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Chapter 1

Changes and new features in
MOSEK

The section presents improvements and new features added to MOSEK in version 7.

1.1 Platform support

In Table 1.1 the supported platform and compiler used to build MOSEK shown. Although RedHat
is explicitly mentioned as the supported Linux distribution then MOSEK will work on most other
variants of Linux. However, the license manager tools requires Linux Standard Base 3 or newer is
installed.

1.2 General changes

e The interior-point optimizer has been extended to semi-definite optimization problems. Hence,
MOSEK can optimize over the positive semi-definite cone.

e The network detection has been completely redesigned. MOSEK no longer try detect partial
networks. The problem must be a pure primal network for the network optimizer to be used.

e The parameter iparam.objective_sense has been removed.

e The parameter iparam.intpnt_num_threads has been removed. Use the parameter iparam.num_threads
instead.

e MOSEK now automatically exploit multiple CPUs i.e. the parameter iparam.num_threads is set
to 0 be default. Note the amount memory that MOSEK uses grows with the number of threads
employed.
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Platform OS version C compiler
linux32x86 Redhat 5 or newer (LSB 3+) Intel C 13.0 (gec 4.3, glibe 2.3.4)
linux64x86 RedHat 5 or newer (LSB 3+) Intel C 13.0 (gec 4.3, glibe 2.3.4)
0sx64x86 OSX 10.7 Lion or newer Intel C 13.0 (lvin-gcc-4.2)
win32x86  Windows Vista, Server 2003 or newer Intel C 13.0 (VS 2008)
win64x86  Windows Vista, Server 2003 or newer Intel C 13.0 (VS 2008)

Interface Supported versions

Java Sun Java 1.6+

Microsoft. NET 2.1+

Python 2 2.6+

Python 3 3.14

Table 1.1: Supported platforms

e The MBT file format has been replaced by a new task format. The new format supports semi-
definite optimization.

e the HTML version of the documentation is no longer included in the downloads to save space.
It is still available online.

e MOSEK is more restrictive about the allowed names on variables etc. This is in particular the
case when writing LP files.

e MOSEK no longer tries to detect the cache sizes and is in general less sensitive to the hardware.

e The parameter is set iparam.auto_update_sol_info is default off. In previous version it was by
default on.

e The function relaxprimal has been deprecated and replaced by the function primalrepair.

1.3 Optimizers

1.3.1 Interior point optimizer
e The factorization routines employd by the interior-point optimizer for linear and conic opti-

mization problems has been completely rewritten. In particular the dense column detection and
handling is improved. The factorization routine will also exploit vendor tuned BLAS routines.

1.3.2 The simplex optimizers

e No major changes.
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1.3.3 Mixed-integer optimizer

e A new mixed-integer for linear and conic problems has been introduced. It is from run-to-run
determinitic and is parallelized. It is particular suitable for conic problems.

1.4 API changes

e Added support for semidefinite optimization.

e Some clean up has been performed implying some functions have been renamed.

1.5 Optimization toolbox for MATLAB

e A MOSEK equivalent of bintprog has been introduced.

e The functionality of the MOSEK version of linprog has been improved. It is now possible to
employ the simplex optimizer in linprog.

e mosekopt now accepts a dense A matrix.

e An new method for specification of cones that is more efficient when the problem has many cones
has introduced. The old method is still allowed but is deprecated.

e Support for semidefinite optimization problems has been added to the toolbox.

1.6 License system

e Flexlm has been upgraded to version 11.11.

1.7 Other changes

e The documentation has been improved.

1.8 Interfaces

Semi-definite optimization capabilities have been add to the optimizer APIs.

A major clean up have occured in the optimizer APIs. This should have little effect for most
users.

A new object orientated interface called Fusion has been added. Fusion is available Java, MAT-
LAB, .NET and Python.

The AMPL command line tool has been updated to the latest version.
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1.9 Platform changes

e 32 bit MAC OSX on Intel x86 (0sx32x86) is no longer supported.

e 32 and 64 bit Solaris on Intel x86 (solaris32x86,solaris64x86) is no longer supported.

1.10 Summary of API changes

1.10.1 Parameters

e dparam.callback_freq removed.

e dparam.mio_tol max_cut_frac_rhs added.

e dparam.mio_tol min cut_frac_rhs added.

e dparam.mio_tol_rel_dual_bound_improvement added.

e dparam.presolve_tol_abs_lindep added.

e dparam.presolve_tol_lin_dep removed.

e dparam.presolve_tol_rel_lindep added.

e iparam.bi_clean optimizer Valid parameter values changed.
e iparam.cache_size_11 removed.

e iparam.cache_size_12 removed.

e iparam.check_task_data removed.

e iparam.cpu_type removed.

e iparam.data_check removed.

e iparam.intpnt_basis Valid parameter values changed.

e iparam.intpnt _num threads removed.

e iparam.intpnt_order method Valid parameter values changed.
e iparam.license_allow_overuse removed.

e iparam.license_cache_time removed.

e iparam.license_check_time removed.

e iparam.log expand added.

e iparam.log feasrepair removed.
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SUMMARY OF API CHANGES

iparam.
iparam.
iparam.
iparam.

iparam.

iparam

iparam.
iparam.
iparam.
iparam.
iparam.

iparam.

iparam

iparam.
iparam.
iparam.
iparam.
iparam.

iparam.

iparam

iparam.
iparam.
iparam.
iparam.
iparam.
iparam.
iparam.
iparam.
iparam.
iparam.

sparam.

log_feas_repair added.
lp_write_ignore_incompatible_items removed.
mio_cut_cg added.

mio_cut_cmir added.

mio_node_optimizer Valid parameter values changed.

.mio_probing level added.

mio_rins max nodes added.

mio_root_optimizer Valid parameter values changed.
mio_use multithreaded optimizer added.
num_threads added.

objective_sense removed.

optimizer Valid parameter values changed.

.presolve_lindep_abs_work_trh added.

presolve_lindep_rel_work_trh added.
presolve_lindep work_lim removed.
presolve max num reductions added.
read_add_anz removed.

read_add_con removed.

read_add_cone removed.

.read_add_gnz removed.

read_add_var removed.

read mps_quoted _names removed.
read_q_mode removed.
sim_network_detect removed.

sim network detect_hotstart removed.
sim network_detect_method removed.
sol_quoted_names removed.

write mps_obj_sense removed.

write mps_quoted_names removed.
write mps_strict removed.

mio_debug string added.
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1.10.2

e Env.
e Env.
e Env.
e Env.
e Env.
e Env.
e Env.
e Env
e Env.
e Env.
e Env
e Env.
e Env.
e Env.
e Env.

e Task

e Task.

e Task

e Task

e Task.

e Task.

e Task.

e Task.

e Task.

e Task.

e Task.

e Task

CHAPTER 1.

Functions

axpy added.

dot added.

gemm added.

gemv added.

initenv removed.
licensecleanup added.

potrf added.

.putcpudefaults removed.

putlicensedebug added.

putlicensedefaults removed.

.putlicensepath added.

putlicensewait added.
syeig added.

syevd added.

syrk added.

.append removed.
appendbarvars added.
.appendcons changed.
.appendsparsesymmat added.
appendvars changed.
checkdata removed.
core_append removed.
core_appendcones removed.
core_removecones removed.
getaslicetrip removed.
getavec removed.

.getavecnumnz removed.

CHANGES AND NEW FEATURES IN MOSEK
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Task.

Task

Task

Task.

Task.

Task.

Task.

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

getbarsj added.

.getbarxj added.

.getconname64 removed.

getdviolbarvar added.
getdviolcon added.
getdviolcones added.

getdviolvar added.

.getintpntnumthreads removed.
.getmemusagetask64 removed.
.getname64 removed.
.getnameapi64 removed.
.getnameindex removed.
.getnamelen64 removed.
.getnumgobjnz removed.
.getobjname64 removed.
.getprosta added.
.getpviolbarvar added.
.getpviolcon added.
.getpviolcones added.
.getpviolvar added.
.getqconk removed.
.getskcslice added.
.getskxslice added.
.getslcslice added.
.getslxslice added.
.getsnxslice added.
.getsolsta added.

.getsolutioninfo added.

11
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Task.getsolutionstatus removed.
Task.getsolutionstatuskeyslice removed.
Task.getsucslice added.
Task.getsuxslice added.
Task.gettaskname64 removed.
Task.getvarname64 removed.
Task.getxcslice added.
Task.getxxslice added.
Task.getyslice added.
Task.makesolutionstatusunknown removed.
Task.netextraction removed.
Task.netoptimize removed.
Task.primalrepair added.
Task.putacol added.
Task.putaijlist removed.
Task.putarow added.
Task.putavec removed.
Task.putaveclist64 removed.
Task.putbaraij added.
Task.putbarcj added.
Task.putbarsj added.
Task.putbarvarname added.
Task.putbarxj added.
Task.putconbound added.
Task.putconboundlist added.
Task.putconename added.
Task.putconname added.

Task.putmaxnumanz64 removed.
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Task

Task

Task.

Task

Task.

Task

Task

Task.

Task.

Task

Task.

Task.

Task

Task.

Task.

Task.

Task.

Task.

Task.

Task.

Task.

Task.

Task.

Task.

Task

Task.

.putmaxnumgnz64 removed.

.putname removed.

putskcslice added.

.putskxslice added.

putslcslice added.

.putslxslice added.

.putsnxslice added.

putsucslice added.

putsuxslice added.

.putvarbound added.

putvarboundlist added.

putvarname added.

.putxcslice added.

putxxslice added.
putyslice added.
readdata removed.
readtask added.
remove removed.
removecone removed.
removecones added.
removecons added.
removevars added.
toconic added.

undefsolution removed.

.updatesolutioninfo added.

writetask added.
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Chapter 2

About this manual

This manual covers the general functionality of MOSEK and the usage of the MOSEK Python API.

The MOSEK Python Application Programming Interface makes it possible to access the MOSEK
optimizer from any Python application. The whole functionality of the native C API is available
through a thin class-based interface using native Python types and exceptions. All methods in the
interface are thin wrappers around functions in the native C API, keeping the overhead induced by
the API to a minimum.

The API can be used in Python scripts as well as from the interactive Python command-line. The
Python interface is particularly well-suited for fast prototyping of models and for debugging and
displaying portions of a problem loaded from a file.

The Python interface consists of a mosek module that defines objects, functions and constants.

New users of the MOSEK Python API are encouraged to read:

e Chapter 4 on compiling and running the distributed examples.

e The relevant parts of Chapter 5, i.e. at least the general introduction and the linear optimization
section.

e Chapter 9 for a set of guidelines about developing, testing, and debugging applications employing
MOSEK.
This should introduce most of the data structures and functionality necessary to implement and solve
an optimization problem.

Chapter 10 contains general material about the mathematical formulations of optimization problems
compatible with MOSEK, as well as common tips and tricks for reformulating problems so that they
can be solved by MOSEK.

Hence, Chapter 10 is useful when trying to find a good formulation of a specific model.

More advanced examples of modeling and model debugging are located in

e Chapter 14 which deals with analysis of infeasible problems,

15
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e Chapter 15 about the sensitivity analysis interface, and
Finally, the Python API reference material is located in

e Chapter A which lists all types and functions,
e Chapter B which lists all available parameters,
e Chapter C which lists all response codes, and

e Chapter D which lists all symbolic constants.



Chapter 3

Getting support and help

3.1 MOSEK documentation

For an overview of the available MOSEK documentation please see

mosek/7/docs/

in the distribution.

3.2 Bug reporting
If you think MOSEK is solving your problem incorrectly, please contact MOSEK support at
support@mosek.com

providing a detailed description of the problem. MOSEK support may ask for the task file which is
produced as follows

task.writedata("data.task.gz")
task.optimize ()

The task data will then be written to a binary file named data.task.gz which is useful when repro-
ducing a problem.

3.3 Additional reading

In this manual it is assumed that the reader is familiar with mathematics and in particular math-
ematical optimization. Some introduction to linear programming is found in books such as ”Linear
programming” by Chvétal [1] or ”Computer Solution of Linear Programs” by Nazareth [2]. For more
theoretical aspects see e.g. ”Nonlinear programming: Theory and algorithms” by Bazaraa, Shetty,

17
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and Sherali [3]. Finally, the book "Model building in mathematical programming” by Williams [4]
provides an excellent introduction to modeling issues in optimization.

Another useful resource is ”Mathematical Programming Glossary” available at

http://glossary.computing.society.informs.org


http://glossary.computing.society.informs.org

Chapter 4

Testing installation and compiling
examples

This chapter describes how to verify that the MOSEK Python API has been installed and works, and
how to run the Python examples distributed with MOSEK.

To use the MOSEK Python API, a working MOSEK installation must be present — see the MOSEK
Installation manual for instructions. Part of this installation are two versions of the Python interface;
one for Python 2.5 and later, and one for the Python 3 series. Note that MOSEK can use one-
dimensional arrays from the NumPy package from scipy.org. In case NumPy is not installed, the
MOSEK /Python interface includes a minimal array implementation, mosek.array, that supports the
basic array functionality for a limited number of native types.

A Python installer can be obtained from the official site:
http://www.python.org/

The NumPy package providing arrays and mathematical functionality can be obtained from:
http://numpy.scipy.org/

Note that the architecture of the Python binary and the MOSEK DLL must match: A 32 bit MOSEK
can only be used from a 32 bit Python, and a 64 bit MOSEK can only be used from a 64 bit Python.
The architecture of the Python binary can be checked using the following command:

python -c "print(__import__(’platform’).architecture())"

4.1 Microsoft Windows platform

MOSEK includes a binary Python that can be used interactively or for running scripts, but if you have
a Python installed on your system you may prefer to use that instead. The MOSEK installer does not

19
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set up global paths to the included Python: To use it, either execute Python with full path, or set up
the PATH environment variable to include the relevant bin directory.

The MOSEK /Python module structure is located under platform directory (mosek\7\tools\platform):

64 bit MOSEK, Python 2.5+ win64x86\python)\2
32 bit MOSEK, Python 2.5+ win32x86\python\2
64 bit MOSEK, Python 3 win64x86\python\3
32 bit MOSEK, Python 3 win32x86\python\3

Examples using the MOSEK/Python interface are found in

mosek\7\tools\examples\python

4.1.1 Running a Python example

To run one of the distributed examples, open a DOS box and type

C:
cd "C:\Program Files\mosek\7\tools\examples\python"

then to execute example 1ol type

python lol.py

4.2 Implementation details

The MOSEK/Python module is implemented as a pure Python module using ctypes to call native
DLLs. The CTypes module is included in the Python standard library from 2.5 on.

CTypes is considered an unsafe module, so it may be disabled under some circumstances, e.g. for web
server scripts.



Chapter 5

Basic API tutorial

In this chapter the reader will learn how to build a simple application that uses MOSEK.

A number of examples is provided to demonstrate the functionality required for solving linear, conic,
semidefinite and quadratic problems as well as mixed integer problems.

Please note that the section on linear optimization also describes most of the basic functionality needed
to specify optimization problems. Hence, it is recommended to read Section 5.2 before reading about
other optimization problems.

5.1 The basics

A typical program using the MOSEK Python interface can be described shortly:

e Create an environment object (Env).

e Set up some environment specific data and initialize the environment object.

Create a task object (Task).

Load a problem into the task object.

Optimize the problem.

Fetch the result.

Dispose of the environment and task.

5.1.1 The environment and the task

The first MOSEK related step in any program that employs MOSEK is to create an environment
object. The environment contains environment specific data such as information about the license file,

21
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streams for environment messages etc. When this is done one or more task objects can be created.
Each task is associated with a single environment and defines a complete optimization problem as well
as task message streams and optimization parameters.

When done, tasks and environments may be disposed explicitly by calling the __del__ method. This
is not strictly necessary, but it will free up allocated resources and checked-out licenses immediately
instead of when the garbage collector runs.

In Python, the creation of an environment and a task would look something like this:

# Create an environment
env = mosek.Env()

# You may connect streams and other callbacks to env here.

# Create a task
task = env.Task()

# Load a problem into the task, optimize etc.

From Python 2.6 and later the with construction can be used to dispose objects automatically when
they drop of out of the with-scope:

# Create an environment
with mosek.Env() as env:
# You may connect streams and other callbacks to env here.

# Create a task
with env.Task() as task:
# Load a problem into the task, optimize etc.

Please note that multiple tasks should, if possible, share the same environment.

5.1.2 Example: Simple working example

The following simple example shows a working Python program which
e creates an environment and a task,
e reads a problem from a file,

e optimizes the problem, and

e writes the solution to a file.

[simple.py]
#
# Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
#

# File: simple.py
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# Purpose: Demonstrates a very simple example using MOSEK by
# reading a problem file, solving the problem and
# writing the solution to a file.

#

import mosek
import sys

def streamprinter(msg):

sys.stdout.write (msg)
sys.stdout.flush ()

if len(sys.argv) <= 1:

print ("Missing argument, syntax is:")
print (" simple inputfile [ solutionfile ]")

else:

# Create the mosek environment.
env = mosek.Env ()

# Create a task object linked with the environment env.

# We create it with O variables and O constraints initially,
# since we do not know the size of the problem.

task = env.Task (0, 0)

task.set_Stream (mosek.streamtype.log, streamprinter)

# We assume that a problem file was given as the first command
# line argument (received in ‘argv’)
task.readdata (sys.argv[1])

# Solve the problem
task.optimize ()

# Print a summary of the solution
task.solutionsummary (mosek.streamtype.log)

# If an output file was specified, write a solution
if len(sys.argv) >= 3:
# We define the output format to be OPF, and tell MOSEK to
# leave out parameters and problem data from the output file.

task.putintparam (mosek.iparam.write_data format, mosek.dataformat.op)
task.putintparam (mosek.iparam.opf_write_solutions, mosek.onoffkey.on)

task.putintparam (mosek.iparam.opf_write_hints, mosek.onoffkey.off)
task.putintparam (mosek.iparam.opf_write_parameters, mosek.onoffkey.off)
task.putintparam (mosek.iparam.opf_write_problem, mosek.onoffkey.off)

task.writedata (sys.argv[2])

5.1.2.1 Reading and writing problems

Use the Task.writedata function to write a problem to a file. By default, when not choosing any
specific file format for the parameter iparam.write data format, MOSEK will determine the output
file format by the extension of the file name:
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[simple.py]

task.writedata (sys.argv[2])

Similarly, controlled by iparam.read data_format, the function Task.readdata can read a problem
from a file:

[simple.py |
task.readdata (sys.argv[1])

5.1.2.2 Working with the problem data

An optimization problem consists of several components; objective, objective sense, constraints, vari-
able bounds etc. Therefore, the interface provides a number of methods to operate on the task specific
data, all of which are listed under the Task class-specification.

5.1.2.3 Setting parameters

Apart from the problem data, the task contains a number of parameters defining the behavior of
MOSEK. For example the iparam.optimizer parameter defines which optimizer to use. There are
three kinds of parameters in MOSEK

e Integer parameters that can be set with Task.putintparam,
e Double parameters that can be set with Task.putdouparam, and

e string parameters that can be set with Task.putstrparam,

The values for integer parameters are either simple integer values or enum values.

A complete list of all parameters is found in Chapter B.

5.2 Linear optimization

The simplest optimization problem is a purely linear problem. A linear optimization problem is a
problem of the following form:

Minimize or maximize the objective function

n—1
chxj +cf (5.1)
j=0
subject to the linear constraints
n—1
Ip < Zakajguz,kzo,...,mfl, (5.2)

J=0
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and the bounds
7 <zj<uj, j=0,...,n—1, (5.3)
where we have used the problem elements:

m and n

which are the number of constraints and variables respectively,

x

which is the variable vector of length n,
c

which is a coefficient vector of size n

Co
c= ,
Cp—1

cf

which is a constant,
A

which is a mxn matrix of coefficients is given by

ap,0 T ao,(n—1)
A= ,
G(m-1),0 " A(m-1),(n-1)

¢ and u°

which specify the lower and upper bounds on constraints respectively, and
1" and u”

which specifies the lower and upper bounds on variables respectively.
Please note the unconventional notation using 0 as the first index rather than 1. Hence, xg is the first

element in variable vector x. This convention has been adapted from Python arrays which are indexed
from 0.

5.2.1 Example: Linear optimization

The following is an example of a linear optimization problem:
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maximize 3xg + lax; 4+ Sxs + lag

subject to 3xg + lxy + 2z9 = 30,
200 + lzy + 32 4+ lzg > 15,
211 + 3zz3 < 25,
having the bounds
0 S Zo S 0,
0 < =z < 10,
0 S ) S 0,
0 < 23 < oo

5.2.1.1 Solving the problem
To solve the problem above we go through the following steps:

Create an environment.

Create an optimization task.

Load a problem into the task object.

Optimization.

Extracting the solution.
Below we explain each of these steps. For the complete source code see section 5.2.1.2.

Create an environment.

Before setting up the optimization problem, a MOSEK environment must be created. All tasks
in the program should share the same environment.

[ 1
|1ol.py]

31 # Make mosek environment

32 with mosek.Env() as env:

Create an optimization task.
Next, an empty task object is created:

[ 1
|lol.py]|

33 # Create a task object

3¢ with env.Task(0,0) as task:

35 # Attach a log stream printer to the task

36 task.set_Stream (mosek.streamtype.log, streamprinter)

We also connect a call-back function to the task log stream. Messages related to the task are
passed to the call-back function. In this case the stream call-back function writes its messages
to the standard output stream.
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Load a problem into the task object.

74
75
76
7
78
79
80

84

a7
48
49
50
51
52
53
54
55

86
87
88
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Before any problem data can be set, variables and constraints must be added to the problem via

calls to the functions Task.appendcons and Task.appendvars.

[lol.py]

# Append ’numcon’ empty constraints.
# The constraints will initially have no bounds.
task.appendcons (numcon)

# Append ’numvar’ variables.
# The variables will initially be fixed at zero (x=0).
task.appendvars (numvar)

New variables can now be referenced from other functions with indexes in 0, . ..,numvar — 1 and
new constraints can be referenced with indexes in 0, ... ,numcon— 1. More variables / constraints
can be appended later as needed, these will be assigned indexes from numvar/numcon and up.

Next step is to set the problem data. We loop over each variable index j = 0,...,numvar — 1
calling functions to set problem data. We first set the objective coefficient ¢; = c[j] by calling

the function Task.putcj.
[lol.py]

task.putcj(j,c[jl)

The bounds on variables are stored in the arrays

[1o1.py]
# Bound keys for variables
bkx = [mosek.boundkey.lo,
mosek.boundkey.ra,
mosek.boundkey.lo,
mosek.boundkey . lo]
# Bound values for variables
blx = [ 0.0, 0.0, 0.0, 0.0]
bux = [+inf, 10.0, +inf, +inf]
and are set with calls to Task.putvarbound.
[1ol.py]

# Set the bounds on variable j
# blx[jl <= x_j <= bux[j]
task.putvarbound (j,bkx[j],blx[j],bux[j])

The Bound key stored in bkx specify the type of the bound according to Table 5.1. For instance
bkx [0]=boundkey.lo means that xg > [j. Finally, the numerical values of the bounds on

variables are given by

17 = plx[j]

and

uf = bux[j].
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Bound key \ Type of bound \ Lower bound \ Upper bound ‘

boundkey.fx | --- =1; Finite Identical to the lower bound
boundkey.fr | Free Minus infinity | Plus infinity

boundkey.lo | [; < --- Finite Plus infinity

boundkey.ra | [; < .- <y Finite Finite

boundkey.up | --- <y Minus infinity | Finite

Table 5.1: Interpretation of the bound keys.

Recall that in our example the A matrix is given by

A:

O N W
[N
O W N
w = O

This matrix is stored in sparse format in the arrays:

[1ol.py]
62 asub = [ array([0, 1]),
63 array([0, 1, 2]1),
64 array([0, 11),
65 array([1, 21)]
66 aval = [ array([3.0, 2.0]),
67 array([1.0, 1.0, 2.0]),
68 array([2.0, 3.0]),
69 array([1.0, 3.0]) 1]

The array aval[j] contains the non-zero values of column j and asub[j] contains the row index
of these non-zeros.

Using the function Task.putacol we set column j of A

[lol.py]
91 task.putacol(j, # Variable (column) index.
92 asub[j], # Row index of non-zeros in column j.
93 avalljl) # Non-zero Values of column j.

Alternatively, the same A matrix can be set one row at a time; please see section 5.2.2 for an
example.

Finally, the bounds on each constraint are set by looping over each constraint index ¢ = 0, ..., numcon—
1

[1ol.py]
95 # Set the bounds on constraints.

96 # blc[i] <= constraint_i <= buc[i]

o7 for i in range(numcon) :

98 task.putconbound (i,bkc[i],blc[i],buc[i])

99 task.putconboundslice(0,numcon, bkc,blc,buc);
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Optimization:

108

After the problem is set-up the task can be optimized by calling the function Task.optimize.

[1ol.py]

task.optimize ()

Extracting the solution.

116
117
118

After optimizing the status of the solution is examined with a call to Task.getsolsta. If the
solution status is reported as solsta.optimal or solsta.near _optimal the solution is extracted
in the lines below:

[ 1

|lol.py |

xx = zeros(numvar, float)

task.getxx(mosek.soltype.bas, # Request the basic solution.
XX)

The Task.getxx function obtains the solution. MOSEK may compute several solutions depend-
ing on the optimizer employed. In this example the basic solution is requested by setting the
first argument to soltype.bas.

5.2.1.2 Source code for lol

H H o B OH H R

#

#

[1ol.py]

Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
File: lol.py

Purpose: Demonstrates how to solve small linear

optimization problem using the MOSEK Python API.

from __future__ import with_statement

import sys
import mosek

# If numpy is installed, use that, otherwise use the
# Mosek’s array module.

try:

from numpy import array,zeros,ones

except ImportError:

from mosek.array import array, zeros, ones

# Since the value of infinity is ignored, we define it solely
# for symbolic purposes

i

nf

= 0.0

# Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()
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30

def main ():

# Make mosek environment
with mosek.Env() as env:
# Create a task object
with env.Task(0,0) as task:

# Attach a log stream printer to the task
task.set_Stream (mosek.streamtype.log, streamprinter)

# Bound keys for constraints

bkc = [mosek.boundkey.fx,
mosek.boundkey.lo,
mosek . boundkey . up]

# Bound values for constraints
blc = [30.0, 15.0, -inf]
buc = [30.0, +inf, 25.0]

# Bound keys for variables

bkx = [mosek.boundkey.lo,
mosek.boundkey.ra,
mosek.boundkey.lo,
mosek.boundkey.1lo]

# Bound values for variables
blx = [ 0.0, 0.0, 0.0, 0.0]
bux = [+inf, 10.0, +inf, +inf]

# Objective coefficients
c=1[3.0, 1.0, 5.0, 1.0 ]

# Below is the sparse representation of the A
# matrix stored by column.
asub = [ array([0, 1]),
array([0, 1, 2]),
array([0, 11),
array([1, 2])]
aval = [ array([3.0, 2.0]),
array([1.0, 1.0, 2.01),
array([2.0, 3.0]),
array([1.0, 3.0]) ]

numvar = len(bkx)
numcon = len(bkc)

# Append ’numcon’ empty constraints.
# The constraints will initially have no bounds.

task.appendcons (numcon)

# Append ’numvar’ variables.

# The variables will initially be fixed at zero (x=0).

task.appendvars (numvar)

for j in range(numvar):
# Set the linear term c_j in the objective.
task.putcj(j,cljl)

# Set the bounds on variable j
# blx[j] <= x_j <= bux[j]
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task.putvarbound (j,bkx[j],blx[j],bux[j1)

# Input column j of A

task.putacol(j, # Variable (column) index.
asub[jl, # Row index of non-zeros in column j.
avalljl) # Non-zero Values of column j.

# Set the bounds on constraints.

# blc[i] <= constraint_i <= buc[i]

for i in range(numcon) :
task.putconbound(i,bkc[i],blc[i],buc[i])

task.putconboundslice(0,numcon, bkc,blc,buc);

# Input the objective sense (minimize/maximize)
task.putobjsense (mosek.objsense.maximize)

# Solve the problem
task.optimize ()

# Print a summary containing information
# about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)

# Get status information about the solution
solsta = task.getsolsta(mosek.soltype.bas)

if (solsta

mosek.solsta.optimal or

solsta == mosek.solsta.near_optimal):
xx = zeros(numvar, float)
task.getxx(mosek.soltype.bas, # Request the basic solution.

xx)

print ("Optimal solution: ")
for i in range(numvar):
print ("x["+str(i)+"]="+str(xx[i]))

elif (solsta == mosek.solsta.dual_infeas_cer or
solsta == mosek.solsta.prim_infeas_cer or
solsta == mosek.solsta.near_dual_infeas_cer or
solsta == mosek.solsta.near_prim_infeas_cer):

print ("Primal
elif solsta == mosek.solsta.unknown:
print ("Unknown solution status")

else:

or dual infeasibility certificate found.\n")

print("Other solution status")

# call the main function

try:
main ()

except mosek.Exception as e:
print ("ERROR: %s" % str(e.errno))
if e.msg is not None:
print ("\t%s" % e.msg)

sys.exit (1)
except:

import traceback
traceback.print_exc()

sys.exit (1)
sys.exit (0)

31
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5.2.2 Row-wise input

In the previous example the A matrix is set one column at a time. Alternatively the same matrix can
be set one row at a time or the two methods can be mixed as in the example in section 5.10. The
following example show how to set the A matrix by rows.

[102.py]
#
# Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
#
# File: lo2.py
#
# Purpose: Demonstrates how to solve small linear
# optimization problem using the MOSEK Python API.
##

import sys

import mosek
# If numpy is installed, use that, otherwise use the
# Mosek’s array module.
try:
from numpy import array,zeros,ones
except ImportError:
from mosek.array import array, zeros, ones

# Since the actual value of Infinity is ignores, we define it solely
# for symbolic purposes:
inf = 0.0

# Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)

sys.stdout.flush()

# We might write everything directly as a script, but it looks nicer
# to create a function.
def main ():

# Make a MOSEK environment

env = mosek.Env ()

# Attach a printer to the environment

env.set_Stream (mosek.streamtype.log, streamprinter)

# Create a task

task = env.Task(0,0)

# Attach a printer to the task

task.set_Stream (mosek.streamtype.log, streamprinter)

# Bound keys for constraints

bkc = [mosek.boundkey.fx,
mosek.boundkey.lo,
mosek . boundkey . up]

# Bound values for constraints

blc [30.0, 15.0, -inf]

buc = [30.0, +inf, 25.0]

# Bound keys for variables

bkx = [mosek.boundkey.lo,
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mosek.boundkey.ra,
mosek.boundkey.lo,
mosek.boundkey . 1lo]

# Bound values for variables

blx = [ 0.0, 0.0
bux = [+inf, 10.0

, 0.0, 0.0]
, +inf, +inf]

# Objective coefficients

c=1[3.0,1.0,5

.0, 1.0 ]

# We input the A matrix column-wise
# asub contains row indexes

asub = [ array([0
array ([0

array ([0

# acof contains

aval = [ array([3.
array([2.

array([2
numvar = len(bkx)
numcon = len(bkc)
# Append ’numcon’
# The constraints

, 1, 21D,

, 1, 2, 31,

, 31

coefficients

0, 1.0, 2.01),

0, 1.0, 3.0, 1.01),
.0, 3.01)]

empty constraints.
will initially have no bounds.

task.appendcons (numcon)

#Append ’numvar’ variables.

# The variables will initially be fixed at zero (x=0).

task.appendvars (numvar)

for j in range(numvar):
# Set the linear term c_j in the objective.
task.putcj(j,cl[jl)
# Set the bounds on variable j

# blx[j] <= x_j

task.putbound(mosek.accmode.var, j,bkx[j],blx[j],bux[j1)

<= bux[j]

for i in range(numcon):

task.putbound(mosek.accmode.con,i,bkc[i],blc[i],buc[il])

# Input row i of A

task.putarow(i,

asubl[i],
avall[il);

# Row index.
# Column indexes of non-zeros in row i.
# Non-zero Values of row i.

# Input the objective sense (minimize/maximize)
task.putobjsense (mosek.objsense.maximize)

# Optimize the task

task.optimize()

# Print a summary

containing information

# about the solution for debugging purposes
task.solutionsummary (mosek.streamtype.msg)

prosta = task.getprosta(mosek.soltype.bas)
solsta = task.getsolsta(mosek.soltype.bas)

# Output a solution
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xx = zeros(numvar, float)
task.getxx(mosek.soltype.bas,

if solsta == mosek.solsta.optimal or solsta == mosek.solsta.near_optimal:

XX)

print("Optimal solution: %s" % xx)

elif solsta == mosek.

print ("Primal or
elif solsta == mosek
print ("Primal or

elif solsta == mosek.

print ("Primal or

solsta.dual_infeas_cer:
dual infeasibility.\n")

.solsta.prim_infeas_cer:

dual infeasibility.\n")
solsta.near_dual_infeas_cer:
dual infeasibility.\n")

elif solsta == mosek.solsta.near_prim_infeas_cer:
print ("Primal or dual infeasibility.\n")
elif mosek.solsta.unknown:
print ("Unknown solution status")
else:
print("Other solution status")

# call the main function
try:
main ()
except mosek.Exception as e:
print ("ERROR: %s" % str(e.errno))
if e.msg is not None:
print ("\t%s" % e.msg)
sys.exit (1)
except:
import traceback
traceback.print_exc()
sys.exit(1)
sys.exit(0)

5.3 Conic quadratic optimization

Conic optimization is a generalization of linear optimization, allowing constraints of the type

$t € Ct,

where a? is a subset of the problem variables and C; is a convex cone. Actually, since the set R™ of

real numbers is also a convex cone, all variables can in fact be partitioned into subsets belonging to
separate convex cones, simply stated = € C.

MOSEK can solve conic quadratic optimization problems of the form

minimize T+
subject to 1¢ < Az <
z €C,

where the domain restriction, « € C, implies that all variables are partitioned into convex cones
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P, with 2t € ¢, C R™.
For convenience, the user only specify subsets of variables ! belonging to cones C; different from the

set R™ of real numbers. These cones can be a:

e Quadratic cone:

e Rotated quadratic cone:

n—1
Qr =<z eR": 2xgz1 > ZZ?, x0>0, 21 >0
=2

From these definition it follows that

(74, 20,22) € Qs,

is equivalent to

xy >\ 2k + 23

Furthermore, each variable may belong to one cone at most. The constraint z; —x; = 0 would however

allow z; and z; to belong to different cones with same effect.

