Mo sek

MOSEK Optimizer API for Java
Release 8.1.0.41

MOSEK ApS

2018

CONTENTS

1 Introduction 1
1.1 Why the Optimizer API for Java? 2
2 Contact Information 3
3 License Agreement 5
4 Installation 7
4.1 Building Examples and Testing the Installation. 8
5 Design Overview 11
5.1 Modellingo e 11
5.2 “Hello World!”” in MOSEK 11
6 Optimization Tutorials 13
6.1 Linear Optimization e 13
6.2 Quadratic Optimization L e 19
6.3 Conic Quadratic Optimization e 26
6.4 Semidefinite Optimization 31
6.5 Integer Optimization e 35
6.6 Problem Modification and Reoptimization 38
7 Solver Interaction Tutorials 45
7.1 Accessing the solution 45
7.2 Errors and exceptions Lo e 49
7.3 Input/Output e 49
7.4 Setting solver parameterso e e e o1
7.5 Retrieving information items oL L o 53
7.6 Progress and data callback L o o 53
7.7 MOSEK OptServer o e e e e e 56
8 Nonlinear Tutorials 61
8.1 Separable Convex (SCopt) Interface 61
9 Advanced Numerical Tutorials 65
9.1 Solving Linear Systems Involving the Basis Matrix 65
9.2 Calling BLAS/LAPACK Routines from MOSEK 73
9.3 Computing a Sparse Cholesky Factorization 74
9.4 Converting a quadratically constrained problem to conic form 7
10 Technical guidelines 81
10.1 Memory management and garbage collectiono Lo 81
10.2 Multithreading oL e 82
10.3 Efficiency L e 82
10.4 The license system L e 83

10.5

Deployment

11 Case Studies

11.1

Portfolio Optimization

12 Problem Formulation and Solutions

12.1
12.2
12.3
12.4
12.5

Linear Optimization
Conic Quadratic Optimization
Semidefinite Optimization

Quadratic and Quadratically Constrained Optimization

General Convex Optimization

13 The Optimizers for Continuous Problems

13.1
13.2
13.3
13.4
13.5

Presolve
Using Multiple Threads in an Optimizer
Linear Optimization
Conic Optimization
Nonlinear Convex Optimization

14 The Optimizer for Mixed-integer Problems

14.1
14.2
14.3
14.4
14.5
14.6

The Mixed-integer Optimizer Overview
Relaxations and bounds
Termination Criterion
Speeding Up the Solution Process
Understanding Solution Quality

The Optimizer Log

15 Additional features

15.1
15.2
15.3

Problem Analyzer
Analyzing Infeasible Problems
Sensitivity Analysis

16 API Reference

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

16.10 Class types
16.11 Nonlinear extensions

API Conventions
Functions grouped by topic
Class Env
Class Task
Exceptions
Parameters grouped by topic
Parameters (alphabetical list sorted by type)

Responsecodes.

Enumerations

17 Supported File Formats

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8

The LP File Format
The MPS File Format
The OPF Format
The CBF Format
The XML (OSiL) Format
The Task Format

The Solution File Format

18 List of examples

19 Interface changes

19.1
19.2

Compatibility
Functions

The JSON Format

85
85

105
105
108
110
112
113

115
115
117
118
125
129

131
131
131
132
133
133
134

135
135
138
144

155
155
160
166
176
271
272
283
320
342
367
368

371
372
377
389
398
413
413
414
421

425

19.3 Parameters e e e e e e e e e e
19.4 Constants o o i e e e e e e e e
19.5 Response Codes o e

Bibliography
Symbol Index

Index

437

439

455

CHAPTER

ONE

INTRODUCTION

The MOSEK Optimization Suite 8.1.0.41 is a powerful software package capable of solving large-scale
optimization problems of the following kind:

e linear,

e conic quadratic (also known as second-order cone),
e convex quadratic,

e semidefinite,

e and general convex.

Integer constrained variables are supported for all problem classes except for semidefinite and general
convex problems. In order to obtain an overview of features in the MOSEK Optimization Suite consult
the product introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all relations
are linear. The tremendous success of both applications and theory of linear optimization can be ascribed
to the following factors:

e The required data are simple, i.e. just matrices and vectors.

e Convexity is guaranteed since the problem is convex by construction.

Linear functions are trivially differentiable.

There exist very efficient algorithms and software for solving linear problems.

Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the ad-
vantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

Az —-be K
where K = {y : y > 0}, i.e.,

Az — b=y,

y € K.

