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Chapter 1

Introduction

The MOSEK Optimization Suite 11.0.26 is a powerful software package capable of solving large-scale
optimization problems of the following kind:

e linear,

e conic:

conic quadratic (also known as second-order cone),

involving the exponential cone,

involving the power cone,

semidefinite,
e convex quadratic and quadratically constrained,
e integer.

In order to obtain an overview of features in the MOSEK Optimization Suite consult the product
introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all rela-
tions are linear. The tremendous success of both applications and theory of linear optimization can be
ascribed to the following factors:

e The required data are simple, i.e. just matrices and vectors.

e Convexity is guaranteed since the problem is convex by construction.

e Linear functions are trivially differentiable.

e There exist very efficient algorithms and software for solving linear problems.
e Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the
advantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

Ax —b> 0.
In conic optimization this is replaced with a wider class of constraints

Az —-be K

where KC is a convexr cone. For example in 3 dimensions K may correspond to an ice cream cone. The
conic optimizer in MOSEK supports a number of different types of cones K, which allows a surprisingly
large number of nonlinear relations to be modeled, as described in the MOSEK Modeling Cookbook,
while preserving the nice algorithmic and theoretical properties of linear optimization.


https://docs.mosek.com/11.0/intro/index.html
https://docs.mosek.com/11.0/intro/index.html
https://docs.mosek.com/modeling-cookbook/index.html

1.1 Why the Optimizer API for Java?

The Optimizer API for Java provides an object-oriented interface to the MOSEK optimizers. This
object oriented design is common to Java, Python and .NET and is based on a thin class-based interface
to the native C optimizer API. The overhead introduced by this mapping is minimal.

The Optimizer API for Java can be used with any application running on the Oracle Java platform
(and possibly other Java implementations). It consists of a single class library mosek. jar and a set of
library files that must be available at runtime.

The Optimizer API for Java provides access to:

e Linear Optimization (LO)

Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)

Power Cone Optimization

Conic Exponential Optimization (CEO)

Convex Quadratic and Quadratically Constrained Optimization (QO, QCQO)

Semidefinite Optimization (SDO)

o Mixed-Integer Optimization (MIO) including Disjunctive Constraints (DJC)
as well as to additional functions for

e problem analysis,

e sensitivity analysis,

e infeasibility diagnostics,

e BLAS/LAPACK linear algebra routines.



Chapter 2

Contact Information

Phone +45 7174 9373 Office
+45 7174 5700 Sales

Website mosek.com

Email
sales@mosek.com Sales, pricing, and licensing
support@mosek.com Technical support, questions and bug reports
info@mosek.com Everything else.

Mailing Address

MOSEK ApS

Fruebjergvej 3

Symbion Science Park, Box 16
2100 Copenhagen O

Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger https:,
Google Group https:/,
Twitter https:/
Linkedin https:
Youtube https:/

/blog.mosek.com/
'groups.google.com /forum /#!forum /mosek
/twitter.com /mosektw

www.linkedin.com /company/mosek-aps

/www.youtube.com /channel /UCvIyect EVLP31NXeD5mIbEw

In particular Twitter is used for news, updates and release announcements.


https://mosek.com/
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com
https://blog.mosek.com/
https://groups.google.com/forum/#!forum/mosek
https://twitter.com/mosektw
https://www.linkedin.com/company/mosek-aps
https://www.youtube.com/channel/UCvIyectEVLP31NXeD5mIbEw

Chapter 3

License Agreement

3.1 MOSEK end-user license agreement

Before using the MOSEK software, please read the license agreement available in the distribution
at <MSKHOME>/mosek/11.0/mosek-eula.pdf or on the MOSEK website https://mosek.com/products
license-agreement. By using MOSEK you agree to the terms of that license agreement.

3.2 Third party licenses

MOSEK uses some third-party open-source libraries. Their license details follow.

zlib

MOSEK uses the zlib library obtained from the zlib website. The license agreement for zlib is shown
in Listing 3.1.

Listing 3.1: zlib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu


https://mosek.com/products/license-agreement
https://mosek.com/products/license-agreement
http://zlib.org

fplib

MOSEK uses the floating point formatting library developed by David M. Gay obtained from the netlib
website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/ sk sk sk ok sk sk ok o ok sk sk ok ok o ok sk ok ok o ok sk sk ok o ok sk sk ok o ok sk ok o o ok sk sk ok o sk sk ok o sk sk ok o sk sk ok sk o ok sk ok ok o
The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*
*
*
£ 3
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting

* documentation for such software.

%

*

*

*

*

£ 3

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. 1IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

***************************************************************/

{fmt}

MOSEK uses the formatting library {fmt} developed by Victor Zverovich obtained form github/fmt
and distributed under the MIT license. The license agreement fot {fmt} is shown in Listing 3.3.

Listing 3.3: {fmt} license.

Copyright (c) 2012 - present, Victor Zverovich

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation

the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR

A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER

IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN

CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.


http://www.netlib.org
http://www.netlib.org
https://github.com/fmtlib/fmt

Zstandard

MOSEK uses the Zstandard library developed by Facebook obtained from github/zstd. The license
agreement for Zstandard is shown in Listing 3.4.

Listing 3.4: Zstandard license.
BSD License

For Zstandard software
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name Facebook nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

OpenSSL

MOSEK uses the LibReSSL library, which is build on OpenSSL. OpenSSL is included under the
OpenSSL license, Listing 3.5, and the LibReSSL additions are licensed under the ISC license, Listing
3.6.

Listing 3.5: OpenSSL license

Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in

(continues on next page)


https://github.com/facebook/zstd
https://www.libressl.org/

the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this

software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

(continued from previous page)

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"

nor may "OpenSSL" appear in their names without prior written

permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ~“AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED.

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

This product includes cryptographic software written by Eric Young

(eay@cryptsoft.com) .

Hudson (tjh@cryptsoft.com).

Copyright
Copyright
Copyright
Copyright
Copyright
Copyright
Copyright
Copyright

©)
(c)
(c)
(c)
(c)
(c)
(c)
(c)

Listing 3.6: ISC license

1994-2017 Free Software Foundation, Inc.

2014 Jeremie Courreges-Anglas <jca@openbsd.org>
2014-2015 Joel Sing <jsing@openbsd.org>

2014 Ted Unangst <tedu@openbsd.org>

2015-2016 Bob Beck <beck@openbsd.org>

2015 Marko Kreen <markokr@gmail.com>

2015 Reyk Floeter <reyk@openbsd.org>

2016 Tobias Pape <tobias@netshed.de>

This product includes software written by Tim

Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the

above copyright notice and this permission notice appear in all

copies.

(continues on next page)



(continued from previous page)

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

mimalloc

MOSEK uses the mimalloc memory allocator library from github/mimalloc. The license agreement for
mimalloc is shown in Listing 3.7.

Listing 3.7: mimalloc license.

MIT License
Copyright (c) 2019 Microsoft Corporation, Daan Leijen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
0UT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

BLASFEO

MOSEK uses the BLASFFEO linear algebra library developed by Gianluca Frison, obtained from
github /blasfeo. The license agreement for BLASFEQ is shown in Listing 3.8.

Listing 3.8: blasfeo license.

BLASFEO -- BLAS For Embedded Optimization.

Copyright (C) 2019 by Gianluca Frison.

Developed at IMTEK (University of Freiburg) under the supervision of Moritz Diehl.
All rights reserved.

The 2-Clause BSD License

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this

(continues on next page)


https://github.com/microsoft/mimalloc
https://github.com/giaf/blasfeo

(continued from previous page)

list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

oneTBB

MOSEK uses the oneTBB parallelization library which is part of oneAPI developed by Intel, obtained
from github/oneTBB, licensed under the Apache License 2.0. The license agreement for oneTBB can be
found in https://github.com /oneapi-src/oneTBB /blob/master/ LICENSE.txt .


https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB/blob/master/LICENSE.txt

Chapter 4

Installation

In this section we discuss how to install and setup the MOSEK Optimizer API for Java.

Important: Before running this MOSEK interface please make sure that you:

e Installed MOSEK correctly. Some operating systems require extra steps. See the Installation
guide for instructions and common troubleshooting tips.

e Set up a license. See the Licensing guide for instructions.

Compatibility

The Optimizer API for Java is compatible with Java version 1.8 or later on 64bit platforms (Linux,
Windows, macOS).

Locating files in the MOSEK Optimization Suite

The relevant files of the Optimizer API for Java are organized as reported in Table 4.1.

Table 4.1: Relevant files for the Optimizer API for Java.

Relative Path Description Label
<MSKHOME>/mosek/11.0/tools/platform/<PLATFORM>/bin Libraries and jar file <JARDIR>
<MSKHOME>/mosek/11.0/tools/examples/java Examples <EXDIR>
<MSKHOME>/mosek/11.0/tools/examples/data Additional data <MISCDIR>
where

e <MSKHOME> is the folder in which the MOSEK Optimization Suite has been installed,

e <PLATFORM> is the actual platform among those supported by MOSEK, ie. win64x86,
1inux64x86, linuxaarch64 or osxaarch64.

Setting up paths
To compile and run a Java program using MOSEK the correct path to the JAR file

<JARDIR>/mosek. jar

must be provided in the Java classpath. This is usually set with the command line option -classpath,
or the environment variable CLASSPATH, or any other method that your Java environment/compiler
supports. For more information about specifying class libraries and compiling applications, see the full

Java documentation at http://java.sun.com/.

10


https://docs.mosek.com/11.0/install/index.html
https://docs.mosek.com/11.0/install/index.html
https://docs.mosek.com/11.0/licensing/index.html
http://java.sun.com/

4.1 Building Examples and Testing the Installation

This section describes how to verify that MOSEK has been installed correctly, and how to build and
execute the Java examples distributed with MOSEK.
4.1.1 Windows

Building and executing a program

To compile the example lol. java distributed with MOSEK:
e Open a DOS prompt and go to the examples directory <EXDIR>.
e To compile a Java program and produce the class files in the current directory, type

javac -classpath <JARDIR>\mosek.jar -d . lol.java

e To run the compiled program, type

java -classpath .:<JARDIR>\mosek.jar com.mosek.example.lol (Linux/08X)
java -classpath .;<JARDIR>\mosek.jar com.mosek.example.lol (Windows)

Compiling with Microsoft NMake

The distributed examples can also be compiled using Microsoft NMake. This requires that paths and
environment is set up for Visual Studio tools (usually, the sub-menu containing Visual Studio also
contains a Visual Studio Command Prompt which take care of all the necessary setup).

To build the examples, open a DOS box and change directory to the examples directory <EXDIR>.
To compile all examples type

nmake /f Makefile

This will compile all the classes into a jar file. To run all the examples type

nmake /f Makefile test

4.1.2 macOS and Linux

Building and executing a program

To compile the example lol. java distributed with MOSEK:
e Open a console and go to the examples directory <EXDIR>.
e To compile a Java program and produce the class files in the current directory, type

javac -classpath <JARDIR>/mosek.jar -d . lol.java

e To run the compiled program, type

java -classpath .:<JARDIR>/mosek.jar com.mosek.example.lol

11



Compiling examples using make

The example directory contains makefiles for use with GNU Make. To build the examples, open a prompt
and change directory to the examples directory <EXDIR>. To compile all examples type

make -f Makefile

This will compile all the classes into a jar file. To run all the examples type

make test

12



Chapter 5

Design Overview

5.1 Modeling

Optimizer API for Java is an interface for specifying optimization problems directly in matrix form. It
means that an optimization problem such as:

minimize ¢’z
subject to Az < b,
rek

is specified by describing the matrix A, vectors b, ¢ and a list of cones IC directly.
The main characteristics of this interface are:

e Simplicity: once the problem data is assembled in matrix form, it is straightforward to input it
into the optimizer.

e Exploiting sparsity: data is entered in sparse format, enabling huge, sparse problems to be
defined and solved efficiently.

e Efficiency: the Optimizer API incurs almost no overhead between the user’s representation of the
problem and MOSEK’s internal one.

Optimizer API for Java does not aid with modeling. It is the user’s responsibility to express the
problem in MOSEK’s standard form, introducing, if necessary, auxiliary variables and constraints. See
Sec. 12 for the precise formulations of problems MOSEK solves.

5.2 “Hello World!” in MOSEK

Here we present the most basic workflow pattern when using Optimizer API for Java.

Creating an environment and task

Optionally, an interaction with MOSEK using Optimizer API for Java can begin by creating a MOSEK
environment. It coordinates the access to MOSEK from the current process.

In most cases the user does not interact directly with the environment, except for creating optimiza-
tion tasks, which contain actual problem specifications and where optimization takes place. In this case
the user can directly create tasks without invoking an environment, as we do here.

13



Defining tasks

After a task is created, the input data can be specified. An optimization problem consists of several
components; objective, objective sense, constraints, variable bounds etc. See Sec. 6 for basic tutorials on
how to specify and solve various types of optimization problems.

Retrieving the solutions

When the model is set up, the optimizer is invoked with the call to Task.optimize. When the opti-
mization is over, the user can check the results and retrieve numerical values. See further details in Sec.
7.

We refer also to Sec. 7 for information about more advanced mechanisms of interacting with the
solver.

Source code example

Below is the most basic code sample that defines and solves a trivial optimization problem

minimize x
subject to 2.0 <z < 3.0.

For simplicity the example does not contain any error or status checks.

Listing 5.1: “Hello World!” in MOSEK

//

// Copyright: Copyright (c) MOSEK ApS, Demmark. All rights reserved.
//

// File: helloworld. java

//

// The most basic ezample of how to get started with MOSEK.

package com.mosek.example;
import mosek.*;

public class helloworld {
public static void main(String[] args) {

try (Task task = new Task()) { // Create task
task.appendvars(1); // 1 variable z
task.putcj(0, 1.0); // c_0 = 1.0
task.putvarbound(0, boundkey.ra, 2.0, 3.0); // 2.0 <=z <= 3.0
task.putobjsense(objsense.minimize) ; // minimize
task.optimize(); // Optimize
double x[] = task.getxx(soltype.itr); // Get solution
System.out.println("Solution x = " + x[0]); // Print solution

}

}
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Chapter 6

Optimization Tutorials

In this section we demonstrate how to set up basic types of optimization problems. Each short tutorial
contains a working example of formulating problems, defining variables and constraints and retrieving
solutions.

e Model setup and linear optimization tutorial (LO)

— Sec. 6.1. Linear optimization tutorial, recommended first reading for all users. Apart from
setting up a linear problem it also demonstrates how to work with an optimizer task: initialize
it, add variables and constraints and retrieve the solution.

e Conic optimization tutorials (CO)

— Sec. 6.2. A step by step introduction to programming with affine conic constraints (ACC).
Explains all the steps required to input a conic problem. Recommended first reading for users
of the conic optimizer.

Further basic examples demonstrating various types of conic constraints:

— Sec. 6.3. A basic example with a quadratic cone (CQO).

Sec. 6.4. A basic example with a power cone.

Sec. 6.5. A basic example with a exponential cone (CEO).

Sec. 6.6. A basic tutorial of geometric programming (GP).
e Semidefinite optimization tutorial (SDO)

— Sec. 6.7. Examples showing how to solve semidefinite optimization problems with one or more
semidefinite variables.

e Mixed-integer optimization tutorials (MIO)

— Sec. 6.8. Shows how to declare integer variables for linear and conic problems and how to set
an initial solution.

— Sec. 6.9. Demonstrates how to create a problem with disjunctive constraints (DJC).
e Quadratic optimization tutorial (QO, QCQO)
— Sec. 6.10. Examples showing how to solve a quadratic or quadratically constrained problem.
¢ Reoptimization tutorials
— Sec. 6.11. Various techniques for modifying and reoptimizing a problem.
¢ Parallel optimization tutorial
— Sec. 6.12. Shows how to optimize tasks in parallel.
e Infeasibility certificates

— Sec. 6.13. Shows how to retrieve and analyze a primal infeasibility certificate for continuous
problems.
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6.1 Linear Optimization

The simplest optimization problem is a purely linear problem. A linear optimization problem (see also

Sec. 12.1) is a problem of the following form:
Minimize or maximize the objective function

n—1

E o f
cjx;+ ¢

j=0

subject to the linear constraints

n—1
ZESZakaj <ug, k=0,...,m-—1,
j=0
and the bounds
7 <z;<uj, j=0,...,n—1

The problem description consists of the following elements:
e m and n — the number of constraints and variables, respectively,
e 1 — the variable vector of length n,

e ¢ — the coefficient vector of length n

Co
c= ,
Cn—1

e ¢/ — fixed term in the objective,

e A — an m x n matrix of coefficients

0,0 s ao,(n—1)
A - 9
A(m—-1),0 " Q(m—1),(n—1)

e [ and u® — the lower and upper bounds on constraints,

e [7 and u” — the lower and upper bounds on variables.

Please note that we are using 0 as the first index: xg is the first element in variable vector x.

6.1.1 Example LO1
The following is an example of a small linear optimization problem:

maximize 3xzg + lxz; + bdrxs + lag

subject to 3z + lz; + 29 = 30,
21[,’0 + ]."El + 31’2 + 1.’53 Z ].57
211 + 3x3 < 25,
under the bounds
0 S Zo S 0,
0 < z; < 10,
0 S ) S o0,
0 < 23 < oo
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Solving the problem

To solve the problem above we go through the following steps:

—

. (Optionally) Creating an environment.
2. Creating an optimization task.

3. Loading a problem into the task object.
4. Optimization.

5. Extracting the solution.

Below we explain each of these steps.

Creating an environment.

The user can start by creating a MOSEK environment, but it is not necessary if the user does not need
access to other functionalities, license management, additional routines, etc. Therefore in this tutorial
we don’t create an explicit environment.

Creating an optimization task.

We create an empty task object. A task object represents all the data (inputs, outputs, parameters,
information items etc.) associated with one optimization problem.

try (mosek.Task task = new Task()) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

We also connect a call-back function to the task log stream. Messages related to the task are passed
to the call-back function. In this case the stream call-back function writes its messages to the standard
output stream. See Sec. 7.4.

Loading a problem into the task object.

Before any problem data can be set, variables and constraints must be added to the problem via calls to
the functions Task. appendcons and Task.appendvars.

// Append 'numcon' empty constraints.
// The constraints wtll initially have no bounds.
task.appendcons (numcon) ;

// Append 'numvar' variables.
// The wariables will initially be fized at zero (z=0).
task.appendvars (numvar) ;

New variables can now be referenced from other functions with indexes in 0, . .., numvar — 1 and new
constraints can be referenced with indexes in 0, ...,numcon — 1. More variables and/or constraints can
be appended later as needed, these will be assigned indexes from numvar/numcon and up. Optionally
one can add names.

17



Setting the objective.

Next step is to set the problem data. We first set the objective coefficients ¢; = c[j]. This can be done
with functions such as Task.putcj or Task.putclist.

task.putcj(j, c[jl);

Setting bounds on variables

For every variable we need to specify a bound key and two bounds according to Table 6.1.

Table 6.1: Bound keys as defined in the enum boundkey.

Bound key Type of bound Lower bound Upper bound

boundkey. fx u; =1; Finite Identical to the lower bound
boundkey. fr Free —00 400

boundkey.lo [; < Finite +00

boundkey.ra I < --- <y Finite Finite

boundkey. up - < Uj —00 Finite

For instance bkx [0]= boundkey. lo means that xg > [§. Finally, the numerical values of the bounds
on variables are given by

12 = blx[j]
and

uj = bux[j].

Let us assume we have the bounds on variables stored in the arrays

mosek.boundkey

bkx[] = {mosek.boundkey.lo,
mosek.boundkey.ra,
mosek.boundkey.lo,
mosek.boundkey.lo

};

double blx[] = {0.0,
0.0,
0.0,
0.0
};
double bux[] = { +infinity,
10.0,
+infinity,
+infinity
};

Then we can set them using various functions such Task.putvarbound, Task.putvarboundslice,
Task.putvarboundlist, depending on what is most convenient in the given context. For instance:

// Set the bounds on variable j.
// blelg] <= z_j <= buz[j]
task.putvarbound(j, bkx[jl, blx[j], bux[jl);
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Defining the linear constraint matrix.

Recall that in our example the A matrix is given by

A:

S N W
(NIRRT
S W N
W = O

This matrix is stored in sparse format:

int asub[][]
{0, 1%},

{0, 1, 2},
{0, 1},

{1, 2}

Ig
double avall[][]
{3.0, 2.0},
{1.0, 1.0, 2.0},
{2.0, 3.0},
{1.0, 3.0}

i

{

I
-~

The array aval[j] contains the non-zero values of column j and asub[j] contains the row indices
of these non-zeros.

We now input the linear constraint matrix into the task. This can be done in many alternative ways,
row-wise, column-wise or element by element in various orders. See functions such as Task.putarow,
Task.putarowlist, Task.putatjlist, Task.putacol and similar.

task.putacol(j, /% Variable (column) index.*/
asub[j], /* Row index of mon-zeros in column j.*/
avalljl); /* Non-zero Values of column j. */

Setting bounds on constraints

Finally, the bounds on each constraint are set similarly to the variable bounds, using the bound
keys as in Table 6.1. This can be done with one of the many functions Task.putconbound, Task.
putconboundslice, Task.putconboundlist, depending on the situation.

// Set the bounds on constraints.

// blc[i] <= constraint_i <= buc[i]

for (int i = 0; i < numcon; ++i)
task.putconbound(i, bkc[i], blc[i], buc[il);
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Optimization
After the problem is set-up the task can be optimized by calling the function Task.optimize.

task.optimize();

Extracting the solution.

After optimizing the status of the solution is examined with a call to Task.getsolsta.

mosek.solsta solsta = task.getsolsta(mosek.soltype.bas);

If the solution status is reported as solsta.optimal the solution is extracted:

double[] xx = task.getxx(mosek.soltype.bas); // Request the bastic solution.

The Task. getzz function obtains the solution. MOSEK may compute several solutions depending
on the optimizer employed. In this example the basic solution is requested by setting the first argument
to soltype.bas. For details about fetching solutions see Sec. 7.2.

Catching exceptions

We catch any exceptions thrown by MOSEK in the lines:

catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;

}
The types of exceptions that MOSEK can throw can be seen in Sec. 15.5. See also Sec. 7.3.

Source code
The complete source code lol.java of this example appears below. See also 1o2.java for a version
where the A matrix is entered row-wise.
Listing 6.1: Linear optimization example.
package com.mosek.example;

import mosek.*;

public class lol {
static final int numcon = 3;
static final int numvar 4,

public static void main (String[] args) {
// Since the walue of infinity is ignored, we define it solely
// for symbolic purposes
double infinity = O;

double c[] = {3.0, 1.0, 5.0, 1.0};
int asub[][] = {

{0, 1%},

{0, 1, 2%},

{0, 1},

{1, 2}

Irg
double avall[][]
{3.0, 2.0},
{1.0, 1.0, 2.0},

Il
-~

(continues on next page)

20



(continued from previous page)

};

mosek.boundkey []

bkc = {mosek.boundkey.fx,
mosek.boundkey. lo,
mosek.boundkey.up
};

double blcl[]

{30.0,
15.0,
-infinity

s

double buc[] = {30.0,

+infinity,

25.0

s

mosek.boundkey

bkx[] = {mosek.boundkey.lo,
mosek.boundkey.ra,
mosek.boundkey.lo,
mosek.boundkey.1lo

};

double blx[] = {0.0,
0.0,
0.0,
0.0
s
double bux[] = { +infinity,
10.0,
+infinity,
+infinity
s

try (mosek.Task task = new Task()) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

// Append 'numcon' empty constraints.
// The constraints will initially have no bounds.
task.appendcons (numcon) ;

// Append 'numvar' wvariables.
// The wvariables will initially be fized at zero (z=0).
task.appendvars (numvar) ;

for (int j = 0; j < numvar; ++j) {
// Set the linear term c_j in the objective.
task.putcj(j, c[jD);

// Set the bounds on variable j.
// blz[g] <= x_j5 <= buz[j]
task.putvarbound(j, bkx[jl, blx[j], bux[jl);

(continues on next page)
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// Input column j of 4

task.putacol(j, /* Variable (column) index.*/
asubl[j], /% Row index of mon-zeros in column j.*/
aval[jl); /* Non-zero Values of column j. */
}

// Set the bounds on constraints.

// blc[i] <= constraint_i <= buc[i]

for (int i = 0; i < numcon; ++i)
task.putconbound(i, bkc[il, blc[i], buc[il);

// Input the objective sense (minimize/maxzimize)
task.putobjsense(mosek.objsense.maximize) ;

// Solve the problem
task.optimize();

// Print a summary containing tnformation
// about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg) ;

// Get status information about the solution
mosek.solsta solsta = task.getsolsta(mosek.soltype.bas);

switch (solsta) {
case optimal:
double[] xx = task.getxx(mosek.soltype.bas); // Request the bastic solution.

System.out.println("Optimal primal solution\n");
for (int j = 0; j < numvar; ++j)
System.out.println ("x[" + j + "]:" + xx[j1);
break;
case dual_infeas_cer:
case prim_infeas_cer:
System.out.println("Primal or dual infeasibility certificate found.\n");
break;
case unknown:
System.out.println("Unknown solution status.\n");
break;
default:
System.out.println("Other solution status");
break;
}
}
catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;
}
}
}
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6.2 From Linear to Conic Optimization

In Sec. 6.1 we demonstrated setting up the linear part of an optimization problem, that is the objective,
linear bounds, linear equalities and inequalities. In this tutorial we show how to define conic constraints.
We recommend going through this general conic tutorial before proceeding to examples with specific
cone types.

MOSEK accepts conic constraints in the form

Fx+geD

where
e z € R™ is the optimization variable,

e D C R* is a conic domain of some dimension k, representing one of the cone types supported by
MOSEK,

e F € R**" and g € R* are data which constitute the sequence of k affine expressions appearing
in the rows of Fz + g.

Constraints of this form will be called affine conic constraints, or ACC for short. Therefore in
this section we show how to set up a problem of the form

minimize A+l
subject to ¢ < Ax < wuf,
r < €T < u®,
Fr+g € Dix-xDy,

with some number p of affine conic constraints.
Note that conic constraints are a natural generalization of linear constraints to the general nonlinear
case. For example, a typical linear constraint of the form

Ar+b>0
can be also written as membership in the cone of nonnegative real numbers:
Az +beRY,
and that naturally generalizes to
Fx+geD
for more complicated domains D from Sec. 15.11 of which D = R%o is a special case.

6.2.1 Running example

In this tutorial we will consider a sample problem of the form

T

maximize c'x
subject to Y . x; =1, (6.2)
7 = |Gz + k2,

where 2 € R” is the optimization variable and G € R**" h € R¥ ¢ € R" and v € R. We will use the
following sample data:

_ _ 3 _ 1T _ |15 01 0 )
n=3, k=2 zeR’ c¢=][2,3,-1]", ~=0.03, G[O.?) 0 21 | h = 01 |-

To be explicit, the problem we are going to solve is therefore:

maximize 2xg+ 3r1 — To
subject to  xg + x1 + x2 =1, (6.3)
0.03 > /(1.5 + 0.1z1)2 + (0.3z0 + 2.122 + 0.1)2.
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Consulting the definition of a quadratic cone Q we see that the conic form of this problem is:

maximize 2xg+ 3xr1 — T2
subject to  xg 4+ x1 + z2 = 1, (6.4)
(0037 1.5z9 + 0.121, 0.32¢ + 2.1x2 + 01) € QB.

The conic constraint has an affine conic representation F'xz + g € D as follows:

0 0 0 0.03
1.5 01 0 |z+| 0 |eQ (6.5)
03 0 21 0.1

Of course by the same logic in the general case the conic form of the problem (6.2) would be

maximize Tz

subject to Y, x; =1, (6.6)
(7,Gz + h) € QFF!

and the ACC representation of the constraint (v, Gx + h) € Q¥+ would be

{g}z+[2]eg“k

Now we show how to add the ACC (6.5). This involves three steps:
e storing the affine expressions which appear in the constraint,
e creating a domain, and

e combining the two into an ACC.

6.2.2 Step 1: add affine expressions

To store affine expressions (AFE for short) MOSEK provides a matrix F and a vector g with the
understanding that every row of

Fr+g

defines one affine expression. The API functions with infix afe are used to operate on F and g, add
rows, add columns, set individual elements, set blocks etc. similarly to the methods for operating on the
A matrix of linear constraints. The storage matrix F is a sparse matrix, therefore only nonzero elements
have to be explicitly added.

Remark: the storage F,g may, but does not have to be, equal to the pair F,g appearing in the
expression Fx + g. It is possible to store the AFEs in different order than the order they will be used
in F, g, as well as store some expressions only once if they appear multiple times in Fx + ¢g. In this first
turorial, however, we will for simplicity store all expressions in the same order we will later use them, so
that (F,g) = (F, g).

In our example we create only one conic constraint (6.5) with three (in general k4 1) affine expressions

0.03,
1.5I0 + 0.1561,
0.31’0 + 2.1%2 + 0.1.

Given the previous remark, we initialize the AFE storage as:

0 0 0 0.03
F=|15 01 0 |, g=| 0 |. (6.7)
03 0 21 0.1

Initially F and g are empty (have 0 rows). We construct them as follows. First, we append a number of
empty rows:
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// Append empty AFE rows for affine expression storage
task.appendafes(k + 1);

We now have F and g with 3 rows of zeros and we fill them up to obtain (6.7).

// F matiz in sparse form

longl[] Fsubi = {1, 1, 2, 2}; // The G matriz starts in F from row 1
int [] Fsubj = {0, 1, 0, 2};

double[] Fval {1.5, 0.1, 0.3, 2.1};

// Other data

double[] h = {0, 0.1};

double gamma = 0.03;

// Fill in F storage
task.putafefentrylist(Fsubi, Fsubj, Fval);

// Fill in g storage;
task.putafeg(0, gamma) ;
task.putafegslice(1l, k+1, h);

We have now created the matrices from (6.7). Note that at this point we have not defined any ACC
yet. All we did was define some affine expressions and place them in a generic AFE storage facility to
be used later.

6.2.3 Step 2: create a domain

Next, we create the domain to which the ACC belongs. Domains are created with functions with infix
domain. In the case of (6.5) we need a quadratic cone domain of dimension 3 (in general k + 1), which
we create with:

// Define a conic quadratic domain
quadDom = task.appendquadraticconedomain(k + 1);

The function returns a domain index, which is just the position in the list of all domains (potentially)
created for the problem. At this point the domain is just stored in the list of domains, but not yet used
for anything.

6.2.4 Step 3: create the actual constraint

We are now in position to create the affine conic constraint. ACCs are created with functions with
infix acc. The most basic variant, Task. appendacc will append an affine conic constraint based on the
following data:

o the list afeidx of indices of AFEs to be used in the constraint. These are the row numbers in F, g
which contain the required affine expressions.

e the index domidx of the domain to which the constraint belongs.

Note that number of AFEs used in afeidx must match the dimension of the domain.

In case of (6.5) we have already arranged F,g in such a way that their (only) three rows contain
the three affine expressions we need (in the correct order), and we already defined the quadratic cone
domain of matching dimension 3. The ACC is now constructed with the following call:

// Create the ACC
long[] afeidx = {0, 1, 2};

task.appendacc(quadDom, // Domain index
afeidx, // Indices of AFE rows [0,...,k]
null); // Ignored

This completes the setup of the affine conic constraint.
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6.2.5 Example ACC1

We refer to Sec. 6.1 for instructions how to set up the objective and linear constraint xg + z1 + zo = 1.
All else that remains is to set up the MOSEK environment, task, add variables, call the solver with
Task.optimize and retrieve the solution with Task.getzz. Since our problem contains a nonlinear
constraint we fetch the interior-point solution. The full code solving problem (6.3) is shown below.

Listing 6.2: Full code of example ACC1.

package com.mosek.example;
import mosek.*;

public class accl {
/* Data dimensions */
static final int n = 3;
static final int k = 2;

public static void main (String[] args) throws java.lang.Exception {
// Since the walue infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = O;
int i,j;
long quadDom;

// create a task object
try (Task task = new Task()) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

// Create n free wartables
task.appendvars(n) ;
task.putvarboundsliceconst (0, n, mosek.boundkey.fr, -infinity, infinity);

// Set up the objective
double[] ¢ = {2, 3, -1};
int[] cind = {0, 1, 2};
task.putobjsense(mosek.objsense.maximize) ;
task.putclist(cind, c);

// One linear constraint - sum(z) = 1
task.appendcons (1) ;

task.putconbound (0, mosek.boundkey.fx, 1.0, 1.0);
for(i = 0; i < n; i++) task.putaij(0, i, 1.0);

// Append empty AFE rows for affine expression storage
task.appendafes(k + 1);

// F matiz in sparse form

longl[] Fsubi = {1, 1, 2, 2}; // The G matriz starts in F from row 1
int[] Fsubj {0, 1, 0, 2};

double[] Fval {1.5, 0.1, 0.3, 2.1};

// Other data

double[] h = {0, 0.13};

(continues on next page)
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double gamma = 0.03;

// Fill in F storage
task.putafefentrylist(Fsubi, Fsubj, Fval);

// Fill in g storage;
task.putafeg(0, gamma) ;
task.putafegslice(l, k+1, h);

// Define a conic quadratic domain
quadDom = task.appendquadraticconedomain(k + 1);

// Create the ACC
long[] afeidx = {0, 1, 2};

task.appendacc(quadDom, // Domain index
afeidx, // Indices of AFE rows [0,...,k]
null); // Ignored

/* Solve the problem */

mosek.rescode r = task.optimize();

System.out.println (" Termination code: " + r.toString());
// Print a summary containing tnformation

// about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg) ;

/* Get status information about the solution */
mosek.solsta solsta = task.getsolsta(mosek.soltype.itr);

switch (solsta) {
case optimal:
// Fetch solution
double[] xx = task.getxx(mosek.soltype.itr); // Interior solution.

System.out.println("Optimal primal solution");
for (j = 0; j < m; ++j)
System.out.println ("x[" + j + "]1:" + xx[j1);

// Fetch doty dual for the ACC
double[] doty = task.getaccdoty(mosek.soltype.itr, // Interior solution.
0); // ACC index

System.out.println("Dual doty value for the ACC");
for (j = 0; j <k + 1; ++j)
System.out.println ("doty[" + j + "]:" + doty[jl);

// Fetch ACC activity
double[] activity = task.evaluateacc(mosek.soltype.itr, // Intertor,
—solution.
0); // ACC index

System.out.println("Activity for the ACC");
for (j = 0; j <k + 1; ++j)

System.out.println ("activity[" + j + "]:" + activityl[jl);
break;

(continues on next page)
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case dual_infeas_cer:
case prim_infeas_cer:
System.out.println("Primal or dual infeasibility.\n");
break;
case unknown:
System.out.println("Unknown solution status.\n");
break;
default:
System.out.println("Other solution status");
break;
3
} catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;

The answer is
[-0.07838011145615721, 1.1289128998004547, -0.0505327883442975]

The dual values g of an ACC can be obtained with Task.getaccdoty if required.

// Fetch doty dual for the ACC
double[] doty = task.getaccdoty(mosek.soltype.itr, // Interior solution.
0); // ACC index

System.out.println("Dual doty value for the ACC");
for (j = 0; j <k + 1; ++j)
System.out.println ("doty[" + j + "]:" + doty[jl);

6.2.6 Example ACC2 - more conic constraints

Now that we know how to enter one affine conic constraint (ACC) we will demonstrate a problem with
two ACCs. From there it should be clear how to add multiple ACCs. To keep things familiar we will
reuse the previous problem, but this time cast it into a conic optimization problem with two ACCs as
follows:

maximize Lz

subject to (3, zi — 1, v, Go + h) € {0} x QF+1 (6.8)

or, using the data from the example:

maximize 2xg+ 3x1 — X2
subject to xg+x1 + 22 — 1 € {0},
(0.03,1.5z¢ + 0.1z1,0.329 + 2.122 + 0.1) € Q3

In other words, we transformed the linear constraint into an ACC with the one-point zero domain.
As before, we proceed in three steps. First, we add the variables and create the storage F, g containing
all affine expressions that appear throughout all off the ACCs. It means we will require 4 rows:

1 1 1 -1
0 0 0 0.03

F=149501 0] 87| o (6.9)
03 0 21 0.1
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// Set AFE rows representing the linear constraint
task.appendafes(1);

task.putafeg(0, -1.0);

for(i = 0; i < n; i++) task.putafefentry(0, i, 1.0);

// Set AFE rows representing the quadratic constraint

// F matiz in sparse form

long[] Fsubi = {2, 2, 3, 3}; // The G matriz starts in F from row 2
int [] Fsubj = {0, 1, 0, 2};

double[] Fval {1.5, 0.1, 0.3, 2.1};

// Other data

double[] h {0, 0.1};

double gamma = 0.03;

task.appendafes(k + 1);
task.putafefentrylist(Fsubi, Fsubj, Fval);
task.putafeg(l, gamma);
task.putafegslice(2, k+2, h);

Next, we add the required domains: the zero domain of dimension 1, and the quadratic cone domain
of dimension 3.

// Define domains
zeroDom = task.appendrzerodomain(1);
quadDom = task.appendquadraticconedomain(k + 1);

Finally, we create both ACCs. The first ACCs picks the 0-th row of F,g and places it in the zero
domain:

// Create the linear ACC
long[] afeidxZero = {0};

task.appendacc(zeroDom, // Domain index
afeidxZero, // Indices of AFE rows
null); // Ignored

The second ACC picks rows 1,2,3 in F, g and places them in the quadratic cone domain:

// Create the quadratic ACC
long[] afeidxQuad = {1, 2, 3};

task.appendacc(quadDom, // Domain index
afeidxQuad, // Indices of AFE rows
null); // Ignored

The completes the construction and we can solve the problem like before:

Listing 6.3: Full code of example ACC2.

package com.mosek.example;
import mosek.*;

public class acc2 {
/* Data dimensions */
static final int n = 3;
static final int k = 2;

public static void main (String[] args) throws java.lang.Exception {
// Since the walue infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = O;
(continues on next page)
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int i,j;
long quadDom, zeroDom;

// create a task object
try (Task task = new Task()) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }1});

// Create n free wvartables
task.appendvars(n) ;
task.putvarboundsliceconst (0, n, mosek.boundkey.fr, -infinity, infinity);

// Set up the objective
double[] ¢ = {2, 3, -1};
int[] cind = {0, 1, 2};
task.putobjsense(mosek.objsense.maximize) ;
task.putclist(cind, c);

// Set AFE rows representing the linear constraint
task.appendafes(1);

task.putafeg(0, -1.0);

for(i = 0; i < n; i++) task.putafefentry(0, i, 1.0);

// Set AFE rows representing the quadratic constraint

// F matiz in sparse form

longl[] Fsubi = {2, 2, 3, 3}; // The G matriz starts in F from row 2
int[] Fsubj = {0, 1, 0, 2};

double[] Fval {1.5, 0.1, 0.3, 2.1};

// Other data

double[] h {0, 0.1};

double gamma = 0.03;

task.appendafes(k + 1);
task.putafefentrylist(Fsubi, Fsubj, Fval);
task.putafeg(l, gamma);
task.putafegslice(2, k+2, h);

// Define domains
zeroDom = task.appendrzerodomain(1);
quadDom = task.appendquadraticconedomain(k + 1);

// Create the linear ACC
long[] afeidxZero = {0};

task.appendacc(zeroDom, // Domain index
afeidxZero, // Indices of AFE rows
null); // Ignored

// Create the quadratic ACC
long[] afeidxQuad = {1, 2, 3};

task.appendacc(quadDom, // Domain index
afeidxQuad, // Indices of AFE rows
null); // Ignored

(continues on next page)
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/* Solve the problem */

mosek.rescode r = task.optimize();

System.out.println (" Termination code: " + r.toString());
// Print a summary containing information

// about the solution for debugging purposes
task.solutionsummary (mosek.streamtype.msg) ;

/* Get status information about the solution */
mosek.solsta solsta = task.getsolsta(mosek.soltype.itr);

switch (solsta) {
case optimal:
// Fetch solution
double[] xx = task.getxx(mosek.soltype.itr); // Interior solution.

System.out.println("Optimal primal solution");
for (j = 0; j < n; ++j)
System.out.println ("x[" + j + "]:" + xx[j1);

// Fetch doty dual for the ACC
double[] doty = task.getaccdoty(mosek.soltype.itr, // Interior solution.
1; // ACC index

System.out.println("Dual doty value for the ACC");
for (j = 0; j <k + 1; ++j)
System.out.println ("doty[" + j + "]:" + doty[jl);

// Fetch ACC activity
double[] activity = task.evaluateacc(mosek.soltype.itr, // Interior,

—~solution.
1); // ACC indezx

System.out.println("Activity for the ACC");
for (j = 0; j <k + 1; ++j)
System.out.println ("activity[" + j + "]:" + activityl[jl);
break;
case dual_infeas_cer:
case prim_infeas_cer:
System.out.println("Primal or dual infeasibility.\n");
break;
case unknown:
System.out.println("Unknown solution status.\n");
break;
default:
System.out.println("Other solution status");
break;
}
} catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;
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We obtain the same result:

[-0.07838011145615721, 1.1289128998004547, -0.0505327883442975]

6.2.7 Summary and extensions

In this section we presented the most basic usage of the affine expression storage F,g to input affine
expressions used together with domains to create affine conic constraints. Now we briefly point out
additional features of his interface which can be useful in some situations for more demanding users.
They will be demonstrated in various examples in other tutorials and case studies in this manual.

e [t is important to remember that F, g has only a storage function and during the ACC construction
we can pick an arbitrary list of row indices and place them in a conic domain. It means for example
that:

— It is not necessary to store the AFEs in the same order they will appear in ACCs.

— The same AFE index can appear more than once in one and/or more conic constraints (this
can be used to reduce storage if the same affine expression is used in multiple ACCs).

— The F, g storage can even include rows that are not presently used in any ACC.
e Domains can be reused: multiple ACCs can use the same domain. On the other hand the same

type of domain can appear under many domidx positions. In this sense the list of created domains
also plays only a storage role: the domains are only used when they enter an ACC.

e Affine expressions can also contain semidefinite terms, ie. the most general form of an ACC is in
fact

Fr+ (F,X)+g€D

These terms are input into the rows of AFE storage using the functions with infix afebarf, creating
an additional storage structure F.

e The same affine expression storage F, g is shared between affine conic and disjunctive constraints
(see Sec. 6.9).

e If, on the other hand, the user chooses to always store the AFEs one by one sequentially in the
same order as they appear in ACCs then sequential functions such as Task.appendaccseq and
Task. appendaccsseq make it easy to input one or more ACCs by just specifying the starting AFE
index and dimension.

e It is possible to add a number of ACCs in one go using Task.appendaccs.

e When defining an ACC an additional constant vector b can be provided to modify the constant
terms coming from g but only for this particular ACC. This could be useful to reduce F storage
space if, for example, many expressions f'x — b; with the same linear part f7x, but varying
constant terms b;, are to be used throughout ACCs.

6.3 Conic Quadratic Optimization

The structure of a typical conic optimization problem is

minimize e +cf
subject to ¢ < Ax < s,
r < T < u®,
Fx+g € D,

(see Sec. 12 for detailed formulations). We recommend Sec. 6.2 for a tutorial on how problems of that
form are represented in MOSEK and what data structures are relevant. Here we discuss how to set-up
problems with the (rotated) quadratic cones.

MOSEK supports two types of quadratic cones, namely:
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e Quadratic cone:

e Rotated quadratic cone:
n—1
oy = xeR":2xoxlzzx?, r0>0, x1>0
j=2
For example, consider the following constraint:

(24,70, 22) € Q°

which describes a convex cone in R? given by the inequality:

xy > /22 + 23

For other types of cones supported by MOSEK, see Sec. 15.11 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

6.3.1 Example CQO1

Consider the following conic quadratic problem which involves some linear constraints, a quadratic cone
and a rotated quadratic cone.

minimize Ty + x5 + T4
subject to  x1 + o+ 223 = 1,
L1, X2, T3 > 03 (610)
T4 > V .’L'% + x%v
2r5x6 > x§
The two conic constraints can be expressed in the ACC form as shown in (6.11)
0001 00 7 0
100 0 0O x9 0
01 00 0O x3 0 3 3
000010 2y 1o € Q° x Q. (6.11)
000 O0O0°1 x5 0
001 00O T 0

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

In order to append the conic constraints we first input the matrix F and vector g appearing in (6.11).
The matrix F is sparse and we input only its nonzeros using Task.putafefentrylist. Since g is zero,
nothing needs to be done about this vector.

Each of the conic constraints is appended using the function Task.appendacc. In the first case we
append the quadratic cone determined by the first three rows of F and then the rotated quadratic cone
depending on the remaining three rows of F.
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/* Create a matriz F such that F * ¢ = [z(3),z(0),z(1),z(4),z(5),z(2)] */

task.appendafes(6) ;

task.putafefentrylist(new long[]{0, 1, 2, 3, 4, 5}, /* Rows */
new int[]1{3, 0, 1, 4, 5, 2}, /* Columns */
new double[]{1.0, 1.0, 1.0, 1.0, 1.0, 1.0});

/* Quadratic cone (x(3),x(0),x(1)) \in QUAD_3 */

long quadcone = task.appendquadraticconedomain(3);
task.appendacc(quadcone, /* Domain */
new long[]1{0, 1, 2}, /* Rows from F */
null); /* Unused */

/* Rotated quadratic cone (xz(4),xz(5),z(2)) \in RQUAD_3 */
long rquadcone = task.appendrquadraticconedomain(3);

task.appendacc(rquadcone, /* Domain */
new long[]1{3, 4, 5}, /* Rows from F */
null); /* Unused */

The first argument selects the domain, which must be appended before being used, and must have
the dimension matching the number of affine expressions appearing in the constraint. Variants of this
method are available to append multiple ACCs at a time. It is also possible to define the matrix F using
a variety of methods (row after row, column by column, individual entries, etc.) similarly as for the
linear constraint matrix A.

For a more thorough exposition of the affine expression storage (AFE) matrix F and vector g see
Sec. 6.2.

Source code
Listing 6.4: Source code solving problem (6.10).
package com.mosek.example;
import mosek.*;
public class cqol {

static final int numcon = 1;
static final int numvar 6;

public static void main (String[] args) throws java.lang.Exception {
// Since the walue infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = O;

mosek.boundkey [] bkc = { mosek.boundkey.fx };
double[] blc = { 1.0 };
double[] buc = { 1.0 };

mosek.boundkey[] bkx

= {mosek.boundkey.lo,
mosek.boundkey. 1o,
mosek.boundkey. 1o,
mosek.boundkey.fr,
mosek.boundkey.fr,
mosek.boundkey.fr
};

double[] blx = { 0.0,

0.0,

(continues on next page)
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0.0,
-infinity,
-infinity,
-infinity
I8
double[] bux = { +infinity,
+infinity,
+infinity,
+infinity,
+infinity,
+infinity
e
double[] ¢ = { 0.0,
0.0,
0.0,
1.0,
1.0,
1.0
Irg
double[][] aval = {
{1.03,
{1.0},
{2.0}
Irg
int[1[] asub = {
{03},
{0},
{0}
I8

int[] csub = new int[3];

// create a new task
try (Task task = new Task()) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

/* Give MOSEK an estimate of the size of the input data.
This is done to increase the speed of inputting data.
However, it is optional. */
/* Append 'numcon' empty constraints.

The constraints will initially have no bounds. */
task.appendcons (numcon) ;

/* Append 'numvar' wvariables.
The wvariables will initially be fized at zero (z=0). */
task.appendvars (numvar) ;

/* Optionally add a constant term to the objective. */
task.putcfix(0.0);

(continues on next page)
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for (int j = 0; j < numvar; ++j) {

/* Set the linear term c_j in the objective.*/

task.putcj(j, c[jl);

/% Set the bounds on variable j.

ble[j] <= z_j <= buz[j] */

task.putvarbound(j, bkx[jl, blx[jl, bux[jl);

}

for (int j = 0; j < aval.length; ++j)
/* Input column j of A */

task.putacol(j, /* Variable (column) index.*/
asubl[j], /* Row index of mon-zeros in column j.*/
avall[jl); /* Non-zero Values of column j. */

/* Set the bounds on constraints.
for =1, ...,numcon : blc[i] <= constraint © <= buc[i] */
for (int i = 0; i < numcon; ++i)

task.putconbound(i, bkc[il, blc[i], buc[il);

/* Create a matriz F such that F * ¢ = [x(3),2(0),z(1),z(4{),z(5),z(2)] */

task.appendafes(6) ;

task.putafefentrylist(new long[]1{0, 1, 2, 3, 4, 5}, /* Rows */
new int[]{3, 0, 1, 4, 5, 2}, /* Columns */
new double[]{1.0, 1.0, 1.0, 1.0, 1.0, 1.0});

/* Quadratic cone (z(3),xz(0),z(1)) \in QUAD_3 */

long quadcone = task.appendquadraticconedomain(3);
task.appendacc(quadcone, /* Domain */
new long[]1{0, 1, 2}, /* Rows from F */
null); /* Unused */

/* Rotated quadratic cone (z(4),z(5),z(2)) \in RQUAD_3 +*/
long rquadcone = task.appendrquadraticconedomain(3);

task.appendacc(rquadcone, /* Domain */
new long[]1{3, 4, 5}, /* Rows from F */
null); /* Unused */

task.putobjsense(mosek.objsense.minimize);
System.out.println ("optimize");

/* Solve the problem */

mosek.rescode r = task.optimize();

System.out.println (" Mosek warning:" + r.toString());
// Print a summary containing tnformation

// about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg) ;

/* Get status information about the solution */
mosek.solsta solsta = task.getsolsta(mosek.soltype.itr);

double[] xx = task.getxx(mosek.soltype.itr); // Interior solution.
switch (solsta) {

case optimal:
System.out.println("Optimal primal solution\n");

(continues on next page)
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for (int j = 0; j < numvar; ++j)
System.out.println ("x[" + j + "]:" + xx[j1);
break;
case dual_infeas_cer:
case prim_infeas_cer:
System.out.println("Primal or dual infeasibility.\n");
break;
case unknown:
System.out.println("Unknown solution status.\n");
break;
default:
System.out.println("Other solution status");
break;

}
} catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;

6.4 Power Cone Optimization

The structure of a typical conic optimization problem is

minimize e+l
subject to ¢ < Ax < uc,
r < T < u”,
Fxr+g € D,

(see Sec. 12 for detailed formulations). Here we discuss how to set-up problems with the primal/dual
power cones.
MOSEK supports the primal and dual power cones, defined as below:

e Primal power cone:

’I’Lg*l

’P;;”C: reR" : H:L‘;Bb_ To.. 3 Tyy—1 >0
=0

where s =), a; and 3; = /s, so that ). 3; = 1.

e Dual power cone:

ne—1 T Bi
('pf;k): IER” : H (Bl> Z ‘TO-"axne—lzo

=0

where s = )", a; and §; = /s, so that ), 8; = 1.

Perhaps the most important special case is the three-dimensional power cone family:

Pyl = {z e R® : afx}™™ > |22, 0,21 > 0}.
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which has the corresponding dual cone:

For example, the conic constraint (z,y,z) € ’Pg‘25’0‘75 is equivalent to 292%¢y%75 > |z|, or simply
xy® > 24 with z,y > 0.

For other types of cones supported by MOSEK, see Sec. 15.11 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

6.4.1 Example POW1

Consider the following optimization problem which involves powers of variables:

maximize 232298 + 294 —
subject to xo+ a1 + %:172 = 2 (6.12)
Lo, L1, T2 2 0.

We convert (6.12) into affine conic form using auxiliary variables as bounds for the power expressions:

maximize 3 + 24 — o
subject to xg+ x1 + %xz _
6.13
(zo,x1,23) € Py>OE (6.13)
(1’2, 1.0, .%'4) c /P?())A,O,G'

The two conic constraints shown in (6.13) can be expressed in the ACC form as shown in (6.14):

10000 0

01000 io 0

00010 ! 0 0.2,0.8 _ 10.4,0.6

00 10 0 iQ +1o | €Ps x PYA0E, (6.14)
00 000 3 1

00001 T4 0

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

In order to append the conic constraints we first input the matrix F and vector g which together
determine all the six affine expressions appearing in the conic constraints of (6.13)

/% Add conic constraints */

/* Append two power cone domains */

long pcl = task.appendprimalpowerconedomain(3, new double[]{0.2, 0.8});
long pc2 = task.appendprimalpowerconedomain(3, new double[]{4.0, 6.0});

/* Create data structures F,g so that

Fxaz+g=(200), (1), =(3), =(2), 1.0, z(4))
*/
task.appendafes(6);
task.putafefentrylist(new long[]{0, 1, 2, 3, 5}, /* Rows */
new int[]{0, 1, 3, 2, 4}, /* Columns */
new double[]{1.0, 1.0, 1.0, 1.0, 1.0});
task.putafeg(4, 1.0);

/* Append the two conic constraints */

(continues on next page)
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task.appendacc(pcl, /* Domain */
new long[]1{0, 1, 2}, /* Rows from F */
null); /* Unused */
task.appendacc(pc2, /* Domain */
new long([]1{3, 4, 5}, /* Rows from F */
null); /* Unused */

Following that, each of the affine conic constraints is appended using the function Task.appendacc.
The first argument selects the domain, which must be appended before being used, and must have the
dimension matching the number of affine expressions appearing in the constraint. In the first case we
append the power cone determined by the first three rows of F and g while in the second call we use the
remaining three rows of F and g.

Variants of this method are available to append multiple ACCs at a time. It is also possible to define
the matrix F using a variety of methods (row after row, column by column, individual entries, etc.)
similarly as for the linear constraint matrix A.

For a more thorough exposition of the affine expression storage (AFE) matrix F and vector g see
Sec. 6.2.

Source code
Listing 6.5: Source code solving problem (6.12).
package com.mosek.example;
import mosek.*;
public class powl {

static final int numcon = 1;
static final int numvar 5k // z,y,z and 2 auziliary variables for conicy

—constraints

public static void main (String[] args) throws java.lang.Exception {
// Since the walue infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = O;

double[] val

{1.0, 1.0, -1.0 };

int[] sub =43, 4, 0 };
double[] aval = { 1.0, 1.0, 0.5 };
int[] asub ={ 0, 1, 2 };

int i;

// create a new environment object
try (Task task = new Task()) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

/* Append 'numcon' empty constraints.
The constraints will initially have no bounds. */
task.appendcons (numcon) ;

(continues on next page)
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/* Append 'numvar' wvariables.

The wvariables will initially be fized at zero (z=0). */

task.appendvars (numvar) ;

/* Define the linear part of the problem */

task.putclist(sub, val);
task.putarow(0, asub, aval);

task.putconbound (0, mosek.boundkey.fx, 2.0, 2.0);
task.putvarboundsliceconst(O, numvar, mosek.boundkey.fr, -infinity, infinity);

/* Add conic constraints */
/* Append two power cone domains */

(continued from previous page)

long pcl = task.appendprimalpowerconedomain(3, new double[]{0.2, 0.8});
long pc2 = task.appendprimalpowerconedomain(3, new double[]{4.0, 6.0});

/* Create data structures F,g so that

Fxaxz+g=(x(0), (1), z(3), z(2), 1.0, z(4))

*/
task.appendafes(6) ;

task.putafefentrylist(new long[]{0, 1, 2, 3, 5},
new int[]1{0, 1, 3, 2, 4},
new double[]{1.0, 1.0, 1.0, 1.0, 1.0});

task.putafeg(4, 1.0);

/* Append the two conic constraints
task.appendacc(pcl,
new long[]1{0, 1, 2},
null);
task.appendacc(pc2,
new long[]1{3, 4, 5},
null);

*/

/*
/*
/*
/*
/*
/*

task.putobjsense(mosek.objsense.maximize) ;

System.out.println ("optimize");
/* Solve the problem */
mosek.rescode r = task.optimize();

Domain */
Rows from F */
Unused */
Domain */
Rows from F */
Unused */

System.out.println (" Mosek warning:" + r.toString());
// Print a summary containing tnformation
// about the solution for debugging purposes

task.solutionsummary (mosek.streamtype.msg) ;

/* Get status information about the solution */
mosek.solsta solsta = task.getsolsta(mosek.soltype.itr);

/* Rows */
/* Columns */

double[] xx = task.getxx(mosek.soltype.itr); // Interior solution.

switch (solsta) {
case optimal:

System.out.println("Optimal primal solution\n");

for (int j = 0; j < 3; ++j)

System.out.println ("x[" + j + "]:" + xx[j1);

break;
case dual_infeas_cer:
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case prim_infeas_cer:
System.out.println("Primal or dual infeasibility.\n");
break;
case unknown:
System.out.println("Unknown solution status.\n");
break;
default:
System.out.println("Other solution status");
break;
}
} catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;

6.5 Conic Exponential Optimization

The structure of a typical conic optimization problem is

minimize e+
subject to ¢ < Ax < wuc,
< T < u”,
Fx+g € D,

(see Sec. 12 for detailed formulations). We recommend Sec. 6.2 for a tutorial on how problems of that
form are represented in MOSEK and what data structures are relevant. Here we discuss how to set-up
problems with the primal/dual exponential cones.

MOSEK supports two exponential cones, namely:

e Primal exponential cone:

Kexp = {:1: eR?:xp > 2g exp(za/x1), To,x1 > O}.
e Dual exponential cone:
Koy = {se R3 : 59 > —spe Lexp(s1/s2), s < 0,50 > 0}.
For example, consider the following constraint:
(24,0, 22) € Kexp
which describes a convex cone in R? given by the inequalities:
x4 > xoexp(ra/xo), To,x4 > 0.

For other types of cones supported by MOSEK, see Sec. 15.11 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.
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6.5.1 Example CEO1

Consider the following basic conic exponential problem which involves some linear constraints and an
exponential inequality:

minimize To + 21
subject to zg+z1+2x2 = 1,
6.15
g > zyexp(za/zy), (6.15)
Zo, L1 2 0.
The affine conic form of (6.15) is:
minimize To + 21
subject to xg+x1 +22 = 1,
It € Koy, (6.16)
r € R3.

where [ is the 3 x 3 identity matrix.

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

In order to append the conic constraints we first input the sparse identity matrix F as indicated by
(6.16).

The affine conic constraint is then appended using the function Task.appendacc, with the primal
exponential domain and the list of F rows, in this case consisting of all rows in their natural order.

/* Create a 323 identity matriz F */

task.appendafes(3);

task.putafefentrylist(new long[]1{0, 1, 2}, /* Rows */
new int[]{0, 1, 2}, /* Columns */
new double[]{1.0, 1.0, 1.0});

/* Ezponential cone (z(0),z(1),z(2)) \in EXP */

long expdomain = task.appendprimalexpconedomain();
task.appendacc (expdomain, /* Domain */
new long[]1{0, 1, 2}, /* Rows from F */
null); /* Unused */

The first argument selects the domain, which must be appended before being used, and must have
the dimension matching the number of affine expressions appearing in the constraint. Variants of this
method are available to append multiple ACCs at a time. It is also possible to define the matrix F using
a variety of methods (row after row, column by column, individual entries, etc.) similarly as for the
linear constraint matrix A.

For a more thorough exposition of the affine expression storage (AFE) matrix F and vector g see
Sec. 6.2.
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Source code
Listing 6.6: Source code solving problem (6.15).
package com.mosek.example;
import mosek.*;
public class ceol {

static final int numcon = 1;
static final int numvar Sk

public static void main (String[] args) throws java.lang.Exception {
// Since the walue infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = O;

mosek.boundkey bkc = mosek.boundkey.fx ;
double blc = 1.0 ;
double buc = 1.0 ;

mosek.boundkey[] bkx = { mosek.boundkey.fr,
mosek.boundkey.fr,
mosek.boundkey.fr

g
double[] blx = { -infinity,
-infinity,
-infinity
Tg
double[] bux = { +infinity,
+infinity,
+infinity
g
double[] ¢ =4 1.0,
1.0,
0.0
e
double[] a = { 1.0,
1.0,
1.0
Irg
int[] asub = {0, 1, 2};

new int [numvar] ;

int[] csub

// create a new task
try (Task task = new Task()) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

/* Append 'numcon' empty constraints.

The constraints will initially have no bounds. */

(continues on next page)
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task.appendcons (numcon) ;

/* Append 'numvar' wvariables.
The variables will initially be fized at zero (xz=0). */
task.appendvars (numvar) ;

/* Define the linear part of the problem */
task.putcslice(0, numvar, c);

task.putarow(0, asub, a);

task.putconbound (0, bkc, blc, buc);
task.putvarboundslice (0, numvar, bkx, blx, bux);

/* Add a conic constraint */

/* Create a 3z3 identity matriz F */

task.appendafes(3);

task.putafefentrylist(new long[]1{0, 1, 2}, /* Rows */
new int[]1{0, 1, 2}, /* Columns */
new double[]{1.0, 1.0, 1.0});

/* Ezponential cone (z(0),z(1),z(2)) \in EXP */

long expdomain = task.appendprimalexpconedomain();
task.appendacc (expdomain, /* Domain */
new long[]1{0, 1, 2}, /* Rows from F */
null); /* Unused */

task.putobjsense(mosek.objsense.minimize) ;

System.out.println ("optimize");

/* Solve the problem */

mosek.rescode r = task.optimize();

System.out.println (" Mosek warning:" + r.toString());
// Print a summary containing information

// about the solution for debugging purposes
task.solutionsummary (mosek.streamtype.msg) ;

/% Get status information about the solution */
mosek.solsta solsta = task.getsolsta(mosek.soltype.itr);

double[] xx = task.getxx(mosek.soltype.itr); // Interior solution.

switch (solsta) {

case optimal:
System.out.println("Optimal primal solution\n");
for (int j = 0; j < numvar; ++j)

System.out.println ("x[" + j + "]:" + xx[j1);

break;

case dual_infeas_cer:

case prim_infeas_cer:
System.out.println("Primal or dual infeasibility.\n");
break;

case unknown:
System.out.println("Unknown solution status.\n");
break;

default:
System.out.println("Other solution status");
break;

(continues on next page)
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}
} catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;

6.6 Geometric Programming

Geometric programs (GP) are a particular class of optimization problems which can be expressed in
special polynomial form as positive sums of generalized monomials. More precisely, a geometric problem
in canonical form is

minimize  fo(z)

subject to  fi(z) <1, i=1,...,m, (6.17)
z; >0, 7=1,...,n,
where each fy,..., fin is a posynomial, that is a function of the form

fla) = 2 aafriages i
k

with arbitrary real ay; and ¢ > 0. The standard way to formulate GPs in convex form is to introduce
a variable substitution

x; = exp(y;)-
Under this substitution all constraints in a GP can be reduced to the form

log(D_exp(afy +bx)) <0 (6.18)
k

involving a log-sum-exp bound. Moreover, constraints involving only a single monomial in z can be even
more simply written as a linear inequality:

a{y—!—kaO

We refer to the MOSEK Modeling Cookbook and to [BKVHO7] for more details on this reformulation. A
geometric problem formulated in convex form can be entered into MOSEK with the help of exponential
cones.

6.6.1 Example GP1

The following problem comes from [BKVHO07]. Consider maximizing the volume of a h x w x d box
subject to upper bounds on the area of the floor and of the walls and bounds on the ratios h/w and d/w:

maximize hwd
subject to  2(hw + hd) < Ayan,
wd S Aﬁoor, (619)
a < h/w < ﬁv
v <d/w <.

The decision variables in the problem are h,w,d. We make a substitution

h = exp(z),w = exp(y), d = exp(z)
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after which (6.19) becomes

maximize x4y -+ z

subject to log(exp(z + y + log(2/Awan)) + exp(z + z + log(2/Awan))) < 0,
y+ 2z < log(Afor), (6.20)
log(a) <z —y <log(p),
log(v) < z —y < log(d).

Next, we demonstrate how to implement a log-sum-exp constraint (6.18). It can be written as:

ug > exp(aly +by), (equiv. (uk,1,aly + by) € Kexp),

Zkuk =1.

This presentation requires one extra variable uy for each monomial appearing in the original posynomial
constraint. In this case the affine conic constraints (ACC, see Sec. 6.2) take the form:

(6.21)

00010 0
0000 0 z 1

11000 log(2/Awan)

0000 1|37 + 0 € Keoxp X Kexp.
00000 ul 1

1 0100 2 log(2/Awan)

As a matter of demonstration we will also add the constraint
Uy + ug — 1=0

as an affine conic constraint. It means that to define the all the ACCs we need to produce the following
affine expressions (AFE) and store them:

uy, uz, T +y+10g(2/Awan), *+ 2z +log(2/Awan), 1.0, us + ug — 1.0.

We implement it by adding all the affine expressions (AFE) and then picking the ones required for each
ACC:

Listing 6.7: Implementation of log-sum-exp as in (6.21).

// Affine expressions appearing in affine conic constraints
// in this order:

// uwl, u2, ztytlog(2/Awall), ztz+log(2/Awall), 1.0, ul+ul-1.0
long numafe = &

int ul = 3, u2 = 4; // Indices of slack wvariables
long[] afeidx = {0, 1, 2, 2, 3, 3, 5, 5};

int [] varidx = {ul, u2, x, y, x, z, ul, u2};

double[] fval = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};

double[] gfull = {0, 0, Math.log(2/Aw), Math.log(2/Aw), 1.0, -1.0};

// New wariables ul, u2
task.appendvars(2) ;
task.putvarboundsliceconst(ul, u2+1, boundkey.fr, -inf, inf);

// Append affine expressions
task.appendafes (numafe) ;
task.putafefentrylist(afeidx, varidx, fval);
task.putafegslice(0, numafe, gfull);

// Two affine conic constraints
long expdom = task.appendprimalexpconedomain() ;

// (ul, 1, zty+log(2/4dwall)) \in EXP

(continues on next page)
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task.appendacc(expdom, new long[]{0, 4, 2}, null);

// (u2, 1, z+ztlog(2/Awall)) \in EXP
task.appendacc(expdom, new long[]{1, 4, 3}, null);

// The constraint ul+u2-1 \in \ZERO ts added also as an ACC
task.appendacc(task.appendrzerodomain(1), new long[]{5}, null);

We can now use this function to assemble all constraints in the model. The linear part of the problem
is entered as in Sec. 6.1.

Listing 6.8: Source code solving problem (6.20).

public static double[] max_volume_box(double Aw, double Af,

double alpha, double beta, double gamma,,,

—double delta)

{

// Basic dimensions of our problem

int numvar = 3; // Vartables in original problem

int x=0, y=1, 2z=2; // Indices of variables

int numcon = 3; // Linear constraints in original problem

// Linear part of the problem involving z, y, z
double[] cval = {1, 1, 1};
int[] asubi = {0, 0, 1, 1, 2, 2};

int[] asubj

{y, z, x, y, z, y};

double[] aval = {1.0, 1.0, 1.0, -1.0, 1.0, -1.0};

boundkey[] bkc = {boundkey.up, boundkey.ra, boundkey.ra};
double[] blc = {-inf, Math.log(alpha), Math.log(gamma)l};
double[] buc = {Math.log(Af), Math.log(beta), Math.log(delta)};

try (Task task = new Task())

{

// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
streamtype.log,
new Stream()
{ public void stream(String msg) { System.out.print(msg); }1});

// Add variables and constraints
task.appendvars (numvar) ;
task.appendcons (numcon) ;

// Objective is the sum of three first wvariables
task.putobjsense(objsense.maximize) ;

task.putcslice(0, numvar, cval);

task.putvarboundsliceconst (0, numvar, boundkey.fr, -inf, inf);

// Add the linear constraints
task.putaijlist(asubi, asubj, aval);
task.putconboundslice(0, numcon, bkc, blc, buc);

// Affine expressions appearing in affine conic constraints
// in this order:

// uwl, u2, ztytlog(2/Awall), ztz+log(2/Awall), 1.0, ul+u2-1.0
long numafe = 6;

(continues on next page)
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int ul = 3, u2 = 4; // Indices of slack wvariables
longl[] afeidx = {0, 1, 2, 2, 3, 3, 5, 5};
int [] varidx = {ul, u2, x, y, x, z, ul, u2};

double[] fval
double[] gfull

{1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.03};
{0, 0, Math.log(2/Aw), Math.log(2/Aw), 1.0, -1.0};

// New wariables ul, u2
task.appendvars(2) ;
task.putvarboundsliceconst(ul, u2+1, boundkey.fr, -inf, inf);

// Append affine expressions
task.appendafes (numafe) ;
task.putafefentrylist(afeidx, varidx, fval);
task.putafegslice(0, numafe, gfull);

// Two affine conic constraints
long expdom = task.appendprimalexpconedomain() ;

// (ul, 1, z+tytlog(2/Awall)) \in EXP
task.appendacc(expdom, new long[]{0, 4, 2}, null);

// (u2, 1, z+z+log(2/Awall)) \in EXP
task.appendacc(expdom, new long[]{1, 4, 3}, null);

// The constraint ui+u2-1 \in \ZERO is added also as an ACC
task.appendacc(task.appendrzerodomain(1), new long[]{5}, null);

// Solve and map to original h, w, d

task.optimize();

double[] xyz = task.getxxslice(soltype.itr, O, numvar);
double[] hwd = new double[numvar] ;

for(int i = 0; i < numvar; i++) hwd[i] = Math.exp(xyz[il);
return hwd;

Given sample data we obtain the solution h,w, d as follows:
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Listing 6.9: Sample data for problem (6.19).

public static void main(String[] args)

{
double Aw = 200.0;
double Af = 50.0;
double alpha = 2.0;
double beta = 10.0;
double gamma = 2.0;
double delta = 10.0;

double[] hwd

max_volume_box(Aw, Af, alpha, beta, gamma, delta);

System.out.format ("h=Y.4f w=),.4f d=J,.4f\n", hwd[0], hwd[1], hwd[2]);

6.7 Semidefinite Optimization

Semidefinite optimization is a generalization of conic optimization, allowing the use of matrix variables
belonging to the convex cone of positive semidefinite matrices

St ={Xe8:2"X2>0, VzeR"},

where 8" is the set of r x r real-valued symmetric matrices.
MOSEK can solve semidefinite optimization problems stated in the primal form,

minimize Z?;S (C;,X;)+ Z?;& cjzj +cf
subject to I§ < Z?;é (A, X;) + 27:_01 a;jT; < w§, i=0,...,m—1,
Z?;é <fij,yj'> + Z;lz_ol fijCCj +9; € ]C“ 1=0,...,9—1, (6.22)
S z; < wj, j=0,...,n—1,
ek, X; eS8, j=0,....,p—1

where the problem has p symmetric positive semidefinite variables Yj € S_T‘_j of dimension r;. The
symmetric coefficient matrices C; € 8" and A;; € 8™ are used to specify PSD terms in the linear
objective and the linear constraints, respectively. The symmetric coefficient matrices Fi,j € 8" are used
to specify PSD terms in the affine conic constraints. Note that ¢ ((6.22)) is the total dimension of all
the cones, i.e. ¢ =dim(Ky X ... x Ky), given there are k¥ ACCs. We use standard notation for the matrix
inner product, i.e., for A, B € R™*" we have

In addition to the primal form presented above, semidefinite problems can be expressed in their dual
form. Constraints in this form are usually called linear matrix inequalities (LMIs). LMIs can be
easily specified in MOSEK using the vectorized positive semidefinite cone which is defined as:

e Vectorized semidefinite domain:

SE = {(1,- -, Tagayry2) ER™ ¢ sMat(z) € S},
where n = d(d+ 1)/2 and,
1 xa/V2 - xa/V2
sMat(z) = xQ/\/E i xQdT.l./\/i

9

»Td/\/i 352(171/\/5 o Td(d+1)/2
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or equivalently
SV = {sVec(X) : X € 8¢},
where

SVeC(X) = (X117 \/§X21’ ) \/iXd17X227 \/§X32a s 7de)'

In other words, the domain consists of vectorizations of the lower-triangular part of a positive semidef-
inite matrix, with the non-diagonal elements additionally rescaled. LMIs can be expressed by restricting
appropriate affine expressions to this cone type.

For other types of cones supported by MOSEK, see Sec. 15.11 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

We demonstrate the setup of semidefinite variables and their coefficient matrices in the following
examples:

e Sec. 6.7.1: A problem with one semidefinite variable and linear and conic constraints.
e Sec. 6.7.2: A problem with two semidefinite variables with a linear constraint and bound.

e Sec. 6.7.3: A problem with linear matrix inequalities and the vectorized semidefinite domain.

6.7.1 Example SDO1

We consider the simple optimization problem with semidefinite and conic quadratic constraints:

[2 1 0]
minimize < 1 2 1 ,X>—|—x0
01 2
1 0 0]
subject to 0 1 0 |,X )4z = 1,
< 0 0 1 > (6.23)
f1 01 1]
< 11 1 ,X>+x1+a:2 = 1/2,
1 1 1

mO_Z \/{)3124-&3’?7 Xtoa

The problem description contains a 3-dimensional symmetric semidefinite variable which can be written
explicitly as:

. Xoo Xlo X2o
X=X Xu Xy | €8,
Xog Xo1 Xoo
and an affine conic constraint (ACC) (zg, z1,72) € Q2. The objective is to minimize
2(Xo0 + X10 + X11 + Xo1 + Xa2) + o,

subject to the two linear constraints
. - ZOO—FYE +yl2+1‘07 = 1,
Xoo+ X114+ Xog +2(X10+ Xoo + Xo1) + 1 +22 = 1/2.
Setting up the linear and conic part

The linear and conic parts (constraints, variables, objective, ACC) are set up using the methods described
in the relevant tutorials; Sec. 6.1, Sec. 6.2. Here we only discuss the aspects directly involving semidefinite
variables.
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Appending semidefinite variables

First, we need to declare the number of semidefinite variables in the problem, similarly to the number
of linear variables and constraints. This is done with the function Task.appendbarvars.

task.appendbarvars (dimbarvar) ;

Appending coefficient matrices

Coefficient matrices Ej and Zl—j are constructed as weighted combinations of sparse symmetric matrices
previously appended with the function Task.appendsparsesymmat.

idx[0] = task.appendsparsesymmat (dimbarvar[0],
barc_i,
barc_j,
barc_v) ;

The arguments specify the dimension of the symmetric matrix, followed by its description in the
sparse triplet format. Only lower-triangular entries should be included. The function produces a unique
index of the matrix just entered in the collection of all coefficient matrices defined by the user.

After one or more symmetric matrices have been created using Task. appendsparsesymmat, we can
combine them to set up the objective matrix coefficient 6j using Task.putbarcy, which forms a linear
combination of one or more symmetric matrices. In this example we form the objective matrix directly,
i.e. as a weighted combination of a single symmetric matrix.

task.putbarcj(0, idx, falpha);
Similarly, a constraint matrix coefficient A;; is set up by the function Task.putbaraij.

task.putbaraij(0, 0, idx, falpha);

Retrieving the solution

After the problem is solved, we read the solution using Task.getbarzy:

double[] barx = task.getbarxj(mosek.soltype.itr, 0); /* Request the,
—interior solution. */

The function returns the half-vectorization of X; (the lower triangular part stacked as a column

vector), where the semidefinite variable index j is passed as an argument.

Source code

Listing 6.10: Source code solving problem (6.23).
package com.mosek.example;

import mosek.*;

public class sdol {
public static void main(String[] argv) {

int numcon = 2; /* Number of constraints. */
int numvar = 3; /* Number of scalar variables */
int dimbarvar[] = {3}; /* Dimension of semidefinite cone */

int lenbarvar([] = {3 * (3 + 1) / 2}; /* Number of scalar SD wariables */

mosek.boundkey bkc[] = { mosek.boundkey.fx,
mosek.boundkey.fx
};
double[] blc ={1.0, 0.5 };

(continues on next page)
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double[] buc

{1.0, 0.5 };

int [] barc_i = {0, 1, 1, 2, 2},
barc_j = {0, 0, 1, 1, 2};
{2.0, 1.0, 2.0, 1.0, 2.0};

double[] barc_v =

int [][] asub = {{0}, {1, 2}}; /* column subscripts of 4 */

double[] [] aval = {{1.0}, {1.0, 1.0}};

1nt[] [:I bara_i S { {0’ 1’ 2}, {O’ 1 5 2: 1: 2: 2 } }:
bara_j ={{o, 1, 2}, {0, o, O, 1, 1, 2%} };

double[] [] bara_v ={ {t.0, 1.0, 1.0}, {1.0, 1.0, 1.0, 1.0, 1.0, 1.0}};

try (Task task = new Task()) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }1});

/* Append 'NUMCON' empty constraints.
The constraints will initially have no bounds. */
task.appendcons (numcon) ;

/* Append 'NUMVAR' wariables.
The wvariables will initially be fized at zero (z=0). */
task.appendvars (numvar) ;

/* Append 'NUMBARVAR' semidefinite wvariables. */
task.appendbarvars (dimbarvar) ;

/* Optionally add a constant term to the objective. */
task.putcfix(0.0);

/* Set the linear term c_j in the objective.*/
task.putcj(0, 1.0);

for (int j = 0; j < numvar; ++j)
task.putvarbound(j, mosek.boundkey.fr, -0.0, 0.0);

/* Set the linear term barc_j in the objective.*/
{

long[] idx = new long[1];

double[] falpha = { 1.0 };

idx[0] = task.appendsparsesymmat(dimbarvar[0],

barc_i,
barc_j,
barc_v) ;
task.putbarcj(0, idx, falpha);
}
/* Set the bounds on constraints.
for =1, ...,numcon : blc[i] <= constraint < <= buc[i] */

(continues on next page)
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for (int i = 0; i < numcon; ++i)

task.putconbound (i, /* Index of constraint.*/
bkc[i], /* Bound key.*/
blcli], /* Numertical value of lower bound.*/
buc[i]); /* Numerical value of upper bound.*/

/* Input A row by row */
for (int i = 0; i < numcon; ++i)
task.putarow(i,
asubl[i],
avallil);

/* Append the contic quadratic constraint */

task.appendafes(3);

// Diagonal F matriz

task.putafefentrylist(new long[]1{0,1,2}, new int[]1{0,1,2}, new double[]{1.0,1.0,
—~1.0}1);

task.appendaccseq(task.appendquadraticconedomain(3), 0, null);

/% Add the first row of bard */
{
long[] idx = new longl[1];
double[] falpha = {1.0};
task.appendsparsesymmat (dimbarvar [0],
bara_i[0],
bara_j[0],
bara_v[0],
idx);

task.putbaraij(0, 0, idx, falpha);

long[] idx = new long[1];

double[] falpha = {1.03};

/% Add the second row of bard */

task.appendsparsesymmat (dimbarvar [0],
bara_i[1],
bara_j[1],
bara_v[1],
idx) ;

task.putbaraij(l, 0, idx, falpha);
}

/* Run optimizer */
task.optimize();

/* Print a summary containing tinformation
about the solution for debugging purposes#*/
task.solutionsummary (mosek.streamtype.msg);

mosek.solsta solsta = task.getsolsta (mosek.soltype.itr);

switch (solsta) {
case optimal:

(continues on next page)
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double[] xx = task.getxx(mosek.soltype.itr);
double[] barx = task.getbarxj(mosek.soltype.itr, 0); /* Request they,
—1interior solution. */
System.out.println("Optimal primal solution");
for (int i = 0; i < numvar; ++i)
System.out.println("x[" + i + "] "+ xx[i]);

for (int i = 0; i < lembarvar[0]; ++i)
System.out.println("barx[" + i + "]: " + barx[i]);
break;
case dual_infeas_cer:
case prim_infeas_cer:
System.out.println("Primal or dual infeasibility certificate found.");
break;
case unknown:
System.out.println("The status of the solution could not be determined.");
break;
default:
System.out.println("Other solution status.");
break;

6.7.2 Example SDO2

We now demonstrate how to define more than one semidefinite variable using the following problem with
two matrix variables and two types of constraints:

minimize  (C}, X;) + (Ca, X2)

subject to (A1, X1) + (A2, X2) = b,
2 6.24
(X2)o1 < &, (6.24)
X1,Xy = 0.
In our example dim(X;) = 3, dim(X3) =4, b =23, k = —3 and
1 0 0] [1 0 1
Ci=|000/|,4=|00 0],
00 6| 10 2
1 -3 0 0] [0 1 0 0
-3 2 0 0 1 -1 0 O
“=1 09 o 10" [0 0 0 0|
0 0 0 0] 0 0 0 -3

are constant symmetric matrices.

Note that this problem does not contain any scalar variables, but they could be added in the same
fashion as in Sec. 6.7.1.

Other than in Sec. 6.7.1 we don’t append coeflicient matrices separately but we directly input
all nonzeros in each constraint and all nonzeros in the objective at once. Every term of the form
(Ai )k1(X )k, is determined by four indices (i, j, k,1) and a coefficient value v = (4; ;). Here i
is the number of the constraint in which the term appears, j is the index of the semidefinite vari-
able it involves and (k,[) is the position in that variable. This data is passed in the call to Task.

putbarablocktriplet. Note that only the lower triangular part should be specified explicitly, that is

one always has k& > [. Semidefinite terms (C;)x,1(X )k, of the objective are specified in the same way in
Task.putbarcblocktriplet but only include (4, k,1) and v.

For explanations of other data structures used in the example see Sec. 6.7.1.

The code representing the above problem is shown below.
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Listing 6.11: Implementation of model (6.24).

try (Task task = new Task()) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }1});

/* Append numcon empty constraints.
The constraints will initially have no bounds. */
task.appendcons (numcon) ;

/* Append numbarvar semidefinite vartables. */
task.appendbarvars (dimbarvar) ;

/% Set objective (6 nonzeros).*/
task.putbarcblocktriplet(Cj, Ck, Cl, Cv);

/* Set the equality constraint (6 nonzeros).*/
task.putbarablocktriplet (Ai, Aj, Ak, Al, Av);

/* Set the inequality constraint (1 nonzero).*/
task.putbarablocktriplet (A2i, A2j, A2k, A21, A2v);

/* Set constraint bounds */
task.putconboundslice(0, 2, bkc, blc, buc);

/* Run optimizer */
task.optimize();
task.solutionsummary (mosek.streamtype.msg) ;

mosek.solsta solsta = task.getsolsta(mosek.soltype.itr);

switch (solsta) {
case optimal:

/* Retrieve the soution for all symmetric variables */
System.out.println("Solution (lower triangular part vectorized):");
for(int i = 0; i < numbarvar; i++) {

int dim = dimbarvar[i] * (dimbarvar[i] + 1) / 2;

double[] barx = task.getbarxj(mosek.soltype.itr, i);

System.out.print ("X" + (i+1) + ": ");

for (int j = 0; j < dim; ++j)
System.out.print(barx[j] + " ");

System.out.println();

break;

case dual_infeas_cer:

case prim_infeas_cer:
System.out.println("Primal or dual infeasibility certificate found.");
break;

case unknown:

System.out.println("The status of the solution could not be determined.");
(continues on next page)
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break;

default:
System.out.println("Other solution status.");
break;

6.7.3 Example SDO _LMI: Linear matrix inequalities and the vectorized semidef-
inite domain

The standard form of a semidefinite problem is usually either based on semidefinite variables (primal
form) or on linear matrix inequalities (dual form). However, MOSEK allows mixing of these two forms,
as shown in (6.25)

minimize (1) (1) X VY +xo+a+1
subject to 0 1 X ) —xp— e R
“J 10’ oo 201 (6.25)
0 1 3 1 0
””0[1 3]*"”1[1 0] [0 1} z 0
X >0

The first affine expression is restricted to a linear domain and could also be modelled as a linear constraint
(instead of an ACC). The lower triangular part of the linear matrix inequality (second constraint) can be
vectorized and restricted to the domaintype.svec_psd_cone. This allows us to express the constraints
in (6.25) as the affine conic constraints shown in (6.26).

<Hé],X> + [-1 -1]z + [0] € RL,
0o 3 -1 (6.26)
V2 V2 |z o+ 0 e Spve
3.0 -1

Vectorization of the LMI is performed as explained in Sec. 15.11.

Setting up the linear part

The linear parts (objective, constraints, variables) and the semidefinite terms in the linear expressions
are defined exactly as shown in the previous examples.

Setting up the affine conic constraints with semidefinite terms

To define the affine conic constraints, we first set up the affine expressions. The F' matrix and the g
vector are defined as usual. Additionally, we specify the coefficients for the semidefinite variables. The
semidefinite coefficients shown in (6.26) are setup using the function Task.putafebarfblocktriplet.

/* barF block triplets */
task.putafebarfblocktriplet(barf_i, barf_j, barf_k, barf_1, barf_v);

These affine expressions are then included in their corresponding domains to construct the affine
conic constraints. Lastly, the ACCs are appended to the task.

