
The MOSEK command line tool.
Version 7.0 (Revision 141).

ii

• Published by MOSEK ApS, Denmark.

• Copyright c© MOSEK ApS, Denmark. All rights reserved.

Contents

1 Changes and new features in MOSEK 5
1.1 Platform support . 5
1.2 General changes . 5
1.3 Optimizers . 6

1.3.1 Interior point optimizer . 6
1.3.2 The simplex optimizers . 6
1.3.3 Mixed-integer optimizer . 7

1.4 Optimization toolbox for MATLAB . 7
1.5 License system . 7
1.6 Other changes . 7
1.7 Interfaces . 7
1.8 Platform changes . 7

2 What is MOSEK 9
2.1 Interfaces . 10

3 MOSEK and AMPL 11
3.1 Invoking the AMPL shell . 11
3.2 Applicability . 11
3.3 An example . 11
3.4 Determining the outcome of an optimization . 12
3.5 Optimizer options . 12

3.5.1 The MOSEK parameter database . 12
3.5.2 Options . 13

3.6 Constraint and variable names . 13
3.7 Which solution is returned to AMPL . 14
3.8 Hot-start . 14
3.9 The infeasibility report . 16
3.10 Sensitivity analysis . 16
3.11 Using the command line version of the AMPL interface 18

4 Problem formulation and solutions 19
4.1 Linear optimization . 19

4.1.1 Duality for linear optimization . 20
4.1.2 Infeasibility for linear optimization . 22

4.2 Conic quadratic optimization . 23

iii

iv CONTENTS

4.2.1 Duality for conic quadratic optimization . 24
4.2.2 Infeasibility for conic quadratic optimization . 25

4.3 Semidefinite optimization . 26
4.3.1 Duality for semidefinite optimization . 26
4.3.2 Infeasibility for semidefinite optimization . 27

4.4 Quadratic and quadratically constrained optimization 28
4.4.1 Duality for quadratic and quadratically constrained optimization 28
4.4.2 Infeasibility for quadratic and quadratically constrained optimization 29

4.5 General convex optimization . 29
4.5.1 Duality for general convex optimization . 30

5 The optimizers for continuous problems 33
5.1 How an optimizer works . 33

5.1.1 Presolve . 34
5.1.2 Dualizer . 35
5.1.3 Scaling . 36
5.1.4 Using multiple threads . 36

5.2 Linear optimization . 36
5.2.1 Optimizer selection . 36
5.2.2 The interior-point optimizer . 37
5.2.3 The simplex based optimizer . 42
5.2.4 The interior-point or the simplex optimizer? . 43
5.2.5 The primal or the dual simplex variant? . 43

5.3 Linear network optimization . 44
5.3.1 Network flow problems . 44

5.4 Conic optimization . 44
5.4.1 The interior-point optimizer . 44

5.5 Nonlinear convex optimization . 45
5.5.1 The interior-point optimizer . 45

5.6 Solving problems in parallel . 46
5.6.1 Thread safety . 46
5.6.2 The parallelized interior-point optimizer . 47
5.6.3 The concurrent optimizer . 47

6 The optimizers for mixed-integer problems 49
6.1 Some concepts and facts related to mixed-integer optimization 49
6.2 The mixed-integer optimizers . 50
6.3 The mixed-integer conic optimizer . 51

6.3.1 Presolve . 51
6.3.2 Heuristic . 51
6.3.3 The optimization phase . 52
6.3.4 Caveats . 52

6.4 The mixed-integer optimizer . 52
6.4.1 Presolve . 52
6.4.2 Heuristic . 52
6.4.3 The optimization phase . 53

CONTENTS v

6.5 Termination criterion . 53
6.5.1 Relaxed termination . 53
6.5.2 Important parameters . 54

6.6 How to speed up the solution process . 54
6.7 Understanding solution quality . 55

7 The analyzers 57
7.1 The problem analyzer . 57

7.1.1 General characteristics . 58
7.1.2 Objective . 60
7.1.3 Linear constraints . 60
7.1.4 Constraint and variable bounds . 61
7.1.5 Quadratic constraints . 61
7.1.6 Conic constraints . 61

7.2 Analyzing infeasible problems . 61
7.2.1 Example: Primal infeasibility . 62
7.2.2 Locating the cause of primal infeasibility . 63
7.2.3 Locating the cause of dual infeasibility . 64
7.2.4 The infeasibility report . 64
7.2.5 Theory concerning infeasible problems . 68
7.2.6 The certificate of primal infeasibility . 68
7.2.7 The certificate of dual infeasibility . 69

8 Sensitivity analysis 71
8.1 Introduction . 71
8.2 Restrictions . 71
8.3 References . 71
8.4 Sensitivity analysis for linear problems . 72

8.4.1 The optimal objective value function . 72
8.4.2 The basis type sensitivity analysis . 73
8.4.3 The optimal partition type sensitivity analysis 74

8.5 Sensitivity analysis with the command line tool . 75
8.5.1 Sensitivity analysis specification file . 76
8.5.2 Example: Sensitivity analysis from command line 77
8.5.3 Controlling log output . 78

9 Parameters 79
9.1 MSKdparame: Double parameters . 93

9.1.1 MSK DPAR ANA SOL INFEAS TOL . 93
9.1.2 MSK DPAR BASIS REL TOL S . 93
9.1.3 MSK DPAR BASIS TOL S . 94
9.1.4 MSK DPAR BASIS TOL X . 94
9.1.5 MSK DPAR CHECK CONVEXITY REL TOL 94
9.1.6 MSK DPAR DATA TOL AIJ . 95
9.1.7 MSK DPAR DATA TOL AIJ HUGE . 95
9.1.8 MSK DPAR DATA TOL AIJ LARGE . 95
9.1.9 MSK DPAR DATA TOL BOUND INF . 96

vi CONTENTS

9.1.10 MSK DPAR DATA TOL BOUND WRN . 96
9.1.11 MSK DPAR DATA TOL C HUGE . 96
9.1.12 MSK DPAR DATA TOL CJ LARGE . 97
9.1.13 MSK DPAR DATA TOL QIJ . 97
9.1.14 MSK DPAR DATA TOL X . 97
9.1.15 MSK DPAR FEASREPAIR TOL . 98
9.1.16 MSK DPAR INTPNT CO TOL DFEAS . 98
9.1.17 MSK DPAR INTPNT CO TOL INFEAS . 99
9.1.18 MSK DPAR INTPNT CO TOL MU RED . 99
9.1.19 MSK DPAR INTPNT CO TOL NEAR REL . 99
9.1.20 MSK DPAR INTPNT CO TOL PFEAS . 100
9.1.21 MSK DPAR INTPNT CO TOL REL GAP . 100
9.1.22 MSK DPAR INTPNT NL MERIT BAL . 100
9.1.23 MSK DPAR INTPNT NL TOL DFEAS . 101
9.1.24 MSK DPAR INTPNT NL TOL MU RED . 101
9.1.25 MSK DPAR INTPNT NL TOL NEAR REL . 101
9.1.26 MSK DPAR INTPNT NL TOL PFEAS . 102
9.1.27 MSK DPAR INTPNT NL TOL REL GAP . 102
9.1.28 MSK DPAR INTPNT NL TOL REL STEP . 102
9.1.29 MSK DPAR INTPNT TOL DFEAS . 103
9.1.30 MSK DPAR INTPNT TOL DSAFE . 103
9.1.31 MSK DPAR INTPNT TOL INFEAS . 103
9.1.32 MSK DPAR INTPNT TOL MU RED . 104
9.1.33 MSK DPAR INTPNT TOL PATH . 104
9.1.34 MSK DPAR INTPNT TOL PFEAS . 104
9.1.35 MSK DPAR INTPNT TOL PSAFE . 105
9.1.36 MSK DPAR INTPNT TOL REL GAP . 105
9.1.37 MSK DPAR INTPNT TOL REL STEP . 105
9.1.38 MSK DPAR INTPNT TOL STEP SIZE . 106
9.1.39 MSK DPAR LOWER OBJ CUT . 106
9.1.40 MSK DPAR LOWER OBJ CUT FINITE TRH 106
9.1.41 MSK DPAR MIO DISABLE TERM TIME . 107
9.1.42 MSK DPAR MIO HEURISTIC TIME . 107
9.1.43 MSK DPAR MIO MAX TIME . 108
9.1.44 MSK DPAR MIO MAX TIME APRX OPT . 108
9.1.45 MSK DPAR MIO NEAR TOL ABS GAP . 109
9.1.46 MSK DPAR MIO NEAR TOL REL GAP . 109
9.1.47 MSK DPAR MIO REL ADD CUT LIMITED 110
9.1.48 MSK DPAR MIO REL GAP CONST . 110
9.1.49 MSK DPAR MIO TOL ABS GAP . 110
9.1.50 MSK DPAR MIO TOL ABS RELAX INT . 111
9.1.51 MSK DPAR MIO TOL FEAS . 111
9.1.52 MSK DPAR MIO TOL REL DUAL BOUND IMPROVEMENT 111
9.1.53 MSK DPAR MIO TOL REL GAP . 112
9.1.54 MSK DPAR MIO TOL REL RELAX INT . 112
9.1.55 MSK DPAR MIO TOL X . 112

CONTENTS vii

9.1.56 MSK DPAR NONCONVEX TOL FEAS . 113
9.1.57 MSK DPAR NONCONVEX TOL OPT . 113
9.1.58 MSK DPAR OPTIMIZER MAX TIME . 113
9.1.59 MSK DPAR PRESOLVE TOL ABS LINDEP 114
9.1.60 MSK DPAR PRESOLVE TOL AIJ . 114
9.1.61 MSK DPAR PRESOLVE TOL REL LINDEP 114
9.1.62 MSK DPAR PRESOLVE TOL S . 115
9.1.63 MSK DPAR PRESOLVE TOL X . 115
9.1.64 MSK DPAR QCQO REFORMULATE REL DROP TOL 115
9.1.65 MSK DPAR SIM LU TOL REL PIV . 116
9.1.66 MSK DPAR SIMPLEX ABS TOL PIV . 116
9.1.67 MSK DPAR UPPER OBJ CUT . 116
9.1.68 MSK DPAR UPPER OBJ CUT FINITE TRH 117

9.2 MSKiparame: Integer parameters . 117
9.2.1 MSK IPAR ALLOC ADD QNZ . 117
9.2.2 MSK IPAR ANA SOL BASIS . 118
9.2.3 MSK IPAR ANA SOL PRINT VIOLATED . 118
9.2.4 MSK IPAR AUTO SORT A BEFORE OPT . 118
9.2.5 MSK IPAR AUTO UPDATE SOL INFO . 119
9.2.6 MSK IPAR BASIS SOLVE USE PLUS ONE . 119
9.2.7 MSK IPAR BI CLEAN OPTIMIZER . 119
9.2.8 MSK IPAR BI IGNORE MAX ITER . 120
9.2.9 MSK IPAR BI IGNORE NUM ERROR . 120
9.2.10 MSK IPAR BI MAX ITERATIONS . 121
9.2.11 MSK IPAR CACHE LICENSE . 121
9.2.12 MSK IPAR CHECK CONVEXITY . 122
9.2.13 MSK IPAR COMPRESS STATFILE . 122
9.2.14 MSK IPAR CONCURRENT NUM OPTIMIZERS 122
9.2.15 MSK IPAR CONCURRENT PRIORITY DUAL SIMPLEX 123
9.2.16 MSK IPAR CONCURRENT PRIORITY FREE SIMPLEX 123
9.2.17 MSK IPAR CONCURRENT PRIORITY INTPNT 123
9.2.18 MSK IPAR CONCURRENT PRIORITY PRIMAL SIMPLEX 124
9.2.19 MSK IPAR FEASREPAIR OPTIMIZE . 124
9.2.20 MSK IPAR INFEAS GENERIC NAMES . 124
9.2.21 MSK IPAR INFEAS PREFER PRIMAL . 125
9.2.22 MSK IPAR INFEAS REPORT AUTO . 125
9.2.23 MSK IPAR INFEAS REPORT LEVEL . 125
9.2.24 MSK IPAR INTPNT BASIS . 126
9.2.25 MSK IPAR INTPNT DIFF STEP . 126
9.2.26 MSK IPAR INTPNT FACTOR DEBUG LVL 127
9.2.27 MSK IPAR INTPNT FACTOR METHOD . 127
9.2.28 MSK IPAR INTPNT HOTSTART . 127
9.2.29 MSK IPAR INTPNT MAX ITERATIONS . 128
9.2.30 MSK IPAR INTPNT MAX NUM COR . 128
9.2.31 MSK IPAR INTPNT MAX NUM REFINEMENT STEPS 128
9.2.32 MSK IPAR INTPNT OFF COL TRH . 129

viii CONTENTS

9.2.33 MSK IPAR INTPNT ORDER METHOD . 129
9.2.34 MSK IPAR INTPNT REGULARIZATION USE 130
9.2.35 MSK IPAR INTPNT SCALING . 130
9.2.36 MSK IPAR INTPNT SOLVE FORM . 130
9.2.37 MSK IPAR INTPNT STARTING POINT . 131
9.2.38 MSK IPAR LIC TRH EXPIRY WRN . 131
9.2.39 MSK IPAR LICENSE ALLOW OVERUSE . 132
9.2.40 MSK IPAR LICENSE DEBUG . 132
9.2.41 MSK IPAR LICENSE PAUSE TIME . 132
9.2.42 MSK IPAR LICENSE SUPPRESS EXPIRE WRNS 133
9.2.43 MSK IPAR LICENSE WAIT . 133
9.2.44 MSK IPAR LOG . 133
9.2.45 MSK IPAR LOG BI . 134
9.2.46 MSK IPAR LOG BI FREQ . 134
9.2.47 MSK IPAR LOG CHECK CONVEXITY . 135
9.2.48 MSK IPAR LOG CONCURRENT . 135
9.2.49 MSK IPAR LOG CUT SECOND OPT . 135
9.2.50 MSK IPAR LOG EXPAND . 136
9.2.51 MSK IPAR LOG FACTOR . 136
9.2.52 MSK IPAR LOG FEAS REPAIR . 137
9.2.53 MSK IPAR LOG FILE . 137
9.2.54 MSK IPAR LOG HEAD . 137
9.2.55 MSK IPAR LOG INFEAS ANA . 138
9.2.56 MSK IPAR LOG INTPNT . 138
9.2.57 MSK IPAR LOG MIO . 138
9.2.58 MSK IPAR LOG MIO FREQ . 139
9.2.59 MSK IPAR LOG NONCONVEX . 139
9.2.60 MSK IPAR LOG OPTIMIZER . 139
9.2.61 MSK IPAR LOG ORDER . 140
9.2.62 MSK IPAR LOG PARAM . 140
9.2.63 MSK IPAR LOG PRESOLVE . 140
9.2.64 MSK IPAR LOG RESPONSE . 141
9.2.65 MSK IPAR LOG SENSITIVITY . 141
9.2.66 MSK IPAR LOG SENSITIVITY OPT . 141
9.2.67 MSK IPAR LOG SIM . 142
9.2.68 MSK IPAR LOG SIM FREQ . 142
9.2.69 MSK IPAR LOG SIM MINOR . 142
9.2.70 MSK IPAR LOG SIM NETWORK FREQ . 143
9.2.71 MSK IPAR LOG STORAGE . 143
9.2.72 MSK IPAR MAX NUM WARNINGS . 143
9.2.73 MSK IPAR MIO BRANCH DIR . 144
9.2.74 MSK IPAR MIO BRANCH PRIORITIES USE 144
9.2.75 MSK IPAR MIO CONSTRUCT SOL . 144
9.2.76 MSK IPAR MIO CONT SOL . 145
9.2.77 MSK IPAR MIO CUT LEVEL ROOT . 145
9.2.78 MSK IPAR MIO CUT LEVEL TREE . 146

CONTENTS ix

9.2.79 MSK IPAR MIO FEASPUMP LEVEL . 146
9.2.80 MSK IPAR MIO HEURISTIC LEVEL . 147
9.2.81 MSK IPAR MIO HOTSTART . 147
9.2.82 MSK IPAR MIO KEEP BASIS . 148
9.2.83 MSK IPAR MIO LOCAL BRANCH NUMBER 148
9.2.84 MSK IPAR MIO MAX NUM BRANCHES . 148
9.2.85 MSK IPAR MIO MAX NUM RELAXS . 149
9.2.86 MSK IPAR MIO MAX NUM SOLUTIONS . 149
9.2.87 MSK IPAR MIO MODE . 150
9.2.88 MSK IPAR MIO MT USER CB . 150
9.2.89 MSK IPAR MIO NODE OPTIMIZER . 150
9.2.90 MSK IPAR MIO NODE SELECTION . 151
9.2.91 MSK IPAR MIO OPTIMIZER MODE . 152
9.2.92 MSK IPAR MIO PRESOLVE AGGREGATE . 152
9.2.93 MSK IPAR MIO PRESOLVE PROBING . 152
9.2.94 MSK IPAR MIO PRESOLVE USE . 153
9.2.95 MSK IPAR MIO ROOT OPTIMIZER . 153
9.2.96 MSK IPAR MIO STRONG BRANCH . 154
9.2.97 MSK IPAR MIO USE MULTITHREADED OPTIMIZER 154
9.2.98 MSK IPAR MT SPINCOUNT . 154
9.2.99 MSK IPAR NONCONVEX MAX ITERATIONS 155
9.2.100 MSK IPAR NUM THREADS . 155
9.2.101 MSK IPAR OPF MAX TERMS PER LINE . 155
9.2.102 MSK IPAR OPF WRITE HEADER . 156
9.2.103 MSK IPAR OPF WRITE HINTS . 156
9.2.104 MSK IPAR OPF WRITE PARAMETERS . 156
9.2.105 MSK IPAR OPF WRITE PROBLEM . 157
9.2.106 MSK IPAR OPF WRITE SOL BAS . 157
9.2.107 MSK IPAR OPF WRITE SOL ITG . 157
9.2.108 MSK IPAR OPF WRITE SOL ITR . 158
9.2.109 MSK IPAR OPF WRITE SOLUTIONS . 158
9.2.110 MSK IPAR OPTIMIZER . 159
9.2.111 MSK IPAR PARAM READ CASE NAME . 159
9.2.112 MSK IPAR PARAM READ IGN ERROR . 160
9.2.113 MSK IPAR PRESOLVE ELIM FILL . 160
9.2.114 MSK IPAR PRESOLVE ELIMINATOR MAX NUM TRIES 160
9.2.115 MSK IPAR PRESOLVE ELIMINATOR USE . 161
9.2.116 MSK IPAR PRESOLVE LEVEL . 161
9.2.117 MSK IPAR PRESOLVE LINDEP ABS WORK TRH 161
9.2.118 MSK IPAR PRESOLVE LINDEP REL WORK TRH 162
9.2.119 MSK IPAR PRESOLVE LINDEP USE . 162
9.2.120 MSK IPAR PRESOLVE MAX NUM REDUCTIONS 162
9.2.121 MSK IPAR PRESOLVE USE . 163
9.2.122 MSK IPAR PRIMAL REPAIR OPTIMIZER . 163
9.2.123 MSK IPAR QO SEPARABLE REFORMULATION 164
9.2.124 MSK IPAR READ ANZ . 164

x CONTENTS

9.2.125 MSK IPAR READ CON . 164
9.2.126 MSK IPAR READ CONE . 165
9.2.127 MSK IPAR READ DATA COMPRESSED . 165
9.2.128 MSK IPAR READ DATA FORMAT . 165
9.2.129 MSK IPAR READ KEEP FREE CON . 166
9.2.130 MSK IPAR READ LP DROP NEW VARS IN BOU 166
9.2.131 MSK IPAR READ LP QUOTED NAMES . 167
9.2.132 MSK IPAR READ MPS FORMAT . 167
9.2.133 MSK IPAR READ MPS KEEP INT . 167
9.2.134 MSK IPAR READ MPS OBJ SENSE . 168
9.2.135 MSK IPAR READ MPS RELAX . 168
9.2.136 MSK IPAR READ MPS WIDTH . 169
9.2.137 MSK IPAR READ QNZ . 169
9.2.138 MSK IPAR READ TASK IGNORE PARAM . 169
9.2.139 MSK IPAR READ VAR . 170
9.2.140 MSK IPAR SENSITIVITY ALL . 170
9.2.141 MSK IPAR SENSITIVITY OPTIMIZER . 170
9.2.142 MSK IPAR SENSITIVITY TYPE . 171
9.2.143 MSK IPAR SIM BASIS FACTOR USE . 171
9.2.144 MSK IPAR SIM DEGEN . 172
9.2.145 MSK IPAR SIM DUAL CRASH . 172
9.2.146 MSK IPAR SIM DUAL PHASEONE METHOD 173
9.2.147 MSK IPAR SIM DUAL RESTRICT SELECTION 173
9.2.148 MSK IPAR SIM DUAL SELECTION . 173
9.2.149 MSK IPAR SIM EXPLOIT DUPVEC . 174
9.2.150 MSK IPAR SIM HOTSTART . 174
9.2.151 MSK IPAR SIM HOTSTART LU . 175
9.2.152 MSK IPAR SIM INTEGER . 175
9.2.153 MSK IPAR SIM MAX ITERATIONS . 175
9.2.154 MSK IPAR SIM MAX NUM SETBACKS . 176
9.2.155 MSK IPAR SIM NON SINGULAR . 176
9.2.156 MSK IPAR SIM PRIMAL CRASH . 176
9.2.157 MSK IPAR SIM PRIMAL PHASEONE METHOD 177
9.2.158 MSK IPAR SIM PRIMAL RESTRICT SELECTION 177
9.2.159 MSK IPAR SIM PRIMAL SELECTION . 177
9.2.160 MSK IPAR SIM REFACTOR FREQ . 178
9.2.161 MSK IPAR SIM REFORMULATION . 178
9.2.162 MSK IPAR SIM SAVE LU . 179
9.2.163 MSK IPAR SIM SCALING . 179
9.2.164 MSK IPAR SIM SCALING METHOD . 180
9.2.165 MSK IPAR SIM SOLVE FORM . 180
9.2.166 MSK IPAR SIM STABILITY PRIORITY . 180
9.2.167 MSK IPAR SIM SWITCH OPTIMIZER . 181
9.2.168 MSK IPAR SOL FILTER KEEP BASIC . 181
9.2.169 MSK IPAR SOL FILTER KEEP RANGED . 181
9.2.170 MSK IPAR SOL READ NAME WIDTH . 182

CONTENTS xi

9.2.171 MSK IPAR SOL READ WIDTH . 182
9.2.172 MSK IPAR SOLUTION CALLBACK . 183
9.2.173 MSK IPAR TIMING LEVEL . 183
9.2.174 MSK IPAR WARNING LEVEL . 183
9.2.175 MSK IPAR WRITE BAS CONSTRAINTS . 184
9.2.176 MSK IPAR WRITE BAS HEAD . 184
9.2.177 MSK IPAR WRITE BAS VARIABLES . 184
9.2.178 MSK IPAR WRITE DATA COMPRESSED . 185
9.2.179 MSK IPAR WRITE DATA FORMAT . 185
9.2.180 MSK IPAR WRITE DATA PARAM . 185
9.2.181 MSK IPAR WRITE FREE CON . 186
9.2.182 MSK IPAR WRITE GENERIC NAMES . 186
9.2.183 MSK IPAR WRITE GENERIC NAMES IO . 187
9.2.184 MSK IPAR WRITE IGNORE INCOMPATIBLE CONIC ITEMS 187
9.2.185 MSK IPAR WRITE IGNORE INCOMPATIBLE ITEMS 187
9.2.186 MSK IPAR WRITE IGNORE INCOMPATIBLE NL ITEMS 188
9.2.187 MSK IPAR WRITE IGNORE INCOMPATIBLE PSD ITEMS 188
9.2.188 MSK IPAR WRITE INT CONSTRAINTS . 188
9.2.189 MSK IPAR WRITE INT HEAD . 189
9.2.190 MSK IPAR WRITE INT VARIABLES . 189
9.2.191 MSK IPAR WRITE LP LINE WIDTH . 189
9.2.192 MSK IPAR WRITE LP QUOTED NAMES . 190
9.2.193 MSK IPAR WRITE LP STRICT FORMAT . 190
9.2.194 MSK IPAR WRITE LP TERMS PER LINE . 190
9.2.195 MSK IPAR WRITE MPS INT . 191
9.2.196 MSK IPAR WRITE PRECISION . 191
9.2.197 MSK IPAR WRITE SOL BARVARIABLES . 191
9.2.198 MSK IPAR WRITE SOL CONSTRAINTS . 192
9.2.199 MSK IPAR WRITE SOL HEAD . 192
9.2.200 MSK IPAR WRITE SOL IGNORE INVALID NAMES 192
9.2.201 MSK IPAR WRITE SOL VARIABLES . 193
9.2.202 MSK IPAR WRITE TASK INC SOL . 193
9.2.203 MSK IPAR WRITE XML MODE . 193

9.3 MSKsparame: String parameter types . 194
9.3.1 MSK SPAR BAS SOL FILE NAME . 194
9.3.2 MSK SPAR DATA FILE NAME . 194
9.3.3 MSK SPAR DEBUG FILE NAME . 194
9.3.4 MSK SPAR FEASREPAIR NAME PREFIX . 195
9.3.5 MSK SPAR FEASREPAIR NAME SEPARATOR 195
9.3.6 MSK SPAR FEASREPAIR NAME WSUMVIOL 195
9.3.7 MSK SPAR INT SOL FILE NAME . 196
9.3.8 MSK SPAR ITR SOL FILE NAME . 196
9.3.9 MSK SPAR MIO DEBUG STRING . 196
9.3.10 MSK SPAR PARAM COMMENT SIGN . 197
9.3.11 MSK SPAR PARAM READ FILE NAME . 197
9.3.12 MSK SPAR PARAM WRITE FILE NAME . 197

xii CONTENTS

9.3.13 MSK SPAR READ MPS BOU NAME . 198
9.3.14 MSK SPAR READ MPS OBJ NAME . 198
9.3.15 MSK SPAR READ MPS RAN NAME . 198
9.3.16 MSK SPAR READ MPS RHS NAME . 199
9.3.17 MSK SPAR SENSITIVITY FILE NAME . 199
9.3.18 MSK SPAR SENSITIVITY RES FILE NAME 199
9.3.19 MSK SPAR SOL FILTER XC LOW . 200
9.3.20 MSK SPAR SOL FILTER XC UPR . 200
9.3.21 MSK SPAR SOL FILTER XX LOW . 200
9.3.22 MSK SPAR SOL FILTER XX UPR . 201
9.3.23 MSK SPAR STAT FILE NAME . 201
9.3.24 MSK SPAR STAT KEY . 201
9.3.25 MSK SPAR STAT NAME . 202
9.3.26 MSK SPAR WRITE LP GEN VAR NAME . 202

10 Response codes 203

11 API constants 233
11.1 Constraint or variable access modes . 233
11.2 Basis identification . 233
11.3 Bound keys . 234
11.4 Specifies the branching direction. 234
11.5 Progress call-back codes . 234
11.6 Types of convexity checks. 243
11.7 Compression types . 243
11.8 Cone types . 243
11.9 Data format types . 243
11.10 Double information items . 244
11.11 Feasibility repair types . 249
11.12 License feature . 249
11.13 Integer information items. 249
11.14 Information item types . 256
11.15 Hot-start type employed by the interior-point optimizers. 256
11.16 Input/output modes . 256
11.17 Language selection constants . 257
11.18 Long integer information items. 257
11.19 Mark . 258
11.20 Continuous mixed-integer solution type . 258
11.21 Integer restrictions . 258
11.22 Mixed-integer node selection types . 259
11.23 MPS file format type . 259
11.24 Message keys . 259
11.25 Cone types . 260
11.26 Objective sense types . 260
11.27 On/off . 260
11.28 Optimizer types . 260

CONTENTS xiii

11.29 Ordering strategies . 261
11.30 Parameter type . 262
11.31 Presolve method. 262
11.32 Problem data items . 262
11.33 Problem types . 262
11.34 Problem status keys . 263
11.35 Response code type . 264
11.36 Scaling type . 264
11.37 Scaling type . 264
11.38 Sensitivity types . 265
11.39 Degeneracy strategies . 265
11.40 Exploit duplicate columns. 265
11.41 Hot-start type employed by the simplex optimizer . 266
11.42 Problem reformulation. 266
11.43 Simplex selection strategy . 266
11.44 Solution items . 267
11.45 Solution status keys . 267
11.46 Solution types . 269
11.47 Solve primal or dual form . 269
11.48 Status keys . 269
11.49 Starting point types . 270
11.50 Stream types . 270
11.51 Cone types . 270
11.52 Integer values . 271
11.53 Variable types . 271
11.54 XML writer output mode . 271

12 MOSEK Command line tool 273
12.1 Introduction . 273
12.2 Command line arguments . 273
12.3 The parameter file . 275

12.3.1 Using the parameter file . 276

13 The MPS file format 277
13.1 MPS file structure . 277

13.1.1 Linear example lo1.mps . 279
13.1.2 NAME . 279
13.1.3 OBJSENSE (optional) . 279
13.1.4 OBJNAME (optional) . 280
13.1.5 ROWS . 280
13.1.6 COLUMNS . 280
13.1.7 RHS (optional) . 281
13.1.8 RANGES (optional) . 282
13.1.9 QSECTION (optional) . 282
13.1.10BOUNDS (optional) . 284
13.1.11CSECTION (optional) . 284

xiv CONTENTS

13.1.12ENDATA . 286
13.2 Integer variables . 287
13.3 General limitations . 287
13.4 Interpretation of the MPS format . 287
13.5 The free MPS format . 288

14 The LP file format 289
14.1 The sections . 290

14.1.1 The objective . 290
14.1.2 The constraints . 291
14.1.3 Bounds . 292
14.1.4 Variable types . 292
14.1.5 Terminating section . 292
14.1.6 Linear example lo1.lp . 293
14.1.7 Mixed integer example milo1.lp . 293

14.2 LP format peculiarities . 293
14.2.1 Comments . 293
14.2.2 Names . 293
14.2.3 Variable bounds . 294
14.2.4 MOSEK specific extensions to the LP format . 294

14.3 The strict LP format . 295
14.4 Formatting of an LP file . 295

14.4.1 Speeding up file reading . 296
14.4.2 Unnamed constraints . 296

15 The OPF format 297
15.1 Intended use . 297
15.2 The file format . 297

15.2.1 Sections . 298
15.2.2 Numbers . 302
15.2.3 Names . 302

15.3 Parameters section . 302
15.4 Writing OPF files from MOSEK . 303
15.5 Examples . 303

15.5.1 Linear example lo1.opf . 303
15.5.2 Quadratic example qo1.opf . 304
15.5.3 Conic quadratic example cqo1.opf . 305
15.5.4 Mixed integer example milo1.opf . 306

16 The XML (OSiL) format 309

17 The solution file format 311
17.1 The basic and interior solution files . 311
17.2 The integer solution file . 313

18 Problem analyzer examples 315
18.1 air04 . 315

CONTENTS xv

18.2 arki001 . 316
18.3 Problem with both linear and quadratic constraints . 318
18.4 Problem with both linear and conic constraints . 319

xvi CONTENTS

Contact information

Phone +45 3917 9907
Fax +45 3917 9823
WEB http://www.mosek.com
Email sales@mosek.com Sales, pricing, and licensing.

support@mosek.com Technical support, questions and bug reports.
info@mosek.com Everything else.

Mail MOSEK ApS

C/O Symbion Science Park
Fruebjergvej 3, Box 16
2100 Copenhagen Ō
Denmark

1

http://www.mosek.com
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com

2 CONTENTS

License agreement

Before using the MOSEK software, please read the license agreement available in the distribution at

mosek\7\license.pdf

3

4 CONTENTS

Chapter 1

Changes and new features in
MOSEK

The section presents improvements and new features added to MOSEK in version 7.0.

1.1 Platform support

In Table 1.1 the supported platform and compiler used to build MOSEK shown. Although RedHat
is explicitly mentioned as the supported Linux distribution then MOSEK will work on most other
variants of Linux. However, the license manager tools requires Linux Standard Base 3 or newer is
installed.

1.2 General changes

• The interior-point optimizer has been extended to semi-definite optimization problems. Hence,
MOSEK can optimize over the positive semi-definite cone.

• The network detection has been completely redesigned. MOSEK no longer try detect partial
networks. The problem must be a pure primal network for the network optimizer to be used.

• The parameter iparam.objective sense has been removed.

• The parameter iparam.intpnt num threads has been removed. Use the parameter iparam.num threads
instead.

• MOSEK now automatically exploit multiple CPUs i.e. the parameter iparam.num threads is set
to 0 be default. Note the amount memory that MOSEK uses grows with the number of threads
employed.

5

6 CHAPTER 1. CHANGES AND NEW FEATURES IN MOSEK

Platform OS version C compiler
linux32x86 Redhat 5 or newer (LSB 3+) Intel C 13.1 (gcc 4.3, glibc 2.3.4)
linux64x86 RedHat 5 or newer (LSB 3+) Intel C 13.1 (gcc 4.3, glibc 2.3.4)
osx64x86 OSX 10.7 Lion or newer Intel C 13.0 (llvm-gcc-4.2)
win32x86 Windows XP, Server 2003 or newer Intel C 13.0 (VS 2008)
win64x86 Windows XP, Server 2003 or newer Intel C 13.1 (VS 2008)

Interface Supported versions
Java Sun Java 1.6+
Microsoft.NET 2.1+
Python 2 2.6+
Python 3 3.1+

Table 1.1: Supported platforms

• The MBT file format has been replaced by a new task format. The new format supports semi-
definite optimization.

• the HTML version of the documentation is no longer included in the downloads to save space.
It is still available online.

• MOSEK is more restrictive about the allowed names on variables etc. This is in particular the
case when writing LP files.

• MOSEK no longer tries to detect the cache sizes and is in general less sensitive to the hardware.

• The parameter is set iparam.auto update sol info is default off. In previous version it was by
default on.

• The function relaxprimal has been deprecated and replaced by the function primalrepair.

1.3 Optimizers

1.3.1 Interior point optimizer

• The factorization routines employd by the interior-point optimizer for linear and conic opti-
mization problems has been completely rewritten. In particular the dense column detection and
handling is improved. The factorization routine will also exploit vendor tuned BLAS routines.

1.3.2 The simplex optimizers

• No major changes.

1.4. OPTIMIZATION TOOLBOX FOR MATLAB 7

1.3.3 Mixed-integer optimizer

• A new mixed-integer for linear and conic problems has been introduced. It is from run-to-run
determinitic and is parallelized. It is particular suitable for conic problems.

1.4 Optimization toolbox for MATLAB

• A MOSEK equivalent of bintprog has been introduced.

• The functionality of the MOSEK version of linprog has been improved. It is now possible to
employ the simplex optimizer in linprog.

• mosekopt now accepts a dense A matrix.

• An new method for specification of cones that is more efficient when the problem has many cones
has introduced. The old method is still allowed but is deprecated.

• Support for semidefinite optimization problems has been added to the toolbox.

1.5 License system

• Flexlm has been upgraded to version 11.11.

1.6 Other changes

• The documentation has been improved.

1.7 Interfaces

• Semi-definite optimization capabilities have been add to the optimizer APIs.

• A major clean up have occured in the optimizer APIs. This should have little effect for most
users.

• A new object orientated interface called Fusion has been added. Fusion is available Java, MAT-
LAB, .NET and Python.

• The AMPL command line tool has been updated to the latest version.

1.8 Platform changes

• 32 bit MAC OSX on Intel x86 (osx32x86) is no longer supported.

• 32 and 64 bit Solaris on Intel x86 (solaris32x86,solaris64x86) is no longer supported.

8 CHAPTER 1. CHANGES AND NEW FEATURES IN MOSEK

Chapter 2

What is MOSEK

MOSEK is a software package for solving mathematical optimization problems.

The core of MOSEK consists of a number of optimizers that can solve various optimization problems.
The problem clases MOSEK is designed to solve are:

• Linear problems.

• Conic quadratic problems. (also known as second order optimization).

• General convex problems. In particular, MOSEK is wellsuited for:

– Convex quadratic problems.

– Convex quadratically constrained problems.

– Geometric problems (posynomial case).

• Integer problems, i.e. problems where some of the variables are constrained to integer values.

These problem classes can be solved using an appropriate optimizer built into MOSEK:

• Interior-point optimizer for all continuous problems.

• Primal or dual simplex optimizer for linear problems.

• Conic interior-point optimizer for conic quadratic problems.

• Mixed-integer optimizer based on a branch and cut technology.

All the optimizers available in MOSEK are built for solving large-scale sparse problems and have been
extensively tuned for stability and performance.

9

10 CHAPTER 2. WHAT IS MOSEK

2.1 Interfaces

There are several ways to interface with MOSEK:

• Files:

– MPS format: MOSEK reads the industry standard MPS file format for specifying (mixed
integer) linear optimization problems. Moreover an MPS file can also be used to specify
quadratic, quadratically constrained, and conic optimization problems.

– LP format: MOSEK can read and write the CPLEX LP format with some restrictions.

– OPF format: MOSEK also has its own text based format called OPF. The format is closely
related to the LP but is much more robust in its specification.

• APIs: MOSEK can also invoked from various programming languages.

– C/C++, Delphi and similar languages.

– C# (and other .NET languages),

– Java and

– Python

Furthermore, the MOSEK Optimization Toolbox for MATLAB allows the MOSEK solvers to be
used from Matlab.

• Third party modeling languages:

– AMPL: A high level modeling language that makes it possible to formulate optimization
problems in a language close to the original ”pen and paper” model formulation.

See http://www.ampl.com.

– GAMS: Another high level modeling language for formulating optimization problems in a
clean algebraic way.

http://www.ampl.com

Chapter 3

MOSEK and AMPL

AMPL is a modeling language for specifying linear and nonlinear optimization models in a natural
way. AMPL also makes it easy to solve the problem and e.g. display the solution or part of it.

We will not discuss the specifics of the AMPL language here but instead refer the reader to [1],
http://ampl.com/BOOK/download.html and the AMPL website http://www.ampl.com.

AMPL cannot solve optimization problems by itself but requires a link to an appropriate optimizer
such as MOSEK. The MOSEK distribution includes an AMPL link which makes it possible to use
MOSEK as an optimizer within AMPL.

3.1 Invoking the AMPL shell

The MOSEK distribution by default comes with the AMPL shell installed. To invoke the AMPL shell
type:

mampl

3.2 Applicability

It is possible to specify problems in AMPL that cannot be solved by MOSEK. The optimization
problem must be a smooth convex optimization problem as discussed in Section 4.5.

3.3 An example

In many instances, you can successfully apply MOSEK simply by specifying the model and data,
setting the solver option to MOSEK, and typing solve. First to invoke the AMPL shell type:

mampl

11

http://ampl.com/BOOK/download.html
http://www.ampl.com

12 CHAPTER 3. MOSEK AND AMPL

Value Message
0 the solution is optimal.
100 suboptimal primal solution.
101 superoptimal (dual feasible) solution.
150 the solution is near optimal.
200 primal infeasible problem.
300 dual infeasible problem.
400 too many iterations.
500 solution status is unknown.
501 ill-posed problem, solution status is unknown.
≥ 501 The value - 501 is a MOSEK response code.

See Appendix 10 for all MOSEK response codes.

Figure 3.1: Interpretation of solve result num.

when the AMPL shell has started type the commands:

ampl: model diet.mod;

ampl: data diet.dat;

ampl: option solver mosek;

ampl: solve;

The resulting output is:

MOSEK finished.

Problem status - PRIMAL AND DUAL FEASIBLE

Solution status - OPTIMAL

Primal objective - 14.8557377

Dual objective - 14.8557377

Objective = Total Cost

3.4 Determining the outcome of an optimization

The AMPL parameter solve result num is used to indicate the outcome of the optimization process.
It is used as follows

ampl: display solve result num

Please refer to table 3.1 for possible values of this parameter.

3.5 Optimizer options

3.5.1 The MOSEK parameter database

The MOSEK optimizer has options and parameters controlling such things as the termination criterion
and which optimizer is used. These parameters can be modified within AMPL as shown in the example

3.6. CONSTRAINT AND VARIABLE NAMES 13

below:

ampl: model diet.mod;

ampl: data diet.dat;

ampl: option solver mosek;

ampl: option mosek options

ampl? ’msk ipar optimizer = msk optimizer primal simplex \
ampl? msk ipar sim max iterations = 100000’;

ampl: solve;

In the example above a string called mosek options is created which contains the parameter settings.
Each parameter setting has the format

parameter name = value

where ”parameter name” can be any valid MOSEK parameter name. See Appendix 9 for a description
of all valid MOSEK parameters.

An alternative way of specifying the options is

ampl: option mosek options

ampl? ’msk ipar optimizer = msk optimizer primal simplex’

ampl? ’ msk ipar sim max iterations = 100000’;

New options can also be appended to an existing option string as shown below

ampl: option mosek options $mosek options

ampl? ’ msk ipar sim print freq = 0 msk ipar sim max iterations = 1000’;

The expression $mosek options expands to the current value of the option. Line two in the example
appends an additional value msk ipar sim max iterations to the option string.

3.5.2 Options

3.5.2.1 outlev

MOSEK also recognizes the outlev option which controls the amount of printed output. 0 means no
printed output and a higher value means more printed output. An example of setting outlev is as
follows:

ampl: option mosek options ’outlev=2’;

3.5.2.2 wantsol

MOSEK recognize the option wantsol. We refer the reader to the AMPL manual [1] for details about
this option.

3.6 Constraint and variable names

AMPL assigns meaningfull names to all the constraints and variables. Since MOSEK uses item names
in error and log messages, it may be useful to pass the AMPL names to MOSEK.

Using the command

14 CHAPTER 3. MOSEK AND AMPL

ampl: option auxfiles rc;

before the

solve;

command makes MOSEK obtain the constraint and variable names automatically.

3.7 Which solution is returned to AMPL

The MOSEK optimizer can produce three types of solutions: basic, integer, and interior point solutions.
For nonlinear problems only an interior solution is available. For linear optimization problems opti-
mized by the interior-point optimizer with basis identification turned on both a basic and an interior
point solution are calculated. The simplex algorithm produces only a basic solution. Whenever both
an interior and a basic solution are available, the basic solution is returned. For problems containing
integer variables, the integer solution is returned to AMPL.

3.8 Hot-start

Frequently, a sequence of optimization problems is solved where each problem differs only slightly from
the previous problem. In that case it may be advantageous to use the previous optimal solution to
hot-start the optimizer. Such a facility is available in MOSEK only when the simplex optimizer is
used.

The hot-start facility exploits the AMPL variable suffix sstatus to communicate the optimal basis
back to AMPL, and AMPL uses this facility to communicate an initial basis to MOSEK. The following
example demonstrates this feature.

ampl: model diet.mod;

ampl: data diet.dat;

ampl: option solver mosek;

ampl: option mosek options

ampl? ’msk ipar optimizer = msk optimizer primal simplex outlev=2’;

ampl: solve;

ampl: display Buy.sstatus;

ampl: solve;

The resulting output is:

Accepted: msk ipar optimizer = MSK OPTIMIZER PRIMAL SIMPLEX

Accepted: outlev = 2

Computer - Platform : Linux/64-X86

Computer - CPU type : Intel-P4

MOSEK - task name :

MOSEK - objective sense : min

MOSEK - problem type : LO (linear optimization problem)

MOSEK - constraints : 7 variables : 9

MOSEK - integer variables : 0

Optimizer started.

Simplex optimizer started.

Presolve started.

3.8. HOT-START 15

Linear dependency checker started.

Linear dependency checker terminated.

Presolve - Stk. size (kb) : 0

Eliminator - tries : 0 time : 0.00

Eliminator - elim’s : 0

Lin. dep. - tries : 1 time : 0.00

Lin. dep. - number : 0

Presolve terminated. Time: 0.00

Primal simplex optimizer started.

Primal simplex optimizer setup started.

Primal simplex optimizer setup terminated.

Optimizer - solved problem : the primal

Optimizer - constraints : 7 variables : 9

Optimizer - hotstart : no

ITER DEGITER(%) PFEAS DFEAS POBJ DOBJ TIME TOTTIME

0 0.00 1.40e+03 NA 1.2586666667e+01 NA 0.00 0.01

3 0.00 0.00e+00 NA 1.4855737705e+01 NA 0.00 0.01

Primal simplex optimizer terminated.

Simplex optimizer terminated. Time: 0.00.

Optimizer terminated. Time: 0.01

Return code - 0 [MSK RES OK]

MOSEK finished.

Problem status : PRIMAL AND DUAL FEASIBLE

Solution status : OPTIMAL

Primal objective : 14.8557377

Dual objective : 14.8557377

Objective = Total Cost

Buy.sstatus [*] :=

’Quarter Pounder w/ Cheese’ bas

’McLean Deluxe w/ Cheese’ low

’Big Mac’ low

Filet-O-Fish low

’McGrilled Chicken’ low

’Fries, small’ bas

’Sausage McMuffin’ low

’1% Lowfat Milk’ bas

’Orange Juice’ low

;

Accepted: msk ipar optimizer = MSK OPTIMIZER PRIMAL SIMPLEX

Accepted: outlev = 2

Basic solution

Problem status : UNKNOWN

Solution status : UNKNOWN

Primal - objective: 1.4855737705e+01 eq. infeas.: 3.97e+03 max bound infeas.: 2.00e+03

Dual - objective: 0.0000000000e+00 eq. infeas.: 7.14e-01 max bound infeas.: 0.00e+00

Computer - Platform : Linux/64-X86

Computer - CPU type : Intel-P4

MOSEK - task name :

MOSEK - objective sense : min

MOSEK - problem type : LO (linear optimization problem)

MOSEK - constraints : 7 variables : 9

MOSEK - integer variables : 0

Optimizer started.

Simplex optimizer started.

Presolve started.

Presolve - Stk. size (kb) : 0

16 CHAPTER 3. MOSEK AND AMPL

Eliminator - tries : 0 time : 0.00

Eliminator - elim’s : 0

Lin. dep. - tries : 0 time : 0.00

Lin. dep. - number : 0

Presolve terminated. Time: 0.00

Primal simplex optimizer started.

Primal simplex optimizer setup started.

Primal simplex optimizer setup terminated.

Optimizer - solved problem : the primal

Optimizer - constraints : 7 variables : 9

Optimizer - hotstart : yes

Optimizer - Num. basic : 7 Basis rank : 7

Optimizer - Valid bas. fac. : no

ITER DEGITER(%) PFEAS DFEAS POBJ DOBJ TIME TOTTIME

0 0.00 0.00e+00 NA 1.4855737705e+01 NA 0.00 0.01

0 0.00 0.00e+00 NA 1.4855737705e+01 NA 0.00 0.01

Primal simplex optimizer terminated.

Simplex optimizer terminated. Time: 0.00.

Optimizer terminated. Time: 0.01

Return code - 0 [MSK RES OK]

MOSEK finished.

Problem status : PRIMAL AND DUAL FEASIBLE

Solution status : OPTIMAL

Primal objective : 14.8557377

Dual objective : 14.8557377

Objective = Total Cost

Please note that the second solve takes fewer iterations since the previous optimal basis is reused.

3.9 The infeasibility report

For linear optimization problems without any integer constrained variables MOSEK can generate an
infeasibility report automatically. The report provides important information about the infeasibility.

The generation of the infeasibility report is turned on using the parameter setting

option auxfiles rc;

option mosek options ’msk ipar infeas report auto=msk on’;

For further details about infeasbility report see Section 7.2.

3.10 Sensitivity analysis

MOSEK can calculate sensitivity information for the objective and constraints. To enable sensitivity
information set the option:

sensitivity = 1

Results are returned in variable/constraint suffixes as follows:

• .down Smallest value of objective coefficient/right hand side before the optimal basis changes.

• .up Largest value of objective coefficient/right hand side before the optimal basis changes.

3.10. SENSITIVITY ANALYSIS 17

• .current Current value of objective coefficient/right hand side.

For ranged constraints sensitivity information is returned only for the lower bound.

The example below returns sensitivity information on the diet model.

ampl: model diet.mod;

ampl: data diet.dat;

ampl: option solver mosek;

ampl: option mosek options ’sensitivity=1’;

ampl: solve;

#display sensitivity information and current solution.

ampl: display var.down, var.current, var.up, var;

#display sensitivity information and optimal dual values.

ampl: display con.down, con.current, con.up, con;

The resulting output is:

Return code - 0 [MSK RES OK]

MOSEK finished.

Problem status : PRIMAL AND DUAL FEASIBLE

Solution status : OPTIMAL

Primal objective : 14.8557377

Dual objective : 14.8557377

suffix up OUT;

suffix down OUT;

suffix current OUT;

Objective = Total Cost

: var.down var.current var.up var :=

1 1.37385 1.84 1.86075 4.38525

2 1.8677 2.19 Infinity 0

3 1.82085 1.84 Infinity 0

4 1.35466 1.44 Infinity 0

5 1.57633 2.29 Infinity 0

6 0.094 0.77 0.794851 6.14754

7 1.22759 1.29 Infinity 0

8 0.57559 0.6 0.910769 3.42213

9 0.657279 0.72 Infinity 0

;

ampl: display con.down, con.current, con.up, con;

: con.down con.current con.up con :=

1 -Infinity 2000 3965.37 0

2 297.6 350 375 0.0277049

3 -Infinity 55 172.029 0

4 63.0531 100 195.388 0.0267541

5 -Infinity 100 132.213 0

6 -Infinity 100 234.221 0

7 17.6923 100 142.821 0.0248361

;

18 CHAPTER 3. MOSEK AND AMPL

3.11 Using the command line version of the AMPL interface

AMPL can generate a data file containing all the optimization problem and all relevant information
which can then be read and solved by the MOSEK command line tool.

When the problem has been loaded into AMPL, the commands

ampl: option auxfiles rc;

ampl: write bprob;

will make AMPL write the appropriate data files, i.e.

prob.nl

prob.col

prob.row

Then the problem can be solved using the command line version of MOSEK as follows

mosek prob.nl outlev=10 -a

The -a command line option indicates that MOSEK is invoked in AMPL mode. When MOSEK is
invoked in AMPL mode the normal MOSEK command line options should appear after the -a option
except for the file name which should be the first argument. As the above example demonstrates
MOSEK accepts command line options as specified by the AMPL ”convention”. Which command line
arguments MOSEK accepts in AMPL mode can be viewed by executing

mosek -= -a

For linear, quadratic and quadratic constrained problems a text file representation of the problem can
be obtained using one of the commands

mosek prob.nl -a -x -out prob.mps

mosek prob.nl -a -x -out prob.opf

mosek prob.nl -a -x -out prob.lp

Chapter 4

Problem formulation and solutions

In this chapter we will discuss the following issues:

• The formal definitions of the problem types that MOSEK can solve.

• The solution information produced by MOSEK.

• The information produced by MOSEK if the problem is infeasible.

4.1 Linear optimization

A linear optimization problem can be written as

minimize cTx+ cf

subject to lc ≤ Ax ≤ uc,
lx ≤ x ≤ ux,

(4.1)

where

• m is the number of constraints.

• n is the number of decision variables.

• x ∈ Rn is a vector of decision variables.

• c ∈ Rn is the linear part of the objective function.

• A ∈ Rm×n is the constraint matrix.

• lc ∈ Rm is the lower limit on the activity for the constraints.

• uc ∈ Rm is the upper limit on the activity for the constraints.

19

20 CHAPTER 4. PROBLEM FORMULATION AND SOLUTIONS

• lx ∈ Rn is the lower limit on the activity for the variables.

• ux ∈ Rn is the upper limit on the activity for the variables.

A primal solution (x) is (primal) feasible if it satisfies all constraints in (4.1). If (4.1) has at least one
primal feasible solution, then (4.1) is said to be (primal) feasible.

In case (4.1) does not have a feasible solution, the problem is said to be (primal) infeasible .

4.1.1 Duality for linear optimization

Corresponding to the primal problem (4.1), there is a dual problem

maximize (lc)T scl − (uc)T scu + (lx)T sxl − (ux)T sxu + cf

subject to AT y + sxl − sxu = c,
− y + scl − scu = 0,
scl , s

c
u, s

x
l , s

x
u ≥ 0.

(4.2)

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at
0, and we use the convention that the product of the bound value and the corresponding dual variable
is 0. E.g.

lxj = −∞ ⇒ (sxl)j = 0 and lxj · (sxl)j = 0.

This is equivalent to removing variable (sxl)j from the dual problem.

A solution

(y, scl , s
c
u, s

x
l , s

x
u)

to the dual problem is feasible if it satisfies all the constraints in (4.2). If (4.2) has at least one feasible
solution, then (4.2) is (dual) feasible, otherwise the problem is (dual) infeasible.

4.1.1.1 A primal-dual feasible solution

A solution

(x, y, scl , s
c
u, s

x
l , s

x
u)

is denoted a primal-dual feasible solution, if (x) is a solution to the primal problem (4.1) and (y, scl , s
c
u, s

x
l , s

x
u)

is a solution to the corresponding dual problem (4.2).

4.1.1.2 The duality gap

Let

(x∗, y∗, (scl)
∗, (scu)∗, (sxl)∗, (sxu)∗)

4.1. LINEAR OPTIMIZATION 21

be a primal-dual feasible solution, and let

(xc)∗ := Ax∗.

For a primal-dual feasible solution we define the duality gap as the difference between the primal and
the dual objective value,

cTx∗ + cf −
(
(lc)T (scl)

∗ − (uc)T (scu)∗ + (lx)T (sxl)∗ − (ux)T (sxu)∗ + cf
)

=

m−1∑
i=0

[(scl)
∗
i ((x

c
i)
∗ − lci) + (scu)∗i (u

c
i − (xci)

∗)] +

n−1∑
j=0

[
(sxl)∗j (xj − lxj) + (sxu)∗j (u

x
j − x∗j)

]
≥ 0

(4.3)

where the first relation can be obtained by transposing and multiplying the dual constraints (4.2) by
x∗ and (xc)∗ respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

4.1.1.3 When the objective is to be maximized

When the objective sense of problem (4.1) is maximization, i.e.

maximize cTx+ cf

subject to lc ≤ Ax ≤ uc,
lx ≤ x ≤ ux,

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (4.2). The dual problem thus takes the form

minimize (lc)T scl − (uc)T scu + (lx)T sxl − (ux)T sxu + cf

subject to AT y + sxl − sxu = c,
− y + scl − scu = 0,
scl , s

c
u, s

x
l , s

x
u ≤ 0.

This means that the duality gap, defined in (4.3) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal
objective.

4.1.1.4 An optimal solution

It is well-known that a linear optimization problem has an optimal solution if and only if there exist
feasible primal and dual solutions so that the duality gap is zero, or, equivalently, that the comple-
mentarity conditions

22 CHAPTER 4. PROBLEM FORMULATION AND SOLUTIONS

(scl)
∗
i ((x

c
i)
∗ − lci) = 0, i = 0, . . . ,m− 1,

(scu)∗i (u
c
i − (xci)

∗) = 0, i = 0, . . . ,m− 1,
(sxl)∗j (x

∗
j − lxj) = 0, j = 0, . . . , n− 1,

(sxu)∗j (u
x
j − x∗j) = 0, j = 0, . . . , n− 1,

are satisfied.

If (4.1) has an optimal solution and MOSEK solves the problem successfully, both the primal and dual
solution are reported, including a status indicating the exact state of the solution.

4.1.2 Infeasibility for linear optimization

4.1.2.1 Primal infeasible problems

If the problem (4.1) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (lc)T scl − (uc)T scu + (lx)T sxl − (ux)T sxu
subject to AT y + sxl − sxu = 0,

− y + scl − scu = 0,
scl , s

c
u, s

x
l , s

x
u ≥ 0,

(4.4)

such that the objective value is strictly positive, i.e. a solution

(y∗, (scl)
∗, (scu)∗, (sxl)∗, (sxu)∗)

to (4.4) so that

(lc)T (scl)
∗ − (uc)T (scu)∗ + (lx)T (sxl)∗ − (ux)T (sxu)∗ > 0.

Such a solution implies that (4.4) is unbounded, and that its dual is infeasible. As the constraints to
the dual of (4.4) is identical to the constraints of problem (4.1), we thus have that problem (4.1) is
also infeasible.

4.1.2.2 Dual infeasible problems

If the problem (4.2) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize cTx

subject to l̂c ≤ Ax ≤ ûc,

l̂x ≤ x ≤ ûx,

(4.5)

4.2. CONIC QUADRATIC OPTIMIZATION 23

where

l̂ci =

{
0 if lci > −∞,
−∞ otherwise,

and ûci :=

{
0 if uci <∞,
∞ otherwise,

and

l̂xj =

{
0 if lxj > −∞,
−∞ otherwise,

and ûxj :=

{
0 if uxj <∞,
∞ otherwise,

such that the objective value cTx is strictly negative.

Such a solution implies that (4.5) is unbounded, and that its dual is infeasible. As the constraints to
the dual of (4.5) is identical to the constraints of problem (4.2), we thus have that problem (4.2) is
also infeasible.

4.1.2.3 Primal and dual infeasible case

In case that both the primal problem (4.1) and the dual problem (4.2) are infeasible, MOSEK will
report only one of the two possible certificates — which one is not defined (MOSEK returns the first
certificate found).

4.2 Conic quadratic optimization

Conic quadratic optimization is an extensions of linear optimization (see Section 4.1) allowing conic
domains to be specified for subsets of the problem variables. A conic quadratic optimization problem
can be written as

minimize cTx+ cf

subject to lc ≤ Ax ≤ uc,
lx ≤ x ≤ ux,

x ∈ C,

(4.6)

where set C is a Cartesian product of convex cones, namely C = C1× · · ·×Cp. Having the domain
restriction, x ∈ C, is thus equivalent to

xt ∈ Ct ⊆ Rnt ,

where x = (x1, . . . , xp) is a partition of the problem variables. Please note that the n-dimensional
Euclidean space Rn is a cone itself, so simple linear variables are still allowed.

MOSEK supports only a limited number of cones, specifically:

• The Rn set.

24 CHAPTER 4. PROBLEM FORMULATION AND SOLUTIONS

• The quadratic cone:

Qn =

x ∈ Rn : x1 ≥

√√√√ n∑
j=2

x2j

 .

• The rotated quadratic cone:

Qrn =

x ∈ Rn : 2x1x2 ≥
n∑
j=3

x2j , x1 ≥ 0, x2 ≥ 0

 .

Although these cones may seem to provide only limited expressive power they can be used to model a
wide range of problems as demonstrated in [2].

4.2.1 Duality for conic quadratic optimization

The dual problem corresponding to the conic quadratic optimization problem (4.6) is given by

maximize (lc)T scl − (uc)T scu + (lx)T sxl − (ux)T sxu + cf

subject to AT y + sxl − sxu + sxn = c,
− y + scl − scu = 0,
scl , s

c
u, s

x
l , s

x
u ≥ 0,

sxn ∈ C∗,

(4.7)

where the dual cone C∗ is a Cartesian product of the cones

C∗ = C∗1× · · ·×C∗p ,
where each C∗t is the dual cone of Ct. For the cone types MOSEK can handle, the relation between the
primal and dual cone is given as follows:

• The Rn set:

Ct = Rnt ⇔ C∗t = {s ∈ Rnt : s = 0} .

• The quadratic cone:

Ct = Qnt ⇔ C∗t = Qnt =

s ∈ Rnt : s1 ≥

√√√√ nt∑
j=2

s2j

 .

• The rotated quadratic cone:

Ct = Qrnt
⇔ C∗t = Qrnt

=

s ∈ Rnt : 2s1s2 ≥
nt∑
j=3

s2j , s1 ≥ 0, s2 ≥ 0

 .

4.2. CONIC QUADRATIC OPTIMIZATION 25

Please note that the dual problem of the dual problem is identical to the original primal problem.

4.2.2 Infeasibility for conic quadratic optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of the infeasibility. This works
exactly as for linear problems (see Section 4.1.2).

4.2.2.1 Primal infeasible problems

If the problem (4.6) is infeasible, MOSEK will report a certificate of primal infeasibility: The dual
solution reported is the certificate of infeasibility, and the primal solution is undefined.

A certificate of primal infeasibility is a feasible solution to the problem

maximize (lc)T scl − (uc)T scu + (lx)T sxl − (ux)T sxu
subject to AT y + sxl − sxu + sxn = 0,

− y + scl − scu = 0,
scl , s

c
u, s

x
l , s

x
u ≥ 0,

sxn ∈ C∗,

(4.8)

such that the objective value is strictly positive.

4.2.2.2 Dual infeasible problems

If the problem (4.7) is infeasible, MOSEK will report a certificate of dual infeasibility: The primal
solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the problem

minimize cTx

subject to l̂c ≤ Ax ≤ ûc,

l̂x ≤ x ≤ ûx,
x ∈ C,

(4.9)

where

l̂ci =

{
0 if lci > −∞,
−∞ otherwise,

and ûci :=

{
0 if uci <∞,
∞ otherwise,

and

l̂xj =

{
0 if lxj > −∞,
−∞ otherwise,

and ûxj :=

{
0 if uxj <∞,
∞ otherwise,

such that the objective value is strictly negative.

