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CHAPTER

ONE

INTRODUCTION

The MOSEK Optimization Suite 8.1.0.51 is a powerful software package capable of solving large-scale
optimization problems of the following kind:

e linear,

e conic quadratic (also known as second-order cone),
e convex quadratic,

e semidefinite,

e and general convex.

Integer constrained variables are supported for all problem classes except for semidefinite and general
convex problems. In order to obtain an overview of features in the MOSEK Optimization Suite consult
the product introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all relations
are linear. The tremendous success of both applications and theory of linear optimization can be ascribed
to the following factors:

e The required data are simple, i.e. just matrices and vectors.

e Convexity is guaranteed since the problem is convex by construction.

Linear functions are trivially differentiable.

There exist very efficient algorithms and software for solving linear problems.

Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the ad-
vantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

Az —-be K
where K = {y : y > 0}, i.e.,

Az — b=y,

y € K.

In conic optimization a wider class of convex sets K is allowed, for example in 3 dimensions I may
correspond to an ice cream cone. The conic optimizer in MOSEK supports three structurally different
types of cones K, which allows a surprisingly large number of nonlinear relations to be modelled (as
described in the MOSEK modeling cookbook), while preserving the nice algorithmic and theoretical
properties of linear optimization.



http://docs.mosek.com/8.1/intro/index.html
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1.1 Why the Fusion API for Matlab?

Fusion is an object oriented API specifically designed to build conic optimization models in a simple and
expressive manner, using mainstream programming languages.

Fusion API

Python C++ Java MATLAB .NET

With focus on usability and compactness, it helps the user focus on modelling instead of coding.

Typically a conic optimization model in Fusion can be developed in a fraction of the time compared
to using a low-level C API, but of course Fusion introduces a computational overhead compared to
customized C code. In most cases, however, the overhead is small compared to the overall solution time,
and we generally recommend that Fusion is used as a first step for building and verifying new models.
Often, the final Fusion implementation will be directly suited for production code, and otherwise it
readily provides a reference implementation for model verification. Fusion always yields readable and
easily portable code.

The Fusion API for Matlab provides access to Conic Optimization, including:
e Linear Optimization (LO)
e Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)
e Semidefinite Optimization (SDO)

as well as to an auxiliary linear algebra library.

Convex Quadratic and Quadratically Constrained (QCQO) problems can be reformulated as Conic
Quadratic problems and subsequently solved using Fusion. This is the recommended approach, as
described in the MOSEK the modeling cookbook and this whitepaper.

2 Chapter 1. Introduction
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TWO

CONTACT INFORMATION

Phone +45 7174 9373

Website mosek.com

Email
sales@mosek.com Sales, pricing, and licensing
support@mosek.com Technical support, questions and bug reports
info@mosek.com Everything else.

Mailing Address
MOSEK ApS

Fruebjergvej 3

Symbion Science Park, Box 16

2100 Copenhagen O

Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger http:/ /blog.mosek.com

Google Group | https://groups.google.com /forum /#!forum /mosek
Twitter https:/ /twitter.com/mosektw

Google+ https://plus.google.com/+Mosek /posts
Linkedin https://www.linkedin.com /company/mosek-aps

In particular Twitter is used for news, updates and release announcements.
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LICENSE AGREEMENT

Before using the MOSEK software, please read the license agreement available in the distribution
at <MSKHOME>/mosek/8/mosek-eula.pdf or on the MOSEK website https://mosek.com/products
license-agreement.

MOSEK uses some third-party open-source libraries. Their license details follows.
zlib

MOSEK includes the zlib library obtained from the zlib website. The license agreement for z/ib is shown
in Listing 3.1.

Listing 3.1: 2lib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu
fplib

MOSEK includes the floating point formatting library developed by David M. Gay obtained from the
netlib website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/****************************************************************
*
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The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

¥R K K K X X X X X X X X X ¥

***************************************************************/

6 Chapter 3. License Agreement
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INSTALLATION

In this section we discuss how to install and setup the MOSEK Fusion API for Matlab.

Important: Before running this MOSEK interface please make sure that you:

e Installed MOSEK correctly. Some operating systems require extra steps. See the Installation
guide for instructions and common troubleshooting tips.

e Set up a license. See the Licensing guide for instructions.

Compatibility

The Fusion API for Matlab can be used with MATLAB version r2014a or newer, with enabled support
for Java version 1.7 or later.

Locating Files

The files in Fusion API for Matlab are organized as reported in Table 4.1.

Table 4.1: Relevant files for the Fusion API for Matlab.

Relative Path Description Label

<MSKHOME>/mosek/8/tools/platform/<PLATFORM>/bin | Libraries and jar file | <JARDIR>

<MSKHOME>/mosek/8/tools/examples/fusion/matlab Examples <EXDIR>

<MSKHOME>/mosek/8/tools/examples/fusion/data Additional data <MISCDIR>
where

e <MSKHOME> is the folder in which the MOSEK package has been installed,

e <PLATFORM> is the actual platform among those supported by MOSEK, i.e. win32x86, win64x86,
1inux64x86 or osx64x86.

Setting up the paths

To execute a MATLAB script using Fusion API for Matlab the correct path to <JARDIR>/mosekmatlab.
jar must be provided in MATLAB’s Java classpath. This can be set by running the following command
from MATLAB:

javaaddpath <MSKHOME>/mosek/8/tools/platform/<PLATFORM>/bin/mosekmatlab. jar

Alternatively, this path may be set from the command line or it can be added to MATLAB permanently
using the configuration file startup.m or from the FileSet Path menu item. We refer to MATLAB
documentation for details.



http://docs.mosek.com/8.1/install/index.html
http://docs.mosek.com/8.1/install/index.html
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4.1 Building Examples and Testing the Installation

This section describes how to verify that MOSEK has been installed correctly, and how to build and
execute the Matlab examples distributed with MOSEK.

To compile the example lol.m distributed with MOSEK:
e Open MATLAB, set the Java library path and go to the examples directory <EXDIR>.

e Execute the function by typing:

lo1l

e Other example programs can be tested in a similar fashion.

8 Chapter 4. Installation
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DESIGN OVERVIEW

Fusion is a result of many years of experience in conic optimization. It is a dedicated API for users
who want to enjoy a simpler experience interfacing with the solver. This applies to users who regularly
solve conic problems, and to new users who do not want to be too bothered with the technicalities of a
low-level optimizer. Fusion is designed for fast and clean prototyping of conic problems without suffering
excessive performance degradation.

Note that Fusion is an object-oriented framework for conic-optimization but it is not a general purpose
modelling language. The main design principles of Fusion are:

e Expressiveness: we try to make it nice! Despite not being a modelling language, Fusion yields
readable, easy to maintain code that closely resembles the mathematical formulation of the problem.

e Seamlessly multi-language : Fusion code can be ported across C+—+, Python, Java, .NET and
MATLAB with only minimal adaptations to the syntax of each language.

e What you write is what MOSEK gets: A Fusion model is fed into the solver with (almost)
no additional transformations.

Expressiveness

Suppose you have a conic quadratic optimization problem like the efficient frontier in portfolio optimiza-
tion:

T

maximize p'xr — oy
subject to e’z = w,
v = |G ],
x > 0.

Its representation in Fusion is a direct translation of the mathematical model:

M.objective (ObjectiveSense.Maximize, Expr.sub(Expr.dot(mu, x), Expr.mul(alpha, gamma)));

M.constraint (Expr.sub(Expr.sum(x), w), Domain.equalsTo(0.0));
M.constraint (Expr.vstack(gamma, Expr.mul (Expr.transpose(G), x)), Domain.in(QCone());
M.constraint(x, Domain.greaterThan(0.0));

Seamless multi-language API

Fusion can easily be ported across the five supported languages. All functionalities and naming conven-
tions remain the same in all of them. This has some advantages:

e Simplifies code sharing between developers working in different languages.
e Improves code reusability.

e Simplifies the transition from R&D to production (for instance from fast-prototyping languages
used in R&D to more efficient ones used for high performance).
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Here is the same code snippet (creation of a variable in the model) in all five languages supported by
Fusion. Careful code design can generate models with only the necessary syntactic differences between
implementations.

’auto x= M->variable("x", 3, Domain::greaterThan(0.0)); // C++

’x = M.variable('x', 3, Domain.greaterThan(0.0)) # Python
’Variable x = M.variable("x", 3, Domain.greaterThan(0.0)) // Java
’Variable x = M.Variable("x", 3, Domain.GreaterThan(0.0)) // C#

’x = M.variable('x', 3, Domain.greaterThan(0.0)) // MATLAB

What You Write is What MOSEK Gets

Fusion is not a modelling language. Instead it clearly defines the formulation the user must adhere to
and only provides functionalities required for that formulation. An important upshot is that Fusion will
not modify the problem provided by the user, except for introducing auxiliary variables required to fit
the problem into the format of the low-level optimizer API. In other words, the problem that is actually
solved is as close as possible to what the user writes.

For example, suppose the user defined a conic constraint

x> \/(21‘2 — 1'3)2 + (41‘3)2

Now the low-level API requires that all variables appearing in all conic constraints are different, and so
Fusion will have to replace the conic constraint with

1 O 0 X1
0 2 -1 T2 =Y,

Y1 > \/y3 + 3.

Note, however, that to use the optimizer API directly the user would have to apply the same transforma-
tion! A similar situation happens when the user defines a number of linear constraints, which have to be
arranged into a large linear constraint matrix A, and so on. So, in effect, the Fusion mechanism only au-
tomates operations that the user would have to carry out anyway (using pencil and paper, presumably).
Otherwise the optimizer model is a direct copy of the Fusion model.

The main benefits of this approach are:
e The user knows what problem is actually being solved.
e Dual information is readily available for all variables and constraints.
e Only the necessary overhead.

e Better control over numerical stability.

10 Chapter 5. Design Overview



CHAPTER
SIX

CONIC MODELING

6.1 The model

A model built using Fusion is always a conic optimization problem and it is convex by definition. These
problems can be succinctly characterized as

minimize Tz

subject to Arx+be K (6.1)

where K is a product of the following basic types of cones:
o linear: R™" {x e R" : z<u}, {x eR™ : [ <z}, {z eR" : | <z <u}, apoint,

e quadratic: Q" ={x € R" : x> /23 + -+ a2},
e rotated quadratic: QU = {x € R" : 2xy29 > 25+ --- + 22, 21,72 > 0},
o semidefinite:: ST = {X € R"*™ : X is symmmetric positive semidefinite}.

The main thing about a Fusion model is that it can be specified in a convenient way without explicitly
constructing the representation (6.1). Instead the user has access to variables which are used to construct
linear operators that appear in constraints. The cone types described above are the domains of those
constraints. A Fusion model can potentially contain many different building blocks of that kind. To
facilitate manipulations with a large number of variables Fusion defines various logical views of parts of
the model.

This section briefly summarizes the constructions and techniques available in Fusion. See Sec. 7 for a
basic tutorial and Sec. 10 for more advanced case studies. This section is only an introduction: detailed
specification of the methods and classes mentioned here can be found in the API reference.

A Fusion model is represented by the class Xodel and created by a simple construction

M = ModelQ);

The model object is the user’s interface to the optimization problem, used in particular for
e formulating the problem by defining variables, constraints and objective,
e solving the problem and retrieving the solution status and solutions,

e interacting with the solver: setting up parameters, registering for callbacks, performing I/0, ob-
taining detailed information from the optimizer etc.

e memory management.

Almost all elements of the model: variables, constraints and the model itself can be constructed with or
without names. If used, the names for each type of object must be unique. Choosing a good naming
convention can make the problem more readable when dumped to a file. Most Fusion components also
support some degree of pretty printing (toString method).

11
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6.2 Variables

Continuous variables can be scalars, vectors or higher-dimensional arrays. The are added to the model
with the method Model.wvariable which returns a representing object of type Vartable. The shape of a
variable (number of dimensions and length in each dimension) has to be specified at creation. Optionally
a variable may be created in a restricted domain (by default variables are unbounded, that is in R). For
instance, to declare a variable z € R’} we could write

x = M.variable('x', n, Domain.greaterThan(0.));

A multi-dimensional variable is declared by specifying an array with all dimension sizes. Here is an n xn
variable:

’x = M.variable( [n,n], Domain.unbounded() );

The specification of dimensions can also be part of the domain, as in this declaration of a symmetric
positive semidefinite variable of dimension n:

’ v = M.variable(Domain.inPSDCone(n));

Integer variables are specified with an additional domain modifier. To add an integer variable z € [1,10]
we write

’ z= M.variable('z', Domain.integral(Domain.inRange(1.,10.)) );

The function Domain.binary is a shorthand for binary variables often appearing in combinatorial prob-
lems:

’ y= M.variable('y', Domain.binary());

Integrality requirement can be switched on and off using the methods Variable.makelInteger and
Vartable.makeContinuous.

The Variable object provides the primal (Variable. level) and dual (Variable. dual) solution values
of the variable after optimization, and it enters in the construction of linear expressions involving the
variable.

6.3 Linear algebra

Linear expressions are constructed combining variables and matrices by linear operators. The result is an
object that represents the linear expression itself. Fusion only allows for those combinations of operators
and arguments that yield linear functions of the variables. Expressions have shapes and dimensions in
the same fashion as variables. For instance, if x € R™ and A € R™*™, then Az is a vector expression of
length m. Note, however, that the internal size of Ax is mn, because each entry is a linear combination
for which m coefficients have to be stored.

Expressions are concrete implementations of the virtual interface Ezpression. In typical situations,
however, all operations on expressions can be performed using the static methods and factory methods
of the class Ezpr.

12 Chapter 6. Conic Modeling
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Table 6.1: Linear Operators

Method Description

Ezpr.add Element-wise addition of two matrices

Ezpr. sudb Element-wise subtraction of two matrices

Ezpr.mul Matrix or matrix-scalar multiplication

Ezpr.neg Sign inversion

Ezpr.outer Vector outer-product

Ezpr.dot Dot product

Ezpr. sum Sum over a given dimension

Ezpr.mulDiag Sum over the diagonal of a matrix which is the result of a matrix multiplication
Ezpr.constTerm | Return a constant term

Operations on expressions must adhere to the rules of matrix algebra regarding dimensions; otherwise a
DimensionError exception will be thrown.

Expression can be composed, nested and used as building blocks in new expressions. For instance Axz+ By
can be implemented as:

’Expr.add( Expr.mul(A,x), Expr.mul(B,y) );

For operations involving multiple variables and expressions the users should consider list-based methods.
For instance, a clean way to write x + y + 2z + w would be:

’Expr.add( [x, y, z, wl );

Note that a single variable (object of class Variable) can also be used as an expression. Once con-
structed, expressions are immutable.

6.4 Constraints and objective

Constraints are declared within an optimization model using the method Model.constraint. Every
constraint in Fusion has the form

’ Ezpression belongs to a Domain. ‘

Objects of type Domain correspond roughly to the types of convex cones K mentioned at the beginning
of this section. For instance, the following set of linear constraints

X1 + 2132 =0
—+ X9 + T3 = 0 (6.2)
I =0

could be declared as

A = [ .0, 0
.0, 1.
.0, 0

>

1.
0.
1.

M.variable('x',3,Domain.unbounded());
¢ = M.constraint( Expr.mul(A,x), Domain.equalsTo(0.0));

Note that the scalar domain Domain. equalsTo consisting of a single point 0 scales up to the dimension of
the expression and applies to all its elements. This allows many constraints to be comfortably expressed
in a vectorized form. See also Sec. 6.7.

The Constraint object provides the dual (Constraint.dual) value of the constraint after optimization
and the primal value of the constraint expression (Constraint. level).

6.4. Constraints and objective 13
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The typical domains used to specify constraints are listed below. Note that they can also be used directly
at variable creation, whenever that makes sense.

Type Domain
Linear equality Domain.equalsTo
inequality < Domain. lessThan
inequality > Domain.greaterThan
two-sided bound Domain. inRange
Conic Quadratic | quadratic cone Domain. infCone
rotated quadratic cone | Domain.inRotatedfCone
Semidefinite PSD matrix Domain. inPSDCone
Integral Integers in domain D Domain.integral (D)
{0,1} Domain.binary

Having discussed variables and constraints we can finish by defining the optimization objective with
Model.objective. The objective function is a scalar expression and the objective sense is specified by
the enumeration 0bjectiveSense as either minimize or mazimize. The typical linear objective function

¢TIz can be declared as

’M.objective( ObjectiveSense.Minimize, Expr.mul(c,x) );

6.5 Matrices

At some point it becomes necessary to specify linear expressions such as Ax where A is a (large) constant
data matrix. Such coefficient matrices can be represented in dense or sparse format. Dense matrices can
always be represented using the standard data structures for arrays and two-dimensional arrays built into
the language. Alternatively, or when sparsity can be exploited, matrices can be constructed as objects
of the class Matriz. This can have some advantages: a more generic code that can be ported across
platforms and can be used with both dense and sparse matrices without modifications.