In conic optimization a wider class of convex sets K is allowed, for example in 3 dimensions I may
correspond to an ice cream cone. The conic optimizer in MOSEK supports three structurally different
types of cones K, which allows a surprisingly large number of nonlinear relations to be modelled (as
described in the MOSEK modeling cookbook), while preserving the nice algorithmic and theoretical
properties of linear optimization.

http://docs.mosek.com/8.1/intro/index.html
http://docs.mosek.com/modeling-cookbook/index.html

MOSEK Optimizer API for Java, Release 8.1.0.41

1.1 Why the Optimizer API for Java?

The Optimizer API for Java provides an object-oriented interface to the MOSEK optimizers. This
object oriented design is common to Java, Python and .NET and is based on a thin class-based interface
to the native C optimizer API. The overhead introduced by this mapping is minimal.

Optimizer API

Python Java .NET

The Optimizer API for Java can be used with any application running on the Oracle Java platform (and
possibly other Java implementations). It consists of a single class library mosek. jar and a set of library
files that must be available at runtime.

The Optimizer API for Java provides access to:
e Linear Optimization (LO)
e Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)
e Convex Quadratic and Quadratically Constrained Optimization (QCQO)
e Semidefinite Optimization (SDO)
as well as to additional functions for
e problem analysis,
e sensitivity analysis,
e infeasibility diagnostics,

e BLAS/LAPACK linear algebra routines.

2 Chapter 1. Introduction

CHAPTER

TWO

CONTACT INFORMATION

Phone +45 7174 9373

Website mosek.com

Email
sales@mosek.com Sales, pricing, and licensing
support@mosek.com Technical support, questions and bug reports
info@mosek.com Everything else.

Mailing Address
MOSEK ApS

Fruebjergvej 3

Symbion Science Park, Box 16

2100 Copenhagen O

Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger http:/ /blog.mosek.com

Google Group | https://groups.google.com /forum /#!forum /mosek
Twitter https:/ /twitter.com/mosektw

Google+ https://plus.google.com/+Mosek /posts
Linkedin https://www.linkedin.com /company/mosek-aps

In particular Twitter is used for news, updates and release announcements.

https://mosek.com/
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com
http://blog.mosek.com/
https://groups.google.com/forum/#!forum/mosek
https://twitter.com/mosektw
https://plus.google.com/+Mosek/posts
https://www.linkedin.com/company/mosek-aps

MOSEK Optimizer API for Java, Release 8.1.0.41

4 Chapter 2. Contact Information

CHAPTER

THREE

LICENSE AGREEMENT

Before using the MOSEK software, please read the license agreement available in the distribution
at <MSKHOME>/mosek/8/mosek-eula.pdf or on the MOSEK website https://mosek.com/products
license-agreement.

MOSEK uses some third-party open-source libraries. Their license details follows.
zlib

MOSEK includes the zlib library obtained from the zlib website. The license agreement for z/ib is shown
in Listing 3.1.

Listing 3.1: 2lib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu
fplib

MOSEK includes the floating point formatting library developed by David M. Gay obtained from the
netlib website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/**
*

https://mosek.com/products/license-agreement
https://mosek.com/products/license-agreement
http://zlib.org
http://www.netlib.org

MOSEK Optimizer API for Java, Release 8.1.0.41

The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

¥R K K K X X X X X X X X X ¥

***/

6 Chapter 3. License Agreement

CHAPTER

FOUR

INSTALLATION

In this section we discuss how to install and setup the MOSEK Optimizer API for Java.

Important: Before running this MOSEK interface please make sure that you:

e Installed MOSEK correctly. Some operating systems require extra steps. See the Installation
guide for instructions and common troubleshooting tips.

e Set up a license. See the Licensing guide for instructions.

Compatibility

The Optimizer API for Java is compatible with Java version 1.7 or later.

Locating Files

The files in Optimizer API for Java are organized as reported in Table 4.1.

Table 4.1: Relevant files for the Optimizer API for Java.

Relative Path Description Label

<MSKHOME>/mosek/8/tools/platform/<PLATFORM>/bin | Libraries and jar file | <JARDIR>

<MSKHOME>/mosek/8/tools/examples/java Examples <EXDIR>

<MSKHOME>/mosek/8/tools/examples/data Additional data <MISCDIR>
where

e <MSKHOME> is the folder in which the MOSEK package has been installed,

e <PLATFORM> is the actual platform among those supported by MOSEK, i.e. win32x86, win64x86,
1inux64x86 or osx64x86.