26 CHAPTER 4. PROBLEM FORMULATION AND SOLUTIONS

4.3 Semidefinite optimization

Semidefinite optimization is an extension of conic quadratic optimization (see Section 4.2) allowing
positive semidefinite matrix variables to be used in addition to the usual scalar variables. A semidefinite
optimization problem can be written as

minimize

n−1∑
j=0

cjxj +

p−1∑
j=0

〈
Cj , Xj

〉
+ cf

subject to lci ≤
n−1∑
j=0

aijxj +

p−1∑
j=0

〈
Aij , Xj

〉
≤ uci , i = 0, . . . ,m− 1

lxj ≤ xj ≤ uxj , j = 0, . . . , n− 1

x ∈ C, Xj ∈ S+rj , j = 0, . . . , p− 1

(4.10)

where the problem has p symmetric positive semidefinite variables Xj ∈ S+rj of dimension rj with

symmetric coefficient matrices Cj ∈ Srj and Ai,j ∈ Srj . We use standard notation for the matrix inner
product, i.e., for U, V ∈ Rm×n we have

〈U, V 〉 :=

m−1∑
i=0

n−1∑
j=0

UijVij .

With semidefinite optimization we can model a wide range of problems as demonstrated in [2].

4.3.1 Duality for semidefinite optimization

The dual problem corresponding to the semidefinite optimization problem (4.10) is given by

maximize (lc)T scl − (uc)T scu + (lx)T sxl − (ux)T sxu + cf

subject to
c−AT y + sxu − sxl = sxn,

Cj −
m∑
i=0

yiAij = Sj , j = 0, . . . , p− 1

scl − scu = y,
scl , s

c
u, s

x
l , s

x
u ≥ 0,

sxn ∈ C∗, Sj ∈ S+rj , j = 0, . . . , p− 1

(4.11)

where A ∈ Rm×n, Aij = aij , which is similar to the dual problem for conic quadratic optimization (see
Section 4.7), except for the addition of dual constraints

(Cj −
m∑
i=0

yiAij) ∈ S+rj .

Note that the dual of the dual problem is identical to the original primal problem.

4.3. SEMIDEFINITE OPTIMIZATION 27

4.3.2 Infeasibility for semidefinite optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of the infeasibility. This works
exactly as for linear problems (see Section 4.1.2).

4.3.2.1 Primal infeasible problems

If the problem (4.10) is infeasible, MOSEK will report a certificate of primal infeasibility: The dual
solution reported is a certificate of infeasibility, and the primal solution is undefined.

A certificate of primal infeasibility is a feasible solution to the problem

maximize (lc)T scl − (uc)T scu + (lx)T sxl − (ux)T sxu

subject to
AT y + sxl − sxu + sxn = 0,

m−1∑
i=0

yiAij + Sj = 0, j = 0, . . . , p− 1

− y + scl − scu = 0,
scl , s

c
u, s

x
l , s

x
u ≥ 0,

sxn ∈ C∗, Sj ∈ S+rj , j = 0, . . . , p− 1

(4.12)

such that the objective value is strictly positive.

4.3.2.2 Dual infeasible problems

If the problem (4.11) is infeasible, MOSEK will report a certificate of dual infeasibility: The primal
solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the problem

minimize

n−1∑
j=0

cjxj +

p−1∑
j=0

〈
Cj , Xj

〉
subject to l̂ci ≤

∑
j=1

aijxj +

p−1∑
j=0

〈
Aij , Xj

〉
≤ ûci , i = 0, . . . ,m− 1

l̂x ≤ x ≤ ûx,
x ∈ C, Xj ∈ S+rj , j = 0, . . . , p− 1

(4.13)

where

l̂ci =

{
0 if lci > −∞,
−∞ otherwise,

and ûci :=

{
0 if uci <∞,
∞ otherwise,

and

l̂xj =

{
0 if lxj > −∞,
−∞ otherwise,

and ûxj :=

{
0 if uxj <∞,
∞ otherwise,

28 CHAPTER 4. PROBLEM FORMULATION AND SOLUTIONS

such that the objective value is strictly negative.

4.4 Quadratic and quadratically constrained optimization

A convex quadratic and quadratically constrained optimization problem is an optimization problem of
the form

minimize
1

2
xTQox+ cTx+ cf

subject to lck ≤ 1

2
xTQkx+

n−1∑
j=0

akjxj ≤ uck, k = 0, . . . ,m− 1,

lxj ≤ xj ≤ uxj , j = 0, . . . , n− 1,

(4.14)

whereQo and allQk are symmetric matrices. Moreover for convexity, Qo must be a positive semidefinite
matrix and Qk must satisfy

−∞ < lck ⇒ Qk is negative semidefinite,

uck <∞ ⇒ Qk is positive semidefinite,

−∞ < lck ≤ uck <∞ ⇒ Qk = 0.

The convexity requirement is very important and it is strongly recommended that MOSEK is applied
to convex problems only.

Note that any convex quadratic and quadratically constrained optimization problem can be reformu-
lated as a conic optimization problem. It is our experience that for the majority of practical applications
it is better to cast them as conic problems because

• the resulting problem is convex by construction, and

• the conic optimizer is more efficient than the optimizer for general quadratic problems.

See [2] for further details.

4.4.1 Duality for quadratic and quadratically constrained optimization

The dual problem corresponding to the quadratic and quadratically constrained optimization problem
(4.14) is given by

maximize (lc)T scl − (uc)T scu + (lx)T sxl − (ux)T sxu +
1

2
xT

(
m−1∑
k=0

ykQ
k −Qo

)
x+ cf

subject to AT y + sxl − sxu +

(
m−1∑
k=0

ykQ
k −Qo

)
x = c,

− y + scl − scu = 0,
scl , s

c
u, s

x
l , s

x
u ≥ 0.

(4.15)

4.5. GENERAL CONVEX OPTIMIZATION 29

The dual problem is related to the dual problem for linear optimization (see Section 4.2), but depend
on variable x which in general can not be eliminated. In the solutions reported by MOSEK, the value
of x is the same for the primal problem (4.14) and the dual problem (4.15).

4.4.2 Infeasibility for quadratic and quadratically constrained optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of the infeasibility. This works
exactly as for linear problems (see Section 4.1.2).

4.4.2.1 Primal infeasible problems

If the problem (4.14) with all Qk = 0 is infeasible, MOSEK will report a certificate of primal infeasi-
bility. As the constraints is the same as for a linear problem, the certificate of infeasibility is the same
as for linear optimization (see Section 4.1.2.1).

4.4.2.2 Dual infeasible problems

If the problem (4.15) with all Qk = 0 is infeasible, MOSEK will report a certificate of dual infeasibility:
The primal solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the problem

minimize cTx

subject to l̂c ≤ Ax ≤ ûc,
0 ≤ Qox ≤ 0,

l̂x ≤ x ≤ ûx,

(4.16)

where

l̂ci =

{
0 if lci > −∞,
−∞ otherwise,

and ûci :=

{
0 if uci <∞,
∞ otherwise,

and

l̂xj =

{
0 if lxj > −∞,
−∞ otherwise,

and ûxj :=

{
0 if uxj <∞,
∞ otherwise,

such that the objective value is strictly negative.

4.5 General convex optimization

MOSEK is capable of solving smooth (twice differentiable) convex nonlinear optimization problems of
the form

30 CHAPTER 4. PROBLEM FORMULATION AND SOLUTIONS

minimize f(x) + cTx+ cf

subject to lc ≤ g(x) +Ax ≤ uc,
lx ≤ x ≤ ux,

(4.17)

where

• m is the number of constraints.

• n is the number of decision variables.

• x ∈ Rn is a vector of decision variables.

• c ∈ Rn is the linear part objective function.

• A ∈ Rm×n is the constraint matrix.

• lc ∈ Rm is the lower limit on the activity for the constraints.

• uc ∈ Rm is the upper limit on the activity for the constraints.

• lx ∈ Rn is the lower limit on the activity for the variables.

• ux ∈ Rn is the upper limit on the activity for the variables.

• f : Rn → R is a nonlinear function.

• g : Rn → Rm is a nonlinear vector function.

This means that the ith constraint has the form

lci ≤ gi(x) +

n∑
j=1

aijxj ≤ uci .

The linear term Ax is not included in g(x) since it can be handled much more efficiently as a separate
entity when optimizing.

The nonlinear functions f and g must be smooth in all x ∈ [lx;ux]. Moreover, f(x) must be a convex
function and gi(x) must satisfy

−∞ < lci ⇒ gi(x) is concave,
uci <∞ ⇒ gi(x) is convex,

−∞ < lci ≤ uci <∞ ⇒ gi(x) = 0.

4.5.1 Duality for general convex optimization

Similar to the linear case, MOSEK reports dual information in the general nonlinear case. Indeed in
this case the Lagrange function is defined by

4.5. GENERAL CONVEX OPTIMIZATION 31

L(x, scl , s
c
u, s

x
l , s

x
u) := f(x) + cTx+ cf

− (scl)
T (g(x) +Ax− lc)− (scu)T (uc − g(x)−Ax)

− (sxl)T (x− lx)− (sxu)T (ux − x),

and the dual problem is given by

maximize L(x, scl , s
c
u, s

x
l , s

x
u)

subject to ∇xL(x, scl , s
c
u, s

x
l , s

x
u)T = 0,

scl , s
c
u, s

x
l , s

x
u ≥ 0,

which is equivalent to

maximize (lc)T scl − (uc)T scu + (lx)T sxl − (ux)T sxu + cf

+ f(x)− g(x)T y − (∇f(x)T −∇g(x)T y)Tx

subject to AT y + sxl − sxu − (∇f(x)T −∇g(x)T y) = c,
− y + scl − scu = 0,

scl , s
c
u, s

x
l , s

x
u ≥ 0.

(4.18)

In this context we use the following definition for scalar functions

∇f(x) =

[
∂f(x)

∂x1
, ...,

∂f(x)

∂xn

]
,

and accordingly for vector functions

∇g(x) =

 ∇g1(x)
:

∇gm(x)

 .

32 CHAPTER 4. PROBLEM FORMULATION AND SOLUTIONS

Chapter 5

The optimizers for continuous
problems

The most essential part of MOSEK is the optimizers. Each optimizer is designed to solve a particular
class of problems i.e. linear, conic, or general nonlinear problems. The purpose of the present chapter
is to discuss which optimizers are available for the continuous problem classes and how the performance
of an optimizer can be tuned, if needed.

This chapter deals with the optimizers for continuous problems with no integer variables.

5.1 How an optimizer works

When the optimizer is called, it roughly performs the following steps:

Presolve:

Preprocessing to reduce the size of the problem.

Dualizer:

Choosing whether to solve the primal or the dual form of the problem.

Scaling:

Scaling the problem for better numerical stability.

Optimize:

Solve the problem using selected method.

The first three preprocessing steps are transparent to the user, but useful to know about for tuning
purposes. In general, the purpose of the preprocessing steps is to make the actual optimization more
efficient and robust.

33

34 CHAPTER 5. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

5.1.1 Presolve

Before an optimizer actually performs the optimization the problem is preprocessed using the so-called
presolve. The purpose of the presolve is to

• remove redundant constraints,

• eliminate fixed variables,

• remove linear dependencies,

• substitute out (implied) free variables, and

• reduce the size of the optimization problem in general.

After the presolved problem has been optimized the solution is automatically postsolved so that the
returned solution is valid for the original problem. Hence, the presolve is completely transparent. For
further details about the presolve phase, please see [3], [4].

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If presolve consumes
too much time or memory compared to the reduction in problem size gained it may be disabled. This
is done by setting the parameter MSK IPAR PRESOLVE USE to MSK PRESOLVE MODE OFF.

The two most time-consuming steps of the presolve are

• the eliminator, and

• the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.

5.1.1.1 Numerical issues in the presolve

During the presolve the problem is reformulated so that it hopefully solves faster. However, in rare
cases the presolved problem may be harder to solve then the original problem. The presolve may also
be infeasible although the orinal problem is not.

If it is suspected that presolved problem is much harder to solve than the original then it is suggested
to first turn the eliminator off by setting the parameter MSK IPAR PRESOLVE ELIMINATOR USE. If that
does not help, then trying to turn presolve off may help.

Since all computations are done in finite prescision then the presolve employs some tolerances when
concluding a variable is fixed or constraint is redundant. If it happens that MOSEK incorrectly
concludes a problem is primal or dual infeasible, then it is worthwhile to try to reduce the parame-
ters MSK DPAR PRESOLVE TOL X and MSK DPAR PRESOLVE TOL S. However, if actually help reducing the
parameters then this should be taken as an indication of the problem is badly formulated.

5.1. HOW AN OPTIMIZER WORKS 35

5.1.1.2 Eliminator

The purpose of the eliminator is to eliminate free and implied free variables from the problem using
substitution. For instance, given the constraints

y =
∑

xj ,

y, x ≥ 0,

y is an implied free variable that can be substituted out of the problem, if deemed worthwhile.

If the eliminator consumes too much time or memory compared to the reduction in problem size
gained it may be disabled. This can be done with the parameter MSK IPAR PRESOLVE ELIMINATOR USE

to MSK OFF.

In rare cases the eliminator may cause that the problem becomes much hard to solve.

5.1.1.3 Linear dependency checker

The purpose of the linear dependency check is to remove linear dependencies among the linear equal-
ities. For instance, the three linear equalities

x1 + x2 + x3 = 1,
x1 + 0.5x2 = 0.5,
0.5x2 + x3 = 0.5

contain exactly one linear dependency. This implies that one of the constraints can be dropped without
changing the set of feasible solutions. Removing linear dependencies is in general a good idea since it
reduces the size of the problem. Moreover, the linear dependencies are likely to introduce numerical
problems in the optimization phase.

It is best practise to build models without linear dependencies. If the linear dependencies are removed
at the modeling stage, the linear dependency check can safely be disabled by setting the parameter
MSK IPAR PRESOLVE LINDEP USE to MSK OFF.

5.1.2 Dualizer

All linear, conic, and convex optimization problems have an equivalent dual problem associated with
them. MOSEK has built-in heuristics to determine if it is most efficient to solve the primal or dual
problem. The form (primal or dual) solved is displayed in the MOSEK log. Should the internal
heuristics not choose the most efficient form of the problem it may be worthwhile to set the dualizer
manually by setting the parameters:

• MSK IPAR INTPNT SOLVE FORM: In case of the interior-point optimizer.

• MSK IPAR SIM SOLVE FORM: In case of the simplex optimizer.

Note that currently only linear problems may be dualized.

36 CHAPTER 5. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

5.1.3 Scaling

Problems containing data with large and/or small coefficients, say 1.0e+ 9 or 1.0e− 7 , are often hard
to solve. Significant digits may be truncated in calculations with finite precision, which can result in
the optimizer relying on inaccurate calculations. Since computers work in finite precision, extreme
coefficients should be avoided. In general, data around the same ”order of magnitude” is preferred,
and we will refer to a problem, satisfying this loose property, as being well-scaled. If the problem is
not well scaled, MOSEK will try to scale (multiply) constraints and variables by suitable constants.
MOSEK solves the scaled problem to improve the numerical properties.

The scaling process is transparent, i.e. the solution to the original problem is reported. It is important
to be aware that the optimizer terminates when the termination criterion is met on the scaled problem,
therefore significant primal or dual infeasibilities may occur after unscaling for badly scaled problems.
The best solution to this problem is to reformulate it, making it better scaled.

By default MOSEK heuristically chooses a suitable scaling. The scaling for interior-point and simplex
optimizers can be controlled with the parameters MSK IPAR INTPNT SCALING and MSK IPAR SIM SCALING

respectively.

5.1.4 Using multiple threads

The interior-point optimizers in MOSEK have been parallelized. This means that if you solve linear,
quadratic, conic, or general convex optimization problem using the interior-point optimizer, you can
take advantage of multiple CPU’s.

By default MOSEK will automatically select the number of threads to be employed when solving
the problem. However, the number of threads employed can be changed by setting the parameter
MSK IPAR NUM THREADS. This should never exceed the number of cores on the computer.

The speed-up obtained when using multiple threads is highly problem and hardware dependent, and
consequently, it is advisable to compare single threaded and multi threaded performance for the given
problem type to determine the optimal settings.

For small problems, using multiple threads is not be worthwhile and may even be counter productive.

5.2 Linear optimization

5.2.1 Optimizer selection

Two different types of optimizers are available for linear problems: The default is an interior-point
method, and the alternatives are simplex methods. The optimizer can be selected using the parameter
MSK IPAR OPTIMIZER.

5.2. LINEAR OPTIMIZATION 37

5.2.2 The interior-point optimizer

The purpose of this section is to provide information about the algorithm employed in MOSEK interior-
point optimizer.

In order to keep the discussion simple it is assumed that MOSEK solves linear optimization problems
on standard form

minimize cTx
subject to Ax = b,

x ≥ 0.
(5.1)

This is in fact what happens inside MOSEK; for efficiency reasons MOSEK converts the problem to
standard form before solving, then convert it back to the input form when reporting the solution.

Since it is not known beforehand whether problem (5.1) has an optimal solution, is primal infeasible
or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason
that MOSEK solves the so-called homogeneous model

Ax− bτ = 0,

AT y + s− cτ = 0,

− cTx+ bT y − κ = 0,
x, s, τ, κ ≥ 0,

(5.2)

where y and s correspond to the dual variables in (5.1), and τ and κ are two additional scalar variables.
Note that the homogeneous model (5.2) always has solution since

(x, y, s, τ, κ) = (0, 0, 0, 0, 0)

is a solution, although not a very interesting one.

Any solution

(x∗, y∗, s∗, τ∗, κ∗)

to the homogeneous model (5.2) satisfies

x∗js
∗
j = 0 and τ∗κ∗ = 0.

Moreover, there is always a solution that has the property

τ∗ + κ∗ > 0.

First, assume that τ∗ > 0 . It follows that

38 CHAPTER 5. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

A
x∗

τ∗
= b,

AT
y∗

τ∗
+
s∗

τ∗
= c,

− cT x
∗

τ∗
+ bT

y∗

τ∗
= 0,

x∗, s∗, τ∗, κ∗ ≥ 0.

This shows that x∗

τ∗ is a primal optimal solution and (y
∗

τ∗ ,
s∗

τ∗) is a dual optimal solution; this is reported
as the optimal interior-point solution since

(x, y, s) =

(
x∗

τ∗
,
y∗

τ∗
,
s∗

τ∗

)
is a primal-dual optimal solution.

On other hand, if κ∗ > 0 then

Ax∗ = 0,

AT y∗ + s∗ = 0,

− cTx∗ + bT y∗ = κ∗,
x∗, s∗, τ∗, κ∗ ≥ 0.

This implies that at least one of

− cTx∗ > 0 (5.3)

or

bT y∗ > 0 (5.4)

is satisfied. If (5.3) is satisfied then x∗ is a certificate of dual infeasibility, whereas if (5.4) is satisfied
then y∗ is a certificate of dual infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information required
for a solution to the original problem is obtained. A solution to the homogeneous model can be
computed using a primal-dual interior-point algorithm [5].

5.2.2.1 Interior-point termination criterion

For efficiency reasons it is not practical to solve the homogeneous model exactly. Hence, an exact
optimal solution or an exact infeasibility certificate cannot be computed and a reasonable termination
criterion has to be employed.

In every iteration, k, of the interior-point algorithm a trial solution

(xk, yk, sk, τk, κk)

to homogeneous model is generated where

5.2. LINEAR OPTIMIZATION 39

xk, sk, τk, κk > 0.

Whenever the trial solution satisfies the criterion

∥∥∥∥Axkτk − b
∥∥∥∥∞ ≤ εp(1 + ‖b‖∞),∥∥∥∥AT ykτk +

sk

τk
− c
∥∥∥∥∞ ≤ εd(1 + ‖c‖∞), and

min

(
(xk)T sk

(τk)2
,

∣∣∣∣cTxkτk
− bT yk

τk

∣∣∣∣) ≤ εgmax

(
1,

min(
∣∣cTxk∣∣ , ∣∣bT yk∣∣)

τk

)
,

(5.5)

the interior-point optimizer is terminated and

(xk, yk, sk)

τk

is reported as the primal-dual optimal solution. The interpretation of (5.5) is that the optimizer is
terminated if

• xk

τk is approximately primal feasible,

•
(
yk

τk ,
sk

τk

)
is approximately dual feasible, and

• the duality gap is almost zero.

On the other hand, if the trial solution satisfies

−εicTxk >
‖c‖∞

max(1, ‖b‖∞)

∥∥Axk∥∥∞
then the problem is declared dual infeasible and xk is reported as a certificate of dual infeasibility.
The motivation for this stopping criterion is as follows: First assume that

∥∥Axk∥∥∞ = 0 ; then xk is
an exact certificate of dual infeasibility. Next assume that this is not the case, i.e.

∥∥Axk∥∥∞ > 0,

and define

x̄ := εi
max(1, ‖b‖∞)

‖Axk‖∞ ‖c‖∞
xk.

It is easy to verify that

‖Ax̄‖∞ = εi
max(1, ‖b‖∞)

‖c‖∞
and − cT x̄ > 1,

which shows x̄ is an approximate certificate of dual infeasibility where εi controls the quality of the
approximation. A smaller value means a better approximation.

40 CHAPTER 5. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

Tolerance Parameter name
εp MSK DPAR INTPNT TOL PFEAS

εd MSK DPAR INTPNT TOL DFEAS

εg MSK DPAR INTPNT TOL REL GAP

εi MSK DPAR INTPNT TOL INFEAS

Table 5.1: Parameters employed in termination criterion.

Finally, if

εib
T yk >

‖b‖∞
max(1, ‖c‖∞)

∥∥AT yk + sk
∥∥∞

then yk is reported as a certificate of primal infeasibility.

It is possible to adjust the tolerances εp, εd, εg and εi using parameters; see table 5.1 for details. The
default values of the termination tolerances are chosen such that for a majority of problems appearing
in practice it is not possible to achieve much better accuracy. Therefore, tightening the tolerances
usually is not worthwhile. However, an inspection of (5.5) reveals that quality of the solution is
dependent on ‖b‖∞ and ‖c‖∞; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal
and dual feasibility at the same rate [5]. This means that if the optimizer is stopped prematurely then
it is very unlikely that either the primal or dual solution is feasible. Another consequence is that in
most cases all the tolerances, εp, εd and εg, has to be relaxed together to achieve an effect.

The basis identification discussed in section 5.2.2.2 requires an optimal solution to work well; hence
basis identification should turned off if the termination criterion is relaxed.

To conclude the discussion in this section, relaxing the termination criterion is usually is not worthwhile.

5.2.2.2 Basis identification

An interior-point optimizer does not return an optimal basic solution unless the problem has a
unique primal and dual optimal solution. Therefore, the interior-point optimizer has an optional
post-processing step that computes an optimal basic solution starting from the optimal interior-point
solution. More information about the basis identification procedure may be found in [6].

Please note that a basic solution is often more accurate than an interior-point solution.

By default MOSEK performs a basis identification. However, if a basic solution is not needed, the
basis identification procedure can be turned off. The parameters

• MSK IPAR INTPNT BASIS,

• MSK IPAR BI IGNORE MAX ITER, and

• MSK IPAR BI IGNORE NUM ERROR

controls when basis identification is performed.

5.2. LINEAR OPTIMIZATION 41

5.2.2.3 The interior-point log

Below is a typical log output from the interior-point optimizer presented:

Optimizer - threads : 1

Optimizer - solved problem : the dual

Optimizer - Constraints : 2

Optimizer - Cones : 0

Optimizer - Scalar variables : 6 conic : 0

Optimizer - Semi-definite variables: 0 scalarized : 0

Factor - setup time : 0.00 dense det. time : 0.00

Factor - ML order time : 0.00 GP order time : 0.00

Factor - nonzeros before factor : 3 after factor : 3

Factor - dense dim. : 0 flops : 7.00e+001

ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME

0 1.0e+000 8.6e+000 6.1e+000 1.00e+000 0.000000000e+000 -2.208000000e+003 1.0e+000 0.00

1 1.1e+000 2.5e+000 1.6e-001 0.00e+000 -7.901380925e+003 -7.394611417e+003 2.5e+000 0.00

2 1.4e-001 3.4e-001 2.1e-002 8.36e-001 -8.113031650e+003 -8.055866001e+003 3.3e-001 0.00

3 2.4e-002 5.8e-002 3.6e-003 1.27e+000 -7.777530698e+003 -7.766471080e+003 5.7e-002 0.01

4 1.3e-004 3.2e-004 2.0e-005 1.08e+000 -7.668323435e+003 -7.668207177e+003 3.2e-004 0.01

5 1.3e-008 3.2e-008 2.0e-009 1.00e+000 -7.668000027e+003 -7.668000015e+003 3.2e-008 0.01

6 1.3e-012 3.2e-012 2.0e-013 1.00e+000 -7.667999994e+003 -7.667999994e+003 3.2e-012 0.01

The first line displays the number of threads used by the optimizer and second line tells that the
optimizer choose to solve the dual problem rather than the primal problem. The next line displays
the problem dimensions as seen by the optimizer, and the ”Factor...” lines show various statistics.
This is followed by the iteration log.

Using the same notation as in section 5.2.2 the columns of the iteration log has the following meaning:

• ITE: Iteration index.

• PFEAS:
∥∥Axk − bτk∥∥∞ . The numbers in this column should converge monotonically towards to

zero but may stall at low level due to rounding errors.

• DFEAS:
∥∥AT yk + sk − cτk

∥∥∞ . The numbers in this column should converge monotonically to-
ward to zero but may stall at low level due to rounding errors.

• GFEAS:
∥∥− cxk + bT yk − κk

∥∥∞ . The numbers in this column should converge monotonically
toward to zero but may stall at low level due to rounding errors.

• PRSTATUS: This number converge to 1 if the problem has an optimal solution whereas it converge
to −1 if that is not the case.

• POBJ: cTxk/τk. An estimate for the primal objective value.

• DOBJ: bT yk/τk. An estimate for the dual objective value.

• MU: (xk)T sk+τkκk

n+1 . The numbers in this column should always converge monotonically to zero.

• TIME: Time spend since the optimization started.

42 CHAPTER 5. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

5.2.3 The simplex based optimizer

An alternative to the interior-point optimizer is the simplex optimizer.

The simplex optimizer uses a different method that allows exploiting an initial guess for the optimal
solution to reduce the solution time. Depending on the problem it may be faster or slower to use an
initial guess; see section 5.2.4 for a discussion.

MOSEK provides both a primal and a dual variant of the simplex optimizer — we will return to this
later.

5.2.3.1 Simplex termination criterion

The simplex optimizer terminates when it finds an optimal basic solution or an infeasibility certificate.
A basic solution is optimal when it is primal and dual feasible; see (4.1) and (4.2) for a definition
of the primal and dual problem. Due the fact that to computations are performed in finite pre-
cision MOSEK allows violation of primal and dual feasibility within certain tolerances. The user
can control the allowed primal and dual infeasibility with the parameters MSK DPAR BASIS TOL X and
MSK DPAR BASIS TOL S.

5.2.3.2 Starting from an existing solution

When using the simplex optimizer it may be possible to reuse an existing solution and thereby reduce
the solution time significantly. When a simplex optimizer starts from an existing solution it is said to
perform a hot-start. If the user is solving a sequence of optimization problems by solving the problem,
making modifications, and solving again, MOSEK will hot-start automatically.

Setting the parameter MSK IPAR OPTIMIZER to MSK OPTIMIZER FREE SIMPLEX instructs MOSEK to
select automatically between the primal and the dual simplex optimizers. Hence, MOSEK tries to
choose the best optimizer for the given problem and the available solution.

By default MOSEK uses presolve when performing a hot-start. If the optimizer only needs very few
iterations to find the optimal solution it may be better to turn off the presolve.

5.2.3.3 Numerical difficulties in the simplex optimizers

Though MOSEK is designed to minimize numerical instability, completely avoiding it is impossible
when working in finite precision. MOSEK counts a ”numerical unexpected behavior” event inside the
optimizer as a set-back. The user can define how many set-backs the optimizer accepts; if that number
is exceeded, the optimization will be aborted. Set-backs are implemented to avoid long sequences
where the optimizer tries to recover from an unstable situation.

Set-backs are, for example, repeated singularities when factorizing the basis matrix, repeated loss
of feasibility, degeneracy problems (no progress in objective) and other events indicating numerical
difficulties. If the simplex optimizer encounters a lot of set-backs the problem is usually badly scaled;
in such a situation try to reformulate into a better scaled problem. Then, if a lot of set-backs still
occur, trying one or more of the following suggestions may be worthwhile:

5.2. LINEAR OPTIMIZATION 43

• Raise tolerances for allowed primal or dual feasibility: Hence, increase the value of

– MSK DPAR BASIS TOL X, and

– MSK DPAR BASIS TOL S.

• Raise or lower pivot tolerance: Change the MSK DPAR SIMPLEX ABS TOL PIV parameter.

• Switch optimizer: Try another optimizer.

• Switch off crash: Set both MSK IPAR SIM PRIMAL CRASH and MSK IPAR SIM DUAL CRASH to 0.

• Experiment with other pricing strategies: Try different values for the parameters

– MSK IPAR SIM PRIMAL SELECTION and

– MSK IPAR SIM DUAL SELECTION.

• If you are using hot-starts, in rare cases switching off this feature may improve stability. This is
controlled by the MSK IPAR SIM HOTSTART parameter.

• Increase maximum set-backs allowed controlled by MSK IPAR SIM MAX NUM SETBACKS.

• If the problem repeatedly becomes infeasible try switching off the special degeneracy handling.
See the parameter MSK IPAR SIM DEGEN for details.

5.2.4 The interior-point or the simplex optimizer?

Given a linear optimization problem, which optimizer is the best: The primal simplex, the dual simplex
or the interior-point optimizer?

It is impossible to provide a general answer to this question, however, the interior-point optimizer
behaves more predictably — it tends to use between 20 and 100 iterations, almost independently of
problem size — but cannot perform hot-start, while simplex can take advantage of an initial solution,
but is less predictable for cold-start. The interior-point optimizer is used by default.

5.2.5 The primal or the dual simplex variant?

MOSEK provides both a primal and a dual simplex optimizer. Predicting which simplex optimizer
is faster is impossible, however, in recent years the dual optimizer has seen several algorithmic and
computational improvements, which, in our experience, makes it faster on average than the primal
simplex optimizer. Still, it depends much on the problem structure and size.

Setting the MSK IPAR OPTIMIZER parameter to MSK OPTIMIZER FREE SIMPLEX instructs MOSEK to
choose which simplex optimizer to use automatically.

To summarize, if you want to know which optimizer is faster for a given problem type, you should try
all the optimizers.

44 CHAPTER 5. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

Parameter name Purpose
MSK DPAR INTPNT CO TOL PFEAS Controls primal feasibility
MSK DPAR INTPNT CO TOL DFEAS Controls dual feasibility
MSK DPAR INTPNT CO TOL REL GAP Controls relative gap
MSK DPAR INTPNT TOL INFEAS Controls when the problem is declared infeasible
MSK DPAR INTPNT CO TOL MU RED Controls when the complementarity is reduced enough

Table 5.2: Parameters employed in termination criterion.

5.3 Linear network optimization

5.3.1 Network flow problems

Linear optimization problems with network flow structure can often be solved significantly faster with
a specialized version of the simplex method [7] than with the general solvers.

MOSEK includes a network simplex solver which frequently solves network problems significantly faster
than the standard simplex optimizers.

To use the network simplex optimizer, do the following:

• Input the network flow problem as an ordinary linear optimization problem.

• Set the parameters

– MSK IPAR OPTIMIZER to MSK OPTIMIZER NETWORK PRIMAL SIMPLEX.

MOSEK will automatically detect the network structure and apply the specialized simplex optimizer.

5.4 Conic optimization

5.4.1 The interior-point optimizer

For conic optimization problems only an interior-point type optimizer is available. The interior-point
optimizer is an implementation of the so-called homogeneous and self-dual algorithm. For a detailed
description of the algorithm, please see [8].

5.4.1.1 Interior-point termination criteria

The parameters controlling when the conic interior-point optimizer terminates are shown in Table 5.2.

5.5. NONLINEAR CONVEX OPTIMIZATION 45

5.5 Nonlinear convex optimization

5.5.1 The interior-point optimizer

For quadratic, quadratically constrained, and general convex optimization problems an interior-point
type optimizer is available. The interior-point optimizer is an implementation of the homogeneous and
self-dual algorithm. For a detailed description of the algorithm, please see [9], [10].

5.5.1.1 The convexity requirement

Continuous nonlinear problems are required to be convex. For quadratic problems MOSEK test this
requirement before optimizing. Specifying a non-convex problem results in an error message.

The following parameters are available to control the convexity check:

• MSK IPAR CHECK CONVEXITY: Turn convexity check on/off.

• MSK DPAR CHECK CONVEXITY REL TOL: Tolerance for convexity check.

• MSK IPAR LOG CHECK CONVEXITY: Turn on more log information for debugging.

5.5.1.2 The differentiabilty requirement

The nonlinear optimizer in MOSEK requires both first order and second order derivatives. This of
course implies care should be taken when solving problems involving non-differentiable functions.

For instance, the function

f(x) = x2

is differentiable everywhere whereas the function

f(x) =
√
x

is only differentiable for x > 0 . In order to make sure that MOSEK evaluates the functions at points
where they are differentiable, the function domains must be defined by setting appropriate variable
bounds.

In general, if a variable is not ranged MOSEK will only evaluate that variable at points strictly within
the bounds. Hence, imposing the bound

x ≥ 0

in the case of
√
x is sufficient to guarantee that the function will only be evaluated in points where it

is differentiable.

However, if a function is differentiable on closed a range, specifying the variable bounds is not sufficient.
Consider the function

46 CHAPTER 5. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

Parameter name Purpose
MSK DPAR INTPNT NL TOL PFEAS Controls primal feasibility
MSK DPAR INTPNT NL TOL DFEAS Controls dual feasibility
MSK DPAR INTPNT NL TOL REL GAP Controls relative gap
MSK DPAR INTPNT TOL INFEAS Controls when the problem is declared infeasible
MSK DPAR INTPNT NL TOL MU RED Controls when the complementarity is reduced enough

Table 5.3: Parameters employed in termination criteria.

f(x) =
1

x
+

1

1− x
. (5.6)

In this case the bounds

0 ≤ x ≤ 1

will not guarantee that MOSEK only evaluates the function for x between 0 and 1 . To force MOSEK to
strictly satisfy both bounds on ranged variables set the parameter MSK IPAR INTPNT STARTING POINT

to MSK STARTING POINT SATISFY BOUNDS.

For efficiency reasons it may be better to reformulate the problem than to force MOSEK to observe
ranged bounds strictly. For instance, (5.6) can be reformulated as follows

f(x) =
1

x
+

1

y
0 = 1− x− y
0 ≤ x
0 ≤ y.

5.5.1.3 Interior-point termination criteria

The parameters controlling when the general convex interior-point optimizer terminates are shown in
Table 5.3.

5.6 Solving problems in parallel

If a computer has multiple CPUs, or has a CPU with multiple cores, it is possible for MOSEK to take
advantage of this to speed up solution times.

5.6.1 Thread safety

The MOSEK API is thread-safe provided that a task is only modified or accessed from one thread at
any given time — accessing two separate tasks from two separate threads at the same time is safe.
Sharing an environment between threads is safe.

5.6. SOLVING PROBLEMS IN PARALLEL 47

5.6.2 The parallelized interior-point optimizer

The interior-point optimizer is capable of using multiple CPUs or cores. This implies that whenever
the MOSEK interior-point optimizer solves an optimization problem, it will try to divide the work so
that each core gets a share of the work. The user decides how many coress MOSEK should exploit.

It is not always possible to divide the work equally, and often parts of the computations and the
coordination of the work is processed sequentially, even if several cores are present. Therefore, the
speed-up obtained when using multiple cores is highly problem dependent. However, as a rule of
thumb, if the problem solves very quickly, i.e. in less than 60 seconds, it is not advantageous to use
the parallel option.

The MSK IPAR NUM THREADS parameter sets the number of threads (and therefore the number of cores)
that the interior point optimizer will use.

5.6.3 The concurrent optimizer

An alternative to the parallel interior-point optimizer is the concurrent optimizer. The idea of the
concurrent optimizer is to run multiple optimizers on the same problem concurrently, for instance,
it allows you to apply the interior-point and the dual simplex optimizers to a linear optimization
problem concurrently. The concurrent optimizer terminates when the first of the applied optimizers
has terminated successfully, and it reports the solution of the fastest optimizer. In that way a new
optimizer has been created which essentially performs as the fastest of the interior-point and the
dual simplex optimizers. Hence, the concurrent optimizer is the best one to use if there are multiple
optimizers available in MOSEK for the problem and you cannot say beforehand which one will be
faster.

Note in particular that any solution present in the task will also be used for hot-starting the simplex
algorithms. One possible scenario would therefore be running a hot-start dual simplex in parallel with
interior point, taking advantage of both the stability of the interior-point method and the ability of
the simplex method to use an initial solution.

By setting the

MSK IPAR OPTIMIZER

parameter to

MSK OPTIMIZER CONCURRENT

the concurrent optimizer chosen.

The number of optimizers used in parallel is determined by the

MSK IPAR CONCURRENT NUM OPTIMIZERS.

parameter. Moreover, the optimizers are selected according to a preassigned priority with optimizers
having the highest priority being selected first. The default priority for each optimizer is shown in
Table 5.6.3. For example, setting the MSK IPAR CONCURRENT NUM OPTIMIZERS parameter to 2 tells the
concurrent optimizer to the apply the two optimizers with highest priorities: In the default case that
means the interior-point optimizer and one of the simplex optimizers.

48 CHAPTER 5. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

Optimizer Associated Default
parameter priority

MSK OPTIMIZER INTPNT MSK IPAR CONCURRENT PRIORITY INTPNT 4
MSK OPTIMIZER FREE SIMPLEX MSK IPAR CONCURRENT PRIORITY FREE SIMPLEX 3
MSK OPTIMIZER PRIMAL SIMPLEX MSK IPAR CONCURRENT PRIORITY PRIMAL SIMPLEX 2
MSK OPTIMIZER DUAL SIMPLEX MSK IPAR CONCURRENT PRIORITY DUAL SIMPLEX 1

Table 5.4: Default priorities for optimizer selection in concurrent optimization.

5.6.3.1 Concurrent optimization from the command line

The command line

mosek afiro.mps \
-d MSK IPAR OPTIMIZER MSK OPTIMIZER CONCURRENT \
-d MSK IPAR CUNCURRENT NUM OPTIMIZERS 2

produces the following (edited) output:

...

Number of concurrent optimizers : 2

Optimizer selected for thread number 0 : interior-point (threads = 1)

Optimizer selected for thread number 1 : free simplex

Total number of threads required : 2

...

Thread number 1 (free simplex) terminated first.

...

Concurrent optimizer terminated. CPU Time: 0.03. Real Time: 0.00.

As indicated in the log information, the interior-point and the free simplex optimizers are employed
concurrently. However, only the output from the optimizer having the highest priority is printed to
the screen. In the example this is the interior-point optimizer.

The line

Total number of threads required : 2

indicates the number of threads used. If the concurrent optimizer should be effective, this should be
lower than the number of CPUs.

In the above example the simplex optimizer finishes first as indicated in the log information.

Chapter 6

The optimizers for mixed-integer
problems

A problem is a mixed-integer optimization problem when one or more of the variables are constrained
to be integer valued. MOSEK contains two optimizers for mixed integer problems that is capable for
solving mixed-integer

• linear,

• quadratic and quadratically constrained, and

• conic

problems.

Readers unfamiliar with integer optimization are recommended to consult some relevant literature,
e.g. the book [11] by Wolsey.

6.1 Some concepts and facts related to mixed-integer opti-
mization

It is important to understand that in a worst-case scenario, the time required to solve integer optimiza-
tion problems grows exponentially with the size of the problem. For instance, assume that a problem
contains n binary variables, then the time required to solve the problem in the worst case may be
proportional to 2n . The value of 2n is huge even for moderate values of n .

In practice this implies that the focus should be on computing a near optimal solution quickly rather
than at locating an optimal solution. Even if the problem is only solved approximately, it is important
to know how far the approximate solution is from an optimal one. In order to say something about
the goodness of an approximate solution then the concept of a relaxation is important.

49

50 CHAPTER 6. THE OPTIMIZERS FOR MIXED-INTEGER PROBLEMS

Name Run-to-run deterministic Parallelized Strength Cost
Mixed-integer conic Yes Yes Conic Free add-on
Mixed-integer No Partial Linear Payed add-on

Table 6.1: Mixed-integer optimizers.

The mixed-integer optimization problem

z∗ = minimize cTx
subject to Ax = b,

x ≥ 0
xj ∈ Z, ∀j ∈ J ,

(6.1)

has the continuous relaxation

z = minimize cTx
subject to Ax = b,

x ≥ 0
(6.2)

The continuos relaxation is identical to the mixed-integer problem with the restriction that some
variables must be integer removed.

There are two important observations about the continuous relaxation. Firstly, the continuous relax-
ation is usually much faster to optimize than the mixed-integer problem. Secondly if x̂ is any feasible
solution to (6.1) and

z̄ := cT x̂

then

z ≤ z∗ ≤ z̄.

This is an important observation since if it is only possible to find a near optimal solution within a
reasonable time frame then the quality of the solution can nevertheless be evaluated. The value z is
a lower bound on the optimal objective value. This implies that the obtained solution is no further
away from the optimum than z̄ − z in terms of the objective value.

Whenever a mixed-integer problem is solved MOSEK rapports this lower bound so that the quality of
the reported solution can be evaluated.

6.2 The mixed-integer optimizers

MOSEK includes two mixed-integer optimizer which is compared in Table 6.1. Both optimizers can
handle problems with linear, quadratic objective and constraints and conic constraints. However, a
problem must not contain both quadratic objective and constraints and conic constraints.

6.3. THE MIXED-INTEGER CONIC OPTIMIZER 51

The mixed-integer conic optimizer is specialized for solving linear and conic optimization problems. It
can also solve pure quadratic and quadratically constrained problems, these problems are automatically
converted to conic problems before being solved. Whereas the mixed-integer optimizer deals with
quadratic and quadratically constrained problems directly.

The mixed-integer conic optimizer is run-to-run deterministic. This means that if a problem is solved
twice on the same computer with identical options then the obtained solution will be bit-for-bit identical
for the two runs. However, if a time limit is set then this may not be case since the time taken to solve
a problem is not deterministic. Moreover, the mixed-integer conic optimizer is parallelized i.e. it can
exploit multiple cores during the optimization. Finally, the mixed-integer conic optimizer is a free add-
on to the continuous optimizers. However, for some linear problems the mixed-integer optimizer may
outperform the mixed-integer conic optimizer. On the other hand the mixed-integer conic optimizer
is included with continuous optimizers free of charge and usually the fastest for conic problems.

None of the mixed-integer optimizers handles symmetric matrix variables i.e semi-definite optimization
problems.

6.3 The mixed-integer conic optimizer

The mixed-integer conic optimizer is employed by setting the parameter MSK IPAR OPTIMIZER to
MSK OPTIMIZER MIXED INT CONIC.

The mixed-integer conic employs three phases:

Presolve:

In this phase the optimizer tries to reduce the size of the problem using preprocessing techniques.
Moreover, it strengthens the continuous relaxation, if possible.

Heuristic:

Using heuristics the optimizer tries to guess a good feasible solution.

Optimization:

The optimal solution is located using a variant of the branch-and-cut method.

6.3.1 Presolve

In the preprocessing stage redundant variables and constraints are removed. The presolve stage can
be turned off using the MSK IPAR MIO PRESOLVE USE parameter.

6.3.2 Heuristic

Initially, the integer optimizer tries to guess a good feasible solution using a heuristic.

52 CHAPTER 6. THE OPTIMIZERS FOR MIXED-INTEGER PROBLEMS

6.3.3 The optimization phase

This phase solves the problem using the branch and cut algorithm.

6.3.4 Caveats

The mixed-integer conic optimizer ignores the parameter

MSK IPAR MIO CONT SOL:

The user should fix all the integer variables at their optimal value and reoptimize instead of
relying in this option.

6.4 The mixed-integer optimizer

The mixed-integer optimizer is employed by setting the parameter MSK IPAR OPTIMIZER to MSK OPTIMIZER MIXED INT.
In the following it is briefly described how the optimizer works.

The process of solving an integer optimization problem can be split in three phases:

Presolve:

In this phase the optimizer tries to reduce the size of the problem using preprocessing techniques.
Moreover, it strengthens the continuous relaxation, if possible.

Heuristic:

Using heuristics the optimizer tries to guess a good feasible solution.

Optimization:

The optimal solution is located using a variant of the branch-and-cut method.

6.4.1 Presolve

In the preprocessing stage redundant variables and constraints are removed. The presolve stage can
be turned off using the MSK IPAR MIO PRESOLVE USE parameter.

6.4.2 Heuristic

Initially, the integer optimizer tries to guess a good feasible solution using different heuristics:

• First a very simple rounding heuristic is employed.

• Next, if deemed worthwhile, the feasibility pump heuristic is used.

• Finally, if the two previous stages did not produce a good initial solution, more sophisticated
heuristics are used.

6.5. TERMINATION CRITERION 53

The following parameters can be used to control the effort made by the integer optimizer to find an
initial feasible solution.

• MSK IPAR MIO HEURISTIC LEVEL: Controls how sophisticated and computationally expensive a
heuristic to employ.

• MSK DPAR MIO HEURISTIC TIME: The minimum amount of time to spend in the heuristic search.

• MSK IPAR MIO FEASPUMP LEVEL: Controls how aggressively the feasibility pump heuristic is used.

6.4.3 The optimization phase

This phase solves the problem using the branch and cut algorithm.

6.5 Termination criterion

In general, it is time consuming to find an exact feasible and optimal solution to an integer optimization
problem, though in many practical cases it may be possible to find a sufficiently good solution. There-
fore, the mixed-integer optimizer employs a relaxed feasibility and optimality criterion to determine
when a satisfactory solution is located.

A candidate solution that is feasible to the continuous relaxation is said to be an integer feasible
solution if the criterion

min(|xj | − bxjc, dxje − |xj |) ≤ max(δ1, δ2|xj |) ∀j ∈ J

is satisfied.

Whenever the integer optimizer locates an integer feasible solution it will check if the criterion

z̄ − z ≤ max(δ3, δ4max(1, |z̄|))

is satisfied. If this is the case, the integer optimizer terminates and reports the integer feasible solution
as an optimal solution. Please note that z is a valid lower bound determined by the integer optimizer
during the solution process, i.e.

z ≤ z∗.

The lower bound z normally increases during the solution process.

6.5.1 Relaxed termination

If an optimal solution cannot be located within a reasonable time, it may be advantageous to employ
a relaxed termination criterion after some time. Whenever the integer optimizer locates an integer feasi-
ble solution and has spent at least the number of seconds defined by the MSK DPAR MIO DISABLE TERM TIME

parameter on solving the problem, it will check whether the criterion

54 CHAPTER 6. THE OPTIMIZERS FOR MIXED-INTEGER PROBLEMS

Tolerance Parameter name
δ1 MSK DPAR MIO TOL ABS RELAX INT

δ2 MSK DPAR MIO TOL REL RELAX INT

δ3 MSK DPAR MIO TOL ABS GAP

δ4 MSK DPAR MIO TOL REL GAP

δ5 MSK DPAR MIO NEAR TOL ABS GAP

δ6 MSK DPAR MIO NEAR TOL REL GAP

Table 6.2: Integer optimizer tolerances.

Parameter name Delayed Explanation
MSK IPAR MIO MAX NUM BRANCHES Yes Maximum number of branches allowed.
MSK IPAR MIO MAX NUM RELAXS Yes Maximum number of realizations allowed.
MSK IPAR MIO MAX NUM SOLUTIONS Yes Maximum number of feasible integer solutions allowed.

Table 6.3: Parameters affecting the termination of the integer optimizer.

z̄ − z ≤ max(δ5, δ6max(1, |z̄|))

is satisfied. If it is satisfied, the optimizer will report that the candidate solution is near optimal and
then terminate. Please note that since this criteria depends on timing, the optimizer will not be run
to run deterministic.

6.5.2 Important parameters

All δ tolerances can be adjusted using suitable parameters — see Table 6.2. In Table 6.3 some other
parameters affecting the integer optimizer termination criterion are shown. Please note that if the
effect of a parameter is delayed, the associated termination criterion is applied only after some time,
specified by the MSK DPAR MIO DISABLE TERM TIME parameter.

6.6 How to speed up the solution process

As mentioned previously, in many cases it is not possible to find an optimal solution to an integer
optimization problem in a reasonable amount of time. Some suggestions to reduce the solution time
are:

• Relax the termination criterion: In case the run time is not acceptable, the first thing to do is
to relax the termination criterion — see Section 6.5 for details.

• Specify a good initial solution: In many cases a good feasible solution is either known or easily
computed using problem specific knowledge. If a good feasible solution is known, it is usually
worthwhile to use this as a starting point for the integer optimizer.

6.7. UNDERSTANDING SOLUTION QUALITY 55

• Improve the formulation: A mixed-integer optimization problem may be impossible to solve
in one form and quite easy in another form. However, it is beyond the scope of this manual
to discuss good formulations for mixed-integer problems. For discussions on this topic see for
example [11].

6.7 Understanding solution quality

To determine the quality of the solution one should check the following:

• The solution status key returned by MOSEK.

• The optimality gap: A measure for how much the located solution can deviate from the optimal
solution to the problem.

• Feasibility. How much the solution violates the constraints of the problem.

The optimality gap is a measure for how close the solution is to the optimal solution. The optimality
gap is given by

ε = |(objective value of feasible solution)− (objective bound)|.

The objective value of the solution is guarantied to be within ε of the optimal solution.

The optimality gap can be retrieved through the solution item MSK DINF MIO OBJ ABS GAP. Often it is
more meaningful to look at the optimality gap normalized with the magnitude of the solution. The
relative optimality gap is available in MSK DINF MIO OBJ REL GAP.

56 CHAPTER 6. THE OPTIMIZERS FOR MIXED-INTEGER PROBLEMS

Chapter 7

The analyzers

7.1 The problem analyzer

The problem analyzer prints a detailed survey of the

• linear constraints and objective

• quadratic constraints

• conic constraints

• variables

of the model.

In the initial stages of model formulation the problem analyzer may be used as a quick way of verifying
that the model has been built or imported correctly. In later stages it can help revealing special
structures within the model that may be used to tune the optimizer’s performance or to identify the
causes of numerical difficulties.

The problem analyzer is run from the command line using the -anapro argument and produces some-
thing similar to the following (this is the problemanalyzer’s survey of the aflow30a problem from the
MIPLIB 2003 collection, see Appendix 18 for more examples):

Analyzing the problem

Constraints Bounds Variables

upper bd: 421 ranged : all cont: 421

fixed : 58 bin : 421

Objective, min cx

range: min |c|: 0.00000 min |c|>0: 11.0000 max |c|: 500.000

distrib: |c| vars

0 421

57

58 CHAPTER 7. THE ANALYZERS

[11, 100) 150

[100, 500] 271

Constraint matrix A has

479 rows (constraints)

842 columns (variables)

2091 (0.518449%) nonzero entries (coefficients)

Row nonzeros, A i

range: min A i: 2 (0.23753%) max A i: 34 (4.038%)

distrib: A i rows rows% acc%

2 421 87.89 87.89

[8, 15] 20 4.18 92.07

[16, 31] 30 6.26 98.33

[32, 34] 8 1.67 100.00

Column nonzeros, A|j

range: min A|j: 2 (0.417537%) max A|j: 3 (0.626305%)

distrib: A|j cols cols% acc%

2 435 51.66 51.66

3 407 48.34 100.00

A nonzeros, A(ij)

range: min |A(ij)|: 1.00000 max |A(ij)|: 100.000

distrib: A(ij) coeffs

[1, 10) 1670

[10, 100] 421

Constraint bounds, lb <= Ax <= ub

distrib: |b| lbs ubs

0 421

[1, 10] 58 58

Variable bounds, lb <= x <= ub

distrib: |b| lbs ubs

0 842

[1, 10) 421

[10, 100] 421

The survey is divided into six different sections, each described below. To keep the presentation short
with focus on key elements the analyzer generally attempts to display information on issues relevant
for the current model only: E.g., if the model does not have any conic constraints (this is the case in
the example above) or any integer variables, those parts of the analysis will not appear.

7.1.1 General characteristics

The first part of the survey consists of a brief summary of the model’s linear and quadratic constraints
(indexed by i) and variables (indexed by j). The summary is divided into three subsections:

7.1. THE PROBLEM ANALYZER 59

Constraints

upper bd:

The number of upper bounded constraints,
∑n−1
j=0 aijxj ≤ uci

lower bd:

The number of lower bounded constraints, lci ≤
∑n−1
j=0 aijxj

ranged :

The number of ranged constraints, lci ≤
∑n−1
j=0 aijxj ≤ uci

fixed :

The number of fixed constraints, lci =
∑n−1
j=0 aijxj = uci

free :

The number of free constraints

Bounds

upper bd:

The number of upper bounded variables, xj ≤ uxj
lower bd:

The number of lower bounded variables, lxk ≤ xj
ranged :

The number of ranged variables, lxk ≤ xj ≤ uxj
fixed :

The number of fixed variables, lxk = xj = uxj

free :

The number of free variables

Variables

cont:

The number of continuous variables, xj ∈ R

bin :

The number of binary variables, xj ∈ {0, 1}

int :

The number of general integer variables, xj ∈ Z

Only constraints, bounds and domains actually in the model will be reported on, cf. appendix 18; if
all entities in a section turn out to be of the same kind, the number will be replaced by all for brevity.

60 CHAPTER 7. THE ANALYZERS

7.1.2 Objective

The second part of the survey focuses on (the linear part of) the objective, summarizing the opti-
mization sense and the coefficients’ absolute value range and distribution. The number of 0 (zero)
coefficients is singled out (if any such variables are in the problem).

The range is displayed using three terms:

min |c|:

The minimum absolute value among all coeffecients

min |c|>0:

The minimum absolute value among the nonzero coefficients

max |c|:

The maximum absolute value among the coefficients

If some of these extrema turn out to be equal, the display is shortened accordingly:

• If min |c| is greater than zero, the min |c|?0 term is obsolete and will not be displayed

• If only one or two different coefficients occur this will be displayed using all and an explicit
listing of the coefficients

The absolute value distribution is displayed as a table summarizing the numbers by orders of magnitude
(with a ratio of 10). Again, the number of variables with a coefficient of 0 (if any) is singled out. Each
line of the table is headed by an interval (half-open intervals including their lower bounds), and is
followed by the number of variables with their objective coefficient in this interval. Intervals with no
elements are skipped.

7.1.3 Linear constraints

The third part of the survey displays information on the nonzero coefficients of the linear constraint
matrix.

Following a brief summary of the matrix dimensions and the number of nonzero coefficients in total,
three sections provide further details on how the nonzero coefficients are distributed by row-wise count
(A i), by column-wise count (A|j), and by absolute value (|A(ij)|). Each section is headed by
a brief display of the distribution’s range (min and max), and for the row/column-wise counts the
corresponding densities are displayed too (in parentheses).

The distribution tables single out three particularly interesting counts: zero, one, and two nonzeros
per row/column; the remaining row/column nonzeros are displayed by orders of magnitude (ratio 2).
For each interval the relative and accumulated relative counts are also displayed.

Note that constraints may have both linear and quadratic terms, but the empty rows and columns
reported in this part of the survey relate to the linear terms only. If empty rows and/or columns are
found in the linear constraint matrix, the problem is analyzed further in order to determine if the

7.2. ANALYZING INFEASIBLE PROBLEMS 61

corresponding constraints have any quadratic terms or the corresponding variables are used in conic
or quadratic constraints; cf. the last two examples of appendix 18.

The distribution of the absolute values, |A(ij)|, is displayed just as for the objective coefficients
described above.

7.1.4 Constraint and variable bounds

The fourth part of the survey displays distributions for the absolute values of the finite lower and upper
bounds for both constraints and variables. The number of bounds at 0 is singled out and, otherwise,
displayed by orders of magnitude (with a ratio of 10).

7.1.5 Quadratic constraints

The fifth part of the survey displays distributions for the nonzero elements in the gradient of the
quadratic constraints, i.e. the nonzero row counts for the column vectors Qx . The table is similar to
the tables for the linear constraints’ nonzero row and column counts described in the survey’s third
part.

Note: Quadratic constraints may also have a linear part, but that will be included in the linear
constraints survey; this means that if a problem has one or more pure quadratic constraints, part three
of the survey will report an equal number of linear constraint rows with 0 (zero) nonzeros, cf. the last
example in appendix 18. Likewise, variables that appear in quadratic terms only will be reported as
empty columns (0 nonzeros) in the linear constraint report.

7.1.6 Conic constraints

The last part of the survey summarizes the model’s conic constraints. For each of the two types of
cones, quadratic and rotated quadratic, the total number of cones are reported, and the distribution
of the cones’ dimensions are displayed using intervals. Cone dimensions of 2, 3, and 4 are singled out.

7.2 Analyzing infeasible problems

When developing and implementing a new optimization model, the first attempts will often be either
infeasible, due to specification of inconsistent constraints, or unbounded, if important constraints have
been left out.

In this chapter we will

• go over an example demonstrating how to locate infeasible constraints using the MOSEK infea-
sibility report tool,

• discuss in more general terms which properties that may cause infeasibilities, and

• present the more formal theory of infeasible and unbounded problems.

62 CHAPTER 7. THE ANALYZERS

Supply Demand

1

2

5

2

1

2

1

Plant 1

Plant 2

Plant 3
Store 4

Store 3

Store 2

Store 1

1000

1000

200

500

500

200
1100

Figure 7.1: Supply, demand and cost of transportation.

7.2.1 Example: Primal infeasibility

A problem is said to be primal infeasible if no solution exists that satisfy all the constraints of the
problem.

As an example of a primal infeasible problem consider the problem of minimizing the cost of trans-
portation between a number of production plants and stores: Each plant produces a fixed number of
goods, and each store has a fixed demand that must be met. Supply, demand and cost of transporta-
tion per unit are given in figure 7.1. The problem represented in figure 7.1 is infeasible, since the total
demand

2300 = 1100 + 200 + 500 + 500

exceeds the total supply

2200 = 200 + 1000 + 1000

If we denote the number of transported goods from plant i to store j by xij , the problem can be
formulated as the LP:

7.2. ANALYZING INFEASIBLE PROBLEMS 63

minimize x11 + 2x12 + 5x23 + 2x24 + x31 + 2x33 + x34
subject to x11 + x12 ≤ 200,

x23 + x24 ≤ 1000,
x31 + x33 + x34 ≤ 1000,

x11 + x31 = 1100,
x12 = 200,

x23 + x33 = 500,
x24 + x34 = 500,

xij ≥ 0.
(7.1)

Solving the problem (7.1) using MOSEK will result in a solution, a solution status and a problem
status. Among the log output from the execution of MOSEK on the above problem are the lines:

Basic solution

Problem status : PRIMAL INFEASIBLE

Solution status : PRIMAL INFEASIBLE CER

The first line indicates that the problem status is primal infeasible. The second line says that a
certificate of the infeasibility was found. The certificate is returned in place of the solution to the
problem.

7.2.2 Locating the cause of primal infeasibility

Usually a primal infeasible problem status is caused by a mistake in formulating the problem and
therefore the question arises: ”What is the cause of the infeasible status?” When trying to answer this
question, it is often advantageous to follow these steps:

• Remove the objective function. This does not change the infeasible status but simplifies the
problem, eliminating any possibility of problems related to the objective function.

• Consider whether your problem has some necessary conditions for feasibility and examine if these
are satisfied, e.g. total supply should be greater than or equal to total demand.

• Verify that coefficients and bounds are reasonably sized in your problem.

If the problem is still primal infeasible, some of the constraints must be relaxed or removed completely.
The MOSEK infeasibility report (Section 7.2.4) may assist you in finding the constraints causing the
infeasibility.

Possible ways of relaxing your problem include:

• Increasing (decreasing) upper (lower) bounds on variables and constraints.

• Removing suspected constraints from the problem.

Returning to the transportation example, we discover that removing the fifth constraint

x12 = 200

64 CHAPTER 7. THE ANALYZERS

makes the problem feasible.

7.2.3 Locating the cause of dual infeasibility

A problem may also be dual infeasible. In this case the primal problem is often unbounded, mening
that feasbile solutions exists such that the objective tends towards infinity. An example of a dual
infeasible and primal unbounded problem is:

minimize x1
subject to x1 ≤ 5.

To resolve a dual infeasibility the primal problem must be made more restricted by

• Adding upper or lower bounds on variables or constraints.

• Removing variables.

• Changing the objective.

7.2.3.1 A cautious note

The problem

minimize 0
subject to 0 ≤ x1,

xj ≤ xj+1, j = 1, . . . , n− 1,
xn ≤ − 1

is clearly infeasible. Moreover, if any one of the constraints are dropped, then the problem becomes
feasible.

This illustrates the worst case scenario that all, or at least a significant portion, of the constraints are
involved in the infeasibility. Hence, it may not always be easy or possible to pinpoint a few constraints
which are causing the infeasibility.

7.2.4 The infeasibility report

MOSEK includes functionality for diagnosing the cause of a primal or a dual infeasibility. It can be
turned on by setting the MSK IPAR INFEAS REPORT AUTO to MSK ON. This causes MOSEK to print a
report on variables and constraints involved in the infeasibility.