Dense matrices are constructed with a variant of the static factory method Matriz.dense. The values
of all entries must be specified all at once and the resulting matrix is immutable. For example the matrix

12 3 4
A[5678}

can be defined with:

A= [ [1.,2.,3.,4.1, [5.,6.,7.,8.]1 1;
Ad= Matrix.dense(A);

or from a flattened representation:

A= [ 1,2,3,4,5,6,7,8 1;
Af= Matrix.dense(2, 4,A);

Sparse matrices are constructed with a variant of the static factory method Matriz.sparse. This is
both speed- and memory-efficient when the matrix has few nonzero entries. A matrix A in sparse format
is given by a list of triples (i, j,v), each defining one entry: A; ; = v. The order does not matter. The
entries not in the list are assumed to be 0. For example, take the matrix

1.0 0.0 0.0 2.0

A=100 30 00 40 |-

Assuming we number rows and columns from 0, the corresponding list of triplets is:
A =1{(0,0,1.0),(0,3,2.0),(1,1,3.0),(1,3,4.0) }

The Fusion definition would be:

14 Chapter 6. Conic Modeling
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rows =[1, 1, 2, 2 1;
cols =1[1, 4, 2, 4 1;
values= [ 1.0, 2.0, 3.0, 4.0 1;

m = Matrix.sparse(4, 4, rows, cols, values);

The Matriz class provides more standard constructions such as the identity matrix, a constant value
matrix, block diagonal matrices etc.

6.6 Stacking and views

Fusion provides a way to construct logical views of parts of existing expressions or combinations of
existing expressions. They are still represented by objects of type Variable or Ezpression that refer
to the original ones. This can be useful in some scenarios:

e retrieving only the values of a few variables, and ignoring the remaining auxiliary ones,
e stacking vectors or matrices to perform various matrix operations,

e bundling a number of similar constraints into one; see Sec. 6.7,

e adding constraints between parts of the same variable, etc.

All these operations do not require new variables or expressions, but just lightweight logical views. In
what follows we will concentrate on expressions; the same techniques are available for variables. These
techniques will be familiar to the users of numerical tools such as Matlab or NumPy.

Picking and slicing

Ezpression.pick picks a subset of entries from a variable or expression. Special cases of picking are
Ezpression.index, which picks just one scalar entry and Ezpression.slice which picks a slice, that
is restricts each dimension to a subinterval. Slicing is a frequently used operation.

Lt

Fig. 6.1: Two dimensional slicing.

Both displayed regions are slices of the two-dimensional 4 x 4 expression, which can be selected as follows:

Al = Ax.slice([1,1],[3,31);
A2 = Ax.index([2,2]);
Reshaping

Expressions can be reshaped creating a view with the same number of coordinates arranged in a different
way. A particular example of this operation if flattening, which converts any multi-dimensional expression
into a one-dimensional vector.

6.6. Stacking and views 15
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Stacking

Stacking refers to the concatenation of expressions to form a new larger one. For example, the next
figure depicts the vertical stacking of two vectors of shape 1 x 3 resulting in a matrix of shape 2 x 3.

allaZlal allazla3

bllb2|b3

N
/

blbZ|b3

¢ = Expr.vstack([a, b]);

Vertical stacking (Ezpr.vstack) of expressions of shapes d; X ds and dj X dy has shape (d; + d}) x da.
Similarly, horizontal stacking (Ezpr.hstack) of expressions of shapes d; x dy and dy X d has shape
dy x (da+db). Fusion supports also more general versions of stacking for multi-dimensional variables, as
described in Ezpr.stack. A special case of stacking is repetition (Ezpr.repeat), equivalent to stacking
copies of the same expression.

6.7 Vectorization

Using Fusion one can compactly express sequences of similar constraints. For example, if we want to
express

AIi:bi, i:l,...,n

we can think of z; € R™ b; € R* as the columns of two matrices X = [z1,...,7,] € R™*" B =
[b1,...,b,] € R¥*" and write simply

AX -B=0.

’M.constraint(Expr.sub(Expr.mul(A, X), B), Domain.equalsTo(0.0));

In this example the domain Domain. equalsTo scales to apply to all the entries of the expression.

Another powerful case of vectorization and scaling domains is the ability to define a sequence of conic
constraints in one go. Suppose we want to find an upper bound on the 2-norm of a sequence of vectors,
that is we want to express

t> il i=1,...,n

Suppose that the vectors y; are arranged in the rows of a matrix Y. Then we can simply write:

t = M.variable();

M.constraint (Expr.hstack(Var.vrepeat(t, n), Y), Domain.inQCone());

Here, again, the conic domain Domain. inf{Cone is by default applied to each row of the matrix separately,
yielding the desired constraints in a loop-free way (the i-th row is (t,y;)). The direction along which
conic constraints are created within multi-dimensional expressions can be changed with Domain.azis.

We recommend vectorizing the code whenever possible. It is not only more elegant and portable but
also more efficient — loops are eliminated and the number of Fusion API calls is reduced.
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6.8 Reoptimization

Between optimizations the user can modify the model in two ways:

e Add new constraints with Xodel.constraint. This is useful for solving a sequence of optimization
problems with more and more restrictions on the feasible set. See for example Sec. 10.9.

e Replace the objective with a new one. This is particularly useful when solving a sequence of
problems with the same data but different objectives, for instance in multi-objective optimization.
For simplicity, suppose we want to minimize f(z) = ya + Sy, for varying choices of v > 0. Then
we could write:

gamma=[0., 0.5, 1.0]; / Chotices for gamma
beta=2.0;

x = M.variable('x', 1, Domain.greaterThan(0.));

y = M.variable('y', 1, Domain.greaterThan(0.));
beta_y = Expr.mul(beta,y);

for g = gamma
M.objective( ObjectiveSense.Minimize, Expr.add(Expr.mul(g,x), beta_y) );
M.solve();

end

e Add a new expression to an existing constraint (Constraint.add).

Otherwise all Fusion objects are immutable.

6.8. Reoptimization 17
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CHAPTER

SEVEN

OPTIMIZATION TUTORIALS

In this section we demonstrate how to set up basic types of optimization problems. Each short tutorial
contains a working example of formulating problems, defining variables and constraints and retrieving

solutions.

7.1 Linear Optimization

The simplest optimization problem is a purely linear problem. A linear optimization problem is a problem

of the following form:

Minimize or maximize the objective function

n—1

E . f
cjxj+ ¢

j=0

subject to the linear constraints

n—1
ZESZaijj <ug, k=0,...,m-—1,
=0
and the bounds
7 <z;<uj, j=0,...,n—1

The problem description consists of the following elements:
e m and n — the number of constraints and variables, respectively,
e r — the variable vector of length n,

e ¢ — the coefficient vector of length n

co
c= ,
Cn—1
e ¢/ — fixed term in the objective,
e A — an m x n matrix of coefficients
ao,0 T ag,(n—1)
A= :
Am-1),0 " A(m-1),(n—1)
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e [ and u® — the lower and upper bounds on constraints,
e [” and u® — the lower and upper bounds on variables.
Please note that we are using 0 as the first index: xg is the first element in variable vector x.

The Fusion user does not need to specify all of the above elements explicitly — they will be assembled
from the Fusion model.

7.1.1 Example LO1

The following is an example of a small linear optimization problem:

maximize 3xzg + lz; + Ddxe + lzg

subject to 3xp + 1lxz; + 2x9 30,

200 + 1z + 3x9 + 1lxg > 15, (7.1)
211 + 3x3 < 25,
under the bounds
0 S Zo g o0,
0 < =z < 10,
0 S x2 S 0,
0 < z3 < o0

We start our implementation in Fuston importing the relevant modules, i.e.

import mosek.fusion.x*;

Next we declare an optimization model creating an instance of the Xodel class:

’M = Model();

For this simple problem we are going to enter all the linear coefficients directly:

c=1[3.0, 1.0, 50, 1.01;

A= .0,
.0,
0

B

, O
, 1.
3

>

o O O
N e
o W N
o O O

The variables appearing in problem (7.1) can be declared as one 4-dimensional variable:

’x = M.variable('x', 4, Domain.greaterThan(0.0));

At this point we already have variables with bounds 0 < z; < 0o, because the domain is applied element-
wise to the entries of the variable vector. Next, we impose the upper bound on x:

’ M.constraint (x.index(1), Domain.lessThan(10.0));

The linear constraints can now be entered one by one using the dot product of our variable with a
coefficient vector:

M.constraint('cl', Expr.dot(A(1,:), x), Domain.equalsTo(30.0));
M.constraint('c2', Expr.dot(A(2,:), x), Domain.greaterThan(15.0));
M.constraint('c3', Expr.dot(A(3,:), x), Domain.lessThan(25.0));

We end the definition of our optimization model setting the objective function in the same way:

M.objective('obj', ObjectiveSense.Maximize, Expr.dot(c, x));

Finally, we only need to call the Model.solve method:
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M.solve();

The solution values can be attained with the method Variable. level.

sol = x.level();
disp(['[x1 x2 x3 x4] = ' mat2str(sol',7)]);

Listing 7.1: Fusion implementation of model (7.1).

function 1lol1()
import mosek.fusion.x*;

c=1[3.0, 1.0, 5.0, 1.01;
A=1T[3.0, 1.0, 2.0, 0.0 ; .
2.0, 1.0, 3.0, 1.0 ; .
0.0, 2.0, 0.0, 3.0 1;

/ Create a model with the name 'lol'
M = Model();

4 Create variable 'z' of length 4
x = M.variable('x', 4, Domain.greaterThan(0.0));

Y

Create constraints

.constraint(x.index (1), Domain.lessThan(10.0));

.constraint('cl', Expr.dot(A(1,:), x), Domain.equalsTo(30.0));
.constraint('c2', Expr.dot(A(2,:), x), Domain.greaterThan(15.0));
.constraint('c3', Expr.dot(A(3,:), x), Domain.lessThan(25.0));

EERER=

Y

Set the objective function to (c”t * z)
M.objective('obj', ObjectiveSense.Maximize, Expr.dot(c, x));

/4 Solve the problem
M.solve();

/ Get the solution wvalues
sol = x.level();
disp(['[x1 x2 x3 x4] = ' mat2str(sol',7)]);

7.2 Conic Quadratic Optimization

Conic optimization is a generalization of linear optimization, allowing constraints of the type
t
S ICt,

where 2! is a subset of the problem variables and K; is a convex cone. Since the set R™ of real numbers
is also a convex cone, we can simply write a compound conic constraint « € K where K = IC; X -+ X K
is a product of smaller cones and z is the full problem variable.

MOSEK can solve conic quadratic optimization problems of the form

minimize e +cf
subject to ¢ < Azx < uc,
r < T < u®,
x €K,

where the domain restriction, x € IC, implies that all variables are partitioned into convex cones

r= (202 .. 2P7Y), with 2’ € K, C R™.
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For convenience, a user defining a conic quadratic problem only needs to specify subsets of variables x*
belonging to quadratic cones. These are:

e Quadratic cone:

Q" =
e Rotated quadratic cone:
n—1
o = xeR":Zxoxlzzx?, x>0, x1>0
j=2

For example, the following constraint:
(1‘47 anxQ) S QS

describes a convex cone in R? given by the inequality:

xq >\ 2k + 23

In Fusion the coordinates of a cone are not restricted to single variables. They can be arbitrary linear
expressions, and an auxiliary variable will be substituted by Fusion in a way transparent to the user.

7.2.1 Example CQO1

Consider the following conic quadratic problem which involves some linear constraints, a quadratic cone
and a rotated quadratic cone.

minimize  y; + Y2 + Y3

subject to x1 + x2 + 2.0x3 = 1.0,
T1,T2,T3 > OO, (72)
(ylaxlax2) € QS;
(y2,y3,23) € Q3.

We start by creating the optimization model:

M = Model('cqol');

We then define variables x and y. Two logical variables (aliases) z1 and z2 are introduced to model the
quadratic cones. These are not new variables, but map onto parts of x and y for the sake of convenience.

x = M.variable('x', 3, Domain.greaterThan(0.0));
y = M.variable('y', 3, Domain.unbounded());

/ Create the aliases

A zl = [ y[1],z[1],z[2] ]

4 and z2 = [ yl[2],y[3],z[3] ]

z1 = Var.vstack(y.index (1), x.slice(1,3));
z2 = Var.vstack(y.slice(2,4), x.index(3));

The linear constraint is defined using the dot product:

/ Create the constraint
A z[0] + x[1] + 2.0 z[2] = 1.0
M.constraint('lc', Expr.dot([1.0, 1.0, 2.0], x), Domain.equalsTo(1.0))

The conic constraints are defined using the logical views z1 and 22 created previously. Note that this is a
basic way of defining conic constraints, and that in practice they would have more complicated structure.
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/ Create the constraints

A z1 belongs to C_3

A z2 belongs to K_3

/ where C_3 and K_3 are respectively the quadratic and
/ rotated quadratic come of size 3, t.e.

A z1[0] >= sqrt(z1[1]-2 + 2z1[2]"2)

A and 2.0 2z2[0] z2[1] >= z2[2]"2

qcl = M.constraint('qcl', zl1, Domain.inQCone())

qc2 = M.constraint('qc2', z2, Domain.inRotatedQCone())

We only need the objective function:

/ Set the objective function to (y[0] + y[1] + y[2])
M.objective('obj', ObjectiveSense.Minimize, Expr.sum(y));

Calling the Model.solve method invokes the solver:

M.solve();

The primal and dual solution values can be retrieved using Variable. level, Constraint.level and
Variable.dual, Constraint.dual, respectively:

/ Get the linearsolution walues
solx = x.level();
soly = y.level();

/4 Get conic solution of gcl
qcllvl = gcl.level();
gqclsn = gcl.dualQ);

Listing 7.2: Fusion implementation of model (7.2).

function cqol()
import mosek.fusion.x*;

M

Model('cqol');

x = M.variable('x', 3, Domain.greaterThan(0.0));
M.variable('y', 3, Domain.unbounded());

<
1]

/ Create the aliases

4 z1 = [ y[1],z[1],z[2] ]

4 and 22 = [ yl[2],y[3],2[3] ]

z1 = Var.vstack(y.index (1), x.slice(1,3));
z2 = Var.vstack(y.slice(2,4), x.index(3));

/ Create the constraint
A z[0] + x[1] + 2.0 z[2] = 1.0
M.constraint('lc', Expr.dot([1.0, 1.0, 2.0], x), Domain.equalsTo(1.0))

/ Create the constraints

A z1 belongs to C_3

A z2 belongs to K_3

/ where C_3 and K_3 are respectively the quadratic and
/ rotated quadratic come of size 3, i.e.

A z1[0] >= sqrt(z1[1]-2 + z1[2]"2)

A and 2.0 22[0] 22[1] >= z2[2]"2

qcl = M.constraint('qcl', zl, Domain.inQCone())

qc2 = M.constraint('qc2', z2, Domain.inRotatedQCone())

/ Set the objective function to (y[0] + y[1] + y[2])
M.objective('obj', ObjectiveSense.Minimize, Expr.sum(y));
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/ Solve the problem
M.solve();

/ Get the linearsolution walues
x.level();
soly = y.level();
disp(['[x1 x2 x3]
disp([' [yl y2 y3]

solx

', mat2str(solx',7)]);
', mat2str(soly',7)]);

/A Get conic solution of qcl

qcllvl = gcl.level();

qclsn = gcl.dualQ);

disp(['qcl levels = ', mat2str(qcllvl',7)]);

disp(['qcl dual conic var levels = ', mat2str(qclsn',7)]);

7.3 Semidefinite Optimization

Semidefinite optimization is a generalization of conic quadratic optimization, allowing the use of matrix
variables belonging to the convex cone of positive semidefinite matrices

Si={Xe8:2"Xz>0, VzeR'},

where S is the set of r x r real-valued symmetric matrices.

MOSEK can solve semidefinite optimization problems of the form

minimize Z;:Ol c;x; + Z?;S (C;, X;)+c
subject to 1§ < Z;:Ol a;jx; + Z;’;é (A, X;) < u, i=0,...,m—1,
7 < z; < wuj, j=0,....,n—-1,
xEIC,YjGS:_j, j=0,...,p—1

where the problem has p symmetric positive semidefinite variables X; € S}’ of dimension r; with
symmetric coefficient matrices C; € 8" and A4; ; € S"i. We use standard notation for the matrix inner
product, i.e., for A, B € R™*" we have

In Fusion the user can enter the linear expressions in a more convenient way, without having to cast the
problem exactly in the above form.

7.3.1 Example SDO1

We consider the simple optimization problem with semidefinite and conic quadratic constraints:

2 1 0
minimize < 1 2 1 ,X>—|—x0
0 1 2
10 0]
subject to 01 0|,X)4+xo = 1,
e z
101 1]
< 1 ]. ]. ,X>—|—.131—|—.T2 = 1/2,
1 11

xO_Z Vx12+&3?7 YEO,
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The problem description contains a 3-dimensional symmetric semidefinite variable which can be written
explicitly as:

- Xoo XIO Xzo
X = {10 {11 {21 € Si
Xoo Xo1 Xoo

and a conic quadratic variable (zg, z1,22) € Q3. The objective is to minimize
2(X o0 + X10 + X11 + X21 + Xa2) + 2o,
subject to the two linear constraints

. X+t Xu+ Xty = 1L
Xoo+ X114+ Xoo +2(X10+Xoo+ Xo1)+a1+22 = 1/2.

