
MOSEK Fusion API for Java
Release 11.0.21

MOSEK ApS

28 May 2025

Contents

1 Introduction 1
1.1 Why the Fusion API for Java? . 2

2 Contact Information 3

3 License Agreement 4
3.1 MOSEK end-user license agreement . 4
3.2 Third party licenses . 4

4 Installation 10
4.1 Building Examples and Testing the Installation . 11

5 Design Overview 13

6 Conic Modeling 15
6.1 The model . 15
6.2 Variables . 16
6.3 Expressions and linear operators . 16
6.4 Constraints and objective . 17
6.5 Matrices . 18
6.6 Parameters . 19
6.7 Stacking and views . 19
6.8 Vectorization . 20
6.9 Reoptimization . 21

7 Optimization Tutorials 22
7.1 Linear Optimization . 23
7.2 Conic Quadratic Optimization . 25
7.3 Power Cone Optimization . 28
7.4 Conic Exponential Optimization . 31
7.5 Geometric Programming . 33
7.6 Semidefinite Optimization . 36
7.7 Integer Optimization . 41
7.8 Disjunctive constraints . 45
7.9 Model Parametrization and Reoptimization . 48
7.10 Problem Modification and Reoptimization . 51
7.11 Parallel optimization . 54
7.12 Retrieving infeasibility certificates . 55

8 Solver Interaction Tutorials 60
8.1 Accessing the solution . 60
8.2 Errors and exceptions . 64
8.3 Input/Output . 66
8.4 Setting solver parameters . 67
8.5 Retrieving information items . 68
8.6 Stopping the solver . 69
8.7 Progress and data callback . 70

i

8.8 Optimizer API Task . 73
8.9 MOSEK OptServer . 73

9 Debugging Tutorials 75
9.1 Understanding optimizer log . 75
9.2 Addressing numerical issues . 80
9.3 Debugging infeasibility . 82
9.4 Python Console . 87

10 Technical guidelines 89
10.1 Limitations . 89
10.2 Memory management and garbage collection . 89
10.3 Names . 90
10.4 Timing . 91
10.5 Multithreading . 91
10.6 Efficiency . 91
10.7 The license system . 93
10.8 Deployment . 93

11 Case Studies 94
11.1 Portfolio Optimization . 95
11.2 Primal Support-Vector Machine (SVM) . 111
11.3 2D Total Variation . 115
11.4 Multiprocessor Scheduling . 120
11.5 Logistic regression . 123
11.6 Inner and outer Löwner-John Ellipsoids . 126
11.7 SUDOKU . 129
11.8 Travelling Salesman Problem (TSP) . 134
11.9 Nearest Correlation Matrix Problem . 139
11.10 Semidefinite Relaxation of MIQCQO Problems . 143

12 Problem Formulation and Solutions 146
12.1 Linear Optimization . 146
12.2 Conic Optimization . 149
12.3 Semidefinite Optimization . 152

13 Optimizers 156
13.1 Presolve . 156
13.2 Linear Optimization . 158
13.3 Conic Optimization - Interior-point optimizer . 165
13.4 The Optimizer for Mixed-Integer Problems . 169

14 Fusion API Reference 181
14.1 Fusion API conventions . 181
14.2 Class list . 182
14.3 Parameters grouped by topic . 267
14.4 Parameters (alphabetical list sorted by type) . 276
14.5 Enumerations . 323
14.6 Constants . 325
14.7 Exceptions . 354
14.8 Supported domains . 360
14.9 Class LinAlg . 362

15 Supported File Formats 366
15.1 The LP File Format . 367
15.2 The MPS File Format . 371
15.3 The OPF Format . 383
15.4 The CBF Format . 393
15.5 The PTF Format . 410

ii

15.6 The Task Format . 416
15.7 The JSON Format . 417
15.8 The Solution File Format . 423

16 List of examples 426

17 Interface changes 428
17.1 Important changes compared to version 10 . 428
17.2 Changes compared to version 10 . 428

Bibliography 430

Symbol Index 431

Index 434

iii

Chapter 1

Introduction

The MOSEK Optimization Suite 11.0.21 is a powerful software package capable of solving large-scale
optimization problems of the following kind:

• linear,

• conic:

– conic quadratic (also known as second-order cone),
– involving the exponential cone,
– involving the power cone,
– semidefinite,

• convex quadratic and quadratically constrained,

• integer.

In order to obtain an overview of features in the MOSEK Optimization Suite consult the product
introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all rela-
tions are linear. The tremendous success of both applications and theory of linear optimization can be
ascribed to the following factors:

• The required data are simple, i.e. just matrices and vectors.

• Convexity is guaranteed since the problem is convex by construction.

• Linear functions are trivially differentiable.

• There exist very efficient algorithms and software for solving linear problems.

• Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the
advantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

𝐴𝑥− 𝑏 ≥ 0.

In conic optimization this is replaced with a wider class of constraints

𝐴𝑥− 𝑏 ∈ 𝒦

where 𝒦 is a convex cone. For example in 3 dimensions 𝒦 may correspond to an ice cream cone. The
conic optimizer in MOSEK supports a number of different types of cones 𝒦, which allows a surprisingly
large number of nonlinear relations to be modeled, as described in the MOSEK Modeling Cookbook,
while preserving the nice algorithmic and theoretical properties of linear optimization.

1

https://docs.mosek.com/11.0/intro/index.html
https://docs.mosek.com/11.0/intro/index.html
https://docs.mosek.com/modeling-cookbook/index.html

1.1 Why the Fusion API for Java?

Fusion is an object oriented API specifically designed to build conic optimization models in a simple and
expressive manner, using mainstream programming languages.

With focus on usability and compactness, it helps the user focus on modeling instead of coding.
Typically a conic optimization model in Fusion can be developed in a fraction of the time compared

to using a low-level C API, but of course Fusion introduces a computational overhead compared to
customized C code. In most cases, however, the overhead is small compared to the overall solution
time. Moreover, parametrization makes it possible to construct a Fusion model once and then solve it
repeatedly for different inputs with almost no overhead.

We generally recommend that Fusion is used as a first step for building and verifying new models.
Often, the final Fusion implementation will be directly suited for production code, and otherwise it
readily provides a reference implementation for model verification. Fusion always yields readable and
easily portable code.

The Fusion API for Java provides access to Conic Optimization, including:

• Linear Optimization (LO)

• Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)

• Power Cone Optimization

• Conic Exponential Optimization (CEO)

• Semidefinite Optimization (SDO)

• Mixed-Integer Optimization (MIO) including Disjunctive Constraints (DJC)

as well as to an auxiliary linear algebra library.
Convex Quadratic and Quadratically Constrained (QCQO) problems can be reformulated as Conic

Quadratic problems and subsequently solved using Fusion. This is the recommended approach, as
described in the MOSEK Modeling Cookbook and this whitepaper.

2

https://docs.mosek.com/modeling-cookbook/cqo.html#convex-quadratic-sets
https://docs.mosek.com/whitepapers/qmodel.pdf

Chapter 2

Contact Information

Phone +45 7174 9373 Office
+45 7174 5700 Sales

Website mosek.com
Email

sales@mosek.com Sales, pricing, and licensing
support@mosek.com Technical support, questions and bug reports
info@mosek.com Everything else.

Mailing Address
MOSEK ApS
Fruebjergvej 3
Symbion Science Park, Box 16
2100 Copenhagen O
Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger https://blog.mosek.com/
Google Group https://groups.google.com/forum/#!forum/mosek
Twitter https://twitter.com/mosektw
Linkedin https://www.linkedin.com/company/mosek-aps
Youtube https://www.youtube.com/channel/UCvIyectEVLP31NXeD5mIbEw

In particular Twitter is used for news, updates and release announcements.

3

https://mosek.com/
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com
https://blog.mosek.com/
https://groups.google.com/forum/#!forum/mosek
https://twitter.com/mosektw
https://www.linkedin.com/company/mosek-aps
https://www.youtube.com/channel/UCvIyectEVLP31NXeD5mIbEw

Chapter 3

License Agreement

3.1 MOSEK end-user license agreement

Before using the MOSEK software, please read the license agreement available in the distribution
at <MSKHOME>/mosek/11.0/mosek-eula.pdf or on the MOSEK website https://mosek.com/products/
license-agreement. By using MOSEK you agree to the terms of that license agreement.

3.2 Third party licenses

MOSEK uses some third-party open-source libraries. Their license details follow.

zlib

MOSEK uses the zlib library obtained from the zlib website. The license agreement for zlib is shown
in Listing 3.1.

Listing 3.1: zlib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

4

https://mosek.com/products/license-agreement
https://mosek.com/products/license-agreement
http://zlib.org

fplib

MOSEK uses the floating point formatting library developed by David M. Gay obtained from the netlib
website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

{fmt}

MOSEK uses the formatting library {fmt} developed by Victor Zverovich obtained form github/fmt
and distributed under the MIT license. The license agreement fot {fmt} is shown in Listing 3.3.

Listing 3.3: {fmt} license.

Copyright (c) 2012 - present, Victor Zverovich

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

5

http://www.netlib.org
http://www.netlib.org
https://github.com/fmtlib/fmt

Zstandard

MOSEK uses the Zstandard library developed by Facebook obtained from github/zstd. The license
agreement for Zstandard is shown in Listing 3.4.

Listing 3.4: Zstandard license.

BSD License

For Zstandard software

Copyright (c) 2016-present, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name Facebook nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

OpenSSL

MOSEK uses the LibReSSL library, which is build on OpenSSL. OpenSSL is included under the
OpenSSL license, Listing 3.5, and the LibReSSL additions are licensed under the ISC license, Listing
3.6.

Listing 3.5: OpenSSL license

==
Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in

(continues on next page)

6

https://github.com/facebook/zstd
https://www.libressl.org/

(continued from previous page)

the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.
==

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Listing 3.6: ISC license

Copyright (C) 1994-2017 Free Software Foundation, Inc.
Copyright (c) 2014 Jeremie Courreges-Anglas <jca@openbsd.org>
Copyright (c) 2014-2015 Joel Sing <jsing@openbsd.org>
Copyright (c) 2014 Ted Unangst <tedu@openbsd.org>
Copyright (c) 2015-2016 Bob Beck <beck@openbsd.org>
Copyright (c) 2015 Marko Kreen <markokr@gmail.com>
Copyright (c) 2015 Reyk Floeter <reyk@openbsd.org>
Copyright (c) 2016 Tobias Pape <tobias@netshed.de>

Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all
copies.

(continues on next page)

7

(continued from previous page)

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

mimalloc

MOSEK uses the mimalloc memory allocator library from github/mimalloc. The license agreement for
mimalloc is shown in Listing 3.7.

Listing 3.7: mimalloc license.

MIT License

Copyright (c) 2019 Microsoft Corporation, Daan Leijen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

BLASFEO

MOSEK uses the BLASFEO linear algebra library developed by Gianluca Frison, obtained from
github/blasfeo. The license agreement for BLASFEO is shown in Listing 3.8.

Listing 3.8: blasfeo license.

BLASFEO -- BLAS For Embedded Optimization.
Copyright (C) 2019 by Gianluca Frison.
Developed at IMTEK (University of Freiburg) under the supervision of Moritz Diehl.
All rights reserved.

The 2-Clause BSD License

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
(continues on next page)

8

https://github.com/microsoft/mimalloc
https://github.com/giaf/blasfeo

(continued from previous page)

list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

oneTBB

MOSEK uses the oneTBB parallelization library which is part of oneAPI developed by Intel, obtained
from github/oneTBB, licensed under the Apache License 2.0. The license agreement for oneTBB can be
found in https://github.com/oneapi-src/oneTBB/blob/master/LICENSE.txt .

9

https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB/blob/master/LICENSE.txt

Chapter 4

Installation

In this section we discuss how to install and setup the MOSEK Fusion API for Java.

Important: Before running this MOSEK interface please make sure that you:

• Installed MOSEK correctly. Some operating systems require extra steps. See the Installation
guide for instructions and common troubleshooting tips.

• Set up a license. See the Licensing guide for instructions.

Compatibility

The Fusion API for Java is compatible with Java version 1.8 or later on 64bit platforms (Linux, Windows,
macOS).

Locating files in the MOSEK Optimization Suite

The relevant files of the Fusion API for Java are organized as reported in Table 4.1.

Table 4.1: Relevant files for the Fusion API for Java.

Relative Path Description Label

<MSKHOME>/mosek/11.0/tools/platform/<PLATFORM>/bin Libraries and jar file <JARDIR>
<MSKHOME>/mosek/11.0/tools/examples/fusion/java Examples <EXDIR>
<MSKHOME>/mosek/11.0/tools/examples/fusion/data Additional data <MISCDIR>

where

• <MSKHOME> is the folder in which the MOSEK Optimization Suite has been installed,

• <PLATFORM> is the actual platform among those supported by MOSEK, i.e. win64x86,
linux64x86, linuxaarch64 or osxaarch64.

Setting up paths

To compile and run a Java program using MOSEK the correct path to the JAR file

<JARDIR>/mosek.jar

must be provided in the Java classpath. This is usually set with the command line option -classpath,
or the environment variable CLASSPATH, or any other method that your Java environment/compiler
supports. For more information about specifying class libraries and compiling applications, see the full
Java documentation at http://java.sun.com/.

10

https://docs.mosek.com/11.0/install/index.html
https://docs.mosek.com/11.0/install/index.html
https://docs.mosek.com/11.0/licensing/index.html
http://java.sun.com/

4.1 Building Examples and Testing the Installation

This section describes how to verify that MOSEK has been installed correctly, and how to build and
execute the Java examples distributed with MOSEK.

4.1.1 Windows

Building and executing a program

To compile the example lo1.java distributed with MOSEK:

• Open a DOS prompt and go to the examples directory <EXDIR>.

• To compile a Java program and produce the class files in the current directory, type

javac -classpath <JARDIR>\mosek.jar -d . lo1.java

• To run the compiled program, type

java -classpath .:<JARDIR>\mosek.jar com.mosek.example.lo1 (Linux/OSX)
java -classpath .;<JARDIR>\mosek.jar com.mosek.example.lo1 (Windows)

Compiling with Microsoft NMake

The distributed examples can also be compiled using Microsoft NMake. This requires that paths and
environment is set up for Visual Studio tools (usually, the sub-menu containing Visual Studio also
contains a Visual Studio Command Prompt which take care of all the necessary setup).

To build the examples, open a DOS box and change directory to the examples directory <EXDIR>.
To compile all examples type

nmake /f Makefile

This will compile all the classes into a jar file. To run all the examples type

nmake /f Makefile test

4.1.2 macOS and Linux

Building and executing a program

To compile the example lo1.java distributed with MOSEK:

• Open a console and go to the examples directory <EXDIR>.

• To compile a Java program and produce the class files in the current directory, type

javac -classpath <JARDIR>/mosek.jar -d . lo1.java

• To run the compiled program, type

java -classpath .:<JARDIR>/mosek.jar com.mosek.example.lo1

11

Compiling examples using make

The example directory contains makefiles for use with GNU Make. To build the examples, open a prompt
and change directory to the examples directory <EXDIR>. To compile all examples type

make -f Makefile

This will compile all the classes into a jar file. To run all the examples type

make test

12

Chapter 5

Design Overview

Fusion is a result of many years of experience in conic optimization. It is a dedicated API for users
who want to enjoy a simpler experience interfacing with the solver. This applies to users who regularly
solve conic problems, and to new users who do not want to be too bothered with the technicalities of a
low-level optimizer. Fusion is designed for fast and clean prototyping of conic problems without suffering
excessive performance degradation.

Note that Fusion is an object-oriented framework for conic-optimization but it is not a general
purpose modeling language. The main design principles of Fusion are:

• Expressiveness: we try to make it nice! Despite not being a modeling language, Fusion yields
readable, easy to maintain code that closely resembles the mathematical formulation of the problem.

• Seamlessly multi-language : Fusion code can be ported across C++, Python, Java, .NET and
with only minimal adaptations to the syntax of each language.

• What you write is what MOSEK gets: A Fusion model is fed into the solver with (almost)
no additional transformations.

Expressiveness

Suppose you have a conic quadratic optimization problem like the efficient frontier in portfolio optimiza-
tion:

maximize 𝜇𝑇𝑥− 𝛼𝛾
subject to 𝑒𝑇𝑥 = 𝑤,

𝛾 ≥ ‖𝐺𝑇𝑥‖,
𝑥 ≥ 0.

where 𝜇,𝐺 are input data and 𝛼 is an input parameter whose value we want to change between many
optimizations. Its representation in Fusion is a direct translation of the mathematical model and could
look as in the following code snippet.

Variable x = M.variable(n);
Variable gamma = M.variable();
Parameter alpha = M.parameter();

M.objective(ObjectiveSense.Maximize, Expr.sub(Expr.dot(mu, x), Expr.mul(alpha,␣
→˓gamma)));

M.constraint(Expr.sub(Expr.sum(x), w), Domain.equalsTo(0.0));
M.constraint(Expr.vstack(gamma, Expr.mul(G.transpose(), x)), Domain.inQCone());
M.constraint(x, Domain.greaterThan(0.0));

13

Seamless multi-language API

Fusion can easily be ported across the five supported languages. All functionalities and naming conven-
tions remain the same in all of them. This has some advantages:

• Simplifies code sharing between developers working in different languages.

• Improves code reusability.

• Simplifies the transition from R&D to production (for instance from fast-prototyping languages
used in R&D to more efficient ones used for high performance).

Here is the same code snippet (creation of a variable in the model) in all languages supported by
Fusion. Careful code design can generate models with only the necessary syntactic differences between
implementations.

auto x= M->variable("x", 3, Domain::greaterThan(0.0)); // C++

x = M.variable('x', 3, Domain.greaterThan(0.0)) # Python

Variable x = M.variable("x", 3, Domain.greaterThan(0.0)) // Java

Variable x = M.Variable("x", 3, Domain.GreaterThan(0.0)) // C#

What You Write is What MOSEK Gets

Fusion is not a modeling language. Instead it clearly defines the formulation the user must adhere to
and only provides functionalities required for that formulation. Users familiar with the concept of DCP
(Disciplined Convex Programming) can think of Fusion as a language for VDCP - Very Disciplined
Convex Programming.

An important upshot is that Fusion will not modify the problem provided by the user any more that
is required to fit it into the form accepted by the low-lever optimizer. In other words, the problem that
is actually solved is as close as possible to what the user writes. For example, Fusion will transform a
multi-dimensional constraint into a sequence of scalar constraints for the linear constraint matrix 𝐴, and
so on. So, in effect, the Fusion mechanism only automates operations that the user would have to carry
out anyway (using pencil and paper, presumably). Otherwise the optimizer model is a direct copy of the
Fusion model.

The main benefits of this approach are:

• The user knows what problem is actually being solved.

• Dual information is readily available for all variables and constraints.

• Only the necessary overhead.

• Better control over numerical stability.

14

Chapter 6

Conic Modeling

6.1 The model

A model built using Fusion is always a conic optimization problem and it is convex by definition. These
problems can be succinctly characterized as

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 + 𝑏 ∈ 𝒦 (6.1)

where 𝒦 is a product of domains supported by MOSEK, in particular:

• linear: R, R+, {0},

• quadratic: 𝒬𝑛 = {𝑥 ∈ R𝑛 : 𝑥1 ≥
√︀
𝑥2
2 + · · · + 𝑥2

𝑛},

• rotated quadratic: 𝒬𝑛
𝑟 = {𝑥 ∈ R𝑛 : 2𝑥1𝑥2 ≥ 𝑥2

3 + · · · + 𝑥2
𝑛, 𝑥1, 𝑥2 ≥ 0},

• primal power cone: 𝒫𝛼,1−𝛼
𝑛 = {𝑥 ∈ R𝑛 : 𝑥𝛼

1𝑥
1−𝛼
2 ≥

√︀
𝑥2
3 + · · · + 𝑥2

𝑛, 𝑥1, 𝑥2 ≥ 0}, or its dual,

• primal exponential: 𝐾exp = {𝑥 ∈ R3 : 𝑥1 ≥ 𝑥2 exp(𝑥3/𝑥2), 𝑥1, 𝑥2 ≥ 0}, or its dual,

• semidefinite:: 𝒮𝑛
+ = {𝑋 ∈ R𝑛×𝑛 : 𝑋 is symmetric positive semidefinite}.

• and others, see Sec. 14.8 for a full list.

The main thing about a Fusion model is that it can be specified in a convenient way without explicitly
constructing the representation (6.1). Instead the user has access to variables which are used to construct
linear operators that appear in constraints. The cone types described above are the domains of those
constraints. A Fusion model can potentially contain many different building blocks of that kind. To
facilitate manipulations with a large number of variables Fusion defines various logical views of parts
of the model. To facilitate reoptimizing the same problem with varying input data Fusion provides
parameters.

This section briefly summarizes the constructions and techniques available in Fusion. See Sec. 7 for a
basic tutorial and Sec. 11 for more advanced case studies. This section is only an introduction: detailed
specification of the methods and classes mentioned here can be found in the API reference.

A Fusion model is represented by the class Model and created by a simple construction

Model M = new Model();

The model object is the user’s interface to the optimization problem, used in particular for

• formulating the problem by defining variables, parameters, constraints and objective,

• solving the problem and retrieving the solution status and solutions,

• interacting with the solver: setting up parameters, registering for callbacks, performing I/O, ob-
taining detailed information from the optimizer etc.

Almost all elements of the model: variables, parameters, constraints and the model itself can be
constructed with or without names. If used, the names for each type of object must be unique. Choosing
a good naming convention can make the problem more readable when dumped to a file.

15

6.2 Variables

Continuous variables can be scalars, vectors or higher-dimensional arrays. The are added to the model
with the method Model.variable which returns a representing object of type Variable . The shape of a
variable (number of dimensions and length in each dimension) has to be specified at creation. Optionally
a variable may be created in a restricted domain (by default variables are unbounded, that is in R). For
instance, to declare a variable 𝑥 ∈ R𝑛

+ we could write

Variable x = M.variable("x", n, Domain.greaterThan(0.));

A multi-dimensional variable is declared by specifying an array with all dimension sizes. Here is an
𝑛× 𝑛 variable:

Variable x = M.variable(new int[]{n,n}, Domain.unbounded()) ;

The specification of dimensions can also be part of the domain, as in this declaration of a symmetric
positive semidefinite variable of dimension 𝑛:

Variable v = M.variable(Domain.inPSDCone(n));

Integer variables are specified with an additional domain modifier. To add an integer variable 𝑧 ∈
[1, 10] we write

Variable z = M.variable("z", Domain.integral(Domain.inRange(1.,10.)));

The function Domain.binary is a shorthand for binary variables often appearing in combinatorial
problems:

Variable y = M.variable("y", Domain.binary());

Integrality requirement can be switched on and off using the methods Variable.makeInteger and
Variable.makeContinuous .

A domain usually allows to specify the number of objects to be created. For example here is a
definition of 𝑚 symmetric positive semidefinite variables of dimension 𝑛 each. The actual variable x will
be of shape 𝑚× 𝑛× 𝑛 where each slice with fixed first coordinate is an 𝑛× 𝑛 PSD:

Variable x = M.variable(Domain.inPSDCone(n, m));

The Variable object provides the primal (Variable.level) and dual (Variable.dual) solution
values of the variable after optimization, and it enters in the construction of linear expressions involving
the variable.

6.3 Expressions and linear operators

Linear expressions are constructed combining variables, parameters, matrices and other constant values
by linear operators. The result is an object that represents the linear expression itself. Fusion only
allows for those combinations of operators and arguments that yield linear functions of the variables.
Expressions have shapes and dimensions in the same fashion as variables. For instance, if 𝑥 ∈ R𝑛 and
𝐴 ∈ R𝑚×𝑛, then 𝐴𝑥 is a vector expression of length 𝑚. Note, however, that the internal size of 𝐴𝑥 is
𝑚𝑛, because each entry is a linear combination for which 𝑚 coefficients have to be stored.

Expressions are concrete implementations of the virtual interface Expression . In typical situations,
however, all operations on expressions can be performed using the static methods and factory methods
of the class Expr .

16

Table 6.1: Linear Operators

Method Description

Expr.add Element-wise addition of two matrices
Expr.sub Element-wise subtraction of two matrices
Expr.mul Matrix or matrix-scalar multiplication
Expr.neg Sign inversion
Expr.outer Vector outer-product
Expr.dot Dot product
Expr.sum Sum over a given dimension
Expr.mulElm Element-wise multiplication
Expr.mulDiag Sum over the diagonal of a matrix which is the result of a matrix multiplication
Expr.constTerm Return a constant term

Operations on expressions must adhere to the rules of matrix algebra regarding dimensions; otherwise
a DimensionError exception will be thrown.

Expression can be composed, nested and used as building blocks in new expressions. For instance
𝐴𝑥 + 𝐵𝑦 can be implemented as:

Expr.add(Expr.mul(A,x), Expr.mul(B,y));

For operations involving multiple variables and expressions the users should consider list-based meth-
ods. For instance, a clean way to write 𝑥 + 𝑦 + 𝑧 + 𝑤 would be:

Expr.add(new Variable[]{x, y, z, w});

Note that a single variable (object of class Variable) can also be used as an expression. Once
constructed, expressions are immutable.

6.4 Constraints and objective

Constraints are declared within an optimization model using the method Model.constraint . Every
constraint in Fusion has the form

Expression belongs to a Domain .

Objects of type Domain correspond roughly to the types of convex cones 𝒦 mentioned at the beginning
of this section. For instance, the following set of linear constraints

𝑥1 + 2𝑥2 = 0
+ 𝑥2 + 𝑥3 = 0

𝑥1 = 0
(6.2)

could be declared as

double [][]A = new double[][] { { 1.0, 2.0, 0.0},
{ 0.0, 1.0, 1.0},
{ 1.0, 0.0, 0.0} };

Variable x = M.variable("x",3,Domain.unbounded());
Constraint c = M.constraint(Expr.mul(A,x), Domain.equalsTo(0.0));

Note that the scalar domain Domain.equalsTo consisting of a single point 0 scales up to the dimension
of the expression and applies to all its elements. This allows many constraints to be comfortably expressed
in a vectorized form. See also Sec. 6.8.

The Constraint object provides the dual (Constraint.dual) value of the constraint after optimiza-
tion and the primal value of the constraint expression (Constraint.level).

The typical domains used to specify constraints are listed below. Note that they can also be used
directly at variable creation, whenever that makes sense.

17

Type Domain

Linear equality Domain.equalsTo
inequality ≤ Domain.lessThan
inequality ≥ Domain.greaterThan
two-sided bound Domain.inRange

Conic Quadratic quadratic cone Domain.inQCone
rotated quadratic cone Domain.inRotatedQCone

Other Conic exponential cone Domain.inPExpCone
power cone Domain.inPPowerCone
geometric mean Domain.inPGeoMeanCone

Semidefinite PSD matrix Domain.inPSDCone
Integral Integers in domain D Domain.integral (D)

{0, 1} Domain.binary

See Sec. 14.8 and the API reference for Domain for a full list.
Having discussed variables and constraints we can finish by defining the optimization objective with

Model.objective . The objective function is an affine expression that evaluates to a scalar (that is,
of shape () or (1)) and the objective sense is specified by the enumeration ObjectiveSense as either
minimize or maximize. The typical linear objective function 𝑐𝑇𝑥 can be declared as

M.objective(ObjectiveSense.Minimize, Expr.dot(c,x));

6.5 Matrices

At some point it becomes necessary to specify linear expressions such as 𝐴𝑥 where 𝐴 is a (large) constant
data matrix. Such coefficient matrices can be represented in dense or sparse format. Dense matrices can
always be represented using the standard data structures for arrays and two-dimensional arrays built into
the language. Alternatively, or when sparsity can be exploited, matrices can be constructed as objects
of the class Matrix . This can have some advantages: a more generic code that can be ported across
platforms and can be used with both dense and sparse matrices without modifications.

Dense matrices are constructed with a variant of the static factory method Matrix.dense . The
values of all entries must be specified all at once and the resulting matrix is immutable. For example the
matrix

𝐴 =

[︂
1 2 3 4
5 6 7 8

]︂
can be defined with:

double[][] A= { {1.,2.,3.,4.}, {5.,6.,7.,8.} };
Matrix Ad= Matrix.dense(A);

or from a flattened representation:

double[] Af={ 1,2,3, 4,5,6,7,8 };
Matrix Aff= Matrix.dense(2,4,Af);

Sparse matrices are constructed with a variant of the static factory method Matrix.sparse . This is
both speed- and memory-efficient when the matrix has few nonzero entries. A matrix 𝐴 in sparse format
is given by a list of triples (𝑖, 𝑗, 𝑣), each defining one entry: 𝐴𝑖,𝑗 = 𝑣. The order does not matter. The
entries not in the list are assumed to be 0. For example, take the matrix

𝐴 =

[︂
1.0 0.0 0.0 2.0
0.0 3.0 0.0 4.0

]︂
.

Assuming we number rows and columns from 0, the corresponding list of triplets is:

𝐴 = {(0, 0, 1.0), (0, 3, 2.0), (1, 1, 3.0), (1, 3, 4.0)}

The Fusion definition would be:

18

int[] rows = { 0, 0, 1, 1 };
int[] cols = { 0, 3, 1, 3 };
double[] values= { 1.0, 2.0, 3.0, 4.0 };

Matrix ms = Matrix.sparse(2, 4, rows, cols, values);

The Matrix class provides more standard constructions such as the identity matrix, a constant value
matrix, block diagonal matrices etc.

6.6 Parameters

A parameter (Parameter) is a placeholder for a constant whose value should be specified before the model
is optimized. Parameters can have arbitrary shapes, just like variables, and can be used in any place
where using a constant, array or matrix of the same shape would be suitable. That means parameters
behave like expressions under additive operations and stacking, and can additionally be used in some
multiplicative operations where the result is affine in the optimization variables.

For example, we can create a parametrized constraint

𝑝𝑇𝑥 + 𝑞 ≤ 0,

where 𝑥 ∈ R4, as follows:

Variable x = M.variable("x", 4); // Variable

Parameter p = M.parameter("p", 4); // Parameter of shape [4]
Parameter q = M.parameter(); // Scalar parameter

M.constraint(Expr.add(Expr.dot(p, x), q), Domain.lessThan(0.0));

Later in the code we can initialize the parameters with actual values. For example

p.setValue(new double[] {1,2,3,4});
q.setValue(5);

will make the previously defined constraint evaluate to

𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5 ≤ 0.

The values of parameters can be changed between optimizations. Therefore one parametrized model
with fixed structure can be used to solve many instances of the same optimization problem with varying
input data.

6.7 Stacking and views

Fusion provides a way to construct logical views of parts of existing expressions or combinations of
existing expressions. They are still represented by objects of type Variable or Expression that refer
to the original ones. This can be useful in some scenarios:

• retrieving only the values of a few variables, and ignoring the remaining auxiliary ones,

• stacking vectors or matrices to perform various matrix operations,

• bundling a number of similar constraints into one; see Sec. 6.8,

• adding constraints between parts of the same variable, etc.

All these operations do not require new variables or expressions, but just lightweight logical views. In
what follows we will concentrate on expressions; the same techniques are available for variables. These
techniques will be familiar to the users of numerical tools such as Matlab or NumPy.

19

Picking and slicing

Expression.pick picks a subset of entries from a variable or expression. Special cases of picking are
Expression.index , which picks just one scalar entry and Expression.slice which picks a slice, that
is restricts each dimension to a subinterval. Slicing is a frequently used operation.

Fig. 6.1: Two dimensional slicing.

Both displayed regions are slices of the two-dimensional 4 × 4 expression, which can be selected as
follows:

Expression Axs1 = Ax.slice(new int[]{0,0}, new int[]{2,2});
Expression Axs2 = Ax.index(new int[]{3,3});

Reshaping

Expressions can be reshaped creating a view with the same number of coordinates arranged in a different
way. A particular example of this operation if flattening, which converts any multi-dimensional expression
into a one-dimensional vector.

Stacking

Stacking refers to the concatenation of expressions to form a new larger one. For example, the next
figure depicts the vertical stacking of two vectors of shape 1 × 3 resulting in a matrix of shape 2 × 3.

Expression c = Expr.vstack(new Expression[]{a, b});

Vertical stacking (Expr.vstack) of expressions of shapes 𝑑1×𝑑2 and 𝑑′1×𝑑2 has shape (𝑑1 +𝑑′1)×𝑑2.
Similarly, horizontal stacking (Expr.hstack) of expressions of shapes 𝑑1 × 𝑑2 and 𝑑1 × 𝑑′2 has shape
𝑑1× (𝑑2 +𝑑′2). Fusion supports also more general versions of stacking for multi-dimensional variables, as
described in Expr.stack . A special case of stacking is repetition (Expr.repeat), equivalent to stacking
copies of the same expression.

6.8 Vectorization

Using Fusion one can compactly express sequences of similar constraints. For example, if we want to
express

𝐴𝑥𝑖 = 𝑏𝑖, 𝑖 = 1, . . . , 𝑛

we can think of 𝑥𝑖 ∈ R𝑚, 𝑏𝑖 ∈ R𝑘 as the columns of two matrices 𝑋 = [𝑥1, . . . , 𝑥𝑛] ∈ R𝑚×𝑛, 𝐵 =
[𝑏1, . . . , 𝑏𝑛] ∈ R𝑘×𝑛, and write simply

𝐴𝑋 −𝐵 = 0.

20

Variable X = Var.hstack(new Variable[]{ xi[0], xi[1], xi[2], xi[3] });
Expression B = Expr.hstack(new Expression[]{ bi[0], bi[1], bi[2], bi[3] }␣

→˓);

M.constraint(Expr.sub(Expr.mul(A, X), B), Domain.equalsTo(0.0));

In this example the domain Domain.equalsTo scales to apply to all the entries of the expression.
Another powerful case of vectorization and scaling domains is the ability to define a sequence of conic

constraints in one go. Suppose we want to find an upper bound on the 2-norm of a sequence of vectors,
that is we want to express

𝑡 ≥ ‖𝑦𝑖‖, 𝑖 = 1, . . . , 𝑛

Suppose that the vectors 𝑦𝑖 are arranged in the rows of a matrix 𝑌 . Then we can simply write:

Variable t = M.variable();

M.constraint(Expr.hstack(Var.vrepeat(t, n), Y), Domain.inQCone());

Here, again, the conic domain Domain.inQCone is by default applied to each row of the matrix
separately, yielding the desired constraints in a loop-free way (the 𝑖-th row is (𝑡, 𝑦𝑖)). The direction
along which conic constraints are created within multi-dimensional expressions can be changed with
Domain.axis .

We recommend vectorizing the code whenever possible. It is not only more elegant and portable but
also more efficient — loops are eliminated and the number of Fusion API calls is reduced.

