results are printed.

Default 1

Accepted [0; +inf]

Groups Output information, Logging

MSK_IPAR_LOG_SENSITIVITY_OPT
Controls the amount of logging from the optimizers employed during the sensitivity analysis. 0
means no logging information is produced.

Default 0

Accepted [0; +inf]

Groups Output information, Logging

MSK_IPAR_LOG_SIM
Controls amount of output printed by the simplex optimizer. A higher level implies that more
information is logged.

Default 4

Accepted [0; +inf]

17.4. Parameters (alphabetical list sorted by type) 179

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Groups Simplex optimizer , Output information, Logging

MSK_IPAR_LOG_SIM_FREQ
Controls how frequent the simplex optimizer outputs information about the optimization and how
frequent the user-defined callback function is called.

Default 1000

Accepted [0; +inf]

Groups Simplex optimizer , Output information, Logging

MSK_IPAR_LOG_SIM_MINOR
Currently not in use.

Default 1

Accepted [0; +inf]

Groups Simplex optimizer , Output information

MSK_IPAR_LOG_STORAGE
When turned on, MOSEK prints messages regarding the storage usage and allocation.

Default 0

Accepted [0; +inf]

Groups Output information, Overall system, Logging

MSK_IPAR_MAX_NUM_WARNINGS
Each warning is shown a limit number times controlled by this parameter. A negative value is
identical to infinite number of times.

Default 10

Accepted [-inf; +inf]

Groups Output information

MSK_IPAR_MIO_BRANCH_DIR
Controls whether the mixed-integer optimizer is branching up or down by default.

Default "FREE"

Accepted "FREE" , "UP" , "DOWN" , "NEAR" , "FAR" , "ROOT_LP" , "GUIDED" ,
"PSEUDOCOST"

Groups Mixed-integer optimization

MSK_IPAR_MIO_CONSTRUCT_SOL
If set to "MSK_ON" and all integer variables have been given a value for which a feasible mixed
integer solution exists, then MOSEK generates an initial solution to the mixed integer problem
by fixing all integer values and solving the remaining problem.

Default "OFF"

Accepted "ON" , "OFF"

Groups Mixed-integer optimization

MSK_IPAR_MIO_CUT_CLIQUE
Controls whether clique cuts should be generated.

Default "ON"

Accepted

• "ON" : Turns generation of this cut class on.

• "OFF" : Turns generation of this cut class off.

Groups Mixed-integer optimization

180 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

MSK_IPAR_MIO_CUT_CMIR
Controls whether mixed integer rounding cuts should be generated.

Default "ON"

Accepted

• "ON" : Turns generation of this cut class on.

• "OFF" : Turns generation of this cut class off.

Groups Mixed-integer optimization

MSK_IPAR_MIO_CUT_GMI
Controls whether GMI cuts should be generated.

Default "ON"

Accepted

• "ON" : Turns generation of this cut class on.

• "OFF" : Turns generation of this cut class off.

Groups Mixed-integer optimization

MSK_IPAR_MIO_CUT_IMPLIED_BOUND
Controls whether implied bound cuts should be generated.

Default "OFF"

Accepted

• "ON" : Turns generation of this cut class on.

• "OFF" : Turns generation of this cut class off.

Groups Mixed-integer optimization

MSK_IPAR_MIO_CUT_KNAPSACK_COVER
Controls whether knapsack cover cuts should be generated.

Default "OFF"

Accepted

• "ON" : Turns generation of this cut class on.

• "OFF" : Turns generation of this cut class off.

Groups Mixed-integer optimization

MSK_IPAR_MIO_CUT_SELECTION_LEVEL
Controls how aggressively generated cuts are selected to be included in the relaxation.

-1. The optimizer chooses the level of cut selection

0. Generated cuts less likely to be added to the relaxation

1. Cuts are more aggressively selected to be included in the relaxation

Default -1

Accepted [-1; +1]

Groups Mixed-integer optimization

MSK_IPAR_MIO_HEURISTIC_LEVEL
Controls the heuristic employed by the mixed-integer optimizer to locate an initial good integer
feasible solution. A value of zero means the heuristic is not used at all. A larger value than 0 means
that a gradually more sophisticated heuristic is used which is computationally more expensive. A
negative value implies that the optimizer chooses the heuristic. Normally a value around 3 to 5
should be optimal.

17.4. Parameters (alphabetical list sorted by type) 181

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Default -1

Accepted [-inf; +inf]

Groups Mixed-integer optimization

MSK_IPAR_MIO_MAX_NUM_BRANCHES
Maximum number of branches allowed during the branch and bound search. A negative value
means infinite.

Default -1

Accepted [-inf; +inf]

Groups Mixed-integer optimization, Termination criteria

See also MSK_DPAR_MIO_DISABLE_TERM_TIME

MSK_IPAR_MIO_MAX_NUM_RELAXS
Maximum number of relaxations allowed during the branch and bound search. A negative value
means infinite.

Default -1

Accepted [-inf; +inf]

Groups Mixed-integer optimization

See also MSK_DPAR_MIO_DISABLE_TERM_TIME

MSK_IPAR_MIO_MAX_NUM_SOLUTIONS
The mixed-integer optimizer can be terminated after a certain number of different feasible solutions
has been located. If this parameter has the value 𝑛 > 0, then the mixed-integer optimizer will be
terminated when 𝑛 feasible solutions have been located.

Default -1

Accepted [-inf; +inf]

Groups Mixed-integer optimization, Termination criteria

See also MSK_DPAR_MIO_DISABLE_TERM_TIME

MSK_IPAR_MIO_MODE
Controls whether the optimizer includes the integer restrictions when solving a (mixed) integer
optimization problem.

Default "SATISFIED"

Accepted "IGNORED" , "SATISFIED"

Groups Overall solver

MSK_IPAR_MIO_MT_USER_CB
If true user callbacks are called from each thread used by mixed-integer optimizer. Otherwise it is
only called from a single thread.

Default "OFF"

Accepted "ON" , "OFF"

Groups Overall system

MSK_IPAR_MIO_NODE_OPTIMIZER
Controls which optimizer is employed at the non-root nodes in the mixed-integer optimizer.

Default "FREE"

Accepted "FREE" , "INTPNT" , "CONIC" , "PRIMAL_SIMPLEX" , "DUAL_SIMPLEX" ,
"FREE_SIMPLEX" , "MIXED_INT"

Groups Mixed-integer optimization

182 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

MSK_IPAR_MIO_NODE_SELECTION
Controls the node selection strategy employed by the mixed-integer optimizer.

Default "FREE"

Accepted "FREE" , "FIRST" , "BEST" , "WORST" , "HYBRID" , "PSEUDO"

Groups Mixed-integer optimization

MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE
Enables or disables perspective reformulation in presolve.

Default "ON"

Accepted "ON" , "OFF"

Groups Mixed-integer optimization

MSK_IPAR_MIO_PROBING_LEVEL
Controls the amount of probing employed by the mixed-integer optimizer in presolve.

-1. The optimizer chooses the level of probing employed

0. Probing is disabled

1. A low amount of probing is employed

2. A medium amount of probing is employed

3. A high amount of probing is employed

Default -1

Accepted [-1; 3]

Groups Mixed-integer optimization

MSK_IPAR_MIO_RINS_MAX_NODES
Controls the maximum number of nodes allowed in each call to the RINS heuristic. The default
value of -1 means that the value is determined automatically. A value of zero turns off the heuristic.

Default -1

Accepted [-1; +inf]

Groups Mixed-integer optimization

MSK_IPAR_MIO_ROOT_OPTIMIZER
Controls which optimizer is employed at the root node in the mixed-integer optimizer.

Default "FREE"

Accepted "FREE" , "INTPNT" , "CONIC" , "PRIMAL_SIMPLEX" , "DUAL_SIMPLEX" ,
"FREE_SIMPLEX" , "MIXED_INT"

Groups Mixed-integer optimization

MSK_IPAR_MIO_ROOT_REPEAT_PRESOLVE_LEVEL
Controls whether presolve can be repeated at root node.

• -1 The optimizer chooses whether presolve is repeated

• 0 Never repeat presolve

• 1 Always repeat presolve

Default -1

Accepted [-1; 1]

Groups Mixed-integer optimization

17.4. Parameters (alphabetical list sorted by type) 183

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

MSK_IPAR_MIO_VB_DETECTION_LEVEL
Controls how much effort is put into detecting variable bounds.

-1. The optimizer chooses

0. No variable bounds are detected

1. Only detect variable bounds that are directly represented in the problem

2. Detect variable bounds in probing

Default -1

Accepted [-1; +2]

Groups Mixed-integer optimization

MSK_IPAR_MT_SPINCOUNT
Set the number of iterations to spin before sleeping.

Default 0

Accepted [0; 1000000000]

Groups Overall system

MSK_IPAR_NUM_THREADS
Controls the number of threads employed by the optimizer. If set to 0 the number of threads used
will be equal to the number of cores detected on the machine.

Default 0

Accepted [0; +inf]

Groups Overall system

MSK_IPAR_OPF_MAX_TERMS_PER_LINE
The maximum number of terms (linear and quadratic) per line when an OPF file is written.

Default 5

Accepted [0; +inf]

Groups Data input/output

MSK_IPAR_OPF_WRITE_HEADER
Write a text header with date and MOSEK version in an OPF file.

Default "ON"

Accepted "ON" , "OFF"

Groups Data input/output

MSK_IPAR_OPF_WRITE_HINTS
Write a hint section with problem dimensions in the beginning of an OPF file.

Default "ON"

Accepted "ON" , "OFF"

Groups Data input/output

MSK_IPAR_OPF_WRITE_PARAMETERS
Write a parameter section in an OPF file.

Default "OFF"

Accepted "ON" , "OFF"

Groups Data input/output

184 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

MSK_IPAR_OPF_WRITE_PROBLEM
Write objective, constraints, bounds etc. to an OPF file.

Default "ON"

Accepted "ON" , "OFF"

Groups Data input/output

MSK_IPAR_OPF_WRITE_SOL_BAS
If MSK_IPAR_OPF_WRITE_SOLUTIONS is "MSK_ON" and a basic solution is defined, include the basic
solution in OPF files.

Default "ON"

Accepted "ON" , "OFF"

Groups Data input/output

MSK_IPAR_OPF_WRITE_SOL_ITG
If MSK_IPAR_OPF_WRITE_SOLUTIONS is "MSK_ON" and an integer solution is defined, write the
integer solution in OPF files.

Default "ON"

Accepted "ON" , "OFF"

Groups Data input/output

MSK_IPAR_OPF_WRITE_SOL_ITR
If MSK_IPAR_OPF_WRITE_SOLUTIONS is "MSK_ON" and an interior solution is defined, write the
interior solution in OPF files.

Default "ON"

Accepted "ON" , "OFF"

Groups Data input/output

MSK_IPAR_OPF_WRITE_SOLUTIONS
Enable inclusion of solutions in the OPF files.

Default "OFF"

Accepted "ON" , "OFF"

Groups Data input/output

MSK_IPAR_OPTIMIZER
The parameter controls which optimizer is used to optimize the task.

Default "FREE"

Accepted "FREE" , "INTPNT" , "CONIC" , "PRIMAL_SIMPLEX" , "DUAL_SIMPLEX" ,
"FREE_SIMPLEX" , "MIXED_INT"

Groups Overall solver

MSK_IPAR_PARAM_READ_CASE_NAME
If turned on, then names in the parameter file are case sensitive.

Default "ON"

Accepted "ON" , "OFF"

Groups Data input/output

MSK_IPAR_PARAM_READ_IGN_ERROR
If turned on, then errors in parameter settings is ignored.

Default "OFF"

Accepted "ON" , "OFF"

17.4. Parameters (alphabetical list sorted by type) 185

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Groups Data input/output

MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL
Controls the maximum amount of fill-in that can be created by one pivot in the elimination phase
of the presolve. A negative value means the parameter value is selected automatically.

Default -1

Accepted [-inf; +inf]

Groups Presolve

MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
Control the maximum number of times the eliminator is tried. A negative value implies MOSEK
decides.

Default -1

Accepted [-inf; +inf]

Groups Presolve

MSK_IPAR_PRESOLVE_LEVEL
Currently not used.

Default -1

Accepted [-inf; +inf]

Groups Overall solver , Presolve

MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH
The linear dependency check is potentially computationally expensive.

Default 100

Accepted [-inf; +inf]

Groups Presolve

MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH
The linear dependency check is potentially computationally expensive.

Default 100

Accepted [-inf; +inf]

Groups Presolve

MSK_IPAR_PRESOLVE_LINDEP_USE
Controls whether the linear constraints are checked for linear dependencies.

Default "ON"

Accepted

• "ON" : Turns the linear dependency check on.

• "OFF" : Turns the linear dependency check off.

Groups Presolve

MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS
Controls the maximum number of reductions performed by the presolve. The value of the parameter
is normally only changed in connection with debugging. A negative value implies that an infinite
number of reductions are allowed.

Default -1

Accepted [-inf; +inf]

Groups Overall solver , Presolve

186 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

MSK_IPAR_PRESOLVE_USE
Controls whether the presolve is applied to a problem before it is optimized.

Default "FREE"

Accepted "OFF" , "ON" , "FREE"

Groups Overall solver , Presolve

MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER
Controls which optimizer that is used to find the optimal repair.

Default "FREE"

Accepted "FREE" , "INTPNT" , "CONIC" , "PRIMAL_SIMPLEX" , "DUAL_SIMPLEX" ,
"FREE_SIMPLEX" , "MIXED_INT"

Groups Overall solver

MSK_IPAR_READ_DATA_COMPRESSED
If this option is turned on,it is assumed that the data file is compressed.

Default "FREE"

Accepted "NONE" , "FREE" , "GZIP"

Groups Data input/output

MSK_IPAR_READ_DATA_FORMAT
Format of the data file to be read.

Default "EXTENSION"

Accepted "EXTENSION" , "MPS" , "LP" , "OP" , "XML" , "FREE_MPS" , "TASK" , "CB" ,
"JSON_TASK"

Groups Data input/output

MSK_IPAR_READ_DEBUG
Turns on additional debugging information when reading files.

Default "OFF"

Accepted "ON" , "OFF"

Groups Data input/output

MSK_IPAR_READ_KEEP_FREE_CON
Controls whether the free constraints are included in the problem.

Default "OFF"

Accepted

• "ON" : The free constraints are kept.

• "OFF" : The free constraints are discarded.

Groups Data input/output

MSK_IPAR_READ_LP_DROP_NEW_VARS_IN_BOU
If this option is turned on, MOSEK will drop variables that are defined for the first time in the
bounds section.

Default "OFF"

Accepted "ON" , "OFF"

Groups Data input/output

MSK_IPAR_READ_LP_QUOTED_NAMES
If a name is in quotes when reading an LP file, the quotes will be removed.

Default "ON"

17.4. Parameters (alphabetical list sorted by type) 187

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Accepted "ON" , "OFF"

Groups Data input/output

MSK_IPAR_READ_MPS_FORMAT
Controls how strictly the MPS file reader interprets the MPS format.

Default "FREE"

Accepted "STRICT" , "RELAXED" , "FREE" , "CPLEX"

Groups Data input/output

MSK_IPAR_READ_MPS_WIDTH
Controls the maximal number of characters allowed in one line of the MPS file.

Default 1024

Accepted [80; +inf]

Groups Data input/output

MSK_IPAR_READ_TASK_IGNORE_PARAM
Controls whether MOSEK should ignore the parameter setting defined in the task file and use
the default parameter setting instead.

Default "OFF"

Accepted "ON" , "OFF"

Groups Data input/output

MSK_IPAR_REMOVE_UNUSED_SOLUTIONS
Removes unsued solutions before the optimization is performed.

Default "OFF"

Accepted "ON" , "OFF"

Groups Overall system

MSK_IPAR_SENSITIVITY_ALL
Not applicable.

Default "OFF"

Accepted "ON" , "OFF"

Groups Overall solver

MSK_IPAR_SENSITIVITY_OPTIMIZER
Controls which optimizer is used for optimal partition sensitivity analysis.

Default "FREE_SIMPLEX"

Accepted "FREE" , "INTPNT" , "CONIC" , "PRIMAL_SIMPLEX" , "DUAL_SIMPLEX" ,
"FREE_SIMPLEX" , "MIXED_INT"

Groups Overall solver , Simplex optimizer

MSK_IPAR_SENSITIVITY_TYPE
Controls which type of sensitivity analysis is to be performed.

Default "BASIS"

Accepted "BASIS" , "OPTIMAL_PARTITION"

Groups Overall solver

MSK_IPAR_SIM_BASIS_FACTOR_USE
Controls whether an LU factorization of the basis is used in a hot-start. Forcing a refactorization
sometimes improves the stability of the simplex optimizers, but in most cases there is a performance
penalty.

188 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Default "ON"

Accepted "ON" , "OFF"

Groups Simplex optimizer

MSK_IPAR_SIM_DEGEN
Controls how aggressively degeneration is handled.

Default "FREE"

Accepted "NONE" , "FREE" , "AGGRESSIVE" , "MODERATE" , "MINIMUM"

Groups Simplex optimizer

MSK_IPAR_SIM_DUAL_CRASH
Controls whether crashing is performed in the dual simplex optimizer.

If this parameter is set to 𝑥, then a crash will be performed if a basis consists of more than (100−𝑥)
mod 𝑓𝑣 entries, where 𝑓𝑣 is the number of fixed variables.

Default 90

Accepted [0; +inf]

Groups Dual simplex

MSK_IPAR_SIM_DUAL_PHASEONE_METHOD
An experimental feature.

Default 0

Accepted [0; 10]

Groups Simplex optimizer

MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION
The dual simplex optimizer can use a so-called restricted selection/pricing strategy to chooses the
outgoing variable. Hence, if restricted selection is applied, then the dual simplex optimizer first
choose a subset of all the potential outgoing variables. Next, for some time it will choose the
outgoing variable only among the subset. From time to time the subset is redefined.

A larger value of this parameter implies that the optimizer will be more aggressive in its restriction
strategy, i.e. a value of 0 implies that the restriction strategy is not applied at all.

Default 50

Accepted [0; 100]

Groups Dual simplex

MSK_IPAR_SIM_DUAL_SELECTION
Controls the choice of the incoming variable, known as the selection strategy, in the dual simplex
optimizer.

Default "FREE"

Accepted "FREE" , "FULL" , "ASE" , "DEVEX" , "SE" , "PARTIAL"

Groups Dual simplex

MSK_IPAR_SIM_EXPLOIT_DUPVEC
Controls if the simplex optimizers are allowed to exploit duplicated columns.

Default "OFF"

Accepted "ON" , "OFF" , "FREE"

Groups Simplex optimizer

MSK_IPAR_SIM_HOTSTART
Controls the type of hot-start that the simplex optimizer perform.

17.4. Parameters (alphabetical list sorted by type) 189

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Default "FREE"

Accepted "NONE" , "FREE" , "STATUS_KEYS"

Groups Simplex optimizer

MSK_IPAR_SIM_HOTSTART_LU
Determines if the simplex optimizer should exploit the initial factorization.

Default "ON"

Accepted

• "ON" : Factorization is reused if possible.

• "OFF" : Factorization is recomputed.

Groups Simplex optimizer

MSK_IPAR_SIM_MAX_ITERATIONS
Maximum number of iterations that can be used by a simplex optimizer.

Default 10000000

Accepted [0; +inf]

Groups Simplex optimizer , Termination criteria

MSK_IPAR_SIM_MAX_NUM_SETBACKS
Controls how many set-backs are allowed within a simplex optimizer. A set-back is an event where
the optimizer moves in the wrong direction. This is impossible in theory but may happen due to
numerical problems.

Default 250

Accepted [0; +inf]

Groups Simplex optimizer

MSK_IPAR_SIM_NON_SINGULAR
Controls if the simplex optimizer ensures a non-singular basis, if possible.

Default "ON"

Accepted "ON" , "OFF"

Groups Simplex optimizer

MSK_IPAR_SIM_PRIMAL_CRASH
Controls whether crashing is performed in the primal simplex optimizer.

In general, if a basis consists of more than (100-this parameter value)% fixed variables, then a crash
will be performed.

Default 90

Accepted [0; +inf]

Groups Primal simplex

MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD
An experimental feature.

Default 0

Accepted [0; 10]

Groups Simplex optimizer

MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION
The primal simplex optimizer can use a so-called restricted selection/pricing strategy to chooses
the outgoing variable. Hence, if restricted selection is applied, then the primal simplex optimizer

190 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

first choose a subset of all the potential incoming variables. Next, for some time it will choose the
incoming variable only among the subset. From time to time the subset is redefined.

A larger value of this parameter implies that the optimizer will be more aggressive in its restriction
strategy, i.e. a value of 0 implies that the restriction strategy is not applied at all.

Default 50

Accepted [0; 100]

Groups Primal simplex

MSK_IPAR_SIM_PRIMAL_SELECTION
Controls the choice of the incoming variable, known as the selection strategy, in the primal simplex
optimizer.

Default "FREE"

Accepted "FREE" , "FULL" , "ASE" , "DEVEX" , "SE" , "PARTIAL"

Groups Primal simplex

MSK_IPAR_SIM_REFACTOR_FREQ
Controls how frequent the basis is refactorized. The value 0 means that the optimizer determines
the best point of refactorization.

It is strongly recommended NOT to change this parameter.

Default 0

Accepted [0; +inf]

Groups Simplex optimizer

MSK_IPAR_SIM_REFORMULATION
Controls if the simplex optimizers are allowed to reformulate the problem.

Default "OFF"

Accepted "ON" , "OFF" , "FREE" , "AGGRESSIVE"

Groups Simplex optimizer

MSK_IPAR_SIM_SAVE_LU
Controls if the LU factorization stored should be replaced with the LU factorization corresponding
to the initial basis.

Default "OFF"

Accepted "ON" , "OFF"

Groups Simplex optimizer

MSK_IPAR_SIM_SCALING
Controls how much effort is used in scaling the problem before a simplex optimizer is used.

Default "FREE"

Accepted "FREE" , "NONE" , "MODERATE" , "AGGRESSIVE"

Groups Simplex optimizer

MSK_IPAR_SIM_SCALING_METHOD
Controls how the problem is scaled before a simplex optimizer is used.

Default "POW2"

Accepted "POW2" , "FREE"

Groups Simplex optimizer

MSK_IPAR_SIM_SOLVE_FORM
Controls whether the primal or the dual problem is solved by the primal-/dual-simplex optimizer.

17.4. Parameters (alphabetical list sorted by type) 191

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Default "FREE"

Accepted "FREE" , "PRIMAL" , "DUAL"

Groups Simplex optimizer

MSK_IPAR_SIM_STABILITY_PRIORITY
Controls how high priority the numerical stability should be given.

Default 50

Accepted [0; 100]

Groups Simplex optimizer

MSK_IPAR_SIM_SWITCH_OPTIMIZER
The simplex optimizer sometimes chooses to solve the dual problem instead of the primal problem.
This implies that if you have chosen to use the dual simplex optimizer and the problem is dualized,
then it actually makes sense to use the primal simplex optimizer instead. If this parameter is on
and the problem is dualized and furthermore the simplex optimizer is chosen to be the primal
(dual) one, then it is switched to the dual (primal).

Default "OFF"

Accepted "ON" , "OFF"

Groups Simplex optimizer

MSK_IPAR_SOL_FILTER_KEEP_BASIC
If turned on, then basic and super basic constraints and variables are written to the solution file
independent of the filter setting.

Default "OFF"

Accepted "ON" , "OFF"

Groups Solution input/output

MSK_IPAR_SOL_FILTER_KEEP_RANGED
If turned on, then ranged constraints and variables are written to the solution file independent of
the filter setting.

Default "OFF"

Accepted "ON" , "OFF"

Groups Solution input/output

MSK_IPAR_SOL_READ_NAME_WIDTH
When a solution is read by MOSEK and some constraint, variable or cone names contain blanks,
then a maximum name width much be specified. A negative value implies that no name contain
blanks.

Default -1

Accepted [-inf; +inf]

Groups Data input/output , Solution input/output

MSK_IPAR_SOL_READ_WIDTH
Controls the maximal acceptable width of line in the solutions when read by MOSEK.

Default 1024

Accepted [80; +inf]

Groups Data input/output , Solution input/output

MSK_IPAR_SOLUTION_CALLBACK
Indicates whether solution callbacks will be performed during the optimization.

Default "OFF"

192 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Accepted "ON" , "OFF"

Groups Progress callback , Overall solver

MSK_IPAR_TIMING_LEVEL
Controls the amount of timing performed inside MOSEK.

Default 1

Accepted [0; +inf]

Groups Overall system

MSK_IPAR_WRITE_BAS_CONSTRAINTS
Controls whether the constraint section is written to the basic solution file.

Default "ON"

Accepted "ON" , "OFF"

Groups Data input/output , Solution input/output

MSK_IPAR_WRITE_BAS_HEAD
Controls whether the header section is written to the basic solution file.

Default "ON"

Accepted "ON" , "OFF"

Groups Data input/output , Solution input/output

MSK_IPAR_WRITE_BAS_VARIABLES
Controls whether the variables section is written to the basic solution file.

Default "ON"

Accepted "ON" , "OFF"

Groups Data input/output , Solution input/output

MSK_IPAR_WRITE_DATA_COMPRESSED
Controls whether the data file is compressed while it is written. 0 means no compression while
higher values mean more compression.

Default 0

Accepted [0; +inf]

Groups Data input/output

MSK_IPAR_WRITE_DATA_FORMAT
Controls the file format when writing task data to a file.

Default "EXTENSION"

Accepted "EXTENSION" , "MPS" , "LP" , "OP" , "XML" , "FREE_MPS" , "TASK" , "CB" ,
"JSON_TASK"

Groups Data input/output

MSK_IPAR_WRITE_DATA_PARAM
If this option is turned on the parameter settings are written to the data file as parameters.

Default "OFF"

Accepted "ON" , "OFF"

Groups Data input/output

MSK_IPAR_WRITE_FREE_CON
Controls whether the free constraints are written to the data file.

Default "ON"

17.4. Parameters (alphabetical list sorted by type) 193

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Accepted

• "ON" : The free constraints are written.

• "OFF" : The free constraints are discarded.

Groups Data input/output

MSK_IPAR_WRITE_GENERIC_NAMES
Controls whether the generic names or user-defined names are used in the data file.

Default "OFF"

Accepted

• "ON" : Generic names are used.

• "OFF" : Generic names are not used.

Groups Data input/output

MSK_IPAR_WRITE_GENERIC_NAMES_IO
Index origin used in generic names.

Default 1

Accepted [0; +inf]

Groups Data input/output

MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS
Controls if the writer ignores incompatible problem items when writing files.

Default "OFF"

Accepted

• "ON" : Ignore items that cannot be written to the current output file format.

• "OFF" : Produce an error if the problem contains items that cannot the written
to the current output file format.

Groups Data input/output

MSK_IPAR_WRITE_INT_CONSTRAINTS
Controls whether the constraint section is written to the integer solution file.

Default "ON"

Accepted "ON" , "OFF"

Groups Data input/output , Solution input/output

MSK_IPAR_WRITE_INT_HEAD
Controls whether the header section is written to the integer solution file.

Default "ON"

Accepted "ON" , "OFF"

Groups Data input/output , Solution input/output

MSK_IPAR_WRITE_INT_VARIABLES
Controls whether the variables section is written to the integer solution file.

Default "ON"

Accepted "ON" , "OFF"

Groups Data input/output , Solution input/output

MSK_IPAR_WRITE_LP_FULL_OBJ
Write all variables, including the ones with 0-coefficients, in the objective.

Default "ON"

194 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Accepted "ON" , "OFF"

Groups Data input/output

MSK_IPAR_WRITE_LP_LINE_WIDTH
Maximum width of line in an LP file written by MOSEK.

Default 80

Accepted [40; +inf]

Groups Data input/output

MSK_IPAR_WRITE_LP_QUOTED_NAMES
If this option is turned on, then MOSEK will quote invalid LP names when writing an LP file.

Default "ON"

Accepted "ON" , "OFF"

Groups Data input/output

MSK_IPAR_WRITE_LP_STRICT_FORMAT
Controls whether LP output files satisfy the LP format strictly.

Default "OFF"

Accepted "ON" , "OFF"

Groups Data input/output

MSK_IPAR_WRITE_LP_TERMS_PER_LINE
Maximum number of terms on a single line in an LP file written by MOSEK. 0 means unlimited.

Default 10

Accepted [0; +inf]

Groups Data input/output

MSK_IPAR_WRITE_MPS_FORMAT
Controls in which format the MPS is written.

Default "FREE"

Accepted "STRICT" , "RELAXED" , "FREE" , "CPLEX"

Groups Data input/output

MSK_IPAR_WRITE_MPS_INT
Controls if marker records are written to the MPS file to indicate whether variables are integer
restricted.

Default "ON"

Accepted

• "ON" : Marker records are written.

• "OFF" : Marker records are not written.

Groups Data input/output

MSK_IPAR_WRITE_PRECISION
Controls the precision with which double numbers are printed in the MPS data file. In general it
is not worthwhile to use a value higher than 15.

Default 15

Accepted [0; +inf]

Groups Data input/output

17.4. Parameters (alphabetical list sorted by type) 195

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

MSK_IPAR_WRITE_SOL_BARVARIABLES
Controls whether the symmetric matrix variables section is written to the solution file.

Default "ON"

Accepted "ON" , "OFF"

Groups Data input/output , Solution input/output

MSK_IPAR_WRITE_SOL_CONSTRAINTS
Controls whether the constraint section is written to the solution file.

Default "ON"

Accepted "ON" , "OFF"

Groups Data input/output , Solution input/output

MSK_IPAR_WRITE_SOL_HEAD
Controls whether the header section is written to the solution file.

Default "ON"

Accepted "ON" , "OFF"

Groups Data input/output , Solution input/output

MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES
Even if the names are invalid MPS names, then they are employed when writing the solution file.

Default "OFF"

Accepted "ON" , "OFF"

Groups Data input/output , Solution input/output

MSK_IPAR_WRITE_SOL_VARIABLES
Controls whether the variables section is written to the solution file.

Default "ON"

Accepted "ON" , "OFF"

Groups Data input/output , Solution input/output

MSK_IPAR_WRITE_TASK_INC_SOL
Controls whether the solutions are stored in the task file too.

Default "ON"

Accepted "ON" , "OFF"

Groups Data input/output

MSK_IPAR_WRITE_XML_MODE
Controls if linear coefficients should be written by row or column when writing in the XML file
format.

Default "ROW"

Accepted "ROW" , "COL"

Groups Data input/output

17.4.3 String parameters

sparam
The enumeration type containing all string parameters.

MSK_SPAR_BAS_SOL_FILE_NAME
Name of the bas solution file.

196 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Accepted Any valid file name.

Groups Data input/output , Solution input/output

MSK_SPAR_DATA_FILE_NAME
Data are read and written to this file.

Accepted Any valid file name.

Groups Data input/output

MSK_SPAR_DEBUG_FILE_NAME
MOSEK debug file.

Accepted Any valid file name.

Groups Data input/output

MSK_SPAR_INT_SOL_FILE_NAME
Name of the int solution file.

Accepted Any valid file name.

Groups Data input/output , Solution input/output

MSK_SPAR_ITR_SOL_FILE_NAME
Name of the itr solution file.

Accepted Any valid file name.

Groups Data input/output , Solution input/output

MSK_SPAR_MIO_DEBUG_STRING
For internal debugging purposes.

Accepted Any valid string.

Groups Data input/output

MSK_SPAR_PARAM_COMMENT_SIGN
Only the first character in this string is used. It is considered as a start of comment sign in the
MOSEK parameter file. Spaces are ignored in the string.

Default

%%

Accepted Any valid string.

Groups Data input/output

MSK_SPAR_PARAM_READ_FILE_NAME
Modifications to the parameter database is read from this file.

Accepted Any valid file name.

Groups Data input/output

MSK_SPAR_PARAM_WRITE_FILE_NAME
The parameter database is written to this file.

Accepted Any valid file name.

Groups Data input/output

MSK_SPAR_READ_MPS_BOU_NAME
Name of the BOUNDS vector used. An empty name means that the first BOUNDS vector is used.

Accepted Any valid MPS name.

Groups Data input/output

17.4. Parameters (alphabetical list sorted by type) 197

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

MSK_SPAR_READ_MPS_OBJ_NAME
Name of the free constraint used as objective function. An empty name means that the first
constraint is used as objective function.

Accepted Any valid MPS name.

Groups Data input/output

MSK_SPAR_READ_MPS_RAN_NAME
Name of the RANGE vector used. An empty name means that the first RANGE vector is used.

Accepted Any valid MPS name.

Groups Data input/output

MSK_SPAR_READ_MPS_RHS_NAME
Name of the RHS used. An empty name means that the first RHS vector is used.

Accepted Any valid MPS name.

Groups Data input/output

MSK_SPAR_REMOTE_ACCESS_TOKEN
An access token used to submit tasks to a remote MOSEK server. An access token is a random
32-byte string encoded in base64, i.e. it is a 44 character ASCII string.

Accepted Any valid string.

Groups Overall system

MSK_SPAR_SENSITIVITY_FILE_NAME
If defined, MOSEK reads this file as a sensitivity analysis data file specifying the type of analysis
to be done.

Accepted Any valid string.

Groups Data input/output

MSK_SPAR_SENSITIVITY_RES_FILE_NAME

Accepted Any valid string.

Groups Data input/output

MSK_SPAR_SOL_FILTER_XC_LOW
A filter used to determine which constraints should be listed in the solution file. A value of 0.5 means
that all constraints having xc[i]>0.5 should be listed, whereas +0.5 means that all constraints
having xc[i]>=blc[i]+0.5 should be listed. An empty filter means that no filter is applied.

Accepted Any valid filter.

Groups Data input/output , Solution input/output

MSK_SPAR_SOL_FILTER_XC_UPR
A filter used to determine which constraints should be listed in the solution file. A value of 0.5
means that all constraints having xc[i]<0.5 should be listed, whereas -0.5 means all constraints
having xc[i]<=buc[i]-0.5 should be listed. An empty filter means that no filter is applied.

Accepted Any valid filter.

Groups Data input/output , Solution input/output

MSK_SPAR_SOL_FILTER_XX_LOW
A filter used to determine which variables should be listed in the solution file. A value of “0.5” means
that all constraints having xx[j]>=0.5 should be listed, whereas “+0.5” means that all constraints
having xx[j]>=blx[j]+0.5 should be listed. An empty filter means no filter is applied.

Accepted Any valid filter.

Groups Data input/output , Solution input/output

198 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

MSK_SPAR_SOL_FILTER_XX_UPR
A filter used to determine which variables should be listed in the solution file. A value of “0.5”
means that all constraints having xx[j]<0.5 should be printed, whereas “-0.5” means all constraints
having xx[j]<=bux[j]-0.5 should be listed. An empty filter means no filter is applied.

Accepted Any valid file name.

Groups Data input/output , Solution input/output

MSK_SPAR_STAT_FILE_NAME
Statistics file name.

Accepted Any valid file name.

Groups Data input/output

MSK_SPAR_STAT_KEY
Key used when writing the summary file.

Accepted Any valid string.

Groups Data input/output

MSK_SPAR_STAT_NAME
Name used when writing the statistics file.

Accepted Any valid XML string.

Groups Data input/output

MSK_SPAR_WRITE_LP_GEN_VAR_NAME
Sometimes when an LP file is written additional variables must be inserted. They will have the
prefix denoted by this parameter.

Default xmskgen

Accepted Any valid string.

Groups Data input/output

17.5 Response codes

• Termination

• Warnings

• Errors

rescode
The enumeration type containing all response codes.

17.5.1 Termination

"MSK_RES_OK"
No error occurred.

"MSK_RES_TRM_MAX_ITERATIONS"
The optimizer terminated at the maximum number of iterations.

"MSK_RES_TRM_MAX_TIME"
The optimizer terminated at the maximum amount of time.

"MSK_RES_TRM_OBJECTIVE_RANGE"
The optimizer terminated with an objective value outside the objective range.

17.5. Response codes 199

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_TRM_MIO_NEAR_REL_GAP"
The mixed-integer optimizer terminated as the delayed near optimal relative gap tolerance was
satisfied.

"MSK_RES_TRM_MIO_NEAR_ABS_GAP"
The mixed-integer optimizer terminated as the delayed near optimal absolute gap tolerance was
satisfied.

"MSK_RES_TRM_MIO_NUM_RELAXS"
The mixed-integer optimizer terminated as the maximum number of relaxations was reached.

"MSK_RES_TRM_MIO_NUM_BRANCHES"
The mixed-integer optimizer terminated as the maximum number of branches was reached.

"MSK_RES_TRM_NUM_MAX_NUM_INT_SOLUTIONS"
The mixed-integer optimizer terminated as the maximum number of feasible solutions was reached.

"MSK_RES_TRM_STALL"
The optimizer is terminated due to slow progress.

Stalling means that numerical problems prevent the optimizer from making reasonable progress
and that it make no sense to continue. In many cases this happens if the problem is badly scaled
or otherwise ill-conditioned. There is no guarantee that the solution will be (near) feasible or near
optimal. However, often stalling happens near the optimum, and the returned solution may be of
good quality. Therefore, it is recommended to check the status of then solution. If the solution
near optimal the solution is most likely good enough for most practical purposes.

Please note that if a linear optimization problem is solved using the interior-point optimizer with
basis identification turned on, the returned basic solution likely to have high accuracy, even though
the optimizer stalled.

Some common causes of stalling are a) badly scaled models, b) near feasible or near infeasible
problems and c) a non-convex problems. Case c) is only relevant for general non-linear problems.
It is not possible in general for MOSEK to check if a specific problems is convex since such a
check would be NP hard in itself. This implies that care should be taken when solving problems
involving general user defined functions.

"MSK_RES_TRM_USER_CALLBACK"
The optimizer terminated due to the return of the user-defined callback function.

"MSK_RES_TRM_MAX_NUM_SETBACKS"
The optimizer terminated as the maximum number of set-backs was reached. This indicates serious
numerical problems and a possibly badly formulated problem.

"MSK_RES_TRM_NUMERICAL_PROBLEM"
The optimizer terminated due to numerical problems.

"MSK_RES_TRM_INTERNAL"
The optimizer terminated due to some internal reason. Please contact MOSEK support.

"MSK_RES_TRM_INTERNAL_STOP"
The optimizer terminated for internal reasons. Please contact MOSEK support.

17.5.2 Warnings

"MSK_RES_WRN_OPEN_PARAM_FILE"
The parameter file could not be opened.

"MSK_RES_WRN_LARGE_BOUND"
A numerically large bound value is specified.

"MSK_RES_WRN_LARGE_LO_BOUND"
A numerically large lower bound value is specified.

200 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_WRN_LARGE_UP_BOUND"
A numerically large upper bound value is specified.

"MSK_RES_WRN_LARGE_CON_FX"
An equality constraint is fixed to a numerically large value. This can cause numerical problems.

"MSK_RES_WRN_LARGE_CJ"
A numerically large value is specified for one 𝑐𝑗 .

"MSK_RES_WRN_LARGE_AIJ"
A numerically large value is specified for an 𝑎𝑖,𝑗 element in 𝐴. The parameter
MSK_DPAR_DATA_TOL_AIJ_LARGE controls when an 𝑎𝑖,𝑗 is considered large.

"MSK_RES_WRN_ZERO_AIJ"
One or more zero elements are specified in A.

"MSK_RES_WRN_NAME_MAX_LEN"
A name is longer than the buffer that is supposed to hold it.

"MSK_RES_WRN_SPAR_MAX_LEN"
A value for a string parameter is longer than the buffer that is supposed to hold it.

"MSK_RES_WRN_MPS_SPLIT_RHS_VECTOR"
An RHS vector is split into several nonadjacent parts in an MPS file.

"MSK_RES_WRN_MPS_SPLIT_RAN_VECTOR"
A RANGE vector is split into several nonadjacent parts in an MPS file.

"MSK_RES_WRN_MPS_SPLIT_BOU_VECTOR"
A BOUNDS vector is split into several nonadjacent parts in an MPS file.

"MSK_RES_WRN_LP_OLD_QUAD_FORMAT"
Missing ‘/2’ after quadratic expressions in bound or objective.

"MSK_RES_WRN_LP_DROP_VARIABLE"
Ignored a variable because the variable was not previously defined. Usually this implies that a
variable appears in the bound section but not in the objective or the constraints.

"MSK_RES_WRN_NZ_IN_UPR_TRI"
Non-zero elements specified in the upper triangle of a matrix were ignored.

"MSK_RES_WRN_DROPPED_NZ_QOBJ"
One or more non-zero elements were dropped in the Q matrix in the objective.

"MSK_RES_WRN_IGNORE_INTEGER"
Ignored integer constraints.

"MSK_RES_WRN_NO_GLOBAL_OPTIMIZER"
No global optimizer is available.

"MSK_RES_WRN_MIO_INFEASIBLE_FINAL"
The final mixed-integer problem with all the integer variables fixed at their optimal values is
infeasible.

"MSK_RES_WRN_SOL_FILTER"
Invalid solution filter is specified.

"MSK_RES_WRN_UNDEF_SOL_FILE_NAME"
Undefined name occurred in a solution.

"MSK_RES_WRN_SOL_FILE_IGNORED_CON"
One or more lines in the constraint section were ignored when reading a solution file.

"MSK_RES_WRN_SOL_FILE_IGNORED_VAR"
One or more lines in the variable section were ignored when reading a solution file.

"MSK_RES_WRN_TOO_FEW_BASIS_VARS"
An incomplete basis has been specified. Too few basis variables are specified.

17.5. Response codes 201

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_WRN_TOO_MANY_BASIS_VARS"
A basis with too many variables has been specified.

"MSK_RES_WRN_NO_NONLINEAR_FUNCTION_WRITE"
The problem contains a general nonlinear function in either the objective or the constraints. Such
a nonlinear function cannot be written to a disk file. Note that quadratic terms when inputted
explicitly can be written to disk.

"MSK_RES_WRN_LICENSE_EXPIRE"
The license expires.

"MSK_RES_WRN_LICENSE_SERVER"
The license server is not responding.

"MSK_RES_WRN_EMPTY_NAME"
A variable or constraint name is empty. The output file may be invalid.

"MSK_RES_WRN_USING_GENERIC_NAMES"
Generic names are used because a name is not valid. For instance when writing an LP file the
names must not contain blanks or start with a digit.

"MSK_RES_WRN_LICENSE_FEATURE_EXPIRE"
The license expires.

"MSK_RES_WRN_PARAM_NAME_DOU"
The parameter name is not recognized as a double parameter.

"MSK_RES_WRN_PARAM_NAME_INT"
The parameter name is not recognized as a integer parameter.

"MSK_RES_WRN_PARAM_NAME_STR"
The parameter name is not recognized as a string parameter.

"MSK_RES_WRN_PARAM_STR_VALUE"
The string is not recognized as a symbolic value for the parameter.

"MSK_RES_WRN_PARAM_IGNORED_CMIO"
A parameter was ignored by the conic mixed integer optimizer.

"MSK_RES_WRN_ZEROS_IN_SPARSE_ROW"
One or more (near) zero elements are specified in a sparse row of a matrix. Since, it is redundant
to specify zero elements then it may indicate an error.

"MSK_RES_WRN_ZEROS_IN_SPARSE_COL"
One or more (near) zero elements are specified in a sparse column of a matrix. It is redundant to
specify zero elements. Hence, it may indicate an error.

"MSK_RES_WRN_INCOMPLETE_LINEAR_DEPENDENCY_CHECK"
The linear dependency check(s) is incomplete. Normally this is not an important warning unless
the optimization problem has been formulated with linear dependencies. Linear dependencies may
prevent MOSEK from solving the problem.

"MSK_RES_WRN_ELIMINATOR_SPACE"
The eliminator is skipped at least once due to lack of space.

"MSK_RES_WRN_PRESOLVE_OUTOFSPACE"
The presolve is incomplete due to lack of space.

"MSK_RES_WRN_WRITE_CHANGED_NAMES"
Some names were changed because they were invalid for the output file format.

"MSK_RES_WRN_WRITE_DISCARDED_CFIX"
The fixed objective term could not be converted to a variable and was discarded in the output file.

"MSK_RES_WRN_CONSTRUCT_SOLUTION_INFEAS"
After fixing the integer variables at the suggested values then the problem is infeasible.

202 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_WRN_CONSTRUCT_INVALID_SOL_ITG"
The initial value for one or more of the integer variables is not feasible.