The MSK IPAR INFEAS REPORT LEVEL parameter controls the amount of information presented in the
infeasibility report. The default value is 1 .

7.2. ANALYZING INFEASIBLE PROBLEMS 65

7.2.4.1 Example: Primal infeasibility

We will reuse the example (7.1) located in infeas.lp:

\
\ An example of an infeasible linear problem.

\
minimize

obj: + 1 x11 + 2 x12 + 1 x13

+ 4 x21 + 2 x22 + 5 x23

+ 4 x31 + 1 x32 + 2 x33

st

s0: + x11 + x12 <= 200

s1: + x23 + x24 <= 1000

s2: + x31 +x33 + x34 <= 1000

d1: + x11 + x31 = 1100

d2: + x12 = 200

d3: + x23 + x33 = 500

d4: + x24 + x34 = 500

bounds

end

Using the command line (please remeber it accepts options following the C API format)

mosek -d MSK IPAR INFEAS REPORT AUTO MSK ON infeas.lp

MOSEK produces the following infeasibility report

MOSEK PRIMAL INFEASIBILITY REPORT.

Problem status: The problem is primal infeasible

The following constraints are involved in the primal infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper

0 s0 NONE 2.000000e+002 0.000000e+000 1.000000e+000

2 s2 NONE 1.000000e+003 0.000000e+000 1.000000e+000

3 d1 1.100000e+003 1.100000e+003 1.000000e+000 0.000000e+000

4 d2 2.000000e+002 2.000000e+002 1.000000e+000 0.000000e+000

The following bound constraints are involved in the infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper

8 x33 0.000000e+000 NONE 1.000000e+000 0.000000e+000

10 x34 0.000000e+000 NONE 1.000000e+000 0.000000e+000

The infeasibility report is divided into two sections where the first section shows which constraints that
are important for the infeasibility. In this case the important constraints are the ones named s0, s2, d1,
and d2. The values in the columns ”Dual lower” and ”Dual upper” are also useful, since a non-zero
dual lower value for a constraint implies that the lower bound on the constraint is important for the
infeasibility. Similarly, a non-zero dual upper value implies that the upper bound on the constraint is
important for the infeasibility.

It is also possible to obtain the infeasible subproblem. The command line

mosek -d MSK IPAR INFEAS REPORT AUTO MSK ON infeas.lp -info rinfeas.lp

produces the files rinfeas.bas.inf.lp. In this case the content of the file rinfeas.bas.inf.lp is

minimize

66 CHAPTER 7. THE ANALYZERS

Obj: + CFIXVAR

st

s0: + x11 + x12 <= 200

s2: + x31 + x33 + x34 <= 1e+003

d1: + x11 + x31 = 1.1e+003

d2: + x12 = 200

bounds

x11 free

x12 free

x13 free

x21 free

x22 free

x23 free

x31 free

x32 free

x24 free

CFIXVAR = 0e+000

end

which is an optimization problem. This problem is identical to (7.1), except that the objective and
some of the constraints and bounds have been removed. Executing the command

mosek -d MSK IPAR INFEAS REPORT AUTO MSK ON infeas.bas.inf.lp

demonstrates that the reduced problem is primal infeasible. Since the reduced problem is usually
smaller than original problem, it should be easier to locate the cause of the infeasibility in this rather
than in the original (7.1).

7.2.4.2 Example: Dual infeasibility

The example problem

maximize - 200 y1 - 1000 y2 - 1000 y3

- 1100 y4 - 200 y5 - 500 y6

- 500 y7

subject to

x11: y1+y4 < 1

x12: y1+y5 < 2

x23: y2+y6 < 5

x24: y2+y7 < 2

x31: y3+y4 < 1

x33: y3+y6 < 2

x44: y3+y7 < 1

bounds

y1 < 0

y2 < 0

y3 < 0

y4 free

y5 free

y6 free

y7 free

end

is dual infeasible. This can be verified by proving that

y1=-1, y2=-1, y3=0, y4=1, y5=1

is a certificate of dual infeasibility. In this example the following infeasibility report is produced

7.2. ANALYZING INFEASIBLE PROBLEMS 67

(slightly edited):

The following constraints are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper bound

0 x11 -1.000000e+00 NONE 1.000000e+00

4 x31 -1.000000e+00 NONE 1.000000e+00

The following variables are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper bound

3 y4 -1.000000e+00 -1.100000e+03 NONE NONE

Interior-point solution

Problem status : DUAL INFEASIBLE

Solution status : DUAL INFEASIBLE CER

Primal - objective: 1.1000000000e+03 eq. infeas.: 0.00e+00 max bound infeas.: 0.00e+00 cone infeas.: 0.00e+00

Dual - objective: 0.0000000000e+00 eq. infeas.: 0.00e+00 max bound infeas.: 0.00e+00 cone infeas.: 0.00e+00

Let x∗ denote the reported primal solution. MOSEK states

• that the problem is dual infeasible,

• that the reported solution is a certificate of dual infeasibility, and

• that the infeasibility measure for x∗ is approximately zero.

Since it was an maximization problem, this implies that

ctx∗ > 0. (7.2)

For a minimization problem this inequality would have been reversed — see (7.5).

From the infeasibility report we see that the variable y4, and the constraints x11 and x33 are involved
in the infeasibility since these appear with non-zero values in the ”Activity” column.

One possible strategy to ”fix” the infeasibility is to modify the problem so that the certificate of
infeasibility becomes invalid. In this case we may do one the following things:

• Put a lower bound in y3. This will directly invalidate the certificate of dual infeasibility.

• Increase the object coefficient of y3. Changing the coefficients sufficiently will invalidate the
inequality (7.2) and thus the certificate.

• Put lower bounds on x11 or x31. This will directly invalidate the certificate of infeasibility.

Please note that modifying the problem to invalidate the reported certificate does not imply that the
problem becomes dual feasible — the infeasibility may simply ”move”, resulting in a new infeasibility.

More often, the reported certificate can be used to give a hint about errors or inconsistencies in the
model that produced the problem.

68 CHAPTER 7. THE ANALYZERS

7.2.5 Theory concerning infeasible problems

This section discusses the theory of infeasibility certificates and how MOSEK uses a certificate to
produce an infeasibility report. In general, MOSEK solves the problem

minimize cTx+ cf

subject to lc ≤ Ax ≤ uc,
lx ≤ x ≤ ux

(7.3)

where the corresponding dual problem is

maximize (lc)T scl − (uc)T scu
+ (lx)T sxl − (ux)T sxu + cf

subject to AT y + sxl − sxu = c,
− y + scl − scu = 0,

scl , s
c
u, s

x
l , s

x
u ≥ 0.

(7.4)

We use the convension that for any bound that is not finite, the corresponding dual variable is fixed
at zero (and thus will have no influence on the dual problem). For example

lxj = −∞ ⇒ (sxl)j = 0

7.2.6 The certificate of primal infeasibility

A certificate of primal infeasibility is any solution to the homogenized dual problem

maximize (lc)T scl − (uc)T scu
+ (lx)T sxl − (ux)T sxu

subject to AT y + sxl − sxu = 0,
− y + scl − scu = 0,

scl , s
c
u, s

x
l , s

x
u ≥ 0.

with a positive objective value. That is, (sc∗l , s
c∗
u , s

x∗
l , s

x∗
u) is a certificate of primal infeasibility if

(lc)T sc∗l − (uc)T sc∗u + (lx)T sx∗l − (ux)T sx∗u > 0

and

AT y + sx∗l − sx∗u = 0,
− y + sc∗l − sc∗u = 0,
sc∗l , s

c∗
u , s

x∗
l , s

x∗
u ≥ 0.

The well-known Farkas Lemma tells us that (7.3) is infeasible if and only if a certificate of primal
infeasibility exists.

Let (sc∗l , s
c∗
u , s

x∗
l , s

x∗
u) be a certificate of primal infeasibility then

7.2. ANALYZING INFEASIBLE PROBLEMS 69

(sc∗l)i > 0((sc∗u)i > 0)

implies that the lower (upper) bound on the i th constraint is important for the infeasibility. Further-
more,

(sx∗l)j > 0((sx∗u)i > 0)

implies that the lower (upper) bound on the j th variable is important for the infeasibility.

7.2.7 The certificate of dual infeasibility

A certificate of dual infeasibility is any solution to the problem

minimize cTx
subject to l̄c ≤ Ax ≤ ūc,

l̄x ≤ x ≤ ūx

with negative objective value, where we use the definitions

l̄ci :=

{
0, lci > −∞,
−∞, otherwise,

, ūci :=

{
0, uci <∞,
∞, otherwise,

and

l̄xi :=

{
0, lxi > −∞,
−∞, otherwise,

and ūxi :=

{
0, uxi <∞,
∞, otherwise.

Stated differently, a certificate of dual infeasibility is any x∗ such that

cTx∗ < 0,
l̄c ≤ Ax∗ ≤ ūc,
l̄x ≤ x∗ ≤ ūx

(7.5)

The well-known Farkas Lemma tells us that (7.4) is infeasible if and only if a certificate of dual
infeasibility exists.

Note that if x∗ is a certificate of dual infeasibility then for any j such that

x∗j 6= 0,

variable j is involved in the dual infeasibility.

70 CHAPTER 7. THE ANALYZERS

Chapter 8

Sensitivity analysis

8.1 Introduction

Given an optimization problem it is often useful to obtain information about how the optimal objective
value changes when the problem parameters are perturbed. E.g, assume that a bound represents a
capacity of a machine. Now, it may be possible to expand the capacity for a certain cost and hence it
is worthwhile knowing what the value of additional capacity is. This is precisely the type of questions
the sensitivity analysis deals with.

Analyzing how the optimal objective value changes when the problem data is changed is called sensi-
tivity analysis.

8.2 Restrictions

Currently, sensitivity analysis is only available for continuous linear optimization problems. Moreover,
MOSEK can only deal with perturbations in bounds and objective coefficients.

8.3 References

The book [12] discusses the classical sensitivity analysis in Chapter 10 whereas the book [13] presents
a modern introduction to sensitivity analysis. Finally, it is recommended to read the short paper [14]
to avoid some of the pitfalls associated with sensitivity analysis.

71

72 CHAPTER 8. SENSITIVITY ANALYSIS

f()β

0 ββ β1 2

f()β

0 βββ 21

Figure 8.1: The optimal value function flci (β). Left: β = 0 is in the interior of linearity interval.
Right: β = 0 is a breakpoint.

8.4 Sensitivity analysis for linear problems

8.4.1 The optimal objective value function

Assume that we are given the problem

z(lc, uc, lx, ux, c) = minimize cTx
subject to lc ≤ Ax ≤ uc,

lx ≤ x ≤ ux,
(8.1)

and we want to know how the optimal objective value changes as lci is perturbed. To answer this
question we define the perturbed problem for lci as follows

flci (β) = minimize cTx
subject to lc + βei ≤ Ax ≤ uc,

lx ≤ x ≤ ux,
where ei is the i th column of the identity matrix. The function

flci (β) (8.2)

shows the optimal objective value as a function of β. Please note that a change in β corresponds to a
perturbation in lci and hence (8.2) shows the optimal objective value as a function of lci .

It is possible to prove that the function (8.2) is a piecewise linear and convex function, i.e. the function
may look like the illustration in Figure 8.1. Clearly, if the function flci (β) does not change much when
β is changed, then we can conclude that the optimal objective value is insensitive to changes in lci .
Therefore, we are interested in the rate of change in flci (β) for small changes in β — specificly the
gradient

f ′lci (0),

which is called the shadow pricerelated to lci . The shadow price specifies how the objective value
changes for small changes in β around zero. Moreover, we are interested in the linearity interval

8.4. SENSITIVITY ANALYSIS FOR LINEAR PROBLEMS 73

β ∈ [β1, β2]

for which

f ′lci (β) = f ′lci (0).

Since flci is not a smooth function f ′lci
may not be defined at 0, as illustrated by the right example in

figure 8.1. In this case we can define a left and a right shadow price and a left and a right linearity
interval.

The function flci considered only changes in lci . We can define similar functions for the remaining
parameters of the z defined in (8.1) as well:

fuc
i
(β) = z(lc, uc + βei, l

x, ux, c), i = 1, . . . ,m,
flxj (β) = z(lc, uc, lx + βej , u

x, c), j = 1, . . . , n,

fux
j
(β) = z(lc, uc, lx, ux + βej , c), j = 1, . . . , n,

fcj (β) = z(lc, uc, lx, ux, c+ βej), j = 1, . . . , n.

Given these definitions it should be clear how linearity intervals and shadow prices are defined for the
parameters uci etc.

8.4.1.1 Equality constraints

In MOSEK a constraint can be specified as either an equality constraint or a ranged constraint. If
constraint i is an equality constraint, we define the optimal value function for this as

feci (β) = z(lc + βei, u
c + βei, l

x, ux, c)

Thus for an equality constraint the upper and the lower bounds (which are equal) are perturbed
simultaneously. Therefore, MOSEK will handle sensitivity analysis differently for a ranged constraint
with lci = uci and for an equality constraint.

8.4.2 The basis type sensitivity analysis

The classical sensitivity analysis discussed in most textbooks about linear optimization, e.g. [12], is
based on an optimal basic solution or, equivalently, on an optimal basis. This method may produce
misleading results [13] but is computationally cheap. Therefore, and for historical reasons this
method is available in MOSEK We will now briefly discuss the basis type sensitivity analysis. Given
an optimal basic solution which provides a partition of variables into basic and non-basic variables, the
basis type sensitivity analysis computes the linearity interval [β1, β2] so that the basis remains optimal
for the perturbed problem. A shadow price associated with the linearity interval is also computed.
However, it is well-known that an optimal basic solution may not be unique and therefore the result
depends on the optimal basic solution employed in the sensitivity analysis. This implies that the
computed interval is only a subset of the largest interval for which the shadow price is constant.
Furthermore, the optimal objective value function might have a breakpoint for β = 0. In this case the
basis type sensitivity method will only provide a subset of either the left or the right linearity interval.

74 CHAPTER 8. SENSITIVITY ANALYSIS

In summary, the basis type sensitivity analysis is computationally cheap but does not provide complete
information. Hence, the results of the basis type sensitivity analysis should be used with care.

8.4.3 The optimal partition type sensitivity analysis

Another method for computing the complete linearity interval is called the optimal partition type
sensitivity analysis. The main drawback of the optimal partition type sensitivity analysis is that it
is computationally expensive compared to the basis type analysts. This type of sensitivity analysis is
currently provided as an experimental feature in MOSEK.

Given the optimal primal and dual solutions to (8.1), i.e. x∗ and ((scl)
∗, (scu)∗, (sxl)∗, (sxu)∗) the optimal

objective value is given by

z∗ := cTx∗.

The left and right shadow prices σ1 and σ2 for lci are given by this pair of optimization problems:

σ1 = minimize eTi s
c
l

subject to AT (scl − scu) + sxl − sxu = c,

(lc)
T (scl)− (uc)

T (scu) + (lx)T (sxl)− (ux)T (sxu) = z∗,
scl , s

c
u, s

c
l , s

x
u ≥ 0

and

σ2 = maximize eTi s
c
l

subject to AT (scl − scu) + sxl − sxu = c,

(lc)
T (scl)− (uc)

T (scu) + (lx)T (sxl)− (ux)T (sxu) = z∗,
scl , s

c
u, s

c
l , s

x
u ≥ 0.

These two optimization problems make it easy to interpret the shadow price. Indeed, if ((scl)
∗, (scu)∗, (sxl)∗, (sxu)∗)

is an arbitrary optimal solution then

(scl)
∗
i ∈ [σ1, σ2].

Next, the linearity interval [β1, β2] for lci is computed by solving the two optimization problems

β1 = minimize β
subject to lc + βei ≤ Ax ≤ uc,

cTx− σ1β = z∗,
lx ≤ x ≤ ux,

and

β2 = maximize β
subject to lc + βei ≤ Ax ≤ uc,

cTx− σ2β = z∗,
lx ≤ x ≤ ux.

8.5. SENSITIVITY ANALYSIS WITH THE COMMAND LINE TOOL 75

The linearity intervals and shadow prices for uci , l
x
j , and uxj are computed similarly to lci .

The left and right shadow prices for cj denoted σ1 and σ2 respectively are computed as follows:

σ1 = minimize eTj x
subject to lc + βei ≤ Ax ≤ uc,

cTx = z∗,
lx ≤ x ≤ ux

and

σ2 = maximize eTj x
subject to lc + βei ≤ Ax ≤ uc,

cTx = z∗,
lx ≤ x ≤ ux.

Once again the above two optimization problems make it easy to interpret the shadow prices. Indeed,
if x∗ is an arbitrary primal optimal solution, then

x∗j ∈ [σ1, σ2].

The linearity interval [β1, β2] for a cj is computed as follows:

β1 = minimize β

subject to AT (scl − scu) + sxl − sxu = c+ βej ,

(lc)
T (scl)− (uc)

T (scu) + (lx)T (sxl)− (ux)T (sxu)− σ1β ≤ z∗,
scl , s

c
u, s

c
l , s

x
u ≥ 0

and

β2 = maximize β

subject to AT (scl − scu) + sxl − sxu = c+ βej ,

(lc)
T (scl)− (uc)

T (scu) + (lx)T (sxl)− (ux)T (sxu)− σ2β ≤ z∗,
scl , s

c
u, s

c
l , s

x
u ≥ 0.

8.5 Sensitivity analysis with the command line tool

A sensitivity analysis can be performed with the MOSEK command line tool using the command

mosek myproblem.mps -sen sensitivity.ssp

where sensitivity.ssp is a file in the format described in the next section. The ssp file describes
which parts of the problem the sensitivity analysis should be performed on.

By default results are written to a file named myproblem.sen. If necessary, this filename can be
changed by setting the

MSK SPAR SENSITIVITY RES FILE NAME

76 CHAPTER 8. SENSITIVITY ANALYSIS

* A comment

BOUNDS CONSTRAINTS

U|L|LU [cname1]

U|L|LU [cname2]-[cname3]

BOUNDS VARIABLES

U|L|LU [vname1]

U|L|LU [vname2]-[vname3]

OBJECTIVE VARIABLES

[vname1]

[vname2]-[vname3]

Figure 8.2: The sensitivity analysis file format.

parameter By default a basis type sensitivity analysis is performed. However, the type of sensitivity
analysis (basis or optimal partition) can be changed by setting the parameter

MSK IPAR SENSITIVITY TYPE

appropriately. Following values are accepted for this parameter:

• MSK SENSITIVITY TYPE BASIS

• MSK SENSITIVITY TYPE OPTIMAL PARTITION

It is also possible to use the command line

mosek myproblem.mps -d MSK IPAR SENSITIVITY ALL MSK ON

in which case a sensitivity analysis on all the parameters is performed.

8.5.1 Sensitivity analysis specification file

MOSEK employs an MPS like file format to specify on which model parameters the sensitivity anal-
ysis should be performed. As the optimal partition type sensitivity analysis can be computationally
expensive it is important to limit the sensitivity analysis. The format of the sensitivity specification
file is shown in figure 8.2, where capitalized names are keywords, and names in brackets are names of
the constraints and variables to be included in the analysis.

The sensitivity specification file has three sections, i.e.

• BOUNDS CONSTRAINTS: Specifies on which bounds on constraints the sensitivity analysis should
be performed.

• BOUNDS VARIABLES: Specifies on which bounds on variables the sensitivity analysis should be
performed.

• OBJECTIVE VARIABLES: Specifies on which objective coefficients the sensitivity analysis should
be performed.

A line in the body of a section must begin with a whitespace. In the BOUNDS sections one of the keys
L, U, and LU must appear next. These keys specify whether the sensitivity analysis is performed on

8.5. SENSITIVITY ANALYSIS WITH THE COMMAND LINE TOOL 77

* Comment 1

BOUNDS CONSTRAINTS

U "c1" * Analyze upper bound for constraint named c1

U 2 * Analyze upper bound for the second constraint

U 3-5 * Analyze upper bound for constraint number 3 to number 5

BOUNDS VARIABLES

L 2-4 * This section specifies which bounds on variables should be analyzed

L "x11"

OBJECTIVE VARIABLES

"x11" * This section specifies which objective coefficients should be analyzed

2

Figure 8.3: Example of the sensitivity file format.

the lower bound, on the upper bound, or on both the lower and the upper bound respectively. Next,
a single constraint (variable) or range of constraints (variables) is specified.

Recall from Section 8.4.1.1 that equality constraints are handled in a special way. Sensitivity analysis
of an equality constraint can be specified with either L, U, or LU, all indicating the same, namely that
upper and lower bounds (which are equal) are perturbed simultaneously.

As an example consider

BOUNDS CONSTRAINTS

L "cons1"

U "cons2"

LU "cons3"-"cons6"

which requests that sensitivity analysis is performed on the lower bound of the constraint named
cons1, on the upper bound of the constraint named cons2, and on both lower and upper bound on
the constraints named cons3 to cons6.

It is allowed to use indexes instead of names, for instance

BOUNDS CONSTRAINTS

L "cons1"

U 2

LU 3 - 6

The character ”*” indicates that the line contains a comment and is ignored.

8.5.2 Example: Sensitivity analysis from command line

As an example consider the sensitivity.ssp file shown in Figure 8.3. The command

mosek transport.lp -sen sensitivity.ssp -d MSK IPAR SENSITIVITY TYPE MSK SENSITIVITY TYPE BASIS

produces the transport.sen file shown below.

BOUNDS CONSTRAINTS

INDEX NAME BOUND LEFTRANGE RIGHTRANGE LEFTPRICE RIGHTPRICE

0 c1 UP -6.574875e-18 5.000000e+02 1.000000e+00 1.000000e+00

2 c3 UP -6.574875e-18 5.000000e+02 1.000000e+00 1.000000e+00

3 c4 FIX -5.000000e+02 6.574875e-18 2.000000e+00 2.000000e+00

4 c5 FIX -1.000000e+02 6.574875e-18 3.000000e+00 3.000000e+00

78 CHAPTER 8. SENSITIVITY ANALYSIS

5 c6 FIX -5.000000e+02 6.574875e-18 3.000000e+00 3.000000e+00

BOUNDS VARIABLES

INDEX NAME BOUND LEFTRANGE RIGHTRANGE LEFTPRICE RIGHTPRICE

2 x23 LO -6.574875e-18 5.000000e+02 2.000000e+00 2.000000e+00

3 x24 LO -inf 5.000000e+02 0.000000e+00 0.000000e+00

4 x31 LO -inf 5.000000e+02 0.000000e+00 0.000000e+00

0 x11 LO -inf 3.000000e+02 0.000000e+00 0.000000e+00

OBJECTIVE VARIABLES

INDEX NAME LEFTRANGE RIGHTRANGE LEFTPRICE RIGHTPRICE

0 x11 -inf 1.000000e+00 3.000000e+02 3.000000e+02

2 x23 -2.000000e+00 +inf 0.000000e+00 0.000000e+00

8.5.3 Controlling log output

Setting the parameter

MSK IPAR LOG SENSITIVITY

to 1 or 0 (default) controls whether or not the results from sensitivity calculations are printed to the
message stream.

The parameter

MSK IPAR LOG SENSITIVITY OPT

controls the amount of debug information on internal calculations from the sensitivity analysis.

Chapter 9

Parameters

Parameters grouped by functionality.

Analysis parameters.

Parameters controling the behaviour of the problem and solution analyzers.

• MSK DPAR ANA SOL INFEAS TOL. If a constraint violates its bound with an amount larger
than this value, the constraint name, index and violation will be printed by the solution
analyzer.

Basis identification parameters.

• MSK IPAR BI CLEAN OPTIMIZER. Controls which simplex optimizer is used in the clean-up
phase.

• MSK IPAR BI IGNORE MAX ITER. Turns on basis identification in case the interior-point op-
timizer is terminated due to maximum number of iterations.

• MSK IPAR BI IGNORE NUM ERROR. Turns on basis identification in case the interior-point op-
timizer is terminated due to a numerical problem.

• MSK IPAR BI MAX ITERATIONS. Maximum number of iterations after basis identification.

• MSK IPAR INTPNT BASIS. Controls whether basis identification is performed.

• MSK IPAR LOG BI. Controls the amount of output printed by the basis identification proce-
dure. A higher level implies that more information is logged.

• MSK IPAR LOG BI FREQ. Controls the logging frequency.

• MSK DPAR SIM LU TOL REL PIV. Relative pivot tolerance employed when computing the LU
factorization of the basis matrix.

Behavior of the optimization task.

Parameters defining the behavior of an optimization task when loading data.

• MSK SPAR FEASREPAIR NAME PREFIX. Feasibility repair name prefix.

79

80 CHAPTER 9. PARAMETERS

• MSK SPAR FEASREPAIR NAME SEPARATOR. Feasibility repair name separator.

• MSK SPAR FEASREPAIR NAME WSUMVIOL. Feasibility repair name violation name.

Conic interior-point method parameters.

Parameters defining the behavior of the interior-point method for conic problems.

• MSK DPAR INTPNT CO TOL DFEAS. Dual feasibility tolerance used by the conic interior-point
optimizer.

• MSK DPAR INTPNT CO TOL INFEAS. Infeasibility tolerance for the conic solver.

• MSK DPAR INTPNT CO TOL MU RED. Optimality tolerance for the conic solver.

• MSK DPAR INTPNT CO TOL NEAR REL. Optimality tolerance for the conic solver.

• MSK DPAR INTPNT CO TOL PFEAS. Primal feasibility tolerance used by the conic interior-point
optimizer.

• MSK DPAR INTPNT CO TOL REL GAP. Relative gap termination tolerance used by the conic
interior-point optimizer.

Data check parameters.

These parameters defines data checking settings and problem data tolerances, i.e. which values
are rounded to 0 or infinity, and which values are large or small enough to produce a warning.

• MSK DPAR DATA TOL AIJ. Data tolerance threshold.

• MSK DPAR DATA TOL AIJ HUGE. Data tolerance threshold.

• MSK DPAR DATA TOL AIJ LARGE. Data tolerance threshold.

• MSK DPAR DATA TOL BOUND INF. Data tolerance threshold.

• MSK DPAR DATA TOL BOUND WRN. Data tolerance threshold.

• MSK DPAR DATA TOL C HUGE. Data tolerance threshold.

• MSK DPAR DATA TOL CJ LARGE. Data tolerance threshold.

• MSK DPAR DATA TOL QIJ. Data tolerance threshold.

• MSK DPAR DATA TOL X. Data tolerance threshold.

• MSK IPAR LOG CHECK CONVEXITY. Controls logging in convexity check on quadratic prob-
lems. Set to a positive value to turn logging on.

If a quadratic coefficient matrix is found to violate the requirement of PSD (NSD) then a
list of negative (positive) pivot elements is printed. The absolute value of the pivot elements
is also shown.

Data input/output parameters.

Parameters defining the behavior of data readers and writers.

• MSK SPAR BAS SOL FILE NAME. Name of the bas solution file.

• MSK SPAR DATA FILE NAME. Data are read and written to this file.

• MSK SPAR DEBUG FILE NAME. MOSEK debug file.

• MSK SPAR INT SOL FILE NAME. Name of the int solution file.

81

• MSK SPAR ITR SOL FILE NAME. Name of the itr solution file.

• MSK IPAR LOG FILE. If turned on, then some log info is printed when a file is written or
read.

• MSK SPAR MIO DEBUG STRING. For internal use only.

• MSK SPAR PARAM COMMENT SIGN. Solution file comment character.

• MSK SPAR PARAM READ FILE NAME. Modifications to the parameter database is read from this
file.

• MSK SPAR PARAM WRITE FILE NAME. The parameter database is written to this file.

• MSK SPAR READ MPS BOU NAME. Name of the BOUNDS vector used. An empty name means
that the first BOUNDS vector is used.

• MSK SPAR READ MPS OBJ NAME. Objective name in the MPS file.

• MSK SPAR READ MPS RAN NAME. Name of the RANGE vector used. An empty name means
that the first RANGE vector is used.

• MSK SPAR READ MPS RHS NAME. Name of the RHS used. An empty name means that the first
RHS vector is used.

• MSK SPAR SOL FILTER XC LOW. Solution file filter.

• MSK SPAR SOL FILTER XC UPR. Solution file filter.

• MSK SPAR SOL FILTER XX LOW. Solution file filter.

• MSK SPAR SOL FILTER XX UPR. Solution file filter.

• MSK SPAR STAT FILE NAME. Statistics file name.

• MSK SPAR STAT KEY. Key used when writing the summary file.

• MSK SPAR STAT NAME. Name used when writing the statistics file.

• MSK SPAR WRITE LP GEN VAR NAME. Added variable names in the LP files.

Debugging parameters.

These parameters defines that can be used when debugging a problem.

• MSK IPAR AUTO SORT A BEFORE OPT. Controls whether the elements in each column of A are
sorted before an optimization is performed.

Dual simplex optimizer parameters.

Parameters defining the behavior of the dual simplex optimizer for linear problems.

• MSK IPAR SIM DUAL CRASH. Controls whether crashing is performed in the dual simplex op-
timizer.

• MSK IPAR SIM DUAL RESTRICT SELECTION. Controls how aggressively restricted selection is
used.

• MSK IPAR SIM DUAL SELECTION. Controls the dual simplex strategy.

Feasibility repair parameters.

82 CHAPTER 9. PARAMETERS

• MSK DPAR FEASREPAIR TOL. Tolerance for constraint enforcing upper bound on sum of weighted
violations in feasibility repair.

Infeasibility report parameters.

• MSK IPAR LOG INFEAS ANA. Controls log level for the infeasibility analyzer.

Interior-point method parameters.

Parameters defining the behavior of the interior-point method for linear, conic and convex prob-
lems.

• MSK IPAR BI IGNORE MAX ITER. Turns on basis identification in case the interior-point op-
timizer is terminated due to maximum number of iterations.

• MSK IPAR BI IGNORE NUM ERROR. Turns on basis identification in case the interior-point op-
timizer is terminated due to a numerical problem.

• MSK DPAR CHECK CONVEXITY REL TOL. Convexity check tolerance.

• MSK IPAR INTPNT BASIS. Controls whether basis identification is performed.

• MSK DPAR INTPNT CO TOL DFEAS. Dual feasibility tolerance used by the conic interior-point
optimizer.

• MSK DPAR INTPNT CO TOL INFEAS. Infeasibility tolerance for the conic solver.

• MSK DPAR INTPNT CO TOL MU RED. Optimality tolerance for the conic solver.

• MSK DPAR INTPNT CO TOL NEAR REL. Optimality tolerance for the conic solver.

• MSK DPAR INTPNT CO TOL PFEAS. Primal feasibility tolerance used by the conic interior-point
optimizer.

• MSK DPAR INTPNT CO TOL REL GAP. Relative gap termination tolerance used by the conic
interior-point optimizer.

• MSK IPAR INTPNT DIFF STEP. Controls whether different step sizes are allowed in the primal
and dual space.

• MSK IPAR INTPNT MAX ITERATIONS. Controls the maximum number of iterations allowed in
the interior-point optimizer.

• MSK IPAR INTPNT MAX NUM COR. Maximum number of correction steps.

• MSK IPAR INTPNT MAX NUM REFINEMENT STEPS. Maximum number of steps to be used by
the iterative search direction refinement.

• MSK DPAR INTPNT NL MERIT BAL. Controls if the complementarity and infeasibility is con-
verging to zero at about equal rates.

• MSK DPAR INTPNT NL TOL DFEAS. Dual feasibility tolerance used when a nonlinear model is
solved.

• MSK DPAR INTPNT NL TOL MU RED. Relative complementarity gap tolerance.

• MSK DPAR INTPNT NL TOL NEAR REL. Nonlinear solver optimality tolerance parameter.

• MSK DPAR INTPNT NL TOL PFEAS. Primal feasibility tolerance used when a nonlinear model
is solved.

83

• MSK DPAR INTPNT NL TOL REL GAP. Relative gap termination tolerance for nonlinear prob-
lems.

• MSK DPAR INTPNT NL TOL REL STEP. Relative step size to the boundary for general nonlinear
optimization problems.

• MSK IPAR INTPNT OFF COL TRH. Controls the aggressiveness of the offending column detec-
tion.

• MSK IPAR INTPNT ORDER METHOD. Controls the ordering strategy.

• MSK IPAR INTPNT REGULARIZATION USE. Controls whether regularization is allowed.

• MSK IPAR INTPNT SCALING. Controls how the problem is scaled before the interior-point
optimizer is used.

• MSK IPAR INTPNT SOLVE FORM. Controls whether the primal or the dual problem is solved.

• MSK IPAR INTPNT STARTING POINT. Starting point used by the interior-point optimizer.

• MSK DPAR INTPNT TOL DFEAS. Dual feasibility tolerance used for linear and quadratic opti-
mization problems.

• MSK DPAR INTPNT TOL DSAFE. Controls the interior-point dual starting point.

• MSK DPAR INTPNT TOL INFEAS. Nonlinear solver infeasibility tolerance parameter.

• MSK DPAR INTPNT TOL MU RED. Relative complementarity gap tolerance.

• MSK DPAR INTPNT TOL PATH. interior-point centering aggressiveness.

• MSK DPAR INTPNT TOL PFEAS. Primal feasibility tolerance used for linear and quadratic op-
timization problems.

• MSK DPAR INTPNT TOL PSAFE. Controls the interior-point primal starting point.

• MSK DPAR INTPNT TOL REL GAP. Relative gap termination tolerance.

• MSK DPAR INTPNT TOL REL STEP. Relative step size to the boundary for linear and quadratic
optimization problems.

• MSK DPAR INTPNT TOL STEP SIZE. If the step size falls below the value of this parameter,
then the interior-point optimizer assumes that it is stalled. In other words the interior-point
optimizer does not make any progress and therefore it is better stop.

• MSK IPAR LOG INTPNT. Controls the amount of log information from the interior-point op-
timizers.

• MSK IPAR LOG PRESOLVE. Controls amount of output printed by the presolve procedure. A
higher level implies that more information is logged.

• MSK DPAR QCQO REFORMULATE REL DROP TOL. This parameter determines when columns are
dropped in incomplete cholesky factorization doing reformulation of quadratic problems.

License manager parameters.

• MSK IPAR LICENSE ALLOW OVERUSE. Controls if license overuse is allowed when caching li-
censes

• MSK IPAR LICENSE DEBUG. Controls the license manager client debugging behavior.

• MSK IPAR LICENSE PAUSE TIME. Controls license manager client behavior.

84 CHAPTER 9. PARAMETERS

• MSK IPAR LICENSE SUPPRESS EXPIRE WRNS. Controls license manager client behavior.

• MSK IPAR LICENSE WAIT. Controls if MOSEK should queue for a license if none is available.

Logging parameters.

• MSK IPAR LOG. Controls the amount of log information.

• MSK IPAR LOG BI. Controls the amount of output printed by the basis identification proce-
dure. A higher level implies that more information is logged.

• MSK IPAR LOG BI FREQ. Controls the logging frequency.

• MSK IPAR LOG CONCURRENT. Controls amount of output printed by the concurrent optimizer.

• MSK IPAR LOG EXPAND. Controls the amount of logging when a data item such as the maxi-
mum number constrains is expanded.

• MSK IPAR LOG FACTOR. If turned on, then the factor log lines are added to the log.

• MSK IPAR LOG FEAS REPAIR. Controls the amount of output printed when performing feasi-
bility repair. A value higher than one means extensive logging.

• MSK IPAR LOG FILE. If turned on, then some log info is printed when a file is written or
read.

• MSK IPAR LOG HEAD. If turned on, then a header line is added to the log.

• MSK IPAR LOG INFEAS ANA. Controls log level for the infeasibility analyzer.

• MSK IPAR LOG INTPNT. Controls the amount of log information from the interior-point op-
timizers.

• MSK IPAR LOG MIO. Controls the amount of log information from the mixed-integer optimiz-
ers.

• MSK IPAR LOG MIO FREQ. The mixed-integer solver logging frequency.

• MSK IPAR LOG NONCONVEX. Controls amount of output printed by the nonconvex optimizer.

• MSK IPAR LOG OPTIMIZER. Controls the amount of general optimizer information that is
logged.

• MSK IPAR LOG ORDER. If turned on, then factor lines are added to the log.

• MSK IPAR LOG PARAM. Controls the amount of information printed out about parameter
changes.

• MSK IPAR LOG PRESOLVE. Controls amount of output printed by the presolve procedure. A
higher level implies that more information is logged.

• MSK IPAR LOG RESPONSE. Controls amount of output printed when response codes are re-
ported. A higher level implies that more information is logged.

• MSK IPAR LOG SIM. Controls the amount of log information from the simplex optimizers.

• MSK IPAR LOG SIM FREQ. Controls simplex logging frequency.

• MSK IPAR LOG SIM NETWORK FREQ. Controls the network simplex logging frequency.

• MSK IPAR LOG STORAGE. Controls the memory related log information.

Mixed-integer optimization parameters.

85

• MSK IPAR LOG MIO. Controls the amount of log information from the mixed-integer optimiz-
ers.

• MSK IPAR LOG MIO FREQ. The mixed-integer solver logging frequency.

• MSK IPAR MIO BRANCH DIR. Controls whether the mixed-integer optimizer is branching up
or down by default.

• MSK IPAR MIO CONSTRUCT SOL. Controls if an initial mixed integer solution should be con-
structed from the values of the integer variables.

• MSK IPAR MIO CONT SOL. Controls the meaning of interior-point and basic solutions in mixed
integer problems.

• MSK IPAR MIO CUT LEVEL ROOT. Controls the cut level employed by the mixed-integer opti-
mizer at the root node.

• MSK IPAR MIO CUT LEVEL TREE. Controls the cut level employed by the mixed-integer opti-
mizer in the tree.

• MSK DPAR MIO DISABLE TERM TIME. Certain termination criteria is disabled within the mixed-
integer optimizer for period time specified by the parameter.

• MSK IPAR MIO FEASPUMP LEVEL. Controls the feasibility pump heuristic which is used to
construct a good initial feasible solution.

• MSK IPAR MIO HEURISTIC LEVEL. Controls the heuristic employed by the mixed-integer op-
timizer to locate an initial integer feasible solution.

• MSK DPAR MIO HEURISTIC TIME. Time limit for the mixed-integer heuristics.

• MSK IPAR MIO HOTSTART. Controls whether the integer optimizer is hot-started.

• MSK IPAR MIO KEEP BASIS. Controls whether the integer presolve keeps bases in memory.

• MSK IPAR MIO MAX NUM BRANCHES. Maximum number of branches allowed during the branch
and bound search.

• MSK IPAR MIO MAX NUM RELAXS. Maximum number of relaxations in branch and bound search.

• MSK IPAR MIO MAX NUM SOLUTIONS. Controls how many feasible solutions the mixed-integer
optimizer investigates.

• MSK DPAR MIO MAX TIME. Time limit for the mixed-integer optimizer.

• MSK DPAR MIO MAX TIME APRX OPT. Time limit for the mixed-integer optimizer.

• MSK DPAR MIO NEAR TOL ABS GAP. Relaxed absolute optimality tolerance employed by the
mixed-integer optimizer.

• MSK DPAR MIO NEAR TOL REL GAP. The mixed-integer optimizer is terminated when this tol-
erance is satisfied.

• MSK IPAR MIO NODE OPTIMIZER. Controls which optimizer is employed at the non-root nodes
in the mixed-integer optimizer.

• MSK IPAR MIO NODE SELECTION. Controls the node selection strategy employed by the mixed-
integer optimizer.

• MSK IPAR MIO OPTIMIZER MODE. An exprimental feature.

• MSK IPAR MIO PRESOLVE AGGREGATE. Controls whether problem aggregation is performed in
the mixed-integer presolve.

86 CHAPTER 9. PARAMETERS

• MSK IPAR MIO PRESOLVE PROBING. Controls whether probing is employed by the mixed-
integer presolve.

• MSK IPAR MIO PRESOLVE USE. Controls whether presolve is performed by the mixed-integer
optimizer.

• MSK DPAR MIO REL ADD CUT LIMITED. Controls cut generation for mixed-integer optimizer.

• MSK DPAR MIO REL GAP CONST. This value is used to compute the relative gap for the solution
to an integer optimization problem.

• MSK IPAR MIO ROOT OPTIMIZER. Controls which optimizer is employed at the root node in
the mixed-integer optimizer.

• MSK IPAR MIO STRONG BRANCH. The depth from the root in which strong branching is em-
ployed.

• MSK DPAR MIO TOL ABS GAP. Absolute optimality tolerance employed by the mixed-integer
optimizer.

• MSK DPAR MIO TOL ABS RELAX INT. Integer constraint tolerance.

• MSK DPAR MIO TOL FEAS. Feasibility tolerance for mixed integer solver. Any solution with
maximum infeasibility below this value will be considered feasible.

• MSK DPAR MIO TOL REL DUAL BOUND IMPROVEMENT. Controls cut generation for mixed-integer
optimizer.

• MSK DPAR MIO TOL REL GAP. Relative optimality tolerance employed by the mixed-integer
optimizer.

• MSK DPAR MIO TOL REL RELAX INT. Integer constraint tolerance.

• MSK DPAR MIO TOL X. Absolute solution tolerance used in mixed-integer optimizer.

• MSK IPAR MIO USE MULTITHREADED OPTIMIZER. Controls wheter the new multithreaded op-
timizer should be used for Mixed integer problems.

Network simplex optimizer parameters.

Parameters defining the behavior of the network simplex optimizer for linear problems.

• MSK IPAR LOG SIM NETWORK FREQ. Controls the network simplex logging frequency.

• MSK IPAR SIM REFACTOR FREQ. Controls the basis refactoring frequency.

Non-convex solver parameters.

• MSK IPAR LOG NONCONVEX. Controls amount of output printed by the nonconvex optimizer.

• MSK IPAR NONCONVEX MAX ITERATIONS. Maximum number of iterations that can be used by
the nonconvex optimizer.

• MSK DPAR NONCONVEX TOL FEAS. Feasibility tolerance used by the nonconvex optimizer.

• MSK DPAR NONCONVEX TOL OPT. Optimality tolerance used by the nonconvex optimizer.

Nonlinear convex method parameters.

Parameters defining the behavior of the interior-point method for nonlinear convex problems.

87

• MSK DPAR INTPNT NL MERIT BAL. Controls if the complementarity and infeasibility is con-
verging to zero at about equal rates.

• MSK DPAR INTPNT NL TOL DFEAS. Dual feasibility tolerance used when a nonlinear model is
solved.

• MSK DPAR INTPNT NL TOL MU RED. Relative complementarity gap tolerance.

• MSK DPAR INTPNT NL TOL NEAR REL. Nonlinear solver optimality tolerance parameter.

• MSK DPAR INTPNT NL TOL PFEAS. Primal feasibility tolerance used when a nonlinear model
is solved.

• MSK DPAR INTPNT NL TOL REL GAP. Relative gap termination tolerance for nonlinear prob-
lems.

• MSK DPAR INTPNT NL TOL REL STEP. Relative step size to the boundary for general nonlinear
optimization problems.

• MSK DPAR INTPNT TOL INFEAS. Nonlinear solver infeasibility tolerance parameter.

• MSK IPAR LOG CHECK CONVEXITY. Controls logging in convexity check on quadratic prob-
lems. Set to a positive value to turn logging on.

If a quadratic coefficient matrix is found to violate the requirement of PSD (NSD) then a
list of negative (positive) pivot elements is printed. The absolute value of the pivot elements
is also shown.

Optimization system parameters.

Parameters defining the overall solver system environment. This includes system and platform
related information and behavior.

• MSK IPAR CACHE LICENSE. Control license caching.

• MSK IPAR LICENSE WAIT. Controls if MOSEK should queue for a license if none is available.

• MSK IPAR LOG STORAGE. Controls the memory related log information.

• MSK IPAR NUM THREADS. Controls the number of threads employed by the optimizer. If set to
0 the number of threads used will be equal to the number of cores detected on the machine.

Output information parameters.

• MSK IPAR LICENSE SUPPRESS EXPIRE WRNS. Controls license manager client behavior.

• MSK IPAR LOG. Controls the amount of log information.

• MSK IPAR LOG BI. Controls the amount of output printed by the basis identification proce-
dure. A higher level implies that more information is logged.

• MSK IPAR LOG BI FREQ. Controls the logging frequency.

• MSK IPAR LOG EXPAND. Controls the amount of logging when a data item such as the maxi-
mum number constrains is expanded.

• MSK IPAR LOG FACTOR. If turned on, then the factor log lines are added to the log.

• MSK IPAR LOG FEAS REPAIR. Controls the amount of output printed when performing feasi-
bility repair. A value higher than one means extensive logging.

88 CHAPTER 9. PARAMETERS

• MSK IPAR LOG FILE. If turned on, then some log info is printed when a file is written or
read.

• MSK IPAR LOG HEAD. If turned on, then a header line is added to the log.

• MSK IPAR LOG INFEAS ANA. Controls log level for the infeasibility analyzer.

• MSK IPAR LOG INTPNT. Controls the amount of log information from the interior-point op-
timizers.

• MSK IPAR LOG MIO. Controls the amount of log information from the mixed-integer optimiz-
ers.

• MSK IPAR LOG MIO FREQ. The mixed-integer solver logging frequency.

• MSK IPAR LOG NONCONVEX. Controls amount of output printed by the nonconvex optimizer.

• MSK IPAR LOG OPTIMIZER. Controls the amount of general optimizer information that is
logged.

• MSK IPAR LOG ORDER. If turned on, then factor lines are added to the log.

• MSK IPAR LOG PARAM. Controls the amount of information printed out about parameter
changes.

• MSK IPAR LOG RESPONSE. Controls amount of output printed when response codes are re-
ported. A higher level implies that more information is logged.

• MSK IPAR LOG SIM. Controls the amount of log information from the simplex optimizers.

• MSK IPAR LOG SIM FREQ. Controls simplex logging frequency.

• MSK IPAR LOG SIM MINOR. Currently not in use.

• MSK IPAR LOG SIM NETWORK FREQ. Controls the network simplex logging frequency.

• MSK IPAR LOG STORAGE. Controls the memory related log information.

• MSK IPAR MAX NUM WARNINGS. Waning level. A higher value results in more warnings.

• MSK IPAR WARNING LEVEL. Warning level.

Overall solver parameters.

• MSK IPAR BI CLEAN OPTIMIZER. Controls which simplex optimizer is used in the clean-up
phase.

• MSK IPAR CONCURRENT NUM OPTIMIZERS. The maximum number of simultaneous optimiza-
tions that will be started by the concurrent optimizer.

• MSK IPAR CONCURRENT PRIORITY DUAL SIMPLEX. Priority of the dual simplex algorithm when
selecting solvers for concurrent optimization.

• MSK IPAR CONCURRENT PRIORITY FREE SIMPLEX. Priority of the free simplex optimizer when
selecting solvers for concurrent optimization.

• MSK IPAR CONCURRENT PRIORITY INTPNT. Priority of the interior-point algorithm when se-
lecting solvers for concurrent optimization.

• MSK IPAR CONCURRENT PRIORITY PRIMAL SIMPLEX. Priority of the primal simplex algorithm
when selecting solvers for concurrent optimization.

89

• MSK IPAR INFEAS PREFER PRIMAL. Controls which certificate is used if both primal- and
dual- certificate of infeasibility is available.

• MSK IPAR LICENSE WAIT. Controls if MOSEK should queue for a license if none is available.

• MSK IPAR MIO CONT SOL. Controls the meaning of interior-point and basic solutions in mixed
integer problems.

• MSK IPAR MIO LOCAL BRANCH NUMBER. Controls the size of the local search space when doing
local branching.

• MSK IPAR MIO MODE. Turns on/off the mixed-integer mode.

• MSK IPAR OPTIMIZER. Controls which optimizer is used to optimize the task.

• MSK IPAR PRESOLVE LEVEL. Currently not used.

• MSK IPAR PRESOLVE USE. Controls whether the presolve is applied to a problem before it is
optimized.

• MSK IPAR SOLUTION CALLBACK. Indicates whether solution call-backs will be performed dur-
ing the optimization.

Presolve parameters.

• MSK IPAR PRESOLVE ELIM FILL. Maximum amount of fill-in in the elimination phase.

• MSK IPAR PRESOLVE ELIMINATOR MAX NUM TRIES. Control the maximum number of times
the eliminator is tried.

• MSK IPAR PRESOLVE ELIMINATOR USE. Controls whether free or implied free variables are
eliminated from the problem.

• MSK IPAR PRESOLVE LEVEL. Currently not used.

• MSK IPAR PRESOLVE LINDEP ABS WORK TRH. Controls linear dependency check in presolve.

• MSK IPAR PRESOLVE LINDEP REL WORK TRH. Controls linear dependency check in presolve.

• MSK IPAR PRESOLVE LINDEP USE. Controls whether the linear constraints are checked for
linear dependencies.

• MSK DPAR PRESOLVE TOL ABS LINDEP. Absolute tolerance employed by the linear depen-
dency checker.

• MSK DPAR PRESOLVE TOL AIJ. Absolute zero tolerance employed for constraint coefficients
in the presolve.

• MSK DPAR PRESOLVE TOL REL LINDEP. Relative tolerance employed by the linear dependency
checker.

• MSK DPAR PRESOLVE TOL S. Absolute zero tolerance employed for slack variables in the pre-
solve.

• MSK DPAR PRESOLVE TOL X. Absolute zero tolerance employed for variables in the presolve.

• MSK IPAR PRESOLVE USE. Controls whether the presolve is applied to a problem before it is
optimized.

Primal simplex optimizer parameters.

Parameters defining the behavior of the primal simplex optimizer for linear problems.

90 CHAPTER 9. PARAMETERS

• MSK IPAR SIM PRIMAL CRASH. Controls the simplex crash.

• MSK IPAR SIM PRIMAL RESTRICT SELECTION. Controls how aggressively restricted selection
is used.

• MSK IPAR SIM PRIMAL SELECTION. Controls the primal simplex strategy.

Progress call-back parameters.

• MSK IPAR SOLUTION CALLBACK. Indicates whether solution call-backs will be performed dur-
ing the optimization.

Simplex optimizer parameters.

Parameters defining the behavior of the simplex optimizer for linear problems.

• MSK DPAR BASIS REL TOL S. Maximum relative dual bound violation allowed in an optimal
basic solution.

• MSK DPAR BASIS TOL S. Maximum absolute dual bound violation in an optimal basic solu-
tion.

• MSK DPAR BASIS TOL X. Maximum absolute primal bound violation allowed in an optimal
basic solution.

• MSK IPAR LOG SIM. Controls the amount of log information from the simplex optimizers.

• MSK IPAR LOG SIM FREQ. Controls simplex logging frequency.

• MSK IPAR LOG SIM MINOR. Currently not in use.

• MSK IPAR SIM BASIS FACTOR USE. Controls whether a (LU) factorization of the basis is used
in a hot-start. Forcing a refactorization sometimes improves the stability of the simplex
optimizers, but in most cases there is a performance penanlty.

• MSK IPAR SIM DEGEN. Controls how aggressively degeneration is handled.

• MSK IPAR SIM DUAL PHASEONE METHOD. An exprimental feature.

• MSK IPAR SIM EXPLOIT DUPVEC. Controls if the simplex optimizers are allowed to exploit
duplicated columns.

• MSK IPAR SIM HOTSTART. Controls the type of hot-start that the simplex optimizer perform.

• MSK IPAR SIM INTEGER. An exprimental feature.

• MSK DPAR SIM LU TOL REL PIV. Relative pivot tolerance employed when computing the LU
factorization of the basis matrix.

• MSK IPAR SIM MAX ITERATIONS. Maximum number of iterations that can be used by a sim-
plex optimizer.

• MSK IPAR SIM MAX NUM SETBACKS. Controls how many set-backs that are allowed within a
simplex optimizer.

• MSK IPAR SIM NON SINGULAR. Controls if the simplex optimizer ensures a non-singular basis,
if possible.

• MSK IPAR SIM PRIMAL PHASEONE METHOD. An exprimental feature.

• MSK IPAR SIM REFORMULATION. Controls if the simplex optimizers are allowed to reformulate
the problem.

91

• MSK IPAR SIM SAVE LU. Controls if the LU factorization stored should be replaced with the
LU factorization corresponding to the initial basis.

• MSK IPAR SIM SCALING. Controls how much effort is used in scaling the problem before a
simplex optimizer is used.

• MSK IPAR SIM SCALING METHOD. Controls how the problem is scaled before a simplex opti-
mizer is used.

• MSK IPAR SIM SOLVE FORM. Controls whether the primal or the dual problem is solved by
the primal-/dual- simplex optimizer.

• MSK IPAR SIM STABILITY PRIORITY. Controls how high priority the numerical stability should
be given.

• MSK IPAR SIM SWITCH OPTIMIZER. Controls the simplex behavior.

• MSK DPAR SIMPLEX ABS TOL PIV. Absolute pivot tolerance employed by the simplex opti-
mizers.

Solution input/output parameters.

Parameters defining the behavior of solution reader and writer.

• MSK SPAR BAS SOL FILE NAME. Name of the bas solution file.

• MSK SPAR INT SOL FILE NAME. Name of the int solution file.

• MSK SPAR ITR SOL FILE NAME. Name of the itr solution file.

• MSK IPAR SOL FILTER KEEP BASIC. Controls the license manager client behavior.

• MSK SPAR SOL FILTER XC LOW. Solution file filter.

• MSK SPAR SOL FILTER XC UPR. Solution file filter.

• MSK SPAR SOL FILTER XX LOW. Solution file filter.

• MSK SPAR SOL FILTER XX UPR. Solution file filter.

Termination criterion parameters.

Parameters which define termination and optimality criteria and related information.

• MSK DPAR BASIS REL TOL S. Maximum relative dual bound violation allowed in an optimal
basic solution.

• MSK DPAR BASIS TOL S. Maximum absolute dual bound violation in an optimal basic solu-
tion.

• MSK DPAR BASIS TOL X. Maximum absolute primal bound violation allowed in an optimal
basic solution.

• MSK IPAR BI MAX ITERATIONS. Maximum number of iterations after basis identification.

• MSK DPAR INTPNT CO TOL DFEAS. Dual feasibility tolerance used by the conic interior-point
optimizer.

• MSK DPAR INTPNT CO TOL INFEAS. Infeasibility tolerance for the conic solver.

• MSK DPAR INTPNT CO TOL MU RED. Optimality tolerance for the conic solver.

• MSK DPAR INTPNT CO TOL NEAR REL. Optimality tolerance for the conic solver.

92 CHAPTER 9. PARAMETERS

• MSK DPAR INTPNT CO TOL PFEAS. Primal feasibility tolerance used by the conic interior-point
optimizer.

• MSK DPAR INTPNT CO TOL REL GAP. Relative gap termination tolerance used by the conic
interior-point optimizer.

• MSK IPAR INTPNT MAX ITERATIONS. Controls the maximum number of iterations allowed in
the interior-point optimizer.

• MSK DPAR INTPNT NL TOL DFEAS. Dual feasibility tolerance used when a nonlinear model is
solved.

• MSK DPAR INTPNT NL TOL MU RED. Relative complementarity gap tolerance.

• MSK DPAR INTPNT NL TOL NEAR REL. Nonlinear solver optimality tolerance parameter.

• MSK DPAR INTPNT NL TOL PFEAS. Primal feasibility tolerance used when a nonlinear model
is solved.

• MSK DPAR INTPNT NL TOL REL GAP. Relative gap termination tolerance for nonlinear prob-
lems.

• MSK DPAR INTPNT TOL DFEAS. Dual feasibility tolerance used for linear and quadratic opti-
mization problems.

• MSK DPAR INTPNT TOL INFEAS. Nonlinear solver infeasibility tolerance parameter.

• MSK DPAR INTPNT TOL MU RED. Relative complementarity gap tolerance.

• MSK DPAR INTPNT TOL PFEAS. Primal feasibility tolerance used for linear and quadratic op-
timization problems.

• MSK DPAR INTPNT TOL REL GAP. Relative gap termination tolerance.

• MSK DPAR LOWER OBJ CUT. Objective bound.

• MSK DPAR LOWER OBJ CUT FINITE TRH. Objective bound.

• MSK DPAR MIO DISABLE TERM TIME. Certain termination criteria is disabled within the mixed-
integer optimizer for period time specified by the parameter.

• MSK IPAR MIO MAX NUM BRANCHES. Maximum number of branches allowed during the branch
and bound search.

• MSK IPAR MIO MAX NUM SOLUTIONS. Controls how many feasible solutions the mixed-integer
optimizer investigates.

• MSK DPAR MIO MAX TIME. Time limit for the mixed-integer optimizer.

• MSK DPAR MIO NEAR TOL REL GAP. The mixed-integer optimizer is terminated when this tol-
erance is satisfied.

• MSK DPAR MIO REL GAP CONST. This value is used to compute the relative gap for the solution
to an integer optimization problem.

• MSK DPAR MIO TOL REL GAP. Relative optimality tolerance employed by the mixed-integer
optimizer.

• MSK DPAR OPTIMIZER MAX TIME. Solver time limit.

• MSK IPAR SIM MAX ITERATIONS. Maximum number of iterations that can be used by a sim-
plex optimizer.

9.1. MSKDPARAME: DOUBLE PARAMETERS 93

• MSK DPAR UPPER OBJ CUT. Objective bound.

• MSK DPAR UPPER OBJ CUT FINITE TRH. Objective bound.

• Integer parameters

• Double parameters

• String parameters

9.1 MSKdparame: Double parameters

9.1.1 MSK DPAR ANA SOL INFEAS TOL

Corresponding constant:

MSK DPAR ANA SOL INFEAS TOL

Description:

If a constraint violates its bound with an amount larger than this value, the constraint name,
index and violation will be printed by the solution analyzer.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1e-6

9.1.2 MSK DPAR BASIS REL TOL S

Corresponding constant:

MSK DPAR BASIS REL TOL S

Description:

Maximum relative dual bound violation allowed in an optimal basic solution.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-12

94 CHAPTER 9. PARAMETERS

9.1.3 MSK DPAR BASIS TOL S

Corresponding constant:

MSK DPAR BASIS TOL S

Description:

Maximum absolute dual bound violation in an optimal basic solution.

Possible Values:

Any number between 1.0e-9 and +inf.

Default value:

1.0e-6

9.1.4 MSK DPAR BASIS TOL X

Corresponding constant:

MSK DPAR BASIS TOL X

Description:

Maximum absolute primal bound violation allowed in an optimal basic solution.

Possible Values:

Any number between 1.0e-9 and +inf.

Default value:

1.0e-6

9.1.5 MSK DPAR CHECK CONVEXITY REL TOL

Corresponding constant:

MSK DPAR CHECK CONVEXITY REL TOL

Description:

This parameter controls when the full convexity check declares a problem to be non-convex.
Increasing this tolerance relaxes the criteria for declaring the problem non-convex.

A problem is declared non-convex if negative (positive) pivot elements are detected in the cholesky
factor of a matrix which is required to be PSD (NSD). This parameter controles how much this
non-negativity requirement may be violated.

If di is the pivot element for column i, then the matrix Q is considered to not be PSD if:

di ≤ − |Qii| ∗ check convexity rel tol

9.1. MSKDPARAME: DOUBLE PARAMETERS 95

Possible Values:

Any number between 0 and +inf.

Default value:

1e-10

9.1.6 MSK DPAR DATA TOL AIJ

Corresponding constant:

MSK DPAR DATA TOL AIJ

Description:

Absolute zero tolerance for elements in A. If any value Aij is smaller than this parameter in
absolute terms MOSEK will treat the values as zero and generate a warning.

Possible Values:

Any number between 1.0e-16 and 1.0e-6.

Default value:

1.0e-12

9.1.7 MSK DPAR DATA TOL AIJ HUGE

Corresponding constant:

MSK DPAR DATA TOL AIJ HUGE

Description:

An element in A which is larger than this value in absolute size causes an error.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e20

9.1.8 MSK DPAR DATA TOL AIJ LARGE

Corresponding constant:

MSK DPAR DATA TOL AIJ LARGE

Description:

An element in A which is larger than this value in absolute size causes a warning message to be
printed.

96 CHAPTER 9. PARAMETERS

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e10

9.1.9 MSK DPAR DATA TOL BOUND INF

Corresponding constant:

MSK DPAR DATA TOL BOUND INF

Description:

Any bound which in absolute value is greater than this parameter is considered infinite.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e16

9.1.10 MSK DPAR DATA TOL BOUND WRN

Corresponding constant:

MSK DPAR DATA TOL BOUND WRN

Description:

If a bound value is larger than this value in absolute size, then a warning message is issued.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e8

9.1.11 MSK DPAR DATA TOL C HUGE

Corresponding constant:

MSK DPAR DATA TOL C HUGE

Description:

An element in c which is larger than the value of this parameter in absolute terms is considered
to be huge and generates an error.

9.1. MSKDPARAME: DOUBLE PARAMETERS 97

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e16

9.1.12 MSK DPAR DATA TOL CJ LARGE

Corresponding constant:

MSK DPAR DATA TOL CJ LARGE

Description:

An element in c which is larger than this value in absolute terms causes a warning message to
be printed.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e8

9.1.13 MSK DPAR DATA TOL QIJ

Corresponding constant:

MSK DPAR DATA TOL QIJ

Description:

Absolute zero tolerance for elements in Q matrixes.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-16

9.1.14 MSK DPAR DATA TOL X

Corresponding constant:

MSK DPAR DATA TOL X

Description:

Zero tolerance for constraints and variables i.e. if the distance between the lower and upper
bound is less than this value, then the lower and lower bound is considered identical.