/* Append R+ domain and the corresponding ACC */
task.appendacc(task.appendrplusdomain(1), new long[]{0}, null);

/* Append SVEC_PSD domain and the corresponding ACC */
task.appendacc(task.appendsvecpsdconedomain(3), new long[]{1,2,3}, null);
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Source code

Listing 6.12: Source code solving problem (6.25).

package com.mosek.example;

import mosek.*;

public class sdo_

Imi {

public static void main(String[] argv) {

int numafe
int numvar
int dimbar
int lenbar
int[]
double[]
longl[]

int []
doublel]
longl[]

int []
double[]

var []
var [ ]

barc_j
barc_k
barc_1
barc_v

afeidx
varidx
f_val

g

barf_i
barf_j
barf_k
barf_1
barf_v

= 4; /* Number of affine expressions. *x/
2; /* Number of scalar variables */
{2}; /* Dimension of semidefinite cone */

{2 * (2 + 1) / 2}; /* Number of scalar SD variables */

= {0, 0},
= {0, 1},
= {0, 1};
= {1.0, 1.03};

= {0,
= {0,
= {-1
= {0, -1, 0, -1};

= {0, 0};
= {0, O},
= {0, 1},
= {0, 0};
= {0.0, 1.0};

try (Task task = new Task()) {

// Directs the log task stream to the user specified

// method task_msg_obj.stream

task.set_St

ream(

mosek.streamtype.log,
new mosek.Stream()

{ public void stream(String msg) { System.out.print(msg); }});

/* Append 'NUMAFE' empty affine expressions. */

task.appendafes (numafe) ;

/* Append 'NUMVAR' wariables.

The variables will initially be fized at zero (z=0). */

task.appendvars (numvar) ;

/* Append 'NUMBARVAR' semidefinite wvariables. */

task.appendbarvars (dimbarvar) ;

/% Optionally add a constant term to the objective. */

task.putcfix(1.0);

/* Set the linear term c_j in the objective.*/

task.putcj(0, 1.0);
task.putcj(il, 1.0);

for (int j = 0; j < numvar; ++j)

task.putvarbound(j, mosek.boundkey.fr, -0.0, 0.0);
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/* Set the linear term barc_j in the objective.*/
task.putbarcblocktriplet(barc_j, barc_k, barc_1l, barc_v);

/* Set up the affine conic constraints */

/* Construct the affine expressions */

/* F matriz */

task.putafefentrylist(afeidx, varidx, f_val);
/* g vector */

task.putafegslice(0, 4, g);

/% barF block triplets */
task.putafebarfblocktriplet(barf_i, barf_j, barf_k, barf_1, barf_v);

/* Append R+ domain and the corresponding ACC */

task.appendacc (task.appendrplusdomain(1), new long[]{0}, null);

/* Append SVEC_PSD domain and the corresponding ACC */
task.appendacc(task.appendsvecpsdconedomain(3), new long[]{1,2,3}, null);

/* Run optimizer */
task.optimize();

/% Print a summary containing tnformation
about the solution for debugging purposes#*/
task.solutionsummary (mosek.streamtype.msg) ;

mosek.solsta solsta = task.getsolsta (mosek.soltype.itr);

switch (solsta) {
case optimal:

double[] xx = task.getxx(mosek.soltype.itr);

double[] barx = task.getbarxj(mosek.soltype.itr, 0); /* Request the,
—interior solution. */

System.out.println("Optimal primal solution");

for (int i = 0; i < numvar; ++i)

System.out.println("x[" + i + "] "+ xx[il);

for (int i = 0; i < lenmbarvar[0]; ++i)
System.out.println("barx[" + i + "]: " + barx[i]);
break;
case dual_infeas_cer:
case prim_infeas_cer:
System.out.println("Primal or dual infeasibility certificate found.");
break;
case unknown:
System.out.println("The status of the solution could not be determined.");
break;
default:
System.out.println("Other solution status.");
break;
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6.8 Integer Optimization

An optimization problem where one or more of the variables are constrained to integer values is called a
(mixed) integer optimization problem. MOSEK supports integer variables in combination with linear,
quadratic and quadratically constrtained and conic problems (except semidefinite). See the previous
tutorials for an introduction to how to model these types of problems.

6.8.1 Example MILO1
We use the example

maximize xg + 0.64x,

subject to 50xg + 31lz; < 250,
3IEO — 2’171 2 74, (627>
Zo, 21 >0 and integer

to demonstrate how to set up and solve a problem with integer variables. It has the structure of a linear
optimization problem except for integrality constraints on the variables. Therefore, only the specification
of the integer constraints requires something new compared to the linear optimization problem discussed
previously.

First, the integrality constraints are imposed using the function Task.putvartype or one of its bulk
analogues:

for (int j = 0; j < numvar; ++j)
task.putvartype(j, mosek.variabletype.type_int);

Next, the example demonstrates how to set various useful parameters of the mixed-integer optimizer.
See Sec. 13.4 for details.

/* Set maz solution time */
task.putdouparam(mosek.dparam.mio_max_time, 60.0);

The complete source for the example is listed Listing 6.13. Please note that when we fetch the
solution then the integer solution is requested by using soltype.itg. No dual solution is defined for
integer optimization problems.

Listing 6.13: Source code implementing problem (6.27).
package com.mosek.example;

import mosek.*;

public class milol {
static final int numcon = 2;
static final int numvar 2;

public static void main (String[] args) {
// Since the walue infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = O;

mosek.boundkey [] bkc

= { mosek.boundkey.up, mosek.boundkey.lo };
double[] blc = { -infinity, -4.0 };
double[] buc = { 250.0, infinity };

mosek.boundkey[] bkx

= { mosek.boundkey.lo, mosek.boundkey.lo };
double[] blx = { 0.0, 0.0 };
double[] bux = { infinity, infinity };

(continues on next page)
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double[] ¢ ={1.0, 0.64 };

int[][] asub = { {0, 1}, {o, 1y  }
double[][] aval = { {50.0, 3.0}, {31.0, -2.0} };
int[] ptrb = { 0, 2 };

int[] ptre = { 2, 4 };

try (Task task = new Task()) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});
task.set_ItgSolutionCallback(
new mosek.ItgSolutionCallback() {
public void callback(double[] xx) {
System.out.print("New integer solution: ");
for (double v : xx) System.out.print("" + v + " ");
System.out.println("");
¥
b
/* Append 'numcon' empty constraints.
The constraints will initially have no bounds. */
task.appendcons (numcon) ;

/* Append 'numvar' wvariables.
The variables will intitially be fized at zero (z=0). */
task.appendvars (numvar) ;

for (int j = 0; j < numvar; ++j) {
/* Set the linear term c_j in the objective.*/
task.putcj(j, c[jl);
/* Set the bounds on wariable j.
blz[j] <= z_j5 <= buz[j] */
task.putvarbound(j, bkx[jl, blx[jl, bux[jl);
/* Input column j of A */

task.putacol(j, /* Variable (column) index.*/
asubl[j], /* Row index of mon-zeros in column j.*/
avall[jl); /* Non-zero Values of column j. */
}
/* Set the bounds on constraints.
for =1, ...,numcon : blc[i] <= constraint © <= buc[z] */

for (int i = 0; i < numcon; ++i)
task.putconbound(i, bkc[il, blc[i], bucl[il);

/* Specify integer variables. */

for (int j = 0; j < numvar; ++j)
task.putvartype(j, mosek.variabletype.type_int);

/* Set maz solution time */

task.putdouparam(mosek.dparam.mio_max_time, 60.0);

/* A mazimization problem */

(continues on next page)
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task.putobjsense (mosek.objsense.maximize) ;

/* Solve the problem */

try {
task.optimize();

} catch (mosek.Warning e) {
System.out.println (" Mosek warning:");
System.out.println (e.toString ());

}

// Print a summary containing information

//  about the solution for debugging purposes
task.solutionsummary (mosek.streamtype.msg) ;

double xx[] = task.getxx(mosek.soltype.itg); // Integer solution.
/* Get status information about the solution */

mosek.solsta solsta = task.getsolsta(mosek.soltype.itg);

switch (solsta) {
case integer_optimal:
System.out.println("Optimal solution\n");
for (int j = 0; j < numvar; ++j)
System.out.println ("x[" + j + "]:" + xx[j1);
break;
case prim_feas:
System.out.println("Feasible solution\n");
for (int j = 0; j < numvar; ++j)
System.out.println ("x[" + j + "]:" + xx[j1);
break;

case unknown:
mosek.prosta prosta = task.getprosta(mosek.soltype.itg);
switch (prosta) {
case prim_infeas_or_unbounded:
System.out.println("Problem status Infeasible or unbounded");
break;
case prim_infeas:
System.out.println("Problem status Infeasible.");
break;
case unknown:
System.out.println("Problem status unknown.");
break;
default:
System.out.println("Other problem status.");
break;
}
break;
default:
System.out.println("Other solution status");
break;
X
}
catch (mosek.Exception e) {
System.out.println ("An error or warning was encountered");
System.out.println (e.getMessage ());
throw e;

}

(continues on next page)
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6.8.2 Specifying an initial solution

It is a common strategy to provide a starting feasible point (if one is known in advance) to the mixed-
integer solver. This can in many cases reduce solution time.
There are two modes for MOSEK to utilize an initial solution.

e A complete solution. MOSEK will first try to check if the current value of the primal variable
solution is a feasible point. The solution can either come from a previous solver call or can be
entered by the user, however the full solution with values for all variables (both integer and con-
tinuous) must be provided. This check is always performed and does not require any extra action
from the user. The outcome of this process can be inspected via information items zinfitem.
mio_initial_feasible_solution and dinfitem.mio_initial_feasible_solution_obj, and
via the Initial feasible solution objective entry in the log.

e A partial integer solution. MOSEK can also try to construct a feasible solution by fixing
integer variables to the values provided by the user (rounding if necessary) and optimizing over
the remaining continuous variables. In this setup the user must provide initial values for all
integer variables. This action is only performed if the parameter iparam.mio_construct_sol
is switched on. The outcome of this process can be inspected via information items zinfitem.
mio_construct_solution and dinfitem.mio_construct_solution_obj, and via the Construct
solution objective entry in the log.

In the following example we focus on inputting a partial integer solution.

maximize Txg+ 10x; 4+ 22 + 5z3
subject to xg+ 1 + 12 + 23 < 2.5
To,X1,T € 7
Loy XL1,T2,T3 Z 0

(6.28)

Solution values can be set using Task.putzz, Task.putzzslice or similar .
Listing 6.14: Implementation of problem (6.28) specifying an initial
solution.

// Assign values to integer variables
// We only set that slice of zx
task.putxxslice(mosek.soltype.itg, 0, 3, new double[]{1.0, 1.0, 0.0});

// Request constructing the solution from integer variable values
task.putintparam(mosek.iparam.mio_construct_sol, mosek.onoffkey.on.value);

The log output from the optimizer will in this case indicate that the inputted values were used to
construct an initial feasible solution:

Construct solution objective : 1.950000000000e+01

The same information can be obtained from the API:
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Listing 6.15: Retrieving information about usage of initial solution

int constr = task.getintinf (mosek.iinfitem.mio_construct_solution);

double constrVal = task.getdouinf (mosek.dinfitem.mio_construct_solution_obj);
System.out.println("Construct solution utilization: " + constr);
System.out.println("Construct solution objective: " + constrVal);

6.8.3 Example MICO1

Integer variables can also be used arbitrarily in conic problems (except semidefinite). We refer to the
previous tutorials for how to set up a conic optimization problem. Here we present sample code that
sets up a simple optimization problem:
minimize 2 + y?
subject to x > e¥ + 3.8, (6.29)
x,y integer.

The canonical conic formulation of (6.29) suitable for Optimizer API for Java is

minimize ¢

subject to (¢, z,y) € Q3 (t> 22 +y?)
(x—38,1,y) € Kexp (r—3.8>¢Y) (6.30)
x,y integer,
teR.

Listing 6.16: Implementation of problem (6.30).

public class micol {
public static void main (String[] args) {
try (Task task = new Task()) {

// Directs the log task stream to the user specified

// method task_msg_obj.stream

task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()

{ public void stream(String msg) { System.out.print(msg); }});

task.appendvars(3); // =z, y, t
int x=0, y=1, t=2;
task.putvarboundsliceconst (0, 3, mosek.boundkey.fr, -0.0, 0.0);

// Integrality constraints for z, y
task.putvartypelist(new int[]{x,y},
new mosek.variabletype[]{mosek.variabletype.type_int, mosek.
—variabletype.type_int});

// Set up the affine expressions
// z, ©-3.8, y, t, 1.0
task.appendafes(5);
task.putafefentrylist(new long[]{0,1,2,3},
new int[]{x,x,y,t},
new double[]{1,1,1,1});
task.putafegslice(0, 5, new double[]{0, -3.8, 0, 0, 1.0});

// Add constraint (z-3.8, 1, y) \in \EXP
task.appendacc(task.appendprimalexpconedomain(), new long[]l{1, 4, 2}, null);

(continues on next page)
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// Add constraint (t, =, y) \in \QUAD
task.appendacc(task.appendquadraticconedomain(3), new long[]{3, 0, 2}, null);

// Objective
task.putobjsense (mosek.objsense.minimize);
task.putcj(t, 1);

// Optimize the task
task.optimize();
task.solutionsummary (mosek.streamtype.msg) ;

double[] xx = task.getxxslice(mosek.soltype.itg, 0, 2);
System.out.println("x = " + xx[0] + " y =" + xx[1]);

Error and solution status handling were omitted for readability.

6.9 Disjunctive constraints

A disjunctive constraint (DJC) involves of a number of affine conditions combined with the logical
operators or (V) and optionally and (A) into a formula in disjunctive normal form, that is a disjunction
of conjunctions. Specifically, a disjunctive constraint has the form of a disjunction

TiorTyor--- or Ty (6.31)
where each T; is written as a conjunction
T, =T;1 and T; 9 and - - - and T; g, (6.32)

and each T; ; is an affine condition (affine equation or affine inequality) of the form D;;x+d;; € D;; with
D;; being one of the affine domains from Sec. 15.11.1. A disjunctive constraint (DJC) can therefore be
succinctly written as

\/ /\ T; ; (6.33)

i=1j=1

where each T; ; is an affine condition.

Each T; is called a term or clause of the disjunctive constraint and ¢ is the number of terms. Each
condition T; ; is called a simple term and s; is called the size of the ¢-th term.

A disjunctive constraint is satisfied if at least one of its terms (clauses) is satisfied. A term (clause)
is satisfied if all of its constituent simple terms are satisfied. A problem containing DJCs will be solved
by the mixed-integer optimizer.

Note that nonlinear cones are not allowed as one of the domains D;; inside a DJC.

6.9.1 Applications

Disjunctive constraints are a convenient and expressive syntactical tool. Then can be used to phrase
many constructions appearing especially in mixed-integer modelling. Here are some examples.

e Complementarity. The condition zy = 0, where z,y are scalar variables, is equivalent to
r=0o0ry=0.

It is a DJC with two terms, each of size 1.
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e Semicontinuous variable. A semicontinuous variable is a scalar variable which takes values in
{0} U [a, +00]. This can be expressed as

z=0o0orz>a.

It is again a DJC with two terms, each of size 1.

e Exact absolute value. The constraint ¢ = |z| is not convex, but can be written as
(x>0andt==z)or (r <0andt=—x)

It is a DJC with two terms, each of size 2.

e Indicator. Suppose z is a Boolean variable. Then we can write the indicator constraint z =1 —
T
a'x <bas

(z=1and a’z <b) or (z=0)
which is a DJC with two terms, of sizes, respectively, 2 and 1.

e Piecewise linear functions. Suppose a1 < -+ < agy1 and f : [a1,ax+1] — R is a piecewise
linear function, given on the i-th of k intervals [a;, a;11] by a different affine expression f;(x). Then
we can write the constraint y = f(x) as

k
\/ (a; <yand y < a1 and y — fi(z) =0)
i=1

making it a DJC with &k terms, each of size 3.

On the other hand most DJCs are equivalent to a mixed-integer linear program through a big-M
reformulation. In some cases, when a suitable big-M is known to the user, writing such a formulation
directly may be more efficient than formulating the problem as a DJC. See Sec. 13.4.5 for a discussion
of this topic.

Disjunctive constraints can be added to any problem which includes linear constraints, affine conic
constraints (without semidefinite domains) or integer variables.

6.9.2 Example DJC1

In this tutorial we will consider the following sample demonstration problem:

minimize  2xg 4+ x1 + 3x2 + 3
subject to xg+ z1 + 22 + x3 > —10,
x0—2x1§—1 1’2—3$3§—2
and or and ,
1‘2:.’1}3:0 .’1?021‘1:0
x; = 2.5 for at least one i € {0,1,2,3}.

(6.34)

The problem has two DJCs: the first one has 2 terms. The second one, which we can write as \/fzo(xi =
2.5), has 4 terms (clauses).

We begin by expressing problem (6.34) in the format where all simple terms are of the form D;jz+d;; €
D;j, that is of the form a sequence of affine expressions belongs to a linear domain:

minimize 2zg + x1 + 32 + T3
subject to xg + x1 + x2 + x3 > —10,

$0—2$1+1€R1<0 $2—3.’E3+2€R1<0
and B or and B , (6.35)
(1‘2,1‘3) €0? (.To,xl) €02

(rg —2.5€0Y) or (z; — 2.5 €0') or (2 —2.5 € 0') or (x5 — 2.5 € 0),

where 0" denotes the n-dimensional zero domain and RZ, denotes the n-dimensional nonpositive orthant,
as in Sec. 15.11.
Now we show how to add the two DJCs from (6.35). This involves three steps:
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e storing the affine expressions which appear in the DJCs,
e creating the required domains, and
e combining the two into the description of the DJCs.

Readers familiar with Sec. 6.2 will find that the process is completely analogous to the process of
adding affine conic constraints (ACCs). In fact we would recommend Sec. 6.2 as a means of familiarizing
with the structures used here at a slightly lower level of complexity.

6.9.3 Step 1: add affine expressions

In the first step we need to store all affine expressions appearing in the problem, that is the rows of the
expressions D;;x + d;;. In problem (6.35) the disjunctive constraints contain altogether the following
affine expressions:

(0) To—2x1+1

(1) a2 —3z3+2

(2) o

(3) =

Egg Z (6.36)
(6) Tro — 2.5

(7) xr1 — 25

(8) T — 2.5

To store affine expressions (AFE for short) MOSEK provides a matrix F and a vector g with the
understanding that every row of

Fzx+g

defines one affine expression. The API functions with infix afe are used to operate on F and g, add
rows, add columns, set individual elements, set blocks etc. similarly to the methods for operating on the
A matrix of linear constraints. The storage matrix F is a sparse matrix, therefore only nonzero elements
have to be explicitly added.

Remark: the storage F, g may, but does not have to be, kept in the same order in which the expressions
enter DJCs. In fact in (6.36) we have chosen to list the linear expressions in a different, convenient order.
It is also possible to store some expressions only once if they appear multiple times in DJCs.

Given the list (6.36), we initialize the AFE storage as (only nonzeros are listed and for convenience
we list the content of (6.36) alongside in the leftmost column):

(0) zo—2z1+1 1 -2 1

(1) To — 3x3+ 2 1 -3 2

(2) To 1

(3) Tl 1

Ei’g iz F = L L |oe= . (6.37)
(6) x0—25 1 —2.5

(7) x1—25 1 —2.5

(8) To — 2.5 1 —-2.5

(9) z3—25 i 1 ] i —2.5 i

Initially F and g are empty (have 0 rows). We construct them as follows. First, we append a number of
empty rows:

long numafe = 10;
task.appendafes (numafe) ;

We now have F and g with 10 rows of zeros and we fill them up to obtain (6.37).
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longl[] fafeidx = new long[]{0, O, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9};

int [] fvaridx = new int[]{0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3};

double[] fval new double[]{1.0, -2.0, 1.0, -3.0, 1.0, 1.0, 1.0, 1.0, 1.0,,
1.0, 1.0, 1.0};

double[] g
=258

new double[]{1.0, 2.0, 0.0, 0.0, 0.0, 0.0, -2.5, -2.5, -2.5,,

task.putafefentrylist(fafeidx, fvaridx, fval);
task.putafegslice(0, numafe, g);

We have now created the matrices from (6.37). Note that at this point we have not defined any DJC's
yet. All we did was define some affine expressions and place them in a generic AFE storage facility to
be used later.

6.9.4 Step 2: create domains

Next, we create all the domains D;; appearing in all the simple terms of all DJCs. Domains are created
with functions with infix domain. In the case of (6.35) there are three different domains appearing:

0', 0%, RL,.

We create them with the corresponding functions:

long zerol task.appendrzerodomain(1);
long zero2 = task.appendrzerodomain(2);
long rminusl = task.appendrminusdomain(1);

The function returns a domain index, which is just the position in the list of all domains (potentially)
created for the problem. At this point the domains are just stored in the list of domains, but not yet
used for anything.

6.9.5 Step 3: create the actual disjunctive constraints

We are now in position to create the disjunctive constraints. DJCs are created with functions with infix
djc. The function Task.appenddjcs will append a number of initially empty DJCs to the task:

long numdjc = 2;
task.appenddjcs (numdjc) ;

We can then define each disjunction with the method Task.putdjc. It will require the following
data:

e the list termsizelist of the sizes of all terms of the DJC,

e the list afeidxlist of indices of AFEs to be used in the constraint. These are the row numbers in
F, g which contain the required affine expressions.

e the list domidxlist of the domains for all the simple terms.

For example, consider the first DJC of (6.35). Below we format this DJC by replacing each affine
expression with the index of that expression in (6.37) and each domain with its index we obtained in
Step 2:

(:co —2r1+1€ ngo and (zo,x3) € 02) or (xg —3z3+2¢€ ngo and (zg, 1) € 02)
((0) € rminus1 and ((4),(5)) € zero2) or ((1) € rminusl and ((2), (3)) € zero2) (6.38)

term of size 2 term of size 2

It implies that the DJC will be represented by the following data:
e termsizelist = [2, 2],

e afeidxlist = [0, 4, 5, 1, 2, 3],
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e domidxlist = [rminusl, zero2, rminusl, zero2].
The code adding this DJC will therefore look as follows:

task.putdjc(0,

// DJC indezx

new long[]{rminusl, zero2, rminusl, zero2}, // Domains 10

< (domidzlist)

new long[]{0, 4, 5, 1, 2, 3},
< (afeidzlist)

null,

new long[]{2, 2} );
< (termsizelist)

// AFE indices,,

// Unused
// Term sizes

Note that number of AFEs used in afeidxlist must match the sum of dimensions of all the domains
(here: 6 == 1+ 2+ 1+ 2) and the number of domains must match the sum of all term sizes (here:

4==2+2).

For similar reasons the second DJC of problem (6.35) will have the description:

z0—25€0! or 7 —25€0' or zp—25€0!
(6) € zerol or (7)€ zerol or (8)¢€ zerol
—_———

term of size 1 term of size 1 term of size 1
e termsizelist = [1, 1, 1, 1],

e afeidxlist = [6, 7, 8, 9],

e domidxlist = [zerol, zerol, zerol, zerol].

task.putdjc(1,
new long[]{zerol, zerol, zerol, zerol},
< (domidxlist)
new long[]l{6, 7, 8, 9},
< (afeidzlist)
null,
new long([]{1, 1, 1, 1} );
< (termidzlist)

This completes the setup of the disjunctive constraints.

6.9.6 Example DJC1 full code

or z3—25¢e0!
or (9) € zerol (6.39)

term of size 1

// DJC indezx
// Domains U

// AFE indices,,

// Unused
// Term sizes

We refer to Sec. 6.1 for instructions how to initialize a MOSEK session, add variables and set up the
objective and linear constraints. All else that remains is to call the solver with Task.optimize and
retrieve the solution with Task.getzz. Since our problem contains a DJC, and thus is solved by the
mixed-integer optimizer, we fetch the integer solution. The full code solving problem (6.34) is shown

below.

Listing 6.17: Full code of example DJC1.

package com.mosek.example;
import mosek.*;

public class djcl {

static double inf = 0.0; // Infintty for symbolic purposes

public static void main (String[] args) {
// Make a task
try (mosek.Task task = new Task()) {

// Append free wariables
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int numvar = 4;
task.appendvars (numvar) ;

(continued from previous page)

task.putvarboundsliceconst (0, numvar, mosek.boundkey.fr, -inf, inf);

// The linear part: the linear constraint
task.appendcons (1) ;

task.putarow(0, new int[]1{0, 1, 2, 3}, new double[]{1, 1, 1, 1});

task.putconbound (0, mosek.boundkey.lo, -10.0, -10.0);

// The linear part: objective
task.putobjsense(mosek.objsense.minimize);

task.putclist(new int[]{0, 1, 2, 3}, new double[]{2, 1, 3, 1});

// Fill in the affine expression storage F, g
long numafe = 10;
task.appendafes (numafe) ;

longl[] fafeidx = new long[]{0, O, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9};

int[] fvaridx = new int[]{O0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3};

double[] fval = new double[]{1.0, -2.0, 1.0, -3.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0};

double([] g = new double[]{1.0, 2.0, 0.0, 0.0, 0.0, 0.0, -2.5, -2.5, -2.5,,
—-2.5};

task.putafefentrylist(fafeidx, fvaridx, fval);
task.putafegslice(0, numafe, g);

// Create domatins

long zerol = task.appendrzerodomain(1);
long zero2 task.appendrzerodomain(2) ;
long rminusl = task.appendrminusdomain(1);

// Append disjunctive constraints
long numdjc = 2;
task.appenddjcs(numdjc) ;

// First disjunctive constraint
task.putdjc(0,

// DJC indezx

new long[]{rminusl, zero2, rminusl, zero2}, // Domains o

— (domidzlist)

new long(]{0, 4, 5, 1, 2, 3},
< (afeidzlist)

null,

new long[]1{2, 2} );
— (termsizelist)

// Second disjunctive constraint
task.putdjc(1,
new long[]{zerol, zerol, zerol, zerol},
« (domidzlist)
new long[l{6, 7, 8, 9},
< (afeidzlist)
null,
new long[l{1, 1, 1, 1} );
— (termidzlist)
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// Unused
// Term sizes

// DJC indezx
// Domains o

// AFE indices,,

// Unused
// Term sizes |,
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// Useful for debugging
task.writedata("djc.ptf"); // Write file in human-
—readable format
// Attach a log stream printer to the task
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

// Solve the problem
task.optimize();

// Print a summary containing tnformation
// about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg) ;

// Get status information about the solution
mosek.solsta solsta = task.getsolsta(mosek.soltype.itg);

switch (solsta) {
case integer_optimal:
double[] xx = task.getxx(mosek.soltype.itg);

System.out.println("Optimal primal solution\n");
for (int j = 0; j < numvar; ++j)
System.out.println ("x[" + j + "]:" + xx[j1);
break;
default:
System.out.println("Another solution status");
break;
}
}
catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;

3

The answer is

[0, 0, -12.5, 2.5]

6.9.7 Summary and extensions

In this section we presented the most basic usage of the affine expression storage F,g to input affine
expressions used together with domains to create disjunctive constraints (DJC). Now we briefly point
out additional features of his interface which can be useful in some situations for more demanding users.
They will be demonstrated in various examples in other tutorials and case studies in this manual.

e It is important to remember that F', g has only a storage function and during the DJC construction
we can pick an arbitrary list of row indices and place them in a domain. It means for example that:
— It is not necessary to store the AFEs in the same order they will appear in DJCs.

— The same AFE index can appear more than once in one and/or more conic constraints (this
can be used to reduce storage if the same affine expression is used in multiple DJCs).

— The F, g storage can even include rows that are not presently used in any DJC.
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e Domains can be reused: multiple DJCs can use the same domain. On the other hand the same
type of domain can appear under many domidx positions. In this sense the list of created domains
also plays only a storage role: the domains are only used when they enter a DJC.

e The same affine expression storage F, g is shared between disjunctive constraints and affine conic
constraints (ACCs, see Sec. 6.2).

e When defining an DJC an additional constant vector b can be provided to modify the constant
terms coming from g but only for this particular DJC. This could be useful to reduce F storage
space if, for example, many expressions DTz — b; with the same linear part DTz, but varying
constant terms b;, are to be used throughout DJCs.

6.10 Quadratic Optimization

MOSEK can solve quadratic and quadratically constrained problems, as long as they are convex. This
class of problems can be formulated as follows:

minimize %mTQox +cTr+¢f
subject to 1§ < 1zTQFx+ 2?;01 arjr; < uf, k=0,...,m—1, (6.40)
S z; < wj, j=0,....,n—1

Without loss of generality it is assumed that Q° and Q¥ are all symmetric because
1
"Qu = 2oT(Q+ Q).

This implies that a non-symmetric @) can be replaced by the symmetric matrix %(Q + Q7).
The problem is required to be convex. More precisely, the matrix Q° must be positive semi-definite
and the kth constraint must be of the form

n—1

c 1 k

i < 52" QFx + ZO a1, (6.41)
iz

with a negative semi-definite Q¥ or of the form

-1
1 T Nk K c
2" Q x+;ak’jxj < .

with a positive semi-definite @Q¥. This implies that quadratic equalities are not allowed. Specifying a
non-convex problem will result in an error when the optimizer is called.

A matrix is positive semidefinite if all the eigenvalues of ) are nonnegative. An alternative statement
of the positive semidefinite requirement is

zTQx >0, V.

If the convexity (i.e. semidefiniteness) conditions are not met MOSEK will not produce reliable results
or work at all.

6.10.1 Example: Quadratic Objective

We look at a small problem with linear constraints and quadratic objective:

minimize 2?2 4+ 0.123 + 23 — 2123 — T2
subject to 1< x1+ 22 + 3 (6.42)
0< =

The matrix formulation of (6.42) has:

2 0 -1 0
Q=10 02 0 |,e=|-1],4=[1 1 1],
-1 0 2 0
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with the bounds:

0 00
°=1Lu"=00,l"=| 0| andu”= | o0
0 00

Please note the explicit % in the objective function of (6.40) which implies that diagonal elements must
be doubled in @, i.e. Q11 = 2 even though 1 is the coefficient in front of 2% in (6.42).

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the quadratic objective

The quadratic objective is specified using the function Task.putqobj. Since Q° is symmetric only the
lower triangular part of QQ° is inputted. In fact entries from above the diagonal may not appear in the
input.

The lower triangular part of the matrix Q° is specified using an unordered sparse triplet format (for
details, see Sec. 15.1.4):

int [] gsubi = {0, 1, 2, 2 };
int[] gsubj = {0, 1, 0, 2 };
double[] qval = {2.0, 0.2, -1.0, 2.0%};

Please note that

e only non-zero elements are specified (any element not specified is 0 by definition),
e the order of the non-zero elements is insignificant, and

e only the lower triangular part should be specified.

Finally, this definition of Q° is loaded into the task:

task.putqobj(qsubi, gqsubj, qval);

Source code

Listing 6.18: Source code implementing problem (6.42).

package com.mosek.example;
import mosek.*;

public class qol {

static final int numcon = 1; /* Number of constraints. */
static final int numvar = 3; /* Number of wvariables. */
static final int NUMANZ = 3; /* Number of numzeros in 4. */
static final int NUMQNZ = 4; /* Number of monzeros in §. */

public static void main (String[] args) {
// Since the walue infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = O;
double[] ¢ = {0.0, -1.0, 0.0};

mosek.boundkey[] bkc = { mosek.boundkey.lo };

double[] blc = {1.0};

(continues on next page)
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double[] [] aval

double[] buc = {infinity};

mosek.boundkey[] bkx = { mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey.lo

+
double[] blx = {0.0,
0.0,
0.0
I
double[] bux = {infinity,
infinity,
infinity
I
int ][] asub = { {0}, {0}, {0} };

{ {1.0}, {1.0}, {1.0} };

try (Task task = new Task()) {

// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(

mosek.streamtype.log,

new mosek.Stream()

(continued from previous page)

{ public void stream(String msg) { System.out.print(msg); }});

/* Give MOSEK an estimate of the size of the input data.
This ts done to increase the speed of inputting data.
However, it is optional. */

/* Append 'numcon' empty constraints.

The constraints will tnitially have no bounds. */
task.appendcons (numcon) ;

/* Append 'numvar' wvariables.
The variables will intitially be fized at zero (z=0). */
task.appendvars (numvar) ;

for (int j = 0; j < numvar; ++j) {
/* Set the linear term c_j in the objective.*/
task.putcj(j, c[jl);
/* Set the bounds on wvariable j.
blal[j] <= z_7 <= buzx[j] */
task.putvarbound(j, bkx[jl, blx[jl, bux[jl);
/* Input column j of A */

task.putacol(j, /* Variable (column) index.*/
asubl[j], /* Row index of mon-zeros in column j.*/
avall[jl); /* Non-zero Values of column j. */

3

/* Set the bounds on constraints.

for 4=1, ...,numcon : blc[i] <= constraint 7 <= buc[i] */

for (int i = 0; i < numcon; ++i)
task.putconbound(i, bkc[il, blc[i], buc[il);

/*
The lower triangular part of the {
matrixz in the objective 1s specified.

L7
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int[] gsubi = {0, 1, 2, 2 };
int [] gsubj = {0, 1, 0, 2 };
double[] qval = {2.0, 0.2, -1.0, 2.0};

/* Input the § for the objective. */
task.putqobj(gsubi, gsubj, qval);

/* Solve the problem */

mosek.rescode r = task.optimize();

System.out.println (" Mosek warning:" + r.toString());
// Print a summary containing tnformation

//  about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg) ;

/* Get status information about the solution */
mosek.solsta solsta = task.getsolsta(mosek.soltype.itr);

/* Get the solution */
double xx[] = task.getxx(mosek.soltype.itr); // Interior solution.

switch (solsta) {
case optimal:
System.out.println("Optimal primal solution\n");
for (int j = 0; j < numvar; ++j)
System.out.println ("x[" + j + "]:" + xx[j1);
break;
case dual_infeas_cer:
case prim_infeas_cer:
System.out.println("Primal or dual infeasibility\n");
break;
case unknown:
System.out.println("Unknown solution status.\n");
break;
default:
System.out.println("Other solution status");
break;
}
}
catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;
}
} /* Main */
}
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6.10.2 Example: Quadratic constraints

In this section we show how to solve a problem with quadratic constraints. Please note that quadratic
constraints are subject to the convexity requirement (6.41).
Consider the problem:

minimize

This is equivalent to

where

2 0
Q°=| 0 02
-1 0

a:% + O.lx% + x% — 13 — T2
subject to 1 < a7+ 29+ x3 — a:% — x% — 0.1x§ + 0.2z 23,

minimize %xT
subject to
-1
0 ,C = [ 0
2
-2
Q=] o
0.2

x> 0.

Q°z+ Tz

%CETQO:Z?+A:E > b,

x>0,

(6.43)

-1 0] ,4=[1 1 1],b=1

0 0.2
-2 0
0 -02

The linear parts and quadratic objective are set up the way described in the previous tutorial.

Setting up quadratic constraints

To add quadratic terms to the constraints we use the function Task.putqconk.

int[] gsubi = {0,

int [] gsubj
double[] qval =

{0,

i,
i,

{-2.0, -2.0, -0

Dy 2
2, 0
.2

>

};
};
0.2};

/* put @0 in constraint with index 0. */

task.putqconk (O,
qsubi,

qsubj
qval)

B

>

While Task.putqconk adds quadratic terms to a specific constraint, it is also possible to input all
quadratic terms in one chunk using the Task.putgcon function.

Source code

Listing 6.19:
problem (6.43).

package com.mosek.example;
import mosek.*;

public class qcqol {

static
static
static
static

public

final int numcon
final int numvar
final int NUMANZ
final int NUMQNZ

static void main

]
W w -

we

Implementation of the quadratically constrained

we

/*
/*
/%
/*

Number
Number
Number
Number

of constraints.
of variables.

of mumzeros in 4.
of monzeros in (.

(8tringl[] args) {

(0]

*/
*/
*/
*/

(continues on next page)



// Since the walue infinity is never used, we define
// 'infinity' symbolic purposes only

double infinity = O;

double[] ¢ = {0.0, -1.0, 0.0};

mosek . boundkey [] bkc = {mosek.boundkey.lo};
double[] blc = {1.0};
double[] buc = {infinityl};

mosek.boundkey[] bkx

= {mosek.boundkey.lo,
mosek.boundkey. 1o,
mosek.boundkey.lo
};

double[] blx

{0.
0.
0.0

i

{infinity,
infinity,
infinity

};

-

0
0

-

double[] bux

{ {0}y, {0y, {0} };
{ {1.0}, {1.0}, {1.0} 3};

int []1[] asub
double[] [] aval

try (mosek.Task task = new mosek.Task()) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()

(continued from previous page)

{ public void stream(String msg) { System.out.print(msg); }1});
/* Give MOSEK an estimate of the size of the tinput data.
Thts is done to increase the speed of inputting data.
However, it is optional. */
/* Append 'numcon' empty constraints.
The constraints will tnitially have no bounds. */
task.appendcons (numcon) ;
/* Append 'numvar' variables.
The variables will initially be fized at zero (z=0). */
task.appendvars (numvar) ;
for (int j = 0; j < numvar; ++j) {
/* Set the linear term c_j in the objective.*/
task.putcj(j, cl[jl);
/* Set the bounds on variable j.
blelj] <= z_g <= buz[j] */
task.putvarbound(j, bkx[jl, blx[j], bux[jl);
/* Input column j of A */
task.putacol(j, /* Variable (column) index.*/
asub[j], /* Row index of mon-zeros in column j.*/
aval[jl); /* Non-zero Values of column j. */
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/* Set the bounds on constraints.
for =1, ...,numcon : blc[i] <= constraint t <= buc[i] */
for (int i = 0; i < numcon; ++i)
task.putconbound(i, bkc[i], blc[i], buclil);
/¥
* The lower triangular part of the {
* matriz in the objective ts specified.

*/
int[] qosubi = {0, 1, 2, 2
int[] qosubj = { 0, 1, 0, 2 };
double[] qoval = { 2.0, 0.2, -1.0, 2.0 };

/% Input the § for the objective. */
task.putqobj(qosubi, qosubj, qoval);

/*

*

The lower triangular part of the {0

* matriz in the first constraint is spectified.
* This corresponds to adding the term

* x0°2 - 172 - 0.1 z2°2 + 0.2 =0 x2

*/
int [] gsubi = {0, 1, 2y 2 g
int [] gsubj = {0, 1, 2, 0 1;
double[] qval = { -2.0, -2.0, -0.2, 0.2};

/* put @0 in constraint with index 0. */

task.putqconk (O,
qsubi,
gsubj,
qval) ;

task.putobjsense(mosek.objsense.minimize) ;
/* Solve the problem */

try {
mosek.rescode termcode = task.optimize();
} catch (mosek.Warning e) {
System.out.println (" Mosek warning:");
System.out.println (e.toString ());
}
// Print a summary containing tnformation
//  about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg) ;

/* Get status information about the solution */
mosek.solsta solsta = task.getsolsta(mosek.soltype.itr);

double xx[] = task.getxx(mosek.soltype.itr); // Interior solution.

switch (solsta) {
case optimal:

(continues on next page)
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System.out.println("Optimal primal solution\n");
for (int j = 0; j < numvar; ++j)
System.out.println ("x[" + j + "]:" + xx[j]);

break;

case dual_infeas_cer:

case prim_infeas_cer:
System.out.println("Primal or dual infeasibility.\n");
break;

case unknown:
System.out.println("Unknown solution status.\n");
break;

default:
System.out.println("Other solution status");
break;

}

catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.msg);
throw e;

}

} /* Main */
}

6.11 Problem Modification and Reoptimization

Often one might want to solve not just a single optimization problem, but a sequence of problems, each
differing only slightly from the previous one. This section demonstrates how to modify and re-optimize
an existing problem.

The example we study is a simple production planning model.

Problem modifications regarding variables, cones, objective function and constraints can be grouped
in categories:

e add/remove,
e coefficient modifications,
e bounds modifications.

Especially removing variables and constraints can be costly. Special care must be taken with respect
to constraints and variable indexes that may be invalidated.

Depending on the type of modification, MOSEK may be able to optimize the modified problem more
efficiently exploiting the information and internal state from the previous execution. After optimization,
the solution is always stored internally, and is available before next optimization. The former optimal
solution may be still feasible, but no longer optimal; or it may remain optimal if the modification of the
objective function was small. This special case is discussed in Sec. 14.3.

In general, MOSEK exploits dual information and availability of an optimal basis from the previous
execution. The simplex optimizer is well suited for exploiting an existing primal or dual feasible solution.
Restarting capabilities for interior-point methods are still not as reliable and effective as those for the
simplex algorithm. More information can be found in Chapter 10 of the book [Chvatal83].

Parameter settings (see Sec. 7.5) can also be changed between optimizations.
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6.11.1 Example: Production Planning

A company manufactures three types of products. Suppose the stages of manufacturing can be split into
three parts: Assembly, Polishing and Packing. In the table below we show the time required for each
stage as well as the profit associated with each product.

Product no.  Assembly (minutes) Polishing (minutes) Packing (minutes) Profit ($)

0 2 3 2 1.50
1 4 2 3 2.50
2 3 3 2 3.00

With the current resources available, the company has 100,000 minutes of assembly time, 50,000
minutes of polishing time and 60,000 minutes of packing time available per year. We want to know how
many items of each product the company should produce each year in order to maximize profit?

Denoting the number of items of each type by xg,x; and x5, this problem can be formulated as a
linear optimization problem:

maximize 1.5bzg + 2521 + 3.0x2

subject to 2z + 4x; + 3xo < 100000, (6.44)
3z + 221 + 3z < 50000, '
29 + 31 + 2x5 < 60000,

and
Zo,T1,T2 Z 0.
Code in Listing 6.20 loads and solves this problem.

Listing 6.20: Setting up and solving problem (6.44)

// Since the walue infinity is never used, we define
// 'infinity' symbolic purposes only

double infinity = 0;
int numcon = 3;
int numvar = 3;
double cll] = {1.5, 2.5, 3.0 };

mosek.boundkey  bkc[] = { mosek.boundkey.up,
mosek.boundkey.up,
mosek.boundkey.up
};
double blc[] = { -infinity,
-infinity,
-infinity
I
double buc[] = { 100000,
50000,
60000
1
mosek.boundkey  bkx[] = { mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey.lo

e
double blx[] = { 0.0, 0.0, 0.0 };
double bux[] = { +infinity,
+infinity,
+infinity
e

(continues on next page)
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int asub[][] = {
{0, 1, 2},
{0, 1, 2},
{0, 1, 2}
g

double avall][]
{ 2.0,
{4.0,
{ 3.0
Irg

{

qOM
qOB
.0

B

w N W
N W N
o o o
s

B

double[] xx = new double[numvar];

try (Task task = new Task()) {
/* Append the constraints. */
task.appendcons (numcon) ;

/* Append the wariables. */
task.appendvars (numvar) ;

/% Put C. */
for (int j = 0; j < numvar; ++j)
task.putcj(j, c[jl);

/* Put constraint bounds. */
for (int i = 0; i < numcon; ++i)
task.putconbound(i, bkc[i], blc[i], buc[il);

/* Put wvariable bounds. */
for (int j = 0; j < numvar; ++j)
task.putvarbound(j, bkx[jl, blx[j]l, bux[jl);

/* Put 4. */
if ( numcon > 0 ) {
for (int j = 0; j < numvar; ++j)
task.putacol(j,
asub[j],
aval[jl);
}

/* A mazimization problem */
task.putobjsense (mosek.objsense.maximize) ;
/* Solve the problem */

mosek.rescode termcode = task.optimize();

task.getxx(mosek.soltype.bas, // Request the basic solution.
XX) ;
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6.11.2 Changing the Linear Constraint Matrix

Suppose we want to change the time required for assembly of product 0 to 3 minutes. This corresponds
to setting ag,o = 3, which is done by calling the function Task.putaij as shown below.

task.putaij(0, 0, 3.0);

The problem now has the form:

maximize 1.bzg + 2521 + 3.0x9

subject to 3zg + 4z + 3x2 < 100000, (6.45)
3rg + 2x1 + 3z < 50000, '
2rg + 3z + 2z < 60000,

and
xo, 1,22 > 0.
After this operation we can reoptimize the problem.

6.11.3 Appending Variables

We now want to add a new product with the following data:

Product no. Assembly (minutes) Polishing (minutes) Packing (minutes) Profit ($)
3 4 0 1 1.00

This corresponds to creating a new variable x3, appending a new column to the A matrix and setting
a new term in the objective. We do this in Listing 6.21

Listing 6.21: How to add a new variable (column)

JRrFkrFRr kxR F Rk Rk Add 0 new variable FEFEKKKKKKKKKKKKKKKKKKKRKKKNKAR )
/* Get index of mew wariable. */

int[] varidx = new int[1];

task.getnumvar (varidx) ;

/* Append a new wvariable z_3 to the problem */
task.appendvars(1);
numvar-++;

/* Set bounds on new varaible */
task.putvarbound(varidx[0],
mosek.boundkey. 1o,
0,
+infinity) ;

/* Change objective */
task.putcj(varidx[0], 1.0);

/* Put new walues in the A matriz */
int[] acolsub = mnew int[] {0, 2};
double[] acolval = new double[] {4.0, 1.0};

task.putacol(varidx[0], /# column index */

acolsub,
acolval);
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After this operation the new problem is:

maximize 1.5z9 + 2.5x;1 + 3.0xs + 1.0x3

subject to  3z9 + 41 + 3z + 4xs < 100000, (6.46)
3rg + 21 +  3xo < 50000, ’
2z + 3z +  2x9 + lxs < 60000,

and
Zo, %1, %2,23 > 0.

6.11.4 Appending Constraints

Now suppose we want to add a new stage to the production process called Quality control for which
30000 minutes are available. The time requirement for this stage is shown below:

Product no.  Quality control (minutes)

0 1

1 2
2 1
3 1

This corresponds to adding the constraint
i) + 2561 —+ 2o + T3 S 30000
to the problem. This is done as follows.

Listing 6.22: Adding a new constraint.

JREERKREARRRE AR RFA N R%* Add 0 NEW CONSTTAINT ¥ ¥ KK * kKKK KKK KKK KK KKK KK KKK R K )
/* Get index of new constraint. */

int[] conidx = new int[1];

task.getnumcon (conidx) ;

/* Append a new constraint */
task.appendcons (1) ;
numcon++;

/* Set bounds on new constraint */
task.putconbound (conidx [0],
mosek.boundkey.up,
-infinity,
30000) ;

/* Put new values in the 4 matriz */
int[] arowsub = new int[] {0, 1, 2, 3 };
double[] arowval = new double[] {1.0, 2.0, 1.0, 1.0%};

task.putarow(conidx [0], /# row index */
arowsub,
arowval) ;

Again, we can continue with re-optimizing the modified problem.

82



6.11.5 Changing bounds

One typical reoptimization scenario is to change bounds. Suppose for instance that we must operate
with limited time resources, and we must change the upper bounds in the problem as follows:

Operation Time available (before) Time available (new)
Assembly 100000 80000
Polishing 50000 40000
Packing 60000 50000
Quality control 30000 22000

That means we would like to solve the problem:

maximize 1.5x9 + 2.5z7 + 3.0z + 1.0x3

subject to  3xp 4+ 4x; 4+ 3z2 + 4dxz < 80000,
3xrg + 21 +  3xo < 40000, (6.47)
QCEO —+ 3$1 + 23]2 —+ 113 § 50000,

In this case all we need to do is redefine the upper bound vector for the constraints, as shown in the next
listing.

Listing 6.23: Change constraint bounds.

[HRFERFAFAFKARFAFA KA XX F* Change CONSTTAINt DOUNAS ¥ * ¥k kK k¥ kX kKKK KKK F X/
mosek.boundkey[] newbkc = {mosek.boundkey.up,
mosek.boundkey.up,
mosek.boundkey.up,
mosek.boundkey.up
};
{ -infinity,

-infinity,

-infinity,

-infinity
};
{ 80000, 40000, 50000, 22000 };

double[] newblc

double[] newbuc

task.putconboundslice(0, numcon, newbkc, newblc, newbuc);

Again, we can continue with re-optimizing the modified problem.

6.11.6 Advanced hot-start

If the optimizer used the data from the previous run to hot-start the optimizer for reoptimization, this
will be indicated in the log:

Optimizer - hotstart : yes

When performing re-optimizations, instead of removing a basic variable it may be more efficient to
fix the variable at zero and then remove it when the problem is re-optimized and it has left the basis.
This makes it easier for MOSEK to restart the simplex optimizer.
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6.12 Parallel optimization

In this section we demonstrate the method Env.optimizebatch which is a parallel optimization mech-
anism built-in in MOSEK. It has the following features:

e One license token checked out by the environment will be shared by the tasks.

e It allows to fine-tune the balance between the total number of threads in use by the parallel solver
and the number of threads used for each individual task.

e It is very efficient for optimizing a large number of task of similar size, for example tasks obtained
by cloning an initial task and changing some coefficients.

In the example below we simply load a few different tasks and optimize them together. When all
tasks complete we access the response codes, solutions and other information in the standard way, as if
each task was optimized separately.

Listing 6.24: Calling the parallel optimizer.

/** Example of how to use env.optimizebatch().
Optimizes tasks whose names were read from command line.
*/
public static void main(String[] argv)
{
int n = argv.length;
mosek.Task[] tasks new mosek.Task[n];
mosek.rescode[] res = new mosek.rescode[n];
mosek.rescode[] trm new mosek.rescode[n];

mosek.Env env = new mosek.Env();

// Stze of thread pool available for all tasks
int threadpoolsize = 6;

// Create an example list of tasks to optimize
for(int i = 0; i < n; i++)

{
tasks[i] = new mosek.Task(env);
tasks[i] .readdata(argv[il);
// We can set the number of threads for each task
tasks[i] .putintparam(mosek.iparam.num_threads, 2);
}
// Optimize all the given tasks in parallel
env.optimizebatch(false, // No race
-1.0, // No time limit
threadpoolsize,
tasks, // Array of tasks to optimize
trm,
res);

for(int i = 0; i < n; i++)
System.out.printf("Task %d res %s trm %s obj_val %f time %f\n",
i,
res[i],
trm[i],
tasks[i] .getdouinf (mosek.dinfitem.intpnt_primal_obj),
tasks[i] .getdouinf (mosek.dinfitem.optimizer_time)) ;

3

Another, slightly more advanced application of the parallel optimizer is presented in Sec. 11.3.

84



6.13 Retrieving infeasibility certificates

When a continuous problem is declared as primal or dual infeasible, MOSEK provides a Farkas-type
infeasibility certificate. If, as it happens in many cases, the problem is infeasible due to an unintended
mistake in the formulation or because some individual constraint is too tight, then it is likely that
infeasibility can be isolated to a few linear constraints/bounds that mutually contradict each other. In
this case it is easy to identify the source of infeasibility. The tutorial in Sec. 8.3 has instructions on
how to deal with this situation and debug it by hand. We recommend Sec. 8.3 as an introduction to
infeasibility certificates and how to deal with infeasibilities in general.

Some users, however, would prefer to obtain the infeasibility certificate using Optimizer API for Java,
for example in order to repair the issue automatically, display the information to the user, or perhaps
simply because the infeasibility was one of the intended outcomes that should be analyzed in the code.

In this tutorial we show how to obtain such an infeasibility certificate with Optimizer API for Java
in the most typical case, that is when the linear part of a problem is primal infeasible. A Farkas-type
primal infeasibility certificate consists of the dual values of linear constraints and bounds. The names
of duals corresponding to various parts of the problem are defined in Sec. 12.1.2. Each of the dual
values (multipliers) indicates that a certain multiple of the corresponding constraint should be taken
into account when forming the collection of mutually contradictory equalities/inequalities.

6.13.1 Example PINFEAS

For the purpose of this tutorial we use the same example as in Sec. 8.3, that is the primal infeasible
problem

minimize ro + 21 4+ dxrs + 223 + x4 + 225 + x4
subject to sg: ®y + 1 < 200,
S1: To + z3 < 1000,
So : Ty + x5 + x¢ < 1000,
do . X + x4 = 1100, (648)
d1 : 1 = 200,
ds : To + x5 = 500,
ds: xr3 + rg = 500,
€Ty Z 0

Checking infeasible status and adjusting settings

After the model has been solved we check that it is indeed infeasible. If yes, then we choose a threshold
for when a certificate value is considered as an important contributor to infeasibility (ideally we would
like to list all nonzero duals, but just like an optimal solution, an infeasibility certificate is also subject
to floating-point rounding errors). All these steps are demonstrated in the snippet below:

// Check problem status, we use the interior point solution

if (task.getprosta(soltype.itr) == prosta.prim_infeas) {
// Set the tolerance at which we consider a dual value as essential
double eps = le-7;

Going through the certificate for a single item

We can define a fairly generic function which takes an array of lower and upper dual values and all other
required data and prints out the positions of those entries whose dual values exceed the given threshold.
These are precisely the values we are interested in:

// Analyzes and prints infeasibility contributing elements

// sl - dual values for lower bounds

// su - dual values for upper bounds

// eps - tolerance for when a nunzero dual value ts significant

public static void analyzeCertificate(double[] sl, double[] su, double eps) {
for(int i = 0; i < sl.length; i++) {

(continues on next page)
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if (Math.abs(sl[i]) > eps)
System.out.printf ("#)d, lower, dual
if (Math.abs(sul[i]) > eps)
System.out.printf ("#/%d, upper, dual

Y%e\n", i, s1[il);

%e\n", i, sulil);

Full source code

All that remains is to call this function for all variable and constraint bounds for which we want to know
their contribution to infeasibility. Putting all these pieces together we obtain the following full code:

Listing 6.25: Demonstrates how to retrieve a primal infeasibility
certificate.

package com.mosek.example;
import mosek.*;

public class pinfeas {
static double inf = 0.0; // Infinity for symbolic purposes

// Set up a simple linear problem from the manual for test purposes
public static mosek.Task testProblem() {
mosek.Task task = new mosek.Task();
task.appendvars(7) ;
task.appendcons(7) ;
task.putclist(new int[]{0,1,2,3,4,5,6}, new double[]{1,2,5,2,1,2,1});
task.putaijlist(new int[]{0,0,1,1,2,2,2,3,3,4,5,5,6,6},
new int[]{0,1,2,3,4,5,6,0,4,1,2,5,3,6},
new double[]{1,1,1,1,1,1,1,1,1,1,1,1,1,1});
mosek.boundkey up = mosek.boundkey.up,
fx = mosek.boundkey.fx,
lo = mosek.boundkey.lo;
task.putconboundslice(0, 7, new mosek.boundkey[]{up,up,up,fx,fx,fx,fx},
new double[]{-inf, -inf, -inf, 1100, 200, 500, 500},
new double[]{200, 1000, 1000, 1100, 200, 500, 500});
task.putvarboundsliceconst(0, 7, lo, O, +inf);
return task;

3

// Analyzes and prints infeasibility contributing elements
// sl - dual wvalues for lower bounds
// su - dual values for upper bounds
// eps - tolerance for when a nunzero dual value ts significant
public static void analyzeCertificate(double[] sl, double[] su, double eps) {
for(int i = 0; i < sl.length; i++) {
if (Math.abs(sl[i]) > eps)
System.out.printf ("#/%d, lower, dual
if (Math.abs(sul[i]) > eps)
System.out.printf ("#/d, upper, dual = %e\n", i, sulil);

%e\n", i, sl[il);

}
}

public static void main (String[] args) {
// In this ezample we set up a simple problem
// One could use any task or a task read from a file

(continues on next page)

86



(continued from previous page)

mosek.Task task = testProblem();

// Useful for debugging
task.writedata("pinfeas.ptf"); // Write file in human-
—readable format
// Attach a log stream printer to the task
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }1});

// Perform the optimization.
task.optimize() ;
task.solutionsummary (mosek.streamtype.log) ;

// Check problem status, we use the interior point solution

if (task.getprosta(soltype.itr) == prosta.prim_infeas) {
// Set the tolerance at which we consider a dual value as essential
double eps = le-7;

System.out.println("Variable bounds important for infeasibility: ");
analyzeCertificate(task.getslx(soltype.itr), task.getsux(soltype.itr), eps);

System.out.println("Constraint bounds important for infeasibility: ");
analyzeCertificate(task.getslc(soltype.itr), task.getsuc(soltype.itr), eps);

}

else {
System.out.println("The problem is not primal infeasible, no certificate to show

=");
}
task.dispose();
X
}

Running this code will produce the following output:

Variable bounds important for infeasibility:
#6: lower, dual = 1.000000e+00

#7: lower, dual = 1.000000e+00

Constraint bounds important for infeasibility:
#1: upper, dual = 1.000000e+00

#3: upper, dual = 1.000000e+00

#4: lower, dual = 1.000000e+00

#5: lower, dual = 1.000000e+00

indicating the positions of bounds which appear in the infeasibility certificate with nonzero values.
For a more in-depth treatment see the following sections:

e Sec. 11 for more advanced and complicated optimization examples.
e Sec. 11.1 for examples related to portfolio optimization.

e Scc. 12 for formal mathematical formulations of problems MOSEK can solve, dual problems and
infeasibility certificates.
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Chapter 7

Solver Interaction Tutorials

In this section we cover the interaction with the solver.

7.1 Environment and task

All interaction with Optimizer API for Java proceeds through one of two entry points: the MOSEK
tasks and, to a lesser degree the MOSEK environment .

7.1.1 Task

The MOSEK task Task provides a representation of one optimization problem. It is the main interface
through which all optimization is performed. Many tasks can be created and disposed of in one process.
A typical scenario for working with a task is shown below:

/* Create an optimization task */

try (mosek.Task task = new mosek.Task()) {
7Y oo
// ... optimization ...
JY ooc

}

If a task is created outside of a context that ensures automatic garbage collection then it can be
disposed of manually using Task.dispose.

7.1.2 Environment

The MOSEK environment Env coordinates access to MOSEK from the current process. It provides
various general functionalities, in particular those related to license management, linear algebra, parallel
optimization and certain other auxiliary functions. All tasks are explicitly or implicitly attached to some
environment. It is recommended to have at most one environment per process.

Creating an environment is optional and only recommended for those users who will require
some of the features it provides. Most users will NOT need their own environment and can skip
this object. In this case MOSEK will internally create a global environment transparently for the user.
This environment will not be accessible for the user.

A typical scenario for working with MOSEK through an explicit environment is shown below:

/* Create an environment */
try (mosek.Env env = new mosek.Env()) {

/* Create one or more optimization tasks with this env */
try (mosek.Task task = new mosek.Task(env)) {

7Y oo

// ... optimization ...

2 ooc

(continues on next page)
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If an environment is created outside of a context that ensures automatic garbage collection then it
can be disposed of manually using Env. dispose.

7.2 Accessing the solution

This section contains important information about the status of the solver and the status of the solution,
which must be checked in order to properly interpret the results of the optimization.

7.2.1 Solver termination
The optimizer provides two status codes relevant for error handling:

e Response code of type rescode. It indicates if any unexpected error (such as an out of memory
error, licensing error etc.) has occurred. The expected value for a successful optimization is
rescode. ok.

e Termination code: It provides information about why the optimizer terminated, for instance if
a predefined time limit has been reached. These are not errors, but ordinary events that can be
expected (depending on parameter settings and the type of optimizer used).

If the optimization was successful then the method Task.optimize returns normally and its output
is the termination code. If an error occurs then the method throws an exception, which contains the
response code. See Sec. 7.3 for how to access it.

If a runtime error causes the program to crash during optimization, the first debugging step is to
enable logging and check the log output. See Sec. 7.4.

If the optimization completes successfully, the next step is to check the solution status, as explained
below.

7.2.2 Available solutions
MOSEK uses three kinds of optimizers and provides three types of solutions:
e basic solution from the simplex optimizer,
e interior-point solution from the interior-point optimizer,
e integer solution from the mixed-integer optimizer.
Under standard parameters settings the following solutions will be available for various problem types:

Table 7.1: Types of solutions available from MOSEK

Simplex opti- Interior-point opti- Mixed-integer opti-

mizer mizer mizer
Linear problem soltype.bas soltype.itr
Nonlinear continuous prob- soltype.itr
lem
Problem with integer vari- soltype.itg
ables

For linear problems the user can force a specific optimizer choice making only one of the two solutions
available. For example, if the user disables basis identification, then only the interior point solution will
be available for a linear problem. Numerical issues may cause one of the solutions to be unknown even
if another one is feasible.

Not all components of a solution are always available. For example, there is no dual solution for
integer problems and no dual conic variables from the simplex optimizer.

The user will always need to specify which solution should be accessed.
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7.2.3 Problem and solution status

Assuming that the optimization terminated without errors, the next important step is to check the
problem and solution status and availability of solutions. There is one for every type of solution, as
explained above.

Problem status

Problem status (prosta) determines whether the problem is certified as feasible. Its values can roughly
be divided into the following broad categories:

e feasible — the problem is feasible. For continuous problems and when the solver is run with
default parameters, the feasibility status should ideally be prosta.prim_and_dual_feas.

e primal/dual infeasible — the problem is infeasible or unbounded or a combination of those.
The exact problem status will indicate the type of infeasibility.

e unknown — the solver was unable to reach a conclusion, most likely due to numerical issues.

Solution status

Solution status (solsta) provides the information about what the solution values actually contain. The
most important broad categories of values are:

e optimal (solsta.optimal) — the solution values are feasible and optimal.

e certificate — the solution is in fact a certificate of infeasibility (primal or dual, depending on the
solution).

e unknown/undefined — the solver could not solve the problem or this type of solution is not
available for a given problem.

Problem and solution status for each solution can be retrieved with Task.getprosta and Task.
getsolsta, respectively.

The solution status determines the action to be taken. For example, in some cases a suboptimal
solution may still be valuable and deserve attention. It is the user’s responsibility to check the status
and quality of the solution.

Typical status reports

Here are the most typical optimization outcomes described in terms of the problem and solution statuses.
Note that these do not cover all possible situations that can occur.

Table 7.2: Continuous problems (solution status for interior-point
and basic solution)

Outcome Problem status Solution status
Optimal prosta. solsta.optimal
prim_and_dual_feas

Primal infeasible prosta.prim_infeas solsta.
prim_infeas_cer

Dual infeasible (unbounded) prosta.dual_infeas solsta.
dual_infeas_cer

Uncertain (stall, numerical issues, etc.) prosta.unknown solsta.unknown

Table 7.3: Integer problems (solution status for integer solution,
others undefined)

Outcome Problem status Solution status

Integer optimal prosta.prim_feas solsta.integer_optimal
Infeasible prosta.prim_infeas solsta.unknown

Integer feasible point prosta.prim_feas solsta.prim_feas

No conclusion prosta.unknown solsta.unknoun
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7.2.4 Retrieving solution values

After the meaning and quality of the solution (or certificate) have been established, we can query for the
actual numerical values. They can be accessed using:

e Task.getprimalobyj, Task.getdualobj — the primal and dual objective value
e Task.getzz — solution values for the variables.
e Task.getsolution — a full solution with primal and dual values

and many more specialized methods, see the API reference.

7.2.5 Source code example

Below is a source code example with a simple framework for assessing and retrieving the solution to a
conic optimization problem.

Listing 7.1: Sample framework for checking optimization result.

package com.mosek.example;
import mosek.*;

public class response {
public static void main(String[] argv) {
StringBuffer symname = new StringBuffer();
StringBuffer desc = new StringBuffer();

String filename;
if (argv.length >=1) filename = argv[0];
else filename = "../data/cqol.mps";

// Create the task and environment
try (Task task = new Task()) {
// (Optionally) attach the log handler to receive log information

// (Optionally) uncomment this line to experience solution status Unknown
// task.putintparam(iparam.intpnt_maz_iterations, 1);

// On this example we read an optimization problem from a file
task.readdata(filename) ;

// Perform optimization.
rescode trm = task.optimize();
task.solutionsummary(streamtype.log);

// Handle solution status. We expect Optimal
solsta solsta = task.getsolsta(soltype.itr);

switch ( solsta ) {
case optimal:
// Fetch and print the solution
System.out.println("An optimal interior point solution is located.");
int numvar = task.getnumvar();
double[] xx = task.getxx(soltype.itr);
for(int i = 0; i < numvar; i++)
System.out.println("x[" + i + "] = " + xx[i]);
break;

case dual_infeas_cer:

(continues on next page)
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System.out.println("Dual infeasibility certificate found.");
break;

case prim_infeas_cer:
System.out.println("Primal infeasibility certificate found.");
break;

case unknown:
// The solutions status is unknown. The termination code
// indicates why the optimizer terminated prematurely.
System.out.println("The solution status is unknown.");
Env.getcodedesc(trm, symname, desc);

System.out.printf("  Termination code: %s %s\n", symname, desc);
break;

default:
System.out.println("Unexpected solution status " + solsta + "\n");
break;

}
}
catch (mosek.Error e) {
System.out.println("Unexpected error (" + e.code + ") " + e.msg);
}
}
}

7.3 Errors and exceptions

Exceptions

Almost every function in Optimizer API for Java can throw an exception informing that the requested
operation was not performed correctly, and indicating the type of error that occurred. This is the case
in situations such as for instance:

e referencing a nonexisting variable (for example with too large index),
e defining an invalid value for a parameter,

e accessing an undefined solution,

e repeating a variable name, etc.

It is therefore a good idea to catch exceptions of type Error. The one case where it is extremely
important to do so is when Task.optimize is invoked. We will say more about this in Sec. 7.2.

The exception contains a response code (element of the enum rescode) and short diagnostic messages.
They can be accessed as in the following example.

try {
task.putdouparam(mosek.dparam.intpnt_co_tol_rel_gap, -1.0e-7);
3
catch (mosek.Exception e) {
mosek.rescode res = e.code;
System.out.println("Response code " + res + "\nMessage " + e.msg);

3

It will produce as output:
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Response code rescode.err_param_is_too_small
Message The parameter value -1e-07 is too small for parameter 'MSK_DPAR_INTPNT_
—CO_TOL_REL_GAP'.

Another way to obtain a human-readable string corresponding to a response code is the method Env.
getcodedesc. A full list of exceptions, as well as response codes, can be found in the API reference.

Optimizer errors and warnings

The optimizer may also produce warning messages. They indicate non-critical but important events,
that will not prevent solver execution, but may be an indication that something in the optimization
problem might be improved. Warning messages are normally printed to a log stream (see Sec. 7.4). A
typical warning is, for example:

MOSEK warning 53: A numerically large upper bound value 6.6e+09 is specified for
—constraint 'C69200' (46020).

Warnings can also be suppressed by setting the iparam.maz_num_warnings parameter to zero, if
they are well-understood.

Error and solution status handling example

Below is a source code example with a simple framework for handling major errors when assessing and
retrieving the solution to a conic optimization problem.

Listing 7.2: Sample framework for checking optimization result.

package com.mosek.example;
import mosek.*;

public class response {
public static void main(String[] argv) {
StringBuffer symname = new StringBuffer();
StringBuffer desc = new StringBuffer();

String filename;
if (argv.length >=1) filename = argv[0];
else filename = "../data/cqol.mps";

// Create the task and environment
try (Task task = new Task()) {
// (Optionally) attach the log handler to receive log information

// (Optionally) uncomment this line to experience solution status Unknown
// task.putintparam(iparam.intpnt_mazx_iterations, 1);

// On this example we read an optimization problem from a file
task.readdata(filename) ;

// Perform optimization.
rescode trm = task.optimize();
task.solutionsummary (streamtype.log) ;

// Handle solution status. We expect Optimal
solsta solsta = task.getsolsta(soltype.itr);

switch ( solsta ) {
case optimal:
// Fetch and print the solution

(continues on next page)
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System.out.println("An optimal interior point solution is located.");
int numvar = task.getnumvar();
double[] xx = task.getxx(soltype.itr);
for(int i = 0; i < numvar; i++)
System.out.println("x[" + i + "] = " + xx[i]);
break;

case dual_infeas_cer:
System.out.println("Dual infeasibility certificate found.");
break;

case prim_infeas_cer:
System.out.println("Primal infeasibility certificate found.");
break;

case unknown:
// The solutions status is unknown. The termination code
// indicates why the optimizer terminated prematurely.
System.out.println("The solution status is unknown.");
Env.getcodedesc(trm, symname, desc);

System.out.printf (" Termination code: %s %s\n", symname, desc);
break;

default:
System.out.println("Unexpected solution status " + solsta + "\n");
break;

}
}
catch (mosek.Error e) {
System.out.println("Unexpected error (" + e.code + ") " + e.msg);
}
}
}

7.4 Input/Output

The logging and I/O features are provided mainly by the MOSEK task and to some extent by the
MOSEK environment objects.

7.4.1 Stream logging

By default the solver runs silently and does not produce any output to the console or otherwise. However,
the log output can be redirected to a user-defined output stream or stream callback function. The log
output is analogous to the one produced by the command-line version of MOSEK.

The log messages are partitioned in three streams:

e messages, streamtype.msg
e warnings, streamtype.wrn

e errors, streamtype.err

These streams are aggregated in the streamtype.log stream. A stream handler can be defined for
each stream separately.

The Stream class is used to receive text strings emitted to MOSEK'‘s output streams. Extending
Stream is the way to customize the solver output. When a Stream object is attached to a Task stream
using Task.set_Stream, any text that is printed to that stream will be passed to the Stream.stream
method. For example:
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task.set_Stream(mosek.streamtype.log,
new mosek.Stream()

{
public void stream(String msg)
{
System.out.print (msg) ;
}
B

The stream can be detached by calling

task.set_Stream(mosek.streamtype.log,
(mosek.Stream)null) ;

A log stream can also be redirected to a file:

task.linkfiletostream(mosek.streamtype.log, "mosek.log", 0);

After optimization is completed an additional short summary of the solution and optimization process
can be printed to any stream using the method Task.solutionsummary.

7.4.2 Log verbosity

The logging verbosity can be controlled by setting the relevant parameters, as for instance
e tparam.log,
e tparam.log_intpnt,
e tparam.log_mio,
e tparam.log_cut_second_opt,
e tparam.log_sim.

Each parameter controls the output level of a specific functionality or algorithm. The main switch is
iparam. Log which affect the whole output. The actual log level for a specific functionality is determined
as the minimum between iparam.log and the relevant parameter. For instance, the log level for the
output produce by the interior-point algorithm is tuned by the iparam. log_intpnt; the actual log level
is defined by the minimum between iparam.log and iparam.log_intpnt.

Tuning the solver verbosity may require adjusting several parameters. It must be noticed that verbose
logging is supposed to be of interest during debugging and tuning. When output is no more of interest,
the user can easily disable it globally with iparam. log. Larger values of iparam. log do not necessarily
result in increased output.

By default MOSEK will reduce the amount of log information after the first optimization on a given
problem. To get full log output on subsequent re-optimizations set iparam.log_cut_second_opt to
Zero.

7.4.3 Saving a problem to a file

An optimization problem can be dumped to a file using the method Task.writedata. The file format
will be determined from the extension of the filename. Supported formats are listed in Sec. 16 together
with a table of problem types supported by each.

For instance the problem can be written to a human-readable PTF file (see Sec. 16.5) with

task.writedata("data.ptf");

All formats can be compressed with gzip by appending the .gz extension, and with ZStandard by
appending the .zst extension, for example

task.writedata("data.task.gz");

Some remarks:
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7.4.

Unnamed variables are given generic names. It is therefore recommended to use meaningful variable
names if the problem file is meant to be human-readable.

The task format is MOSEK’s native file format which contains all the problem data as well as
solver settings.

4 Reading a problem from a file

A problem saved in any of the supported file formats can be read directly into a task using Task.
readdata. The task must be created in advance. Afterwards the problem can be optimized, modified,

etc.

If the file contained solutions, then are also imported, but the status of any solution will be set to

solsta.unknown (solutions can also be read separately using Task.readsolution). If the file contains
parameters, they will be set accordingly.

task = new mosek.Task(env, 0, 0);
try {
task.readdata("file.task.gz");
task.optimize();
} catch (mosek.Exception e) {
System.out.println("Problem reading the file");
}

7.5 Setting solver parameters

MOSEK comes with a large number of parameters that allows the user to tune the behavior of the
optimizer. The typical settings which can be changed with solver parameters include:

choice of the optimizer for linear problems,

choice of primal/dual solver,

turning presolve on/off,

turning heuristics in the mixed-integer optimizer on/off,
level of multi-threading,

feasibility tolerances,

solver termination criteria,

behaviour of the license manager,

and more. All parameters have default settings which will be suitable for most typical users.
The API reference contains:

Full list of parameters

List of parameters grouped by topic

Setting parameters

Each parameter is identified by a unique name. There are three types of parameters depending on the
values they take:

Integer parameters. They take either either simple integer values or values from an enumeration
provided for readability and compatibility of the code. Set with Task.putintparam.

Double (floating point) parameters. Set with Task.putdouparam.

String parameters. Set with Task.putstrparam.
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There are also parameter setting functions which operate fully on symbolic strings containing generic
command-line style names of parameters and their values. See the example below. The optimizer will
try to convert the given argument to the exact expected type, and will error if that fails.

If an incorrect value is provided then the parameter is left unchanged.

For example, the following piece of code sets up some parameters before solving a problem.

Listing 7.3: Parameter setting example.

// Set log level (integer parameter)

task.putintparam(mosek.iparam.log, 1);

// Select interior-point optimizer... (integer parameter)
task.putintparam(mosek.iparam.optimizer, mosek.optimizertype.intpnt.value);
// ... without basis identification (integer parameter)
task.putintparam(mosek.iparam.intpnt_basis, mosek.basindtype.never.value);
// Set relative gap tolerance (double parameter)
task.putdouparam(mosek.dparam. intpnt_co_tol_rel_gap, 1.0e-7);

// The same using explicit string names
task.putparam ("MSK_DPAR_INTPNT_CO_TOL_REL_GAP", "1.0e-7");
task.putnadouparam("MSK_DPAR_INTPNT_CO_TOL_REL_GAP", 1.0e-7 );

// Incorrect value
try {

task.putdouparam(mosek.dparam.intpnt_co_tol_rel_gap, -1.0);
b

catch (mosek.Error e) {
System.out.println("Wrong parameter value");

3

Reading parameter values

The functions Task.getintparam, Task.getdouparam, Task.getstrparam can be used to inspect the
current value of a parameter, for example:

double param = task.getdouparam(mosek.dparam.intpnt_co_tol_rel_gap);
System.out.println("Current value for parameter intpnt_co_tol_rel_gap = " +,
—param) ;

7.6 Retrieving information items
After the optimization the user has access to the solution as well as to a report containing a large amount
of additional information items. For example, one can obtain information about:

e timing: total optimization time, time spent in various optimizer subroutines, number of iterations,
etc.

e solution quality: feasibility measures, solution norms, constraint and bound violations, etc.
e problem structure: counts of variables of different types, constraints, nonzeros, etc.

e integer optimizer: integrality gap, objective bound, number of cuts, etc.

and more. Information items are numerical values of integer, long integer or double type. The full
list can be found in the API reference:

e Double
e Integer

e Long

Certain information items make sense, and are made available, also during the optimization process.
They can be accessed from a callback function, see Sec. 7.7 for details.
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Remark

For efficiency reasons, not all information items are automatically computed after optimization. To force
all information items to be updated use the parameter iparam.auto_update_sol_info.

Retrieving the values

Values of information items are fetched using one of the methods
o Task.getdouinf for a double information item,
e Task.getintinf for an integer information item,
e Task.getlintinf for a long integer information item.

Each information item is identified by a unique name. The example below reads two pieces of data
from the solver: total optimization time and the number of interior-point iterations.
Listing 7.4: Information items example.

double tm = task.getdouinf (mosek.dinfitem.optimizer_time);
int iter = task.getintinf(mosek.iinfitem.intpnt_iter);

System.out.println("Time: " + tm);
System.out.println("Iterations: " + iter);

7.7 Progress and data callback

Callbacks are a very useful mechanism that allow the caller to track the progress of the MOSEK
optimizer. A callback function provided by the user is regularly called during the optimization and can
be used to

e obtain a customized log of the solver execution,

e collect information for debugging purposes or

e ask the solver to terminate.

Optimizer API for Java has the following callback mechanisms:

e progress callback, which provides only the basic status of the solver.

e data callback, which provides the solver status and a complete set of information items that
describe the progress of the optimizer in detail.

e integer solution callback, for reporting progress on a mixed-integer problem.

Warning

The callbacks functions must not invoke any functions of the solver, environment or task. Otherwise the
state of the solver and its outcome are undefined. The only exception is the possibility to retrieve an
integer solution, see below.

Retrieving mixed-integer solutions

If the mixed-integer optimizer is used, the callback will take place, in particular, every time an improved
integer solution is found. In that case it is possible to retrieve the current values of the best integer
solution from within the callback function. It can be useful for implementing complex termination
criteria for integer optimization. Note that there is a specialized callback class for retrieving only the
integer solution anyway.
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7.7.1 Data callback

In the data callback MOSEK passes a callback code and values of all information items to a user-
defined function. The callback function is called, in particular, at the beginning of each iteration of the
interior-point optimizer. For the simplex optimizers iparam. log_sim_freq controls how frequently the
call-back is called.

The callback is set by calling the method Task.set_InfoCallback. The callback function
must be implemented by extending the abstract class DataCallback and implementing the method
DataCallback.callback.

Non-zero return value of the callback function indicates that the optimizer should be terminated.

7.7.2 Progress callback

In the progress callback MOSEK provides a single code indicating the current stage of the optimization
process.
The callback is set by calling the method Task.set_Progress. The callback function must be imple-
mented by extending the abstract class Progress and implementing the method Progress.progress.
Non-zero return value of the callback function indicates that the optimizer should be terminated.

7.7.3 Integer solution callback

In this type of callback the user-defined callback function receives an updated solution every time the
mixed-integer optimizer improves the objective value. It can be useful for implementing complex termi-
nation criteria for integer optimization.

Syntax

The callback is set by calling the method Task.set_ItgSolutionCallback. The callback function must
be implemented by extending the abstract class ItgSolutionCallback and implementing the method
ItgSolutionCallback.callback.

7.7.4 Working example: Data callback
The following example defines a data callback function that prints out some of the information items. It
interrupts the solver after a certain time limit.

Listing 7.5: An example of a data callback function.

private static DataCallback makeUserCallback(final double maxtime) {
return new DataCallback() {
public int callback(callbackcode caller,

double[] douinf,

int[] intinf,

longl[] lintinf) {
double opttime = 0.0;

int itrn;
double pobj, dobj, stime;

Formatter f = new Formatter(System.out);
switch (caller) {
case begin_intpnt:
f.format("Starting interior-point optimizer\n");

break;

case intpnt:
itrn = intinf[iinfitem.intpnt_iter.value 1;
pobj = douinf [dinfitem.intpnt_primal_obj.value];
dobj = douinf [dinfitem.intpnt_dual_obj.value ];
stime = douinf[dinfitem.intpnt_time.value 1;

opttime = douinf[dinfitem.optimizer_time.value 1];

(continues on next page)
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f.format("Iterations: %-3d\n", itrn);
f.format(" Time: %6.2f(%.2f) ", opttime, stime);
f.format(" Primal obj.: %-18.6e Dual obj.: %-18.6e\n", pobj, dobj);
break;

case end_intpnt:
f.format("Interior-point optimizer finished.\n");
break;

case begin_primal_simplex:
f.format ("Primal simplex optimizer started.\n");
break;

case update_primal_simplex:

itrn = intinf[iinfitem.sim_primal_iter.value ];
pobj = douinf[dinfitem.sim_obj.value 1;
stime = douinf[dinfitem.sim_time.value 1s
opttime = douinf[dinfitem.optimizer_time.value ];

f.format("Iterations: %-3d\n", itrn);
f.format(" Elapsed time: %6.2f(%.2f\n", opttime, stime);
f.format(" Obj.: %-18.6e", pobj );
break;
case end_primal_simplex:
f.format("Primal simplex optimizer finished.\n");
break;
case begin_dual_simplex:
f.format("Dual simplex optimizer started.\n");

break;

case update_dual_simplex:
itrn = intinf[iinfitem.sim_dual_iter.value s
pobj = douinf [dinfitem.sim_obj.value 1;
stime = douinf[dinfitem.sim_time.value 1s
opttime = douinf[dinfitem.optimizer_time.value ];

f.format("Iterations: %-3d\n", itrn);
f.format(" Elapsed time: %6.2f(%.2f)\n", opttime, stime);
f.format(" Obj.: %-18.6e\n", pobj);
break;
case end_dual_simplex:
f.format("Dual simplex optimizer finished.\n");
break;
case begin_bi:
f.format ("Basis identification started.\n");
break;
case end_bi:
f.format("Basis identification finished.\n");
break;
default:
+
System.out.flush();
if (opttime >= maxtime)
// mosek is spending too much time. Terminate it.
return 1;

return O;
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Assuming that we have defined a task task and a time limit maxtime, the callback function is attached
as follows:

Listing 7.6: Attaching the data callback function to the model.
task.set_InfoCallback(makeUserCallback(maxtime)) ;

7.8 MOSEK OptServer

MOSEK provides an easy way to offload optimization problem to a remote server. This section demon-
strates related functionalities from the client side, i.e. sending optimization tasks to the remote server
and retrieving solutions.
Setting up and configuring the remote server is described in a separate manual for the OptServer.
The URL of the remote server required in all client-side calls should be a string of the form http://
host:port or https://host:port.

7.8.1 Synchronous Remote Optimization

In synchronous mode the client sends an optimization problem to the server and blocks, waiting for the
optimization to end. Once the result has been received, the program can continue. This is the simplest
mode all it takes is to provide the address of the server before starting optimization. The rest of the
code remains untouched.

Note that it is impossible to recover the job in case of a broken connection.

Source code example

Listing 7.7: Using the OptServer in synchronous mode.

package com.mosek.example;
import mosek.*;

public class opt_server_sync {
public static void main (String[] args) {
if (args.length == 0) {
System.out.println ("Missing argument, syntax is:");
System.out.println (" opt_server_sync inputfile addr [certpath]");
} else {

String inputfile = args([0];
String addr args[1];
String cert = args.length < 3 7 null : args[2];

rescode trm;

try (Env env new Env();
Task task = new Task(env, 0, 0)) {
task.set_Stream (mosek.streamtype.log,
new mosek.Stream() {
public void stream(String msg) { System.out.print(msg); }
s

// Load some data into the task
task.readdata (inputfile);

// Set OptServer URL
task.putoptserverhost (addr) ;

(continues on next page)
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// Path to certificate, if any
if (cert != null)
task.putstrparam(sparam.remote_tls_cert_path, cert);

// Optimize rTemotely, mo access token
trm = task.optimize ();

task.solutionsummary (mosek.streamtype.log);

7.8.2 Asynchronous Remote Optimization

In asynchronous mode the client sends a job to the remote server and the execution of the client code
continues. In particular, it is the client’s responsibility to periodically check the optimization status and,
when ready, fetch the results. The client can also interrupt optimization. The most relevant methods
are:

e Task.asyncoptimize : Offload the optimization task to a solver server.
e Task.asyncpoll : Request information about the status of the remote job.
e Task.asyncgetresult : Request the results from a completed remote job.

e Task.asyncstop : Terminate a remote job.

Source code example

In the example below the program enters in a polling loop that regularly checks whether the result of
the optimization is available.

Listing 7.8: Using the OptServer in asynchronous mode.

package com.mosek.example;
import mosek.*;

public class opt_server_async {
public static void main (String[] args) throws java.lang.Exception {
if (args.length == 0) {
System.out.println ("Missing argument, syntax is:");
System.out.println (" opt_server_async inputfile host:port numpolls");

} else {
String inputfile = args[0];
String addr = args[1];
int numpolls = Integer.parselnt(args[2]);

String cert args.length < 4 7 null : args[3];

try (Env env = new Env()) {
String token;

try(Task task = new Task(env, 0, 0)) {
task.readdata (inputfile);
if (cert != null)
task.putstrparam(sparam.remote_tls_cert_path,cert);

(continues on next page)
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token = task.asyncoptimize (addr,"");

}

System.out.printf ("Task token = %s\n", token);

try(Task task = new Task(env, 0, 0)) {
System.out.println("Reading input file...");

task.readdata (inputfile);

if (cert != null)
task.putstrparam(sparam.remote_tls_cert_path,cert);

System.out.println("Setting log stream...");
task.set_Stream (mosek.streamtype.log,
new mosek.Stream() {

public void stream(String msg) { System.out.print(msg); }
s
long start = System.currentTimeMillis();
System.out.println("Starting polling loop...");
int i = 0;
while ( true ) {

Thread.sleep(100);

System.out.printf("poll %d...\n", i);

rescode trm[] new rescodel1];
rescode resp[] = new rescodel[1];

boolean respavailable = task.asyncpoll( addr,
nn
token,
resp,
trm) ;

System.out.println("polling done");

if (respavailable) {
System.out.println("solution available!");

task.asyncgetresult (addr,

nn
>

token,
resp,
trm) ;

task.solutionsummary (mosek.streamtype.log);
break;

}

(continues on next page)
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it++;
if (i == numpolls) {
System.out.println("max num polls reached, stopping host.");
task.asyncstop (addr, "", token);
break;

}

3
} catch (java.lang.Exception e) {
System.out.println("Something unexpected happend...");

throw e;
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Chapter 8

Debugging Tutorials

This collection of tutorials contains basic techniques for debugging optimization problems using tools
available in MOSEK: optimizer log, solution summary, infeasibility report, command-line tools. It is
intended as a first line of technical help for issues such as: Why do I get solution status unknown and
how can I fix it? Why is my model infeasible while it shouldn’t be? Should I change some parameters?
Can the model solve faster? etc.

