
MOSEK Command Line Tools
Release 11.0.21

MOSEK ApS

28 May 2025

Contents

1 Introduction 1
1.1 Why the Command Line Tools? . 2

2 Contact Information 3

3 License Agreement 4
3.1 MOSEK end-user license agreement . 4
3.2 Third party licenses . 4

4 Installation 10
4.1 Testing the installation . 11

5 The Command Line Tool 12
5.1 Introduction . 12
5.2 Files . 12
5.3 Example . 13
5.4 Solver Parameters . 15
5.5 Command Line Arguments . 16
5.6 The license system . 18

6 Debugging Tutorials 19
6.1 Understanding optimizer log . 19
6.2 Addressing numerical issues . 24
6.3 Debugging infeasibility . 26
6.4 Python Console . 31

7 Problem Formulation and Solutions 33
7.1 Linear Optimization . 33
7.2 Conic Optimization . 36
7.3 Semidefinite Optimization . 39
7.4 Quadratic and Quadratically Constrained Optimization 41

8 Optimizers 44
8.1 Presolve . 44
8.2 Linear Optimization . 46
8.3 Conic Optimization - Interior-point optimizer . 53
8.4 The Optimizer for Mixed-Integer Problems . 57

9 Additional features 70
9.1 Problem Analyzer . 70
9.2 Automatic Repair of Infeasible Problems . 71
9.3 Sensitivity Analysis . 75

10 API Reference 82
10.1 Parameters grouped by topic . 82
10.2 Parameters (alphabetical list sorted by type) . 94
10.3 Response codes . 156
10.4 Constants . 180

i

10.5 Supported domains . 209

11 Supported File Formats 212
11.1 The LP File Format . 213
11.2 The MPS File Format . 217
11.3 The OPF Format . 229
11.4 The CBF Format . 240
11.5 The PTF Format . 257
11.6 The Task Format . 263
11.7 The JSON Format . 264
11.8 The Solution File Format . 270

12 List of examples 273

13 Interface changes 274
13.1 Important changes compared to version 10 . 274
13.2 Changes compared to version 10 . 274

Bibliography 279

Symbol Index 280

Index 288

ii

Chapter 1

Introduction

The MOSEK Optimization Suite 11.0.21 is a powerful software package capable of solving large-scale
optimization problems of the following kind:

• linear,

• conic:

– conic quadratic (also known as second-order cone),
– involving the exponential cone,
– involving the power cone,
– semidefinite,

• convex quadratic and quadratically constrained,

• integer.

In order to obtain an overview of features in the MOSEK Optimization Suite consult the product
introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all rela-
tions are linear. The tremendous success of both applications and theory of linear optimization can be
ascribed to the following factors:

• The required data are simple, i.e. just matrices and vectors.

• Convexity is guaranteed since the problem is convex by construction.

• Linear functions are trivially differentiable.

• There exist very efficient algorithms and software for solving linear problems.

• Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the
advantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

𝐴𝑥− 𝑏 ≥ 0.

In conic optimization this is replaced with a wider class of constraints

𝐴𝑥− 𝑏 ∈ 𝒦

where 𝒦 is a convex cone. For example in 3 dimensions 𝒦 may correspond to an ice cream cone. The
conic optimizer in MOSEK supports a number of different types of cones 𝒦, which allows a surprisingly
large number of nonlinear relations to be modeled, as described in the MOSEK Modeling Cookbook,
while preserving the nice algorithmic and theoretical properties of linear optimization.

1

https://docs.mosek.com/11.0/intro/index.html
https://docs.mosek.com/11.0/intro/index.html
https://docs.mosek.com/modeling-cookbook/index.html

1.1 Why the Command Line Tools?

The MOSEK capabilities can be accessed from the command line without the need to use any program-
ming language. The user can input optimization problems using files in a variety of formats, or via the
AMPL language shell.

The Command Line Tools provides access to:

• Linear Optimization (LO)

• Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)

• Power Cone Optimization

• Conic Exponential Optimization (CEO)

• Convex Quadratic and Quadratically Constrained Optimization (QO, QCQO)

• Semidefinite Optimization (SDO)

• Mixed-Integer Optimization (MIO) including Disjunctive Constraints (DJC)

as well as to additional utilities for:

• problem analysis,

• sensitivity analysis,

• infeasibility diagnostics.

2

Chapter 2

Contact Information

Phone +45 7174 9373 Office
+45 7174 5700 Sales

Website mosek.com
Email

sales@mosek.com Sales, pricing, and licensing
support@mosek.com Technical support, questions and bug reports
info@mosek.com Everything else.

Mailing Address
MOSEK ApS
Fruebjergvej 3
Symbion Science Park, Box 16
2100 Copenhagen O
Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger https://blog.mosek.com/
Google Group https://groups.google.com/forum/#!forum/mosek
Twitter https://twitter.com/mosektw
Linkedin https://www.linkedin.com/company/mosek-aps
Youtube https://www.youtube.com/channel/UCvIyectEVLP31NXeD5mIbEw

In particular Twitter is used for news, updates and release announcements.

3

https://mosek.com/
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com
https://blog.mosek.com/
https://groups.google.com/forum/#!forum/mosek
https://twitter.com/mosektw
https://www.linkedin.com/company/mosek-aps
https://www.youtube.com/channel/UCvIyectEVLP31NXeD5mIbEw

Chapter 3

License Agreement

3.1 MOSEK end-user license agreement

Before using the MOSEK software, please read the license agreement available in the distribution
at <MSKHOME>/mosek/11.0/mosek-eula.pdf or on the MOSEK website https://mosek.com/products/
license-agreement. By using MOSEK you agree to the terms of that license agreement.

3.2 Third party licenses

MOSEK uses some third-party open-source libraries. Their license details follow.

zlib

MOSEK uses the zlib library obtained from the zlib website. The license agreement for zlib is shown
in Listing 3.1.

Listing 3.1: zlib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

4

https://mosek.com/products/license-agreement
https://mosek.com/products/license-agreement
http://zlib.org

fplib

MOSEK uses the floating point formatting library developed by David M. Gay obtained from the netlib
website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

{fmt}

MOSEK uses the formatting library {fmt} developed by Victor Zverovich obtained form github/fmt
and distributed under the MIT license. The license agreement fot {fmt} is shown in Listing 3.3.

Listing 3.3: {fmt} license.

Copyright (c) 2012 - present, Victor Zverovich

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

5

http://www.netlib.org
http://www.netlib.org
https://github.com/fmtlib/fmt

Zstandard

MOSEK uses the Zstandard library developed by Facebook obtained from github/zstd. The license
agreement for Zstandard is shown in Listing 3.4.

Listing 3.4: Zstandard license.

BSD License

For Zstandard software

Copyright (c) 2016-present, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name Facebook nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

OpenSSL

MOSEK uses the LibReSSL library, which is build on OpenSSL. OpenSSL is included under the
OpenSSL license, Listing 3.5, and the LibReSSL additions are licensed under the ISC license, Listing
3.6.

Listing 3.5: OpenSSL license

==
Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in

(continues on next page)

6

https://github.com/facebook/zstd
https://www.libressl.org/

(continued from previous page)

the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.
==

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Listing 3.6: ISC license

Copyright (C) 1994-2017 Free Software Foundation, Inc.
Copyright (c) 2014 Jeremie Courreges-Anglas <jca@openbsd.org>
Copyright (c) 2014-2015 Joel Sing <jsing@openbsd.org>
Copyright (c) 2014 Ted Unangst <tedu@openbsd.org>
Copyright (c) 2015-2016 Bob Beck <beck@openbsd.org>
Copyright (c) 2015 Marko Kreen <markokr@gmail.com>
Copyright (c) 2015 Reyk Floeter <reyk@openbsd.org>
Copyright (c) 2016 Tobias Pape <tobias@netshed.de>

Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all
copies.

(continues on next page)

7

(continued from previous page)

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

mimalloc

MOSEK uses the mimalloc memory allocator library from github/mimalloc. The license agreement for
mimalloc is shown in Listing 3.7.

Listing 3.7: mimalloc license.

MIT License

Copyright (c) 2019 Microsoft Corporation, Daan Leijen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

BLASFEO

MOSEK uses the BLASFEO linear algebra library developed by Gianluca Frison, obtained from
github/blasfeo. The license agreement for BLASFEO is shown in Listing 3.8.

Listing 3.8: blasfeo license.

BLASFEO -- BLAS For Embedded Optimization.
Copyright (C) 2019 by Gianluca Frison.
Developed at IMTEK (University of Freiburg) under the supervision of Moritz Diehl.
All rights reserved.

The 2-Clause BSD License

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
(continues on next page)

8

https://github.com/microsoft/mimalloc
https://github.com/giaf/blasfeo

(continued from previous page)

list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

oneTBB

MOSEK uses the oneTBB parallelization library which is part of oneAPI developed by Intel, obtained
from github/oneTBB, licensed under the Apache License 2.0. The license agreement for oneTBB can be
found in https://github.com/oneapi-src/oneTBB/blob/master/LICENSE.txt .

9

https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB/blob/master/LICENSE.txt

Chapter 4

Installation

In this section we discuss how to install and setup the MOSEK Command Line Tools.

Important: Before running this MOSEK interface please make sure that you:

• Installed MOSEK correctly. Some operating systems require extra steps. See the Installation
guide for instructions and common troubleshooting tips.

• Set up a license. See the Licensing guide for instructions.

Locating files in the MOSEK Optimization Suite

The relevant files of the Command Line Tools are organized as reported in Table 4.1.

Table 4.1: Relevant files for the Command Line Tools.

Relative Path Description Label

<MSKHOME>/mosek/11.0/tools/platform/<PLATFORM>/bin Binaries <BINDIR>
<MSKHOME>/mosek/11.0/tools/platform/<PLATFORM>/bin/mosek Mosek executable
<MSKHOME>/mosek/11.0/tools/examples/data Examples <EXDIR>

where

• <MSKHOME> is the folder in which the MOSEK Optimization Suite has been installed,

• <PLATFORM> is the actual platform among those supported by MOSEK, i.e. win64x86,
linux64x86, linuxaarch64 or osxaarch64.

Setting up paths

The executable file is ready for use. It may be convenient to add the directory <BINDIR> to the environ-
ment variable PATH, and then MOSEK can simply be used by typing

mosek

in the command line.

10

https://docs.mosek.com/11.0/install/index.html
https://docs.mosek.com/11.0/install/index.html
https://docs.mosek.com/11.0/licensing/index.html

4.1 Testing the installation

To test that Command Line Tools has been installed correctly go to the examples directory <EXDIR> and
run MOSEK on any of the input files, for example lo1.mps:

mosek lo1.mps

Is should produce output similar to:

MOSEK Version 8.0.0.53 (Build date: 2017-1-12 22:21:45)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86

Open file 'lo1.mps'
Reading started.

[....]

Optimizer started.
Interior-point optimizer started.

[....]

Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 8.3333333280e+01 nrm: 5e+01 Viol. con: 1e-08 var: 0e+00
Dual. obj: 8.3333333242e+01 nrm: 4e+00 Viol. con: 2e-10 var: 5e-09

Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 8.3333333333e+01 nrm: 5e+01 Viol. con: 7e-15 var: 0e+00
Dual. obj: 8.3333333245e+01 nrm: 4e+00 Viol. con: 2e-10 var: 5e-09

[....]

Open file 'lo1.sol'
Start writing.
done writing. Time: 0.00

Open file 'lo1.bas'
Start writing.
done writing. Time: 0.00

Return code - 0 [MSK_RES_OK]

11

Chapter 5

The Command Line Tool

5.1 Introduction

The MOSEK command line tool is used to solve optimization problems from the operating system
command line. It is invoked as follows

mosek [options] [filename]

where both [options] and [filename] are optional arguments:

• [options] consists of command line arguments that modify the behavior of MOSEK. They are
listed in Sec. 5.5. In particular, options can be used to set optimizer parameters.

• [filename] is a file describing the optimization problem. The MOSEK command line accepts
files in any of the supported file formats or in the AMPL .nl format.

If no arguments are given, MOSEK will display a splash screen and exit.

user@host:~$ mosek/8/tools/platform/linux64x86/bin/mosek

MOSEK Version 8.0.0.32(BETA) (Build date: 2016-7-12 10:29:26)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86

*** No input file specified. No optimization is performed.

Return code - 0 [MSK_RES_OK]

5.2 Files

The MOSEK command line tool communicates with the user via files and prints some execution logs
and solution summary to the terminal.

Input files

Optimization problems are read from files. See Sec. 11 for details.

12

File format conversion

To convert between two file formats supported by MOSEK use the option -x together with -out to
specify the target file name. The target file type must support the problem type of the source file,
otherwise the conversion will be partial. For instance in case a MPS file must be converted in a more
readable OPF format, the following line can be used

mosek -x -out lo1.opf lo1.mps

With the -x option the solver will not actually solve the problem.

Output files

Solutions are written to files:

• .bas - basic solution,

• .sol - interior point solution,

• .itg - integer solution (the only available solution for mixed-integer problems).

For linear problems both the basic and interior point solution may be present. Infeasibility certificates
are stored in the same files. See Sec. 11.8 for details.

5.3 Example

To solve a problem stored in file, say lo1.mps, write:

mosek lo1.mps

The solver will

• read lo1.mps from disk,

• solve the problem and display the solution log and

• store the relevant solution files if any solution exists; file content explained in Sec. 11.8.

MOSEK Version 8.0.0.34(BETA) (Build date: 2016-8-24 00:51:13)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86

Open file '/home/andrea/mosek/8/tools/examples/data/lo1.mps'
Reading started.
Using 'obj' as objective vector
Read 13 number of A nonzeros in 0.00 seconds.
Using 'rhs' as rhs vector
Using 'bound' as bound vector
Reading terminated. Time: 0.00

Read summary
Type : LO (linear optimization problem)
Objective sense : max
Scalar variables : 4
Matrix variables : 0
Constraints : 3
Cones : 0
Time : 0.0

Problem
Name : lo1

(continues on next page)

13

(continued from previous page)

Objective sense : max
Type : LO (linear optimization problem)
Constraints : 3
Cones : 0
Scalar variables : 4
Matrix variables : 0
Integer variables : 0

Optimizer started.
Interior-point optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator - tries : 1 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Optimizer - threads : 2
Optimizer - solved problem : the primal
Optimizer - Constraints : 3
Optimizer - Cones : 0
Optimizer - Scalar variables : 6 conic : 0
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 6 after factor : 6
Factor - dense dim. : 0 flops : 1.
→˓06e+02
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU ␣
→˓ TIME
0 8.0e+00 3.2e+00 3.5e+00 1.00e+00 1.000000000e+01 0.000000000e+00 1.0e+00␣
→˓ 0.01
1 4.2e+00 2.5e+00 4.7e-01 0.00e+00 3.093970927e+01 2.766058702e+01 2.6e+00␣
→˓ 0.01
2 4.2e-01 2.5e-01 4.6e-02 -1.82e-02 6.511676243e+01 6.308843559e+01 2.6e-01␣
→˓ 0.01
3 3.6e-02 2.1e-02 3.9e-03 5.84e-01 8.096141239e+01 8.061962333e+01 2.2e-02␣
→˓ 0.01
4 1.5e-05 9.1e-06 1.7e-06 9.43e-01 8.333280389e+01 8.333241803e+01 9.2e-06␣
→˓ 0.01
5 1.5e-09 9.1e-10 1.7e-10 1.00e+00 8.333333328e+01 8.333333324e+01 9.2e-10␣
→˓ 0.01
Basis identification started.
Primal basis identification phase started.
ITER TIME
0 0.00
Primal basis identification phase terminated. Time: 0.00
Dual basis identification phase started.
ITER TIME
0 0.00
Dual basis identification phase terminated. Time: 0.00
Basis identification terminated. Time: 0.00
Interior-point optimizer terminated. Time: 0.01.

(continues on next page)

14

(continued from previous page)

Optimizer terminated. Time: 0.02

Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 8.3333333280e+01 nrm: 5e+01 Viol. con: 1e-08 var: 0e+00
Dual. obj: 8.3333333242e+01 nrm: 4e+00 Viol. con: 2e-10 var: 5e-09

Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 8.3333333333e+01 nrm: 5e+01 Viol. con: 7e-15 var: 0e+00
Dual. obj: 8.3333333245e+01 nrm: 4e+00 Viol. con: 2e-10 var: 5e-09

Optimizer summary
Optimizer - time: 0.02

Interior-point - iterations : 5 time: 0.01
Basis identification - time: 0.00

Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00

Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00

Mixed integer - relaxations: 0 time: 0.00

Open file '/home/andrea/mosek/8/tools/examples/data/lo1.sol'
Start writing.
done writing. Time: 0.00

Open file '/home/andrea/mosek/8/tools/examples/data/lo1.bas'
Start writing.
done writing. Time: 0.00

Return code - 0 [MSK_RES_OK]

5.4 Solver Parameters

MOSEK comes with a large number of parameters that allows the user to tune the behavior of the
optimizer. The typical settings which can be changed with solver parameters include:

• choice of the optimizer for linear problems,

• choice of primal/dual solver,

• turning presolve on/off,

• turning heuristics in the mixed-integer optimizer on/off,

• level of multi-threading,

• feasibility tolerances,

• solver termination criteria,

• behaviour of the license manager,

15

and more. All parameters have default settings which will be suitable for most typical users. Each
parameter is identified by a unique string name and it can accept either integers or symbolic names,
floating point values or symbolic strings. Please refer to Sec. 10.2 for the complete list of available solver
parameters.

5.4.1 Setting from command line
Setting solver parameters is possible using the command line option -d .If multiple parameters must be
specified, option -d must be repeated for each one. For example, the next command will switch off
presolve, set a feasibility tolerance and solve the problem from lo1.opf:

mosek -d MSK_IPAR_PRESOLVE_USE MSK_OFF -d MSK_DPAR_INTPNT_TOL_PFEAS 1.0e-8 lo1.opf

5.4.2 Using the Parameter File
Solver parameters can also be set using a parameter file, for example:

BEGIN MOSEK
% This is a comment.
% The subsequent line tells MOSEK that an optimal
% basis should be computed by the interior-point optimizer.
MSK_IPAR_PRESOLVE_USE MSK_OFF
MSK_DPAR_INTPNT_TOL_PFEAS 1.0e-9
END MOSEK

The syntax of the parameter file must obey a few simple rules:

• The file must begin with BEGIN MOSEK and end with END MOSEK.

• Empty lines and lines starting from a % sign are ignored.

• Each line contains a valid MOSEK parameter name followed by its value.

The parameter file can have any name. Assuming it has been called mosek.par, it can be used using
the -p option as follows:

mosek -p mosek.par afiro.mps

Command-line parameters override those from the parameter file in case of repetition. For instance

mosek -p mosek.par -d MSK_DPAR_INTPNT_TOL_PFEAS 1.0e-8 afiro.mps

will set MSK_DPAR_INTPNT_TOL_PFEAS to 10−8 using the value provided on the command line.

5.5 Command Line Arguments

The following list shows the available command-line arguments for MOSEK:
-anapro

Analyze the problem data.
-anasoli <name>

Analyze the initial solution name e.g. -anasoli bas.
-anasolo <name>

Analyze the final solution name e.g. -anasolo itg.
-basi <name>

Input basic solution file name.
-baso <name>

Output basic solution file name.
-d <name> <value>

Define the value value for the MOSEK parameter name.

16

-dbgmem <name>
Name of memory debug file.

-dualout <name>
Output dual problem file name.

-f
Complete license information is printed.

-h, -?
Help.

-inti <name>
Input integer solution file name.

-into <name>
Output integer solution file name.

-itri <name>
Input interior point solution file name.

-itro <name>
Output interior point solution file name.

-info <name>
Infeasible subproblem output file name.

-infrepo <name>
Feasibility reparation output file.

-jsoli <name>
Input JSON format solution file name.

-jsolo <name>
Output JSON format solution file name.

-l,-L <dir>
dir is the directory where the MOSEK license file mosek.lic is located.

-max
The problem is maximized.

-min
The problem is minimized.

-n
Ignore errors in subsequent parameter settings.

-optserv <url>
Use an OptServer specified by an URL of the form http://host:port.

-out <name>
Write the task to a data file named name. See Sec. 11.

-p <name>, -pari <name>
Name of the input parameter file.

-paro <name>
Name of the output parameter file.

-primalrepair
Repair a primal infeasible problem. See Sec. 9.2.

-r
If the option is present, the program returns −1 if an error occurred, otherwise 0.

-removeitg
Removes all integer constraints after reading the problem.

-rout <name>
If the option is present, the program writes the return code to file name.

-q <name>
Name of an optional log file.

-sen <file>
Perform sensitivity analysis based on file.

17

-silent

As little information as possible is send to the terminal.
-toconic

Translate to conic form after reading.
-v

MOSEK version is printed and no optimization is performed.
-w

If this options is on, then MOSEK will wait for a license.
-x

Do not run the optimizer. Useful for converting between file formats.
-=

List all possible solver parameters with default value, lower bound and upper bound (if applicable).

5.6 The license system

MOSEK is a commercial product that always needs a valid license to work. MOSEK uses a third
party license manager to implement license checking. The number of license tokens provided determines
the number of optimizations that can be run simultaneously.

By default a license token remains checked out for the whole execution of the command line tool. If the
license is not unlimited, then the number of tokens determines the maximal number of processes that can
run simultaneously. In this case setting the license wait flag with the parameter MSK_IPAR_LICENSE_WAIT
will force MOSEK to wait until a license token becomes available instead of returning with an error.

18

Chapter 6

Debugging Tutorials

This collection of tutorials contains basic techniques for debugging optimization problems using tools
available in MOSEK: optimizer log, solution summary, infeasibility report, command-line tools. It is
intended as a first line of technical help for issues such as: Why do I get solution status unknown and
how can I fix it? Why is my model infeasible while it shouldn’t be? Should I change some parameters?
Can the model solve faster? etc.

The major steps when debugging a model are always:

• Consult the log output.

• Run the optimization and analyze the log output, see Sec. 6.1. In particular:

– check if the problem setup (number of constraints/variables etc.) matches your expectation.

– check solution summary and solution status.

• Dump the problem to disk if necessary to continue analysis.

– use a human-readable text format, preferably *.ptf if you want to check the problem structure
by hand. Assign names to variables and constraints to make them easier to identify.

– use the MOSEK native format *.task.gz when submitting a bug report or support question.

• Fix problem setup, improve the model, locate infeasibility or adjust parameters, depending on the
diagnosis.

See the following sections for details.

6.1 Understanding optimizer log

The optimizer produces a log which splits roughly into four sections:

1. summary of the input data,

2. presolve and other pre-optimize problem setup stages,

3. actual optimizer iterations,

4. solution summary.

In this tutorial we show how to analyze the most important parts of the log when initially debugging
a model: input data (1) and solution summary (4). For the iterations log (3) see Sec. 8.3.4 or Sec. 8.4.3.

19

6.1.1 Input data
If MOSEK behaves very far from expectations it may be due to errors in problem setup. The log file
will begin with a summary of the structure of the problem, which looks for instance like:

Problem
Name :
Objective sense : minimize
Type : CONIC (conic optimization problem)
Constraints : 234
Affine conic cons. : 5348 (6444 rows)
Disjunctive cons. : 0
Cones : 0
Scalar variables : 20693
Matrix variables : 1 (scalarized: 45)
Integer variables : 0

This can be consulted to eliminate simple errors: wrong objective sense, wrong number of variables
etc. Note that some modeling tools can introduce additional variables and constraints to the model and
perturb the model even further (such as by dualizing). In most MOSEK APIs the problem dimensions
should match exactly what the user specified.

If this is not sufficient a bit more information can be obtained by dumping the problem to a file
(see Sec. 6) and using the anapro option of any of the command line tools. This will produce a longer
summary similar to:

** Variables
scalar: 20414 integer: 0 matrix: 0
low: 2082 up: 5014 ranged: 0 free: 12892 fixed: 426

** Constraints
all: 20413
low: 10028 up: 0 ranged: 0 free: 0 fixed: 10385

** Affine conic constraints (ACC)
QUAD: 1 dims: 2865: 1
RQUAD: 2507 dims: 3: 2507

** Problem data (numerics)
|c| nnz: 10028 min=2.09e-05 max=1.00e+00
|A| nnz: 597023 min=1.17e-10 max=1.00e+00
blx fin: 2508 min=-3.60e+09 max=2.75e+05
bux fin: 5440 min=0.00e+00 max=2.94e+08
blc fin: 20413 min=-7.61e+05 max=7.61e+05
buc fin: 10385 min=-5.00e-01 max=0.00e+00
|F| nnz: 612301 min=8.29e-06 max=9.31e+01
|g| nnz: 1203 min=5.00e-03 max=1.00e+00

Again, this can be used to detect simple errors, such as:

• Wrong type of conic constraint was used or it has wrong dimension.

• The bounds for variables or constraints are incorrect or incomplete.

• The model is otherwise incomplete.

• Suspicious values of coefficients.

• For various data sizes the model does not scale as expected.

Finally saving the problem in a human-friendly text format such as LP or PTF (see Sec. 6) and
analyzing it by hand can reveal if the model is correct.

20

Warnings and errors

At this stage the user can encounter warnings which should not be ignored, unless they are well-
understood. They can also serve as hints as to numerical issues with the problem data. A typical
warning of this kind is

MOSEK warning 53: A numerically large upper bound value 2.9e+08 is specified for␣
→˓variable 'absh[107]' (2613).

Warnings do not stop the problem setup. If, on the other hand, an error occurs then the model will
become invalid. The user should make sure to test for errors/exceptions from all API calls that set up
the problem and validate the data.

6.1.2 Solution summary
The last item in the log is the solution summary.

Continuous problem

Optimal solution

A typical solution summary for a continuous (linear, conic, quadratic) problem looks like:

Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 8.7560516107e+01 nrm: 1e+02 Viol. con: 3e-12 var: 0e+00 ␣
→˓acc: 3e-11
Dual. obj: 8.7560521345e+01 nrm: 1e+00 Viol. con: 5e-09 var: 9e-11 ␣
→˓acc: 0e+00

It contains the following elements:

• Problem and solution status.

• A summary of the primal solution: objective value, infinity norm of the solution vector and maximal
violations of variables and constraints of different types. The violation of a linear constraint such
as 𝑎𝑇𝑥 ≤ 𝑏 is max(𝑎𝑇𝑥− 𝑏, 0). The violation of a conic constraint is the distance to the cone.

• The same for the dual solution.

The features of the solution summary which characterize a very good and accurate solution and a
well-posed model are:

• Status: The solution status is OPTIMAL.

• Duality gap: The primal and dual objective values are (almost) identical, which proves the
solution is (almost) optimal.

• Norms: Ideally the norms of the solution and the objective values should not be too large. This of
course depends on the input data, but a huge solution norm can be an indicator of issues with the
scaling, conditioning and/or well-posedness of the model. It may also indicate that the problem is
borderline between feasibility and infeasibility and sensitive to small perturbations in this respect.

• Violations: The violations are close to zero, which proves the solution is (almost) feasible. Observe
that due to rounding errors it can be expected that the violations are proportional to the norm
(nrm:) of the solution. It is rarely the case that violations are exactly zero.

21

Solution status UNKNOWN

A typical example with solution status UNKNOWN due to numerical problems will look like:

Problem status : UNKNOWN
Solution status : UNKNOWN
Primal. obj: 1.3821656824e+01 nrm: 1e+01 Viol. con: 2e-03 var: 0e+00 ␣
→˓acc: 0e+00
Dual. obj: 3.0119004098e-01 nrm: 5e+07 Viol. con: 4e-16 var: 1e-01 ␣
→˓acc: 0e+00

Note that:

• The primal and dual objective are very different.

• The dual solution has very large norm.

• There are considerable violations so the solution is likely far from feasible.

Follow the hints in Sec. 6.2 to resolve the issue.

Solution status UNKNOWN with a potentially useful solution

Solution status UNKNOWN does not necessarily mean that the solution is completely useless. It only means
that the solver was unable to make any more progress due to numerical difficulties, and it was not able
to reach the accuracy required by the termination criteria (see Sec. 8.3.2). Consider for instance:

Problem status : UNKNOWN
Solution status : UNKNOWN
Primal. obj: 3.4531019648e+04 nrm: 1e+05 Viol. con: 7e-02 var: 0e+00 ␣
→˓acc: 0e+00
Dual. obj: 3.4529720645e+04 nrm: 8e+03 Viol. con: 1e-04 var: 2e-04 ␣
→˓acc: 0e+00

Such a solution may still be useful, and it is always up to the user to decide. It may be a good enough
approximation of the optimal point. For example, the large constraint violation may be due to the fact
that one constraint contained a huge coefficient.

Infeasibility certificate

A primal infeasibility certificate is stored in the dual variables:

Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 2.9238975853e+02 nrm: 6e+02 Viol. con: 0e+00 var: 1e-11 ␣
→˓acc: 0e+00

It is a Farkas-type certificate as described in Sec. 7.2.2. In particular, for a good certificate:

• The dual objective is positive for a minimization problem, negative for a maximization problem.
Ideally it is well bounded away from zero.

• The norm is not too big and the violations are small (as for a solution).

If the model was not expected to be infeasible, the likely cause is an error in the problem formulation.
Use the hints in Sec. 6.1.1 and Sec. 6.3 to locate the issue.

Just like a solution, the infeasibility certificate can be of better or worse quality. The infeasibility
certificate above is very solid. However, there can be less clear-cut cases, such as for example:

Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 1.6378689238e-06 nrm: 6e+05 Viol. con: 7e-03 var: 2e-04 ␣
→˓acc: 0e+00

22

This infeasibility certificate is more dubious because the dual objective is positive, but barely so in
comparison with the large violations. It also has rather large norm. This is more likely an indication
that the problem is borderline between feasibility and infeasibility or simply ill-posed and sensitive to
tiny variations in input data. See Sec. 6.3 and Sec. 6.2.

The same remarks apply to dual infeasibility (i.e. unboundedness) certificates. Here the primal
objective should be negative a minimization problem and positive for a maximization problem.

6.1.3 Mixed-integer problem

Optimal integer solution

For a mixed-integer problem there is no dual solution and a typical optimal solution report will look as
follows:

Problem status : PRIMAL_FEASIBLE
Solution status : INTEGER_OPTIMAL
Primal. obj: 6.0111122960e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-14 ␣
→˓itg: 5e-15

The interpretation of all elements is as for a continuous problem. The additional field itg denotes
the maximum violation of an integer variable from being an exact integer.

Feasible integer solution

If the solver found an integer solution but did not prove optimality, for instance because of a time limit,
the solution status will be PRIMAL_FEASIBLE:

Problem status : PRIMAL_FEASIBLE
Solution status : PRIMAL_FEASIBLE
Primal. obj: 6.0114607792e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-13 ␣
→˓itg: 4e-15

In this case it is valuable to go back to the optimizer summary to see how good the best solution is:

31 35 1 0 6.0114607792e+06 6.0078960892e+06 0.06 ␣
→˓ 4.1

Objective of best integer solution : 6.011460779193e+06
Best objective bound : 6.007896089225e+06

In this case the best integer solution found has objective value 6.011460779193e+06, the best proved
lower bound is 6.007896089225e+06 and so the solution is guaranteed to be within 0.06% from optimum.
The same data can be obtained as information items through an API. See also Sec. 8.4 for more details.

Infeasible problem

If the problem is declared infeasible the summary is simply

Problem status : PRIMAL_INFEASIBLE
Solution status : UNKNOWN
Primal. obj: 0.0000000000e+00 nrm: 0e+00 Viol. con: 0e+00 var: 0e+00 ␣
→˓itg: 0e+00

If infeasibility was not expected, consult Sec. 6.3.

23

6.2 Addressing numerical issues

The suggestions in this section should help diagnose and solve issues with numerical instability, in
particular UNKNOWN solution status or solutions with large violations. Since numerically stable models
tend to solve faster, following these hints can also dramatically shorten solution times.

We always recommend that issues of this kind are addressed by reformulating or rescaling the model,
since it is the modeler who has the best insight into the structure of the problem and can fix the cause
of the issue.

Some information about the numerical properties of the data can be obtained by dumping the problem
to a file (see Sec. 6) and using the anapro option of any of the command line tools.

6.2.1 Formulating problems

Scaling

Make sure that all the data in the problem are of comparable orders of magnitude. This applies especially
to the linear constraint matrix. Use Sec. 6.1.1 if necessary. For example a report such as

|A| nnz: 597023 min=1.17e-6 max=2.21e+5

means that the ratio of largest to smallest elements in A is 1011. In this case the user should rescale
or reformulate the model to avoid such spread which makes it difficult for MOSEK to scale the problem
internally. In many cases it may be possible to change the units, i.e. express the model in terms of
rescaled variables (for instance work with millions of dollars instead of dollars, etc.).

Similarly, if the objective contains very different coefficients, say

maximize 1010𝑥 + 𝑦

then it is likely to lead to inaccuracies. The objective will be dominated by the contribution from 𝑥 and
𝑦 will become insignificant.

Removing huge bounds

Never use a very large number as replacement for ∞. Instead define the variable or constraint as
unbounded from below/above. Similarly, avoid artificial huge bounds if you expect they will not become
tight in the optimal solution.

Avoiding linear dependencies

As much as possible try to avoid linear dependencies and near-linear dependencies in the model. See
Example 6.3.

Avoiding ill-posedness

Avoid continuous models which are ill-posed: the solution space is degenerate, for example consists of a
single point (technically, the Slater condition is not satisfied). In general, this refers to problems which
are borderline between feasible and infeasible. See Example 6.1.

Scaling the expected solution

Try to formulate the problem in such a way that the expected solution (both primal and dual) is not
very large. Consult the solution summary Sec. 6.1.2 to check the objective values or solution norms.

24

6.2.2 Further suggestions
Here are other simple suggestions that can help locate the cause of the issues. They can also be used as
hints for how to tune the optimizer if fixing the root causes of the issue is not possible.

• Remove the objective and solve the feasibility problem. This can reveal issues with the objective.

• Change the objective or change the objective sense from minimization to maximization (if appli-
cable). If the two objective values are almost identical, this may indicate that the feasible set is
very small, possibly degenerate.

• Perturb the data, for instance bounds, very slightly, and compare the results.

• For linear problems: solve the problem using a different optimizer by setting the parameter
MSK_IPAR_OPTIMIZER and compare the results.

• Force the optimizer to solve the primal/dual versions of the problem by setting the parameter
MSK_IPAR_INTPNT_SOLVE_FORM or MSK_IPAR_SIM_SOLVE_FORM . MOSEK has a heuristic to decide
whether to dualize, but for some problems the guess is wrong an explicit choice may give better
results.

• Solve the problem without presolve or some of its parts by setting the parameter
MSK_IPAR_PRESOLVE_USE , see Sec. 8.1.

• Use different numbers of threads (MSK_IPAR_NUM_THREADS) and compare the results. Very different
results indicate numerical issues resulting from round-off errors.

If the problem was dumped to a file, experimenting with various parameters is facilitated with the
MOSEK Command Line Tool or MOSEK Python Console Sec. 6.4.

6.2.3 Typical pitfalls

Example 6.1 (Ill-posedness). A toy example of this situation is the feasibility problem

(𝑥− 1)2 ≤ 1, (𝑥 + 1)2 ≤ 1

whose only solution is 𝑥 = 0 and moreover replacing any 1 on the right hand side by 1 − 𝜀 makes
the problem infeasible and replacing it by 1 + 𝜀 yields a problem whose solution set is an interval
(fully-dimensional). This is an example of ill-posedness.

Example 6.2 (Huge solution). If the norm of the expected solution is very large it may lead to
numerical issues or infeasibility. For example the problem

(10−4, 𝑥, 103) ∈ 𝒬3
r

may be declared infeasible because the expected solution must satisfy 𝑥 ≥ 5 · 109.

Example 6.3 (Near linear dependency). Consider the following problem:

minimize
subject to 𝑥1 + 𝑥2 = 1,

𝑥3 + 𝑥4 = 1,
− 𝑥1 − 𝑥3 = −1 + 𝜀,

− 𝑥2 − 𝑥4 = −1,
𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0.

If we add the equalities together we obtain:

0 = 𝜀

25

which is infeasible for any 𝜀 ̸= 0. Here infeasibility is caused by a linear dependency in the constraint
matrix coupled with a precision error represented by the 𝜀. Indeed if a problem contains linear
dependencies then the problem is either infeasible or contains redundant constraints. In the above
case any of the equality constraints can be removed while not changing the set of feasible solutions.
To summarize linear dependencies in the constraints can give rise to infeasible problems and therefore
it is better to avoid them.

Example 6.4 (Presolving very tight bounds). Next consider the problem

minimize
subject to 𝑥1 − 0.01𝑥2 = 0,

𝑥2 − 0.01𝑥3 = 0,
𝑥3 − 0.01𝑥4 = 0,

𝑥1 ≥ −10−9,
𝑥1 ≤ 10−9,
𝑥4 ≥ 10−4.

Now the MOSEK presolve will, for the sake of efficiency, fix variables (and constraints) that have
tight bounds where tightness is controlled by the parameter MSK_DPAR_PRESOLVE_TOL_X . Since the
bounds

−10−9 ≤ 𝑥1 ≤ 10−9

are tight, presolve will set 𝑥1 = 0. It easy to see that this implies 𝑥4 = 0, which leads to the incorrect
conclusion that the problem is infeasible. However a tiny change of the value 10−9 makes the problem
feasible. In general it is recommended to avoid ill-posed problems, but if that is not possible then one
solution is to reduce parameters such as MSK_DPAR_PRESOLVE_TOL_X to say 10−10. This will at least
make sure that presolve does not make the undesired reduction.

6.3 Debugging infeasibility

When solving an optimization problem one typically expects to get an optimal solution, but in some
cases, either by design, or (most frequently) due to an error in the formulation, the problem may become
infeasible (have no solution at all).

This section

• describes the intuitions behind infeasibility,

• helps to debug (unexpectedly) infeasible problems using the command line tool and by inspecting
infeasibility reports and problem data by hand,

• gives some hints for how to modify the formulation to identify the reasons for infeasibility.

An infeasibility certificate is only available for continuous problems, however the hints in Sec. 6.3.4
apply to a large extent also to mixed-integer problems.

6.3.1 Numerical issues
Infeasible problem status may be just an artifact of numerical issues appearing when the problem is
badly-scaled, barely feasible or otherwise ill-conditioned so that it is unstable under small perturbations
of the data or round-off errors. This may be visible in the solution summary if the infeasibility certificate
has poor quality. See Sec. 6.1.2 for how to diagnose that and Sec. 6.2 for possible hints. Sec. 6.2.3
contains examples of situations which may lead to infeasibility for numerical reasons.

We refer to Sec. 6.2 for further information on dealing with those sort of issues. For the rest of this
section we concentrate on the case when the solution summary leaves little doubt that the problem solved
by the optimizer actually is infeasible.

26

6.3.2 Locating primal infeasibility
As an example of a primal infeasible problem consider minimizing the cost of transportation between a
number of production plants and stores: Each plant produces a fixed number of goods, and each store
has a fixed demand that must be met. Supply, demand and cost of transportation per unit are given in
Fig. 6.1.

Supply Demand

1

2

5

2

1

2

1

Plant 1

Plant 2

Plant 3
Store 4

Store 3

Store 2

Store 1

1000

1000

200

500

500

200
1100

Fig. 6.1: Supply, demand and cost of transportation.

The problem represented in Fig. 6.1 is infeasible, since the total demand

2300 = 1100 + 200 + 500 + 500

exceeds the total supply

2200 = 200 + 1000 + 1000

If we denote the number of transported goods from plant 𝑖 to store 𝑗 by 𝑥𝑖𝑗 , the problem can be
formulated as the LP:

minimize 𝑥11 + 2𝑥12 + 5𝑥23 + 2𝑥24 + 𝑥31 + 2𝑥33 + 𝑥34

subject to 𝑠0 : 𝑥11 + 𝑥12 ≤ 200,
𝑠1 : 𝑥23 + 𝑥24 ≤ 1000,
𝑠2 : 𝑥31 + 𝑥33 + 𝑥34 ≤ 1000,
𝑑0 : 𝑥11 + 𝑥31 = 1100,
𝑑1 : 𝑥12 = 200,
𝑑2 : 𝑥23 + 𝑥33 = 500,
𝑑3 : 𝑥24 + 𝑥34 = 500,

𝑥𝑖𝑗 ≥ 0.

(6.1)

Solving problem (6.1) using MOSEK will result in an infeasibility status. The infeasibility certificate
is contained in the dual variables an can be accessed from an API. The variables and constraints with
nonzero solution values form an infeasible subproblem, which frequently is very small. See Sec. 7.1.2 or
Sec. 7.2.2 for detailed specifications of infeasibility certificates.

A short infeasibility report can also be printed to the log stream. It can be turned on by setting
the parameter MSK_IPAR_INFEAS_REPORT_AUTO to MSK_ON . This causes MOSEK to print a report on
variables and constraints which are involved in infeasibility in the above sense, i.e. have nonzero values
in the certificate. The parameter MSK_IPAR_INFEAS_REPORT_LEVEL controls the amount of information
presented in the infeasibility report. The default value is 1. For the above example the report is

27

Primal infeasibility report

Problem status: The problem is primal infeasible

The following constraints are involved in the primal infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper
0 s0 none 200 0 1
2 s2 none 1000 0 1
3 d0 1100 1100 1 0
4 d1 200 200 1 0

The following bound constraints are involved in the primal infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper
5 x33 0 none 1 0
6 x34 0 none 1 0

The infeasibility report is divided into two sections corresponding to constraints and variables. It
is a selection of those lines from the problem solution which are important in understanding primal
infeasibility. In this case the constraints s0, s2, d0, d1 and variables x33, x34 are of importance because
of nonzero dual values. The columns Dual lower and Dual upper contain the values of dual variables
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠𝑥𝑙 and 𝑠𝑥𝑢 in the primal infeasibility certificate (see Sec. 7.1.2).

In our example the certificate means that an appropriate linear combination of constraints s0, s1
with coefficient 𝑠𝑐𝑢 = 1, constraints d0 and d1 with coefficient 𝑠𝑐𝑢 − 𝑠𝑐𝑙 = 0 − 1 = −1 and lower bounds
on x33 and x34 with coefficient −𝑠𝑥𝑙 = −1 gives a contradiction. Indeed, the combination of the four
involved constraints is 𝑥33 +𝑥34 ≤ −100 (as indicated in the introduction, the difference between supply
and demand).

It is also possible to extract the infeasible subproblem with the command-line tool. For an infeasible
problem called infeas.lp the command:

mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.lp -info rinfeas.lp

will produce the file rinfeas.bas.inf.lp which contains the infeasible subproblem. Because of its
size it may be easier to work with than the original problem file.

Returning to the transportation example, we discover that removing the fifth constraint 𝑥12 = 200
makes the problem feasible. Almost all undesired infeasibilities should be fixable at the modeling stage.

6.3.3 Locating dual infeasibility
A problem may also be dual infeasible. In this case the primal problem is usually unbounded, meaning
that feasible solutions exists such that the objective tends towards infinity. For example, consider the
problem

maximize 200𝑦1 + 1000𝑦2 + 1000𝑦3 + 1100𝑦4 + 200𝑦5 + 500𝑦6 + 500𝑦7
subject to 𝑦1 + 𝑦4 ≤ 1, 𝑦1 + 𝑦5 ≤ 2, 𝑦2 + 𝑦6 ≤ 5, 𝑦2 + 𝑦7 ≤ 2,

𝑦3 + 𝑦4 ≤ 1, 𝑦3 + 𝑦6 ≤ 2, 𝑦3 + 𝑦7 ≤ 1
𝑦1, 𝑦2, 𝑦3 ≤ 0

which is dual to (6.1) (and therefore is dual infeasible). The dual infeasibility report may look as follows:

Dual infeasibility report

Problem status: The problem is dual infeasible

(continues on next page)

28

(continued from previous page)

The following constraints are involved in the dual infeasibility.

Index Name Activity Objective Lower bound Upper bound
5 x33 -1 none 2
6 x34 -1 none 1

The following variables are involved in the dual infeasibility.

Index Name Activity Objective Lower bound Upper bound
0 y1 -1 200 none 0
2 y3 -1 1000 none 0
3 y4 1 1100 none none
4 y5 1 200 none none

In the report we see that the variables y1, y3, y4, y5 and two constraints contribute to infeasibility
with non-zero values in the Activity column. Therefore

(𝑦1, . . . , 𝑦7) = (−1, 0,−1, 1, 1, 0, 0)

is the dual infeasibility certificate as in Sec. 7.1.2. This just means, that along the ray

(0, 0, 0, 0, 0, 0, 0) + 𝑡(𝑦1, . . . , 𝑦7) = (−𝑡, 0,−𝑡, 𝑡, 𝑡, 0, 0), 𝑡 > 0,

which belongs to the feasible set, the objective value 100𝑡 can be arbitrarily large, i.e. the problem is
unbounded.

In the example problem we could

• Add a lower bound on y3. This will directly invalidate the certificate of dual infeasibility.

• Increase the objective coefficient of y3. Changing the coefficients sufficiently will invalidate the
inequality 𝑐𝑇 𝑦* > 0 and thus the certificate.

6.3.4 Suggestions

Primal infeasibility

When trying to understand what causes the unexpected primal infeasible status use the following hints:

• Remove the objective function. This does not change the infeasibility status but simplifies the
problem, eliminating any possibility of issues related to the objective function.

• Remove cones, semidefinite variables and integer constraints. Solve only the linear part of the
problem. Typical simple modeling errors will lead to infeasibility already at this stage.

• Consider whether your problem has some obvious necessary conditions for feasibility and examine
if these are satisfied, e.g. total supply should be greater than or equal to total demand.

• Verify that coefficients and bounds are reasonably sized in your problem.

• See if there are any obvious contradictions, for instance a variable is bounded both in the variables
and constraints section, and the bounds are contradictory.

• Consider replacing suspicious equality constraints by inequalities. For instance, instead of 𝑥12 = 200
see what happens for 𝑥12 ≥ 200 or 𝑥12 ≤ 200.

• Relax bounds of the suspicious constraints or variables.

29

• For integer problems, remove integrality constraints on some/all variables and see if the problem
solves.

• Form an elastic model: allow to violate constraints at a cost. Introduce slack variables and add
them to the objective as penalty. For instance, suppose we have a constraint

minimize 𝑐𝑇𝑥,
subject to 𝑎𝑇𝑥 ≤ 𝑏.

which might be causing infeasibility. Then create a new variable 𝑦 and form the problem which
contains:

minimize 𝑐𝑇𝑥 + 𝑦,
subject to 𝑎𝑇𝑥 ≤ 𝑏 + 𝑦.

Solving this problem will reveal by how much the constraint needs to be relaxed in order to become
feasible. This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

• If you think you have a feasible solution or its part, fix all or some of the variables to those values.
Presolve will propagate them through the model and potentially reveal more localized sources of
infeasibility.

• Dump the problem in PTF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Dual infeasibility

When trying to understand what causes the unexpected dual infeasible status use the following hints:

• Verify that the objective coefficients are reasonably sized.

• Check if no bounds and constraints are missing, for example if all variables that should be nonneg-
ative have been declared as such etc.

• Strengthen bounds of the suspicious constraints or variables.

• Form an series of models with decreasing bounds on the objective, that is, instead of objective

minimize 𝑐𝑇𝑥

solve the problem with an additional constraint such as

𝑐𝑇𝑥 = −105

and inspect the solution to figure out the mechanism behind arbitrarily decreasing objective values.
This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

• Dump the problem in PTF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Please note that modifying the problem to invalidate the reported certificate does not imply that the
problem becomes feasible — the reason for infeasibility may simply move, resulting a problem that is
still infeasible, but for a different reason. More often, the reported certificate can be used to give a hint
about errors or inconsistencies in the model that produced the problem.

30

6.4 Python Console

The MOSEK Python Console is an alternative to the MOSEK Command Line Tool. It can be used for
interactive loading, solving and debugging optimization problems stored in files, for example MOSEK
task files. It facilitates debugging techniques described in Sec. 6.

6.4.1 Usage
The tool requires Python 3. The MOSEK interface for Python must be installed following the instal-
lation instructions for Python API or Python Fusion API. The easiest option is

pip install Mosek

The Python Console is contained in the file mosekconsole.py in the folder with MOSEK binaries. It
can be copied to an arbitrary location. The file is also available for download here (mosekconsole.py).

To run the console in interactive mode use

python mosekconsole.py

To run the console in batch mode provide a semicolon-separated list of commands as the second
argument of the script, for example:

python mosekconsole.py "read data.task.gz; solve form=dual; writesol data"

The script is written using the MOSEK Python API and can be extended by the user if more specific
functionality is required. We refer to the documentation of the Python API.

6.4.2 Examples
To read a problem from data.task.gz, solve it, and write solutions to data.sol, data.bas or data.itg:

read data.task.gz; solve; writesol data

To convert between file formats:

read data.task.gz; write data.mps

To set a parameter before solving:

read data.task.gz; param INTPNT_CO_TOL_DFEAS 1e-9; solve"

To list parameter values related to the mixed-integer optimizer in the task file:

read data.task.gz; param MIO

To print a summary of problem structure:

read data.task.gz; anapro

To solve a problem forcing the dual and switching off presolve:

read data.task.gz; solve form=dual presolve=no

To write an infeasible subproblem to a file for debugging purposes:

read data.task.gz; solve; infsub; write inf.opf

31

6.4.3 Full list of commands
Below is a brief description of all the available commands. Detailed information about a specific command
cmd and its options can be obtained with

help cmd

Table 6.1: List of commands of the MOSEK Python Console.

Command Description

help [command] Print list of commands or info about a specific command
log filename Save the session to a file
intro Print MOSEK splashscreen
testlic Test the license system
read filename Load problem from file
reread Reload last problem file
solve
[options]

Solve current problem

write filename Write current problem to file
param [name
[value]]

Set a parameter or get parameter values

paramdef Set all parameters to default values
paramdiff Show parameters with non-default values
paramval name Show available values for a parameter
info [name] Get an information item
anapro Analyze problem data
anapro+ Analyze problem data with the internal analyzer
hist Plot a histogram of problem data
histsol Plot a histogram of the solutions
spy Plot the sparsity pattern of the data matrices
truncate
epsilon

Truncate small coefficients down to 0

resobj [fac] Rescale objective by a factor
anasol Analyze solutions
removeitg Remove integrality constraints
removecones Remove all cones and leave just the linear part
delsol Remove solutions
infsub Replace current problem with its infeasible subproblem
dualize Replace current problem with its dual
writesol
basename

Write solution(s) to file(s) with given basename

writejsonsol
name

Write solutions to JSON file with given name

ptf Print the PTF representation of the problem
optserver
[url]

Use an OptServer to optimize

ls List the current folder
exit Leave

32

Chapter 7

Problem Formulation and Solutions

In this chapter we will discuss the following topics:

• The formal, mathematical formulations of the problem types that MOSEK can solve and their
duals.

• The solution information produced by MOSEK.

• The infeasibility certificate produced by MOSEK if the problem is infeasible.

For the underlying mathematical concepts, derivations and proofs see the Modeling Cookbook or any
book on convex optimization. This chapter explains how the related data is organized specifically within
the MOSEK API.

7.1 Linear Optimization

MOSEK accepts linear optimization problems of the form

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

(7.1)

where

• 𝑚 is the number of constraints.

• 𝑛 is the number of decision variables.

• 𝑥 ∈ R𝑛 is a vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear part of the objective function.

• 𝑐𝑓 ∈ R is a constant term in the objective

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

Lower and upper bounds can be infinite, or in other words the corresponding bound may be omitted.
A primal solution (𝑥) is (primal) feasible if it satisfies all constraints in (7.1). If (7.1) has at least one

primal feasible solution, then (7.1) is said to be (primal) feasible. In case (7.1) does not have a feasible
solution, the problem is said to be (primal) infeasible

33

https://docs.mosek.com/modeling-cookbook/index.html

7.1.1 Duality for Linear Optimization
Corresponding to the primal problem (7.1), there is a dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

(7.2)

where

• 𝑠𝑐𝑙 are the dual variables for lower bounds of constraints,

• 𝑠𝑐𝑢 are the dual variables for upper bounds of constraints,

• 𝑠𝑥𝑙 are the dual variables for lower bounds of variables,

• 𝑠𝑥𝑢 are the dual variables for upper bounds of variables.

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at
0, and we use the convention that the product of the bound value and the corresponding dual variable is
0. This is equivalent to removing the corresponding dual variable from the dual problem. For example:

𝑙𝑥𝑗 = −∞ ⇒ (𝑠𝑥𝑙)𝑗 = 0 and 𝑙𝑥𝑗 · (𝑠𝑥𝑙)𝑗 = 0.

A solution

(𝑦, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢)

to the dual problem is feasible if it satisfies all the constraints in (7.2). If (7.2) has at least one feasible
solution, then (7.2) is (dual) feasible, otherwise the problem is (dual) infeasible.

A solution

(𝑥*, 𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*)

is denoted a primal-dual feasible solution, if (𝑥*) is a solution to the primal problem (7.1) and
(𝑦*, (𝑠𝑐𝑙)

, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*) is a solution to the corresponding dual problem (7.2). We also define an
auxiliary vector

(𝑥𝑐)* := 𝐴𝑥*

containing the activities of linear constraints.
For a primal-dual feasible solution we define the duality gap as the difference between the primal and

the dual objective value,

𝑐𝑇𝑥* + 𝑐𝑓 −
{︀

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* + 𝑐𝑓

}︀
=
∑︀𝑚−1

𝑖=0 [(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) + (𝑠𝑐𝑢)*𝑖 (𝑢𝑐

𝑖 − (𝑥𝑐
𝑖)

*)]

+
∑︀𝑛−1

𝑗=0

[︀
(𝑠𝑥𝑙)*𝑗 (𝑥𝑗 − 𝑙𝑥𝑗) + (𝑠𝑥𝑢)*𝑗 (𝑢𝑥

𝑗 − 𝑥*
𝑗)
]︀
≥ 0

(7.3)

where the first relation can be obtained by transposing and multiplying the dual constraints (7.2) by
𝑥* and (𝑥𝑐)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

It is well-known that a linear optimization problem has an optimal solution if and only if there exist
feasible primal-dual solution so that the duality gap is zero, or, equivalently, that the complementarity
conditions

(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑐𝑢)*𝑖 (𝑢𝑐
𝑖 − (𝑥𝑐

𝑖)
*) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑥𝑙)*𝑗 (𝑥*
𝑗 − 𝑙𝑥𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,

(𝑠𝑥𝑢)*𝑗 (𝑢𝑥
𝑗 − 𝑥*

𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,

are satisfied.
If (7.1) has an optimal solution and MOSEK solves the problem successfully, both the primal and

dual solution are reported, including a status indicating the exact state of the solution.

34

7.1.2 Infeasibility for Linear Optimization

Primal Infeasible Problems

If the problem (7.1) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

(7.4)

such that the objective value is strictly positive, i.e. a solution

(𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*)

to (7.4) so that

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* > 0.

Such a solution implies that (7.4) is unbounded, and that (7.1) is infeasible.

Dual Infeasible Problems

If the problem (7.2) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize 𝑐𝑇𝑥

subject to 𝑙̂𝑐 ≤ 𝐴𝑥 ≤ 𝑢̂𝑐,

𝑙̂𝑥 ≤ 𝑥 ≤ 𝑢̂𝑥,

(7.5)

where

𝑙̂𝑐𝑖 =

{︂
0 if 𝑙𝑐𝑖 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑐

𝑖 :=

{︂
0 if 𝑢𝑐

𝑖 < ∞,
∞ otherwise,

}︂
and

𝑙̂𝑥𝑗 =

{︂
0 if 𝑙𝑥𝑗 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑥

𝑗 :=

{︂
0 if 𝑢𝑥

𝑗 < ∞,
∞ otherwise,

}︂
such that

𝑐𝑇𝑥 < 0.

Such a solution implies that (7.5) is unbounded, and that (7.2) is infeasible.
In case that both the primal problem (7.1) and the dual problem (7.2) are infeasible, MOSEK will

report only one of the two possible certificates — which one is not defined (MOSEK returns the first
certificate found).

7.1.3 Minimalization vs. Maximalization
When the objective sense of problem (7.1) is maximization, i.e.

maximize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

35

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (7.2). The dual problem thus takes the form

minimize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0.

This means that the duality gap, defined in (7.3) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0,

(7.6)

such that the objective value is strictly negative

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* < 0.

Similarly, the certificate of dual infeasibility is an 𝑥 satisfying the requirements of (7.5) such that 𝑐𝑇𝑥 > 0.

7.2 Conic Optimization

Conic optimization is an extension of linear optimization (see Sec. 7.1) allowing conic domains to be
specified for affine expressions. A conic optimization problem to be solved by MOSEK can be written
as

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟,

(7.7)

where

• 𝑚 is the number of constraints.

• 𝑛 is the number of decision variables.

• 𝑥 ∈ R𝑛 is a vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear part of the objective function.

• 𝑐𝑓 ∈ R is a constant term in the objective

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

is the same as in Sec. 7.1 and moreover:

• 𝐹 ∈ R𝑘×𝑛 is the affine conic constraint matrix.,

• 𝑔 ∈ R𝑘 is the affine conic constraint constant term vector.,

• 𝒟 is a Cartesian product of conic domains, namely 𝒟 = 𝒟1 × · · · × 𝒟𝑝, where 𝑝 is the number of
individual affine conic constraints (ACCs), and each domain is one from Sec. 10.5.

The total dimension of the domain 𝒟 must be equal to 𝑘, the number of rows in 𝐹 and 𝑔. Lower and
upper bounds can be infinite, or in other words the corresponding bound may be omitted.

MOSEK supports also the cone of positive semidefinite matrices. In order not to obscure this section
with additional notation, that extension is discussed in Sec. 7.3.

36

7.2.1 Duality for Conic Optimization
Corresponding to the primal problem (7.7), there is a dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 𝑔𝑇 𝑦̇ + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 𝑐,

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑦̇ ∈ 𝒟*,

(7.8)

where

• 𝑠𝑐𝑙 are the dual variables for lower bounds of constraints,

• 𝑠𝑐𝑢 are the dual variables for upper bounds of constraints,

• 𝑠𝑥𝑙 are the dual variables for lower bounds of variables,

• 𝑠𝑥𝑢 are the dual variables for upper bounds of variables,

• 𝑦̇ are the dual variables for affine conic constraints,

• the dual domain 𝒟* = 𝒟*
1 × · · · × 𝒟*

𝑝 is a Cartesian product of cones dual to 𝒟𝑖.

One can check that the dual problem of the dual problem is identical to the original primal problem.
If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at

0, and we use the convention that the product of the bound value and the corresponding dual variable
is 0. This is equivalent to removing the corresponding dual variable (𝑠𝑥𝑙)𝑗 from the dual problem. For
example:

𝑙𝑥𝑗 = −∞ ⇒ (𝑠𝑥𝑙)𝑗 = 0 and 𝑙𝑥𝑗 · (𝑠𝑥𝑙)𝑗 = 0.

A solution

(𝑦, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢, 𝑦̇)

to the dual problem is feasible if it satisfies all the constraints in (7.8). If (7.8) has at least one feasible
solution, then (7.8) is (dual) feasible, otherwise the problem is (dual) infeasible.

A solution

(𝑥*, 𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*, (𝑦̇)*)

is denoted a primal-dual feasible solution, if (𝑥*) is a solution to the primal problem (7.7) and
(𝑦*, (𝑠𝑐𝑙)

, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*, (𝑦̇)*) is a solution to the corresponding dual problem (7.8). We also de-
fine an auxiliary vector

(𝑥𝑐)* := 𝐴𝑥*

containing the activities of linear constraints.
For a primal-dual feasible solution we define the duality gap as the difference between the primal and

the dual objective value,

𝑐𝑇𝑥* + 𝑐𝑓 −
{︀

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* − 𝑔𝑇 (𝑦̇)* + 𝑐𝑓

}︀
=
∑︀𝑚−1

𝑖=0 [(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) + (𝑠𝑐𝑢)*𝑖 (𝑢𝑐

𝑖 − (𝑥𝑐
𝑖)

*)]

+
∑︀𝑛−1

𝑗=0

[︀
(𝑠𝑥𝑙)*𝑗 (𝑥𝑗 − 𝑙𝑥𝑗) + (𝑠𝑥𝑢)*𝑗 (𝑢𝑥

𝑗 − 𝑥*
𝑗)
]︀

+((𝑦̇)*)𝑇 (𝐹𝑥* + 𝑔) ≥ 0

(7.9)

where the first relation can be obtained by transposing and multiplying the dual constraints (7.2) by
𝑥* and (𝑥𝑐)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

37

It is well-known that, under some non-degeneracy assumptions that exclude ill-posed cases, a conic
optimization problem has an optimal solution if and only if there exist feasible primal-dual solution so
that the duality gap is zero, or, equivalently, that the complementarity conditions

(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑐𝑢)*𝑖 (𝑢𝑐
𝑖 − (𝑥𝑐

𝑖)
*) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑥𝑙)*𝑗 (𝑥*
𝑗 − 𝑙𝑥𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,

(𝑠𝑥𝑢)*𝑗 (𝑢𝑥
𝑗 − 𝑥*

𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,
((𝑦̇)*)𝑇 (𝐹𝑥* + 𝑔) = 0,

(7.10)

are satisfied.
If (7.7) has an optimal solution and MOSEK solves the problem successfully, both the primal and

dual solution are reported, including a status indicating the exact state of the solution.

7.2.2 Infeasibility for Conic Optimization

Primal Infeasible Problems

If the problem (7.7) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 𝑔𝑇 𝑦̇
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑦̇ ∈ 𝒟*,

(7.11)

such that the objective value is strictly positive, i.e. a solution

(𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*, (𝑦̇)*)

to (7.11) so that

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* − 𝑔𝑇 𝑦̇ > 0.

Such a solution implies that (7.11) is unbounded, and that (7.7) is infeasible.

Dual Infeasible Problems

If the problem (7.8) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize 𝑐𝑇𝑥

subject to 𝑙̂𝑐 ≤ 𝐴𝑥 ≤ 𝑢̂𝑐,

𝑙̂𝑥 ≤ 𝑥 ≤ 𝑢̂𝑥,
𝐹𝑥 ∈ 𝒟

(7.12)

where

𝑙̂𝑐𝑖 =

{︂
0 if 𝑙𝑐𝑖 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑐

𝑖 :=

{︂
0 if 𝑢𝑐

𝑖 < ∞,
∞ otherwise,

}︂
(7.13)

and

𝑙̂𝑥𝑗 =

{︂
0 if 𝑙𝑥𝑗 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑥

𝑗 :=

{︂
0 if 𝑢𝑥

𝑗 < ∞,
∞ otherwise,

}︂
(7.14)

38

such that

𝑐𝑇𝑥 < 0.

Such a solution implies that (7.12) is unbounded, and that (7.8) is infeasible.
In case that both the primal problem (7.7) and the dual problem (7.8) are infeasible, MOSEK will

report only one of the two possible certificates — which one is not defined (MOSEK returns the first
certificate found).

7.2.3 Minimalization vs. Maximalization
When the objective sense of problem (7.7) is maximization, i.e.

maximize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟,

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (7.2). The dual problem thus takes the form

minimize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 𝑔𝑇 𝑦̇ + 𝑐𝑓

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0,

−𝑦̇ ∈ 𝒟*

This means that the duality gap, defined in (7.9) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0,

−𝑦̇ ∈ 𝒟*

(7.15)

such that the objective value is strictly negative

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* − 𝑔𝑇 𝑦̇ < 0.

Similarly, the certificate of dual infeasibility is an 𝑥 satisfying the requirements of (7.12) such that
𝑐𝑇𝑥 > 0.

7.3 Semidefinite Optimization

Semidefinite optimization is an extension of conic optimization (see Sec. 7.2) allowing positive semidefinite
matrix variables to be used in addition to the usual scalar variables. All the other parts of the input are
defined exactly as in Sec. 7.2, and the discussion from that section applies verbatim to all properties of
problems with semidefinite variables. We only briefly indicate how the corresponding formulae should
be modified with semidefinite terms.

A semidefinite optimization problem can be written as

minimize 𝑐𝑇𝑥 + ⟨𝐶,𝑋⟩ + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 + ⟨𝐴,𝑋⟩ ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + ⟨𝐹 ,𝑋⟩ + 𝑔 ∈ 𝒟,
𝑋𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 1, . . . , 𝑠

where

39

• 𝑚 is the number of constraints.

• 𝑛 is the number of decision variables.

• 𝑥 ∈ R𝑛 is a vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear part of the objective function.

• 𝑐𝑓 ∈ R is a constant term in the objective

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

• 𝐹 ∈ R𝑘×𝑛 is the affine conic constraint matrix.,

• 𝑔 ∈ R𝑘 is the affine conic constraint constant term vector.,

• 𝒟 is a Cartesian product of conic domains, namely 𝒟 = 𝒟1 × · · · × 𝒟𝑝, where 𝑝 is the number of
individual affine conic constraints (ACCs), and each domain is one from Sec. 10.5.

is the same as in Sec. 7.2 and moreover:

• there are 𝑠 symmetric positive semidefinite variables, the 𝑗-th of which is 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ of dimension

𝑟𝑗 ,

• 𝐶 = (𝐶𝑗)𝑗=1,...,𝑠 is a collection of symmetric coefficient matrices in the objective, with 𝐶𝑗 ∈ 𝒮𝑟𝑗 ,
and we interpret the notation ⟨𝐶,𝑋⟩ as a shorthand for

⟨𝐶,𝑋⟩ :=

𝑠∑︁
𝑗=1

⟨𝐶𝑗 , 𝑋𝑗⟩.

• 𝐴 = (𝐴𝑖𝑗)𝑖=1,...,𝑚,𝑗=1,...,𝑠 is a collection of symmetric coefficient matrices in the constraints, with
𝐴𝑖𝑗 ∈ 𝒮𝑟𝑗 , and we interpret the notation ⟨𝐴,𝑋⟩ as a shorthand for the vector

⟨𝐴,𝑋⟩ :=

⎛⎝ 𝑠∑︁
𝑗=1

⟨𝐴𝑖𝑗 , 𝑋𝑗⟩

⎞⎠
𝑖=1,...,𝑚

.

• 𝐹 = (𝐹 𝑖𝑗)𝑖=1,...,𝑘,𝑗=1,...,𝑠 is a collection of symmetric coefficient matrices in the affine conic con-
straints, with 𝐹 𝑖𝑗 ∈ 𝒮𝑟𝑗 , and we interpret the notation ⟨𝐹 ,𝑋⟩ as a shorthand for the vector

⟨𝐹 ,𝑋⟩ :=

⎛⎝ 𝑠∑︁
𝑗=1

⟨𝐹 𝑖𝑗 , 𝑋𝑗⟩

⎞⎠
𝑖=1,...,𝑘

.

In each case the matrix inner product between symmetric matrices of the same dimension 𝑟 is defined
as

⟨𝑈, 𝑉 ⟩ :=

𝑟∑︁
𝑖=1

𝑟∑︁
𝑗=1

𝑈𝑖𝑗𝑉𝑖𝑗 .

To summarize, above the formulation extends that from Sec. 7.2 by the possibility of including
semidefinite terms in the objective, constraints and affine conic constraints.

40

Duality

The definition of the dual problem (7.8) becomes:

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 𝑔𝑇 𝑦̇ + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 𝑐,

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,

𝐶𝑗 −
∑︀𝑚

𝑖=1 𝑦𝑖𝐴𝑖𝑗 −
∑︀𝑘

𝑖=1 𝑦̇𝑖𝐹 𝑖𝑗 = 𝑆𝑗 , 𝑗 = 1, . . . , 𝑠,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑦̇ ∈ 𝒟*,
𝑆𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 1, . . . , 𝑠.

(7.16)

Complementarity conditions (7.10) include the additional relation:

⟨𝑋𝑗 , 𝑆𝑗⟩ = 0 𝑗 = 1, . . . , 𝑠. (7.17)

Infeasibility

A certificate of primal infeasibility (7.11) is now a feasible solution to:

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 𝑔𝑇 𝑦̇
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,

−
∑︀𝑚

𝑖=1 𝑦𝑖𝐴𝑖𝑗 −
∑︀𝑘

𝑖=1 𝑦̇𝑖𝐹 𝑖𝑗 = 𝑆𝑗 , 𝑗 = 1, . . . , 𝑠,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑦̇ ∈ 𝒟*,
𝑆𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 1, . . . , 𝑠.

(7.18)

such that the objective value is strictly positive.
Similarly, a dual infeasibility certificate (7.12) is a feasible solution to

minimize 𝑐𝑇𝑥 + ⟨𝐶,𝑋⟩
subject to 𝑙̂𝑐 ≤ 𝐴𝑥 + ⟨𝐴,𝑋⟩ ≤ 𝑢̂𝑐,

𝑙̂𝑥 ≤ 𝑥 ≤ 𝑢̂𝑥,
𝐹𝑥 + ⟨𝐹 ,𝑋⟩ ∈ 𝒟,

𝑋𝑗 ∈ 𝒮𝑟𝑗
+ , 𝑗 = 1, . . . , 𝑠

(7.19)

where the modified bounds are as in (7.13) and (7.14) and the objective value is strictly negative.

7.4 Quadratic and Quadratically Constrained Optimization

A convex quadratic and quadratically constrained optimization problem has the form

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐𝑘 ≤ 1
2𝑥

𝑇𝑄𝑘𝑥 +
∑︀𝑛−1

𝑗=0 𝑎𝑘𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1,

(7.20)

where all variables and bounds have the same meaning as for linear problems (see Sec. 7.1) and 𝑄𝑜 and
all 𝑄𝑘 are symmetric matrices. Moreover, for convexity, 𝑄𝑜 must be a positive semidefinite matrix and
𝑄𝑘 must satisfy

−∞ < 𝑙𝑐𝑘 ⇒ 𝑄𝑘 is negative semidefinite,
𝑢𝑐
𝑘 < ∞ ⇒ 𝑄𝑘 is positive semidefinite,

−∞ < 𝑙𝑐𝑘 ≤ 𝑢𝑐
𝑘 < ∞ ⇒ 𝑄𝑘 = 0.

The convexity requirement is very important and MOSEK checks whether it is fulfilled.

41

7.4.1 A Recommendation
Any convex quadratic optimization problem can be reformulated as a conic quadratic optimization prob-
lem, see Modeling Cookbook and [And13]. In fact MOSEK does such conversion internally as a part
of the solution process for the following reasons:

• the conic optimizer is numerically more robust than the one for quadratic problems.

• the conic optimizer is usually faster because quadratic cones are simpler than quadratic functions,
even though the conic reformulation usually has more constraints and variables than the original
quadratic formulation.

• it is easy to dualize the conic formulation if deemed worthwhile potentially leading to (huge)
computational savings.

However, instead of relying on the automatic reformulation we recommend to formulate the problem
as a conic problem from scratch because:

• it saves the computational overhead of the reformulation including the convexity check. A conic
problem is convex by construction and hence no convexity check is needed for conic problems.

• usually the modeler can do a better reformulation than the automatic method because the modeler
can exploit the knowledge of the problem at hand.

To summarize we recommend to formulate quadratic problems and in particular quadratically con-
strained problems directly in conic form.

7.4.2 Duality for Quadratic and Quadratically Constrained Optimization
The dual problem corresponding to the quadratic and quadratically constrained optimization problem
(7.20) is given by

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 1
2𝑥

𝑇
{︁∑︀𝑚−1

𝑘=0 𝑦𝑘𝑄
𝑘 −𝑄𝑜

}︁
𝑥 + 𝑐𝑓

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 +
{︁∑︀𝑚−1

𝑘=0 𝑦𝑘𝑄
𝑘 −𝑄𝑜

}︁
𝑥 = 𝑐,

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0.

(7.21)

The dual problem is related to the dual problem for linear optimization (see Sec. 7.1.1), but depends on
the variable 𝑥 which in general can not be eliminated. In the solutions reported by MOSEK, the value
of 𝑥 is the same for the primal problem (7.20) and the dual problem (7.21).

7.4.3 Infeasibility for Quadratic Optimization
In case MOSEK finds a problem to be infeasible it reports a certificate of infeasibility. We write them
out explicitly for quadratic problems, that is when 𝑄𝑘 = 0 for all 𝑘 and quadratic terms appear only
in the objective 𝑄𝑜. In this case the constraints both in the primal and dual problem are linear, and
MOSEK produces for them the same infeasibility certificate as for linear problems.

The certificate of primal infeasibility is a solution to the problem (7.4) such that the objective value
is strictly positive.

The certificate of dual infeasibility is a solution to the problem (7.5) together with an additional
constraint

𝑄𝑜𝑥 = 0

such that the objective value is strictly negative.
Below is an outline of the different problem types for quick reference.

42

https://docs.mosek.com/modeling-cookbook/index.html

Continuous problem formulations

• Linear optimization (LO)

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

• Conic optimization (CO)

Conic optimization extends linear optimization with affine conic constraints (ACC):

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟,

where 𝒟 is a product of domains from Sec. 10.5.

• Semidefinite optimization (SDO)

A conic optimization problem can be further extended with semidefinite variables:

minimize 𝑐𝑇𝑥 + ⟨𝐶,𝑋⟩ + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 + ⟨𝐴,𝑋⟩ ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + ⟨𝐹 ,𝑋⟩ + 𝑔 ∈ 𝒟,
𝑋 ∈ 𝒮+,

where 𝒟 is a product of domains from Sec. 10.5 and 𝒮+ is a product of PSD cones meaning that
𝑋 is a sequence of PSD matrix variables.

• Quadratic and quadratically constrained optimization (QO, QCQO)

A quadratic problem or quadratically constrained problem has the form

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 1
2𝑥

𝑇𝑄𝑐𝑥 + 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

Mixed-integer extensions

Coninuous problems can be extended with constraints requiring the mixed-integer optimizer. We outline
them briefly here. The continuous part of a mixed-integer problem is formulated according to one of the
continuous types above, however only the primal information and solution fields are relevant, there are
no dual values and no infeasibility certificates.

• Integer variables. Specifies that a subset of variables take integer values, that is

𝑥𝐼 ∈ Z

for some index set 𝐼.

43

Chapter 8

Optimizers

The most essential part of MOSEK are the optimizers:

• primal simplex (linear problems),

• dual simplex (linear problems),

• interior-point (linear, quadratic and conic problems),

• mixed-integer (problems with integer variables).

The structure of a successful optimization process is roughly:

• Presolve

1. Elimination: Reduce the size of the problem.

2. Dualizer : Choose whether to solve the primal or the dual form of the problem.

3. Scaling : Scale the problem for better numerical stability.

• Optimization

1. Optimize: Solve the problem using selected method.

2. Terminate: Stop the optimization when specific termination criteria have been met.

3. Report : Return the solution or an infeasibility certificate.

The preprocessing stage is transparent to the user, but useful to know about for tuning purposes.
The purpose of the preprocessing steps is to make the actual optimization more efficient and robust. We
discuss the details of the above steps in the following sections.

8.1 Presolve

Before an optimizer actually performs the optimization the problem is preprocessed using the so-called
presolve. The purpose of the presolve is to

1. remove redundant constraints,

2. eliminate fixed variables,

3. remove linear dependencies,

4. substitute out (implied) free variables, and

5. reduce the size of the optimization problem in general.

44

After the presolved problem has been optimized the solution is automatically postsolved so that the
returned solution is valid for the original problem. Hence, the presolve is completely transparent. For
further details about the presolve phase, please see [AA95] and [AGMeszarosX96].