"MSK_RES_WRN_CONSTRUCT_NO_SOL_ITG"
The construct solution requires an integer solution.

"MSK_RES_WRN_DUPLICATE_CONSTRAINT_NAMES"
Two constraint names are identical.

"MSK_RES_WRN_DUPLICATE_VARIABLE_NAMES"
Two variable names are identical.

"MSK_RES_WRN_DUPLICATE_BARVARIABLE_NAMES"
Two barvariable names are identical.

"MSK_RES_WRN_DUPLICATE_CONE_NAMES"
Two cone names are identical.

"MSK_RES_WRN_ANA_LARGE_BOUNDS"
This warning is issued by the problem analyzer, if one or more constraint or variable bounds are
very large. One should consider omitting these bounds entirely by setting them to +inf or -inf.

"MSK_RES_WRN_ANA_C_ZERO"
This warning is issued by the problem analyzer, if the coefficients in the linear part of the objective
are all zero.

"MSK_RES_WRN_ANA_EMPTY_COLS"
This warning is issued by the problem analyzer, if columns, in which all coefficients are zero, are
found.

"MSK_RES_WRN_ANA_CLOSE_BOUNDS"
This warning is issued by problem analyzer, if ranged constraints or variables with very close upper
and lower bounds are detected. One should consider treating such constraints as equalities and
such variables as constants.

"MSK_RES_WRN_ANA_ALMOST_INT_BOUNDS"
This warning is issued by the problem analyzer if a constraint is bound nearly integral.

"MSK_RES_WRN_QUAD_CONES_WITH_ROOT_FIXED_AT_ZERO"
For at least one quadratic cone the root is fixed at (nearly) zero. This may cause problems such as
a very large dual solution. Therefore, it is recommended to remove such cones before optimizing
the problems, or to fix all the variables in the cone to 0.

"MSK_RES_WRN_RQUAD_CONES_WITH_ROOT_FIXED_AT_ZERO"
For at least one rotated quadratic cone at least one of the root variables are fixed at (nearly) zero.
This may cause problems such as a very large dual solution. Therefore, it is recommended to
remove such cones before optimizing the problems, or to fix all the variables in the cone to 0.

"MSK_RES_WRN_NO_DUALIZER"
No automatic dualizer is available for the specified problem. The primal problem is solved.

"MSK_RES_WRN_SYM_MAT_LARGE"
A numerically large value is specified for an 𝑒𝑖,𝑗 element in 𝐸. The parameter
MSK_DPAR_DATA_SYM_MAT_TOL_LARGE controls when an 𝑒𝑖,𝑗 is considered large.

17.5.3 Errors

"MSK_RES_ERR_LICENSE"
Invalid license.

"MSK_RES_ERR_LICENSE_EXPIRED"
The license has expired.

"MSK_RES_ERR_LICENSE_VERSION"
The license is valid for another version of MOSEK.

17.5. Response codes 203

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_ERR_SIZE_LICENSE"
The problem is bigger than the license.

"MSK_RES_ERR_PROB_LICENSE"
The software is not licensed to solve the problem.

"MSK_RES_ERR_FILE_LICENSE"
Invalid license file.

"MSK_RES_ERR_MISSING_LICENSE_FILE"
MOSEK cannot license file or a token server. See the MOSEK installation manual for details.

"MSK_RES_ERR_SIZE_LICENSE_CON"
The problem has too many constraints to be solved with the available license.

"MSK_RES_ERR_SIZE_LICENSE_VAR"
The problem has too many variables to be solved with the available license.

"MSK_RES_ERR_SIZE_LICENSE_INTVAR"
The problem contains too many integer variables to be solved with the available license.

"MSK_RES_ERR_OPTIMIZER_LICENSE"
The optimizer required is not licensed.

"MSK_RES_ERR_FLEXLM"
The FLEXlm license manager reported an error.

"MSK_RES_ERR_LICENSE_SERVER"
The license server is not responding.

"MSK_RES_ERR_LICENSE_MAX"
Maximum number of licenses is reached.

"MSK_RES_ERR_LICENSE_MOSEKLM_DAEMON"
The MOSEKLM license manager daemon is not up and running.

"MSK_RES_ERR_LICENSE_FEATURE"
A requested feature is not available in the license file(s). Most likely due to an incorrect license
system setup.

"MSK_RES_ERR_PLATFORM_NOT_LICENSED"
A requested license feature is not available for the required platform.

"MSK_RES_ERR_LICENSE_CANNOT_ALLOCATE"
The license system cannot allocate the memory required.

"MSK_RES_ERR_LICENSE_CANNOT_CONNECT"
MOSEK cannot connect to the license server. Most likely the license server is not up and running.

"MSK_RES_ERR_LICENSE_INVALID_HOSTID"
The host ID specified in the license file does not match the host ID of the computer.

"MSK_RES_ERR_LICENSE_SERVER_VERSION"
The version specified in the checkout request is greater than the highest version number the daemon
supports.

"MSK_RES_ERR_LICENSE_NO_SERVER_SUPPORT"
The license server does not support the requested feature. Possible reasons for this error include:

• The feature has expired.

• The feature’s start date is later than today’s date.

• The version requested is higher than feature’s the highest supported version.

• A corrupted license file.

Try restarting the license and inspect the license server debug file, usually called lmgrd.log.

204 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_ERR_LICENSE_NO_SERVER_LINE"
There is no SERVER line in the license file. All non-zero license count features need at least one
SERVER line.

"MSK_RES_ERR_OPEN_DL"
A dynamic link library could not be opened.

"MSK_RES_ERR_OLDER_DLL"
The dynamic link library is older than the specified version.

"MSK_RES_ERR_NEWER_DLL"
The dynamic link library is newer than the specified version.

"MSK_RES_ERR_LINK_FILE_DLL"
A file cannot be linked to a stream in the DLL version.

"MSK_RES_ERR_THREAD_MUTEX_INIT"
Could not initialize a mutex.

"MSK_RES_ERR_THREAD_MUTEX_LOCK"
Could not lock a mutex.

"MSK_RES_ERR_THREAD_MUTEX_UNLOCK"
Could not unlock a mutex.

"MSK_RES_ERR_THREAD_CREATE"
Could not create a thread. This error may occur if a large number of environments are created
and not deleted again. In any case it is a good practice to minimize the number of environments
created.

"MSK_RES_ERR_THREAD_COND_INIT"
Could not initialize a condition.

"MSK_RES_ERR_UNKNOWN"
Unknown error.

"MSK_RES_ERR_SPACE"
Out of space.

"MSK_RES_ERR_FILE_OPEN"
Error while opening a file.

"MSK_RES_ERR_FILE_READ"
File read error.

"MSK_RES_ERR_FILE_WRITE"
File write error.

"MSK_RES_ERR_DATA_FILE_EXT"
The data file format cannot be determined from the file name.

"MSK_RES_ERR_INVALID_FILE_NAME"
An invalid file name has been specified.

"MSK_RES_ERR_INVALID_SOL_FILE_NAME"
An invalid file name has been specified.

"MSK_RES_ERR_END_OF_FILE"
End of file reached.

"MSK_RES_ERR_NULL_ENV"
env is a NULL pointer.

"MSK_RES_ERR_NULL_TASK"
task is a NULL pointer.

"MSK_RES_ERR_INVALID_STREAM"
An invalid stream is referenced.

17.5. Response codes 205

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_ERR_NO_INIT_ENV"
env is not initialized.

"MSK_RES_ERR_INVALID_TASK"
The task is invalid.

"MSK_RES_ERR_NULL_POINTER"
An argument to a function is unexpectedly a NULL pointer.

"MSK_RES_ERR_LIVING_TASKS"
All tasks associated with an enviroment must be deleted before the environment is deleted. There
are still some undeleted tasks.

"MSK_RES_ERR_BLANK_NAME"
An all blank name has been specified.

"MSK_RES_ERR_DUP_NAME"
The same name was used multiple times for the same problem item type.

"MSK_RES_ERR_INVALID_OBJ_NAME"
An invalid objective name is specified.

"MSK_RES_ERR_INVALID_CON_NAME"
An invalid constraint name is used.

"MSK_RES_ERR_INVALID_VAR_NAME"
An invalid variable name is used.

"MSK_RES_ERR_INVALID_CONE_NAME"
An invalid cone name is used.

"MSK_RES_ERR_INVALID_BARVAR_NAME"
An invalid symmetric matrix variable name is used.

"MSK_RES_ERR_SPACE_LEAKING"
MOSEK is leaking memory. This can be due to either an incorrect use of MOSEK or a bug.

"MSK_RES_ERR_SPACE_NO_INFO"
No available information about the space usage.

"MSK_RES_ERR_READ_FORMAT"
The specified format cannot be read.

"MSK_RES_ERR_MPS_FILE"
An error occurred while reading an MPS file.

"MSK_RES_ERR_MPS_INV_FIELD"
A field in the MPS file is invalid. Probably it is too wide.

"MSK_RES_ERR_MPS_INV_MARKER"
An invalid marker has been specified in the MPS file.

"MSK_RES_ERR_MPS_NULL_CON_NAME"
An empty constraint name is used in an MPS file.

"MSK_RES_ERR_MPS_NULL_VAR_NAME"
An empty variable name is used in an MPS file.

"MSK_RES_ERR_MPS_UNDEF_CON_NAME"
An undefined constraint name occurred in an MPS file.

"MSK_RES_ERR_MPS_UNDEF_VAR_NAME"
An undefined variable name occurred in an MPS file.

"MSK_RES_ERR_MPS_INV_CON_KEY"
An invalid constraint key occurred in an MPS file.

"MSK_RES_ERR_MPS_INV_BOUND_KEY"
An invalid bound key occurred in an MPS file.

206 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_ERR_MPS_INV_SEC_NAME"
An invalid section name occurred in an MPS file.

"MSK_RES_ERR_MPS_NO_OBJECTIVE"
No objective is defined in an MPS file.

"MSK_RES_ERR_MPS_SPLITTED_VAR"
All elements in a column of the 𝐴 matrix must be specified consecutively. Hence, it is illegal to
specify non-zero elements in 𝐴 for variable 1, then for variable 2 and then variable 1 again.

"MSK_RES_ERR_MPS_MUL_CON_NAME"
A constraint name was specified multiple times in the ROWS section.

"MSK_RES_ERR_MPS_MUL_QSEC"
Multiple QSECTIONs are specified for a constraint in the MPS data file.

"MSK_RES_ERR_MPS_MUL_QOBJ"
The Q term in the objective is specified multiple times in the MPS data file.

"MSK_RES_ERR_MPS_INV_SEC_ORDER"
The sections in the MPS data file are not in the correct order.

"MSK_RES_ERR_MPS_MUL_CSEC"
Multiple CSECTIONs are given the same name.

"MSK_RES_ERR_MPS_CONE_TYPE"
Invalid cone type specified in a CSECTION.

"MSK_RES_ERR_MPS_CONE_OVERLAP"
A variable is specified to be a member of several cones.

"MSK_RES_ERR_MPS_CONE_REPEAT"
A variable is repeated within the CSECTION.

"MSK_RES_ERR_MPS_NON_SYMMETRIC_Q"
A non symmetric matrice has been speciefied.

"MSK_RES_ERR_MPS_DUPLICATE_Q_ELEMENT"
Duplicate elements is specfied in a 𝑄 matrix.

"MSK_RES_ERR_MPS_INVALID_OBJSENSE"
An invalid objective sense is specified.

"MSK_RES_ERR_MPS_TAB_IN_FIELD2"
A tab char occurred in field 2.

"MSK_RES_ERR_MPS_TAB_IN_FIELD3"
A tab char occurred in field 3.

"MSK_RES_ERR_MPS_TAB_IN_FIELD5"
A tab char occurred in field 5.

"MSK_RES_ERR_MPS_INVALID_OBJ_NAME"
An invalid objective name is specified.

"MSK_RES_ERR_LP_INCOMPATIBLE"
The problem cannot be written to an LP formatted file.

"MSK_RES_ERR_LP_EMPTY"
The problem cannot be written to an LP formatted file.

"MSK_RES_ERR_LP_DUP_SLACK_NAME"
The name of the slack variable added to a ranged constraint already exists.

"MSK_RES_ERR_WRITE_MPS_INVALID_NAME"
An invalid name is created while writing an MPS file. Usually this will make the MPS file unread-
able.

17.5. Response codes 207

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_ERR_LP_INVALID_VAR_NAME"
A variable name is invalid when used in an LP formatted file.

"MSK_RES_ERR_LP_FREE_CONSTRAINT"
Free constraints cannot be written in LP file format.

"MSK_RES_ERR_WRITE_OPF_INVALID_VAR_NAME"
Empty variable names cannot be written to OPF files.

"MSK_RES_ERR_LP_FILE_FORMAT"
Syntax error in an LP file.

"MSK_RES_ERR_WRITE_LP_FORMAT"
Problem cannot be written as an LP file.

"MSK_RES_ERR_READ_LP_MISSING_END_TAG"
Syntax error in LP file. Possibly missing End tag.

"MSK_RES_ERR_LP_FORMAT"
Syntax error in an LP file.

"MSK_RES_ERR_WRITE_LP_NON_UNIQUE_NAME"
An auto-generated name is not unique.

"MSK_RES_ERR_READ_LP_NONEXISTING_NAME"
A variable never occurred in objective or constraints.

"MSK_RES_ERR_LP_WRITE_CONIC_PROBLEM"
The problem contains cones that cannot be written to an LP formatted file.

"MSK_RES_ERR_LP_WRITE_GECO_PROBLEM"
The problem contains general convex terms that cannot be written to an LP formatted file.

"MSK_RES_ERR_WRITING_FILE"
An error occurred while writing file

"MSK_RES_ERR_OPF_FORMAT"
Syntax error in an OPF file

"MSK_RES_ERR_OPF_NEW_VARIABLE"
Introducing new variables is now allowed. When a [variables] section is present, it is not allowed
to introduce new variables later in the problem.

"MSK_RES_ERR_INVALID_NAME_IN_SOL_FILE"
An invalid name occurred in a solution file.

"MSK_RES_ERR_LP_INVALID_CON_NAME"
A constraint name is invalid when used in an LP formatted file.

"MSK_RES_ERR_OPF_PREMATURE_EOF"
Premature end of file in an OPF file.

"MSK_RES_ERR_JSON_SYNTAX"
Syntax error in an JSON data

"MSK_RES_ERR_JSON_STRING"
Error in JSON string.

"MSK_RES_ERR_JSON_NUMBER_OVERFLOW"
Invalid number entry - wrong type or value overflow.

"MSK_RES_ERR_JSON_FORMAT"
Error in an JSON Task file

"MSK_RES_ERR_JSON_DATA"
Inconsistent data in JSON Task file

"MSK_RES_ERR_JSON_MISSING_DATA"
Missing data section in JSON task file.

208 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_ERR_ARGUMENT_LENNEQ"
Incorrect length of arguments.

"MSK_RES_ERR_ARGUMENT_TYPE"
Incorrect argument type.

"MSK_RES_ERR_NR_ARGUMENTS"
Incorrect number of function arguments.

"MSK_RES_ERR_IN_ARGUMENT"
A function argument is incorrect.

"MSK_RES_ERR_ARGUMENT_DIMENSION"
A function argument is of incorrect dimension.

"MSK_RES_ERR_INDEX_IS_TOO_SMALL"
An index in an argument is too small.

"MSK_RES_ERR_INDEX_IS_TOO_LARGE"
An index in an argument is too large.

"MSK_RES_ERR_PARAM_NAME"
The parameter name is not correct.

"MSK_RES_ERR_PARAM_NAME_DOU"
The parameter name is not correct for a double parameter.

"MSK_RES_ERR_PARAM_NAME_INT"
The parameter name is not correct for an integer parameter.

"MSK_RES_ERR_PARAM_NAME_STR"
The parameter name is not correct for a string parameter.

"MSK_RES_ERR_PARAM_INDEX"
Parameter index is out of range.

"MSK_RES_ERR_PARAM_IS_TOO_LARGE"
The parameter value is too large.

"MSK_RES_ERR_PARAM_IS_TOO_SMALL"
The parameter value is too small.

"MSK_RES_ERR_PARAM_VALUE_STR"
The parameter value string is incorrect.

"MSK_RES_ERR_PARAM_TYPE"
The parameter type is invalid.

"MSK_RES_ERR_INF_DOU_INDEX"
A double information index is out of range for the specified type.

"MSK_RES_ERR_INF_INT_INDEX"
An integer information index is out of range for the specified type.

"MSK_RES_ERR_INDEX_ARR_IS_TOO_SMALL"
An index in an array argument is too small.

"MSK_RES_ERR_INDEX_ARR_IS_TOO_LARGE"
An index in an array argument is too large.

"MSK_RES_ERR_INF_LINT_INDEX"
A long integer information index is out of range for the specified type.

"MSK_RES_ERR_ARG_IS_TOO_SMALL"
The value of a argument is too small.

"MSK_RES_ERR_ARG_IS_TOO_LARGE"
The value of a argument is too small.

17.5. Response codes 209

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_ERR_INVALID_WHICHSOL"
whichsol is invalid.

"MSK_RES_ERR_INF_DOU_NAME"
A double information name is invalid.

"MSK_RES_ERR_INF_INT_NAME"
An integer information name is invalid.

"MSK_RES_ERR_INF_TYPE"
The information type is invalid.

"MSK_RES_ERR_INF_LINT_NAME"
A long integer information name is invalid.

"MSK_RES_ERR_INDEX"
An index is out of range.

"MSK_RES_ERR_WHICHSOL"
The solution defined by whichsol does not exists.

"MSK_RES_ERR_SOLITEM"
The solution item number solitem is invalid. Please note that "MSK_SOL_ITEM_SNX" is invalid for
the basic solution.

"MSK_RES_ERR_WHICHITEM_NOT_ALLOWED"
whichitem is unacceptable.

"MSK_RES_ERR_MAXNUMCON"
The maximum number of constraints specified is smaller than the number of constraints in the
task.

"MSK_RES_ERR_MAXNUMVAR"
The maximum number of variables specified is smaller than the number of variables in the task.

"MSK_RES_ERR_MAXNUMBARVAR"
The maximum number of semidefinite variables specified is smaller than the number of semidefinite
variables in the task.

"MSK_RES_ERR_MAXNUMQNZ"
The maximum number of non-zeros specified for the 𝑄 matrices is smaller than the number of
non-zeros in the current 𝑄 matrices.

"MSK_RES_ERR_TOO_SMALL_MAX_NUM_NZ"
The maximum number of non-zeros specified is too small.

"MSK_RES_ERR_INVALID_IDX"
A specified index is invalid.

"MSK_RES_ERR_INVALID_MAX_NUM"
A specified index is invalid.

"MSK_RES_ERR_NUMCONLIM"
Maximum number of constraints limit is exceeded.

"MSK_RES_ERR_NUMVARLIM"
Maximum number of variables limit is exceeded.

"MSK_RES_ERR_TOO_SMALL_MAXNUMANZ"
The maximum number of non-zeros specified for 𝐴 is smaller than the number of non-zeros in the
current 𝐴.

"MSK_RES_ERR_INV_APTRE"
aptre[j] is strictly smaller than aptrb[j] for some j.

"MSK_RES_ERR_MUL_A_ELEMENT"
An element in 𝐴 is defined multiple times.

210 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_ERR_INV_BK"
Invalid bound key.

"MSK_RES_ERR_INV_BKC"
Invalid bound key is specified for a constraint.

"MSK_RES_ERR_INV_BKX"
An invalid bound key is specified for a variable.

"MSK_RES_ERR_INV_VAR_TYPE"
An invalid variable type is specified for a variable.

"MSK_RES_ERR_SOLVER_PROBTYPE"
Problem type does not match the chosen optimizer.

"MSK_RES_ERR_OBJECTIVE_RANGE"
Empty objective range.

"MSK_RES_ERR_FIRST"
Invalid first.

"MSK_RES_ERR_LAST"
Invalid index last. A given index was out of expected range.

"MSK_RES_ERR_NEGATIVE_SURPLUS"
Negative surplus.

"MSK_RES_ERR_NEGATIVE_APPEND"
Cannot append a negative number.

"MSK_RES_ERR_UNDEF_SOLUTION"
MOSEK has the following solution types:

• an interior-point solution,

• an basic solution,

• and an integer solution.

Each optimizer may set one or more of these solutions; e.g by default a successful optimization
with the interior-point optimizer defines the interior-point solution, and, for linear problems, also
the basic solution. This error occurs when asking for a solution or for information about a solution
that is not defined.

"MSK_RES_ERR_BASIS"
An invalid basis is specified. Either too many or too few basis variables are specified.

"MSK_RES_ERR_INV_SKC"
Invalid value in skc.

"MSK_RES_ERR_INV_SKX"
Invalid value in skx.

"MSK_RES_ERR_INV_SKN"
Invalid value in skn.

"MSK_RES_ERR_INV_SK_STR"
Invalid status key string encountered.

"MSK_RES_ERR_INV_SK"
Invalid status key code.

"MSK_RES_ERR_INV_CONE_TYPE_STR"
Invalid cone type string encountered.

"MSK_RES_ERR_INV_CONE_TYPE"
Invalid cone type code is encountered.

"MSK_RES_ERR_INVALID_SURPLUS"
Invalid surplus.

17.5. Response codes 211

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_ERR_INV_NAME_ITEM"
An invalid name item code is used.

"MSK_RES_ERR_PRO_ITEM"
An invalid problem is used.

"MSK_RES_ERR_INVALID_FORMAT_TYPE"
Invalid format type.

"MSK_RES_ERR_FIRSTI"
Invalid firsti.

"MSK_RES_ERR_LASTI"
Invalid lasti.

"MSK_RES_ERR_FIRSTJ"
Invalid firstj.

"MSK_RES_ERR_LASTJ"
Invalid lastj.

"MSK_RES_ERR_MAX_LEN_IS_TOO_SMALL"
An maximum length that is too small has been specified.

"MSK_RES_ERR_NONLINEAR_EQUALITY"
The model contains a nonlinear equality which defines a nonconvex set.

"MSK_RES_ERR_NONCONVEX"
The optimization problem is nonconvex.

"MSK_RES_ERR_NONLINEAR_RANGED"
Nonlinear constraints with finite lower and upper bound always define a nonconvex feasible set.

"MSK_RES_ERR_CON_Q_NOT_PSD"
The quadratic constraint matrix is not positive semidefinite as expected for a con-
straint with finite upper bound. This results in a nonconvex problem. The parameter
MSK_DPAR_CHECK_CONVEXITY_REL_TOL can be used to relax the convexity check.

"MSK_RES_ERR_CON_Q_NOT_NSD"
The quadratic constraint matrix is not negative semidefinite as expected for a con-
straint with finite lower bound. This results in a nonconvex problem. The parameter
MSK_DPAR_CHECK_CONVEXITY_REL_TOL can be used to relax the convexity check.

"MSK_RES_ERR_OBJ_Q_NOT_PSD"
The quadratic coefficient matrix in the objective is not positive semidefinite as expected for a
minimization problem. The parameter MSK_DPAR_CHECK_CONVEXITY_REL_TOL can be used to relax
the convexity check.

"MSK_RES_ERR_OBJ_Q_NOT_NSD"
The quadratic coefficient matrix in the objective is not negative semidefinite as expected for a
maximization problem. The parameter MSK_DPAR_CHECK_CONVEXITY_REL_TOL can be used to relax
the convexity check.

"MSK_RES_ERR_ARGUMENT_PERM_ARRAY"
An invalid permutation array is specified.

"MSK_RES_ERR_CONE_INDEX"
An index of a non-existing cone has been specified.

"MSK_RES_ERR_CONE_SIZE"
A cone with too few members is specified.

"MSK_RES_ERR_CONE_OVERLAP"
One or more of the variables in the cone to be added is already member of another cone. Now
assume the variable is 𝑥𝑗 then add a new variable say 𝑥𝑘 and the constraint

𝑥𝑗 = 𝑥𝑘

212 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

and then let 𝑥𝑘 be member of the cone to be appended.

"MSK_RES_ERR_CONE_REP_VAR"
A variable is included multiple times in the cone.

"MSK_RES_ERR_MAXNUMCONE"
The value specified for maxnumcone is too small.

"MSK_RES_ERR_CONE_TYPE"
Invalid cone type specified.

"MSK_RES_ERR_CONE_TYPE_STR"
Invalid cone type specified.

"MSK_RES_ERR_CONE_OVERLAP_APPEND"
The cone to be appended has one variable which is already member of another cone.

"MSK_RES_ERR_REMOVE_CONE_VARIABLE"
A variable cannot be removed because it will make a cone invalid.

"MSK_RES_ERR_SOL_FILE_INVALID_NUMBER"
An invalid number is specified in a solution file.

"MSK_RES_ERR_HUGE_C"
A huge value in absolute size is specified for one 𝑐𝑗 .

"MSK_RES_ERR_HUGE_AIJ"
A numerically huge value is specified for an 𝑎𝑖,𝑗 element in 𝐴. The parameter
MSK_DPAR_DATA_TOL_AIJ_HUGE controls when an 𝑎𝑖,𝑗 is considered huge.

"MSK_RES_ERR_DUPLICATE_AIJ"
An element in the A matrix is specified twice.

"MSK_RES_ERR_LOWER_BOUND_IS_A_NAN"
The lower bound specified is not a number (nan).

"MSK_RES_ERR_UPPER_BOUND_IS_A_NAN"
The upper bound specified is not a number (nan).

"MSK_RES_ERR_INFINITE_BOUND"
A numerically huge bound value is specified.

"MSK_RES_ERR_INV_QOBJ_SUBI"
Invalid value in qosubi.

"MSK_RES_ERR_INV_QOBJ_SUBJ"
Invalid value in qosubj.

"MSK_RES_ERR_INV_QOBJ_VAL"
Invalid value in qoval.

"MSK_RES_ERR_INV_QCON_SUBK"
Invalid value in qcsubk.

"MSK_RES_ERR_INV_QCON_SUBI"
Invalid value in qcsubi.

"MSK_RES_ERR_INV_QCON_SUBJ"
Invalid value in qcsubj.

"MSK_RES_ERR_INV_QCON_VAL"
Invalid value in qcval.

"MSK_RES_ERR_QCON_SUBI_TOO_SMALL"
Invalid value in qcsubi.

"MSK_RES_ERR_QCON_SUBI_TOO_LARGE"
Invalid value in qcsubi.

17.5. Response codes 213

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_ERR_QOBJ_UPPER_TRIANGLE"
An element in the upper triangle of 𝑄𝑜 is specified. Only elements in the lower triangle should be
specified.

"MSK_RES_ERR_QCON_UPPER_TRIANGLE"
An element in the upper triangle of a 𝑄𝑘 is specified. Only elements in the lower triangle should
be specified.

"MSK_RES_ERR_FIXED_BOUND_VALUES"
A fixed constraint/variable has been specified using the bound keys but the numerical value of the
lower and upper bound is different.

"MSK_RES_ERR_NONLINEAR_FUNCTIONS_NOT_ALLOWED"
An operation that is invalid for problems with nonlinear functions defined has been attempted.

"MSK_RES_ERR_USER_FUNC_RET"
An user function reported an error.

"MSK_RES_ERR_USER_FUNC_RET_DATA"
An user function returned invalid data.

"MSK_RES_ERR_USER_NLO_FUNC"
The user-defined nonlinear function reported an error.

"MSK_RES_ERR_USER_NLO_EVAL"
The user-defined nonlinear function reported an error.

"MSK_RES_ERR_USER_NLO_EVAL_HESSUBI"
The user-defined nonlinear function reported an invalid subscript in the Hessian.

"MSK_RES_ERR_USER_NLO_EVAL_HESSUBJ"
The user-defined nonlinear function reported an invalid subscript in the Hessian.

"MSK_RES_ERR_INVALID_OBJECTIVE_SENSE"
An invalid objective sense is specified.

"MSK_RES_ERR_UNDEFINED_OBJECTIVE_SENSE"
The objective sense has not been specified before the optimization.

"MSK_RES_ERR_Y_IS_UNDEFINED"
The solution item 𝑦 is undefined.

"MSK_RES_ERR_NAN_IN_DOUBLE_DATA"
An invalid floating point value was used in some double data.

"MSK_RES_ERR_NAN_IN_BLC"
𝑙𝑐 contains an invalid floating point value, i.e. a NaN.

"MSK_RES_ERR_NAN_IN_BUC"
𝑢𝑐 contains an invalid floating point value, i.e. a NaN.

"MSK_RES_ERR_NAN_IN_C"
𝑐 contains an invalid floating point value, i.e. a NaN.

"MSK_RES_ERR_NAN_IN_BLX"
𝑙𝑥 contains an invalid floating point value, i.e. a NaN.

"MSK_RES_ERR_NAN_IN_BUX"
𝑢𝑥 contains an invalid floating point value, i.e. a NaN.

"MSK_RES_ERR_INVALID_AIJ"
𝑎𝑖,𝑗 contains an invalid floating point value, i.e. a NaN or an infinite value.

"MSK_RES_ERR_SYM_MAT_INVALID"
A symmetric matrix contains an invalid floating point value, i.e. a NaN or an infinite value.

"MSK_RES_ERR_SYM_MAT_HUGE"
A symmetric matrix contains a huge value in absolute size. The parameter
MSK_DPAR_DATA_SYM_MAT_TOL_HUGE controls when an 𝑒𝑖,𝑗 is considered huge.

214 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_ERR_INV_PROBLEM"
Invalid problem type. Probably a nonconvex problem has been specified.

"MSK_RES_ERR_MIXED_CONIC_AND_NL"
The problem contains nonlinear terms conic constraints. The requested operation cannot be applied
to this type of problem.

"MSK_RES_ERR_GLOBAL_INV_CONIC_PROBLEM"
The global optimizer can only be applied to problems without semidefinite variables.

"MSK_RES_ERR_INV_OPTIMIZER"
An invalid optimizer has been chosen for the problem. This means that the simplex or the conic
optimizer is chosen to optimize a nonlinear problem.

"MSK_RES_ERR_MIO_NO_OPTIMIZER"
No optimizer is available for the current class of integer optimization problems.

"MSK_RES_ERR_NO_OPTIMIZER_VAR_TYPE"
No optimizer is available for this class of optimization problems.

"MSK_RES_ERR_FINAL_SOLUTION"
An error occurred during the solution finalization.

"MSK_RES_ERR_POSTSOLVE"
An error occurred during the postsolve. Please contact MOSEK support.

"MSK_RES_ERR_OVERFLOW"
A computation produced an overflow i.e. a very large number.

"MSK_RES_ERR_NO_BASIS_SOL"
No basic solution is defined.

"MSK_RES_ERR_BASIS_FACTOR"
The factorization of the basis is invalid.

"MSK_RES_ERR_BASIS_SINGULAR"
The basis is singular and hence cannot be factored.

"MSK_RES_ERR_FACTOR"
An error occurred while factorizing a matrix.

"MSK_RES_ERR_FEASREPAIR_CANNOT_RELAX"
An optimization problem cannot be relaxed. This is the case e.g. for general nonlinear optimization
problems.

"MSK_RES_ERR_FEASREPAIR_SOLVING_RELAXED"
The relaxed problem could not be solved to optimality. Please consult the log file for further details.

"MSK_RES_ERR_FEASREPAIR_INCONSISTENT_BOUND"
The upper bound is less than the lower bound for a variable or a constraint. Please correct this
before running the feasibility repair.

"MSK_RES_ERR_REPAIR_INVALID_PROBLEM"
The feasibility repair does not support the specified problem type.

"MSK_RES_ERR_REPAIR_OPTIMIZATION_FAILED"
Computation the optimal relaxation failed. The cause may have been numerical problems.

"MSK_RES_ERR_NAME_MAX_LEN"
A name is longer than the buffer that is supposed to hold it.

"MSK_RES_ERR_NAME_IS_NULL"
The name buffer is a NULL pointer.

"MSK_RES_ERR_INVALID_COMPRESSION"
Invalid compression type.

"MSK_RES_ERR_INVALID_IOMODE"
Invalid io mode.

17.5. Response codes 215

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_ERR_NO_PRIMAL_INFEAS_CER"
A certificate of primal infeasibility is not available.

"MSK_RES_ERR_NO_DUAL_INFEAS_CER"
A certificate of infeasibility is not available.

"MSK_RES_ERR_NO_SOLUTION_IN_CALLBACK"
The required solution is not available.

"MSK_RES_ERR_INV_MARKI"
Invalid value in marki.

"MSK_RES_ERR_INV_MARKJ"
Invalid value in markj.

"MSK_RES_ERR_INV_NUMI"
Invalid numi.

"MSK_RES_ERR_INV_NUMJ"
Invalid numj.

"MSK_RES_ERR_CANNOT_CLONE_NL"
A task with a nonlinear function callback cannot be cloned.

"MSK_RES_ERR_CANNOT_HANDLE_NL"
A function cannot handle a task with nonlinear function callbacks.

"MSK_RES_ERR_INVALID_ACCMODE"
An invalid access mode is specified.

"MSK_RES_ERR_TASK_INCOMPATIBLE"
The Task file is incompatible with this platform. This results from reading a file on a 32 bit
platform generated on a 64 bit platform.

"MSK_RES_ERR_TASK_INVALID"
The Task file is invalid.

"MSK_RES_ERR_TASK_WRITE"
Failed to write the task file.

"MSK_RES_ERR_LU_MAX_NUM_TRIES"
Could not compute the LU factors of the matrix within the maximum number of allowed tries.

"MSK_RES_ERR_INVALID_UTF8"
An invalid UTF8 string is encountered.

"MSK_RES_ERR_INVALID_WCHAR"
An invalid wchar string is encountered.

"MSK_RES_ERR_NO_DUAL_FOR_ITG_SOL"
No dual information is available for the integer solution.

"MSK_RES_ERR_NO_SNX_FOR_BAS_SOL"
𝑠𝑥𝑛 is not available for the basis solution.

"MSK_RES_ERR_INTERNAL"
An internal error occurred. Please report this problem.

"MSK_RES_ERR_API_ARRAY_TOO_SMALL"
An input array was too short.

"MSK_RES_ERR_API_CB_CONNECT"
Failed to connect a callback object.

"MSK_RES_ERR_API_FATAL_ERROR"
An internal error occurred in the API. Please report this problem.

"MSK_RES_ERR_API_INTERNAL"
An internal fatal error occurred in an interface function.

216 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_ERR_SEN_FORMAT"
Syntax error in sensitivity analysis file.

"MSK_RES_ERR_SEN_UNDEF_NAME"
An undefined name was encountered in the sensitivity analysis file.

"MSK_RES_ERR_SEN_INDEX_RANGE"
Index out of range in the sensitivity analysis file.

"MSK_RES_ERR_SEN_BOUND_INVALID_UP"
Analysis of upper bound requested for an index, where no upper bound exists.

"MSK_RES_ERR_SEN_BOUND_INVALID_LO"
Analysis of lower bound requested for an index, where no lower bound exists.

"MSK_RES_ERR_SEN_INDEX_INVALID"
Invalid range given in the sensitivity file.

"MSK_RES_ERR_SEN_INVALID_REGEXP"
Syntax error in regexp or regexp longer than 1024.

"MSK_RES_ERR_SEN_SOLUTION_STATUS"
No optimal solution found to the original problem given for sensitivity analysis.

"MSK_RES_ERR_SEN_NUMERICAL"
Numerical difficulties encountered performing the sensitivity analysis.

"MSK_RES_ERR_SEN_UNHANDLED_PROBLEM_TYPE"
Sensitivity analysis cannot be performed for the specified problem. Sensitivity analysis is only
possible for linear problems.

"MSK_RES_ERR_UNB_STEP_SIZE"
A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes
unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen
only if the problem is badly formulated. Please contact MOSEK support if this error occurs.

"MSK_RES_ERR_IDENTICAL_TASKS"
Some tasks related to this function call were identical. Unique tasks were expected.

"MSK_RES_ERR_AD_INVALID_CODELIST"
The code list data was invalid.

"MSK_RES_ERR_INTERNAL_TEST_FAILED"
An internal unit test function failed.

"MSK_RES_ERR_XML_INVALID_PROBLEM_TYPE"
The problem type is not supported by the XML format.

"MSK_RES_ERR_INVALID_AMPL_STUB"
Invalid AMPL stub.

"MSK_RES_ERR_INT64_TO_INT32_CAST"
An 32 bit integer could not cast to a 64 bit integer.

"MSK_RES_ERR_SIZE_LICENSE_NUMCORES"
The computer contains more cpu cores than the license allows for.

"MSK_RES_ERR_INFEAS_UNDEFINED"
The requested value is not defined for this solution type.

"MSK_RES_ERR_NO_BARX_FOR_SOLUTION"
There is no 𝑋 available for the solution specified. In particular note there are no 𝑋 defined for the
basic and integer solutions.

"MSK_RES_ERR_NO_BARS_FOR_SOLUTION"
There is no 𝑠 available for the solution specified. In particular note there are no 𝑠 defined for the
basic and integer solutions.

17.5. Response codes 217

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_ERR_BAR_VAR_DIM"
The dimension of a symmetric matrix variable has to greater than 0.

"MSK_RES_ERR_SYM_MAT_INVALID_ROW_INDEX"
A row index specified for sparse symmetric matrix is invalid.

"MSK_RES_ERR_SYM_MAT_INVALID_COL_INDEX"
A column index specified for sparse symmetric matrix is invalid.

"MSK_RES_ERR_SYM_MAT_NOT_LOWER_TRINGULAR"
Only the lower triangular part of sparse symmetric matrix should be specified.

"MSK_RES_ERR_SYM_MAT_INVALID_VALUE"
The numerical value specified in a sparse symmetric matrix is not a value floating value.

"MSK_RES_ERR_SYM_MAT_DUPLICATE"
A value in a symmetric matric as been specified more than once.

"MSK_RES_ERR_INVALID_SYM_MAT_DIM"
A sparse symmetric matrix of invalid dimension is specified.

"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_SYM_MAT"
The file format does not support a problem with symmetric matrix variables.

"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_CONES"
The file format does not support a problem with conic constraints.

"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_GENERAL_NL"
The file format does not support a problem with general nonlinear terms.

"MSK_RES_ERR_DUPLICATE_CONSTRAINT_NAMES"
Two constraint names are identical.

"MSK_RES_ERR_DUPLICATE_VARIABLE_NAMES"
Two variable names are identical.

"MSK_RES_ERR_DUPLICATE_BARVARIABLE_NAMES"
Two barvariable names are identical.

"MSK_RES_ERR_DUPLICATE_CONE_NAMES"
Two cone names are identical.

"MSK_RES_ERR_NON_UNIQUE_ARRAY"
An array does not contain unique elements.

"MSK_RES_ERR_ARGUMENT_IS_TOO_LARGE"
The value of a function argument is too large.

"MSK_RES_ERR_MIO_INTERNAL"
A fatal error occurred in the mixed integer optimizer. Please contact MOSEK support.

"MSK_RES_ERR_INVALID_PROBLEM_TYPE"
An invalid problem type.

"MSK_RES_ERR_UNHANDLED_SOLUTION_STATUS"
Unhandled solution status.

"MSK_RES_ERR_UPPER_TRIANGLE"
An element in the upper triangle of a lower triangular matrix is specified.

"MSK_RES_ERR_LAU_SINGULAR_MATRIX"
A matrix is singular.

"MSK_RES_ERR_LAU_NOT_POSITIVE_DEFINITE"
A matrix is not positive definite.

"MSK_RES_ERR_LAU_INVALID_LOWER_TRIANGULAR_MATRIX"
An invalid lower triangular matrix.

218 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_ERR_LAU_UNKNOWN"
An unknown error.

"MSK_RES_ERR_LAU_ARG_M"
Invalid argument m.

"MSK_RES_ERR_LAU_ARG_N"
Invalid argument n.

"MSK_RES_ERR_LAU_ARG_K"
Invalid argument k.

"MSK_RES_ERR_LAU_ARG_TRANSA"
Invalid argument transa.

"MSK_RES_ERR_LAU_ARG_TRANSB"
Invalid argument transb.

"MSK_RES_ERR_LAU_ARG_UPLO"
Invalid argument uplo.

"MSK_RES_ERR_LAU_ARG_TRANS"
Invalid argument trans.

"MSK_RES_ERR_LAU_INVALID_SPARSE_SYMMETRIC_MATRIX"
An invalid sparse symmetric matrix is specfified. Note only the lower triangular part with no
duplicates is specifed.

"MSK_RES_ERR_CBF_PARSE"
An error occurred while parsing an CBF file.

"MSK_RES_ERR_CBF_OBJ_SENSE"
An invalid objective sense is specified.

"MSK_RES_ERR_CBF_NO_VARIABLES"
No variables are specified.

"MSK_RES_ERR_CBF_TOO_MANY_CONSTRAINTS"
Too many constraints specified.

"MSK_RES_ERR_CBF_TOO_MANY_VARIABLES"
Too many variables specified.

"MSK_RES_ERR_CBF_NO_VERSION_SPECIFIED"
No version specified.

"MSK_RES_ERR_CBF_SYNTAX"
Invalid syntax.

"MSK_RES_ERR_CBF_DUPLICATE_OBJ"
Duplicate OBJ keyword.

"MSK_RES_ERR_CBF_DUPLICATE_CON"
Duplicate CON keyword.

"MSK_RES_ERR_CBF_DUPLICATE_VAR"
Duplicate VAR keyword.

"MSK_RES_ERR_CBF_DUPLICATE_INT"
Duplicate INT keyword.

"MSK_RES_ERR_CBF_INVALID_VAR_TYPE"
Invalid variable type.

"MSK_RES_ERR_CBF_INVALID_CON_TYPE"
Invalid constraint type.

"MSK_RES_ERR_CBF_INVALID_DOMAIN_DIMENSION"
Invalid domain dimension.

17.5. Response codes 219

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_ERR_CBF_DUPLICATE_OBJACOORD"
Duplicate index in OBJCOORD.

"MSK_RES_ERR_CBF_DUPLICATE_BCOORD"
Duplicate index in BCOORD.

"MSK_RES_ERR_CBF_DUPLICATE_ACOORD"
Duplicate index in ACOORD.

"MSK_RES_ERR_CBF_TOO_FEW_VARIABLES"
Too few variables defined.

"MSK_RES_ERR_CBF_TOO_FEW_CONSTRAINTS"
Too few constraints defined.

"MSK_RES_ERR_CBF_TOO_FEW_INTS"
Too few ints are specified.

"MSK_RES_ERR_CBF_TOO_MANY_INTS"
Too many ints are specified.

"MSK_RES_ERR_CBF_INVALID_INT_INDEX"
Invalid INT index.

"MSK_RES_ERR_CBF_UNSUPPORTED"
Unsupported feature is present.

"MSK_RES_ERR_CBF_DUPLICATE_PSDVAR"
Duplicate PSDVAR keyword.

"MSK_RES_ERR_CBF_INVALID_PSDVAR_DIMENSION"
Invalid PSDVAR dimmension.

"MSK_RES_ERR_CBF_TOO_FEW_PSDVAR"
Too few variables defined.

"MSK_RES_ERR_MIO_INVALID_ROOT_OPTIMIZER"
An invalid root optimizer was selected for the problem type.

"MSK_RES_ERR_MIO_INVALID_NODE_OPTIMIZER"
An invalid node optimizer was selected for the problem type.

"MSK_RES_ERR_TOCONIC_CONSTR_Q_NOT_PSD"
The matrix defining the quadratric part of constraint is not positive semidefinite.

"MSK_RES_ERR_TOCONIC_CONSTRAINT_FX"
The quadratic constraint is an equality, thus not convex.

"MSK_RES_ERR_TOCONIC_CONSTRAINT_RA"
The quadratic constraint has finite lower and upper bound, and therefore it is not convex.

"MSK_RES_ERR_TOCONIC_CONSTR_NOT_CONIC"
The constraint is not conic representable.

"MSK_RES_ERR_TOCONIC_OBJECTIVE_NOT_PSD"
The matrix defining the quadratric part of the objective function is not positive semidefinite.

"MSK_RES_ERR_SERVER_CONNECT"
Failed to connect to remote solver server. The server string or the port string were invalid, or the
server did not accept connection.

"MSK_RES_ERR_SERVER_PROTOCOL"
Unexpected message or data from solver server.

"MSK_RES_ERR_SERVER_STATUS"
Server returned non-ok HTTP status code

"MSK_RES_ERR_SERVER_TOKEN"
The job ID specified is incorrect or invalid

220 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

17.6 Enumerations

language
Language selection constants

"MSK_LANG_ENG"
English language selection

"MSK_LANG_DAN"
Danish language selection

accmode
Constraint or variable access modes. All functions using this enum are deprecated. Use separate
functions for rows/columns instead.