The major steps when debugging a model are always:

e Enable log output. See Sec. 7.4.1 for how to do it. In the simplest case:

Attach a log handler function to the log stream:

task.set_Stream(mosek.streamtype.log,
new mosek.Stream()

{
public void stream(String msg)
{
System.out.print (msg) ;
}
I9H

and include solution summary after the optimization:

task.optimize();
task.solutionsummary (mosek.streamtype.log) ;

e Run the optimization and analyze the log output, see Sec. 8.1. In particular:

— check if the problem setup (number of constraints/variables etc.) matches your expectation.

— check solution summary and solution status.
e Dump the problem to disk if necessary to continue analysis. See Sec. 7.4.3.

— use a human-readable text format, preferably *.ptf if you want to check the problem structure
by hand. Assign names to variables and constraints to make them easier to identify.

task.writedata("data.ptf");
— use the MOSEK native format *.task.gz when submitting a bug report or support question.

task.writedata("data.task.gz");

e Fix problem setup, improve the model, locate infeasibility or adjust parameters, depending on the
diagnosis.

See the following sections for details.
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8.1 Understanding optimizer log

The optimizer produces a log which splits roughly into four sections:
1. summary of the input data,
2. presolve and other pre-optimize problem setup stages,
3. actual optimizer iterations,
4. solution summary.

In this tutorial we show how to analyze the most important parts of the log when initially debugging
a model: input data (1) and solution summary (4). For the iterations log (3) see Sec. 13.3.4 or Sec.
13.4.3.

8.1.1 Input data

If MOSEK behaves very far from expectations it may be due to errors in problem setup. The log file
will begin with a summary of the structure of the problem, which looks for instance like:

Problem
Name
Objective sense : minimize
Type : CONIC (conic optimization problem)
Constraints : 234
Affine conic cons. : 5348 (6444 rows)
Disjunctive cons. : 0
Cones : 0
Scalar variables : 20693
Matrix variables : 1 (scalarized: 45)
Integer variables : 0

This can be consulted to eliminate simple errors: wrong objective sense, wrong number of variables
etc. Note that some modeling tools can introduce additional variables and constraints to the model and
perturb the model even further (such as by dualizing). In most MOSEK APIs the problem dimensions
should match exactly what the user specified.

If this is not sufficient a bit more information can be obtained by dumping the problem to a file (see
Sec. 8) and using the anapro option of any of the command line tools. It can also be done directly with
the function Task.analyzeproblem. This will produce a longer summary similar to:

** Variables
scalar: 20414 integer: O matrix: O
low: 2082 up: 5014 ranged: O free: 12892 fixed: 426

*x Constraints
all: 20413
low: 10028 up: O ranged: O free: 0 fixed: 10385

** Affine conic constraints (ACC)
QUAD: 1 dims: 2865: 1
RQUAD: 2507 dims: 3: 2507

** Problem data (numerics)

|cl nnz: 10028 min=2.09e-05 max=1.00e+00
|A] nnz: 597023 min=1.17e-10 max=1.00e+00
blx fin: 2508 min=-3.60e+09 max=2.75e+05
bux fin: 5440 min=0.00e+00 max=2.94e+08
blc fin: 20413 min=-7.61e+05 max=7.61e+05
buc fin: 10385 min=-5.00e-01 max=0.00e+00

(continues on next page)
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|FI nnz: 612301 min=8.29e-06 max=9.31e+01
lgl nnz: 1203 min=5.00e-03 max=1.00e+00

Again, this can be used to detect simple errors, such as:
e Wrong type of conic constraint was used or it has wrong dimension.

e The bounds for variables or constraints are incorrect or incomplete. Check if you defined bound
keys for all variables. A variable for which no bound was defined is by default fixed at 0.

e The model is otherwise incomplete.

e Suspicious values of coefficients.

e For various data sizes the model does not scale as expected.

Finally saving the problem in a human-friendly text format such as LP or PTF (see Sec. 8) and
analyzing it by hand can reveal if the model is correct.
Warnings and errors

At this stage the user can encounter warnings which should not be ignored, unless they are well-
understood. They can also serve as hints as to numerical issues with the problem data. A typical
warning of this kind is

MOSEK warning 53: A numerically large upper bound value 2.9e+08 is specified for,
—variable 'absh[107]' (2613).

Warnings do not stop the problem setup. If, on the other hand, an error occurs then the model will
become invalid. The user should make sure to test for errors/exceptions from all API calls that set up
the problem and validate the data. See Sec. 7.3 for more details.

8.1.2 Solution summary

The last item in the log is the solution summary. In the Optimizer API it is only printed by invoking
the function Task.solutionsummary.

Continuous problem

Optimal solution

A typical solution summary for a continuous (linear, conic, quadratic) problem looks like:

Problem status : PRIMAL_AND_DUAL_FEASIBLE

Solution status : OPTIMAL

Primal. obj: 8.7560516107e+01 nrm: 1le+02 Viol. con: 3e-12 var: 0e+00
—acc: 3e-11

Dual. obj: 8.7560521345e+01 nrm: 1e+00 Viol. con: 5e-09 var: 9e-11 U
—acc: 0e+00

It contains the following elements:
e Problem and solution status. For details see Sec. 7.2.3.

e A summary of the primal solution: objective value, infinity norm of the solution vector and maximal
violations of variables and constraints of different types. The violation of a linear constraint such
as a’r < b is max(a’x — b,0). The violation of a conic constraint is the distance to the cone.

e The same for the dual solution.

The features of the solution summary which characterize a very good and accurate solution and a
well-posed model are:

e Status: The solution status is OPTIMAL.
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e Duality gap: The primal and dual objective values are (almost) identical, which proves the
solution is (almost) optimal.

e Norms: Ideally the norms of the solution and the objective values should not be too large. This of
course depends on the input data, but a huge solution norm can be an indicator of issues with the
scaling, conditioning and/or well-posedness of the model. It may also indicate that the problem is
borderline between feasibility and infeasibility and sensitive to small perturbations in this respect.

e Violations: The violations are close to zero, which proves the solution is (almost) feasible. Observe
that due to rounding errors it can be expected that the violations are proportional to the norm
(nrm:) of the solution. It is rarely the case that violations are exactly zero.

Solution status UNKNOWN

A typical example with solution status UNKNOWN due to numerical problems will look like:

Problem status : UNKNOWN

Solution status : UNKNOWN

Primal. obj: 1.3821656824e+01 nrm: le+01 Viol. con: 2e-03 var: 0e+00 U
—acc: 0e+00

Dual. obj: 3.0119004098e-01 nrm: 5e+07 Viol. con: 4e-16 var: le-01 U
—acc: 0e+00

Note that:

e The primal and dual objective are very different.

e The dual solution has very large norm.

e There are considerable violations so the solution is likely far from feasible.

Follow the hints in Sec. 8.2 to resolve the issue.

Solution status UNKNOWN with a potentially useful solution

Solution status UNKNOWN does not necessarily mean that the solution is completely useless. It only means
that the solver was unable to make any more progress due to numerical difficulties, and it was not able
to reach the accuracy required by the termination criteria (see Sec. 13.3.2). Consider for instance:

Problem status : UNKNOWN

Solution status : UNKNOWN

Primal. obj: 3.4531019648e+04 nrm: 1le+05 Viol. con: 7e-02 var: 0e+00
—acc: 0e+00

Dual. obj: 3.4529720645e+04 nrm: 8e+03 Viol. «con: 1le-04 var: 2e-04 U
—acc: 0e+00

Such a solution may still be useful, and it is always up to the user to decide. It may be a good enough
approximation of the optimal point. For example, the large constraint violation may be due to the fact
that one constraint contained a huge coefficient.

Infeasibility certificate

A primal infeasibility certificate is stored in the dual variables:

Problem status : PRIMAL_INFEASIBLE

Solution status : PRIMAL_INFEASIBLE_CER

Dual. obj: 2.9238975853e+02 nrm: 6e+02 Viol. con: 0e+00 var: le-11 U
—acc: 0e+00

It is a Farkas-type certificate as described in Sec. 12.2.2. In particular, for a good certificate:

e The dual objective is positive for a minimization problem, negative for a maximization problem.
Ideally it is well bounded away from zero.
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e The norm is not too big and the violations are small (as for a solution).

If the model was not expected to be infeasible, the likely cause is an error in the problem formulation.
Use the hints in Sec. 8.1.1 and Sec. 8.3 to locate the issue.

Just like a solution, the infeasibility certificate can be of better or worse quality. The infeasibility
certificate above is very solid. However, there can be less clear-cut cases, such as for example:

Problem status : PRIMAL_INFEASIBLE

Solution status : PRIMAL_INFEASIBLE_CER

Dual. obj: 1.6378689238e-06 nrm: 6e+05 Viol. con: 7e-03 var: 2e-04 L
—acc: 0e+00

This infeasibility certificate is more dubious because the dual objective is positive, but barely so in
comparison with the large violations. It also has rather large norm. This is more likely an indication
that the problem is borderline between feasibility and infeasibility or simply ill-posed and sensitive to
tiny variations in input data. See Sec. 8.3 and Sec. 8.2.

The same remarks apply to dual infeasibility (i.e. unboundedness) certificates. Here the primal
objective should be negative a minimization problem and positive for a maximization problem.

8.1.3 Mixed-integer problem
Optimal integer solution

For a mixed-integer problem there is no dual solution and a typical optimal solution report will look as
follows:

Problem status : PRIMAL_FEASIBLE

Solution status : INTEGER_OPTIMAL

Primal. obj: 6.0111122960e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-14 U
—itg: be-15

The interpretation of all elements is as for a continuous problem. The additional field itg denotes
the maximum violation of an integer variable from being an exact integer.
Feasible integer solution

If the solver found an integer solution but did not prove optimality, for instance because of a time limit,
the solution status will be PRIMAL_FEASIBLE:

Problem status : PRIMAL_FEASIBLE

Solution status : PRIMAL_FEASIBLE

Primal. obj: 6.0114607792e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-13
—itg: 4e-15

In this case it is valuable to go back to the optimizer summary to see how good the best solution is:

31 35 1 0 6.0114607792e+06 6.0078960892e+06 0.06
. 4.1

Objective of best integer solution : 6.011460779193e+06
Best objective bound : 6.007896089225e+06

In this case the best integer solution found has objective value 6.011460779193e+06, the best proved
lower bound is 6.007896089225e+06 and so the solution is guaranteed to be within 0.06% from optimum.
The same data can be obtained as information items through an API. See also Sec. 13.4 for more details.
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Infeasible problem

If the problem is declared infeasible the summary is simply

Problem status : PRIMAL_INFEASIBLE

Solution status : UNKNOWN

Primal. obj: 0.0000000000e+00 nrm: 0e+00 Viol. con: 0e+00 var: 0e+00
—itg: 0e+00

If infeasibility was not expected, consult Sec. 8.3.

8.2 Addressing numerical issues

The suggestions in this section should help diagnose and solve issues with numerical instability, in
particular UNKNOWN solution status or solutions with large violations. Since numerically stable models
tend to solve faster, following these hints can also dramatically shorten solution times.

We always recommend that issues of this kind are addressed by reformulating or rescaling the model,
since it is the modeler who has the best insight into the structure of the problem and can fix the cause
of the issue.

Some information about the numerical properties of the data can be obtained by dumping the problem
to a file (see Sec. 8) and using the anapro option of any of the command line tools. It can also be done
directly with the function Task.analyzeproblem.

8.2.1 Formulating problems
Scaling

Make sure that all the data in the problem are of comparable orders of magnitude. This applies especially
to the linear constraint matrix. Use Sec. 8.1.1 if necessary. For example a report such as

|A] nnz: 597023 min=1.17e-6 max=2.21e+5

means that the ratio of largest to smallest elements in A is 10'!. In this case the user should rescale
or reformulate the model to avoid such spread which makes it difficult for MOSEK to scale the problem
internally. In many cases it may be possible to change the units, i.e. express the model in terms of
rescaled variables (for instance work with millions of dollars instead of dollars, etc.).

Similarly, if the objective contains very different coefficients, say

maximize 102 +y

then it is likely to lead to inaccuracies. The objective will be dominated by the contribution from x and
y will become insignificant.
Removing huge bounds

Never use a very large number as replacement for co. Instead define the variable or constraint as
unbounded from below /above. Similarly, avoid artificial huge bounds if you expect they will not become
tight in the optimal solution.

Avoiding linear dependencies

As much as possible try to avoid linear dependencies and near-linear dependencies in the model. See
Example 8.3.
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Avoiding ill-posedness

Avoid continuous models which are ill-posed: the solution space is degenerate, for example consists of a
single point (technically, the Slater condition is not satisfied). In general, this refers to problems which
are borderline between feasible and infeasible. See Example 8.1.

Scaling the expected solution

Try to formulate the problem in such a way that the expected solution (both primal and dual) is not
very large. Consult the solution summary Sec. 8.1.2 to check the objective values or solution norms.

8.2.2 Further suggestions

Here are other simple suggestions that can help locate the cause of the issues. They can also be used as
hints for how to tune the optimizer if fixing the root causes of the issue is not possible.

Remove the objective and solve the feasibility problem. This can reveal issues with the objective.

Change the objective or change the objective sense from minimization to maximization (if appli-
cable). If the two objective values are almost identical, this may indicate that the feasible set is
very small, possibly degenerate.

Perturb the data, for instance bounds, very slightly, and compare the results.

For linear problems: solve the problem using a different optimizer by setting the parameter iparam.
optimizer and compare the results.

Force the optimizer to solve the primal/dual versions of the problem by setting the parameter
iparam. intpnt_solve_form or iparam.sim_solve_form. MOSEK has a heuristic to decide
whether to dualize, but for some problems the guess is wrong an explicit choice may give better
results.

Solve the problem without presolve or some of its parts by setting the parameter iparam.
presolve_use, see Sec. 13.1.

Use different numbers of threads (iparam.num_threads) and compare the results. Very different
results indicate numerical issues resulting from round-off errors.

If the problem was dumped to a file, experimenting with various parameters is facilitated with the
MOSEK Command Line Tool or MOSEK Python Console Sec. 8.4.

8.2.3 Typical pitfalls

Example 8.1 (Ill-posedness). A toy example of this situation is the feasibility problem

(x—1)2<1, (z+1)°<1

whose only solution is * = 0 and moreover replacing any 1 on the right hand side by 1 — ¢ makes
the problem infeasible and replacing it by 1 4 € yields a problem whose solution set is an interval
(fully-dimensional). This is an example of ill-posedness.

Example 8.2 (Huge solution). If the norm of the expected solution is very large it may lead to
numerical issues or infeasibility. For example the problem

(107%,2,10%) € @3

may be declared infeasible because the expected solution must satisfy x > 5-10°.
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Example 8.3 (Near linear dependency). Counsider the following problem:

minimize
subject to T1 + X2 = 1,
r3 + x4 = 1,
- — I3 = —1l+4e¢,
- To — T4 = —1,
T, o, T3, T4 Z O

If we add the equalities together we obtain:
0=¢

which is infeasible for any € # 0. Here infeasibility is caused by a linear dependency in the constraint
matrix coupled with a precision error represented by the ¢. Indeed if a problem contains linear
dependencies then the problem is either infeasible or contains redundant constraints. In the above
case any of the equality constraints can be removed while not changing the set of feasible solutions.
To summarize linear dependencies in the constraints can give rise to infeasible problems and therefore
it is better to avoid them.

Example 8.4 (Presolving very tight bounds). Next consider the problem

minimize
subject to x1 — 0.01x2 0,
T — 0.01.133 = O7
Tr3 — 001$4 = O7
1 > —1079,
T < 1079,
X4 > 10~4.

Now the MOSEK presolve will, for the sake of efficiency, fix variables (and constraints) that have
tight bounds where tightness is controlled by the parameter dparam.presolve_tol_z. Since the
bounds

1072 <z, <107

are tight, presolve will set 1 = 0. It easy to see that this implies x4 = 0, which leads to the incorrect
conclusion that the problem is infeasible. However a tiny change of the value 10~ makes the problem
feasible. In general it is recommended to avoid ill-posed problems, but if that is not possible then one
solution is to reduce parameters such as dparam.presolve_tol_z to say 1071, This will at least
make sure that presolve does not make the undesired reduction.

8.3 Debugging infeasibility

When solving an optimization problem one typically expects to get an optimal solution, but in some
cases, either by design, or (most frequently) due to an error in the formulation, the problem may become
infeasible (have no solution at all).

This section

e describes the intuitions behind infeasibility,

e helps to debug (unexpectedly) infeasible problems using the command line tool and by inspecting
infeasibility reports and problem data by hand,

e gives some hints for how to modify the formulation to identify the reasons for infeasibility.

If, instead, you want to fetch an infeasibility certificate directly using Optimizer API for Java, see
the tutorial in Sec. 6.13.
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An infeasibility certificate is only available for continuous problems, however the hints in Sec. 8.3.4
apply to a large extent also to mixed-integer problems.

8.3.1 Numerical issues

Infeasible problem status may be just an artifact of numerical issues appearing when the problem is
badly-scaled, barely feasible or otherwise ill-conditioned so that it is unstable under small perturbations
of the data or round-off errors. This may be visible in the solution summary if the infeasibility certificate
has poor quality. See Sec. 8.1.2 for how to diagnose that and Sec. 8.2 for possible hints. Sec. 8.2.3
contains examples of situations which may lead to infeasibility for numerical reasons.

We refer to Sec. 8.2 for further information on dealing with those sort of issues. For the rest of this
section we concentrate on the case when the solution summary leaves little doubt that the problem solved
by the optimizer actually is infeasible.

8.3.2 Locating primal infeasibility

As an example of a primal infeasible problem consider minimizing the cost of transportation between a
number of production plants and stores: Each plant produces a fixed number of goods, and each store
has a fixed demand that must be met. Supply, demand and cost of transportation per unit are given in
Fig. 8.1.

Supply Demand
1100
200
200
1000 ‘
500
1000
500

Fig. 8.1: Supply, demand and cost of transportation.
The problem represented in Fig. 8.1 is infeasible, since the total demand
2300 = 1100 + 200 + 500 + 500
exceeds the total supply
2200 = 200 + 1000 + 1000

If we denote the number of transported goods from plant 7 to store j by z;;, the problem can be
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formulated as the LP:

minimize r11  + 21‘12 + 51’23 + 2.’1324 + 31 + 21333 + T34

subject to sg: x11 + X192 < 200,
S1 ¢ 23 + T24 < 1000,
So x31 + w33 + w3 < 1000,
do: 211 + X331 = 1100,
d1 . xr12 = 200,
do : T2z + x33 = 500,
ds : Toa + r3y = 500,

Tij Z 0.

(8.1)

Solving problem (8.1) using MOSEK will result in an infeasibility status. The infeasibility certificate
is contained in the dual variables an can be accessed from an API. The variables and constraints with
nonzero solution values form an infeasible subproblem, which frequently is very small. See Sec. 12.1.2 or
Sec. 12.2.2 for detailed specifications of infeasibility certificates.

A short infeasibility report can also be printed to the log stream. It can be turned on by setting the
parameter iparam.infeas_report_auto to onoffkey.on. This causes MOSEK to print a report on
variables and constraints which are involved in infeasibility in the above sense, i.e. have nonzero values
in the certificate. The parameter iparam.infeas_report_level controls the amount of information
presented in the infeasibility report. The default value is 1. For the above example the report is

Primal infeasibility report

Problem status: The problem is primal infeasible

The following constraints are involved in the primal infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper
0 s0 none 200 0 1
2 s2 none 1000 0 1
3 do 1100 1100 1 0
4 d1 200 200 1 0

The following bound constraints are involved in the primal infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper
5 x33 0 none 1 0
6 x34 0 none 1 0

The infeasibility report is divided into two sections corresponding to constraints and variables. It
is a selection of those lines from the problem solution which are important in understanding primal
infeasibility. In this case the constraints s0O, s2, d0, d1 and variables x33, x34 are of importance because
of nonzero dual values. The columns Dual lower and Dual upper contain the values of dual variables
s7, s, s and s% in the primal infeasibility certificate (see Sec. 12.1.2).

In our example the certificate means that an appropriate linear combination of constraints s0, si
with coefficient s{, = 1, constraints d0 and d1 with coefficient s, —sf = 0 —1 = —1 and lower bounds
on x33 and x34 with coefficient —s7 = —1 gives a contradiction. Indeed, the combination of the four
involved constraints is x33 + x34 < —100 (as indicated in the introduction, the difference between supply
and demand).

It is also possible to extract the infeasible subproblem with the command-line tool. For an infeasible
problem called infeas.1p the command:
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mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.lp -info rinfeas.lp

will produce the file rinfeas.bas.inf.1lp which contains the infeasible subproblem. Because of its
size it may be easier to work with than the original problem file.

Returning to the transportation example, we discover that removing the fifth constraint x1o = 200
makes the problem feasible. Almost all undesired infeasibilities should be fixable at the modeling stage.

8.3.3 Locating dual infeasibility

A problem may also be dual infeasible. In this case the primal problem is usually unbounded, meaning
that feasible solutions exists such that the objective tends towards infinity. For example, consider the
problem

maximize 200y; + 1000y2 + 1000ys + 1100y, + 200ys + 500ys + 500y7

subject to Y1ty <1, y1+ys <2, y2+ys <9, Y2 +yr < 2,
Y3+t ya <1, ys+ys <2, ys+yr <1
Y1,Y2,y3 <0

which is dual to (8.1) (and therefore is dual infeasible). The dual infeasibility report may look as follows:

Dual infeasibility report

Problem status: The problem is dual infeasible

The following constraints are involved in the dual infeasibility.

Index Name Activity Objective Lower bound Upper bound
5 x33 -1 none 2
6 x34 -1 none 1

The following variables are involved in the dual infeasibility.

Index Name Activity Objective Lower bound Upper bound
0 yi -1 200 none 0

2 y3 -1 1000 none 0

3 NES 1 1100 none none

4 y5 1 200 none none

In the report we see that the variables y1, y3, y4, y5 and two constraints contribute to infeasibility
with non-zero values in the Activity column. Therefore

(yla ey y7) = (_17 07 _17 1a 1) 070)
is the dual infeasibility certificate as in Sec. 12.1.2. This just means, that along the ray
(0,0,0,0,0,0,0) + t(y1,...,y7) = (—¢,0,—1,¢,t,0,0), t > 0,

which belongs to the feasible set, the objective value 100t can be arbitrarily large, i.e. the problem is
unbounded.
In the example problem we could

e Add a lower bound on y3. This will directly invalidate the certificate of dual infeasibility.

e Increase the objective coefficient of y3. Changing the coefficients sufficiently will invalidate the
inequality ¢”'y* > 0 and thus the certificate.
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8.3.4 Suggestions

Primal infeasibility

When trying to understand what causes the unexpected primal infeasible status use the following hints:

Remove the objective function. This does not change the infeasibility status but simplifies the
problem, eliminating any possibility of issues related to the objective function.

Remove cones, semidefinite variables and integer constraints. Solve only the linear part of the
problem. Typical simple modeling errors will lead to infeasibility already at this stage.

Consider whether your problem has some obvious necessary conditions for feasibility and examine
if these are satisfied, e.g. total supply should be greater than or equal to total demand.

Verify that coefficients and bounds are reasonably sized in your problem.

See if there are any obvious contradictions, for instance a variable is bounded both in the variables
and constraints section, and the bounds are contradictory.

Consider replacing suspicious equality constraints by inequalities. For instance, instead of 15 = 200
see what happens for x12 > 200 or x12 < 200.

Relax bounds of the suspicious constraints or variables.

For integer problems, remove integrality constraints on some/all variables and see if the problem
solves.

Remember that variables without explicitly initialized bounds are fixed at zero.

Form an elastic model: allow to violate constraints at a cost. Introduce slack variables and add
them to the objective as penalty. For instance, suppose we have a constraint

minimize Tz,

subject to aTz < b.

which might be causing infeasibility. Then create a new variable y and form the problem which
contains:

minimize o +y,
subject to aTx < b+y.

Solving this problem will reveal by how much the constraint needs to be relaxed in order to become
feasible. This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

If you think you have a feasible solution or its part, fix all or some of the variables to those values.
Presolve will propagate them through the model and potentially reveal more localized sources of
infeasibility.

Dump the problem in PTF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Dual infeasibility

When trying to understand what causes the unexpected dual infeasible status use the following hints:

Verify that the objective coefficients are reasonably sized.

Check if no bounds and constraints are missing, for example if all variables that should be nonneg-
ative have been declared as such etc.

Strengthen bounds of the suspicious constraints or variables.

Remember that constraints without explicitly initialized bounds are free (no bound).
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e Form an series of models with decreasing bounds on the objective, that is, instead of objective

minimize ¢’z

solve the problem with an additional constraint such as

e =-10°
and inspect the solution to figure out the mechanism behind arbitrarily decreasing objective values.
This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

e Dump the problem in PTF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Please note that modifying the problem to invalidate the reported certificate does not imply that the
problem becomes feasible — the reason for infeasibility may simply move, resulting a problem that is
still infeasible, but for a different reason. More often, the reported certificate can be used to give a hint
about errors or inconsistencies in the model that produced the problem.

8.4 Python Console

The MOSEK Python Console is an alternative to the MOSEK Command Line Tool. It can be used for
interactive loading, solving and debugging optimization problems stored in files, for example MOSEK
task files. It facilitates debugging techniques described in Sec. 8.

8.4.1 Usage

The tool requires Python 3. The MOSEK interface for Python must be installed following the instal-
lation instructions for Python API or Python Fusion API. The easiest option is

pip install Mosek

The Python Console is contained in the file mosekconsole.py in the folder with MOSEK binaries. It
can be copied to an arbitrary location. The file is also available for download here (mosekconsole.py).
To run the console in interactive mode use

python mosekconsole.py

To run the console in batch mode provide a semicolon-separated list of commands as the second
argument of the script, for example:

python mosekconsole.py '"read data.task.gz; solve form=dual; writesol data"
The script is written using the MOSEK Python API and can be extended by the user if more specific
functionality is required. We refer to the documentation of the Python API.

8.4.2 Examples

To read a problem from data.task.gz, solve it, and write solutions to data.sol, data.bas or data.itg:

read data.task.gz; solve; writesol data

To convert between file formats:

read data.task.gz; write data.mps

To set a parameter before solving:

read data.task.gz; param INTPNT_CO_TOL_DFEAS 1e-9; solve"

To list parameter values related to the mixed-integer optimizer in the task file:
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read data.task.gz; param MIO

To print a summary of problem structure:

read data.task.gz; anapro

To solve a problem forcing the dual and switching off presolve:

read data.task.gz; solve form=dual presolve=no

To write an infeasible subproblem to a file for debugging purposes:

read data.task.gz; solve; infsub; write inf.opf

8.4.3 Full list of commands

Below is a brief description of all the available commands. Detailed information about a specific command
cmd and its options can be obtained with

help cmd
Table 8.1: List of commands of the MOSEK Python Console.

Command Description
help [command] Print list of commands or info about a specific command
log filename Save the session to a file
intro Print MOSEK splashscreen
testlic Test the license system
read filename Load problem from file
reread Reload last problem file
solve Solve current problem
[options]
write filename Write current problem to file
param [name Set a parameter or get parameter values
[value]]
paramdef Set all parameters to default values
paramdiff Show parameters with non-default values
paramval name Show available values for a parameter
info [name] Get an information item
anapro Analyze problem data
anapro+ Analyze problem data with the internal analyzer
hist Plot a histogram of problem data
histsol Plot a histogram of the solutions
spy Plot the sparsity pattern of the data matrices
truncate Truncate small coefficients down to 0
epsilon
resobj [fac] Rescale objective by a factor
anasol Analyze solutions
removeitg Remove integrality constraints
removecones Remove all cones and leave just the linear part
delsol Remove solutions
fixsol solname Fix all variables to a specific solution
fixintsol Fix all integer variables to a specific solution
infsub Replace current problem with its infeasible subproblem
dualize Replace current problem with its dual
writesol Write solution(s) to file(s) with given basename
basename
writejsonsol Write solutions to JSON file with given name
name

continues on next page
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Table 8.1 — continued from previous page

Command Description

ptf Print the PTF representation of the problem
optserver Use an OptServer to optimize

[url]

1s List the current folder

exit Leave
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Chapter 9

Advanced Numerical Tutorials

9.1 Solving Linear Systems Involving the Basis Matrix

A linear optimization problem always has an optimal solution which is also a basic solution. In an optimal
basic solution there are exactly m basic variables where m is the number of rows in the constraint matrix
A. Define

B c Rmxm

as a matrix consisting of the columns of A corresponding to the basic variables. The basis matrix B is
always non-singular, i.e.

det(B) # 0
or, equivalently, B! exists. This implies that the linear systems
Br=w (9.1)

and

each have a unique solution for all w.
MOSEK provides functions for solving the linear systems (9.1) and (9.2) for an arbitrary w.
In the next sections we will show how to use MOSEK to

e identify the solution basis,

e solve arbitrary linear systems.

9.1.1 Basis identification

To use the solutions to (9.1) and (9.2) it is important to know how the basis matrix B is constructed.
Internally MOSEK employs the linear optimization problem

T

maximize cx
subject to Ax —2¢ = 0,
c < ¢ < wc.

where
z¢ € R™ and x € R".
The basis matrix is constructed of m columns taken from

(A4 -1].



If variable x; is a basis variable, then the j-th column of A, denoted a. ;, will appear in B. Similarly,
if ¢ is a basis variable, then the i-th column of —I will appear in the basis. The ordering of the basis
variables and therefore the ordering of the columns of B is arbitrary. The ordering of the basis variables
may be retrieved by calling the function Task.initbastissolve. This function initializes data structures
for later use and returns the indexes of the basic variables in the array basis. The interpretation of the
basis is as follows. If we have

basis[i| < numcon

then the i-th basis variable is
x‘tc)asis[i]'

Moreover, the i-th column in B will be the i-th column of —I. On the other hand if

basis[i] > numcon,
then the i-th basis variable is the variable

Tbasis[i]—numcon

and the i-th column of B is the column

A, (vasis[i]—nuncon)-

For instance if basis[0] = 4 and numcon = 5, then since basis[0] < numcon, the first basis variable is z§.
Therefore, the first column of B is the fourth column of —I. Similarly, if basis[l] = 7, then the second
variable in the basis is Tyasis[1]—numcon = T2. Hence, the second column of B is identical to a. ».

An example

Consider the linear optimization problem:

minimize To + 21
subject to xo+2z; < 2,
To + X1 < 67 (94)
To,T1 Z 0.

Suppose a call to Task.initbasissolve returns an array basis so that

basis[0] =1,
basis[1] 2.

Then the basis variables are z§ and zy and the corresponding basis matrix B is

0 1
-1 1|
Please note the ordering of the columns in B .

Listing 9.1: A program showing how to identify the basis.

package com.mosek.example;
import mosek.*;

public class solvebasis {
public static void main(String[] args) {
// Since the value infinity ts never used, we define
// 'infinity' symbolic purposes only
double
infinity = 0;

(continues on next page)
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double[] c =
int [] ptrb =
int[] ptre =
int[] asub =

double[] aval

mosek . boundkey []

mosek.boundkey.
mosek.boundkey.

};
double[] blc

double[] buc =

mosek . boundkey []

mosek.boundkey.
mosek.boundkey.

};
double[] blx

double[] bux =

int numvar =
int numcon =

double[] w1 = {2.

double[] w2 =

try (Task task = new Task()) {
task.inputdata(numcon, numvar,

|
-~
N

{1.0, 1.0};
{0, 2};
{2, 4};
{0, 1,
0,
I8
{1.0, 1.0,
2.0, 1.0
g
bkc = {
up,
up
{ -infinity,
-infinity
I8
{2.0,
6.0
g
bkx = {
lo,
lo
{0.0,
0.0
I8
{ +infinity,
+infinity
g
2;
28
0, 6.0};
0, 0.0};

C,
0.0,
ptrb,
ptre,
asub,
aval,
bkc,
blc,
buc,
bkx,
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blx,
bux) ;
task.putobjsense(mosek.objsense.maximize) ;

System.out.println("optimize") ;

try {
task.optimize();

} catch (mosek.Warning e) {
System.out.println("Mosek warning:");
System.out.println(e.toString());

}

int[] basis = new int[numcon];
task.initbasissolve(basis);

//List bastis variables corresponding to columns of B
int[] varsub = {0, 1};
for (int i = 0; i < numcon; i++) {
System.out.println("Basis i:" + i + " Basis:" + basis[i]);
if (basis[varsub[il] < numcon) {
System.out.println("Basis variable no " + i + " is xc" +
basis[i]);
} else {
int index = basis[i] - numcon;
System.out.println("Basis variable no " + i + " is x" +
index) ;
X
}

// solve Bz = wl

// varsub contains index of non-zeros in b.
// On return b contains the solution z and
// varsub the tindex of the nmon-zeros in .

int nz = 2;
nz = task.solvewithbasis(false, nz, varsub, wil);
System.out.println("nz =" + nz);

System.out.println("\nSolution to Bx = wil:\n");

for (int i = 0; i < nz; i++) {
if (basis[varsub[i]] < numcon) {

System.out.println("xc" + basis[varsub[i]l] + "=" + wi[varsub[i]l);
} else {
int index = basis[varsublil]] - numcon;
System.out.println("x" + index + " = " + wl[varsub[ill);
}
}
// Solve B~Tx = w2
nz = 2;
varsub[0] = 0;
varsub[1] = 1;

nz = task.solvewithbasis(true, nz, varsub, w2);

(continues on next page)
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System.out.println("\nSolution to B~Tx = w2:\n");

for (int i = 0; i < nz; i++) {
if (basis[varsub[i]] < numcon) {

System.out.println("xc" + basis[varsub[i]l] + " = " + w2[varsub[i]]);
} else {

int index = basis[varsub[i]] - numcon;

System.out.println("x" + index + " = " + w2[varsub[i]]);
}

3

} catch (mosek.Exception e)
/* Catch both Error and Warning */

{
System.out.println("An error was encountered");
System.out.println(e.getMessage());
throw e;
}
b

}

In the example above the linear system is solved using the optimal basis for (9.4) and the original
right-hand side of the problem. Thus the solution to the linear system is the optimal solution to the
problem. When running the example program the following output is produced.

basis[0] =1
Basis variable no 0 is xcl.
basis[1] = 2

Basis variable no 1 is xO.
Solution to Bx = b:

x0 = 2.000000e+00
xcl = -4.000000e+00

Solution to B"Tx = c:

x1 = -1.000000e+00
x0 = 1.000000e+00

Please note that the ordering of the basis variables is

H

and thus the basis is given by:

It can be verified that

is a solution to
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9.1.2 Solving arbitrary linear systems

MOSEK can be used to solve an arbitrary (rectangular) linear system
Axr=1b

using the Task.solwvewithbasis function without optimizing the problem as in the previous example.
This is done by setting up an A matrix in the task, setting all variables to basic and calling the Task.
solvewithbasis function with the b vector as input. The solution is returned by the function.

An example

Below we demonstrate how to solve the linear system

0 1 Zo o bl
RN 63
with two inputs b = (1, —2) and b = (7,0) .

package com.mosek.example;
import mosek.*;

public class solvelinear {

static public void setup(
mosek.Task task,
double[] [] aval,

int [1[] asub,
int[] ptrb,
int[] ptre,

int numvar,
int [] basis ) {

// Since the walue infinity is never used, we define
// 'infinity' symbolic purposes only

double

infinity = 0;

mosek.stakey[] skx = new mosek.stakey [numvar];
mosek.stakey[] skc = new mosek.stakey [numvar];

for (int i = 0; i < numvar ; ++i) {
skx[i] = mosek.stakey.bas;
skc[i] = mosek.stakey.fix;

|

}

task.appendvars (numvar) ;
task.appendcons (numvar) ;

for (int i = 0; i < numvar ; ++i)
task.putacol(i,
asub[i],
avallil);

for (int 1 = 0 ; i < numvar ; ++i)
task.putconbound (
i,
mosek.boundkey.fx,
0.0,
0.0);

(continues on next page)
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for (int 1 = 0 ; i < numvar ; ++i)
task.putvarbound(
i,
mosek.boundkey.fr,
-infinity,
infinity);

/* Define a basic solution by spectifying
status keys for wvartables & constraints. */
task.deletesolution(mosek.soltype.bas);

task.putskcslice(mosek.soltype.bas, 0, numvar, skc);
task.putskxslice(mosek.soltype.bas, 0, numvar, skx);

task.initbasissolve(basis);

3

public static void main (String[] argv) {
int numcon = 2;

int numvar = 2;
double[] [] aval = {

{-1.0 3},

{ 1.0, 1.0 }
Irg
int[]1[] asub = {

{ 113,

{ o0, 1}
g
int [] ptrb = new int[] {0, 1};
int [] ptre = new int[] {1, 3};
int [] bsub = new int[numvar];
double[] b = new double[numvar] ;
int[] basis = new int[numvar];

try (Task task = new Task()) {
// Directs the log task stream to the user specified
// method task_msg_obj.streamCB
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }1});

/% Put A matriz and factor 4.
Call this function only once for a given task. */

setup(
task,
aval,
asub,
ptrb,
ptre,
numvar,
basis

(continues on next page)
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)

/* now solve Ths */
b[0] = 1;

b[1] = -2;

bsub [0]
bsub[1]
int nz;
nz = task.solvewithbasis(false, 2, bsub, b);
System.out.println("\nSolution to Bx = b:\n");

0;
is

/* Print solution and show correspondents
to original variables in the problem */
for (int i = 0; i < nz; ++i) {
if (basis[bsub[i]] < numcon)
System.out.println ("This should never happen");

else
System.out.println("x" + (basis[bsub[i]] - numcon) + " = " + b[bsub[i]]);
}
bl0] = 7;
bsub[0] = 0;

nz = task.solvewithbasis(false, 1, bsub, b);

System.out.println ("\nSolution to Bx = b:\n");
/* Print solution and show correspondents
to original variables in the problem */
for (int i = 0; i < nz; ++i) {
if (basis[bsub[i]l] < numcon)
System.out.println("This should never happen");
else
System.out.println("x" + (basis[bsub[i]] - numcon) + " = " + b[bsub[i]l] );

The most important step in the above example is the definition of the basic solution, where we define
the status key for each variable. The actual values of the variables are not important and can be selected
arbitrarily, so we set them to zero. All variables corresponding to columns in the linear system we want
to solve are set to basic and the slack variables for the constraints, which are all non-basic, are set to
their bound.

The program produces the output:

Solution to Bx = b:

x1 =1
x0 = 3
Solution to Bx = b:
x1 =7
x0 =7
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9.2 Calling BLAS/LAPACK Routines from MOSEK

Sometimes users need to perform linear algebra operations that involve dense matrices and vectors.
Also MOSEK extensively uses high-performance linear algebra routines from the BLAS and LAPACK
packages and some of these routines are included in the package shipped to the users.

The MOSEK versions of BLAS/LAPACK routines:

e use MOSEK data types and return value conventions,

e preserve the BLAS/LAPACK naming convention.

Therefore the user can leverage on efficient linear algebra routines, with a simplified interface, with
no need for additional packages.

List of available routines

Table 9.1: BLAS routines available.
BLAS Name MOSEK function Math Expression

AXPY Env. azpy y=ar+y

DOT Env.dot Ty

GEMV Env.gemu y = aAx + By
GEMM Env.gemm C =aAB+ pC
SYRK Env.syrk C = aAAT + BC

Table 9.2: LAPACK routines available.
LAPACK Name MOSEK function Description

POTRF Env.potrf Cholesky factorization of a semidefinite symmetric matrix
SYEVD Env.syevd Eigenvalues and eigenvectors of a symmetric matrix
SYEIG Env.syeig Eigenvalues of a symmetric matrix

Source code examples
In Listing 9.2 we provide a simple working example. It has no practical meaning except showing how to
organize the input and call the methods.
Listing 9.2: Calling BLAS and LAPACK routines from Optimizer
API for Java.
package com.mosek.example;

public class blas_lapack {
static final int n = 3, m = 2, k = 3;

public static void main (String[] args) {

double alpha = 2.0, beta = 0.5;
double[] x = {1., 1., 1.};
double[] y = {1., 2., 3.3};
double[] z = {1.0, 1.0};

/*4 has m=2 rows and k=3 cols*/

double[] A = {1., 1., 2., 2., 3., 3.};

/*B has k=3 rows and m=3 cols*/

double[] B {1., 1., 1., 1., 1., 1., 1., 1., 1.};
double[] C {1., 2., 3., 4., 5., 6.};

(continues on next page)
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double[] D = {1.0, 1.0, 1.0, 1.0};
double[] Q {1.0, 0.0, 0.0, 2.0};
double[] v = new double[2];

double[] xy = {0.};

try (mosek.Env env = new mosek.Env()) {
/* routines*/

env.dot(n, x, y, Xy);

env.axpy(n, alpha, x, y);

env.gemv(mosek.transpose.no, m, n, alpha, A, x, beta, z);

env.gemm(mosek. transpose.no, mosek.transpose.no, m, n, k, alpha, A, B, beta, C);
env.syrk(mosek.uplo.lo, mosek.transpose.no, m, k, alpha, A, beta, D);

/* LAPACK routines*/

env.potrf (mosek.uplo.lo, m, Q);

env.syeig(mosek.uplo.lo, m, Q, v);

env.syevd(mosek.uplo.lo, m, Q, v);

} catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());

9.3 Computing a Sparse Cholesky Factorization

Given a positive semidefinite symmetric (PSD) matrix
A 6 RTLXTL
it is well known there exists a matrix L such that
A=LL".
If the matrix L is lower triangular then it is called a Cholesky factorization. Given A is positive definite

(nonsingular) then L is also nonsingular. A Cholesky factorization is useful for many reasons:

e A system of linear equations Ax = b can be solved by first solving the lower triangular system
Ly = b followed by the upper triangular system L7z = y.

e A quadratic term 7 Az in a constraint or objective can be replaced with yTy for y = LTz,
potentially leading to a more robust formulation (see [And13]).

Therefore, MOSEK provides a function that can compute a Cholesky factorization of a PSD matrix.
In addition a function for solving linear systems with a nonsingular lower or upper triangular matrix is
available.

In practice A may be very large with n is in the range of millions. However, then A is typically sparse
which means that most of the elements in A are zero, and sparsity can be exploited to reduce the cost
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of computing the Cholesky factorization. The computational savings depend on the positions of zeros in
A. For example, below a matrix A is given together with a Cholesky factor up to 5 digits of accuracy:

4 1 11 2.0000 0 0 0
1100 0.5000  0.8660 0 0

A= 101 0|’ L= 0.5000 —0.2887  0.8165 0 ' (9:6)
1 0 0 1 0.5000 —0.2887 —0.4082 0.7071

However, if we symmetrically permute the rows and columns of A using a permutation matrix P

0100 100 1
oo 10 , r |0 101
P=lo oo 1| A=PAP =109 091 1]

1000 111 4

then the Cholesky factorization of A’ = L'L'T is

L' =

— o o =
e =
-0 O
_ o oo

which is sparser than L.

Computing a permutation matrix that leads to the sparsest Cholesky factorization or the minimal
amount of work is NP-hard. Good permutations can be chosen by using heuristics, such as the minimum
degree heuristic and variants. The function Env.computesparsecholesky provided by MOSEK for
computing a Cholesky factorization has a build in permutation aka. reordering heuristic. The following
code illustrates the use of Env. computesparsecholesky and Env.sparsetriangularsolvedense.

Listing 9.3: How to use the sparse Cholesky factorization routine
available in MOSEK.

env.computesparsecholesky (0, //Mosek chooses number of threads
1, //Apply reordering heuristic
1.0e-14, //Singularity tolerance
anzc, aptrc, asubc, avalc,
perm, diag,
lnzc, lptrc, lensubnval, lsubc, lvalc);

printsparse(n, perm[0], diag[0], 1lnzc[0], lptrc[0], lensubnval[0], lsubc[0],,,
—1valc[0]);

/* Permuted b 1s stored as . */
double[] x = new doubleln];
for (int i = 0; i < n; i++) x[i] = blperm[0] [i]];

/*Compute inv(L)*z.*/

env.sparsetriangularsolvedense (mosek.transpose.no, lnzc[0], lptrc[0],,
—~1subc[0], 1lvalc[0], x);

/*Compute inv(L"T)*z.*/

env.sparsetriangularsolvedense (mosek.transpose.yes, lnzc[0], lptrc[0],
—1subc[0], 1lvalc[O], x);

System.out.print("\nSolution A x = b, x = [ ");
for (int i = 0; 1 < n; i++)
for (int j = 0; j < mn; j++) if (perm[0][j] == i) System.out.print(x[j] + "
<");

System.out.println("]\n");

We can set up the data to recreate the matrix A from (9.6):
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//0bserve that anzc, aptrc, asubc and avalc only specify the lower triangular,

—part.
int n = 4,
int[] anzc = {4, 1, 1, 1};
int[] asubc ={0, 1, 2, 3, 1, 2, 3};

long[] aptrc {0, 4, 5, 6};
double[] avalc ={4.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
double[] b {13.0, 3.0, 4.0, 5.0%};

and we obtain the following output:

Example with positive definite A.
P=[3201]
diag(D) = [ 0.00 0.00 0.00 0.00 ]

L=

1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
1.00 1.00 1.41 0.00
0.00 0.00 0.71 0.71

Solution A x = b, x = [ 1.00 2.00 3.00 4.00 ]

The output indicates that with the permutation matrix

-0 o O
o~ O O
S O O
o o= O

there is a Cholesky factorization PAPT = LLT, where

1 0 0 0
I — 0 1 0 0

1 1 1.4142 0

0 0 0.7071 0.7071

The remaining part of the code solvers the linear system Az = b for b = [13,3,4,5]7. The solution is
reported to be x = [1,2, 3, 4], which is correct.

The second example shows what happens when we compute a sparse Cholesky factorization of a
singular matrix. In this example A is a rank 1 matrix

111 1 11"
A=1]1 1 1 |=1]1 1 (9.7)
1 1 1 1 1
int n = 3;
int[] anzc = {3, 2, 1};
int[] asubc = {0, 1, 2, 1, 2, 2};
long[] aptrc = {0, 3, 5, };
double[] avalc ={1.0, 1.0, 1.0, 1.0, 1.0, 1.0};

Now we get the output

P =
diag(D
L=

1.00e+00 0.00e+00 0.00e+00
1.00e+00 1.00e-07 0.00e+00
1.00e+00 0.00e+00 1.00e-07

021]
) = [ 0.00e+00 1.00e-14 1.00e-14 ]

131



which indicates the decomposition

PAPT =LLT - D

where
10 0 1 0 0 1 0 0
P=|00 1|, L=|1 1007 0 ., D=0 107 0
010 1 0 1077 0 0 1074

Since A is only positive semdefinite, but not of full rank, some of diagonal elements of A are boosted
to make it truely positive definite. The amount of boosting is passed as an argument to Env.
computesparsecholesky, in this case 10714, Note that

PAPT =LLT - D

where D is a small matrix so the computed Cholesky factorization is exact of slightly perturbed A. In
general this is the best we can hope for in finite precision and when A is singular or close to being
singular.

We will end this section by a word of caution. Computing a Cholesky factorization of a matrix that
is not of full rank and that is not suffciently well conditioned may lead to incorrect results i.e. a matrix
that is indefinite may declared positive semidefinite and vice versa.
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Chapter 10

Technical guidelines

This section contains some more in-depth technical guidelines for Optimizer API for Java, not strictly
necessary for basic use of MOSEK.

10.1 Memory management and garbage collection

Users should make sure the MOSEK objects are fully cleaned up before they go out of scope so that
no internally allocated memory leaks. Memory leaks can manifest themselves especially as:

e memory usage not decreasing after the solver terminates,
e memory usage increasing when solving a sequence of problems.

The recommended way is to always use the task object within a managed context, so that the built-in
garbage collector will call its internal clean-up method when the object goes out of scope. That will
ensure that all memory allocated internally by the shared library will also be freed.

The Task class supports the Closeable interface, so it will be destroyed properly when used inside
a managed context such as a try-with-resources statement:

try (mosek.Task task = new mosek.Task()) {
I ooc
// ... optimization with task ...
7Y ooc

}

If this is not possible, for example because the object is passed around through various calls, then
the disposing method should be called manually before the object is abandoned. Note that the garbage
collector is unable to automatically access the memory allocated internally by the shared library, therefore
calling a manual cleanup method is necessary.

To release the memory manually use Task.dispose:

if (task != null) task.dispose();
if (env != null) env.dispose();

10.2 Names

All elements of an optimization problem in MOSEK (objective, constraints, variables, etc.) can be given
names. Assigning meaningful names to variables and constraints makes it much easier to understand
and debug optimization problems dumped to a file. On the other hand, note that assigning names can
substantially increase setup time, so it should be avoided in time-critical applications.

Names of various elements of the problem can be set and retrieved using various functions listed in
the Names section of Sec. 15.2.

Note that file formats impose various restrictions on names, so not all names can be written verbatim
to each type of file. If at least one name cannot be written to a given format then generic names and
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substitutions of offending characters will be used when saving to a file, resulting in a transformation of
all names in the problem. See Sec. 16.

10.3 Multithreading

Thread safety

Sharing a task between threads is safe, as long as it is not accessed from more than one thread at a time.
Multiple tasks can be created and used in parallel without any problems.

Parallelization

The interior-point and mixed-integer optimizers in MOSEK are parallelized. By default MOSEK will
automatically select the number of threads. However, the maximum number of threads allowed can
be changed by setting the parameter tparam.num_threads and related parameters. This should never
exceed the number of cores.

The speed-up obtained when using multiple threads is highly problem and hardware dependent. We
recommend experimenting with various thread numbers to determine the optimal settings. For small
problems using multiple threads may be counter-productive because of the associated overhead. Note
also that not all parts of the algorithm can be parallelized, so there are times when CPU utilization is
only 1 even if more cores are available.

Determinism

By default the optimizer is run-to-run deterministic, which means that it will return the same answer
each time it is run on the same machine with the same input, the same parameter settings (including
number of threads) and no time limits.

Setting the number of threads

The number of threads the optimizer uses can be changed with the parameter iparam.num_threads.

10.4 Timing

Unless otherwise mentioned all parameters, information items and log output entries in MOSEK which
refer to time measurement are expressed in seconds of wall-clock time.

10.5 Efficiency

Although MOSEK is implemented to handle memory efficiently, the user may have valuable knowledge
about a problem, which could be used to improve the performance of MOSEK This section discusses
some tricks and general advice that hopefully make MOSEK process your problem faster.

Reduce the number of function calls and avoid input loops

For example, instead of setting the entries in the linear constraint matrix one by one (Task.putatyj)
define them all at once (Task.putaijlist) or in convenient large chunks (Task.putacollist etc.)
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Use one or no environment

Share the environment between all tasks in one process. For most applications you don’t need an explicit
environment at all.

Read part of the solution

When fetching the solution, data has to be copied from the optimizer to the user’s data structures.
Instead of fetching the whole solution, consider fetching only the interesting part (see for example Task.
getzzslice and similar).

Avoiding memory fragmentation

MOSEK stores the optimization problem in internal data structures in the memory. Initially MOSEK
will allocate structures of a certain size, and as more items are added to the problem the structures are
reallocated. For large problems the same structures may be reallocated many times causing memory
fragmentation. One way to avoid this is to give MOSEK an estimated size of your problem using the
functions:

e Task.putmaznumvar. Estimate for the number of variables.

e Task.putmaznumcon. Estimate for the number of constraints.

e Task.putmaznumbarvar. Estimate for the number of semidefinite matrix variables.
e Task.putmaznumanz. Estimate for the number of non-zeros in A.

e Task.putmaznumgnz. Estimate for the number of non-zeros in the quadratic terms.

Nomne of these functions changes the problem, they only serve as hints. If the problem ends up growing
larger, the estimates are automatically increased.

Do not mix put- and get- functions

MOSEK will queue put- requests internally until a get- function is called. If put- and get- calls are
interleaved, the queue will have to be flushed more frequently, decreasing efficiency.
In general get- commands should not be called often (or at all) during problem setup.

Use the LIFO principle

When removing constraints and variables, try to use a LIFO (Last In First Out) approach. MOSEK
can more efficiently remove constraints and variables with a high index than a small index.

An alternative to removing a constraint or a variable is to fix it at 0, and set all relevant coefficients
to 0. Generally this will not have any impact on the optimization speed.

Add more constraints and variables than you need (now)

The cost of adding one constraint or one variable is about the same as adding many of them. Therefore,
it may be worthwhile to add many variables instead of one. Initially fix the unused variable at zero, and
then later unfix them as needed. Similarly, you can add multiple free constraints and then use them as
needed.

Do not remove basic variables

When performing re-optimizations, instead of removing a basic variable it may be more efficient to fix
the variable at zero and then remove it when the problem is re-optimized and it has left the basis. This
makes it easier for MOSEK to restart the simplex optimizer.
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10.6 The license system

MOSEK is a commercial product that always needs a valid license to work. MOSEK uses a third
party license manager to implement license checking. The number of license tokens provided determines
the number of optimizations that can be run simultaneously.

By default a license token remains checked out from the first optimization until the end of the
MOSEK session, i.e.

e a license token is checked out when Task.optimize is first called, and
e it is returned when the MOSEK environment is deleted.

Calling Task.optimize from different threads using the same MOSEK environment only consumes
one license token.

Starting the optimization when no license tokens are available will result in an error.

Default behaviour of the license system can be changed in several ways:

o Setting the parameter tparam.cache_license to onoffkey.off will force MOSEK to return
the license token immediately after the optimization completed.

e Setting the license wait flag with the parameter iparam. license_wait will force MOSEK to wait
until a license token becomes available instead of returning with an error. The wait time between
checks can be set with Env.putlicensewait.

e Additional license checkouts and checkins can be performed with the functions Env.
checkinlicense and Env.checkoutlicense.

e Usually the license system is stopped automatically when the MOSEK library is unloaded. How-
ever, when the user explicitly unloads the library (using e.g. FreeLibrary), the license system
must be stopped before the library is unloaded. This can be done by calling the function Env.
licensecleanup as the last function call to MOSEK.

10.7 Deployment

When redistributing a Java application using the MOSEK Optimizer API for Java 11.0.26, the following
shared libraries from the MOSEK bin folder are required:

e Linux : libmosek64, libmosekxx, libmosekjava, 1libtbb,
e Windows : mosek64, mosekxx, mosekjava, tbb,
e OSX : libmosek64, libmosekxx, libmosekjava, 1ibtbb,

and the JAR file mosek. jar. By default the Java interface will look for the binaries in the same
directory as the . jar file, so they should be placed in the same directory when redistributing. They can
also be pre-loaded with loadLibrary.
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Chapter 11

Case Studies

In this section we present some case studies in which the Optimizer API for Java is used to solve real-life
applications. These examples involve some more advanced modeling skills and possibly some input data.
The user is strongly recommended to first read the basic tutorials of Sec. 6 before going through these
advanced case studies.

e Portfolio Optimization

— Keywords: Markowitz model, variance, risk, efficient frontier, factor model, transaction cost,
market impact cost

— Type: Conic Quadratic, Power Cone, Mixed-Integer Optimization

e Logistic regression

— Keywords: machine learning, logistic regression, classifier, log-sum-exp, softplus, regulariza-
tion

— Type: Exponential Cone, Quadratic Cone
Concurrent Optimizer

— Keywords: Concurrent optimization

— Type: Linear Optimization, Mixed-Integer Optimization

11.1 Portfolio Optimization

In this section the Markowitz portfolio optimization problem and variants are implemented using Opti-
mizer API for Java.

Familiarity with Sec. 6.2 is recommended to follow the syntax used to create affine conic constraints
(ACCs) throughout all the models appearing in this case study.

Basic Markowitz model
Efficient frontier

Factor model and efficiency
Market impact costs
Transaction costs

Cardinality constraints

137



11.1.1 The Basic Model

The classical Markowitz portfolio optimization problem considers investing in n stocks or assets held
over a period of time. Let z; denote the amount invested in asset j, and assume a stochastic model
where the return of the assets is a random variable r with known mean

uw=Er
and covariance

S=E(r-pr-m

T2 with mean (or expected return)

The return of the investment is also a random variable y = r
Ey= "z
and variance
E(y — Ey)? = 27>z
The standard deviation
VaTSe

is usually associated with risk.

The problem facing the investor is to rebalance the portfolio to achieve a good compromise between

risk and expected return, e.g., maximize the expected return subject to a budget constraint and an upper
bound (denoted 7) on the tolerable risk. This leads to the optimization problem

maximize 'z
subject to eTe = w+elal,
T < A2 (11.1)
z > 0.

The variables x denote the investment i.e. x; is the amount invested in asset j and x? is the initial
holding of asset j. Finally, w is the initial amount of cash available.

A popular choice is 2% = 0 and w = 1 because then z; may be interpreted as the relative amount of
the total portfolio that is invested in asset j.

Since e is the vector of all ones then

n
T — .
e r= g T;
Jj=1

is the total investment. Clearly, the total amount invested must be equal to the initial wealth, which is

w + eTxO.

This leads to the first constraint

eer=w+e x.

The second constraint

tTYr < A2
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ensures that the variance, is bounded by the parameter 2. Therefore, v specifies an upper bound of
the standard deviation (risk) the investor is willing to undertake. Finally, the constraint

Z‘JZO

excludes the possibility of short-selling. This constraint can of course be excluded if short-selling is
allowed.

The covariance matrix X is positive semidefinite by definition and therefore there exist a matrix
G € R™** such that

¥ =GGT. (11.2)

In general the choice of G is not unique and one possible choice of G is the Cholesky factorization of X.
However, in many cases another choice is better for efficiency reasons as discussed in Sec. 11.1.3. For a
given G we have that

Y = 2TGGTz
= |l67a|”.
Hence, we may write the risk constraint as
3> 6"z

or equivalently
(’Y,GTIE) c Qk-i-l7

where QF*! is the (k + 1)-dimensional quadratic cone. Note that specifically when G is derived using
Cholesky factorization, k = n.
Therefore, problem (11.1) can be written as

maximize ulx
subject to eTe = w+elal,
(’)/ GT.CL') c Qk+1 (11'3)
z > 0,

which is a conic quadratic optimization problem that can easily be formulated and solved with Optimizer
API for Java. Subsequently we will use the example data
w= [ 0.0720,0.1552,0.1754,0.0898, 0.4290, 0.3929, 0.3217,0.1838 ]T

and

[0.0946 0.0374 0.0349 0.0348 0.0542 0.0368 0.0321 0.0327 |
0.0374 0.0775 0.0387 0.0367 0.0382 0.0363 0.0356 0.0342
0.0349 0.0387 0.0624 0.0336 0.0395 0.0369 0.0338 0.0243
0.0348 0.0367 0.0336 0.0682 0.0402 0.0335 0.0436 0.0371
0.0542 0.0382 0.0395 0.0402 0.1724 0.0789 0.0700 0.0501
0.0368 0.0363 0.0369 0.0335 0.0789 0.0909 0.0536 0.0449
0.0321 0.0356 0.0338 0.0436 0.0700 0.0536 0.0965 0.0442

| 0.0327 0.0342 0.0243 0.0371 0.0501 0.0449 0.0442 0.0816

Using Cholesky factorization, this implies

[ 0.3076 0.1215 0.1134 0.1133 0.1763 0.1197 0.1044 0.1064 ]
0. 0.2504 0.0995 0.0916 0.0669 0.0871 0.0917 0.0851
0. 0.1991 0.0587 0.0645 0.0737 0.0647 0.0191

0.
ar — 0. 0. 0. 0.2088 0.0493 0.0365 0.0938 0.0774
- 0. 0. 0. 0. 0.3609 0.1257 0.1016 0.0571
0. 0. 0. 0. 0. 0.2155 0.0566 0.0619
0. 0. 0. 0. 0. 0. 0.2251 0.0333
0. 0. 0. 0. 0. 0. 0. 0.2202

In Sec. 11.1.3, we present a different way of obtaining G based on a factor model, that leads to more
efficient computation.
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Why a Conic Formulation?

Problem (11.1) is a convex quadratically constrained optimization problem that can be solved directly
using MOSEK. Why then reformulate it as a conic quadratic optimization problem (11.3)? The main
reason for choosing a conic model is that it is more robust and usually solves faster and more reliably. For
instance it is not always easy to numerically validate that the matrix ¥ in (11.1) is positive semidefinite
due to the presence of rounding errors. It is also very easy to make a mistake so 3 becomes indefinite.
These problems are completely eliminated in the conic formulation.

Moreover, observe the constraint

IGT || <~
more numerically robust than
2I'Yr < 72

for very small and very large values of 7. Indeed, if say v ~ 10* then 72 ~ 10, which introduces a
scaling issue in the model. Hence, using conic formulation we work with the standard deviation instead
of variance, which usually gives rise to a better scaled model.

Example code

Listing 11.1 demonstrates how the basic Markowitz model (11.3) is implemented.

Listing 11.1: Code implementing problem (11.3).

package com.mosek.example;
import mosek.solsta;
import mosek.Exception;

public class portfolio_1_basic {

public static void main (String[] args) {
// Since the value infinity is never used, we define
// 'infinity' for symbolic purposes only
int n = 8;
double infinity = O;
double gamma = 36.0;
double[] mu = {0.07197349, 0.15518171, 0.17535435, 0.0898094 , 0.42895777, O.
39291844, 0.32170722, 0.18378628};
double[][] GT = {

{0.30758, 0.12146, 0.11341, 0.11327, 0.17625, 0.11973, 0.10435, 0.10638%},
{0. , 0.25042, 0.09946, 0.09164, 0.06692, 0.08706, 0.09173, 0.08506},
{o. , 0. , 0.19914, 0.05867, 0.06453, 0.07367, 0.06468, 0.01914},
{0. , 0. , 0. , 0.20876, 0.04933, 0.03651, 0.09381, 0.07742},
{0. , 0. , 0. , 0. , 0.36096, 0.12574, 0.10157, 0.0571 },
{0. , 0. , 0. , 0. , 0. , 0.21552, 0.05663, 0.06187%},
{0. , 0. , 0. , 0. , 0. , 0. , 0.22514, 0.03327%},
{o. , 0. , 0. , 0. , 0. , 0. , 0. , 0.2202 }

g

int k = GT.length;

double[] x0 = {8.0, 5.0, 3.0, 5.0, 2.0, 9.0, 3.0, 6.0};
double w = 59;

double totalBudget;

//0ffset of wvariables into the API wariable.
int numvar = n;

int voff_x = 0;

(continues on next page)
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// Constraints offsets
int numcon = 1;
int coff_bud = 0;

try (mosek.Task task = new mosek.Task())

{

// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }}
)3

// Holding variable = of length n
// No other auziliary variables are needed in this formulation
task.appendvars (numvar) ;

// Setting up vartable
for (int j = 0; j < mn; ++j)
{
/* Optionally we can give the variables names */
task.putvarname(voff_x + j, "x[" + (j + 1) + "1");
/% No short-selling - 2"l = 0, z"u = inf */
task.putvarbound(voff_x + j, mosek.boundkey.lo, 0.0, infinity);
}

// One linear constraint: total budget
task.appendcons (1) ;
task.putconname (coff_bud, "budget");
for (int j = 0; j < n; ++j)
{
/* Coefficients in the first row of A4 */
task.putaij(coff_bud, voff_x + j, 1.0);
}
totalBudget = w;
for (int i = 0; i < n; ++i)
{
totalBudget += x0[i];
}
task.putconbound(coff_bud, mosek.boundkey.fx, totalBudget, totalBudget);

// Input (gamma, GTz) in the AFE (affine ezpression) storage

// We need k+1 rows

task.appendafes(k + 1);

// The first affine expression = gamma

task.putafeg(0, gamma) ;

// The remaining k expressions comprise GT+xr, we add them row by row

// In more realisic scenarios it would be better to extract nonzeros and inputy
—1n sparse form

int[] vslice_x = new int[n];
for (int i = 0; i < n; ++1i)
{

vslice_x[i] = voff_x + 1ij;
}

for (int i = 0; i < k; ++1i)

(continues on next page)
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{
task.putafefrow(i + 1, vslice_x, GT[i]);

}

// Input the affine conic constraint (gamma, GT*z) \in {Cone
// Add the quadratic domain of dimension k+1

long qdom = task.appendquadraticconedomain(k + 1);

// Add the constraint

task.appendaccseq(qdom, O, null);

task.putaccname (0, "risk");

// Objective: mazimize expected return mu~T z
for (int j = 0; j < mn; ++j)
{
task.putcj(voff_x + j, muljl);
}

task.putobjsense (mosek.objsense.maximize) ;
task.optimize() ;

/* Display solution summary for quick inspection of results */
task.solutionsummary (mosek.streamtype.log) ;

// Check if the interior point solution is an optimal point
solsta solsta = task.getsolsta(mosek.soltype.itr);
if (solsta != mosek.solsta.optimal)
{
// See https://docs.mosek.com/latest/javaapi/accessing-solution.html about,
—handling solution statuses.
throw new Exception(6010, String.format("Unexpected solution status: %s",,
—,solsta));

3

task.writedata("dump.ptf");

/* Read the results */
double expret = 0.0;
double[] xx = task.getxxslice(mosek.soltype.itr, voff_x, voff_x + n);

for (int j = 0; j < n; ++j)
expret += mul[j] * xx[voff_x + jl;

System.out.printf ("\nExpected return e for gamma %e\n", expret, gamma);

The code is organized as follows:

e We have n optimization variables, one per each asset in the portfolio. They correspond to the
variable  from (11.1) and their indices as variables in the task are from 0 to n — 1 (inclusive).

e The linear part of the problem: budget constraint, no-short-selling bounds and the objective are
added in the linear data of the task (A matrix, ¢ vector and bounds) following the techniques
introduced in the tutorial of Sec. 6.1.

e For the quadratic constraint we follow the path introduced in the tutorial of Sec. 6.2. We add
the vector (v, GTz) to the affine expression storage (AFE), create a quadratic domain of suitable
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length, and add the affine conic constraint (ACC) with the selected affine expressions. In the
segment

// Input the affine conic constraint (gamma, GT*z) \in {Cone
// Add the quadratic domain of dimension k+1

long qdom = task.appendquadraticconedomain(k + 1);

// Add the constraint

task.appendaccseq(qdom, O, null);

we use Task.appendaccseq to append a single ACC with the quadratic domain qdom and with
a sequence of affine expressions starting at position 0 in the AFE storage and of length equal to
the dimension of gdom. This is the simplest way to achieve what we need, since previously we also
stored the required rows in AFE in the same order.

11.1.2 The Efficient Frontier

The portfolio computed by the Markowitz model is efficient in the sense that there is no other portfolio
giving a strictly higher return for the same amount of risk. An efficient portfolio is also sometimes called
a Pareto optimal portfolio. Clearly, an investor should only invest in efficient portfolios and therefore it
may be relevant to present the investor with all efficient portfolios so the investor can choose the portfolio
that has the desired tradeoff between return and risk.

Given a nonnegative « the problem

maximize plz — oz’ Yx
subject to  eTw = w + eTa?, (11.4)
x > 0.

is one standard way to trade the expected return against penalizing variance. Note that, in contrast to
the previous example, we explicitly use the variance (||GT z||%) rather than standard deviation (||GTz||2),
therefore the conic model includes a rotated quadratic cone:

maximize wl'e —as
subject to efe = w+ela?, (11.5)
(5,0.5,GTz) € QF+2 (equiv. to s > ||GTz|)2 = 2T%x), ‘
x > 0.

The parameter « specifies the tradeoff between expected return and variance. Ideally the problem (11.4)
should be solved for all values > 0 but in practice it is impossible. Using the example data from Sec.
11.1.1, the optimal values of return and variance for several values of « are shown in the figure.

Example code

Listing 11.2 demonstrates how to compute the efficient portfolios for several values of a.

Listing 11.2: Code for the computation of the efficient frontier
based on problem (11.4).

package com.mosek.example;
import mosek.solsta;
import mosek.Exception;

import mosek.*;

public class portfolio_2_frontier {
public static void main (String[] args) {
// Since the value infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = O;
int n = 8;
double[] mu = {0.07197, 0.15518, 0.17535, 0.08981, 0.42896, 0.39292, 0.32171, O.

(continues on next page)
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Fig. 11.1: The eflicient frontier for the sample data.
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—18379};
double[][] GT = {
{0.30758, 0.12146, 0.11341, 0.11327, 0.17625, 0.11973, 0.10435, 0.10638}%},
{0. , 0.25042, 0.09946, 0.09164, 0.06692, 0.08706, 0.09173, 0.08506},
{0. o @ , 0.19914, 0.05867, 0.06453, 0.07367, 0.06468, 0.01914},
{o0. , O , O , 0.20876, 0.04933, 0.03651, 0.09381, 0.07742},
{0. , O , 0 5 ©o , 0.36096, 0.12574, 0.10157, 0.0571 },
{o. o © , 0 5 © 5 @ , 0.21552, 0.05663, 0.06187},
{0. , O ,» O s @ s @ o ©c , 0.22514, 0.03327},
{o. , O , O SOE s @ s ©c s ©c , 0.2202 }

};

int k = GT.length;

double[] x0 = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

double w=1.0;

double[] alphas = {0.0, 0.01, 0.1, 0.25, 0.30, 0.35, 0.4, 0.45, 0.5, 0.75, 1.0, 1.
~5, 2.0, 3.0, 10.0};

int numalphas = 15;

double  totalBudget;

//0ffset of wariables into the API wariable.
int numvar = n + 1;

int voff_x = 0;

int voff_s = n;

// Offset of constratints
int coff_bud = O;

try (Task task = new mosek.Task () )
{

// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

task.appendvars (numvar) ;

// Setting up vartable z

for (int j = 0; j < mn; ++j)

{
/* Optionally we can give the variables names */
task.putvarname(voff_x + j, "x[" + (j + 1) + "1");
/% No short-selling - 2"l = 0, z"u = inf */
task.putvarbound(voff_x + j, mosek.boundkey.lo, 0.0, infinity);

}

task.putvarname (voff_s, "s");

task.putvarbound(voff_s, mosek.boundkey.fr, -infinity, infinity);

// One linear constraint: total budget
task.appendcons (1) ;
task.putconname (coff_bud, "budget");
for (int j = 0; j < n; ++j)
{
/* Coefficients in the first row of 4 */

(continues on next page)
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task.putaij(coff_bud, voff_x + j, 1.0);
}
totalBudget = w;
for (int i = 0; i < n; ++1i)
{
totalBudget += x0[i];
}
task.putconbound(coff_bud, mosek.boundkey.fx, totalBudget, totalBudget);

// Input (gamma, GTz) in the AFE (affine expression) storage
// We build the following F and g for wariables [z, s]:

// [o, 1] [o 1]
// F = 1[0, 0], g = [0.5]
// [GT,0] o 7

// We need k+2 Tows
task.appendafes(k + 2);
// The first affine expression is variable s (last wvariable, index n)
task.putafefentry(0, n, 1.0);
// The second affine expression is constant 0.5
task.putafeg(l, 0.5);
// The remaining k expressions comprise GT+x, we add them row by row
// In more realisic scenarios it would be better to extract nonzeros and inputy
—1n sparse form

int[] vslice_x = new int[n];
for (int i = 0; i < n; ++1i)
{

vslice_x[i] = voff_x + 1ij;
}
for (int i = 0; i < k; ++i)
{

task.putafefrow(i + 2, vslice_x, GT[i]);

}

// Input the affine conic constraint (gamma, GT*x) \in {Cone
// Add the quadratic domain of dimension k+l1

long rqdom = task.appendrquadraticconedomain(k + 2);

// Add the constraint

task.appendaccseq(rqdom, 0, null);

task.putaccname (0, "risk");

// Objective: maxzimize expected return mu~T x
for (int j = 0; j < mn; ++j)
{
task.putcj(voff_x + j, mul[jl);
}

task.putobjsense(mosek.objsense.maximize) ;
task.writedata("dump.ptf");

try {
//Turn all log output off.
task.putintparam(mosek.iparam.log, 0);

System.out.printf ("%-12s %-12s %-12s\n", "alpha", "exp ret", "std. dev.");
for (int j = 0; j < numalphas; ++j)

{

(continues on next page)
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task.putcj(voff_s, -alphas[j]);
task.optimize();
task.solutionsummary (mosek.streamtype.log) ;

// Check if the interior point solution is an optimal point
solsta solsta = task.getsolsta(mosek.soltype.itr);
if (solsta != mosek.solsta.optimal)
{
// See https://docs.mosek.com/latest/javaapi/accessing-solution.html,
—about handling solution statuses.
throw new Exception(6010, String.format("Unexpected solution status: %s",y
—solsta));

3

double expret = 0.0, stddev = 0.0;
double[] xx = task.getxx(mosek.soltype.itr);

for (int jj = 0; jj < m; ++jj)
expret += mul[jjl * xx[jj + voff_x];

System.out.printf("%-12.3e %-12.3e %-12.3e\n", alphas[j], expret, Math.
—sqrt(xx[voff_s]));

}
System.out.println("");

} catch (mosek.Warning mw) {
System.out.println (" Mosek warning:");
System.out.println (mw.toString ());

}

} catch ( mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString ();
throw e;

}

}
}

Note that we changed the coefficient « of the variable s in a loop. This way we were able to reuse the
same model for all solves along the efficient frontier, simply changing the value of o between the solves.

11.1.3 Factor model and efficiency

In practice it is often important to solve the portfolio problem very quickly. Therefore, in this section
we discuss how to improve computational efficiency at the modeling stage.

The computational cost is of course to some extent dependent on the number of constraints and
variables in the optimization problem. However, in practice a more important factor is the sparsity: the
number of nonzeros used to represent the problem. Indeed it is often better to focus on the number of
nonzeros in G see (11.2) and try to reduce that number by for instance changing the choice of G.

In other words if the computational efficiency should be improved then it is always good idea to start
with focusing at the covariance matrix. As an example assume that

S=D+VVT
where D is a positive definite diagonal matrix. Moreover, V is a matrix with n rows and k columns.

Such a model for the covariance matrix is called a factor model and usually &k is much smaller than n.
In practice k tends to be a small number independent of n, say less than 100.
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One possible choice for G is the Cholesky factorization of ¥ which requires storage proportional to
n(n + 1)/2. However, another choice is

G=|[DV* V]
because then
GGT"=D+VvVvT,

This choice requires storage proportional to n + kn which is much less than for the Cholesky choice of
G. Indeed assuming k is a constant storage requirements are reduced by a factor of n.

The example above exploits the so-called factor structure and demonstrates that an alternative choice
of G may lead to a significant reduction in the amount of storage used to represent the problem. This
will in most cases also lead to a significant reduction in the solution time.

The lesson to be learned is that it is important to investigate how the covariance matrix is formed.
Given this knowledge it might be possible to make a special choice for G that helps reducing the storage
requirements and enhance the computational efficiency. More details about this process can be found in
[And13].

Factor model in finance

Factor model structure is typical in financial context. It is common to model security returns as the
sum of two components using a factor model. The first component is the linear combination of a small
number of factors common among a group of securities. The second component is a residual, specific
to each security. It can be written as R = )" j B;F; + 0, where R is a random variable representing the
return of a security at a particular point in time, F} is the random variable representing the common
factor j, B; is the exposure of the return to factor j, and 6 is the specific component.

Such a model will result in the covariance structure

Y =%y + BYrp7,

where Y r is the covariance of the factors and Xy is the residual covariance. This structure is of the form
discussed earlier with D = Xg and V = 8P, assuming the decomposition X = PP7T. If the number of
factors k is low and Xy is diagonal, we get a very sparse G that provides the storage and solution time
benefits.

Example code

Here we will work with the example data of a two-factor model (k = 2) built using the variables

[ 0.4256  0.1869
0.2413  0.3877
0.2235  0.3697
~ | 0.1503  0.4612
B= 1.5325 —0.2633 |’
1.2741 —0.2613
0.6939  0.2372
0.5425 0.2116

6 = [0.0720,0.0508,0.0377,0.0394, 0.0663, 0.0224, 0.0417, 0.0459],
and the factor covariance matrix is

v _ [ 00620 0.0577
=1 0.0577 0.0908 |’

giving

p_[02401 0.
~ | 02316 0.1928 |
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Then the matrix G would look like

G=lpp 5| =

This matrix is indeed very sparse.

[0.1493  0.0360
0.1499  0.0747
0.1413  0.0713
0.1442  0.0889
0.3207  —0.0508
0.2568 —0.0504
0.2277  0.0457

| 01841 0.0408

0.2683

Pereee e

0. 0 0. 0. 0 0.
0.2254 0. 0. 0. 0 0.

0. 0.1942 0. 0. 0 0.

0. 0 0.1985 0. 0 0.

0. 0 0. 0.2576 0. 0.

0. 0 0. 0. 0.1497 0.

0. 0 0. 0. 0 0.2042

0. 0 0. 0. 0 0 0.

In general, we get an n X (n+ k) size matrix this way with & full columns and an n x n diagonal part.
In order to maintain a sparse representation we do not construct the matrix G explicitly in the code but
instead work with two pieces of data: the dense matrix Geactor = BP of shape n x k and the diagonal

vector 0 of length n.

Example code

In the following we demonstrate how to write code to compute the matrix Gyacior Of the factor model.

We start with the inputs

Listing 11.3: Inputs for the computation of the matrix Gactor from

the factor model.

// Factor exzposure matric

double[][] B =

{
{0.4256, 0.1869%},
{0.2413, 0.3877},
{0.2235, 0.3697},
{0.1503, 0.4612%},
{1.5325, -0.2633},
{1.2741, -0.2613},
{0.6939, 0.2372},
{0.5425, 0.2116}

};

// Factor covariance matriz

double[][] S_F =

{

{0.0620, 0.0577%},
{0.0577, 0.0908}
};

// Spectific risk components

double[] theta = {0.0720, 0.0508, 0.0377, 0.0394, 0.0663, 0.0224, 0.0417, 0.0459};

Then the matrix Geactor 1S Obtained as:

double[] [] P = cholesky(S_F);

double[] [] G_factor = matrix_mul(B, P);

The functions used above to operate on matrices are defined in the source file that can be downloaded

from Listing 11.3.

The code for computing an optimal portfolio in the factor model is very similar to the one from the
basic model in Listing 11.1 with one notable exception: we construct the expression G” 2 appearing in

the conic constraint by stacking together two separate vectors G . 2 and E;/ 2

factor
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// Input (gamma, G_factor_T z, diag(sqrt(theta))*z) in the AFE (affine,
—expression) storage

// We need k+n+1 rows and we fill them in in three parts

task.appendafes(k + n + 1);

// 1. The first affine expresston = gamma, will be spectified later

// 2. The next k expressions comprise G_factor_T*z, we add them row by row

// transposing the matriz G_factor on the fly

int[] vslice_x = new int[n];

double[] G_factor_T_row = new double[n];

for (int 1 = 0; i < n; ++i)

{
vslice_x[i] = voff_x + i;

}

for (int i = 0; i < k; ++1i)

{
for (int j = 0; j < n; ++j) G_factor_T_row[j] = G_factor[j][i];
task.putafefrow(i + 1, vslice_x, G_factor_T_row);

+

// 3. The remaining n rows contain sqrt(theta) on the diagonal
for (int i = 0; i < n; ++i)
{

task.putafefentry(k + 1 + i, voff_x + i, Math.sqrt(thetali]));
3

The full code is demonstrated below:

Listing 11.4: Implementation of portfolio optimization in the factor
model.

public static void main (String[] args) {
// Since the value infinity is never used, we define
// 'infinity' for symbolic purposes only
double infinity = O;
int n = 8;
double W =1.0;
double[] mu {0.07197, 0.15518, 0.17535, 0.08981, 0.42896, 0.39292, O.
—32171, 0.18379};
double[] x0 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0%};
// Factor exposure matriz
double[][] B =
{

Il

{0.4256, 0.1869%},
{0.2413, 0.3877},
{0.2235, 0.3697},
{0.1503, 0.4612%},
{1.5325, -0.2633},
{1.2741, -0.2613},
{0.6939, 0.2372},
{0.5425, 0.2116}
};

// Factor cowvariance matriz
double[][] S_F =

{

{0.0620, 0.0577}%,
{0.0577, 0.0908}

Ig
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// Spectific risk components
double[] theta = {0.0720, 0.0508, 0.0377, 0.0394, 0.0663, 0.0224, 0.0417, 0.0459};

double[] [] P = cholesky(S_F);
double[] [] G_factor = matrix_mul(B, P);

int k = G_factor[0].length;
double[] gammas = {0.24, 0.28, 0.32, 0.36, 0.4, 0.44, 0.48};
double totalBudget;

//0ffset of wariables into the API wariable.
int numvar = n;
int voff_x = 0;

// Constraint offset
int coff_bud = 0;

try (mosek.Task task = new mosek.Task() )

{

// Directs the log task stream to the user specified

// method task_msg_obj.stream

task.set_Stream(

mosek.streamtype.log,

new mosek.Stream()

{ public void stream(String msg) { System.out.print(msg); }}
)s

// Holding variable z of length n
// No other auziliary variables are needed in this formulation
task.appendvars (numvar) ;

// Setting up variable z
for (int j = 0; j < n; ++j)
{
/% Optionally we can give the variables names */
task.putvarname(voff_x + j, "x[" + (§ + 1) + "1");
/* No short-selling - ="l = 0, z"u = inf */
task.putvarbound(voff_x + j, mosek.boundkey.lo, 0.0, infinity);
}

// One linear constraint: total budget
task.appendcons (1) ;
task.putconname (coff_bud, "budget");
for (int j = 0; j < n; ++j)
{
/* Coefficients in the first row of 4 */
task.putaij(coff_bud, voff_x + j, 1.0);
}
totalBudget = w;
for (int i = 0; i < n; ++1i)
{
totalBudget += x0[i];
}
task.putconbound(coff_bud, mosek.boundkey.fx, totalBudget, totalBudget);

// Input (gamma, G_factor_T z, diag(sqrt(theta))*z) in the AFE (affine,

(continues on next page)
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—ezxpression) storage

// We need k+n+l rows and we fill them in in three parts

task.appendafes(k + n + 1);

// 1. The first affine expresston = gamma, will be spectified later

// 2. The next k expressions comprise G_factor_T*z, we add them row by row
// transposing the matriz G_factor on the fly

int[] vslice_x = new int[n];

double[] G_factor_T_row = new double[n];

for (int i = 0; i < n; ++1i)

{
vslice_x[i] = voff_x + 1ij;

}

for (int i = 0; i < k; ++i)

{
for (int j = 0; j < n; ++j) G_factor_T_row[jl = G_factor[jl[il;
task.putafefrow(i + 1, vslice_x, G_factor_T_row);

}

// 3. The rematining n rows contain sqrt(theta) on the diagonal
for (int i = 0; i < n; ++i)
{

task.putafefentry(k + 1 + i, voff_x + i, Math.sqrt(thetalil));
}

// Input the affine conic constraint (gamma, G_factor_T z, diag(sqrt(theta))*z),
fCone

// Add the quadratic domain of dimension k+n+l

long qdom = task.appendquadraticconedomain(k + n + 1);

// Add the constraint

task.appendaccseq(qdom, O, null);

task.putaccname(0, "risk");

// Objective: mazimize ezpected return mu-T x
for (int j = 0; j < n; ++j)
{
task.putcj(voff_x + j, mul[jl);
}

task.putobjsense(mosek.objsense.maximize) ;

for (int i = 0; i < gammas.length; i++)
{

double gamma = gammas[i];

// Specify gamma in ACC
task.putafeg(0, gamma);

task.optimize();

/* Display solution summary for quick inspection of results */
task.solutionsummary (mosek.streamtype.log) ;

// Check if the interior point solution s an optimal point
solsta solsta = task.getsolsta(mosek.soltype.itr);
if (solsta != mosek.solsta.optimal)
{
// See https://docs.mosek.com/latest/javaapi/accessing-solution.html about,

—handling solution statuses.