5.3.1 Example: Conic quadratic optimization

The problem
minimize T3+ T4 + 25
subject to  xg + x1 + 224 = 1,
Zo, L1, T2 Z Oa (55)

T3 2 1% + Jf%,
2r4x5 > x%
The problem includes a set of linear con-

is an example of a conic quadratic optimization problem
straints, a quadratic cone and a rotated quadratic cone.
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5.3.1.1 Source code

[cqol.py]
#
# Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
#
# File: cqol.py
#
# Purpose: Demonstrates how to solve small linear
# optimization problem using the MOSEK Python API.
##

import sys

import mosek
# If numpy is installed, use that, otherwise use the
# Mosek’s array module.
try:
from numpy import array,zeros,ones
except ImportError:
from mosek.array import array, zeros, ones

# Since the actual value of Infinity is ignores, we define it solely
# for symbolic purposes:
inf = 0.0

# Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)

sys.stdout.flush()

# We might write everything directly as a script, but it looks nicer
# to create a function.
def main ():

# Make a MOSEK environment

env = mosek.Env ()

# Attach a printer to the environment

env.set_Stream (mosek.streamtype.log, streamprinter)

# Create a task

task = env.Task(0,0)

# Attach a printer to the task

task.set_Stream (mosek.streamtype.log, streamprinter)

bkc = [ mosek.boundkey.fx ]

blc = [ 1.0 ]

buc = [ 1.0 ]

c =1 0.0, 0.0, 0.0,

1.0, 1.0, 1.0 1]
bkx = [ mosek.boundkey.lo,mosek.boundkey.lo,mosek.boundkey.lo,
mosek.boundkey . fr,mosek.boundkey.fr,mosek.boundkey.fr ]

blx = [ 0.0, 0.0, 0.0,
-inf, -inf, -inf ]
bux = [ inf, inf, inf,
inf, inf, inf ]

asub = [ array([0]), array([0]), array([0]) ]
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aval = [ array([1.0]), array([1.0]), array([2.0]) ]

numvar = len(bkx)

numcon = len(bkc)

NUMANZ = 4

# Append ’numcon’ empty constraints.

# The constraints will initially have no bounds.
task.appendcons (numcon)

#Append ’numvar’ variables.
# The variables will initially be fixed at zero (x=0).
task.appendvars (numvar)

for j in range(numvar):
# Set the linear term c_j in the objective.
task.putcj(j,cljl)
# Set the bounds on variable j
# blx[jl <= x_j <= bux[j]
task.putbound (mosek.accmode.var, j,bkx[j],blx[j],bux[j])

for j in range(len(aval)):
# Input column j of A

task.putacol(j, # Variable (column) index.
asub[j], # Row index of non-zeros in column j.
aval[jl) # Non-zero Values of column j.

for i in range(numcon):
task.putbound (mosek.accmode.con,i,bkc[i],blc[i],buc[i])

# Input the cones
task.appendcone (mosek.conetype.quad,
0.0,

(3,0, 1D
task.appendcone (mosek. conetype.rquad,
0.0,

[4,5,21)

# Input the objective sense (minimize/maximize)
task.putobjsense (mosek.objsense.minimize)

# Optimize the task

task.optimize ()

# Print a summary containing information

# about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)
prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

# Output a solution
xx = zeros(numvar, float)
task.getxx(mosek.soltype.itr,

XX)
if solsta == mosek.solsta.optimal or solsta == mosek.solsta.near_optimal:
print("Optimal solution: %s" % xx)
elif solsta == mosek.solsta.dual_infeas cer:

print("Primal or dual infeasibility.\n")
elif solsta == mosek.solsta.prim_infeas cer:

37
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#

print("Primal or dual infeasibility.\n")
elif solsta == mosek.solsta.near_dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.near_prim_infeas_cer:

print ("Primal or dual infeasibility.\n")
elif mosek.solsta.unknown:
print ("Unknown solution status")
else:
print("Other solution status")

call the main function

try:

main ()

except mosek.Exception as e:

print ("ERROR: %s" % str(e.code))
if msg is not None:
print ("\t%s" % e.msg)
sys.exit(1)

except:

import traceback
traceback.print_exc()
sys.exit (1)

sys.exit(0)

CHAPTER 5. BASIC API TUTORIAL

5.3.1.2 Source code comments

The only new function introduced in the example is Task.appendcone, which is called here:

task.appendcone (mosek. conetype.quad,
0.0,
[3,0,1D

[cqol.py]

The first argument selects the type of quadratic cone. Either conetype.quad for a quadratic cone
or conetype.rquad for a rotated quadratic cone. The cone parameter 0.0 is currently not used by
MOSEK — simply passing 0.0 will work.

The last argument is a list of indexes of the variables in the cone.

5.

4 Semidefinite optimization

Semidefinite optimization is a generalization of conic quadratic optimization, allowing the use of matrix
variables belonging to the convex cone of positive semidefinite matrices

where S, is the set of rxr real-valued symmetric matrices.

SF={Xe8:2"X2>0, VzeR"},

MOSEK can solve semidefinite optimization problems of the form
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n—1 p—1
minimize Z iy + Z <6j,yj> +¢f
=0 =0
n—1 p—1
Subject to lf S Zaij$j+Z<Aij,Xj> S ’U,g, i:(),...,mfl,
§=0 j=0
i < ; < uj, j=0,...,n—1,
xec,XjeSjj, j=0,....,p—1

where the problem has p symmetric positive semidefinite variables Yj € S;; of dimension r; with

symmetric coefficient matrices éj €S, and Zi, j € Sr;- We use standard notation for the matrix inner
product, i.e., for A, B € R™*" we have

m—1n—1

<A,B> = Z ZA”B”

i=0 j=0
Since all @-,Zij are assummed to be symmetric, only their lower triangular parts are specified.

Some attention must be paid when formulating linear constraints involving semidefinite matrices. A
common mistake is not to consider that, being all C';, A;; symmetric, their off-diagonal entries are
counted twice. Indeed in that case we can write

p—1 p—1 p—1
(A, X) = Ziiyii“‘QZ Z AiiXij,
i=0 i=0 j=i+1

and hence the contribution of each off-diagonal element to the linear constraint is double.

For instance, let’s consider X € S;' and a constraint of the form Xy; = 1. Introducing a symmetric
matrix

h

I
o = O
O O =
o O O

we write the constraint as

(A, X) =Xo1+X10=2X01 = 2.

Otherwise, we could use

0 05 0
A=]05 0 0|,
0 0 0

and rewrite the constraint as

<A,X> = 0.5(?10 -I-Y(n) =X =1
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5.4.1 Example: Semidefinite optimization

The problem

2 1 0 o
minimize < 1 2 1 ,X> + xo
|01 2
1o o]
subject to < 0 1 0 ,X>—|—x0 = 1,
0 0 1 5.6
f1 1 1] (5:6)
< 1 1 1 ,X>+x1+x2 = 1/2,
111 |
xo > \/ 23 + 23,

X =0,
is a mixed semidefinite and conic quadratic programming problem with a 3-dimensional semidefinite

variable

Too Tio T20
¥ _ | = - = +
X=|Tp Tn Ta | €S,
Tog T2l T22

and a conic quadratic variable (zg, z1,z2) € Qs. The objective is to minimize

2(Too + T10 + T11 + To1 + Ta2) + To,

subject to the two linear constraints

Too + T11 + Taz + 20 =1,

and
Too + ZT11 + Taz + 2(T1o + Too + To1) + 21 + 22 = 1/2.

5.4.1.1 Source code

[sdol.py]
##
#  Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
#
# File: sdol.py
#
#  Purpose: Demonstrates how to solve a small mixed semidefinite and conic quadratic
# optimization problem using the MOSEK Python API.
##

import sys
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import mosek

# If numpy is installed, use that, otherwise use the

# Mosek’s array module.

try:

from numpy import array,zeros,ones
except ImportError:
from mosek.array import array, zeros, ones

# Since the value of infinity is ignored, we define it solely

# for symbolic purposes

inf = 0.0

# Define a stream printer to grab output from MOSEK

def streamprinter(text):
sys.stdout.write(text)
sys.stdout.flush()

def main ():

# Make mosek environment
env = mosek.Env()

# Create a task object and attach log stream printer

task = env.Task(0,0)

task.set_Stream(mosek.streamtype.log, streamprinter)

# Bound keys for constraints
bkc = [mosek.boundkey.fx,
mosek.boundkey . fx]

# Bound values for constraints
blc = [1.0, 0.5]
buc = [1.0, 0.5]

# Below is the sparse representation of the A

# matrix
asub = [

aval = [

conesub

barci =
barcj =

barcval =

barai

baraj

baraval

numvar =
numcon =

stored by row.
array([0]),
array([1, 2])]
array([1.0]),
array([1.0, 1.0]) ]

, 2.0, 1.0, 2.0]

[array([0, 1, 2]),
array([0, 1, 2, 1, 2, 21)]

[array([0, 1, 21D,

array([0, 0, 0, 1, 1, 2])]
[array([1.0, 1.0, 1.0]1),

array([1.0, 1.0, 1.0, 1.0, 1.0, 1.01)]

len(bkc)

BARVARDIM = [3]
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# Append ’numvar’ variables.
# The variables will initially be fixed at zero (x=0).
task.appendvars (numvar)

# Append ’numcon’ empty constraints.
# The constraints will initially have no bounds.
task.appendcons (numcon)

# Append matrix variables of sizes in ’BARVARDIM’.
# The variables will initially be fixed at zero.
task.appendbarvars (BARVARDIM)

# Set the linear term c_.0 in the objective.
task.putcj(0, 1.0)

for j in range(numvar):
# Set the bounds on variable j
# blx[j] <= x_j <= bux[j]
task.putvarbound(j, mosek.boundkey.fr, -inf, +inf)

for i in range(numcon):
# Set the bounds on constraints.
# blc[i] <= constraint_i <= buc[i]
task.putconbound (i, bkc[i], blc[i], buclil)

# Input row i of A

CHAPTER 5. BASIC API TUTORIAL

task.putarow(i, # Constraint (row) index.
asub[il, # Column index of non-zeros in comnstraint j.
avall[il) # Non-zero values of row j.

task.appendcone (mosek.conetype.quad,

0.0,
conesub)
symc = \
task.appendsparsesymmat (BARVARDIM[O],
barci,
barcj,
barcval)
syma0 = \
task.appendsparsesymmat (BARVARDIM[O0],
barail[0],
baraj[0],
baravall[0])
symal = \
task.appendsparsesymmat (BARVARDIM[O],
barail1]l,
baraj[1],

baraval[1])
task.putbarcj (0, [symc], [1.0])

task.putbaraij(0, 0, [symaO], [1.0])
task.putbaraij(1, 0, [symall, [1.0])

# Input the objective sense (minimize/maximize)
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task.putobjsense(mosek.objsense.minimize)
task.writedata("sdol.task")

# Solve the problem and print summary
task.optimize()
task.solutionsummary (mosek.streamtype.msg)

# Get status information about the solution
prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

if (solsta == mosek.solsta.optimal or
solsta == mosek.solsta.near_optimal):
xx = zeros(numvar, float)
task.getxx(mosek.soltype.itr, xx)

lenbarvar = BARVARDIM[O] * (BARVARDIM[0]+1) / 2

barx = zeros(int(lenbarvar), float)
task.getbarxj(mosek.soltype.itr, 0, barx)

print("Optimal solution:\nx=)s\nbarx=%s" % (xx,barx))

elif (solsta == mosek.solsta.dual_infeas_cer or
solsta == mosek.solsta.prim_infeas_cer or
solsta == mosek.solsta.near_dual_infeas_cer or
solsta == mosek.solsta.near_prim_infeas_cer):
print("Primal or dual infeasibility certificate found.\n")
elif solsta == mosek.solsta.unknown:
print("Unknown solution status")
else:

print("Other solution status")

# call the main function
try:
main ()
except mosek.Exception as e:
print ("ERROR: %s" % str(e.errno))
if e.msg is not None:
print ("\t%s" % e.msg)
sys.exit (1)
except:
import traceback
traceback.print_exc()
sys.exit (1)
sys.exit(0)

43

5.4.1.2 Source code comments

This example introduces several new functions. The first new function Task.appendbarvars is used

to append the semidefinite variable:

task.appendbarvars (BARVARDIM)

[sdol.py]
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Symmetric matrices are created using the function Task.appendsparsesymmat:

[sdol.py]
symc = \
task.appendsparsesymmat (BARVARDIM[O],
barci,
barcj,
barcval)
syma0 = \
task.appendsparsesymmat (BARVARDIM[0] ,
barai[0],
baraj[0],
baraval[0])
symal = \
task.appendsparsesymmat (BARVARDIM[0],
barail1],
baraj[1],
baraval[1])

The second argument specifies the dimension of the symmetric variable and the third argument gives
the number of non-zeros in the lower triangular part of the matrix. The next three arguments specify
the non-zeros in the lower-triangle in triplet format, and the last argument will be updated with a
unique index of the created symmetric matrix.

After one or more symmetric matrices have been created using Task.appendsparsesymmat, we can
combine them to setup a objective matrix coefficient ¢; using Task.putbarcj, which forms a linear
combination of one more symmetric matrices:

[sdol.py]
task.putbarcj (0, [symc], [1.0]1)

The second argument specify the semidefinite variable index j; in this example there is only a single
variable, so the index is 0. The next three arguments give the number of matrices used in the linear
combination, their indices (as returned by Task.appendsparsesymmat), and the weights for the indi-
vidual matrices, respectively. In this example, we form the objective matrix coefficient directly from a
single symmetric matrix.

Similary, a constraint matrix coefficient A;; is setup by the function Task.putbaraij:

[sdol.py]

task.putbaraij(0, 0, [symaO], [1.0])
task.putbaraij(1, 0, [symaill, [1.01)

where the second argument specifies the constraint number (the corresponding row of A), and the
third argument specifies the semidefinite variable index (the corresponding column of A). The next
three arguments specify a weighted combination of symmetric matrices used to form the constraint
matrix coefficient.

After the problem is solved, we read the solution using Task.getbarxj:
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[sdol.py]
task.getbarxj (mosek.soltype.itr, 0, barx)

The function returns the half-vectorization of Z; (the lower triangular part stacked as a column vector),
where the semidefinite variable index j is given in the second argument, and the third argument is a
pointer to an array for storing the numerical values.

5.5 Quadratic optimization

MOSEK can solve quadratic and quadratically constrained convex problems. This class of problems
can be formulated as follows:

1
minimize §I’TQOJ} +clz+ ¢!
1 n—1
subject to I, < ixTka + Z ag;x; < wup, k=0,...,m—1, (5.7)
j=0
7 < z; < wuj, j=0,...,n—1

Without loss of generality it is assumed that Q° and Q¥ are all symmetric because

' Qr = 0.527(Q + QT)x.

This implies that a non-symmetric @) can be replaced by the symmetric matrix %(Q + Q7).

The problem is required to be convex. More precisely, the matrix (J° must be positive semi-definite
and the kth constraint must be of the form

-1

c 1 T "k K

Ip < 51‘ Q%x + Za;w»xj (5.8)

7=0
with a negative semi-definite Q¥ or of the form
1 n—1
EITQkx + ZO ag,jx; < ug. (5.9)
]:

with a positive semi-definite Q*. This implies that quadratic equalities are not allowed. Specifying a
non-convex problem will result in an error when the optimizer is called.

5.5.1 Example: Quadratic objective

The following is an example of a quadratic, linearly constrained problem:
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minimize o +0.123 + x% — T1T3 — X2
subject to 1 < T+ To + T3
x>0

This can be written equivalently as

minimize  1/227Q°x + ¢Tx

subject to Ax > b
T > 0,
where
2 0o -1 0
Q° = 0 02 0 ,c= -1 7A:[l 1 1],andb:1.
-1 0 2 0

Please note that MOSEK always assumes that there is a 1/2 in front of the 27 Qx term in the objective.
Therefore, the 1 in front of 3 becomes 2 in Q, i.e. Q8o =2.

5.5.1.1 Source code

[gol.py]
##
#  Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
#
# File: qol.py
#
#  Purpose: Demonstrate how to solve a quadratic
# optimization problem using the MOSEK Python API.
##

import sys
import os

import mosek

# If numpy is installed, use that, otherwise use the
# Mosek’s array module.
try:
from numpy import array,zeros,ones
except ImportError:
from mosek.array import array, zeros, ones

# Since the actual value of Infinity is ignores, we define it solely
# for symbolic purposes:
inf = 0.0

# Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)

sys.stdout.flush()
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# We might write everything directly as a script, but it looks nicer
# to create a function.
def main ():
# Open MOSEK and create an environment and task
# Make a MOSEK environment
env = mosek.Env ()
# Attach a printer to the environment
env.set_Stream (mosek.streamtype.log, streamprinter)
# Create a task
task = env.Task()
task.set_Stream (mosek.streamtype.log, streamprinter)
# Set up and input bounds and linear coefficients

bkc = [ mosek.boundkey.lo ]
blc =[1.01]
buc = [ inf ]
bkx = [ mosek.boundkey.lo,

mosek.boundkey.lo,
mosek.boundkey.lo ]

blx =[0.0, 0.0, 0.01]
bux = [ inf, inf, inf ]
c =[0.0, -1.0, 0.0 1]
asub = [ array([0]), array([0]), array([0]) 1]
aval = [ array([1.0]), array([1.0]), array([1.0])]

numvar = len(bkx)
numcon = len(bkc)

# Append ’numcon’ empty constraints.
# The constraints will initially have no bounds.
task.appendcons (numcon)

# Append ’numvar’ variables.
# The variables will initially be fixed at zero (x=0).
task.appendvars (numvar)

for j in range(numvar):

# Set the linear term c_j in the objective.
task.putcj(j,c[j])
# Set the bounds on variable j
# blx[j] <= x_j <= bux[j]
task.putbound (mosek.accmode.var, j,bkx[j],blx[j],bux[j]1)
# Input column j of A

task.putacol( j, # Variable (column) index.
asub[j], # Row index of non-zeros in column j.
aval[jl) # Non-zero Values of column j.

for i in range(numcon):
task.putbound (mosek.accmode.con,i,bkc[i] ,blc[i],buc[i])

# Input the objective sense (minimize/maximize)
task.putobjsense (mosek.objsense.maximize)

# Set up and input quadratic objective

qsubi = [ 0, 1, 2, 2 1
gsubj = [ O, 1, 0, 2 ]
qval = [ 2.0, 0.2, -1.0, 2.0 ]

task.putqobj (gsubi,gsubj,qval)
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task.putobjsense(mosek.objsense.minimize)

# Optimize

task.optimize ()

# Print a summary containing information

# about the solution for debugging purposes
task.solutionsummary (mosek.streamtype.msg)

prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

# Output a solution

xx = zeros(numvar, float)

task.getxx(mosek.soltype.itr,
XX)

if solsta == mosek.solsta.optimal or solsta == mosek.solsta.near_optimal:
print ("Optimal solution: %s" % xx)
elif solsta == mosek.solsta.dual_infeas cer:
print ("Primal or dual infeasibility.\n")
elif solsta == mosek.solsta.prim_infeas_cer:
print ("Primal or dual infeasibility.\n")
elif solsta == mosek.solsta.near_dual_infeas cer:
print("Primal or dual infeasibility.\n")
elif solsta == mosek.solsta.near prim_infeas_cer:
print("Primal or dual infeasibility.\n")
elif mosek.solsta.unknown:
print("Unknown solution status")
else:
print ("Other solution status")

# call the main function
try:
main()
except mosek.Exception as e:
print ("ERROR: %s" % str(e.errno))
if e.msg is not None:
import traceback
traceback.print_exc()
print ("\t%s" % e.msg)
sys.exit (1)
except:
import traceback
traceback.print_exc()
sys.exit (1)
print ("Finished OK")
sys.exit(0)

5.5.1.2 Example code comments

Most of the functionality in this example has already been explained for the linear optimization example
in Section 5.2 and it will not be repeated here.

This example introduces one new function, Task.putqobj, which is used to input the quadratic terms
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of the objective function.

Since Q° is symmetric only the lower triangular part of @° is inputted. The upper part of Q° is
computed by MOSEK using the relation

o o

ij = Wji
Entries from the upper part may not appear in the input.

The lower triangular part of the matrix Q° is specified using an unordered sparse triplet format (for
details, see Section 5.13.3):

[qol.py]
gsubi = [ 0, 1, 2, 2 1]
gsubj = [0, 1, o, 2 1
qval = [ 2.0, 0.2, -1.0, 2.0 1]

Please note that

e only non-zero elements are specified (any element not specified is 0 by definition),
e the order of the non-zero elements is insignificant, and

e only the lower triangular part should be specified.

Finally, the matrix Q° is loaded into the task:

[qo1.py]
task.putqobj(gsubi,qsubj,qval)

5.5.2 Example: Quadratic constraints

In this section describes how to solve a problem with quadratic constraints. Please note that quadratic
constraints are subject to the convexity requirement (5.8).

Consider the problem:

minimize o +0.123 + x% — T1T3 — X2
subject to 1 < x14 a2+ 23— x? — x% — 0.13:% + 0.2z 23,
z > 0.

This is equivalent to

minimize  1/227Q%z + ¢’
subject to  1/227 Q% + Az > b,

where
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2 0o -1 0
Q=] 0 02 0 |,e=| -1|,A=[1 1 1],b
-1 0 2 0
-2 0 0.2
Q° = 0 -2 0
0.2 0 —-0.2
5.5.2.1 Source code
[acqol.py]
#
# Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
#
# File: qcqol.py
#
# Purpose: Demonstrates how to solve small linear
# optimization problem using the MOSEK Python API.
##

import sys

import mosek
# If numpy is installed, use that, otherwise use the
# Mosek’s array module.
try:
from numpy import array,zeros,ones
except ImportError:
from mosek.array import array, zeros, ones

# Since the actual value of Infinity is ignores, we define it solely
# for symbolic purposes:
inf = 0.0

# Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)

sys.stdout.flush()

# We might write everything directly as a script, but it looks nicer
# to create a function.
def main ():

# Make a MOSEK environment

env = mosek.Env ()

# Attach a printer to the environment

env.set_Stream (mosek.streamtype.log, streamprinter)

# Create a task

task = env.Task(0,0)

# Attach a printer to the task

task.set_Stream (mosek.streamtype.log, streamprinter)

# Set up and input bounds and linear coefficients
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bkc = [ mosek.boundkey.lo

ble =T[1.0]

buc = [ inf ]

bkx = [ mosek.boundkey.lo,
mosek.boundkey.1lo,
mosek.boundkey.1lo

blx =[0.0, 0.0, 0.01

bux = [ inf, inf, inf ]

c =[0.0, -1.0, 0.0 ]

asub = [ array([0]), array([0]),
[ array([1.0]), array([1.01),

aval

numvar = len(bkx)
numcon = len(bkc)
NUMANZ = 3

# Append ’numcon’ empty constraints.

]

]

5.5. QUADRATIC OPTIMIZATION

array([0]) ]
array([1.0]) ]

# The constraints will initially have no bounds.

task.appendcons (numcon)

#Append ’numvar’ variables.

# The variables will initially be fixed at zero (x=0).

task.appendvars (numvar)

#0ptionally add a constant term to the objective.

task.putcfix(0.0)

for j in range(numvar):

# Set the linear term c_j in the objective.

task.putcj(j,cl[jl)

# Set the bounds on variable j

# blx[j] <= x_j <= bux[j]

task.putbound(mosek.accmode.var, j,bkx[j],blx[j],bux[j1)

# Input column j of A

task.putacol(j,
asub[j],
aval[jl)

for i in range(numcon):

task.putbound(mosek.accmode.con,i,bkc[il,blc[il,buclil)

# Set up and input quadratic objective

gsubi
qsubj
qval

0, 1 2,
o, 1, 0,
2.0, 0.2, -1.0,

]
[l W
N NN

task.putqobj(gsubi,qgsubj,qval)

# The lower triangular part of the Q70

.0

—

# Variable (column) index.
# Row index of non-zeros in column j.
# Non-zero Values of column j.

# matrix in the first constraint is specified.

# This corresponds to adding the term
# - x072 - x172 - 0.1 x272 + 0.2 x0 x2

qsubi
gsubj

[}

——/

o o
e
N

[ure
N

51
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102 qval = [ -2.0, -2.0, -0.2, 0.2 ]

103

104 # put Q70 in constraint with index O.

105

106 task.putqconk (0, gsubi,qsubj, qval);

107

108 # Input the objective sense (minimize/maximize)
109 task.putobjsense(mosek.objsense.minimize)

110

111 # Optimize the task

112 task.optimize ()

113

114 # Print a summary containing information

115 # about the solution for debugging purposes

116 task.solutionsummary(mosek.streamtype.msg)

117

118 prosta = task.getprosta(mosek.soltype.itr)

119 solsta = task.getsolsta(mosek.soltype.itr)

120

121 # Output a solution

122 xx = zeros(numvar, float)

123 task.getxx(mosek.soltype.itr,

124 XX)

125

126 if solsta == mosek.solsta.optimal or solsta == mosek.solsta.near_optimal:
127 print ("Optimal solution: %s" % xx)

128 elif solsta == mosek.solsta.dual_infeas_ cer:

129 print("Primal or dual infeasibility.\n")

130 elif solsta == mosek.solsta.prim_infeas_cer:

131 print ("Primal or dual infeasibility.\n")

132 elif solsta == mosek.solsta.near_dual_infeas cer:
133 print("Primal or dual infeasibility.\n")

134 elif solsta == mosek.solsta.near_prim_infeas_cer:
135 print("Primal or dual infeasibility.\n")

136 elif mosek.solsta.unknown:

137 print ("Unknown solution status")

138 else:

139 print ("Other solution status")

140
141 # call the main function

142 try:

143 main ()

144  except mosek.Exception as e:
145 print ("ERROR: %s" % str(code))
146 if msg is not None:

147 print ("\t%s" % e.msg)
128 sys.exit (1)

149 except:

150 import traceback

151 traceback.print_exc()

152 sys.exit (1)

153 sys.exit(0)

The only new function introduced in this example is Task.putqconk, which is used to add quadratic
terms to the constraints. While Task.putqconk add quadratic terms to a specific constraint, it is also
possible to input all quadratic terms in all constraints in one chunk using the Task.putqcon function.
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5.6 The solution summary

All computations inside MOSEK are performed using finite precision floating point numbers. This
implies the reported solution isonly be an approximate optimal solution. Therefore after solving an
optimization problem it is important to investigate how good an approximation the solution is. This
can easily be done using the function Task.solutionsummary which reports how much the solution
violate the primal and dual constraints and the primal and dual objective values. Recall for a convex
optimization problem the optimality conditions are:

e The primal solution must satisfy all the primal constraints.
e The dual solution much satisfy all the dual constraints.

e The primal and dual objective values must be identical.

Thus the solution summary reports information that makes it possible to evaluate the quality of the
solution obtained.

In case of a linear optimization problem the solution summary may look like

Basic solution summary
Problem status : PRIMAL_AND DUAL FEASIBLE
Solution status : OPTIMAL
Primal. obj: -4.6475314286e+002 Viol. con: 2e-014  var: 0e+000
Dual. obj: -4.6475316001e+002 Viol. con: 7e-009 var: 4e-016

The summary reports information for the basic solution. In this case we see:

e The problem status is primal and dual feasible which means the problem has an optimal solution.
The problem status can be obtained using Task.getprosta.

e The solution status is optimal. The solution status can be obtained using Task.getsolsta.

e Next information about the primal solution is reported. The information consists of the objective
value and violation meassures for the primal solution. In this case violations for the constraints
and variables are small meaning the solution is very close to being an exact feasible solution. The
violation meassure for the variables is the worst violation of the solution in any of the bounds
on the variables.

The constraint and variable violations are computed with Task.getpviolcon and Task.getpviolvar.

e Similarly for the dual solution the violations are small and hence the dual solution is feasible. The
constraint and variable violations are computed with Task.getdviolcon and Task.getdviolvar
respectively.

e Finally, it can be seen that the primal and dual objective values are almost identical. Using
Task.getprimalobj and Task.getdualobj the primal and dual objective values can be obtained.

To summarize in this case a primal and a dual solution with small feasiblity violations are available.
Moreover, the primal and dual objective values are almost identical and hence it can be concluded
that the reported solution is a good approximation to the optimal solution.
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Now what happens if the problem does not have an optimal solution e.g. it is primal infeasible. In
that case the solution summary may look like
Basic solution summary

Problem status : PRIMAL_INFEASIBLE

Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 3.5894503823e+004 Viol. con: 0e+000 var: 2e-008

i.e. MOSEK reports that the solution is a certificate of primal infeasibility. Since the problem is primal
infeasible it does not make sense to report any information about the primal solution. However, the
dual solution should be a certificate of the primal infeasibility. If the problem is a minimization problem
then the dual objective value should be positive and in the case of a maximization problem it should be
negative. The quality of the certificate can be evaluated by comparing the dual objective value to the
violations. Indeed if the objective value is large compared to the largest violation then the certificate
highly accurate. Here is an example
Basic solution summary
Problem status : PRIMAL_INFEASIBLE

Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 3.0056574100e-005 Viol. con: 9e-013 var: 2e-011

of a not so strong infeasibility certificate because the dual objective value is small compared to largest
violation.

In the case a problem is dual infeasible then the solution summary may look like

Basic solution summary
Problem status : DUAL_INFEASIBLE
Solution status : DUAL_INFEASIBLE_CER
Primal. obj: -1.4500853392e+001 Viol. con: 0e+000 var: 0e+000

Observe when a solution is a certificate of dual infeasibility then the primal solution contains the
certificate. Moreoever, given the problem is a minimization problem the objective value should negative
and the objective should be large compared to the worst violation if the certificate is strong.

5.7 Integer optimization

An optimization problem where one or more of the variables are constrained to integer values is denoted
an integer optimization problem.

5.7.1 Example: Mixed integer linear optimization

In this section the example

maximize xqg + 0.64x;

subject to 50xg + 3lz; < 250,
3.730 - 2.131 Z - 4, (510)
zg,z1 > 0 and integer

is used to demonstrate how to solve a problem with integer variables.
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5.7.1.1 Source code

The example (5.10) is almost identical to a linear optimization problem except for some variables being
integer constrained. Therefore, only the specification of the integer constraints requires something new
compared to the linear optimization problem discussed previously. In MOSEK these constraints are
specified using the function Task.putvartype as shown in the code:

[milol.py]
task.putvartypelist([ 0, 1 1,
[ mosek.variabletype.type_int,
mosek.variabletype.type_int 1)

The complete source for the example is listed below.

[milol.py]
##
# Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
#
# File: milol.py
#
# Purpose: Demonstrates how to solve a small mixed
# integer linear optimization problem using the MOSEK Python API.
##

import sys

import mosek
# If numpy is installed, use that, otherwise use the
# Mosek’s array module.
try:
from numpy import array,zeros,ones
except ImportError:
from mosek.array import array, zeros, ones

# Since the actual value of Infinity is ignores, we define it solely
# for symbolic purposes:
inf = 0.0

# Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)

sys.stdout.flush()

# We might write everything directly as a script, but it looks nicer
# to create a function.
def main ():

# Make a MOSEK environment

env = mosek.Env ()

# Attach a printer to the environment

env.set_Stream (mosek.streamtype.log, streamprinter)

# Create a task

task = env.Task(0,0)

# Attach a printer to the task

task.set_Stream (mosek.streamtype.log, streamprinter)
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bkc = [ mosek.boundkey.up, mosek.boundkey.lo ]
blc = [ -inf, -4.0 1]
buc = [ 250.0, inf ]

bkx = [ mosek.boundkey.lo, mosek.boundkey.lo ]

blx = [ 0.0, 0.0 1]
bux = [ inf, inf ]
c = [ 1.0, 0.64 ]
asub = [ array([0, 11), array ([0, 1) ]
aval = [ array([50.0, 3.0]), array([31.0, -2.0]1) 1

numvar = len(bkx)
numcon = len(bkc)

# Append ’numcon’ empty constraints.
# The constraints will initially have no bounds.
task.appendcons (numcon)

#Append ’numvar’ variables.
# The variables will initially be fixed at zero (x=0).
task.appendvars (numvar)

for j in range(numvar):
# Set the linear term c_j in the objective.
task.putcj(j,cljl)
# Set the bounds on variable j
# blx[j] <= x_j <= bux[j]
task.putvarbound (j,bkx[j],blx[j],bux[j])
# Input column j of A

task.putacol(j, # Variable (column) index.
asub[j], # Row index of non-zeros in column j.
aval[jl) # Non-zero Values of column j.

task.putconboundlist (range (numcon) ,bkc,blc,buc)

# Input the objective sense (minimize/maximize)
task.putobjsense (mosek.objsense.maximize)

# Define variables to be integers
task.putvartypelist([ 0, 1 1,
[ mosek.variabletype.type_int,
mosek.variabletype.type_int 1)

# Optimize the task
task.optimize()

# Print a summary containing information
# about the solution for debugging purposes

task.solutionsummary (mosek.streamtype.msg)

prosta = task.getprosta(mosek.soltype.itg)
solsta = task.getsolsta(mosek.soltype.itg)

# X

# Output a solution
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xx = zeros(numvar, float)
task.getxx(mosek.soltype.itg,xx)

if solsta in [ mosek.solsta.integer_optimal, mosek.solsta.near_integer_optimal ]2
print("Dptimal solution: %S“ % XX)

elif solsta == mosek.solsta.dual_infeas cer:
print ("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.near_dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.near prim_infeas_ cer:

print("Primal or dual infeasibility.\n")
elif mosek.solsta.unknown:
if prosta == mosek.prosta.prim_infeas_or_unbounded:
print("Problem status Infeasible or unbounded.\n")
elif prosta == mosek.prosta.prim_infeas:
print ("Problem status Infeasible.\n")
elif prosta == mosek.prosta.unkown:
print("Problem status unkown.\n")
else:
print ("Other problem status.\n")
else:
print ("Other solution status")

# call the main function
try:
main ()
except mosek.Exception as msg:
#print "ERROR: ¥s" % str(code)
if msg is not None:
print ("\t/s" % msg)
sys.exit (1)
except:
import traceback
traceback.print_exc()
sys.exit (1)
sys.exit(0)

5.7.1.2 Code comments

Please note that when Task.getsolutionslice is called, the integer solution is requested by using
soltype.itg. No dual solution is defined for integer optimization problems.

5.7.2 Specifying an initial solution

Integer optimization problems are generally hard to solve, but the solution time can often be reduced
by providing an initial solution for the solver. Solution values can be set using Task.putsolution (for
inputting a whole solution) or Task.putsolutioni (for inputting solution values related to a single
variable or constraint).

MOSEK also provides helper functions to only input specific values of an initial solution: for example
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to only input values of the primal solution one can use Task.putxx or Task.putxxslice. Similarly
for the dual solution there are Task.puty and Task.putyslice.

It is not necessary to specify the whole solution. By setting the iparam.mio_construct_sol parameter
to onoffkey.on and inputting values for the integer variables only, will force MOSEK to compute the
remaining continuous variable values.

If the specified integer solution is infeasible or incomplete, MOSEK will simply ignore it.

5.7.3 Example: Specifying an integer solution

Consider the problem

maximize Txo 4+ 1021 + 22 + dxs
subject to xg+ 1 + T2 + 23 < 2.5
xg, x1, T2 integer , xo, 1, T2, x3 > 0
The following example demonstrates how to optimize the problem using a feasible starting solution gen-

erated by selecting the integer values as xg = 0,1 = 2,22 = 0. It makes use of the Task.putxxslice
function.

[mioinitsol.py]

##

# Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

#

# File: mioinitsol.py

#

# Purpose: Demonstrates how to solve a small mixed

# integer linear optimization problem using the MOSEK Python API.
##

import sys
import mosek

# If numpy is installed, use that, otherwise use the
# Mosek’s array module.
try:
from numpy import array,zeros,ones
except ImportError:
from mosek.array import array, zeros, ones

# Since the actual value of Infinity is ignores, we define it solely
# for symbolic purposes:
inf = 0.0

# Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)

sys.stdout.flush()

# We might write everything directly as a script, but it looks nicer
# to create a function.
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def main ():
# Make a MOSEK environment
env = mosek.Env ()
# Attach a printer to the environment
env.set_Stream (mosek.streamtype.log, streamprinter)

# Create a task

task = env.Task(0,0)

# Attach a printer to the task

task.set_Stream (mosek.streamtype.log, streamprinter)

bkc = [ mosek.boundkey.up ]
blc = [ -inf, ]
buc = [ 2.5 ]
bkx = [ mosek.boundkey.lo,

mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey.lo ]

blx = [0.0, 0.0, 0.0, 0.0 ]

bux = [ inf, inf, inf, inf ]
¢ =10[7.0,10.0, 1.0, 5.0 ]
asub=[ 0, 0, O, 0 1]
acof = [ 1.0, 1.0, 1.0, 1.0]
ptrb= [0, 1, 2, 3]

ptre = [ 1, 2, 3, 4]

numvar = len(bkx)
numcon = len(bkc)

# Input linear data
task.inputdata(numcon,numvar,
c,0.0,
ptrb, ptre, asub, acof,
bkc, blc, buc,
bkx, Dblx, bux)

# Input objective sense
task.putobjsense(mosek.objsense.maximize)

# Define variables to be integers
task.putvartypelist([ 0, 1, 2 1,
[ mosek.variabletype.type_int,
mosek.variabletype.type_int,
mosek.variabletype.type_int])

# Construct an initial feasible solution from the

# values of the integer valuse specified

task.putintparam(mosek.iparam.mio_construct_sol,
mosek.onoffkey.on) ;

# Assign values 0,2,0 to integer variables. Important to
# assign a value to all integer constrained variables.
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92 task.putxxslice(mosek.soltype.itg,0,3,[0.0, 2.0, 0.0])

93

94 # Optimize

95 task.optimize()

96

97 # Did mosek construct a feasible initial solution ?