98 CHAPTER 9. PARAMETERS

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-8

9.1.15 MSK DPAR FEASREPAIR TOL

Corresponding constant:

MSK DPAR FEASREPAIR TOL

Description:

Tolerance for constraint enforcing upper bound on sum of weighted violations in feasibility repair.

Possible Values:

Any number between 1.0e-16 and 1.0e+16.

Default value:

1.0e-10

9.1.16 MSK DPAR INTPNT CO TOL DFEAS

Corresponding constant:

MSK DPAR INTPNT CO TOL DFEAS

Description:

Dual feasibility tolerance used by the conic interior-point optimizer.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

See also:

• MSK DPAR INTPNT CO TOL NEAR REL Optimality tolerance for the conic solver.

9.1. MSKDPARAME: DOUBLE PARAMETERS 99

9.1.17 MSK DPAR INTPNT CO TOL INFEAS

Corresponding constant:

MSK DPAR INTPNT CO TOL INFEAS

Description:

Controls when the conic interior-point optimizer declares the model primal or dual infeasible. A
small number means the optimizer gets more conservative about declaring the model infeasible.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-10

9.1.18 MSK DPAR INTPNT CO TOL MU RED

Corresponding constant:

MSK DPAR INTPNT CO TOL MU RED

Description:

Relative complementarity gap tolerance feasibility tolerance used by the conic interior-point
optimizer.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

9.1.19 MSK DPAR INTPNT CO TOL NEAR REL

Corresponding constant:

MSK DPAR INTPNT CO TOL NEAR REL

Description:

If MOSEK cannot compute a solution that has the prescribed accuracy, then it will multiply the
termination tolerances with value of this parameter. If the solution then satisfies the termination
criteria, then the solution is denoted near optimal, near feasible and so forth.

Possible Values:

Any number between 1.0 and +inf.

Default value:

1000

100 CHAPTER 9. PARAMETERS

9.1.20 MSK DPAR INTPNT CO TOL PFEAS

Corresponding constant:

MSK DPAR INTPNT CO TOL PFEAS

Description:

Primal feasibility tolerance used by the conic interior-point optimizer.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

See also:

• MSK DPAR INTPNT CO TOL NEAR REL Optimality tolerance for the conic solver.

9.1.21 MSK DPAR INTPNT CO TOL REL GAP

Corresponding constant:

MSK DPAR INTPNT CO TOL REL GAP

Description:

Relative gap termination tolerance used by the conic interior-point optimizer.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-7

See also:

• MSK DPAR INTPNT CO TOL NEAR REL Optimality tolerance for the conic solver.

9.1.22 MSK DPAR INTPNT NL MERIT BAL

Corresponding constant:

MSK DPAR INTPNT NL MERIT BAL

Description:

Controls if the complementarity and infeasibility is converging to zero at about equal rates.

Possible Values:

Any number between 0.0 and 0.99.

9.1. MSKDPARAME: DOUBLE PARAMETERS 101

Default value:

1.0e-4

9.1.23 MSK DPAR INTPNT NL TOL DFEAS

Corresponding constant:

MSK DPAR INTPNT NL TOL DFEAS

Description:

Dual feasibility tolerance used when a nonlinear model is solved.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

9.1.24 MSK DPAR INTPNT NL TOL MU RED

Corresponding constant:

MSK DPAR INTPNT NL TOL MU RED

Description:

Relative complementarity gap tolerance.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-12

9.1.25 MSK DPAR INTPNT NL TOL NEAR REL

Corresponding constant:

MSK DPAR INTPNT NL TOL NEAR REL

Description:

If the MOSEK nonlinear interior-point optimizer cannot compute a solution that has the pre-
scribed accuracy, then it will multiply the termination tolerances with value of this parameter.
If the solution then satisfies the termination criteria, then the solution is denoted near optimal,
near feasible and so forth.

Possible Values:

Any number between 1.0 and +inf.

102 CHAPTER 9. PARAMETERS

Default value:

1000.0

9.1.26 MSK DPAR INTPNT NL TOL PFEAS

Corresponding constant:

MSK DPAR INTPNT NL TOL PFEAS

Description:

Primal feasibility tolerance used when a nonlinear model is solved.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

9.1.27 MSK DPAR INTPNT NL TOL REL GAP

Corresponding constant:

MSK DPAR INTPNT NL TOL REL GAP

Description:

Relative gap termination tolerance for nonlinear problems.

Possible Values:

Any number between 1.0e-14 and +inf.

Default value:

1.0e-6

9.1.28 MSK DPAR INTPNT NL TOL REL STEP

Corresponding constant:

MSK DPAR INTPNT NL TOL REL STEP

Description:

Relative step size to the boundary for general nonlinear optimization problems.

Possible Values:

Any number between 1.0e-4 and 0.9999999.

Default value:

0.995

9.1. MSKDPARAME: DOUBLE PARAMETERS 103

9.1.29 MSK DPAR INTPNT TOL DFEAS

Corresponding constant:

MSK DPAR INTPNT TOL DFEAS

Description:

Dual feasibility tolerance used for linear and quadratic optimization problems.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

9.1.30 MSK DPAR INTPNT TOL DSAFE

Corresponding constant:

MSK DPAR INTPNT TOL DSAFE

Description:

Controls the initial dual starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly.

Possible Values:

Any number between 1.0e-4 and +inf.

Default value:

1.0

9.1.31 MSK DPAR INTPNT TOL INFEAS

Corresponding constant:

MSK DPAR INTPNT TOL INFEAS

Description:

Controls when the optimizer declares the model primal or dual infeasible. A small number means
the optimizer gets more conservative about declaring the model infeasible.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-10

104 CHAPTER 9. PARAMETERS

9.1.32 MSK DPAR INTPNT TOL MU RED

Corresponding constant:

MSK DPAR INTPNT TOL MU RED

Description:

Relative complementarity gap tolerance.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-16

9.1.33 MSK DPAR INTPNT TOL PATH

Corresponding constant:

MSK DPAR INTPNT TOL PATH

Description:

Controls how close the interior-point optimizer follows the central path. A large value of this
parameter means the central is followed very closely. On numerical unstable problems it may be
worthwhile to increase this parameter.

Possible Values:

Any number between 0.0 and 0.9999.

Default value:

1.0e-8

9.1.34 MSK DPAR INTPNT TOL PFEAS

Corresponding constant:

MSK DPAR INTPNT TOL PFEAS

Description:

Primal feasibility tolerance used for linear and quadratic optimization problems.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

9.1. MSKDPARAME: DOUBLE PARAMETERS 105

9.1.35 MSK DPAR INTPNT TOL PSAFE

Corresponding constant:

MSK DPAR INTPNT TOL PSAFE

Description:

Controls the initial primal starting point used by the interior-point optimizer. If the interior-
point optimizer converges slowly and/or the constraint or variable bounds are very large, then it
may be worthwhile to increase this value.

Possible Values:

Any number between 1.0e-4 and +inf.

Default value:

1.0

9.1.36 MSK DPAR INTPNT TOL REL GAP

Corresponding constant:

MSK DPAR INTPNT TOL REL GAP

Description:

Relative gap termination tolerance.

Possible Values:

Any number between 1.0e-14 and +inf.

Default value:

1.0e-8

9.1.37 MSK DPAR INTPNT TOL REL STEP

Corresponding constant:

MSK DPAR INTPNT TOL REL STEP

Description:

Relative step size to the boundary for linear and quadratic optimization problems.

Possible Values:

Any number between 1.0e-4 and 0.999999.

Default value:

0.9999

106 CHAPTER 9. PARAMETERS

9.1.38 MSK DPAR INTPNT TOL STEP SIZE

Corresponding constant:

MSK DPAR INTPNT TOL STEP SIZE

Description:

If the step size falls below the value of this parameter, then the interior-point optimizer assumes
that it is stalled. In other words the interior-point optimizer does not make any progress and
therefore it is better stop.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-6

9.1.39 MSK DPAR LOWER OBJ CUT

Corresponding constant:

MSK DPAR LOWER OBJ CUT

Description:

If either a primal or dual feasible solution is found proving that the optimal objective value
is outside, the interval [MSK DPAR LOWER OBJ CUT, MSK DPAR UPPER OBJ CUT], then MOSEK is
terminated.

Possible Values:

Any number between -inf and +inf.

Default value:

-1.0e30

See also:

• MSK DPAR LOWER OBJ CUT FINITE TRH Objective bound.

9.1.40 MSK DPAR LOWER OBJ CUT FINITE TRH

Corresponding constant:

MSK DPAR LOWER OBJ CUT FINITE TRH

Description:

If the lower objective cut is less than the value of this parameter value, then the lower objective
cut i.e. MSK DPAR LOWER OBJ CUT is treated as −∞.

9.1. MSKDPARAME: DOUBLE PARAMETERS 107

Possible Values:

Any number between -inf and +inf.

Default value:

-0.5e30

9.1.41 MSK DPAR MIO DISABLE TERM TIME

Corresponding constant:

MSK DPAR MIO DISABLE TERM TIME

Description:

The termination criteria governed by

• MSK IPAR MIO MAX NUM RELAXS

• MSK IPAR MIO MAX NUM BRANCHES

• MSK DPAR MIO NEAR TOL ABS GAP

• MSK DPAR MIO NEAR TOL REL GAP

is disabled the first n seconds. This parameter specifies the number n. A negative value is
identical to infinity i.e. the termination criteria are never checked.

Possible Values:

Any number between -inf and +inf.

Default value:

-1.0

See also:

• MSK IPAR MIO MAX NUM RELAXS Maximum number of relaxations in branch and bound search.

• MSK IPAR MIO MAX NUM BRANCHES Maximum number of branches allowed during the branch
and bound search.

• MSK DPAR MIO NEAR TOL ABS GAP Relaxed absolute optimality tolerance employed by the
mixed-integer optimizer.

• MSK DPAR MIO NEAR TOL REL GAP The mixed-integer optimizer is terminated when this tol-
erance is satisfied.

9.1.42 MSK DPAR MIO HEURISTIC TIME

Corresponding constant:

MSK DPAR MIO HEURISTIC TIME

108 CHAPTER 9. PARAMETERS

Description:

Minimum amount of time to be used in the heuristic search for a good feasible integer solution. A
negative values implies that the optimizer decides the amount of time to be spent in the heuristic.

Possible Values:

Any number between -inf and +inf.

Default value:

-1.0

9.1.43 MSK DPAR MIO MAX TIME

Corresponding constant:

MSK DPAR MIO MAX TIME

Description:

This parameter limits the maximum time spent by the mixed-integer optimizer. A negative
number means infinity.

Possible Values:

Any number between -inf and +inf.

Default value:

-1.0

9.1.44 MSK DPAR MIO MAX TIME APRX OPT

Corresponding constant:

MSK DPAR MIO MAX TIME APRX OPT

Description:

Number of seconds spent by the mixed-integer optimizer before the MSK DPAR MIO TOL REL RELAX INT

is applied.

Possible Values:

Any number between 0.0 and +inf.

Default value:

60

9.1. MSKDPARAME: DOUBLE PARAMETERS 109

9.1.45 MSK DPAR MIO NEAR TOL ABS GAP

Corresponding constant:

MSK DPAR MIO NEAR TOL ABS GAP

Description:

Relaxed absolute optimality tolerance employed by the mixed-integer optimizer. This termina-
tion criteria is delayed. See MSK DPAR MIO DISABLE TERM TIME for details.

Possible Values:

Any number between 0.0 and +inf.

Default value:

0.0

See also:

• MSK DPAR MIO DISABLE TERM TIME Certain termination criteria is disabled within the mixed-
integer optimizer for period time specified by the parameter.

9.1.46 MSK DPAR MIO NEAR TOL REL GAP

Corresponding constant:

MSK DPAR MIO NEAR TOL REL GAP

Description:

The mixed-integer optimizer is terminated when this tolerance is satisfied. This termination
criteria is delayed. See MSK DPAR MIO DISABLE TERM TIME for details.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-3

See also:

• MSK DPAR MIO DISABLE TERM TIME Certain termination criteria is disabled within the mixed-
integer optimizer for period time specified by the parameter.

110 CHAPTER 9. PARAMETERS

9.1.47 MSK DPAR MIO REL ADD CUT LIMITED

Corresponding constant:

MSK DPAR MIO REL ADD CUT LIMITED

Description:

Controls how many cuts the mixed-integer optimizer is allowed to add to the problem. Let α
be the value of this parameter and m the number constraints, then mixed-integer optimizer is
allowed to αm cuts.

Possible Values:

Any number between 0.0 and 2.0.

Default value:

0.75

9.1.48 MSK DPAR MIO REL GAP CONST

Corresponding constant:

MSK DPAR MIO REL GAP CONST

Description:

This value is used to compute the relative gap for the solution to an integer optimization problem.

Possible Values:

Any number between 1.0e-15 and +inf.

Default value:

1.0e-10

9.1.49 MSK DPAR MIO TOL ABS GAP

Corresponding constant:

MSK DPAR MIO TOL ABS GAP

Description:

Absolute optimality tolerance employed by the mixed-integer optimizer.

Possible Values:

Any number between 0.0 and +inf.

Default value:

0.0

9.1. MSKDPARAME: DOUBLE PARAMETERS 111

9.1.50 MSK DPAR MIO TOL ABS RELAX INT

Corresponding constant:

MSK DPAR MIO TOL ABS RELAX INT

Description:

Absolute relaxation tolerance of the integer constraints. I.e. min(|x| − bxc, dxe− |x|) is less than
the tolerance then the integer restrictions assumed to be satisfied.

Possible Values:

Any number between 1e-9 and +inf.

Default value:

1.0e-5

9.1.51 MSK DPAR MIO TOL FEAS

Corresponding constant:

MSK DPAR MIO TOL FEAS

Description:

Feasibility tolerance for mixed integer solver. Any solution with maximum infeasibility below
this value will be considered feasible.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-7

9.1.52 MSK DPAR MIO TOL REL DUAL BOUND IMPROVEMENT

Corresponding constant:

MSK DPAR MIO TOL REL DUAL BOUND IMPROVEMENT

Description:

If the relative improvement of the dual bound is smaller than this value, the solver will terminate
the root cut generation. A value of 0.0 means that the value is selected automatically.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

0.0

112 CHAPTER 9. PARAMETERS

9.1.53 MSK DPAR MIO TOL REL GAP

Corresponding constant:

MSK DPAR MIO TOL REL GAP

Description:

Relative optimality tolerance employed by the mixed-integer optimizer.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-4

9.1.54 MSK DPAR MIO TOL REL RELAX INT

Corresponding constant:

MSK DPAR MIO TOL REL RELAX INT

Description:

Relative relaxation tolerance of the integer constraints. I.e (min(|x|− bxc, dxe− |x|)) is less than
the tolerance times |x| then the integer restrictions assumed to be satisfied.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-6

9.1.55 MSK DPAR MIO TOL X

Corresponding constant:

MSK DPAR MIO TOL X

Description:

Absolute solution tolerance used in mixed-integer optimizer.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-6

9.1. MSKDPARAME: DOUBLE PARAMETERS 113

9.1.56 MSK DPAR NONCONVEX TOL FEAS

Corresponding constant:

MSK DPAR NONCONVEX TOL FEAS

Description:

Feasibility tolerance used by the nonconvex optimizer.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-6

9.1.57 MSK DPAR NONCONVEX TOL OPT

Corresponding constant:

MSK DPAR NONCONVEX TOL OPT

Description:

Optimality tolerance used by the nonconvex optimizer.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-7

9.1.58 MSK DPAR OPTIMIZER MAX TIME

Corresponding constant:

MSK DPAR OPTIMIZER MAX TIME

Description:

Maximum amount of time the optimizer is allowed to spent on the optimization. A negative
number means infinity.

Possible Values:

Any number between -inf and +inf.

Default value:

-1.0

114 CHAPTER 9. PARAMETERS

9.1.59 MSK DPAR PRESOLVE TOL ABS LINDEP

Corresponding constant:

MSK DPAR PRESOLVE TOL ABS LINDEP

Description:

Absolute tolerance employed by the linear dependency checker.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-6

9.1.60 MSK DPAR PRESOLVE TOL AIJ

Corresponding constant:

MSK DPAR PRESOLVE TOL AIJ

Description:

Absolute zero tolerance employed for aij in the presolve.

Possible Values:

Any number between 1.0e-15 and +inf.

Default value:

1.0e-12

9.1.61 MSK DPAR PRESOLVE TOL REL LINDEP

Corresponding constant:

MSK DPAR PRESOLVE TOL REL LINDEP

Description:

Relative tolerance employed by the linear dependency checker.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-10

9.1. MSKDPARAME: DOUBLE PARAMETERS 115

9.1.62 MSK DPAR PRESOLVE TOL S

Corresponding constant:

MSK DPAR PRESOLVE TOL S

Description:

Absolute zero tolerance employed for si in the presolve.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-8

9.1.63 MSK DPAR PRESOLVE TOL X

Corresponding constant:

MSK DPAR PRESOLVE TOL X

Description:

Absolute zero tolerance employed for xj in the presolve.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-8

9.1.64 MSK DPAR QCQO REFORMULATE REL DROP TOL

Corresponding constant:

MSK DPAR QCQO REFORMULATE REL DROP TOL

Description:

This parameter determines when columns are dropped in incomplete cholesky factorization doing
reformulation of quadratic problems.

Possible Values:

Any number between 0 and +inf.

Default value:

1e-15

116 CHAPTER 9. PARAMETERS

9.1.65 MSK DPAR SIM LU TOL REL PIV

Corresponding constant:

MSK DPAR SIM LU TOL REL PIV

Description:

Relative pivot tolerance employed when computing the LU factorization of the basis in the
simplex optimizers and in the basis identification procedure.

A value closer to 1.0 generally improves numerical stability but typically also implies an increase
in the computational work.

Possible Values:

Any number between 1.0e-6 and 0.999999.

Default value:

0.01

9.1.66 MSK DPAR SIMPLEX ABS TOL PIV

Corresponding constant:

MSK DPAR SIMPLEX ABS TOL PIV

Description:

Absolute pivot tolerance employed by the simplex optimizers.

Possible Values:

Any number between 1.0e-12 and +inf.

Default value:

1.0e-7

9.1.67 MSK DPAR UPPER OBJ CUT

Corresponding constant:

MSK DPAR UPPER OBJ CUT

Description:

If either a primal or dual feasible solution is found proving that the optimal objective value is
outside, [MSK DPAR LOWER OBJ CUT, MSK DPAR UPPER OBJ CUT], then MOSEK is terminated.

Possible Values:

Any number between -inf and +inf.

9.2. MSKIPARAME: INTEGER PARAMETERS 117

Default value:

1.0e30

See also:

• MSK DPAR UPPER OBJ CUT FINITE TRH Objective bound.

9.1.68 MSK DPAR UPPER OBJ CUT FINITE TRH

Corresponding constant:

MSK DPAR UPPER OBJ CUT FINITE TRH

Description:

If the upper objective cut is greater than the value of this value parameter, then the the upper
objective cut MSK DPAR UPPER OBJ CUT is treated as ∞.

Possible Values:

Any number between -inf and +inf.

Default value:

0.5e30

9.2 MSKiparame: Integer parameters

9.2.1 MSK IPAR ALLOC ADD QNZ

Corresponding constant:

MSK IPAR ALLOC ADD QNZ

Description:

Additional number of Q non-zeros that are allocated space for when numanz exceeds maxnumqnz
during addition of new Q entries.

Possible Values:

Any number between 0 and +inf.

Default value:

5000

118 CHAPTER 9. PARAMETERS

9.2.2 MSK IPAR ANA SOL BASIS

Corresponding constant:

MSK IPAR ANA SOL BASIS

Description:

Controls whether the basis matrix is analyzed in solaution analyzer.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.3 MSK IPAR ANA SOL PRINT VIOLATED

Corresponding constant:

MSK IPAR ANA SOL PRINT VIOLATED

Description:

Controls whether a list of violated constraints is printed.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.4 MSK IPAR AUTO SORT A BEFORE OPT

Corresponding constant:

MSK IPAR AUTO SORT A BEFORE OPT

Description:

Controls whether the elements in each column of A are sorted before an optimization is performed.
This is not required but makes the optimization more deterministic.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2. MSKIPARAME: INTEGER PARAMETERS 119

9.2.5 MSK IPAR AUTO UPDATE SOL INFO

Corresponding constant:

MSK IPAR AUTO UPDATE SOL INFO

Description:

Controls whether the solution information items are automatically updated after an optimization
is performed.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.6 MSK IPAR BASIS SOLVE USE PLUS ONE

Corresponding constant:

MSK IPAR BASIS SOLVE USE PLUS ONE

Description:

If a slack variable is in the basis, then the corresponding column in the basis is a unit vector
with -1 in the right position. However, if this parameter is set to MSK ON, -1 is replaced by 1.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.7 MSK IPAR BI CLEAN OPTIMIZER

Corresponding constant:

MSK IPAR BI CLEAN OPTIMIZER

Description:

Controls which simplex optimizer is used in the clean-up phase.

Possible values:

• MSK OPTIMIZER CONCURRENT The optimizer for nonconvex nonlinear problems.

120 CHAPTER 9. PARAMETERS

• MSK OPTIMIZER CONIC The optimizer for problems having conic constraints.

• MSK OPTIMIZER DUAL SIMPLEX The dual simplex optimizer is used.

• MSK OPTIMIZER FREE The optimizer is chosen automatically.

• MSK OPTIMIZER FREE SIMPLEX One of the simplex optimizers is used.

• MSK OPTIMIZER INTPNT The interior-point optimizer is used.

• MSK OPTIMIZER MIXED INT The mixed-integer optimizer.

• MSK OPTIMIZER MIXED INT CONIC The mixed-integer optimizer for conic and linear prob-
lems.

• MSK OPTIMIZER NETWORK PRIMAL SIMPLEX The network primal simplex optimizer is used.
It is only applicable to pute network problems.

• MSK OPTIMIZER NONCONVEX The optimizer for nonconvex nonlinear problems.

• MSK OPTIMIZER PRIMAL DUAL SIMPLEX The primal dual simplex optimizer is used.

• MSK OPTIMIZER PRIMAL SIMPLEX The primal simplex optimizer is used.

Default value:

MSK OPTIMIZER FREE

9.2.8 MSK IPAR BI IGNORE MAX ITER

Corresponding constant:

MSK IPAR BI IGNORE MAX ITER

Description:

If the parameter MSK IPAR INTPNT BASIS has the value MSK BI NO ERROR and the interior-point
optimizer has terminated due to maximum number of iterations, then basis identification is
performed if this parameter has the value MSK ON.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.9 MSK IPAR BI IGNORE NUM ERROR

Corresponding constant:

MSK IPAR BI IGNORE NUM ERROR

9.2. MSKIPARAME: INTEGER PARAMETERS 121

Description:

If the parameter MSK IPAR INTPNT BASIS has the value MSK BI NO ERROR and the interior-point
optimizer has terminated due to a numerical problem, then basis identification is performed if
this parameter has the value MSK ON.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.10 MSK IPAR BI MAX ITERATIONS

Corresponding constant:

MSK IPAR BI MAX ITERATIONS

Description:

Controls the maximum number of simplex iterations allowed to optimize a basis after the basis
identification.

Possible Values:

Any number between 0 and +inf.

Default value:

1000000

9.2.11 MSK IPAR CACHE LICENSE

Corresponding constant:

MSK IPAR CACHE LICENSE

Description:

Specifies if the license is kept checked out for the lifetime of the mosek environment (on) or
returned to the server immediately after the optimization (off).

Check-in and check-out of licenses have an overhead. Frequent communication with the license
server should be avoided.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

122 CHAPTER 9. PARAMETERS

9.2.12 MSK IPAR CHECK CONVEXITY

Corresponding constant:

MSK IPAR CHECK CONVEXITY

Description:

Specify the level of convexity check on quadratic problems

Possible values:

• MSK CHECK CONVEXITY FULL Perform a full convexity check.

• MSK CHECK CONVEXITY NONE No convexity check.

• MSK CHECK CONVEXITY SIMPLE Perform simple and fast convexity check.

Default value:

MSK CHECK CONVEXITY FULL

9.2.13 MSK IPAR COMPRESS STATFILE

Corresponding constant:

MSK IPAR COMPRESS STATFILE

Description:

Control compression of stat files.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.14 MSK IPAR CONCURRENT NUM OPTIMIZERS

Corresponding constant:

MSK IPAR CONCURRENT NUM OPTIMIZERS

Description:

The maximum number of simultaneous optimizations that will be started by the concurrent
optimizer.

Possible Values:

Any number between 0 and +inf.

Default value:

2

9.2. MSKIPARAME: INTEGER PARAMETERS 123

9.2.15 MSK IPAR CONCURRENT PRIORITY DUAL SIMPLEX

Corresponding constant:

MSK IPAR CONCURRENT PRIORITY DUAL SIMPLEX

Description:

Priority of the dual simplex algorithm when selecting solvers for concurrent optimization.

Possible Values:

Any number between 0 and +inf.

Default value:

2

9.2.16 MSK IPAR CONCURRENT PRIORITY FREE SIMPLEX

Corresponding constant:

MSK IPAR CONCURRENT PRIORITY FREE SIMPLEX

Description:

Priority of the free simplex optimizer when selecting solvers for concurrent optimization.

Possible Values:

Any number between 0 and +inf.

Default value:

3

9.2.17 MSK IPAR CONCURRENT PRIORITY INTPNT

Corresponding constant:

MSK IPAR CONCURRENT PRIORITY INTPNT

Description:

Priority of the interior-point algorithm when selecting solvers for concurrent optimization.

Possible Values:

Any number between 0 and +inf.

Default value:

4

124 CHAPTER 9. PARAMETERS

9.2.18 MSK IPAR CONCURRENT PRIORITY PRIMAL SIMPLEX

Corresponding constant:

MSK IPAR CONCURRENT PRIORITY PRIMAL SIMPLEX

Description:

Priority of the primal simplex algorithm when selecting solvers for concurrent optimization.

Possible Values:

Any number between 0 and +inf.

Default value:

1

9.2.19 MSK IPAR FEASREPAIR OPTIMIZE

Corresponding constant:

MSK IPAR FEASREPAIR OPTIMIZE

Description:

Controls which type of feasibility analysis is to be performed.

Possible values:

• MSK FEASREPAIR OPTIMIZE COMBINED Minimize with original objective subject to minimal
weighted violation of bounds.

• MSK FEASREPAIR OPTIMIZE NONE Do not optimize the feasibility repair problem.

• MSK FEASREPAIR OPTIMIZE PENALTY Minimize weighted sum of violations.

Default value:

MSK FEASREPAIR OPTIMIZE NONE

9.2.20 MSK IPAR INFEAS GENERIC NAMES

Corresponding constant:

MSK IPAR INFEAS GENERIC NAMES

Description:

Controls whether generic names are used when an infeasible subproblem is created.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2. MSKIPARAME: INTEGER PARAMETERS 125

9.2.21 MSK IPAR INFEAS PREFER PRIMAL

Corresponding constant:

MSK IPAR INFEAS PREFER PRIMAL

Description:

If both certificates of primal and dual infeasibility are supplied then only the primal is used when
this option is turned on.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.22 MSK IPAR INFEAS REPORT AUTO

Corresponding constant:

MSK IPAR INFEAS REPORT AUTO

Description:

Controls whether an infeasibility report is automatically produced after the optimization if the
problem is primal or dual infeasible.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.23 MSK IPAR INFEAS REPORT LEVEL

Corresponding constant:

MSK IPAR INFEAS REPORT LEVEL

Description:

Controls the amount of information presented in an infeasibility report. Higher values imply
more information.

Possible Values:

Any number between 0 and +inf.

126 CHAPTER 9. PARAMETERS

Default value:

1

9.2.24 MSK IPAR INTPNT BASIS

Corresponding constant:

MSK IPAR INTPNT BASIS

Description:

Controls whether the interior-point optimizer also computes an optimal basis.

Possible values:

• MSK BI ALWAYS Basis identification is always performed even if the interior-point optimizer
terminates abnormally.

• MSK BI IF FEASIBLE Basis identification is not performed if the interior-point optimizer
terminates with a problem status saying that the problem is primal or dual infeasible.

• MSK BI NEVER Never do basis identification.

• MSK BI NO ERROR Basis identification is performed if the interior-point optimizer terminates
without an error.

• MSK BI RESERVERED Not currently in use.

Default value:

MSK BI ALWAYS

See also:

• MSK IPAR BI IGNORE MAX ITER Turns on basis identification in case the interior-point opti-
mizer is terminated due to maximum number of iterations.

• MSK IPAR BI IGNORE NUM ERROR Turns on basis identification in case the interior-point op-
timizer is terminated due to a numerical problem.

9.2.25 MSK IPAR INTPNT DIFF STEP

Corresponding constant:

MSK IPAR INTPNT DIFF STEP

Description:

Controls whether different step sizes are allowed in the primal and dual space.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2. MSKIPARAME: INTEGER PARAMETERS 127

9.2.26 MSK IPAR INTPNT FACTOR DEBUG LVL

Corresponding constant:

MSK IPAR INTPNT FACTOR DEBUG LVL

Description:

Controls factorization debug level.

Possible Values:

Any number between 0 and +inf.

Default value:

0

9.2.27 MSK IPAR INTPNT FACTOR METHOD

Corresponding constant:

MSK IPAR INTPNT FACTOR METHOD

Description:

Controls the method used to factor the Newton equation system.

Possible Values:

Any number between 0 and +inf.

Default value:

0

9.2.28 MSK IPAR INTPNT HOTSTART

Corresponding constant:

MSK IPAR INTPNT HOTSTART

Description:

Currently not in use.

Possible values:

• MSK INTPNT HOTSTART DUAL The interior-point optimizer exploits the dual solution only.

• MSK INTPNT HOTSTART NONE The interior-point optimizer performs a coldstart.

• MSK INTPNT HOTSTART PRIMAL The interior-point optimizer exploits the primal solution
only.

• MSK INTPNT HOTSTART PRIMAL DUAL The interior-point optimizer exploits both the primal
and dual solution.

128 CHAPTER 9. PARAMETERS

Default value:

MSK INTPNT HOTSTART NONE

9.2.29 MSK IPAR INTPNT MAX ITERATIONS

Corresponding constant:

MSK IPAR INTPNT MAX ITERATIONS

Description:

Controls the maximum number of iterations allowed in the interior-point optimizer.

Possible Values:

Any number between 0 and +inf.

Default value:

400

9.2.30 MSK IPAR INTPNT MAX NUM COR

Corresponding constant:

MSK IPAR INTPNT MAX NUM COR

Description:

Controls the maximum number of correctors allowed by the multiple corrector procedure. A
negative value means that MOSEK is making the choice.

Possible Values:

Any number between -1 and +inf.

Default value:

-1

9.2.31 MSK IPAR INTPNT MAX NUM REFINEMENT STEPS

Corresponding constant:

MSK IPAR INTPNT MAX NUM REFINEMENT STEPS

Description:

Maximum number of steps to be used by the iterative refinement of the search direction. A
negative value implies that the optimizer Chooses the maximum number of iterative refinement
steps.

Possible Values:

Any number between -inf and +inf.

9.2. MSKIPARAME: INTEGER PARAMETERS 129

Default value:

-1

9.2.32 MSK IPAR INTPNT OFF COL TRH

Corresponding constant:

MSK IPAR INTPNT OFF COL TRH

Description:

Controls how many offending columns are detected in the Jacobian of the constraint matrix.

1 means aggressive detection, higher values mean less aggressive detection.

0 means no detection.

Possible Values:

Any number between 0 and +inf.

Default value:

40

9.2.33 MSK IPAR INTPNT ORDER METHOD

Corresponding constant:

MSK IPAR INTPNT ORDER METHOD

Description:

Controls the ordering strategy used by the interior-point optimizer when factorizing the Newton
equation system.

Possible values:

• MSK ORDER METHOD APPMINLOC Approximate minimum local fill-in ordering is employed.

• MSK ORDER METHOD EXPERIMENTAL This option should not be used.

• MSK ORDER METHOD FORCE GRAPHPAR Always use the graph partitioning based ordering even
if it is worse that the approximate minimum local fill ordering.

• MSK ORDER METHOD FREE The ordering method is chosen automatically.

• MSK ORDER METHOD NONE No ordering is used.

• MSK ORDER METHOD TRY GRAPHPAR Always try the the graph partitioning based ordering.

Default value:

MSK ORDER METHOD FREE

130 CHAPTER 9. PARAMETERS

9.2.34 MSK IPAR INTPNT REGULARIZATION USE

Corresponding constant:

MSK IPAR INTPNT REGULARIZATION USE

Description:

Controls whether regularization is allowed.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.35 MSK IPAR INTPNT SCALING

Corresponding constant:

MSK IPAR INTPNT SCALING

Description:

Controls how the problem is scaled before the interior-point optimizer is used.

Possible values:

• MSK SCALING AGGRESSIVE A very aggressive scaling is performed.

• MSK SCALING FREE The optimizer chooses the scaling heuristic.

• MSK SCALING MODERATE A conservative scaling is performed.

• MSK SCALING NONE No scaling is performed.

Default value:

MSK SCALING FREE

9.2.36 MSK IPAR INTPNT SOLVE FORM

Corresponding constant:

MSK IPAR INTPNT SOLVE FORM

Description:

Controls whether the primal or the dual problem is solved.

Possible values:

9.2. MSKIPARAME: INTEGER PARAMETERS 131

• MSK SOLVE DUAL The optimizer should solve the dual problem.

• MSK SOLVE FREE The optimizer is free to solve either the primal or the dual problem.

• MSK SOLVE PRIMAL The optimizer should solve the primal problem.

Default value:

MSK SOLVE FREE

9.2.37 MSK IPAR INTPNT STARTING POINT

Corresponding constant:

MSK IPAR INTPNT STARTING POINT

Description:

Starting point used by the interior-point optimizer.

Possible values:

• MSK STARTING POINT CONSTANT The optimizer constructs a starting point by assigning a
constant value to all primal and dual variables. This starting point is normally robust.

• MSK STARTING POINT FREE The starting point is chosen automatically.

• MSK STARTING POINT GUESS The optimizer guesses a starting point.

• MSK STARTING POINT SATISFY BOUNDS The starting point is choosen to satisfy all the simple
bounds on nonlinear variables. If this starting point is employed, then more care than usual
should employed when choosing the bounds on the nonlinear variables. In particular very
tight bounds should be avoided.

Default value:

MSK STARTING POINT FREE

9.2.38 MSK IPAR LIC TRH EXPIRY WRN

Corresponding constant:

MSK IPAR LIC TRH EXPIRY WRN

Description:

If a license feature expires in a numbers days less than the value of this parameter then a warning
will be issued.

Possible Values:

Any number between 0 and +inf.

Default value:

7

132 CHAPTER 9. PARAMETERS

9.2.39 MSK IPAR LICENSE ALLOW OVERUSE

Corresponding constant:

MSK IPAR LICENSE ALLOW OVERUSE

Description:

Controls if license overuse is allowed when caching licenses

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.40 MSK IPAR LICENSE DEBUG

Corresponding constant:

MSK IPAR LICENSE DEBUG

Description:

This option is used to turn on debugging of the incense manager.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.41 MSK IPAR LICENSE PAUSE TIME

Corresponding constant:

MSK IPAR LICENSE PAUSE TIME

Description:

If MSK IPAR LICENSE WAIT=MSK ON and no license is available, then MOSEK sleeps a number of
milliseconds between each check of whether a license has become free.

Possible Values:

Any number between 0 and 1000000.

Default value:

100

9.2. MSKIPARAME: INTEGER PARAMETERS 133

9.2.42 MSK IPAR LICENSE SUPPRESS EXPIRE WRNS

Corresponding constant:

MSK IPAR LICENSE SUPPRESS EXPIRE WRNS

Description:

Controls whether license features expire warnings are suppressed.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.43 MSK IPAR LICENSE WAIT

Corresponding constant:

MSK IPAR LICENSE WAIT

Description:

If all licenses are in use MOSEK returns with an error code. However, by turning on this
parameter MOSEK will wait for an available license.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.44 MSK IPAR LOG

Corresponding constant:

MSK IPAR LOG

Description:

Controls the amount of log information. The value 0 implies that all log information is suppressed.
A higher level implies that more information is logged.

Please note that if a task is employed to solve a sequence of optimization problems the value of
this parameter is reduced by the value of MSK IPAR LOG CUT SECOND OPT for the second and any
subsequent optimizations.

134 CHAPTER 9. PARAMETERS

Possible Values:

Any number between 0 and +inf.

Default value:

10

See also:

• MSK IPAR LOG CUT SECOND OPT Controls the reduction in the log levels for the second and
any subsequent optimizations.

9.2.45 MSK IPAR LOG BI

Corresponding constant:

MSK IPAR LOG BI

Description:

Controls the amount of output printed by the basis identification procedure. A higher level
implies that more information is logged.

Possible Values:

Any number between 0 and +inf.

Default value:

4

9.2.46 MSK IPAR LOG BI FREQ

Corresponding constant:

MSK IPAR LOG BI FREQ

Description:

Controls how frequent the optimizer outputs information about the basis identification and how
frequent the user-defined call-back function is called.

Possible Values:

Any number between 0 and +inf.

Default value:

2500

9.2. MSKIPARAME: INTEGER PARAMETERS 135

9.2.47 MSK IPAR LOG CHECK CONVEXITY

Corresponding constant:

MSK IPAR LOG CHECK CONVEXITY

Description:

Controls logging in convexity check on quadratic problems. Set to a positive value to turn logging
on.

If a quadratic coefficient matrix is found to violate the requirement of PSD (NSD) then a list
of negative (positive) pivot elements is printed. The absolute value of the pivot elements is also
shown.

Possible Values:

Any number between 0 and +inf.

Default value:

0

9.2.48 MSK IPAR LOG CONCURRENT

Corresponding constant:

MSK IPAR LOG CONCURRENT

Description:

Controls amount of output printed by the concurrent optimizer.

Possible Values:

Any number between 0 and +inf.

Default value:

1

9.2.49 MSK IPAR LOG CUT SECOND OPT

Corresponding constant:

MSK IPAR LOG CUT SECOND OPT

Description:

If a task is employed to solve a sequence of optimization problems, then the value of the log
levels is reduced by the value of this parameter. E.g MSK IPAR LOG and MSK IPAR LOG SIM are
reduced by the value of this parameter for the second and any subsequent optimizations.

Possible Values:

Any number between 0 and +inf.

136 CHAPTER 9. PARAMETERS

Default value:

1

See also:

• MSK IPAR LOG Controls the amount of log information.

• MSK IPAR LOG INTPNT Controls the amount of log information from the interior-point opti-
mizers.

• MSK IPAR LOG MIO Controls the amount of log information from the mixed-integer optimiz-
ers.

• MSK IPAR LOG SIM Controls the amount of log information from the simplex optimizers.

9.2.50 MSK IPAR LOG EXPAND

Corresponding constant:

MSK IPAR LOG EXPAND

Description:

Controls the amount of logging when a data item such as the maximum number constrains is
expanded.

Possible Values:

Any number between 0 and +inf.

Default value:

0

9.2.51 MSK IPAR LOG FACTOR

Corresponding constant:

MSK IPAR LOG FACTOR

Description:

If turned on, then the factor log lines are added to the log.

Possible Values:

Any number between 0 and +inf.

Default value:

1

9.2. MSKIPARAME: INTEGER PARAMETERS 137

9.2.52 MSK IPAR LOG FEAS REPAIR

Corresponding constant:

MSK IPAR LOG FEAS REPAIR

Description:

Controls the amount of output printed when performing feasibility repair. A value higher than
one means extensive logging.

Possible Values:

Any number between 0 and +inf.

Default value:

1

9.2.53 MSK IPAR LOG FILE

Corresponding constant:

MSK IPAR LOG FILE

Description:

If turned on, then some log info is printed when a file is written or read.

Possible Values:

Any number between 0 and +inf.

Default value:

1

9.2.54 MSK IPAR LOG HEAD

Corresponding constant:

MSK IPAR LOG HEAD

Description:

If turned on, then a header line is added to the log.

Possible Values:

Any number between 0 and +inf.

Default value:

1

138 CHAPTER 9. PARAMETERS

9.2.55 MSK IPAR LOG INFEAS ANA

Corresponding constant:

MSK IPAR LOG INFEAS ANA

Description:

Controls amount of output printed by the infeasibility analyzer procedures. A higher level implies
that more information is logged.

Possible Values:

Any number between 0 and +inf.

Default value:

1

9.2.56 MSK IPAR LOG INTPNT

Corresponding constant:

MSK IPAR LOG INTPNT

Description:

Controls amount of output printed printed by the interior-point optimizer. A higher level implies
that more information is logged.

Possible Values:

Any number between 0 and +inf.

Default value:

4

9.2.57 MSK IPAR LOG MIO

Corresponding constant:

MSK IPAR LOG MIO

Description:

Controls the log level for the mixed-integer optimizer. A higher level implies that more informa-
tion is logged.

Possible Values:

Any number between 0 and +inf.

Default value:

4

9.2. MSKIPARAME: INTEGER PARAMETERS 139

9.2.58 MSK IPAR LOG MIO FREQ

Corresponding constant:

MSK IPAR LOG MIO FREQ

Description:

Controls how frequent the mixed-integer optimizer prints the log line. It will print line every
time MSK IPAR LOG MIO FREQ relaxations have been solved.

Possible Values:

A integer value.

Default value:

1000

9.2.59 MSK IPAR LOG NONCONVEX

Corresponding constant:

MSK IPAR LOG NONCONVEX

Description:

Controls amount of output printed by the nonconvex optimizer.

Possible Values:

Any number between 0 and +inf.

Default value:

1

9.2.60 MSK IPAR LOG OPTIMIZER

Corresponding constant:

MSK IPAR LOG OPTIMIZER

Description:

Controls the amount of general optimizer information that is logged.

Possible Values:

Any number between 0 and +inf.

Default value:

1

140 CHAPTER 9. PARAMETERS

9.2.61 MSK IPAR LOG ORDER

Corresponding constant:

MSK IPAR LOG ORDER

Description:

If turned on, then factor lines are added to the log.

Possible Values:

Any number between 0 and +inf.

Default value:

1

9.2.62 MSK IPAR LOG PARAM

Corresponding constant:

MSK IPAR LOG PARAM

Description:

Controls the amount of information printed out about parameter changes.

Possible Values:

Any number between 0 and +inf.

Default value:

0

9.2.63 MSK IPAR LOG PRESOLVE

Corresponding constant:

MSK IPAR LOG PRESOLVE

Description:

Controls amount of output printed by the presolve procedure. A higher level implies that more
information is logged.

Possible Values:

Any number between 0 and +inf.

Default value:

1

9.2. MSKIPARAME: INTEGER PARAMETERS 141

9.2.64 MSK IPAR LOG RESPONSE

Corresponding constant:

MSK IPAR LOG RESPONSE

Description:

Controls amount of output printed when response codes are reported. A higher level implies that
more information is logged.

Possible Values:

Any number between 0 and +inf.

Default value:

0

9.2.65 MSK IPAR LOG SENSITIVITY

Corresponding constant:

MSK IPAR LOG SENSITIVITY

Description:

Controls the amount of logging during the sensitivity analysis. 0: Means no logging information
is produced. 1: Timing information is printed. 2: Sensitivity results are printed.

Possible Values:

Any number between 0 and +inf.

Default value:

1

9.2.66 MSK IPAR LOG SENSITIVITY OPT

Corresponding constant:

MSK IPAR LOG SENSITIVITY OPT

Description:

Controls the amount of logging from the optimizers employed during the sensitivity analysis. 0
means no logging information is produced.

Possible Values:

Any number between 0 and +inf.

Default value:

0

142 CHAPTER 9. PARAMETERS

9.2.67 MSK IPAR LOG SIM

Corresponding constant:

MSK IPAR LOG SIM

Description:

Controls amount of output printed by the simplex optimizer. A higher level implies that more
information is logged.

Possible Values:

Any number between 0 and +inf.

Default value:

4

9.2.68 MSK IPAR LOG SIM FREQ

Corresponding constant:

MSK IPAR LOG SIM FREQ

Description:

Controls how frequent the simplex optimizer outputs information about the optimization and
how frequent the user-defined call-back function is called.

Possible Values:

Any number between 0 and +inf.

Default value:

1000

9.2.69 MSK IPAR LOG SIM MINOR

Corresponding constant:

MSK IPAR LOG SIM MINOR

Description:

Currently not in use.

Possible Values:

Any number between 0 and +inf.

Default value:

1

9.2. MSKIPARAME: INTEGER PARAMETERS 143

9.2.70 MSK IPAR LOG SIM NETWORK FREQ

Corresponding constant:

MSK IPAR LOG SIM NETWORK FREQ

Description:

Controls how frequent the network simplex optimizer outputs information about the optimization
and how frequent the user-defined call-back function is called. The network optimizer will use a
logging frequency equal to MSK IPAR LOG SIM FREQ times MSK IPAR LOG SIM NETWORK FREQ.

Possible Values:

Any number between 0 and +inf.

Default value:

1000

9.2.71 MSK IPAR LOG STORAGE

Corresponding constant:

MSK IPAR LOG STORAGE

Description:

When turned on, MOSEK prints messages regarding the storage usage and allocation.

Possible Values:

Any number between 0 and +inf.

Default value:

0

9.2.72 MSK IPAR MAX NUM WARNINGS

Corresponding constant:

MSK IPAR MAX NUM WARNINGS

Description:

Waning level. A higher value results in more warnings.

Possible Values:

Any number between 0 and +inf.

Default value:

10

144 CHAPTER 9. PARAMETERS

9.2.73 MSK IPAR MIO BRANCH DIR

Corresponding constant:

MSK IPAR MIO BRANCH DIR

Description:

Controls whether the mixed-integer optimizer is branching up or down by default.

Possible values:

• MSK BRANCH DIR DOWN The mixed-integer optimizer always chooses the down branch first.

• MSK BRANCH DIR FREE The mixed-integer optimizer decides which branch to choose.

• MSK BRANCH DIR UP The mixed-integer optimizer always chooses the up branch first.

Default value:

MSK BRANCH DIR FREE

9.2.74 MSK IPAR MIO BRANCH PRIORITIES USE

Corresponding constant:

MSK IPAR MIO BRANCH PRIORITIES USE

Description:

Controls whether branching priorities are used by the mixed-integer optimizer.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.75 MSK IPAR MIO CONSTRUCT SOL

Corresponding constant:

MSK IPAR MIO CONSTRUCT SOL

Description:

If set to MSK ON and all integer variables have been given a value for which a feasible mixed
integer solution exists, then MOSEK generates an initial solution to the mixed integer problem
by fixing all integer values and solving the remaining problem.

Possible values:

9.2. MSKIPARAME: INTEGER PARAMETERS 145

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.76 MSK IPAR MIO CONT SOL

Corresponding constant:

MSK IPAR MIO CONT SOL

Description:

Controls the meaning of the interior-point and basic solutions in mixed integer problems.

Possible values:

• MSK MIO CONT SOL ITG The reported interior-point and basic solutions are a solution to the
problem with all integer variables fixed at the value they have in the integer solution. A
solution is only reported in case the problem has a primal feasible solution.

• MSK MIO CONT SOL ITG REL In case the problem is primal feasible then the reported interior-
point and basic solutions are a solution to the problem with all integer variables fixed at
the value they have in the integer solution. If the problem is primal infeasible, then the
solution to the root node problem is reported.

• MSK MIO CONT SOL NONE No interior-point or basic solution are reported when the mixed-
integer optimizer is used.

• MSK MIO CONT SOL ROOT The reported interior-point and basic solutions are a solution to
the root node problem when mixed-integer optimizer is used.

Default value:

MSK MIO CONT SOL NONE

9.2.77 MSK IPAR MIO CUT LEVEL ROOT

Corresponding constant:

MSK IPAR MIO CUT LEVEL ROOT

Description:

Controls the cut level employed by the mixed-integer optimizer at the root node. A negative
value means a default value determined by the mixed-integer optimizer is used. By adding the
appropriate values from the following table the employed cut types can be controlled.

146 CHAPTER 9. PARAMETERS

GUB cover +2
Flow cover +4
Lifting +8
Plant location +16
Disaggregation +32
Knapsack cover +64
Lattice +128
Gomory +256
Coefficient reduction +512
GCD +1024
Obj. integrality +2048

Possible Values:

Any value.

Default value:

-1

9.2.78 MSK IPAR MIO CUT LEVEL TREE

Corresponding constant:

MSK IPAR MIO CUT LEVEL TREE

Description:

Controls the cut level employed by the mixed-integer optimizer at the tree. See MSK IPAR MIO CUT LEVEL ROOT

for an explanation of the parameter values.

Possible Values:

Any value.

Default value:

-1

9.2.79 MSK IPAR MIO FEASPUMP LEVEL

Corresponding constant:

MSK IPAR MIO FEASPUMP LEVEL

Description:

Feasibility pump is a heuristic designed to compute an initial feasible solution. A value of 0
implies that the feasibility pump heuristic is not used. A value of -1 implies that the mixed-
integer optimizer decides how the feasibility pump heuristic is used. A larger value than 1
implies that the feasibility pump is employed more aggressively. Normally a value beyond 3 is
not worthwhile.

9.2. MSKIPARAME: INTEGER PARAMETERS 147

Possible Values:

Any number between -inf and 3.

Default value:

-1

9.2.80 MSK IPAR MIO HEURISTIC LEVEL

Corresponding constant:

MSK IPAR MIO HEURISTIC LEVEL

Description:

Controls the heuristic employed by the mixed-integer optimizer to locate an initial good integer
feasible solution. A value of zero means the heuristic is not used at all. A larger value than
0 means that a gradually more sophisticated heuristic is used which is computationally more
expensive. A negative value implies that the optimizer chooses the heuristic. Normally a value
around 3 to 5 should be optimal.

Possible Values:

Any value.

Default value:

-1

9.2.81 MSK IPAR MIO HOTSTART

Corresponding constant:

MSK IPAR MIO HOTSTART

Description:

Controls whether the integer optimizer is hot-started.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

148 CHAPTER 9. PARAMETERS

9.2.82 MSK IPAR MIO KEEP BASIS

Corresponding constant:

MSK IPAR MIO KEEP BASIS

Description:

Controls whether the integer presolve keeps bases in memory. This speeds on the solution process
at cost of bigger memory consumption.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.83 MSK IPAR MIO LOCAL BRANCH NUMBER

Corresponding constant:

MSK IPAR MIO LOCAL BRANCH NUMBER

Description:

Controls the size of the local search space when doing local branching.

Possible Values:

Any number between -inf and +inf.

Default value:

-1

9.2.84 MSK IPAR MIO MAX NUM BRANCHES

Corresponding constant:

MSK IPAR MIO MAX NUM BRANCHES

Description:

Maximum number of branches allowed during the branch and bound search. A negative value
means infinite.

Possible Values:

Any number between -inf and +inf.

Default value:

-1

9.2. MSKIPARAME: INTEGER PARAMETERS 149

See also:

• MSK DPAR MIO DISABLE TERM TIME Certain termination criteria is disabled within the mixed-
integer optimizer for period time specified by the parameter.

9.2.85 MSK IPAR MIO MAX NUM RELAXS

Corresponding constant:

MSK IPAR MIO MAX NUM RELAXS

Description:

Maximum number of relaxations allowed during the branch and bound search. A negative value
means infinite.

Possible Values:

Any number between -inf and +inf.

Default value:

-1

See also:

• MSK DPAR MIO DISABLE TERM TIME Certain termination criteria is disabled within the mixed-
integer optimizer for period time specified by the parameter.

9.2.86 MSK IPAR MIO MAX NUM SOLUTIONS

Corresponding constant:

MSK IPAR MIO MAX NUM SOLUTIONS

Description:

The mixed-integer optimizer can be terminated after a certain number of different feasible so-
lutions has been located. If this parameter has the value n and n is strictly positive, then the
mixed-integer optimizer will be terminated when n feasible solutions have been located.

Possible Values:

Any number between -inf and +inf.

Default value:

-1

See also:

• MSK DPAR MIO DISABLE TERM TIME Certain termination criteria is disabled within the mixed-
integer optimizer for period time specified by the parameter.

150 CHAPTER 9. PARAMETERS

9.2.87 MSK IPAR MIO MODE

Corresponding constant:

MSK IPAR MIO MODE

Description:

Controls whether the optimizer includes the integer restrictions when solving a (mixed) integer
optimization problem.

Possible values:

• MSK MIO MODE IGNORED The integer constraints are ignored and the problem is solved as a
continuous problem.

• MSK MIO MODE LAZY Integer restrictions should be satisfied if an optimizer is available for
the problem.

• MSK MIO MODE SATISFIED Integer restrictions should be satisfied.

Default value:

MSK MIO MODE SATISFIED

9.2.88 MSK IPAR MIO MT USER CB

Corresponding constant:

MSK IPAR MIO MT USER CB

Description:

It true user callbacks are called from each thread used by this optimizer. If false the user callback
is only called from a single thread.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.89 MSK IPAR MIO NODE OPTIMIZER

Corresponding constant:

MSK IPAR MIO NODE OPTIMIZER

Description:

Controls which optimizer is employed at the non-root nodes in the mixed-integer optimizer.

9.2. MSKIPARAME: INTEGER PARAMETERS 151

Possible values:

• MSK OPTIMIZER CONCURRENT The optimizer for nonconvex nonlinear problems.

• MSK OPTIMIZER CONIC The optimizer for problems having conic constraints.

• MSK OPTIMIZER DUAL SIMPLEX The dual simplex optimizer is used.

• MSK OPTIMIZER FREE The optimizer is chosen automatically.

• MSK OPTIMIZER FREE SIMPLEX One of the simplex optimizers is used.

• MSK OPTIMIZER INTPNT The interior-point optimizer is used.

• MSK OPTIMIZER MIXED INT The mixed-integer optimizer.

• MSK OPTIMIZER MIXED INT CONIC The mixed-integer optimizer for conic and linear prob-
lems.

• MSK OPTIMIZER NETWORK PRIMAL SIMPLEX The network primal simplex optimizer is used.
It is only applicable to pute network problems.

• MSK OPTIMIZER NONCONVEX The optimizer for nonconvex nonlinear problems.

• MSK OPTIMIZER PRIMAL DUAL SIMPLEX The primal dual simplex optimizer is used.

• MSK OPTIMIZER PRIMAL SIMPLEX The primal simplex optimizer is used.

Default value:

MSK OPTIMIZER FREE

9.2.90 MSK IPAR MIO NODE SELECTION

Corresponding constant:

MSK IPAR MIO NODE SELECTION

Description:

Controls the node selection strategy employed by the mixed-integer optimizer.

Possible values:

• MSK MIO NODE SELECTION BEST The optimizer employs a best bound node selection strategy.

• MSK MIO NODE SELECTION FIRST The optimizer employs a depth first node selection strat-
egy.

• MSK MIO NODE SELECTION FREE The optimizer decides the node selection strategy.

• MSK MIO NODE SELECTION HYBRID The optimizer employs a hybrid strategy.

• MSK MIO NODE SELECTION PSEUDO The optimizer employs selects the node based on a pseudo
cost estimate.

• MSK MIO NODE SELECTION WORST The optimizer employs a worst bound node selection strat-
egy.

Default value:

MSK MIO NODE SELECTION FREE

152 CHAPTER 9. PARAMETERS

9.2.91 MSK IPAR MIO OPTIMIZER MODE

Corresponding constant:

MSK IPAR MIO OPTIMIZER MODE

Description:

An exprimental feature.

Possible Values:

Any number between 0 and 1.

Default value:

0

9.2.92 MSK IPAR MIO PRESOLVE AGGREGATE

Corresponding constant:

MSK IPAR MIO PRESOLVE AGGREGATE

Description:

Controls whether the presolve used by the mixed-integer optimizer tries to aggregate the con-
straints.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.93 MSK IPAR MIO PRESOLVE PROBING

Corresponding constant:

MSK IPAR MIO PRESOLVE PROBING

Description:

Controls whether the mixed-integer presolve performs probing. Probing can be very time con-
suming.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2. MSKIPARAME: INTEGER PARAMETERS 153

9.2.94 MSK IPAR MIO PRESOLVE USE

Corresponding constant:

MSK IPAR MIO PRESOLVE USE

Description:

Controls whether presolve is performed by the mixed-integer optimizer.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.95 MSK IPAR MIO ROOT OPTIMIZER

Corresponding constant:

MSK IPAR MIO ROOT OPTIMIZER

Description:

Controls which optimizer is employed at the root node in the mixed-integer optimizer.

Possible values:

• MSK OPTIMIZER CONCURRENT The optimizer for nonconvex nonlinear problems.

• MSK OPTIMIZER CONIC The optimizer for problems having conic constraints.

• MSK OPTIMIZER DUAL SIMPLEX The dual simplex optimizer is used.

• MSK OPTIMIZER FREE The optimizer is chosen automatically.

• MSK OPTIMIZER FREE SIMPLEX One of the simplex optimizers is used.

• MSK OPTIMIZER INTPNT The interior-point optimizer is used.

• MSK OPTIMIZER MIXED INT The mixed-integer optimizer.

• MSK OPTIMIZER MIXED INT CONIC The mixed-integer optimizer for conic and linear prob-
lems.

• MSK OPTIMIZER NETWORK PRIMAL SIMPLEX The network primal simplex optimizer is used.
It is only applicable to pute network problems.

• MSK OPTIMIZER NONCONVEX The optimizer for nonconvex nonlinear problems.

• MSK OPTIMIZER PRIMAL DUAL SIMPLEX The primal dual simplex optimizer is used.

• MSK OPTIMIZER PRIMAL SIMPLEX The primal simplex optimizer is used.

Default value:

MSK OPTIMIZER FREE

154 CHAPTER 9. PARAMETERS

9.2.96 MSK IPAR MIO STRONG BRANCH

Corresponding constant:

MSK IPAR MIO STRONG BRANCH

Description:

The value specifies the depth from the root in which strong branching is used. A negative value
means that the optimizer chooses a default value automatically.

Possible Values:

Any number between -inf and +inf.

Default value:

-1

9.2.97 MSK IPAR MIO USE MULTITHREADED OPTIMIZER

Corresponding constant:

MSK IPAR MIO USE MULTITHREADED OPTIMIZER

Description:

Controls wheter the new multithreaded optimizer should be used for Mixed integer problems.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.98 MSK IPAR MT SPINCOUNT

Corresponding constant:

MSK IPAR MT SPINCOUNT

Description:

Set the number of iterations to spin before sleeping.

Possible Values:

Any integer greater or equal to 0.

Default value:

0

9.2. MSKIPARAME: INTEGER PARAMETERS 155

9.2.99 MSK IPAR NONCONVEX MAX ITERATIONS

Corresponding constant:

MSK IPAR NONCONVEX MAX ITERATIONS

Description:

Maximum number of iterations that can be used by the nonconvex optimizer.

Possible Values:

Any number between 0 and +inf.

Default value:

100000

9.2.100 MSK IPAR NUM THREADS

Corresponding constant:

MSK IPAR NUM THREADS

Description:

Controls the number of threads employed by the optimizer. If set to 0 the number of threads
used will be equal to the number of cores detected on the machine.

Possible Values:

Any integer greater or equal to 0.

Default value:

0

9.2.101 MSK IPAR OPF MAX TERMS PER LINE

Corresponding constant:

MSK IPAR OPF MAX TERMS PER LINE

Description:

The maximum number of terms (linear and quadratic) per line when an OPF file is written.

Possible Values:

Any number between 0 and +inf.

Default value:

5

156 CHAPTER 9. PARAMETERS

9.2.102 MSK IPAR OPF WRITE HEADER

Corresponding constant:

MSK IPAR OPF WRITE HEADER

Description:

Write a text header with date and MOSEK version in an OPF file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.103 MSK IPAR OPF WRITE HINTS

Corresponding constant:

MSK IPAR OPF WRITE HINTS

Description:

Write a hint section with problem dimensions in the beginning of an OPF file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.104 MSK IPAR OPF WRITE PARAMETERS

Corresponding constant:

MSK IPAR OPF WRITE PARAMETERS

Description:

Write a parameter section in an OPF file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2. MSKIPARAME: INTEGER PARAMETERS 157

9.2.105 MSK IPAR OPF WRITE PROBLEM

Corresponding constant:

MSK IPAR OPF WRITE PROBLEM

Description:

Write objective, constraints, bounds etc. to an OPF file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.106 MSK IPAR OPF WRITE SOL BAS

Corresponding constant:

MSK IPAR OPF WRITE SOL BAS

Description:

If MSK IPAR OPF WRITE SOLUTIONS is MSK ON and a basic solution is defined, include the basic
solution in OPF files.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.107 MSK IPAR OPF WRITE SOL ITG

Corresponding constant:

MSK IPAR OPF WRITE SOL ITG

Description:

If MSK IPAR OPF WRITE SOLUTIONS is MSK ON and an integer solution is defined, write the integer
solution in OPF files.

Possible values:

• MSK OFF Switch the option off.