(continues on next page)

152



(continued from previous page)

throw new Exception(6010, String.format ("Unexpected solution status: 7%s",,
—solsta));

}

task.writedata("dump.ptf");

/* Read the results */
double expret = 0.0;
double[] xx = task.getxxslice(mosek.soltype.itr, voff_x, voff_x + n);

for (int j = 0; j < nj; ++j)
expret += mu[j] * xx[voff_x + jl;

System.out.printf ("\nExpected return %e for gamma %e\n", expret, gamma);

11.1.4 Slippage Cost

The basic Markowitz model assumes that there are no costs associated with trading the assets and that
the returns of the assets are independent of the amount traded. Neither of those assumptions is usually
valid in practice. Therefore, a more realistic model is

maximize uTz

subject to eTz + Z;;l Tj(Az;) =
Ty < oo (11.6)
r =

Here Az; is the change in the holding of asset j i.e.

.. .0
Azx; =z T;

and T;(Az;) specifies the transaction costs when the holding of asset j is changed from its initial value.
In the next two sections we show two different variants of this problem with two nonlinear cost functions
T.

11.1.5 Market Impact Costs

If the initial wealth is fairly small and no short selling is allowed, then the holdings will be small and the
traded amount of each asset must also be small. Therefore, it is reasonable to assume that the prices
of the assets are independent of the amount traded. However, if a large volume of an asset is sold or
purchased, the price, and hence return, can be expected to change. This effect is called market impact
costs. It is common to assume that the market impact cost for asset j can be modeled by

T;(Axj) = mj|Ax;*/?

where m; is a constant that is estimated in some way by the trader. See [GKO00] [p. 452] for details.
From the Modeling Cookbook we know that ¢ > \z|3/2 can be modeled directly using the power cone
735/3,1/3

((to2) £ 2> |22y = {(t.2) : (t,1,2) € 7)??/3,1/3}

Hence, it follows that 37, Tj(Aw;) = Y7 myla; — 29[*/% can be modeled by Y7, mjt; under the
constraints

% = ij/* :/E‘}\,
2/3,1/3
(tjv]-vzj) € 7)3 .
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Unfortunately this set of constraints is nonconvex due to the constraint

zj = lx; — 3:9| (11.7)

but in many cases the constraint may be replaced by the relaxed constraint

zj 2 ‘xj - .’E§J|, (11'8)

For instance if the universe of assets contains a risk free asset then
zj > |z — x9| (11.9)

cannot hold for an optimal solution.

If the optimal solution has the property (11.9) then the market impact cost within the model is larger
than the true market impact cost and hence money are essentially considered garbage and removed by
generating transaction costs. This may happen if a portfolio with very small risk is requested because
the only way to obtain a small risk is to get rid of some of the assets by generating transaction costs.
We generally assume that this is not the case and hence the models (11.7) and (11.8) are equivalent.

The above observations lead to

maximize ul'z
subject to efe+mTt = w+elad,
(v,GTz) e Q1 (11.10)
(tj,1,x; —x?) € P§/3’1/3, 1,...,n,
x > 0.

The revised budget constraint
ele+mTt=w+elz°

specifies that the initial wealth covers the investment and the transaction costs. It should be mentioned
that transaction costs of the form

tj = |z
where p > 1 is a real number can be modeled with the power cone as
1/p,1—1
(tj,].,Zj) GPS/p /p.

See the Modeling Cookbook for details.

Example code

Listing 11.5 demonstrates how to compute an optimal portfolio when market impact cost are included.

Listing 11.5: Implementation of model (11.10).

package com.mosek.example;

import mosek.solsta;
import mosek.Exception;

public class portfolio_3_impact {

public static void main (String[] args) {
// Since the value infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = O;
int n = 8;
double[] mu = {0.07197, 0.15518, 0.17535, 0.08981, 0.42896, 0.39292, 0.32171, O.

(continues on next page)
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18379} ;

double[][] GT = {
{0.30758, 0.12146, 0.11341, 0.11327, 0.17625, 0.11973, 0.10435, 0.10638},
{0. , 0.25042, 0.09946, 0.09164, 0.06692, 0.08706, 0.09173, 0.08506},
{0. , 0. , 0.19914, 0.05867, 0.06453, 0.07367, 0.06468, 0.01914},
{0. , 0 , 0 , 0.20876, 0.04933, 0.03651, 0.09381, 0.07742},
{0. , O , 0 , O , 0.36096, 0.12574, 0.10157, 0.0571 },
{0. , 0 , 0 , O , O. , 0.21552, 0.05663, 0.06187},
{0. , 0 , O , O , 0. , 0. , 0.22514, 0.03327},
{0. , O , O , O , 0. , 0. , O , 0.2202 }

g

int k = GT.length;

double[] x0 = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

double w=1.0;

double gamma = 0.36;

double  totalBudget;

double[] m = new double[n];

for (int i = 0; i < n; ++i)

{
m[i] = 0.01;

}

// Offset of wariables into the API wartable.

int numvar = 3 * n;

int voff_x = 0;

int voff_c = n;

int voff_z = 2 * n;

// Offset of constraints.
int numcon = 2 *x n + 1;
int coff_bud = 0;
int coff_absl = 1;
int coff_abs2 = 1 + n;
try (mosek.Task task = new mosek.Task() )
{
// Directs the log
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()

task stream to the user spectified

{ public void stream(String msg) { System.out.print(msg); }1});

// Variables (vector of z, c, z)
task.appendvars (numvar) ;

for (int j = 0; j < mn; ++j)

{

/* Optionally we can give the variables names */

task.putvarname(voff_x + j, "x[" + (j + 1) + "1");
task.putvarname(voff_c + j, "c[" + (j + 1) + "1");
task.putvarname(voff_z + j, "z[" + (j + 1) + "1");

/* Apply wvariable bounds (z >= 0, c and z free)

*/

task.putvarbound(voff_x + j, mosek.boundkey.lo, 0.0, infinity);

task.putvarbound(voff_c + j, mosek.boundkey.fr,
task.putvarbound(voff_z + j, mosek.boundkey.fr,
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3

// Linear constraints

// - Total budget

task.appendcons (1) ;

task.putconname (coff_bud, "budget");

for (int j = 0; j < mn; ++j)

{
/* Coefficients in the first row of 4 */
task.putaij(coff_bud, voff_x + j, 1.0);
task.putaij(coff_bud, voff_c + j, m[jl);

}
totalBudget = w;
for (int i = 0; i < n; ++i)
{
totalBudget += x0[i];
X

(continued from previous page)

task.putconbound(coff_bud, mosek.boundkey.fx, totalBudget, totalBudget);

// - Absolute value

task.appendcons(2 * n);

for (int i = 0; i < n; ++1i)

{
task.putconname (coff_absl + i, "zabsi[" + (1 + i) + "]1");
task.putaij(coff_absl + i, voff_x + i, -1.0);
task.putaij(coff_absl + i, voff_z + i, 1.0);
task.putconbound(coff_absl + i, mosek.boundkey.lo, -x0[i], infinity);
task.putconname (coff_abs2 + i, "zabs2[" + (1 + i) + "]1");
task.putaij(coff_abs2 + i, voff_x + i, 1.0);
task.putaij(coff_abs2 + i, voff_z + i, 1.0);
task.putconbound(coff_abs2 + i, mosek.boundkey.lo, x0[i], infinity);

}

// ACCs

int aoff_q = 0;

int aoff_pow = k + 1;

// - (gamma, GTz) in §(k+1)

// The part of F and g for wvartiable z:

// [o, o, oJj [gamma]

// F = [GT, 0, 0], g = [0 ]

task.appendafes(k + 1);

task.putafeg(aoff_q, gamma);

int[] vslice_x = new int[n];

for (int i = 0; i < n; ++1i)

{
vslice_x[i] = voff_x + i;

}

for (int i = 0; i < k; ++1i)

{

task.putafefrow(aoff_q + i + 1, vslice_x, GT[i]);

}

long qdom = task.appendquadraticconedomain(k + 1);

task.appendaccseq(qdom, aoff_q, null);

task.putaccname (aoff_q, "risk");

// - (c_g, 1, z_3) in P3(2/3, 1/3)
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// The part of F and g for wartables [c, z]:

// [o, I, 0] [0]
// F = 1[0, 0, I], g = [0]
// [o, 0, 0] [1]

task.appendafes(2 * n + 1);
for (int i = 0; i < n; ++i)
{
task.putafefentry(aoff_pow + i, voff_c + i, 1.0);
task.putafefentry(aoff_pow + n + i, voff_z + i, 1.0);
}
task.putafeg(aoff_pow + 2 * n, 1.0);
// We use one row from F and g for both c_j and z_j, and the last row of F andy,
—g for the constant 1.
// NOTE: Here we reuse the last AFE and the power cone n times, but we storey
—them only once.
double[] exponents = {2, 1};
long powdom = task.appendprimalpowerconedomain(3, exponents);
long[] flat_afe_list = new long[3 * n];
long[] dom_list = new long[n];
for (int i = 0; i < n; ++1i)
{
flat_afe_list[3 * i + 0] aoff_pow + 1ij;
flat_afe_list[3 * i + 1] = aoff_pow + 2 * n;
flat_afe_list[3 * i + 2] aoff_pow + n + ij;
dom_list[i] = powdom;
}
task.appendaccs(dom_list, flat_afe_list, null);
for (int i = 0; i < n; ++i)
{
task.putaccname(i + 1, "market_impact[" + i + "]");

3

// Objective: mazimize expected return mu~T z
for (int j = 0; j < n; ++j)
{
task.putcj(voff_x + j, muljl);
}

task.putobjsense(mosek.objsense.maximize) ;

/* Solve the problem */

try {
//Turn all log output off.
//task.putintparam(mosek. iparam.log,0);

task.writedata("dump.ptf");
task.optimize();
task.solutionsummary (mosek.streamtype.log) ;

// Check if the interior point solution s an optimal point
solsta solsta = task.getsolsta(mosek.soltype.itr);
if (solsta != mosek.solsta.optimal)

{
// See https://docs.mosek.com/latest/javaapi/accessing-solution.html about,
—handling solution statuses.

(continues on next page)
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throw new Exception(6010, String.format("Unexpected solution status: %s",.

—solsta));

}

double expret = 0.0, stddev = 0.0;
double[] xx = task.getxx(mosek.soltype.itr);

for (int j = 0; j < n; ++j)
expret += muljl * xx[j + voff_x];

System.out.printf ("Expected return je for gamma %e\n\n", expret, gamma);

} catch (mosek.Warning mw) {
System.out.println (" Mosek warning:");
System.out.println (mw.toString ());

}

} catch ( mosek.Exception e) {

System.out.println ("An error/warning was encountered");

System.out.println (e.toString ());
throw e;
}
X
}

Note that in the following part of the code:

task.putafeg(aoff_pow + 2 * n, 1.0);

// We use one row from F and g for both c_j and z_j, and the last row of F andy,

—g for the constant 1.

// NOTE: Here we reuse the last AFE and the power cone n times, but we storey

—them only once.
double[] exponents = {2, 1};

long powdom = task.appendprimalpowerconedomain(3, exponents);

long[] flat_afe_list = new long[3 * n];

long[] dom_list = new long[n];

for (int i = 0; i < n; ++1i)

{
flat_afe_list[3 * i + 0] aoff_pow + ij;
flat_afe_list[3 * i + 1] aoff_pow + 2 * n;
flat_afe_list[3 * i + 2] = aoff_pow + n + ij;
dom_list[i] = powdom;

+

task.appendaccs(dom_list, flat_afe_list, null);

for (int i = 0; i < n; ++1i)

{
task.putaccname(i + 1, "market_impact[" + i + "]");
}
f f the form (ty, 1 0y ¢ P23/ Ty
we create a sequence of power cones of the form (ty, 1,z — ) € Ps . e power cones are

determined by the sequence of exponents (2,1); we create a single domain to account for that.
Moreover, note that the second coordinate of all these affine conic constraints is the same affine
expression equal to 1, and we use the feature that allows us to define this affine expression only once (as

AFE number aoff_pow + 2 * n) and reuse it in all the ACCs.
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11.1.6 Transaction Costs

Now assume there is a cost associated with trading asset j given by

07 A.’EJ = 07
fi +gj|Az;|, otherwise.

Tj(Az;) = {

Hence, whenever asset j is traded we pay a fixed setup cost f; and a variable cost of g; per unit traded.
Given the assumptions about transaction costs in this section problem (11.6) may be formulated as

maximize ula
subject to ez 4+ fTy+9gTz = w+elal,
(v,GTz) e QM
. . _ 20 L
zj = x% xj, j=1...)n, (11.11)
zj = T —xj, j=1...,n,
zj < Ujyj, i=1...,n,
y; € {0,1}, j=1,...,n,
x > 0.
First observe that
zj > |oj — x| = |Axy].

We choose U; as some a priori upper bound on the amount of trading in asset j and therefore if z; > 0
then y; = 1 has to be the case. This implies that the transaction cost for asset j is given by

Tivi + 9525

Example code

The following example code demonstrates how to compute an optimal portfolio when transaction costs
are included.

Listing 11.6: Code solving problem (11.11).

package com.mosek.example;

import mosek.solsta;
import mosek.Exception;

public class portfolio_4_transcost {
public static void main (String[] args) {

// Since the value infinity is never used, we define
// 'infinity' symbolic purposes only

double infinity = O;

int n = 8;

double[] mu = {0.07197, 0.15518, 0.17535, 0.08981, 0.42896, 0.39292, 0.32171, O.

18379} ;

double[][] GT = {
{0.30758, 0.12146, 0.11341, 0.11327, 0.17625, 0.11973, 0.10435, 0.10638},
{0. , 0.25042, 0.09946, 0.09164, 0.06692, 0.08706, 0.09173, 0.08506},
{0. , 0. , 0.19914, 0.05867, 0.06453, 0.07367, 0.06468, 0.01914},
{0. , 0. , 0. , 0.20876, 0.04933, 0.03651, 0.09381, 0.07742},
{0. , 0. , 0. , 0. , 0.36096, 0.12574, 0.10157, 0.0571 1},
{0. , 0. , 0. , O. , O. , 0.21552, 0.05663, 0.06187},
{0. , 0. ,» 0. , O. , O. , O. , 0.22514, 0.03327},
{0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.2202 }
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g
int k = GT.length;
double[] x0 = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
double w=1.0;
double gamma = 0.36;
double  totalBudget;
double[] f = new doubleln];
double[] g = new double[n];
for (int i = 0; i < n; ++i)
{

f[i] = 0.01;

gli] = 0.001;
}
// Offset of wariables.
int numvar = 3 * n;
int voff_x = 0;
int voff_z = n;
int voff_y = 2 * n;

// Offset of constraints.

int numcon = 3 * n + 1;

int coff_bud = 0;

int coff_absl = 1;

int coff_abs2 = 1 + n;

int coff_swi = 1 + 2 * n;

try (mosek.Task task = new mosek.Task() )
{

// Directs the log
// method task_msg_
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.

obj.stream

// Variables (vector of z, z, y)
task.appendvars (numvar) ;

for (int j = 0; j < n; ++j)

{

/* Optionally we can give the wariables

task.putvarname (voff_x + j, "x[" + (j +
task.putvarname(voff_z + j, "z[" + (j +
task.putvarname(voff_y + j, "y[" + (j +

/* Apply wvariable bounds (z

(continued from previous page)

0.0, 0.0%};

task stream to the user specified

out.print(msg); }});

names */

1) + "1");
1) + ll]ll);
1) + ll:lll);

>= 0, z free, y binary) */

task.putvarbound(voff_x + j, mosek.boundkey.lo, 0.0, infinity);
task.putvarbound(voff_z + j, mosek.boundkey.fr, -infinity, infinity);
task.putvarbound(voff_y + j, mosek.boundkey.ra, 0.0, 1.0);
task.putvartype(voff_y + j, mosek.variabletype.type_int);

}

// Linear constraints

// - Total budget
task.appendcons (1) ;

task.putconname (coff_bud, "budget");
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for (int j = 0; j < m; ++j)
{
/* Coefficients in the first row of 4 */
task.putaij(coff_bud, voff_x + j, 1.0);
task.putaij(coff_bud, voff_z + j, gljl);
task.putaij(coff_bud, voff_y + j, £[jl);
}
double U = w;
for (dnt i = 0; i < n; ++i)
{
U += x0[il;
}
task.putconbound(coff_bud, mosek.boundkey.fx, U, U);

// - Absolute value

task.appendcons(2 * n);

for (int i = 0; i < n; ++1i)

{
task.putconname (coff_absl + i, "zabsi[" + (1 + i) + "]1");
task.putaij(coff_absl + i, voff_x + i, -1.0);
task.putaij(coff_absl + i, voff_z + i, 1.0);
task.putconbound(coff_absl + i, mosek.boundkey.lo, -x0[i], infinity);
task.putconname (coff_abs2 + i, "zabs2[" + (1 + i) + "]1");
task.putaij(coff_abs2 + i, voff_x + i, 1.0);
task.putaij(coff_abs2 + i, voff_z + i, 1.0);
task.putconbound(coff_abs2 + i, mosek.boundkey.lo, x0[i], infinity);

}

// - Switch

task.appendcons(n) ;

for (int i = 0; i < n; ++i)

{
task.putconname (coff_swi + i, "switch[" + (1 + i) + "]1");
task.putaij(coff_swi + i, voff_z + i, 1.0);
task.putaij(coff_swi + i, voff_y + i, -U);
task.putconbound(coff_swi + i, mosek.boundkey.up, -infinity, 0.0);

3

// ACCs
int aoff_q = 0;
// - (gamma, GTz) in Q(k+1)
// The part of F and g for vartable x:
// [o, o, oJj [gamma]
// F = [GT, 0, 0], g = [0 ]
task.appendafes(k + 1);
task.putafeg(aoff_q, gamma);
int[] vslice_x = new int[n];
for (int i = 0; i < n; ++1i)
{

vslice_x[i] = voff_x + 1ij;
}
for (dnt i = 0; i < k; ++i)
{

task.putafefrow(aoff_q + i + 1, vslice_x, GT[i]);

}

long qdom = task.appendquadraticconedomain(k + 1);

(continues on next page)
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task.appendaccseq(qdom, aoff_q, null);
task.putaccname(aoff_q, "risk");

// Objective: maxzimize expected return mu"T x
for (int j = 0; j < mn; ++j)
{
task.putcj(voff_x + j, muljl);
}

task.putobjsense(mosek.objsense.maximize) ;

/* Solve the problem */

try {
//Turn all log output off.
//task.putintparam(mosek. iparam.log,0);

task.writedata("dump.ptf");
task.optimize();
task.solutionsummary(mosek.streamtype.log);

// Check if the interior point solution is an optimal point
solsta solsta = task.getsolsta(mosek.soltype.itg);
if (solsta != mosek.solsta.integer_optimal)
{
// See https://docs.mosek.com/latest/javaapi/accessing-solution.html about,
—handling solution statuses.
throw new Exception(6010, String.format("Unexpected solution status: %s",,
—solsta));

3

double expret = 0.0, stddev = 0.0;
double[] xx = task.getxx(mosek.soltype.itg);

for (int j = 0; j < n; ++j)
expret += mul[jl * xx[j + voff_x];

System.out.printf ("Expected return %e for gamma %e\n\n", expret, gamma);

} catch (mosek.Warning mw) {
System.out.println (" Mosek warning:");
System.out.println (mw.toString ());

}

} catch ( mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString ());
throw e;

}

X
}
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11.1.7 Cardinality constraints

Another method to reduce costs involved with processing transactions is to only change positions in a
small number of assets. In other words, at most K of the differences |Az;| = |z; — 29| are allowed to be
non-zero, where K is (much) smaller than the total number of assets n.

This type of constraint can be again modeled by introducing a binary variable y; which indicates if
Az; # 0 and bounding the sum of y;. The basic Markowitz model then gets updated as follows:

maximize ul'z
subject to eTe = w+ela?,
(% GTx) c Qk+1’
z; 2 xjfx?, 7=1,...,n,
zj > aY—z;,  j=1,...,n, (11.12)
Zj < ijj, j:17...,n,
y; € {0,1}, i=1,...,n,
ey < K,
z > 0,

were U; is some a priori chosen upper bound on the amount of trading in asset j.

Example code

The following example code demonstrates how to compute an optimal portfolio with cardinality bounds.

Listing 11.7: Code solving problem (11.12).

public static double[] markowitz_with_card(int n,
int k,
double[] x0,
double W,
double gamma,

double[] mu,
double[] [] GT,
int K)

// Since the walue infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = O;

// Offset of wariables.
int numvar = 3 * n;

int voff_x = 0;

int voff_z = n;

int voff_y

]
N
*
X

// Offset of constraints.
int numcon = 3 * n + 2;
int coff_bud = 0;

int coff_absl = 1;

int coff_abs2 = 1 + n;

int coff_swi = 1 + 2 * n;
int coff_card = 1 + 3 * n;

try (mosek.Task task = new mosek.Task() )
{

// Directs the log task stream to the user specified

(continues on next page)
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// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }1});

// Variables (vector of z, z, y)

task.appendvars (numvar) ;

for (int j = 0; j < n; ++j)

{
/* Optionally we can give the variables names */
task.putvarname(voff_x + j, "x[" + (j + 1) + "1");
task.putvarname(voff_z + j, "z[" + (j + 1) + "1");
task.putvarname(voff_y + j, "y[" + (j + 1) + "1");
/* Apply variable bounds (z >= 0, z free, y binary) */
task.putvarbound(voff_x + j, mosek.boundkey.lo, 0.0, infinity);
task.putvarbound(voff_z + j, mosek.boundkey.fr, -infinity, infinity);
task.putvarbound(voff_y + j, mosek.boundkey.ra, 0.0, 1.0);
task.putvartype(voff_y + j, mosek.variabletype.type_int);

}

// Linear constraints
// - Total budget
task.appendcons (1) ;
task.putconname (coff_bud, "budget");
for (int j = 0; j < nj; ++j)
{
/* Coefficients in the first row of A */
task.putaij(coff_bud, voff_x + j, 1.0);
}
double U = w;
for (int i = 0; i < n; ++1i)
{
U += x0[i];
}
task.putconbound(coff_bud, mosek.boundkey.fx, U, U);

// - Absolute value

task.appendcons(2 * n);

for (int i = 0; i < n; ++i)

{
task.putconname (coff_absl + i, "zabsi[" + (1 + i) + "]1");
task.putaij(coff_absl + i, voff_x + i, -1.0);
task.putaij(coff_absl + i, voff_z + i, 1.0);
task.putconbound(coff_absl + i, mosek.boundkey.lo, -xO0[i], infinity);
task.putconname (coff_abs2 + i, "zabs2[" + (1 + i) + "]1");
task.putaij(coff_abs2 + i, voff_x + i, 1.0);
task.putaij(coff_abs2 + i, voff_z + i, 1.0);
task.putconbound(coff_abs2 + i, mosek.boundkey.lo, x0[i], infinity);

}

// - Switch
task.appendcons(n) ;
for (int i = 0; i < n; ++1i)
{
task.putconname (coff_swi + i, "switch[" + (1 + i) + "]1");

(continues on next page)
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task.putaij(coff_swi + i, voff_z + i, 1.0);
task.putaij(coff_swi + i, voff_y + i, -U);
task.putconbound(coff_swi + i, mosek.boundkey.up, -infinity, 0.0);

3

// - Cardinality
task.appendcons (1) ;
task.putconname (coff_card, "cardinality");
for (int i = 0; i < n; ++1i)
{

task.putaij(coff_card, voff_y + i, 1.0);
}

task.putconbound(coff_card, mosek.boundkey.up, -infinity, K);

// ACCs
int aoff_q = 0;
// - (gamma, GTz) in §(k+1)
// The part of F and g for wvartable z:
// [o, o0, 0] [gamma]
// F = [GT, 0, 0], g = [0 ]
task.appendafes(k + 1);
task.putafeg(aoff_q, gamma);
int[] vslice_x = new int[n];
for (int i = 0; i < n; ++i)
{

vslice_x[i] = voff_x + 1ij;
}
for (int i = 0; i < k; ++1i)
{

task.putafefrow(aoff_q + i + 1, vslice_x, GT[il);

}
long qdom = task.appendquadraticconedomain(k + 1);
task.appendaccseq(qdom, aoff_q, null);
task.putaccname (aoff_q, "risk");

// Objective: maxzimize expected return mu"T x
for (int j = 0; j < m; ++j)
{
task.putcj(voff_x + j, muljl);
}

task.putobjsense(mosek.objsense.maximize) ;
task.writedata("dump.ptf");

task.optimize();
task.solutionsummary(mosek.streamtype.log) ;

// Check if the interior point solution is an optimal point
solsta solsta = task.getsolsta(mosek.soltype.itg);
if (solsta != mosek.solsta.integer_optimal)
{
// See https://docs.mosek.com/latest/javaapi/accessing-solution.html about,
—handling solution statuses.
throw new Exception(6010, String.format("Unexpected solution status: %s",,
—solsta));

}

(continues on next page)
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double[] xx = task.getxxslice(mosek.soltype.itg, voff_x, voff_x + n);
return xx;

}
X

If we solve our running example with K = 1,...,n then we get the following solutions, with increasing
expected returns:

Bound 1 Solution: 0.0000e+00  0.0000e+00 1.0000e+00  0.0000e+00 0.0000e+00 |
—,0.0000e+00 0.0000e+00  0.0000e+00
Bound 2 Solution: 0.0000e+00  0.0000e+00 3.5691e-01 0.0000e+00 0.0000e+00 |
—6.4309e-01 -0.0000e+00 0.0000e+00
Bound 3 Solution: 0.0000e+00  0.0000e+00 1.9258e-01 0.0000e+00 0.0000e+00 |,
,5.4592e-01 2.6150e-01 0.0000e+00
Bound 4 Solution: 0.0000e+00 0.0000e+00 2.0391e-01 0.0000e+00 6.7098e-02 |
—4.9181e-01 2.3718e-01 0.0000e+00
Bound 5 Solution: 0.0000e+00  3.1970e-02 1.7028e-01 0.0000e+00 7.0741e-02 ||
—4.9551e-01 2.3150e-01 0.0000e+00
Bound 6 Solution: 0.0000e+00 3.1970e-02 1.7028e-01 0.0000e+00 7.0740e-02 |
—4.9551e-01 2.3150e-01 0.0000e+00
Bound 7 Solution: 0.0000e+00  3.1970e-02 1.7028e-01 0.0000e+00  7.0740e-02 |
—4.9551e-01 2.3150e-01 0.0000e+00
Bound 8 Solution: 1.9557e-10 2.6992e-02 1.6706e-01 2.9676e-10 7.1245e-02 |
—4.9559e-01 2.2943e-01 9.6905e-03

11.2 Logistic regression

Logistic regression is an example of a binary classifier, where the output takes one two values 0 or 1 for
each data point. We call the two values classes.

Formulation as an optimization problem

Define the sigmoid function

1

)= e

Next, given an observation z € R% and a weights 6 € R? we set

ho(z) = S(67x) = m.

The weights vector 6 is part of the setup of the classifier. The expression hy(x) is interpreted as the
probability that = belongs to class 1. When asked to classify x the returned answer is

1 hy(z) > 1/2,
e { 0 ho(z) < 1/2.

When training a logistic regression algorithm we are given a sequence of training examples z;, each
labelled with its class y; € {0,1} and we seek to find the weights 6 which maximize the likelihood
function

H ho ()Y (1 — hg(a;)) Y.

Of course every single y; equals 0 or 1, so just one factor appears in the product for each training data
point. By taking logarithms we can define the logistic loss function:

J(O) == > log(he(x:)) = Y _ log(l — hg(x;)).

1y, =1 1:y; =0
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The training problem with regularization (a standard technique to prevent overfitting) is now equivalent
to

mgin J(0) + |02

This can equivalently be phrased as

minimize ) . t; + Ar

subject to ti = —log(he()) = log(1+exp(=0Tx,)) if yi =1, (11.13)
ti > —log(l —hg(z)) =log(1+exp(6Ta;)) if y; =0, '
> ol

Implementation

As can be seen from (11.13) the key point is to implement the softplus bound ¢ > log(1 + e*), which is
the simplest example of a log-sum-exp constraint for two terms. Here ¢ is a scalar variable and v will be
the affine expression of the form +67z;. This is equivalent to

exp(u —t) + exp(—t) <1

and further to

(z1,L,u—t) € Kep (21> exp(u—1)),
(22,1, —t) € Kexp (22 > exp(—t)), (11.14)
21+ 20 < 1.

This formulation can be entered using affine conic constraints (see Sec. 6.2).

Listing 11.8: Implementation of ¢ > log(1 + e*) as in (11.14).

// Adds ACCs for t_i >= log ( 1 + exp((1-2%y[t]) * theta' * X[i]) )
// Adds auziliary variables, AFE rows and constraints
public static void softplus(Task task, int d, int n, int theta, int t, double[][] X,
— boolean[] y)
{
int nvar = task.getnumvar();
int ncon = task.getnumcon();
long nafe = task.getnumafe();
task.appendvars(2*n); // z1, 22
task.appendcons(n) ; // 21 + 22 = 1
task.appendafes(4#*n) ; //theta * X[i] - t[<i], -t[<], z1[<], 2z2[]
int z1 = nvar, z2 = nvar+n;
int zcon = ncon;
long thetaafe = nafe, tafe = nafe+n, zlafe = nafe+2+*n, z2afe = nafe+3*n;
int k = 0;

// Linear constraints

int [] subi = new int[2*n];
int[] subj = new int[2*n];
double[] aval = new double[2*n];

for(int i = 0; i < nj; i++)

{
// 21 + 22 = 1
subi[k] = zcon+i; subjlk] = zl+i; avallk] = 1; k++;
subi[k] = zcont+i; subjlk] = z2+i; avallk] = 1; k++;
}

task.putaijlist(subi, subj, aval);

(continues on next page)
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task.putconboundsliceconst(zcon, zcon+n, boundkey.fx, 1, 1);
task.putvarboundsliceconst(nvar, nvar+2*n, boundkey.fr, -inf, inf);

// Affine conic expressions

long[] afeidx = new long[d*n+4#*n] ;
int [] varidx = new int[d*n+4x*n];
double[] fval new double[d*n+4*n] ;
k = 0;

// Thetas
for(int 1 = 0; i < nj; i++) {
for(int j = 0; j < d; j++) {
afeidx[k] = thetaafe + i; varidx[k] = theta + j;
fvallk] = ((y[il) ? -1 : 1) * X[i][j];

k++;
}
}
// -tli]
for(int i = 0; i < n; i++) {
afeidx[k] = thetaafe + i; varidx[k] =t + i; fvallk] = -1; k++;
afeidx[k] = tafe + i; varidx[k] =t + i; fvallk] = -1; k++;
}
// z1, 22

for(int i = 0; i < n; i++) {
afeidx[k] zlafe + i; varidx[k]
afeidx[k] = z2afe + i; varidxl[k]

zl + i; fvallk] = 1; k++;
z2 + i; fvallk] 1; k++;

}

// Add the ezpressions
task.putafefentrylist(afeidx, varidx, fval);

// Add a single row with the constant expression "1.0"
long oneafe = task.getnumafe();

task.appendafes(1);

task.putafeg(oneafe, 1.0);

// Add an exponential cone domain
long expdomain = task.appendprimalexpconedomain() ;

// Conic constraints

long numacc = task.getnumacc();

for(int 1 = 0; i < nj; i++)

{
task.appendacc(expdomain, new long[]{zlafe+i, oneafe, thetaafe+i}, null);
task.appendacc(expdomain, new long[]{z2afe+i, oneafe, tafe+i}, null);
task.putaccname (numacc+i*2, String.format("zl:thetal%d]l",1i));
task.putaccname (numacc+i*2+1,String.format ("z2:t[%d]",1i));

}

}

Once we have this subroutine, it is easy to implement a function that builds the regularized loss
function model (11.13).
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Listing 11.9: Implementation of (11.13).

// Model logistic regression (regularized with full 2-norm of theta)
// X - nzdmatriz of data points

// y - length n vector classifying training points

// lamb - regularization parameter

public static double[] logisticRegression(doublel[][] X,

—1i));

3

int n
int d

boolean[] vy,
double lamb)

X.length;
X[0] .length; // nmum samples, dimension

]

try (Task task = new Task())

{

3

// Variables [r; theta; t]

int nvar = 1+d+n;

task.appendvars (nvar) ;

task.putvarboundsliceconst (0, nvar, boundkey.fr, -inf, inf);

int r = 0, theta = 1, t = 1+d;

task.putvarname(r,"r");

for (int i = 0; i < d; ++i) task.putvarname(theta+i,String.format("thetal%d]",

0; i < n; ++i) task.putvarname(t+i,String.format("t[%d]",1));

for (int i

// Objective lambda*r + sum(t)
task.putobjsense(mosek.objsense.minimize) ;
task.putcj(r, lamb);
for(int 1 = 0; i < n; i++)

task.putcj(t+i, 1.0);

// Softplus function constraints
softplus(task, d, n, theta, t, X, y);

// Regularization
// Append a sequence of linear expressions (r, theta) to F
long numafe = task.getnumafe();
task.appendafes(1+d) ;
task.putafefentry(numafe, r, 1.0);
for(int 1 = 0; i < d; i++)
task.putafefentry(numafe + i + 1, theta + i, 1.0);

// Add the constraint
task.appendaccseq(task.appendquadraticconedomain(1+d), numafe, null);

// Solution

task.optimize();
return task.getxxslice(soltype.itr, theta, theta+d);
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Example: 2D dataset fitting

In the next figure we apply logistic regression to the training set of 2D points taken from the example
ex2data2.txt . The two-dimensional dataset was converted into a feature vector z € R?® using monomial
coordinates of degrees at most 6.

Fig. 11.2: Logistic regression example with none, medium and strong regularization (small, medium,
large A). Without regularization we get obvious overfitting.

11.3 Concurrent optimizer

The idea of the concurrent optimizer is to run multiple optimizations of the same problem simulta-
neously, and pick the one that provides the fastest or best answer. This approach is especially useful for
problems which require a very long time and it is hard to say in advance which optimizer or algorithm
will perform best.

The major applications of concurrent optimization we describe in this section are:

e Using the interior-point and simplex optimizers simultaneously on a linear problem. Note that
any solution present in the task will also be used for hot-starting the simplex algorithms. One
possible scenario would therefore be running a hot-start simplex in parallel with interior point,
taking advantage of both the stability of the interior-point method and the ability of the simplex
method to use an initial solution.

e Using multiple instances of the mixed-integer optimizer to solve many copies of one mixed-integer
problem. This is not in contradiction with the run-to-run determinism of MOSEK if a different
value of the MIO seed parameter iparam.mio_seed is set in each instance. As a result each setting
leads to a different optimizer run (each of them being deterministic in its own right).

The downloadable file contains usage examples of both kinds.

11.3.1 Common setup

We first define a method that runs a number of optimization tasks in parallel, using the standard
multithreading setup available in the language. All tasks register for a callback function which will
signal them to interrupt as soon as the first task completes successfully (with response code rescode.
ok).

Listing 11.10: Simple callback function which signals the optimizer
to stop.

/**
Defines a Mosek callback function whose only function
15 to indicate 1f the optimizer should be stopped.
*/
public static class CallbackProxy extends mosek.Progress

{
public boolean stop;

(continues on next page)
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public int firstStop;
public CallbackProxy ()
{
stop = false;
firstStop = -1;
}

public int progress(mosek.callbackcode caller)

{

// Return non-zero implies terminate the optimizer
return stop 7 1 : 0

}
}

When all remaining tasks respond to the stop signal, response codes and statuses are returned to the
caller, together with the index of the task which won the race.

Listing 11.11: A routine for parallel task race.

public static int optimize(mosek.Task[] tasks,
mosek.rescode[] res,
mosek.rescode[] trm)

int n = tasks.length;
Thread[] jobs = new Thread[n];

// Set a callback function
final CallbackProxy cb = new CallbackProxy() ;
for (int i = 0; i < n; ++1i)

tasks[i] .set_Progress(cb);

// Initialize

for (int i = 0; i < n; ++1i)

{
res[i] mosek.rescode.err_unknown;
trm[i] = mosek.rescode.err_unknown;

3

// Start parallel optimizations, one per task
for (int i = 0; i < n; ++i)

{
int num = i;
jobs[i] = new Thread() { public void run() {
try
{

trm[num] = tasks[num].optimize();
res[num] = mosek.rescode.ok;

3

catch (mosek.Exception e)

{

trm[num] = mosek.rescode.err_unknown;
res[num] = e.code;

¥

finally

{
// If this fintished with success, inform other tasks to interrupt
if (res[num] == mosek.rescode.ok)

(continues on next page)
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{
if (!cb.stop) cb.firstStop = num;
cb.stop = true;
}
¥
1}
jobs[i].start();

}

// Join all threads
try {
for (Thread j: jobs)
j.joinQ);
}
catch (InterruptedException e) {}

// For debugging, print res and trm codes for all optimizers
for (int i = 0; i < n; ++i)
System.out.println("Optimizer " + i + " res " + res[i] + " trm " + trm[i]);

return cb.firstStop;

11.3.2 Linear optimization

We use the multithreaded setup to run the interior-point and simplex optimizers simultaneously on a
linear problem. The next methods simply clones the given task and sets a different optimizer for each.
The result is the clone which finished first.

Listing 11.12: Concurrent optimization with different optimizers.

public static int optimizeconcurrent(mosek.Task task,
mosek.optimizertype[] optimizers,
mosek.Task[] winTask,
mosek.rescode[] winTrm,
mosek.rescode[] winRes)

{

int n = optimizers.length;

mosek.Task[] tasks = new mosek.Task[n];
mosek.rescode[] res = new mosek.rescode[n];
mosek.rescode[] trm = new mosek.rescode[n];

// Clone tasks and choose warious optimizers
for (int i = 0; i < n; ++i)
{
tasks[i] = new mosek.Task(task);
tasks[i] .putintparam(mosek.iparam.optimizer, optimizers[i].value);

}

// Solve tasks in parallel
int firstOK = optimize(tasks, res, trm);

if (firstOK >= 0)

{
winTask[0] = tasks[firstOK];
winTrm[0] trm[firstOK] ;

(continues on next page)
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winRes[0] = res[firstOK] ;
}

return firstOK;

3

It remains to call the method with a choice of optimizers, for example:

Listing 11.13: Calling concurrent linear optimization.

mosek.optimizertype[] optimizers = {
mosek.optimizertype.conic,
mosek.optimizertype.dual_simplex,
mosek.optimizertype.primal_simplex

};

idx = optimizeconcurrent(task, optimizers, t, trm, res);

11.3.3 Mixed-integer optimization

We use the multithreaded setup to run many, differently seeded copies of the mixed-integer optimizer.
This approach is most useful for hard problems where we don’t expect an optimal solution in reasonable
time. The input task would typically contain a time limit. It is possible that all the cloned tasks reach
the time limit, in which case it doesn’t really mater which one terminated first. Instead we examine all
the task clones for the best objective value.

Listing 11.14: Concurrent optimization of a mixed-integer problem.

public static int optimizeconcurrentMIO(mosek.Task task,
int[] seeds,
mosek.Task[] winTask,
mosek.rescode[] winTrm,
mosek.rescode[] winRes)
{

int n = seeds.length;

mosek.Task[] tasks = new mosek.Task[n];
mosek.rescode[] res = new mosek.rescode[n];
mosek.rescode[] trm = new mosek.rescode[n];

// Clone tasks and choose warious seeds for the optimizer
for (int i = 0; i < n; ++i)
{

tasks[i] = new mosek.Task(task);

tasks[i] .putintparam(mosek.iparam.mio_seed, seeds[i]);

3

// Solve tasks in parallel
int firstOK = optimize(tasks, res, trm);

if (firstOK >= 0)

{
// Pick the task that ended with res = ok
// and contains an integer solution with best objective value
mosek.objsense sense = task.getobjsense();
double bestObj = (sense == mosek.objsense.minimize) 7 1.0e+10 : -1.0e+10;
int bestPos = -1;

for (dint i = 0; i < n; ++i)

(continues on next page)
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(continued from previous page)

System.out.println(i + " " + tasks[i] .getprimalobj(mosek.soltype.itg));

for (int i = 0; i < n; ++i)

if ((res[i] == mosek.rescode.ok) &&
(tasks[i] .getsolsta(mosek.soltype.itg) == mosek.solsta.prim_feas ||
tasks[i] .getsolsta(mosek.soltype.itg) == mosek.solsta.integer_optimal) &&
((sense == mosek.objsense.minimize) 7

(tasks[i] .getprimalobj (mosek.soltype.itg) < bestObj)
(tasks[i] .getprimalobj(mosek.soltype.itg) > bestObj) ) )
{
bestObj = tasks[i].getprimalobj(mosek.soltype.itg);
bestPos = 1i;

}

if (bestPos != -1)

{
winTask[0] tasks [bestPos] ;
winTrm[0] = trm[bestPos];
winRes [0] res[bestPos] ;
return bestPos;

+

}

return -1;

3

It remains to call the method with a choice of seeds, for example:

Listing 11.15: Calling concurrent integer optimization.

int[] seeds = { 42, 13, 71749373 };

idx = optimizeconcurrentMIO(task, seeds, t, trm, res);
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Chapter 12

Problem Formulation and Solutions

In this chapter we will discuss the following topics:

e The formal, mathematical formulations of the problem types that MOSEK can solve and their
duals.

e The solution information produced by MOSEK.
e The infeasibility certificate produced by MOSEK if the problem is infeasible.

For the underlying mathematical concepts, derivations and proofs see the Modeling Cookbook or any
book on convex optimization. This chapter explains how the related data is organized specifically within
the MOSEK API.

12.1 Linear Optimization

MOSEK accepts linear optimization problems of the form

minimize e+ cf
subject to ¢ < Az < (12.1)
r < T < u®,

where
e m is the number of constraints.
e n is the number of decision variables.
e z € R" is a vector of decision variables.
e ¢ € R” is the linear part of the objective function.
e ¢/ € R is a constant term in the objective

e A c R™*™ js the constraint matrix.

[¢ € R™ is the lower limit on the activity for the constraints.

u® € R™ is the upper limit on the activity for the constraints.
e [ € R" is the lower limit on the activity for the variables.
e y” € R" is the upper limit on the activity for the variables.

Lower and upper bounds can be infinite, or in other words the corresponding bound may be omitted.

A primal solution () is (primal) feasible if it satisfies all constraints in (12.1). If (12.1) has at least
one primal feasible solution, then (12.1) is said to be (primal) feasible. In case (12.1) does not have a
feasible solution, the problem is said to be (primal) infeasible
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12.1.1 Duality for Linear Optimization
Corresponding to the primal problem (12.1), there is a dual problem
maximize  (1¢)7s¢ — (u)Ts¢ + (1%)Ts? — (u®) s + cf

AT T _ T
. Y s sy © (12.2)
subject to —y+si—s, = 0,
5058w si: 8y = 0,
where
e sj are the dual variables for lower bounds of constraints,

o s¢ are the dual variables for upper bounds of constraints,

e s7 are the dual variables for lower bounds of variables,

x

~ are the dual variables for upper bounds of variables.

® S

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at
0, and we use the convention that the product of the bound value and the corresponding dual variable is
0. This is equivalent to removing the corresponding dual variable from the dual problem. For example:

lj=-0c0 = (sf)j=0and[j-(s]); =0.

A solution

(87, 505 575 54)

to the dual problem is feasible if it satisfies all the constraints in (12.2). If (12.2) has at least one feasible
solution, then (12.2) is (dual) feasible, otherwise the problem is (dual) infeasible.
A solution

(=%, 4% (s0)", (s2)", (s1)"5 (s%)7)

is denoted a primal-dual feasible solution, if (z*) is a solution to the primal problem (12.1) and
(y*, (s)*, (s5)*, (s7)*, (st)*) is a solution to the corresponding dual problem (12.2). We also define
an auxiliary vector

()" = Ax™

containing the activities of linear constraints.
For a primal-dual feasible solution we define the duality gap as the difference between the primal and
the dual objective value,

Tt ef = {7 ()" = ()" (52)" + (1) (s7)" = (u) " (s5)" + '}
= X )i (@) = 19) + (07 (uf — (@9)")] (12.3)
2000 ()5 (@ — 12) + (s2)5(ug —27)] 2 0

where the first relation can be obtained by transposing and multiplying the dual constraints (12.2) by
z* and (z°)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

It is well-known that a linear optimization problem has an optimal solution if and only if there exist
feasible primal-dual solution so that the duality gap is zero, or, equivalently, that the complementarity
conditions

sp)i((@f) =1f) = 0, i=0,....m—1,
(s0)i(uf — (2f)*) = 0, i=0,....m—1,
(sp)i(uj —=r) = 0, j=0,...,n—1,

are satisfied.
If (12.1) has an optimal solution and MOSEK solves the problem successfully, both the primal and
dual solution are reported, including a status indicating the exact state of the solution.
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12.1.2 Infeasibility for Linear Optimization

Primal Infeasible Problems

If the problem (12.1) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (1¢)7s¢ — (u®)TsS + (1%)TsF — (u®) T2
subject to
ATy + sF — s =0, (12.4)
-y + 57 — 55, =0,
81> 8u 51> 50 2 0,

such that the objective value is strictly positive, i.e. a solution
(7 (s1)75 (50)% (s7)7 (s3)")
to (12.4) so that
) (s)" = () (s5)" + (1) (s7)" = (u”) " (s5)" > 0.
Such a solution implies that (12.4) is unbounded, and that (12.1) is infeasible.

Dual Infeasible Problems

If the problem (12.2) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize c'x
subject to ¢ < Az < 4° (12.5)
o< oz <o
where
- 0 if I§ > —o0 0 ifuf <o
[ (3 ’ 5C . — K3 ?
L { —oo otherwise, } and - d; : { oo otherwise, }
and
- 0 if 17 > —o0 0 ifu? <oo
T — J ’ AL J ’
L { —oo  otherwise, } and - a; : { oo otherwise, }
such that

Tx <.

Such a solution implies that (12.5) is unbounded, and that (12.2) is infeasible.

In case that both the primal problem (12.1) and the dual problem (12.2) are infeasible, MOSEK
will report only one of the two possible certificates — which one is not defined (MOSEK returns the
first certificate found).

12.1.3 Minimalization vs. Maximalization

When the objective sense of problem (12.1) is maximization, i.e.

maximize e+ ef
subject to ¢ < Ax < uc,
< T < u”,



the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (12.2). The dual problem thus takes the form
minimize  (1¢)7s¢ — (u®)TsS + (1%)Ts¥ — (u®) s + ¢f
subject to
ATy + s7 — 5% =,
-y + 57 — 55, =0,
87,585,857, 85 < 0.
This means that the duality gap, defined in (12.3) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system
ATy +sF — s =0,
—y+s7—s;, =0, (12.6)
Slc7 Sfl.’ Sf’ 57:5, S 07

such that the objective value is strictly negative
)T ()" = ()T (s5)* + ()T (s7)* — (u™) T (s5)" <0

Similarly, the certificate of dual infeasibility is an = satisfying the requirements of (12.5) such that
T
cx>0.

12.2 Conic Optimization

Conic optimization is an extension of linear optimization (see Sec. 12.1) allowing conic domains to be
specified for affine expressions. A conic optimization problem to be solved by MOSEK can be written
as

minimize e+ cf
; ¢ c
subject to llm i /;x i Zm: (12.7)
Fx+g € D,
where
e m is the number of constraints.
e 1 is the number of decision variables.
e z € R" is a vector of decision variables.
e ¢ € R" is the linear part of the objective function.
e ¢/ € R is a constant term in the objective
e A € R™*™ ig the constraint matrix.
e [ € R™ is the lower limit on the activity for the constraints.
e y° € R™ is the upper limit on the activity for the constraints.
e [® € R” is the lower limit on the activity for the variables.
e u” € R" is the upper limit on the activity for the variables.
is the same as in Sec. 12.1 and moreover:
e F € R¥*™ is the affine conic constraint matrix.,
e g € R” is the affine conic constraint constant term vector.,
e D is a Cartesian product of conic domains, namely D = D; x --- X D,, where p is the number of

individual affine conic constraints (ACCs), and each domain is one from Sec. 15.11.

The total dimension of the domain D must be equal to k, the number of rows in F' and g. Lower and
upper bounds can be infinite, or in other words the corresponding bound may be omitted.

MOSEK supports also the cone of positive semidefinite matrices. In order not to obscure this section
with additional notation, that extension is discussed in Sec. 12.3.
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12.2.1 Duality for Conic Optimization
Corresponding to the primal problem (12.7), there is a dual problem

maximize  (1¢)7s¢ — (u®)TsS + (1%)Ts¥ — (u®)Ts% — g7y + ¢/
subject to
ATy + s — st + Fly =c,
-y + 7 — 55 =0,
ST> Sus 815 50 = 0
y € D",

(12.8)

where

e s7 are the dual variables for lower bounds of constraints,

c

¢ are the dual variables for upper bounds of constraints,

® S

e s7 are the dual variables for lower bounds of variables,

8

e s* are the dual variables for upper bounds of variables,

u

e ¢y are the dual variables for affine conic constraints,
e the dual domain D* =D X --- x D} is a Cartesian product of cones dual to D;.

One can check that the dual problem of the dual problem is identical to the original primal problem.

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at
0, and we use the convention that the product of the bound value and the corresponding dual variable
is 0. This is equivalent to removing the corresponding dual variable (s{'); from the dual problem. For
example:

[j=-0c0 = (sf)j=0and[j-(s); =0.

A solution

c . T T
(y,sl75u731,5u7y)

to the dual problem is feasible if it satisfies all the constraints in (12.8). If (12.8) has at least one feasible
solution, then (12.8) is (dual) feasible, otherwise the problem is (dual) infeasible.
A solution

(@97, (s7)" (s)", (s7)7 (s3)", (9)7)

is denoted a primal-dual feasible solution, if (z*) is a solution to the primal problem (12.7) and
(y*, (s7)*, (sS)*, (s7)*, (s2)*, (9)*) is a solution to the corresponding dual problem (12.8). We also define
an auxiliary vector

(z)* := Az™

containing the activities of linear constraints.
For a primal-dual feasible solution we define the duality gap as the difference between the primal and
the dual objective value,

et el = {197 (57)7 = (u)7(55)" + ()7 ()" = ()" (57)" = g7 ()" + ¢/}

ST D (@)™ —19) + (s0)5(ug — (x5)*)] (12.9)
S (575 (g — 1) + (23 ut — 27)] ‘
(g *)T(Fx +9)>0

+ + |

where the first relation can be obtained by transposing and multiplying the dual constraints (12.2) by
2* and (2¢)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

179



It is well-known that, under some non-degeneracy assumptions that exclude ill-posed cases, a conic
optimization problem has an optimal solution if and only if there exist feasible primal-dual solution so
that the duality gap is zero, or, equivalently, that the complementarity conditions

sp)i((x§)* =1§) = 0, i=0,...,m—1,

(s6)i(u§ — (25)*) = 0, i=0,....,m—1,

(s7)5(z; —15) = 0, j=0,...,n—1, (12.10)
(sp)i(uf —a3) = 0, j=0,....,n—1,

((@)) (Fz*+g) = 0,

are satisfied.
If (12.7) has an optimal solution and MOSEK solves the problem successfully, both the primal and
dual solution are reported, including a status indicating the exact state of the solution.

12.2.2 Infeasibility for Conic Optimization

Primal Infeasible Problems

If the problem (12.7) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize  (1¢)7s§ — (u®)TsS 4+ (17)Ts7 — (u*)TsZ — gT'y
subject to
ATy + s — s+ FTy =0,
-y + 57— s5 =0,
8> Sus 815 50 = 0
y € D",

(12.11)

such that the objective value is strictly positive, i.e. a solution
(y", (s0)" (s2)™5 (s7)7, (s2)", (9)7)
to (12.11) so that
()T (D)™ = (u) " (s5)™ + (1) (s7)" = (") (s1)" = 97§ > 0.
Such a solution implies that (12.11) is unbounded, and that (12.7) is infeasible.

Dual Infeasible Problems

If the problem (12.8) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize clr
. AC < < ~c
subject to { < Az < Zf , 12.12)
r < < 4",
Fx €D
where
e_ ] 0 if If > —oo, e ) 0 ifuf <oo,
I —{ —oo  otherwise, } and .—{ s otherwise, } (12.13)
and
- 0 if ¥ > —o0 0 ifu¥ <oo
T _ J ? AT j s
" { —oco  otherwise, } and ;- { oo otherwise, } (12.14)
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such that
Tz <.

Such a solution implies that (12.12) is unbounded, and that (12.8) is infeasible.

In case that both the primal problem (12.7) and the dual problem (12.8) are infeasible, MOSEK
will report only one of the two possible certificates — which one is not defined (MOSEK returns the
first certificate found).

12.2.3 Minimalization vs. Maximalization

When the objective sense of problem (12.7) is maximization, i.e.

maximize T +cf
subject to ¢ < Ax < s,
r < T < u®,
Fx+g € D,

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (12.2). The dual problem thus takes the form

minimize  (1°)Tsf — (u®)TsS + (1%)Ts¥ — (u®)Ts2 — g7y + cf
subject to ATy +s7 —s2+ Fly =,
-y + 57 —s5, =0,
sy, 85,87, 58 <0,
—y € D*

This means that the duality gap, defined in (12.9) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system

ATy + s — s+ FTy =0,
-y + s —s5 =0,
Sl’suaslv uSO

—y € D*

(12.15)

such that the objective value is strictly negative
) ()" = ()T (s5)* + )T (s7)* = (u*) T (s3)* — 9Ty < 0.

Similarly, the certificate of dual infeasibility is an x satisfying the requirements of (12.12) such that
T
cx>0.

12.3 Semidefinite Optimization

Semidefinite optimization is an extension of conic optimization (see Sec. 12.2) allowing positive semidefi-
nite matrix variables to be used in addition to the usual scalar variables. All the other parts of the input
are defined exactly as in Sec. 12.2; and the discussion from that section applies verbatim to all properties
of problems with semidefinite variables. We only briefly indicate how the corresponding formulae should
be modified with semidefinite terms.

A semidefinite optimization problem can be written as

minimize Tz +(C,X) +¢f
subject to ¢ < Ax + (A, X) < s,
< T < u”,
Fr+(F,X)+g € D,
YJ’ € S:_j,jil,...,s

where
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as

m is the number of constraints.

n is the number of decision variables.

x € R™ is a vector of decision variables.

¢ € R™ is the linear part of the objective function.

¢/ € R is a constant term in the objective

A € R™*" is the constraint matrix.

[¢ € R™ is the lower limit on the activity for the constraints.
u® € R™ is the upper limit on the activity for the constraints.
[* € R™ is the lower limit on the activity for the variables.
u® € R™ is the upper limit on the activity for the variables.
F € RF*™ is the affine conic constraint matrix.,

g € RF is the affine conic constraint constant term vector.,

D is a Cartesian product of conic domains, namely D = Dy x - x D, where p is the number of
individual affine conic constraints (ACCs), and each domain is one from Sec. 15.11.

the same as in Sec. 12.2 and moreover:
there are s symmetric positive semidefinite variables, the j-th of which is X; € S:J of dimension
’I‘j,

C = (éj)jzl,‘..,s is a collectiongfﬂrmmetric coefficient matrices in the objective, with 6j e 8",
and we interpret the notation (C, X) as a shorthand for

<6’Y> = Z<CJ7YJ>

j=1

g = (Zij)izlw,m’jzlwﬁs is a collection oijgmetric coefficient matrices in the constraints, with
A;; € 877, and we interpret the notation (A, X) as a shorthand for the vector

F = (Fij)i=1,:k7j=1,_“7s is a collection of symmetric cogfﬁiient matrices in the affine conic con-
straints, with F';; € 8", and we interpret the notation (F, X) as a shorthand for the vector

(F.X) = | Y (Fi;, X;)

j=1 i=1,...k

In each case the matrix inner product between symmetric matrices of the same dimension r is defined

i=1j=1

To summarize, above the formulation extends that from Sec. 12.2 by the possibility of including
semidefinite terms in the objective, constraints and affine conic constraints.
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Duality
The definition of the dual problem (12.8) becomes:

maximize  (1¢)7s§ — (u®)TsS + (1%)Ts¥ — (u®)Ts% — gTy + ¢/
subject to
Aly+ s —si+ FTj=c,
-y +sj —s5 =0,

_ m = o . (12.16)
Cj—> i1yl — > 1 0iFi; =S, j=1...,s,
SlcV SZ, va Si 2 07
yeD,
S; eS8y, j=1,...,s.
Complementarity conditions (12.10) include the additional relation:
(X;,8;)=0 j=1,...,s. (12.17)
Infeasibility
A certificate of primal infeasibility (12.11) is now a feasible solution to:
maximize (1°)Ts¢ — (u®)TsS + (1%)Ts¥ — (u®)TsZ — gTy
subject to
ATy +s7 —sZ+ FTy =0,
—y+ s —s5, =0,
m k- . 12.18
= ic Yilij — Y i UiFiy = Sj, J=1...s, ( )
8107 857 s;ca Si > 07
yeD,
S;esy, j=1,...,s.
such that the objective value is strictly positive.
Similarly, a dual infeasibility certificate (12.12) is a feasible solution to
minimize e+ (C,X)
subject to ¢ < Ax+ (A, X) < af,
< z < (12.19)
Fz+ (F,X) € D,
Y]’ S Srj,jzl,...,s

where the modified bounds are as in (12.13) and (12.14) and the objective value is strictly negative.

12.4 Quadratic and Quadratically Constrained Optimization

A convex quadratic and quadratically constrained optimization problem has the form

minimize %xTQ‘)x +cTx+cf
subject to 1§ < 32TQFz+ Y Japm; < o, k=0,...,m—1, (12.20)
l;/’ < Z; < uf, 7=0,....,n—1,

where all variables and bounds have the same meaning as for linear problems (see Sec. 12.1) and Q° and
all Q% are symmetric matrices. Moreover, for convexity, ° must be a positive semidefinite matrix and
Q" must satisfy

—oo < Iy = QF is negative semidefinite,
up < oo = QF is positive semidefinite,
—oo < lf <uj <o = QF=o0.

The convexity requirement is very important and MOSEK checks whether it is fulfilled.
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12.4.1 A Recommendation

Any convex quadratic optimization problem can be reformulated as a conic quadratic optimization prob-
lem, see Modeling Cookbook and [And13]. In fact MOSEK does such conversion internally as a part
of the solution process for the following reasons:

e the conic optimizer is numerically more robust than the one for quadratic problems.

e the conic optimizer is usually faster because quadratic cones are simpler than quadratic functions,
even though the conic reformulation usually has more constraints and variables than the original
quadratic formulation.

e it is easy to dualize the conic formulation if deemed worthwhile potentially leading to (huge)
computational savings.

However, instead of relying on the automatic reformulation we recommend to formulate the problem
as a conic problem from scratch because:

e it saves the computational overhead of the reformulation including the convexity check. A conic
problem is convex by construction and hence no convexity check is needed for conic problems.

e usually the modeler can do a better reformulation than the automatic method because the modeler
can exploit the knowledge of the problem at hand.

To summarize we recommend to formulate quadratic problems and in particular quadratically con-
strained problems directly in conic form.

12.4.2 Duality for Quadratic and Quadratically Constrained Optimization

The dual problem corresponding to the quadratic and quadratically constrained optimization problem
(12.20) is given by

maximize (1°)7s§ — (u®)TsS + (1%)Tsf — (u®)Ts2 + SaT {Z;n:_ol yQF — QO} z+cf

subject to ATy +s7 — s% + {ZZS yQF — QO} r=c (12.21)
—y+si— s, =0,
sy, s0,87,80 > 0.

The dual problem is related to the dual problem for linear optimization (see Sec. 12.1.1), but depends
on the variable x which in general can not be eliminated. In the solutions reported by MOSEK, the
value of x is the same for the primal problem (12.20) and the dual problem (12.21).

12.4.3 Infeasibility for Quadratic Optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of infeasibility. We write them
out explicitly for quadratic problems, that is when Q* = 0 for all k and quadratic terms appear only
in the objective °. In this case the constraints both in the primal and dual problem are linear, and
MOSEK produces for them the same infeasibility certificate as for linear problems.

The certificate of primal infeasibility is a solution to the problem (12.4) such that the objective value
is strictly positive.

The certificate of dual infeasibility is a solution to the problem (12.5) together with an additional
constraint

Q°r=0

such that the objective value is strictly negative.
Below is an outline of the different problem types for quick reference.
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Continuous problem formulations

e Linear optimization (LO)

minimize e+ of
subject to ¢ < Ax < uc,
*r < T < u®.

e Conic optimization (CO)

Conic optimization extends linear optimization with affine conic constraints (ACC):

minimize e+ cf
subject to ¢ < Ax < uf,
" < T < u®,
Fx+g € D,

where D is a product of domains from Sec. 15.11.

e Semidefinite optimization (SDO)

A conic optimization problem can be further extended with semidefinite variables:

minimize e+ (C,X) +cf
subject to ¢ < Ax + (A, X) < s,
r < T < u®,
Fr+(F,X)+g € D,
X e S,

where D is a product of domains from Sec. 15.11 and S is a product of PSD cones meaning that
X is a sequence of PSD matrix variables.

e Quadratic and quadratically constrained optimization (QO, QCQO)

A quadratic problem or quadratically constrained problem has the form

minimize %xTQ"x +cTr+cf
subject to ¢ < %xTQcas + Az < uc,
r < T < u”.

Mixed-integer extensions

Coninuous problems can be extended with constraints requiring the mixed-integer optimizer. We outline
them briefly here. The continuous part of a mixed-integer problem is formulated according to one of the
continuous types above, however only the primal information and solution fields are relevant, there are
no dual values and no infeasibility certificates.

e Integer variables. Specifies that a subset of variables take integer values, that is
xrr € 7
for some index set I.
e Disjunctive constraints. Appends disjunctions of the form
t Si
\/ /\ (Dijx + dij € Dyj)
i=1j=1

ie. a disjunction of conjunctions of linear constraints, where each D;;x 4 d;; is an affine expression
of the optimization variables and each D;; is an affine domain. Linear and conic problems can be
extended with disjunctive constraints.
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Chapter 13

Optimizers

The most essential part of MOSEK are the optimizers:

e primal simplex (linear problems),

o dual simplex (linear problems),

e interior-point (linear, quadratic and conic problems),

e mized-integer (problems with integer variables).

The structure of a successful optimization process is roughly:

e Presolve

1. Elimination: Reduce the size of the problem.
2. Dualizer: Choose whether to solve the primal or the dual form of the problem.

3. Scaling: Scale the problem for better numerical stability.

e Optimization

1. Optimize: Solve the problem using selected method.
2. Terminate: Stop the optimization when specific termination criteria have been met.

3. Report: Return the solution or an infeasibility certificate.

The preprocessing stage is transparent to the user, but useful to know about for tuning purposes.
The purpose of the preprocessing steps is to make the actual optimization more efficient and robust. We
discuss the details of the above steps in the following sections.

13.1 Presolve

Before an optimizer actually performs the optimization the problem is preprocessed using the so-called
presolve. The purpose of the presolve is to

1.
2.

- W

remove redundant constraints,

eliminate fixed variables,

remove linear dependencies,

substitute out (implied) free variables, and

reduce the size of the optimization problem in general.
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After the presolved problem has been optimized the solution is automatically postsolved so that the
returned solution is valid for the original problem. Hence, the presolve is completely transparent. For
further details about the presolve phase, please see [AA95] and [AGMeszarosX96].

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If presolve consumes
too much time or memory compared to the reduction in problem size gained it may be disabled. This is
done by setting the parameter iparam.presolve_use to presolvemode.off.

In the following we describe in more detail the presolve applied to continuous, i.e., linear and conic
optimization problems, see Sec. 13.2 and Sec. 13.3. The mixed-integer optimizer, Sec. 13.4, applies similar
techniques. The two most time-consuming steps of the presolve for continuous optimization problems
are

e the eliminator, and
e the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.

Numerical issues in the presolve

During the presolve the problem is reformulated so that it hopefully solves faster. However, in rare
cases the presolved problem may be harder to solve then the original problem. The presolve may also
be infeasible although the original problem is not. If it is suspected that presolved problem is much
harder to solve than the original, we suggest to first turn the eliminator off by setting the parameter
iparam.presolve_eliminator_maz_num_tries to 0. If that does not help, then trying to turn entire
presolve off may help.

Since all computations are done in finite precision, the presolve employs some tolerances when con-
cluding a variable is fixed or a constraint is redundant. If it happens that MOSEK incorrectly concludes
a problem is primal or dual infeasible, then it is worthwhile to try to reduce the parameters dparam.
presolve_tol_z and dparam.presolve_tol_s. However, if reducing the parameters actually helps
then this should be taken as an indication that the problem is badly formulated.

Eliminator

The purpose of the eliminator is to eliminate free and implied free variables from the problem using
substitution. For instance, given the constraints

Y
Y,z

Zj Ly
0,

vVl

y is an implied free variable that can be substituted out of the problem, if deemed worthwhile. If the
eliminator consumes too much time or memory compared to the reduction in problem size gained it may
be disabled. This can be done by setting the parameter iparam. presolve_eliminator_maz_num_tries
to 0. In rare cases the eliminator may cause that the problem becomes much hard to solve.

Linear dependency checker

The purpose of the linear dependency check is to remove linear dependencies among the linear equalities.
For instance, the three linear equalities

X1 + o + T3 = 1,
1 + 05(52 = 05,
0.520 +23 = 0.5.

contain exactly one linear dependency. This implies that one of the constraints can be dropped without
changing the set of feasible solutions. Removing linear dependencies is in general a good idea since it
reduces the size of the problem. Moreover, the linear dependencies are likely to introduce numerical
problems in the optimization phase. It is best practice to build models without linear dependencies,
but that is not always easy for the user to control. If the linear dependencies are removed at the
modeling stage, the linear dependency check can safely be disabled by setting the parameter iparam.
presolve_lindep_use to onoffkey.off.
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Dualizer

All linear, conic, and convex optimization problems have an equivalent dual problem associated with
them. MOSEK has built-in heuristics to determine if it is more efficient to solve the primal or dual
problem. The form (primal or dual) is displayed in the MOSEK log and available as an information
item from the solver. Should the internal heuristics not choose the most efficient form of the problem it
may be worthwhile to set the dualizer manually by setting the parameters:

e iparam.intpnt_solve_form: In case of the interior-point optimizer.
e iparam.sim_solve_form: In case of the simplex optimizer.

Note that currently only linear and conic (but not semidefinite) problems may be automatically
dualized.

Scaling

Problems containing data with large and/or small coefficients, say 1.0e + 9 or 1.0e — 7, are often hard
to solve. Significant digits may be truncated in calculations with finite precision, which can result in
the optimizer relying on inaccurate data. Since computers work in finite precision, extreme coefficients
should be avoided. In general, data around the same order of magnitude is preferred, and we will refer to
a problem, satisfying this loose property, as being well-scaled. If the problem is not well scaled, MOSEK
will try to scale (multiply) constraints and variables by suitable constants. MOSEK solves the scaled
problem to improve the numerical properties.

The scaling process is transparent, i.e. the solution to the original problem is reported. It is important
to be aware that the optimizer terminates when the termination criterion is met on the scaled problem,
therefore significant primal or dual infeasibilities may occur after unscaling for badly scaled problems.
The best solution of this issue is to reformulate the problem, making it better scaled.

By default MOSEK heuristically chooses a suitable scaling. The scaling for interior-point and
simplex optimizers can be controlled with the parameters tparam.intpnt_scaling and <param.
sim_scaling respectively.

13.2 Linear Optimization

13.2.1 Optimizer Selection

Two different types of optimizers are available for linear problems: The default is an interior-point
method, and the alternative is the simplex method (primal or dual). The optimizer can be selected using
the parameter iparam.optimizer.

The Interior-point or the Simplex Optimizer?

Given a linear optimization problem, which optimizer is the best: the simplex or the interior-point
optimizer? It is impossible to provide a general answer to this question. However, the interior-point
optimizer behaves more predictably: it tends to use between 20 and 100 iterations, almost independently
of problem size, but cannot perform warm-start. On the other hand the simplex method can take
advantage of an initial solution, but is less predictable from cold-start. The interior-point optimizer is
used by default.

The Primal or the Dual Simplex Variant?

MOSEK provides both a primal and a dual simplex optimizer. Predicting which simplex optimizer
is faster is impossible, however, in recent years the dual optimizer has seen several algorithmic and
computational improvements, which, in our experience, make it faster on average than the primal version.
Still, it depends much on the problem structure and size. Setting the iparam.optimizer parameter to
optimizertype. free_simplez instructs MOSEK to choose one of the simplex variants automatically.

To summarize, if you want to know which optimizer is faster for a given problem type, it is best to
try all the options.
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13.2.2 The Interior-point Optimizer

The purpose of this section is to provide information about the algorithm employed in the MOSEK
interior-point optimizer for linear problems and about its termination criteria.

The homogeneous primal-dual problem

In order to keep the discussion simple it is assumed that MOSEK solves linear optimization problems
of standard form

minimize T
subject to Ax = b, (13.1)
xz > 0.

This is in fact what happens inside MOSEK; for efficiency reasons MOSEK converts the problem to
standard form before solving, then converts it back to the input form when reporting the solution.

Since it is not known beforehand whether problem (13.1) has an optimal solution, is primal infeasible
or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason
why MOSEK solves the so-called homogeneous model

Axr —br = 0,
ATy+s—cr = 0,

—cTe4+bTy—x = 0, (13.2)
z,s, 7,k > 0

)

where y and s correspond to the dual variables in (13.1), and 7 and k are two additional scalar variables.
Note that the homogeneous model (13.2) always has solution since

(z,y,s,71,k) = (0,0,0,0,0)
is a solution, although not a very interesting one. Any solution
(@*, 4", 85, 75, K*)
to the homogeneous model (13.2) satisfies
zist=0and 7°k* = 0.

Moreover, there is always a solution that has the property 7* + £* > 0.
First, assume that 7* > 0 . It follows that

AZ b,
ATy* 5
Yy 45 — ¢
Tz 7:_ T;I 0’
c = =y = )
T T
¥ s, k* > 0.

This shows that f—* is a primal optimal solution and (3—*, ;—1
as the optimal interior-point solution since

* y* s*
(z,y,s) = gt R s

is a primal-dual optimal solution (see Sec. 12.1 for the mathematical background on duality and opti-
mality).
On other hand, if k* > 0 then

) is a dual optimal solution; this is reported

o
H*
|

ATy* +S*
_ch* +bTy*
T 8%, T K

|
ox o0

IVl
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This implies that at least one of

cl'z* <0 (13.3)
or

bly* >0 (13.4)

is satisfied. If (13.3) is satisfied then z* is a certificate of dual infeasibility, whereas if (13.4) is satisfied
then y* is a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information re-
quired for a solution to the original problem is obtained. A solution to the homogeneous model can be
computed using a primal-dual interior-point algorithm [And09].

Interior-point Termination Criterion

For efficiency reasons it is not practical to solve the homogeneous model exactly. Hence, an exact optimal
solution or an exact infeasibility certificate cannot be computed and a reasonable termination criterion
has to be employed.

In the k-th iteration of the interior-point algorithm a trial solution

ko, k b k Kk
(:I: ) y ) S ) T ) K )
to homogeneous model is generated, where

s8R k> 0.

Optimal case

Whenever the trial solution satisfies the criterion

k
|aze—b| < e+,

k k
HATZ—k +3r | < ca(l+ell,). and (13.5)
i 2T sk | Tk T,k min(|cTz®],|6Ty*
mm(((Tl)2 N ng |) < €ymax <1,w>a

the interior-point optimizer is terminated and
(=%, y", ")
Tk

is reported as the primal-dual optimal solution. The interpretation of (13.5) is that the optimizer is
terminated if

° f—: is approximately primal feasible,

° {Z—Z, :—:} is approximately dual feasible, and
e the duality gap is almost zero.

Dual infeasibility certificate

On the other hand, if the trial solution satisfies

Tk el k
> oy 14

then the problem is declared dual infeasible and z* is reported as a certificate of dual infeasibility. The
motivation for this stopping criterion is as follows: First assume that HAkaoo =0 ; then 2" is an exact
certificate of dual infeasibility. Next assume that this is not the case, i.e.

||Akaoo > O’
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and define

max (1,.)
T4z el

T =€

It is easy to verify that

~max (1, [b]| )

lAZ|| . =€ and —c’'z > 1,
el

which shows Z is an approximate certificate of dual infeasibility, where &; controls the quality of the
approximation. A smaller value means a better approximation.

Primal infeasibility certificate

Finally, if

b
ebTyF > 116/l ) ||ATyk+sk||oo

max (L, [l]|
then y* is reported as a certificate of primal infeasibility.

Adjusting optimality criteria

It is possible to adjust the tolerances €, €4, €4 and €; using parameters; see table for details.

Table 13.1: Parameters employed in termination criterion

ToleranceParameter name

Ep dparam.intpnt_tol_pfeas
&d dparam.intpnt_tol_dfeas
&g dparam. intpnt_tol_rel_gap
€; dparam.intpnt_tol_infeas

The default values of the termination tolerances are chosen such that for a majority of problems
appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the
tolerances usually is not worthwhile. However, an inspection of (13.5) reveals that the quality of the
solution depends on [|b]|, and ||c||; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal
and dual feasibility at the same rate [And09|. This means that if the optimizer is stopped prematurely
then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that
in most cases all the tolerances, €,, €4, €4 and ¢;, have to be relaxed together to achieve an effect.

The basis identification discussed in Sec. 13.2.2 requires an optimal solution to work well; hence basis
identification should be turned off if the termination criterion is relaxed.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

Basis Identification

An interior-point optimizer does not return an optimal basic solution unless the problem has a unique
primal and dual optimal solution. Therefore, the interior-point optimizer has an optional post-processing
step that computes an optimal basic solution starting from the optimal interior-point solution. More
information about the basis identification procedure may be found in [AY96]. In the following we provide
an overall idea of the procedure.

There are some cases in which a basic solution could be more valuable:

e a basic solution is often more accurate than an interior-point solution,
e a basic solution can be used to warm-start the simplex algorithm in case of reoptimization,

e a basic solution is in general more sparse, i.e. more variables are fixed to zero. This is partic-
ularly appealing when solving continuous relaxations of mixed integer problems, as well as in all
applications in which sparser solutions are preferred.
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To illustrate how the basis identification routine works, we use the following trivial example:

minimize T4y
subject to xr4+y = 1,
z,y > 0.

It is easy to see that all feasible solutions are also optimal. In particular, there are two basic solutions,
namely

n o= (1L0),
5 = (0,1).

) )

The interior point algorithm will actually converge to the center of the optimal set, i.e. to (z*,y*) =
(1/2,1/2) (to see this in MOSEK deactivate Presolve).

In practice, when the algorithm gets close to the optimal solution, it is possible to construct in
polynomial time an initial basis for the simplex algorithm from the current interior point solution. This
basis is used to warm-start the simplex algorithm that will provide the optimal basic solution. In most
cases the constructed basis is optimal, or very few iterations are required by the simplex algorithm to
make it optimal and hence the final clean-up phase be short. However, for some cases of ill-conditioned
problems the additional simplex clean up phase may take of lot a time.

By default MOSEK performs a basis identification. However, if a basic solution is not needed, the
basis identification procedure can be turned off. The parameters

e iparam.intpnt_basis,
e iparam.bi_ignore_maz_iter, and
® iparam.bi_ignore_num_error

control when basis identification is performed.

The type of simplex algorithm to be used (primal/dual) can be tuned with the parameter
iparam.bi_clean_optimizer, and the maximum number of iterations can be set with <param.
bi_maz_iterations.

Finally, it should be mentioned that there is no guarantee on which basic solution will be returned.

The Interior-point Log

Below is a typical log output from the interior-point optimizer:

Optimizer - threads 3 il

Optimizer - solved problem : the dual

Optimizer - Constraints 3 2

Optimizer - Cones : 0

Optimizer - Scalar variables : 6 conic : 0
Optimizer - Semi-definite variables: 0O scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 3 after factor : 3
Factor - dense dim. : 0 flops 3 o
—00e+001

ITE PFEAS DFEAS GFEAS PRSTATUS  POBJ DOBJ MU U
— TIME

0 1.0e+000 8.6e+000 6.1e+000 1.00e+000 0.000000000e+000 -2.208000000e+003 1.
—0e+000 0.00

1 1.1e+000 2.5e+000 1.6e-001 0.00e+000 -7.901380925e+003 -7.394611417e+003 2.
—5e+000 0.00

2 1.4e-001 3.4e-001 2.1e-002 8.36e-001 -8.113031650e+003 -8.055866001e+003 3.3e-
—001 0.00

3 2.4e-002 5.8e-002 3.6e-003 1.27e+000 -7.777530698e+003 -7.766471080e+003 5.7e-
—002 0.01

(continues on next page)
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4 1.3e-004 3.2e-004 2.0e-005 1.08e+000 -7.668323435e+003 -7.668207177e+003 3.2e-
—004 0.01
5 1.3e-008 3.2e-008 2.0e-009 1.00e+000 -7.668000027e+003 -7.668000015e+003 3.2e-
—008 0.01
6 1.3e-012 3.2e-012 2.0e-013 1.00e+000 -7.667999994e+003 -7.667999994e+003 3.2e-
—012 0.01

The first line displays the number of threads used by the optimizer and the second line indicates if
the optimizer chose to solve the primal or dual problem (see iparam.intpnt_solve_form). The next
lines display the problem dimensions as seen by the optimizer, and the Factor... lines show various
statistics. This is followed by the iteration log.

Using the same notation as in Sec. 13.2.2 the columns of the iteration log have the following meaning:

e ITE: Iteration index k.

e PFEAS: HAa:k - kaHoo . The numbers in this column should converge monotonically towards zero
but may stall at low level due to rounding errors.

e DFEAS: ||ATyk +s* —crk ||Oo . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

e GFEAS: | —cTa* +bTy* — k¥| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

e PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to —1 if that is not the case.

e POBJ: cT'z¥/7%. An estimate for the primal objective value.
e DOBJ: bTy* /7% An estimate for the dual objective value.

k)TSk-i-Tk’K,k

o MU: & e} . The numbers in this column should always converge to zero.

TIME: Time spent since the optimization started.

13.2.3 The Simplex Optimizer

An alternative to the interior-point optimizer is the simplex optimizer. The simplex optimizer uses a
different method that allows exploiting an initial guess for the optimal solution to reduce the solution
time. Depending on the problem it may be faster or slower to use an initial guess; see Sec. 13.2.1 for a
discussion. MOSEK provides both a primal and a dual variant of the simplex optimizer.

Simplex Termination Criterion

The simplex optimizer terminates when it finds an optimal basic solution or an infeasibility certificate.
A basic solution is optimal when it is primal and dual feasible; see Sec. 12.1 for a definition of the primal
and dual problem. Due to the fact that computations are performed in finite precision MOSEK allows
violations of primal and dual feasibility within certain tolerances. The user can control the allowed
primal and dual tolerances with the parameters dparam.basis_tol_z and dparam.basis_tol_s.

Setting the parameter iparam.optimizer to optimizertype. free_simplez instructs MOSEK to
select automatically between the primal and the dual simplex optimizers. Hence, MOSEK tries to
choose the best optimizer for the given problem and the available solution. The same parameter can also
be used to force one of the variants.
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Starting From an Existing Solution

When using the simplex optimizer it may be possible to reuse an existing solution and thereby reduce
the solution time significantly. When a simplex optimizer starts from an existing solution it is said to
perform a warm-start. If the user is solving a sequence of optimization problems by solving the problem,
making modifications, and solving again, MOSEK will warm-start automatically.

By default MOSEK uses presolve when performing a warm-start. If the optimizer only needs very
few iterations to find the optimal solution it may be better to turn off the presolve.

Numerical Difficulties in the Simplex Optimizers

Though MOSEK is designed to minimize numerical instability, completely avoiding it is impossible
when working in finite precision. MOSEK treats a “numerically unexpected behavior” event inside the
optimizer as a set-back. The user can define how many set-backs the optimizer accepts; if that number
is exceeded, the optimization will be aborted. Set-backs are a way to escape long sequences where the
optimizer tries to recover from an unstable situation.

Examples of set-backs are: repeated singularities when factorizing the basis matrix, repeated loss
of feasibility, degeneracy problems (no progress in objective) and other events indicating numerical
difficulties. If the simplex optimizer encounters a lot of set-backs the problem is usually badly scaled; in
such a situation try to reformulate it into a better scaled problem. Then, if a lot of set-backs still occur,
trying one or more of the following suggestions may be worthwhile:

e Raise tolerances for allowed primal or dual feasibility: increase the value of

— dparam.basis_tol_z, and

— dparam.basis_tol_s.
e Raise or lower pivot tolerance: Change the dparam.simplez_abs_tol_piv parameter.
e Switch optimizer: Try another optimizer.
e Switch off crash: Set both iparam.sim_primal_crash and iparam.sim_dual_crash to 0.
e Experiment with other pricing strategies: Try different values for the parameters

— 4param.sim_primal_selection and

— iparam.sim_dual_selection.

e If you are using warm-starts, in rare cases switching off this feature may improve stability. This is
controlled by the iparam.sim_hotstart parameter.

e Increase maximum number of set-backs allowed controlled by iparam.sim_maz_num_setbacks.

e If the problem repeatedly becomes infeasible try switching off the special degeneracy handling. See
the parameter iparam.sim_degen for details.

The Simplex Log

Below is a typical log output from the simplex optimizer:

Optimizer - solved problem : the primal

Optimizer - Constraints 1 667

Optimizer - Scalar variables 1 1424 conic : 0
Optimizer - hotstart : no

ITER DEGITER(%) PFEAS DFEAS POBJ DOBJ U
- TIME TOTTIME

0 0.00 1.43e+05 NA 6.5584140832e+03 NA L
— 0.00 0.02

1000 1.10 0.00e+00 NA 1.4588289726e+04 NA U
- 0.13 0.14

2000 0.75 0.00e+00 NA 7.3705564855e+03 NA U

(continues on next page)
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- 0.21 0.22

3000 0.67 0.00e+00 NA 6.0509727712e+03 NA U
. 0.29 0.31

4000 0.52 0.00e+00 NA 5.5771203906e+03 NA L
- 0.38 0.39

4533 0.49 0.00e+00 NA 5.5018458883e+03 NA U
. 0.42 0.44

The first lines summarize the problem the optimizer is solving. This is followed by the iteration log,
with the following meaning:

e ITER: Number of iterations.
e DEGITER(%): Ratio of degenerate iterations.

e PFEAS: Primal feasibility measure reported by the simplex optimizer. The numbers should be 0 if
the problem is primal feasible (when the primal variant is used).

e DFEAS: Dual feasibility measure reported by the simplex optimizer. The number should be 0 if the
problem is dual feasible (when the dual variant is used).

e POBJ: An estimate for the primal objective value (when the primal variant is used).
e DOBJ: An estimate for the dual objective value (when the dual variant is used).
e TIME: Time spent since this instance of the simplex optimizer was invoked (in seconds).

e TOTTIME: Time spent since optimization started (in seconds).

13.3 Conic Optimization - Interior-point optimizer

For conic optimization problems only an interior-point type optimizer is available. The same optimizer
is used for quadratic optimization problems which are internally reformulated to conic form.

13.3.1 The homogeneous primal-dual problem

The interior-point optimizer is an implementation of the so-called homogeneous and self-dual algorithm.
For a detailed description of the algorithm, please see [ART03]. In order to keep our discussion simple
we will assume that MOSEK solves a conic optimization problem of the form:

minimize T
subject to Az = b, (13.6)
reK

where K is a convex cone. The corresponding dual problem is

maximize by
subject to ATy+s = ¢, (13.7)
s e K*

where K* is the dual cone of K. See Sec. 12.2 for definitions.

Since it is not known beforehand whether problem (13.6) has an optimal solution, is primal infeasible
or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason
that MOSEK solves the so-called homogeneous model

Ar —br = 0,
ATy+s—cr = 0,
—cTr+bTy—k = 0,
: e K (13.8)
s € K*
T7 K Z 07
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where y and s correspond to the dual variables in (13.6), and T and k are two additional scalar variables.
Note that the homogeneous model (13.8) always has a solution since

(x,y,s,7,k) = (0,0,0,0,0)
is a solution, although not a very interesting one. Any solution
(&, y*, %, 7%, K¥)
to the homogeneous model (13.8) satisfies
(z)Ts* + 7%K* = 0

i.e. complementarity. Observe that z* € K and s* € * implies

and therefore

since 7%, k* > 0. Hence, at least one of 7* and k* is zero.
First, assume that 7* > 0 and hence £* = 0. It follows that

AL b,
ATYL + & ¢,
Tz | Ty _
- E+0 L = 0,
/" € K,
s*/t* e K*.