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If presolve consumes
too much time or memory compared to the reduction in problem size gained it may be disabled. This is
done by setting the parameter MSK_IPAR_PRESOLVE_USE to MSK_PRESOLVE_MODE_OFF .

In the following we describe in more detail the presolve applied to continuous, i.e., linear and conic
optimization problems, see Sec. 8.2 and Sec. 8.3. The mixed-integer optimizer, Sec. 8.4, applies similar
techniques. The two most time-consuming steps of the presolve for continuous optimization problems
are

• the eliminator, and

• the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.

Numerical issues in the presolve

During the presolve the problem is reformulated so that it hopefully solves faster. However, in rare
cases the presolved problem may be harder to solve then the original problem. The presolve may also
be infeasible although the original problem is not. If it is suspected that presolved problem is much
harder to solve than the original, we suggest to first turn the eliminator off by setting the parameter
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES to 0. If that does not help, then trying to turn entire
presolve off may help.

Since all computations are done in finite precision, the presolve employs some tolerances when con-
cluding a variable is fixed or a constraint is redundant. If it happens that MOSEK incorrectly con-
cludes a problem is primal or dual infeasible, then it is worthwhile to try to reduce the parameters
MSK_DPAR_PRESOLVE_TOL_X and MSK_DPAR_PRESOLVE_TOL_S . However, if reducing the parameters ac-
tually helps then this should be taken as an indication that the problem is badly formulated.

Eliminator

The purpose of the eliminator is to eliminate free and implied free variables from the problem using
substitution. For instance, given the constraints

𝑦 =
∑︀

𝑗 𝑥𝑗 ,

𝑦, 𝑥 ≥ 0,

y is an implied free variable that can be substituted out of the problem, if deemed worthwhile. If the elim-
inator consumes too much time or memory compared to the reduction in problem size gained it may be
disabled. This can be done by setting the parameter MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
to 0. In rare cases the eliminator may cause that the problem becomes much hard to solve.

Linear dependency checker

The purpose of the linear dependency check is to remove linear dependencies among the linear equalities.
For instance, the three linear equalities

𝑥1 + 𝑥2 + 𝑥3 = 1,
𝑥1 + 0.5𝑥2 = 0.5,
0.5𝑥2 + 𝑥3 = 0.5.

contain exactly one linear dependency. This implies that one of the constraints can be dropped with-
out changing the set of feasible solutions. Removing linear dependencies is in general a good idea
since it reduces the size of the problem. Moreover, the linear dependencies are likely to introduce
numerical problems in the optimization phase. It is best practice to build models without linear de-
pendencies, but that is not always easy for the user to control. If the linear dependencies are removed
at the modeling stage, the linear dependency check can safely be disabled by setting the parameter
MSK_IPAR_PRESOLVE_LINDEP_USE to MSK_OFF .

45

Dualizer

All linear, conic, and convex optimization problems have an equivalent dual problem associated with
them. MOSEK has built-in heuristics to determine if it is more efficient to solve the primal or dual
problem. The form (primal or dual) is displayed in the MOSEK log and available as an information
item from the solver. Should the internal heuristics not choose the most efficient form of the problem it
may be worthwhile to set the dualizer manually by setting the parameters:

• MSK_IPAR_INTPNT_SOLVE_FORM : In case of the interior-point optimizer.

• MSK_IPAR_SIM_SOLVE_FORM : In case of the simplex optimizer.

Note that currently only linear and conic (but not semidefinite) problems may be automatically
dualized.

Scaling

Problems containing data with large and/or small coefficients, say 1.0𝑒 + 9 or 1.0𝑒 − 7, are often hard
to solve. Significant digits may be truncated in calculations with finite precision, which can result in
the optimizer relying on inaccurate data. Since computers work in finite precision, extreme coefficients
should be avoided. In general, data around the same order of magnitude is preferred, and we will refer to
a problem, satisfying this loose property, as being well-scaled. If the problem is not well scaled, MOSEK
will try to scale (multiply) constraints and variables by suitable constants. MOSEK solves the scaled
problem to improve the numerical properties.

The scaling process is transparent, i.e. the solution to the original problem is reported. It is important
to be aware that the optimizer terminates when the termination criterion is met on the scaled problem,
therefore significant primal or dual infeasibilities may occur after unscaling for badly scaled problems.
The best solution of this issue is to reformulate the problem, making it better scaled.

By default MOSEK heuristically chooses a suitable scaling. The scaling for interior-point
and simplex optimizers can be controlled with the parameters MSK_IPAR_INTPNT_SCALING and
MSK_IPAR_SIM_SCALING respectively.

8.2 Linear Optimization

8.2.1 Optimizer Selection
Two different types of optimizers are available for linear problems: The default is an interior-point
method, and the alternative is the simplex method (primal or dual). The optimizer can be selected using
the parameter MSK_IPAR_OPTIMIZER .

The Interior-point or the Simplex Optimizer?

Given a linear optimization problem, which optimizer is the best: the simplex or the interior-point
optimizer? It is impossible to provide a general answer to this question. However, the interior-point
optimizer behaves more predictably: it tends to use between 20 and 100 iterations, almost independently
of problem size, but cannot perform warm-start. On the other hand the simplex method can take
advantage of an initial solution, but is less predictable from cold-start. The interior-point optimizer is
used by default.

The Primal or the Dual Simplex Variant?

MOSEK provides both a primal and a dual simplex optimizer. Predicting which simplex optimizer
is faster is impossible, however, in recent years the dual optimizer has seen several algorithmic and
computational improvements, which, in our experience, make it faster on average than the primal version.
Still, it depends much on the problem structure and size. Setting the MSK_IPAR_OPTIMIZER parameter to
MSK_OPTIMIZER_FREE_SIMPLEX instructs MOSEK to choose one of the simplex variants automatically.

To summarize, if you want to know which optimizer is faster for a given problem type, it is best to
try all the options.

46

8.2.2 The Interior-point Optimizer
The purpose of this section is to provide information about the algorithm employed in the MOSEK
interior-point optimizer for linear problems and about its termination criteria.

The homogeneous primal-dual problem

In order to keep the discussion simple it is assumed that MOSEK solves linear optimization problems
of standard form

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ 0.
(8.1)

This is in fact what happens inside MOSEK; for efficiency reasons MOSEK converts the problem to
standard form before solving, then converts it back to the input form when reporting the solution.

Since it is not known beforehand whether problem (8.1) has an optimal solution, is primal infeasible
or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason
why MOSEK solves the so-called homogeneous model

𝐴𝑥− 𝑏𝜏 = 0,
𝐴𝑇 𝑦 + 𝑠− 𝑐𝜏 = 0,

−𝑐𝑇𝑥 + 𝑏𝑇 𝑦 − 𝜅 = 0,
𝑥, 𝑠, 𝜏, 𝜅 ≥ 0,

(8.2)

where 𝑦 and 𝑠 correspond to the dual variables in (8.1), and 𝜏 and 𝜅 are two additional scalar variables.
Note that the homogeneous model (8.2) always has solution since

(𝑥, 𝑦, 𝑠, 𝜏, 𝜅) = (0, 0, 0, 0, 0)

is a solution, although not a very interesting one. Any solution

(𝑥*, 𝑦*, 𝑠*, 𝜏*, 𝜅*)

to the homogeneous model (8.2) satisfies

𝑥*
𝑗𝑠

*
𝑗 = 0 and 𝜏*𝜅* = 0.

Moreover, there is always a solution that has the property 𝜏* + 𝜅* > 0.
First, assume that 𝜏* > 0 . It follows that

𝐴𝑥*

𝜏* = 𝑏,

𝐴𝑇 𝑦*

𝜏* + 𝑠*

𝜏* = 𝑐,

−𝑐𝑇 𝑥*

𝜏* + 𝑏𝑇 𝑦*

𝜏* = 0,
𝑥*, 𝑠*, 𝜏*, 𝜅* ≥ 0.

This shows that 𝑥*

𝜏* is a primal optimal solution and (𝑦*

𝜏* ,
𝑠*

𝜏*) is a dual optimal solution; this is reported
as the optimal interior-point solution since

(𝑥, 𝑦, 𝑠) =

{︂
𝑥*

𝜏*
,
𝑦*

𝜏*
,
𝑠*

𝜏*

}︂
is a primal-dual optimal solution (see Sec. 7.1 for the mathematical background on duality and optimal-
ity).

On other hand, if 𝜅* > 0 then

𝐴𝑥* = 0,
𝐴𝑇 𝑦* + 𝑠* = 0,

−𝑐𝑇𝑥* + 𝑏𝑇 𝑦* = 𝜅*,
𝑥*, 𝑠*, 𝜏*, 𝜅* ≥ 0.

47

This implies that at least one of

𝑐𝑇𝑥* < 0 (8.3)

or

𝑏𝑇 𝑦* > 0 (8.4)

is satisfied. If (8.3) is satisfied then 𝑥* is a certificate of dual infeasibility, whereas if (8.4) is satisfied
then 𝑦* is a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information re-
quired for a solution to the original problem is obtained. A solution to the homogeneous model can be
computed using a primal-dual interior-point algorithm [And09].

Interior-point Termination Criterion

For efficiency reasons it is not practical to solve the homogeneous model exactly. Hence, an exact optimal
solution or an exact infeasibility certificate cannot be computed and a reasonable termination criterion
has to be employed.

In the 𝑘-th iteration of the interior-point algorithm a trial solution

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘)

to homogeneous model is generated, where

𝑥𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘 > 0.

Optimal case

Whenever the trial solution satisfies the criterion⃦⃦⃦
𝐴𝑥𝑘

𝜏𝑘 − 𝑏
⃦⃦⃦
∞

≤ 𝜖𝑝(1 + ‖𝑏‖∞),⃦⃦⃦
𝐴𝑇 𝑦𝑘

𝜏𝑘 + 𝑠𝑘

𝜏𝑘 − 𝑐
⃦⃦⃦
∞

≤ 𝜖𝑑(1 + ‖𝑐‖∞), and

min
(︁

(𝑥𝑘)𝑇 𝑠𝑘

(𝜏𝑘)2
, | 𝑐

𝑇 𝑥𝑘

𝜏𝑘 − 𝑏𝑇 𝑦𝑘

𝜏𝑘 |
)︁

≤ 𝜖𝑔 max

(︂
1,

min(|𝑐𝑇 𝑥𝑘|,|𝑏𝑇 𝑦𝑘|)
𝜏𝑘

)︂
,

(8.5)

the interior-point optimizer is terminated and

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘)

𝜏𝑘

is reported as the primal-dual optimal solution. The interpretation of (8.5) is that the optimizer is
terminated if

• 𝑥𝑘

𝜏𝑘 is approximately primal feasible,

•
{︁

𝑦𝑘

𝜏𝑘 ,
𝑠𝑘

𝜏𝑘

}︁
is approximately dual feasible, and

• the duality gap is almost zero.

Dual infeasibility certificate

On the other hand, if the trial solution satisfies

−𝜖𝑖𝑐
𝑇𝑥𝑘 >

‖𝑐‖∞
max (1, ‖𝑏‖∞)

⃦⃦
𝐴𝑥𝑘

⃦⃦
∞

then the problem is declared dual infeasible and 𝑥𝑘 is reported as a certificate of dual infeasibility. The
motivation for this stopping criterion is as follows: First assume that

⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ = 0 ; then 𝑥𝑘 is an exact

certificate of dual infeasibility. Next assume that this is not the case, i.e.⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ > 0,

48

and define

𝑥̄ := 𝜖𝑖
max (1, ‖𝑏‖∞)

‖𝐴𝑥𝑘‖∞ ‖𝑐‖∞
𝑥𝑘.

It is easy to verify that

‖𝐴𝑥̄‖∞ = 𝜖𝑖
max (1, ‖𝑏‖∞)

‖𝑐‖∞
and − 𝑐𝑇 𝑥̄ > 1,

which shows 𝑥̄ is an approximate certificate of dual infeasibility, where 𝜀𝑖 controls the quality of the
approximation. A smaller value means a better approximation.

Primal infeasibility certificate

Finally, if

𝜖𝑖𝑏
𝑇 𝑦𝑘 >

‖𝑏‖∞
max (1, ‖𝑐‖∞)

⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘

⃦⃦
∞

then 𝑦𝑘 is reported as a certificate of primal infeasibility.

Adjusting optimality criteria

It is possible to adjust the tolerances 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖 using parameters; see table for details.

Table 8.1: Parameters employed in termination criterion

ToleranceParameter name

𝜀𝑝 MSK_DPAR_INTPNT_TOL_PFEAS
𝜀𝑑 MSK_DPAR_INTPNT_TOL_DFEAS
𝜀𝑔 MSK_DPAR_INTPNT_TOL_REL_GAP
𝜀𝑖 MSK_DPAR_INTPNT_TOL_INFEAS

The default values of the termination tolerances are chosen such that for a majority of problems
appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the
tolerances usually is not worthwhile. However, an inspection of (8.5) reveals that the quality of the
solution depends on ‖𝑏‖∞ and ‖𝑐‖∞; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal
and dual feasibility at the same rate [And09]. This means that if the optimizer is stopped prematurely
then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that
in most cases all the tolerances, 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖, have to be relaxed together to achieve an effect.

The basis identification discussed in Sec. 8.2.2 requires an optimal solution to work well; hence basis
identification should be turned off if the termination criterion is relaxed.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

Basis Identification

An interior-point optimizer does not return an optimal basic solution unless the problem has a unique
primal and dual optimal solution. Therefore, the interior-point optimizer has an optional post-processing
step that computes an optimal basic solution starting from the optimal interior-point solution. More
information about the basis identification procedure may be found in [AY96]. In the following we provide
an overall idea of the procedure.

There are some cases in which a basic solution could be more valuable:

• a basic solution is often more accurate than an interior-point solution,

• a basic solution can be used to warm-start the simplex algorithm in case of reoptimization,

• a basic solution is in general more sparse, i.e. more variables are fixed to zero. This is partic-
ularly appealing when solving continuous relaxations of mixed integer problems, as well as in all
applications in which sparser solutions are preferred.

49

To illustrate how the basis identification routine works, we use the following trivial example:

minimize 𝑥 + 𝑦
subject to 𝑥 + 𝑦 = 1,

𝑥, 𝑦 ≥ 0.

It is easy to see that all feasible solutions are also optimal. In particular, there are two basic solutions,
namely

(𝑥*
1, 𝑦

*
1) = (1, 0),

(𝑥*
2, 𝑦

*
2) = (0, 1).

The interior point algorithm will actually converge to the center of the optimal set, i.e. to (𝑥*, 𝑦*) =
(1/2, 1/2) (to see this in MOSEK deactivate Presolve).

In practice, when the algorithm gets close to the optimal solution, it is possible to construct in
polynomial time an initial basis for the simplex algorithm from the current interior point solution. This
basis is used to warm-start the simplex algorithm that will provide the optimal basic solution. In most
cases the constructed basis is optimal, or very few iterations are required by the simplex algorithm to
make it optimal and hence the final clean-up phase be short. However, for some cases of ill-conditioned
problems the additional simplex clean up phase may take of lot a time.

By default MOSEK performs a basis identification. However, if a basic solution is not needed, the
basis identification procedure can be turned off. The parameters

• MSK_IPAR_INTPNT_BASIS ,

• MSK_IPAR_BI_IGNORE_MAX_ITER , and

• MSK_IPAR_BI_IGNORE_NUM_ERROR

control when basis identification is performed.
The type of simplex algorithm to be used (primal/dual) can be tuned with the param-

eter MSK_IPAR_BI_CLEAN_OPTIMIZER , and the maximum number of iterations can be set with
MSK_IPAR_BI_MAX_ITERATIONS .

Finally, it should be mentioned that there is no guarantee on which basic solution will be returned.

The Interior-point Log

Below is a typical log output from the interior-point optimizer:

Optimizer - threads : 1
Optimizer - solved problem : the dual
Optimizer - Constraints : 2
Optimizer - Cones : 0
Optimizer - Scalar variables : 6 conic : 0
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 3 after factor : 3
Factor - dense dim. : 0 flops : 7.
→˓00e+001
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU ␣
→˓ TIME
0 1.0e+000 8.6e+000 6.1e+000 1.00e+000 0.000000000e+000 -2.208000000e+003 1.
→˓0e+000 0.00
1 1.1e+000 2.5e+000 1.6e-001 0.00e+000 -7.901380925e+003 -7.394611417e+003 2.
→˓5e+000 0.00
2 1.4e-001 3.4e-001 2.1e-002 8.36e-001 -8.113031650e+003 -8.055866001e+003 3.3e-
→˓001 0.00
3 2.4e-002 5.8e-002 3.6e-003 1.27e+000 -7.777530698e+003 -7.766471080e+003 5.7e-
→˓002 0.01

(continues on next page)

50

(continued from previous page)

4 1.3e-004 3.2e-004 2.0e-005 1.08e+000 -7.668323435e+003 -7.668207177e+003 3.2e-
→˓004 0.01
5 1.3e-008 3.2e-008 2.0e-009 1.00e+000 -7.668000027e+003 -7.668000015e+003 3.2e-
→˓008 0.01
6 1.3e-012 3.2e-012 2.0e-013 1.00e+000 -7.667999994e+003 -7.667999994e+003 3.2e-
→˓012 0.01

The first line displays the number of threads used by the optimizer and the second line indicates if
the optimizer chose to solve the primal or dual problem (see MSK_IPAR_INTPNT_SOLVE_FORM). The next
lines display the problem dimensions as seen by the optimizer, and the Factor... lines show various
statistics. This is followed by the iteration log.

Using the same notation as in Sec. 8.2.2 the columns of the iteration log have the following meaning:

• ITE: Iteration index 𝑘.

• PFEAS:
⃦⃦
𝐴𝑥𝑘 − 𝑏𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards zero

but may stall at low level due to rounding errors.

• DFEAS:
⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘 − 𝑐𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards

zero but may stall at low level due to rounding errors.

• GFEAS: |− 𝑐𝑇𝑥𝑘 + 𝑏𝑇 𝑦𝑘 −𝜅𝑘| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

• PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to −1 if that is not the case.

• POBJ: 𝑐𝑇𝑥𝑘/𝜏𝑘. An estimate for the primal objective value.

• DOBJ: 𝑏𝑇 𝑦𝑘/𝜏𝑘. An estimate for the dual objective value.

• MU: (𝑥𝑘)𝑇 𝑠𝑘+𝜏𝑘𝜅𝑘

𝑛+1 . The numbers in this column should always converge to zero.

• TIME: Time spent since the optimization started.

8.2.3 The Simplex Optimizer
An alternative to the interior-point optimizer is the simplex optimizer. The simplex optimizer uses a
different method that allows exploiting an initial guess for the optimal solution to reduce the solution
time. Depending on the problem it may be faster or slower to use an initial guess; see Sec. 8.2.1 for a
discussion. MOSEK provides both a primal and a dual variant of the simplex optimizer.

Simplex Termination Criterion

The simplex optimizer terminates when it finds an optimal basic solution or an infeasibility certificate.
A basic solution is optimal when it is primal and dual feasible; see Sec. 7.1 for a definition of the primal
and dual problem. Due to the fact that computations are performed in finite precision MOSEK allows
violations of primal and dual feasibility within certain tolerances. The user can control the allowed
primal and dual tolerances with the parameters MSK_DPAR_BASIS_TOL_X and MSK_DPAR_BASIS_TOL_S .

Setting the parameter MSK_IPAR_OPTIMIZER to MSK_OPTIMIZER_FREE_SIMPLEX instructs MOSEK
to select automatically between the primal and the dual simplex optimizers. Hence, MOSEK tries to
choose the best optimizer for the given problem and the available solution. The same parameter can also
be used to force one of the variants.

51

Starting From an Existing Solution

When using the simplex optimizer it may be possible to reuse an existing solution and thereby reduce
the solution time significantly. When a simplex optimizer starts from an existing solution it is said to
perform a warm-start. If the user is solving a sequence of optimization problems by solving the problem,
making modifications, and solving again, MOSEK will warm-start automatically.

By default MOSEK uses presolve when performing a warm-start. If the optimizer only needs very
few iterations to find the optimal solution it may be better to turn off the presolve.

Numerical Difficulties in the Simplex Optimizers

Though MOSEK is designed to minimize numerical instability, completely avoiding it is impossible
when working in finite precision. MOSEK treats a “numerically unexpected behavior” event inside the
optimizer as a set-back. The user can define how many set-backs the optimizer accepts; if that number
is exceeded, the optimization will be aborted. Set-backs are a way to escape long sequences where the
optimizer tries to recover from an unstable situation.

Examples of set-backs are: repeated singularities when factorizing the basis matrix, repeated loss
of feasibility, degeneracy problems (no progress in objective) and other events indicating numerical
difficulties. If the simplex optimizer encounters a lot of set-backs the problem is usually badly scaled; in
such a situation try to reformulate it into a better scaled problem. Then, if a lot of set-backs still occur,
trying one or more of the following suggestions may be worthwhile:

• Raise tolerances for allowed primal or dual feasibility: increase the value of

– MSK_DPAR_BASIS_TOL_X , and
– MSK_DPAR_BASIS_TOL_S .

• Raise or lower pivot tolerance: Change the MSK_DPAR_SIMPLEX_ABS_TOL_PIV parameter.

• Switch optimizer: Try another optimizer.

• Switch off crash: Set both MSK_IPAR_SIM_PRIMAL_CRASH and MSK_IPAR_SIM_DUAL_CRASH to 0.

• Experiment with other pricing strategies: Try different values for the parameters

– MSK_IPAR_SIM_PRIMAL_SELECTION and
– MSK_IPAR_SIM_DUAL_SELECTION .

• If you are using warm-starts, in rare cases switching off this feature may improve stability. This is
controlled by the MSK_IPAR_SIM_HOTSTART parameter.

• Increase maximum number of set-backs allowed controlled by MSK_IPAR_SIM_MAX_NUM_SETBACKS .

• If the problem repeatedly becomes infeasible try switching off the special degeneracy handling. See
the parameter MSK_IPAR_SIM_DEGEN for details.

The Simplex Log

Below is a typical log output from the simplex optimizer:

Optimizer - solved problem : the primal
Optimizer - Constraints : 667
Optimizer - Scalar variables : 1424 conic : 0
Optimizer - hotstart : no
ITER DEGITER(%) PFEAS DFEAS POBJ DOBJ ␣
→˓ TIME TOTTIME
0 0.00 1.43e+05 NA 6.5584140832e+03 NA ␣
→˓ 0.00 0.02
1000 1.10 0.00e+00 NA 1.4588289726e+04 NA ␣
→˓ 0.13 0.14
2000 0.75 0.00e+00 NA 7.3705564855e+03 NA ␣

(continues on next page)

52

(continued from previous page)

→˓ 0.21 0.22
3000 0.67 0.00e+00 NA 6.0509727712e+03 NA ␣
→˓ 0.29 0.31
4000 0.52 0.00e+00 NA 5.5771203906e+03 NA ␣
→˓ 0.38 0.39
4533 0.49 0.00e+00 NA 5.5018458883e+03 NA ␣
→˓ 0.42 0.44

The first lines summarize the problem the optimizer is solving. This is followed by the iteration log,
with the following meaning:

• ITER: Number of iterations.

• DEGITER(%): Ratio of degenerate iterations.

• PFEAS: Primal feasibility measure reported by the simplex optimizer. The numbers should be 0 if
the problem is primal feasible (when the primal variant is used).

• DFEAS: Dual feasibility measure reported by the simplex optimizer. The number should be 0 if the
problem is dual feasible (when the dual variant is used).

• POBJ: An estimate for the primal objective value (when the primal variant is used).

• DOBJ: An estimate for the dual objective value (when the dual variant is used).

• TIME: Time spent since this instance of the simplex optimizer was invoked (in seconds).

• TOTTIME: Time spent since optimization started (in seconds).

8.3 Conic Optimization - Interior-point optimizer

For conic optimization problems only an interior-point type optimizer is available. The same optimizer
is used for quadratic optimization problems which are internally reformulated to conic form.

8.3.1 The homogeneous primal-dual problem
The interior-point optimizer is an implementation of the so-called homogeneous and self-dual algorithm.
For a detailed description of the algorithm, please see [ART03]. In order to keep our discussion simple
we will assume that MOSEK solves a conic optimization problem of the form:

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ∈ 𝒦
(8.6)

where 𝐾 is a convex cone. The corresponding dual problem is

maximize 𝑏𝑇 𝑦
subject to 𝐴𝑇 𝑦 + 𝑠 = 𝑐,

𝑠 ∈ 𝒦*
(8.7)

where 𝒦* is the dual cone of 𝒦. See Sec. 7.2 for definitions.
Since it is not known beforehand whether problem (8.6) has an optimal solution, is primal infeasible

or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason
that MOSEK solves the so-called homogeneous model

𝐴𝑥− 𝑏𝜏 = 0,
𝐴𝑇 𝑦 + 𝑠− 𝑐𝜏 = 0,

−𝑐𝑇𝑥 + 𝑏𝑇 𝑦 − 𝜅 = 0,
𝑥 ∈ 𝒦,
𝑠 ∈ 𝒦*,

𝜏, 𝜅 ≥ 0,

(8.8)

53

where 𝑦 and 𝑠 correspond to the dual variables in (8.6), and 𝜏 and 𝜅 are two additional scalar variables.
Note that the homogeneous model (8.8) always has a solution since

(𝑥, 𝑦, 𝑠, 𝜏, 𝜅) = (0, 0, 0, 0, 0)

is a solution, although not a very interesting one. Any solution

(𝑥*, 𝑦*, 𝑠*, 𝜏*, 𝜅*)

to the homogeneous model (8.8) satisfies

(𝑥*)𝑇 𝑠* + 𝜏*𝜅* = 0

i.e. complementarity. Observe that 𝑥* ∈ 𝒦 and 𝑠* ∈ 𝒦* implies

(𝑥*)𝑇 𝑠* ≥ 0

and therefore

𝜏*𝜅* = 0.

since 𝜏*, 𝜅* ≥ 0. Hence, at least one of 𝜏* and 𝜅* is zero.
First, assume that 𝜏* > 0 and hence 𝜅* = 0. It follows that

𝐴𝑥*

𝜏* = 𝑏,

𝐴𝑇 𝑦*

𝜏* + 𝑠*

𝜏* = 𝑐,

−𝑐𝑇 𝑥*

𝜏* + 𝑏𝑇 𝑦*

𝜏* = 0,
𝑥*/𝜏* ∈ 𝒦,
𝑠*/𝜏* ∈ 𝒦*.

This shows that 𝑥*

𝜏* is a primal optimal solution and (𝑦*

𝜏* ,
𝑠*

𝜏*) is a dual optimal solution; this is reported
as the optimal interior-point solution since

(𝑥, 𝑦, 𝑠) =

(︂
𝑥*

𝜏*
,
𝑦*

𝜏*
,
𝑠*

𝜏*

)︂
is a primal-dual optimal solution.

On other hand, if 𝜅* > 0 then

𝐴𝑥* = 0,
𝐴𝑇 𝑦* + 𝑠* = 0,

−𝑐𝑇𝑥* + 𝑏𝑇 𝑦* = 𝜅*,
𝑥* ∈ 𝒦,
𝑠* ∈ 𝒦*.

This implies that at least one of

𝑐𝑇𝑥* < 0 (8.9)

or

𝑏𝑇 𝑦* > 0 (8.10)

holds. If (8.9) is satisfied, then 𝑥* is a certificate of dual infeasibility, whereas if (8.10) holds then 𝑦* is
a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information re-
quired for a solution to the original problem is obtained. A solution to the homogeneous model can be
computed using a primal-dual interior-point algorithm [And09].

54

8.3.2 Interior-point Termination Criterion
Since computations are performed in finite precision, and for efficiency reasons, it is not possible to solve
the homogeneous model exactly in general. Hence, an exact optimal solution or an exact infeasibility
certificate cannot be computed and a reasonable termination criterion has to be employed.

In every iteration 𝑘 of the interior-point algorithm a trial solution

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘)

to the homogeneous model is generated, where

𝑥𝑘 ∈ 𝒦, 𝑠𝑘 ∈ 𝒦*, 𝜏𝑘, 𝜅𝑘 > 0.

Therefore, it is possible to compute the values:

𝜌𝑘𝑝 = arg min𝜌

{︁
𝜌 |
⃦⃦⃦
𝐴𝑥𝑘

𝜏𝑘 − 𝑏
⃦⃦⃦
∞

≤ 𝜌𝜀𝑝(1 + ‖𝑏‖∞)
}︁
,

𝜌𝑘𝑑 = arg min𝜌

{︁
𝜌 |
⃦⃦⃦
𝐴𝑇 𝑦𝑘

𝜏𝑘 + 𝑠𝑘

𝜏𝑘 − 𝑐
⃦⃦⃦
∞

≤ 𝜌𝜀𝑑(1 + ‖𝑐‖∞)
}︁
,

𝜌𝑘𝑔 = arg min𝜌

{︂
𝜌 |
(︁

(𝑥𝑘)𝑇 𝑠𝑘

(𝜏𝑘)2
, | 𝑐

𝑇 𝑥𝑘

𝜏𝑘 − 𝑏𝑇 𝑦𝑘

𝜏𝑘 |
)︁
≤ 𝜌𝜀𝑔 max

(︂
1,

min(|𝑐𝑇 𝑥𝑘|,|𝑏𝑇 𝑦𝑘|)
𝜏𝑘

)︂}︂
,

𝜌𝑘𝑝𝑖 = arg min𝜌

{︀
𝜌 |
⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘

⃦⃦
∞ ≤ 𝜌𝜀𝑖𝑏

𝑇 𝑦𝑘, 𝑏𝑇 𝑦𝑘 > 0
}︀

and
𝜌𝑘𝑑𝑖 = arg min𝜌

{︀
𝜌 |
⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ ≤ −𝜌𝜀𝑖𝑐

𝑇𝑥𝑘, 𝑐𝑇𝑥𝑘 < 0
}︀
.

Note 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖 are nonnegative user specified tolerances.

Optimal Case

Observe 𝜌𝑘𝑝 measures how far 𝑥𝑘/𝜏𝑘 is from being a good approximate primal feasible solution. Indeed
if 𝜌𝑘𝑝 ≤ 1, then ⃦⃦⃦⃦

𝐴
𝑥𝑘

𝜏𝑘
− 𝑏

⃦⃦⃦⃦
∞

≤ 𝜀𝑝(1 + ‖𝑏‖∞). (8.11)

This shows the violations in the primal equality constraints for the solution 𝑥𝑘/𝜏𝑘 is small compared to
the size of 𝑏 given 𝜀𝑝 is small.

Similarly, if 𝜌𝑘𝑑 ≤ 1, then (𝑦𝑘, 𝑠𝑘)/𝜏𝑘 is an approximate dual feasible solution. If in addition 𝜌𝑔 ≤ 1,
then the solution (𝑥𝑘, 𝑦𝑘, 𝑠𝑘)/𝜏𝑘 is approximate optimal because the associated primal and dual objective
values are almost identical.

In other words if max(𝜌𝑘𝑝, 𝜌
𝑘
𝑑, 𝜌

𝑘
𝑔) ≤ 1, then

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘)

𝜏𝑘

is an approximate optimal solution.

Dual Infeasibility Certificate

Next assume that 𝜌𝑘𝑑𝑖 ≤ 1 and hence⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ ≤ −𝜀𝑖𝑐

𝑇𝑥𝑘 and − 𝑐𝑇𝑥𝑘 > 0

holds. Now in this case the problem is declared dual infeasible and 𝑥𝑘 is reported as a certificate of dual
infeasibility. The motivation for this stopping criterion is as follows. Let

𝑥̄ :=
𝑥𝑘

−𝑐𝑇𝑥𝑘

and it is easy to verify that

‖𝐴𝑥̄‖∞ ≤ 𝜀𝑖 and 𝑐𝑇 𝑥̄ = −1

which shows 𝑥̄ is an approximate certificate of dual infeasibility, where 𝜀𝑖 controls the quality of the
approximation.

55

Primal Infeasiblity Certificate

Next assume that 𝜌𝑘𝑝𝑖 ≤ 1 and hence⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘

⃦⃦
∞ ≤ 𝜀𝑖𝑏

𝑇 𝑦𝑘 and 𝑏𝑇 𝑦𝑘 > 0

holds. Now in this case the problem is declared primal infeasible and (𝑦𝑘, 𝑠𝑘) is reported as a certificate
of primal infeasibility. The motivation for this stopping criterion is as follows. Let

𝑦 :=
𝑦𝑘

𝑏𝑇 𝑦𝑘
and 𝑠 :=

𝑠𝑘

𝑏𝑇 𝑦𝑘

and it is easy to verify that ⃦⃦
𝐴𝑇 𝑦 + 𝑠

⃦⃦
∞ ≤ 𝜀𝑖 and 𝑏𝑇 𝑦 = 1

which shows (𝑦𝑘, 𝑠𝑘) is an approximate certificate of dual infeasibility, where 𝜀𝑖 controls the quality of
the approximation.

8.3.3 Adjusting optimality criteria
It is possible to adjust the tolerances 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖 using parameters; see the next table for details.
Note that although this section discusses the conic optimizer, if the problem was originally input as a
quadratic or quadratically constrained optimization problem then the parameter names that apply are
those from the third column (with infix QO instead of CO).

Table 8.2: Parameters employed in termination criterion

ToleranceParameter Name (for conic problems) Name (for quadratic problems)

𝜀𝑝 MSK_DPAR_INTPNT_CO_TOL_PFEAS MSK_DPAR_INTPNT_QO_TOL_PFEAS
𝜀𝑑 MSK_DPAR_INTPNT_CO_TOL_DFEAS MSK_DPAR_INTPNT_QO_TOL_DFEAS
𝜀𝑔 MSK_DPAR_INTPNT_CO_TOL_REL_GAP MSK_DPAR_INTPNT_QO_TOL_REL_GAP
𝜀𝑖 MSK_DPAR_INTPNT_CO_TOL_INFEAS MSK_DPAR_INTPNT_QO_TOL_INFEAS

The default values of the termination tolerances are chosen such that for a majority of problems
appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the
tolerances usually is not worthwhile. However, an inspection of (8.11) reveals that the quality of the
solution depends on ‖𝑏‖∞ and ‖𝑐‖∞; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal
and dual feasibility at the same rate [And09]. This means that if the optimizer is stopped prematurely
then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that
in most cases all the tolerances, 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖, have to be relaxed together to achieve an effect.

If the optimizer terminates without locating a solution that satisfies the termination crite-
ria, for example because of a stall or other numerical issues, then it will check if the solution
found up to that point satisfies the same criteria with all tolerances multiplied by the value of
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL . If this is the case, the solution is still declared as optimal.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

8.3.4 The Interior-point Log
Below is a typical log output from the interior-point optimizer:

Optimizer - threads : 20
Optimizer - solved problem : the primal
Optimizer - Constraints : 1
Optimizer - Cones : 2
Optimizer - Scalar variables : 6 conic : 6
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00

(continues on next page)

56

(continued from previous page)

Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 1 after factor : 1
Factor - dense dim. : 0 flops : 1.
→˓70e+01
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU ␣
→˓ TIME
0 1.0e+00 2.9e-01 3.4e+00 0.00e+00 2.414213562e+00 0.000000000e+00 1.0e+00␣
→˓ 0.01
1 2.7e-01 7.9e-02 2.2e+00 8.83e-01 6.969257574e-01 -9.685901771e-03 2.7e-01␣
→˓ 0.01
2 6.5e-02 1.9e-02 1.2e+00 1.16e+00 7.606090061e-01 6.046141322e-01 6.5e-02␣
→˓ 0.01
3 1.7e-03 5.0e-04 2.2e-01 1.12e+00 7.084385672e-01 7.045122560e-01 1.7e-03␣
→˓ 0.01
4 1.4e-08 4.2e-09 4.9e-08 1.00e+00 7.071067941e-01 7.071067599e-01 1.4e-08␣
→˓ 0.01

The first line displays the number of threads used by the optimizer and the second line indicates if
the optimizer chose to solve the primal or dual problem (see MSK_IPAR_INTPNT_SOLVE_FORM). The next
lines display the problem dimensions as seen by the optimizer, and the Factor... lines show various
statistics. This is followed by the iteration log.

Using the same notation as in Sec. 8.3.1 the columns of the iteration log have the following meaning:

• ITE: Iteration index 𝑘.

• PFEAS:
⃦⃦
𝐴𝑥𝑘 − 𝑏𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards zero

but may stall at low level due to rounding errors.

• DFEAS:
⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘 − 𝑐𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards

zero but may stall at low level due to rounding errors.

• GFEAS: |− 𝑐𝑇𝑥𝑘 + 𝑏𝑇 𝑦𝑘 −𝜅𝑘| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

• PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to −1 if that is not the case.

• POBJ: 𝑐𝑇𝑥𝑘/𝜏𝑘. An estimate for the primal objective value.

• DOBJ: 𝑏𝑇 𝑦𝑘/𝜏𝑘. An estimate for the dual objective value.

• MU: (𝑥𝑘)𝑇 𝑠𝑘+𝜏𝑘𝜅𝑘

𝑛+1 . The numbers in this column should always converge to zero.

• TIME: Time spent since the optimization started (in seconds).

8.4 The Optimizer for Mixed-Integer Problems

Solving optimization problems where one or more of the variables are constrained to be integer valued is
called Mixed-Integer Optimization (MIO). For an introduction to model building with integer variables,
the reader is recommended to consult the MOSEK Modeling Cookbook, and for further reading we
highlight textbooks such as [Wol98] or [CCornuejolsZ14].

MOSEK can perform mixed-integer

• linear (MILO),

• quadratic (MIQO) and quadratically constrained (MIQCQO), and

• conic (MICO)

57

https://docs.mosek.com/modeling-cookbook/mio.html

optimization, except for mixed-integer semidefinite problems.
By default the mixed-integer optimizer is run-to-run deterministic. This means that if a problem is

solved twice on the same computer with identical parameter settings and no time limit, then the obtained
solutions will be identical. The mixed-integer optimizer is parallelized, i.e., it can exploit multiple cores
during the optimization.

In practice, it often happens that the integer variables in MIO problems are actuall binary variables,
taking values in {0, 1}, leading to Mixed- or pure binary problems. In the general setting however, an
integer variable may have arbitrary lower and upper bounds.

8.4.1 Branch-and-Bound
In order to succeed in solving mixed-integer problems, it can be useful to have a basic understanding of
the underlying solution algorithms. The most important concept in this regard is arguably the so-called
Branch-and-Bound algorithm, employed also by MOSEK. The more experienced reader may skip this
section and advance directly to Sec. 8.4.2.

In order to comprehend Branch-and-Bound, the concept of a relaxation is important. Consider for
example a mixed-integer linear optimization problem of minimization type

𝑧* = minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0
𝑥𝑗 ∈ Z, ∀𝑗 ∈ 𝒥 .

(8.12)

It has the continuous relaxation

𝑧 = minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0,
(8.13)

simply obtained by ignoring the integrality restrictions. The first step in Branch-and-Bound is to solve
this so-called root relaxation, which is a continuous optimization problem. Since (8.13) is less constrained
than (8.12), one certainly gets

𝑧 ≤ 𝑧*,

and 𝑧 is therefore called the objective bound : it bounds the optimal objective value from below.
After the solution of the root relaxation, in the most likely outcome there will be one or more integer

constrained variables with fractional values, i.e., violating the integrality constraints. Branch-and-Bound
now takes such a variable, 𝑥𝑗 = 𝑓𝑗 ∈ R∖Z with 𝑗 ∈ 𝒥 , say, and creates two branches leading to relaxations
with the additional constraint 𝑥𝑗 ≤ ⌊𝑓𝑗⌋ or 𝑥𝑗 ≥ ⌈𝑓𝑗⌉, respectively. The intuitive idea here is to exclude
the undesired fractional value from the outcomes in the two created branches. If the integer variable was
actually a binary variable, branching would lead to fixing its value to 0 in one branch, and to 1 in the
other.

The Branch-and-Bound process continues in this way and successively solves relaxations and creates
branches to refined relaxations. Whenever the solution 𝑥̂ to some relaxation does not violate any inte-
grality constraints, it is feasible to (8.12) and is called an integer feasible solution. There is no guarantee
though that it is also optimal, its solution value 𝑧 := 𝑐𝑇 𝑥̂ is only an upper bound on the optimal objective
value,

𝑧* ≤ 𝑧.

By the successive addition of constraints in the created branches, the objective bound 𝑧 (now defined as
the minimum over all solution values of so far solved relaxations) can only increase during the algorithm.
At the same time, the upper bound 𝑧 (the solution value of the best integer feasible solution encountered
so far, also called incumbent solution) can only decrease during the algorithm. Since at any time we also
have

𝑧 ≤ 𝑧* ≤ 𝑧,

objective bound and incumbent solution value are encapsulating the optimal objective value, eventually
converging to it.

58

The Branch-and-Bound scheme can be depicted by means of a tree, where branches and relaxations
correspond to edges and nodes. Figure Fig. 8.1 shows an example of such a tree. The strength of Branch-
and-Bound is its ability to prune nodes in this tree, meaning that no new child nodes will be created.
Pruning can occur in several cases:

• A relaxation leads to an integer feasible solution 𝑥̂. In this case we may update the incumbent and
its solution value 𝑧, but no new branches need to be created.

• A relaxation is infeasible. The subtree rooted at this node cannot contain any feasible relaxation,
so it can be discarded.

• A relaxation has a solution value that exceeds 𝑧. The subtree rooted at this node cannot contain
any integer feasible solution with a solution value better than the incumbent we already have, so
it can be discarded.

root
x2 = 0.7

infeas. x1 = 0.4

x3 = 1.3

z = 2.7

int. feas.
z̄ = 2.0

x2 = 0 x2 = 1

x1 = 0 x1 = 1

x3 ≤ 1 x3 ≥ 2

...

Fig. 8.1: An examplary Branch-and-Bound tree. Pruned nodes are shown in light blue.

Having objective bound and incumbent solution value is a quite fundamental property of Branch-
and-Bound, and helps to asses solution quality and control termination of the algorithm, as we detail
in the next section. Note that the above explanation is coined for minimization problems, but the
Branch-and-bound scheme has a straightforward extension to maximization problems.

8.4.2 Solution quality and termination criteria
The issue of terminating the mixed-integer optimizer is rather delicate. Mixed-integer optimization is
generally much harder than continuous optimization; in fact, solving continuous sub-problems is just one
component of a mixed-integer optimizer. Despite the ability to prune nodes in the tree, the computational
effort required to solve mixed-integer problems grows exponentially with the size of the problem in a
worst-case scenario (solving mixed-integer problems is NP-hard). For instance, a problem with 𝑛 binary
variables, may require the solution of 2𝑛 relaxations. The value of 2𝑛 is huge even for moderate values of
𝑛. In practice it is often advisable to accept near-optimal or appproximate solutions in order to counteract
this complexity burden. The user has numerous possibilities of influencing optimizer termination with
various parameters, in particular related to solution quality, and the most important ones are highlighted
here.

59

Solution quality in terms of optimality

In order to assess the quality of any incumbent solution in terms of its objective value, one may check
the optimality gap, defined as

𝜖 = |(incumbent solution value) − (objective bound)| = |𝑧 − 𝑧|.

It measures how much the objectives of the incumbent and the optimal solution can deviate in the
worst case. Often it is more meaningful to look at the relative optimality gap

𝜖rel =
|𝑧 − 𝑧|

max(𝛿1, |𝑧|)
.

This is essentially the above absolute optimality gap normalized against the magnitude of the incum-
bent solution value; the purpose of the (small) constant 𝛿1 is to avoid overweighing incumbent solution
values that are very close to zero. The relative optimality gap can thus be interpreted as answering the
question: “Within what fraction of the optimal solution is the incumbent solution in the worst case?”

Absolute and relative optimality gaps provide useful means to define termination criteria for the
mixed-integer optimizer in MOSEK. The idea is to terminate the optimization process as soon as the
quality of the incumbent solution, measured in absolute or relative gap, is good enough. In fact, whenever
an incumbent solution is located, the criterion

𝜖 ≤ 𝛿2 or 𝜖rel ≤ 𝛿3

is checked. If satisfied, i.e., if either absolute or relative optimality gap are below the thresholds
𝛿2 or 𝛿3 (see Table 8.3), the optimizer terminates and reports the incumbent as an optimal solu-
tion. The optimality gaps at termination can always be retrieved through the information items
MSK_DINF_MIO_OBJ_ABS_GAP and MSK_DINF_MIO_OBJ_REL_GAP .

The tolerances discussed above can be adjusted using suitable parameters, see Table 8.3. By default,
the optimality parameters 𝛿2 and 𝛿3 are quite small, i.e., restrictive. These default values for the absolute
and relative gap amount to solving any instance to (almost) optimality: the incumbent is required to be
within at most a tiny percentage of the optimal solution. As anticipated, this is not tractable in many
practical situations, and one should resort to finding near-optimal solutions quickly rather than insisting
on finding the optimal one. It may happen, for example, that an optimal or close-to-optimal solution
is found very early by the optimizer, but it spends a huge amount of further computational time for
branching, trying to increase 𝑧 that last missing bit: a typical situation that practioneers would want to
avoid. The concept of optimality gaps is fundamental for controlling solution quality when resorting to
near-optimal solutions.

MIO performance tweaks: termination criteria
One of the first things to do in order to cut down excessive solution time is to increase the relative gap

tolerance MSK_DPAR_MIO_TOL_REL_GAP to some non-default value, so as to not insist on finding optimal
solutions. Typical values could be 0.01, 0.05 or 0.1, guaranteeing that the delivered solutions lie within
1%, 5% or 10% of the optimum. Increasing the tolerance will lead to less computational time spent by
the optimizer.

Solution quality in terms of feasibility

For an optimizer relying on floating-point arithmetic like the mixed-integer optimizer in MOSEK, it
may be hard to achieve exact integrality of the solution values of integer variables in most cases, and it
makes sense to numerically relax this constraint. Any candidate solution 𝑥̂ is accepted as integer feasible
if the criterion

min(𝑥𝑗 − ⌊𝑥𝑗⌋, ⌈𝑥𝑗⌉ − 𝑥𝑗) ≤ 𝛿4 ∀𝑗 ∈ 𝒥

60

is satisfied, meaning that 𝑥𝑗 is at most 𝛿4 away from the nearest integer. As above, 𝛿4 can be adjusted
using a parameter, see Table 8.3, and impacts the quality of the acieved solution in terms of integer
feasibility. By influencing what solution may be accepted as imcumbent, it can also have an impact on
the termination of the optimizer.

MIO performance tweaks: feasibility criteria
Whether increasing the integer feasibility tolerance MSK_DPAR_MIO_TOL_ABS_RELAX_INT leads to less

solution time is highly problem dependent. Intuitively, the optimizer is more flexible in finding new
incumbent soutions so as to improve 𝑧. But this effect has do be examined with care on indivuidual
instances: it may worsen solution quality with no effect at all on the solution time. It may in some cases
even lead to contrary effects on the solution time.

Table 8.3: Tolerances for the mixed-integer optimizer.

Tolerance Parameter name Default value

𝛿1 MSK_DPAR_MIO_REL_GAP_CONST 1.0e-10
𝛿2 MSK_DPAR_MIO_TOL_ABS_GAP 0.0
𝛿3 MSK_DPAR_MIO_TOL_REL_GAP 1.0e-4
𝛿4 MSK_DPAR_MIO_TOL_ABS_RELAX_INT 1.0e-5

Further controlling optimizer termination

There are more ways to limit the computational effort employed by the mixed-integer optimizer by simply
limiting the number of explored branches, solved relaxations or updates of the incumbent solution. When
any of the imposed limits is hit, the optimizer terminates and the incumbent solution may be retrieved.
See Table 8.4 for a list of corresponding parameters. In contrast to the parameters discussed in Sec.
8.4.2, interfering with these does not maintain any guarantees in terms of solution quality.

Table 8.4: Other parameters affecting the integer optimizer termi-
nation criterion.

Parameter name Explanation

MSK_IPAR_MIO_MAX_NUM_BRANCHES Maximum number of branches allowed.
MSK_IPAR_MIO_MAX_NUM_RELAXS Maximum number of relaxations allowed.
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS Maximum number of feasible integer solutions allowed.

8.4.3 The Mixed-Integer Log
The Branch-and-Bound scheme from Sec. 8.4.1 is only the basic skeleton of the mixed-integer optimizer
in MOSEK, and several components are built on top of that in order to enhance its functionality and
increase its speed. A mixed-integer optimizer is sometimes referred to as a “giant bag of tricks”, and
it would be impossible to describe all of these tricks here. Yet, some of the additional components are
worth mentioning. They can be influenced by various user parameters, and although the default values of
these parameters are optimized to work well on average mixed-integer problems, it may pay off to adjust
them for an individual problem, or a specific problem class. The mixed-integer log can give insights on
which parameters might be worth an adjustment. Below is a typical log output:

Presolve started.
Presolve terminated. Time = 0.23, probing time = 0.09
Presolved problem: 1176 variables, 1344 constraints, 4968 non-zeros
Presolved problem: 328 general integer, 392 binary, 456 continuous
Clique table size: 55
Symmetry factor : 0.79 (detection time = 0.01)
Removed blocks : 2
BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_OBJ BEST_RELAX_OBJ REL_GAP(
→˓%) TIME

(continues on next page)

61

(continued from previous page)

0 0 1 0 8.3888091139e+07 NA NA ␣
→˓ 0.2
0 1 1 0 8.3888091139e+07 2.5492512136e+07 69.61 ␣
→˓ 0.3
0 1 1 0 3.1273162420e+07 2.5492512136e+07 18.48 ␣
→˓ 0.4
0 1 1 0 2.6047699632e+07 2.5492512136e+07 2.13 ␣
→˓ 0.4
Rooot cut generation started.
0 1 1 0 2.6047699632e+07 2.5492512136e+07 2.13 ␣
→˓ 0.4
0 2 1 0 2.6047699632e+07 2.5589986247e+07 1.76 ␣
→˓ 0.4
Rooot cut generation terminated. Time = 0.05
0 4 1 0 2.5990071367e+07 2.5662741991e+07 1.26 ␣
→˓ 0.5
0 8 1 0 2.5971002767e+07 2.5662741991e+07 1.19 ␣
→˓ 0.6
0 11 1 0 2.5925040617e+07 2.5662741991e+07 1.01 ␣
→˓ 0.6
0 12 1 0 2.5915504014e+07 2.5662741991e+07 0.98 ␣
→˓ 0.6
2 23 1 0 2.5915504014e+07 2.5662741991e+07 0.98 ␣
→˓ 0.7
14 35 1 0 2.5915504014e+07 2.5662741991e+07 0.98 ␣
→˓ 0.7

[...]

Objective of best integer solution : 2.578282162804e+07
Best objective bound : 2.569877601306e+07
Construct solution objective : Not employed
User objective cut value : Not employed
Number of cuts generated : 192

Number of Gomory cuts : 52
Number of CMIR cuts : 137
Number of clique cuts : 3

Number of branches : 29252
Number of relaxations solved : 31280
Number of interior point iterations: 16
Number of simplex iterations : 105440
Time spend presolving the root : 0.23
Time spend optimizing the root : 0.07
Mixed integer optimizer terminated. Time: 6.96

The main part here is the iteration log, a progressing series of similar rows reflecting the progress
made during the Branch-and-bound process. The columns have the following meanings:

• BRANCHES: Number of branches / nodes generated.

• RELAXS: Number of relaxations solved.

• ACT_NDS: Number of active / non-processed nodes.

• DEPTH: Depth of the last solved node.

• BEST_INT_OBJ: The incumbent solution / best integer objective value, 𝑧.

• BEST_RELAX_OBJ: The objective bound, 𝑧.

62

• REL_GAP(%): Relative optimality gap, 100% · 𝜖rel

• TIME: Time (in seconds) from the start of optimization.

Also a short solution summary with several statistics is printed. When the solution time for a mixed-
integer problem has to be cut down, the log can help to understand where time is spent and what might
be improved. We go into some more detail about some further items in the mixed-integer log giving
hints about individual components of the optimizer.

Presolve

Similar to the case of continuous problems, see Sec. 8.1, the mixed-integer optimizer applies various
presolve reductions before the actual Branch-and-bound is initiated. The first lines of the mixed-integer
log contain a summary of the presolve process, including the time spent therein (Presolve terminated.
Time = 0.23...). Just as in the continuous case, the use of presolve can be controlled with the parameter
MSK_IPAR_PRESOLVE_USE . If presolve time seems excessive, instead of switching it off completely one may
also try to reduce the time spent in one or more of its individual components. On some models it can
also make sense to increase the use of a certain presolve technique. Table Table 8.5 lists some of these
with their respective parameters.

Table 8.5: Parameters affecting presolve

Parameter name Explanation Possible reference in log

MSK_IPAR_MIO_PROBING_LEVEL Probing aggressivity level. ... probing time = 0.09
MSK_IPAR_MIO_SYMMETRY_LEVELSymmetry detection aggres-

sivity level.
Symmetry factor : 0.79
(detection time = 0.01)

MSK_IPAR_MIO_INDEPENDENT_BLOCK_LEVELBlock structure detection
level, see Sec. 8.4.3.

Removed blocks : 2

MSK_DPAR_MIO_CLIQUE_TABLE_SIZE_FACTORMaximum size of the clqiue ta-
ble.

Clique table size: 55

MSK_IPAR_MIO_PRESOLVE_AGGREGATOR_USEShould variable agggregation
be enabled?

–

Primal Heuristics

It might happen that the value in the colum BEST_INT_OBJ stalls over a long period of log lines, an indi-
cation that the optimizer has a hard time improving the incumbent solution, i.e., 𝑧. Solving relaxations
in the tree to an integer feasible solution 𝑥̂ is not the only way to find new incumbent solutions. There
is a variety of procedures that, given a mixed-integer problem in a generic form like (8.12), attempt to
produce integer feasible solutions in an ad-hoc way. These procedures are called Primal Heuristics, and
several of them are implemented in MOSEK. For example, whenever a relaxation leads to a fractional
solution, one may round the solution values of the integer variables, in various ways, and hope that
the outcome is still feasible to the remaining constraints. Primal heuristics are mostly employed while
processing the root node, but play a role throughout the whole solution process. The goal of a primal
heuristic is to improve the incumbent solution and thus the bound 𝑧, and this can of course affect the
quality of the solution that is returned after termination of the optimizer. The user parameters affecting
primal heuristics are listed in Table 8.6.

MIO performance tweaks: primal heuristics

• If the mixed-integer optimizer struggles to improve the incumbent solution BEST_INT_OBJ, it can
be helpful to intensify the use of primal heuristics.

– Set parameters related to primal heuristics to more aggressive values than the default ones, so
that more effort is spent in this component. A List of the respective parameters can be found in
Table 8.6. In particular, if the optimizer has difficulties finding any integer feasible solution at
all, indicated by NA in the column BEST_INT_OBJ in the mixed-integer log, one may try to acti-
vate a construction heuristic like the Feasibility Pump with MSK_IPAR_MIO_FEASPUMP_LEVEL .

63

– Specify a good initial solution: In many cases a good feasible solution is either known or
easily computed using problem-specific knowledge that the optimizer does not have. If so, it
is usually worthwhile to use this as a starting point for the mixed-integer optimizer.

– For feasibility problems, i.e., problems having a constant objective, the goal is to find a single
integer feasible solution, and this can be hard by itself on some instances. Try setting the
objective to something meaningful anyway, even if the underlying application does not require
this. After all, the feasible set is not changed, but the optimizer might benefit from being able
to pursue a concrete goal.

• In rare cases it may also happen that the optimizer spends an excessive amount of time on primal
heuristics without drawing any benefit from it, and one may try to limit their use with the respective
parameters.

Table 8.6: Parameters affecting primal heuristics

Parameter name Explanation

MSK_IPAR_MIO_HEURISTIC_LEVEL Primal heuristics aggressivity level.
MSK_IPAR_MIO_RINS_MAX_NODES Maximum number of nodes allowed in the RINS heuristic.
MSK_IPAR_MIO_RENS_MAX_NODES Maximum number of nodes allowed in the RENS heuristic.
MSK_IPAR_MIO_CROSSOVER_MAX_NODES Maximum number of nodes allowed in the Crossover heuristic.
MSK_IPAR_MIO_OPT_FACE_MAX_NODES Maximum number of nodes allowed in the optimal face heuris-

tic.
MSK_IPAR_MIO_FEASPUMP_LEVEL Way of using the Feasibility Pump heuristic.

Cutting Planes

It might as well happen that the value in the colum BEST_RELAX_OBJ stalls over a long period of log
lines, an indication that the optimizer has a struggles to improve the objective bound 𝑧. A component of
the optimizer designed to act on the objective bound is given by Cutting planes, also called cuts or valid
inequalities. Cuts do not remove any integer feasible solutions from the feasible set of the mixed-integer
problem (8.12). They may, however, remove solutions from the feasible set of the relaxation (8.13),
ideally making it a stronger relaxation with better objective bound.

As an example, take the constraints

2𝑥1 + 3𝑥2 + 𝑥3 ≤ 4, 𝑥1, 𝑥2 ∈ {0, 1}, 𝑥3 ≥ 0. (8.14)

One may realize that there cannot be a feasible solution in which both binary variables take on a value
of 1. So certainly

𝑥1 + 𝑥2 ≤ 1 (8.15)

is a valid inequality (there is no integer solution satisfying (8.14), but violating (8.15)). The latter does
cut off a portion of the feasible region of the continuous relaxation of (8.14) though, obtained by replacing
𝑥1, 𝑥2 ∈ {0, 1} with 𝑥1, 𝑥2 ∈ [0, 1]. For example, the fractional point (𝑥1, 𝑥2, 𝑥3) = (0.5, 1, 0) is feasible
to the relaxation, but violates the cut (8.15).

There are many classes of general-purpose cuttting planes that may be generated for a mixed-integer
problem in a generic form like (8.12), and MOSEK’s mixed-integer optimizer supports several of them.
For instance, the above is an example of a so-called clique cut. The most effort on generating cutting
planes is spent after the solution of the root relaxation; the beginning and the end of root cut generation
is highlighted in the log, and the number of log lines in between reflects to the computational effort spent
here. Also the solution summary at the end of the log highlights for each cut class the number of generated
cuts. Cuts can also be generated later on in the tree, which is why we also use the term Branch-and-cut,
an extension of the basic Branch-and-bound scheme. Cuts aim at improving the objective bound 𝑧 and
can thus have significant impact on the solution time. The user parameters affecting cut generation can
be seen in Table 8.7.

MIO performance tweaks: cutting planes

64

• If the mixed-integer optimizer struggles to improve the objective bound BEST_RELAX_OBJ, it can
be helpful to intensify the use of cutting planes.

– Some types of cutting planes are not activated by default, but doing so may help to improve
the objective bound.

– The parameters MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT and
MSK_IPAR_MIO_CUT_SELECTION_LEVEL determine how aggressively cuts will be gener-
ated and selected.

– If some valid inequalities can be deduced from problem-specific knowledge that the optimizer
does not have, it may be helpful to add these to the problem formulation as constraints.
This has to be done with care, since there is a tradeoff between the benefit obtained from an
improved objective boud, and the amount of additional constraints that make the relaxations
larger.

• In rare cases it may also be observed that the optimizer spends an excessive effort on cutting planes,
and one may limit their use with MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS , or by disabling a
certain type of cutting planes.

Table 8.7: Parameters affecting cutting planes

Parameter name Explanation

MSK_IPAR_MIO_CUT_CLIQUE Should clique cuts be enabled?
MSK_IPAR_MIO_CUT_CMIR Should mixed-integer rounding cuts be enabled?
MSK_IPAR_MIO_CUT_GMI Should GMI cuts be enabled?
MSK_IPAR_MIO_CUT_IMPLIED_BOUND Should implied bound cuts be enabled?
MSK_IPAR_MIO_CUT_KNAPSACK_COVER Should knapsack cover cuts be enabled?
MSK_IPAR_MIO_CUT_LIPRO Should lift-and-project cuts be enabled?
MSK_IPAR_MIO_CUT_SELECTION_LEVEL Cut selection aggressivity level.
MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDSMaximum number of root cut rounds.
MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENTMinimum required objective bound improvement during

root cut generation.

Restarts

The mixed-integer optimizer employs so-called restarts, i.e., if the progress made while exploring the tree
is deemed unsufficient, it might decide to restart the solution process from scratch, possibly making use
of the information collected so far. When a restart happens, this is displayed in the log:

[...]

1948 4664 699 36 NA 1.1800000000e+02 NA ␣
→˓ 7.2
1970 4693 705 50 NA 1.1800000000e+02 NA ␣
→˓ 7.2

Performed MIP restart 1.
Presolve started.
Presolve terminated. Time = 0.01, probing time = 0.00
Presolved problem: 523 variables, 765 constraints, 3390 non-zeros
Presolved problem: 0 general integer, 404 binary, 119 continuous
Clique table size: 143
BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_OBJ BEST_RELAX_OBJ REL_GAP(
→˓%) TIME
1988 4729 1 0 NA 1.1800000000e+02 NA ␣
→˓ 7.3
1988 4730 1 0 4.0000000000e+01 1.1800000000e+02 195.00 ␣

(continues on next page)

65

(continued from previous page)

→˓ 7.3

[...]

Restarts tend to be useful especially for hard models. However, in individual cases the optimizer may
decide to perform a restart while it would have been better to continue exploring the tree. Their use can
be controlled with the parameter MSK_IPAR_MIO_MAX_NUM_RESTARTS .

Block decomposition

Sometimes the optimizer faces a model that actually represents two or more completely independent
subproblems. For a linear problem such as (8.13), this means that the constraint matrix 𝐴 is a block-
diagonal. Block-diagonal structure can occur after MOSEK applies some presolve reductions, e.g., a
variable is fixed that was the only variable connecting two otherwise independent subproblems. Or, more
rarely, the original model provided by the user is already block-diagonal.

In principle, solving such blocks independently is easier than letting the optimizer work on the single,
large model, and MOSEK thus tries to exploit this structure. Some blocks may be completely solved
and removed from the model during presolve, which can be seen by a line at the end of the presolve
summary, see also Sec. 8.4.3. If after presolve there are still independent blocks, MOSEK can apply a
dedicated algorithm to solve them independently while periodically combining their individual solution
statusses (such as incumbent solutions and objective bounds) to the solution status of the original model.
Just like the removal of blocks during presolve, the application of this latter strategy is indicated in the
log:

[...]

15 38 1 0 4.1759800000e+05 3.8354200000e+05 8.16 ␣
→˓ 0.9
Root cut generation started.
15 38 1 0 4.1759800000e+05 3.8354200000e+05 8.16 ␣
→˓ 1.1
Root cut generation terminated. Time = 0.11
15 40 1 0 4.1645600000e+05 3.8934425000e+05 6.51 ␣
→˓ 2.0
15 41 1 0 4.1622400000e+05 3.8934425000e+05 6.46 ␣
→˓ 2.0
23 52 1 0 4.1622400000e+05 3.8934425000e+05 6.46 ␣
→˓ 2.0
Decomposition solver started with 5 independent blocks.
532 425 5 118 4.1592600000e+05 3.8935275000e+05 6.39 ␣
→˓ 4.5
1858 11911 815 286 4.1007800000e+05 3.8946400000e+05 5.03 ␣
→˓ 11.8

[...]

How block-diagonal structure is detected and handled by the optimizer can be controlled with the
parameter MSK_IPAR_MIO_INDEPENDENT_BLOCK_LEVEL .

66

8.4.4 Mixed-Integer Nonlinear Optimization
Due to the involved non-linearities, MI(QC)QO or MICO problems are on average harder than MILO
problems of comparable size. Yet, the Branch-and-Bound scheme can be applied to these probelm
classes in a straightforward manner. The relaxations have to be solved as conic problems with the
interior point algorithm in that case, see Sec. 8.3, opposed to MILO where it is often beneficial to solve
relaxations with the dual simplex method, see Sec. 8.2.3. There is another solution approach for these
types of problems implemented in MOSEK, namely the Outer-Approximation algorithm, making use
of dynamically refined linear approximations of the non-linearities.

MICO performance tweaks: choice of algorithm
Whether conic Branch-and-Bound or Outer-Approximation is applied to a mixed-integer conic prob-

lem can be set with MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION . The best value for this option is
highly problem dependent.

MI(QC)QO

MOSEK is specialized in solving linear and conic optimization problems, both with or without mixed-
integer variables. Just like for continuous problems, mixed-integer quadratic problems are converted
internally to conic form, see Sec. 7.4.1

Contrary to the continuous case, MOSEK can solve certain mixed-integer quadratic problems where
one or more of the involved matrices are not positive semidefinite, so-called non-convex MI(QC)QO prob-
lems. These are automatically reformulated to an equivalent convex MI(QC)QO problem, provided that
such a reformulation is possible on the given instance (otherwiese MOSEK will reject the problem and
issue an error message). The concept of reformulations can also affect the solution times of MI(QC)QO
problems.

MI(QC)QO performance tweaks: applying a reformulation method
There are several reformulation methods for MI(QC)QO problems, available through the parameter

MSK_IPAR_MIO_QCQO_REFORMULATION_METHOD . The chosen method can have significant impact on the
mixed-integer optimizer’s speed on such problems, both convex and non-convex. The best value for this
option is highly problem dependent.

8.4.5 Disjunctive constraints
Problems with disjunctive constraints (DJC) are typically reformulated to mixed-integer problems, and
even if this is not the case they are solved with an algorithm that is based on the mixed-integer optimizer.
In MOSEK, these problems thus fall into the realm of MIO. In particular, MOSEK automatically
attempts to replace any DJC by so called big-M constraints, potentially after transforming it to several,
less complicated DJCs. As an example, take the DJC

[𝑧 = 0] ∨ [𝑧 = 1, 𝑥1 + 𝑥2 ≥ 1000],

where 𝑧 ∈ {0, 1} and 𝑥1, 𝑥2 ∈ [0, 750]. This is an example of a DJC formulation of a so-called indicator
constraint. A big-M reformulation is given by

𝑥1 + 𝑥2 ≥ 1000 −𝑀 · (1 − 𝑧),

where 𝑀 > 0 is a large constant. The practical difficulty of these constructs is that 𝑀 should always
be sufficiently large, but ideally not larger. Too large values for 𝑀 can be harmful for the mixed-integer
optimizer. During presolve, and taking into account the bounds of the involved variables, MOSEK au-
tomatically reformulates DJCs to big-M constraints if the required 𝑀 values do not exceed the parameter
MSK_DPAR_MIO_DJC_MAX_BIGM . From a performance point-of-view, all DJCs would ideally be linearized
to big-Ms after presolve without changing this parameter’s default value of 1.0e6. Whether or not this
is the case can be seen by retrieving the information item MSK_IINF_MIO_PRESOLVED_NUMDJC , or by a
line in the mixed-integer optimizer’s log as in the example below. Both state the number of remaining
disjunctions after presolve.

67

Presolved problem: 305 variables, 204 constraints, 708 non-zeros
Presolved problem: 0 general integer, 100 binary, 205 continuous
Presolved problem: 100 disjunctions
Clique table size: 0
BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_OBJ BEST_RELAX_OBJ REL_GAP(
→˓%) TIME
0 1 1 0 NA 0.0000000000e+00 NA ␣
→˓ 0.0
0 1 1 0 5.0574653969e+05 0.0000000000e+00 100.00 ␣
→˓ 0.0

[...]

DJC performance tweaks: managing variable bounds

• Always specify the tightest known bounds on the variables of any problem with DJCs, even if they
seem trivial from the user-perspective. The mixed-integer optimizer can only benefit from these
when reformulating DJCs and thus gain performance; even if bounds don’t help with reformulations,
it is very unlikely that they hurt the optimizer.

• Increasing MSK_DPAR_MIO_DJC_MAX_BIGM can lead to more DJC reformulations and thus increase
optimizer speed, but it may in turn hurt numerical solution quality and has to be examined
with care. The other way round, on numerically challenging instances with DJCs, decreasing
MSK_DPAR_MIO_DJC_MAX_BIGM may lead to numerically more robust solutions.

8.4.6 Randomization
A mixed-integer optimizer is usually prone to performance variability, meaning that a small change in
either

• problem data, or

• computer hardware, or

• algorithmic parameters

can lead to significant changes in solution time, due to different solution paths in the Branch-and-cut
tree. In extreme cases the exact same problem can vary from being solvable in less than a second to
seemingly unsolvable in any reasonable amount of time on a different computer.

One practical implication of this is that one should ideally verify whether a seemingly beneficial set
of parameters, established experimentally on a single problem, is still beneficial (on average) on a larger
set of problems from the same problem class. This protects against making parameter changes that had
positive effects only due to random effects on that single problem.

In the absence of a large set of test problems, one may also change the random seed of the optimizer to
a series of different values in order to hedge against drawing such wrong conclusions regarding parameters.
The random seed, accessible through MSK_IPAR_MIO_SEED , impacts for example random tie-breaking in
many of the mixed-integer optimizer’s components. Changing the random seed can be combined with
a permutation of the problem data to further incite randomness, accessible through the parameter
MSK_IPAR_MIO_DATA_PERMUTATION_METHOD .

68

8.4.7 Further performance tweaks
In addition to what was mentioned previously, there may be other ways to speed up the solution of a
given mixed-integer problem. For example, there are further user parameters affecting some algorithmic
settings in the mixed-integer optimizer. As mentioned above, default parameter values are optimized to
work well on average, but on individual problems they may be adjusted.

MIO performance tweaks: miscellaneous

• While exploring the tree, the optimizer applies certain strategies to decide which fractional variable
to branch on, see Sec. 8.4.1. The chosen strategy can have a big impact on performance, and may
be controlled with MSK_IPAR_MIO_VAR_SELECTION .

• Similarly, the strategy to chose the next node to explore in the tree is controlled with
MSK_IPAR_MIO_NODE_SELECTION .

• The optimizer employs specialized techniques to learn from infeasible nodes and use that knowledge
to avoid creating similar nodes in other parts of the tree. The effort spent here can be influenced
with MSK_IPAR_MIO_DUAL_RAY_ANALYSIS_LEVEL and MSK_IPAR_MIO_CONFLICT_ANALYSIS_LEVEL .

• When relaxations in the tree are linear optimization problems (e.g., in MILO or when solving
MICO probelms with the Outer-Approximation method), it is usually best to employ the dual
simplex method for their solution. In rare cases the primal simplex method may actually be the
better choice, and this can be set with the parameter MSK_IPAR_MIO_NODE_OPTIMIZER .

• Some problems are numerically more challenging than others, for example if the ratio between the
smallest and the largest involved coefficients is large, say ≥ 1𝑒9. An indication of numerical issues
are, for example, large violations in the final solution, observable in the solution summery of the
log output, see Sec. 6.1.3. Similarly, a problem that is known to be feasible by the user may be
declared infeasible by the optimizer. In such cases it is usually best to try to rescale the model.
Otherwise, the mixed-integer optimizer can be instructed to be more cautios regarding numerics
with the parameter MSK_IPAR_MIO_NUMERICAL_EMPHASIS_LEVEL . This may in turn be at the cost
of solution speed though.

• Improve the formulation: A MIO problem may be impossible to solve in one form and quite easy
in another form. However, it is beyond the scope of this manual to discuss good formulations for
mixed-integer problems. For discussions on this topic see for example [Wol98].

69

Chapter 9

Additional features

In this section we describe additional features and tools which enable more detailed analysis of optimiza-
tion problems with MOSEK.

9.1 Problem Analyzer

The problem analyzer prints a survey of the structure of the problem, with information about linear
constraints and objective, quadratic constraints, conic constraints and variables.

In the initial stages of model formulation the problem analyzer may be used as a quick way of
verifying that the model has been built or imported correctly. In later stages it can help revealing special
structures within the model that may be used to tune the optimizer’s performance or to identify the
causes of numerical difficulties.

The problem analyzer is run from the command line using the -anapro argument and produces
output similar to the following (this is the problem analyzer’s survey of the aflow30a problem from the
MIPLIB 2003 collection.)

Analyzing the problem

*** Structural report
Dimensions
Constraints Variables Matrix var. Cones
479 842 0 0

Constraint and bound types
Free Lower Upper Ranged Fixed

Constraints: 0 0 421 0 58
Variables: 0 0 0 842 0

Integer constraint types
Binary General
421 0

*** Data report
Nonzeros Min Max

|cj|: 421 1.1e+01 5.0e+02
|Aij|: 2091 1.0e+00 1.0e+02

finite Min Max
|blci|: 58 1.0e+00 1.0e+01
|buci|: 479 0.0e+00 1.0e+01
|blxj|: 842 0.0e+00 0.0e+00
|buxj|: 842 1.0e+00 1.0e+02

(continues on next page)

70

(continued from previous page)

*** Done analyzing the problem

The survey is divided into a structural and numerical report. The content should be self-explanatory.

9.2 Automatic Repair of Infeasible Problems

MOSEK provides an automatic repair tool for infeasible linear problems which we cover in this section.
Note that most infeasible models are so due to bugs which can (and should) be more reliably fixed
manually, using the knowledge of the model structure. We discuss this approach in Sec. 6.3.

9.2.1 Automatic repair
The main idea can be described as follows. Consider the linear optimization problem with 𝑚 constraints
and 𝑛 variables

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

which is assumed to be infeasible.
One way of making the problem feasible is to reduce the lower bounds and increase the upper bounds.

If the change is sufficiently large the problem becomes feasible. Now an obvious idea is to compute the
optimal relaxation by solving an optimization problem. The problem

minimize 𝑝(𝑣𝑐𝑙 , 𝑣
𝑐
𝑢, 𝑣

𝑥
𝑙 , 𝑣

𝑥
𝑢)

subject to 𝑙𝑐 − 𝑣𝑐𝑙 ≤ 𝐴𝑥 ≤ 𝑢𝑐 + 𝑣𝑐𝑢,
𝑙𝑥 − 𝑣𝑥𝑙 ≤ 𝑥 ≤ 𝑢𝑥 + 𝑣𝑥𝑢,

𝑣𝑐𝑙 , 𝑣
𝑐
𝑢, 𝑣

𝑥
𝑙 , 𝑣

𝑥
𝑢 ≥ 0

(9.1)

does exactly that. The additional variables (𝑣𝑐𝑙)𝑖, (𝑣𝑐𝑢)𝑖, (𝑣𝑥𝑙)𝑗 and (𝑣𝑐𝑢)𝑗 are elasticity variables because
they allow a constraint to be violated and hence add some elasticity to the problem. For instance, the
elasticity variable (𝑣𝑐𝑙)𝑖 controls how much the lower bound (𝑙𝑐)𝑖 should be relaxed to make the problem
feasible. Finally, the so-called penalty function

𝑝(𝑣𝑐𝑙 , 𝑣
𝑐
𝑢, 𝑣

𝑥
𝑙 , 𝑣

𝑥
𝑢)

is chosen so it penalizes changes to bounds. Given the weights

• 𝑤𝑐
𝑙 ∈ R𝑚 (associated with 𝑙𝑐),

• 𝑤𝑐
𝑢 ∈ R𝑚 (associated with 𝑢𝑐),

• 𝑤𝑥
𝑙 ∈ R𝑛 (associated with 𝑙𝑥),

• 𝑤𝑥
𝑢 ∈ R𝑛 (associated with 𝑢𝑥),

a natural choice is

𝑝(𝑣𝑐𝑙 , 𝑣
𝑐
𝑢, 𝑣

𝑥
𝑙 , 𝑣

𝑥
𝑢) = (𝑤𝑐

𝑙)
𝑇 𝑣𝑐𝑙 + (𝑤𝑐

𝑢)𝑇 𝑣𝑐𝑢 + (𝑤𝑥
𝑙)𝑇 𝑣𝑥𝑙 + (𝑤𝑥

𝑢)𝑇 𝑣𝑥𝑢.