98 if task.getintinf(mosek.iinfitem.mio_construct_solution) > O:
99 print("Objective value of constructed integer solution: %-24.12e" ¥ task.getdouinf (mosek.dinfitem.mio_construct_solu
100 else:

101 print("Intial integer solution construction failed.");
102

103 if task.solutiondef (mosek.soltype.itg):

104

105 # Output a solution

106 xx = zeros(numvar, float)

107 task.getxx(mosek.soltype.itg, xx)

108 print ("Integer optimal solution")

109 for j in range(O,numvar)

110 print ("\tx[%d] = %e" % (,xx[j1))

111 else:

112 print("No integer solution is available.")

113
114 # call the main function

115 try:

116 main ()

117 except mosek.Exception as e:
118 print ("ERROR: %s" % str(e.errno))
119 if e.msg is not None:

120 print ("\t/s" % e.msg)
121 sys.exit (1)

122 except:

123 import traceback

124 traceback.print_exc()

125 sys.exit(1)

5.8 The solution summary for mixed integer problems

The solution summary for a mixed-integer problem may look like

Integer solution solution summary
Problem status : PRIMAL_FEASIBLE
Solution status : INTEGER_OPTIMAL
Primal. obj: 4.0593518000e+005 Viol. con: 4e-015 var: 3e-014 itg: 3e-014

The main diffrence compared to continous case covered previously is that no information about the
dual solution is provided. Simply because there is no dual solution available for a mixed integer
problem. In this case it can be seen that the solution is higly feasible because the violations are small.
Moreoever, the solution is denoted integer optimal. Observe itg: 3e-014 implies that all the integer
constrained variables are at most 3e — 014 from being an exact integer.
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5.9 Response handling

After solving an optimization problem with MOSEK an approriate action must be taken depending on
the outcome. Usually, the expected outcome is an optimal solution, but there may be several situations
where this is not the result. E.g., if the problem is infeasible or nearly so or if the solver ran out of
memory or stalled while optimizing, the result may not be as expected.

This section discusses what should be considered when an optimization has ended unsuccessfully.

Before continuing, let us consider the four status codes available in MOSEK that is relevant for the
error handing:

The termination code:

The termination provides information about why the optimizer terminated. For instance if a time
limit has been specfied (this is common for mixed integer problems), the termination code will tell
if this termination limit was the cause of the termination. Note that reaching a prespecfied time
limit is not considered an exceptional case. It must be expected that this occurs occasionally.

Note that if we want to report, e.g., that the optimizer terminated due to a time limit or because it
stalled but with a feasible solution, we have to consider both the termination code, and the solution
status.

The following pseudo code demonstrates a best practice way of dealing with the status codes.

if ( the solution status is as expected )
The normal case:
Do whatever that was planned. Note the response code is
ignored because the solution has the expected status.
0f course we may check the response anyway if we like.

}

else

{

Exceptional case:
Based on solution status, response and termination codes take
appropriate action.

In the following example the pseudo code has implemented. The idea of the example is to read
an optimization problem from a file, e.g., an MPS file and optimize it. Based on status codes an
appropriate action is taken, which in this case is to print a suitable message.

[ response.py |
#

# Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
#

# File: response.py

#

# Purpose: This examples demonstrates proper response handling.

#

import mosek
import sys
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def streamprinter(text):
sys.stdout.write(text)
sys.stdout.flush()

def main(args):
if len(args) < 1:
print ("No input file specified")
return
else:
print ("Inputfile: %s" % args[0])

with mosek.Env() as env:
with env.Task(0,0) as task:
task.set_Stream (mosek.streamtype.log, streamprinter)

task.readdata(args[0])

e = None

trmcode = None

try:
trmcode = task.optimize()

except mosek.MosekException as err:
e = err

solsta = task.getsolsta(mosek.soltype.itr)

if solsta in [ mosek.solsta.optimal,
mosek.solsta.near _optimal ]:
print ("An optimal basic solution is located.")
task.solutionsummary (mosek.streamtype.log)
elif solsta in [ mosek.solsta.dual_infeas_cer,
mosek.solsta.near_dual_infeas_cer ]:
print ("Dual infeasibility certificate found.")
elif solsta in [ mosek.solsta.prim infeas_cerl,
mosek.solsta.near prim_ infeas_cer ]:
printf("Primal infeasibility certificate found.\n");
elif solsta == mosek.solsta.sta unknown:
# The solutions status is unknown. The termination code
# indicating why the optimizer terminated prematurely.
print ("The solution status is unknown.")
if trmcode is not None:
print ("Termination code: %s" % str(trmcode))
#print mosek.getcodedesc(trmcode)
elif e is not None:
print ("Error:")
print (e)
else:
print ("An unexpected solution status is obtained.")

if _name__ == ’_main__’:
import sys
main(sys.argv[1:])
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5.10 Problem modification and reoptimization

Often one might want to solve not just a single optimization problem, but a sequence of problem, each
differing only slightly from the previous one. This section demonstrates how to modify and re-optimize
an existing problem. The example we study is a simple production planning model.

5.10.1 Example: Production planning

A company manufactures three types of products. Suppose the stages of manufacturing can be split
into three parts, namely Assembly, Polishing and Packing. In the table below we show the time
required for each stage as well as the profit associated with each product.

| Product no.  Assembly (minutes) Polishing (minutes) Packing (minutes) Profit ($) |
0 2 3 2 1.50
1 4 2 3 2.50
2 3 3 2 3.00

With the current resources available, the company has 100,000 minutes of assembly time, 50,000
minutes of polishing time and 60,000 minutes of packing time available per year.

Now the question is how many items of each product the company should produce each year in order
to maximize profit?

Denoting the number of items of each type by z,x; and x5 , this problem can be formulated as the
linear optimization problem:

maximize 1.5bzg + 2.5x17 + 3.0x9

subject to  2x9 + 4dxry +  3x2 < 100000,
3xg + 2x1 + 3xo < 50000,
209 + 3x1 +  2x9 < 60000,

and

Zo, %1, T2 > 0.

The following code loads this problem into the optimization task.

[production.py |

# Create a MOSEK environment
env = mosek.Env ()

# Create a task

task = env.Task(0,0)

# Attach a printer to the task

task.set_Stream (mosek.streamtype.log, streamprinter)

# Bound keys for constraints

bkc = [mosek.boundkey.up,
mosek.boundkey.up,
mosek.boundkey . up]
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# Bound values for constraints
blc = array ([-inf, -inf, -inf])
buc = array ([100000.0 , 50000.0, 60000.01)

# Bound keys for variables

bkx = [mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey . 1lo]

# Bound values for variables

blx = array ([ 0.0, 0.0, 0.0])

bux = array ([+inf, +inf, +inf])

# Objective coefficients
csub = array([ O, 1, 21
cval = array([ 1.5, 2.5, 3.0 1)

# We input the A matrix column-wise
# asub contains row indexes
asub = array([ 0, 1, 2,

0, 1, 2,

0, 1, 2)
# acof contains coefficients
acof = array([ 2.0, 3.0, 2.0,

4.0, 2.0, 3.0,

3.0, 3.0, 2.0 1)
# aptrb and aptre contains the offsets into asub and acof where
# columns start and end respectively
aptrb = array([ 0, 3, 6 1)
aptre = array([ 3, 6, 9 1)

len(bkx)
len(bkc)

numvar
numcon

# Append the constraints
task.appendcons (numcon)

# Append the variables.
task.appendvars (numvar)

# Input objective
task.putcfix(0.0)
task.putclist(csub,cval)

# Put constraint bounds
task.putconboundslice(0, numcon, bkc, blc, buc)

# Put variable bounds
task.putvarboundslice(0, numvar,bkx, blx, bux)

# Input A non-zeros by columns
for j in range(numvar):
ptrb,ptre = aptrb[j],aptrelj]
task.putacol(j,
asub[ptrb:ptrel,
acof [ptrb:ptrel])

# Input the objective sense (minimize/maximize)
task.putobjsense (mosek.objsense.maximize)
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# Optimize the task
task.optimize ()

# Output a solution

xx = zeros(numvar, float)

task.getsolutionslice(mosek.soltype.bas,
mosek.solitem.xx,
0,numvar,
XX)

print ("xx =", [i for i in xx])

5.10.2 Changing the A matrix

Suppose we want to change the time required for assembly of product 0 to 3 minutes. This corresponds
to setting a0 = 3, which is done by calling the function Task.putaij as shown below.

[production.py]

task.putaij(0, 0, 3.0)

The problem now has the form:

maximize 1.5z¢9 + 2.5x1 + 3.0x9

subject to  3x9 + 4dx1 + 3o < 100000, (5.11)
3xg + 2x1 + 3xe < 50000, '
209 +  3x1 +  2x9 < 60000,

and

ZTo,X1,T2 2 0
After changing the A matrix we can find the new optimal solution by calling

Task.optimize again.

5.10.3 Appending variables

We now want to add a new product with the following data:

| Product no.  Assembly (minutes) Polishing (minutes) Packing (minutes) Profit () |
3 4 0 1 100 |

This corresponds to creating a new variable x3 , appending a new column to the A matrix and setting
a new value in the objective. We do this in the following code.

[production.py]

# Append a new varaible x.3 to the problem */
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task.appendvars (1)

# Set bounds on new varaible
task.putbound (mosek.accmode.var,
task.getnumvar()-1,
mosek.boundkey.lo,
0,
+inf)

# Change objective
task.putcj(task.getnumvar()-1,1.0)

# Put new values in the A matrix
acolsub = array([0, 2])
acolval = array([4.0, 1.0])

task.putacol(task.getnumvar()-1, # column index
acolsub,
acolval)

After this operation the problem looks this way:

maximize 1.5zg + 2.5x7 + 3.0xes + 1.0x3
subject to 3x9 4+ 4dx; 4+ 3z +  dxg < 100000, (5.12)
3zg + 2x1 + 319 < 50000, '
- +

2z 31 229+ lxg < 60000,

and

Z0, 21, T2, T3 > 0.

5.10.4 Reoptimization

When

Task.optimize is called MOSEK will store the optimal solution internally. After a task has been
modified and

Task.optimize is called again the solution will automatically be used to reduce solution time of the
new problem, if possible.

In this case an optimal solution to problem (5.11) was found and then added a column was added
to get (5.12). The simplex optimizer is well suited for exploiting an existing primal or dual feasible
solution. Hence, the subsequent code instructs MOSEK to choose the simplex optimizer freely when
optimizing.

[production.py]
# Change optimizer to simplex free and reoptimize
task.putintparam(mosek.iparam.optimizer,mosek.optimizertype.free_simplex)
task.optimize ()
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5.10.5 Appending constraints

Now suppose we want to add a new stage to the production called ” Quality control” for which 30000
minutes are available. The time requirement for this stage is shown below:

[ Product no.  Quality control (minutes) |
0 1

W N =

2
1
1

This corresponds to adding the constraint

Zo + 2581 —+ 2o + T3 S 30000

to the problem which is done in the following code:

[production.py |

145 # Append a new constraint

146 task.appendcons(1)

147

148 # Set bounds on new constraint

149 task.putconbound( task.getnumcon()-1, mosek.boundkey.up,-inf, 30000)
150

151 # Put new values in the A matrix

152

153 arowsub = array([O0, 1, 2, 3 D

154 arowval = array([1.0, 2.0, 1.0, 1.0])

155

156 task.putarow(task.getnumcon()-1, # row index
157 arowsub,

158 arowval)

5.11 Solution analysis

5.11.1 Retrieving solution quality information with the API

Information about the solution quality may be retrieved in the API with the help of the following
functions:

e Task.getsolutioninfo: Obtains information about objective values and the solution violations
of the constraints.

e Task.analyzesolution: Print additional information about the solution, e.g basis condition
number and optionally a list of violated constraints.

e Task.getpviolcon, Task.getpviolvar, Task.getpviolbarvar,Task.getpviolcones, Task.getdviolcon,
Task.getdviolvar, Task.getdviolbarvar,Task.getdviolcones. Obtains violation of the in-
dividual constraints.
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5.12 Efficiency considerations

Although MOSEK is implemented to handle memory efficiently, the user may have valuable knowledge
about a problem, which could be used to improve the performance of MOSEK This section discusses
some tricks and general advice that hopefully make MOSEK process your problem faster.

Avoiding memory fragmentation:
MOSEK stores the optimization problem in internal data structures in the memory. Initially
MOSEK will allocate structures of a certain size, and as more items are added to the problem
the structures are reallocated. For large problems the same structures may be reallocated many
times causing memory fragmentation. One way to avoid this is to give MOSEK an estimated
size of your problem using the functions:
e Task.putmaxnumvar. Estimate for the number of variables.
e Task.putmaxnumcon. Estimate for the number of constraints.
e Task.putmaxnumcone. Estimate for the number of cones.
e Task.putmaxnumbarvar. Estimate for the number of semidefinite matrix variables.
e Task.putmaxnumanz. Estimate for the number of non-zeros in A.
e Task.putmaxnumgnz. Estimate for the number of non-zeros in the quadratic terms.
None of these functions change the problem, they only give hints to the eventual dimension of
the problem. If the problem ends up growing larger than this, the estimates are automatically
increased.
Do not mix put- and get- functions:

For instance, the functions Task.putacol and Task.getacol. MOSEK will queue put- com-
mands internally until a get- function is called. If every put- function call is followed by a get-
function call, the queue will have to be flushed often, decreasing efficiency.

In general get- commands should not be called often during problem setup.

Use the LIFO principle when removing constraints and variables:

MOSEK can more efficiently remove constraints and variables with a high index than a small
index.

An alternative to removing a constraint or a variable is to fix it at 0, and set all relevant
coefficients to 0. Generally this will not have any impact on the optimization speed.
Add more constraints and variables than you need (now):

The cost of adding one constraint or one variable is about the same as adding many of them.
Therefore, it may be worthwhile to add many variables instead of one. Initially fix the unused
variable at zero, and then later unfix them as needed. Similarly, you can add multiple free
constraints and then use them as needed.

Use one environment (env) only:

If possible share the environment (env) between several tasks. For most applications you need
to create only a single env.
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Do not remove basic variables:

When doing re-optimizations, instead of removing a basic variable it may be more efficient to
fix the variable at zero and then remove it when the problem is re-optimized and it has left the
basis. This makes it easier for MOSEK to restart the simplex optimizer.

5.12.1 API overhead

The Python interface is a thin wrapper around a native MOSEK library. The layer between the Python
application and the native MOSEK library is made as thin as possible to minimize the overhead from
function calls.

The methods in mosek.Env and mosek.Task are all written in C and resides in the module pymosek.
Each method converts the call parameter data structures (i.e. creates a complete copy of the data),
calls a MOSEK function and converts the returned values back into Python structures.

The following rules will often improve the performance of the MOSEK /Python API:

Reuse Env and Task whenever possible
There may be some overhead involved in creating and deleting task and environment objects, so
if possible reuse these.

Make sure to delete task and environment when not in use anymore

Using the with-construction (available in python 2.6 and later) will allow automatic deletion of
the environment and task. If this is not an option, use Env._.del__() and Task._del__() to
destroy the objects. Failing to do this may cause memory leaks in some cases.

Avoid input loops

Whenever possible imput data in large chunks or vectors instead of using loops. For small
put- and get- methods there is a significant overhead, so for example inputting one row of the
A-matrix at the time may be much slower than inputting the whole matrix.

For example, a loop with Task.putarow may be replaced with one Task.putarowlist, or a loop
of Task.putqobjij may be replaced with Task.putqobj.

5.13 Conventions employed in the API

5.13.1 Naming conventions for arguments

In the definition of the MOSEK Python API a consistent naming convention has been used. This
implies that whenever for example numcon is an argument in a function definition it indicates the
number of constraints.

In Table 5.2 the variable names used to specify the problem parameters are listed. The relation between
the variable names and the problem parameters is as follows:
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Python name Python type Dimension Related problem parameter
numcon int m
numvar int n
numcone int t
numqonz int q7;
qosubi int[] numgonz qa;
qosubj int[] numgonz qa5;
qoval

c float[] numvar c;j
cfix float cf
numqcnz int qu
gcsubk int[] qcnz qu
qcsubi int[] qcnz qu
qcsubj int[] qcnz qu
aptrb int[] numvar aij
aptre int[] numvar aij
asub int[] aptre[numvar-1]  a;;
aval float[] aptre[numvar-1]  a;;
blc float[] numcon i
buc float[] numcon ug,
blx float[] numvar i
bux float[] numvar Uy

Table 5.2: Naming convensions used in the MOSEK Python API.
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Symbolic constant | Lower bound | Upper bound

boundkey.fx finite identical to the lower bound
boundkey.fr minus infinity | plus infinity

boundkey.lo finite plus infinity

boundkey.ra finite finite

boundkey . up minus infinity | finite

Table 5.3: Interpretation of the bound keys.

e The quadratic terms in the objective:

o
Qqosubi [t],qosubj[t]

e The linear terms in the objective:

Cj = C[j]7 Jj=0,.

e The fixed term in the objective:

= qovallt],

t=0,...,numgonz — 1.

..,numvar — 1

¢f = cfix.
e The quadratic terms in the constraints:
qcsubk(t] _ _
qesubilt]qesubi[t] = qcvallt], t =0,...,numgcnz — 1.
e The linear terms in the constraints:
Uasupl],j = avallt], t=ptrb[j],...,ptre[j] -1,
7 =0,...,numvar — 1.

71

(5.13)

(5.14)

(5.15)

(5.16)

e The bounds on the constraints are specified using the variables bkc, blc, and buc. The com-
ponents of the integer array bkc specify the bound type according to Table 5.3. For instance
bkc [2]=boundkey.lo means that —oo < I§ and u§ = oco. Finally, the numerical values of the

bounds are given by

1§ =blclk], k=0,

and

uj, = buclk], k=0,

...,numcon — 1

...,numcon — 1.
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e The bounds on the variables are specified using the variables bkx, blx, and bux. The components
in the integer array bkx specify the bound type according to Table 5.3. The numerical values for
the lower bounds on the variables are given by

I7 =vlx[j], j =0,...,nunvar — 1.
The numerical values for the upper bounds on the variables are given by
T __

u:

7 =nbux[j], j=0,...,nunvar — 1.

5.13.1.1 Bounds

A bound on a variable or on a constraint in MOSEK consists of a bound key, as defined in Table 5.3,
a lower bound value and an upper bound value. Even if a variable or constraint is bounded only from
below, e.g. = > 0, both bounds are inputted or extracted; the value inputted as upper bound for
(z > 0) is ignored.

5.13.2 Vector formats

Three different vector formats are used in the MOSEK API:

Full vector:

This is simply an array where the first element corresponds to the first item, the second element
to the second item etc. For example to get the linear coefficients of the objective in task, one
would write

¢ = zeros(numvar,float)
task.getc(c)

where numvar is the number of variables in the problem.

Vector slice:

A vector slice is a range of values. For example, to get the bounds associated constraint 3 through
10 (both inclusive) one would write

upper_bound = zeros(8,float)
lower_bound = zeros(8,float)
bound key = array([None] * 8)

task.getboundslice(accmode.con, 2, 10,
bound_key, lower_bound ,upper_bound)

Please note that items in MOSEK are numbered from 0 , so that the index of the first item is 0
, and the index of the n ’th item is n — 1.
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Sparse vector:

A sparse vector is given as an array of indexes and an array of values. For example, to input a
set of bounds associated with constraints number 1, 6, 3, and 9, one might write

bound_index = [ 1, 6, 3, 9]
bound key = [boundkey.fr,boundkey.lo,boundkey.up,boundkey.fx]
lower_bound = [ 0.0, -10.0, 0.0, 5.0]
upper_bound = [ 0.0, 0.0, 6.0, 5.0]

task.putboundlist (accmode.con, bound_index,
bound_key,lower_bound,upper_bound)

Note that the list of indexes need not be ordered.

5.13.3 Matrix formats

The coefficient matrices in a problem are inputted and extracted in a sparse format, either as complete
or a partial matrices. Basically there are two different formats for this.

5.13.3.1 Unordered triplets

In unordered triplet format each entry is defined as a row index, a column index and a coefficient. For
example, to input the A matrix coefficients for a; 2 = 1.1 , a3 3 = 4.3 , and a5 4 = 0.2 , one would
write as follows:

subi = array([ 1, 3, 5 1)
subj = array([ 2, 3, 41)
cof = array([ 1.1, 4.3, 0.2 ])

task.putaijlist(subi,subj,cof)

Please note that in some cases (like Task.putaijlist) only the specified indexes remain modified —
all other are unchanged. In other cases (such as Task.putqconk) the triplet format is used to modify
all entries — entries that are not specified are set to 0.

5.13.3.2 Row or column ordered sparse matrix

In a sparse matrix format only the non-zero entries of the matrix are stored. MOSEK uses a sparse
packed matrix format ordered either by rows or columns. In the column-wise format the position of
the non-zeros are given as a list of row indexes. In the row-wise format the position of the non-zeros
are given as a list of column indexes. Values of the non-zero entries are given in column or row order.

A sparse matrix in column ordered format consists of:

asub:

List of row indexes.
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ptrb 0 , 2 3 5 e o o

ptre |<

2 3
I \
)
asub | © 2 1 0 3 0 1 2

aval 11 f 30 f22 |13 fada Ja |34 ] 25

Column 0 Column 1

Figure 5.1: The matrix A (5.17) represented in column ordered packed sparse matrix format.

aval:

List of non-zero entries of A ordered by columns.

ptrb:

Where ptrb[j] is the position of the first value/index in aval / asub for column j.

ptre:

Where ptre[j] is the position of the last value/index plus one in aval / asub for column j.

The values of a matrix A with numcol columns are assigned so that for

j=0,...,numcol — 1.
We define
Uasub[k],; = avallk],k = ptrblj],..., ptre[j] — 1.
As an example consider the matrix
1.1 1.3 14
2.2 2.5
A= 3.1 3.4
4.4

which can be represented in the column ordered sparse matrix format as

(5.17)
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ptrb = [0,2,3,5,7],

ptre = [2,3,5,7,8],

asub = [0,2,1,0,3,0,2,1],

aval = [1.1,3.1,2.2,1.3,4.4,1.4,3.4,2.5].

1
Fig. 5.1 illustrates how the matrix A (5.17) is represented in column ordered sparse matrix format.

5.13.3.3 Row ordered sparse matrix

The matrix A (5.17) can also be represented in the row ordered sparse matrix format as:

ptrb = [0,3,5,7],

ptre = [3,5,7,8],

asub = [0,2,3,1,4,0,3,2],

aval = [1.1,1.3,1.4,2.2,2.5,3.1,3.4,4.4].

5.13.4 Array objects

The MOSEK Python API provides a simple array object in the module mosekarr. This includes a
one-dimensional dense array which can be of type Float, Int or Object, and a few operators and
functions to create and modify array objects.

Arrays can be constructed in several ways:

# Create an array of integers

a0 = array([1,2,3],int)

# Create an array of floats

al = array([1,2,3],float)

# Create an integer array of ones

a2 = ones(10)

# Create an float array of ones

a3 = ones(10,float)

# Create a range of integers 5,6,...,9
a4 = range(5,10)

# Create and array of objects

ab = array([’a string’, ’b string’, 10, 2.2])

A limited set of operations on arrays are available - these should work more or less like the equivalent
Numeric operations:

ones(10,float)
1.0 * arange(10)

# element-wise multiplication, addition and subtraction

cO=ax*xb
cl=a+b
c2=a-b
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# multiplly each element by 2.1
cd =a *x 2.1

# add 2 to each element
cb=a+ 2

If more advanced array operations is needed, it is necessary to install the Python Numeric package.

5.13.5 Typical problems using the Python API

Since all all type-information in Python is implicit, type-checking is performed only when required,
and in certain cases it is necessary to explicitly write type information.

The MOSEK API currently only supports its own array object (mosek.array.array) and Pythonnumpy
arrays. Other array or list compatible objects will are accepted but are converted.

Typically type errors occur in two situations:

e An array argument did not have the right type and could not be converted.

e An array was expected, but the argument was not an array and not a list-compatible object.

Furthermore, please note that mosek.array module only supports a limited set of array types: int32,
int64, float64 and bool. The numerical types support normal simple mathematical operation (ad-
dition, subtraction, multiplication etc.)

5.14 The license system

By default a license token is checked out when Task.optimize is first called and is returned when
the MOSEK environment is deleted. Calling Task.optimize from different threads using the same
MOSEK environment only consumes one license token.

To change the license systems behavior to returning the license token after each call to Task.optimize
set the parameter iparam.cache_license to onoffkey.off. Please note that there is a small overhead
associated with setting this parameter, since checking out a license token from the license server can
take a small amount of time.

Additionally license checkout and checkin can be controlled manually with the functions Env.checkinlicense
and Env.checkoutlicense.

5.14.1 Waiting for a free license

By default an error will be returned if no license token is available. By setting the parameter
iparam.license waitMOSEK can be instructed to wait until a license token is available.



Chapter 6

Nonlinear API tutorial

This chapter provides information about how to solve general convex nonlinear optimization problems
using MOSEK. By general nonlinear problems it is meant problems that cannot be formulated as a
conic quadratic optimization or a convex quadratically constrained optimization problem.

In general it is recommended not to use nonlinear optimizer unless needed. The reasons are

e MOSEK has no way of checking whether the formulated problem is convex and if this assumption
is not satisfied the optimizer will not work.

e The nonlinear optimizer requires 1st and 2nd order derivative information which is hard to pro-
vide correctly i.e. it is nontrivial to program the code that computes the derivative information.

e The specification of nonlinear problems requires C function callbacks. Such C function callbacks
cannot be dump to disk and that makes it hard to report issues to MOSEK support.

e The algorithm employed for nonlinear optimization problems is not as good as the one employed
for conic problems i.e. conic problems has special that can be exploited to make the optimizer
faster and more robust.

This leads to following advices in decreasing order of importance.

e Consider reformulating the problem to a conic quadratic optimization problem if at all possible.
In particular many problems involving polynomial terms can easily be reformulated to conic
quadratic form.

e Consider reformulating the problem to a separable optimization problem because that simplifies
the issue with verifying convexity and computing 1st and 2nd order derivatives significantly. In
most cases problems on separable form also solves faster because of the simpler structure of the
functions. In Section 6.1 some utility code that makes it easy to solve separable problems is
discussed.

e Finally, if the problem cannot be reformulated to separable form then use a modelling language
like AMPL or GAMS. The reason is the modeling language will do all the computing of function

7
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values and derivatives. This eliminates an important source of errors. Therefore, it is strongly
recommended to use a modelling language at the protype stage.

6.1 Separable convex (SCopt) interface

The MOSEK Python API provides a way to add simple non-linear functions composed from a lim-
ited set of non-linear terms. Non-linear terms can be mixed with quadratic terms in objective and
constraints.

We consider a normal linear problem with additional non-linear terms z:

minimize 20(z) + Tz
subject to 5 < zilm)dalz < owbi=1...m
I* < T < u”,
r € R"™

z: R" — R(M+1)

Using the separable non-linear interface it is possible to add non-linear functions of the form

=

i

zi(x) = wzk(qu,k)v wi R—>R
1

b
I

In other words, each non-linear function z; is a sum of separable functions wi of one variable each. A
limited set of functions are supported; each wj, can be one of the separable functions:

Separable function | Operator name

fxln(x) scopr.ent Entropy function
fegrTh SCopr.exp Exponential function
fln(gz + h) scopr.log Logarithm

flx+h)? scopr.pow Power function

where f, g and h are constants.

This formulation does not guarantee convexity. For MOSEK to be able to solve the problem, following
requirements must be met:

e If the objective is minimized, the sum of non-linear terms must be convex, otherwise it must be
concave.

e Any constraint bounded below must be concave, and any constraint bounded above must be
convex.

e Each separable term must be twice differentiable within the bounds of the variable it is applied
to.

If these are not satisfied MOSEK may not be able to solve the problem or produce a meaningful status
report. For details see section 6.1.3.
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6.1.1 Adding separable terms

79

Separable terms — both objective and constraint terms — are added in one chunk and replaces any

previously added non-linear terms. Each individual term can be describes by a set of values:

e opr, an indicator of which of the basic functions is applied,

e i, the constraint index for terms in constraints,

For example:

f, the constant f in the basic function,

h, the constant h in the basic function.

g, the constant g in the basic function, and

j, the index of the variable the functions is applied to,

Term opr ilf g h

0.1z11n(x;) | scopr.ent | 1| 0.1 | 0.0 | 0.0
er2 LI scopr.exp | 2 | 1.0 | 1.0 1.1
21217 scopr.pow | 1 | 2.1 | 1.75 | 0.0
N scopr.pow | 1 | 1.0 | 0.5 | 0.0
In(xe + 1.2) | scopr.log | 2 | 1.0 | 1.0 | 1.2

The separable terms of the objective can now be defined by a set of arrays

mosek.scopr array opro

int array oprjo
float array oprfo
float array oprgo
float array oprho

#

# variable index

#
#
#

which method

f constant
g constant
h constant

and the separable constraint terms can be defined the same way, only using an additional array
indicating which constraint each term belongs in

mosek.scopr array oprc
int array opric
int array oprjc
float array oprfc
float array oprgc
float array oprhc

We can now input the separable terms using the Task.putSCeval function:

#

#
#
#
#
#

which method

constraint index
variable index

f constant
g constant
h constant

task.putSCeval (opro, oprjo, oprfo, oprgo, oprho,

oprc, opric, oprjc, oprfc, oprgc, oprhc);

If we wish to input no objective terms, all opr*o arguments may be None, and similarly, if we have no
constraint terms, we may let all opr*c be None.

This will replace all existing non-linear separable terms. To remove all non-linear separable terms, we
can call Task.clearSCeval.
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6.1.2 Example: Simple separable problem

We consider the convex separable problem

minimize e”?

such that

ZTo —+ 21 — T2

— X — X
0.5$0
T

with 4 separable terms, two in the objective and two in the constraints.

+ a*

T4

—x3

— Ty

+ %3

— T5

The separable terms of the objective can be described by the arrays

o= O O

.3862944

[demb781.py |
opro = [ mosek.scopr.exp, mosek.scopr.exp ]
oprjo = [ 2, 3]
oprfo = [ 1.0, 1.0 ]
oprgo = [ 1.0, 1.0 ]
oprho = [ 0.0, 0.0 ]
and constraint terms by
[demb781.py |
oprc [ mosek.scopr.exp, mosek.scopr.exp ]
opric = [ 0, 0]
oprjc = [ 4, 5]
oprfc = [ 1.0, 1.0 ]
oprgc = [ 1.0, 1.0 ]
oprhc = [ 0.0, 0.0 ]
6.1.2.1 Source code: demb781
[demb781.py |
#
# Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
#
# File: demb781.py
#
# Purpose: Demonstrates how to solve a simple non-liner separable problem
# wusing the SCopt interface for Python. Then problem is this:
# Minimize e”"x2 + e7x3
# Such that e"x4 + e"x5 <=1
# x0 + x1 - x2 =0
# - x0 - x1 - x3 = 0e+00
# 0.5 x0 - x4 = 1.3862944
# x1 - x5 =0
# x0 ... xb are unrestricted
#
##

from __future__ import with_statement
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18

19 import sys

20

21 import mosek

22

23 def streamprinter(text):

24 sys.stdout.write(text)
25 sys.stdout.flush()

26

27 def main ():

28 with mosek.Env() as env:

29 env.set_Stream (mosek.streamtype.log, streamprinter)
30 with env.Task(0,0) as task:

31 task.set_Stream (mosek.streamtype.log, streamprinter)
32

33 numvar = 6

34 numcon = 5

35

36 bkc = [ mosek.boundkey.up,

37 mosek.boundkey.fx,

38 mosek.boundkey.fx,

39 mosek.boundkey.fx,

40 mosek.boundkey.fx ]

41 blc = [ 0.0, 0.0, 0.0, 1.3862944, 0.0 ]

o buc = [ 1.0, 0.0, 0.0, 1.3862944, 0.0 ]

a3

4 bkx = [ mosek.boundkey.fr ] * numvar

45 blx = [ 0.0 ] * numvar

a6 bux = [ 0.0 ] * numvar

47

48 aptrb = [ 0, 0, 3, 6, 8]

49 aptre = [ 0, 3, 6, 8, 10 ]

50 asubi = [0, 1, 2, 3, 4]

51 asubj = [O, 1, 2,

52 o0, 1, 3,

53 0, 4,

54 1, 51

55 aval = [ 1.0, 1.0, -1.0,

56 -1.0, -1.0, -1.0,

57 0.5, -1.0,

58 1.0, -1.0 ]

59

60 task.appendvars (numvar)

61 task.appendcons (numcon)

62

63 task.putobjsense (mosek.objsense.minimize)

64

65 task.putvarboundslice(0, numvar, bkx, blx, bux)
66 task.putconboundslice(0, numcon, bkc, blc, buc)
67

68 task.putarowlist(asubi, aptrb, aptre, asubj, aval )
69

70 opro = [ mosek.scopr.exp, mosek.scopr.exp ]

7 oprjo =[2, 31

72 oprfo = [ 1.0, 1.0 ]

73 oprgo = [ 1.0, 1.0 1]

74 oprho = [ 0.0, 0.0 ]

75



82 CHAPTER 6. NONLINEAR API TUTORIAL

oprc = [ mosek.scopr.exp, mosek.scopr.exp ]
opric = [0, 0]

oprjc = [ 4, 51

oprfc = [ 1.0, 1.0 1]

oprgc = [ 1.0, 1.0 ]

oprhc = [ 0.0, 0.0 ]

task.putSCeval (opro, oprjo, oprfo, oprgo, oprho,
oprc, opric, oprjc, oprfc, oprgc, oprhc)

task.optimize ()

res = [ 0.0 ] * numvar
task.getsolutionslice(
mosek.soltype.itr,
mosek.solitem.xx,
0, numvar,
res)

print ( "Solution is: %s" % res )

main()

6.1.3 Ensuring convexity and differentiability

Some simple rules can be set up to ensure that the problem satisfies MOSEK’s convexity and differ-
entiability requirements. First of all, for any variable x; used in a separable term, the variable bounds
must define a range within which the function is twice differentiable.

We can define these bounds as follows:

Separable function | Operator name | Safe x bounds

fxln(x) scopr.ent 0<uz.

fegTh scopr.exp —00 < T < 00.

fln(gx + h) scopr.log Ifg>0: —h/g < z.
Ifg<0:z<—h/g.

flz+h)9 SCopr.pow If ¢ > 0 and integer: —oo < z < oc.

If g < 0 and integer: either —h < z or x < —h.
Otherwise: —h < z.