"MSK_ACC_VAR"
Access data by columns (variable oriented)

"MSK_ACC_CON"
Access data by rows (constraint oriented)

basindtype
Basis identification

"MSK_BI_NEVER"
Never do basis identification.

"MSK_BI_ALWAYS"
Basis identification is always performed even if the interior-point optimizer terminates abnor-
mally.

"MSK_BI_NO_ERROR"
Basis identification is performed if the interior-point optimizer terminates without an error.

"MSK_BI_IF_FEASIBLE"
Basis identification is not performed if the interior-point optimizer terminates with a problem
status saying that the problem is primal or dual infeasible.

"MSK_BI_RESERVERED"
Not currently in use.

boundkey
Bound keys

"MSK_BK_LO"
The constraint or variable has a finite lower bound and an infinite upper bound.

"MSK_BK_UP"
The constraint or variable has an infinite lower bound and an finite upper bound.

"MSK_BK_FX"
The constraint or variable is fixed.

"MSK_BK_FR"
The constraint or variable is free.

"MSK_BK_RA"
The constraint or variable is ranged.

mark
Mark

"MSK_MARK_LO"
The lower bound is selected for sensitivity analysis.

"MSK_MARK_UP"
The upper bound is selected for sensitivity analysis.

17.6. Enumerations 221

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

simdegen
Degeneracy strategies

"MSK_SIM_DEGEN_NONE"
The simplex optimizer should use no degeneration strategy.

"MSK_SIM_DEGEN_FREE"
The simplex optimizer chooses the degeneration strategy.

"MSK_SIM_DEGEN_AGGRESSIVE"
The simplex optimizer should use an aggressive degeneration strategy.

"MSK_SIM_DEGEN_MODERATE"
The simplex optimizer should use a moderate degeneration strategy.

"MSK_SIM_DEGEN_MINIMUM"
The simplex optimizer should use a minimum degeneration strategy.

transpose
Transposed matrix.

"MSK_TRANSPOSE_NO"
No transpose is applied.

"MSK_TRANSPOSE_YES"
A transpose is applied.

uplo
Triangular part of a symmetric matrix.

"MSK_UPLO_LO"
Lower part.

"MSK_UPLO_UP"
Upper part

simreform
Problem reformulation.

"MSK_SIM_REFORMULATION_ON"
Allow the simplex optimizer to reformulate the problem.

"MSK_SIM_REFORMULATION_OFF"
Disallow the simplex optimizer to reformulate the problem.

"MSK_SIM_REFORMULATION_FREE"
The simplex optimizer can choose freely.

"MSK_SIM_REFORMULATION_AGGRESSIVE"
The simplex optimizer should use an aggressive reformulation strategy.

simdupvec
Exploit duplicate columns.

"MSK_SIM_EXPLOIT_DUPVEC_ON"
Allow the simplex optimizer to exploit duplicated columns.

"MSK_SIM_EXPLOIT_DUPVEC_OFF"
Disallow the simplex optimizer to exploit duplicated columns.

"MSK_SIM_EXPLOIT_DUPVEC_FREE"
The simplex optimizer can choose freely.

simhotstart
Hot-start type employed by the simplex optimizer

"MSK_SIM_HOTSTART_NONE"
The simplex optimizer performs a coldstart.

222 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_SIM_HOTSTART_FREE"
The simplex optimize chooses the hot-start type.

"MSK_SIM_HOTSTART_STATUS_KEYS"
Only the status keys of the constraints and variables are used to choose the type of hot-start.

intpnthotstart
Hot-start type employed by the interior-point optimizers.

"MSK_INTPNT_HOTSTART_NONE"
The interior-point optimizer performs a coldstart.

"MSK_INTPNT_HOTSTART_PRIMAL"
The interior-point optimizer exploits the primal solution only.

"MSK_INTPNT_HOTSTART_DUAL"
The interior-point optimizer exploits the dual solution only.

"MSK_INTPNT_HOTSTART_PRIMAL_DUAL"
The interior-point optimizer exploits both the primal and dual solution.

callbackcode
Progress callback codes

"MSK_CALLBACK_BEGIN_BI"
The basis identification procedure has been started.

"MSK_CALLBACK_BEGIN_CONIC"
The callback function is called when the conic optimizer is started.

"MSK_CALLBACK_BEGIN_DUAL_BI"
The callback function is called from within the basis identification procedure when the dual
phase is started.

"MSK_CALLBACK_BEGIN_DUAL_SENSITIVITY"
Dual sensitivity analysis is started.

"MSK_CALLBACK_BEGIN_DUAL_SETUP_BI"
The callback function is called when the dual BI phase is started.

"MSK_CALLBACK_BEGIN_DUAL_SIMPLEX"
The callback function is called when the dual simplex optimizer started.

"MSK_CALLBACK_BEGIN_DUAL_SIMPLEX_BI"
The callback function is called from within the basis identification procedure when the dual
simplex clean-up phase is started.

"MSK_CALLBACK_BEGIN_FULL_CONVEXITY_CHECK"
Begin full convexity check.

"MSK_CALLBACK_BEGIN_INFEAS_ANA"
The callback function is called when the infeasibility analyzer is started.

"MSK_CALLBACK_BEGIN_INTPNT"
The callback function is called when the interior-point optimizer is started.

"MSK_CALLBACK_BEGIN_LICENSE_WAIT"
Begin waiting for license.

"MSK_CALLBACK_BEGIN_MIO"
The callback function is called when the mixed-integer optimizer is started.

"MSK_CALLBACK_BEGIN_OPTIMIZER"
The callback function is called when the optimizer is started.

"MSK_CALLBACK_BEGIN_PRESOLVE"
The callback function is called when the presolve is started.

17.6. Enumerations 223

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_CALLBACK_BEGIN_PRIMAL_BI"
The callback function is called from within the basis identification procedure when the primal
phase is started.

"MSK_CALLBACK_BEGIN_PRIMAL_REPAIR"
Begin primal feasibility repair.

"MSK_CALLBACK_BEGIN_PRIMAL_SENSITIVITY"
Primal sensitivity analysis is started.

"MSK_CALLBACK_BEGIN_PRIMAL_SETUP_BI"
The callback function is called when the primal BI setup is started.

"MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX"
The callback function is called when the primal simplex optimizer is started.

"MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX_BI"
The callback function is called from within the basis identification procedure when the primal
simplex clean-up phase is started.

"MSK_CALLBACK_BEGIN_QCQO_REFORMULATE"
Begin QCQO reformulation.

"MSK_CALLBACK_BEGIN_READ"
MOSEK has started reading a problem file.

"MSK_CALLBACK_BEGIN_ROOT_CUTGEN"
The callback function is called when root cut generation is started.

"MSK_CALLBACK_BEGIN_SIMPLEX"
The callback function is called when the simplex optimizer is started.

"MSK_CALLBACK_BEGIN_SIMPLEX_BI"
The callback function is called from within the basis identification procedure when the simplex
clean-up phase is started.

"MSK_CALLBACK_BEGIN_TO_CONIC"
Begin conic reformulation.

"MSK_CALLBACK_BEGIN_WRITE"
MOSEK has started writing a problem file.

"MSK_CALLBACK_CONIC"
The callback function is called from within the conic optimizer after the information database
has been updated.

"MSK_CALLBACK_DUAL_SIMPLEX"
The callback function is called from within the dual simplex optimizer.

"MSK_CALLBACK_END_BI"
The callback function is called when the basis identification procedure is terminated.

"MSK_CALLBACK_END_CONIC"
The callback function is called when the conic optimizer is terminated.

"MSK_CALLBACK_END_DUAL_BI"
The callback function is called from within the basis identification procedure when the dual
phase is terminated.

"MSK_CALLBACK_END_DUAL_SENSITIVITY"
Dual sensitivity analysis is terminated.

"MSK_CALLBACK_END_DUAL_SETUP_BI"
The callback function is called when the dual BI phase is terminated.

"MSK_CALLBACK_END_DUAL_SIMPLEX"
The callback function is called when the dual simplex optimizer is terminated.

224 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_CALLBACK_END_DUAL_SIMPLEX_BI"
The callback function is called from within the basis identification procedure when the dual
clean-up phase is terminated.

"MSK_CALLBACK_END_FULL_CONVEXITY_CHECK"
End full convexity check.

"MSK_CALLBACK_END_INFEAS_ANA"
The callback function is called when the infeasibility analyzer is terminated.

"MSK_CALLBACK_END_INTPNT"
The callback function is called when the interior-point optimizer is terminated.

"MSK_CALLBACK_END_LICENSE_WAIT"
End waiting for license.

"MSK_CALLBACK_END_MIO"
The callback function is called when the mixed-integer optimizer is terminated.

"MSK_CALLBACK_END_OPTIMIZER"
The callback function is called when the optimizer is terminated.

"MSK_CALLBACK_END_PRESOLVE"
The callback function is called when the presolve is completed.

"MSK_CALLBACK_END_PRIMAL_BI"
The callback function is called from within the basis identification procedure when the primal
phase is terminated.

"MSK_CALLBACK_END_PRIMAL_REPAIR"
End primal feasibility repair.

"MSK_CALLBACK_END_PRIMAL_SENSITIVITY"
Primal sensitivity analysis is terminated.

"MSK_CALLBACK_END_PRIMAL_SETUP_BI"
The callback function is called when the primal BI setup is terminated.

"MSK_CALLBACK_END_PRIMAL_SIMPLEX"
The callback function is called when the primal simplex optimizer is terminated.

"MSK_CALLBACK_END_PRIMAL_SIMPLEX_BI"
The callback function is called from within the basis identification procedure when the primal
clean-up phase is terminated.

"MSK_CALLBACK_END_QCQO_REFORMULATE"
End QCQO reformulation.

"MSK_CALLBACK_END_READ"
MOSEK has finished reading a problem file.

"MSK_CALLBACK_END_ROOT_CUTGEN"
The callback function is called when root cut generation is is terminated.

"MSK_CALLBACK_END_SIMPLEX"
The callback function is called when the simplex optimizer is terminated.

"MSK_CALLBACK_END_SIMPLEX_BI"
The callback function is called from within the basis identification procedure when the simplex
clean-up phase is terminated.

"MSK_CALLBACK_END_TO_CONIC"
End conic reformulation.

"MSK_CALLBACK_END_WRITE"
MOSEK has finished writing a problem file.

17.6. Enumerations 225

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_CALLBACK_IM_BI"
The callback function is called from within the basis identification procedure at an interme-
diate point.

"MSK_CALLBACK_IM_CONIC"
The callback function is called at an intermediate stage within the conic optimizer where the
information database has not been updated.

"MSK_CALLBACK_IM_DUAL_BI"
The callback function is called from within the basis identification procedure at an interme-
diate point in the dual phase.

"MSK_CALLBACK_IM_DUAL_SENSIVITY"
The callback function is called at an intermediate stage of the dual sensitivity analysis.

"MSK_CALLBACK_IM_DUAL_SIMPLEX"
The callback function is called at an intermediate point in the dual simplex optimizer.

"MSK_CALLBACK_IM_FULL_CONVEXITY_CHECK"
The callback function is called at an intermediate stage of the full convexity check.

"MSK_CALLBACK_IM_INTPNT"
The callback function is called at an intermediate stage within the interior-point optimizer
where the information database has not been updated.

"MSK_CALLBACK_IM_LICENSE_WAIT"
MOSEK is waiting for a license.

"MSK_CALLBACK_IM_LU"
The callback function is called from within the LU factorization procedure at an intermediate
point.

"MSK_CALLBACK_IM_MIO"
The callback function is called at an intermediate point in the mixed-integer optimizer.

"MSK_CALLBACK_IM_MIO_DUAL_SIMPLEX"
The callback function is called at an intermediate point in the mixed-integer optimizer while
running the dual simplex optimizer.

"MSK_CALLBACK_IM_MIO_INTPNT"
The callback function is called at an intermediate point in the mixed-integer optimizer while
running the interior-point optimizer.

"MSK_CALLBACK_IM_MIO_PRIMAL_SIMPLEX"
The callback function is called at an intermediate point in the mixed-integer optimizer while
running the primal simplex optimizer.

"MSK_CALLBACK_IM_ORDER"
The callback function is called from within the matrix ordering procedure at an intermediate
point.

"MSK_CALLBACK_IM_PRESOLVE"
The callback function is called from within the presolve procedure at an intermediate stage.

"MSK_CALLBACK_IM_PRIMAL_BI"
The callback function is called from within the basis identification procedure at an interme-
diate point in the primal phase.

"MSK_CALLBACK_IM_PRIMAL_SENSIVITY"
The callback function is called at an intermediate stage of the primal sensitivity analysis.

"MSK_CALLBACK_IM_PRIMAL_SIMPLEX"
The callback function is called at an intermediate point in the primal simplex optimizer.

"MSK_CALLBACK_IM_QO_REFORMULATE"
The callback function is called at an intermediate stage of the conic quadratic reformulation.

226 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_CALLBACK_IM_READ"
Intermediate stage in reading.

"MSK_CALLBACK_IM_ROOT_CUTGEN"
The callback is called from within root cut generation at an intermediate stage.

"MSK_CALLBACK_IM_SIMPLEX"
The callback function is called from within the simplex optimizer at an intermediate point.

"MSK_CALLBACK_IM_SIMPLEX_BI"
The callback function is called from within the basis identification procedure at an interme-
diate point in the simplex clean-up phase. The frequency of the callbacks is controlled by the
MSK_IPAR_LOG_SIM_FREQ parameter.

"MSK_CALLBACK_INTPNT"
The callback function is called from within the interior-point optimizer after the information
database has been updated.

"MSK_CALLBACK_NEW_INT_MIO"
The callback function is called after a new integer solution has been located by the mixed-
integer optimizer.

"MSK_CALLBACK_PRIMAL_SIMPLEX"
The callback function is called from within the primal simplex optimizer.

"MSK_CALLBACK_READ_OPF"
The callback function is called from the OPF reader.

"MSK_CALLBACK_READ_OPF_SECTION"
A chunk of 𝑄 non-zeros has been read from a problem file.

"MSK_CALLBACK_SOLVING_REMOTE"
The callback function is called while the task is being solved on a remote server.

"MSK_CALLBACK_UPDATE_DUAL_BI"
The callback function is called from within the basis identification procedure at an interme-
diate point in the dual phase.

"MSK_CALLBACK_UPDATE_DUAL_SIMPLEX"
The callback function is called in the dual simplex optimizer.

"MSK_CALLBACK_UPDATE_DUAL_SIMPLEX_BI"
The callback function is called from within the basis identification procedure at an interme-
diate point in the dual simplex clean-up phase. The frequency of the callbacks is controlled
by the MSK_IPAR_LOG_SIM_FREQ parameter.

"MSK_CALLBACK_UPDATE_PRESOLVE"
The callback function is called from within the presolve procedure.

"MSK_CALLBACK_UPDATE_PRIMAL_BI"
The callback function is called from within the basis identification procedure at an interme-
diate point in the primal phase.

"MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX"
The callback function is called in the primal simplex optimizer.

"MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX_BI"
The callback function is called from within the basis identification procedure at an interme-
diate point in the primal simplex clean-up phase. The frequency of the callbacks is controlled
by the MSK_IPAR_LOG_SIM_FREQ parameter.

"MSK_CALLBACK_WRITE_OPF"
The callback function is called from the OPF writer.

checkconvexitytype
Types of convexity checks.

17.6. Enumerations 227

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_CHECK_CONVEXITY_NONE"
No convexity check.

"MSK_CHECK_CONVEXITY_SIMPLE"
Perform simple and fast convexity check.

"MSK_CHECK_CONVEXITY_FULL"
Perform a full convexity check.

compresstype
Compression types

"MSK_COMPRESS_NONE"
No compression is used.

"MSK_COMPRESS_FREE"
The type of compression used is chosen automatically.

"MSK_COMPRESS_GZIP"
The type of compression used is gzip compatible.

conetype
Cone types

"MSK_CT_QUAD"
The cone is a quadratic cone.

"MSK_CT_RQUAD"
The cone is a rotated quadratic cone.

nametype
Name types

"MSK_NAME_TYPE_GEN"
General names. However, no duplicate and blank names are allowed.

"MSK_NAME_TYPE_MPS"
MPS type names.

"MSK_NAME_TYPE_LP"
LP type names.

symmattype
Cone types

"MSK_SYMMAT_TYPE_SPARSE"
Sparse symmetric matrix.

dataformat
Data format types

"MSK_DATA_FORMAT_EXTENSION"
The file extension is used to determine the data file format.

"MSK_DATA_FORMAT_MPS"
The data file is MPS formatted.

"MSK_DATA_FORMAT_LP"
The data file is LP formatted.

"MSK_DATA_FORMAT_OP"
The data file is an optimization problem formatted file.

"MSK_DATA_FORMAT_XML"
The data file is an XML formatted file.

"MSK_DATA_FORMAT_FREE_MPS"
The data a free MPS formatted file.

228 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_DATA_FORMAT_TASK"
Generic task dump file.

"MSK_DATA_FORMAT_CB"
Conic benchmark format,

"MSK_DATA_FORMAT_JSON_TASK"
JSON based task format.

dinfitem
Double information items

"MSK_DINF_BI_CLEAN_DUAL_TIME"
Time spent within the dual clean-up optimizer of the basis identification procedure since its
invocation.

"MSK_DINF_BI_CLEAN_PRIMAL_TIME"
Time spent within the primal clean-up optimizer of the basis identification procedure since
its invocation.

"MSK_DINF_BI_CLEAN_TIME"
Time spent within the clean-up phase of the basis identification procedure since its invocation.

"MSK_DINF_BI_DUAL_TIME"
Time spent within the dual phase basis identification procedure since its invocation.

"MSK_DINF_BI_PRIMAL_TIME"
Time spent within the primal phase of the basis identification procedure since its invocation.

"MSK_DINF_BI_TIME"
Time spent within the basis identification procedure since its invocation.

"MSK_DINF_INTPNT_DUAL_FEAS"
Dual feasibility measure reported by the interior-point optimizer. (For the interior-point
optimizer this measure is not directly related to the original problem because a homogeneous
model is employed.)

"MSK_DINF_INTPNT_DUAL_OBJ"
Dual objective value reported by the interior-point optimizer.

"MSK_DINF_INTPNT_FACTOR_NUM_FLOPS"
An estimate of the number of flops used in the factorization.

"MSK_DINF_INTPNT_OPT_STATUS"
A measure of optimality of the solution. It should converge to +1 if the problem has a primal-
dual optimal solution, and converge to −1 if the problem is (strictly) primal or dual infeasible.
If the measure converges to another constant, or fails to settle, the problem is usually ill-posed.

"MSK_DINF_INTPNT_ORDER_TIME"
Order time (in seconds).

"MSK_DINF_INTPNT_PRIMAL_FEAS"
Primal feasibility measure reported by the interior-point optimizer. (For the interior-point
optimizer this measure is not directly related to the original problem because a homogeneous
model is employed).

"MSK_DINF_INTPNT_PRIMAL_OBJ"
Primal objective value reported by the interior-point optimizer.

"MSK_DINF_INTPNT_TIME"
Time spent within the interior-point optimizer since its invocation.

"MSK_DINF_MIO_CLIQUE_SEPARATION_TIME"
Seperation time for clique cuts.

"MSK_DINF_MIO_CMIR_SEPARATION_TIME"
Seperation time for CMIR cuts.

17.6. Enumerations 229

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_DINF_MIO_CONSTRUCT_SOLUTION_OBJ"
If MOSEK has successfully constructed an integer feasible solution, then this item contains
the optimal objective value corresponding to the feasible solution.

"MSK_DINF_MIO_DUAL_BOUND_AFTER_PRESOLVE"
Value of the dual bound after presolve but before cut generation.

"MSK_DINF_MIO_GMI_SEPARATION_TIME"
Seperation time for GMI cuts.

"MSK_DINF_MIO_HEURISTIC_TIME"
Total time spent in the optimizer.

"MSK_DINF_MIO_IMPLIED_BOUND_TIME"
Seperation time for implied bound cuts.

"MSK_DINF_MIO_KNAPSACK_COVER_SEPARATION_TIME"
Seperation time for knapsack cover.

"MSK_DINF_MIO_OBJ_ABS_GAP"
Given the mixed-integer optimizer has computed a feasible solution and a bound on the
optimal objective value, then this item contains the absolute gap defined by

|(objective value of feasible solution) − (objective bound)|.

Otherwise it has the value -1.0.

"MSK_DINF_MIO_OBJ_BOUND"
The best known bound on the objective function. This value is undefined until at least one
relaxation has been solved: To see if this is the case check that "MSK_IINF_MIO_NUM_RELAX"
is strictly positive.

"MSK_DINF_MIO_OBJ_INT"
The primal objective value corresponding to the best integer feasible solution. Please
note that at least one integer feasible solution must have been located i.e. check
"MSK_IINF_MIO_NUM_INT_SOLUTIONS" .

"MSK_DINF_MIO_OBJ_REL_GAP"
Given that the mixed-integer optimizer has computed a feasible solution and a bound on the
optimal objective value, then this item contains the relative gap defined by

|(objective value of feasible solution) − (objective bound)|
max(𝛿, |(objective value of feasible solution)|)

.

where 𝛿 is given by the parameter MSK_DPAR_MIO_REL_GAP_CONST . Otherwise it has the value
−1.0.

"MSK_DINF_MIO_OPTIMIZER_TIME"
Total time spent in the optimizer.

"MSK_DINF_MIO_PROBING_TIME"
Total time for probing.

"MSK_DINF_MIO_ROOT_CUTGEN_TIME"
Total time for cut generation.

"MSK_DINF_MIO_ROOT_OPTIMIZER_TIME"
Time spent in the optimizer while solving the root relaxation.

"MSK_DINF_MIO_ROOT_PRESOLVE_TIME"
Time spent in while presolving the root relaxation.

"MSK_DINF_MIO_TIME"
Time spent in the mixed-integer optimizer.

"MSK_DINF_MIO_USER_OBJ_CUT"
If the objective cut is used, then this information item has the value of the cut.

230 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_DINF_OPTIMIZER_TIME"
Total time spent in the optimizer since it was invoked.

"MSK_DINF_PRESOLVE_ELI_TIME"
Total time spent in the eliminator since the presolve was invoked.

"MSK_DINF_PRESOLVE_LINDEP_TIME"
Total time spent in the linear dependency checker since the presolve was invoked.

"MSK_DINF_PRESOLVE_TIME"
Total time (in seconds) spent in the presolve since it was invoked.

"MSK_DINF_PRIMAL_REPAIR_PENALTY_OBJ"
The optimal objective value of the penalty function.

"MSK_DINF_QCQO_REFORMULATE_MAX_PERTURBATION"
Maximum absolute diagonal perturbation occuring during the QCQO reformulation.

"MSK_DINF_QCQO_REFORMULATE_TIME"
Time spent with conic quadratic reformulation.

"MSK_DINF_QCQO_REFORMULATE_WORST_CHOLESKY_COLUMN_SCALING"
Worst Cholesky column scaling.

"MSK_DINF_QCQO_REFORMULATE_WORST_CHOLESKY_DIAG_SCALING"
Worst Cholesky diagonal scaling.

"MSK_DINF_RD_TIME"
Time spent reading the data file.

"MSK_DINF_SIM_DUAL_TIME"
Time spent in the dual simplex optimizer since invoking it.

"MSK_DINF_SIM_FEAS"
Feasibility measure reported by the simplex optimizer.

"MSK_DINF_SIM_OBJ"
Objective value reported by the simplex optimizer.

"MSK_DINF_SIM_PRIMAL_TIME"
Time spent in the primal simplex optimizer since invoking it.

"MSK_DINF_SIM_TIME"
Time spent in the simplex optimizer since invoking it.

"MSK_DINF_SOL_BAS_DUAL_OBJ"
Dual objective value of the basic solution.

"MSK_DINF_SOL_BAS_DVIOLCON"
Maximal dual bound violation for 𝑥𝑐 in the basic solution.

"MSK_DINF_SOL_BAS_DVIOLVAR"
Maximal dual bound violation for 𝑥𝑥 in the basic solution.

"MSK_DINF_SOL_BAS_NRM_BARX"
Infinity norm of 𝑋 in the basic solution.

"MSK_DINF_SOL_BAS_NRM_SLC"
Infinity norm of 𝑠𝑐𝑙 in the basic solution.

"MSK_DINF_SOL_BAS_NRM_SLX"
Infinity norm of 𝑠𝑥𝑙 in the basic solution.

"MSK_DINF_SOL_BAS_NRM_SUC"
Infinity norm of 𝑠𝑐𝑢 in the basic solution.

"MSK_DINF_SOL_BAS_NRM_SUX"
Infinity norm of 𝑠𝑋𝑢 in the basic solution.

17.6. Enumerations 231

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_DINF_SOL_BAS_NRM_XC"
Infinity norm of 𝑥𝑐 in the basic solution.

"MSK_DINF_SOL_BAS_NRM_XX"
Infinity norm of 𝑥𝑥 in the basic solution.

"MSK_DINF_SOL_BAS_NRM_Y"
Infinity norm of 𝑦 in the basic solution.

"MSK_DINF_SOL_BAS_PRIMAL_OBJ"
Primal objective value of the basic solution.

"MSK_DINF_SOL_BAS_PVIOLCON"
Maximal primal bound violation for 𝑥𝑐 in the basic solution.

"MSK_DINF_SOL_BAS_PVIOLVAR"
Maximal primal bound violation for 𝑥𝑥 in the basic solution.

"MSK_DINF_SOL_ITG_NRM_BARX"
Infinity norm of 𝑋 in the integer solution.

"MSK_DINF_SOL_ITG_NRM_XC"
Infinity norm of 𝑥𝑐 in the integer solution.

"MSK_DINF_SOL_ITG_NRM_XX"
Infinity norm of 𝑥𝑥 in the integer solution.

"MSK_DINF_SOL_ITG_PRIMAL_OBJ"
Primal objective value of the integer solution.

"MSK_DINF_SOL_ITG_PVIOLBARVAR"
Maximal primal bound violation for 𝑋 in the integer solution.

"MSK_DINF_SOL_ITG_PVIOLCON"
Maximal primal bound violation for 𝑥𝑐 in the integer solution.

"MSK_DINF_SOL_ITG_PVIOLCONES"
Maximal primal violation for primal conic constraints in the integer solution.

"MSK_DINF_SOL_ITG_PVIOLITG"
Maximal violation for the integer constraints in the integer solution.

"MSK_DINF_SOL_ITG_PVIOLVAR"
Maximal primal bound violation for 𝑥𝑥 in the integer solution.

"MSK_DINF_SOL_ITR_DUAL_OBJ"
Dual objective value of the interior-point solution.

"MSK_DINF_SOL_ITR_DVIOLBARVAR"
Maximal dual bound violation for 𝑋 in the interior-point solution.

"MSK_DINF_SOL_ITR_DVIOLCON"
Maximal dual bound violation for 𝑥𝑐 in the interior-point solution.

"MSK_DINF_SOL_ITR_DVIOLCONES"
Maximal dual violation for dual conic constraints in the interior-point solution.

"MSK_DINF_SOL_ITR_DVIOLVAR"
Maximal dual bound violation for 𝑥𝑥 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_BARS"
Infinity norm of 𝑆 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_BARX"
Infinity norm of 𝑋 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_SLC"
Infinity norm of 𝑠𝑐𝑙 in the interior-point solution.

232 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_DINF_SOL_ITR_NRM_SLX"
Infinity norm of 𝑠𝑥𝑙 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_SNX"
Infinity norm of 𝑠𝑥𝑛 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_SUC"
Infinity norm of 𝑠𝑐𝑢 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_SUX"
Infinity norm of 𝑠𝑋𝑢 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_XC"
Infinity norm of 𝑥𝑐 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_XX"
Infinity norm of 𝑥𝑥 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_Y"
Infinity norm of 𝑦 in the interior-point solution.

"MSK_DINF_SOL_ITR_PRIMAL_OBJ"
Primal objective value of the interior-point solution.

"MSK_DINF_SOL_ITR_PVIOLBARVAR"
Maximal primal bound violation for 𝑋 in the interior-point solution.

"MSK_DINF_SOL_ITR_PVIOLCON"
Maximal primal bound violation for 𝑥𝑐 in the interior-point solution.

"MSK_DINF_SOL_ITR_PVIOLCONES"
Maximal primal violation for primal conic constraints in the interior-point solution.

"MSK_DINF_SOL_ITR_PVIOLVAR"
Maximal primal bound violation for 𝑥𝑥 in the interior-point solution.

"MSK_DINF_TO_CONIC_TIME"
Time spent in the last to conic reformulation.

feature
License feature

"MSK_FEATURE_PTS"
Base system.

"MSK_FEATURE_PTON"
Nonlinear extension.

liinfitem
Long integer information items.

"MSK_LIINF_BI_CLEAN_DUAL_DEG_ITER"
Number of dual degenerate clean iterations performed in the basis identification.

"MSK_LIINF_BI_CLEAN_DUAL_ITER"
Number of dual clean iterations performed in the basis identification.

"MSK_LIINF_BI_CLEAN_PRIMAL_DEG_ITER"
Number of primal degenerate clean iterations performed in the basis identification.

"MSK_LIINF_BI_CLEAN_PRIMAL_ITER"
Number of primal clean iterations performed in the basis identification.

"MSK_LIINF_BI_DUAL_ITER"
Number of dual pivots performed in the basis identification.

"MSK_LIINF_BI_PRIMAL_ITER"
Number of primal pivots performed in the basis identification.

17.6. Enumerations 233

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_LIINF_INTPNT_FACTOR_NUM_NZ"
Number of non-zeros in factorization.

"MSK_LIINF_MIO_INTPNT_ITER"
Number of interior-point iterations performed by the mixed-integer optimizer.

"MSK_LIINF_MIO_PRESOLVED_ANZ"
Number of non-zero entries in the constraint matrix of presolved problem.

"MSK_LIINF_MIO_SIM_MAXITER_SETBACKS"
Number of times the the simplex optimizer has hit the maximum iteration limit when re-
optimizing.

"MSK_LIINF_MIO_SIMPLEX_ITER"
Number of simplex iterations performed by the mixed-integer optimizer.

"MSK_LIINF_RD_NUMANZ"
Number of non-zeros in A that is read.

"MSK_LIINF_RD_NUMQNZ"
Number of Q non-zeros.

iinfitem
Integer information items.

"MSK_IINF_ANA_PRO_NUM_CON"
Number of constraints in the problem.

"MSK_IINF_ANA_PRO_NUM_CON_EQ"
Number of equality constraints.

"MSK_IINF_ANA_PRO_NUM_CON_FR"
Number of unbounded constraints.

"MSK_IINF_ANA_PRO_NUM_CON_LO"
Number of constraints with a lower bound and an infinite upper bound.

"MSK_IINF_ANA_PRO_NUM_CON_RA"
Number of constraints with finite lower and upper bounds.

"MSK_IINF_ANA_PRO_NUM_CON_UP"
Number of constraints with an upper bound and an infinite lower bound.

"MSK_IINF_ANA_PRO_NUM_VAR"
Number of variables in the problem.

"MSK_IINF_ANA_PRO_NUM_VAR_BIN"
Number of binary (0-1) variables.

"MSK_IINF_ANA_PRO_NUM_VAR_CONT"
Number of continuous variables.

"MSK_IINF_ANA_PRO_NUM_VAR_EQ"
Number of fixed variables.

"MSK_IINF_ANA_PRO_NUM_VAR_FR"
Number of free variables.

"MSK_IINF_ANA_PRO_NUM_VAR_INT"
Number of general integer variables.

"MSK_IINF_ANA_PRO_NUM_VAR_LO"
Number of variables with a lower bound and an infinite upper bound.

"MSK_IINF_ANA_PRO_NUM_VAR_RA"
Number of variables with finite lower and upper bounds.

"MSK_IINF_ANA_PRO_NUM_VAR_UP"
Number of variables with an upper bound and an infinite lower bound. This value is set by

234 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_IINF_INTPNT_FACTOR_DIM_DENSE"
Dimension of the dense sub system in factorization.

"MSK_IINF_INTPNT_ITER"
Number of interior-point iterations since invoking the interior-point optimizer.

"MSK_IINF_INTPNT_NUM_THREADS"
Number of threads that the interior-point optimizer is using.

"MSK_IINF_INTPNT_SOLVE_DUAL"
Non-zero if the interior-point optimizer is solving the dual problem.

"MSK_IINF_MIO_ABSGAP_SATISFIED"
Non-zero if absolute gap is within tolerances.

"MSK_IINF_MIO_CLIQUE_TABLE_SIZE"
Size of the clique table.

"MSK_IINF_MIO_CONSTRUCT_NUM_ROUNDINGS"
Number of values in the integer solution that is rounded to an integer value.

"MSK_IINF_MIO_CONSTRUCT_SOLUTION"
If this item has the value 0, then MOSEK did not try to construct an initial integer feasible
solution. If the item has a positive value, then MOSEK successfully constructed an initial
integer feasible solution.

"MSK_IINF_MIO_INITIAL_SOLUTION"
Is non-zero if an initial integer solution is specified.

"MSK_IINF_MIO_NEAR_ABSGAP_SATISFIED"
Non-zero if absolute gap is within relaxed tolerances.

"MSK_IINF_MIO_NEAR_RELGAP_SATISFIED"
Non-zero if relative gap is within relaxed tolerances.

"MSK_IINF_MIO_NODE_DEPTH"
Depth of the last node solved.

"MSK_IINF_MIO_NUM_ACTIVE_NODES"
Number of active branch bound nodes.

"MSK_IINF_MIO_NUM_BRANCH"
Number of branches performed during the optimization.

"MSK_IINF_MIO_NUM_CLIQUE_CUTS"
Number of clique cuts.

"MSK_IINF_MIO_NUM_CMIR_CUTS"
Number of Complemented Mixed Integer Rounding (CMIR) cuts.

"MSK_IINF_MIO_NUM_GOMORY_CUTS"
Number of Gomory cuts.

"MSK_IINF_MIO_NUM_IMPLIED_BOUND_CUTS"
Number of implied bound cuts.

"MSK_IINF_MIO_NUM_INT_SOLUTIONS"
Number of integer feasible solutions that has been found.

"MSK_IINF_MIO_NUM_KNAPSACK_COVER_CUTS"
Number of clique cuts.

"MSK_IINF_MIO_NUM_RELAX"
Number of relaxations solved during the optimization.

"MSK_IINF_MIO_NUM_REPEATED_PRESOLVE"
Number of times presolve was repeated at root.

17.6. Enumerations 235

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_IINF_MIO_NUMCON"
Number of constraints in the problem solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMINT"
Number of integer variables in the problem solved be the mixed-integer optimizer.

"MSK_IINF_MIO_NUMVAR"
Number of variables in the problem solved by the mixed-integer optimizer.

"MSK_IINF_MIO_OBJ_BOUND_DEFINED"
Non-zero if a valid objective bound has been found, otherwise zero.

"MSK_IINF_MIO_PRESOLVED_NUMBIN"
Number of binary variables in the problem solved be the mixed-integer optimizer.

"MSK_IINF_MIO_PRESOLVED_NUMCON"
Number of constraints in the presolved problem.

"MSK_IINF_MIO_PRESOLVED_NUMCONT"
Number of continuous variables in the problem solved be the mixed-integer optimizer.

"MSK_IINF_MIO_PRESOLVED_NUMINT"
Number of integer variables in the presolved problem.

"MSK_IINF_MIO_PRESOLVED_NUMVAR"
Number of variables in the presolved problem.

"MSK_IINF_MIO_RELGAP_SATISFIED"
Non-zero if relative gap is within tolerances.

"MSK_IINF_MIO_TOTAL_NUM_CUTS"
Total number of cuts generated by the mixed-integer optimizer.

"MSK_IINF_MIO_USER_OBJ_CUT"
If it is non-zero, then the objective cut is used.

"MSK_IINF_OPT_NUMCON"
Number of constraints in the problem solved when the optimizer is called.

"MSK_IINF_OPT_NUMVAR"
Number of variables in the problem solved when the optimizer is called

"MSK_IINF_OPTIMIZE_RESPONSE"
The response code returned by optimize.

"MSK_IINF_RD_NUMBARVAR"
Number of variables read.

"MSK_IINF_RD_NUMCON"
Number of constraints read.

"MSK_IINF_RD_NUMCONE"
Number of conic constraints read.

"MSK_IINF_RD_NUMINTVAR"
Number of integer-constrained variables read.

"MSK_IINF_RD_NUMQ"
Number of nonempty Q matrices read.

"MSK_IINF_RD_NUMVAR"
Number of variables read.

"MSK_IINF_RD_PROTYPE"
Problem type.

"MSK_IINF_SIM_DUAL_DEG_ITER"
The number of dual degenerate iterations.

236 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_IINF_SIM_DUAL_HOTSTART"
If 1 then the dual simplex algorithm is solving from an advanced basis.

"MSK_IINF_SIM_DUAL_HOTSTART_LU"
If 1 then a valid basis factorization of full rank was located and used by the dual simplex
algorithm.

"MSK_IINF_SIM_DUAL_INF_ITER"
The number of iterations taken with dual infeasibility.

"MSK_IINF_SIM_DUAL_ITER"
Number of dual simplex iterations during the last optimization.

"MSK_IINF_SIM_NUMCON"
Number of constraints in the problem solved by the simplex optimizer.

"MSK_IINF_SIM_NUMVAR"
Number of variables in the problem solved by the simplex optimizer.

"MSK_IINF_SIM_PRIMAL_DEG_ITER"
The number of primal degenerate iterations.

"MSK_IINF_SIM_PRIMAL_HOTSTART"
If 1 then the primal simplex algorithm is solving from an advanced basis.

"MSK_IINF_SIM_PRIMAL_HOTSTART_LU"
If 1 then a valid basis factorization of full rank was located and used by the primal simplex
algorithm.

"MSK_IINF_SIM_PRIMAL_INF_ITER"
The number of iterations taken with primal infeasibility.

"MSK_IINF_SIM_PRIMAL_ITER"
Number of primal simplex iterations during the last optimization.

"MSK_IINF_SIM_SOLVE_DUAL"
Is non-zero if dual problem is solved.

"MSK_IINF_SOL_BAS_PROSTA"
Problem status of the basic solution. Updated after each optimization.

"MSK_IINF_SOL_BAS_SOLSTA"
Solution status of the basic solution. Updated after each optimization.

"MSK_IINF_SOL_ITG_PROSTA"
Problem status of the integer solution. Updated after each optimization.

"MSK_IINF_SOL_ITG_SOLSTA"
Solution status of the integer solution. Updated after each optimization.

"MSK_IINF_SOL_ITR_PROSTA"
Problem status of the interior-point solution. Updated after each optimization.

"MSK_IINF_SOL_ITR_SOLSTA"
Solution status of the interior-point solution. Updated after each optimization.

"MSK_IINF_STO_NUM_A_REALLOC"
Number of times the storage for storing 𝐴 has been changed. A large value may indicates
that memory fragmentation may occur.

inftype
Information item types

"MSK_INF_DOU_TYPE"
Is a double information type.

"MSK_INF_INT_TYPE"
Is an integer.

17.6. Enumerations 237

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_INF_LINT_TYPE"
Is a long integer.

iomode
Input/output modes

"MSK_IOMODE_READ"
The file is read-only.

"MSK_IOMODE_WRITE"
The file is write-only. If the file exists then it is truncated when it is opened. Otherwise it is
created when it is opened.

"MSK_IOMODE_READWRITE"
The file is to read and written.

branchdir
Specifies the branching direction.

"MSK_BRANCH_DIR_FREE"
The mixed-integer optimizer decides which branch to choose.

"MSK_BRANCH_DIR_UP"
The mixed-integer optimizer always chooses the up branch first.

"MSK_BRANCH_DIR_DOWN"
The mixed-integer optimizer always chooses the down branch first.

"MSK_BRANCH_DIR_NEAR"
Branch in direction nearest to selected fractional variable.

"MSK_BRANCH_DIR_FAR"
Branch in direction farthest from selected fractional variable.

"MSK_BRANCH_DIR_ROOT_LP"
Chose direction based on root lp value of selected variable.

"MSK_BRANCH_DIR_GUIDED"
Branch in direction of current incumbent.

"MSK_BRANCH_DIR_PSEUDOCOST"
Branch based on the pseudocost of the variable.

miocontsoltype
Continuous mixed-integer solution type

"MSK_MIO_CONT_SOL_NONE"
No interior-point or basic solution are reported when the mixed-integer optimizer is used.

"MSK_MIO_CONT_SOL_ROOT"
The reported interior-point and basic solutions are a solution to the root node problem when
mixed-integer optimizer is used.

"MSK_MIO_CONT_SOL_ITG"
The reported interior-point and basic solutions are a solution to the problem with all integer
variables fixed at the value they have in the integer solution. A solution is only reported in
case the problem has a primal feasible solution.

"MSK_MIO_CONT_SOL_ITG_REL"
In case the problem is primal feasible then the reported interior-point and basic solutions are
a solution to the problem with all integer variables fixed at the value they have in the integer
solution. If the problem is primal infeasible, then the solution to the root node problem is
reported.

miomode
Integer restrictions

238 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_MIO_MODE_IGNORED"
The integer constraints are ignored and the problem is solved as a continuous problem.

"MSK_MIO_MODE_SATISFIED"
Integer restrictions should be satisfied.

mionodeseltype
Mixed-integer node selection types

"MSK_MIO_NODE_SELECTION_FREE"
The optimizer decides the node selection strategy.

"MSK_MIO_NODE_SELECTION_FIRST"
The optimizer employs a depth first node selection strategy.

"MSK_MIO_NODE_SELECTION_BEST"
The optimizer employs a best bound node selection strategy.

"MSK_MIO_NODE_SELECTION_WORST"
The optimizer employs a worst bound node selection strategy.

"MSK_MIO_NODE_SELECTION_HYBRID"
The optimizer employs a hybrid strategy.

"MSK_MIO_NODE_SELECTION_PSEUDO"
The optimizer employs selects the node based on a pseudo cost estimate.

mpsformat
MPS file format type

"MSK_MPS_FORMAT_STRICT"
It is assumed that the input file satisfies the MPS format strictly.

"MSK_MPS_FORMAT_RELAXED"
It is assumed that the input file satisfies a slightly relaxed version of the MPS format.

"MSK_MPS_FORMAT_FREE"
It is assumed that the input file satisfies the free MPS format. This implies that spaces are
not allowed in names. Otherwise the format is free.

"MSK_MPS_FORMAT_CPLEX"
The CPLEX compatible version of the MPS format is employed.

objsense
Objective sense types

"MSK_OBJECTIVE_SENSE_MINIMIZE"
The problem should be minimized.

"MSK_OBJECTIVE_SENSE_MAXIMIZE"
The problem should be maximized.

onoffkey
On/off

"MSK_ON"
Switch the option on.

"MSK_OFF"
Switch the option off.

optimizertype
Optimizer types

"MSK_OPTIMIZER_CONIC"
The optimizer for problems having conic constraints.

"MSK_OPTIMIZER_DUAL_SIMPLEX"
The dual simplex optimizer is used.

17.6. Enumerations 239

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_OPTIMIZER_FREE"
The optimizer is chosen automatically.

"MSK_OPTIMIZER_FREE_SIMPLEX"
One of the simplex optimizers is used.

"MSK_OPTIMIZER_INTPNT"
The interior-point optimizer is used.

"MSK_OPTIMIZER_MIXED_INT"
The mixed-integer optimizer.

"MSK_OPTIMIZER_PRIMAL_SIMPLEX"
The primal simplex optimizer is used.

orderingtype
Ordering strategies

"MSK_ORDER_METHOD_FREE"
The ordering method is chosen automatically.

"MSK_ORDER_METHOD_APPMINLOC"
Approximate minimum local fill-in ordering is employed.

"MSK_ORDER_METHOD_EXPERIMENTAL"
This option should not be used.

"MSK_ORDER_METHOD_TRY_GRAPHPAR"
Always try the graph partitioning based ordering.

"MSK_ORDER_METHOD_FORCE_GRAPHPAR"
Always use the graph partitioning based ordering even if it is worse than the approximate
minimum local fill ordering.

"MSK_ORDER_METHOD_NONE"
No ordering is used.

presolvemode
Presolve method.

"MSK_PRESOLVE_MODE_OFF"
The problem is not presolved before it is optimized.

"MSK_PRESOLVE_MODE_ON"
The problem is presolved before it is optimized.