Hence, the penalty function 𝑝() is a weighted sum of the elasticity variables and therefore the problem
(9.1) keeps the amount of relaxation at a minimum. Please observe that

• the problem (9.1) is always feasible.

• a negative weight implies problem (9.1) is unbounded. For this reason if the value of a weight is
negative MOSEK fixes the associated elasticity variable to zero. Clearly, if one or more of the
weights are negative, it may imply that it is not possible to repair the problem.

A simple choice of weights is to set them all to 1, but of course that does not take into account that
constraints may have different importance.

71

Caveats

Observe if the infeasible problem

minimize 𝑥 + 𝑧
subject to 𝑥 = −1,

𝑥 ≥ 0

is repaired then it will become unbounded. Hence, a repaired problem may not have an optimal solution.
Another and more important caveat is that only a minimal repair is performed i.e. the repair that

barely makes the problem feasible. Hence, the repaired problem is barely feasible and that sometimes
makes the repaired problem hard to solve.

Using the automatic repair tool

In this subsection we consider an infeasible linear optimization example:

minimize −10𝑥1 −9𝑥2,
subject to 7/10𝑥1 + 1𝑥2 ≤ 630,

1/2𝑥1 + 5/6𝑥2 ≤ 600,
1𝑥1 + 2/3𝑥2 ≤ 708,

1/10𝑥1 + 1/4𝑥2 ≤ 135,
𝑥1, 𝑥2 ≥ 0,

𝑥2 ≥ 650.

(9.2)

The problem (9.2) is contained in a file:

Listing 9.1: Problem (9.2) in LP format.

minimize
obj: - 10 x1 - 9 x2

st
c1: + 7e-01 x1 + x2 <= 630
c2: + 5e-01 x1 + 8.333333333e-01 x2 <= 600
c3: + x1 + 6.6666667e-01 x2 <= 708
c4: + 1e-01 x1 + 2.5e-01 x2 <= 135

bounds
x2 >= 650
end

Given the assumption that all weights are 1 the command

mosek -primalrepair -d MSK_IPAR_LOG_FEAS_REPAIR 3 feasrepair.lp

will form the repaired problem and solve it. The parameter MSK_IPAR_LOG_FEAS_REPAIR controls
the amount of log output from the repair. A value of 2 causes the optimal repair to printed out. The
output from running the above command is:

MOSEK Version 9.0.0.25(ALPHA) (Build date: 2017-11-7 16:11:50)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86

Open file 'feasrepair.lp'
Reading started.
Reading terminated. Time: 0.00

Read summary
Type : LO (linear optimization problem)
Objective sense : min
Scalar variables : 2
Matrix variables : 0

(continues on next page)

72

(continued from previous page)

Constraints : 4
Cones : 0
Time : 0.0

Problem
Name :
Objective sense : min
Type : LO (linear optimization problem)
Constraints : 4
Cones : 0
Scalar variables : 2
Matrix variables : 0
Integer variables : 0

Primal feasibility repair started.
Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 2
Eliminator terminated.
Eliminator - tries : 1 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem

Name :
Objective sense : min
Type : LO (linear optimization problem)
Constraints : 8
Cones : 0
Scalar variables : 14
Matrix variables : 0
Integer variables : 0

Optimizer - threads : 20
Optimizer - solved problem : the primal
Optimizer - Constraints : 2
Optimizer - Cones : 0
Optimizer - Scalar variables : 5 conic : 0
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 3 after factor : 3
Factor - dense dim. : 0 flops : 5.
→˓00e+01
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU ␣
→˓ TIME
0 2.7e+01 1.0e+00 4.0e+00 1.00e+00 3.000000000e+00 0.000000000e+00 1.0e+00␣
→˓ 0.00
1 2.5e+01 9.1e-01 1.4e+00 0.00e+00 8.711262850e+00 1.115287830e+01 2.4e+00␣
→˓ 0.00
2 2.4e+00 8.8e-02 1.4e-01 -7.33e-01 4.062505701e+01 4.422203730e+01 2.3e-01␣
→˓ 0.00
3 9.4e-02 3.4e-03 5.5e-03 1.33e+00 4.250700434e+01 4.258548510e+01 9.1e-03␣

(continues on next page)

73

(continued from previous page)

→˓ 0.00
4 2.0e-05 7.2e-07 1.1e-06 1.02e+00 4.249996599e+01 4.249998669e+01 1.9e-06␣
→˓ 0.00
5 2.0e-09 7.2e-11 1.1e-10 1.00e+00 4.250000000e+01 4.250000000e+01 1.9e-10␣
→˓ 0.00
Basis identification started.
Basis identification terminated. Time: 0.00
Optimizer terminated. Time: 0.01

Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 4.2500000000e+01 nrm: 6e+02 Viol. con: 1e-13 var: 0e+00
Dual. obj: 4.2499999999e+01 nrm: 2e+00 Viol. con: 0e+00 var: 9e-11

Optimal objective value of the penalty problem: 4.250000000000e+01

Repairing bounds.
Increasing the upper bound 1.35e+02 on constraint 'c4' (3) with 2.25e+01.
Decreasing the lower bound 6.50e+02 on variable 'x2' (4) with 2.00e+01.
Primal feasibility repair terminated.
Optimizer started.
Optimizer terminated. Time: 0.00

Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -5.6700000000e+03 nrm: 6e+02 Viol. con: 0e+00 var: 0e+00
Dual. obj: -5.6700000000e+03 nrm: 1e+01 Viol. con: 0e+00 var: 0e+00

Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -5.6700000000e+03 nrm: 6e+02 Viol. con: 0e+00 var: 0e+00
Dual. obj: -5.6700000000e+03 nrm: 1e+01 Viol. con: 0e+00 var: 0e+00

Optimizer summary
Optimizer - time: 0.00

Interior-point - iterations : 0 time: 0.00
Basis identification - time: 0.00

Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00

Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00

Mixed integer - relaxations: 0 time: 0.00

In this case the optimal repair it is to increase the upper bound on constraint c4 by 22.5 and decrease
the lower bound on variable x2 by 20.

74

9.3 Sensitivity Analysis

Given an optimization problem it is often useful to obtain information about how the optimal objective
value changes when the problem parameters are perturbed. E.g, assume that a bound represents the
capacity of a machine. Now, it may be possible to expand the capacity for a certain cost and hence it is
worthwhile knowing what the value of additional capacity is. This is precisely the type of questions the
sensitivity analysis deals with.

Analyzing how the optimal objective value changes when the problem data is changed is called
sensitivity analysis.

References

The book [Chvatal83] discusses the classical sensitivity analysis in Chapter 10 whereas the book [RTV97]
presents a modern introduction to sensitivity analysis. Finally, it is recommended to read the short paper
[Wal00] to avoid some of the pitfalls associated with sensitivity analysis.

Warning: Currently, sensitivity analysis is only available for continuous linear optimization
problems. Moreover, MOSEK can only deal with perturbations of bounds and objective function
coefficients.

9.3.1 Sensitivity Analysis for Linear Problems

The Optimal Objective Value Function

Assume that we are given the problem

𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥, 𝑐) = minimize 𝑐𝑇𝑥
subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,
(9.3)

and we want to know how the optimal objective value changes as 𝑙𝑐𝑖 is perturbed. To answer this question
we define the perturbed problem for 𝑙𝑐𝑖 as follows

𝑓𝑙𝑐𝑖 (𝛽) = minimize 𝑐𝑇𝑥
subject to 𝑙𝑐 + 𝛽𝑒𝑖 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

where 𝑒𝑖 is the 𝑖-th column of the identity matrix. The function

𝑓𝑙𝑐𝑖 (𝛽) (9.4)

shows the optimal objective value as a function of 𝛽. Please note that a change in 𝛽 corresponds to a
perturbation in 𝑙𝑐𝑖 and hence (9.4) shows the optimal objective value as a function of varying 𝑙𝑐𝑖 with the
other bounds fixed.

It is possible to prove that the function (9.4) is a piecewise linear and convex function, i.e. its graph
may look like in Fig. 9.1 and Fig. 9.2.

Clearly, if the function 𝑓𝑙𝑐𝑖 (𝛽) does not change much when 𝛽 is changed, then we can conclude that
the optimal objective value is insensitive to changes in 𝑙𝑐𝑖 . Therefore, we are interested in the rate of
change in 𝑓𝑙𝑐𝑖 (𝛽) for small changes in 𝛽 — specifically the gradient

𝑓 ′
𝑙𝑐𝑖

(0),

which is called the shadow price related to 𝑙𝑐𝑖 . The shadow price specifies how the objective value changes
for small changes of 𝛽 around zero. Moreover, we are interested in the linearity interval

𝛽 ∈ [𝛽1, 𝛽2]

for which

𝑓 ′
𝑙𝑐𝑖

(𝛽) = 𝑓 ′
𝑙𝑐𝑖

(0).

75

f()β

0 ββ β1 2

Fig. 9.1: 𝛽 = 0 is in the interior of linearity interval.

f()β

0 βββ 21

Fig. 9.2: 𝛽 = 0 is a breakpoint.

76

Since 𝑓𝑙𝑐𝑖 is not a smooth function 𝑓 ′
𝑙𝑐𝑖

may not be defined at 0, as illustrated in Fig. 9.2. In this case we
can define a left and a right shadow price and a left and a right linearity interval.

The function 𝑓𝑙𝑐𝑖 considered only changes in 𝑙𝑐𝑖 . We can define similar functions for the remaining
parameters of the 𝑧 defined in (9.3) as well:

𝑓𝑙𝑐𝑖 (𝛽) = 𝑧(𝑙𝑐 + 𝛽𝑒𝑖, 𝑢
𝑐, 𝑙𝑥, 𝑢𝑥, 𝑐), 𝑖 = 1, . . . ,𝑚,

𝑓𝑢𝑐
𝑖
(𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐 + 𝛽𝑒𝑖, 𝑙

𝑥, 𝑢𝑥, 𝑐), 𝑖 = 1, . . . ,𝑚,
𝑓𝑙𝑥𝑗 (𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥 + 𝛽𝑒𝑗 , 𝑢

𝑥, 𝑐), 𝑗 = 1, . . . , 𝑛,

𝑓𝑢𝑥
𝑗
(𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥 + 𝛽𝑒𝑗 , 𝑐), 𝑗 = 1, . . . , 𝑛,

𝑓𝑐𝑗 (𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥, 𝑐 + 𝛽𝑒𝑗), 𝑗 = 1, . . . , 𝑛.

Given these definitions it should be clear how linearity intervals and shadow prices are defined for the
parameters 𝑢𝑐

𝑖 etc.

Equality Constraints

In MOSEK a constraint can be specified as either an equality constraint or a ranged constraint. If
some constraint 𝑒𝑐𝑖 is an equality constraint, we define the optimal value function for this constraint as

𝑓𝑒𝑐𝑖 (𝛽) = 𝑧(𝑙𝑐 + 𝛽𝑒𝑖, 𝑢
𝑐 + 𝛽𝑒𝑖, 𝑙

𝑥, 𝑢𝑥, 𝑐)

Thus for an equality constraint the upper and the lower bounds (which are equal) are perturbed simul-
taneously. Therefore, MOSEK will handle sensitivity analysis differently for a ranged constraint with
𝑙𝑐𝑖 = 𝑢𝑐

𝑖 and for an equality constraint.

The Basis Type Sensitivity Analysis

The classical sensitivity analysis discussed in most textbooks about linear optimization, e.g. [Chvatal83],
is based on an optimal basis. This method may produce misleading results [RTV97] but is computation-
ally cheap. This is the type of sensitivity analysis implemented in MOSEK.

We will now briefly discuss the basis type sensitivity analysis. Given an optimal basic solution which
provides a partition of variables into basic and non-basic variables, the basis type sensitivity analysis
computes the linearity interval [𝛽1, 𝛽2] so that the basis remains optimal for the perturbed problem. A
shadow price associated with the linearity interval is also computed. However, it is well-known that an
optimal basic solution may not be unique and therefore the result depends on the optimal basic solution
employed in the sensitivity analysis. If the optimal objective value function has a breakpoint for 𝛽 = 0
then the basis type sensitivity method will only provide a subset of either the left or the right linearity
interval.

In summary, the basis type sensitivity analysis is computationally cheap but does not provide complete
information. Hence, the results of the basis type sensitivity analysis should be used with care.

Example: Sensitivity Analysis

As an example we will use the following transportation problem. Consider the problem of minimizing the
transportation cost between a number of production plants and stores. Each plant supplies a number of
goods and each store has a given demand that must be met. Supply, demand and cost of transportation
per unit are shown in Fig. 9.3.

If we denote the number of transported goods from location 𝑖 to location 𝑗 by 𝑥𝑖𝑗 , problem can be
formulated as the linear optimization problem of minimizing

1𝑥11 + 2𝑥12 + 5𝑥23 + 2𝑥24 + 1𝑥31 + 2𝑥33 + 1𝑥34

subject to

𝑥11 + 𝑥12 ≤ 400,
𝑥23 + 𝑥24 ≤ 1200,

𝑥31 + 𝑥33 + 𝑥34 ≤ 1000,
𝑥11 + 𝑥31 = 800,

𝑥12 = 100,
𝑥23 + 𝑥33 = 500,

𝑥24 + 𝑥34 = 500,
𝑥11, 𝑥12, 𝑥23, 𝑥24, 𝑥31, 𝑥33, 𝑥34 ≥ 0.

(9.5)

77

Supply Demand

1

2

5

2

1

2

1

Plant 1

Plant 2

Plant 3
Store 4

Store 3

Store 2

Store 1

1000

500

500

800

100

400

1200

Fig. 9.3: Supply, demand and cost of transportation.

The sensitivity parameters are shown in Table 9.1 and Table 9.2.

Table 9.1: Ranges and shadow prices related to bounds on con-
straints and variables.

Con. 𝛽1 𝛽2 𝜎1 𝜎2

1 −300.00 0.00 3.00 3.00
2 −700.00 +∞ 0.00 0.00
3 −500.00 0.00 3.00 3.00
4 −0.00 500.00 4.00 4.00
5 −0.00 300.00 5.00 5.00
6 −0.00 700.00 5.00 5.00
7 −500.00 700.00 2.00 2.00
Var. 𝛽1 𝛽2 𝜎1 𝜎2

𝑥11 −∞ 300.00 0.00 0.00
𝑥12 −∞ 100.00 0.00 0.00
𝑥23 −∞ 0.00 0.00 0.00
𝑥24 −∞ 500.00 0.00 0.00
𝑥31 −∞ 500.00 0.00 0.00
𝑥33 −∞ 500.00 0.00 0.00
𝑥34 −0.000000 500.00 2.00 2.00

Table 9.2: Ranges and shadow prices related to the objective coef-
ficients.

Var. 𝛽1 𝛽2 𝜎1 𝜎2

𝑐1 −∞ 3.00 300.00 300.00
𝑐2 −∞ ∞ 100.00 100.00
𝑐3 −2.00 ∞ 0.00 0.00
𝑐4 −∞ 2.00 500.00 500.00
𝑐5 −3.00 ∞ 500.00 500.00
𝑐6 −∞ 2.00 500.00 500.00
𝑐7 −2.00 ∞ 0.00 0.00

78

Examining the results from the sensitivity analysis we see that for constraint number 1 we have
𝜎1 = 3 and 𝛽1 = −300, 𝛽2 = 0.

If the upper bound on constraint 1 is decreased by

𝛽 ∈ [0, 300]

then the optimal objective value will increase by the value

𝜎1𝛽 = 3𝛽.

9.3.2 Sensitivity Analysis with MOSEK
A sensitivity analysis can be performed with the MOSEK command line tool specifying the option
-sen , e.g.

mosek myproblem.mps -sen sensitivity.ssp

where sensitivity.ssp is a file in the format described in the next section. The ssp file describes
which parts of the problem the sensitivity analysis should be performed on, see Sec. 9.3.2.

By default results are written to a file named myproblem.sen. If necessary, this file name can be
changed by setting the MSK_SPAR_SENSITIVITY_RES_FILE_NAME parameter.

Sensitivity Analysis Specification File

MOSEK employs an MPS-like file format to specify on which model parameters the sensitivity analysis
should be performed. The format of the sensitivity specification file is shown in Listing 9.2, where
capitalized names are keywords, and names in brackets are names of the constraints and variables to be
included in the analysis.

Listing 9.2: Sensitivity analysis file specification.

BOUNDS CONSTRAINTS
U|L|LU [cname1]
U|L|LU [cname2]-[cname3]
BOUNDS VARIABLES
U|L|LU [vname1]
U|L|LU [vname2]-[vname3]
OBJECTIVE VARIABLES
[vname1]
[vname2]-[vname3]

The sensitivity specification file has three sections, i.e.

• BOUNDS CONSTRAINTS: Specifies on which bounds on constraints the sensitivity analysis should be
performed.

• BOUNDS VARIABLES: Specifies on which bounds on variables the sensitivity analysis should be per-
formed.

• OBJECTIVE VARIABLES: Specifies on which objective coefficients the sensitivity analysis should be
performed.

A line in the body of a section must begin with a whitespace. In the BOUNDS sections one of the keys
L, U, and LU must appear next. These keys specify whether the sensitivity analysis is performed on the
lower bound, on the upper bound, or on both the lower and the upper bound respectively. Next, a single
constraint (variable) or range of constraints (variables) is specified.

Recall from Sec. 9.3.1 that equality constraints are handled in a special way. Sensitivity analysis of
an equality constraint can be specified with either L, U, or LU, all indicating the same, namely that upper
and lower bounds (which are equal) are perturbed simultaneously.

As an example consider

79

BOUNDS CONSTRAINTS
L "cons1"
U "cons2"
LU "cons3"-"cons6"

which requests that sensitivity analysis is performed on the lower bound of the constraint named
cons1, on the upper bound of the constraint named cons2, and on both lower and upper bound on the
constraints named cons3 to cons6.

It is allowed to use indexes instead of names, for instance

BOUNDS CONSTRAINTS
L "cons1"
U 2
LU 3 - 6

The character * indicates that the line contains a comment and is ignored.

Example: Sensitivity Analysis from Command Line

As an example consider problem (9.5): the sensitivity file shown below (included in the distribution
among the examples).

Listing 9.3: Sensitivity file for problem (9.5).

* Comment 1

BOUNDS CONSTRAINTS
U "c1" * Analyze upper bound for constraints named c1
U 2 * Analyze upper bound for constraints with index 2
U 3-5 * Analyze upper bound for constraint with index in interval [3:5]

VARIABLES CONSTRAINTS
L 2-4 * This section specifies which bounds on variables should be analyzed.
→˓

L "x11"
OBJECTIVE CONSTRAINTS
"x11" * This section specifies which objective coeficients should be␣
→˓analysed.
2

The command

mosek transport.lp -sen sensitivity.ssp

produces the output file as follow

Listing 9.4: Results of sensitivity analysis

BOUNDS CONSTRAINTS
INDEX NAME BOUND LEFTRANGE RIGHTRANGE LEFTPRICE ␣
→˓RIGHTPRICE
0 c1 UP -6.574875e-18 5.000000e+02 1.000000e+00 ␣
→˓1.000000e+00
2 c3 UP -6.574875e-18 5.000000e+02 1.000000e+00 ␣
→˓1.000000e+00
3 c4 FIX -5.000000e+02 6.574875e-18 2.000000e+00 ␣
→˓2.000000e+00
4 c5 FIX -1.000000e+02 6.574875e-18 3.000000e+00 ␣
→˓3.000000e+00
5 c6 FIX -5.000000e+02 6.574875e-18 3.000000e+00 ␣

(continues on next page)

80

(continued from previous page)

→˓3.000000e+00

BOUNDS VARIABLES
INDEX NAME BOUND LEFTRANGE RIGHTRANGE LEFTPRICE ␣
→˓RIGHTPRICE
2 x23 LO -6.574875e-18 5.000000e+02 2.000000e+00 ␣
→˓2.000000e+00
3 x24 LO -inf 5.000000e+02 0.000000e+00 ␣
→˓0.000000e+00
4 x31 LO -inf 5.000000e+02 0.000000e+00 ␣
→˓0.000000e+00
0 x11 LO -inf 3.000000e+02 0.000000e+00 ␣
→˓0.000000e+00

OBJECTIVE VARIABLES
INDEX NAME LEFTRANGE RIGHTRANGE LEFTPRICE ␣
→˓RIGHTPRICE
0 x11 -inf 1.000000e+00 3.000000e+02 ␣
→˓3.000000e+02
2 x23 -2.000000e+00 +inf 0.000000e+00 ␣
→˓0.000000e+00

Controlling Log Output

Setting the parameter MSK_IPAR_LOG_SENSITIVITY to 1 or 0 (default) controls whether or not the results
from sensitivity calculations are printed to the message stream.

The parameter MSK_IPAR_LOG_SENSITIVITY_OPT controls the amount of debug information on in-
ternal calculations from the sensitivity analysis.

81

Chapter 10

API Reference

• Optimizer parameters:

– Double, Integer , String
– Full list
– Browse by topic

• Optimizer response codes

• Constants

• List of supported domains

10.1 Parameters grouped by topic

Analysis

• MSK_DPAR_ANA_SOL_INFEAS_TOL

• MSK_IPAR_ANA_SOL_BASIS

• MSK_IPAR_ANA_SOL_PRINT_VIOLATED

• MSK_IPAR_LOG_ANA_PRO

Basis identification

• MSK_DPAR_SIM_LU_TOL_REL_PIV

• MSK_IPAR_BI_CLEAN_OPTIMIZER

• MSK_IPAR_BI_IGNORE_MAX_ITER

• MSK_IPAR_BI_IGNORE_NUM_ERROR

• MSK_IPAR_BI_MAX_ITERATIONS

• MSK_IPAR_INTPNT_BASIS

• MSK_IPAR_LOG_BI

• MSK_IPAR_LOG_BI_FREQ

82

Conic interior-point method

• MSK_DPAR_INTPNT_CO_TOL_DFEAS

• MSK_DPAR_INTPNT_CO_TOL_INFEAS

• MSK_DPAR_INTPNT_CO_TOL_MU_RED

• MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

• MSK_DPAR_INTPNT_CO_TOL_PFEAS

• MSK_DPAR_INTPNT_CO_TOL_REL_GAP

Data check

• MSK_DPAR_DATA_SYM_MAT_TOL

• MSK_DPAR_DATA_SYM_MAT_TOL_HUGE

• MSK_DPAR_DATA_SYM_MAT_TOL_LARGE

• MSK_DPAR_DATA_TOL_AIJ_HUGE

• MSK_DPAR_DATA_TOL_AIJ_LARGE

• MSK_DPAR_DATA_TOL_BOUND_INF

• MSK_DPAR_DATA_TOL_BOUND_WRN

• MSK_DPAR_DATA_TOL_C_HUGE

• MSK_DPAR_DATA_TOL_CJ_LARGE

• MSK_DPAR_DATA_TOL_QIJ

• MSK_DPAR_DATA_TOL_X

• MSK_DPAR_SEMIDEFINITE_TOL_APPROX

Data input/output

• MSK_IPAR_INFEAS_REPORT_AUTO

• MSK_IPAR_LOG_FILE

• MSK_IPAR_OPF_WRITE_HEADER

• MSK_IPAR_OPF_WRITE_HINTS

• MSK_IPAR_OPF_WRITE_LINE_LENGTH

• MSK_IPAR_OPF_WRITE_PARAMETERS

• MSK_IPAR_OPF_WRITE_PROBLEM

• MSK_IPAR_OPF_WRITE_SOL_BAS

• MSK_IPAR_OPF_WRITE_SOL_ITG

• MSK_IPAR_OPF_WRITE_SOL_ITR

• MSK_IPAR_OPF_WRITE_SOLUTIONS

• MSK_IPAR_PARAM_READ_CASE_NAME

• MSK_IPAR_PARAM_READ_IGN_ERROR

83

• MSK_IPAR_PTF_WRITE_PARAMETERS

• MSK_IPAR_PTF_WRITE_SINGLE_PSD_TERMS

• MSK_IPAR_PTF_WRITE_SOLUTIONS

• MSK_IPAR_PTF_WRITE_TRANSFORM

• MSK_IPAR_READ_ASYNC

• MSK_IPAR_READ_DEBUG

• MSK_IPAR_READ_KEEP_FREE_CON

• MSK_IPAR_READ_MPS_FORMAT

• MSK_IPAR_READ_MPS_WIDTH

• MSK_IPAR_READ_TASK_IGNORE_PARAM

• MSK_IPAR_SOL_READ_NAME_WIDTH

• MSK_IPAR_SOL_READ_WIDTH

• MSK_IPAR_WRITE_ASYNC

• MSK_IPAR_WRITE_BAS_CONSTRAINTS

• MSK_IPAR_WRITE_BAS_HEAD

• MSK_IPAR_WRITE_BAS_VARIABLES

• MSK_IPAR_WRITE_COMPRESSION

• MSK_IPAR_WRITE_FREE_CON

• MSK_IPAR_WRITE_GENERIC_NAMES

• MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS

• MSK_IPAR_WRITE_INT_CONSTRAINTS

• MSK_IPAR_WRITE_INT_HEAD

• MSK_IPAR_WRITE_INT_VARIABLES

• MSK_IPAR_WRITE_JSON_INDENTATION

• MSK_IPAR_WRITE_LP_FULL_OBJ

• MSK_IPAR_WRITE_LP_LINE_WIDTH

• MSK_IPAR_WRITE_MPS_FORMAT

• MSK_IPAR_WRITE_MPS_INT

• MSK_IPAR_WRITE_SOL_BARVARIABLES

• MSK_IPAR_WRITE_SOL_CONSTRAINTS

• MSK_IPAR_WRITE_SOL_HEAD

• MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES

• MSK_IPAR_WRITE_SOL_VARIABLES

• MSK_SPAR_BAS_SOL_FILE_NAME

• MSK_SPAR_DATA_FILE_NAME

• MSK_SPAR_DEBUG_FILE_NAME

84

• MSK_SPAR_INT_SOL_FILE_NAME

• MSK_SPAR_ITR_SOL_FILE_NAME

• MSK_SPAR_MIO_DEBUG_STRING

• MSK_SPAR_PARAM_COMMENT_SIGN

• MSK_SPAR_PARAM_READ_FILE_NAME

• MSK_SPAR_PARAM_WRITE_FILE_NAME

• MSK_SPAR_READ_MPS_BOU_NAME

• MSK_SPAR_READ_MPS_OBJ_NAME

• MSK_SPAR_READ_MPS_RAN_NAME

• MSK_SPAR_READ_MPS_RHS_NAME

• MSK_SPAR_SENSITIVITY_FILE_NAME

• MSK_SPAR_SENSITIVITY_RES_FILE_NAME

• MSK_SPAR_SOL_FILTER_XC_LOW

• MSK_SPAR_SOL_FILTER_XC_UPR

• MSK_SPAR_SOL_FILTER_XX_LOW

• MSK_SPAR_SOL_FILTER_XX_UPR

• MSK_SPAR_STAT_KEY

• MSK_SPAR_STAT_NAME

Debugging

• MSK_IPAR_AUTO_SORT_A_BEFORE_OPT

Dual simplex

• MSK_IPAR_SIM_DUAL_CRASH

• MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION

• MSK_IPAR_SIM_DUAL_SELECTION

Infeasibility report

• MSK_IPAR_INFEAS_GENERIC_NAMES

• MSK_IPAR_INFEAS_REPORT_LEVEL

• MSK_IPAR_LOG_INFEAS_ANA

85

Interior-point method

• MSK_DPAR_INTPNT_CO_TOL_DFEAS

• MSK_DPAR_INTPNT_CO_TOL_INFEAS

• MSK_DPAR_INTPNT_CO_TOL_MU_RED

• MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

• MSK_DPAR_INTPNT_CO_TOL_PFEAS

• MSK_DPAR_INTPNT_CO_TOL_REL_GAP

• MSK_DPAR_INTPNT_QO_TOL_DFEAS

• MSK_DPAR_INTPNT_QO_TOL_INFEAS

• MSK_DPAR_INTPNT_QO_TOL_MU_RED

• MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

• MSK_DPAR_INTPNT_QO_TOL_PFEAS

• MSK_DPAR_INTPNT_QO_TOL_REL_GAP

• MSK_DPAR_INTPNT_TOL_DFEAS

• MSK_DPAR_INTPNT_TOL_DSAFE

• MSK_DPAR_INTPNT_TOL_INFEAS

• MSK_DPAR_INTPNT_TOL_MU_RED

• MSK_DPAR_INTPNT_TOL_PATH

• MSK_DPAR_INTPNT_TOL_PFEAS

• MSK_DPAR_INTPNT_TOL_PSAFE

• MSK_DPAR_INTPNT_TOL_REL_GAP

• MSK_DPAR_INTPNT_TOL_REL_STEP

• MSK_DPAR_INTPNT_TOL_STEP_SIZE

• MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL

• MSK_IPAR_BI_IGNORE_MAX_ITER

• MSK_IPAR_BI_IGNORE_NUM_ERROR

• MSK_IPAR_INTPNT_BASIS

• MSK_IPAR_INTPNT_DIFF_STEP

• MSK_IPAR_INTPNT_HOTSTART

• MSK_IPAR_INTPNT_MAX_ITERATIONS

• MSK_IPAR_INTPNT_MAX_NUM_COR

• MSK_IPAR_INTPNT_OFF_COL_TRH

• MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS

• MSK_IPAR_INTPNT_ORDER_METHOD

• MSK_IPAR_INTPNT_REGULARIZATION_USE

• MSK_IPAR_INTPNT_SCALING

• MSK_IPAR_INTPNT_SOLVE_FORM

• MSK_IPAR_INTPNT_STARTING_POINT

• MSK_IPAR_LOG_INTPNT

86

License manager

• MSK_IPAR_CACHE_LICENSE

• MSK_IPAR_LICENSE_DEBUG

• MSK_IPAR_LICENSE_PAUSE_TIME

• MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS

• MSK_IPAR_LICENSE_TRH_EXPIRY_WRN

• MSK_IPAR_LICENSE_WAIT

Logging

• MSK_IPAR_HEARTBEAT_SIM_FREQ_TICKS

• MSK_IPAR_LOG

• MSK_IPAR_LOG_ANA_PRO

• MSK_IPAR_LOG_BI

• MSK_IPAR_LOG_BI_FREQ

• MSK_IPAR_LOG_CUT_SECOND_OPT

• MSK_IPAR_LOG_EXPAND

• MSK_IPAR_LOG_FEAS_REPAIR

• MSK_IPAR_LOG_FILE

• MSK_IPAR_LOG_INCLUDE_SUMMARY

• MSK_IPAR_LOG_INFEAS_ANA

• MSK_IPAR_LOG_INTPNT

• MSK_IPAR_LOG_LOCAL_INFO

• MSK_IPAR_LOG_MIO

• MSK_IPAR_LOG_MIO_FREQ

• MSK_IPAR_LOG_ORDER

• MSK_IPAR_LOG_PRESOLVE

• MSK_IPAR_LOG_SENSITIVITY

• MSK_IPAR_LOG_SENSITIVITY_OPT

• MSK_IPAR_LOG_SIM

• MSK_IPAR_LOG_SIM_FREQ

• MSK_IPAR_LOG_SIM_FREQ_GIGA_TICKS

• MSK_IPAR_LOG_STORAGE

87

Mixed-integer optimization

• MSK_DPAR_MIO_CLIQUE_TABLE_SIZE_FACTOR

• MSK_DPAR_MIO_DJC_MAX_BIGM

• MSK_DPAR_MIO_MAX_TIME

• MSK_DPAR_MIO_REL_GAP_CONST

• MSK_DPAR_MIO_TOL_ABS_GAP

• MSK_DPAR_MIO_TOL_ABS_RELAX_INT

• MSK_DPAR_MIO_TOL_FEAS

• MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT

• MSK_DPAR_MIO_TOL_REL_GAP

• MSK_IPAR_LOG_MIO

• MSK_IPAR_LOG_MIO_FREQ

• MSK_IPAR_MIO_BRANCH_DIR

• MSK_IPAR_MIO_CONFLICT_ANALYSIS_LEVEL

• MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION

• MSK_IPAR_MIO_CONSTRUCT_SOL

• MSK_IPAR_MIO_CROSSOVER_MAX_NODES

• MSK_IPAR_MIO_CUT_CLIQUE

• MSK_IPAR_MIO_CUT_CMIR

• MSK_IPAR_MIO_CUT_GMI

• MSK_IPAR_MIO_CUT_IMPLIED_BOUND

• MSK_IPAR_MIO_CUT_KNAPSACK_COVER

• MSK_IPAR_MIO_CUT_LIPRO

• MSK_IPAR_MIO_CUT_SELECTION_LEVEL

• MSK_IPAR_MIO_DATA_PERMUTATION_METHOD

• MSK_IPAR_MIO_DUAL_RAY_ANALYSIS_LEVEL

• MSK_IPAR_MIO_FEASPUMP_LEVEL

• MSK_IPAR_MIO_HEURISTIC_LEVEL

• MSK_IPAR_MIO_INDEPENDENT_BLOCK_LEVEL

• MSK_IPAR_MIO_MAX_NUM_BRANCHES

• MSK_IPAR_MIO_MAX_NUM_RELAXS

• MSK_IPAR_MIO_MAX_NUM_RESTARTS

• MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS

• MSK_IPAR_MIO_MAX_NUM_SOLUTIONS

• MSK_IPAR_MIO_MEMORY_EMPHASIS_LEVEL

• MSK_IPAR_MIO_MIN_REL

88

• MSK_IPAR_MIO_NODE_OPTIMIZER

• MSK_IPAR_MIO_NODE_SELECTION

• MSK_IPAR_MIO_NUMERICAL_EMPHASIS_LEVEL

• MSK_IPAR_MIO_OPT_FACE_MAX_NODES

• MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE

• MSK_IPAR_MIO_PROBING_LEVEL

• MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT

• MSK_IPAR_MIO_QCQO_REFORMULATION_METHOD

• MSK_IPAR_MIO_RENS_MAX_NODES

• MSK_IPAR_MIO_RINS_MAX_NODES

• MSK_IPAR_MIO_ROOT_OPTIMIZER

• MSK_IPAR_MIO_SEED

• MSK_IPAR_MIO_SYMMETRY_LEVEL

• MSK_IPAR_MIO_VAR_SELECTION

• MSK_IPAR_MIO_VB_DETECTION_LEVEL

Output information

• MSK_IPAR_HEARTBEAT_SIM_FREQ_TICKS

• MSK_IPAR_INFEAS_REPORT_LEVEL

• MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS

• MSK_IPAR_LICENSE_TRH_EXPIRY_WRN

• MSK_IPAR_LOG

• MSK_IPAR_LOG_BI

• MSK_IPAR_LOG_BI_FREQ

• MSK_IPAR_LOG_CUT_SECOND_OPT

• MSK_IPAR_LOG_EXPAND

• MSK_IPAR_LOG_FEAS_REPAIR

• MSK_IPAR_LOG_FILE

• MSK_IPAR_LOG_INCLUDE_SUMMARY

• MSK_IPAR_LOG_INFEAS_ANA

• MSK_IPAR_LOG_INTPNT

• MSK_IPAR_LOG_LOCAL_INFO

• MSK_IPAR_LOG_MIO

• MSK_IPAR_LOG_MIO_FREQ

• MSK_IPAR_LOG_ORDER

• MSK_IPAR_LOG_SENSITIVITY

89

• MSK_IPAR_LOG_SENSITIVITY_OPT

• MSK_IPAR_LOG_SIM

• MSK_IPAR_LOG_SIM_FREQ

• MSK_IPAR_LOG_SIM_FREQ_GIGA_TICKS

• MSK_IPAR_LOG_STORAGE

• MSK_IPAR_MAX_NUM_WARNINGS

Overall solver

• MSK_IPAR_BI_CLEAN_OPTIMIZER

• MSK_IPAR_LICENSE_WAIT

• MSK_IPAR_MIO_MODE

• MSK_IPAR_OPTIMIZER

• MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS

• MSK_IPAR_PRESOLVE_USE

• MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER

• MSK_IPAR_SENSITIVITY_ALL

• MSK_IPAR_SENSITIVITY_TYPE

• MSK_IPAR_SIM_PRECISION

Overall system

• MSK_IPAR_AUTO_UPDATE_SOL_INFO

• MSK_IPAR_LICENSE_WAIT

• MSK_IPAR_LOG_STORAGE

• MSK_IPAR_MT_SPINCOUNT

• MSK_IPAR_NUM_THREADS

• MSK_IPAR_REMOVE_UNUSED_SOLUTIONS

• MSK_IPAR_TIMING_LEVEL

• MSK_SPAR_REMOTE_OPTSERVER_HOST

• MSK_SPAR_REMOTE_TLS_CERT

• MSK_SPAR_REMOTE_TLS_CERT_PATH

90

Presolve

• MSK_DPAR_FOLDING_TOL_EQ

• MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP

• MSK_DPAR_PRESOLVE_TOL_PRIMAL_INFEAS_PERTURBATION

• MSK_DPAR_PRESOLVE_TOL_REL_LINDEP

• MSK_DPAR_PRESOLVE_TOL_S

• MSK_DPAR_PRESOLVE_TOL_X

• MSK_IPAR_FOLDING_USE

• MSK_IPAR_MIO_PRESOLVE_AGGREGATOR_USE

• MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL

• MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES

• MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH

• MSK_IPAR_PRESOLVE_LINDEP_NEW

• MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH

• MSK_IPAR_PRESOLVE_LINDEP_USE

• MSK_IPAR_PRESOLVE_MAX_NUM_PASS

• MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS

• MSK_IPAR_PRESOLVE_USE

Primal simplex

• MSK_IPAR_SIM_PRIMAL_CRASH

• MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION

• MSK_IPAR_SIM_PRIMAL_SELECTION

Simplex optimizer

• MSK_DPAR_BASIS_REL_TOL_S

• MSK_DPAR_BASIS_TOL_S

• MSK_DPAR_BASIS_TOL_X

• MSK_DPAR_SIM_LU_TOL_REL_PIV

• MSK_DPAR_SIM_PRECISION_SCALING_EXTENDED

• MSK_DPAR_SIM_PRECISION_SCALING_NORMAL

• MSK_DPAR_SIMPLEX_ABS_TOL_PIV

• MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE

• MSK_IPAR_HEARTBEAT_SIM_FREQ_TICKS

• MSK_IPAR_LOG_SIM

• MSK_IPAR_LOG_SIM_FREQ

91

• MSK_IPAR_LOG_SIM_FREQ_GIGA_TICKS

• MSK_IPAR_SIM_BASIS_FACTOR_USE

• MSK_IPAR_SIM_DEGEN

• MSK_IPAR_SIM_DETECT_PWL

• MSK_IPAR_SIM_DUAL_PHASEONE_METHOD

• MSK_IPAR_SIM_EXPLOIT_DUPVEC

• MSK_IPAR_SIM_HOTSTART

• MSK_IPAR_SIM_HOTSTART_LU

• MSK_IPAR_SIM_MAX_ITERATIONS

• MSK_IPAR_SIM_MAX_NUM_SETBACKS

• MSK_IPAR_SIM_NON_SINGULAR

• MSK_IPAR_SIM_PRECISION_BOOST

• MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD

• MSK_IPAR_SIM_REFACTOR_FREQ

• MSK_IPAR_SIM_REFORMULATION

• MSK_IPAR_SIM_SAVE_LU

• MSK_IPAR_SIM_SCALING

• MSK_IPAR_SIM_SCALING_METHOD

• MSK_IPAR_SIM_SEED

• MSK_IPAR_SIM_SOLVE_FORM

• MSK_IPAR_SIM_SWITCH_OPTIMIZER

Solution input/output

• MSK_IPAR_INFEAS_REPORT_AUTO

• MSK_IPAR_SOL_FILTER_KEEP_BASIC

• MSK_IPAR_SOL_READ_NAME_WIDTH

• MSK_IPAR_SOL_READ_WIDTH

• MSK_IPAR_WRITE_BAS_CONSTRAINTS

• MSK_IPAR_WRITE_BAS_HEAD

• MSK_IPAR_WRITE_BAS_VARIABLES

• MSK_IPAR_WRITE_INT_CONSTRAINTS

• MSK_IPAR_WRITE_INT_HEAD

• MSK_IPAR_WRITE_INT_VARIABLES

• MSK_IPAR_WRITE_SOL_BARVARIABLES

• MSK_IPAR_WRITE_SOL_CONSTRAINTS

• MSK_IPAR_WRITE_SOL_HEAD

92

• MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES

• MSK_IPAR_WRITE_SOL_VARIABLES

• MSK_SPAR_BAS_SOL_FILE_NAME

• MSK_SPAR_INT_SOL_FILE_NAME

• MSK_SPAR_ITR_SOL_FILE_NAME

• MSK_SPAR_SOL_FILTER_XC_LOW

• MSK_SPAR_SOL_FILTER_XC_UPR

• MSK_SPAR_SOL_FILTER_XX_LOW

• MSK_SPAR_SOL_FILTER_XX_UPR

Termination criteria

• MSK_DPAR_BASIS_REL_TOL_S

• MSK_DPAR_BASIS_TOL_S

• MSK_DPAR_BASIS_TOL_X

• MSK_DPAR_INTPNT_CO_TOL_DFEAS

• MSK_DPAR_INTPNT_CO_TOL_INFEAS

• MSK_DPAR_INTPNT_CO_TOL_MU_RED

• MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

• MSK_DPAR_INTPNT_CO_TOL_PFEAS

• MSK_DPAR_INTPNT_CO_TOL_REL_GAP

• MSK_DPAR_INTPNT_QO_TOL_DFEAS

• MSK_DPAR_INTPNT_QO_TOL_INFEAS

• MSK_DPAR_INTPNT_QO_TOL_MU_RED

• MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

• MSK_DPAR_INTPNT_QO_TOL_PFEAS

• MSK_DPAR_INTPNT_QO_TOL_REL_GAP

• MSK_DPAR_INTPNT_TOL_DFEAS

• MSK_DPAR_INTPNT_TOL_INFEAS

• MSK_DPAR_INTPNT_TOL_MU_RED

• MSK_DPAR_INTPNT_TOL_PFEAS

• MSK_DPAR_INTPNT_TOL_REL_GAP

• MSK_DPAR_LOWER_OBJ_CUT

• MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH

• MSK_DPAR_MIO_MAX_TIME

• MSK_DPAR_MIO_REL_GAP_CONST

• MSK_DPAR_MIO_TOL_REL_GAP

93

• MSK_DPAR_OPTIMIZER_MAX_TICKS

• MSK_DPAR_OPTIMIZER_MAX_TIME

• MSK_DPAR_SIM_PRECISION_SCALING_EXTENDED

• MSK_DPAR_SIM_PRECISION_SCALING_NORMAL

• MSK_DPAR_UPPER_OBJ_CUT

• MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH

• MSK_IPAR_BI_MAX_ITERATIONS

• MSK_IPAR_INTPNT_MAX_ITERATIONS

• MSK_IPAR_MIO_MAX_NUM_BRANCHES

• MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS

• MSK_IPAR_MIO_MAX_NUM_SOLUTIONS

• MSK_IPAR_SIM_MAX_ITERATIONS

Other

• MSK_IPAR_COMPRESS_STATFILE

• MSK_IPAR_GETDUAL_CONVERT_LMIS

• MSK_IPAR_NG

• MSK_IPAR_REMOTE_USE_COMPRESSION

10.2 Parameters (alphabetical list sorted by type)

• Double parameters

• Integer parameters

• String parameters

10.2.1 Double parameters

MSK_DPAR_ANA_SOL_INFEAS_TOL

If a constraint violates its bound with an amount larger than this value, the constraint name, index
and violation will be printed by the solution analyzer.

Default
1e-6

Accepted
[0.0; +inf]

Example
mosek -d MSK_DPAR_ANA_SOL_INFEAS_TOL 1e-6 file

Groups
Analysis

94

MSK_DPAR_BASIS_REL_TOL_S

Maximum relative dual bound violation allowed in an optimal basic solution.

Default
1.0e-12

Accepted
[0.0; +inf]

Example
mosek -d MSK_DPAR_BASIS_REL_TOL_S 1.0e-12 file

Groups
Simplex optimizer , Termination criteria

MSK_DPAR_BASIS_TOL_S

Maximum absolute dual bound violation in an optimal basic solution.

Default
1.0e-6

Accepted
[1.0e-9; +inf]

Example
mosek -d MSK_DPAR_BASIS_TOL_S 1.0e-6 file

Groups
Simplex optimizer , Termination criteria

MSK_DPAR_BASIS_TOL_X

Maximum absolute primal bound violation allowed in an optimal basic solution.

Default
1.0e-6

Accepted
[1.0e-9; +inf]

Example
mosek -d MSK_DPAR_BASIS_TOL_X 1.0e-6 file

Groups
Simplex optimizer , Termination criteria

MSK_DPAR_DATA_SYM_MAT_TOL

Absolute zero tolerance for elements in in symmetric matrices. If any value in a symmetric matrix
is smaller than this parameter in absolute terms MOSEK will treat the values as zero and generate
a warning.

Default
1.0e-12

Accepted
[1.0e-16; 1.0e-6]

Example
mosek -d MSK_DPAR_DATA_SYM_MAT_TOL 1.0e-12 file

Groups
Data check

MSK_DPAR_DATA_SYM_MAT_TOL_HUGE

An element in a symmetric matrix which is larger than this value in absolute size causes an error.

Default
1.0e20

Accepted
[0.0; +inf]

95

Example
mosek -d MSK_DPAR_DATA_SYM_MAT_TOL_HUGE 1.0e20 file

Groups
Data check

MSK_DPAR_DATA_SYM_MAT_TOL_LARGE

An element in a symmetric matrix which is larger than this value in absolute size causes a warning
message to be printed.

Default
1.0e10

Accepted
[0.0; +inf]

Example
mosek -d MSK_DPAR_DATA_SYM_MAT_TOL_LARGE 1.0e10 file

Groups
Data check

MSK_DPAR_DATA_TOL_AIJ_HUGE

An element in 𝐴 which is larger than this value in absolute size causes an error.

Default
1.0e20

Accepted
[0.0; +inf]

Example
mosek -d MSK_DPAR_DATA_TOL_AIJ_HUGE 1.0e20 file

Groups
Data check

MSK_DPAR_DATA_TOL_AIJ_LARGE

An element in 𝐴 which is larger than this value in absolute size causes a warning message to be
printed.

Default
1.0e10

Accepted
[0.0; +inf]

Example
mosek -d MSK_DPAR_DATA_TOL_AIJ_LARGE 1.0e10 file

Groups
Data check

MSK_DPAR_DATA_TOL_BOUND_INF

Any bound which in absolute value is greater than this parameter is considered infinite.

Default
1.0e16

Accepted
[0.0; +inf]

Example
mosek -d MSK_DPAR_DATA_TOL_BOUND_INF 1.0e16 file

Groups
Data check

96

MSK_DPAR_DATA_TOL_BOUND_WRN

If a bound value is larger than this value in absolute size, then a warning message is issued.

Default
1.0e8

Accepted
[0.0; +inf]

Example
mosek -d MSK_DPAR_DATA_TOL_BOUND_WRN 1.0e8 file

Groups
Data check

MSK_DPAR_DATA_TOL_C_HUGE

An element in 𝑐 which is larger than the value of this parameter in absolute terms is considered to
be huge and generates an error.

Default
1.0e16

Accepted
[0.0; +inf]

Example
mosek -d MSK_DPAR_DATA_TOL_C_HUGE 1.0e16 file

Groups
Data check

MSK_DPAR_DATA_TOL_CJ_LARGE

An element in 𝑐 which is larger than this value in absolute terms causes a warning message to be
printed.

Default
1.0e8

Accepted
[0.0; +inf]

Example
mosek -d MSK_DPAR_DATA_TOL_CJ_LARGE 1.0e8 file

Groups
Data check

MSK_DPAR_DATA_TOL_QIJ

Absolute zero tolerance for elements in 𝑄 matrices.

Default
1.0e-16

Accepted
[0.0; +inf]

Example
mosek -d MSK_DPAR_DATA_TOL_QIJ 1.0e-16 file

Groups
Data check

MSK_DPAR_DATA_TOL_X

Zero tolerance for constraints and variables i.e. if the distance between the lower and upper bound
is less than this value, then the lower and upper bound is considered identical.

Default
1.0e-8

Accepted
[0.0; +inf]

97

Example
mosek -d MSK_DPAR_DATA_TOL_X 1.0e-8 file

Groups
Data check

MSK_DPAR_FOLDING_TOL_EQ

Tolerance for coefficient equality during folding.

Default
1e-9

Accepted
[0.0; +inf]

Example
mosek -d MSK_DPAR_FOLDING_TOL_EQ 1e-9 file

Groups
Presolve

MSK_DPAR_INTPNT_CO_TOL_DFEAS

Dual feasibility tolerance used by the interior-point optimizer for conic problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
mosek -d MSK_DPAR_INTPNT_CO_TOL_DFEAS 1.0e-8 file

See also
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

Groups
Interior-point method , Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_INFEAS

Infeasibility tolerance used by the interior-point optimizer for conic problems. Controls when the
interior-point optimizer declares the model primal or dual infeasible. A small number means the
optimizer gets more conservative about declaring the model infeasible.

Default
1.0e-12

Accepted
[0.0; 1.0]

Example
mosek -d MSK_DPAR_INTPNT_CO_TOL_INFEAS 1.0e-12 file

Groups
Interior-point method , Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_MU_RED

Relative complementarity gap tolerance used by the interior-point optimizer for conic problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
mosek -d MSK_DPAR_INTPNT_CO_TOL_MU_RED 1.0e-8 file

Groups
Interior-point method , Termination criteria, Conic interior-point method

98

MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

Optimality tolerance used by the interior-point optimizer for conic problems. If MOSEK cannot
compute a solution that has the prescribed accuracy then it will check if the solution found satisfies
the termination criteria with all tolerances multiplied by the value of this parameter. If yes, then
the solution is also declared optimal.

Default
1000

Accepted
[1.0; +inf]

Example
mosek -d MSK_DPAR_INTPNT_CO_TOL_NEAR_REL 1000 file

Groups
Interior-point method , Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_PFEAS

Primal feasibility tolerance used by the interior-point optimizer for conic problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
mosek -d MSK_DPAR_INTPNT_CO_TOL_PFEAS 1.0e-8 file

See also
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

Groups
Interior-point method , Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_REL_GAP

Relative gap termination tolerance used by the interior-point optimizer for conic problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
mosek -d MSK_DPAR_INTPNT_CO_TOL_REL_GAP 1.0e-8 file

See also
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

Groups
Interior-point method , Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_QO_TOL_DFEAS

Dual feasibility tolerance used by the interior-point optimizer for quadratic problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
mosek -d MSK_DPAR_INTPNT_QO_TOL_DFEAS 1.0e-8 file

See also
MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

Groups
Interior-point method , Termination criteria

99

MSK_DPAR_INTPNT_QO_TOL_INFEAS

Infeasibility tolerance used by the interior-point optimizer for quadratic problems. Controls when
the interior-point optimizer declares the model primal or dual infeasible. A small number means
the optimizer gets more conservative about declaring the model infeasible.

Default
1.0e-12

Accepted
[0.0; 1.0]

Example
mosek -d MSK_DPAR_INTPNT_QO_TOL_INFEAS 1.0e-12 file

Groups
Interior-point method , Termination criteria

MSK_DPAR_INTPNT_QO_TOL_MU_RED

Relative complementarity gap tolerance used by the interior-point optimizer for quadratic problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
mosek -d MSK_DPAR_INTPNT_QO_TOL_MU_RED 1.0e-8 file

Groups
Interior-point method , Termination criteria

MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

Optimality tolerance used by the interior-point optimizer for quadratic problems. If MOSEK
cannot compute a solution that has the prescribed accuracy then it will check if the solution found
satisfies the termination criteria with all tolerances multiplied by the value of this parameter. If
yes, then the solution is also declared optimal.

Default
1000

Accepted
[1.0; +inf]

Example
mosek -d MSK_DPAR_INTPNT_QO_TOL_NEAR_REL 1000 file

Groups
Interior-point method , Termination criteria

MSK_DPAR_INTPNT_QO_TOL_PFEAS

Primal feasibility tolerance used by the interior-point optimizer for quadratic problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
mosek -d MSK_DPAR_INTPNT_QO_TOL_PFEAS 1.0e-8 file

See also
MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

Groups
Interior-point method , Termination criteria

100

MSK_DPAR_INTPNT_QO_TOL_REL_GAP
Relative gap termination tolerance used by the interior-point optimizer for quadratic problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
mosek -d MSK_DPAR_INTPNT_QO_TOL_REL_GAP 1.0e-8 file

See also
MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

Groups
Interior-point method , Termination criteria

MSK_DPAR_INTPNT_TOL_DFEAS
Dual feasibility tolerance used by the interior-point optimizer for linear problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
mosek -d MSK_DPAR_INTPNT_TOL_DFEAS 1.0e-8 file

Groups
Interior-point method , Termination criteria

MSK_DPAR_INTPNT_TOL_DSAFE
Controls the initial dual starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly and/or the constraint or variable bounds are very large, then it might
be worthwhile to increase this value.

Default
1.0

Accepted
[1.0e-4; +inf]

Example
mosek -d MSK_DPAR_INTPNT_TOL_DSAFE 1.0 file

Groups
Interior-point method

MSK_DPAR_INTPNT_TOL_INFEAS
Infeasibility tolerance used by the interior-point optimizer for linear problems. Controls when the
interior-point optimizer declares the model primal or dual infeasible. A small number means the
optimizer gets more conservative about declaring the model infeasible.

Default
1.0e-10

Accepted
[0.0; 1.0]

Example
mosek -d MSK_DPAR_INTPNT_TOL_INFEAS 1.0e-10 file

Groups
Interior-point method , Termination criteria

MSK_DPAR_INTPNT_TOL_MU_RED
Relative complementarity gap tolerance used by the interior-point optimizer for linear problems.

Default
1.0e-16

101

Accepted
[0.0; 1.0]

Example
mosek -d MSK_DPAR_INTPNT_TOL_MU_RED 1.0e-16 file

Groups
Interior-point method , Termination criteria

MSK_DPAR_INTPNT_TOL_PATH
Controls how close the interior-point optimizer follows the central path. A large value of this
parameter means the central path is followed very closely. On numerically unstable problems it
may be worthwhile to increase this parameter.

Default
1.0e-8

Accepted
[0.0; 0.9999]

Example
mosek -d MSK_DPAR_INTPNT_TOL_PATH 1.0e-8 file

Groups
Interior-point method

MSK_DPAR_INTPNT_TOL_PFEAS
Primal feasibility tolerance used by the interior-point optimizer for linear problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
mosek -d MSK_DPAR_INTPNT_TOL_PFEAS 1.0e-8 file

Groups
Interior-point method , Termination criteria

MSK_DPAR_INTPNT_TOL_PSAFE
Controls the initial primal starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly and/or the constraint or variable bounds are very large, then it may be
worthwhile to increase this value.

Default
1.0

Accepted
[1.0e-4; +inf]

Example
mosek -d MSK_DPAR_INTPNT_TOL_PSAFE 1.0 file

Groups
Interior-point method

MSK_DPAR_INTPNT_TOL_REL_GAP
Relative gap termination tolerance used by the interior-point optimizer for linear problems.

Default
1.0e-8

Accepted
[1.0e-14; +inf]

Example
mosek -d MSK_DPAR_INTPNT_TOL_REL_GAP 1.0e-8 file

Groups
Termination criteria, Interior-point method

102

MSK_DPAR_INTPNT_TOL_REL_STEP

Relative step size to the boundary for linear and quadratic optimization problems.

Default
0.9999

Accepted
[1.0e-4; 0.999999]

Example
mosek -d MSK_DPAR_INTPNT_TOL_REL_STEP 0.9999 file

Groups
Interior-point method

MSK_DPAR_INTPNT_TOL_STEP_SIZE

Minimal step size tolerance. If the step size falls below the value of this parameter, then the
interior-point optimizer assumes that it is stalled. In other words the interior-point optimizer does
not make any progress and therefore it is better to stop.

Default
1.0e-6

Accepted
[0.0; 1.0]

Example
mosek -d MSK_DPAR_INTPNT_TOL_STEP_SIZE 1.0e-6 file

Groups
Interior-point method

MSK_DPAR_LOWER_OBJ_CUT

If either a primal or dual feasible solution is found proving that the optimal objective value is
outside the interval [MSK_DPAR_LOWER_OBJ_CUT , MSK_DPAR_UPPER_OBJ_CUT], then MOSEK is
terminated.

Default
-INFINITY

Accepted
[-inf; +inf]

Example
mosek -d MSK_DPAR_LOWER_OBJ_CUT -INFINITY file

See also
MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH

Groups
Termination criteria

MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH

If the lower objective cut is less than the value of this parameter value, then the lower objective
cut i.e. MSK_DPAR_LOWER_OBJ_CUT is treated as −∞.

Default
-0.5e30

Accepted
[-inf; +inf]

Example
mosek -d MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH -0.5e30 file

Groups
Termination criteria

103

MSK_DPAR_MIO_CLIQUE_TABLE_SIZE_FACTOR

Controlls the maximum size of the clique table as a factor of the number of nonzeros in the A
matrix. A negative value implies MOSEK decides.

Default
-1

Accepted
[-1; +inf]

Example
mosek -d MSK_DPAR_MIO_CLIQUE_TABLE_SIZE_FACTOR -1 file

Groups
Mixed-integer optimization

MSK_DPAR_MIO_DJC_MAX_BIGM

Maximum allowed big-M value when reformulating disjunctive constraints to linear constraints.
Higher values make it more likely that a disjunction is reformulated to linear constraints, but also
increase the risk of numerical problems.

Default
1.0e6

Accepted
[0; +inf]

Example
mosek -d MSK_DPAR_MIO_DJC_MAX_BIGM 1.0e6 file

Groups
Mixed-integer optimization

MSK_DPAR_MIO_MAX_TIME

This parameter limits the maximum time spent by the mixed-integer optimizer (in seconds). A
negative number means infinity.

Default
-1.0

Accepted
[-inf; +inf]

Example
mosek -d MSK_DPAR_MIO_MAX_TIME -1.0 file

Groups
Mixed-integer optimization, Termination criteria

MSK_DPAR_MIO_REL_GAP_CONST

This value is used to compute the relative gap for the solution to a mixed-integer optimization
problem.

Default
1.0e-10

Accepted
[1.0e-15; +inf]

Example
mosek -d MSK_DPAR_MIO_REL_GAP_CONST 1.0e-10 file

Groups
Mixed-integer optimization, Termination criteria

MSK_DPAR_MIO_TOL_ABS_GAP

Absolute optimality tolerance employed by the mixed-integer optimizer.

Default
0.0

104

Accepted
[0.0; +inf]

Example
mosek -d MSK_DPAR_MIO_TOL_ABS_GAP 0.0 file

Groups
Mixed-integer optimization

MSK_DPAR_MIO_TOL_ABS_RELAX_INT

Absolute integer feasibility tolerance. If the distance to the nearest integer is less than this tolerance
then an integer constraint is assumed to be satisfied.

Default
1.0e-5

Accepted
[1e-9; +inf]

Example
mosek -d MSK_DPAR_MIO_TOL_ABS_RELAX_INT 1.0e-5 file

Groups
Mixed-integer optimization

MSK_DPAR_MIO_TOL_FEAS

Feasibility tolerance for mixed integer solver.

Default
1.0e-6

Accepted
[1e-9; 1e-3]

Example
mosek -d MSK_DPAR_MIO_TOL_FEAS 1.0e-6 file

Groups
Mixed-integer optimization

MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT

If the relative improvement of the dual bound is smaller than this value, the solver will terminate
the root cut generation. A value of 0.0 means that the value is selected automatically.

Default
0.0

Accepted
[0.0; 1.0]

Example
mosek -d MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT 0.0 file

Groups
Mixed-integer optimization

MSK_DPAR_MIO_TOL_REL_GAP

Relative optimality tolerance employed by the mixed-integer optimizer.

Default
1.0e-4

Accepted
[0.0; +inf]

Example
mosek -d MSK_DPAR_MIO_TOL_REL_GAP 1.0e-4 file

Groups
Mixed-integer optimization, Termination criteria

105

MSK_DPAR_OPTIMIZER_MAX_TICKS

CURRENTLY NOT IN USE.

Maximum amount of ticks the optimizer is allowed to spent on the optimization. A negative number
means infinity.

Default
-1.0

Accepted
[-inf; +inf]

Example
mosek -d MSK_DPAR_OPTIMIZER_MAX_TICKS -1.0 file

Groups
Termination criteria

MSK_DPAR_OPTIMIZER_MAX_TIME

Maximum amount of time the optimizer is allowed to spent on the optimization (in seconds). A
negative number means infinity.

Default
-1.0

Accepted
[-inf; +inf]

Example
mosek -d MSK_DPAR_OPTIMIZER_MAX_TIME -1.0 file

Groups
Termination criteria

MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP

Absolute tolerance employed by the linear dependency checker.

Default
1.0e-6

Accepted
[0.0; +inf]

Example
mosek -d MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP 1.0e-6 file

Groups
Presolve

MSK_DPAR_PRESOLVE_TOL_PRIMAL_INFEAS_PERTURBATION

The presolve is allowed to perturb a bound on a constraint or variable by this amount if it removes
an infeasibility.

Default
1.0e-6

Accepted
[0.0; +inf]

Example
mosek -d MSK_DPAR_PRESOLVE_TOL_PRIMAL_INFEAS_PERTURBATION 1.0e-6 file

Groups
Presolve

MSK_DPAR_PRESOLVE_TOL_REL_LINDEP

Relative tolerance employed by the linear dependency checker.

Default
1.0e-10

106

Accepted
[0.0; +inf]

Example
mosek -d MSK_DPAR_PRESOLVE_TOL_REL_LINDEP 1.0e-10 file

Groups
Presolve

MSK_DPAR_PRESOLVE_TOL_S

Absolute zero tolerance employed for 𝑠𝑖 in the presolve.

Default
1.0e-8

Accepted
[0.0; +inf]

Example
mosek -d MSK_DPAR_PRESOLVE_TOL_S 1.0e-8 file

Groups
Presolve

MSK_DPAR_PRESOLVE_TOL_X

Absolute zero tolerance employed for 𝑥𝑗 in the presolve.

Default
1.0e-8

Accepted
[0.0; +inf]

Example
mosek -d MSK_DPAR_PRESOLVE_TOL_X 1.0e-8 file

Groups
Presolve

MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL

This parameter determines when columns are dropped in incomplete Cholesky factorization during
reformulation of quadratic problems.

Default
1e-15

Accepted
[0; +inf]

Example
mosek -d MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL 1e-15 file

Groups
Interior-point method

MSK_DPAR_SEMIDEFINITE_TOL_APPROX

Tolerance to define a matrix to be positive semidefinite.

Default
1.0e-10

Accepted
[1.0e-15; +inf]

Example
mosek -d MSK_DPAR_SEMIDEFINITE_TOL_APPROX 1.0e-10 file

Groups
Data check

107

MSK_DPAR_SIM_LU_TOL_REL_PIV
Relative pivot tolerance employed when computing the LU factorization of the basis in the simplex
optimizers and in the basis identification procedure. A value closer to 1.0 generally improves
numerical stability but typically also implies an increase in the computational work.

Default
0.01

Accepted
[1.0e-6; 0.999999]

Example
mosek -d MSK_DPAR_SIM_LU_TOL_REL_PIV 0.01 file

Groups
Basis identification, Simplex optimizer

MSK_DPAR_SIM_PRECISION_SCALING_EXTENDED
Experimental. Usage not recommended.

Default
2.0

Accepted
[1.0; +inf]

Example
mosek -d MSK_DPAR_SIM_PRECISION_SCALING_EXTENDED 2.0 file

Groups
Simplex optimizer , Termination criteria

MSK_DPAR_SIM_PRECISION_SCALING_NORMAL
Experimental. Usage not recommended.

Default
1.0

Accepted
[1.0; +inf]

Example
mosek -d MSK_DPAR_SIM_PRECISION_SCALING_NORMAL 1.0 file

Groups
Simplex optimizer , Termination criteria

MSK_DPAR_SIMPLEX_ABS_TOL_PIV
Absolute pivot tolerance employed by the simplex optimizers.

Default
1.0e-7

Accepted
[1.0e-12; +inf]

Example
mosek -d MSK_DPAR_SIMPLEX_ABS_TOL_PIV 1.0e-7 file

Groups
Simplex optimizer

MSK_DPAR_UPPER_OBJ_CUT
If either a primal or dual feasible solution is found proving that the optimal objective value is
outside the interval [MSK_DPAR_LOWER_OBJ_CUT , MSK_DPAR_UPPER_OBJ_CUT], then MOSEK is
terminated.

Default
INFINITY

Accepted
[-inf; +inf]

108

Example
mosek -d MSK_DPAR_UPPER_OBJ_CUT INFINITY file

See also
MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH

Groups
Termination criteria

MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH
If the upper objective cut is greater than the value of this parameter, then the upper objective cut
MSK_DPAR_UPPER_OBJ_CUT is treated as ∞.

Default
0.5e30

Accepted
[-inf; +inf]

Example
mosek -d MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH 0.5e30 file

Groups
Termination criteria

10.2.2 Integer parameters

MSK_IPAR_ANA_SOL_BASIS
Controls whether the basis matrix is analyzed in solution analyzer.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_ANA_SOL_BASIS MSK_ON file

Groups
Analysis

MSK_IPAR_ANA_SOL_PRINT_VIOLATED
A parameter of the problem analyzer. Controls whether a list of violated constraints is printed. All
constraints violated by more than the value set by the parameter MSK_DPAR_ANA_SOL_INFEAS_TOL
will be printed.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_ANA_SOL_PRINT_VIOLATED MSK_OFF file

Groups
Analysis

MSK_IPAR_AUTO_SORT_A_BEFORE_OPT
Controls whether the elements in each column of 𝐴 are sorted before an optimization is performed.
This is not required but makes the optimization more deterministic.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_AUTO_SORT_A_BEFORE_OPT MSK_OFF file

109

Groups
Debugging

MSK_IPAR_AUTO_UPDATE_SOL_INFO

Controls whether the solution information items are automatically updated after an optimization
is performed.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_AUTO_UPDATE_SOL_INFO MSK_OFF file

Groups
Overall system

MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE

If a slack variable is in the basis, then the corresponding column in the basis is a unit vector with
-1 in the right position. However, if this parameter is set to MSK_ON , -1 is replaced by 1.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE MSK_OFF file

Groups
Simplex optimizer

MSK_IPAR_BI_CLEAN_OPTIMIZER

Controls which simplex optimizer is used in the clean-up phase. Anything else
than MSK_OPTIMIZER_PRIMAL_SIMPLEX or MSK_OPTIMIZER_DUAL_SIMPLEX is equivalent to
MSK_OPTIMIZER_FREE_SIMPLEX .

Default
FREE

Accepted
FREE , INTPNT , CONIC , PRIMAL_SIMPLEX , DUAL_SIMPLEX , NEW_PRIMAL_SIMPLEX ,
NEW_DUAL_SIMPLEX , FREE_SIMPLEX , MIXED_INT

Example
mosek -d MSK_IPAR_BI_CLEAN_OPTIMIZER MSK_OPTIMIZER_FREE file

Groups
Basis identification, Overall solver

MSK_IPAR_BI_IGNORE_MAX_ITER

If the parameter MSK_IPAR_INTPNT_BASIS has the value MSK_BI_NO_ERROR and the interior-point
optimizer has terminated due to maximum number of iterations, then basis identification is per-
formed if this parameter has the value MSK_ON .

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_BI_IGNORE_MAX_ITER MSK_OFF file

Groups
Interior-point method , Basis identification

110

MSK_IPAR_BI_IGNORE_NUM_ERROR

If the parameter MSK_IPAR_INTPNT_BASIS has the value MSK_BI_NO_ERROR and the interior-point
optimizer has terminated due to a numerical problem, then basis identification is performed if this
parameter has the value MSK_ON .

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_BI_IGNORE_NUM_ERROR MSK_OFF file

Groups
Interior-point method , Basis identification

MSK_IPAR_BI_MAX_ITERATIONS

Controls the maximum number of simplex iterations allowed to optimize a basis after the basis
identification.

Default
1000000

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_BI_MAX_ITERATIONS 1000000 file

Groups
Basis identification, Termination criteria

MSK_IPAR_CACHE_LICENSE

Specifies if the license is kept checked out for the lifetime of the MOSEK environ-
ment/model/process (MSK_ON) or returned to the server immediately after the optimization
(MSK_OFF).

Check-in and check-out of licenses have an overhead. Frequent communication with the license
server should be avoided.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_CACHE_LICENSE MSK_ON file

Groups
License manager

MSK_IPAR_COMPRESS_STATFILE

Control compression of stat files.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_COMPRESS_STATFILE MSK_ON file

MSK_IPAR_FOLDING_USE

Controls whether and how to use problem folding (symmetry detection for continuous problems).
Note that for symmetry detection for mixed-integer problems one should instead use the parameter
MSK_IPAR_MIO_SYMMETRY_LEVEL .

111

Default
FREE_UNLESS_BASIC

Accepted
OFF , FREE , FREE_UNLESS_BASIC , FORCE

Example
mosek -d MSK_IPAR_FOLDING_USE MSK_FOLDING_MODE_FREE_UNLESS_BASIC file

Groups
Presolve

MSK_IPAR_GETDUAL_CONVERT_LMIS
Whether to perform LMI detection and optimization in the user-level dualizer.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_GETDUAL_CONVERT_LMIS MSK_ON file

MSK_IPAR_HEARTBEAT_SIM_FREQ_TICKS
Controls how frequent the new simplex optimizer calls the user-defined callback function is called.

• −1. Logging is disabled.
• 0. Logging at highest frequency (every iteration).
• ≥ 1. Logging at given frequency measured in ticks.

Default
1000000

Accepted
[-1; +inf]

Example
mosek -d MSK_IPAR_HEARTBEAT_SIM_FREQ_TICKS 1000000 file

Groups
Simplex optimizer , Output information, Logging

MSK_IPAR_INFEAS_GENERIC_NAMES
Controls whether generic names are used when an infeasible subproblem is created.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_INFEAS_GENERIC_NAMES MSK_OFF file

Groups
Infeasibility report

MSK_IPAR_INFEAS_REPORT_AUTO
Controls whether an infeasibility report is automatically produced after the optimization if the
problem is primal or dual infeasible.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_OFF file

Groups
Data input/output , Solution input/output

112

MSK_IPAR_INFEAS_REPORT_LEVEL
Controls the amount of information presented in an infeasibility report. Higher values imply more
information.

Default
1

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_INFEAS_REPORT_LEVEL 1 file

Groups
Infeasibility report , Output information

MSK_IPAR_INTPNT_BASIS
Controls whether the interior-point optimizer also computes an optimal basis.

Default
ALWAYS

Accepted
NEVER , ALWAYS , NO_ERROR , IF_FEASIBLE , RESERVERED

Example
mosek -d MSK_IPAR_INTPNT_BASIS MSK_BI_ALWAYS file

See also
MSK_IPAR_BI_IGNORE_MAX_ITER , MSK_IPAR_BI_IGNORE_NUM_ERROR ,
MSK_IPAR_BI_MAX_ITERATIONS , MSK_IPAR_BI_CLEAN_OPTIMIZER

Groups
Interior-point method , Basis identification

MSK_IPAR_INTPNT_DIFF_STEP
Controls whether different step sizes are allowed in the primal and dual space.

Default
ON

Accepted
• ON : Different step sizes are allowed.
• OFF : Different step sizes are not allowed.

Example
mosek -d MSK_IPAR_INTPNT_DIFF_STEP MSK_ON file

Groups
Interior-point method

MSK_IPAR_INTPNT_HOTSTART
Currently not in use.

Default
NONE

Accepted
NONE , PRIMAL , DUAL , PRIMAL_DUAL

Example
mosek -d MSK_IPAR_INTPNT_HOTSTART MSK_INTPNT_HOTSTART_NONE file

Groups
Interior-point method

MSK_IPAR_INTPNT_MAX_ITERATIONS
Controls the maximum number of iterations allowed in the interior-point optimizer.

Default
400

113

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_INTPNT_MAX_ITERATIONS 400 file

Groups
Interior-point method , Termination criteria

MSK_IPAR_INTPNT_MAX_NUM_COR

Controls the maximum number of correctors allowed by the multiple corrector procedure. A neg-
ative value means that MOSEK is making the choice.

Default
-1

Accepted
[-1; +inf]

Example
mosek -d MSK_IPAR_INTPNT_MAX_NUM_COR -1 file

Groups
Interior-point method

MSK_IPAR_INTPNT_OFF_COL_TRH

Controls how many offending columns are detected in the Jacobian of the constraint matrix.

0 no detection
1 aggressive detection
> 1 higher values mean less aggressive detection

Default
40

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_INTPNT_OFF_COL_TRH 40 file

Groups
Interior-point method

MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS

The GP ordering is dependent on a random seed. Therefore, trying several random seeds may lead
to a better ordering. This parameter controls the number of random seeds tried.

A value of 0 means that MOSEK makes the choice.

Default
0

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS 0 file

Groups
Interior-point method

MSK_IPAR_INTPNT_ORDER_METHOD

Controls the ordering strategy used by the interior-point optimizer when factorizing the Newton
equation system.

Default
FREE

114

Accepted
FREE , APPMINLOC , EXPERIMENTAL , TRY_GRAPHPAR , FORCE_GRAPHPAR , NONE

Example
mosek -d MSK_IPAR_INTPNT_ORDER_METHOD MSK_ORDER_METHOD_FREE file

Groups
Interior-point method

MSK_IPAR_INTPNT_REGULARIZATION_USE

Controls whether regularization is allowed.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_INTPNT_REGULARIZATION_USE MSK_ON file

Groups
Interior-point method

MSK_IPAR_INTPNT_SCALING

Controls how the problem is scaled before the interior-point optimizer is used.

Default
FREE

Accepted
FREE , NONE

Example
mosek -d MSK_IPAR_INTPNT_SCALING MSK_SCALING_FREE file

Groups
Interior-point method

MSK_IPAR_INTPNT_SOLVE_FORM

Controls whether the primal or the dual problem is solved.

Default
FREE

Accepted
FREE , PRIMAL , DUAL

Example
mosek -d MSK_IPAR_INTPNT_SOLVE_FORM MSK_SOLVE_FREE file

Groups
Interior-point method

MSK_IPAR_INTPNT_STARTING_POINT

Starting point used by the interior-point optimizer.

Default
FREE

Accepted
FREE , GUESS , CONSTANT

Example
mosek -d MSK_IPAR_INTPNT_STARTING_POINT MSK_STARTING_POINT_FREE file

Groups
Interior-point method

115

MSK_IPAR_LICENSE_DEBUG

This option is used to turn on debugging of the license manager.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_LICENSE_DEBUG MSK_OFF file

Groups
License manager

MSK_IPAR_LICENSE_PAUSE_TIME

If MSK_IPAR_LICENSE_WAIT is MSK_ON and no license is available, then MOSEK sleeps a number
of milliseconds between each check of whether a license has become free.

Default
100

Accepted
[0; 1000000]

Example
mosek -d MSK_IPAR_LICENSE_PAUSE_TIME 100 file

Groups
License manager

MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS

Controls whether license features expire warnings are suppressed.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS MSK_OFF file

Groups
License manager , Output information

MSK_IPAR_LICENSE_TRH_EXPIRY_WRN

If a license feature expires in a numbers of days less than the value of this parameter then a warning
will be issued.