To ensure convexity, we require that each z;(z) is either a sum of convex terms or a sum of concave
terms. The following table lists convexity for the relevant ranges for f > 0 — changing the sign of f
switches concavity/convexity.
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Separable function

Operator name

fxln(x) scopr.ent Convex within safe bounds.

feg=+nh Scopr.exp Convex for all z.

fln(gx + h) scopr.log Concave within safe bounds.

flz+ h)9 scopr.pow If g is even integer: convex within safe bounds.

If ¢ is odd integer: concave (—oo, —h), convex (—h,o0).

If 0 < g < 1: concave within safe bounds.

Otherwise: convex within safe bounds.

6.1.4 SCopt Reference

Functions used to manipulate separable terms:

(opro, oprjo, oprfo, oprgo, oprho, oprc, opric, oprjc, oprfc, oprgc, oprhc)

Replace all current non-linear separable terms with a new set.

opro

List of function indicators defining the objective terms; see scopr.

oprjo

List of variable indexes for the objective terms.

oprfo

List of f values for the objective terms

oprgo

List of g values for the objective terms

oprho

List of h values for the objective terms

oprc

List of function indicators defining the constraint terms; see scopr.

opric

List of variable indexes for the constraint terms.

oprjc

List of constraint indexes for the constraint terms.

oprfc

List of f values for the constraint terms

oprgc

List of g values for the constraint terms

oprhc

List of h values for the constraint terms

O

Remove all non-linear separable terms from the task.
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Constants used to define :

Entropy function, fzln(z)
Exponential function, fed*+"

Logarithm, fln(gz + h)

Power function, f(z + h)9

CHAPTER 6. NONLINEAR API TUTORIAL
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Chapter 7

Advanced API tutorial

This chapter provides information about additional problem classes and functionality provided in the
Python API.

7.1 The progress call-back

Some of the API function calls, notably Task.optimize, may take a long time to complete. Therefore,
during the optimization a call-back function is called frequently, to provide information on the progress
of the call. From the call-back function it is possible

e to obtain information on the solution process,
e to report of the optimizer’s progress, and

e to ask MOSEK to terminate, if desired.

7.1.1 Source code example

The following source code example documents how the progress call-back function can be used.

[ callback.py]

H*

Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
File: callback.py

Purpose: To demonstrate how to use the progress
callback.

Use this script as follows:

callback.py psim 25fv47.mps
callback.py dsim 25fv47.mps
callback.py intpnt 25fv47.mps

HOH B H O H O HH R H R
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#

# The first argument tells which optimizer to use

# i.e. psim is primal simplex, dsim is dual simplex
# and intpnt is interior-point.

##

from __future__ import with_statement
import sys

import mosek
from mosek import *

def makeUserCallback(maxtime):
def userCallback(caller,
douinf,
intinf,
lintinf):
opttime = 0.0

if caller == callbackcode.begin_intpnt:
print ("Starting interior-point optimizer")
elif caller == callbackcode.intpnt:
itrn = intinf[iinfitem.intpnt_iter 1
pobj = douinf [dinfitem.intpnt_primal_obj]
dobj = douinf [dinfitem. intpnt_dual_obj ]
stime = douinf[dinfitem.intpnt_time ]
opttime = douinf[dinfitem.optimizer_time ]

print ("Iterations: %-3d" % itrn)

print (" Elapsed time: %6.2f(%.2f) " % (opttime,stime))

print (" Primal obj.: %-18.6e Dual obj.: %-18.6e" % (pobj,dobj))
elif caller == callbackcode.end_intpnt:

print ("Interior-point optimizer finished.")

elif caller == callbackcode.begin primal_simplex:
print ("Primal simplex optimizer started.")

elif caller == callbackcode.update_primal_simplex:
itrn = intinf[iinfitem.sim primal_iter ]
pobj = douinf [dinfitem.sim_obj ]
stime = douinf[dinfitem.sim_time ]
opttime = douinf[dinfitem.optimizer time ]

print ("Iterations: %-3d" % itrn)
print (" Elapsed time: %6.2f(%.2f)" % (opttime,stime))
print (" O0bj.: %-18.6e" % pobj )

elif caller == callbackcode.end primal_simplex:
print ("Primal simplex optimizer finished.")
elif caller == callbackcode.begin_dual_simplex:
print ("Dual simplex optimizer started.")
elif caller == callbackcode.update_dual_simplex:
itrn = intinf[iinfitem.sim dual_iter
pobj = douinf [dinfitem.sim_obj

douinf [dinfitem.sim time
opttime = douinf[dinfitem.optimizer_time
print ("Iterations: %-3d" % itrn)
print (" Elapsed time: %6.2f(%.2f)" % (opttime,stime))
print (" O0bj.: %-18.6e" % pobj)

elif caller == callbackcode.end_ dual_simplex:

stime

]
]
]
]



7.1. THE PROGRESS CALL-BACK

71 print ("Dual simplex optimizer finished.")
72 elif caller == callbackcode.begin_bi:

73 print ("Basis identification started.")

74 elif caller == callbackcode.end bi:

75 print ("Basis identification finished.")
76 else:

77 pass

78

79 if opttime >= maxtime:

80 # mosek is spending too much time. Terminate it.
81 return 1

82

83 return 0

84 return userCallback

ss def msgPrinter(msg):
87 sys.stdout.write(msg)
88 sys.stdout.flush()

90  def main(args):

92 if len(args) < 3:

93 print ("Too few input arguments. Syntax:")

94 print ("\tcallback.py psim inputfile")

95 print ("\tcallback.py dsim inputfile")

9% print ("\tcallback.py intpnt inputfile")

97 return

98

9 with mosek.Env() as env:

100 with mosek.Task(env) as task:

101 filename = args[2]

102 task.readdata(filename)

103

104 task.set_Stream(streamtype.log, msgPrinter)

105

106 if  args[1] == ’psim’:

107 task.putintparam(iparam.optimizer,optimizertype.primal_simplex)
108 elif args[1] == "dsim":

109 task.putintparam(iparam.optimizer,optimizertype.dual_simplex)
110 elif args[1] == "intpnt":

111 task.putintparam(iparam.optimizer,optimizertype.intpnt)
112

113 # Turn all MOSEK logging off (note that errors and other messages
114 # are still sent through the log stream)

115 task.putintparam(iparam.log, 0)

116

117 usercallback = makeUserCallback(maxtime = 3600)

118 task.set_Progress(usercallback)

119

120 task.optimize()

121

122 task.solutionsummary (streamtype.msg)

123

124 if _name__ == ’_main_ ’:

125 main(sys.argv)
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7.2 Solving linear systems involving the basis matrix

A linear optimization problem always has an optimal solution which is also a basic solution. In an
optimal basic solution there are exactly m basic variables where m is the number of rows in the
constraint matrix A. Define

B e R™*™

as a matrix consisting of the columns of A corresponding to the basic variables.

The basis matrix B is always non-singular, i.e.

det(B) £ 0

or equivalently that B~! exists. This implies that the linear systems

Br=w (7.1)

and

each has a unique solution for all w .

MOSEK provides functions for solving the linear systems (7.1) and (7.2) for an arbitrary w-j.

7.2.1 Identifying the basis

To use the solutions to (7.1) and (7.2) it is important to know how the basis matrix B is constructed.

Internally MOSEK employs the linear optimization problem

T

maximize c'x
subject to Ax —2¢ = 0,
7.3
© < € <

where

z¢ € R™ and 2z € R".

The basis matrix is constructed of m columns taken from

(A -1

If variable x; is a basis variable, then the j 'th column of A denoted a.; will appear in B. Similarly,
if ¢ is a basis variable, then the ¢ 'th column of —I will appear in the basis. The ordering of the
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basis variables and therefore the ordering of the columns of B is arbitrary. The ordering of the basis
variables may be retrieved by calling the function

task.initbasissolve(basis)

where basis is an array of variable indexes.

This function initializes data structures for later use and returns the indexes of the basic variables in
the array basis. The interpretation of the basis is as follows. If

basis[i] < numcon,

then the 7’th basis variable is «{. Moreover, the ¢ 'th column in B will be the ¢’th column of —/. On
the other hand if
basis[i] > numcon,

then the ¢ ’th basis variable is variable

Tbasis[i]—numcon

and the 7 'th column of B is the column

A: ,(basis[i]—numcon) -

For instance if basis[0] = 4 and numcon = 5 , then since basis[0] < numcon , the first basis variable
is z§. Therefore, the first column of B is the fourth column of —I. Similarly, if basis[1] = 7, then the
second variable in the basis iS Tpasis[1]—nuncon = 2. Hence, the second column of B is identical to a. ».

7.2.2 An example

Consider the linear optimization problem:

minimize To + X1
subject to  xg + 221 < 2, (7.4)
To + 71 < 6, )
o, L1 Z 0.

Suppose a call to Task.initbasissolve returns an array basis so that

basis[0]
basis[1]

1,
2.

Then the basis variables are z{ and zy and the corresponding basis matrix B is

il
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Please note the ordering of the columns in B .

CHAPTER 7. ADVANCED API TUTORIAL

The following program demonstrates the use of Task.solvewithbasis.

File : solvebasis.py
Purpose To demonstrate the usage of
MSK_solvewithbasis on the problem:

maximize x0 + x1

st.
x0 + 2.0 x1 <= 2
x0 + x1 <= 6
x0 >= 0, x1>= 0

xc0, xcl on the constraints
and the variabels x0 and x1.

maximize x0 + x1

st.
x0 + 2.0 x1 -xci =2
x0 + x1 -xc2 = 6

x0 >= 0, x1>= 0,
xcl <= 0, xc2 <=0

HOH H O OHE H O HHHHH R HEHHHHHH R

import mosek

def streamprinter(text):
sys.stdout.write(text)
sys.stdout.flush()

def main():
numcon =
numvar

[}
NN

# Since the value infinity is never used, we define

# ’infinity’ symbolic purposes only
infinity = 0

c = [1.0, 1.0]
ptrb = [0, 2]
ptre = [2, 3]

asub = [0, 1,
0, 1]
aval = [1.0, 1.0,
2.0, 1.0]

bkc = [mosek.boundkey.up,
mosek.boundkey . up]

blc = [-infinity,
-infinity]
buc = [2.0,

[solvebasis.py]

The problem has the slack variables

Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
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bkx

blx

bux

wl =
w2 =
try:

6.01]

[mosek.boundkey.lo,
mosek.boundkey.1lo]
= [0.0,
0.0]

= [+infinity,
+infinity]

[2.0, 6.0]

[1.0, 0.0]

with mosek.Env() as env:

with env.Task(0,0) as task:

task.set_Stream (mosek.streamtype.log, streamprinter)
task.inputdata(numcon,numvar,

C,

0.0,

ptrb,

ptre,

asub,

aval,

bkc,

blc,

buc,

bkx,

blx,

bux)
task.putobjsense(mosek.objsense.maximize)
r = task.optimize()
if r !'= mosek.rescode.ok:

print ("Mosek warning:",r)

basis = [0] * numcon
task.initbasissolve(basis)

#List basis variables corresponding to columns of B
varsub = [0,1]

for i in range(numcon) :
if basis[varsub[i]] < numcon:
print ("Basis variable no %d is xc%d" % (i,basis[il))
else:
print ("Basis variable no %d is x%d" % (i,basis[i] - numcon))

# solve Bx = wl

# varsub contains index of non-zeros in b.
# On return b contains the solution x and
# varsub the index of the non-zeros in x.
nz = 2

nz = task.solvewithbasis(0, nz, varsub, wl)
print ("nz = %s" % nz)
print ("Solution to Bx = wi:")

for i in range(nz):
if basis[varsub[i]] < numcon:
print ("xc %s = %s" % (basis[varsub[il],wl[varsub[ill))

91
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else:
print ("x%s = %s" % (basis[varsub[i]l] - numcon, wl[varsub[i]]))

# Solve B"Tx = w2
nz =1
varsub[0] = 0

nz = task.solvewithbasis(1, nz, varsub, w2)
print ("Solution to B"Tx = w2:")

for i in range(nz):
if basis[varsub[i]] < numcon:
print ("xc %s = %s" % (basis[varsub[i]], w2[varsub[il]))
else:
print ("x %s = %s" % (basis[varsub[i]] - numcon, w2[varsub[il]) )
except Exception as e:
print (e)

if __name__ == ’_main__’:
main()

In the example above the linear system is solved using the optimal basis for (7.4) and the original
right-hand side of the problem. Thus the solution to the linear system is the optimal solution to the
problem. When running the example program the following output is produced.

basis[0] =1

Basis variable no 0 is xcl.

basis[1] = 2
Basis variable no 1 is xO.

Solution to Bx = b:

x0 = 2.000000e+00
xcl = -4.000000e+00

Solution to B"Tx = c:

x1
x0

-1.000000e+00
1.000000e+00

Please note that the ordering of the basis variables is

1
Lo

and thus the basis is given by:

It can be verified that
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is a solution to

7.2.3 Solving arbitrary linear systems
MOSEK can be used to solve an arbitrary (rectangular) linear system

Ax =D

using the Task.solvewithbasis function without optimizing the problem as in the previous example.
This is done by setting up an A matrix in the task, setting all variables to basic and calling the
Task.solvewithbasis function with the b vector as input. The solution is returned by the function.

Below we demonstrate how to solve the linear system

)=l o

[solvelinear.py]

with b= (1,-2) and b = (7,0) .

from __future__ import with_statement

##

# Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
#

# File : solvelinear.py

#

# Purpose : To demonstrate the usage of MSK_solvewithbasis
# when solving the linear system:

#

# 1.0 x1 = bl

# -1.0 x0 + 1.0 x1 = b2

#

# with two different right hand sides

#

# b= (1.0, -2.0)

#

# and

#

# b= (7.0, 0.0)

##

import mosek

def put_a( task,
aval,
asub,
ptrb,
ptre,
numvar,
basis):
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# Since the value infinity is never used, we define
# ’infinity’ symbolic purposes only
infinity = 0

skx = [mosek.stakey.bas] * numvar

skc = [mosek.stakey.fix] * numvar

task.appendvars (numvar)
task.appendcons (numvar)

for i in range(len(asub)):
task.putacol(i,asub[i],aval[il])

for i in range(numvar):
task.putconbound (i,mosek.boundkey.fx,0.0,0.0)

for i in range(numvar):
task.putvarbound (i,
mosek.boundkey.fr,
-infinity,
infinity)

# Define a basic solution by specifying
# status keys for variables & constraints.

for i in range(numvar):
task.putsolutioni (mosek.accmode.var,
i,
mosek.soltype.bas,
skx[i],
0.0,

>

o O O
o O O

)
for i in range(numvar):
task.putsolutioni (mosek.accmode.con,
i,
mosek.soltype.bas,
skc[i],
0.0,

s

o O O
o O O

)

task.initbasissolve(basis)

def main():

numcon = 2
numvar = 2

aval = [ [ -1.0 1],
[1.0, 1.01 1]
asub= [ [ 11,
Lo, 1 11
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7.2. SOLVING LINEAR SYSTEMS INVOLVING THE BASIS MATRIX

ptrb = [ 0,1 ]

ptre = [ 1,3 ]

#int [] bsub = new int[numvar];
#double[] b = new double[numvar];
#int [] basis = new int[numvar];

with mosek.Env() as env:

wi

th mosek.Task(env) as task:
# Directs the log task stream to the user specified
# method task msg_obj.streamCB
task.set_Stream(mosek.streamtype.log,

lambda msg : sys.stdout.write(msg))
# Put A matrix and factor A.
# Call this function only once for a given task.

basis [0] * numvar
b =[0.0, -2.0 1]
bsub [ o, 1]

put_a(task,
aval,
asub,
ptrb,
ptre,
numvar,
basis)

# now solve rhs

b =[1, -2]

bsub = [0, 1]

nz = task.solvewithbasis(0,2,bsub,b)
print("\nSolution to Bx = b:\n")

# Print solution and show correspondents
# to original variables in the problem
for i in range(nz):
if basis[bsub[i]] < numcon:
print("This should never happen")
else:
print("x%d = %d" % (basis[bsub[i]] - numcon, b[bsub[il]))

b[0]
bsub[0]

7
0

nz = task.solvewithbasis(0,1,bsub,b);

print("\nSolution to Bx = b:\n")
# Print solution and show correspondents
# to original variables in the problem
for i in range(nz):
if basis[bsub[i]] < numcon:
print ("This should never happen")
else:
print ("x%d = %d" % (basis[bsub[i]] - numcon, b[bsub[i]] ))

95
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if _name__ == "_main_ ":
try:
main()
except:
import traceback
traceback.print_exc()

The most important step in the above example is the definition of the basic solution using the
Task.putsolutioni function, where we define the status key for each variable. The actual values
of the variables are not important and can be selected arbitrarily, so we set them to zero. All variables
corresponding to columns in the linear system we want to solve are set to basic and the slack variables
for the constraints, which are all non-basic, are set to their bound.

The program produces the output:

Solution to Bx = b:

x1
x0

1
3

Solution to Bx = b:

x1 =7
x0 =7
and we can verify that o = 2,27 = —4 is indeed a solution to (7.5).

7.3 Calling BLAS/LAPACK routines from MOSEK

Sometimes users need to perform linear algebra operations that involve dense matrices and vectors.
Also MOSEK uses extensively high-performance linear algebra routines from the BLAS and LAPACK
packages and some of this routine are included in the package shipped to the users.

MOSEK makes available to the user some BLAS and LAPACK routines by MOSEK functions that

e use MOSEK data types and response code;
e keep BLAS/LAPACK naming convention.

Therefore the user can leverage on efficient linear algebra routines, with a simplified interface, with no
need for additional packages. In the following table we list BLAS functions:

Name | MOSEK name Expression
AXPY Env.axpy y=ar+y
DOT Env.dot zTy
GEMV Env.gemv y = oAz + Py
GEMM Env.gemm C =aAB+ pC
SYRK Env.syrk C = aAAT + pC

Function from LAPACK are listed below:
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Name | MOSEK name | Description
POTRF Env.potrf Cholesky factorization
SYEVD Env.syevd Eigen-values of a symmetric matrix
SYEIG Env.syeig Eigen-values and eigen-vectors of a symmetric matrix

A detailed list of the available routines follows. All code snippets are taken from the example
blas-lapack distributed with MOSEK and listed below. All code snippets assume a valid MOSEK
environment named env is available. For more details please refer to Section 7.3.1.

Scaled Vectors Addiction (AXPY)

It computes the sum of a scaled vector = with a second vector v, i.e.

y=ox+y, (7.6)

where « are two scalars and z,y € R™. It is available through the Env.axpy. This routine may
use optimized loop unrolling. Note that the results overwrites y. For example, we may use the
following code:

[blas_lapack.py]

s  env.axpy(n,alpha,x,y)

Inner Product (DOT)

Given two vectors z,y € R”, it computes the inner product (or dot product) defined as

n—1
ety = leyz =y (7.7)
i=0

The inner product is a special case of the generalized matrix-vector multiplication. MOSEK
provide access to BLAS implementation by the Env.dot function.

For example we may want to perform the dot product among two arrays x,y of the same dimen-
sion we can write

[blas_lapack.py]

s env.dot(n,x,y)

Generalized Matrix-Vector Multiplication (GEMV)

This function performs matrix-vector operations of the form

y = aAzx + By, (7.8)

or

y=aAlz + By. (7.9)

where «, 3 are two scalars and A € R™*" Dimension of x and y must be compatible with
those of A depending whether it is transpose or not. MOSEK provides access to GEMV by the
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Env.gemv function. Please note that the result overwrites the vector y. Expression (7.8) can be
calculated as

[blas_lapack.py |

40 env.gemv(mosek.transpose.no, m, n, alpha, A, x, beta,z)

Generalized Matrix-Matrix Multiplication (GEMM)

This function perform a matrix-matrix multiplication followed by an addition. Given matrices
A, B and C of compatible dimensions, and two scalars a, § it performs the following

C = aAB + BC. (7.10)
Matrices A and B can be considered transposed or not, and their dimensions must be compatible
accordingly.

MOSEK provides access to GEMM by the Env.gemm function. Please note that the result
overwrites the matrix C.

[blas_lapack.py]

42 env.gemm(mosek.transpose.no,mosek.transpose.no,m,n,k,alpha,A,B,beta,C)

Symmetric rank-k update (SYRK)

Given a symmetric matrix € R™"*" two scalars «, 8 and a matrix A of rank k, this function
computes either

C = pC+aA” A, (7.11)

withfor A € RFX™ or

C = BC + aAAT, (7.12)

for A € R¥*", The corresponding routine provided by MOSEK is Env.syrk. The matrix C only
needs to be specified as triangular. Note also that the result ovewrites C in the relevant upper
or lower triangular part, accordingly with the way it has been input.

[blas_lapack.py]

44 env.syrk(mosek.uplo.lo, mosek.transpose.no, n,k,alpha, A, beta,D)

Eigenvalue Computation (SYEIG)

This function returns the eigenvalues of a given square matrix A. MOSEK provides access to
SYEIG by the Env.syeig function.

[blas_lapack.py |

so  env.syeig(mosek.uplo.lo,m,Q,v)
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Eigenvalue Decomposition (SYEVD)

Given a symmetric matrix A, this function returns its eigenvalue decomposition, i.e. a diagonal
matrix V and a lower triangular matrix U, of the same dimension as A, such that

A=UVvU".

The diagonal of V' contains the eigenvalues of A, while U is formed by the orthonormal eigenvec-
tors of A stored column-wise. Note that U will ovewrites A. MOSEK provides access to SYEVD
by the Env.syevd function.

[blas_lapack.py |

52 env.syevd(mosek.uplo.lo,m,Q,v)

Cholesky Factorization (POTRF)

This function computes the Cholesky factorization of a symmetric positive-definite matrix A €
R™ " j.e. it return a lower triangular matrix U such that
A=U"U.

It is available through the function Env.potrf. Note that The result will overwrite the lower
triangle of A.

[blas_lapack.py |

48 env.potrf(mosek.uplo.lo,m,Q)

7.3.1 A working example

The following code shows how to call the BLAS/LAPACK routines provided by MOSEK. The code
has no practical purpose and it is only meant to show which kind of input the routines accept.

[blas_lapack.py |

#

# Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
#

# File: blas_lapack.py

#

# Purpose: To demonstrate how to call /LAPACK routines for whose MOSEK provides simplified interfaces.
#

import mosek

with mosek.Env() as env:
n=3
m=2

k=3

alpha=2.0
beta=0.5
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#A has m=2 rows and k=3 cols
A=[ 1.0,1.0,2.0,2.0, 3.,3.]
#B has k=3 rows and n=3 cols

B=[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0]
C=[ 0.0 for i in range(n*m)]

D=[ 1.0,1.0,1.0,1.0]

Q=[ 1.0,0.0,0.0,2.0]

xy=[1]

# routines
env.dot(n,x,y)
env.axpy(n,alpha,x,y)
env.gemv(mosek.transpose.no, m, n, alpha, A, x, beta,z)
env.gemm(mosek.transpose.no,mosek.transpose.no,m,n,k,alpha,A,B,beta,C)
env.syrk(mosek.uplo.lo, mosek.transpose.no, n,k,alpha, A, beta,D)
# LAPACK routines
env.potrf (mosek.uplo.lo,m,Q)
env.syeig(mosek.uplo.lo,m,Q,v)

env.syevd(mosek.uplo.lo,m,Q,v)

7.4 Automatic reformulation of QCQP problems in conic form

Despite that MOSEK can solve quadratic and quadratically constrained convex problems, as detailed
in Section 5.5, it often performs better when the problems are reformulated in conic form. Moreover,
the conic formulation can rely on a more sound duality theory. For this reason MOSEK provides a
tool to reformulate automatically QCQP problem as Conic Quadratic problems.

We recall that QCQP problems that MOSEK can solve are of the form:

1
minimize §mTQO$ +cle+ ¢
1 n—1
subject to I, < ixTQkx+Zak7jxj < wy, k=0,....,m—1,
=0 (7.13)
n—1
subject to lzl < Zagw»a:j < ugl, k=0,....,m —1,
j=0
o< ” < w j=0..m-1
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Without loss of generality it is assumed that Q° and Q¥ are all symmetric because

2T Qr = 0.527(Q + QT)x.

The reformulation is not in general unique. The approach followed in Task.toconic is to introduce
additional variables, linear constraints and second order cones to obtain a larger but equivalent problem
in which the original variables are preserved.

This allows the user to recover the original variable and constraint values, as well as their dual values,
with no convertion or additional effort.

The reformulated model will contain:
e one second-order cone for each quadratic constraint,
e one secod-order cone if the objective function is quadratic,

e cach quadratic constraint will contain no coefficients and upper/lower bounds will be set to
00, —00 respectively.

It is important to notice that Task.toconic modified the input task in-place: this means that if the

reformulation is not possible, i.e. the problem is not conic representable, the state of the task is in
general undefined. The user should consider cloning the task.

7.4.1 Quadratic constraint reformulation

Let assume that the k—th constraint has some quadratic terms, i.e. it can be written in the form

-1
1 n
Iy < §SETQ’% + Y angy < uf.
§=0
First we note that either [f = —oo or [ = —oo must hold, otherwise either the constraint can be
dropped, or the constraint is not convex. Thus
1 n—1
T Ak
5% Q%x + ZO ak;x; < ug,.
j=

can be considered without loss of generality. Introducing an additional variable y; we obtain the
equivalent form

2" Qkx < 2y,
n—1
E kT — Uy, = Yk
Jj=0

If QF is positive semidefinite, we can compute its Cholesky factorization F* and write
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k
[ < 2y,
n—1
C
E A, jT5 — Up = Yk -
J=0
The first constraint defines a second-order cone of dimension, i.e.

||Fkx|\2 <2y, < (yg, Fz) € Q%*".

Thus, the constraint can be cast as

n—1

DoangTi—ui =y,

=0

z = Fux,
2

(1, yx, 2) e oFn

A similar approach is followed to deal with the case in which Q* has exactly one negative eigenvalue.
Moreover, some special cases, as such Q* being diagonal, are taken into account.

7.4.2 Objective function reformulation
Let us assume that the objective function of problem (7.13) contains a quadratic terms, i.e. the matrix
Qo is not null.

From a logical point of view, we can introduce an additional free variable ¢t and remove the quadratic
term from the objective function, which reads

T, +alr+e. (7.14)

The next step is to introduce a quadratic constraint of the form

1

ixTQox <t. (7.15)
where @,, = @,.- The problem has now a linear objective function, as required for any COP. The
quadratic constraint can be converted as in Section 7.4.1.

In practice the transformation will not introduce any additional quadratic constraint, but a second
order cone will be included along with the additional linear constraints.



Chapter 8

A case study

8.1 Portfolio optimization

8.1.1 Introduction

In this section the Markowitz portfolio optimization problem and variants are implemented using the
MOSEK optimizer API.

An alternative to using the optimizer API is the Fusion API which is much simpler to use because
it makes it possible to implement the model almost as stated on paper. It is not uncommon that an
optimization problem can be implemented using the Fusion API in 1/10th of the time implementing
it using the optimizer API. On the other hand, a well implemented model in the optimizer API will
usually run faster than the same Fusion model.

Since it so fast to implement a model in Fusion it can be attractive to implement a model in Fusion
first because that way the results from the Fusion based code can be used to validate the results of
the optimizer API implementation.

Subsequently the following MATLAB inspired notation will be employed. The : operator is used as
follows

ij={ii+1,...,5}
and hence
T2

X2:4 = €3
Ty

If x and y are two column vectors, then

[x;y]Z{ﬂ
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Furthermore, if f € R™*™ then

fia
fa,1

fG) =

fm—l,n

fm,n

i.e. f(:) stacks the columns of the matrix f.

8.1.2 A basic portfolio optimization model

The classical Markowitz portfolio optimization problem considers investing in n stocks or assets held
over a period of time. Let z; denote the amount invested in asset j, and assume a stochastic model
where the return of the assets is a random variable r with known mean

u=Er

and covariance

S=E(r—p(r—mp

T

The return of the investment is also a random variable y = 7* z with mean (or expected return)

Ey=plz

and variance (or risk)

E(y — Ey)? =272z

The problem facing the investor is to rebalance the portfolio to achieve a good compromise between
risk and expected return, e.g., maximize the expected return subject to a budget constraint and an
upper bound (denoted ) on the tolerable risk. This leads to the optimization problem

maximize uTx
T T. 0

subject to e’ x = w+e
’ 8.1
IYr < A2 (8.1)
x > 0.

The variables x denote the investment i.e. z; is the amount invested in asset j and a:?— is the initial
holding of asset j. Finally, w is the initial amount of cash available.

A popular choice is 2° = 0 and w = 1 because then x; may be interpretated as the relative amount of
the total portfolio that is invested in asset j.

Since e is the vector of all ones then
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n
elo = Z T
j=1
is the total investment. Clearly, the total amount invested must be equal to the initial wealth, which
is

w + eTa0.

This leads to the first constraint

e r=w+e x.

The second constraint

tTYr < A2

ensures that the variance, or the risk, is bounded by 72. Therefore, v specifies an upper bound of the
standard deviation the investor is willing to undertake. Finally, the constraint

a:]ZO

excludes the possibility of short-selling. This constraint can of course be excluded if short-selling is
allowed.

The covariance matrix X is positive semidefinite by definition and therefore there exist a matrix G
such that

¥ =GGT. (8.2)

In general the choice of G is not unique and one possible choice of G is the Cholesky factorization of
3. However, in many cases another choice is better for efficiency reasons as discussed in Section 8.1.4.

For a given G we have that

2Ty = 2TGGTz
= [GT=|%

Hence, we may write the risk constraint as

7= [|¢"a|

or equivalently

[v:GTz] € Q™.

where Q"1 is the n + 1 dimensional quadratic cone. Therefore, problem (8.1) can be written as
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maximize uTx

subject to elx = wHelaf, (8.3)
:GT2] e QUM '
x > 0,

which is a conic quadratic optimization problem that can easily be solved using MOSEK.

Subsequently we will use the example data

0.1073
p=| 00737
0.0627

and

0.2778 0.0387 0.0021
X =0.1| 0.0387 0.1112 —0.0020
0.0021 —0.0020 0.0115

This implies
0.5271 0.0734 0.0040

GT=v01|0 0.3253  — 0.0070
0 0 0.1069

using 5 figures of accuracy. Moreover, let

0.0

0.0

and

The data has been taken from [5].

8.1.2.1 Why a conic formulation?

The problem (8.1) is a convex quadratically constrained optimization problems that can be solved
directly using MOSEK, then why reformulate it as a conic quadratic optimization problem? The main
reason for choosing a conic model is that it is more robust and usually leads to a shorter solution times.
For instance it is not always easy to determine whether the @ matrix in (8.1) is positive semidefinite
due to the presence of rounding errors. It is also very easy to make a mistake so () becomes indefinite.
These causes of problems are completely eliminated in the conic formulation.

Moreover, observe the constraint
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1672l <~

is nicer than

tTYr < A2

for small and values of . For instance assume a v of 10000 then 2 would 1.0e8 which introduces a
scaling issue in the model. Hence, using conic formulation it is possible to work with the standard
deviation instead of the variance, which usually gives rise to a better scaled model.

8.1.2.2 Implementing the portfolio model

The model (8.3) can not be implemented as stated using the MOSEK optimizer API because the API
requires the problem to be on the form

maximize c
subject to ¢ < Az <
e 2P < e 84)
T e K.
where Z is referred to as the API variable.
The first step in bringing (8.3) to the form (8.4) is the reformulation
maximize plx
subject to e’z = w+elal,
Glz—t = 0
8.5
[s:1] e Q, (85)
T > 0,
s 0.

where s is an additional scalar variable and ¢ is a n dimensional vector variable. The next step is to
define a mapping of the variables

T=[zstl =1 s |. (8.6)
t

Hence, the API variable & is concatenation of model variables z, s and ¢. In Table (8.1) the details of
the concatenation are specified. For instance it can be seen that

Ii?n+2 =1t.
because the offset of the ¢ variable is n + 2.

Given the ordering of the variables specified by (8.6) the data should be defined as follows
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Variable Length Offset
T n 1
S 1 n+1
t n n+2

Figure 8.1: Storage layout of the & variable.

C =
A
ZC

uC

ZZ

ut =

[ 0 0,17,

e 0 04
L GT On,l - In ’
w+elz? O1,n } T,
w+elz? 01, } T,
Ol,n Y — On,1 :I Ta
T
Op1 Y Ona ]

The next step is to consider how the columns of A is defined. The following pseudo code

for

R

for

show how to construct each column of A.

j=1:n
i?jzl‘j
A ;=10

As(nin); = G,

7,1in

j=1:n
'i:n+1+j = tj
Apiitjnti+; = —1.0

In the above discussion index origin 1 is employed, i.e., the first position in a vector is 1. The Python
programming language employs 0 as index origin and that should be kept in mind when reading the

example code.

[case_portfolio_1.py]

File : case_portfolio_l1.py
Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
Description : Implements a basic portfolio optimization model.

import mosek

try:

from numpy import zeros
except ImportError:

from mosek.array import zeros
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def streamprinter(text):
print("%s" % text),

if _name__ == ’_main_’:
n =3
gamma = 0.05
mu = [0.1073, 0.0737, 0.0627]

GT = [[0.1667, 0.0232, 0.0013],
[0.0000, 0.1033, -0.0022],
[0.0000, 0.0000, 0.0338]]

x0 = [0.0, 0.0, 0.0]

W =1.0

inf = 0.0 # This value has no significance

with mosek.Env() as env:
with env.Task(0,0) as task:
task.set_Stream(mosek.streamtype.log,streamprinter)

rtemp = w
for j in range(O,n):
rtemp += x0[j]

# Constraints.

task.appendcons (1+n)
task.putconbound(0,mosek.boundkey.fx,rtemp,rtemp)
task.putconname (0, "budget")

task.putconboundlist (range (1+0,1+n) ,n* [mosek.boundkey.fx] ,n*[0.0] ,n*[0.0])
for j in range(1,1+n)
task.putconname(j,"GT[%d]" % j)

# Variables.
task.appendvars (1+2*n)

# Offset of variables into the API variable.
offsetx = 0

offsets n

offsett n+1l

# x variables.

task.putclist(range (offsetx+0,offsetx+n) ,mu)

task.putaijlist(n*[0] ,range(offsetx+0,offsetx+n),n*[1.0])

for j in range(O,n):
task.putaijlist(n*[1+j],range(offsetx+0,offsetx+n),GT[j])

task.putvarboundlist (range (offsetx+0,offsetx+n) ,n* [mosek.boundkey.lo] ,n*[0.0] ,n*[inf])
for j in range(O,n):
task.putvarname (offsetx+j,"x[/d]" % (1+j))

# s variable.
task.putvarbound (offsets+0,mosek.boundkey.fx,gamma, gamma)
task.putvarname (offsets+0,"s")

# t variables.
task.putaijlist(range(1,n+1) ,range(offsett+0,offsett+n),n*[-1.0])

109
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73 task.putvarboundlist (range (offsett+0,offsett+n) ,n* [mosek.boundkey.fr] ,n*[-inf] ,n*[inf])
74 for j in range(O,n):

75 task.putvarname (offsett+j,"t[/d]l" % (1+j))

76

7 task.appendcone (mosek.conetype.quad,0.0, [offsets] + range(offsett,offsett+n))
78 task.putconename (0, "stddev")

79

80 task.putobjsense(mosek.objsense.maximize)

81

82 # Turn all log output off.

83 task.putintparam(mosek.iparam.log,1)

84

85 # Dump the problem to a human readable OPF file.