6.9 Reoptimization

Between optimizations the user can modify the model in a few ways:

• Set/change values of parameters (Parameter.setValue). This is the recommended way to reopti-
mize multiple models identical structure and varying (parts of) input data. For simplicity, suppose
we want to minimize 𝑓(𝑥) = 𝛾𝑥 + 𝛽𝑦, for varying choices of 𝛾 > 0. Then we could write:

double[] gammaValues = {0., 0.5, 1.0}; // Choices for gamma
double beta = 2.0;
Variable x= M.variable("x", 1, Domain.greaterThan(0.));
Variable y= M.variable("y", 1, Domain.greaterThan(0.));
Parameter gamma = M.parameter("gamma");

M.objective(ObjectiveSense.Minimize, Expr.add(Expr.mul(gamma, x),␣
→˓Expr.mul(beta, y)));

for(int i=0;i<3;i++)
{

gamma.setValue(gammaValues[i]);
M.solve();

}

• Add new constraints with Model.constraint . This is useful for solving a sequence of optimization
problems with more and more restrictions on the feasible set. See for example Sec. 11.8.

• Add new variables with Model.variable or parameters with Model.parameter .

• Replace the objective with a completely new one (Model.objective).

• Update part of the objective (Model.updateObjective).

• Update an existing constraint or replace the constraint expression with a new one (Constraint.
update).

Otherwise all Fusion objects are immutable. See also Sec. 7.10 for more reoptimization examples.

21

Chapter 7

Optimization Tutorials

In this section we demonstrate how to set up basic types of optimization problems. Each short tutorial
contains a working example of formulating problems, defining variables and constraints and retrieving
solutions.

• Model setup and linear optimization tutorial (LO)

– Sec. 7.1. Linear optimization tutorial, recommended first reading for all users. Apart from
setting up a linear problem it also demonstrates how to work with a Fusion model: initialize
it, add variables and constraints and retrieve the solution.

• Conic optimization tutorials (CO)

Basic examples demonstrating various types of conic constraints.

– Sec. 7.2. A basic example with a quadratic cone (CQO).

– Sec. 7.3. A basic example with a power cone.

– Sec. 7.4. A basic example with a exponential cone (CEO).

– Sec. 7.5. A basic tutorial of geometric programming (GP).

• Semidefinite optimization tutorial (SDO)

– Sec. 7.6. Examples showing how to solve semidefinite optimization problems with one or more
semidefinite variables.

• Mixed-integer optimization tutorials (MIO)

– Sec. 7.7. Shows how to declare integer variables for linear and conic problems and how to set
an initial solution.

– Sec. 7.8. Demonstrates how to create a problem with disjunctive constraints (DJC).

• Reoptimization tutorials

– Sec. 7.9. Shows how to construct a parameterized model.

– Sec. 7.10. Other techniques for modifying the model.

• Parallel optimization tutorial

– Sec. 7.11. Shows how to optimize models in parallel.

• Infeasibility certificates

– Sec. 7.12. Shows how to retrieve and analyze a primal infeasibility certificate for continuous
problems.

22

7.1 Linear Optimization

The simplest optimization problem is a purely linear problem. A linear optimization problem (see also
Sec. 12.1) is a problem of the following form:

Minimize or maximize the objective function
𝑛−1∑︁
𝑗=0

𝑐𝑗𝑥𝑗 + 𝑐𝑓

subject to the linear constraints

𝑙𝑐𝑘 ≤
𝑛−1∑︁
𝑗=0

𝑎𝑘𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

and the bounds

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1.

The problem description consists of the following elements:

• 𝑚 and 𝑛 — the number of constraints and variables, respectively,

• 𝑥 — the variable vector of length 𝑛,

• 𝑐 — the coefficient vector of length 𝑛

𝑐 =

⎡⎢⎣ 𝑐0
...

𝑐𝑛−1

⎤⎥⎦ ,

• 𝑐𝑓 — fixed term in the objective,

• 𝐴 — an 𝑚× 𝑛 matrix of coefficients

𝐴 =

⎡⎢⎣ 𝑎0,0 · · · 𝑎0,(𝑛−1)

... · · ·
...

𝑎(𝑚−1),0 · · · 𝑎(𝑚−1),(𝑛−1)

⎤⎥⎦ ,

• 𝑙𝑐 and 𝑢𝑐 — the lower and upper bounds on constraints,

• 𝑙𝑥 and 𝑢𝑥 — the lower and upper bounds on variables.

Please note that we are using 0 as the first index: 𝑥0 is the first element in variable vector 𝑥.
The Fusion user does not need to specify all of the above elements explicitly — they will be assembled

from the Fusion model.

7.1.1 Example LO1
The following is an example of a small linear optimization problem:

maximize 3𝑥0 + 1𝑥1 + 5𝑥2 + 1𝑥3

subject to 3𝑥0 + 1𝑥1 + 2𝑥2 = 30,
2𝑥0 + 1𝑥1 + 3𝑥2 + 1𝑥3 ≥ 15,

2𝑥1 + 3𝑥3 ≤ 25,

(7.1)

under the bounds
0 ≤ 𝑥0 ≤ ∞,
0 ≤ 𝑥1 ≤ 10,
0 ≤ 𝑥2 ≤ ∞,
0 ≤ 𝑥3 ≤ ∞.

We start our implementation in Fusion importing the relevant modules, i.e.

23

import mosek.fusion.*;

Next we declare an optimization model creating an instance of the Model class:

try(Model M = new Model("lo1"))

For this simple problem we are going to enter all the linear coefficients directly:

double[][] A =
{ new double[] { 3.0, 1.0, 2.0, 0.0 },

new double[] { 2.0, 1.0, 3.0, 1.0 },
new double[] { 0.0, 2.0, 0.0, 3.0 }

};
double[] c = { 3.0, 1.0, 5.0, 1.0 };

The variables appearing in problem (7.1) can be declared as one 4-dimensional variable:

Variable x = M.variable("x", 4, Domain.greaterThan(0.0));

At this point we already have variables with bounds 0 ≤ 𝑥𝑖 ≤ ∞, because the domain is applied
element-wise to the entries of the variable vector. Next, we impose the upper bound on 𝑥1:

M.constraint(x.index(1), Domain.lessThan(10.0));

The linear constraints can now be entered one by one using the dot product of our variable with a
coefficient vector:

M.constraint("c1", Expr.dot(A[0], x), Domain.equalsTo(30.0));
M.constraint("c2", Expr.dot(A[1], x), Domain.greaterThan(15.0));
M.constraint("c3", Expr.dot(A[2], x), Domain.lessThan(25.0));

We end the definition of our optimization model setting the objective function in the same way:

M.objective("obj", ObjectiveSense.Maximize, Expr.dot(c, x));

Finally, we only need to call the Model.solve method:

M.solve();

The solution values can be attained with the method Variable.level .

double[] sol = x.level();
System.out.printf("[x0,x1,x2,x3] = [%e, %e, %e, %e]\n", sol[0], sol[1], sol[2],␣

→˓sol[3]);

Listing 7.1: Fusion implementation of model (7.1).

package com.mosek.fusion.examples;
import mosek.fusion.*;

public class lo1 {
public static void main(String[] args)
throws SolutionError {

double[][] A =
{ new double[] { 3.0, 1.0, 2.0, 0.0 },

new double[] { 2.0, 1.0, 3.0, 1.0 },
new double[] { 0.0, 2.0, 0.0, 3.0 }

};
double[] c = { 3.0, 1.0, 5.0, 1.0 };

// Create a model with the name 'lo1'
try(Model M = new Model("lo1"))

(continues on next page)

24

(continued from previous page)

{
// Create variable 'x' of length 4
Variable x = M.variable("x", 4, Domain.greaterThan(0.0));

// Create constraints
M.constraint(x.index(1), Domain.lessThan(10.0));
M.constraint("c1", Expr.dot(A[0], x), Domain.equalsTo(30.0));
M.constraint("c2", Expr.dot(A[1], x), Domain.greaterThan(15.0));
M.constraint("c3", Expr.dot(A[2], x), Domain.lessThan(25.0));

// Set the objective function to (c^t * x)
M.objective("obj", ObjectiveSense.Maximize, Expr.dot(c, x));

// Solve the problem
M.solve();

// Get the solution values
double[] sol = x.level();
System.out.printf("[x0,x1,x2,x3] = [%e, %e, %e, %e]\n", sol[0], sol[1], sol[2],␣

→˓sol[3]);
}

}
}

7.2 Conic Quadratic Optimization

The structure of a typical conic optimization problem is

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟,

(see Sec. 12 for detailed formulations). Here we discuss how to set-up problems with the (rotated)
quadratic cones.

MOSEK supports two types of quadratic cones, namely:

• Quadratic cone:

𝒬𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 : 𝑥0 ≥

⎯⎸⎸⎷𝑛−1∑︁
𝑗=1

𝑥2
𝑗

⎫⎬⎭ .

• Rotated quadratic cone:

𝒬𝑛
r =

⎧⎨⎩𝑥 ∈ R𝑛 : 2𝑥0𝑥1 ≥
𝑛−1∑︁
𝑗=2

𝑥2
𝑗 , 𝑥0 ≥ 0, 𝑥1 ≥ 0

⎫⎬⎭ .

For example, consider the following constraint:

(𝑥4, 𝑥0, 𝑥2) ∈ 𝒬3

which describes a convex cone in R3 given by the inequality:

𝑥4 ≥
√︁
𝑥2
0 + 𝑥2

2.

For other types of cones supported by MOSEK, see Sec. 14.8 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

25

7.2.1 Example CQO1
Consider the following conic quadratic problem which involves some linear constraints, a quadratic cone
and a rotated quadratic cone.

minimize 𝑦1 + 𝑦2 + 𝑦3
subject to 𝑥1 + 𝑥2 + 2.0𝑥3 = 1.0,

𝑥1, 𝑥2, 𝑥3 ≥ 0.0,
(𝑦1, 𝑥1, 𝑥2) ∈ 𝒬3,
(𝑦2, 𝑦3, 𝑥3) ∈ 𝒬3

r .

(7.2)

We start by creating the optimization model:

Model M = new Model("cqo1");

We then define variables x and y. Two logical variables (aliases) z1 and z2 are introduced to model the
quadratic cones. These are not new variables, but map onto parts of x and y for the sake of convenience.

Variable x = M.variable("x", 3, Domain.greaterThan(0.0));
Variable y = M.variable("y", 3, Domain.unbounded());

// Create the aliases
// z1 = [y[0],x[0],x[1]]
// and z2 = [y[1],y[2],x[2]]
Variable z1 = Var.vstack(y.index(0), x.slice(0, 2));
Variable z2 = Var.vstack(y.slice(1, 3), x.index(2));

The linear constraint is defined using the dot product:

// Create the constraint
// x[0] + x[1] + 2.0 x[2] = 1.0
double[] aval = new double[] {1.0, 1.0, 2.0};
M.constraint("lc", Expr.dot(aval, x), Domain.equalsTo(1.0));

The conic constraints are defined using the logical views z1 and z2 created previously. Note that
this is a basic way of defining conic constraints, and that in practice they would have more complicated
structure.

// Create the constraints
// z1 belongs to C_3
// z2 belongs to K_3
// where C_3 and K_3 are respectively the quadratic and
// rotated quadratic cone of size 3, i.e.
// z1[0] >= sqrt(z1[1]^2 + z1[2]^2)
// and 2.0 z2[0] z2[1] >= z2[2]^2
Constraint qc1 = M.constraint("qc1", z1, Domain.inQCone());
Constraint qc2 = M.constraint("qc2", z2, Domain.inRotatedQCone());

We only need the objective function:

// Set the objective function to (y[0] + y[1] + y[2])
M.objective("obj", ObjectiveSense.Minimize, Expr.sum(y));

Calling the Model.solve method invokes the solver:

M.writeTask("cqo1.task");
M.solve();

The primal and dual solution values can be retrieved using Variable.level , Constraint.level
and Variable.dual , Constraint.dual , respectively:

// Get the linear solution values
double[] solx = x.level();
double[] soly = y.level();

26

// Get conic solution of qc1
double[] qc1lvl = qc1.level();
double[] qc1sn = qc1.dual();

Listing 7.2: Fusion implementation of model (7.2).

package com.mosek.fusion.examples;
import mosek.fusion.*;

public class cqo1 {
public static void main(String[] args)
throws SolutionError {

Model M = new Model("cqo1");
try {

Variable x = M.variable("x", 3, Domain.greaterThan(0.0));
Variable y = M.variable("y", 3, Domain.unbounded());

// Create the aliases
// z1 = [y[0],x[0],x[1]]
// and z2 = [y[1],y[2],x[2]]
Variable z1 = Var.vstack(y.index(0), x.slice(0, 2));
Variable z2 = Var.vstack(y.slice(1, 3), x.index(2));

// Create the constraint
// x[0] + x[1] + 2.0 x[2] = 1.0
double[] aval = new double[] {1.0, 1.0, 2.0};
M.constraint("lc", Expr.dot(aval, x), Domain.equalsTo(1.0));

// Create the constraints
// z1 belongs to C_3
// z2 belongs to K_3
// where C_3 and K_3 are respectively the quadratic and
// rotated quadratic cone of size 3, i.e.
// z1[0] >= sqrt(z1[1]^2 + z1[2]^2)
// and 2.0 z2[0] z2[1] >= z2[2]^2
Constraint qc1 = M.constraint("qc1", z1, Domain.inQCone());
Constraint qc2 = M.constraint("qc2", z2, Domain.inRotatedQCone());

// Set the objective function to (y[0] + y[1] + y[2])
M.objective("obj", ObjectiveSense.Minimize, Expr.sum(y));

// Solve the problem
M.writeTask("cqo1.task");
M.solve();

// Get the linear solution values
double[] solx = x.level();
double[] soly = y.level();
System.out.printf("x1,x2,x3 = %e, %e, %e\n", solx[0], solx[1], solx[2]);
System.out.printf("y1,y2,y3 = %e, %e, %e\n", soly[0], soly[1], soly[2]);

// Get conic solution of qc1
double[] qc1lvl = qc1.level();
double[] qc1sn = qc1.dual();

System.out.printf("qc1 levels = %e", qc1lvl[0]);
(continues on next page)

27

(continued from previous page)

for (int i = 1; i < qc1lvl.length; ++i)
System.out.printf(", %e", qc1lvl[i]);

System.out.print("\n");

System.out.printf("qc1 dual conic var levels = %e", qc1sn[0]);
for (int i = 1; i < qc1sn.length; ++i)

System.out.printf(", %e", qc1sn[i]);
System.out.print("\n");

} finally {
M.dispose();

}
}

}

7.3 Power Cone Optimization

The structure of a typical conic optimization problem is

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟,

(see Sec. 12 for detailed formulations). Here we discuss how to set-up problems with the primal/dual
power cones.

MOSEK supports the primal and dual power cones, defined as below:

• Primal power cone:

𝒫𝛼𝑘
𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 :

𝑛ℓ−1∏︁
𝑖=0

𝑥𝛽𝑖

𝑖 ≥

⎯⎸⎸⎷ 𝑛−1∑︁
𝑗=𝑛ℓ

𝑥2
𝑗 , 𝑥0 . . . , 𝑥𝑛ℓ−1 ≥ 0

⎫⎬⎭
where 𝑠 =

∑︀
𝑖 𝛼𝑖 and 𝛽𝑖 = 𝛼𝑖/𝑠, so that

∑︀
𝑖 𝛽𝑖 = 1.

• Dual power cone:

(𝒫𝛼𝑘
𝑛) =

⎧⎨⎩𝑥 ∈ R𝑛 :

𝑛ℓ−1∏︁
𝑖=0

(︂
𝑥𝑖

𝛽𝑖

)︂𝛽𝑖

≥

⎯⎸⎸⎷ 𝑛−1∑︁
𝑗=𝑛ℓ

𝑥2
𝑗 , 𝑥0 . . . , 𝑥𝑛ℓ−1 ≥ 0

⎫⎬⎭
where 𝑠 =

∑︀
𝑖 𝛼𝑖 and 𝛽𝑖 = 𝛼𝑖/𝑠, so that

∑︀
𝑖 𝛽𝑖 = 1.

Perhaps the most important special case is the three-dimensional power cone family:

𝒫𝛼,1−𝛼
3 =

{︀
𝑥 ∈ R3 : 𝑥𝛼

0𝑥
1−𝛼
1 ≥ |𝑥2|, 𝑥0, 𝑥1 ≥ 0

}︀
.

which has the corresponding dual cone:
For example, the conic constraint (𝑥, 𝑦, 𝑧) ∈ 𝒫0.25,0.75

3 is equivalent to 𝑥0.25𝑦0.75 ≥ |𝑧|, or simply
𝑥𝑦3 ≥ 𝑧4 with 𝑥, 𝑦 ≥ 0.

For other types of cones supported by MOSEK, see Sec. 14.8 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

28

7.3.1 Example POW1
Consider the following optimization problem which involves powers of variables:

maximize 𝑥0.2
0 𝑥0.8

1 + 𝑥0.4
2 − 𝑥0

subject to 𝑥0 + 𝑥1 + 1
2𝑥2 = 2,

𝑥0, 𝑥1, 𝑥2 ≥ 0.
(7.3)

We convert (7.3) into affine conic form using auxiliary variables as bounds for the power expressions:

maximize 𝑥3 + 𝑥4 − 𝑥0

subject to 𝑥0 + 𝑥1 + 1
2𝑥2 = 2,

(𝑥0, 𝑥1, 𝑥3) ∈ 𝒫0.2,0.8
3 ,

(𝑥2, 1.0, 𝑥4) ∈ 𝒫0.4,0.6
3 .

(7.4)

The two conic constraints shown in (7.4) can be expressed in the ACC form as shown in (7.5):

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
𝑥0

𝑥1

𝑥2

𝑥3

𝑥4

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ 𝒫0.2,0.8
3 × 𝒫0.4,0.6

3 . (7.5)

We start by creating the optimization model:

Model M = new Model("pow1");

We then define the variable x corresponding to the original problem (7.3), and auxiliary variables
appearing in the conic reformulation (7.4).

Variable x = M.variable("x", 3, Domain.unbounded());
Variable x3 = M.variable();
Variable x4 = M.variable();

The linear constraint is defined using the dot product operator Expr.dot :

// Create the linear constraint
double[] aval = new double[] {1.0, 1.0, 0.5};
M.constraint(Expr.dot(x, aval), Domain.equalsTo(2.0));

The primal power cone is referred to via Domain.inPPowerCone with an appropriate list of variables
or expressions in each case.

// Create the conic constraints
M.constraint(Var.vstack(x.slice(0,2), x3), Domain.inPPowerCone(0.2));
M.constraint(Expr.vstack(x.index(2), 1.0, x4), Domain.inPPowerCone(0.4));

We only need the objective function:

// Set the objective function
double[] cval = new double[] {1.0, 1.0, -1.0};
M.objective(ObjectiveSense.Maximize, Expr.dot(cval, Var.vstack(x3, x4, x.

→˓index(0))));

Calling the Model.solve method invokes the solver:

M.solve();

The primal and dual solution values can be retrieved using Variable.level , Constraint.level
and Variable.dual , Constraint.dual . Here we just display the primal solution

29

// Get the linear solution values
double[] solx = x.level();
System.out.printf("x, y, z = %e, %e, %e\n", solx[0], solx[1], solx[2]);

which is

[0.06389298 0.78308564 2.30604283]

Listing 7.3: Fusion implementation of model (7.3).

package com.mosek.fusion.examples;
import mosek.fusion.*;

public class pow1 {
public static void main(String[] args)
throws SolutionError {

Model M = new Model("pow1");
try {

Variable x = M.variable("x", 3, Domain.unbounded());
Variable x3 = M.variable();
Variable x4 = M.variable();

// Create the linear constraint
double[] aval = new double[] {1.0, 1.0, 0.5};
M.constraint(Expr.dot(x, aval), Domain.equalsTo(2.0));

// Create the conic constraints
M.constraint(Var.vstack(x.slice(0,2), x3), Domain.inPPowerCone(0.2));
M.constraint(Expr.vstack(x.index(2), 1.0, x4), Domain.inPPowerCone(0.4));

// Set the objective function
double[] cval = new double[] {1.0, 1.0, -1.0};
M.objective(ObjectiveSense.Maximize, Expr.dot(cval, Var.vstack(x3, x4, x.

→˓index(0))));

// Solve the problem
M.solve();

// Get the linear solution values
double[] solx = x.level();
System.out.printf("x, y, z = %e, %e, %e\n", solx[0], solx[1], solx[2]);

} finally {
M.dispose();

}
}

}

30

7.4 Conic Exponential Optimization

The structure of a typical conic optimization problem is

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟,

(see Sec. 12 for detailed formulations). Here we discuss how to set-up problems with the primal/dual
exponential cones.

MOSEK supports two exponential cones, namely:

• Primal exponential cone:

𝐾exp =
{︀
𝑥 ∈ R3 : 𝑥0 ≥ 𝑥1 exp(𝑥2/𝑥1), 𝑥0, 𝑥1 ≥ 0

}︀
.

• Dual exponential cone:

𝐾*
exp =

{︀
𝑠 ∈ R3 : 𝑠0 ≥ −𝑠2𝑒

−1 exp(𝑠1/𝑠2), 𝑠2 ≤ 0, 𝑠0 ≥ 0
}︀
.

For example, consider the following constraint:

(𝑥4, 𝑥0, 𝑥2) ∈ 𝐾exp

which describes a convex cone in R3 given by the inequalities:

𝑥4 ≥ 𝑥0 exp(𝑥2/𝑥0), 𝑥0, 𝑥4 ≥ 0.

For other types of cones supported by MOSEK, see Sec. 14.8 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

7.4.1 Example CEO1
Consider the following basic conic exponential problem which involves some linear constraints and an
exponential inequality:

minimize 𝑥0 + 𝑥1

subject to 𝑥0 + 𝑥1 + 𝑥2 = 1,
𝑥0 ≥ 𝑥1 exp(𝑥2/𝑥1),

𝑥0, 𝑥1 ≥ 0.

(7.6)

The affine conic form of (7.6) is:

minimize 𝑥0 + 𝑥1

subject to 𝑥0 + 𝑥1 + 𝑥2 = 1,
𝐼𝑥 ∈ 𝐾exp,
𝑥 ∈ R3.

(7.7)

where 𝐼 is the 3 × 3 identity matrix.
We start by creating the optimization model:

Model M = new Model("ceo1");

We then define the variable x.

31

Variable x = M.variable("x", 3, Domain.unbounded());

The linear constraint is defined using the sum operator Expr.sum :

// Create the constraint
// x[0] + x[1] + x[2] = 1.0
M.constraint("lc", Expr.sum(x), Domain.equalsTo(1.0));

The conic exponential constraint in this case is very simple as it involves just the variable x. The
primal exponential cone is referred to via Domain.inPExpCone , and it must be applied to a variable of
length 3 or an array of such variables. Note that this is a basic way of defining conic constraints, and
that in practice they would have more complicated structure.

// Create the conic exponential constraint
Constraint expc = M.constraint("expc", x, Domain.inPExpCone());

We only need the objective function:

// Set the objective function to (x[0] + x[1])
M.objective("obj", ObjectiveSense.Minimize, Expr.sum(x.slice(0,2)));

Calling the Model.solve method invokes the solver:

M.solve();

The primal and dual solution values can be retrieved using Variable.level , Constraint.level
and Variable.dual , Constraint.dual , respectively:

// Get the linear solution values
double[] solx = x.level();

// Get conic solution of expc
double[] expclvl = expc.level();
double[] expcsn = expc.dual();

Listing 7.4: Fusion implementation of model (7.6).

package com.mosek.fusion.examples;
import mosek.fusion.*;

public class ceo1 {
public static void main(String[] args)
throws SolutionError {

Model M = new Model("ceo1");
try {

Variable x = M.variable("x", 3, Domain.unbounded());

// Create the constraint
// x[0] + x[1] + x[2] = 1.0
M.constraint("lc", Expr.sum(x), Domain.equalsTo(1.0));

// Create the conic exponential constraint
Constraint expc = M.constraint("expc", x, Domain.inPExpCone());

// Set the objective function to (x[0] + x[1])
M.objective("obj", ObjectiveSense.Minimize, Expr.sum(x.slice(0,2)));

// Solve the problem
M.solve();

(continues on next page)

32

(continued from previous page)

// Get the linear solution values
double[] solx = x.level();
System.out.printf("x1,x2,x3 = %e, %e, %e\n", solx[0], solx[1], solx[2]);

// Get conic solution of expc
double[] expclvl = expc.level();
double[] expcsn = expc.dual();

System.out.printf("expc levels = %e", expclvl[0]);
for (int i = 1; i < expclvl.length; ++i)

System.out.printf(", %e", expclvl[i]);
System.out.print("\n");

System.out.printf("expc dual conic var levels = %e", expcsn[0]);
for (int i = 1; i < expcsn.length; ++i)

System.out.printf(", %e", expcsn[i]);
System.out.print("\n");

} finally {
M.dispose();

}
}

}

7.5 Geometric Programming

Geometric programs (GP) are a particular class of optimization problems which can be expressed in
special polynomial form as positive sums of generalized monomials. More precisely, a geometric problem
in canonical form is

minimize 𝑓0(𝑥)
subject to 𝑓𝑖(𝑥) ≤ 1, 𝑖 = 1, . . . ,𝑚,

𝑥𝑗 > 0, 𝑗 = 1, . . . , 𝑛,
(7.8)

where each 𝑓0, . . . , 𝑓𝑚 is a posynomial, that is a function of the form

𝑓(𝑥) =
∑︁
𝑘

𝑐𝑘𝑥
𝛼𝑘1
1 𝑥𝛼𝑘2

2 · · ·𝑥𝛼𝑘𝑛
𝑛

with arbitrary real 𝛼𝑘𝑖 and 𝑐𝑘 > 0. The standard way to formulate GPs in convex form is to introduce
a variable substitution

𝑥𝑖 = exp(𝑦𝑖).

Under this substitution all constraints in a GP can be reduced to the form

log(
∑︁
𝑘

exp(𝑎𝑇𝑘 𝑦 + 𝑏𝑘)) ≤ 0 (7.9)

involving a log-sum-exp bound. Moreover, constraints involving only a single monomial in 𝑥 can be even
more simply written as a linear inequality:

𝑎𝑇𝑘 𝑦 + 𝑏𝑘 ≤ 0

We refer to the MOSEK Modeling Cookbook and to [BKVH07] for more details on this reformulation. A
geometric problem formulated in convex form can be entered into MOSEK with the help of exponential
cones.

33

https://docs.mosek.com/modeling-cookbook/index.html

7.5.1 Example GP1
The following problem comes from [BKVH07]. Consider maximizing the volume of a ℎ × 𝑤 × 𝑑 box
subject to upper bounds on the area of the floor and of the walls and bounds on the ratios ℎ/𝑤 and 𝑑/𝑤:

maximize ℎ𝑤𝑑
subject to 2(ℎ𝑤 + ℎ𝑑) ≤ 𝐴wall,

𝑤𝑑 ≤ 𝐴floor,
𝛼 ≤ ℎ/𝑤 ≤ 𝛽,
𝛾 ≤ 𝑑/𝑤 ≤ 𝛿.

(7.10)

The decision variables in the problem are ℎ,𝑤, 𝑑. We make a substitution

ℎ = exp(𝑥), 𝑤 = exp(𝑦), 𝑑 = exp(𝑧)

after which (7.10) becomes

maximize 𝑥 + 𝑦 + 𝑧
subject to log(exp(𝑥 + 𝑦 + log(2/𝐴wall)) + exp(𝑥 + 𝑧 + log(2/𝐴wall))) ≤ 0,

𝑦 + 𝑧 ≤ log(𝐴floor),
log(𝛼) ≤ 𝑥− 𝑦 ≤ log(𝛽),
log(𝛾) ≤ 𝑧 − 𝑦 ≤ log(𝛿).

(7.11)

Next, we demonstrate how to implement a log-sum-exp constraint (7.9). It can be written as:

𝑢𝑘 ≥ exp(𝑎𝑇𝑘 𝑦 + 𝑏𝑘), (equiv. (𝑢𝑘, 1, 𝑎
𝑇
𝑘 𝑦 + 𝑏𝑘) ∈ 𝐾exp),∑︀

𝑘 𝑢𝑘 = 1.
(7.12)

This presentation requires one extra variable 𝑢𝑘 for each monomial appearing in the original posynomial
constraint.

Listing 7.5: Implementation of log-sum-exp as in (7.12).

// Models log(sum(exp(Ax+b))) <= 0.
// Each row of [A b] describes one of the exp-terms
public static void logsumexp(Model M,

double[][] A,
Variable x,
double[] b)

{
int k = A.length;
Variable u = M.variable(k);
M.constraint(Expr.sum(u), Domain.equalsTo(1.0));
M.constraint(Expr.hstack(u,

Expr.constTerm(k, 1.0),
Expr.add(Expr.mul(A, x), b)), Domain.inPExpCone());

}

We can now use this function to assemble all constraints in the model. The linear part of the problem
is entered as in Sec. 7.1.

Listing 7.6: Source code solving problem (7.11).

public static double[] max_volume_box(double Aw, double Af,
double alpha, double beta, double gamma,␣

→˓double delta)
throws SolutionError
{

Model M = new Model("max_vol_box");
try {

Variable xyz = M.variable(3);
(continues on next page)

34

(continued from previous page)

M.objective("Objective", ObjectiveSense.Maximize, Expr.sum(xyz));

logsumexp(M,
new double[][] {{1,1,0}, {1,0,1}},
xyz,
new double[] {Math.log(2.0/Aw), Math.log(2.0/Aw)});

M.constraint(Expr.dot(new double[] {0,1,1}, xyz), Domain.lessThan(Math.
→˓log(Af)));

M.constraint(Expr.dot(new double[] {1,-1,0}, xyz), Domain.inRange(Math.
→˓log(alpha),Math.log(beta)));

M.constraint(Expr.dot(new double[] {0,-1,1}, xyz), Domain.inRange(Math.
→˓log(gamma),Math.log(delta)));

M.setLogHandler(new java.io.PrintWriter(System.out));
M.solve();

double[] xyzVal = xyz.level();
double[] hwdVal = new double[3];
for(int i=0; i<3; i++) hwdVal[i] = Math.exp(xyzVal[i]);

return hwdVal;
} finally {

M.dispose();
}

}

Given sample data we obtain the solution ℎ,𝑤, 𝑑 as follows:

Listing 7.7: Sample data for problem (7.10).

public static void main(String[] args)
throws SolutionError
{

double Aw = 200.0;
double Af = 50.0;
double alpha = 2.0;
double beta = 10.0;
double gamma = 2.0;
double delta = 10.0;

double[] hwd = max_volume_box(Aw, Af, alpha, beta, gamma, delta);

System.out.format("h=%.4f w=%.4f d=%.4f\n", hwd[0], hwd[1], hwd[2]);
}

35

7.6 Semidefinite Optimization

Semidefinite optimization is a generalization of conic optimization, allowing the use of matrix variables
belonging to the convex cone of positive semidefinite matrices

𝒮𝑟
+ =

{︀
𝑋 ∈ 𝒮𝑟 : 𝑧𝑇𝑋𝑧 ≥ 0, ∀𝑧 ∈ R𝑟

}︀
,

where 𝒮𝑟 is the set of 𝑟 × 𝑟 real-valued symmetric matrices.
MOSEK can solve semidefinite optimization problems stated in the primal form,

minimize
∑︀𝑝−1

𝑗=0

⟨︀
𝐶𝑗 , 𝑋𝑗

⟩︀
+
∑︀𝑛−1

𝑗=0 𝑐𝑗𝑥𝑗 + 𝑐𝑓

subject to 𝑙𝑐𝑖 ≤
∑︀𝑝−1

𝑗=0

⟨︀
𝐴𝑖𝑗 , 𝑋𝑗

⟩︀
+
∑︀𝑛−1

𝑗=0 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑖 , 𝑖 = 0, . . . ,𝑚− 1,∑︀𝑝−1

𝑗=0

⟨︀
𝐹 𝑖𝑗 , 𝑋𝑗

⟩︀
+
∑︀𝑛−1

𝑗=0 𝑓𝑖𝑗𝑥𝑗 + 𝑔𝑖 ∈ 𝒦𝑖, 𝑖 = 0, . . . , 𝑞 − 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1,

𝑥 ∈ 𝒦, 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ , 𝑗 = 0, . . . , 𝑝− 1

(7.13)

where the problem has 𝑝 symmetric positive semidefinite variables 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ of dimension 𝑟𝑗 . The

symmetric coefficient matrices 𝐶𝑗 ∈ 𝒮𝑟𝑗 and 𝐴𝑖,𝑗 ∈ 𝒮𝑟𝑗 are used to specify PSD terms in the linear
objective and the linear constraints, respectively. The symmetric coefficient matrices 𝐹 𝑖,𝑗 ∈ 𝒮𝑟𝑗 are used
to specify PSD terms in the affine conic constraints. Note that 𝑞 ((7.13)) is the total dimension of all
the cones, i.e. 𝑞 = dim(𝒦1× . . .×𝒦𝑘), given there are 𝑘 ACCs. We use standard notation for the matrix
inner product, i.e., for 𝐴,𝐵 ∈ R𝑚×𝑛 we have

⟨𝐴,𝐵⟩ :=

𝑚−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝐴𝑖𝑗𝐵𝑖𝑗 .

In addition to the primal form presented above, semidefinite problems can be expressed in their dual
form. Constraints in this form are usually called linear matrix inequalities (LMIs). LMIs can be
easily specified in MOSEK using the vectorized positive semidefinite cone which is defined as:

• Vectorized semidefinite domain:

𝒮𝑑,vec
+ =

{︀
(𝑥1, . . . , 𝑥𝑑(𝑑+1)/2) ∈ R𝑛 : sMat(𝑥) ∈ 𝒮𝑑

+

}︀
,

where 𝑛 = 𝑑(𝑑 + 1)/2 and,

sMat(𝑥) =

⎡⎢⎢⎣
𝑥1 𝑥2/

√
2 · · · 𝑥𝑑/

√
2

𝑥2/
√

2 𝑥𝑑+1 · · · 𝑥2𝑑−1/
√

2
· · · · · · · · · · · ·

𝑥𝑑/
√

2 𝑥2𝑑−1/
√

2 · · · 𝑥𝑑(𝑑+1)/2

⎤⎥⎥⎦ ,

or equivalently

𝒮𝑑,vec
+ =

{︀
sVec(𝑋) : 𝑋 ∈ 𝒮𝑑

+

}︀
,

where

sVec(𝑋) = (𝑋11,
√

2𝑋21, . . . ,
√

2𝑋𝑑1, 𝑋22,
√

2𝑋32, . . . , 𝑋𝑑𝑑).

In other words, the domain consists of vectorizations of the lower-triangular part of a positive semidef-
inite matrix, with the non-diagonal elements additionally rescaled. LMIs can be expressed by restricting
appropriate affine expressions to this cone type.