Our implementation in Fusion begins with creating a new model:

M = Model('sdol');

We create a symmetric semidefinite variable X and another variable representing z. For simplicity we
immediately declare that x belongs to a quadratic cone

X
X

M.variable('X', Domain.inPSDCone(3));
M.variable('x', Domain.inQCone(3));

In this elementary example we are going to create an explicit matrix representation of the problem

2107 1007 111
C=|12 1|, 4=|010|,4=|11"1
0 1 2 00 1 11 1

and use it in the model via the dot product operation (-, -) which applies to matrices as well as to vectors.
This way we create each of the linear constraints and the objective as one expression.

4 Objective
M.objective (ObjectiveSense.Minimize, Expr.add(Expr.dot(C, X), x.index(1)));

/ Constraints
M.constraint('cl', Expr.add(Expr.dot(Al, X), x.index(1)), Domain.equalsTo(1.0));
M.constraint('c2', Expr.add(Expr.dot(A2, X), Expr.sum(x.slice(2, 4))), Domain.equalsTo(0.5));

Now it remains to solve the problem with Model.solve.

Listing 7.3: Fusion implementation of problem (7.3).

import mosek.fusion.*;
M = Model('sdol');

4 Setting up the variables
X = M.variable('X', Domain.inPSDCone(3));
x = M.variable('x', Domain.inQCone(3));

4 Setting up constant coefficient matrices

C = Matrix.demse( [[2.,1.,0.1; [1.,2.,1.]; [0.,1.,2.1] );
A1 = Matrix.eye(3);

A2 = Matrix.ones(3,3);

4 Objective
M.objective(ObjectiveSense.Minimize, Expr.add(Expr.dot(C, X), x.index(1)));

/ Constraints
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M.constraint('cl', Expr.add(Expr.dot(Al, X), x.index(1)), Domain.equalsTo(1.0));
M.constraint('c2', Expr.add(Expr.dot(A2, X), Expr.sum(x.slice(2, 4))), Domain.equalsTo(0.5));

M.solve();

X.level()
x.level()

7.4 Integer Optimization

An optimization problem where one or more of the variables are constrained to integer values is called a
(mixed) integer optimization problem. MOSEK supports integer variables in combination with linear
and conic quadratic problems. See the previous tutorials for an introduction to how to model these types
of problems.

7.4.1 Example MILO1

We use the example

maximize xg + 0.64x,

subject to 50xg + 3lz; < 250, (7.4)
3330 — 2581 Z —47 ’
zg, 21 >0 and integer

to demonstrate how to set up and solve a problem with integer variables. It has the structure of a linear
optimization problem (see Sec. 7.1) except for integrality constraints on the variables. Therefore, only
the specification of the integer constraints requires something new compared to the linear optimization
problem discussed previously.

First, the integrality constraints are imposed by modifying any existing domain with Domain. integral:

x = M.variable('x', 2, Domain.integral(Domain.greaterThan(0.0)));

Next, the example demonstrates how to set various useful parameters of the mixed-integer optimizer.
See Sec. 13 for details.

Set mazr solution time
.setSolverParam('mioMaxTime', 60.0);

Set maz relative gap (to its default value)
.setSolverParam('mioTolRelGap', le-4);

Set maz absolute gap (to its default value)
.setSolverParam('mioTolAbsGap', 0.0);

R s R s R s

The complete source for the example is listed in Listing 7.4.

Listing 7.4: How to solve problem (7.4).

function milol1()

import mosek.fusion.*;

A=T[T[50.0, 31.01; ...
[ 3.0, -2.01]1 1;

c=1[1.0, 0.64 1;

M = Model('milol');

x = M.variable('x', 2, Domain.integral(Domain.greaterThan(0.0)));
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/ Create the constraints

A 50.0 z[0] + 31.0 z[1] <= 250.0

Vi 3.0 z[0] - 2.0 o[1] >= -4.0

M.constraint('cl', Expr.dot(A(1,:), x), Domain.lessThan(250.0));
M.constraint('c2', Expr.dot(A(2,:), x), Domain.greaterThan(-4.0));

Set mazx solution time
.setSolverParam('mioMaxTime', 60.0);

Set maz relative gap (to its default value)
.setSolverParam('mioTolRelGap', le-4);

Set maz absolute gap (to its default value)
.setSolverParam('mioTolAbsGap', 0.0);

2o R s R e

4 Set the objective function to (c°T * z)
M.objective('obj', ObjectiveSense.Maximize, Expr.dot(c, x));

/ Solve the problem
M.solve();

/ Get the solution wvalues
sol = x.level();
disp(['[x1 x2] = ', mat2str(sol',7)])

7.4.2 Specifying an initial solution

Solution time of can often be reduced by providing an initial solution for the solver. It is not necessary
to specify the whole solution. By setting the mioConstructSol parameter to "on" and inputting values
for the integer variables only, MOSEK will be forced to compute the remaining continuous variable
values. If the specified integer solution is infeasible or incomplete, MOSEK will simply ignore it.

We concentrate on a simple example below.

maximize Tz + 10x1 + x2 + Sx3
subject to o+ 1 +x2+ 23 < 2.5
20, T1,To €L
x0, 1, 2,23 > 0

(7.5)

We initialize the mixed-integer optimizer with a feasible starting point (z¢, z1, z2,z3) = (0,2,0,0) using
the method Variable.setlevel:

Listing 7.5: Fusion implementation of problem (7.5) specifying an initial solution.

init_sol =[0.0, 2.0, 0.0, 0.0];
x.setLevel( init_sol );

The complete code is not very different from the first example and is available for download as
mioinitsol.m. For more details about this process see Sec. 13. An more advanced application of
Variable.setLevel is presented in the case study on Multiprocessor scheduling.

7.5 Problem Modification and Reoptimization

Often one might want to solve not just a single optimization problem, but a sequence of problems, each
differing only slightly from the previous one. This section demonstrates how to modify and re-optimize
an existing problem. The example we study is a simple production planning model.

Problem modifications regarding variables, cones, objective function and constraints can be grouped in
categories:
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e adding constraints and variables,
e modifying existing constraints.

Adding new variables and constraints is very easy. Modifications to existing constraints are more cum-
bersome, and the user should consider whether it is not worth rebuilding the model from scratch in such
case. The amount of work required by Fusion to update the optimizer task may outweigh the potential
gains.

Depending on the type of modification, MOSEK may be able to optimize the modified problem more
efficiently exploiting the information and internal state from the previous execution. After optimization,
the solution is always stored internally, and is available before next optimization. The former optimal
solution may be still feasible, but no longer optimal; or it may remain optimal if the modification of the
objective function was small.

In general, MOSEK exploits dual information and availability of an optimal basis from the previous
execution. The simplex optimizer is well suited for exploiting an existing primal or dual feasible solution.
Restarting capabilities for interior-point methods are still not as reliable and effective as those for the
simplex algorithm. More information can be found in Chapter 10 of the book [Chv83/.

Parameter settings (see Sec. 8.4) can also be changed between optimizations.

7.5.1 Example: Production Planning

A company manufactures three types of products. Suppose the stages of manufacturing can be split into
three parts: Assembly, Polishing and Packing. In the table below we show the time required for each
stage as well as the profit associated with each product.

Product no. | Assembly (minutes) | Polishing (minutes) | Packing (minutes) | Profit ($)
0 2 3 2 1.50
1 4 2 3 2.50
2 3 3 2 3.00

With the current resources available, the company has 100, 000 minutes of assembly time, 50, 000 minutes
of polishing time and 60,000 minutes of packing time available per year. We want to know how many
items of each product the company should produce each year in order to maximize profit?

Denoting the number of items of each type by g, x1 and x5, this problem can be formulated as a linear
optimization problem:

maximize 1.5x9 + 2.5z7 + 3.0xo

subject to 2x9 4+ 4xr; 4+ 3z < 100000, (7.6)
3xo + 211 + 3x2 < 50000, ’
2¢0 + 321 + 2292 < 60000,

and
Zo,T1,T2 Z 0.
Code in Listing 7.6 loads and solves this problem.

Listing 7.6: Setting up and solving problem (7.6)

.5, 2.5, 3.0 1;

[ )
A=1[2, 4, 3; ...
, 2, 3; ...
, 3, 21;
b [ 100000.0, 50000.0, 60000.0 1;
numvar = 3;

numcon = 3;

>

N W N =

>
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/ Create a model and input data

M = Model();

x = M.variable(numvar, Domain.greaterThan(0.0));

con = M.constraint(Expr.mul(A, x), Domain.lessThan(b));
M.objective(ObjectiveSense.Maximize, Expr.dot(c, x));

4 Solve the problem

M.solve();

7.5.2 Changing the Linear Constraint Matrix

Suppose we want to change the time required for assembly of product 0 to 3 minutes. This corresponds to
setting a0 = 3. Now the Constraint provides the method Constraint.add, which sums the constraint
expression with another expression and updates the constraint expression. In our case the update we

need is 1 - zq (since 2+ 1 = 3).

con.index(1).add(x.index(1));

The problem now has the form:

maximize 1.5z9 + 2521 4+ 3.0z4
subject to  3zg + 4z + 3o
3o +  2x +  3x9
2x0 -+ 3T + 2T9

and
o, T1,T2 Z O

After this operation we can reoptimize the problem.

7.5.3 Appending Variables

We now want to add a new product with the following data:

< 100000,
< 50000,
< 60000,

Product no. | Assembly (minutes) | Polishing (minutes)

Packing (minutes)

Profit ($)

3 4 0

1

1.00

This corresponds to creating a new variable x3, appending a new column to the A matrix and setting a

new term in the objective. We do this in Listing 7.7

Listing 7.7: How to add a new variable (column)

JEEEEEKKKKKFNRNNN, Add 0 Mew Uariable **kkkkkk Kk Kk kKKK KKKKKKKKKKKKKRR]]

/ Create a variable and a compound view of all variables
x3 = M.variable(Domain.greaterThan(0.0));

xNew = Var.vstack(x, x3);

/ Add to the exising constraint

con.add (Expr.mul(x3, [4, 0, 11));

/# Change the objective to include z3

M.objective(ObjectiveSense.Maximize, Expr.dot([1.5, 2.5, 3.0, 1.0], xNew));

After this operation the new problem is:

maximize 1.5z9 + 2521 + 3.0z + 1.0x3
subject to 3z9 + 41 + 3xz2 + 4xs < 100000, (7.8)
3z + 2z1 + 3z < 50000, ’
2xg 4+ 3x + 225 4+ lxs < 60000,
and
X0, T1,T2,T3 Z 0.
7.5. Problem Modification and Reoptimization 29




MOSEK Fusion API for Matlab, Release 8.1.0.51

7.5.4 Appending Constraints

Now suppose we want to add a new stage to the production process called Quality control for which
30000 minutes are available. The time requirement for this stage is shown below:

Product no. | Quality control (minutes)
0 1
1 2
2 1
3 1

This corresponds to adding the constraint
To + 221 + 22 + x3 < 30000
to the problem. This is done as follows.

Listing 7.8: Adding a new constraint.

SR r xR x kR xkkxxk Add Q4 NEW CONSETAINE *kKKAKKKKRKEKRKI KKK RRK KRR K AR
M.constraint (Expr.dot (xNew, [1, 2, 1, 1]), Domain.lessThan(30000.0));

Again, we can continue with re-optimizing the modified problem.
For a more in-depth treatment see the following sections:
e (uase studies for more advanced and complicated optimization examples.

e Problem Formulation and Solutions for formal mathematical formulations of problems MOSEK
can solve, dual problems and infeasibility certificates.
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CHAPTER

EIGHT

SOLVER INTERACTION TUTORIALS

In this section we cover the interaction with the solver.

8.1 Accessing the solution

This section contains important information about the status of the solver and the status of the solution,
which must be checked in order to properly interpret the results of the optimization.

8.1.1 Solver termination

If an error occurs during optimization then the method Model.solve will throw an exception of type
OptimizeError. The method FusionRuntimeEzception.toString will produce a description of the
error, if available. More about exceptions in Sec. 8.2.

If a runtime error causes the program to crash during optimization, the first debugging step is to enable
logging and check the log output. See Sec. 8.3.

If the optimization completes successfully, the next step is to check the solution status, as explained
below.

8.1.2 Available solutions

MOSEK uses three kinds of optimizers and provides three types of solutions:
e basic solution (BAS, from the simplex optimizer),
e interior-point solution (ITR, from the interior-point optimizer),
e integer solution (ITG, from the mixed-integer optimizer).

Under standard parameters settings the following solutions will be available for various problem types:

Table 8.1: Types of solutions available from MOSEK

Simplex optimizer

Interior-point
mizer

opti-

Mixed-integer  opti-
mizer

Linear problem SolutionType. SolutionType.
Basic Interior

Conic (nonlinear) problem SolutionType.
Interior

Problem with integer vari-

ables

SolutionType.
Integer

For linear problems the user can force a specific optimizer choice making only one of the two solutions
available. For example, if the user disables basis identification, then only the interior point solution will
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be available for a linear problem. Numerical issues may cause one of the solutions to be unknown even
if another one is feasible.

Not all components of a solution are always available. For example, there is no dual solution for integer
problems.

The user will always need to specify which solution should be accessed.

Moreover, the user may be oblivious to the actual solution type by always referring to SolutionType.
Default, which will automatically select the best available solution, if there is more than one. Moreover,
the method Model.selectedSolution can be used to fix one solution type for all future references.

8.1.3 Problem and solution status

Assuming that the optimization terminated without errors, the next important step is to check the
problem and solution status. There is one for every type of solution, as explained above.

Problem status

Problem status (ProblemStatus, retrieved with Model.getProblemStatus) determines whether the
problem is certified as feasible. Its values can roughly be divided into the following broad categories:

e feasible — the problem is feasible. For continuous problems and when the solver is run with default
parameters, the feasibility status should ideally be ProblemStatus.PrimalAndDualFeasible.

e primal/dual infeasible — the problem is infeasible or unbounded or a combination of those.
The exact problem status will indicate the type of infeasibility.

e unknown — the solver was unable to reach a conclusion, most likely due to numerical issues.

Solution status

Solution status (SolutionStatus, retrieved with Model.getPrimalSolutionStatus and Model.
getDualSolutionStatus) provides the information about what the solution values actually contain.
The most important broad categories of values are:

e optimal (SolutionStatus.Optimal) — the solution values are feasible and optimal.

e near optimal (SolutionStatus.VearOptimal) — the solution values are feasible and they were
certified to be at least nearly optimal up to some accuracy.

e certificate — the solution is in fact a certificate of infeasibility (primal or dual, depending on the
solution).

e unknown/undefined — the solver could not solve the problem or this type of solution is not
available for a given problem.

The solution status determines the action to be taken. For example, in some cases a suboptimal solution
may still be valuable and deserve attention. It is the user’s responsibility to check the status and quality
of the solution.

Typical status reports

Here are the most typical optimization outcomes described in terms of the problem and solution statuses.
Note that these do not cover all possible situations that can occur.
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Table 8.2: Continuous problems (solution status for

SolutionType.Interior or SolutionType.Basic)

Outcome

Problem status Solution status (pri- | Solution status
mal) (dual)

Optimal ProblemStatus. SolutionStatus. SolutionStatus.
PrimalAndDualFeasible Optimal Optimal

Primal infeasible ProblemStatus. SolutionStatus. SolutionStatus.
PrimallInfeasible Unknown Certificate

Dual infeasible ProblemStatus. SolutionStatus. SolutionStatus.
Duallnfeasible Certificate Unknouwn

Uncertain (stall, numeri- | ProblemStatus. Unknown SolutionStatus. SolutionStatus.

cal issues, etc.) Unknown Unknown

Table 8.3: Integer problems (solution status for SolutionType.
Integer, others undefined)

Outcome Problem status Solution status (primal) | Solution status (dual)
Integer optimal ProblemStatus. SolutionStatus. SolutionStatus.
PrimalFeasible Optimal Unknoun
Infeasible ProblemStatus. SolutionStatus. SolutionStatus.
PrimalInfeasible Unknown Unknown
Integer feasible | ProblemStatus. SolutionStatus. SolutionStatus.
point PrimalFeasible Feasible Unknown
No conclusion ProblemStatus. Unknoun SolutionStatus. SolutionStatus.
Unknown Unknouwn

8.1.4 Retrieving solution values

After the meaning and quality of the solution (or certificate) have been established, we can query for the
actual numerical values. They can be accessed with methods such as:

e Model.primalObjValue, Model.dualObjValue — the primal and dual objective value.

e Variable. level — solution values for the variables.

e (Constraint.level — values of the constraint expressions in the current solution.
e (Constraint.dual, Variable.dual — dual values.
Remark

By default only at least near optimal solutions are returned. An attempt to access a solution with a
weaker status will result in an exception. This can be changed by choosing another level of acceptable
solutions with the method Model.acceptedSolutionStatus. In particular, this method must be called
to enable retrieving suboptimal solutions and infeasibility certificates. For instance, one could write

M.acceptedSolutionStatus(AccSolutionStatus.Feasible)

The current setting of acceptable solutions can be checked with Yodel.getdcceptedSolutionStatus.
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8.2 Errors and exceptions

Exceptions

Almost every method in Fusion API for Matlab can throw an exception informing that the requested
operation was not performed correctly, and indicating the type of error that occurred. This is the case
in situations such as for instance:

e incompatible dimensions in a linear expression,
e defining an invalid value for a parameter,

e accessing an undefined solution,

e repeating a variable name, etc.