86 #task.writedata("dump.opf")

87

88 task.optimize()

89

20 # Display the solution summary for quick inspection of results.
91 task.solutionsummary (mosek.streamtype.msg)

92

93 expret = 0.0

04 x = zeros(n,float)

95 task.getxxslice(mosek.soltype.itr,offsetx+0,offsetx+n,x)

9 for j in range(O,n):

o7 expret += mul[jl*x[j]

98

99 stddev = zeros(1,float)

100 task.getxxslice(mosek.soltype.itr,offsets+0,offsets+1,stddev)

101

102 print ("\nExpected return %e for gamma %e\n" % (expret,stddev[0]))

The above code produce the result

Interior-point solution summary
Problem status : PRIMAL_AND DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 7.4766497707e-002 Viol. con: 2e-008 var: 0e+000 cones: 3e-009
Dual. obj: 7.4766522618e-002 Viol. con: 0e+000 var: 4e-008 cones: 0e+000

Expected return 7.476650e-02 for gamma 5.000000e-02
The source code should be self-explanatory but a few comments are nevertheless in place. In the lines

[case_portfolio_1.py]

52 # Offset of variables into the API variable.
53 offsetx = 0

54 offsets n

55 offsett n+1

offsets into the MOSEK API variables are stored and those offsets are used later. The code

[ case_portfolio_1.py]
ss  task.putclist(range(offsetx+0,offsetx+n),mu)

so  task.putaijlist(n*[0],range(offsetx+0,offsetx+n),n*[1.0])

60 for j in range(0,n):

61 task.putaijlist(nx[1+j],range(offsetx+0,offsetx+n),GT[j])

62
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task.putvarboundlist (range (offsetx+0,offsetx+n) ,n* [mosek.boundkey.lo] ,n*[0.0] ,n*[inf])
for j in range(O,n):
task.putvarname (offsetx+j,"x[%d]" % (1+j))

sets up the data for x variables. For instance

[case_portfolio_1.py]

task.putclist(range(offsetx+0,offsetx+n) ,mu)

inputs the objective coeflicients for the x variables. Moreover, the code

[ case_portfolio_1.py]
for j in range(O,n):
task.putvarname (offsetx+j,"x[%d]l" % (1+j))

assigns meaningful names to the API variables. This is not needed but it makes debugging easier.

8.1.2.3 Debugging tips

Implementing an optimization model in optimizer can be cumbersome and error-prone and it is very
easy to make mistakes. In order to check the implemented code for mistakes it is very useful to dump
the problem to a file in a human readable form for visual inspection. The line

[case_portfolio_1.py]
#task.writedata("dump.opf")

does that and this will produce a file with the content

[comment]
Written by MOSEK version 7.0.0.86
Date 01-10-13
Time 08:15:47

[/comment]

[hints]
[hint NUMVAR] 7 [/hint]
[hint NUMCON] 4 [/hint]
[hint NUMANZ] 12 [/hint]
[hint NUMQNZ] O [/hint]
[hint NUMCONE] 1 [/hint]
[/hints]

[variables disallow_new_variables]
'x[1]1° °x[2]° °x[3]° s ’t[1]°
't [2]° °t[3]°

[/variables]

[objective maximize]
1.073e-001 ’x[1]’> + 7.37e-002 ’x[2]’ + 6.270000000000001e-002 ’x[3]’
[/objective]

[constraints]
[con ’budget’] ’x[1]’ + ’x[2]° + ’x[3]’ = 1e+000 [/con]
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[con ’GT[1]’] 1.667e-001 ’x[1]’ + 2.32e-002 ’x[2]’ + 1.3e-003 ’x[3]’ - ’t[1]’ = 0e+000 [/con]
[con ’GT[2]’] 1.033e-001 ’x[2]’ - 2.2e-003 ’x[3]’ - ’t[2]’ = 0e+000 [/con]
[con ’GT[3]’] 3.38e-002 ’x[3]’° - ’t[3]’ = 0e+000 [/con]
[/constraints]
[bounds]
[b] 0 <= * [/b]
[b] s = 5e-002 [/b]
[b] ’£[1]1°,°t[2]°,°t[3]° free [/b]
[cone quad ’stddev’] s, ’t[1]’, ’t[2]’, ’t[3]’ [/conel
[/bounds]

Observe that since the API variables have been given meaningful names it is easy to see the model is
correct.

8.1.3 The efficient frontier

The portfolio computed by the Markowitz model is efficient in the sense that there is no other portfolio
giving a strictly higher return for the same amount of risk. An efficient portfolio is also sometimes
called a Pareto optimal portfolio. Clearly, an investor should only invest in efficient portfolios and
therefore it may be relevant to present the investor with all efficient portfolios so the investor can
choose the portfolio that has the desired tradeoff between return and risk.

Given a nonnegative o then the problem

maximize plz — as

subject to e’z = w+els,
[S' GTSC} c QnJrl (87)
T > 0.

computes efficient portfolios. Note that the objective maximizes the expected return while maximizing
—a times the standard deviation. Hence, the standard deviation is minimized while « specifies the
tradeoff between expected return and risk.

Ideally the problem 8.7 should be solved for all values o > 0 but in practice that is computationally
too costly.

Using the example data from Section 8.1.2, the optimal values of return and risk for several as are
listed below:

Expected return
Expected return
Expected return
Expected return

.261311e-01
.499440e-01
.735435e-02
.382809e-02

1.073000e-01 for gamma 7
1.032557e-01 for gamma 1
6.975524e-02 for gamma 3
6.766068e-02 for gamma 3
Expected return 6.679238e-02 for gamma 3.281319e-02
Expected return 6.598822e-02 for gamma 3.214199e-02
Expected return 6.560055e-02 for gamma 3.191601e-02
Expected return 6.537354e-02 for gamma 3.181398e-02
Expected return 6.522238e-02 for gamma 3.175861e-02
Expected return 6.511552e-02 for gamma 3.172556e-02
Expected return 6.503462e-02 for gamma 3.170391e-02
Expected return 6.497237e-02 for gamma 3.168923e-02
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8.1.3.1 Example code

The following example code demonstrates how to compute the efficient portfolios for several values of
Q.

[ case_portfolio 2.py]

File : case_portfolio_2.py
Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.

Description : Implements a basic portfolio optimization model.
win

import mosek

try:

from numpy import zeros
except ImportError:

from mosek.array import zeros

def streamprinter(text):
print("%s" % text),

if _name__ == ’_main__’:
n =3
gamma = 0.05
mu = [0.1073, 0.0737, 0.0627]
GT = [[0.1667, 0.0232, 0.0013],

[0.0000, 0.1033, -0.0022],
[0.0000, 0.0000, 0.0338]]
x0 = [0.0, 0.0, 0.0]
w =1.0
alphas = [0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5]

inf 0.0 # This value has no significance
with mosek.Env() as env:
with env.Task(0,0) as task:
task.set_Stream(mosek.streamtype.log,streamprinter)

rtemp = w
for j in range(O,n):
rtemp += x0[j]

# Constraints.

task.appendcons (1+n)

task.putconbound (0,mosek.boundkey.fx,rtemp,rtemp)
task.putconname (0, "budget")

task.putconboundlist (range (1+0,1+n) ,n* [mosek.boundkey.fx] ,n*[0.0] ,n*[0.0])
for j in range(1l,1+n)
task.putconname(j,"GT[%d]" % j)

# Variables.
task.appendvars (1+2#n)
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offsetx = 0 # Offset of variable x into the API variable.
offsets n # Offset of variable x into the API variable.
offsett = n+l # Offset of variable t into the API variable.

# x variables.
task.putclist(range(offsetx+0,offsetx+n) ,mu)
task.putaijlist(n*[0],range(offsetx+0,offsetx+n),n*[1.0])
for j in range(O,n):
task.putaijlist(n*[1+j] ,range(offsetx+0,offsetx+n),GT[j])

task.putvarboundlist (range (offsetx+0,offsetx+n) ,n* [mosek.boundkey.lo] ,n*[0.0] ,n*[inf])
for j in range(O,n):
task.putvarname (offsetx+j,"x[/d]l" % (1+j))

# s variable.
task.putvarbound (offsets+0,mosek.boundkey.fr,gamma, gamma)
task.putvarname (offsets+0,"s")

# t variables.
task.putaijlist(range(1l,n+1) ,range(offsett+0,offsett+n) ,n*[-1.0])
task.putvarboundlist (range (offsett+0,offsett+n) ,n* [mosek.boundkey.fr] ,n*[-inf] ,n*[inf])
for j in range(O,n):
task.putvarname (offsett+j,"t[/d]l" % (1+j))

task.appendcone (mosek.conetype.quad,0.0, [offsets] + range(offsett,offsett+n))
task.putconename (0, "stddev")

task.putobjsense(mosek.objsense.maximize)

# Turn all log output off.
task.putintparam(mosek.iparam.log,0)

for alpha in alphas:
# Dump the problem to a human readable OPF file.
#task.writedata("dump.opf")

task.putcj(offsets+0,-alpha);
task.optimize ()

# Display the solution summary for quick inspection of results.
# task.solutionsummary(mosek.streamtype.msg)

solsta = task.getsolsta(mosek.soltype.itr)

if solsta in [mosek.solsta.optimal, mosek.solsta.near_optimal]:
expret = 0.0
X = zeros(n,float)
task.getxxslice(mosek.soltype.itr,offsetx+0,offsetx+n,x)
for j in range(O,n):
expret += mu[jl*x[j]

stddev = zeros(1,float)
task.getxxslice(mosek.soltype.itr,offsets+0,offsets+1l,stddev)

print("\nAlpha = %e - Expected return = %e - Std. Dev. = Y%e" % (alpha,expret,stddev[0])),
else:
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print("An error occurred when solving for alpha=je\n" % alpha)

8.1.4 Improving the computational efficiency

In practice it is often important to solve the portfolio problem in a short amount of time; this section
it is discusses what can be done at the modelling stage to improve the computational efficiency.

The computational cost is of course to some extent dependent on the number of constraints and
variables in the optimization problem. However, in practice a more important factor is the number
nonzeros used to represent the problem. Indeed it is often better to focus at the number of nonzeros
in G (see (8.2)) and try to reduce that number by for instance changing the choice of G.

In other words, if the computational efficiency should be improved then it is always good idea to start
with focusing at the covariance matrix. As an example assume that

»=D+VVT

where D is positive definite diagonal matrix. Moreover, V is a matrix with n rows and p columns.
Such a model for the covariance matrix is called a factor model and usually p is much smaller than n.
In practice p tends be a small number say less than 100 independent of n.

One possible choice for G is the Cholesky factorization of ¥ which requires storage proportional to
n(n + 1)/2. However, another choice is

D1/2
=

because then

GGT =D+VVT.

This choice requires storage proportional to n 4 pn which is much less than for the Cholesky choice of
G. Indeed assuming p is a constant then the difference in storage requirements is a factor of n.

The example above exploits the so-called factor structure and demonstrates that an alternative choice
of G may lead to a significant reduction in the amount of storage used to represent the problem. This
will in most cases also lead to a significant reduction in the solution time.

The lesson to be learned is that it is important to investigate how the covariance is formed. Given
this knowledge it might be possible to make a special choice for G that helps reducing the storage
requirements and enhance the computational efficiency.

8.1.5 Slippage cost

The basic Markowitz portfolio model assumes that there are no costs associated with trading the assets
and that the returns of the assets is independent of the amount traded. None of those assumptions
are usually valid in practice. Therefore, a more realistic model is
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maximize plx
n
subject to e’z + Ci(x; — x° = w+elad,
J ; J( J ]) (8.8)
R < 92
x > 0,
where the function
Cj(z; —a})

specifies the transaction costs when the holding of asset j is changed from its initial value.

8.1.5.1 Market impact costs

If the initial wealth is fairly small and short selling is not allowed, then the holdings will be small.
Therefore, the amount traded of each asset must also be small. Hence, it is reasonable to assume that
the prices of the assets is independent of the amount traded. However, if a large volume of an assert is
sold or purchased it can be expected that the price change and hence the expected return also change.
This effect is called market impact costs. It is common to assume that market impact costs for asset
j can be modelled by

mjy/|z; — 2]

where m; is a constant that is estimated in some way. See [0][p. 452] for details. To summarize then

Cjlaj —28) = mylz; — afly[lw; — 29| = myla; — 25/,

From [7] it is known

{(¢,2) 1> 232 2> 0} = {(c,2) : [v;¢; 2], [2;1/8;0] € Q%}

where 2 is the 3 dimensional rotated quadratic cone implying

<j = |x§ - x(;‘,
[vj; ¢55 255 [255 1/8; 5]
n

ZCJ(JEJ*,I(J)) = ZC]'.
j=1

Jj=1

m

Unfortunately this set of constraints is nonconvex due to the constraint

zj = lx; — x9| (8.9)

but in many cases that constraint can safely be replaced by the relaxed constraint
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zj 2 |z — | (8.10)

which is convex. If for instance the universe of assets contains a risk free asset with a positive return
then

zj > oy — xjo| (8.11)

cannot hold for an optimal solution because that would imply the solution is not optimal.

Now assume that the optimal solution has the property that (8.11) holds then the market impact cost
within the model is larger than the true market impact cost and hence money are essentially considered
garbage and removed by generating transaction costs. This may happen if a portfolio with very small
risk is requested because then the only way to obtain a small risk is to get rid of some of the assets by
generating transaction costs. Here it is assumed this is not the case and hence the models (8.9) and
(8.10) are equivalent.

Formula (8.10) is replaced by constraints

0
zj =z xy— x5,
12
zj > —(z;—a)). (8.12)
Now we have
maximize uTac
subject to ez 4+mTe = w+elad,
Zj 2 Tj— ‘T?’ .] 17 y 1y
25 > 20—z, j=1 N
[,; GT.’E] c Qn+1 7’ ’ ’ (813)
) b
[Uj7cj7zj] € 7?:’ J 13' , 1,
[2:1/8v;] € 3 i=1,...,n,
T > 0.

The revised budget constraint

eT:r =w + eTxO — mTc

specifies that the total investment must be equal to the initial wealth minus the transaction costs.
Moreover, observe the variables v and z are some auxiliary variables that model the market impact
cost. Indeed it holds

zj > |x; —m?

and

3/2
cj > Z .

Before proceeding it should be mentioned that transaction costs of the form
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) p/a
Cj 2 %,

where p and ¢ are both integers and p > ¢ can be modelled using quadratic cones. See [7] for details.

One more reformulation of (8.13) is needed,

maximize pulz

subject to  eTz +mTe = w+ell,
Glo—t = 0,
Zj — X > —.’E?, J 1; -1y
Zj +xﬂ Z 127 J= 11 ) 1,
[’Uj'Cj'Zj] —fj 1:3 = 0 =1 ., N
) ) P b ) b b 8.14

[2j;05v5] —gji3s = [0;-1/80], j=1,...,n, (8:14)
[s; ¢] e Q"

'7:1:3 € 7333 .7 1; . anv
95.1:3 € 2, j=1...,n
€T > 0,
s = 7

where f,g € R" 3. These additional variables f and g are only introduced to bring the problem on
the API standard form.

The formulation (8.14) is not the most compact possible. However, the MOSEK presolve will auto-
matically make it more compact and since it is easier to implement (8.14) than a more compact form
then the form (8.14) is preferred.

The first step in developing the optimizer API implementation is to chose an ordering of the variables.
In this case the ordering

=2
Il

will be used. Note f7(:) means the rows of f are transposed and stacked on top of each other to form
a long column vector. The Table 8.2 shows the mapping between the & and the model variables.

The next step is to consider how the columns of A is defined. Reusing the idea in Section 8.1.2 then
the following pseudo code describes the setup of A.
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Variable Length Offset

T n 1

s 1 n+1

t n n+2

c n 2n+2

v n 3n+2

z n 4n-+2

foT 3n +2

g(»)T 3n 10n+-2

Figure 8.2: Storage layout for the &

Tny1 =S

for

j=1:n
Tj=1Tj

Al,j =1.0
A21n+1,j = G}jl:n
Anyi4j5 =—1.0

A2n+1+j,j - 10

j=1:n
Tpy14j =15
A1+j,n+1+j =-1.0

j=1:n

Tont11j = ¢j
A1,2n+1+j =my;

Aznt+1+3(-1)+2,2n41+5 = 1.0

j=1:n
T3nt145 = V5

A3nt143(—1)+1,3n414j =
Abnt143(—1)+3,3n+14+5 =

j=1:n

Lant14j = 7
Artntjantr+j = 1.0
Att2ntjanti+j = 1.0

A3n+1+3(j—1)+3,4n+1+j =

1.0
1.0

1.0

Abn414+3(G—1)+1,4n+1+5 = 1.0

j=1:n
Trp143G-1)+1 = fin

A3n+143(—1)+1,7n+ (3G —1)+1

Trns1430G—1)+2 = fi2

A3n4143(G-1)4+2,7n+(3(—1)+2

£7n+1+3(j71)+3 = fj,3

A3nt143(j—1)+3,7n+(3(G—1)+3

j=1:n
T10n+1430G-1)+1 = Jj,1

Abnt143G—1)+1,7n+(3(—1)+1

ﬁl()n+1+3(j71)+2 =9Gj2

Abnt143(—1)+2,7n+(B(G—1)+2

T10n+1430G-1)+3 = 95,3

Abn414+3(G—1)+3,7n+(3(—1)+3

=-1.0

=-1.0

=-1.0

=-1.0

=-1.0

=-1.0
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The following example code demonstrates how to implement the model (8.14).

[ case_portfolio 3.py]

File : case_portfolio_3.py
Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.

Description : Implements a basic portfolio optimization model.

import mosek

try:

from numpy import zeros
except ImportError:

from mosek.array import zeros

def streamprinter(text):
print("%s" % text),

if _name__ == ’_main__’:

n =3

gamma = 0.05

mu = [0.1073, 0.0737, 0.0627]

GT = [[0.1667, 0.0232, 0.0013],
[0.0000, 0.1033, -0.0022],
[0.0000, 0.0000, 0.0338]]

x0 = [0.0, 0.0, 0.0]

w =1.0
m [0.01, 0.01, 0.01]

# This value has no significance.
inf =0.0

with mosek.Env() as env:
with env.Task(0,0) as task:
task.set_Stream(mosek.streamtype.log,streamprinter)

rtemp = w
for j in range(O,n):
rtemp += x0[j]

# Constraints.

task.appendcons (1+9%n)
task.putconbound(0,mosek.boundkey.fx,rtemp,rtemp)
task.putconname (0, "budget")

task.putconboundlist (range (1+0,1+n) ,n* [mosek.boundkey.fx],n*[0.0] ,n*[0.0])
for j in range(1,1+n)
task.putconname(j,"GT[%d]" % j)

task.putconboundlist (range (1+n,1+2#%n) ,n* [mosek.boundkey.lo]l, [-x0[j] for j in range(O,n)],n*[inf])
for i in range(O,n):

task.putconname (1+n+i,"zabs1[/d]" % (1+i))

task.putconboundlist (range (1+2%n,1+3%n) ,n* [mosek.boundkey.lo] ,x0,n* [inf])
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for i in range(O,n):
task.putconname (1+2*n+i, "zabs2[%d]" % (1+i))

task.putconboundlist (range (1+3*n,1+3%n+3*n) ,3*n* [mosek.boundkey.fx],3*n*[0.],3*n*[0.0])
for i in range(O,n):
for k in range(O,n):
task.putconname (1+3*n+3xi+k,"f [%d,%d]" % (1+i,1+k))

task.putconboundlist (range (1+6%n,1+9*n) ,3*n* [mosek.boundkey.fx],
3+[0.0, -1.0/8.0, 0.0],3%[0.0, -1.0/8.0, 0.01)
for i in range(O,n)
for k in range(O,n):
task.putconname (1+6*n+3*i+k,"g[/d,%d]" % (1+i,1+k))

# Offset of variables into the API variable.
offsetx = 0

offsets = n

offsett = n+1

offsetc = 2*n+1

offsetv = 3*n+1

offsetz = 4*n+1

offsetf = 5*n+1

offsetg = 8*n+1

# Variables.
task.appendvars (1+11%n)

# x variables.

task.putclist(range(offsetx+0,offsetx+n) ,mu)

task.putaijlist(n*[0],range(offsetx+0,offsetx+n),n*[1.0])

for j in range(O,n):
task.putaijlist(n*[1+j] ,range(offsetx+0,offsetx+n),GT[j])
task.putaij(1+n+j,offsetx+j,-1.0)
task.putaij(1+2*n+j,offsetx+j,1.0)

task.putvarboundlist (range(offsetx+0,offsetx+n) ,n* [mosek.boundkey.lo] ,n*[0.0] ,n*[inf])
for j in range(O,n):
task.putvarname (offsetx+j,"x[%d]" % (1+3))

# s variable.
task.putvarbound (offsets+0,mosek.boundkey.fx,gamma, gamma)
task.putvarname (offsets+0,"s")

# t variables.
task.putaijlist(range(1,n+1) ,range(offsett+0,offsett+n),n*[-1.0])
task.putvarboundlist (range (offsett+0,offsett+n) ,n* [mosek.boundkey.fr] ,n*[-inf] ,n*[inf])
for j in range(O,n):
task.putvarname (offsett+j,"t[/d]l" % (1+j))

# c variables.
task.putaijlist(n*[0],range(offsetc,offsetc+n),m)
task.putaijlist(range(1+3*n+1,1+6%n+1,3) ,range(offsetc,offsetc+n) ,nx[1.0])
task.putvarboundlist (range (offsetc,offsetc+n) ,n* [mosek.boundkey.fr] ,n*[-inf] ,n*[inf])
for j in range(O,n):

task.putvarname (offsetc+j,"c[/d]l" % (1+j))

# v variables.
task.putaijlist (range(1+3%n+0,1+6*n+0,3) ,range (offsetv,offsetv+n) ,n*[1.0])

121
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task.putaijlist(range (1+6%n+2,1+9*n+2,3) ,range (offsetv,offsetv+n) ,n*[1.0])
task.putvarboundlist (range (offsetv,offsetv+n) ,n* [mosek.boundkey.fr] ,n*[-inf] ,n*[inf])
for j in range(O,n):

task.putvarname (offsetv+j,"v[%d]" % (1+3))

# z variables.
task.putaijlist(range(1+1%n,1+2*n) ,range(offsetz,offsetz+n) ,n*[1.0])
task.putaijlist(range(1+2%n,1+3*n) ,range(offsetz,offsetz+n) ,nx[1.0])
task.putaijlist(range(1+3%n+2,1+6*n+2,3) ,range (offsetz,offsetz+n) ,n*[1.0])
task.putaijlist (range (1+6%n+0,1+9*n+0,3) ,range (offsetz,offsetz+n) ,n*[1.0])
task.putvarboundlist (range(offsetz,offsetz+n) ,n* [mosek.boundkey.fr] ,n*[-inf] ,n*[inf])
for j in range(O,n):

task.putvarname (offsetz+j,"z[/d]l" % (1+j))

# f variables.
for j in range(O,n):
for k in range(O,n):
task.putaij(1+3*n+3*j+k,offsetf+3*j+k,-1.0)
task.putvarbound (offsetf+3*j+k,mosek.boundkey.fr,-inf,inf)
task.putvarname (offsetf+3*j+k,"f[%d,%d]" % (1+j,1+k))

# g variables.
for j in range(O,n):
for k in range(O,n):
task.putaij(1+6*n+3*j+k,offsetg+3*j+k,-1.0)
task.putvarbound (offsetg+3*j+k,mosek.boundkey.fr,-inf,inf)
task.putvarname (offsetg+3*j+k,"g[%d,%d]l" % (1+j,1+k))

task.appendcone (mosek.conetype.quad,0.0, [offsets] + range(offsett,offsett+n))
task.putconename (0, "stddev")

for k in range(O,n):
task.appendconeseq(mosek. conetype.rquad,0.0,3,0f fsetf+3xk)
task.putconename (1+k,"f [%d]" % (1+k))

for k in range(O,n):
task.appendconeseq(mosek.conetype.rquad,0.0,3,o0ffsetg+3*k)
task.putconename (1+n+k, "g[/%d]" % (1+k))

task.putobjsense(mosek.objsense.maximize)

# Turn all log output off.
# task.putintparam(mosek.iparam.log,0)

# Dump the problem to a human readable OPF file.
#task.writedata("dump.opf")

task.optimize()

# Display the solution summary for quick inspection of results.
task.solutionsummary(mosek.streamtype.msg)

expret = 0.0
x = zeros(n,float)
task.getxxslice (mosek.soltype.itr,offsetx+0,offsetx+n,x)
for j in range(O,n):
expret += mul[jl*x[j]
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stddev = zeros(1,float)

task.getxxslice(mosek.soltype.itr,offsets+0,offsets+1,stddev)

print ("\nExpected return %e for gamma %e\n" % (expret,stddev[0]))
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The example code above produces the result

Interior-point solution summary

Probl
Solut

em status
ion status : OPTIMAL

Primal. obj: 7.4390660228e-002

Dual.

obj: 7.4390669047e-002

: PRIMAL_AND _DUAL_FEASIBLE

Viol. con: 2e-007
Viol. con: 1e-008

Expected return 7.439066e-02 for gamma 5.000000e-02

If the problem is dumped to an OPF formatted file, then it has the following content.

[comment]

Written by MOSEK version 7.0.0.86

Date
Time

01-10-13
07:47:34

[/comment]

[hints]
[hint
[hint
[hint
[hint
[hint

[/hints

[variab
’x[1]
't [2]
'v[1]
’z[3]

NUMVAR] 34 [/hint]
NUMCON] 28 [/hint]
NUMANZ] 60 [/hint]
NUMQNZ] O [/hint]
NUMCONE] 7 [/hint]
1

les disallow new_variables]
> ox[2] °x[3]’ s ’t[1]’

> 2¢[3]2 ’cl1]’ ’c[2]’ ’c[3]°

B 7V[2]’ ’V[3]’ 72[1]; 72[2])
> f[1,11° °f£[1,2]1° °£[1,3]°

'f[2,2]° °f[2,3]’ ’f[3,1]’ °f[3,2]

'gl1,1]1° ’gl1,2]° ’gl1,3]1’ °gl2,1]1’ ’gl2,2]’

’gl2,3]1’ ’gl3,11’ ’gl3,2]’ ’gl3,3]’
[/variables]

[object

1.073e-001 ’x[1]° + 7.37e-002 ’x[2]’ + 6.270000000000001e-002 ’x[3]°

ive maximize]

[/objective]

[constraints]
’budget’] ’x[1]’ + ’x[2]° + ’x[3]’ + 1e-002 ’c[1]’ + 1e-002 ’c[2]’

[con

+
[con
[con
[con
[con
[con
[con
[con
[con
[con
[con

1e-002 ’c[3]’ = 1e+000 [/con]

’GT[1]°] 1.667e-001 ’x[1]’ + 2.32e-002 ’x[2]’ + 1.3e-003 ’x[3]’ - ’t[1]’ = 0e+000 [/con]

"£[2,1]°

>

’£[3,3]°

var:
var:

0e+000
1e-008

cones:
cones:

GT[2]°] 1.033e-001 ’x[2]’ - 2.2e-003 ’x[3]’ - ’t[2]’ = 0e+000 [/con]
>GT[3]’] 3.38e-002 ’x[3]’ - ’t[3]’ = 0e+000 [/con]
’zabs1[1]’] 0e+000 <= - °’x[1]’ + ’z[1]’ [/con]
’zabs1[2]’] 0e+000 <= - ’x[2]’ + ’z[2]’ [/con]

’zabs1[3]’] 0e+000 <= - ’x[3]’ + ’z[3]’ [/con]
*zabs2[1]°] 0e+000 <= ’x[1]’ + ’z[1]’ [/con]
’zabs2[2]°] 0e+000 <= ’x[2]° ’z[2]° [/con]

’zabs2[3]’] 0e+000 <= ’x[3]’
°f[1,11°] °v[1]’ - °£[1,1]°

+
+

’z[3]° [/con]
0e+000 [/con]

1e-009
0e+000
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[con ’£[1,2]°]
[con ’£[1,3]’]
[con ’£[2,1]°]
[con ’£[2,2]°]
[con ’£[2,3]’]
[con ’£[3,1]°]
[con ’£[3,2]°]
[con ’£[3,3]’]
[con ’g[1,1]°]
[con ’g[1,2]°]
[con ’g[1,3]°]
[con ’g[2,1]°]
[con ’g[2,2]°]
[con ’g[2,3]°]
[con ’g[3,1]’]
[con ’g[3,2]°]
[con ’g[3,3]°]
[/constraints]

[bounds]

c[11’ - °£[1,2]°
’z[1]° - °£[1,3]°
'v[2]’ - °f[2,1]°
’c[2] - ’£[2,2]°
’z[2]° - °£[2,3]°
'v[3] - °£[3,1]°
’c[3]1’ - ’£[3,2]°
’z[3]’ - °£[3,3]°
’Z[l]’ - ’g[i,l]’

- ’g[1,2]’ = -1.25e

'v[1]’ - ’gl1,3]°
'z[2]’ - ’gl2,1]”°

- ’gl2,2]’ = -1.2be

v2]’ - 0gl2,3]°
’z[3]’ - ’gl3,1]°

0e+000 [/con]
0e+000 [/con]
0e+000 [/con]
0e+000 [/con]
0e+000 [/con]
0e+000 [/con]
0e+000 [/con]
0e+000 [/con]
0e+000 [/con]
-001 [/con]

0e+000 [/con]
0e+000 [/con]
-001 [/con]

0e+000 [/con]
0e+000 [/con]

- ’gl[3,2]” = -1.25e-001 [/con]
’v[3]’ - ’g[3,3]’ = 0e+000 [/con]

[b] 0 <= * [/b]

[b]
[b]
[b]
[b]
[b]
[b]

[cone quad ’stddev’] s, ’t[1]’, ’t[2]’,
[cone rquad ’£[1]°]
[cone rquad ’£[2]°]
[cone rquad ’£[3]°]
[cone rquad ’g[1]’]
[cone rquad ’g[2]°]
[cone rquad ’g[3]’]

[/bounds]

s = b5e-002 [/b]
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'£[1]1°,°t[2]1°,°t[3]1°,°c[1]’,°c[2]’,°c[3]’ free [/Db]
'v[1]1°,°v[2]°,°v([3]’,°2z[1]°,°2[2]’,°2[3]’ free [/Db]
’f[1,11°,°f[1,2]°,°£[1,3]’,°f[2,1]°,°f[2,2]’,°f[2,3]’ free [/Db]
£[3,1]7,°£[3,21°,°£[3,317,°g[1,117,7g[1,2]1,°g[1,3]’ free [/b]
'gl2,11°,°gl2,2]°,°gl[2,3]°,°g[3,1]1°,°g[3,2]°,°g[3,3]° free [/Db]

’f[1,1]1°, °£[1,2]1°, °£[1,3]°
£(2,11°, ’£[2,2]°, ’£[2,3]°
’£[3,1]1°, °£[3,2]°, ’£[3,3]°
7g[1,1]), ;g[1,2]7’ ;g[i’sja
g2,117, ’gl2,2]1°, ’gl2,3]’
)g[s’l:li’ 7g[3’2]7’ ;g[a’s:la

’t[3]1° [/conel

[/cone]
[/cone]
[/conel
[/cone]
[/conel
[/cone]

The file verifies that the correct problem has been setup.



Chapter 9
Usage guidelines

The purpose of this chapter is to present some general guidelines to follow when using MOSEK.

9.1 Verifying the results

The main purpose of MOSEK is to solve optimization problems and therefore the most fundamen-
tal question to be asked is whether the solution reported by MOSEK is a solution to the desired
optimization problem.

There can be several reasons why it might be not case. The most prominent reasons are:

e A wrong problem. The problem inputted to MOSEK is simply not the right problem, i.e. some
of the data may have been corrupted or the model has been incorrectly built.

e Numerical issues. The problem is badly scaled or otherwise badly posed.

e Other reasons. E.g. not enough memory or an explicit user request to stop.

The first step in verifying that MOSEK reports the expected solution is to inspect the solution summary
generated by MOSEK. The solution summary provides information about

e the problem and solution statuses,
e objective value and infeasibility measures for the primal solution, and

e objective value and infeasibility measures for the dual solution, where applicable.

By inspecting the solution summary it can be verified that MOSEK produces a feasible solution, and, in
the continuous case, the optimality can be checked using the dual solution. Furthermore, the problem
itself ca be inspected using the problem analyzer discussed in section 13.1.

If the summary reports conflicting information (e.g. a solution status that does not match the actual
solution), or the cause for terminating the solver before a solution was found cannot be traced back to
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the reasons stated above, it may be caused by a bug in the solver; in this case, please contact MOSEK
support.

9.1.1 Verifying primal feasibility

If it has been verified that MOSEK solves the problem correctly but the solution is still not as expected,
next step is to verify that the primal solution satisfies all the constraints. Hence, using the original
problem it must be determined whether the solution satisfies all the required constraints in the model.
For instance assume that the problem has the constraints

1+ 2x0 +23 <1,
z1,T2,73 >0

and MOSEK reports the optimal solution

£U1:£L'2:£L'3:1.

Then clearly the solution violates the constraints. The most likely explanation is that the model does
not match the problem entered into MOSEK, for instance

T, — 229+ 13 <1

may have been inputted instead of

I1+2I2+1'3§1.

A good way to debug such an issue is to dump the problem to OPF file and check whether the violated
constraint has been specified correctly.

9.1.2 Verifying optimality

Verifying that a feasible solution is optimal can be harder. However, for continuous problems optimality
can verified using a dual solution. Normally, MOSEK will report a dual solution; if that is feasible
and has the same objective value as the primal solution, then the primal solution must be optimal.

An alternative method is to find another primal solution that has better objective value than the one
reported to MOSEK. If that is possible then either the problem is badly posed or there is bug in
MOSEK.

9.2 Turn on logging

While developing a new application it is recommended to turn on logging, so that error and diagnostics
messages are displayed. See example in section 5.2 for instructions on turning log output on. You
should also always cache and handle any exceptions thrown by MOSEK.

More log information can be obtained by modifying one or more of the parameters:
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e iparam.log,

e iparam.log_intpnt,

e iparam.logmio,

e iparam.log_cut_second_opt,
e iparam.log sim, and

e iparam.log sim minor.

By default MOSEK will reduce the amount of log information after the first optimization on a given
task. To get full log output on subsequent optimizations set:

iparam.log_cut_second_opt 0

9.3 Writing task data to a file

If something is wrong with a problem or a solution, one option is to output the problem to an OPF
file and inspect it by hand. Use the Task.writedata function to write a task to a file immediately
before optimizing, for example as follows:

task.writedata("taskdump.opf")
task.optimizetrm()

This will write the problem in task to the file taskdump.opf. Inspecting the text file taskdump. opf
may reveal what is wrong in the problem setup.

9.4 Important API limitations

9.4.1 Thread safety

The MOSEK API is thread safe in the sense that any number of threads may use it simultaneously.
However, the individual tasks and environments may only be accessed from at most one thread at a
time.
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Chapter 10

Problem formulation and solutions

In this chapter we will discuss the following issues:

e The formal definitions of the problem types that MOSEK can solve.
e The solution information produced by MOSEK.

e The information produced by MOSEK if the problem is infeasible.

10.1 Linear optimization

A linear optimization problem can be written as

minimize T+
subject to 1¢ < Az < (10.1)
< T < u”,

where

e m is the number of constraints.

e 1 is the number of decision variables.

e z € R™ is a vector of decision variables.

e ¢ € R” is the linear part of the objective function.

o A c R™*X"™ is the constraint matrix.

[¢ € R™ is the lower limit on the activity for the constraints.

u® € R™ is the upper limit on the activity for the constraints.
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e [* € R™ is the lower limit on the activity for the variables.
e y” € R” is the upper limit on the activity for the variables.