For other types of cones supported by MOSEK, see Sec. 14.8 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

In Fusion the user can enter the linear expressions in a more convenient way, without having to cast
the problem exactly in the above form.

We demonstrate the setup of semidefinite variables and their coefficient matrices in the following
examples:

• Sec. 7.6.1: A problem with one semidefinite variable and linear and conic constraints.

• Sec. 7.6.2: A problem with two semidefinite variables with a linear constraint and bound.

• Sec. 7.6.3: Shows how to efficiently set up many semidefinite variables of the same dimension.

36

7.6.1 Example SDO1
We consider the simple optimization problem with semidefinite and conic quadratic constraints:

minimize

⟨⎡⎣ 2 1 0
1 2 1
0 1 2

⎤⎦ , 𝑋

⟩
+ 𝑥0

subject to

⟨⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ , 𝑋

⟩
+ 𝑥0 = 1,

⟨⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ , 𝑋

⟩
+ 𝑥1 + 𝑥2 = 1/2,

𝑥0 ≥
√
𝑥1

2 + 𝑥2
2, 𝑋 ⪰ 0,

(7.14)

The problem description contains a 3-dimensional symmetric semidefinite variable which can be written
explicitly as:

𝑋 =

⎡⎣ 𝑋00 𝑋10 𝑋20

𝑋10 𝑋11 𝑋21

𝑋20 𝑋21 𝑋22

⎤⎦ ∈ 𝒮3
+,

and an affine conic constraint (ACC) (𝑥0, 𝑥1, 𝑥2) ∈ 𝒬3. The objective is to minimize

2(𝑋00 + 𝑋10 + 𝑋11 + 𝑋21 + 𝑋22) + 𝑥0,

subject to the two linear constraints

𝑋00 + 𝑋11 + 𝑋22 + 𝑥0 = 1,
𝑋00 + 𝑋11 + 𝑋22 + 2(𝑋10 + 𝑋20 + 𝑋21) + 𝑥1 + 𝑥2 = 1/2.

Our implementation in Fusion begins with creating a new model:

Model M = new Model("sdo1");

We create a symmetric semidefinite variable 𝑋 and another variable representing 𝑥. For simplicity
we immediately declare that 𝑥 belongs to a quadratic cone

Variable X = M.variable("X", Domain.inPSDCone(3));
Variable x = M.variable("x", Domain.inQCone(3));

In this elementary example we are going to create an explicit matrix representation of the problem

𝐶 =

⎡⎣ 2 1 0
1 2 1
0 1 2

⎤⎦ , 𝐴1 =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ , 𝐴2 =

⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ .

and use it in the model via the dot product operation ⟨·, ·⟩ which applies to matrices as well as to vectors.
This way we create each of the linear constraints and the objective as one expression.

// Objective
M.objective(ObjectiveSense.Minimize, Expr.add(Expr.dot(C, X), x.index(0)));

// Constraints
M.constraint("c1", Expr.add(Expr.dot(A1, X), x.index(0)), Domain.equalsTo(1.0));
M.constraint("c2", Expr.add(Expr.dot(A2, X), Expr.sum(x.slice(1, 3))), Domain.

→˓equalsTo(0.5));

Now it remains to solve the problem with Model.solve .

37

Listing 7.8: Fusion implementation of problem (7.14).

package com.mosek.fusion.examples;
import mosek.fusion.*;

public class sdo1 {
public static void main(String[] args) throws SolutionError {

Model M = new Model("sdo1");
try {

// Setting up the variables
Variable X = M.variable("X", Domain.inPSDCone(3));
Variable x = M.variable("x", Domain.inQCone(3));

// Setting up constant coefficient matrices
Matrix C = Matrix.dense (new double[][] {{2., 1., 0.}, {1., 2., 1.}, {0., 1.,␣

→˓2.}});
Matrix A1 = Matrix.eye(3);
Matrix A2 = Matrix.ones(3,3);

// Objective
M.objective(ObjectiveSense.Minimize, Expr.add(Expr.dot(C, X), x.index(0)));

// Constraints
M.constraint("c1", Expr.add(Expr.dot(A1, X), x.index(0)), Domain.equalsTo(1.0));
M.constraint("c2", Expr.add(Expr.dot(A2, X), Expr.sum(x.slice(1, 3))), Domain.

→˓equalsTo(0.5));

M.solve();

System.out.println(java.util.Arrays.toString(X.level()));
System.out.println(java.util.Arrays.toString(x.level()));

} finally {
M.dispose();

}
}

}

7.6.2 Example SDO2
We now demonstrate how to define more than one semidefinite variable using the following problem with
two matrix variables and two types of constraints:

minimize ⟨𝐶1, 𝑋1⟩ + ⟨𝐶2, 𝑋2⟩
subject to ⟨𝐴1, 𝑋1⟩ + ⟨𝐴2, 𝑋2⟩ = 𝑏,

(𝑋2)01 ≤ 𝑘,
𝑋1, 𝑋2 ⪰ 0.

(7.15)

In our example dim(𝑋1) = 3, dim(𝑋2) = 4, 𝑏 = 23, 𝑘 = −3 and

𝐶1 =

⎡⎣ 1 0 0
0 0 0
0 0 6

⎤⎦ , 𝐴1 =

⎡⎣ 1 0 1
0 0 0
1 0 2

⎤⎦ ,

𝐶2 =

⎡⎢⎢⎣
1 −3 0 0
−3 2 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎦ , 𝐴2 =

⎡⎢⎢⎣
0 1 0 0
1 −1 0 0
0 0 0 0
0 0 0 −3

⎤⎥⎥⎦ ,

are constant symmetric matrices.

38

Note that this problem does not contain any scalar variables, but they could be added in the same
fashion as in Sec. 7.6.1.

The code representing the above problem is shown below.

Listing 7.9: Implementation of model (7.15).

public class sdo2 {
public static void main(String[] args) throws SolutionError {

// Sample data in sparse, symmetric triplet format
int[] C1_k = {0, 2};
int[] C1_l = {0, 2};
double[] C1_v = {1, 6};
int[] A1_k = {0, 2, 0, 2};
int[] A1_l = {0, 0, 2, 2};
double[] A1_v = {1, 1, 1, 2};
int[] C2_k = {0, 1, 0, 1, 2};
int[] C2_l = {0, 0, 1, 1, 2};
double[] C2_v = {1, -3, -3, 2, 1};
int[] A2_k = {1, 0, 1, 3};
int[] A2_l = {0, 1, 1, 3};
double[] A2_v = {1, 1, -1, -3};
double b = 23;
double k = -3;

// Convert input data into Fusion sparse matrices
Matrix C1 = Matrix.sparse(3, 3, C1_k, C1_l, C1_v);
Matrix C2 = Matrix.sparse(4, 4, C2_k, C2_l, C2_v);
Matrix A1 = Matrix.sparse(3, 3, A1_k, A1_l, A1_v);
Matrix A2 = Matrix.sparse(4, 4, A2_k, A2_l, A2_v);

Model M = new Model("sdo2");
try {

// Two semidefinite variables
Variable X1 = M.variable(Domain.inPSDCone(3));
Variable X2 = M.variable(Domain.inPSDCone(4));

// Objective
M.objective(ObjectiveSense.Minimize, Expr.add(Expr.dot(C1,X1), Expr.dot(C2,

→˓X2)));

// Equality constraint
M.constraint(Expr.add(Expr.dot(A1,X1), Expr.dot(A2,X2)), Domain.equalsTo(b));

// Inequality constraint
M.constraint(X2.index(new int[] {0,1}), Domain.lessThan(k));

// Solve
M.setLogHandler(new java.io.PrintWriter(System.out));
M.solve();

// Print solution
System.out.println("Solution (vectorized):");
System.out.println(java.util.Arrays.toString(X1.level()));
System.out.println(java.util.Arrays.toString(X2.level()));

} finally {
M.dispose();

}
(continues on next page)

39

(continued from previous page)

}
}

7.6.3 Example SDO3
Here we demonstrate how to use the facilities provided in Fusion to set up a model with many semidef-
inite variables of the same dimension more efficiently than via looping. We consider a problem with 𝑛
semidefinite variables of dimension 𝑑 and 𝑘 constraints:

minimize
∑︀

𝑗 tr(𝑋𝑗)

subject to
∑︀

𝑗⟨𝐴𝑖𝑗 , 𝑋𝑗⟩ ≥ 𝑏𝑖, 𝑖 = 1, . . . , 𝑘,

𝑋𝑗 ⪰ 0 𝑗 = 1, . . . , 𝑛,

(7.16)

with symmetric data matrices 𝐴𝑖𝑗 .
The key construction is:

Listing 7.10: Creating a stack of semidefinite variables.

Variable X = M.variable(Domain.inPSDCone(d, n));

It creates 𝑛 symmetric, semidefinite matrix variables of dimension 𝑑 arranged in a single variable
object X of shape (𝑛, 𝑑, 𝑑). Individual matrix variables can be accessed as slices from (𝑖, 0, 0) to (𝑖+1, 𝑑, 𝑑)
(reshaped into shape (𝑑, 𝑑) if necessary). It is also possible to operate on the full variable X when
constructing expressions that involve entries of all the semidefinite matrices in a natural way. The source
code example illustrates both these approaches.

Listing 7.11: Implementation of model (7.16).

public class sdo3 {

// A helper method computing a semidefinite slice of a 3-dim variable
public static Variable slice(Variable X, int d, int j) {

return
X.slice(new int[] {j,0,0}, new int[] {j+1,d,d})
.reshape(new int[] {d,d});

}

public static void main(String[] args) throws SolutionError {

// Sample input data
int n = 100;
int d = 4;
int k = 3;
double[] b = {9,10,11};
double[][][] A = new double[n*k][d][d];
for(int i=0; i<n*k; i++)

for(int s1=0; s1<d; s1++)
for(int s2=0; s2<=s1; s2++)

A[i][s1][s2] = A[i][s2][s1] = Math.random();

// Create a model with n semidefinite variables od dimension d x d
Model M = new Model("sdo3");
try {

Variable X = M.variable(Domain.inPSDCone(d, n));

// Pick indexes of diagonal entries for the objective
int[][] alldiag = new int[d*n][3];
for(int j=0; j<n; j++) for(int s=0; s<d; s++) {

(continues on next page)

40

(continued from previous page)

alldiag[j*d+s][0] = j;
alldiag[j*d+s][1] = alldiag[j*d+s][2] = s;

}
M.objective(ObjectiveSense.Minimize, Expr.sum(X.pick(alldiag)));

// Each constraint is a sum of inner products
// Each semidefinite variable is a slice of X
for(int i=0; i< k; i++) {

Expression[] addlist = new Expression[n];
for(int j=0; j<n; j++)

addlist[j] = Expr.dot(A[i*n+j], slice(X, d, j));
M.constraint(Expr.add(addlist), Domain.greaterThan(b[i]));

}

// Solve
M.setLogHandler(new java.io.PrintWriter(System.out)); // Add logging
M.writeTask("sdo3.ptf"); // Save problem in␣

→˓readable format
M.solve();

// Get results. Each variable is a slice of X
System.out.println("Contributing variables:");
for(int j=0; j<n; j++) {

double[] Xj = slice(X, d, j).level();
double maxval = 0;
for(int s=0; s<d*d; s++) maxval = Math.max(maxval, Xj[s]);
if (maxval > 1e-6) {

System.out.println("X" + j + "=");
for(int s1=0; s1<d; s1++) {

for(int s2=0; s2<d; s2++)
System.out.print(Xj[s1*d+s1] + " ");

System.out.println();
}

}
}

}
finally {

M.dispose();
}

}
}

7.7 Integer Optimization

An optimization problem where one or more of the variables are constrained to integer values is called a
(mixed) integer optimization problem. MOSEK supports integer variables in combination with linear,
quadratic and quadratically constrtained and conic problems (except semidefinite). See the previous
tutorials for an introduction to how to model these types of problems.

41

7.7.1 Example MILO1
We use the example

maximize 𝑥0 + 0.64𝑥1

subject to 50𝑥0 + 31𝑥1 ≤ 250,
3𝑥0 − 2𝑥1 ≥ −4,
𝑥0, 𝑥1 ≥ 0 and integer

(7.17)

to demonstrate how to set up and solve a problem with integer variables. It has the structure of a linear
optimization problem except for integrality constraints on the variables. Therefore, only the specification
of the integer constraints requires something new compared to the linear optimization problem discussed
previously.

First, the integrality constraints are imposed by modifying any existing domain with Domain.
integral :

Variable x = M.variable("x", 2, Domain.integral(Domain.greaterThan(0.0)));

Another way to do this is to use the method Variable.makeInteger on a selected variable.
Next, the example demonstrates how to set various useful parameters of the mixed-integer optimizer.

See Sec. 13.4 for details.

// Set max solution time
M.setSolverParam("mioMaxTime", 60.0);
// Set max relative gap (to its default value)
M.setSolverParam("mioTolRelGap", 1e-4);
// Set max absolute gap (to its default value)
M.setSolverParam("mioTolAbsGap", 0.0);

The complete source for the example is listed in Listing 7.12.

Listing 7.12: How to solve problem (7.17).

package com.mosek.fusion.examples;
import mosek.fusion.*;

public class milo1 {
public static void main(String[] args)
throws SolutionError {

double[][] A = {
{ 50.0, 31.0 },
{ 3.0, -2.0 }

};
double[] c = { 1.0, 0.64 };

Model M = new Model("milo1");
try {

Variable x = M.variable("x", 2, Domain.integral(Domain.greaterThan(0.0)));

// Create the constraints
// 50.0 x[0] + 31.0 x[1] <= 250.0
// 3.0 x[0] - 2.0 x[1] >= -4.0
M.constraint("c1", Expr.dot(A[0], x), Domain.lessThan(250.0));
M.constraint("c2", Expr.dot(A[1], x), Domain.greaterThan(-4.0));

// Set max solution time
M.setSolverParam("mioMaxTime", 60.0);
// Set max relative gap (to its default value)
M.setSolverParam("mioTolRelGap", 1e-4);
// Set max absolute gap (to its default value)

(continues on next page)

42

(continued from previous page)

M.setSolverParam("mioTolAbsGap", 0.0);

// Set the objective function to (c^T * x)
M.objective("obj", ObjectiveSense.Maximize, Expr.dot(c, x));

// Solve the problem
M.solve();

// Get the solution values
double[] sol = x.level();
System.out.printf("x1,x2 = %e, %e\n", sol[0], sol[1]);
System.out.printf("MIP rel gap = %.2f (%f)\n",

M.getSolverDoubleInfo("mioObjRelGap"),
M.getSolverDoubleInfo("mioObjAbsGap"));

} finally {
M.dispose();

}
}

}

7.7.2 Specifying an initial solution
It is a common strategy to provide a starting feasible point (if one is known in advance) to the mixed-
integer solver. This can in many cases reduce solution time.

There are two modes for MOSEK to utilize an initial solution.

• A complete solution. MOSEK will first try to check if the current value of the primal vari-
able solution is a feasible point. The solution can either come from a previous solver call or
can be entered by the user, however the full solution with values for all variables (both integer
and continuous) must be provided. This check is always performed and does not require any
extra action from the user. The outcome of this process can be inspected via information items
"mioInitialFeasibleSolution" and "mioInitialFeasibleSolutionObj" , and via the Initial
feasible solution objective entry in the log.

• A partial integer solution. MOSEK can also try to construct a feasible solution by fixing
integer variables to the values provided by the user (rounding if necessary) and optimizing over the
remaining continuous variables. In this setup the user must provide initial values for all integer
variables. This action is only performed if the parameter mioConstructSol is switched on. The
outcome of this process can be inspected via information items "mioConstructSolution" and
"mioConstructSolutionObj" , and via the Construct solution objective entry in the log.

In the following example we focus on inputting a partial integer solution.

maximize 7𝑥0 + 10𝑥1 + 𝑥2 + 5𝑥3

subject to 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 ≤ 2.5
𝑥0, 𝑥1, 𝑥2 ∈ Z
𝑥0, 𝑥1, 𝑥2, 𝑥3 ≥ 0

(7.18)

Solution values can be set using Variable.setLevel .

Listing 7.13: Implementation of problem (7.18) specifying an initial
solution.

// Assign values to integer variables.
// We only set a slice of x
double[] init_sol = { 1, 1, 0 };
x.slice(0,3).setLevel(init_sol);

(continues on next page)

43

(continued from previous page)

// Request constructing the solution from integer variable values
M.setSolverParam("mioConstructSol", "on");

A more advanced application of Variable.setLevel is presented in the case study on Multiprocessor
scheduling .

The log output from the optimizer will in this case indicate that the inputted values were used to
construct an initial feasible solution:

Construct solution objective : 1.950000000000e+01

The same information can be obtained from the API:

Listing 7.14: Retrieving information about usage of initial solution

int constr = M.getSolverIntInfo("mioConstructSolution");
double constrVal = M.getSolverDoubleInfo("mioConstructSolutionObj");
System.out.println("Construct solution utilization: " + constr);
System.out.println("Construct solution objective: " + constrVal);

7.7.3 Example MICO1
Integer variables can also be used arbitrarily in conic problems (except semidefinite). We refer to the
previous tutorials for how to set up a conic optimization problem. Here we present sample code that
sets up a simple optimization problem:

minimize 𝑥2 + 𝑦2

subject to 𝑥 ≥ 𝑒𝑦 + 3.8,
𝑥, 𝑦 integer.

(7.19)

The canonical conic formulation of (7.19) suitable for Fusion API for Java is

minimize 𝑡

subject to (𝑡, 𝑥, 𝑦) ∈ 𝒬3 (𝑡 ≥
√︀
𝑥2 + 𝑦2)

(𝑥− 3.8, 1, 𝑦) ∈ 𝐾exp (𝑥− 3.8 ≥ 𝑒𝑦)
𝑥, 𝑦 integer,
𝑡 ∈ R.

(7.20)

Listing 7.15: Implementation of problem (7.20).

package com.mosek.fusion.examples;
import mosek.fusion.*;

public class mico1 {
public static void main(String[] args)
throws SolutionError {

Model M = new Model("mico1");

try {
Variable x = M.variable(Domain.integral(Domain.unbounded()));
Variable y = M.variable(Domain.integral(Domain.unbounded()));
Variable t = M.variable();

M.constraint(Expr.vstack(t, x, y), Domain.inQCone());
M.constraint(Expr.vstack(Expr.sub(x, 3.8), 1, y), Domain.inPExpCone());

M.objective(ObjectiveSense.Minimize, t);

(continues on next page)

44

(continued from previous page)

M.solve();

System.out.printf("x, y = %f, %f\n", x.level()[0], y.level()[0]);

} finally {
M.dispose();

}
}

}

Error and solution status handling were omitted for readability.

7.8 Disjunctive constraints

A disjunctive constraint (DJC) involves of a number of affine conditions combined with the logical
operators or (∨) and optionally and (∧) into a formula in disjunctive normal form, that is a disjunction
of conjunctions. Specifically, a disjunctive constraint has the form of a disjunction

𝑇1 or 𝑇2 or · · · or 𝑇𝑡 (7.21)

where each 𝑇𝑖 is written as a conjunction

𝑇𝑖 = 𝑇𝑖,1 and 𝑇𝑖,2 and · · · and 𝑇𝑖,𝑠𝑖 (7.22)

and each 𝑇𝑖,𝑗 is an affine condition (affine equation or affine inequality) of the form 𝐷𝑖𝑗𝑥 + 𝑑𝑖𝑗 ∈ 𝒟𝑖𝑗

with 𝒟𝑖𝑗 being one of the affine domains from Sec. 14.8.1. A disjunctive constraint (DJC) can therefore
be succinctly written as

𝑡⋁︁
𝑖=1

𝑠𝑖⋀︁
𝑗=1

𝑇𝑖,𝑗 (7.23)

where each 𝑇𝑖,𝑗 is an affine condition.
Each 𝑇𝑖 is called a term or clause of the disjunctive constraint and 𝑡 is the number of terms. Each

condition 𝑇𝑖,𝑗 is called a simple term and 𝑠𝑖 is called the size of the 𝑖-th term.
A disjunctive constraint is satisfied if at least one of its terms (clauses) is satisfied. A term (clause)

is satisfied if all of its constituent simple terms are satisfied. A problem containing DJCs will be solved
by the mixed-integer optimizer.

Note that nonlinear cones are not allowed as one of the domains 𝒟𝑖𝑗 inside a DJC.

7.8.1 Applications
Disjunctive constraints are a convenient and expressive syntactical tool. Then can be used to phrase
many constructions appearing especially in mixed-integer modelling. Here are some examples.

• Complementarity. The condition 𝑥𝑦 = 0, where 𝑥, 𝑦 are scalar variables, is equivalent to

𝑥 = 0 or 𝑦 = 0.

It is a DJC with two terms, each of size 1.

• Semicontinuous variable. A semicontinuous variable is a scalar variable which takes values in
{0} ∪ [𝑎,+∞]. This can be expressed as

𝑥 = 0 or 𝑥 ≥ 𝑎.

It is again a DJC with two terms, each of size 1.

45

• Exact absolute value. The constraint 𝑡 = |𝑥| is not convex, but can be written as

(𝑥 ≥ 0 and 𝑡 = 𝑥) or (𝑥 ≤ 0 and 𝑡 = −𝑥)

It is a DJC with two terms, each of size 2.

• Indicator. Suppose 𝑧 is a Boolean variable. Then we can write the indicator constraint 𝑧 = 1 =⇒
𝑎𝑇𝑥 ≤ 𝑏 as

(𝑧 = 1 and 𝑎𝑇𝑥 ≤ 𝑏) or (𝑧 = 0)

which is a DJC with two terms, of sizes, respectively, 2 and 1.

• Piecewise linear functions. Suppose 𝑎1 ≤ · · · ≤ 𝑎𝑘+1 and 𝑓 : [𝑎1, 𝑎𝑘+1] → R is a piecewise
linear function, given on the 𝑖-th of 𝑘 intervals [𝑎𝑖, 𝑎𝑖+1] by a different affine expression 𝑓𝑖(𝑥). Then
we can write the constraint 𝑦 = 𝑓(𝑥) as

𝑘⋁︁
𝑖=1

(𝑎𝑖 ≤ 𝑦 and 𝑦 ≤ 𝑎𝑖+1 and 𝑦 − 𝑓𝑖(𝑥) = 0)

making it a DJC with 𝑘 terms, each of size 3.

On the other hand most DJCs are equivalent to a mixed-integer linear program through a big-M
reformulation. In some cases, when a suitable big-M is known to the user, writing such a formulation
directly may be more efficient than formulating the problem as a DJC. See Sec. 13.4.5 for a discussion
of this topic.

Disjunctive constraints can be added to any problem which includes linear constraints, affine conic
constraints (without semidefinite domains) or integer variables.

7.8.2 Example DJC1
In this tutorial we will consider the following sample demonstration problem:

minimize 2𝑥0 + 𝑥1 + 3𝑥2 + 𝑥3

subject to 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 ≥ −10,⎛⎝ 𝑥0 − 2𝑥1 ≤ −1
and

𝑥2 = 𝑥3 = 0

⎞⎠ or

⎛⎝ 𝑥2 − 3𝑥3 ≤ −2
and

𝑥0 = 𝑥1 = 0

⎞⎠ ,

𝑥𝑖 = 2.5 for at least one 𝑖 ∈ {0, 1, 2, 3}.

(7.24)

The problem has two DJCs: the first one has 2 terms. The second one, which we can write as
⋁︀3

𝑖=0(𝑥𝑖 =
2.5), has 4 terms (clauses).

We refer to Sec. 7.1 for the details of constructing a model and setting up variables and linear
constraints. In this tutorial we focus on the two disjunctive constraints. Each of the simple terms
appearing in disjunctions is constructed using DJC.term in the form known from ordinary constraints,
that is

Expression belongs to a Domain .

Therefore the first disjunction in our example can be written as

M.disjunction(DJC.AND(DJC.term(Expr.dot(new double[]{1,-2,0,0}, x), Domain.
→˓lessThan(-1)), // x0 - 2x1 <= -1

DJC.term(x.slice(2, 4), Domain.equalsTo(0))), ␣
→˓ // x2 = x3 = 0

DJC.AND(DJC.term(Expr.dot(new double[]{0,0,1,-3}, x), Domain.
→˓lessThan(-2)), // x2 - 3x3 <= -2

DJC.term(x.slice(0, 2), Domain.equalsTo(0)))); ␣
→˓ // x0 = x1 = 0

46

The disjunctive constraint is added to them model with Model.disjunction . Here we call this
method with two terms, each of which is a conjunction (DJC.AND) of simple terms.

The second disjunctive constraint is created by passing an array of 4 terms:

// Array of terms reading x_i = 2.5 for i = 0,1,2,3
Term[] terms = new Term[4];
for(int i = 0; i < 4; i++)

terms[i] = DJC.term(x.index(i), Domain.equalsTo(2.5));
// The disjunctive constraint from the array of terms
M.disjunction(terms);

The complete code constructing and solving the problem (7.24) is shown below.

Listing 7.16: Source code solving problem (7.24).

package com.mosek.fusion.examples;
import mosek.fusion.*;

public class djc1 {
public static void main(String[] args)
throws SolutionError {

try(Model M = new Model("djc1"))
{

// Create variable 'x' of length 4
Variable x = M.variable("x", 4);

// First disjunctive constraint
M.disjunction(DJC.AND(DJC.term(Expr.dot(new double[]{1,-2,0,0}, x), Domain.

→˓lessThan(-1)), // x0 - 2x1 <= -1
DJC.term(x.slice(2, 4), Domain.equalsTo(0))), ␣

→˓ // x2 = x3 = 0
DJC.AND(DJC.term(Expr.dot(new double[]{0,0,1,-3}, x), Domain.

→˓lessThan(-2)), // x2 - 3x3 <= -2
DJC.term(x.slice(0, 2), Domain.equalsTo(0)))); ␣

→˓ // x0 = x1 = 0

// Second disjunctive constraint
// Array of terms reading x_i = 2.5 for i = 0,1,2,3
Term[] terms = new Term[4];
for(int i = 0; i < 4; i++)

terms[i] = DJC.term(x.index(i), Domain.equalsTo(2.5));
// The disjunctive constraint from the array of terms
M.disjunction(terms);

// The linear constraint
M.constraint(Expr.sum(x), Domain.greaterThan(-10));

// Objective
M.objective(ObjectiveSense.Minimize, Expr.dot(new double[]{2,1,3,1}, x));

// Useful for debugging
M.writeTask("djc.ptf"); // Save to a readable␣

→˓file
M.setLogHandler(new java.io.PrintWriter(System.out)); // Enable log output

// Solve the problem
M.solve();

(continues on next page)

47

(continued from previous page)

if (M.getPrimalSolutionStatus() == SolutionStatus.Optimal) {
double[] sol = x.level();
System.out.printf("[x0,x1,x2,x3] = [%e, %e, %e, %e]\n", sol[0], sol[1],␣

→˓sol[2], sol[3]);
}
else {

System.out.printf("Anoter solution status");
}

}
}

}

7.9 Model Parametrization and Reoptimization

This tutorial demonstrates how to construct a model with a fixed structure and reoptimize it by chang-
ing some of the input data. If you instead want to dynamically modify the model structure between
optimizations by adding variables, constraints etc., see the other reoptimization tutorial Sec. 7.10.

For this tutorial we solve the following variant of linear regression with elastic net regularization:

minimize𝑥 ‖𝐴𝑥− 𝑏‖2 + 𝜆1‖𝑥‖1 + 𝜆2‖𝑥‖2

where 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚. The optimization variable is 𝑥 ∈ R𝑛 and 𝜆1, 𝜆2 are two nonnegative numbers
indicating the tradeoff between the linear regression objective, a lasso (ℓ1-norm) penalty and a ridge
(ℓ2-norm) regularization. The representation of this problem compatible with MOSEK input format is

minimize 𝑡 + 𝜆1

∑︀
𝑖 𝑝𝑖 + 𝜆2𝑞

subject to (𝑡, 𝐴𝑥− 𝑏) ∈ 𝒬𝑚+1,
𝑝𝑖 ≥ |𝑥𝑖|, 𝑖 = 1, . . . , 𝑛,
(𝑞, 𝑥) ∈ 𝒬𝑛+1.

7.9.1 Creating a model
Before creating a parametrized model we should analyze which parts of the model are fixed once for all,
and which parts do we intend to change between optimizations. Here we make the following assumption:

• the matrix 𝐴 will not change,

• we want to solve the problem for many target vectors 𝑏,

• we want to experiment with different tradeoffs 𝜆1, 𝜆2.

That leads us to construct the model with 𝐴 provided from the start as fixed input and declare
𝑏, 𝜆1, 𝜆2 as parameters. The initial model construction is shown below. Parameters are objects of type
Parameter , created with the method Model.parameter . We exploit the fact that parameters can have
shapes, just like variables and expressions, and that they can be used everywhere within an expression
where a constant of the same shape would be suitable.

Listing 7.17: Constructing a parametrized model.

public static Model initializeModel(int m, int n, double[][] A) {
Model M = new Model();
Variable x = M.variable("x", n);

// t >= |Ax-b|_2 where b is a parameter
Parameter b = M.parameter("b", m);
Variable t = M.variable();

(continues on next page)

48

(continued from previous page)

M.constraint(Expr.vstack(t, Expr.sub(Expr.mul(A, x), b)), Domain.inQCone());

// p_i >= |x_i|, i=1..n
Variable p = M.variable(n);
M.constraint(Expr.hstack(p, x), Domain.inQCone());

// q >= |x|_2
Variable q = M.variable();
M.constraint(Expr.vstack(q, x), Domain.inQCone());

// Objective, parametrized with lambda1, lambda2
// t + lambda1*sum(p) + lambda2*q
Parameter lambda1 = M.parameter("lambda1");
Parameter lambda2 = M.parameter("lambda2");
Expression obj = Expr.add(new Expression[] {t, Expr.mul(lambda1, Expr.sum(p)),␣

→˓Expr.mul(lambda2, q)});
M.objective(ObjectiveSense.Minimize, obj);

// Return the ready model
return M;

}

For the purpose of the example we take

𝐴 =

⎡⎢⎢⎣
1 2
3 4
−2 −1
−4 −3

⎤⎥⎥⎦
and we initialize the parametrized model:

Listing 7.18: Initializing the model

//Create a small example
int m = 4;
int n = 2;
double[][] A = { {1.0, 2.0},

{3.0, 4.0},
{-2.0, -1.0},
{-4.0, -3.0} };

double[] sol;
Model M = initializeModel(m, n, A);

// For convenience retrieve some elements of the model
Parameter b = M.getParameter("b");
Parameter lambda1 = M.getParameter("lambda1");
Parameter lambda2 = M.getParameter("lambda2");
Variable x = M.getVariable("x");

We made sure to keep references to the interesting elements of the model, in particular the parameter
objects we are about to set values of.

49

7.9.2 Setting parameters
For the first solve we use

𝑏 = [0.1, 1.2,−1.1, 3.0]𝑇 , 𝜆1 = 0.1, 𝜆2 = 0.01.

Parameters are set with method Parameter.setValue . We set the parameters and solve the model as
follows:

Listing 7.19: Setting parameters and solving the model.

// First solve
b.setValue(new double[]{0.1, 1.2, -1.1, 3.0});
lambda1.setValue(0.1);
lambda2.setValue(0.01);

M.solve();
sol = x.level();
System.out.printf("Objective %.5f, solution %.3f, %.3f\n", M.primalObjValue(),␣

→˓sol[0], sol[1]);

7.9.3 Changing parameters
Let us say we now want to increase the weight of the lasso penalty in order to favor sparser solutions.
We can simply change that parameter, leave the other ones unchanged, and resolve:

Listing 7.20: Changing a parameter and resolving

// Increase lambda1
lambda1.setValue(0.5);

M.solve();
sol = x.level();
System.out.printf("Objective %.5f, solution %.3f, %.3f\n", M.primalObjValue(),␣

→˓sol[0], sol[1]);

Next, we might want to solve a few instances of the problem for another value of 𝑏. Again, we reset
the relevant parameters and solve:

Listing 7.21: Changing parameters and resolving

// Now change the data completely
b.setValue(new double[] {1.0, 1.0, 1.0, 1.0});
lambda1.setValue(0.0);
lambda2.setValue(0.0);

M.solve();
sol = x.level();
System.out.printf("Objective %.5f, solution %.3f, %.3f\n", M.primalObjValue(),␣

→˓sol[0], sol[1]);

// And increase lamda2
lambda2.setValue(1.4145);

M.solve();
sol = x.level();
System.out.printf("Objective %.5f, solution %.3f, %.3f\n", M.primalObjValue(),␣

→˓sol[0], sol[1]);

50

7.9.4 Additional remarks
• Domains cannot be parametrized, therefore to parametrize a bound, such as 𝑥 ≥ 𝑝, it is necessary

to write it as 𝑥− 𝑝 ≥ 0.

• Coefficients appearing at semidefinite terms cannot be parametrized. If it is necessary to have a
parametrized expression such as 𝑝𝑋𝑖,𝑗 , introduce an auxiliary scalar variable 𝑥 = 𝑋𝑖,𝑗 and use 𝑝𝑥
in the model.

• Parametrized models can be found in the following examples: alan.java, portfolio_2_frontier.
java, portfolio_5_card.java, total_variation.java.

7.10 Problem Modification and Reoptimization

This tutorial demonstrates how to modify a model by adding new elements and changing existing ones.
If instead you want to create one model of fixed structure and reoptimize it for changing input data, see
Sec. 7.9.

The example we study is a simple production planning model.
Problem modifications regarding variables, cones, objective function and constraints can be grouped

in categories:

• adding constraints and variables,

• modifying existing constraints.

Adding new variables and constraints is very easy. Modifications to existing constraints are more
cumbersome, and the user should consider whether it is not worth rebuilding the model from scratch
in such case. The amount of work required by Fusion to update the optimizer task may outweigh the
potential gains.

Depending on the type of modification, MOSEK may be able to optimize the modified problem more
efficiently exploiting the information and internal state from the previous execution. After optimization,
the solution is always stored internally, and is available before next optimization. The former optimal
solution may be still feasible, but no longer optimal; or it may remain optimal if the modification of the
objective function was small.

In general, MOSEK exploits dual information and availability of an optimal basis from the previous
execution. The simplex optimizer is well suited for exploiting an existing primal or dual feasible solution.
Restarting capabilities for interior-point methods are still not as reliable and effective as those for the
simplex algorithm. More information can be found in Chapter 10 of the book [Chvatal83].

Parameter settings (see Sec. 8.4) can also be changed between optimizations.

7.10.1 Example: Production Planning
A company manufactures three types of products. Suppose the stages of manufacturing can be split into
three parts: Assembly, Polishing and Packing. In the table below we show the time required for each
stage as well as the profit associated with each product.