This shows that i— is a primal optimal solution and (ﬁ—, j—*) is a dual optimal solution; this is reported
as the optimal interior-point solution since

.T* y* S*
z,y,8)=|—,—=,—
(@) = (5.2,
is a primal-dual optimal solution.
On other hand, if * > 0 then

Ax* = 0,
ATy* 4 s* 0,
—CT.’E* +bTy* — I{*,
z* e K,
s* e K
This implies that at least one of
cl'z* <0 (13.9)
or
by* >0 (13.10)

holds. If (13.9) is satisfied, then z* is a certificate of dual infeasibility, whereas if (13.10) holds then y*
is a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information re-
quired for a solution to the original problem is obtained. A solution to the homogeneous model can be
computed using a primal-dual interior-point algorithm [And09].
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13.3.2 Interior-point Termination Criterion

Since computations are performed in finite precision, and for efficiency reasons, it is not possible to solve
the homogeneous model exactly in general. Hence, an exact optimal solution or an exact infeasibility
certificate cannot be computed and a reasonable termination criterion has to be employed.

In every iteration k of the interior-point algorithm a trial solution

E o,k & k Kk
(@, y", 8", TV KY)
to the homogeneous model is generated, where
F e K, " e K*, 7%, kF > 0.

Therefore, it is possible to compute the values:

. k
o = argmin, {p| [|a2r —b]| <1+ 00}
. k k
ph = axgming {p| 472 + 2% o< peal1 + el
. kT gk T k T, k ; T k|, [pT 4"
p’; = arg min, {p ((””(Tl)j 7 cT:]f _ kay |> < pe, max (17mm(|czrk||y)>},
pp = argming {p| AT o5 < peidTy”, bTy* > 0} and
Pai = arg minp {p | Akaoo é _pEiCTxka CT‘T’C < 0} .

Note €y, e4,€4 and €; are nonnegative user specified tolerances.

Optimal Case

Observe p’; measures how far z* /7% is from being a good approximate primal feasible solution. Indeed

if p]; <1, then

zk

|

. bH < ep(1+ [1bll.0)- (13.11)

This shows the violations in the primal equality constraints for the solution ¥ /7% is small compared to
the size of b given ¢, is small.

Similarly, if p% < 1, then (y*, s*)/7* is an approximate dual feasible solution. If in addition p, < 1,
then the solution (z*, y*, s¥) /7% is approximate optimal because the associated primal and dual objective
values are almost identical.

In other words if max(p’;, ok, p};) < 1, then

(z%,y", s)

Tk

is an approximate optimal solution.
Dual Infeasibility Certificate
Next assume that p’;i <1 and hence
HAkaOO < —EiCTCL'k and —cTzF >0

holds. Now in this case the problem is declared dual infeasible and z* is reported as a certificate of dual
infeasibility. The motivation for this stopping criterion is as follows. Let

. aF
Ti= g
and it is easy to verify that
|AZ|| <& and 'z = —1

which shows Z is an approximate certificate of dual infeasibility, where ¢; controls the quality of the
approximation.
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Primal Infeasiblity Certificate

Next assume that p’;i < 1 and hence
HATy]C + skHoo < eibTyk and bTyk >0

holds. Now in this case the problem is declared primal infeasible and (y*, s*) is reported as a certificate
of primal infeasibility. The motivation for this stopping criterion is as follows. Let

Y= yk ds:.= s*
= and 5 :=
Y byt by

and it is easy to verify that

HATQ + §||Oo <gandblg=1
which shows (y*,s*) is an approximate certificate of dual infeasibility, where &; controls the quality of
the approximation.

13.3.3 Adjusting optimality criteria

It is possible to adjust the tolerances €, €4, €4 and e; using parameters; see the next table for details.
Note that although this section discusses the conic optimizer, if the problem was originally input as a
quadratic or quadratically constrained optimization problem then the parameter names that apply are
those from the third column (with infix Q0 instead of CO0).

Table 13.2: Parameters employed in termination criterion

ToleranceParameter Name (for conic problems) Name (for quadratic problems)

Ep dparam.intpnt_co_tol_pfeas dparam. intpnt_qo_tol_pfeas
&d dparam.intpnt_co_tol_dfeas dparam.intpnt_qo_tol_dfeas
Eg dparam.intpnt_co_tol_rel_gap dparam.intpnt_qgo_tol_rel_gap
€q dparam. intpnt_co_tol_infeas dparam.intpnt_qo_tol_infeas

The default values of the termination tolerances are chosen such that for a majority of problems
appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the
tolerances usually is not worthwhile. However, an inspection of (13.11) reveals that the quality of the
solution depends on [|b]| , and ||c||; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal
and dual feasibility at the same rate [And09]. This means that if the optimizer is stopped prematurely
then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that
in most cases all the tolerances, €, €4, €4 and ¢;, have to be relaxed together to achieve an effect.

If the optimizer terminates without locating a solution that satisfies the termination criteria, for exam-
ple because of a stall or other numerical issues, then it will check if the solution found up to that point sat-
isfies the same criteria with all tolerances multiplied by the value of dparam. intpnt_co_tol_near_rel.
If this is the case, the solution is still declared as optimal.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

13.3.4 The Interior-point Log

Below is a typical log output from the interior-point optimizer:

Optimizer - threads : 20

Optimizer - solved problem : the primal

Optimizer - Constraints : 1

Optimizer - Cones 1 2

Optimizer - Scalar variables : 6 conic : 6
Optimizer - Semi-definite variables: 0O scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00

(continues on next page)
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Factor
Factor
Factor
—70e+01
ITE PFEAS
— TIME

0 1.0e+00
— 0.01

1 2.7e-01
- 0.01

2 6.5e-02
— 0.01

3 1.7e-03
-~ 0.01

4 1.4e-08
- 0.01

ML order time

nonzeros before factor :

dense dim.

DFEAS GFEAS
2.9e-01 3.4et+00
7.9e-02 2.2e+00
1.9e-02 1.2e+00
5.0e-04 2.2e-01
4.2e-09 4.9e-08

PRSTATUS

0.00e+00

8.83e-01

1.16e+00

1.12e+00

1.00e+00

o~ O

(continued from previous page)

GP order time

after factor
flops

POBJ

2.414213562e+00

6.969257574e-01

7.606090061e-01

7.084385672e-01

7.071067941e-01

DOBJ

0.000000000e+00

-9.685901771e-03

6.046141322e-01

7.045122560e-01

7.071067599e-01

: 0.00
1
1.
MU U
1.0e+00,
2.7e-01,
6.5e-02,

1.7e-03,

1.4e-08

The first line displays the number of threads used by the optimizer and the second line indicates if
the optimizer chose to solve the primal or dual problem (see iparam.intpnt_solve_form). The next
lines display the problem dimensions as seen by the optimizer, and the Factor... lines show various
statistics. This is followed by the iteration log.

Using the same notation as in Sec. 13.3.1 the columns of the iteration log have the following meaning:

e ITE: Iteration index k.

e PFEAS: HAmk — kaHOO . The numbers in this column should converge monotonically towards zero
but may stall at low level due to rounding errors.

o DFEAS: ||ATy* 4 sF

— crF||
oo

zero but may stall at low level due to rounding errors.

. The numbers in this column should converge monotonically towards

o GFEAS: | —cTa* +bTy* — k¥| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

e PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to —1 if that is not the case.

e POBJ: cT'z¥ /7%, An estimate for the primal objective value.

e DOBJ: bTy* /7% An estimate for the dual objective value.

o MU: &

k)TSk_,’_Tkﬁk
n+1

e TIME: Time spent since the optimization started (in seconds).

. The numbers in this column should always converge to zero.

13.4 The Optimizer for Mixed-Integer Problems

Solving optimization problems where one or more of the variables are constrained to be integer valued is
called Mixed-Integer Optimization (MIO). For an introduction to model building with integer variables,
the reader is recommended to consult the MOSEK Modeling Cookbook, and for further reading we
highlight textbooks such as [Wol98| or [CCornuejolsZ14].

MOSEK can perform mixed-integer

e linear (MILO),

e quadratic (MIQO) and quadratically constrained (MIQCQO), and

e conic (MICO)
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optimization, except for mixed-integer semidefinite problems.

By default the mixed-integer optimizer is run-to-run deterministic. This means that if a problem is
solved twice on the same computer with identical parameter settings and no time limit, then the obtained
solutions will be identical. The mixed-integer optimizer is parallelized, i.e., it can exploit multiple cores
during the optimization.

In practice, it often happens that the integer variables in MIO problems are actuall binary variables,
taking values in {0, 1}, leading to Mixed- or pure binary problems. In the general setting however, an
integer variable may have arbitrary lower and upper bounds.

13.4.1 Branch-and-Bound

In order to succeed in solving mixed-integer problems, it can be useful to have a basic understanding of
the underlying solution algorithms. The most important concept in this regard is arguably the so-called
Branch-and-Bound algorithm, employed also by MOSEK. The more experienced reader may skip this
section and advance directly to Sec. 13.4.2.

In order to comprehend Branch-and-Bound, the concept of a relaxation is important. Consider for
example a mixed-integer linear optimization problem of minimization type

* T

z* = minimize c'x
subject to Ax = b
23>0 (13.12)
z; € L, vieJ.
It has the continuous relaxation
zZ = minimize T
subject to Az = b (13.13)
x>0,

simply obtained by ignoring the integrality restrictions. The first step in Branch-and-Bound is to solve
this so-called root relaxation, which is a continuous optimization problem. Since (13.13) is less constrained
than (13.12), one certainly gets

P

and z is therefore called the objective bound: it bounds the optimal objective value from below.

After the solution of the root relaxation, in the most likely outcome there will be one or more integer
constrained variables with fractional values, i.e., violating the integrality constraints. Branch-and-Bound
now takes such a variable, z; = f; € R\Z with j € J, say, and creates two branches leading to relaxations
with the additional constraint z; < |f;] or x; > [f;], respectively. The intuitive idea here is to exclude
the undesired fractional value from the outcomes in the two created branches. If the integer variable was
actually a binary variable, branching would lead to fixing its value to 0 in one branch, and to 1 in the
other.

The Branch-and-Bound process continues in this way and successively solves relaxations and creates
branches to refined relaxations. Whenever the solution & to some relaxation does not violate any inte-
grality constraints, it is feasible to (13.12) and is called an integer feasible solution. There is no guarantee
though that it is also optimal, its solution value Z := ¢’ & is only an upper bound on the optimal objective
value,

zF <z,

By the successive addition of constraints in the created branches, the objective bound z (now defined as
the minimum over all solution values of so far solved relaxations) can only increase during the algorithm.
At the same time, the upper bound z (the solution value of the best integer feasible solution encountered
so far, also called incumbent solution) can only decrease during the algorithm. Since at any time we also
have

z2< 2" <z,

objective bound and incumbent solution value are encapsulating the optimal objective value, eventually
converging to it.
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The Branch-and-Bound scheme can be depicted by means of a tree, where branches and relaxations
correspond to edges and nodes. Figure Fig. 13.1 shows an example of such a tree. The strength of
Branch-and-Bound is its ability to prune nodes in this tree, meaning that no new child nodes will be
created. Pruning can occur in several cases:

e A relaxation leads to an integer feasible solution &. In this case we may update the incumbent and
its solution value Z, but no new branches need to be created.

e A relaxation is infeasible. The subtree rooted at this node cannot contain any feasible relaxation,
so it can be discarded.

o A relaxation has a solution value that exceeds zZ. The subtree rooted at this node cannot contain
any integer feasible solution with a solution value better than the incumbent we already have, so
it can be discarded.

Fig. 13.1: An examplary Branch-and-Bound tree. Pruned nodes are shown in light blue.

Having objective bound and incumbent solution value is a quite fundamental property of Branch-
and-Bound, and helps to asses solution quality and control termination of the algorithm, as we detail
in the next section. Note that the above explanation is coined for minimization problems, but the
Branch-and-bound scheme has a straightforward extension to maximization problems.

13.4.2 Solution quality and termination criteria

The issue of terminating the mixed-integer optimizer is rather delicate. Mixed-integer optimization is
generally much harder than continuous optimization; in fact, solving continuous sub-problems is just one
component of a mixed-integer optimizer. Despite the ability to prune nodes in the tree, the computational
effort required to solve mixed-integer problems grows exponentially with the size of the problem in a
worst-case scenario (solving mixed-integer problems is NP-hard). For instance, a problem with n binary
variables, may require the solution of 2™ relaxations. The value of 2" is huge even for moderate values of
n. In practice it is often advisable to accept near-optimal or appproximate solutions in order to counteract
this complexity burden. The user has numerous possibilities of influencing optimizer termination with
various parameters, in particular related to solution quality, and the most important ones are highlighted
here.
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Solution quality in terms of optimality

In order to assess the quality of any incumbent solution in terms of its objective value, one may check
the optimality gap, defined as

€ = |(incumbent solution value) — (objective bound)| = |z — z|.

It measures how much the objectives of the incumbent and the optimal solution can deviate in the
worst case. Often it is more meaningful to look at the relative optimality gap

|z — 2|
€rel = — -~ -
T max(dy, [2])

This is essentially the above absolute optimality gap normalized against the magnitude of the incum-
bent solution value; the purpose of the (small) constant d; is to avoid overweighing incumbent solution
values that are very close to zero. The relative optimality gap can thus be interpreted as answering the
question: “Within what fraction of the optimal solution is the incumbent solution in the worst case?”

Absolute and relative optimality gaps provide useful means to define termination criteria for the
mixed-integer optimizer in MOSEK. The idea is to terminate the optimization process as soon as the
quality of the incumbent solution, measured in absolute or relative gap, is good enough. In fact, whenever
an incumbent solution is located, the criterion

€ < 0z Or €re1 < 53

is checked. If satisfied, i.e., if either absolute or relative optimality gap are below the thresholds s
or 03 (see Table 13.3), the optimizer terminates and reports the incumbent as an optimal solution.
The optimality gaps at termination can always be retrieved through the information items dinfitem.
mio_obj_abs_gap and dinfitem.mio_obj_rel_gap.

The tolerances discussed above can be adjusted using suitable parameters, see Table 13.3. By default,
the optimality parameters do and d3 are quite small, i.e., restrictive. These default values for the absolute
and relative gap amount to solving any instance to (almost) optimality: the incumbent is required to be
within at most a tiny percentage of the optimal solution. As anticipated, this is not tractable in many
practical situations, and one should resort to finding near-optimal solutions quickly rather than insisting
on finding the optimal one. It may happen, for example, that an optimal or close-to-optimal solution
is found very early by the optimizer, but it spends a huge amount of further computational time for
branching, trying to increase z that last missing bit: a typical situation that practioneers would want to
avoid. The concept of optimality gaps is fundamental for controlling solution quality when resorting to
near-optimal solutions.

MIO performance tweaks: termination criteria

One of the first things to do in order to cut down excessive solution time is to increase the relative
gap tolerance dparam.mio_tol_rel_gap to some non-default value, so as to not insist on finding optimal
solutions. Typical values could be 0.01,0.05 or 0.1, guaranteeing that the delivered solutions lie within
1%,5% or 10% of the optimum. Increasing the tolerance will lead to less computational time spent by
the optimizer.

Solution quality in terms of feasibility

For an optimizer relying on floating-point arithmetic like the mixed-integer optimizer in MOSEK, it
may be hard to achieve exact integrality of the solution values of integer variables in most cases, and it
makes sense to numerically relax this constraint. Any candidate solution Z is accepted as integer feasible
if the criterion

min(£; — [45], [4;] —2;) <y VjeT
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is satisfied, meaning that «; is at most d, away from the nearest integer. As above, d4 can be adjusted
using a parameter, see Table 13.3, and impacts the quality of the acieved solution in terms of integer
feasibility. By influencing what solution may be accepted as imcumbent, it can also have an impact on
the termination of the optimizer.

MIO performance tweaks: feasibility criteria

Whether increasing the integer feasibility tolerance dparam.mio_tol_abs_relaz_int leads to less
solution time is highly problem dependent. Intuitively, the optimizer is more flexible in finding new
incumbent soutions so as to improve zZ. But this effect has do be examined with care on indivuidual
instances: it may worsen solution quality with no effect at all on the solution time. It may in some cases
even lead to contrary effects on the solution time.

Table 13.3: Tolerances for the mixed-integer optimizer.

Tolerance  Parameter name Default value
01 dparam.mio_rel_gap_const 1.0e-10

02 dparam.mio_tol_abs_gap 0.0

03 dparam.mio_tol_rel_gap 1.0e-4

04 dparam.mio_tol_abs_relax_int 1.0e-5

Further controlling optimizer termination

There are more ways to limit the computational effort employed by the mixed-integer optimizer by simply
limiting the number of explored branches, solved relaxations or updates of the incumbent solution. When
any of the imposed limits is hit, the optimizer terminates and the incumbent solution may be retrieved.
See Table 13.4 for a list of corresponding parameters. In contrast to the parameters discussed in Sec.
13.4.2, interfering with these does not maintain any guarantees in terms of solution quality.

Table 13.4: Other parameters affecting the integer optimizer ter-
mination criterion.

Parameter name Explanation
iparam.mio_maz_num_branches Maximum number of branches allowed.
iparam.mio_maz_num_relazs Maximum number of relaxations allowed.

iparam.mio_maz_num_solutions Maximum number of feasible integer solutions allowed.

13.4.3 The Mixed-Integer Log

The Branch-and-Bound scheme from Sec. 13.4.1 is only the basic skeleton of the mixed-integer optimizer
in MOSEK, and several components are built on top of that in order to enhance its functionality and
increase its speed. A mixed-integer optimizer is sometimes referred to as a “giant bag of tricks”, and
it would be impossible to describe all of these tricks here. Yet, some of the additional components are
worth mentioning. They can be influenced by various user parameters, and although the default values of
these parameters are optimized to work well on average mixed-integer problems, it may pay off to adjust
them for an individual problem, or a specific problem class. The mixed-integer log can give insights on
which parameters might be worth an adjustment. Below is a typical log output:

Presolve started.

Presolve terminated. Time = 0.23, probing time = 0.09

Presolved problem: 1176 variables, 1344 constraints, 4968 non-zeros
Presolved problem: 328 general integer, 392 binary, 456 continuous
Clique table size: 55

Symmetry factor : 0.79 (detection time = 0.01)

Removed blocks 2
BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_0OBJ BEST_RELAX_0OBJ REL_GAP (
%) TIME

(continues on next page)
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2.

0 0 1 0
- 0.2

0 1 1 0
- 0.3

0 1 1 0
— 0.4

0 1 1 0
- 0.4

Rooot cut generation started.
0 1 1 0
- 0.4

0 2 1 0
- 0.4

Rooot cut generation terminated. Time
0 4 1 0
- 0.5

0 8 1 0
- 0.6

0 11 1 0
- 0.6

0 12 1 0
— 0.6

2 23 1 0
- 0.7

14 35 1 0
- 0.7

[...]

Objective of best integer solution :
Best objective bound
Construct solution objective
User objective cut value
Number of cuts generated

Number of Gomory cuts

Number of CMIR cuts

Number of clique cuts
Number of branches
Number of relaxations solved
Number of interior point iteratioms:
Number of simplex iterations :
Time spend presolving the root
Time spend optimizing the root

.3888091139e+07

.3888091139e+07

.1273162420e+07

.6047699632e+07

.6047699632e+07

.6047699632e+07

= 0.05
5990071367e+07

.5971002767e+07

.5925040617e+07

.5915504014e+07

.5915504014e+07

.5915504014e+07

2.578282162804e+07
: 2.569877601306e+07
: Not employed
: Not employed

192

: 52

137

. 3
: 29252
: 31280

16
105440

: 0.23
: 0.07

Mixed integer optimizer terminated. Time: 6.96

(continued from previous page)

NA

.5492512136e+07

.5492512136e+07

.5492512136e+07

.5492512136e+07

.5589986247e+07

.5662741991e+07

.5662741991e+07

.5662741991e+07

.5662741991e+07

.5662741991e+07

.5662741991e+07

NA

69.61

18.48

2.13

]

The main part here is the iteration log, a progressing series of similar rows reflecting the progress

made during the Branch-and-bound process. The columns have the following meanings:

e BRANCHES: Number of branches / nodes generated.

DEPTH: Depth of the last solved node.

RELAXS: Number of relaxations solved.

ACT_NDS: Number of active / non-processed nodes.

BEST_RELAX_0BJ: The objective bound, 2.
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e REL_GAP(%): Relative optimality gap, 100% - €,el
e TIME: Time (in seconds) from the start of optimization.

Also a short solution summary with several statistics is printed. When the solution time for a mixed-
integer problem has to be cut down, the log can help to understand where time is spent and what might
be improved. We go into some more detail about some further items in the mixed-integer log giving hints
about individual components of the optimizer. Alternatively, most of these items can also be retrieved
as information items, see Sec. 7.6.

Presolve

Similar to the case of continuous problems, see Sec. 13.1, the mixed-integer optimizer applies various
presolve reductions before the actual Branch-and-bound is initiated. The first lines of the mixed-integer
log contain a summary of the presolve process, including the time spent therein (Presolve terminated.
Time = 0.23...). Just as in the continuous case, the use of presolve can be controlled with the parameter
iparam.presolve_use. If presolve time seems excessive, instead of switching it off completely one may
also try to reduce the time spent in one or more of its individual components. On some models it can
also make sense to increase the use of a certain presolve technique. Table Table 13.5 lists some of these
with their respective parameters.

Table 13.5: Parameters affecting presolve

Parameter name Explanation Possible reference in log
iparam. Probing aggressivity level. ... probing time = 0.09
mio_probing_level

iparam. Symmetry detection aggressiv- Symmetry factor : 0.79
mio_symmetry_level ity level. (detection time = 0.01)
iparam. Block structure detection level, Removed blocks : 2
mio_independent_block_le: see Sec. 13.4.3.

dparam. Maximum size of the clqiue ta- Clique table size: 55
mio_clique_table_size_ fac ble.

iparam. Should variable agggregation —

mio_presolve_aggregator_i be enabled?

Primal Heuristics

It might happen that the value in the colum BEST_INT_0BJ stalls over a long period of log lines, an indi-
cation that the optimizer has a hard time improving the incumbent solution, i.e., Z. Solving relaxations
in the tree to an integer feasible solution Z is not the only way to find new incumbent solutions. There
is a variety of procedures that, given a mixed-integer problem in a generic form like (13.12), attempt to
produce integer feasible solutions in an ad-hoc way. These procedures are called Primal Heuristics, and
several of them are implemented in MOSEK. For example, whenever a relaxation leads to a fractional
solution, one may round the solution values of the integer variables, in various ways, and hope that
the outcome is still feasible to the remaining constraints. Primal heuristics are mostly employed while
processing the root node, but play a role throughout the whole solution process. The goal of a primal
heuristic is to improve the incumbent solution and thus the bound Z, and this can of course affect the
quality of the solution that is returned after termination of the optimizer. The user parameters affecting
primal heuristics are listed in Table 13.6.

MIO performance tweaks: primal heuristics

e If the mixed-integer optimizer struggles to improve the incumbent solution BEST_INT_0BJ, it can
be helpful to intensify the use of primal heuristics.

— Set parameters related to primal heuristics to more aggressive values than the default ones, so
that more effort is spent in this component. A List of the respective parameters can be found
in Table 13.6. In particular, if the optimizer has difficulties finding any integer feasible solution
at all, indicated by NA in the column BEST_INT_OBJ in the mixed-integer log, one may try to
activate a construction heuristic like the Feasibility Pump with iparam.mio_ feaspump_level.
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— Specify a good initial solution: In many cases a good feasible solution is either known or
easily computed using problem-specific knowledge that the optimizer does not have. If so, it
is usually worthwhile to use this as a starting point for the mixed-integer optimizer. See also
the parameter iparam.mio_construct_sol, and Section Sec. 6.8.2.

— For feasibility problems, i.e., problems having a constant objective, the goal is to find a single
integer feasible solution, and this can be hard by itself on some instances. Try setting the
objective to something meaningful anyway, even if the underlying application does not require
this. After all, the feasible set is not changed, but the optimizer might benefit from being able
to pursue a concrete goal.

e In rare cases it may also happen that the optimizer spends an excessive amount of time on primal
heuristics without drawing any benefit from it, and one may try to limit their use with the respective

parameters.
Table 13.6: Parameters affecting primal heuristics

Parameter name Explanation
iparam.mio_heuristic_level Primal heuristics aggressivity level.
iparam.mio_rins_mar_nodes Maximum number of nodes allowed in the RINS heuristic.
iparam.mio_rens_mar_nodes Maximum number of nodes allowed in the RENS heuristic.
iparam. Maximum number of nodes allowed in the Crossover heuristic.
mio_crossover_mar_nodes
iparam. Maximum number of nodes allowed in the optimal face heuristic.
mio_opt_face_maxz_nodes
iparam.mio_ feaspump_level Way of using the Feasibility Pump heuristic.

Cutting Planes

It might as well happen that the value in the colum BEST_RELAX_0BJ stalls over a long period of log
lines, an indication that the optimizer has a struggles to improve the objective bound z. A component of
the optimizer designed to act on the objective bound is given by Cutting planes, also called cuts or valid
inequalities. Cuts do not remove any integer feasible solutions from the feasible set of the mixed-integer
problem (13.12). They may, however, remove solutions from the feasible set of the relaxation (13.13),
ideally making it a stronger relaxation with better objective bound.

As an example, take the constraints

21 4+ 3x2+ 23 <4, x1,22 € {0,1}, 3 >0. (13.14)

One may realize that there cannot be a feasible solution in which both binary variables take on a value
of 1. So certainly

r1+a9 <1 (1315)

is a valid inequality (there is no integer solution satisfying (13.14), but violating (13.15)). The latter
does cut off a portion of the feasible region of the continuous relaxation of (13.14) though, obtained by
replacing x1, z9 € {0,1} with z1,z2 € [0,1]. For example, the fractional point (z1,z2,z3) = (0.5,1,0) is
feasible to the relaxation, but violates the cut (13.15).

There are many classes of general-purpose cuttting planes that may be generated for a mixed-integer
problem in a generic form like (13.12), and MOSEK’s mixed-integer optimizer supports several of them.
For instance, the above is an example of a so-called clique cut. The most effort on generating cutting
planes is spent after the solution of the root relaxation; the beginning and the end of root cut generation
is highlighted in the log, and the number of log lines in between reflects to the computational effort spent
here. Also the solution summary at the end of the log highlights for each cut class the number of generated
cuts. Cuts can also be generated later on in the tree, which is why we also use the term Branch-and-cut,
an extension of the basic Branch-and-bound scheme. Cuts aim at improving the objective bound z and
can thus have significant impact on the solution time. The user parameters affecting cut generation can
be seen in Table 13.7.
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MIO performance tweaks: cutting planes

e If the mixed-integer optimizer struggles to improve the objective bound BEST_RELAX_0BJ, it can
be helpful to intensify the use of cutting planes.

— Some types of cutting planes are not activated by default, but doing so may help to improve
the objective bound.

— The parameters dparam.mio_tol_rel_dual_bound_improvement and iparam.
mio_cut_selection_level determine how aggressively cuts will be generated and
selected.

— If some valid inequalities can be deduced from problem-specific knowledge that the optimizer
does not have, it may be helpful to add these to the problem formulation as constraints.
This has to be done with care, since there is a tradeoff between the benefit obtained from an
improved objective boud, and the amount of additional constraints that make the relaxations
larger.

e In rare cases it may also be observed that the optimizer spends an excessive effort on cutting
planes, and one may limit their use with <param.mio_maz_num_root_cut_rounds, or by disabling
a certain type of cutting planes.

Table 13.7: Parameters affecting cutting planes

Parameter name Explanation

iparam.mio_cut_clique Should clique cuts be enabled?
iparam.mio_cut_cmir Should mixed-integer rounding cuts be enabled?
iparam.mio_cut_gmi Should GMI cuts be enabled?
iparam.mio_cut_implied_bound Should implied bound cuts be enabled?
iparam.mio_cut_knapsack_cover Should knapsack cover cuts be enabled?
iparam.mio_cut_lipro Should lift-and-project cuts be enabled?
iparam.mio_cut_selection_level Cut selection aggressivity level.

iparam.mio_maz_num_root_cut_round Maximum number of root cut rounds.
dparam.mio_tol_rel_dual_bound_imp Minimum required objective bound improvement during
root cut generation.

Restarts

The mixed-integer optimizer employs so-called restarts, i.e., if the progress made while exploring the tree
is deemed unsufficient, it might decide to restart the solution process from scratch, possibly making use
of the information collected so far. When a restart happens, this is displayed in the log:

[...]

1948 4664 699 36 NA 1.1800000000e+02 NA U
. 7.2
1970 4693 705 50 NA 1.1800000000e+02 NA U
“— 7-2

Performed MIP restart 1.

Presolve started.

Presolve terminated. Time = 0.01, probing time = 0.00

Presolved problem: 523 variables, 765 constraints, 3390 non-zeros
Presolved problem: O general integer, 404 binary, 119 continuous
Clique table size: 143

BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_OBJ BEST_RELAX_0OBJ REL_GAP(
~%) TIME
1988 4729 1 0 NA 1.1800000000e+02 NA T

(continues on next page)
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- 7.3

1988 4730 1 0 4.0000000000e+01 1.1800000000e+02 195.00 .,
- 7.3

[...]

Restarts tend to be useful especially for hard models. However, in individual cases the optimizer may
decide to perform a restart while it would have been better to continue exploring the tree. Their use can
be controlled with the parameter tparam.mio_maz_num_restarts.

Block decomposition

Sometimes the optimizer faces a model that actually represents two or more completely independent
subproblems. For a linear problem such as (13.13), this means that the constraint matrix A is a block-
diagonal. Block-diagonal structure can occur after MOSEK applies some presolve reductions, e.g., a
variable is fixed that was the only variable connecting two otherwise independent subproblems. Or, more
rarely, the original model provided by the user is already block-diagonal.

In principle, solving such blocks independently is easier than letting the optimizer work on the single,
large model, and MOSEK thus tries to exploit this structure. Some blocks may be completely solved
and removed from the model during presolve, which can be seen by a line at the end of the presolve
summary, see also Sec. 13.4.3. If after presolve there are still independent blocks, MOSEK can apply a
dedicated algorithm to solve them independently while periodically combining their individual solution
statusses (such as incumbent solutions and objective bounds) to the solution status of the original model.
Just like the removal of blocks during presolve, the application of this latter strategy is indicated in the
log:

[...]

15 38 1 0 4.1759800000e+05 3.8354200000e+05 8.16
- 0.9

Root cut generation started.

15 38 1 0 4.1759800000e+05 3.8354200000e+05 8.16
- 1.1

Root cut generation terminated. Time = 0.11

15 40 1 0 4.1645600000e+05 3.8934425000e+05 6.51
- 2.0

15 41 1 0 4.1622400000e+05 3.8934425000e+05 6.46
- 2.0

23 52 1 0 4.1622400000e+05 3.8934425000e+05 6.46 |
— 2.0

Decomposition solver started with 5 independent blocks.

532 425 5 118 4.1592600000e+05 3.8935275000e+05 6.39
- 4.5

1858 11911 815 286 4.1007800000e+05 3.8946400000e+05 5.03
— 11.8

[...]

How block-diagonal structure is detected and handled by the optimizer can be controlled with the
parameter iparam.mio_independent_block_level.
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13.4.4 Mixed-Integer Nonlinear Optimization

Due to the involved non-linearities, MI(QC)QO or MICO problems are on average harder than MILO
problems of comparable size. Yet, the Branch-and-Bound scheme can be applied to these probelm
classes in a straightforward manner. The relaxations have to be solved as conic problems with the
interior point algorithm in that case, see Sec. 13.3, opposed to MILO where it is often beneficial to solve
relaxations with the dual simplex method, see Sec. 13.2.3. There is another solution approach for these
types of problems implemented in MOSEK, namely the Outer-Approximation algorithm, making use
of dynamically refined linear approximations of the non-linearities.

MICO performance tweaks: choice of algorithm

Whether conic Branch-and-Bound or Outer-Approximation is applied to a mixed-integer conic prob-
lem can be set with iparam.mio_conic_outer_approzimation. The best value for this option is highly
problem dependent.

MI(QC)QO

MOSEK is specialized in solving linear and conic optimization problems, both with or without mixed-
integer variables. Just like for continuous problems, mixed-integer quadratic problems are converted
internally to conic form, see Sec. 12.4.1

Contrary to the continuous case, MOSEK can solve certain mixed-integer quadratic problems where
one or more of the involved matrices are not positive semidefinite, so-called non-convex MI(QC)QO prob-
lems. These are automatically reformulated to an equivalent convex MI(QC)QO problem, provided that
such a reformulation is possible on the given instance (otherwiese MOSEK will reject the problem and
issue an error message). The concept of reformulations can also affect the solution times of MI(QC)QO
problems.

MI(QC)QO performance tweaks: applying a reformulation method

There are several reformulation methods for MI(QC)QO problems, available through the parameter
iparam.mio_qcqo_reformulation_method. The chosen method can have significant impact on the
mixed-integer optimizer’s speed on such problems, both convex and non-convex. The best value for this
option is highly problem dependent.

13.4.5 Disjunctive constraints

Problems with disjunctive constraints (DJC) see Sec. 6.9 are typically reformulated to mixed-integer
problems, and even if this is not the case they are solved with an algorithm that is based on the mixed-
integer optimizer. In MOSEK, these problems thus fall into the realm of MIO. In particular, MOSEK
automatically attempts to replace any DJC by so called big-M constraints, potentially after transforming
it to several, less complicated DJCs. As an example, take the DJC

[Z = 0} vV [Z =1,21+x9 > 1000],

where z € {0,1} and x1, 22 € [0,750]. This is an example of a DJC formulation of a so-called indicator
constraint. A big-M reformulation is given by

x1 4+ 29 >1000 — M - (1 — 2),

where M > 0 is a large constant. The practical difficulty of these constructs is that M should always
be sufficiently large, but ideally not larger. Too large values for M can be harmful for the mixed-integer
optimizer. During presolve, and taking into account the bounds of the involved variables, MOSEK auto-
matically reformulates DJCs to big-M constraints if the required M values do not exceed the parameter
dparam.mio_djc_maz_bigm. From a performance point-of-view, all DJCs would ideally be linearized
to big-Ms after presolve without changing this parameter’s default value of 1.0e6. Whether or not this
is the case can be seen by retrieving the information item iinfitem.mio_presolved_numdjc, or by a
line in the mixed-integer optimizer’s log as in the example below. Both state the number of remaining
disjunctions after presolve.
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Presolved problem: 305 variables, 204 constraints, 708 non-zeros
Presolved problem: O general integer, 100 binary, 205 continuous
Presolved problem: 100 disjunctions

Clique table size: O

BRANCHES RELAXS  ACT_NDS DEPTH BEST_INT_O0BJ BEST_RELAX_OBJ REL_GAP(
—%) TIME

0 1 1 0 NA 0.0000000000e+00 NA 0
= 0.0

0 1 1 0 5.0574653969e+05 0.0000000000e+00 100.00 |,
= 0.0

[ ...]

DJC performance tweaks: managing variable bounds

e Always specify the tightest known bounds on the variables of any problem with DJCs, even if they
seem trivial from the user-perspective. The mixed-integer optimizer can only benefit from these
when reformulating DJCs and thus gain performance; even if bounds don’t help with reformulations,
it is very unlikely that they hurt the optimizer.

e Increasing dparam.mio_djc_maz_bigm can lead to more DJC reformulations and thus increase
optimizer speed, but it may in turn hurt numerical solution quality and has to be examined with
care. The other way round, on numerically challenging instances with DJCs, decreasing dparam.
mio_djc_maz_bigm may lead to numerically more robust solutions.

13.4.6 Randomization

A mixed-integer optimizer is usually prone to performance variability, meaning that a small change in
either

e problem data, or
e computer hardware, or
e algorithmic parameters

can lead to significant changes in solution time, due to different solution paths in the Branch-and-cut
tree. In extreme cases the exact same problem can vary from being solvable in less than a second to
seemingly unsolvable in any reasonable amount of time on a different computer.

One practical implication of this is that one should ideally verify whether a seemingly beneficial set
of parameters, established experimentally on a single problem, is still beneficial (on average) on a larger
set of problems from the same problem class. This protects against making parameter changes that had
positive effects only due to random effects on that single problem.

In the absence of a large set of test problems, one may also change the random seed of the optimizer to
a series of different values in order to hedge against drawing such wrong conclusions regarding parameters.
The random seed, accessible through iparam.mio_seed, impacts for example random tie-breaking in
many of the mixed-integer optimizer’s components. Changing the random seed can be combined with a
permutation of the problem data to further incite randomness, accessible through the parameter iparam.
mio_data_permutation_method.
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13.4.7 Further performance tweaks

In addition to what was mentioned previously, there may be other ways to speed up the solution of a
given mixed-integer problem. For example, there are further user parameters affecting some algorithmic
settings in the mixed-integer optimizer. As mentioned above, default parameter values are optimized to
work well on average, but on individual problems they may be adjusted.

MIO performance tweaks: miscellaneous

While exploring the tree, the optimizer applies certain strategies to decide which fractional variable
to branch on, see Sec. 13.4.1. The chosen strategy can have a big impact on performance, and may
be controlled with iparam.mio_var_selection.

Similarly, the strategy to chose the next node to explore in the tree is controlled with Zparam.
mio_node_selection.

The optimizer employs specialized techniques to learn from infeasible nodes and use that knowledge
to avoid creating similar nodes in other parts of the tree. The effort spent here can be influenced
with iparam.mio_dual_ray_analysis_level and iparam.mio_conflict_analysis_level.

When relaxations in the tree are linear optimization problems (e.g., in MILO or when solving
MICO probelms with the Outer-Approximation method), it is usually best to employ the dual
simplex method for their solution. In rare cases the primal simplex method may actually be the
better choice, and this can be set with the parameter tparam.mio_node_optimizer.

Some problems are numerically more challenging than others, for example if the ratio between the
smallest and the largest involved coefficients is large, say > 1€9. An indication of numerical issues
are, for example, large violations in the final solution, observable in the solution summery of the
log output, see Sec. 8.1.3. Similarly, a problem that is known to be feasible by the user may be
declared infeasible by the optimizer. In such cases it is usually best to try to rescale the model.
Otherwise, the mixed-integer optimizer can be instructed to be more cautios regarding numerics
with the parameter iparam.mio_numerical_emphasis_level. This may in turn be at the cost of
solution speed though.

Improve the formulation: A MIO problem may be impossible to solve in one form and quite easy
in another form. However, it is beyond the scope of this manual to discuss good formulations for
mixed-integer problems. For discussions on this topic see for example [Wol98].
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Chapter 14

Additional features

In this section we describe additional features and tools which enable more detailed analysis of optimiza-
tion problems with MOSEK.

14.1 Problem Analyzer

The problem analyzer prints a survey of the structure of the problem, with information about linear
constraints and objective, quadratic constraints, conic constraints and variables.

In the initial stages of model formulation the problem analyzer may be used as a quick way of
verifying that the model has been built or imported correctly. In later stages it can help revealing special
structures within the model that may be used to tune the optimizer’s performance or to identify the
causes of numerical difficulties.

The problem analyzer is run using Task.analyzeproblem. It prints its output to a log stream. The
output is similar to the one below (this is the problem survey of the aflow30a problem from the MIPLIB
2003 collection).

Analyzing the problem

**xx Structural report

Dimensions
Constraints Variables Matrix var. Cones
479 842 0 0

Constraint and bound types

Free Lower Upper Ranged Fixed
Constraints: O 0 421 0 58
Variables: O 0 0 842 0

Integer constraint types

Binary General
421 0
**x* Data report
Nonzeros Min Max
lcjl: 421 1.1e+01 5.0e+02
[Aijl|: 2091 1.0e+00 1.0e+02
# finite Min Max
|blcil: 58 1.0e+00 1.0e+01
|bucil|: 479 0.0e+00 1.0e+01
[plxjl: 842 0.0e+00 0.0e+00
[buxjl: 842 1.0e+00 1.0e+02

(continues on next page)
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*** Done analyzing the problem

The survey is divided into a structural and numerical report. The content should be self-explanatory.

14.2 Automatic Repair of Infeasible Problems

MOSEK provides an automatic repair tool for infeasible linear problems which we cover in this section.
Note that most infeasible models are so due to bugs which can (and should) be more reliably fixed
manually, using the knowledge of the model structure. We discuss this approach in Sec. 8.3.

14.2.1 Automatic repair

The main idea can be described as follows. Consider the linear optimization problem with m constraints
and n variables

minimize e+ ef
subject to ¢ < Ax < uc,
r < T < u*

which is assumed to be infeasible.

One way of making the problem feasible is to reduce the lower bounds and increase the upper bounds.
If the change is sufficiently large the problem becomes feasible. Now an obvious idea is to compute the
optimal relaxation by solving an optimization problem. The problem

minimize p(vlc, Vg, U vfﬁ)
subject to  1¢—ovf < Ax < uf oy, (14.1)
| x < w4l '

C C X X
vy, vg, v, vy > 0

does exactly that. The additional variables (vf);, (vS)s, (vf); and (vS); are elasticity variables because
they allow a constraint to be violated and hence add some elasticity to the problem. For instance, the
elasticity variable (vf); controls how much the lower bound (I°); should be relaxed to make the problem
feasible. Finally, the so-called penalty function

Py’ v, V5 vy,)

is chosen so it penalizes changes to bounds. Given the weights

e wi € R™ (associated with [¢ ),

o w’ € R™ (associated with u® ),

e wi € R" (associated with [7 ),

o w? € R™ (associated with u® ),

a natural choice is

P, 05, o 08) = ()T + ()0 + () Tof + ()Tt

Hence, the penalty function p() is a weighted sum of the elasticity variables and therefore the problem
(14.1) keeps the amount of relaxation at a minimum. Please observe that

e the problem (14.1) is always feasible.

e a negative weight implies problem (14.1) is unbounded. For this reason if the value of a weight is
negative MIOSEK fixes the associated elasticity variable to zero. Clearly, if one or more of the
weights are negative, it may imply that it is not possible to repair the problem.

A simple choice of weights is to set them all to 1, but of course that does not take into account that
constraints may have different importance.
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Caveats
Observe if the infeasible problem

minimize x4+ 2
subject to T =
T > 0

is repaired then it will become unbounded. Hence, a repaired problem may not have an optimal solution.

Another and more important caveat is that only a minimal repair is performed i.e. the repair that
barely makes the problem feasible. Hence, the repaired problem is barely feasible and that sometimes
makes the repaired problem hard to solve.

Using the automatic repair tool

In this subsection we consider an infeasible linear optimization example:

minimize  —10z; —9x9,
subject to 7/10x; + laxs < 630,
1/2331 + 5/6$2 S 6007
ley 4+ 2/3zy < 708, (14.2)
1/10z1 + 1/4z, < 135,
x1, 2 > 0
To > 650.

The function Task.primalrepair can be used to repair an infeasible problem. This can be used for
linear and conic optimization problems, possibly with integer variables.

Listing 14.1: An example of feasibility repair applied to problem
(14.2).

package com.mosek.example;
import mosek.*;
public class feasrepairexl {
public static void main (String[] args) {
String filename = "../data/feasrepair.lp";
if (args.length >= 1) filename = args[0];
try (Env env = new Env();
Task task = new Task(env, 0, 0)) {
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }1});
task.readdata(filename) ;
task.putintparam(mosek.iparam.log_feas_repair, 3);
task.primalrepair(null, null, null, null);
double sum_viol = task.getdouinf (mosek.dinfitem.primal_repair_penalty_obj);
System.out.println("Minimized sum of violations = " + sum_viol);

task.optimize();

(continues on next page)
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task.solutionsummary (mosek.streamtype.msg) ;
X
by
}

The above code will produce the following log report:

MOSEK Version 9.0.0.25(ALPHA) (Build date: 2017-11-7 16:11:50)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86

Open file 'feasrepair.lp'
Reading started.
Reading terminated. Time: 0.00

Read summary
Type : LO (linear optimization problem)
Objective sense : min
Scalar variables
Matrix variables :
Constraints
Cones
Time

O O ON

Problem
Name
Objective sense : min
Type : LO (linear optimization problem)
Constraints
Cones
Scalar variables
Matrix variables
Integer variables

O O N O b

Primal feasibility repair started.
Optimizer started.

Presolve started.

Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.

Freed constraints in eliminator : 2
Eliminator terminated.

Eliminator - tries 3 dl time : 0.00
Lin. dep. - tries 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem

Name

Objective sense : min

Type : L0 (linear optimization problem)

Constraints : 8

Cones : 0

Scalar variables : 14

Matrix variables : 0

Integer variables : 0
Optimizer - threads : 20

(continues on next page)
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Optimizer solved problem : the primal

Optimizer Constraints : 2

Optimizer - Cones : 0

Optimizer - Scalar variables : b conic

Optimizer - Semi-definite variables: 0O scalarized

Factor - setup time : 0.00 dense det. time
Factor - ML order time : 0.00 GP order time
Factor - nonzeros before factor : 3 after factor

Factor - dense dim. : 0 flops

—00e+01

ITE PFEAS DFEAS GFEAS PRSTATUS  POBJ DOBJ

— TIME

0 2.7e+t01 1.0e+00 4.0e+00 1.00e+00  3.000000000e+00  0.000000000e+00
— 0.00

1 2.5e+01 9.1e-01 1.4e+00 0.00e+00 8.711262850e+00  1.115287830e+01
— 0.00

2 2.4e+00 8.8e-02 1.4e-01 -7.33e-01 4.062505701e+01  4.422203730e+01
— 0.00

3 9.4e-02 3.4e-03 5.5e-03 1.33e+00 4.250700434e+01  4.258548510e+01
— 0.00

4 2.0e-05 7.2e-07 1.1e-06 1.02e+00 4.249996599e+01  4.249998669e+01
— 0.00

5 2.0e-09 7.2e-11 1.1e-10 1.00e+00 4.250000000e+01  4.250000000e+01
— 0.00

Basis identification started.

Basis identification terminated. Time: 0.00

Optimizer terminated. Time: 0.01

Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEA
Solution status : OPTIMAL
Primal. obj: 4.2500000000e+01
Dual. obj: 4.2499999999e+01

nrm: 6e+02
nrm: 2e+00

SIBLE

Viol.
Viol.

con: le-13
con: 0e+00

var:
var:

Optimal objective value of the penalty problem: 4.250000000000e+01

Repairing bounds.

Increasing the upper bound 1.35e+02 on
Decreasing the lower bound 6.50e+02 on
Primal feasibility repair terminated.
Optimizer started.

Optimizer terminated. Time: 0.00

Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEA
Solution status : OPTIMAL

(3) with 2.25e+01.
(4) with 2.00e+01.

constraint 'c4'
variable 'x2'

SIBLE

Primal. obj: -5.6700000000e+03 nrm: 6e+02 Viol. con: 0e+00 var:

Dual. obj: -5.6700000000e+03 nrm: 1le+01 Viol. con: 0e+00 var:
Basic solution summary

Problem status : PRIMAL_AND_DUAL_FEASIBLE

Solution status : OPTIMAL

Primal. obj: -5.6700000000e+03 nrm: 6e+02 Viol. con: 0e+00 var:

Dual. obj: -5.6700000000e+03 nrm: 1le+01 Viol. con: 0e+00 var:

Optimizer summary

o O
(@

g w o o oo
(@

MU U

1.0e+00,

2.4e+00,,

2.3e-01,

9.1e-03,,

1.96-06u

1.9e-10,,

0e+00
9e-11

0e+00
0e+00

0e+00
0e+00

(continues on next page)
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Optimizer - time: 0.00
Interior-point - iterations : O time: 0.00
Basis identification - time: 0.00
Primal - iterations : O time: 0.00
Dual - iterations : O time: 0.00
Clean primal - iterations : O time: 0.00
Clean dual - iterations : O time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : O time: 0.00
Dual simplex - iterations : O time: 0.00
Mixed integer - relaxations: 0 time: 0.00

It will also modify the task according to the optimal elasticity variables found. In this case the
optimal repair it is to increase the upper bound on constraint c4 by 22.5 and decrease the lower bound
on variable x2 by 20.

14.3 Sensitivity Analysis

Given an optimization problem it is often useful to obtain information about how the optimal objective
value changes when the problem parameters are perturbed. E.g, assume that a bound represents the
capacity of a machine. Now, it may be possible to expand the capacity for a certain cost and hence it is
worthwhile knowing what the value of additional capacity is. This is precisely the type of questions the
sensitivity analysis deals with.

Analyzing how the optimal objective value changes when the problem data is changed is called
sensitivity analysis.

References

The book [Chvatal83] discusses the classical sensitivity analysis in Chapter 10 whereas the book [RTV97]
presents a modern introduction to sensitivity analysis. Finally, it is recommended to read the short paper
[Wal00] to avoid some of the pitfalls associated with sensitivity analysis.

Warning: Currently, sensitivity analysis is only available for continuous linear optimization
problems. Moreover, MOSEK can only deal with perturbations of bounds and objective function
coefficients.

14.3.1 Sensitivity Analysis for Linear Problems
The Optimal Objective Value Function

Assume that we are given the problem

z(1¢u 1", u*,¢) = minimize Tz
subject to ¢ < Ax < wuf (14.3)
< x < u”,

and we want to know how the optimal objective value changes as [{ is perturbed. To answer this question
we define the perturbed problem for I as follows

fie(B) = minimize T
subject to [°+ fe; < Az < uf
I < z< Ut
where e; is the i-th column of the identity matrix. The function
fie(B) (14.4)
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shows the optimal objective value as a function of 8. Please note that a change in § corresponds to a
perturbation in ¢ and hence (14.4) shows the optimal objective value as a function of varying [§ with
the other bounds fixed.

Tt is possible to prove that the function (14.4) is a piecewise linear and convex function, i.e. its graph
may look like in Fig. 14.1 and Fig. 14.2.

f(B) A

A
\J

P 0 B, B
Fig. 14.1: 8 =0 is in the interior of linearity interval.

Clearly, if the function fi¢(3) does not change much when 3 is changed, then we can conclude that
the optimal objective value is insensitive to changes in [{. Therefore, we are interested in the rate of
change in fie(53) for small changes in 3 — specifically the gradient

which is called the shadow price related to [{. The shadow price specifies how the objective value changes
for small changes of § around zero. Moreover, we are interested in the linearity interval

B € [B1, ]
for which
11:(8) = £1:(0).

Since fe is not a smooth function fj. may not be defined at 0, as illustrated in Fig. 14.2. In this case
we can define a left and a right shadow price and a left and a right linearity interval.

The function fie considered only changes in If. We can define similar functions for the remaining
parameters of the z defined in (14.3) as well:

fie(B) = 2(1°+ Bes,us, 1%, u”¢), i=1,...,m,
fue(B) = 2(16u®+ Be;, 1%, u”,c), i=1,...,m,
fl;(ﬁ) = z(l°,u", 1" 4+ Bej,u”,c), j=1,...,n,
fu;,v(ﬂ) = z(I°u® 1", u” + Pej,c), j=1,...,n,
Je; (B) z(I%us 1%, u®, c+ Bey), j=1,...,n.

Given these definitions it should be clear how linearity intervals and shadow prices are defined for the
parameters u$ etc.
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f(B) A

A
\J

B1 0 Bz B

Fig. 14.2: 8 =0 is a breakpoint.

Equality Constraints

In MOSEK a constraint can be specified as either an equality constraint or a ranged constraint. If
some constraint e is an equality constraint, we define the optimal value function for this constraint as

fef(ﬁ) = Z(lc + Bei, u® + Beivlmaugg?C)

Thus for an equality constraint the upper and the lower bounds (which are equal) are perturbed simul-
taneously. Therefore, MOSEK will handle sensitivity analysis differently for a ranged constraint with
¢ = u§ and for an equality constraint.

The Basis Type Sensitivity Analysis

The classical sensitivity analysis discussed in most textbooks about linear optimization, e.g. [Chvatal83],
is based on an optimal basis. This method may produce misleading results [RTV97] but is computation-
ally cheap. This is the type of sensitivity analysis implemented in MOSEK.

We will now briefly discuss the basis type sensitivity analysis. Given an optimal basic solution which
provides a partition of variables into basic and non-basic variables, the basis type sensitivity analysis
computes the linearity interval [51, f2] so that the basis remains optimal for the perturbed problem. A
shadow price associated with the linearity interval is also computed. However, it is well-known that an
optimal basic solution may not be unique and therefore the result depends on the optimal basic solution
employed in the sensitivity analysis. If the optimal objective value function has a breakpoint for g =0
then the basis type sensitivity method will only provide a subset of either the left or the right linearity
interval.

In summary, the basis type sensitivity analysis is computationally cheap but does not provide complete
information. Hence, the results of the basis type sensitivity analysis should be used with care.
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Example: Sensitivity Analysis

As an example we will use the following transportation problem. Consider the problem of minimizing the
transportation cost between a number of production plants and stores. Each plant supplies a number of
goods and each store has a given demand that must be met. Supply, demand and cost of transportation
per unit are shown in Fig. 14.3.

Supply Demand

800
400
100
1200 ‘ AN
500
1000
500

Fig. 14.3: Supply, demand and cost of transportation.

If we denote the number of transported goods from location i to location j by z;;, problem can be
formulated as the linear optimization problem of minimizing

1IE11 + 2$12 + 5LE23 + 25024 + 11’31 + 2:7333 + 11‘34

subject to

400,
1200,
1000,
800,
100,
500,
500,

11 + 12
T2z + T4
T31 + ®33 + T34
T11 +  x31
T12

I IAIAIA

(14.5)

T2z + T33
Toa + T34
T11, T12, x23, T24, Z31, 33, T34

vVl
o

The sensitivity parameters are shown in Table 14.1 and Table 14.2.
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Table 14.1: Ranges and shadow prices related to bounds on con-
straints and variables.

Con. p B2 o1 (o)

1 —300.00 0.00 3.00 3.00
2 —700.00 +00 0.00 0.00
3 —500.00 0.00 3.00 3.00
4 —0.00 500.00 4.00 4.00
5 —0.00 300.00 5.00 5.00
6 —0.00 700.00 5.00 5.00
7 —500.00 700.00 2.00 2.00
Var. [ B2 o1 ep)

T11 —00 300.00 0.00 0.00
T19 —00 100.00 0.00 0.00
To3 —00 0.00 0.00 0.00
Toy —00 500.00 0.00 0.00
T31 —00 500.00 0.00 0.00
T33 —00 500.00 0.00 0.00

z34  —0.000000 500.00 2.00 2.00

Table 14.2: Ranges and shadow prices related to the objective co-

efficients.

Var. pB4 B2 o1 02

c1 —00 3.00 300.00 300.00
Co —00 o0 100.00 100.00
c3 —-2.00 oo 0.00 0.00
Cq —00 2.00 500.00 500.00
cs —3.00 oo 500.00 500.00
Co —00 2.00 500.00 500.00
cr —-2.00 oo 0.00 0.00

Examining the results from the sensitivity analysis we see that for constraint number 1 we have
o1 =3 and f; = —300, By =0.
If the upper bound on constraint 1 is decreased by
B € [0, 300]

then the optimal objective value will increase by the value

O'lﬂ = 36
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14.3.2 Sensitivity Analysis with MOSEK

MOSEK provides the functions Task.primalsensitivity and Task.dualsensitivity for performing
sensitivity analysis. The code in Listing 14.2 gives an example of its use.

Listing 14.2: Example of sensitivity analysis with the MOSEK
Optimizer API for Java.

package com.mosek.example;
import mosek.*;

public class sensitivity {
public static void main (String[] args) {
// Since the walue infinity is never used, we define
// 'infinity' symbolic purposes only
double
infinity = 0;

try (Task task = new Task()) {

mosek.boundkey[] bkc = {
mosek.boundkey.up, mosek.boundkey.up,
mosek.boundkey.up, mosek.boundkey.fx,
mosek.boundkey.fx, mosek.boundkey.fx,
mosek.boundkey.fx

};

mosek.boundkey[] bkx = {
mosek.boundkey.lo, mosek.boundkey.lo,
mosek.boundkey.lo, mosek.boundkey.lo,
mosek.boundkey.lo, mosek.boundkey.lo,
mosek.boundkey.lo

+;

int[] ptrb = {0, 2, 4, 6, 8, 10, 12};

int[] ptre = {2, 4, 6, 8, 10, 12, 14};

int[] sub = {0, 3, 0, 4, 1, 5, 1, 6, 2, 3, 2, 5, 2, 6};

double[] blc = { -infinity, -infinity,

-infinity, 800, 100, 500, 500

s
double[] buc = {400, 1200, 1000, 800, 100, 500, 500};
double[] ¢ = {1.0, 2.0, 5.0, 2.0, 1.0, 2.0, 1.0};

double[] blx = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
double[] bux = {infinity, infinity,

infinity, infinity,

infinity, infinity,

infinity
s
double[] val = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
L.0, 1.0, 1,0, 1.0, 1.0, 1,0, 1.©
};
int numcon = 7; /* Number of constraints. */
int numvar = 7; /* Number of wariables. */
int NUMANZ = 14; /* Number of non-zeros in 4. */

// Directs the log task stream to the user specified
// method task_msg_obj.print
task.set_Stream(

mosek.streamtype.log,

new mosek.Stream()

(continues on next page)
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(continued from previous page)

{ public void stream(String msg) { System.out.print(msg); }});

task.inputdata(numcon, numvar,

C,
0.0,
ptrb,
ptre,
sub,
val,
bkc,
blc,
buc,
bkx,
blx,
bux) ;

/* A mazimization problem */
task.putobjsense (mosek.objsense.minimize) ;

task.optimize();

/* Analyze upper bound on cl and the equaltity constraint on cj */
int subi[l = {0, 3};
mosek.mark marki[] = {mosek.mark.up, mosek.mark.up};

/* Analyze lower bound on the variables z12 and xz31 */
int subj[l = {1, 4};
mosek.mark markj[] = {mosek.mark.lo, mosek.mark.lo};

double[] leftpricei new double[2];
double[] rightpricei = new double[2];
double[] leftrangei = new double[2];
double[] rightrangei = new double[2];
double[] leftpricej new double[2];
double[] rightpricej = new doublel[2];
double[] leftrangej = new double[2];
double[] rightrangej = new double[2];

task.primalsensitivity( subi,
marki,
subj,
markj,
leftpricei,
rightpricei,
leftrangei,
rightrangei,
leftpricej,
rightpricej,
leftrangej,
rightrangej);

System.out.println("Results from sensitivity analysis on bounds:\n");
System.out.println("For constraints:\n");

for (dint i = 0; i < 2; ++i)

(continues on next page)
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System.out.print("leftprice = " + leftpriceil[i] +
" rightprice = " + rightpriceil[i] +
" leftrange = " + leftrangeil[i] +
" rightrange = " + rightrangei[i] + "\n");
System.out.print ("For variables:\n");
for (int i = 0; i < 2; ++1i)
System.out.print("leftprice = " + leftpricej[i] +
" rightprice = " + rightpricej[i] +
" leftrange = " + leftrangej[i] +
" rightrange = " + rightrangej[i] + "\n");

double[] leftprice
double[] rightprice
double[] leftrange
double[] rightrange
int subc[] = {2, 5};

new double[2];
new double[2];
new doublel[2];
new doublel[2];

task.dualsensitivity( subc,
leftprice,
rightprice,
leftrange,
rightrange

)

System.out.println(
"Results from sensitivity analysis on objective coefficients:"

)

for (int i = 0; i < 2; ++i)

System.out.print("leftprice = " + leftprice[i] +
" rightprice = " + rightpricel[i] +
" leftrange = " + leftrangel[i] +
" rightrange = " + rightrangel[i] + "\n");

catch (mosek.Exception e)
/* Catch both mosek.Error and mosek.Warning */

System.out.println ("An error or warning was encountered");

System.out.println (e.getMessage ());
throw e;
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Chapter 15

API Reference

This section contains the complete reference of the MOSEK Optimizer API for Java. It is organized as
follows:

o General API conventions.

e Methods:

— Class Env (The MOSEK environment)
— Class Task (An optimization task)

— Browse by topic

e Optimizer parameters:
— Double, Integer, String
— Full list
— Browse by topic

e Optimizer information items:

— Double, Integer, Long
e Optimizer response codes
o Fnumerations
e Fxceptions
o User-defined class types

e List of supported domains

15.1 API Conventions

15.1.1 Function arguments

Naming Convention

In the definition of the MOSEK Optimizer API for Java a consistent naming convention has been used.
This implies that whenever for example numcon is an argument in a function definition it indicates the
number of constraints. In Table 15.1 the variable names used to specify the problem parameters are
listed.
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Table 15.1: Naming conventions used in the MOSEK Optimizer
API for Java.

APl name API type  Dimension Related problem parameter
numcon int m
numvar int n
numcone int t

aptrb int[] numvar aij

aptre int [] numvar Qi

asub int[] aptre [numvar-1] a;;

aval double[] aptre[numvar-1] a;;

c double[] numvar ¢y

cfix double cf

blc double[] numcon %

buc double[] numcon ug,

blx double[] numvar i

bux double[] numvar uy,
numqonz int T
gosubi int [] numgonz a5
qosubj int[] numgonz a5

qoval double[] numgonz a5;
numqgcnz int qu
gcsubk int [] numgcnz qu
qcsubi int [] numgcnz qu
qcsubj int [] numgcnz qu

qcval double[] numgcnz qu

bkc int [] numcon 15 and ug
bkx int[] numvar If and uf

The relation between the variable names and the problem parameters is as follows:

e The quadratic terms in the objective: gosubi[t})qosubj v = qoval[t], t=0,...,numgonz — 1.

e The linear terms in the objective : ¢; =c[j], j=0,...,numvar —1

e The fixed term in the objective : ¢/ = cfix.

e The quadratic terms in the constraints: q:zzzsli{[[:]],qcsubj ] = qcvallt], t=0,...,numgcnz — 1

e The linear terms in the constraints: Gasuwft),; = avallt], ¢ = ptrb[j],...,ptre[j] — 1, j =

0,...,numvar — 1

Passing arguments by reference

An argument described as T by reference indicates that the function interprets its given argument as a
reference to a variable of type T. This usually means that the argument is used to output or update a
value of type T. For example, suppose we have a function documented as

void foo (..., int[] nzc, ...)

e nzc (int by reference) — The number of nonzero elements in the matrix. (output)
Then it could be called as follows.

int nzc = new int[1];
foo (..., nzc, ...)
System.out.println("The number of nonzero elements: ", nzc[0])
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Information about input/output arguments

The following are purely informational tags which indicate how MOSEK treats a specific function
argument.

e (input) An input argument. It is used to input data to MOSEK.

e (output) An output argument. It can be a user-preallocated data structure, a reference, a string
buffer etc. where MOSEK will output some data.

e (input/output) An input/output argument. MOSEK will read the data and overwrite it with
new /updated information.

15.1.2 Bounds

The bounds on the constraints and variables are specified using the variables bkc, blc, and buc. The
components of the integer array bkc specify the bound type according to Table 15.2

Table 15.2: Symbolic key for variable and constraint bounds.

Symbolic constant Lower bound Upper bound

boundkey. fx finite identical to the lower bound
boundkey. fr minus infinity  plus infinity

boundkey. lo finite plus infinity

boundkey.ra finite finite

boundkey. up minus infinity finite

For instance bkc [2]=boundkey. Lo means that —oo < [§ and u§ = co. Even if a variable or constraint
is bounded only from below, e.g. x > 0, both bounds are inputted or extracted; the irrelevant value is
ignored.

Finally, the numerical values of the bounds are given by

L =Dblclk], k=0,...,numcon — 1

uj, =buclk], k=0,...,numcon — 1.

The bounds on the variables are specified using the variables bkx, blx, and bux in the same way. The
numerical values for the lower bounds on the variables are given by

l;? =blx[j], j=0,...,nunvar — 1.

uj =bux[j], j=0,...,numvar — 1.

15.1.3 Vector Formats
Three different vector formats are used in the MOSEK API:

Full (dense) vector

This is simply an array where the first element corresponds to the first item, the second element to the
second item etc. For example to get the linear coefficients of the objective in task with numvar variables,
one would write

double[] ¢ = new double[numvar] ;
task.getc(c);
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Vector slice

A vector slice is a range of values from first up to and not including last entry in the vector, i.e.
for the set of indices i such that first <= i < last. For example, to get the bounds associated with
constrains 2 through 9 (both inclusive) one would write

double[] upper_bound = new double[8];
double[] lower_bound = new double[8];
mosek.boundkey bound_key[]
= new mosek.boundkey[8];
task.getconboundslice (2,10,
bound_key,lower_bound,upper_bound);

Sparse vector

A sparse vector is given as an array of indexes and an array of values. The indexes need not be ordered.
For example, to input a set of bounds associated with constraints number 1, 6, 3, and 9, one might write

int[] bound_index = {1, 6, 3, 9 };
mosek.boundkey[] bound_key
= { mosek.boundkey.fr,
mosek.boundkey.lo,
mosek.boundkey.up,
mosek.boundkey.fx };
double[] lower_bound = { 0.0, -10.0, 0.0, 5.0 };
double[] upper_bound = { 0.0, 0.0, 6.0, 5.0 }
task.putconboundlist (bound_index,
bound_key,1ower_bound,upper_bound);

>

15.1.4 Matrix Formats

The coefficient matrices in a problem are inputted and extracted in a sparse format. That means only
the nonzero entries are listed.

Unordered Triplets

In unordered triplet format each entry is defined as a row index, a column index and a coefficient. For
example, to input the A matrix coefficients for a1 2 = 1.1,a33 = 4.3 , and a5 4 = 0.2, one would write
as follows:

>

int[] subi = { 1, 3, 5 };
int [] subj = { 2, 3, 43}
double[] cof ={ 1.1, 4.3, 0.2 }
task.putaijlist(subi,subj,cof);

>

Please note that in some cases (like Task.putaijlist) only the specified indexes are modified — all
other are unchanged. In other cases (such as Task.putgconk) the triplet format is used to modify all
entries — entries that are not specified are set to 0.
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Column or Row Ordered Sparse Matrix

In a sparse matrix format only the non-zero entries of the matrix are stored. MOSEK uses a sparse
packed matrix format ordered either by columns or rows. Here we describe the column-wise format. The
row-wise format is based on the same principle.

Column ordered sparse format

A sparse matrix in column ordered format is essentially a list of all non-zero entries read column by
column from left to right and from top to bottom within each column. The exact representation uses
four arrays:

e asub: Array of size equal to the number of nonzeros. List of row indexes.

e aval: Array of size equal to the number of nonzeros. List of non-zero entries of A ordered by
columns.

e ptrb: Array of size numcol, where ptrb[j] is the position of the first value/index in aval/ asub
for the j-th column.

e ptre: Array of size numcol, where ptre[j] is the position of the last value/index plus one in aval
/ asub for the j-th column.

With this representation the values of a matrix A with numcol columns are assigned using:
Uaswn[k],j = avallk] for j=0,...,numcol —1—1, k= ptrb[j],...,ptre[j] — 1.

As an example consider the matrix

1.1 1.3 14
2.2 2.5
4= 3.1 3.4 (15.1)

4.4

which can be represented in the column ordered sparse matrix format as

ptrb = [0,2,3,5,7],

ptre = [2,3,5,7,8],

asub = 10,2,1,0,3,0,2,1],

aval [1.1,3.1,2.2,1.3, 4.4,1.4,3.4,2.5]

Fig. 15.1 illustrates how the matrix A in (15.1) is represented in column ordered sparse matrix format.

ptrb 0 2 3 5 ¢« o o

ptre(] 2 I(s 5 7 o o e
; \

asub | © 2 1 0 3 0 1 2

aVal 1.1 3.1 22 1.3 44 1.4 34 25 o o o

Column 0 Column 1

Fig. 15.1: The matrix A (15.1) represented in column ordered packed sparse matrix format.
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Column ordered sparse format with nonzeros

Note that nzc[j] := ptrel[jl-ptrb[j] is exactly the number of nonzero elements in the j-th column
of A. In some functions a sparse matrix will be represented using the equivalent dataset asub, aval,
ptrb, nzc. The matrix A (15.1) would now be represented as:

ptrb = [0,2,3,5,7],

nze = [2,1,2,2,1],

asub = [0,2,1,0,3,0,2,1],

aval = [1.1,3.1,2.2,1.3,4.4,1.4,3.4,2.5].

Row ordered sparse matrix

The matrix A (15.1) can also be represented in the row ordered sparse matrix format as:

ptrb = [07 3’ 57 7]’

ptre = [3,5,7,8],

asub = [0,2,3,1,4,0,3 2],

aval = [L1.1,1.3,1.4,2.2,2.5,3.1,3.4,4.4].

9

15.2 Functions grouped by topic

Callback

e Task.set_InfoCallback — Receive callbacks with solver status and information during optimiza-
tion.

e Task.set_Progress — Receive callbacks about current status of the solver during optimization.
e Task.set_Stream — Directs all output from a task stream to a callback object.

e Task.unset_Progress — Deactivates all user callback functions.

Infrequent: Task.set_ItgSolutionCallback, Env.set_Stream

Environment and task management

e Env.Env — Constructor of a new environment.

e Task.Task — Constructor of a new optimization task.
e Task.dispose — Free the underlying native allocation.
e Envu.dispose — Free the underlying native allocation.
e Task.getdualproblem — Obtains the dual problem.

e Task.puttaskname — Assigns a new name to the task.

o Infrequent: Task.commitchanges, Task.deletesolution, Task.putmaznumacc, Task.
putmaznumafe, Task.putmaznumanz, Task.putmarnumbarvar, Task.putmaznumcon, Task.
putmaznumdjc, Task.putmaznumdomain, Task.putmaznumqgnz, Task.putmaznumvar, Task.
resizetask

o Deprecated: Task—putmaznumeone
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Infeasibility diagnostic
e Task.getinfeasiblesubproblem — Obtains an infeasible subproblem.
e Task.infeastbilityreport — Prints the infeasibility report to an output stream.

e Task.primalrepair — Repairs a primal infeasible optimization problem by adjusting the bounds
on the constraints and variables.

Information items and statistics

e Task.getdouinf — Obtains a double information item.
e Task.getintinf — Obtains an integer information item.
e Task.getlintinf — Obtains a long integer information item.

e Task.updatesolutioninfo — Update the information items related to the solution.

Infrequent: Task.getinfindex, Task.getinfmaz, Task.getinfname

Input/Output
e Task.writedata — Writes problem data to a file.
e Task.writesolution — Write a solution to a file.

o Infrequent: Task.readbsolution, Task.readdata, Task.readdataformat, Task.readjsonsol,
Task.readjsonstring, Task.readlpstring, Task.readopfstring, Task.readparamfile,
Task.readptfstring, Task.readsolution, Task.readsolutionfile, Task.readsummary,
Task.readtask, Task.writebsolution, Task.writedatastream, Task.writejsonsol, Task.
writeparamfile, Task.writesolutionfile, Task.writetask

Inspecting the task

e Task.analyzeproblem — Analyze the data of a task.
e Task.getnumcon — Obtains the number of constraints.
e Task.getnumvar — Obtains the number of variables.

o Infrequent: Task.analyzesolution, Task.getaccafeidzlist, Task.getaccb, Task.
getaccbarfnumblocktriplets, Task.getaccdomain, Task.getaccfnumnz, Task.getaccfirip,
Task.getaccgvector, Task.getaccn, Task.getaccname, Task.getaccnamelen, Task.
getaccntot, Task.getaccs, Task.getacol, Task.getacolnumnz, Task.getacolslice,
Task.getacolslicenumnz, Task.getacolslicetrip, Task.getafebarfnumblocktriplets,
Task.getafebarfnumrowentries, Task.getafebarfrow, Task.getafebarfrowinfo, Task.
getafefnumnz, Task.getafefrow, Task.getafefrownumnz, Task.getafeftrip, Task.
getafeg, Task.getafegslice, Task.getarj, Task.getapiecenumnz, Task.getarow, Task.
getarownumnz, Task.getarowslice, Task.getarowslicenumnz, Task.getarowslicetrip,
Task.getatrip, Task.getbarablocktriplet, Task.getbaraidz, Task.getbaraidzij, Task.
getbaraidzinfo, Task.getbarasparsity, Task.getbarcblocktriplet, Task.getbarcidz,
Task.getbarcidzinfo, Task.getbarcidzj, Task.getbarcsparsity, Task.getbarvarname,
Task.getbarvarnameindex, Task.getbarvarnamelen, Task.getc, Task.getcfiz, Task.
getcj, Task.getclist, Task.getconbound, Task.getconboundslice, Task.getconname,
Task.getconnameindex, Task.getconnamelen, Task.getcslice, Task.getdimbarvaryj, Task.
getdjcafeidzlist, Task.getdjcb, Task.getdjcdomainidzlist, Task.getdjcname, Task.
getdjcnamelen, Task.getdjcnumafe, Task.getdjcnumafetot, Task.getdjcnumdomain, Task.
getdjcnumdomaintot, Task.getdjcnumterm, Task.getdjcnumtermtot, Task.getdjcs, Task.
getdjctermsizelist, Task.getdomainn, Task.getdomainname, Task.getdomainnamelen,
Task.getdomaintype, Task.getlenbarvarj, Task.getmaznumanz, Task.getmaznumbarvar,
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Task.getmaznumcon, Task.getmaznumqnz, Task.getmaznumvar, Task.getnumacc, Task.
getnumafe, Task.getnumanz, Task.getnumbarablocktriplets, Task.getnumbaranz, Task.
getnumbarcblocktriplets, Task.getnumbarcnz, Task.getnumbarvar, Task.getnumdjc,
Task.getnumdomain, Task. getnumintvar, Task.getnumparam, Task. getnumgconknz,
Task.getnumqobjnz, Task.getnumsymmat, Task.getobjname, Task.getobjnamelen, Task.
getpowerdomainalpha, Task.getpowerdomaininfo, Task.getprobtype, Task.getqconk, Task.
getqobj, Task.getqobjij, Task.getsparsesymmat, Task.getsymmatinfo, Task.gettaskname,
Task.gettasknamelen, Task.getvarbound, Task.getvarboundslice, Task.getvarname,
Task.getvarnameindex, Task.getvarnamelen, Task.getvartype, Task.getvartypelist,
Task.readsummary

Deprecated: Fask-—getcone, Fask-—geteoneinfo, Task-geteonename, Task—getconenameindes,
Task—getconenamelen, Task—getmaenumecone, Task—getnumeone, Task—getnumeonemen

License system

Env.checkoutlicense — Check out a license feature from the license server ahead of time.
Env.putlicensedebug — Enables debug information for the license system.
Env.putlicensepath — Set the path to the license file.

Env.putlicensewait — Control whether mosek should wait for an available license if no license is
available.

Infrequent: Env.checkinall, Env.checkinlicense, Env.exzpirylicenses, Env.
licensecleanup, Env.putlicensecode, Env.resetexpirylicenses

Linear algebra

Infrequent: Env.azpy, Env.computesparsecholesky, Env.dot, Env.gemm, Env.gemv, Env.
potrf, Env.sparsetriangularsolvedense, Env.syetg, Env.syevd, Env.syrk

Logging

Task.linkfiletostream — Directs all output from a task stream to a file.
Task.onesoluttonsummary — Prints a short summary of a specified solution.

Task.optimizersummary — Prints a short summary with optimizer statistics from last optimiza-
tion.

Task.set_Stream — Directs all output from a task stream to a callback object.
Task.soluttonsummary — Prints a short summary of the current solutions.

Infrequent: Env.echointro, Env.linkfiletostream, Env.set_Stream

Names
e Env.getcodedesc — Obtains a short description of a response code.
e Task.putaccname — Sets the name of an affine conic constraint.
e Task.putbarvarname — Sets the name of a semidefinite variable.
e Task.putconname — Sets the name of a constraint.
e Task.putdjcname — Sets the name of a disjunctive constraint.
e Task.putdomainname — Sets the name of a domain.
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Task.putobjname — Assigns a new name to the objective.

Task.puttaskname — Assigns a new name to the task.

Task.putvarname — Sets the name of a variable.

o Infrequent: Task.analyzenames, Task.generateaccnames, Task.generatebarvarnames,
Task. generateconnames, Task.generatedjcnames, Task. generatevarnames, Task.
getaccname, Task.getaccnamelen, Task.getbarvarname, Task.getbarvarnameindez,

Task.getbarvarnamelen, Task.getconname, Task.getconnameindex, Task.getconnamelen,
Task.getdjcname, Task.getdjcnamelen, Task.getdomainname, Task.getdomainnamelen,

Task.getinfname, Task.getobjname, Task.getobjnamelen, Task.getparamname,
getstrparam, Task.getstrparamlen, Task.gettaskname, Task.gettasknamelen,
getvarname, Task.getvarnameindex, Task.getvarnamelen, Task.isdouparname,
tsintparname, Task.isstrparname, Task.strtosk

Task.
Task.
Task.

e Deprecated: Task-—generateconenames, Task-—getconename, Task-—getconenametndes,

Task-—getconenamelen, Task—putconename, Task—strtoconetype

Optimization

e Task.optimize — Optimizes the problem.

e Env.optimizebatch — Optimize a number of tasks in parallel using a specified number of threads.

Parameters
e Task.putdouparam — Sets a double parameter.
e Task.putintparam — Sets an integer parameter.
e Task.putlintparam — Sets an integer parameter.
e Task.putparam — Modifies the value of parameter.
e Task.putstrparam — Sets a string parameter.
e Task.resetdouparam — Resets a double parameter to its default value.
e Task.resetintparam — Resets an integer parameter to its default value.
e Task.resetparameters — Resets all parameter values.
e Task.resetstrparam — Resets a string parameter to its defalt value.

o Infrequent: Task.getatruncatetol, Task.getdouparam, Task.getintparam,
getlintparam, Task.getnumparam, Task.getparammaz, Task.getparamname,
getstrparam, Task.getstrparamlen, Task.isdouparname, Task.isintparname,
1sstrparname, Task.putnadouparam, Task.putnaintparam, Task.putnastrparam,
readparamfile, Task.writeparamfile

Problem data - affine conic constraints
e Task.appendacc — Appends an affine conic constraint to the task.
e Task.getaccdoty — Obtains the doty vector for an affine conic constraint.
e Task.putaccname — Sets the name of an affine conic constraint.

o Infrequent: Task.appendaccs, Task.appendaccseq, Task.appendaccsseq,
evaluateacc, Task.evaluateaccs, Task.getaccaferdzlist, Task.getacch,

Task.
Task.
Task.
Task.

Task.
Task.

getaccbarfnumblocktriplets, Task.getaccdomain, Task.getaccdotys, Task.getaccfnumnz,

Task.getaccftrip, Task.getaccgvector, Task.getaccn, Task.getaccname,
getaccnamelen, Task.getaccntot, Task.getaccs, Task.getnumacc, Task.putacc,
putaccdb, Task.putaccdbj, Task.putaccdoty, Task.putacclist, Task.putmaznumacc
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Problem data - affine expressions

Task.appendafes — Appends a number of empty affine expressions to the optimization task.
Task.putafebarfentry — Inputs one entry in barF.

Task.putafebarfentrylist — Inputs a list of entries in barF.

Task.putafebarfrow — Inputs a row of barF.

Task.putafefcol — Replaces all elements in one column of the F matrix in the affine expressions.
Task.putafefentry — Replaces one entry in F.

Task.putafefentrylist — Replaces a list of entries in F.

Task.putafefrow — Replaces all elements in one row of the F matrix in the affine expressions.

Task.putafefrowlist — Replaces all elements in a number of rows of the F' matrix in the affine
expressions.

Task.putafeg — Replaces one element in the g vector in the affine expressions.
Task.putafegslice — Modifies a slice of the vector g.

Infrequent: Task.emptyafebarfrow, Task.emptyafebarfrowlist, Task.emptyafefcol,
Task.emptyafefcollist, Task.emptyafefrow, Task.emptyafefrowlist, Task.
getaccbarfblocktriplet, Task.getafebarfblocktiriplet, Task.getafebarfnumrowentries,
Task.getafebarfrow, Task.getafebarfrowinfo, Task.getafefnumnz, Task.getafefrow,
Task.getafefrownumnz, Task.getafeftrip, Task.getafeg, Task.getafegslice, Task.
getnumafe, Task.putafebarfblockiriplet, Task.putafeglist, Task.putmaznumafe

Problem data - bounds

Task.putconbound — Changes the bound for one constraint.
Task.putconboundslice — Changes the bounds for a slice of the constraints.
Task.putvarbound — Changes the bounds for one variable.
Task.putvarboundslice — Changes the bounds for a slice of the variables.

Infrequent: Task.chgconbound, Task.chgvarbound, Task.getconbound, Task.
getconboundslice, Task.getwvarbound, Task.getvarboundslice, Task.inputdata, Task.
putconboundlist, Task.putconboundlistconst, Task.putconboundsliceconst, Task.
putvarboundlist, Task.putvarboundlistconst, Task.putvarboundsliceconst

Problem data - cones (deprecated)

Deprecated: Task-apperndcone, Task-appendconeseq, Task-appendconessey,
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Problem data - constraints

Task.appendcons — Appends a number of constraints to the optimization task.
Task. getnumcon — Obtains the number of constraints.

Task.putconbound — Changes the bound for one constraint.
Task.putconboundslice — Changes the bounds for a slice of the constraints.
Task.putconname — Sets the name of a constraint.

Task.removecons — Removes a number of constraints.

Infrequent: Task.chgconbound, Task.generateconnames, Task.getconbound, Task.
getconboundslice, Task.getconname, Task.getconnameindez, Task.getconnamelen,
Task.getmaznumcon, Task. getnumgconknz, Task.getqgconk, Task.inputdata, Task.
putconboundlist, Task.putconboundlistconst, Task.putconboundsliceconst, Task.
putmazrnumcon

Problem data - disjunctive constraints

Task.appenddjcs — Appends a number of empty disjunctive constraints to the task.
Task.putdjc — Inputs a disjunctive constraint.
Task.putdjcname — Sets the name of a disjunctive constraint.

Task.putdjcslice — Inputs a slice of disjunctive constraints.

Infrequent: Task.getdjcafeidzlist, Task.getdjcb, Task.getdjcdomainidzlist,
Task.getdjcname, Task.getdjcnamelen, Task.getdjcnumafe, Task.getdjcnumafetot,
Task.getdjcnumdomain, Task.getdjcnumdomaintot, Task.getdjcnumterm, Task.

getdjcnumtermtot, Task.getdjcs, Task.getdjctermsizelist, Task.getnumdjc, Task.
putmaznumdjc

Problem data - domain

Task. appenddualexpconedomain — Appends the dual exponential cone domain.

Task. appenddualgeomeanconedomain — Appends the dual geometric mean cone domain.

Task. appenddualpowerconedomain — Appends the dual power cone domain.
Task.appendprimalezpconedomain — Appends the primal exponential cone domain.

Task. appendprimalgeomeanconedomain — Appends the primal geometric mean cone domain.
Task. appendprimalpowerconedomain — Appends the primal power cone domain.

Task. appendquadraticconedomain — Appends the n dimensional quadratic cone domain.
Task.appendrdomain — Appends the n dimensional real number domain.

Task. appendrminusdomain — Appends the n dimensional negative orthant to the list of domains.
Task.appendrplusdomain — Appends the n dimensional positive orthant to the list of domains.
Task. appendrquadraticconedomain — Appends the n dimensional rotated quadratic cone domain.
Task.appendrzerodomain — Appends the n dimensional 0 domain.
Task.appendsvecpsdconedomain — Appends the vectorized SVEC PSD cone domain.
Task.putdomainname — Sets the name of a domain.

Infrequent: Task.getdomainn, Task.getdomainname, Task.getdomainnamelen,
Task.getdomaintype, Task. getnumdomain, Task.getpowerdomainalpha, Task.
getpowerdomaininfo, Task.putmaznumdomain
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Problem data - linear part

Task.appendcons — Appends a number of constraints to the optimization task.
Task.appendvars — Appends a number of variables to the optimization task.

Task. getnumcon — Obtains the number of constraints.