A primal solution (x) is (primal) feasible if it satisfies all constraints in (10.1). If (10.1) has at least
one primal feasible solution, then (10.1) is said to be (primal) feasible.

In case (10.1) does not have a feasible solution, the problem is said to be (primal) infeasible .

10.1.1 Duality for linear optimization

Corresponding to the primal problem (10.1), there is a dual problem

maximize (19T sf — (u®)Ts¢ + (1%)Ts? — (u®)Ts% + ¢f

subject to ATy+si—st = ¢ (10.2)
) + Slc - SC = Oa .
s¢. g g% xu > 0
l75u78[ ;S f :

u

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at
0, and we use the convention that the product of the bound value and the corresponding dual variable
is 0. E.g.

7 =-00 = (s);=0and [ (s7); =0.
This is equivalent to removing variable (s7); from the dual problem.

A solution

(¥, 55 80> 5T 80)
to the dual problem is feasible if it satisfies all the constraints in (10.2). If (10.2) has at least one
feasible solution, then (10.2) is (dual) feasible, otherwise the problem is (dual) infeasible.

10.1.1.1 A primal-dual feasible solution
A solution
(z,y, 87,80, 5, 54)

is denoted a primal-dual feasible solution, if (x) is a solution to the primal problem (10.1) and

(y,s7,85,s7,s0) is a solution to the corresponding dual problem (10.2).

10.1.1.2 The duality gap

Let
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be a primal-dual feasible solution, and let

()" = Ax™.

For a primal-dual feasible solution we define the duality gap as the difference between the primal and
the dual objective value,

char ek — (17 (s7)" — (u) T (s5)" + (lm)lT(S‘f)* — ()" (s3)" +¢f)
= D LD —19) + ()i (uf — @) + Y [(s7)] (x5 — 1) + ()] (uf — )] (10.3)
j=0
>0
where the first relation can be obtained by transposing and multiplying the dual constraints (10.2)
by x* and (z°)* respectively, and the second relation comes from the fact that each term in each sum

is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

10.1.1.3 When the objective is to be maximized

When the objective sense of problem (10.1) is maximization, i.e.

maximize T+
subject to 1¢ < Az <
< T < ",

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (10.2). The dual problem thus takes the form

minimize (19T s¢ — (u)Ts¢ + (1%)Ts7 — (u®)Ts® +¢f
subject to ATy +s7 —s* = ¢
—y+si—s;, = 0,
ST, 85,80, Sy < 0.

This means that the duality gap, defined in (10.3) as the primal minus the dual objective value,
becomes nonpositive. It follows that the dual objective will always be greater than or equal to the
primal objective.

10.1.1.4 An optimal solution
It is well-known that a linear optimization problem has an optimal solution if and only if there exist

feasible primal and dual solutions so that the duality gap is zero, or, equivalently, that the comple-
mentarity conditions
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(sDf((x)* =15) = 0, i=0,...,m—1,
(sO)i(u§ — (a5)*) = 0, i=0,....,m—1,
(sf)j(x;—lf) =0, j=0,...,n—1,
(si)i(uf —af) = 0, j=0,...,n—1,

are satisfied.

If (10.1) has an optimal solution and MOSEK solves the problem successfully, both the primal and
dual solution are reported, including a status indicating the exact state of the solution.

10.1.2 Infeasibility for linear optimization

10.1.2.1 Primal infeasible problems

If the problem (10.1) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize  (19)7s — (u)"s5 + (17)5F — (u”) st

subject to ATy +s7 —s% = 0,
A S S (10.4)

SC c Z‘T ZL’u > O7

U Sus S1y Sy = ’

such that the objective value is strictly positive, i.e. a solution

(", ()75 (50)75 (1) (s3)")
to (10.4) so that

)" (s7)" = ()" (s5)™ + (") (s7)" = (u™) " (s3)" > 0.
Such a solution implies that (10.4) is unbounded, and that its dual is infeasible. As the constraints to
the dual of (10.4) is identical to the constraints of problem (10.1), we thus have that problem (10.1) is
also infeasible.

10.1.2.2 Dual infeasible problems

If the problem (10.2) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize s
subject to ¢ < Az < 4f (10.5)
*r < T < 4",
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where
P 0 if If > —o0 0 ifuf<oo
= oo d u; = v
v { — oo otherwise, and oo otherwise,
and
o _ 0 if 17 > SO0 0 ifuj <-oo,
J — oo otherwise, J oo otherwise,

such that the objective value ¢’z is strictly negative.

Such a solution implies that (10.5) is unbounded, and that its dual is infeasible. As the constraints to
the dual of (10.5) is identical to the constraints of problem (10.2), we thus have that problem (10.2) is
also infeasible.

10.1.2.3 Primal and dual infeasible case
In case that both the primal problem (10.1) and the dual problem (10.2) are infeasible, MOSEK will

report only one of the two possible certificates — which one is not defined (MOSEK returns the first
certificate found).

10.2 Conic quadratic optimization

Conic quadratic optimization is an extensions of linear optimization (see Section 10.1) allowing conic
domains to be specified for subsets of the problem variables. A conic quadratic optimization problem
can be written as

minimize Tr+cf
subject to ¢ < Ax <
o< . < W (10.6)
z €C,

where set C is a Cartesian product of convex cones, namely C = C;x --- xC,. Having the domain
restriction, x € C, is thus equivalent to

.fL't S Ct - Rnt7

where x = (2!,...,2P) is a partition of the problem variables. Please note that the n-dimensional
Euclidean space R™ is a cone itself, so simple linear variables are still allowed.

MOSEK supports only a limited number of cones, specifically:

e The R™ set.
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e The quadratic cone:

e The rotated quadratic cone:
n
Q;Z :EGR":QxleZZm

Although these cones may seem to provide only limited expressive power they can be used to model a

wide range of problems as demonstrated in [7].

10.2.1 Duality for conic quadratic optimization
The dual problem corresponding to the conic quadratic optimization problem (10.6) is given by

(1755 — ()55 + ()7sF — ()55 + f

maximize
subject to ATy + st —st+s2 = ¢
Cy+sios = 0 (10.7)
N
sy eCr,

where the dual cone C* is a Cartesian product of the cones
C*=Cix - xCp,
where each C} is the dual cone of C;. For the cone types MOSEK can handle, the relation between the

primal and dual cone is given as follows:

e The R™ set:

C=R™ & Cf ={seR™: s=0}.

e The quadratic cone:
23

Ci=0Q,, & C =0, =(seR™: 5 > Zs? .
j=2

e The rotated quadratic cone:

Nt

C:=Q,, & C =9, ={scR" 255 > ZSE’ 5120, 522>0
j=3
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Please note that the dual problem of the dual problem is identical to the original primal problem.

10.2.2 Infeasibility for conic quadratic optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of the infeasibility. This works

exactly as for linear problems (see Section 10.1.2).

10.2.2.1 Primal infeasible problems

If the problem (10.6) is infeasible, MOSEK will report a certificate of primal infeasibility: The dual

solution reported is the certificate of infeasibility, and the primal solution is undefined.

A certificate of primal infeasibility is a feasible solution to the problem

maximize  (19)7sf — (u)Ts¢ 4 (1%)TsF — (u®)Ts®

subject to ATy 457 — s +s° = 0,
515 Sus 51 » S E
sy e Cr,

such that the objective value is strictly positive.

10.2.2.2 Dual infeasible problems

(10.8)

If the problem (10.7) is infeasible, MOSEK will report a certificate of dual infeasibility: The primal

solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the problem

minimize 'z
subject to ¢ < Ax < af,
< T < 4",
z €C,
where
- 0 if I$ > —o0 e 0 ifu<oo
5= P 77 and af = v
— oo otherwise, oo otherwise,
and
T : x
jr 0 ity > =00, d AT = 0 ifuj <.oo,
J — oo otherwise, J oo otherwise,

such that the objective value is strictly negative.

(10.9)
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10.3 Semidefinite optimization

Semidefinite optimization is an extension of conic quadratic optimization (see Section 10.2) allowing
positive semidefinite matrix variables to be used in addition to the usual scalar variables. A semidefinite
optimization problem can be written as

n—1 p—1
minimize Z cjr + Z <€j,yj> +¢f
j=0 j=0
n—1 p—1
subject to 1§ < Y agwj+y (A X;) < owuf, i=0,...,m-1 (10.10)
j=0 j=0
i < T < wuj, j=0,...,n—1
xEC’XJGS:;v 7=0,...,p—1

where the problem has p symmetric positive semidefinite variables Yj € S;’; of dimension 7; with
symmetric coefficient matrices éj €S, and Ziﬁ j € Sp,;. We use standard notation for the matrix inner
product, i.e., for U,V € R™*" we have

m—1n—1

i=0 j=0

With semidefinite optimization we can model a wide range of problems as demonstrated in [7].

10.3.1 Duality for semidefinite optimization

The dual problem corresponding to the semidefinite optimization problem (10.10) is given by

maximize (19T s¢ — (u)Ts¢ + (1%)Ts7 — (u®)Ts® +¢f
c— ATy +s% —sF = 5%,
subject to - m.o _
C;— i Aij = S, j=0,....p—1
J ;?ﬁ 1] VEI .] ’ 7p (1011)
5| — Sy L
ST S0 ST » S > 0,
sy e Cr, SjeSj;, j=0,....,p—1

where A € R™*™, A;; = a;;, which is similar to the dual problem for conic quadratic optimization (see
Section 10.7), except for the addition of dual constraints

(éj — Zyzzw) S Sj;
=0

Note that the dual of the dual problem is identical to the original primal problem.
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10.3.2 Infeasibility for semidefinite optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of the infeasibility. This works
exactly as for linear problems (see Section 10.1.2).

10.3.2.1 Primal infeasible problems

If the problem (10.10) is infeasible, MOSEK will report a certificate of primal infeasibility: The dual
solution reported is a certificate of infeasibility, and the primal solution is undefined.

A certificate of primal infeasibility is a feasible solution to the problem

maximize (1) s — (u)TsC + (1%)TsF — (u™)Ts®
ATy 47 — s +5° = 0,
subject to m-1 B
z%%‘AijﬂLSj = 0 j=0,...,p—1 (10.12)
1=
—y s =Sy = 0,
815 Sus 51 Su > 0,
s, €C*, S5 €87, j=0,...,p—1

such that the objective value is strictly positive.

10.3.2.2 Dual infeasible problems

If the problem (10.11) is infeasible, MOSEK will report a certificate of dual infeasibility: The primal
solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the problem

n—1 p—1
minimize Z cjx; + Z <Cj, Xj>
§=0 §=0
p—1
subject to [{ < Za”xj + Z <ZU,Y]> < af, i=0,...,m-—1 (10.13)
~ 7j=1 7=0
A < xT < Ama
xEC,YjES;';, i=0,....,p—1
where
- 0 if I > —o0 , 0 ifuf<oo
- i ’ 0 = i ’
li { — oo otherwise, and i : { oo otherwise,
and
- 0 if 17 > —o0 if uf < oo
T — J ? AT J )
L { — 00 otherwise, and i : { oo otherwise,
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such that the objective value is strictly negative.

10.4 Quadratic and quadratically constrained optimization

A convex quadratic and quadratically constrained optimization problem is an optimization problem of
the form

1
minimize ixTQoz +Tr+f
1 n—1
subject to [ < *xTQkx—FZak]xJ < wg, k=0,...,m—1, (10.14)
§=0
i < Zj < wj, j=0,...,n—1,

where Q° and all Q¥ are symmetric matrices. Moreover for convexity, Q° must be a positive semidefinite
matrix and Q* must satisfy

—o00<I{ = Q" is negative semidefinite,
up, < oo = QF is positive semidefinite,
—o<lf<uf <o = QF=0.
The convexity requirement is very important and it is strongly recommended that MOSEK is applied
to convex problems only.

Note that any convex quadratic and quadratically constrained optimization problem can be reformu-
lated as a conic optimization problem. It is our experience that for the majority of practical applications
it is better to cast them as conic problems because

e the resulting problem is convex by construction, and

e the conic optimizer is more efficient than the optimizer for general quadratic problems.

See [7] for further details.

10.4.1 Duality for quadratic and quadratically constrained optimization

The dual problem corresponding to the quadratic and quadratically constrained optimization problem
(10.14) is given by

1 m—1
maximize  (19)7sf — (u)Ts¢ + (17)TsF — (u®)Ts% + ixT < Z Y Q" — Q") z+cf
k=0

m—1
subject to ATy +s7— st + ( Z kak — QO) r = ¢ (10.15)
k=0
—y+ s — s = 0,
SisSus ST Sy, > 0
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The dual problem is related to the dual problem for linear optimization (see Section 10.2), but depend
on variable x which in general can not be eliminated. In the solutions reported by MOSEK, the value
of z is the same for the primal problem (10.14) and the dual problem (10.15).

10.4.2 Infeasibility for quadratic and quadratically constrained optimiza-
tion

In case MOSEK finds a problem to be infeasible it reports a certificate of the infeasibility. This works
exactly as for linear problems (see Section 10.1.2).

10.4.2.1 Primal infeasible problems

If the problem (10.14) with all Q¥ = 0 is infeasible, MOSEK will report a certificate of primal infeasi-
bility. As the constraints is the same as for a linear problem, the certificate of infeasibility is the same
as for linear optimization (see Section 10.1.2.1).

10.4.2.2 Dual infeasible problems

If the problem (10.15) with all Q* = 0 is infeasible, MOSEK will report a certificate of dual infeasibility:
The primal solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the problem

minimize 'z
subject to I°© < Az < a
- - ’ 10.16
0 < Q= < o (10.16)
o<z < 4F
where
- 0 if I§ > —o0 0 ifuf<oo
Cc __ 1 ) Aq — K3 )
li = { — oo otherwise, and i : oo otherwise,
and
- 0 if I > —o0 0 ifuf <oo
%= g da? = J -
J { — oo otherwise, and u; oo otherwise,

such that the objective value is strictly negative.
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Chapter 11

The optimizers for continuous
problems

The most essential part of MOSEK is the optimizers. Each optimizer is designed to solve a particular
class of problems i.e. linear, conic, or general nonlinear problems. The purpose of the present chapter
is to discuss which optimizers are available for the continuous problem classes and how the performance
of an optimizer can be tuned, if needed.

This chapter deals with the optimizers for continuous problems with no integer variables.

11.1 How an optimizer works
When the optimizer is called, it roughly performs the following steps:
Presolve:

Preprocessing to reduce the size of the problem.

Dualizer:
Choosing whether to solve the primal or the dual form of the problem.
Scaling;:
Scaling the problem for better numerical stability.
Optimize:
Solve the problem using selected method.
The first three preprocessing steps are transparent to the user, but useful to know about for tuning

purposes. In general, the purpose of the preprocessing steps is to make the actual optimization more
efficient and robust.

141
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11.1.1 Presolve

Before an optimizer actually performs the optimization the problem is preprocessed using the so-called
presolve. The purpose of the presolve is to

e remove redundant constraints,

e climinate fixed variables,

e remove linear dependencies,

e substitute out (implied) free variables, and

e reduce the size of the optimization problem in general.

After the presolved problem has been optimized the solution is automatically postsolved so that the
returned solution is valid for the original problem. Hence, the presolve is completely transparent. For
further details about the presolve phase, please see [3], [9].

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If presolve consumes
too much time or memory compared to the reduction in problem size gained it may be disabled. This
is done by setting the parameter iparam.presolve_use to presolvemode.off.

The two most time-consuming steps of the presolve are

e the eliminator, and

e the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.

11.1.1.1 Numerical issues in the presolve

During the presolve the problem is reformulated so that it hopefully solves faster. However, in rare
cases the presolved problem may be harder to solve then the original problem. The presolve may also
be infeasible although the orinal problem is not.

If it is suspected that presolved problem is much harder to solve than the original then it is suggested
to first turn the eliminator off by setting the parameter iparam.presolve_eliminator_use. If that
does not help, then trying to turn presolve off may help.

Since all computations are done in finite prescision then the presolve employs some tolerances when
concluding a variable is fixed or constraint is redundant. If it happens that MOSEK incorrectly con-
cludes a problem is primal or dual infeasible, then it is worthwhile to try to reduce the parameters
dparam.presolve_tol_x and dparam.presolve_tol_s. However, if actually help reducing the param-
eters then this should be taken as an indication of the problem is badly formulated.
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11.1.1.2 Eliminator

The purpose of the eliminator is to eliminate free and implied free variables from the problem using
substitution. For instance, given the constraints

y = Ziﬁj,
y,x = 0,

y is an implied free variable that can be substituted out of the problem, if deemed worthwhile.

If the eliminator consumes too much time or memory compared to the reduction in problem size
gained it may be disabled. This can be done with the parameter iparam.presolve_eliminator_use
to onoffkey.off.

In rare cases the eliminator may cause that the problem becomes much hard to solve.
11.1.1.3 Linear dependency checker

The purpose of the linear dependency check is to remove linear dependencies among the linear equal-
ities. For instance, the three linear equalities

X + ) + I3 = 1,
X1 + 0.51‘2 = 057
0520 +23 = 0.5

contain exactly one linear dependency. This implies that one of the constraints can be dropped without
changing the set of feasible solutions. Removing linear dependencies is in general a good idea since it
reduces the size of the problem. Moreover, the linear dependencies are likely to introduce numerical
problems in the optimization phase.

It is best practise to build models without linear dependencies. If the linear dependencies are removed
at the modeling stage, the linear dependency check can safely be disabled by setting the parameter
iparam.presolve_lindep_use to onoffkey.off.

11.1.2 Dualizer

All linear, conic, and convex optimization problems have an equivalent dual problem associated with
them. MOSEK has built-in heuristics to determine if it is most efficient to solve the primal or dual
problem. The form (primal or dual) solved is displayed in the MOSEK log. Should the internal
heuristics not choose the most efficient form of the problem it may be worthwhile to set the dualizer
manually by setting the parameters:

e iparam.intpnt_solve form: In case of the interior-point optimizer.

e iparam.sim solve_form: In case of the simplex optimizer.

Note that currently only linear problems may be dualized.
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11.1.3 Scaling

Problems containing data with large and/or small coefficients, say 1.0e +9 or 1.0e — 7, are often hard
to solve. Significant digits may be truncated in calculations with finite precision, which can result in
the optimizer relying on inaccurate calculations. Since computers work in finite precision, extreme
coefficients should be avoided. In general, data around the same ”order of magnitude” is preferred,
and we will refer to a problem, satisfying this loose property, as being well-scaled. If the problem is
not well scaled, MOSEK will try to scale (multiply) constraints and variables by suitable constants.
MOSEK solves the scaled problem to improve the numerical properties.

The scaling process is transparent, i.e. the solution to the original problem is reported. It is important
to be aware that the optimizer terminates when the termination criterion is met on the scaled problem,
therefore significant primal or dual infeasibilities may occur after unscaling for badly scaled problems.
The best solution to this problem is to reformulate it, making it better scaled.

By default MOSEK heuristically chooses a suitable scaling. The scaling for interior-point and simplex
optimizers can be controlled with the parameters iparam.intpnt_scaling and iparam.sim_scaling
respectively.

11.1.4 Using multiple threads

The interior-point optimizers in MOSEK have been parallelized. This means that if you solve linear,
quadratic, conic, or general convex optimization problem using the interior-point optimizer, you can
take advantage of multiple CPU’s.

By default MOSEK will automatically select the number of threads to be employed when solving
the problem. However, the number of threads employed can be changed by setting the parameter
iparam.num threads. This should never exceed the number of cores on the computer.

The speed-up obtained when using multiple threads is highly problem and hardware dependent, and
consequently, it is advisable to compare single threaded and multi threaded performance for the given
problem type to determine the optimal settings.

For small problems, using multiple threads is not be worthwhile and may even be counter productive.

11.2 Linear optimization

11.2.1 Optimizer selection

Two different types of optimizers are available for linear problems: The default is an interior-point
method, and the alternatives are simplex methods. The optimizer can be selected using the parameter
iparam.optimizer.
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11.2.2 The interior-point optimizer

The purpose of this section is to provide information about the algorithm employed in MOSEK interior-
point optimizer.

In order to keep the discussion simple it is assumed that MOSEK solves linear optimization problems
on standard form

minimize Tx
subject to Az = b, (11.1)
xz > 0.

This is in fact what happens inside MOSEK; for efficiency reasons MOSEK converts the problem to
standard form before solving, then convert it back to the input form when reporting the solution.

Since it is not known beforehand whether problem (11.1) has an optimal solution, is primal infeasible
or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason
that MOSEK solves the so-called homogeneous model

Ax —br = 0,
Aly+s—er = 0,

Tt tTy—x = 0, (11.2)
z,s, 7,k > 0

)

where y and s correspond to the dual variables in (11.1), and 7 and & are two additional scalar variables.
Note that the homogeneous model (11.2) always has solution since

(:c,y, 5, T, H) = (0707 0, 070)

is a solution, although not a very interesting one.

Any solution

(m*7y*a8*a7*7K*)

to the homogeneous model (11.2) satisfies

x;sj* =0and 7°k* = 0.

Moreover, there is always a solution that has the property

T+ K* > 0.

First, assume that 7 > 0 . It follows that
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* 7_*
ATy——f—s— = ¢
T Ty ’
S L )
T* T*

¥ g* T*7I€* >
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This shows that :— is a primal optimal solution and (y g—) is a dual optimal solution; this is reported
as the optimal interior-point solution since

is a primal-dual optimal solution.

On other hand, if k* > 0 then

This implies that at least one of

or

T* ) T

\‘
ﬂ‘m
*

¥ y* *
(x7ya3) = <7_*7*7 )

Ax* 0,

Aty +s* = 0,
CTS(}* + bTy* _ FL*,

¥, %, k" > 0

by >0

(11.3)

(11.4)

is satisfied. If (11.3) is satisfied then x* is a certificate of dual infeasibility, whereas if (11.4) is satisfied
then y* is a certificate of dual infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information required
for a solution to the original problem is obtained. A solution to the homogeneous model can be
computed using a primal-dual interior-point algorithm [10].

11.2.2.1 Interior-point termination criterion

For efficiency reasons it is not practical to solve the homogeneous model exactly. Hence, an exact
optimal solution or an exact infeasibility certificate cannot be computed and a reasonable termination

criterion has to be employed.

In every iteration, k, of the interior-point algorithm a trial solution

(xk:7yk) Sk:77-k7l</k)

to homogeneous model is generated where
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xk,sk,Tk,mk > 0.

Whenever the trial solution satisfies the criterion

.’L'k
L LR U !
yk sk‘,
AT+ =l < el ello), and (11.5)
i (L |2 Y (1 min<!cka|,|bTyk|>>
(TF)2 | 7k py > & ) s ,

the interior-point optimizer is terminated and

(z*, y*, s%)

Tk

is reported as the primal-dual optimal solution. The interpretation of (11.5) is that the optimizer is
terminated if

° ;‘—: is approximately primal feasible,
° (2—:, f—i) is approximately dual feasible, and

e the duality gap is almost zero.

On the other hand, if the trial solution satisfies

lell oo
max (L, [|b]] o)

T

—eiclak > ||Aalck||(><J

then the problem is declared dual infeasible and z* is reported as a certificate of dual infeasibility.

The motivation for this stopping criterion is as follows: First assume that HA:B’“H s = 0 ; then z¥ is

an exact certificate of dual infeasibility. Next assume that this is not the case, i.e.

|Az*|| > 0,
and define

1,6
(L bl)
[AZ* ] oo llell oo
It is easy to verify that

HA'f” _ evIIlaX(l, ||b|| OO)
oo — &4 T
llell oo

which shows T is an approximate certificate of dual infeasibility where €; controls the quality of the
approximation. A smaller value means a better approximation.

and —cl'z > 1,
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Tolerance Parameter name

€p dparam.intpnt_tol_pfeas
€d dparam.intpnt_tol_dfeas
€g dparam.intpnt_tol_rel_gap
€; dparam.intpnt_tol_infeas

Table 11.1: Parameters employed in termination criterion.
Finally, if

eibTyk > ”bHOO ) HATyk +Sk|| -

max (1, ||¢]| oo

then y* is reported as a certificate of primal infeasibility.

It is possible to adjust the tolerances €, €4, €, and €; using parameters; see table 11.1 for details. The
default values of the termination tolerances are chosen such that for a majority of problems appearing
in practice it is not possible to achieve much better accuracy. Therefore, tightening the tolerances
usually is not worthwhile. However, an inspection of (11.5) reveals that quality of the solution is
dependent on ||b]| oo and ||¢|| oo; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal
and dual feasibility at the same rate [10]. This means that if the optimizer is stopped prematurely
then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that
in most cases all the tolerances, €,, €; and €,4, has to be relaxed together to achieve an effect.

In some cases the interior-point method terminates having found a solution not too far from meeting
the optimality condition (11.5). A solution is defined as near optimal if scaling €, €4 and €4 by any
number ¢, € [1.0,400] conditions (11.5) are satisfied.

A near optimal solution is therefore of lower quality but still potentially valuable. If for instance the
solver stalls, i.e. it can make no more significant progress towards the optimal solution, a near optimal
solution could be available and be good enough for the user.

The basis identification discussed in section 11.2.2.2 requires an optimal solution to work well; hence
basis identification should turned off if the termination criterion is relaxed.

To conclude the discussion in this section, relaxing the termination criterion is usually is not worthwhile.

11.2.2.2 Basis identification

An interior-point optimizer does not return an optimal basic solution unless the problem has a
unique primal and dual optimal solution. Therefore, the interior-point optimizer has an optional
post-processing step that computes an optimal basic solution starting from the optimal interior-point
solution. More information about the basis identification procedure may be found in [11].

Please note that a basic solution is often more accurate than an interior-point solution.

By default MOSEK performs a basis identification. However, if a basic solution is not needed, the
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basis identification procedure can be turned off. The parameters

e iparam.intpnt_basis,

e iparam.bi_ignore max_iter, and

e iparam.bi_ignore num_error

controls when basis identification is performed.

11.2.2.3 The interior-point log

Below is a typical log output from the interior-point optimizer presented:

Optimizer
Optimizer
Optimizer
Optimizer
Optimizer
Optimizer
Factor
Factor
Factor
Factor
ITE PFEAS

OO WN = O
s

1.0e+000
.1e+000
.4e-001
.4e-002
.3e-004
.3e-008
.3e-012

threads

solved problem

Constraints

Cones

Scalar variables

Semi-definite variables:

setup time
ML order time

nonzeros before factor :

dense dim.
GFEAS

DFEAS
8.6e+000
2.5e+000
3.4e-001
5.8e-002
3.2e-004
3.2e-008
3.2e-012

6.1e+000
1.6e-001
2.1e-002
3.
2
2
2

6e-003

.0e-005
.0e-009
.0e-013

1

: the dual
2
: 0
: 6 conic
0 scalarized
: 0.00 dense det. time
: 0.00 GP order time
3 after factor
: 0 flops
PRSTATUS POBJ DOBJ
1.00e+000 0.000000000e+000 -2.208000000e+003
0.00e+000 -7.901380925e+003 -7.394611417e+003
8.36e-001 -8.113031650e+003 -8.055866001e+003
1.27e+000 -7.777530698e+003 -7.766471080e+003
1.08e+000 -7.668323435e+003 -7.668207177e+003
1.00e+000 -7.668000027e+003 -7.668000015e+003
1.00e+000 -7.667999994e+003 -7.667999994e+003

MU

1
2
3
5.
3
3
3

0

0
: 0.00
: 0.00

3

7.00e+001

TIME

.0e+000 0.00
.5e+000 0.00
.3e-001 0.00
7e-002 0.01
.2e-004 0.01
.2e-008 0.01
.2e-012 0.01
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The first line displays the number of threads used by the optimizer and second line tells that the
optimizer choose to solve the dual problem rather than the primal problem. The next line displays
the problem dimensions as seen by the optimizer, and the "Factor...” lines show various statistics.
This is followed by the iteration log.

Using the same notation as in section 11.2.2 the columns of the iteration log has the following meaning;:

e ITE: Iteration index.

e PFEAS: HAxk — brk H ~ - The numbers in this column should converge monotonically towards to
zero but may stall at low level due to rounding errors.

o DFEAS: ||ATy" + s* —

7| oo

ward to zero but may stall at low level due to rounding errors.

e GFEAS: || —cazF +bTyF — IikH 0 -
toward to zero but may stall at low level due to rounding errors.

. The numbers in this column should converge monotonically to-

The numbers in this column should converge monotonically

e PRSTATUS: This number converge to 1 if the problem has an optimal solution whereas it converge
to —1 if that is not the case.
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POBJ: ¢’z /7%, An estimate for the primal objective value.

DOBJ: bT'y* /7%. An estimate for the dual objective value.

k)TSk—‘er){k

. (@
my:

. The numbers in this column should always converge monotonically to zero.

e TIME: Time spend since the optimization started.

11.2.3 The simplex based optimizer

An alternative to the interior-point optimizer is the simplex optimizer.

The simplex optimizer uses a different method that allows exploiting an initial guess for the optimal
solution to reduce the solution time. Depending on the problem it may be faster or slower to use an
initial guess; see section 11.2.4 for a discussion.

MOSEK provides both a primal and a dual variant of the simplex optimizer — we will return to this
later.

11.2.3.1 Simplex termination criterion

The simplex optimizer terminates when it finds an optimal basic solution or an infeasibility certifi-
cate. A basic solution is optimal when it is primal and dual feasible; see (10.1) and (10.2) for a
definition of the primal and dual problem. Due the fact that to computations are performed in finite
precision MOSEK allows violation of primal and dual feasibility within certain tolerances. The user
can control the allowed primal and dual infeasibility with the parameters dparam.basis_tol x and
dparam.basis_tol_s.

11.2.3.2 Starting from an existing solution

When using the simplex optimizer it may be possible to reuse an existing solution and thereby reduce
the solution time significantly. When a simplex optimizer starts from an existing solution it is said to
perform a hot-start. If the user is solving a sequence of optimization problems by solving the problem,
making modifications, and solving again, MOSEK will hot-start automatically.

Setting the parameter iparam.optimizer to optimizertype.free_simplex instructs MOSEK to se-
lect automatically between the primal and the dual simplex optimizers. Hence, MOSEK tries to choose
the best optimizer for the given problem and the available solution.

By default MOSEK uses presolve when performing a hot-start. If the optimizer only needs very few
iterations to find the optimal solution it may be better to turn off the presolve.

11.2.3.3 Numerical difficulties in the simplex optimizers

Though MOSEK is designed to minimize numerical instability, completely avoiding it is impossible
when working in finite precision. MOSEK counts a ”numerical unexpected behavior” event inside the
optimizer as a set-back. The user can define how many set-backs the optimizer accepts; if that number
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is exceeded, the optimization will be aborted. Set-backs are implemented to avoid long sequences
where the optimizer tries to recover from an unstable situation.

Set-backs are, for example, repeated singularities when factorizing the basis matrix, repeated loss
of feasibility, degeneracy problems (no progress in objective) and other events indicating numerical
difficulties. If the simplex optimizer encounters a lot of set-backs the problem is usually badly scaled;
in such a situation try to reformulate into a better scaled problem. Then, if a lot of set-backs still
occur, trying one or more of the following suggestions may be worthwhile:

e Raise tolerances for allowed primal or dual feasibility: Hence, increase the value of

— dparam.basis_tol_x, and

— dparam.basis_tol_s.
e Raise or lower pivot tolerance: Change the dparam.simplex abs_tol_piv parameter.
e Switch optimizer: Try another optimizer.
e Switch off crash: Set both iparam.sim primal crash and iparam.sim dual _crash to 0.
e Experiment with other pricing strategies: Try different values for the parameters

— iparam.sim primal _selection and
— iparam.sim_dual_selection.

e If you are using hot-starts, in rare cases switching off this feature may improve stability. This is
controlled by the iparam.sim hotstart parameter.

e Increase maximum set-backs allowed controlled by iparam.sim max num _setbacks.

e If the problem repeatedly becomes infeasible try switching off the special degeneracy handling.
See the parameter iparam.sim degen for details.

11.2.4 The interior-point or the simplex optimizer?

Given a linear optimization problem, which optimizer is the best: The primal simplex, the dual simplex
or the interior-point optimizer?

It is impossible to provide a general answer to this question, however, the interior-point optimizer
behaves more predictably — it tends to use between 20 and 100 iterations, almost independently of
problem size — but cannot perform hot-start, while simplex can take advantage of an initial solution,
but is less predictable for cold-start. The interior-point optimizer is used by default.

11.2.5 The primal or the dual simplex variant?

MOSEK provides both a primal and a dual simplex optimizer. Predicting which simplex optimizer
is faster is impossible, however, in recent years the dual optimizer has seen several algorithmic and
computational improvements, which, in our experience, makes it faster on average than the primal
simplex optimizer. Still, it depends much on the problem structure and size.
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Setting the iparam.optimizer parameter to optimizertype.free_simplex instructs MOSEK to
choose which simplex optimizer to use automatically.

To summarize, if you want to know which optimizer is faster for a given problem type, you should try
all the optimizers.

Alternatively, use the concurrent optimizer presented in Section 11.6.3.

11.3 Linear network optimization

11.3.1 Network flow problems

Linear optimization problems with network flow structure can often be solved significantly faster with
a specialized version of the simplex method [12] than with the general solvers.

MOSEK includes a network simplex solver which frequently solves network problems significantly faster
than the standard simplex optimizers.

To use the network simplex optimizer, do the following;:
e Input the network flow problem as an ordinary linear optimization problem.
e Set the parameters
— iparam.optimizer to optimizertype.network _primal_simplex.
e Optimize the problem using Task.optimize.

MOSEK will automatically detect the network structure and apply the specialized simplex optimizer.

11.4 Conic optimization

11.4.1 The interior-point optimizer

For conic optimization problems only an interior-point type optimizer is available. The interior-point
optimizer is an implementation of the so-called homogeneous and self-dual algorithm. For a detailed
description of the algorithm, please see [13].

11.4.1.1 Interior-point termination criteria

The parameters controlling when the conic interior-point optimizer terminates are shown in Table 11.2.
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Parameter name Purpose

dparam.intpnt_co_tol_pfeas Controls primal feasibility
dparam.intpnt_co_tol_dfeas Controls dual feasibility
dparam.intpnt_co_tol_rel_gap Controls relative gap

dparam.intpnt_tol_infeas Controls when the problem is declared infeasible
dparam.intpnt_co_tol mured  Controls when the complementarity is reduced enough

Table 11.2: Parameters employed in termination criterion.

11.5 Nonlinear convex optimization

11.5.1 The interior-point optimizer

For quadratic, quadratically constrained, and general convex optimization problems an interior-point
type optimizer is available. The interior-point optimizer is an implementation of the homogeneous and
self-dual algorithm. For a detailed description of the algorithm, please see [14], [15].

11.5.1.1 The convexity requirement

Continuous nonlinear problems are required to be convex. For quadratic problems MOSEK test this
requirement before optimizing. Specifying a non-convex problem results in an error message.

The following parameters are available to control the convexity check:
e iparam.check convexity: Turn convexity check on/off.
e dparam.check_convexity_rel_tol: Tolerance for convexity check.

e iparam.log check _convexity: Turn on more log information for debugging.

11.5.1.2 The differentiabilty requirement

The nonlinear optimizer in MOSEK requires both first order and second order derivatives. This of
course implies care should be taken when solving problems involving non-differentiable functions.