It is therefore a good idea to catch exceptions of type FusionEzception and its specific subclasses. The
one case where it is extremely important to do so is when Model.solve is invoked. We will say more
about this in Sec. 8.1.

The exception contains a short diagnostic message. They can be accessed as in the following example.

try

M.setSolverParam('intpntCoTolRelGap', 1.01);
catch

disp('Wrong parameter value');

It will produce as output:

Error: Invalid value for parameter (intpntCoTolRelGap)

Optimizer errors and warnings

The optimizer may also produce warning messages. They indicate non-critical but important events,
that will not prevent solver execution, but may be an indication that something in the optimization
problem might be improved. Warning messages are normally printed to a log stream (see Sec. 8.3). A
typical warning is, for example:

MOSEK warning 53: A numerically large upper bound value 6.6e+09 is specified for constraint
—»'C69200' (46020).

8.3 Input/Output

The Model class is also a proxy for input/output operations related to an optimization model.

8.3.1 Stream logging

By default the solver runs silently and does not produce any output to the console or otherwise. However,
the log output can be redirected to a user-defined output stream or stream callback function. The log
output is analogous to the one produced by the command-line version of MOSEK.

To redirect all log messages use the method Model.setLogHandler. For instance, we can use the
standard output:

M.setLogHandler (java.io.PrintWriter(java.lang.System.out)) ;

A log stream can be detached by passing NULL.
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8.3.2 Log verbosity

The logging verbosity can be controlled by setting the relevant parameters, as for instance
e log,
e logIntpnt,
e logMio,
e logCutSecondlpt,
e logSim, and
e logSimMinor.

Each parameter controls the output level of a specific functionality or algorithm. The main switch is
log which affect the whole output. The actual log level for a specific functionality is determined as the
minimum between log and the relevant parameter. For instance, the log level for the output produce by
the interior-point algorithm is tuned by the logIntpnt; the actual log level is defined by the minimum
between log and logIntpnt.

Tuning the solver verbosity may require adjusting several parameters. It must be noticed that verbose
logging is supposed to be of interest during debugging and tuning. When output is no more of interest,
the user can easily disable it globally with log. Larger values of Log do not necessarily result in increased
output.

By default MOSEK will reduce the amount of log information after the first optimization on a given
problem. To get full log output on subsequent re-optimizations set logCutSecondOpt to zero.

8.3.3 Saving a problem to a file

An optimization model defined in Fusion can be dumped to a file using the method Model.writeTask.
The file format will be determined from the filename’s extension. Supported formats are listed in Sec.
15 together with a table of problem types supported by each.

For instance the problem can be written to an MPS file with

’M.writeTask('dump.mps');

All formats can be compressed with gzip by appending the .gz extension, for example

’M.writeTask('dump.mps.gz');

Some remarks:

e The problem is written to the file as it is represented in the underlying optimizer task, that is
including auxiliary variables introduced by Fusion if necessary.

e Unnamed variables are given generic names. It is therefore recommended to use meaningful variable
names if the problem file is meant to be human-readable.

e The task format is MOSEK’s native file format which contains all the problem data as well as
solver settings.

8.3.4 Reading a problem from a file

It is not possible to read a file saved with Model.writeTask back into Fusion because the structure
of the high-level optimization model is not saved. However, such problem files can be solved with the
command-line tool or read by the low-level Optimizer APT if necessary. See the documentation of those
interfaces for details.
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8.3.5 Pretty printing

Most Fusion objects (variables, matrices, expressions, constraints) provide a toString() method which
returns a plain text string representation of the object. This can be useful for inspecting and debugging
the contents of small models. In general, the string will contain

e object type,
e size and dimension,
e the contents of the object, usually using a sparse representation.

For example, consider the element-wise product of the identity matrix with a square variable:

x = M.variable('x', [4,4], Domain.unbounded());
ee = Expr.mulElm(Matrix.eye(4), x);
display( ee.toString() )

This will be formatted as

Expr(ndim=(4,4),

[ ([o0]) -> + 1.0 X[0,0],
(f1 11) -> + 1.0 x[1,1],
([2 2]) -> + 1.0 X[2,2],
([33]) -> +1.0X[3,3] D

As expected, only the nonzeros are printed.

8.4 Setting solver parameters

MOSEK comes with a large number of parameters that allows the user to tune the behavior of the
optimizer. The typical settings which can be changed with solver parameters include:

e choice of the optimizer for linear problems,

e choice of primal/dual solver,

e turning presolve on/off,

e turning heuristics in the mixed-integer optimizer on/off,

e level of multi-threading,

e feasibility tolerances,

e solver termination criteria,

e behaviour of the license manager,
and more. All parameters have default settings which will be suitable for most typical users.
The API reference contains:

o Full list of parameters

e List of parameters grouped by topic

Setting parameters

Each parameter is identified by a unique string name and it can accept either integers, floating point
values or symbolic strings. Parameters are set using the method Model.setSolverParam. Fusion will
try to convert the given argument to the exact expected type, and will raise an exception if that fails.

Some parameters accept only symbolic strings from a fixed set of values. The set of accepted values for
every parameter is provided in the API reference.
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For example, the following piece of code sets up parameters which choose and tune the interior point
optimizer before solving a problem.

Listing 8.1: Parameter setting example.

4 Select interior-point optimizer... (parameter with symbolic string values)
M.setSolverParam('optimizer', 'intpnt');

4 ... without basis identification (parameter with symbolic string values)
M.setSolverParam('intpntBasis', 'never');

4 Set relative gap tolerance (double parameter)
M.setSolverParam('intpntCoTolRelGap', 1.0e-7);

/ The same in a different way

M.setSolverParam('intpntCoTolRelGap', '1.0e-7');

/ Incorrect value

try

M.setSolverParam('intpntCoTolRelGap', -1);
catch

disp('Wrong parameter value');
end

8.5 Retrieving information items

After the optimization the user has access to the solution as well as to a report containing a large amount
of additional information items. For example, one can obtain information about:

e timing: total optimization time, time spent in various optimizer subroutines, number of iterations,
etc.

e solution quality: feasibility measures, solution norms, constraint and bound violations, etc.
e problem structure: counts of variables of different types, constraints, nonzeros, etc.
e integer optimizer: integrality gap, objective bound, number of cuts, etc.

and more. Information items are numerical values of integer, long integer or double type. The full list
can be found in the API reference:

e Double information items
e [nteger information items
o Long information items

Certain information items make sense, and are made available, also during the optimization process.
They can be accessed from a callback function, see Sec. 8.6 for details.

Remark

For efficiency reasons, not all information items are automatically computed after optimization. To force
all information items to be updated use the parameter autoUpdateSolInfo.

Retrieving the values

Values of information items are fetched using one of the methods
e Model.getSolverDoubleInfo for a double information item,
e Model.getSolverIntInfo for an integer information item,

e Nodel.getSolverLIntInfo for a long integer information item.
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Each information item is identified by a unique name. The example below reads two pieces of data from
the solver: total optimization time and the number of interior-point iterations.

Listing 8.2: Information items example.

tm = M.getSolverDoubleInfo('optimizerTime');
it = M.getSolverIntInfo('intpntIter');
tm, it

8.6 Progress and data callback

Callbacks are a very useful mechanism that allow the caller to track the progress of the MOSEK
optimizer. A callback function provided by the user is regularly called during the optimization and can
be used to

e obtain a customized log of the solver execution,
e collect information for debugging purposes or
e ask the solver to terminate.
Fusion API for Matlab has the following callback mechanisms:
e progress callback, which provides only the basic status of the solver.

e data callback, which provides the solver status and a complete set of information items that
describe the progress of the optimizer in detail.

Warning

The callbacks functions must not invoke any functions of the solver, environment or task. Otherwise the
state of the solver and its outcome are undefined.

8.6.1 Data callback

In the data callback MIOSEK passes a callback code and values of all information items to a user-
defined function. The callback function is called, in particular, at the beginning of each iteration of the
interior-point optimizer. For the simplex optimizers logSimFreq controls how frequently the call-back
is called. Note that the callback is done quite frequently, which can lead to degraded performance. If
the information items are not required, the simpler progress callback may be a better choice.

The data callback is set by calling the method Model.setDataCallbackHandler.

The callback function must be implemented in Java by extending the abstract class mosek.DataCallback
and implementing the method

public int callback(mosek.callbackcode caller,
doublel] douinf,
int[] intinf,
longl[] lintinf)
Arguments:

e caller - the status of the optimizer.
e douinf - values of double information items.
e intinf - values of integer information items.

e lintinf - values of long information items.
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Return value: Non-zero return value of the callback function indicates that the optimizer should be
terminated.

8.6.2 Progress callback

In the progress callback MOSEK provides a single code indicating the current stage of the optimization
process.

The callback is set by calling the method Model.setCallbackHandler.

The callback function must be implemented in Java by extending the abstract class mosek.Progress
and implementing the method

public int progress(mosek.callbackcode caller)

Arguments:
e caller - the status of the optimizer.

Return value: Non-zero return value of the callback function indicates that the optimizer should be
terminated.

8.6.3 Working example: Data callback

The following example defines a data callback function that prints out some of the information items. It
interrupts the solver after a certain time limit.

Note that the time limit refers to time spent in the solver and does not include setting up the model in
Fusion.

Listing 8.3: An example of a data callback class and a function accessing information items.

public class MatlabCallback extends mosek.DataCallback
{

private double maxtime;
private Model M;

public MatlabCallback(Model M_, double maxtime_) {

M= M_
maxtime = maxtime_;
}
public int callback(callbackcode caller,
doublel] douinf,
int[] intinf,
long(] lintinf)

double opttime = 0.0;
int itrn;
double pobj, dobj, stime;

Formatter f = new Formatter(System.out);
switch (caller)
{
case begin_intpnt:
f.format("Starting interior-point optimizer\n");

break;

case intpnt:
itrn = intinf[iinfitem.intpnt_iter.value 1;
pobj = douinf [dinfitem. intpnt_primal_obj.value];
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dobj = douinf [dinfitem.intpnt_dual_obj.value 1];
stime = douinf[dinfitem.intpnt_time.value 1;
opttime = douinf[dinfitem.optimizer_time.value 1];

f.format("Iterations: /-3d\n",itrn);
f.format(" Elapsed time: /6.2f(/.2f)\n",opttime,stime);
f.format(" Primal obj.: /-18.6e Dual obj.: }-18.6e\n",pobj,dobj);
break;
case end_intpnt:
f.format("Interior-point optimizer finished.\n");
break;
case begin_primal_simplex:
f.format ("Primal simplex optimizer started.\n");

break;

case update_primal_simplex:
itrn = intinf[iinfitem.sim_primal_iter.value 1];
pobj = douinf [dinfitem.sim_obj.value 1;
stime = douinf[dinfitem.sim_time.value 1;
opttime = douinf[dinfitem.optimizer_time.value 1];

f.format ("Iterations: /-3d\n", 4itrn);
f.format(" Elapsed time: /6.2f(/.2f)\n",opttime,stime);
f.format(" Obj.: /-18.6e\n", pobj );
break;
case end_primal_simplex:
f.format ("Primal simplex optimizer finished.\n");
break;
case begin_dual_simplex:
f.format("Dual simplex optimizer started.\n");

break;

case update_dual_simplex:
itrn = intinf[iinfitem.sim_dual_iter.value 1;
pobj = douinf [dinfitem.sim_obj.value 1
stime = douinf[dinfitem.sim_time.value 1;
opttime = douinf[dinfitem.optimizer_time.value 1;

f.format ("Iterations: /-3d\n", 4itrn);
f.format(" Elapsed time: /6.2f(/.2f)\n", opttime,stime);
f.format(" Obj.: /-18.6e\n", pobj);
break;
case end_dual_simplex:
f.format("Dual simplex optimizer finished.\n");
break;
case begin_bi:
f.format ("Basis identification started.\n");
break;
case end_bi:
f.format("Basis identification finished.\n");
break;
default:
}
System.out.flush();
if (opttime >= maxtime)
{
f.format ("MOSEK is spending too much time. Terminate it.\n");
System.out.flush();
return 1;
}

return 0;

Assuming that we have defined a model M and a time limit maxtime, and that the compiled class
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MatlabCallback is available under MATLAB’s Java class path, the callback function is attached as
follows:

Listing 8.4: Attaching the data callback function to the model.

userCallback = com.mosek.fusion.examples.MatlabCallback(M, maxtime) ;
M.setDataCallbackHandler( userCallback );

8.7 Optimizer API Task

This section is intended for advanced users and should normally never be followed unless advanced
debugging or very specialized functionalities are required.

The Model is a wrapper on top of an underlying MOSEK low-level optimizer task. Access to the task
is provided by the method Model.getTask. The functionalities available from the task are described in
the documentation of the relevant Optimizer API.

Warning

Note that the user gets access to the actual task in the model, and not its clone. Changing the state of
the task will most likely invalidate the Fusion model.
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CHAPTER
NINE

TECHNICAL GUIDELINES

This section contains some technical guidelines for Fusion users.
For modelling guidelines check one of the following sections:
e Sec. 6 for an overview of how to express optimization problems in Fusion.
e Sec. 12 for how to address numerical issues in modelling and how to tune the continuous optimizers.

e Sec. 13 for how to tune the mixed-integer optimizer.

9.1 Limitations

Fusion imposes some limitations on certain aspects of a model to ensure easier portability:

e Constraints and variables belong to a single model, and cannot as such be used (e.g. stacked) with
objects from other models.

e Most objects forming a Fusion model are immutable.
The limits on the model size in Fusion are as follows:

e The maximum number of variable elements is 23! — 1.

e The maximum size of a dimension is 23! — 1.

e The total size of an item (the product of dimensions) is limited to 262 — 1.

9.2 Multithreading

Thread safety

Sharing a Model object between threads is safe, as long as it is not accessed from more than one thread
at a time. Multiple Model objects can be used in parallel without any problems.

Parallelization

The interior-point and mixed-integer optimizers in MOSEK are parallelized. By default MOSEK will
automatically select the number of threads. However, the maximum number of threads allowed can be
changed by setting the parameter numThreads and related parameters. This should never exceed the
number of cores. See Sec. 12 and Sec. 13 for more details for the two optimizer types.

The speed-up obtained when using multiple threads is highly problem and hardware dependent. We
recommend experimenting with various thread numbers to determine the optimal settings. For small
problems using multiple threads may be counter-productive because of the associated overhead.
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By default the optimizer is run-to-run deterministic, which means that it will return the same answer
each time it is run on the same machine with the same input, the same parameter settings (including
number of threads) and no time limits.

9.3 Efficiency

In some cases Fusion must reformulate the problem by adding auxiliary variables and constraints before
it can be represented in the optimizer’s internal format. This can cause a significant overhead. The
following guidelines can help speed up the process.

Decide between sparse and dense matrices

Deciding whether a matrix should be stored in dense or sparse format is not always trivial. First, there
are storage considerations. An n x m matrix with [ non zero entries, requires

e ~ n - m storage space in dense format,
e =~ 3| storage space in sparse (triplet) format.

Therefore if | << n - m, then the sparse format has smaller memory requirements. Especially for very
sparse density matrices it will also yield much faster expression transformations. Also, this is the format
used ultimately by the underlying optimizer task. However, there are borderline cases in which these
advantages may vanish due to overhead spent creating the triplet representation.

Sparsity is a key feature of many optimization models and often occurs naturally. For instance, linear
constraints arising from networks or multi-period planning are typically sparse. Fusion does not detect
sparsity but leaves to the user the responsibility of choosing the most appropriate storage format.

Reduce the number of Fusion calls and level of nesting

A possible source of performance degradation is an excessive use of nested expressions resulting in a
large number of Fusion calls with small model updates, where instead the model could be updated in
larger chunks at once. In general, loop-free code and reduction of expression nesting are likely to be
more efficient. For example the expression

n
ZANQ
i=1
xT; € Rk7AZ' S Rka,

could be implemented in a loop as

ee = Expr.constTerm(k, 0.0);
for i=1:n

ee = Expr.add(ee, Expr.mul(A(i),x(i)));
end

A better way is to store the intermediate expressions for A;x; and sum all of them in one step:

prods = javaArray('mosek.fusion.Expression', n);
for i=1:n
prods(i) = Expr.mul(A(i),x(i));
end
ee = Expr.add( prods );

Fusion design naturally promotes this sort of vectorized implementations. See Sec. 6.7 for more examples.
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Do not fetch the whole solution if not necessary

Fetching a solution from a shaped variable produces a flat array of values. This means that some
reshaping has to take place and that the user gets all values even if they are potentially interested only
in some of them. In this case, it is better to create a slice variable holding the relevant elements and
fetch the solution for this subset. See Sec. 6.6. Fetching the full solution may cause an exception due to
memory exhaustion or platform-dependent constraints on array sizes.

Remove names

Variables, constraints and the objective function can be constructed with user-assigned names. While
this feature is very useful for debugging and improves the readability of both the code and of problems
dumped to files, it also introduces quite some overhead: Fusion must check and make sure that names
are unique. For optimal performance it is therefore recommended to not specify names at all.

9.4 The license system

MOSEK is a commercial product that always needs a valid license to work. MOSEK uses a third
party license manager to implement license checking. The number of license tokens provided determines
the number of optimizations that can be run simultaneously.