Setting up paths

To compile and run a Java program using MOSEK the correct path to <JARDIR>/mosek. jar must be
provided in the Java classpath. This is usually set with the command line option

javac -d . -classpath <JARDIR>/mosek.jar lol.java
java -classpath .:<JARDIR>/mosek.jar com.mosek.example.lol

Alternatively, this can be set with the environment variable CLASSPATH. For more information about

specifying class libraries and compiling applications, see the full Java documentation at http://java.sun.
coml/ .

http://docs.mosek.com/8.1/install/index.html
http://docs.mosek.com/8.1/install/index.html
http://docs.mosek.com/8.1/licensing/index.html
http://java.sun.com/
http://java.sun.com/

MOSEK Optimizer API for Java, Release 8.1.0.41

4.1 Building Examples and Testing the Installation

This section describes how to verify that MOSEK has been installed correctly, and how to build and
execute the Java examples distributed with MOSEK.

4.1.1 Windows

Building and executing a program

To compile the example lol. java distributed with MOSEK:
e Open a DOS prompt and go to the examples directory <EXDIR>.

e To compile a Java program and produce the class files in the current directory, type

’javac -classpath <JARDIR>\mosek.jar -d . lol.java

e To run the compiled program, type

’java -classpath .:<JARDIR>\mosek.jar com.mosek.example.lol

Compiling with Microsoft NMake

The distributed examples can also be compiled using Microsoft NMake. This requires that paths and
environment is set up for Visual Studio tools (usually, the sub-menu containing Visual Studio also
contains a Visual Studio Command Prompt which take care of all the necessary setup).

To build the examples, open a DOS box and change directory to the examples directory <EXDIR>. To
compile all examples type

’nmake /f Makefile

This will compile all the classes into a jar file. To run all the examples type

’nmake /f Makefile test

4.1.2 Mac OS and Linux

Building and executing a program

To compile the example 1lol. java distributed with MOSEK:
e Open a console and go to the examples directory <EXDIR>.

e To compile a Java program and produce the class files in the current directory, type

’javac -classpath <JARDIR>/mosek.jar -d . lol.java

e To run the compiled program, type

’java -classpath .:<JARDIR>/mosek.jar com.mosek.example.lol

8 Chapter 4. Installation

MOSEK Optimizer API for Java, Release 8.1.0.41

Compiling examples using make

The example directory contains makefiles for use with GNU Make. To build the examples, open a prompt
and change directory to the examples directory <EXDIR>. To compile all examples type

’make -f Makefile

This will compile all the classes into a jar file. To run all the examples type

’make test

4.1. Building Examples and Testing the Installation 9

MOSEK Optimizer API for Java, Release 8.1.0.41

10 Chapter 4. Installation

CHAPTER

FIVE

DESIGN OVERVIEW

5.1 Modelling

Optimizer API for Java is an interface for specifying optimization problems directly in matrix form. It
means that an optimization problem such as:
minimize ¢’z
subject to Az < b,
relk

is specified by describing the matrix A, vectors b, ¢ and a list of cones I directly.
The main characteristics of this interface are:

e Simplicity: once the problem data is assembled in matrix form, it is straightforward to input it
into the optimizer.

e Exploiting sparsity: data is entered in sparse format, enabling huge, sparse problems to be
defined and solved efficiently.

e Efficiency: the Optimizer API incurs almost no overhead between the user’s representation of the
problem and MOSEK’s internal one.

Optimizer API for Java does not aid with modeling. It is the user’s responsibility to express the problem
in MOSEK’s standard form, introducing, if necessary, auxiliary variables and constraints. See Sec. 12
for the precise formulations of problems MIOSEK solves.

5.2 “Hello World!” in MOSEK

Here we present the most basic workflow pattern when using Optimizer API for Java.

Creating an environment and task

Every interaction with MOSEK using Optimizer API for Java begins by creating a MOSEK environ-
ment. It coordinates the access to MOSEK from the current process.

In most cases the user does not interact directly with the environment, except for creating optimization
tasks, which contain actual problem specifications and where optimization takes place. An environment
can host multiple tasks.

Defining tasks

After a task is created, the input data can be specified. An optimization problem consists of several
components; objective, objective sense, constraints, variable bounds etc. See Sec. 6 for basic tutorials on
how to specify and solve various types of optimization problems.

11

MOSEK Optimizer API for Java, Release 8.1.0.41

Retrieving the solutions

When the model is set up, the optimizer is invoked with the call to Task.optimize. When the opti-
mization is over, the user can check the results and retrieve numerical values. See further details in Sec.

7.

We refer also to Sec. 7 for information about more advanced mechanisms of interacting with the solver

Source code example

Below is the most basic code sample that defines and solves a trivial optimization problem

minimize x
subject to 2.0 <z < 3.0.

For simplicity the example does not contain any error or status checks.