For instance, the function

fla) =a?

is differentiable everywhere whereas the function

fl@)=Vz

is only differentiable for > 0 . In order to make sure that MOSEK evaluates the functions at points
where they are differentiable, the function domains must be defined by setting appropriate variable
bounds.
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Parameter name Purpose

dparam.intpnt nl tol_pfeas Controls primal feasibility
dparam.intpnt_nl_tol_dfeas Controls dual feasibility
dparam.intpntnl_tol_rel_gap Controls relative gap

dparam.intpnt_tol_infeas Controls when the problem is declared infeasible
dparam.intpnt nl tol mured  Controls when the complementarity is reduced enough

Table 11.3: Parameters employed in termination criteria.

In general, if a variable is not ranged MOSEK will only evaluate that variable at points strictly within
the bounds. Hence, imposing the bound

x>0

in the case of \/z is sufficient to guarantee that the function will only be evaluated in points where it
is differentiable.

However, if a function is differentiable on closed a range, specifying the variable bounds is not sufficient.
Consider the function

fla) ==+ . (11.6)

T 1—x

In this case the bounds

0<x<1

will not guarantee that MOSEK only evaluates the function for = between 0 and 1 . To force MOSEK
to strictly satisfy both bounds on ranged variables set the parameter iparam.intpnt_starting point
to startpointtype.satisfy_bounds.

For efficiency reasons it may be better to reformulate the problem than to force MOSEK to observe
ranged bounds strictly. For instance, (11.6) can be reformulated as follows

e

v
I
< |~

—z—y

coco
INA |
e 8 =y~

11.5.1.3 Interior-point termination criteria

The parameters controlling when the general convex interior-point optimizer terminates are shown in
Table 11.3.
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11.6 Solving problems in parallel

If a computer has multiple CPUs, or has a CPU with multiple cores, it is possible for MOSEK to take
advantage of this to speed up solution times.

11.6.1 Thread safety

The MOSEK API is thread-safe provided that a task is only modified or accessed from one thread at
any given time — accessing two separate tasks from two separate threads at the same time is safe.
Sharing an environment between threads is safe.

11.6.2 The parallelized interior-point optimizer

The interior-point optimizer is capable of using multiple CPUs or cores. This implies that whenever
the MOSEK interior-point optimizer solves an optimization problem, it will try to divide the work so
that each core gets a share of the work. The user decides how many coress MOSEK should exploit.

It is not always possible to divide the work equally, and often parts of the computations and the
coordination of the work is processed sequentially, even if several cores are present. Therefore, the
speed-up obtained when using multiple cores is highly problem dependent. However, as a rule of
thumb, if the problem solves very quickly, i.e. in less than 60 seconds, it is not advantageous to use
the parallel option.

The iparam.num threads parameter sets the number of threads (and therefore the number of cores)
that the interior point optimizer will use.

11.6.3 The concurrent optimizer

An alternative to the parallel interior-point optimizer is the concurrent optimizer. The idea of the
concurrent optimizer is to run multiple optimizers on the same problem concurrently, for instance,
it allows you to apply the interior-point and the dual simplex optimizers to a linear optimization
problem concurrently. The concurrent optimizer terminates when the first of the applied optimizers
has terminated successfully, and it reports the solution of the fastest optimizer. In that way a new
optimizer has been created which essentially performs as the fastest of the interior-point and the
dual simplex optimizers. Hence, the concurrent optimizer is the best one to use if there are multiple
optimizers available in MOSEK for the problem and you cannot say beforehand which one will be
faster.

Note in particular that any solution present in the task will also be used for hot-starting the simplex
algorithms. One possible scenario would therefore be running a hot-start dual simplex in parallel with
interior point, taking advantage of both the stability of the interior-point method and the ability of
the simplex method to use an initial solution.

By setting the

iparam.optimizer

parameter to
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Optimizer Associated Default
parameter priority
optimizertype.intpnt iparam.concurrent_priority_intpnt 4
optimizertype.free_simplex iparam.concurrent_priority_free_simplex 3
optimizertype.primal_simplex iparam.concurrent_priority_primal_simplex 2
optimizertype.dual_simplex iparam.concurrent_priority_dual_simplex 1

Table 11.4: Default priorities for optimizer selection in concurrent optimization.

optimizertype.concurrent
the concurrent optimizer chosen.
The number of optimizers used in parallel is determined by the
iparam.concurrent_num optimizers.

parameter. Moreover, the optimizers are selected according to a preassigned priority with optimizers
having the highest priority being selected first. The default priority for each optimizer is shown in
Table 11.6.3. For example, setting the iparam.concurrent num optimizers parameter to 2 tells the
concurrent optimizer to the apply the two optimizers with highest priorities: In the default case that
means the interior-point optimizer and one of the simplex optimizers.

11.6.3.1 Concurrent optimization through the API

The following example shows how to call the concurrent optimizer through the API.

##

#  Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
#

# File: concurrentl.py

#

#  Purpose: To demonstrate how to optimize in parallel using the

# concurrent optimizer.

##

import sys
import mosek

from mosek.array import array

# Since the actual value of Infinity is ignores, we define it solely
# for symbolic purposes:
inf = 0.0

# Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)

sys.stdout.flush()
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# We might write everything directly as a script, but it looks nicer
# to create a function.
def main (args):

# Open MOSEK and create an environment and task

# Create a MOSEK environment

env = mosek.Env ()

# Attach a printer to the environment

env.set_Stream (mosek.streamtype.log, streamprinter)

# Create a task

task = env.Task(0,0)

# Attach a printer to the task

task.set_Stream (mosek.streamtype.log, streamprinter)

task.readdata(args[0])
task.putintparam(mosek.iparam.optimizer,
mosek.optimizertype.concurrent)

task.putintparam(mosek.iparam.concurrent_num optimizers, 2)
task.optimize()
task.solutionsummary(mosek.streamtype.msg)

# call the main function

try:
main (sys.argv[1:])

except mosek.Exception as e:
print ("ERROR: 7s" % str(e.code))
if msg is not None:

print ("\t%s" % e.msg)

sys.exit (1)

except:
import traceback
traceback.print_exc()
sys.exit (1)

sys.exit(0)

11.6.4 A more flexible concurrent optimizer

MOSEK also provides a more flexible method of concurrent optimization by using the function
Task.optimizeconcurrent. The main advantages of this function are that it allows the calling ap-
plication to assign arbitrary values to the parameters of each tasks, and that call-back functions can
be attached to each task. This may be useful in the following situation: Assume that you know the
primal simplex optimizer to be the best optimizer for your problem, but that you do not know which of
the available selection strategies (as defined by the iparam.sim primal_selection parameter) is the
best. In this case you can solve the problem with the primal simplex optimizer using several different
selection strategies concurrently.

An example demonstrating the usage of the Task.optimizeconcurrent function is included below.
The example solves a single problem using the interior-point and primal simplex optimizers in parallel.

##
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Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

File: concurrent2.py

Purpose: To demonstrate a more flexible interface for concurrent optimization.

import sys

import mosek

from mosek.array import array

# Since the actual value of Infinity is ignores, we define it solely
# for symbolic purposes:

inf

= 0.0

# Define a stream printer to grab output from MOSEK
class streamprinter:

def __init__(self,prefix):
self.prefix = str(prefix)

def __call__(self,text):
#sys.stdout.write (self.prefix + text)
sys.stdout.write (self.prefix + text)
sys.stdout.flush()
pass

# We might write everything directly as a script, but it looks nicer
# to create a function.
def main (args):

# Open MOSEK and create an environment and task

# Create a MOSEK environment

env = mosek.Env ()

# Attach a printer to the environment

env.set_Stream (mosek.streamtype.log, streamprinter("[env]"))

# Create a task

task = env.Task(0,0)

# Attach a printer to the task

task.set_Stream (mosek.streamtype.log, streamprinter("simplex: "))

# Create a task
task_list = [env.Task(0,0)]
# Attach a printer to the task

task_list[0] .set_Stream(mosek.streamtype.log, streamprinter("intpnt:

task.readdata(args[0]);

# Assign different parameter values to each task.

# In this case different optimizers.

task.putintparam(mosek.iparam.optimizer,
mosek.optimizertype.primal_simplex)

task_list[0] .putintparam(mosek.iparam.optimizer,
mosek.optimizertype.intpnt)

||))
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# Optimize task and task_list[0] in parallel.
# The problem data i.e. C, A, etc.

# is copied from task to task.-list[0].
task.optimizeconcurrent (task-list)

task.solutionsummary(mosek.streamtype.log)

# call the main function

try:
main (sys.argv[1:])

except mosek.Exception as e:
print ("ERROR: %s" % str(e.errno))
if e.msg is not None:

print ("\t/s" % e.msg)

sys.exit (1)

except:
import traceback
traceback.print_exc()
sys.exit (1)
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Chapter 12

The optimizers for mixed-integer
problems

A problem is a mixed-integer optimization problem when one or more of the variables are constrained
to be integer valued. MOSEK contains two optimizers for mixed integer problems that is capable for
solving mixed-integer

e linear,
e quadratic and quadratically constrained, and

e conic

problems.

Readers unfamiliar with integer optimization are recommended to consult some relevant literature,
e.g. the book [16] by Wolsey.

12.1 Some concepts and facts related to mixed-integer opti-
mization

It is important to understand that in a worst-case scenario, the time required to solve integer optimiza-
tion problems grows exponentially with the size of the problem. For instance, assume that a problem
contains n binary variables, then the time required to solve the problem in the worst case may be
proportional to 2™ . The value of 2" is huge even for moderate values of n .

In practice this implies that the focus should be on computing a near optimal solution quickly rather
than at locating an optimal solution. Even if the problem is only solved approximately, it is important
to know how far the approximate solution is from an optimal one. In order to say something about
the goodness of an approximate solution then the concept of a relaxation is important.

161
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Name Run-to-run deterministic Parallelized Strength Cost
Mixed-integer conic  Yes Yes Conic Free add-on
Mixed-integer No Partial Linear Payed add-on

Table 12.1: Mixed-integer optimizers.

The mixed-integer optimization problem

z* = minimize Tx
subject to Ax = b
’ 12.1
2> 0 (12.1)
x; € Z, VjieJ,
has the continuous relaxation

z = minimize Tx
subject to Az = b, (12.2)

x>0

The continuos relaxation is identical to the mixed-integer problem with the restriction that some
variables must be integer removed.

There are two important observations about the continuous relaxation. Firstly, the continuous relax-
ation is usually much faster to optimize than the mixed-integer problem. Secondly if Z is any feasible
solution to (12.1) and

T3

w
Il
o

then

z2<z"<Z

This is an important observation since if it is only possible to find a near optimal solution within a
reasonable time frame then the quality of the solution can nevertheless be evaluated. The value z is
a lower bound on the optimal objective value. This implies that the obtained solution is no further
away from the optimum than Z — z in terms of the objective value.

Whenever a mixed-integer problem is solved MOSEK reports this lower bound so that the quality of
the reported solution can be evaluated.

12.2 The mixed-integer optimizers

MOSEK includes two mixed-integer optimizers which are compared in Table 12.1. Both optimizers
can handle problems with linear, quadratic objective and constraints and conic constraints. However,
a problem must not contain both quadratic objective and constraints and conic constraints.
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The mixed-integer conic optimizer is specialized for solving linear and conic optimization problems. It
can also solve pure quadratic and quadratically constrained problems, these problems are automatically
converted to conic problems before being solved. Whereas the mixed-integer optimizer deals with
quadratic and quadratically constrained problems directly.

The mixed-integer conic optimizer is run-to-run deterministic. This means that if a problem is solved
twice on the same computer with identical options then the obtained solution will be bit-for-bit identical
for the two runs. However, if a time limit is set then this may not be case since the time taken to solve
a problem is not deterministic. Moreover, the mixed-integer conic optimizer is parallelized i.e. it can
exploit multiple cores during the optimization. Finally, the mixed-integer conic optimizer is a free add-
on to the continuous optimizers. However, for some linear problems the mixed-integer optimizer may
outperform the mixed-integer conic optimizer. On the other hand the mixed-integer conic optimizer
is included with continuous optimizers free of charge and usually the fastest for conic problems.

None of the mixed-integer optimizers handles symmetric matrix variables i.e semi-definite optimization
problems.

12.3 The mixed-integer conic optimizer

The mixed-integer conic optimizer is employed by setting the parameter iparam.optimizer to optimizertype.mixed_int_

The mixed-integer conic employs three phases:

Presolve:

In this phase the optimizer tries to reduce the size of the problem using preprocessing techniques.
Moreover, it strengthens the continuous relaxation, if possible.

Heuristic:
Using heuristics the optimizer tries to guess a good feasible solution.

Optimization:

The optimal solution is located using a variant of the branch-and-cut method.

12.3.1 Presolve

In the preprocessing stage redundant variables and constraints are removed. The presolve stage can
be turned off using the iparam.mio_presolve_use parameter.

12.3.2 Heuristic

Initially, the integer optimizer tries to guess a good feasible solution using a heuristic.

12.3.3 The optimization phase

This phase solves the problem using the branch and cut algorithm.



164 CHAPTER 12. THE OPTIMIZERS FOR MIXED-INTEGER PROBLEMS

12.3.4 Caveats

The mixed-integer conic optimizer ignores the parameter

iparam.mio_cont_sol:

The user should fix all the integer variables at their optimal value and reoptimize instead of
relying in this option.

12.4 The mixed-integer optimizer

The mixed-integer optimizer is employed by setting the parameter iparam.optimizer to optimizertype.mixed_int.
In the following it is briefly described how the optimizer works.

The process of solving an integer optimization problem can be split in three phases:

Presolve:

In this phase the optimizer tries to reduce the size of the problem using preprocessing techniques.
Moreover, it strengthens the continuous relaxation, if possible.

Heuristic:

Using heuristics the optimizer tries to guess a good feasible solution.

Optimization:

The optimal solution is located using a variant of the branch-and-cut method.

12.4.1 Presolve

In the preprocessing stage redundant variables and constraints are removed. The presolve stage can
be turned off using the iparam.mio_presolve_use parameter.

12.4.2 Heuristic

Initially, the integer optimizer tries to guess a good feasible solution using different heuristics:

e First a very simple rounding heuristic is employed.
e Next, if deemed worthwhile, the feasibility pump heuristic is used.

e Finally, if the two previous stages did not produce a good initial solution, more sophisticated
heuristics are used.

The following parameters can be used to control the effort made by the integer optimizer to find an
initial feasible solution.
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e iparam.mio heuristic_level: Controls how sophisticated and computationally expensive a
heuristic to employ.

e dparam.mio heuristic_time: The minimum amount of time to spend in the heuristic search.

e iparam.mio_feaspump_level: Controls how aggressively the feasibility pump heuristic is used.

12.4.3 The optimization phase

This phase solves the problem using the branch and cut algorithm.

12.5 Termination criterion

In general, it is time consuming to find an exact feasible and optimal solution to an integer optimization
problem, though in many practical cases it may be possible to find a sufficiently good solution. There-
fore, the mixed-integer optimizer employs a relaxed feasibility and optimality criterion to determine
when a satisfactory solution is located.

A candidate solution that is feasible to the continuous relaxation is said to be an integer feasible
solution if the criterion

min(|z;| — (2], [z;] — [2;]) < max(d1,02|z;|) Vi€ T
is satisfied.

Whenever the integer optimizer locates an integer feasible solution it will check if the criterion

zZ — z < max(ds, d4max(1,|z]))

is satisfied. If this is the case, the integer optimizer terminates and reports the integer feasible solution
as an optimal solution. Please note that z is a valid lower bound determined by the integer optimizer
during the solution process, i.e.

z<z".

The lower bound z normally increases during the solution process.

12.5.1 Relaxed termination

If an optimal solution cannot be located within a reasonable time, it may be advantageous to employ

arelaxed termination criterion after some time. Whenever the integer optimizer locates an integer feasi-

ble solution and has spent at least the number of seconds defined by the dparam.mio _disable term time
parameter on solving the problem, it will check whether the criterion

zZ — z < max(ds, dgmax(1,|z]))
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Tolerance Parameter name

01 dparam.mio_tol_abs_relax_int
02 dparam.mio_tol_rel_relax_int
03 dparam.mio_tol_abs_gap

04 dparam.mio_tol_rel_gap

05 dparam.mio_near_tol_abs_gap
06 dparam.mio_near_tol_rel_gap

Table 12.2: Integer optimizer tolerances.

Parameter name Delayed Explanation

iparam.mio_max_num branches  Yes Maximum number of branches allowed.
iparam.mio_max_num relaxs Yes Maximum number of relaxations allowed.
iparam.mio max num solutions Yes Maximum number of feasible integer solutions allowed.

Table 12.3: Parameters affecting the termination of the integer optimizer.

is satisfied. If it is satisfied, the optimizer will report that the candidate solution is near optimal and
then terminate. Please note that since this criteria depends on timing, the optimizer will not be run
to run deterministic.

12.5.2 Important parameters

All § tolerances can be adjusted using suitable parameters — see Table 12.2. In Table 12.3 some other
parameters affecting the integer optimizer termination criterion are shown. Please note that if the
effect of a parameter is delayed, the associated termination criterion is applied only after some time,
specified by the dparam.mio_disable_term time parameter.

12.6 How to speed up the solution process

As mentioned previously, in many cases it is not possible to find an optimal solution to an integer
optimization problem in a reasonable amount of time. Some suggestions to reduce the solution time
are:

e Relax the termination criterion: In case the run time is not acceptable, the first thing to do is
to relax the termination criterion — see Section 12.5 for details.

e Specify a good initial solution: In many cases a good feasible solution is either known or easily
computed using problem specific knowledge. If a good feasible solution is known, it is usually
worthwhile to use this as a starting point for the integer optimizer.

e Improve the formulation: A mixed-integer optimization problem may be impossible to solve
in one form and quite easy in another form. However, it is beyond the scope of this manual



12.7. UNDERSTANDING SOLUTION QUALITY 167

to discuss good formulations for mixed-integer problems. For discussions on this topic see for
example [10].

12.7 Understanding solution quality

To determine the quality of the solution one should check the following:

e The solution status key returned by MOSEK.

e The optimality gap: A measure for how much the located solution can deviate from the optimal
solution to the problem.

e Feasibility. How much the solution violates the constraints of the problem.

The optimality gap is a measure for how close the solution is to the optimal solution. The optimality
gap is given by

€ = |(objective value of feasible solution) — (objective bound)|.
The objective value of the solution is guarantied to be within e of the optimal solution.

The optimality gap can be retrieved through the solution item dinfitem.mio_obj_abs_gap. Often it
is more meaningful to look at the optimality gap normalized with the magnitude of the solution. The
relative optimality gap is available in dinfitem.mio_obj_rel_gap.
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Chapter 13

The analyzers

13.1 The problem analyzer

The problem analyzer prints a detailed survey of the

e linear constraints and objective
e quadratic constraints
e conic constraints

e variables

of the model.

In the initial stages of model formulation the problem analyzer may be used as a quick way of verifying
that the model has been built or imported correctly. In later stages it can help revealing special
structures within the model that may be used to tune the optimizer’s performance or to identify the
causes of numerical difficulties.

The problem analyzer is run from the command line using the —anapro argument and produces some-
thing similar to the following (this is the problemanalyzer’s survey of the aflow30a problem from the
MIPLIB 2003 collection, see Appendix G for more examples):

Analyzing the problem

Constraints Bounds Variables
upper bd: 421 ranged : all cont: 421
fixed : 58 bin : 421

Objective, min cx

range: min |c|: 0.00000 min |c|>0: 11.0000 max |c|: 500.000
distrib: lcl vars
0 421

169
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Constraint matrix A has
479 rows (constraints)
842 columns (variables)

2091 (0.518449%) nonzero entries (coefficients)

Row nonzeros, A_i
range: min Ai: 2 (0.23753}%)

distrib: A rows
2 421

[8, 15] 20

[16, 31] 30

[32, 34] 8

Column nonzeros, Alj
range: min Alj: 2 (0.417537%)

distrib: Alj cols
2 435
3 407

A nonzeros, A(ij)
range: min |A(ij)|: 1.00000

distrib: A(ij) coeffs
[1, 10) 1670
[10, 100] 421

max A_i: 34 (4.038%)

rows, acc
87.89 87.89
4.18 92.07
6.26 98.33
1.67 100.00

max Alj: 3 (0.626305%)

cols?, acch
51.66 51.66
48.34 100.00

max |A(ij)|: 100.000

Constraint bounds, 1lb <= Ax <= ub

distrib: Ibl
0
[1, 10]

Variable bounds, 1lb <= x <= ub

distrib: bl
0

[1, 10)

[10, 100]

842

1bs ubs
421

58 58

1bs ubs
421

421

The survey is divided into six different sections, each described below. To keep the presentation short
with focus on key elements the analyzer generally attempts to display information on issues relevant
for the current model only: E.g., if the model does not have any conic constraints (this is the case in
the example above) or any integer variables, those parts of the analysis will not appear.

13.1.1 General characteristics

The first part of the survey consists of a brief summary of the model’s linear and quadratic constraints
(indexed by ¢ ) and variables (indexed by j ). The summary is divided into three subsections:
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Constraints

upper bd:

The number of upper bounded constraints, 22:01 ai;r; < uf

lower bd:
n—1

The number of lower bounded constraints, If < > 77" a;;z;
ranged :

The number of ranged constraints, I < 27;01 a;jr; < uf
fixed :

The number of fixed constraints, [ = Z?:_Ol ai; T = uf
free :

The number of free constraints
Bounds

upper bd:

The number of upper bounded variables, z; < uj

lower bd:

The number of lower bounded variables, Ij; < z;

ranged :

The number of ranged variables, [} < z; < uj

fixed :

The number of fixed variables, lj = z; = uj

free :

The number of free variables
Variables

cont:

The number of continuous variables, z; € R
bin :

The number of binary variables, z; € {0,1}
int :

The number of general integer variables, z; € Z

Only constraints, bounds and domains actually in the model will be reported on, cf. appendix G; if all
entities in a section turn out to be of the same kind, the number will be replaced by all for brevity.
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13.1.2 Objective

The second part of the survey focuses on (the linear part of) the objective, summarizing the opti-
mization sense and the coefficients’ absolute value range and distribution. The number of 0 (zero)
coefficients is singled out (if any such variables are in the problem).

The range is displayed using three terms:

min |cl:

The minimum absolute value among all coeffecients

min |c|>0:

The minimum absolute value among the nonzero coefficients

max |cl:

The maximum absolute value among the coefficients
If some of these extrema turn out to be equal, the display is shortened accordingly:

e Ifmin |c| is greater than zero, the min |c| 7?0 term is obsolete and will not be displayed

e If only one or two different coefficients occur this will be displayed using all and an explicit
listing of the coefficients

The absolute value distribution is displayed as a table summarizing the numbers by orders of magnitude
(with a ratio of 10). Again, the number of variables with a coefficient of 0 (if any) is singled out. Each
line of the table is headed by an interval (half-open intervals including their lower bounds), and is
followed by the number of variables with their objective coefficient in this interval. Intervals with no
elements are skipped.

13.1.3 Linear constraints

The third part of the survey displays information on the nonzero coefficients of the linear constraint
matrix.

Following a brief summary of the matrix dimensions and the number of nonzero coefficients in total,
three sections provide further details on how the nonzero coefficients are distributed by row-wise count
(A_i), by column-wise count (A]j), and by absolute value (1A(ij)|). Each section is headed by
a brief display of the distribution’s range (min and max), and for the row/column-wise counts the
corresponding densities are displayed too (in parentheses).

The distribution tables single out three particularly interesting counts: zero, one, and two nonzeros
per row/column; the remaining row/column nonzeros are displayed by orders of magnitude (ratio 2).
For each interval the relative and accumulated relative counts are also displayed.

Note that constraints may have both linear and quadratic terms, but the empty rows and columns
reported in this part of the survey relate to the linear terms only. If empty rows and/or columns are
found in the linear constraint matrix, the problem is analyzed further in order to determine if the
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corresponding constraints have any quadratic terms or the corresponding variables are used in conic
or quadratic constraints; cf. the last two examples of appendix G.

The distribution of the absolute values, |A(ij) |, is displayed just as for the objective coefficients
described above.

13.1.4 Constraint and variable bounds

The fourth part of the survey displays distributions for the absolute values of the finite lower and upper
bounds for both constraints and variables. The number of bounds at 0 is singled out and, otherwise,
displayed by orders of magnitude (with a ratio of 10).

13.1.5 Quadratic constraints

The fifth part of the survey displays distributions for the nonzero elements in the gradient of the
quadratic constraints, i.e. the nonzero row counts for the column vectors Qz . The table is similar to
the tables for the linear constraints’ nonzero row and column counts described in the survey’s third
part.

Note: Quadratic constraints may also have a linear part, but that will be included in the linear
constraints survey; this means that if a problem has one or more pure quadratic constraints, part three
of the survey will report an equal number of linear constraint rows with 0 (zero) nonzeros, cf. the last
example in appendix G. Likewise, variables that appear in quadratic terms only will be reported as
empty columns (0 nonzeros) in the linear constraint report.

13.1.6 Conic constraints

The last part of the survey summarizes the model’s conic constraints. For each of the two types of
cones, quadratic and rotated quadratic, the total number of cones are reported, and the distribution
of the cones’ dimensions are displayed using intervals. Cone dimensions of 2, 3, and 4 are singled out.

13.2 Analyzing infeasible problems

When developing and implementing a new optimization model, the first attempts will often be either
infeasible, due to specification of inconsistent constraints, or unbounded, if important constraints have
been left out.

In this chapter we will

e go over an example demonstrating how to locate infeasible constraints using the MOSEK infea-
sibility report tool,

e discuss in more general terms which properties that may cause infeasibilities, and

e present the more formal theory of infeasible and unbounded problems.



174 CHAPTER 13. THE ANALYZERS

Supply Demand
1100
200
200
1000
500
1000
500

Figure 13.1: Supply, demand and cost of transportation.

Furthermore, chapter 14 contains a discussion on a specific method for repairing infeasibility prob-
lems where infeasibilities are caused by model parameters rather than errors in the model or the
implementation.

13.2.1 Example: Primal infeasibility

A problem is said to be primal infeasible if no solution exists that satisfy all the constraints of the
problem.

As an example of a primal infeasible problem consider the problem of minimizing the cost of trans-
portation between a number of production plants and stores: Each plant produces a fixed number of
goods, and each store has a fixed demand that must be met. Supply, demand and cost of transporta-
tion per unit are given in figure 13.1. The problem represented in figure 13.1 is infeasible, since the
total demand

2300 = 1100 + 200 + 500 + 500
exceeds the total supply
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2200 = 200 + 1000 + 1000

If we denote the number of transported goods from plant ¢ to store j by x;; , the problem can be
formulated as the LP:

minimize Z11 + 2x12 + Smaz + 2w24 + x31 + 2w33 + w34
subjectto r11 + T2 < 200,
T2z + X < 1000,
x31 + w33 + w3z < 1000,
r11 + x31 = 1100,
T12 = 200,
Tz + 33 = 500,
T4 + T34 = 500,

Tij Z 0.
(13.1)

Solving the problem (13.1) using MOSEK will result in a solution, a solution status and a problem
status. Among the log output from the execution of MOSEK on the above problem are the lines:

Basic solution
Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER

The first line indicates that the problem status is primal infeasible. The second line says that a
certificate of the infeasibility was found. The certificate is returned in place of the solution to the
problem.

13.2.2 Locating the cause of primal infeasibility

Usually a primal infeasible problem status is caused by a mistake in formulating the problem and
therefore the question arises: ”What is the cause of the infeasible status?” When trying to answer this
question, it is often advantageous to follow these steps:

e Remove the objective function. This does not change the infeasible status but simplifies the
problem, eliminating any possibility of problems related to the objective function.

e Consider whether your problem has some necessary conditions for feasibility and examine if these
are satisfied, e.g. total supply should be greater than or equal to total demand.

e Verify that coefficients and bounds are reasonably sized in your problem.

If the problem is still primal infeasible, some of the constraints must be relaxed or removed completely.

The MOSEK infeasibility report (Section 13.2.4) may assist you in finding the constraints causing the
infeasibility.

Possible ways of relaxing your problem include:

e Increasing (decreasing) upper (lower) bounds on variables and constraints.
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e Removing suspected constraints from the problem.
Returning to the transportation example, we discover that removing the fifth constraint

T12 = 200

makes the problem feasible.

13.2.3 Locating the cause of dual infeasibility

A problem may also be dual infeasible. In this case the primal problem is often unbounded, mening
that feasbile solutions exists such that the objective tends towards infinity. An example of a dual
infeasible and primal unbounded problem is:

minimize T
subject to x1 < 5.

To resolve a dual infeasibility the primal problem must be made more restricted by

e Adding upper or lower bounds on variables or constraints.
e Removing variables.

e Changing the objective.

13.2.3.1 A cautious note

The problem

minimize 0

subject to 0<xq,
:L'jng+1u jzla"'7n_1>
T, < —1

is clearly infeasible. Moreover, if any one of the constraints are dropped, then the problem becomes
feasible.

This illustrates the worst case scenario that all, or at least a significant portion, of the constraints are
involved in the infeasibility. Hence, it may not always be easy or possible to pinpoint a few constraints
which are causing the infeasibility.

13.2.4 The infeasibility report

MOSEK includes functionality for diagnosing the cause of a primal or a dual infeasibility. It can be
turned on by setting the iparam.infeas report_auto to onoffkey.on. This causes MOSEK to print
a report on variables and constraints involved in the infeasibility.
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The iparam.infeas report_level parameter controls the amount of information presented in the
infeasibility report. The default value is 1 .

13.2.4.1 Example: Primal infeasibility

We will reuse the example (13.1) located in infeas.lp:

\

\ An example of an infeasible

\

minimize
bj:

o

st

en

Using the command line (please remeber it accepts options following the C API format)

s0:
sl:
s2:
di:
d2:
d3:
d4:
bounds

d

+
+
+

+ o+ 4+ o+ o+ o+ o+

1 x11 + 2 x12 + 1 x13
4 x21 + 2 x22 + 5 x23
4 x31 + 1 x32 + 2 x33
x11 + x12 <= 200
x23 + x24 <= 1000
x31 +x33 + x34 <= 1000
x11 + x31 = 1100
x12 = 200
x23 + x33 = 500
x24 + x34 = 500

linear problem.

mosek -d iparam.infeas report_auto onoffkey.on infeas.lp

MOSEK produces the following infeasibility report
MOSEK PRIMAL INFEASIBILITY REPORT.

Problem status: The problem is primal infeasible

The following constraints are involved in the primal infeasibility.

Index

0

2
3
4

The following bound constraints are

Index

8
10

Name

s0
s2
d1
d2

Name

x33
x34

Lower bound
NONE

NONE
1.100000e+003
2.000000e+002

Lower bound
0.000000e+000
0.000000e+000

Upper bound

2.000000e+002
1.000000e+003
1.100000e+003
2.000000e+002

Dual lower

0.000000e+000
0.000000e+000
1.000000e+000
1.000000e+000

involved in the infeasibility.

Upper bound
NONE
NONE

Dual lower
1.000000e+000
1.000000e+000

Dual upper

1.000000e+000
1.000000e+000
0.000000e+000
0.000000e+000

Dual upper
0.000000e+000
0.000000e+000

The infeasibility report is divided into two sections where the first section shows which constraints that
are important for the infeasibility. In this case the important constraints are the ones named s0, s2, d1,
and d2. The values in the columns "Dual lower” and "Dual upper” are also useful, since a non-zero
dual lower value for a constraint implies that the lower bound on the constraint is important for the
infeasibility. Similarly, a non-zero dual upper value implies that the upper bound on the constraint is
important for the infeasibility.

It is also possible to obtain the infeasible subproblem. The command line
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mosek -d iparam.infeas_report_auto onoffkey.on infeas.lp -info rinfeas.lp

produces the files rinfeas.bas.inf.1lp. In this case the content of the file rinfeas.bas.inf.1lp is

minimize

Obj:

st

s0:

s2: +

di:

+

d2: +
bounds

x1
x1
x1

1f
2 f
3 f

x21 f

x2
x2
x3
x3
x2

2 f
3 f
1f
2 f
4 f

+ CFIXVAR

x31 +
x11 +
x12 =

ree
ree
ree
ree
ree
ree
ree
ree
ree

+ x11 + x12 <= 200

x33 + x34 <= 1e+003
x31 = 1.1e+003
200

CFIXVAR = 0e+000

end

which is an optimization problem. This problem is identical to (13.1), except that the objective and
some of the constraints and bounds have been removed. Executing the command

mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.bas.inf.lp

demonstrates that the reduced problem is primal infeasible. Since the reduced problem is usually
smaller than original problem, it should be easier to locate the cause of the infeasibility in this rather
than in the original (13.1).

13.2.4.2 Example: Dual infeasibility

The example problem

maximize - 2

- 11
- b

subject to

x11:
x12:
x23:
x24:
x31:
x33:
x44:

bounds

end

yi
y2
y3
y4
y5
y6
y7

yl+y4
yl+y5
y2+y6
y2+y7
y3+y4
y3+y6
y3+y7

<0
<0
<0
free
free
free
free

00
00
00

AANANANANANNA
BN R N0 -

y1 - 1000 y2 - 1000 y3
y4 - 200 y5 - 500 y6
y7
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is dual infeasible. This can be verified by proving that
yi=-1, y2=-1, y3=0, y4=1, yb=1
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is a certificate of dual infeasibility. In this example the following infeasibility report is produced

(slightly edited):

The following constraints are involved in the infeasibility.

Index Name Activity Objective Lower bound
0 x11 -1.000000e+00 NONE
4 x31 -1.000000e+00 NONE

The following variables are involved in the infeasibility.

Index Name Activity Objective Lower bound
3 y4 -1.000000e+00 -1.100000e+03 NONE
Interior-point solution

Problem status : DUAL_INFEASIBLE

Solution status : DUAL_INFEASIBLE_CER

Primal - objective: 1.1000000000e+03 eq. infeas.: 0.00e+00 max bound infeas.:
Dual - objective: 0.0000000000e+00 eq. infeas.: 0.00e+00 max bound infeas.:

Let z* denote the reported primal solution. MOSEK states

e that the problem is dual infeasible,
e that the reported solution is a certificate of dual infeasibility, and

e that the infeasibility measure for x* is approximately zero.

Since it was an maximization problem, this implies that

cz* > 0.

Upper bound
1.000000e+00
1.000000e+00

Upper bound
NONE

0.00e+00 cone infeas.: 0.00e+00
0.00e+00 cone infeas.: 0.00e+00

(13.2)

For a minimization problem this inequality would have been reversed — see (13.5).

From the infeasibility report we see that the variable y4, and the constraints x11 and x33 are involved
in the infeasibility since these appear with non-zero values in the "Activity” column.

One possible strategy to ”fix” the infeasibility is to modify the problem so that the certificate of

infeasibility becomes invalid. In this case we may do one the following things:

e Put a lower bound in y3. This will directly invalidate the certificate of dual infeasibility.

e Increase the object coefficient of y3. Changing the coefficients sufficiently will invalidate the

inequality (13.2) and thus the certificate.

e Put lower bounds on x11 or x31. This will directly invalidate the certificate of infeasibility.

Please note that modifying the problem to invalidate the reported certificate does not imply that the
problem becomes dual feasible — the infeasibility may simply ”"move”, resulting in a new infeasibility.

More often, the reported certificate can be used to give a hint about errors or inconsistencies in the

model that produced the problem.
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13.2.5 Theory concerning infeasible problems

This section discusses the theory of infeasibility certificates and how MOSEK uses a certificate to
produce an infeasibility report. In general, MOSEK solves the problem

minimize e+
subject to ¢ < Az < s, (13.3)
r < x < u”
where the corresponding dual problem is
maximize (lC)TslC - (UC)TSZ
+ (") Ts7 — (u™) s 4 ¢!
subject to ATy + sy — sy = ¢, (13.4)
-y + Slc - 52 = 07

C C xT xT
87, 8u,51:5, = 0.