Task.putacol — Replaces all elements in one column of the linear constraint matrix.
Task.putacolslice — Replaces all elements in a sequence of columns the linear constraint matrix.
Task.putaij — Changes a single value in the linear coefficient matrix.
Task.putaijlist — Changes one or more coeflicients in the linear constraint matrix.
Task.putarow — Replaces all elements in one row of the linear constraint matrix.
Task.putarowslice — Replaces all elements in several rows the linear constraint matrix.
Task.putcfiz — Replaces the fixed term in the objective.

Task.putcj — Modifies one linear coefficient in the objective.

Task.putconbound — Changes the bound for one constraint.
Task.putconboundslice — Changes the bounds for a slice of the constraints
Task.putconname — Sets the name of a constraint.

Task.putcslice — Modifies a slice of the linear objective coefficients.
Task.putobjname — Assigns a new name to the objective.
Task.putobjsense — Sets the objective sense.

Task.putvarbound — Changes the bounds for one variable.
Task.putvarboundslice — Changes the bounds for a slice of the variables
Task.putvarname — Sets the name of a variable.
Task.removecons — Removes a number of constraints.

Task.removevars — Removes a number of variables.

Infrequent: Task.chgconbound, Task.chgvarbound, Task.generatebarvarnames, Task.
generateconnames, Task.generatevarnames, Task.getacol, Task.getacolnumnz,
Task.getacolslice, Task.getacolslicenumnz, Task.getacolslicetrip, Task.getaij,

Task.getapiecenumnz, Task.getarow, Task.getarownumnz, Task.getarowslice, Task.
getarowslicenumnz, Task.getarowslicetrip, Task.getatrip, Task.getatruncatetol,
Task.getc, Task.getcfixz, Task.getcj, Task.getclist, Task.getconbound, Task.
getconboundslice, Task.getconname, Task.getconnameindex, Task.getconnamelen, Task.
getcslice, Task.getmaznumanz, Task.getmaznumcon, Task.getmaznumvar, Task.getnumanz,
Task.getobjsense, Task.getvarbound, Task.getvarboundslice, Task.getvarname,
Task.getvarnameindex, Task.getvarnamelen, Task. inputdata, Task.putacollist,
Task.putarowlist, Task.putatruncatetol, Task.putclist, Task.putconboundlist,
Task.putconboundlistconst, Task.putconboundsliceconst, Task.putmaznumanz, Task.
putvarboundlist, Task.putvarboundlistconst, Task.putvarboundsliceconst
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Problem data - objective

e Task.putbarcj — Changes one element in barc.

e Task.putcfiz — Replaces the fixed term in the objective.

e Task.putcj — Modifies one linear coeflicient in the objective.

e Task.putcslice — Modifies a slice of the linear objective coeflicients.

e Task.putobjname — Assigns a new name to the objective.

e Task.putobjsense — Sets the objective sense.

e Task.putqobj — Replaces all quadratic terms in the objective.

e Task.putqgobjij — Replaces one coefficient in the quadratic term in the objective.

o Infrequent: Task.putclist

Problem data - quadratic part

e Task.putqcon — Replaces all quadratic terms in constraints.

e Task.putqconk — Replaces all quadratic terms in a single constraint.

e Task.putqobj — Replaces all quadratic terms in the objective.

e Task.putqobjij — Replaces one coeflicient in the quadratic term in the objective.

o Infrequent: Task.getmaznumgnz, Task.getnumgconknz, Task.getnumgobjnz, Task.getgconk,
Task.getqobj, Task.getqobjij, Task.putmaznumgnz

e Deprecated: Task-—toconie

Problem data - semidefinite

e Task.appendbarvars — Appends semidefinite variables to the problem.

e Task.appendsparsesymmat — Appends a general sparse symmetric matrix to the storage of sym-
metric matrices.

e Task.appendsparsesymmatlist — Appends a general sparse symmetric matrix to the storage of
symmetric matrices.

e Task.putafebarfentry — Inputs one entry in barF.

e Task.putafebarfentrylist — Inputs a list of entries in barF.
e Task.putafebarfrow — Inputs a row of barF.

e Task.putbaraij — Inputs an element of barA.

e Task.putbaraijlist — Inputs list of elements of barA.

e Task.putbararowlist — Replace a set of rows of barA

e Task.putbarcj — Changes one element in barc.

e Task.putbarvarname — Sets the name of a semidefinite variable.
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Infrequent: Task.emptyafebarfrow, Task.emptyafebarfrowlist, Task.

getaccbarfblocktriplet, Task.getaccbarfnumblocktriplets, Task.
getafebarfblocktriplet, Task.getafebarfnumblocktriplets, Task.
getafebarfnumrowentries, Task.getafebarfrow, Task.getafebarfrowinfo, Task.

getbarablocktriplet, Task.getbaraidz, Task.getbaraidzij, Task.getbaraidzinfo, Task.
getbarasparsity, Task.getbarcblocktriplet, Task.getbarcidz, Task.getbarcidzinfo,
Task.getbarcidzj, Task.getbarcsparsity, Task.getdimbarvarj, Task.getlenbarvary,
Task.getmaznumbarvar, Task.getnumbarablockiriplets, Task.getnumbaranz, Task.
getnumbarcblocktriplets, Task.getnumbarcnz, Task.getnumbarvar, Task.getnumsymmat,
Task.getsparsesymmat, Task.getsymmatinfo, Task.putafebarfblocktriplet, Task.
putbarablocktriplet, Task.putbarcblocktriplet, Task.putmaznumbarvar, Task.
removebarvars

Problem data - variables

Task.appendvars — Appends a number of variables to the optimization task.
Task.getnumvar — Obtains the number of variables.

Task.putvarbound — Changes the bounds for one variable.
Task.putvarboundslice — Changes the bounds for a slice of the variables.
Task.putvarname — Sets the name of a variable.

Task.putvartype — Sets the variable type of one variable.

Task.removevars — Removes a number of variables.

Infrequent: Task.chgvarbound, Task.generatebarvarnames, Task.generatevarnames,
Task.getc, Task.getcj, Task.getmaznumvar, Task.getnumintvar, Task.getvarbound,
Task.getvarboundslice, Task.getvarname, Task.getwvarnameindex, Task.getvarnamelen,
Task.getvartype, Task.getvartypelist, Task.putclist, Task.putmaznumvar, Task.
putvarboundlist, Task.putvarboundlistconst, Task.putvarboundsliceconst, Task.
putvartypelist

Remote optimization

Task.asyncgetresult — Request a solution from a remote job.

Task.asyncoptimize — Offload the optimization task to a solver server in asynchronous mode.
Task.asyncpoll — Requests information about the status of the remote job.

Task.asyncstop — Request that the job identified by the token is terminated.
Task.optimizermt — Offload the optimization task to a solver server and wait for the solution.

Task.putoptserverhost — Specify an OptServer for remote calls.

Responses, errors and warnings

Env.getcodedesc — Obtains a short description of a response code.
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Sensitivity analysis

Task.dualsensitivity — Performs sensitivity analysis on objective coefficients.
Task.primalsensitivity — Perform sensitivity analysis on bounds.

Task.sensitivityreport — Creates a sensitivity report.

Solution - dual

Task.getaccdoty — Obtains the doty vector for an affine conic constraint.
Task.getdualobj — Computes the dual objective value associated with the solution.
Task.gety — Obtains the y vector for a solution.

Task.getyslice — Obtains a slice of the y vector for a solution.

Infrequent: Task.getaccdotys, Task.getreducedcosts, Task.getslc, Task.getslcslice,
Task.getslxz, Task.getslzslice, Task.getsnz, Task.getsnzslice, Task.getsolution,
Task.getsoluttonnew, Task.getsolutionslice, Task.getsuc, Task.getsucslice, Task.
getsux, Task.getsuxzslice, Task.putaccdoty, Task.putconsolutioni, Task.putslc, Task.
putslcslice, Task.putslxz, Task.putslzslice, Task.putsnz, Task.putsnzslice, Task.
putsolution, Task.putsolutionnew, Task.putsolutionyi, Task.putsuc, Task.putsucslice,
Task.putsuz, Task.putsuzslice, Task.putvarsolutionj, Task.putyslice

Solution - primal

Task.getprimalobs — Computes the primal objective value for the desired solution.
Task.getzz — Obtains the xx vector for a solution.

Task.getzzslice — Obtains a slice of the xx vector for a solution.

Task.putzz — Sets the xx vector for a solution.

Task.putzzslice — Sets a slice of the xx vector for a solution.

Infrequent: Task.evaluateacc, Task.evaluateaccs, Task.getsolution, Task.
getsolutionnew, Task.getsolutionslice, Task.getzc, Task.getzcslice, Task.
putconsolutioni, Task.putsolution, Task.putsolutionnew, Task.putvarsolutiony,

Task.putzc, Task.putzcslice, Task.puty

Solution - semidefinite

Task.getbarsj — Obtains the dual solution for a semidefinite variable.
Task.getbarsslice — Obtains the dual solution for a sequence of semidefinite variables.
Task.getbarzj — Obtains the primal solution for a semidefinite variable.
Task.getbarzslice — Obtains the primal solution for a sequence of semidefinite variables.

Infrequent: Task.putbarsy, Task.putbarzy
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Solution information

Task.getdualobj — Computes the dual objective value associated with the solution.
Task.getprimalobj — Computes the primal objective value for the desired solution.
Task.getprosta — Obtains the problem status.

Task.getpuiolcon — Computes the violation of a primal solution associated to a constraint.
Task. getpviolvar — Computes the violation of a primal solution for a list of scalar variables.
Task.getsolsta — Obtains the solution status.

Task.getsolutioninfo — Obtains information about of a solution.
Task.getsolutioninfonew — Obtains information about of a solution.
Task.onesolutionsummary — Prints a short summary of a specified solution.
Task.soluttondef — Checks whether a solution is defined.

Task.solutionsummary — Prints a short summary of the current solutions.

Infrequent:  Task.analyzesolution, Task.deletesolution, Task.getdualsolutionnorms,
Task.getdviolacc, Task.getdviolbarvar, Task.getdviolcon, Task.getdviolvar, Task.
getprimalsolutionnorms, Task.getpviolacc, Task.getpviolbarvar, Task.getpvioldjc,
Task.getskc, Task.getskcslice, Task.getskn, Task.getskx, Task.getskxslice, Task.
getsolution, Task.getsoluttonnew, Task.getsolutionslice, Task.putconsolutioni, Task.
putskc, Task.putskcslice, Task.putskz, Task.putskxzslice, Task.putsolution, Task.
putsolutionnew, Task.putsolutionyi, Task.putvarsolutiony

Deprecated: Fask—getdvioteones, Fask—getpvioteones

Solving systems with basis matrix

Infrequent: Task.basiscond, Task.initbasissolve, Task.solvewithbasis

System, memory and debugging

Infrequent: Task.checkmem, Task.getmemusage

Versions

Env.getversion — Obtains MOSEK version information.

15.3 Class Env

mosek.Env

The MOSEK global environment.

Env.Env

Env()

Env(String dbgfile)

Constructor of a new environment.

Parameters
dbgfile (String) — File where the memory debugging log is written. (input)

Groups
Environment and task management
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Env.axpy

public synchronized void axpy
(int n,
double alpha,
double[] x,
double[] y)

Adds azx to y, i.e. performs the update
Yy:=oxr+y.

Note that the result is stored overwriting y. It must not overlap with the other input arrays.

Parameters
e n (int) — Length of the vectors. (input)
e alpha (double) — The scalar that multiplies x. (input)
e x (double[]) — The x vector. (input)
e y (double[]) — The y vector. (input/output)

Groups
Linear algebra

Env.checkinall
public synchronized void checkinall()

Check in all unused license features to the license token server.
Groups

License system

Env.checkinlicense

public synchronized void checkinlicense(feature feature)

Check in a license feature to the license server. By default all licenses consumed by functions using
a single environment are kept checked out for the lifetime of the MOSEK environment. This
function checks in a given license feature back to the license server immediately.

If the given license feature is not checked out at all, or it is in use by a call to Task.optimize,
calling this function has no effect.

Please note that returning a license to the license server incurs a small overhead, so frequent calls
to this function should be avoided.

Parameters

feature (feature) — Feature to check in to the license system. (input)
Groups

License system

Env.checkoutlicense

public synchronized void checkoutlicense(feature feature)

Checks out a license feature from the license server. Normally the required license features will be
automatically checked out the first time they are needed by the function Task.optimize. This
function can be used to check out one or more features ahead of time.

The feature will remain checked out until the environment is deleted or the function Enwv.
checkinlicense is called.

If a given feature is already checked out when this function is called, the call has no effect.
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Parameters

feature (feature) — Feature to check out from the license system. (input)
Groups

License system

Env.computesparsecholesky

public synchronized void computesparsecholesky
(int numthreads,
int ordermethod,
double tolsingular,
int[] anzc,
long[] aptrc,
int[] asubc,
double[] avalc,
int[][] perm,
double[] [] diag,
int[][] 1lnzc,
long[]l[] lptrc,
long[] lensubnval,
int[1[] 1lsubc,
double[] [] 1lvalc)

The function computes a Cholesky factorization of a sparse positive semidefinite matrix. Sparsity
is exploited during the computations to reduce the amount of space and work required. Both the
input and output matrices are represented using the sparse format.

To be precise, given a symmetric matrix A € R™*" the function computes a nonsingular lower
triangular matrix L, a diagonal matrix D and a permutation matrix P such that

LLT — D= PAPT.

If ordermethod is zero then reordering heuristics are not employed and P is the identity.

If a pivot during the computation of the Cholesky factorization is less than
—p-max((PAPT);;,1.0)

then the matrix is declared negative semidefinite. On the hand if a pivot is smaller than
p-max((PAPT);;,1.0),

then Dj; is increased from zero to
p-max((PAPT);;,1.0).

Therefore, if A is sufficiently positive definite then D will be the zero matrix. Here p is set equal
to value of tolsingular.

Parameters

e numthreads (int) — The number threads that can be used to do the computation.
0 means the code makes the choice. NOTE: API change in version 10: in versions
up to 9 the argument in this position indicated whether to use multithreading
or not. (input)

e ordermethod (int) — If nonzero, then a sparsity preserving ordering will be
employed. (input)

e tolsingular (double) — A positive parameter controlling when a pivot is de-
clared zero. (input)

e anzc (int[]) — anzc[j] is the number of nonzeros in the j-th column of A.
(input)
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aptrc (longl]) — aptrc[j] is a pointer to the first element in column j of A.
(input)

asubc (int [1) — Row indexes for each column stored in increasing order. (input)
avalc (double[]) — The value corresponding to row indexed stored in asubc.
(input)

perm (int[1 by reference) — Permutation array used to specify the permutation
matrix P computed by the function. (output)

diag (double[] by reference) — The diagonal elements of matrix D. (output)
Inzc (int[]1 by reference) — lnzc[j] is the number of non zero elements in
column j of L. (output)

lptrc (long[] by reference) — lptrc[j] is a pointer to the first row index and
value in column j of L. (output)

lensubnval (long by reference) — Number of elements in lsubc and lvalc.
(output)

lsubc (int[]1 by reference) — Row indexes for each column stored in increasing
order. (output)

lvalc (double[] by reference) — The values corresponding to row indexed stored
in 1subc. (output)

Groups
Linear algebra

Env.dispose

void dispose()

Free the underlying native allocation.

Groups
Environment and task management

Env.dot

public synchronized void dot

(int n,

double[] x,
double([] vy,
double[] xty)

Computes the inner product of two vectors x,y of length n > 0, i.e

n
i=1

Note that if n = 0, then the result of the operation is 0.

Parameters

e n (int) — Length of the vectors. (input)

x (double[]) — The z vector. (input)

e y (double[]) — The y vector. (input)
e xty (double by reference) — The result of the inner product between x and y.

(output)

Groups
Linear algebra

Env.echointro
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public synchronized void echointro(int longver)

Prints an intro to message stream.

Parameters

longver (int) — If non-zero, then the intro is slightly longer. (input)
Groups

Logging

Env.expirylicenses
public synchronized void expirylicenses(long[] expiry)

Reports when the first license feature expires. It reports the number of days to the expiry of the
first feature of all the features that were ever checked out from the start of the process, or from
the last call to Env.resetezpirylicenses, until now.

Parameters
expiry (long by reference) — If nonnegative, then it is the minimum number days
to expiry of any feature that has been checked out. (output)

Groups
License system

Env.gemm

public synchronized void gemm
(transpose transa,
transpose transb,
int m,
int n,
int k,
double alpha,
double[] a,
double[] b,
double beta,
double[] c)

Performs a matrix multiplication plus addition of dense matrices. Given A, B and C' of compatible
dimensions, this function computes

C := aop(A)op(B) + C

where «, 8 are two scalar values. The function op(X) denotes X if transX is transpose.no, or
XT if set to transpose.yes. The matrix C' has m rows and n columns, and the other matrices
must have compatible dimensions.

The result of this operation is stored in C'. It must not overlap with the other input arrays.

Parameters
e transa (transpose) — Indicates whether the matrix A must be transposed.
(input)
e transb (transpose) — Indicates whether the matrix B must be transposed.
(input)

e m (int) — Indicates the number of rows of matrix C. (input)

e n (int) — Indicates the number of columns of matrix C. (input)

e k (int) — Specifies the common dimension along which op(A) and op(B) are
multiplied. For example, if neither A nor B are transposed, then this is the
number of columns in A and also the number of rows in B. (input)

e alpha (double) — A scalar value multiplying the result of the matrix multiplica-
tion. (input)
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e a (double[]) — The pointer to the array storing matrix A in a column-major
format. (input)

e b (double[]) — The pointer to the array storing matrix B in a column-major
format. (input)

e beta (double) — A scalar value that multiplies C'. (input)

e ¢ (double[]) — The pointer to the array storing matrix C in a column-major
format. (input/output)

Groups
Linear algebra

Env.gemv

public synchronized void gemv
(transpose transa,
int m,
int n,
double alpha,
double[] a,
double[] x,
double beta,
double[] y)

Computes the multiplication of a scaled dense matrix times a dense vector, plus a scaled dense
vector. Precisely, if trans is transpose.no then the update is

y := aAx + By,
and if trans is transpose.yes then
y = aAlz + By,

where «, 3 are scalar values and A is a matrix with m rows and n columns.

Note that the result is stored overwriting y. It must not overlap with the other input arrays.

Parameters

e transa (transpose) — Indicates whether the matrix A must be transposed.
(input)
m (int) — Specifies the number of rows of the matrix A. (input)

n (int) — Specifies the number of columns of the matrix A. (input)

alpha (double) — A scalar value multiplying the matrix A. (input)

a (double[]) — A pointer to the array storing matrix A in a column-major
format. (input)
x (double[]) — A pointer to the array storing the vector x. (input)

beta (double) — A scalar value multiplying the vector y. (input)

y (double[]1) — A pointer to the array storing the vector y. (input/output)

Groups
Linear algebra

Env.getcodedesc

public static void getcodedesc
(rescode code,
StringBuffer symname,
StringBuffer str)

Obtains a short description of the meaning of the response code given by code.

Parameters
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e code (rescode) — A valid MOSEK response code. (input)
e symname (StringBuffer) — Symbolic name corresponding to code. (output)
e str (StringBuffer) — Obtains a short description of a response code. (output)

Groups
Names, Responses, errors and warnings

Env.getversion

public static void getversion
(int[] major,
int[] minor,
int[] revision)

Obtains MOSEK version information.

Parameters
e major (int by reference) — Major version number. (output)
e minor (int by reference) — Minor version number. (output)
e revision (int by reference) — Revision number. (output)
Groups
Versions
Env.licensecleanup

public static void licensecleanup()

Stops all threads and deletes all handles used by the license system. If this function is called, it
must be called as the last MOSEK API call. No other MOSEK API calls are valid after this.

Groups
License system

Env.linkfiletostream

public synchronized void linkfiletostream
(streamtype whichstream,
String filename,
int append)

Sends all output from the stream defined by whichstream to the file given by filename.

Parameters
e whichstream (streamtype) — Index of the stream. (input)
e filename (String) — A valid file name. (input)
e append (int) — If this argument is 0 the file will be overwritten, otherwise it will
be appended to. (input)

Groups
Logging

Env.optimizebatch

public synchronized void optimizebatch
(boolean israce,
double maxtime,
int numthreads,
Task[] task,
rescode[] trmcode,
rescode[] rcode)
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Optimize a number of tasks in parallel using a specified number of threads. All callbacks and log
output streams are disabled.

Assuming that each task takes about same time and there many more tasks than number of threads
then a linear speedup can be achieved, also known as strong scaling. A typical application of this
method is to solve many small tasks of similar type; in this case it is recommended that each of
them is allocated a single thread by setting <param.num_threads to 1.

If the parameters israce or maxtime are used, then the result may not be deterministic, in the
sense that the tasks which complete first may vary between runs.

The remaining behavior, including termination and response codes returned for each task, are the
same as if each task was optimized separately.

Parameters

e israce (boolean) — If nonzero, then the function is terminated after the first
task has been completed. (input)

e maxtime (double)— Time limit for the function: if nonnegative, then the function
is terminated after maxtime (seconds) has expired. (input)

e numthreads (int) — Number of threads to be employed. (input)

e task (Task [1) — An array of tasks to optimize in parallel. (input)

e trmcode (rescode [1) — The termination code for each task. (output)
e rcode (rescode []) — The response code for each task. (output)

Groups
Optimization

Env.potrf

public synchronized void potrf
(uplo uplo,
int n,
double[] a)

Computes a Cholesky factorization of a real symmetric positive definite dense matrix.

Parameters
e uplo (uplo) — Indicates whether the upper or lower triangular part of the matrix
is stored. (input)
e n (int) — Dimension of the symmetric matrix. (input)
e a (double[]) — A symmetric matrix stored in column-major order. Only the
lower or the upper triangular part is used, accordingly with the uplo parameter.
It will contain the result on exit. (input/output)

Groups
Linear algebra

Env.putlicensecode

public synchronized void putlicensecode(int[] code)

Input a runtime license code. This function has an effect only before the first optimization.

Parameters
code (int[]) — A runtime license code. (input)

Groups
License system

Env.putlicensedebug

public synchronized void putlicensedebug(int licdebug)
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Enables debug information for the license system. If 1licdebug is non-zero, then MOSEK will
print debug info regarding the license checkout.

Parameters

licdebug (int) — Whether license checkout debug info should be printed. (input)
Groups

License system

Env.putlicensepath

public synchronized void putlicensepath(String licensepath)

Set the path to the license file. This function has an effect only before the first optimization.

Parameters

licensepath (String) — A path specifying where to search for the license. (input)
Groups

License system

Env.putlicensewait
public synchronized void putlicensewait(int licwait)

Control whether MOSEK should wait for an available license if no license is available. If 1icwait
is non-zero, then MOSEK will wait for 1icwait-1 milliseconds between each check for an available
license.

Parameters
licwait (int) — Whether MOSEK should wait for a license if no license is available.
(input)

Groups
License system

Env.resetexpirylicenses

public synchronized void resetexpirylicenses()

Reset the license expiry reporting startpoint.

Groups
License system

Env.set_Stream

void set_Stream
(mosek.streamtype whichstream,
mosek.Stream callback)

Directs all output from an environment stream to a callback object.

Can for example be called as:

env.set_Stream(mosek.streamtype.log, new Stream() { public void stream(String s)
—{ System.out.print(s); } } );

Parameters
e whichstream (streamtype) — Index of the stream. (input)
e callback (Stream) — The callback object. (input)

Groups
Callback, Logging
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Env.sparsetriangularsolvedense

public synchronized void sparsetriangularsolvedense
(transpose transposed,
int[] 1nzc,
long[] lptrc,
int[] 1lsubc,
double[] 1lvalc,
double[] b)

The function solves a triangular system of the form
Lz =0
or
LTz =b

where L is a sparse lower triangular nonsingular matrix. This implies in particular that diagonals
in L are nonzero.

Parameters

e transposed (transpose) — Controls whether to use with L or LT. (input)

e Inzc (int[1) — 1nzc[j] is the number of nonzeros in column j. (input)

e lptrc (longl[l) — 1lptrc[j] is a pointer to the first row index and value in
column j. (input)

e 1lsubc (int[]) — Row indexes for each column stored sequentially. Must be
stored in increasing order for each column. (input)

e lvalc (double[]) — The value corresponding to the row index stored in lsubc.
(input)

e b (double[]) — The right-hand side of linear equation system to be solved as a
dense vector. (input/output)

Groups
Linear algebra

Env.syeig

public synchronized void syeig
(uplo uplo,
int n,
double[] a,
double[] w)

Computes all eigenvalues of a real symmetric matrix A. Given a matrix A € R™*" it returns a
vector w € R™ containing the eigenvalues of A.

Parameters
e uplo (uplo) — Indicates whether the upper or lower triangular part is used.
(input)
e n (int) — Dimension of the symmetric input matrix. (input)
e a (double[]) — A symmetric matrix A stored in column-major order. Only the
part indicated by uplo is used. (input)
e w (double[]) — Array of length at least n containing the eigenvalues of A. (out-
put)
Groups
Linear algebra

Env.syevd
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public synchronized void syevd
(uplo uplo,
int n,
double[] a,
double[] w)

Computes all the eigenvalues and eigenvectors a real symmetric matrix. Given the input matrix
A € R™ " this function returns a vector w € R"™ containing the eigenvalues of A and it also
computes the eigenvectors of A. Therefore, this function computes the eigenvalue decomposition
of A as

A=UvVUT,

where V' = diag(w) and U contains the eigenvectors of A.

Note that the matrix U overwrites the input data A.

Parameters
e uplo (uplo) — Indicates whether the upper or lower triangular part is used.
(input)
e n (int) — Dimension of the symmetric input matrix. (input)
e a (double[]) — A symmetric matrix A stored in column-major order. Only the
part indicated by uplo is used. On exit it will be overwritten by the matrix U.
(input/output)
e w (double[]) — Array of length at least n containing the eigenvalues of A. (out-
put)
Groups
Linear algebra

Env.syrk

public synchronized void syrk
(uplo uplo,
transpose tranms,
int n,
int k,
double alpha,
double[] a,
double beta,
double[] c)

Performs a symmetric rank-k update for a symmetric matrix.

Given a symmetric matrix C' € R™*" two scalars «, § and a matrix A of rank k < n, it computes
either

C = aAA” + BC,
when trans is set to transpose.no and A € R"** or
C:=aA"A+ BC,

when trans is set to transpose.yes and A € RFX™,
Only the part of C' indicated by uplo is used and only that part is updated with the result. It
must not overlap with the other input arrays.

Parameters
e uplo (uplo) — Indicates whether the upper or lower triangular part of C is used.
(input)
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trans (transpose) — Indicates whether the matrix A must be transposed. (in-
put)

n (int) — Specifies the order of C. (input)

k (int) — Indicates the number of rows or columns of A, depending on whether
or not it is transposed, and its rank. (input)

alpha (double) — A scalar value multiplying the result of the matrix multiplica-
tion. (input)

a (double[]) — The pointer to the array storing matrix A in a column-major
format. (input)

beta (double) — A scalar value that multiplies C. (input)

¢ (double[]) — The pointer to the array storing matrix C' in a column-major
format. (input/output)

Groups
Linear algebra

15.4 Class Task

mosek.Task

Represents an optimization task.

Task.Task

Task ()

Task(

int numcon,

int numvar)

Task (mosek.Env env)

Task (

mosek.Env env,
int numcon,

int numvar)

Task (mosek.

Task task)

Constructor of a new optimization task.

Parameters

numcon (int) — An optional hint about the maximal number of constraints in
the task. (input)

numvar (int) — An optional hint about the maximal number of variables in the
task. (input)

env (Env) — Parent environment. (input)

task (Task) — A task that will be cloned. (input)

Groups
Environment and task management

Task.analyzenames

public synchronized void analyzenames
(streamtype whichstream,
nametype nametype)

The function analyzes the names and issues an error if a name is invalid.
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Parameters
e whichstream (streamtype) — Index of the stream. (input)
e nametype (nametype) — The type of names e.g. valid in MPS or LP files. (input)

Groups
Names

Task.analyzeproblem
public synchronized void analyzeproblem(streamtype whichstream)

The function analyzes the data of a task and writes out a report.

Parameters
whichstream (streamtype) — Index of the stream. (input)

Groups
Inspecting the task

Task.analyzesolution

public synchronized void analyzesolution
(streamtype whichstream,
soltype whichsol)

Print information related to the quality of the solution and other solution statistics.

By default this function prints information about the largest infeasibilites in the solution, the
primal (and possibly dual) objective value and the solution status.

Following parameters can be used to configure the printed statistics:

e iparam.ana_sol_basis enables or disables printing of statistics specific to the basis solution
(condition number, number of basic variables etc.). Default is on.

e iparam.ana_sol_print_violated enables or disables listing names of all constraints (both
primal and dual) which are violated by the solution. Default is off.

e dparam.ana_sol_infeas_tol is the tolerance defining when a constraint is considered vio-
lated. If a constraint is violated more than this, it will be listed in the summary.

Parameters
e whichstream (streamtype) — Index of the stream. (input)
e whichsol (soltype) — Selects a solution. (input)
Groups
Solution information, Inspecting the task

Task.appendacc

public synchronized void appendacc
(long domidx,
long[] afeidxlist,
double[] b)

Appends an affine conic constraint to the task. The affine constraint has the form a sequence of
affine expressions belongs to a domain.

The domain index is specified with domidx and should refer to a domain previously appended with
one of the append. . .domain functions.

The length of the affine expression list afeidx1list must be equal to the dimension n of the domain.
The elements of afeidxlist are indexes to the store of affine expressions, i.e. the affine expressions
appearing in the affine conic constraint are:

Fiteiaxiist[k],: ¥ + Jateiaxtist[] 10T k=0,...,n—1.
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If an optional vector b of the same length as afeidxlist is specified then the expressions appearing
in the affine constraint will instead be taken as:

Fateiaxiist[k] ;T + Jateiaxrist[t] — Ok for k=0,...,n—1.

Parameters
e domidx (long) — Domain index. (input)
e afeidxlist (long[]) — List of affine expression indexes. (input)
e b (double[]) — The vector of constant terms modifying affine expressions. Op-
tional, can be null if not required. (input)

Groups
Problem data - affine conic constraints

Task.appendaccs

public synchronized void appendaccs
(long[] domidxs,
long[] afeidxlist,
double[] b)

Appends numaccs affine conic constraint to the task. Each single affine conic constraint should be
specified as in Task.appendacc and the input of this function should contain the concatenation of
all these descriptions.

In particular, the length of afeidxlist must equal the sum of dimensions of domains indexed in
domainsidxs.

Parameters
e domidxs (long[]) — Domain indices. (input)
e afeidxlist (long[]) — List of affine expression indexes. (input)
e b (double[]) — The vector of constant terms modifying affine expressions. Op-
tional, can be null if not required. (input)

Groups
Problem data - affine conic constraints

Task.appendaccseq

public synchronized void appendaccseq
(long domidx,
long afeidxfirst,
double[] b)

Appends an affine conic constraint to the task, as in Task.appendacc. The function assumes
the affine expressions forming the constraint are sequential. The affine constraint has the form a
sequence of affine expressions belongs to a domain.

The domain index is specified with domidx and should refer to a domain previously appended with
one of the append. . .domain functions.

The number of affine expressions should be equal to the dimension n of the domain. The affine
expressions forming the affine constraint are arranged sequentially in a contiguous block of the affine
expression store starting from position afeidxfirst. That is, the affine expressions appearing in
the affine conic constraint are:

Fafeidxfirst+k,:$ + Gafeidxfirst+k for k = 0,...,n—1

If an optional vector b of length numafeidx is specified then the expressions appearing in the affine
constraint will instead be taken as

FafeidxfirstJrk,:ﬂU + Qafeidxfirst+k — by fork=0,...,n—1
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Parameters
e domidx (long) — Domain index. (input)
e afeidxfirst (long) — Index of the first affine expression. (input)

e b (double[]) — The vector of constant terms modifying affine expressions. Op-
tional, can be null if not required. (input)

Groups
Problem data - affine conic constraints

Task.appendaccsseq

public synchronized void appendaccsseq
(long[] domidxs,
long numafeidx,
long afeidxfirst,
double[] b)

Appends numaccs affine conic constraint to the task. It is the block variant of Task.appendaccs,
that is it assumes that the affine expressions appearing in the affine conic constraints are sequential
in the affine expression store, starting from position afeidxfirst.

Parameters
e domidxs (long[]) — Domain indices. (input)
e numafeidx (long) — Number of affine expressions in the affine expression list
(must equal the sum of dimensions of the domains). (input)

e afeidxfirst (long) — Index of the first affine expression. (input)

e b (double[]) — The vector of constant terms modifying affine expressions. Op-
tional, can be null if not required. (input)

Groups
Problem data - affine conic constraints

Task.appendafes
public synchronized void appendafes(long num)

Appends a number of empty affine expressions to the task.

Parameters
num (long) — Number of empty affine expressions which should be appended. (input)

Groups
Problem data - affine expressions

Task.appendbarvars
public synchronized void appendbarvars(int[] dim)

Appends positive semidefinite matrix variables of dimensions given by dim to the problem.

Parameters
dim (int[]) — Dimensions of symmetric matrix variables to be added. (input)
Groups
Problem data - semidefinite
Task-appendeone Deprecated

public synchronized void appendcone
(conetype ct,
double conepar,
int[] submem)
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NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Appends a new conic constraint to the problem. Hence, add a constraint
zek

to the problem, where K is a convex cone. Z is a subset of the variables which will be specified by
the argument submem. Cone type is specified by ct.

Define
T= Lsubmen([1] - * - » L submem[nummen] -
Depending on the value of ct this function appends one of the constraints:

e Quadratic cone (conetype. quad, requires nummem > 1):

e Rotated quadratic cone (conetype.rquad, requires nummem > 2):

7<nummem

28021 > E &7, do,81 >0
1=2

e Primal exponential cone (conetype.pezp, requires nummem = 3):
i‘o Z.’fil exp(ig/sﬁl), i‘o,.f?l ZO

e Primal power cone (conetype.ppow, requires nummem > 2):

where « is the cone parameter specified by conepar.

e Dual exponential cone (conetype.dexp, requires nummem = 3):
.’f?o > —@26_1 exp(;ﬁl/zfsg), .’,%2 < O,i'() > 0

e Dual power cone (conetype. dpow, requires nummem > 2):

where « is the cone parameter specified by conepar.

e Zero cone (conetype.zero):
z; = 0 for all 4

Please note that the sets of variables appearing in different conic constraints must be disjoint.

For an explained code example see Sec. 6.3, Sec. 6.5 or Sec. 6.4.

Parameters
e ct (conetype) — Specifies the type of the cone. (input)

e conepar (double) — For the power cone it denotes the exponent alpha. For other
cone types it is unused and can be set to 0. (input)

e submem (int[]) — Variable subscripts of the members in the cone. (input)

Groups
Problem data - cones (deprecated)
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Task-appendeoneseq Deprecated

public synchronized void appendconeseq
(conetype ct,
double conepar,
int nummem,
int j)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Appends a new conic constraint to the problem, as in Task-appendeone. The function assumes
the members of cone are sequential where the first member has index j and the last j+nummem-1.

Parameters
e ct (conetype) — Specifies the type of the cone. (input)

e conepar (double) — For the power cone it denotes the exponent alpha. For other
cone types it is unused and can be set to 0. (input)

e nummen (int) — Number of member variables in the cone. (input)
e j (int) — Index of the first variable in the conic constraint. (input)

Groups
Problem data - cones (deprecated)
Task-appendeconesseq Deprecated

public synchronized void appendconesseq
(conetypel] ct,
double[] conepar,
int[] nummem,
int j)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Appends a number of conic constraints to the problem, as in Fesk-eappendecone. The kth cone is
assumed to be of dimension nummem[k]. Moreover, it is assumed that the first variable of the first
cone has index j and starting from there the sequentially following variables belong to the first
cone, then to the second cone and so on.

Parameters
e ct (conetype [1) — Specifies the type of the cone. (input)
e conepar (double[]) — For the power cone it denotes the exponent alpha. For
other cone types it is unused and can be set to 0. (input)
e nummen (int[]) — Numbers of member variables in the cones. (input)
e j (int) — Index of the first variable in the first cone to be appended. (input)

Groups
Problem data - cones (deprecated)

Task.appendcons
public synchronized void appendcons(int num)

Appends a number of constraints to the model. Appended constraints will be declared free. Please
note that MOSEK will automatically expand the problem dimension to accommodate the addi-
tional constraints.

Parameters
num (int) — Number of constraints which should be appended. (input)
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Groups
Problem data - linear part, Problem data - constraints

Task.appenddjcs
public synchronized void appenddjcs(long num)

Appends a number of empty disjunctive constraints to the task.
Parameters
num (long) — Number of empty disjunctive constraints which should be appended.
(input)
Groups
Problem data - disjunctive constraints

Task.appenddualexpconedomain

public synchronized void appenddualexpconedomain(long[] domidx)

public synchronized long appenddualexpconedomain()

Appends the dual exponential cone {x ER3 1 zg> —moe e /T2 10 >0, zo < O} to the list of

domains.
Parameters
domidx (long by reference) — Index of the domain. (output)
Return
(long) — Index of the domain.

Groups
Problem data - domain

Task.appenddualgeomeanconedomain

public synchronized void appenddualgeomeanconedomain
(long n,
long[] domidx)

public synchronized long appenddualgeomeanconedomain(long n)

n—2

1/(n-1)
Appends the dual geometric mean cone {a: eER™ : (n—1) (Hi:o xi>

> |zp-1], ®o,..., T2 > 0}
to the list of domains.

Parameters
e n (long) — Dimension of the domain. (input)
e domidx (long by reference) — Index of the domain. (output)
Return
(long) — Index of the domain.

Groups
Problem data - domain

Task.appenddualpowerconedomain

public synchronized void appenddualpowerconedomain
(long n,
double[] alpha,
long[] domidx)
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public synchronized long appenddualpowerconedomain
(long n,
double[] alpha)

Appends the dual power cone domain of dimension n, with n, variables appearing on the left-hand

side, where ny is the length of «, and with a homogenous sequence of exponents ao, ..., an,—1-
Formally, let s =), oy and 3; = a;/s, so that >, 8; = 1. Then the dual power cone is defined as
follows:

n—1
2
E xja ‘KEO"'uxngleO

Jj=ne

Parameters
e n (long) — Dimension of the domain. (input)
e alpha (double[]) — The sequence proportional to exponents. Must be positive.
(input)
e domidx (long by reference) — Index of the domain. (output)

Return

(Long) — Index of the domain.
Groups

Problem data - domain

Task.appendprimalexpconedomain

public synchronized void appendprimalexpconedomain(long[] domidx)

public synchronized long appendprimalexpconedomain ()

Appends the primal exponential cone {x ER3 : xg > e/ xg, 11 > 0} to the list of domains.

Parameters
domidx (long by reference) — Index of the domain. (output)

Return
(long) — Index of the domain.

Groups
Problem data - domain

Task.appendprimalgeomeanconedomain

public synchronized void appendprimalgeomeanconedomain
(long n,
long[] domidx)

public synchronized long appendprimalgeomeanconedomain(long n)

n—>2 )1/(n—1)

Appends the primal geometric mean cone {:r eR™ : (Hz‘:o z; > |zp_1l, To.. ., Tp_o > 0}

to the list of domains.

Parameters
e 1 (long) — Dimension of the domain. (input)
e domidx (long by reference) — Index of the domain. (output)

Return
(Long) — Index of the domain.

Groups
Problem data - domain
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Task.appendprimalpowerconedomain

public synchronized void appendprimalpowerconedomain
(long n,
double[] alpha,
long[] domidx)

public synchronized long appendprimalpowerconedomain
(long n,
double[] alpha)

Appends the primal power cone domain of dimension n, with ny variables appearing on the left-hand

side, where ny is the length of «, and with a homogenous sequence of exponents oy, ..., an,—1.
Formally, let s = >, a; and 8; = a;/s, so that ) . 3; = 1. Then the primal power cone is defined
as follows:

Parameters
e n (long) — Dimension of the domain. (input)
e alpha (double[]) — The sequence proportional to exponents. Must be positive.
(input)
e domidx (long by reference) — Index of the domain. (output)
Return
(Long) — Index of the domain.

Groups
Problem data - domain

Task.appendquadraticconedomain

public synchronized void appendquadraticconedomain
(long n,
long[] domidx)

public synchronized long appendquadraticconedomain(long n)
Appends the n-dimensional quadratic cone {x eR™ . xg > \/Ezzll xf} to the list of domains.

Parameters
e n (long) — Dimension of the domain. (input)
e domidx (long by reference) — Index of the domain. (output)
Return
(Long) — Index of the domain.

Groups
Problem data - domain

Task.appendrdomain
public synchronized void appendrdomain

(long n,
long[] domidx)

public synchronized long appendrdomain(long n)

Appends the n-dimensional real space {z € R™} to the list of domains.
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Parameters
e n (long) — Dimension of the domain. (input)
e domidx (long by reference) — Index of the domain. (output)

Return
(long) — Index of the domain.

Groups
Problem data - domain

Task.appendrminusdomain

public synchronized void appendrminusdomain
(long n,
long[] domidx)

public synchronized long appendrminusdomain(long n)
Appends the n-dimensional negative orthant {x € R : x < 0} to the list of domains.

Parameters
e n (long) — Dimension of the domain. (input)
e domidx (long by reference) — Index of the domain. (output)

Return
(Long) — Index of the domain.

Groups
Problem data - domain

Task.appendrplusdomain

public synchronized void appendrplusdomain
(long n,
long[] domidx)

public synchronized long appendrplusdomain(long n)
Appends the n-dimensional positive orthant { € R™ : > 0} to the list of domains.

Parameters
e 1 (long) — Dimension of the domain. (input)
e domidx (long by reference) — Index of the domain. (output)

Return
(long) — Index of the domain.

Groups
Problem data - domain

Task.appendrquadraticconedomain

public synchronized void appendrquadraticconedomain
(long n,
long[] domidx)

public synchronized long appendrquadraticconedomain(long n)

Appends the n-dimensional rotated quadratic cone {x eR™ : 2xgx1 > Z;:; xf, To, L1 > O} to

the list of domains.

Parameters
e n (long) — Dimension of the domain. (input)
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e domidx (long by reference) — Index of the domain. (output)
Return
(long) — Index of the domain.
Groups
Problem data - domain

Task.appendrzerodomain

public synchronized void appendrzerodomain
(long n,
long[] domidx)

public synchronized long appendrzerodomain(long n)

Appends the zero in n-dimensional real space {x € R™ : x = 0} to the list of domaiuns.

Parameters
e n (long) — Dimension of the domain. (input)
e domidx (long by reference) — Index of the domain. (output)
Return
(long) — Index of the domain.

Groups
Problem data - domain

Task.appendsparsesymmat

public synchronized void appendsparsesymmat
(int dim,
int[] subi,
int[] subj,
double[] valij,
long[] idx)

public synchronized long appendsparsesymmat
(int dim,
int[] subi,
int[] subj,
double[] valij)

MOSEK maintains a storage of symmetric data matrices that is used to build C' and A. The
storage can be thought of as a vector of symmetric matrices denoted E. Hence, E; is a symmetric

matrix of certain dimension.

This function appends a general sparse symmetric matrix on triplet form to the vector E of sym-
metric matrices. The vectors subi, subj, and valij contains the row subscripts, column subscripts
and values of each element in the symmetric matrix to be appended. Since the matrix that is ap-
pended is symmetric, only the lower triangular part should be specified. Moreover, duplicates are

not allowed.

Observe the function reports the index (position) of the appended matrix in E. This index should

be used for later references to the appended matrix.

Parameters
e dim (int) — Dimension of the symmetric matrix that is appended. (input)
e subi (int[]) — Row subscript in the triplets. (input)
e subj (int[]) — Column subscripts in the triplets. (input)
e valij (double[]) — Values of each triplet. (input)

e idx (long by reference) — Unique index assigned to the inputted matrix that can

be used for later reference. (output)
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Return
(Long) — Unique index assigned to the inputted matrix that can be used for later
reference.

Groups
Problem data - semidefinite

Task.appendsparsesymmatlist

public synchronized void appendsparsesymmatlist
(int[] dims,
long[] nz,
int[] subi,
int[] subj,
double[] valij,
long[] idx)

public synchronized long[] appendsparsesymmatlist
(int[] dims,
long[] nz,
int[] subi,
int[] subj,
double[] valij)

MOSEK maintains a storage of symmetric data matrices that is used to build C' and A. The
storage can be thought of as a vector of symmetric matrices denoted E. Hence, E; is a symmetric
matrix of certain dimension.

This function appends general sparse symmetric matrixes on triplet form to the vector E of sym-
metric matrices. The vectors subi, subj, and valij contains the row subscripts, column subscripts
and values of each element in the symmetric matrix to be appended. Since the matrix that is ap-
pended is symmetric, only the lower triangular part should be specified. Moreover, duplicates are
not allowed.

Observe the function reports the index (position) of the appended matrix in F. This index should
be used for later references to the appended matrix.

Parameters
e dims (int[]) — Dimensions of the symmetric matrixes. (input)
e nz (long[]) — Number of nonzeros for each matrix. (input)
e subi (int[]) — Row subscript in the triplets. (input)
e subj (int[]) — Column subscripts in the triplets. (input)
e valij (double[]) — Values of each triplet. (input)

e idx (longll) — Unique index assigned to the inputted matrix that can be used
for later reference. (output)

Return
(long[1) — Unique index assigned to the inputted matrix that can be used for later
reference.

Groups
Problem data - semidefinite

Task.appendsvecpsdconedomain

public synchronized void appendsvecpsdconedomain
(long n,
long[] domidx)

public synchronized long appendsvecpsdconedomain(long n)
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Appends the domain consisting of vectors of length n = d(d + 1)/2 defined as follows
{(z1, .., Tads1)2) €R™ : sMat(r) € S} ={sVec(X) : X €81},
where
sVee(X) = (X11,V2Xo1, ..., V2X g1, Xo2,V2Xs2, . .., Xaq),

and

1 T2/V2 e ma/V2
Mat(e) = | "2/V2 e /2

Ta/V2 @1 /V2 o Ty

In other words, the domain consists of vectorizations of the lower-triangular part of a positive
semidefinite matrix, with the non-diagonal elements additionally rescaled.

This domain is a self-dual cone.

Parameters
e n (long) — Dimension of the domain, must be of the form d(d + 1)/2. (input)
e domidx (long by reference) — Index of the domain. (output)
Return
(long) — Index of the domain.

Groups
Problem data - domain

Task.appendvars
public synchronized void appendvars(int num)

Appends a number of variables to the model. Appended variables will be fixed at zero. Please note
that MOSEK will automatically expand the problem dimension to accommodate the additional
variables.

Parameters

num (int) — Number of variables which should be appended. (input)
Groups

Problem data - linear part, Problem data - variables

Task.asyncgetresult

public synchronized void asyncgetresult
(String address,
String accesstoken,
String token,
boolean[] respavailable,
rescode[] resp,
rescode[] trm)

public synchronized boolean asyncgetresult
(String address,
String accesstoken,
String token,
rescode[] resp,
rescode[] trm)

Request a solution from a remote job identified by the argument token. For other arguments see
Task.asyncoptimize. If the solution is available it will be retrieved and loaded into the local task.
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Parameters

e address (String) — Address of the OptServer. (input)

e accesstoken (String) — Access token. (input)

e token (String) — The task token. (input)

e respavailable (boolean by reference) — Indicates if a remote response is avail-
able. If this is not true, resp and trm should be ignored. (output)

e resp (mosek.rescode by reference) — Is the response code from the remote
solver. (output)

e trm (mosek.rescode by reference) — Is either rescode.ok or a termination
response code. (output)

Return
(boolean) — Indicates if a remote response is available. If this is not true, resp and
trm should be ignored.

Groups
Remote optimization

Task.asyncoptimize

public synchronized String asyncoptimize
(String address,
String accesstoken)

Offload the optimization task to an instance of OptServer specified by addr, which should be a valid
URL, for example http://server:port or https://server:port. The call will exit immediately.

If the server requires authentication, the authentication token can be passed in the accesstoken
argument.

If the server requires encryption, the keys can be passed using one of the solver parameters sparam.
remote_tls_cert or sparam.remote_tls_ceri_path.

The function returns a token which should be used in future calls to identify the task.

Parameters
e address (String) — Address of the OptServer. (input)
e accesstoken (String) — Access token. (input)
Return
(String) — Returns the task token.

Groups
Remote optimization

Task.asyncpoll

public synchronized void asyncpoll
(String address,
String accesstoken,
String token,
boolean[] respavailable,
rescode[] resp,
rescode[] trm)

public synchronized boolean asyncpoll
(String address,
String accesstoken,
String token,
rescode[] resp,
rescode[] trm)

Requests information about the status of the remote job identified by the argument token. For
other arguments see Task.asyncoptimize.
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Parameters
e address (String) — Address of the OptServer. (input)
e accesstoken (String) — Access token. (input)
e token (String) — The task token. (input)

e respavailable (boolean by reference) — Indicates if a remote response is avail-
able. If this is not true, resp and trm should be ignored. (output)

e resp (mosek.rescode by reference) — Is the response code from the remote
solver. (output)

e trm (mosek.rescode by reference) — Is either rescode.ok or a termination
response code. (output)

Return
(boolean) — Indicates if a remote response is available. If this is not true, resp and
trm should be ignored.

Groups
Remote optimization

Task.asyncstop

public synchronized void asyncstop
(String address,
String accesstoken,
String token)

Request that the remote job identified by token is terminated. For other arguments see Task.
asyncoptimize.

Parameters
e address (String) — Address of the OptServer. (input)
e accesstoken (String) — Access token. (input)
e token (String) — The task token. (input)

Groups
Remote optimization

Task.basiscond

public synchronized void basiscond
(double[] nrmbasis,
double[] nrminvbasis)

If a basic solution is available and it defines a nonsingular basis, then this function computes the
1-norm estimate of the basis matrix and a 1-norm estimate for the inverse of the basis matrix. The
1-norm estimates are computed using the method outlined in [Ste98], pp. 388-391.

By definition the 1-norm condition number of a matrix B is defined as
k1(B) = || Bl B~ 1.

Moreover, the larger the condition number is the harder it is to solve linear equation systems
involving B. Given estimates for || B||; and ||[B~!|; it is also possible to estimate k1 (B).

Parameters
e nrmbasis (double by reference) — An estimate for the 1-norm of the basis. (out-
put)
e nrminvbasis (double by reference) — An estimate for the 1-norm of the inverse
of the basis. (output)

Groups
Solving systems with basis matrix
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Task.checkmem

public synchronized void checkmem
(String file,
int line)

Checks the memory allocated by the task.

Parameters
e file (String) — File from which the function is called. (input)
e line (int) — Line in the file from which the function is called. (input)

Groups
System, memory and debugging

Task.chgconbound

public synchronized void chgconbound
(int i,
int lower,
int finite,
double value)

Changes a bound for one constraint.

If lower is non-zero, then the lower bound is changed as follows:

—o0, finite =0,

new lower bound = .
value otherwise.

Otherwise if lower is zero, then

0, finite =0,

new upper bound = { value otherwise.

Please note that this function automatically updates the bound key for the bound, in particular,
if the lower and upper bounds are identical, the bound key is changed to fixed.

Parameters
e i (int)—Index of the constraint for which the bounds should be changed. (input)
e lower (int) — If non-zero, then the lower bound is changed, otherwise the upper
bound is changed. (input)
e finite (int) — If non-zero, then value is assumed to be finite. (input)
e value (double) — New value for the bound. (input)

Groups
Problem data - bounds, Problem data - constraints, Problem data - linear part

Task.chgvarbound

public synchronized void chgvarbound
(int j,
int lower,
int finite,
double value)

Changes a bound for one variable.

If lower is non-zero, then the lower bound is changed as follows:

—00, finite =0,

new lower bound = .
value otherwise.
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Otherwise if lower is zero, then

00, finite =0,

bound = ;
hew upper bouu {value otherwise.

Please note that this function automatically updates the bound key for the bound, in particular,
if the lower and upper bounds are identical, the bound key is changed to fixed.

Parameters
e j (int) — Index of the variable for which the bounds should be changed. (input)
e lower (int) — If non-zero, then the lower bound is changed, otherwise the upper
bound is changed. (input)
e finite (int) — If non-zero, then value is assumed to be finite. (input)
e value (double) — New value for the bound. (input)
Groups
Problem data - bounds, Problem data - variables, Problem data - linear part
Task.commitchanges

public synchronized void commitchanges()

Commits all cached problem changes to the task. It is usually not necessary to call this function
explicitly since changes will be committed automatically when required.

Groups
Environment and task management

Task.deletesolution
public synchronized void deletesolution(soltype whichsol)

Undefine a solution and free the memory it uses.

Parameters

whichsol (soltype) — Selects a solution. (input)
Groups

Environment and task management, Solution information

Task.dispose
void dispose()

Free the underlying native allocation.

Groups
Environment and task management

Task.dualsensitivity

public synchronized void dualsensitivity
(int[] subj,
double[] leftpricej,
double[] rightpricej,
double[] leftrangej,
double[] rightrangej)

Calculates sensitivity information for objective coefficients. The indexes of the coeflicients to
analyze are

{subj[i] | ¢ =0,...,numj — 1}

The type of sensitivity analysis to perform (basis or optimal partition) is controlled by the param-
eter iparam.sensitivity_type.

For an example, please see Section Example: Sensitivity Analysis.
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Parameters

e subj (int[]1) — Indexes of objective coefficients to analyze. (input)

e leftpricej (double[]) — leftpricej[j] is the left shadow price for the coeffi-

cient with index subj[j]. (output)

e rightpricej (double[]) — rightpricej[j] is the right shadow price for the

coefficient with index subj[j]. (output)

e leftrangej (double[]) — leftrangej[j] is the left range (8 for the coeflicient

with index subj[j]. (output)

e rightrangej (double[]) — rightrangej[j] is the right range By for the coeffi-

cient with index subj[j]. (output)

Groups
Sensitivity analysis

Task.emptyafebarfrow
public synchronized void emptyafebarfrow(long afeidx)

Clears a row in F i.e. sets Fageidx,« = 0.

Parameters
afeidx (long) — Row index of F. (input)
Groups
Problem data - affine expressions, Problem data - semidefinite

Task.emptyafebarfrowlist
public synchronized void emptyafebarfrowlist(long[] afeidxlist)

Clears a number of rows in F i.e. sets FZ—,* = 0 for all indices 7 in afeidxlist.

Parameters
afeidxlist (long[]) — Indices of rows in F to clear. (input)

Groups
Problem data - affine expressions, Problem data - semidefinite

Task.emptyafefcol
public synchronized void emptyafefcol(int varidx)

Clears one column in the affine constraint matrix F, that is sets Fi variax = 0.

Parameters
varidx (int) — Index of a variable (column in F'). (input)

Groups
Problem data - affine expressions

Task.emptyafefcollist
public synchronized void emptyafefcollist(int[] varidx)

Clears a number of columns in F'i.e. sets F, ; = 0 for all indices j in varidx.

Parameters
varidx (int[]) — Indices of variables (columns) in F' to clear. (input)

Groups
Problem data - affine expressions

Task.emptyafefrow
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public synchronized void emptyafefrow(long afeidx)

Clears one row in the affine constraint matrix F, that is sets Fyfeidx,« = 0.

Parameters
afeidx (long) — Index of a row in F. (input)

Groups
Problem data - affine expressions

Task.emptyafefrowlist
public synchronized void emptyafefrowlist(long[] afeidx)

Clears a number of rows in F'i.e. sets F; , = 0 for all indices ¢ in afeidx.

Parameters

afeidx (long[]) — Indices of rows in F' to clear. (input)
Groups

Problem data - affine expressions

Task.evaluateacc

public synchronized void evaluateacc
(soltype whichsol,
long accidx,
double[] activity)

public synchronized double[] evaluateacc
(soltype whichsol,
long accidx)

Evaluates the activity of an affine conic constraint.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e accidx (long) — The index of the affine conic constraint. (input)
e activity (double[]) — The activity of the affine conic constraint. The array
should have length equal to the dimension of the constraint. (output)
Return
(double[]) — The activity of the affine conic constraint. The array should have
length equal to the dimension of the constraint.
Groups
Solution - primal, Problem data - affine conic constraints

Task.evaluateaccs

public synchronized void evaluateaccs
(soltype whichsol,
double[] activity)

public synchronized double[] evaluateaccs(soltype whichsol)

Evaluates the activities of all affine conic constraints.

Parameters
e whichsol (soltype) — Selects a solution. (input)

e activity (double[]) — The activity of affine conic constraints. The array should
have length equal to the sum of dimensions of all affine conic constraints. (out-
put)
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Return
(double[]) — The activity of affine conic constraints. The array should have length
equal to the sum of dimensions of all affine conic constraints.

Groups
Solution - primal, Problem data - affine conic constraints

Task.generateaccnames

public synchronized void generateaccnames
(long[] sub,
String fmt,
int[] dims,
long[] sp,
int[] namedaxisidxs,
String[] names)

Internal.
Parameters
e sub (longl]) — Indexes of the affine conic constraints. (input)
e fmt (String) — The variable name formatting string. (input)
e dims (int[]) — Dimensions in the shape. (input)
e sp (longl]) — Items that should be named. (input)
e namedaxisidxs (int[]) — List if named index axes (input)
Groups
Names

Task.generatebarvarnames

public synchronized void generatebarvarnames
(int[] subj,
String fmt,
int[] dims,
long[] sp,
int[] namedaxisidxs,
String[] names)

Internal.
Parameters
e subj (int[]) — Indexes of the variables. (input)
e fmt (String) — The variable name formatting string. (input)
e dims (int[]) — Dimensions in the shape. (input)
e sp (long[]) — Items that should be named. (input)
e namedaxisidxs (int[]) — List if named index axes (input)
Groups
Names, Problem data - variables, Problem data - linear part
Task-generateconenames Deprecated

public synchronized void generateconenames
(int[] subk,
String fmt,
int[] dims,
long[] sp,
int[] namedaxisidxs,
String[] names)

Internal, deprecated.
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Parameters
e subk (int[]) — Indexes of the cone. (input)
e fmt (String) — The cone name formatting string. (input)
e dims (int[]) — Dimensions in the shape. (input)
e sp (long[]) — Items that should be named. (input)
e namedaxisidxs (int[]) — List if named index axes (input)

Groups
Names, Problem data - cones (deprecated)

Task.generateconnames

public synchronized void generateconnames
(int[] subi,
String fmt,
int[] dims,
long([] sp,
int[] namedaxisidxs,
String[] names)

Internal.
Parameters
e subi (int[]) — Indexes of the constraints. (input)
e fmt (String) — The constraint name formatting string. (input)
e dims (int[]) — Dimensions in the shape. (input)
e sp (long[]) — Items that should be named. (input)
e namedaxisidxs (int[]) — List if named index axes (input)
Groups

Names, Problem data - constraints, Problem data - linear part
Task.generatedjcnames

public synchronized void generatedjcnames
(long[] sub,
String fmt,
int[] dims,
long[] sp,
int[] namedaxisidxs,
String[] names)

Internal.
Parameters
e sub (long[]) — Indexes of the disjunctive constraints. (input)
e fmt (String) — The variable name formatting string. (input)
e dims (int[]) — Dimensions in the shape. (input)
e sp (long[]) — Items that should be named. (input)
e namedaxisidxs (int[]) — List if named index axes (input)
Groups
Names

Task.generatevarnames

public synchronized void generatevarnames
(int[] subj,
String fmt,

(continues on next page)
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(continued from previous page)

int[] dims,

long[] sp,

int[] namedaxisidxs,
String[] names)

Internal.
Parameters
e subj (int[]) — Indexes of the variables. (input)
e fmt (String) — The variable name formatting string. (input)
e dims (int[]) — Dimensions in the shape. (input)
e sp (long[]) — Items that should be named. (input)
e namedaxisidxs (int[]) — List if named index axes (input)
Groups

Names, Problem data - variables, Problem data - linear part

Task.getaccafeidxlist

public synchronized void getaccafeidxlist
(long accidx,
long[] afeidxlist)

Obtains the list of affine expressions appearing in the affine conic constraint.

Parameters
e accidx (long) — Index of the affine conic constraint. (input)
e afeidxlist (long[]) — List of indexes of affine expressions appearing in the
constraint. (output)
Groups
Problem data - affine conic constraints, Inspecting the task

Task.getaccb

public synchronized void getaccb
(long accidx,
double[] b)

public synchronized double[] getaccb(long accidx)

Obtains the additional constant term vector appearing in the affine conic constraint.

Parameters
e accidx (long) — Index of the affine conic constraint. (input)
e b (double[]) — The vector b appearing in the constraint. (output)
Return
(double[]) — The vector b appearing in the constraint.

Groups
Problem data - affine conic constraints, Inspecting the task

Task.getaccbarfblocktriplet

public synchronized void getaccbarfblocktriplet
(long[] numtrip,
long[] acc_afe,
int[] bar_var,
int[] blk_row,
int[] blk_col,
double[] blk_val)
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public synchronized long getaccbarfblocktriplet
(long[] acc_afe,
int[] bar_var,
int[] blk_row,
int[] blk_col,
double[] blk_val)

Obtains F, implied by the ACCs, in block triplet form. If the AFEs passed to the ACCs were out
of order, then this function can be used to obtain the barF as seen by the ACCs.

Parameters

e numtrip (long by reference) — Number of elements in the block triplet form.
(output)

e acc_afe (long[]) — Index of the AFE within the concatenated list of AFEs in
ACCs. (output)

e bar_var (int[]

e blk_row (int[]) — Block row index. (output)

e blk_col (int[]) — Block column index. (output)

e blk_val (double[]) — The numerical value associated with each block triplet.
(output)

Symmetric matrix variable index. (output)

),
),

Return

(long) — Number of elements in the block triplet form.
Groups

Problem data - affine expressions, Problem data - semidefinite

Task.getaccbarfnumblocktriplets

public synchronized void getaccbarfnumblocktriplets(long[] numtrip)

public synchronized long getaccbarfnumblocktriplets()

Obtains an upper bound on the number of elements in the block triplet form of F, as used within
the ACCs.

Parameters
numtrip (long by reference) — An upper bound on the number of elements in the
block triplet form of F'., as used within the ACCs. (output)

Return
(long) — An upper bound on the number of elements in the block triplet form of F.,
as used within the ACCs.

Groups
Problem data - semidefinite, Problem data - affine conic constraints, Inspecting the
task

Task.getaccdomain

public synchronized void getaccdomain
(long accidx,
long[] domidx)

public synchronized long getaccdomain(long accidx)

Obtains the domain appearing in the affine conic constraint.

Parameters
e accidx (long) — The index of the affine conic constraint. (input)
e domidx (long by reference) — The index of domain in the affine conic constraint.
(output)
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Return
(Long) — The index of domain in the affine conic constraint.

Groups
Problem data - affine conic constraints, Inspecting the task

Task.getaccdoty

public synchronized void getaccdoty
(soltype whichsol,
long accidx,
double[] doty)

public synchronized double[] getaccdoty
(soltype whichsol,
long accidx)

Obtains the g vector for a solution (the dual values of an affine conic constraint).

Parameters
e whichsol (soltype) — Selects a solution. (input)
e accidx (long) — The index of the affine conic constraint. (input)

e doty (double[]) — The dual values for this affine conic constraint. The array
should have length equal to the dimension of the constraint. (output)
Return
(double[]) — The dual values for this affine conic constraint. The array should have
length equal to the dimension of the constraint.

Groups
Solution - dual, Problem data - affine conic constraints

Task.getaccdotys

public synchronized void getaccdotys
(soltype whichsol,
double[] doty)

public synchronized double[] getaccdotys(soltype whichsol)

Obtains the g vector for a solution (the dual values of all affine conic constraint).

Parameters
e whichsol (soltype) — Selects a solution. (input)

e doty (double[]) — The dual values of affine conic constraints. The array should
have length equal to the sum of dimensions of all affine conic constraints. (out-
put)

Return
(double[]) — The dual values of affine conic constraints. The array should have
length equal to the sum of dimensions of all affine conic constraints.

Groups
Solution - dual, Problem data - affine conic constraints

Task.getaccfnumnz

public synchronized void getaccfnumnz(long[] accfnnz)

public synchronized long getaccfnumnz()

If the AFEs are not added sequentially to the ACCs, then the present function gives the number
of nonzero elements in the F matrix that would be implied by the ordering of AFEs within ACCs.
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Parameters
accfnnz (long by reference) — Number of non-zeros in F implied by ACCs. (output)

Return
(long) — Number of non-zeros in F implied by ACCs.

Groups
Problem data - affine conic constraints, Inspecting the task

Task.getaccftrip

public synchronized void getaccftrip
(long[] frow,
int[] fcol,
double[] fval)

Obtains the F' (that would be implied by the ordering of the AFEs within the ACCs) in triplet
format.
Parameters
e frow (long[]) — Row indices of nonzeros in the implied F matrix. (output)
e fcol (int[]) — Column indices of nonzeros in the implied F matrix. (output)
e fval (double[]) — Values of nonzero entries in the implied F matrix. (output)
Groups
Problem data - affine conic constraints, Inspecting the task

Task.getaccgvector

public synchronized void getaccgvector (double[] g)

public synchronized double[] getaccgvector()

If the AFEs are passed out of sequence to the ACCs, then this function can be used to obtain the
vector g of constant terms used within the ACCs.

Parameters

g (double[]) — The g used within the ACCs as a dense vector. The length is sum
of the dimensions of the ACCs. (output)

Return
(double[]) — The g used within the ACCs as a dense vector. The length is sum of

the dimensions of the ACCs.
Groups
Inspecting the task, Problem data - affine conic constraints

Task.getaccn

public synchronized void getaccn
(long accidx,
long[] n)

public synchronized long getaccn(long accidx)

Obtains the dimension of the affine conic constraint.

Parameters
e accidx (long) — The index of the affine conic constraint. (input)

e n (long by reference) — The dimension of the affine conic constraint (equal to
the dimension of its domain). (output)

Return
(Long) — The dimension of the affine conic constraint (equal to the dimension of its

domain).
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Groups
Problem data - affine conic constraints, Inspecting the task

Task.getaccname
public synchronized String getaccname(long accidx)

Obtains the name of an affine conic constraint.
Parameters
accidx (long) — Index of an affine conic constraint. (input)

Return
(String) — Returns the required name.

Groups
Names, Problem data - affine conic constraints, Inspecting the task

Task.getaccnamelen

public synchronized void getaccnamelen
(long accidx,
int[] len)

public synchronized int getaccnamelen(long accidx)

Obtains the length of the name of an affine conic constraint.

Parameters
e accidx (long) — Index of an affine conic constraint. (input)
e len (int by reference) — Returns the length of the indicated name. (output)

Return
(int) — Returns the length of the indicated name.

Groups
Names, Problem data - affine conic constraints, Inspecting the task

Task.getaccntot

public synchronized void getaccntot(longl[] n)

public synchronized long getaccntot()
Obtains the total dimension of all affine conic constraints (the sum of all their dimensions).
Parameters

n (long by reference) — The total dimension of all affine conic constraints. (output)

Return
(Long) — The total dimension of all affine conic constraints.

Groups
Problem data - affine conic constraints, Inspecting the task

Task.getaccs

public synchronized void getaccs
(long[] domidxlist,
long[] afeidxlist,
double[] b)

Obtains full data of all affine conic constraints. The output array domainidxlist must have at
least length determined by Task.getnumacc. The output arrays afeidxlist and b must have at
least length determined by Task.getaccntot.
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Parameters

e domidxlist (long[]) — The list of domains appearing in all affine conic con-
straints. (output)

e afeidxlist (long[]) — The concatenation of index lists of affine expressions
appearing in all affine conic constraints. (output)

e b (double[]) — The concatenation of vectors b appearing in all affine conic
constraints. (output)

Groups
Problem data - affine conic constraints, Inspecting the task

Task.getacol

public synchronized void getacol
(int j,
int[] nzj,
int[] subj,
double[] valj)

Obtains one column of A in a sparse format.

Parameters
e j (int) — Index of the column. (input)
nzj (int by reference) — Number of non-zeros in the column obtained. (output)

subj (int[]) — Row indices of the non-zeros in the column obtained. (output)

valj (double[]) — Numerical values in the column obtained. (output)

Groups
Problem data - linear part, Inspecting the task

Task.getacolnumnz

public synchronized void getacolnumnz
(int 1,
int[] nzj)

public synchronized int getacolnumnz(int i)

Obtains the number of non-zero elements in one column of A.

Parameters
e i (int) — Index of the column. (input)
e nzj (int by reference) — Number of non-zeros in the j-th column of A. (output)
Return
(int) — Number of non-zeros in the j-th column of A.

Groups
Problem data - linear part, Inspecting the task

Task.getacolslice

public synchronized void getacolslice
(int first,
int last,
long[] ptrb,
long[] ptre,
int[] sub,
double[] val)

Obtains a sequence of columns from A in sparse format.

Parameters
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e first (int) — Index of the first column in the sequence. (input)
e last (int) — Index of the last column in the sequence plus one. (input)

e ptrb (longl[l) — ptrb[t] is an index pointing to the first element in the ¢-th
column obtained. (output)

e ptre (longl[]l) — ptrelt] is an index pointing to the last element plus one in
the ¢-th column obtained. (output)

e sub (int[]) — Contains the row subscripts. (output)
e val (double[]) — Contains the coefficient values. (output)

Groups
Problem data - linear part, Inspecting the task

Task.getacolslicenumnz

public synchronized void getacolslicenumnz
(int first,
int last,
long[] numnz)

public synchronized long getacolslicenumnz
(int first,
int last)

Obtains the number of non-zeros in a slice of columns of A.

Parameters
e first (int) — Index of the first column in the sequence. (input)
e last (int) — Index of the last column plus one in the sequence. (input)
e numnz (long by reference) — Number of non-zeros in the slice. (output)
Return
(long) — Number of non-zeros in the slice.

Groups
Problem data - linear part, Inspecting the task

Task.getacolslicetrip

public synchronized void getacolslicetrip
(int first,
int last,
int[] subi,
int[] subj,
double[] val)

Obtains a sequence of columns from A in sparse triplet format. The function returns the content
of all columns whose index j satisfies first <= j < last. The triplets corresponding to nonzero
entries are stored in the arrays subi, subj and val.

Parameters
e first (int) — Index of the first column in the sequence. (input)
e last (int) — Index of the last column in the sequence plus one. (input)
e subi (int[]) — Constraint subscripts. (output)
e subj (int[]) — Column subscripts. (output)
e val (double[]) — Values. (output)

Groups
Problem data - linear part, Inspecting the task

Task.getafebarfblocktriplet
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public synchronized void getafebarfblocktriplet
(long[] numtrip,
long[] afeidx,
int[] barvaridx,
int[] subk,
int[] subl,
double[] valkl)

public synchronized long getafebarfblocktriplet
(long[] afeidx,
int[] barvaridx,
int[] subk,
int[] subl,
double[] valkl)

Obtains F in block triplet form.

Parameters
e numtrip (long by reference) — Number of elements in the block triplet form.
(output)
afeidx (long[]) — Constraint index. (output)
barvaridx (int[]) — Symmetric matrix variable index. (output)
subk (int[]) — Block row index. (output)
subl (int[]) — Block column index. (output)
valkl (double[]) — The numerical value associated with each block triplet.
(output)

Return
(long) — Number of elements in the block triplet form.

Groups
Problem data - affine expressions, Problem data - semidefinite

Task.getafebarfnumblocktriplets

public synchronized void getafebarfnumblocktriplets(long[] numtrip)

public synchronized long getafebarfnumblocktriplets()

Obtains an upper bound on the number of elements in the block triplet form of F.

Parameters
numtrip (long by T’(i'ﬁ’f‘(in(:(i) — An upper bound on the number of elements in the
block triplet form of F'. (output)

Return
(long) — An upper bound on the number of elements in the block triplet form of F.

Groups
Problem data - semidefinite, Inspecting the task

Task.getafebarfnumrowentries
public synchronized void getafebarfnumrowentries

(long afeidx,
int[] numentr)

public synchronized int getafebarfnumrowentries(long afeidx)

Obtains the number of nonzero entries in one row of F, that is the number of j such that Fafeide'
is not the zero matrix.
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Parameters
e afeidx (long) — Row index of F. (input)
e numentr (int by reference) — Number of nonzero entries in a row of F'. (output)
Return
(int) — Number of nonzero entries in a row of F.

Groups
Problem data - affine expressions, Problem data - semidefinite, Inspecting the task

Task.getafebarfrow

public synchronized void getafebarfrow
(long afeidx,
int[] barvaridx,
long[] ptrterm,
long[] numterm,
long[] termidx,
double[] termweight)

Obtains all nonzero entries in one row Fafeidx’* of F. For every k there is a nonzero entry
Fafcidxybarvarjdx[kb which is represented as a weighted sum of numterm/[k] terms. The indices in the
matrix store E and their weights for the k-th entry appear in the arrays termidx and termweight
in positions

ptrterm[k], ..., ptrterm[k] 4+ (numterm[k] — 1).

The arrays should be long enough to accommodate the data; their required lengths can be obtained
with Task.getafebarfrowinfo.

Parameters

e afeidx (long) -~ Row index of F'. (input)

e barvaridx (int[]) — Semidefinite variable indices of nonzero entries in the row
of F. (output)

e ptrterm (long[]) — Pointers to the start of each entry’s description. (output)

e numterm (long[]) — Number of terms in the weighted sum representation of each
entry. (output)

e termidx (long[]) — Indices of semidefinite matrices from the matrix store E.
(output)

e termweight (double[]) — Weights appearing in the weighted sum representa-
tions of all entries. (output)

Groups
Problem data - affine expressions, Problem data - semidefinite, Inspecting the task

Task.getafebarfrowinfo

public synchronized void getafebarfrowinfo
(long afeidx,
int[] numentr,
long[] numterm)

Obtains information about one row of F: the number of nonzero entries, that is the number of j
such that Fafeidx}j is not the zero matrix, as well as the total number of terms in the representations
of all these entries as weighted sums of matrices from F. This information provides the data sizes
required for a call to Task.getafebarfrow.

Parameters
e afeidx (long) — Row index of F'. (input)
e numentr (int by reference) — Number of nonzero entries in a row of F. (output)
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e numterm (long by 7’6767’6’)7/(56) — Number of terms in the weighted sums represen-
tation of the row of F. (output)

Groups
Problem data - affine expressions, Problem data - semidefinite, Inspecting the task

Task.getafefnumnz

public synchronized void getafefnumnz(long[] numnz)

public synchronized long getafefnumnz()

Obtains the total number of nonzeros in F'.

Parameters
numnz (long by reference) — Number of non-zeros in F. (output)

Return
(long) — Number of non-zeros in F.
Groups
Problem data - affine expressions, Inspecting the task

Task.getafefrow

public synchronized void getafefrow
(long afeidx,
int[] numnz,
int[] varidx,
double[] val)

Obtains one row of F' in sparse format.

Parameters
e afeidx (long) — Index of a row in F. (input)
e numnz (int by reference) — Number of non-zeros in the row obtained. (output)
e varidx (int[]) — Column indices of the non-zeros in the row obtained. (output)
e val (double[]) — Values of the non-zeros in the row obtained. (output)
Groups
Problem data - affine expressions, Inspecting the task

Task.getafefrownumnz

public synchronized void getafefrownumnz
(long afeidx,
int[] numnz)

public synchronized int getafefrownumnz(long afeidx)

Obtains the number of nonzeros in one row of F.

Parameters
e afeidx (long) — Index of a row in F. (input)
e numnz (int by reference) — Number of non-zeros in row afeidx of F. (output)

Return
(int) — Number of non-zeros in row afeidx of F.

Groups
Problem data - affine expressions, Inspecting the task

Task.getafeftrip
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public synchronized void getafeftrip
(long[] afeidx,
int[] varidx,
double[] val)

Obtains the F in triplet format.

Parameters
e afeidx (long[]) — Row indices of nonzeros. (output)
e varidx (int[]) — Column indices of nonzeros. (output)
e val (double[]) — Values of nonzero entries. (output)

Groups
Problem data - affine expressions, Inspecting the task

Task.getafeg

public synchronized void getafeg
(long afeidx,
double[] g)

public synchronized double getafeg(long afeidx)

Obtains a single coefficient in g.

Parameters
e afeidx (long) — Index of an element in g. (input)
e g (double by reference) — The value of gafeiax. (output)

Return
(double) — The value of gafeidx-

Groups
Problem data - affine expressions, Inspecting the task

Task.getafegslice

public synchronized void getafegslice
(long first,
long last,
double[] g)

public synchronized double[] getafegslice
(long first,
long last)

Obtains a sequence of elements from the vector g of constant terms in the affine expressions list.

Parameters
e first (long) — First index in the sequence. (input)
e last (long) — Last index plus 1 in the sequence. (input)
e g (double[])— Theslice g as a dense vector. The length is last-first. (output)

Return
(double[]) — The slice g as a dense vector. The length is last-first.

Groups
Inspecting the task, Problem data - affine expressions

Task.getaij
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public synchronized void getaij
(int i,
int j,
double[] aij)

public synchronized double getaij
(int i,
int j)

Obtains a single coefficient in A.

Parameters
e i (int) — Row index of the coefficient to be returned. (input)
e j (int) — Column index of the coefficient to be returned. (input)
e aij (double by reference) — The required coefficient a; ;. (output)
Return
(double) — The required coefficient a; ;.

Groups
Problem data - linear part, Inspecting the task

Task.getapiecenumnz

public synchronized void getapiecenumnz
(int firsti,
int lasti,
int firstj,
int lastj,
int[] numnz)

public synchronized int getapiecenumnz
(int firsti,
int lasti,
int firstj,
int lastj)

Obtains the number non-zeros in a rectangular piece of A, i.e. the number of elements in the set
{(4,7) : a;; #0, firsti <4 < lasti—1, firstj <j <lastj—1}

This function is not an efficient way to obtain the number of non-zeros in one row or column. In
that case use the function Task.getarownumnz or Task.getacolnumnz.

Parameters
e firsti (int) — Index of the first row in the rectangular piece. (input)
e lasti (int) — Index of the last row plus one in the rectangular piece. (input)

firstj (int) — Index of the first column in the rectangular piece. (input)

lastj (int) — Index of the last column plus one in the rectangular piece. (input)
e numnz (int by reference) — Number of non-zero A elements in the rectangular
piece. (output)
Return
(int) — Number of non-zero A elements in the rectangular piece.

Groups
Problem data - linear part, Inspecting the task

Task.getarow
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public synchronized void getarow

(int i,

int[] nzi,
int[] subi,
double[] vali)

Obtains one row of A in a sparse format.

Parameters
e i (int) — Index of the row. (input)
e nzi (int by reference) — Number of non-zeros in the row obtained. (output)
e subi (int[]) — Column indices of the non-zeros in the row obtained. (output)
e vali (double[]) — Numerical values of the row obtained. (output)

Groups

Problem data - linear part, Inspecting the task

Task.getarownumnz

public synchronized void getarownumnz

(int 1,

int[] nzi)

public synchronized int getarownumnz(int i)

Obtains the number of non-zero elements in one row of A.

Parameters
e i (int) — Index of the row. (input)
e nzi (int by reference) — Number of non-zeros in the i-th row of A. (output)

Return

(int) — Number of non-zeros in the i-th row of A.

Groups

Problem data - linear part, Inspecting the task

Task.getarowslice

public synchronized void getarowslice
(int first,
int last,
long[] ptrb,
long[] ptre,
int[] sub,
double[] val)

Obtains a sequence of rows from A in sparse format.

Parameters

first (int) — Index of the first row in the sequence. (input)

last (int) — Index of the last row in the sequence plus one. (input)

ptrb (long[l) — ptrblt] is an index pointing to the first element in the ¢-th
row obtained. (output)

ptre (long[]l) — ptrelt] is an index pointing to the last element plus one in
the ¢-th row obtained. (output)

sub (int[]) — Contains the column subscripts. (output)

val (double[]) — Contains the coefficient values. (output)

Groups
Problem data - linear part, Inspecting the task
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Task.getarowslicenumnz

public synchronized void getarowslicenumnz
(int first,
int last,
long[] numnz)

public synchronized long getarowslicenumnz
(int first,
int last)

Obtains the number of non-zeros in a slice of rows of A.

Parameters
e first (int) — Index of the first row in the sequence. (input)
e last (int) — Index of the last row plus one in the sequence. (input)
e numnz (long by reference) — Number of non-zeros in the slice. (output)

Return
(long) — Number of non-zeros in the slice.

Groups
Problem data - linear part, Inspecting the task

Task.getarowslicetrip

public synchronized void getarowslicetrip
(int first,
int last,
int[] subi,
int[] subj,
double[] val)

Obtains a sequence of rows from A in sparse triplet format. The function returns the content of
all rows whose index i satisfies first <= i < last. The triplets corresponding to nonzero entries
are stored in the arrays subi, subj and val.

Parameters
e first (int) — Index of the first row in the sequence. (input)
e last (int) — Index of the last row in the sequence plus one. (input)
e subi (int[]) — Constraint subscripts. (output)
e subj (int[]) — Column subscripts. (output)
e val (double[]) — Values. (output)
Groups

Problem data - linear part, Inspecting the task

Task.getatrip

public synchronized void getatrip
(int[] subi,
int[] subj,
double[] val)

Obtains A in sparse triplet format. The triplets corresponding to nonzero entries are stored in the
arrays subi, subj and val.

Parameters
e subi (int[]1) — Constraint subscripts. (output)
e subj (int[]) — Column subscripts. (output)
e val (double[]) — Values. (output)
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Groups
Problem data - linear part, Inspecting the task

Task.getatruncatetol

public synchronized void getatruncatetol(double[] tolzero)

public synchronized double[] getatruncatetol()

Obtains the tolerance value set with Task.putatruncatetol.

Parameters
tolzero (double[]) — All elements |a; ;| less than this tolerance is truncated to zero.
(output)
Return
(double[1) — All elements |a; ;| less than this tolerance is truncated to zero.
Groups
Parameters, Problem data - linear part

Task.getbarablocktriplet

public synchronized void getbarablocktriplet
(long[] num,
int[] subi,
int[] subj,
int[] subk,
int[] subl,
double[] valijkl)

public synchronized long getbarablocktriplet
(int[] subi,
int[] subj,
int[] subk,
int[] subl,
double[] valijkl)

Obtains A in block triplet form.

Parameters
e num (long by reference) — Number of elements in the block triplet form. (output)
e subi (int[])
e subj (int[]) — Symmetric matrix variable index. (output)
e subk (int[]) — Block row index. (output)

Constraint index. (output)

e subl (int[]) — Block column index. (output)

e valijkl (double[]) — The numerical value associated with each block triplet.

(output)
Return
(long) — Number of elements in the block triplet form.
Groups

Problem data - semidefinite, Inspecting the task

Task.getbaraidx

public synchronized void getbaraidx
(long idx,
int([] 1,
int[] j,

(continues on next page)
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(continued from previous page)
long[] num,

long[] sub,
double[] weights)

public synchronized long getbaraidx
(long idx,
int[] i,
int[] j,
long[] sub,
double[] weights)

Obtains information about an element in A. Since A is a sparse matrix of symmetric matrices,
only the nonzero elements in A are stored in order to save space. Now A is stored vectorized i.e.
as one long vector. This function makes it possible to obtain information such as the row index
and the column index of a particular element of the vectorized form of A.

Please observe if one element of A is inputted multiple times then it may be stored several times
in vectorized form. In that case the element with the highest index is the one that is used.

Parameters
e idx (long) — Position of the element in the vectorized form. (input)
e i (int by reference) — Row index of the element at position idx. (output)
e j (int by reference) — Column index of the element at position idx. (output)
e num (long by reference) — Number of terms in weighted sum that forms the
element. (output)
e sub (long[]l) — A list indexes of the elements from symmetric matrix storage
that appear in the weighted sum. (output)
e weights (double[]) — The weights associated with each term in the weighted
sum. (output)
Return
(Long) — Number of terms in weighted sum that forms the element.

Groups
Problem data - semidefinite, Inspecting the task

Task.getbaraidxij

public synchronized void getbaraidxij
(long idx,
int[] i,
int[] j)

Obtains information about an element in A. Since A is a sparse matrix of symmetric matrices,
only the nonzero elements in A are stored in order to save space. Now A is stored vectorized i.e.
as one long vector. This function makes it possible to obtain information such as the row index
and the column index of a particular element of the vectorized form of A.

Please note that if one element of A is inputted multiple times then it may be stored several times
in vectorized form. In that case the element with the highest index is the one that is used.