By default a license token remains checked out from the first optimization until the end of the MOSEK
session, i.e.

e a license token is checked out when the method Model.solwe is called the first time, and
e the token is returned when the process exits.

Starting the optimization when no license tokens are available will result in an error.

Default behaviour of the license system can be changed in several ways:

e Setting the parameter cachelicense to "off" will force MOSEK to return the license token
immediately after the optimization completed.

e Setting the license wait flag with Yodel.putlicensewart or with the parameter licenselasit will
force MOSEK to wait until a license token becomes available instead of throwing an exception.

e Additional license checkouts and checkins can be performed manually through the underlying
MOSEK task and environment. See Sec. 8.7.

e The default path to the license file can be changed with Yodel.putlicensepath.
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CHAPTER

TEN

CASE STUDIES

In this section we present some case studies in which the Fusion API for Matlab is used to solve real-life
applications. These examples involve some more advanced modelling skills and possibly some input data.
The user is strongly recommended to first read the basic tutorials of Sec. 7 before going through these

advanced case studies.

Case Studies Type | Int. Keywords

Portfolio Optimization CQO | NO | stacking, objective function change

Primal SVM CQO | NO | variable repeat

2D Total Variation CQO | NO | slicing, sliding windows

Inner and outer Lowner-John Ellipsoids SDO | NO | determinant root

Nearest Correlation Matrixz Problem SDO | NO | Frobenius norm, nuclear norm

Semidefinite relaxation of MIQCQO prob- | SDO | NO | integer least squares

lems

SUDOKU Game MILP | YES | assignment constraints

Multi Processor Scheduling MILP | YES | assignment constraints, initial solu-
tion

Travelling Salesman MILP | YES | graph, row generation

10.1 Portfolio Optimization

This case study is devoted to the Portfolio Optimization Problem.

10.1.1 The Basic Model

The classical Markowitz portfolio optimization problem considers investing in n stocks or assets held
over a period of time. Let z; denote the amount invested in asset j, and assume a stochastic model
where the return of the assets is a random variable r» with known mean

and covariance

S=E(r—p)(r—m".

The return of the investment is also a random variable y = r

and variance (or risk)

E(y — Ey)? = 272z

uw=Er

Ey=p"x

T

x with mean (or expected return)
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The problem facing the investor is to rebalance the portfolio to achieve a good compromise between risk
and expected return, e.g., maximize the expected return subject to a budget constraint and an upper
bound (denoted 7) on the tolerable risk. This leads to the optimization problem

maximize pul'x
subject to Te = 70
ubj Te T w2+e x, (10.1)
X < 47,
z > 0.

The variables = denotes the investment i.e. x; is the amount invested in asset j and a:? is the initial
holding of asset j. Finally, w is the initial amount of cash available.

A popular choice is 2° = 0 and w = 1 because then x; may be interpreted as the relative amount of the
total portfolio that is invested in asset j.

Since e is the vector of all ones then
n
T — .
e r = g x;
=1

is the total investment. Clearly, the total amount invested must be equal to the initial wealth, which is

w+elal.

This leads to the first constraint

e r=w+e x .

The second constraint

2I'Yr < 72

ensures that the variance, or the risk, is bounded by the parameter v2. Therefore, v specifies an upper
bound of the standard deviation the investor is willing to undertake. Finally, the constraint

{ITJZO

excludes the possibility of short-selling. This constraint can of course be excluded if short-selling is
allowed.

The covariance matrix 3 is positive semidefinite by definition and therefore there exist a matrix G such
that
Y =GGT. (10.2)

In general the choice of G is not unique and one possible choice of G is the Cholesky factorization of 3.
However, in many cases another choice is better for efficiency reasons as discussed in Sec. 10.1.2. For a
given G we have that

2Tz = 2TGGTx
= |l67a|”.
Hence, we may write the risk constraint as
7z |G e
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or equivalently

[’7; GTCE] c Qn+1.

where Q"1 is the (n + 1)-dimensional quadratic cone.

Therefore, problem (10.1) can be written as

maximize ul'x
subject to eTe = w+elal,
[’Y; GTLL'} c Qn—H, (103)
z > 0,

which is a conic quadratic optimization problem that can easily be formulated and solved with Fusion.
Subsequently we will use the example data

0.1073
w= | 0.0737
0.0627
and
0.2778  0.0387  0.0021
Y =0.1-| 00387 0.1112 —0.0020
0.0021 —0.0020 0.0115
This implies
0.5271 0.0734  0.0040
GT =v0.1 0 0.3253  —0.0070
0 0 0.1069

Example code

Listing 10.1 demonstrates how the basic Markowitz model (10.3) is implemented using Fusion.

Listing 10.1: Code implementing problem (10.3).

function er = BasicMarkowitz(n,mu,GT,x0,w,gamma)

import mosek.fusion.*;

M = Model('Basic Markowitz');

/ Redirect log output from the solver to stdout for debugging.
4 if uncommented.

/M.setlogHandler(java.io0.Printiriter(java.lang.System.out));

/ Defines the variables (holdings). Shortselling is not allowed.
x = M.variable('x', n, Domain.greaterThan(0.0));

/4 Mazimize exzpected return
M.objective('obj', ObjectiveSense.Maximize, Expr.dot(mu,x));

/ The amount invested must be identical to intial wealth
M.constraint ('budget', Expr.sum(x), Domain.equalsTo(w+sum(x0)));

/4 Imposes a bound on the risk
M.constraint('risk', Expr.vstack( gamma ,Expr.mul(GT,x)), Domain.inQCone());

/ Solves the model.
M.solve();
er = mu'*x.level();

M.dispose();
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The source code should be self-explanatory except perhaps for

M.constraint('risk', Expr.vstack( gamma ,Expr.mul(GT,x)), Domain.inQCone());

where the linear expression
[v: G a]

is created using the Ezpr.vstack operator. Finally, the linear expression must lie in a quadratic cone
implying

7> 6T

10.1.2 The Efficient Frontier

The portfolio computed by the Markowitz model is efficient in the sense that there is no other portfolio
giving a strictly higher return for the same amount of risk. An efficient portfolio is also sometimes called
a Pareto optimal portfolio. Clearly, an investor should only invest in efficient portfolios and therefore it
may be relevant to present the investor with all efficient portfolios so the investor can choose the portfolio
that has the desired tradeoff between return and risk.

Given a nonnegative « the problem

maximize pTz— as

subject to ez = w+elal,
[8; GTJZ} c Qn—‘,—l7 (104)
z > 0.

computes an efficient portfolio. Note that the objective is to maximize the expected return while mini-
mizing the standard deviation. The parameter « specifies the tradeoff between expected return and risk.
Ideally the problem (10.4) should be solved for all values o > 0 but in practice it is impossible. Using
the example data from Sec. 10.1.1, the optimal values of return and risk for several as are listed below:

Efficient frontier

alpha return risk

0.0000 1.0730e-01 7.2700e-01
0.0100 1.0730e-01 1.6667e-01
0.1000 1.0730e-01 1.6667e-01
0.2500 1.0321e-01 1.4974e-01
0.3000 8.0529e-02 6.8144e-02
0.3500 7.4290e-02 4.8585e-02
0.4000 7.1958e-02 4.2309e-02
0.4500 7.0638e-02 3.9185e-02
0.5000 6.9759e-02 3.7327e-02
0.7500 6.7672e-02 3.3816e-02
1.0000 6.6805e-02 3.2802e-02
1.5000 6.6001e-02 3.2130e-02
2.0000 6.5619e-02 3.1907e-02
3.0000 6.5236e-02 3.1747e-02
10.0000 6.4712e-02 3.1633e-02

Example code

Listing 10.2 demonstrates how to compute the efficient portfolios for several values of a in Fusion.
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Listing 10.2: Code for the computation of the efficient frontier based on problem (10.4).

function frontier = EfficientFrontier(n,mu,GT,x0,w,alphas)
import mosek.fusion.x*;

M = Model('Efficient frontier');
AM.setLogHandler(java.io0.Printiiriter(java. lang. System.out));

4 Defines the variables (holdings). Shortselling is not allowed.

x = M.variable('x', n, Domain.greaterThan(0.0)); / Portfolio variables
s = M.variable('s', 1, Domain.unbounded()); / Risk wariable

M.constraint ('budget', Expr.sum(x), Domain.equalsTo(w+sum(x0)));

4 Computes the risk
M.constraint('risk', Expr.vstack(s,Expr.mul(GT,x)),Domain.inQCone());

frontier = [];
mudotx = Expr.dot (mu,x)
for alpha = alphas

/ Define objective as a weighted combination of return and risk
M.objective('obj', ObjectiveSense.Maximize, Expr.sub(mudotx,Expr.mul(alpha,s)));

M.solve();
frontier = [frontier; [alpha,mu'*x.level(),s.level()] 1];

if true
disp(sprintf ('\nEfficient frontier'))
disp(sprintf('’-12s 7%-12s ¥%-12s', 'alpha', 'return', 'risk'))
disp(sprintf ('%-12.4f %-12.4e Y%-12.4e',
frontier(end,1), frontier(end,2), frontier(end,3)));
end
end

M.dispose();

Note the efficient frontier could also have been computed using the code in Sec. 10.1.1 by varying ~.
However, when the constraints of a Fusion model are changed the model has to be rebuilt whereas a
rebuild is not needed if only the objective is modified.

10.1.3 Improving the Computational Efficiency
In practice it is often important to solve the portfolio problem very quickly. Therefore, in this section
we discuss how to improve computational efficiency at the modelling stage.

The computational cost is of course to some extent dependent on the number of constraints and variables
in the optimization problem. However, in practice a more important factor is the sparsity: the number
of nonzeros used to represent the problem. Indeed it is often better to focus on the number of nonzeros
in G see (10.2) and try to reduce that number by for instance changing the choice of G.

In other words if the computational efficiency should be improved then it is always good idea to start
with focusing at the covariance matrix. As an example assume that

Y=D+VV7T

where D is a positive definite diagonal matrix. Moreover, V is a matrix with n rows and p columns.
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Such a model for the covariance matrix is called a factor model and usually p is much smaller than n.
In practice p tends to be a small number independent of n, say less than 100.

One possible choice for G is the Cholesky factorization of ¥ which requires storage proportional to
n(n + 1)/2. However, another choice is
GT _ |: D1/2 :|

VT
because then
GG"=D+VVT,
This choice requires storage proportional to n + pn which is much less than for the Cholesky choice of

G. Indeed assuming p is a constant storage requirements are reduced by a factor of n.

The example above exploits the so-called factor structure and demonstrates that an alternative choice
of G may lead to a significant reduction in the amount of storage used to represent the problem. This
will in most cases also lead to a significant reduction in the solution time.

The lesson to be learned is that it is important to investigate how the covariance matrix is formed.
Given this knowledge it might be possible to make a special choice for G that helps reducing the storage
requirements and enhance the computational efficiency. More details about this process can be found in
[And13].

10.1.4 Slippage Cost

The basic Markowitz model assumes that there are no costs associated with trading the assets and that
the returns of the assets are independent of the amount traded. Neither of those assumptions is usually
valid in practice. Therefore, a more realistic model is

T

maximize wx
subject to eTx + Z;;l Ti(x; — x?) = w+ela?, 105
.’ETEI' < 727 ( . )
z > 0,

where the function

Tj(x; — )

specifies the transaction costs when the holding of asset j is changed from its initial value.

10.1.5 Market Impact Costs

If the initial wealth is fairly small and no short selling is allowed, then the holdings will be small and the
traded amount of each asset must also be small. Therefore, it is reasonable to assume that the prices
of the assets are independent of the amount traded. However, if a large volume of an asset is sold or
purchased, the price, and hence return, can be expected to change. This effect is called market impact
costs. It is common to assume that the market impact cost for asset j can be modelled by

Tj = mj/|z; — ]|

where m; is a constant that is estimated in some way by the trader. See /[GK(00] [p. 452| for details.

Hence, we have
Tj(w; — ) = myla; — af|y[le; — 28] = myla; — 2§*/2.
From [MOSEKApS12] it is known that

{(t,Z) it > 23/272 > 0} = {(taz) : (U,t,Z), (Za 1/8’1}) € Qi}
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where Qf: is the 3-dimensional rotated quadratic cone. Hence, it follows

zj =lrj—=
(Uj7tj7ij)7(zj71/8vv6) € Qi;l

Unfortunately this set of constraints is nonconvex due to the constraint

zj = |z; — :c?| (10.6)

but in many cases the constraint may be replaced by the relaxed constraint
zj > |w; — 29, (10.7)

which is equivalent to
A (10.8)

For instance if the universe of assets contains a risk free asset then

zj > |zj — af

o) (10.9)

cannot hold for an optimal solution.

If the optimal solution has the property (10.9) then the market impact cost within the model is larger
than the true market impact cost and hence money are essentially considered garbage and removed by
generating transaction costs. This may happen if a portfolio with very small risk is requested because
the only way to obtain a small risk is to get rid of some of the assets by generating transaction costs.
We generally assume that this is not the case and hence the models (10.6) and (10.7) are equivalent.

The above observations lead to

maximize ulz
subject to eTe+mTt = w+elad,
[y;GTz] € Qntl,
z; >z —x?, j=1,...,n, (10.10)
Zj > xg‘)fxm j=1, z
[Uj;tj;zj]v[zj;l/&vj] € Q?? J=1 2 T
z > 0.

The revised budget constraint
el +mTt=w+ela

specifies that the initial wealth covers the investment and the transaction costs. Moreover, v and z are
auxiliary variables that model the market impact cost so that z; > |z; — x?| and t; > zj-’/ 2,
It should be mentioned that transaction costs of the form

Cj 2 2,

where p and ¢ are both integers and p > ¢ can be modelled using quadratic cones. See [MOSEKApS12]
for details.

Example code

Listing 10.3 demonstrates how to compute an optimal portfolio when market impact cost are included
using Fusion.

10.1. Portfolio Optimization 53



MOSEK Fusion API for Matlab, Release 8.1.0.51

Listing 10.3: Implementation of model (10.10).

function [er, x] = MarkowitzWithMarketImpact(n,mu,GT,x0,w,gamma,m)
import mosek.fusion.x*;

M = Model('Markowitz portfolio with market impact');
AM.setLogHandler(java.io0.Printiiriter(java. lang. System.out));

/ Defines the variables. No shortselling is allowed.
x = M.variable('x', n, Domain.greaterThan(0.0));

/4 Addtional "helper" wariables

t = M.variable('t', n, Domain.unbounded());
z = M.variable('z', n, Domain.unbounded());
v = M.variable('v', n, Domain.unbounded());

A Mazimize expected return
M.objective('obj', ObjectiveSense.Maximize, Expr.dot(mu,x));

/# Invested amount + slippage cost = initial wealth
M.constraint('budget', Expr.add(Expr.sum(x),Expr.dot(m,t)), Domain.equalsTo (w+sum(x0)));

/A Imposes a bound on the risk
M.constraint('risk', Expr.vstack( gamma,Expr.mul(GT,x)), Domain.inQCone());

4z >= |z-z0]
M.constraint('buy', Expr.sub(z,Expr.sub(x,x0)),Domain.greaterThan(0.0));
M.constraint('sell', Expr.sub(z,Expr.sub(x0,x)),Domain.greaterThan(0.0));

Jt >= 2°1.5, z >= 0.0. Needs two rotated quadratic cones to model this term

M.constraint('ta', Expr.hstack(v,t,z),Domain.inRotatedQCone());

M.constraint('tb', Expr.hstack(z, Expr.constTerm(n,1.0/8.0),v),...
Domain.inRotatedQCone());

M.solve();

if true
disp(sprintf ('\nMarkowitz portfolio optimization with market impact cost'))
disp(sprintf ('Expected return: 7%.4e Std. deviation: %.4e Market impact cost: %.4e',
mu'*x.level () ,gamma,m'*t.level()))
end

er = mu'*x.level();
x = x.level();
M.dispose();

The major new features compared to the previous examples are

M.constraint('ta', Expr.hstack(v,t,z),Domain.inRotatedQCone());

and

M.constraint('tb', Expr.hstack(z, Expr.constTerm(n,1.0/8.0),v),...
Domain.inRotatedQCone());

In the first line the variables v, t and z are stacked horizontally which corresponds to creating a list of
linear expressions where the j‘th element has the form
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and finally each linear expression is constrained to a rotated quadratic cone i.e.
2u5t; > 2]2 and v;,t; > 0.
Similarly the second line is equivalent to the constraint
Zj
1/8 | € 9
Uj

or equivalently

1
Qng > vjz_ and z; > 0.

10.1.6 Transaction Costs

Now assume there is a cost associated with trading asset j given by

_[o Az; =0,
Tj(Azj) = { fj +gjlAz;|, otherwise.

Here Az; is the change in the holding of asset j i.e.
Az =x; — x?.

Hence, whenever asset j is traded we pay a fixed setup cost f; and a variable cost of g; per unit traded.
Given the assumptions about transaction costs in this section problem (10.5) may be formulated as

maximize ul'z
subject to  e"w + 377 (fiy; +952) = w+elal,
[v;GTz] € Qth
;> oz —a =1,...
e B A AN (10.11)
zj 2 T — Ty, j=1,...,n,
Zj S ijjv j:1,...,n7
y; € {0,1}, j=1,...,n,
x > 0.
First observe that
2 2 |zj — af| = |Azy].