We use the convension that for any bound that is not finite, the corresponding dual variable is fixed
at zero (and thus will have no influence on the dual problem). For example

ljw-:—OO = (Sf)j =0

13.2.6 The certificate of primal infeasibility

A certificate of primal infeasibility is any solution to the homogenized dual problem

maximize (19788 — (u)T'sC
£ S~ ()
subject to ATy + 57 —

Tk

with a positive objective value. That is, (s{*, sS*, s7*, st*) is a certificate of primal infeasibility if

(lc)TSlc* _ (uc)TsZ* 4 (ll)TSlL* _ (uI)TSZ* >0

and

ATy+5lz* — gT* _

u

—y+sit— st = 0,
Cx  Ck  T*k T
81,80, 58] 18, = 0.

=

The well-known Farkas Lemma tells us that (13.3) is infeasible if and only if a certificate of primal
infeasibility exists.

Let (s§*, s*, s7*, s%*) be a certificate of primal infeasibility then
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(81)i > 0((sy,"): > 0)

implies that the lower (upper) bound on the ¢ th constraint is important for the infeasibility. Further-
more,

(si); > 0((s")i > 0)

implies that the lower (upper) bound on the j th variable is important for the infeasibility.

13.2.7 The certificate of dual infeasibility

A certificate of dual infeasibility is any solution to the problem

minimize c
subject to I¢° < Axr < a4
< x < "
with negative objective value, where we use the definitions
. 0, I§ > —o0, e 0, ui <o,
v — 00, otherwise, v oo, otherwise,

and

_ 0 ui < oo
and uj := ’ ' .
oo, otherwise.

i =

l—w L 0, l;t > —0Q,
— 00, otherwise,

Stated differently, a certificate of dual infeasibility is any =* such that

- Azt < 0,
I < At <l (13.5)
" < z* < a”

The well-known Farkas Lemma tells us that (13.4) is infeasible if and only if a certificate of dual
infeasibility exists.

Note that if z* is a certificate of dual infeasibility then for any j such that

75 # 0,

variable j is involved in the dual infeasibility.
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Chapter 14
Primal feasibility repair

Section 13.2.2 discusses how MOSEK treats infeasible problems. In particular, it is discussed which
information MOSEK returns when a problem is infeasible and how this information can be used to
pinpoint the cause of the infeasibility.

In this section we discuss how to repair a primal infeasible problem by relaxing the constraints in a
controlled way. For the sake of simplicity we discuss the method in the context of linear optimization.

14.1 Manual repair

Subsequently we discuss an automatic method for repairing an infeasible optimization problem. How-
ever, it should be observed that the best way to repair an infeasible problem usually depends on what
the optimization problem models. For instance in many optimization problem it does not make sense
to relax the constraints > 0 e.g. it is not possible to produce a negative quantity. Hence, whatever
automatic method MOSEK provides it will never be as good as a method that exploits knowledge
about what is being modelled. This implies that it is usually better to remove the underlying cause of
infeasibility at the modelling stage.

Indeed consider the example

minimize
subject to r1 +  x9 = 1,
r3 + x4 = 1,
14.1
- — T3 = —1+4c¢ ( )
- T2 -z = -1
T, X2, xs3, Ty 2 O

then if we add the equalties together we obtain the implied equality

0=c¢
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which is infeasible for any € # 0. Here the infeasibility is caused by a linear dependency in the constraint
matrix and that the right-hand side does not match if € # 0. Observe even if the problem is feasible
then just a tiny perturbation to the right-hand side will make the problem infeasible. Therefore, even
though the problem can be repaired then a much more robust solution is to avoid problems with linear
dependent constraints. Indeed if a problem contains linear dependencies then the problem is either
infeasible or contains redundant constraints. In the above case any of the equality constraints can be
removed while not changing the set of feasible solutions.

To summarize linear dependencies in the constraints can give rise to infeasible problems and therefore
it is better to avoid them. Note that most network flow models usually is formulated with one linear
dependent constraint.

Next consider the problem

minimize
subject to x7 —0.0lzy = 0
T — 001:133 = 0
3 —0.0lxy = 0 (14.2)
T > —1.0e—9
T < 1.0e — 9
T4 S —1.0e—14

Now the MOSEK presolve for the sake of efficiency fix variables (and constraints) that has tight bounds
where tightness is controlled by the parameter dparam.presolve_tol_x. Since, the bounds

—1.0e—9<2;<1.0e—-9

are tight then the MOSEK presolve will fix variable z; at the mid point between the bounds i.e. at 0.
It easy to see that this implies z4 = 0 too which leads to the incorrect conclusion that the problem is
infeasible. Observe tiny change of the size 1.0e-9 make the problem switch from feasible to infeasible.
Such a problem is inherently unstable and is hard to solve. We normally call such a problem ill-posed.
In general it is recommended to avoid ill-posed problems, but if that is not possible then one solution
to this issue is is to reduce the parameter to say dparam.presolve_tol _x to say 1.0e-10. This will at
least make sure that the presolve does not make the wrong conclusion.

14.2 Automatic repair

In this section we will describe the idea behind a method that automatically can repair an infeasible
probem. The main idea can be described as follows.

Consider the linear optimization problem with m constraints and n variables

minimize Lo+ cf
subject to ¢ < Ax < (14.3)
o< T < ¥,

which is assumed to be infeasible.
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One way of making the problem feasible is to reduce the lower bounds and increase the upper bounds.
If the change is sufficiently large the problem becomes feasible. Now an obvious idea is to compute
the optimal relaxation by solving an optimization problem. The problem

minimize p(vf, v, vf, v )
subject to ¢ < Az + vf — v, <l (14.4)
r < x+vf — v, < a”, ’

u
C C x x
vf, U, V1, Uy > 0

does exactly that. The additional variables (vf);, (v):, (v7); and (vS); are elasticity variables because
they allow a constraint to be violated and hence add some elasticity to the problem. For instance,
the elasticity variable (vf); controls how much the lower bound (I¢); should be relaxed to make the
problem feasible. Finally, the so-called penalty function

p(vi, v, o )

is chosen so it penalize changes to bounds. Given the weights
e wi € R™ (associated with ¢ ),
e wS € R™ (associated with u¢ ),
e wi € R" (associated with {* ),

e w? € R™ (associated with u® ),
then a natural choice is

(v, v, of vy) = (wf)Tof + (w§) g + (i) "ol + (wy) vy (14.5)

Hence, the penalty function p() is a weighted sum of the relaxation and therefore the problem (14.4)
keeps the amount of relaxation at a minimum. Please observe that

e the problem (14.6) is always feasible.
e a negative weight implies problem (14.6) is unbounded. For this reason if the value of a weight

is negative MOSEK fixes the associated elasticity variable to zero. Clearly, if one or more of the
weights are negative may imply that it is not possible repair the problem.

A simple choice of weights is to let them all to be 1, but of course that does not take into account that
constraints may have different importance.

14.2.1 Caveats

Observe if the infeasible problem
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minimize x + 2
subject to =z = -1, (14.6)
T > 0

is repaired then it will be unbounded. Hence, a repaired problem may not have an optimal solution.

Another and more important caveat is that only a minimial repair is perfomed i.e. the repair that just
make the problem feasible. Hence, the repaired problem is barely feasible and that sometimes make
the repaired problem hard to solve.

14.3 Feasibility repair in MOSEK

MOSEK includes a function that repair an infeasible problem using the idea described in the previous
section simply by passing a set of weights to MOSEK. This can be used for linear and conic optimization
problems, possibly having integer constrained variables.

14.3.1 An example using the command line tool

Consider the example linear optimization

minimize — 1021 — 925,
subject to  7/10z; + 1xo < 630,
1/22, + 5/6x2 < 600,
12 + 2/3z, < 708, (14.7)
1/102; v 1/dzs < 135,
T, T2 > 0,
xo > 650

which is infeasible. Now suppose we wish to use MOSEK to suggest a modification to the bounds that
makes the problem feasible.

Given the assumption that all weights are 1 then the command
mosek -primalrepair -d MSK_IPAR_LOG_FEAS_REPAIR 3 feasrepair.lp

will form the repaired problem and solve it. The parameter
MSK_IPAR_LOG_FEAS REPAIR

controls the amount of log output from the repair. A value of 2 causes the optimal repair to printed
out.

The output from running the above command is:
Copyright (c) 1998-2013 MOSEK ApS, Denmark. WWW: http://mosek.com

Open file ’feasrepair.lp’

Read summary
Type : LO (linear optimization problem)
Objective sense : min
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Constraints
Scalar variables
Matrix variables
Time

Computer

Platform
Cores

Problem

Name

Objective sense
Type

Constraints
Cones

Scalar variables
Matrix variables

O O N B

: Windows/64-X86
4

: min
: LO (linear optimi

zation problem)

Integer variables

O O N O

Primal feasibility repair started.
Optimizer started.
Interior-point optimizer started.
Presolve started.
Linear dependency checker started.

Linear dependency checker terminated.
Eliminator started.
Total number of eliminations : 2
Eliminator terminated.

Eliminator - tries : 1 time

Eliminator - elim’s : 2

Lin. dep. - tries : 1 time

Lin. dep. - number : 0

Presolve terminated. Time: 0.00

Optimizer - threads 1

Optimizer - solved problem : the primal

Optimizer - Constraints : 2

Optimizer - Cones ¢ 0

Optimizer - Scalar variables : 6 conic

Optimizer - Semi-definite variables: 0 scalarized

Factor - setup time : 0.00 dense det. time
Factor - ML order time : 0.00 GP order time

Factor - nonzeros before factor : 3 after factor

Factor - dense dim. : 0 flops

ITE PFEAS DFEAS GFEAS PRSTATUS  POBJ DOBJ

0 2.7e+001 1.0e+000 4.8e+000 1.00e+000 4.195228609e+000 0.000000000e+000
1  2.4e+001 8.6e-001 1.5e+000 0.00e+000 1.227497414e+001 1.504971820e+001
2 2.6e+000 9.7e-002 1.7e-001 -6.19e-001 4.363064729e+001 4.648523094e+001
3 4.7e-001 1.7e-002 3.1e-002 1.24e+000 4.256803136e+001 4.298540657e+001
4 8.7e-004 3.2e-005 5.7e-005 1.08e+000 4.249989892e+001 4.250078747e+001
5 8.7e-008 3.2e-009 5.7e-009 1.00e+000 4.249999999e+001 4.250000008e+001
6 8.7e-012 3.2e-013 5.7e-013 1.00e+000 4.250000000e+001 4.250000000e+001

Basis identification started.
Primal basis identification phase started.

ITER

TIME

0 0.00

Primal basis identification phase terminated. Time: 0.00

Dual basis identification phase started.

ITER

TIME

O OO U WN =

0.00

0.00

0

0
: 0.00
: 0.00

3

5.40e+001

TIME

.0e+000 0.00
.6e+000 0.00
.0e-001 0.00
.2e-002 0.00
.7e-005 0.00
.7e-009 0.00
.7e-013 0.00

187
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0 0.00

Dual basis identification phase terminated. Time: 0.00
Basis identification terminated. Time: 0.00
Interior-point optimizer terminated. Time: 0.00.

Optimizer terminated. Time: 0.03
Basic solution summary
Problem status : PRIMAL_AND DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 4.2500000000e+001  Viol. con: 1e-013 var: 0e+000
Dual. obj: 4.2500000000e+001 Viol. con: 0e+000 var: 5e-013
Optimal objective value of the penalty problem: 4.250000000000e+001

Repairing bounds.

Increasing the upper bound -2.25e+001 on constraint ’c4’ (3) with 1.35e+002.
Decreasing the lower bound 6.50e+002 on variable ’x2’ (4) with 2.00e+001.

Primal feasibility repair terminated.

Optimizer started.

Interior-point optimizer started.

Presolve started.

Presolve terminated. Time: 0.00

Interior-point optimizer terminated. Time: 0.00.

Optimizer terminated. Time: 0.00

Interior-point solution summary
Problem status : PRIMAL_AND DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -5.6700000000e+003 Viol. con: 0e+000 var: 0e+000
Dual. obj: -5.6700000000e+003 Viol. con: 0e+000 var: 0e+000

Basic solution summary
Problem status : PRIMAL_AND DUAL FEASIBLE
Solution status : OPTIMAL
Primal. obj: -5.6700000000e+003 Viol. con: 0e+000 var: 0e+000
Dual. obj: -5.6700000000e+003 Viol. con: 0e+000 var: 0e+000

Optimizer summary

Optimizer - time: 0.00
Interior-point - iterations : O time: 0.00
Basis identification - time: 0.00
Primal - iterations 0 time: 0.00
Dual - iterations 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations 0 time: 0.00
Clean primal-dual - iterations : O time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : O time: 0.00
Dual simplex - iterations : 0 time: 0.00
Primal-dual simplex - iterations : O time: 0.00
Mixed integer - relaxations: 0 time: 0.00

reports the optimal repair. In this case it is to increase the upper bound on constraint c4 by 1.35e2

and decrease the lower bound on variable x2 by 20.
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14.3. FEASIBILITY REPAIR IN MOSEK

14.3.2 Feasibility repair using the API

The function Task.primalrepair can be used to repair an infeasible problem. Details about the

function Task.primalrepair can be seen in the reference.

14.3.2.1 An example

Consider once again the example (14.7) then

[feasrepairexl.py]

Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
File: feasrepairexl.py
Purpose: To demonstrate how to use the MSK_relaxprimal function to

locate the cause of an infeasibility.

Syntax: On command line
python feasrepairexl.py feasrepair.lp
feasrepair.lp is located in mosek\<version>\tools\examples.

HOH B OH OH H O H R H

import sys
import mosek

# Since the actual value of Infinity is ignores, we define it solely
# for symbolic purposes:
inf = 0.0

# Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)

sys.stdout.flush()

def main (inputfile):
# Make a MOSEK environment
with mosek.Env () as env:
with env.Task(0,0) as task:
# Attach a printer to the task
task.set_Stream (mosek.streamtype.log, streamprinter)

# Read data
task.readdata(inputfile)

task.putintparam(mosek.iparam.log_feas_repair,3)
task.primalrepair(None,None,None,None)

sum_viol = task.getdouinf (mosek.dinfitem.primal _repair_penalty_obj)
print ("Minimized sum of violations = %e" % sum-viol)

task.optimize()

task.solutionsummary (mosek.streamtype.msg)
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# call the main function
try:

main (sys.argv[1])
except Exception as e:

print (e)

raise

will produce the same output as the command line tool discussed in Section 14.3.1.



Chapter 15

Sensitivity analysis

15.1 Introduction

Given an optimization problem it is often useful to obtain information about how the optimal objective
value changes when the problem parameters are perturbed. E.g, assume that a bound represents a
capacity of a machine. Now, it may be possible to expand the capacity for a certain cost and hence it
is worthwhile knowing what the value of additional capacity is. This is precisely the type of questions
the sensitivity analysis deals with.

Analyzing how the optimal objective value changes when the problem data is changed is called sensi-
tivity analysis.

15.2 Restrictions

Currently, sensitivity analysis is only available for continuous linear optimization problems. Moreover,
MOSEK can only deal with perturbations in bounds and objective coefficients.

15.3 References

The book [1] discusses the classical sensitivity analysis in Chapter 10 whereas the book [17] presents
a modern introduction to sensitivity analysis. Finally, it is recommended to read the short paper [18]
to avoid some of the pitfalls associated with sensitivity analysis.

191
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f(B) f(B)

Figure 15.1:  The optimal value function fi. (8). Left: 8 =0 is in the interior of linearity interval.
Right: 8 =0 is a breakpoint.

15.4 Sensitivity analysis for linear problems

15.4.1 The optimal objective value function

Assume that we are given the problem

z(I°u 1" u” ¢) = minimize 'z
subject to [¢ < Az < (15.1)
" <z <ad®,

and we want to know how the optimal objective value changes as [{ is perturbed. To answer this
question we define the perturbed problem for [ as follows

fie(B) = minimize 'z
subject to [°+4 Be; < Az <uf,
" <z <u®,
where e; is the i th column of the identity matrix. The function
fie (B) (15.2)

shows the optimal objective value as a function of 8. Please note that a change in S corresponds to a
perturbation in [§ and hence (15.2) shows the optimal objective value as a function of I§.

It is possible to prove that the function (15.2) is a piecewise linear and convex function, i.e. the function
may look like the illustration in Figure 15.1. Clearly, if the function fie (8) does not change much when
B is changed, then we can conclude that the optimal objective value is insensitive to changes in 5.
Therefore, we are interested in the rate of change in fie(3) for small changes in 3 — specificly the
gradient

fl/z? (0)7

which is called the shadow pricerelated to [{. The shadow price specifies how the objective value
changes for small changes in 8 around zero. Moreover, we are interested in the linearity interval
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B € [B1, 5]

for which

Fie(8) = fi-(0).
Since fie is not a smooth function f. may not be defined at 0, as illustrated by the right example in

figure 15.1. In this case we can define a left and a right shadow price and a left and a right linearity
interval.

The function fie considered only changes in [f. We can define similar functions for the remaining
parameters of the z defined in (15.1) as well:

fuf(ﬁ) = Z(lcvuc+ﬂei7lm7uz’c)7 t=1,...,m,
fl;"(ﬂ) = Z(lc’ucvlaj+ﬁejaum,c)a j:]-v"‘,nv
fu;(/@) = Z(lc7uc7lxaux +ﬁ€j7C)7 ] = 17' -, N,

fcj(ﬂ) = Z(lc7uc7l$’ux,c+ﬂej)’ i=1,...,n.
Given these definitions it should be clear how linearity intervals and shadow prices are defined for the
parameters u; etc.

15.4.1.1 Equality constraints

In MOSEK a constraint can be specified as either an equality constraint or a ranged constraint. If
constraint ¢ is an equality constraint, we define the optimal value function for this as

fe:(ﬁ) = Z(lc + ﬁeia uc + Beia lwv uz’ C)
Thus for an equality constraint the upper and the lower bounds (which are equal) are perturbed

simultaneously. Therefore, MOSEK will handle sensitivity analysis differently for a ranged constraint
with [§ = uf and for an equality constraint.

15.4.2 The basis type sensitivity analysis

The classical sensitivity analysis discussed in most textbooks about linear optimization, e.g. [1], is
based on an optimal basic solution or, equivalently, on an optimal basis. This method may produce
misleading results [17] but is computationally cheap. Therefore, and for historical reasons this
method is available in MOSEK We will now briefly discuss the basis type sensitivity analysis. Given
an optimal basic solution which provides a partition of variables into basic and non-basic variables, the
basis type sensitivity analysis computes the linearity interval [31, f2] so that the basis remains optimal
for the perturbed problem. A shadow price associated with the linearity interval is also computed.
However, it is well-known that an optimal basic solution may not be unique and therefore the result
depends on the optimal basic solution employed in the sensitivity analysis. This implies that the
computed interval is only a subset of the largest interval for which the shadow price is constant.
Furthermore, the optimal objective value function might have a breakpoint for 5 = 0. In this case the
basis type sensitivity method will only provide a subset of either the left or the right linearity interval.
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In summary, the basis type sensitivity analysis is computationally cheap but does not provide complete
information. Hence, the results of the basis type sensitivity analysis should be used with care.

15.4.3 The optimal partition type sensitivity analysis

Another method for computing the complete linearity interval is called the optimal partition type
sensitivity analysis. The main drawback of the optimal partition type sensitivity analysis is that it
is computationally expensive compared to the basis type analysts. This type of sensitivity analysis is
currently provided as an experimental feature in MOSEK.

Given the optimal primal and dual solutions to (15.1), i.e. «* and ((sf)*, (s$)*, (s7)*, (s%)*) the optimal
objective value is given by

The left and right shadow prices o; and oy for [§ are given by this pair of optimization problems:

01 = minimize el's¢
subject to AT (s§ — 85) + s7 — s = ¢
(L) (s7) = (ue) (s5) + (L) (57) = (ua) " (s) = 2,

(& C C xr
8718y,5]:8, >0

and

02 = maximize el's¢
subject to AT (s§ — 85) + s7 — s = ¢
(1) () = (ue) T (s5) + (la) " (s7) = (ua) " (s3) = 27,

C C C xT
87, 8y,5]:5, > 0.

These two optimization problems make it easy to interpret the shadow price. Indeed, if ((s7)*, (s5)*, (s7)*, (s%)*)
is an arbitrary optimal solution then

(s1); € [o1,02].

Next, the linearity interval [51, B2] for I is computed by solving the two optimization problems

/1 = minimize B8
subject to [°+4 Be; < Az < b
e —o18 = 2z

" <z <u®,
and

B2 = maximize B8
subject to [°+4 Be; < Az < b,
e —oy = 2z,

I <z <u®.
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The linearity intervals and shadow prices for uf, I7, and uj are computed similarly to [f.

The left and right shadow prices for ¢; denoted o; and o respectively are computed as follows:

01 = minimize ejTa:
subject to ¢+ fBe; < Ax < b,
' = 2z
F<z< u*
and
o9 = maximize eJTx
subject to [+ fBe; < Ax <l
T = 2¥
F<zx< d

Once again the above two optimization problems make it easy to interpret the shadow prices. Indeed,
if x* is an arbitrary primal optimal solution, then

a:;‘ € o1, 02].

The linearity interval [51, 82] for a ¢; is computed as follows:

1 = minimize
subject to AT (s§ —55) 4 87 — 5= = c+ fej,
(L) T (s) = (ue) T (s5) + (1) T (57) = (ua) T () —ouff < 27,
5180 51, Sy = 0
and
B2 = maximize
subject to AT (s§ — s5) + 87 — s = c+ Bey,
(L) (s7) = (ue)T(s5) + (L) (57) = (ua) T (s5) =028 < 27,

c C C X
87,84, 51,5, = 0.

15.4.4 Example: Sensitivity analysis

As an example we will use the following transportation problem. Consider the problem of minimizing
the transportation cost between a number of production plants and stores. Each plant supplies a
number of goods and each store has a given demand that must be met. Supply, demand and cost of
transportation per unit are shown in Figure 15.2. If we denote the number of transported goods from
location ¢ to location j by x;;, problem can be formulated as the linear optimization problem minimize

lz11 + 2m12 + 9723 + 2x04 + lzzr + 233 + 1wy

subject to
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Supply

400

1200

1000

Figure 15.2: Supply, demand and cost of transportation.
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Basis type

Optimal partition type

197

Con. b1 B2 o1 o2 Con. b1 B2 o1 o2

1 —300.00 0.00 3.00 3.00 1 —300.00 500.00  3.00 1.00
2 —1700.00 400 0.00 0.00 2 —700.00 +oco0  —0.00 —-0.00
3 —500.00 0.00 3.00 3.00 3 —500.00 500.00  3.00 1.00
4 —0.00 500.00 4.00 4.00 4 —500.00 500.00  2.00 4.00
5 —0.00 300.00 5.00 5.00 5 —100.00 300.00  3.00 5.00
6 —0.00 700.00 5.00 5.00 6 —500.00 700.00  3.00 5.00
7 —500.00  700.00 2.00 2.00 7 —500.00 700.00  2.00 2.00
Var. b1 B2 o1 o2 Var. b1 B2 o1 P

11 —00 300.00 0.00 0.00 11 —00 300.00  0.00 0.00
12 —00 100.00 0.00 0.00 19 —00 100.00  0.00 0.00
Tog —00 0.00  0.00 0.00 Tog —00 500.00  0.00 2.00
Toy —00 500.00 0.00 0.00 T4 —00 500.00  0.00 0.00
T3] —00 500.00 0.00 0.00 31 —00 500.00  0.00 0.00
33 —00 500.00 0.00 0.00 33 —00 500.00  0.00 0.00
T34 —0.000000 500.00 2.00 2.00 T34 —00 500.00  0.00 2.00

Table 15.1: Ranges and shadow prices related to bounds on constraints and variables. Left: Results

for the basis type sensitivity analysis. Right: Results for the optimal partition type sensitivity analysis.

T3 + X12
T2z + T
T31
T11 + T3
T12
T2z +
Tog +
Z11, Z12, €23, £24, Z31,

x33

Z33

Z33,

+ T3

T34
T34

400,
1200,
1000,
800,
100,
500,
500,
0.

A IA A

(15.3)

IV

The basis type and the optimal partition type sensitivity results for the transportation problem are
shown in Table 15.1 and 15.2 respectively. Examining the results from the optimal partition type
sensitivity analysis we see that for constraint number 1 we have o1 # g9 and 31 # (2. Therefore, we
have a left linearity interval of [—300,0] and a right interval of [0,500]. The corresponding left and
right shadow prices are 3 and 1 respectively. This implies that if the upper bound on constraint 1

increases by

B € [0, 51] = [0, 500]

then the optimal objective value will decrease by the value

0'25 = 15.

Correspondingly, if the upper bound on constraint 1 is decreased by
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Basis type Optimal partition type
Var. b1 B2 01 o2 Var. B1 B2 o1 02
c1 —oo  3.00 300.00 300.00 c1 —oo  3.00 300.00 300.00
Ca —00 oo  100.00 100.00 ca —00 oo  100.00 100.00
cs —2.00 oo 0.00 0.00 cs —2.00 oo 0.00 0.00
c4 —oo  2.00 500.00 500.00 N —oo  2.00 500.00 500.00
cs —3.00 oo  500.00 500.00 cs —3.00 oo  500.00 500.00
Cs —oo  2.00 500.00 500.00 c —oo  2.00 500.00 500.00
cr —2.00 o0 0.00 0.00 c7 —2.00 o0 0.00 0.00

Table 15.2: Ranges and shadow prices related to the objective coefficients. Left: Results for the basis
type sensitivity analysis. Right: Results for the optimal partition type sensitivity analysis.

B € [0,300]

then the optimal objective value will increase by the value

U’lﬁ = 36

15.5 Sensitivity analysis from the MOSEK API

MOSEK provides the functions Task.primalsensitivity and Task.dualsensitivity for performing
sensitivity analysis. The code below gives an example of its use.

[sensitivity.py]

**

Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
File: sensitivity.py

Purpose: To demonstrate how to perform sensitivity
analysis from the API on a small problem:

minimize

obj: +1 x11 + 2 x12 + 5 x23 + 2 x24 + 1 x31 + 2 x33 + 1 x34

st

cl: + x11 + x12 <= 400
c2: + x23 + x24 <= 1200
c3: + x31 + x33 + x34 <= 1000
c4: + x11 + x31 = 800
cb: + x12 = 100
c6: + x23 + x33 = 500
c7: + x24 + x34 = 500

The example uses basis type sensitivity analysis.

HOH OH B H O HHHHHHHE R

**



25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82

15.5. SENSITIVITY ANALYSIS FROM THE MOSEK API

import sy

S

import mosek
# If numpy is installed, use that, otherwise use the
# Mosek’s array module.

try:

from numpy import array,zeros,ones
except ImportError:
from mosek.array import array, zeros, ones

# Since the actual value of Infinity is ignores, we define it solely

# for symbolic purposes:

inf = 0.0

# Define a stream printer to grab output from MOSEK

def streamprinter(text):
sys.stdout.write(text)
sys.stdout.flush()

# We might write everything directly as a script, but it looks nicer

# to create a function.
def main ():

# Create a MOSEK environment
mosek.Env ()
# Attach a printer to the environment
env.set_Stream (mosek.streamtype.log, streamprinter)

env =

# Create a task

task = env.Task(0,0)

# Attach a printer to the task
task.set_Stream (mosek.streamtype.log, streamprinter)

# Set up data

bkc =

blc =
buc =

bkx =

blx =
bux =

ptrb =

ptre
sub

val

[ mosek.boundkey.up,mosek.boundkey

mosek.boundkey.fx ]
-inf, -inf, -inf, 800., 100.,
[ 400., 1200., 1000., 800., 100.,

—

—

mosek.boundkey.lo ]
[1.0,2.0,5.0,2.0,1.0,2.0,1.0 ]
[ 0.0,0.0,0.0,0.0,0.0,0.0,0.0 ]
[ inf,inf,inf,inf,inf,inf,inf ]

0,2,4,6, 8,10,12 ]
2,4,6,8,10,12,14 ]
0,3,0,4,1,5,1,6,2,3,2,5,2,6 1

ER)

[1.0,1.0,1.0,1.0,1.0,1.0,1.0,

mosek.boundkey.lo,mosek.boundkey.
mosek.boundkey.lo,mosek.boundkey.
mosek.boundkey.lo,mosek.boundkey.

-up,
mosek.boundkey.up,mosek.boundkey.
mosek.boundkey.fx,mosek.boundkey.

fx,

fx,
500., 500. ]
500., 500. ]

lo,
lo,
lo,

199
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1.0,1.0,1.0,1.0,1.0,1.0,1.0 1]

numcon = len(bkc)
numvar = len(bkx)
numanz = len(val)

# Input linear data
task.inputdata(numcon,numvar,
c,0.0,
ptrb, ptre, sub, val,
bkc, blc, buc,
bkx, blx, bux)
# Set objective sense
task.putobjsense(mosek.objsense.minimize)

# Optimize
task.optimize();

# Analyze upper bound on cl and the equality constraint on c4
subi = [0, 3]
marki = [ mosek.mark.up, mosek.mark.up ]

# Analyze lower bound on the variables x12 and x31
subj =1[1, 4]
markj = [ mosek.mark.lo, mosek.mark.lo ]

leftpricei = zeros(2,float)
rightpricei = zeros(2,float)

leftrangei = zeros(2,float)
rightrangei = zeros(2,float)
leftpricej = zeros(2,float)
rightpricej = zeros(2,float)
leftrangej = zeros(2,float)

rightrangej = zeros(2,float)

task.primalsensitivity( subi,
marki,
subj,
markj,
leftpricei,
rightpricei,
leftrangei,
rightrangei,
leftpricej,
rightpricej,
leftrangej,
rightrangej)

print (’Results from sensitivity analysis on bounds:’)
print (’\tleftprice | rightprice | leftrange | rightrange ’ )
print (’For constraints:’)

for i in range(2):
print (’\t%10f %10£f %10£ %10£° % (leftpriceilil,
rightpriceil[i],
leftrangeili],
rightrangei[il))

SENSITIVITY ANALYSIS
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print (’For variables:’)
for i in range(2):
print (’\t%10f  J10f  J10f  %10f’ % (leftpricejlil,
rightpricej[il,
leftrangej[il,
rightrangej[il))

leftprice = zeros(2,float)
rightprice = zeros(2,float)
leftrange = zeros(2,float)
rightrange = zeros(2,float)
subc = array([ 2, 5 1)

task.dualsensitivity( subc,
leftprice,
rightprice,
leftrange,
rightrange)

print (’Results from sensitivity analysis on objective coefficients:’)

for i in range(2):
print (°\t%10f  %10f  %10f  %10f’ % (leftpricelil,
rightpricel[il,
leftrangel[i],
rightrange[i]))

return None

# call the main function

try:
main ()

except mosek.Exception as e:
print ("ERROR: %s" % str(e.errno))
if e.msg is not None:

print ("\t/s" % e.msg)

sys.exit (1)

except:
import traceback
traceback.print_exc()
sys.exit (1)

15.6 Sensitivity analysis with the command line tool

A sensitivity analysis can be performed with the MOSEK command line tool using the command

mosek myproblem.mps -sen sensitivity.ssp

where sensitivity.ssp is a file in the format described in the next section. The ssp file describes
which parts of the problem the sensitivity analysis should be performed on.

By default results are written to a file named myproblem.sen. If necessary, this filename can be
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* A comment
BOUNDS CONSTRAINTS
UILILU [cnamel]

U|LILU [cname2]-[cname3]
BOUNDS VARIABLES

UILILU [vnamel]

UILILU [vname2]-[vname3]
OBJECTIVE VARIABLES
[vname1]

[vname2] - [vname3]

Figure 15.3: The sensitivity analysis file format.

changed by setting the
MSK_SPAR_SENSITIVITY RES_FILE NAME

parameter By default a basis type sensitivity analysis is performed. However, the type of sensitivity
analysis (basis or optimal partition) can be changed by setting the parameter

MSK_IPAR_SENSITIVITY_TYPE

appropriately. Following values are accepted for this parameter:

e MSK_SENSITIVITY_TYPE_BASIS

e MSK_SENSITIVITY_TYPE_OPTIMAL_PARTITION

It is also possible to use the command line
mosek myproblem.mps -d MSK_IPAR_SENSITIVITY_ALL MSK_ON

in which case a sensitivity analysis on all the parameters is performed.

15.6.1 Sensitivity analysis specification file

MOSEK employs an MPS like file format to specify on which model parameters the sensitivity anal-
ysis should be performed. As the optimal partition type sensitivity analysis can be computationally
expensive it is important to limit the sensitivity analysis. The format of the sensitivity specification
file is shown in figure 15.3, where capitalized names are keywords, and names in brackets are names
of the constraints and variables to be included in the analysis.

The sensitivity specification file has three sections, i.e.

e BOUNDS CONSTRAINTS: Specifies on which bounds on constraints the sensitivity analysis should
be performed.

e BOUNDS VARIABLES: Specifies on which bounds on variables the sensitivity analysis should be
performed.

e OBJECTIVE VARIABLES: Specifies on which objective coefficients the sensitivity analysis should
be performed.
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* Comment 1

BOUNDS CONSTRAINTS

U "c1" * Analyze upper bound for constraint named cl
U 2 * Analyze upper bound for the second constraint
U 3-5 * Analyze upper bound for constraint number 3 to number 5

BOUNDS VARIABLES

L 2-4 * This section specifies which bounds on variables should be analyzed

L "x11"
OBJECTIVE VARIABLES

"x11" * This section specifies which objective coefficients should be analyzed
2

Figure 15.4: Example of the sensitivity file format.

A line in the body of a section must begin with a whitespace. In the BOUNDS sections one of the keys
L, U, and LU must appear next. These keys specify whether the sensitivity analysis is performed on
the lower bound, on the upper bound, or on both the lower and the upper bound respectively. Next,
a single constraint (variable) or range of constraints (variables) is specified.

Recall from Section 15.4.1.1 that equality constraints are handled in a special way. Sensitivity analysis
of an equality constraint can be specified with either L, U, or LU, all indicating the same, namely that
upper and lower bounds (which are equal) are perturbed simultaneously.

As an example consider

BOUNDS CONSTRAINTS
L "consl"
U "cons2"
LU "cons3"-"cons6"

which requests that sensitivity analysis is performed on the lower bound of the constraint named
cons1, on the upper bound of the constraint named cons2, and on both lower and upper bound on
the constraints named cons3 to cons6.

It is allowed to use indexes instead of names, for instance

BOUNDS CONSTRAINTS

L "consl"
U 2
LU 3 -6

The character ”*” indicates that the line contains a comment and is ignored.

15.6.2 Example: Sensitivity analysis from command line

As an example consider the sensitivity.ssp file shown in Figure 15.4. The command

mosek transport.lp -sen sensitivity.ssp -d iparam.sensitivity type sensitivitytype.basis

produces the transport.sen file shown below.

BOUNDS CONSTRAINTS
INDEX NAME BOUND LEFTRANGE RIGHTRANGE LEFTPRICE RIGHTPRICE
0 cl UpP -6.574875e-18 5.000000e+02 1.000000e+00 1.000000e+00
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2 c3 Up -6.574875e-18 5.000000e+02 1.000000e+00 1.000000e+00
3 c4 FIX -5.000000e+02 6.574875e-18 2.000000e+00 2.000000e+00
4 cb5 FIX -1.000000e+02 6.574875e-18 3.000000e+00 3.000000e+00
5 c6 FIX -5.000000e+02 6.574875e-18 3.000000e+00 3.000000e+00
BOUNDS VARIABLES
INDEX NAME BOUND LEFTRANGE RIGHTRAN