158 CHAPTER 9. PARAMETERS

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.108 MSK IPAR OPF WRITE SOL ITR

Corresponding constant:

MSK IPAR OPF WRITE SOL ITR

Description:

If MSK IPAR OPF WRITE SOLUTIONS is MSK ON and an interior solution is defined, write the interior
solution in OPF files.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.109 MSK IPAR OPF WRITE SOLUTIONS

Corresponding constant:

MSK IPAR OPF WRITE SOLUTIONS

Description:

Enable inclusion of solutions in the OPF files.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2. MSKIPARAME: INTEGER PARAMETERS 159

9.2.110 MSK IPAR OPTIMIZER

Corresponding constant:

MSK IPAR OPTIMIZER

Description:

The paramter controls which optimizer is used to optimize the task.

Possible values:

• MSK OPTIMIZER CONCURRENT The optimizer for nonconvex nonlinear problems.

• MSK OPTIMIZER CONIC The optimizer for problems having conic constraints.

• MSK OPTIMIZER DUAL SIMPLEX The dual simplex optimizer is used.

• MSK OPTIMIZER FREE The optimizer is chosen automatically.

• MSK OPTIMIZER FREE SIMPLEX One of the simplex optimizers is used.

• MSK OPTIMIZER INTPNT The interior-point optimizer is used.

• MSK OPTIMIZER MIXED INT The mixed-integer optimizer.

• MSK OPTIMIZER MIXED INT CONIC The mixed-integer optimizer for conic and linear prob-
lems.

• MSK OPTIMIZER NETWORK PRIMAL SIMPLEX The network primal simplex optimizer is used.
It is only applicable to pute network problems.

• MSK OPTIMIZER NONCONVEX The optimizer for nonconvex nonlinear problems.

• MSK OPTIMIZER PRIMAL DUAL SIMPLEX The primal dual simplex optimizer is used.

• MSK OPTIMIZER PRIMAL SIMPLEX The primal simplex optimizer is used.

Default value:

MSK OPTIMIZER FREE

9.2.111 MSK IPAR PARAM READ CASE NAME

Corresponding constant:

MSK IPAR PARAM READ CASE NAME

Description:

If turned on, then names in the parameter file are case sensitive.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

160 CHAPTER 9. PARAMETERS

9.2.112 MSK IPAR PARAM READ IGN ERROR

Corresponding constant:

MSK IPAR PARAM READ IGN ERROR

Description:

If turned on, then errors in paramter settings is ignored.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.113 MSK IPAR PRESOLVE ELIM FILL

Corresponding constant:

MSK IPAR PRESOLVE ELIM FILL

Description:

Controls the maximum amount of fill-in that can be created during the elimination phase of the
presolve. This parameter times (numcon+numvar) denotes the amount of fill-in.

Possible Values:

Any number between 0 and +inf.

Default value:

1

9.2.114 MSK IPAR PRESOLVE ELIMINATOR MAX NUM TRIES

Corresponding constant:

MSK IPAR PRESOLVE ELIMINATOR MAX NUM TRIES

Description:

Control the maximum number of times the eliminator is tried.

Possible Values:

A negative value implies MOSEK decides maximum number of times.

Default value:

-1

9.2. MSKIPARAME: INTEGER PARAMETERS 161

9.2.115 MSK IPAR PRESOLVE ELIMINATOR USE

Corresponding constant:

MSK IPAR PRESOLVE ELIMINATOR USE

Description:

Controls whether free or implied free variables are eliminated from the problem.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.116 MSK IPAR PRESOLVE LEVEL

Corresponding constant:

MSK IPAR PRESOLVE LEVEL

Description:

Currently not used.

Possible Values:

Any number between -inf and +inf.

Default value:

-1

9.2.117 MSK IPAR PRESOLVE LINDEP ABS WORK TRH

Corresponding constant:

MSK IPAR PRESOLVE LINDEP ABS WORK TRH

Description:

The linear dependency check is potentially computationally expensive.

Possible Values:

Any number between 0 and +inf.

Default value:

100

162 CHAPTER 9. PARAMETERS

9.2.118 MSK IPAR PRESOLVE LINDEP REL WORK TRH

Corresponding constant:

MSK IPAR PRESOLVE LINDEP REL WORK TRH

Description:

The linear dependency check is potentially computationally expensive.

Possible Values:

Any number between 0 and +inf.

Default value:

100

9.2.119 MSK IPAR PRESOLVE LINDEP USE

Corresponding constant:

MSK IPAR PRESOLVE LINDEP USE

Description:

Controls whether the linear constraints are checked for linear dependencies.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.120 MSK IPAR PRESOLVE MAX NUM REDUCTIONS

Corresponding constant:

MSK IPAR PRESOLVE MAX NUM REDUCTIONS

Description:

Controls the maximum number reductions performed by the presolve. The value of the parameter
is normally only changed in connection with debugging. A negative value implies that an infinite
number of reductions are allowed.

Possible Values:

Any number between -inf and +inf.

Default value:

-1

9.2. MSKIPARAME: INTEGER PARAMETERS 163

9.2.121 MSK IPAR PRESOLVE USE

Corresponding constant:

MSK IPAR PRESOLVE USE

Description:

Controls whether the presolve is applied to a problem before it is optimized.

Possible values:

• MSK PRESOLVE MODE FREE It is decided automatically whether to presolve before the problem
is optimized.

• MSK PRESOLVE MODE OFF The problem is not presolved before it is optimized.

• MSK PRESOLVE MODE ON The problem is presolved before it is optimized.

Default value:

MSK PRESOLVE MODE FREE

9.2.122 MSK IPAR PRIMAL REPAIR OPTIMIZER

Corresponding constant:

MSK IPAR PRIMAL REPAIR OPTIMIZER

Description:

Controls which optimizer that is used to find the optimal repair.

Possible values:

• MSK OPTIMIZER CONCURRENT The optimizer for nonconvex nonlinear problems.

• MSK OPTIMIZER CONIC The optimizer for problems having conic constraints.

• MSK OPTIMIZER DUAL SIMPLEX The dual simplex optimizer is used.

• MSK OPTIMIZER FREE The optimizer is chosen automatically.

• MSK OPTIMIZER FREE SIMPLEX One of the simplex optimizers is used.

• MSK OPTIMIZER INTPNT The interior-point optimizer is used.

• MSK OPTIMIZER MIXED INT The mixed-integer optimizer.

• MSK OPTIMIZER MIXED INT CONIC The mixed-integer optimizer for conic and linear prob-
lems.

• MSK OPTIMIZER NETWORK PRIMAL SIMPLEX The network primal simplex optimizer is used.
It is only applicable to pute network problems.

• MSK OPTIMIZER NONCONVEX The optimizer for nonconvex nonlinear problems.

• MSK OPTIMIZER PRIMAL DUAL SIMPLEX The primal dual simplex optimizer is used.

• MSK OPTIMIZER PRIMAL SIMPLEX The primal simplex optimizer is used.

Default value:

MSK OPTIMIZER FREE

164 CHAPTER 9. PARAMETERS

9.2.123 MSK IPAR QO SEPARABLE REFORMULATION

Corresponding constant:

MSK IPAR QO SEPARABLE REFORMULATION

Description:

Determine if Quadratic programing problems should be reformulated to separable form.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.124 MSK IPAR READ ANZ

Corresponding constant:

MSK IPAR READ ANZ

Description:

Expected maximum number of A non-zeros to be read. The option is used only by fast MPS
and LP file readers.

Possible Values:

Any number between 0 and +inf.

Default value:

100000

9.2.125 MSK IPAR READ CON

Corresponding constant:

MSK IPAR READ CON

Description:

Expected maximum number of constraints to be read. The option is only used by fast MPS and
LP file readers.

Possible Values:

Any number between 0 and +inf.

Default value:

10000

9.2. MSKIPARAME: INTEGER PARAMETERS 165

9.2.126 MSK IPAR READ CONE

Corresponding constant:

MSK IPAR READ CONE

Description:

Expected maximum number of conic constraints to be read. The option is used only by fast
MPS and LP file readers.

Possible Values:

Any number between 0 and +inf.

Default value:

2500

9.2.127 MSK IPAR READ DATA COMPRESSED

Corresponding constant:

MSK IPAR READ DATA COMPRESSED

Description:

If this option is turned on,it is assumed that the data file is compressed.

Possible values:

• MSK COMPRESS FREE The type of compression used is chosen automatically.

• MSK COMPRESS GZIP The type of compression used is gzip compatible.

• MSK COMPRESS NONE No compression is used.

Default value:

MSK COMPRESS FREE

9.2.128 MSK IPAR READ DATA FORMAT

Corresponding constant:

MSK IPAR READ DATA FORMAT

Description:

Format of the data file to be read.

Possible values:

• MSK DATA FORMAT EXTENSION The file extension is used to determine the data file format.

• MSK DATA FORMAT FREE MPS The data data a free MPS formatted file.

166 CHAPTER 9. PARAMETERS

• MSK DATA FORMAT LP The data file is LP formatted.

• MSK DATA FORMAT MPS The data file is MPS formatted.

• MSK DATA FORMAT OP The data file is an optimization problem formatted file.

• MSK DATA FORMAT TASK Generic task dump file.

• MSK DATA FORMAT XML The data file is an XML formatted file.

Default value:

MSK DATA FORMAT EXTENSION

9.2.129 MSK IPAR READ KEEP FREE CON

Corresponding constant:

MSK IPAR READ KEEP FREE CON

Description:

Controls whether the free constraints are included in the problem.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.130 MSK IPAR READ LP DROP NEW VARS IN BOU

Corresponding constant:

MSK IPAR READ LP DROP NEW VARS IN BOU

Description:

If this option is turned on, MOSEK will drop variables that are defined for the first time in the
bounds section.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2. MSKIPARAME: INTEGER PARAMETERS 167

9.2.131 MSK IPAR READ LP QUOTED NAMES

Corresponding constant:

MSK IPAR READ LP QUOTED NAMES

Description:

If a name is in quotes when reading an LP file, the quotes will be removed.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.132 MSK IPAR READ MPS FORMAT

Corresponding constant:

MSK IPAR READ MPS FORMAT

Description:

Controls how strictly the MPS file reader interprets the MPS format.

Possible values:

• MSK MPS FORMAT FREE It is assumed that the input file satisfies the free MPS format. This
implies that spaces are not allowed in names. Otherwise the format is free.

• MSK MPS FORMAT RELAXED It is assumed that the input file satisfies a slightly relaxed version
of the MPS format.

• MSK MPS FORMAT STRICT It is assumed that the input file satisfies the MPS format strictly.

Default value:

MSK MPS FORMAT RELAXED

9.2.133 MSK IPAR READ MPS KEEP INT

Corresponding constant:

MSK IPAR READ MPS KEEP INT

Description:

Controls whether MOSEK should keep the integer restrictions on the variables while reading the
MPS file.

168 CHAPTER 9. PARAMETERS

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.134 MSK IPAR READ MPS OBJ SENSE

Corresponding constant:

MSK IPAR READ MPS OBJ SENSE

Description:

If turned on, the MPS reader uses the objective sense section. Otherwise the MPS reader ignores
it.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.135 MSK IPAR READ MPS RELAX

Corresponding constant:

MSK IPAR READ MPS RELAX

Description:

If this option is turned on, then mixed integer constraints are ignored when a problem is read.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2. MSKIPARAME: INTEGER PARAMETERS 169

9.2.136 MSK IPAR READ MPS WIDTH

Corresponding constant:

MSK IPAR READ MPS WIDTH

Description:

Controls the maximal number of characters allowed in one line of the MPS file.

Possible Values:

Any positive number greater than 80.

Default value:

1024

9.2.137 MSK IPAR READ QNZ

Corresponding constant:

MSK IPAR READ QNZ

Description:

Expected maximum number of Q non-zeros to be read. The option is used only by MPS and LP
file readers.

Possible Values:

Any number between 0 and +inf.

Default value:

20000

9.2.138 MSK IPAR READ TASK IGNORE PARAM

Corresponding constant:

MSK IPAR READ TASK IGNORE PARAM

Description:

Controls whether MOSEK should ignore the parameter setting defined in the task file and use
the default parameter setting instead.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

170 CHAPTER 9. PARAMETERS

9.2.139 MSK IPAR READ VAR

Corresponding constant:

MSK IPAR READ VAR

Description:

Expected maximum number of variable to be read. The option is used only by MPS and LP file
readers.

Possible Values:

Any number between 0 and +inf.

Default value:

10000

9.2.140 MSK IPAR SENSITIVITY ALL

Corresponding constant:

MSK IPAR SENSITIVITY ALL

Description:

Not applicable.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.141 MSK IPAR SENSITIVITY OPTIMIZER

Corresponding constant:

MSK IPAR SENSITIVITY OPTIMIZER

Description:

Controls which optimizer is used for optimal partition sensitivity analysis.

Possible values:

• MSK OPTIMIZER CONCURRENT The optimizer for nonconvex nonlinear problems.

• MSK OPTIMIZER CONIC The optimizer for problems having conic constraints.

• MSK OPTIMIZER DUAL SIMPLEX The dual simplex optimizer is used.

9.2. MSKIPARAME: INTEGER PARAMETERS 171

• MSK OPTIMIZER FREE The optimizer is chosen automatically.

• MSK OPTIMIZER FREE SIMPLEX One of the simplex optimizers is used.

• MSK OPTIMIZER INTPNT The interior-point optimizer is used.

• MSK OPTIMIZER MIXED INT The mixed-integer optimizer.

• MSK OPTIMIZER MIXED INT CONIC The mixed-integer optimizer for conic and linear prob-
lems.

• MSK OPTIMIZER NETWORK PRIMAL SIMPLEX The network primal simplex optimizer is used.
It is only applicable to pute network problems.

• MSK OPTIMIZER NONCONVEX The optimizer for nonconvex nonlinear problems.

• MSK OPTIMIZER PRIMAL DUAL SIMPLEX The primal dual simplex optimizer is used.

• MSK OPTIMIZER PRIMAL SIMPLEX The primal simplex optimizer is used.

Default value:

MSK OPTIMIZER FREE SIMPLEX

9.2.142 MSK IPAR SENSITIVITY TYPE

Corresponding constant:

MSK IPAR SENSITIVITY TYPE

Description:

Controls which type of sensitivity analysis is to be performed.

Possible values:

• MSK SENSITIVITY TYPE BASIS Basis sensitivity analysis is performed.

• MSK SENSITIVITY TYPE OPTIMAL PARTITION Optimal partition sensitivity analysis is per-
formed.

Default value:

MSK SENSITIVITY TYPE BASIS

9.2.143 MSK IPAR SIM BASIS FACTOR USE

Corresponding constant:

MSK IPAR SIM BASIS FACTOR USE

Description:

Controls whether a (LU) factorization of the basis is used in a hot-start. Forcing a refactor-
ization sometimes improves the stability of the simplex optimizers, but in most cases there is a
performance penanlty.

172 CHAPTER 9. PARAMETERS

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.144 MSK IPAR SIM DEGEN

Corresponding constant:

MSK IPAR SIM DEGEN

Description:

Controls how aggressively degeneration is handled.

Possible values:

• MSK SIM DEGEN AGGRESSIVE The simplex optimizer should use an aggressive degeneration
strategy.

• MSK SIM DEGEN FREE The simplex optimizer chooses the degeneration strategy.

• MSK SIM DEGEN MINIMUM The simplex optimizer should use a minimum degeneration strat-
egy.

• MSK SIM DEGEN MODERATE The simplex optimizer should use a moderate degeneration strat-
egy.

• MSK SIM DEGEN NONE The simplex optimizer should use no degeneration strategy.

Default value:

MSK SIM DEGEN FREE

9.2.145 MSK IPAR SIM DUAL CRASH

Corresponding constant:

MSK IPAR SIM DUAL CRASH

Description:

Controls whether crashing is performed in the dual simplex optimizer.

In general if a basis consists of more than (100-this parameter value)% fixed variables, then a
crash will be performed.

Possible Values:

Any number between 0 and +inf.

Default value:

90

9.2. MSKIPARAME: INTEGER PARAMETERS 173

9.2.146 MSK IPAR SIM DUAL PHASEONE METHOD

Corresponding constant:

MSK IPAR SIM DUAL PHASEONE METHOD

Description:

An exprimental feature.

Possible Values:

Any number between 0 and 10.

Default value:

0

9.2.147 MSK IPAR SIM DUAL RESTRICT SELECTION

Corresponding constant:

MSK IPAR SIM DUAL RESTRICT SELECTION

Description:

The dual simplex optimizer can use a so-called restricted selection/pricing strategy to chooses
the outgoing variable. Hence, if restricted selection is applied, then the dual simplex optimizer
first choose a subset of all the potential outgoing variables. Next, for some time it will choose
the outgoing variable only among the subset. From time to time the subset is redefined.

A larger value of this parameter implies that the optimizer will be more aggressive in its restriction
strategy, i.e. a value of 0 implies that the restriction strategy is not applied at all.

Possible Values:

Any number between 0 and 100.

Default value:

50

9.2.148 MSK IPAR SIM DUAL SELECTION

Corresponding constant:

MSK IPAR SIM DUAL SELECTION

Description:

Controls the choice of the incoming variable, known as the selection strategy, in the dual simplex
optimizer.

Possible values:

• MSK SIM SELECTION ASE The optimizer uses approximate steepest-edge pricing.

174 CHAPTER 9. PARAMETERS

• MSK SIM SELECTION DEVEX The optimizer uses devex steepest-edge pricing (or if it is not
available an approximate steep-edge selection).

• MSK SIM SELECTION FREE The optimizer chooses the pricing strategy.

• MSK SIM SELECTION FULL The optimizer uses full pricing.

• MSK SIM SELECTION PARTIAL The optimizer uses a partial selection approach. The approach
is usually beneficial if the number of variables is much larger than the number of constraints.

• MSK SIM SELECTION SE The optimizer uses steepest-edge selection (or if it is not available
an approximate steep-edge selection).

Default value:

MSK SIM SELECTION FREE

9.2.149 MSK IPAR SIM EXPLOIT DUPVEC

Corresponding constant:

MSK IPAR SIM EXPLOIT DUPVEC

Description:

Controls if the simplex optimizers are allowed to exploit duplicated columns.

Possible values:

• MSK SIM EXPLOIT DUPVEC FREE The simplex optimizer can choose freely.

• MSK SIM EXPLOIT DUPVEC OFF Disallow the simplex optimizer to exploit duplicated columns.

• MSK SIM EXPLOIT DUPVEC ON Allow the simplex optimizer to exploit duplicated columns.

Default value:

MSK SIM EXPLOIT DUPVEC OFF

9.2.150 MSK IPAR SIM HOTSTART

Corresponding constant:

MSK IPAR SIM HOTSTART

Description:

Controls the type of hot-start that the simplex optimizer perform.

Possible values:

• MSK SIM HOTSTART FREE The simplex optimize chooses the hot-start type.

• MSK SIM HOTSTART NONE The simplex optimizer performs a coldstart.

• MSK SIM HOTSTART STATUS KEYS Only the status keys of the constraints and variables are
used to choose the type of hot-start.

Default value:

MSK SIM HOTSTART FREE

9.2. MSKIPARAME: INTEGER PARAMETERS 175

9.2.151 MSK IPAR SIM HOTSTART LU

Corresponding constant:

MSK IPAR SIM HOTSTART LU

Description:

Determines if the simplex optimizer should exploit the initial factorization.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.152 MSK IPAR SIM INTEGER

Corresponding constant:

MSK IPAR SIM INTEGER

Description:

An exprimental feature.

Possible Values:

Any number between 0 and 10.

Default value:

0

9.2.153 MSK IPAR SIM MAX ITERATIONS

Corresponding constant:

MSK IPAR SIM MAX ITERATIONS

Description:

Maximum number of iterations that can be used by a simplex optimizer.

Possible Values:

Any number between 0 and +inf.

Default value:

10000000

176 CHAPTER 9. PARAMETERS

9.2.154 MSK IPAR SIM MAX NUM SETBACKS

Corresponding constant:

MSK IPAR SIM MAX NUM SETBACKS

Description:

Controls how many set-backs are allowed within a simplex optimizer. A set-back is an event
where the optimizer moves in the wrong direction. This is impossible in theory but may happen
due to numerical problems.

Possible Values:

Any number between 0 and +inf.

Default value:

250

9.2.155 MSK IPAR SIM NON SINGULAR

Corresponding constant:

MSK IPAR SIM NON SINGULAR

Description:

Controls if the simplex optimizer ensures a non-singular basis, if possible.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.156 MSK IPAR SIM PRIMAL CRASH

Corresponding constant:

MSK IPAR SIM PRIMAL CRASH

Description:

Controls whether crashing is performed in the primal simplex optimizer.

In general, if a basis consists of more than (100-this parameter value)% fixed variables, then a
crash will be performed.

Possible Values:

Any nonnegative integer value.

9.2. MSKIPARAME: INTEGER PARAMETERS 177

Default value:

90

9.2.157 MSK IPAR SIM PRIMAL PHASEONE METHOD

Corresponding constant:

MSK IPAR SIM PRIMAL PHASEONE METHOD

Description:

An exprimental feature.

Possible Values:

Any number between 0 and 10.

Default value:

0

9.2.158 MSK IPAR SIM PRIMAL RESTRICT SELECTION

Corresponding constant:

MSK IPAR SIM PRIMAL RESTRICT SELECTION

Description:

The primal simplex optimizer can use a so-called restricted selection/pricing strategy to chooses
the outgoing variable. Hence, if restricted selection is applied, then the primal simplex optimizer
first choose a subset of all the potential incoming variables. Next, for some time it will choose
the incoming variable only among the subset. From time to time the subset is redefined.

A larger value of this parameter implies that the optimizer will be more aggressive in its restriction
strategy, i.e. a value of 0 implies that the restriction strategy is not applied at all.

Possible Values:

Any number between 0 and 100.

Default value:

50

9.2.159 MSK IPAR SIM PRIMAL SELECTION

Corresponding constant:

MSK IPAR SIM PRIMAL SELECTION

Description:

Controls the choice of the incoming variable, known as the selection strategy, in the primal
simplex optimizer.

178 CHAPTER 9. PARAMETERS

Possible values:

• MSK SIM SELECTION ASE The optimizer uses approximate steepest-edge pricing.

• MSK SIM SELECTION DEVEX The optimizer uses devex steepest-edge pricing (or if it is not
available an approximate steep-edge selection).

• MSK SIM SELECTION FREE The optimizer chooses the pricing strategy.

• MSK SIM SELECTION FULL The optimizer uses full pricing.

• MSK SIM SELECTION PARTIAL The optimizer uses a partial selection approach. The approach
is usually beneficial if the number of variables is much larger than the number of constraints.

• MSK SIM SELECTION SE The optimizer uses steepest-edge selection (or if it is not available
an approximate steep-edge selection).

Default value:

MSK SIM SELECTION FREE

9.2.160 MSK IPAR SIM REFACTOR FREQ

Corresponding constant:

MSK IPAR SIM REFACTOR FREQ

Description:

Controls how frequent the basis is refactorized. The value 0 means that the optimizer determines
the best point of refactorization.

It is strongly recommended NOT to change this parameter.

Possible Values:

Any number between 0 and +inf.

Default value:

0

9.2.161 MSK IPAR SIM REFORMULATION

Corresponding constant:

MSK IPAR SIM REFORMULATION

Description:

Controls if the simplex optimizers are allowed to reformulate the problem.

Possible values:

• MSK SIM REFORMULATION AGGRESSIVE The simplex optimizer should use an aggressive re-
formulation strategy.

9.2. MSKIPARAME: INTEGER PARAMETERS 179

• MSK SIM REFORMULATION FREE The simplex optimizer can choose freely.

• MSK SIM REFORMULATION OFF Disallow the simplex optimizer to reformulate the problem.

• MSK SIM REFORMULATION ON Allow the simplex optimizer to reformulate the problem.

Default value:

MSK SIM REFORMULATION OFF

9.2.162 MSK IPAR SIM SAVE LU

Corresponding constant:

MSK IPAR SIM SAVE LU

Description:

Controls if the LU factorization stored should be replaced with the LU factorization corresponding
to the initial basis.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.163 MSK IPAR SIM SCALING

Corresponding constant:

MSK IPAR SIM SCALING

Description:

Controls how much effort is used in scaling the problem before a simplex optimizer is used.

Possible values:

• MSK SCALING AGGRESSIVE A very aggressive scaling is performed.

• MSK SCALING FREE The optimizer chooses the scaling heuristic.

• MSK SCALING MODERATE A conservative scaling is performed.

• MSK SCALING NONE No scaling is performed.

Default value:

MSK SCALING FREE

180 CHAPTER 9. PARAMETERS

9.2.164 MSK IPAR SIM SCALING METHOD

Corresponding constant:

MSK IPAR SIM SCALING METHOD

Description:

Controls how the problem is scaled before a simplex optimizer is used.

Possible values:

• MSK SCALING METHOD FREE The optimizer chooses the scaling heuristic.

• MSK SCALING METHOD POW2 Scales only with power of 2 leaving the mantissa untouched.

Default value:

MSK SCALING METHOD POW2

9.2.165 MSK IPAR SIM SOLVE FORM

Corresponding constant:

MSK IPAR SIM SOLVE FORM

Description:

Controls whether the primal or the dual problem is solved by the primal-/dual- simplex optimizer.

Possible values:

• MSK SOLVE DUAL The optimizer should solve the dual problem.

• MSK SOLVE FREE The optimizer is free to solve either the primal or the dual problem.

• MSK SOLVE PRIMAL The optimizer should solve the primal problem.

Default value:

MSK SOLVE FREE

9.2.166 MSK IPAR SIM STABILITY PRIORITY

Corresponding constant:

MSK IPAR SIM STABILITY PRIORITY

Description:

Controls how high priority the numerical stability should be given.

Possible Values:

Any number between 0 and 100.

Default value:

50

9.2. MSKIPARAME: INTEGER PARAMETERS 181

9.2.167 MSK IPAR SIM SWITCH OPTIMIZER

Corresponding constant:

MSK IPAR SIM SWITCH OPTIMIZER

Description:

The simplex optimizer sometimes chooses to solve the dual problem instead of the primal problem.
This implies that if you have chosen to use the dual simplex optimizer and the problem is dualized,
then it actually makes sense to use the primal simplex optimizer instead. If this parameter is on
and the problem is dualized and furthermore the simplex optimizer is chosen to be the primal
(dual) one, then it is switched to the dual (primal).

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.168 MSK IPAR SOL FILTER KEEP BASIC

Corresponding constant:

MSK IPAR SOL FILTER KEEP BASIC

Description:

If turned on, then basic and super basic constraints and variables are written to the solution file
independent of the filter setting.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.169 MSK IPAR SOL FILTER KEEP RANGED

Corresponding constant:

MSK IPAR SOL FILTER KEEP RANGED

Description:

If turned on, then ranged constraints and variables are written to the solution file independent
of the filter setting.

182 CHAPTER 9. PARAMETERS

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.170 MSK IPAR SOL READ NAME WIDTH

Corresponding constant:

MSK IPAR SOL READ NAME WIDTH

Description:

When a solution is read by MOSEK and some constraint, variable or cone names contain blanks,
then a maximum name width much be specified. A negative value implies that no name contain
blanks.

Possible Values:

Any number between -inf and +inf.

Default value:

-1

9.2.171 MSK IPAR SOL READ WIDTH

Corresponding constant:

MSK IPAR SOL READ WIDTH

Description:

Controls the maximal acceptable width of line in the solutions when read by MOSEK.

Possible Values:

Any positive number greater than 80.

Default value:

1024

9.2. MSKIPARAME: INTEGER PARAMETERS 183

9.2.172 MSK IPAR SOLUTION CALLBACK

Corresponding constant:

MSK IPAR SOLUTION CALLBACK

Description:

Indicates whether solution call-backs will be performed during the optimization.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.173 MSK IPAR TIMING LEVEL

Corresponding constant:

MSK IPAR TIMING LEVEL

Description:

Controls the a amount of timing performed inside MOSEK.

Possible Values:

Any integer greater or equal to 0.

Default value:

1

9.2.174 MSK IPAR WARNING LEVEL

Corresponding constant:

MSK IPAR WARNING LEVEL

Description:

Warning level.

Possible Values:

Any number between 0 and +inf.

Default value:

1

184 CHAPTER 9. PARAMETERS

9.2.175 MSK IPAR WRITE BAS CONSTRAINTS

Corresponding constant:

MSK IPAR WRITE BAS CONSTRAINTS

Description:

Controls whether the constraint section is written to the basic solution file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.176 MSK IPAR WRITE BAS HEAD

Corresponding constant:

MSK IPAR WRITE BAS HEAD

Description:

Controls whether the header section is written to the basic solution file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.177 MSK IPAR WRITE BAS VARIABLES

Corresponding constant:

MSK IPAR WRITE BAS VARIABLES

Description:

Controls whether the variables section is written to the basic solution file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2. MSKIPARAME: INTEGER PARAMETERS 185

9.2.178 MSK IPAR WRITE DATA COMPRESSED

Corresponding constant:

MSK IPAR WRITE DATA COMPRESSED

Description:

Controls whether the data file is compressed while it is written. 0 means no compression while
higher values mean more compression.

Possible Values:

Any number between 0 and +inf.

Default value:

0

9.2.179 MSK IPAR WRITE DATA FORMAT

Corresponding constant:

MSK IPAR WRITE DATA FORMAT

Description:

Controls the file format when writing task data to a file.

Possible values:

• MSK DATA FORMAT EXTENSION The file extension is used to determine the data file format.

• MSK DATA FORMAT FREE MPS The data data a free MPS formatted file.

• MSK DATA FORMAT LP The data file is LP formatted.

• MSK DATA FORMAT MPS The data file is MPS formatted.

• MSK DATA FORMAT OP The data file is an optimization problem formatted file.

• MSK DATA FORMAT TASK Generic task dump file.

• MSK DATA FORMAT XML The data file is an XML formatted file.

Default value:

MSK DATA FORMAT EXTENSION

9.2.180 MSK IPAR WRITE DATA PARAM

Corresponding constant:

MSK IPAR WRITE DATA PARAM

Description:

If this option is turned on the parameter settings are written to the data file as parameters.

186 CHAPTER 9. PARAMETERS

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.181 MSK IPAR WRITE FREE CON

Corresponding constant:

MSK IPAR WRITE FREE CON

Description:

Controls whether the free constraints are written to the data file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.182 MSK IPAR WRITE GENERIC NAMES

Corresponding constant:

MSK IPAR WRITE GENERIC NAMES

Description:

Controls whether the generic names or user-defined names are used in the data file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2. MSKIPARAME: INTEGER PARAMETERS 187

9.2.183 MSK IPAR WRITE GENERIC NAMES IO

Corresponding constant:

MSK IPAR WRITE GENERIC NAMES IO

Description:

Index origin used in generic names.

Possible Values:

Any number between 0 and +inf.

Default value:

1

9.2.184 MSK IPAR WRITE IGNORE INCOMPATIBLE CONIC ITEMS

Corresponding constant:

MSK IPAR WRITE IGNORE INCOMPATIBLE CONIC ITEMS

Description:

If the output format is not compatible with conic quadratic problems this parameter controls if
the writer ignores the conic parts or produces an error.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.185 MSK IPAR WRITE IGNORE INCOMPATIBLE ITEMS

Corresponding constant:

MSK IPAR WRITE IGNORE INCOMPATIBLE ITEMS

Description:

Controls if the writer ignores incompatible problem items when writing files.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

188 CHAPTER 9. PARAMETERS

9.2.186 MSK IPAR WRITE IGNORE INCOMPATIBLE NL ITEMS

Corresponding constant:

MSK IPAR WRITE IGNORE INCOMPATIBLE NL ITEMS

Description:

Controls if the writer ignores general non-linear terms or produces an error.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.187 MSK IPAR WRITE IGNORE INCOMPATIBLE PSD ITEMS

Corresponding constant:

MSK IPAR WRITE IGNORE INCOMPATIBLE PSD ITEMS

Description:

If the output format is not compatible with semidefinite problems this parameter controls if the
writer ignores the conic parts or produces an error.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.188 MSK IPAR WRITE INT CONSTRAINTS

Corresponding constant:

MSK IPAR WRITE INT CONSTRAINTS

Description:

Controls whether the constraint section is written to the integer solution file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2. MSKIPARAME: INTEGER PARAMETERS 189

9.2.189 MSK IPAR WRITE INT HEAD

Corresponding constant:

MSK IPAR WRITE INT HEAD

Description:

Controls whether the header section is written to the integer solution file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.190 MSK IPAR WRITE INT VARIABLES

Corresponding constant:

MSK IPAR WRITE INT VARIABLES

Description:

Controls whether the variables section is written to the integer solution file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.191 MSK IPAR WRITE LP LINE WIDTH

Corresponding constant:

MSK IPAR WRITE LP LINE WIDTH

Description:

Maximum width of line in an LP file written by MOSEK.

Possible Values:

Any positive number.

Default value:

80

190 CHAPTER 9. PARAMETERS

9.2.192 MSK IPAR WRITE LP QUOTED NAMES

Corresponding constant:

MSK IPAR WRITE LP QUOTED NAMES

Description:

If this option is turned on, then MOSEK will quote invalid LP names when writing an LP file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.193 MSK IPAR WRITE LP STRICT FORMAT

Corresponding constant:

MSK IPAR WRITE LP STRICT FORMAT

Description:

Controls whether LP output files satisfy the LP format strictly.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2.194 MSK IPAR WRITE LP TERMS PER LINE

Corresponding constant:

MSK IPAR WRITE LP TERMS PER LINE

Description:

Maximum number of terms on a single line in an LP file written by MOSEK. 0 means unlimited.

Possible Values:

Any number between 0 and +inf.

Default value:

10

9.2. MSKIPARAME: INTEGER PARAMETERS 191

9.2.195 MSK IPAR WRITE MPS INT

Corresponding constant:

MSK IPAR WRITE MPS INT

Description:

Controls if marker records are written to the MPS file to indicate whether variables are integer
restricted.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.196 MSK IPAR WRITE PRECISION

Corresponding constant:

MSK IPAR WRITE PRECISION

Description:

Controls the precision with which double numbers are printed in the MPS data file. In general
it is not worthwhile to use a value higher than 15.

Possible Values:

Any number between 0 and +inf.

Default value:

8

9.2.197 MSK IPAR WRITE SOL BARVARIABLES

Corresponding constant:

MSK IPAR WRITE SOL BARVARIABLES

Description:

Controls whether the symmetric matrix variables section is written to the solution file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

192 CHAPTER 9. PARAMETERS

9.2.198 MSK IPAR WRITE SOL CONSTRAINTS

Corresponding constant:

MSK IPAR WRITE SOL CONSTRAINTS

Description:

Controls whether the constraint section is written to the solution file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.199 MSK IPAR WRITE SOL HEAD

Corresponding constant:

MSK IPAR WRITE SOL HEAD

Description:

Controls whether the header section is written to the solution file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.200 MSK IPAR WRITE SOL IGNORE INVALID NAMES

Corresponding constant:

MSK IPAR WRITE SOL IGNORE INVALID NAMES

Description:

Even if the names are invalid MPS names, then they are employed when writing the solution file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

9.2. MSKIPARAME: INTEGER PARAMETERS 193

9.2.201 MSK IPAR WRITE SOL VARIABLES

Corresponding constant:

MSK IPAR WRITE SOL VARIABLES

Description:

Controls whether the variables section is written to the solution file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.202 MSK IPAR WRITE TASK INC SOL

Corresponding constant:

MSK IPAR WRITE TASK INC SOL

Description:

Controls whether the solutions are stored in the task file too.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

9.2.203 MSK IPAR WRITE XML MODE

Corresponding constant:

MSK IPAR WRITE XML MODE

Description:

Controls if linear coefficients should be written by row or column when writing in the XML file
format.

Possible values:

• MSK WRITE XML MODE COL Write in column order.

• MSK WRITE XML MODE ROW Write in row order.

Default value:

MSK WRITE XML MODE ROW

194 CHAPTER 9. PARAMETERS

9.3 MSKsparame: String parameter types

9.3.1 MSK SPAR BAS SOL FILE NAME

Corresponding constant:

MSK SPAR BAS SOL FILE NAME

Description:

Name of the bas solution file.

Possible Values:

Any valid file name.

Default value:

""

9.3.2 MSK SPAR DATA FILE NAME

Corresponding constant:

MSK SPAR DATA FILE NAME

Description:

Data are read and written to this file.

Possible Values:

Any valid file name.

Default value:

""

9.3.3 MSK SPAR DEBUG FILE NAME

Corresponding constant:

MSK SPAR DEBUG FILE NAME

Description:

MOSEK debug file.

Possible Values:

Any valid file name.

Default value:

""

9.3. MSKSPARAME: STRING PARAMETER TYPES 195

9.3.4 MSK SPAR FEASREPAIR NAME PREFIX

Corresponding constant:

MSK SPAR FEASREPAIR NAME PREFIX

Description:

Not applicable.

Possible Values:

Any valid string.

Default value:

"MSK-"

9.3.5 MSK SPAR FEASREPAIR NAME SEPARATOR

Corresponding constant:

MSK SPAR FEASREPAIR NAME SEPARATOR

Description:

Not applicable.

Possible Values:

Any valid string.

Default value:

"-"

9.3.6 MSK SPAR FEASREPAIR NAME WSUMVIOL

Corresponding constant:

MSK SPAR FEASREPAIR NAME WSUMVIOL

Description:

The constraint and variable associated with the total weighted sum of violations are each given
the name of this parameter postfixed with CON and VAR respectively.

Possible Values:

Any valid string.

Default value:

"WSUMVIOL"

196 CHAPTER 9. PARAMETERS

9.3.7 MSK SPAR INT SOL FILE NAME

Corresponding constant:

MSK SPAR INT SOL FILE NAME

Description:

Name of the int solution file.

Possible Values:

Any valid file name.

Default value:

""

9.3.8 MSK SPAR ITR SOL FILE NAME

Corresponding constant:

MSK SPAR ITR SOL FILE NAME

Description:

Name of the itr solution file.

Possible Values:

Any valid file name.

Default value:

""

9.3.9 MSK SPAR MIO DEBUG STRING

Corresponding constant:

MSK SPAR MIO DEBUG STRING

Description:

For internal use only.

Possible Values:

Any valid string.

Default value:

""

9.3. MSKSPARAME: STRING PARAMETER TYPES 197

9.3.10 MSK SPAR PARAM COMMENT SIGN

Corresponding constant:

MSK SPAR PARAM COMMENT SIGN

Description:

Only the first character in this string is used. It is considered as a start of comment sign in the
MOSEK parameter file. Spaces are ignored in the string.

Possible Values:

Any valid string.

Default value:

"%%"

9.3.11 MSK SPAR PARAM READ FILE NAME

Corresponding constant:

MSK SPAR PARAM READ FILE NAME

Description:

Modifications to the parameter database is read from this file.

Possible Values:

Any valid file name.

Default value:

""

9.3.12 MSK SPAR PARAM WRITE FILE NAME

Corresponding constant:

MSK SPAR PARAM WRITE FILE NAME

Description:

The parameter database is written to this file.

Possible Values:

Any valid file name.

Default value:

""

198 CHAPTER 9. PARAMETERS

9.3.13 MSK SPAR READ MPS BOU NAME

Corresponding constant:

MSK SPAR READ MPS BOU NAME

Description:

Name of the BOUNDS vector used. An empty name means that the first BOUNDS vector is
used.

Possible Values:

Any valid MPS name.

Default value:

""

9.3.14 MSK SPAR READ MPS OBJ NAME

Corresponding constant:

MSK SPAR READ MPS OBJ NAME

Description:

Name of the free constraint used as objective function. An empty name means that the first
constraint is used as objective function.

Possible Values:

Any valid MPS name.

Default value:

""

9.3.15 MSK SPAR READ MPS RAN NAME

Corresponding constant:

MSK SPAR READ MPS RAN NAME

Description:

Name of the RANGE vector used. An empty name means that the first RANGE vector is used.

Possible Values:

Any valid MPS name.

Default value:

""

9.3. MSKSPARAME: STRING PARAMETER TYPES 199

9.3.16 MSK SPAR READ MPS RHS NAME

Corresponding constant:

MSK SPAR READ MPS RHS NAME

Description:

Name of the RHS used. An empty name means that the first RHS vector is used.

Possible Values:

Any valid MPS name.

Default value:

""

9.3.17 MSK SPAR SENSITIVITY FILE NAME

Corresponding constant:

MSK SPAR SENSITIVITY FILE NAME

Description:

Not applicable.

Possible Values:

Any valid string.

Default value:

""

9.3.18 MSK SPAR SENSITIVITY RES FILE NAME

Corresponding constant:

MSK SPAR SENSITIVITY RES FILE NAME

Description:

Not applicable.

Possible Values:

Any valid string.

Default value:

""

200 CHAPTER 9. PARAMETERS

9.3.19 MSK SPAR SOL FILTER XC LOW

Corresponding constant:

MSK SPAR SOL FILTER XC LOW

Description:

A filter used to determine which constraints should be listed in the solution file. A value of ”0.5”
means that all constraints having xc[i]>0.5 should be listed, whereas ”+0.5” means that all
constraints having xc[i]>=blc[i]+0.5 should be listed. An empty filter means that no filter is
applied.

Possible Values:

Any valid filter.

Default value:

""

9.3.20 MSK SPAR SOL FILTER XC UPR

Corresponding constant:

MSK SPAR SOL FILTER XC UPR

Description:

A filter used to determine which constraints should be listed in the solution file. A value of
”0.5” means that all constraints having xc[i]<0.5 should be listed, whereas ”-0.5” means all
constraints having xc[i]<=buc[i]-0.5 should be listed. An empty filter means that no filter is
applied.

Possible Values:

Any valid filter.

Default value:

""

9.3.21 MSK SPAR SOL FILTER XX LOW

Corresponding constant:

MSK SPAR SOL FILTER XX LOW

Description:

A filter used to determine which variables should be listed in the solution file. A value of ”0.5”
means that all constraints having xx[j]>=0.5 should be listed, whereas ”+0.5” means that
all constraints having xx[j]>=blx[j]+0.5 should be listed. An empty filter means no filter is
applied.

9.3. MSKSPARAME: STRING PARAMETER TYPES 201

Possible Values:

Any valid filter.

Default value:

""

9.3.22 MSK SPAR SOL FILTER XX UPR

Corresponding constant:

MSK SPAR SOL FILTER XX UPR

Description:

A filter used to determine which variables should be listed in the solution file. A value of
”0.5” means that all constraints having xx[j]<0.5 should be printed, whereas ”-0.5” means
all constraints having xx[j]<=bux[j]-0.5 should be listed. An empty filter means no filter is
applied.

Possible Values:

Any valid file name.

Default value:

""

9.3.23 MSK SPAR STAT FILE NAME

Corresponding constant:

MSK SPAR STAT FILE NAME

Description:

Statistics file name.

Possible Values:

Any valid file name.

Default value:

""

9.3.24 MSK SPAR STAT KEY

Corresponding constant:

MSK SPAR STAT KEY

Description:

Key used when writing the summary file.

202 CHAPTER 9. PARAMETERS

Possible Values:

Any valid XML string.

Default value:

""

9.3.25 MSK SPAR STAT NAME

Corresponding constant:

MSK SPAR STAT NAME

Description:

Name used when writing the statistics file.

Possible Values:

Any valid XML string.

Default value:

""

9.3.26 MSK SPAR WRITE LP GEN VAR NAME

Corresponding constant:

MSK SPAR WRITE LP GEN VAR NAME

Description:

Sometimes when an LP file is written additional variables must be inserted. They will have the
prefix denoted by this parameter.

Possible Values:

Any valid string.

Default value:

"xmskgen"

Chapter 10

Response codes

Response codes ordered by name.

MSK RES ERR AD INVALID CODELIST

The code list data was invalid.

MSK RES ERR AD INVALID OPERAND

The code list data was invalid. An unknown operand was used.

MSK RES ERR AD INVALID OPERATOR

The code list data was invalid. An unknown operator was used.

MSK RES ERR AD MISSING OPERAND

The code list data was invalid. Missing operand for operator.

MSK RES ERR AD MISSING RETURN

The code list data was invalid. Missing return operation in function.

MSK RES ERR API ARRAY TOO SMALL

An input array was too short.

MSK RES ERR API CB CONNECT

Failed to connect a callback object.

MSK RES ERR API FATAL ERROR

An internal error occurred in the API. Please report this problem.

MSK RES ERR API INTERNAL

An internal fatal error occurred in an interface function.

MSK RES ERR ARG IS TOO LARGE

The value of a argument is too small.

203

204 CHAPTER 10. RESPONSE CODES

MSK RES ERR ARG IS TOO SMALL

The value of a argument is too small.

MSK RES ERR ARGUMENT DIMENSION

A function argument is of incorrect dimension.

MSK RES ERR ARGUMENT IS TOO LARGE

The value of a function argument is too large.

MSK RES ERR ARGUMENT LENNEQ

Incorrect length of arguments.

MSK RES ERR ARGUMENT PERM ARRAY

An invalid permutation array is specified.

MSK RES ERR ARGUMENT TYPE

Incorrect argument type.

MSK RES ERR BAR VAR DIM

The dimension of a symmetric matrix variable has to greater than 0.

MSK RES ERR BASIS

An invalid basis is specified. Either too many or too few basis variables are specified.

MSK RES ERR BASIS FACTOR

The factorization of the basis is invalid.

MSK RES ERR BASIS SINGULAR

The basis is singular and hence cannot be factored.

MSK RES ERR BLANK NAME

An all blank name has been specified.

MSK RES ERR CANNOT CLONE NL

A task with a nonlinear function call-back cannot be cloned.

MSK RES ERR CANNOT HANDLE NL

A function cannot handle a task with nonlinear function call-backs.

MSK RES ERR CON Q NOT NSD

The quadratic constraint matrix is not negative semidefinite as expected for a constraint with fi-
nite lower bound. This results in a nonconvex problem. The parameter MSK DPAR CHECK CONVEXITY REL TOL

can be used to relax the convexity check.

205

MSK RES ERR CON Q NOT PSD

The quadratic constraint matrix is not positive semidefinite as expected for a constraint with fi-
nite upper bound. This results in a nonconvex problem. The parameter MSK DPAR CHECK CONVEXITY REL TOL

can be used to relax the convexity check.

MSK RES ERR CONCURRENT OPTIMIZER

An unsupported optimizer was chosen for use with the concurrent optimizer.

MSK RES ERR CONE INDEX

An index of a non-existing cone has been specified.

MSK RES ERR CONE OVERLAP

A new cone which variables overlap with an existing cone has been specified.

MSK RES ERR CONE OVERLAP APPEND

The cone to be appended has one variable which is already memeber of another cone.

MSK RES ERR CONE REP VAR

A variable is included multiple times in the cone.

MSK RES ERR CONE SIZE

A cone with too few members is specified.

MSK RES ERR CONE TYPE

Invalid cone type specified.

MSK RES ERR CONE TYPE STR

Invalid cone type specified.

MSK RES ERR DATA FILE EXT

The data file format cannot be determined from the file name.

MSK RES ERR DUP NAME

The same name was used multiple times for the same problem item type.

MSK RES ERR DUPLICATE BARVARIABLE NAMES

Two barvariable names are identical.

MSK RES ERR DUPLICATE CONE NAMES

Two cone names are identical.

MSK RES ERR DUPLICATE CONSTRAINT NAMES

Two constraint names are identical.

MSK RES ERR DUPLICATE VARIABLE NAMES

Two variable names are identical.

206 CHAPTER 10. RESPONSE CODES

MSK RES ERR END OF FILE

End of file reached.

MSK RES ERR FACTOR

An error occurred while factorizing a matrix.

MSK RES ERR FEASREPAIR CANNOT RELAX

An optimization problem cannot be relaxed. This is the case e.g. for general nonlinear optimiza-
tion problems.

MSK RES ERR FEASREPAIR INCONSISTENT BOUND

The upper bound is less than the lower bound for a variable or a constraint. Please correct this
before running the feasibility repair.

MSK RES ERR FEASREPAIR SOLVING RELAXED

The relaxed problem could not be solved to optimality. Please consult the log file for further
details.

MSK RES ERR FILE LICENSE

Invalid license file.

MSK RES ERR FILE OPEN

Error while opening a file.

MSK RES ERR FILE READ

File read error.

MSK RES ERR FILE WRITE

File write error.

MSK RES ERR FIRST

Invalid first.

MSK RES ERR FIRSTI

Invalid firsti.

MSK RES ERR FIRSTJ

Invalid firstj.

MSK RES ERR FIXED BOUND VALUES

A fixed constraint/variable has been specified using the bound keys but the numerical value of
the lower and upper bound is different.

MSK RES ERR FLEXLM

The FLEXlm license manager reported an error.

207

MSK RES ERR GLOBAL INV CONIC PROBLEM

The global optimizer can only be applied to problems without semidefinite variables.

MSK RES ERR HUGE AIJ

A numerically huge value is specified for an ai,j element inA. The parameter MSK DPAR DATA TOL AIJ HUGE

controls when an ai,j is considered huge.

MSK RES ERR HUGE C

A huge value in absolute size is specified for one cj .

MSK RES ERR IDENTICAL TASKS

Some tasks related to this function call were identical. Unique tasks were expected.

MSK RES ERR IN ARGUMENT

A function argument is incorrect.

MSK RES ERR INDEX

An index is out of range.

MSK RES ERR INDEX ARR IS TOO LARGE

An index in an array argument is too large.

MSK RES ERR INDEX ARR IS TOO SMALL

An index in an array argument is too small.

MSK RES ERR INDEX IS TOO LARGE

An index in an argument is too large.

MSK RES ERR INDEX IS TOO SMALL

An index in an argument is too small.

MSK RES ERR INF DOU INDEX

A double information index is out of range for the specified type.

MSK RES ERR INF DOU NAME

A double information name is invalid.

MSK RES ERR INF INT INDEX

An integer information index is out of range for the specified type.

MSK RES ERR INF INT NAME

An integer information name is invalid.

MSK RES ERR INF LINT INDEX

A long integer information index is out of range for the specified type.

208 CHAPTER 10. RESPONSE CODES

MSK RES ERR INF LINT NAME

A long integer information name is invalid.

MSK RES ERR INF TYPE

The information type is invalid.

MSK RES ERR INFEAS UNDEFINED

The requested value is not defined for this solution type.

MSK RES ERR INFINITE BOUND

A numerically huge bound value is specified.

MSK RES ERR INT64 TO INT32 CAST

An 32 bit integer could not cast to a 64 bit integer.

MSK RES ERR INTERNAL

An internal error occurred. Please report this problem.

MSK RES ERR INTERNAL TEST FAILED

An internal unit test function failed.

MSK RES ERR INV APTRE

aptre[j] is strictly smaller than aptrb[j] for some j.

MSK RES ERR INV BK

Invalid bound key.

MSK RES ERR INV BKC

Invalid bound key is specified for a constraint.

MSK RES ERR INV BKX

An invalid bound key is specified for a variable.

MSK RES ERR INV CONE TYPE

Invalid cone type code is encountered.

MSK RES ERR INV CONE TYPE STR

Invalid cone type string encountered.

MSK RES ERR INV CONIC PROBLEM

The conic optimizer can only be applied to problems with linear objective and constraints.
Many problems such convex quadratically constrained problems can easily be reformulated to
conic problems. See the appropriate MOSEK manual for details.

MSK RES ERR INV MARKI

Invalid value in marki.

209

MSK RES ERR INV MARKJ

Invalid value in markj.

MSK RES ERR INV NAME ITEM

An invalid name item code is used.

MSK RES ERR INV NUMI

Invalid numi.

MSK RES ERR INV NUMJ

Invalid numj.

MSK RES ERR INV OPTIMIZER

An invalid optimizer has been chosen for the problem. This means that the simplex or the conic
optimizer is chosen to optimize a nonlinear problem.

MSK RES ERR INV PROBLEM

Invalid problem type. Probably a nonconvex problem has been specified.

MSK RES ERR INV QCON SUBI

Invalid value in qcsubi.

MSK RES ERR INV QCON SUBJ

Invalid value in qcsubj.

MSK RES ERR INV QCON SUBK

Invalid value in qcsubk.

MSK RES ERR INV QCON VAL

Invalid value in qcval.

MSK RES ERR INV QOBJ SUBI

Invalid value in qosubi.

MSK RES ERR INV QOBJ SUBJ

Invalid value in qosubj.

MSK RES ERR INV QOBJ VAL

Invalid value in qoval.

MSK RES ERR INV SK

Invalid status key code.

MSK RES ERR INV SK STR

Invalid status key string encountered.

210 CHAPTER 10. RESPONSE CODES

MSK RES ERR INV SKC

Invalid value in skc.

MSK RES ERR INV SKN

Invalid value in skn.

MSK RES ERR INV SKX

Invalid value in skx.

MSK RES ERR INV VAR TYPE

An invalid variable type is specified for a variable.

MSK RES ERR INVALID ACCMODE

An invalid access mode is specified.

MSK RES ERR INVALID AMPL STUB

Invalid AMPL stub.

MSK RES ERR INVALID BARVAR NAME

An invalid symmetric matrix variable name is used.

MSK RES ERR INVALID BRANCH DIRECTION

An invalid branching direction is specified.

MSK RES ERR INVALID BRANCH PRIORITY

An invalid branching priority is specified. It should be nonnegative.

MSK RES ERR INVALID COMPRESSION

Invalid compression type.

MSK RES ERR INVALID CON NAME

An invalid constraint name is used.

MSK RES ERR INVALID CONE NAME

An invalid cone name is used.

MSK RES ERR INVALID FILE FORMAT FOR CONES

The file format does not support a problem with conic constraints.

MSK RES ERR INVALID FILE FORMAT FOR GENERAL NL

The file format does not support a problem with general nonlinear terms.

MSK RES ERR INVALID FILE FORMAT FOR SYM MAT

The file format does not support a problem with symmetric matrix variables.

MSK RES ERR INVALID FILE NAME

An invalid file name has been specified.

211

MSK RES ERR INVALID FORMAT TYPE

Invalid format type.

MSK RES ERR INVALID IDX

A specified index is invalid.

MSK RES ERR INVALID IOMODE

Invalid io mode.

MSK RES ERR INVALID MAX NUM

A specified index is invalid.

MSK RES ERR INVALID NAME IN SOL FILE

An invalid name occurred in a solution file.

MSK RES ERR INVALID NETWORK PROBLEM

The problem is not a network problem as expected. The error occurs if a network optimizer is
applied to a problem that cannot (easily) be converted to a network problem.

MSK RES ERR INVALID OBJ NAME

An invalid objective name is specified.

MSK RES ERR INVALID OBJECTIVE SENSE

An invalid objective sense is specified.

MSK RES ERR INVALID PROBLEM TYPE

An invalid problem type.

MSK RES ERR INVALID SOL FILE NAME

An invalid file name has been specified.

MSK RES ERR INVALID STREAM

An invalid stream is referenced.

MSK RES ERR INVALID SURPLUS

Invalid surplus.

MSK RES ERR INVALID SYM MAT DIM

A sparse symmetric matrix of invalid dimension is specified.

MSK RES ERR INVALID TASK

The task is invalid.

MSK RES ERR INVALID UTF8

An invalid UTF8 string is encountered.

212 CHAPTER 10. RESPONSE CODES

MSK RES ERR INVALID VAR NAME

An invalid variable name is used.

MSK RES ERR INVALID WCHAR

An invalid wchar string is encountered.

MSK RES ERR INVALID WHICHSOL

whichsol is invalid.

MSK RES ERR LAST

Invalid index last. A given index was out of expected range.

MSK RES ERR LASTI

Invalid lasti.

MSK RES ERR LASTJ

Invalid lastj.

MSK RES ERR LICENSE

Invalid license.

MSK RES ERR LICENSE CANNOT ALLOCATE

The license system cannot allocate the memory required.

MSK RES ERR LICENSE CANNOT CONNECT

MOSEK cannot connect to the license server. Most likely the license server is not up and running.

MSK RES ERR LICENSE EXPIRED

The license has expired.

MSK RES ERR LICENSE FEATURE

A requested feature is not available in the license file(s). Most likely due to an incorrect license
system setup.

MSK RES ERR LICENSE INVALID HOSTID

The host ID specified in the license file does not match the host ID of the computer.

MSK RES ERR LICENSE MAX

Maximum number of licenses is reached.

MSK RES ERR LICENSE MOSEKLM DAEMON

The MOSEKLM license manager daemon is not up and running.

MSK RES ERR LICENSE NO SERVER LINE

There is no SERVER line in the license file. All non-zero license count features need at least one
SERVER line.

213

MSK RES ERR LICENSE NO SERVER SUPPORT

The license server does not support the requested feature. Possible reasons for this error include:

• The feature has expired.

• The feature’s start date is later than today’s date.

• The version requested is higher than feature’s the highest supported version.

• A corrupted license file.

Try restarting the license and inspect the license server debug file, usually called lmgrd.log.

MSK RES ERR LICENSE SERVER

The license server is not responding.

MSK RES ERR LICENSE SERVER VERSION

The version specified in the checkout request is greater than the highest version number the
daemon supports.

MSK RES ERR LICENSE VERSION

The license is valid for another version of MOSEK.

MSK RES ERR LINK FILE DLL

A file cannot be linked to a stream in the DLL version.

MSK RES ERR LIVING TASKS

All tasks associated with an enviroment must be deleted before the environment is deleted. There
are still some undeleted tasks.

MSK RES ERR LOWER BOUND IS A NAN

The lower bound specificied is not a number (nan).

MSK RES ERR LP DUP SLACK NAME

The name of the slack variable added to a ranged constraint already exists.

MSK RES ERR LP EMPTY

The problem cannot be written to an LP formatted file.

MSK RES ERR LP FILE FORMAT

Syntax error in an LP file.

MSK RES ERR LP FORMAT

Syntax error in an LP file.

MSK RES ERR LP FREE CONSTRAINT

Free constraints cannot be written in LP file format.

MSK RES ERR LP INCOMPATIBLE

The problem cannot be written to an LP formatted file.

214 CHAPTER 10. RESPONSE CODES

MSK RES ERR LP INVALID CON NAME

A constraint name is invalid when used in an LP formatted file.

MSK RES ERR LP INVALID VAR NAME

A variable name is invalid when used in an LP formatted file.

MSK RES ERR LP WRITE CONIC PROBLEM

The problem contains cones that cannot be written to an LP formatted file.

MSK RES ERR LP WRITE GECO PROBLEM

The problem contains general convex terms that cannot be written to an LP formatted file.

MSK RES ERR LU MAX NUM TRIES

Could not compute the LU factors of the matrix within the maximum number of allowed tries.

MSK RES ERR MAX LEN IS TOO SMALL

An maximum length that is too small has been specfified.

MSK RES ERR MAXNUMBARVAR

The maximum number of semidefinite variables specified is smaller than the number of semidef-
inite variables in the task.

MSK RES ERR MAXNUMCON

The maximum number of constraints specified is smaller than the number of constraints in the
task.

MSK RES ERR MAXNUMCONE

The value specified for maxnumcone is too small.

MSK RES ERR MAXNUMQNZ

The maximum number of non-zeros specified for the Q matrixes is smaller than the number of
non-zeros in the current Q matrixes.

MSK RES ERR MAXNUMVAR

The maximum number of variables specified is smaller than the number of variables in the task.

MSK RES ERR MBT INCOMPATIBLE

The MBT file is incompatible with this platform. This results from reading a file on a 32 bit
platform generated on a 64 bit platform.

MSK RES ERR MBT INVALID

The MBT file is invalid.

MSK RES ERR MIO INTERNAL

A fatal error occurred in the mixed integer optimizer. Please contact MOSEK support.

215

MSK RES ERR MIO NO OPTIMIZER

No optimizer is available for the current class of integer optimization problems.

MSK RES ERR MIO NOT LOADED

The mixed-integer optimizer is not loaded.

MSK RES ERR MISSING LICENSE FILE

MOSEK cannot license file or a token server. See the MOSEK installation manual for details.

MSK RES ERR MIXED PROBLEM

The problem contains both conic and nonlinear constraints.

MSK RES ERR MPS CONE OVERLAP

A variable is specified to be a member of several cones.

MSK RES ERR MPS CONE REPEAT

A variable is repeated within the CSECTION.

MSK RES ERR MPS CONE TYPE

Invalid cone type specified in a CSECTION.

MSK RES ERR MPS FILE

An error occurred while reading an MPS file.

MSK RES ERR MPS INV BOUND KEY

An invalid bound key occurred in an MPS file.

MSK RES ERR MPS INV CON KEY

An invalid constraint key occurred in an MPS file.

MSK RES ERR MPS INV FIELD

A field in the MPS file is invalid. Probably it is too wide.

MSK RES ERR MPS INV MARKER

An invalid marker has been specified in the MPS file.

MSK RES ERR MPS INV SEC NAME

An invalid section name occurred in an MPS file.

MSK RES ERR MPS INV SEC ORDER

The sections in the MPS data file are not in the correct order.

MSK RES ERR MPS INVALID OBJ NAME

An invalid objective name is specified.

MSK RES ERR MPS INVALID OBJSENSE

An invalid objective sense is specified.

216 CHAPTER 10. RESPONSE CODES

MSK RES ERR MPS MUL CON NAME

A constraint name was specified multiple times in the ROWS section.

MSK RES ERR MPS MUL CSEC

Multiple CSECTIONs are given the same name.

MSK RES ERR MPS MUL QOBJ

The Q term in the objective is specified multiple times in the MPS data file.

MSK RES ERR MPS MUL QSEC

Multiple QSECTIONs are specified for a constraint in the MPS data file.

MSK RES ERR MPS NO OBJECTIVE

No objective is defined in an MPS file.