Product no. Assembly (minutes) Polishing (minutes) Packing (minutes) Profit ($)

0 2 3 2 1.50
1 4 2 3 2.50
2 3 3 2 3.00

With the current resources available, the company has 100, 000 minutes of assembly time, 50, 000
minutes of polishing time and 60, 000 minutes of packing time available per year. We want to know how
many items of each product the company should produce each year in order to maximize profit?

Denoting the number of items of each type by 𝑥0, 𝑥1 and 𝑥2, this problem can be formulated as a
linear optimization problem:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2

subject to 2𝑥0 + 4𝑥1 + 3𝑥2 ≤ 100000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 50000,
2𝑥0 + 3𝑥1 + 2𝑥2 ≤ 60000,

(7.25)

51

and

𝑥0, 𝑥1, 𝑥2 ≥ 0.

Code in Listing 7.22 loads and solves this problem.

Listing 7.22: Setting up and solving problem (7.25)

double[] c = new double[] { 1.5, 2.5, 3.0 };
double[][] A = new double[][] { {2, 4, 3},

{3, 2, 3},
{2, 3, 2} };

double[] b = new double[] { 100000.0, 50000.0, 60000.0 };
int numvar = c.length;
int numcon = b.length;

// Create a model and input data
Model M = new Model();
Variable x = M.variable(numvar, Domain.greaterThan(0.0));
Constraint con = M.constraint(Expr.mul(A, x), Domain.lessThan(b));
M.objective(ObjectiveSense.Maximize, Expr.dot(c, x));
// Solve the problem
M.solve();

7.10.2 Changing the Linear Constraint Matrix
Suppose we want to change the time required for assembly of product 0 to 3 minutes. This corresponds
to setting 𝑎0,0 = 3. Now the Constraint provides the method Constraint.update , which can replace
the columns corresponding to a variable with new values (or to replace the whole constraint). In our
case the update we need is replacing 1 · 𝑥0 with 3 · 𝑥0 in the constraint with index 0.

con.index(0).update(Expr.mul(3.0, x.index(0)), x.index(0));

The problem now has the form:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2

subject to 3𝑥0 + 4𝑥1 + 3𝑥2 ≤ 100000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 50000,
2𝑥0 + 3𝑥1 + 2𝑥2 ≤ 60000,

(7.26)

and

𝑥0, 𝑥1, 𝑥2 ≥ 0.

After this operation we can reoptimize the problem.

7.10.3 Appending Variables
We now want to add a new product with the following data:

Product no. Assembly (minutes) Polishing (minutes) Packing (minutes) Profit ($)

3 4 0 1 1.00

This corresponds to creating a new variable 𝑥3, appending a new column to the 𝐴 matrix and setting
a new term in the objective. We do this in Listing 7.23

52

Listing 7.23: How to add a new variable (column)

/*************** Add a new variable ******************************/
// Create a variable and a compound view of all variables
Variable x3 = M.variable(Domain.greaterThan(0.0));
Variable xNew = Var.vstack(x, x3);
// Add to the exising constraint
con.update(Expr.mul(x3, new double[]{4, 0, 1}),x3);
// Change the objective to include x3
M.objective(ObjectiveSense.Maximize, Expr.dot(new double[]{1.5,2.5,3.0,1.0},␣

→˓xNew));

After this operation the new problem is:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2 + 1.0𝑥3

subject to 3𝑥0 + 4𝑥1 + 3𝑥2 + 4𝑥3 ≤ 100000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 50000,
2𝑥0 + 3𝑥1 + 2𝑥2 + 1𝑥3 ≤ 60000,

(7.27)

and

𝑥0, 𝑥1, 𝑥2, 𝑥3 ≥ 0.

7.10.4 Appending Constraints
Now suppose we want to add a new stage to the production process called Quality control for which
30000 minutes are available. The time requirement for this stage is shown below:

Product no. Quality control (minutes)

0 1
1 2
2 1
3 1

This corresponds to adding the constraint

𝑥0 + 2𝑥1 + 𝑥2 + 𝑥3 ≤ 30000

to the problem. This is done as follows.

Listing 7.24: Adding a new constraint.

/**************** Add a new constraint *****************************/
Constraint con2 = M.constraint(Expr.dot(xNew, new double[]{1, 2, 1, 1}), Domain.

→˓lessThan(30000.0));

Again, we can continue with re-optimizing the modified problem.

7.10.5 Changing bounds
One typical reoptimization scenario is to change bounds. Suppose for instance that we must operate
with limited time resources, and we must change the upper bounds in the problem as follows:

Operation Time available (before) Time available (new)

Assembly 100000 80000
Polishing 50000 40000
Packing 60000 50000
Quality control 30000 22000

53

That means we would like to solve the problem:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2 + 1.0𝑥3

subject to 3𝑥0 + 4𝑥1 + 3𝑥2 + 4𝑥3 ≤ 80000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 40000,
2𝑥0 + 3𝑥1 + 2𝑥2 + 1𝑥3 ≤ 50000,
𝑥0 + 2𝑥1 + 𝑥2 + 𝑥3 ≤ 22000.

(7.28)

Since Domain objects are immutable, we cannot change the constraints by simply updating the value
inside domains. To circumvent this, we add the differences between new and old bounds as fixed terms
to the constraint expression. That means, we effectively construct an equivalent problem:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2 + 1.0𝑥3

subject to 3𝑥0 + 4𝑥1 + 3𝑥2 + 4𝑥3 + 20000 ≤ 100000,
3𝑥0 + 2𝑥1 + 3𝑥2 + 10000 ≤ 50000,
2𝑥0 + 3𝑥1 + 2𝑥2 + 1𝑥3 + 10000 ≤ 60000,
𝑥0 + 2𝑥1 + 𝑥2 + 𝑥3 + 8000 ≤ 30000.

(7.29)

The next listing shows how to do it.

Listing 7.25: Change constraint bounds.

/**************** Change constraint bounds *****************************/
// Assemble all constraints we previously defined into one
Constraint cAll = Constraint.vstack(con, con2);
// Change bounds by effectively updating fixed terms with the difference
cAll.update(new double[]{20000, 10000, 10000, 8000});

Again, we can continue with re-optimizing the modified problem.

7.10.6 Advanced hot-start
If the optimizer used the data from the previous run to hot-start the optimizer for reoptimization, this
will be indicated in the log:

Optimizer - hotstart : yes

When performing re-optimizations, instead of removing a basic variable it may be more efficient to
fix the variable at zero and then remove it when the problem is re-optimized and it has left the basis.
This makes it easier for MOSEK to restart the simplex optimizer.

7.11 Parallel optimization

In this section we demonstrate the method Model.solveBatch which is a parallel optimization mecha-
nism built-in in MOSEK. It has the following features:

• It allows to fine-tune the balance between the total number of threads in use by the parallel solver
and the number of threads used for each individual model.

• It is very efficient for optimizing a large number of models of similar size, for example models
obtained by cloning an initial model and changing some coefficients.

In the example below we demonstrate a very standard application of Model.solveBatch . We create
an initial model, clone it a few times, set different parameter values in each clone and then optimize all
the cloned models in parallel. When all models complete we access the status for each of them and, if
successfully solved, we gather solutions and other information in the standard way, as if each model was
optimized separately.

54

Listing 7.26: Calling the parallel optimizer.

/** Example of how to use Model.solveBatch()
*/

public static void main(String[] argv) throws SolutionError
{

// Choose some sample parameters
int n = 10; // Number of models to optimize
int threadpoolsize = 4; // Total number of threads available
int threadspermodel = 1; // Number of threads per each model

// Create a toy model for this example
Model M = makeToyParameterizedModel();

// Set up n copies of the model with different data
Model[] models = new Model[n];
for(int i = 0; i < n ; i++)
{

models[i] = M.clone();
models[i].getParameter("p").setValue(i+1);
// We can set the number of threads individually per model
models[i].setSolverParam("numThreads", threadspermodel);

}

// Solve all models in parallel
SolverStatus[] status = Model.solveBatch(false, // No race

-1.0, // No time limit
threadpoolsize,
models); // Array of Models to␣

→˓solve

// Access the soutions
for(int i = 0; i < n; i++)

if (status[i] == SolverStatus.OK)
System.out.printf("Model %d: Status %s Solution Status %s objective %.

→˓3f time %.3f\n",
i,
status[i],
models[i].getPrimalSolutionStatus(),
models[i].primalObjValue(),
models[i].getSolverDoubleInfo("optimizerTime"));

else
System.out.printf("Model %d: not solved\n", i);

}

7.12 Retrieving infeasibility certificates

When a continuous problem is declared as primal or dual infeasible, MOSEK provides a Farkas-type
infeasibility certificate. If, as it happens in many cases, the problem is infeasible due to an unintended
mistake in the formulation or because some individual constraint is too tight, then it is likely that
infeasibility can be isolated to a few linear constraints/bounds that mutually contradict each other. In
this case it is easy to identify the source of infeasibility. The tutorial in Sec. 9.3 has instructions on
how to deal with this situation and debug it by hand. We recommend Sec. 9.3 as an introduction to
infeasibility certificates and how to deal with infeasibilities in general.

Some users, however, would prefer to obtain the infeasibility certificate using Fusion API for Java,
for example in order to repair the issue automatically, display the information to the user, or perhaps
simply because the infeasibility was one of the intended outcomes that should be analyzed in the code.

55

In this tutorial we show how to obtain such an infeasibility certificate with Fusion API for Java in the
most typical case, that is when the linear part of a problem is primal infeasible. A Farkas-type primal
infeasibility certificate consists of the dual values of linear constraints and bounds. Each of the dual
values (multipliers) indicates that a certain multiple of the corresponding constraint should be taken
into account when forming the collection of mutually contradictory equalities/inequalities.

7.12.1 Example PINFEAS
For the purpose of this tutorial we use the same example as in Sec. 9.3, that is the primal infeasible
problem

minimize 𝑥0 + 2𝑥1 + 5𝑥2 + 2𝑥3 + 𝑥4 + 2𝑥5 + 𝑥6

subject to 𝑠0 : 𝑥0 + 𝑥1 ≤ 200,
𝑠1 : 𝑥2 + 𝑥3 ≤ 1000,
𝑠2 : 𝑥4 + 𝑥5 + 𝑥6 ≤ 1000,
𝑑0 : 𝑥0 + 𝑥4 = 1100,
𝑑1 : 𝑥1 = 200,
𝑑2 : 𝑥2 + 𝑥5 = 500,
𝑑3 : 𝑥3 + 𝑥6 = 500,

𝑥𝑖 ≥ 0.

(7.30)

Creating the model

In order to fetch the infeasibility certificate we must have access to the objects representing both variables
and constraints after optimization. We will implement the problem as having two linear constraints s
and d of dimensions 3 and 4, respectively.

// Construct the sample model from the example in the manual
Matrix sMat = Matrix.sparse(3, 7, new int[]{0,0,1,1,2,2,2},

new int[]{0,1,2,3,4,5,6},
new double[]{1,1,1,1,1,1,1});

double[] sBound = new double[]{200, 1000, 1000};
Matrix dMat = Matrix.sparse(4, 7, new int[]{0,0,1,2,2,3,3},

new int[]{0,4,1,2,5,3,6},
new double[]{1,1,1,1,1,1,1});

double[] dBound = new double[]{1100, 200, 500, 500};
double[] c = new double[]{1, 2, 5, 2, 1, 2, 1};

try(Model M = new Model("pinfeas"))
{

Variable x = M.variable("x", 7, Domain.greaterThan(0));
Constraint s = M.constraint("s", Expr.mul(sMat, x), Domain.lessThan(sBound));
Constraint d = M.constraint("d", Expr.mul(dMat, x), Domain.equalsTo(dBound));
M.objective(ObjectiveSense.Minimize, Expr.dot(c,x));

Checking infeasible status and adjusting settings

After the model has been solved we check that it is indeed infeasible. If yes, then we choose a threshold
for when a certificate value is considered as an important contributor to infeasibility (ideally we would
like to list all nonzero duals, but just like an optimal solution, an infeasibility certificate is also subject
to floating-point rounding errors). Finally, we declare that we are interested in retrieving certificates and
not just optimal solutions by calling Model.acceptedSolutionStatus , see Sec. 8.1.4. All these steps
are demonstrated in the snippet below:

// Check problem status
if (M.getProblemStatus() == ProblemStatus.PrimalInfeasible) {

// Set the tolerance at which we consider a dual value as essential
double eps = 1e-7;

(continues on next page)

56

(continued from previous page)

// We want to retrieve infeasibility certificates
M.acceptedSolutionStatus(AccSolutionStatus.Certificate);

Going through the certificate for a single item

We can define a fairly generic function which takes an array of dual values and all other required data
and prints out the positions of those entries whose dual values exceed the given threshold. These are
precisely the values we are interested in:

//Analyzes and prints infeasibility certificate for a single object,
//which can be a variable or constraint
public static void analyzeCertificate(String name, // name of the analyzed␣

→˓object
long size, // size of the object
double[] duals, // actual dual values
double eps) { // tolerance␣

→˓determining when a dual value is considered important
for(int i = 0; i < size; i++) {

if (Math.abs(duals[i]) > eps)
System.out.printf("%s[%d], dual = %e\n", name, i, duals[i]);

}
}

Full source code

All that remains is to call this function for all variable and constraint bounds for which we want to know
their contribution to infeasibility. Putting all these pieces together we obtain the following full code:

Listing 7.27: Demonstrates how to retrieve a primal infeasibility
certificate.

package com.mosek.fusion.examples;
import mosek.fusion.*;

public class pinfeas {
//Analyzes and prints infeasibility certificate for a single object,
//which can be a variable or constraint
public static void analyzeCertificate(String name, // name of the analyzed␣

→˓object
long size, // size of the object
double[] duals, // actual dual values
double eps) { // tolerance␣

→˓determining when a dual value is considered important
for(int i = 0; i < size; i++) {

if (Math.abs(duals[i]) > eps)
System.out.printf("%s[%d], dual = %e\n", name, i, duals[i]);

}
}

public static void main(String[] args) throws SolutionError {

// Construct the sample model from the example in the manual
Matrix sMat = Matrix.sparse(3, 7, new int[]{0,0,1,1,2,2,2},

new int[]{0,1,2,3,4,5,6},
new double[]{1,1,1,1,1,1,1});

(continues on next page)

57

(continued from previous page)

double[] sBound = new double[]{200, 1000, 1000};
Matrix dMat = Matrix.sparse(4, 7, new int[]{0,0,1,2,2,3,3},

new int[]{0,4,1,2,5,3,6},
new double[]{1,1,1,1,1,1,1});

double[] dBound = new double[]{1100, 200, 500, 500};
double[] c = new double[]{1, 2, 5, 2, 1, 2, 1};

try(Model M = new Model("pinfeas"))
{

Variable x = M.variable("x", 7, Domain.greaterThan(0));
Constraint s = M.constraint("s", Expr.mul(sMat, x), Domain.lessThan(sBound));
Constraint d = M.constraint("d", Expr.mul(dMat, x), Domain.equalsTo(dBound));
M.objective(ObjectiveSense.Minimize, Expr.dot(c,x));

// Useful for debugging
M.writeTask("pinfeas.ptf"); // Save to a␣

→˓readable file
M.setLogHandler(new java.io.PrintWriter(System.out)); // Enable log output

// Solve the problem
M.solve();

// Check problem status
if (M.getProblemStatus() == ProblemStatus.PrimalInfeasible) {

// Set the tolerance at which we consider a dual value as essential
double eps = 1e-7;

// We want to retrieve infeasibility certificates
M.acceptedSolutionStatus(AccSolutionStatus.Certificate);

// Go through variable bounds
System.out.println("Variable bounds important for infeasibility: ");
analyzeCertificate("x", x.getSize(), x.dual(), eps);

// Go through constraint bounds
System.out.println("Constraint bounds important for infeasibility: ");
analyzeCertificate("s", s.getSize(), s.dual(), eps);
analyzeCertificate("d", d.getSize(), d.dual(), eps);

}
else {

System.out.println("The problem is not primal infeasible, no certificate to␣
→˓show");

}
}

}
}

Running this code will produce the following output:

Variable bounds important for infeasibility:
x[5], dual = 1.0
x[6], dual = 1.0
Constraint bounds important for infeasibility:
s[0], dual = -1.0
s[2], dual = -1.0
d[0], dual = 1.0
d[1], dual = 1.0

58

indicating the positions of bounds which appear in the infeasibility certificate with nonzero values.
For a more in-depth treatment see the following sections:

• Sec. 11 for more advanced and complicated optimization examples.

• Sec. 11.1 for examples related to portfolio optimization.

• Sec. 12 for formal mathematical formulations of problems MOSEK can solve, dual problems and
infeasibility certificates.

59

Chapter 8

Solver Interaction Tutorials

In this section we cover the interaction with the solver.

8.1 Accessing the solution

This section contains important information about the status of the solver and the status of the solution,
which must be checked in order to properly interpret the results of the optimization.

8.1.1 Solver termination
If an error occurs during optimization then the method Model.solve will throw an exception of type
OptimizeError . The method FusionRuntimeException.toString will produce a description of the
error, if available. More about exceptions in Sec. 8.2.

If a runtime error causes the program to crash during optimization, the first debugging step is to
enable logging and check the log output. See Sec. 8.3.

If the optimization completes successfully, the next step is to check the solution status, as explained
below.

8.1.2 Available solutions
MOSEK uses three kinds of optimizers and provides three types of solutions:

• basic solution from the simplex optimizer,

• interior-point solution from the interior-point optimizer,

• integer solution from the mixed-integer optimizer.

Under standard parameters settings the following solutions will be available for various problem types:

Table 8.1: Types of solutions available from MOSEK

Simplex optimizer Interior-point opti-
mizer

Mixed-integer opti-
mizer

Linear problem SolutionType.
Basic

SolutionType.
Interior

Conic (nonlinear) problem SolutionType.
Interior

Problem with integer vari-
ables

SolutionType.
Integer

For linear problems the user can force a specific optimizer choice making only one of the two solutions
available. For example, if the user disables basis identification, then only the interior point solution will
be available for a linear problem. Numerical issues may cause one of the solutions to be unknown even
if another one is feasible.

Not all components of a solution are always available. For example, there is no dual solution for
integer problems and no dual conic variables from the simplex optimizer.

60

The user will always need to specify which solution should be accessed.
Moreover, the user may be oblivious to the actual solution type by always referring to SolutionType.

Default , which will automatically select the best available solution, if there is more than one. Moreover,
the method Model.selectedSolution can be used to fix one solution type for all future references.

8.1.3 Problem and solution status
Assuming that the optimization terminated without errors, the next important step is to check the
problem and solution status and availability of solutions. There is one for every type of solution, as
explained above.

Problem status

Problem status (ProblemStatus , retrieved with Model.getProblemStatus) determines whether the
problem is certified as feasible. Its values can roughly be divided into the following broad categories:

• feasible — the problem is feasible. For continuous problems and when the solver is run with default
parameters, the feasibility status should ideally be ProblemStatus.PrimalAndDualFeasible .

• primal/dual infeasible — the problem is infeasible or unbounded or a combination of those.
The exact problem status will indicate the type of infeasibility.

• unknown — the solver was unable to reach a conclusion, most likely due to numerical issues.

Solution status

Solution status (SolutionStatus , retrieved with Model.getPrimalSolutionStatus and Model.
getDualSolutionStatus) provides the information about what the solution values actually contain.
The most important broad categories of values are:

• optimal (SolutionStatus.Optimal) — the solution values are feasible and optimal.

• certificate — the solution is in fact a certificate of infeasibility (primal or dual, depending on the
solution).

• unknown — the status was not determined, typically because of numerical issues, stall etc. Some
solution is available, but its quality is not guaranteed.

• undefined — this type of solution is not available at all.

The solution status determines the action to be taken. For example, in some cases a suboptimal
solution may still be valuable and deserve attention. It is the user’s responsibility to check the status
and quality of the solution.

Typical status reports

Here are the most typical optimization outcomes described in terms of the problem and solution statuses.
Note that these do not cover all possible situations that can occur.

Table 8.2: Continuous problems (solution status for
SolutionType.Interior or SolutionType.Basic)

Outcome Problem status Solution status (pri-
mal)

Solution status
(dual)

Optimal ProblemStatus.
PrimalAndDualFeasible

SolutionStatus.
Optimal

SolutionStatus.
Optimal

Primal infeasible ProblemStatus.
PrimalInfeasible

SolutionStatus.
Undefined

SolutionStatus.
Certificate

Dual infeasible (un-
bounded)

ProblemStatus.
DualInfeasible

SolutionStatus.
Certificate

SolutionStatus.
Undefined

Uncertain (stall, numeri-
cal issues, etc.)

ProblemStatus.Unknown SolutionStatus.
Unknown

SolutionStatus.
Unknown

61

Table 8.3: Integer problems (solution status for SolutionType.
Integer, others undefined)

Outcome Problem status Solution status (primal) Solution status (dual)

Integer optimal ProblemStatus.
PrimalFeasible

SolutionStatus.
Optimal

SolutionStatus.
Undefined

Infeasible ProblemStatus.
PrimalInfeasible

SolutionStatus.
Undefined

SolutionStatus.
Undefined

Integer feasible
point

ProblemStatus.
PrimalFeasible

SolutionStatus.
Feasible

SolutionStatus.
Undefined

No conclusion ProblemStatus.Unknown SolutionStatus.
Unknown

SolutionStatus.
Undefined

8.1.4 Retrieving solution values
After the meaning and quality of the solution (or certificate) have been established, we can query for the
actual numerical values. They can be accessed using:

• Model.primalObjValue , Model.dualObjValue — the primal and dual objective value.

• Variable.level — solution values for the variables.

• Constraint.level — values of the constraint expressions in the current solution.

• Constraint.dual , Variable.dual — dual values.

Remark

By default only optimal solutions are returned. An attempt to access a solution with an incompatible
status will result in an exception. This can be changed by choosing another level of acceptable solutions
with the method Model.acceptedSolutionStatus . In particular, this method must be called to enable
retrieving suboptimal solutions and infeasibility certificates. For instance, one could write

M.acceptedSolutionStatus(AccSolutionStatus.Feasible);

The current setting of acceptable solutions can be checked with Model.getAcceptedSolutionStatus .

8.1.5 Source code example
Below is a source code example with a simple framework for assessing and retrieving the solution to a
conic optimization problem.

Listing 8.1: Sample framework for checking optimization result.

public static void main(String[] argv) {
Model M = new Model();

// (Optional) set a log stream
/*

task.set_Stream(
streamtype.log,
new mosek.Stream()

{ public void stream(String msg) { System.out.print(msg); }});
*/

// (Optional) uncomment to see what happens when solution status is unknown
// M.setSolverParam("intpntMaxIterations", 1);

// In this example we set up a small conic problem
(continues on next page)

62

(continued from previous page)

setupExample(M);

// Optimize
try
{

M.solve();

// We expect solution status OPTIMAL (this is also default)
M.acceptedSolutionStatus(AccSolutionStatus.Optimal);

Variable x = M.getVariable("x");
long xsize = x.getSize();
double[] xVal = x.level();
System.out.print("Optimal value of x = ");
for(int i = 0; i < xsize; ++i)

System.out.print(xVal[i] + " ");
System.out.println("\nOptimal primal objective: " + M.primalObjValue());
// .. continue analyzing the solution

}
catch (OptimizeError e)
{

System.out.println("Optimization failed. Error: " + e.toString());
}
catch (SolutionError e)
{

// The solution with at least the expected status was not available.
// We try to diagnoze why.
System.out.println("Requested solution was not available.");
ProblemStatus prosta = M.getProblemStatus();
switch(prosta)
{

case DualInfeasible:
System.out.println("Dual infeasibility certificate found.");
break;

case PrimalInfeasible:
System.out.println("Primal infeasibility certificate found.");
break;

case Unknown:
// The solutions status is unknown. The termination code
// indicates why the optimizer terminated prematurely.
System.out.println("The solution status is unknown.");
StringBuffer symname = new StringBuffer();
StringBuffer desc = new StringBuffer();
Env.getcodedesc(rescode.fromValue(M.getSolverIntInfo("optimizeResponse")),␣

→˓symname, desc);
System.out.printf(" Termination code: %s %s\n", symname, desc);
break;

default:
System.out.println("Another unexpected problem status: " + prosta);

}
}
catch (java.lang.Exception e)

(continues on next page)

63

(continued from previous page)

{
System.out.println("Unexpected error: " + e.toString());

}

M.dispose();
}

8.2 Errors and exceptions

Exceptions

Almost every method in Fusion API for Java can throw an exception informing that the requested
operation was not performed correctly, and indicating the type of error that occurred. This is the case
in situations such as for instance:

• incompatible dimensions in a linear expression,

• defining an invalid value for a parameter,

• accessing an undefined solution,

• repeating a variable name, etc.

It is therefore a good idea to catch exceptions of type FusionException and its specific subclasses.
The one case where it is extremely important to do so is when Model.solve is invoked. We will say
more about this in Sec. 8.1.

The exception contains a short diagnostic message. They can be accessed as in the following example.

try {
M.setSolverParam("intpntCoTolRelGap", 1.01);

} catch (mosek.fusion.ParameterError e) {
System.out.println("Error: " + e.toString());

}

It will produce as output:

Error: Invalid value for parameter (intpntCoTolRelGap)

Optimizer errors and warnings

The optimizer may also produce warning messages. They indicate non-critical but important events,
that will not prevent solver execution, but may be an indication that something in the optimization
problem might be improved. Warning messages are normally printed to a log stream (see Sec. 8.3). A
typical warning is, for example:

MOSEK warning 53: A numerically large upper bound value 6.6e+09 is specified for␣
→˓constraint 'C69200' (46020).

Error and solution status handling example

Below is a source code example with a simple framework for handling major errors when assessing and
retrieving the solution to a conic optimization problem.

Listing 8.2: Sample framework for checking optimization result.

public static void main(String[] argv) {
Model M = new Model();

(continues on next page)

64

(continued from previous page)

// (Optional) set a log stream
/*

task.set_Stream(
streamtype.log,
new mosek.Stream()

{ public void stream(String msg) { System.out.print(msg); }});
*/

// (Optional) uncomment to see what happens when solution status is unknown
// M.setSolverParam("intpntMaxIterations", 1);

// In this example we set up a small conic problem
setupExample(M);

// Optimize
try
{

M.solve();

// We expect solution status OPTIMAL (this is also default)
M.acceptedSolutionStatus(AccSolutionStatus.Optimal);

Variable x = M.getVariable("x");
long xsize = x.getSize();
double[] xVal = x.level();
System.out.print("Optimal value of x = ");
for(int i = 0; i < xsize; ++i)

System.out.print(xVal[i] + " ");
System.out.println("\nOptimal primal objective: " + M.primalObjValue());
// .. continue analyzing the solution

}
catch (OptimizeError e)
{

System.out.println("Optimization failed. Error: " + e.toString());
}
catch (SolutionError e)
{

// The solution with at least the expected status was not available.
// We try to diagnoze why.
System.out.println("Requested solution was not available.");
ProblemStatus prosta = M.getProblemStatus();
switch(prosta)
{

case DualInfeasible:
System.out.println("Dual infeasibility certificate found.");
break;

case PrimalInfeasible:
System.out.println("Primal infeasibility certificate found.");
break;

case Unknown:
// The solutions status is unknown. The termination code
// indicates why the optimizer terminated prematurely.
System.out.println("The solution status is unknown.");

(continues on next page)

65

(continued from previous page)

StringBuffer symname = new StringBuffer();
StringBuffer desc = new StringBuffer();
Env.getcodedesc(rescode.fromValue(M.getSolverIntInfo("optimizeResponse")),␣

→˓symname, desc);
System.out.printf(" Termination code: %s %s\n", symname, desc);
break;

default:
System.out.println("Another unexpected problem status: " + prosta);

}
}
catch (java.lang.Exception e)
{

System.out.println("Unexpected error: " + e.toString());
}

M.dispose();
}

8.3 Input/Output

The Model class is also a proxy for input/output operations related to an optimization model.

8.3.1 Stream logging
By default the solver runs silently and does not produce any output to the console or otherwise. However,
the log output can be redirected to a user-defined output stream or stream callback function. The log
output is analogous to the one produced by the command-line version of MOSEK.

To redirect all log messages use the method Model.setLogHandler . For instance, we can use the
standard output:

M.setLogHandler(new PrintWriter(System.out));

A log stream can be detached by passing null.

8.3.2 Log verbosity
The logging verbosity can be controlled by setting the relevant parameters, as for instance

• log ,

• logIntpnt ,

• logMio ,

• logCutSecondOpt ,

• logSim .

Each parameter controls the output level of a specific functionality or algorithm. The main switch is
log which affect the whole output. The actual log level for a specific functionality is determined as the
minimum between log and the relevant parameter. For instance, the log level for the output produce by
the interior-point algorithm is tuned by the logIntpnt ; the actual log level is defined by the minimum
between log and logIntpnt .

Tuning the solver verbosity may require adjusting several parameters. It must be noticed that verbose
logging is supposed to be of interest during debugging and tuning. When output is no more of interest,
the user can easily disable it globally with log . Larger values of log do not necessarily result in increased
output.

By default MOSEK will reduce the amount of log information after the first optimization on a given
problem. To get full log output on subsequent re-optimizations set logCutSecondOpt to zero.

66

8.3.3 Saving a problem to a file
An optimization model defined in Fusion can be dumped to a file using the method Model.writeTask .
The file format will be determined from the filename’s extension. Supported formats are listed in Sec.
15 together with a table of problem types supported by each.

For instance the problem can be written to a human-readable PTF file (see Sec. 15.5) with

M.writeTask("dump.ptf");

All formats can be compressed with gzip by appending the .gz extension, and with ZStandard by
appending the .zst extension, for example

M.writeTask("dump.task.gz");

Some remarks:

• The problem is written to the file as it is represented in the underlying optimizer task, that is
including transformations performed by Fusion, if any.

• Unnamed variables are given generic names. It is therefore recommended to use meaningful variable
names if the problem file is meant to be human-readable.

• The task format is MOSEK’s native file format which contains all the problem data as well as
solver settings.

8.3.4 Reading a problem from a file
It is not possible to read a file saved with Model.writeTask back into Fusion because the structure
of the high-level optimization model is not saved. However, such problem files can be solved with the
command-line tool or read by the low-level Optimizer API if necessary. See the documentation of those
interfaces for details.

8.4 Setting solver parameters

MOSEK comes with a large number of parameters that allows the user to tune the behavior of the
optimizer. The typical settings which can be changed with solver parameters include:

• choice of the optimizer for linear problems,

• choice of primal/dual solver,

• turning presolve on/off,

• turning heuristics in the mixed-integer optimizer on/off,

• level of multi-threading,

• feasibility tolerances,

• solver termination criteria,

• behaviour of the license manager,

and more. All parameters have default settings which will be suitable for most typical users.
The API reference contains:

• Full list of parameters

• List of parameters grouped by topic

67

Setting parameters

Each parameter is identified by a unique string name and it can accept either integers, floating point
values or symbolic strings. Parameters are set using the method Model.setSolverParam . Fusion will
try to convert the given argument to the exact expected type, and will raise an exception if that fails.

Some parameters accept only symbolic strings from a fixed set of values. The set of accepted values
for every parameter is provided in the API reference.

For example, the following piece of code sets up some parameters before solving a problem.

Listing 8.3: Parameter setting example.

// Set log level (integer parameter)
M.setSolverParam("log", 1);
// Select interior-point optimizer... (parameter with symbolic string values)
M.setSolverParam("optimizer", "intpnt");
// ... without basis identification (parameter with symbolic string values)
M.setSolverParam("intpntBasis", "never");
// Set relative gap tolerance (double parameter)
M.setSolverParam("intpntCoTolRelGap", 1.0e-7);

// The same in a different way
M.setSolverParam("intpntCoTolRelGap", "1.0e-7");

// Incorrect value
try {

M.setSolverParam("intpntCoTolRelGap", -1);
}
catch (mosek.fusion.ParameterError e) {

System.out.println("Wrong parameter value");
}

8.5 Retrieving information items

After the optimization the user has access to the solution as well as to a report containing a large amount
of additional information items. For example, one can obtain information about:

• timing: total optimization time, time spent in various optimizer subroutines, number of iterations,
etc.

• solution quality: feasibility measures, solution norms, constraint and bound violations, etc.

• problem structure: counts of variables of different types, constraints, nonzeros, etc.

• integer optimizer: integrality gap, objective bound, number of cuts, etc.

and more. Information items are numerical values of integer, long integer or double type. The full
list can be found in the API reference:

• Double information items

• Integer information items

• Long information items

Certain information items make sense, and are made available, also during the optimization process.
They can be accessed from a callback function, see Sec. 8.7 for details.

68

Remark

For efficiency reasons, not all information items are automatically computed after optimization. To force
all information items to be updated use the parameter autoUpdateSolInfo .

Retrieving the values

Values of information items are fetched using one of the methods

• Model.getSolverDoubleInfo for a double information item,

• Model.getSolverIntInfo for an integer information item,

• Model.getSolverLIntInfo for a long integer information item.

Each information item is identified by a unique name. The example below reads two pieces of data
from the solver: total optimization time and the number of interior-point iterations.

Listing 8.4: Information items example.

double tm = M.getSolverDoubleInfo("optimizerTime");
int it = M.getSolverIntInfo("intpntIter");

System.out.println("Time: " + tm);
System.out.println("Iterations: " + it);

8.6 Stopping the solver

The Model provides the method Model.breakSolver that notifies the solver that it must stop as soon as
possible. The solver will not terminate momentarily, as it only periodically checks for such notifications.
In any case, it will stop as soon as possible. The typical usage pattern of this method would be:

• build the optimization model M,

• create a separate thread in which M will run,

• break the solver by calling Model.breakSolver from the main thread.

Warnings and comments:

• It is recommended to use the solver parameters to set or modify standard built-in termination
criteria (such as maximal running time, solution tolerances etc.). See Sec. 8.4.

• More complicated user-defined termination criteria can be implemented within a callback function.
See Sec. 8.7.

• The state of the solver and solution after termination may be undefined.

• This operation is very language dependent and particular care must be taken to avoid stalling or
other undesired side effects.

8.6.1 Example: Setting a Time Limit
For the purpose of the tutorial we will implement a busy-waiting breaker with the time limit as a termi-
nation criterion. Note that in practice it would be better just to set the parameter optimizerMaxTime .

Suppose we built a model M that is known to run for quite a long time (in the accompanying example
code we create a particular integer program). Then we could create a new thread solving the model:

Thread T = new Thread() { public void run() { M.solve(); } };

In the main thread we are going to check if a time limit has elapsed. After calling Model.breakSolver
we should wait for the solver thread to actually return. Altogether this scenario can be implemented as
follows:

69

Listing 8.5: Stopping solver execution.