Default
7

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_LICENSE_TRH_EXPIRY_WRN 7 file

Groups
License manager , Output information

MSK_IPAR_LICENSE_WAIT

If all licenses are in use MOSEK returns with an error code. However, by turning on this parameter
MOSEK will wait for an available license.

Default
OFF

Accepted
ON , OFF

116

Example
mosek -d MSK_IPAR_LICENSE_WAIT MSK_OFF file

Groups
Overall solver , Overall system, License manager

MSK_IPAR_LOG
Controls the amount of log information. The value 0 implies that all log information is suppressed.
A higher level implies that more information is logged.

Please note that if a task is employed to solve a sequence of optimization problems the value of
this parameter is reduced by the value of MSK_IPAR_LOG_CUT_SECOND_OPT for the second and any
subsequent optimizations.

Default
10

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_LOG 10 file

See also
MSK_IPAR_LOG_CUT_SECOND_OPT

Groups
Output information, Logging

MSK_IPAR_LOG_ANA_PRO
Controls amount of output from the problem analyzer.

Default
1

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_LOG_ANA_PRO 1 file

Groups
Analysis, Logging

MSK_IPAR_LOG_BI
Controls the amount of output printed by the basis identification procedure. A higher level implies
that more information is logged.

Default
1

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_LOG_BI 1 file

Groups
Basis identification, Output information, Logging

MSK_IPAR_LOG_BI_FREQ
Controls how frequently the optimizer outputs information about the basis identification and how
frequent the user-defined callback function is called.

Default
2500

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_LOG_BI_FREQ 2500 file

117

Groups
Basis identification, Output information, Logging

MSK_IPAR_LOG_CUT_SECOND_OPT

If a task is employed to solve a sequence of optimization problems, then the value of the log levels
is reduced by the value of this parameter. E.g MSK_IPAR_LOG and MSK_IPAR_LOG_SIM are reduced
by the value of this parameter for the second and any subsequent optimizations.

Default
1

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_LOG_CUT_SECOND_OPT 1 file

See also
MSK_IPAR_LOG , MSK_IPAR_LOG_INTPNT , MSK_IPAR_LOG_MIO , MSK_IPAR_LOG_SIM

Groups
Output information, Logging

MSK_IPAR_LOG_EXPAND

Controls the amount of logging when a data item such as the maximum number constrains is
expanded.

Default
1

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_LOG_EXPAND 1 file

Groups
Output information, Logging

MSK_IPAR_LOG_FEAS_REPAIR

Controls the amount of output printed when performing feasibility repair. A value higher than one
means extensive logging.

Default
1

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_LOG_FEAS_REPAIR 1 file

Groups
Output information, Logging

MSK_IPAR_LOG_FILE

If turned on, then some log info is printed when a file is written or read.

Default
1

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_LOG_FILE 1 file

Groups
Data input/output , Output information, Logging

118

MSK_IPAR_LOG_INCLUDE_SUMMARY
Not relevant for this API.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_LOG_INCLUDE_SUMMARY MSK_OFF file

Groups
Output information, Logging

MSK_IPAR_LOG_INFEAS_ANA
Controls amount of output printed by the infeasibility analyzer procedures. A higher level implies
that more information is logged.

Default
1

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_LOG_INFEAS_ANA 1 file

Groups
Infeasibility report , Output information, Logging

MSK_IPAR_LOG_INTPNT
Controls amount of output printed by the interior-point optimizer. A higher level implies that
more information is logged.

Default
1

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_LOG_INTPNT 1 file

Groups
Interior-point method , Output information, Logging

MSK_IPAR_LOG_LOCAL_INFO
Controls whether local identifying information like environment variables, filenames, IP addresses
etc. are printed to the log.
Note that this will only affect some functions. Some functions that specifically emit system infor-
mation will not be affected.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_LOG_LOCAL_INFO MSK_ON file

Groups
Output information, Logging

MSK_IPAR_LOG_MIO
Controls the log level for the mixed-integer optimizer. A higher level implies that more information
is logged.

Default
4

119

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_LOG_MIO 4 file

Groups
Mixed-integer optimization, Output information, Logging

MSK_IPAR_LOG_MIO_FREQ
Controls how frequent the mixed-integer optimizer prints the log line. It will print line every time
MSK_IPAR_LOG_MIO_FREQ relaxations have been solved.

Default
10

Accepted
[-inf; +inf]

Example
mosek -d MSK_IPAR_LOG_MIO_FREQ 10 file

Groups
Mixed-integer optimization, Output information, Logging

MSK_IPAR_LOG_ORDER
If turned on, then factor lines are added to the log.

Default
1

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_LOG_ORDER 1 file

Groups
Output information, Logging

MSK_IPAR_LOG_PRESOLVE
Controls amount of output printed by the presolve procedure. A higher level implies that more
information is logged.

Default
1

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_LOG_PRESOLVE 1 file

Groups
Logging

MSK_IPAR_LOG_SENSITIVITY
Controls the amount of logging during the sensitivity analysis.

• 0. Means no logging information is produced.

• 1. Timing information is printed.

• 2. Sensitivity results are printed.

Default
1

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_LOG_SENSITIVITY 1 file

120

Groups
Output information, Logging

MSK_IPAR_LOG_SENSITIVITY_OPT
Controls the amount of logging from the optimizers employed during the sensitivity analysis. 0
means no logging information is produced.

Default
0

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_LOG_SENSITIVITY_OPT 0 file

Groups
Output information, Logging

MSK_IPAR_LOG_SIM
Controls amount of output printed by the simplex optimizer. A higher level implies that more
information is logged.

Default
4

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_LOG_SIM 4 file

Groups
Simplex optimizer , Output information, Logging

MSK_IPAR_LOG_SIM_FREQ
Controls how frequent the simplex optimizer outputs information about the optimization and how
frequent the user-defined callback function is called.

Default
1000

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_LOG_SIM_FREQ 1000 file

Groups
Simplex optimizer , Output information, Logging

MSK_IPAR_LOG_SIM_FREQ_GIGA_TICKS
Controls how frequent the new simplex optimizer outputs information about the optimization and
how frequent the user-defined callback function is called.

• −1. Logging is disabled.
• 0. Logging at highest frequency (every iteration).
• ≥ 1. Logging at given frequency measured in giga ticks.

Default
100

Accepted
[-1; +inf]

Example
mosek -d MSK_IPAR_LOG_SIM_FREQ_GIGA_TICKS 100 file

Groups
Simplex optimizer , Output information, Logging

121

MSK_IPAR_LOG_STORAGE

When turned on, MOSEK prints messages regarding the storage usage and allocation.

Default
0

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_LOG_STORAGE 0 file

Groups
Output information, Overall system, Logging

MSK_IPAR_MAX_NUM_WARNINGS

Each warning is shown a limited number of times controlled by this parameter. A negative value
is identical to infinite number of times.

Default
10

Accepted
[-inf; +inf]

Example
mosek -d MSK_IPAR_MAX_NUM_WARNINGS 10 file

Groups
Output information

MSK_IPAR_MIO_BRANCH_DIR

Controls whether the mixed-integer optimizer is branching up or down by default.

Default
FREE

Accepted
FREE , UP , DOWN , NEAR , FAR , ROOT_LP , GUIDED , PSEUDOCOST

Example
mosek -d MSK_IPAR_MIO_BRANCH_DIR MSK_BRANCH_DIR_FREE file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_CONFLICT_ANALYSIS_LEVEL

Controls the amount of conflict analysis employed by the mixed-integer optimizer.

• −1. The optimizer chooses the level of conflict analysis employed

• 0. conflict analysis is disabled

• 1. A lower amount of conflict analysis is employed

• 2. A higher amount of conflict analysis is employed

Default
-1

Accepted
[-1; 2]

Example
mosek -d MSK_IPAR_MIO_CONFLICT_ANALYSIS_LEVEL -1 file

Groups
Mixed-integer optimization

122

MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION
If this option is turned on outer approximation is used when solving relaxations of conic problems;
otherwise interior point is used.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION MSK_OFF file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_CONSTRUCT_SOL
If set to MSK_ON and all integer variables have been given a value for which a feasible mixed integer
solution exists, then MOSEK generates an initial solution to the mixed integer problem by fixing
all integer values and solving the remaining problem.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_MIO_CONSTRUCT_SOL MSK_OFF file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_CROSSOVER_MAX_NODES
Controls the maximum number of nodes allowed in each call to the Crossover heuristic. The default
value of -1 means that the value is determined automatically. A value of zero turns off the heuristic.

Default
-1

Accepted
[-1; +inf]

Example
mosek -d MSK_IPAR_MIO_CROSSOVER_MAX_NODES -1 file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_CUT_CLIQUE
Controls whether clique cuts should be generated.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_MIO_CUT_CLIQUE MSK_ON file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_CUT_CMIR
Controls whether mixed integer rounding cuts should be generated.

Default
ON

Accepted
ON , OFF

123

Example
mosek -d MSK_IPAR_MIO_CUT_CMIR MSK_ON file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_CUT_GMI

Controls whether GMI cuts should be generated.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_MIO_CUT_GMI MSK_ON file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_CUT_IMPLIED_BOUND

Controls whether implied bound cuts should be generated.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_MIO_CUT_IMPLIED_BOUND MSK_ON file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_CUT_KNAPSACK_COVER

Controls whether knapsack cover cuts should be generated.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_MIO_CUT_KNAPSACK_COVER MSK_ON file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_CUT_LIPRO

Controls whether lift-and-project cuts should be generated.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_MIO_CUT_LIPRO MSK_OFF file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_CUT_SELECTION_LEVEL

Controls how aggressively generated cuts are selected to be included in the relaxation.

• −1. The optimizer chooses the level of cut selection

• 0. Generated cuts less likely to be added to the relaxation

124

• 1. Cuts are more aggressively selected to be included in the relaxation

Default
-1

Accepted
[-1; +1]

Example
mosek -d MSK_IPAR_MIO_CUT_SELECTION_LEVEL -1 file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_DATA_PERMUTATION_METHOD
Controls what problem data permutation method is appplied to mixed-integer problems.

Default
NONE

Accepted
NONE , CYCLIC_SHIFT , RANDOM

Example
mosek -d MSK_IPAR_MIO_DATA_PERMUTATION_METHOD
MSK_MIO_DATA_PERMUTATION_METHOD_NONE file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_DUAL_RAY_ANALYSIS_LEVEL
Controls the amount of dual ray analysis employed by the mixed-integer optimizer.

• −1. The optimizer chooses the level of dual ray analysis employed
• 0. Dual ray analysis is disabled
• 1. A lower amount of dual ray analysis is employed
• 2. A higher amount of dual ray analysis is employed

Default
-1

Accepted
[-1; 2]

Example
mosek -d MSK_IPAR_MIO_DUAL_RAY_ANALYSIS_LEVEL -1 file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_FEASPUMP_LEVEL
Controls the way the Feasibility Pump heuristic is employed by the mixed-integer optimizer.

• −1. The optimizer chooses how the Feasibility Pump is used
• 0. The Feasibility Pump is disabled
• 1. The Feasibility Pump is enabled with an effort to improve solution quality
• 2. The Feasibility Pump is enabled with an effort to reach feasibility early

Default
-1

Accepted
[-1; 2]

Example
mosek -d MSK_IPAR_MIO_FEASPUMP_LEVEL -1 file

Groups
Mixed-integer optimization

125

MSK_IPAR_MIO_HEURISTIC_LEVEL
Controls the heuristic employed by the mixed-integer optimizer to locate an initial good integer
feasible solution. A value of zero means the heuristic is not used at all. A larger value than 0 means
that a gradually more sophisticated heuristic is used which is computationally more expensive. A
negative value implies that the optimizer chooses the heuristic. Normally a value around 3 to 5
should be optimal.

Default
-1

Accepted
[-inf; +inf]

Example
mosek -d MSK_IPAR_MIO_HEURISTIC_LEVEL -1 file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_INDEPENDENT_BLOCK_LEVEL
Controls the way the mixed-integer optimizer tries to find and exploit a decomposition of the
problem into independent blocks.

• −1. The optimizer chooses how independent-block structure is handled
• 0. No independent-block structure is detected
• 1. Independent-block structure may be exploited only in presolve
• 2. Independent-block structure may be exploited through a dedicated algorithm after the root

node
• 3. Independent-block structure may be exploited through a dedicated algorithm before the

root node

Default
-1

Accepted
[-1; 3]

Example
mosek -d MSK_IPAR_MIO_INDEPENDENT_BLOCK_LEVEL -1 file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_MAX_NUM_BRANCHES
Maximum number of branches allowed during the branch and bound search. A negative value
means infinite.

Default
-1

Accepted
[-inf; +inf]

Example
mosek -d MSK_IPAR_MIO_MAX_NUM_BRANCHES -1 file

Groups
Mixed-integer optimization, Termination criteria

MSK_IPAR_MIO_MAX_NUM_RELAXS
Maximum number of relaxations allowed during the branch and bound search. A negative value
means infinite.

Default
-1

Accepted
[-inf; +inf]

126

Example
mosek -d MSK_IPAR_MIO_MAX_NUM_RELAXS -1 file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_MAX_NUM_RESTARTS
Maximum number of restarts allowed during the branch and bound search.

Default
10

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_MIO_MAX_NUM_RESTARTS 10 file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS
Maximum number of cut separation rounds at the root node.

Default
100

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS 100 file

Groups
Mixed-integer optimization, Termination criteria

MSK_IPAR_MIO_MAX_NUM_SOLUTIONS
The mixed-integer optimizer can be terminated after a certain number of different feasible solutions
has been located. If this parameter has the value 𝑛 > 0, then the mixed-integer optimizer will be
terminated when 𝑛 feasible solutions have been located.

Default
-1

Accepted
[-inf; +inf]

Example
mosek -d MSK_IPAR_MIO_MAX_NUM_SOLUTIONS -1 file

Groups
Mixed-integer optimization, Termination criteria

MSK_IPAR_MIO_MEMORY_EMPHASIS_LEVEL
Controls how much emphasis is put on reducing memory usage. Being more conservative about
memory usage may come at the cost of decreased solution speed.

• 0. The optimizer chooses
• 1. More emphasis is put on reducing memory usage and less on speed

Default
0

Accepted
[0; +1]

Example
mosek -d MSK_IPAR_MIO_MEMORY_EMPHASIS_LEVEL 0 file

Groups
Mixed-integer optimization

127

MSK_IPAR_MIO_MIN_REL

Number of times a variable must have been branched on for its pseudocost to be considered reliable.

Default
5

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_MIO_MIN_REL 5 file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_MODE

Controls whether the optimizer includes the integer restrictions and disjunctive constraints when
solving a (mixed) integer optimization problem.

Default
SATISFIED

Accepted
IGNORED , SATISFIED

Example
mosek -d MSK_IPAR_MIO_MODE MSK_MIO_MODE_SATISFIED file

Groups
Overall solver

MSK_IPAR_MIO_NODE_OPTIMIZER

Controls which optimizer is employed at the non-root nodes in the mixed-integer optimizer.

Default
FREE

Accepted
FREE , INTPNT , CONIC , PRIMAL_SIMPLEX , DUAL_SIMPLEX , NEW_PRIMAL_SIMPLEX ,
NEW_DUAL_SIMPLEX , FREE_SIMPLEX , MIXED_INT

Example
mosek -d MSK_IPAR_MIO_NODE_OPTIMIZER MSK_OPTIMIZER_FREE file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_NODE_SELECTION

Controls the node selection strategy employed by the mixed-integer optimizer.

Default
FREE

Accepted
FREE , FIRST , BEST , PSEUDO

Example
mosek -d MSK_IPAR_MIO_NODE_SELECTION MSK_MIO_NODE_SELECTION_FREE file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_NUMERICAL_EMPHASIS_LEVEL

Controls how much emphasis is put on reducing numerical problems possibly at the expense of
solution speed.

• 0. The optimizer chooses

• 1. More emphasis is put on reducing numerical problems

• 2. Even more emphasis

128

Default
0

Accepted
[0; +2]

Example
mosek -d MSK_IPAR_MIO_NUMERICAL_EMPHASIS_LEVEL 0 file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_OPT_FACE_MAX_NODES
Controls the maximum number of nodes allowed in each call to the optimal face heuristic. The
default value of -1 means that the value is determined automatically. A value of zero turns off the
heuristic.

Default
-1

Accepted
[-1; +inf]

Example
mosek -d MSK_IPAR_MIO_OPT_FACE_MAX_NODES -1 file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE
Enables or disables perspective reformulation in presolve.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE MSK_ON file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_PRESOLVE_AGGREGATOR_USE
Controls if the aggregator should be used.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_MIO_PRESOLVE_AGGREGATOR_USE MSK_ON file

Groups
Presolve

MSK_IPAR_MIO_PROBING_LEVEL
Controls the amount of probing employed by the mixed-integer optimizer in presolve.

• −1. The optimizer chooses the level of probing employed
• 0. Probing is disabled
• 1. A low amount of probing is employed
• 2. A medium amount of probing is employed
• 3. A high amount of probing is employed

Default
-1

129

Accepted
[-1; 3]

Example
mosek -d MSK_IPAR_MIO_PROBING_LEVEL -1 file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT

Use objective domain propagation.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT MSK_OFF file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_QCQO_REFORMULATION_METHOD

Controls what reformulation method is applied to mixed-integer quadratic problems.

Default
FREE

Accepted
FREE , NONE , LINEARIZATION , EIGEN_VAL_METHOD , DIAG_SDP , RELAX_SDP

Example
mosek -d MSK_IPAR_MIO_QCQO_REFORMULATION_METHOD
MSK_MIO_QCQO_REFORMULATION_METHOD_FREE file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_RENS_MAX_NODES

Controls the maximum number of nodes allowed in each call to the RENS heuristic. The default
value of -1 means that the value is determined automatically. A value of zero turns off the heuristic.

Default
-1

Accepted
[-1; +inf]

Example
mosek -d MSK_IPAR_MIO_RENS_MAX_NODES -1 file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_RINS_MAX_NODES

Controls the maximum number of nodes allowed in each call to the RINS heuristic. The default
value of -1 means that the value is determined automatically. A value of zero turns off the heuristic.

Default
-1

Accepted
[-1; +inf]

Example
mosek -d MSK_IPAR_MIO_RINS_MAX_NODES -1 file

Groups
Mixed-integer optimization

130

MSK_IPAR_MIO_ROOT_OPTIMIZER
Controls which optimizer is employed at the root node in the mixed-integer optimizer.

Default
FREE

Accepted
FREE , INTPNT , CONIC , PRIMAL_SIMPLEX , DUAL_SIMPLEX , NEW_PRIMAL_SIMPLEX ,
NEW_DUAL_SIMPLEX , FREE_SIMPLEX , MIXED_INT

Example
mosek -d MSK_IPAR_MIO_ROOT_OPTIMIZER MSK_OPTIMIZER_FREE file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_SEED
Sets the random seed used for randomization in the mixed integer optimizer. Selecting a different
seed can change the path the optimizer takes to the optimal solution.

Default
42

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_MIO_SEED 42 file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_SYMMETRY_LEVEL
Controls the amount of symmetry detection and handling employed by the mixed-integer optimizer
in presolve.

• −1. The optimizer chooses the level of symmetry detection and handling employed
• 0. Symmetry detection and handling is disabled
• 1. A low amount of symmetry detection and handling is employed
• 2. A medium amount of symmetry detection and handling is employed
• 3. A high amount of symmetry detection and handling is employed
• 4. An extremely high amount of symmetry detection and handling is employed

Default
-1

Accepted
[-1; 4]

Example
mosek -d MSK_IPAR_MIO_SYMMETRY_LEVEL -1 file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_VAR_SELECTION
Controls the variable selection strategy employed by the mixed-integer optimizer.

Default
FREE

Accepted
FREE , PSEUDOCOST , STRONG

Example
mosek -d MSK_IPAR_MIO_VAR_SELECTION MSK_MIO_VAR_SELECTION_FREE file

Groups
Mixed-integer optimization

131

MSK_IPAR_MIO_VB_DETECTION_LEVEL

Controls how much effort is put into detecting variable bounds.

• −1. The optimizer chooses

• 0. No variable bounds are detected

• 1. Only detect variable bounds that are directly represented in the problem

• 2. Detect variable bounds in probing

Default
-1

Accepted
[-1; +2]

Example
mosek -d MSK_IPAR_MIO_VB_DETECTION_LEVEL -1 file

Groups
Mixed-integer optimization

MSK_IPAR_MT_SPINCOUNT

Set the number of iterations to spin before sleeping.

Default
0

Accepted
[0; 1000000000]

Example
mosek -d MSK_IPAR_MT_SPINCOUNT 0 file

Groups
Overall system

MSK_IPAR_NG

Not in use.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_NG MSK_OFF file

MSK_IPAR_NUM_THREADS

Controls the number of threads employed by the optimizer. If set to 0 the number of threads used
will be equal to the number of cores detected on the machine.

Default
0

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_NUM_THREADS 0 file

Groups
Overall system

MSK_IPAR_OPF_WRITE_HEADER

Write a text header with date and MOSEK version in an OPF file.

Default
ON

132

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_OPF_WRITE_HEADER MSK_ON file

Groups
Data input/output

MSK_IPAR_OPF_WRITE_HINTS

Write a hint section with problem dimensions in the beginning of an OPF file.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_OPF_WRITE_HINTS MSK_ON file

Groups
Data input/output

MSK_IPAR_OPF_WRITE_LINE_LENGTH

Aim to keep lines in OPF files not much longer than this.

Default
80

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_OPF_WRITE_LINE_LENGTH 80 file

Groups
Data input/output

MSK_IPAR_OPF_WRITE_PARAMETERS

Write a parameter section in an OPF file.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_OPF_WRITE_PARAMETERS MSK_OFF file

Groups
Data input/output

MSK_IPAR_OPF_WRITE_PROBLEM

Write objective, constraints, bounds etc. to an OPF file.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_OPF_WRITE_PROBLEM MSK_ON file

Groups
Data input/output

133

MSK_IPAR_OPF_WRITE_SOL_BAS
If MSK_IPAR_OPF_WRITE_SOLUTIONS is MSK_ON and a basic solution is defined, include the basic
solution in OPF files.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_OPF_WRITE_SOL_BAS MSK_ON file

Groups
Data input/output

MSK_IPAR_OPF_WRITE_SOL_ITG
If MSK_IPAR_OPF_WRITE_SOLUTIONS is MSK_ON and an integer solution is defined, write the integer
solution in OPF files.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_OPF_WRITE_SOL_ITG MSK_ON file

Groups
Data input/output

MSK_IPAR_OPF_WRITE_SOL_ITR
If MSK_IPAR_OPF_WRITE_SOLUTIONS is MSK_ON and an interior solution is defined, write the interior
solution in OPF files.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_OPF_WRITE_SOL_ITR MSK_ON file

Groups
Data input/output

MSK_IPAR_OPF_WRITE_SOLUTIONS
Enable inclusion of solutions in the OPF files.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_OPF_WRITE_SOLUTIONS MSK_OFF file

Groups
Data input/output

MSK_IPAR_OPTIMIZER
The parameter controls which optimizer is used to optimize the task.

Default
FREE

Accepted
FREE , INTPNT , CONIC , PRIMAL_SIMPLEX , DUAL_SIMPLEX , NEW_PRIMAL_SIMPLEX ,
NEW_DUAL_SIMPLEX , FREE_SIMPLEX , MIXED_INT

134

Example
mosek -d MSK_IPAR_OPTIMIZER MSK_OPTIMIZER_FREE file

Groups
Overall solver

MSK_IPAR_PARAM_READ_CASE_NAME

If turned on, then names in the parameter file are case sensitive.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_PARAM_READ_CASE_NAME MSK_ON file

Groups
Data input/output

MSK_IPAR_PARAM_READ_IGN_ERROR

If turned on, then errors in parameter settings is ignored.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_PARAM_READ_IGN_ERROR MSK_OFF file

Groups
Data input/output

MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL

Controls the maximum amount of fill-in that can be created by one pivot in the elimination phase
of the presolve. A negative value means the parameter value is selected automatically.

Default
-1

Accepted
[-inf; +inf]

Example
mosek -d MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL -1 file

Groups
Presolve

MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES

Control the maximum number of times the eliminator is tried. A negative value implies MOSEK
decides.

Default
-1

Accepted
[-inf; +inf]

Example
mosek -d MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES -1 file

Groups
Presolve

135

MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH

Controls linear dependency check in presolve. The linear dependency check is potentially compu-
tationally expensive.

Default
100

Accepted
[-inf; +inf]

Example
mosek -d MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH 100 file

Groups
Presolve

MSK_IPAR_PRESOLVE_LINDEP_NEW

Controls whether a new experimental linear dependency checker is employed.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_PRESOLVE_LINDEP_NEW MSK_OFF file

Groups
Presolve

MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH

Controls linear dependency check in presolve. The linear dependency check is potentially compu-
tationally expensive.

Default
100

Accepted
[-inf; +inf]

Example
mosek -d MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH 100 file

Groups
Presolve

MSK_IPAR_PRESOLVE_LINDEP_USE

Controls whether the linear constraints are checked for linear dependencies.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_PRESOLVE_LINDEP_USE MSK_ON file

Groups
Presolve

MSK_IPAR_PRESOLVE_MAX_NUM_PASS

Control the maximum number of times presolve passes over the problem. A negative value implies
MOSEK decides.

Default
-1

Accepted
[-inf; +inf]

136

Example
mosek -d MSK_IPAR_PRESOLVE_MAX_NUM_PASS -1 file

Groups
Presolve

MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS

Controls the maximum number of reductions performed by the presolve. The value of the parameter
is normally only changed in connection with debugging. A negative value implies that an infinite
number of reductions are allowed.

Default
-1

Accepted
[-inf; +inf]

Example
mosek -d MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS -1 file

Groups
Overall solver , Presolve

MSK_IPAR_PRESOLVE_USE

Controls whether the presolve is applied to a problem before it is optimized.

Default
FREE

Accepted
OFF , ON , FREE

Example
mosek -d MSK_IPAR_PRESOLVE_USE MSK_PRESOLVE_MODE_FREE file

Groups
Overall solver , Presolve

MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER

Controls which optimizer that is used to find the optimal repair.

Default
FREE

Accepted
FREE , INTPNT , CONIC , PRIMAL_SIMPLEX , DUAL_SIMPLEX , NEW_PRIMAL_SIMPLEX ,
NEW_DUAL_SIMPLEX , FREE_SIMPLEX , MIXED_INT

Example
mosek -d MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER MSK_OPTIMIZER_FREE file

Groups
Overall solver

MSK_IPAR_PTF_WRITE_PARAMETERS

If MSK_IPAR_PTF_WRITE_PARAMETERS is MSK_ON , the parameters section is written.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_PTF_WRITE_PARAMETERS MSK_OFF file

Groups
Data input/output

137

MSK_IPAR_PTF_WRITE_SINGLE_PSD_TERMS

Controls whether PSD terms with a coefficient matrix of just one non-zero are written as a single
term instead of as a matrix term.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_PTF_WRITE_SINGLE_PSD_TERMS MSK_OFF file

Groups
Data input/output

MSK_IPAR_PTF_WRITE_SOLUTIONS

If MSK_IPAR_PTF_WRITE_SOLUTIONS is MSK_ON , the solution section is written if any solutions are
available, otherwise solution section is not written even if solutions are available.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_PTF_WRITE_SOLUTIONS MSK_OFF file

Groups
Data input/output

MSK_IPAR_PTF_WRITE_TRANSFORM

If MSK_IPAR_PTF_WRITE_TRANSFORM is MSK_ON , constraint blocks with identifiable conic slacks are
transformed into conic constraints and the slacks are eliminated.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_PTF_WRITE_TRANSFORM MSK_ON file

Groups
Data input/output

MSK_IPAR_READ_ASYNC

Controls whether files are read using synchronous or asynchronous reader.

Default
OFF

Accepted
• ON : Use asynchronous reader
• OFF : Use synchronous reader

Example
mosek -d MSK_IPAR_READ_ASYNC MSK_OFF file

Groups
Data input/output

MSK_IPAR_READ_DEBUG

Turns on additional debugging information when reading files.

Default
OFF

138

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_READ_DEBUG MSK_OFF file

Groups
Data input/output

MSK_IPAR_READ_KEEP_FREE_CON

Controls whether the free constraints are included in the problem. Applies to MPS files.

Default
OFF

Accepted
• ON : The free constraints are kept.
• OFF : The free constraints are discarded.

Example
mosek -d MSK_IPAR_READ_KEEP_FREE_CON MSK_OFF file

Groups
Data input/output

MSK_IPAR_READ_MPS_FORMAT

Controls how strictly the MPS file reader interprets the MPS format.

Default
FREE

Accepted
STRICT , RELAXED , FREE , CPLEX

Example
mosek -d MSK_IPAR_READ_MPS_FORMAT MSK_MPS_FORMAT_FREE file

Groups
Data input/output

MSK_IPAR_READ_MPS_WIDTH

Controls the maximal number of characters allowed in one line of the MPS file.

Default
1024

Accepted
[80; +inf]

Example
mosek -d MSK_IPAR_READ_MPS_WIDTH 1024 file

Groups
Data input/output

MSK_IPAR_READ_TASK_IGNORE_PARAM

Controls whether MOSEK should ignore the parameter setting defined in the task file and use
the default parameter setting instead.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_READ_TASK_IGNORE_PARAM MSK_OFF file

Groups
Data input/output

139

MSK_IPAR_REMOTE_USE_COMPRESSION
Use compression when sending data to an optimization server.

Default
ZSTD

Accepted
NONE , FREE , GZIP , ZSTD

Example
mosek -d MSK_IPAR_REMOTE_USE_COMPRESSION MSK_COMPRESS_ZSTD file

MSK_IPAR_REMOVE_UNUSED_SOLUTIONS
Removes unused solutions before the optimization is performed.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_REMOVE_UNUSED_SOLUTIONS MSK_OFF file

Groups
Overall system

MSK_IPAR_SENSITIVITY_ALL
Not applicable.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_SENSITIVITY_ALL MSK_OFF file

Groups
Overall solver

MSK_IPAR_SENSITIVITY_TYPE
Controls which type of sensitivity analysis is to be performed.

Default
BASIS

Accepted
BASIS

Example
mosek -d MSK_IPAR_SENSITIVITY_TYPE MSK_SENSITIVITY_TYPE_BASIS file

Groups
Overall solver

MSK_IPAR_SIM_BASIS_FACTOR_USE
Controls whether an LU factorization of the basis is used in a hot-start. Forcing a refactorization
sometimes improves the stability of the simplex optimizers, but in most cases there is a performance
penalty.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_SIM_BASIS_FACTOR_USE MSK_ON file

Groups
Simplex optimizer

140

MSK_IPAR_SIM_DEGEN
Controls how aggressively degeneration is handled.

Default
FREE

Accepted
NONE , FREE , AGGRESSIVE , MODERATE , MINIMUM

Example
mosek -d MSK_IPAR_SIM_DEGEN MSK_SIM_DEGEN_FREE file

Groups
Simplex optimizer

MSK_IPAR_SIM_DETECT_PWL
Not in use.

Default
ON

Accepted
• ON : PWL are detected.
• OFF : PWL are not detected.

Example
mosek -d MSK_IPAR_SIM_DETECT_PWL MSK_ON file

Groups
Simplex optimizer

MSK_IPAR_SIM_DUAL_CRASH
Controls whether crashing is performed in the dual simplex optimizer. If this parameter is set to
𝑥, then a crash will be performed if a basis consists of more than (100− 𝑥) mod 𝑓𝑣 entries, where
𝑓𝑣 is the number of fixed variables.

Default
90

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_SIM_DUAL_CRASH 90 file

Groups
Dual simplex

MSK_IPAR_SIM_DUAL_PHASEONE_METHOD
An experimental feature.

Default
0

Accepted
[0; 10]

Example
mosek -d MSK_IPAR_SIM_DUAL_PHASEONE_METHOD 0 file

Groups
Simplex optimizer

MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION
The dual simplex optimizer can use a so-called restricted selection/pricing strategy to choose the
outgoing variable. Hence, if restricted selection is applied, then the dual simplex optimizer first
choose a subset of all the potential outgoing variables. Next, for some time it will choose the
outgoing variable only among the subset. From time to time the subset is redefined. A larger value
of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e.
a value of 0 implies that the restriction strategy is not applied at all.

141

Default
50

Accepted
[0; 100]

Example
mosek -d MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION 50 file

Groups
Dual simplex

MSK_IPAR_SIM_DUAL_SELECTION
Controls the choice of the incoming variable, known as the selection strategy, in the dual simplex
optimizer.

Default
FREE

Accepted
FREE , FULL , ASE , DEVEX , SE , PARTIAL

Example
mosek -d MSK_IPAR_SIM_DUAL_SELECTION MSK_SIM_SELECTION_FREE file

Groups
Dual simplex

MSK_IPAR_SIM_EXPLOIT_DUPVEC
Controls if the simplex optimizers are allowed to exploit duplicated columns.

Default
OFF

Accepted
ON , OFF , FREE

Example
mosek -d MSK_IPAR_SIM_EXPLOIT_DUPVEC MSK_SIM_EXPLOIT_DUPVEC_OFF file

Groups
Simplex optimizer

MSK_IPAR_SIM_HOTSTART
Controls the type of hot-start that the simplex optimizer perform.

Default
FREE

Accepted
NONE , FREE , STATUS_KEYS

Example
mosek -d MSK_IPAR_SIM_HOTSTART MSK_SIM_HOTSTART_FREE file

Groups
Simplex optimizer

MSK_IPAR_SIM_HOTSTART_LU
Determines if the simplex optimizer should exploit the initial factorization.

Default
ON

Accepted
• ON : Factorization is reused if possible.
• OFF : Factorization is recomputed.

Example
mosek -d MSK_IPAR_SIM_HOTSTART_LU MSK_ON file

Groups
Simplex optimizer

142

MSK_IPAR_SIM_MAX_ITERATIONS

Maximum number of iterations that can be used by a simplex optimizer.

Default
10000000

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_SIM_MAX_ITERATIONS 10000000 file

Groups
Simplex optimizer , Termination criteria

MSK_IPAR_SIM_MAX_NUM_SETBACKS

Controls how many set-backs are allowed within a simplex optimizer. A set-back is an event where
the optimizer moves in the wrong direction. This is impossible in theory but may happen due to
numerical problems.

Default
250

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_SIM_MAX_NUM_SETBACKS 250 file

Groups
Simplex optimizer

MSK_IPAR_SIM_NON_SINGULAR

Controls if the simplex optimizer ensures a non-singular basis, if possible.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_SIM_NON_SINGULAR MSK_ON file

Groups
Simplex optimizer

MSK_IPAR_SIM_PRECISION

Experimental. Usage not recommended.

Default
NORMAL

Accepted
NORMAL , EXTENDED

Example
mosek -d MSK_IPAR_SIM_PRECISION MSK_SIM_PRECISION_NORMAL file

Groups
Overall solver

MSK_IPAR_SIM_PRECISION_BOOST

Controls whether the simplex optimizer is allowed to boost the precision during the computations
if possible.

Default
OFF

Accepted
ON , OFF

143

Example
mosek -d MSK_IPAR_SIM_PRECISION_BOOST MSK_OFF file

Groups
Simplex optimizer

MSK_IPAR_SIM_PRIMAL_CRASH
Controls whether crashing is performed in the primal simplex optimizer. In general, if a basis
consists of more than (100-this parameter value)% fixed variables, then a crash will be performed.

Default
90

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_SIM_PRIMAL_CRASH 90 file

Groups
Primal simplex

MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD
An experimental feature.

Default
0

Accepted
[0; 10]

Example
mosek -d MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD 0 file

Groups
Simplex optimizer

MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION
The primal simplex optimizer can use a so-called restricted selection/pricing strategy to choose
the outgoing variable. Hence, if restricted selection is applied, then the primal simplex optimizer
first choose a subset of all the potential incoming variables. Next, for some time it will choose the
incoming variable only among the subset. From time to time the subset is redefined. A larger value
of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e.
a value of 0 implies that the restriction strategy is not applied at all.

Default
50

Accepted
[0; 100]

Example
mosek -d MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION 50 file

Groups
Primal simplex

MSK_IPAR_SIM_PRIMAL_SELECTION
Controls the choice of the incoming variable, known as the selection strategy, in the primal simplex
optimizer.

Default
FREE

Accepted
FREE , FULL , ASE , DEVEX , SE , PARTIAL

Example
mosek -d MSK_IPAR_SIM_PRIMAL_SELECTION MSK_SIM_SELECTION_FREE file

Groups
Primal simplex

144

MSK_IPAR_SIM_REFACTOR_FREQ

Controls how frequent the basis is refactorized. The value 0 means that the optimizer determines
the best point of refactorization. It is strongly recommended NOT to change this parameter.

Default
0

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_SIM_REFACTOR_FREQ 0 file

Groups
Simplex optimizer

MSK_IPAR_SIM_REFORMULATION

Controls if the simplex optimizers are allowed to reformulate the problem.

Default
OFF

Accepted
ON , OFF , FREE , AGGRESSIVE

Example
mosek -d MSK_IPAR_SIM_REFORMULATION MSK_SIM_REFORMULATION_OFF file

Groups
Simplex optimizer

MSK_IPAR_SIM_SAVE_LU

Controls if the LU factorization stored should be replaced with the LU factorization corresponding
to the initial basis.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_SIM_SAVE_LU MSK_OFF file

Groups
Simplex optimizer

MSK_IPAR_SIM_SCALING

Controls how much effort is used in scaling the problem before a simplex optimizer is used.

Default
FREE

Accepted
FREE , NONE

Example
mosek -d MSK_IPAR_SIM_SCALING MSK_SCALING_FREE file

Groups
Simplex optimizer

MSK_IPAR_SIM_SCALING_METHOD

Controls how the problem is scaled before a simplex optimizer is used.

Default
POW2

Accepted
POW2 , FREE

145

Example
mosek -d MSK_IPAR_SIM_SCALING_METHOD MSK_SCALING_METHOD_POW2 file

Groups
Simplex optimizer

MSK_IPAR_SIM_SEED

Sets the random seed used for randomization in the simplex optimizers.

Default
23456

Accepted
[0; 32749]

Example
mosek -d MSK_IPAR_SIM_SEED 23456 file

Groups
Simplex optimizer

MSK_IPAR_SIM_SOLVE_FORM

Controls whether the primal or the dual problem is solved by the primal-/dual-simplex optimizer.

Default
FREE

Accepted
FREE , PRIMAL , DUAL

Example
mosek -d MSK_IPAR_SIM_SOLVE_FORM MSK_SOLVE_FREE file

Groups
Simplex optimizer

MSK_IPAR_SIM_SWITCH_OPTIMIZER

The simplex optimizer sometimes chooses to solve the dual problem instead of the primal problem.
This implies that if you have chosen to use the dual simplex optimizer and the problem is dualized,
then it actually makes sense to use the primal simplex optimizer instead. If this parameter is on
and the problem is dualized and furthermore the simplex optimizer is chosen to be the primal
(dual) one, then it is switched to the dual (primal).

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_SIM_SWITCH_OPTIMIZER MSK_OFF file

Groups
Simplex optimizer

MSK_IPAR_SOL_FILTER_KEEP_BASIC

If turned on, then basic and super basic constraints and variables are written to the solution file
independent of the filter setting.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_SOL_FILTER_KEEP_BASIC MSK_OFF file

Groups
Solution input/output

146

MSK_IPAR_SOL_READ_NAME_WIDTH
When a solution is read by MOSEK and some constraint, variable or cone names contain blanks,
then a maximum name width much be specified. A negative value implies that no name contain
blanks.

Default
-1

Accepted
[-inf; +inf]

Example
mosek -d MSK_IPAR_SOL_READ_NAME_WIDTH -1 file

Groups
Data input/output , Solution input/output

MSK_IPAR_SOL_READ_WIDTH
Controls the maximal acceptable width of line in the solutions when read by MOSEK.

Default
1024

Accepted
[80; +inf]

Example
mosek -d MSK_IPAR_SOL_READ_WIDTH 1024 file

Groups
Data input/output , Solution input/output

MSK_IPAR_TIMING_LEVEL
Controls the amount of timing performed inside MOSEK.

Default
1

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_TIMING_LEVEL 1 file

Groups
Overall system

MSK_IPAR_WRITE_ASYNC
Controls whether files are read using synchronous or asynchronous writer.

Default
OFF

Accepted
• ON : Use asynchronous writer
• OFF : Use synchronous writer

Example
mosek -d MSK_IPAR_WRITE_ASYNC MSK_OFF file

Groups
Data input/output

MSK_IPAR_WRITE_BAS_CONSTRAINTS
Controls whether the constraint section is written to the basic solution file.

Default
ON

Accepted
ON , OFF

147

Example
mosek -d MSK_IPAR_WRITE_BAS_CONSTRAINTS MSK_ON file

Groups
Data input/output , Solution input/output

MSK_IPAR_WRITE_BAS_HEAD

Controls whether the header section is written to the basic solution file.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_WRITE_BAS_HEAD MSK_ON file

Groups
Data input/output , Solution input/output

MSK_IPAR_WRITE_BAS_VARIABLES

Controls whether the variables section is written to the basic solution file.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_WRITE_BAS_VARIABLES MSK_ON file

Groups
Data input/output , Solution input/output

MSK_IPAR_WRITE_COMPRESSION

Controls whether the data file is compressed while it is written. 0 means no compression while
higher values mean more compression.

Default
9

Accepted
[0; +inf]

Example
mosek -d MSK_IPAR_WRITE_COMPRESSION 9 file

Groups
Data input/output

MSK_IPAR_WRITE_FREE_CON

Controls whether the free constraints are written to the data file. Applies to MPS files.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_WRITE_FREE_CON MSK_ON file

Groups
Data input/output

MSK_IPAR_WRITE_GENERIC_NAMES

Controls whether generic names should be used instead of user-defined names when writing to the
data file.

148

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_WRITE_GENERIC_NAMES MSK_OFF file

Groups
Data input/output

MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS
Controls if the writer ignores incompatible problem items when writing files.

Default
OFF

Accepted
• ON : Ignore items that cannot be written to the current output file format.
• OFF : Produce an error if the problem contains items that cannot the written to

the current output file format.
Example

mosek -d MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS MSK_OFF file
Groups

Data input/output

MSK_IPAR_WRITE_INT_CONSTRAINTS
Controls whether the constraint section is written to the integer solution file.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_WRITE_INT_CONSTRAINTS MSK_ON file

Groups
Data input/output , Solution input/output

MSK_IPAR_WRITE_INT_HEAD
Controls whether the header section is written to the integer solution file.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_WRITE_INT_HEAD MSK_ON file

Groups
Data input/output , Solution input/output

MSK_IPAR_WRITE_INT_VARIABLES
Controls whether the variables section is written to the integer solution file.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_WRITE_INT_VARIABLES MSK_ON file

Groups
Data input/output , Solution input/output

149

MSK_IPAR_WRITE_JSON_INDENTATION

When set, the JSON task and solution files are written with indentation for better readability.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_WRITE_JSON_INDENTATION MSK_OFF file

Groups
Data input/output

MSK_IPAR_WRITE_LP_FULL_OBJ

Write all variables, including the ones with 0-coefficients, in the objective.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_WRITE_LP_FULL_OBJ MSK_ON file

Groups
Data input/output

MSK_IPAR_WRITE_LP_LINE_WIDTH

Maximum width of line in an LP file written by MOSEK.

Default
80

Accepted
[40; +inf]

Example
mosek -d MSK_IPAR_WRITE_LP_LINE_WIDTH 80 file

Groups
Data input/output

MSK_IPAR_WRITE_MPS_FORMAT

Controls in which format the MPS file is written.

Default
FREE

Accepted
STRICT , RELAXED , FREE , CPLEX

Example
mosek -d MSK_IPAR_WRITE_MPS_FORMAT MSK_MPS_FORMAT_FREE file

Groups
Data input/output

MSK_IPAR_WRITE_MPS_INT

Controls if marker records are written to the MPS file to indicate whether variables are integer
restricted.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_WRITE_MPS_INT MSK_ON file

150

Groups
Data input/output

MSK_IPAR_WRITE_SOL_BARVARIABLES

Controls whether the symmetric matrix variables section is written to the solution file.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_WRITE_SOL_BARVARIABLES MSK_ON file

Groups
Data input/output , Solution input/output

MSK_IPAR_WRITE_SOL_CONSTRAINTS

Controls whether the constraint section is written to the solution file.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_WRITE_SOL_CONSTRAINTS MSK_ON file

Groups
Data input/output , Solution input/output

MSK_IPAR_WRITE_SOL_HEAD

Controls whether the header section is written to the solution file.

Default
ON

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_WRITE_SOL_HEAD MSK_ON file

Groups
Data input/output , Solution input/output

MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES

Even if the names are invalid MPS names, then they are employed when writing the solution file.

Default
OFF

Accepted
ON , OFF

Example
mosek -d MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES MSK_OFF file

Groups
Data input/output , Solution input/output

MSK_IPAR_WRITE_SOL_VARIABLES

Controls whether the variables section is written to the solution file.

Default
ON

Accepted
ON , OFF

151

Example
mosek -d MSK_IPAR_WRITE_SOL_VARIABLES MSK_ON file

Groups
Data input/output , Solution input/output

10.2.3 String parameters

MSK_SPAR_BAS_SOL_FILE_NAME

Name of the bas solution file.

Accepted
Any valid file name.

Example
mosek -d MSK_SPAR_BAS_SOL_FILE_NAME somevalue file

Groups
Data input/output , Solution input/output

MSK_SPAR_DATA_FILE_NAME

Data are read and written to this file.

Accepted
Any valid file name.

Example
mosek -d MSK_SPAR_DATA_FILE_NAME somevalue file

Groups
Data input/output

MSK_SPAR_DEBUG_FILE_NAME

MOSEK debug file.

Accepted
Any valid file name.

Example
mosek -d MSK_SPAR_DEBUG_FILE_NAME somevalue file

Groups
Data input/output

MSK_SPAR_INT_SOL_FILE_NAME

Name of the int solution file.

Accepted
Any valid file name.

Example
mosek -d MSK_SPAR_INT_SOL_FILE_NAME somevalue file

Groups
Data input/output , Solution input/output

MSK_SPAR_ITR_SOL_FILE_NAME

Name of the itr solution file.

Accepted
Any valid file name.

Example
mosek -d MSK_SPAR_ITR_SOL_FILE_NAME somevalue file

Groups
Data input/output , Solution input/output

152

MSK_SPAR_MIO_DEBUG_STRING
For internal debugging purposes.

Accepted
Any valid string.

Example
mosek -d MSK_SPAR_MIO_DEBUG_STRING somevalue file

Groups
Data input/output

MSK_SPAR_PARAM_COMMENT_SIGN
Only the first character in this string is used. It is considered as a start of comment sign in the
MOSEK parameter file. Spaces are ignored in the string.

Default
%%

Accepted
Any valid string.

Example
mosek -d MSK_SPAR_PARAM_COMMENT_SIGN %% file

Groups
Data input/output

MSK_SPAR_PARAM_READ_FILE_NAME
Modifications to the parameter database is read from this file.

Accepted
Any valid file name.

Example
mosek -d MSK_SPAR_PARAM_READ_FILE_NAME somevalue file

Groups
Data input/output

MSK_SPAR_PARAM_WRITE_FILE_NAME
The parameter database is written to this file.

Accepted
Any valid file name.

Example
mosek -d MSK_SPAR_PARAM_WRITE_FILE_NAME somevalue file

Groups
Data input/output

MSK_SPAR_READ_MPS_BOU_NAME
Name of the BOUNDS vector used. An empty name means that the first BOUNDS vector is used.

Accepted
Any valid MPS name.

Example
mosek -d MSK_SPAR_READ_MPS_BOU_NAME somevalue file

Groups
Data input/output

MSK_SPAR_READ_MPS_OBJ_NAME
Name of the free constraint used as objective function. An empty name means that the first
constraint is used as objective function.

Accepted
Any valid MPS name.

153

Example
mosek -d MSK_SPAR_READ_MPS_OBJ_NAME somevalue file

Groups
Data input/output

MSK_SPAR_READ_MPS_RAN_NAME

Name of the RANGE vector used. An empty name means that the first RANGE vector is used.

Accepted
Any valid MPS name.

Example
mosek -d MSK_SPAR_READ_MPS_RAN_NAME somevalue file

Groups
Data input/output

MSK_SPAR_READ_MPS_RHS_NAME

Name of the RHS used. An empty name means that the first RHS vector is used.

Accepted
Any valid MPS name.

Example
mosek -d MSK_SPAR_READ_MPS_RHS_NAME somevalue file

Groups
Data input/output

MSK_SPAR_REMOTE_OPTSERVER_HOST

URL of the remote optimization server in the format (http|https)://server:port. If set, all
subsequent calls to any MOSEK function that involves synchronous optimization will be sent to
the specified OptServer instead of being executed locally. Passing empty string deactivates this
redirection.

Accepted
Any valid URL.

Example
mosek -d MSK_SPAR_REMOTE_OPTSERVER_HOST somevalue file

Groups
Overall system

MSK_SPAR_REMOTE_TLS_CERT

List of known server certificates in PEM format.

Accepted
PEM files separated by new-lines.

Example
mosek -d MSK_SPAR_REMOTE_TLS_CERT somevalue file

Groups
Overall system

MSK_SPAR_REMOTE_TLS_CERT_PATH

Path to known server certificates in PEM format.

Accepted
Any valid path.

Example
mosek -d MSK_SPAR_REMOTE_TLS_CERT_PATH somevalue file

Groups
Overall system

154

MSK_SPAR_SENSITIVITY_FILE_NAME

Not applicable.

Accepted
Any valid string.

Example
mosek -d MSK_SPAR_SENSITIVITY_FILE_NAME somevalue file

Groups
Data input/output

MSK_SPAR_SENSITIVITY_RES_FILE_NAME

Not applicable.

Accepted
Any valid string.

Example
mosek -d MSK_SPAR_SENSITIVITY_RES_FILE_NAME somevalue file

Groups
Data input/output

MSK_SPAR_SOL_FILTER_XC_LOW

A filter used to determine which constraints should be listed in the solution file. A value of 0.5 means
that all constraints having xc[i]>0.5 should be listed, whereas +0.5 means that all constraints
having xc[i]>=blc[i]+0.5 should be listed. An empty filter means that no filter is applied.

Accepted
Any valid filter.

Example
mosek -d MSK_SPAR_SOL_FILTER_XC_LOW somevalue file

Groups
Data input/output , Solution input/output

MSK_SPAR_SOL_FILTER_XC_UPR

A filter used to determine which constraints should be listed in the solution file. A value of 0.5
means that all constraints having xc[i]<0.5 should be listed, whereas -0.5 means all constraints
having xc[i]<=buc[i]-0.5 should be listed. An empty filter means that no filter is applied.

Accepted
Any valid filter.

Example
mosek -d MSK_SPAR_SOL_FILTER_XC_UPR somevalue file

Groups
Data input/output , Solution input/output

MSK_SPAR_SOL_FILTER_XX_LOW

A filter used to determine which variables should be listed in the solution file. A value of “0.5” means
that all constraints having xx[j]>=0.5 should be listed, whereas “+0.5” means that all constraints
having xx[j]>=blx[j]+0.5 should be listed. An empty filter means no filter is applied.

Accepted
Any valid filter.

Example
mosek -d MSK_SPAR_SOL_FILTER_XX_LOW somevalue file

Groups
Data input/output , Solution input/output

155

MSK_SPAR_SOL_FILTER_XX_UPR
A filter used to determine which variables should be listed in the solution file. A value of “0.5”
means that all constraints having xx[j]<0.5 should be printed, whereas “-0.5” means all constraints
having xx[j]<=bux[j]-0.5 should be listed. An empty filter means no filter is applied.

Accepted
Any valid file name.

Example
mosek -d MSK_SPAR_SOL_FILTER_XX_UPR somevalue file

Groups
Data input/output , Solution input/output

MSK_SPAR_STAT_KEY
Key used when writing the summary file.

Accepted
Any valid string.

Example
mosek -d MSK_SPAR_STAT_KEY somevalue file

Groups
Data input/output

MSK_SPAR_STAT_NAME
Name used when writing the statistics file.

Accepted
Any valid XML string.

Example
mosek -d MSK_SPAR_STAT_NAME somevalue file

Groups
Data input/output

10.3 Response codes

Response codes include:

• Termination codes

• Warnings

• Errors

The numerical code (in brackets) identifies the response in error messages and in the log output.

10.3.1 Termination

MSK_RES_OK (0)
No error occurred.

MSK_RES_TRM_MAX_ITERATIONS (100000)
The optimizer terminated at the maximum number of iterations.

MSK_RES_TRM_MAX_TIME (100001)
The optimizer terminated at the maximum amount of time.

MSK_RES_TRM_OBJECTIVE_RANGE (100002)
The optimizer terminated with an objective value outside the objective range.

MSK_RES_TRM_MIO_NUM_RELAXS (100008)
The mixed-integer optimizer terminated as the maximum number of relaxations was reached.

MSK_RES_TRM_MIO_NUM_BRANCHES (100009)
The mixed-integer optimizer terminated as the maximum number of branches was reached.

156

MSK_RES_TRM_NUM_MAX_NUM_INT_SOLUTIONS (100015)

The mixed-integer optimizer terminated as the maximum number of feasible solutions was reached.
MSK_RES_TRM_STALL (100006)

The optimizer is terminated due to slow progress.

Stalling means that numerical problems prevent the optimizer from making reasonable progress
and that it makes no sense to continue. In many cases this happens if the problem is badly scaled
or otherwise ill-conditioned. There is no guarantee that the solution will be feasible or optimal.
However, often stalling happens near the optimum, and the returned solution may be of good
quality. Therefore, it is recommended to check the status of the solution. If the solution status is
optimal the solution is most likely good enough for most practical purposes.

Please note that if a linear optimization problem is solved using the interior-point optimizer with
basis identification turned on, the returned basic solution likely to have high accuracy, even though
the optimizer stalled.

Some common causes of stalling are a) badly scaled models, b) near feasible or near infeasible
problems.

MSK_RES_TRM_USER_CALLBACK (100007)

The optimizer terminated due to the return of the user-defined callback function.
MSK_RES_TRM_MAX_NUM_SETBACKS (100020)

The optimizer terminated as the maximum number of set-backs was reached. This indicates serious
numerical problems and a possibly badly formulated problem.

MSK_RES_TRM_NUMERICAL_PROBLEM (100025)

The optimizer terminated due to numerical problems.
MSK_RES_TRM_LOST_RACE (100027)

Lost a race.
MSK_RES_TRM_INTERNAL (100030)

The optimizer terminated due to some internal reason. Please contact MOSEK support.
MSK_RES_TRM_INTERNAL_STOP (100031)

The optimizer terminated for internal reasons. Please contact MOSEK support.
MSK_RES_TRM_SERVER_MAX_TIME (100032)

remote server terminated MOSEK on time limit criteria.
MSK_RES_TRM_SERVER_MAX_MEMORY (100033)

remote server terminated MOSEK on memory limit criteria.

10.3.2 Warnings

MSK_RES_WRN_OPEN_PARAM_FILE (50)

The parameter file could not be opened.
MSK_RES_WRN_LARGE_BOUND (51)

A numerically large bound value is specified.
MSK_RES_WRN_LARGE_LO_BOUND (52)

A numerically large lower bound value is specified.
MSK_RES_WRN_LARGE_UP_BOUND (53)

A numerically large upper bound value is specified.
MSK_RES_WRN_LARGE_CON_FX (54)

An equality constraint is fixed to a numerically large value. This can cause numerical problems.
MSK_RES_WRN_LARGE_CJ (57)

A numerically large value is specified for one 𝑐𝑗 .
MSK_RES_WRN_LARGE_AIJ (62)

A numerically large value is specified for an 𝑎𝑖,𝑗 element in 𝐴. The parameter
MSK_DPAR_DATA_TOL_AIJ_LARGE controls when an 𝑎𝑖,𝑗 is considered large.

MSK_RES_WRN_ZERO_AIJ (63)

One or more zero elements are specified in A.

157

MSK_RES_WRN_NAME_MAX_LEN (65)

A name is longer than the buffer that is supposed to hold it.
MSK_RES_WRN_SPAR_MAX_LEN (66)

A value for a string parameter is longer than the buffer that is supposed to hold it.
MSK_RES_WRN_MPS_SPLIT_RHS_VECTOR (70)

An RHS vector is split into several nonadjacent parts in an MPS file.
MSK_RES_WRN_MPS_SPLIT_RAN_VECTOR (71)

A RANGE vector is split into several nonadjacent parts in an MPS file.
MSK_RES_WRN_MPS_SPLIT_BOU_VECTOR (72)

A BOUNDS vector is split into several nonadjacent parts in an MPS file.
MSK_RES_WRN_LP_OLD_QUAD_FORMAT (80)

Missing ‘/2’ after quadratic expressions in bound or objective.
MSK_RES_WRN_LP_DROP_VARIABLE (85)

Ignored a variable because the variable was not previously defined. Usually this implies that a
variable appears in the bound section but not in the objective or the constraints.

MSK_RES_WRN_NZ_IN_UPR_TRI (200)

Non-zero elements specified in the upper triangle of a matrix were ignored.
MSK_RES_WRN_DROPPED_NZ_QOBJ (201)

One or more non-zero elements were dropped in the Q matrix in the objective.
MSK_RES_WRN_IGNORE_INTEGER (250)

Ignored integer constraints.
MSK_RES_WRN_NO_GLOBAL_OPTIMIZER (251)

No global optimizer is available.
MSK_RES_WRN_MIO_INFEASIBLE_FINAL (270)

The final mixed-integer problem with all the integer variables fixed at their optimal values is
infeasible.

MSK_RES_WRN_SOL_FILTER (300)

Invalid solution filter is specified.
MSK_RES_WRN_UNDEF_SOL_FILE_NAME (350)

Undefined name occurred in a solution.
MSK_RES_WRN_SOL_FILE_IGNORED_CON (351)

One or more lines in the constraint section were ignored when reading a solution file.
MSK_RES_WRN_SOL_FILE_IGNORED_VAR (352)

One or more lines in the variable section were ignored when reading a solution file.
MSK_RES_WRN_TOO_FEW_BASIS_VARS (400)

An incomplete basis has been specified. Too few basis variables are specified.
MSK_RES_WRN_TOO_MANY_BASIS_VARS (405)

A basis with too many variables has been specified.
MSK_RES_WRN_LICENSE_EXPIRE (500)

The license expires.
MSK_RES_WRN_LICENSE_SERVER (501)

The license server is not responding.
MSK_RES_WRN_EMPTY_NAME (502)

A variable or constraint name is empty. The output file may be invalid.
MSK_RES_WRN_USING_GENERIC_NAMES (503)

Generic names are used because a name invalid. For instance when writing an LP file the names
must not contain blanks or start with a digit. Also remeber to give the objective function a name.

MSK_RES_WRN_INVALID_MPS_NAME (504)

A name e.g. a row name is not a valid MPS name.
MSK_RES_WRN_INVALID_MPS_OBJ_NAME (505)

The objective name is not a valid MPS name.

158

MSK_RES_WRN_LICENSE_FEATURE_EXPIRE (509)
The license expires.

MSK_RES_WRN_PARAM_NAME_DOU (510)
The parameter name is not recognized as a double parameter.

MSK_RES_WRN_PARAM_NAME_INT (511)
The parameter name is not recognized as a integer parameter.

MSK_RES_WRN_PARAM_NAME_STR (512)
The parameter name is not recognized as a string parameter.

MSK_RES_WRN_PARAM_STR_VALUE (515)
The string is not recognized as a symbolic value for the parameter.

MSK_RES_WRN_PARAM_IGNORED_CMIO (516)
A parameter was ignored by the conic mixed integer optimizer.

MSK_RES_WRN_ZEROS_IN_SPARSE_ROW (705)
One or more (near) zero elements are specified in a sparse row of a matrix. Since, it is redundant
to specify zero elements then it may indicate an error.

MSK_RES_WRN_ZEROS_IN_SPARSE_COL (710)
One or more (near) zero elements are specified in a sparse column of a matrix. It is redundant to
specify zero elements. Hence, it may indicate an error.

MSK_RES_WRN_INCOMPLETE_LINEAR_DEPENDENCY_CHECK (800)
The linear dependency check(s) is incomplete. Normally this is not an important warning unless
the optimization problem has been formulated with linear dependencies. Linear dependencies may
prevent MOSEK from solving the problem.

MSK_RES_WRN_ELIMINATOR_SPACE (801)
The eliminator is skipped at least once due to lack of space.

MSK_RES_WRN_PRESOLVE_OUTOFSPACE (802)
The presolve is incomplete due to lack of space.

MSK_RES_WRN_PRESOLVE_PRIMAL_PERTURBATIONS (803)
The presolve perturbed the bounds of the primal problem. This is an indication that the problem
is nearly infeasible.

MSK_RES_WRN_WRITE_CHANGED_NAMES (830)
Some names were changed because they were invalid for the output file format.

MSK_RES_WRN_WRITE_DISCARDED_CFIX (831)
The fixed objective term could not be converted to a variable and was discarded in the output file.

MSK_RES_WRN_DUPLICATE_CONSTRAINT_NAMES (850)
Two constraint names are identical.

MSK_RES_WRN_DUPLICATE_VARIABLE_NAMES (851)
Two variable names are identical.

MSK_RES_WRN_DUPLICATE_BARVARIABLE_NAMES (852)
Two barvariable names are identical.

MSK_RES_WRN_DUPLICATE_CONE_NAMES (853)
Two cone names are identical.

MSK_RES_WRN_ANA_LARGE_BOUNDS (900)
This warning is issued by the problem analyzer, if one or more constraint or variable bounds are
very large. One should consider omitting these bounds entirely by setting them to +inf or -inf.

MSK_RES_WRN_ANA_C_ZERO (901)
This warning is issued by the problem analyzer, if the coefficients in the linear part of the objective
are all zero.

MSK_RES_WRN_ANA_EMPTY_COLS (902)
This warning is issued by the problem analyzer, if columns, in which all coefficients are zero, are
found.

MSK_RES_WRN_ANA_CLOSE_BOUNDS (903)
This warning is issued by problem analyzer, if ranged constraints or variables with very close upper
and lower bounds are detected. One should consider treating such constraints as equalities and
such variables as constants.

159

MSK_RES_WRN_ANA_ALMOST_INT_BOUNDS (904)

This warning is issued by the problem analyzer if a constraint is bound nearly integral.
MSK_RES_WRN_NO_INFEASIBILITY_REPORT_WHEN_MATRIX_VARIABLES (930)

An infeasibility report is not available when the problem contains matrix variables.
MSK_RES_WRN_GETDUAL_IGNORES_INTEGRALITY (940)

Dualizer ignores integer variables and disjunctive constraints.
MSK_RES_WRN_NO_DUALIZER (950)

No automatic dualizer is available for the specified problem. The primal problem is solved.
MSK_RES_WRN_SYM_MAT_LARGE (960)

A numerically large value is specified for an 𝑒𝑖,𝑗 element in 𝐸. The parameter
MSK_DPAR_DATA_SYM_MAT_TOL_LARGE controls when an 𝑒𝑖,𝑗 is considered large.

MSK_RES_WRN_MODIFIED_DOUBLE_PARAMETER (970)

A double parameter related to solver tolerances has a non-default value.
MSK_RES_WRN_LARGE_FIJ (980)

A numerically large value is specified for an 𝑓𝑖,𝑗 element in 𝐹 . The parameter
MSK_DPAR_DATA_TOL_AIJ_LARGE controls when an 𝑓𝑖,𝑗 is considered large.

MSK_RES_WRN_PTF_UNKNOWN_SECTION (981)

Unexpected section in PTF file

10.3.3 Errors

MSK_RES_ERR_LICENSE (1000)

Invalid license.
MSK_RES_ERR_LICENSE_EXPIRED (1001)

The license has expired.
MSK_RES_ERR_LICENSE_VERSION (1002)

The license is valid for another version of MOSEK.
MSK_RES_ERR_LICENSE_OLD_SERVER_VERSION (1003)

The version of the FlexLM license server is too old. You should upgrade the license server to one
matching this version of MOSEK. It will support this and all older versions of MOSEK.

This error can appear if the client was updated to a new version which includes an upgrade of the
licensing module, making it incompatible with a much older license server.

MSK_RES_ERR_SIZE_LICENSE (1005)

The problem is bigger than the license.
MSK_RES_ERR_PROB_LICENSE (1006)

The software is not licensed to solve the problem.
MSK_RES_ERR_FILE_LICENSE (1007)

Invalid license file.
MSK_RES_ERR_MISSING_LICENSE_FILE (1008)

MOSEK cannot find license file or a token server. See the MOSEK licensing manual for details.
MSK_RES_ERR_SIZE_LICENSE_CON (1010)

The problem has too many constraints to be solved with the available license.
MSK_RES_ERR_SIZE_LICENSE_VAR (1011)

The problem has too many variables to be solved with the available license.
MSK_RES_ERR_SIZE_LICENSE_INTVAR (1012)

The problem contains too many integer variables to be solved with the available license.
MSK_RES_ERR_OPTIMIZER_LICENSE (1013)

The optimizer required is not licensed.
MSK_RES_ERR_FLEXLM (1014)

The FLEXlm license manager reported an error.
MSK_RES_ERR_LICENSE_SERVER (1015)

The license server is not responding.

160

MSK_RES_ERR_LICENSE_MAX (1016)

Maximum number of licenses is reached.
MSK_RES_ERR_LICENSE_MOSEKLM_DAEMON (1017)

The MOSEKLM license manager daemon is not up and running.
MSK_RES_ERR_LICENSE_FEATURE (1018)

A requested feature is not available in the license file(s). Most likely due to an incorrect license
system setup.

MSK_RES_ERR_PLATFORM_NOT_LICENSED (1019)

A requested license feature is not available for the required platform.
MSK_RES_ERR_LICENSE_CANNOT_ALLOCATE (1020)

The license system cannot allocate the memory required.
MSK_RES_ERR_LICENSE_CANNOT_CONNECT (1021)

MOSEK cannot connect to the license server. Most likely the license server is not up and running.
MSK_RES_ERR_LICENSE_INVALID_HOSTID (1025)

The host ID specified in the license file does not match the host ID of the computer.
MSK_RES_ERR_LICENSE_SERVER_VERSION (1026)

The version specified in the checkout request is greater than the highest version number the daemon
supports.

MSK_RES_ERR_LICENSE_NO_SERVER_SUPPORT (1027)

The license server does not support the requested feature. Possible reasons for this error include:

• The feature has expired.

• The feature’s start date is later than today’s date.

• The version requested is higher than feature’s the highest supported version.

• A corrupted license file.

Try restarting the license and inspect the license server debug file, usually called lmgrd.log.
MSK_RES_ERR_LICENSE_NO_SERVER_LINE (1028)

There is no SERVER line in the license file. All non-zero license count features need at least one
SERVER line.

MSK_RES_ERR_OLDER_DLL (1035)

The dynamic link library is older than the specified version.
MSK_RES_ERR_NEWER_DLL (1036)

The dynamic link library is newer than the specified version.
MSK_RES_ERR_LINK_FILE_DLL (1040)

A file cannot be linked to a stream in the DLL version.
MSK_RES_ERR_THREAD_MUTEX_INIT (1045)

Could not initialize a mutex.
MSK_RES_ERR_THREAD_MUTEX_LOCK (1046)

Could not lock a mutex.
MSK_RES_ERR_THREAD_MUTEX_UNLOCK (1047)

Could not unlock a mutex.
MSK_RES_ERR_THREAD_CREATE (1048)

Could not create a thread. This error may occur if a large number of environments are created
and not deleted again. In any case it is a good practice to minimize the number of environments
created.

MSK_RES_ERR_THREAD_COND_INIT (1049)

Could not initialize a condition.
MSK_RES_ERR_UNKNOWN (1050)

Unknown error.
MSK_RES_ERR_SPACE (1051)

Out of space.

161

MSK_RES_ERR_FILE_OPEN (1052)

Error while opening a file.
MSK_RES_ERR_FILE_READ (1053)

File read error.
MSK_RES_ERR_FILE_WRITE (1054)

File write error.
MSK_RES_ERR_DATA_FILE_EXT (1055)

The data file format cannot be determined from the file name.
MSK_RES_ERR_INVALID_FILE_NAME (1056)

An invalid file name has been specified.
MSK_RES_ERR_INVALID_SOL_FILE_NAME (1057)

An invalid file name has been specified.
MSK_RES_ERR_END_OF_FILE (1059)

End of file has been reached unexpectedly.
MSK_RES_ERR_NULL_ENV (1060)

env is a NULL pointer.
MSK_RES_ERR_NULL_TASK (1061)

task is a NULL pointer.
MSK_RES_ERR_INVALID_STREAM (1062)

An invalid stream is referenced.
MSK_RES_ERR_NO_INIT_ENV (1063)

env is not initialized.
MSK_RES_ERR_INVALID_TASK (1064)

The task is invalid.
MSK_RES_ERR_NULL_POINTER (1065)

An argument to a function is unexpectedly a NULL pointer.
MSK_RES_ERR_LIVING_TASKS (1066)

All tasks associated with an enviroment must be deleted before the environment is deleted. There
are still some undeleted tasks.

MSK_RES_ERR_READ_GZIP (1067)

Error encountered in GZIP stream.
MSK_RES_ERR_READ_ZSTD (1068)

Error encountered in ZSTD stream.
MSK_RES_ERR_READ_ASYNC (1069)

Error encountered in async stream.
MSK_RES_ERR_BLANK_NAME (1070)

An all blank name has been specified.
MSK_RES_ERR_DUP_NAME (1071)

The same name was used multiple times for the same problem item type.
MSK_RES_ERR_FORMAT_STRING (1072)

The name format string is invalid.
MSK_RES_ERR_SPARSITY_SPECIFICATION (1073)

The sparsity included an index that was out of bounds of the shape.
MSK_RES_ERR_MISMATCHING_DIMENSION (1074)

Mismatching dimensions specified in arguments
MSK_RES_ERR_INVALID_OBJ_NAME (1075)

An invalid objective name is specified.
MSK_RES_ERR_INVALID_CON_NAME (1076)

An invalid constraint name is used.
MSK_RES_ERR_INVALID_VAR_NAME (1077)

An invalid variable name is used.

162

MSK_RES_ERR_INVALID_CONE_NAME (1078)

An invalid cone name is used.
MSK_RES_ERR_INVALID_BARVAR_NAME (1079)

An invalid symmetric matrix variable name is used.
MSK_RES_ERR_SPACE_LEAKING (1080)

MOSEK is leaking memory. This can be due to either an incorrect use of MOSEK or a bug.
MSK_RES_ERR_SPACE_NO_INFO (1081)

No available information about the space usage.
MSK_RES_ERR_DIMENSION_SPECIFICATION (1082)

Invalid dimension specification
MSK_RES_ERR_AXIS_NAME_SPECIFICATION (1083)

Invalid axis names specification
MSK_RES_ERR_READ_PREMATURE_EOF (1089)

Encountered premature end-of-file in input stream.
MSK_RES_ERR_READ_FORMAT (1090)

The specified format cannot be read.
MSK_RES_ERR_WRITE_LP_INVALID_VAR_NAMES (1091)

Invalid variable name. Cannot write valid LP file.
MSK_RES_ERR_WRITE_LP_DUPLICATE_VAR_NAMES (1092)

Duplicate variable names. Cannot write valid LP file.
MSK_RES_ERR_WRITE_LP_INVALID_CON_NAMES (1093)

Invalid constraint name. Cannot write valid LP file.
MSK_RES_ERR_WRITE_LP_DUPLICATE_CON_NAMES (1094)

Duplicate constraint names. Cannot write valid LP file.
MSK_RES_ERR_MPS_FILE (1100)

An error occurred while reading an MPS file.
MSK_RES_ERR_MPS_INV_FIELD (1101)

A field in the MPS file is invalid. Probably it is too wide.
MSK_RES_ERR_MPS_INV_MARKER (1102)

An invalid marker has been specified in the MPS file.
MSK_RES_ERR_MPS_NULL_CON_NAME (1103)

An empty constraint name is used in an MPS file.
MSK_RES_ERR_MPS_NULL_VAR_NAME (1104)

An empty variable name is used in an MPS file.
MSK_RES_ERR_MPS_UNDEF_CON_NAME (1105)

An undefined constraint name occurred in an MPS file.
MSK_RES_ERR_MPS_UNDEF_VAR_NAME (1106)

An undefined variable name occurred in an MPS file.
MSK_RES_ERR_MPS_INVALID_CON_KEY (1107)

An invalid constraint key occurred in an MPS file.
MSK_RES_ERR_MPS_INVALID_BOUND_KEY (1108)

An invalid bound key occurred in an MPS file.
MSK_RES_ERR_MPS_INVALID_SEC_NAME (1109)

An invalid section name occurred in an MPS file.
MSK_RES_ERR_MPS_NO_OBJECTIVE (1110)

No objective is defined in an MPS file.
MSK_RES_ERR_MPS_SPLITTED_VAR (1111)

All elements in a column of the 𝐴 matrix must be specified consecutively. Hence, it is illegal to
specify non-zero elements in 𝐴 for variable 1, then for variable 2 and then variable 1 again.

MSK_RES_ERR_MPS_MUL_CON_NAME (1112)

A constraint name was specified multiple times in the ROWS section.

163

MSK_RES_ERR_MPS_MUL_QSEC (1113)
Multiple QSECTIONs are specified for a constraint in the MPS data file.

MSK_RES_ERR_MPS_MUL_QOBJ (1114)
The Q term in the objective is specified multiple times in the MPS data file.

MSK_RES_ERR_MPS_INV_SEC_ORDER (1115)
The sections in the MPS data file are not in the correct order.

MSK_RES_ERR_MPS_MUL_CSEC (1116)
Multiple CSECTIONs are given the same name.

MSK_RES_ERR_MPS_CONE_TYPE (1117)
Invalid cone type specified in a CSECTION.

MSK_RES_ERR_MPS_CONE_OVERLAP (1118)
A variable is specified to be a member of several cones.

MSK_RES_ERR_MPS_CONE_REPEAT (1119)
A variable is repeated within the CSECTION.

MSK_RES_ERR_MPS_NON_SYMMETRIC_Q (1120)
A non symmetric matrix has been speciefied.

MSK_RES_ERR_MPS_DUPLICATE_Q_ELEMENT (1121)
Duplicate elements is specfied in a 𝑄 matrix.

MSK_RES_ERR_MPS_INVALID_OBJSENSE (1122)
An invalid objective sense is specified.

MSK_RES_ERR_MPS_TAB_IN_FIELD2 (1125)
A tab char occurred in field 2.

MSK_RES_ERR_MPS_TAB_IN_FIELD3 (1126)
A tab char occurred in field 3.

MSK_RES_ERR_MPS_TAB_IN_FIELD5 (1127)
A tab char occurred in field 5.

MSK_RES_ERR_MPS_INVALID_OBJ_NAME (1128)
An invalid objective name is specified.

MSK_RES_ERR_MPS_INVALID_KEY (1129)
An invalid indicator key occurred in an MPS file.

MSK_RES_ERR_MPS_INVALID_INDICATOR_CONSTRAINT (1130)
An invalid indicator constraint is used. It must not be a ranged constraint.

MSK_RES_ERR_MPS_INVALID_INDICATOR_VARIABLE (1131)
An invalid indicator variable is specfied. It must be a binary variable.