"MSK_PRESOLVE_MODE_FREE"
It is decided automatically whether to presolve before the problem is optimized.

parametertype
Parameter type

"MSK_PAR_INVALID_TYPE"
Not a valid parameter.

"MSK_PAR_DOU_TYPE"
Is a double parameter.

"MSK_PAR_INT_TYPE"
Is an integer parameter.

"MSK_PAR_STR_TYPE"
Is a string parameter.

problemitem
Problem data items

"MSK_PI_VAR"
Item is a variable.

240 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_PI_CON"
Item is a constraint.

"MSK_PI_CONE"
Item is a cone.

problemtype
Problem types

"MSK_PROBTYPE_LO"
The problem is a linear optimization problem.

"MSK_PROBTYPE_QO"
The problem is a quadratic optimization problem.

"MSK_PROBTYPE_QCQO"
The problem is a quadratically constrained optimization problem.

"MSK_PROBTYPE_GECO"
General convex optimization.

"MSK_PROBTYPE_CONIC"
A conic optimization.

"MSK_PROBTYPE_MIXED"
General nonlinear constraints and conic constraints. This combination can not be solved by
MOSEK.

prosta
Problem status keys

"MSK_PRO_STA_UNKNOWN"
Unknown problem status.

"MSK_PRO_STA_PRIM_AND_DUAL_FEAS"
The problem is primal and dual feasible.

"MSK_PRO_STA_PRIM_FEAS"
The problem is primal feasible.

"MSK_PRO_STA_DUAL_FEAS"
The problem is dual feasible.

"MSK_PRO_STA_NEAR_PRIM_AND_DUAL_FEAS"
The problem is at least nearly primal and dual feasible.

"MSK_PRO_STA_NEAR_PRIM_FEAS"
The problem is at least nearly primal feasible.

"MSK_PRO_STA_NEAR_DUAL_FEAS"
The problem is at least nearly dual feasible.

"MSK_PRO_STA_PRIM_INFEAS"
The problem is primal infeasible.

"MSK_PRO_STA_DUAL_INFEAS"
The problem is dual infeasible.

"MSK_PRO_STA_PRIM_AND_DUAL_INFEAS"
The problem is primal and dual infeasible.

"MSK_PRO_STA_ILL_POSED"
The problem is ill-posed. For example, it may be primal and dual feasible but have a positive
duality gap.

"MSK_PRO_STA_PRIM_INFEAS_OR_UNBOUNDED"
The problem is either primal infeasible or unbounded. This may occur for mixed-integer
problems.

17.6. Enumerations 241

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

xmlwriteroutputtype
XML writer output mode

"MSK_WRITE_XML_MODE_ROW"
Write in row order.

"MSK_WRITE_XML_MODE_COL"
Write in column order.

rescodetype
Response code type

"MSK_RESPONSE_OK"
The response code is OK.

"MSK_RESPONSE_WRN"
The response code is a warning.

"MSK_RESPONSE_TRM"
The response code is an optimizer termination status.

"MSK_RESPONSE_ERR"
The response code is an error.

"MSK_RESPONSE_UNK"
The response code does not belong to any class.

scalingtype
Scaling type

"MSK_SCALING_FREE"
The optimizer chooses the scaling heuristic.

"MSK_SCALING_NONE"
No scaling is performed.

"MSK_SCALING_MODERATE"
A conservative scaling is performed.

"MSK_SCALING_AGGRESSIVE"
A very aggressive scaling is performed.

scalingmethod
Scaling method

"MSK_SCALING_METHOD_POW2"
Scales only with power of 2 leaving the mantissa untouched.

"MSK_SCALING_METHOD_FREE"
The optimizer chooses the scaling heuristic.

sensitivitytype
Sensitivity types

"MSK_SENSITIVITY_TYPE_BASIS"
Basis sensitivity analysis is performed.

"MSK_SENSITIVITY_TYPE_OPTIMAL_PARTITION"
Optimal partition sensitivity analysis is performed.

simseltype
Simplex selection strategy

"MSK_SIM_SELECTION_FREE"
The optimizer chooses the pricing strategy.

"MSK_SIM_SELECTION_FULL"
The optimizer uses full pricing.

242 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_SIM_SELECTION_ASE"
The optimizer uses approximate steepest-edge pricing.

"MSK_SIM_SELECTION_DEVEX"
The optimizer uses devex steepest-edge pricing (or if it is not available an approximate steep-
edge selection).

"MSK_SIM_SELECTION_SE"
The optimizer uses steepest-edge selection (or if it is not available an approximate steep-edge
selection).

"MSK_SIM_SELECTION_PARTIAL"
The optimizer uses a partial selection approach. The approach is usually beneficial if the
number of variables is much larger than the number of constraints.

solitem
Solution items

"MSK_SOL_ITEM_XC"
Solution for the constraints.

"MSK_SOL_ITEM_XX"
Variable solution.

"MSK_SOL_ITEM_Y"
Lagrange multipliers for equations.

"MSK_SOL_ITEM_SLC"
Lagrange multipliers for lower bounds on the constraints.

"MSK_SOL_ITEM_SUC"
Lagrange multipliers for upper bounds on the constraints.

"MSK_SOL_ITEM_SLX"
Lagrange multipliers for lower bounds on the variables.

"MSK_SOL_ITEM_SUX"
Lagrange multipliers for upper bounds on the variables.

"MSK_SOL_ITEM_SNX"
Lagrange multipliers corresponding to the conic constraints on the variables.

solsta
Solution status keys

"MSK_SOL_STA_UNKNOWN"
Status of the solution is unknown.

"MSK_SOL_STA_OPTIMAL"
The solution is optimal.

"MSK_SOL_STA_PRIM_FEAS"
The solution is primal feasible.

"MSK_SOL_STA_DUAL_FEAS"
The solution is dual feasible.

"MSK_SOL_STA_PRIM_AND_DUAL_FEAS"
The solution is both primal and dual feasible.

"MSK_SOL_STA_NEAR_OPTIMAL"
The solution is nearly optimal.

"MSK_SOL_STA_NEAR_PRIM_FEAS"
The solution is nearly primal feasible.

"MSK_SOL_STA_NEAR_DUAL_FEAS"
The solution is nearly dual feasible.

17.6. Enumerations 243

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_SOL_STA_NEAR_PRIM_AND_DUAL_FEAS"
The solution is nearly both primal and dual feasible.

"MSK_SOL_STA_PRIM_INFEAS_CER"
The solution is a certificate of primal infeasibility.

"MSK_SOL_STA_DUAL_INFEAS_CER"
The solution is a certificate of dual infeasibility.

"MSK_SOL_STA_NEAR_PRIM_INFEAS_CER"
The solution is almost a certificate of primal infeasibility.

"MSK_SOL_STA_NEAR_DUAL_INFEAS_CER"
The solution is almost a certificate of dual infeasibility.

"MSK_SOL_STA_PRIM_ILLPOSED_CER"
The solution is a certificate that the primal problem is illposed.

"MSK_SOL_STA_DUAL_ILLPOSED_CER"
The solution is a certificate that the dual problem is illposed.

"MSK_SOL_STA_INTEGER_OPTIMAL"
The primal solution is integer optimal.

"MSK_SOL_STA_NEAR_INTEGER_OPTIMAL"
The primal solution is near integer optimal.

soltype
Solution types

"MSK_SOL_BAS"
The basic solution.

"MSK_SOL_ITR"
The interior solution.

"MSK_SOL_ITG"
The integer solution.

solveform
Solve primal or dual form

"MSK_SOLVE_FREE"
The optimizer is free to solve either the primal or the dual problem.

"MSK_SOLVE_PRIMAL"
The optimizer should solve the primal problem.

"MSK_SOLVE_DUAL"
The optimizer should solve the dual problem.

stakey
Status keys

"MSK_SK_UNK"
The status for the constraint or variable is unknown.

"MSK_SK_BAS"
The constraint or variable is in the basis.

"MSK_SK_SUPBAS"
The constraint or variable is super basic.

"MSK_SK_LOW"
The constraint or variable is at its lower bound.

"MSK_SK_UPR"
The constraint or variable is at its upper bound.

244 Chapter 17. Toolbox Reference

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_SK_FIX"
The constraint or variable is fixed.

"MSK_SK_INF"
The constraint or variable is infeasible in the bounds.

startpointtype
Starting point types

"MSK_STARTING_POINT_FREE"
The starting point is chosen automatically.

"MSK_STARTING_POINT_GUESS"
The optimizer guesses a starting point.

"MSK_STARTING_POINT_CONSTANT"
The optimizer constructs a starting point by assigning a constant value to all primal and dual
variables. This starting point is normally robust.

"MSK_STARTING_POINT_SATISFY_BOUNDS"
The starting point is chosen to satisfy all the simple bounds on nonlinear variables. If this
starting point is employed, then more care than usual should employed when choosing the
bounds on the nonlinear variables. In particular very tight bounds should be avoided.

streamtype
Stream types

"MSK_STREAM_LOG"
Log stream. Contains the aggregated contents of all other streams. This means that a message
written to any other stream will also be written to this stream.

"MSK_STREAM_MSG"
Message stream. Log information relating to performance and progress of the optimization is
written to this stream.

"MSK_STREAM_ERR"
Error stream. Error messages are written to this stream.

"MSK_STREAM_WRN"
Warning stream. Warning messages are written to this stream.

value
Integer values

"MSK_MAX_STR_LEN"
Maximum string length allowed in MOSEK.

"MSK_LICENSE_BUFFER_LENGTH"
The length of a license key buffer.

variabletype
Variable types

"MSK_VAR_TYPE_CONT"
Is a continuous variable.

"MSK_VAR_TYPE_INT"
Is an integer variable.

17.6. Enumerations 245

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

246 Chapter 17. Toolbox Reference

CHAPTER

EIGHTEEN

SUPPORTED FILE FORMATS

MOSEK supports a range of problem and solution formats listed in Table 18.1 and Table 18.2. The Task
format is MOSEK’s native binary format and it supports all features that MOSEK supports. The
OPF format is MOSEK’s human-readable alternative that supports nearly all features (everything
except semidefinite problems). In general, text formats are significantly slower to read, but can be
examined and edited directly in any text editor.

Problem formats

See Table 18.1.

Table 18.1: List of supported file formats for optimization prob-
lems.

Format Type Ext. Binary/Text LP QO CQO SDP
LP lp plain text X X
MPS mps plain text X X
OPF opf plain text X X X
CBF cbf plain text X X X
OSiL xml xml text X X
Task format task binary X X X X
Jtask format jtask text X X X X

Solution formats

See Table 18.2.

Table 18.2: List of supported solution formats.
Format Type Ext. Binary/Text Description
SOL sol plain text Interior Solution

bas plain text Basic Solution
int plain text Integer

Jsol format jsol text Solution

Compression

MOSEK supports GZIP compression of files. Problem files with an additional .gz extension are assumed
to be compressed when read, and are automatically compressed when written. For example, a file called

247

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

problem.mps.gz

will be considered as a GZIP compressed MPS file.

18.1 The LP File Format

MOSEK supports the LP file format with some extensions. The LP format is not a completely well-
defined standard and hence different optimization packages may interpret the same LP file in slightly
different ways. MOSEK tries to emulate as closely as possible CPLEX’s behavior, but tries to stay
backward compatible.

The LP file format can specify problems on the form

minimize/maximize 𝑐𝑇𝑥 + 1
2𝑞

𝑜(𝑥)
subject to 𝑙𝑐 ≤ 𝐴𝑥 + 1

2𝑞(𝑥) ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥𝒥 integer,

where

• 𝑥 ∈ R𝑛 is the vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear term in the objective.

• 𝑞𝑜 :∈ R𝑛 → R is the quadratic term in the objective where

𝑞𝑜(𝑥) = 𝑥𝑇𝑄𝑜𝑥

and it is assumed that

𝑄𝑜 = (𝑄𝑜)𝑇 .

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

• 𝑞 : R𝑛 → R is a vector of quadratic functions. Hence,

𝑞𝑖(𝑥) = 𝑥𝑇𝑄𝑖𝑥

where it is assumed that

𝑄𝑖 = (𝑄𝑖)𝑇 .

• 𝒥 ⊆ {1, 2, . . . , 𝑛} is an index set of the integer constrained variables.

18.1.1 File Sections

An LP formatted file contains a number of sections specifying the objective, constraints, variable bounds,
and variable types. The section keywords may be any mix of upper and lower case letters.

Objective Function

The first section beginning with one of the keywords

248 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

max
maximum
maximize
min
minimum
minimize

defines the objective sense and the objective function, i.e.

𝑐𝑇𝑥 +
1

2
𝑥𝑇𝑄𝑜𝑥.

The objective may be given a name by writing

myname:

before the expressions. If no name is given, then the objective is named obj.

The objective function contains linear and quadratic terms. The linear terms are written as:

4 x1 + x2 - 0.1 x3

and so forth. The quadratic terms are written in square brackets ([]) and are either squared or multiplied
as in the examples

x1^2

and

x1 * x2

There may be zero or more pairs of brackets containing quadratic expressions.

An example of an objective section is

minimize
myobj: 4 x1 + x2 - 0.1 x3 + [x1^2 + 2.1 x1 * x2]/2

Please note that the quadratic expressions are multiplied with 1
2 , so that the above expression means

minimize 4𝑥1 + 𝑥2 − 0.1 · 𝑥3 + 1
2 (𝑥2

1 + 2.1 · 𝑥1 · 𝑥2)

If the same variable occurs more than once in the linear part, the coefficients are added, so that 4 x1 +
2 x1 is equivalent to 6 x1. In the quadratic expressions x1 * x2 is equivalent to x2 * x1 and, as in the
linear part, if the same variables multiplied or squared occur several times their coefficients are added.

Constraints

The second section beginning with one of the keywords

subj to
subject to
s.t.
st

defines the linear constraint matrix 𝐴 and the quadratic matrices 𝑄𝑖.

A constraint contains a name (optional), expressions adhering to the same rules as in the objective and
a bound:

subject to
con1: x1 + x2 + [x3^2]/2 <= 5.1

18.1. The LP File Format 249

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

The bound type (here <=) may be any of <, <=, =, >, >= (< and <= mean the same), and the bound may
be any number.

In the standard LP format it is not possible to define more than one bound, but MOSEK supports
defining ranged constraints by using double-colon (::) instead of a single-colon (:) after the constraint
name, i.e.

−5 ≤ 𝑥1 + 𝑥2 ≤ 5 (18.1)

may be written as

con:: -5 < x_1 + x_2 < 5

By default MOSEK writes ranged constraints this way.

If the files must adhere to the LP standard, ranged constraints must either be split into upper bounded
and lower bounded constraints or be written as an equality with a slack variable. For example the
expression (18.1) may be written as

𝑥1 + 𝑥2 − 𝑠𝑙1 = 0, −5 ≤ 𝑠𝑙1 ≤ 5.

Bounds

Bounds on the variables can be specified in the bound section beginning with one of the keywords

bound
bounds

The bounds section is optional but should, if present, follow the subject to section. All variables listed
in the bounds section must occur in either the objective or a constraint.

The default lower and upper bounds are 0 and +∞ . A variable may be declared free with the keyword
free, which means that the lower bound is −∞ and the upper bound is +∞ . Furthermore it may be
assigned a finite lower and upper bound. The bound definitions for a given variable may be written in
one or two lines, and bounds can be any number or ±∞ (written as +inf/-inf/+infinity/-infinity)
as in the example

bounds
x1 free
x2 <= 5
0.1 <= x2
x3 = 42
2 <= x4 < +inf

Variable Types

The final two sections are optional and must begin with one of the keywords

bin
binaries
binary

and

gen
general

Under general all integer variables are listed, and under binary all binary (integer variables with bounds
0 and 1) are listed:

250 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

general
x1 x2
binary
x3 x4

Again, all variables listed in the binary or general sections must occur in either the objective or a
constraint.

Terminating Section

Finally, an LP formatted file must be terminated with the keyword

end

18.1.2 LP File Examples

Linear example lo1.lp

\ File: lo1.lp
maximize
obj: 3 x1 + x2 + 5 x3 + x4
subject to
c1: 3 x1 + x2 + 2 x3 = 30
c2: 2 x1 + x2 + 3 x3 + x4 >= 15
c3: 2 x2 + 3 x4 <= 25
bounds
0 <= x1 <= +infinity
0 <= x2 <= 10
0 <= x3 <= +infinity
0 <= x4 <= +infinity

end

Mixed integer example milo1.lp

maximize
obj: x1 + 6.4e-01 x2
subject to
c1: 5e+01 x1 + 3.1e+01 x2 <= 2.5e+02
c2: 3e+00 x1 - 2e+00 x2 >= -4e+00
bounds
0 <= x1 <= +infinity
0 <= x2 <= +infinity

general
x1 x2

end

18.1.3 LP Format peculiarities

Comments

Anything on a line after a \ is ignored and is treated as a comment.

18.1. The LP File Format 251

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Names

A name for an objective, a constraint or a variable may contain the letters a-z, A-Z, the digits 0-9 and
the characters

!"#$%&()/,.;?@_'`|~

The first character in a name must not be a number, a period or the letter e or E. Keywords must not
be used as names.

MOSEK accepts any character as valid for names, except \0. A name that is not allowed in LP file will
be changed and a warning will be issued.

The algorithm for making names LP valid works as follows: The name is interpreted as an utf-8 string.
For a unicode character c:

• If c==_ (underscore), the output is __ (two underscores).

• If c is a valid LP name character, the output is just c.

• If c is another character in the ASCII range, the output is _XX, where XX is the hexadecimal code
for the character.

• If c is a character in the range 127-65535, the output is _uXXXX, where XXXX is the hexadecimal
code for the character.

• If c is a character above 65535, the output is _UXXXXXXXX, where XXXXXXXX is the hexadecimal
code for the character.

Invalid utf-8 substrings are escaped as _XX', and if a name starts with a period, e or E, that character
is escaped as _XX.

Variable Bounds

Specifying several upper or lower bounds on one variable is possible but MOSEK uses only the tightest
bounds. If a variable is fixed (with =), then it is considered the tightest bound.

MOSEK Extensions to the LP Format

Some optimization software packages employ a more strict definition of the LP format than the one used
by MOSEK. The limitations imposed by the strict LP format are the following:

• Quadratic terms in the constraints are not allowed.

• Names can be only 16 characters long.

• Lines must not exceed 255 characters in length.

If an LP formatted file created by MOSEK should satisfy the strict definition, then the parameter

• MSK_IPAR_WRITE_LP_STRICT_FORMAT

should be set; note, however, that some problems cannot be written correctly as a strict LP formatted
file. For instance, all names are truncated to 16 characters and hence they may loose their uniqueness
and change the problem.

To get around some of the inconveniences converting from other problem formats, MOSEK allows lines
to contain 1024 characters and names may have any length (shorter than the 1024 characters).

Internally in MOSEK names may contain any (printable) character, many of which cannot be used in
LP names. Setting the parameters

• MSK_IPAR_READ_LP_QUOTED_NAMES and

• MSK_IPAR_WRITE_LP_QUOTED_NAMES

252 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

allows MOSEK to use quoted names. The first parameter tells MOSEK to remove quotes from
quoted names e.g, "x1", when reading LP formatted files. The second parameter tells MOSEK to put
quotes around any semi-illegal name (names beginning with a number or a period) and fully illegal name
(containing illegal characters). As double quote is a legal character in the LP format, quoting semi-illegal
names makes them legal in the pure LP format as long as they are still shorter than 16 characters. Fully
illegal names are still illegal in a pure LP file.

18.1.4 The strict LP format

The LP format is not a formal standard and different vendors have slightly different interpretations of
the LP format. To make MOSEK’s definition of the LP format more compatible with the definitions
of other vendors, use the parameter setting

• MSK_IPAR_WRITE_LP_STRICT_FORMAT = "MSK_ON"

This setting may lead to truncation of some names and hence to an invalid LP file. The simple solution
to this problem is to use the parameter setting

• MSK_IPAR_WRITE_GENERIC_NAMES = "MSK_ON"

which will cause all names to be renamed systematically in the output file.

18.1.5 Formatting of an LP File

A few parameters control the visual formatting of LP files written by MOSEK in order to make it easier
to read the files. These parameters are

• MSK_IPAR_WRITE_LP_LINE_WIDTH

• MSK_IPAR_WRITE_LP_TERMS_PER_LINE

The first parameter sets the maximum number of characters on a single line. The default value is 80
corresponding roughly to the width of a standard text document.

The second parameter sets the maximum number of terms per line; a term means a sign, a coefficient,
and a name (for example + 42 elephants). The default value is 0, meaning that there is no maximum.

Unnamed Constraints

Reading and writing an LP file with MOSEK may change it superficially. If an LP file contains
unnamed constraints or objective these are given their generic names when the file is read (however
unnamed constraints in MOSEK are written without names).

18.2 The MPS File Format

MOSEK supports the standard MPS format with some extensions. For a detailed description of the
MPS format see the book by Nazareth [Naz87] .

18.2.1 MPS File Structure

The version of the MPS format supported by MOSEK allows specification of an optimization problem
of the form

𝑙𝑐 ≤ 𝐴𝑥 + 𝑞(𝑥) ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ 𝒦,
𝑥𝒥 integer,

(18.2)

where

18.2. The MPS File Format 253

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• 𝑥 ∈ R𝑛 is the vector of decision variables.

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

• 𝑞 : R𝑛 → R is a vector of quadratic functions. Hence,

𝑞𝑖(𝑥) =
1

2
𝑥𝑇𝑄𝑖𝑥

where it is assumed that

𝑄𝑖 = (𝑄𝑖)𝑇 .

Please note the explicit 1
2 in the quadratic term and that 𝑄𝑖 is required to be symmetric.

• 𝒦 is a convex cone.

• 𝒥 ⊆ {1, 2, . . . , 𝑛} is an index set of the integer-constrained variables.

An MPS file with one row and one column can be illustrated like this:

* 1 2 3 4 5 6
*23456789012345678901234567890123456789012345678901234567890
NAME [name]
OBJSENSE
[objsense]
OBJNAME
[objname]
ROWS
? [cname1]
COLUMNS
[vname1] [cname1] [value1] [vname3] [value2]
RHS
[name] [cname1] [value1] [cname2] [value2]
RANGES
[name] [cname1] [value1] [cname2] [value2]
QSECTION [cname1]
[vname1] [vname2] [value1] [vname3] [value2]
QMATRIX
[vname1] [vname2] [value1]
QUADOBJ
[vname1] [vname2] [value1]
QCMATRIX [cname1]
[vname1] [vname2] [value1]
BOUNDS
?? [name] [vname1] [value1]
CSECTION [kname1] [value1] [ktype]
[vname1]
ENDATA

Here the names in capitals are keywords of the MPS format and names in brackets are custom defined
names or values. A couple of notes on the structure:

• Fields: All items surrounded by brackets appear in fields. The fields named “valueN” are numerical
values. Hence, they must have the format

[+|-]XXXXXXX.XXXXXX[[e|E][+|-]XXX]

where

254 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

.. code-block:: text

X = [0|1|2|3|4|5|6|7|8|9].

• Sections: The MPS file consists of several sections where the names in capitals indicate the begin-
ning of a new section. For example, COLUMNS denotes the beginning of the columns section.

• Comments: Lines starting with an * are comment lines and are ignored by MOSEK.

• Keys: The question marks represent keys to be specified later.

• Extensions: The sections QSECTION and CSECTION are specific MOSEK extensions of the MPS
format. The sections QMATRIX, QUADOBJ and QCMATRIX are included for sake of compatibility with
other vendors extensions to the MPS format.

The standard MPS format is a fixed format, i.e. everything in the MPS file must be within certain fixed
positions. MOSEK also supports a free format. See Sec. 18.2.9 for details.

Linear example lo1.mps

A concrete example of a MPS file is presented below:

* File: lo1.mps
NAME lo1
OBJSENSE

MAX
ROWS
N obj
E c1
G c2
L c3

COLUMNS
x1 obj 3
x1 c1 3
x1 c2 2
x2 obj 1
x2 c1 1
x2 c2 1
x2 c3 2
x3 obj 5
x3 c1 2
x3 c2 3
x4 obj 1
x4 c2 1
x4 c3 3

RHS
rhs c1 30
rhs c2 15
rhs c3 25

RANGES
BOUNDS
UP bound x2 10

ENDATA

Subsequently each individual section in the MPS format is discussed.

Section NAME

In this section a name ([name]) is assigned to the problem.

18.2. The MPS File Format 255

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

OBJSENSE (optional)

This is an optional section that can be used to specify the sense of the objective function. The OBJSENSE
section contains one line at most which can be one of the following

MIN
MINIMIZE
MAX
MAXIMIZE

It should be obvious what the implication is of each of these four lines.

OBJNAME (optional)

This is an optional section that can be used to specify the name of the row that is used as objective
function. The OBJNAME section contains one line at most which has the form

objname

objname should be a valid row name.

ROWS

A record in the ROWS section has the form

? [cname1]

where the requirements for the fields are as follows:

Field Starting Position Max Width required Description
? 2 1 Yes Constraint key
[cname1] 5 8 Yes Constraint name

Hence, in this section each constraint is assigned an unique name denoted by [cname1]. Please note that
[cname1] starts in position 5 and the field can be at most 8 characters wide. An initial key ? must be
present to specify the type of the constraint. The key can have the values E, G, L, or N with the following
interpretation:

Constraint type 𝑙𝑐𝑖 𝑢𝑐
𝑖

E finite 𝑙𝑐𝑖
G finite ∞
L −∞ finite
N −∞ ∞

In the MPS format an objective vector is not specified explicitly, but one of the constraints having the
key N will be used as the objective vector 𝑐 . In general, if multiple N type constraints are specified, then
the first will be used as the objective vector 𝑐.

COLUMNS

In this section the elements of 𝐴 are specified using one or more records having the form:

[vname1] [cname1] [value1] [cname2] [value2]

256 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

where the requirements for each field are as follows:

Field Starting Position Max Width required Description
[vname1] 5 8 Yes Variable name
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

Hence, a record specifies one or two elements 𝑎𝑖𝑗 of 𝐴 using the principle that [vname1] and [cname1]
determines 𝑗 and 𝑖 respectively. Please note that [cname1] must be a constraint name specified in the
ROWS section. Finally, [value1] denotes the numerical value of 𝑎𝑖𝑗 . Another optional element is specified
by [cname2], and [value2] for the variable specified by [vname1]. Some important comments are:

• All elements belonging to one variable must be grouped together.

• Zero elements of 𝐴 should not be specified.

• At least one element for each variable should be specified.

RHS (optional)

A record in this section has the format

[name] [cname1] [value1] [cname2] [value2]

where the requirements for each field are as follows:

Field Starting Position Max Width required Description
[name] 5 8 Yes Name of the RHS vector
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

The interpretation of a record is that [name] is the name of the RHS vector to be specified. In general,
several vectors can be specified. [cname1] denotes a constraint name previously specified in the ROWS
section. Now, assume that this name has been assigned to the 𝑖 th constraint and 𝑣1 denotes the value
specified by [value1], then the interpretation of 𝑣1 is:

Constraint 𝑙𝑐𝑖 𝑢𝑐
𝑖

type
E 𝑣1 𝑣1
G 𝑣1
L 𝑣1
N

An optional second element is specified by [cname2] and [value2] and is interpreted in the same way.
Please note that it is not necessary to specify zero elements, because elements are assumed to be zero.

RANGES (optional)

A record in this section has the form

[name] [cname1] [value1] [cname2] [value2]

18.2. The MPS File Format 257

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

where the requirements for each fields are as follows:

Field Starting Position Max Width required Description
[name] 5 8 Yes Name of the RANGE vector
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

The records in this section are used to modify the bound vectors for the constraints, i.e. the values in 𝑙𝑐

and 𝑢𝑐 . A record has the following interpretation:[name] is the name of the RANGE vector and [cname1]
is a valid constraint name. Assume that [cname1] is assigned to the 𝑖 th constraint and let 𝑣1 be the
value specified by [value1], then a record has the interpretation:

Constraint type Sign of 𝑣1 𝑙𝑐𝑖 𝑢𝑐
𝑖

E − 𝑢𝑐
𝑖 + 𝑣1

E + 𝑙𝑐𝑖 + 𝑣1
G − or + 𝑙𝑐𝑖 + |𝑣1|
L − or + 𝑢𝑐

𝑖 − |𝑣1|
N

QSECTION (optional)

Within the QSECTION the label [cname1] must be a constraint name previously specified in the ROWS
section. The label [cname1] denotes the constraint to which the quadratic term belongs. A record in
the QSECTION has the form

[vname1] [vname2] [value1] [vname3] [value2]

where the requirements for each field are:

Field Starting Position Max Width required Description
[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value
[vname3] 40 8 No Variable name
[value2] 50 12 No Numerical value

A record specifies one or two elements in the lower triangular part of the 𝑄𝑖 matrix where [cname1]
specifies the 𝑖 . Hence, if the names [vname1] and [vname2] have been assigned to the 𝑘 th and 𝑗 th
variable, then 𝑄𝑖

𝑘𝑗 is assigned the value given by [value1] An optional second element is specified in
the same way by the fields [vname1], [vname3], and [value2].

The example

minimize −𝑥2 + 1
2 (2𝑥2

1 − 2𝑥1𝑥3 + 0.2𝑥2
2 + 2𝑥2

3)
subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,

𝑥 ≥ 0

has the following MPS file representation

* File: qo1.mps
NAME qo1
ROWS
N obj
G c1
COLUMNS

258 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0
RHS
rhs c1 1.0
QSECTION obj
x1 x1 2.0
x1 x3 -1.0
x2 x2 0.2
x3 x3 2.0
ENDATA

Regarding the QSECTIONs please note that:

• Only one QSECTION is allowed for each constraint.

• The QSECTIONs can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QSECTION must already be specified in the COLUMNS section.

• All entries specified in a QSECTION are assumed to belong to the lower triangular part of the
quadratic term of 𝑄 .

QMATRIX/QUADOBJ (optional)

The QMATRIX and QUADOBJ sections allow to define the quadratic term of the objective function. They
differ in how the quadratic term of the objective function is stored:

• QMATRIX It stores all the nonzeros coefficients, withouot taking advantage of the symmetry of the
𝑄 matrix.

• QUADOBJ It only store the upper diagonal nonzero elements of the 𝑄 matrix.

A record in both sections has the form:

[vname1] [vname2] [value1]

where the requirements for each field are:

Field Starting Position Max Width required Description
[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value

A record specifies one elements of the 𝑄 matrix in the objective function . Hence, if the names [vname1]
and [vname2] have been assigned to the 𝑘 th and 𝑗 th variable, then 𝑄𝑘𝑗 is assigned the value given
by [value1]. Note that a line must apper for each off-diagonal coefficient if using a QMATRIX section,
while only one entry is required in a QUADOBJ section. The quadratic part of the objective function will
be evaluated as 1/2𝑥𝑇𝑄𝑥.

The example

minimize −𝑥2 + 1
2 (2𝑥2

1 − 2𝑥1𝑥3 + 0.2𝑥2
2 + 2𝑥2

3)
subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,

𝑥 ≥ 0

has the following MPS file representation using QMATRIX

* File: qo1_matrix.mps
NAME qo1_qmatrix
ROWS

18.2. The MPS File Format 259

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

N obj
G c1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0

QMATRIX
x1 x1 2.0
x1 x3 -1.0
x3 x1 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

or the following using QUADOBJ

* File: qo1_quadobj.mps
NAME qo1_quadobj
ROWS
N obj
G c1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0

QUADOBJ
x1 x1 2.0
x1 x3 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Please also note that:

• A QMATRIX/QUADOBJ section can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QMATRIX/QUADOBJ section must already be specified in the
COLUMNS section.

18.2.2 QCMATRIX (optional)

A QCMATRIX section allows to specify the quadratic part of a given constraints. Within the QCMATRIX the
label [cname1] must be a constraint name previously specified in the ROWS section. The label [cname1]
denotes the constraint to which the quadratic term belongs. A record in the QSECTION has the form

[vname1] [vname2] [value1]

where the requirements for each field are:

Field Starting Position Max Width required Description
[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value

260 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

A record specifies an entry of the 𝑄𝑖 matrix where [cname1] specifies the 𝑖. Hence, if the names [vname1]
and [vname2] have been assigned to the 𝑘 th and 𝑗 th variable, then 𝑄𝑖

𝑘𝑗 is assigned the value given by
[value1]. Moreover, the quadratic term is represented as 1/2𝑥𝑇𝑄𝑥.

The example

minimize 𝑥2

subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,
1
2 (−2𝑥1𝑥3 + 0.2𝑥2

2 + 2𝑥2
3) ≤ 10,

𝑥 ≥ 0

has the following MPS file representation

* File: qo1.mps
NAME qo1
ROWS
N obj
G c1
L q1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0
rhs q1 10.0

QCMATRIX q1
x1 x1 2.0
x1 x3 -1.0
x3 x1 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Regarding the QCMATRIXs please note that:

• Only one QCMATRIX is allowed for each constraint.

• The QCMATRIXs can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QSECTION must already be specified in the COLUMNS section.

• A QCMATRIX does not exploit the symmetry of 𝑄: an off-diagonal entry (𝑖, 𝑗) should apperas twice.

18.2.3 BOUNDS (optional)

In the BOUNDS section changes to the default bounds vectors 𝑙𝑥 and 𝑢𝑥 are specified. The default bounds
vectors are 𝑙𝑥 = 0 and 𝑢𝑥 = ∞ . Moreover, it is possible to specify several sets of bound vectors. A
record in this section has the form

?? [name] [vname1] [value1]

where the requirements for each field are:

Field Starting Position Max Width Required Description
?? 2 2 Yes Bound key
[name] 5 8 Yes Name of the BOUNDS vector
[vname1] 15 8 Yes Variable name
[value1] 25 12 No Numerical value

18.2. The MPS File Format 261

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Hence, a record in the BOUNDS section has the following interpretation:[name] is the name of the bound
vector and [vname1] is the name of the variable which bounds are modified by the record. ?? and
[value1] are used to modify the bound vectors according to the following table:

?? 𝑙𝑥𝑗 𝑢𝑥
𝑗 Made integer (added to 𝒥)

FR −∞ ∞ No
FX 𝑣1 𝑣1 No
LO 𝑣1 unchanged No
MI −∞ unchanged No
PL unchanged ∞ No
UP unchanged 𝑣1 No
BV 0 1 Yes
LI ⌈𝑣1⌉ unchanged Yes
UI unchanged ⌊𝑣1⌋ Yes

v_1 is the value specified by [value1].

18.2.4 CSECTION (optional)

The purpose of the CSECTION is to specify the constraint

𝑥 ∈ 𝒦.

in (18.2). It is assumed that 𝒦 satisfies the following requirements. Let

𝑥𝑡 ∈ R𝑛𝑡

, 𝑡 = 1, . . . , 𝑘

be vectors comprised of parts of the decision variables 𝑥 so that each decision variable is a member of
exactly one vector 𝑥𝑡, for example

𝑥1 =

⎡⎣ 𝑥1

𝑥4

𝑥7

⎤⎦ and 𝑥2 =

⎡⎢⎢⎣
𝑥6

𝑥5

𝑥3

𝑥2

⎤⎥⎥⎦ .

Next define

𝒦 :=
{︀
𝑥 ∈ R𝑛 : 𝑥𝑡 ∈ 𝒦𝑡, 𝑡 = 1, . . . , 𝑘

}︀
where 𝒦𝑡 must have one of the following forms

• R set:

𝒦𝑡 =
{︁
𝑥 ∈ R𝑛𝑡

}︁
.

• Quadratic cone:

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 𝑥1 ≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=2

𝑥2
𝑗

⎫⎬⎭ . (18.3)

• Rotated quadratic cone:

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 2𝑥1𝑥2 ≥
𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ . (18.4)

262 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

In general, only quadratic and rotated quadratic cones are specified in the MPS file whereas membership
of the R set is not. If a variable is not a member of any other cone then it is assumed to be a member
of an R cone.

Next, let us study an example. Assume that the quadratic cone

𝑥4 ≥
√︁

𝑥2
5 + 𝑥2

8

and the rotated quadratic cone

𝑥3𝑥7 ≥ 𝑥2
1 + 𝑥2

0, 𝑥3, 𝑥7 ≥ 0,

should be specified in the MPS file. One CSECTION is required for each cone and they are specified as
follows:

* 1 2 3 4 5 6
*23456789012345678901234567890123456789012345678901234567890
CSECTION konea 0.0 QUAD
x4
x5
x8
CSECTION koneb 0.0 RQUAD
x7
x3
x1
x0

This first CSECTION specifies the cone (18.3) which is given the name konea. This is a quadratic cone
which is specified by the keyword QUAD in the CSECTION header. The 0.0 value in the CSECTION header
is not used by the QUAD cone.

The second CSECTION specifies the rotated quadratic cone (18.4). Please note the keyword RQUAD in the
CSECTION which is used to specify that the cone is a rotated quadratic cone instead of a quadratic cone.
The 0.0 value in the CSECTION header is not used by the RQUAD cone.

In general, a CSECTION header has the format

CSECTION [kname1] [value1] [ktype]

where the requirement for each field are as follows:

Field Starting Position Max Width Required Description
[kname1] 5 8 Yes Name of the cone
[value1] 15 12 No Cone parameter
[ktype] 25 Yes Type of the cone.

The possible cone type keys are:

Cone type key Members Interpretation.
QUAD ≤ 1 Quadratic cone i.e. (18.3).
RQUAD ≤ 2 Rotated quadratic cone i.e. (18.4).

Please note that a quadratic cone must have at least one member whereas a rotated quadratic cone must
have at least two members. A record in the CSECTION has the format

[vname1]

where the requirements for each field are

Field Starting Position Max Width required Description
[vname1] 2 8 Yes A valid variable name

18.2. The MPS File Format 263

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

The most important restriction with respect to the CSECTION is that a variable must occur in only one
CSECTION.

18.2.5 ENDATA

This keyword denotes the end of the MPS file.

18.2.6 Integer Variables

Using special bound keys in the BOUNDS section it is possible to specify that some or all of the variables
should be integer-constrained i.e. be members of 𝒥 . However, an alternative method is available.

This method is available only for backward compatibility and we recommend that it is not used. This
method requires that markers are placed in the COLUMNS section as in the example:

COLUMNS
x1 obj -10.0 c1 0.7
x1 c2 0.5 c3 1.0
x1 c4 0.1
* Start of integer-constrained variables.
MARK000 'MARKER' 'INTORG'
x2 obj -9.0 c1 1.0
x2 c2 0.8333333333 c3 0.66666667
x2 c4 0.25
x3 obj 1.0 c6 2.0
MARK001 'MARKER' 'INTEND'

• End of integer-constrained variables.

Please note that special marker lines are used to indicate the start and the end of the integer variables.
Furthermore be aware of the following

• IMPORTANT: All variables between the markers are assigned a default lower bound of 0 and a
default upper bound of 1. This may not be what is intended. If it is not intended, the correct
bounds should be defined in the BOUNDS section of the MPS formatted file.

• MOSEK ignores field 1, i.e. MARK0001 and MARK001, however, other optimization systems require
them.

• Field 2, i.e. MARKER, must be specified including the single quotes. This implies that no row can
be assigned the name MARKER.

• Field 3 is ignored and should be left blank.

• Field 4, i.e. INTORG and INTEND, must be specified.

• It is possible to specify several such integer marker sections within the COLUMNS section.

18.2.7 General Limitations

• An MPS file should be an ASCII file.

18.2.8 Interpretation of the MPS Format

Several issues related to the MPS format are not well-defined by the industry standard. However,
MOSEK uses the following interpretation:

• If a matrix element in the COLUMNS section is specified multiple times, then the multiple entries are
added together.

264 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• If a matrix element in a QSECTION section is specified multiple times, then the multiple entries are
added together.

18.2.9 The Free MPS Format

MOSEK supports a free format variation of the MPS format. The free format is similar to the MPS file
format but less restrictive, e.g. it allows longer names. However, it also presents two main limitations:

• A name must not contain any blanks.

• By default a line in the MPS file must not contain more than 1024 characters. However, by
modifying the parameter MSK_IPAR_READ_MPS_WIDTH an arbitrary large line width will be accepted.

To use the free MPS format instead of the default MPS format the MOSEK parameter
MSK_IPAR_READ_MPS_FORMAT should be changed.

18.3 The OPF Format

The Optimization Problem Format (OPF) is an alternative to LP and MPS files for specifying optimiza-
tion problems. It is row-oriented, inspired by the CPLEX LP format.

Apart from containing objective, constraints, bounds etc. it may contain complete or partial solutions,
comments and extra information relevant for solving the problem. It is designed to be easily read and
modified by hand and to be forward compatible with possible future extensions.

Intended use

The OPF file format is meant to replace several other files:

• The LP file format: Any problem that can be written as an LP file can be written as an OPF file
too; furthermore it naturally accommodates ranged constraints and variables as well as arbitrary
characters in names, fixed expressions in the objective, empty constraints, and conic constraints.

• Parameter files: It is possible to specify integer, double and string parameters along with the
problem (or in a separate OPF file).

• Solution files: It is possible to store a full or a partial solution in an OPF file and later reload it.

18.3.1 The File Format

The format uses tags to structure data. A simple example with the basic sections may look like this:

[comment]
This is a comment. You may write almost anything here...
[/comment]

This is a single-line comment.

[objective min 'myobj']
x + 3 y + x^2 + 3 y^2 + z + 1
[/objective]

[constraints]
[con 'con01'] 4 <= x + y [/con]
[/constraints]

[bounds]
[b] -10 <= x,y <= 10 [/b]

18.3. The OPF Format 265

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

[cone quad] x,y,z [/cone]
[/bounds]

A scope is opened by a tag of the form [tag] and closed by a tag of the form [/tag]. An opening tag
may accept a list of unnamed and named arguments, for examples:

[tag value] tag with one unnamed argument [/tag]
[tag arg=value] tag with one named argument in quotes [/tag]

Unnamed arguments are identified by their order, while named arguments may appear in any order, but
never before an unnamed argument. The value can be a quoted, single-quoted or double-quoted text
string, i.e.

[tag 'value'] single-quoted value [/tag]
[tag arg='value'] single-quoted value [/tag]
[tag "value"] double-quoted value [/tag]
[tag arg="value"] double-quoted value [/tag]

Sections

The recognized tags are

[comment]

A comment section. This can contain almost any text: Between single quotes (’) or double quotes (")
any text may appear. Outside quotes the markup characters ([and]) must be prefixed by backslashes.
Both single and double quotes may appear alone or inside a pair of quotes if it is prefixed by a backslash.

[objective]

The objective function: This accepts one or two parameters, where the first one (in the above example
min) is either min or max (regardless of case) and defines the objective sense, and the second one (above
myobj), if present, is the objective name. The section may contain linear and quadratic expressions. If
several objectives are specified, all but the last are ignored.

[constraints]

This does not directly contain any data, but may contain the subsection con defining a linear constraint.

[con] defines a single constraint; if an argument is present ([con NAME]) this is used as the name of
the constraint, otherwise it is given a null-name. The section contains a constraint definition written as
linear and quadratic expressions with a lower bound, an upper bound, with both or with an equality.
Examples:

[constraints]
[con 'con1'] 0 <= x + y [/con]
[con 'con2'] 0 >= x + y [/con]
[con 'con3'] 0 <= x + y <= 10 [/con]
[con 'con4'] x + y = 10 [/con]
[/constraints]

Constraint names are unique. If a constraint is specified which has the same name as a previously defined
constraint, the new constraint replaces the existing one.

266 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

[bounds]

This does not directly contain any data, but may contain the subsections b (linear bounds on variables)
and cone (quadratic cone).

[b]. Bound definition on one or several variables separated by comma (,). An upper or lower bound
on a variable replaces any earlier defined bound on that variable. If only one bound (upper or lower) is
given only this bound is replaced. This means that upper and lower bounds can be specified separately.
So the OPF bound definition:

[b] x,y >= -10 [/b]
[b] x,y <= 10 [/b]

results in the bound −10 ≤ 𝑥, 𝑦 ≤ 10.

[cone]. currently supports the quadratic cone and the rotated quadratic cone.

A conic constraint is defined as a set of variables which belong to a single unique cone.

• A quadratic cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of the form

𝑥2
1 ≥

𝑛∑︁
𝑖=2

𝑥2
𝑖 , 𝑥1 ≥ 0.

• A rotated quadratic cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of the form

2𝑥1𝑥2 ≥
𝑛∑︁

𝑖=3

𝑥2
𝑖 , 𝑥1, 𝑥2 ≥ 0.