Listing 5.1: “Hello World!” in MOSEK

package com.mosek.example;
import mosek.x*;

public class helloworld {
public static void main(String[] args) {

double[] x = new double[1];

Env env = null;

Task task = null;

try {
env = new Env(); // Create Environment
task = new Task(env, 0, 1); // Create Task
task.appendvars(1); // 1 variable z
task.putcj(0, 1.0); // c_0 = 1.0
task.putvarbound (0, boundkey.ra, 2.0, 3.0); // 2.0 <=z <= 3.0
task.putobjsense (objsense.minimize) ; // minimize
task.optimize(); // Optimize
task.getxx (soltype.itr, x); // Get solution
System.out.println("Solution x = " + x[0]); // Print solution

}

finally { // Dispose of env and task just to be sure
task.dispose();
env.dispose();

}

}
}
12 Chapter 5. Design Overview

CHAPTER

SIX

OPTIMIZATION TUTORIALS

In this section we demonstrate how to set up basic types of optimization problems. Each short tutorial
contains a working example of formulating problems, defining variables and constraints and retrieving

solutions.

6.1 Linear Optimization

The simplest optimization problem is a purely linear problem. A linear optimization problem is a problem

of the following form:

Minimize or maximize the objective function

n—1

E . f
cjxj+ ¢

j=0

subject to the linear constraints

n—1

ZESZaijj <ug, k=0,...,m-—1,
=0
and the bounds
7 <z;<uj, j=0,...,n—1

The problem description consists of the following elements:
e m and n — the number of constraints and variables, respectively,
e r — the variable vector of length n,

e ¢ — the coefficient vector of length n

co
c= ,
Cn—1
e ¢/ — fixed term in the objective,
e A — an m x n matrix of coefficients
ao,0 T ag,(n—1)
A= :
Am-1),0 " A(m-1),(n—1)

13

MOSEK Optimizer API for Java, Release 8.1.0.41

e [and u® — the lower and upper bounds on constraints,
e [” and u® — the lower and upper bounds on variables.

Please note that we are using 0 as the first index: xg is the first element in variable vector x.

6.1.1 Example LO1

The following is an example of a small linear optimization problem:

maximize 3rg + lx;1 + Dbdxe + lzg

subject to 3z + lx; + 29 30,

21‘0 + 1131 + 31‘2 + 1583 Z 157 (61>
211 + 3x3 < 25,
under the bounds
0 < Zo < 00,
0 < z; < 10,
0 S T2 S o0,
0 < z3 < o0

Solving the problem

To solve the problem above we go through the following steps:
1. Create an environment.
2. Create an optimization task.
3. Load a problem into the task object.
4. Optimization.
5. Extracting the solution.

Below we explain each of these steps.

Create an environment.

Before setting up the optimization problem, a MOSEK environment must be created. All tasks in the
program should share the same environment.

try (mosek.Env env = new Env();

Create an optimization task.

Next, an empty task object is created:

mosek.Task task = new Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

We also connect a call-back function to the task log stream. Messages related to the task are passed
to the call-back function. In this case the stream call-back function writes its messages to the standard
output stream.

14 Chapter 6. Optimization Tutorials

MOSEK Optimizer API for Java, Release 8.1.0.41

Load a problem into the task object.

Before any problem data can be set, variables and constraints must be added to the problem via calls to
the functions Task. appendcons and Task.appendvars.

// Append 'numcon' empty constraints.
// The constraints will initially have no bounds.

task.appendcons (numcon) ;

// Append 'numvar' variables.
// The variables will initially be fized at zero (z=0).
task.appendvars (numvar) ;

New variables can now be referenced from other functions with indexes in 0,...,numvar — 1 and new
constraints can be referenced with indexes in 0, ...,numcon — 1. More variables and/or constraints can
be appended later as needed, these will be assigned indexes from numvar/numcon and up.

Next step is to set the problem data. We loop over each variable index 7 = 0,...,numvar — 1 calling
functions to set problem data. We first set the objective coefficient ¢; = c[j] by calling the function

Task.putcy.

task.putcj(j, c[jl);

Setting bounds on variables

The bounds on variables are stored in the arrays

mosek.boundkey

bkx[] = {mosek.boundkey.lo,
mosek.boundkey.ra,
mosek.boundkey.lo,
mosek.boundkey.lo

};
double blx[] = {0.0,
0.0,
0.0,
0.0
}s
double bux[] = { +infinity,
10.0,
+infinity,
+infinity
}s

and are set with calls to Task.putvarbound.

// Set the bounds on wvartiable j.

// blalj] <= z_j

<= buz[j]

task.putvarbound(j, bkx[jl, blx[j], bux[jl);

The Bound key stored in bkx specifies the type of the bound according to Table 6.1.

Table 6.1: Bound keys

as defined in the enum boundkey.