MSK_RES_ERR_MPS_INVALID_INDICATOR_VALUE (1132)
An invalid indicator value is specfied. It must be either 0 or 1.

MSK_RES_ERR_MPS_INVALID_INDICATOR_QUADRATIC_CONSTRAINT (1133)
A quadratic constraint can be be an indicator constraint.

MSK_RES_ERR_OPF_SYNTAX (1134)
Syntax error in an OPF file

MSK_RES_ERR_OPF_PREMATURE_EOF (1136)
Premature end of file in an OPF file.

MSK_RES_ERR_OPF_MISMATCHED_TAG (1137)
Mismatched end-tag in OPF file

MSK_RES_ERR_OPF_DUPLICATE_BOUND (1138)
Either upper or lower bound was specified twice in OPF file

MSK_RES_ERR_OPF_DUPLICATE_CONSTRAINT_NAME (1139)
Duplicate constraint name in OPF File

MSK_RES_ERR_OPF_INVALID_CONE_TYPE (1140)
Invalid cone type in OPF File

MSK_RES_ERR_OPF_INCORRECT_TAG_PARAM (1141)
Invalid number of parameters in start-tag in OPF File

164

MSK_RES_ERR_OPF_INVALID_TAG (1142)

Invalid start-tag in OPF File
MSK_RES_ERR_OPF_DUPLICATE_CONE_ENTRY (1143)

Same variable appears in multiple cones in OPF File
MSK_RES_ERR_OPF_TOO_LARGE (1144)

The problem is too large to be correctly loaded
MSK_RES_ERR_OPF_DUAL_INTEGER_SOLUTION (1146)

Dual solution values are not allowed in OPF File
MSK_RES_ERR_LP_EMPTY (1151)

The problem cannot be written to an LP formatted file.
MSK_RES_ERR_WRITE_MPS_INVALID_NAME (1153)

An invalid name is created while writing an MPS file. Usually this will make the MPS file unread-
able.

MSK_RES_ERR_LP_INVALID_VAR_NAME (1154)

A variable name is invalid when used in an LP formatted file.
MSK_RES_ERR_WRITE_OPF_INVALID_VAR_NAME (1156)

Empty variable names cannot be written to OPF files.
MSK_RES_ERR_LP_FILE_FORMAT (1157)

Syntax error in an LP file.
MSK_RES_ERR_LP_EXPECTED_NUMBER (1158)

Expected a number in LP file
MSK_RES_ERR_READ_LP_MISSING_END_TAG (1159)

Syntax error in LP file. Possibly missing End tag.
MSK_RES_ERR_LP_INDICATOR_VAR (1160)

An indicator variable was not declared binary
MSK_RES_ERR_LP_EXPECTED_OBJECTIVE (1161)

Expected an objective section in LP file
MSK_RES_ERR_LP_EXPECTED_CONSTRAINT_RELATION (1162)

Expected constraint relation
MSK_RES_ERR_LP_AMBIGUOUS_CONSTRAINT_BOUND (1163)

Constraint has ambiguous or invalid bound
MSK_RES_ERR_LP_DUPLICATE_SECTION (1164)

Duplicate section
MSK_RES_ERR_READ_LP_DELAYED_ROWS_NOT_SUPPORTED (1165)

Duplicate section
MSK_RES_ERR_WRITING_FILE (1166)

An error occurred while writing file
MSK_RES_ERR_WRITE_ASYNC (1167)

An error occurred while performing asynchronous writing
MSK_RES_ERR_INVALID_NAME_IN_SOL_FILE (1170)

An invalid name occurred in a solution file.
MSK_RES_ERR_JSON_SYNTAX (1175)

Syntax error in an JSON data
MSK_RES_ERR_JSON_STRING (1176)

Error in JSON string.
MSK_RES_ERR_JSON_NUMBER_OVERFLOW (1177)

Invalid number entry - wrong type or value overflow.
MSK_RES_ERR_JSON_FORMAT (1178)

Error in an JSON Task file
MSK_RES_ERR_JSON_DATA (1179)

Inconsistent data in JSON Task file

165

MSK_RES_ERR_JSON_MISSING_DATA (1180)
Missing data section in JSON task file.

MSK_RES_ERR_PTF_INCOMPATIBILITY (1181)
Incompatible item

MSK_RES_ERR_PTF_UNDEFINED_ITEM (1182)
Undefined symbol referenced

MSK_RES_ERR_PTF_INCONSISTENCY (1183)
Inconsistent size of item

MSK_RES_ERR_PTF_FORMAT (1184)
Syntax error in an PTF file

MSK_RES_ERR_ARGUMENT_LENNEQ (1197)
Incorrect length of arguments.

MSK_RES_ERR_ARGUMENT_TYPE (1198)
Incorrect argument type.

MSK_RES_ERR_NUM_ARGUMENTS (1199)
Incorrect number of function arguments.

MSK_RES_ERR_IN_ARGUMENT (1200)
A function argument is incorrect.

MSK_RES_ERR_ARGUMENT_DIMENSION (1201)
A function argument is of incorrect dimension.

MSK_RES_ERR_SHAPE_IS_TOO_LARGE (1202)
The size of the n-dimensional shape is too large.

MSK_RES_ERR_INDEX_IS_TOO_SMALL (1203)
An index in an argument is too small.

MSK_RES_ERR_INDEX_IS_TOO_LARGE (1204)
An index in an argument is too large.

MSK_RES_ERR_INDEX_IS_NOT_UNIQUE (1205)
An index in an argument is not unique.

MSK_RES_ERR_PARAM_NAME (1206)
The parameter name is not correct.

MSK_RES_ERR_PARAM_NAME_DOU (1207)
The parameter name is not correct for a double parameter.

MSK_RES_ERR_PARAM_NAME_INT (1208)
The parameter name is not correct for an integer parameter.

MSK_RES_ERR_PARAM_NAME_STR (1209)
The parameter name is not correct for a string parameter.

MSK_RES_ERR_PARAM_INDEX (1210)
Parameter index is out of range.

MSK_RES_ERR_PARAM_IS_TOO_LARGE (1215)
The parameter value is too large.

MSK_RES_ERR_PARAM_IS_TOO_SMALL (1216)
The parameter value is too small.

MSK_RES_ERR_PARAM_VALUE_STR (1217)
The parameter value string is incorrect.

MSK_RES_ERR_PARAM_TYPE (1218)
The parameter type is invalid.

MSK_RES_ERR_INF_DOU_INDEX (1219)
A double information index is out of range for the specified type.

MSK_RES_ERR_INF_INT_INDEX (1220)
An integer information index is out of range for the specified type.

MSK_RES_ERR_INDEX_ARR_IS_TOO_SMALL (1221)
An index in an array argument is too small.

166

MSK_RES_ERR_INDEX_ARR_IS_TOO_LARGE (1222)
An index in an array argument is too large.

MSK_RES_ERR_INF_LINT_INDEX (1225)
A long integer information index is out of range for the specified type.

MSK_RES_ERR_ARG_IS_TOO_SMALL (1226)
The value of a argument is too small.

MSK_RES_ERR_ARG_IS_TOO_LARGE (1227)
The value of a argument is too large.

MSK_RES_ERR_INVALID_WHICHSOL (1228)
whichsol is invalid.

MSK_RES_ERR_INF_DOU_NAME (1230)
A double information name is invalid.

MSK_RES_ERR_INF_INT_NAME (1231)
An integer information name is invalid.

MSK_RES_ERR_INF_TYPE (1232)
The information type is invalid.

MSK_RES_ERR_INF_LINT_NAME (1234)
A long integer information name is invalid.

MSK_RES_ERR_INDEX (1235)
An index is out of range.

MSK_RES_ERR_WHICHSOL (1236)
The solution defined by whichsol does not exists.

MSK_RES_ERR_SOLITEM (1237)
The solution item number solitem is invalid. Please note that MSK_SOL_ITEM_SNX is invalid for
the basic solution.

MSK_RES_ERR_WHICHITEM_NOT_ALLOWED (1238)
whichitem is unacceptable.

MSK_RES_ERR_MAXNUMCON (1240)
The maximum number of constraints specified is smaller than the number of constraints in the
task.

MSK_RES_ERR_MAXNUMVAR (1241)
The maximum number of variables specified is smaller than the number of variables in the task.

MSK_RES_ERR_MAXNUMBARVAR (1242)
The maximum number of semidefinite variables specified is smaller than the number of semidefinite
variables in the task.

MSK_RES_ERR_MAXNUMQNZ (1243)
The maximum number of non-zeros specified for the 𝑄 matrices is smaller than the number of
non-zeros in the current 𝑄 matrices.

MSK_RES_ERR_TOO_SMALL_MAX_NUM_NZ (1245)
The maximum number of non-zeros specified is too small.

MSK_RES_ERR_INVALID_IDX (1246)
A specified index is invalid.

MSK_RES_ERR_INVALID_MAX_NUM (1247)
A specified index is invalid.

MSK_RES_ERR_UNALLOWED_WHICHSOL (1248)
The value od whichsol is not allowed.

MSK_RES_ERR_NUMCONLIM (1250)
Maximum number of constraints limit is exceeded.

MSK_RES_ERR_NUMVARLIM (1251)
Maximum number of variables limit is exceeded.

MSK_RES_ERR_TOO_SMALL_MAXNUMANZ (1252)
The maximum number of non-zeros specified for 𝐴 is smaller than the number of non-zeros in the
current 𝐴.

167

MSK_RES_ERR_INV_APTRE (1253)

aptre[j] is strictly smaller than aptrb[j] for some j.
MSK_RES_ERR_MUL_A_ELEMENT (1254)

An element in 𝐴 is defined multiple times.
MSK_RES_ERR_INV_BK (1255)

Invalid bound key.
MSK_RES_ERR_INV_BKC (1256)

Invalid bound key is specified for a constraint.
MSK_RES_ERR_INV_BKX (1257)

An invalid bound key is specified for a variable.
MSK_RES_ERR_INV_VAR_TYPE (1258)

An invalid variable type is specified for a variable.
MSK_RES_ERR_SOLVER_PROBTYPE (1259)

Problem type does not match the chosen optimizer.
MSK_RES_ERR_OBJECTIVE_RANGE (1260)

Empty objective range.
MSK_RES_ERR_INV_RESCODE (1261)

Invalid response code.
MSK_RES_ERR_INV_IINF (1262)

Invalid integer information item.
MSK_RES_ERR_INV_LIINF (1263)

Invalid long integer information item.
MSK_RES_ERR_INV_DINF (1264)

Invalid double information item.
MSK_RES_ERR_BASIS (1266)

An invalid basis is specified. Either too many or too few basis variables are specified.
MSK_RES_ERR_INV_SKC (1267)

Invalid value in skc.
MSK_RES_ERR_INV_SKX (1268)

Invalid value in skx.
MSK_RES_ERR_INV_SKN (1274)

Invalid value in skn.
MSK_RES_ERR_INV_SK_STR (1269)

Invalid status key string encountered.
MSK_RES_ERR_INV_SK (1270)

Invalid status key code.
MSK_RES_ERR_INV_CONE_TYPE_STR (1271)

Invalid cone type string encountered.
MSK_RES_ERR_INV_CONE_TYPE (1272)

Invalid cone type code is encountered.
MSK_RES_ERR_INVALID_SURPLUS (1275)

Invalid surplus.
MSK_RES_ERR_INV_NAME_ITEM (1280)

An invalid name item code is used.
MSK_RES_ERR_PRO_ITEM (1281)

An invalid problem is used.
MSK_RES_ERR_INVALID_FORMAT_TYPE (1283)

Invalid format type.
MSK_RES_ERR_FIRSTI (1285)

Invalid firsti.
MSK_RES_ERR_LASTI (1286)

Invalid lasti.

168

MSK_RES_ERR_FIRSTJ (1287)

Invalid firstj.
MSK_RES_ERR_LASTJ (1288)

Invalid lastj.
MSK_RES_ERR_MAX_LEN_IS_TOO_SMALL (1289)

A maximum length that is too small has been specified.
MSK_RES_ERR_NONLINEAR_EQUALITY (1290)

The model contains a nonlinear equality which defines a nonconvex set.
MSK_RES_ERR_NONCONVEX (1291)

The optimization problem is nonconvex.
MSK_RES_ERR_NONLINEAR_RANGED (1292)

Nonlinear constraints with finite lower and upper bound always define a nonconvex feasible set.
MSK_RES_ERR_CON_Q_NOT_PSD (1293)

The quadratic constraint matrix is not positive semidefinite as expected for a constraint with finite
upper bound. This results in a nonconvex problem.

MSK_RES_ERR_CON_Q_NOT_NSD (1294)

The quadratic constraint matrix is not negative semidefinite as expected for a constraint with finite
lower bound. This results in a nonconvex problem.

MSK_RES_ERR_OBJ_Q_NOT_PSD (1295)

The quadratic coefficient matrix in the objective is not positive semidefinite as expected for a
minimization problem.

MSK_RES_ERR_OBJ_Q_NOT_NSD (1296)

The quadratic coefficient matrix in the objective is not negative semidefinite as expected for a
maximization problem.

MSK_RES_ERR_ARGUMENT_PERM_ARRAY (1299)

An invalid permutation array is specified.
MSK_RES_ERR_CONE_INDEX (1300)

An index of a non-existing cone has been specified.
MSK_RES_ERR_CONE_SIZE (1301)

A cone with incorrect number of members is specified.
MSK_RES_ERR_CONE_OVERLAP (1302)

One or more of the variables in the cone to be added is already member of another cone. Now
assume the variable is 𝑥𝑗 then add a new variable say 𝑥𝑘 and the constraint

𝑥𝑗 = 𝑥𝑘

and then let 𝑥𝑘 be member of the cone to be appended.
MSK_RES_ERR_CONE_REP_VAR (1303)

A variable is included multiple times in the cone.
MSK_RES_ERR_MAXNUMCONE (1304)

The value specified for maxnumcone is too small.
MSK_RES_ERR_CONE_TYPE (1305)

Invalid cone type specified.
MSK_RES_ERR_CONE_TYPE_STR (1306)

Invalid cone type specified.
MSK_RES_ERR_CONE_OVERLAP_APPEND (1307)

The cone to be appended has one variable which is already member of another cone.
MSK_RES_ERR_REMOVE_CONE_VARIABLE (1310)

A variable cannot be removed because it will make a cone invalid.
MSK_RES_ERR_APPENDING_TOO_BIG_CONE (1311)

Trying to append a too big cone.
MSK_RES_ERR_CONE_PARAMETER (1320)

An invalid cone parameter.

169

MSK_RES_ERR_SOL_FILE_INVALID_NUMBER (1350)

An invalid number is specified in a solution file.
MSK_RES_ERR_HUGE_C (1375)

A huge value in absolute size is specified for one 𝑐𝑗 .
MSK_RES_ERR_HUGE_AIJ (1380)

A numerically huge value is specified for an 𝑎𝑖,𝑗 element in 𝐴. The parameter
MSK_DPAR_DATA_TOL_AIJ_HUGE controls when an 𝑎𝑖,𝑗 is considered huge.

MSK_RES_ERR_DUPLICATE_AIJ (1385)

An element in the A matrix is specified twice.
MSK_RES_ERR_LOWER_BOUND_IS_A_NAN (1390)

The lower bound specified is not a number (nan).
MSK_RES_ERR_UPPER_BOUND_IS_A_NAN (1391)

The upper bound specified is not a number (nan).
MSK_RES_ERR_INFINITE_BOUND (1400)

A numerically huge bound value is specified.
MSK_RES_ERR_INV_QOBJ_SUBI (1401)

Invalid value in qosubi.
MSK_RES_ERR_INV_QOBJ_SUBJ (1402)

Invalid value in qosubj.
MSK_RES_ERR_INV_QOBJ_VAL (1403)

Invalid value in qoval.
MSK_RES_ERR_INV_QCON_SUBK (1404)

Invalid value in qcsubk.
MSK_RES_ERR_INV_QCON_SUBI (1405)

Invalid value in qcsubi.
MSK_RES_ERR_INV_QCON_SUBJ (1406)

Invalid value in qcsubj.
MSK_RES_ERR_INV_QCON_VAL (1407)

Invalid value in qcval.
MSK_RES_ERR_QCON_SUBI_TOO_SMALL (1408)

Invalid value in qcsubi.
MSK_RES_ERR_QCON_SUBI_TOO_LARGE (1409)

Invalid value in qcsubi.
MSK_RES_ERR_QOBJ_UPPER_TRIANGLE (1415)

An element in the upper triangle of 𝑄𝑜 is specified. Only elements in the lower triangle should be
specified.

MSK_RES_ERR_QCON_UPPER_TRIANGLE (1417)

An element in the upper triangle of a 𝑄𝑘 is specified. Only elements in the lower triangle should
be specified.

MSK_RES_ERR_FIXED_BOUND_VALUES (1420)

A fixed constraint/variable has been specified using the bound keys but the numerical value of the
lower and upper bound is different.

MSK_RES_ERR_TOO_SMALL_A_TRUNCATION_VALUE (1421)

A too small value for the A trucation value is specified.
MSK_RES_ERR_INVALID_OBJECTIVE_SENSE (1445)

An invalid objective sense is specified.
MSK_RES_ERR_UNDEFINED_OBJECTIVE_SENSE (1446)

The objective sense has not been specified before the optimization.
MSK_RES_ERR_Y_IS_UNDEFINED (1449)

The solution item 𝑦 is undefined.
MSK_RES_ERR_NAN_IN_DOUBLE_DATA (1450)

An invalid floating point value was used in some double data.

170

MSK_RES_ERR_INF_IN_DOUBLE_DATA (1451)

An infinite floating point value was used in some double data.
MSK_RES_ERR_NAN_IN_BLC (1461)

𝑙𝑐 contains an invalid floating point value, i.e. a NaN or Inf.
MSK_RES_ERR_NAN_IN_BUC (1462)

𝑢𝑐 contains an invalid floating point value, i.e. a NaN of Inf.
MSK_RES_ERR_INVALID_CFIX (1469)

An invalid fixed term in the objective is speficied.
MSK_RES_ERR_NAN_IN_C (1470)

𝑐 contains an invalid floating point value, i.e. a NaN or Inf.
MSK_RES_ERR_NAN_IN_BLX (1471)

𝑙𝑥 contains an invalid floating point value, i.e. a NaN or Inf.
MSK_RES_ERR_NAN_IN_BUX (1472)

𝑢𝑥 contains an invalid floating point value, i.e. a NaN or Inf.
MSK_RES_ERR_INVALID_AIJ (1473)

𝑎𝑖,𝑗 contains an invalid floating point value, i.e. a NaN or an infinite value.
MSK_RES_ERR_INVALID_CJ (1474)

𝑐𝑗 contains an invalid floating point value, i.e. a NaN or an infinite value.
MSK_RES_ERR_SYM_MAT_INVALID (1480)

A symmetric matrix contains an invalid floating point value, i.e. a NaN or an infinite value.
MSK_RES_ERR_SYM_MAT_HUGE (1482)

A symmetric matrix contains a huge value in absolute size. The parameter
MSK_DPAR_DATA_SYM_MAT_TOL_HUGE controls when an 𝑒𝑖,𝑗 is considered huge.

MSK_RES_ERR_INV_PROBLEM (1500)

Invalid problem type. Probably a nonconvex problem has been specified.
MSK_RES_ERR_MIXED_CONIC_AND_NL (1501)

The problem contains nonlinear terms conic constraints. The requested operation cannot be applied
to this type of problem.

MSK_RES_ERR_GLOBAL_INV_CONIC_PROBLEM (1503)

The global optimizer can only be applied to problems without semidefinite variables.
MSK_RES_ERR_INV_OPTIMIZER (1550)

An invalid optimizer has been chosen for the problem.
MSK_RES_ERR_MIO_NO_OPTIMIZER (1551)

No optimizer is available for the current class of integer optimization problems.
MSK_RES_ERR_NO_OPTIMIZER_VAR_TYPE (1552)

No optimizer is available for this class of optimization problems.
MSK_RES_ERR_FINAL_SOLUTION (1560)

An error occurred during the solution finalization.
MSK_RES_ERR_FIRST (1570)

Invalid first.
MSK_RES_ERR_LAST (1571)

Invalid index last. A given index was out of expected range.
MSK_RES_ERR_SLICE_SIZE (1572)

Invalid slice size specified.
MSK_RES_ERR_NEGATIVE_SURPLUS (1573)

Negative surplus.
MSK_RES_ERR_NEGATIVE_APPEND (1578)

Cannot append a negative number.
MSK_RES_ERR_POSTSOLVE (1580)

An error occurred during the postsolve. Please contact MOSEK support.
MSK_RES_ERR_OVERFLOW (1590)

A computation produced an overflow i.e. a very large number.

171

MSK_RES_ERR_NO_BASIS_SOL (1600)

No basic solution is defined.
MSK_RES_ERR_BASIS_FACTOR (1610)

The factorization of the basis is invalid.
MSK_RES_ERR_BASIS_SINGULAR (1615)

The basis is singular and hence cannot be factored.
MSK_RES_ERR_FACTOR (1650)

An error occurred while factorizing a matrix.
MSK_RES_ERR_FEASREPAIR_CANNOT_RELAX (1700)

An optimization problem cannot be relaxed.
MSK_RES_ERR_FEASREPAIR_SOLVING_RELAXED (1701)

The relaxed problem could not be solved to optimality. Please consult the log file for further details.
MSK_RES_ERR_FEASREPAIR_INCONSISTENT_BOUND (1702)

The upper bound is less than the lower bound for a variable or a constraint. Please correct this
before running the feasibility repair.

MSK_RES_ERR_REPAIR_INVALID_PROBLEM (1710)

The feasibility repair does not support the specified problem type.
MSK_RES_ERR_REPAIR_OPTIMIZATION_FAILED (1711)

Computation the optimal relaxation failed. The cause may have been numerical problems.
MSK_RES_ERR_NAME_MAX_LEN (1750)

A name is longer than the buffer that is supposed to hold it.
MSK_RES_ERR_NAME_IS_NULL (1760)

The name buffer is a NULL pointer.
MSK_RES_ERR_INVALID_COMPRESSION (1800)

Invalid compression type.
MSK_RES_ERR_INVALID_IOMODE (1801)

Invalid io mode.
MSK_RES_ERR_NO_PRIMAL_INFEAS_CER (2000)

A certificate of primal infeasibility is not available.
MSK_RES_ERR_NO_DUAL_INFEAS_CER (2001)

A certificate of infeasibility is not available.
MSK_RES_ERR_NO_SOLUTION_IN_CALLBACK (2500)

The required solution is not available.
MSK_RES_ERR_INV_MARKI (2501)

Invalid value in marki.
MSK_RES_ERR_INV_MARKJ (2502)

Invalid value in markj.
MSK_RES_ERR_INV_NUMI (2503)

Invalid numi.
MSK_RES_ERR_INV_NUMJ (2504)

Invalid numj.
MSK_RES_ERR_TASK_INCOMPATIBLE (2560)

The Task file is incompatible with this platform. This results from reading a file on a 32 bit
platform generated on a 64 bit platform.

MSK_RES_ERR_TASK_INVALID (2561)

The Task file is invalid.
MSK_RES_ERR_TASK_WRITE (2562)

Failed to write the task file.
MSK_RES_ERR_READ_WRITE (2563)

Failed to read or write due to an I/O error.
MSK_RES_ERR_TASK_PREMATURE_EOF (2564)

The Task file ended prematurely.

172

MSK_RES_ERR_LU_MAX_NUM_TRIES (2800)

Could not compute the LU factors of the matrix within the maximum number of allowed tries.
MSK_RES_ERR_INVALID_UTF8 (2900)

An invalid UTF8 string is encountered.
MSK_RES_ERR_INVALID_WCHAR (2901)

An invalid wchar string is encountered.
MSK_RES_ERR_NO_DUAL_FOR_ITG_SOL (2950)

No dual information is available for the integer solution.
MSK_RES_ERR_NO_SNX_FOR_BAS_SOL (2953)

𝑠𝑥𝑛 is not available for the basis solution.
MSK_RES_ERR_INTERNAL (3000)

An internal error occurred. Please report this problem.
MSK_RES_ERR_API_ARRAY_TOO_SMALL (3001)

An input array was too short.
MSK_RES_ERR_API_CB_CONNECT (3002)

Failed to connect a callback object.
MSK_RES_ERR_API_FATAL_ERROR (3005)

An internal error occurred in the API. Please report this problem.
MSK_RES_ERR_API_INTERNAL (3999)

An internal fatal error occurred in an interface function.
MSK_RES_ERR_SEN_FORMAT (3050)

Syntax error in sensitivity analysis file.
MSK_RES_ERR_SEN_UNDEF_NAME (3051)

An undefined name was encountered in the sensitivity analysis file.
MSK_RES_ERR_SEN_INDEX_RANGE (3052)

Index out of range in the sensitivity analysis file.
MSK_RES_ERR_SEN_BOUND_INVALID_UP (3053)

Analysis of upper bound requested for an index, where no upper bound exists.
MSK_RES_ERR_SEN_BOUND_INVALID_LO (3054)

Analysis of lower bound requested for an index, where no lower bound exists.
MSK_RES_ERR_SEN_INDEX_INVALID (3055)

Invalid range given in the sensitivity file.
MSK_RES_ERR_SEN_INVALID_REGEXP (3056)

Syntax error in regexp or regexp longer than 1024.
MSK_RES_ERR_SEN_SOLUTION_STATUS (3057)

No optimal solution found to the original problem given for sensitivity analysis.
MSK_RES_ERR_SEN_NUMERICAL (3058)

Numerical difficulties encountered performing the sensitivity analysis.
MSK_RES_ERR_SEN_UNHANDLED_PROBLEM_TYPE (3080)

Sensitivity analysis cannot be performed for the specified problem. Sensitivity analysis is only
possible for linear problems.

MSK_RES_ERR_UNB_STEP_SIZE (3100)

A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes
unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen
only if the problem is badly formulated. Please contact MOSEK support if this error occurs.

MSK_RES_ERR_IDENTICAL_TASKS (3101)

Some tasks related to this function call were identical. Unique tasks were expected.
MSK_RES_ERR_AD_INVALID_CODELIST (3102)

The code list data was invalid.
MSK_RES_ERR_INTERNAL_TEST_FAILED (3500)

An internal unit test function failed.

173

MSK_RES_ERR_INT64_TO_INT32_CAST (3800)

A 64 bit integer could not be cast to a 32 bit integer.
MSK_RES_ERR_INFEAS_UNDEFINED (3910)

The requested value is not defined for this solution type.
MSK_RES_ERR_NO_BARX_FOR_SOLUTION (3915)

There is no 𝑋 available for the solution specified. In particular note there are no 𝑋 defined for the
basic and integer solutions.

MSK_RES_ERR_NO_BARS_FOR_SOLUTION (3916)

There is no 𝑠 available for the solution specified. In particular note there are no 𝑠 defined for the
basic and integer solutions.

MSK_RES_ERR_BAR_VAR_DIM (3920)

The dimension of a symmetric matrix variable has to be greater than 0.
MSK_RES_ERR_SYM_MAT_INVALID_ROW_INDEX (3940)

A row index specified for sparse symmetric matrix is invalid.
MSK_RES_ERR_SYM_MAT_INVALID_COL_INDEX (3941)

A column index specified for sparse symmetric matrix is invalid.
MSK_RES_ERR_SYM_MAT_NOT_LOWER_TRINGULAR (3942)

Only the lower triangular part of sparse symmetric matrix should be specified.
MSK_RES_ERR_SYM_MAT_INVALID_VALUE (3943)

The numerical value specified in a sparse symmetric matrix is not a floating point value.
MSK_RES_ERR_SYM_MAT_DUPLICATE (3944)

A value in a symmetric matric as been specified more than once.
MSK_RES_ERR_INVALID_SYM_MAT_DIM (3950)

A sparse symmetric matrix of invalid dimension is specified.
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_SYM_MAT (4000)

The file format does not support a problem with symmetric matrix variables.
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_CFIX (4001)

The file format does not support a problem with nonzero fixed term in c.
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_RANGED_CONSTRAINTS (4002)

The file format does not support a problem with ranged constraints.
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_FREE_CONSTRAINTS (4003)

The file format does not support a problem with free constraints.
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_CONES (4005)

The file format does not support a problem with the simple cones (deprecated).
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_QUADRATIC_TERMS (4006)

The file format does not support a problem with quadratic terms.
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_NONLINEAR (4010)

The file format does not support a problem with nonlinear terms.
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_DISJUNCTIVE_CONSTRAINTS (4011)

The file format does not support a problem with disjunctive constraints.
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_AFFINE_CONIC_CONSTRAINTS (4012)

The file format does not support a problem with affine conic constraints.
MSK_RES_ERR_DUPLICATE_CONSTRAINT_NAMES (4500)

Two constraint names are identical.
MSK_RES_ERR_DUPLICATE_VARIABLE_NAMES (4501)

Two variable names are identical.
MSK_RES_ERR_DUPLICATE_BARVARIABLE_NAMES (4502)

Two barvariable names are identical.
MSK_RES_ERR_DUPLICATE_CONE_NAMES (4503)

Two cone names are identical.
MSK_RES_ERR_DUPLICATE_DOMAIN_NAMES (4504)

Two domain names are identical.

174

MSK_RES_ERR_DUPLICATE_DJC_NAMES (4505)

Two disjunctive constraint names are identical.
MSK_RES_ERR_NON_UNIQUE_ARRAY (5000)

An array does not contain unique elements.
MSK_RES_ERR_ARGUMENT_IS_TOO_SMALL (5004)

The value of a function argument is too small.
MSK_RES_ERR_ARGUMENT_IS_TOO_LARGE (5005)

The value of a function argument is too large.
MSK_RES_ERR_MIO_INTERNAL (5010)

A fatal error occurred in the mixed integer optimizer. Please contact MOSEK support.
MSK_RES_ERR_INVALID_PROBLEM_TYPE (6000)

An invalid problem type.
MSK_RES_ERR_UNHANDLED_SOLUTION_STATUS (6010)

Unhandled solution status.
MSK_RES_ERR_UPPER_TRIANGLE (6020)

An element in the upper triangle of a lower triangular matrix is specified.
MSK_RES_ERR_LAU_SINGULAR_MATRIX (7000)

A matrix is singular.
MSK_RES_ERR_LAU_NOT_POSITIVE_DEFINITE (7001)

A matrix is not positive definite.
MSK_RES_ERR_LAU_INVALID_LOWER_TRIANGULAR_MATRIX (7002)

An invalid lower triangular matrix.
MSK_RES_ERR_LAU_UNKNOWN (7005)

An unknown error.
MSK_RES_ERR_LAU_ARG_M (7010)

Invalid argument m.
MSK_RES_ERR_LAU_ARG_N (7011)

Invalid argument n.
MSK_RES_ERR_LAU_ARG_K (7012)

Invalid argument k.
MSK_RES_ERR_LAU_ARG_TRANSA (7015)

Invalid argument transa.
MSK_RES_ERR_LAU_ARG_TRANSB (7016)

Invalid argument transb.
MSK_RES_ERR_LAU_ARG_UPLO (7017)

Invalid argument uplo.
MSK_RES_ERR_LAU_ARG_TRANS (7018)

Invalid argument trans.
MSK_RES_ERR_LAU_INVALID_SPARSE_SYMMETRIC_MATRIX (7019)

An invalid sparse symmetric matrix is specfified. Note only the lower triangular part with no
duplicates is specifed.

MSK_RES_ERR_CBF_PARSE (7100)

An error occurred while parsing an CBF file.
MSK_RES_ERR_CBF_OBJ_SENSE (7101)

An invalid objective sense is specified.
MSK_RES_ERR_CBF_NO_VARIABLES (7102)

No variables are specified.
MSK_RES_ERR_CBF_TOO_MANY_CONSTRAINTS (7103)

Too many constraints specified.
MSK_RES_ERR_CBF_TOO_MANY_VARIABLES (7104)

Too many variables specified.

175

MSK_RES_ERR_CBF_NO_VERSION_SPECIFIED (7105)
No version specified.

MSK_RES_ERR_CBF_SYNTAX (7106)
Invalid syntax.

MSK_RES_ERR_CBF_DUPLICATE_OBJ (7107)
Duplicate OBJ keyword.

MSK_RES_ERR_CBF_DUPLICATE_CON (7108)
Duplicate CON keyword.

MSK_RES_ERR_CBF_DUPLICATE_VAR (7110)
Duplicate VAR keyword.

MSK_RES_ERR_CBF_DUPLICATE_INT (7111)
Duplicate INT keyword.

MSK_RES_ERR_CBF_INVALID_VAR_TYPE (7112)
Invalid variable type.

MSK_RES_ERR_CBF_INVALID_CON_TYPE (7113)
Invalid constraint type.

MSK_RES_ERR_CBF_INVALID_DOMAIN_DIMENSION (7114)
Invalid domain dimension.

MSK_RES_ERR_CBF_DUPLICATE_OBJACOORD (7115)
Duplicate index in OBJCOORD.

MSK_RES_ERR_CBF_DUPLICATE_BCOORD (7116)
Duplicate index in BCOORD.

MSK_RES_ERR_CBF_DUPLICATE_ACOORD (7117)
Duplicate index in ACOORD.

MSK_RES_ERR_CBF_TOO_FEW_VARIABLES (7118)
Too few variables defined.

MSK_RES_ERR_CBF_TOO_FEW_CONSTRAINTS (7119)
Too few constraints defined.

MSK_RES_ERR_CBF_TOO_FEW_INTS (7120)
Too few ints are specified.

MSK_RES_ERR_CBF_TOO_MANY_INTS (7121)
Too many ints are specified.

MSK_RES_ERR_CBF_INVALID_INT_INDEX (7122)
Invalid INT index.

MSK_RES_ERR_CBF_UNSUPPORTED (7123)
Unsupported feature is present.

MSK_RES_ERR_CBF_DUPLICATE_PSDVAR (7124)
Duplicate PSDVAR keyword.

MSK_RES_ERR_CBF_INVALID_PSDVAR_DIMENSION (7125)
Invalid PSDVAR dimension.

MSK_RES_ERR_CBF_TOO_FEW_PSDVAR (7126)
Too few variables defined.

MSK_RES_ERR_CBF_INVALID_EXP_DIMENSION (7127)
Invalid dimension of a exponential cone.

MSK_RES_ERR_CBF_DUPLICATE_POW_CONES (7130)
Multiple POWCONES specified.

MSK_RES_ERR_CBF_DUPLICATE_POW_STAR_CONES (7131)
Multiple POW*CONES specified.

MSK_RES_ERR_CBF_INVALID_POWER (7132)
Invalid power specified.

MSK_RES_ERR_CBF_POWER_CONE_IS_TOO_LONG (7133)
Power cone is too long.

176

MSK_RES_ERR_CBF_INVALID_POWER_CONE_INDEX (7134)
Invalid power cone index.

MSK_RES_ERR_CBF_INVALID_POWER_STAR_CONE_INDEX (7135)
Invalid power star cone index.

MSK_RES_ERR_CBF_UNHANDLED_POWER_CONE_TYPE (7136)
An unhandled power cone type.

MSK_RES_ERR_CBF_UNHANDLED_POWER_STAR_CONE_TYPE (7137)
An unhandled power star cone type.

MSK_RES_ERR_CBF_POWER_CONE_MISMATCH (7138)
The power cone does not match with it definition.

MSK_RES_ERR_CBF_POWER_STAR_CONE_MISMATCH (7139)
The power star cone does not match with it definition.

MSK_RES_ERR_CBF_INVALID_NUMBER_OF_CONES (7140)
Invalid number of cones.

MSK_RES_ERR_CBF_INVALID_DIMENSION_OF_CONES (7141)
Invalid number of cones.

MSK_RES_ERR_CBF_INVALID_NUM_OBJACOORD (7150)
Invalid number of OBJACOORD.

MSK_RES_ERR_CBF_INVALID_NUM_OBJFCOORD (7151)
Invalid number of OBJFCOORD.

MSK_RES_ERR_CBF_INVALID_NUM_ACOORD (7152)
Invalid number of ACOORD.

MSK_RES_ERR_CBF_INVALID_NUM_BCOORD (7153)
Invalid number of BCOORD.

MSK_RES_ERR_CBF_INVALID_NUM_FCOORD (7155)
Invalid number of FCOORD.

MSK_RES_ERR_CBF_INVALID_NUM_HCOORD (7156)
Invalid number of HCOORD.

MSK_RES_ERR_CBF_INVALID_NUM_DCOORD (7157)
Invalid number of DCOORD.

MSK_RES_ERR_CBF_EXPECTED_A_KEYWORD (7158)
Expected a key word.

MSK_RES_ERR_CBF_INVALID_NUM_PSDCON (7200)
Invalid number of PSDCON.

MSK_RES_ERR_CBF_DUPLICATE_PSDCON (7201)
Duplicate CON keyword.

MSK_RES_ERR_CBF_INVALID_DIMENSION_OF_PSDCON (7202)
Invalid PSDCON dimension.

MSK_RES_ERR_CBF_INVALID_PSDCON_INDEX (7203)
Invalid PSDCON index.

MSK_RES_ERR_CBF_INVALID_PSDCON_VARIABLE_INDEX (7204)
Invalid PSDCON index.

MSK_RES_ERR_CBF_INVALID_PSDCON_BLOCK_INDEX (7205)
Invalid PSDCON index.

MSK_RES_ERR_CBF_UNSUPPORTED_CHANGE (7210)
The CHANGE section is not supported.

MSK_RES_ERR_MIO_INVALID_ROOT_OPTIMIZER (7700)
An invalid root optimizer was selected for the problem type.

MSK_RES_ERR_MIO_INVALID_NODE_OPTIMIZER (7701)
An invalid node optimizer was selected for the problem type.

MSK_RES_ERR_MPS_WRITE_CPLEX_INVALID_CONE_TYPE (7750)
An invalid cone type occurs when writing a CPLEX formatted MPS file.

177

MSK_RES_ERR_TOCONIC_CONSTR_Q_NOT_PSD (7800)
The matrix defining the quadratric part of constraint is not positive semidefinite.

MSK_RES_ERR_TOCONIC_CONSTRAINT_FX (7801)
The quadratic constraint is an equality, thus not convex.

MSK_RES_ERR_TOCONIC_CONSTRAINT_RA (7802)
The quadratic constraint has finite lower and upper bound, and therefore it is not convex.

MSK_RES_ERR_TOCONIC_CONSTR_NOT_CONIC (7803)
The constraint is not conic representable.

MSK_RES_ERR_TOCONIC_OBJECTIVE_NOT_PSD (7804)
The matrix defining the quadratric part of the objective function is not positive semidefinite.

MSK_RES_ERR_GETDUAL_NOT_AVAILABLE (7820)
The simple dualizer is not available for this problem class.

MSK_RES_ERR_SERVER_CONNECT (8000)
Failed to connect to remote solver server. The server string or the port string were invalid, or the
server did not accept connection.

MSK_RES_ERR_SERVER_PROTOCOL (8001)
Unexpected message or data from solver server.

MSK_RES_ERR_SERVER_STATUS (8002)
Server returned non-ok HTTP status code

MSK_RES_ERR_SERVER_TOKEN (8003)
The job ID specified is incorrect or invalid

MSK_RES_ERR_SERVER_ADDRESS (8004)
Invalid address string

MSK_RES_ERR_SERVER_CERTIFICATE (8005)
Invalid TLS certificate format or path

MSK_RES_ERR_SERVER_TLS_CLIENT (8006)
Failed to create TLS cleint

MSK_RES_ERR_SERVER_ACCESS_TOKEN (8007)
Invalid access token

MSK_RES_ERR_SERVER_PROBLEM_SIZE (8008)
The size of the problem exceeds the dimensions permitted by the instance of the OptServer where
it was run.

MSK_RES_ERR_SERVER_HARD_TIMEOUT (8009)
The hard timeout limit was reached on solver server, and the solver process was killed

MSK_RES_ERR_DUPLICATE_INDEX_IN_A_SPARSE_MATRIX (20050)
An element in a sparse matrix is specified twice.

MSK_RES_ERR_DUPLICATE_INDEX_IN_AFEIDX_LIST (20060)
An index is specified twice in an affine expression list.

MSK_RES_ERR_DUPLICATE_FIJ (20100)
An element in the F matrix is specified twice.

MSK_RES_ERR_INVALID_FIJ (20101)
𝑓𝑖,𝑗 contains an invalid floating point value, i.e. a NaN or an infinite value.

MSK_RES_ERR_HUGE_FIJ (20102)
A numerically huge value is specified for an 𝑓𝑖,𝑗 element in 𝐹 . The parameter
MSK_DPAR_DATA_TOL_AIJ_HUGE controls when an 𝑓𝑖,𝑗 is considered huge.

MSK_RES_ERR_INVALID_G (20103)
𝑔 contains an invalid floating point value, i.e. a NaN or an infinite value.

MSK_RES_ERR_INVALID_B (20150)
𝑏 contains an invalid floating point value, i.e. a NaN or an infinite value.

MSK_RES_ERR_DOMAIN_INVALID_INDEX (20400)
A domain index is invalid.

MSK_RES_ERR_DOMAIN_DIMENSION (20401)
A domain dimension is invalid.

178

MSK_RES_ERR_DOMAIN_DIMENSION_PSD (20402)

A PSD domain dimension is invalid.
MSK_RES_ERR_NOT_POWER_DOMAIN (20403)

The function is only applicable to primal and dual power cone domains.
MSK_RES_ERR_DOMAIN_POWER_INVALID_ALPHA (20404)

Alpha contains an invalid floating point value, i.e. a NaN or an infinite value.
MSK_RES_ERR_DOMAIN_POWER_NEGATIVE_ALPHA (20405)

Alpha contains a negative value or zero.
MSK_RES_ERR_DOMAIN_POWER_NLEFT (20406)

The value of 𝑛left is not in [1, 𝑛− 1] where 𝑛 is the dimension.
MSK_RES_ERR_AFE_INVALID_INDEX (20500)

An affine expression index is invalid.
MSK_RES_ERR_ACC_INVALID_INDEX (20600)

A affine conic constraint index is invalid.
MSK_RES_ERR_ACC_INVALID_ENTRY_INDEX (20601)

The index of an element in an affine conic constraint is invalid.
MSK_RES_ERR_ACC_AFE_DOMAIN_MISMATCH (20602)

There is a mismatch between between the number of affine expressions and total dimension of the
domain(s).

MSK_RES_ERR_DJC_INVALID_INDEX (20700)

A disjunctive constraint index is invalid.
MSK_RES_ERR_DJC_UNSUPPORTED_DOMAIN_TYPE (20701)

An unsupported domain type has been used in a disjunctive constraint.
MSK_RES_ERR_DJC_AFE_DOMAIN_MISMATCH (20702)

There is a mismatch between the number of affine expressions and total dimension of the domain(s).
MSK_RES_ERR_DJC_INVALID_TERM_SIZE (20703)

A termize is invalid.
MSK_RES_ERR_DJC_DOMAIN_TERMSIZE_MISMATCH (20704)

There is a mismatch between the number of domains and the term sizes.
MSK_RES_ERR_DJC_TOTAL_NUM_TERMS_MISMATCH (20705)

There total number of terms in all domains does not match.
MSK_RES_ERR_UNDEF_SOLUTION (22000)

MOSEK has the following solution types:

• an interior-point solution,

• a basic solution,

• and an integer solution.

Each optimizer may set one or more of these solutions; e.g by default a successful optimization
with the interior-point optimizer defines the interior-point solution and, for linear problems, also
the basic solution. This error occurs when asking for a solution or for information about a solution
that is not defined.

MSK_RES_ERR_NO_DOTY (22010)

No doty is available

179

10.4 Constants

10.4.1 Basis identification

MSK_BI_NEVER
Never do basis identification.

MSK_BI_ALWAYS
Basis identification is always performed even if the interior-point optimizer terminates abnormally.

MSK_BI_NO_ERROR
Basis identification is performed if the interior-point optimizer terminates without an error.

MSK_BI_IF_FEASIBLE
Basis identification is not performed if the interior-point optimizer terminates with a problem status
saying that the problem is primal or dual infeasible.

MSK_BI_RESERVERED
Not currently in use.

10.4.2 Bound keys

MSK_BK_LO
The constraint or variable has a finite lower bound and an infinite upper bound.

MSK_BK_UP
The constraint or variable has an infinite lower bound and an finite upper bound.

MSK_BK_FX
The constraint or variable is fixed.

MSK_BK_FR
The constraint or variable is free.

MSK_BK_RA
The constraint or variable is ranged.

10.4.3 Mark

MSK_MARK_LO
The lower bound is selected for sensitivity analysis.

MSK_MARK_UP
The upper bound is selected for sensitivity analysis.

10.4.4 Experimental. Usage not recommended.

MSK_SIM_PRECISION_NORMAL
Experimental. Usage not recommended.

MSK_SIM_PRECISION_EXTENDED
Experimental. Usage not recommended.

10.4.5 Degeneracy strategies

MSK_SIM_DEGEN_NONE
The simplex optimizer should use no degeneration strategy.

MSK_SIM_DEGEN_FREE
The simplex optimizer chooses the degeneration strategy.

MSK_SIM_DEGEN_AGGRESSIVE
The simplex optimizer should use an aggressive degeneration strategy.

MSK_SIM_DEGEN_MODERATE
The simplex optimizer should use a moderate degeneration strategy.

MSK_SIM_DEGEN_MINIMUM
The simplex optimizer should use a minimum degeneration strategy.

180

10.4.6 Transposed matrix.

MSK_TRANSPOSE_NO

No transpose is applied.
MSK_TRANSPOSE_YES

A transpose is applied.

10.4.7 Triangular part of a symmetric matrix.

MSK_UPLO_LO

Lower part.
MSK_UPLO_UP

Upper part.

10.4.8 Problem reformulation.

MSK_SIM_REFORMULATION_ON

Allow the simplex optimizer to reformulate the problem.
MSK_SIM_REFORMULATION_OFF

Disallow the simplex optimizer to reformulate the problem.
MSK_SIM_REFORMULATION_FREE

The simplex optimizer can choose freely.
MSK_SIM_REFORMULATION_AGGRESSIVE

The simplex optimizer should use an aggressive reformulation strategy.

10.4.9 Exploit duplicate columns.

MSK_SIM_EXPLOIT_DUPVEC_ON

Allow the simplex optimizer to exploit duplicated columns.
MSK_SIM_EXPLOIT_DUPVEC_OFF

Disallow the simplex optimizer to exploit duplicated columns.
MSK_SIM_EXPLOIT_DUPVEC_FREE

The simplex optimizer can choose freely.

10.4.10 Hot-start type employed by the simplex optimizer

MSK_SIM_HOTSTART_NONE

The simplex optimizer performs a coldstart.
MSK_SIM_HOTSTART_FREE

The simplex optimize chooses the hot-start type.
MSK_SIM_HOTSTART_STATUS_KEYS

Only the status keys of the constraints and variables are used to choose the type of hot-start.

10.4.11 Hot-start type employed by the interior-point optimizers.

MSK_INTPNT_HOTSTART_NONE

The interior-point optimizer performs a coldstart.
MSK_INTPNT_HOTSTART_PRIMAL

The interior-point optimizer exploits the primal solution only.
MSK_INTPNT_HOTSTART_DUAL

The interior-point optimizer exploits the dual solution only.
MSK_INTPNT_HOTSTART_PRIMAL_DUAL

The interior-point optimizer exploits both the primal and dual solution.

181

10.4.12 Progress callback codes

MSK_CALLBACK_BEGIN_BI

The basis identification procedure has been started.
MSK_CALLBACK_BEGIN_CONIC

The callback function is called when the conic optimizer is started.
MSK_CALLBACK_BEGIN_DUAL_BI

The callback function is called from within the basis identification procedure when the dual phase
is started.

MSK_CALLBACK_BEGIN_DUAL_SENSITIVITY

Dual sensitivity analysis is started.
MSK_CALLBACK_BEGIN_DUAL_SETUP_BI

The callback function is called when the dual BI phase is started.
MSK_CALLBACK_BEGIN_DUAL_SIMPLEX

The callback function is called when the dual simplex optimizer started.
MSK_CALLBACK_BEGIN_DUAL_SIMPLEX_BI

The callback function is called from within the basis identification procedure when the dual simplex
clean-up phase is started.

MSK_CALLBACK_BEGIN_FOLDING

The calback function is called at the beginning of folding.
MSK_CALLBACK_BEGIN_FOLDING_BI

TBD
MSK_CALLBACK_BEGIN_FOLDING_BI_DUAL

TBD
MSK_CALLBACK_BEGIN_FOLDING_BI_INITIALIZE

TBD
MSK_CALLBACK_BEGIN_FOLDING_BI_OPTIMIZER

TBD
MSK_CALLBACK_BEGIN_FOLDING_BI_PRIMAL

TBD
MSK_CALLBACK_BEGIN_INFEAS_ANA

The callback function is called when the infeasibility analyzer is started.
MSK_CALLBACK_BEGIN_INITIALIZE_BI

The callback function is called from within the basis identification procedure when the initialization
phase is started.

MSK_CALLBACK_BEGIN_INTPNT

The callback function is called when the interior-point optimizer is started.
MSK_CALLBACK_BEGIN_LICENSE_WAIT

Begin waiting for license.
MSK_CALLBACK_BEGIN_MIO

The callback function is called when the mixed-integer optimizer is started.
MSK_CALLBACK_BEGIN_OPTIMIZE_BI

TBD.
MSK_CALLBACK_BEGIN_OPTIMIZER

The callback function is called when the optimizer is started.
MSK_CALLBACK_BEGIN_PRESOLVE

The callback function is called when the presolve is started.
MSK_CALLBACK_BEGIN_PRIMAL_BI

The callback function is called from within the basis identification procedure when the primal phase
is started.

MSK_CALLBACK_BEGIN_PRIMAL_REPAIR

Begin primal feasibility repair.

182

MSK_CALLBACK_BEGIN_PRIMAL_SENSITIVITY
Primal sensitivity analysis is started.

MSK_CALLBACK_BEGIN_PRIMAL_SETUP_BI
The callback function is called when the primal BI setup is started.

MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX
The callback function is called when the primal simplex optimizer is started.

MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX_BI
The callback function is called from within the basis identification procedure when the primal
simplex clean-up phase is started.

MSK_CALLBACK_BEGIN_QCQO_REFORMULATE
Begin QCQO reformulation.

MSK_CALLBACK_BEGIN_READ
MOSEK has started reading a problem file.

MSK_CALLBACK_BEGIN_ROOT_CUTGEN
The callback function is called when root cut generation is started.

MSK_CALLBACK_BEGIN_SIMPLEX
The callback function is called when the simplex optimizer is started.

MSK_CALLBACK_BEGIN_SOLVE_ROOT_RELAX
The callback function is called when solution of root relaxation is started.

MSK_CALLBACK_BEGIN_TO_CONIC
Begin conic reformulation.

MSK_CALLBACK_BEGIN_WRITE
MOSEK has started writing a problem file.

MSK_CALLBACK_CONIC
The callback function is called from within the conic optimizer after the information database has
been updated.

MSK_CALLBACK_DECOMP_MIO
The callback function is called when the dedicated algorithm for independent blocks inside the
mixed-integer solver is started.

MSK_CALLBACK_DUAL_SIMPLEX
The callback function is called from within the dual simplex optimizer.

MSK_CALLBACK_END_BI
The callback function is called when the basis identification procedure is terminated.

MSK_CALLBACK_END_CONIC
The callback function is called when the conic optimizer is terminated.

MSK_CALLBACK_END_DUAL_BI
The callback function is called from within the basis identification procedure when the dual phase
is terminated.

MSK_CALLBACK_END_DUAL_SENSITIVITY
Dual sensitivity analysis is terminated.

MSK_CALLBACK_END_DUAL_SETUP_BI
The callback function is called when the dual BI phase is terminated.

MSK_CALLBACK_END_DUAL_SIMPLEX
The callback function is called when the dual simplex optimizer is terminated.

MSK_CALLBACK_END_DUAL_SIMPLEX_BI
The callback function is called from within the basis identification procedure when the dual clean-up
phase is terminated.

MSK_CALLBACK_END_FOLDING
The calback function is called at the end of folding.

MSK_CALLBACK_END_FOLDING_BI
TBD

MSK_CALLBACK_END_FOLDING_BI_DUAL
TBD

183

MSK_CALLBACK_END_FOLDING_BI_INITIALIZE

TBD
MSK_CALLBACK_END_FOLDING_BI_OPTIMIZER

TBD
MSK_CALLBACK_END_FOLDING_BI_PRIMAL

TBD
MSK_CALLBACK_END_INFEAS_ANA

The callback function is called when the infeasibility analyzer is terminated.
MSK_CALLBACK_END_INITIALIZE_BI

The callback function is called from within the basis identification procedure when the initialization
phase is terminated.

MSK_CALLBACK_END_INTPNT

The callback function is called when the interior-point optimizer is terminated.
MSK_CALLBACK_END_LICENSE_WAIT

End waiting for license.
MSK_CALLBACK_END_MIO

The callback function is called when the mixed-integer optimizer is terminated.
MSK_CALLBACK_END_OPTIMIZE_BI

TBD.
MSK_CALLBACK_END_OPTIMIZER

The callback function is called when the optimizer is terminated.
MSK_CALLBACK_END_PRESOLVE

The callback function is called when the presolve is completed.
MSK_CALLBACK_END_PRIMAL_BI

The callback function is called from within the basis identification procedure when the primal phase
is terminated.

MSK_CALLBACK_END_PRIMAL_REPAIR

End primal feasibility repair.
MSK_CALLBACK_END_PRIMAL_SENSITIVITY

Primal sensitivity analysis is terminated.
MSK_CALLBACK_END_PRIMAL_SETUP_BI

The callback function is called when the primal BI setup is terminated.
MSK_CALLBACK_END_PRIMAL_SIMPLEX

The callback function is called when the primal simplex optimizer is terminated.
MSK_CALLBACK_END_PRIMAL_SIMPLEX_BI

The callback function is called from within the basis identification procedure when the primal
clean-up phase is terminated.

MSK_CALLBACK_END_QCQO_REFORMULATE

End QCQO reformulation.
MSK_CALLBACK_END_READ

MOSEK has finished reading a problem file.
MSK_CALLBACK_END_ROOT_CUTGEN

The callback function is called when root cut generation is terminated.
MSK_CALLBACK_END_SIMPLEX

The callback function is called when the simplex optimizer is terminated.
MSK_CALLBACK_END_SIMPLEX_BI

The callback function is called from within the basis identification procedure when the simplex
clean-up phase is terminated.

MSK_CALLBACK_END_SOLVE_ROOT_RELAX

The callback function is called when solution of root relaxation is terminated.
MSK_CALLBACK_END_TO_CONIC

End conic reformulation.

184

MSK_CALLBACK_END_WRITE
MOSEK has finished writing a problem file.

MSK_CALLBACK_FOLDING_BI_DUAL
TBD

MSK_CALLBACK_FOLDING_BI_OPTIMIZER
TBD

MSK_CALLBACK_FOLDING_BI_PRIMAL
TBD

MSK_CALLBACK_HEARTBEAT
A heartbeat callback.

MSK_CALLBACK_IM_DUAL_SENSIVITY
The callback function is called at an intermediate stage of the dual sensitivity analysis.

MSK_CALLBACK_IM_DUAL_SIMPLEX
The callback function is called at an intermediate point in the dual simplex optimizer.

MSK_CALLBACK_IM_LICENSE_WAIT
MOSEK is waiting for a license.

MSK_CALLBACK_IM_LU
The callback function is called from within the LU factorization procedure at an intermediate point.

MSK_CALLBACK_IM_MIO
The callback function is called at an intermediate point in the mixed-integer optimizer.

MSK_CALLBACK_IM_MIO_DUAL_SIMPLEX
The callback function is called at an intermediate point in the mixed-integer optimizer while running
the dual simplex optimizer.

MSK_CALLBACK_IM_MIO_INTPNT
The callback function is called at an intermediate point in the mixed-integer optimizer while running
the interior-point optimizer.

MSK_CALLBACK_IM_MIO_PRIMAL_SIMPLEX
The callback function is called at an intermediate point in the mixed-integer optimizer while running
the primal simplex optimizer.

MSK_CALLBACK_IM_ORDER
The callback function is called from within the matrix ordering procedure at an intermediate point.

MSK_CALLBACK_IM_PRIMAL_SENSIVITY
The callback function is called at an intermediate stage of the primal sensitivity analysis.

MSK_CALLBACK_IM_PRIMAL_SIMPLEX
The callback function is called at an intermediate point in the primal simplex optimizer.

MSK_CALLBACK_IM_READ
Intermediate stage in reading.

MSK_CALLBACK_IM_ROOT_CUTGEN
The callback is called from within root cut generation at an intermediate stage.

MSK_CALLBACK_IM_SIMPLEX
The callback function is called from within the simplex optimizer at an intermediate point.

MSK_CALLBACK_INTPNT
The callback function is called from within the interior-point optimizer after the information
database has been updated.

MSK_CALLBACK_NEW_INT_MIO
The callback function is called after a new integer solution has been located by the mixed-integer
optimizer.

MSK_CALLBACK_OPTIMIZE_BI
TBD.

MSK_CALLBACK_PRIMAL_SIMPLEX
The callback function is called from within the primal simplex optimizer.

MSK_CALLBACK_QO_REFORMULATE
The callback function is called at an intermediate stage of the conic quadratic reformulation.

185

MSK_CALLBACK_READ_OPF

The callback function is called from the OPF reader.
MSK_CALLBACK_READ_OPF_SECTION

A chunk of 𝑄 non-zeros has been read from a problem file.
MSK_CALLBACK_RESTART_MIO

The callback function is called when the mixed-integer optimizer is restarted.
MSK_CALLBACK_SOLVING_REMOTE

The callback function is called while the task is being solved on a remote server.
MSK_CALLBACK_UPDATE_DUAL_BI

The callback function is called from within the basis identification procedure at an intermediate
point in the dual phase.

MSK_CALLBACK_UPDATE_DUAL_SIMPLEX

The callback function is called in the dual simplex optimizer.
MSK_CALLBACK_UPDATE_DUAL_SIMPLEX_BI

The callback function is called from within the basis identification procedure at an intermediate
point in the dual simplex clean-up phase. The frequency of the callbacks is controlled by the
MSK_IPAR_LOG_SIM_FREQ parameter.

MSK_CALLBACK_UPDATE_PRESOLVE

The callback function is called from within the presolve procedure.
MSK_CALLBACK_UPDATE_PRIMAL_BI

The callback function is called from within the basis identification procedure at an intermediate
point in the primal phase.

MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX

The callback function is called in the primal simplex optimizer.
MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX_BI

The callback function is called from within the basis identification procedure at an intermediate
point in the primal simplex clean-up phase. The frequency of the callbacks is controlled by the
MSK_IPAR_LOG_SIM_FREQ parameter.

MSK_CALLBACK_UPDATE_SIMPLEX

The callback function is called from simplex optimizer.
MSK_CALLBACK_WRITE_OPF

The callback function is called from the OPF writer.

10.4.13 Compression types

MSK_COMPRESS_NONE

No compression is used.
MSK_COMPRESS_FREE

The type of compression used is chosen automatically.
MSK_COMPRESS_GZIP

The type of compression used is gzip compatible.
MSK_COMPRESS_ZSTD

The type of compression used is zstd compatible.

186

10.4.14 Cone types

MSK_CT_QUAD

The cone is a quadratic cone.
MSK_CT_RQUAD

The cone is a rotated quadratic cone.
MSK_CT_PEXP

A primal exponential cone.
MSK_CT_DEXP

A dual exponential cone.
MSK_CT_PPOW

A primal power cone.
MSK_CT_DPOW

A dual power cone.
MSK_CT_ZERO

The zero cone.

10.4.15 Cone types

MSK_DOMAIN_R

R.

MSK_DOMAIN_RZERO

The zero vector.
MSK_DOMAIN_RPLUS

The positive orthant.
MSK_DOMAIN_RMINUS

The negative orthant.
MSK_DOMAIN_QUADRATIC_CONE

The quadratic cone.
MSK_DOMAIN_RQUADRATIC_CONE

The rotated quadratic cone.
MSK_DOMAIN_PRIMAL_EXP_CONE

The primal exponential cone.
MSK_DOMAIN_DUAL_EXP_CONE

The dual exponential cone.
MSK_DOMAIN_PRIMAL_POWER_CONE

The primal power cone.
MSK_DOMAIN_DUAL_POWER_CONE

The dual power cone.
MSK_DOMAIN_PRIMAL_GEO_MEAN_CONE

The primal geometric mean cone.
MSK_DOMAIN_DUAL_GEO_MEAN_CONE

The dual geometric mean cone.
MSK_DOMAIN_SVEC_PSD_CONE

The vectorized positive semidefinite cone.

187

10.4.16 Name types

MSK_NAME_TYPE_GEN

General names. However, no duplicate and blank names are allowed.
MSK_NAME_TYPE_MPS

MPS type names.
MSK_NAME_TYPE_LP

LP type names.

10.4.17 Cone types

MSK_SYMMAT_TYPE_SPARSE

Sparse symmetric matrix.

10.4.18 Data format types

MSK_DATA_FORMAT_EXTENSION

The file extension is used to determine the data file format.
MSK_DATA_FORMAT_MPS

The data file is MPS formatted.
MSK_DATA_FORMAT_LP

The data file is LP formatted.
MSK_DATA_FORMAT_OP

The data file is an optimization problem formatted file.
MSK_DATA_FORMAT_FREE_MPS

The data a free MPS formatted file.
MSK_DATA_FORMAT_TASK

Generic task dump file.
MSK_DATA_FORMAT_PTF

(P)retty (T)ext (F)format.
MSK_DATA_FORMAT_CB

Conic benchmark format,
MSK_DATA_FORMAT_JSON_TASK

JSON based task format.

10.4.19 Data format types

MSK_SOL_FORMAT_EXTENSION

The file extension is used to determine the data file format.
MSK_SOL_FORMAT_B

Simple binary format
MSK_SOL_FORMAT_TASK

Tar based format.
MSK_SOL_FORMAT_JSON_TASK

JSON based format.

188

10.4.20 Double information items

MSK_DINF_ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_DENSITY

Density percentage of the scalarized constraint matrix.
MSK_DINF_BI_CLEAN_TIME

Time spent within the clean-up phase of the basis identification procedure since its invocation (in
seconds).

MSK_DINF_BI_DUAL_TIME

Time spent within the dual phase basis identification procedure since its invocation (in seconds).
MSK_DINF_BI_PRIMAL_TIME

Time spent within the primal phase of the basis identification procedure since its invocation (in
seconds).

MSK_DINF_BI_TIME

Time spent within the basis identification procedure since its invocation (in seconds).
MSK_DINF_FOLDING_BI_OPTIMIZE_TIME

TBD
MSK_DINF_FOLDING_BI_UNFOLD_DUAL_TIME

TBD
MSK_DINF_FOLDING_BI_UNFOLD_INITIALIZE_TIME

TBD
MSK_DINF_FOLDING_BI_UNFOLD_PRIMAL_TIME

TBD
MSK_DINF_FOLDING_BI_UNFOLD_TIME

TBD
MSK_DINF_FOLDING_FACTOR

Problem size after folding as a fraction of the original size.
MSK_DINF_FOLDING_TIME

Total time spent in folding for continuous problems (in seconds).
MSK_DINF_INTPNT_DUAL_FEAS

Dual feasibility measure reported by the interior-point optimizer. (For the interior-point opti-
mizer this measure is not directly related to the original problem because a homogeneous model is
employed.)

MSK_DINF_INTPNT_DUAL_OBJ

Dual objective value reported by the interior-point optimizer.
MSK_DINF_INTPNT_FACTOR_NUM_FLOPS

An estimate of the number of flops used in the factorization.
MSK_DINF_INTPNT_OPT_STATUS

A measure of optimality of the solution. It should converge to +1 if the problem has a primal-dual
optimal solution, and converge to −1 if the problem is (strictly) primal or dual infeasible. If the
measure converges to another constant, or fails to settle, the problem is usually ill-posed.

MSK_DINF_INTPNT_ORDER_TIME

Order time (in seconds).
MSK_DINF_INTPNT_PRIMAL_FEAS

Primal feasibility measure reported by the interior-point optimizer. (For the interior-point opti-
mizer this measure is not directly related to the original problem because a homogeneous model is
employed).

MSK_DINF_INTPNT_PRIMAL_OBJ

Primal objective value reported by the interior-point optimizer.
MSK_DINF_INTPNT_TIME

Time spent within the interior-point optimizer since its invocation (in seconds).
MSK_DINF_MIO_CLIQUE_SELECTION_TIME

Selection time for clique cuts (in seconds).

189

MSK_DINF_MIO_CLIQUE_SEPARATION_TIME
Separation time for clique cuts (in seconds).

MSK_DINF_MIO_CMIR_SELECTION_TIME
Selection time for CMIR cuts (in seconds).

MSK_DINF_MIO_CMIR_SEPARATION_TIME
Separation time for CMIR cuts (in seconds).

MSK_DINF_MIO_CONSTRUCT_SOLUTION_OBJ
If MOSEK has successfully constructed an integer feasible solution, then this item contains the
optimal objective value corresponding to the feasible solution.

MSK_DINF_MIO_DUAL_BOUND_AFTER_PRESOLVE
Value of the dual bound after presolve but before cut generation.

MSK_DINF_MIO_GMI_SELECTION_TIME
Selection time for GMI cuts (in seconds).

MSK_DINF_MIO_GMI_SEPARATION_TIME
Separation time for GMI cuts (in seconds).

MSK_DINF_MIO_IMPLIED_BOUND_SELECTION_TIME
Selection time for implied bound cuts (in seconds).

MSK_DINF_MIO_IMPLIED_BOUND_SEPARATION_TIME
Separation time for implied bound cuts (in seconds).

MSK_DINF_MIO_INITIAL_FEASIBLE_SOLUTION_OBJ
If the user provided solution was found to be feasible this information item contains it’s objective
value.

MSK_DINF_MIO_KNAPSACK_COVER_SELECTION_TIME
Selection time for knapsack cover (in seconds).

MSK_DINF_MIO_KNAPSACK_COVER_SEPARATION_TIME
Separation time for knapsack cover (in seconds).

MSK_DINF_MIO_LIPRO_SELECTION_TIME
Selection time for lift-and-project cuts (in seconds).

MSK_DINF_MIO_LIPRO_SEPARATION_TIME
Separation time for lift-and-project cuts (in seconds).

MSK_DINF_MIO_OBJ_ABS_GAP
Given the mixed-integer optimizer has computed a feasible solution and a bound on the optimal
objective value, then this item contains the absolute gap defined by

|(objective value of feasible solution) − (objective bound)|.

Otherwise it has the value -1.0.
MSK_DINF_MIO_OBJ_BOUND

The best known bound on the objective function. This value is undefined until at least one
relaxation has been solved: To see if this is the case check that MSK_IINF_MIO_NUM_RELAX is
strictly positive.

MSK_DINF_MIO_OBJ_INT
The primal objective value corresponding to the best integer feasible solution. Please
note that at least one integer feasible solution must have been located i.e. check
MSK_IINF_MIO_NUM_INT_SOLUTIONS .

MSK_DINF_MIO_OBJ_REL_GAP
Given that the mixed-integer optimizer has computed a feasible solution and a bound on the
optimal objective value, then this item contains the relative gap defined by

|(objective value of feasible solution) − (objective bound)|
max(𝛿, |(objective value of feasible solution)|)

.

where 𝛿 is given by the parameter MSK_DPAR_MIO_REL_GAP_CONST . Otherwise it has the value −1.0.
MSK_DINF_MIO_PROBING_TIME

Total time for probing (in seconds).

190

MSK_DINF_MIO_ROOT_CUT_SELECTION_TIME

Total time for cut selection (in seconds).
MSK_DINF_MIO_ROOT_CUT_SEPARATION_TIME

Total time for cut separation (in seconds).
MSK_DINF_MIO_ROOT_OPTIMIZER_TIME

Time spent in the contiuous optimizer while processing the root node relaxation (in seconds).
MSK_DINF_MIO_ROOT_PRESOLVE_TIME

Time spent presolving the problem at the root node (in seconds).
MSK_DINF_MIO_ROOT_TIME

Time spent processing the root node (in seconds).
MSK_DINF_MIO_SYMMETRY_DETECTION_TIME

Total time for symmetry detection (in seconds).
MSK_DINF_MIO_SYMMETRY_FACTOR

Degree to which the problem is affected by detected symmetry.
MSK_DINF_MIO_TIME

Time spent in the mixed-integer optimizer (in seconds).
MSK_DINF_MIO_USER_OBJ_CUT

If the objective cut is used, then this information item has the value of the cut.
MSK_DINF_OPTIMIZER_TICKS

Total number of ticks spent in the optimizer since it was invoked. It is strictly negative if it is not
available.

MSK_DINF_OPTIMIZER_TIME

Total time spent in the optimizer since it was invoked (in seconds).
MSK_DINF_PRESOLVE_ELI_TIME

Total time spent in the eliminator since the presolve was invoked (in seconds).
MSK_DINF_PRESOLVE_LINDEP_TIME

Total time spent in the linear dependency checker since the presolve was invoked (in seconds).
MSK_DINF_PRESOLVE_TIME

Total time spent in the presolve since it was invoked (in seconds).
MSK_DINF_PRESOLVE_TOTAL_PRIMAL_PERTURBATION

Total perturbation of the bounds of the primal problem.
MSK_DINF_PRIMAL_REPAIR_PENALTY_OBJ

The optimal objective value of the penalty function.
MSK_DINF_QCQO_REFORMULATE_MAX_PERTURBATION

Maximum absolute diagonal perturbation occurring during the QCQO reformulation.
MSK_DINF_QCQO_REFORMULATE_TIME

Time spent with conic quadratic reformulation (in seconds).
MSK_DINF_QCQO_REFORMULATE_WORST_CHOLESKY_COLUMN_SCALING

Worst Cholesky column scaling.
MSK_DINF_QCQO_REFORMULATE_WORST_CHOLESKY_DIAG_SCALING

Worst Cholesky diagonal scaling.
MSK_DINF_READ_DATA_TIME

Time spent reading the data file (in seconds).
MSK_DINF_REMOTE_TIME

The total real time in seconds spent when optimizing on a server by the process performing the
optimization on the server (in seconds).

MSK_DINF_SIM_DUAL_TIME

Time spent in the dual simplex optimizer since invoking it (in seconds).
MSK_DINF_SIM_FEAS

Feasibility measure reported by the simplex optimizer.
MSK_DINF_SIM_OBJ

Objective value reported by the simplex optimizer.

191

MSK_DINF_SIM_PRIMAL_TIME

Time spent in the primal simplex optimizer since invoking it (in seconds).
MSK_DINF_SIM_TIME

Time spent in the simplex optimizer since invoking it (in seconds).
MSK_DINF_SOL_BAS_DUAL_OBJ

Dual objective value of the basic solution. Updated if MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .
MSK_DINF_SOL_BAS_DVIOLCON

Maximal dual bound violation for 𝑥𝑐 in the basic solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_BAS_DVIOLVAR

Maximal dual bound violation for 𝑥𝑥 in the basic solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_BAS_NRM_BARX

Infinity norm of 𝑋 in the basic solution.
MSK_DINF_SOL_BAS_NRM_SLC

Infinity norm of 𝑠𝑐𝑙 in the basic solution.
MSK_DINF_SOL_BAS_NRM_SLX

Infinity norm of 𝑠𝑥𝑙 in the basic solution.
MSK_DINF_SOL_BAS_NRM_SUC

Infinity norm of 𝑠𝑐𝑢 in the basic solution.
MSK_DINF_SOL_BAS_NRM_SUX

Infinity norm of 𝑠𝑋𝑢 in the basic solution.
MSK_DINF_SOL_BAS_NRM_XC

Infinity norm of 𝑥𝑐 in the basic solution.
MSK_DINF_SOL_BAS_NRM_XX

Infinity norm of 𝑥𝑥 in the basic solution.
MSK_DINF_SOL_BAS_NRM_Y

Infinity norm of 𝑦 in the basic solution.
MSK_DINF_SOL_BAS_PRIMAL_OBJ

Primal objective value of the basic solution. Updated if MSK_IPAR_AUTO_UPDATE_SOL_INFO is set
.

MSK_DINF_SOL_BAS_PVIOLCON

Maximal primal bound violation for 𝑥𝑐 in the basic solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_BAS_PVIOLVAR

Maximal primal bound violation for 𝑥𝑥 in the basic solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_ITG_NRM_BARX

Infinity norm of 𝑋 in the integer solution.
MSK_DINF_SOL_ITG_NRM_XC

Infinity norm of 𝑥𝑐 in the integer solution.
MSK_DINF_SOL_ITG_NRM_XX

Infinity norm of 𝑥𝑥 in the integer solution.
MSK_DINF_SOL_ITG_PRIMAL_OBJ

Primal objective value of the integer solution. Updated if MSK_IPAR_AUTO_UPDATE_SOL_INFO is
set .

MSK_DINF_SOL_ITG_PVIOLACC

Maximal primal violation for affine conic constraints in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_ITG_PVIOLBARVAR

Maximal primal bound violation for 𝑋 in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

192

MSK_DINF_SOL_ITG_PVIOLCON
Maximal primal bound violation for 𝑥𝑐 in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_ITG_PVIOLCONES
Maximal primal violation for primal conic constraints in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_ITG_PVIOLDJC
Maximal primal violation for disjunctive constraints in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_ITG_PVIOLITG
Maximal violation for the integer constraints in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_ITG_PVIOLVAR
Maximal primal bound violation for 𝑥𝑥 in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_ITR_DUAL_OBJ
Dual objective value of the interior-point solution. Updated if MSK_IPAR_AUTO_UPDATE_SOL_INFO
is set .

MSK_DINF_SOL_ITR_DVIOLACC
Maximal dual violation for the affine conic constraints in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_ITR_DVIOLBARVAR

Maximal dual bound violation for 𝑋 in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_ITR_DVIOLCON
Maximal dual bound violation for 𝑥𝑐 in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_ITR_DVIOLCONES
Maximal dual violation for conic constraints in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_ITR_DVIOLVAR
Maximal dual bound violation for 𝑥𝑥 in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_ITR_NRM_BARS

Infinity norm of 𝑆 in the interior-point solution.
MSK_DINF_SOL_ITR_NRM_BARX

Infinity norm of 𝑋 in the interior-point solution.
MSK_DINF_SOL_ITR_NRM_SLC

Infinity norm of 𝑠𝑐𝑙 in the interior-point solution.
MSK_DINF_SOL_ITR_NRM_SLX

Infinity norm of 𝑠𝑥𝑙 in the interior-point solution.
MSK_DINF_SOL_ITR_NRM_SNX

Infinity norm of 𝑠𝑥𝑛 in the interior-point solution.
MSK_DINF_SOL_ITR_NRM_SUC

Infinity norm of 𝑠𝑐𝑢 in the interior-point solution.
MSK_DINF_SOL_ITR_NRM_SUX

Infinity norm of 𝑠𝑋𝑢 in the interior-point solution.
MSK_DINF_SOL_ITR_NRM_XC

Infinity norm of 𝑥𝑐 in the interior-point solution.
MSK_DINF_SOL_ITR_NRM_XX

Infinity norm of 𝑥𝑥 in the interior-point solution.
MSK_DINF_SOL_ITR_NRM_Y

Infinity norm of 𝑦 in the interior-point solution.

193

MSK_DINF_SOL_ITR_PRIMAL_OBJ

Primal objective value of the interior-point solution. Updated if MSK_IPAR_AUTO_UPDATE_SOL_INFO
is set .