A [bounds]-section example:

[bounds]
[b] 0 <= x,y <= 10 [/b] # ranged bound
[b] 10 >= x,y >= 0 [/b] # ranged bound
[b] 0 <= x,y <= inf [/b] # using inf
[b] x,y free [/b] # free variables
Let (x,y,z,w) belong to the cone K
[cone quad] x,y,z,w [/cone] # quadratic cone
[cone rquad] x,y,z,w [/cone] # rotated quadratic cone
[/bounds]

By default all variables are free.

[variables]

This defines an ordering of variables as they should appear in the problem. This is simply
a space-separated list of variable names. Optionally, an attribute can be added [variables
disallow_new_variables] indicating that if any variable not listed here occurs later in the file it is
an error.

[integer]

This contains a space-separated list of variables and defines the constraint that the listed variables must
be integer values.

18.3. The OPF Format 267

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

[hints]

This may contain only non-essential data; for example estimates of the number of variables, constraints
and non-zeros. Placed before all other sections containing data this may reduce the time spent reading
the file.

In the hints section, any subsection which is not recognized by MOSEK is simply ignored. In this
section a hint in a subsection is defined as follows:

[hint ITEM] value [/hint]

where ITEM may be replaced by numvar (number of variables), numcon (number of linear/quadratic
constraints), numanz (number of linear non-zeros in constraints) and numqnz (number of quadratic non-
zeros in constraints).

[solutions]

This section can contain a set of full or partial solutions to a problem. Each solution must be specified
using a [solution]-section, i.e.

[solutions]
[solution]...[/solution] #solution 1
[solution]...[/solution] #solution 2
#other solutions....
[solution]...[/solution] #solution n
[/solutions]

Note that a [solution]-section must be always specified inside a [solutions]-section. The syntax of
a [solution]-section is the following:

[solution SOLTYPE status=STATUS]...[/solution]

where SOLTYPE is one of the strings

• interior, a non-basic solution,

• basic, a basic solution,

• integer, an integer solution,

and STATUS is one of the strings

• UNKNOWN,

• OPTIMAL,

• INTEGER_OPTIMAL,

• PRIM_FEAS,

• DUAL_FEAS,

• PRIM_AND_DUAL_FEAS,

• NEAR_OPTIMAL,

• NEAR_PRIM_FEAS,

• NEAR_DUAL_FEAS,

• NEAR_PRIM_AND_DUAL_FEAS,

• PRIM_INFEAS_CER,

• DUAL_INFEAS_CER,

• NEAR_PRIM_INFEAS_CER,

268 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• NEAR_DUAL_INFEAS_CER,

• NEAR_INTEGER_OPTIMAL.

Most of these values are irrelevant for input solutions; when constructing a solution for simplex hot-start
or an initial solution for a mixed integer problem the safe setting is UNKNOWN.

A [solution]-section contains [con] and [var] sections. Each [con] and [var] section defines solution
information for a single variable or constraint, specified as list of KEYWORD/value pairs, in any order,
written as

KEYWORD=value

Allowed keywords are as follows:

• sk. The status of the item, where the value is one of the following strings:

– LOW, the item is on its lower bound.

– UPR, the item is on its upper bound.

– FIX, it is a fixed item.

– BAS, the item is in the basis.

– SUPBAS, the item is super basic.

– UNK, the status is unknown.

– INF, the item is outside its bounds (infeasible).

• lvl Defines the level of the item.

• sl Defines the level of the dual variable associated with its lower bound.

• su Defines the level of the dual variable associated with its upper bound.

• sn Defines the level of the variable associated with its cone.

• y Defines the level of the corresponding dual variable (for constraints only).

A [var] section should always contain the items sk, lvl, sl and su. Items sl and su are not required
for integer solutions.

A [con] section should always contain sk, lvl, sl, su and y.

An example of a solution section

[solution basic status=UNKNOWN]
[var x0] sk=LOW lvl=5.0 [/var]
[var x1] sk=UPR lvl=10.0 [/var]
[var x2] sk=SUPBAS lvl=2.0 sl=1.5 su=0.0 [/var]

[con c0] sk=LOW lvl=3.0 y=0.0 [/con]
[con c0] sk=UPR lvl=0.0 y=5.0 [/con]
[/solution]

• [vendor] This contains solver/vendor specific data. It accepts one argument, which is a vendor
ID – for MOSEK the ID is simply mosek – and the section contains the subsection parameters
defining solver parameters. When reading a vendor section, any unknown vendor can be safely
ignored. This is described later.

Comments using the # may appear anywhere in the file. Between the # and the following line-break any
text may be written, including markup characters.

18.3. The OPF Format 269

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Numbers

Numbers, when used for parameter values or coefficients, are written in the usual way by the printf
function. That is, they may be prefixed by a sign (+ or -) and may contain an integer part, decimal part
and an exponent. The decimal point is always . (a dot). Some examples are

1
1.0
.0
1.
1e10
1e+10
1e-10

Some invalid examples are

e10 # invalid, must contain either integer or decimal part
. # invalid
.e10 # invalid

More formally, the following standard regular expression describes numbers as used:

[+|-]?([0-9]+[.][0-9]*|[.][0-9]+)([eE][+|-]?[0-9]+)?

Names

Variable names, constraint names and objective name may contain arbitrary characters, which in some
cases must be enclosed by quotes (single or double) that in turn must be preceded by a backslash.
Unquoted names must begin with a letter (a-z or A-Z) and contain only the following characters: the
letters a-z and A-Z, the digits 0-9, braces ({ and }) and underscore (_).

Some examples of legal names:

an_unquoted_name
another_name{123}
'single quoted name'
"double quoted name"
"name with \\"quote\\" in it"
"name with []s in it"

18.3.2 Parameters Section

In the vendor section solver parameters are defined inside the parameters subsection. Each parameter
is written as

[p PARAMETER_NAME] value [/p]

where PARAMETER_NAME is replaced by a MOSEK parameter name, usually of the form MSK_IPAR_...,
MSK_DPAR_... or MSK_SPAR_..., and the value is replaced by the value of that parameter; both integer
values and named values may be used. Some simple examples are

[vendor mosek]
[parameters]
[p MSK_IPAR_OPF_MAX_TERMS_PER_LINE] 10 [/p]
[p MSK_IPAR_OPF_WRITE_PARAMETERS] MSK_ON [/p]
[p MSK_DPAR_DATA_TOL_BOUND_INF] 1.0e18 [/p]
[/parameters]
[/vendor]

270 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

18.3.3 Writing OPF Files from MOSEK

To write an OPF file set the parameter MSK_IPAR_WRITE_DATA_FORMAT to "MSK_DATA_FORMAT_OP" as
this ensures that OPF format is used.

Then modify the following parameters to define what the file should contain:

MSK_IPAR_OPF_WRITE_SOL_BAS Include basic solution, if defined.
MSK_IPAR_OPF_WRITE_SOL_ITG Include integer solution, if defined.
MSK_IPAR_OPF_WRITE_SOL_ITR Include interior solution, if defined.
MSK_IPAR_OPF_WRITE_SOLUTIONS Include solutions if they are defined. If this is off, no solutions are

included.
MSK_IPAR_OPF_WRITE_HEADER Include a small header with comments.
MSK_IPAR_OPF_WRITE_PROBLEM Include the problem itself — objective, constraints and bounds.
MSK_IPAR_OPF_WRITE_PARAMETERSInclude all parameter settings.
MSK_IPAR_OPF_WRITE_HINTS Include hints about the size of the problem.

18.3.4 Examples

This section contains a set of small examples written in OPF and describing how to formulate linear,
quadratic and conic problems.

Linear Example lo1.opf

Consider the example:

maximize 3𝑥0 + 1𝑥1 + 5𝑥2 + 1𝑥3

subject to 3𝑥0 + 1𝑥1 + 2𝑥2 = 30,
2𝑥0 + 1𝑥1 + 3𝑥2 + 1𝑥3 ≥ 15,

2𝑥1 + 3𝑥3 ≤ 25,

having the bounds

0 ≤ 𝑥0 ≤ ∞,
0 ≤ 𝑥1 ≤ 10,
0 ≤ 𝑥2 ≤ ∞,
0 ≤ 𝑥3 ≤ ∞.

In the OPF format the example is displayed as shown in Listing 18.1.

Listing 18.1: Example of an OPF file for a linear problem.

[comment]
The lo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 4 [/hint]
[hint NUMCON] 3 [/hint]
[hint NUMANZ] 9 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2 x3 x4

[/variables]

[objective maximize 'obj']
3 x1 + x2 + 5 x3 + x4

[/objective]

18.3. The OPF Format 271

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

[constraints]
[con 'c1'] 3 x1 + x2 + 2 x3 = 30 [/con]
[con 'c2'] 2 x1 + x2 + 3 x3 + x4 >= 15 [/con]
[con 'c3'] 2 x2 + 3 x4 <= 25 [/con]

[/constraints]

[bounds]
[b] 0 <= * [/b]
[b] 0 <= x2 <= 10 [/b]

[/bounds]

Quadratic Example qo1.opf

An example of a quadratic optimization problem is

minimize 𝑥2
1 + 0.1𝑥2

2 + 𝑥2
3 − 𝑥1𝑥3 − 𝑥2

subject to 1 ≤ 𝑥1 + 𝑥2 + 𝑥3,
𝑥 ≥ 0.

This can be formulated in opf as shown below.

Listing 18.2: Example of an OPF file for a quadratic problem.

[comment]
The qo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 3 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 3 [/hint]
[hint NUMQNZ] 4 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2 x3

[/variables]

[objective minimize 'obj']
The quadratic terms are often written with a factor of 1/2 as here,
but this is not required.

- x2 + 0.5 (2.0 x1 ^ 2 - 2.0 x3 * x1 + 0.2 x2 ^ 2 + 2.0 x3 ^ 2)
[/objective]

[constraints]
[con 'c1'] 1.0 <= x1 + x2 + x3 [/con]

[/constraints]

[bounds]
[b] 0 <= * [/b]

[/bounds]

272 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Conic Quadratic Example cqo1.opf

Consider the example:

minimize 𝑥3 + 𝑥4 + 𝑥5

subject to 𝑥0 + 𝑥1 + 2𝑥2 = 1,
𝑥0, 𝑥1, 𝑥2 ≥ 0,

𝑥3 ≥
√︀
𝑥2
0 + 𝑥2

1,
2𝑥4𝑥5 ≥ 𝑥2

2.

Please note that the type of the cones is defined by the parameter to [cone ...]; the content of the
cone-section is the names of variables that belong to the cone. The resulting OPF file is in Listing 18.3.

Listing 18.3: Example of an OPF file for a conic quadratic problem.

[comment]
The cqo1 example in OPF format.

[/comment]

[hints]
[hint NUMVAR] 6 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 3 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2 x3 x4 x5 x6

[/variables]

[objective minimize 'obj']
x4 + x5 + x6

[/objective]

[constraints]
[con 'c1'] x1 + x2 + 2e+00 x3 = 1e+00 [/con]

[/constraints]

[bounds]
We let all variables default to the positive orthant
[b] 0 <= * [/b]

...and change those that differ from the default
[b] x4,x5,x6 free [/b]

Define quadratic cone: x4 >= sqrt(x1^2 + x2^2)
[cone quad 'k1'] x4, x1, x2 [/cone]

Define rotated quadratic cone: 2 x5 x6 >= x3^2
[cone rquad 'k2'] x5, x6, x3 [/cone]

[/bounds]

Mixed Integer Example milo1.opf

Consider the mixed integer problem:

maximize 𝑥0 + 0.64𝑥1

subject to 50𝑥0 + 31𝑥1 ≤ 250,
3𝑥0 − 2𝑥1 ≥ −4,
𝑥0, 𝑥1 ≥ 0 and integer

This can be implemented in OPF with the file in Listing 18.4.

18.3. The OPF Format 273

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Listing 18.4: Example of an OPF file for a mixed-integer linear problem.

[comment]
The milo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 2 [/hint]
[hint NUMCON] 2 [/hint]
[hint NUMANZ] 4 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2

[/variables]

[objective maximize 'obj']
x1 + 6.4e-1 x2

[/objective]

[constraints]
[con 'c1'] 5e+1 x1 + 3.1e+1 x2 <= 2.5e+2 [/con]
[con 'c2'] -4 <= 3 x1 - 2 x2 [/con]

[/constraints]

[bounds]
[b] 0 <= * [/b]

[/bounds]

[integer]
x1 x2

[/integer]

18.4 The CBF Format

This document constitutes the technical reference manual of the Conic Benchmark Format with file exten-
sion: .cbf or .CBF. It unifies linear, second-order cone (also known as conic quadratic) and semidefinite
optimization with mixed-integer variables. The format has been designed with benchmark libraries in
mind, and therefore focuses on compact and easily parsable representations. The problem structure is
separated from the problem data, and the format moreover facilitates benchmarking of hotstart capability
through sequences of changes.

18.4.1 How Instances Are Specified

This section defines the spectrum of conic optimization problems that can be formulated in terms of the
keywords of the CBF format.

In the CBF format, conic optimization problems are considered in the following form:

min /max 𝑔𝑜𝑏𝑗

𝑔𝑖 ∈ 𝒦𝑖, 𝑖 ∈ ℐ,
s.t. 𝐺𝑖 ∈ 𝒦𝑖, 𝑖 ∈ ℐ𝑃𝑆𝐷,

𝑥𝑗 ∈ 𝒦𝑗 , 𝑗 ∈ 𝒥 ,
𝑋𝑗 ∈ 𝒦𝑗 , 𝑗 ∈ 𝒥 𝑃𝑆𝐷.

(18.5)

• Variables are either scalar variables, 𝑥𝑗 for 𝑗 ∈ 𝒥 , or variables, 𝑋𝑗 for 𝑗 ∈ 𝒥 𝑃𝑆𝐷. Scalar variables
can also be declared as integer.

274 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• Constraints are affine expressions of the variables, either scalar-valued 𝑔𝑖 for 𝑖 ∈ ℐ, or matrix-
valued 𝐺𝑖 for 𝑖 ∈ ℐ𝑃𝑆𝐷

𝑔𝑖 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹𝑖𝑗 , 𝑋𝑗⟩ +
∑︁
𝑗∈𝒥

𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖,

𝐺𝑖 =
∑︁
𝑗∈𝒥

𝑥𝑗𝐻𝑖𝑗 + 𝐷𝑖.

• The objective function is a scalar-valued affine expression of the variables, either to be minimized
or maximized. We refer to this expression as 𝑔𝑜𝑏𝑗

𝑔𝑜𝑏𝑗 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹 𝑜𝑏𝑗
𝑗 , 𝑋𝑗⟩ +

∑︁
𝑗∈𝒥

𝑎𝑜𝑏𝑗𝑗 𝑥𝑗 + 𝑏𝑜𝑏𝑗 .

CBF format can represent the following cones 𝒦:

• Free domain - A cone in the linear family defined by

{𝑥 ∈ R𝑛}, for 𝑛 ≥ 1.

• Positive orthant - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 ≥ 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

• Negative orthant - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 ≤ 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

• Fixpoint zero - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 = 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

• Quadratic cone - A cone in the second-order cone family defined by

{︂(︂
𝑝
𝑥

)︂
∈ R× R𝑛−1, 𝑝2 ≥ 𝑥𝑇𝑥, 𝑝 ≥ 0

}︂
, for 𝑛 ≥ 2.

• Rotated quadratic cone - A cone in the second-order cone family defined by

⎧⎨⎩
⎛⎝ 𝑝

𝑞
𝑥

⎞⎠ ∈ R× R× R𝑛−2, 2𝑝𝑞 ≥ 𝑥𝑇𝑥, 𝑝 ≥ 0, 𝑞 ≥ 0

⎫⎬⎭ , for 𝑛 ≥ 3.

18.4.2 The Structure of CBF Files

This section defines how information is written in the CBF format, without being specific about the type
of information being communicated.

All information items belong to exactly one of the three groups of information. These information groups,
and the order they must appear in, are:

18.4. The CBF Format 275

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

1. File format.

2. Problem structure.

3. Problem data.

The first group, file format, provides information on how to interpret the file. The second group, problem
structure, provides the information needed to deduce the type and size of the problem instance. Finally,
the third group, problem data, specifies the coefficients and constants of the problem instance.

Information items

The format is composed as a list of information items. The first line of an information item is the
KEYWORD, revealing the type of information provided. The second line - of some keywords only - is the
HEADER, typically revealing the size of information that follows. The remaining lines are the BODY holding
the actual information to be specified.

KEYWORD
BODY

KEYWORD
HEADER
BODY

The KEYWORD determines how each line in the HEADER and BODY is structured. Moreover, the number of
lines in the BODY follows either from the KEYWORD, the HEADER, or from another information item required
to precede it.

Embedded hotstart-sequences

A sequence of problem instances, based on the same problem structure, is within a single file. This
is facilitated via the CHANGE within the problem data information group, as a separator between the
information items of each instance. The information items following a CHANGE keyword are appending
to, or changing (e.g., setting coefficients back to their default value of zero), the problem data of the
preceding instance.

The sequence is intended for benchmarking of hotstart capability, where the solvers can reuse their
internal state and solution (subject to the achieved accuracy) as warmpoint for the succeeding instance.
Whenever this feature is unsupported or undesired, the keyword CHANGE should be interpreted as the
end of file.

File encoding and line width restrictions

The format is based on the US-ASCII printable character set with two extensions as listed below. Note,
by definition, that none of these extensions can be misinterpreted as printable US-ASCII characters:

• A line feed marks the end of a line, carriage returns are ignored.

• Comment-lines may contain unicode characters in UTF-8 encoding.

The line width is restricted to 512 bytes, with 3 bytes reserved for the potential carriage return, line feed
and null-terminator.

Integers and floating point numbers must follow the ISO C decimal string representation in the standard
C locale. The format does not impose restrictions on the magnitude of, or number of significant digits
in numeric data, but the use of 64-bit integers and 64-bit IEEE 754 floating point numbers should be
sufficient to avoid loss of precision.

276 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Comment-line and whitespace rules

The format allows single-line comments respecting the following rule:

• Lines having first byte equal to ’#’ (US-ASCII 35) are comments, and should be ignored. Comments
are only allowed between information items.

Given that a line is not a comment-line, whitespace characters should be handled according to the
following rules:

• Leading and trailing whitespace characters should be ignored.

– The seperator between multiple pieces of information on one line, is either one or more whites-
pace characters.

• Lines containing only whitespace characters are empty, and should be ignored. Empty lines are
only allowed between information items.

18.4.3 Problem Specification

The problem structure

The problem structure defines the objective sense, whether it is minimization and maximization. It also
defines the index sets, 𝒥 , 𝒥 𝑃𝑆𝐷, ℐ and ℐ𝑃𝑆𝐷, which are all numbered from zero, {0, 1, . . .}, and empty
until explicitly constructed.

• Scalar variables are constructed in vectors restricted to a conic domain, such as (𝑥0, 𝑥1) ∈ R2
+,

(𝑥2, 𝑥3, 𝑥4) ∈ 𝒬3, etc. In terms of the Cartesian product, this generalizes to

𝑥 ∈ 𝒦𝑛1
1 ×𝒦𝑛2

2 × · · · × 𝒦𝑛𝑘

𝑘

which in the CBF format becomes:

VAR
n k
K1 n1
K2 n2
...
Kk nk

where
∑︀

𝑖 𝑛𝑖 = 𝑛 is the total number of scalar variables. The list of supported cones is found in
Table 18.3. Integrality of scalar variables can be specified afterwards.

• PSD variables are constructed one-by-one. That is, 𝑋𝑗 ⪰ 0𝑛𝑗×𝑛𝑗 for 𝑗 ∈ 𝒥 𝑃𝑆𝐷, constructs a
matrix-valued variable of size 𝑛𝑗 ×𝑛𝑗 restricted to be symmetric positive semidefinite. In the CBF
format, this list of constructions becomes:

PSDVAR
N
n1
n2
...
nN

where 𝑁 is the total number of PSD variables.

• Scalar constraints are constructed in vectors restricted to a conic domain, such as (𝑔0, 𝑔1) ∈ R2
+,

(𝑔2, 𝑔3, 𝑔4) ∈ 𝒬3, etc. In terms of the Cartesian product, this generalizes to

𝑔 ∈ 𝒦𝑚1
1 ×𝒦𝑚2

2 × · · · × 𝒦𝑚𝑘

𝑘

which in the CBF format becomes:

18.4. The CBF Format 277

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

CON
m k
K1 m1
K2 m2
..
Kk mk

where
∑︀

𝑖 𝑚𝑖 = 𝑚 is the total number of scalar constraints. The list of supported cones is found
in Table 18.3.

• PSD constraints are constructed one-by-one. That is, 𝐺𝑖 ⪰ 0𝑚𝑖×𝑚𝑖 for 𝑖 ∈ ℐ𝑃𝑆𝐷, constructs a
matrix-valued affine expressions of size 𝑚𝑖 ×𝑚𝑖 restricted to be symmetric positive semidefinite.
In the CBF format, this list of constructions becomes

PSDCON
M
m1
m2
..
mM

where 𝑀 is the total number of PSD constraints.

With the objective sense, variables (with integer indications) and constraints, the definitions of the many
affine expressions follow in problem data.

Problem data

The problem data defines the coefficients and constants of the affine expressions of the problem instance.
These are considered zero until explicitly defined, implying that instances with no keywords from this
information group are, in fact, valid. Duplicating or conflicting information is a failure to comply with
the standard. Consequently, two coefficients written to the same position in a matrix (or to transposed
positions in a symmetric matrix) is an error.

The affine expressions of the objective, 𝑔𝑜𝑏𝑗 , of the scalar constraints, 𝑔𝑖, and of the PSD constraints,
𝐺𝑖, are defined separately. The following notation uses the standard trace inner product for matrices,
⟨𝑋,𝑌 ⟩ =

∑︀
𝑖,𝑗 𝑋𝑖𝑗𝑌𝑖𝑗 .

• The affine expression of the objective is defined as

𝑔𝑜𝑏𝑗 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹 𝑜𝑏𝑗
𝑗 , 𝑋𝑗⟩ +

∑︁
𝑗∈𝒥

𝑎𝑜𝑏𝑗𝑗 𝑥𝑗 + 𝑏𝑜𝑏𝑗 ,

in terms of the symmetric matrices, 𝐹 𝑜𝑏𝑗
𝑗 , and scalars, 𝑎𝑜𝑏𝑗𝑗 and 𝑏𝑜𝑏𝑗 .

• The affine expressions of the scalar constraints are defined, for 𝑖 ∈ ℐ, as

𝑔𝑖 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹𝑖𝑗 , 𝑋𝑗⟩ +
∑︁
𝑗∈𝒥

𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖,

in terms of the symmetric matrices, 𝐹𝑖𝑗 , and scalars, 𝑎𝑖𝑗 and 𝑏𝑖.

• The affine expressions of the PSD constraints are defined, for 𝑖 ∈ ℐ𝑃𝑆𝐷, as

𝐺𝑖 =
∑︁
𝑗∈𝒥

𝑥𝑗𝐻𝑖𝑗 + 𝐷𝑖,

in terms of the symmetric matrices, 𝐻𝑖𝑗 and 𝐷𝑖.

278 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

List of cones

The format uses an explicit syntax for symmetric positive semidefinite cones as shown above. For scalar
variables and constraints, constructed in vectors, the supported conic domains and their minimum sizes
are given as follows.

Table 18.3: Cones available in the CBF format
Name CBF keyword Cone family
Free domain F linear
Positive orthant L+ linear
Negative orthant L- linear
Fixpoint zero L= linear
Quadratic cone Q second-order
Rotated quadratic cone QR second-order

18.4.4 File Format Keywords

VER

Description: The version of the Conic Benchmark Format used to write the file.

HEADER: None

BODY: One line formatted as:

INT

This is the version number.

Must appear exactly once in a file, as the first keyword.

OBJSENSE

Description: Define the objective sense.

HEADER: None

BODY: One line formatted as:

STR

having MIN indicates minimize, and MAX indicates maximize. Capital letters are required.

Must appear exactly once in a file.

PSDVAR

Description: Construct the PSD variables.

HEADER: One line formatted as:

INT

This is the number of PSD variables in the problem.

BODY: A list of lines formatted as:

INT

18.4. The CBF Format 279

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

This indicates the number of rows (equal to the number of columns) in the matrix-valued PSD variable.
The number of lines should match the number stated in the header.

VAR

Description: Construct the scalar variables.

HEADER: One line formatted as:

INT INT

This is the number of scalar variables, followed by the number of conic domains they are restricted to.

BODY: A list of lines formatted as:

STR INT

This indicates the cone name (see Table 18.3), and the number of scalar variables restricted to this cone.
These numbers should add up to the number of scalar variables stated first in the header. The number
of lines should match the second number stated in the header.

INT

Description: Declare integer requirements on a selected subset of scalar variables.

HEADER: one line formatted as:

INT

This is the number of integer scalar variables in the problem.

BODY: a list of lines formatted as:

INT

This indicates the scalar variable index 𝑗 ∈ 𝒥 . The number of lines should match the number stated in
the header.

Can only be used after the keyword VAR.

PSDCON

Description: Construct the PSD constraints.

HEADER: One line formatted as:

INT

This is the number of PSD constraints in the problem.

BODY: A list of lines formatted as:

INT

This indicates the number of rows (equal to the number of columns) in the matrix-valued affine expression
of the PSD constraint. The number of lines should match the number stated in the header.

Can only be used after these keywords: PSDVAR, VAR.

280 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

CON

Description: Construct the scalar constraints.

HEADER: One line formatted as:

INT INT

This is the number of scalar constraints, followed by the number of conic domains they restrict to.

BODY: A list of lines formatted as:

STR INT

This indicates the cone name (see Table 18.3), and the number of affine expressions restricted to this
cone. These numbers should add up to the number of scalar constraints stated first in the header. The
number of lines should match the second number stated in the header.

Can only be used after these keywords: PSDVAR, VAR

OBJFCOORD

Description: Input sparse coordinates (quadruplets) to define the symmetric matrices 𝐹 𝑜𝑏𝑗
𝑗 , as used in

the objective.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.

BODY: A list of lines formatted as:

INT INT INT REAL

This indicates the PSD variable index 𝑗 ∈ 𝒥 𝑃𝑆𝐷, the row index, the column index and the coefficient
value. The number of lines should match the number stated in the header.

OBJACOORD

Description: Input sparse coordinates (pairs) to define the scalars, 𝑎𝑜𝑏𝑗𝑗 , as used in the objective.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.

BODY: A list of lines formatted as:

INT REAL

This indicates the scalar variable index 𝑗 ∈ 𝒥 and the coefficient value. The number of lines should
match the number stated in the header.

OBJBCOORD

Description: Input the scalar, 𝑏𝑜𝑏𝑗 , as used in the objective.

HEADER: None.

BODY: One line formatted as:

18.4. The CBF Format 281

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

REAL

This indicates the coefficient value.

FCOORD

Description: Input sparse coordinates (quintuplets) to define the symmetric matrices, 𝐹𝑖𝑗 , as used in the
scalar constraints.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.

BODY: A list of lines formatted as:

INT INT INT INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ, the PSD variable index 𝑗 ∈ 𝒥 𝑃𝑆𝐷, the row index, the
column index and the coefficient value. The number of lines should match the number stated in the
header.

ACOORD

Description: Input sparse coordinates (triplets) to define the scalars, 𝑎𝑖𝑗 , as used in the scalar constraints.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.

BODY: A list of lines formatted as:

INT INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ, the scalar variable index 𝑗 ∈ 𝒥 and the coefficient value.
The number of lines should match the number stated in the header.

BCOORD

Description: Input sparse coordinates (pairs) to define the scalars, 𝑏𝑖, as used in the scalar constraints.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.

BODY: A list of lines formatted as:

INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ and the coefficient value. The number of lines should
match the number stated in the header.

282 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

HCOORD

Description: Input sparse coordinates (quintuplets) to define the symmetric matrices, 𝐻𝑖𝑗 , as used in
the PSD constraints.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.

BODY: A list of lines formatted as

INT INT INT INT REAL

This indicates the PSD constraint index 𝑖 ∈ ℐ𝑃𝑆𝐷, the scalar variable index 𝑗 ∈ 𝒥 , the row index, the
column index and the coefficient value. The number of lines should match the number stated in the
header.

DCOORD

Description: Input sparse coordinates (quadruplets) to define the symmetric matrices, 𝐷𝑖, as used in
the PSD constraints.

HEADER: One line formatted as

INT

This is the number of coordinates to be specified.

BODY: A list of lines formatted as:

INT INT INT REAL

This indicates the PSD constraint index 𝑖 ∈ ℐ𝑃𝑆𝐷, the row index, the column index and the coefficient
value. The number of lines should match the number stated in the header.

CHANGE

Start of a new instance specification based on changes to the previous. Can be interpreted as the end of
file when the hotstart-sequence is unsupported or undesired.

BODY: None

Header: None

18.4.5 CBF Format Examples

Minimal Working Example

The conic optimization problem (18.6) , has three variables in a quadratic cone - first one is integer -
and an affine expression in domain 0 (equality constraint).

minimize 5.1𝑥0

subject to 6.2𝑥1 + 7.3𝑥2 − 8.4 ∈ {0}
𝑥 ∈ 𝒬3, 𝑥0 ∈ Z.

(18.6)

Its formulation in the Conic Benchmark Format begins with the version of the CBF format used, to
safeguard against later revisions.

18.4. The CBF Format 283

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

VER
1

Next follows the problem structure, consisting of the objective sense, the number and domain of variables,
the indices of integer variables, and the number and domain of scalar-valued affine expressions (i.e., the
equality constraint).

OBJSENSE
MIN

VAR
3 1
Q 3

INT
1
0

CON
1 1
L= 1

Finally follows the problem data, consisting of the coefficients of the objective, the coefficients of the
constraints, and the constant terms of the constraints. All data is specified on a sparse coordinate form.

OBJACOORD
1
0 5.1

ACOORD
2
0 1 6.2
0 2 7.3

BCOORD
1
0 -8.4

This concludes the example.

Mixing Linear, Second-order and Semidefinite Cones

The conic optimization problem (18.7), has a semidefinite cone, a quadratic cone over unordered
subindices, and two equality constraints.

minimize

⟨⎡⎣ 2 1 0
1 2 1
0 1 2

⎤⎦ , 𝑋1

⟩
+ 𝑥1

subject to

⟨⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ , 𝑋1

⟩
+ 𝑥1 = 1.0 ,

⟨⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ , 𝑋1

⟩
+ 𝑥0 + 𝑥2 = 0.5 ,

𝑥1 ≥
√︀
𝑥2
0 + 𝑥2

2 ,
𝑋1 ⪰ 0 .

(18.7)

The equality constraints are easily rewritten to the conic form, (𝑔0, 𝑔1) ∈ {0}2, by moving constants such
that the right-hand-side becomes zero. The quadratic cone does not fit under the VAR keyword in this
variable permutation. Instead, it takes a scalar constraint (𝑔2, 𝑔3, 𝑔4) = (𝑥1, 𝑥0, 𝑥2) ∈ 𝒬3, with scalar

284 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

variables constructed as (𝑥0, 𝑥1, 𝑥2) ∈ R3. Its formulation in the CBF format is reported in the following
list

File written using this version of the Conic Benchmark Format:
| Version 1.
VER
1

The sense of the objective is:
| Minimize.
OBJSENSE
MIN

One PSD variable of this size:
| Three times three.
PSDVAR
1
3

Three scalar variables in this one conic domain:
| Three are free.
VAR
3 1
F 3

Five scalar constraints with affine expressions in two conic domains:
| Two are fixed to zero.
| Three are in conic quadratic domain.
CON
5 2
L= 2
Q 3

Five coordinates in F^{obj}_j coefficients:
| F^{obj}[0][0,0] = 2.0
| F^{obj}[0][1,0] = 1.0
| and more...
OBJFCOORD
5
0 0 0 2.0
0 1 0 1.0
0 1 1 2.0
0 2 1 1.0
0 2 2 2.0

One coordinate in a^{obj}_j coefficients:
| a^{obj}[1] = 1.0
OBJACOORD
1
1 1.0

Nine coordinates in F_ij coefficients:
| F[0,0][0,0] = 1.0
| F[0,0][1,1] = 1.0
| and more...
FCOORD
9
0 0 0 0 1.0
0 0 1 1 1.0
0 0 2 2 1.0
1 0 0 0 1.0
1 0 1 0 1.0
1 0 2 0 1.0

18.4. The CBF Format 285

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

1 0 1 1 1.0
1 0 2 1 1.0
1 0 2 2 1.0

Six coordinates in a_ij coefficients:
| a[0,1] = 1.0
| a[1,0] = 1.0
| and more...
ACOORD
6
0 1 1.0
1 0 1.0
1 2 1.0
2 1 1.0
3 0 1.0
4 2 1.0

Two coordinates in b_i coefficients:
| b[0] = -1.0
| b[1] = -0.5
BCOORD
2
0 -1.0
1 -0.5

Mixing Semidefinite Variables and Linear Matrix Inequalities

The standard forms in semidefinite optimization are usually based either on semidefinite variables or
linear matrix inequalities. In the CBF format, both forms are supported and can even be mixed as
shown in.

minimize
⟨[︂

1 0
0 1

]︂
, 𝑋1

⟩
+ 𝑥1 + 𝑥2 + 1

subject to
⟨[︂

0 1
1 0

]︂
, 𝑋1

⟩
− 𝑥1 − 𝑥2 ≥ 0.0 ,

𝑥1

[︂
0 1
1 3

]︂
+ 𝑥2

[︂
3 1
1 0

]︂
−
[︂

1 0
0 1

]︂
⪰ 0 ,

𝑋1 ⪰ 0 .

(18.8)

Its formulation in the CBF format is written in what follows

File written using this version of the Conic Benchmark Format:
| Version 1.
VER
1

The sense of the objective is:
| Minimize.
OBJSENSE
MIN

One PSD variable of this size:
| Two times two.
PSDVAR
1
2

Two scalar variables in this one conic domain:
| Two are free.
VAR
2 1

286 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

F 2

One PSD constraint of this size:
| Two times two.
PSDCON
1
2

One scalar constraint with an affine expression in this one conic domain:
| One is greater than or equal to zero.
CON
1 1
L+ 1

Two coordinates in F^{obj}_j coefficients:
| F^{obj}[0][0,0] = 1.0
| F^{obj}[0][1,1] = 1.0
OBJFCOORD
2
0 0 0 1.0
0 1 1 1.0

Two coordinates in a^{obj}_j coefficients:
| a^{obj}[0] = 1.0
| a^{obj}[1] = 1.0
OBJACOORD
2
0 1.0
1 1.0

One coordinate in b^{obj} coefficient:
| b^{obj} = 1.0
OBJBCOORD
1.0

One coordinate in F_ij coefficients:
| F[0,0][1,0] = 1.0
FCOORD
1
0 0 1 0 1.0

Two coordinates in a_ij coefficients:
| a[0,0] = -1.0
| a[0,1] = -1.0
ACOORD
2
0 0 -1.0
0 1 -1.0

Four coordinates in H_ij coefficients:
| H[0,0][1,0] = 1.0
| H[0,0][1,1] = 3.0
| and more...
HCOORD
4
0 0 1 0 1.0
0 0 1 1 3.0
0 1 0 0 3.0
0 1 1 0 1.0

Two coordinates in D_i coefficients:
| D[0][0,0] = -1.0
| D[0][1,1] = -1.0

18.4. The CBF Format 287

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

DCOORD
2
0 0 0 -1.0
0 1 1 -1.0

Optimization Over a Sequence of Objectives

The linear optimization problem (18.9), is defined for a sequence of objectives such that hotstarting from
one to the next might be advantages.

maximize𝑘 𝑔𝑜𝑏𝑗𝑘

subject to 50𝑥0 + 31 ≤ 250 ,
3𝑥0 − 2𝑥1 ≥ −4 ,
𝑥 ∈ R2

+,

(18.9)

given,

1. 𝑔𝑜𝑏𝑗0 = 𝑥0 + 0.64𝑥1.

2. 𝑔𝑜𝑏𝑗1 = 1.11𝑥0 + 0.76𝑥1.

3. 𝑔𝑜𝑏𝑗2 = 1.11𝑥0 + 0.85𝑥1.

Its formulation in the CBF format is reported in Listing 18.5.

Listing 18.5: Problem (18.9) in CBF format.

File written using this version of the Conic Benchmark Format:
| Version 1.
VER
1

The sense of the objective is:
| Maximize.
OBJSENSE
MAX

Two scalar variables in this one conic domain:
| Two are nonnegative.
VAR
2 1
L+ 2

Two scalar constraints with affine expressions in these two conic domains:
| One is in the nonpositive domain.
| One is in the nonnegative domain.
CON
2 2
L- 1
L+ 1

Two coordinates in a^{obj}_j coefficients:
| a^{obj}[0] = 1.0
| a^{obj}[1] = 0.64
OBJACOORD
2
0 1.0
1 0.64

Four coordinates in a_ij coefficients:
| a[0,0] = 50.0
| a[1,0] = 3.0

288 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

| and more...
ACOORD
4
0 0 50.0
1 0 3.0
0 1 31.0
1 1 -2.0

Two coordinates in b_i coefficients:
| b[0] = -250.0
| b[1] = 4.0
BCOORD
2
0 -250.0
1 4.0

New problem instance defined in terms of changes.
CHANGE

Two coordinate changes in a^{obj}_j coefficients. Now it is:
| a^{obj}[0] = 1.11
| a^{obj}[1] = 0.76
OBJACOORD
2
0 1.11
1 0.76

New problem instance defined in terms of changes.
CHANGE

One coordinate change in a^{obj}_j coefficients. Now it is:
| a^{obj}[0] = 1.11
| a^{obj}[1] = 0.85
OBJACOORD
1
1 0.85

18.5 The XML (OSiL) Format

MOSEK can write data in the standard OSiL xml format. For a definition of the OSiL format please
see http://www.optimizationservices.org/.

Only linear constraints (possibly with integer variables) are supported. By default output files with the
extension .xml are written in the OSiL format.

The parameter MSK_IPAR_WRITE_XML_MODE controls if the linear coefficients in the 𝐴 matrix are written
in row or column order.

18.6 The Task Format

The Task format is MOSEK’s native binary format. It contains a complete image of a MOSEK task,
i.e.

• Problem data: Linear, conic quadratic, semidefinite and quadratic data

• Problem item names: Variable names, constraints names, cone names etc.

• Parameter settings

• Solutions

18.5. The XML (OSiL) Format 289

http://www.optimizationservices.org/

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

There are a few things to be aware of:

• The task format does not support General Convex problems since these are defined by arbitrary
user-defined functions.

• Status of a solution read from a file will always be unknown.

• Parameter settings in a task file always override any parameters set on the command line or in a
parameter file.

The format is based on the TAR (USTar) file format. This means that the individual pieces of data in
a .task file can be examined by unpacking it as a TAR file. Please note that the inverse may not work:
Creating a file using TAR will most probably not create a valid MOSEK Task file since the order of
the entries is important.

18.7 The JSON Format

MOSEK provides the possibility to read/write problems in valid JSON format.

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy
for humans to read and write. It is easy for machines to parse and generate. It is based
on a subset of the JavaScript Programming Language, Standard ECMA-262 3rd Edition -
December 1999. JSON is a text format that is completely language independent but uses
conventions that are familiar to programmers of the C-family of languages, including C, C++,
C#, Java, JavaScript, Perl, Python, and many others. These properties make JSON an ideal
data-interchange language.

The official JSON website http://www.json.org provides plenty of information along with the format
definition.

MOSEK defines two JSON-like formats:

• jtask

• jsol

Warning: Despite being text-based human-readable formats, jtask and jsol files will include no
indentation and no new-lines, in order to keep the files as compact as possible. We therefore strongly
advise to use JSON viewer tools to inspect jtask and jsol files.

18.7.1 jtask format

It stores a problem instance. The jtask format contains the same information as a task format .

Even though a jtask file is human-readable, we do not recommend users to create it by hand, but to rely
on MOSEK.

18.7.2 jsol format

It stores a problem solution. The jsol format contains all solutions and information items.

18.7.3 A jtask example

In Listing 18.6 we present a file in the jtask format that corresponds to the sample problem from lo1.lp.
The listing has been formatted for readability.

290 Chapter 18. Supported File Formats

http://www.json.org

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Listing 18.6: A formatted jtask file for the lo1.lp example.