Bound key Type of bound | Lower bound | Upper bound

boundkey. fz | u; =1; Finite Identical to the lower bound
boundkey. fr | Free —00 +00

boundkey.lo | l; <--- Finite +00

boundkey.ra | l; <--- <y Finite Finite

boundkey. up <y —00 Finite

6.1. Linear Optimization

15

MOSEK Optimizer API for Java, Release 8.1.0.41

For instance bkx [0]= boundkey. Lo means that xg > [§. Finally, the numerical values of the bounds on
variables are given by

17 = blx[j]
and
uf = bux[j].
Defining the linear constraint matrix.

Recall that in our example the A matrix is given by

A:

S NN W
[N
S W N
w = O

This matrix is stored in sparse format in the arrays:

int asub[] []
{0, 1},

{0, 1, 2},
{0, 1},

{1, 2%}

};
double avall[][]
{3.0, 2.0},
{1.0, 1.0, 2.0%},
{2.0, 3.0},
{1.0, 3.0}

};

{

I
~

The array aval[j] contains the non-zero values of column j and asub[j] contains the row index of
these non-zeros.

Using the function Task.putacol we set column j of A

task.putacol(j, /% Vartable (column) indez.*/
asub[j], /* Row index of mon-zeros im column j.*/
avalljl); /% Non-zero Values of column j. */

There are many alternative formats for entering the A matrix. See functions such as Task.putarow,
Task.putarowlist, Task.putatjlist and similar.

Finally, the bounds on each constraint are set by looping over each constraint index ¢ = 0, ..., numcon—1

// Set the bounds on constraints.

// blcl[i] <= constraint_i <= buc[i]

for (int i = 0; i < numcon; ++i)
task.putconbound (i, bkc[i], blc[i], buc[il);

Optimization

After the problem is set-up the task can be optimized by calling the function Task.optimize.

task.optimize();

16 Chapter 6. Optimization Tutorials

MOSEK Optimizer API for Java, Release 8.1.0.41

Extracting the solution.

After optimizing the status of the solution is examined with a call to Task.getsolsta. If the solution
status is reported as solsta.optimal or solsta.near_optimal the solution is extracted in the lines
below:

task.getxx (mosek.soltype.bas, // Request the basic solution.
XX) ;

The Task. getzz function obtains the solution. MOSEK may compute several solutions depending on
the optimizer employed. In this example the basic solution is requested by setting the first argument to
soltype.bas.

Catching exceptions

We cache any exceptions thrown by MOSEK in the lines:

catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;

}

The types of exceptions that MOSEK can throw can be seen in Sec. 16.8.

Source code

The complete source code lol.java of this example appears below. See also 1o2.java for a version
where the A matrix is entered row-wise.

Listing 6.1: Linear optimization example.

package com.mosek.example;
import mosek.x*;

public class lol {
static final int numcon = 3;
static final int numvar = 4;

public static void main (Stringl[] args) {
// Since the walue of infinity ts ignored, we define it solely
// for symbolic purposes
double infinity = 0;

double c[] = {3.0, 1.0, 5.0, 1.0};
int asub[1[] = {
{0, 1},
{0, 1, 2},
{0, 13},
{1, 2}
3
double avalll[] = {
{3.0, 2.0},
{1.0, 1.0, 2.0%},
{2.0, 3.0},
{1.0, 3.0}
};
mosek. boundkey []
bkc = {mosek.boundkey.fx,

6.1. Linear Optimization 17

MOSEK Optimizer API for Java, Release 8.1.0.41

mosek.boundkey.lo,
mosek.boundkey.up

}s
double blc[]

double bucl]

mosek.boundkey

{30.0,
15.0,
-infinity

s

{30.0,
+infinity,

25.0

I

bkx[] = {mosek.boundkey.lo,
mosek.boundkey.ra,
mosek.boundkey.lo,
mosek.boundkey.lo

}s
double blx[]

double bux[]

double[] xx =

try (mosek.Env

{

O O O O
O O O O

s
= { +infinity,
10.0,
+infinity,
+infinity
I

new double[numvar] ;

env = new Env();

mosek.Task task = new Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

// Append 'numcon' empty constraints.
// The constraints will initially have no bounds.
task.appendcons (numcon) ;

// Append 'numvar' variables.
// The vartables will initially be fized at zero (z=0).
task.appendvars (numvar) ;

for (int j =
// Set the

0; j < numvar; ++j) {
linear term c_j in the objective.

task.putcj(j, c[jl);

// Set the

bounds on wvariable j.

// blelg] <= z_j <= buz[j]
task.putvarbound(j, bkx[j], blx[jl, bux[jl);

// Input column j of A

task.putacol(j, /* Vartable (column) index.*/
asub[j], /% Row index of nmon-zeros in column j.*/
avall[jl); /* Non-zero Values of column j. */
}

// Set the bounds on constraints.