MSK_DINF_SOL_ITR_PVIOLACC

Maximal primal violation for affine conic constraints in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_ITR_PVIOLBARVAR

Maximal primal bound violation for 𝑋 in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_ITR_PVIOLCON

Maximal primal bound violation for 𝑥𝑐 in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_ITR_PVIOLCONES

Maximal primal violation for conic constraints in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_ITR_PVIOLVAR

Maximal primal bound violation for 𝑥𝑥 in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_TO_CONIC_TIME

Time spent in the last to conic reformulation (in seconds).
MSK_DINF_WRITE_DATA_TIME

Time spent writing the data file (in seconds).

10.4.21 License feature

MSK_FEATURE_PTS

Base system.
MSK_FEATURE_PTON

Conic extension.

10.4.22 Long integer information items.

MSK_LIINF_ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_NUM_COLUMNS

Number of columns in the scalarized constraint matrix.
MSK_LIINF_ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_NUM_NZ

Number of non-zero entries in the scalarized constraint matrix.
MSK_LIINF_ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_NUM_ROWS

Number of rows in the scalarized constraint matrix.
MSK_LIINF_BI_CLEAN_ITER

Number of clean iterations performed in the basis identification.
MSK_LIINF_BI_DUAL_ITER

Number of dual pivots performed in the basis identification.
MSK_LIINF_BI_PRIMAL_ITER

Number of primal pivots performed in the basis identification.
MSK_LIINF_FOLDING_BI_DUAL_ITER

TBD
MSK_LIINF_FOLDING_BI_OPTIMIZER_ITER

TBD
MSK_LIINF_FOLDING_BI_PRIMAL_ITER

TBD
MSK_LIINF_INTPNT_FACTOR_NUM_NZ

Number of non-zeros in factorization.

194

MSK_LIINF_MIO_ANZ
Number of non-zero entries in the constraint matrix of the problem to be solved by the mixed-
integer optimizer.

MSK_LIINF_MIO_FINAL_ANZ
Number of non-zero entries in the constraint matrix of the mixed-integer optimizer’s final problem.

MSK_LIINF_MIO_INTPNT_ITER
Number of interior-point iterations performed by the mixed-integer optimizer.

MSK_LIINF_MIO_NUM_DUAL_ILLPOSED_CER
Number of dual illposed certificates encountered by the mixed-integer optimizer.

MSK_LIINF_MIO_NUM_PRIM_ILLPOSED_CER
Number of primal illposed certificates encountered by the mixed-integer optimizer.

MSK_LIINF_MIO_PRESOLVED_ANZ
Number of non-zero entries in the constraint matrix of the problem after the mixed-integer opti-
mizer’s presolve.

MSK_LIINF_MIO_SIMPLEX_ITER
Number of simplex iterations performed by the mixed-integer optimizer.

MSK_LIINF_RD_NUMACC
Number of affince conic constraints.

MSK_LIINF_RD_NUMANZ
Number of non-zeros in A that is read.

MSK_LIINF_RD_NUMDJC
Number of disjuncive constraints.

MSK_LIINF_RD_NUMQNZ
Number of Q non-zeros.

MSK_LIINF_SIMPLEX_ITER
Number of iterations performed by the simplex optimizer.

10.4.23 Integer information items.

MSK_IINF_ANA_PRO_NUM_CON
Number of constraints in the problem.

MSK_IINF_ANA_PRO_NUM_CON_EQ
Number of equality constraints.

MSK_IINF_ANA_PRO_NUM_CON_FR
Number of unbounded constraints.

MSK_IINF_ANA_PRO_NUM_CON_LO
Number of constraints with a lower bound and an infinite upper bound.

MSK_IINF_ANA_PRO_NUM_CON_RA
Number of constraints with finite lower and upper bounds.

MSK_IINF_ANA_PRO_NUM_CON_UP
Number of constraints with an upper bound and an infinite lower bound.

MSK_IINF_ANA_PRO_NUM_VAR
Number of variables in the problem.

MSK_IINF_ANA_PRO_NUM_VAR_BIN
Number of binary (0-1) variables.

MSK_IINF_ANA_PRO_NUM_VAR_CONT
Number of continuous variables.

MSK_IINF_ANA_PRO_NUM_VAR_EQ
Number of fixed variables.

MSK_IINF_ANA_PRO_NUM_VAR_FR
Number of free variables.

MSK_IINF_ANA_PRO_NUM_VAR_INT
Number of general integer variables.

195

MSK_IINF_ANA_PRO_NUM_VAR_LO
Number of variables with a lower bound and an infinite upper bound.

MSK_IINF_ANA_PRO_NUM_VAR_RA
Number of variables with finite lower and upper bounds.

MSK_IINF_ANA_PRO_NUM_VAR_UP
Number of variables with an upper bound and an infinite lower bound.

MSK_IINF_FOLDING_APPLIED
Non-zero if folding was exploited.

MSK_IINF_INTPNT_FACTOR_DIM_DENSE
Dimension of the dense sub system in factorization.

MSK_IINF_INTPNT_ITER
Number of interior-point iterations since invoking the interior-point optimizer.

MSK_IINF_INTPNT_NUM_THREADS
Number of threads that the interior-point optimizer is using.

MSK_IINF_INTPNT_SOLVE_DUAL
Non-zero if the interior-point optimizer is solving the dual problem.

MSK_IINF_MIO_ABSGAP_SATISFIED
Non-zero if absolute gap is within tolerances.

MSK_IINF_MIO_CLIQUE_TABLE_SIZE
Size of the clique table.

MSK_IINF_MIO_CONSTRUCT_SOLUTION
This item informs if MOSEK constructed an initial integer feasible solution.

• -1: tried, but failed,
• 0: no partial solution supplied by the user,
• 1: constructed feasible solution.

MSK_IINF_MIO_FINAL_NUMBIN
Number of binary variables in the mixed-integer optimizer’s final problem.

MSK_IINF_MIO_FINAL_NUMBINCONEVAR
Number of binary cone variables in the mixed-integer optimizer’s final problem.

MSK_IINF_MIO_FINAL_NUMCON
Number of constraints in the mixed-integer optimizer’s final problem.

MSK_IINF_MIO_FINAL_NUMCONE
Number of cones in the mixed-integer optimizer’s final problem.

MSK_IINF_MIO_FINAL_NUMCONEVAR
Number of cone variables in the mixed-integer optimizer’s final problem.

MSK_IINF_MIO_FINAL_NUMCONT
Number of continuous variables in the mixed-integer optimizer’s final problem.

MSK_IINF_MIO_FINAL_NUMCONTCONEVAR
Number of continuous cone variables in the mixed-integer optimizer’s final problem.

MSK_IINF_MIO_FINAL_NUMDEXPCONES
Number of dual exponential cones in the mixed-integer optimizer’s final problem.

MSK_IINF_MIO_FINAL_NUMDJC
Number of disjunctive constraints in the mixed-integer optimizer’s final problem.

MSK_IINF_MIO_FINAL_NUMDPOWCONES
Number of dual power cones in the mixed-integer optimizer’s final problem.

MSK_IINF_MIO_FINAL_NUMINT
Number of integer variables in the mixed-integer optimizer’s final problem.

MSK_IINF_MIO_FINAL_NUMINTCONEVAR
Number of integer cone variables in the mixed-integer optimizer’s final problem.

MSK_IINF_MIO_FINAL_NUMPEXPCONES
Number of primal exponential cones in the mixed-integer optimizer’s final problem.

196

MSK_IINF_MIO_FINAL_NUMPPOWCONES
Number of primal power cones in the mixed-integer optimizer’s final problem.

MSK_IINF_MIO_FINAL_NUMQCONES
Number of quadratic cones in the mixed-integer optimizer’s final problem.

MSK_IINF_MIO_FINAL_NUMRQCONES
Number of rotated quadratic cones in the mixed-integer optimizer’s final problem.

MSK_IINF_MIO_FINAL_NUMVAR
Number of variables in the mixed-integer optimizer’s final problem.

MSK_IINF_MIO_INITIAL_FEASIBLE_SOLUTION
This item informs if MOSEK found the solution provided by the user to be feasible

• 0: solution provided by the user was not found to be feasible for the current problem,

• 1: user provided solution was found to be feasible.

MSK_IINF_MIO_NODE_DEPTH
Depth of the last node solved.

MSK_IINF_MIO_NUM_ACTIVE_NODES
Number of active branch and bound nodes.

MSK_IINF_MIO_NUM_ACTIVE_ROOT_CUTS
Number of active cuts in the final relaxation after the mixed-integer optimizer’s root cut generation.

MSK_IINF_MIO_NUM_BLOCKS_SOLVED_IN_BB
Number of independent decomposition blocks solved though a dedicated algorithm.

MSK_IINF_MIO_NUM_BLOCKS_SOLVED_IN_PRESOLVE
Number of independent decomposition blocks solved during presolve.

MSK_IINF_MIO_NUM_BRANCH
Number of branches performed during the optimization.

MSK_IINF_MIO_NUM_INT_SOLUTIONS
Number of integer feasible solutions that have been found.

MSK_IINF_MIO_NUM_RELAX
Number of relaxations solved during the optimization.

MSK_IINF_MIO_NUM_REPEATED_PRESOLVE
Number of times presolve was repeated at root.

MSK_IINF_MIO_NUM_RESTARTS
Number of restarts performed during the optimization.

MSK_IINF_MIO_NUM_ROOT_CUT_ROUNDS
Number of cut separation rounds at the root node of the mixed-integer optimizer.

MSK_IINF_MIO_NUM_SELECTED_CLIQUE_CUTS
Number of clique cuts selected to be included in the relaxation.

MSK_IINF_MIO_NUM_SELECTED_CMIR_CUTS
Number of Complemented Mixed Integer Rounding (CMIR) cuts selected to be included in the
relaxation.

MSK_IINF_MIO_NUM_SELECTED_GOMORY_CUTS
Number of Gomory cuts selected to be included in the relaxation.

MSK_IINF_MIO_NUM_SELECTED_IMPLIED_BOUND_CUTS
Number of implied bound cuts selected to be included in the relaxation.

MSK_IINF_MIO_NUM_SELECTED_KNAPSACK_COVER_CUTS
Number of clique cuts selected to be included in the relaxation.

MSK_IINF_MIO_NUM_SELECTED_LIPRO_CUTS
Number of lift-and-project cuts selected to be included in the relaxation.

MSK_IINF_MIO_NUM_SEPARATED_CLIQUE_CUTS
Number of separated clique cuts.

MSK_IINF_MIO_NUM_SEPARATED_CMIR_CUTS
Number of separated Complemented Mixed Integer Rounding (CMIR) cuts.

197

MSK_IINF_MIO_NUM_SEPARATED_GOMORY_CUTS
Number of separated Gomory cuts.

MSK_IINF_MIO_NUM_SEPARATED_IMPLIED_BOUND_CUTS
Number of separated implied bound cuts.

MSK_IINF_MIO_NUM_SEPARATED_KNAPSACK_COVER_CUTS
Number of separated clique cuts.

MSK_IINF_MIO_NUM_SEPARATED_LIPRO_CUTS
Number of separated lift-and-project cuts.

MSK_IINF_MIO_NUM_SOLVED_NODES
Number of branch and bounds nodes solved in the main branch and bound tree.

MSK_IINF_MIO_NUMBIN
Number of binary variables in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMBINCONEVAR
Number of binary cone variables in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMCON
Number of constraints in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMCONE
Number of cones in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMCONEVAR
Number of cone variables in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMCONT
Number of continuous variables in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMCONTCONEVAR
Number of continuous cone variables in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMDEXPCONES
Number of dual exponential cones in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMDJC
Number of disjunctive constraints in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMDPOWCONES
Number of dual power cones in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMINT
Number of integer variables in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMINTCONEVAR
Number of integer cone variables in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMPEXPCONES
Number of primal exponential cones in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMPPOWCONES
Number of primal power cones in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMQCONES
Number of quadratic cones in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMRQCONES
Number of rotated quadratic cones in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_NUMVAR
Number of variables in the problem to be solved by the mixed-integer optimizer.

MSK_IINF_MIO_OBJ_BOUND_DEFINED
Non-zero if a valid objective bound has been found, otherwise zero.

MSK_IINF_MIO_PRESOLVED_NUMBIN
Number of binary variables in the problem after the mixed-integer optimizer’s presolve.

MSK_IINF_MIO_PRESOLVED_NUMBINCONEVAR
Number of binary cone variables in the problem after the mixed-integer optimizer’s presolve.

MSK_IINF_MIO_PRESOLVED_NUMCON
Number of constraints in the problem after the mixed-integer optimizer’s presolve.

198

MSK_IINF_MIO_PRESOLVED_NUMCONE

Number of cones in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMCONEVAR

Number of cone variables in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMCONT

Number of continuous variables in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMCONTCONEVAR

Number of continuous cone variables in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMDEXPCONES

Number of dual exponential cones in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMDJC

Number of disjunctive constraints in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMDPOWCONES

Number of dual power cones in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMINT

Number of integer variables in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMINTCONEVAR

Number of integer cone variables in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMPEXPCONES

Number of primal exponential cones in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMPPOWCONES

Number of primal power cones in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMQCONES

Number of quadratic cones in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMRQCONES

Number of rotated quadratic cones in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMVAR

Number of variables in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_RELGAP_SATISFIED

Non-zero if relative gap is within tolerances.
MSK_IINF_MIO_TOTAL_NUM_SELECTED_CUTS

Total number of cuts selected to be included in the relaxation by the mixed-integer optimizer.
MSK_IINF_MIO_TOTAL_NUM_SEPARATED_CUTS

Total number of cuts separated by the mixed-integer optimizer.
MSK_IINF_MIO_USER_OBJ_CUT

If it is non-zero, then the objective cut is used.
MSK_IINF_OPT_NUMCON

Number of constraints in the problem solved when the optimizer is called.
MSK_IINF_OPT_NUMVAR

Number of variables in the problem solved when the optimizer is called
MSK_IINF_OPTIMIZE_RESPONSE

The response code returned by optimize.
MSK_IINF_PRESOLVE_NUM_PRIMAL_PERTURBATIONS

Number perturbations to thhe bounds of the primal problem.
MSK_IINF_PURIFY_DUAL_SUCCESS

Is nonzero if the dual solution is purified.
MSK_IINF_PURIFY_PRIMAL_SUCCESS

Is nonzero if the primal solution is purified.
MSK_IINF_RD_NUMBARVAR

Number of symmetric variables read.
MSK_IINF_RD_NUMCON

Number of constraints read.

199

MSK_IINF_RD_NUMCONE

Number of conic constraints read.
MSK_IINF_RD_NUMINTVAR

Number of integer-constrained variables read.
MSK_IINF_RD_NUMQ

Number of nonempty Q matrices read.
MSK_IINF_RD_NUMVAR

Number of variables read.
MSK_IINF_RD_PROTYPE

Problem type.
MSK_IINF_SIM_DUAL_DEG_ITER

The number of dual degenerate iterations.
MSK_IINF_SIM_DUAL_HOTSTART

If 1 then the dual simplex algorithm is solving from an advanced basis.
MSK_IINF_SIM_DUAL_HOTSTART_LU

If 1 then a valid basis factorization of full rank was located and used by the dual simplex algorithm.
MSK_IINF_SIM_DUAL_INF_ITER

The number of iterations taken with dual infeasibility.
MSK_IINF_SIM_DUAL_ITER

Number of dual simplex iterations during the last optimization.
MSK_IINF_SIM_NUMCON

Number of constraints in the problem solved by the simplex optimizer.
MSK_IINF_SIM_NUMVAR

Number of variables in the problem solved by the simplex optimizer.
MSK_IINF_SIM_PRIMAL_DEG_ITER

The number of primal degenerate iterations.
MSK_IINF_SIM_PRIMAL_HOTSTART

If 1 then the primal simplex algorithm is solving from an advanced basis.
MSK_IINF_SIM_PRIMAL_HOTSTART_LU

If 1 then a valid basis factorization of full rank was located and used by the primal simplex
algorithm.

MSK_IINF_SIM_PRIMAL_INF_ITER

The number of iterations taken with primal infeasibility.
MSK_IINF_SIM_PRIMAL_ITER

Number of primal simplex iterations during the last optimization.
MSK_IINF_SIM_SOLVE_DUAL

Is non-zero if dual problem is solved.
MSK_IINF_SOL_BAS_PROSTA

Problem status of the basic solution. Updated after each optimization.
MSK_IINF_SOL_BAS_SOLSTA

Solution status of the basic solution. Updated after each optimization.
MSK_IINF_SOL_ITG_PROSTA

Problem status of the integer solution. Updated after each optimization.
MSK_IINF_SOL_ITG_SOLSTA

Solution status of the integer solution. Updated after each optimization.
MSK_IINF_SOL_ITR_PROSTA

Problem status of the interior-point solution. Updated after each optimization.
MSK_IINF_SOL_ITR_SOLSTA

Solution status of the interior-point solution. Updated after each optimization.
MSK_IINF_STO_NUM_A_REALLOC

Number of times the storage for storing 𝐴 has been changed. A large value may indicates that
memory fragmentation may occur.

200

10.4.24 Information item types

MSK_INF_DOU_TYPE

Is a double information type.
MSK_INF_INT_TYPE

Is an integer.
MSK_INF_LINT_TYPE

Is a long integer.

10.4.25 Input/output modes

MSK_IOMODE_READ

The file is read-only.
MSK_IOMODE_WRITE

The file is write-only. If the file exists then it is truncated when it is opened. Otherwise it is created
when it is opened.

MSK_IOMODE_READWRITE

The file is to read and write.

10.4.26 Specifies the branching direction.

MSK_BRANCH_DIR_FREE

The mixed-integer optimizer decides which branch to choose.
MSK_BRANCH_DIR_UP

The mixed-integer optimizer always chooses the up branch first.
MSK_BRANCH_DIR_DOWN

The mixed-integer optimizer always chooses the down branch first.
MSK_BRANCH_DIR_NEAR

Branch in direction nearest to selected fractional variable.
MSK_BRANCH_DIR_FAR

Branch in direction farthest from selected fractional variable.
MSK_BRANCH_DIR_ROOT_LP

Chose direction based on root lp value of selected variable.
MSK_BRANCH_DIR_GUIDED

Branch in direction of current incumbent.
MSK_BRANCH_DIR_PSEUDOCOST

Branch based on the pseudocost of the variable.

10.4.27 Specifies the reformulation method for mixed-integer quadratic problems.

MSK_MIO_QCQO_REFORMULATION_METHOD_FREE

The mixed-integer optimizer decides which reformulation method to apply.
MSK_MIO_QCQO_REFORMULATION_METHOD_NONE

No reformulation method is applied.
MSK_MIO_QCQO_REFORMULATION_METHOD_LINEARIZATION

A reformulation via linearization is applied.
MSK_MIO_QCQO_REFORMULATION_METHOD_EIGEN_VAL_METHOD

The eigenvalue method is applied.
MSK_MIO_QCQO_REFORMULATION_METHOD_DIAG_SDP

A perturbation of matrix diagonals via the solution of SDPs is applied.
MSK_MIO_QCQO_REFORMULATION_METHOD_RELAX_SDP

A Reformulation based on the solution of an SDP-relaxation of the problem is applied.

201

10.4.28 Specifies the problem data permutation method for mixed-integer prob-
lems.

MSK_MIO_DATA_PERMUTATION_METHOD_NONE

No problem data permutation is applied.
MSK_MIO_DATA_PERMUTATION_METHOD_CYCLIC_SHIFT

A random cyclic shift is applied to permute the problem data.
MSK_MIO_DATA_PERMUTATION_METHOD_RANDOM

A random permutation is applied to the problem data.

10.4.29 Continuous mixed-integer solution type

MSK_MIO_CONT_SOL_NONE

No interior-point or basic solution are reported when the mixed-integer optimizer is used.
MSK_MIO_CONT_SOL_ROOT

The reported interior-point and basic solutions are a solution to the root node problem when
mixed-integer optimizer is used.

MSK_MIO_CONT_SOL_ITG

The reported interior-point and basic solutions are a solution to the problem with all integer
variables fixed at the value they have in the integer solution. A solution is only reported in case
the problem has a primal feasible solution.

MSK_MIO_CONT_SOL_ITG_REL

In case the problem is primal feasible then the reported interior-point and basic solutions are a
solution to the problem with all integer variables fixed at the value they have in the integer solution.
If the problem is primal infeasible, then the solution to the root node problem is reported.

10.4.30 Integer restrictions

MSK_MIO_MODE_IGNORED

The integer constraints are ignored and the problem is solved as a continuous problem.
MSK_MIO_MODE_SATISFIED

Integer restrictions should be satisfied.

10.4.31 Mixed-integer node selection types

MSK_MIO_NODE_SELECTION_FREE

The optimizer decides the node selection strategy.
MSK_MIO_NODE_SELECTION_FIRST

The optimizer employs a depth first node selection strategy.
MSK_MIO_NODE_SELECTION_BEST

The optimizer employs a best bound node selection strategy.
MSK_MIO_NODE_SELECTION_PSEUDO

The optimizer employs selects the node based on a pseudo cost estimate.

10.4.32 Mixed-integer variable selection types

MSK_MIO_VAR_SELECTION_FREE

The optimizer decides the variable selection strategy.
MSK_MIO_VAR_SELECTION_PSEUDOCOST

The optimizer employs pseudocost variable selection.
MSK_MIO_VAR_SELECTION_STRONG

The optimizer employs strong branching varfiable selection

202

10.4.33 MPS file format type

MSK_MPS_FORMAT_STRICT

It is assumed that the input file satisfies the MPS format strictly.
MSK_MPS_FORMAT_RELAXED

It is assumed that the input file satisfies a slightly relaxed version of the MPS format.
MSK_MPS_FORMAT_FREE

It is assumed that the input file satisfies the free MPS format. This implies that spaces are not
allowed in names. Otherwise the format is free.

MSK_MPS_FORMAT_CPLEX

The CPLEX compatible version of the MPS format is employed.

10.4.34 Objective sense types

MSK_OBJECTIVE_SENSE_MINIMIZE

The problem should be minimized.
MSK_OBJECTIVE_SENSE_MAXIMIZE

The problem should be maximized.

10.4.35 On/off

MSK_ON

Switch the option on.
MSK_OFF

Switch the option off.

10.4.36 Optimizer types

MSK_OPTIMIZER_CONIC

The optimizer for problems having conic constraints.
MSK_OPTIMIZER_DUAL_SIMPLEX

The dual simplex optimizer is used.
MSK_OPTIMIZER_FREE

The optimizer is chosen automatically.
MSK_OPTIMIZER_FREE_SIMPLEX

One of the simplex optimizers is used.
MSK_OPTIMIZER_INTPNT

The interior-point optimizer is used.
MSK_OPTIMIZER_MIXED_INT

The mixed-integer optimizer.
MSK_OPTIMIZER_NEW_DUAL_SIMPLEX

The new dual simplex optimizer is used.
MSK_OPTIMIZER_NEW_PRIMAL_SIMPLEX

The new primal simplex optimizer is used. It is not recommended to use this option.
MSK_OPTIMIZER_PRIMAL_SIMPLEX

The primal simplex optimizer is used.

203

10.4.37 Ordering strategies

MSK_ORDER_METHOD_FREE

The ordering method is chosen automatically.
MSK_ORDER_METHOD_APPMINLOC

Approximate minimum local fill-in ordering is employed.
MSK_ORDER_METHOD_EXPERIMENTAL

This option should not be used.
MSK_ORDER_METHOD_TRY_GRAPHPAR

Always try the graph partitioning based ordering.
MSK_ORDER_METHOD_FORCE_GRAPHPAR

Always use the graph partitioning based ordering even if it is worse than the approximate minimum
local fill ordering.

MSK_ORDER_METHOD_NONE

No ordering is used. Note using this value almost always leads to a significantly slow down.

10.4.38 Presolve method.

MSK_PRESOLVE_MODE_OFF

The problem is not presolved before it is optimized.
MSK_PRESOLVE_MODE_ON

The problem is presolved before it is optimized.
MSK_PRESOLVE_MODE_FREE

It is decided automatically whether to presolve before the problem is optimized.

10.4.39 Method of folding (symmetry detection for continuous problems).

MSK_FOLDING_MODE_OFF

Disabled.
MSK_FOLDING_MODE_FREE

The solver decides on the usage and amount of folding.
MSK_FOLDING_MODE_FREE_UNLESS_BASIC

If only the interior-point solution is requested then the solver decides; if the basic solution is
requested then folding is disabled.

MSK_FOLDING_MODE_FORCE

Full folding is always performed regardless of workload.

10.4.40 Parameter type

MSK_PAR_INVALID_TYPE

Not a valid parameter.
MSK_PAR_DOU_TYPE

Is a double parameter.
MSK_PAR_INT_TYPE

Is an integer parameter.
MSK_PAR_STR_TYPE

Is a string parameter.

204

10.4.41 Problem data items

MSK_PI_VAR

Item is a variable.
MSK_PI_CON

Item is a constraint.
MSK_PI_CONE

Item is a cone.

10.4.42 Problem types

MSK_PROBTYPE_LO

The problem is a linear optimization problem.
MSK_PROBTYPE_QO

The problem is a quadratic optimization problem.
MSK_PROBTYPE_QCQO

The problem is a quadratically constrained optimization problem.
MSK_PROBTYPE_CONIC

A conic optimization.
MSK_PROBTYPE_MIXED

General nonlinear constraints and conic constraints. This combination can not be solved by
MOSEK.

10.4.43 Problem status keys

MSK_PRO_STA_UNKNOWN

Unknown problem status.
MSK_PRO_STA_PRIM_AND_DUAL_FEAS

The problem is primal and dual feasible.
MSK_PRO_STA_PRIM_FEAS

The problem is primal feasible.
MSK_PRO_STA_DUAL_FEAS

The problem is dual feasible.
MSK_PRO_STA_PRIM_INFEAS

The problem is primal infeasible.
MSK_PRO_STA_DUAL_INFEAS

The problem is dual infeasible.
MSK_PRO_STA_PRIM_AND_DUAL_INFEAS

The problem is primal and dual infeasible.
MSK_PRO_STA_ILL_POSED

The problem is ill-posed. For example, it may be primal and dual feasible but have a positive
duality gap.

MSK_PRO_STA_PRIM_INFEAS_OR_UNBOUNDED

The problem is either primal infeasible or unbounded. This may occur for mixed-integer problems.

205

10.4.44 Response code type

MSK_RESPONSE_OK

The response code is OK.
MSK_RESPONSE_WRN

The response code is a warning.
MSK_RESPONSE_TRM

The response code is an optimizer termination status.
MSK_RESPONSE_ERR

The response code is an error.
MSK_RESPONSE_UNK

The response code does not belong to any class.

10.4.45 Scaling type

MSK_SCALING_FREE

The optimizer chooses the scaling heuristic.
MSK_SCALING_NONE

No scaling is performed.

10.4.46 Scaling method

MSK_SCALING_METHOD_POW2

Scales only with power of 2 leaving the mantissa untouched.
MSK_SCALING_METHOD_FREE

The optimizer chooses the scaling heuristic.

10.4.47 Sensitivity types

MSK_SENSITIVITY_TYPE_BASIS

Basis sensitivity analysis is performed.

10.4.48 Simplex selection strategy

MSK_SIM_SELECTION_FREE

The optimizer chooses the pricing strategy.
MSK_SIM_SELECTION_FULL

The optimizer uses full pricing.
MSK_SIM_SELECTION_ASE

The optimizer uses approximate steepest-edge pricing.
MSK_SIM_SELECTION_DEVEX

The optimizer uses devex steepest-edge pricing (or if it is not available an approximate steep-edge
selection).

MSK_SIM_SELECTION_SE

The optimizer uses steepest-edge selection (or if it is not available an approximate steep-edge
selection).

MSK_SIM_SELECTION_PARTIAL

The optimizer uses a partial selection approach. The approach is usually beneficial if the number
of variables is much larger than the number of constraints.

206

10.4.49 Solution items

MSK_SOL_ITEM_XC

Solution for the constraints.
MSK_SOL_ITEM_XX

Variable solution.
MSK_SOL_ITEM_Y

Lagrange multipliers for equations.
MSK_SOL_ITEM_SLC

Lagrange multipliers for lower bounds on the constraints.
MSK_SOL_ITEM_SUC

Lagrange multipliers for upper bounds on the constraints.
MSK_SOL_ITEM_SLX

Lagrange multipliers for lower bounds on the variables.
MSK_SOL_ITEM_SUX

Lagrange multipliers for upper bounds on the variables.
MSK_SOL_ITEM_SNX

Lagrange multipliers corresponding to the conic constraints on the variables.

10.4.50 Solution status keys

MSK_SOL_STA_UNKNOWN

Status of the solution is unknown.
MSK_SOL_STA_OPTIMAL

The solution is optimal.
MSK_SOL_STA_PRIM_FEAS

The solution is primal feasible.
MSK_SOL_STA_DUAL_FEAS

The solution is dual feasible.
MSK_SOL_STA_PRIM_AND_DUAL_FEAS

The solution is both primal and dual feasible.
MSK_SOL_STA_PRIM_INFEAS_CER

The solution is a certificate of primal infeasibility.
MSK_SOL_STA_DUAL_INFEAS_CER

The solution is a certificate of dual infeasibility.
MSK_SOL_STA_PRIM_ILLPOSED_CER

The solution is a certificate that the primal problem is illposed.
MSK_SOL_STA_DUAL_ILLPOSED_CER

The solution is a certificate that the dual problem is illposed.
MSK_SOL_STA_INTEGER_OPTIMAL

The primal solution is integer optimal.

10.4.51 Solution types

MSK_SOL_BAS

The basic solution.
MSK_SOL_ITR

The interior solution.
MSK_SOL_ITG

The integer solution.

207

10.4.52 Solve primal or dual form

MSK_SOLVE_FREE

The optimizer is free to solve either the primal or the dual problem.
MSK_SOLVE_PRIMAL

The optimizer should solve the primal problem.
MSK_SOLVE_DUAL

The optimizer should solve the dual problem.

10.4.53 Status keys

MSK_SK_UNK

The status for the constraint or variable is unknown.
MSK_SK_BAS

The constraint or variable is in the basis.
MSK_SK_SUPBAS

The constraint or variable is super basic.
MSK_SK_LOW

The constraint or variable is at its lower bound.
MSK_SK_UPR

The constraint or variable is at its upper bound.
MSK_SK_FIX

The constraint or variable is fixed.
MSK_SK_INF

The constraint or variable is infeasible in the bounds.

10.4.54 Starting point types

MSK_STARTING_POINT_FREE

The starting point is chosen automatically.
MSK_STARTING_POINT_GUESS

The optimizer guesses a starting point.
MSK_STARTING_POINT_CONSTANT

The optimizer constructs a starting point by assigning a constant value to all primal and dual
variables. This starting point is normally robust.

10.4.55 Stream types

MSK_STREAM_LOG

Log stream. Contains the aggregated contents of all other streams. This means that a message
written to any other stream will also be written to this stream.

MSK_STREAM_MSG

Message stream. Log information relating to performance and progress of the optimization is
written to this stream.

MSK_STREAM_ERR

Error stream. Error messages are written to this stream.
MSK_STREAM_WRN

Warning stream. Warning messages are written to this stream.

208

10.4.56 Integer values

MSK_MAX_STR_LEN
Maximum string length allowed in MOSEK.

MSK_LICENSE_BUFFER_LENGTH
The length of a license key buffer.

10.4.57 Variable types

MSK_VAR_TYPE_CONT
Is a continuous variable.

MSK_VAR_TYPE_INT
Is an integer variable.

10.5 Supported domains

This section lists the domains supported by MOSEK.

10.5.1 Linear domains
Each linear domain is determined by the dimension 𝑛.

• : the zero domain, consisting of the origin 0𝑛 ∈ R𝑛.

• : the nonnegative orthant domain R𝑛
≥0.

• : the nonpositive orthant domain R𝑛
≤0.

• : the free domain, consisting of the whole R𝑛.

Membership in a linear domain is equivalent to imposing the corresponding set of 𝑛 linear constraints,
for instance 𝐹𝑥+ 𝑔 ∈ 0𝑛 is equivalent to 𝐹𝑥+ 𝑔 = 0 and so on. The free domain imposes no restriction.

10.5.2 Quadratic cone domains
The quadratic domains are determined by the dimension 𝑛.

• : the quadratic cone domain is the subset of R𝑛 defined as

𝒬𝑛 =

{︂
𝑥 ∈ R𝑛 : 𝑥1 ≥

√︁
𝑥2
2 + · · · + 𝑥2

𝑛

}︂
.

• : the rotated quadratic cone domain is the subset of R𝑛 defined as

𝒬𝑛
𝑟 =

{︀
𝑥 ∈ R𝑛 : 2𝑥1𝑥2 ≥ 𝑥2

3 + · · · + 𝑥2
𝑛, 𝑥1, 𝑥2 ≥ 0

}︀
.

10.5.3 Exponential cone domains

• : the primal exponential cone domain is the subset of R3 defined as

𝐾exp =
{︀

(𝑥1, 𝑥2, 𝑥3) ∈ R3 : 𝑥1 ≥ 𝑥2 exp(𝑥3/𝑥2), 𝑥1, 𝑥2 ≥ 0
}︀
.

• : the dual exponential cone domain is the subset of R3 defined as

𝐾*
exp =

{︀
(𝑥1, 𝑥2, 𝑥3) ∈ R3 : 𝑥1 ≥ −𝑥3 exp(𝑥2/𝑥3 − 1), 𝑥1 ≥ 0, 𝑥3 ≤ 0

}︀
.

209

10.5.4 Power cone domains
A power cone domain is determined by the dimension 𝑛 and a sequence of 1 ≤ 𝑛𝑙 < 𝑛 positive real
numbers (weights) 𝛼1, . . . , 𝛼𝑛𝑙

.

• : the primal power cone domain is the subset of R𝑛 defined as

𝒫(𝛼1,...,𝛼𝑛𝑙
)

𝑛 =

{︃
𝑥 ∈ R𝑛 :

𝑛𝑙∏︁
𝑖=1

𝑥𝛽𝑖

𝑖 ≥
√︁

𝑥2
𝑛𝑙+1 + · · · + 𝑥2

𝑛, 𝑥1, . . . , 𝑥𝑛𝑙
≥ 0

}︃
.

where 𝛽𝑖 are the weights normalized to add up to 1, ie. 𝛽𝑖 = 𝛼𝑖/(
∑︀

𝑗 𝛼𝑗) for 𝑖 = 1, . . . , 𝑛𝑙.
The name 𝑛𝑙 reads as “n left”, the length of the product on the left-hand side of the definition.

• : the dual power cone domain is the subset of R𝑛 defined as

(︁
𝒫(𝛼1,...,𝛼𝑛𝑙

)
𝑛

)︁*
=

{︃
𝑥 ∈ R𝑛 :

𝑛𝑙∏︁
𝑖=1

(︂
𝑥𝑖

𝛽𝑖

)︂𝛽𝑖

≥
√︁
𝑥2
𝑛𝑙+1 + · · · + 𝑥2

𝑛, 𝑥1, . . . , 𝑥𝑛𝑙
≥ 0

}︃
.

where 𝛽𝑖 are the weights normalized to add up to 1, ie. 𝛽𝑖 = 𝛼𝑖/(
∑︀

𝑗 𝛼𝑗) for 𝑖 = 1, . . . , 𝑛𝑙.
The name 𝑛𝑙 reads as “n left”, the length of the product on the left-hand side of the definition.

• Remark: in MOSEK 9 power cones were available only in the special case with 𝑛𝑙 = 2 and weights
(𝛼, 1 − 𝛼) for some 0 < 𝛼 < 1 specified as cone parameter.

10.5.5 Geometric mean cone domains
A geometric mean cone domain is determined by the dimension 𝑛.

• : the primal geometric mean cone domain is the subset of R𝑛 defined as

𝒢ℳ𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 :

(︃
𝑛−1∏︁
𝑖=1

𝑥𝑖

)︃1/(𝑛−1)

≥ |𝑥𝑛|, 𝑥1, . . . , 𝑥𝑛−1 ≥ 0

⎫⎬⎭ .

It is a special case of the primal power cone domain with 𝑛𝑙 = 𝑛−1 and weights 𝛼 = (1, . . . , 1).

• : the dual geometric mean cone domain is the subset of R𝑛 defined as

(𝒢ℳ𝑛)* =

⎧⎨⎩𝑥 ∈ R𝑛 : (𝑛− 1)

(︃
𝑛−1∏︁
𝑖=1

𝑥𝑖

)︃1/(𝑛−1)

≥ |𝑥𝑛|, 𝑥1, . . . , 𝑥𝑛−1 ≥ 0

⎫⎬⎭ .

It is a special case of the dual power cone domain with 𝑛𝑙 = 𝑛−1 and weights 𝛼 = (1, . . . , 1).

10.5.6 Vectorized semidefinite domain
• : the vectorized PSD cone domain is determined by the dimension 𝑛, which must be of the

form 𝑛 = 𝑑(𝑑 + 1)/2. Then the domain is defined as

𝒮𝑑,vec
+ =

{︀
(𝑥1, . . . , 𝑥𝑑(𝑑+1)/2) ∈ R𝑛 : sMat(𝑥) ∈ 𝒮𝑑

+

}︀
,

210

where

sMat(𝑥) =

⎡⎢⎢⎣
𝑥1 𝑥2/

√
2 · · · 𝑥𝑑/

√
2

𝑥2/
√

2 𝑥𝑑+1 · · · 𝑥2𝑑−1/
√

2
· · · · · · · · · · · ·

𝑥𝑑/
√

2 𝑥2𝑑−1/
√

2 · · · 𝑥𝑑(𝑑+1)/2

⎤⎥⎥⎦ ,

or equivalently

𝒮𝑑,vec
+ =

{︀
sVec(𝑋) : 𝑋 ∈ 𝒮𝑑

+

}︀
,

where

sVec(𝑋) = (𝑋11,
√

2𝑋21, . . . ,
√

2𝑋𝑑1, 𝑋22,
√

2𝑋32, . . . , 𝑋𝑑𝑑).

In other words, the domain consists of vectorizations of the lower-triangular part of a positive
semidefinite matrix, with the non-diagonal elements additionally rescaled.

211

Chapter 11

Supported File Formats

MOSEK supports a range of problem and solution formats listed in Table 11.1 and Table 11.2.
The most important are:

• the Task format, MOSEK‘s native binary format which supports all features that MOSEK
supports. It is the closest possible representation of the internal data in a task and it is ideal for
submitting problem data support questions.

• the PTF format, MOSEK‘s human-readable format that supports all linear, conic and mixed-
integer features. It is ideal for debugging. It is not an exact copy of all the data in the task, but
it contains all information required to reconstruct it, presented in a readable fashion.

• MPS, LP, CBF formats are industry standards, each supporting some limited set of features, and
potentially requiring some degree of reformulation during read/write.

Problem formats

Table 11.1: List of supported file formats for optimization prob-
lems.

Format Type Ext. Binary/Text LP QCQO ACC SDP DJC Sol Param

LP lp plain text X X
MPS mps plain text X X
PTF ptf plain text X X X X X X
CBF cbf plain text X X X
Task format task binary X X X X X X X
Jtask format jtask text/JSON X X X X X X X
OPF (deprecated for conic problems) opf plain text X X X X

The columns of the table indicate if the specified file format supports:

• LP - linear problems, possibly with integer variables,

• QCQO - quadratic objective or constraints,

• ACC - affine conic constraints,

• SDP - semidefinite cone/variables,

• DJC - disjunctive constraints,

• Sol - solutions,

• Param - optimizer parameters.

212

Solution formats

Table 11.2: List of supported solution formats.

Format Type Ext. Binary/Text Description

SOL sol plain text Interior Solution
bas plain text Basic Solution
int plain text Integer

Jsol format jsol text/JSON All solutions

Compression

MOSEK supports GZIP and Zstandard compression. Problem files with extension .gz (for GZIP) and
.zst (for Zstandard) are assumed to be compressed when read, and are automatically compressed when
written. For example, a file called

problem.mps.zst

will be considered as a Zstandard compressed MPS file.

11.1 The LP File Format

MOSEK supports the LP file format with some extensions. The LP format is not a completely well-
defined standard and hence different optimization packages may interpret the same LP file in slightly
different ways. MOSEK tries to emulate as closely as possible CPLEX’s behavior, but tries to stay
backward compatible.

The LP file format can specify problems of the form

minimize/maximize 𝑐𝑇𝑥 + 1
2𝑞

𝑜(𝑥)
subject to 𝑙𝑐 ≤ 𝐴𝑥 + 1

2𝑞(𝑥) ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥𝒥 integer,

where

• 𝑥 ∈ R𝑛 is the vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear term in the objective.

• 𝑞𝑜 :∈ R𝑛 → R is the quadratic term in the objective where

𝑞𝑜(𝑥) = 𝑥𝑇𝑄𝑜𝑥

and it is assumed that

𝑄𝑜 = (𝑄𝑜)𝑇 .

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

• 𝑞 : R𝑛 → R is a vector of quadratic functions. Hence,

213

𝑞𝑖(𝑥) = 𝑥𝑇𝑄𝑖𝑥

where it is assumed that

𝑄𝑖 = (𝑄𝑖)𝑇 .

• 𝒥 ⊆ {1, 2, . . . , 𝑛} is an index set of the integer constrained variables.

11.1.1 File Sections
An LP formatted file contains a number of sections specifying the objective, constraints, variable bounds,
and variable types. The section keywords may be any mix of upper and lower case letters.

Objective Function

The first section beginning with one of the keywords

max
maximum
maximize
min
minimum
minimize

defines the objective sense and the objective function, i.e.

𝑐𝑇𝑥 +
1

2
𝑥𝑇𝑄𝑜𝑥.

The objective may be given a name by writing

myname:

before the expressions.
The objective function contains linear and quadratic terms. The linear terms are written as

4 x1 + x2 - 0.1 x3

and so forth. The quadratic terms are written in square brackets ([]/2) and are either squared or
multiplied as in the examples

x1^2

and

x1 * x2

There may be zero or more pairs of brackets containing quadratic expressions.
An example of an objective section is

minimize
myobj: 4 x1 + x2 - 0.1 x3 + [x1^2 + 2.1 x1 * x2]/2

Please note that the quadratic expressions are multiplied with 1
2 , so that the above expression means

minimize 4𝑥1 + 𝑥2 − 0.1 · 𝑥3 + 1
2 (𝑥2

1 + 2.1 · 𝑥1 · 𝑥2)

If the same variable occurs more than once in the linear part, the coefficients are added, so that 4 x1 +
2 x1 is equivalent to 6 x1. In the quadratic expressions x1 * x2 is equivalent to x2 * x1 and, as in the
linear part, if the same variables multiplied or squared occur several times their coefficients are added.

214

Constraints

The second section beginning with one of the keywords

subj to
subject to
s.t.
st

defines the linear constraint matrix 𝐴 and the quadratic matrices 𝑄𝑖.
A constraint contains a name (optional), expressions adhering to the same rules as in the objective

and a bound:

subject to
con1: x1 + x2 + [x3^2]/2 <= 5.1

The bound type (here <=) may be any of <, <=, =, >, >= (< and <= mean the same), and the bound
may be any number.

Ranged constraints cannot be written in LP format, and have to be split into a separate upper and
lower bound.

Bounds

Bounds on the variables can be specified in the bound section beginning with one of the keywords

bound
bounds

The bounds section is optional but should, if present, follow the subject to section. All variables
listed in the bounds section must occur in either the objective or a constraint.

The default lower and upper bounds are 0 and +∞ . A variable may be declared free with the keyword
free, which means that the lower bound is −∞ and the upper bound is +∞ . Furthermore it may be
assigned a finite lower and upper bound. The bound definitions for a given variable may be written in
one or two lines, and bounds can be any number or ±∞ (written as +inf/-inf/+infinity/-infinity)
as in the example

bounds
x1 free
x2 <= 5
0.1 <= x2
x3 = 42
2 <= x4 < +inf

Variable Types

The final two sections are optional and must begin with one of the keywords

bin
binaries
binary

and

gen
general

Under general all integer variables are listed, and under binary all binary (integer variables with
bounds 0 and 1) are listed:

general
x1 x2

(continues on next page)

215

(continued from previous page)

binary
x3 x4

Again, all variables listed in the binary or general sections must occur in either the objective or a
constraint.

Terminating Section

Finally, an LP formatted file must be terminated with the keyword

end

11.1.2 LP File Examples

Linear example lo1.lp

\ File: lo1.lp
maximize
obj: 3 x1 + x2 + 5 x3 + x4
subject to
c1: 3 x1 + x2 + 2 x3 = 30
c2: 2 x1 + x2 + 3 x3 + x4 >= 15
c3: 2 x2 + 3 x4 <= 25
bounds
0 <= x1 <= +infinity
0 <= x2 <= 10
0 <= x3 <= +infinity
0 <= x4 <= +infinity

end

Mixed integer example milo1.lp

maximize
obj: x1 + 6.4e-01 x2
subject to
c1: 5e+01 x1 + 3.1e+01 x2 <= 2.5e+02
c2: 3e+00 x1 - 2e+00 x2 >= -4e+00
bounds
0 <= x1 <= +infinity
0 <= x2 <= +infinity

general
x1 x2

end

11.1.3 LP Format peculiarities

Comments

Anything on a line after a \ is ignored and is treated as a comment.

216

Names

A name for an objective, a constraint or a variable may contain the letters a-z, A-Z, the digits 0-9 and
the characters

!"#$%&()/,.;?@_'`|~

The first character in a name must not be a number, a period or the letter e or E. Keywords must
not be used as names.

MOSEK accepts any character as valid for names, except \0. A name that is not allowed in LP file
will be changed and a warning will be issued.

The algorithm for making names LP valid works as follows: The name is interpreted as an utf-8
string. For a Unicode character c:

• If c==_ (underscore), the output is __ (two underscores).

• If c is a valid LP name character, the output is just c.

• If c is another character in the ASCII range, the output is _XX, where XX is the hexadecimal code
for the character.

• If c is a character in the range 127-65535, the output is _uXXXX, where XXXX is the hexadecimal
code for the character.

• If c is a character above 65535, the output is _UXXXXXXXX, where XXXXXXXX is the hexadecimal
code for the character.

Invalid utf-8 substrings are escaped as _XX', and if a name starts with a period, e or E, that character
is escaped as _XX.

Variable Bounds

Specifying several upper or lower bounds on one variable is possible but MOSEK uses only the tightest
bounds. If a variable is fixed (with =), then it is considered the tightest bound.

11.2 The MPS File Format

MOSEK supports the standard MPS format with some extensions. For a detailed description of the
MPS format see the book by Nazareth [Naz87].

11.2.1 MPS File Structure
The version of the MPS format supported by MOSEK allows specification of an optimization problem
of the form

maximize/minimize 𝑐𝑇𝑥 + 𝑞0(𝑥)
𝑙𝑐 ≤ 𝐴𝑥 + 𝑞(𝑥) ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ 𝒦,
𝑥𝒥 integer,

(11.1)

where

• 𝑥 ∈ R𝑛 is the vector of decision variables.

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

217

• 𝑞 : R𝑛 → R is a vector of quadratic functions. Hence,

𝑞𝑖(𝑥) =
1

2
𝑥𝑇𝑄𝑖𝑥

where it is assumed that 𝑄𝑖 = (𝑄𝑖)𝑇 . Please note the explicit 1
2 in the quadratic term and that 𝑄𝑖

is required to be symmetric. The same applies to 𝑞0.

• 𝒦 is a convex cone.

• 𝒥 ⊆ {1, 2, . . . , 𝑛} is an index set of the integer-constrained variables.

• 𝑐 is the vector of objective coefficients.

An MPS file with one row and one column can be illustrated like this:

* 1 2 3 4 5 6
*23456789012345678901234567890123456789012345678901234567890
NAME [name]
OBJSENSE

[objsense]
OBJNAME [objname]
ROWS
? [cname1]

COLUMNS
[vname1] [cname1] [value1] [cname2] [value2]

RHS
[name] [cname1] [value1] [cname2] [value2]

RANGES
[name] [cname1] [value1] [cname2] [value2]

QSECTION [cname1]
[vname1] [vname2] [value1] [vname3] [value2]

QMATRIX
[vname1] [vname2] [value1]

QUADOBJ
[vname1] [vname2] [value1]

QCMATRIX [cname1]
[vname1] [vname2] [value1]

BOUNDS
?? [name] [vname1] [value1]

CSECTION [kname1] [value1] [ktype]
[vname1]

ENDATA

Here the names in capitals are keywords of the MPS format and names in brackets are custom defined
names or values. A couple of notes on the structure:

• Fields: All items surrounded by brackets appear in fields. The fields named “valueN” are numerical
values. Hence, they must have the format

[+|-]XXXXXXX.XXXXXX[[e|E][+|-]XXX]

where

X = [0|1|2|3|4|5|6|7|8|9].

• Sections: The MPS file consists of several sections where the names in capitals indicate the begin-
ning of a new section. For example, COLUMNS denotes the beginning of the columns section.

• Comments: Lines starting with an * are comment lines and are ignored by MOSEK.

• Keys: The question marks represent keys to be specified later.

218

• Extensions: The sections QSECTION and CSECTION are specific MOSEK extensions of the MPS
format. The sections QMATRIX, QUADOBJ and QCMATRIX are included for sake of compatibility with
other vendors extensions to the MPS format.

• The standard MPS format is a fixed format, i.e. everything in the MPS file must be within certain
fixed positions. MOSEK also supports a free format. See Sec. 11.2.5 for details.

Linear example lo1.mps

A concrete example of a MPS file is presented below:

* File: lo1.mps
NAME lo1
OBJSENSE

MAX
ROWS
N obj
E c1
G c2
L c3

COLUMNS
x1 obj 3
x1 c1 3
x1 c2 2
x2 obj 1
x2 c1 1
x2 c2 1
x2 c3 2
x3 obj 5
x3 c1 2
x3 c2 3
x4 obj 1
x4 c2 1
x4 c3 3

RHS
rhs c1 30
rhs c2 15
rhs c3 25

RANGES
BOUNDS
UP bound x2 10

ENDATA

Subsequently each individual section in the MPS format is discussed.

219

NAME (optional)

In this section a name ([name]) is assigned to the problem.

OBJSENSE (optional)

This is an optional section that can be used to specify the sense of the objective function. The OBJSENSE
section contains one line at most which can be one of the following:

MIN
MINIMIZE
MAX
MAXIMIZE

It should be obvious what the implication is of each of these four lines.

OBJNAME (optional)

This is an optional section that can be used to specify the name of the row that is used as objective
function. objname should be a valid row name.

ROWS

A record in the ROWS section has the form

? [cname1]

where the requirements for the fields are as follows:

Field Starting Position Max Width required Description

? 2 1 Yes Constraint key
[cname1] 5 8 Yes Constraint name

Hence, in this section each constraint is assigned a unique name denoted by [cname1]. Please note
that [cname1] starts in position 5 and the field can be at most 8 characters wide. An initial key ? must
be present to specify the type of the constraint. The key can have values E, G, L, or N with the following
interpretation:

Constraint type 𝑙𝑐𝑖 𝑢𝑐
𝑖

E (equal) finite = 𝑙𝑐𝑖
G (greater) finite ∞
L (lower) −∞ finite
N (none) −∞ ∞

In the MPS format the objective vector is not specified explicitly, but one of the constraints having
the key N will be used as the objective vector 𝑐 . In general, if multiple N type constraints are specified,
then the first will be used as the objective vector 𝑐, unless something else was specified in the section
OBJNAME.

COLUMNS

In this section the elements of 𝐴 are specified using one or more records having the form:

[vname1] [cname1] [value1] [cname2] [value2]

where the requirements for each field are as follows:

220

Field Starting Position Max Width required Description

[vname1] 5 8 Yes Variable name
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

Hence, a record specifies one or two elements 𝑎𝑖𝑗 of 𝐴 using the principle that [vname1] and [cname1]
determines 𝑗 and 𝑖 respectively. Please note that [cname1] must be a constraint name specified in the
ROWS section. Finally, [value1] denotes the numerical value of 𝑎𝑖𝑗 . Another optional element is specified
by [cname2], and [value2] for the variable specified by [vname1]. Some important comments are:

• All elements belonging to one variable must be grouped together.

• Zero elements of 𝐴 should not be specified.

• At least one element for each variable should be specified.

RHS (optional)

A record in this section has the format

[name] [cname1] [value1] [cname2] [value2]

where the requirements for each field are as follows:

Field Starting Position Max Width required Description

[name] 5 8 Yes Name of the RHS vector
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

The interpretation of a record is that [name] is the name of the RHS vector to be specified. In general,
several vectors can be specified. [cname1] denotes a constraint name previously specified in the ROWS
section. Now, assume that this name has been assigned to the 𝑖 -h constraint and 𝑣1 denotes the value
specified by [value1], then the interpretation of 𝑣1 is:

Constraint 𝑙𝑐𝑖 𝑢𝑐
𝑖

E 𝑣1 𝑣1
G 𝑣1
L 𝑣1
N

An optional second element is specified by [cname2] and [value2] and is interpreted in the same
way. Please note that it is not necessary to specify zero elements, because elements are assumed to be
zero.

221

RANGES (optional)

A record in this section has the form

[name] [cname1] [value1] [cname2] [value2]

where the requirements for each fields are as follows:

Field Starting Position Max Width required Description

[name] 5 8 Yes Name of the RANGE vector
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

The records in this section are used to modify the bound vectors for the constraints, i.e. the values
in 𝑙𝑐 and 𝑢𝑐 . A record has the following interpretation:[name] is the name of the RANGE vector and
[cname1] is a valid constraint name. Assume that [cname1] is assigned to the 𝑖-th constraint and let
𝑣1 be the value specified by [value1], then a record has the interpretation:

Constraint type Sign of 𝑣1 𝑙𝑐𝑖 𝑢𝑐
𝑖

E − 𝑢𝑐
𝑖 + 𝑣1

E + 𝑙𝑐𝑖 + 𝑣1
G − or + 𝑙𝑐𝑖 + |𝑣1|
L − or + 𝑢𝑐

𝑖 − |𝑣1|
N

Another constraint bound can optionally be modified using [cname2] and [value2] the same way.

QSECTION (optional)

Within the QSECTION the label [cname1] must be a constraint name previously specified in the ROWS
section. The label [cname1] denotes the constraint to which the quadratic terms belong. A record in
the QSECTION has the form

[vname1] [vname2] [value1] [vname3] [value2]

where the requirements for each field are:

Field Starting Position Max Width required Description

[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value
[vname3] 40 8 No Variable name
[value2] 50 12 No Numerical value

A record specifies one or two elements in the lower triangular part of the 𝑄𝑖 matrix where [cname1]
specifies the 𝑖 . Hence, if the names [vname1] and [vname2] have been assigned to the 𝑘-th and 𝑗-th
variable, then 𝑄𝑖

𝑘𝑗 is assigned the value given by [value1] An optional second element is specified in
the same way by the fields [vname1], [vname3], and [value2].

The example

minimize −𝑥2 + 1
2 (2𝑥2

1 − 2𝑥1𝑥3 + 0.2𝑥2
2 + 2𝑥2

3)
subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,

𝑥 ≥ 0

has the following MPS file representation

222

* File: qo1.mps
NAME qo1
ROWS
N obj
G c1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0

QSECTION obj
x1 x1 2.0
x1 x3 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Regarding the QSECTIONs please note that:

• Only one QSECTION is allowed for each constraint.

• The QSECTIONs can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QSECTION must already be specified in the COLUMNS section.

• All entries specified in a QSECTION are assumed to belong to the lower triangular part of the
quadratic term of 𝑄 .

QMATRIX/QUADOBJ (optional)

The QMATRIX and QUADOBJ sections allow to define the quadratic term of the objective function. They
differ in how the quadratic term of the objective function is stored:

• QMATRIX stores all the nonzeros coefficients, without taking advantage of the symmetry of the 𝑄
matrix.

• QUADOBJ stores the upper diagonal nonzero elements of the 𝑄 matrix.

A record in both sections has the form:

[vname1] [vname2] [value1]

where the requirements for each field are:

Field Starting Position Max Width required Description

[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value

A record specifies one elements of the 𝑄 matrix in the objective function . Hence, if the names
[vname1] and [vname2] have been assigned to the 𝑘-th and 𝑗-th variable, then 𝑄𝑘𝑗 is assigned the value
given by [value1]. Note that a line must appear for each off-diagonal coefficient if using a QMATRIX
section, while only one entry is required in a QUADOBJ section. The quadratic part of the objective
function will be evaluated as 1/2𝑥𝑇𝑄𝑥.

The example

minimize −𝑥2 + 1
2 (2𝑥2

1 − 2𝑥1𝑥3 + 0.2𝑥2
2 + 2𝑥2

3)
subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,

𝑥 ≥ 0

has the following MPS file representation using QMATRIX

223

* File: qo1_matrix.mps
NAME qo1_qmatrix
ROWS
N obj
G c1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0

QMATRIX
x1 x1 2.0
x1 x3 -1.0
x3 x1 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

or the following using QUADOBJ

* File: qo1_quadobj.mps
NAME qo1_quadobj
ROWS
N obj
G c1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0

QUADOBJ
x1 x1 2.0
x1 x3 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Please also note that:

• A QMATRIX/QUADOBJ section can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QMATRIX/QUADOBJ section must already be specified in the
COLUMNS section.

QCMATRIX (optional)

A QCMATRIX section allows to specify the quadratic part of a given constraint. Within the QCMATRIX the
label [cname1] must be a constraint name previously specified in the ROWS section. The label [cname1]
denotes the constraint to which the quadratic term belongs. A record in the QSECTION has the form

[vname1] [vname2] [value1]

where the requirements for each field are:

224

Field Starting Position Max Width required Description

[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value

A record specifies an entry of the 𝑄𝑖 matrix where [cname1] specifies the 𝑖. Hence, if the names
[vname1] and [vname2] have been assigned to the 𝑘-th and 𝑗-th variable, then 𝑄𝑖

𝑘𝑗 is assigned the value
given by [value1]. Moreover, the quadratic term is represented as 1/2𝑥𝑇𝑄𝑥.

The example

minimize 𝑥2

subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,
1
2 (−2𝑥1𝑥3 + 0.2𝑥2

2 + 2𝑥2
3) ≤ 10,

𝑥 ≥ 0

has the following MPS file representation

* File: qo1.mps
NAME qo1
ROWS
N obj
G c1
L q1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0
rhs q1 10.0

QCMATRIX q1
x1 x1 2.0
x1 x3 -1.0
x3 x1 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Regarding the QCMATRIXs please note that:

• Only one QCMATRIX is allowed for each constraint.

• The QCMATRIXs can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QSECTION must already be specified in the COLUMNS section.

• QCMATRIX does not exploit the symmetry of 𝑄: an off-diagonal entry (𝑖, 𝑗) should appear twice.

BOUNDS (optional)

In the BOUNDS section changes to the default bounds vectors 𝑙𝑥 and 𝑢𝑥 are specified. The default bounds
vectors are 𝑙𝑥 = 0 and 𝑢𝑥 = ∞ . Moreover, it is possible to specify several sets of bound vectors. A
record in this section has the form

?? [name] [vname1] [value1]

where the requirements for each field are:

225

Field Starting Position Max Width Required Description

?? 2 2 Yes Bound key
[name] 5 8 Yes Name of the BOUNDS vector
[vname1] 15 8 Yes Variable name
[value1] 25 12 No Numerical value

Hence, a record in the BOUNDS section has the following interpretation:[name] is the name of the
bound vector and [vname1] is the name of the variable for which the bounds are modified by the record.
?? and [value1] are used to modify the bound vectors according to the following table:

?? 𝑙𝑥𝑗 𝑢𝑥
𝑗 Made integer (added to 𝒥)

FR −∞ ∞ No
FX 𝑣1 𝑣1 No
LO 𝑣1 unchanged No
MI −∞ unchanged No
PL unchanged ∞ No
UP unchanged 𝑣1 No
BV 0 1 Yes
LI ⌈𝑣1⌉ unchanged Yes
UI unchanged ⌊𝑣1⌋ Yes

Here 𝑣1 is the value specified by [value1].

CSECTION (optional)

The purpose of the CSECTION is to specify the conic constraint

𝑥 ∈ 𝒦

in (11.1). It is assumed that 𝒦 satisfies the following requirements. Let

𝑥𝑡 ∈ R𝑛𝑡

, 𝑡 = 1, . . . , 𝑘

be vectors comprised of parts of the decision variables 𝑥 so that each decision variable is a member of
exactly one vector 𝑥𝑡, for example

𝑥1 =

⎡⎣ 𝑥1

𝑥4

𝑥7

⎤⎦ and 𝑥2 =

⎡⎢⎢⎣
𝑥6

𝑥5

𝑥3

𝑥2

⎤⎥⎥⎦ .

Next define

𝒦 :=
{︀
𝑥 ∈ R𝑛 : 𝑥𝑡 ∈ 𝒦𝑡, 𝑡 = 1, . . . , 𝑘

}︀
where 𝒦𝑡 must have one of the following forms:

• R set:

𝒦𝑡 = R𝑛𝑡

.

• Zero cone:

𝒦𝑡 = {0} ⊆ R𝑛𝑡

. (11.2)

• Quadratic cone:

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 𝑥1 ≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=2

𝑥2
𝑗

⎫⎬⎭ . (11.3)

226

• Rotated quadratic cone:

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 2𝑥1𝑥2 ≥
𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ . (11.4)

• Primal exponential cone:

𝒦𝑡 =
{︀
𝑥 ∈ R3 : 𝑥1 ≥ 𝑥2 exp(𝑥3/𝑥2), 𝑥1, 𝑥2 ≥ 0

}︀
. (11.5)

• Primal power cone (with parameter 0 < 𝛼 < 1):

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 𝑥𝛼
1𝑥

1−𝛼
2 ≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ . (11.6)

• Dual exponential cone:

𝒦𝑡 =
{︀
𝑥 ∈ R3 : 𝑥1 ≥ −𝑥3𝑒

−1 exp(𝑥2/𝑥3), 𝑥3 ≤ 0, 𝑥1 ≥ 0
}︀
. (11.7)

• Dual power cone (with parameter 0 < 𝛼 < 1):

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

:
(︁𝑥1

𝛼

)︁𝛼(︂ 𝑥2

1 − 𝛼

)︂1−𝛼

≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ . (11.8)

In general, membership in the R set is not specified. If a variable is not a member of any other cone
then it is assumed to be a member of the R cone.

Next, let us study an example. Assume that the power cone

𝑥
1/3
4 𝑥

2/3
5 ≥ |𝑥8|

and the rotated quadratic cone

2𝑥3𝑥7 ≥ 𝑥2
1 + 𝑥2

0, 𝑥3, 𝑥7 ≥ 0,

should be specified in the MPS file. One CSECTION is required for each cone and they are specified as
follows:

* 1 2 3 4 5 6
*23456789012345678901234567890123456789012345678901234567890
CSECTION konea 3e-1 PPOW
x4
x5
x8
CSECTION koneb 0.0 RQUAD
x7
x3
x1
x0

In general, a CSECTION header has the format

CSECTION [kname1] [value1] [ktype]

where the requirements for each field are as follows:

Field Starting Position Max Width Required Description

[kname1] 15 8 Yes Name of the cone
[value1] 25 12 No Cone parameter
[ktype] 40 Yes Type of the cone.

227

The possible cone type keys are:

[ktype] Members [value1] Interpretation.

ZERO ≥ 0 unused Zero cone (11.2).
QUAD ≥ 1 unused Quadratic cone (11.3).
RQUAD ≥ 2 unused Rotated quadratic cone (11.4).
PEXP 3 unused Primal exponential cone (11.5).
PPOW ≥ 2 𝛼 Primal power cone (11.6).
DEXP 3 unused Dual exponential cone (11.7).
DPOW ≥ 2 𝛼 Dual power cone (11.8).

A record in the CSECTION has the format

[vname1]

where the requirements for each field are

Field Starting Position Max Width required Description

[vname1] 5 8 Yes A valid variable name

A variable must occur in at most one CSECTION.

ENDATA

This keyword denotes the end of the MPS file.

11.2.2 Integer Variables
Using special bound keys in the BOUNDS section it is possible to specify that some or all of the variables
should be integer-constrained i.e. be members of 𝒥 . However, an alternative method is available. This
method is available only for backward compatibility and we recommend that it is not used. This method
requires that markers are placed in the COLUMNS section as in the example:

COLUMNS
x1 obj -10.0 c1 0.7
x1 c2 0.5 c3 1.0
x1 c4 0.1
* Start of integer-constrained variables.
MARK000 'MARKER' 'INTORG'
x2 obj -9.0 c1 1.0
x2 c2 0.8333333333 c3 0.66666667
x2 c4 0.25
x3 obj 1.0 c6 2.0
MARK001 'MARKER' 'INTEND'
* End of integer-constrained variables.

Please note that special marker lines are used to indicate the start and the end of the integer variables.
Furthermore be aware of the following

• All variables between the markers are assigned a default lower bound of 0 and a default upper
bound of 1. This may not be what is intended. If it is not intended, the correct bounds
should be defined in the BOUNDS section of the MPS formatted file.

• MOSEK ignores field 1, i.e. MARK0001 and MARK001, however, other optimization systems require
them.

• Field 2, i.e. MARKER, must be specified including the single quotes. This implies that no row can
be assigned the name MARKER.

• Field 3 is ignored and should be left blank.

228

• Field 4, i.e. INTORG and INTEND, must be specified.

• It is possible to specify several such integer marker sections within the COLUMNS section.

11.2.3 General Limitations
• An MPS file should be an ASCII file.

11.2.4 Interpretation of the MPS Format
Several issues related to the MPS format are not well-defined by the industry standard. However,
MOSEK uses the following interpretation:

• If a matrix element in the COLUMNS section is specified multiple times, then the multiple entries are
added together.

• If a matrix element in a QSECTION section is specified multiple times, then the multiple entries are
added together.

11.2.5 The Free MPS Format
MOSEK supports a free format variation of the MPS format. The free format is similar to the MPS file
format but less restrictive, e.g. it allows longer names. However, a name must not contain any blanks.

Moreover, by default a line in the MPS file must not contain more than 1024 characters. By modifying
the parameter MSK_IPAR_READ_MPS_WIDTH an arbitrary large line width will be accepted.

The free MPS format is default. To change to the strict and other formats use the parameter
MSK_IPAR_READ_MPS_FORMAT .

Warning: This file format is to a large extent deprecated. While it can still be used for linear
and quadratic problems, for conic problems the Sec. 11.5 is recommended.

11.3 The OPF Format

The Optimization Problem Format (OPF) is an alternative to LP and MPS files for specifying optimiza-
tion problems. It is row-oriented, inspired by the CPLEX LP format.

Apart from containing objective, constraints, bounds etc. it may contain complete or partial solutions,
comments and extra information relevant for solving the problem. It is designed to be easily read and
modified by hand and to be forward compatible with possible future extensions.

Intended use

The OPF file format is meant to replace several other files:

• The LP file format: Any problem that can be written as an LP file can be written as an OPF file
too; furthermore it naturally accommodates ranged constraints and variables as well as arbitrary
characters in names, fixed expressions in the objective, empty constraints, and conic constraints.

• Parameter files: It is possible to specify integer, double and string parameters along with the
problem (or in a separate OPF file).

• Solution files: It is possible to store a full or a partial solution in an OPF file and later reload it.

229

11.3.1 The File Format
The format uses tags to structure data. A simple example with the basic sections may look like this:

[comment]
This is a comment. You may write almost anything here...
[/comment]

This is a single-line comment.

[objective min 'myobj']
x + 3 y + x^2 + 3 y^2 + z + 1
[/objective]

[constraints]
[con 'con01'] 4 <= x + y [/con]
[/constraints]

[bounds]
[b] -10 <= x,y <= 10 [/b]

[cone quad] x,y,z [/cone]
[/bounds]

A scope is opened by a tag of the form [tag] and closed by a tag of the form [/tag]. An opening
tag may accept a list of unnamed and named arguments, for examples:

[tag value] tag with one unnamed argument [/tag]
[tag arg=value] tag with one named argument [/tag]

Unnamed arguments are identified by their order, while named arguments may appear in any order,
but never before an unnamed argument. The value can be a quoted, single-quoted or double-quoted
text string, i.e.

[tag 'value'] single-quoted value [/tag]
[tag arg='value'] single-quoted value [/tag]
[tag "value"] double-quoted value [/tag]
[tag arg="value"] double-quoted value [/tag]

11.3.2 Sections
The recognized tags are

230

[comment]

A comment section. This can contain almost any text: Between single quotes (’) or double quotes (")
any text may appear. Outside quotes the markup characters ([and]) must be prefixed by backslashes.
Both single and double quotes may appear alone or inside a pair of quotes if it is prefixed by a backslash.

[objective]

The objective function: This accepts one or two parameters, where the first one (in the above example
min) is either min or max (regardless of case) and defines the objective sense, and the second one (above
myobj), if present, is the objective name. The section may contain linear and quadratic expressions.

If several objectives are specified, all but the last are ignored.

[constraints]

This does not directly contain any data, but may contain subsections con defining a linear constraint.

[con]

Defines a single constraint; if an argument is present ([con NAME]) this is used as the name of the
constraint, otherwise it is given a null-name. The section contains a constraint definition written as
linear and quadratic expressions with a lower bound, an upper bound, with both or with an equality.
Examples:

[constraints]
[con 'con1'] 0 <= x + y [/con]
[con 'con2'] 0 >= x + y [/con]
[con 'con3'] 0 <= x + y <= 10 [/con]
[con 'con4'] x + y = 10 [/con]
[/constraints]

Constraint names are unique. If a constraint is specified which has the same name as a previously
defined constraint, the new constraint replaces the existing one.

[bounds]

This does not directly contain any data, but may contain subsections b (linear bounds on variables) and
cone (cones).

[b]

Bound definition on one or several variables separated by comma (,). An upper or lower bound on a
variable replaces any earlier defined bound on that variable. If only one bound (upper or lower) is given
only this bound is replaced. This means that upper and lower bounds can be specified separately. So
the OPF bound definition:

[b] x,y >= -10 [/b]
[b] x,y <= 10 [/b]

results in the bound −10 ≤ 𝑥, 𝑦 ≤ 10.

231

[cone]

Specifies a cone. A cone is defined as a sequence of variables which belong to a single unique cone. The
supported cone types are:

• quad: a quadratic cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of the form

𝑥2
1 ≥

𝑛∑︁
𝑖=2

𝑥2
𝑖 , 𝑥1 ≥ 0.

• rquad: a rotated quadratic cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of the form

2𝑥1𝑥2 ≥
𝑛∑︁

𝑖=3

𝑥2
𝑖 , 𝑥1, 𝑥2 ≥ 0.

• pexp: primal exponential cone of 3 variables 𝑥1, 𝑥2, 𝑥3 defines a constraint of the form

𝑥1 ≥ 𝑥2 exp(𝑥3/𝑥2), 𝑥1, 𝑥2 ≥ 0.

• ppow with parameter 0 < 𝛼 < 1: primal power cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint
of the form

𝑥𝛼
1𝑥

1−𝛼
2 ≥

⎯⎸⎸⎷ 𝑛∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0.

• dexp: dual exponential cone of 3 variables 𝑥1, 𝑥2, 𝑥3 defines a constraint of the form

𝑥1 ≥ −𝑥3𝑒
−1 exp(𝑥2/𝑥3), 𝑥3 ≤ 0, 𝑥1 ≥ 0.

• dpow with parameter 0 < 𝛼 < 1: dual power cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of
the form

(︁𝑥1

𝛼

)︁𝛼(︂ 𝑥2

1 − 𝛼

)︂1−𝛼

≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0.

• zero: zero cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of the form

𝑥1 = · · · = 𝑥𝑛 = 0

A [bounds]-section example:

[bounds]
[b] 0 <= x,y <= 10 [/b] # ranged bound
[b] 10 >= x,y >= 0 [/b] # ranged bound
[b] 0 <= x,y <= inf [/b] # using inf
[b] x,y free [/b] # free variables
Let (x,y,z,w) belong to the cone K
[cone rquad] x,y,z,w [/cone] # rotated quadratic cone
[cone ppow '3e-01' 'a'] x1, x2, x3 [/cone] # power cone with alpha=1/3 and name 'a'
[/bounds]

By default all variables are free.

232

[variables]

This defines an ordering of variables as they should appear in the problem. This is simply a space-
separated list of variable names.

[integer]

This contains a space-separated list of variables and defines the constraint that the listed variables must
be integer-valued.

[hints]

This may contain only non-essential data; for example estimates of the number of variables, constraints
and non-zeros. Placed before all other sections containing data this may reduce the time spent reading
the file.

In the hints section, any subsection which is not recognized by MOSEK is simply ignored. In this
section a hint is defined as follows:

[hint ITEM] value [/hint]

The hints recognized by MOSEK are:

• numvar (number of variables),

• numcon (number of linear/quadratic constraints),

• numanz (number of linear non-zeros in constraints),

• numqnz (number of quadratic non-zeros in constraints).

[solutions]

This section can contain a set of full or partial solutions to a problem. Each solution must be specified
using a [solution]-section, i.e.

[solutions]
[solution]...[/solution] #solution 1
[solution]...[/solution] #solution 2
#other solutions....
[solution]...[/solution] #solution n
[/solutions]

The syntax of a [solution]-section is the following:

[solution SOLTYPE status=STATUS]...[/solution]

where SOLTYPE is one of the strings

• interior, a non-basic solution,

• basic, a basic solution,

• integer, an integer solution,

and STATUS is one of the strings

• UNKNOWN,

• OPTIMAL,

• INTEGER_OPTIMAL,

• PRIM_FEAS,

• DUAL_FEAS,

• PRIM_AND_DUAL_FEAS,

233

• NEAR_OPTIMAL,

• NEAR_PRIM_FEAS,

• NEAR_DUAL_FEAS,

• NEAR_PRIM_AND_DUAL_FEAS,

• PRIM_INFEAS_CER,

• DUAL_INFEAS_CER,

• NEAR_PRIM_INFEAS_CER,

• NEAR_DUAL_INFEAS_CER,

• NEAR_INTEGER_OPTIMAL.

Most of these values are irrelevant for input solutions; when constructing a solution for simplex
hot-start or an initial solution for a mixed integer problem the safe setting is UNKNOWN.

A [solution]-section contains [con] and [var] sections. Each [con] and [var] section defines
solution information for a single variable or constraint, specified as list of KEYWORD/value pairs, in any
order, written as

KEYWORD=value

Allowed keywords are as follows:

• sk. The status of the item, where the value is one of the following strings:

– LOW, the item is on its lower bound.

– UPR, the item is on its upper bound.

– FIX, it is a fixed item.

– BAS, the item is in the basis.

– SUPBAS, the item is super basic.

– UNK, the status is unknown.

– INF, the item is outside its bounds (infeasible).

• lvl Defines the level of the item.

• sl Defines the level of the dual variable associated with its lower bound.

• su Defines the level of the dual variable associated with its upper bound.

• sn Defines the level of the variable associated with its cone.

• y Defines the level of the corresponding dual variable (for constraints only).

A [var] section should always contain the items sk, lvl, sl and su. Items sl and su are not required
for integer solutions.