Thread T = new Thread() { public void run() { M.solve(); } };
T.start();

long T0 = System.currentTimeMillis();
while (true) {

if (System.currentTimeMillis() - T0 > timeout * 1000) {
System.out.println("Solver terminated due to timeout!");
M.breakSolver();
T.join();
break;

}
if (! T.isAlive()) {

System.out.println("Solver terminated before anything happened!");
T.join();
break;

}
}

8.7 Progress and data callback

Callbacks are a very useful mechanism that allow the caller to track the progress of the MOSEK
optimizer. A callback function provided by the user is regularly called during the optimization and can
be used to

• obtain a customized log of the solver execution,

• collect information for debugging purposes or

• ask the solver to terminate.

Fusion API for Java has the following callback mechanisms:

• progress callback, which provides only the basic status of the solver.

• data callback, which provides the solver status and a complete set of information items that
describe the progress of the optimizer in detail.

Warning

The callbacks functions must not invoke any functions of the solver, environment or task. Otherwise the
state of the solver and its outcome are undefined.

8.7.1 Data callback
In the data callback MOSEK passes a callback code and values of all information items to a user-
defined function. The callback function is called, in particular, at the beginning of each iteration of the
interior-point optimizer. For the simplex optimizers logSimFreq controls how frequently the call-back
is called.

The data callback is set by calling the method Model.setDataCallbackHandler .
The callback function must be implemented by extending the abstract class mosek.DataCallback

(see the manual for Optimizer API for details) and implementing the method

public int callback(callbackcode caller,
double[] douinf,
int[] intinf,
long[] lintinf)

Arguments:

70

• caller - the status of the optimizer.

• douinf - values of double information items.

• intinf - values of integer information items.

• lintinf - values of long information items.

Return value: Non-zero return value of the callback function indicates that the optimizer should
be terminated.

8.7.2 Progress callback
In the progress callback MOSEK provides a single code indicating the current stage of the optimization
process.

The callback is set by calling the method Model.setCallbackHandler .
The callback function must be implemented by extending the abstract class mosek.Progress (see

the manual for Optimizer API for details) and implementing the method

public int progress(callbackcode caller)

Arguments:

• caller - the status of the optimizer.

Return value: Non-zero return value of the callback function indicates that the optimizer should
be terminated.

8.7.3 Working example: Data callback
The following example defines a data callback function that prints out some of the information items.
It interrupts the solver after a certain time limit. Note that the time limit refers to time spent in the
solver and does not include setting up the model in Fusion.

Listing 8.6: An example of a data callback function.

private static DataCallback makeUserCallback(final double maxtime,
final Model mod) {

return new DataCallback() {
public int callback(callbackcode caller,

double[] douinf,
int[] intinf,
long[] lintinf)

{
double opttime = 0.0;
int itrn;
double pobj, dobj, stime;

Formatter f = new Formatter(System.out);
switch (caller) {

case begin_intpnt:
f.format("Starting interior-point optimizer\n");
break;

case intpnt:
itrn = intinf[iinfitem.intpnt_iter.value];
pobj = douinf[dinfitem.intpnt_primal_obj.value];
dobj = douinf[dinfitem.intpnt_dual_obj.value];
stime = douinf[dinfitem.intpnt_time.value];
opttime = douinf[dinfitem.optimizer_time.value];
f.format("Iterations: %-3d\n", itrn);
f.format(" Elapsed time: %6.2f(%.2f)\n", opttime, stime);

(continues on next page)

71

(continued from previous page)

f.format(" Primal obj.: %-18.6e Dual obj.: %-18.6e\n", pobj, dobj);
break;

case end_intpnt:
f.format("Interior-point optimizer finished.\n");
break;

case begin_primal_simplex:
f.format("Primal simplex optimizer started.\n");
break;

case update_primal_simplex:
itrn = intinf[iinfitem.sim_primal_iter.value];
pobj = douinf[dinfitem.sim_obj.value];
stime = douinf[dinfitem.sim_time.value];
opttime = douinf[dinfitem.optimizer_time.value];

f.format("Iterations: %-3d\n", itrn);
f.format(" Elapsed time: %6.2f(%.2f)\n", opttime, stime);
f.format(" Obj.: %-18.6e\n", pobj);
break;

case end_primal_simplex:
f.format("Primal simplex optimizer finished.\n");
break;

case begin_dual_simplex:
f.format("Dual simplex optimizer started.\n");
break;

case update_dual_simplex:
itrn = intinf[iinfitem.sim_dual_iter.value];
pobj = douinf[dinfitem.sim_obj.value];
stime = douinf[dinfitem.sim_time.value];
opttime = douinf[dinfitem.optimizer_time.value];
f.format("Iterations: %-3d\n", itrn);
f.format(" Elapsed time: %6.2f(%.2f)\n", opttime, stime);
f.format(" Obj.: %-18.6e\n", pobj);
break;

case end_dual_simplex:
f.format("Dual simplex optimizer finished.\n");
break;

case begin_bi:
f.format("Basis identification started.\n");
break;

case end_bi:
f.format("Basis identification finished.\n");
break;

default:
}
System.out.flush();
if (opttime >= maxtime) {

f.format("MOSEK is spending too much time. Terminate it.\n");
System.out.flush();
return 1;

}
return 0;

}
};

}

Assuming that we have defined a model M and a time limit maxtime, the callback function is attached
as follows:

72

Listing 8.7: Attaching the data callback function to the model.

M.setDataCallbackHandler(makeUserCallback(maxtime, M));

8.8 Optimizer API Task

This section is intended for advanced users and should normally never be followed unless advanced
debugging or very specialized functionalities are required.

The Model is a wrapper on top of an underlying MOSEK low-level optimizer task. Access to the
task is provided by the method Model.getTask . The functionalities available from the task are described
in the documentation of the relevant Optimizer API.

Warning

Note that the user gets access to the actual task in the model, and not its clone. Changing the state of
the task will most likely invalidate the Fusion model.

8.9 MOSEK OptServer

MOSEK provides an easy way to offload optimization problem to a remote server. This section demon-
strates related functionalities from the client side, i.e. sending optimization tasks to the remote server
and retrieving solutions.

Setting up and configuring the remote server is described in a separate manual for the OptServer.
The URL of the remote server required in all client-side calls should be a string of the form http://

host:port or https://host:port.

8.9.1 Synchronous Remote Optimization
In synchronous mode the client sends an optimization problem to the server and blocks, waiting for the
optimization to end. Once the result has been received, the program can continue. This is the simplest
mode all it takes is to provide the address of the server before starting optimization. The rest of the
code remains untouched.

Note that it is impossible to recover the job in case of a broken connection.

Source code example

Listing 8.8: Using the OptServer in synchronous mode.

package com.mosek.fusion.examples;
import mosek.fusion.*;

public class opt_server_sync {

public static void main(String[] args) throws SolutionError {
if (args.length<1) {

System.out.println("Missing argument, syntax is:");
System.out.println(" java com.mosek.fusion.examples.opt_server_sync addr␣

→˓[certpath]");
return;

}

String serveraddr = args[0];
String tlscert = (args.length==2) ? args[1] : "";

// Setup a simple test problem
(continues on next page)

73

(continued from previous page)

Model M = new Model("testOptServer");
Variable x = M.variable("x", 3, Domain.greaterThan(0.0));
M.constraint("lc", Expr.dot(new double[] {1.0, 1.0, 2.0}, x), Domain.equalsTo(1.

→˓0));
M.objective("obj", ObjectiveSense.Minimize, Expr.sum(x));

// Attach log handler
M.setLogHandler(new java.io.PrintWriter(System.out));

// Set OptServer URL
M.optserverHost(serveraddr);

// Path to certificate, if any
M.setSolverParam("remoteTlsCertPath", tlscert);

// Solve the problem on the OptServer
M.solve();

// Get the solution
double[] solx = x.level();
System.out.printf("x1,x2,x3 = %e, %e, %e\n", solx[0], solx[1], solx[2]);

}
}

74

Chapter 9

Debugging Tutorials

This collection of tutorials contains basic techniques for debugging optimization problems using tools
available in MOSEK: optimizer log, solution summary, infeasibility report, command-line tools. It is
intended as a first line of technical help for issues such as: Why do I get solution status unknown and
how can I fix it? Why is my model infeasible while it shouldn’t be? Should I change some parameters?
Can the model solve faster? etc.

The major steps when debugging a model are always:

• Enable log output. See Sec. 8.3.1 for how to do it. In the simplest case:

M.setLogHandler(new PrintWriter(System.out));

• Run the optimization and analyze the log output, see Sec. 9.1. In particular:

– check if the problem setup (number of constraints/variables etc.) matches your expectation.
– check solution summary and solution status.

• Dump the problem to disk if necessary to continue analysis. See Sec. 8.3.3.

– use a human-readable text format, preferably *.ptf if you want to check the problem structure
by hand. Assign names to variables and constraints to make them easier to identify.

M.writeTask("dump.ptf");

– use the MOSEK native format *.task.gz when submitting a bug report or support question.

M.writeTask("dump.task.gz");

• Fix problem setup, improve the model, locate infeasibility or adjust parameters, depending on the
diagnosis.

See the following sections for details.

9.1 Understanding optimizer log

The optimizer produces a log which splits roughly into four sections:

1. summary of the input data,

2. presolve and other pre-optimize problem setup stages,

3. actual optimizer iterations,

4. solution summary.

In this tutorial we show how to analyze the most important parts of the log when initially debugging
a model: input data (1) and solution summary (4). For the iterations log (3) see Sec. 13.3.4 or Sec.
13.4.3.

75

9.1.1 Input data
If MOSEK behaves very far from expectations it may be due to errors in problem setup. The log file
will begin with a summary of the structure of the problem, which looks for instance like:

Problem
Name :
Objective sense : minimize
Type : CONIC (conic optimization problem)
Constraints : 234
Affine conic cons. : 5348 (6444 rows)
Disjunctive cons. : 0
Cones : 0
Scalar variables : 20693
Matrix variables : 1 (scalarized: 45)
Integer variables : 0

This can be consulted to eliminate simple errors: wrong objective sense, wrong number of variables
etc. Note that some modeling tools can introduce additional variables and constraints to the model and
perturb the model even further (such as by dualizing). In most MOSEK APIs the problem dimensions
should match exactly what the user specified.

If this is not sufficient a bit more information can be obtained by dumping the problem to a file (see
Sec. 9) and using the anapro option of any of the command line tools. It can also be done directly with
the function Model.dataReport . This will produce a longer summary similar to:

** Variables
scalar: 20414 integer: 0 matrix: 0
low: 2082 up: 5014 ranged: 0 free: 12892 fixed: 426

** Constraints
all: 20413
low: 10028 up: 0 ranged: 0 free: 0 fixed: 10385

** Affine conic constraints (ACC)
QUAD: 1 dims: 2865: 1
RQUAD: 2507 dims: 3: 2507

** Problem data (numerics)
|c| nnz: 10028 min=2.09e-05 max=1.00e+00
|A| nnz: 597023 min=1.17e-10 max=1.00e+00
blx fin: 2508 min=-3.60e+09 max=2.75e+05
bux fin: 5440 min=0.00e+00 max=2.94e+08
blc fin: 20413 min=-7.61e+05 max=7.61e+05
buc fin: 10385 min=-5.00e-01 max=0.00e+00
|F| nnz: 612301 min=8.29e-06 max=9.31e+01
|g| nnz: 1203 min=5.00e-03 max=1.00e+00

Again, this can be used to detect simple errors, such as:

• Wrong type of conic constraint was used or it has wrong dimension.

• The bounds for variables or constraints are incorrect or incomplete.

• The model is otherwise incomplete.

• Suspicious values of coefficients.

• For various data sizes the model does not scale as expected.

Finally saving the problem in a human-friendly text format such as LP or PTF (see Sec. 9) and
analyzing it by hand can reveal if the model is correct.

76

Warnings and errors

At this stage the user can encounter warnings which should not be ignored, unless they are well-
understood. They can also serve as hints as to numerical issues with the problem data. A typical
warning of this kind is

MOSEK warning 53: A numerically large upper bound value 2.9e+08 is specified for␣
→˓variable 'absh[107]' (2613).

Warnings do not stop the problem setup. If, on the other hand, an error occurs then the model will
become invalid. The user should make sure to test for errors/exceptions from all API calls that set up
the problem and validate the data. See Sec. 8.2 for more details.

9.1.2 Solution summary
The last item in the log is the solution summary.

Continuous problem

Optimal solution

A typical solution summary for a continuous (linear, conic, quadratic) problem looks like:

Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 8.7560516107e+01 nrm: 1e+02 Viol. con: 3e-12 var: 0e+00 ␣
→˓acc: 3e-11
Dual. obj: 8.7560521345e+01 nrm: 1e+00 Viol. con: 5e-09 var: 9e-11 ␣
→˓acc: 0e+00

It contains the following elements:

• Problem and solution status. For details see Sec. 8.1.3.

• A summary of the primal solution: objective value, infinity norm of the solution vector and maximal
violations of variables and constraints of different types. The violation of a linear constraint such
as 𝑎𝑇𝑥 ≤ 𝑏 is max(𝑎𝑇𝑥− 𝑏, 0). The violation of a conic constraint is the distance to the cone.

• The same for the dual solution.

The features of the solution summary which characterize a very good and accurate solution and a
well-posed model are:

• Status: The solution status is OPTIMAL.

• Duality gap: The primal and dual objective values are (almost) identical, which proves the
solution is (almost) optimal.

• Norms: Ideally the norms of the solution and the objective values should not be too large. This of
course depends on the input data, but a huge solution norm can be an indicator of issues with the
scaling, conditioning and/or well-posedness of the model. It may also indicate that the problem is
borderline between feasibility and infeasibility and sensitive to small perturbations in this respect.

• Violations: The violations are close to zero, which proves the solution is (almost) feasible. Observe
that due to rounding errors it can be expected that the violations are proportional to the norm
(nrm:) of the solution. It is rarely the case that violations are exactly zero.

77

Solution status UNKNOWN

A typical example with solution status UNKNOWN due to numerical problems will look like:

Problem status : UNKNOWN
Solution status : UNKNOWN
Primal. obj: 1.3821656824e+01 nrm: 1e+01 Viol. con: 2e-03 var: 0e+00 ␣
→˓acc: 0e+00
Dual. obj: 3.0119004098e-01 nrm: 5e+07 Viol. con: 4e-16 var: 1e-01 ␣
→˓acc: 0e+00

Note that:

• The primal and dual objective are very different.

• The dual solution has very large norm.

• There are considerable violations so the solution is likely far from feasible.

Follow the hints in Sec. 9.2 to resolve the issue.

Solution status UNKNOWN with a potentially useful solution

Solution status UNKNOWN does not necessarily mean that the solution is completely useless. It only means
that the solver was unable to make any more progress due to numerical difficulties, and it was not able
to reach the accuracy required by the termination criteria (see Sec. 13.3.2). Consider for instance:

Problem status : UNKNOWN
Solution status : UNKNOWN
Primal. obj: 3.4531019648e+04 nrm: 1e+05 Viol. con: 7e-02 var: 0e+00 ␣
→˓acc: 0e+00
Dual. obj: 3.4529720645e+04 nrm: 8e+03 Viol. con: 1e-04 var: 2e-04 ␣
→˓acc: 0e+00

Such a solution may still be useful, and it is always up to the user to decide. It may be a good enough
approximation of the optimal point. For example, the large constraint violation may be due to the fact
that one constraint contained a huge coefficient.

Infeasibility certificate

A primal infeasibility certificate is stored in the dual variables:

Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 2.9238975853e+02 nrm: 6e+02 Viol. con: 0e+00 var: 1e-11 ␣
→˓acc: 0e+00

It is a Farkas-type certificate as described in Sec. 12.2.2. In particular, for a good certificate:

• The dual objective is positive for a minimization problem, negative for a maximization problem.
Ideally it is well bounded away from zero.

• The norm is not too big and the violations are small (as for a solution).

If the model was not expected to be infeasible, the likely cause is an error in the problem formulation.
Use the hints in Sec. 9.1.1 and Sec. 9.3 to locate the issue.

Just like a solution, the infeasibility certificate can be of better or worse quality. The infeasibility
certificate above is very solid. However, there can be less clear-cut cases, such as for example:

Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 1.6378689238e-06 nrm: 6e+05 Viol. con: 7e-03 var: 2e-04 ␣
→˓acc: 0e+00

78

This infeasibility certificate is more dubious because the dual objective is positive, but barely so in
comparison with the large violations. It also has rather large norm. This is more likely an indication
that the problem is borderline between feasibility and infeasibility or simply ill-posed and sensitive to
tiny variations in input data. See Sec. 9.3 and Sec. 9.2.

The same remarks apply to dual infeasibility (i.e. unboundedness) certificates. Here the primal
objective should be negative a minimization problem and positive for a maximization problem.

9.1.3 Mixed-integer problem

Optimal integer solution

For a mixed-integer problem there is no dual solution and a typical optimal solution report will look as
follows:

Problem status : PRIMAL_FEASIBLE
Solution status : INTEGER_OPTIMAL
Primal. obj: 6.0111122960e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-14 ␣
→˓itg: 5e-15

The interpretation of all elements is as for a continuous problem. The additional field itg denotes
the maximum violation of an integer variable from being an exact integer.

Feasible integer solution

If the solver found an integer solution but did not prove optimality, for instance because of a time limit,
the solution status will be PRIMAL_FEASIBLE:

Problem status : PRIMAL_FEASIBLE
Solution status : PRIMAL_FEASIBLE
Primal. obj: 6.0114607792e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-13 ␣
→˓itg: 4e-15

In this case it is valuable to go back to the optimizer summary to see how good the best solution is:

31 35 1 0 6.0114607792e+06 6.0078960892e+06 0.06 ␣
→˓ 4.1

Objective of best integer solution : 6.011460779193e+06
Best objective bound : 6.007896089225e+06

In this case the best integer solution found has objective value 6.011460779193e+06, the best proved
lower bound is 6.007896089225e+06 and so the solution is guaranteed to be within 0.06% from optimum.
The same data can be obtained as information items through an API. See also Sec. 13.4 for more details.

Infeasible problem

If the problem is declared infeasible the summary is simply

Problem status : PRIMAL_INFEASIBLE
Solution status : UNKNOWN
Primal. obj: 0.0000000000e+00 nrm: 0e+00 Viol. con: 0e+00 var: 0e+00 ␣
→˓itg: 0e+00

If infeasibility was not expected, consult Sec. 9.3.

79

9.2 Addressing numerical issues

The suggestions in this section should help diagnose and solve issues with numerical instability, in
particular UNKNOWN solution status or solutions with large violations. Since numerically stable models
tend to solve faster, following these hints can also dramatically shorten solution times.

We always recommend that issues of this kind are addressed by reformulating or rescaling the model,
since it is the modeler who has the best insight into the structure of the problem and can fix the cause
of the issue.

Some information about the numerical properties of the data can be obtained by dumping the problem
to a file (see Sec. 9) and using the anapro option of any of the command line tools. It can also be done
directly with the function Model.dataReport .

9.2.1 Formulating problems

Scaling

Make sure that all the data in the problem are of comparable orders of magnitude. This applies especially
to the linear constraint matrix. Use Sec. 9.1.1 if necessary. For example a report such as

|A| nnz: 597023 min=1.17e-6 max=2.21e+5

means that the ratio of largest to smallest elements in A is 1011. In this case the user should rescale
or reformulate the model to avoid such spread which makes it difficult for MOSEK to scale the problem
internally. In many cases it may be possible to change the units, i.e. express the model in terms of
rescaled variables (for instance work with millions of dollars instead of dollars, etc.).

Similarly, if the objective contains very different coefficients, say

maximize 1010𝑥 + 𝑦

then it is likely to lead to inaccuracies. The objective will be dominated by the contribution from 𝑥 and
𝑦 will become insignificant.

Removing huge bounds

Never use a very large number as replacement for ∞. Instead define the variable or constraint as
unbounded from below/above. Similarly, avoid artificial huge bounds if you expect they will not become
tight in the optimal solution.

Avoiding linear dependencies

As much as possible try to avoid linear dependencies and near-linear dependencies in the model. See
Example 9.3.

Avoiding ill-posedness

Avoid continuous models which are ill-posed: the solution space is degenerate, for example consists of a
single point (technically, the Slater condition is not satisfied). In general, this refers to problems which
are borderline between feasible and infeasible. See Example 9.1.

Scaling the expected solution

Try to formulate the problem in such a way that the expected solution (both primal and dual) is not
very large. Consult the solution summary Sec. 9.1.2 to check the objective values or solution norms.

80

9.2.2 Further suggestions
Here are other simple suggestions that can help locate the cause of the issues. They can also be used as
hints for how to tune the optimizer if fixing the root causes of the issue is not possible.

• Remove the objective and solve the feasibility problem. This can reveal issues with the objective.

• Change the objective or change the objective sense from minimization to maximization (if appli-
cable). If the two objective values are almost identical, this may indicate that the feasible set is
very small, possibly degenerate.

• Perturb the data, for instance bounds, very slightly, and compare the results.

• For linear problems: solve the problem using a different optimizer by setting the parameter
optimizer and compare the results.

• Force the optimizer to solve the primal/dual versions of the problem by setting the parameter
intpntSolveForm or simSolveForm . MOSEK has a heuristic to decide whether to dualize, but
for some problems the guess is wrong an explicit choice may give better results.

• Solve the problem without presolve or some of its parts by setting the parameter presolveUse ,
see Sec. 13.1.

• Use different numbers of threads (numThreads) and compare the results. Very different results
indicate numerical issues resulting from round-off errors.

If the problem was dumped to a file, experimenting with various parameters is facilitated with the
MOSEK Command Line Tool or MOSEK Python Console Sec. 9.4.

9.2.3 Typical pitfalls

Example 9.1 (Ill-posedness). A toy example of this situation is the feasibility problem

(𝑥− 1)2 ≤ 1, (𝑥 + 1)2 ≤ 1

whose only solution is 𝑥 = 0 and moreover replacing any 1 on the right hand side by 1 − 𝜀 makes
the problem infeasible and replacing it by 1 + 𝜀 yields a problem whose solution set is an interval
(fully-dimensional). This is an example of ill-posedness.

Example 9.2 (Huge solution). If the norm of the expected solution is very large it may lead to
numerical issues or infeasibility. For example the problem

(10−4, 𝑥, 103) ∈ 𝒬3
r

may be declared infeasible because the expected solution must satisfy 𝑥 ≥ 5 · 109.

Example 9.3 (Near linear dependency). Consider the following problem:

minimize
subject to 𝑥1 + 𝑥2 = 1,

𝑥3 + 𝑥4 = 1,
− 𝑥1 − 𝑥3 = −1 + 𝜀,

− 𝑥2 − 𝑥4 = −1,
𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0.

If we add the equalities together we obtain:

0 = 𝜀

81

which is infeasible for any 𝜀 ̸= 0. Here infeasibility is caused by a linear dependency in the constraint
matrix coupled with a precision error represented by the 𝜀. Indeed if a problem contains linear
dependencies then the problem is either infeasible or contains redundant constraints. In the above
case any of the equality constraints can be removed while not changing the set of feasible solutions.
To summarize linear dependencies in the constraints can give rise to infeasible problems and therefore
it is better to avoid them.

Example 9.4 (Presolving very tight bounds). Next consider the problem

minimize
subject to 𝑥1 − 0.01𝑥2 = 0,

𝑥2 − 0.01𝑥3 = 0,
𝑥3 − 0.01𝑥4 = 0,

𝑥1 ≥ −10−9,
𝑥1 ≤ 10−9,
𝑥4 ≥ 10−4.

Now the MOSEK presolve will, for the sake of efficiency, fix variables (and constraints) that have
tight bounds where tightness is controlled by the parameter presolveTolX . Since the bounds

−10−9 ≤ 𝑥1 ≤ 10−9

are tight, presolve will set 𝑥1 = 0. It easy to see that this implies 𝑥4 = 0, which leads to the incorrect
conclusion that the problem is infeasible. However a tiny change of the value 10−9 makes the problem
feasible. In general it is recommended to avoid ill-posed problems, but if that is not possible then one
solution is to reduce parameters such as presolveTolX to say 10−10. This will at least make sure
that presolve does not make the undesired reduction.

9.3 Debugging infeasibility

When solving an optimization problem one typically expects to get an optimal solution, but in some
cases, either by design, or (most frequently) due to an error in the formulation, the problem may become
infeasible (have no solution at all).

This section

• describes the intuitions behind infeasibility,

• helps to debug (unexpectedly) infeasible problems using the command line tool and by inspecting
infeasibility reports and problem data by hand,

• gives some hints for how to modify the formulation to identify the reasons for infeasibility.

If, instead, you want to fetch an infeasibility certificate directly using Fusion API for Java, see the
tutorial in Sec. 7.12.

An infeasibility certificate is only available for continuous problems, however the hints in Sec. 9.3.4
apply to a large extent also to mixed-integer problems.

9.3.1 Numerical issues
Infeasible problem status may be just an artifact of numerical issues appearing when the problem is
badly-scaled, barely feasible or otherwise ill-conditioned so that it is unstable under small perturbations
of the data or round-off errors. This may be visible in the solution summary if the infeasibility certificate
has poor quality. See Sec. 9.1.2 for how to diagnose that and Sec. 9.2 for possible hints. Sec. 9.2.3
contains examples of situations which may lead to infeasibility for numerical reasons.

We refer to Sec. 9.2 for further information on dealing with those sort of issues. For the rest of this
section we concentrate on the case when the solution summary leaves little doubt that the problem solved
by the optimizer actually is infeasible.

82

9.3.2 Locating primal infeasibility
As an example of a primal infeasible problem consider minimizing the cost of transportation between a
number of production plants and stores: Each plant produces a fixed number of goods, and each store
has a fixed demand that must be met. Supply, demand and cost of transportation per unit are given in
Fig. 9.1.

Fig. 9.1: Supply, demand and cost of transportation.

The problem represented in Fig. 9.1 is infeasible, since the total demand

2300 = 1100 + 200 + 500 + 500

exceeds the total supply

2200 = 200 + 1000 + 1000

If we denote the number of transported goods from plant 𝑖 to store 𝑗 by 𝑥𝑖𝑗 , the problem can be
formulated as the LP:

minimize 𝑥11 + 2𝑥12 + 5𝑥23 + 2𝑥24 + 𝑥31 + 2𝑥33 + 𝑥34

subject to 𝑠0 : 𝑥11 + 𝑥12 ≤ 200,
𝑠1 : 𝑥23 + 𝑥24 ≤ 1000,
𝑠2 : 𝑥31 + 𝑥33 + 𝑥34 ≤ 1000,
𝑑0 : 𝑥11 + 𝑥31 = 1100,
𝑑1 : 𝑥12 = 200,
𝑑2 : 𝑥23 + 𝑥33 = 500,
𝑑3 : 𝑥24 + 𝑥34 = 500,

𝑥𝑖𝑗 ≥ 0.

(9.1)

Solving problem (9.1) using MOSEK will result in an infeasibility status. The infeasibility certificate
is contained in the dual variables an can be accessed from an API. The variables and constraints with
nonzero solution values form an infeasible subproblem, which frequently is very small. See Sec. 12.1.2 or
Sec. 12.2.2 for detailed specifications of infeasibility certificates.

A short infeasibility report can also be printed to the log stream. It can be turned on by setting the
parameter MSK_IPAR_INFEAS_REPORT_AUTO to MSK_ON in the command-line tool. This causes MOSEK
to print a report on variables and constraints which are involved in infeasibility in the above sense,
i.e. have nonzero values in the certificate. The parameter MSK_IPAR_INFEAS_REPORT_LEVEL controls
the amount of information presented in the infeasibility report. The default value is 1. For the above
example the report is

83

Primal infeasibility report

Problem status: The problem is primal infeasible

The following constraints are involved in the primal infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper
0 s0 none 200 0 1
2 s2 none 1000 0 1
3 d0 1100 1100 1 0
4 d1 200 200 1 0

The following bound constraints are involved in the primal infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper
5 x33 0 none 1 0
6 x34 0 none 1 0

The infeasibility report is divided into two sections corresponding to constraints and variables. It
is a selection of those lines from the problem solution which are important in understanding primal
infeasibility. In this case the constraints s0, s2, d0, d1 and variables x33, x34 are of importance because
of nonzero dual values. The columns Dual lower and Dual upper contain the values of dual variables
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠𝑥𝑙 and 𝑠𝑥𝑢 in the primal infeasibility certificate (see Sec. 12.1.2).

In our example the certificate means that an appropriate linear combination of constraints s0, s1
with coefficient 𝑠𝑐𝑢 = 1, constraints d0 and d1 with coefficient 𝑠𝑐𝑢 − 𝑠𝑐𝑙 = 0 − 1 = −1 and lower bounds
on x33 and x34 with coefficient −𝑠𝑥𝑙 = −1 gives a contradiction. Indeed, the combination of the four
involved constraints is 𝑥33 +𝑥34 ≤ −100 (as indicated in the introduction, the difference between supply
and demand).

It is also possible to extract the infeasible subproblem with the command-line tool. For an infeasible
problem called infeas.lp the command:

mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.lp -info rinfeas.lp

will produce the file rinfeas.bas.inf.lp which contains the infeasible subproblem. Because of its
size it may be easier to work with than the original problem file.

Returning to the transportation example, we discover that removing the fifth constraint 𝑥12 = 200
makes the problem feasible. Almost all undesired infeasibilities should be fixable at the modeling stage.

9.3.3 Locating dual infeasibility
A problem may also be dual infeasible. In this case the primal problem is usually unbounded, meaning
that feasible solutions exists such that the objective tends towards infinity. For example, consider the
problem

maximize 200𝑦1 + 1000𝑦2 + 1000𝑦3 + 1100𝑦4 + 200𝑦5 + 500𝑦6 + 500𝑦7
subject to 𝑦1 + 𝑦4 ≤ 1, 𝑦1 + 𝑦5 ≤ 2, 𝑦2 + 𝑦6 ≤ 5, 𝑦2 + 𝑦7 ≤ 2,

𝑦3 + 𝑦4 ≤ 1, 𝑦3 + 𝑦6 ≤ 2, 𝑦3 + 𝑦7 ≤ 1
𝑦1, 𝑦2, 𝑦3 ≤ 0

which is dual to (9.1) (and therefore is dual infeasible). The dual infeasibility report may look as follows:

Dual infeasibility report

Problem status: The problem is dual infeasible

(continues on next page)

84

(continued from previous page)

The following constraints are involved in the dual infeasibility.

Index Name Activity Objective Lower bound Upper bound
5 x33 -1 none 2
6 x34 -1 none 1

The following variables are involved in the dual infeasibility.

Index Name Activity Objective Lower bound Upper bound
0 y1 -1 200 none 0
2 y3 -1 1000 none 0
3 y4 1 1100 none none
4 y5 1 200 none none

In the report we see that the variables y1, y3, y4, y5 and two constraints contribute to infeasibility
with non-zero values in the Activity column. Therefore

(𝑦1, . . . , 𝑦7) = (−1, 0,−1, 1, 1, 0, 0)

is the dual infeasibility certificate as in Sec. 12.1.2. This just means, that along the ray

(0, 0, 0, 0, 0, 0, 0) + 𝑡(𝑦1, . . . , 𝑦7) = (−𝑡, 0,−𝑡, 𝑡, 𝑡, 0, 0), 𝑡 > 0,

which belongs to the feasible set, the objective value 100𝑡 can be arbitrarily large, i.e. the problem is
unbounded.

In the example problem we could

• Add a lower bound on y3. This will directly invalidate the certificate of dual infeasibility.

• Increase the objective coefficient of y3. Changing the coefficients sufficiently will invalidate the
inequality 𝑐𝑇 𝑦* > 0 and thus the certificate.

9.3.4 Suggestions

Primal infeasibility

When trying to understand what causes the unexpected primal infeasible status use the following hints:

• Remove the objective function. This does not change the infeasibility status but simplifies the
problem, eliminating any possibility of issues related to the objective function.

• Remove cones, semidefinite variables and integer constraints. Solve only the linear part of the
problem. Typical simple modeling errors will lead to infeasibility already at this stage.

• Consider whether your problem has some obvious necessary conditions for feasibility and examine
if these are satisfied, e.g. total supply should be greater than or equal to total demand.

• Verify that coefficients and bounds are reasonably sized in your problem.

• See if there are any obvious contradictions, for instance a variable is bounded both in the variables
and constraints section, and the bounds are contradictory.

• Consider replacing suspicious equality constraints by inequalities. For instance, instead of 𝑥12 = 200
see what happens for 𝑥12 ≥ 200 or 𝑥12 ≤ 200.

• Relax bounds of the suspicious constraints or variables.

85

• For integer problems, remove integrality constraints on some/all variables and see if the problem
solves.

• Form an elastic model: allow to violate constraints at a cost. Introduce slack variables and add
them to the objective as penalty. For instance, suppose we have a constraint

minimize 𝑐𝑇𝑥,
subject to 𝑎𝑇𝑥 ≤ 𝑏.

which might be causing infeasibility. Then create a new variable 𝑦 and form the problem which
contains:

minimize 𝑐𝑇𝑥 + 𝑦,
subject to 𝑎𝑇𝑥 ≤ 𝑏 + 𝑦.

Solving this problem will reveal by how much the constraint needs to be relaxed in order to become
feasible. This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

• If you think you have a feasible solution or its part, fix all or some of the variables to those values.
Presolve will propagate them through the model and potentially reveal more localized sources of
infeasibility.

• Dump the problem in PTF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Dual infeasibility

When trying to understand what causes the unexpected dual infeasible status use the following hints:

• Verify that the objective coefficients are reasonably sized.

• Check if no bounds and constraints are missing, for example if all variables that should be nonneg-
ative have been declared as such etc.

• Strengthen bounds of the suspicious constraints or variables.

• Form an series of models with decreasing bounds on the objective, that is, instead of objective

minimize 𝑐𝑇𝑥

solve the problem with an additional constraint such as

𝑐𝑇𝑥 = −105

and inspect the solution to figure out the mechanism behind arbitrarily decreasing objective values.
This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

• Dump the problem in PTF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Please note that modifying the problem to invalidate the reported certificate does not imply that the
problem becomes feasible — the reason for infeasibility may simply move, resulting a problem that is
still infeasible, but for a different reason. More often, the reported certificate can be used to give a hint
about errors or inconsistencies in the model that produced the problem.

86

9.4 Python Console

The MOSEK Python Console is an alternative to the MOSEK Command Line Tool. It can be used for
interactive loading, solving and debugging optimization problems stored in files, for example MOSEK
task files. It facilitates debugging techniques described in Sec. 9.

9.4.1 Usage
The tool requires Python 3. The MOSEK interface for Python must be installed following the instal-
lation instructions for Python API or Python Fusion API. The easiest option is

pip install Mosek

The Python Console is contained in the file mosekconsole.py in the folder with MOSEK binaries. It
can be copied to an arbitrary location. The file is also available for download here (mosekconsole.py).