Parameters
e idx (long) — Position of the element in the vectorized form. (input)
e i (int by reference) — Row index of the element at position idx. (output)
e j (int by reference) — Column index of the element at position idx. (output)
Groups
Problem data - semidefinite, Inspecting the task
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Task.getbaraidxinfo

public synchronized void getbaraidxinfo
(long idx,
long[] num)

public synchronized long getbaraidxinfo(long idx)

Each nonzero element in Zij is formed as a weighted sum of symmetric matrices. Using this
function the number of terms in the weighted sum can be obtained. See description of Task.
appendsparsesymmat for details about the weighted sum.

Parameters
e idx (long) — The internal position of the element for which information should
be obtained. (input)
e num (long by reference) — Number of terms in the weighted sum that form the
specified element in A. (output)
Return
(long) — Number of terms in the weighted sum that form the specified element in A.

Groups
Problem data - semidefinite, Inspecting the task

Task.getbarasparsity

public synchronized void getbarasparsity
(long[] numnz,
long[] idxij)

The matrix A is assumed to be a sparse matrix of symmetric matrices. This implies that many of
the elements in A are likely to be zero matrices. Therefore, in order to save space, only nonzero
elements in A are stored on vectorized form. This function is used to obtain the sparsity pattern
of A and the position of each nonzero element in the vectorized form of A. From the index
detailed information about each nonzero A; ; can be obtained using Task.getbaraidzinfo and
Task.getbaraidz.

Parameters
e numnz (long by reference) — Number of nonzero elements in A. (output)
e idxij (long[]) — Position of each nonzero element in the vectorized form of A.
(output)

Groups
Problem data - semidefinite, Inspecting the task

Task.getbarcblocktriplet

public synchronized void getbarcblocktriplet
(long[] num,
int[] subj,
int[] subk,
int[] subl,
double[] valjkl)

public synchronized long getbarcblocktriplet
(int[] subj,
int[] subk,
int[] subl,
double[] valjkl)

Obtains C in block triplet form.

288



Parameters
e nunm (long by reference) — Number of elements in the block triplet form. (output)
e subj (int[]) — Symmetric matrix variable index. (output)
e subk (int[]) — Block row index. (output)
e subl (int[]) — Block column index. (output)
e valjkl (double[]) — The numerical value associated with each block triplet.
(output)
Return
(long) — Number of elements in the block triplet form.

Groups
Problem data - semidefinite, Inspecting the task

Task.getbarcidx

public synchronized void getbarcidx
(long idx,
int[] j,
long[] num,
long[] sub,
double[] weights)

Obtains information about an element in C.

Parameters

e idx (long) — Index of the element for which information should be obtained.
(input)
j (int by reference) — Row index in C. (output)

num (long by reference) — Number of terms in the weighted sum. (output)

sub (long[]) — Elements appearing the weighted sum. (output)
e weights (double[]) — Weights of terms in the weighted sum. (output)

Groups
Problem data - semidefinite, Inspecting the task

Task.getbarcidxinfo

public synchronized void getbarcidxinfo
(long idx,
long[] num)

public synchronized long getbarcidxinfo(long idx)

Obtains the number of terms in the weighted sum that forms a particular element in C.

Parameters

e idx (long) — Index of the element for which information should be obtained.
The value is an index of a symmetric sparse variable. (input)

e num (long by reference) — Number of terms that appear in the weighted sum
that forms the requested element. (output)

Return

(long) — Number of terms that appear in the weighted sum that forms the requested
element.

Groups
Problem data - semidefinite, Inspecting the task

Task.getbarcidxj
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public synchronized void getbarcidxj
(long idx,
int[] j)
public synchronized int getbarcidxj(long idx)

Obtains the row index of an element in C.

Parameters
e idx (long) — Index of the element for which information should be obtained.
(input)
e j (int by reference) — Row index in C. (output)
Return
(int) — Row index in C.
Groups

Problem data - semidefinite, Inspecting the task

Task.getbarcsparsity

public synchronized void getbarcsparsity
(long[] numnz,
long[] idxj)

Internally only the nonzero elements of C are stored in a vector. This function is used to obtain the
nonzero elements of C' and their indexes in the internal vector representation (in idx). From the
index detailed information about each nonzero C; can be obtained using Task.getbarcidzinfo
and Task.getbarcidz.

Parameters
e numnz (long by reference) — Number of nonzero elements in C. (output)
e idxj (long[]) — Internal positions of the nonzeros elements in C. (output)

Groups
Problem data - semidefinite, Inspecting the task

Task.getbarsj

public synchronized void getbarsj
(soltype whichsol,
int j,
double[] barsj)

public synchronized double[] getbarsj
(soltype whichsol,
int j)

Obtains the dual solution for a semidefinite variable. Only the lower triangular part of S; is
returned because the matrix by construction is symmetric. The format is that the columns are
stored sequentially in the natural order.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e j (int) — Index of the semidefinite variable. (input)
e barsj (double[]) — Value of S;. (output)
Return
(double[]) — Value of Sj.

Groups
Solution - semidefinite
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Task.getbarsslice

public synchronized void getbarsslice
(soltype whichsol,
int first,
int last,
long slicesize,
double[] barsslice)

public synchronized double[] getbarsslice
(soltype whichsol,
int first,
int last,
long slicesize)

Obtains the dual solution for a sequence of semidefinite variables. The format is that matrices are
stored sequentially, and in each matrix the columns are stored as in Task.getbarsy.

Parameters
e whichsol (soltype) — Selects a solution. (input)
first (int) — Index of the first semidefinite variable in the slice. (input)
last (int) — Index of the last semidefinite variable in the slice plus one. (input)

slicesize (long) — Denotes the length of the array barsslice. (input)

e barsslice (double[]) — Dual solution values of symmetric matrix variables in
the slice, stored sequentially. (output)

Return
(double[]) — Dual solution values of symmetric matrix variables in the slice, stored
sequentially.

Groups
Solution - semidefinite

Task.getbarvarname
public synchronized String getbarvarname(int i)

Obtains the name of a semidefinite variable.

Parameters
i (int) — Index of the variable. (input)

Return
(String) — The requested name is copied to this buffer.

Groups
Names, Inspecting the task

Task.getbarvarnameindex

public synchronized void getbarvarnameindex
(String somename,
int[] asgn,
int[] index)

public synchronized int getbarvarnameindex
(String somename,
int[] asgn)

Obtains the index of semidefinite variable from its name.

Parameters
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e somename (String) — The name of the variable. (input)
e asgn (int by reference) — Non-zero if the name somename is assigned to some
semidefinite variable. (output)
e index (int by reference) — The index of a semidefinite variable with the name
somename (if one exists). (output)
Return
(int) — The index of a semidefinite variable with the name somename (if one exists).

Groups
Names, Inspecting the task

Task.getbarvarnamelen

public synchronized void getbarvarnamelen
(int 1,
int[] len)

public synchronized int getbarvarnamelen(int i)

Obtains the length of the name of a semidefinite variable.

Parameters
e i (int) — Index of the variable. (input)
e len (int by reference) — Returns the length of the indicated name. (output)
Return
(int) — Returns the length of the indicated name.

Groups
Names, Inspecting the task

Task.getbarx]j

public synchronized void getbarxj
(soltype whichsol,
int j,
double[] barxj)

public synchronized double[] getbarxj
(soltype whichsol,
int j)

Obtains the primal solution for a semidefinite variable. Only the lower triangular part of X; is
returned because the matrix by construction is symmetric. The format is that the columns are

stored sequentially in the natural order.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e j (int) — Index of the semidefinite variable. (input)
e barxj (double[]) — Value of X;. (output)
Return
(double[]) — Value of X ;.

Groups
Solution - semidefinite

Task.getbarxslice
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public synchronized void getbarxslice
(soltype whichsol,
int first,
int last,
long slicesize,
double[] barxslice)

public synchronized double[] getbarxslice
(soltype whichsol,
int first,
int last,
long slicesize)

Obtains the primal solution for a sequence of semidefinite variables. The format is that matrices
are stored sequentially, and in each matrix the columns are stored as in Task.getbarzy.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e first (int) — Index of the first semidefinite variable in the slice. (input)
e last (int) — Index of the last semidefinite variable in the slice plus one. (input)
e slicesize (long) — Denotes the length of the array barxslice. (input)

e barxslice (double[]) — Solution values of symmetric matrix variables in the
slice, stored sequentially. (output)

Return
(double[]) — Solution values of symmetric matrix variables in the slice, stored se-
quentially.

Groups
Solution - semidefinite

Task.getc

public synchronized void getc(double[] c)

public synchronized double[] getc()

Obtains all objective coefficients c.

Parameters
c (double[]) — Linear terms of the objective as a dense vector. The length is the
number of variables. (output)

Return
(double[]) — Linear terms of the objective as a dense vector. The length is the
number of variables.

Groups
Problem data - linear part, Inspecting the task, Problem data - variables

Task.getcfix

public synchronized void getcfix(double[] cfix)

public synchronized double getcfix()

Obtains the fixed term in the objective.

Parameters

cfix (double by reference) — Fixed term in the objective. (output)
Return

(double) — Fixed term in the objective.
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Groups
Problem data - linear part, Inspecting the task

Task.getc]j
public synchronized void getcj

(int j,
double[] cj)

public synchronized double getcj(int j)

Obtains one coefficient of c.

Parameters
e j (int) — Index of the variable for which the ¢ coefficient should be obtained.
(input)
e cj (double by reference) — The value of ¢;. (output)
Return
(double) — The value of ¢;.
Groups

Problem data - linear part, Inspecting the task, Problem data - variables
Task.getclist

public synchronized void getclist
(int[] subj,
double[] c)

public synchronized double[] getclist(int[] subj)

Obtains a sequence of elements in c.

Parameters
e subj (int[]) — A list of variable indexes. (input)
e c (double[]) — Linear terms of the requested list of the objective as a dense
vector. (output)

Return
(double[]) — Linear terms of the requested list of the objective as a dense vector.

Groups
Inspecting the task, Problem data - linear part

Task.getconbound

public synchronized void getconbound
(int i,
boundkey[] bk,
double[] bl,
double[] bu)

Obtains bound information for one constraint.
Parameters
e i (int) — Index of the constraint for which the bound information should be
obtained. (input)
e bk (mosek.boundkey by reference) — Bound keys. (output)
e bl (double by reference) — Values for lower bounds. (output)
e bu (double by reference) — Values for upper bounds. (output)
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Groups
Problem data - linear part, Inspecting the task, Problem data - bounds, Problem data
- constraints

Task.getconboundslice

public synchronized void getconboundslice
(int first,
int last,
boundkey[] bk,
double[] bl,
double[] bu)

Obtains bounds information for a slice of the constraints.

Parameters
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)
e bk (boundkey [1) — Bound keys. (output)
e bl (double[]) — Values for lower bounds. (output)
e bu (double[]) — Values for upper bounds. (output)

Groups
Problem data - linear part, Inspecting the task, Problem data - bounds, Problem data
- constraints

TFask-geteone Deprecated

public synchronized void getcone
(int k,
conetypel[] ct,
double[] conepar,
int[] nummem,
int[] submem)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Parameters
e k (int) — Index of the cone. (input)
e ct (mosek.conetype by reference) — Specifies the type of the cone. (output)
e conepar (double by reference) — For the power cone it denotes the exponent
alpha. For other cone types it is unused and can be set to 0. (output)
e nummen (int by reference) — Number of member variables in the cone. (output)
e submem (int[]) — Variable subscripts of the members in the cone. (output)

Groups
Inspecting the task, Problem data - cones (deprecated)

Task-geteconeinfo Deprecated

public synchronized void getconeinfo
(int k,
conetypel[] ct,
double[] conepar,
int[] nummem)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major

release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.
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Parameters
e k (int) — Index of the cone. (input)
e ct (mosek.conetype by reference) — Specifies the type of the cone. (output)

e conepar (double by reference) — For the power cone it denotes the exponent
alpha. For other cone types it is unused and can be set to 0. (output)

e nummenm (int by reference) — Number of member variables in the cone. (output)
Groups
Inspecting the task, Problem data - cones (deprecated)

Task-getconename Deprecated

public synchronized String getconename(int i)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Parameters

i (int) — Index of the cone. (input)
Return

(String) — The required name.
Groups

Names, Problem data - cones (deprecated), Inspecting the task
Task-getconenameindex Deprecated

public synchronized void getconenameindex
(String somename,
int[] asgn,
int[] index)

public synchronized int getconenameindex
(String somename,
int[] asgn)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Checks whether the name somename has been assigned to any cone. If it has been assigned to a
cone, then the index of the cone is reported.

Parameters
e somename (String) — The name which should be checked. (input)
e asgn (int by reference) — Is non-zero if the name somename is assigned to some
cone. (output)
e index (int by reference) — If the name somename is assigned to some cone, then
index is the index of the cone. (output)

Return
(int) — If the name somename is assigned to some cone, then index is the index of
the cone.

Groups

Names, Problem data - cones (deprecated), Inspecting the task
Task-getconenameten Deprecated

public synchronized void getconenamelen
(int 1,
int[] len)
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public synchronized int getconenamelen(int i)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Parameters
e i (int) — Index of the cone. (input)
e len (int by reference) — Returns the length of the indicated name. (output)

Return
(int) — Returns the length of the indicated name.

Groups
Names, Problem data - cones (deprecated), Inspecting the task

Task.getconname
public synchronized String getconname(int i)

Obtains the name of a constraint.

Parameters

i (int) — Index of the constraint. (input)
Return

(String) — The required name.

Groups
Names, Problem data - linear part, Problem data - constraints, Inspecting the task

Task.getconnameindex

public synchronized void getconnameindex
(String somename,
int[] asgn,
int[] index)

public synchronized int getconnameindex
(String somename,
int[] asgn)

Checks whether the name somename has been assigned to any constraint. If so, the index of the
constraint is reported.

Parameters
e somename (String) — The name which should be checked. (input)
e asgn (int by reference) — Is non-zero if the name somename is assigned to some
constraint. (output)
e index (int by reference) — If the name somename is assigned to a constraint,
then index is the index of the constraint. (output)
Return
(int) — If the name somename is assigned to a constraint, then index is the index of
the constraint.

Groups
Names, Problem data - linear part, Problem data - constraints, Inspecting the task

Task.getconnamelen
public synchronized void getconnamelen

(int 1,
int[] len)
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public synchronized int getconnamelen(int i)

Obtains the length of the name of a constraint.

Parameters
e i (int) — Index of the constraint. (input)
e len (int by reference) — Returns the length of the indicated name. (output)

Return
(int) — Returns the length of the indicated name.

Groups
Names, Problem data - linear part, Problem data - constraints, Inspecting the task

Task.getcslice

public synchronized void getcslice
(int first,
int last,
double[] c)

public synchronized double[] getcslice
(int first,
int last)

Obtains a sequence of elements in c.

Parameters
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)
e c (double[]) — Linear terms of the requested slice of the objective as a dense
vector. The length is last-first. (output)

Return
(double[]) — Linear terms of the requested slice of the objective as a dense vector.
The length is last-first.

Groups
Inspecting the task, Problem data - linear part

Task.getdimbarvarj

public synchronized void getdimbarvarj
(int j,
int[] dimbarvarj)

public synchronized int getdimbarvarj(int j)

Obtains the dimension of a symmetric matrix variable.

Parameters
e j (int) — Index of the semidefinite variable whose dimension is requested. (input)
e dimbarvarj (int by reference) — The dimension of the j-th semidefinite variable.
(output)
Return
(int) — The dimension of the j-th semidefinite variable.

Groups
Inspecting the task, Problem data - semidefinite

Task.getdjcafeidxlist
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public synchronized void getdjcafeidxlist
(long djcidx,
long[] afeidxlist)

public synchronized long[] getdjcafeidxlist(long djcidx)

Obtains the list of affine expression indexes in a disjunctive constraint.

Parameters
e djcidx (long) — Index of the disjunctive constraint. (input)
o afeidxlist (long[]) — List of affine expression indexes. (output)

Return
(Long[]) — List of affine expression indexes.

Groups
Problem data - disjunctive constraints, Inspecting the task

Task.getdjcb

public synchronized void getdjcb
(long djcidx,
double[] b)

public synchronized double[] getdjcb(long djcidx)

Obtains the optional constant term vector of a disjunctive constraint.

Parameters
e djcidx (long) — Index of the disjunctive constraint. (input)
e b (double[]) — The vector b. (output)

Return
(double[]) — The vector b.

Groups
Problem data - disjunctive constraints, Inspecting the task

Task.getdjcdomainidxlist

public synchronized void getdjcdomainidxlist
(long djcidx,
long[] domidxlist)

public synchronized long[] getdjcdomainidxlist(long djcidx)

Obtains the list of domain indexes in a disjunctive constraint.

Parameters
e djcidx (long) — Index of the disjunctive constraint. (input)
e domidxlist (long[]) — List of term sizes. (output)

Return
(Long[]) — List of term sizes.

Groups
Problem data - disjunctive constraints, Inspecting the task

Task.getdjcname
public synchronized String getdjcname(long djcidx)

Obtains the name of a disjunctive constraint.
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Parameters

djcidx (long) — Index of a disjunctive constraint. (input)
Return

(String) — Returns the required name.

Groups
Names, Problem data - disjunctive constraints, Inspecting the task

Task.getdjcnamelen

public synchronized void getdjcnamelen
(long djcidx,
int[] len)

public synchronized int getdjcnamelen(long djcidx)

Obtains the length of the name of a disjunctive constraint.

Parameters
e djcidx (long) — Index of a disjunctive constraint. (input)
e len (int by reference) — Returns the length of the indicated name. (output)
Return
(int) — Returns the length of the indicated name.

Groups
Names, Problem data - disjunctive constraints, Inspecting the task

Task.getdjcnumafe

public synchronized void getdjcnumafe
(long djcidx,
long[] numafe)

public synchronized long getdjcnumafe(long djcidx)

Obtains the number of affine expressions in the disjunctive constraint.

Parameters
e djcidx (long) — Index of the disjunctive constraint. (input)
e numafe (long by reference) — Number of affine expressions in the disjunctive
constraint. (output)
Return
(long) — Number of affine expressions in the disjunctive constraint.
Groups
Problem data - disjunctive constraints, Inspecting the task
Task.getdjcnumafetot

public synchronized void getdjcnumafetot(long[] numafetot)

public synchronized long getdjcnumafetot ()

Obtains the total number of affine expressions in all disjunctive constraints.

Parameters
numafetot (long by reference) — Number of affine expressions in all disjunctive
constraints. (output)
Return
(Long) — Number of affine expressions in all disjunctive constraints.
Groups
Problem data - disjunctive constraints, Inspecting the task
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Task.getdjcnumdomain

public synchronized void getdjcnumdomain
(long djcidx,
long[] numdomain)

public synchronized long getdjcnumdomain(long djcidx)

Obtains the number of domains in the disjunctive constraint.

Parameters
e djcidx (long) — Index of the disjunctive constraint. (input)

e numdomain (long by reference) — Number of domains in the disjunctive con-
straint. (output)

Return
(long) — Number of domains in the disjunctive constraint.

Groups
Problem data - disjunctive constraints, Inspecting the task

Task.getdjcnumdomaintot

public synchronized void getdjcnumdomaintot(long[] numdomaintot)

public synchronized long getdjcnumdomaintot ()

Obtains the total number of domains in all disjunctive constraints.

Parameters
numdomaintot (long by reference) — Number of domains in all disjunctive con-
straints. (output)

Return
(long) — Number of domains in all disjunctive constraints.

Groups
Problem data - disjunctive constraints, Inspecting the task

Task.getdjcnumterm

public synchronized void getdjcnumterm
(long djcidx,
long[] numterm)

public synchronized long getdjcnumterm(long djcidx)

Obtains the number terms in the disjunctive constraint.

Parameters
e djcidx (long) — Index of the disjunctive constraint. (input)
e numterm (long by reference) — Number of terms in the disjunctive constraint.
(output)
Return
(long) — Number of terms in the disjunctive constraint.

Groups
Problem data - disjunctive constraints, Inspecting the task

Task.getdjcnumtermtot

public synchronized void getdjcnumtermtot(long[] numtermtot)
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public synchronized long getdjcnumtermtot()

Obtains the total number of terms in all disjunctive constraints.

Parameters
numtermtot (long by reference) — Total number of terms in all disjunctive con-
straints. (output)

Return
(long) — Total number of terms in all disjunctive constraints.

Groups
Problem data - disjunctive constraints, Inspecting the task

Task.getdjcs

public synchronized void getdjcs
(long[] domidxlist,
long[] afeidxlist,
double[] b,
long[] termsizelist,
long[] numterms)

Obtains full data of all disjunctive constraints. The output arrays must have minimal lengths de-
termined by the following methods: domainidxlist by Task.getdjcnumdomaintot, afeidxlist
and b by Task.getdjcnumafetot, termsizelist by Task.getdjcnumtermtot and numterms by
Task. getnumdomain .

Parameters
e domidxlist (long[]) — The concatenation of index lists of domains appearing
in all disjunctive constraints. (output)
e afeidxlist (long[]) — The concatenation of index lists of affine expressions
appearing in all disjunctive constraints. (output)
e b (double[]) — The concatenation of vectors b appearing in all disjunctive con-
straints. (output)
e termsizelist (long[]) — The concatenation of lists of term sizes appearing in
all disjunctive constraints. (output)
e numterms (long[]) — The number of terms in each of the disjunctive constraints.
(output)
Groups
Problem data - disjunctive constraints, Inspecting the task

Task.getdjctermsizelist

public synchronized void getdjctermsizelist
(long djcidx,
long[] termsizelist)

public synchronized long[] getdjctermsizelist(long djcidx)

Obtains the list of term sizes in a disjunctive constraint.

Parameters
e djcidx (long) — Index of the disjunctive constraint. (input)
e termsizelist (long[]) — List of term sizes. (output)

Return
(Long[]) — List of term sizes.

Groups
Problem data - disjunctive constraints, Inspecting the task
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Task.getdomainn

public synchronized void getdomainn
(long domidx,
long[] n)

public synchronized long getdomainn(long domidx)

Obtains the dimension of the domain.

Parameters
e domidx (long) — Index of the domain. (input)
e n (long by reference) — Dimension of the domain. (output)

Return
(long) — Dimension of the domain.

Groups
Problem data - domain, Inspecting the task

Task.getdomainname
public synchronized String getdomainname(long domidx)

Obtains the name of a domain.

Parameters
domidx (long) — Index of a domain. (input)

Return
(String) — Returns the required name.
Groups
Names, Problem data - domain, Inspecting the task

Task.getdomainnamelen

public synchronized void getdomainnamelen
(long domidx,
int[] len)

public synchronized int getdomainnamelen(long domidx)

Obtains the length of the name of a domain.

Parameters
e domidx (long) — Index of a domain. (input)
e len (int by reference) — Returns the length of the indicated name. (output)

Return
(int) — Returns the length of the indicated name.

Groups
Names, Problem data - domain, Inspecting the task

Task.getdomaintype
public synchronized void getdomaintype

(long domidx,
domaintype[] domtype)

public synchronized domaintype getdomaintype(long domidx)

Returns the type of the domain.
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Parameters
e domidx (long) — Index of the domain. (input)
e domtype (mosek.domaintype by reference) — The type of the domain. (output)
e domtype (mosek.domaintype) — The type of the domain. (output)

Return
(mosek. domaintype) — The type of the domain.

Groups
Problem data - domain, Inspecting the task

Task.getdouinf

public synchronized void getdouinf
(dinfitem whichdinf,
double[] dvalue)

public synchronized double getdouinf(dinfitem whichdinf)

Obtains a double information item from the task information database.

Parameters
e whichdinf (dinfitem) — Specifies a double information item. (input)
e dvalue (double by reference) — The value of the required double information
item. (output)
Return
(double) — The value of the required double information item.
Groups
Information items and statistics

Task.getdouparam

public synchronized void getdouparam
(dparam param,
double[] parvalue)

public synchronized double getdouparam(dparam param)

Obtains the value of a double parameter.

Parameters
e param (dparam) — Which parameter. (input)
e parvalue (double by reference) — Parameter value. (output)

Return
(double) — Parameter value.

Groups
Parameters

Task.getdualobj

public synchronized void getdualobj
(soltype whichsol,
double[] dualobj)

public synchronized double getdualobj(soltype whichsol)

Computes the dual objective value associated with the solution. Note that if the solution is a
primal infeasibility certificate, then the fixed term in the objective value is not included.

Moreover, since there is no dual solution associated with an integer solution, an error will be
reported if the dual objective value is requested for the integer solution.
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Parameters
e whichsol (soltype) — Selects a solution. (input)
e dualobj (double by reference) — Objective value corresponding to the dual so-
lution. (output)
Return
(double) — Objective value corresponding to the dual solution.
Groups
Solution information, Solution - dual

Task.getdualproblem

public synchronized void getdualproblem(Task[] dualtask)

public synchronized mosek.Task getdualproblem()

Returns the dual problem as a task. The dual computed by this function is intended for demon-
stration, educational and debugging purposes. It closely follows the dual form introduced in the
documentation, but need not exactly reflect dualization taking place internally in the solver.

The function attempts to detect sparse LMIs and remove redundant linear constraints, try-
ing to formulate the most efficient dual LMI (i.e. SDP in primal form), unless iparam.
getdual_convert_lmis is turned off.

Problems with quadratic objective or constraints are not supported. Integer variables and disjunc-
tive constraints are ignored and only a warning is issued.

Parameters
dualtask (Task by reference) — A new task containing the dualized problem. (out-
put)
Return
(Task) — A new task containing the dualized problem.
Groups
Environment and task management

Task.getdualsolutionnorms

public synchronized void getdualsolutionnorms

(soltype whichsol,

double[] nrmy,

double[] nrmslc,

double[] nrmsuc,

double[] nrmslx,

double[] nrmsux,

double[] nrmsnx,

double[] nrmbars)

Compute norms of the dual solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)

e nrmy (double by reference) — The norm of the y vector. (output)

e nrmslc (double by reference) — The norm of the si vector. (output)
e nrmsuc (double by reference) — The norm of the s¢ vector. (output)
e nrmslx (double by reference) — The norm of the s7 vector. (output)
e nrmsux (double by reference) — The norm of the s vector. (output)
e nrmsnx (double by reference) — The norm of the s* vector. (output)
e nrmbars (double by reference) — The norm of the S vector. (output)

Groups

Solution information
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Task.getdviolacc

public synchronized void getdviolacc
(soltype whichsol,
long[] accidxlist,
double[] viol)

public synchronized double[] getdviolacc
(soltype whichsol,
long[] accidxlist)

Let (s%)* be the value of variable (s%) for the specified solution. For simplicity let us assume that
s¥ is a member of a quadratic cone, then the violation is computed as follows

{ max(0, ([ls 1[5, — (s7)1)/v2, (s7)" = =ll(s7)3.0ll,

I1(sm)* s otherwise.

Both when the solution is a certificate of primal infeasibility or when it is a dual feasible solution
the violation should be small.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e accidxlist (long[]) — An array of indexes of conic constraints. (input)
e viol (double[]) — viol[k] is the violation of the dual solution associated with
the conic constraint sub[k]. (output)
Return
(double[]) — viol[k] is the violation of the dual solution associated with the conic
constraint sub[k].
Groups
Solution information

Task.getdviolbarvar

public synchronized void getdviolbarvar
(soltype whichsol,
int[] sub,
double[] viol)

public synchronized double[] getdviolbarvar
(soltype whichsol,
int[] sub)

Let (S;)* be the value of variable S; for the specified solution. Then the dual violation of the
solution associated with variable S is given by

max(—)\min(gj), 00)
Both when the solution is a certificate of primal infeasibility and when it is dual feasible solution
the violation should be small.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e sub (int[]) — An array of indexes of X variables. (input)
e viol (double[]) — viol[k] is the violation of the solution for the constraint
?sub[k] € S;. (output)
Return
(double[]) — viol[k] is the violation of the solution for the constraint gsub[k] S

Groups
Solution information
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Task.getdviolcon

public synchronized void getdviolcon
(soltype whichsol,
int[] sub,
double[] viol)

public synchronized double[] getdviolcon
(soltype whichsol,
int[] sub)

The violation of the dual solution associated with the i-th constraint is computed as follows
max(p((s7)i, (07)i), p((s5)7, —(03)i)s | —wi + (s7)i — (su)il)

where

(2,0) = —x, > —o0,
P = |z|, otherwise.

Both when the solution is a certificate of primal infeasibility or it is a dual feasible solution the
violation should be small.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e sub (int[]) — An array of indexes of constraints. (input)
e viol (double[]) — viol[k] is the violation of dual solution associated with the
constraint sub[k]. (output)

Return
(double[]) — viol[k] is the violation of dual solution associated with the constraint
sub [k].
Groups
Solution information
Task-getdvioteornes Deprecated

public synchronized void getdviolcones
(soltype whichsol,
int[] sub,
double[] viol)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Let (s&)* be the value of variable (s%) for the specified solution. For simplicity let us assume that
s¥ is a member of a quadratic cone, then the violation is computed as follows

{ max(0, ([ls 115, — (s7)1)/v2, (s7)" = =ll(s7)3.0ll,

1(sm) ™I, otherwise.

Both when the solution is a certificate of primal infeasibility or when it is a dual feasible solution
the violation should be small.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e sub (int[]) — An array of indexes of conic constraints. (input)

e viol (double[]) — viol[k] is the violation of the dual solution associated with
the conic constraint sub[k]. (output)

Groups
Solution information
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Task.

Task.

getdviolvar

public synchronized void getdviolvar
(soltype whichsol,
int[] sub,
double[] viol)

public synchronized double[] getdviolvar
(soltype whichsol,
int[] sub)

The violation of the dual solution associated with the j-th variable is computed as follows

max (M(S?)}ﬂ 07);), p((s2)5> =(b2)s) | Zi aiyi + (s7)j = (54) — TCjI)

=0

where

(2,1) = -z, > —o0,
PAE L) = |z|, otherwise

and 7 = 0 if the solution is a certificate of primal infeasibility and 7 = 1 otherwise. The formula
for computing the violation is only shown for the linear case but is generalized appropriately for
the more general problems. Both when the solution is a certificate of primal infeasibility or when
it is a dual feasible solution the violation should be small.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e sub (int[]) — An array of indexes of z variables. (input)

e viol (double[]) — viol[k] is the violation of dual solution associated with the
variable sub[k]. (output)

Return
(double[]) — viol[k] is the violation of dual solution associated with the variable
sub [k].

Groups
Solution information

getinfeasiblesubproblem

public synchronized void getinfeasiblesubproblem
(soltype whichsol,
Task[] inftask)

public synchronized mosek.Task getinfeasiblesubproblem(soltype whichsol)

Given the solution is a certificate of primal or dual infeasibility then a primal or dual infeasible
subproblem is obtained respectively. The subproblem tends to be much smaller than the original
problem and hence it is easier to locate the infeasibility inspecting the subproblem than the original
problem.

For the procedure to be useful it is important to assign meaningful names to constraints, variables
etc. in the original task because those names will be duplicated in the subproblem.

The function is only applicable to linear and conic quadratic optimization problems.

For more information see Sec. 8.3 and Sec. 14.2.

Parameters

e whichsol (soltype) — Which solution to use when determining the infeasible
subproblem. (input)
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e inftask (Task by reference) — A new task containing the infeasible subproblem.
(output)
Return
(Task) — A new task containing the infeasible subproblem.
Groups
Infeasibility diagnostic

Task.getinfindex

public synchronized void getinfindex
(inftype inftype,
String infname,
int[] infindex)

public synchronized int getinfindex
(inftype inftype,
String infname)

Obtains the index of a named information item.

Parameters
e inftype (inftype) — Type of the information item. (input)
e infname (String) — Name of the information item. (input)
e infindex (int by reference) — The item index. (output)

Return
(int) — The item index.

Groups
Information items and statistics

Task.getinfmax

public synchronized void getinfmax
(inftype inftype,
int[] infmax)

public synchronized int[] getinfmax(inftype inftype)

Obtains the maximum index of an information item of a given type inftype plus 1.

Parameters
e inftype (inftype) — Type of the information item. (input)
e infmax (int[]) — The maximum index (plus 1) requested. (output)

Return
(int [1) — The maximum index (plus 1) requested.

Groups
Information items and statistics

Task.getinfname

public synchronized String getinfname
(inftype inftype,
int whichinf)

Obtains the name of an information item.

Parameters
e inftype (inftype) — Type of the information item. (input)
e whichinf (int) — An information item. (input)
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Return
(String) — Name of the information item.

Groups
Information items and statistics, Names

Task.getintinf

public synchronized void getintinf
(iinfitem whichiinf,
int[] ivalue)

public synchronized int getintinf(iinfitem whichiinf)
Obtains an integer information item from the task information database.

Parameters
e whichiinf (4infitem) — Specifies an integer information item. (input)
e ivalue (int by reference) — The value of the required integer information item.
(output)

Return
(int) — The value of the required integer information item.

Groups
Information items and statistics

Task.getintparam

public synchronized void getintparam
(iparam param,
int[] parvalue)

public synchronized int getintparam(iparam param)

Obtains the value of an integer parameter.

Parameters
e param (iparam) — Which parameter. (input)
e parvalue (int by reference) — Parameter value. (output)

Return
(int) — Parameter value.

Groups
Parameters

Task.getlenbarvarj

public synchronized void getlenbarvarj
(int j,
long[] lenbarvarj)

public synchronized long getlenbarvarj(int j)

Obtains the length of the j-th semidefinite variable i.e. the number of elements in the lower

triangular part.

Parameters
e j (int) — Index of the semidefinite variable whose length if requested. (input)
e lenbarvarj (long by reference) — Number of scalar elements in the lower trian-
gular part of the semidefinite variable. (output)
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Return
(Long) — Number of scalar elements in the lower triangular part of the semidefinite

variable.
Groups
Inspecting the task, Problem data - semidefinite
Task.getlintinf

public synchronized void getlintinf
(liinfitem whichliinf,
long[] ivalue)

public synchronized long getlintinf(liinfitem whichliinf)

Obtains a long integer information item from the task information database.

Parameters
e whichliinf (liinfitem) — Specifies a long information item. (input)
e ivalue (long by reference) — The value of the required long integer information
item. (output)

Return
(long) — The value of the required long integer information item.

Groups
Information items and statistics

Task.getlintparam

public synchronized void getlintparam
(iparam param,
long[] parvalue)

public synchronized long getlintparam(iparam param)

Obtains the value of an integer parameter.

Parameters
e param (iparam) — Which parameter. (input)
e parvalue (long by reference) — Parameter value. (output)

Return
(long) — Parameter value.

Groups
Parameters

Task.getmaxnumanz

public synchronized void getmaxnumanz(long[] maxnumanz)

public synchronized long getmaxnumanz()

Obtains number of preallocated non-zeros in A. When this number of non-zeros is reached
MOSEK will automatically allocate more space for A.
Parameters
maxnumanz (long by reference) — Number of preallocated non-zero linear matrix
elements. (output)

Return
(long) — Number of preallocated non-zero linear matrix elements.

Groups
Inspecting the task, Problem data - linear part
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Task.getmaxnumbarvar

public synchronized void getmaxnumbarvar (int[] maxnumbarvar)

public synchronized int getmaxnumbarvar ()

Obtains maximum number of symmetric matrix variables for which space is currently preallocated.

Parameters
maxnumbarvar (int by reference) — Maximum number of symmetric matrix variables
for which space is currently preallocated. (output)

Return
(int) — Maximum number of symmetric matrix variables for which space is currently
preallocated.

Groups

Inspecting the task, Problem data - semidefinite

Task.getmaxnumcon

public synchronized void getmaxnumcon(int[] maxnumcon)

public synchronized int getmaxnumcon()

Obtains the number of preallocated constraints in the optimization task. When this number of
constraints is reached MOSEK will automatically allocate more space for constraints.

Parameters
maxnumcon (int by reference) — Number of preallocated constraints in the optimiza-
tion task. (output)

Return
(int) — Number of preallocated constraints in the optimization task.

Groups
Inspecting the task, Problem data - linear part, Problem data - constraints

Task-getmaxnumeone Deprecated

public synchronized void getmaxnumcone(int[] maxnumcone)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Obtains the number of preallocated cones in the optimization task. When this number of cones is
reached MIOSEK will automatically allocate space for more cones.

Parameters
maxnumcone (int by reference) — Number of preallocated conic constraints in the
optimization task. (output)

Groups
Inspecting the task, Problem data - cones (deprecated)

Task.getmaxnumqnz
public synchronized void getmaxnumgnz(long[] maxnumqnz)

Obtains the number of preallocated non-zeros for @ (both objective and constraints). When this
number of non-zeros is reached MOSEK will automatically allocate more space for Q.

Parameters
maxnumqnz (long by reference) — Number of non-zero elements preallocated in
quadratic coefficient matrices. (output)
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Groups
Inspecting the task, Problem data - quadratic part

Task.getmaxnumvar

public synchronized void getmaxnumvar (int[] maxnumvar)

public synchronized int getmaxnumvar ()

Obtains the number of preallocated variables in the optimization task. When this number of
variables is reached MOSEK will automatically allocate more space for variables.

Parameters
maxnumvar (int by reference) — Number of preallocated variables in the optimization

task. (output)

Return
(int) — Number of preallocated variables in the optimization task.

Groups
Inspecting the task, Problem data - linear part, Problem data - variables

Task.getmemusage

public synchronized void getmemusage
(long[] meminuse,
long[] maxmemuse)

Obtains information about the amount of memory used by a task.

Parameters
e meminuse (long by reference) — Amount of memory currently used by the task.

(output)
e maxmemuse (long by reference) — Maximum amount of memory used by the task
until now. (output)

Groups
System, memory and debugging

Task.getnumacc

public synchronized void getnumacc(long[] num)

public synchronized long getnumacc()

Obtains the number of affine conic constraints.

Parameters
num (long by reference) — The number of affine conic constraints. (output)

Return
(long) — The number of affine conic constraints.

Groups
Problem data - affine conic constraints, Inspecting the task

Task.getnumafe

public synchronized void getnumafe(long[] numafe)

public synchronized long getnumafe()

Obtains the number of affine expressions.
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Parameters
numafe (long by reference) — Number of affine expressions. (output)

Return
(long) — Number of affine expressions.

Groups
Problem data - affine expressions, Inspecting the task

Task.getnumanz

public synchronized void getnumanz(long[] numanz)

public synchronized long getnumanz()

Obtains the number of non-zeros in A.

Parameters
numanz (long by reference) — Number of non-zero elements in the linear constraint
matrix. (output)

Return
(long) — Number of non-zero elements in the linear constraint matrix.

Groups
Inspecting the task, Problem data - linear part

Task.getnumbarablocktriplets

public synchronized void getnumbarablocktriplets(long[] num)

public synchronized long getnumbarablocktriplets()

Obtains an upper bound on the number of elements in the block triplet form of A.

Parameters
num (long by ’r'gf@'r@mc:) — An upper bound on the number of elements in the block
triplet form of A. (output)

Return
(long) — An upper bound on the number of elements in the block triplet form of A.

Groups
Problem data - semidefinite, Inspecting the task

Task.getnumbaranz

public synchronized void getnumbaranz(long[] nz)

public synchronized long getnumbaranz()

Get the number of nonzero elements in A.

Parameters

nz Llong by reference) — The number of nonzero block elements in A i.e. the number
of A;; elements that are nonzero. (output)

Return

(1long) — The number of nonzero block elements in A i.e. the number of A;; elements
that are nonzero.

Groups
Problem data - semidefinite, Inspecting the task

Task.getnumbarcblocktriplets
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public synchronized void getnumbarcblocktriplets(long[] num)

public synchronized long getnumbarcblocktriplets()

Obtains an upper bound on the number of elements in the block triplet form of C.

Parameters
num (long by reference) — An upper bound on the number of elements in the block
triplet form of C'. (output)

Return
(long) — An upper bound on the number of elements in the block triplet form of C.

Groups
Problem data - semidefinite, Inspecting the task

Task.getnumbarcnz

public synchronized void getnumbarcnz(long[] nz)

public synchronized long getnumbarcnz()

Obtains the number of nonzero elements in C.

Parameters
nz (long by reference) — The number of nonzeros in C i.e. the number of elements

C; that are nonzero. (output)
Return

(long) — The number of nonzeros in C i.e. the number of elements C; that are
nonzero.

Groups
Problem data - semidefinite, Inspecting the task

Task.getnumbarvar

public synchronized void getnumbarvar (int[] numbarvar)

public synchronized int getnumbarvar ()

Obtains the number of semidefinite variables.

Parameters
numbarvar (int by reference) — Number of semidefinite variables in the problem.
(output)

Return
(int) — Number of semidefinite variables in the problem.

Groups
Inspecting the task, Problem data - semidefinite

Task.getnumcon

public synchronized void getnumcon(int[] numcon)

public synchronized int getnumcon()

Obtains the number of constraints.

Parameters
numcon (int by reference) — Number of constraints. (output)
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Return
(int) — Number of constraints.
Groups
Problem data - linear part, Problem data - constraints, Inspecting the task

Task-getnumeone Deprecated

public synchronized void getnumcone(int[] numcone)

public synchronized int getnumcone ()

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Parameters
numcone (int by reference) — Number of conic constraints. (output)
Return
(int) — Number of conic constraints.
Groups
Problem data - cones (deprecated), Inspecting the task
Task-getnumeconemenm Deprecated

public synchronized void getnumconemem
(int k,
int[] nummem)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Parameters
e k (int) — Index of the cone. (input)
e nummen (int by reference) — Number of member variables in the cone. (output)

Groups
Problem data - cones (deprecated), Inspecting the task

Task.getnumdjc

public synchronized void getnumdjc(long[] num)

public synchronized long getnumdjc()

Obtains the number of disjunctive constraints.

Parameters

num (long by reference) — The number of disjunctive constraints. (output)
Return

(long) — The number of disjunctive constraints.
Groups

Problem data - disjunctive constraints, Inspecting the task

Task.getnumdomain

public synchronized void getnumdomain(long[] numdomain)
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public synchronized long getnumdomain()

Obtain the number of domains defined.

Parameters

numdomain (long by reference) — Number of domains in the task. (output)
Return

(long) — Number of domains in the task.

Groups
Inspecting the task, Problem data - domain

Task.getnumintvar

public synchronized void getnumintvar(int[] numintvar)

public synchronized int getnumintvar ()

Obtains the number of integer-constrained variables.

Parameters
numintvar (int by reference) — Number of integer variables. (output)

Return
(int) — Number of integer variables.

Groups
Inspecting the task, Problem data - variables

Task.getnumparam

public synchronized void getnumparam
(parametertype partype,
int[] numparam)

public synchronized int getnumparam(parametertype partype)

Obtains the number of parameters of a given type.

Parameters
e partype (parametertype) — Parameter type. (input)
e numparam (int by reference) — The number of parameters of type partype. (out-
put)
Return
(int) — The number of parameters of type partype.

Groups
Inspecting the task, Parameters

Task.getnumgconknz

public synchronized void getnumgconknz
(int k,
long[] numgcnz)

public synchronized long getnumqconknz(int k)

Obtains the number of non-zero quadratic terms in a constraint.

Parameters

e k (int) — Index of the constraint for which the number quadratic terms should
be obtained. (input)
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e numqcnz (long by reference) — Number of quadratic terms. (output)
Return
(long) — Number of quadratic terms.

Groups
Inspecting the task, Problem data - constraints, Problem data - quadratic part

Task.getnumqobjnz

public synchronized void getnumgobjnz(long[] numqonz)

public synchronized long getnumgobjnz()

Obtains the number of non-zero quadratic terms in the objective.

Parameters
numqgonz (long by reference) — Number of non-zero elements in the quadratic objec-
tive terms. (output)

Return
(Long) — Number of non-zero elements in the quadratic objective terms.

Groups
Inspecting the task, Problem data - quadratic part

Task.getnumsymmat

public synchronized void getnumsymmat(long[] num)

public synchronized long getnumsymmat ()

Obtains the number of symmetric matrices stored in the vector E.

Parameters

num (long by reference) — The number of symmetric sparse matrices. (output)
Return

(long) — The number of symmetric sparse matrices.

Groups
Problem data - semidefinite, Inspecting the task

Task.getnumvar

public synchronized void getnumvar(int[] numvar)

public synchronized int getnumvar ()

Obtains the number of variables.

Parameters

numvar (int by reference) — Number of variables. (output)
Return

(int) — Number of variables.

Groups
Inspecting the task, Problem data - variables

Task.getobjname

public synchronized String getobjname ()

Obtains the name assigned to the objective function.

Return
(String) — Assigned the objective name.
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Groups
Inspecting the task, Names

Task.getobjnamelen

public synchronized void getobjnamelen(int[] len)

public synchronized int getobjnamelen()

Obtains the length of the name assigned to the objective function.

Parameters

len (int by reference) — Assigned the length of the objective name. (output)
Return

(int) — Assigned the length of the objective name.

Groups
Inspecting the task, Names

Task.getobjsense

public synchronized void getobjsense(objsense[] sense)

public synchronized objsense getobjsense()

Gets the objective sense of the task.

Parameters
e sense (mosek.objsense by reference) — The returned objective sense. (output)
e sense (mosek.objsense) — The returned objective sense. (output)

Return
(mosek.objsense) — The returned objective sense.

Groups
Problem data - linear part

Task.getparammax

public synchronized void getparammax
(parametertype partype,
int[] parammax)

public synchronized int getparammax(parametertype partype)

Obtains the maximum index of a parameter of type partype plus 1.

Parameters
e partype (parametertype) — Parameter type. (input)
e parammax (int by reference) — The maximum index (plus 1) of the given param-
eter type. (output)

Return
(int) — The maximum index (plus 1) of the given parameter type.

Groups
Parameters

Task.getparamname
public synchronized String getparamname

(parametertype partype,
int param)
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Obtains the name for a parameter param of type partype.

Parameters
e partype (parametertype) — Parameter type. (input)
e param (int) — Which parameter. (input)
Return
(String) — Parameter name.
Groups
Names, Parameters
Task.getpowerdomainalpha

public synchronized void getpowerdomainalpha
(long domidx,
double[] alpha)

public synchronized double[] getpowerdomainalpha(long domidx)

Obtains the exponent vector a of a primal or dual power cone domain.

Parameters
e domidx (long) — Index of the domain. (input)
e alpha (double[]) — The vector a. (output)

Return
(double[]) — The vector a.

Groups
Problem data - domain, Inspecting the task

Task.getpowerdomaininfo

public synchronized void getpowerdomaininfo
(long domidx,
long[] n,
long[] nleft)

Obtains structural information about a primal or dual power cone domain.

Parameters
e domidx (long) — Index of the domain. (input)
e n (long by reference) — Dimension of the domain. (output)
e nleft (long by reference) — Number of variables on the left hand side. (output)

Groups
Problem data - domain, Inspecting the task

Task.getprimalobj

public synchronized void getprimalobj
(soltype whichsol,
double[] primalobj)

public synchronized double getprimalobj(soltype whichsol)

Computes the primal objective value for the desired solution. Note that if the solution is an
infeasibility certificate, then the fixed term in the objective is not included.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e primalobj (double by reference) — Objective value corresponding to the primal
solution. (output)
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Return
(double) — Objective value corresponding to the primal solution.

Groups
Solution information, Solution - primal

Task.getprimalsolutionnorms

public synchronized void getprimalsolutionnorms
(soltype whichsol,
double[] nrmxc,
double[] nrmxx,
double[] nrmbarx)

Compute norms of the primal solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e nrmxc (double by reference) — The norm of the z:¢ vector. (output)
e nrmxx (double by reference) — The norm of the z vector. (output)
e nrmbarx (double by reference) — The norm of the X vector. (output)

Groups
Solution information

Task.getprobtype

public synchronized void getprobtype(problemtypel[] probtype)

public synchronized problemtype getprobtype()

Obtains the problem type.

Parameters
e probtype (mosek.problemtype by reference) — The problem type. (output)
e probtype (mosek.problemtype) — The problem type. (output)

Return
(mosek.problemtype) — The problem type.

Groups
Inspecting the task

Task.getprosta

public synchronized void getprosta
(soltype whichsol,
prostal[] problemsta)

public synchronized prosta getprosta(soltype whichsol)

Obtains the problem status.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e problemsta (mosek.prosta by reference) — Problem status. (output)
e problemsta (mosek.prosta) — Problem status. (output)

Return
(mosek.prosta) — Problem status.

Groups
Solution information
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Task.getpviolacc

public synchronized void getpviolacc
(soltype whichsol,
long[] accidxlist,
double[] viol)

public synchronized double[] getpviolacc
(soltype whichsol,
long[] accidxlist)

Computes the primal solution violation for a set of affine conic constraints. Let x* be the value
of the variable z for the specified solution. For simplicity let us assume that = is a member of a
quadratic cone, then the violation is computed as follows

max(07 ||x2n|| - -/L‘l)/\/i7 x1 Z _||$2:n||a
Izl otherwise.

Both when the solution is a certificate of dual infeasibility or when it is primal feasible the violation
should be small.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e accidxlist (long[]) — An array of indexes of conic constraints. (input)
e viol (double[]) — violl[k] is the violation of the solution associated with the
affine conic constraint number accidxlist[k]. (output)
Return
(double[]) — viol[k] is the violation of the solution associated with the affine conic
constraint number accidxlist [k].
Groups
Solution information

Task.getpviolbarvar

public synchronized void getpviolbarvar
(soltype whichsol,
int[] sub,
double[] viol)

public synchronized double[] getpviolbarvar
(soltype whichsol,
int[] sub)

Computes the primal solution violation for a set of semidefinite variables. Let (X;)* be the value
of the variable X ; for the specified solution. Then the primal violation of the solution associated
with variable X ; is given by

max(—Amin(X;), 0.0).

Both when the solution is a certificate of dual infeasibility or when it is primal feasible the violation
should be small.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e sub (int[]) — An array of indexes of X variables. (input)
e viol (double[]) — viol[k] is how much the solution violates the constraint
Xauwk] € St. (output)
Return
(double[]) — viol[k] is how much the solution violates the constraint Ysub[k] eS,.
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Groups
Solution information

Task.getpviolcon

public synchronized void getpviolcon
(soltype whichsol,
int[] sub,
double[] viol)

public synchronized double[] getpviolcon
(soltype whichsol,
int[] sub)

Computes the primal solution violation for a set of constraints. The primal violation of the solution
associated with the i-th constraint is given by

numvar—1

max(rlf — (15)°, (@) —7uf), | 3 aya; — af))

J=0

where 7 = 0 if the solution is a certificate of dual infeasibility and 7 = 1 otherwise. Both when
the solution is a certificate of dual infeasibility and when it is primal feasible the violation should
be small. The above formula applies for the linear case but is appropriately generalized in other

cases.
Parameters
e whichsol (soltype) — Selects a solution. (input)
e sub (int[]) — An array of indexes of constraints. (input)
e viol (double[]) — viol[k] is the violation associated with the solution for the
constraint sub[k]. (output)
Return
(double[]) — viol[k] is the violation associated with the solution for the constraint
sub [k].
Groups
Solution information
Task-getpvioteones Deprecated

public synchronized void getpviolcones
(soltype whichsol,
int[] sub,
double[] viol)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Computes the primal solution violation for a set of conic constraints. Let z* be the value of the
variable z for the specified solution. For simplicity let us assume that x is a member of a quadratic
cone, then the violation is computed as follows

{ maX(O> ||(E2n|| - 1'1)/\/5, Z1 Z _||$2:n||7

|z, otherwise.

Both when the solution is a certificate of dual infeasibility or when it is primal feasible the violation
should be small.

Parameters
e whichsol (soltype) — Selects a solution. (input)
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Task.

Task.

e sub (int[]) — An array of indexes of conic constraints. (input)
e viol (double[]) — viol[k] is the violation of the solution associated with the
conic constraint number sub[k]. (output)

Groups
Solution information

getpvioldjc

public synchronized void getpvioldjc
(soltype whichsol,
long[] djcidxlist,
double[] viol)

public synchronized double[] getpvioldjc
(soltype whichsol,
long[] djcidxlist)

Computes the primal solution violation for a set of disjunctive constraints. For a single DJC the
violation is defined as

t Sq
ol (VAT | = min (| max iois,)

Vo =1,
1=17=1
where the violation of each simple term T} ; is defined as for an ordinary linear constraint.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e djcidxlist (long[]) — An array of indexes of disjunctive constraints. (input)
e viol (double[]) — viol[k] is the violation of the solution associated with the
disjunctive constraint number djcidxlist[k]. (output)
Return
(double[]) — viol[k] is the violation of the solution associated with the disjunctive
constraint number djcidxlist [k].

Groups
Solution information

getpviolvar

public synchronized void getpviolvar
(soltype whichsol,
int[] sub,
double[] viol)

public synchronized double[] getpviolvar
(soltype whichsol,
int[] sub)

Computes the primal solution violation associated to a set of variables. Let z} be the value of x;
for the specified solution. Then the primal violation of the solution associated with variable x; is
given by

max(7l} —x}, xj —Tuj, 0).

Jjr v j°

where 7 = 0 if the solution is a certificate of dual infeasibility and 7 = 1 otherwise. Both when the
solution is a certificate of dual infeasibility and when it is primal feasible the violation should be
small.

Parameters
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e whichsol (soltype) — Selects a solution. (input)
e sub (int[]) — An array of indexes of x variables. (input)
e viol (double[]) — viol[k] is the violation associated with the solution for the
variable g, (output)
Return
(double[]) — viol[k] is the violation associated with the solution for the variable
Tsubk] -
Groups
Solution information

Task.getqconk

public synchronized void getqgconk
(int k,
long[] numgcnz,
int[] qcsubi,
int[] qcsubj,
double[] gcval)

public synchronized long getqconk
(int k,
int[] qcsubi,
int[] qcsubj,
double[] qgcval)

Obtains all the quadratic terms in a constraint. The quadratic terms are stored sequentially in
gcsubi, gcsubj, and qcval.

Parameters
e k (int) — Which constraint. (input)
e numgcnz (long by reference) — Number of quadratic terms. (output)

gcsubi (int [1) — Row subscripts for quadratic constraint matrix. (output)

gcsubj (int [1) — Column subscripts for quadratic constraint matrix. (output)
e gcval (double[]) — Quadratic constraint coeflicient values. (output)

Return
(long) — Number of quadratic terms.

Groups
Inspecting the task, Problem data - quadratic part, Problem data - constraints

Task.getqobj

public synchronized void getqobj
(long[] numgonz,
int[] qosubi,
int[] qosubj,
double[] qoval)

Obtains the quadratic terms in the objective. The required quadratic terms are stored sequentially
in qosubi, qosubj, and qoval.

Parameters

e numqonz (long by reference) — Number of non-zero elements in the quadratic
objective terms. (output)

e gosubi (int[]) — Row subscripts for quadratic objective coefficients. (output)

e gosubj (int[]) — Column subscripts for quadratic objective coefficients. (out-
put)

e qoval (double[]) — Quadratic objective coefficient values. (output)
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Groups
Inspecting the task, Problem data - quadratic part

Task.getqobjij

public synchronized void getqobjij
(int 1,
int j,
double[] qoij)

public synchronized double getqobjij
(int 1,
int j)

Obtains one coefficient ¢f; in the quadratic term of the objective.

Parameters
e i (int) — Row index of the coefficient. (input)
¢ j (int) — Column index of coefficient. (input)
e qoij (double by reference) — The required coefficient. (output)
Return
(double) — The required coefficient.
Groups
Inspecting the task, Problem data - quadratic part

Task.getreducedcosts

public synchronized void getreducedcosts
(soltype whichsol,
int first,
int last,
double[] redcosts)

public synchronized double[] getreducedcosts
(soltype whichsol,
int first,
int last)

Computes the reduced costs for a slice of variables and returns them in the array redcosts i.e.
redcosts = [(s7); — (s3);, j = first,...,last — 1] (15.2)

Parameters
e whichsol (soltype) — Selects a solution. (input)
first (int) — The index of the first variable in the sequence. (input)
last (int) — The index of the last variable in the sequence plus 1. (input)
e redcosts (double[]) — The reduced costs for the required slice of variables.
(output)
Return
(double[]) — The reduced costs for the required slice of variables.
Groups
Solution - dual

Task.getskc
public synchronized void getskc

(soltype whichsol,
stakey[] skc)
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public synchronized mosek.stakey[] getskc(soltype whichsol)

Obtains the status keys for the constraints.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e skc (stakey [1) — Status keys for the constraints. (output)
Return
(stakey [1) — Status keys for the constraints.

Groups
Solution information

Task.getskcslice

public synchronized void getskcslice
(soltype whichsol,
int first,
int last,
stakey[] skc)

public synchronized mosek.stakey[] getskcslice
(soltype whichsol,
int first,
int last)

Obtains the status keys for a slice of the constraints.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)
e skc (stakey [1) — Status keys for the constraints. (output)

Return

(stakey [1) — Status keys for the constraints.
Groups

Solution information

Task.getskn

public synchronized void getskn
(soltype whichsol,
stakey[] skn)

public synchronized mosek.stakey[] getskn(soltype whichsol)

Obtains the status keys for the conic constraints.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e skn (stakey [1) — Status keys for the conic constraints. (output)

Return
(stakey [1) — Status keys for the conic constraints.

Groups
Solution information

Task.getskx
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public synchronized void getskx
(soltype whichsol,
stakey[] skx)

public synchronized mosek.stakey[] getskx(soltype whichsol)

Obtains the status keys for the scalar variables.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e skx (stakey [1) — Status keys for the variables. (output)
Return
(stakey [1) — Status keys for the variables.
Groups
Solution information

Task.getskxslice

public synchronized void getskxslice
(soltype whichsol,
int first,
int last,
stakey[] skx)

public synchronized mosek.stakey[] getskxslice
(soltype whichsol,
int first,
int last)

Obtains the status keys for a slice of the scalar variables.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)
e skx (stakey [1) — Status keys for the variables. (output)

Return
(stakey [1) — Status keys for the variables.

Groups
Solution information

Task.getslc

public synchronized void getslc
(soltype whichsol,
double[] slc)

public synchronized double[] getslc(soltype whichsol)

Obtains the sf vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)

e slc (double[]) — Dual variables corresponding to the lower bounds on the con-
straints. (output)

Return
(double[]) — Dual variables corresponding to the lower bounds on the constraints.
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Groups
Solution - dual

Task.getslcslice

public synchronized void getslcslice
(soltype whichsol,
int first,
int last,
double[] slc)

public synchronized double[] getslcslice
(soltype whichsol,
int first,
int last)

Obtains a slice of the sf vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)

e slc (double[]) — Dual variables corresponding to the lower bounds on the con-
straints. (output)

Return

(double[]) — Dual variables corresponding to the lower bounds on the constraints.
Groups

Solution - dual

Task.getslx

public synchronized void getslx
(soltype whichsol,
double[] slx)

public synchronized double[] getslx(soltype whichsol)

Obtains the s vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e slx (double[]) — Dual variables corresponding to the lower bounds on the vari-
ables. (output)
Return
(double[]) — Dual variables corresponding to the lower bounds on the variables.
Groups
Solution - dual

Task.getslxslice

public synchronized void getslxslice
(soltype whichsol,
int first,
int last,
double[] slx)
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public synchronized double[] getslxslice
(soltype whichsol,
int first,
int last)

Obtains a slice of the s vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)

e slx (double[]) — Dual variables corresponding to the lower bounds on the vari-
ables. (output)

Return
(double[]) — Dual variables corresponding to the lower bounds on the variables.
Groups

Solution - dual

Task.getsnx

public synchronized void getsnx
(soltype whichsol,
double[] snx)

public synchronized double[] getsnx(soltype whichsol)

Obtains the s}, vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)

e snx (double[]) — Dual variables corresponding to the conic constraints on the
variables. (output)

Return
(double[]) — Dual variables corresponding to the conic constraints on the variables.

Groups
Solution - dual

Task.getsnxslice

public synchronized void getsnxslice
(soltype whichsol,
int first,
int last,
double[] snx)

public synchronized double[] getsnxslice
(soltype whichsol,
int first,
int last)

Obtains a slice of the s vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)
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e snx (double[]) — Dual variables corresponding to the conic constraints on the
variables. (output)
Return
(double[]) — Dual variables corresponding to the conic constraints on the variables.
Groups
Solution - dual

Task.getsolsta

public synchronized void getsolsta
(soltype whichsol,
solsta[] solutionsta)

public synchronized solsta getsolsta(soltype whichsol)

Obtains the solution status.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e solutionsta (mosek.solsta by reference) — Solution status. (output)
e solutionsta (mosek.solsta) — Solution status. (output)

Return
(mosek.solsta) — Solution status.

Groups
Solution information

Task.getsolution

public synchronized void getsolution
(soltype whichsol,
prostal[] problemsta,
solstal[] solutionsta,
stakey[] skc,
stakey[] skx,
stakey[] skn,
double[] xc,
double[] =xx,
double[] vy,
double[] slc,
double[] suc,
double[] slx,
double[] sux,
double[] snx)

Obtains the complete solution.

Consider the case of linear programming. The primal problem is given by

minimize e+ cf
subject to ¢ < Ax < uc,
r < T < u*
and the corresponding dual problem is
maximize (19T s¢ — (u)T's
() sp = (u) sy + o
subject to ATy + 57 — s = g,
—y + sf — s = 0,

(& (& xr xr
s7,85,87, 85 > 0.
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A conic optimization problem has the same primal variables as in the linear case. Recall that the
dual of a conic optimization problem is given by:

maximize (19)Ts8 — (u)TsS,

+(1%) 58 — (u®)Ts% + ¢/

subject to ATy + s7 — 5% + 5% = g
-y + 87 — s = 0,
81> Su» 51> S > 0,

sk e K*

The mapping between variables and arguments to the function is as follows:

xx : Corresponds to variable x (also denoted z%).

xc : Corresponds to z¢ := Ax.

y : Corresponds to variable y.

slc: Corresponds to variable sj.

suc: Corresponds to variable s¢,.

slx: Corresponds to variable sj.

sux: Corresponds to variable s.

snx: Corresponds to variable si..

The meaning of the values returned by this function depend on the solution status returned in the
argument solsta. The most important possible values of solsta are:

solsta.optimal : An optimal solution satisfying the optimality criteria for continuous prob-
lems is returned.

solsta.integer_optimal : An optimal solution satisfying the optimality criteria for integer
problems is returned.

solsta.prim_feas : A solution satisfying the feasibility criteria.

solsta.prim_infeas_cer : A primal certificate of infeasibility is returned.

solsta.dual_infeas_cer : A dual certificate of infeasibility is returned.

In order to retrieve the primal and dual values of semidefinite variables see Task.getbarzj and
Task.getbarsy.

Parameters

whichsol (soltype) — Selects a solution. (input)

problemsta (mosek.prosta by reference) — Problem status. (output)
solutionsta (mosek.solsta by reference) — Solution status. (output)

skc (stakey [1) — Status keys for the constraints. (output)

skx (stakey []) — Status keys for the variables. (output)

skn (stakey [1) — Status keys for the conic constraints. (output)

xc (double[]) — Primal constraint solution. (output)

xx (double[]) — Primal variable solution. (output)

y (double[]) — Vector of dual variables corresponding to the constraints. (out-
put)

slc (double[]) — Dual variables corresponding to the lower bounds on the con-
straints. (output)

suc (double[]) — Dual variables corresponding to the upper bounds on the
constraints. (output)

s1x (double[]) — Dual variables corresponding to the lower bounds on the vari-
ables. (output)

sux (double[]) — Dual variables corresponding to the upper bounds on the
variables. (output)
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snx (double[]) — Dual variables corresponding to the conic constraints on the
variables. (output)

Groups
Solution information, Solution - primal, Solution - dual

Task.getsolutioninfo

public synchronized void getsolutioninfo

(soltype
double[]
double[]
double[]
double[]
double[]
double[]
double[]
double[]
double[]
double[]
double[]

whichsol,
pobj,
pviolcon,
pviolvar,
pviolbarvar,
pviolcone,
pviolitg,
dobj,
dviolcon,
dviolvar,
dviolbarvar,
dviolcone)

Obtains information about a solution.

Parameters

whichsol (soltype) — Selects a solution. (input)

pobj (double by reference) — The primal objective value as computed by Task.
getprimalobj. (output)

pviolcon (double by reference) — Maximal primal violation of the solution
associated with the x¢ variables where the violations are computed by Task.
getpuiolcon. (output)

pviolvar (double by reference) — Maximal primal violation of the solution for
the z variables where the violations are computed by Task.getpviolvar. (out-
put)

pviolbarvar (double by reference) — Maximal primal violation of solution for
the X variables where the violations are computed by Task.getpviolbarvar.
(output)

pviolcone (double by reference) — Maximal primal violation of solution for the
conic constraints where the violations are computed by Fask-getpvioteones.
(output)

pviolitg (double by reference) — Maximal violation in the integer constraints.
The violation for an integer variable x; is given by min(x; — |x;], [z;] — z;).
This number is always zero for the interior-point and basic solutions. (output)

dobj (double by reference) — Dual objective value as computed by Task.
getdualoby. (output)

dviolcon (double by reference) — Maximal violation of the dual solution asso-
ciated with the z¢ variable as computed by Task.getdviolcon. (output)

dviolvar (double by reference) — Maximal violation of the dual solution asso-
ciated with the = variable as computed by Task.getdviolvar. (output)
dviolbarvar (double by reference) — Maximal violation of the dual solution
associated with the S variable as computed by Task.getdviolbarvar. (output)
dviolcone (double by reference) — Maximal violation of the dual solution as-
sociated with the dual conic constraints as computed by Fask-getdvioteones.
(output)

Groups
Solution information
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Task.getsolutioninfonew

public synchronized void getsolutioninfonew

(soltype
double[]
double[]
double[]
double[]
double[]
double[]
double[]
double[]
double[]
double[]
double[]
double[]
double[]
double[]

whichsol,
pobj,
pviolcon,
pviolvar,
pviolbarvar,
pviolcone,
pviolacc,
pvioldjc,
pviolitg,
dobj,
dviolcon,
dviolvar,
dviolbarvar,
dviolcone,
dviolacc)

Obtains information about a solution.

Parameters

whichsol (soltype) — Selects a solution. (input)

pobj (double by reference) — The primal objective value as computed by Task.
getprimalobyj. (output)

pviolcon (double by reference) — Maximal primal violation of the solution
associated with the z¢ variables where the violations are computed by Task.
getpuiolcon. (output)

pviolvar (double by reference) — Maximal primal violation of the solution for
the x variables where the violations are computed by Task.getpviolvar. (out-
put)

pviolbarvar (double by reference) — Maximal primal violation of solution for
the X variables where the violations are computed by Task.getpviolbarvar.
(output)

pviolcone (double by reference) — Maximal primal violation of solution for the
conic constraints where the violations are computed by Fask-getpvioteones.
(output)

pviolacc (double by reference) — Maximal primal violation of solution for
the affine conic constraints where the violations are computed by Task.
getpuiolacc. (output)

pvioldjc (double by reference) — Maximal primal violation of solution for
the disjunctive constraints where the violations are computed by Task.
getpuioldjc. (output)

pviolitg (double by reference) — Maximal violation in the integer constraints
The violation for an integer variable x; is given by min(x; — |x;], [z;] — z;).
This number is always zero for the interior-point and basic solutions. (output)
dobj (double by reference) — Dual objective value as computed by Task.
getdualobj. (output)

dviolcon (double by reference) — Maximal violation of the dual solution asso-
ciated with the z¢ variable as computed by Task.getdviolcon. (output)
dviolvar (double by reference) — Maximal violation of the dual solution asso-
ciated with the = variable as computed by Task.getdviolvar. (output)
dviolbarvar (double by reference) — Maximal violation of the dual solution
associated with the S variable as computed by Task.getdviolbarvar. (output)
dviolcone (double by reference) — Maximal violation of the dual solution as-
sociated with the dual conic constraints as computed by Fask-—getdvioteones.
(output)
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e dviolacc (double by reference) — Maximal violation of the dual solution as-
sociated with the affine conic constraints as computed by Task.getdviolacc.
(output)

Groups
Solution information

Task.getsolutionnew

public synchronized void getsolutionnew
(soltype whichsol,
prostal[] problemsta,
solstal[] solutionsta,
stakey[] skc,
stakey[] skx,
stakey[] skn,
double[] xc,
double[] xx,
double[] vy,
double[] slc,
double[] suc,
double[] slx,
double[] sux,
double[] snx,
double[] doty)

Obtains the complete solution. See Task.getsolution for further information.

In order to retrieve the primal and dual values of semidefinite variables see Task.getbarz; and
Task.getbarsy.

Parameters

e whichsol (soltype) — Selects a solution. (input)

e problemsta (mosek.prosta by reference) — Problem status. (output)

e solutionsta (mosek.solsta by reference) — Solution status. (output)

e skc (stakey [1) — Status keys for the constraints. (output)

e skx (stakey [1) — Status keys for the variables. (output)

e skn (stakey [1) — Status keys for the conic constraints. (output)

e xc (double[]) — Primal constraint solution. (output)

e xx (double[]) — Primal variable solution. (output)

e y (double[]) — Vector of dual variables corresponding to the constraints. (out-
put)

e slc (double[]) — Dual variables corresponding to the lower bounds on the con-
straints. (output)

e suc (double[]) — Dual variables corresponding to the upper bounds on the
constraints. (output)

e slx (double[]) — Dual variables corresponding to the lower bounds on the vari-
ables. (output)

e sux (double[]) — Dual variables corresponding to the upper bounds on the
variables. (output)

e snx (double[]) — Dual variables corresponding to the conic constraints on the
variables. (output)

e doty (double[]) — Dual variables corresponding to affine conic constraints. (out-
put)

Groups
Solution information, Solution - primal, Solution - dual
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Task.getsolutionslice

public synchronized void getsolutionslice
(soltype whichsol,
solitem solitem,
int first,
int last,
double[] values)

public synchronized double[] getsolutionslice
(soltype whichsol,
solitem solitem,
int first,
int last)

Obtains a slice of one item from the solution. The format of the solution is exactly as in Task.
getsolution. The parameter solitem determines which of the solution vectors should be returned.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e solitem (solitem) — Which part of the solution is required. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)

e values (double[]) — The values in the required sequence are stored sequentially
in values. (output)

Return
(double[]) — The values in the required sequence are stored sequentially in values.

Groups
Solution - primal, Solution - dual, Solution information

Task.getsparsesymmat

public synchronized void getsparsesymmat
(long idx,
int[] subi,
int[] subj,
double[] valij)

Get a single symmetric matrix from the matrix store.

Parameters
e idx (long) — Index of the matrix to retrieve. (input)
e subi (int[]) — Row subscripts of the matrix non-zero elements. (output)
e subj (int[]1) — Column subscripts of the matrix non-zero elements. (output)
e valij (double[]) — Coefficients of the matrix non-zero elements. (output)

Groups
Problem data - semidefinite, Inspecting the task

Task.getstrparam

public synchronized String getstrparam
(sparam param,
int[] len)

Obtains the value of a string parameter.

Parameters
e param (sparam) — Which parameter. (input)
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e len (int by reference) — The length of the parameter value. (output)
Return
(String) — Parameter value.

Groups
Names, Parameters

Task.getstrparamlen

public synchronized void getstrparamlen
(sparam param,
int[] len)

public synchronized int getstrparamlen(sparam param)

Obtains the length of a string parameter.

Parameters
e param (sparam) — Which parameter. (input)
e len (int by reference) — The length of the parameter value. (output)
Return
(int) — The length of the parameter value.

Groups
Names, Parameters

Task.getsuc

public synchronized void getsuc
(soltype whichsol,
double[] suc)

public synchronized double[] getsuc(soltype whichsol)

Obtains the s vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e suc (double[]) — Dual variables corresponding to the upper bounds on the
constraints. (output)
Return
(double[]) — Dual variables corresponding to the upper bounds on the constraints.

Groups
Solution - dual

Task.getsucslice

public synchronized void getsucslice
(soltype whichsol,
int first,
int last,
double[] suc)

public synchronized double[] getsucslice
(soltype whichsol,
int first,
int last)

Obtains a slice of the s vector for a solution.
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Parameters
e whichsol (soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)

e suc (double[]) — Dual variables corresponding to the upper bounds on the
constraints. (output)

Return

(double[]) — Dual variables corresponding to the upper bounds on the constraints.
Groups

Solution - dual

Task.getsux

public synchronized void getsux
(soltype whichsol,
double[] sux)

public synchronized double[] getsux(soltype whichsol)

Obtains the s vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e sux (double[]) — Dual variables corresponding to the upper bounds on the
variables. (output)
Return
(double[]) — Dual variables corresponding to the upper bounds on the variables.
Groups
Solution - dual

Task.getsuxslice

public synchronized void getsuxslice
(soltype whichsol,
int first,
int last,
double[] sux)

public synchronized double[] getsuxslice
(soltype whichsol,
int first,
int last)

Obtains a slice of the si vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)

e sux (double[]) — Dual variables corresponding to the upper bounds on the
variables. (output)

Return

(double[]) — Dual variables corresponding to the upper bounds on the variables.
Groups

Solution - dual
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Task.getsymmatinfo

public synchronized void getsymmatinfo
(long idx,
int[] dim,
long([] nz,
symmattype [] mattype)

MOSEK maintains a vector denoted by E of symmetric data matrices. This function makes it
possible to obtain important information about a single matrix in E.

Parameters
e idx (long) — Index of the matrix for which information is requested. (input)
e dim (int by reference) — Returns the dimension of the requested matrix. (output)
e nz (long by reference) — Returns the number of non-zeros in the requested ma-
trix. (output)
e mattype (mosek.symmattype by reference) — Returns the type of the requested
matrix. (output)

Groups
Problem data - semidefinite, Inspecting the task

Task.gettaskname
public synchronized String gettaskname()

Obtains the name assigned to the task.
Return
(String) — Returns the task name.
Groups

Names, Inspecting the task

Task.gettasknamelen

public synchronized void gettasknamelen(int[] len)

public synchronized int gettasknamelen()

Obtains the length the task name.

Parameters
len (int by reference) — Returns the length of the task name. (output)

Return
(int) — Returns the length of the task name.

Groups
Names, Inspecting the task

Task.getvarbound

public synchronized void getvarbound
(int 1,
boundkey[] bk,
double[] bl,
double[] bu)

Obtains bound information for one variable.

Parameters
e i (int) — Index of the variable for which the bound information should be ob-
tained. (input)
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e bk (mosek.boundkey by reference) — Bound keys. (output)
e bl (double by reference) — Values for lower bounds. (output)
e bu (double by reference) — Values for upper bounds. (output)

Groups
Problem data - linear part, Inspecting the task, Problem data - bounds, Problem data

- variables
Task.getvarboundslice

public synchronized void getvarboundslice
(int first,
int last,
boundkey[] bk,
double[] bl,
double[] bu)

Obtains bounds information for a slice of the variables.

Parameters
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)
e bk (boundkey [1) — Bound keys. (output)
e bl (double[]) — Values for lower bounds. (output)
e bu (double[]) — Values for upper bounds. (output)

Groups
Problem data - linear part, Inspecting the task, Problem data - bounds, Problem data
- variables

Task.getvarname

public synchronized String getvarname(int j)

Obtains the name of a variable.

Parameters

j (int) — Index of a variable. (input)
Return

(String) — Returns the required name.

Groups
Names, Problem data - linear part, Problem data - variables, Inspecting the task

Task.getvarnameindex

public synchronized void getvarnameindex
(String somename,
int[] asgn,
int[] index)

public synchronized int getvarnameindex
(String somename,
int[] asgn)

Checks whether the name somename has been assigned to any variable. If so, the index of the
variable is reported.

Parameters
e somename (String) — The name which should be checked. (input)
e asgn (int by reference) — Is non-zero if the name somename is assigned to a
variable. (output)
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e index (int by reference) — If the name somename is assigned to a variable, then
index is the index of the variable. (output)

Return
(int) — If the name somename is assigned to a variable, then index is the index of

the variable.

Groups
Names, Problem data - linear part, Problem data - variables, Inspecting the task

Task.getvarnamelen

public synchronized void getvarnamelen
(int 1,
int[] len)

public synchronized int getvarnamelen(int i)

Obtains the length of the name of a variable.

Parameters
e i (int) — Index of a variable. (input)
e len (int by reference) — Returns the length of the indicated name. (output)
Return
(int) — Returns the length of the indicated name.

Groups
Names, Problem data - linear part, Problem data - variables, Inspecting the task

Task.getvartype

public synchronized void getvartype
(int j,
variabletype[] vartype)

public synchronized variabletype getvartype(int j)

Gets the variable type of one variable.

Parameters
e j (int) — Index of the variable. (input)
e vartype (mosek.variabletype by reference) — Variable type of the j-th vari-
able. (output)
e vartype (mosek.variabletype) — Variable type of the j-th variable. (output)

Return
(mosek.variabletype) — Variable type of the j-th variable.

Groups
Inspecting the task, Problem data - variables

Task.getvartypelist
public synchronized void getvartypelist

(int[] subj,
variabletype[] vartype)

public synchronized mosek.variabletypel] getvartypelist(int[] subj)

Obtains the variable type of one or more variables. Upon return vartype [k] is the variable type

of variable subj [k].

Parameters
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e subj (int[]1) — A list of variable indexes. (input)
e vartype (variabletype [1) — The variables types corresponding to the variables
specified by subj. (output)
Return
(variabletype [1) — The variables types corresponding to the variables specified by
subj.
Groups
Inspecting the task, Problem data - variables

Task.getxc

public synchronized void getxc
(soltype whichsol,
double[] xc)

public synchronized double[] getxc(soltype whichsol)

Obtains the z¢ vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e xc (double[]) — Primal constraint solution. (output)

Return
(double[]) — Primal constraint solution.

Groups
Solution - primal

Task.getxcslice

public synchronized void getxcslice
(soltype whichsol,
int first,
int last,
double[] xc)

public synchronized double[] getxcslice
(soltype whichsol,
int first,
int last)

Obtains a slice of the x¢ vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)
e xc (double[]) — Primal constraint solution. (output)

Return
(double[]) — Primal constraint solution.

Groups
Solution - primal

Task.getxx
public synchronized void getxx

(soltype whichsol,
double[] xx)
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public synchronized double[] getxx(soltype whichsol)

Obtains the z* vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e xx (double[]) — Primal variable solution. (output)
Return
(double[]) — Primal variable solution.
Groups
Solution - primal

Task.getxxslice

public synchronized void getxxslice
(soltype whichsol,
int first,
int last,
double[] xx)

public synchronized double[] getxxslice
(soltype whichsol,
int first,
int last)

Obtains a slice of the x® vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)

first (int) — First index in the sequence. (input)

last (int) — Last index plus 1 in the sequence. (input)

xx (double[]) — Primal variable solution. (output)
Return

(double[]) — Primal variable solution.
Groups

Solution - primal

Task.gety

public synchronized void gety
(soltype whichsol,
double([] y)

public synchronized double[] gety(soltype whichsol)

Obtains the y vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e y (double[]) — Vector of dual variables corresponding to the constraints. (out-
put)
Return
(double[]) — Vector of dual variables corresponding to the constraints.
Groups
Solution - dual

Task.getyslice
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public synchronized void getyslice
(soltype whichsol,
int first,
int last,
double[] y)

public synchronized double[] getyslice
(soltype whichsol,
int first,
int last)

Obtains a slice of the y vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
first (int) — First index in the sequence. (input)
last (int) — Last index plus 1 in the sequence. (input)
y (double[]) — Vector of dual variables corresponding to the constraints. (out-
put)

Return
(double[]) — Vector of dual variables corresponding to the constraints.

Groups
Solution - dual

Task.infeasibilityreport

public synchronized void infeasibilityreport
(streamtype whichstream,
soltype whichsol)

Prints the infeasibility report to an output stream.

Parameters
e whichstream (streamtype) — Index of the stream. (input)
e whichsol (soltype) — Selects a solution. (input)
Groups
Infeasibility diagnostic
Task.initbasissolve

public synchronized void initbasissolve(int[] basis)

Prepare a task for use with the Task.solvewithbasis function.

This function should be called

e immediately before the first call to Task.solvewithbasis, and

e immediately before any subsequent call to Task.solvewithbasis if the task has been modi-
fied.

If the basis is singular i.e. not invertible, then the error rescode. err_basis_singular is reported.

Parameters
basis (int[]) — The array of basis indexes to use. The array is interpreted as
follows: If basis[i] < numcon—1, then Tpasis)i] 18 0 the basis at position i, otherwise
Thasis|i]—nuncon 18 i the basis at position i. (output)

Groups
Solving systems with basis matrix
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Task.inputdata

public synchronized void inputdata

(int maxnumcon,
int maxnumvar,
double[] c,
double cfix,
int[] aptrb,
int[] aptre,
int[] asub,
double[] aval,
boundkey[] bkc,
double[] blc,
double[] buc,
boundkey[] bkx,
double[] blx,
double[] bux)

public synchronized void inputdata

(int maxnumcon,
int maxnumvar,
double[] c,
double cfix,
long[] aptrb,
long[] aptre,
int[] asub,
double[] aval,
boundkey[] bkc,
double[] blc,
double[] buc,
boundkey[] bkx,
double[] blx,
double[] bux)

Input the linear part of an optimization task in one function call.

Parameters
e maxnumcon (int) — Number of preallocated constraints in the optimization task.
(input)
e maxnumvar (int) — Number of preallocated variables in the optimization task.
(input)

e c (double[]) — Linear terms of the objective as a dense vector. The length is
the number of variables. (input)

e cfix (double) — Fixed term in the objective. (input)

e aptrb (int[]) — Row or column start pointers. (input)
e aptrb (long[]) — Row or column start pointers. (input)
e aptre (int[]) — Row or column end pointers. (input)

e aptre (long[]) — Row or column end pointers. (input)
e asub (int[]) — Coefficient subscripts. (input)

e aval (double[]) — Coefficient values. (input)

e bkc
e blc
e buc
e bkx
e blx

e bux

boundkey [1) — Bound keys for the constraints. (input)
double[]) — Lower bounds for the constraints. (input)
double[]) — Upper bounds for the constraints. (input)
boundkey [1) — Bound keys for the variables. (input)
double[]) — Lower bounds for the variables. (input)

N N N N N/~

double[]) — Upper bounds for the variables. (input)
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Groups
Problem data - linear part, Problem data - bounds, Problem data - constraints

Task.isdouparname

public synchronized void isdouparname
(String parname,
dparam[] param)

Checks whether parname is a valid double parameter name.

Parameters
e parname (String) — Parameter name. (input)

e param (mosek.dparam by reference) — Returns the parameter corresponding to
the name, if one exists. (output)

Groups
Parameters, Names

Task.isintparname

public synchronized void isintparname
(String parname,
iparam[] param)

Checks whether parname is a valid integer parameter name.

Parameters
e parname (String) — Parameter name. (input)

e param (mosek.iparam by reference) — Returns the parameter corresponding to
the name, if one exists. (output)

Groups
Parameters, Names

Task.isstrparname

public synchronized void isstrparname
(String parname,
sparam[] param)

Checks whether parname is a valid string parameter name.

Parameters
e parname (String) — Parameter name. (input)

e param (mosek.sparam by reference) — Returns the parameter corresponding to
the name, if one exists. (output)

Groups
Parameters, Names

Task.linkfiletostream

public synchronized void linkfiletostream
(streamtype whichstream,
String filename,
int append)

Directs all output from a task stream whichstream to a file filename.

Parameters
e whichstream (streamtype) — Index of the stream. (input)
e filename (String) — A valid file name. (input)
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e append (int) — If this argument is 0 the output file will be overwritten, otherwise
it will be appended to. (input)

Groups
Logging

Task.onesolutionsummary

public synchronized void onesolutionsummary
(streamtype whichstream,
soltype whichsol)

Prints a short summary of a specified solution.

Parameters
e whichstream (streamtype) — Index of the stream. (input)
e whichsol (soltype) — Selects a solution. (input)

Groups
Logging, Solution information

Task.optimize

public synchronized void optimize(rescode[] trmcode)

public synchronized rescode optimize()

Calls the optimizer. Depending on the problem type and the selected optimizer this will call one of
the optimizers in MOSEK. By default the interior point optimizer will be selected for continuous
problems. The optimizer may be selected manually by setting the parameter iparam. optimizer.

Parameters
e trmcode (mosek.rescode by reference) — Is either rescode. ok or a termination
response code. (output)
e trmcode (mosek.rescode) — Is either rescode.ok or a termination response
code. (output)
Return
(mosek.rescode) — Is either rescode. ok or a termination response code.
Groups
Optimization

Task.optimizermt

public synchronized void optimizermt
(String address,
String accesstoken,
rescode[] trmcode)

public synchronized rescode optimizermt
(String address,
String accesstoken)

Offload the optimization task to an instance of OptServer specified by addr, which should be a
valid URL, for example http://server:port or https://server:port. The call will block until
a result is available or the connection closes.