A [con] section should always contain sk, lvl, sl, su and y.
An example of a solution section

[solution basic status=UNKNOWN]
[var x0] sk=LOW lvl=5.0 [/var]
[var x1] sk=UPR lvl=10.0 [/var]
[var x2] sk=SUPBAS lvl=2.0 sl=1.5 su=0.0 [/var]

[con c0] sk=LOW lvl=3.0 y=0.0 [/con]
[con c0] sk=UPR lvl=0.0 y=5.0 [/con]
[/solution]

234

• [vendor] This contains solver/vendor specific data. It accepts one argument, which is a vendor
ID – for MOSEK the ID is simply mosek – and the section contains the subsection parameters
defining solver parameters. When reading a vendor section, any unknown vendor can be safely
ignored. This is described later.

Comments using the # may appear anywhere in the file. Between the # and the following line-break
any text may be written, including markup characters.

11.3.3 Numbers
Numbers, when used for parameter values or coefficients, are written in the usual way by the printf
function. That is, they may be prefixed by a sign (+ or -) and may contain an integer part, decimal part
and an exponent. The decimal point is always . (a dot). Some examples are

1
1.0
.0
1.
1e10
1e+10
1e-10

Some invalid examples are

e10 # invalid, must contain either integer or decimal part
. # invalid
.e10 # invalid

More formally, the following standard regular expression describes numbers as used:

[+|-]?([0-9]+[.][0-9]*|[.][0-9]+)([eE][+|-]?[0-9]+)?

11.3.4 Names
Variable names, constraint names and objective name may contain arbitrary characters, which in some
cases must be enclosed by quotes (single or double) that in turn must be preceded by a backslash.
Unquoted names must begin with a letter (a-z or A-Z) and contain only the following characters: the
letters a-z and A-Z, the digits 0-9, braces ({ and }) and underscore (_).

Some examples of legal names:

an_unquoted_name
another_name{123}
'single quoted name'
"double quoted name"
"name with \\"quote\\" in it"
"name with []s in it"

11.3.5 Parameters Section
In the vendor section solver parameters are defined inside the parameters subsection. Each parameter
is written as

[p PARAMETER_NAME] value [/p]

where PARAMETER_NAME is replaced by a MOSEK parameter name, usually of the form MSK_IPAR_.
.., MSK_DPAR_... or MSK_SPAR_..., and the value is replaced by the value of that parameter; both
integer values and named values may be used. Some simple examples are

235

[vendor mosek]
[parameters]
[p MSK_IPAR_OPF_MAX_TERMS_PER_LINE] 10 [/p]
[p MSK_IPAR_OPF_WRITE_PARAMETERS] MSK_ON [/p]
[p MSK_DPAR_DATA_TOL_BOUND_INF] 1.0e18 [/p]
[/parameters]
[/vendor]

11.3.6 Writing OPF Files from MOSEK
To write an OPF file then make sure the file extension is .opf.

Then modify the following parameters to define what the file should contain:

MSK_IPAR_OPF_WRITE_SOL_BAS Include basic solution, if defined.
MSK_IPAR_OPF_WRITE_SOL_ITG Include integer solution, if defined.
MSK_IPAR_OPF_WRITE_SOL_ITR Include interior solution, if defined.
MSK_IPAR_OPF_WRITE_SOLUTIONSInclude solutions if they are defined. If this is off, no solutions are

included.
MSK_IPAR_OPF_WRITE_HEADER Include a small header with comments.
MSK_IPAR_OPF_WRITE_PROBLEM Include the problem itself — objective, constraints and bounds.
MSK_IPAR_OPF_WRITE_PARAMETERSInclude all parameter settings.
MSK_IPAR_OPF_WRITE_HINTS Include hints about the size of the problem.

11.3.7 Examples
This section contains a set of small examples written in OPF and describing how to formulate linear,
quadratic and conic problems.

Linear Example lo1.opf

Consider the example:

maximize 3𝑥0 + 1𝑥1 + 5𝑥2 + 1𝑥3

subject to 3𝑥0 + 1𝑥1 + 2𝑥2 = 30,
2𝑥0 + 1𝑥1 + 3𝑥2 + 1𝑥3 ≥ 15,

2𝑥1 + 3𝑥3 ≤ 25,

having the bounds

0 ≤ 𝑥0 ≤ ∞,
0 ≤ 𝑥1 ≤ 10,
0 ≤ 𝑥2 ≤ ∞,
0 ≤ 𝑥3 ≤ ∞.

In the OPF format the example is displayed as shown in Listing 11.1.

Listing 11.1: Example of an OPF file for a linear problem.

[comment]
The lo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 4 [/hint]
[hint NUMCON] 3 [/hint]
[hint NUMANZ] 9 [/hint]

[/hints]

(continues on next page)

236

(continued from previous page)

[variables disallow_new_variables]
x1 x2 x3 x4

[/variables]

[objective maximize 'obj']
3 x1 + x2 + 5 x3 + x4

[/objective]

[constraints]
[con 'c1'] 3 x1 + x2 + 2 x3 = 30 [/con]
[con 'c2'] 2 x1 + x2 + 3 x3 + x4 >= 15 [/con]
[con 'c3'] 2 x2 + 3 x4 <= 25 [/con]

[/constraints]

[bounds]
[b] 0 <= * [/b]
[b] 0 <= x2 <= 10 [/b]

[/bounds]

Quadratic Example qo1.opf

An example of a quadratic optimization problem is

minimize 𝑥2
1 + 0.1𝑥2

2 + 𝑥2
3 − 𝑥1𝑥3 − 𝑥2

subject to 1 ≤ 𝑥1 + 𝑥2 + 𝑥3,
𝑥 ≥ 0.

This can be formulated in opf as shown below.

Listing 11.2: Example of an OPF file for a quadratic problem.

[comment]
The qo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 3 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 3 [/hint]
[hint NUMQNZ] 4 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2 x3

[/variables]

[objective minimize 'obj']
The quadratic terms are often written with a factor of 1/2 as here,
but this is not required.

- x2 + 0.5 (2.0 x1 ^ 2 - 2.0 x3 * x1 + 0.2 x2 ^ 2 + 2.0 x3 ^ 2)
[/objective]

[constraints]
[con 'c1'] 1.0 <= x1 + x2 + x3 [/con]

[/constraints]

(continues on next page)

237

(continued from previous page)

[bounds]
[b] 0 <= * [/b]

[/bounds]

Conic Quadratic Example cqo1.opf

Consider the example:

minimize 𝑥3 + 𝑥4 + 𝑥5

subject to 𝑥0 + 𝑥1 + 2𝑥2 = 1,
𝑥0, 𝑥1, 𝑥2 ≥ 0,

𝑥3 ≥
√︀
𝑥2
0 + 𝑥2

1,
2𝑥4𝑥5 ≥ 𝑥2

2.

Please note that the type of the cones is defined by the parameter to [cone ...]; the content of the
cone-section is the names of variables that belong to the cone. The resulting OPF file is in Listing 11.3.

Listing 11.3: Example of an OPF file for a conic quadratic problem.

[comment]
The cqo1 example in OPF format.

[/comment]

[hints]
[hint NUMVAR] 6 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 3 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2 x3 x4 x5 x6

[/variables]

[objective minimize 'obj']
x4 + x5 + x6

[/objective]

[constraints]
[con 'c1'] x1 + x2 + 2e+00 x3 = 1e+00 [/con]

[/constraints]

[bounds]
We let all variables default to the positive orthant
[b] 0 <= * [/b]

...and change those that differ from the default
[b] x4,x5,x6 free [/b]

Define quadratic cone: x4 >= sqrt(x1^2 + x2^2)
[cone quad 'k1'] x4, x1, x2 [/cone]

Define rotated quadratic cone: 2 x5 x6 >= x3^2
[cone rquad 'k2'] x5, x6, x3 [/cone]

[/bounds]

238

Mixed Integer Example milo1.opf

Consider the mixed integer problem:

maximize 𝑥0 + 0.64𝑥1

subject to 50𝑥0 + 31𝑥1 ≤ 250,
3𝑥0 − 2𝑥1 ≥ −4,
𝑥0, 𝑥1 ≥ 0 and integer

This can be implemented in OPF with the file in Listing 11.4.

Listing 11.4: Example of an OPF file for a mixed-integer linear
problem.

[comment]
The milo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 2 [/hint]
[hint NUMCON] 2 [/hint]
[hint NUMANZ] 4 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2

[/variables]

[objective maximize 'obj']
x1 + 6.4e-1 x2

[/objective]

[constraints]
[con 'c1'] 5e+1 x1 + 3.1e+1 x2 <= 2.5e+2 [/con]
[con 'c2'] -4 <= 3 x1 - 2 x2 [/con]

[/constraints]

[bounds]
[b] 0 <= * [/b]

[/bounds]

[integer]
x1 x2

[/integer]

239

11.4 The CBF Format

This document constitutes the technical reference manual of the Conic Benchmark Format with file
extension: .cbf or .CBF. It unifies linear, second-order cone (also known as conic quadratic), expo-
nential cone, power cone and semidefinite optimization with mixed-integer variables. The format has
been designed with benchmark libraries in mind, and therefore focuses on compact and easily parsable
representations. The CBF format separates problem structure from the problem data.

11.4.1 How Instances Are Specified
This section defines the spectrum of conic optimization problems that can be formulated in terms of the
keywords of the CBF format.

In the CBF format, conic optimization problems are considered in the following form:

min /max 𝑔𝑜𝑏𝑗

𝑔𝑖 ∈ 𝒦𝑖, 𝑖 ∈ ℐ,
s.t. 𝐺𝑖 ∈ 𝒦𝑖, 𝑖 ∈ ℐ𝑃𝑆𝐷,

𝑥𝑗 ∈ 𝒦𝑗 , 𝑗 ∈ 𝒥 ,
𝑋𝑗 ∈ 𝒦𝑗 , 𝑗 ∈ 𝒥 𝑃𝑆𝐷.

(11.9)

• Variables are either scalar variables, 𝑥𝑗 for 𝑗 ∈ 𝒥 , or matrix variables, 𝑋𝑗 for 𝑗 ∈ 𝒥 𝑃𝑆𝐷. Scalar
variables can also be declared as integer.

• Constraints are affine expressions of the variables, either scalar-valued 𝑔𝑖 for 𝑖 ∈ ℐ, or matrix-
valued 𝐺𝑖 for 𝑖 ∈ ℐ𝑃𝑆𝐷

𝑔𝑖 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹𝑖𝑗 , 𝑋𝑗⟩ +
∑︁
𝑗∈𝒥

𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖,

𝐺𝑖 =
∑︁
𝑗∈𝒥

𝑥𝑗𝐻𝑖𝑗 + 𝐷𝑖.

• The objective function is a scalar-valued affine expression of the variables, either to be minimized
or maximized. We refer to this expression as 𝑔𝑜𝑏𝑗

𝑔𝑜𝑏𝑗 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹 𝑜𝑏𝑗
𝑗 , 𝑋𝑗⟩ +

∑︁
𝑗∈𝒥

𝑎𝑜𝑏𝑗𝑗 𝑥𝑗 + 𝑏𝑜𝑏𝑗 .

As of version 4 of the format, CBF files can represent the following non-parametric cones 𝒦:

• Free domain - A cone in the linear family defined by

{𝑥 ∈ R𝑛}, for 𝑛 ≥ 1.

• Positive orthant - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 ≥ 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

• Negative orthant - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 ≤ 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

• Fixpoint zero - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 = 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

240

• Quadratic cone - A cone in the second-order cone family defined by

{︂(︂
𝑝
𝑥

)︂
∈ R× R𝑛−1, 𝑝2 ≥ 𝑥𝑇𝑥, 𝑝 ≥ 0

}︂
, for 𝑛 ≥ 2.

• Rotated quadratic cone - A cone in the second-order cone family defined by

⎧⎨⎩
⎛⎝ 𝑝

𝑞
𝑥

⎞⎠ ∈ R× R× R𝑛−2, 2𝑝𝑞 ≥ 𝑥𝑇𝑥, 𝑝 ≥ 0, 𝑞 ≥ 0

⎫⎬⎭ , for 𝑛 ≥ 3.

• Exponential cone - A cone in the exponential cone family defined by

cl(𝑆1) = 𝑆1 ∪ 𝑆2

where,

𝑆1 =

⎧⎨⎩
⎛⎝ 𝑡

𝑠
𝑟

⎞⎠ ∈ R3, 𝑡 ≥ 𝑠𝑒
𝑟
𝑠 , 𝑠 ≥ 0

⎫⎬⎭ .

and,

𝑆2 =

⎧⎨⎩
⎛⎝ 𝑡

𝑠
𝑟

⎞⎠ ∈ R3, 𝑡 ≥ 0, 𝑟 ≤ 0, 𝑠 = 0

⎫⎬⎭ .

• Dual Exponential cone - A cone in the exponential cone family defined by

cl(𝑆1) = 𝑆1 ∪ 𝑆2

where,

𝑆1 =

⎧⎨⎩
⎛⎝ 𝑡

𝑠
𝑟

⎞⎠ ∈ R3, 𝑒𝑡 ≥ (−𝑟)𝑒
𝑠
𝑟 , −𝑟 ≥ 0

⎫⎬⎭ .

and,

𝑆2 =

⎧⎨⎩
⎛⎝ 𝑡

𝑠
𝑟

⎞⎠ ∈ R3, 𝑒𝑡 ≥ 0, 𝑠 ≥ 0, 𝑟 = 0

⎫⎬⎭ .

• Radial geometric mean cone - A cone in the power cone family defined by

⎧⎪⎨⎪⎩
(︂

𝑝
𝑥

)︂
∈ R𝑘

+ × R1,

⎛⎝ 𝑘∏︁
𝑗=1

𝑝𝑗

⎞⎠ 1
𝑘

≥ |𝑥|

⎫⎪⎬⎪⎭ , for 𝑛 = 𝑘 + 1 ≥ 2.

• Dual radial geometric mean cone - A cone in the power cone family defined by

⎧⎪⎨⎪⎩
(︂

𝑝
𝑥

)︂
∈ R𝑘

+ × R1,

⎛⎝ 𝑘∏︁
𝑗=1

𝑘𝑝𝑗

⎞⎠ 1
𝑘

≥ |𝑥|

⎫⎪⎬⎪⎭ , for 𝑛 = 𝑘 + 1 ≥ 2.

241

and, the following parametric cones:

• Radial power cone - A cone in the power cone family defined by

⎧⎪⎨⎪⎩
(︂

𝑝
𝑥

)︂
∈ R𝑘

+ × R𝑛−𝑘,

⎛⎝ 𝑘∏︁
𝑗=1

𝑝
𝛼𝑗

𝑗

⎞⎠ 1
𝜎

≥ ‖𝑥‖2

⎫⎪⎬⎪⎭ , for 𝑛 ≥ 𝑘 ≥ 1.

where, 𝜎 =
∑︀𝑘

𝑗=1 𝛼𝑗 and 𝛼 = R𝑘
++.

• Dual radial power cone - A cone in the power cone family defined by

⎧⎪⎨⎪⎩
(︂

𝑝
𝑥

)︂
∈ R𝑘

+ × R𝑛−𝑘,

⎛⎝ 𝑘∏︁
𝑗=1

(︂
𝜎𝑝𝑗
𝛼𝑗

)︂𝛼𝑗

⎞⎠ 1
𝜎

≥ ‖𝑥‖2

⎫⎪⎬⎪⎭ , for 𝑛 ≥ 𝑘 ≥ 1.

where, 𝜎 =
∑︀𝑘

𝑗=1 𝛼𝑗 and 𝛼 = R𝑘
++.

11.4.2 The Structure of CBF Files
This section defines how information is written in the CBF format, without being specific about the type
of information being communicated.

All information items belong to exactly one of the three groups of information. These information
groups, and the order they must appear in, are:

1. File format.

2. Problem structure.

3. Problem data.

The first group, file format, provides information on how to interpret the file. The second group,
problem structure, provides the information needed to deduce the type and size of the problem instance.
Finally, the third group, problem data, specifies the coefficients and constants of the problem instance.

Information items

The format is composed as a list of information items. The first line of an information item is the
KEYWORD, revealing the type of information provided. The second line - of some keywords only - is the
HEADER, typically revealing the size of information that follows. The remaining lines are the BODY holding
the actual information to be specified.

KEYWORD
BODY

KEYWORD
HEADER
BODY

The KEYWORD determines how each line in the HEADER and BODY is structured. Moreover, the number
of lines in the BODY follows either from the KEYWORD, the HEADER, or from another information item
required to precede it.

242

File encoding and line width restrictions

The format is based on the US-ASCII printable character set with two extensions as listed below. Note,
by definition, that none of these extensions can be misinterpreted as printable US-ASCII characters:

• A line feed marks the end of a line, carriage returns are ignored.

• Comment-lines may contain unicode characters in UTF-8 encoding.

The line width is restricted to 512 bytes, with 3 bytes reserved for the potential carriage return, line
feed and null-terminator.

Integers and floating point numbers must follow the ISO C decimal string representation in the
standard C locale. The format does not impose restrictions on the magnitude of, or number of significant
digits in numeric data, but the use of 64-bit integers and 64-bit IEEE 754 floating point numbers should
be sufficient to avoid loss of precision.

Comment-line and whitespace rules

The format allows single-line comments respecting the following rule:

• Lines having first byte equal to ’#’ (US-ASCII 35) are comments, and should be ignored. Comments
are only allowed between information items.

Given that a line is not a comment-line, whitespace characters should be handled according to the
following rules:

• Leading and trailing whitespace characters should be ignored.

– The seperator between multiple pieces of information on one line, is either one or more whites-
pace characters.

• Lines containing only whitespace characters are empty, and should be ignored. Empty lines are
only allowed between information items.

11.4.3 Problem Specification

The problem structure

The problem structure defines the objective sense, whether it is minimization and maximization. It also
defines the index sets, 𝒥 , 𝒥 𝑃𝑆𝐷, ℐ and ℐ𝑃𝑆𝐷, which are all numbered from zero, {0, 1, . . .}, and empty
until explicitly constructed.

• Scalar variables are constructed in vectors restricted to a conic domain, such as (𝑥0, 𝑥1) ∈ R2
+,

(𝑥2, 𝑥3, 𝑥4) ∈ 𝒬3, etc. In terms of the Cartesian product, this generalizes to

𝑥 ∈ 𝒦𝑛1
1 ×𝒦𝑛2

2 × · · · × 𝒦𝑛𝑘

𝑘

which in the CBF format becomes:

VAR
n k
K1 n1
K2 n2
...
Kk nk

where
∑︀

𝑖 𝑛𝑖 = 𝑛 is the total number of scalar variables. The list of supported cones is found in
Table 11.3. Integrality of scalar variables can be specified afterwards.

• PSD variables are constructed one-by-one. That is, 𝑋𝑗 ⪰ 0𝑛𝑗×𝑛𝑗 for 𝑗 ∈ 𝒥 𝑃𝑆𝐷, constructs a
matrix-valued variable of size 𝑛𝑗 ×𝑛𝑗 restricted to be symmetric positive semidefinite. In the CBF
format, this list of constructions becomes:

243

PSDVAR
N
n1
n2
...
nN

where 𝑁 is the total number of PSD variables.

• Scalar constraints are constructed in vectors restricted to a conic domain, such as (𝑔0, 𝑔1) ∈ R2
+,

(𝑔2, 𝑔3, 𝑔4) ∈ 𝒬3, etc. In terms of the Cartesian product, this generalizes to

𝑔 ∈ 𝒦𝑚1
1 ×𝒦𝑚2

2 × · · · × 𝒦𝑚𝑘

𝑘

which in the CBF format becomes:

CON
m k
K1 m1
K2 m2
..
Kk mk

where
∑︀

𝑖 𝑚𝑖 = 𝑚 is the total number of scalar constraints. The list of supported cones is found
in Table 11.3.

• PSD constraints are constructed one-by-one. That is, 𝐺𝑖 ⪰ 0𝑚𝑖×𝑚𝑖 for 𝑖 ∈ ℐ𝑃𝑆𝐷, constructs a
matrix-valued affine expressions of size 𝑚𝑖 ×𝑚𝑖 restricted to be symmetric positive semidefinite.
In the CBF format, this list of constructions becomes

PSDCON
M
m1
m2
..
mM

where 𝑀 is the total number of PSD constraints.

With the objective sense, variables (with integer indications) and constraints, the definitions of the
many affine expressions follow in problem data.

Problem data

The problem data defines the coefficients and constants of the affine expressions of the problem instance.
These are considered zero until explicitly defined, implying that instances with no keywords from this
information group are, in fact, valid. Duplicating or conflicting information is a failure to comply with
the standard. Consequently, two coefficients written to the same position in a matrix (or to transposed
positions in a symmetric matrix) is an error.

The affine expressions of the objective, 𝑔𝑜𝑏𝑗 , of the scalar constraints, 𝑔𝑖, and of the PSD constraints,
𝐺𝑖, are defined separately. The following notation uses the standard trace inner product for matrices,
⟨𝑋,𝑌 ⟩ =

∑︀
𝑖,𝑗 𝑋𝑖𝑗𝑌𝑖𝑗 .

• The affine expression of the objective is defined as

𝑔𝑜𝑏𝑗 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹 𝑜𝑏𝑗
𝑗 , 𝑋𝑗⟩ +

∑︁
𝑗∈𝒥

𝑎𝑜𝑏𝑗𝑗 𝑥𝑗 + 𝑏𝑜𝑏𝑗 ,

in terms of the symmetric matrices, 𝐹 𝑜𝑏𝑗
𝑗 , and scalars, 𝑎𝑜𝑏𝑗𝑗 and 𝑏𝑜𝑏𝑗 .

244

• The affine expressions of the scalar constraints are defined, for 𝑖 ∈ ℐ, as

𝑔𝑖 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹𝑖𝑗 , 𝑋𝑗⟩ +
∑︁
𝑗∈𝒥

𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖,

in terms of the symmetric matrices, 𝐹𝑖𝑗 , and scalars, 𝑎𝑖𝑗 and 𝑏𝑖.

• The affine expressions of the PSD constraints are defined, for 𝑖 ∈ ℐ𝑃𝑆𝐷, as

𝐺𝑖 =
∑︁
𝑗∈𝒥

𝑥𝑗𝐻𝑖𝑗 + 𝐷𝑖,

in terms of the symmetric matrices, 𝐻𝑖𝑗 and 𝐷𝑖.

List of cones

The format uses an explicit syntax for symmetric positive semidefinite cones as shown above. For scalar
variables and constraints, constructed in vectors, the supported conic domains and their sizes are given
as follows.

Table 11.3: Cones available in the CBF format

Name CBF keyword Cone family Cone size

Free domain F linear 𝑛 ≥ 1
Positive orthant L+ linear 𝑛 ≥ 1
Negative orthant L- linear 𝑛 ≥ 1
Fixpoint zero L= linear 𝑛 ≥ 1
Quadratic cone Q second-order 𝑛 ≥ 1
Rotated quadratic cone QR second-order 𝑛 ≥ 2
Exponential cone EXP exponential 𝑛 = 3
Dual exponential cone EXP* exponential 𝑛 = 3
Radial geometric mean cone GMEANABS power 𝑛 = 𝑘 + 1 ≥ 2
Dual radial geometric mean cone GMEANABS* power 𝑛 = 𝑘 + 1 ≥ 2
Radial power cone (parametric) POW power 𝑛 ≥ 𝑘 ≥ 1
Dual radial power cone (parametric) POW* power 𝑛 ≥ 𝑘 ≥ 1

11.4.4 File Format Keywords

VER

Description: The version of the Conic Benchmark Format used to write the file.
HEADER: None
BODY: One line formatted as:

INT

This is the version number.
Must appear exactly once in a file, as the first keyword.

POWCONES

Description: Define a lookup table for power cone domains.
HEADER: One line formatted as:

INT INT

This is the number of cones to be specified and the combined length of their dense parameter vectors.

BODY: A list of chunks each specifying the dense parameter vector of a power cone.
CHUNKHEADER: One line formatted as:

245

INT

This is the parameter vector length.

CHUNKBODY: A list of lines formatted as:

REAL

This is the parameter vector values. The number of lines should match the number stated in the
chunk header.

The cone specified at index k (with 0-based indexing) is registered under the CBF name @k:POW.

POW*CONES

Description: Define a lookup table for dual power cone domains.
HEADER: One line formatted as:

INT INT

This is the number of cones to be specified and the combined length of their dense parameter vectors.

BODY: A list of chunks each specifying the dense parameter vector of a dual power cone.
CHUNKHEADER: One line formatted as:

INT

This is the parameter vector length.

CHUNKBODY: A list of lines formatted as:

REAL

This is the parameter vector values. The number of lines should match the number stated in the
chunk header.

The cone specified at index k (with 0-based indexing) is registered under the CBF name @k:POW*.

OBJSENSE

Description: Define the objective sense.
HEADER: None
BODY: One line formatted as:

STR

having MIN indicates minimize, and MAX indicates maximize. Upper-case letters are required.
Must appear exactly once in a file.

PSDVAR

Description: Construct the PSD variables.
HEADER: One line formatted as:

INT

This is the number of PSD variables in the problem.
BODY: A list of lines formatted as:

INT

This indicates the number of rows (equal to the number of columns) in the matrix-valued PSD
variable. The number of lines should match the number stated in the header.

246

VAR

Description: Construct the scalar variables.
HEADER: One line formatted as:

INT INT

This is the number of scalar variables, followed by the number of conic domains they are restricted
to.

BODY: A list of lines formatted as:

STR INT

This indicates the cone name (see Table 11.3), and the number of scalar variables restricted to this
cone. These numbers should add up to the number of scalar variables stated first in the header. The
number of lines should match the second number stated in the header.

INT

Description: Declare integer requirements on a selected subset of scalar variables.
HEADER: one line formatted as:

INT

This is the number of integer scalar variables in the problem.
BODY: a list of lines formatted as:

INT

This indicates the scalar variable index 𝑗 ∈ 𝒥 . The number of lines should match the number stated
in the header.

Can only be used after the keyword VAR.

PSDCON

Description: Construct the PSD constraints.
HEADER: One line formatted as:

INT

This is the number of PSD constraints in the problem.
BODY: A list of lines formatted as:

INT

This indicates the number of rows (equal to the number of columns) in the matrix-valued affine
expression of the PSD constraint. The number of lines should match the number stated in the header.

Can only be used after these keywords: PSDVAR, VAR.

CON

Description: Construct the scalar constraints.
HEADER: One line formatted as:

INT INT

This is the number of scalar constraints, followed by the number of conic domains they restrict to.
BODY: A list of lines formatted as:

STR INT

This indicates the cone name (see Table 11.3), and the number of affine expressions restricted to this
cone. These numbers should add up to the number of scalar constraints stated first in the header. The
number of lines should match the second number stated in the header.

Can only be used after these keywords: PSDVAR, VAR

247

OBJFCOORD

Description: Input sparse coordinates (quadruplets) to define the symmetric matrices 𝐹 𝑜𝑏𝑗
𝑗 , as used in

the objective.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT INT REAL

This indicates the PSD variable index 𝑗 ∈ 𝒥 𝑃𝑆𝐷, the row index, the column index and the coefficient
value. The number of lines should match the number stated in the header.

OBJACOORD

Description: Input sparse coordinates (pairs) to define the scalars, 𝑎𝑜𝑏𝑗𝑗 , as used in the objective.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT REAL

This indicates the scalar variable index 𝑗 ∈ 𝒥 and the coefficient value. The number of lines should
match the number stated in the header.

OBJBCOORD

Description: Input the scalar, 𝑏𝑜𝑏𝑗 , as used in the objective.
HEADER: None.
BODY: One line formatted as:

REAL

This indicates the coefficient value.

FCOORD

Description: Input sparse coordinates (quintuplets) to define the symmetric matrices, 𝐹𝑖𝑗 , as used in the
scalar constraints.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT INT INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ, the PSD variable index 𝑗 ∈ 𝒥 𝑃𝑆𝐷, the row index,
the column index and the coefficient value. The number of lines should match the number stated in the
header.

248

ACOORD

Description: Input sparse coordinates (triplets) to define the scalars, 𝑎𝑖𝑗 , as used in the scalar constraints.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ, the scalar variable index 𝑗 ∈ 𝒥 and the coefficient
value. The number of lines should match the number stated in the header.

BCOORD

Description: Input sparse coordinates (pairs) to define the scalars, 𝑏𝑖, as used in the scalar constraints.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ and the coefficient value. The number of lines should
match the number stated in the header.

HCOORD

Description: Input sparse coordinates (quintuplets) to define the symmetric matrices, 𝐻𝑖𝑗 , as used in
the PSD constraints.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as

INT INT INT INT REAL

This indicates the PSD constraint index 𝑖 ∈ ℐ𝑃𝑆𝐷, the scalar variable index 𝑗 ∈ 𝒥 , the row index,
the column index and the coefficient value. The number of lines should match the number stated in the
header.

DCOORD

Description: Input sparse coordinates (quadruplets) to define the symmetric matrices, 𝐷𝑖, as used in
the PSD constraints.

HEADER: One line formatted as

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT INT REAL

This indicates the PSD constraint index 𝑖 ∈ ℐ𝑃𝑆𝐷, the row index, the column index and the coefficient
value. The number of lines should match the number stated in the header.

249

11.4.5 CBF Format Examples

Minimal Working Example

The conic optimization problem (11.10) , has three variables in a quadratic cone - first one is integer -
and an affine expression in domain 0 (equality constraint).

minimize 5.1𝑥0

subject to 6.2𝑥1 + 7.3𝑥2 − 8.4 ∈ {0}
𝑥 ∈ 𝒬3, 𝑥0 ∈ Z.

(11.10)

Its formulation in the Conic Benchmark Format begins with the version of the CBF format used, to
safeguard against later revisions.

VER
4

Next follows the problem structure, consisting of the objective sense, the number and domain of
variables, the indices of integer variables, and the number and domain of scalar-valued affine expressions
(i.e., the equality constraint).

OBJSENSE
MIN

VAR
3 1
Q 3

INT
1
0

CON
1 1
L= 1

Finally follows the problem data, consisting of the coefficients of the objective, the coefficients of the
constraints, and the constant terms of the constraints. All data is specified on a sparse coordinate form.

OBJACOORD
1
0 5.1

ACOORD
2
0 1 6.2
0 2 7.3

BCOORD
1
0 -8.4

This concludes the example.

250

Mixing Linear, Second-order and Semidefinite Cones

The conic optimization problem (11.11), has a semidefinite cone, a quadratic cone over unordered
subindices, and two equality constraints.

minimize

⟨⎡⎣ 2 1 0
1 2 1
0 1 2

⎤⎦ , 𝑋1

⟩
+ 𝑥1

subject to

⟨⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ , 𝑋1

⟩
+ 𝑥1 = 1.0 ,

⟨⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ , 𝑋1

⟩
+ 𝑥0 + 𝑥2 = 0.5 ,

𝑥1 ≥
√︀
𝑥2
0 + 𝑥2

2 ,
𝑋1 ⪰ 0 .

(11.11)

The equality constraints are easily rewritten to the conic form, (𝑔0, 𝑔1) ∈ {0}2, by moving constants such
that the right-hand-side becomes zero. The quadratic cone does not fit under the VAR keyword in this
variable permutation. Instead, it takes a scalar constraint (𝑔2, 𝑔3, 𝑔4) = (𝑥1, 𝑥0, 𝑥2) ∈ 𝒬3, with scalar
variables constructed as (𝑥0, 𝑥1, 𝑥2) ∈ R3. Its formulation in the CBF format is reported in the following
list

File written using this version of the Conic Benchmark Format:
| Version 4.
VER
4

The sense of the objective is:
| Minimize.
OBJSENSE
MIN

One PSD variable of this size:
| Three times three.
PSDVAR
1
3

Three scalar variables in this one conic domain:
| Three are free.
VAR
3 1
F 3

Five scalar constraints with affine expressions in two conic domains:
| Two are fixed to zero.
| Three are in conic quadratic domain.
CON
5 2
L= 2
Q 3

Five coordinates in F^{obj}_j coefficients:
| F^{obj}[0][0,0] = 2.0
| F^{obj}[0][1,0] = 1.0
| and more...
OBJFCOORD
5

(continues on next page)

251

(continued from previous page)

0 0 0 2.0
0 1 0 1.0
0 1 1 2.0
0 2 1 1.0
0 2 2 2.0

One coordinate in a^{obj}_j coefficients:
| a^{obj}[1] = 1.0
OBJACOORD
1
1 1.0

Nine coordinates in F_ij coefficients:
| F[0,0][0,0] = 1.0
| F[0,0][1,1] = 1.0
| and more...
FCOORD
9
0 0 0 0 1.0
0 0 1 1 1.0
0 0 2 2 1.0
1 0 0 0 1.0
1 0 1 0 1.0
1 0 2 0 1.0
1 0 1 1 1.0
1 0 2 1 1.0
1 0 2 2 1.0

Six coordinates in a_ij coefficients:
| a[0,1] = 1.0
| a[1,0] = 1.0
| and more...
ACOORD
6
0 1 1.0
1 0 1.0
1 2 1.0
2 1 1.0
3 0 1.0
4 2 1.0

Two coordinates in b_i coefficients:
| b[0] = -1.0
| b[1] = -0.5
BCOORD
2
0 -1.0
1 -0.5

252

Mixing Semidefinite Variables and Linear Matrix Inequalities

The standard forms in semidefinite optimization are usually based either on semidefinite variables or
linear matrix inequalities. In the CBF format, both forms are supported and can even be mixed as
shown.

minimize
⟨[︂

1 0
0 1

]︂
, 𝑋1

⟩
+ 𝑥1 + 𝑥2 + 1

subject to
⟨[︂

0 1
1 0

]︂
, 𝑋1

⟩
− 𝑥1 − 𝑥2 ≥ 0.0 ,

𝑥1

[︂
0 1
1 3

]︂
+ 𝑥2

[︂
3 1
1 0

]︂
−
[︂

1 0
0 1

]︂
⪰ 0 ,

𝑋1 ⪰ 0 .

(11.12)

Its formulation in the CBF format is written in what follows

File written using this version of the Conic Benchmark Format:
| Version 4.
VER
4

The sense of the objective is:
| Minimize.
OBJSENSE
MIN

One PSD variable of this size:
| Two times two.
PSDVAR
1
2

Two scalar variables in this one conic domain:
| Two are free.
VAR
2 1
F 2

One PSD constraint of this size:
| Two times two.
PSDCON
1
2

One scalar constraint with an affine expression in this one conic domain:
| One is greater than or equal to zero.
CON
1 1
L+ 1

Two coordinates in F^{obj}_j coefficients:
| F^{obj}[0][0,0] = 1.0
| F^{obj}[0][1,1] = 1.0
OBJFCOORD
2
0 0 0 1.0
0 1 1 1.0

Two coordinates in a^{obj}_j coefficients:
(continues on next page)

253

(continued from previous page)

| a^{obj}[0] = 1.0
| a^{obj}[1] = 1.0
OBJACOORD
2
0 1.0
1 1.0

One coordinate in b^{obj} coefficient:
| b^{obj} = 1.0
OBJBCOORD
1.0

One coordinate in F_ij coefficients:
| F[0,0][1,0] = 1.0
FCOORD
1
0 0 1 0 1.0

Two coordinates in a_ij coefficients:
| a[0,0] = -1.0
| a[0,1] = -1.0
ACOORD
2
0 0 -1.0
0 1 -1.0

Four coordinates in H_ij coefficients:
| H[0,0][1,0] = 1.0
| H[0,0][1,1] = 3.0
| and more...
HCOORD
4
0 0 1 0 1.0
0 0 1 1 3.0
0 1 0 0 3.0
0 1 1 0 1.0

Two coordinates in D_i coefficients:
| D[0][0,0] = -1.0
| D[0][1,1] = -1.0
DCOORD
2
0 0 0 -1.0
0 1 1 -1.0

254

The exponential cone

The conic optimization problem (11.13), has one equality constraint, one quadratic cone constraint and
an exponential cone constraint.

minimize 𝑥0 − 𝑥3

subject to 𝑥0 + 2𝑥1 − 𝑥2 ∈ {0}
(5.0, 𝑥0, 𝑥1) ∈ 𝒬3

(𝑥2, 1.0, 𝑥3) ∈ 𝐸𝑋𝑃.

(11.13)

The nonlinear conic constraints enforce
√︀

𝑥2
0 + 𝑥2

1 ≤ 0.5 and 𝑥3 ≤ log(𝑥2).

File written using this version of the Conic Benchmark Format:
| Version 3.
VER
3

The sense of the objective is:
| Minimize.
OBJSENSE
MIN

Four scalar variables in this one conic domain:
| Four are free.
VAR
4 1
F 4

Seven scalar constraints with affine expressions in three conic domains:
| One is fixed to zero.
| Three are in conic quadratic domain.
| Three are in exponential cone domain.
CON
7 3
L= 1
Q 3
EXP 3

Two coordinates in a^{obj}_j coefficients:
| a^{obj}[0] = 1.0
| a^{obj}[3] = -1.0
OBJACOORD
2
0 1.0
3 -1.0

Seven coordinates in a_ij coefficients:
| a[0,0] = 1.0
| a[0,1] = 2.0
| and more...
ACOORD
7
0 0 1.0
0 1 2.0
0 2 -1.0
2 0 1.0
3 1 1.0
4 2 1.0
6 3 1.0

(continues on next page)

255

(continued from previous page)

Two coordinates in b_i coefficients:
| b[1] = 5.0
| b[5] = 1.0
BCOORD
2
1 5.0
5 1.0

Parametric cones

The problem (11.14), has three variables in a power cone with parameter 𝛼1 = (1, 1) and two power cone
constraints each with parameter 𝛼0 = (8, 1).

minimize 𝑥3

subject to (1.0, 𝑥1, 𝑥1 + 𝑥2) ∈ 𝑃𝑂𝑊𝛼0

(1.0, 𝑥2, 𝑥1 + 𝑥2) ∈ 𝑃𝑂𝑊𝛼0

𝑥 ∈ 𝑃𝑂𝑊𝛼1 .

(11.14)

The nonlinear conic constraints enforce 𝑥3 ≤ 𝑥1𝑥2 and 𝑥1 + 𝑥2 ≤ min(𝑥
1
9
1 , 𝑥

1
9
2).

File written using this version of the Conic Benchmark Format:
| Version 3.
VER
3

Two power cone domains defined in a total of four parameters:
| @0:POW (specification 0) has two parameters:
| alpha[0] = 8.0.
| alpha[1] = 1.0.
| @1:POW (specification 1) has two parameters:
| alpha[0] = 1.0.
| alpha[1] = 1.0.
POWCONES
2 4
2
8.0
1.0
2
1.0
1.0

The sense of the objective is:
| Maximize.
OBJSENSE
MAX

Three scalar variable in this one conic domain:
| Three are in power cone domain (specification 1).
VAR
3 1
@1:POW 3

Six scalar constraints with affine expressions in two conic domains:
| Three are in power cone domain (specification 0).
| Three are in power cone domain (specification 0).

(continues on next page)

256

(continued from previous page)

CON
6 2
@0:POW 3
@0:POW 3

One coordinate in a^{obj}_j coefficients:
| a^{obj}[2] = 1.0
OBJACOORD
1
2 1.0

Six coordinates in a_ij coefficients:
| a[1,0] = 1.0
| a[2,0] = 1.0
| and more...
ACOORD
6
1 0 1.0
2 0 1.0
2 1 1.0
4 1 1.0
5 0 1.0
5 1 1.0

Two coordinates in b_i coefficients:
| b[0] = 1.0
| b[3] = 1.0
BCOORD
2
0 1.0
3 1.0

11.5 The PTF Format

The PTF format is a human-readable, natural text format that supports all linear, conic and mixed-
integer features.

11.5.1 The overall format
The format is indentation based, where each section is started by a head line and followed by a section
body with deeper indentation that the head line. For example:

Header line
Body line 1
Body line 1
Body line 1

Section can also be nested:

Header line A
Body line in A
Header line A.1

Body line in A.1
Body line in A.1

Body line in A

257

The indentation of blank lines is ignored, so a subsection can contain a blank line with no indentation.
The character # defines a line comment and anything between the # character and the end of the line is
ignored.

In a PTF file, the first section must be a Task section. The order of the remaining section is arbitrary,
and sections may occur multiple times or not at all.

MOSEK will ignore any top-level section it does not recognize.

Names

In the description of the format we use following definitions for name strings:

NAME: PLAIN_NAME | QUOTED_NAME
PLAIN_NAME: [a-zA-Z_] [a-zA-Z0-9_-.!|]
QUOTED_NAME: "'" ([^'\\\r\n] | "\\" ([\\rn] | "x" [0-9a-fA-F] [0-9a-fA-F]))* "'"

Expressions

An expression is a sum of terms. A term is either a linear term (a coefficient and a variable name, where
the coefficient can be left out if it is 1.0), or a matrix inner product.

An expression:

EXPR: EMPTY | [+-]? TERM ([+-] TERM)*
TERM: LINEAR_TERM | MATRIX_TERM

A linear term

LINEAR_TERM: FLOAT? NAME

A matrix term

MATRIX_TERM: "<" FLOAT? NAME ([+-] FLOAT? NAME)* ";" NAME ">"

Here the right-hand name is the name of a (semidefinite) matrix variable, and the left-hand side is a
sum of symmetric matrixes. The actual matrixes are defined in a separate section.

Expressions can span multiple lines by giving subsequent lines a deeper indentation.
For example following two section are equivalent:

Everything on one line:
x1 + x2 + x3 + x4

Split into multiple lines:
x1

+ x2
+ x3
+ x4

11.5.2 Task section
The first section of the file must be a Task. The text in this section is not used and may contain
comments, or meta-information from the writer or about the content.

Format:

Task NAME
Anything goes here...

NAME is a the task name.

258

11.5.3 Objective section
The Objective section defines the objective name, sense and function. The format:

"Objective" NAME?
("Minimize" | "Maximize") EXPR

For example:

Objective 'obj'
Minimize x1 + 0.2 x2 + < M1 ; X1 >

11.5.4 Constraints section
The constraints section defines a series of constraints. A constraint defines a term 𝐴 · 𝑥 + 𝑏 ∈ 𝐾. For
linear constraints A is just one row, while for conic constraints it can be multiple rows. If a constraint
spans multiple rows these can either be written inline separated by semi-colons, or each expression in a
separete sub-section.

Simple linear constraints:

"Constraints"
NAME? "[" [-+] (FLOAT | "Inf") (";" [-+] (FLOAT | "Inf"))? "]" EXPR

If the brackets contain two values, they are used as upper and lower bounds. It they contain one
value the constraint is an equality.

For example:

Constraints
'c1' [0;10] x1 + x2 + x3
[0] x1 + x2 + x3

Constraint blocks put the expression either in a subsection or inline. The cone type (domain) is
written in the brackets, and MOSEK currently supports following types:

• SOC(N) Second order cone of dimension N

• RSOC(N) Rotated second order cone of dimension N

• PSD(N) Symmetric positive semidefinite cone of dimension N. This contains N*(N+1)/2 elements.

• PEXP Primal exponential cone of dimension 3

• DEXP Dual exponential cone of dimension 3

• PPOW(N,P) Primal power cone of dimension N with parameter P

• DPOW(N,P) Dual power cone of dimension N with parameter P

• ZERO(N) The zero-cone of dimension N.

"Constraints"
NAME? "[" DOMAIN "]" EXPR_LIST

For example:

Constraints
'K1' [SOC(3)] x1 + x2 ; x2 + x3 ; x3 + x1
'K2' [RSOC(3)]

x1 + x2
x2 + x3
x3 + x1

259

11.5.5 Variables section
Any variable used in an expression must be defined in a variable section. The variable section defines
each variable domain.

"Variables"
NAME "[" [-+] (FLOAT | "Inf") (";" [-+] (FLOAT | "Inf"))? "]"
NAME "[" DOMAIN "]" NAMES

For example, a linear variable

Variables
x1 [0;Inf]

As with constraints, members of a conic domain can be listed either inline or in a subsection:

Variables
k1 [SOC(3)] x1 ; x2 ; x3
k2 [RSOC(3)]

x1
x2
x3

11.5.6 Integer section
This section contains a list of variables that are integral. For example:

Integer
x1 x2 x3

11.5.7 SymmetricMatrixes section
This section defines the symmetric matrixes used for matrix coefficients in matrix inner product terms.
The section lists named matrixes, each with a size and a number of non-zeros. Only non-zeros in the
lower triangular part should be defined.

"SymmetricMatrixes"
NAME "SYMMAT" "(" INT ")" ("(" INT "," INT "," FLOAT ")")*
...

For example:

SymmetricMatrixes
M1 SYMMAT(3) (0,0,1.0) (1,1,2.0) (2,1,0.5)
M2 SYMMAT(3)

(0,0,1.0)
(1,1,2.0)
(2,1,0.5)

260

11.5.8 Solutions section
Each subsection defines a solution. A solution defines for each constraint and for each variable exactly
one primal value and either one (for conic domains) or two (for linear domains) dual values. The values
follow the same logic as in the MOSEK C API. A primal and a dual solution status defines the meaning
of the values primal and dual (solution, certificate, unknown, etc.)

The format is this:

"Solutions"
"Solution" WHICHSOL

"ProblemStatus" PROSTA PROSTA?
"SolutionStatus" SOLSTA SOLSTA?
"Objective" FLOAT FLOAT
"Variables"

Linear variable status: level, slx, sux
NAME "[" STATUS "]" FLOAT (FLOAT FLOAT)?
Conic variable status: level, snx
NAME

"[" STATUS "]" FLOAT FLOAT?
...

"Constraints"
Linear variable status: level, slx, sux
NAME "[" STATUS "]" FLOAT (FLOAT FLOAT)?
Conic variable status: level, snx
NAME

"[" STATUS "]" FLOAT FLOAT?
...

Following values for WHICHSOL are supported:

• interior Interior solution, the result of an interior-point solver.

• basic Basic solution, as produced by a simplex solver.

• integer Integer solution, the solution to a mixed-integer problem. This does not define a dual
solution.

Following values for PROSTA are supported:

• unknown The problem status is unknown

• feasible The problem has been proven feasible

• infeasible The problem has been proven infeasible

• illposed The problem has been proved to be ill posed

• infeasible_or_unbounded The problem is infeasible or unbounded

Following values for SOLSTA are supported:

• unknown The solution status is unknown

• feasible The solution is feasible

• optimal The solution is optimal

• infeas_cert The solution is a certificate of infeasibility

• illposed_cert The solution is a certificate of illposedness

Following values for STATUS are supported:

• unknown The value is unknown

• super_basic The value is super basic

261

• at_lower The value is basic and at its lower bound

• at_upper The value is basic and at its upper bound

• fixed The value is basic fixed

• infinite The value is at infinity

11.5.9 Examples

Linear example lo1.ptf

Task ''
Written by MOSEK v10.0.13
problemtype: Linear Problem
number of linear variables: 4
number of linear constraints: 3
number of old-style A nonzeros: 9

Objective obj
Maximize + 3 x1 + x2 + 5 x3 + x4

Constraints
c1 [3e+1] + 3 x1 + x2 + 2 x3
c2 [1.5e+1;+inf] + 2 x1 + x2 + 3 x3 + x4
c3 [-inf;2.5e+1] + 2 x2 + 3 x4

Variables
x1 [0;+inf]
x2 [0;1e+1]
x3 [0;+inf]
x4 [0;+inf]

Conic example cqo1.ptf

Task ''
Written by MOSEK v10.0.17
problemtype: Conic Problem
number of linear variables: 6
number of linear constraints: 1
number of old-style cones: 0
number of positive semidefinite variables: 0
number of positive semidefinite matrixes: 0
number of affine conic constraints: 2
number of disjunctive constraints: 0
number scalar affine expressions/nonzeros : 6/6
number of old-style A nonzeros: 3

Objective obj
Minimize + x4 + x5 + x6

Constraints
c1 [1] + x1 + x2 + 2 x3
k1 [QUAD(3)]

@ac1: + x4
@ac2: + x1
@ac3: + x2

k2 [RQUAD(3)]
@ac4: + x5
@ac5: + x6
@ac6: + x3

Variables
(continues on next page)

262

(continued from previous page)

x4
x1 [0;+inf]
x2 [0;+inf]
x5
x6
x3 [0;+inf]

Disjunctive example djc1.ptf

Task djc1
Objective ''

Minimize + 2 'x[0]' + 'x[1]' + 3 'x[2]' + 'x[3]'
Constraints

@c0 [-10;+inf] + 'x[0]' + 'x[1]' + 'x[2]' + 'x[3]'
@D0 [OR]

[AND]
[NEGATIVE(1)]

+ 'x[0]' - 2 'x[1]' + 1
[ZERO(2)]

+ 'x[2]'
+ 'x[3]'

[AND]
[NEGATIVE(1)]

+ 'x[2]' - 3 'x[3]' + 2
[ZERO(2)]

+ 'x[0]'
+ 'x[1]'

@D1 [OR]
[ZERO(1)]

+ 'x[0]' - 2.5
[ZERO(1)]

+ 'x[1]' - 2.5
[ZERO(1)]

+ 'x[2]' - 2.5
[ZERO(1)]

+ 'x[3]' - 2.5
Variables

'x[0]'
'x[1]'
'x[2]'
'x[3]'

11.6 The Task Format

The Task format is MOSEK‘s native binary format. It contains a complete image of a MOSEK task,
i.e.

• Problem data: Linear, conic, semidefinite and quadratic data

• Problem item names: Variable names, constraints names, cone names etc.

• Parameter settings

• Solutions

There are a few things to be aware of:

263

• Status of a solution read from a file will always be unknown.

• Parameter settings in a task file always override any parameters set on the command line or in a
parameter file.

The format is based on the TAR (USTar) file format. This means that the individual pieces of data
in a .task file can be examined by unpacking it as a TAR file. Please note that the inverse may not
work: Creating a file using TAR will most probably not create a valid MOSEK Task file since the order
of the entries is important.

11.7 The JSON Format

MOSEK provides the possibility to read/write problems and solutions in JSON format. The official
JSON website http://www.json.org provides plenty of information along with the format definition.
JSON is an industry standard for data exchange and JSON files can be easily written and read in most
programming languages using dedicated libraries.

MOSEK uses two JSON-based formats:

• JTASK, for storing problem instances together with solutions and parameters. The JTASK for-
mat contains the same information as a native MOSEK task task format , that is a very close
representation of the internal data storage in the task object.

You can write a JTASK file specifying the extension .jtask. When the parameter
MSK_IPAR_WRITE_JSON_INDENTATION is set the JTASK file will be indented to slightly improve
readability.

• JSOL, for storing solutions and information items.

You can write a JSOL solution file using the option -jsolo. When the parameter
MSK_IPAR_WRITE_JSON_INDENTATION is set the JSOL file will be indented to slightly improve
readability.

You can read a JSOL solution into an existing task file using the option -jsoli. Only the Task/
solutions section of the data will be taken into consideration.

11.7.1 JTASK Specification
The JTASK is a dictionary containing the following sections. All sections are optional and can be omitted
if irrelevant for the problem.

• $schema: JSON schema.

• Task/name: The name of the task (string).

• Task/INFO: Information about problem data dimensions and similar. These are treated as hints
when reading the file.

– numvar: number of variables (int32).

– numcon: number of constraints (int32).

– numcone: number of cones (int32, deprecated).

– numbarvar: number of symmetric matrix variables (int32).

– numanz: number of nonzeros in A (int64).

– numsymmat: number of matrices in the symmetric matrix storage E (int64).

– numafe: number of affine expressions in AFE storage (int64).

– numfnz: number of nonzeros in F (int64).

– numacc: number of affine conic constraints (ACCs) (int64).

– numdjc: number of disjunctive constraints (DJCs) (int64).

– numdom: number of domains (int64).

– mosekver: MOSEK version (list(int32)).

264

http://www.json.org

• Task/data: Numerical and structural data of the problem.

– var: Information about variables. All fields present must have the same length as bk. All or
none of bk, bl, and bu must appear.

∗ name: Variable names (list(string)).
∗ bk: Bound keys (list(string)).
∗ bl: Lower bounds (list(double)).
∗ bu: Upper bounds (list(double)).
∗ type: Variable types (list(string)).

– con: Information about linear constraints. All fields present must have the same length as
bk. All or none of bk, bl, and bu must appear.

∗ name: Constraint names (list(string)).
∗ bk: Bound keys (list(string)).
∗ bl: Lower bounds (list(double)).
∗ bu: Upper bounds (list(double)).

– barvar: Information about symmetric matrix variables. All fields present must have the same
length as dim.

∗ name: Barvar names (list(string)).
∗ dim: Dimensions (list(int32)).

– objective: Information about the objective.

∗ name: Objective name (string).
∗ sense: Objective sense (string).
∗ c: The linear part 𝑐 of the objective as a sparse vector. Both arrays must have the same

length.
· subj: indices of nonzeros (list(int32)).
· val: values of nonzeros (list(double)).

∗ cfix: Constant term in the objective (double).
∗ Q: The quadratic part 𝑄𝑜 of the objective as a sparse matrix, only lower-triangular part

included. All arrays must have the same length.
· subi: row indices of nonzeros (list(int32)).
· subj: column indices of nonzeros (list(int32)).
· val: values of nonzeros (list(double)).

∗ barc: The semidefinite part 𝐶 of the objective (list). Each element of the list is a list
describing one entry 𝐶𝑗 using three fields:

· index 𝑗 (int32).
· weights of the matrices from the storage 𝐸 forming 𝐶𝑗 (list(double)).
· indices of the matrices from the storage 𝐸 forming 𝐶𝑗 (list(int64)).

– A: The linear constraint matrix 𝐴 as a sparse matrix. All arrays must have the same length.

∗ subi: row indices of nonzeros (list(int32)).
∗ subj: column indices of nonzeros (list(int32)).
∗ val: values of nonzeros (list(double)).

– bara: The semidefinite part 𝐴 of the constraints (list). Each element of the list is a list
describing one entry 𝐴𝑖𝑗 using four fields:

∗ index 𝑖 (int32).
∗ index 𝑗 (int32).
∗ weights of the matrices from the storage 𝐸 forming 𝐴𝑖𝑗 (list(double)).
∗ indices of the matrices from the storage 𝐸 forming 𝐴𝑖𝑗 (list(int64)).

– AFE: The affine expression storage.

∗ numafe: number of rows in the storage (int64).
∗ F: The matrix 𝐹 as a sparse matrix. All arrays must have the same length.

265

· subi: row indices of nonzeros (list(int64)).
· subj: column indices of nonzeros (list(int32)).
· val: values of nonzeros (list(double)).

∗ g: The vector 𝑔 of constant terms as a sparse vector. Both arrays must have the same
length.

· subi: indices of nonzeros (list(int64)).
· val: values of nonzeros (list(double)).

∗ barf: The semidefinite part 𝐹 of the expressions in AFE storage (list). Each element of
the list is a list describing one entry 𝐹 𝑖𝑗 using four fields:

· index 𝑖 (int64).
· index 𝑗 (int32).
· weights of the matrices from the storage 𝐸 forming 𝐹 𝑖𝑗 (list(double)).
· indices of the matrices from the storage 𝐸 forming 𝐹 𝑖𝑗 (list(int64)).

– domains: Information about domains. All fields present must have the same length as type.

∗ name: Domain names (list(string)).
∗ type: Description of the type of each domain (list). Each element of the list is a list

describing one domain using at least one field:
· domain type (string).
· (except pexp, dexp) dimension (int64).
· (only ppow, dpow) weights (list(double)).

– ACC: Information about affine conic constraints (ACC). All fields present must have the same
length as domain.

∗ name: ACC names (list(string)).
∗ domain: Domains (list(int64)).
∗ afeidx: AFE indices, grouped by ACC (list(list(int64))).
∗ b: constant vectors 𝑏, grouped by ACC (list(list(double))).

– DJC: Information about disjunctive constraints (DJC). All fields present must have the same
length as termsize.

∗ name: DJC names (list(string)).
∗ termsize: Term sizes, grouped by DJC (list(list(int64))).
∗ domain: Domains, grouped by DJC (list(list(int64))).
∗ afeidx: AFE indices, grouped by DJC (list(list(int64))).
∗ b: constant vectors 𝑏, grouped by DJC (list(list(double))).

– MatrixStore: The symmetric matrix storage 𝐸 (list). Each element of the list is a list
describing one entry 𝐸 using four fields in sparse matrix format, lower-triangular part only:

∗ dimension (int32).
∗ row indices of nonzeros (list(int32)).
∗ column indices of nonzeros (list(int32)).
∗ values of nonzeros (list(double)).

– Q: The quadratic part 𝑄𝑐 of the constraints (list). Each element of the list is a list describing
one entry 𝑄𝑐

𝑖 using four fields in sparse matrix format, lower-triangular part only:

∗ the row index 𝑖 (int32).
∗ row indices of nonzeros (list(int32)).
∗ column indices of nonzeros (list(int32)).
∗ values of nonzeros (list(double)).

– qcone (deprecated). The description of cones. All fields present must have the same length
as type.

∗ name: Cone names (list(string)).
∗ type: Cone types (list(string)).
∗ par: Additional cone parameters (list(double)).

266

∗ members: Members, grouped by cone (list(list(int32))).

• Task/solutions: Solutions. This section can contain up to three subsections called:

– interior

– basic

– integer

corresponding to the three solution types in MOSEK. Each of these sections has the same structure:

– prosta: problem status (string).

– solsta: solution status (string).

– xx, xc, y, slc, suc, slx, sux, snx: one for each component of the solution of the same name
(list(double)).

– skx, skc, skn: status keys (list(string)).

– doty: the dual 𝑦̇ solution, grouped by ACC (list(list(double))).

– barx, bars: the primal/dual semidefinite solution, grouped by matrix variable
(list(list(double))).

• Task/parameters: Parameters.

– iparam: Integer parameters (dictionary). A dictionary with entries of the form name:value,
where name is a shortened parameter name (without leading MSK_IPAR_) and value is either
an integer or string if the parameter takes values from an enum.

– dparam: Double parameters (dictionary). A dictionary with entries of the form name:value,
where name is a shortened parameter name (without leading MSK_DPAR_) and value is a
double.

– sparam: String parameters (dictionary). A dictionary with entries of the form name:value,
where name is a shortened parameter name (without leading MSK_SPAR_) and value is a string.
Note that this section is allowed but MOSEK ignores it both when writing and reading JTASK
files.

11.7.2 JSOL Specification
The JSOL is a dictionary containing the following sections. All sections are optional and can be omitted
if irrelevant for the problem.

• $schema: JSON schema.

• Task/name: The name of the task (string).

• Task/solutions: Solutions. This section can contain up to three subsections called:

– interior

– basic

– integer

corresponding to the three solution types in MOSEK. Each of these section has the same structure:

– prosta: problem status (string).

– solsta: solution status (string).

– xx, xc, y, slc, suc, slx, sux, snx: one for each component of the solution of the same name
(list(double)).

– skx, skc, skn: status keys (list(string)).

– doty: the dual 𝑦̇ solution, grouped by ACC (list(list(double))).

– barx, bars: the primal/dual semidefinite solution, grouped by matrix variable
(list(list(double))).

267

• Task/information: Information items from the optimizer.

– int32: int32 information items (dictionary). A dictionary with entries of the form name:
value.

– int64: int64 information items (dictionary). A dictionary with entries of the form name:
value.

– double: double information items (dictionary). A dictionary with entries of the form name:
value.

11.7.3 A jtask example

Listing 11.5: A formatted jtask file for a simple portfolio opti-
mization problem.

{
"$schema":"http://mosek.com/json/schema#",
"Task/name":"Markowitz portfolio with market impact",
"Task/INFO":{"numvar":7,"numcon":1,"numcone":0,"numbarvar":0,"numanz":6,"numsymmat

→˓":0,"numafe":13,"numfnz":12,"numacc":4,"numdjc":0,"numdom":3,"mosekver":[10,0,0,3]},
"Task/data":{

"var":{
"name":["1.0","x[0]","x[1]","x[2]","t[0]","t[1]","t[2]"],
"bk":["fx","lo","lo","lo","fr","fr","fr"],
"bl":[1,0.0,0.0,0.0,-1e+30,-1e+30,-1e+30],
"bu":[1,1e+30,1e+30,1e+30,1e+30,1e+30,1e+30],
"type":["cont","cont","cont","cont","cont","cont","cont"]

},
"con":{

"name":["budget[]"],
"bk":["fx"],
"bl":[1],
"bu":[1]

},
"objective":{

"sense":"max",
"name":"obj",
"c":{

"subj":[1,2,3],
"val":[0.1073,0.0737,0.0627]

},
"cfix":0.0

},
"A":{

"subi":[0,0,0,0,0,0],
"subj":[1,2,3,4,5,6],
"val":[1,1,1,0.01,0.01,0.01]

},
"AFE":{

"numafe":13,
"F":{

"subi":[1,1,1,2,2,3,4,6,7,9,10,12],
"subj":[1,2,3,2,3,3,4,1,5,2,6,3],
"val":[0.166673333200005,0.0232190712557243,0.0012599496030238,0.

→˓102863378954911,-0.00222873156550421,0.0338148677744977,1,1,1,1,1,1]
},
"g":{

"subi":[0,5,8,11],
(continues on next page)

268

(continued from previous page)

"val":[0.035,1,1,1]
}

},
"domains":{

"type":[["r",0],
["quad",4],
["ppow",3,[0.6666666666666666,0.33333333333333337]]]

},
"ACC":{

"name":["risk[]","tz[0]","tz[1]","tz[2]"],
"domain":[1,2,2,2],
"afeidx":[[0,1,2,3],

[4,5,6],
[7,8,9],
[10,11,12]]

}
},
"Task/solutions":{

"interior":{
"prosta":"unknown",
"solsta":"unknown",
"skx":["fix","supbas","supbas","supbas","supbas","supbas","supbas"],
"skc":["fix"],
"xx":[1,0.10331580274282556,0.11673185566457132,0.7724326587076371,0.

→˓033208600335718846,0.03988270849469869,0.6788769587942524],
"xc":[1],
"slx":[0.0,-5.585840467641202e-10,-8.945844685006369e-10,-7.815248786428623e-

→˓11,0.0,0.0,0.0],
"sux":[0.0,0.0,0.0,0.0,0.0,0.0,0.0],
"snx":[0.0,0.0,0.0,0.0,0.0,0.0,0.0],
"slc":[0.0],
"suc":[-0.046725814048521205],
"y":[0.046725814048521205],
"doty":[[-0.6062603164682975,0.3620818321879349,0.17817754087278295,0.

→˓4524390346223723],
[-4.6725842015519993e-4,-7.708781121860897e-6,2.24800624747081e-4],
[-4.6725842015519993e-4,-9.268264309496919e-6,2.390390600079771e-4],
[-4.6725842015519993e-4,-1.5854982159992136e-4,6.159249331148646e-4]]

}
},
"Task/parameters":{

"iparam":{
"LICENSE_DEBUG":"ON",
"MIO_SEED":422

},
"dparam":{

"MIO_MAX_TIME":100
},
"sparam":{
}

}
}

269

11.8 The Solution File Format

MOSEK can output solutions to a text file:

• basis solution file (extension .bas) if the problem is optimized using the simplex optimizer or basis
identification is performed,

• interior solution file (extension .sol) if a problem is optimized using the interior-point optimizer
and no basis identification is required,

• integer solution file (extension .int) if the problem is solved with the mixed-integer optimizer.

All solution files have the format:

NAME : <problem name>
PROBLEM STATUS : <status of the problem>
SOLUTION STATUS : <status of the solution>
OBJECTIVE NAME : <name of the objective function>
PRIMAL OBJECTIVE : <primal objective value corresponding to the solution>
DUAL OBJECTIVE : <dual objective value corresponding to the solution>

CONSTRAINTS
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER
? <name> ?? <a value> <a value> <a value> <a value> <a value>

AFFINE CONIC CONSTRAINTS
INDEX NAME I ACTIVITY DUAL
? <name> <a value> <a value> <a value>

VARIABLES
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER ␣
→˓[CONIC DUAL]
? <name> ?? <a value> <a value> <a value> <a value> <a value> ␣
→˓[<a value>]

SYMMETRIC MATRIX VARIABLES
INDEX NAME I J PRIMAL DUAL
? <name> <a value> <a value> <a value> <a value>

The fields ?, ?? and <> will be filled with problem and solution specific information as described
below. The solution contains sections corresponding to parts of the input. Empty sections may be
omitted and fields in [] are optional, depending on what type of problem is solved. The notation below
follows the MOSEK naming convention for parts of the solution as defined in the problem specifications
in Sec. 7.

• HEADER
In this section, first the name of the problem is listed and afterwards the problem and solution
status are shown. Next the primal and dual objective values are displayed.

• CONSTRAINTS

– INDEX: A sequential index assigned to the constraint by MOSEK

– NAME: The name of the constraint assigned by the user or autogenerated.

– AT: The status key bkc of the constraint as in Table 11.4.

– ACTIVITY: the activity xc of the constraint expression.

– LOWER LIMIT: the lower bound blc of the constraint.

– UPPER LIMIT: the upper bound buc of the constraint.

– DUAL LOWER: the dual multiplier slc corresponding to the lower limit on the constraint.

– DUAL UPPER: the dual multiplier suc corresponding to the upper limit on the constraint.

270

• AFFINE CONIC CONSTRAINTS

– INDEX: A sequential index assigned to the affine expressions by MOSEK
– NAME: The name of the affine conic constraint assigned by the user or autogenerated.
– I: The sequential index of the affine expression in the affine conic constraint.
– ACTIVITY: the activity of the I-th affine expression in the affine conic constraint.
– DUAL: the dual multiplier doty for the I-th entry in the affine conic constraint.

• VARIABLES

– INDEX: A sequential index assigned to the variable by MOSEK
– NAME: The name of the variable assigned by the user or autogenerated.
– AT: The status key bkx of the variable as in Table 11.4.
– ACTIVITY: the value xx of the variable.
– LOWER LIMIT: the lower bound blx of the variable.
– UPPER LIMIT: the upper bound bux of the variable.
– DUAL LOWER: the dual multiplier slx corresponding to the lower limit on the variable.
– DUAL UPPER: the dual multiplier sux corresponding to the upper limit on the variable.
– CONIC DUAL: the dual multiplier skx corresponding to a conic variable (deprecated).

• SYMMETRIC MATRIX VARIABLES

– INDEX: A sequential index assigned to each symmetric matrix entry by MOSEK
– NAME: The name of the symmetric matrix variable assigned by the user or autogenerated.
– I: The row index in the symmetric matrix variable.
– J: The column index in the symmetric matrix variable.
– PRIMAL: the value of barx for the (I, J)-th entry in the symmetric matrix variable.
– DUAL: the dual multiplier bars for the (I, J)-th entry in the symmetric matrix variable.

Table 11.4: Status keys.

Status key Interpretation

UN Unknown status
BS Is basic
SB Is superbasic
LL Is at the lower limit (bound)
UL Is at the upper limit (bound)
EQ Lower limit is identical to upper limit
** Is infeasible i.e. the lower limit is greater than the upper limit.

Example.

Below is an example of a solution file.

Listing 11.6: An example of .sol file.

NAME :
PROBLEM STATUS : PRIMAL_AND_DUAL_FEASIBLE
SOLUTION STATUS : OPTIMAL
OBJECTIVE NAME : OBJ
PRIMAL OBJECTIVE : 0.70571049347734
DUAL OBJECTIVE : 0.70571048919757

CONSTRAINTS
(continues on next page)

271

(continued from previous page)

INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT ␣
→˓ DUAL LOWER DUAL UPPER

AFFINE CONIC CONSTRAINTS
INDEX NAME I ACTIVITY DUAL
0 A1 0 1.0000000009656 0.54475821296644
1 A1 1 0.50000000152223 0.32190455246225
2 A2 0 0.25439922724695 0.4552417870329
3 A2 1 0.17988741850378 -0.32190455246178
4 A2 2 0.17988741850378 -0.32190455246178

VARIABLES
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT ␣
→˓ DUAL LOWER DUAL UPPER
0 X1 SB 0.25439922724695 NONE NONE ␣
→˓ 0 0
1 X2 SB 0.17988741850378 NONE NONE ␣
→˓ 0 0
2 X3 SB 0.17988741850378 NONE NONE ␣
→˓ 0 0

SYMMETRIC MATRIX VARIABLES
INDEX NAME I J PRIMAL DUAL
0 BARX1 0 0 0.21725733689874 1.1333372337141
1 BARX1 1 0 -0.25997257078534 0.
→˓67809544651396
2 BARX1 2 0 0.21725733648507 -0.
→˓3219045527104
3 BARX1 1 1 0.31108610088839 1.1333372332693
4 BARX1 2 1 -0.25997257078534 0.
→˓67809544651435
5 BARX1 2 2 0.21725733689874 1.1333372337145
6 BARX2 0 0 4.8362272828127e-10 0.
→˓54475821339698
7 BARX2 1 0 0 0
8 BARX2 1 1 4.8362272828127e-10 0.
→˓54475821339698

272

Chapter 12

List of examples

List of examples shipped in the distribution of Command Line Tools:

Table 12.1: List of distributed examples

File Description

25fv47.mps A large linear problem from the Netlib library
cqo1.jtask A simple conic quadratic problem
cqo1.mps A simple conic quadratic problem
cqo1.ptf A simple conic quadratic problem
dinfeas.lp A simple dual infeasible linear problem
djc1.jtask A simple problem with disjunctive constraints (DJC)
djc1.ptf A simple problem with disjunctive constraints (DJC)
feasrepair.lp An example demonstrating repair of infeasible problems
infeas.lp A simple primal infeasible problem
lo1.jtask A simple linear problem
lo1.lp A simple linear problem
lo1.mps A simple linear problem
lo1.ptf A simple linear problem
milo1.jtask A simple mixed-integer linear problem
milo1.lp A simple mixed-integer linear problem
milo1.ptf A simple mixed-integer linear problem
qo1.jtask A simple quadratic problem
qo1.mps A simple quadratic problem
qo1.opf A simple quadratic problem
sdo1.cbf A simple semidefinite problem with one matrix variable and a quadratic cone
sdo1.jtask A simple semidefinite problem with one matrix variable and a quadratic cone
sdo1.ptf A simple semidefinite problem with one matrix variable and a quadratic cone
sensitivity.
ssp

Sensitivity analysis specification for transport.lp

transport.lp A linear problem in the sensitivity analysis example

Additional examples can be found on the MOSEK website and in other MOSEK publications.

273

Chapter 13

Interface changes

The section shows interface-specific changes to the MOSEK Command Line Tools in version 11.0 com-
pared to version 10. See the release notes for general changes and new features of the MOSEK Opti-
mization Suite.

13.1 Important changes compared to version 10

• Parameters. Users who set parameters to tune the performance and numerical properties of the
solver (termination criteria, tolerances, solving primal or dual, presolve etc.) are recommended to
reevaluate such tuning. It may be that other, or default, parameter settings will be more beneficial
in the current version. The hints in Sec. 6 may be useful for some cases.

13.2 Changes compared to version 10

13.2.1 Parameters compared to version 10

Added

• MSK_DPAR_FOLDING_TOL_EQ

• MSK_DPAR_MIO_CLIQUE_TABLE_SIZE_FACTOR

• MSK_DPAR_SIM_PRECISION_SCALING_EXTENDED

• MSK_DPAR_SIM_PRECISION_SCALING_NORMAL

• MSK_IPAR_FOLDING_USE

• MSK_IPAR_GETDUAL_CONVERT_LMIS

• MSK_IPAR_HEARTBEAT_SIM_FREQ_TICKS

• MSK_IPAR_LOG_SIM_FREQ_GIGA_TICKS

• MSK_IPAR_MIO_CONFLICT_ANALYSIS_LEVEL

• MSK_IPAR_MIO_CROSSOVER_MAX_NODES

• MSK_IPAR_MIO_INDEPENDENT_BLOCK_LEVEL

• MSK_IPAR_MIO_OPT_FACE_MAX_NODES

• MSK_IPAR_MIO_RENS_MAX_NODES

• MSK_IPAR_PTF_WRITE_SINGLE_PSD_TERMS

• MSK_IPAR_READ_ASYNC

274

https://docs.mosek.com/11.0/releasenotes/index.html

• MSK_IPAR_SIM_PRECISION

• MSK_IPAR_SIM_PRECISION_BOOST

• MSK_IPAR_WRITE_ASYNC

Removed

• MSK_DPAR_CHECK_CONVEXITY_REL_TOL

• MSK_DPAR_PRESOLVE_TOL_AIJ

• MSK_IPAR_INFEAS_PREFER_PRIMAL

• MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS

• MSK_IPAR_INTPNT_PURIFY

• MSK_IPAR_LOG_RESPONSE

• MSK_IPAR_LOG_SIM_MINOR

• MSK_IPAR_MIO_ROOT_REPEAT_PRESOLVE_LEVEL

• MSK_IPAR_PRESOLVE_LEVEL

• MSK_IPAR_SENSITIVITY_OPTIMIZER

• MSK_IPAR_SIM_STABILITY_PRIORITY

• MSK_IPAR_SOL_FILTER_KEEP_RANGED

• MSK_IPAR_SOLUTION_CALLBACK

• MSK_IPAR_WRITE_DATA_PARAM

• MSK_IPAR_WRITE_GENERIC_NAMES_IO

• MSK_IPAR_WRITE_TASK_INC_SOL

• MSK_IPAR_WRITE_XML_MODE

• MSK_SPAR_WRITE_LP_GEN_VAR_NAME

13.2.2 Constants compared to version 10

Added

• MSK_CALLBACK_BEGIN_FOLDING

• MSK_CALLBACK_BEGIN_FOLDING_BI

• MSK_CALLBACK_BEGIN_FOLDING_BI_DUAL

• MSK_CALLBACK_BEGIN_FOLDING_BI_INITIALIZE

• MSK_CALLBACK_BEGIN_FOLDING_BI_OPTIMIZER

• MSK_CALLBACK_BEGIN_FOLDING_BI_PRIMAL

• MSK_CALLBACK_BEGIN_INITIALIZE_BI

• MSK_CALLBACK_BEGIN_OPTIMIZE_BI

• MSK_CALLBACK_DECOMP_MIO

275

• MSK_CALLBACK_END_FOLDING

• MSK_CALLBACK_END_FOLDING_BI

• MSK_CALLBACK_END_FOLDING_BI_DUAL

• MSK_CALLBACK_END_FOLDING_BI_INITIALIZE

• MSK_CALLBACK_END_FOLDING_BI_OPTIMIZER

• MSK_CALLBACK_END_FOLDING_BI_PRIMAL

• MSK_CALLBACK_END_INITIALIZE_BI

• MSK_CALLBACK_END_OPTIMIZE_BI

• MSK_CALLBACK_FOLDING_BI_DUAL

• MSK_CALLBACK_FOLDING_BI_OPTIMIZER

• MSK_CALLBACK_FOLDING_BI_PRIMAL

• MSK_CALLBACK_HEARTBEAT

• MSK_CALLBACK_OPTIMIZE_BI

• MSK_CALLBACK_QO_REFORMULATE

• MSK_DINF_FOLDING_BI_OPTIMIZE_TIME

• MSK_DINF_FOLDING_BI_UNFOLD_DUAL_TIME

• MSK_DINF_FOLDING_BI_UNFOLD_INITIALIZE_TIME

• MSK_DINF_FOLDING_BI_UNFOLD_PRIMAL_TIME

• MSK_DINF_FOLDING_BI_UNFOLD_TIME

• MSK_DINF_FOLDING_FACTOR

• MSK_DINF_FOLDING_TIME

• MSK_IINF_FOLDING_APPLIED

• MSK_IINF_MIO_FINAL_NUMBIN

• MSK_IINF_MIO_FINAL_NUMBINCONEVAR

• MSK_IINF_MIO_FINAL_NUMCON

• MSK_IINF_MIO_FINAL_NUMCONE

• MSK_IINF_MIO_FINAL_NUMCONEVAR

• MSK_IINF_MIO_FINAL_NUMCONT

• MSK_IINF_MIO_FINAL_NUMCONTCONEVAR

• MSK_IINF_MIO_FINAL_NUMDEXPCONES

• MSK_IINF_MIO_FINAL_NUMDJC

• MSK_IINF_MIO_FINAL_NUMDPOWCONES

• MSK_IINF_MIO_FINAL_NUMINT

276

• MSK_IINF_MIO_FINAL_NUMINTCONEVAR

• MSK_IINF_MIO_FINAL_NUMPEXPCONES

• MSK_IINF_MIO_FINAL_NUMPPOWCONES

• MSK_IINF_MIO_FINAL_NUMQCONES

• MSK_IINF_MIO_FINAL_NUMRQCONES

• MSK_IINF_MIO_FINAL_NUMVAR

• MSK_IINF_MIO_NUM_BLOCKS_SOLVED_IN_BB

• MSK_IINF_MIO_NUM_BLOCKS_SOLVED_IN_PRESOLVE

• MSK_LIINF_BI_CLEAN_ITER

• MSK_LIINF_FOLDING_BI_DUAL_ITER

• MSK_LIINF_FOLDING_BI_OPTIMIZER_ITER

• MSK_LIINF_FOLDING_BI_PRIMAL_ITER

• MSK_LIINF_MIO_FINAL_ANZ

• MSK_OPTIMIZER_NEW_DUAL_SIMPLEX

• MSK_OPTIMIZER_NEW_PRIMAL_SIMPLEX

Removed

• MSK_CALLBACKCODE_BEGIN_SIMPLEX_BI

• MSK_CALLBACKCODE_IM_BI

• MSK_CALLBACKCODE_IM_CONIC

• MSK_CALLBACKCODE_IM_DUAL_BI

• MSK_CALLBACKCODE_IM_INTPNT

• MSK_CALLBACKCODE_IM_PRESOLVE

• MSK_CALLBACKCODE_IM_PRIMAL_BI

• MSK_CALLBACKCODE_IM_QO_REFORMULATE

• MSK_CALLBACKCODE_IM_SIMPLEX_BI

• MSK_DINFITEM_BI_CLEAN_DUAL_TIME

• MSK_DINFITEM_BI_CLEAN_PRIMAL_TIME

• MSK_LIINFITEM_BI_CLEAN_DUAL_DEG_ITER

• MSK_LIINFITEM_BI_CLEAN_DUAL_ITER

• MSK_LIINFITEM_BI_CLEAN_PRIMAL_DEG_ITER

• MSK_LIINFITEM_BI_CLEAN_PRIMAL_ITER

277

13.2.3 Response Codes compared to version 10

Added

• MSK_RES_ERR_GETDUAL_NOT_AVAILABLE

• MSK_RES_ERR_READ_ASYNC

• MSK_RES_ERR_READ_PREMATURE_EOF

• MSK_RES_ERR_READ_WRITE

• MSK_RES_ERR_SERVER_HARD_TIMEOUT

• MSK_RES_ERR_TASK_PREMATURE_EOF

• MSK_RES_ERR_WRITE_ASYNC

• MSK_RES_ERR_WRITE_LP_DUPLICATE_CON_NAMES

• MSK_RES_ERR_WRITE_LP_DUPLICATE_VAR_NAMES

• MSK_RES_ERR_WRITE_LP_INVALID_CON_NAMES

• MSK_RES_ERR_WRITE_LP_INVALID_VAR_NAMES

• MSK_RES_TRM_SERVER_MAX_MEMORY

• MSK_RES_TRM_SERVER_MAX_TIME

• MSK_RES_WRN_GETDUAL_IGNORES_INTEGRALITY

• MSK_RES_WRN_PRESOLVE_PRIMAL_PERTURBATIONS

• MSK_RES_WRN_PTF_UNKNOWN_SECTION

Removed

• MSK_RES_ERR_INVALID_AMPL_STUB

• MSK_RES_ERR_SIZE_LICENSE_NUMCORES

• MSK_RES_ERR_XML_INVALID_PROBLEM_TYPE

• MSK_RES_WRN_PRESOLVE_PRIMAL_PERTUBATIONS

• MSK_RES_WRN_WRITE_LP_DUPLICATE_CON_NAMES

• MSK_RES_WRN_WRITE_LP_DUPLICATE_VAR_NAMES

• MSK_RES_WRN_WRITE_LP_INVALID_CON_NAMES

• MSK_RES_WRN_WRITE_LP_INVALID_VAR_NAMES

278

Bibliography

[AA95] E. D. Andersen and K. D. Andersen. Presolving in linear programming. Math. Programming,
71(2):221–245, 1995.