Here Uj is some a priori chosen upper bound on the amount of trading in asset j and therefore if z; > 0
then y; = 1 has to be the case. This implies that the transaction costs for the asset j is given by

fivi +952;-

Example code

The following example code demonstrates how to compute an optimal portfolio when transaction costs
are included.
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Listing 10.4: Code solving problem (10.11).

function [er, x] = MarkowitzWithTransactionsCost(n,mu,GT,x0,w,gamma,f,g)
import mosek.fusion.x*;

/ Upper bound on the traded amount
u = (w+sum(x0))*ones(n,1);

M = Model('Markowitz portfolio with transaction costs');
AM.setLogHandler(java.io0.Printiiriter(java. lang. System.out));

/ Defines the variables. No shortselling is allowed.
x = M.variable('x', n, Domain.greaterThan(0.0));

/4 Addtional "helper" wariables

z = M.variable('z', n, Domain.unbounded());
4 Binary varables

y = M.variable('y', n, Domain.binary());

/4 Mazimize exzpected return
M.objective('obj', ObjectiveSense.Maximize, Expr.dot(mu,x));

4 Invest amount + transactions costs = initial wealth
M.constraint ('budget', Expr.add(Expr.add(Expr.sum(x),Expr.dot(f,y)),Expr.dot(g,z)),
Domain.equalsTo (w+sum(x0))) ;

/4 Imposes a bound on the risk
M.constraint('risk', Expr.vstack( gamma,Expr.mul(GT,x)), Domain.inQCone());

4z >= |z-20/

M.constraint('buy', Expr.sub(z,Expr.sub(x,x0)),Domain.greaterThan(0.0));
M.constraint('sell', Expr.sub(z,Expr.sub(x0,x)),Domain.greaterThan(0.0));
4 Alternatively, formulate the two constraints as

AM.constraint ('trade’, Expr.hstack(z,Ezpr.sub(z,z0)), Domain.in{cone())

4 Constraints for turning y off and on. z-dtag(u)*y<=0 i.e. z_j <= u_j*y_j
M.constraint('y_on_off', Expr.sub(z,Expr.mul(Matrix.diag(u),y)), Domain.lessThan(0.0));

/4 Integer optimization problems can be very hard to solve so limiting the
4 mazimum amount of time is a valuable safe guard
M.setSolverParam('mioMaxTime', 180.0);

M.solve();

if true
disp(sprintf ('\nMarkowitz portfolio optimization with transactions cost'))
disp(sprintf ('Expected return: J%.4e Std. deviation: %.4e Transactions cost: %.4e',
mu'*x.level(),gamma,f'*y.level()+g'*z.level()))

end
er = mu'*x.level();
x = x.level();

M.dispose();

10.2 Primal Support-Vector Machine (SVM)

Machine-Learning (ML) has become a common widespread tool in many applications that affect our
everyday life. In many cases, at the very core of these techniques there is an optimization problem. This
case study focuses on the Support-Vector Machines (SVM).
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The basic SVM model can be stated as:

We are given a set of m points in R", partitioned into two groups. Find, if any, the separating
hyperplane of the two subsets with the largest margin, i.e. as far as possible from the points.

Mathematical Model

Let z1,..., 2z, € R™ be the given training set and let y; € {—1,+1} be the labels indicating the group
membership of the i-th training example. Then we want to determine an affine hyperplane w” 2 = b that
separates the group in the strong sense that

yi(wz; —b) > 1 (10.12)

for all i, the property referred to as large margin classification: the strip {z € R® : —1 < wlz —b< 1}
does not contain any training example. The width of this strip is 2||w||~!, and maximizing that quantity
is equivalent to minimizing ||w||. We get that the large margin classification is the solution of the following
optimization problem:

minimizey ,, 5 lw|?
subject to  yi(wTaz; —b)>1 i=1,...,m.

If a solution exists, w, b define the separating hyperplane and the sign of w”xz — b can be used to decide
the class in which a point z falls.

To allow more flexibility the soft-margin SVM classifier is often used instead. It admits a violation of
the large margin requirement (10.12) by a non-negative slack variable which is then penalized in the
objective function.

minimizey, ,, %HwH2 +CY &
subject to yi(wle;, —b)>1-¢& i=1,...,m,
§=>0 i=1,...,m.

In matrix form we have
minimizey ¢ 1||w|> + CeT¢

subject to y* (Xw—be)+ & > e,
£>0.

where * denotes the component-wise product, and e a vector with all components equal to one. The
constant C' > 0 acts both as scaling factor and as weight. Varying C' yields different trade-offs between
accuracy and robustness.

Implementing the matrix formulation of the soft-margin SVM in Fusion is very easy. We only need to
cast the problem in conic form, which in this case involves converting the quadratic term of the objective
function into a conic constraint:

minimizep ¢ ¢ t+ ce’¢

subject to E+yx(Xw—be) > e,
(1,t,w) € Q1+ 10-13)
§>0.

where Q"2 denotes a rotated cone of dimension n + 2.

Fusion implementation

We now demonstrate how implement model (10.13). Let us assume that the training examples are stored
in the rows of a matrix X, the labels in a vector y and that we have a set of weights C for which we want
to train the model. The implementation in Fusion of our conic model starts declaring the model class:
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M = Model('primal SVM');

Then we proceed defining the variables :

w = M.variable('w', n, Domain.unbounded());
t = M.variable('t', 1, Domain.unbounded());
b = M.variable('b', 1, Domain.unbounded());
xi = M.variable('xi', m, Domain.greaterThan(0.));

The conic constraint is obtained by stacking the three values:

M.constraint( Expr.vstack(l., t, w) , Domain.inRotatedQCone() );

Note how the dimension of the cone is deduced from the arguments. The relaxed classification constraints
can be expressed using the built-in expressions available in Fusion. In particular:

1. element-wise multiplication % is performed with the Ezpr.mulElm function;
2. a vector whose entries are repetitions of b is produced by Var.repeat.

The results is

M.constraint ( Expr.add(Expr.mulElm( y, Expr.sub( Expr.mul(X,w),
Var.repeat(b,m) ) ), xi) , Domain.
—greaterThan( 1. ) );

Finally, the objective function is defined as

M.objective(ObjectiveSense.Minimize, Expr.add( t, Expr.mul(c,
Expr.sum(xi) ) ) J);

To solve a sequence of problems with varying C we can simply iterate along those values changing the
objective function:

for i = 1:nc

c i*500.0;

M.objective(ObjectiveSense.Minimize, Expr.add( t, Expr.mul(c,
Expr.sum(xi) ) ) );

M.solve();

disp( [ num2str(c),' | ', num2str(b.level()) , ' ", num2str( w.level()' ) ] );

end

Source code

Listing 10.5: The code implementing model (10.13)

M = Model('primal SVM');

w = M.variable('w', n, Domain.unbounded());

t = M.variable('t', 1, Domain.unbounded());

b = M.variable('b', 1, Domain.unbounded());

xi = M.variable('xi', m, Domain.greaterThan(0.));

M.constraint ( Expr.add(Expr.mulElm( y, Expr.sub( Expr.mul(X,w),
Var.repeat(b,m) ) ), xi) , Domain.
—greaterThan( 1. ) );

M.constraint( Expr.vstack(l., t, w) , Domain.inRotatedQCone() );
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M.acceptedSolutionStatus(AccSolutionStatus.NearOptimal);

disp(' ¢ | b [ w');
for i = 1:nc

c = i*500.0;
M.objective(ObjectiveSense.Minimize, Expr.add( t, Expr.mul(c,
Expr.sum(xi) ) ) );
M.solve();
disp( [ num2str(c),' | ', num2str(b.level()) , ' ", num2str( w.level()' ) 1 );

end

end

Example

We generate a random dataset consisting of two groups of points, each from a Gaussian distribution in
R? with centres (1.0,1.0) and (—1.0, —1.0), respectively.

nc = 10;
m = 50;
n = 3;

rng (0, 'twister');

nump= randi(m) - 1 ;
numm= m - nump;

y = cat(l , ones(nump,1) , -ones(numm,1));
mean = 1.;
var = 1.;

X = cat(l, var.*randn(nump,n) + mean, var.*randn(numm,n) - mean) ;

disp(['Number of data : ', num2str(m)])
disp(['Number of features: ', num2str(n)])

With standard deviation o = 1/2 we obtain a separable instance of the problem with a solution shown
in Fig. 10.1.

For 0 = 1 the two groups are not linearly separable and the we obtain the optimal hyperplane as in Fig.
10.2.

10.3 2D Total Variation

This case study is based mainly on the paper by Goldfarb and Yin /GY05/.

Mathematical Formulation

We are given a n x m grid and for each cell (4, j) an observed value f;; that can expressed as

fij = wij + vij,
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Fig. 10.1: Separating hyperplane for two clusters of points.
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Fig. 10.2: Soft separating hyperplane for two groups of points.
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where u;; € [0, 1] is the actual signal value and v;; is the noise. The aim is to reconstruct u subtracting
the noise from the observations.

We assume the 2-norm of the overall noise to be bounded: the corresponding constraint is
lu—fll2 <o

which translates into a simple conic quadratic constraint as
(o,u—f)e€ Q.

We aim to minimize the change in signal value when moving between adjacent cells. To this end we
define the adjacent differences vector as

ot = 8{}‘ = Wit TG (10.14)
Y i Ui g1 — Uiy
for each cell 1 <4,j <n (we assume that the respective coordinates 9;; and 8;2 are zero on the right

and bottom boundary of the grid).

For each cell we want to minimize the norm of 8;;,
such that

and therefore we introduce auxiliary variables ¢;;
ti; > H5;§||2 or (tij,%) €9,

and minimize the sum of all ¢;;.

The complete model takes the form:

min Zlgi,jgntijv

+_ T .
st 0 = (Wit1,j — Ui, Uijy1 — Uiy) , V1<, j<mn,

10.15
(15,05 € O, Vi<ij<n, (10.15)
(U7u - f) € Qnm-&-l,

u; ; € [0,1]. V1<i,j<n.

Implementation

The Fusion implementation of model (10.15) uses variable and expression slices.

First of all we start by creating the optimization model and variables t and u:

M = Model('TV');

u= M.variable( [ncols+1,nrows+1], Domain.inRange(0.,1.0) );
t= M.variable( [ncols, nrows], Domain.unbounded() );

Note the dimensions of u is larger than those of the grid to accommodate the boundary conditions later.
The actual cells of the grid are defined as a slice of u:

ucore= u.slice([1,1], [nrows+1,ncols+1]);

The next step is to define the partial variation along each axis, as in (10.14):

deltax= Expr.sub( u.slice( [2,1] ,[nrows+2,ncols+1] ), ucore);
deltay= Expr.sub( u.slice( [1,2] ,[nrows+1l,ncols+2] ), ucore);

Slices are created on the fly as they will not be reused. Now we can set the conic constraints on the
norm of the total variations. To this extent we stack the variables t, deltax and deltay together and
demand that each row of the new matrix is in a quadratic cone.
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M.constraint ( Expr.stack(2, t, deltax, deltay), Domain.inQCone().axis(2) );

We now need to bound the norm of the noise. This can be achieved with a conic constraint using f as a
one-dimensional array:

M.constraint (Expr.vstack(sigma, Expr.flatten( Expr.sub( f, wucore ) ) ), Domain.inQCone() );

The objective function is the sum of all #;;:

M.objective( ObjectiveSense.Minimize, Expr.sum(t) );

Example

Consider the linear signal u;; = ﬁ# and its modification with random Gaussian noise, as in Fig. 10.3.

Various reconstructions of u, obtained with different values of o, are shown in Fig. 10.4 (where & = o/nm
is the relative noise bound per cell).

Fig. 10.3: A linear signal and its modification with random Gaussian noise.

200

Fig. 10.4: Three reconstructions of the linear signal obtained for € {0.0004, 0.0005, 0.0006}, respec-
tively.

Source code

Listing 10.6: The Fusion implementation of model (10.15).

M = Model('TV');

u= M.variable( [ncols+1,nrows+1], Domain.inRange(0.,1.0) );
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t= M.variable( [ncols, nrows], Domain.unbounded() );
ucore= u.slice([1,1], [nrows+1,ncols+1]);

deltax= Expr.sub( u.slice( [2,1] ,[nrows+2,ncols+1] ), ucore);
deltay= Expr.sub( u.slice( [1,2] ,[nrows+1,ncols+2] ), ucore);

M.constraint( Expr.stack(2, t, deltax, deltay), Domain.inQCone().axis(2) );
M.constraint (Expr.vstack(sigma, Expr.flatten( Expr.sub( f, wucore ) ) ), Domain.inQCone() );
M.objective( ObjectiveSense.Minimize, Expr.sum(t) );

M.setLogHandler(java.io.PrintWriter(java.lang.System.out)) ;
M.solve()

ret= reshape( u.slice( [1,1] , [nrows+l,ncols+1] ).level() ,
[nrows,ncols] );

10.4 Inner and outer Lowner-John Ellipsoids

In this section we show how to compute the Léwner-John inner and outer ellipsoidal approximations of
a polytope. They are defined as, respectively, the largest volume ellipsoid contained inside the polytope
and the smallest volume ellipsoid containing the polytope, as seen in Fig. 10.5.

Fig. 10.5: The inner and outer Lowner-John ellipse of a polygon.
For further mathematical details, such as uniqueness of the two ellipsoids, consult [BenTalN01]. Our

solution is a mix of conic quadratic and semidefinite programming. Among other things, in Sec. 10.4.3
we show how to implement bounds involving the determinant of a PSD matrix.

10.4.1 Inner Léwner-John Ellipsoids

Suppose we have a polytope given by an h-representation

P={xeR"| Az < b}
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and we wish to find the inscribed ellipsoid with maximal volume. It will be convenient to parametrize
the ellipsoid as an affine transformation of the standard disk:

E={zlz=Cu+d, ueR" |ul2<1}.

Every non-degenerate ellipsoid has a parametrization such that C'is a positive definite symmetric n x n
matrix. Now the volume of £ is proportional to det(C')!/™. The condition £ C P is equivalent to the
inequality A(Cu+d) < b for all u with |ju|s < 1. After a short computation we obtain the formulation:

maximize ¢

subject to t < det(C)Y/",
(b— Ad); > ||(AC)ill2, i=1,...,m,
C t 07

(10.16)

where X; denotes the i-th row of the matrix X. This can easily be implemented using Fusion, where the
sequence of conic inequalities can be realized at once by feeding in the matrices b — Ad and AC.

Listing 10.7: Fusion implementation of model (10.16).

function [C, d] = lownerjohn_inner (A, b)
import mosek.fusion.x*;
M = Model('lownerjohn_inner');

[m, n] = size(A);

X

Setup variables

= M.variable('t', 1, Domain.greaterThan(0.0));
M.variable('C', Domain.inPSDCone(n));
M.variable('d', n, Domain.unbounded());

Qa Q o
]

/4 (b-4d, AC) generate cones
M.constraint('qc', Expr.hstack(Expr.sub(b, Expr.mul(A,d)), Expr.mul(A,C.
—transpose())), Domain.inQCone());

4t <= det(C)~{1/n}
model_utils.det_rootn(M, C, t);

/ Objective: Mazimize t
M.objective(ObjectiveSense.Maximize, t);

M.solve();

Q
]

reshape(C.level(), n, n);
reshape(d.level(), n, 1);

.
]

M.dispose();
end

The only black box is the method det_rootn which implements the constraint ¢ < det(C)/™. Tt will be
described in Sec. 10.4.3.

10.4.2 QOuter Lowner-John Ellipsoids

To compute the outer ellipsoidal approximation to a polytope, let us now start with a v-representation
P = conv{xy,xa,...,Tm} C R",

of the polytope as a convex hull of a set of points. We are looking for an ellipsoid given by a quadratic
inequality

£={zreR"||Pz—cl; <1},
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whose volume is proportional to det(P)~!/", so we are after maximizing det(P)/". Again, there is

always such a representation with a symmetric, positive definite matrix P. The inclusion conditions
x; € &€ translate into a straightforward problem formulation:

maximize ¢

subject to t < det(P)'/",
|Px; —clla <1, i=1,...,m,
P >0,

(10.17)

and then directly into Fusion code:

Listing 10.8: Fusion implementation of model (10.17).

function [P, c] = lownerjohn_outer(x)
import mosek.fusion.x*;
M = Model('lownerjohn_outer');

[m, n] = size(x);

/ Setup wvariables

t = M.variable('t', 1, Domain.greaterThan(0.0));
P = M.variable('P', Domain.inPSDCone(n));

c = M.variable('c', n, Domain.unbounded());

/ (1, Pz-c) \in @

=

.constraint('qc',
Expr.hstack(Expr.ones(m),
Expr.sub(Expr.mul(x,P.transpose()),
Var.reshape(Var.repeat(c,m), [m,n]))),
Domain.inQCone());

4t <= det(P)~{1/n}
model_utils.det_rootn(M, P, t);

/ Objective: Mazimize t
M.objective(ObjectiveSense.Maximize, t);
M.solve();

reshape(P.level(), n, n);
reshape(c.level(), n, 1);

o '
1

M.dispose();
end

10.4.3 Bound on the Determinant Root

It remains to show how to express the bounds on det(X )1/ ™ for a symmetric positive definite n x n

matrix X using PSD and conic quadratic variables. We want to model the set
C={(X,t) €St xR |t <det(X)"/"}. (10.18)

A standard approach when working with the determinant of a PSD matrix is to consider a semidefinite
cone

< ;T Diag(Z) ) =0 (10.19)

where Z is a matrix of additional variables and where we intuitively identify Diag(Z) = {A1,...,An}
with the eigenvalues of X. With this in mind, we are left with expressing the constraint

E< (Ao )Y (10.20)
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This is easy to implement recursively using rotated quadratic cones when n is a power of 2; otherwise
we need to round n up to the nearest power of 2 as in Listing 10.10. For example, ¢t < ()\1)\2)\3)\4)1/4 is
equivalent to

M2 >yl A >3, yiye >t

while < (A;A2A3)'/? can be achieved by writing ¢ < (tA;AaA3)'/2.
For further details and proofs see [BenTalN0O1] or [MOSEKApS12].