To run the console in interactive mode use

python mosekconsole.py

To run the console in batch mode provide a semicolon-separated list of commands as the second
argument of the script, for example:

python mosekconsole.py "read data.task.gz; solve form=dual; writesol data"

The script is written using the MOSEK Python API and can be extended by the user if more specific
functionality is required. We refer to the documentation of the Python API.

9.4.2 Examples
To read a problem from data.task.gz, solve it, and write solutions to data.sol, data.bas or data.itg:

read data.task.gz; solve; writesol data

To convert between file formats:

read data.task.gz; write data.mps

To set a parameter before solving:

read data.task.gz; param INTPNT_CO_TOL_DFEAS 1e-9; solve"

To list parameter values related to the mixed-integer optimizer in the task file:

read data.task.gz; param MIO

To print a summary of problem structure:

read data.task.gz; anapro

To solve a problem forcing the dual and switching off presolve:

read data.task.gz; solve form=dual presolve=no

To write an infeasible subproblem to a file for debugging purposes:

read data.task.gz; solve; infsub; write inf.opf

87

9.4.3 Full list of commands
Below is a brief description of all the available commands. Detailed information about a specific command
cmd and its options can be obtained with

help cmd

Table 9.1: List of commands of the MOSEK Python Console.

Command Description

help [command] Print list of commands or info about a specific command
log filename Save the session to a file
intro Print MOSEK splashscreen
testlic Test the license system
read filename Load problem from file
reread Reload last problem file
solve
[options]

Solve current problem

write filename Write current problem to file
param [name
[value]]

Set a parameter or get parameter values

paramdef Set all parameters to default values
paramdiff Show parameters with non-default values
paramval name Show available values for a parameter
info [name] Get an information item
anapro Analyze problem data
anapro+ Analyze problem data with the internal analyzer
hist Plot a histogram of problem data
histsol Plot a histogram of the solutions
spy Plot the sparsity pattern of the data matrices
truncate
epsilon

Truncate small coefficients down to 0

resobj [fac] Rescale objective by a factor
anasol Analyze solutions
removeitg Remove integrality constraints
removecones Remove all cones and leave just the linear part
delsol Remove solutions
infsub Replace current problem with its infeasible subproblem
dualize Replace current problem with its dual
writesol
basename

Write solution(s) to file(s) with given basename

writejsonsol
name

Write solutions to JSON file with given name

ptf Print the PTF representation of the problem
optserver
[url]

Use an OptServer to optimize

ls List the current folder
exit Leave

88

Chapter 10

Technical guidelines

This section contains some more in-depth technical guidelines for Fusion API for Java, not strictly
necessary for basic use of MOSEK.

10.1 Limitations

Fusion imposes some limitations on certain aspects of a model to ensure easier portability:

• Constraints and variables belong to a single model, and cannot as such be used (e.g. stacked) with
objects from other models.

• Most objects forming a Fusion model are immutable.

The limits on the model size in Fusion are as follows:

• The maximum number of variable elements is 231 − 1.

• The maximum size of a dimension is 231 − 1.

• The maximum number of structural nonzeros in any single expression object is 231 − 1.

• The total size of an item (the product of dimensions) is limited to 263 − 1.

10.2 Memory management and garbage collection

Users should make sure the MOSEK objects are fully cleaned up before they go out of scope so that
no internally allocated memory leaks. Memory leaks can manifest themselves especially as:

• memory usage not decreasing after the solver terminates,

• memory usage increasing when solving a sequence of problems.

The recommended way is to always use the model object within a managed context, so that the
built-in garbage collector will call its internal clean-up method when the object goes out of scope. That
will ensure that all memory allocated internally by the shared library will also be freed.

The Model class supports the Closeable interface, so it will be destroyed properly when used inside
a managed context such as a try-with-resources statement:

try(Model M = new Model())
{

// Construct the model ...
}

If this is not possible, for example because the object is passed around through various calls, then
the disposing method should be called manually before the object is abandoned. Note that the garbage
collector is unable to automatically access the memory allocated internally by the shared library, therefore
calling a manual cleanup method is necessary. To release the memory manually use Model.dispose :

89

M.dispose();

Furthermore, if the Model class is extended, it is necessary to dispose of the superclass if the initial-
ization of the derived subclass fails. One can use a construction such as:

class MyModel extends Model
{

public MyModel()
{

super();
boolean finished = false;
try
{

//perform initialization here
finished = true;

}
finally
{

if (! finished)
dispose();

}
}

}

10.3 Names

All elements of an optimization problem in MOSEK (objective, constraints, variables, etc.) can be given
names. Assigning meaningful names to variables and constraints makes it much easier to understand
and debug optimization problems dumped to a file. On the other hand, note that assigning names can
substantially increase setup time, so it should be avoided in time-critical applications.

The Model object’s, variables’ and constraints’ constructors provide versions with a string name as
an optional parameter.

Names introduced in Fusion are transformed into names in the underlying low-level optimization
task, which in turn can be saved to a file. In particular:

• a scalar variable with name var becomes a variable with name var[],

• a one- or more-dimensional variable with name var becomes a sequence of scalar variables with
names var[0], var[1], etc. or var[0,0], var[0,1], etc., depending on the shape,

• the same applies to constraints,

• a new variable with name 1.0 may be added.

These are the guidelines. No guarantees are made for the exact form of this transformation.
The user can override the default numbering scheme by providing a list of string labels for some or

all axes. For example the following code

String[] itemNames = {"ITEM1", "ITEM2", "ITEM3"};
String[] slotNames = {"SLOT1", "SLOT2"};

Variable x = M.variable("price", new int[]{3,2}, Domain.unbounded()
.withNamesOnAxis(itemNames,

→˓0)
.withNamesOnAxis(slotNames,

→˓1));

will lead to the individual entries of variable price being named as price[ITEM1,SLOT1],
price[ITEM1,SLOT2] and so on instead of price[0,0], price[0,1] etc.

90

Note that file formats impose various restrictions on names, so not all resulting names can be written
verbatim to each type of file, and when writing to a file further transformations and character substitu-
tions can be applied, resulting in poor readability. This is particularly true for LP files, so saving Fusion
problems in LP format is discouraged. The PTF format is recommended instead. See Sec. 15.

Note also that once a variable (constraint, parameter) name is used then it remains reserved for the
lifetime of the model object and canot be reused for a new variable (constraint, parameter), even if the
original variable (constraint, parameter) was removed from the model in the meantime.

10.4 Timing

Unless otherwise mentioned all parameters, information items and log output entries in MOSEK which
refer to time measurement are expressed in seconds of wall-clock time.

10.5 Multithreading

Thread safety

Sharing a Model object between threads is safe, as long as it is not accessed from more than one thread
at a time. Multiple Model objects can be used in parallel without any problems.

Parallelization

The interior-point and mixed-integer optimizers in MOSEK are parallelized. By default MOSEK will
automatically select the number of threads. However, the maximum number of threads allowed can be
changed by setting the parameter numThreads and related parameters. This should never exceed the
number of cores.

The speed-up obtained when using multiple threads is highly problem and hardware dependent. We
recommend experimenting with various thread numbers to determine the optimal settings. For small
problems using multiple threads may be counter-productive because of the associated overhead. Note
also that not all parts of the algorithm can be parallelized, so there are times when CPU utilization is
only 1 even if more cores are available.

Determinism

By default the optimizer is run-to-run deterministic, which means that it will return the same answer
each time it is run on the same machine with the same input, the same parameter settings (including
number of threads) and no time limits.

Setting the number of threads

The number of threads the optimizer uses can be changed with the parameter numThreads .

10.6 Efficiency

The following guidelines can help keep the code as efficient as possible.

Decide between sparse and dense matrices

Deciding whether a matrix should be stored in dense or sparse format is not always trivial. First, there
are storage considerations. An 𝑛×𝑚 matrix with 𝑙 non zero entries, requires

• ≈ 𝑛 ·𝑚 storage space in dense format,

• ≈ 3 · 𝑙 storage space in sparse (triplet) format.

Therefore if 𝑙 ≪ 𝑛 ·𝑚, then the sparse format has smaller memory requirements. Especially for very
sparse density matrices it will also yield much faster expression transformations. Also, this is the format
used ultimately by the underlying optimizer task. However, there are borderline cases in which these
advantages may vanish due to overhead spent creating the triplet representation.

91

Sparsity is a key feature of many optimization models and often occurs naturally. For instance, linear
constraints arising from networks or multi-period planning are typically sparse. Fusion does not detect
sparsity but leaves to the user the responsibility of choosing the most appropriate storage format.

Reduce the number of Fusion calls and level of nesting

A possible source of performance degradation is an excessive use of nested expressions resulting in a
large number of Fusion calls with small model updates, where instead the model could be updated in
larger chunks at once. In general, loop-free code and reduction of expression nesting are likely to be
more efficient. For example the expression

𝑛∑︁
𝑖=1

𝐴𝑖𝑥𝑖

𝑥𝑖 ∈ R𝑘, 𝐴𝑖 ∈ R𝑘×𝑘,

could be implemented in a loop as

Expression ee = Expr.constTerm(k, 0.);
for(int i=0;i<n;i++)

ee = Expr.add(ee, Expr.mul(A[i],x[i]));

A better way is to store the intermediate expressions for 𝐴𝑖𝑥𝑖 and sum all of them in one step:

Expression[] prods = new Expression[n];
for(int i=0;i<n;i++) prods[i] = Expr.mul(A[i],x[i]);
Expression ee = Expr.add(prods);

Fusion design naturally promotes this sort of vectorized implementations. See Sec. 6.8 for more
examples.

Parametrize relevant parts of the model

If you intend to reoptimize the same model with changing input data, use a parametrized model and
modify it between optimizations by resetting parameter values, see Sec. 6.6. This way the model is
constructed only once, and only a few coefficients need to be recomputed each time.

Keep a healthy balance and parametrize only the part of the model you in fact intend to change. For
example, using parameters in place of all constants appearing in the model would be an overkill with an
adverse effect on efficiency since all coefficients in the problem would still have to be recomputed each
time.

Do not fetch the whole solution if not necessary

Fetching a solution from a shaped variable produces a flat array of values. This means that some
reshaping has to take place and that the user gets all values even if they are potentially interested only
in some of them. In this case, it is better to create a slice variable holding the relevant elements and
fetch the solution for this subset. See Sec. 6.7. Fetching the full solution may cause an exception due to
memory exhaustion or platform-dependent constraints on array sizes.

Remove names

Variables, constraints and the objective function can be constructed with user-assigned names. While
this feature is very useful for debugging and improves the readability of both the code and of problems
dumped to files, it also introduces quite some overhead: Fusion must check and make sure that names
are unique. For optimal performance it is therefore recommended to not specify names at all.

92

10.7 The license system

MOSEK is a commercial product that always needs a valid license to work. MOSEK uses a third
party license manager to implement license checking. The number of license tokens provided determines
the number of optimizations that can be run simultaneously.

By default a license token remains checked out from the first optimization until the end of the
MOSEK session, i.e.

• a license token is checked out when the method Model.solve is called the first time, and

• the token is returned when the process exits.

Starting the optimization when no license tokens are available will result in an error.
Default behaviour of the license system can be changed in several ways:

• Setting the parameter cacheLicense to "off" will force MOSEK to return the license token
immediately after the optimization completed.

• Setting the license wait flag with Model.putlicensewait or with the parameter licenseWait will
force MOSEK to wait until a license token becomes available instead of throwing an exception.

• The default path to the license file can be changed with Model.putlicensepath .

10.8 Deployment

When redistributing a Java application using the MOSEK Fusion API for Java 11.0.21, the following
shared libraries from the MOSEK bin folder are required:

• Linux : libmosek64, libmosekxx, libmosekjava, libtbb,

• Windows : mosek64, mosekxx, mosekjava, tbb,

• OSX : libmosek64, libmosekxx, libmosekjava, libtbb,

and the JAR file mosek.jar. By default the Java interface will look for the binaries in the same
directory as the .jar file, so they should be placed in the same directory when redistributing. They can
also be pre-loaded with loadLibrary.

93

Chapter 11

Case Studies

In this section we present some case studies in which the Fusion API for Java is used to solve real-life
applications. These examples involve some more advanced modeling skills and possibly some input data.
The user is strongly recommended to first read the basic tutorials of Sec. 7 before going through these
advanced case studies.

• Portfolio Optimization

– Keywords: Markowitz model, variance, risk, efficient frontier, factor model, transaction cost,
market impact cost, cardinality constraints

– Type: Conic Quadratic, Power Cone, Mixed-Integer, Model parametrization

• Primal SVM

– Keywords: machine learning, Support-Vector Machine, hyperplane separation, classifier
– Type: Conic Quadratic

• 2D Total Variation

– Keywords: denoising, total variation
– Type: Conic Quadratic, Model parametrization

• Multi Processor Scheduling

– Keywords: scheduling, job allocation, feasible point heuristic
– Type: Mixed-Integer, Linear Optimization

• Logistic regression

– Keywords: machine learning, logistic regression, classifier, log-sum-exp, softplus, regulariza-
tion

– Type: Exponential Cone, Quadratic Cone

• Inner and outer Löwner-John Ellipsoids

– Keywords: volume optimization, ellipsoidal approximation, determinant, geometric mean,
eigenvalues

– Type: Geometric Mean Cone, Semidefinite

• SUDOKU

– Keywords: combinatorial puzzle, binary variables, integer modeling
– Type: Integer Optimization, Linear Optimization

• Travelling Salesman

– Keywords: TSP, cycle elimination
– Type: Mixed-Integer, Linear Optimization

94

• Nearest Correlation Matrix Problem

– Keywords: low-rank matrix approximation, trace, Frobenius norm, correlation matrix

– Type: Semidefinite

• Semidefinite relaxation of MIQCQO problems

– Keywords: integer quadratic problems, semidefinite relaxation, approximation, integer least
squares

– Type: Semidefinite, Mixed-Integer Conic Quadratic

11.1 Portfolio Optimization

In this section the Markowitz portfolio optimization problem and variants are implemented using Fusion
API for Java.

• Basic Markowitz model

• Efficient frontier

• Factor model and efficiency

• Market impact costs

• Transaction costs

• Cardinality constraints

11.1.1 The Basic Model
The classical Markowitz portfolio optimization problem considers investing in 𝑛 stocks or assets held
over a period of time. Let 𝑥𝑗 denote the amount invested in asset 𝑗, and assume a stochastic model
where the return of the assets is a random variable 𝑟 with known mean

𝜇 = E𝑟

and covariance

Σ = E(𝑟 − 𝜇)(𝑟 − 𝜇)𝑇 .

The return of the investment is also a random variable 𝑦 = 𝑟𝑇𝑥 with mean (or expected return)

E𝑦 = 𝜇𝑇𝑥

and variance

E(𝑦 −E𝑦)2 = 𝑥𝑇 Σ𝑥.

The standard deviation
√
𝑥𝑇 Σ𝑥

is usually associated with risk.
The problem facing the investor is to rebalance the portfolio to achieve a good compromise between

risk and expected return, e.g., maximize the expected return subject to a budget constraint and an upper
bound (denoted 𝛾) on the tolerable risk. This leads to the optimization problem

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

𝑥𝑇 Σ𝑥 ≤ 𝛾2,
𝑥 ≥ 0.

(11.1)

95

The variables 𝑥 denote the investment i.e. 𝑥𝑗 is the amount invested in asset 𝑗 and 𝑥0
𝑗 is the initial

holding of asset 𝑗. Finally, 𝑤 is the initial amount of cash available.
A popular choice is 𝑥0 = 0 and 𝑤 = 1 because then 𝑥𝑗 may be interpreted as the relative amount of

the total portfolio that is invested in asset 𝑗.
Since 𝑒 is the vector of all ones then

𝑒𝑇𝑥 =

𝑛∑︁
𝑗=1

𝑥𝑗

is the total investment. Clearly, the total amount invested must be equal to the initial wealth, which is

𝑤 + 𝑒𝑇𝑥0.

This leads to the first constraint

𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0.

The second constraint

𝑥𝑇 Σ𝑥 ≤ 𝛾2

ensures that the variance, is bounded by the parameter 𝛾2. Therefore, 𝛾 specifies an upper bound of
the standard deviation (risk) the investor is willing to undertake. Finally, the constraint

𝑥𝑗 ≥ 0

excludes the possibility of short-selling. This constraint can of course be excluded if short-selling is
allowed.

The covariance matrix Σ is positive semidefinite by definition and therefore there exist a matrix
𝐺 ∈ R𝑛×𝑘 such that

Σ = 𝐺𝐺𝑇 . (11.2)

In general the choice of 𝐺 is not unique and one possible choice of 𝐺 is the Cholesky factorization of Σ.
However, in many cases another choice is better for efficiency reasons as discussed in Sec. 11.1.3. For a
given 𝐺 we have that

𝑥𝑇 Σ𝑥 = 𝑥𝑇𝐺𝐺𝑇𝑥

=
⃦⃦
𝐺𝑇𝑥

⃦⃦2
.

Hence, we may write the risk constraint as

𝛾 ≥
⃦⃦
𝐺𝑇𝑥

⃦⃦
or equivalently

(𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑘+1,

where 𝒬𝑘+1 is the (𝑘 + 1)-dimensional quadratic cone. Note that specifically when 𝐺 is derived using
Cholesky factorization, 𝑘 = 𝑛.

96

Therefore, problem (11.1) can be written as

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

(𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑘+1,
𝑥 ≥ 0,

(11.3)

which is a conic quadratic optimization problem that can easily be formulated and solved with Fusion
API for Java. Subsequently we will use the example data

𝜇 =
[︀

0.0720, 0.1552, 0.1754, 0.0898, 0.4290, 0.3929, 0.3217, 0.1838
]︀𝑇

and

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0946 0.0374 0.0349 0.0348 0.0542 0.0368 0.0321 0.0327
0.0374 0.0775 0.0387 0.0367 0.0382 0.0363 0.0356 0.0342
0.0349 0.0387 0.0624 0.0336 0.0395 0.0369 0.0338 0.0243
0.0348 0.0367 0.0336 0.0682 0.0402 0.0335 0.0436 0.0371
0.0542 0.0382 0.0395 0.0402 0.1724 0.0789 0.0700 0.0501
0.0368 0.0363 0.0369 0.0335 0.0789 0.0909 0.0536 0.0449
0.0321 0.0356 0.0338 0.0436 0.0700 0.0536 0.0965 0.0442
0.0327 0.0342 0.0243 0.0371 0.0501 0.0449 0.0442 0.0816

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using Cholesky factorization, this implies

𝐺𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3076 0.1215 0.1134 0.1133 0.1763 0.1197 0.1044 0.1064
0. 0.2504 0.0995 0.0916 0.0669 0.0871 0.0917 0.0851
0. 0. 0.1991 0.0587 0.0645 0.0737 0.0647 0.0191
0. 0. 0. 0.2088 0.0493 0.0365 0.0938 0.0774
0. 0. 0. 0. 0.3609 0.1257 0.1016 0.0571
0. 0. 0. 0. 0. 0.2155 0.0566 0.0619
0. 0. 0. 0. 0. 0. 0.2251 0.0333
0. 0. 0. 0. 0. 0. 0. 0.2202

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In Sec. 11.1.3, we present a different way of obtaining 𝐺 based on a factor model, that leads to more
efficient computation.

Why a Conic Formulation?

Problem (11.1) is a convex quadratically constrained optimization problem that can be solved directly
using MOSEK. Why then reformulate it as a conic quadratic optimization problem (11.3)? The main
reason for choosing a conic model is that it is more robust and usually solves faster and more reliably. For
instance it is not always easy to numerically validate that the matrix Σ in (11.1) is positive semidefinite
due to the presence of rounding errors. It is also very easy to make a mistake so Σ becomes indefinite.
These problems are completely eliminated in the conic formulation.

Moreover, observe the constraint ⃦⃦
𝐺𝑇𝑥

⃦⃦
≤ 𝛾

more numerically robust than

𝑥𝑇 Σ𝑥 ≤ 𝛾2

for very small and very large values of 𝛾. Indeed, if say 𝛾 ≈ 104 then 𝛾2 ≈ 108, which introduces a
scaling issue in the model. Hence, using conic formulation we work with the standard deviation instead
of variance, which usually gives rise to a better scaled model.

97

Example code

Listing 11.1 demonstrates how the basic Markowitz model (11.3) is implemented.

Listing 11.1: Code implementing problem (11.3).

public static double BasicMarkowitz
(int n,

double[] mu,
double[][] GT,
double[] x0,
double w,
double gamma)

throws mosek.fusion.SolutionError {

Model M = new Model("Basic Markowitz");
try {

// Redirect log output from the solver to stdout for debugging.
// if uncommented.
//M.setLogHandler(new java.io.PrintWriter(System.out));

// Defines the variables (holdings). Shortselling is not allowed.
Variable x = M.variable("x", n, Domain.greaterThan(0.0));

// Maximize expected return
M.objective("obj", ObjectiveSense.Maximize, Expr.dot(mu, x));

// The amount invested must be identical to intial wealth
M.constraint("budget", Expr.sum(x), Domain.equalsTo(w + sum(x0)));

// Imposes a bound on the risk
M.constraint("risk", Expr.vstack(gamma, Expr.mul(GT, x)), Domain.inQCone());

// Solves the model.
M.solve();

// Check if the solution is an optimal point
SolutionStatus solsta = M.getPrimalSolutionStatus();
if (solsta != SolutionStatus.Optimal)
{

// See https://docs.mosek.com/latest/javafusion/accessing-solution.html␣
→˓about handling solution statuses.

throw new SolutionError(String.format("Unexpected solution status: %s",␣
→˓solsta.toString()));

}

return dot(mu, x.level());
} finally {

M.dispose();
}

}

The source code should be self-explanatory except perhaps for

M.constraint("risk", Expr.vstack(gamma, Expr.mul(GT, x)), Domain.inQCone());

where the linear expression (︀
𝛾,𝐺𝑇𝑥

)︀

98

is created using the Expr.vstack operator. Finally, the linear expression must lie in a quadratic cone
implying

𝛾 ≥
⃦⃦
𝐺𝑇𝑥

⃦⃦
.

11.1.2 The Efficient Frontier
The portfolio computed by the Markowitz model is efficient in the sense that there is no other portfolio
giving a strictly higher return for the same amount of risk. An efficient portfolio is also sometimes called
a Pareto optimal portfolio. Clearly, an investor should only invest in efficient portfolios and therefore it
may be relevant to present the investor with all efficient portfolios so the investor can choose the portfolio
that has the desired tradeoff between return and risk.

Given a nonnegative 𝛼 the problem

maximize 𝜇𝑇𝑥− 𝛼𝑥𝑇 Σ𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

𝑥 ≥ 0.
(11.4)

is one standard way to trade the expected return against penalizing variance. Note that, in contrast to
the previous example, we explicitly use the variance (‖𝐺𝑇𝑥‖22) rather than standard deviation (‖𝐺𝑇𝑥‖2),
therefore the conic model includes a rotated quadratic cone:

maximize 𝜇𝑇𝑥− 𝛼𝑠
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

(𝑠, 0.5, 𝐺𝑇𝑥) ∈ 𝑄𝑘+2
𝑟 (equiv. to 𝑠 ≥ ‖𝐺𝑇𝑥‖22 = 𝑥𝑇 Σ𝑥),

𝑥 ≥ 0.

(11.5)

The parameter 𝛼 specifies the tradeoff between expected return and variance. Ideally the problem (11.4)
should be solved for all values 𝛼 ≥ 0 but in practice it is impossible. Using the example data from Sec.
11.1.1, the optimal values of return and variance for several values of 𝛼 are shown in the figure.

Example code

Listing 11.2 demonstrates how to compute the efficient portfolios for several values of 𝛼.

Listing 11.2: Code for the computation of the efficient frontier
based on problem (11.4).

public static void EfficientFrontier
(int n,

double[] mu,
double[][] GT,
double[] x0,
double w,
double[] alphas,

double[] frontier_mux,
double[] frontier_s)

throws mosek.fusion.SolutionError {

Model M = new Model("Efficient frontier");
try {

//M.setLogHandler(new java.io.PrintWriter(System.out));

// Defines the variables (holdings). Shortselling is not allowed.
Variable x = M.variable("x", n, Domain.greaterThan(0.0)); // Portfolio␣

→˓variables
Variable s = M.variable("s", 1, Domain.unbounded()); // Variance variable

(continues on next page)

99

0 0.005 0.01 0.015 0.02 0.025 0.03
0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

Fig. 11.1: The efficient frontier for the sample data.

100

(continued from previous page)

M.constraint("budget", Expr.sum(x), Domain.equalsTo(w + sum(x0)));

// Computes the risk
M.constraint("variance", Expr.vstack(s, 0.5, Expr.mul(GT, x)), Domain.

→˓inRotatedQCone());

// Define objective as a weighted combination of return and variance
Parameter alpha = M.parameter();
M.objective("obj", ObjectiveSense.Maximize, Expr.sub(Expr.dot(mu, x) , Expr.

→˓mul(alpha, s)));

// Solve the problem for many values of parameter alpha
for (int i = 0; i < alphas.length; ++i) {

alpha.setValue(alphas[i]);

M.solve();

// Check if the solution is an optimal point
SolutionStatus solsta = M.getPrimalSolutionStatus();
if (solsta != SolutionStatus.Optimal)
{

// See https://docs.mosek.com/latest/javafusion/accessing-solution.html␣
→˓about handling solution statuses.

throw new SolutionError(String.format("Unexpected solution status: %s",␣
→˓solsta.toString()));

}

frontier_mux[i] = dot(mu, x.level());
frontier_s[i] = s.level()[0];

}
} finally {

M.dispose();
}

}

Note that we defined 𝛼 as a model parameter and used it to parametrize the objective. This way we
were able to reuse the same model for all solves along the efficient frontier, simply changing the value of
𝛼 between the solves.

11.1.3 Factor model and efficiency
In practice it is often important to solve the portfolio problem very quickly. Therefore, in this section
we discuss how to improve computational efficiency at the modeling stage.

The computational cost is of course to some extent dependent on the number of constraints and
variables in the optimization problem. However, in practice a more important factor is the sparsity: the
number of nonzeros used to represent the problem. Indeed it is often better to focus on the number of
nonzeros in 𝐺 see (11.2) and try to reduce that number by for instance changing the choice of 𝐺.

In other words if the computational efficiency should be improved then it is always good idea to start
with focusing at the covariance matrix. As an example assume that

Σ = 𝐷 + 𝑉 𝑉 𝑇

where 𝐷 is a positive definite diagonal matrix. Moreover, 𝑉 is a matrix with 𝑛 rows and 𝑘 columns.
Such a model for the covariance matrix is called a factor model and usually 𝑘 is much smaller than 𝑛.
In practice 𝑘 tends to be a small number independent of 𝑛, say less than 100.

One possible choice for 𝐺 is the Cholesky factorization of Σ which requires storage proportional to
𝑛(𝑛 + 1)/2. However, another choice is

𝐺 =
[︀
𝐷1/2 𝑉

]︀
101

because then

𝐺𝐺𝑇 = 𝐷 + 𝑉 𝑉 𝑇 .

This choice requires storage proportional to 𝑛 + 𝑘𝑛 which is much less than for the Cholesky choice of
𝐺. Indeed assuming 𝑘 is a constant storage requirements are reduced by a factor of 𝑛.

The example above exploits the so-called factor structure and demonstrates that an alternative choice
of 𝐺 may lead to a significant reduction in the amount of storage used to represent the problem. This
will in most cases also lead to a significant reduction in the solution time.

The lesson to be learned is that it is important to investigate how the covariance matrix is formed.
Given this knowledge it might be possible to make a special choice for 𝐺 that helps reducing the storage
requirements and enhance the computational efficiency. More details about this process can be found in
[And13].

Factor model in finance

Factor model structure is typical in financial context. It is common to model security returns as the
sum of two components using a factor model. The first component is the linear combination of a small
number of factors common among a group of securities. The second component is a residual, specific
to each security. It can be written as 𝑅 =

∑︀
𝑗 𝛽𝑗𝐹𝑗 + 𝜃, where 𝑅 is a random variable representing the

return of a security at a particular point in time, 𝐹𝑗 is the random variable representing the common
factor 𝑗, 𝛽𝑗 is the exposure of the return to factor 𝑗, and 𝜃 is the specific component.

Such a model will result in the covariance structure

Σ = Σ𝜃 + 𝛽Σ𝐹𝛽
𝑇 ,

where Σ𝐹 is the covariance of the factors and Σ𝜃 is the residual covariance. This structure is of the form
discussed earlier with 𝐷 = Σ𝜃 and 𝑉 = 𝛽𝑃 , assuming the decomposition Σ𝐹 = 𝑃𝑃𝑇 . If the number of
factors 𝑘 is low and Σ𝜃 is diagonal, we get a very sparse 𝐺 that provides the storage and solution time
benefits.

Example code

Here we will work with the example data of a two-factor model (𝑘 = 2) built using the variables

𝛽 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.4256 0.1869
0.2413 0.3877
0.2235 0.3697
0.1503 0.4612
1.5325 −0.2633
1.2741 −0.2613
0.6939 0.2372
0.5425 0.2116

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

𝜃 = [0.0720, 0.0508, 0.0377, 0.0394, 0.0663, 0.0224, 0.0417, 0.0459],

and the factor covariance matrix is

Σ𝐹 =

[︂
0.0620 0.0577
0.0577 0.0908

]︂
,

giving

𝑃 =

[︂
0.2491 0.
0.2316 0.1928

]︂
.

Then the matrix 𝐺 would look like

𝐺 =
[︁
𝛽𝑃 Σ

1/2
𝜃

]︁
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1493 0.0360 0.2683 0. 0. 0. 0. 0. 0. 0.
0.1499 0.0747 0. 0.2254 0. 0. 0. 0. 0. 0.
0.1413 0.0713 0. 0. 0.1942 0. 0. 0. 0. 0.
0.1442 0.0889 0. 0. 0. 0.1985 0. 0. 0. 0.
0.3207 −0.0508 0. 0. 0. 0. 0.2576 0. 0. 0.
0.2568 −0.0504 0. 0. 0. 0. 0. 0.1497 0. 0.
0.2277 0.0457 0. 0. 0. 0. 0. 0. 0.2042 0.
0.1841 0.0408 0. 0. 0. 0. 0. 0. 0. 0.2142

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

102

This matrix is indeed very sparse.
In general, we get an 𝑛× (𝑛+𝑘) size matrix this way with 𝑘 full columns and an 𝑛×𝑛 diagonal part.

In order to maintain a sparse representation we do not construct the matrix 𝐺 explicitly in the code but
instead work with two pieces of data: the dense matrix 𝐺factor = 𝛽𝑃 of shape 𝑛 × 𝑘 and the diagonal
vector 𝜃 of length 𝑛.

Example code

In the following we demonstrate how to write code to compute the matrix 𝐺factor of the factor model.
We start with the inputs

Listing 11.3: Inputs for the computation of the matrix 𝐺factor from
the factor model.

// Factor exposure matrix
double[][] B =
{

{0.4256, 0.1869},
{0.2413, 0.3877},
{0.2235, 0.3697},
{0.1503, 0.4612},
{1.5325, -0.2633},
{1.2741, -0.2613},
{0.6939, 0.2372},
{0.5425, 0.2116}

};

// Factor covariance matrix
double[][] S_F =
{

{0.0620, 0.0577},
{0.0577, 0.0908}

};

// Specific risk components
double[] theta = {0.0720, 0.0508, 0.0377, 0.0394, 0.0663, 0.0224, 0.0417, 0.0459};

Then the matrix 𝐺factor is obtained as:

double[][] P = cholesky(S_F);
double[][] G_factor = matrix_mul(B, P);
double[][] G_factor_T = transpose(G_factor);

The functions used above to operate on matrices are defined in the source file that can be downloaded
from Listing 11.3.

The code for computing an optimal portfolio in the factor model is very similar to the one from the
basic model in Listing 11.1 with one notable exception: we construct the expression 𝐺𝑇𝑥 appearing in
the conic constraint by stacking together two separate vectors 𝐺𝑇

factor𝑥 and Σ
1/2
𝜃 𝑥:

// Imposes a bound on the risk
M.constraint("risk", Expr.vstack(new Expression[]{Expr.constTerm(gamma),

Expr.mul(G_factor_T, x),
Expr.mulElm(vector_

→˓sqrt(theta), x)}), Domain.inQCone());

The full code is demonstrated below:

103

Listing 11.4: Implementation of portfolio optimization in the factor
model.

public static double FactorMarkowitz
(int n,

double[] mu,
double[][] G_factor_T,
double[] theta,
double[] x0,
double w,
double gamma)

throws mosek.fusion.SolutionError {

Model M = new Model("Factor model Markowitz");
try
{

// Redirect log output from the solver to stdout for debugging.
// if uncommented.
//M.setLogHandler(new java.io.PrintWriter(System.out));

// Defines the variables (holdings). Shortselling is not allowed.
Variable x = M.variable("x", n, Domain.greaterThan(0.0));

// Maximize expected return
M.objective("obj", ObjectiveSense.Maximize, Expr.dot(mu, x));

// The amount invested must be identical to intial wealth
M.constraint("budget", Expr.sum(x), Domain.equalsTo(w + sum(x0)));

// Imposes a bound on the risk
M.constraint("risk", Expr.vstack(new Expression[]{Expr.constTerm(gamma),

Expr.mul(G_factor_T, x),
Expr.mulElm(vector_

→˓sqrt(theta), x)}), Domain.inQCone());

// Solves the model.
M.solve();

// Check if the solution is an optimal point
SolutionStatus solsta = M.getPrimalSolutionStatus();
if (solsta != SolutionStatus.Optimal)
{

// See https://docs.mosek.com/latest/javafusion/accessing-solution.html␣
→˓about handling solution statuses.

throw new SolutionError(String.format("Unexpected solution status: %s",␣
→˓solsta.toString()));

}

return dot(mu, x.level());
}
finally
{

M.dispose();
}

}

104

11.1.4 Slippage Cost
The basic Markowitz model assumes that there are no costs associated with trading the assets and that
the returns of the assets are independent of the amount traded. Neither of those assumptions is usually
valid in practice. Therefore, a more realistic model is

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 +

∑︀𝑛
𝑗=1 𝑇𝑗(∆𝑥𝑗) = 𝑤 + 𝑒𝑇𝑥0,

𝑥𝑇 Σ𝑥 ≤ 𝛾2,
𝑥 ≥ 0.

(11.6)

Here ∆𝑥𝑗 is the change in the holding of asset 𝑗 i.e.

∆𝑥𝑗 = 𝑥𝑗 − 𝑥0
𝑗

and 𝑇𝑗(∆𝑥𝑗) specifies the transaction costs when the holding of asset 𝑗 is changed from its initial value.
In the next two sections we show two different variants of this problem with two nonlinear cost functions
𝑇 .