MSK RES ERR MPS NULL CON NAME

An empty constraint name is used in an MPS file.

MSK RES ERR MPS NULL VAR NAME

An empty variable name is used in an MPS file.

MSK RES ERR MPS SPLITTED VAR

All elements in a column of the A matrix must be specified consecutively. Hence, it is illegal to
specify non-zero elements in A for variable 1, then for variable 2 and then variable 1 again.

MSK RES ERR MPS TAB IN FIELD2

A tab char occurred in field 2.

MSK RES ERR MPS TAB IN FIELD3

A tab char occurred in field 3.

MSK RES ERR MPS TAB IN FIELD5

A tab char occurred in field 5.

MSK RES ERR MPS UNDEF CON NAME

An undefined constraint name occurred in an MPS file.

MSK RES ERR MPS UNDEF VAR NAME

An undefined variable name occurred in an MPS file.

MSK RES ERR MUL A ELEMENT

An element in A is defined multiple times.

MSK RES ERR NAME IS NULL

The name buffer is a NULL pointer.

217

MSK RES ERR NAME MAX LEN

A name is longer than the buffer that is supposed to hold it.

MSK RES ERR NAN IN AIJ

ai,j contains an invalid floating point value, i.e. a NaN.

MSK RES ERR NAN IN BLC

lc contains an invalid floating point value, i.e. a NaN.

MSK RES ERR NAN IN BLX

lx contains an invalid floating point value, i.e. a NaN.

MSK RES ERR NAN IN BUC

uc contains an invalid floating point value, i.e. a NaN.

MSK RES ERR NAN IN BUX

ux contains an invalid floating point value, i.e. a NaN.

MSK RES ERR NAN IN C

c contains an invalid floating point value, i.e. a NaN.

MSK RES ERR NAN IN DOUBLE DATA

An invalid floating point value was used in some double data.

MSK RES ERR NEGATIVE APPEND

Cannot append a negative number.

MSK RES ERR NEGATIVE SURPLUS

Negative surplus.

MSK RES ERR NEWER DLL

The dynamic link library is newer than the specified version.

MSK RES ERR NO BARS FOR SOLUTION

There is no s̄ available for the solution specified. In particular note there are no s̄ defined for the
basic and integer solutions.

MSK RES ERR NO BARX FOR SOLUTION

There is no X̄ available for the solution specified. In particular note there are no X̄ defined for
the basic and integer solutions.

MSK RES ERR NO BASIS SOL

No basic solution is defined.

MSK RES ERR NO DUAL FOR ITG SOL

No dual information is available for the integer solution.

218 CHAPTER 10. RESPONSE CODES

MSK RES ERR NO DUAL INFEAS CER

A certificate of infeasibility is not available.

MSK RES ERR NO DUAL INFO FOR ITG SOL

Dual information is not available for the integer solution.

MSK RES ERR NO INIT ENV

env is not initialized.

MSK RES ERR NO OPTIMIZER VAR TYPE

No optimizer is available for this class of optimization problems.

MSK RES ERR NO PRIMAL INFEAS CER

A certificate of primal infeasibility is not available.

MSK RES ERR NO SNX FOR BAS SOL

sxn is not available for the basis solution.

MSK RES ERR NO SOLUTION IN CALLBACK

The required solution is not available.

MSK RES ERR NON UNIQUE ARRAY

An array does not contain unique elements.

MSK RES ERR NONCONVEX

The optimization problem is nonconvex.

MSK RES ERR NONLINEAR EQUALITY

The model contains a nonlinear equality which defines a nonconvex set.

MSK RES ERR NONLINEAR FUNCTIONS NOT ALLOWED

An operation that is invalid for problems with nonlinear functions defined has been attempted.

MSK RES ERR NONLINEAR RANGED

The model contains a nonlinear ranged constraint which by definition defines a nonconvex set.

MSK RES ERR NR ARGUMENTS

Incorrect number of function arguments.

MSK RES ERR NULL ENV

env is a NULL pointer.

MSK RES ERR NULL POINTER

An argument to a function is unexpectedly a NULL pointer.

MSK RES ERR NULL TASK

task is a NULL pointer.

219

MSK RES ERR NUMCONLIM

Maximum number of constraints limit is exceeded.

MSK RES ERR NUMVARLIM

Maximum number of variables limit is exceeded.

MSK RES ERR OBJ Q NOT NSD

The quadratic coefficient matrix in the objective is not negative semidefinite as expected for
a maximization problem. The parameter MSK DPAR CHECK CONVEXITY REL TOL can be used to
relax the convexity check.

MSK RES ERR OBJ Q NOT PSD

The quadratic coefficient matrix in the objective is not positive semidefinite as expected for a
minimization problem. The parameter MSK DPAR CHECK CONVEXITY REL TOL can be used to relax
the convexity check.

MSK RES ERR OBJECTIVE RANGE

Empty objective range.

MSK RES ERR OLDER DLL

The dynamic link library is older than the specified version.

MSK RES ERR OPEN DL

A dynamic link library could not be opened.

MSK RES ERR OPF FORMAT

Syntax error in an OPF file

MSK RES ERR OPF NEW VARIABLE

Introducing new variables is now allowed. When a [variables] section is present, it is not
allowed to introduce new variables later in the problem.

MSK RES ERR OPF PREMATURE EOF

Premature end of file in an OPF file.

MSK RES ERR OPTIMIZER LICENSE

The optimizer required is not licensed.

MSK RES ERR ORD INVALID

Invalid content in branch ordering file.

MSK RES ERR ORD INVALID BRANCH DIR

An invalid branch direction key is specified.

MSK RES ERR OVERFLOW

A computation produced an overflow i.e. a very large number.

220 CHAPTER 10. RESPONSE CODES

MSK RES ERR PARAM INDEX

Parameter index is out of range.

MSK RES ERR PARAM IS TOO LARGE

The parameter value is too large.

MSK RES ERR PARAM IS TOO SMALL

The parameter value is too small.

MSK RES ERR PARAM NAME

The parameter name is not correct.

MSK RES ERR PARAM NAME DOU

The parameter name is not correct for a double parameter.

MSK RES ERR PARAM NAME INT

The parameter name is not correct for an integer parameter.

MSK RES ERR PARAM NAME STR

The parameter name is not correct for a string parameter.

MSK RES ERR PARAM TYPE

The parameter type is invalid.

MSK RES ERR PARAM VALUE STR

The parameter value string is incorrect.

MSK RES ERR PLATFORM NOT LICENSED

A requested license feature is not available for the required platform.

MSK RES ERR POSTSOLVE

An error occurred during the postsolve. Please contact MOSEK support.

MSK RES ERR PRO ITEM

An invalid problem is used.

MSK RES ERR PROB LICENSE

The software is not licensed to solve the problem.

MSK RES ERR QCON SUBI TOO LARGE

Invalid value in qcsubi.

MSK RES ERR QCON SUBI TOO SMALL

Invalid value in qcsubi.

221

MSK RES ERR QCON UPPER TRIANGLE

An element in the upper triangle of a Qk is specified. Only elements in the lower triangle should
be specified.

MSK RES ERR QOBJ UPPER TRIANGLE

An element in the upper triangle of Qo is specified. Only elements in the lower triangle should
be specified.

MSK RES ERR READ FORMAT

The specified format cannot be read.

MSK RES ERR READ LP MISSING END TAG

Missing End tag in LP file.

MSK RES ERR READ LP NONEXISTING NAME

A variable never occurred in objective or constraints.

MSK RES ERR REMOVE CONE VARIABLE

A variable cannot be removed because it will make a cone invalid.

MSK RES ERR REPAIR INVALID PROBLEM

The feasibility repair does not support the specified problem type.

MSK RES ERR REPAIR OPTIMIZATION FAILED

Computation the optimal relaxation failed. The cause may have been numerical problems.

MSK RES ERR SEN BOUND INVALID LO

Analysis of lower bound requested for an index, where no lower bound exists.

MSK RES ERR SEN BOUND INVALID UP

Analysis of upper bound requested for an index, where no upper bound exists.

MSK RES ERR SEN FORMAT

Syntax error in sensitivity analysis file.

MSK RES ERR SEN INDEX INVALID

Invalid range given in the sensitivity file.

MSK RES ERR SEN INDEX RANGE

Index out of range in the sensitivity analysis file.

MSK RES ERR SEN INVALID REGEXP

Syntax error in regexp or regexp longer than 1024.

MSK RES ERR SEN NUMERICAL

Numerical difficulties encountered performing the sensitivity analysis.

222 CHAPTER 10. RESPONSE CODES

MSK RES ERR SEN SOLUTION STATUS

No optimal solution found to the original problem given for sensitivity analysis.

MSK RES ERR SEN UNDEF NAME

An undefined name was encountered in the sensitivity analysis file.

MSK RES ERR SEN UNHANDLED PROBLEM TYPE

Sensitivity analysis cannot be performed for the spcified problem. Sensitivity analysis is only
possible for linear problems.

MSK RES ERR SIZE LICENSE

The problem is bigger than the license.

MSK RES ERR SIZE LICENSE CON

The problem has too many constraints to be solved with the available license.

MSK RES ERR SIZE LICENSE INTVAR

The problem contains too many integer variables to be solved with the available license.

MSK RES ERR SIZE LICENSE NUMCORES

The computer contains more cpu cores than the license allows for.

MSK RES ERR SIZE LICENSE VAR

The problem has too many variables to be solved with the available license.

MSK RES ERR SOL FILE INVALID NUMBER

An invalid number is specified in a solution file.

MSK RES ERR SOLITEM

The solution item number solitem is invalid. Please note that MSK SOL ITEM SNX is invalid for
the basic solution.

MSK RES ERR SOLVER PROBTYPE

Problem type does not match the chosen optimizer.

MSK RES ERR SPACE

Out of space.

MSK RES ERR SPACE LEAKING

MOSEK is leaking memory. This can be due to either an incorrect use of MOSEK or a bug.

MSK RES ERR SPACE NO INFO

No available information about the space usage.

MSK RES ERR SYM MAT DUPLICATE

A value in a symmetric matric as been specified more than once.

223

MSK RES ERR SYM MAT INVALID COL INDEX

A column index specified for sparse symmetric maxtrix is invalid.

MSK RES ERR SYM MAT INVALID ROW INDEX

A row index specified for sparse symmetric maxtrix is invalid.

MSK RES ERR SYM MAT INVALID VALUE

The numerical value specified in a sparse symmetric matrix is not a value floating value.

MSK RES ERR SYM MAT NOT LOWER TRINGULAR

Only the lower triangular part of sparse symmetric matrix should be specified.

MSK RES ERR TASK INCOMPATIBLE

The Task file is incompatible with this platform. This results from reading a file on a 32 bit
platform generated on a 64 bit platform.

MSK RES ERR TASK INVALID

The Task file is invalid.

MSK RES ERR THREAD COND INIT

Could not initialize a condition.

MSK RES ERR THREAD CREATE

Could not create a thread. This error may occur if a large number of environments are created
and not deleted again. In any case it is a good practice to minimize the number of environments
created.

MSK RES ERR THREAD MUTEX INIT

Could not initialize a mutex.

MSK RES ERR THREAD MUTEX LOCK

Could not lock a mutex.

MSK RES ERR THREAD MUTEX UNLOCK

Could not unlock a mutex.

MSK RES ERR TOO MANY CONCURRENT TASKS

Too many concurrent tasks specified.

MSK RES ERR TOO SMALL MAX NUM NZ

The maximum number of non-zeros specified is too small.

MSK RES ERR TOO SMALL MAXNUMANZ

The maximum number of non-zeros specified for A is smaller than the number of non-zeros in
the current A.

224 CHAPTER 10. RESPONSE CODES

MSK RES ERR UNB STEP SIZE

A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes
unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen
only if the problem is badly formulated. Please contact MOSEK support if this error occurs.

MSK RES ERR UNDEF SOLUTION

MOSEK has the following solution types:

• an interior-point solution,

• an basic solution,

• and an integer solution.

Each optimizer may set one or more of these solutions; e.g by default a successful optimization
with the interior-point optimizer defines the interior-point solution, and, for linear problems,
also the basic solution. This error occurs when asking for a solution or for information about a
solution that is not defined.

MSK RES ERR UNDEFINED OBJECTIVE SENSE

The objective sense has not been specified before the optimization.

MSK RES ERR UNHANDLED SOLUTION STATUS

Unhandled solution status.

MSK RES ERR UNKNOWN

Unknown error.

MSK RES ERR UPPER BOUND IS A NAN

The upper bound specificied is not a number (nan).

MSK RES ERR UPPER TRIANGLE

An element in the upper triangle of a lower triangular matrix is specified.

MSK RES ERR USER FUNC RET

An user function reported an error.

MSK RES ERR USER FUNC RET DATA

An user function returned invalid data.

MSK RES ERR USER NLO EVAL

The user-defined nonlinear function reported an error.

MSK RES ERR USER NLO EVAL HESSUBI

The user-defined nonlinear function reported an invalid subscript in the Hessian.

MSK RES ERR USER NLO EVAL HESSUBJ

The user-defined nonlinear function reported an invalid subscript in the Hessian.

225

MSK RES ERR USER NLO FUNC

The user-defined nonlinear function reported an error.

MSK RES ERR WHICHITEM NOT ALLOWED

whichitem is unacceptable.

MSK RES ERR WHICHSOL

The solution defined by compwhichsol does not exists.

MSK RES ERR WRITE LP FORMAT

Problem cannot be written as an LP file.

MSK RES ERR WRITE LP NON UNIQUE NAME

An auto-generated name is not unique.

MSK RES ERR WRITE MPS INVALID NAME

An invalid name is created while writing an MPS file. Usually this will make the MPS file
unreadable.

MSK RES ERR WRITE OPF INVALID VAR NAME

Empty variable names cannot be written to OPF files.

MSK RES ERR WRITING FILE

An error occurred while writing file

MSK RES ERR XML INVALID PROBLEM TYPE

The problem type is not supported by the XML format.

MSK RES ERR Y IS UNDEFINED

The solution item y is undefined.

MSK RES OK

No error occurred.

MSK RES TRM INTERNAL

The optimizer terminated due to some internal reason. Please contact MOSEK support.

MSK RES TRM INTERNAL STOP

The optimizer terminated for internal reasons. Please contact MOSEK support.

MSK RES TRM MAX ITERATIONS

The optimizer terminated at the maximum number of iterations.

MSK RES TRM MAX NUM SETBACKS

The optimizer terminated as the maximum number of set-backs was reached. This indicates
numerical problems and a possibly badly formulated problem.

226 CHAPTER 10. RESPONSE CODES

MSK RES TRM MAX TIME

The optimizer terminated at the maximum amount of time.

MSK RES TRM MIO NEAR ABS GAP

The mixed-integer optimizer terminated because the near optimal absolute gap tolerance was
satisfied.

MSK RES TRM MIO NEAR REL GAP

The mixed-integer optimizer terminated because the near optimal relative gap tolerance was
satisfied.

MSK RES TRM MIO NUM BRANCHES

The mixed-integer optimizer terminated as to the maximum number of branches was reached.

MSK RES TRM MIO NUM RELAXS

The mixed-integer optimizer terminated as the maximum number of relaxations was reached.

MSK RES TRM NUM MAX NUM INT SOLUTIONS

The mixed-integer optimizer terminated as the maximum number of feasible solutions was
reached.

MSK RES TRM NUMERICAL PROBLEM

The optimizer terminated due to numerical problems.

MSK RES TRM OBJECTIVE RANGE

The optimizer terminated on the bound of the objective range.

MSK RES TRM STALL

The optimizer is terminated due to slow progress.

Stalling means that numerical problems prevent the optimizer from making reasonable progress
and that it make no sense to continue. In many cases this happens if the problem is badly scaled
or otherwise ill-conditioned. There is no guarantee that the solution will be (near) feasible or
near optimal. However, often stalling happens near the optimum, and the returned solution may
be of good quality. Therefore, it is recommended to check the status of then solution. If the
solution near optimal the solution is most likely good enough for most practical purposes.

Please note that if a linear optimization problem is solved using the interior-point optimizer
with basis identification turned on, the returned basic solution likely to have high accuracy, even
though the optimizer stalled.

Some common causes of stalling are a) badly scaled models, b) near feasible or near infeasible
problems and c) a non-convex problems. Case c) is only relevant for general non-linear problems.
It is not possible in general for MOSEK to check if a specific problems is convex since such a
check would be NP hard in itself. This implies that care should be taken when solving problems
involving general user defined functions.

MSK RES TRM USER CALLBACK

The optimizer terminated due to the return of the user-defined call-back function.

227

MSK RES WRN ANA ALMOST INT BOUNDS

This warning is issued by the problem analyzer if a constraint is bound nearly integral.

MSK RES WRN ANA C ZERO

This warning is issued by the problem analyzer, if the coefficients in the linear part of the
objective are all zero.

MSK RES WRN ANA CLOSE BOUNDS

This warning is issued by problem analyzer, if ranged constraints or variables with very close
upper and lower bounds are detected. One should consider treating such constraints as equalities
and such variables as constants.

MSK RES WRN ANA EMPTY COLS

This warning is issued by the problem analyzer, if columns, in which all coefficients are zero, are
found.

MSK RES WRN ANA LARGE BOUNDS

This warning is issued by the problem analyzer, if one or more constraint or variable bounds are
very large. One should consider omitting these bounds entirely by setting them to +inf or -inf.

MSK RES WRN CONSTRUCT INVALID SOL ITG

The intial value for one or more of the integer variables is not feasible.

MSK RES WRN CONSTRUCT NO SOL ITG

The construct solution requires an integer solution.

MSK RES WRN CONSTRUCT SOLUTION INFEAS

After fixing the integer variables at the suggested values then the problem is infeasible.

MSK RES WRN DROPPED NZ QOBJ

One or more non-zero elements were dropped in the Q matrix in the objective.

MSK RES WRN DUPLICATE BARVARIABLE NAMES

Two barvariable names are identical.

MSK RES WRN DUPLICATE CONE NAMES

Two cone names are identical.

MSK RES WRN DUPLICATE CONSTRAINT NAMES

Two constraint names are identical.

MSK RES WRN DUPLICATE VARIABLE NAMES

Two variable names are identical.

MSK RES WRN ELIMINATOR SPACE

The eliminator is skipped at least once due to lack of space.

228 CHAPTER 10. RESPONSE CODES

MSK RES WRN EMPTY NAME

A variable or constraint name is empty. The output file may be invalid.

MSK RES WRN IGNORE INTEGER

Ignored integer constraints.

MSK RES WRN INCOMPLETE LINEAR DEPENDENCY CHECK

The linear dependency check(s) is not completed. Normally this is not an important warning
unless the optimization problem has been formulated with linear dependencies which is bad
practice.

MSK RES WRN LARGE AIJ

A numerically large value is specified for an ai,j element inA. The parameter MSK DPAR DATA TOL AIJ LARGE

controls when an ai,j is considered large.

MSK RES WRN LARGE BOUND

A numerically large bound value is specified.

MSK RES WRN LARGE CJ

A numerically large value is specified for one cj .

MSK RES WRN LARGE CON FX

An equality constraint is fixed to a numerically large value. This can cause numerical problems.

MSK RES WRN LARGE LO BOUND

A numerically large lower bound value is specified.

MSK RES WRN LARGE UP BOUND

A numerically large upper bound value is specified.

MSK RES WRN LICENSE EXPIRE

The license expires.

MSK RES WRN LICENSE FEATURE EXPIRE

The license expires.

MSK RES WRN LICENSE SERVER

The license server is not responding.

MSK RES WRN LP DROP VARIABLE

Ignored a variable because the variable was not previously defined. Usually this implies that a
variable appears in the bound section but not in the objective or the constraints.

MSK RES WRN LP OLD QUAD FORMAT

Missing ’/2’ after quadratic expressions in bound or objective.

229

MSK RES WRN MIO INFEASIBLE FINAL

The final mixed-integer problem with all the integer variables fixed at their optimal values is
infeasible.

MSK RES WRN MPS SPLIT BOU VECTOR

A BOUNDS vector is split into several nonadjacent parts in an MPS file.

MSK RES WRN MPS SPLIT RAN VECTOR

A RANGE vector is split into several nonadjacent parts in an MPS file.

MSK RES WRN MPS SPLIT RHS VECTOR

An RHS vector is split into several nonadjacent parts in an MPS file.

MSK RES WRN NAME MAX LEN

A name is longer than the buffer that is supposed to hold it.

MSK RES WRN NO DUALIZER

No automatic dualizer is available for the specified problem. The primal problem is solved.

MSK RES WRN NO GLOBAL OPTIMIZER

No global optimizer is available.

MSK RES WRN NO NONLINEAR FUNCTION WRITE

The problem contains a general nonlinear function in either the objective or the constraints. Such
a nonlinear function cannot be written to a disk file. Note that quadratic terms when inputted
explicitly can be written to disk.

MSK RES WRN NZ IN UPR TRI

Non-zero elements specified in the upper triangle of a matrix were ignored.

MSK RES WRN OPEN PARAM FILE

The parameter file could not be opened.

MSK RES WRN PARAM IGNORED CMIO

A parameter was ignored by the conic mixed integer optimizer.

MSK RES WRN PARAM NAME DOU

The parameter name is not recognized as a double parameter.

MSK RES WRN PARAM NAME INT

The parameter name is not recognized as a integer parameter.

MSK RES WRN PARAM NAME STR

The parameter name is not recognized as a string parameter.

MSK RES WRN PARAM STR VALUE

The string is not recognized as a symbolic value for the parameter.

230 CHAPTER 10. RESPONSE CODES

MSK RES WRN PRESOLVE OUTOFSPACE

The presolve is incomplete due to lack of space.

MSK RES WRN QUAD CONES WITH ROOT FIXED AT ZERO

For at least one quadratic cone the root is fixed at (nearly) zero. This may cause problems
such as a very large dual solution. Therefore, it is recommended to remove such cones before
optimizing the problems, or to fix all the variables in the cone to 0.

MSK RES WRN RQUAD CONES WITH ROOT FIXED AT ZERO

For at least one rotated quadratic cone at least one of the root variables are fixed at (nearly)
zero. This may cause problems such as a very large dual solution. Therefore, it is recommended
to remove such cones before optimizing the problems, or to fix all the variables in the cone to 0.

MSK RES WRN SOL FILE IGNORED CON

One or more lines in the constraint section were ignored when reading a solution file.

MSK RES WRN SOL FILE IGNORED VAR

One or more lines in the variable section were ignored when reading a solution file.

MSK RES WRN SOL FILTER

Invalid solution filter is specified.

MSK RES WRN SPAR MAX LEN

A value for a string parameter is longer than the buffer that is supposed to hold it.

MSK RES WRN TOO FEW BASIS VARS

An incomplete basis has been specified. Too few basis variables are specified.

MSK RES WRN TOO MANY BASIS VARS

A basis with too many variables has been specified.

MSK RES WRN TOO MANY THREADS CONCURRENT

The concurrent optimizer employs more threads than available. This will lead to poor perfor-
mance.

MSK RES WRN UNDEF SOL FILE NAME

Undefined name occurred in a solution.

MSK RES WRN USING GENERIC NAMES

Generic names are used because a name is not valid. For instance when writing an LP file the
names must not contain blanks or start with a digit.

MSK RES WRN WRITE CHANGED NAMES

Some names were changed because they were invalid for the output file format.

231

MSK RES WRN WRITE DISCARDED CFIX

The fixed objective term could not be converted to a variable and was discarded in the output
file.

MSK RES WRN ZERO AIJ

One or more zero elements are specified in A.

MSK RES WRN ZEROS IN SPARSE COL

One or more (near) zero elements are specified in a sparse column of a matrix. It is redundant
to specify zero elements. Hence, it may indicate an error.

MSK RES WRN ZEROS IN SPARSE ROW

One or more (near) zero elements are specified in a sparse row of a matrix. It is redundant to
specify zero elements. Hence it may indicate an error.

232 CHAPTER 10. RESPONSE CODES

Chapter 11

API constants

11.1 Constraint or variable access modes

MSK ACC VAR

Access data by columns (variable oriented)

MSK ACC CON

Access data by rows (constraint oriented)

11.2 Basis identification

MSK BI NEVER

Never do basis identification.

MSK BI ALWAYS

Basis identification is always performed even if the interior-point optimizer terminates abnor-
mally.

MSK BI NO ERROR

Basis identification is performed if the interior-point optimizer terminates without an error.

MSK BI IF FEASIBLE

Basis identification is not performed if the interior-point optimizer terminates with a problem
status saying that the problem is primal or dual infeasible.

MSK BI RESERVERED

Not currently in use.

233

234 CHAPTER 11. API CONSTANTS

11.3 Bound keys

MSK BK LO

The constraint or variable has a finite lower bound and an infinite upper bound.

MSK BK UP

The constraint or variable has an infinite lower bound and an finite upper bound.

MSK BK FX

The constraint or variable is fixed.

MSK BK FR

The constraint or variable is free.

MSK BK RA

The constraint or variable is ranged.

11.4 Specifies the branching direction.

MSK BRANCH DIR FREE

The mixed-integer optimizer decides which branch to choose.

MSK BRANCH DIR UP

The mixed-integer optimizer always chooses the up branch first.

MSK BRANCH DIR DOWN

The mixed-integer optimizer always chooses the down branch first.

11.5 Progress call-back codes

MSK CALLBACK BEGIN BI

The basis identification procedure has been started.

MSK CALLBACK BEGIN CONCURRENT

Concurrent optimizer is started.

MSK CALLBACK BEGIN CONIC

The call-back function is called when the conic optimizer is started.

MSK CALLBACK BEGIN DUAL BI

The call-back function is called from within the basis identification procedure when the dual
phase is started.

11.5. PROGRESS CALL-BACK CODES 235

MSK CALLBACK BEGIN DUAL SENSITIVITY

Dual sensitivity analysis is started.

MSK CALLBACK BEGIN DUAL SETUP BI

The call-back function is called when the dual BI phase is started.

MSK CALLBACK BEGIN DUAL SIMPLEX

The call-back function is called when the dual simplex optimizer started.

MSK CALLBACK BEGIN DUAL SIMPLEX BI

The call-back function is called from within the basis identification procedure when the dual
simplex clean-up phase is started.

MSK CALLBACK BEGIN FULL CONVEXITY CHECK

Begin full convexity check.

MSK CALLBACK BEGIN INFEAS ANA

The call-back function is called when the infeasibility analyzer is started.

MSK CALLBACK BEGIN INTPNT

The call-back function is called when the interior-point optimizer is started.

MSK CALLBACK BEGIN LICENSE WAIT

Begin waiting for license.

MSK CALLBACK BEGIN MIO

The call-back function is called when the mixed-integer optimizer is started.

MSK CALLBACK BEGIN NETWORK DUAL SIMPLEX

The call-back function is called when the dual network simplex optimizer is started.

MSK CALLBACK BEGIN NETWORK PRIMAL SIMPLEX

The call-back function is called when the primal network simplex optimizer is started.

MSK CALLBACK BEGIN NETWORK SIMPLEX

The call-back function is called when the simplex network optimizer is started.

MSK CALLBACK BEGIN NONCONVEX

The call-back function is called when the nonconvex optimizer is started.

MSK CALLBACK BEGIN OPTIMIZER

The call-back function is called when the optimizer is started.

MSK CALLBACK BEGIN PRESOLVE

The call-back function is called when the presolve is started.

236 CHAPTER 11. API CONSTANTS

MSK CALLBACK BEGIN PRIMAL BI

The call-back function is called from within the basis identification procedure when the primal
phase is started.

MSK CALLBACK BEGIN PRIMAL DUAL SIMPLEX

The call-back function is called when the primal-dual simplex optimizer is started.

MSK CALLBACK BEGIN PRIMAL DUAL SIMPLEX BI

The call-back function is called from within the basis identification procedure when the primal-
dual simplex clean-up phase is started.

MSK CALLBACK BEGIN PRIMAL REPAIR

Begin primal feasibility repair.

MSK CALLBACK BEGIN PRIMAL SENSITIVITY

Primal sensitivity analysis is started.

MSK CALLBACK BEGIN PRIMAL SETUP BI

The call-back function is called when the primal BI setup is started.

MSK CALLBACK BEGIN PRIMAL SIMPLEX

The call-back function is called when the primal simplex optimizer is started.

MSK CALLBACK BEGIN PRIMAL SIMPLEX BI

The call-back function is called from within the basis identification procedure when the primal
simplex clean-up phase is started.

MSK CALLBACK BEGIN QCQO REFORMULATE

Begin QCQO reformulation.

MSK CALLBACK BEGIN READ

MOSEK has started reading a problem file.

MSK CALLBACK BEGIN SIMPLEX

The call-back function is called when the simplex optimizer is started.

MSK CALLBACK BEGIN SIMPLEX BI

The call-back function is called from within the basis identification procedure when the simplex
clean-up phase is started.

MSK CALLBACK BEGIN SIMPLEX NETWORK DETECT

The call-back function is called when the network detection procedure is started.

MSK CALLBACK BEGIN WRITE

MOSEK has started writing a problem file.

11.5. PROGRESS CALL-BACK CODES 237

MSK CALLBACK CONIC

The call-back function is called from within the conic optimizer after the information database
has been updated.

MSK CALLBACK DUAL SIMPLEX

The call-back function is called from within the dual simplex optimizer.

MSK CALLBACK END BI

The call-back function is called when the basis identification procedure is terminated.

MSK CALLBACK END CONCURRENT

Concurrent optimizer is terminated.

MSK CALLBACK END CONIC

The call-back function is called when the conic optimizer is terminated.

MSK CALLBACK END DUAL BI

The call-back function is called from within the basis identification procedure when the dual
phase is terminated.

MSK CALLBACK END DUAL SENSITIVITY

Dual sensitivity analysis is terminated.

MSK CALLBACK END DUAL SETUP BI

The call-back function is called when the dual BI phase is terminated.

MSK CALLBACK END DUAL SIMPLEX

The call-back function is called when the dual simplex optimizer is terminated.

MSK CALLBACK END DUAL SIMPLEX BI

The call-back function is called from within the basis identification procedure when the dual
clean-up phase is terminated.

MSK CALLBACK END FULL CONVEXITY CHECK

End full convexity check.

MSK CALLBACK END INFEAS ANA

The call-back function is called when the infeasibility analyzer is terminated.

MSK CALLBACK END INTPNT

The call-back function is called when the interior-point optimizer is terminated.

MSK CALLBACK END LICENSE WAIT

End waiting for license.

MSK CALLBACK END MIO

The call-back function is called when the mixed-integer optimizer is terminated.

238 CHAPTER 11. API CONSTANTS

MSK CALLBACK END NETWORK DUAL SIMPLEX

The call-back function is called when the dual network simplex optimizer is terminated.

MSK CALLBACK END NETWORK PRIMAL SIMPLEX

The call-back function is called when the primal network simplex optimizer is terminated.

MSK CALLBACK END NETWORK SIMPLEX

The call-back function is called when the simplex network optimizer is terminated.

MSK CALLBACK END NONCONVEX

The call-back function is called when the nonconvex optimizer is terminated.

MSK CALLBACK END OPTIMIZER

The call-back function is called when the optimizer is terminated.

MSK CALLBACK END PRESOLVE

The call-back function is called when the presolve is completed.

MSK CALLBACK END PRIMAL BI

The call-back function is called from within the basis identification procedure when the primal
phase is terminated.

MSK CALLBACK END PRIMAL DUAL SIMPLEX

The call-back function is called when the primal-dual simplex optimizer is terminated.

MSK CALLBACK END PRIMAL DUAL SIMPLEX BI

The call-back function is called from within the basis identification procedure when the primal-
dual clean-up phase is terminated.

MSK CALLBACK END PRIMAL REPAIR

End primal feasibility repair.

MSK CALLBACK END PRIMAL SENSITIVITY

Primal sensitivity analysis is terminated.

MSK CALLBACK END PRIMAL SETUP BI

The call-back function is called when the primal BI setup is terminated.

MSK CALLBACK END PRIMAL SIMPLEX

The call-back function is called when the primal simplex optimizer is terminated.

MSK CALLBACK END PRIMAL SIMPLEX BI

The call-back function is called from within the basis identification procedure when the primal
clean-up phase is terminated.

MSK CALLBACK END QCQO REFORMULATE

End QCQO reformulation.

11.5. PROGRESS CALL-BACK CODES 239

MSK CALLBACK END READ

MOSEK has finished reading a problem file.

MSK CALLBACK END SIMPLEX

The call-back function is called when the simplex optimizer is terminated.

MSK CALLBACK END SIMPLEX BI

The call-back function is called from within the basis identification procedure when the simplex
clean-up phase is terminated.

MSK CALLBACK END SIMPLEX NETWORK DETECT

The call-back function is called when the network detection procedure is terminated.

MSK CALLBACK END WRITE

MOSEK has finished writing a problem file.

MSK CALLBACK IM BI

The call-back function is called from within the basis identification procedure at an intermediate
point.

MSK CALLBACK IM CONIC

The call-back function is called at an intermediate stage within the conic optimizer where the
information database has not been updated.

MSK CALLBACK IM DUAL BI

The call-back function is called from within the basis identification procedure at an intermediate
point in the dual phase.

MSK CALLBACK IM DUAL SENSIVITY

The call-back function is called at an intermediate stage of the dual sensitivity analysis.

MSK CALLBACK IM DUAL SIMPLEX

The call-back function is called at an intermediate point in the dual simplex optimizer.

MSK CALLBACK IM FULL CONVEXITY CHECK

The call-back function is called at an intermediate stage of the full convexity check.

MSK CALLBACK IM INTPNT

The call-back function is called at an intermediate stage within the interior-point optimizer where
the information database has not been updated.

MSK CALLBACK IM LICENSE WAIT

MOSEK is waiting for a license.

MSK CALLBACK IM LU

The call-back function is called from within the LU factorization procedure at an intermediate
point.

240 CHAPTER 11. API CONSTANTS

MSK CALLBACK IM MIO

The call-back function is called at an intermediate point in the mixed-integer optimizer.

MSK CALLBACK IM MIO DUAL SIMPLEX

The call-back function is called at an intermediate point in the mixed-integer optimizer while
running the dual simplex optimizer.

MSK CALLBACK IM MIO INTPNT

The call-back function is called at an intermediate point in the mixed-integer optimizer while
running the interior-point optimizer.

MSK CALLBACK IM MIO PRESOLVE

The call-back function is called at an intermediate point in the mixed-integer optimizer while
running the presolve.

MSK CALLBACK IM MIO PRIMAL SIMPLEX

The call-back function is called at an intermediate point in the mixed-integer optimizer while
running the primal simplex optimizer.

MSK CALLBACK IM NETWORK DUAL SIMPLEX

The call-back function is called at an intermediate point in the dual network simplex optimizer.

MSK CALLBACK IM NETWORK PRIMAL SIMPLEX

The call-back function is called at an intermediate point in the primal network simplex optimizer.

MSK CALLBACK IM NONCONVEX

The call-back function is called at an intermediate stage within the nonconvex optimizer where
the information database has not been updated.

MSK CALLBACK IM ORDER

The call-back function is called from within the matrix ordering procedure at an intermediate
point.

MSK CALLBACK IM PRESOLVE

The call-back function is called from within the presolve procedure at an intermediate stage.

MSK CALLBACK IM PRIMAL BI

The call-back function is called from within the basis identification procedure at an intermediate
point in the primal phase.

MSK CALLBACK IM PRIMAL DUAL SIMPLEX

The call-back function is called at an intermediate point in the primal-dual simplex optimizer.

MSK CALLBACK IM PRIMAL SENSIVITY

The call-back function is called at an intermediate stage of the primal sensitivity analysis.

11.5. PROGRESS CALL-BACK CODES 241

MSK CALLBACK IM PRIMAL SIMPLEX

The call-back function is called at an intermediate point in the primal simplex optimizer.

MSK CALLBACK IM QO REFORMULATE

The call-back function is called at an intermediate stage of the conic quadratic reformulation.

MSK CALLBACK IM READ

Intermediate stage in reading.

MSK CALLBACK IM SIMPLEX

The call-back function is called from within the simplex optimizer at an intermediate point.

MSK CALLBACK IM SIMPLEX BI

The call-back function is called from within the basis identification procedure at an intermedi-
ate point in the simplex clean-up phase. The frequency of the call-backs is controlled by the
MSK IPAR LOG SIM FREQ parameter.

MSK CALLBACK INTPNT

The call-back function is called from within the interior-point optimizer after the information
database has been updated.

MSK CALLBACK NEW INT MIO

The call-back function is called after a new integer solution has been located by the mixed-integer
optimizer.

MSK CALLBACK NONCOVEX

The call-back function is called from within the nonconvex optimizer after the information
database has been updated.

MSK CALLBACK PRIMAL SIMPLEX

The call-back function is called from within the primal simplex optimizer.

MSK CALLBACK READ OPF

The call-back function is called from the OPF reader.

MSK CALLBACK READ OPF SECTION

A chunk of Q non-zeos has been read from a problem file.

MSK CALLBACK UPDATE DUAL BI

The call-back function is called from within the basis identification procedure at an intermediate
point in the dual phase.

MSK CALLBACK UPDATE DUAL SIMPLEX

The call-back function is called in the dual simplex optimizer.

242 CHAPTER 11. API CONSTANTS

MSK CALLBACK UPDATE DUAL SIMPLEX BI

The call-back function is called from within the basis identification procedure at an intermediate
point in the dual simplex clean-up phase. The frequency of the call-backs is controlled by the
MSK IPAR LOG SIM FREQ parameter.

MSK CALLBACK UPDATE NETWORK DUAL SIMPLEX

The call-back function is called in the dual network simplex optimizer.

MSK CALLBACK UPDATE NETWORK PRIMAL SIMPLEX

The call-back function is called in the primal network simplex optimizer.

MSK CALLBACK UPDATE NONCONVEX

The call-back function is called at an intermediate stage within the nonconvex optimizer where
the information database has been updated.

MSK CALLBACK UPDATE PRESOLVE

The call-back function is called from within the presolve procedure.

MSK CALLBACK UPDATE PRIMAL BI

The call-back function is called from within the basis identification procedure at an intermediate
point in the primal phase.

MSK CALLBACK UPDATE PRIMAL DUAL SIMPLEX

The call-back function is called in the primal-dual simplex optimizer.

MSK CALLBACK UPDATE PRIMAL DUAL SIMPLEX BI

The call-back function is called from within the basis identification procedure at an intermediate
point in the primal-dual simplex clean-up phase. The frequency of the call-backs is controlled
by the MSK IPAR LOG SIM FREQ parameter.

MSK CALLBACK UPDATE PRIMAL SIMPLEX

The call-back function is called in the primal simplex optimizer.

MSK CALLBACK UPDATE PRIMAL SIMPLEX BI

The call-back function is called from within the basis identification procedure at an intermediate
point in the primal simplex clean-up phase. The frequency of the call-backs is controlled by the
MSK IPAR LOG SIM FREQ parameter.

MSK CALLBACK WRITE OPF

The call-back function is called from the OPF writer.

11.6. TYPES OF CONVEXITY CHECKS. 243

11.6 Types of convexity checks.

MSK CHECK CONVEXITY NONE

No convexity check.

MSK CHECK CONVEXITY SIMPLE

Perform simple and fast convexity check.

MSK CHECK CONVEXITY FULL

Perform a full convexity check.

11.7 Compression types

MSK COMPRESS NONE

No compression is used.

MSK COMPRESS FREE

The type of compression used is chosen automatically.

MSK COMPRESS GZIP

The type of compression used is gzip compatible.

11.8 Cone types

MSK CT QUAD

The cone is a quadratic cone.

MSK CT RQUAD

The cone is a rotated quadratic cone.

11.9 Data format types

MSK DATA FORMAT EXTENSION

The file extension is used to determine the data file format.

MSK DATA FORMAT MPS

The data file is MPS formatted.

MSK DATA FORMAT LP

The data file is LP formatted.

244 CHAPTER 11. API CONSTANTS

MSK DATA FORMAT OP

The data file is an optimization problem formatted file.

MSK DATA FORMAT XML

The data file is an XML formatted file.

MSK DATA FORMAT FREE MPS

The data data a free MPS formatted file.

MSK DATA FORMAT TASK

Generic task dump file.

11.10 Double information items

MSK DINF BI CLEAN DUAL TIME

Time spent within the dual clean-up optimizer of the basis identification procedure since its
invocation.

MSK DINF BI CLEAN PRIMAL DUAL TIME

Time spent within the primal-dual clean-up optimizer of the basis identification procedure since
its invocation.

MSK DINF BI CLEAN PRIMAL TIME

Time spent within the primal clean-up optimizer of the basis identification procedure since its
invocation.

MSK DINF BI CLEAN TIME

Time spent within the clean-up phase of the basis identification procedure since its invocation.

MSK DINF BI DUAL TIME

Time spent within the dual phase basis identification procedure since its invocation.

MSK DINF BI PRIMAL TIME

Time spent within the primal phase of the basis identification procedure since its invocation.

MSK DINF BI TIME

Time spent within the basis identification procedure since its invocation.

MSK DINF CONCURRENT TIME

Time spent within the concurrent optimizer since its invocation.

MSK DINF INTPNT DUAL FEAS

Dual feasibility measure reported by the interior-point optimizer. (For the interior-point op-
timizer this measure does not directly related to the original problem because a homogeneous
model is employed.)

11.10. DOUBLE INFORMATION ITEMS 245

MSK DINF INTPNT DUAL OBJ

Dual objective value reported by the interior-point optimizer.

MSK DINF INTPNT FACTOR NUM FLOPS

An estimate of the number of flops used in the factorization.

MSK DINF INTPNT OPT STATUS

This measure should converge to +1 if the problem has a primal-dual optimal solution, and
converge to -1 if problem is (strictly) primal or dual infeasible. Furthermore, if the measure
converges to 0 the problem is usually ill-posed.

MSK DINF INTPNT ORDER TIME

Order time (in seconds).

MSK DINF INTPNT PRIMAL FEAS

Primal feasibility measure reported by the interior-point optimizers. (For the interior-point
optimizer this measure does not directly related to the original problem because a homogeneous
model is employed).

MSK DINF INTPNT PRIMAL OBJ

Primal objective value reported by the interior-point optimizer.

MSK DINF INTPNT TIME

Time spent within the interior-point optimizer since its invocation.

MSK DINF MIO CONSTRUCT SOLUTION OBJ

If MOSEK has successfully constructed an integer feasible solution, then this item contains the
optimal objective value corresponding to the feasible solution.

MSK DINF MIO HEURISTIC TIME

Time spent in the optimizer while solving the relaxtions.

MSK DINF MIO OBJ ABS GAP

Given the mixed-integer optimizer has computed a feasible solution and a bound on the optimal
objective value, then this item contains the absolute gap defined by

|(objective value of feasible solution)− (objective bound)|.

Otherwise it has the value -1.0.

MSK DINF MIO OBJ BOUND

The best known bound on the objective function. This value is undefined until at least one
relaxation has been solved: To see if this is the case check that MSK IINF MIO NUM RELAX is
stricly positive.

246 CHAPTER 11. API CONSTANTS

MSK DINF MIO OBJ INT

The primal objective value corresponding to the best integer feasible solution. Please note that at
least one integer feasible solution must have located i.e. check MSK IINF MIO NUM INT SOLUTIONS.

MSK DINF MIO OBJ REL GAP

Given that the mixed-integer optimizer has computed a feasible solution and a bound on the
optimal objective value, then this item contains the relative gap defined by

|(objective value of feasible solution)− (objective bound)|
max(δ, |(objective value of feasible solution)|)

.

where δ is given by the paramater MSK DPAR MIO REL GAP CONST. Otherwise it has the value -1.0.

MSK DINF MIO OPTIMIZER TIME

Time spent in the optimizer while solving the relaxtions.

MSK DINF MIO ROOT OPTIMIZER TIME

Time spent in the optimizer while solving the root relaxation.

MSK DINF MIO ROOT PRESOLVE TIME

Time spent in while presolveing the root relaxation.

MSK DINF MIO TIME

Time spent in the mixed-integer optimizer.

MSK DINF MIO USER OBJ CUT

If the objective cut is used, then this information item has the value of the cut.

MSK DINF OPTIMIZER TIME

Total time spent in the optimizer since it was invoked.

MSK DINF PRESOLVE ELI TIME

Total time spent in the eliminator since the presolve was invoked.

MSK DINF PRESOLVE LINDEP TIME

Total time spent in the linear dependency checker since the presolve was invoked.

MSK DINF PRESOLVE TIME

Total time (in seconds) spent in the presolve since it was invoked.

MSK DINF PRIMAL REPAIR PENALTY OBJ

The optimal objective value of the penalty function.

MSK DINF QCQO REFORMULATE TIME

Time spent with conic quadratic reformulation.

11.10. DOUBLE INFORMATION ITEMS 247

MSK DINF RD TIME

Time spent reading the data file.

MSK DINF SIM DUAL TIME

Time spent in the dual simplex optimizer since invoking it.

MSK DINF SIM FEAS

Feasibility measure reported by the simplex optimizer.

MSK DINF SIM NETWORK DUAL TIME

Time spent in the dual network simplex optimizer since invoking it.

MSK DINF SIM NETWORK PRIMAL TIME

Time spent in the primal network simplex optimizer since invoking it.

MSK DINF SIM NETWORK TIME

Time spent in the network simplex optimizer since invoking it.

MSK DINF SIM OBJ

Objective value reported by the simplex optimizer.

MSK DINF SIM PRIMAL DUAL TIME

Time spent in the primal-dual simplex optimizer optimizer since invoking it.

MSK DINF SIM PRIMAL TIME

Time spent in the primal simplex optimizer since invoking it.

MSK DINF SIM TIME

Time spent in the simplex optimizer since invoking it.

MSK DINF SOL BAS DUAL OBJ

Dual objective value of the basic solution.

MSK DINF SOL BAS DVIOLCON

Maximal dual bound violation for xc in the basic solution.

MSK DINF SOL BAS DVIOLVAR

Maximal dual bound violation for xx in the basic solution.

MSK DINF SOL BAS PRIMAL OBJ

Primal objective value of the basic solution.

MSK DINF SOL BAS PVIOLCON

Maximal primal bound violation for xc in the basic solution.

MSK DINF SOL BAS PVIOLVAR

Maximal primal bound violation for xx in the basic solution.

248 CHAPTER 11. API CONSTANTS

MSK DINF SOL ITG PRIMAL OBJ

Primal objective value of the integer solution.

MSK DINF SOL ITG PVIOLBARVAR

Maximal primal bound violation for X̄ in the integer solution.

MSK DINF SOL ITG PVIOLCON

Maximal primal bound violation for xc in the integer solution.

MSK DINF SOL ITG PVIOLCONES

Maximal primal violation for primal conic constraints in the integer solution.

MSK DINF SOL ITG PVIOLITG

Maximal violation for the integer constraints in the integer solution.

MSK DINF SOL ITG PVIOLVAR

Maximal primal bound violation for xx in the integer solution.

MSK DINF SOL ITR DUAL OBJ

Dual objective value of the interior-point solution.

MSK DINF SOL ITR DVIOLBARVAR

Maximal dual bound violation for X̄ in the interior-point solution.

MSK DINF SOL ITR DVIOLCON

Maximal dual bound violation for xc in the interior-point solution.

MSK DINF SOL ITR DVIOLCONES

Maximal dual violation for dual conic constraints in the interior-point solution.

MSK DINF SOL ITR DVIOLVAR

Maximal dual bound violation for xx in the interior-point solution.

MSK DINF SOL ITR PRIMAL OBJ

Primal objective value of the interior-point solution.

MSK DINF SOL ITR PVIOLBARVAR

Maximal primal bound violation for X̄ in the interior-point solution.

MSK DINF SOL ITR PVIOLCON

Maximal primal bound violation for xc in the interior-point solution.

MSK DINF SOL ITR PVIOLCONES

Maximal primal violation for primal conic constraints in the interior-point solution.

MSK DINF SOL ITR PVIOLVAR

Maximal primal bound violation for xx in the interior-point solution.

11.11. FEASIBILITY REPAIR TYPES 249

11.11 Feasibility repair types

MSK FEASREPAIR OPTIMIZE NONE

Do not optimize the feasibility repair problem.

MSK FEASREPAIR OPTIMIZE PENALTY

Minimize weighted sum of violations.

MSK FEASREPAIR OPTIMIZE COMBINED

Minimize with original objective subject to minimal weighted violation of bounds.

11.12 License feature

MSK FEATURE PTS

Base system.

MSK FEATURE PTON

Nonlinear extension.

MSK FEATURE PTOM

Mixed-integer extension.

MSK FEATURE PTOX

Non-convex extension.

11.13 Integer information items.

MSK IINF ANA PRO NUM CON

Number of constraints in the problem.

MSK IINF ANA PRO NUM CON EQ

Number of equality constraints.

MSK IINF ANA PRO NUM CON FR

Number of unbounded constraints.

MSK IINF ANA PRO NUM CON LO

Number of constraints with a lower bound and an infinite upper bound.

MSK IINF ANA PRO NUM CON RA

Number of constraints with finite lower and upper bounds.

250 CHAPTER 11. API CONSTANTS

MSK IINF ANA PRO NUM CON UP

Number of constraints with an upper bound and an infinite lower bound.

MSK IINF ANA PRO NUM VAR

Number of variables in the problem.

MSK IINF ANA PRO NUM VAR BIN

Number of binary (0-1) variables.

MSK IINF ANA PRO NUM VAR CONT

Number of continuous variables.

MSK IINF ANA PRO NUM VAR EQ

Number of fixed variables.

MSK IINF ANA PRO NUM VAR FR

Number of free variables.

MSK IINF ANA PRO NUM VAR INT

Number of general integer variables.

MSK IINF ANA PRO NUM VAR LO

Number of variables with a lower bound and an infinite upper bound.

MSK IINF ANA PRO NUM VAR RA

Number of variables with finite lower and upper bounds.

MSK IINF ANA PRO NUM VAR UP

Number of variables with an upper bound and an infinite lower bound. This value is set by

MSK IINF CONCURRENT FASTEST OPTIMIZER

The type of the optimizer that finished first in a concurrent optimization.

MSK IINF INTPNT FACTOR DIM DENSE

Dimension of the dense sub system in factorization.

MSK IINF INTPNT ITER

Number of interior-point iterations since invoking the interior-point optimizer.

MSK IINF INTPNT NUM THREADS

Number of threads that the interior-point optimizer is using.

MSK IINF INTPNT SOLVE DUAL

Non-zero if the interior-point optimizer is solving the dual problem.

MSK IINF MIO CONSTRUCT NUM ROUNDINGS

Number of values in the integer solution that is rounded to an integer value.

11.13. INTEGER INFORMATION ITEMS. 251

MSK IINF MIO CONSTRUCT SOLUTION

If this item has the value 0, then MOSEK did not try to construct an initial integer feasible
solution. If the item has a positive value, then MOSEK successfully constructed an initial integer
feasible solution.

MSK IINF MIO INITIAL SOLUTION

Is non-zero if an initial integer solution is specified.

MSK IINF MIO NUM ACTIVE NODES

Number of active brabch bound nodes.

MSK IINF MIO NUM BASIS CUTS

Number of basis cuts.

MSK IINF MIO NUM BRANCH

Number of branches performed during the optimization.

MSK IINF MIO NUM CARDGUB CUTS

Number of cardgub cuts.

MSK IINF MIO NUM CLIQUE CUTS

Number of clique cuts.

MSK IINF MIO NUM COEF REDC CUTS

Number of coef. redc. cuts.

MSK IINF MIO NUM CONTRA CUTS

Number of contra cuts.

MSK IINF MIO NUM DISAGG CUTS

Number of diasagg cuts.

MSK IINF MIO NUM FLOW COVER CUTS

Number of flow cover cuts.

MSK IINF MIO NUM GCD CUTS

Number of gcd cuts.

MSK IINF MIO NUM GOMORY CUTS

Number of Gomory cuts.

MSK IINF MIO NUM GUB COVER CUTS

Number of GUB cover cuts.

MSK IINF MIO NUM INT SOLUTIONS

Number of integer feasible solutions that has been found.

252 CHAPTER 11. API CONSTANTS

MSK IINF MIO NUM KNAPSUR COVER CUTS

Number of knapsack cover cuts.

MSK IINF MIO NUM LATTICE CUTS

Number of lattice cuts.

MSK IINF MIO NUM LIFT CUTS

Number of lift cuts.

MSK IINF MIO NUM OBJ CUTS

Number of obj cuts.

MSK IINF MIO NUM PLAN LOC CUTS

Number of loc cuts.

MSK IINF MIO NUM RELAX

Number of relaxations solved during the optimization.

MSK IINF MIO NUMCON

Number of constraints in the problem solved be the mixed-integer optimizer.

MSK IINF MIO NUMINT

Number of integer variables in the problem solved be the mixed-integer optimizer.

MSK IINF MIO NUMVAR

Number of variables in the problem solved be the mixed-integer optimizer.

MSK IINF MIO OBJ BOUND DEFINED

Non-zero if a valid objective bound has been found, otherwise zero.

MSK IINF MIO TOTAL NUM CUTS

Total number of cuts generated by the mixed-integer optimizer.

MSK IINF MIO USER OBJ CUT

If it is non-zero, then the objective cut is used.

MSK IINF OPT NUMCON

Number of constraints in the problem solved when the optimizer is called.

MSK IINF OPT NUMVAR

Number of variables in the problem solved when the optimizer is called

MSK IINF OPTIMIZE RESPONSE

The reponse code returned by optimize.

MSK IINF RD NUMBARVAR

Number of variables read.

11.13. INTEGER INFORMATION ITEMS. 253

MSK IINF RD NUMCON

Number of constraints read.

MSK IINF RD NUMCONE

Number of conic constraints read.

MSK IINF RD NUMINTVAR

Number of integer-constrained variables read.

MSK IINF RD NUMQ

Number of nonempty Q matrixes read.

MSK IINF RD NUMVAR

Number of variables read.

MSK IINF RD PROTYPE

Problem type.

MSK IINF SIM DUAL DEG ITER

The number of dual degenerate iterations.

MSK IINF SIM DUAL HOTSTART

If 1 then the dual simplex algorithm is solving from an advanced basis.

MSK IINF SIM DUAL HOTSTART LU

If 1 then a valid basis factorization of full rank was located and used by the dual simplex
algorithm.

MSK IINF SIM DUAL INF ITER

The number of iterations taken with dual infeasibility.

MSK IINF SIM DUAL ITER

Number of dual simplex iterations during the last optimization.

MSK IINF SIM NETWORK DUAL DEG ITER

The number of dual network degenerate iterations.

MSK IINF SIM NETWORK DUAL HOTSTART

If 1 then the dual network simplex algorithm is solving from an advanced basis.

MSK IINF SIM NETWORK DUAL HOTSTART LU

If 1 then a valid basis factorization of full rank was located and used by the dual network simplex
algorithm.

MSK IINF SIM NETWORK DUAL INF ITER

The number of iterations taken with dual infeasibility in the network optimizer.

254 CHAPTER 11. API CONSTANTS

MSK IINF SIM NETWORK DUAL ITER

Number of dual network simplex iterations during the last optimization.

MSK IINF SIM NETWORK PRIMAL DEG ITER

The number of primal network degenerate iterations.

MSK IINF SIM NETWORK PRIMAL HOTSTART

If 1 then the primal network simplex algorithm is solving from an advanced basis.

MSK IINF SIM NETWORK PRIMAL HOTSTART LU

If 1 then a valid basis factorization of full rank was located and used by the primal network
simplex algorithm.

MSK IINF SIM NETWORK PRIMAL INF ITER

The number of iterations taken with primal infeasibility in the network optimizer.

MSK IINF SIM NETWORK PRIMAL ITER

Number of primal network simplex iterations during the last optimization.

MSK IINF SIM NUMCON

Number of constraints in the problem solved by the simplex optimizer.

MSK IINF SIM NUMVAR

Number of variables in the problem solved by the simplex optimizer.

MSK IINF SIM PRIMAL DEG ITER

The number of primal degenerate iterations.

MSK IINF SIM PRIMAL DUAL DEG ITER

The number of degenerate major iterations taken by the primal dual simplex algorithm.

MSK IINF SIM PRIMAL DUAL HOTSTART

If 1 then the primal dual simplex algorithm is solving from an advanced basis.

MSK IINF SIM PRIMAL DUAL HOTSTART LU

If 1 then a valid basis factorization of full rank was located and used by the primal dual simplex
algorithm.

MSK IINF SIM PRIMAL DUAL INF ITER

The number of master iterations with dual infeasibility taken by the primal dual simplex algo-
rithm.

MSK IINF SIM PRIMAL DUAL ITER

Number of primal dual simplex iterations during the last optimization.

MSK IINF SIM PRIMAL HOTSTART

If 1 then the primal simplex algorithm is solving from an advanced basis.

11.13. INTEGER INFORMATION ITEMS. 255

MSK IINF SIM PRIMAL HOTSTART LU

If 1 then a valid basis factorization of full rank was located and used by the primal simplex
algorithm.

MSK IINF SIM PRIMAL INF ITER

The number of iterations taken with primal infeasibility.

MSK IINF SIM PRIMAL ITER

Number of primal simplex iterations during the last optimization.

MSK IINF SIM SOLVE DUAL

Is non-zero if dual problem is solved.

MSK IINF SOL BAS PROSTA

Problem status of the basic solution. Updated after each optimization.

MSK IINF SOL BAS SOLSTA

Solution status of the basic solution. Updated after each optimization.

MSK IINF SOL INT PROSTA

Deprecated.

MSK IINF SOL INT SOLSTA

Degrecated.

MSK IINF SOL ITG PROSTA

Problem status of the integer solution. Updated after each optimization.

MSK IINF SOL ITG SOLSTA

Solution status of the integer solution. Updated after each optimization.

MSK IINF SOL ITR PROSTA

Problem status of the interior-point solution. Updated after each optimization.

MSK IINF SOL ITR SOLSTA

Solution status of the interior-point solution. Updated after each optimization.

MSK IINF STO NUM A CACHE FLUSHES

Number of times the cache of A elements is flushed. A large number implies that maxnumanz is
too small as well as an inefficient usage of MOSEK.

MSK IINF STO NUM A REALLOC

Number of times the storage for storing A has been changed. A large value may indicates that
memory fragmentation may occur.

MSK IINF STO NUM A TRANSPOSES

Number of times the A matrix is transposed. A large number implies that maxnumanz is too small
or an inefficient usage of MOSEK. This will occur in particular if the code alternate between
accessing rows and columns of A.

256 CHAPTER 11. API CONSTANTS

11.14 Information item types

MSK INF DOU TYPE

Is a double information type.

MSK INF INT TYPE

Is an integer.

MSK INF LINT TYPE

Is a long integer.

11.15 Hot-start type employed by the interior-point optimiz-
ers.

MSK INTPNT HOTSTART NONE

The interior-point optimizer performs a coldstart.

MSK INTPNT HOTSTART PRIMAL

The interior-point optimizer exploits the primal solution only.

MSK INTPNT HOTSTART DUAL

The interior-point optimizer exploits the dual solution only.

MSK INTPNT HOTSTART PRIMAL DUAL

The interior-point optimizer exploits both the primal and dual solution.

11.16 Input/output modes

MSK IOMODE READ

The file is read-only.

MSK IOMODE WRITE

The file is write-only. If the file exists then it is truncated when it is opened. Otherwise it is
created when it is opened.

MSK IOMODE READWRITE

The file is to read and written.

11.17. LANGUAGE SELECTION CONSTANTS 257

11.17 Language selection constants

MSK LANG ENG

English language selection

MSK LANG DAN

Danish language selection

11.18 Long integer information items.

MSK LIINF BI CLEAN DUAL DEG ITER

Number of dual degenerate clean iterations performed in the basis identification.

MSK LIINF BI CLEAN DUAL ITER

Number of dual clean iterations performed in the basis identification.

MSK LIINF BI CLEAN PRIMAL DEG ITER

Number of primal degenerate clean iterations performed in the basis identification.

MSK LIINF BI CLEAN PRIMAL DUAL DEG ITER

Number of primal-dual degenerate clean iterations performed in the basis identification.

MSK LIINF BI CLEAN PRIMAL DUAL ITER

Number of primal-dual clean iterations performed in the basis identification.

MSK LIINF BI CLEAN PRIMAL DUAL SUB ITER

Number of primal-dual subproblem clean iterations performed in the basis identification.

MSK LIINF BI CLEAN PRIMAL ITER

Number of primal clean iterations performed in the basis identification.

MSK LIINF BI DUAL ITER

Number of dual pivots performed in the basis identification.

MSK LIINF BI PRIMAL ITER

Number of primal pivots performed in the basis identification.

MSK LIINF INTPNT FACTOR NUM NZ

Number of non-zeros in factorization.

MSK LIINF MIO INTPNT ITER

Number of interior-point iterations performed by the mixed-integer optimizer.

MSK LIINF MIO SIMPLEX ITER

Number of simplex iterations performed by the mixed-integer optimizer.

258 CHAPTER 11. API CONSTANTS

MSK LIINF RD NUMANZ

Number of non-zeros in A that is read.

MSK LIINF RD NUMQNZ

Number of Q non-zeros.

11.19 Mark

MSK MARK LO

The lower bound is selected for sensitivity analysis.

MSK MARK UP

The upper bound is selected for sensitivity analysis.