Listing 10.9: Approaching the determinant, see (10.19).

function [] = det_rootn(M, X, t)
import mosek.fusion.x*;
n = X.shape.dim(1);

/ Setup wvariables
Y = M.variable(Domain.inPSDCone (2#*n)) ;

J Setup Y = [X Z; Z°T diag(Z)]

Y11 = Y.slice([1, 1], [n+1, n+1]);
Y21 = Y.slice([n+1, 1], [2*n+1, n+1]);
Y22 = Y.slice([n+1, n+1], [2*n+1, 2%n+1]);

S = Matrix.sparse(n, n, 1:n, 1:n, ones(1l,n));
M.constraint ( Expr.sub(Y21.diag(), Y22.diag()), Domain.equalsTo(0.0) );
M.constraint ( Expr.sub(X, Y11), Domain.equalsTo(0.0) );

It n <= (Z11%222%...%7nn)
model_utils.geometric_mean(M, Y22.diag(), t);
end

Listing 10.10: Bounding the geometric mean, see (10.20)

function geometric_mean(M, x, t)
import mosek.fusion.x*;

n = x.size();

1 = ceil(log2(n));
m=2"1 - n;
if (m == 0)
x0 = x;
else
x0 = Variable.vstack(x, M.variable(m, Domain.greaterThan(0.0)));
end
z = x0;
for i=1:1-1,
xi = M.variable(2~(1-i), Domain.greaterThan(0.0));
for k=1:2~(1-1),
M.constraint (Variable.hstack( z.index(2*k-1),z.index(2*k),xi.index(k)), ...
Domain.inRotatedQCone());
end
z = Xi;
end

t0 = M.variable(l, Domain.greaterThan(0.0));
M.constraint (Var.vstack(z, t0), Domain.inRotatedQCone());
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M.constraint (Expr.sub(Expr.mul(2~(0.5%1),t),t0), Domain.equalsTo(0.0));
for i=2"1-m+1:2"1

M.constraint (Expr.sub(x0.index(i), t), Domain.equalsTo(0.0));
end

t0 = M.variable(l, Domain.greaterThan(0.0));
M.constraint (Var.vstack(z, t0), Domain.inRotatedQCone());

M.constraint (Expr.sub(Expr.mul(2~(0.5%1),t),t0), Domain.equalsTo(0.0));
for i=2"1-m+1:2"1

M.constraint (Expr.sub(x0.index(i), t), Domain.equalsTo(0.0));
end

end

10.5 Nearest Correlation Matrix Problem

A correlation matriz is a symmetric positive definite matrix with unit diagonal. This term has origins in
statistics, since the matrix whose entries are the correlation coefficients of a sequence of random variables
has all these properties.

In this section we study variants of the problem of approximating a given symmetric matrix A with
correlation matrices:

e find the correlation matrix X nearest to A in the Frobenius norm,

e find an approximation of the form D + X where D is a diagonal matrix with positive diagonal and
X is a positive semidefinite matrix of low rank, using the combination of Frobenius and nuclear
norm.

Both problems are related to portfolio optimization, where one can often have a matrix A that only
approximates the correlations of stocks. For subsequent optimizations one would like to approximate A
with a correlation matrix or, in the factor model, with D + VV7T with VV7 of small rank.

10.5.1 Nearest correlation with the Frobenius norm

The Frobenius norm of a real matrix M is defined as

1/2

IM||lp =D M
i

and with respect to this norm our optimization problem can be expressed simply as:

minimize ||A — X||r
subject to diag(X) =e, (10.21)
X > 0.

We can exploit the symmetry of A and X to get a compact vector representation. To this end we make
use of the following mapping from a symmetric matrix to a flattened vector containing the (scaled) lower
triangular part of the matrix:

vec : R*7 —y R1(n+1)/2
VeC(M) = (auMn, 0421]\4217 OZQQMQQ, ey ananh . ,annMnn)
o (10.22)
=1
Qi =
v V2 i<

Note that | M||r = ||[vec(M)]||2. The Fusion implementation of vec is as follows:
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Listing 10.11: Implementation of function vec in (10.22).

function r = vec(e)
import mosek.fusion.x*;

N = e.getShape() .dim(1);

subi = [1: N*(N+1)/2];
subj = zeros(N*(N+1)/2,1);
val = zeros(N*(N+1)/2,1);
k=1;
for j=1:N,
for i=j:N,
subj (k) = i+(j-1)#N;
if (i==j),
val(k) = 1;
else
val(k) = sqrt(2);
end;
k=k + 1;
end
end

S = Matrix.sparse(N*(N+1)/2, N*N, subi, subj, val);
Expr.mul(S, Expr.reshape( e, N*N ));

R
]

That leads to an optimization problem with both conic quadratic and semidefinite constraints:
minimize ¢
subject to  (t,vec(A — X)) € Q,
diag(X) =,
X =0

(10.23)

Code example

Listing 10.12: Implementation of problem (10.23).

function nearestcorr_frobenius(A,N)

import mosek.fusion.x*;
M = Model('NearestCorrelation');

/ Setting up the wariables
X = M.variable('X', Domain.inPSDCone(N));
t = M.variable('t', 1, Domain.unbounded());

1 (t, vec (4-X)) \in @
M.constraint ( Expr.vstack(t, vec(Expr.sub(A,X))), Domain.inQCone() );

4 diag(X) = e
M.constraint(X.diag(), Domain.equalsTo(1.0));

/ Objective: minimize t
M.objective(ObjectiveSense.Minimize, t);
M.solve();

/ Get the solution wvalues
reshape(X.level(), N,N)
M.dispose();
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We use the following input

Listing 10.13: Input for the nearest correlation problem.

N = 5;

A=1[ 0.0, 0.5, -0.1, -0.2, 0.5;
0.5, 1.25, -0.05, -0.1, 0.25;
-0.1, -0.05, 0.51, 0.02, -0.05;
-0.2, -0.1, 0.02, 0.54, -0.1;
0.5, 0.25, -0.05, -0.1, 1.25 1;

The expected output is the following (small differences may apply):

ans =

1.0000 0.5000 -0.1000 -0.2000 0.5000
0.5000 1.0000 -0.0500 -0.1000 0.2500
-0.1000 -0.0500 1.0000 0.0200 -0.0500
-0.2000 -0.1000 0.0200 1.0000 -0.1000
0.5000 0.2500 -0.0500 -0.1000 1.0000

10.5.2 Nearest Correlation with Nuclear-norm Penalty

Next, we consider the approximation of A of the form D + X where D = diag(w), w > 0 and X = 0.
We will also aim at minimizing the rank of X. This can be approximated by a relaxed linear objective
penalizing the trace Tr(X) (which in this case is the nuclear norm of X and happens to be the sum of
its eigenvalues).

The combination of these constraints leads to a problem:

minimize || X + diag(w) — A|| p +yTr(X),
subject to X > 0,w >0,

where the parameter v controls the tradeoff between the quality of approximation and the rank of X.
Exploit the mapping vec defined in (10.22) we can express this problem as:

minimize ¢+ yTr(X)
subject to (¢, vec(X + diag(w) — A)) € Q, (10.24)
X >0,w>0.

Code example

Listing 10.14: Implementation of problem (10.24).

function nearestcorr_nucnorm(A, N, gammas)

import mosek.fusion.x*;
M = Model('NucNorm');

/ Setup wariables

t = M.variable('t', 1, Domain.unbounded());

X = M.variable('X', Domain.inPSDCone(N));

w = M.variable('w', N, Domain.greaterThan(0.0));

4 (t, vec (X + diag(w) - 4)) in @

D = Expr.mulElm( Matrix.eye(N), Var.repeat(w,1,N) );

M.constraint ( Expr.vstack( t, vec(Expr.sub(Expr.add(X, D), Matrix.dense(4))) ),
Domain.inQCone() );
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/# Trace of X
TX = Expr.sum(X.diag());

for g=gammas
X Objective: Minimize t + gamma*Tr(X)
M.objective(ObjectiveSense.Minimize, Expr.add(t, Expr.mul(g,TX)));
M.solve()

/Get the eigenvalues of X and approximate its rank
d = eig(reshape(X.level(),N,N));

disp(sprintf ('gamma=),f, res=Ye, rank=/d', g, t.level(), sum(d>1le-6)))
end
M.dispose();

We feed MOSEK with the same input as in Sec. 10.5.1. The problem is solved for a range of values
values, to demonstrate how the penalty term helps achieve a low rank solution. To this extent we report
both the rank of X and the residual norm || X + diag(w) — A|| 5.

gamma=0.000000, res=3.076163e-01, rank=4
gamma=0.100000, res=4.251692e-01, rank=2
gamma=0.200000, res=5.112081e-01, rank=1
gamma=0.300000, res=5.298432e-01, rank=1
gamma=0.400000, res=5.592686e-01, rank=1
gamma=0.500000, res=6.045702e-01, rank=1
gamma=0.600000, res=6.764402e-01, rank=1
gamma=0.700000, res=8.009913e-01, rank=1
gamma=0.800000, res=1.062385e+00, rank=1
gamma=0.900000, res=1.129513e+00, rank=0
gamma=1.000000, res=1.129513e+00, rank=0

10.6 Semidefinite Relaxation of MIQCQO Problems

In this case study we will discuss a fairly common application for Semidefinite Optimization: to define
a continuous semidefinite relaxation of a mixed-integer quadratic optimization problem. This section is
based on the method by Park and Boyd [PB15].

We will focus on problems of the form:

minimize zT Pz 4 2¢Tx

subject to = € Z" (10.25)

where ¢ € R™ and P € ST*" is positive semidefinite. There are many important problems that can be
reformulated as (10.25), for example:

e integer least squares: minimize ||Az — b||3 subject to z € Z",
o closest vector problem: minimize ||v — z||2 subject to z € {Bz | © € Z"}.
Following /PB15/, we can derive a relaxed continuous model. We first relax the integrality constraint

minimize z7 Pz + 2¢7x
subject to z;(z; —1) >0 i=1,...,n.

The last constraint is still non-convex. We introduce a new variable X € R"*", such that X = z - z7.
This allows us to write an equivalent formulation:

minimize Tr(PX) + 2¢7x
subject to diag(X) > =z,
X=z-zT.
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To get a conic problem we relax the last constraint and apply the Schur complement. The final relaxation
follows:
minimize Tr(PX) + 2¢7x
subject to diag(X) > =z,

10.26
[X Yl esth 1020

2T 1

Fusion Implementation

Implementing model (10.26) in Fusion is very simple. We assume the input n, P and ¢. Then we proceed
creating the optimization model

M = Model();

The important step is to define a single PSD variable

_| X = n+1
Z_{xT 1]€$+ .

Our code will create Z and two slices that correspond to X and x:

Z = M.variable('Z', n+1, Domain.inPSDCone());
X Z.slice([1,1], [n+1,n+1]);
b4 Z.slice([1,n+1], [n+1,n+2]);

Then we define the constraints:

M.constraint ( Expr.sub(X.diag(), x), Domain.greaterThan(0.) );
M.constraint( Z.index(n+1,n+1), Domain.equalsTo(l.) );

The objective function uses several available linear expressions:

M.objective( ObjectiveSense.Minimize, Expr.add(...
Expr.sum( Expr.mulElm( P, X ) ),
Expr.mul( 2.0, Expr.dot(x, q) )

) )5

Note that the trace operator is not directly available in Fusion, but it can easily be defined from scratch.

Complete code

Listing 10.15: Fusion implementation of model (10.26).

function M = miqcqp_sdo_relaxation(n,P,q)
import mosek.fusion.x*;
M = Model(Q);

N
I

M.variable('Z', n+1, Domain.inPSDCone());
= Z.slice([1,1], [n+1,n+1]);
Z.slice([1,n+1], [n+1,n+2]);

L]
nmon

M.constraint ( Expr.sub(X.diag(), x), Domain.greaterThan(0.) );
M.constraint( Z.index(n+1,n+1), Domain.equalsTo(1l.) );

M.objective( ObjectiveSense.Minimize, Expr.add(...
Expr.sum( Expr.mulElm( P, X ) ),
Expr.mul( 2.0, Expr.dot(x, q) )

) s

end
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Numerical Examples

We present now some simple numerical experiments for the integer least squares problem:

minimize  ||Az — b||3

subject to x € Z". (10.27)

It corresponds to the problem (10.25) with P = AT A and ¢ = —ATb. Following /PB15] we will generate
the input data by taking all entries of A from the normal distribution A/(0,1) and setting b = Ac where
¢ comes from the uniform distribution on [0, 1].

An integer rounding xRound of the solution to (10.26) is a feasible integer solution to (10.27). We can
compare it to the actual optimal integer solution xOpt, whenever the latter is available. Of course it is
very simple to formulate the integer least squares problem in Fusion:

function M = int_least_squares(n, A, b)
import mosek.fusion.x*;
M = Model();

e
1]

M.variable('x', n, Domain.integral(Domain.unbounded()));
M.variable('t', 1, Domain.unbounded());

ot
1]

M.constraint ( Expr.vstack(t, Expr.sub(Expr.mul(A, x), b)), Domain.inQCone() );
M.objective( ObjectiveSense.Minimize, t );
end

All that remains is to compare the values of the objective function || Az — bl|s for the two solutions.

Listing 10.16: The comparison of two solutions.

/ problem dimensions
n =20 ;

m = 2%n ;

/ problem data

A = randn([m,n]);

¢ = rand([n,1]);
P=A" % A;

q = -Pxc;

b = Axc;

4 solve the problems
M = miqcqp_sdo_relaxation(n, P, q);
Mint = int_least_squares(n, A, b);

M.solve();
Mint.solve();

# rounded and optimal solution
xRound = round(M.getVariable('Z').slice([1,n+1], [n+1,n+2]).level());
x0pt = round(Mint.getVariable('x').level());

M.getSolverDoubleInfo('optimizerTime'), Mint.getSolverDoubleInfo('optimizerTime')
norm(A*xRound-b), norm(A*x0Opt-b)

Experimentally the objective value for xRound approximates the optimal solution with a factor of 1.1-1.4.
We refer to [PB15/ for a more involved iterative rounding procedure, producing integer solutions of even
better quality, and for a detailed discussion of test results.
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10.7 SUDOKU

SUDOKU is a famous simple yet mind-blowing game. The objective is to fill a 9x9 grid with digits
so that each column, each row, and each of the nine 3x3 sub-grids that compose the grid (also called
bozes, blocks, regions, or sub-squares) contains all of the digits from 1 to 9. For more information see
http://en.wikipedia.org/wiki/Sudoku. Here is a simple example:

4 4
8 3 8 3
1 8 9 1 8 9
311 8|4 311 8|4
411 91217 411 91217
6|5 8 6|5 8
4 1|6 4 1|6
9 9
A simple unsolved Sudoku The solution

In a more general setting we are given a grid of dimension n x n, with n = m?,m € N. Each cell (i, )
must be filled with an integer y;; € [1,n]. Along each row and each column there must be no repetitions.
No repetitions are allowed also in each sub-grid with corners {(mt,ml), (m(t+1) —1,m( +1) — 1)},
for t,l =0,...,m — 1 (we index cells from (0,0)).

In general, each SUDOKU instance comes with a set F' of predetermined values which:

e reduce the complexity of the game by removing symmetries and guiding the initial moves of the
player;
e ensure that there will be a unique solution.

We represent the set F' as list of triplets (4, j,v), meaning that the cell (i, j) contains the value v.

Note that SUDOKU is a feasibility problem. A typical Integer Programming formulation is straight-
forward: let x;;; be a binary variable that takes value 1 if k is written in cell (¢, j). Then we look for a
feasible solution of a system of constraints given below.

SUDOKU is a typical assignment problem. Its constraints are commonly found in optimization problems
concerning scheduling or resource allocation. SUDOKU has also been a nice problem to fiddle with for
many researchers in the optimization community. Indeed, its simple structure and the easy way in which
the results can be tested make it a perfect test problem.

We will approach SUDOKU as a standard integer linear program, and we will show how easily and
elegantly it can be implemented in Fusion.