11.1.5 Market Impact Costs
If the initial wealth is fairly small and no short selling is allowed, then the holdings will be small and the
traded amount of each asset must also be small. Therefore, it is reasonable to assume that the prices
of the assets are independent of the amount traded. However, if a large volume of an asset is sold or
purchased, the price, and hence return, can be expected to change. This effect is called market impact
costs. It is common to assume that the market impact cost for asset 𝑗 can be modeled by

𝑇𝑗(∆𝑥𝑗) = 𝑚𝑗 |∆𝑥𝑗 |3/2

where 𝑚𝑗 is a constant that is estimated in some way by the trader. See [GK00] [p. 452] for details.
From the Modeling Cookbook we know that 𝑡 ≥ |𝑧|3/2 can be modeled directly using the power cone
𝒫2/3,1/3
3 :

{(𝑡, 𝑧) : 𝑡 ≥ |𝑧|3/2} = {(𝑡, 𝑧) : (𝑡, 1, 𝑧) ∈ 𝒫2/3,1/3
3 }

Hence, it follows that
∑︀𝑛

𝑗=1 𝑇𝑗(∆𝑥𝑗) =
∑︀𝑛

𝑗=1 𝑚𝑗 |𝑥𝑗 − 𝑥0
𝑗 |3/2 can be modeled by

∑︀𝑛
𝑗=1 𝑚𝑗𝑡𝑗 under the

constraints

𝑧𝑗 = |𝑥𝑗 − 𝑥0
𝑗 |,

(𝑡𝑗 , 1, 𝑧𝑗) ∈ 𝒫2/3,1/3
3 .

Unfortunately this set of constraints is nonconvex due to the constraint

𝑧𝑗 = |𝑥𝑗 − 𝑥0
𝑗 | (11.7)

but in many cases the constraint may be replaced by the relaxed constraint

𝑧𝑗 ≥ |𝑥𝑗 − 𝑥0
𝑗 |, (11.8)

For instance if the universe of assets contains a risk free asset then

𝑧𝑗 > |𝑥𝑗 − 𝑥0
𝑗 | (11.9)

cannot hold for an optimal solution.
If the optimal solution has the property (11.9) then the market impact cost within the model is larger

than the true market impact cost and hence money are essentially considered garbage and removed by
generating transaction costs. This may happen if a portfolio with very small risk is requested because
the only way to obtain a small risk is to get rid of some of the assets by generating transaction costs.
We generally assume that this is not the case and hence the models (11.7) and (11.8) are equivalent.

105

https://docs.mosek.com/modeling-cookbook/index.html

The above observations lead to

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 + 𝑚𝑇 𝑡 = 𝑤 + 𝑒𝑇𝑥0,

(𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑘+1,

(𝑡𝑗 , 1, 𝑥𝑗 − 𝑥0
𝑗) ∈ 𝒫2/3,1/3

3 , 𝑗 = 1, . . . , 𝑛,
𝑥 ≥ 0.

(11.10)

The revised budget constraint

𝑒𝑇𝑥 + 𝑚𝑇 𝑡 = 𝑤 + 𝑒𝑇𝑥0

specifies that the initial wealth covers the investment and the transaction costs. It should be mentioned
that transaction costs of the form

𝑡𝑗 ≥ |𝑧𝑗 |𝑝

where 𝑝 > 1 is a real number can be modeled with the power cone as

(𝑡𝑗 , 1, 𝑧𝑗) ∈ 𝒫1/𝑝,1−1/𝑝
3 .

See the Modeling Cookbook for details.

Example code

Listing 11.5 demonstrates how to compute an optimal portfolio when market impact cost are included.

Listing 11.5: Implementation of model (11.10).

public static void MarkowitzWithMarketImpact
(int n,

double[] mu,
double[][] GT,
double[] x0,
double w,
double gamma,
double[] m,
double[] xsol,
double[] tsol)

throws mosek.fusion.SolutionError {
Model M = new Model("Markowitz portfolio with market impact");
try {

//M.setLogHandler(new java.io.PrintWriter(System.out));

// Defines the variables. No shortselling is allowed.
Variable x = M.variable("x", n, Domain.greaterThan(0.0));

// Variables computing market impact
Variable t = M.variable("t", n, Domain.unbounded());

// Maximize expected return
M.objective("obj", ObjectiveSense.Maximize, Expr.dot(mu, x));

// Invested amount + slippage cost = initial wealth
M.constraint("budget", Expr.add(Expr.sum(x), Expr.dot(m, t)), Domain.equalsTo(w␣

→˓+ sum(x0)));

// Imposes a bound on the risk
M.constraint("risk", Expr.vstack(gamma, Expr.mul(GT, x)),

(continues on next page)

106

https://docs.mosek.com/modeling-cookbook/index.html

(continued from previous page)

Domain.inQCone());

// t >= |x-x0|^1.5 using a power cone
M.constraint("tz", Expr.hstack(t, Expr.constTerm(n, 1.0), Expr.sub(x,x0)),␣

→˓Domain.inPPowerCone(2.0/3.0));

M.solve();

// Check if the solution is an optimal point
SolutionStatus solsta = M.getPrimalSolutionStatus();
if (solsta != SolutionStatus.Optimal)
{

// See https://docs.mosek.com/latest/javafusion/accessing-solution.html␣
→˓about handling solution statuses.

throw new SolutionError(String.format("Unexpected solution status: %s",␣
→˓solsta.toString()));

}

if (xsol != null)
System.arraycopy(x.level(), 0, xsol, 0, n);

if (tsol != null)
System.arraycopy(t.level(), 0, tsol, 0, n);

} finally {
M.dispose();

}
}

11.1.6 Transaction Costs
Now assume there is a cost associated with trading asset 𝑗 given by

𝑇𝑗(∆𝑥𝑗) =

{︂
0, ∆𝑥𝑗 = 0,
𝑓𝑗 + 𝑔𝑗 |∆𝑥𝑗 |, otherwise.

Hence, whenever asset 𝑗 is traded we pay a fixed setup cost 𝑓𝑗 and a variable cost of 𝑔𝑗 per unit traded.
Given the assumptions about transaction costs in this section problem (11.6) may be formulated as

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 + 𝑓𝑇 𝑦 + 𝑔𝑇 𝑧 = 𝑤 + 𝑒𝑇𝑥0,

(𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑘+1,
𝑧𝑗 ≥ 𝑥𝑗 − 𝑥0

𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 ≥ 𝑥0

𝑗 − 𝑥𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 ≤ 𝑈𝑗𝑦𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑦𝑗 ∈ {0, 1}, 𝑗 = 1, . . . , 𝑛,
𝑥 ≥ 0.

(11.11)

First observe that

𝑧𝑗 ≥ |𝑥𝑗 − 𝑥0
𝑗 | = |∆𝑥𝑗 |.

We choose 𝑈𝑗 as some a priori upper bound on the amount of trading in asset 𝑗 and therefore if 𝑧𝑗 > 0
then 𝑦𝑗 = 1 has to be the case. This implies that the transaction cost for asset 𝑗 is given by

𝑓𝑗𝑦𝑗 + 𝑔𝑗𝑧𝑗 .

107

Example code

The following example code demonstrates how to compute an optimal portfolio when transaction costs
are included.

Listing 11.6: Code solving problem (11.11).

public static double[] MarkowitzWithTransactionsCost
(int n,

double[] mu,
double[][] GT,
double[] x0,
double w,
double gamma,
double[] f,
double[] g)

throws mosek.fusion.SolutionError {

// Upper bound on the traded amount
double[] u = new double[n];
{

double v = w + sum(x0);
for (int i = 0; i < n; ++i) u[i] = v;

}

Model M = new Model("Markowitz portfolio with transaction costs");
try {

//M.setLogHandler(new java.io.PrintWriter(System.out));

// Defines the variables. No shortselling is allowed.
Variable x = M.variable("x", n, Domain.greaterThan(0.0));

// Addtional "helper" variables
Variable z = M.variable("z", n, Domain.unbounded());
// Binary varables
Variable y = M.variable("y", n, Domain.binary());

// Maximize expected return
M.objective("obj", ObjectiveSense.Maximize, Expr.dot(mu, x));

// Invest amount + transactions costs = initial wealth
M.constraint("budget", Expr.add(Expr.add(Expr.sum(x), Expr.dot(f, y)), Expr.

→˓dot(g, z)),
Domain.equalsTo(w + sum(x0)));

// Imposes a bound on the risk
M.constraint("risk", Expr.vstack(gamma, Expr.mul(GT, x)),

Domain.inQCone());

// z >= |x-x0|
M.constraint("buy", Expr.sub(z, Expr.sub(x, x0)), Domain.greaterThan(0.0));
M.constraint("sell", Expr.sub(z, Expr.sub(x0, x)), Domain.greaterThan(0.0));

//M.constraint("trade", Expr.hstack(z,Expr.sub(x,x0)), Domain.inQcone())"

// Consraints for turning y off and on. z-diag(u)*y<=0 i.e. z_j <= u_j*y_j
M.constraint("y_on_off", Expr.sub(z, Expr.mul(Matrix.diag(u), y)), Domain.

→˓lessThan(0.0));
(continues on next page)

108

(continued from previous page)

// Integer optimization problems can be very hard to solve so limiting the
// maximum amount of time is a valuable safe guard
M.setSolverParam("mioMaxTime", 180.0);
M.solve();

// Check if the solution is an optimal point
SolutionStatus solsta = M.getPrimalSolutionStatus();
if (solsta != SolutionStatus.Optimal)
{

// See https://docs.mosek.com/latest/javafusion/accessing-solution.html about␣
→˓handling solution statuses.

throw new SolutionError(String.format("Unexpected solution status: %s",␣
→˓solsta.toString()));

}

return x.level();
} finally {

M.dispose();
}

}

11.1.7 Cardinality constraints
Another method to reduce costs involved with processing transactions is to only change positions in a
small number of assets. In other words, at most 𝐾 of the differences |∆𝑥𝑗 | = |𝑥𝑗 − 𝑥0

𝑗 | are allowed to be
non-zero, where 𝐾 is (much) smaller than the total number of assets 𝑛.

This type of constraint can be again modeled by introducing a binary variable 𝑦𝑗 which indicates if
∆𝑥𝑗 ̸= 0 and bounding the sum of 𝑦𝑗 . The basic Markowitz model then gets updated as follows:

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

(𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑘+1,
𝑧𝑗 ≥ 𝑥𝑗 − 𝑥0

𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 ≥ 𝑥0

𝑗 − 𝑥𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 ≤ 𝑈𝑗𝑦𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑦𝑗 ∈ {0, 1}, 𝑗 = 1, . . . , 𝑛,

𝑒𝑇 𝑦 ≤ 𝐾,
𝑥 ≥ 0,

(11.12)

were 𝑈𝑗 is some a priori chosen upper bound on the amount of trading in asset 𝑗.

Example code

The following example code demonstrates how to compute an optimal portfolio with cardinality bounds.
Note that we define the maximum cardinality as a parameter in the model and use it to parametrize the
cardinality constraint. This way we can use one model to solve many problems with the same structure
and data except for the cardinality bound by simply changing this parameter between the solves.

Listing 11.7: Code solving problem (11.12).

public static double[][] MarkowitzWithCardinality
(int n,

double[] mu,
double[][] GT,

(continues on next page)

109

(continued from previous page)

double[] x0,
double w,
double gamma,
int[] kValues)

throws mosek.fusion.SolutionError {

// Upper bound on the traded amount
double[] u = new double[n];
{

double v = w + sum(x0);
for (int i = 0; i < n; ++i) u[i] = v;

}

Model M = new Model("Markowitz portfolio with cardinality bounds");
try {

//M.setLogHandler(new java.io.PrintWriter(System.out));

// Defines the variables. No shortselling is allowed.
Variable x = M.variable("x", n, Domain.greaterThan(0.0));

// Addtional "helper" variables
Variable z = M.variable("z", n, Domain.unbounded());
// Binary varables
Variable y = M.variable("y", n, Domain.binary());

// Maximize expected return
M.objective("obj", ObjectiveSense.Maximize, Expr.dot(mu, x));

// The amount invested must be identical to initial wealth
M.constraint("budget", Expr.sum(x), Domain.equalsTo(w+sum(x0)));

// Imposes a bound on the risk
M.constraint("risk", Expr.vstack(gamma, Expr.mul(GT, x)),

Domain.inQCone());

// z >= |x-x0|
M.constraint("buy", Expr.sub(z, Expr.sub(x, x0)), Domain.greaterThan(0.0));
M.constraint("sell", Expr.sub(z, Expr.sub(x0, x)), Domain.greaterThan(0.0));

// Consraints for turning y off and on. z-diag(u)*y<=0 i.e. z_j <= u_j*y_j
M.constraint("y_on_off", Expr.sub(z, Expr.mul(Matrix.diag(u), y)), Domain.

→˓lessThan(0.0));

// At most k assets change position
Parameter cardMax = M.parameter();
M.constraint("cardinality", Expr.sub(Expr.sum(y), cardMax), Domain.lessThan(0));

// Integer optimization problems can be very hard to solve so limiting the
// maximum amount of time is a valuable safe guard
M.setSolverParam("mioMaxTime", 180.0);

// Solve multiple instances by varying the parameter k
double[][] results = new double[kValues.length][n];

for(int i = 0; i < kValues.length; i++) {
cardMax.setValue(kValues[i]);

(continues on next page)

110

(continued from previous page)

M.solve();

// Check if the solution is an optimal point
SolutionStatus solsta = M.getPrimalSolutionStatus();
if (solsta != SolutionStatus.Optimal)
{

//See https://docs.mosek.com/latest/javafusion/accessing-solution.html␣
→˓about handling solution statuses.

throw new SolutionError(String.format("Unexpected solution status: %s",␣
→˓solsta.toString()));

}

double[] sol = x.level();
for(int j = 0; j < n; j++) results[i][j] = sol[j];

}

return results;
} finally {

M.dispose();
}

}

If we solve our running example with 𝐾 = 1, . . . , 𝑛 then we get the following solutions, with increasing
expected returns:

Bound 1 Solution: 0.0000e+00 0.0000e+00 1.0000e+00 0.0000e+00 0.0000e+00 ␣
→˓0.0000e+00 0.0000e+00 0.0000e+00
Bound 2 Solution: 0.0000e+00 0.0000e+00 3.5691e-01 0.0000e+00 0.0000e+00 ␣
→˓6.4309e-01 -0.0000e+00 0.0000e+00
Bound 3 Solution: 0.0000e+00 0.0000e+00 1.9258e-01 0.0000e+00 0.0000e+00 ␣
→˓5.4592e-01 2.6150e-01 0.0000e+00
Bound 4 Solution: 0.0000e+00 0.0000e+00 2.0391e-01 0.0000e+00 6.7098e-02 ␣
→˓4.9181e-01 2.3718e-01 0.0000e+00
Bound 5 Solution: 0.0000e+00 3.1970e-02 1.7028e-01 0.0000e+00 7.0741e-02 ␣
→˓4.9551e-01 2.3150e-01 0.0000e+00
Bound 6 Solution: 0.0000e+00 3.1970e-02 1.7028e-01 0.0000e+00 7.0740e-02 ␣
→˓4.9551e-01 2.3150e-01 0.0000e+00
Bound 7 Solution: 0.0000e+00 3.1970e-02 1.7028e-01 0.0000e+00 7.0740e-02 ␣
→˓4.9551e-01 2.3150e-01 0.0000e+00
Bound 8 Solution: 1.9557e-10 2.6992e-02 1.6706e-01 2.9676e-10 7.1245e-02 ␣
→˓4.9559e-01 2.2943e-01 9.6905e-03

11.2 Primal Support-Vector Machine (SVM)

Machine-Learning (ML) has become a common widespread tool in many applications that affect our
everyday life. In many cases, at the very core of these techniques there is an optimization problem. This
case study focuses on the Support-Vector Machines (SVM).

The basic SVM model can be stated as:

We are given a set of 𝑚 points in R𝑛, partitioned into two groups. Find, if any, the separating
hyperplane of the two subsets with the largest margin, i.e. as far as possible from the points.

111

Mathematical Model

Let 𝑥1, . . . , 𝑥𝑚 ∈ R𝑛 be the given training set and let 𝑦𝑖 ∈ {−1,+1} be the labels indicating the group
membership of the 𝑖-th training example. Then we want to determine an affine hyperplane 𝑤𝑇𝑥 = 𝑏 that
separates the group in the strong sense that

𝑦𝑖(𝑤
𝑇𝑥𝑖 − 𝑏) ≥ 1 (11.13)

for all 𝑖, the property referred to as large margin classification: the strip {𝑥 ∈ R𝑛 : −1 < 𝑤𝑇𝑥− 𝑏 < 1}
does not contain any training example. The width of this strip is 2‖𝑤‖−1, and maximizing that quantity
is equivalent to minimizing ‖𝑤‖. We get that the large margin classification is the solution of the following
optimization problem:

minimize𝑏,𝑤 1
2‖𝑤‖

2

subject to 𝑦𝑖(𝑤
𝑇𝑥𝑖 − 𝑏) ≥ 1 𝑖 = 1, . . . ,𝑚.

If a solution exists, 𝑤, 𝑏 define the separating hyperplane and the sign of 𝑤𝑇𝑥− 𝑏 can be used to decide
the class in which a point 𝑥 falls.

To allow more flexibility the soft-margin SVM classifier is often used instead. It admits a violation
of the large margin requirement (11.13) by a non-negative slack variable which is then penalized in the
objective function.

minimize𝑏,𝑤 1
2‖𝑤‖

2 + 𝐶
∑︀𝑚

𝑖=1 𝜉𝑖
subject to 𝑦𝑖(𝑤

𝑇𝑥𝑖 − 𝑏) ≥ 1 − 𝜉𝑖 𝑖 = 1, . . . ,𝑚,
𝜉𝑖 ≥ 0 𝑖 = 1, . . . ,𝑚.

In matrix form we have

minimize𝑏,𝑤,𝜉
1
2‖𝑤‖

2 + 𝐶e𝑇 𝜉
subject to 𝑦 ⋆ (𝑋𝑤 − 𝑏e) + 𝜉 ≥ e,

𝜉 ≥ 0.

where ⋆ denotes the component-wise product, and e a vector with all components equal to one. The
constant 𝐶 ≥ 0 acts both as scaling factor and as weight. Varying 𝐶 yields different trade-offs between
accuracy and robustness.

Implementing the matrix formulation of the soft-margin SVM in Fusion is very easy. We only need to
cast the problem in conic form, which in this case involves converting the quadratic term of the objective
function into a conic constraint:

minimize𝑏,𝑤,𝜉,𝑡 𝑡 + 𝐶e𝑇 𝜉
subject to 𝜉 + 𝑦 ⋆ (𝑋𝑤 − 𝑏e) ≥ e,

(1, 𝑡, 𝑤) ∈ 𝒬𝑛+2
r ,

𝜉 ≥ 0.

(11.14)

where 𝒬𝑛+2
r denotes a rotated cone of dimension 𝑛 + 2.

Fusion implementation

We now demonstrate how implement model (11.14). Let us assume that the training examples are stored
in the rows of a matrix X, the labels in a vector y and that we have a set of weights C for which we want
to train the model. The implementation in Fusion of our conic model starts declaring the model class:

Model M = new Model("Primal SVM");

Then we proceed defining the variables :

Variable w = M.variable(n, Domain.unbounded());
Variable t = M.variable(1, Domain.unbounded());
Variable b = M.variable(1, Domain.unbounded());
Variable xi = M.variable(m, Domain.greaterThan(0.));

The conic constraint is obtained by stacking the three values:

112

M.constraint(Expr.vstack(1., t, w), Domain.inRotatedQCone());

Note how the dimension of the cone is deduced from the arguments. The relaxed classification
constraints can be expressed using the built-in expressions available in Fusion. In particular:

1. element-wise multiplication ⋆ is performed with the Expr.mulElm function;

2. a vector whose entries are repetitions of 𝑏 is produced by Var.repeat .

The results is

M.constraint(
Expr.add(xi ,

Expr.mulElm(y,
Expr.sub(Expr.mul(X, w), Var.repeat(b, m))

)
),

Domain.greaterThan(1.)
);

Finally, the objective function is defined as

M.objective(ObjectiveSense.Minimize, Expr.add(t, Expr.mul(c, Expr.sum(xi))␣
→˓));

To solve a sequence of problems with varying C we can simply iterate along those values changing
the objective function:

for (int i = 0; i < nc; i++) {
double c = 500.0 * i;

M.objective(ObjectiveSense.Minimize, Expr.add(t, Expr.mul(c, Expr.sum(xi))␣
→˓));

M.solve();

try {
System.out.format("%4f | %8f", c, b.level()[0]);
for (int j = 0; j < n; j++)

System.out.format(" | %8f", w.level()[j]);

System.out.print("\n");
} catch (FusionException e) {}

}
}

Source code

Listing 11.8: The code implementing model (11.14)

Model M = new Model("Primal SVM");
try {

System.out.format("Number of data : %d\n", m);
System.out.format("Number of features: %d\n", n);

Variable w = M.variable(n, Domain.unbounded());
Variable t = M.variable(1, Domain.unbounded());
Variable b = M.variable(1, Domain.unbounded());
Variable xi = M.variable(m, Domain.greaterThan(0.));

(continues on next page)

113

(continued from previous page)

M.constraint(
Expr.add(xi ,

Expr.mulElm(y,
Expr.sub(Expr.mul(X, w), Var.repeat(b, m))

)
),

Domain.greaterThan(1.)
);

M.constraint(Expr.vstack(1., t, w), Domain.inRotatedQCone());

System.out.println(" c | b | w");
for (int i = 0; i < nc; i++) {

double c = 500.0 * i;

M.objective(ObjectiveSense.Minimize, Expr.add(t, Expr.mul(c, Expr.sum(xi))␣
→˓));

M.solve();

try {
System.out.format("%4f | %8f", c, b.level()[0]);
for (int j = 0; j < n; j++)

System.out.format(" | %8f", w.level()[j]);

System.out.print("\n");
} catch (FusionException e) {}

}
}
finally {

M.dispose();
}

Example

We generate a random dataset consisting of two groups of points, each from a Gaussian distribution in
R2 with centres (1.0, 1.0) and (−1.0,−1.0), respectively.

Random gen = new Random(seed);

int nump = gen.nextInt(m);
int numm = m - nump;

double [] y = new double[m];

Arrays.fill(y, 0, nump, 1.);
Arrays.fill(y, nump, m, -1.);

double [][] X = new double[m][n];

for (int i = 0; i < nump; i++)
for (int j = 0; j < n; j++)

X[i][j] = gen.nextGaussian() + 1.;

for (int i = nump; i < m; i++)
for (int j = 0; j < n; j++)

X[i][j] = gen.nextGaussian() - 1.;

114

With standard deviation 𝜎 = 1/2 we obtain a separable instance of the problem with a solution
shown in Fig. 11.2.

Fig. 11.2: Separating hyperplane for two clusters of points.

For 𝜎 = 1 the two groups are not linearly separable and the we obtain the optimal hyperplane as in
Fig. 11.3.

11.3 2D Total Variation

This case study is based mainly on the paper by Goldfarb and Yin [GY05].

Mathematical Formulation

We are given a 𝑛×𝑚 grid and for each cell (𝑖, 𝑗) an observed value 𝑓𝑖𝑗 that can expressed as

𝑓𝑖𝑗 = 𝑢𝑖𝑗 + 𝑣𝑖𝑗 ,

where 𝑢𝑖𝑗 ∈ [0, 1] is the actual signal value and 𝑣𝑖𝑗 is the noise. The aim is to reconstruct 𝑢 subtracting
the noise from the observations.

We assume the 2-norm of the overall noise to be bounded: the corresponding constraint is

‖𝑢− 𝑓‖2 ≤ 𝜎

which translates into a simple conic quadratic constraint as

(𝜎, 𝑢− 𝑓) ∈ 𝒬.

115

Fig. 11.3: Soft separating hyperplane for two groups of points.

116

We aim to minimize the change in signal value when moving between adjacent cells. To this end we
define the adjacent differences vector as

𝜕+
𝑖𝑗 =

(︂
𝜕𝑥
𝑖𝑗

𝜕𝑦
𝑖𝑗

)︂
=

(︂
𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

)︂
, (11.15)

for each cell 1 ≤ 𝑖, 𝑗 ≤ 𝑛 (we assume that the respective coordinates 𝜕𝑥
𝑖𝑗 and 𝜕𝑦

𝑖𝑗 are zero on the right
and bottom boundary of the grid).

For each cell we want to minimize the norm of 𝜕+
𝑖𝑗 , and therefore we introduce auxiliary variables 𝑡𝑖𝑗

such that

𝑡𝑖𝑗 ≥ ‖𝜕+
𝑖𝑗‖2 or

(︀
𝑡𝑖𝑗 , 𝜕

+
𝑖𝑗

)︀
∈ 𝒬,

and minimize the sum of all 𝑡𝑖𝑗 .
The complete model takes the form:

min
∑︀

1≤𝑖,𝑗≤𝑛 𝑡𝑖𝑗 ,

s.t. 𝜕+
𝑖𝑗 = (𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗 , 𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗)

𝑇
, ∀1 ≤ 𝑖, 𝑗 ≤ 𝑛,(︀

𝑡𝑖𝑗 , 𝜕
+
𝑖𝑗

)︀
∈ 𝒬3, ∀1 ≤ 𝑖, 𝑗 ≤ 𝑛,

(𝜎, 𝑢− 𝑓) ∈ 𝒬𝑛𝑚+1,

𝑢𝑖,𝑗 ∈ [0, 1]. ∀1 ≤ 𝑖, 𝑗 ≤ 𝑛.

(11.16)

Implementation

The Fusion implementation of model (11.16) uses variable and expression slices.
First of all we start by creating the optimization model and variables t and u. Since we intend to

solve the problem many times with various input data we define 𝜎 and 𝑓 as parameters:

Model M = new Model("TV");

Variable u = M.variable("u", new int[] {n + 1, m + 1}, Domain.inRange(0., 1.0));
Variable t = M.variable("t", new int[] {n, m}, Domain.unbounded());

// In this example we define sigma and the input image f as parameters
// to demonstrate how to solve the same model with many data variants.
// Of course they could simply be passed as ordinary arrays if that is not needed.

→˓

Parameter sigma = M.parameter("sigma");
Parameter f = M.parameter("f", n, m);

Note the dimensions of u is larger than those of the grid to accommodate the boundary conditions
later. The actual cells of the grid are defined as a slice of u:

Variable ucore = u.slice(new int[] {0, 0}, new int[] {n, m});

The next step is to define the partial variation along each axis, as in (11.15):

Expression deltax = Expr.sub(u.slice(new int[] {1, 0}, new int[] {n + 1, m}),␣
→˓ucore);

Expression deltay = Expr.sub(u.slice(new int[] {0, 1}, new int[] {n, m + 1}),␣
→˓ucore);

Slices are created on the fly as they will not be reused. Now we can set the conic constraints on the
norm of the total variations. To this extent we stack the variables t, deltax and deltay together and
demand that each row of the new matrix is in a quadratic cone.

M.constraint(Expr.stack(2, t, deltax, deltay), Domain.inQCone().axis(2));

117

We now need to bound the norm of the noise. This can be achieved with a conic constraint using f
as a one-dimensional array:

M.constraint(Expr.vstack(sigma, Expr.flatten(Expr.sub(f, ucore))),
Domain.inQCone());

The objective function is the sum of all 𝑡𝑖𝑗 :

M.objective(ObjectiveSense.Minimize, Expr.sum(t));

Example

Consider the linear signal 𝑢𝑖𝑗 = 𝑖+𝑗
𝑛+𝑚 and its modification with random Gaussian noise, as in Fig. 11.4.

Various reconstructions of 𝑢, obtained with different values of 𝜎, are shown in Fig. 11.5 (where 𝜎̄ = 𝜎/𝑛𝑚
is the relative noise bound per cell).

Fig. 11.4: A linear signal and its modification with random Gaussian noise.

Fig. 11.5: Three reconstructions of the linear signal obtained for 𝜎̄ ∈ {0.0004, 0.0005, 0.0006}, respec-
tively.

118

Source code

Listing 11.9: The Fusion implementation of model (11.16).

public class total_variation {

public static Model total_var(int n, int m) {
Model M = new Model("TV");

Variable u = M.variable("u", new int[] {n + 1, m + 1}, Domain.inRange(0., 1.0));
Variable t = M.variable("t", new int[] {n, m}, Domain.unbounded());

// In this example we define sigma and the input image f as parameters
// to demonstrate how to solve the same model with many data variants.
// Of course they could simply be passed as ordinary arrays if that is not needed.

→˓

Parameter sigma = M.parameter("sigma");
Parameter f = M.parameter("f", n, m);

Variable ucore = u.slice(new int[] {0, 0}, new int[] {n, m});

Expression deltax = Expr.sub(u.slice(new int[] {1, 0}, new int[] {n + 1, m}),␣
→˓ucore);

Expression deltay = Expr.sub(u.slice(new int[] {0, 1}, new int[] {n, m + 1}),␣
→˓ucore);

M.constraint(Expr.stack(2, t, deltax, deltay), Domain.inQCone().axis(2));

M.constraint(Expr.vstack(sigma, Expr.flatten(Expr.sub(f, ucore))),
Domain.inQCone());

M.objective(ObjectiveSense.Minimize, Expr.sum(t));

return M;
}

public static void main(String[] args)
throws SolutionError {

Random randGen = new Random(0);

int n = 100;
int m = 200;
double[] sigmas = { 0.0004, 0.0005, 0.0006 };

// Create a parametrized model with given shape
Model M = total_var(n, m);
Parameter sigma = M.getParameter("sigma");
Parameter f = M.getParameter("f");
Variable ucore = M.getVariable("u").slice(new int[] {0,0}, new int[] {n,m});

// Example: Linear signal with Gaussian noise
double[][] signal = new double[n][m];
double[][] noise = new double[n][m];
double[][] fVal = new double[n][m];
double[][] sol = new double[n][m];

for(int i=0; i<n; i++) for(int j=0; j<m; j++) {
(continues on next page)

119

(continued from previous page)

signal[i][j] = 1.0*(i+j)/(n+m);
noise[i][j] = randGen.nextGaussian() * 0.08;
fVal[i][j] = Math.max(Math.min(1.0, signal[i][j] + noise[i][j]), .0);

}

// Set value for f
f.setValue(fVal);

for(int iter=0; iter<3; iter++) {
// Set new value for sigma and solve
sigma.setValue(sigmas[iter]*n*m);

M.solve();

// Retrieve solution from ucore
double[] ucoreLev = ucore.level();
for(int i=0; i<n; i++) for(int j=0; j<m; j++)

sol[i][j] = ucoreLev[i*n+m];

// Use the solution
// ...

System.out.printf("rel_sigma = %f total_var = %.3f\n", sigmas[iter], M.
→˓primalObjValue());

}

M.dispose();
}

}

11.4 Multiprocessor Scheduling

In this case study we consider a simple scheduling problem in which a set of jobs must be assigned to a
set of identical machines. We want to minimize the makespan of the overall processing, i.e. the latest
machine termination time.

The main aims of this case study are

• to show how to define a Integer Linear Programming model,

• to take advantage of Fusion operators to compactly express sets of constraints,

• to provide the solver with an incumbent integer feasible solution.

Mathematical formulation

We are given a set of jobs 𝐽 with |𝐽 | = 𝑛 to be assigned to a set 𝑀 of identical machines with |𝑀 | = 𝑚.
Each job 𝑗 ∈ 𝐽 has a processing time 𝑇𝑗 > 0 and can be assigned to any machine. Our aim is to find
the job scheduling that minimizes the overall makespan, i.e. the maximum completion time among all
machines.

Formally, we introduce a binary variable 𝑥𝑖𝑗 that takes value 1 if the job 𝑗 is assigned to the machine
𝑖, zero otherwise. The only constraint we need to set is the requirement that a job must be assigned to
a single machine. The optimization model takes the following form:

min max𝑖∈𝑀

∑︀
𝑗∈𝐽 𝑇𝑗𝑥𝑖𝑗

s.t.
∑︀

𝑖∈𝑀 𝑥𝑖𝑗 = 1, 𝑗 ∈ 𝐽,
𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽.

(11.17)

120

Model (11.17) can be easily transformed into an integer linear programming model as follows:

min 𝑡
s.t.

∑︀
𝑖∈𝑀 𝑥𝑖𝑗 = 1, 𝑗 ∈ 𝐽,

𝑡 ≥
∑︀

𝑗∈𝐽 𝑇𝑗𝑥𝑖𝑗 , 𝑖 ∈ 𝑀,

𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽.

(11.18)

The implementation of this model in Fusion is straightforward:

Model M = new Model("Multi-processor scheduling");

Variable x = M.variable("x", new int[] {m, n}, Domain.binary());
Variable t = M.variable("t", 1, Domain.unbounded());

M.constraint(Expr.sum(x, 0), Domain.equalsTo(1.));
M.constraint(Expr.sub(Var.repeat(t, m), Expr.mul(x, T)), Domain.greaterThan(0.)␣

→˓);

M.objective(ObjectiveSense.Minimize, t);

Most of the code is self-explanatory. The only critical point is

M.constraint(Expr.sub(Var.repeat(t, m), Expr.mul(x, T)), Domain.greaterThan(0.)␣
→˓);

that implements the set of constraints

𝑡 ≥
∑︁
𝑗∈𝐽

𝑇𝑗𝑥𝑖𝑗 , 𝑖 ∈ 𝑀.

To fit in Fusion we restate the constraints as

𝑡−
∑︁
𝑗∈𝐽

𝑇𝑗𝑥𝑖𝑗 ≥ 0, 𝑖 ∈ 𝑀,

which corresponds in matrix form to

𝑡1− 𝑥𝑇 ≥ 0. (11.19)

The function Var.repeat creates a vector of length 𝑚, as required for (11.19). The same result can be
obtained via matrix multiplication, i.e. using Expr.mul , but in this particular case Var.repeat is faster
as it only performs a logical operation.

Longest Processing Time first rule (LPT)

The multiprocessor scheduling is known to be an NP-complete problem (see [GJ79]). Nevertheless there
are effective heuristics, with provable worst case bounds, that are able to provide a good integer solution
quickly. In particular, we will use the so-called Longest Processing Time first rule (LPT, proposed in
[Gra69]).

The informal algorithm sketch is the following:

• while M is not empty do

– let k be the machine with the smallest load so far,
– let i be the job in M with the longest completion time,
– assign job i to machine k,
– update the load of machine k,
– remove i from M.

This simple algorithm is a 1
3 (4− 1

𝑚) approximation. So for 𝑚 = 1 we get the optimal solution (indeed
there is no choice with a single machine); for 𝑚 → ∞ the approximation factor is no worse than 4/3
(again see [Gra69]).

A simple implementation is given below.