11.20 Continuous mixed-integer solution type

MSK MIO CONT SOL NONE

No interior-point or basic solution are reported when the mixed-integer optimizer is used.

MSK MIO CONT SOL ROOT

The reported interior-point and basic solutions are a solution to the root node problem when
mixed-integer optimizer is used.

MSK MIO CONT SOL ITG

The reported interior-point and basic solutions are a solution to the problem with all integer
variables fixed at the value they have in the integer solution. A solution is only reported in case
the problem has a primal feasible solution.

MSK MIO CONT SOL ITG REL

In case the problem is primal feasible then the reported interior-point and basic solutions are
a solution to the problem with all integer variables fixed at the value they have in the integer
solution. If the problem is primal infeasible, then the solution to the root node problem is
reported.

11.21 Integer restrictions

MSK MIO MODE IGNORED

The integer constraints are ignored and the problem is solved as a continuous problem.

MSK MIO MODE SATISFIED

Integer restrictions should be satisfied.

11.22. MIXED-INTEGER NODE SELECTION TYPES 259

MSK MIO MODE LAZY

Integer restrictions should be satisfied if an optimizer is available for the problem.

11.22 Mixed-integer node selection types

MSK MIO NODE SELECTION FREE

The optimizer decides the node selection strategy.

MSK MIO NODE SELECTION FIRST

The optimizer employs a depth first node selection strategy.

MSK MIO NODE SELECTION BEST

The optimizer employs a best bound node selection strategy.

MSK MIO NODE SELECTION WORST

The optimizer employs a worst bound node selection strategy.

MSK MIO NODE SELECTION HYBRID

The optimizer employs a hybrid strategy.

MSK MIO NODE SELECTION PSEUDO

The optimizer employs selects the node based on a pseudo cost estimate.

11.23 MPS file format type

MSK MPS FORMAT STRICT

It is assumed that the input file satisfies the MPS format strictly.

MSK MPS FORMAT RELAXED

It is assumed that the input file satisfies a slightly relaxed version of the MPS format.

MSK MPS FORMAT FREE

It is assumed that the input file satisfies the free MPS format. This implies that spaces are not
allowed in names. Otherwise the format is free.

11.24 Message keys

MSK MSG READING FILE

MSK MSG WRITING FILE

MSK MSG MPS SELECTED

260 CHAPTER 11. API CONSTANTS

11.25 Cone types

MSK NAME TYPE GEN

General names. However, no duplicate and blank names are allowed.

MSK NAME TYPE MPS

MPS type names.

MSK NAME TYPE LP

LP type names.

11.26 Objective sense types

MSK OBJECTIVE SENSE MINIMIZE

The problem should be minimized.

MSK OBJECTIVE SENSE MAXIMIZE

The problem should be maximized.

11.27 On/off

MSK OFF

Switch the option off.

MSK ON

Switch the option on.

11.28 Optimizer types

MSK OPTIMIZER FREE

The optimizer is chosen automatically.

MSK OPTIMIZER INTPNT

The interior-point optimizer is used.

MSK OPTIMIZER CONIC

The optimizer for problems having conic constraints.

MSK OPTIMIZER PRIMAL SIMPLEX

The primal simplex optimizer is used.

11.29. ORDERING STRATEGIES 261

MSK OPTIMIZER DUAL SIMPLEX

The dual simplex optimizer is used.

MSK OPTIMIZER PRIMAL DUAL SIMPLEX

The primal dual simplex optimizer is used.

MSK OPTIMIZER FREE SIMPLEX

One of the simplex optimizers is used.

MSK OPTIMIZER NETWORK PRIMAL SIMPLEX

The network primal simplex optimizer is used. It is only applicable to pute network problems.

MSK OPTIMIZER MIXED INT CONIC

The mixed-integer optimizer for conic and linear problems.

MSK OPTIMIZER MIXED INT

The mixed-integer optimizer.

MSK OPTIMIZER CONCURRENT

The optimizer for nonconvex nonlinear problems.

MSK OPTIMIZER NONCONVEX

The optimizer for nonconvex nonlinear problems.

11.29 Ordering strategies

MSK ORDER METHOD FREE

The ordering method is chosen automatically.

MSK ORDER METHOD APPMINLOC

Approximate minimum local fill-in ordering is employed.

MSK ORDER METHOD EXPERIMENTAL

This option should not be used.

MSK ORDER METHOD TRY GRAPHPAR

Always try the the graph partitioning based ordering.

MSK ORDER METHOD FORCE GRAPHPAR

Always use the graph partitioning based ordering even if it is worse that the approximate mini-
mum local fill ordering.

MSK ORDER METHOD NONE

No ordering is used.

262 CHAPTER 11. API CONSTANTS

11.30 Parameter type

MSK PAR INVALID TYPE

Not a valid parameter.

MSK PAR DOU TYPE

Is a double parameter.

MSK PAR INT TYPE

Is an integer parameter.

MSK PAR STR TYPE

Is a string parameter.

11.31 Presolve method.

MSK PRESOLVE MODE OFF

The problem is not presolved before it is optimized.

MSK PRESOLVE MODE ON

The problem is presolved before it is optimized.

MSK PRESOLVE MODE FREE

It is decided automatically whether to presolve before the problem is optimized.

11.32 Problem data items

MSK PI VAR

Item is a variable.

MSK PI CON

Item is a constraint.

MSK PI CONE

Item is a cone.

11.33 Problem types

MSK PROBTYPE LO

The problem is a linear optimization problem.

11.34. PROBLEM STATUS KEYS 263

MSK PROBTYPE QO

The problem is a quadratic optimization problem.

MSK PROBTYPE QCQO

The problem is a quadratically constrained optimization problem.

MSK PROBTYPE GECO

General convex optimization.

MSK PROBTYPE CONIC

A conic optimization.

MSK PROBTYPE MIXED

General nonlinear constraints and conic constraints. This combination can not be solved by
MOSEK.

11.34 Problem status keys

MSK PRO STA UNKNOWN

Unknown problem status.

MSK PRO STA PRIM AND DUAL FEAS

The problem is primal and dual feasible.

MSK PRO STA PRIM FEAS

The problem is primal feasible.

MSK PRO STA DUAL FEAS

The problem is dual feasible.

MSK PRO STA PRIM INFEAS

The problem is primal infeasible.

MSK PRO STA DUAL INFEAS

The problem is dual infeasible.

MSK PRO STA PRIM AND DUAL INFEAS

The problem is primal and dual infeasible.

MSK PRO STA ILL POSED

The problem is ill-posed. For example, it may be primal and dual feasible but have a positive
duality gap.

MSK PRO STA NEAR PRIM AND DUAL FEAS

The problem is at least nearly primal and dual feasible.

264 CHAPTER 11. API CONSTANTS

MSK PRO STA NEAR PRIM FEAS

The problem is at least nearly primal feasible.

MSK PRO STA NEAR DUAL FEAS

The problem is at least nearly dual feasible.

MSK PRO STA PRIM INFEAS OR UNBOUNDED

The problem is either primal infeasible or unbounded. This may occur for mixed-integer prob-
lems.

11.35 Response code type

MSK RESPONSE OK

The response code is OK.

MSK RESPONSE WRN

The response code is a warning.

MSK RESPONSE TRM

The response code is an optimizer termination status.

MSK RESPONSE ERR

The response code is an error.

MSK RESPONSE UNK

The response code does not belong to any class.

11.36 Scaling type

MSK SCALING METHOD POW2

Scales only with power of 2 leaving the mantissa untouched.

MSK SCALING METHOD FREE

The optimizer chooses the scaling heuristic.

11.37 Scaling type

MSK SCALING FREE

The optimizer chooses the scaling heuristic.

11.38. SENSITIVITY TYPES 265

MSK SCALING NONE

No scaling is performed.

MSK SCALING MODERATE

A conservative scaling is performed.

MSK SCALING AGGRESSIVE

A very aggressive scaling is performed.

11.38 Sensitivity types

MSK SENSITIVITY TYPE BASIS

Basis sensitivity analysis is performed.

MSK SENSITIVITY TYPE OPTIMAL PARTITION

Optimal partition sensitivity analysis is performed.

11.39 Degeneracy strategies

MSK SIM DEGEN NONE

The simplex optimizer should use no degeneration strategy.

MSK SIM DEGEN FREE

The simplex optimizer chooses the degeneration strategy.

MSK SIM DEGEN AGGRESSIVE

The simplex optimizer should use an aggressive degeneration strategy.

MSK SIM DEGEN MODERATE

The simplex optimizer should use a moderate degeneration strategy.

MSK SIM DEGEN MINIMUM

The simplex optimizer should use a minimum degeneration strategy.

11.40 Exploit duplicate columns.

MSK SIM EXPLOIT DUPVEC OFF

Disallow the simplex optimizer to exploit duplicated columns.

MSK SIM EXPLOIT DUPVEC ON

Allow the simplex optimizer to exploit duplicated columns.

266 CHAPTER 11. API CONSTANTS

MSK SIM EXPLOIT DUPVEC FREE

The simplex optimizer can choose freely.

11.41 Hot-start type employed by the simplex optimizer

MSK SIM HOTSTART NONE

The simplex optimizer performs a coldstart.

MSK SIM HOTSTART FREE

The simplex optimize chooses the hot-start type.

MSK SIM HOTSTART STATUS KEYS

Only the status keys of the constraints and variables are used to choose the type of hot-start.

11.42 Problem reformulation.

MSK SIM REFORMULATION OFF

Disallow the simplex optimizer to reformulate the problem.

MSK SIM REFORMULATION ON

Allow the simplex optimizer to reformulate the problem.

MSK SIM REFORMULATION FREE

The simplex optimizer can choose freely.

MSK SIM REFORMULATION AGGRESSIVE

The simplex optimizer should use an aggressive reformulation strategy.

11.43 Simplex selection strategy

MSK SIM SELECTION FREE

The optimizer chooses the pricing strategy.

MSK SIM SELECTION FULL

The optimizer uses full pricing.

MSK SIM SELECTION ASE

The optimizer uses approximate steepest-edge pricing.

MSK SIM SELECTION DEVEX

The optimizer uses devex steepest-edge pricing (or if it is not available an approximate steep-edge
selection).

11.44. SOLUTION ITEMS 267

MSK SIM SELECTION SE

The optimizer uses steepest-edge selection (or if it is not available an approximate steep-edge
selection).

MSK SIM SELECTION PARTIAL

The optimizer uses a partial selection approach. The approach is usually beneficial if the number
of variables is much larger than the number of constraints.

11.44 Solution items

MSK SOL ITEM XC

Solution for the constraints.

MSK SOL ITEM XX

Variable solution.

MSK SOL ITEM Y

Lagrange multipliers for equations.

MSK SOL ITEM SLC

Lagrange multipliers for lower bounds on the constraints.

MSK SOL ITEM SUC

Lagrange multipliers for upper bounds on the constraints.

MSK SOL ITEM SLX

Lagrange multipliers for lower bounds on the variables.

MSK SOL ITEM SUX

Lagrange multipliers for upper bounds on the variables.

MSK SOL ITEM SNX

Lagrange multipliers corresponding to the conic constraints on the variables.

11.45 Solution status keys

MSK SOL STA UNKNOWN

Status of the solution is unknown.

MSK SOL STA OPTIMAL

The solution is optimal.

268 CHAPTER 11. API CONSTANTS

MSK SOL STA PRIM FEAS

The solution is primal feasible.

MSK SOL STA DUAL FEAS

The solution is dual feasible.

MSK SOL STA PRIM AND DUAL FEAS

The solution is both primal and dual feasible.

MSK SOL STA PRIM INFEAS CER

The solution is a certificate of primal infeasibility.

MSK SOL STA DUAL INFEAS CER

The solution is a certificate of dual infeasibility.

MSK SOL STA NEAR OPTIMAL

The solution is nearly optimal.

MSK SOL STA NEAR PRIM FEAS

The solution is nearly primal feasible.

MSK SOL STA NEAR DUAL FEAS

The solution is nearly dual feasible.

MSK SOL STA NEAR PRIM AND DUAL FEAS

The solution is nearly both primal and dual feasible.

MSK SOL STA NEAR PRIM INFEAS CER

The solution is almost a certificate of primal infeasibility.

MSK SOL STA NEAR DUAL INFEAS CER

The solution is almost a certificate of dual infeasibility.

MSK SOL STA INTEGER OPTIMAL

The primal solution is integer optimal.

MSK SOL STA NEAR INTEGER OPTIMAL

The primal solution is near integer optimal.

11.46. SOLUTION TYPES 269

11.46 Solution types

MSK SOL ITR

The interior solution.

MSK SOL BAS

The basic solution.

MSK SOL ITG

The integer solution.

11.47 Solve primal or dual form

MSK SOLVE FREE

The optimizer is free to solve either the primal or the dual problem.

MSK SOLVE PRIMAL

The optimizer should solve the primal problem.

MSK SOLVE DUAL

The optimizer should solve the dual problem.

11.48 Status keys

MSK SK UNK

The status for the constraint or variable is unknown.

MSK SK BAS

The constraint or variable is in the basis.

MSK SK SUPBAS

The constraint or variable is super basic.

MSK SK LOW

The constraint or variable is at its lower bound.

MSK SK UPR

The constraint or variable is at its upper bound.

MSK SK FIX

The constraint or variable is fixed.

MSK SK INF

The constraint or variable is infeasible in the bounds.

270 CHAPTER 11. API CONSTANTS

11.49 Starting point types

MSK STARTING POINT FREE

The starting point is chosen automatically.

MSK STARTING POINT GUESS

The optimizer guesses a starting point.

MSK STARTING POINT CONSTANT

The optimizer constructs a starting point by assigning a constant value to all primal and dual
variables. This starting point is normally robust.

MSK STARTING POINT SATISFY BOUNDS

The starting point is choosen to satisfy all the simple bounds on nonlinear variables. If this
starting point is employed, then more care than usual should employed when choosing the bounds
on the nonlinear variables. In particular very tight bounds should be avoided.

11.50 Stream types

MSK STREAM LOG

Log stream. Contains the aggregated contents of all other streams. This means that a message
written to any other stream will also be written to this stream.

MSK STREAM MSG

Message stream. Log information relating to performance and progress of the optimization is
written to this stream.

MSK STREAM ERR

Error stream. Error messages are written to this stream.

MSK STREAM WRN

Warning stream. Warning messages are written to this stream.

11.51 Cone types

MSK SYMMAT TYPE SPARSE

Sparse symmetric matrix.

11.52. INTEGER VALUES 271

11.52 Integer values

MSK LICENSE BUFFER LENGTH

The length of a license key buffer.

MSK MAX STR LEN

Maximum string length allowed in MOSEK.

11.53 Variable types

MSK VAR TYPE CONT

Is a continuous variable.

MSK VAR TYPE INT

Is an integer variable.

11.54 XML writer output mode

MSK WRITE XML MODE ROW

Write in row order.

MSK WRITE XML MODE COL

Write in column order.

272 CHAPTER 11. API CONSTANTS

Chapter 12

MOSEK Command line tool

12.1 Introduction

The MOSEK command line tool is used to solve optimization problems from the operating system
command line. It is invoked as follows

mosek [options] [filename]

where both [options] and [filename] are optional arguments. [filename] is a file describing the
optimization problems and is either a MPS file or AMPL nl file. [options] consists of command line
arguments that modifies the behavior of MOSEK.

12.2 Command line arguments

The following list shows the possible command-line arguments for MOSEK:

-a

MOSEK runs in AMPL mode.

-AMPL

The input file is an AMPL nl file.

-basi name

Input basis solution file name.

-baso name

Output basis solution file name.

-brni name

name is the filename of a variable branch order file to be read.

273

274 CHAPTER 12. MOSEK COMMAND LINE TOOL

-brno name

name is the filename of a variable branch order file to be written.

-d name val

Assigns the value val to the parameter named name.

-dbgmem name

Name of memory debug file. Write memory debug information to file name.

-f

Complete license information is printed.

-h

Prints out help information for MOSEK.

-inti name

Input integer solution file name.

-into name

Output integer solution file name.

-itri name

Input interior point solution file name.

-itro name

Output interior point solution file name.

-info name

Infeasible subproblem output file name.

-infrepo name

Feasibility reparation output file

-pari name

Input parameter file name. Equivalent to -p.

-paro name

Output parameter file name.

-L name

name of the license file.

-l name

name of the license file.

-max

Forces MOSEK to maximize the objective.

12.3. THE PARAMETER FILE 275

-min

Forces MOSEK to minimize the objective.

-n

Ignore errors in subsequent paramter settings.

-p name

New parameter settings are read from a file named name.

-q name

Name of a optional log file.

-r

If the option is present, the program returns -1 if an error ocurred otherwise 0.

-rout name

If the option is present, the program writes the return code to file ’name’.

-sen file

Perform sensitivity analysis based on file.

-silent

As little information as possible is send to the terminal.

-v

The MOSEK version number is printed and no optimization is performed.

-w

If this options is included, then MOSEK will wait for a license.

-=

Lists the parameter database.

-?

Same as the -h option.

12.3 The parameter file

Occasionally system or algorithmic parameters in MOSEK should be changed be the user. One way
of the changing parameters is to use a so-called parameter file which is a plain text file. It can for
example can have the format

BEGIN MOSEK

% This is a comment.

% The subsequent line tells MOSEK that an optimal

% basis should be computed by the interior-point optimizer.

276 CHAPTER 12. MOSEK COMMAND LINE TOOL

MSK IPAR INTPNT BASIS MSK BI ALWAYS

MSK DPAR INTPNT TOL PFEAS 1.0e-9

END MOSEK

Note that the file begins with an BEGIN MOSEK and is terminated with an END MOSEK, this is required.
Moreover, everything that appears after an % is considered to be a comment and is ignored. Similarly,
empty lines are ignored. The important lines are those which begins with a valid MOSEK parameter
name such as MSK IPAR INTPNT BASIS. Immediately after parameter name follows the new value for
the parameter. All the MOSEK parameter names are listed in Appendix 9.

12.3.1 Using the parameter file

The parameter file can be given any name, but let us assume it has the name mosek.par. If MOSEK
should use the parameter settings in that file, then -p mosek.par should be on the command line
when MOSEK is invoked. An example of such a command line is

mosek -p mosek.par afiro.mps

Chapter 13

The MPS file format

MOSEK supports the standard MPS format with some extensions. For a detailed description of the
MPS format see the book by Nazareth [15].

13.1 MPS file structure

The version of the MPS format supported by MOSEK allows specification of an optimization problem
on the form

lc ≤ Ax+ q(x) ≤ uc,
lx ≤ x ≤ ux,

x ∈ C,
xJ integer,

(13.1)

where

• x ∈ Rn is the vector of decision variables.

• A ∈ Rm×n is the constraint matrix.

• lc ∈ Rm is the lower limit on the activity for the constraints.

• uc ∈ Rm is the upper limit on the activity for the constraints.

• lx ∈ Rn is the lower limit on the activity for the variables.

• ux ∈ Rn is the upper limit on the activity for the variables.

• q : Rn → R is a vector of quadratic functions. Hence,

qi(x) = 1/2xTQix

where it is assumed that

277

278 CHAPTER 13. THE MPS FILE FORMAT

Qi = (Qi)T .

Please note the explicit 1/2 in the quadratic term and that Qi is required to be symmetric.

• C is a convex cone.

• J ⊆ {1, 2, . . . , n} is an index set of the integer-constrained variables.

An MPS file with one row and one column can be illustrated like this:

* 1 2 3 4 5 6

*23456789012345678901234567890123456789012345678901234567890

NAME [name]

OBJSENSE

[objsense]

OBJNAME

[objname]

ROWS

? [cname1]

COLUMNS

[vname1] [cname1] [value1] [vname3] [value2]

RHS

[name] [cname1] [value1] [cname2] [value2]

RANGES

[name] [cname1] [value1] [cname2] [value2]

QSECTION [cname1]

[vname1] [vname2] [value1] [vname3] [value2]

BOUNDS

?? [name] [vname1] [value1]

CSECTION [kname1] [value1] [ktype]

[vname1]

ENDATA

Here the names in capitals are keywords of the MPS format and names in brackets are custom defined
names or values. A couple of notes on the structure:

Fields:

All items surrounded by brackets appear in fields. The fields named ”valueN” are numerical
values. Hence, they must have the format

[+|-]XXXXXXX.XXXXXX[[e|E][+|-]XXX]

where

X = [0|1|2|3|4|5|6|7|8|9].

Sections:

The MPS file consists of several sections where the names in capitals indicate the beginning of a
new section. For example, COLUMNS denotes the beginning of the columns section.

Comments:

Lines starting with an ”*” are comment lines and are ignored by MOSEK.

Keys:

The question marks represent keys to be specified later.

13.1. MPS FILE STRUCTURE 279

Extensions:

The sections QSECTION and CSECTION are MOSEK specific extensions of the MPS format.

The standard MPS format is a fixed format, i.e. everything in the MPS file must be within certain
fixed positions. MOSEK also supports a free format. See Section 13.5 for details.

13.1.1 Linear example lo1.mps

A concrete example of a MPS file is presented below:

* File: lo1.mps

NAME lo1

OBJSENSE

MAX

ROWS

N obj

E c1

G c2

L c3

COLUMNS

x1 obj 3

x1 c1 3

x1 c2 2

x2 obj 1

x2 c1 1

x2 c2 1

x2 c3 2

x3 obj 5

x3 c1 2

x3 c2 3

x4 obj 1

x4 c2 1

x4 c3 3

RHS

rhs c1 30

rhs c2 15

rhs c3 25

RANGES

BOUNDS

UP bound x2 10

ENDATA

Subsequently each individual section in the MPS format is discussed.

13.1.2 NAME

In this section a name ([name]) is assigned to the problem.

13.1.3 OBJSENSE (optional)

This is an optional section that can be used to specify the sense of the objective function. The OBJSENSE
section contains one line at most which can be one of the following

280 CHAPTER 13. THE MPS FILE FORMAT

MIN

MINIMIZE

MAX

MAXIMIZE

It should be obvious what the implication is of each of these four lines.

13.1.4 OBJNAME (optional)

This is an optional section that can be used to specify the name of the row that is used as objective
function. The OBJNAME section contains one line at most which has the form

objname

objname should be a valid row name.

13.1.5 ROWS

A record in the ROWS section has the form

? [cname1]

where the requirements for the fields are as follows:

Field Starting Maximum Re- Description
position width quired

? 2 1 Yes Constraint key
[cname1] 5 8 Yes Constraint name

Hence, in this section each constraint is assigned an unique name denoted by [cname1]. Please note
that [cname1] starts in position 5 and the field can be at most 8 characters wide. An initial key (?)
must be present to specify the type of the constraint. The key can have the values E, G, L, or N with
the following interpretation:

Constraint lci uci
type
E finite lci
G finite ∞
L −∞ finite
N −∞ ∞

In the MPS format an objective vector is not specified explicitly, but one of the constraints having the
key N will be used as the objective vector c . In general, if multiple N type constraints are specified,
then the first will be used as the objective vector c .

13.1.6 COLUMNS

In this section the elements of A are specified using one or more records having the form

13.1. MPS FILE STRUCTURE 281

[vname1] [cname1] [value1] [cname2] [value2]

where the requirements for each field are as follows:

Field Starting Maximum Re- Description
position width quired

[vname1] 5 8 Yes Variable name
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

Hence, a record specifies one or two elements aij of A using the principle that [vname1] and [cname1]

determines j and i respectively. Please note that [cname1] must be a constraint name specified in
the ROWS section. Finally, [value1] denotes the numerical value of aij . Another optional element
is specified by [cname2], and [value2] for the variable specified by [vname1]. Some important
comments are:

• All elements belonging to one variable must be grouped together.

• Zero elements of A should not be specified.

• At least one element for each variable should be specified.

13.1.7 RHS (optional)

A record in this section has the format

[name] [cname1] [value1] [cname2] [value2]

where the requirements for each field are as follows:

Field Starting Maximum Re- Description
position width quired

[name] 5 8 Yes Name of the RHS vector
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

The interpretation of a record is that [name] is the name of the RHS vector to be specified. In general,
several vectors can be specified. [cname1] denotes a constraint name previously specified in the ROWS

section. Now, assume that this name has been assigned to the i th constraint and v1 denotes the value
specified by [value1], then the interpretation of v1 is:

282 CHAPTER 13. THE MPS FILE FORMAT

Constraint lci uci
type
E v1 v1
G v1
L v1
N

An optional second element is specified by [cname2] and [value2] and is interpreted in the same way.
Please note that it is not necessary to specify zero elements, because elements are assumed to be zero.

13.1.8 RANGES (optional)

A record in this section has the form

[name] [cname1] [value1] [cname2] [value2]

where the requirements for each fields are as follows:

Field Starting Maximum Re- Description
position width quired

[name] 5 8 Yes Name of the RANGE vector
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

The records in this section are used to modify the bound vectors for the constraints, i.e. the values
in lc and uc . A record has the following interpretation: [name] is the name of the RANGE vector and
[cname1] is a valid constraint name. Assume that [cname1] is assigned to the i th constraint and let
v1 be the value specified by [value1], then a record has the interpretation:

Constraint Sign of v1 lci uci
type
E - uci + v1
E + lci + v1
G - or + lci + |v1|
L - or + uci − |v1|
N

13.1.9 QSECTION (optional)

Within the QSECTION the label [cname1] must be a constraint name previously specified in the ROWS

section. The label [cname1] denotes the constraint to which the quadratic term belongs. A record in
the QSECTION has the form

[vname1] [vname2] [value1] [vname3] [value2]

where the requirements for each field are:

13.1. MPS FILE STRUCTURE 283

Field Starting Maximum Re- Description
position width quired

[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value
[vname3] 40 8 No Variable name
[value2] 50 12 No Numerical value

A record specifies one or two elements in the lower triangular part of the Qi matrix where [cname1]

specifies the i . Hence, if the names [vname1] and [vname2] have been assigned to the k th and j th
variable, then Qikj is assigned the value given by [value1] An optional second element is specified in
the same way by the fields [vname1], [vname3], and [value2].

The example

minimize − x2 + 0.5(2x21 − 2x1x3 + 0.2x22 + 2x23)
subject to x1 + x2 + x3 ≥ 1,

x ≥ 0

has the following MPS file representation

* File: qo1.mps

NAME qo1

ROWS

N obj

G c1

COLUMNS

x1 c1 1.0

x2 obj -1.0

x2 c1 1.0

x3 c1 1.0

RHS

rhs c1 1.0

QSECTION obj

x1 x1 2.0

x1 x3 -1.0

x2 x2 0.2

x3 x3 2.0

ENDATA

Regarding the QSECTIONs please note that:

• Only one QSECTION is allowed for each constraint.

• The QSECTIONs can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QSECTION must already be specified in the COLUMNS section.

• All entries specified in a QSECTION are assumed to belong to the lower triangular part of the
quadratic term of Q .

284 CHAPTER 13. THE MPS FILE FORMAT

13.1.10 BOUNDS (optional)

In the BOUNDS section changes to the default bounds vectors lx and ux are specified. The default
bounds vectors are lx = 0 and ux = ∞ . Moreover, it is possible to specify several sets of bound
vectors. A record in this section has the form

?? [name] [vname1] [value1]

where the requirements for each field are:

Field Starting Maximum Re- Description
position width quired

?? 2 2 Yes Bound key
[name] 5 8 Yes Name of the BOUNDS vector
[vname1] 15 8 Yes Variable name
[value1] 25 12 No Numerical value

Hence, a record in the BOUNDS section has the following interpretation: [name] is the name of the
bound vector and [vname1] is the name of the variable which bounds are modified by the record. ??

and [value1] are used to modify the bound vectors according to the following table:

?? lxj uxj Made integer
(added to J)

FR −∞ ∞ No
FX v1 v1 No
LO v1 unchanged No
MI −∞ unchanged No
PL unchanged ∞ No
UP unchanged v1 No
BV 0 1 Yes
LI dv1e unchanged Yes
UI unchanged bv1c Yes

v1 is the value specified by [value1].

13.1.11 CSECTION (optional)

The purpose of the CSECTION is to specify the constraint

x ∈ C.
in (13.1).

It is assumed that C satisfies the following requirements. Let

xt ∈ Rn
t

, t = 1, . . . , k

be vectors comprised of parts of the decision variables x so that each decision variable is a member of
exactly one vector xt , for example

13.1. MPS FILE STRUCTURE 285

x1 =

 x1
x4
x7

 and x2 =

x6
x5
x3
x2

 .
Next define

C :=
{
x ∈ Rn : xt ∈ Ct, t = 1, . . . , k

}
where Ct must have one of the following forms

• R set:

Ct = {x ∈ Rn
t

}.

• Quadratic cone:

Ct =

x ∈ Rn
t

: x1 ≥

√√√√ nt∑
j=2

x2j

 . (13.2)

• Rotated quadratic cone:

Ct =

x ∈ Rn
t

: 2x1x2 ≥
nt∑
j=3

x2j , x1, x2 ≥ 0

 . (13.3)

In general, only quadratic and rotated quadratic cones are specified in the MPS file whereas membership
of the R set is not. If a variable is not a member of any other cone then it is assumed to be a member
of an R cone.

Next, let us study an example. Assume that the quadratic cone

x4 ≥
√
x25 + x28 (13.4)

and the rotated quadratic cone

2x3x7 ≥ x21 + x20, x3, x7 ≥ 0, (13.5)

should be specified in the MPS file. One CSECTION is required for each cone and they are specified as
follows:

* 1 2 3 4 5 6

*23456789012345678901234567890123456789012345678901234567890

CSECTION konea 0.0 QUAD

x4

x5

x8

286 CHAPTER 13. THE MPS FILE FORMAT

CSECTION koneb 0.0 RQUAD

x7

x3

x1

x0

This first CSECTION specifies the cone (13.4) which is given the name konea. This is a quadratic cone
which is specified by the keyword QUAD in the CSECTION header. The 0.0 value in the CSECTION header
is not used by the QUAD cone.

The second CSECTION specifies the rotated quadratic cone (13.5). Please note the keyword RQUAD in
the CSECTION which is used to specify that the cone is a rotated quadratic cone instead of a quadratic
cone. The 0.0 value in the CSECTION header is not used by the RQUAD cone.

In general, a CSECTION header has the format

CSECTION [kname1] [value1] [ktype]

where the requirement for each field are as follows:

Field Starting Maximum Re- Description
position width quired

[kname1] 5 8 Yes Name of the cone
[value1] 15 12 No Cone parameter
[ktype] 25 Yes Type of the cone.

The possible cone type keys are:

Cone type key Members Interpretation.
QUAD ≥ 1 Quadratic cone i.e. (13.2).
RQUAD ≥ 2 Rotated quadratic cone i.e. (13.3).

Please note that a quadratic cone must have at least one member whereas a rotated quadratic cone
must have at least two members. A record in the CSECTION has the format

[vname1]

where the requirements for each field are

Field Starting Maximum Re- Description
position width quired

[vname1] 2 8 Yes A valid variable name

The most important restriction with respect to the CSECTION is that a variable must occur in only one
CSECTION.

13.1.12 ENDATA

This keyword denotes the end of the MPS file.

13.2. INTEGER VARIABLES 287

13.2 Integer variables

Using special bound keys in the BOUNDS section it is possible to specify that some or all of the variables
should be integer-constrained i.e. be members of J . However, an alternative method is available.

This method is available only for backward compatibility and we recommend that it is not used. This
method requires that markers are placed in the COLUMNS section as in the example:

COLUMNS

x1 obj -10.0 c1 0.7

x1 c2 0.5 c3 1.0

x1 c4 0.1

* Start of integer-constrained variables.

MARK000 ’MARKER’ ’INTORG’

x2 obj -9.0 c1 1.0

x2 c2 0.8333333333 c3 0.66666667

x2 c4 0.25

x3 obj 1.0 c6 2.0

MARK001 ’MARKER’ ’INTEND’

* End of integer-constrained variables.

Please note that special marker lines are used to indicate the start and the end of the integer variables.
Furthermore be aware of the following

• IMPORTANT: All variables between the markers are assigned a default lower bound of 0 and
a default upper bound of 1. This may not be what is intended. If it is not intended, the
correct bounds should be defined in the BOUNDS section of the MPS formatted file.

• MOSEK ignores field 1, i.e. MARK0001 and MARK001, however, other optimization systems require
them.

• Field 2, i.e. ’MARKER’, must be specified including the single quotes. This implies that no row
can be assigned the name ’MARKER’.

• Field 3 is ignored and should be left blank.

• Field 4, i.e. ’INTORG’ and ’INTEND’, must be specified.

• It is possible to specify several such integer marker sections within the COLUMNS section.

13.3 General limitations

• An MPS file should be an ASCII file.

13.4 Interpretation of the MPS format

Several issues related to the MPS format are not well-defined by the industry standard. However,
MOSEK uses the following interpretation:

288 CHAPTER 13. THE MPS FILE FORMAT

• If a matrix element in the COLUMNS section is specified multiple times, then the multiple entries
are added together.

• If a matrix element in a QSECTION section is specified multiple times, then the multiple entries
are added together.

13.5 The free MPS format

MOSEK supports a free format variation of the MPS format. The free format is similar to the MPS file
format but less restrictive, e.g. it allows longer names. However, it also presents two main limitations:

• By default a line in the MPS file must not contain more than 1024 characters. However, by mod-
ifying the parameter MSK IPAR READ MPS WIDTH an arbitrary large line width will be accepted.

• A name must not contain any blanks.

To use the free MPS format instead of the default MPS format the MOSEK parameter MSK IPAR READ MPS FORMAT

should be changed.

Chapter 14

The LP file format

MOSEK supports the LP file format with some extensions i.e. MOSEK can read and write LP
formatted files.

Please note that the LP format is not a completely well-defined standard and hence different optimiza-
tion packages may interpret the same LP file in slightly different ways. MOSEK tries to emulate as
closely as possible CPLEX’s behavior, but tries to stay backward compatible.

The LP file format can specify problems on the form

minimize/maximize cTx+
1

2
qo(x)

subject to lc ≤ Ax+
1

2
q(x) ≤ uc,

lx ≤ x ≤ ux,
xJ integer,

where

• x ∈ Rn is the vector of decision variables.

• c ∈ Rn is the linear term in the objective.

• qo :∈ Rn → R is the quadratic term in the objective where

qo(x) = xTQox

and it is assumed that

Qo = (Qo)T .

• A ∈ Rm×n is the constraint matrix.

• lc ∈ Rm is the lower limit on the activity for the constraints.

289

290 CHAPTER 14. THE LP FILE FORMAT

• uc ∈ Rm is the upper limit on the activity for the constraints.

• lx ∈ Rn is the lower limit on the activity for the variables.

• ux ∈ Rn is the upper limit on the activity for the variables.

• q : Rn → R is a vector of quadratic functions. Hence,

qi(x) = xTQix

where it is assumed that

Qi = (Qi)T .

• J ⊆ {1, 2, . . . , n} is an index set of the integer constrained variables.

14.1 The sections

An LP formatted file contains a number of sections specifying the objective, constraints, variable
bounds, and variable types. The section keywords may be any mix of upper and lower case letters.

14.1.1 The objective

The first section beginning with one of the keywords

max

maximum

maximize

min

minimum

minimize

defines the objective sense and the objective function, i.e.

cTx+
1

2
xTQox.

The objective may be given a name by writing

myname:

before the expressions. If no name is given, then the objective is named obj.

The objective function contains linear and quadratic terms. The linear terms are written as

4 x1 + x2 - 0.1 x3

and so forth. The quadratic terms are written in square brackets ([]) and are either squared or
multiplied as in the examples

x1^2

and

14.1. THE SECTIONS 291

x1 * x2

There may be zero or more pairs of brackets containing quadratic expressions.

An example of an objective section is:

minimize

myobj: 4 x1 + x2 - 0.1 x3 + [x1^2 + 2.1 x1 * x2]/2

Please note that the quadratic expressions are multiplied with 1
2 , so that the above expression means

minimize 4x1 + x2 − 0.1 · x3 +
1

2
(x21 + 2.1 · x1 · x2)

If the same variable occurs more than once in the linear part, the coefficients are added, so that 4 x1

+ 2 x1 is equivalent to 6 x1. In the quadratic expressions x1 * x2 is equivalent to x2 * x1 and as
in the linear part , if the same variables multiplied or squared occur several times their coefficients are
added.

14.1.2 The constraints

The second section beginning with one of the keywords

subj to

subject to

s.t.

st

defines the linear constraint matrix (A) and the quadratic matrices (Qi).

A constraint contains a name (optional), expressions adhering to the same rules as in the objective
and a bound:

subject to

con1: x1 + x2 + [x3^2]/2 <= 5.1

The bound type (here <=) may be any of <, <=, =, >, >= (< and <= mean the same), and the bound
may be any number.

In the standard LP format it is not possible to define more than one bound, but MOSEK supports
defining ranged constraints by using double-colon (’’::’’) instead of a single-colon (”:”) after the
constraint name, i.e.

− 5 ≤ x1 + x2 ≤ 5 (14.1)

may be written as

con:: -5 < x 1 + x 2 < 5

By default MOSEK writes ranged constraints this way.

If the files must adhere to the LP standard, ranged constraints must either be split into upper bounded
and lower bounded constraints or be written as en equality with a slack variable. For example the
expression (14.1) may be written as

x1 + x2 − sl1 = 0,−5 ≤ sl1 ≤ 5.

292 CHAPTER 14. THE LP FILE FORMAT

14.1.3 Bounds

Bounds on the variables can be specified in the bound section beginning with one of the keywords

bound

bounds

The bounds section is optional but should, if present, follow the subject to section. All variables
listed in the bounds section must occur in either the objective or a constraint.

The default lower and upper bounds are 0 and +∞ . A variable may be declared free with the keyword
free, which means that the lower bound is −∞ and the upper bound is +∞ . Furthermore it may be
assigned a finite lower and upper bound. The bound definitions for a given variable may be written in
one or two lines, and bounds can be any number or ±∞ (written as +inf/-inf/+infinity/-infinity)
as in the example

bounds

x1 free

x2 <= 5

0.1 <= x2

x3 = 42

2 <= x4 < +inf

14.1.4 Variable types

The final two sections are optional and must begin with one of the keywords

bin

binaries

binary

and

gen

general

Under general all integer variables are listed, and under binary all binary (integer variables with
bounds 0 and 1) are listed:

general

x1 x2

binary

x3 x4

Again, all variables listed in the binary or general sections must occur in either the objective or a
constraint.

14.1.5 Terminating section

Finally, an LP formatted file must be terminated with the keyword

end

14.2. LP FORMAT PECULIARITIES 293

14.1.6 Linear example lo1.lp

A simple example of an LP file is:

\ File: lo1.lp

maximize

obj: 3 x1 + x2 + 5 x3 + x4

subject to

c1: 3 x1 + x2 + 2 x3 = 30

c2: 2 x1 + x2 + 3 x3 + x4 >= 15

c3: 2 x2 + 3 x4 <= 25

bounds

0 <= x1 <= +infinity

0 <= x2 <= 10

0 <= x3 <= +infinity

0 <= x4 <= +infinity

end

14.1.7 Mixed integer example milo1.lp

maximize

obj: x1 + 6.4e-01 x2

subject to

c1: 5e+01 x1 + 3.1e+01 x2 <= 2.5e+02

c2: 3e+00 x1 - 2e+00 x2 >= -4e+00

bounds

0 <= x1 <= +infinity

0 <= x2 <= +infinity

general

x1 x2

end

14.2 LP format peculiarities

14.2.1 Comments

Anything on a line after a ”\” is ignored and is treated as a comment.

14.2.2 Names

A name for an objective, a constraint or a variable may contain the letters a-z, A-Z, the digits 0-9 and
the characters

!"#$%&()/,.;?@ ’‘|~

The first character in a name must not be a number, a period or the letter ’e’ or ’E’. Keywords must
not be used as names.

MOSEK accepts any character as valid for names, except ‘\0’. When writing a name that is not
allowed in LP files, it is changed and a warning is issued.

294 CHAPTER 14. THE LP FILE FORMAT

The algorithm for making names LP valid works as follows: The name is interpreted as an utf-8

string. For a unicode character c:

• If c==‘ ’ (underscore), the output is ‘ ’ (two underscores).

• If c is a valid LP name character, the output is just c.

• If c is another character in the ASCII range, the output is XX, where XX is the hexadecimal code
for the character.

• If c is a character in the range 127—65535, the output is uXXXX, where XXXX is the hexadecimal
code for the character.

• If c is a character above 65535, the output is UXXXXXXXX, where XXXXXXXX is the hexadecimal
code for the character.

Invalid utf-8 substrings are escaped as ‘ XX’, and if a name starts with a period, ‘e’ or ‘E’, that
character is escaped as ‘ XX’.

14.2.3 Variable bounds

Specifying several upper or lower bounds on one variable is possible but MOSEK uses only the tightest
bounds. If a variable is fixed (with =), then it is considered the tightest bound.

14.2.4 MOSEK specific extensions to the LP format

Some optimization software packages employ a more strict definition of the LP format that the one
used by MOSEK. The limitations imposed by the strict LP format are the following:

• Quadratic terms in the constraints are not allowed.

• Names can be only 16 characters long.

• Lines must not exceed 255 characters in length.

If an LP formatted file created by MOSEK should satisfies the strict definition, then the parameter

MSK IPAR WRITE LP STRICT FORMAT

should be set; note, however, that some problems cannot be written correctly as a strict LP formatted
file. For instance, all names are truncated to 16 characters and hence they may loose their uniqueness
and change the problem.

To get around some of the inconveniences converting from other problem formats, MOSEK allows lines
to contain 1024 characters and names may have any length (shorter than the 1024 characters).

Internally in MOSEK names may contain any (printable) character, many of which cannot be used in
LP names. Setting the parameters

14.3. THE STRICT LP FORMAT 295

MSK IPAR READ LP QUOTED NAMES

and

MSK IPAR WRITE LP QUOTED NAMES

allows MOSEK to use quoted names. The first parameter tells MOSEK to remove quotes from quoted
names e.g, "x1", when reading LP formatted files. The second parameter tells MOSEK to put quotes
around any semi-illegal name (names beginning with a number or a period) and fully illegal name
(containing illegal characters). As double quote is a legal character in the LP format, quoting semi-
illegal names makes them legal in the pure LP format as long as they are still shorter than 16 characters.
Fully illegal names are still illegal in a pure LP file.

14.3 The strict LP format

The LP format is not a formal standard and different vendors have slightly different interpretations of
the LP format. To make MOSEK’s definition of the LP format more compatible with the definitions
of other vendors, use the parameter setting

MSK IPAR WRITE LP STRICT FORMAT = MSK ON

This setting may lead to truncation of some names and hence to an invalid LP file. The simple solution
to this problem is to use the parameter setting

MSK IPAR WRITE GENERIC NAMES = MSK ON

which will cause all names to be renamed systematically in the output file.

14.4 Formatting of an LP file

A few parameters control the visual formatting of LP files written by MOSEK in order to make it
easier to read the files. These parameters are

MSK IPAR WRITE LP LINE WIDTH

MSK IPAR WRITE LP TERMS PER LINE

The first parameter sets the maximum number of characters on a single line. The default value is 80
corresponding roughly to the width of a standard text document.

The second parameter sets the maximum number of terms per line; a term means a sign, a coefficient,
and a name (for example ”+ 42 elephants”). The default value is 0, meaning that there is no
maximum.

296 CHAPTER 14. THE LP FILE FORMAT

14.4.1 Speeding up file reading

If the input file should be read as fast as possible using the least amount of memory, then it is important
to tell MOSEK how many non-zeros, variables and constraints the problem contains. These values can
be set using the parameters

MSK IPAR READ CON

MSK IPAR READ VAR

MSK IPAR READ ANZ

MSK IPAR READ QNZ

14.4.2 Unnamed constraints

Reading and writing an LP file with MOSEK may change it superficially. If an LP file contains
unnamed constraints or objective these are given their generic names when the file is read (however
unnamed constraints in MOSEK are written without names).

Chapter 15

The OPF format

The Optimization Problem Format (OPF) is an alternative to LP and MPS files for specifying opti-
mization problems. It is row-oriented, inspired by the CPLEX LP format.

Apart from containing objective, constraints, bounds etc. it may contain complete or partial solutions,
comments and extra information relevant for solving the problem. It is designed to be easily read and
modified by hand and to be forward compatible with possible future extensions.

15.1 Intended use

The OPF file format is meant to replace several other files:

• The LP file format. Any problem that can be written as an LP file can be written as an OPF file
to; furthermore it naturally accommodates ranged constraints and variables as well as arbitrary
characters in names, fixed expressions in the objective, empty constraints, and conic constraints.

• Parameter files. It is possible to specify integer, double and string parameters along with the
problem (or in a separate OPF file).

• Solution files. It is possible to store a full or a partial solution in an OPF file and later reload it.

15.2 The file format

The format uses tags to structure data. A simple example with the basic sections may look like this:

[comment]

This is a comment. You may write almost anything here...

[/comment]

This is a single-line comment.

[objective min ’myobj’]

297

298 CHAPTER 15. THE OPF FORMAT

x + 3 y + x^2 + 3 y^2 + z + 1

[/objective]

[constraints]

[con ’con01’] 4 <= x + y [/con]

[/constraints]

[bounds]

[b] -10 <= x,y <= 10 [/b]

[cone quad] x,y,z [/cone]

[/bounds]

A scope is opened by a tag of the form [tag] and closed by a tag of the form [/tag]. An opening tag
may accept a list of unnamed and named arguments, for examples

[tag value] tag with one unnamed argument [/tag]

[tag arg=value] tag with one named argument in quotes [/tag]

Unnamed arguments are identified by their order, while named arguments may appear in any order,
but never before an unnamed argument. The value can be a quoted, single-quoted or double-quoted
text string, i.e.

[tag ’value’] single-quoted value [/tag]

[tag arg=’value’] single-quoted value [/tag]

[tag "value"] double-quoted value [/tag]

[tag arg="value"] double-quoted value [/tag]

15.2.1 Sections

The recognized tags are

• [comment] A comment section. This can contain almost any text: Between single quotes (’) or
double quotes (") any text may appear. Outside quotes the markup characters ([and]) must
be prefixed by backslashes. Both single and double quotes may appear alone or inside a pair of
quotes if it is prefixed by a backslash.

• [objective] The objective function: This accepts one or two parameters, where the first one
(in the above example ‘min’) is either min or max (regardless of case) and defines the objective
sense, and the second one (above ‘myobj’), if present, is the objective name. The section may
contain linear and quadratic expressions.

If several objectives are specified, all but the last are ignored.

• [constraints] This does not directly contain any data, but may contain the subsection ‘con’
defining a linear constraint.

[con] defines a single constraint; if an argument is present ([con NAME]) this is used as the name
of the constraint, otherwise it is given a null-name. The section contains a constraint definition
written as linear and quadratic expressions with a lower bound, an upper bound, with both or
with an equality. Examples:

[constraints]

[con ’con1’] 0 <= x + y [/con]

[con ’con2’] 0 >= x + y [/con]

15.2. THE FILE FORMAT 299

[con ’con3’] 0 <= x + y <= 10 [/con]

[con ’con4’] x + y = 10 [/con]

[/constraints]

Constraint names are unique. If a constraint is specified which has the same name as a previously
defined constraint, the new constraint replaces the existing one.

• [bounds] This does not directly contain any data, but may contain the subsections ‘b’ (linear
bounds on variables) and cone’ (quadratic cone).

– [b]. Bound definition on one or several variables separated by comma (‘,’). An upper or
lower bound on a variable replaces any earlier defined bound on that variable. If only one
bound (upper or lower) is given only this bound is replaced. This means that upper and
lower bounds can be specified separately. So the OPF bound definition:
[b] x,y >= -10 [/b]

[b] x,y <= 10 [/b]

results in the bound

−10 ≤ x, y ≤ 10.

– [cone]. Currently, the supported cones are the quadratic cone and the rotated quadratic
cone A conic constraint is defined as a set of variables which belongs to a single unique cone.

A quadratic cone of n variables x1, . . . , xn defines a constraint of the form

x21 >

n∑
i=2

x2i .

A rotated quadratic cone of n variables x1, . . . , xn defines a constraint of the form

x1x2 >

n∑
i=3

x2i .

A [bounds]-section example:

[bounds]

[b] 0 <= x,y <= 10 [/b] # ranged bound

[b] 10 >= x,y >= 0 [/b] # ranged bound

[b] 0 <= x,y <= inf [/b] # using inf

[b] x,y free [/b] # free variables

Let (x,y,z,w) belong to the cone K

[cone quad] x,y,z,w [/cone] # quadratic cone

[cone rquad] x,y,z,w [/cone] # rotated quadratic cone

[/bounds]

By default all variables are free.

• [variables] This defines an ordering of variables as they should appear in the problem. This
is simply a space-separated list of variable names.

• [integer] This contains a space-separated list of variables and defines the constraint that the
listed variables must be integer values.

300 CHAPTER 15. THE OPF FORMAT

• [hints] This may contain only non-essential data; for example estimates of the number of
variables, constraints and non-zeros. Placed before all other sections containing data this may
reduce the time spent reading the file.

In the hints section, any subsection which is not recognized by MOSEK is simply ignored. In
this section a hint in a subsection is defined as follows:

[hint ITEM] value [/hint]

where ITEM may be replaced by numvar (number of variables), numcon (number of linear/quadratic
constraints), numanz (number of linear non-zeros in constraints) and numqnz (number of quadratic
non-zeros in constraints).

• [solutions] This section can contain a set of full or partial solutions to a problem. Each solution
must be specified using a [solution]-section, i.e.

[solutions]

[solution]...[/solution] #solution 1

[solution]...[/solution] #solution 2

#other solutions....

[solution]...[/solution] #solution n

[/solutions]

Note that a [solution]-section must be always specified inside a [solutions]-section. The
syntax of a [solution]-section is the following:

[solution SOLTYPE status=STATUS]...[/solution]

where SOLTYPE is one of the strings

– ‘interior’, a non-basic solution,

– ‘basic’, a basic solution,

– ‘integer’, an integer solution,

and STATUS is one of the strings

– ‘UNKNOWN’,

– ‘OPTIMAL’,

– ‘INTEGER OPTIMAL’,

– ‘PRIM FEAS’,

– ‘DUAL FEAS’,

– ‘PRIM AND DUAL FEAS’,

– ‘NEAR OPTIMAL’,

– ‘NEAR PRIM FEAS’,

– ‘NEAR DUAL FEAS’,

– ‘NEAR PRIM AND DUAL FEAS’,

– ‘PRIM INFEAS CER’,

– ‘DUAL INFEAS CER’,

– ‘NEAR PRIM INFEAS CER’,

15.2. THE FILE FORMAT 301

– ‘NEAR DUAL INFEAS CER’,

– ‘NEAR INTEGER OPTIMAL’.

Most of these values are irrelevant for input solutions; when constructing a solution for simplex
hot-start or an initial solution for a mixed integer problem the safe setting is UNKNOWN.

A [solution]-section contains [con] and [var] sections. Each [con] and [var] section defines
solution information for a single variable or constraint, specified as list of KEYWORD/value pairs,
in any order, written as

KEYWORD=value

Allowed keywords are as follows:

– sk. The status of the item, where the value is one of the following strings:

∗ LOW, the item is on its lower bound.

∗ UPR, the item is on its upper bound.

∗ FIX, it is a fixed item.

∗ BAS, the item is in the basis.

∗ SUPBAS, the item is super basic.

∗ UNK, the status is unknown.

∗ INF, the item is outside its bounds (infeasible).

– lvl Defines the level of the item.

– sl Defines the level of the dual variable associated with its lower bound.

– su Defines the level of the dual variable associated with its upper bound.

– sn Defines the level of the variable associated with its cone.

– y Defines the level of the corresponding dual variable (for constraints only).

A [var] section should always contain the items sk, lvl, sl and su. Items sl and su are not
required for integer solutions.

A [con] section should always contain sk, lvl, sl, su and y.

An example of a solution section

[solution basic status=UNKNOWN]

[var x0] sk=LOW lvl=5.0 [/var]

[var x1] sk=UPR lvl=10.0 [/var]

[var x2] sk=SUPBAS lvl=2.0 sl=1.5 su=0.0 [/var]

[con c0] sk=LOW lvl=3.0 y=0.0 [/con]

[con c0] sk=UPR lvl=0.0 y=5.0 [/con]

[/solution]

• [vendor] This contains solver/vendor specific data. It accepts one argument, which is a vendor
ID – for MOSEK the ID is simply mosek – and the section contains the subsection parameters

defining solver parameters. When reading a vendor section, any unknown vendor can be safely
ignored. This is described later.

Comments using the ‘#’ may appear anywhere in the file. Between the ‘#’ and the following line-break
any text may be written, including markup characters.

302 CHAPTER 15. THE OPF FORMAT

15.2.2 Numbers

Numbers, when used for parameter values or coefficients, are written in the usual way by the printf

function. That is, they may be prefixed by a sign (+ or -) and may contain an integer part, decimal
part and an exponent. The decimal point is always ‘.’ (a dot). Some examples are

1

1.0

.0

1.

1e10

1e+10

1e-10

Some invalid examples are

e10 # invalid, must contain either integer or decimal part

. # invalid

.e10 # invalid

More formally, the following standard regular expression describes numbers as used:

[+|-]?([0-9]+[.][0-9]*|[.][0-9]+)([eE][+|-]?[0-9]+)?

15.2.3 Names

Variable names, constraint names and objective name may contain arbitrary characters, which in some
cases must be enclosed by quotes (single or double) that in turn must be preceded by a backslash.
Unquoted names must begin with a letter (a-z or A-Z) and contain only the following characters: the
letters a-z and A-Z, the digits 0-9, braces ({ and }) and underscore ().

Some examples of legal names:

an unquoted name

another name{123}
’single quoted name’

"double quoted name"

"name with \\"quote\\" in it"

"name with []s in it"

15.3 Parameters section

In the vendor section solver parameters are defined inside the parameters subsection. Each parameter
is written as

[p PARAMETER NAME] value [/p]

where PARAMETER NAME is replaced by a MOSEK parameter name, usually of the form MSK IPAR ...,
MSK DPAR ... or MSK SPAR ..., and the value is replaced by the value of that parameter; both integer
values and named values may be used. Some simple examples are:

[vendor mosek]

[parameters]

[p MSK IPAR OPF MAX TERMS PER LINE] 10 [/p]

15.4. WRITING OPF FILES FROM MOSEK 303

[p MSK IPAR OPF WRITE PARAMETERS] MSK ON [/p]

[p MSK DPAR DATA TOL BOUND INF] 1.0e18 [/p]

[/parameters]

[/vendor]

15.4 Writing OPF files from MOSEK

To write an OPF file set the parameter MSK IPAR WRITE DATA FORMAT to MSK DATA FORMAT OP as this
ensures that OPF format is used. Then modify the following parameters to define what the file should
contain:

• MSK IPAR OPF WRITE HEADER, include a small header with comments.

• MSK IPAR OPF WRITE HINTS, include hints about the size of the problem.

• MSK IPAR OPF WRITE PROBLEM, include the problem itself — objective, constraints and bounds.

• MSK IPAR OPF WRITE SOLUTIONS, include solutions if they are defined. If this is off, no solutions
are included.

• MSK IPAR OPF WRITE SOL BAS, include basic solution, if defined.

• MSK IPAR OPF WRITE SOL ITG, include integer solution, if defined.

• MSK IPAR OPF WRITE SOL ITR, include interior solution, if defined.

• MSK IPAR OPF WRITE PARAMETERS, include all parameter settings.

15.5 Examples

This section contains a set of small examples written in OPF and describing how to formulate linear,
quadratic and conic problems.

15.5.1 Linear example lo1.opf

Consider the example:

maximize 3x0 + 1x1 + 5x2 + 1x3
subject to 3x0 + 1x1 + 2x2 = 30,

2x0 + 1x1 + 3x2 + 1x3 ≥ 15,
2x1 + 3x3 ≤ 25,

having the bounds

304 CHAPTER 15. THE OPF FORMAT

0 ≤ x0 ≤ ∞,
0 ≤ x1 ≤ 10,
0 ≤ x2 ≤ ∞,
0 ≤ x3 ≤ ∞.

In the OPF format the example is displayed as shown below:

[comment]

The lo1 example in OPF format

[/comment]

[hints]

[hint NUMVAR] 4 [/hint]

[hint NUMCON] 3 [/hint]

[hint NUMANZ] 9 [/hint]

[/hints]

[variables disallow new variables]

x1 x2 x3 x4

[/variables]

[objective maximize ’obj’]

3 x1 + x2 + 5 x3 + x4

[/objective]

[constraints]

[con ’c1’] 3 x1 + x2 + 2 x3 = 30 [/con]

[con ’c2’] 2 x1 + x2 + 3 x3 + x4 >= 15 [/con]

[con ’c3’] 2 x2 + 3 x4 <= 25 [/con]

[/constraints]

[bounds]

[b] 0 <= * [/b]

[b] 0 <= x2 <= 10 [/b]

[/bounds]

15.5.2 Quadratic example qo1.opf

An example of a quadratic optimization problem is

minimize x21 + 0.1x22 + x23 − x1x3 − x2
subject to 1 ≤ x1 + x2 + x3,

x ≥ 0.

This can be formulated in opf as shown below.

[comment]

The qo1 example in OPF format

[/comment]

[hints]

[hint NUMVAR] 3 [/hint]

[hint NUMCON] 1 [/hint]

[hint NUMANZ] 3 [/hint]

[hint NUMQNZ] 4 [/hint]

15.5. EXAMPLES 305

[/hints]

[variables disallow new variables]

x1 x2 x3

[/variables]

[objective minimize ’obj’]

The quadratic terms are often written with a factor of 1/2 as here,

but this is not required.

- x2 + 0.5 (2.0 x1 ^ 2 - 2.0 x3 * x1 + 0.2 x2 ^ 2 + 2.0 x3 ^ 2)

[/objective]

[constraints]

[con ’c1’] 1.0 <= x1 + x2 + x3 [/con]

[/constraints]

[bounds]

[b] 0 <= * [/b]

[/bounds]

15.5.3 Conic quadratic example cqo1.opf

Consider the example:

minimize x3 + x4 + x5
subject to x0 + x1 + 2x2 = 1,

x0, x1, x2 ≥ 0,

x3 ≥
√
x20 + x21,

2x4x5 ≥ x22.

Please note that the type of the cones is defined by the parameter to [cone ...]; the content of the
cone-section is the names of variables that belong to the cone.

[comment]

The cqo1 example in OPF format.

[/comment]

[hints]

[hint NUMVAR] 6 [/hint]

[hint NUMCON] 1 [/hint]

[hint NUMANZ] 3 [/hint]

[/hints]

[variables disallow new variables]

x1 x2 x3 x4 x5 x6

[/variables]

[objective minimize ’obj’]

x4 + x5 + x6

[/objective]

[constraints]

[con ’c1’] x1 + x2 + 2e+00 x3 = 1e+00 [/con]

306 CHAPTER 15. THE OPF FORMAT

[/constraints]

[bounds]

We let all variables default to the positive orthant

[b] 0 <= * [/b]

...and change those that differ from the default

[b] x4,x5,x6 free [/b]

Define quadratic cone: x4 >= sqrt(x1^2 + x2^2)

[cone quad ’k1’] x4, x1, x2 [/cone]

Define rotated quadratic cone: 2 x5 x6 >= x3^2

[cone rquad ’k2’] x5, x6, x3 [/cone]

[/bounds]

15.5.4 Mixed integer example milo1.opf

Consider the mixed integer problem:

maximize x0 + 0.64x1
subject to 50x0 + 31x1 ≤ 250,

3x0 − 2x1 ≥ − 4,
x0, x1 ≥ 0 and integer

This can be implemented in OPF with:

[comment]

The milo1 example in OPF format

[/comment]

[hints]

[hint NUMVAR] 2 [/hint]

[hint NUMCON] 2 [/hint]

[hint NUMANZ] 4 [/hint]

[/hints]

[variables disallow new variables]

x1 x2

[/variables]

[objective maximize ’obj’]

x1 + 6.4e-1 x2

[/objective]

[constraints]

[con ’c1’] 5e+1 x1 + 3.1e+1 x2 <= 2.5e+2 [/con]

[con ’c2’] -4 <= 3 x1 - 2 x2 [/con]

[/constraints]

[bounds]

[b] 0 <= * [/b]

[/bounds]

[integer]

15.5. EXAMPLES 307

x1 x2

[/integer]

308 CHAPTER 15. THE OPF FORMAT

Chapter 16

The XML (OSiL) format

MOSEK can write data in the standard OSiL xml format. For a definition of the OSiL format please
see http://www.optimizationservices.org/. Only linear constraints (possibly with integer variables) are
supported. By default output files with the extension .xml are written in the OSiL format.

The parameter MSK IPAR WRITE XML MODE controls if the linear coefficients in the A matrix are written
in row or column order.

309

http://www.optimizationservices.org/

310 CHAPTER 16. THE XML (OSIL) FORMAT

Chapter 17

The solution file format

MOSEK provides one or two solution files depending on the problem type and the optimizer used.
If a problem is optimized using the interior-point optimizer and no basis identification is required,
then a file named probname.sol is provided. probname is the name of the problem and .sol is
the file extension. If the problem is optimized using the simplex optimizer or basis identification is
performed, then a file named probname.bas is created presenting the optimal basis solution. Finally,
if the problem contains integer constrained variables then a file named probname.int is created. It
contains the integer solution.