Mathematical Formulation

In this section we formulate SUDOKU as a mixed-integer linear optimization problem. Let’s introduce
a binary variable x;;;, that takes value 1 if k is written in the cell (4, j), or 0 otherwise. We first ask that
for each cell exactly one digit is selected:

n—1
dowgr=1,  i,j=0,...,n—1 (10.28)
k=0
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Similar constraints can be used to force each digit to appear only once in each row or column:

Z?;leijkzla j?k:07~~~7n_1,

n— : 10.29
Ej:olxijkzly ,k=0,...,n—1. ( )
To force a digit to appear only once in each sub-grid we can use the following
m—1m—1
T(ittm) (j+thk = 1 k=0,....,n—1land t,l=0,...,m—1 (10.30)
i=0 j=0

If a cell (i,7) has a predetermined value, i.e. (i,5,k) € F then we set
Tijk = 1.

Summarizing, and considering that there is no objective function to minimize, the optimization model

for the SUDOKU problem takes the form

min 0
s.t.
Z;L:_olxijk:L g, k=0,...,n—1,
Z?;ol%jk:L i,k=0,...,n—1,
o ik = 1, i i=0,...n—1, (10.31)

Z:i?)l Z;nziol L (i4+tm)(j+tl)k = 1, k= 0, e, — 1 and
t,l=0,...,m—1,

Tijk = 1, V(Z,j,k) e F.
Implementation with Fusion

The implementation in Fusion is straightforward. First, we represent the variable x using a three
dimensional Fusion variable:

x= M.variable([n,n,n], Domain.binary());

Then we can define constraints (10.28) and (10.29) simply using the Ezpr.sum operator, that allows to
sum the elements of an expression (in this case of the variable itself) along arbitrary dimensions. The
code reads:

/Jeach value only once per dim
for d = 1:m

M.constraint (Expr.sum(x,d-1), Domain.equalsTo(1.));
end

The last set of constraints (10.30) , i.e. the sum over block, needs a little more effort: we must loop over
all blocks and select the proper slice:

feach number must appears only once in a block

for k = 1:n
for i = 1:m
for j = 1:m

M.constraint( Expr.sum( x.slice([1+(i-1)*m,1+(j-1)*m,k], [1+i*m, 1+j*m, k+1]) ),

Domain.equalsTo(1.) );
end
end
end

To set the triplets given in the set F' we can use the Variable.pick method that returns a one dimen-
sional view of an arbitrary set of elements of the variable.
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M.constraint( x.pick(hr_fixed), Domain.equalsTo(1.0) );

SUDOKU: the complete example code.

The complete code for the SUDOKU problem is shown in Listing 10.17.

Listing 10.17: Fusion implementation to solve SUDOKU.

function sudoku()

import mosek.fusion.x*;

m= 3;

n= m*m;

hr_fixed= [ 1,5,4;
2,2,5; 2,3,8; 2,6,3; ...
3,2,1; 3,4,2; 3,5,8; 3,7,9; ...
4,2,7; 4,3,3; 4,4,1; 4,7,8; 4,8,4;
6,2,4; 6,3,1; 6,6,9; 6,7,2; 6,8,7;
7,3,4; 7,5,6; 7,6,5; 7,8,8;
8,4,4; 8,7,1; 8,8,6;
9,5,9

1;

M= Model ('SUDOKU');
x= M.variable([n,n,n], Domain.binary());

/Jeach value only once per dim
for d = 1:m

M.constraint (Expr.sum(x,d-1), Domain.equalsTo(1.));
end

/Jeach number must appears only once in a block
for k = 1:n
for i = 1m
for j = 1:m
M.constraint( Expr.sum( x.slice([1+(i-1)*m,1+(j-1)*m,k], [1+i*m, 1+j*m, k+1]) ),

Domain.equalsTo(1.) );
end
end
end

M.constraint( x.pick(hr_fixed), Domain.equalsTo(1.0) );

M.setLogHandler (java.io.PrintWriter (java.lang.System.out));
M.solve();

Aprint the solution, if any...
if M.getPrimalSolutionStatus() == SolutionStatus.Optimal ||
M.getPrimalSolutionStatus() == SolutionStatus.NearOptimal

fprintf('\n');

for i = 1:n
fprintf (' |');
for j = 1:n

for k = 1:n
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if x.index([i,j,k]).

level()>0.5

fprintf (' Jd', k)

break;
end
end
if mod(j,m) ==
fprintf (' |');

end

end

fprintf('\n');

if mod(i,m) ==
fprintf('\n');

end

end
else
fprintf ('No solution found!\n');
end

M.dispose()

The problem instance corresponding to Fig. 10.7 is hard-coded for the sake of simplicity. It will produce

the following output

Problem
Name : SUDOKU
Objective sense : min
Type
Constraints : 350
Cones : 0
Scalar variables 1000
Matrix variables : 0
Integer variables 1 729

Optimizer started.

Mixed integer optimizer started.
Threads used: 2

Presolve started.

Presolve terminated. Time = 0.00

: LO (linear optimization problem)

Presolved problem: O variables, O constraints, O non-zeros
Presolved problem: O general integer, O binary, O continuous

Clique table size: O
BRANCHES RELAXS  ACT_NDS DEPTH
0 1 0 0

An optimal solution
The relative gap is
An optimal solution
The absolute gap is

0.00e+00(%) .

0.00e+00.

Objective of best integer solution :

Best objective bound

Construct solution objective
Construct solution # roundings
User objective cut value
Number of cuts generated
Number of branches

of relaxations solved
of
of simplex iterations
Time spend presolving the root
Time spend in the heuristic

Number
Number
Number

interior point iterations:

O OO O kFr OO OO

o O
o O

BEST_INT_0BJ
0.0000000000e+00

BEST_RELAX_0BJ
0.0000000000e+00

REL_GAP (%)
0.00e+00

TIME
0.0

satisfying the relative gap tolerance of 1.00e-02(%) has been located.

satisfying the absolute gap tolerance of 0.00e+00 has been located.

0.000000000000e+00
-0.000000000000e+00

: Not employed
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Time spend in the sub optimizers : 0.00
Time spend optimizing the root : 0.00
Mixed integer optimizer terminated. Time: 0.02

Optimizer terminated. Time: 0.02

(9]
(o))
\1
S
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=

_
©
N
w
o)}
o
(o]
N

10.8 Multiprocessor Scheduling

In this case study we consider a simple scheduling problem in which a set of jobs must be assigned to a
set of identical machines. We want to minimize the makespan of the overall processing, i.e. the latest
machine termination time.

The main aims of this case study are
e to show how to define a Integer Linear Programming model,
e to take advantage of Fusion operators to compactly express sets of constraints,

e to provide the solver with an incumbent integer feasible solution.

Mathematical formulation

We are given a set of jobs J with |J| = n to be assigned to a set M of identical machines with |[M| = m.
Each job j € J has a processing time 7} > 0 and can be assigned to any machine. Our aim is to find
the job scheduling that minimizes the overall makespan, i.e. the maximum completion time among all
machines.

Formally, we introduce a binary variable z;; that takes value 1 if the job j is assigned to the machine 7,
zero otherwise. The only constraint we need to set is the requirement that a job must be assigned to a
single machine. The optimization model takes the following form:

min max;e ps Zje] Tjaij
S.t. ZiEMxij = 17 ] S J7 (1032)
zij €{0,1} vieM.jeJ

Model (10.32) can be easily transformed into an integer linear programming model as follows:

mint

s.t. ZiEJW xij = 1, ] S J,
t> Ejej zjij; i€ M, (1033)
xijE{O,l}, Vie M,jeJ.

The implementation of this model in Fusion is straightforward:
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M= Model('Multi-processor scheduling');

x= M.variable('x', [m,n], Domain.binary());
t= M.variable('t',1);

M.constraint( Expr.sum(x,0), Domain.equalsTo(1l.) );
M.constraint( Expr.sub( Var.repeat(t,m), Expr.mul(x,T) ), Domain.greaterThan(0.) );

M.objective( ObjectiveSense.Minimize, t );

Most of the code is self-explanatory. The only critical point is

M.constraint ( Expr.sub( Var.repeat(t,m), Expr.mul(x,T) ), Domain.greaterThan(0.) );

that implements the set of constraints
tZZzjija 1€ M.
jedJ
To fit in Fusion we restate the constraints as
t—ZTjJJijZO, 1€ M,
jed
which corresponds in matrix form to

t1— 2T > 0. (10.34)

The function Var.repeat creates a vector of length m, as required for (10.34). The same result can be
obtained via matrix multiplication, i.e. using Ezpr.mul, but in this particular case Var.repeat is faster
as it only performs a logical operation.

Longest Processing Time first rule (LPT)

The multiprocessor scheduling is known to be an NP-complete problem (see [G.J79]). Nevertheless there
are effective heuristics, with provable worst case bounds, that are able to provide a good integer solution
quickly. In particular, we will use the so-called Longest Processing Time first rule (LPT, proposed in
[Gra69]).

The informal algorithm sketch is the following:

e while M is not empty do

let k be the machine with the smallest load so far,

let i be the job in M with the longest completion time,

assign job i to machine k,

update the load of machine k,
— remove i from M.

This simple algorithm is a %(4 — %) approximation. So for m = 1 we get the optimal solution (indeed
there is no choice with a single machine); for m — oo the approximation factor is no worse than 4/3
(again see [Gra69]).

A simple implementation is given below.

J/LPT heuristic
schedule= zeros([m,1]);
init= zeros([m*n,1]);

for i = 1:n
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[val,indx]= min(schedule);
schedule(indx) = schedule(indx) + T(i);
init(n*(indx-1) + i)=1.0;

end

An efficient implementation of the LPT rule is beyond the scope of this section. The important part is
that the scheduling produced by the LPT algorithm can be used as incumbent solution for the MOSEK
mixed-integer linear programming solver. The availability of an integer feasible solution can significantly
improve the performance of the solver.

To input the solution we only need to use the Variable.setLevel method, as shown below

x.setLevel(init);

We can test the program with and without providing the initial LPT solution. Our random datasets
consists of a mix of tasks with long and short processing times and we accept a solution at relative
optimality tolerance 0.01. Some results are shown in the table below.

Table 10.1: Sample test results for the makespan problem.

n m | long tasks | short tasks | No LPT | With LPT
1000 | 8 | 20% 80% 13.36s | 1.23s
1000 | 8 | 80% 20% 1.35s 1.24s
100 | 12 | 20% 80% 16.37s | 0.11s
100 12 | 80% 20% 16.62s 10.01s
20 20 | 0% 100% 10.38s | 21.88s

We can see that depending on the structure and parameters of the problem it may pay off to provide an
initial LPT solution. Therefore it is always recommended to test the mixed-integer solver with different
settings to find the most efficient setup for a given problem.

Listing 10.18: Complete code for the LPT scheduling example.

import mosek.fusion.x*;

n = 30; Allumber of tasks

m= 6; AlNumber of processors

1b = 1.0; /The range of lengths of short tasks
ub = 5.0;

sh = 0.8; /AThe proportion of short tasks

n_short = floor(n*sh);
n_long = n-n_short;

rng(0);
T= sort([rand([n_short,1])*(ub-1b)+1b; 20*(rand([n_long,1])*(ub-1b)+1b)], 'descend');

fprintf('jobs: %d\n',n);
fprintf ('machines: %d\n',m);

M= Model('Multi—processor scheduling‘);

x= M.variable('x', [m,n], Domain.binary());
t= M.variable('t',1);

M.constraint( Expr.sum(x,0), Domain.equalsTo(1l.) );
M.constraint( Expr.sub( Var.repeat(t,m), Expr.mul(x,T) ), Domain.greaterThan(0.) );

M.objective( ObjectiveSense.Minimize, t );

J/LPT heuristic
schedule= zeros([m,1]);
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init= zeros([m#*n,1]);

for i = 1:n
[val,indx]= min(schedule);
schedule(indx) = schedule(indx) + T(i);
init(n*(indx-1) + i)=1.0;

end

/Comment this line to switch off feeding in the initial LPT solution
x.setLevel (init);

M.setLogHandler(java.io.PrintWriter(java.lang.System.out));
M.setSolverParam('mioTolRelGap', .1);
M.solve();

fprintf('initial solution:\n');
for i = 1:m
fprintf('M %d: ',i);
for j =1:n
fprintf ('%f, ', init((i-1)*n+j) );
end
fprintf('\n');
end

fprintf ('MOSEK solution:\n');
for i = 1:m
fprintf('M %d: ',i);
for j = 1:n
value= x.index(i,j).level();
fprintf ('%f, ', value(l) );
end
fprintf('\n');
end

M.dispose();

10.9 Travelling Salesman Problem (TSP)

The Travelling Salesman Problem is one of the most famous and studied problems in combinatorics and
integer optimization. In this case study we shall:

e show how to compactly define a model with Fusion;
e implement an iterative algorithm that solves a sequence of optimization problems;
e modify an optimization problem by adding more constraints;
e show how to access the solution of an optimization problem.
The material presented in this section draws inspiration from [Pat03].

In a TSP instance we are given a directed graph G = (N, A), where N is the set of nodes and A is the
set of arcs. To each arc (i,j) € A corresponds a nonnegative cost ¢;;. The goal is to find a minimum
cost Hamilton cycle in G, that is a closed tour passing through each node exactly once. For example,
consider the small directed graph in Fig. 10.6.

Its corresponding adjacency and cost matrices A and c are:

= o = o
O = O
SO ==
O~ O
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Fig. 10.6: (Left) a directed graph with costs. (Middle) The minimum cycle cover found in the first
iteration. (Right) The minimum cost travelling salesman tour.

Typically, the problem is modelled introducing a set of binary variables x;; such that

~_J 0 ifarc (4,5) is in the tour,
ij 1 otherwise.

Now we can introduce the following simple model:

min Zi,j CijTij
subject to Y . x;; =1 Vj=1,...,n,
ijij =1 VZ':l,...,n, (1035)

Ty < Aij Vi, g,
Tij € {O, 1} Vi, j.
It describes the constraint that every vertex has exactly one incoming and one outgoing arc in the tour,

and that only arcs present in the graph can be chosen. Problem (10.35) can be easily implemented in
Fusion:

M = Model();

x = M.variable(Set.make(n,n), Domain.binary());
M.constraint (Expr.sum(x,0), Domain.equalsTo(1.0));
M.constraint (Expr.sum(x,1), Domain.equalsTo(1.0));

M.constraint(x, Domain.lessThan( A ));

M.objective(ObjectiveSense.Minimize, Expr.sum(Expr.mulElm(C, x)));

Note in particular how:
e we can sum over rows and/or columns using the Ezpr. sum function;
e we use Ezpr.dot to compute the objective function.

The solution to problem (10.35) is not necessarily a closed tour. In fact (10.35) models another problem
known as minimum cost cycle cover, whose solution may consist of more than one cycle. In our example
we get the solution depicted in Fig. 10.6, i.e. there are two loops, namely 0->3->0 and 1->2->1.

A solution to (10.35) solves the TSP problem if and only if it consists of a single cycle. One classical
approach ensuring this is the so-called subtour elimination: once we found a solution of (10.35) composed
of at least two cycles, we add constraints that explicitly avoid that particular solution:

Z x5 <le] -1 VeeC.

(10.36)
(i,5)€c
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Thus the problem we want to solve at each step is

min Zi,j CijTsj

subject to ), 2 =1 Vi=1,...,n,
ijij:]- Vz’zl,...,n,
o < Ay Vi, s (10.37)
Lij S {07 1} Viajv

(jyecTij Slef =1 Ve e,

where C'is the set of cycles in all the cycle covers we have seen so far. The overall solution scheme is the
following:

1. set C' as the empty set,

2. solve problem (10.37),

3. if z has only one cycle stop,

4. else add the cycles of « to C' and goto 2.

Cycle detection is a fairly easy task and we omit the procedure here for the sake of simplicity. Now we
show how to add a constraint for each cycle. Since we have the list of arcs, and each one corresponds
to a variable z;;, we can use the function Variable.pick to compactly define constraints of the form
(10.36):

M.constraint (Expr.sum(x.pick(I, J)), Domain.lessThan(1l.0*length(I) - 1 ));

Executing our procedure will yield the following output:

it #1 - solution cost: 2.200000

cycles:
(0,31 - [3,0] -
[1,2] - [2,1] -

it #2 - solution cost: 4.000000

cycles:
(0,11 - [1,2] - [2,3] - [3,0] -

solution:

0O 1 0 O
0O 0 1 O
0O 0 0 1
1 0 0 O

Thus we first discover the two-cycle solution; then the second iteration is forced not to include those
cycles, and a new solution is located. This time it consists of one loop, and as expected the cost is higher.
The solution is depicted in Fig. 10.6.

Formulation (10.37) can be improved in some cases by exploiting the graph structure. Some simple tricks
follow.

Self-loops

Self-loops are never part of a TSP tour. Typically self-loops are removed by penalizing them with a huge
cost ¢;;. Although this works in practice, it is more advisable to just fix the corresponding variables to
Zero, i.e.

i =0 Vi= 1,...,’/1. (1038)

This removes redundant variables, and avoids unnecessarily large coefficients that can negatively affect
the solver.
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Constraints (10.38) are easily implemented as follows:

M.constraint(x.diag(), Domain.equalsTo(0.));

Two-arc loops removal

In networks with more than two nodes two-loop arcs can also be ignored. They are simple to detect and
their number is of the same order as the size of the 