{
"$schema":"http://mosek.com/json/schema#",
"Task/INFO":{

"taskname":"lo1",
"numvar":4,
"numcon":3,
"numcone":0,
"numbarvar":0,
"numanz":9,
"numsymmat":0,
"mosekver":[

8,
0,
0,
9

]
},
"Task/data":{

"var":{
"name":[

"x1",
"x2",
"x3",
"x4"

],
"bk":[

"lo",
"ra",
"lo",
"lo"

],
"bl":[

0.0,
0.0,
0.0,
0.0

],
"bu":[

1e+30,
1e+1,
1e+30,
1e+30

],
"type":[

"cont",
"cont",
"cont",
"cont"

]
},
"con":{

"name":[
"c1",
"c2",
"c3"

],
"bk":[

"fx",
"lo",
"up"

18.7. The JSON Format 291

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

],
"bl":[

3e+1,
1.5e+1,

-1e+30
],
"bu":[

3e+1,
1e+30,
2.5e+1

]
},
"objective":{

"sense":"max",
"name":"obj",
"c":{

"subj":[
0,
1,
2,
3

],
"val":[

3e+0,
1e+0,
5e+0,
1e+0

]
},
"cfix":0.0

},
"A":{

"subi":[
0,
0,
0,
1,
1,
1,
1,
2,
2

],
"subj":[

0,
1,
2,
0,
1,
2,
3,
1,
3

],
"val":[

3e+0,
1e+0,
2e+0,
2e+0,
1e+0,
3e+0,
1e+0,
2e+0,

292 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

3e+0
]

}
},
"Task/parameters":{

"iparam":{
"ANA_SOL_BASIS":"ON",
"ANA_SOL_PRINT_VIOLATED":"OFF",
"AUTO_SORT_A_BEFORE_OPT":"OFF",
"AUTO_UPDATE_SOL_INFO":"OFF",
"BASIS_SOLVE_USE_PLUS_ONE":"OFF",
"BI_CLEAN_OPTIMIZER":"OPTIMIZER_FREE",
"BI_IGNORE_MAX_ITER":"OFF",
"BI_IGNORE_NUM_ERROR":"OFF",
"BI_MAX_ITERATIONS":1000000,
"CACHE_LICENSE":"ON",
"CHECK_CONVEXITY":"CHECK_CONVEXITY_FULL",
"COMPRESS_STATFILE":"ON",
"CONCURRENT_NUM_OPTIMIZERS":2,
"CONCURRENT_PRIORITY_DUAL_SIMPLEX":2,
"CONCURRENT_PRIORITY_FREE_SIMPLEX":3,
"CONCURRENT_PRIORITY_INTPNT":4,
"CONCURRENT_PRIORITY_PRIMAL_SIMPLEX":1,
"FEASREPAIR_OPTIMIZE":"FEASREPAIR_OPTIMIZE_NONE",
"INFEAS_GENERIC_NAMES":"OFF",
"INFEAS_PREFER_PRIMAL":"ON",
"INFEAS_REPORT_AUTO":"OFF",
"INFEAS_REPORT_LEVEL":1,
"INTPNT_BASIS":"BI_ALWAYS",
"INTPNT_DIFF_STEP":"ON",
"INTPNT_FACTOR_DEBUG_LVL":0,
"INTPNT_FACTOR_METHOD":0,
"INTPNT_HOTSTART":"INTPNT_HOTSTART_NONE",
"INTPNT_MAX_ITERATIONS":400,
"INTPNT_MAX_NUM_COR":-1,
"INTPNT_MAX_NUM_REFINEMENT_STEPS":-1,
"INTPNT_OFF_COL_TRH":40,
"INTPNT_ORDER_METHOD":"ORDER_METHOD_FREE",
"INTPNT_REGULARIZATION_USE":"ON",
"INTPNT_SCALING":"SCALING_FREE",
"INTPNT_SOLVE_FORM":"SOLVE_FREE",
"INTPNT_STARTING_POINT":"STARTING_POINT_FREE",
"LIC_TRH_EXPIRY_WRN":7,
"LICENSE_DEBUG":"OFF",
"LICENSE_PAUSE_TIME":0,
"LICENSE_SUPPRESS_EXPIRE_WRNS":"OFF",
"LICENSE_WAIT":"OFF",
"LOG":10,
"LOG_ANA_PRO":1,
"LOG_BI":4,
"LOG_BI_FREQ":2500,
"LOG_CHECK_CONVEXITY":0,
"LOG_CONCURRENT":1,
"LOG_CUT_SECOND_OPT":1,
"LOG_EXPAND":0,
"LOG_FACTOR":1,
"LOG_FEAS_REPAIR":1,
"LOG_FILE":1,
"LOG_HEAD":1,
"LOG_INFEAS_ANA":1,
"LOG_INTPNT":4,
"LOG_MIO":4,
"LOG_MIO_FREQ":1000,

18.7. The JSON Format 293

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"LOG_OPTIMIZER":1,
"LOG_ORDER":1,
"LOG_PRESOLVE":1,
"LOG_RESPONSE":0,
"LOG_SENSITIVITY":1,
"LOG_SENSITIVITY_OPT":0,
"LOG_SIM":4,
"LOG_SIM_FREQ":1000,
"LOG_SIM_MINOR":1,
"LOG_STORAGE":1,
"MAX_NUM_WARNINGS":10,
"MIO_BRANCH_DIR":"BRANCH_DIR_FREE",
"MIO_CONSTRUCT_SOL":"OFF",
"MIO_CUT_CLIQUE":"ON",
"MIO_CUT_CMIR":"ON",
"MIO_CUT_GMI":"ON",
"MIO_CUT_KNAPSACK_COVER":"OFF",
"MIO_HEURISTIC_LEVEL":-1,
"MIO_MAX_NUM_BRANCHES":-1,
"MIO_MAX_NUM_RELAXS":-1,
"MIO_MAX_NUM_SOLUTIONS":-1,
"MIO_MODE":"MIO_MODE_SATISFIED",
"MIO_MT_USER_CB":"ON",
"MIO_NODE_OPTIMIZER":"OPTIMIZER_FREE",
"MIO_NODE_SELECTION":"MIO_NODE_SELECTION_FREE",
"MIO_PERSPECTIVE_REFORMULATE":"ON",
"MIO_PROBING_LEVEL":-1,
"MIO_RINS_MAX_NODES":-1,
"MIO_ROOT_OPTIMIZER":"OPTIMIZER_FREE",
"MIO_ROOT_REPEAT_PRESOLVE_LEVEL":-1,
"MT_SPINCOUNT":0,
"NUM_THREADS":0,
"OPF_MAX_TERMS_PER_LINE":5,
"OPF_WRITE_HEADER":"ON",
"OPF_WRITE_HINTS":"ON",
"OPF_WRITE_PARAMETERS":"OFF",
"OPF_WRITE_PROBLEM":"ON",
"OPF_WRITE_SOL_BAS":"ON",
"OPF_WRITE_SOL_ITG":"ON",
"OPF_WRITE_SOL_ITR":"ON",
"OPF_WRITE_SOLUTIONS":"OFF",
"OPTIMIZER":"OPTIMIZER_FREE",
"PARAM_READ_CASE_NAME":"ON",
"PARAM_READ_IGN_ERROR":"OFF",
"PRESOLVE_ELIMINATOR_MAX_FILL":-1,
"PRESOLVE_ELIMINATOR_MAX_NUM_TRIES":-1,
"PRESOLVE_LEVEL":-1,
"PRESOLVE_LINDEP_ABS_WORK_TRH":100,
"PRESOLVE_LINDEP_REL_WORK_TRH":100,
"PRESOLVE_LINDEP_USE":"ON",
"PRESOLVE_MAX_NUM_REDUCTIONS":-1,
"PRESOLVE_USE":"PRESOLVE_MODE_FREE",
"PRIMAL_REPAIR_OPTIMIZER":"OPTIMIZER_FREE",
"QO_SEPARABLE_REFORMULATION":"OFF",
"READ_DATA_COMPRESSED":"COMPRESS_FREE",
"READ_DATA_FORMAT":"DATA_FORMAT_EXTENSION",
"READ_DEBUG":"OFF",
"READ_KEEP_FREE_CON":"OFF",
"READ_LP_DROP_NEW_VARS_IN_BOU":"OFF",
"READ_LP_QUOTED_NAMES":"ON",
"READ_MPS_FORMAT":"MPS_FORMAT_FREE",
"READ_MPS_WIDTH":1024,
"READ_TASK_IGNORE_PARAM":"OFF",

294 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"SENSITIVITY_ALL":"OFF",
"SENSITIVITY_OPTIMIZER":"OPTIMIZER_FREE_SIMPLEX",
"SENSITIVITY_TYPE":"SENSITIVITY_TYPE_BASIS",
"SIM_BASIS_FACTOR_USE":"ON",
"SIM_DEGEN":"SIM_DEGEN_FREE",
"SIM_DUAL_CRASH":90,
"SIM_DUAL_PHASEONE_METHOD":0,
"SIM_DUAL_RESTRICT_SELECTION":50,
"SIM_DUAL_SELECTION":"SIM_SELECTION_FREE",
"SIM_EXPLOIT_DUPVEC":"SIM_EXPLOIT_DUPVEC_OFF",
"SIM_HOTSTART":"SIM_HOTSTART_FREE",
"SIM_HOTSTART_LU":"ON",
"SIM_INTEGER":0,
"SIM_MAX_ITERATIONS":10000000,
"SIM_MAX_NUM_SETBACKS":250,
"SIM_NON_SINGULAR":"ON",
"SIM_PRIMAL_CRASH":90,
"SIM_PRIMAL_PHASEONE_METHOD":0,
"SIM_PRIMAL_RESTRICT_SELECTION":50,
"SIM_PRIMAL_SELECTION":"SIM_SELECTION_FREE",
"SIM_REFACTOR_FREQ":0,
"SIM_REFORMULATION":"SIM_REFORMULATION_OFF",
"SIM_SAVE_LU":"OFF",
"SIM_SCALING":"SCALING_FREE",
"SIM_SCALING_METHOD":"SCALING_METHOD_POW2",
"SIM_SOLVE_FORM":"SOLVE_FREE",
"SIM_STABILITY_PRIORITY":50,
"SIM_SWITCH_OPTIMIZER":"OFF",
"SOL_FILTER_KEEP_BASIC":"OFF",
"SOL_FILTER_KEEP_RANGED":"OFF",
"SOL_READ_NAME_WIDTH":-1,
"SOL_READ_WIDTH":1024,
"SOLUTION_CALLBACK":"OFF",
"TIMING_LEVEL":1,
"WRITE_BAS_CONSTRAINTS":"ON",
"WRITE_BAS_HEAD":"ON",
"WRITE_BAS_VARIABLES":"ON",
"WRITE_DATA_COMPRESSED":0,
"WRITE_DATA_FORMAT":"DATA_FORMAT_EXTENSION",
"WRITE_DATA_PARAM":"OFF",
"WRITE_FREE_CON":"OFF",
"WRITE_GENERIC_NAMES":"OFF",
"WRITE_GENERIC_NAMES_IO":1,
"WRITE_IGNORE_INCOMPATIBLE_CONIC_ITEMS":"OFF",
"WRITE_IGNORE_INCOMPATIBLE_ITEMS":"OFF",
"WRITE_IGNORE_INCOMPATIBLE_NL_ITEMS":"OFF",
"WRITE_IGNORE_INCOMPATIBLE_PSD_ITEMS":"OFF",
"WRITE_INT_CONSTRAINTS":"ON",
"WRITE_INT_HEAD":"ON",
"WRITE_INT_VARIABLES":"ON",
"WRITE_LP_FULL_OBJ":"ON",
"WRITE_LP_LINE_WIDTH":80,
"WRITE_LP_QUOTED_NAMES":"ON",
"WRITE_LP_STRICT_FORMAT":"OFF",
"WRITE_LP_TERMS_PER_LINE":10,
"WRITE_MPS_FORMAT":"MPS_FORMAT_FREE",
"WRITE_MPS_INT":"ON",
"WRITE_PRECISION":15,
"WRITE_SOL_BARVARIABLES":"ON",
"WRITE_SOL_CONSTRAINTS":"ON",
"WRITE_SOL_HEAD":"ON",
"WRITE_SOL_IGNORE_INVALID_NAMES":"OFF",
"WRITE_SOL_VARIABLES":"ON",

18.7. The JSON Format 295

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"WRITE_TASK_INC_SOL":"ON",
"WRITE_XML_MODE":"WRITE_XML_MODE_ROW"

},
"dparam":{

"ANA_SOL_INFEAS_TOL":1e-6,
"BASIS_REL_TOL_S":1e-12,
"BASIS_TOL_S":1e-6,
"BASIS_TOL_X":1e-6,
"CHECK_CONVEXITY_REL_TOL":1e-10,
"DATA_TOL_AIJ":1e-12,
"DATA_TOL_AIJ_HUGE":1e+20,
"DATA_TOL_AIJ_LARGE":1e+10,
"DATA_TOL_BOUND_INF":1e+16,
"DATA_TOL_BOUND_WRN":1e+8,
"DATA_TOL_C_HUGE":1e+16,
"DATA_TOL_CJ_LARGE":1e+8,
"DATA_TOL_QIJ":1e-16,
"DATA_TOL_X":1e-8,
"FEASREPAIR_TOL":1e-10,
"INTPNT_CO_TOL_DFEAS":1e-8,
"INTPNT_CO_TOL_INFEAS":1e-10,
"INTPNT_CO_TOL_MU_RED":1e-8,
"INTPNT_CO_TOL_NEAR_REL":1e+3,
"INTPNT_CO_TOL_PFEAS":1e-8,
"INTPNT_CO_TOL_REL_GAP":1e-7,
"INTPNT_NL_MERIT_BAL":1e-4,
"INTPNT_NL_TOL_DFEAS":1e-8,
"INTPNT_NL_TOL_MU_RED":1e-12,
"INTPNT_NL_TOL_NEAR_REL":1e+3,
"INTPNT_NL_TOL_PFEAS":1e-8,
"INTPNT_NL_TOL_REL_GAP":1e-6,
"INTPNT_NL_TOL_REL_STEP":9.95e-1,
"INTPNT_QO_TOL_DFEAS":1e-8,
"INTPNT_QO_TOL_INFEAS":1e-10,
"INTPNT_QO_TOL_MU_RED":1e-8,
"INTPNT_QO_TOL_NEAR_REL":1e+3,
"INTPNT_QO_TOL_PFEAS":1e-8,
"INTPNT_QO_TOL_REL_GAP":1e-8,
"INTPNT_TOL_DFEAS":1e-8,
"INTPNT_TOL_DSAFE":1e+0,
"INTPNT_TOL_INFEAS":1e-10,
"INTPNT_TOL_MU_RED":1e-16,
"INTPNT_TOL_PATH":1e-8,
"INTPNT_TOL_PFEAS":1e-8,
"INTPNT_TOL_PSAFE":1e+0,
"INTPNT_TOL_REL_GAP":1e-8,
"INTPNT_TOL_REL_STEP":9.999e-1,
"INTPNT_TOL_STEP_SIZE":1e-6,
"LOWER_OBJ_CUT":-1e+30,
"LOWER_OBJ_CUT_FINITE_TRH":-5e+29,
"MIO_DISABLE_TERM_TIME":-1e+0,
"MIO_MAX_TIME":-1e+0,
"MIO_MAX_TIME_APRX_OPT":6e+1,
"MIO_NEAR_TOL_ABS_GAP":0.0,
"MIO_NEAR_TOL_REL_GAP":1e-3,
"MIO_REL_GAP_CONST":1e-10,
"MIO_TOL_ABS_GAP":0.0,
"MIO_TOL_ABS_RELAX_INT":1e-5,
"MIO_TOL_FEAS":1e-6,
"MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT":0.0,
"MIO_TOL_REL_GAP":1e-4,
"MIO_TOL_X":1e-6,
"OPTIMIZER_MAX_TIME":-1e+0,

296 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"PRESOLVE_TOL_ABS_LINDEP":1e-6,
"PRESOLVE_TOL_AIJ":1e-12,
"PRESOLVE_TOL_REL_LINDEP":1e-10,
"PRESOLVE_TOL_S":1e-8,
"PRESOLVE_TOL_X":1e-8,
"QCQO_REFORMULATE_REL_DROP_TOL":1e-15,
"SEMIDEFINITE_TOL_APPROX":1e-10,
"SIM_LU_TOL_REL_PIV":1e-2,
"SIMPLEX_ABS_TOL_PIV":1e-7,
"UPPER_OBJ_CUT":1e+30,
"UPPER_OBJ_CUT_FINITE_TRH":5e+29

},
"sparam":{

"BAS_SOL_FILE_NAME":"",
"DATA_FILE_NAME":"examples/tools/data/lo1.mps",
"DEBUG_FILE_NAME":"",
"INT_SOL_FILE_NAME":"",
"ITR_SOL_FILE_NAME":"",
"MIO_DEBUG_STRING":"",
"PARAM_COMMENT_SIGN":"%%",
"PARAM_READ_FILE_NAME":"",
"PARAM_WRITE_FILE_NAME":"",
"READ_MPS_BOU_NAME":"",
"READ_MPS_OBJ_NAME":"",
"READ_MPS_RAN_NAME":"",
"READ_MPS_RHS_NAME":"",
"SENSITIVITY_FILE_NAME":"",
"SENSITIVITY_RES_FILE_NAME":"",
"SOL_FILTER_XC_LOW":"",
"SOL_FILTER_XC_UPR":"",
"SOL_FILTER_XX_LOW":"",
"SOL_FILTER_XX_UPR":"",
"STAT_FILE_NAME":"",
"STAT_KEY":"",
"STAT_NAME":"",
"WRITE_LP_GEN_VAR_NAME":"XMSKGEN"

}
}

}

18.8 The Solution File Format

MOSEK provides several solution files depending on the problem type and the optimizer used:

• basis solution file (extension .bas) if the problem is optimized using the simplex optimizer or basis
identification is performed,

• interior solution file (extension .sol) if a problem is optimized using the interior-point optimizer
and no basis identification is required,

• integer solution file (extension .int) if the problem contains integer constrained variables.

All solution files have the format:

NAME : <problem name>
PROBLEM STATUS : <status of the problem>
SOLUTION STATUS : <status of the solution>
OBJECTIVE NAME : <name of the objective function>
PRIMAL OBJECTIVE : <primal objective value corresponding to the solution>
DUAL OBJECTIVE : <dual objective value corresponding to the solution>
CONSTRAINTS

18.8. The Solution File Format 297

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER
? <name> ?? <a value> <a value> <a value> <a value> <a value>
VARIABLES
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER CONIC␣
→˓DUAL
? <name> ?? <a value> <a value> <a value> <a value> <a value> <a value>

In the example the fields ? and <> will be filled with problem and solution specific information. As can
be observed a solution report consists of three sections, i.e.

• HEADER In this section, first the name of the problem is listed and afterwards the problem and
solution status are shown. Next the primal and dual objective values are displayed.

• CONSTRAINTS For each constraint 𝑖 of the form

𝑙𝑐𝑖 ≤
𝑛∑︁

𝑗=1

𝑎𝑖𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑖 , (18.10)

the following information is listed:

– INDEX: A sequential index assigned to the constraint by MOSEK

– NAME: The name of the constraint assigned by the user.

– AT: The status of the constraint. In Table 18.4 the possible values of the status keys and
their interpretation are shown.

Table 18.4: Status keys.
Status key Interpretation
UN Unknown status
BS Is basic
SB Is superbasic
LL Is at the lower limit (bound)
UL Is at the upper limit (bound)
EQ Lower limit is identical to upper limit
** Is infeasible i.e. the lower limit is greater than the upper limit.

– ACTIVITY: the quantity
∑︀𝑛

𝑗=1 𝑎𝑖𝑗𝑥
*
𝑗 , where 𝑥* is the value of the primal solution.

– LOWER LIMIT: the quantity 𝑙𝑐𝑖 (see (18.10).)

– UPPER LIMIT: the quantity 𝑢𝑐
𝑖 (see (18.10).)

– DUAL LOWER: the dual multiplier corresponding to the lower limit on the constraint.

– DUAL UPPER: the dual multiplier corresponding to the upper limit on the constraint.

• VARIABLES The last section of the solution report lists information about the variables. This
information has a similar interpretation as for the constraints. However, the column with
the header CONIC DUAL is included for problems having one or more conic constraints. This
column shows the dual variables corresponding to the conic constraints.

Example: lo1.sol

In Listing 18.7 we show the solution file for the lo1.opf problem.

Listing 18.7: An example of .sol file.

NAME :
PROBLEM STATUS : PRIMAL_AND_DUAL_FEASIBLE
SOLUTION STATUS : OPTIMAL
OBJECTIVE NAME : obj

298 Chapter 18. Supported File Formats

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

PRIMAL OBJECTIVE : 8.33333333e+01
DUAL OBJECTIVE : 8.33333332e+01

CONSTRAINTS
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT ␣
→˓DUAL LOWER DUAL UPPER
0 c1 EQ 3.00000000000000e+01 3.00000000e+01 3.00000000e+01 -0.
→˓00000000000000e+00 -2.49999999741654e+00
1 c2 SB 5.33333333049188e+01 1.50000000e+01 NONE 2.
→˓09157603759397e-10 -0.00000000000000e+00
2 c3 UL 2.49999999842049e+01 NONE 2.50000000e+01 -0.
→˓00000000000000e+00 -3.33333332895110e-01

VARIABLES
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT ␣
→˓DUAL LOWER DUAL UPPER
0 x1 LL 1.67020427073508e-09 0.00000000e+00 NONE -4.
→˓49999999528055e+00 -0.00000000000000e+00
1 x2 LL 2.93510446280504e-09 0.00000000e+00 1.00000000e+01 -2.
→˓16666666494916e+00 6.20863861687316e-10
2 x3 SB 1.49999999899425e+01 0.00000000e+00 NONE -8.
→˓79123177454657e-10 -0.00000000000000e+00
3 x4 SB 8.33333332273116e+00 0.00000000e+00 NONE -1.
→˓69795978899185e-09 -0.00000000000000e+00

18.8. The Solution File Format 299

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

300 Chapter 18. Supported File Formats

CHAPTER

NINETEEN

LIST OF EXAMPLES

List of examples shipped in the distribution of Optimization Toolbox for MATLAB:

Table 19.1: List of distributed examples
File Description
callbackex.m An example of a callback function writing to a log file
cqo1.m A simple conic quadratic problem
eo1.m A simple entropy optimization problem
feasrepairex1.
m

A simple example of how to repair an infeasible problem

go1.m A simple geometric optimization problem
go2.m A simple geometric optimization problem
lo1.m A simple linear problem
lo2.m A simple linear problem
milo1.m A simple mixed-integer linear problem
mioinitsol.m A simple mixed-integer linear problem with an initial guess
nrm1.m Solve a linear least-squares problem as a quadratic problem
nrm2.m Solve a linear least-squares problem with constraints
nrm3.m Solve a linear regression problem with infinity norm
nrm4.m Solve a linear regression problem with L1 norm
nrm5.m Solve a linear least-squares problem as a reformulated quadratic problem
production.m Demonstrate how to modify and re-optimize a linear problem
qcqo1.m A simple quadratically constrained quadratic problem
qo1.m A simple quadratic problem
qo2.m A simple quadratic problem
response.m Demonstrates proper response handling
rlo1.m Robust linear optimization example, part 1
rlo2.m Robust linear optimization example, part 2
scopt1.m Shows how to solve a simple non-linear separable problem using the SCopt in-

terface
sdo1.m A simple semidefinite optimization problem
sensitivity.m Sensitivity analysis performed on a small linear problem
sensitivity2.m Sensitivity analysis performed on a small linear problem
simple.m A simple I/O example: read problem from a file, solve and write solutions
solutionquality.
m

Demonstrates how to examine the quality of a solution

Additional examples can be found on the MOSEK website and in other MOSEK publications.

301

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

302 Chapter 19. List of examples

CHAPTER

TWENTY

INTERFACE CHANGES

The section show interface-specific changes to the MOSEK Optimization Toolbox for MATLAB in
version 8. See the release notes for general changes and new features of the MOSEK Optimization
Suite.

20.1 Compatibility

• The MATLAB compatibility function bintprog has been replaced by intlinprog to comform with
MATLAB 2014 and later.

Compatibility guarantees for this interface has been updated. See the new list of supported MATLAB
versions.

20.2 Parameters

Added

• MSK_DPAR_DATA_SYM_MAT_TOL

• MSK_DPAR_DATA_SYM_MAT_TOL_HUGE

• MSK_DPAR_DATA_SYM_MAT_TOL_LARGE

• MSK_DPAR_INTPNT_QO_TOL_DFEAS

• MSK_DPAR_INTPNT_QO_TOL_INFEAS

• MSK_DPAR_INTPNT_QO_TOL_MU_RED

• MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

• MSK_DPAR_INTPNT_QO_TOL_PFEAS

• MSK_DPAR_INTPNT_QO_TOL_REL_GAP

• MSK_DPAR_SEMIDEFINITE_TOL_APPROX

• MSK_IPAR_INTPNT_MULTI_THREAD

• MSK_IPAR_LICENSE_TRH_EXPIRY_WRN

• MSK_IPAR_LOG_ANA_PRO

• MSK_IPAR_MIO_CUT_CLIQUE

• MSK_IPAR_MIO_CUT_GMI

• MSK_IPAR_MIO_CUT_IMPLIED_BOUND

• MSK_IPAR_MIO_CUT_KNAPSACK_COVER

303

http://docs.mosek.com/8.1/releasenotes/index.html

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• MSK_IPAR_MIO_CUT_SELECTION_LEVEL

• MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE

• MSK_IPAR_MIO_ROOT_REPEAT_PRESOLVE_LEVEL

• MSK_IPAR_MIO_VB_DETECTION_LEVEL

• MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL

• MSK_IPAR_REMOVE_UNUSED_SOLUTIONS

• MSK_IPAR_WRITE_LP_FULL_OBJ

• MSK_IPAR_WRITE_MPS_FORMAT

• MSK_SPAR_REMOTE_ACCESS_TOKEN

Removed

• MSK_DPAR_FEASREPAIR_TOL

• MSK_DPAR_MIO_HEURISTIC_TIME

• MSK_DPAR_MIO_MAX_TIME_APRX_OPT

• MSK_DPAR_MIO_REL_ADD_CUT_LIMITED

• MSK_DPAR_MIO_TOL_MAX_CUT_FRAC_RHS

• MSK_DPAR_MIO_TOL_MIN_CUT_FRAC_RHS

• MSK_DPAR_MIO_TOL_REL_RELAX_INT

• MSK_DPAR_MIO_TOL_X

• MSK_DPAR_NONCONVEX_TOL_FEAS

• MSK_DPAR_NONCONVEX_TOL_OPT

• MSK_IPAR_ALLOC_ADD_QNZ

• MSK_IPAR_CONCURRENT_NUM_OPTIMIZERS

• MSK_IPAR_CONCURRENT_PRIORITY_DUAL_SIMPLEX

• MSK_IPAR_CONCURRENT_PRIORITY_FREE_SIMPLEX

• MSK_IPAR_CONCURRENT_PRIORITY_INTPNT

• MSK_IPAR_CONCURRENT_PRIORITY_PRIMAL_SIMPLEX

• MSK_IPAR_FEASREPAIR_OPTIMIZE

• MSK_IPAR_INTPNT_FACTOR_DEBUG_LVL

• MSK_IPAR_INTPNT_FACTOR_METHOD

• MSK_IPAR_LIC_TRH_EXPIRY_WRN

• MSK_IPAR_LOG_CONCURRENT

• MSK_IPAR_LOG_FACTOR

• MSK_IPAR_LOG_HEAD

• MSK_IPAR_LOG_NONCONVEX

• MSK_IPAR_LOG_OPTIMIZER

• MSK_IPAR_LOG_PARAM

• MSK_IPAR_LOG_SIM_NETWORK_FREQ

• MSK_IPAR_MIO_BRANCH_PRIORITIES_USE

304 Chapter 20. Interface changes

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• MSK_IPAR_MIO_CONT_SOL

• MSK_IPAR_MIO_CUT_CG

• MSK_IPAR_MIO_CUT_LEVEL_ROOT

• MSK_IPAR_MIO_CUT_LEVEL_TREE

• MSK_IPAR_MIO_FEASPUMP_LEVEL

• MSK_IPAR_MIO_HOTSTART

• MSK_IPAR_MIO_KEEP_BASIS

• MSK_IPAR_MIO_LOCAL_BRANCH_NUMBER

• MSK_IPAR_MIO_OPTIMIZER_MODE

• MSK_IPAR_MIO_PRESOLVE_AGGREGATE

• MSK_IPAR_MIO_PRESOLVE_PROBING

• MSK_IPAR_MIO_PRESOLVE_USE

• MSK_IPAR_MIO_STRONG_BRANCH

• MSK_IPAR_MIO_USE_MULTITHREADED_OPTIMIZER

• MSK_IPAR_NONCONVEX_MAX_ITERATIONS

• MSK_IPAR_PRESOLVE_ELIM_FILL

• MSK_IPAR_PRESOLVE_ELIMINATOR_USE

• MSK_IPAR_QO_SEPARABLE_REFORMULATION

• MSK_IPAR_READ_ANZ

• MSK_IPAR_READ_CON

• MSK_IPAR_READ_CONE

• MSK_IPAR_READ_MPS_KEEP_INT

• MSK_IPAR_READ_MPS_OBJ_SENSE

• MSK_IPAR_READ_MPS_RELAX

• MSK_IPAR_READ_QNZ

• MSK_IPAR_READ_VAR

• MSK_IPAR_SIM_INTEGER

• MSK_IPAR_WARNING_LEVEL

• MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_CONIC_ITEMS

• MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_NL_ITEMS

• MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_PSD_ITEMS

• MSK_SPAR_FEASREPAIR_NAME_PREFIX

• MSK_SPAR_FEASREPAIR_NAME_SEPARATOR

• MSK_SPAR_FEASREPAIR_NAME_WSUMVIOL

20.2. Parameters 305

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

20.3 Constants

Added

• "MSK_BRANCH_DIR_FAR"

• "MSK_BRANCH_DIR_GUIDED"

• "MSK_BRANCH_DIR_NEAR"

• "MSK_BRANCH_DIR_PSEUDOCOST"

• "MSK_BRANCH_DIR_ROOT_LP"

• "MSK_CALLBACK_BEGIN_ROOT_CUTGEN"

• "MSK_CALLBACK_BEGIN_TO_CONIC"

• "MSK_CALLBACK_END_ROOT_CUTGEN"

• "MSK_CALLBACK_END_TO_CONIC"

• "MSK_CALLBACK_IM_ROOT_CUTGEN"

• "MSK_CALLBACK_SOLVING_REMOTE"

• "MSK_DATA_FORMAT_JSON_TASK"

• "MSK_DINF_MIO_CLIQUE_SEPARATION_TIME"

• "MSK_DINF_MIO_CMIR_SEPARATION_TIME"

• "MSK_DINF_MIO_GMI_SEPARATION_TIME"

• "MSK_DINF_MIO_IMPLIED_BOUND_TIME"

• "MSK_DINF_MIO_KNAPSACK_COVER_SEPARATION_TIME"

• "MSK_DINF_QCQO_REFORMULATE_MAX_PERTURBATION"

• "MSK_DINF_QCQO_REFORMULATE_WORST_CHOLESKY_COLUMN_SCALING"

• "MSK_DINF_QCQO_REFORMULATE_WORST_CHOLESKY_DIAG_SCALING"

• "MSK_DINF_SOL_BAS_NRM_BARX"

• "MSK_DINF_SOL_BAS_NRM_SLC"

• "MSK_DINF_SOL_BAS_NRM_SLX"

• "MSK_DINF_SOL_BAS_NRM_SUC"

• "MSK_DINF_SOL_BAS_NRM_SUX"

• "MSK_DINF_SOL_BAS_NRM_XC"

• "MSK_DINF_SOL_BAS_NRM_XX"

• "MSK_DINF_SOL_BAS_NRM_Y"

• "MSK_DINF_SOL_ITG_NRM_BARX"

• "MSK_DINF_SOL_ITG_NRM_XC"

• "MSK_DINF_SOL_ITG_NRM_XX"

• "MSK_DINF_SOL_ITR_NRM_BARS"

• "MSK_DINF_SOL_ITR_NRM_BARX"

• "MSK_DINF_SOL_ITR_NRM_SLC"

• "MSK_DINF_SOL_ITR_NRM_SLX"

306 Chapter 20. Interface changes

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• "MSK_DINF_SOL_ITR_NRM_SNX"

• "MSK_DINF_SOL_ITR_NRM_SUC"

• "MSK_DINF_SOL_ITR_NRM_SUX"

• "MSK_DINF_SOL_ITR_NRM_XC"

• "MSK_DINF_SOL_ITR_NRM_XX"

• "MSK_DINF_SOL_ITR_NRM_Y"

• "MSK_DINF_TO_CONIC_TIME"

• "MSK_IINF_MIO_ABSGAP_SATISFIED"

• "MSK_IINF_MIO_CLIQUE_TABLE_SIZE"

• "MSK_IINF_MIO_NEAR_ABSGAP_SATISFIED"

• "MSK_IINF_MIO_NEAR_RELGAP_SATISFIED"

• "MSK_IINF_MIO_NODE_DEPTH"

• "MSK_IINF_MIO_NUM_CMIR_CUTS"

• "MSK_IINF_MIO_NUM_IMPLIED_BOUND_CUTS"

• "MSK_IINF_MIO_NUM_KNAPSACK_COVER_CUTS"

• "MSK_IINF_MIO_NUM_REPEATED_PRESOLVE"

• "MSK_IINF_MIO_PRESOLVED_NUMBIN"

• "MSK_IINF_MIO_PRESOLVED_NUMCON"

• "MSK_IINF_MIO_PRESOLVED_NUMCONT"

• "MSK_IINF_MIO_PRESOLVED_NUMINT"

• "MSK_IINF_MIO_PRESOLVED_NUMVAR"

• "MSK_IINF_MIO_RELGAP_SATISFIED"

• "MSK_LIINF_MIO_PRESOLVED_ANZ"

• "MSK_LIINF_MIO_SIM_MAXITER_SETBACKS"

• "MSK_MPS_FORMAT_CPLEX"

• "MSK_SOL_STA_DUAL_ILLPOSED_CER"

• "MSK_SOL_STA_PRIM_ILLPOSED_CER"

Changed

• "MSK_SOL_STA_INTEGER_OPTIMAL"

• "MSK_SOL_STA_NEAR_DUAL_FEAS"

• "MSK_SOL_STA_NEAR_DUAL_INFEAS_CER"

• "MSK_SOL_STA_NEAR_INTEGER_OPTIMAL"

• "MSK_SOL_STA_NEAR_OPTIMAL"

• "MSK_SOL_STA_NEAR_PRIM_AND_DUAL_FEAS"

• "MSK_SOL_STA_NEAR_PRIM_FEAS"

• "MSK_SOL_STA_NEAR_PRIM_INFEAS_CER"

• "MSK_LICENSE_BUFFER_LENGTH"

20.3. Constants 307

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Removed

• MSK_CALLBACKCODE_BEGIN_CONCURRENT

• MSK_CALLBACKCODE_BEGIN_NETWORK_DUAL_SIMPLEX

• MSK_CALLBACKCODE_BEGIN_NETWORK_PRIMAL_SIMPLEX

• MSK_CALLBACKCODE_BEGIN_NETWORK_SIMPLEX

• MSK_CALLBACKCODE_BEGIN_NONCONVEX

• MSK_CALLBACKCODE_BEGIN_PRIMAL_DUAL_SIMPLEX

• MSK_CALLBACKCODE_BEGIN_PRIMAL_DUAL_SIMPLEX_BI

• MSK_CALLBACKCODE_BEGIN_SIMPLEX_NETWORK_DETECT

• MSK_CALLBACKCODE_END_CONCURRENT

• MSK_CALLBACKCODE_END_NETWORK_DUAL_SIMPLEX

• MSK_CALLBACKCODE_END_NETWORK_PRIMAL_SIMPLEX

• MSK_CALLBACKCODE_END_NETWORK_SIMPLEX

• MSK_CALLBACKCODE_END_NONCONVEX

• MSK_CALLBACKCODE_END_PRIMAL_DUAL_SIMPLEX

• MSK_CALLBACKCODE_END_PRIMAL_DUAL_SIMPLEX_BI

• MSK_CALLBACKCODE_END_SIMPLEX_NETWORK_DETECT

• MSK_CALLBACKCODE_IM_MIO_PRESOLVE

• MSK_CALLBACKCODE_IM_NETWORK_DUAL_SIMPLEX

• MSK_CALLBACKCODE_IM_NETWORK_PRIMAL_SIMPLEX

• MSK_CALLBACKCODE_IM_NONCONVEX

• MSK_CALLBACKCODE_IM_PRIMAL_DUAL_SIMPLEX

• MSK_CALLBACKCODE_NONCOVEX

• MSK_CALLBACKCODE_UPDATE_NETWORK_DUAL_SIMPLEX

• MSK_CALLBACKCODE_UPDATE_NETWORK_PRIMAL_SIMPLEX

• MSK_CALLBACKCODE_UPDATE_NONCONVEX

• MSK_CALLBACKCODE_UPDATE_PRIMAL_DUAL_SIMPLEX

• MSK_CALLBACKCODE_UPDATE_PRIMAL_DUAL_SIMPLEX_BI

• MSK_DINFITEM_BI_CLEAN_PRIMAL_DUAL_TIME

• MSK_DINFITEM_CONCURRENT_TIME

• MSK_DINFITEM_MIO_CG_SEPERATION_TIME

• MSK_DINFITEM_MIO_CMIR_SEPERATION_TIME

• MSK_DINFITEM_SIM_NETWORK_DUAL_TIME

• MSK_DINFITEM_SIM_NETWORK_PRIMAL_TIME

• MSK_DINFITEM_SIM_NETWORK_TIME

• MSK_DINFITEM_SIM_PRIMAL_DUAL_TIME

• MSK_FEATURE_PTOM

• MSK_FEATURE_PTOX

308 Chapter 20. Interface changes

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• MSK_IINFITEM_CONCURRENT_FASTEST_OPTIMIZER

• MSK_IINFITEM_MIO_NUM_BASIS_CUTS

• MSK_IINFITEM_MIO_NUM_CARDGUB_CUTS

• MSK_IINFITEM_MIO_NUM_COEF_REDC_CUTS

• MSK_IINFITEM_MIO_NUM_CONTRA_CUTS

• MSK_IINFITEM_MIO_NUM_DISAGG_CUTS

• MSK_IINFITEM_MIO_NUM_FLOW_COVER_CUTS

• MSK_IINFITEM_MIO_NUM_GCD_CUTS

• MSK_IINFITEM_MIO_NUM_GUB_COVER_CUTS

• MSK_IINFITEM_MIO_NUM_KNAPSUR_COVER_CUTS

• MSK_IINFITEM_MIO_NUM_LATTICE_CUTS

• MSK_IINFITEM_MIO_NUM_LIFT_CUTS

• MSK_IINFITEM_MIO_NUM_OBJ_CUTS

• MSK_IINFITEM_MIO_NUM_PLAN_LOC_CUTS

• MSK_IINFITEM_SIM_NETWORK_DUAL_DEG_ITER

• MSK_IINFITEM_SIM_NETWORK_DUAL_HOTSTART

• MSK_IINFITEM_SIM_NETWORK_DUAL_HOTSTART_LU

• MSK_IINFITEM_SIM_NETWORK_DUAL_INF_ITER

• MSK_IINFITEM_SIM_NETWORK_DUAL_ITER

• MSK_IINFITEM_SIM_NETWORK_PRIMAL_DEG_ITER

• MSK_IINFITEM_SIM_NETWORK_PRIMAL_HOTSTART

• MSK_IINFITEM_SIM_NETWORK_PRIMAL_HOTSTART_LU

• MSK_IINFITEM_SIM_NETWORK_PRIMAL_INF_ITER

• MSK_IINFITEM_SIM_NETWORK_PRIMAL_ITER

• MSK_IINFITEM_SIM_PRIMAL_DUAL_DEG_ITER

• MSK_IINFITEM_SIM_PRIMAL_DUAL_HOTSTART

• MSK_IINFITEM_SIM_PRIMAL_DUAL_HOTSTART_LU

• MSK_IINFITEM_SIM_PRIMAL_DUAL_INF_ITER

• MSK_IINFITEM_SIM_PRIMAL_DUAL_ITER

• MSK_IINFITEM_SOL_INT_PROSTA

• MSK_IINFITEM_SOL_INT_SOLSTA

• MSK_IINFITEM_STO_NUM_A_CACHE_FLUSHES

• MSK_IINFITEM_STO_NUM_A_TRANSPOSES

• MSK_LIINFITEM_BI_CLEAN_PRIMAL_DUAL_DEG_ITER

• MSK_LIINFITEM_BI_CLEAN_PRIMAL_DUAL_ITER

• MSK_LIINFITEM_BI_CLEAN_PRIMAL_DUAL_SUB_ITER

• MSK_MIOMODE_LAZY

• MSK_OPTIMIZERTYPE_CONCURRENT

• MSK_OPTIMIZERTYPE_MIXED_INT_CONIC

20.3. Constants 309

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

• MSK_OPTIMIZERTYPE_NETWORK_PRIMAL_SIMPLEX

• MSK_OPTIMIZERTYPE_NONCONVEX

• MSK_OPTIMIZERTYPE_PRIMAL_DUAL_SIMPLEX

20.4 Response Codes

Added

• "MSK_RES_ERR_CBF_DUPLICATE_PSDVAR"

• "MSK_RES_ERR_CBF_INVALID_PSDVAR_DIMENSION"

• "MSK_RES_ERR_CBF_TOO_FEW_PSDVAR"

• "MSK_RES_ERR_DUPLICATE_AIJ"

• "MSK_RES_ERR_FINAL_SOLUTION"

• "MSK_RES_ERR_JSON_DATA"

• "MSK_RES_ERR_JSON_FORMAT"

• "MSK_RES_ERR_JSON_MISSING_DATA"

• "MSK_RES_ERR_JSON_NUMBER_OVERFLOW"

• "MSK_RES_ERR_JSON_STRING"

• "MSK_RES_ERR_JSON_SYNTAX"

• "MSK_RES_ERR_LAU_INVALID_LOWER_TRIANGULAR_MATRIX"

• "MSK_RES_ERR_LAU_INVALID_SPARSE_SYMMETRIC_MATRIX"

• "MSK_RES_ERR_LAU_NOT_POSITIVE_DEFINITE"

• "MSK_RES_ERR_MIXED_CONIC_AND_NL"

• "MSK_RES_ERR_SERVER_CONNECT"

• "MSK_RES_ERR_SERVER_PROTOCOL"

• "MSK_RES_ERR_SERVER_STATUS"

• "MSK_RES_ERR_SERVER_TOKEN"

• "MSK_RES_ERR_SYM_MAT_HUGE"

• "MSK_RES_ERR_SYM_MAT_INVALID"

• "MSK_RES_ERR_TASK_WRITE"

• "MSK_RES_ERR_TOCONIC_CONSTR_NOT_CONIC"

• "MSK_RES_ERR_TOCONIC_CONSTR_Q_NOT_PSD"

• "MSK_RES_ERR_TOCONIC_CONSTRAINT_FX"

• "MSK_RES_ERR_TOCONIC_CONSTRAINT_RA"

• "MSK_RES_ERR_TOCONIC_OBJECTIVE_NOT_PSD"

• "MSK_RES_WRN_SYM_MAT_LARGE"

310 Chapter 20. Interface changes

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Removed

• MSK_RES_ERR_AD_INVALID_OPERAND

• MSK_RES_ERR_AD_INVALID_OPERATOR

• MSK_RES_ERR_AD_MISSING_OPERAND

• MSK_RES_ERR_AD_MISSING_RETURN

• MSK_RES_ERR_CONCURRENT_OPTIMIZER

• MSK_RES_ERR_INV_CONIC_PROBLEM

• MSK_RES_ERR_INVALID_BRANCH_DIRECTION

• MSK_RES_ERR_INVALID_BRANCH_PRIORITY

• MSK_RES_ERR_INVALID_NETWORK_PROBLEM

• MSK_RES_ERR_MBT_INCOMPATIBLE

• MSK_RES_ERR_MBT_INVALID

• MSK_RES_ERR_MIO_NOT_LOADED

• MSK_RES_ERR_MIXED_PROBLEM

• MSK_RES_ERR_NO_DUAL_INFO_FOR_ITG_SOL

• MSK_RES_ERR_ORD_INVALID

• MSK_RES_ERR_ORD_INVALID_BRANCH_DIR

• MSK_RES_ERR_TOCONIC_CONVERSION_FAIL

• MSK_RES_ERR_TOO_MANY_CONCURRENT_TASKS

• MSK_RES_WRN_TOO_MANY_THREADS_CONCURRENT

20.4. Response Codes 311

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

312 Chapter 20. Interface changes

BIBLIOGRAPHY

[AA95] E. D. Andersen and K. D. Andersen. Presolving in linear programming. Math. Programming,
71(2):221–245, 1995.

[AGMX96] E. D. Andersen, J. Gondzio, Cs. Mészáros, and X. Xu. Implementation of interior point meth-
ods for large scale linear programming. In T. Terlaky, editor, Interior-point methods of mathematical
programming, pages 189–252. Kluwer Academic Publishers, 1996.

[ART03] E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual interior-point method
for conic quadratic optimization. Math. Programming, February 2003.

[AY96] E. D. Andersen and Y. Ye. Combining interior-point and pivoting algorithms. Management Sci.,
42(12):1719–1731, December 1996.

[AY98] E. D. Andersen and Y. Ye. A computational study of the homogeneous algorithm for large-scale
convex optimization. Computational Optimization and Applications, 10:243–269, 1998.

[AY99] E. D. Andersen and Y. Ye. On a homogeneous algorithm for the monotone complementarity
problem. Math. Programming, 84(2):375–399, February 1999.

[And09] Erling D. Andersen. The homogeneous and self-dual model and algorithm for linear optimiza-
tion. Technical Report TR-1-2009, MOSEK ApS, 2009. URL: http://docs.mosek.com/whitepapers/
homolo.pdf.

[And13] Erling D. Andersen. On formulating quadratic functions in optimization models. Technical
Report TR-1-2013, MOSEK ApS, 2013. Last revised 23-feb-2016. URL: http://docs.mosek.com/
whitepapers/qmodel.pdf.

[BSS93] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear programming: Theory and algorithms.
John Wiley and Sons, New York, 2 edition, 1993.

[BP76] C. Beightler and D. T. Phillips. Applied geometric programming. John Wiley and Sons, New
York, 1976.

[BTN00] A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems contaminated
with uncertain data. Math. Programming, 88(3):411–424, 2000.

[BKVH04] S. Boyd, S.J. Kim, L. Vandenberghe, and A. Hassibi. A Tutorial on Geometric Programming.
Technical Report, ISL, Electrical Engineering Department, Stanford University, Stanford, CA, 2004.
Available at http://www.stanford.edu/~boyd/gp_tutorial.html.

[Chv83] V. Chvátal. Linear programming. W.H. Freeman and Company, 1983.

[Naz87] J. L. Nazareth. Computer Solution of Linear Programs. Oxford University Press, New York,
1987.

[RTV97] C. Roos, T. Terlaky, and J. -Ph. Vial. Theory and algorithms for linear optimization: an
interior point approach. John Wiley and Sons, New York, 1997.

[Wal00] S. W. Wallace. Decision making under uncertainty: is sensitivity of any use. Oper. Res.,
48(1):20–25, January 2000.

[Wol98] L. A. Wolsey. Integer programming. John Wiley and Sons, 1998.

313

http://docs.mosek.com/whitepapers/homolo.pdf
http://docs.mosek.com/whitepapers/homolo.pdf
http://docs.mosek.com/whitepapers/qmodel.pdf
http://docs.mosek.com/whitepapers/qmodel.pdf

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

[BenTalN01] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization: Analysis, Algo-
rithms, and Engineering Applications. MPS/SIAM Series on Optimization. SIAM, 2001.

[MOSEKApS12] MOSEK ApS. The MOSEK Modeling Cookbook. MOSEK ApS, Fruebjergvej 3, Boks
16, 2100 Copenhagen O, 2012. Last revised September 2015. URL: http://docs.mosek.com/generic/
modeling-a4.pdf.