[AGMeszarosX96] E. D. Andersen, J. Gondzio, Cs. Mészáros, and X. Xu. Implementation of interior
point methods for large scale linear programming. In T. Terlaky, editor, Interior-point meth-
ods of mathematical programming, pages 189–252. Kluwer Academic Publishers, 1996.

[ART03] E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual interior-point
method for conic quadratic optimization. Math. Programming, February 2003.

[AY96] E. D. Andersen and Y. Ye. Combining interior-point and pivoting algorithms. Management
Sci., 42(12):1719–1731, December 1996.

[And09] Erling D. Andersen. The homogeneous and self-dual model and algorithm for linear opti-
mization. Technical Report TR-1-2009, MOSEK ApS, 2009. URL: http://docs.mosek.com/
whitepapers/homolo.pdf.

[And13] Erling D. Andersen. On formulating quadratic functions in optimization models. Technical
Report TR-1-2013, MOSEK ApS, 2013. Last revised 23-feb-2016. URL: http://docs.mosek.
com/whitepapers/qmodel.pdf.

[Chvatal83] V. Chvátal. Linear programming. W.H. Freeman and Company, 1983.

[CCornuejolsZ14] M. Conforti, G. Cornu/'ejols, and G. Zambelli. Integer programming. Springer, 2014.

[Naz87] J. L. Nazareth. Computer Solution of Linear Programs. Oxford University Press, New York,
1987.

[RTV97] C. Roos, T. Terlaky, and J. -Ph. Vial. Theory and algorithms for linear optimization: an
interior point approach. John Wiley and Sons, New York, 1997.

[Wal00] S. W. Wallace. Decision making under uncertainty: is sensitivity of any use. Oper. Res.,
48(1):20–25, January 2000.

[Wol98] L. A. Wolsey. Integer programming. John Wiley and Sons, 1998.

279

http://docs.mosek.com/whitepapers/homolo.pdf
http://docs.mosek.com/whitepapers/homolo.pdf
http://docs.mosek.com/whitepapers/qmodel.pdf
http://docs.mosek.com/whitepapers/qmodel.pdf

Symbol Index

Functions

Parameters
Double parameters, 94
MSK_DPAR_ANA_SOL_INFEAS_TOL, 94
MSK_DPAR_BASIS_REL_TOL_S, 94
MSK_DPAR_BASIS_TOL_S, 95
MSK_DPAR_BASIS_TOL_X, 95
MSK_DPAR_DATA_SYM_MAT_TOL, 95
MSK_DPAR_DATA_SYM_MAT_TOL_HUGE, 95
MSK_DPAR_DATA_SYM_MAT_TOL_LARGE, 96
MSK_DPAR_DATA_TOL_AIJ_HUGE, 96
MSK_DPAR_DATA_TOL_AIJ_LARGE, 96
MSK_DPAR_DATA_TOL_BOUND_INF, 96
MSK_DPAR_DATA_TOL_BOUND_WRN, 96
MSK_DPAR_DATA_TOL_C_HUGE, 97
MSK_DPAR_DATA_TOL_CJ_LARGE, 97
MSK_DPAR_DATA_TOL_QIJ, 97
MSK_DPAR_DATA_TOL_X, 97
MSK_DPAR_FOLDING_TOL_EQ, 98
MSK_DPAR_INTPNT_CO_TOL_DFEAS, 98
MSK_DPAR_INTPNT_CO_TOL_INFEAS, 98
MSK_DPAR_INTPNT_CO_TOL_MU_RED, 98
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL, 98
MSK_DPAR_INTPNT_CO_TOL_PFEAS, 99
MSK_DPAR_INTPNT_CO_TOL_REL_GAP, 99
MSK_DPAR_INTPNT_QO_TOL_DFEAS, 99
MSK_DPAR_INTPNT_QO_TOL_INFEAS, 99
MSK_DPAR_INTPNT_QO_TOL_MU_RED, 100
MSK_DPAR_INTPNT_QO_TOL_NEAR_REL, 100
MSK_DPAR_INTPNT_QO_TOL_PFEAS, 100
MSK_DPAR_INTPNT_QO_TOL_REL_GAP, 100
MSK_DPAR_INTPNT_TOL_DFEAS, 101
MSK_DPAR_INTPNT_TOL_DSAFE, 101
MSK_DPAR_INTPNT_TOL_INFEAS, 101
MSK_DPAR_INTPNT_TOL_MU_RED, 101
MSK_DPAR_INTPNT_TOL_PATH, 102
MSK_DPAR_INTPNT_TOL_PFEAS, 102
MSK_DPAR_INTPNT_TOL_PSAFE, 102
MSK_DPAR_INTPNT_TOL_REL_GAP, 102
MSK_DPAR_INTPNT_TOL_REL_STEP, 102
MSK_DPAR_INTPNT_TOL_STEP_SIZE, 103
MSK_DPAR_LOWER_OBJ_CUT, 103
MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 103
MSK_DPAR_MIO_CLIQUE_TABLE_SIZE_FACTOR, 103
MSK_DPAR_MIO_DJC_MAX_BIGM, 104
MSK_DPAR_MIO_MAX_TIME, 104
MSK_DPAR_MIO_REL_GAP_CONST, 104
MSK_DPAR_MIO_TOL_ABS_GAP, 104

MSK_DPAR_MIO_TOL_ABS_RELAX_INT, 105
MSK_DPAR_MIO_TOL_FEAS, 105
MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT,

105
MSK_DPAR_MIO_TOL_REL_GAP, 105
MSK_DPAR_OPTIMIZER_MAX_TICKS, 105
MSK_DPAR_OPTIMIZER_MAX_TIME, 106
MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP, 106
MSK_DPAR_PRESOLVE_TOL_PRIMAL_INFEAS_PERTURBATION,

106
MSK_DPAR_PRESOLVE_TOL_REL_LINDEP, 106
MSK_DPAR_PRESOLVE_TOL_S, 107
MSK_DPAR_PRESOLVE_TOL_X, 107
MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL, 107
MSK_DPAR_SEMIDEFINITE_TOL_APPROX, 107
MSK_DPAR_SIM_LU_TOL_REL_PIV, 107
MSK_DPAR_SIM_PRECISION_SCALING_EXTENDED,

108
MSK_DPAR_SIM_PRECISION_SCALING_NORMAL, 108
MSK_DPAR_SIMPLEX_ABS_TOL_PIV, 108
MSK_DPAR_UPPER_OBJ_CUT, 108
MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH, 109
Integer parameters, 109
MSK_IPAR_ANA_SOL_BASIS, 109
MSK_IPAR_ANA_SOL_PRINT_VIOLATED, 109
MSK_IPAR_AUTO_SORT_A_BEFORE_OPT, 109
MSK_IPAR_AUTO_UPDATE_SOL_INFO, 110
MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE, 110
MSK_IPAR_BI_CLEAN_OPTIMIZER, 110
MSK_IPAR_BI_IGNORE_MAX_ITER, 110
MSK_IPAR_BI_IGNORE_NUM_ERROR, 110
MSK_IPAR_BI_MAX_ITERATIONS, 111
MSK_IPAR_CACHE_LICENSE, 111
MSK_IPAR_COMPRESS_STATFILE, 111
MSK_IPAR_FOLDING_USE, 111
MSK_IPAR_GETDUAL_CONVERT_LMIS, 112
MSK_IPAR_HEARTBEAT_SIM_FREQ_TICKS, 112
MSK_IPAR_INFEAS_GENERIC_NAMES, 112
MSK_IPAR_INFEAS_REPORT_AUTO, 112
MSK_IPAR_INFEAS_REPORT_LEVEL, 112
MSK_IPAR_INTPNT_BASIS, 113
MSK_IPAR_INTPNT_DIFF_STEP, 113
MSK_IPAR_INTPNT_HOTSTART, 113
MSK_IPAR_INTPNT_MAX_ITERATIONS, 113
MSK_IPAR_INTPNT_MAX_NUM_COR, 114
MSK_IPAR_INTPNT_OFF_COL_TRH, 114
MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS, 114
MSK_IPAR_INTPNT_ORDER_METHOD, 114
MSK_IPAR_INTPNT_REGULARIZATION_USE, 115

280

MSK_IPAR_INTPNT_SCALING, 115
MSK_IPAR_INTPNT_SOLVE_FORM, 115
MSK_IPAR_INTPNT_STARTING_POINT, 115
MSK_IPAR_LICENSE_DEBUG, 115
MSK_IPAR_LICENSE_PAUSE_TIME, 116
MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS, 116
MSK_IPAR_LICENSE_TRH_EXPIRY_WRN, 116
MSK_IPAR_LICENSE_WAIT, 116
MSK_IPAR_LOG, 117
MSK_IPAR_LOG_ANA_PRO, 117
MSK_IPAR_LOG_BI, 117
MSK_IPAR_LOG_BI_FREQ, 117
MSK_IPAR_LOG_CUT_SECOND_OPT, 118
MSK_IPAR_LOG_EXPAND, 118
MSK_IPAR_LOG_FEAS_REPAIR, 118
MSK_IPAR_LOG_FILE, 118
MSK_IPAR_LOG_INCLUDE_SUMMARY, 118
MSK_IPAR_LOG_INFEAS_ANA, 119
MSK_IPAR_LOG_INTPNT, 119
MSK_IPAR_LOG_LOCAL_INFO, 119
MSK_IPAR_LOG_MIO, 119
MSK_IPAR_LOG_MIO_FREQ, 120
MSK_IPAR_LOG_ORDER, 120
MSK_IPAR_LOG_PRESOLVE, 120
MSK_IPAR_LOG_SENSITIVITY, 120
MSK_IPAR_LOG_SENSITIVITY_OPT, 121
MSK_IPAR_LOG_SIM, 121
MSK_IPAR_LOG_SIM_FREQ, 121
MSK_IPAR_LOG_SIM_FREQ_GIGA_TICKS, 121
MSK_IPAR_LOG_STORAGE, 121
MSK_IPAR_MAX_NUM_WARNINGS, 122
MSK_IPAR_MIO_BRANCH_DIR, 122
MSK_IPAR_MIO_CONFLICT_ANALYSIS_LEVEL, 122
MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION, 122
MSK_IPAR_MIO_CONSTRUCT_SOL, 123
MSK_IPAR_MIO_CROSSOVER_MAX_NODES, 123
MSK_IPAR_MIO_CUT_CLIQUE, 123
MSK_IPAR_MIO_CUT_CMIR, 123
MSK_IPAR_MIO_CUT_GMI, 124
MSK_IPAR_MIO_CUT_IMPLIED_BOUND, 124
MSK_IPAR_MIO_CUT_KNAPSACK_COVER, 124
MSK_IPAR_MIO_CUT_LIPRO, 124
MSK_IPAR_MIO_CUT_SELECTION_LEVEL, 124
MSK_IPAR_MIO_DATA_PERMUTATION_METHOD, 125
MSK_IPAR_MIO_DUAL_RAY_ANALYSIS_LEVEL, 125
MSK_IPAR_MIO_FEASPUMP_LEVEL, 125
MSK_IPAR_MIO_HEURISTIC_LEVEL, 125
MSK_IPAR_MIO_INDEPENDENT_BLOCK_LEVEL, 126
MSK_IPAR_MIO_MAX_NUM_BRANCHES, 126
MSK_IPAR_MIO_MAX_NUM_RELAXS, 126
MSK_IPAR_MIO_MAX_NUM_RESTARTS, 127
MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS, 127
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS, 127
MSK_IPAR_MIO_MEMORY_EMPHASIS_LEVEL, 127
MSK_IPAR_MIO_MIN_REL, 127
MSK_IPAR_MIO_MODE, 128
MSK_IPAR_MIO_NODE_OPTIMIZER, 128
MSK_IPAR_MIO_NODE_SELECTION, 128

MSK_IPAR_MIO_NUMERICAL_EMPHASIS_LEVEL, 128
MSK_IPAR_MIO_OPT_FACE_MAX_NODES, 129
MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE, 129
MSK_IPAR_MIO_PRESOLVE_AGGREGATOR_USE, 129
MSK_IPAR_MIO_PROBING_LEVEL, 129
MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT,

130
MSK_IPAR_MIO_QCQO_REFORMULATION_METHOD, 130
MSK_IPAR_MIO_RENS_MAX_NODES, 130
MSK_IPAR_MIO_RINS_MAX_NODES, 130
MSK_IPAR_MIO_ROOT_OPTIMIZER, 130
MSK_IPAR_MIO_SEED, 131
MSK_IPAR_MIO_SYMMETRY_LEVEL, 131
MSK_IPAR_MIO_VAR_SELECTION, 131
MSK_IPAR_MIO_VB_DETECTION_LEVEL, 131
MSK_IPAR_MT_SPINCOUNT, 132
MSK_IPAR_NG, 132
MSK_IPAR_NUM_THREADS, 132
MSK_IPAR_OPF_WRITE_HEADER, 132
MSK_IPAR_OPF_WRITE_HINTS, 133
MSK_IPAR_OPF_WRITE_LINE_LENGTH, 133
MSK_IPAR_OPF_WRITE_PARAMETERS, 133
MSK_IPAR_OPF_WRITE_PROBLEM, 133
MSK_IPAR_OPF_WRITE_SOL_BAS, 133
MSK_IPAR_OPF_WRITE_SOL_ITG, 134
MSK_IPAR_OPF_WRITE_SOL_ITR, 134
MSK_IPAR_OPF_WRITE_SOLUTIONS, 134
MSK_IPAR_OPTIMIZER, 134
MSK_IPAR_PARAM_READ_CASE_NAME, 135
MSK_IPAR_PARAM_READ_IGN_ERROR, 135
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL, 135
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES,

135
MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH, 135
MSK_IPAR_PRESOLVE_LINDEP_NEW, 136
MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH, 136
MSK_IPAR_PRESOLVE_LINDEP_USE, 136
MSK_IPAR_PRESOLVE_MAX_NUM_PASS, 136
MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS, 137
MSK_IPAR_PRESOLVE_USE, 137
MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER, 137
MSK_IPAR_PTF_WRITE_PARAMETERS, 137
MSK_IPAR_PTF_WRITE_SINGLE_PSD_TERMS, 137
MSK_IPAR_PTF_WRITE_SOLUTIONS, 138
MSK_IPAR_PTF_WRITE_TRANSFORM, 138
MSK_IPAR_READ_ASYNC, 138
MSK_IPAR_READ_DEBUG, 138
MSK_IPAR_READ_KEEP_FREE_CON, 139
MSK_IPAR_READ_MPS_FORMAT, 139
MSK_IPAR_READ_MPS_WIDTH, 139
MSK_IPAR_READ_TASK_IGNORE_PARAM, 139
MSK_IPAR_REMOTE_USE_COMPRESSION, 139
MSK_IPAR_REMOVE_UNUSED_SOLUTIONS, 140
MSK_IPAR_SENSITIVITY_ALL, 140
MSK_IPAR_SENSITIVITY_TYPE, 140
MSK_IPAR_SIM_BASIS_FACTOR_USE, 140
MSK_IPAR_SIM_DEGEN, 140
MSK_IPAR_SIM_DETECT_PWL, 141

281

MSK_IPAR_SIM_DUAL_CRASH, 141
MSK_IPAR_SIM_DUAL_PHASEONE_METHOD, 141
MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION, 141
MSK_IPAR_SIM_DUAL_SELECTION, 142
MSK_IPAR_SIM_EXPLOIT_DUPVEC, 142
MSK_IPAR_SIM_HOTSTART, 142
MSK_IPAR_SIM_HOTSTART_LU, 142
MSK_IPAR_SIM_MAX_ITERATIONS, 142
MSK_IPAR_SIM_MAX_NUM_SETBACKS, 143
MSK_IPAR_SIM_NON_SINGULAR, 143
MSK_IPAR_SIM_PRECISION, 143
MSK_IPAR_SIM_PRECISION_BOOST, 143
MSK_IPAR_SIM_PRIMAL_CRASH, 144
MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD, 144
MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION, 144
MSK_IPAR_SIM_PRIMAL_SELECTION, 144
MSK_IPAR_SIM_REFACTOR_FREQ, 144
MSK_IPAR_SIM_REFORMULATION, 145
MSK_IPAR_SIM_SAVE_LU, 145
MSK_IPAR_SIM_SCALING, 145
MSK_IPAR_SIM_SCALING_METHOD, 145
MSK_IPAR_SIM_SEED, 146
MSK_IPAR_SIM_SOLVE_FORM, 146
MSK_IPAR_SIM_SWITCH_OPTIMIZER, 146
MSK_IPAR_SOL_FILTER_KEEP_BASIC, 146
MSK_IPAR_SOL_READ_NAME_WIDTH, 146
MSK_IPAR_SOL_READ_WIDTH, 147
MSK_IPAR_TIMING_LEVEL, 147
MSK_IPAR_WRITE_ASYNC, 147
MSK_IPAR_WRITE_BAS_CONSTRAINTS, 147
MSK_IPAR_WRITE_BAS_HEAD, 148
MSK_IPAR_WRITE_BAS_VARIABLES, 148
MSK_IPAR_WRITE_COMPRESSION, 148
MSK_IPAR_WRITE_FREE_CON, 148
MSK_IPAR_WRITE_GENERIC_NAMES, 148
MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS,

149
MSK_IPAR_WRITE_INT_CONSTRAINTS, 149
MSK_IPAR_WRITE_INT_HEAD, 149
MSK_IPAR_WRITE_INT_VARIABLES, 149
MSK_IPAR_WRITE_JSON_INDENTATION, 149
MSK_IPAR_WRITE_LP_FULL_OBJ, 150
MSK_IPAR_WRITE_LP_LINE_WIDTH, 150
MSK_IPAR_WRITE_MPS_FORMAT, 150
MSK_IPAR_WRITE_MPS_INT, 150
MSK_IPAR_WRITE_SOL_BARVARIABLES, 151
MSK_IPAR_WRITE_SOL_CONSTRAINTS, 151
MSK_IPAR_WRITE_SOL_HEAD, 151
MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES,

151
MSK_IPAR_WRITE_SOL_VARIABLES, 151
String parameters, 152
MSK_SPAR_BAS_SOL_FILE_NAME, 152
MSK_SPAR_DATA_FILE_NAME, 152
MSK_SPAR_DEBUG_FILE_NAME, 152
MSK_SPAR_INT_SOL_FILE_NAME, 152
MSK_SPAR_ITR_SOL_FILE_NAME, 152
MSK_SPAR_MIO_DEBUG_STRING, 152

MSK_SPAR_PARAM_COMMENT_SIGN, 153
MSK_SPAR_PARAM_READ_FILE_NAME, 153
MSK_SPAR_PARAM_WRITE_FILE_NAME, 153
MSK_SPAR_READ_MPS_BOU_NAME, 153
MSK_SPAR_READ_MPS_OBJ_NAME, 153
MSK_SPAR_READ_MPS_RAN_NAME, 154
MSK_SPAR_READ_MPS_RHS_NAME, 154
MSK_SPAR_REMOTE_OPTSERVER_HOST, 154
MSK_SPAR_REMOTE_TLS_CERT, 154
MSK_SPAR_REMOTE_TLS_CERT_PATH, 154
MSK_SPAR_SENSITIVITY_FILE_NAME, 154
MSK_SPAR_SENSITIVITY_RES_FILE_NAME, 155
MSK_SPAR_SOL_FILTER_XC_LOW, 155
MSK_SPAR_SOL_FILTER_XC_UPR, 155
MSK_SPAR_SOL_FILTER_XX_LOW, 155
MSK_SPAR_SOL_FILTER_XX_UPR, 155
MSK_SPAR_STAT_KEY, 156
MSK_SPAR_STAT_NAME, 156

Response codes
Termination, 156
MSK_RES_OK, 156
MSK_RES_TRM_INTERNAL, 157
MSK_RES_TRM_INTERNAL_STOP, 157
MSK_RES_TRM_LOST_RACE, 157
MSK_RES_TRM_MAX_ITERATIONS, 156
MSK_RES_TRM_MAX_NUM_SETBACKS, 157
MSK_RES_TRM_MAX_TIME, 156
MSK_RES_TRM_MIO_NUM_BRANCHES, 156
MSK_RES_TRM_MIO_NUM_RELAXS, 156
MSK_RES_TRM_NUM_MAX_NUM_INT_SOLUTIONS, 156
MSK_RES_TRM_NUMERICAL_PROBLEM, 157
MSK_RES_TRM_OBJECTIVE_RANGE, 156
MSK_RES_TRM_SERVER_MAX_MEMORY, 157
MSK_RES_TRM_SERVER_MAX_TIME, 157
MSK_RES_TRM_STALL, 157
MSK_RES_TRM_USER_CALLBACK, 157
Warnings, 157
MSK_RES_WRN_ANA_ALMOST_INT_BOUNDS, 159
MSK_RES_WRN_ANA_C_ZERO, 159
MSK_RES_WRN_ANA_CLOSE_BOUNDS, 159
MSK_RES_WRN_ANA_EMPTY_COLS, 159
MSK_RES_WRN_ANA_LARGE_BOUNDS, 159
MSK_RES_WRN_DROPPED_NZ_QOBJ, 158
MSK_RES_WRN_DUPLICATE_BARVARIABLE_NAMES,

159
MSK_RES_WRN_DUPLICATE_CONE_NAMES, 159
MSK_RES_WRN_DUPLICATE_CONSTRAINT_NAMES, 159
MSK_RES_WRN_DUPLICATE_VARIABLE_NAMES, 159
MSK_RES_WRN_ELIMINATOR_SPACE, 159
MSK_RES_WRN_EMPTY_NAME, 158
MSK_RES_WRN_GETDUAL_IGNORES_INTEGRALITY,

160
MSK_RES_WRN_IGNORE_INTEGER, 158
MSK_RES_WRN_INCOMPLETE_LINEAR_DEPENDENCY_CHECK,

159
MSK_RES_WRN_INVALID_MPS_NAME, 158
MSK_RES_WRN_INVALID_MPS_OBJ_NAME, 158

282

MSK_RES_WRN_LARGE_AIJ, 157
MSK_RES_WRN_LARGE_BOUND, 157
MSK_RES_WRN_LARGE_CJ, 157
MSK_RES_WRN_LARGE_CON_FX, 157
MSK_RES_WRN_LARGE_FIJ, 160
MSK_RES_WRN_LARGE_LO_BOUND, 157
MSK_RES_WRN_LARGE_UP_BOUND, 157
MSK_RES_WRN_LICENSE_EXPIRE, 158
MSK_RES_WRN_LICENSE_FEATURE_EXPIRE, 158
MSK_RES_WRN_LICENSE_SERVER, 158
MSK_RES_WRN_LP_DROP_VARIABLE, 158
MSK_RES_WRN_LP_OLD_QUAD_FORMAT, 158
MSK_RES_WRN_MIO_INFEASIBLE_FINAL, 158
MSK_RES_WRN_MODIFIED_DOUBLE_PARAMETER, 160
MSK_RES_WRN_MPS_SPLIT_BOU_VECTOR, 158
MSK_RES_WRN_MPS_SPLIT_RAN_VECTOR, 158
MSK_RES_WRN_MPS_SPLIT_RHS_VECTOR, 158
MSK_RES_WRN_NAME_MAX_LEN, 157
MSK_RES_WRN_NO_DUALIZER, 160
MSK_RES_WRN_NO_GLOBAL_OPTIMIZER, 158
MSK_RES_WRN_NO_INFEASIBILITY_REPORT_WHEN_MATRIX_VARIABLES,

160
MSK_RES_WRN_NZ_IN_UPR_TRI, 158
MSK_RES_WRN_OPEN_PARAM_FILE, 157
MSK_RES_WRN_PARAM_IGNORED_CMIO, 159
MSK_RES_WRN_PARAM_NAME_DOU, 159
MSK_RES_WRN_PARAM_NAME_INT, 159
MSK_RES_WRN_PARAM_NAME_STR, 159
MSK_RES_WRN_PARAM_STR_VALUE, 159
MSK_RES_WRN_PRESOLVE_OUTOFSPACE, 159
MSK_RES_WRN_PRESOLVE_PRIMAL_PERTURBATIONS,

159
MSK_RES_WRN_PTF_UNKNOWN_SECTION, 160
MSK_RES_WRN_SOL_FILE_IGNORED_CON, 158
MSK_RES_WRN_SOL_FILE_IGNORED_VAR, 158
MSK_RES_WRN_SOL_FILTER, 158
MSK_RES_WRN_SPAR_MAX_LEN, 158
MSK_RES_WRN_SYM_MAT_LARGE, 160
MSK_RES_WRN_TOO_FEW_BASIS_VARS, 158
MSK_RES_WRN_TOO_MANY_BASIS_VARS, 158
MSK_RES_WRN_UNDEF_SOL_FILE_NAME, 158
MSK_RES_WRN_USING_GENERIC_NAMES, 158
MSK_RES_WRN_WRITE_CHANGED_NAMES, 159
MSK_RES_WRN_WRITE_DISCARDED_CFIX, 159
MSK_RES_WRN_ZERO_AIJ, 157
MSK_RES_WRN_ZEROS_IN_SPARSE_COL, 159
MSK_RES_WRN_ZEROS_IN_SPARSE_ROW, 159
Errors, 160
MSK_RES_ERR_ACC_AFE_DOMAIN_MISMATCH, 179
MSK_RES_ERR_ACC_INVALID_ENTRY_INDEX, 179
MSK_RES_ERR_ACC_INVALID_INDEX, 179
MSK_RES_ERR_AD_INVALID_CODELIST, 173
MSK_RES_ERR_AFE_INVALID_INDEX, 179
MSK_RES_ERR_API_ARRAY_TOO_SMALL, 173
MSK_RES_ERR_API_CB_CONNECT, 173
MSK_RES_ERR_API_FATAL_ERROR, 173
MSK_RES_ERR_API_INTERNAL, 173
MSK_RES_ERR_APPENDING_TOO_BIG_CONE, 169

MSK_RES_ERR_ARG_IS_TOO_LARGE, 167
MSK_RES_ERR_ARG_IS_TOO_SMALL, 167
MSK_RES_ERR_ARGUMENT_DIMENSION, 166
MSK_RES_ERR_ARGUMENT_IS_TOO_LARGE, 175
MSK_RES_ERR_ARGUMENT_IS_TOO_SMALL, 175
MSK_RES_ERR_ARGUMENT_LENNEQ, 166
MSK_RES_ERR_ARGUMENT_PERM_ARRAY, 169
MSK_RES_ERR_ARGUMENT_TYPE, 166
MSK_RES_ERR_AXIS_NAME_SPECIFICATION, 163
MSK_RES_ERR_BAR_VAR_DIM, 174
MSK_RES_ERR_BASIS, 168
MSK_RES_ERR_BASIS_FACTOR, 172
MSK_RES_ERR_BASIS_SINGULAR, 172
MSK_RES_ERR_BLANK_NAME, 162
MSK_RES_ERR_CBF_DUPLICATE_ACOORD, 176
MSK_RES_ERR_CBF_DUPLICATE_BCOORD, 176
MSK_RES_ERR_CBF_DUPLICATE_CON, 176
MSK_RES_ERR_CBF_DUPLICATE_INT, 176
MSK_RES_ERR_CBF_DUPLICATE_OBJ, 176
MSK_RES_ERR_CBF_DUPLICATE_OBJACOORD, 176
MSK_RES_ERR_CBF_DUPLICATE_POW_CONES, 176
MSK_RES_ERR_CBF_DUPLICATE_POW_STAR_CONES,

176
MSK_RES_ERR_CBF_DUPLICATE_PSDCON, 177
MSK_RES_ERR_CBF_DUPLICATE_PSDVAR, 176
MSK_RES_ERR_CBF_DUPLICATE_VAR, 176
MSK_RES_ERR_CBF_EXPECTED_A_KEYWORD, 177
MSK_RES_ERR_CBF_INVALID_CON_TYPE, 176
MSK_RES_ERR_CBF_INVALID_DIMENSION_OF_CONES,

177
MSK_RES_ERR_CBF_INVALID_DIMENSION_OF_PSDCON,

177
MSK_RES_ERR_CBF_INVALID_DOMAIN_DIMENSION,

176
MSK_RES_ERR_CBF_INVALID_EXP_DIMENSION, 176
MSK_RES_ERR_CBF_INVALID_INT_INDEX, 176
MSK_RES_ERR_CBF_INVALID_NUM_ACOORD, 177
MSK_RES_ERR_CBF_INVALID_NUM_BCOORD, 177
MSK_RES_ERR_CBF_INVALID_NUM_DCOORD, 177
MSK_RES_ERR_CBF_INVALID_NUM_FCOORD, 177
MSK_RES_ERR_CBF_INVALID_NUM_HCOORD, 177
MSK_RES_ERR_CBF_INVALID_NUM_OBJACOORD, 177
MSK_RES_ERR_CBF_INVALID_NUM_OBJFCOORD, 177
MSK_RES_ERR_CBF_INVALID_NUM_PSDCON, 177
MSK_RES_ERR_CBF_INVALID_NUMBER_OF_CONES,

177
MSK_RES_ERR_CBF_INVALID_POWER, 176
MSK_RES_ERR_CBF_INVALID_POWER_CONE_INDEX,

176
MSK_RES_ERR_CBF_INVALID_POWER_STAR_CONE_INDEX,

177
MSK_RES_ERR_CBF_INVALID_PSDCON_BLOCK_INDEX,

177
MSK_RES_ERR_CBF_INVALID_PSDCON_INDEX, 177
MSK_RES_ERR_CBF_INVALID_PSDCON_VARIABLE_INDEX,

177
MSK_RES_ERR_CBF_INVALID_PSDVAR_DIMENSION,

176

283

MSK_RES_ERR_CBF_INVALID_VAR_TYPE, 176
MSK_RES_ERR_CBF_NO_VARIABLES, 175
MSK_RES_ERR_CBF_NO_VERSION_SPECIFIED, 175
MSK_RES_ERR_CBF_OBJ_SENSE, 175
MSK_RES_ERR_CBF_PARSE, 175
MSK_RES_ERR_CBF_POWER_CONE_IS_TOO_LONG, 176
MSK_RES_ERR_CBF_POWER_CONE_MISMATCH, 177
MSK_RES_ERR_CBF_POWER_STAR_CONE_MISMATCH,

177
MSK_RES_ERR_CBF_SYNTAX, 176
MSK_RES_ERR_CBF_TOO_FEW_CONSTRAINTS, 176
MSK_RES_ERR_CBF_TOO_FEW_INTS, 176
MSK_RES_ERR_CBF_TOO_FEW_PSDVAR, 176
MSK_RES_ERR_CBF_TOO_FEW_VARIABLES, 176
MSK_RES_ERR_CBF_TOO_MANY_CONSTRAINTS, 175
MSK_RES_ERR_CBF_TOO_MANY_INTS, 176
MSK_RES_ERR_CBF_TOO_MANY_VARIABLES, 175
MSK_RES_ERR_CBF_UNHANDLED_POWER_CONE_TYPE,

177
MSK_RES_ERR_CBF_UNHANDLED_POWER_STAR_CONE_TYPE,

177
MSK_RES_ERR_CBF_UNSUPPORTED, 176
MSK_RES_ERR_CBF_UNSUPPORTED_CHANGE, 177
MSK_RES_ERR_CON_Q_NOT_NSD, 169
MSK_RES_ERR_CON_Q_NOT_PSD, 169
MSK_RES_ERR_CONE_INDEX, 169
MSK_RES_ERR_CONE_OVERLAP, 169
MSK_RES_ERR_CONE_OVERLAP_APPEND, 169
MSK_RES_ERR_CONE_PARAMETER, 169
MSK_RES_ERR_CONE_REP_VAR, 169
MSK_RES_ERR_CONE_SIZE, 169
MSK_RES_ERR_CONE_TYPE, 169
MSK_RES_ERR_CONE_TYPE_STR, 169
MSK_RES_ERR_DATA_FILE_EXT, 162
MSK_RES_ERR_DIMENSION_SPECIFICATION, 163
MSK_RES_ERR_DJC_AFE_DOMAIN_MISMATCH, 179
MSK_RES_ERR_DJC_DOMAIN_TERMSIZE_MISMATCH,

179
MSK_RES_ERR_DJC_INVALID_INDEX, 179
MSK_RES_ERR_DJC_INVALID_TERM_SIZE, 179
MSK_RES_ERR_DJC_TOTAL_NUM_TERMS_MISMATCH,

179
MSK_RES_ERR_DJC_UNSUPPORTED_DOMAIN_TYPE,

179
MSK_RES_ERR_DOMAIN_DIMENSION, 178
MSK_RES_ERR_DOMAIN_DIMENSION_PSD, 178
MSK_RES_ERR_DOMAIN_INVALID_INDEX, 178
MSK_RES_ERR_DOMAIN_POWER_INVALID_ALPHA, 179
MSK_RES_ERR_DOMAIN_POWER_NEGATIVE_ALPHA,

179
MSK_RES_ERR_DOMAIN_POWER_NLEFT, 179
MSK_RES_ERR_DUP_NAME, 162
MSK_RES_ERR_DUPLICATE_AIJ, 170
MSK_RES_ERR_DUPLICATE_BARVARIABLE_NAMES,

174
MSK_RES_ERR_DUPLICATE_CONE_NAMES, 174
MSK_RES_ERR_DUPLICATE_CONSTRAINT_NAMES, 174
MSK_RES_ERR_DUPLICATE_DJC_NAMES, 174

MSK_RES_ERR_DUPLICATE_DOMAIN_NAMES, 174
MSK_RES_ERR_DUPLICATE_FIJ, 178
MSK_RES_ERR_DUPLICATE_INDEX_IN_A_SPARSE_MATRIX,

178
MSK_RES_ERR_DUPLICATE_INDEX_IN_AFEIDX_LIST,

178
MSK_RES_ERR_DUPLICATE_VARIABLE_NAMES, 174
MSK_RES_ERR_END_OF_FILE, 162
MSK_RES_ERR_FACTOR, 172
MSK_RES_ERR_FEASREPAIR_CANNOT_RELAX, 172
MSK_RES_ERR_FEASREPAIR_INCONSISTENT_BOUND,

172
MSK_RES_ERR_FEASREPAIR_SOLVING_RELAXED, 172
MSK_RES_ERR_FILE_LICENSE, 160
MSK_RES_ERR_FILE_OPEN, 161
MSK_RES_ERR_FILE_READ, 162
MSK_RES_ERR_FILE_WRITE, 162
MSK_RES_ERR_FINAL_SOLUTION, 171
MSK_RES_ERR_FIRST, 171
MSK_RES_ERR_FIRSTI, 168
MSK_RES_ERR_FIRSTJ, 168
MSK_RES_ERR_FIXED_BOUND_VALUES, 170
MSK_RES_ERR_FLEXLM, 160
MSK_RES_ERR_FORMAT_STRING, 162
MSK_RES_ERR_GETDUAL_NOT_AVAILABLE, 178
MSK_RES_ERR_GLOBAL_INV_CONIC_PROBLEM, 171
MSK_RES_ERR_HUGE_AIJ, 170
MSK_RES_ERR_HUGE_C, 170
MSK_RES_ERR_HUGE_FIJ, 178
MSK_RES_ERR_IDENTICAL_TASKS, 173
MSK_RES_ERR_IN_ARGUMENT, 166
MSK_RES_ERR_INDEX, 167
MSK_RES_ERR_INDEX_ARR_IS_TOO_LARGE, 166
MSK_RES_ERR_INDEX_ARR_IS_TOO_SMALL, 166
MSK_RES_ERR_INDEX_IS_NOT_UNIQUE, 166
MSK_RES_ERR_INDEX_IS_TOO_LARGE, 166
MSK_RES_ERR_INDEX_IS_TOO_SMALL, 166
MSK_RES_ERR_INF_DOU_INDEX, 166
MSK_RES_ERR_INF_DOU_NAME, 167
MSK_RES_ERR_INF_IN_DOUBLE_DATA, 170
MSK_RES_ERR_INF_INT_INDEX, 166
MSK_RES_ERR_INF_INT_NAME, 167
MSK_RES_ERR_INF_LINT_INDEX, 167
MSK_RES_ERR_INF_LINT_NAME, 167
MSK_RES_ERR_INF_TYPE, 167
MSK_RES_ERR_INFEAS_UNDEFINED, 174
MSK_RES_ERR_INFINITE_BOUND, 170
MSK_RES_ERR_INT64_TO_INT32_CAST, 173
MSK_RES_ERR_INTERNAL, 173
MSK_RES_ERR_INTERNAL_TEST_FAILED, 173
MSK_RES_ERR_INV_APTRE, 167
MSK_RES_ERR_INV_BK, 168
MSK_RES_ERR_INV_BKC, 168
MSK_RES_ERR_INV_BKX, 168
MSK_RES_ERR_INV_CONE_TYPE, 168
MSK_RES_ERR_INV_CONE_TYPE_STR, 168
MSK_RES_ERR_INV_DINF, 168
MSK_RES_ERR_INV_IINF, 168

284

MSK_RES_ERR_INV_LIINF, 168
MSK_RES_ERR_INV_MARKI, 172
MSK_RES_ERR_INV_MARKJ, 172
MSK_RES_ERR_INV_NAME_ITEM, 168
MSK_RES_ERR_INV_NUMI, 172
MSK_RES_ERR_INV_NUMJ, 172
MSK_RES_ERR_INV_OPTIMIZER, 171
MSK_RES_ERR_INV_PROBLEM, 171
MSK_RES_ERR_INV_QCON_SUBI, 170
MSK_RES_ERR_INV_QCON_SUBJ, 170
MSK_RES_ERR_INV_QCON_SUBK, 170
MSK_RES_ERR_INV_QCON_VAL, 170
MSK_RES_ERR_INV_QOBJ_SUBI, 170
MSK_RES_ERR_INV_QOBJ_SUBJ, 170
MSK_RES_ERR_INV_QOBJ_VAL, 170
MSK_RES_ERR_INV_RESCODE, 168
MSK_RES_ERR_INV_SK, 168
MSK_RES_ERR_INV_SK_STR, 168
MSK_RES_ERR_INV_SKC, 168
MSK_RES_ERR_INV_SKN, 168
MSK_RES_ERR_INV_SKX, 168
MSK_RES_ERR_INV_VAR_TYPE, 168
MSK_RES_ERR_INVALID_AIJ, 171
MSK_RES_ERR_INVALID_B, 178
MSK_RES_ERR_INVALID_BARVAR_NAME, 163
MSK_RES_ERR_INVALID_CFIX, 171
MSK_RES_ERR_INVALID_CJ, 171
MSK_RES_ERR_INVALID_COMPRESSION, 172
MSK_RES_ERR_INVALID_CON_NAME, 162
MSK_RES_ERR_INVALID_CONE_NAME, 162
MSK_RES_ERR_INVALID_FIJ, 178
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_AFFINE_CONIC_CONSTRAINTS,

174
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_CFIX,

174
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_CONES,

174
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_DISJUNCTIVE_CONSTRAINTS,

174
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_FREE_CONSTRAINTS,

174
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_NONLINEAR,

174
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_QUADRATIC_TERMS,

174
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_RANGED_CONSTRAINTS,

174
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_SYM_MAT,

174
MSK_RES_ERR_INVALID_FILE_NAME, 162
MSK_RES_ERR_INVALID_FORMAT_TYPE, 168
MSK_RES_ERR_INVALID_G, 178
MSK_RES_ERR_INVALID_IDX, 167
MSK_RES_ERR_INVALID_IOMODE, 172
MSK_RES_ERR_INVALID_MAX_NUM, 167
MSK_RES_ERR_INVALID_NAME_IN_SOL_FILE, 165
MSK_RES_ERR_INVALID_OBJ_NAME, 162
MSK_RES_ERR_INVALID_OBJECTIVE_SENSE, 170

MSK_RES_ERR_INVALID_PROBLEM_TYPE, 175
MSK_RES_ERR_INVALID_SOL_FILE_NAME, 162
MSK_RES_ERR_INVALID_STREAM, 162
MSK_RES_ERR_INVALID_SURPLUS, 168
MSK_RES_ERR_INVALID_SYM_MAT_DIM, 174
MSK_RES_ERR_INVALID_TASK, 162
MSK_RES_ERR_INVALID_UTF8, 173
MSK_RES_ERR_INVALID_VAR_NAME, 162
MSK_RES_ERR_INVALID_WCHAR, 173
MSK_RES_ERR_INVALID_WHICHSOL, 167
MSK_RES_ERR_JSON_DATA, 165
MSK_RES_ERR_JSON_FORMAT, 165
MSK_RES_ERR_JSON_MISSING_DATA, 165
MSK_RES_ERR_JSON_NUMBER_OVERFLOW, 165
MSK_RES_ERR_JSON_STRING, 165
MSK_RES_ERR_JSON_SYNTAX, 165
MSK_RES_ERR_LAST, 171
MSK_RES_ERR_LASTI, 168
MSK_RES_ERR_LASTJ, 169
MSK_RES_ERR_LAU_ARG_K, 175
MSK_RES_ERR_LAU_ARG_M, 175
MSK_RES_ERR_LAU_ARG_N, 175
MSK_RES_ERR_LAU_ARG_TRANS, 175
MSK_RES_ERR_LAU_ARG_TRANSA, 175
MSK_RES_ERR_LAU_ARG_TRANSB, 175
MSK_RES_ERR_LAU_ARG_UPLO, 175
MSK_RES_ERR_LAU_INVALID_LOWER_TRIANGULAR_MATRIX,

175
MSK_RES_ERR_LAU_INVALID_SPARSE_SYMMETRIC_MATRIX,

175
MSK_RES_ERR_LAU_NOT_POSITIVE_DEFINITE, 175
MSK_RES_ERR_LAU_SINGULAR_MATRIX, 175
MSK_RES_ERR_LAU_UNKNOWN, 175
MSK_RES_ERR_LICENSE, 160
MSK_RES_ERR_LICENSE_CANNOT_ALLOCATE, 161
MSK_RES_ERR_LICENSE_CANNOT_CONNECT, 161
MSK_RES_ERR_LICENSE_EXPIRED, 160
MSK_RES_ERR_LICENSE_FEATURE, 161
MSK_RES_ERR_LICENSE_INVALID_HOSTID, 161
MSK_RES_ERR_LICENSE_MAX, 160
MSK_RES_ERR_LICENSE_MOSEKLM_DAEMON, 161
MSK_RES_ERR_LICENSE_NO_SERVER_LINE, 161
MSK_RES_ERR_LICENSE_NO_SERVER_SUPPORT, 161
MSK_RES_ERR_LICENSE_OLD_SERVER_VERSION, 160
MSK_RES_ERR_LICENSE_SERVER, 160
MSK_RES_ERR_LICENSE_SERVER_VERSION, 161
MSK_RES_ERR_LICENSE_VERSION, 160
MSK_RES_ERR_LINK_FILE_DLL, 161
MSK_RES_ERR_LIVING_TASKS, 162
MSK_RES_ERR_LOWER_BOUND_IS_A_NAN, 170
MSK_RES_ERR_LP_AMBIGUOUS_CONSTRAINT_BOUND,

165
MSK_RES_ERR_LP_DUPLICATE_SECTION, 165
MSK_RES_ERR_LP_EMPTY, 165
MSK_RES_ERR_LP_EXPECTED_CONSTRAINT_RELATION,

165
MSK_RES_ERR_LP_EXPECTED_NUMBER, 165
MSK_RES_ERR_LP_EXPECTED_OBJECTIVE, 165

285

MSK_RES_ERR_LP_FILE_FORMAT, 165
MSK_RES_ERR_LP_INDICATOR_VAR, 165
MSK_RES_ERR_LP_INVALID_VAR_NAME, 165
MSK_RES_ERR_LU_MAX_NUM_TRIES, 172
MSK_RES_ERR_MAX_LEN_IS_TOO_SMALL, 169
MSK_RES_ERR_MAXNUMBARVAR, 167
MSK_RES_ERR_MAXNUMCON, 167
MSK_RES_ERR_MAXNUMCONE, 169
MSK_RES_ERR_MAXNUMQNZ, 167
MSK_RES_ERR_MAXNUMVAR, 167
MSK_RES_ERR_MIO_INTERNAL, 175
MSK_RES_ERR_MIO_INVALID_NODE_OPTIMIZER, 177
MSK_RES_ERR_MIO_INVALID_ROOT_OPTIMIZER, 177
MSK_RES_ERR_MIO_NO_OPTIMIZER, 171
MSK_RES_ERR_MISMATCHING_DIMENSION, 162
MSK_RES_ERR_MISSING_LICENSE_FILE, 160
MSK_RES_ERR_MIXED_CONIC_AND_NL, 171
MSK_RES_ERR_MPS_CONE_OVERLAP, 164
MSK_RES_ERR_MPS_CONE_REPEAT, 164
MSK_RES_ERR_MPS_CONE_TYPE, 164
MSK_RES_ERR_MPS_DUPLICATE_Q_ELEMENT, 164
MSK_RES_ERR_MPS_FILE, 163
MSK_RES_ERR_MPS_INV_FIELD, 163
MSK_RES_ERR_MPS_INV_MARKER, 163
MSK_RES_ERR_MPS_INV_SEC_ORDER, 164
MSK_RES_ERR_MPS_INVALID_BOUND_KEY, 163
MSK_RES_ERR_MPS_INVALID_CON_KEY, 163
MSK_RES_ERR_MPS_INVALID_INDICATOR_CONSTRAINT,

164
MSK_RES_ERR_MPS_INVALID_INDICATOR_QUADRATIC_CONSTRAINT,

164
MSK_RES_ERR_MPS_INVALID_INDICATOR_VALUE,

164
MSK_RES_ERR_MPS_INVALID_INDICATOR_VARIABLE,

164
MSK_RES_ERR_MPS_INVALID_KEY, 164
MSK_RES_ERR_MPS_INVALID_OBJ_NAME, 164
MSK_RES_ERR_MPS_INVALID_OBJSENSE, 164
MSK_RES_ERR_MPS_INVALID_SEC_NAME, 163
MSK_RES_ERR_MPS_MUL_CON_NAME, 163
MSK_RES_ERR_MPS_MUL_CSEC, 164
MSK_RES_ERR_MPS_MUL_QOBJ, 164
MSK_RES_ERR_MPS_MUL_QSEC, 163
MSK_RES_ERR_MPS_NO_OBJECTIVE, 163
MSK_RES_ERR_MPS_NON_SYMMETRIC_Q, 164
MSK_RES_ERR_MPS_NULL_CON_NAME, 163
MSK_RES_ERR_MPS_NULL_VAR_NAME, 163
MSK_RES_ERR_MPS_SPLITTED_VAR, 163
MSK_RES_ERR_MPS_TAB_IN_FIELD2, 164
MSK_RES_ERR_MPS_TAB_IN_FIELD3, 164
MSK_RES_ERR_MPS_TAB_IN_FIELD5, 164
MSK_RES_ERR_MPS_UNDEF_CON_NAME, 163
MSK_RES_ERR_MPS_UNDEF_VAR_NAME, 163
MSK_RES_ERR_MPS_WRITE_CPLEX_INVALID_CONE_TYPE,

177
MSK_RES_ERR_MUL_A_ELEMENT, 168
MSK_RES_ERR_NAME_IS_NULL, 172
MSK_RES_ERR_NAME_MAX_LEN, 172

MSK_RES_ERR_NAN_IN_BLC, 171
MSK_RES_ERR_NAN_IN_BLX, 171
MSK_RES_ERR_NAN_IN_BUC, 171
MSK_RES_ERR_NAN_IN_BUX, 171
MSK_RES_ERR_NAN_IN_C, 171
MSK_RES_ERR_NAN_IN_DOUBLE_DATA, 170
MSK_RES_ERR_NEGATIVE_APPEND, 171
MSK_RES_ERR_NEGATIVE_SURPLUS, 171
MSK_RES_ERR_NEWER_DLL, 161
MSK_RES_ERR_NO_BARS_FOR_SOLUTION, 174
MSK_RES_ERR_NO_BARX_FOR_SOLUTION, 174
MSK_RES_ERR_NO_BASIS_SOL, 171
MSK_RES_ERR_NO_DOTY, 179
MSK_RES_ERR_NO_DUAL_FOR_ITG_SOL, 173
MSK_RES_ERR_NO_DUAL_INFEAS_CER, 172
MSK_RES_ERR_NO_INIT_ENV, 162
MSK_RES_ERR_NO_OPTIMIZER_VAR_TYPE, 171
MSK_RES_ERR_NO_PRIMAL_INFEAS_CER, 172
MSK_RES_ERR_NO_SNX_FOR_BAS_SOL, 173
MSK_RES_ERR_NO_SOLUTION_IN_CALLBACK, 172
MSK_RES_ERR_NON_UNIQUE_ARRAY, 175
MSK_RES_ERR_NONCONVEX, 169
MSK_RES_ERR_NONLINEAR_EQUALITY, 169
MSK_RES_ERR_NONLINEAR_RANGED, 169
MSK_RES_ERR_NOT_POWER_DOMAIN, 179
MSK_RES_ERR_NULL_ENV, 162
MSK_RES_ERR_NULL_POINTER, 162
MSK_RES_ERR_NULL_TASK, 162
MSK_RES_ERR_NUM_ARGUMENTS, 166
MSK_RES_ERR_NUMCONLIM, 167
MSK_RES_ERR_NUMVARLIM, 167
MSK_RES_ERR_OBJ_Q_NOT_NSD, 169
MSK_RES_ERR_OBJ_Q_NOT_PSD, 169
MSK_RES_ERR_OBJECTIVE_RANGE, 168
MSK_RES_ERR_OLDER_DLL, 161
MSK_RES_ERR_OPF_DUAL_INTEGER_SOLUTION, 165
MSK_RES_ERR_OPF_DUPLICATE_BOUND, 164
MSK_RES_ERR_OPF_DUPLICATE_CONE_ENTRY, 165
MSK_RES_ERR_OPF_DUPLICATE_CONSTRAINT_NAME,

164
MSK_RES_ERR_OPF_INCORRECT_TAG_PARAM, 164
MSK_RES_ERR_OPF_INVALID_CONE_TYPE, 164
MSK_RES_ERR_OPF_INVALID_TAG, 164
MSK_RES_ERR_OPF_MISMATCHED_TAG, 164
MSK_RES_ERR_OPF_PREMATURE_EOF, 164
MSK_RES_ERR_OPF_SYNTAX, 164
MSK_RES_ERR_OPF_TOO_LARGE, 165
MSK_RES_ERR_OPTIMIZER_LICENSE, 160
MSK_RES_ERR_OVERFLOW, 171
MSK_RES_ERR_PARAM_INDEX, 166
MSK_RES_ERR_PARAM_IS_TOO_LARGE, 166
MSK_RES_ERR_PARAM_IS_TOO_SMALL, 166
MSK_RES_ERR_PARAM_NAME, 166
MSK_RES_ERR_PARAM_NAME_DOU, 166
MSK_RES_ERR_PARAM_NAME_INT, 166
MSK_RES_ERR_PARAM_NAME_STR, 166
MSK_RES_ERR_PARAM_TYPE, 166
MSK_RES_ERR_PARAM_VALUE_STR, 166

286

MSK_RES_ERR_PLATFORM_NOT_LICENSED, 161
MSK_RES_ERR_POSTSOLVE, 171
MSK_RES_ERR_PRO_ITEM, 168
MSK_RES_ERR_PROB_LICENSE, 160
MSK_RES_ERR_PTF_FORMAT, 166
MSK_RES_ERR_PTF_INCOMPATIBILITY, 166
MSK_RES_ERR_PTF_INCONSISTENCY, 166
MSK_RES_ERR_PTF_UNDEFINED_ITEM, 166
MSK_RES_ERR_QCON_SUBI_TOO_LARGE, 170
MSK_RES_ERR_QCON_SUBI_TOO_SMALL, 170
MSK_RES_ERR_QCON_UPPER_TRIANGLE, 170
MSK_RES_ERR_QOBJ_UPPER_TRIANGLE, 170
MSK_RES_ERR_READ_ASYNC, 162
MSK_RES_ERR_READ_FORMAT, 163
MSK_RES_ERR_READ_GZIP, 162
MSK_RES_ERR_READ_LP_DELAYED_ROWS_NOT_SUPPORTED,

165
MSK_RES_ERR_READ_LP_MISSING_END_TAG, 165
MSK_RES_ERR_READ_PREMATURE_EOF, 163
MSK_RES_ERR_READ_WRITE, 172
MSK_RES_ERR_READ_ZSTD, 162
MSK_RES_ERR_REMOVE_CONE_VARIABLE, 169
MSK_RES_ERR_REPAIR_INVALID_PROBLEM, 172
MSK_RES_ERR_REPAIR_OPTIMIZATION_FAILED, 172
MSK_RES_ERR_SEN_BOUND_INVALID_LO, 173
MSK_RES_ERR_SEN_BOUND_INVALID_UP, 173
MSK_RES_ERR_SEN_FORMAT, 173
MSK_RES_ERR_SEN_INDEX_INVALID, 173
MSK_RES_ERR_SEN_INDEX_RANGE, 173
MSK_RES_ERR_SEN_INVALID_REGEXP, 173
MSK_RES_ERR_SEN_NUMERICAL, 173
MSK_RES_ERR_SEN_SOLUTION_STATUS, 173
MSK_RES_ERR_SEN_UNDEF_NAME, 173
MSK_RES_ERR_SEN_UNHANDLED_PROBLEM_TYPE, 173
MSK_RES_ERR_SERVER_ACCESS_TOKEN, 178
MSK_RES_ERR_SERVER_ADDRESS, 178
MSK_RES_ERR_SERVER_CERTIFICATE, 178
MSK_RES_ERR_SERVER_CONNECT, 178
MSK_RES_ERR_SERVER_HARD_TIMEOUT, 178
MSK_RES_ERR_SERVER_PROBLEM_SIZE, 178
MSK_RES_ERR_SERVER_PROTOCOL, 178
MSK_RES_ERR_SERVER_STATUS, 178
MSK_RES_ERR_SERVER_TLS_CLIENT, 178
MSK_RES_ERR_SERVER_TOKEN, 178
MSK_RES_ERR_SHAPE_IS_TOO_LARGE, 166
MSK_RES_ERR_SIZE_LICENSE, 160
MSK_RES_ERR_SIZE_LICENSE_CON, 160
MSK_RES_ERR_SIZE_LICENSE_INTVAR, 160
MSK_RES_ERR_SIZE_LICENSE_VAR, 160
MSK_RES_ERR_SLICE_SIZE, 171
MSK_RES_ERR_SOL_FILE_INVALID_NUMBER, 169
MSK_RES_ERR_SOLITEM, 167
MSK_RES_ERR_SOLVER_PROBTYPE, 168
MSK_RES_ERR_SPACE, 161
MSK_RES_ERR_SPACE_LEAKING, 163
MSK_RES_ERR_SPACE_NO_INFO, 163
MSK_RES_ERR_SPARSITY_SPECIFICATION, 162
MSK_RES_ERR_SYM_MAT_DUPLICATE, 174

MSK_RES_ERR_SYM_MAT_HUGE, 171
MSK_RES_ERR_SYM_MAT_INVALID, 171
MSK_RES_ERR_SYM_MAT_INVALID_COL_INDEX, 174
MSK_RES_ERR_SYM_MAT_INVALID_ROW_INDEX, 174
MSK_RES_ERR_SYM_MAT_INVALID_VALUE, 174
MSK_RES_ERR_SYM_MAT_NOT_LOWER_TRINGULAR,

174
MSK_RES_ERR_TASK_INCOMPATIBLE, 172
MSK_RES_ERR_TASK_INVALID, 172
MSK_RES_ERR_TASK_PREMATURE_EOF, 172
MSK_RES_ERR_TASK_WRITE, 172
MSK_RES_ERR_THREAD_COND_INIT, 161
MSK_RES_ERR_THREAD_CREATE, 161
MSK_RES_ERR_THREAD_MUTEX_INIT, 161
MSK_RES_ERR_THREAD_MUTEX_LOCK, 161
MSK_RES_ERR_THREAD_MUTEX_UNLOCK, 161
MSK_RES_ERR_TOCONIC_CONSTR_NOT_CONIC, 178
MSK_RES_ERR_TOCONIC_CONSTR_Q_NOT_PSD, 177
MSK_RES_ERR_TOCONIC_CONSTRAINT_FX, 178
MSK_RES_ERR_TOCONIC_CONSTRAINT_RA, 178
MSK_RES_ERR_TOCONIC_OBJECTIVE_NOT_PSD, 178
MSK_RES_ERR_TOO_SMALL_A_TRUNCATION_VALUE,

170
MSK_RES_ERR_TOO_SMALL_MAX_NUM_NZ, 167
MSK_RES_ERR_TOO_SMALL_MAXNUMANZ, 167
MSK_RES_ERR_UNALLOWED_WHICHSOL, 167
MSK_RES_ERR_UNB_STEP_SIZE, 173
MSK_RES_ERR_UNDEF_SOLUTION, 179
MSK_RES_ERR_UNDEFINED_OBJECTIVE_SENSE, 170
MSK_RES_ERR_UNHANDLED_SOLUTION_STATUS, 175
MSK_RES_ERR_UNKNOWN, 161
MSK_RES_ERR_UPPER_BOUND_IS_A_NAN, 170
MSK_RES_ERR_UPPER_TRIANGLE, 175
MSK_RES_ERR_WHICHITEM_NOT_ALLOWED, 167
MSK_RES_ERR_WHICHSOL, 167
MSK_RES_ERR_WRITE_ASYNC, 165
MSK_RES_ERR_WRITE_LP_DUPLICATE_CON_NAMES,

163
MSK_RES_ERR_WRITE_LP_DUPLICATE_VAR_NAMES,

163
MSK_RES_ERR_WRITE_LP_INVALID_CON_NAMES, 163
MSK_RES_ERR_WRITE_LP_INVALID_VAR_NAMES, 163
MSK_RES_ERR_WRITE_MPS_INVALID_NAME, 165
MSK_RES_ERR_WRITE_OPF_INVALID_VAR_NAME, 165
MSK_RES_ERR_WRITING_FILE, 165
MSK_RES_ERR_Y_IS_UNDEFINED, 170

287

Index

Symbols
-

mosek command line option, 18
-?

mosek command line option, 17
-anapro

mosek command line option, 16
-anasoli

mosek command line option, 16
-anasolo

mosek command line option, 16
-basi

mosek command line option, 16
-baso

mosek command line option, 16
-d

mosek command line option, 16
-dbgmem

mosek command line option, 16
-dualout

mosek command line option, 17
-f

mosek command line option, 17
-h

mosek command line option, 17
-info

mosek command line option, 17
-infrepo

mosek command line option, 17
-inti

mosek command line option, 17
-into

mosek command line option, 17
-itri

mosek command line option, 17
-itro

mosek command line option, 17
-jsoli

mosek command line option, 17
-jsolo

mosek command line option, 17
-l,-L

mosek command line option, 17
-max

mosek command line option, 17
-min

mosek command line option, 17
-n

mosek command line option, 17

-optserv
mosek command line option, 17

-out
mosek command line option, 17

-p
mosek command line option, 17

-pari
mosek command line option, 17

-paro
mosek command line option, 17

-primalrepair
mosek command line option, 17

-q
mosek command line option, 17

-r
mosek command line option, 17

-removeitg
mosek command line option, 17

-rout
mosek command line option, 17

-sen
mosek command line option, 17

-silent
mosek command line option, 17

-toconic
mosek command line option, 18

-v
mosek command line option, 18

-w
mosek command line option, 18

-x
mosek command line option, 18

A
analysis

infeasibility, 71
arguments

command line tool, 12

B
basis identification, 49
basis type

sensitivity analysis, 77
big-M, 67
bound

constraint, 33, 36, 40
variable, 33, 36, 40

Branch-and-Bound, 58

288

C
CBF format, 239
certificate

dual, 35, 38
primal, 35, 38

command line tool
arguments, 12

complementarity, 34, 38
cone

dual, 37
conic optimization, 36

interior-point, 53
mixed-integer, 66
termination criteria, 55

constraint
bound, 33, 36, 40
matrix, 33, 36, 40
quadratic, 41

cuts, 64
cutting planes, 64

D
disjunctive constraint, 67
domain, 209
dual

certificate, 35, 38
cone, 37
feasible, 34
infeasible, 34, 35, 38
problem, 34, 37, 41
variable, 34, 37

duality
conic, 37
linear, 34
semidefinite, 41

dualizer, 45

E
eliminator, 45

F
feasibility

integer feasibility, 60
feasible

dual, 34
primal, 33, 47, 54
problem, 33

format
CBF, 239
json, 264
LP, 213
MPS, 217
OPF, 229
PTF, 257
sol, 270
task, 263

H
heuristic, 63
hot-start, 51

I
infeasibility, 35, 38

analysis, 71
linear optimization, 35
repair, 71
semidefinite, 41

infeasible
dual, 34, 35, 38
primal, 33, 35, 38, 47, 54
problem, 33, 35, 41

installation, 9
requirements, 9
troubleshooting, 9

integer feasibility, 60
feasibility, 60

interior-point
conic optimization, 53
linear optimization, 47
logging, 50, 56
optimizer, 47, 53
termination criteria, 48, 55

J
json format, 264

L
license, 18
linear dependency, 45
linear optimization, 33

infeasibility, 35
interior-point, 47
simplex, 51
termination criteria, 48, 51

linearity interval, 75
logging

interior-point, 50, 56
mixed-integer optimizer, 61
optimizer, 50, 52, 56
simplex, 52

LP format, 213

M
matrix

constraint, 33, 36, 40
MI(QC)QO, 67
MICO, 66
MIP, see integer optimization
mixed-integer, see integer

conic optimization, 66
optimizer, 57
presolve, 63
quadratic, 67

mixed-integer optimization, 57
mixed-integer optimizer

289

logging, 61
mosek command line option

-, 18
-?, 17
-anapro, 16
-anasoli, 16
-anasolo, 16
-basi, 16
-baso, 16
-d, 16
-dbgmem, 16
-dualout, 17
-f, 17
-h, 17
-info, 17
-infrepo, 17
-inti, 17
-into, 17
-itri, 17
-itro, 17
-jsoli, 17
-jsolo, 17
-l,-L, 17
-max, 17
-min, 17
-n, 17
-optserv, 17
-out, 17
-p, 17
-pari, 17
-paro, 17
-primalrepair, 17
-q, 17
-r, 17
-removeitg, 17
-rout, 17
-sen, 17
-silent, 17
-toconic, 18
-v, 18
-w, 18
-x, 18

MPS format, 217
free, 229

N
numerical issues

presolve, 45
scaling, 46
simplex, 52

O
objective, 33, 36, 40
OPF format, 229
optimality gap, 59
optimization

conic, 36
conic quadratic, 36

linear, 33
semidefinite, 39

optimizer
interior-point, 47, 53
logging, 50, 52, 56
mixed-integer, 57
selection, 45, 46
simplex, 51
termination, 59

P
parameter

simplex, 52
parameter file, 16
presolve, 44

eliminator, 45
linear dependency check, 45
mixed-integer, 63
numerical issues, 45

primal
certificate, 35, 38
feasible, 33, 47, 54
infeasible, 33, 35, 38, 47, 54
problem, 34, 37, 41
solution, 33

primal heuristics, 63
primal-dual

problem, 47, 53
solution, 34

problem
dual, 34, 37, 41
feasible, 33
infeasible, 33, 35, 41
primal, 34, 37, 41
primal-dual, 47, 53
unbounded, 35, 39

PTF format, 257

Q
quadratic

constraint, 41
mixed-integer, 67

quadratic optimization, 41

R
relaxation, 58
repair

infeasibility, 71

S
scaling, 46
semidefinite

infeasibility, 41
semidefinite optimization, 39
sensitivity analysis, 75

basis type, 77
shadow price, 75
simplex

290

linear optimization, 51
logging, 52
numerical issues, 52
optimizer, 51
parameter, 52
termination criteria, 51

sol format, 270
solution

file format, 270
primal, 33
primal-dual, 34

T
task format, 263
termination

optimizer, 59
termination criteria, 59

conic optimization, 55
interior-point, 48, 55
linear optimization, 48, 51
simplex, 51
tolerance, 49, 56

tolerance
termination criteria, 49, 56

troubleshooting
installation, 9

U
unbounded

problem, 35, 39

V
valid inequalities, 64
variable, 33, 36, 40

bound, 33, 36, 40
dual, 34, 37

291

	Introduction
	Why the Command Line Tools?

	Contact Information
	License Agreement
	MOSEK end-user license agreement
	Third party licenses

	Installation
	Testing the installation

	The Command Line Tool
	Introduction
	Files
	Example
	Solver Parameters
	Setting from command line
	Using the Parameter File

	Command Line Arguments
	The license system

	Debugging Tutorials
	Understanding optimizer log
	Input data
	Solution summary
	Continuous problem

	Mixed-integer problem

	Addressing numerical issues
	Formulating problems
	Further suggestions
	Typical pitfalls

	Debugging infeasibility
	Numerical issues
	Locating primal infeasibility
	Locating dual infeasibility
	Suggestions

	Python Console
	Usage
	Examples
	Full list of commands

	Problem Formulation and Solutions
	Linear Optimization
	Duality for Linear Optimization
	Infeasibility for Linear Optimization
	Primal Infeasible Problems
	Dual Infeasible Problems

	Minimalization vs. Maximalization

	Conic Optimization
	Duality for Conic Optimization
	Infeasibility for Conic Optimization
	Primal Infeasible Problems
	Dual Infeasible Problems

	Minimalization vs. Maximalization

	Semidefinite Optimization
	Quadratic and Quadratically Constrained Optimization
	A Recommendation
	Duality for Quadratic and Quadratically Constrained Optimization
	Infeasibility for Quadratic Optimization

	Optimizers
	Presolve
	Linear Optimization
	Optimizer Selection
	The Interior-point Optimizer
	The homogeneous primal-dual problem
	Interior-point Termination Criterion
	Adjusting optimality criteria
	Basis Identification
	The Interior-point Log

	The Simplex Optimizer
	Simplex Termination Criterion
	Starting From an Existing Solution
	Numerical Difficulties in the Simplex Optimizers
	The Simplex Log

	Conic Optimization - Interior-point optimizer
	The homogeneous primal-dual problem
	Interior-point Termination Criterion
	Adjusting optimality criteria
	The Interior-point Log

	The Optimizer for Mixed-Integer Problems
	Branch-and-Bound
	Solution quality and termination criteria
	Solution quality in terms of optimality
	Solution quality in terms of feasibility
	Further controlling optimizer termination

	The Mixed-Integer Log
	Presolve
	Primal Heuristics
	Cutting Planes
	Restarts
	Block decomposition

	Mixed-Integer Nonlinear Optimization
	MI(QC)QO

	Disjunctive constraints
	Randomization
	Further performance tweaks

	Additional features
	Problem Analyzer
	Automatic Repair of Infeasible Problems
	Automatic repair
	Using the automatic repair tool

	Sensitivity Analysis
	Sensitivity Analysis for Linear Problems
	The Optimal Objective Value Function
	Equality Constraints

	The Basis Type Sensitivity Analysis
	Example: Sensitivity Analysis

	Sensitivity Analysis with MOSEK
	Sensitivity Analysis Specification File
	Example: Sensitivity Analysis from Command Line
	Controlling Log Output

	API Reference
	Parameters grouped by topic
	Parameters (alphabetical list sorted by type)
	Double parameters
	Integer parameters
	String parameters

	Response codes
	Termination
	Warnings
	Errors

	Constants
	Basis identification
	Bound keys
	Mark
	Experimental. Usage not recommended.
	Degeneracy strategies
	Transposed matrix.
	Triangular part of a symmetric matrix.
	Problem reformulation.
	Exploit duplicate columns.
	Hot-start type employed by the simplex optimizer
	Hot-start type employed by the interior-point optimizers.
	Progress callback codes
	Compression types
	Cone types
	Cone types
	Name types
	Cone types
	Data format types
	Data format types
	Double information items
	License feature
	Long integer information items.
	Integer information items.
	Information item types
	Input/output modes
	Specifies the branching direction.
	Specifies the reformulation method for mixed-integer quadratic problems.
	Specifies the problem data permutation method for mixed-integer problems.
	Continuous mixed-integer solution type
	Integer restrictions
	Mixed-integer node selection types
	Mixed-integer variable selection types
	MPS file format type
	Objective sense types
	On/off
	Optimizer types
	Ordering strategies
	Presolve method.
	Method of folding (symmetry detection for continuous problems).
	Parameter type
	Problem data items
	Problem types
	Problem status keys
	Response code type
	Scaling type
	Scaling method
	Sensitivity types
	Simplex selection strategy
	Solution items
	Solution status keys
	Solution types
	Solve primal or dual form
	Status keys
	Starting point types
	Stream types
	Integer values
	Variable types

	Supported domains
	Linear domains
	Quadratic cone domains
	Exponential cone domains
	Power cone domains
	Geometric mean cone domains
	Vectorized semidefinite domain

	Supported File Formats
	The LP File Format
	File Sections
	Objective Function
	Constraints
	Bounds
	Variable Types
	Terminating Section

	LP File Examples
	LP Format peculiarities
	Comments
	Names
	Variable Bounds

	The MPS File Format
	MPS File Structure
	NAME (optional)
	OBJSENSE (optional)
	OBJNAME (optional)
	ROWS
	COLUMNS
	RHS (optional)
	RANGES (optional)
	QSECTION (optional)
	QMATRIX/QUADOBJ (optional)
	QCMATRIX (optional)
	BOUNDS (optional)
	CSECTION (optional)
	ENDATA

	Integer Variables
	General Limitations
	Interpretation of the MPS Format
	The Free MPS Format

	The OPF Format
	The File Format
	Sections
	Numbers
	Names
	Parameters Section
	Writing OPF Files from MOSEK
	Examples
	Linear Example lo1.opf
	Quadratic Example qo1.opf
	Conic Quadratic Example cqo1.opf
	Mixed Integer Example milo1.opf

	The CBF Format
	How Instances Are Specified
	The Structure of CBF Files
	Problem Specification
	File Format Keywords
	VER
	POWCONES
	POW*CONES
	OBJSENSE
	PSDVAR
	VAR
	INT
	PSDCON
	CON
	OBJFCOORD
	OBJACOORD
	OBJBCOORD
	FCOORD
	ACOORD
	BCOORD
	HCOORD
	DCOORD

	CBF Format Examples
	Minimal Working Example
	Mixing Linear, Second-order and Semidefinite Cones
	Mixing Semidefinite Variables and Linear Matrix Inequalities
	The exponential cone
	Parametric cones

	The PTF Format
	The overall format
	Names
	Expressions

	Task section
	Objective section
	Constraints section
	Variables section
	Integer section
	SymmetricMatrixes section
	Solutions section
	Examples

	The Task Format
	The JSON Format
	JTASK Specification
	JSOL Specification
	A jtask example

	The Solution File Format

	List of examples
	Interface changes
	Important changes compared to version 10
	Changes compared to version 10
	Parameters compared to version 10
	Constants compared to version 10
	Response Codes compared to version 10

	Bibliography
	Symbol Index
	Index