// bleli] <=

for (int i =

constraint_i <= bucl[i]
0; i < numcon; ++i)

18

Chapter 6. Optimization Tutorials

MOSEK Optimizer API for Java, Release 8.1.0.41

task.putconbound (i, bkc[i], blc[i], buc[il);

// Input the objective sense (minimize/mazimize)
task.putobjsense (mosek.objsense.maximize) ;

// Solve the problem
task.optimize();

// Print a summary containing information
// about the solution for debugging purposes
task.solutionsummary (mosek.streamtype.msg) ;

// Get status information about the solution
mosek.solsta solstal[] = new mosek.solstal1l];
task.getsolsta(mosek.soltype.bas, solsta);

switch (solstal0]) {
case optimal:
case near_optimal:
task.getxx (mosek.soltype.bas, // Request the basic solution.
XX) ;

System.out.println("Optimal primal solution\n");
for (int j = 0; j < numvar; ++j)
System.out.println ("x[" + j + "]:" + xx[j1);
break;
case dual_infeas_cer:
case prim_infeas_cer:
case near_dual_infeas_cer:
case near_prim_infeas_cer:
System.out.println("Primal or dual infeasibility certificate found.\n");
break;
case unknown:
System.out.println("Unknown solution status.\n");
break;
default:
System.out.println("Other solution status");
break;
}
}
catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;
Y
}
}

6.2 Quadratic Optimization

MOSEK can solve quadratic and quadratically constrained problems, as long as they are convex. This
class of problems can be formulated as follows:

minimize %xTQox +cTr+cf
subject to 1§ < 1aTQFx+ Z;LZ_Ol agjr; < uf, k=0,...,m—1, (6.2)
i < z; < wuj, j=0,...,n—1

Without loss of generality it is assumed that Q° and Q* are all symmetric because

TQux = %xT(Q + Q7).

6.2. Quadratic Optimization 19

MOSEK Optimizer API for Java, Release 8.1.0.41

This implies that a non-symmetric @) can be replaced by the symmetric matrix %(Q + Q7).

The problem is required to be convex. More precisely, the matrix @° must be positive semi-definite and
the kth constraint must be of the form
1 n—1
i < 52" QFx + > anjx; (6.3)
j=0
with a negative semi-definite Q* or of the form

—1
1 T Nk S c
5% Qr+ E L 0TS < uj.
iz

with a positive semi-definite @Q¥. This implies that quadratic equalities are not allowed. Specifying a
non-convex problem will result in an error when the optimizer is called.

A matrix is positive semidefinite if all the eigenvalues of () are nonnegative. An alternative statement of
the positive semidefinite requirement is

xTQx >0, Vx.

If the convexity (i.e. semidefiniteness) conditions are not met MOSEK will not produce reliable results
or work at all.

6.2.1 Example: Quadratic Objective

We look at a small problem with linear constraints and quadratic objective:

minimize x% + 0.133% + x% — X1X3 — T2
subject to 1< xy+ a9+ 3 (6.4)
0< =

The matrix formulation (6.4) has:

2 0o -1 0
Q=] 0 02 0 |,e=|-1]|,A=[11 1],
-1 0 2 0
with the bounds:
0 00
fF=1Lu"=00,1"=| 0 | andu®” = | o0
0 00

Please note the explicit % in the objective function of (6.2) which implies that diagonal elements must
be doubled in @, i.e. Q1; = 2, whereas the coefficient in (6.4) is 1 in front of x2.

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up quadratic objective

The quadratic objective is specified using the function Task.putgobj. Since Q° is symmetric only the
lower triangular part of Q° is inputted. In fact entries from above the diagonal may not appear in the
input.

The lower triangular part of the matrix Q° is specified using an unordered sparse triplet format (for
details, see Sec. 16.1.4):

20 Chapter 6. Optimization Tutorials

MOSEK Optimizer API for Java, Release 8.1.0.41

int[] gsubi = {0, 1, 2, 2 };
int[] gsubj = {0, 1, 0,
double[] qval = {2.0, 0.2, -1.0, 2.0%};

N
[}

Please note that
e only non-zero elements are specified (any element not specified is 0 by definition),
e the order of the non-zero elements is insignificant, and
e only the lower triangular part should be specified.