314 Bibliography

http://docs.mosek.com/generic/modeling-a4.pdf
http://docs.mosek.com/generic/modeling-a4.pdf

SYMBOL INDEX

Enumerations
accmode, 221
"MSK_ACC_VAR", 221
"MSK_ACC_CON", 221
basindtype, 221
"MSK_BI_RESERVERED", 221
"MSK_BI_NO_ERROR", 221
"MSK_BI_NEVER", 221
"MSK_BI_IF_FEASIBLE", 221
"MSK_BI_ALWAYS", 221
boundkey, 221
"MSK_BK_UP", 221
"MSK_BK_RA", 221
"MSK_BK_LO", 221
"MSK_BK_FX", 221
"MSK_BK_FR", 221
branchdir, 238
"MSK_BRANCH_DIR_UP", 238
"MSK_BRANCH_DIR_ROOT_LP", 238
"MSK_BRANCH_DIR_PSEUDOCOST", 238
"MSK_BRANCH_DIR_NEAR", 238
"MSK_BRANCH_DIR_GUIDED", 238
"MSK_BRANCH_DIR_FREE", 238
"MSK_BRANCH_DIR_FAR", 238
"MSK_BRANCH_DIR_DOWN", 238
callbackcode, 223
"MSK_CALLBACK_WRITE_OPF", 227
"MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX_BI",

227
"MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX", 227
"MSK_CALLBACK_UPDATE_PRIMAL_BI", 227
"MSK_CALLBACK_UPDATE_PRESOLVE", 227
"MSK_CALLBACK_UPDATE_DUAL_SIMPLEX_BI", 227
"MSK_CALLBACK_UPDATE_DUAL_SIMPLEX", 227
"MSK_CALLBACK_UPDATE_DUAL_BI", 227
"MSK_CALLBACK_SOLVING_REMOTE", 227
"MSK_CALLBACK_READ_OPF_SECTION", 227
"MSK_CALLBACK_READ_OPF", 227
"MSK_CALLBACK_PRIMAL_SIMPLEX", 227
"MSK_CALLBACK_NEW_INT_MIO", 227
"MSK_CALLBACK_INTPNT", 227
"MSK_CALLBACK_IM_SIMPLEX_BI", 227
"MSK_CALLBACK_IM_SIMPLEX", 227
"MSK_CALLBACK_IM_ROOT_CUTGEN", 227
"MSK_CALLBACK_IM_READ", 226
"MSK_CALLBACK_IM_QO_REFORMULATE", 226

"MSK_CALLBACK_IM_PRIMAL_SIMPLEX", 226
"MSK_CALLBACK_IM_PRIMAL_SENSIVITY", 226
"MSK_CALLBACK_IM_PRIMAL_BI", 226
"MSK_CALLBACK_IM_PRESOLVE", 226
"MSK_CALLBACK_IM_ORDER", 226
"MSK_CALLBACK_IM_MIO_PRIMAL_SIMPLEX", 226
"MSK_CALLBACK_IM_MIO_INTPNT", 226
"MSK_CALLBACK_IM_MIO_DUAL_SIMPLEX", 226
"MSK_CALLBACK_IM_MIO", 226
"MSK_CALLBACK_IM_LU", 226
"MSK_CALLBACK_IM_LICENSE_WAIT", 226
"MSK_CALLBACK_IM_INTPNT", 226
"MSK_CALLBACK_IM_FULL_CONVEXITY_CHECK", 226
"MSK_CALLBACK_IM_DUAL_SIMPLEX", 226
"MSK_CALLBACK_IM_DUAL_SENSIVITY", 226
"MSK_CALLBACK_IM_DUAL_BI", 226
"MSK_CALLBACK_IM_CONIC", 226
"MSK_CALLBACK_IM_BI", 225
"MSK_CALLBACK_END_WRITE", 225
"MSK_CALLBACK_END_TO_CONIC", 225
"MSK_CALLBACK_END_SIMPLEX_BI", 225
"MSK_CALLBACK_END_SIMPLEX", 225
"MSK_CALLBACK_END_ROOT_CUTGEN", 225
"MSK_CALLBACK_END_READ", 225
"MSK_CALLBACK_END_QCQO_REFORMULATE", 225
"MSK_CALLBACK_END_PRIMAL_SIMPLEX_BI", 225
"MSK_CALLBACK_END_PRIMAL_SIMPLEX", 225
"MSK_CALLBACK_END_PRIMAL_SETUP_BI", 225
"MSK_CALLBACK_END_PRIMAL_SENSITIVITY", 225
"MSK_CALLBACK_END_PRIMAL_REPAIR", 225
"MSK_CALLBACK_END_PRIMAL_BI", 225
"MSK_CALLBACK_END_PRESOLVE", 225
"MSK_CALLBACK_END_OPTIMIZER", 225
"MSK_CALLBACK_END_MIO", 225
"MSK_CALLBACK_END_LICENSE_WAIT", 225
"MSK_CALLBACK_END_INTPNT", 225
"MSK_CALLBACK_END_INFEAS_ANA", 225
"MSK_CALLBACK_END_FULL_CONVEXITY_CHECK",

225
"MSK_CALLBACK_END_DUAL_SIMPLEX_BI", 224
"MSK_CALLBACK_END_DUAL_SIMPLEX", 224
"MSK_CALLBACK_END_DUAL_SETUP_BI", 224
"MSK_CALLBACK_END_DUAL_SENSITIVITY", 224
"MSK_CALLBACK_END_DUAL_BI", 224
"MSK_CALLBACK_END_CONIC", 224
"MSK_CALLBACK_END_BI", 224

315

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_CALLBACK_DUAL_SIMPLEX", 224
"MSK_CALLBACK_CONIC", 224
"MSK_CALLBACK_BEGIN_WRITE", 224
"MSK_CALLBACK_BEGIN_TO_CONIC", 224
"MSK_CALLBACK_BEGIN_SIMPLEX_BI", 224
"MSK_CALLBACK_BEGIN_SIMPLEX", 224
"MSK_CALLBACK_BEGIN_ROOT_CUTGEN", 224
"MSK_CALLBACK_BEGIN_READ", 224
"MSK_CALLBACK_BEGIN_QCQO_REFORMULATE", 224
"MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX_BI", 224
"MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX", 224
"MSK_CALLBACK_BEGIN_PRIMAL_SETUP_BI", 224
"MSK_CALLBACK_BEGIN_PRIMAL_SENSITIVITY",

224
"MSK_CALLBACK_BEGIN_PRIMAL_REPAIR", 224
"MSK_CALLBACK_BEGIN_PRIMAL_BI", 223
"MSK_CALLBACK_BEGIN_PRESOLVE", 223
"MSK_CALLBACK_BEGIN_OPTIMIZER", 223
"MSK_CALLBACK_BEGIN_MIO", 223
"MSK_CALLBACK_BEGIN_LICENSE_WAIT", 223
"MSK_CALLBACK_BEGIN_INTPNT", 223
"MSK_CALLBACK_BEGIN_INFEAS_ANA", 223
"MSK_CALLBACK_BEGIN_FULL_CONVEXITY_CHECK",

223
"MSK_CALLBACK_BEGIN_DUAL_SIMPLEX_BI", 223
"MSK_CALLBACK_BEGIN_DUAL_SIMPLEX", 223
"MSK_CALLBACK_BEGIN_DUAL_SETUP_BI", 223
"MSK_CALLBACK_BEGIN_DUAL_SENSITIVITY", 223
"MSK_CALLBACK_BEGIN_DUAL_BI", 223
"MSK_CALLBACK_BEGIN_CONIC", 223
"MSK_CALLBACK_BEGIN_BI", 223
checkconvexitytype, 227
"MSK_CHECK_CONVEXITY_SIMPLE", 228
"MSK_CHECK_CONVEXITY_NONE", 227
"MSK_CHECK_CONVEXITY_FULL", 228
compresstype, 228
"MSK_COMPRESS_NONE", 228
"MSK_COMPRESS_GZIP", 228
"MSK_COMPRESS_FREE", 228
conetype, 228
"MSK_CT_RQUAD", 228
"MSK_CT_QUAD", 228
dataformat, 228
"MSK_DATA_FORMAT_XML", 228
"MSK_DATA_FORMAT_TASK", 228
"MSK_DATA_FORMAT_OP", 228
"MSK_DATA_FORMAT_MPS", 228
"MSK_DATA_FORMAT_LP", 228
"MSK_DATA_FORMAT_JSON_TASK", 229
"MSK_DATA_FORMAT_FREE_MPS", 228
"MSK_DATA_FORMAT_EXTENSION", 228
"MSK_DATA_FORMAT_CB", 229
dinfitem, 229
"MSK_DINF_TO_CONIC_TIME", 233
"MSK_DINF_SOL_ITR_PVIOLVAR", 233
"MSK_DINF_SOL_ITR_PVIOLCONES", 233
"MSK_DINF_SOL_ITR_PVIOLCON", 233
"MSK_DINF_SOL_ITR_PVIOLBARVAR", 233

"MSK_DINF_SOL_ITR_PRIMAL_OBJ", 233
"MSK_DINF_SOL_ITR_NRM_Y", 233
"MSK_DINF_SOL_ITR_NRM_XX", 233
"MSK_DINF_SOL_ITR_NRM_XC", 233
"MSK_DINF_SOL_ITR_NRM_SUX", 233
"MSK_DINF_SOL_ITR_NRM_SUC", 233
"MSK_DINF_SOL_ITR_NRM_SNX", 233
"MSK_DINF_SOL_ITR_NRM_SLX", 232
"MSK_DINF_SOL_ITR_NRM_SLC", 232
"MSK_DINF_SOL_ITR_NRM_BARX", 232
"MSK_DINF_SOL_ITR_NRM_BARS", 232
"MSK_DINF_SOL_ITR_DVIOLVAR", 232
"MSK_DINF_SOL_ITR_DVIOLCONES", 232
"MSK_DINF_SOL_ITR_DVIOLCON", 232
"MSK_DINF_SOL_ITR_DVIOLBARVAR", 232
"MSK_DINF_SOL_ITR_DUAL_OBJ", 232
"MSK_DINF_SOL_ITG_PVIOLVAR", 232
"MSK_DINF_SOL_ITG_PVIOLITG", 232
"MSK_DINF_SOL_ITG_PVIOLCONES", 232
"MSK_DINF_SOL_ITG_PVIOLCON", 232
"MSK_DINF_SOL_ITG_PVIOLBARVAR", 232
"MSK_DINF_SOL_ITG_PRIMAL_OBJ", 232
"MSK_DINF_SOL_ITG_NRM_XX", 232
"MSK_DINF_SOL_ITG_NRM_XC", 232
"MSK_DINF_SOL_ITG_NRM_BARX", 232
"MSK_DINF_SOL_BAS_PVIOLVAR", 232
"MSK_DINF_SOL_BAS_PVIOLCON", 232
"MSK_DINF_SOL_BAS_PRIMAL_OBJ", 232
"MSK_DINF_SOL_BAS_NRM_Y", 232
"MSK_DINF_SOL_BAS_NRM_XX", 232
"MSK_DINF_SOL_BAS_NRM_XC", 231
"MSK_DINF_SOL_BAS_NRM_SUX", 231
"MSK_DINF_SOL_BAS_NRM_SUC", 231
"MSK_DINF_SOL_BAS_NRM_SLX", 231
"MSK_DINF_SOL_BAS_NRM_SLC", 231
"MSK_DINF_SOL_BAS_NRM_BARX", 231
"MSK_DINF_SOL_BAS_DVIOLVAR", 231
"MSK_DINF_SOL_BAS_DVIOLCON", 231
"MSK_DINF_SOL_BAS_DUAL_OBJ", 231
"MSK_DINF_SIM_TIME", 231
"MSK_DINF_SIM_PRIMAL_TIME", 231
"MSK_DINF_SIM_OBJ", 231
"MSK_DINF_SIM_FEAS", 231
"MSK_DINF_SIM_DUAL_TIME", 231
"MSK_DINF_RD_TIME", 231
"MSK_DINF_QCQO_REFORMULATE_WORST_CHOLESKY_DIAG_SCALING",

231
"MSK_DINF_QCQO_REFORMULATE_WORST_CHOLESKY_COLUMN_SCALING",

231
"MSK_DINF_QCQO_REFORMULATE_TIME", 231
"MSK_DINF_QCQO_REFORMULATE_MAX_PERTURBATION",

231
"MSK_DINF_PRIMAL_REPAIR_PENALTY_OBJ", 231
"MSK_DINF_PRESOLVE_TIME", 231
"MSK_DINF_PRESOLVE_LINDEP_TIME", 231
"MSK_DINF_PRESOLVE_ELI_TIME", 231
"MSK_DINF_OPTIMIZER_TIME", 230
"MSK_DINF_MIO_USER_OBJ_CUT", 230

316 Symbol Index

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_DINF_MIO_TIME", 230
"MSK_DINF_MIO_ROOT_PRESOLVE_TIME", 230
"MSK_DINF_MIO_ROOT_OPTIMIZER_TIME", 230
"MSK_DINF_MIO_ROOT_CUTGEN_TIME", 230
"MSK_DINF_MIO_PROBING_TIME", 230
"MSK_DINF_MIO_OPTIMIZER_TIME", 230
"MSK_DINF_MIO_OBJ_REL_GAP", 230
"MSK_DINF_MIO_OBJ_INT", 230
"MSK_DINF_MIO_OBJ_BOUND", 230
"MSK_DINF_MIO_OBJ_ABS_GAP", 230
"MSK_DINF_MIO_KNAPSACK_COVER_SEPARATION_TIME",

230
"MSK_DINF_MIO_IMPLIED_BOUND_TIME", 230
"MSK_DINF_MIO_HEURISTIC_TIME", 230
"MSK_DINF_MIO_GMI_SEPARATION_TIME", 230
"MSK_DINF_MIO_DUAL_BOUND_AFTER_PRESOLVE",

230
"MSK_DINF_MIO_CONSTRUCT_SOLUTION_OBJ", 229
"MSK_DINF_MIO_CMIR_SEPARATION_TIME", 229
"MSK_DINF_MIO_CLIQUE_SEPARATION_TIME", 229
"MSK_DINF_INTPNT_TIME", 229
"MSK_DINF_INTPNT_PRIMAL_OBJ", 229
"MSK_DINF_INTPNT_PRIMAL_FEAS", 229
"MSK_DINF_INTPNT_ORDER_TIME", 229
"MSK_DINF_INTPNT_OPT_STATUS", 229
"MSK_DINF_INTPNT_FACTOR_NUM_FLOPS", 229
"MSK_DINF_INTPNT_DUAL_OBJ", 229
"MSK_DINF_INTPNT_DUAL_FEAS", 229
"MSK_DINF_BI_TIME", 229
"MSK_DINF_BI_PRIMAL_TIME", 229
"MSK_DINF_BI_DUAL_TIME", 229
"MSK_DINF_BI_CLEAN_TIME", 229
"MSK_DINF_BI_CLEAN_PRIMAL_TIME", 229
"MSK_DINF_BI_CLEAN_DUAL_TIME", 229
dparam, 162
feature, 233
"MSK_FEATURE_PTS", 233
"MSK_FEATURE_PTON", 233
iinfitem, 234
"MSK_IINF_STO_NUM_A_REALLOC", 237
"MSK_IINF_SOL_ITR_SOLSTA", 237
"MSK_IINF_SOL_ITR_PROSTA", 237
"MSK_IINF_SOL_ITG_SOLSTA", 237
"MSK_IINF_SOL_ITG_PROSTA", 237
"MSK_IINF_SOL_BAS_SOLSTA", 237
"MSK_IINF_SOL_BAS_PROSTA", 237
"MSK_IINF_SIM_SOLVE_DUAL", 237
"MSK_IINF_SIM_PRIMAL_ITER", 237
"MSK_IINF_SIM_PRIMAL_INF_ITER", 237
"MSK_IINF_SIM_PRIMAL_HOTSTART_LU", 237
"MSK_IINF_SIM_PRIMAL_HOTSTART", 237
"MSK_IINF_SIM_PRIMAL_DEG_ITER", 237
"MSK_IINF_SIM_NUMVAR", 237
"MSK_IINF_SIM_NUMCON", 237
"MSK_IINF_SIM_DUAL_ITER", 237
"MSK_IINF_SIM_DUAL_INF_ITER", 237
"MSK_IINF_SIM_DUAL_HOTSTART_LU", 237
"MSK_IINF_SIM_DUAL_HOTSTART", 236

"MSK_IINF_SIM_DUAL_DEG_ITER", 236
"MSK_IINF_RD_PROTYPE", 236
"MSK_IINF_RD_NUMVAR", 236
"MSK_IINF_RD_NUMQ", 236
"MSK_IINF_RD_NUMINTVAR", 236
"MSK_IINF_RD_NUMCONE", 236
"MSK_IINF_RD_NUMCON", 236
"MSK_IINF_RD_NUMBARVAR", 236
"MSK_IINF_OPTIMIZE_RESPONSE", 236
"MSK_IINF_OPT_NUMVAR", 236
"MSK_IINF_OPT_NUMCON", 236
"MSK_IINF_MIO_USER_OBJ_CUT", 236
"MSK_IINF_MIO_TOTAL_NUM_CUTS", 236
"MSK_IINF_MIO_RELGAP_SATISFIED", 236
"MSK_IINF_MIO_PRESOLVED_NUMVAR", 236
"MSK_IINF_MIO_PRESOLVED_NUMINT", 236
"MSK_IINF_MIO_PRESOLVED_NUMCONT", 236
"MSK_IINF_MIO_PRESOLVED_NUMCON", 236
"MSK_IINF_MIO_PRESOLVED_NUMBIN", 236
"MSK_IINF_MIO_OBJ_BOUND_DEFINED", 236
"MSK_IINF_MIO_NUMVAR", 236
"MSK_IINF_MIO_NUMINT", 236
"MSK_IINF_MIO_NUMCON", 235
"MSK_IINF_MIO_NUM_REPEATED_PRESOLVE", 235
"MSK_IINF_MIO_NUM_RELAX", 235
"MSK_IINF_MIO_NUM_KNAPSACK_COVER_CUTS", 235
"MSK_IINF_MIO_NUM_INT_SOLUTIONS", 235
"MSK_IINF_MIO_NUM_IMPLIED_BOUND_CUTS", 235
"MSK_IINF_MIO_NUM_GOMORY_CUTS", 235
"MSK_IINF_MIO_NUM_CMIR_CUTS", 235
"MSK_IINF_MIO_NUM_CLIQUE_CUTS", 235
"MSK_IINF_MIO_NUM_BRANCH", 235
"MSK_IINF_MIO_NUM_ACTIVE_NODES", 235
"MSK_IINF_MIO_NODE_DEPTH", 235
"MSK_IINF_MIO_NEAR_RELGAP_SATISFIED", 235
"MSK_IINF_MIO_NEAR_ABSGAP_SATISFIED", 235
"MSK_IINF_MIO_INITIAL_SOLUTION", 235
"MSK_IINF_MIO_CONSTRUCT_SOLUTION", 235
"MSK_IINF_MIO_CONSTRUCT_NUM_ROUNDINGS", 235
"MSK_IINF_MIO_CLIQUE_TABLE_SIZE", 235
"MSK_IINF_MIO_ABSGAP_SATISFIED", 235
"MSK_IINF_INTPNT_SOLVE_DUAL", 235
"MSK_IINF_INTPNT_NUM_THREADS", 235
"MSK_IINF_INTPNT_ITER", 235
"MSK_IINF_INTPNT_FACTOR_DIM_DENSE", 234
"MSK_IINF_ANA_PRO_NUM_VAR_UP", 234
"MSK_IINF_ANA_PRO_NUM_VAR_RA", 234
"MSK_IINF_ANA_PRO_NUM_VAR_LO", 234
"MSK_IINF_ANA_PRO_NUM_VAR_INT", 234
"MSK_IINF_ANA_PRO_NUM_VAR_FR", 234
"MSK_IINF_ANA_PRO_NUM_VAR_EQ", 234
"MSK_IINF_ANA_PRO_NUM_VAR_CONT", 234
"MSK_IINF_ANA_PRO_NUM_VAR_BIN", 234
"MSK_IINF_ANA_PRO_NUM_VAR", 234
"MSK_IINF_ANA_PRO_NUM_CON_UP", 234
"MSK_IINF_ANA_PRO_NUM_CON_RA", 234
"MSK_IINF_ANA_PRO_NUM_CON_LO", 234
"MSK_IINF_ANA_PRO_NUM_CON_FR", 234

Symbol Index 317

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_IINF_ANA_PRO_NUM_CON_EQ", 234
"MSK_IINF_ANA_PRO_NUM_CON", 234
inftype, 237
"MSK_INF_LINT_TYPE", 237
"MSK_INF_INT_TYPE", 237
"MSK_INF_DOU_TYPE", 237
intpnthotstart, 223
"MSK_INTPNT_HOTSTART_PRIMAL_DUAL", 223
"MSK_INTPNT_HOTSTART_PRIMAL", 223
"MSK_INTPNT_HOTSTART_NONE", 223
"MSK_INTPNT_HOTSTART_DUAL", 223
iomode, 238
"MSK_IOMODE_WRITE", 238
"MSK_IOMODE_READWRITE", 238
"MSK_IOMODE_READ", 238
iparam, 172
language, 221
"MSK_LANG_ENG", 221
"MSK_LANG_DAN", 221
liinfitem, 233
"MSK_LIINF_RD_NUMQNZ", 234
"MSK_LIINF_RD_NUMANZ", 234
"MSK_LIINF_MIO_SIMPLEX_ITER", 234
"MSK_LIINF_MIO_SIM_MAXITER_SETBACKS", 234
"MSK_LIINF_MIO_PRESOLVED_ANZ", 234
"MSK_LIINF_MIO_INTPNT_ITER", 234
"MSK_LIINF_INTPNT_FACTOR_NUM_NZ", 233
"MSK_LIINF_BI_PRIMAL_ITER", 233
"MSK_LIINF_BI_DUAL_ITER", 233
"MSK_LIINF_BI_CLEAN_PRIMAL_ITER", 233
"MSK_LIINF_BI_CLEAN_PRIMAL_DEG_ITER", 233
"MSK_LIINF_BI_CLEAN_DUAL_ITER", 233
"MSK_LIINF_BI_CLEAN_DUAL_DEG_ITER", 233
mark, 221
"MSK_MARK_UP", 221
"MSK_MARK_LO", 221
miocontsoltype, 238
"MSK_MIO_CONT_SOL_ROOT", 238
"MSK_MIO_CONT_SOL_NONE", 238
"MSK_MIO_CONT_SOL_ITG_REL", 238
"MSK_MIO_CONT_SOL_ITG", 238
miomode, 238
"MSK_MIO_MODE_SATISFIED", 239
"MSK_MIO_MODE_IGNORED", 238
mionodeseltype, 239
"MSK_MIO_NODE_SELECTION_WORST", 239
"MSK_MIO_NODE_SELECTION_PSEUDO", 239
"MSK_MIO_NODE_SELECTION_HYBRID", 239
"MSK_MIO_NODE_SELECTION_FREE", 239
"MSK_MIO_NODE_SELECTION_FIRST", 239
"MSK_MIO_NODE_SELECTION_BEST", 239
mpsformat, 239
"MSK_MPS_FORMAT_STRICT", 239
"MSK_MPS_FORMAT_RELAXED", 239
"MSK_MPS_FORMAT_FREE", 239
"MSK_MPS_FORMAT_CPLEX", 239
nametype, 228
"MSK_NAME_TYPE_MPS", 228

"MSK_NAME_TYPE_LP", 228
"MSK_NAME_TYPE_GEN", 228
objsense, 239
"MSK_OBJECTIVE_SENSE_MINIMIZE", 239
"MSK_OBJECTIVE_SENSE_MAXIMIZE", 239
onoffkey, 239
"MSK_ON", 239
"MSK_OFF", 239
optimizertype, 239
"MSK_OPTIMIZER_PRIMAL_SIMPLEX", 240
"MSK_OPTIMIZER_MIXED_INT", 240
"MSK_OPTIMIZER_INTPNT", 240
"MSK_OPTIMIZER_FREE_SIMPLEX", 240
"MSK_OPTIMIZER_FREE", 239
"MSK_OPTIMIZER_DUAL_SIMPLEX", 239
"MSK_OPTIMIZER_CONIC", 239
orderingtype, 240
"MSK_ORDER_METHOD_TRY_GRAPHPAR", 240
"MSK_ORDER_METHOD_NONE", 240
"MSK_ORDER_METHOD_FREE", 240
"MSK_ORDER_METHOD_FORCE_GRAPHPAR", 240
"MSK_ORDER_METHOD_EXPERIMENTAL", 240
"MSK_ORDER_METHOD_APPMINLOC", 240
parametertype, 240
"MSK_PAR_STR_TYPE", 240
"MSK_PAR_INVALID_TYPE", 240
"MSK_PAR_INT_TYPE", 240
"MSK_PAR_DOU_TYPE", 240
presolvemode, 240
"MSK_PRESOLVE_MODE_ON", 240
"MSK_PRESOLVE_MODE_OFF", 240
"MSK_PRESOLVE_MODE_FREE", 240
problemitem, 240
"MSK_PI_VAR", 240
"MSK_PI_CONE", 241
"MSK_PI_CON", 240
problemtype, 241
"MSK_PROBTYPE_QO", 241
"MSK_PROBTYPE_QCQO", 241
"MSK_PROBTYPE_MIXED", 241
"MSK_PROBTYPE_LO", 241
"MSK_PROBTYPE_GECO", 241
"MSK_PROBTYPE_CONIC", 241
prosta, 241
"MSK_PRO_STA_UNKNOWN", 241
"MSK_PRO_STA_PRIM_INFEAS_OR_UNBOUNDED", 241
"MSK_PRO_STA_PRIM_INFEAS", 241
"MSK_PRO_STA_PRIM_FEAS", 241
"MSK_PRO_STA_PRIM_AND_DUAL_INFEAS", 241
"MSK_PRO_STA_PRIM_AND_DUAL_FEAS", 241
"MSK_PRO_STA_NEAR_PRIM_FEAS", 241
"MSK_PRO_STA_NEAR_PRIM_AND_DUAL_FEAS", 241
"MSK_PRO_STA_NEAR_DUAL_FEAS", 241
"MSK_PRO_STA_ILL_POSED", 241
"MSK_PRO_STA_DUAL_INFEAS", 241
"MSK_PRO_STA_DUAL_FEAS", 241
rescode, 199
rescodetype, 242

318 Symbol Index

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RESPONSE_WRN", 242
"MSK_RESPONSE_UNK", 242
"MSK_RESPONSE_TRM", 242
"MSK_RESPONSE_OK", 242
"MSK_RESPONSE_ERR", 242
scalingmethod, 242
"MSK_SCALING_METHOD_POW2", 242
"MSK_SCALING_METHOD_FREE", 242
scalingtype, 242
"MSK_SCALING_NONE", 242
"MSK_SCALING_MODERATE", 242
"MSK_SCALING_FREE", 242
"MSK_SCALING_AGGRESSIVE", 242
sensitivitytype, 242
"MSK_SENSITIVITY_TYPE_OPTIMAL_PARTITION",

242
"MSK_SENSITIVITY_TYPE_BASIS", 242
simdegen, 221
"MSK_SIM_DEGEN_NONE", 222
"MSK_SIM_DEGEN_MODERATE", 222
"MSK_SIM_DEGEN_MINIMUM", 222
"MSK_SIM_DEGEN_FREE", 222
"MSK_SIM_DEGEN_AGGRESSIVE", 222
simdupvec, 222
"MSK_SIM_EXPLOIT_DUPVEC_ON", 222
"MSK_SIM_EXPLOIT_DUPVEC_OFF", 222
"MSK_SIM_EXPLOIT_DUPVEC_FREE", 222
simhotstart, 222
"MSK_SIM_HOTSTART_STATUS_KEYS", 223
"MSK_SIM_HOTSTART_NONE", 222
"MSK_SIM_HOTSTART_FREE", 222
simreform, 222
"MSK_SIM_REFORMULATION_ON", 222
"MSK_SIM_REFORMULATION_OFF", 222
"MSK_SIM_REFORMULATION_FREE", 222
"MSK_SIM_REFORMULATION_AGGRESSIVE", 222
simseltype, 242
"MSK_SIM_SELECTION_SE", 243
"MSK_SIM_SELECTION_PARTIAL", 243
"MSK_SIM_SELECTION_FULL", 242
"MSK_SIM_SELECTION_FREE", 242
"MSK_SIM_SELECTION_DEVEX", 243
"MSK_SIM_SELECTION_ASE", 242
solitem, 243
"MSK_SOL_ITEM_Y", 243
"MSK_SOL_ITEM_XX", 243
"MSK_SOL_ITEM_XC", 243
"MSK_SOL_ITEM_SUX", 243
"MSK_SOL_ITEM_SUC", 243
"MSK_SOL_ITEM_SNX", 243
"MSK_SOL_ITEM_SLX", 243
"MSK_SOL_ITEM_SLC", 243
solsta, 243
"MSK_SOL_STA_UNKNOWN", 243
"MSK_SOL_STA_PRIM_INFEAS_CER", 244
"MSK_SOL_STA_PRIM_ILLPOSED_CER", 244
"MSK_SOL_STA_PRIM_FEAS", 243
"MSK_SOL_STA_PRIM_AND_DUAL_FEAS", 243

"MSK_SOL_STA_OPTIMAL", 243
"MSK_SOL_STA_NEAR_PRIM_INFEAS_CER", 244
"MSK_SOL_STA_NEAR_PRIM_FEAS", 243
"MSK_SOL_STA_NEAR_PRIM_AND_DUAL_FEAS", 243
"MSK_SOL_STA_NEAR_OPTIMAL", 243
"MSK_SOL_STA_NEAR_INTEGER_OPTIMAL", 244
"MSK_SOL_STA_NEAR_DUAL_INFEAS_CER", 244
"MSK_SOL_STA_NEAR_DUAL_FEAS", 243
"MSK_SOL_STA_INTEGER_OPTIMAL", 244
"MSK_SOL_STA_DUAL_INFEAS_CER", 244
"MSK_SOL_STA_DUAL_ILLPOSED_CER", 244
"MSK_SOL_STA_DUAL_FEAS", 243
soltype, 244
"MSK_SOL_ITR", 244
"MSK_SOL_ITG", 244
"MSK_SOL_BAS", 244
solveform, 244
"MSK_SOLVE_PRIMAL", 244
"MSK_SOLVE_FREE", 244
"MSK_SOLVE_DUAL", 244
sparam, 196
stakey, 244
"MSK_SK_UPR", 244
"MSK_SK_UNK", 244
"MSK_SK_SUPBAS", 244
"MSK_SK_LOW", 244
"MSK_SK_INF", 245
"MSK_SK_FIX", 244
"MSK_SK_BAS", 244
startpointtype, 245
"MSK_STARTING_POINT_SATISFY_BOUNDS", 245
"MSK_STARTING_POINT_GUESS", 245
"MSK_STARTING_POINT_FREE", 245
"MSK_STARTING_POINT_CONSTANT", 245
streamtype, 245
"MSK_STREAM_WRN", 245
"MSK_STREAM_MSG", 245
"MSK_STREAM_LOG", 245
"MSK_STREAM_ERR", 245
symmattype, 228
"MSK_SYMMAT_TYPE_SPARSE", 228
transpose, 222
"MSK_TRANSPOSE_YES", 222
"MSK_TRANSPOSE_NO", 222
uplo, 222
"MSK_UPLO_UP", 222
"MSK_UPLO_LO", 222
value, 245
"MSK_MAX_STR_LEN", 245
"MSK_LICENSE_BUFFER_LENGTH", 245
variabletype, 245
"MSK_VAR_TYPE_INT", 245
"MSK_VAR_TYPE_CONT", 245
xmlwriteroutputtype, 241
"MSK_WRITE_XML_MODE_ROW", 242
"MSK_WRITE_XML_MODE_COL", 242

Symbol Index 319

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

Functions
intlinprog, 137
linprog, 137
lsqlin, 139
lsqnonneg, 140
mosekopt, 132
mskenopt, 134
mskgpopt, 134
mskgpread, 135
mskgpwri, 135
msklpopt, 133
mskoptimget, 136
mskoptimset, 136
mskqpopt, 133
mskscopt, 134
quadprog, 141

Parameters
Double parameters, 162
MSK_DPAR_ANA_SOL_INFEAS_TOL, 162
MSK_DPAR_BASIS_REL_TOL_S, 162
MSK_DPAR_BASIS_TOL_S, 162
MSK_DPAR_BASIS_TOL_X, 162
MSK_DPAR_CHECK_CONVEXITY_REL_TOL, 163
MSK_DPAR_DATA_SYM_MAT_TOL, 163
MSK_DPAR_DATA_SYM_MAT_TOL_HUGE, 163
MSK_DPAR_DATA_SYM_MAT_TOL_LARGE, 163
MSK_DPAR_DATA_TOL_AIJ, 163
MSK_DPAR_DATA_TOL_AIJ_HUGE, 163
MSK_DPAR_DATA_TOL_AIJ_LARGE, 163
MSK_DPAR_DATA_TOL_BOUND_INF, 164
MSK_DPAR_DATA_TOL_BOUND_WRN, 164
MSK_DPAR_DATA_TOL_C_HUGE, 164
MSK_DPAR_DATA_TOL_CJ_LARGE, 164
MSK_DPAR_DATA_TOL_QIJ, 164
MSK_DPAR_DATA_TOL_X, 164
MSK_DPAR_INTPNT_CO_TOL_DFEAS, 164
MSK_DPAR_INTPNT_CO_TOL_INFEAS, 165
MSK_DPAR_INTPNT_CO_TOL_MU_RED, 165
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL, 165
MSK_DPAR_INTPNT_CO_TOL_PFEAS, 165
MSK_DPAR_INTPNT_CO_TOL_REL_GAP, 165
MSK_DPAR_INTPNT_NL_MERIT_BAL, 165
MSK_DPAR_INTPNT_NL_TOL_DFEAS, 165
MSK_DPAR_INTPNT_NL_TOL_MU_RED, 165
MSK_DPAR_INTPNT_NL_TOL_NEAR_REL, 166
MSK_DPAR_INTPNT_NL_TOL_PFEAS, 166
MSK_DPAR_INTPNT_NL_TOL_REL_GAP, 166
MSK_DPAR_INTPNT_NL_TOL_REL_STEP, 166
MSK_DPAR_INTPNT_QO_TOL_DFEAS, 166
MSK_DPAR_INTPNT_QO_TOL_INFEAS, 166
MSK_DPAR_INTPNT_QO_TOL_MU_RED, 166
MSK_DPAR_INTPNT_QO_TOL_NEAR_REL, 167
MSK_DPAR_INTPNT_QO_TOL_PFEAS, 167
MSK_DPAR_INTPNT_QO_TOL_REL_GAP, 167
MSK_DPAR_INTPNT_TOL_DFEAS, 167
MSK_DPAR_INTPNT_TOL_DSAFE, 167
MSK_DPAR_INTPNT_TOL_INFEAS, 167

MSK_DPAR_INTPNT_TOL_MU_RED, 167
MSK_DPAR_INTPNT_TOL_PATH, 168
MSK_DPAR_INTPNT_TOL_PFEAS, 168
MSK_DPAR_INTPNT_TOL_PSAFE, 168
MSK_DPAR_INTPNT_TOL_REL_GAP, 168
MSK_DPAR_INTPNT_TOL_REL_STEP, 168
MSK_DPAR_INTPNT_TOL_STEP_SIZE, 168
MSK_DPAR_LOWER_OBJ_CUT, 168
MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 169
MSK_DPAR_MIO_DISABLE_TERM_TIME, 169
MSK_DPAR_MIO_MAX_TIME, 169
MSK_DPAR_MIO_NEAR_TOL_ABS_GAP, 169
MSK_DPAR_MIO_NEAR_TOL_REL_GAP, 169
MSK_DPAR_MIO_REL_GAP_CONST, 170
MSK_DPAR_MIO_TOL_ABS_GAP, 170
MSK_DPAR_MIO_TOL_ABS_RELAX_INT, 170
MSK_DPAR_MIO_TOL_FEAS, 170
MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT,

170
MSK_DPAR_MIO_TOL_REL_GAP, 170
MSK_DPAR_OPTIMIZER_MAX_TIME, 170
MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP, 170
MSK_DPAR_PRESOLVE_TOL_AIJ, 171
MSK_DPAR_PRESOLVE_TOL_REL_LINDEP, 171
MSK_DPAR_PRESOLVE_TOL_S, 171
MSK_DPAR_PRESOLVE_TOL_X, 171
MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL, 171
MSK_DPAR_SEMIDEFINITE_TOL_APPROX, 171
MSK_DPAR_SIM_LU_TOL_REL_PIV, 171
MSK_DPAR_SIMPLEX_ABS_TOL_PIV, 171
MSK_DPAR_UPPER_OBJ_CUT, 172
MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH, 172
Integer parameters, 172
MSK_IPAR_ANA_SOL_BASIS, 172
MSK_IPAR_ANA_SOL_PRINT_VIOLATED, 172
MSK_IPAR_AUTO_SORT_A_BEFORE_OPT, 172
MSK_IPAR_AUTO_UPDATE_SOL_INFO, 172
MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE, 173
MSK_IPAR_BI_CLEAN_OPTIMIZER, 173
MSK_IPAR_BI_IGNORE_MAX_ITER, 173
MSK_IPAR_BI_IGNORE_NUM_ERROR, 173
MSK_IPAR_BI_MAX_ITERATIONS, 173
MSK_IPAR_CACHE_LICENSE, 173
MSK_IPAR_CHECK_CONVEXITY, 173
MSK_IPAR_COMPRESS_STATFILE, 174
MSK_IPAR_INFEAS_GENERIC_NAMES, 174
MSK_IPAR_INFEAS_PREFER_PRIMAL, 174
MSK_IPAR_INFEAS_REPORT_AUTO, 174
MSK_IPAR_INFEAS_REPORT_LEVEL, 174
MSK_IPAR_INTPNT_BASIS, 174
MSK_IPAR_INTPNT_DIFF_STEP, 174
MSK_IPAR_INTPNT_HOTSTART, 175
MSK_IPAR_INTPNT_MAX_ITERATIONS, 175
MSK_IPAR_INTPNT_MAX_NUM_COR, 175
MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS,

175
MSK_IPAR_INTPNT_MULTI_THREAD, 175
MSK_IPAR_INTPNT_OFF_COL_TRH, 175

320 Symbol Index

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

MSK_IPAR_INTPNT_ORDER_METHOD, 175
MSK_IPAR_INTPNT_REGULARIZATION_USE, 176
MSK_IPAR_INTPNT_SCALING, 176
MSK_IPAR_INTPNT_SOLVE_FORM, 176
MSK_IPAR_INTPNT_STARTING_POINT, 176
MSK_IPAR_LICENSE_DEBUG, 176
MSK_IPAR_LICENSE_PAUSE_TIME, 176
MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS, 176
MSK_IPAR_LICENSE_TRH_EXPIRY_WRN, 176
MSK_IPAR_LICENSE_WAIT, 177
MSK_IPAR_LOG, 177
MSK_IPAR_LOG_ANA_PRO, 177
MSK_IPAR_LOG_BI, 177
MSK_IPAR_LOG_BI_FREQ, 177
MSK_IPAR_LOG_CHECK_CONVEXITY, 177
MSK_IPAR_LOG_CUT_SECOND_OPT, 177
MSK_IPAR_LOG_EXPAND, 178
MSK_IPAR_LOG_FEAS_REPAIR, 178
MSK_IPAR_LOG_FILE, 178
MSK_IPAR_LOG_INFEAS_ANA, 178
MSK_IPAR_LOG_INTPNT, 178
MSK_IPAR_LOG_MIO, 178
MSK_IPAR_LOG_MIO_FREQ, 178
MSK_IPAR_LOG_ORDER, 179
MSK_IPAR_LOG_PRESOLVE, 179
MSK_IPAR_LOG_RESPONSE, 179
MSK_IPAR_LOG_SENSITIVITY, 179
MSK_IPAR_LOG_SENSITIVITY_OPT, 179
MSK_IPAR_LOG_SIM, 179
MSK_IPAR_LOG_SIM_FREQ, 180
MSK_IPAR_LOG_SIM_MINOR, 180
MSK_IPAR_LOG_STORAGE, 180
MSK_IPAR_MAX_NUM_WARNINGS, 180
MSK_IPAR_MIO_BRANCH_DIR, 180
MSK_IPAR_MIO_CONSTRUCT_SOL, 180
MSK_IPAR_MIO_CUT_CLIQUE, 180
MSK_IPAR_MIO_CUT_CMIR, 180
MSK_IPAR_MIO_CUT_GMI, 181
MSK_IPAR_MIO_CUT_IMPLIED_BOUND, 181
MSK_IPAR_MIO_CUT_KNAPSACK_COVER, 181
MSK_IPAR_MIO_CUT_SELECTION_LEVEL, 181
MSK_IPAR_MIO_HEURISTIC_LEVEL, 181
MSK_IPAR_MIO_MAX_NUM_BRANCHES, 182
MSK_IPAR_MIO_MAX_NUM_RELAXS, 182
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS, 182
MSK_IPAR_MIO_MODE, 182
MSK_IPAR_MIO_MT_USER_CB, 182
MSK_IPAR_MIO_NODE_OPTIMIZER, 182
MSK_IPAR_MIO_NODE_SELECTION, 182
MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE, 183
MSK_IPAR_MIO_PROBING_LEVEL, 183
MSK_IPAR_MIO_RINS_MAX_NODES, 183
MSK_IPAR_MIO_ROOT_OPTIMIZER, 183
MSK_IPAR_MIO_ROOT_REPEAT_PRESOLVE_LEVEL,

183
MSK_IPAR_MIO_VB_DETECTION_LEVEL, 183
MSK_IPAR_MT_SPINCOUNT, 184
MSK_IPAR_NUM_THREADS, 184

MSK_IPAR_OPF_MAX_TERMS_PER_LINE, 184
MSK_IPAR_OPF_WRITE_HEADER, 184
MSK_IPAR_OPF_WRITE_HINTS, 184
MSK_IPAR_OPF_WRITE_PARAMETERS, 184
MSK_IPAR_OPF_WRITE_PROBLEM, 184
MSK_IPAR_OPF_WRITE_SOL_BAS, 185
MSK_IPAR_OPF_WRITE_SOL_ITG, 185
MSK_IPAR_OPF_WRITE_SOL_ITR, 185
MSK_IPAR_OPF_WRITE_SOLUTIONS, 185
MSK_IPAR_OPTIMIZER, 185
MSK_IPAR_PARAM_READ_CASE_NAME, 185
MSK_IPAR_PARAM_READ_IGN_ERROR, 185
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL, 186
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES,

186
MSK_IPAR_PRESOLVE_LEVEL, 186
MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH, 186
MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH, 186
MSK_IPAR_PRESOLVE_LINDEP_USE, 186
MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS, 186
MSK_IPAR_PRESOLVE_USE, 186
MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER, 187
MSK_IPAR_READ_DATA_COMPRESSED, 187
MSK_IPAR_READ_DATA_FORMAT, 187
MSK_IPAR_READ_DEBUG, 187
MSK_IPAR_READ_KEEP_FREE_CON, 187
MSK_IPAR_READ_LP_DROP_NEW_VARS_IN_BOU, 187
MSK_IPAR_READ_LP_QUOTED_NAMES, 187
MSK_IPAR_READ_MPS_FORMAT, 188
MSK_IPAR_READ_MPS_WIDTH, 188
MSK_IPAR_READ_TASK_IGNORE_PARAM, 188
MSK_IPAR_REMOVE_UNUSED_SOLUTIONS, 188
MSK_IPAR_SENSITIVITY_ALL, 188
MSK_IPAR_SENSITIVITY_OPTIMIZER, 188
MSK_IPAR_SENSITIVITY_TYPE, 188
MSK_IPAR_SIM_BASIS_FACTOR_USE, 188
MSK_IPAR_SIM_DEGEN, 189
MSK_IPAR_SIM_DUAL_CRASH, 189
MSK_IPAR_SIM_DUAL_PHASEONE_METHOD, 189
MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION, 189
MSK_IPAR_SIM_DUAL_SELECTION, 189
MSK_IPAR_SIM_EXPLOIT_DUPVEC, 189
MSK_IPAR_SIM_HOTSTART, 189
MSK_IPAR_SIM_HOTSTART_LU, 190
MSK_IPAR_SIM_MAX_ITERATIONS, 190
MSK_IPAR_SIM_MAX_NUM_SETBACKS, 190
MSK_IPAR_SIM_NON_SINGULAR, 190
MSK_IPAR_SIM_PRIMAL_CRASH, 190
MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD, 190
MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION, 190
MSK_IPAR_SIM_PRIMAL_SELECTION, 191
MSK_IPAR_SIM_REFACTOR_FREQ, 191
MSK_IPAR_SIM_REFORMULATION, 191
MSK_IPAR_SIM_SAVE_LU, 191
MSK_IPAR_SIM_SCALING, 191
MSK_IPAR_SIM_SCALING_METHOD, 191
MSK_IPAR_SIM_SOLVE_FORM, 191
MSK_IPAR_SIM_STABILITY_PRIORITY, 192