If the server requires authentication, the authentication token can be passed in the accesstoken
argument.

If the server requires encryption, the keys can be passed using one of the solver parameters sparam.
remote_tls_cert or sparam.remote_tls_ceri_path.
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Parameters
e address (String) — Address of the OptServer. (input)
e accesstoken (String) — Access token. (input)
e trmcode (mosek.rescode by reference) —Is either rescode. ok or a termination
response code. (output)
e trmcode (mosek.rescode) — Is either rescode.ok or a termination response
code. (output)
Return
(mosek.rescode) — Is either rescode. ok or a termination response code.
Groups
Remote optimization

Task.optimizersummary
public synchronized void optimizersummary(streamtype whichstream)

Prints a short summary with optimizer statistics from last optimization.

Parameters

whichstream (streamtype) — Index of the stream. (input)
Groups

Logging

Task.primalrepair

public synchronized void primalrepair
(double[] wlc,
double[] wuc,
double[] wlx,
double[] wux)

The function repairs a primal infeasible optimization problem by adjusting the bounds on the
constraints and variables where the adjustment is computed as the minimal weighted sum of re-
laxations to the bounds on the constraints and variables. Observe the function only repairs the
problem but does not solve it. If an optimal solution is required the problem should be optimized

after the repair.

The function is applicable to linear and conic problems possibly with integer variables.

Observe that when computing the minimal weighted relaxation the termination tolerance specified
by the parameters of the task is employed. For instance the parameter iparam.mio_mode can be
used to make MOSEK ignore the integer constraints during the repair which usually leads to a
much faster repair. However, the drawback is of course that the repaired problem may not have

an integer feasible solution.

Note the function modifies the task in place. If this is not desired, then apply the function to a

cloned task.

Parameters

e wlc (double[l) — (wf); is the weight associated with relaxing the lower bound
on constraint ¢. If the weight is negative, then the lower bound is not relaxed.
Moreover, if the argument is null, then all the weights are assumed to be 1.
(input)

e wuc (double[]) — (wf); is the weight associated with relaxing the upper bound
on constraint i. If the weight is negative, then the upper bound is not relaxed.
Moreover, if the argument is null, then all the weights are assumed to be 1.
(input)

e wlx (double[]) — (w}); is the weight associated with relaxing the lower bound
on variable j. If the weight is negative, then the lower bound is not relaxed.
Moreover, if the argument is null, then all the weights are assumed to be 1.

(input)
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e wux (double[]) — (w}); is the weight associated with relaxing the upper bound
on variable j. If the weight is negative, then the upper bound is not relaxed.
Moreover, if the argument is null, then all the weights are assumed to be 1.
(input)

Groups
Infeasibility diagnostic

Task.primalsensitivity

public synchronized void primalsensitivity
(int[] subi,
mark[] marki,
int[] subj,
mark[] markj,
double[] leftpricei,
double[] rightpricei,
double[] leftrangei,
double[] rightrangei,
double[] leftpricej,
double[] rightpricej,
double[] leftrangej,
double[] rightrangej)

Calculates sensitivity information for bounds on variables and constraints. For details on sensitivity
analysis, the definitions of shadow price and linearity interval and an example see Section Sensitivity
Analysis.

The type of sensitivity analysis to be performed (basis or optimal partition) is controlled by the
parameter iparam.sensitivity_type.

Parameters

e subi (int[]) — Indexes of constraints to analyze. (input)

e marki (mark [1) — The value of marki [i] indicates for which bound of constraint
subi[i] sensitivity analysis is performed. If marki[i] = mark.up the upper
bound of constraint subi[i] is analyzed, and if marki[i] = mark. lo the lower
bound is analyzed. If subi[i] is an equality constraint, either mark.lo or
mark.up can be used to select the constraint for sensitivity analysis. (input)

e subj (int[]1) — Indexes of variables to analyze. (input)

e markj (mark [1) — The value of markj[j] indicates for which bound of variable
subj[j] sensitivity analysis is performed. If markj[j] = mark.up the upper
bound of variable subj[j] is analyzed, and if markj[j] = mark.lo the lower
bound is analyzed. If subj[j] is a fixed variable, either mark.lo or mark.up
can be used to select the bound for sensitivity analysis. (input)

e leftpricei (double[]) — leftpriceili] is the left shadow price for the bound
marki[i] of constraint subi[il. (output)

e rightpricei (double[]) — rightpriceil[i] is the right shadow price for the
bound marki[i] of constraint subi[i]. (output)

e leftrangei (double[]) — leftrangeili] is the left range $; for the bound
marki[i] of constraint subi[il. (output)

e rightrangei (double[]) — rightrangeil[i] is the right range 85 for the bound
marki[i] of constraint subi[il. (output)

e leftpricej (double[]) — leftpricej[j] is the left shadow price for the bound
markj[j] of variable subj[j]. (output)

e rightpricej (double[]) — rightpricej[j] is the right shadow price for the
bound markj[j] of variable subj[j]. (output)

e leftrangej (double[]) — leftrangej[j] is the left range (; for the bound
markj[j] of variable subj[j]. (output)
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e rightrangej (double[]) — rightrangej[j] is the right range /35 for the bound
markj[j] of variable subj[j]. (output)

Groups
Sensitivity analysis

Task.putacc

public synchronized void putacc
(long accidx,
long domidx,
long[] afeidxlist,
double[] b)

Puts an affine conic constraint. This method overwrites an existing affine conic constraint number
accidx with new data specified in the same format as in Task.appendacc.

Parameters
e accidx (long) — Affine conic constraint index. (input)
e domidx (long) — Domain index. (input)
e afeidxlist (long[]) — List of affine expression indexes. (input)
e b (double[]) — The vector of constant terms modifying affine expressions. Op-
tional, can be null if not required. (input)
Groups
Problem data - affine conic constraints

Task.putaccb

public synchronized void putaccb
(long accidx,
double[] b)

Updates an existing affine conic constraint number accidx by putting a new vector b.

Parameters
e accidx (long) — Affine conic constraint index. (input)
e b (double[]) — The vector of constant terms modifying affine expressions. Op-
tional, can be null if not required. (input)
Groups
Problem data - affine conic constraints

Task.putaccbj

public synchronized void putaccbj
(long accidx,
long j,
double bj)

Sets one value b[j] in the b vector for the affine conic constraint number accidx.

Parameters
e accidx (long) — Affine conic constraint index. (input)
e j (long) — The index of an element in b to change. (input)
e bj (double) — The new value of b[j]. (input)
Groups
Problem data - affine conic constraints

Task.putaccdoty
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public synchronized void putaccdoty
(soltype whichsol,
long accidx,
double[] doty)

Puts the g vector for a solution (the dual values of an affine conic constraint).

Parameters
e whichsol (soltype) — Selects a solution. (input)
e accidx (long) — The index of the affine conic constraint. (input)
e doty (double[]) — The dual values for this affine conic constraint. The array
should have length equal to the dimension of the constraint. (output)

Groups
Solution - dual, Problem data - affine conic constraints

Task.putacclist

public synchronized void putacclist
(long[] accidxs,
long[] domidxs,
long[] afeidxlist,
double[] b)

Puts affine conic constraints. This method overwrites existing affine conic constraints whose num-
bers are provided in the list accidxs with new data which is a concatenation of individual constraint
descriptions in the same format as in Task.appendacc (see also Task.appendaccs).

Parameters
e accidxs (long[]) — Affine conic constraint indices. (input)
e domidxs (long[]) — Domain indices. (input)
e afeidxlist (long[]) — List of affine expression indexes. (input)

b (double[]) — The vector of constant terms modifying affine expressions. Op-
tional, can be null if not required. (input)

Groups
Problem data - affine conic constraints

Task.putaccname

public synchronized void putaccname
(long accidx,
String name)

Sets the name of an affine conic constraint.

Parameters
e accidx (long) — Index of the affine conic constraint. (input)
e name (String) — The name of the affine conic constraint. (input)

Groups
Names, Problem data - affine conic constraints

Task.putacol
public synchronized void putacol
(int j,
int[] subj,
double[] valj)
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Change one column of the linear constraint matrix A. Resets all the elements in column j to zero
and then sets

Gsuj[k],; = valjlk], k=0,...,nzj — 1

Parameters
e j (int) — Index of a column in A. (input)
e subj (int[]) — Row indexes of non-zero values in column j of A. (input)
e valj (double[]) — New non-zero values of column j in A. (input)

Groups
Problem data - linear part

Task.putacollist

public synchronized void putacollist
(int[] sub,
int[] ptrb,
int[] ptre,
int[] asub,
double[] aval)

Change a set of columns in the linear constraint matrix A with data in sparse triplet format. The
requested columns are set to zero and then updated with:

for ¢=0,...,numn—1
Uasub[k],sub[i] = avallk], k= ptrbli,...,ptrefi] — 1.

Parameters
e sub (int[]1) — Indexes of columns that should be replaced, no duplicates. (input)
e ptrb (int[]) — Array of pointers to the first element in each column. (input)
e ptre (int[]) — Array of pointers to the last element plus one in each column.
(input)
e asub (int[]) — Row indexes of new elements. (input)
e aval (double[]) — Coefficient values. (input)
Groups
Problem data - linear part

Task.putacolslice

public synchronized void putacolslice
(int first,
int last,
int[] ptrb,
int[] ptre,
int[] asub,
double[] aval)

public synchronized void putacolslice
(int first,
int last,
long[] ptrb,
long[] ptre,
int[] asub,
double[] aval)

Change a slice of columns in the linear constraint matrix A with data in sparse triplet format. The
requested columns are set to zero and then updated with:

for ¢ =first,...,last—1
Gasub[k],i = avallk], k = ptrb[i —first],...,ptreli — first] — 1.
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Parameters
e first (int) — First column in the slice. (input)

e last (int) — Last column plus one in the slice. (input)

e ptrb (int[]1) — Array of pointers to the first element in each column. (input)

e ptrb (long[]l) — Array of pointers to the first element in each column. (input)

e ptre (int[]) — Array of pointers to the last element plus one in each column.
(input)

e ptre (long[]) — Array of pointers to the last element plus one in each column.
(input)

e asub (int[]) — Row indexes of new elements. (input)
e aval (double[]) — Coefficient values. (input)
Groups
Problem data - linear part

Task.putafebarfblocktriplet

public synchronized void putafebarfblocktriplet
(long[] afeidx,
int[] barvaridx,
int[] subk,
int[] subl,
double[] valkl)

Inputs the F matrix data in block triplet form.

Parameters
e afeidx (long[]) — Constraint index. (input)

e barvaridx (int[]) — Symmetric matrix variable index. (input)
e subk (int[]) — Block row index. (input)
e subl (int[]) — Block column index. (input)
e valkl (double[]) — The numerical value associated with each block triplet.
(input)
Groups

Problem data - affine expressions, Problem data - semidefinite

Task.putafebarfentry

public synchronized void putafebarfentry
(long afeidx,
int barvaridx,
long[] termidx,
double[] termweight)

This function sets one entry F,»j where ¢ = afeidx is the row index in the store of affine expressions
and j = barvaridx is the index of a symmetric variable. That is, the expression

(Fij, X;)
will be added to the i-th affine expression.

The matrix FQ is specified as a weighted sum of symmetric matrices from the symmetric matrix
storage I/, so F';; is a symmetric matrix, precisely:

Fafeidx,barvaridx = Z termwelght[k] : Etermidx[k]-
k

By default all elements in F are 0, so only non-zero elements need be added. Setting the same
entry again will overwrite the earlier entry.

The symmetric matrices from FE are defined separately using the function Task.
appendsparsesymmat .
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Parameters
e afeidx (long) — Row index of F. (input)
e barvaridx (int) — Semidefinite variable index. (input)
e termidx (long[]l) — Indices in F of the matrices appearing in the weighted sum
for the F entry being specified. (input)
e termweight (double[])— termweight [k] is the coefficient of the termidx [k]-th
element of F in the weighted sum the F' entry being specified. (input)

Groups
Problem data - affine expressions, Problem data - semidefinite

Task.putafebarfentrylist

public synchronized void putafebarfentrylist
(long[] afeidx,
int[] barvaridx,
long[] numterm,
long[] ptrterm,
long[] termidx,
double[] termweight)

This function sets a list of entries in F. Each entry should be described as in Task.
putafebarfentry and all those descriptions should be combined (for example concatenated) in the
input to this method. That means the k-th entry set will have row index afeidx[k], symmetric
variable index barvaridx [k] and the description of this term consists of indices in £ and weights

appearing in positions
ptrterml[k], ..., ptrterm[k] + (lenterm[k] — 1)

in the corresponding arrays termidx and termweight. See Task.putafebarfentry for details.

Parameters

e afeidx (long[]) — Row indexes of F. (input)

e barvaridx (int[]) — Semidefinite variable indexes. (input)

e numterm (long[]) — The number of terms in the weighted sums that form each
entry. (input)

e ptrterm (long[]) — The pointer to the beginning of the description of each entry.
(input)

e termidx (long[]) — Concatenated lists of indices in £ of the matrices appearing
in the weighted sums for the F' being specified. (input)

e termweight (double[]) - Concatenated lists of weights appearing in the
weighted sums forming the F' elements being specified. (input)

Groups
Problem data - affine expressions, Problem data - semidefinite

Task.putafebarfrow

public synchronized void putafebarfrow
(long afeidx,
int[] barvaridx,
long[] numterm,
long[] ptrterm,
long[] termidx,
double[] termweight)

This function inputs one row in F. It first clears the row, i.e. sets Fafeidx7* = 0 and then sets the new
entries. Each entry should be described as in Task.putafebarfentry and all those descriptions
should be combined (for example concatenated) in the input to this method. That means the k-th
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entry set will have row index afeidx, symmetric variable index barvaridx[k] and the description
of this term consists of indices in E and weights appearing in positions

ptrterm[k], ..., ptrterm[k] + (numterm[k] — 1)

in the corresponding arrays termidx and termweight. See Task.putafebarfentry for details.

Parameters

afeidx (long) — Row index of F. (input)

barvaridx (int[]) — Semidefinite variable indexes. (input)

numterm (long[]) — The number of terms in the weighted sums that form each
entry. (input)

ptrterm (Long[]) — The pointer to the beginning of the description of each entry.
(input)

termidx (long[]l) — Concatenated lists of indices in E of the matrices appearing
in the weighted sums for the F entries in the row. (input)

termweight (double[]) — Concatenated lists of weights appearing in the
weighted sums forming the F' entries in the row. (input)

Groups
Problem data - affine expressions, Problem data - semidefinite

Task.putafefcol

public synchronized void putafefcol
(int varidx,
long[] afeidx,
double[] val)

Change one column of the matrix F' of affine expressions. Resets all the elements in column varidx
to zero and then sets

Fafeidx[k},varidx = Val[k]7 k= 0,...,numnz — 1.

Parameters

varidx (int) — Index of a column in F. (input)
afeidx (long[]) — Row indexes of non-zero values in the column of F. (input)
val (double[]) — New non-zero values in the column of F'. (input)

Groups
Problem data - affine expressions

Task.putafefentry

public synchronized void putafefentry
(long afeidx,
int varidx,
double value)

Replaces one entry in the affine expression store F, that is it sets:

Flateidx varidx = value.

Parameters

afeidx (long) — Row index in F. (input)
varidx (int) — Column index in F. (input)
value (double) — Value of Fyfeidx, varidx- (Input)

Groups
Problem data - affine expressions

Task.putafefentrylist
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public synchronized void putafefentrylist
(long[] afeidx,
int[] varidx,
double[] val)

Replaces a number of entries in the affine expression store F', that is it sets:
Fafeidxs[k],varidx[k:] = Val[k]

for all k.

Parameters
e afeidx (long[]) — Row indices in F. (input)
e varidx (int[]) — Column indices in F'. (input)
e val (double[]) — Values of the entries in F. (input)

Groups
Problem data - affine expressions

Task.putafefrow

public synchronized void putafefrow
(long afeidx,
int[] varidx,
double[] val)

Change one row of the matrix F' of affine expressions. Resets all the elements in row afeidx to
zero and then sets

Fiteiaxvariaxk] = vallk], k=0,...,numnz — 1.

Parameters
e afeidx (long) — Index of a row in F. (input)
e varidx (int[]) — Column indexes of non-zero values in the row of F. (input)
e val (double[]) — New non-zero values in the row of F. (input)

Groups
Problem data - affine expressions

Task.putafefrowlist

public synchronized void putafefrowlist
(long[] afeidx,
int[] numnzrow,
long[] ptrrow,
int[] varidx,
double[] val)

Clears and then changes a number of rows of the matrix F' of affine expressions. The k-th of the
rows to be changed has index i = afeidx[k], contains numnzrow[k] nonzeros and its description as
in Task.putafefrow starts in position ptrrow[k] of the arrays varidx and val. Formally, the row
with index ¢ is cleared and then set as:

F; varidx[ptrrow[k]+5] = val[ptrrow[k] + j], j =0,..., numnzrow[k] — 1.

Parameters
e afeidx (long[]) — Indices of rows in F. (input)
e numnzrow (int[]) — Number of non-zeros in each of the modified rows of F.
(input)
e ptrrow (long[]l) — Pointer to the first nonzero in each row of F. (input)
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e varidx (int[]) — Column indexes of non-zero values. (input)
e val (double[]) — New non-zero values in the rows of F. (input)

Groups
Problem data - affine expressions

Task.putafeg

public synchronized void putafeg
(long afeidx,
double g)

Change one element of the vector g in affine expressions i.e.
Jafeidx — gi-

Parameters
e afeidx (long) — Index of an entry in g. (input)
e g (double) — New value for gafeigx. (input)
Groups
Problem data - affine expressions

Task.putafeglist

public synchronized void putafeglist
(long[] afeidx,
double[] g)

Changes a list of elements of the vector g in affine expressions i.e. for all k it sets

Gateidx[k] = glist[k].

Parameters
e afeidx (long[]) — Indices of entries in g. (input)
e g (double[]) — New values for g. (input)

Groups
Problem data - affine expressions

Task.putafegslice

public synchronized void putafegslice
(long first,
long last,
double[] slice)

Modifies a slice in the vector g of constant terms in affine expressions using the principle
g; = slice[j — first|, j =first,..,last —1

Parameters
e first (long) — First index in the sequence. (input)
e last (long) — Last index plus 1 in the sequence. (input)
e slice (double[]) — The slice of g as a dense vector. The length is last-first.
(input)
Groups
Problem data - affine expressions

Task.putaij
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public synchronized void putaij
(int i,
int j,
double aij)

Changes a coeflicient in the linear coefficient matrix A using the method
a;j =aij.

Parameters
e i (int) — Constraint (row) index. (input)
e j (int) — Variable (column) index. (input)
e aij (double) — New coefficient for a; ;. (input)
Groups
Problem data - linear part

Task.putaijlist

public synchronized void putaijlist
(int[] subi,
int[] subj,
double[] valij)

Changes one or more coefficients in A using the method
Qsubife],subjf] = valijlk], k=0,...,num— 1.

Duplicates are not allowed.

Parameters
e subi (int[]) — Constraint (row) indices. (input)
e subj (int[]) — Variable (column) indices. (input)
e valij (double[]) — New coefficient values for a; ;. (input)

Groups
Problem data - linear part

Task.putarow

public synchronized void putarow
(int 1,
int[] subi,
double[] vali)

Change one row of the linear constraint matrix A. Resets all the elements in row i to zero and
then sets

ai’subi[k-] = Vali[k], k= O, e 7].'].Zj. —1.

Parameters
e i (int) — Index of a row in A. (input)
e subi (int[]) — Column indexes of non-zero values in row i of A. (input)
e vali (double[]) — New non-zero values of row ¢ in A. (input)

Groups
Problem data - linear part

Task.putarowlist
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public synchronized void putarowlist
(int[] sub,
int[] ptrb,
int[] ptre,
int[] asub,
double[] aval)

public synchronized void putarowlist
(int[] sub,
long[] ptrb,
long[] ptre,
int[] asub,
double[] aval)

Change a set of rows in the linear constraint matrix A with data in sparse triplet format. The
requested rows are set to zero and then updated with:

for +=0,...,numn—1
sub[i],asublk] = aval[k], &k =ptrbli,...,ptreli] — 1.

Parameters
e sub (int[]) — Indexes of rows that should be replaced, no duplicates. (input)
e ptrb (int[1) — Array of pointers to the first element in each row. (input)
e ptrb (long[]) — Array of pointers to the first element in each row. (input)
e ptre (int[]1)— Array of pointers to the last element plus one in each row. (input)
e ptre (longl[]) — Array of pointers to the last element plus one in each row.
(input)
e asub (int[]) — Column indexes of new elements. (input)
e aval (double[]) — Coefficient values. (input)

Groups
Problem data - linear part

Task.putarowslice

public synchronized void putarowslice
(int first,
int last,
int[] ptrb,
int[] ptre,
int[] asub,
double[] aval)

public synchronized void putarowslice
(int first,
int last,
long[] ptrb,
long[] ptre,
int[] asub,
double[] aval)

Change a slice of rows in the linear constraint matrix A with data in sparse triplet format. The
requested rows are set to zero and then updated with:

for ¢=first,...,last—1
Qi asuwb[k] = avallk], k = ptrb[i —first],...,ptrefi — first] — 1.

Parameters
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first (int) — First row in the slice. (input)
last (int) — Last row plus one in the slice. (input)

ptrb (long[]) — Array of pointers to the first element in each row. (input)
ptre (int []) — Array of pointers to the last element plus one in each row. (input)
ptre (longl[]l) — Array of pointers to the last element plus one in each row.
(input)

e asub (int[]) — Column indexes of new elements. (input)

e aval (double[]) — Coefficient values. (input)

(

ptrb (int[]) — Array of pointers to the first element in each row. (input)
(
(

Groups
Problem data - linear part

Task.putatruncatetol

public synchronized void putatruncatetol(double tolzero)

Truncates (sets to zero) all elements in A that satisfy
la; ;| < tolzero.

Parameters

tolzero (double) — Truncation tolerance. (input)
Groups

Problem data - linear part

Task.putbarablocktriplet

public synchronized void putbarablocktriplet
(int[] subi,
int[] subj,
int[] subk,
int[] subl,
double[] valijkl)

Inputs the A matrix in block triplet form.

Parameters
e subi (int[]

( )
subj (int[])
( )

— Constraint index. (input)

. Symmetric matrix variable index. (input)
e subk (int[]) — Block row index. (input)
e subl (int[]) — Block column index. (input)
e valijkl (double[]) — The numerical value associated with each block triplet.
(input)
Groups

Problem data - semidefinite

Task.putbaraij

public synchronized void putbaraij
(int 1,
int j,
long[] sub,
double[] weights)

This function sets one element in the A matrix.

Each element in the A matrix is a weighted sum of symmetric matrices from the symmetric matrix
storage F, so A;; is a symmetric matrix. By default all elements in A are 0, so only non-zero
elements need be added. Setting the same element again will overwrite the earlier entry.

The symmetric matrices from FE are defined separately using the function Task.
appendsparsesymmat .
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Parameters
e i (int) — Row index of A. (input)
e j (int) — Column index of A. (input)
e sub (long[]l) — Indices in F of the matrices appearing in the weighted sum for
A;;. (input)
e weights (double[]) — weights[k] is the coeflicient of the sub[k]-th element of
E in the weighted sum forming A4,;. (input)
Groups
Problem data - semidefinite

Task.putbaraijlist

public synchronized void putbaraijlist
(int[] subi,
int[] subj,
long[] alphaptrb,
long[] alphaptre,
long[] matidx,
double[] weights)

This function sets a list of elements in the A matrix.

Each element in the A matrix is a weighted sum of symmetric matrices from the symmetric matrix
storage E, so A;; is a symmetric matrix. By default all elements in A are 0, so only non-zero
elements need be added. Setting the same element again will overwrite the earlier entry.

The symmetric matrices from F are defined separately using the function Task.
appendsparsesymmat .

Parameters
e subi (int[]) — Row index of A. (input)
e subj (int[]) — Column index of A. (input)
e alphaptrb (long[]) — Start entries for terms in the weighted sum that forms
A;;. (input)
e alphaptre (long[]) — End entries for terms in the weighted sum that forms 4;;.
(input)
e matidx (long[]) - Indices in £ of the matrices appearing in the weighted sum
for A;;. (input)
e weights (double[]) — weights[k] is the coeflicient of the sub[k]-th element of
E in the weighted sum forming A;;. (input)
Groups
Problem data - semidefinite

Task.putbararowlist

public synchronized void putbararowlist

(int[] subi,

long[] ptrb,

long[] ptre,

int[] subj,

long[] nummat,

long[] matidx,

double[] weights)

This function replaces a list of rows in the A matrix.

Parameters
e subi (int[]) — Row indexes of A. (input)
e ptrb (long[]) — Start of rows in A. (input)
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e ptre (long[]) — End of rows in A. (input)

e subj (int[]) — Column index of A. (input)

e nummat (long[]) — Number of entries in weighted sum of matrixes. (input)
e matidx (long[]) — Matrix indexes for weighted sum of matrixes. (input)

e weights (double[]) — Weights for weighted sum of matrixes. (input)

Groups
Problem data - semidefinite

Task.putbarcblocktriplet

public synchronized void putbarcblocktriplet
(int[] subj,
int[] subk,
int[] subl,
double[] valjkl)

Inputs the C' matrix in block triplet form.

Parameters
e subj (int[]) — Symmetric matrix variable index. (input)
e subk (int[]) — Block row index. (input)
e subl (int[]) — Block column index. (input)
e valjkl (double[]) — The numerical value associated with each block triplet.
(input)
Groups
Problem data - semidefinite

Task.putbarcj

public synchronized void putbarcj
(int j,
long[] sub,
double[] weights)

This function sets one entry in the C vector.

Each element in the C vector is a weighted sum of symmetric matrices from the symmetric matrix
storage F, so C; is a symmetric matrix. By default all elements in C' are 0, so only non-zero
elements need be added. Setting the same element again will overwrite the earlier entry.

The symmetric matrices from FE are defined separately using the function Task.
appendsparsesymmat .

Parameters
e j (int) — Index of the element in C that should be changed. (input)
e sub (long[]l) — Indices in E of matrices appearing in the weighted sum for 6j
(input)
e weights (double[]) — weights[k] is the coeflicient of the sub[k]-th element of
E in the weighted sum forming C';. (input)
Groups
Problem data - semidefinite, Problem data - objective

Task.putbarsj
public synchronized void putbarsj
(soltype whichsol,
int j,
double[] barsj)

Sets the dual solution for a semidefinite variable.
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Parameters
e whichsol (soltype) — Selects a solution. (input)
e j (int) — Index of the semidefinite variable. (input)
e barsj (double[]) — Value of S;. Format as in Task.getbarsj. (input)

Groups
Solution - semidefinite

Task.putbarvarname

public synchronized void putbarvarname
(int j,
String name)

Sets the name of a semidefinite variable.

Parameters
e j (int) — Index of the variable. (input)
e name (String) — The variable name. (input)

Groups
Names, Problem data - semidefinite

Task.putbarx]j

public synchronized void putbarxj
(soltype whichsol,
int j,
double[] barxj)

Sets the primal solution for a semidefinite variable.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e j (int) — Index of the semidefinite variable. (input)
e barxj (double[]) — Value of X ;. Format as in Task.getbarzj. (input)

Groups
Solution - semidefinite

Task.putcfix
public synchronized void putcfix(double cfix)

Replaces the fixed term in the objective by a new one.

Parameters
cfix (double) — Fixed term in the objective. (input)

Groups
Problem data - linear part, Problem data - objective

Task.putcj
public synchronized void putcj
(int j,
double cj)
Modifies one coefficient in the linear objective vector c, i.e.
¢y =cj.

If the absolute value exceeds dparam.data_tol_c_huge an error is generated. If the absolute
value exceeds dparam.data_tol_cj_large, a warning is generated, but the coefficient is inputted
as specified.
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Parameters
e j (int) — Index of the variable for which ¢ should be changed. (input)
e cj (double) — New value of ¢;. (input)

Groups
Problem data - linear part, Problem data - objective

Task.putclist

public synchronized void putclist
(int[] subj,
double[] val)

Modifies the coeflicients in the linear term c in the objective using the principle
Csubj¢] = vallt], ¢=0,...,num— 1.

If a variable index is specified multiple times in subj only the last entry is used. Data checks are
performed as in Task.putcy.

Parameters
e subj (int[]) — Indices of variables for which the coefficient in ¢ should be
changed. (input)
e val (double[]) — New numerical values for coefficients in ¢ that should be mod-
ified. (input)
Groups
Problem data - linear part, Problem data - variables, Problem data - objective

Task.putconbound

public synchronized void putconbound
(int i,
boundkey bkc,
double blc,
double buc)

Changes the bounds for one constraint.

If the bound value specified is numerically larger than dparam.data_tol_bound_inf it is consid-
ered infinite and the bound key is changed accordingly. If a bound value is numerically larger than
dparam.data_tol_bound_wrn, a warning will be displayed, but the bound is inputted as specified.

Parameters
e i (int) — Index of the constraint. (input)
e bkc (boundkey) — New bound key. (input)
e blc (double) — New lower bound. (input)
e buc (double) — New upper bound. (input)

Groups
Problem data - linear part, Problem data - constraints, Problem data - bounds

Task.putconboundlist

public synchronized void putconboundlist
(int[] sub,
boundkey[] bkc,
double[] blc,
double[] buc)

Changes the bounds for a list of constraints. If multiple bound changes are specified for a constraint,
then only the last change takes effect. Data checks are performed as in Task.putconbound.
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Parameters
e sub (int[]) — List of constraint indexes. (input)
e bkc (boundkey [1) — Bound keys for the constraints. (input)
e blc (double[]) — Lower bounds for the constraints. (input)
e buc (double[]) — Upper bounds for the constraints. (input)

Groups
Problem data - linear part, Problem data - constraints, Problem data - bounds

Task.putconboundlistconst

public synchronized void putconboundlistconst
(int[] sub,
boundkey bkc,
double blc,
double buc)

Changes the bounds for one or more constraints. Data checks are performed as in Task.
putconbound.

Parameters
e sub (int[]) — List of constraint indexes. (input)
e bkc (boundkey) — New bound key for all constraints in the list. (input)
e blc (double) — New lower bound for all constraints in the list. (input)
e buc (double) — New upper bound for all constraints in the list. (input)

Groups
Problem data - linear part, Problem data - constraints, Problem data - bounds

Task.putconboundslice

public synchronized void putconboundslice
(int first,
int last,
boundkey[] bkc,
double[] blc,
double[] buc)

Changes the bounds for a slice of the constraints. Data checks are performed as in Task.
putconbound.

Parameters
e first (int) — First index in the sequence. (input)
last (int) — Last index plus 1 in the sequence. (input)
e bkc (boundkey [1) — Bound keys for the constraints. (input)

e blc (double[]) — Lower bounds for the constraints. (input)
e buc (double[]) — Upper bounds for the constraints. (input)

Groups
Problem data - linear part, Problem data - constraints, Problem data - bounds

Task.putconboundsliceconst

public synchronized void putconboundsliceconst
(int first,
int last,
boundkey bkc,
double blc,
double buc)
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Changes the bounds for a slice of the constraints. Data checks are performed as in Task.
putconbound.

Parameters
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)
e bkc (boundkey) — New bound key for all constraints in the slice. (input)
e blc (double) — New lower bound for all constraints in the slice. (input)
e buc (double) — New upper bound for all constraints in the slice. (input)

Groups
Problem data - linear part, Problem data - constraints, Problem data - bounds

Task-puteone Deprecated

public synchronized void putcone
(int k,
conetype ct,
double conepar,
int[] submem)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Parameters
e k (int) — Index of the cone. (input)
e ct (conetype) — Specifies the type of the cone. (input)

e conepar (double) — For the power cone it denotes the exponent alpha. For other
cone types it is unused and can be set to 0. (input)

e submenm (int[]) — Variable subscripts of the members in the cone. (input)
Groups
Problem data - cones (deprecated)

Task-puteconename Deprecated

public synchronized void putconename
(int j,
String name)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Parameters
e j (int) — Index of the cone. (input)
e name (String) — The name of the cone. (input)

Groups
Names, Problem data - cones (deprecated)

Task.putconname

public synchronized void putconname
(int i,
String name)

Sets the name of a constraint.

Parameters
e i (int) — Index of the constraint. (input)
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e name (String) — The name of the constraint. (input)

Groups
Names, Problem data - constraints, Problem data - linear part

Task.putconsolutioni

public synchronized void putconsolutioni
(int i,
soltype whichsol,
stakey sk,
double x,
double sl,
double su)

Sets the primal and dual solution information for a single constraint.

Parameters
e i (int) — Index of the constraint. (input)
e whichsol (soltype) — Selects a solution. (input)
e sk (stakey) — Status key of the constraint. (input)
e x (double) — Primal solution value of the constraint. (input)
e sl (double) — Solution value of the dual variable associated with the lower bound.
(input)
e su (double) — Solution value of the dual variable associated with the upper
bound. (input)
Groups
Solution information, Solution - primal, Solution - dual

Task.putcslice

public synchronized void putcslice
(int first,
int last,
double[] slice)

Modifies a slice in the linear term ¢ in the objective using the principle
¢j = slice[j — first], j =first,..,last—1

Data checks are performed as in Task.putcy.

Parameters
e first (int) — First element in the slice of ¢. (input)
e last (int) — Last element plus 1 of the slice in ¢ to be changed. (input)
e slice (double[]) — New numerical values for coefficients in ¢ that should be
modified. (input)
Groups
Problem data - linear part, Problem data - objective

Task.putdjc

public synchronized void putdjc
(long djcidx,
long[] domidxlist,
long[] afeidxlist,
double[] b,
long[] termsizelist)
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Inputs a disjunctive constraint. The constraint has the form
Tl or T2 or --- or Tnumterms

For each ¢ = 1, ... numterms the i-th clause (term) 7; has the form a sequence of affine expressions
belongs to a product of domains, where the number of domains is termsizelist[i] and the number of
affine expressions is equal to the sum of dimensions of all domains appearing in T;.

All the domains and all the affine expressions appearing in the above description are arranged
sequentially in the lists domidxlist and afeidxlist, respectively. In particular, the length of
domidx1list must be equal to the sum of elements of termsizelist, and the length of afeidxlist
must be equal to the sum of dimensions of all the domains appearing in domidxlist.

The elements of domidxlist are indexes of domains previously defined with one of the append. .
.domain functions.

The elements of afeidxlist are indexes to the store of affine expressions, i.e. the k-th affine
expression appearing in the disjunctive constraint is going to be

Fateidxist[k],: T + Gafeidxlist[k]

If an optional vector b of the same length as afeidxlist is specified then the k-th affine expression
appearing in the disjunctive constraint will be taken as

Fiateiaxtist[k],: T T Gafeidxlist[k] — Dk

Parameters
e djcidx (long) — Index of the disjunctive constraint. (input)

domidxlist (longl[]) — List of domain indexes. (input)

afeidxlist (long[]) — List of affine expression indexes. (input)

b (double[]) — The vector of constant terms modifying affine expressions. (in-
put)
e termsizelist (long[]l) — List of term sizes. (input)

Groups
Problem data - disjunctive constraints

Task.putdjcname

public synchronized void putdjcname
(long djcidx,
String name)

Sets the name of a disjunctive constraint.

Parameters
e djcidx (long) — Index of the disjunctive constraint. (input)
e name (String) — The name of the disjunctive constraint. (input)

Groups
Names, Problem data - disjunctive constraints

Task.putdjcslice

public synchronized void putdjcslice
(long idxfirst,
long idxlast,
long[] domidxlist,
long[] afeidxlist,
double[] b,
long[] termsizelist,
long[] termsindjc)

368



Inputs a slice of disjunctive constraints.

The array termsindjc should have length idxlast — idxfirst and contain the number of terms in
consecutive constraints forming the slice.

The rest of the input consists of concatenated descriptions of individual constraints, where each
constraint is described as in Task.putdjc.

Parameters

e idxfirst (long) — Index of the first disjunctive constraint in the slice. (input)

e idxlast (long) — Index of the last disjunctive constraint in the slice plus 1.
(input)

e domidxlist (long[]) — List of domain indexes. (input)

e afeidxlist (long[]) — List of affine expression indexes. (input)

e b (double[]) — The vector of constant terms modifying affine expressions. Op-
tional, can be null if not required. (input)

e termsizelist (long[]l) — List of term sizes. (input)
e termsindjc (long[]) — Number of terms in each of the disjunctive constraints
in the slice. (input)
Groups
Problem data - disjunctive constraints

Task.putdomainname

public synchronized void putdomainname
(long domidx,
String name)

Sets the name of a domain.

Parameters
e domidx (long) — Index of the domain. (input)
e name (String) — The name of the domain. (input)

Groups
Names, Problem data - domain

Task.putdouparam

public synchronized void putdouparam
(dparam param,
double parvalue)

Sets the value of a double parameter.

Parameters
e param (dparam) — Which parameter. (input)
e parvalue (double) — Parameter value. (input)

Groups
Parameters

Task.putintparam
public synchronized void putintparam

(iparam param,
int parvalue)

Sets the value of an integer parameter.

Please notice that some parameters take values that are defined in Enum classes. This function
accepts only integer values, so to use e.g. the value onoffkey.on, is necessary to use the member
.value. For example:
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Task.

Task.

Task.

Task.

task.putintparam(mosek.iparam.opf_write_problem, mosek.onoffkey.on.value)

Parameters
e param (iparam) — Which parameter. (input)
e parvalue (int) — Parameter value. (input)
Groups
Parameters

putlintparam

public synchronized void putlintparam
(iparam param,
long parvalue)

Sets the value of an integer parameter.

Please notice that some parameters take values that are defined in Enum classes. This function
accepts only integer values, so to use e.g. the value onoffkey.on, is necessary to use the member
.value. For example:

task.putintparam(mosek.iparam.opf_write_problem, mosek.onoffkey.on.value)

Parameters
e param (iparam) — Which parameter. (input)
e parvalue (long) — Parameter value. (input)

Groups
Parameters

putmaxnumacc
public synchronized void putmaxnumacc(long maxnumacc)
Sets the number of preallocated affine conic constraints in the optimization task. When this

number is reached MOSEK will automatically allocate more space. It is never mandatory to call
this function, since MOSEK will reallocate any internal structures whenever it is required.

Parameters
maxnumacc (long) — Number of preallocated affine conic constraints. (input)
Groups
Environment and task management, Problem data - affine conic constraints
putmaxnumafe

public synchronized void putmaxnumafe(long maxnumafe)

Sets the number of preallocated affine expressions in the optimization task. When this number
is reached MOSEK will automatically allocate more space for affine expressions. It is never
mandatory to call this function, since MOSEK will reallocate any internal structures whenever it
is required.

Parameters
maxnumafe (long) — Number of preallocated affine expressions. (input)
Groups
Environment and task management, Problem data - affine expressions
putmaxnumanz

public synchronized void putmaxnumanz(long maxnumanz)
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Task.

Task.

Sets the number of preallocated non-zero entries in A.

MOSEK stores only the non-zero elements in the linear coefficient matrix A and it cannot predict
how much storage is required to store A. Using this function it is possible to specify the number
of non-zeros to preallocate for storing A.

If the number of non-zeros in the problem is known, it is a good idea to set maxnumanz slightly
larger than this number, otherwise a rough estimate can be used. In general, if A is inputted in
many small chunks, setting this value may speed up the data input phase.

It is not mandatory to call this function, since MOSEK will reallocate internal structures whenever
it is necessary.

The function call has no effect if both maxnumcon and maxnumvar are zero.

Parameters
maxnumanz (long) — Number of preallocated non-zeros in A. (input)
Groups
Environment and task management, Problem data - linear part
putmaxnumbarvar

public synchronized void putmaxnumbarvar (int maxnumbarvar)

Sets the number of preallocated symmetric matrix variables in the optimization task. When this
number of variables is reached MOSEK will automatically allocate more space for variables.

It is not mandatory to call this function. It only gives a hint about the amount of data to preallocate
for efficiency reasons.

Please note that maxnumbarvar must be larger than the current number of symmetric matrix
variables in the task.

Parameters
maxnumbarvar (int) — Number of preallocated symmetric matrix variables. (input)
Groups
Environment and task management, Problem data - semidefinite
putmaxnumcon

public synchronized void putmaxnumcon(int maxnumcon)

Sets the number of preallocated constraints in the optimization task. When this number of con-
straints is reached MOSEK will automatically allocate more space for constraints.

It is never mandatory to call this function, since MOSEK will reallocate any internal structures
whenever it is required.

Please note that maxnumcon must be larger than the current number of constraints in the task.

Parameters
maxnumcon (int) — Number of preallocated constraints in the optimization task.
(input)

Groups
Environment and task management, Problem data - constraints

Task-putmaxnumeone Deprecated

public synchronized void putmaxnumcone(int maxnumcone)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Sets the number of preallocated conic constraints in the optimization task. When this number of
conic constraints is reached MOSEK will automatically allocate more space for conic constraints.
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Task.

Task.

Task.

Task.

It is not mandatory to call this function, since MOSEK will reallocate any internal structures
whenever it is required.

Please note that maxnumcon must be larger than the current number of conic constraints in the
task.

Parameters
maxnumcone (int) — Number of preallocated conic constraints in the optimization
task. (input)

Groups
Environment and task management, Problem data - cones (deprecated)

putmaxnumdjc
public synchronized void putmaxnumdjc(long maxnumdjc)

Sets the number of preallocated disjunctive constraints in the optimization task. When this number
is reached MOSEK will automatically allocate more space. It is never mandatory to call this
function, since MOSEK will reallocate any internal structures whenever it is required.

Parameters
maxnumdjc (long) — Number of preallocated disjunctive constraints in the task. (in-
put)

Groups
Environment and task management, Problem data - disjunctive constraints

putmaxnumdomain
public synchronized void putmaxnumdomain(long maxnumdomain)
Sets the number of preallocated domains in the optimization task. When this number is reached

MOSEK will automatically allocate more space. It is never mandatory to call this function, since
MOSEK will reallocate any internal structures whenever it is required.

Parameters
maxnumdomain (long) — Number of preallocated domains. (input)
Groups
Environment and task management, Problem data - domain
putmaxnumgnz

public synchronized void putmaxnumgnz(long maxnumgnz)

Sets the number of preallocated non-zero entries in quadratic terms.

MOSEK stores only the non-zero elements in ). Therefore, MOSEK cannot predict how much
storage is required to store ). Using this function it is possible to specify the number non-zeros to
preallocate for storing @ (both objective and constraints).

It may be advantageous to reserve more non-zeros for () than actually needed since it may improve
the internal efficiency of MOSEK, however, it is never worthwhile to specify more than the double
of the anticipated number of non-zeros in Q.

It is not mandatory to call this function, since MOSEK will reallocate internal structures whenever

it is necessary.

Parameters
maxnumqnz (long) — Number of non-zero elements preallocated in quadratic coeffi-
cient matrices. (input)

Groups
Environment and task management, Problem data - quadratic part

putmaxnumvar
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public synchronized void putmaxnumvar(int maxnumvar)

Sets the number of preallocated variables in the optimization task. When this number of variables
is reached MOSEK will automatically allocate more space for variables.

It is not mandatory to call this function. It only gives a hint about the amount of data to preallocate
for efficiency reasons.

Please note that maxnumvar must be larger than the current number of variables in the task.

Parameters
maxnumvar (int) — Number of preallocated variables in the optimization task. (in-
put)

Groups
Environment and task management, Problem data - variables

Task.putnadouparam

public synchronized void putnadouparam
(String paramname,
double parvalue)

Sets the value of a named double parameter.

Parameters
e paramname (String) — Name of a parameter. (input)
e parvalue (double) — Parameter value. (input)

Groups
Parameters

Task.putnaintparam

public synchronized void putnaintparam
(String paramname,
int parvalue)

Sets the value of a named integer parameter.

Parameters
e paramname (String) — Name of a parameter. (input)
e parvalue (int) — Parameter value. (input)

Groups
Parameters

Task.putnastrparam

public synchronized void putnastrparam
(String paramname,
String parvalue)

Sets the value of a named string parameter.

Parameters
e paramname (String) — Name of a parameter. (input)
e parvalue (String) — Parameter value. (input)

Groups
Parameters

Task.putobjname
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public synchronized void putobjname(String objname)

Assigns a new name to the objective.

Parameters

objname (String) — Name of the objective. (input)
Groups

Problem data - linear part, Names, Problem data - objective

Task.putobjsense
public synchronized void putobjsense(objsense sense)

Sets the objective sense of the task.

Parameters
sense (objsense ) — The objective sense of the task. The values objsense.mazimize
and objsense.minimize mean that the problem is maximized or minimized respec-
tively. (input)

Groups
Problem data - linear part, Problem data - objective

Task.putoptserverhost
public synchronized void putoptserverhost(String host)

Specify an OptServer URL for remote calls. The URL should contain protocol, host and port in
the form http://server:port or https://server:port. If the URL is set using this function, all
subsequent calls to any MOSEK function that involves synchronous optimization will be sent to
the specified OptServer instead of being executed locally. Passing null or empty string deactivates
this redirection.

Has the same effect as setting the parameter sparam.remote_optserver_host.

Parameters

host (String) — A URL specifying the optimization server to be used. (input)
Groups

Remote optimization

Task.putparam

public synchronized void putparam
(String parname,
String parvalue)

Checks if parname is valid parameter name. If it is, the parameter is assigned the value specified
by parvalue.

Parameters
e parname (String) — Parameter name. (input)
e parvalue (String) — Parameter value. (input)

Groups
Parameters

Task.putqcon

public synchronized void putqcon
(int[] qcsubk,
int[] qcsubi,
int[] qcsubj,
double[] qgcval)
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Replace all quadratic entries in the constraints. The list of constraints has the form

1 numvar—1 numvar—1 numvar—1
c k c
lk§§ E E 4;;Ti%Tj + g ar;jz; <up, k=0,...,m—1
=0 3=0 7=0

This function sets all the quadratic terms to zero and then performs the update:

qcsubk|[t] ___qcsubk[t] ___qcsubk[t]
qcsubift],qcsubj[t] — {qcsubj[t],qcsubi[t] T Zqcsubj[t],qcsubift] + qcval[t},
for t =0,...,numgcnz — 1.

Please note that:
e For large problems it is essential for the efficiency that the function Task.putmaznumgnz is
employed to pre-allocate space.

e Only the lower triangular parts should be specified because the () matrices are symmetric.
Specifying entries where ¢ < j will result in an error.

e Only non-zero elements should be specified.

e The order in which the non-zero elements are specified is insignificant.

e Duplicate elements are added together as shown above. Hence, it is usually not recommended
to specify the same entry multiple times.

For a code example see Section Quadratic Optimization

Parameters
e qgcsubk (int[]) — Constraint subscripts for quadratic coefficients. (input)
e gcsubi (int[]) — Row subscripts for quadratic constraint matrix. (input)

gcsubj (int[]) — Column subscripts for quadratic constraint matrix. (input)
e gcval (double[]) — Quadratic constraint coefficient values. (input)

Groups
Problem data - quadratic part

Task.putqconk

public synchronized void putqconk
(int k,
int[] gcsubi,
int[] qcsubj,
double[] qcval)

Replaces all the quadratic entries in one constraint. This function performs the same operations
as Task.putqcon but only with respect to constraint number k and it does not modify the other
constraints. See the description of Task.putgcon for definitions and important remarks.

Parameters
e k (int) — The constraint in which the new @ elements are inserted. (input)
e gcsubi (int[]) — Row subscripts for quadratic constraint matrix. (input)

gcsubj (int[]) — Column subscripts for quadratic constraint matrix. (input)
e gcval (double[]) — Quadratic constraint coefficient values. (input)

Groups
Problem data - quadratic part

Task.putqobj

public synchronized void putqobj
(int[] qosubi,
int[] qosubj,
double[] qoval)
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Replace all quadratic terms in the objective. If the objective has the form

umvar —1 numvar—1 numvar —1

S Y wmat Y et
i=0 =0 =0

then this function sets all the quadratic terms to zero and then performs the update:

qc(;osubi[t],qosubj £ — qc(;osubj [t],qosubilt] — qgosubj [t],qosubi[t] + qoval[tL

for t =0,...,numqonz — 1.

See the description of Task.putgcon for important remarks and example.

Parameters
e gosubi (int[]) — Row subscripts for quadratic objective coefficients. (input)
e gosubj (int[]) — Column subscripts for quadratic objective coefficients. (input)
e goval (double[]) — Quadratic objective coeflicient values. (input)

Groups
Problem data - quadratic part, Problem data - objective

Task.putqobjij

public synchronized void putqobjij
(int i,
int j,
double goij)

Replaces one coefficient in the quadratic term in the objective. The function performs the assign-
ment

qu = q}’i = qoij.
Only the elements in the lower triangular part are accepted. Setting g;; with j > ¢ will cause an

error.

Please note that replacing all quadratic elements one by one is more computationally expensive
than replacing them all at once. Use Task.putqobj instead whenever possible.

Parameters
e i (int) — Row index for the coefficient to be replaced. (input)
e j (int) — Column index for the coefficient to be replaced. (input)
e qoij (double) — The new value for ¢f;. (input)
Groups
Problem data - quadratic part, Problem data - objective

Task.putskc
public synchronized void putskc

(soltype whichsol,
stakey[] skc)

Sets the status keys for the constraints.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e skc (stakey [1) — Status keys for the constraints. (input)

Groups
Solution information

Task.putskcslice
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public synchronized void putskcslice
(soltype whichsol,
int first,
int last,
stakey[] skc)

Sets the status keys for a slice of the constraints.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)
e skc (stakey [1) — Status keys for the constraints. (input)
Groups
Solution information

Task.putskx

public synchronized void putskx
(soltype whichsol,
stakey[] skx)

Sets the status keys for the scalar variables.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e skx (stakey [1) — Status keys for the variables. (input)
Groups
Solution information

Task.putskxslice

public synchronized void putskxslice
(soltype whichsol,
int first,
int last,
stakey[] skx)

Sets the status keys for a slice of the variables.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)
e skx (stakey [1) — Status keys for the variables. (input)
Groups
Solution information

Task.putslc

public synchronized void putslc
(soltype whichsol,
double[] slc)

Sets the s vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
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e slc (double[]) — Dual variables corresponding to the lower bounds on the con-
straints. (input)

Groups
Solution - dual

Task.putslcslice

public synchronized void putslcslice
(soltype whichsol,
int first,
int last,
double[] slc)

Sets a slice of the sf vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)

e slc (double[]) — Dual variables corresponding to the lower bounds on the con-
straints. (input)

Groups
Solution - dual

Task.putslx

public synchronized void putslx
(soltype whichsol,
double[] slx)

Sets the s7 vector for a solution.

Parameters

e whichsol (soltype) — Selects a solution. (input)

e slx (double[]) — Dual variables corresponding to the lower bounds on the vari-
ables. (input)
Groups
Solution - dual

Task.putslxslice

public synchronized void putslxslice
(soltype whichsol,
int first,
int last,
double[] slx)

Sets a slice of the si vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)

e slx (double[]) — Dual variables corresponding to the lower bounds on the vari-
ables. (input)

Groups
Solution - dual
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Task.putsnx

public synchronized void putsnx

(soltype
double[]

whichsol,
sux)

Sets the s? vector for a solution.

Parameters

whichsol (soltype) — Selects a solution. (input)

sux (double[]) — Dual variables corresponding to the upper bounds on the
variables. (input)

Groups
Solution - dual

Task.putsnxslice

public synchronized void putsnxslice

(soltype

whichsol,

int first,
int last,

doublel]

snx)

Sets a slice of the s;. vector for a solution.

Parameters

whichsol (soltype) — Selects a solution. (input)
first (int) — First index in the sequence. (input)
last (int) — Last index plus 1 in the sequence. (input)

snx (double[]) — Dual variables corresponding to the conic constraints on the
variables. (input)

Groups
Solution - dual

Task.putsolution

public synchronized void putsolution

(soltype
stakey[]
stakey[]
stakey[]
double[]
double[]
double[]
double([]
double[]
double[]
double[]
double[]

whichsol,

skc,
skx,
skn,
XC,
XX,
Yy
slc,
suc,
slx,
sux,
snx)

Inserts a solution into the task.

Parameters

whichsol (soltype) — Selects a solution. (input)

skc (stakey [1) — Status keys for the constraints. (input)

skx (stakey [1) — Status keys for the variables. (input)

skn (stakey [1) — Status keys for the conic constraints. (input)
xc (double[]) — Primal constraint solution. (input)
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xx (double[]) — Primal variable solution. (input)

y (double[]) — Vector of dual variables corresponding to the constraints. (input)
slc (double[]) — Dual variables corresponding to the lower bounds on the con-
straints. (input)

suc (double[]) — Dual variables corresponding to the upper bounds on the
constraints. (input)

slx (double[]) — Dual variables corresponding to the lower bounds on the vari-
ables. (input)

sux (double[]) — Dual variables corresponding to the upper bounds on the
variables. (input)

snx (double[]) — Dual variables corresponding to the conic constraints on the
variables. (input)

Groups
Solution information, Solution - primal, Solution - dual

Task.putsolutionnew

public synchronized void putsolutionnew

(soltype
stakey[]
stakey[]
stakey[]
double[]
double[]
double[]
double[]
double[]
double[]
double[]
double[]
double[]

whichsol,
skc,
skx,
skn,
XC,
XX,
Y
slc,
suc,
slx,
sux,
snx,
doty)

Inserts a solution into the task.

Parameters

whichsol (soltype) — Selects a solution. (input)

skc (stakey [1) — Status keys for the constraints. (input)

skx (stakey [1) — Status keys for the variables. (input)

skn (stakey [1) — Status keys for the conic constraints. (input)

xc (double[]) — Primal constraint solution. (input)

xx (double[]) — Primal variable solution. (input)

y (double[1) — Vector of dual variables corresponding to the constraints. (input)
slc (double[]) — Dual variables corresponding to the lower bounds on the con-
straints. (input)

suc (double[]) — Dual variables corresponding to the upper bounds on the
constraints. (input)

slx (double[]) — Dual variables corresponding to the lower bounds on the vari-
ables. (input)

sux (double[]) — Dual variables corresponding to the upper bounds on the
variables. (input)

snx (double[]) — Dual variables corresponding to the conic constraints on the
variables. (input)

doty (double[]) — Dual variables corresponding to affine conic constraints. (in-
put)

Groups
Solution information, Solution - primal, Solution - dual
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Task.putsolutionyi

public synchronized void putsolutionyi

(int i,
soltype whichsol,
double y)

Inputs the dual variable of a solution.

Parameters
e i (int) — Index of the dual variable. (input)
e whichsol (soltype) — Selects a solution. (input)
e y (double) — Solution value of the dual variable. (input)

Groups
Solution information, Solution - dual

Task.putstrparam

public synchronized void putstrparam
(sparam param,
String parvalue)

Sets the value of a string parameter.

Parameters
e param (sparam) — Which parameter. (input)
e parvalue (String) — Parameter value. (input)

Groups
Parameters

Task.putsuc

public synchronized void putsuc
(soltype whichsol,
double[] suc)

Sets the s vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)

e suc (double[]) — Dual variables corresponding to the upper bounds on the
constraints. (input)

Groups
Solution - dual

Task.putsucslice

public synchronized void putsucslice
(soltype whichsol,
int first,
int last,
double[] suc)

Sets a slice of the s{ vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)
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e suc (double[]) — Dual variables corresponding to the upper bounds on the
constraints. (input)

Groups
Solution - dual

Task.putsux

public synchronized void putsux
(soltype whichsol,
double[] sux)

Sets the si vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e sux (double[]) — Dual variables corresponding to the upper bounds on the
variables. (input)

Groups
Solution - dual

Task.putsuxslice

public synchronized void putsuxslice
(soltype whichsol,
int first,
int last,
double[] sux)

Sets a slice of the si vector for a solution.

Parameters

e whichsol (soltype) — Selects a solution. (input)

e first (int) — First index in the sequence. (input)

e last (int) — Last index plus 1 in the sequence. (input)
sux (double[]) — Dual variables corresponding to the upper bounds on the
variables. (input)

Groups
Solution - dual

Task.puttaskname
public synchronized void puttaskname(String taskname)

Assigns a new name to the task.

Parameters

taskname (String) — Name assigned to the task. (input)
Groups

Names, Environment and task management

Task.putvarbound

public synchronized void putvarbound
(int j,
boundkey bkx,
double blx,
double bux)
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Changes the bounds for one variable.

If the bound value specified is numerically larger than dparam.data_tol_bound_inf it is consid-
ered infinite and the bound key is changed accordingly. If a bound value is numerically larger than
dparam.data_tol_bound_wrn, a warning will be displayed, but the bound is inputted as specified.

Parameters
e j (int) — Index of the variable. (input)
e bkx (boundkey) — New bound key. (input)
e blx (double) — New lower bound. (input)
e bux (double) — New upper bound. (input)

Groups
Problem data - linear part, Problem data - variables, Problem data - bounds

Task.putvarboundlist

public synchronized void putvarboundlist
(int[] sub,
boundkey[] bkx,
double[] blx,
double[] bux)

Changes the bounds for one or more variables. If multiple bound changes are specified for a variable,
then only the last change takes effect. Data checks are performed as in Task.putvarbound.

Parameters
e sub (int[]) — List of variable indexes. (input)
e bkx (boundkey [1) — Bound keys for the variables. (input)
e blx (double[]) — Lower bounds for the variables. (input)
e bux (double[]) — Upper bounds for the variables. (input)

Groups
Problem data - linear part, Problem data - variables, Problem data - bounds

Task.putvarboundlistconst

public synchronized void putvarboundlistconst
(int[] sub,
boundkey bkx,
double blx,
double bux)

Changes the bounds for one or more variables. Data checks are performed as in Task. putvarbound.

Parameters
e sub (int[]) — List of variable indexes. (input)
e bkx (boundkey) — New bound key for all variables in the list. (input)
e blx (double) — New lower bound for all variables in the list. (input)
e bux (double) — New upper bound for all variables in the list. (input)

Groups
Problem data - linear part, Problem data - variables, Problem data - bounds

Task.putvarboundslice

public synchronized void putvarboundslice
(int first,
int last,
boundkey[] bkx,
double[] blx,
double[] bux)
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Changes the bounds for a slice of the variables. Data checks are performed as in Task.
putvarbound.

Parameters
e first (int) — First index in the sequence. (input)
last (int) — Last index plus 1 in the sequence. (input)

e bkx (boundkey [1) — Bound keys for the variables. (input)
e blx (double[]) — Lower bounds for the variables. (input)
e bux (double[]) — Upper bounds for the variables. (input)

Groups
Problem data - linear part, Problem data - variables, Problem data - bounds

Task.putvarboundsliceconst

public synchronized void putvarboundsliceconst
(int first,
int last,
boundkey bkx,
double blx,
double bux)

Changes the bounds for a slice of the variables. Data checks are performed as in Task.
putvarbound.

Parameters
e first (int) — First index in the sequence. (input)
last (int) — Last index plus 1 in the sequence. (input)

e bkx (boundkey) — New bound key for all variables in the slice. (input)
blx (double) — New lower bound for all variables in the slice. (input)

bux (double) — New upper bound for all variables in the slice. (input)

Groups
Problem data - linear part, Problem data - variables, Problem data - bounds

Task.putvarname

public synchronized void putvarname
(int j,
String name)

Sets the name of a variable.

Parameters
e j (int) — Index of the variable. (input)
e name (String) — The variable name. (input)

Groups
Names, Problem data - variables, Problem data - linear part

Task.putvarsolutionj

public synchronized void putvarsolutionj

(int j,

soltype whichsol,

stakey sk,

double x,

double sl1,

double su,

double sn)
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Sets the primal and dual solution information for a single variable.

Parameters
e j (int) — Index of the variable. (input)
e whichsol (soltype) — Selects a solution. (input)
e sk (stakey) — Status key of the variable. (input)
e x (double) — Primal solution value of the variable. (input)
e sl (double) — Solution value of the dual variable associated with the lower bound.
(input)
e su (double) — Solution value of the dual variable associated with the upper
bound. (input)
e sn (double) — Solution value of the dual variable associated with the conic con-
straint. (input)
Groups
Solution information, Solution - primal, Solution - dual

Task.putvartype

public synchronized void putvartype
(int j,
variabletype vartype)

Sets the variable type of one variable.

Parameters
e j (int) — Index of the variable. (input)
e vartype (variabletype) — The new variable type. (input)

Groups
Problem data - variables

Task.putvartypelist

public synchronized void putvartypelist
(int[] subj,
variabletypel[] vartype)

Sets the variable type for one or more variables. If the same index is specified multiple times in
subj only the last entry takes effect.

Parameters
e subj (int[]) — A list of variable indexes for which the variable type should be
changed. (input)
e vartype (variabletype [1) — A list of variable types that should be assigned to
the variables specified by subj. (input)
Groups

Problem data - variables

Task.putxc

public synchronized void putxc
(soltype whichsol,
double[] xc)

Sets the z¢ vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e xc (double[]) — Primal constraint solution. (output)
Groups
Solution - primal

385



Task.putxcslice

public synchronized void putxcslice
(soltype whichsol,
int first,
int last,
double[] xc)

Sets a slice of the z¢ vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)
e xc (double[]) — Primal constraint solution. (input)

Groups
Solution - primal

Task.putxx

public synchronized void putxx
(soltype whichsol,
double[] xx)

Sets the z* vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e xx (double[]) — Primal variable solution. (input)
Groups
Solution - primal

Task.putxxslice

public synchronized void putxxslice
(soltype whichsol,
int first,
int last,
double[] xx)

Sets a slice of the z* vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)
e xx (double[]) — Primal variable solution. (input)
Groups
Solution - primal

Task.puty

public synchronized void puty
(soltype whichsol,
double[] y)

Sets the y vector for a solution.

Parameters
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e whichsol (soltype) — Selects a solution. (input)
e y (double[]) — Vector of dual variables corresponding to the constraints. (input)

Groups
Solution - primal

Task.putyslice

public synchronized void putyslice
(soltype whichsol,
int first,
int last,
double[] y)

Sets a slice of the y vector for a solution.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e first (int) — First index in the sequence. (input)
e last (int) — Last index plus 1 in the sequence. (input)
e y (double[]) — Vector of dual variables corresponding to the constraints. (input)

Groups
Solution - dual

Task.readbsolution

public synchronized void readbsolution
(String filename,
compresstype compress)

Read a binary dump of the task solution.

Parameters
e filename (String) — A valid file name. (input)
e compress (compresstype) — Data compression type. (input)

Groups
Input/Output

Task.readdata
public synchronized void readdata(String filename)

Reads an optimization problem and associated data from a file.

Parameters

filename (String) — A valid file name. (input)
Groups

Input/Output

Task.readdataformat

public synchronized void readdataformat
(String filename,
dataformat format,
compresstype compress)

Reads an optimization problem and associated data from a file.

Parameters
e filename (String) — A valid file name. (input)
e format (dataformat) — File data format. (input)
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Task.

Task.

Task.

Task.

Task.

e compress (compresstype) — File compression type. (input)
Groups
Input/Output

readjsonsol
public synchronized void readjsonsol(String filename)

Reads a solution file in JSON format (JSOL file) and inserts it in the task. Only the section
Task/solutions is taken into consideration.

Parameters
filename (String) — A valid file name. (input)

Groups
Input/Output

readjsonstring
public synchronized void readjsonstring(String data)

Load task data from a JSON string, replacing any data that already exists in the task object. All
problem data, parameters and other settings are resorted, but if the string contains solutions, the
solution status after loading a file is set to unknown, even if it is optimal or otherwise well-defined.

Parameters

data (String) — Problem data in text format. (input)
Groups

Input/Output

readlpstring
public synchronized void readlpstring(String data)

Load task data from a string in LP format, replacing any data that already exists in the task
object.

Parameters

data (String) — Problem data in text format. (input)
Groups

Input/Output

readopfstring
public synchronized void readopfstring(String data)

Load task data from a string in OPF format, replacing any data that already exists in the task
object.

Parameters

data (String) — Problem data in text format. (input)
Groups

Input/Output

readparamfile
public synchronized void readparamfile(String filename)

Reads MOSEK parameters from a file. Data is read from the file filename if it is a nonempty
string. Otherwise data is read from the file specified by sparam.param_read_file_name.

The parameter file must begin with BEGIN MOSEK and end with END MOSEK; empty lines and lines
starting from a % sign are ignored; each remaining line contains a valid MOSEK parameter name
followed by its value (using generic names as in the command-line tool syntax). Example:
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BEGIN MOSEK
% This is a comment.

MSK_IPAR_PRESOLVE_USE MSK_OFF
MSK_DPAR_INTPNT_TOL_PFEAS 1.0e-9
END MOSEK

Parameters

filename (String) — A valid file name. (input)

Groups
Input/Output, Parameters

Task.readptfstring
public synchronized void readptfstring(String data)

Load task data from a PTF string, replacing any data that already exists in the task object. All
problem data, parameters and other settings are resorted, but if the string contains solutions, the
solution status after loading a file is set to unknown, even if it is optimal or otherwise well-defined.

Parameters
data (String) — Problem data in text format. (input)

Groups
Input/Output

Task.readsolution

public synchronized void readsolution
(soltype whichsol,
String filename)

Reads a solution file and inserts it as a specified solution in the task. Data is read from the file
filename if it is a nonempty string. Otherwise data is read from one of the files specified by sparam.
bas_sol_file_name, sparam.itr_sol_file_name or sparam.int_sol_file_name depending on
which solution is chosen.

Parameters
e whichsol (soltype) — Selects a solution. (input)
e filename (String) — A valid file name. (input)

Groups
Input/Output

Task.readsolutionfile
public synchronized void readsolutionfile(String filename)

Read solution file in format determined by the filename

Parameters
filename (String) — A valid file name. (input)

Groups
Input/Output

Task.readsummary
public synchronized void readsummary(streamtype whichstream)

Prints a short summary of last file that was read.

Parameters
whichstream (streamtype) — Index of the stream. (input)
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Groups
Input/Output, Inspecting the task

Task.readtask
public synchronized void readtask(String filename)

Load task data from a file, replacing any data that already exists in the task object. All problem
data, parameters and other settings are resorted, but if the file contains solutions, the solution
status after loading a file is set to unknown, even if it was optimal or otherwise well-defined when
the file was dumped.

See section The Task Format for a description of the Task format.

Parameters
filename (String) — A valid file name. (input)

Groups
Input/Output

Task.removebarvars
public synchronized void removebarvars(int[] subset)

The function removes a subset of the symmetric matrices from the optimization task. This implies
that the remaining symmetric matrices are renumbered.

Parameters
subset (int[]) — Indexes of symmetric matrices which should be removed. (input)

Groups
Problem data - semidefinite

Task-removecones Deprecated
public synchronized void removecones(int[] subset)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Removes a number of conic constraints from the problem. This implies that the remaining conic
constraints are renumbered. In general, it is much more efficient to remove a cone with a high
index than a low index.

Parameters
subset (int[]) — Indexes of cones which should be removed. (input)

Groups
Problem data - cones (deprecated)

Task.removecons
public synchronized void removecons(int[] subset)

The function removes a subset of the constraints from the optimization task. This implies that the
remaining constraints are renumbered.

Parameters
subset (int[]) — Indexes of constraints which should be removed. (input)

Groups
Problem data - constraints, Problem data - linear part

Task.removevars
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public synchronized void removevars(int[] subset)

The function removes a subset of the variables from the optimization task. This implies that the
remaining variables are renumbered.

Parameters
subset (int[]) — Indexes of variables which should be removed. (input)

Groups
Problem data - variables, Problem data - linear part

Task.resetdouparam
public synchronized void resetdouparam(dparam param)

Resets a double parameter to its default value.

Parameters

param (dparam) — Which parameter. (input)
Groups

Parameters

Task.resetintparam
public synchronized void resetintparam(iparam param)

Resets an integer parameter to its default value.

Parameters
param (zparam) — Which parameter. (input)
Groups
Parameters
Task.resetparameters

public synchronized void resetparameters()

Resets all the parameters to their default values.

Groups
Parameters

Task.resetstrparam
public synchronized void resetstrparam(sparam param)

Resets a string parameter to its defalt value.

Parameters

param (sparam) — Which parameter. (input)
Groups

Parameters

Task.resizetask

public synchronized void resizetask
(int maxnumcon,
int maxnumvar,
int maxnumcone,
long maxnumanz,
long maxnumqnz)
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Sets the amount of preallocated space assigned for each type of data in an optimization task.

It is never mandatory to call this function, since it only gives a hint about the amount of data to
preallocate for efficiency reasons.

Please note that the procedure is destructive in the sense that all existing data stored in the task

is destroyed.

Parameters

maxnumcon (int) — New maximum number of constraints. (input)

maxnumvar (int) — New maximum number of variables. (input)

maxnumcone (int) — New maximum number of cones. (input)

maxnumanz (long) — New maximum number of non-zeros in A. (input)
maxnumgnz (long) — New maximum number of non-zeros in all @ matrices. (in-
put)

Groups
Environment and task management

Task.sensitivityreport

public synchronized void sensitivityreport(streamtype whichstream)

Reads a sensitivity format file from a location given by sparam.sensitivity_file_name and
writes the result to the stream whichstream. If sparam.sensitivity_res_file_name is set to a
non-empty string, then the sensitivity report is also written to a file of this name.

Parameters
whichstream (streamtype) — Index of the stream. (input)

Groups
Sensitivity analysis

Task.set_InfoCallback

void set_InfoCallback (mosek.DataCallback callback)

Receive callbacks with solver status and information during optimization.

For example:

task.set_InfoCallback(
new mosek.InfoCallback() {
int callback(mosek.callbackcode code, double[] dinf, int[]iinf, long[],

—1iinf) {

System.println("Callback "+code+", intpnt time : "+dinf [mosek.dinfitem.

—intpnt_time.getValue()]);
return 0O;

} Y

Parameters
callback (DataCallback) — The callback object. (input)

Groups
Callback

Task.set_ItgSolutionCallback

void set_ItgSolutionCallback (mosek.ItgSolutionCallback callback)

Receive callbacks with solution updates from the mixed-integer optimizer.

For example:
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task.set_ItgSolutionCallback(
new mosek.ItgSolutionCallback() {
void callback(double[] xx) {
System.out.print("New integer solution: ");
for (double v : xx) System.out.print("" + v + " ");
System.out.println("");

s
Parameters
callback (ItgSolutionCallback) — The callback object. (input)

Groups
Callback

Task.set_Progress
void set_Progress (mosek.Progress callback)

Receive callbacks about current status of the solver during optimization.

For example:

task.set_Progress(new mosek.Progress() { int progress(mosek.callbackcode code) {
—System.println("Callback "+code); return O0; } });

Parameters
callback (Progress) — The callback object. (input)

Groups
Callback

Task.set_Stream

void set_Stream(
mosek.streamtype whichstream,
mosek.Stream callback)

Directs all output from a task stream to a callback object.

Can for example be called as:

task.set_Stream(mosek.streamtype.log, new Stream() { public void stream(String,

—s) { System.out.print(s); } } );

Parameters
e whichstream (streamtype) — Index of the stream. (input)

e callback (Stream) — The callback object. (input)

Groups
Callback, Logging

Task.solutiondef

public synchronized void solutiondef
(soltype whichsol,
boolean[] isdef)

public synchronized boolean solutiondef (soltype whichsol)

Checks whether a solution is defined.

Parameters
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e whichsol (soltype) — Selects a solution. (input)
e isdef (boolean by reference) — Is non-zero if the requested solution is defined.
(output)
Return
(boolean) — Is non-zero if the requested solution is defined.

Groups
Solution information

Task.solutionsummary
public synchronized void solutionsummary(streamtype whichstream)

Prints a short summary of the current solutions.

Parameters

whichstream (streamtype) — Index of the stream. (input)
Groups

Logging, Solution information

Task.solvewithbasis

public synchronized void solvewithbasis
(boolean transp,
int numnz,
int[] sub,
double[] val,
int[] numnzout)

public synchronized int solvewithbasis
(boolean transp,
int numnz,
int[] sub,
double[] val)

If a basic solution is available, then exactly numcon basis variables are defined. These numcon
basis variables are denoted the basis. Associated with the basis is a basis matrix denoted B. This
function solves either the linear equation system

BX =b (15.3)
or the system
BTX =0 (15.4)

for the unknowns X, with b being a user-defined vector. In order to make sense of the solution
X it is important to know the ordering of the variables in the basis because the ordering specifies
how B is constructed. When calling Task.initbasissolve an ordering of the basis variables is
obtained, which can be used to deduce how MOSEK has constructed B. Indeed if the k-th basis
variable is variable x; it implies that
Bir=A

ij> ¢ =20,...,numcon — 1.

Otherwise if the k-th basis variable is variable z it implies that

_ _17 ZZ]?
&*{0, i # .

The function Task.initbasissolve must be called before a call to this function. Please note that
this function exploits the sparsity in the vector b to speed up the computations.
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Parameters
e transp (boolean) — If this argument is zero, then (15.3) is solved, if non-zero
then (15.4) is solved. (input)
e numnz (int) — The number of non-zeros in b. (input)

e sub (int[]) — As input it contains the positions of non-zeros in b. As output
it contains the positions of the non-zeros in X. It must have room for numcon
elements. (input/output)

e val (double[]) — As input it is the vector b as a dense vector (although the
positions of non-zeros are specified in sub it is required that val[i] = 0 when
bli] = 0). As output val is the vector X as a dense vector. It must have length
numecon. (input/output)

e numnzout (int by reference) — The number of non-zeros in X. (output)

Return
(int) — The number of non-zeros in X.

Groups
Solving systems with basis matrix

Task-strteconetype Deprecated

public synchronized void strtoconetype
(String str,
conetype[] conetype)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Obtains cone type code corresponding to a cone type string.

Parameters
e str (String) — String corresponding to the cone type code conetype. (input)

e conetype (mosek.conetype by reference) — The cone type corresponding to the
string str. (output)

Groups
Names

Task.strtosk

public synchronized void strtosk
(String str,
stakey[] sk)

Obtains the status key corresponding to an abbreviation string.

Parameters
e str (String) — A status key abbreviation string. (input)
e sk (mosek.stakey by reference) — Status key corresponding to the string. (out-
put)
Groups
Names

Task-teconie Deprecated
public synchronized void toconic()
This function tries to reformulate a given Quadratically Constrained Quadratic Optimization prob-
lem (QCQO) as a Conic Quadratic Optimization problem (CQO). The first step of the reformula-

tion is to convert the quadratic term of the objective function, if any, into a constraint. Then the
following steps are repeated for each quadratic constraint:
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Task.

Task.

Task.

Task.

e a conic constraint is added along with a suitable number of auxiliary variables and constraints;

e the original quadratic constraint is not removed, but all its coefficients are zeroed out.

Note that the reformulation preserves all the original variables.

The conversion is performed in-place, i.e. the task passed as argument is modified on exit. That
also means that if the reformulation fails, i.e. the given QCQP is not representable as a CQO, then
the task has an undefined state. In some cases, users may want to clone the task to ensure a clean
copy is preserved.

Groups
Problem data - quadratic part

unset_Progress
void unset_Progress ()

Deactivates all user callback functions.

Groups
Callback

updatesolutioninfo
public synchronized void updatesolutioninfo(soltype whichsol)

Update the information items related to the solution.

Parameters
whichsol (soltype) — Selects a solution. (input)
Groups
Information items and statistics
writebsolution

public synchronized void writebsolution
(String filename,
compresstype compress)

Write a binary dump of the task solution.

Parameters
e filename (String) — A valid file name. (input)
e compress (compresstype) — Data compression type. (input)

Groups
Input/Output

writedata
public synchronized void writedata(String filename)

Writes problem data associated with the optimization task to a file in one of the supported formats.
See Section Supported File Formats for the complete list.

The data file format is determined by the file name extension. To write in compressed format
append the extension .gz. E.g to write a gzip compressed MPS file use the extension mps.gz.

Please note that MPS, LP and OPF files require all variables to have unique names. If a task
contains no names, it is possible to write the file with automatically generated anonymous names
by setting the iparam.write_generic_names parameter to onoffkey.on.

Data is written to the file filename if it is a nonempty string. Otherwise data is written to the
file specified by sparam.data_file_name.

396



Task.
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Parameters
filename (String) — A valid file name. (input)

Groups
Input/Output

writedatastream

void writedatastream(mosek.dataformat format,
mosek.compresstype compress,
OutputStream stream)

Writes problem data associated with the optimization task to a stream in one of the supported
formats.

The stream should be an instance of java.io.OutputStream and it will be written to using the
method write(bytel[]). For example:

task.writedatastream(mosek.dataformat.ptf, mosek.compresstype.none, System.
—out) ;

task.writedatastream(mosek.dataformat. json_task, mosek.compresstype.none, new
—java.io.FileOutputStream("data.jtask"));

Parameters
e format (mosek.dataformat) — Data format. (input)
e compress (mosek.compresstype) — Selects compression type. (input)
e stream (OutputStream) — The output stream. (input)

Groups
Input/Output

writejsonsol
public synchronized void writejsonsol(String filename)

Saves the current solutions and solver information items in a JSON file. If the file name has the
extensions .gz or .zst, then the file is gzip or Zstd compressed respectively.

Parameters
filename (String) — A valid file name. (input)

Groups
Input/Output

writeparamfile
public synchronized void writeparamfile(String filename)

Writes all the parameters to a parameter file.

Parameters
filename (String) — A valid file name. (input)
Groups
Input/Output, Parameters
writesolution

public synchronized void writesolution
(soltype whichsol,
String filename)

Saves the current basic, interior-point, or integer solution to a file.

Parameters
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e whichsol (soltype) — Selects a solution. (input)
e filename (String) — A valid file name. (input)
Groups
Input/Output

Task.writesolutionfile
public synchronized void writesolutionfile(String filename)

Write solution file in format determined by the filename

Parameters
filename (String) — A valid file name. (input)

Groups
Input/Output

Task.writetask
public synchronized void writetask(String filename)

Write a binary dump of the task data. This format saves all problem data, coefficients and param-
eter settings. See section The Task Format for a description of the Task format.

Parameters
filename (String) — A valid file name. (input)

Groups
Input/Output

15.5 Exceptions

MosekException
The base class for all exceptions in MOSEK.
Exception
Base class for exceptions that correspond to MOSEK response codes.

Implements
MosekExzception

Error
Exception class used for all error response codes from MOSEK.

Implements
Exception

Warning
Exception class used for all warning response codes from MOSEK.

Implements
Exception

NullArrayException
Exception thrown when null was passed to a method that expected non-null array argument.

Implements
MosekExzception

ArrayLengthException

Exception thrown the length of an array was smaller than required. This will happen, for example,
if requesting a list of N values, but the array passed to the method is less than N elements long.

Implements
MosekExzception
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15.6 Parameters grouped by topic

Analysis

dparam.
tparam.
tparam.

iparam.

ana_sol_infeas_tol
ana_sol_basts
ana_sol_print_violated

log_ana_pro

identification

dparam.
iparam.
iparam.
iparam.
iparam.
tparam.
tparam.

iparam.

sim_lu_tol_rel_piv
bi_clean_optimizer
bi_ignore_mazx_tter
bi_ignore_num_error
bi_maz_iterations
intpnt_basis

log_b1

log_bi_freq

Conic interior-point method

dparam.
dparam.
dparam.
dparam.
dparam.

dparam.

check

dparam.
dparam.
dparam.
dparam.
dparam.
dparam.
dparam.
dparam.
dparam.
dparam.
dparam.

dparam.

intpnt_co_tol_dfeas
wntpnt_co_tol_infeas
intpnt_co_tol_mu_red
intpnt_co_tol_near_rel
tntpnt_co_tol_pfeas

tntpnt_co_tol_rel_gap

data_sym_mat_tol
data_sym_mat_tol_huge
data_sym_mat_tol_large
data_tol_aij_huge
data_tol_arj_large
data_tol_bound_inf
data_tol_bound_wrn
data_tol_c_huge
data_tol_cj_large
data_tol_qij
data_tol_z

semidefinite_tol_approx
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Data input/output
e iparam.infeas_report_auto
e iparam.log_file
e iparam.opf_write_header
e iparam.opf_write_hints
e iparam.opf_write_line_length
e iparam.opf_write_parameters
e iparam.opf_write_problem
e iparam.opf_write_sol_bas
e iparam.opf_write_sol_itg
e iparam.opf_write_sol_itr
e iparam.opf_write_solutions
e iparam.param_read_case_name
e iparam.param_read_ign_error
e iparam.ptf_write_parameters
e iparam.ptf_write_single_psd_terms
e iparam.ptf_write_solutions
e iparam.ptf_write_transform
e tparam.read_async
e iparam.read_debug
e iparam.read_keep_free_con
e iparam.read_mps_format
e tparam.read_mps_width
e iparam.read_task_ignore_param
® iparam.sol_read_name_width
e iparam.sol_read_width
® iparam.write_async
e iparam.write_bas_constiraints
e iparam.write_bas_head
e iparam.write_bas_variables
® iparam.write_compression
e iparam.write_free_con
e iparam.write_generic_names
e iparam.write_ignore_incompatible_items
e iparam.write_int_constraints

e iparam.write_int_head
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iparam.
iparam.
iparam.
iparam.
iparam.
iparam.
iparam.
iparam.
iparam.
iparam.
iparam.
sparam.
sparam.
sparam.
sparam.

sparam.

sparam

sparam.

sparam.

sparam

sparam.

sparam.

sparam.

sparam.

sparam.

sparam.

sparam.

sparam.

sparam.

sparam.

sparam

sparam

write_int_variables
write_json_indentation
write_lp_full_oby
write_lp_line_width
write_mps_format
write_mps_int
write_sol_barvariables
write_sol_constraints
write_sol_head
write_sol_ignore_tinvalid_names
write_sol_variables
bas_sol_file_name
data_file_name
debug_file_name
tnt_sol_file_name
1tr_sol_file_name
.mio_debug_string
param_comment_sign
param_read_file_name
.param_write_file_name
read_mps_bou_name
read_mps_obj_name
read_mps_ran_name
read_mps_rhs_name
sensttivity_file_name
sensitivity_res_file_name
sol_filter_zc_low
sol_filter_zc_upr
sol_filter_zz_low
sol_filter_zz_upr
.stat_key

.stat_name
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Debugging

e iparam.auto_sort_a_before_opt

Dual

simplex

tparam.sim_dual_crash

tparam.sim_dual_restrict_selection

iparam.sim_dual_selection

Infeasibility report

e iparam.infeas_generic_names

e iparam.infeas_report_level

e iparam.log_infeas_ana

Interior-point method

dparam.
dparam.
dparam.
dparam.
dparam.
dparam.
dparam.
dparam.
dparam.
dparam.
dparam.
dparam.
dparam.
dparam.
dparam.
dparam.
dparam.
dparam.
dparam.
dparam.
dparam.
dparam.

dparam.

intpnt_co_tol_dfeas
tntpnt_co_tol_infeas
wntpnt_co_tol_mu_red
intpnt_co_tol_near_rel
intpnt_co_tol_pfeas
wntpnt_co_tol_rel_gap
wntpnt_qo_tol_dfeas
intpnt_qo_tol_infeas
tntpnt_qo_tol_mu_red
intpnt_qo_tol_near_rel
intpnt_qo_tol_pfeas
tntpnt_qo_tol_rel_gap
wntpnt_tol_dfeas
tntpnt_tol_dsafe
tntpnt_tol_infeas
tntpnt_tol_mu_red
tntpnt_tol_path
wntpnt_tol_pfeas
wntpnt_tol_psafe
tntpnt_tol_rel_gap
tntpnt_tol_rel_step

intpnt_tol_step_size

gcqo_reformulate_rel_drop_tol
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iparam.
iparam.
iparam.
iparam.
iparam.
iparam.
iparam.
iparam.
iparam.
iparam.
iparam.
iparam.
iparam.
iparam.

tparam.

bi_ignore_maz_tter
bi_ignore_num_error
tntpnt_basis
wntpnt_diff_step
tntpnt_hotstart
tntpnt_maz_iterations
tntpnt_maz_num_cor
tntpnt_off_col_trh
tntpnt_order_gp_num_seeds
tntpnt_order_method
intpnt_regularization_use
intpnt_scaling
intpnt_solve_form
intpnt_starting_point

log_intpnt

License manager

e iparam.cache_license

iparam.
iparam.
iparam.
iparam.

iparam.

Logging

iparam.
iparam.
iparam.
iparam.
iparam.
iparam.
iparam.
tparam.
iparam.
tparam.

tparam.

license_debug
license_pause_time
license_suppress_eTpiTe_wrns
license_trh_exzpiry_wrn

license_watt

heartbeat_si