17.1 The basic and interior solution files

In general both the interior-point and the basis solution files have the format:

NAME : <problem name>

PROBLEM STATUS : <status of the problem>

SOLUTION STATUS : <status of the solution>

OBJECTIVE NAME : <name of the objective function>

PRIMAL OBJECTIVE : <primal objective value corresponding to the solution>

DUAL OBJECTIVE : <dual objective value corresponding to the solution>

CONSTRAINTS

INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER

? <name> ?? <a value> <a value> <a value> <a value> <a value>

VARIABLES

INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER CONIC DUAL

? <name> ?? <a value> <a value> <a value> <a value> <a value> <a value>

In the example the fields ? and <> will be filled with problem and solution specific information. As
can be observed a solution report consists of three sections, i.e.

HEADER

In this section, first the name of the problem is listed and afterwards the problem and solution

311

312 CHAPTER 17. THE SOLUTION FILE FORMAT

Status key Interpretation
UN Unknown status
BS Is basic
SB Is superbasic
LL Is at the lower limit (bound)
UL Is at the upper limit (bound)
EQ Lower limit is identical to upper limit
** Is infeasible i.e. the lower limit is

greater than the upper limit.

Table 17.1: Status keys.

statuses are shown. In this case the information shows that the problem is primal and dual
feasible and the solution is optimal. Next the primal and dual objective values are displayed.

CONSTRAINTS

Subsequently in the constraint section the following information is listed for each constraint:

INDEX

A sequential index assigned to the constraint by MOSEK

NAME

The name of the constraint assigned by the user.

AT

The status of the constraint. In Table 17.1 the possible values of the status keys and their
interpretation are shown.

ACTIVITY

Given the i th constraint on the form

lci ≤
n∑
j=1

aijxj ≤ uci , (17.1)

then activity denote the quantity
∑n
j=1 aijx

∗
j , where x∗ is the value for the x solution.

LOWER LIMIT

Is the quantity lci (see (17.1)).

UPPER LIMIT

Is the quantity uci (see (17.1)).

DUAL LOWER

Is the dual multiplier corresponding to the lower limit on the constraint.

DUAL UPPER

Is the dual multiplier corresponding to the upper limit on the constraint.

17.2. THE INTEGER SOLUTION FILE 313

VARIABLES

The last section of the solution report lists information for the variables. This information has
a similar interpretation as for the constraints. However, the column with the header [CONIC

DUAL] is only included for problems having one or more conic constraints. This column shows
the dual variables corresponding to the conic constraints.

17.2 The integer solution file

The integer solution is equivalent to the basic and interior solution files except that no dual information
is included.

314 CHAPTER 17. THE SOLUTION FILE FORMAT

Chapter 18

Problem analyzer examples

This appendix presents a few examples of the output produced by the problem analyzer described in
Section 7.1. The first two problems are taken from the MIPLIB 2003 collection, http://miplib.zib.de/.

18.1 air04

Analyzing the problem

Constraints Bounds Variables

fixed : all ranged : all bin : all

Objective, min cx

range: min |c|: 31.0000 max |c|: 2258.00

distrib: |c| vars

[31, 100) 176

[100, 1e+03) 8084

[1e+03, 2.26e+03] 644

Constraint matrix A has

823 rows (constraints)

8904 columns (variables)

72965 (0.995703%) nonzero entries (coefficients)

Row nonzeros, A i

range: min A i: 2 (0.0224618%) max A i: 368 (4.13297%)

distrib: A i rows rows% acc%

2 2 0.24 0.24

[3, 7] 4 0.49 0.73

[8, 15] 19 2.31 3.04

[16, 31] 80 9.72 12.76

[32, 63] 236 28.68 41.43

[64, 127] 289 35.12 76.55

315

http://miplib.zib.de/

316 CHAPTER 18. PROBLEM ANALYZER EXAMPLES

[128, 255] 186 22.60 99.15

[256, 368] 7 0.85 100.00

Column nonzeros, A|j

range: min A|j: 2 (0.243013%) max A|j: 15 (1.8226%)

distrib: A|j cols cols% acc%

2 118 1.33 1.33

[3, 7] 2853 32.04 33.37

[8, 15] 5933 66.63 100.00

A nonzeros, A(ij)

range: all |A(ij)| = 1.00000

Constraint bounds, lb <= Ax <= ub

distrib: |b| lbs ubs

[1, 10] 823 823

Variable bounds, lb <= x <= ub

distrib: |b| lbs ubs

0 8904

[1, 10] 8904

18.2 arki001

Analyzing the problem

Constraints Bounds Variables

lower bd: 82 lower bd: 38 cont: 850

upper bd: 946 fixed : 353 bin : 415

fixed : 20 free : 1 int : 123

ranged : 996

Objective, min cx

range: all |c| in {0.00000, 1.00000}
distrib: |c| vars

0 1387

1 1

Constraint matrix A has

1048 rows (constraints)

1388 columns (variables)

20439 (1.40511%) nonzero entries (coefficients)

Row nonzeros, A i

range: min A i: 1 (0.0720461%) max A i: 1046 (75.3602%)

distrib: A i rows rows% acc%

1 29 2.77 2.77

18.2. ARKI001 317

2 476 45.42 48.19

[3, 7] 49 4.68 52.86

[8, 15] 56 5.34 58.21

[16, 31] 64 6.11 64.31

[32, 63] 373 35.59 99.90

[1024, 1046] 1 0.10 100.00

Column nonzeros, A|j

range: min A|j: 1 (0.0954198%) max A|j: 29 (2.76718%)

distrib: A|j cols cols% acc%

1 381 27.45 27.45

2 19 1.37 28.82

[3, 7] 38 2.74 31.56

[8, 15] 233 16.79 48.34

[16, 29] 717 51.66 100.00

A nonzeros, A(ij)

range: min |A(ij)|: 0.000200000 max |A(ij)|: 2.33067e+07

distrib: A(ij) coeffs

[0.0002, 0.001) 167

[0.001, 0.01) 1049

[0.01, 0.1) 4553

[0.1, 1) 8840

[1, 10) 3822

[10, 100) 630

[100, 1e+03) 267

[1e+03, 1e+04) 699

[1e+04, 1e+05) 291

[1e+05, 1e+06) 83

[1e+06, 1e+07) 19

[1e+07, 2.33e+07] 19

Constraint bounds, lb <= Ax <= ub

distrib: |b| lbs ubs

[0.1, 1) 386

[1, 10) 74

[10, 100) 101 456

[100, 1000) 34

[1000, 10000) 15

[100000, 1e+06] 1 1

Variable bounds, lb <= x <= ub

distrib: |b| lbs ubs

0 974 323

[0.001, 0.01) 19

[0.1, 1) 370 57

[1, 10) 41 704

[10, 100] 2 246

318 CHAPTER 18. PROBLEM ANALYZER EXAMPLES

18.3 Problem with both linear and quadratic constraints

Analyzing the problem

Constraints Bounds Variables

lower bd: 40 upper bd: 1 cont: all

upper bd: 121 fixed : 204

fixed : 5480 free : 5600

ranged : 161 ranged : 40

Objective, maximize cx

range: all |c| in {0.00000, 15.4737}
distrib: |c| vars

0 5844

15.4737 1

Constraint matrix A has

5802 rows (constraints)

5845 columns (variables)

6480 (0.0191079%) nonzero entries (coefficients)

Row nonzeros, A i

range: min A i: 0 (0%) max A i: 3 (0.0513259%)

distrib: A i rows rows% acc%

0 80 1.38 1.38

1 5003 86.23 87.61

2 680 11.72 99.33

3 39 0.67 100.00

0/80 empty rows have quadratic terms

Column nonzeros, A|j

range: min A|j: 0 (0%) max A|j: 15 (0.258532%)

distrib: A|j cols cols% acc%

0 204 3.49 3.49

1 5521 94.46 97.95

2 40 0.68 98.63

[3, 7] 40 0.68 99.32

[8, 15] 40 0.68 100.00

0/204 empty columns correspond to variables used in conic

and/or quadratic expressions only

A nonzeros, A(ij)

range: min |A(ij)|: 2.02410e-05 max |A(ij)|: 35.8400

distrib: A(ij) coeffs

[2.02e-05, 0.0001) 40

[0.0001, 0.001) 118

[0.001, 0.01) 305

[0.01, 0.1) 176

[0.1, 1) 40

[1, 10) 5721

[10, 35.8] 80

18.4. PROBLEM WITH BOTH LINEAR AND CONIC CONSTRAINTS 319

Constraint bounds, lb <= Ax <= ub

distrib: |b| lbs ubs

0 5481 5600

[1000, 10000) 1

[10000, 100000) 2 1

[1e+06, 1e+07) 78 40

[1e+08, 1e+09] 120 120

Variable bounds, lb <= x <= ub

distrib: |b| lbs ubs

0 243 203

[0.1, 1) 1 1

[1e+06, 1e+07) 40

[1e+11, 1e+12] 1

Quadratic constraints: 121

Gradient nonzeros, Qx

range: min Qx: 1 (0.0171086%) max Qx: 2720 (46.5355%)

distrib: Qx cons cons% acc%

1 40 33.06 33.06

[64, 127] 80 66.12 99.17

[2048, 2720] 1 0.83 100.00

18.4 Problem with both linear and conic constraints

Analyzing the problem

Constraints Bounds Variables

upper bd: 3600 fixed : 3601 cont: all

fixed : 21760 free : 28802

Objective, minimize cx

range: all |c| in {0.00000, 1.00000}
distrib: |c| vars

0 32402

1 1

Constraint matrix A has

25360 rows (constraints)

32403 columns (variables)

93339 (0.0113587%) nonzero entries (coefficients)

Row nonzeros, A i

range: min A i: 1 (0.00308613%) max A i: 8 (0.0246891%)

320 CHAPTER 18. PROBLEM ANALYZER EXAMPLES

distrib: A i rows rows% acc%

1 3600 14.20 14.20

2 10803 42.60 56.79

[3, 7] 3995 15.75 72.55

8 6962 27.45 100.00

Column nonzeros, A|j

range: min A|j: 0 (0%) max A|j: 61 (0.240536%)

distrib: A|j cols cols% acc%

0 3602 11.12 11.12

1 10800 33.33 44.45

2 7200 22.22 66.67

[3, 7] 7279 22.46 89.13

[8, 15] 3521 10.87 100.00

[32, 61] 1 0.00 100.00

3600/3602 empty columns correspond to variables used in conic

and/or quadratic constraints only

A nonzeros, A(ij)

range: min |A(ij)|: 0.00833333 max |A(ij)|: 1.00000

distrib: A(ij) coeffs

[0.00833, 0.01) 57280

[0.01, 0.1) 59

[0.1, 1] 36000

Constraint bounds, lb <= Ax <= ub

distrib: |b| lbs ubs

0 21760 21760

[0.1, 1] 3600

Variable bounds, lb <= x <= ub

distrib: |b| lbs ubs

[1, 10] 3601 3601

Rotated quadratic cones: 3600

dim RQCs

4 3600

Bibliography

[1] R. Fourer and D. M. Gay and B. W. Kernighan. AMPL. A modeling language for math-
ematical programming, 2nd edition, 2003. Thomson

[2] MOSEK ApS. MOSEK Modeling manual, 2012. Last revised January 31 2013.
http://docs.mosek.com/generic/modeling-a4.pdf

[3] Andersen, E. D. and Andersen, K. D.. Presolving in linear programming. Math. Program-
ming 2:221-245

[4] Andersen, E. D., Gondzio, J., Mészáros, Cs. and Xu, X.. Implementation of interior
point methods for large scale linear programming, Interior-point methods of mathematical
programming p. 189-252, 1996. Kluwer Academic Publishers

[5] Erling D. Andersen. The homogeneous and self-dual model and algorithm
for linear optimization. Technical report TR-1-2009, 2009. MOSEK ApS.
http://www.mosek.com/fileadmin/reports/tech/homolo.pdf

[6] Andersen, E. D. and Ye, Y.. Combining interior-point and pivoting algorithms. Manage-
ment Sci. December 12:1719-1731

[7] Ahuja, R. K., Magnanti, T. L. and Orlin, J. B.. Network flows, Optimization, vol. 1 p.
211-369, 1989. North Holland, Amsterdam

[8] Andersen, E. D., Roos, C. and Terlaky, T.. On implementing a primal-dual interior-point
method for conic quadratic optimization. Math. Programming February 2

[9] Andersen, E. D. and Ye, Y.. A computational study of the homogeneous algorithm for
large-scale convex optimization. Computational Optimization and Applications 10:243-
269

[10] Andersen, E. D. and Ye, Y.. On a homogeneous algorithm for the monotone complemen-
tarity problem. Math. Programming February 2:375-399

[11] Wolsey, L. A.. Integer programming, 1998. John Wiley and Sons

[12] Chvátal, V.. Linear programming, 1983. W.H. Freeman and Company

[13] Roos, C., Terlaky, T. and Vial, J. -Ph.. Theory and algorithms for linear optimization:
an interior point approach, 1997. John Wiley and Sons, New York

321

http://docs.mosek.com/generic/modeling-a4.pdf
http://www.mosek.com/fileadmin/reports/tech/homolo.pdf

322 BIBLIOGRAPHY

[14] Wallace, S. W.. Decision making under uncertainty: Is sensitivity of any use. Oper. Res.
January 1:20-25

[15] Nazareth, J. L.. Computer Solution of Linear Programs, 1987. Oxford University Press,
New York

Index

AMPL
outlev, 13
wantsol, 13

arguments
command line tool, 273

basis identification, 40
bounds, infinite, 20

certificate
dual, 22, 25, 27, 29
primal, 22, 25, 27

complementarity conditions, 21
concurrent optimization, 47
concurrent solution, 46
conic

optimization, 23
problem, 23

constraint
matrix, 19, 30, 277
quadratic, 28

constraints
lower limit, 19, 30, 277
upper limit, 19, 30, 277

continuous relaxation, 49

dual certificate, 22, 25, 27, 29
dual feasible, 20
dual infeasible, 20, 22, 25, 27, 29
duality gap, 20
dualizer, 35

eliminator, 35

feasible, dual, 20
feasible, primal, 20

hot-start, 42

infeasible, 61
dual, 22, 25, 27, 29
primal, 22, 25, 27

infeasible problems, 61
infeasible, dual, 20
infeasible, primal, 20
infinite bounds, 20
integer optimization, 49

relaxation, 49
interior-point optimizer, 37, 44, 45
interior-point or simplex optimizer, 43

linear dependency, 35
linear dependency check, 35
linear problem, 19
linearity interval, 72
LP format, 289

maximization problem, 21
mixed-integer optimization, 49
MPS format, 277

compBOUNDS, 284
compCOLUMNS, 280
free, 288
compNAME, 279
compOBJNAME, 280
compOBJSENSE, 279
compQSECTION, 282
compRANGES, 282
compRHS, 281
compROWS, 280

Network flow problems
optimizing, 44

objective
vector, 19

objective sense

323

324 INDEX

maximize, 21
objective vector, 30
OPF format, 297
optimal solution, 21
optimality gap, 20, 55
optimization

conic, 23
integer, 49
mixed-integer, 49

optimizers
concurrent, 47
conic interior-point, 44
convex interior-point, 45
linear interior-point, 37
parallel, 47
simplex, 42

Optimizing
network flow problems, 44

parallel extensions, 46
parallel interior-point, 36
parallel optimizers

interior point, 36
parallel solution, 46
parameter file, 275
presolve, 34

eliminator, 35
linear dependency check, 35
numerical issues, 34

primal certificate, 22, 25, 27
primal feasible, 20
primal infeasible, 20, 22, 25, 27
primal-dual solution, 20

quadratic constraint, 28
quadratic optimization, 28

relaxation, continuous, 49
Response codes

MSK RES ERR AD INVALID CODELIST, 203
MSK RES ERR AD INVALID OPERAND, 203
MSK RES ERR AD INVALID OPERATOR,

203
MSK RES ERR AD MISSING OPERAND, 203
MSK RES ERR AD MISSING RETURN, 203
MSK RES ERR API ARRAY TOO SMALL,

203

MSK RES ERR API CB CONNECT, 203
MSK RES ERR API FATAL ERROR, 203
MSK RES ERR API INTERNAL, 203
MSK RES ERR ARG IS TOO LARGE, 203
MSK RES ERR ARG IS TOO SMALL, 204
MSK RES ERR ARGUMENT DIMENSION,

204
MSK RES ERR ARGUMENT IS TOO LARGE,

204
MSK RES ERR ARGUMENT LENNEQ, 204
MSK RES ERR ARGUMENT PERM ARRAY,

204
MSK RES ERR ARGUMENT TYPE, 204
MSK RES ERR BAR VAR DIM, 204
MSK RES ERR BASIS, 204
MSK RES ERR BASIS FACTOR, 204
MSK RES ERR BASIS SINGULAR, 204
MSK RES ERR BLANK NAME, 204
MSK RES ERR CANNOT CLONE NL, 204
MSK RES ERR CANNOT HANDLE NL, 204
MSK RES ERR CON Q NOT NSD, 204
MSK RES ERR CON Q NOT PSD, 205
MSK RES ERR CONCURRENT OPTIMIZER,

205
MSK RES ERR CONE INDEX, 205
MSK RES ERR CONE OVERLAP, 205
MSK RES ERR CONE OVERLAP APPEND,

205
MSK RES ERR CONE REP VAR, 205
MSK RES ERR CONE SIZE, 205
MSK RES ERR CONE TYPE, 205
MSK RES ERR CONE TYPE STR, 205
MSK RES ERR DATA FILE EXT, 205
MSK RES ERR DUP NAME, 205
MSK RES ERR DUPLICATE BARVARIABLE NAMES,

205
MSK RES ERR DUPLICATE CONE NAMES,

205
MSK RES ERR DUPLICATE CONSTRAINT NAMES,

205
MSK RES ERR DUPLICATE VARIABLE NAMES,

205
MSK RES ERR END OF FILE, 206
MSK RES ERR FACTOR, 206
MSK RES ERR FEASREPAIR CANNOT RELAX,

206

INDEX 325

MSK RES ERR FEASREPAIR INCONSISTENT BOUND,
206

MSK RES ERR FEASREPAIR SOLVING RELAXED,
206

MSK RES ERR FILE LICENSE, 206
MSK RES ERR FILE OPEN, 206
MSK RES ERR FILE READ, 206
MSK RES ERR FILE WRITE, 206
MSK RES ERR FIRST, 206
MSK RES ERR FIRSTI, 206
MSK RES ERR FIRSTJ, 206
MSK RES ERR FIXED BOUND VALUES, 206
MSK RES ERR FLEXLM, 206
MSK RES ERR GLOBAL INV CONIC PROBLEM,

207
MSK RES ERR HUGE AIJ, 207
MSK RES ERR HUGE C, 207
MSK RES ERR IDENTICAL TASKS, 207
MSK RES ERR IN ARGUMENT, 207
MSK RES ERR INDEX, 207
MSK RES ERR INDEX ARR IS TOO LARGE,

207
MSK RES ERR INDEX ARR IS TOO SMALL,

207
MSK RES ERR INDEX IS TOO LARGE, 207
MSK RES ERR INDEX IS TOO SMALL, 207
MSK RES ERR INF DOU INDEX, 207
MSK RES ERR INF DOU NAME, 207
MSK RES ERR INF INT INDEX, 207
MSK RES ERR INF INT NAME, 207
MSK RES ERR INF LINT INDEX, 207
MSK RES ERR INF LINT NAME, 208
MSK RES ERR INF TYPE, 208
MSK RES ERR INFEAS UNDEFINED, 208
MSK RES ERR INFINITE BOUND, 208
MSK RES ERR INT64 TO INT32 CAST, 208
MSK RES ERR INTERNAL, 208
MSK RES ERR INTERNAL TEST FAILED,

208
MSK RES ERR INV APTRE, 208
MSK RES ERR INV BK, 208
MSK RES ERR INV BKC, 208
MSK RES ERR INV BKX, 208
MSK RES ERR INV CONE TYPE, 208
MSK RES ERR INV CONE TYPE STR, 208
MSK RES ERR INV CONIC PROBLEM, 208

MSK RES ERR INV MARKI, 208
MSK RES ERR INV MARKJ, 209
MSK RES ERR INV NAME ITEM, 209
MSK RES ERR INV NUMI, 209
MSK RES ERR INV NUMJ, 209
MSK RES ERR INV OPTIMIZER, 209
MSK RES ERR INV PROBLEM, 209
MSK RES ERR INV QCON SUBI, 209
MSK RES ERR INV QCON SUBJ, 209
MSK RES ERR INV QCON SUBK, 209
MSK RES ERR INV QCON VAL, 209
MSK RES ERR INV QOBJ SUBI, 209
MSK RES ERR INV QOBJ SUBJ, 209
MSK RES ERR INV QOBJ VAL, 209
MSK RES ERR INV SK, 209
MSK RES ERR INV SK STR, 209
MSK RES ERR INV SKC, 210
MSK RES ERR INV SKN, 210
MSK RES ERR INV SKX, 210
MSK RES ERR INV VAR TYPE, 210
MSK RES ERR INVALID ACCMODE, 210
MSK RES ERR INVALID AMPL STUB, 210
MSK RES ERR INVALID BARVAR NAME,

210
MSK RES ERR INVALID BRANCH DIRECTION,

210
MSK RES ERR INVALID BRANCH PRIORITY,

210
MSK RES ERR INVALID COMPRESSION,

210
MSK RES ERR INVALID CON NAME, 210
MSK RES ERR INVALID CONE NAME, 210
MSK RES ERR INVALID FILE FORMAT FOR CONES,

210
MSK RES ERR INVALID FILE FORMAT FOR GENERAL NL,

210
MSK RES ERR INVALID FILE FORMAT FOR SYM MAT,

210
MSK RES ERR INVALID FILE NAME, 210
MSK RES ERR INVALID FORMAT TYPE,

211
MSK RES ERR INVALID IDX, 211
MSK RES ERR INVALID IOMODE, 211
MSK RES ERR INVALID MAX NUM, 211
MSK RES ERR INVALID NAME IN SOL FILE,

211

326 INDEX

MSK RES ERR INVALID NETWORK PROBLEM,
211

MSK RES ERR INVALID OBJ NAME, 211
MSK RES ERR INVALID OBJECTIVE SENSE,

211
MSK RES ERR INVALID PROBLEM TYPE,

211
MSK RES ERR INVALID SOL FILE NAME,

211
MSK RES ERR INVALID STREAM, 211
MSK RES ERR INVALID SURPLUS, 211
MSK RES ERR INVALID SYM MAT DIM, 211
MSK RES ERR INVALID TASK, 211
MSK RES ERR INVALID UTF8, 211
MSK RES ERR INVALID VAR NAME, 212
MSK RES ERR INVALID WCHAR, 212
MSK RES ERR INVALID WHICHSOL, 212
MSK RES ERR LAST, 212
MSK RES ERR LASTI, 212
MSK RES ERR LASTJ, 212
MSK RES ERR LICENSE, 212
MSK RES ERR LICENSE CANNOT ALLOCATE,

212
MSK RES ERR LICENSE CANNOT CONNECT,

212
MSK RES ERR LICENSE EXPIRED, 212
MSK RES ERR LICENSE FEATURE, 212
MSK RES ERR LICENSE INVALID HOSTID,

212
MSK RES ERR LICENSE MAX, 212
MSK RES ERR LICENSE MOSEKLM DAEMON,

212
MSK RES ERR LICENSE NO SERVER LINE,

212
MSK RES ERR LICENSE NO SERVER SUPPORT,

213
MSK RES ERR LICENSE SERVER, 213
MSK RES ERR LICENSE SERVER VERSION,

213
MSK RES ERR LICENSE VERSION, 213
MSK RES ERR LINK FILE DLL, 213
MSK RES ERR LIVING TASKS, 213
MSK RES ERR LOWER BOUND IS A NAN,

213
MSK RES ERR LP DUP SLACK NAME, 213
MSK RES ERR LP EMPTY, 213

MSK RES ERR LP FILE FORMAT, 213
MSK RES ERR LP FORMAT, 213
MSK RES ERR LP FREE CONSTRAINT, 213
MSK RES ERR LP INCOMPATIBLE, 213
MSK RES ERR LP INVALID CON NAME,

214
MSK RES ERR LP INVALID VAR NAME, 214
MSK RES ERR LP WRITE CONIC PROBLEM,

214
MSK RES ERR LP WRITE GECO PROBLEM,

214
MSK RES ERR LU MAX NUM TRIES, 214
MSK RES ERR MAX LEN IS TOO SMALL,

214
MSK RES ERR MAXNUMBARVAR, 214
MSK RES ERR MAXNUMCON, 214
MSK RES ERR MAXNUMCONE, 214
MSK RES ERR MAXNUMQNZ, 214
MSK RES ERR MAXNUMVAR, 214
MSK RES ERR MBT INCOMPATIBLE, 214
MSK RES ERR MBT INVALID, 214
MSK RES ERR MIO INTERNAL, 214
MSK RES ERR MIO NO OPTIMIZER, 215
MSK RES ERR MIO NOT LOADED, 215
MSK RES ERR MISSING LICENSE FILE, 215
MSK RES ERR MIXED PROBLEM, 215
MSK RES ERR MPS CONE OVERLAP, 215
MSK RES ERR MPS CONE REPEAT, 215
MSK RES ERR MPS CONE TYPE, 215
MSK RES ERR MPS FILE, 215
MSK RES ERR MPS INV BOUND KEY, 215
MSK RES ERR MPS INV CON KEY, 215
MSK RES ERR MPS INV FIELD, 215
MSK RES ERR MPS INV MARKER, 215
MSK RES ERR MPS INV SEC NAME, 215
MSK RES ERR MPS INV SEC ORDER, 215
MSK RES ERR MPS INVALID OBJ NAME,

215
MSK RES ERR MPS INVALID OBJSENSE,

215
MSK RES ERR MPS MUL CON NAME, 216
MSK RES ERR MPS MUL CSEC, 216
MSK RES ERR MPS MUL QOBJ, 216
MSK RES ERR MPS MUL QSEC, 216
MSK RES ERR MPS NO OBJECTIVE, 216
MSK RES ERR MPS NULL CON NAME, 216

INDEX 327

MSK RES ERR MPS NULL VAR NAME, 216
MSK RES ERR MPS SPLITTED VAR, 216
MSK RES ERR MPS TAB IN FIELD2, 216
MSK RES ERR MPS TAB IN FIELD3, 216
MSK RES ERR MPS TAB IN FIELD5, 216
MSK RES ERR MPS UNDEF CON NAME,

216
MSK RES ERR MPS UNDEF VAR NAME,

216
MSK RES ERR MUL A ELEMENT, 216
MSK RES ERR NAME IS NULL, 216
MSK RES ERR NAME MAX LEN, 217
MSK RES ERR NAN IN AIJ, 217
MSK RES ERR NAN IN BLC, 217
MSK RES ERR NAN IN BLX, 217
MSK RES ERR NAN IN BUC, 217
MSK RES ERR NAN IN BUX, 217
MSK RES ERR NAN IN C, 217
MSK RES ERR NAN IN DOUBLE DATA, 217
MSK RES ERR NEGATIVE APPEND, 217
MSK RES ERR NEGATIVE SURPLUS, 217
MSK RES ERR NEWER DLL, 217
MSK RES ERR NO BARS FOR SOLUTION,

217
MSK RES ERR NO BARX FOR SOLUTION,

217
MSK RES ERR NO BASIS SOL, 217
MSK RES ERR NO DUAL FOR ITG SOL, 217
MSK RES ERR NO DUAL INFEAS CER, 218
MSK RES ERR NO DUAL INFO FOR ITG SOL,

218
MSK RES ERR NO INIT ENV, 218
MSK RES ERR NO OPTIMIZER VAR TYPE,

218
MSK RES ERR NO PRIMAL INFEAS CER,

218
MSK RES ERR NO SNX FOR BAS SOL, 218
MSK RES ERR NO SOLUTION IN CALLBACK,

218
MSK RES ERR NON UNIQUE ARRAY, 218
MSK RES ERR NONCONVEX, 218
MSK RES ERR NONLINEAR EQUALITY,

218
MSK RES ERR NONLINEAR FUNCTIONS NOT ALLOWED,

218
MSK RES ERR NONLINEAR RANGED, 218

MSK RES ERR NR ARGUMENTS, 218
MSK RES ERR NULL ENV, 218
MSK RES ERR NULL POINTER, 218
MSK RES ERR NULL TASK, 218
MSK RES ERR NUMCONLIM, 219
MSK RES ERR NUMVARLIM, 219
MSK RES ERR OBJ Q NOT NSD, 219
MSK RES ERR OBJ Q NOT PSD, 219
MSK RES ERR OBJECTIVE RANGE, 219
MSK RES ERR OLDER DLL, 219
MSK RES ERR OPEN DL, 219
MSK RES ERR OPF FORMAT, 219
MSK RES ERR OPF NEW VARIABLE, 219
MSK RES ERR OPF PREMATURE EOF, 219
MSK RES ERR OPTIMIZER LICENSE, 219
MSK RES ERR ORD INVALID, 219
MSK RES ERR ORD INVALID BRANCH DIR,

219
MSK RES ERR OVERFLOW, 219
MSK RES ERR PARAM INDEX, 220
MSK RES ERR PARAM IS TOO LARGE, 220
MSK RES ERR PARAM IS TOO SMALL, 220
MSK RES ERR PARAM NAME, 220
MSK RES ERR PARAM NAME DOU, 220
MSK RES ERR PARAM NAME INT, 220
MSK RES ERR PARAM NAME STR, 220
MSK RES ERR PARAM TYPE, 220
MSK RES ERR PARAM VALUE STR, 220
MSK RES ERR PLATFORM NOT LICENSED,

220
MSK RES ERR POSTSOLVE, 220
MSK RES ERR PRO ITEM, 220
MSK RES ERR PROB LICENSE, 220
MSK RES ERR QCON SUBI TOO LARGE,

220
MSK RES ERR QCON SUBI TOO SMALL,

220
MSK RES ERR QCON UPPER TRIANGLE,

221
MSK RES ERR QOBJ UPPER TRIANGLE,

221
MSK RES ERR READ FORMAT, 221
MSK RES ERR READ LP MISSING END TAG,

221
MSK RES ERR READ LP NONEXISTING NAME,

221

328 INDEX

MSK RES ERR REMOVE CONE VARIABLE,
221

MSK RES ERR REPAIR INVALID PROBLEM,
221

MSK RES ERR REPAIR OPTIMIZATION FAILED,
221

MSK RES ERR SEN BOUND INVALID LO,
221

MSK RES ERR SEN BOUND INVALID UP,
221

MSK RES ERR SEN FORMAT, 221
MSK RES ERR SEN INDEX INVALID, 221
MSK RES ERR SEN INDEX RANGE, 221
MSK RES ERR SEN INVALID REGEXP, 221
MSK RES ERR SEN NUMERICAL, 221
MSK RES ERR SEN SOLUTION STATUS, 222
MSK RES ERR SEN UNDEF NAME, 222
MSK RES ERR SEN UNHANDLED PROBLEM TYPE,

222
MSK RES ERR SIZE LICENSE, 222
MSK RES ERR SIZE LICENSE CON, 222
MSK RES ERR SIZE LICENSE INTVAR, 222
MSK RES ERR SIZE LICENSE NUMCORES,

222
MSK RES ERR SIZE LICENSE VAR, 222
MSK RES ERR SOL FILE INVALID NUMBER,

222
MSK RES ERR SOLITEM, 222
MSK RES ERR SOLVER PROBTYPE, 222
MSK RES ERR SPACE, 222
MSK RES ERR SPACE LEAKING, 222
MSK RES ERR SPACE NO INFO, 222
MSK RES ERR SYM MAT DUPLICATE, 222
MSK RES ERR SYM MAT INVALID COL INDEX,

223
MSK RES ERR SYM MAT INVALID ROW INDEX,

223
MSK RES ERR SYM MAT INVALID VALUE,

223
MSK RES ERR SYM MAT NOT LOWER TRINGULAR,

223
MSK RES ERR TASK INCOMPATIBLE, 223
MSK RES ERR TASK INVALID, 223
MSK RES ERR THREAD COND INIT, 223
MSK RES ERR THREAD CREATE, 223
MSK RES ERR THREAD MUTEX INIT, 223

MSK RES ERR THREAD MUTEX LOCK, 223
MSK RES ERR THREAD MUTEX UNLOCK,

223
MSK RES ERR TOO MANY CONCURRENT TASKS,

223
MSK RES ERR TOO SMALL MAX NUM NZ,

223
MSK RES ERR TOO SMALL MAXNUMANZ,

223
MSK RES ERR UNB STEP SIZE, 224
MSK RES ERR UNDEF SOLUTION, 224
MSK RES ERR UNDEFINED OBJECTIVE SENSE,

224
MSK RES ERR UNHANDLED SOLUTION STATUS,

224
MSK RES ERR UNKNOWN, 224
MSK RES ERR UPPER BOUND IS A NAN,

224
MSK RES ERR UPPER TRIANGLE, 224
MSK RES ERR USER FUNC RET, 224
MSK RES ERR USER FUNC RET DATA, 224
MSK RES ERR USER NLO EVAL, 224
MSK RES ERR USER NLO EVAL HESSUBI,

224
MSK RES ERR USER NLO EVAL HESSUBJ,

224
MSK RES ERR USER NLO FUNC, 225
MSK RES ERR WHICHITEM NOT ALLOWED,

225
MSK RES ERR WHICHSOL, 225
MSK RES ERR WRITE LP FORMAT, 225
MSK RES ERR WRITE LP NON UNIQUE NAME,

225
MSK RES ERR WRITE MPS INVALID NAME,

225
MSK RES ERR WRITE OPF INVALID VAR NAME,

225
MSK RES ERR WRITING FILE, 225
MSK RES ERR XML INVALID PROBLEM TYPE,

225
MSK RES ERR Y IS UNDEFINED, 225
MSK RES OK, 225
MSK RES TRM INTERNAL, 225
MSK RES TRM INTERNAL STOP, 225
MSK RES TRM MAX ITERATIONS, 225
MSK RES TRM MAX NUM SETBACKS, 225

INDEX 329

MSK RES TRM MAX TIME, 226
MSK RES TRM MIO NEAR ABS GAP, 226
MSK RES TRM MIO NEAR REL GAP, 226
MSK RES TRM MIO NUM BRANCHES, 226
MSK RES TRM MIO NUM RELAXS, 226
MSK RES TRM NUM MAX NUM INT SOLUTIONS,

226
MSK RES TRM NUMERICAL PROBLEM,

226
MSK RES TRM OBJECTIVE RANGE, 226
MSK RES TRM STALL, 226
MSK RES TRM USER CALLBACK, 226
MSK RES WRN ANA ALMOST INT BOUNDS,

227
MSK RES WRN ANA C ZERO, 227
MSK RES WRN ANA CLOSE BOUNDS, 227
MSK RES WRN ANA EMPTY COLS, 227
MSK RES WRN ANA LARGE BOUNDS, 227
MSK RES WRN CONSTRUCT INVALID SOL ITG,

227
MSK RES WRN CONSTRUCT NO SOL ITG,

227
MSK RES WRN CONSTRUCT SOLUTION INFEAS,

227
MSK RES WRN DROPPED NZ QOBJ, 227
MSK RES WRN DUPLICATE BARVARIABLE NAMES,

227
MSK RES WRN DUPLICATE CONE NAMES,

227
MSK RES WRN DUPLICATE CONSTRAINT NAMES,

227
MSK RES WRN DUPLICATE VARIABLE NAMES,

227
MSK RES WRN ELIMINATOR SPACE, 227
MSK RES WRN EMPTY NAME, 228
MSK RES WRN IGNORE INTEGER, 228
MSK RES WRN INCOMPLETE LINEAR DEPENDENCY CHECK,

228
MSK RES WRN LARGE AIJ, 228
MSK RES WRN LARGE BOUND, 228
MSK RES WRN LARGE CJ, 228
MSK RES WRN LARGE CON FX, 228
MSK RES WRN LARGE LO BOUND, 228
MSK RES WRN LARGE UP BOUND, 228
MSK RES WRN LICENSE EXPIRE, 228
MSK RES WRN LICENSE FEATURE EXPIRE,

228
MSK RES WRN LICENSE SERVER, 228
MSK RES WRN LP DROP VARIABLE, 228
MSK RES WRN LP OLD QUAD FORMAT,

228
MSK RES WRN MIO INFEASIBLE FINAL,

229
MSK RES WRN MPS SPLIT BOU VECTOR,

229
MSK RES WRN MPS SPLIT RAN VECTOR,

229
MSK RES WRN MPS SPLIT RHS VECTOR,

229
MSK RES WRN NAME MAX LEN, 229
MSK RES WRN NO DUALIZER, 229
MSK RES WRN NO GLOBAL OPTIMIZER,

229
MSK RES WRN NO NONLINEAR FUNCTION WRITE,

229
MSK RES WRN NZ IN UPR TRI, 229
MSK RES WRN OPEN PARAM FILE, 229
MSK RES WRN PARAM IGNORED CMIO,

229
MSK RES WRN PARAM NAME DOU, 229
MSK RES WRN PARAM NAME INT, 229
MSK RES WRN PARAM NAME STR, 229
MSK RES WRN PARAM STR VALUE, 229
MSK RES WRN PRESOLVE OUTOFSPACE,

230
MSK RES WRN QUAD CONES WITH ROOT FIXED AT ZERO,

230
MSK RES WRN RQUAD CONES WITH ROOT FIXED AT ZERO,

230
MSK RES WRN SOL FILE IGNORED CON,

230
MSK RES WRN SOL FILE IGNORED VAR,

230
MSK RES WRN SOL FILTER, 230
MSK RES WRN SPAR MAX LEN, 230
MSK RES WRN TOO FEW BASIS VARS, 230
MSK RES WRN TOO MANY BASIS VARS,

230
MSK RES WRN TOO MANY THREADS CONCURRENT,

230
MSK RES WRN UNDEF SOL FILE NAME,

230

330 INDEX

MSK RES WRN USING GENERIC NAMES,
230

MSK RES WRN WRITE CHANGED NAMES,
230

MSK RES WRN WRITE DISCARDED CFIX,
231

MSK RES WRN ZERO AIJ, 231
MSK RES WRN ZEROS IN SPARSE COL, 231
MSK RES WRN ZEROS IN SPARSE ROW,

231

scaling, 36
sensitivity analysis, 71

basis type, 73
optimal partition type, 74

shadow price, 72
simplex optimizer, 42
solution

optimal, 21
primal-dual, 20

variables
decision, 19, 30, 277
lower limit, 20, 30, 277
upper limit, 20, 30, 277

xml format, 309

	Changes and new features in MOSEK
	Platform support
	General changes
	Optimizers
	Interior point optimizer
	The simplex optimizers
	Mixed-integer optimizer

	Optimization toolbox for MATLAB
	License system
	Other changes
	Interfaces
	Platform changes

	What is MOSEK
	Interfaces

	MOSEK and AMPL
	Invoking the AMPL shell
	Applicability
	An example
	Determining the outcome of an optimization
	Optimizer options
	The MOSEK parameter database
	Options

	Constraint and variable names
	Which solution is returned to AMPL
	Hot-start
	The infeasibility report
	Sensitivity analysis
	Using the command line version of the AMPL interface

	Problem formulation and solutions
	Linear optimization
	Duality for linear optimization
	Infeasibility for linear optimization

	Conic quadratic optimization
	Duality for conic quadratic optimization
	Infeasibility for conic quadratic optimization

	Semidefinite optimization
	Duality for semidefinite optimization
	Infeasibility for semidefinite optimization

	Quadratic and quadratically constrained optimization
	Duality for quadratic and quadratically constrained optimization
	Infeasibility for quadratic and quadratically constrained optimization

	General convex optimization
	Duality for general convex optimization

	The optimizers for continuous problems
	How an optimizer works
	Presolve
	Dualizer
	Scaling
	Using multiple threads

	Linear optimization
	Optimizer selection
	The interior-point optimizer
	The simplex based optimizer
	The interior-point or the simplex optimizer?
	The primal or the dual simplex variant?

	Linear network optimization
	Network flow problems

	Conic optimization
	The interior-point optimizer

	Nonlinear convex optimization
	The interior-point optimizer

	Solving problems in parallel
	Thread safety
	The parallelized interior-point optimizer
	The concurrent optimizer

	The optimizers for mixed-integer problems
	Some concepts and facts related to mixed-integer optimization
	The mixed-integer optimizers
	The mixed-integer conic optimizer
	Presolve
	Heuristic
	The optimization phase
	Caveats

	The mixed-integer optimizer
	Presolve
	Heuristic
	The optimization phase

	Termination criterion
	Relaxed termination
	Important parameters

	How to speed up the solution process
	Understanding solution quality

	The analyzers
	The problem analyzer
	General characteristics
	Objective
	Linear constraints
	Constraint and variable bounds
	Quadratic constraints
	Conic constraints

	Analyzing infeasible problems
	Example: Primal infeasibility
	Locating the cause of primal infeasibility
	Locating the cause of dual infeasibility
	The infeasibility report
	Theory concerning infeasible problems
	The certificate of primal infeasibility
	The certificate of dual infeasibility

	Sensitivity analysis
	Introduction
	Restrictions
	References
	Sensitivity analysis for linear problems
	The optimal objective value function
	The basis type sensitivity analysis
	The optimal partition type sensitivity analysis

	Sensitivity analysis with the command line tool
	Sensitivity analysis specification file
	Example: Sensitivity analysis from command line
	Controlling log output

	Parameters
	MSKdparame: Double parameters
	MSK_DPAR_ANA_SOL_INFEAS_TOL
	MSK_DPAR_BASIS_REL_TOL_S
	MSK_DPAR_BASIS_TOL_S
	MSK_DPAR_BASIS_TOL_X
	MSK_DPAR_CHECK_CONVEXITY_REL_TOL
	MSK_DPAR_DATA_TOL_AIJ
	MSK_DPAR_DATA_TOL_AIJ_HUGE
	MSK_DPAR_DATA_TOL_AIJ_LARGE
	MSK_DPAR_DATA_TOL_BOUND_INF
	MSK_DPAR_DATA_TOL_BOUND_WRN
	MSK_DPAR_DATA_TOL_C_HUGE
	MSK_DPAR_DATA_TOL_CJ_LARGE
	MSK_DPAR_DATA_TOL_QIJ
	MSK_DPAR_DATA_TOL_X
	MSK_DPAR_FEASREPAIR_TOL
	MSK_DPAR_INTPNT_CO_TOL_DFEAS
	MSK_DPAR_INTPNT_CO_TOL_INFEAS
	MSK_DPAR_INTPNT_CO_TOL_MU_RED
	MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
	MSK_DPAR_INTPNT_CO_TOL_PFEAS
	MSK_DPAR_INTPNT_CO_TOL_REL_GAP
	MSK_DPAR_INTPNT_NL_MERIT_BAL
	MSK_DPAR_INTPNT_NL_TOL_DFEAS
	MSK_DPAR_INTPNT_NL_TOL_MU_RED
	MSK_DPAR_INTPNT_NL_TOL_NEAR_REL
	MSK_DPAR_INTPNT_NL_TOL_PFEAS
	MSK_DPAR_INTPNT_NL_TOL_REL_GAP
	MSK_DPAR_INTPNT_NL_TOL_REL_STEP
	MSK_DPAR_INTPNT_TOL_DFEAS
	MSK_DPAR_INTPNT_TOL_DSAFE
	MSK_DPAR_INTPNT_TOL_INFEAS
	MSK_DPAR_INTPNT_TOL_MU_RED
	MSK_DPAR_INTPNT_TOL_PATH
	MSK_DPAR_INTPNT_TOL_PFEAS
	MSK_DPAR_INTPNT_TOL_PSAFE
	MSK_DPAR_INTPNT_TOL_REL_GAP
	MSK_DPAR_INTPNT_TOL_REL_STEP
	MSK_DPAR_INTPNT_TOL_STEP_SIZE
	MSK_DPAR_LOWER_OBJ_CUT
	MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH
	MSK_DPAR_MIO_DISABLE_TERM_TIME
	MSK_DPAR_MIO_HEURISTIC_TIME
	MSK_DPAR_MIO_MAX_TIME
	MSK_DPAR_MIO_MAX_TIME_APRX_OPT
	MSK_DPAR_MIO_NEAR_TOL_ABS_GAP
	MSK_DPAR_MIO_NEAR_TOL_REL_GAP
	MSK_DPAR_MIO_REL_ADD_CUT_LIMITED
	MSK_DPAR_MIO_REL_GAP_CONST
	MSK_DPAR_MIO_TOL_ABS_GAP
	MSK_DPAR_MIO_TOL_ABS_RELAX_INT
	MSK_DPAR_MIO_TOL_FEAS
	MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT
	MSK_DPAR_MIO_TOL_REL_GAP
	MSK_DPAR_MIO_TOL_REL_RELAX_INT
	MSK_DPAR_MIO_TOL_X
	MSK_DPAR_NONCONVEX_TOL_FEAS
	MSK_DPAR_NONCONVEX_TOL_OPT
	MSK_DPAR_OPTIMIZER_MAX_TIME
	MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP
	MSK_DPAR_PRESOLVE_TOL_AIJ
	MSK_DPAR_PRESOLVE_TOL_REL_LINDEP
	MSK_DPAR_PRESOLVE_TOL_S
	MSK_DPAR_PRESOLVE_TOL_X
	MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL
	MSK_DPAR_SIM_LU_TOL_REL_PIV
	MSK_DPAR_SIMPLEX_ABS_TOL_PIV
	MSK_DPAR_UPPER_OBJ_CUT
	MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH

	MSKiparame: Integer parameters
	MSK_IPAR_ALLOC_ADD_QNZ
	MSK_IPAR_ANA_SOL_BASIS
	MSK_IPAR_ANA_SOL_PRINT_VIOLATED
	MSK_IPAR_AUTO_SORT_A_BEFORE_OPT
	MSK_IPAR_AUTO_UPDATE_SOL_INFO
	MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE
	MSK_IPAR_BI_CLEAN_OPTIMIZER
	MSK_IPAR_BI_IGNORE_MAX_ITER
	MSK_IPAR_BI_IGNORE_NUM_ERROR
	MSK_IPAR_BI_MAX_ITERATIONS
	MSK_IPAR_CACHE_LICENSE
	MSK_IPAR_CHECK_CONVEXITY
	MSK_IPAR_COMPRESS_STATFILE
	MSK_IPAR_CONCURRENT_NUM_OPTIMIZERS
	MSK_IPAR_CONCURRENT_PRIORITY_DUAL_SIMPLEX
	MSK_IPAR_CONCURRENT_PRIORITY_FREE_SIMPLEX
	MSK_IPAR_CONCURRENT_PRIORITY_INTPNT
	MSK_IPAR_CONCURRENT_PRIORITY_PRIMAL_SIMPLEX
	MSK_IPAR_FEASREPAIR_OPTIMIZE
	MSK_IPAR_INFEAS_GENERIC_NAMES
	MSK_IPAR_INFEAS_PREFER_PRIMAL
	MSK_IPAR_INFEAS_REPORT_AUTO
	MSK_IPAR_INFEAS_REPORT_LEVEL
	MSK_IPAR_INTPNT_BASIS
	MSK_IPAR_INTPNT_DIFF_STEP
	MSK_IPAR_INTPNT_FACTOR_DEBUG_LVL
	MSK_IPAR_INTPNT_FACTOR_METHOD
	MSK_IPAR_INTPNT_HOTSTART
	MSK_IPAR_INTPNT_MAX_ITERATIONS
	MSK_IPAR_INTPNT_MAX_NUM_COR
	MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS
	MSK_IPAR_INTPNT_OFF_COL_TRH
	MSK_IPAR_INTPNT_ORDER_METHOD
	MSK_IPAR_INTPNT_REGULARIZATION_USE
	MSK_IPAR_INTPNT_SCALING
	MSK_IPAR_INTPNT_SOLVE_FORM
	MSK_IPAR_INTPNT_STARTING_POINT
	MSK_IPAR_LIC_TRH_EXPIRY_WRN
	MSK_IPAR_LICENSE_ALLOW_OVERUSE
	MSK_IPAR_LICENSE_DEBUG
	MSK_IPAR_LICENSE_PAUSE_TIME
	MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS
	MSK_IPAR_LICENSE_WAIT
	MSK_IPAR_LOG
	MSK_IPAR_LOG_BI
	MSK_IPAR_LOG_BI_FREQ
	MSK_IPAR_LOG_CHECK_CONVEXITY
	MSK_IPAR_LOG_CONCURRENT
	MSK_IPAR_LOG_CUT_SECOND_OPT
	MSK_IPAR_LOG_EXPAND
	MSK_IPAR_LOG_FACTOR
	MSK_IPAR_LOG_FEAS_REPAIR
	MSK_IPAR_LOG_FILE
	MSK_IPAR_LOG_HEAD
	MSK_IPAR_LOG_INFEAS_ANA
	MSK_IPAR_LOG_INTPNT
	MSK_IPAR_LOG_MIO
	MSK_IPAR_LOG_MIO_FREQ
	MSK_IPAR_LOG_NONCONVEX
	MSK_IPAR_LOG_OPTIMIZER
	MSK_IPAR_LOG_ORDER
	MSK_IPAR_LOG_PARAM
	MSK_IPAR_LOG_PRESOLVE
	MSK_IPAR_LOG_RESPONSE
	MSK_IPAR_LOG_SENSITIVITY
	MSK_IPAR_LOG_SENSITIVITY_OPT
	MSK_IPAR_LOG_SIM
	MSK_IPAR_LOG_SIM_FREQ
	MSK_IPAR_LOG_SIM_MINOR
	MSK_IPAR_LOG_SIM_NETWORK_FREQ
	MSK_IPAR_LOG_STORAGE
	MSK_IPAR_MAX_NUM_WARNINGS
	MSK_IPAR_MIO_BRANCH_DIR
	MSK_IPAR_MIO_BRANCH_PRIORITIES_USE
	MSK_IPAR_MIO_CONSTRUCT_SOL
	MSK_IPAR_MIO_CONT_SOL
	MSK_IPAR_MIO_CUT_LEVEL_ROOT
	MSK_IPAR_MIO_CUT_LEVEL_TREE
	MSK_IPAR_MIO_FEASPUMP_LEVEL
	MSK_IPAR_MIO_HEURISTIC_LEVEL
	MSK_IPAR_MIO_HOTSTART
	MSK_IPAR_MIO_KEEP_BASIS
	MSK_IPAR_MIO_LOCAL_BRANCH_NUMBER
	MSK_IPAR_MIO_MAX_NUM_BRANCHES
	MSK_IPAR_MIO_MAX_NUM_RELAXS
	MSK_IPAR_MIO_MAX_NUM_SOLUTIONS
	MSK_IPAR_MIO_MODE
	MSK_IPAR_MIO_MT_USER_CB
	MSK_IPAR_MIO_NODE_OPTIMIZER
	MSK_IPAR_MIO_NODE_SELECTION
	MSK_IPAR_MIO_OPTIMIZER_MODE
	MSK_IPAR_MIO_PRESOLVE_AGGREGATE
	MSK_IPAR_MIO_PRESOLVE_PROBING
	MSK_IPAR_MIO_PRESOLVE_USE
	MSK_IPAR_MIO_ROOT_OPTIMIZER
	MSK_IPAR_MIO_STRONG_BRANCH
	MSK_IPAR_MIO_USE_MULTITHREADED_OPTIMIZER
	MSK_IPAR_MT_SPINCOUNT
	MSK_IPAR_NONCONVEX_MAX_ITERATIONS
	MSK_IPAR_NUM_THREADS
	MSK_IPAR_OPF_MAX_TERMS_PER_LINE
	MSK_IPAR_OPF_WRITE_HEADER
	MSK_IPAR_OPF_WRITE_HINTS
	MSK_IPAR_OPF_WRITE_PARAMETERS
	MSK_IPAR_OPF_WRITE_PROBLEM
	MSK_IPAR_OPF_WRITE_SOL_BAS
	MSK_IPAR_OPF_WRITE_SOL_ITG
	MSK_IPAR_OPF_WRITE_SOL_ITR
	MSK_IPAR_OPF_WRITE_SOLUTIONS
	MSK_IPAR_OPTIMIZER
	MSK_IPAR_PARAM_READ_CASE_NAME
	MSK_IPAR_PARAM_READ_IGN_ERROR
	MSK_IPAR_PRESOLVE_ELIM_FILL
	MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
	MSK_IPAR_PRESOLVE_ELIMINATOR_USE
	MSK_IPAR_PRESOLVE_LEVEL
	MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH
	MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH
	MSK_IPAR_PRESOLVE_LINDEP_USE
	MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS
	MSK_IPAR_PRESOLVE_USE
	MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER
	MSK_IPAR_QO_SEPARABLE_REFORMULATION
	MSK_IPAR_READ_ANZ
	MSK_IPAR_READ_CON
	MSK_IPAR_READ_CONE
	MSK_IPAR_READ_DATA_COMPRESSED
	MSK_IPAR_READ_DATA_FORMAT
	MSK_IPAR_READ_KEEP_FREE_CON
	MSK_IPAR_READ_LP_DROP_NEW_VARS_IN_BOU
	MSK_IPAR_READ_LP_QUOTED_NAMES
	MSK_IPAR_READ_MPS_FORMAT
	MSK_IPAR_READ_MPS_KEEP_INT
	MSK_IPAR_READ_MPS_OBJ_SENSE
	MSK_IPAR_READ_MPS_RELAX
	MSK_IPAR_READ_MPS_WIDTH
	MSK_IPAR_READ_QNZ
	MSK_IPAR_READ_TASK_IGNORE_PARAM
	MSK_IPAR_READ_VAR
	MSK_IPAR_SENSITIVITY_ALL
	MSK_IPAR_SENSITIVITY_OPTIMIZER
	MSK_IPAR_SENSITIVITY_TYPE
	MSK_IPAR_SIM_BASIS_FACTOR_USE
	MSK_IPAR_SIM_DEGEN
	MSK_IPAR_SIM_DUAL_CRASH
	MSK_IPAR_SIM_DUAL_PHASEONE_METHOD
	MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION
	MSK_IPAR_SIM_DUAL_SELECTION
	MSK_IPAR_SIM_EXPLOIT_DUPVEC
	MSK_IPAR_SIM_HOTSTART
	MSK_IPAR_SIM_HOTSTART_LU
	MSK_IPAR_SIM_INTEGER
	MSK_IPAR_SIM_MAX_ITERATIONS
	MSK_IPAR_SIM_MAX_NUM_SETBACKS
	MSK_IPAR_SIM_NON_SINGULAR
	MSK_IPAR_SIM_PRIMAL_CRASH
	MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD
	MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION
	MSK_IPAR_SIM_PRIMAL_SELECTION
	MSK_IPAR_SIM_REFACTOR_FREQ
	MSK_IPAR_SIM_REFORMULATION
	MSK_IPAR_SIM_SAVE_LU
	MSK_IPAR_SIM_SCALING
	MSK_IPAR_SIM_SCALING_METHOD
	MSK_IPAR_SIM_SOLVE_FORM
	MSK_IPAR_SIM_STABILITY_PRIORITY
	MSK_IPAR_SIM_SWITCH_OPTIMIZER
	MSK_IPAR_SOL_FILTER_KEEP_BASIC
	MSK_IPAR_SOL_FILTER_KEEP_RANGED
	MSK_IPAR_SOL_READ_NAME_WIDTH
	MSK_IPAR_SOL_READ_WIDTH
	MSK_IPAR_SOLUTION_CALLBACK
	MSK_IPAR_TIMING_LEVEL
	MSK_IPAR_WARNING_LEVEL
	MSK_IPAR_WRITE_BAS_CONSTRAINTS
	MSK_IPAR_WRITE_BAS_HEAD
	MSK_IPAR_WRITE_BAS_VARIABLES
	MSK_IPAR_WRITE_DATA_COMPRESSED
	MSK_IPAR_WRITE_DATA_FORMAT
	MSK_IPAR_WRITE_DATA_PARAM
	MSK_IPAR_WRITE_FREE_CON
	MSK_IPAR_WRITE_GENERIC_NAMES
	MSK_IPAR_WRITE_GENERIC_NAMES_IO
	MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_CONIC_ITEMS
	MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS
	MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_NL_ITEMS
	MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_PSD_ITEMS
	MSK_IPAR_WRITE_INT_CONSTRAINTS
	MSK_IPAR_WRITE_INT_HEAD
	MSK_IPAR_WRITE_INT_VARIABLES
	MSK_IPAR_WRITE_LP_LINE_WIDTH
	MSK_IPAR_WRITE_LP_QUOTED_NAMES
	MSK_IPAR_WRITE_LP_STRICT_FORMAT
	MSK_IPAR_WRITE_LP_TERMS_PER_LINE
	MSK_IPAR_WRITE_MPS_INT
	MSK_IPAR_WRITE_PRECISION
	MSK_IPAR_WRITE_SOL_BARVARIABLES
	MSK_IPAR_WRITE_SOL_CONSTRAINTS
	MSK_IPAR_WRITE_SOL_HEAD
	MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES
	MSK_IPAR_WRITE_SOL_VARIABLES
	MSK_IPAR_WRITE_TASK_INC_SOL
	MSK_IPAR_WRITE_XML_MODE

	MSKsparame: String parameter types
	MSK_SPAR_BAS_SOL_FILE_NAME
	MSK_SPAR_DATA_FILE_NAME
	MSK_SPAR_DEBUG_FILE_NAME
	MSK_SPAR_FEASREPAIR_NAME_PREFIX
	MSK_SPAR_FEASREPAIR_NAME_SEPARATOR
	MSK_SPAR_FEASREPAIR_NAME_WSUMVIOL
	MSK_SPAR_INT_SOL_FILE_NAME
	MSK_SPAR_ITR_SOL_FILE_NAME
	MSK_SPAR_MIO_DEBUG_STRING
	MSK_SPAR_PARAM_COMMENT_SIGN
	MSK_SPAR_PARAM_READ_FILE_NAME
	MSK_SPAR_PARAM_WRITE_FILE_NAME
	MSK_SPAR_READ_MPS_BOU_NAME
	MSK_SPAR_READ_MPS_OBJ_NAME
	MSK_SPAR_READ_MPS_RAN_NAME
	MSK_SPAR_READ_MPS_RHS_NAME
	MSK_SPAR_SENSITIVITY_FILE_NAME
	MSK_SPAR_SENSITIVITY_RES_FILE_NAME
	MSK_SPAR_SOL_FILTER_XC_LOW
	MSK_SPAR_SOL_FILTER_XC_UPR
	MSK_SPAR_SOL_FILTER_XX_LOW
	MSK_SPAR_SOL_FILTER_XX_UPR
	MSK_SPAR_STAT_FILE_NAME
	MSK_SPAR_STAT_KEY
	MSK_SPAR_STAT_NAME
	MSK_SPAR_WRITE_LP_GEN_VAR_NAME

	Response codes
	API constants
	Constraint or variable access modes
	Basis identification
	Bound keys
	Specifies the branching direction.
	Progress call-back codes
	Types of convexity checks.
	Compression types
	Cone types
	Data format types
	Double information items
	Feasibility repair types
	License feature
	Integer information items.
	Information item types
	Hot-start type employed by the interior-point optimizers.
	Input/output modes
	Language selection constants
	Long integer information items.
	Mark
	Continuous mixed-integer solution type
	Integer restrictions
	Mixed-integer node selection types
	MPS file format type
	Message keys
	Cone types
	Objective sense types
	On/off
	Optimizer types
	Ordering strategies
	Parameter type
	Presolve method.
	Problem data items
	Problem types
	Problem status keys
	Response code type
	Scaling type
	Scaling type
	Sensitivity types
	Degeneracy strategies
	Exploit duplicate columns.
	Hot-start type employed by the simplex optimizer
	Problem reformulation.
	Simplex selection strategy
	Solution items
	Solution status keys
	Solution types
	Solve primal or dual form
	Status keys
	Starting point types
	Stream types
	Cone types
	Integer values
	Variable types
	XML writer output mode

	MOSEK Command line tool
	Introduction
	Command line arguments
	The parameter file
	Using the parameter file

	The MPS file format
	MPS file structure
	Linear example lo1.mps
	NAME
	OBJSENSE (optional)
	OBJNAME (optional)
	ROWS
	COLUMNS
	RHS (optional)
	RANGES (optional)
	QSECTION (optional)
	BOUNDS (optional)
	CSECTION (optional)
	ENDATA

	Integer variables
	General limitations
	Interpretation of the MPS format
	The free MPS format

	The LP file format
	The sections
	The objective
	The constraints
	Bounds
	Variable types
	Terminating section
	Linear example lo1.lp
	Mixed integer example milo1.lp

	LP format peculiarities
	Comments
	Names
	Variable bounds
	MOSEK specific extensions to the LP format

	The strict LP format
	Formatting of an LP file
	Speeding up file reading
	Unnamed constraints

	The OPF format
	Intended use
	The file format
	Sections
	Numbers
	Names

	Parameters section
	Writing OPF files from MOSEK
	Examples
	Linear example lo1.opf
	Quadratic example qo1.opf
	Conic quadratic example cqo1.opf
	Mixed integer example milo1.opf

	The XML (OSiL) format
	The solution file format
	The basic and interior solution files
	The integer solution file

	Problem analyzer examples
	air04
	arki001
	Problem with both linear and quadratic constraints
	Problem with both linear and conic constraints