Symbol Index 321

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

MSK_IPAR_SIM_SWITCH_OPTIMIZER, 192
MSK_IPAR_SOL_FILTER_KEEP_BASIC, 192
MSK_IPAR_SOL_FILTER_KEEP_RANGED, 192
MSK_IPAR_SOL_READ_NAME_WIDTH, 192
MSK_IPAR_SOL_READ_WIDTH, 192
MSK_IPAR_SOLUTION_CALLBACK, 192
MSK_IPAR_TIMING_LEVEL, 193
MSK_IPAR_WRITE_BAS_CONSTRAINTS, 193
MSK_IPAR_WRITE_BAS_HEAD, 193
MSK_IPAR_WRITE_BAS_VARIABLES, 193
MSK_IPAR_WRITE_DATA_COMPRESSED, 193
MSK_IPAR_WRITE_DATA_FORMAT, 193
MSK_IPAR_WRITE_DATA_PARAM, 193
MSK_IPAR_WRITE_FREE_CON, 193
MSK_IPAR_WRITE_GENERIC_NAMES, 194
MSK_IPAR_WRITE_GENERIC_NAMES_IO, 194
MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS,

194
MSK_IPAR_WRITE_INT_CONSTRAINTS, 194
MSK_IPAR_WRITE_INT_HEAD, 194
MSK_IPAR_WRITE_INT_VARIABLES, 194
MSK_IPAR_WRITE_LP_FULL_OBJ, 194
MSK_IPAR_WRITE_LP_LINE_WIDTH, 195
MSK_IPAR_WRITE_LP_QUOTED_NAMES, 195
MSK_IPAR_WRITE_LP_STRICT_FORMAT, 195
MSK_IPAR_WRITE_LP_TERMS_PER_LINE, 195
MSK_IPAR_WRITE_MPS_FORMAT, 195
MSK_IPAR_WRITE_MPS_INT, 195
MSK_IPAR_WRITE_PRECISION, 195
MSK_IPAR_WRITE_SOL_BARVARIABLES, 195
MSK_IPAR_WRITE_SOL_CONSTRAINTS, 196
MSK_IPAR_WRITE_SOL_HEAD, 196
MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES,

196
MSK_IPAR_WRITE_SOL_VARIABLES, 196
MSK_IPAR_WRITE_TASK_INC_SOL, 196
MSK_IPAR_WRITE_XML_MODE, 196
String parameters, 196
MSK_SPAR_BAS_SOL_FILE_NAME, 196
MSK_SPAR_DATA_FILE_NAME, 197
MSK_SPAR_DEBUG_FILE_NAME, 197
MSK_SPAR_INT_SOL_FILE_NAME, 197
MSK_SPAR_ITR_SOL_FILE_NAME, 197
MSK_SPAR_MIO_DEBUG_STRING, 197
MSK_SPAR_PARAM_COMMENT_SIGN, 197
MSK_SPAR_PARAM_READ_FILE_NAME, 197
MSK_SPAR_PARAM_WRITE_FILE_NAME, 197
MSK_SPAR_READ_MPS_BOU_NAME, 197
MSK_SPAR_READ_MPS_OBJ_NAME, 197
MSK_SPAR_READ_MPS_RAN_NAME, 198
MSK_SPAR_READ_MPS_RHS_NAME, 198
MSK_SPAR_REMOTE_ACCESS_TOKEN, 198
MSK_SPAR_SENSITIVITY_FILE_NAME, 198
MSK_SPAR_SENSITIVITY_RES_FILE_NAME, 198
MSK_SPAR_SOL_FILTER_XC_LOW, 198
MSK_SPAR_SOL_FILTER_XC_UPR, 198
MSK_SPAR_SOL_FILTER_XX_LOW, 198
MSK_SPAR_SOL_FILTER_XX_UPR, 198

MSK_SPAR_STAT_FILE_NAME, 199
MSK_SPAR_STAT_KEY, 199
MSK_SPAR_STAT_NAME, 199
MSK_SPAR_WRITE_LP_GEN_VAR_NAME, 199

Response codes
Termination, 199
"MSK_RES_OK", 199
"MSK_RES_TRM_INTERNAL", 200
"MSK_RES_TRM_INTERNAL_STOP", 200
"MSK_RES_TRM_MAX_ITERATIONS", 199
"MSK_RES_TRM_MAX_NUM_SETBACKS", 200
"MSK_RES_TRM_MAX_TIME", 199
"MSK_RES_TRM_MIO_NEAR_ABS_GAP", 200
"MSK_RES_TRM_MIO_NEAR_REL_GAP", 199
"MSK_RES_TRM_MIO_NUM_BRANCHES", 200
"MSK_RES_TRM_MIO_NUM_RELAXS", 200
"MSK_RES_TRM_NUM_MAX_NUM_INT_SOLUTIONS",

200
"MSK_RES_TRM_NUMERICAL_PROBLEM", 200
"MSK_RES_TRM_OBJECTIVE_RANGE", 199
"MSK_RES_TRM_STALL", 200
"MSK_RES_TRM_USER_CALLBACK", 200
Warnings, 200
"MSK_RES_WRN_ANA_ALMOST_INT_BOUNDS", 203
"MSK_RES_WRN_ANA_C_ZERO", 203
"MSK_RES_WRN_ANA_CLOSE_BOUNDS", 203
"MSK_RES_WRN_ANA_EMPTY_COLS", 203
"MSK_RES_WRN_ANA_LARGE_BOUNDS", 203
"MSK_RES_WRN_CONSTRUCT_INVALID_SOL_ITG",

202
"MSK_RES_WRN_CONSTRUCT_NO_SOL_ITG", 203
"MSK_RES_WRN_CONSTRUCT_SOLUTION_INFEAS",

202
"MSK_RES_WRN_DROPPED_NZ_QOBJ", 201
"MSK_RES_WRN_DUPLICATE_BARVARIABLE_NAMES",

203
"MSK_RES_WRN_DUPLICATE_CONE_NAMES", 203
"MSK_RES_WRN_DUPLICATE_CONSTRAINT_NAMES",

203
"MSK_RES_WRN_DUPLICATE_VARIABLE_NAMES", 203
"MSK_RES_WRN_ELIMINATOR_SPACE", 202
"MSK_RES_WRN_EMPTY_NAME", 202
"MSK_RES_WRN_IGNORE_INTEGER", 201
"MSK_RES_WRN_INCOMPLETE_LINEAR_DEPENDENCY_CHECK",

202
"MSK_RES_WRN_LARGE_AIJ", 201
"MSK_RES_WRN_LARGE_BOUND", 200
"MSK_RES_WRN_LARGE_CJ", 201
"MSK_RES_WRN_LARGE_CON_FX", 201
"MSK_RES_WRN_LARGE_LO_BOUND", 200
"MSK_RES_WRN_LARGE_UP_BOUND", 200
"MSK_RES_WRN_LICENSE_EXPIRE", 202
"MSK_RES_WRN_LICENSE_FEATURE_EXPIRE", 202
"MSK_RES_WRN_LICENSE_SERVER", 202
"MSK_RES_WRN_LP_DROP_VARIABLE", 201
"MSK_RES_WRN_LP_OLD_QUAD_FORMAT", 201
"MSK_RES_WRN_MIO_INFEASIBLE_FINAL", 201

322 Symbol Index

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_WRN_MPS_SPLIT_BOU_VECTOR", 201
"MSK_RES_WRN_MPS_SPLIT_RAN_VECTOR", 201
"MSK_RES_WRN_MPS_SPLIT_RHS_VECTOR", 201
"MSK_RES_WRN_NAME_MAX_LEN", 201
"MSK_RES_WRN_NO_DUALIZER", 203
"MSK_RES_WRN_NO_GLOBAL_OPTIMIZER", 201
"MSK_RES_WRN_NO_NONLINEAR_FUNCTION_WRITE",

202
"MSK_RES_WRN_NZ_IN_UPR_TRI", 201
"MSK_RES_WRN_OPEN_PARAM_FILE", 200
"MSK_RES_WRN_PARAM_IGNORED_CMIO", 202
"MSK_RES_WRN_PARAM_NAME_DOU", 202
"MSK_RES_WRN_PARAM_NAME_INT", 202
"MSK_RES_WRN_PARAM_NAME_STR", 202
"MSK_RES_WRN_PARAM_STR_VALUE", 202
"MSK_RES_WRN_PRESOLVE_OUTOFSPACE", 202
"MSK_RES_WRN_QUAD_CONES_WITH_ROOT_FIXED_AT_ZERO",

203
"MSK_RES_WRN_RQUAD_CONES_WITH_ROOT_FIXED_AT_ZERO",

203
"MSK_RES_WRN_SOL_FILE_IGNORED_CON", 201
"MSK_RES_WRN_SOL_FILE_IGNORED_VAR", 201
"MSK_RES_WRN_SOL_FILTER", 201
"MSK_RES_WRN_SPAR_MAX_LEN", 201
"MSK_RES_WRN_SYM_MAT_LARGE", 203
"MSK_RES_WRN_TOO_FEW_BASIS_VARS", 201
"MSK_RES_WRN_TOO_MANY_BASIS_VARS", 201
"MSK_RES_WRN_UNDEF_SOL_FILE_NAME", 201
"MSK_RES_WRN_USING_GENERIC_NAMES", 202
"MSK_RES_WRN_WRITE_CHANGED_NAMES", 202
"MSK_RES_WRN_WRITE_DISCARDED_CFIX", 202
"MSK_RES_WRN_ZERO_AIJ", 201
"MSK_RES_WRN_ZEROS_IN_SPARSE_COL", 202
"MSK_RES_WRN_ZEROS_IN_SPARSE_ROW", 202
Errors, 203
"MSK_RES_ERR_AD_INVALID_CODELIST", 217
"MSK_RES_ERR_API_ARRAY_TOO_SMALL", 216
"MSK_RES_ERR_API_CB_CONNECT", 216
"MSK_RES_ERR_API_FATAL_ERROR", 216
"MSK_RES_ERR_API_INTERNAL", 216
"MSK_RES_ERR_ARG_IS_TOO_LARGE", 209
"MSK_RES_ERR_ARG_IS_TOO_SMALL", 209
"MSK_RES_ERR_ARGUMENT_DIMENSION", 209
"MSK_RES_ERR_ARGUMENT_IS_TOO_LARGE", 218
"MSK_RES_ERR_ARGUMENT_LENNEQ", 208
"MSK_RES_ERR_ARGUMENT_PERM_ARRAY", 212
"MSK_RES_ERR_ARGUMENT_TYPE", 209
"MSK_RES_ERR_BAR_VAR_DIM", 217
"MSK_RES_ERR_BASIS", 211
"MSK_RES_ERR_BASIS_FACTOR", 215
"MSK_RES_ERR_BASIS_SINGULAR", 215
"MSK_RES_ERR_BLANK_NAME", 206
"MSK_RES_ERR_CANNOT_CLONE_NL", 216
"MSK_RES_ERR_CANNOT_HANDLE_NL", 216
"MSK_RES_ERR_CBF_DUPLICATE_ACOORD", 220
"MSK_RES_ERR_CBF_DUPLICATE_BCOORD", 220
"MSK_RES_ERR_CBF_DUPLICATE_CON", 219
"MSK_RES_ERR_CBF_DUPLICATE_INT", 219

"MSK_RES_ERR_CBF_DUPLICATE_OBJ", 219
"MSK_RES_ERR_CBF_DUPLICATE_OBJACOORD", 219
"MSK_RES_ERR_CBF_DUPLICATE_PSDVAR", 220
"MSK_RES_ERR_CBF_DUPLICATE_VAR", 219
"MSK_RES_ERR_CBF_INVALID_CON_TYPE", 219
"MSK_RES_ERR_CBF_INVALID_DOMAIN_DIMENSION",

219
"MSK_RES_ERR_CBF_INVALID_INT_INDEX", 220
"MSK_RES_ERR_CBF_INVALID_PSDVAR_DIMENSION",

220
"MSK_RES_ERR_CBF_INVALID_VAR_TYPE", 219
"MSK_RES_ERR_CBF_NO_VARIABLES", 219
"MSK_RES_ERR_CBF_NO_VERSION_SPECIFIED", 219
"MSK_RES_ERR_CBF_OBJ_SENSE", 219
"MSK_RES_ERR_CBF_PARSE", 219
"MSK_RES_ERR_CBF_SYNTAX", 219
"MSK_RES_ERR_CBF_TOO_FEW_CONSTRAINTS", 220
"MSK_RES_ERR_CBF_TOO_FEW_INTS", 220
"MSK_RES_ERR_CBF_TOO_FEW_PSDVAR", 220
"MSK_RES_ERR_CBF_TOO_FEW_VARIABLES", 220
"MSK_RES_ERR_CBF_TOO_MANY_CONSTRAINTS", 219
"MSK_RES_ERR_CBF_TOO_MANY_INTS", 220
"MSK_RES_ERR_CBF_TOO_MANY_VARIABLES", 219
"MSK_RES_ERR_CBF_UNSUPPORTED", 220
"MSK_RES_ERR_CON_Q_NOT_NSD", 212
"MSK_RES_ERR_CON_Q_NOT_PSD", 212
"MSK_RES_ERR_CONE_INDEX", 212
"MSK_RES_ERR_CONE_OVERLAP", 212
"MSK_RES_ERR_CONE_OVERLAP_APPEND", 213
"MSK_RES_ERR_CONE_REP_VAR", 213
"MSK_RES_ERR_CONE_SIZE", 212
"MSK_RES_ERR_CONE_TYPE", 213
"MSK_RES_ERR_CONE_TYPE_STR", 213
"MSK_RES_ERR_DATA_FILE_EXT", 205
"MSK_RES_ERR_DUP_NAME", 206
"MSK_RES_ERR_DUPLICATE_AIJ", 213
"MSK_RES_ERR_DUPLICATE_BARVARIABLE_NAMES",

218
"MSK_RES_ERR_DUPLICATE_CONE_NAMES", 218
"MSK_RES_ERR_DUPLICATE_CONSTRAINT_NAMES",

218
"MSK_RES_ERR_DUPLICATE_VARIABLE_NAMES", 218
"MSK_RES_ERR_END_OF_FILE", 205
"MSK_RES_ERR_FACTOR", 215
"MSK_RES_ERR_FEASREPAIR_CANNOT_RELAX", 215
"MSK_RES_ERR_FEASREPAIR_INCONSISTENT_BOUND",

215
"MSK_RES_ERR_FEASREPAIR_SOLVING_RELAXED",

215
"MSK_RES_ERR_FILE_LICENSE", 204
"MSK_RES_ERR_FILE_OPEN", 205
"MSK_RES_ERR_FILE_READ", 205
"MSK_RES_ERR_FILE_WRITE", 205
"MSK_RES_ERR_FINAL_SOLUTION", 215
"MSK_RES_ERR_FIRST", 211
"MSK_RES_ERR_FIRSTI", 212
"MSK_RES_ERR_FIRSTJ", 212
"MSK_RES_ERR_FIXED_BOUND_VALUES", 214

Symbol Index 323

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_ERR_FLEXLM", 204
"MSK_RES_ERR_GLOBAL_INV_CONIC_PROBLEM", 215
"MSK_RES_ERR_HUGE_AIJ", 213
"MSK_RES_ERR_HUGE_C", 213
"MSK_RES_ERR_IDENTICAL_TASKS", 217
"MSK_RES_ERR_IN_ARGUMENT", 209
"MSK_RES_ERR_INDEX", 210
"MSK_RES_ERR_INDEX_ARR_IS_TOO_LARGE", 209
"MSK_RES_ERR_INDEX_ARR_IS_TOO_SMALL", 209
"MSK_RES_ERR_INDEX_IS_TOO_LARGE", 209
"MSK_RES_ERR_INDEX_IS_TOO_SMALL", 209
"MSK_RES_ERR_INF_DOU_INDEX", 209
"MSK_RES_ERR_INF_DOU_NAME", 210
"MSK_RES_ERR_INF_INT_INDEX", 209
"MSK_RES_ERR_INF_INT_NAME", 210
"MSK_RES_ERR_INF_LINT_INDEX", 209
"MSK_RES_ERR_INF_LINT_NAME", 210
"MSK_RES_ERR_INF_TYPE", 210
"MSK_RES_ERR_INFEAS_UNDEFINED", 217
"MSK_RES_ERR_INFINITE_BOUND", 213
"MSK_RES_ERR_INT64_TO_INT32_CAST", 217
"MSK_RES_ERR_INTERNAL", 216
"MSK_RES_ERR_INTERNAL_TEST_FAILED", 217
"MSK_RES_ERR_INV_APTRE", 210
"MSK_RES_ERR_INV_BK", 210
"MSK_RES_ERR_INV_BKC", 211
"MSK_RES_ERR_INV_BKX", 211
"MSK_RES_ERR_INV_CONE_TYPE", 211
"MSK_RES_ERR_INV_CONE_TYPE_STR", 211
"MSK_RES_ERR_INV_MARKI", 216
"MSK_RES_ERR_INV_MARKJ", 216
"MSK_RES_ERR_INV_NAME_ITEM", 212
"MSK_RES_ERR_INV_NUMI", 216
"MSK_RES_ERR_INV_NUMJ", 216
"MSK_RES_ERR_INV_OPTIMIZER", 215
"MSK_RES_ERR_INV_PROBLEM", 215
"MSK_RES_ERR_INV_QCON_SUBI", 213
"MSK_RES_ERR_INV_QCON_SUBJ", 213
"MSK_RES_ERR_INV_QCON_SUBK", 213
"MSK_RES_ERR_INV_QCON_VAL", 213
"MSK_RES_ERR_INV_QOBJ_SUBI", 213
"MSK_RES_ERR_INV_QOBJ_SUBJ", 213
"MSK_RES_ERR_INV_QOBJ_VAL", 213
"MSK_RES_ERR_INV_SK", 211
"MSK_RES_ERR_INV_SK_STR", 211
"MSK_RES_ERR_INV_SKC", 211
"MSK_RES_ERR_INV_SKN", 211
"MSK_RES_ERR_INV_SKX", 211
"MSK_RES_ERR_INV_VAR_TYPE", 211
"MSK_RES_ERR_INVALID_ACCMODE", 216
"MSK_RES_ERR_INVALID_AIJ", 214
"MSK_RES_ERR_INVALID_AMPL_STUB", 217
"MSK_RES_ERR_INVALID_BARVAR_NAME", 206
"MSK_RES_ERR_INVALID_COMPRESSION", 215
"MSK_RES_ERR_INVALID_CON_NAME", 206
"MSK_RES_ERR_INVALID_CONE_NAME", 206
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_CONES",

218

"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_GENERAL_NL",
218

"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_SYM_MAT",
218

"MSK_RES_ERR_INVALID_FILE_NAME", 205
"MSK_RES_ERR_INVALID_FORMAT_TYPE", 212
"MSK_RES_ERR_INVALID_IDX", 210
"MSK_RES_ERR_INVALID_IOMODE", 215
"MSK_RES_ERR_INVALID_MAX_NUM", 210
"MSK_RES_ERR_INVALID_NAME_IN_SOL_FILE", 208
"MSK_RES_ERR_INVALID_OBJ_NAME", 206
"MSK_RES_ERR_INVALID_OBJECTIVE_SENSE", 214
"MSK_RES_ERR_INVALID_PROBLEM_TYPE", 218
"MSK_RES_ERR_INVALID_SOL_FILE_NAME", 205
"MSK_RES_ERR_INVALID_STREAM", 205
"MSK_RES_ERR_INVALID_SURPLUS", 211
"MSK_RES_ERR_INVALID_SYM_MAT_DIM", 218
"MSK_RES_ERR_INVALID_TASK", 206
"MSK_RES_ERR_INVALID_UTF8", 216
"MSK_RES_ERR_INVALID_VAR_NAME", 206
"MSK_RES_ERR_INVALID_WCHAR", 216
"MSK_RES_ERR_INVALID_WHICHSOL", 209
"MSK_RES_ERR_JSON_DATA", 208
"MSK_RES_ERR_JSON_FORMAT", 208
"MSK_RES_ERR_JSON_MISSING_DATA", 208
"MSK_RES_ERR_JSON_NUMBER_OVERFLOW", 208
"MSK_RES_ERR_JSON_STRING", 208
"MSK_RES_ERR_JSON_SYNTAX", 208
"MSK_RES_ERR_LAST", 211
"MSK_RES_ERR_LASTI", 212
"MSK_RES_ERR_LASTJ", 212
"MSK_RES_ERR_LAU_ARG_K", 219
"MSK_RES_ERR_LAU_ARG_M", 219
"MSK_RES_ERR_LAU_ARG_N", 219
"MSK_RES_ERR_LAU_ARG_TRANS", 219
"MSK_RES_ERR_LAU_ARG_TRANSA", 219
"MSK_RES_ERR_LAU_ARG_TRANSB", 219
"MSK_RES_ERR_LAU_ARG_UPLO", 219
"MSK_RES_ERR_LAU_INVALID_LOWER_TRIANGULAR_MATRIX",

218
"MSK_RES_ERR_LAU_INVALID_SPARSE_SYMMETRIC_MATRIX",

219
"MSK_RES_ERR_LAU_NOT_POSITIVE_DEFINITE",

218
"MSK_RES_ERR_LAU_SINGULAR_MATRIX", 218
"MSK_RES_ERR_LAU_UNKNOWN", 218
"MSK_RES_ERR_LICENSE", 203
"MSK_RES_ERR_LICENSE_CANNOT_ALLOCATE", 204
"MSK_RES_ERR_LICENSE_CANNOT_CONNECT", 204
"MSK_RES_ERR_LICENSE_EXPIRED", 203
"MSK_RES_ERR_LICENSE_FEATURE", 204
"MSK_RES_ERR_LICENSE_INVALID_HOSTID", 204
"MSK_RES_ERR_LICENSE_MAX", 204
"MSK_RES_ERR_LICENSE_MOSEKLM_DAEMON", 204
"MSK_RES_ERR_LICENSE_NO_SERVER_LINE", 204
"MSK_RES_ERR_LICENSE_NO_SERVER_SUPPORT",

204
"MSK_RES_ERR_LICENSE_SERVER", 204

324 Symbol Index

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_ERR_LICENSE_SERVER_VERSION", 204
"MSK_RES_ERR_LICENSE_VERSION", 203
"MSK_RES_ERR_LINK_FILE_DLL", 205
"MSK_RES_ERR_LIVING_TASKS", 206
"MSK_RES_ERR_LOWER_BOUND_IS_A_NAN", 213
"MSK_RES_ERR_LP_DUP_SLACK_NAME", 207
"MSK_RES_ERR_LP_EMPTY", 207
"MSK_RES_ERR_LP_FILE_FORMAT", 208
"MSK_RES_ERR_LP_FORMAT", 208
"MSK_RES_ERR_LP_FREE_CONSTRAINT", 208
"MSK_RES_ERR_LP_INCOMPATIBLE", 207
"MSK_RES_ERR_LP_INVALID_CON_NAME", 208
"MSK_RES_ERR_LP_INVALID_VAR_NAME", 207
"MSK_RES_ERR_LP_WRITE_CONIC_PROBLEM", 208
"MSK_RES_ERR_LP_WRITE_GECO_PROBLEM", 208
"MSK_RES_ERR_LU_MAX_NUM_TRIES", 216
"MSK_RES_ERR_MAX_LEN_IS_TOO_SMALL", 212
"MSK_RES_ERR_MAXNUMBARVAR", 210
"MSK_RES_ERR_MAXNUMCON", 210
"MSK_RES_ERR_MAXNUMCONE", 213
"MSK_RES_ERR_MAXNUMQNZ", 210
"MSK_RES_ERR_MAXNUMVAR", 210
"MSK_RES_ERR_MIO_INTERNAL", 218
"MSK_RES_ERR_MIO_INVALID_NODE_OPTIMIZER",

220
"MSK_RES_ERR_MIO_INVALID_ROOT_OPTIMIZER",

220
"MSK_RES_ERR_MIO_NO_OPTIMIZER", 215
"MSK_RES_ERR_MISSING_LICENSE_FILE", 204
"MSK_RES_ERR_MIXED_CONIC_AND_NL", 215
"MSK_RES_ERR_MPS_CONE_OVERLAP", 207
"MSK_RES_ERR_MPS_CONE_REPEAT", 207
"MSK_RES_ERR_MPS_CONE_TYPE", 207
"MSK_RES_ERR_MPS_DUPLICATE_Q_ELEMENT", 207
"MSK_RES_ERR_MPS_FILE", 206
"MSK_RES_ERR_MPS_INV_BOUND_KEY", 206
"MSK_RES_ERR_MPS_INV_CON_KEY", 206
"MSK_RES_ERR_MPS_INV_FIELD", 206
"MSK_RES_ERR_MPS_INV_MARKER", 206
"MSK_RES_ERR_MPS_INV_SEC_NAME", 206
"MSK_RES_ERR_MPS_INV_SEC_ORDER", 207
"MSK_RES_ERR_MPS_INVALID_OBJ_NAME", 207
"MSK_RES_ERR_MPS_INVALID_OBJSENSE", 207
"MSK_RES_ERR_MPS_MUL_CON_NAME", 207
"MSK_RES_ERR_MPS_MUL_CSEC", 207
"MSK_RES_ERR_MPS_MUL_QOBJ", 207
"MSK_RES_ERR_MPS_MUL_QSEC", 207
"MSK_RES_ERR_MPS_NO_OBJECTIVE", 207
"MSK_RES_ERR_MPS_NON_SYMMETRIC_Q", 207
"MSK_RES_ERR_MPS_NULL_CON_NAME", 206
"MSK_RES_ERR_MPS_NULL_VAR_NAME", 206
"MSK_RES_ERR_MPS_SPLITTED_VAR", 207
"MSK_RES_ERR_MPS_TAB_IN_FIELD2", 207
"MSK_RES_ERR_MPS_TAB_IN_FIELD3", 207
"MSK_RES_ERR_MPS_TAB_IN_FIELD5", 207
"MSK_RES_ERR_MPS_UNDEF_CON_NAME", 206
"MSK_RES_ERR_MPS_UNDEF_VAR_NAME", 206
"MSK_RES_ERR_MUL_A_ELEMENT", 210

"MSK_RES_ERR_NAME_IS_NULL", 215
"MSK_RES_ERR_NAME_MAX_LEN", 215
"MSK_RES_ERR_NAN_IN_BLC", 214
"MSK_RES_ERR_NAN_IN_BLX", 214
"MSK_RES_ERR_NAN_IN_BUC", 214
"MSK_RES_ERR_NAN_IN_BUX", 214
"MSK_RES_ERR_NAN_IN_C", 214
"MSK_RES_ERR_NAN_IN_DOUBLE_DATA", 214
"MSK_RES_ERR_NEGATIVE_APPEND", 211
"MSK_RES_ERR_NEGATIVE_SURPLUS", 211
"MSK_RES_ERR_NEWER_DLL", 205
"MSK_RES_ERR_NO_BARS_FOR_SOLUTION", 217
"MSK_RES_ERR_NO_BARX_FOR_SOLUTION", 217
"MSK_RES_ERR_NO_BASIS_SOL", 215
"MSK_RES_ERR_NO_DUAL_FOR_ITG_SOL", 216
"MSK_RES_ERR_NO_DUAL_INFEAS_CER", 216
"MSK_RES_ERR_NO_INIT_ENV", 205
"MSK_RES_ERR_NO_OPTIMIZER_VAR_TYPE", 215
"MSK_RES_ERR_NO_PRIMAL_INFEAS_CER", 215
"MSK_RES_ERR_NO_SNX_FOR_BAS_SOL", 216
"MSK_RES_ERR_NO_SOLUTION_IN_CALLBACK", 216
"MSK_RES_ERR_NON_UNIQUE_ARRAY", 218
"MSK_RES_ERR_NONCONVEX", 212
"MSK_RES_ERR_NONLINEAR_EQUALITY", 212
"MSK_RES_ERR_NONLINEAR_FUNCTIONS_NOT_ALLOWED",

214
"MSK_RES_ERR_NONLINEAR_RANGED", 212
"MSK_RES_ERR_NR_ARGUMENTS", 209
"MSK_RES_ERR_NULL_ENV", 205
"MSK_RES_ERR_NULL_POINTER", 206
"MSK_RES_ERR_NULL_TASK", 205
"MSK_RES_ERR_NUMCONLIM", 210
"MSK_RES_ERR_NUMVARLIM", 210
"MSK_RES_ERR_OBJ_Q_NOT_NSD", 212
"MSK_RES_ERR_OBJ_Q_NOT_PSD", 212
"MSK_RES_ERR_OBJECTIVE_RANGE", 211
"MSK_RES_ERR_OLDER_DLL", 205
"MSK_RES_ERR_OPEN_DL", 205
"MSK_RES_ERR_OPF_FORMAT", 208
"MSK_RES_ERR_OPF_NEW_VARIABLE", 208
"MSK_RES_ERR_OPF_PREMATURE_EOF", 208
"MSK_RES_ERR_OPTIMIZER_LICENSE", 204
"MSK_RES_ERR_OVERFLOW", 215
"MSK_RES_ERR_PARAM_INDEX", 209
"MSK_RES_ERR_PARAM_IS_TOO_LARGE", 209
"MSK_RES_ERR_PARAM_IS_TOO_SMALL", 209
"MSK_RES_ERR_PARAM_NAME", 209
"MSK_RES_ERR_PARAM_NAME_DOU", 209
"MSK_RES_ERR_PARAM_NAME_INT", 209
"MSK_RES_ERR_PARAM_NAME_STR", 209
"MSK_RES_ERR_PARAM_TYPE", 209
"MSK_RES_ERR_PARAM_VALUE_STR", 209
"MSK_RES_ERR_PLATFORM_NOT_LICENSED", 204
"MSK_RES_ERR_POSTSOLVE", 215
"MSK_RES_ERR_PRO_ITEM", 212
"MSK_RES_ERR_PROB_LICENSE", 204
"MSK_RES_ERR_QCON_SUBI_TOO_LARGE", 213
"MSK_RES_ERR_QCON_SUBI_TOO_SMALL", 213

Symbol Index 325

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

"MSK_RES_ERR_QCON_UPPER_TRIANGLE", 214
"MSK_RES_ERR_QOBJ_UPPER_TRIANGLE", 213
"MSK_RES_ERR_READ_FORMAT", 206
"MSK_RES_ERR_READ_LP_MISSING_END_TAG", 208
"MSK_RES_ERR_READ_LP_NONEXISTING_NAME", 208
"MSK_RES_ERR_REMOVE_CONE_VARIABLE", 213
"MSK_RES_ERR_REPAIR_INVALID_PROBLEM", 215
"MSK_RES_ERR_REPAIR_OPTIMIZATION_FAILED",

215
"MSK_RES_ERR_SEN_BOUND_INVALID_LO", 217
"MSK_RES_ERR_SEN_BOUND_INVALID_UP", 217
"MSK_RES_ERR_SEN_FORMAT", 216
"MSK_RES_ERR_SEN_INDEX_INVALID", 217
"MSK_RES_ERR_SEN_INDEX_RANGE", 217
"MSK_RES_ERR_SEN_INVALID_REGEXP", 217
"MSK_RES_ERR_SEN_NUMERICAL", 217
"MSK_RES_ERR_SEN_SOLUTION_STATUS", 217
"MSK_RES_ERR_SEN_UNDEF_NAME", 217
"MSK_RES_ERR_SEN_UNHANDLED_PROBLEM_TYPE",

217
"MSK_RES_ERR_SERVER_CONNECT", 220
"MSK_RES_ERR_SERVER_PROTOCOL", 220
"MSK_RES_ERR_SERVER_STATUS", 220
"MSK_RES_ERR_SERVER_TOKEN", 220
"MSK_RES_ERR_SIZE_LICENSE", 203
"MSK_RES_ERR_SIZE_LICENSE_CON", 204
"MSK_RES_ERR_SIZE_LICENSE_INTVAR", 204
"MSK_RES_ERR_SIZE_LICENSE_NUMCORES", 217
"MSK_RES_ERR_SIZE_LICENSE_VAR", 204
"MSK_RES_ERR_SOL_FILE_INVALID_NUMBER", 213
"MSK_RES_ERR_SOLITEM", 210
"MSK_RES_ERR_SOLVER_PROBTYPE", 211
"MSK_RES_ERR_SPACE", 205
"MSK_RES_ERR_SPACE_LEAKING", 206
"MSK_RES_ERR_SPACE_NO_INFO", 206
"MSK_RES_ERR_SYM_MAT_DUPLICATE", 218
"MSK_RES_ERR_SYM_MAT_HUGE", 214
"MSK_RES_ERR_SYM_MAT_INVALID", 214
"MSK_RES_ERR_SYM_MAT_INVALID_COL_INDEX",

218
"MSK_RES_ERR_SYM_MAT_INVALID_ROW_INDEX",

218
"MSK_RES_ERR_SYM_MAT_INVALID_VALUE", 218
"MSK_RES_ERR_SYM_MAT_NOT_LOWER_TRINGULAR",

218
"MSK_RES_ERR_TASK_INCOMPATIBLE", 216
"MSK_RES_ERR_TASK_INVALID", 216
"MSK_RES_ERR_TASK_WRITE", 216
"MSK_RES_ERR_THREAD_COND_INIT", 205
"MSK_RES_ERR_THREAD_CREATE", 205
"MSK_RES_ERR_THREAD_MUTEX_INIT", 205
"MSK_RES_ERR_THREAD_MUTEX_LOCK", 205
"MSK_RES_ERR_THREAD_MUTEX_UNLOCK", 205
"MSK_RES_ERR_TOCONIC_CONSTR_NOT_CONIC", 220
"MSK_RES_ERR_TOCONIC_CONSTR_Q_NOT_PSD", 220
"MSK_RES_ERR_TOCONIC_CONSTRAINT_FX", 220
"MSK_RES_ERR_TOCONIC_CONSTRAINT_RA", 220

"MSK_RES_ERR_TOCONIC_OBJECTIVE_NOT_PSD",
220

"MSK_RES_ERR_TOO_SMALL_MAX_NUM_NZ", 210
"MSK_RES_ERR_TOO_SMALL_MAXNUMANZ", 210
"MSK_RES_ERR_UNB_STEP_SIZE", 217
"MSK_RES_ERR_UNDEF_SOLUTION", 211
"MSK_RES_ERR_UNDEFINED_OBJECTIVE_SENSE",

214
"MSK_RES_ERR_UNHANDLED_SOLUTION_STATUS",

218
"MSK_RES_ERR_UNKNOWN", 205
"MSK_RES_ERR_UPPER_BOUND_IS_A_NAN", 213
"MSK_RES_ERR_UPPER_TRIANGLE", 218
"MSK_RES_ERR_USER_FUNC_RET", 214
"MSK_RES_ERR_USER_FUNC_RET_DATA", 214
"MSK_RES_ERR_USER_NLO_EVAL", 214
"MSK_RES_ERR_USER_NLO_EVAL_HESSUBI", 214
"MSK_RES_ERR_USER_NLO_EVAL_HESSUBJ", 214
"MSK_RES_ERR_USER_NLO_FUNC", 214
"MSK_RES_ERR_WHICHITEM_NOT_ALLOWED", 210
"MSK_RES_ERR_WHICHSOL", 210
"MSK_RES_ERR_WRITE_LP_FORMAT", 208
"MSK_RES_ERR_WRITE_LP_NON_UNIQUE_NAME", 208
"MSK_RES_ERR_WRITE_MPS_INVALID_NAME", 207
"MSK_RES_ERR_WRITE_OPF_INVALID_VAR_NAME",

208
"MSK_RES_ERR_WRITING_FILE", 208
"MSK_RES_ERR_XML_INVALID_PROBLEM_TYPE", 217
"MSK_RES_ERR_Y_IS_UNDEFINED", 214

Structures
bara, 148
barc, 147
callback, 150
cones, 147
cprisen, 149
duasen, 150
info, 150
names, 147
prisen, 149
prob, 145
res, 146
solution, 148
solver_solutions, 148
symbcon, 150
vprisen, 149

326 Symbol Index

INDEX

B
basis identification, 81
basis type

sensitivity analysis, 111
bound

constraint, 15, 121
linear optimization, 15
variable, 15, 121

C
CBF format, 274
certificate

dual, 123, 126, 127, 129
primal, 123, 125, 127

complementarity, 122
cone

dual, 125
quadratic, 18, 124
rotated quadratic, 18, 124
semidefinite, 19, 126

conic optimization, 18, 124
infeasibility, 125
interior-point, 85
termination criteria, 86

conic quadratic optimization, 18
Conic quadratic reformulation, 50
constraint

bound, 15, 121
linear optimization, 15
matrix, 15, 121, 129
quadratic, 128

constraints
lower limit, 129
upper limit, 129

convex interior-point
optimizers, 89

cut, 91

D
decision

variables, 129
determinism, 78
dual

certificate, 123, 126, 127, 129
cone, 125
feasible, 122

infeasible, 122, 123, 126, 127, 129
problem, 121, 125, 126
variable, 122, 125

duality
conic, 125
gap, 122
linear, 121
semidefinite, 126

dualizer, 76

E
eliminator, 76
example

qo1, 21
quadratic objective, 21

F
feasible

dual, 122
primal, 79, 86, 121
problem, 121

format
CBF, 274
json, 290
LP, 248
MPS, 253
OPF, 265
OSiL, 289
sol, 297
task, 289

G
gap

duality, 122

H
hot-start, 83

I
infeasibility, 123, 125, 127

conic optimization, 125
linear optimization, 123
semidefinite, 127

infeasible, 98
dual, 122, 123, 126, 127, 129
primal, 79, 86, 121, 123, 125, 127

327

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

problem, 121, 123, 125, 127
infeasible problems, 98
installation, 6

path setup, 7
requirements, 6
troubleshooting, 6, 8

integer
optimizer, 90
variable, 25

integer feasible
solution, 92

integer optimization, 25, 90
cut, 91
delayed termination criteria, 92
initial solution, 26
objective bound, 91
optimality gap, 93
relaxation, 91
termination criteria, 92
tolerance, 92

integer optimizer
logging, 93

interior-point
conic optimization, 85
linear optimization, 78
logging, 82, 88
optimizer, 78, 85
termination criteria, 80, 86

interior-point optimizer, 89

J
json format, 290

L
linear constraint matrix, 15
linear dependency, 76
linear optimization, 14, 121

bound, 15
constraint, 15
infeasibility, 123
interior-point, 78
objective, 15
simplex, 83
termination criteria, 80, 83
variable, 15

linearity interval, 110
logging

integer optimizer, 93
interior-point, 82, 88
optimizer, 82, 84, 88
simplex, 84

lower limit
constraints, 129
variables, 130

LP format, 248

M
matrix

constraint, 15, 121, 129
semidefinite, 19
symmetric, 19

MIP, see integer optimization
mixed-integer, see integer
mixed-integer optimization, see integer optimiza-

tion
MPS format, 253

free, 265

N
near-optimal

solution, 81, 88, 92
numerical issues

presolve, 76
scaling, 77
simplex, 84

O
objective, 121

linear optimization, 15
objective bound, 91
objective vector, 129
OPF format, 265
optimal

solution, 122
optimality gap, 93
optimization

conic quadratic, 124
linear, 14, 121
semidefinite, 126

optimizer
determinism, 78
integer, 90
interior-point, 78, 85
logging, 82, 84, 88
parallelization, 77
selection, 76, 78
simplex, 83

optimizers
convex interior-point, 89

OSiL format, 289

P
pair sensitivity analysis

optimal partition type, 111
parallelization, 77
parameter

simplex, 84
positive semidefinite, 21
posynomial, 68
presolve, 75

eliminator, 76
linear dependency check, 76
numerical issues, 76

primal
certificate, 123, 125, 127
feasible, 79, 86, 121

328 Index

MOSEK Optimization Toolbox for MATLAB, Release 8.1.0.51

infeasible, 79, 86, 121, 123, 125, 127
problem, 121, 125, 126
solution, 121

primal-dual
problem, 78, 85
solution, 122

problem
dual, 121, 125, 126
feasible, 121
infeasible, 121, 123, 125, 127
primal, 121, 125, 126
primal-dual, 78, 85
unbounded, 123

Q
qo1

example, 21
quadratic

constraint, 128
quadratic cone, 18, 124
quadratic objective

example, 21
quadratic optimization, 128
quality

solution, 93

R
relaxation, 91
response handling, 26
rotated quadratic cone, 18, 124

S
scaling, 77
semidefinite

cone, 19, 126
infeasibility, 127
matrix, 19
variable, 19, 126

semidefinite optimization, 19, 126
sensitivity analysis, 109

basis type, 111
separable convex optimization, 37
shadow price, 110
simplex

linear optimization, 83
logging, 84
numerical issues, 84
optimizer, 83
parameter, 84
termination criteria, 83

sol format, 297
solution

file format, 297
integer feasible, 92
near-optimal, 81, 88, 92
optimal, 122
primal, 121
primal-dual, 122

quality, 93
solution summary, 32, 34
symmetric

matrix, 19

T
task format, 289
termination criteria

conic optimization, 86
delayed, 92
integer optimization, 92
interior-point, 80, 86
linear optimization, 80, 83
simplex, 83
tolerance, 81, 88, 92

thread, 77
tolerance

integer optimization, 92
termination criteria, 81, 88, 92

troubleshooting
installation, 6

U
unbounded

problem, 123
upper limit

constraints, 129
variables, 130

V
variable, 121

bound, 15, 121
dual, 122, 125
integer, 25
linear optimization, 15
semidefinite, 19, 126

variables
decision, 129
lower limit, 130
upper limit, 130

Index 329

	Introduction
	Why the Optimization Toolbox for MATLAB?

	Contact Information
	License Agreement
	Installation
	Testing the installation

	Guidelines
	The MOSEK integration with MATLAB
	Caveats Using the MATLAB Compiler
	The license system

	Basic Tutorials
	The Basics Tutorial
	Linear Optimization
	Conic Quadratic Optimization
	Semidefinite Optimization
	Quadratic Optimization
	Integer Optimization
	Optimizer Termination Handling
	Problem Modification and Reoptimization
	Solution Analysis
	Solver Parameters

	Nonlinear Tutorials
	Separable Convex (SCopt) Interface
	Entropy Optimization
	Geometric Optimization

	Advanced Tutorials
	Linear Least Squares and Related Norm Minimization Problems
	Converting a quadratically constrained problem to conic form

	Case Studies
	Robust linear Optimization
	Geometric (posynomial) Optimization

	Managing I/O
	Stream I/O
	File I/O
	Verbosity

	The Optimizers for Continuous Problems
	Presolve
	Using Multiple Threads in an Optimizer
	Linear Optimization
	Conic Optimization
	Nonlinear Convex Optimization

	The Optimizer for Mixed-integer Problems
	The Mixed-integer Optimizer Overview
	Relaxations and bounds
	Termination Criterion
	Speeding Up the Solution Process
	Understanding Solution Quality
	The Optimizer Log

	Problem Analyzer
	Analyzing Infeasible Problems
	Example: Primal Infeasibility
	Locating the cause of Primal Infeasibility
	Locating the Cause of Dual Infeasibility
	The Infeasibility Report
	Theory Concerning Infeasible Problems
	The Certificate of Primal Infeasibility
	The certificate of dual infeasibility

	Sensitivity Analysis
	Sensitivity Analysis for Linear Problems
	Sensitivity Analysis with MOSEK

	Problem Formulation and Solutions
	Linear Optimization
	Conic Quadratic Optimization
	Semidefinite Optimization
	Quadratic and Quadratically Constrained Optimization
	General Convex Optimization

	Toolbox Reference
	Command Reference
	Data Structures and Notation
	Parameters grouped by topic
	Parameters (alphabetical list sorted by type)
	Response codes
	Enumerations

	Supported File Formats
	The LP File Format
	The MPS File Format
	The OPF Format
	The CBF Format
	The XML (OSiL) Format
	The Task Format
	The JSON Format
	The Solution File Format

	List of examples
	Interface changes
	Compatibility
	Parameters
	Constants
	Response Codes

	Bibliography
	Symbol Index
	Index