Finally, this definition of Q° is loaded into the task:

task.putqobj(gqsubi, gsubj, qval);

Source code

Listing 6.2: Source code implementing problem (6.4).

package com.mosek.example;
import mosek.x*;

public class qol {

static final int numcon = 1; /* Number of comstraints. */
static final int numvar = 3; /* Number of wvariables. */
static final int NUMANZ = 3; /* Number of numzeros in 4. */
static final int NUMQNZ = 4; /% Number of monzeros in . */

public static void main (String[] args) {
// Since the value infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = 0;
double[] ¢ = {0.0, -1.0, 0.0};

mosek.boundkey[] bkc = { mosek.boundkey.lo };
double[] blc = {1.0};
double[] buc = {infinity};

mosek.boundkey[] bkx = { mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey.lo
};
double[] blx = {0.0,
0.0,
0.0
3
double[] bux = {infinity,
infinity,
infinity

};

int [1[] asub = { {0}, {0}, {0} };
double[] [] aval { {1.0}, {1.0}, {1.0} };
double[] xx = new double[numvar];

try (Env env new Env();
Task task = new Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,

6.2. Quadratic Optimization 21

MOSEK Optimizer API for Java, Release 8.1.0.41

new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }1});
/% Give MOSEK an estimate of the size of the input data.
This %s done to increase the speed of inputting data.
However, it ts optional. */
/% Append 'numcon' empty constraints.
The constraints will initially have no bounds. */
task.appendcons (numcon) ;

/* Append 'numvar' variables.
The variables will initially be fized at zero (z=0). */
task.appendvars (numvar) ;

for (int j = 0; j < numvar; ++j) {
/% Set the linear term c_j in the objective.*/
task.putcj(j, c[jl);
/* Set the bounds on wvariable j.
blzl[j] <= z_j <= buz[j] */
task.putbound (mosek.accmode.var, j, bkx[jl, blx[jl, buxl[jl);
/* Input column j of 4 */

task.putacol(j, /* Variable (column) index.*/
asub[jl, /% Row index of non-zeros in column j.*/
avalljl); /* Non-zero Values of column j. */
}
/* Set the bounds on constraints.
for %=1, ...,numcon : blc[t] <= constraint © <= buc[i] */

for (int i = 0; i < numcon; ++i)
task.putbound (mosek.accmode.con, i, bkc[i], blc[il], buclil);

/¥
The lower triangular part of the {
matriz in the objective is specified.

*/
int[] gsubi = {0, 1, 2, 2 1}
int[] gsubj = {0, 1, 0, 2 };

double[] gqval = {2.0, 0.2, -1.0, 2.0};
/% Input the § for the objective. */
task.putqobj(gsubi, gsubj, qval);

/* Solve the problem */

mosek.rescode r = task.optimize();

System.out.println (" Mosek warning:" + r.toString());
// Print a summary containing information

// about the solution for debugging purposes
task.solutionsummary (mosek.streamtype.msg) ;

mosek.solsta solstal] = new mosek.solstall];
/* Get status information about the solution */
task.getsolsta(mosek.soltype.itr, solsta);

/* Get the solution */
task.getxx(mosek.soltype.itr, // Intertor solution.
XX) ;

switch (solstal0]) {
case optimal:
case near_optimal:
System.out.println("Optimal primal solution\n");
for (int j = 0; j < numvar; ++j)
System.out.println ("x[" + j + "]:" + xx[j1);

22

Chapter 6. Optimization Tutorials

MOSEK Optimizer API for Java, Release 8.1.0.41

break;
case dual_infeas_cer:
case prim_infeas_cer:
case near_dual_infeas_cer:
case near_prim_infeas_cer:
System.out.println("Primal or dual infeasibility\n");
break;
case unknown:
System.out.println("Unknown solution status.\n");
break;
default:
System.out.println("Other solution status");
break;
}
Y
catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;
}
} /* Main */
}

6.2.2 Example: Quadratic constraints

In this section we show how to solve a problem with quadratic constraints. Please note that quadratic
constraints are subject to the convexity requirement (6.3).

Consider the problem:

minimize 2?2 4+ 0.12% + 23 — 21703 — 19
subject to 1 < x1+ 22+ 23— x% — 33% — O.lm?)) + 0.2z 23,
x > 0.

This is equivalent to

minimize %:ETQ"x +cTx

subject to 327Q% + Az > b, (6.5)
x>0,
where
2 0 -1 .
Q=0 02 0 |,e=[0 -1 0] ,A=[1 1 1],b=1

-1 0 2
-2 0 02
Q=] 0 -2 o0
0.2 0 -0.2

The linear parts and quadratic objective are set up the way described in the previous tutorial.

Setting up quadratic constraints

To add quadratic terms to the constraints we use the function Task.putqconk.

int[] gqsubi = {0, 1, 2, 2 };
int [] gsubj = {0, 1, 2, 0 };
double[] qval = { -2.0, -2.0, -0.2, 0.2};

6.2. Quadratic Optimization 23

MOSEK Optimizer API for Java, Release 8.1.0.41

/* put §°0 in constraint with indez 0. */

task.putqconk (O,
gsubi,
gsubj,
qval);

While Task.putqconk adds quadratic terms to a specific constraint, it is also possible to input all
quadratic terms in one chunk using the Task.putgcon function.

Source code

Listing 6.3: Implementation of the quadratically constrained problem (6.5).

package com.mosek.example;
import mosek.x*;

public class qcqol {

static final int numcon = 1; /* Number of constraints. */
static final int numvar = 3; /¥ Number of wariables. */
static final int NUMANZ = 3; /% Number of numzeros in 4. */
static final int NUMQNZ = 4; /* Number of monzeros in {. */

public static void main (String[] args) {

// Since the wvalue infinity is never used, we define
// 'infinity' symbolic purposes only

double infinity = 0;

double[] ¢ = {0.0, -1.0, 0.0};

mosek.boundkey [] bkc = {mosek.boundkey.lo};
double[] blc = {1.0};
double[] buc = {infinity};

mosek.boundkey[] bkx

= {mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey.lo

};

double[] blx = {0.0,
0.0,
0.0
3
double[] bux = {infinity,
infinity,
infinity
3

int [1[] asub = { {0}, {0}, {0} };
double[][] aval { {1.0}, {1.0}, {1.0} };

double[] xx = new double[numvar];

try (mosek.Env env = new mosek.Env();
mosek.Task task = new mosek.Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

24

Chapter 6. Optimization Tutorials

MOSEK Optimizer API for Java, Release 8.1.0.41

/* Give MOSEK an estimate of the size of the input data.
This ts done to increase the speed of wnputting data.
However, it is optional. */

/* Append 'numcon' empty constraints.

The constraints will initially have no bounds. */
task.appendcons (numcon) ;

/* Append 'mnumvar' wvariables.
The variables will inttially be fized at zero (z=0). */
task.appendvars (numvar) ;

for (int j = 0; j < numvar; ++j) {
/* Set the linear term c_j in the objective.*/
task.putcj(j, c[jl);
/% Set the bounds on wvartiable j.
ble[j] <= z_j <= buz[j] */
task.putbound (mosek.accmode.var, j, bkx[jl, blx[jl, bux[jl);
/% Input column j of 4 */

task.putacol(j, /* Vartable (column) index.*/
asub[j]l, /% Row index of mon-zeros in column j.*/
avall[jl); /% Non-zero Values of column j. */
}
/% Set the bounds on constraints.
for t=1, ...,numcon : blc[i] <= constraint i <= buc[i] */

for (int i = 0; i < numcon; ++i)

task.putbound (mosek.accmode.con, i, bkc[i], blc[i], buclil);
/*

* The lower triangular part of the {

¥ matriz in the objective ts specified.

*/
int[] qosubi = { 0, 1, 2, 2 3}
int[] qosubj = { 0, 1, O, 2 };
double[] qoval = { 2.0, 0.2, -1.0, 2.0 };

/% Input the § for the objective. */
task.putqobj(qosubi, qosubj, goval);

/*
* The lower triangular part of the {~0
* matriz in the first constraint is specified.
* This corresponds to adding the term
* z0°2 - ¢172 - 0.1 z2°2 + 0.2 z0 z2

*/
int[] gsubi = {0, 1, 2, 2 };
int[] gsubj = {0, 1, 2, 0 I;
double[] qval = { -2.0, -2.0, -0.2, 0.2};

/* put 0 in constraint with index 0. */
task.putqconk (O,

gsubi,

gsubj,

qval);
task.putobjsense (mosek.objsense.minimize) ;

/* Solve the problem */

try {

6.2.

Quadratic Optimization 25

MOSEK Optimizer API for Java, Release 8.1.0.41

mosek.rescode termcode = task.optimize();
} catch (mosek.Warning e) {
System.out.println (" Mosek warning:");
System.out.println (e.toString ());
}
// Print a summary containing information
// about the solution for debugging purposes
task.solutionsummary (mosek.streamtype.msg) ;

mosek.solsta solstal] = new mosek.solstal[l];
/* Get status information about the solution */
task.getsolsta(mosek.soltype.itr, solsta);

task.getxx(mosek.soltype.itr, // Intertior solution.
XX) ;
switch (solstal0]) {

case optimal:

case near_optimal:
System.out.println("Optimal primal solution\n");
for (int j = 0; j < numvar; ++j)

System.out.println ("x[" + j + "]:" + xx[j]);

break;

case dual_infeas_cer:

case prim_infeas_cer:

case near_dual_infeas_cer:

case near_prim_infeas_cer:
System.out.println("Primal or dual infeasibility.\n");
break;

case unk