121

//Computing LPT solution
double [] init = new double[n * m];
double [] schedule = new double[m];

for (int i = n - 1; i >= 0; i--) {
int next = 0;
for (int j = 1; j < m; j++)

if (schedule[j] < schedule[next]) next = j;
schedule[next] += T[i];
init[next * n + i] = 1;

}

An efficient implementation of the LPT rule is beyond the scope of this section. The important
part is that the scheduling produced by the LPT algorithm can be used as incumbent solution for the
MOSEK mixed-integer linear programming solver. The availability of an integer feasible solution can
significantly improve the performance of the solver.

To input the solution we only need to use the Variable.setLevel method and instruct the solver
to use it to reconstruct a full solution, as shown below

x.setLevel(init);
M.setSolverParam("mioConstructSol", "on");

Details of warm-starting the mixed-integer optimizer are discussed in Sec. 7.7.2.
We can test the program with and without providing the initial LPT solution. Our code will create

random datasets consists of a mix of tasks with long and short processing times and we accept a solution
at relative optimality tolerance 0.01.

Listing 11.10: Complete code for the LPT scheduling example.

public class lpt {
public static void main(String [] args) {

int n = 30; //Number of tasks
int m = 6; //Number of processors

double lb = 1.; //The range of lengths of short tasks
double ub = 5.;

double sh = 0.8; //The proportion of short tasks
int n_short = (int)(n * sh);
int n_long = n - n_short;

double[] T = new double[n];
Random gen = new Random(0);
for (int i = 0; i < n_short; i++)

T[i] = gen.nextDouble() * (ub - lb) + lb;
for (int i = n_short; i < n; i++)

T[i] = 20 * (gen.nextDouble() * (ub - lb) + lb);
Arrays.sort(T);

Model M = new Model("Multi-processor scheduling");

Variable x = M.variable("x", new int[] {m, n}, Domain.binary());
Variable t = M.variable("t", 1, Domain.unbounded());

M.constraint(Expr.sum(x, 0), Domain.equalsTo(1.));
M.constraint(Expr.sub(Var.repeat(t, m), Expr.mul(x, T)), Domain.greaterThan(0.)␣

→˓);

(continues on next page)

122

(continued from previous page)

M.objective(ObjectiveSense.Minimize, t);

//Computing LPT solution
double [] init = new double[n * m];
double [] schedule = new double[m];

for (int i = n - 1; i >= 0; i--) {
int next = 0;
for (int j = 1; j < m; j++)

if (schedule[j] < schedule[next]) next = j;
schedule[next] += T[i];
init[next * n + i] = 1;

}

//Comment these lines to switch off feeding in the initial LPT solution
x.setLevel(init);
M.setSolverParam("mioConstructSol", "on");

M.setLogHandler(new PrintWriter(System.out));

M.setSolverParam("mioTolRelGap", .01);
M.solve();

try {
System.out.printf("initial solution: \n");
for (int i = 0; i < m; i++) {

System.out.printf("M %d [", i);
for (int y = 0; y < n; y++)

System.out.printf("%d, ", (int) init[i * n + y]);
System.out.printf("]\n");

}
System.out.print("MOSEK solution:\n");
for (int i = 0; i < m; i++) {

System.out.printf("M %d [", i);
for (int y = 0; y < n; y++)

System.out.printf("%d, ", (int)x.index(i, y).level()[0]);
System.out.printf("]\n");

}
} catch (SolutionError e) {}

}
}

11.5 Logistic regression

Logistic regression is an example of a binary classifier, where the output takes one two values 0 or 1 for
each data point. We call the two values classes.

123

Formulation as an optimization problem

Define the sigmoid function

𝑆(𝑥) =
1

1 + exp(−𝑥)
.

Next, given an observation 𝑥 ∈ R𝑑 and a weights 𝜃 ∈ R𝑑 we set

ℎ𝜃(𝑥) = 𝑆(𝜃𝑇𝑥) =
1

1 + exp(−𝜃𝑇𝑥)
.

The weights vector 𝜃 is part of the setup of the classifier. The expression ℎ𝜃(𝑥) is interpreted as the
probability that 𝑥 belongs to class 1. When asked to classify 𝑥 the returned answer is

𝑥 ↦→

{︃
1 ℎ𝜃(𝑥) ≥ 1/2,

0 ℎ𝜃(𝑥) < 1/2.

When training a logistic regression algorithm we are given a sequence of training examples 𝑥𝑖, each
labelled with its class 𝑦𝑖 ∈ {0, 1} and we seek to find the weights 𝜃 which maximize the likelihood
function ∏︁

𝑖

ℎ𝜃(𝑥𝑖)
𝑦𝑖(1 − ℎ𝜃(𝑥𝑖))

1−𝑦𝑖 .

Of course every single 𝑦𝑖 equals 0 or 1, so just one factor appears in the product for each training data
point. By taking logarithms we can define the logistic loss function:

𝐽(𝜃) = −
∑︁

𝑖:𝑦𝑖=1

log(ℎ𝜃(𝑥𝑖)) −
∑︁

𝑖:𝑦𝑖=0

log(1 − ℎ𝜃(𝑥𝑖)).

The training problem with regularization (a standard technique to prevent overfitting) is now equivalent
to

min
𝜃

𝐽(𝜃) + 𝜆‖𝜃‖2.

This can equivalently be phrased as

minimize
∑︀

𝑖 𝑡𝑖 + 𝜆𝑟
subject to 𝑡𝑖 ≥ − log(ℎ𝜃(𝑥)) = log(1 + exp(−𝜃𝑇𝑥𝑖)) if 𝑦𝑖 = 1,

𝑡𝑖 ≥ − log(1 − ℎ𝜃(𝑥)) = log(1 + exp(𝜃𝑇𝑥𝑖)) if 𝑦𝑖 = 0,
𝑟 ≥ ‖𝜃‖2.

(11.20)

Implementation

As can be seen from (11.20) the key point is to implement the softplus bound 𝑡 ≥ log(1 + 𝑒𝑢), which is
the simplest example of a log-sum-exp constraint for two terms. Here 𝑡 is a scalar variable and 𝑢 will be
the affine expression of the form ±𝜃𝑇𝑥𝑖. This is equivalent to

exp(𝑢− 𝑡) + exp(−𝑡) ≤ 1

and further to

(𝑧1, 1, 𝑢− 𝑡) ∈ 𝐾exp (𝑧1 ≥ exp(𝑢− 𝑡)),
(𝑧2, 1,−𝑡) ∈ 𝐾exp (𝑧2 ≥ exp(−𝑡)),

𝑧1 + 𝑧2 ≤ 1.
(11.21)

124

Listing 11.11: Implementation of 𝑡 ≥ log(1 + 𝑒𝑢) as in (11.21).

// t >= log(1 + exp(u)) coordinatewise
public static void softplus(Model M,

Expression t,
Expression u)

{
int n = t.getShape()[0];
Variable z1 = M.variable(n);
Variable z2 = M.variable(n);
M.constraint(Expr.add(z1, z2), Domain.equalsTo(1));
M.constraint(Expr.hstack(z1, Expr.constTerm(n, 1.0), Expr.sub(u,t)), Domain.

→˓inPExpCone());
M.constraint(Expr.hstack(z2, Expr.constTerm(n, 1.0), Expr.neg(t)), Domain.

→˓inPExpCone());
}

Once we have this subroutine, it is easy to implement a function that builds the regularized loss
function model (11.20).

Listing 11.12: Implementation of (11.20).

// Model logistic regression (regularized with full 2-norm of theta)
// X - n x d matrix of data points
// y - length n vector classifying training points
// lamb - regularization parameter
public static Model logisticRegression(double[][] X,

boolean[] y,
double lamb)

{
int n = X.length;
int d = X[0].length; // num samples, dimension

Model M = new Model();

Variable theta = M.variable("theta", d);
Variable t = M.variable(n);
Variable reg = M.variable();

M.objective(ObjectiveSense.Minimize, Expr.add(Expr.sum(t), Expr.mul(lamb,reg)));
M.constraint(Var.vstack(reg, theta), Domain.inQCone());

double[] signs = new double[n];
for(int i = 0; i < n; i++)

if (y[i]) signs[i] = -1; else signs[i] = 1;

softplus(M, t, Expr.mulElm(Expr.mul(X, theta), signs));

return M;
}

125

Example: 2D dataset fitting

In the next figure we apply logistic regression to the training set of 2D points taken from the example
ex2data2.txt . The two-dimensional dataset was converted into a feature vector 𝑥 ∈ R28 using monomial
coordinates of degrees at most 6.

Fig. 11.6: Logistic regression example with none, medium and strong regularization (small, medium,
large 𝜆). Without regularization we get obvious overfitting.

11.6 Inner and outer Löwner-John Ellipsoids

In this section we show how to compute the Löwner-John inner and outer ellipsoidal approximations of
a polytope. They are defined as, respectively, the largest volume ellipsoid contained inside the polytope
and the smallest volume ellipsoid containing the polytope, as seen in Fig. 11.7.

Fig. 11.7: The inner and outer Löwner-John ellipse of a polygon.

For further mathematical details, such as uniqueness of the two ellipsoids, consult [BenTalN01]. Our
solution is a mix of conic and semidefinite programming. Among other things, in Sec. 11.6.3 we show
how to implement bounds involving the determinant of a PSD matrix.

126

https://www.r-bloggers.com/logistic-regression-regularized-with-optimization/

11.6.1 Inner Löwner-John Ellipsoids
Suppose we have a polytope given by an h-representation

𝒫 = {𝑥 ∈ R𝑛 | 𝐴𝑥 ≤ 𝑏}

and we wish to find the inscribed ellipsoid with maximal volume. It will be convenient to parametrize
the ellipsoid as an affine transformation of the standard disk:

ℰ = {𝑥 | 𝑥 = 𝐶𝑢 + 𝑑, 𝑢 ∈ R𝑛, ‖𝑢‖2 ≤ 1}.

Every non-degenerate ellipsoid has a parametrization such that 𝐶 is a positive definite symmetric 𝑛× 𝑛
matrix. Now the volume of ℰ is proportional to det(𝐶)1/𝑛. The condition ℰ ⊆ 𝒫 is equivalent to the
inequality 𝐴(𝐶𝑢 + 𝑑) ≤ 𝑏 for all 𝑢 with ‖𝑢‖2 ≤ 1. After a short computation we obtain the formulation:

maximize 𝑡
subject to 𝑡 ≤ det(𝐶)1/𝑛,

(𝑏−𝐴𝑑)𝑖 ≥ ‖(𝐴𝐶)𝑖‖2, 𝑖 = 1, . . . ,𝑚,
𝐶 ⪰ 0,

(11.22)

where 𝑋𝑖 denotes the 𝑖-th row of the matrix 𝑋. This can easily be implemented using Fusion, where the
sequence of conic inequalities can be realized at once by feeding in the matrices 𝑏−𝐴𝑑 and 𝐴𝐶.

Listing 11.13: Fusion implementation of model (11.22).

public static Object[] lownerjohn_inner(double[][] A, double[] b)
throws SolutionError {

Model M = new Model("lownerjohn_inner");
try {

int m = A.length;
int n = A[0].length;

//Setup variables
Variable t = M.variable("t", 1, Domain.greaterThan(0.0));
Variable C = det_rootn(M, t, n);
Variable d = M.variable("d", n, Domain.unbounded());

// (b-Ad, AC) generate cones
M.constraint("qc", Expr.hstack(Expr.sub(b, Expr.mul(A, d)), Expr.mul(A, C)),

Domain.inQCone());

// Objective: Maximize t
M.objective(ObjectiveSense.Maximize, t);
M.solve();

return new Object[] {C.level(), d.level()};
} finally {

M.dispose();
}

}

The only black box is the method det_rootn which implements the constraint 𝑡 ≤ det(𝐶)1/𝑛. It will
be described in Sec. 11.6.3.

127

11.6.2 Outer Löwner-John Ellipsoids
To compute the outer ellipsoidal approximation to a polytope, let us now start with a v-representation

𝒫 = conv{𝑥1, 𝑥2, . . . , 𝑥𝑚} ⊆ R𝑛,

of the polytope as a convex hull of a set of points. We are looking for an ellipsoid given by a quadratic
inequality

ℰ = {𝑥 ∈ R𝑛 | ‖𝑃𝑥− 𝑐‖2 ≤ 1},

whose volume is proportional to det(𝑃)−1/𝑛, so we are after maximizing det(𝑃)1/𝑛. Again, there is
always such a representation with a symmetric, positive definite matrix 𝑃 . The inclusion conditions
𝑥𝑖 ∈ ℰ translate into a straightforward problem formulation:

maximize 𝑡
subject to 𝑡 ≤ det(𝑃)1/𝑛,

‖𝑃𝑥𝑖 − 𝑐‖2 ≤ 1, 𝑖 = 1, . . . ,𝑚,
𝑃 ⪰ 0,

(11.23)

and then directly into Fusion code:

Listing 11.14: Fusion implementation of model (11.23).

public static Object[] lownerjohn_outer(double[][] x)
throws SolutionError {

Model M = new Model("lownerjohn_outer");
try {

int m = x.length;
int n = x[0].length;

//Setup variables
Variable t = M.variable("t", 1, Domain.greaterThan(0.0));
Variable P = det_rootn(M, t, n);
Variable c = M.variable("c", n, Domain.unbounded());

//(1, Px-c) in cone
M.constraint("qc",

Expr.hstack(Expr.ones(m),
Expr.sub(Expr.mul(x, P),

Var.reshape(Var.repeat(c, m), new int[] {m, n}
→˓)

)
),

Domain.inQCone());

//Objective: Maximize t
M.objective(ObjectiveSense.Maximize, t);
M.solve();

return new Object[] {P.level(), c.level()};
} finally {

M.dispose();
}

}

128

11.6.3 Bound on the Determinant Root

It remains to show how to express the bounds on det(𝑋)1/𝑛 for a symmetric positive definite 𝑛 × 𝑛
matrix 𝑋 using PSD and conic quadratic variables. We want to model the set

𝐶 = {(𝑋, 𝑡) ∈ 𝒮𝑛
+ × R | 𝑡 ≤ det(𝑋)1/𝑛}. (11.24)

A standard approach when working with the determinant of a PSD matrix is to consider a semidefinite
cone (︂

𝑋 𝑍
𝑍𝑇 Diag(𝑍)

)︂
⪰ 0 (11.25)

where 𝑍 is a matrix of additional variables and where we intuitively identify Diag(𝑍) = {𝜆1, . . . , 𝜆𝑛}
with the eigenvalues of 𝑋. With this in mind, we are left with expressing the constraint

𝑡 ≤ (𝜆1 · . . . · 𝜆𝑛)1/𝑛. (11.26)

but this is exactly the geometric mean cone Domain.inPGeoMeanCone . We obtain the following model:

Listing 11.15: Bounding the n-th root of the determinant, see
(11.25).

public static Variable det_rootn(Model M, Variable t, int n) {
// Setup variables
Variable Y = M.variable(Domain.inPSDCone(2 * n));

Variable X = Y.slice(new int[]{0, 0}, new int[]{n, n});
Variable Z = Y.slice(new int[]{0, n}, new int[]{n, 2 * n});
Variable DZ = Y.slice(new int[]{n, n}, new int[]{2 * n, 2 * n});

// Z is lower-triangular
int low_tri[][] = new int[n*(n-1)/2][2];
int k = 0;
for(int i = 0; i < n; i++)

for(int j = i+1; j < n; j++)
{ low_tri[k][0] = i; low_tri[k][1] = j; ++k; }

M.constraint(Z.pick(low_tri), Domain.equalsTo(0.0));
// DZ = Diag(Z)
M.constraint(Expr.sub(DZ, Expr.mulElm(Z, Matrix.eye(n))), Domain.equalsTo(0.0));

// (Z11*Z22*...*Znn) >= t^n
M.constraint(Expr.vstack(DZ.diag(), t), Domain.inPGeoMeanCone());

// Return an n x n PSD variable which satisfies t <= det(X)^(1/n)
return X;

}

11.7 SUDOKU

SUDOKU is a famous simple yet mind-blowing game. The objective is to fill a 9×9 grid with digits
so that each column, each row, and each of the nine 3×3 sub-grids that compose the grid (also called
boxes, blocks, regions, or sub-squares) contains all of the digits from 1 to 9. For more information see
http://en.wikipedia.org/wiki/Sudoku. Here is a simple example:

In a more general setting we are given a grid of dimension 𝑛×𝑛, with 𝑛 = 𝑚2,𝑚 ∈ N. Each cell (𝑖, 𝑗)
must be filled with an integer 𝑦𝑖𝑗 ∈ [1, 𝑛]. Along each row and each column there must be no repetitions.
No repetitions are allowed also in each sub-grid with corners {(𝑚𝑡,𝑚𝑙), (𝑚(𝑡 + 1) − 1,𝑚(𝑙 + 1) − 1)},
for 𝑡, 𝑙 = 0, . . . ,𝑚− 1 (we index cells from (0, 0)).

In general, each SUDOKU instance comes with a set 𝐹 of predetermined values which:

129

http://en.wikipedia.org/wiki/Sudoku

4
5 8 3
1 2 8 9
7 3 1 8 4

4 1 9 2 7
4 6 5 8

4 1 6
9

A simple unsolved Sudoku

4
5 8 3
1 2 8 9
7 3 1 8 4

4 1 9 2 7
4 6 5 8

4 1 6
9

The solution

3 2 9 5 7 6 1 8

6 9 1 4 2 7

4 7 6 5 3

9 5 2 6

5 6 2 8 7 4 3 9 1

8 6 3 5

1 9 3 7 2

7 3 5 2 8 9

2 8 6 7 1 5 3 4

• reduce the complexity of the game by removing symmetries and guiding the initial moves of the
player;

• ensure that there will be a unique solution.

We represent the set 𝐹 as list of triplets (𝑖, 𝑗, 𝑣), meaning that the cell (𝑖, 𝑗) contains the value 𝑣.
Note that SUDOKU is a feasibility problem. A typical Integer Programming formulation is straight-

forward: let 𝑥𝑖𝑗𝑘 be a binary variable that takes value 1 if 𝑘 is written in cell (𝑖, 𝑗). Then we look for a
feasible solution of a system of constraints given below.

SUDOKU is a typical assignment problem. Its constraints are commonly found in optimization
problems concerning scheduling or resource allocation. SUDOKU has also been a nice problem to fiddle
with for many researchers in the optimization community. Indeed, its simple structure and the easy way
in which the results can be tested make it a perfect test problem.

We will approach SUDOKU as a standard integer linear program, and we will show how easily and
elegantly it can be implemented in Fusion.

Mathematical Formulation

In this section we formulate SUDOKU as a mixed-integer linear optimization problem. Let’s introduce
a binary variable 𝑥𝑖𝑗𝑘 that takes value 1 if 𝑘 is written in the cell (𝑖, 𝑗), or 0 otherwise. We first ask that
for each cell exactly one digit is selected:

𝑛−1∑︁
𝑘=0

𝑥𝑖𝑗𝑘 = 1, 𝑖, 𝑗 = 0, . . . , 𝑛− 1. (11.27)

Similar constraints can be used to force each digit to appear only once in each row or column:∑︀𝑛−1
𝑖=0 𝑥𝑖𝑗𝑘 = 1, 𝑗, 𝑘 = 0, . . . , 𝑛− 1,∑︀𝑛−1
𝑗=0 𝑥𝑖𝑗𝑘 = 1, 𝑖, 𝑘 = 0, . . . , 𝑛− 1.

(11.28)

To force a digit to appear only once in each sub-grid we can use the following

𝑚−1∑︁
𝑖=0

𝑚−1∑︁
𝑗=0

𝑥(𝑖+𝑡𝑚)(𝑗+𝑡𝑙)𝑘 = 1 𝑘 = 0, . . . , 𝑛− 1 and 𝑡, 𝑙 = 0, . . . ,𝑚− 1 (11.29)

If a cell (𝑖, 𝑗) has a predetermined value, i.e. (𝑖, 𝑗, 𝑘) ∈ 𝐹 then we set

𝑥𝑖𝑗𝑘 = 1.

130

Summarizing, and considering that there is no objective function to minimize, the optimization model
for the SUDOKU problem takes the form

min 0
s.t.∑︀𝑛−1

𝑖=0 𝑥𝑖𝑗𝑘 = 1, 𝑗, 𝑘 = 0, . . . , 𝑛− 1,∑︀𝑛−1
𝑗=0 𝑥𝑖𝑗𝑘 = 1, 𝑖, 𝑘 = 0, . . . , 𝑛− 1,∑︀𝑛−1
𝑘=0 𝑥𝑖𝑗𝑘 = 1, 𝑖, 𝑗 = 0, . . . , 𝑛− 1,∑︀𝑚−1
𝑖=0

∑︀𝑚−1
𝑗=0 𝑥(𝑖+𝑡𝑚)(𝑗+𝑡𝑙)𝑘 = 1, 𝑘 = 0, . . . , 𝑛− 1 and

𝑡, 𝑙 = 0, . . . ,𝑚− 1,

𝑥𝑖𝑗𝑘 = 1, ∀(𝑖, 𝑗, 𝑘) ∈ 𝐹.

(11.30)

Implementation with Fusion

The implementation in Fusion is straightforward. First, we represent the variable 𝑥 using a three
dimensional Fusion variable:

Variable x = M.variable(new int[] {n, n, n}, Domain.binary());

Then we can define constraints (11.27) and (11.28) simply using the Expr.sum operator, that allows
to sum the elements of an expression (in this case of the variable itself) along arbitrary dimensions. The
code reads:

//each value only once per dimension
for (int d = 0; d < m; d++)

M.constraint(Expr.sum(x, d), Domain.equalsTo(1.));

The last set of constraints (11.29) , i.e. the sum over block, needs a little more effort: we must loop
over all blocks and select the proper slice:

//each number must appear only once in a block
for (int k = 0; k < n ; k++)

for (int i = 0; i < m ; i++)
for (int j = 0; j < m ; j++)

M.constraint(Expr.sum(x.slice(new int[] {i * m, j * m, k},
new int[] {(i + 1) * m, (j + 1) * m, k +␣

→˓1})),
Domain.equalsTo(1.));

To set the triplets given in the set 𝐹 we can use the Variable.pick method that returns a one
dimensional view of an arbitrary set of elements of the variable.

M.constraint(x.pick(fixed) , Domain.equalsTo(1.0)) ;

SUDOKU: the complete example code.

The complete code for the SUDOKU problem is shown in Listing 11.16.

Listing 11.16: Fusion implementation to solve SUDOKU.

package com.mosek.fusion.examples;

import java.lang.*;
import java.util.*;
import java.io.*;
import mosek.fusion.*;

public class sudoku {
//fixed cells in human readable (i.e. 1-based) format

(continues on next page)

131

(continued from previous page)

private static final int [][] hr_fixed = {
{1, 5, 4},
{2, 2, 5}, {2, 3, 8}, {2, 6, 3},
{3, 2, 1}, {3, 4, 2}, {3, 5, 8}, {3, 7, 9},
{4, 2, 7}, {4, 3, 3}, {4, 4, 1}, {4, 7, 8}, {4, 8, 4},
{6, 2, 4}, {6, 3, 1}, {6, 6, 9}, {6, 7, 2}, {6, 8, 7},
{7, 3, 4}, {7, 5, 6}, {7, 6, 5}, {7, 8, 8},
{8, 4, 4}, {8, 7, 1}, {8, 8, 6},
{9, 5, 9}

};

public static void main(String[] args)
throws SolutionError {

int m = 3;
int n = m * m;

int nf = hr_fixed.length;

int [][] fixed = new int[nf][3];

for (int i = 0; i < nf; i++)
for (int d = 0; d < m; d++)

fixed[i][d] = hr_fixed[i][d] - 1;

try(Model M = new Model("SUDOKU")) {
M.setLogHandler(new PrintWriter(System.out));
Variable x = M.variable(new int[] {n, n, n}, Domain.binary());

//each value only once per dimension
for (int d = 0; d < m; d++)

M.constraint(Expr.sum(x, d), Domain.equalsTo(1.));

//each number must appear only once in a block
for (int k = 0; k < n ; k++)

for (int i = 0; i < m ; i++)
for (int j = 0; j < m ; j++)

M.constraint(Expr.sum(x.slice(new int[] {i * m, j * m, k},
new int[] {(i + 1) * m, (j + 1) * m, k +␣

→˓1})),
Domain.equalsTo(1.));

M.constraint(x.pick(fixed) , Domain.equalsTo(1.0)) ;

M.solve();

//print the solution, if any...
if (M.getPrimalSolutionStatus() == SolutionStatus.Optimal)

print_solution(m, x);
else

System.out.println("No solution found!\n");

}
}

(continues on next page)

132

(continued from previous page)

static void print_solution(int m, Variable x) {
int n = m * m;
System.out.println("\n");
for (int i = 0; i < n; i++) {

String s = "";
for (int j = 0; j < n; j++) {

if (j % m == 0) s += " |";
for (int k = 0; k < n; k++)

try {
double sol[] = x.index(new int[] {i, j, k}).level();
if (sol[0] > 0.5) {

s += " " + (k + 1);
break;

}
} catch (SolutionError se) {}

}
System.out.println(s + " |");

if ((i + 1) % m == 0)
System.out.println("\n");

}
}

}

The problem instance corresponding to Fig. ?? is hard-coded for the sake of simplicity. It will produce
the following output

Problem
Name : SUDOKU
Objective sense : min
Type : LO (linear optimization problem)
Constraints : 350
Cones : 0
Scalar variables : 1000
Matrix variables : 0
Integer variables : 729

Optimizer started.
Mixed integer optimizer started.
Threads used: 2
Presolve started.
Presolve terminated. Time = 0.00
Presolved problem: 0 variables, 0 constraints, 0 non-zeros
Presolved problem: 0 general integer, 0 binary, 0 continuous
Clique table size: 0
BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_OBJ BEST_RELAX_OBJ REL_GAP(
→˓%) TIME
0 1 0 0 0.0000000000e+00 0.0000000000e+00 0.
→˓00e+00 0.0
An optimal solution satisfying the relative gap tolerance of 1.00e-02(%) has been␣
→˓located.
The relative gap is 0.00e+00(%).
An optimal solution satisfying the absolute gap tolerance of 0.00e+00 has been␣
→˓located.
The absolute gap is 0.00e+00.

Objective of best integer solution : 0.000000000000e+00
(continues on next page)

133

(continued from previous page)

Best objective bound : -0.000000000000e+00
Construct solution objective : Not employed
Construct solution # roundings : 0
User objective cut value : 0
Number of cuts generated : 0
Number of branches : 0
Number of relaxations solved : 1
Number of interior point iterations: 0
Number of simplex iterations : 0
Time spend presolving the root : 0.00
Time spend in the heuristic : 0.00
Time spend in the sub optimizers : 0.00

Time spend optimizing the root : 0.00
Mixed integer optimizer terminated. Time: 0.02

Optimizer terminated. Time: 0.02

3 2 9	5 4 7	6 1 8
6 5 8	9 1 3	4 2 7
4 1 7	2 8 6	9 5 3

9 7 3	1 5 2	8 4 6
5 6 2	8 7 4	3 9 1
8 4 1	6 3 9	2 7 5

1 9 4	3 6 5	7 8 2
7 3 5	4 2 8	1 6 9
2 8 6	7 9 1	5 3 4

11.8 Travelling Salesman Problem (TSP)

The Travelling Salesman Problem is one of the most famous and studied problems in combinatorics and
integer optimization. In this case study we shall:

• show how to compactly define a model with Fusion;

• implement an iterative algorithm that solves a sequence of optimization problems;

• modify an optimization problem by adding more constraints;

• show how to access the solution of an optimization problem.

The material presented in this section draws inspiration from [Pat03].
In a TSP instance we are given a directed graph 𝐺 = (𝑁,𝐴), where 𝑁 is the set of nodes and 𝐴 is

the set of arcs. To each arc (𝑖, 𝑗) ∈ 𝐴 corresponds a nonnegative cost 𝑐𝑖𝑗 . The goal is to find a minimum
cost Hamilton cycle in 𝐺, that is a closed tour passing through each node exactly once. For example,
consider the small directed graph in Fig. 11.8.

Its corresponding adjacency and cost matrices 𝐴 and 𝑐 are:

𝐴 =

⎡⎢⎢⎣
0 1 1 1
1 0 1 0
0 1 0 1
1 0 0 0

⎤⎥⎥⎦ , 𝑐 =

⎡⎢⎢⎣
0 1 0.1 0.1

0.1 0 1 0
0 0.1 0 1
1 0 0 0

⎤⎥⎥⎦ .

134

Fig. 11.8: (Left) a directed graph with costs. (Middle) The minimum cycle cover found in the first
iteration. (Right) The minimum cost travelling salesman tour.

Typically, the problem is modeled introducing a set of binary variables 𝑥𝑖𝑗 such that

𝑥𝑖𝑗 =

{︂
0 if arc (𝑖, 𝑗) is in the tour,
1 otherwise.

Now we can introduce the following simple model:

min
∑︀

𝑖,𝑗 𝑐𝑖𝑗𝑥𝑖𝑗

subject to
∑︀

𝑖 𝑥𝑖𝑗 = 1 ∀𝑗 = 1, . . . , 𝑛,∑︀
𝑗 𝑥𝑖𝑗 = 1 ∀𝑖 = 1, . . . , 𝑛,

𝑥𝑖𝑗 ≤ 𝐴𝑖𝑗 ∀𝑖, 𝑗,
𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖, 𝑗.

(11.31)

It describes the constraint that every vertex has exactly one incoming and one outgoing arc in the tour,
and that only arcs present in the graph can be chosen. Problem (11.31) can be easily implemented in
Fusion:

Model M = new Model();

Variable x = M.variable(new int[] {n, n}, Domain.binary());

M.constraint(Expr.sum(x, 0), Domain.equalsTo(1.0));
M.constraint(Expr.sum(x, 1), Domain.equalsTo(1.0));
M.constraint(x, Domain.lessThan(A));

M.objective(ObjectiveSense.Minimize, Expr.dot(C, x));

Note in particular how:

• we can sum over rows and/or columns using the Expr.sum function;

• we use Expr.dot to compute the objective function.

The solution to problem (11.31) is not necessarily a closed tour. In fact (11.31) models another
problem known as minimum cost cycle cover, whose solution may consist of more than one cycle. In
our example we get the solution depicted in Fig. 11.8, i.e. there are two loops, namely 0->3->0 and
1->2->1.

A solution to (11.31) solves the TSP problem if and only if it consists of a single cycle. One classical
approach ensuring this is the so-called subtour elimination: once we found a solution of (11.31) composed
of at least two cycles, we add constraints that explicitly avoid that particular solution:∑︁

(𝑖,𝑗)∈𝑐

𝑥𝑖𝑗 ≤ |𝑐| − 1 ∀𝑐 ∈ 𝐶. (11.32)

135

Thus the problem we want to solve at each step is

min
∑︀

𝑖,𝑗 𝑐𝑖𝑗𝑥𝑖𝑗

subject to
∑︀

𝑖 𝑥𝑖𝑗 = 1 ∀𝑗 = 1, . . . , 𝑛,∑︀
𝑗 𝑥𝑖𝑗 = 1 ∀𝑖 = 1, . . . , 𝑛,

𝑥𝑖𝑗 ≤ 𝐴𝑖𝑗 ∀𝑖, 𝑗,
𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖, 𝑗,∑︀

(𝑖,𝑗)∈𝑐 𝑥𝑖𝑗 ≤ |𝑐| − 1 ∀𝑐 ∈ 𝐶,

(11.33)

where 𝐶 is the set of cycles in all the cycle covers we have seen so far. The overall solution scheme is the
following:

1. set 𝐶 as the empty set,

2. solve problem (11.33),

3. if 𝑥 has only one cycle stop,

4. else add the cycles of 𝑥 to 𝐶 and goto 2.

Cycle detection is a fairly easy task and we omit the procedure here for the sake of simplicity. Now
we show how to add a constraint for each cycle. Since we have the list of arcs, and each one corresponds
to a variable 𝑥𝑖𝑗 , we can use the function Variable.pick to compactly define constraints of the form
(11.32):

for (ArrayList<int []> c : cycles) {
int [][] cc = new int[c.size()][2];
c.toArray(cc);
M.constraint(Expr.sum(x.pick(cc)), Domain.lessThan(1.0 * c.size() - 1));

}

Executing our procedure will yield the following output:

it #1 - solution cost: 2.200000

cycles:
[0,3] - [3,0] -
[1,2] - [2,1] -

it #2 - solution cost: 4.000000

cycles:
[0,1] - [1,2] - [2,3] - [3,0] -

solution:
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

Thus we first discover the two-cycle solution; then the second iteration is forced not to include those
cycles, and a new solution is located. This time it consists of one loop, and as expected the cost is higher.
The solution is depicted in Fig. 11.8.

Formulation (11.33) can be improved in some cases by exploiting the graph structure. Some simple
tricks follow.

136

Self-loops

Self-loops are never part of a TSP tour. Typically self-loops are removed by penalizing them with a huge
cost 𝑐𝑖𝑖. Although this works in practice, it is more advisable to just fix the corresponding variables to
zero, i.e.

𝑥𝑖𝑖 = 0 ∀𝑖 = 1, . . . , 𝑛. (11.34)

This removes redundant variables, and avoids unnecessarily large coefficients that can negatively affect
the solver.

Constraints (11.34) are easily implemented as follows:

M.constraint(x.diag(), Domain.equalsTo(0.));

Two-arc loops removal

In networks with more than two nodes two-loop arcs can also be ignored. They are simple to detect and
their number is of the same order as the size of the graph. The constraints we need to add are:

𝑥𝑖𝑗 + 𝑥𝑗𝑖 ≤ 1 ∀𝑖, 𝑗 = 1, . . . , 𝑛. (11.35)

Constraints (11.35) are easily implemented as follows:

M.constraint(Expr.add(x, x.transpose()), Domain.lessThan(1.0));

The complete working example

Listing 11.17: The complete code for the TSP examples.

public class tsp {
public static void main(String [] args) {

int []A_i = new int[] {0, 1, 2, 3, 1, 0, 2, 0};
int []A_j = new int[] {1, 2, 3, 0, 0, 2, 1, 3};
double []C_v = new double[] {1., 1., 1., 1., 0.1, 0.1, 0.1, 0.1};

int n = 4;

Matrix costs = Matrix.sparse(n, n, A_i, A_j, C_v);
Matrix adj = Matrix.sparse(n, n, A_i, A_j, 1.);

tsp_fusion(n, adj, costs, true, false); //we do not remove loops of lenght 2
tsp_fusion(n, adj, costs, true, true); //we include all constraints

}

public static void tsp_fusion(int n,
Matrix A,
Matrix C,
boolean remove_loops,
boolean remove_2_hop_loops) {

Model M = new Model();

Variable x = M.variable(new int[] {n, n}, Domain.binary());

M.constraint(Expr.sum(x, 0), Domain.equalsTo(1.0));
M.constraint(Expr.sum(x, 1), Domain.equalsTo(1.0));
M.constraint(x, Domain.lessThan(A));

(continues on next page)

137

(continued from previous page)

M.objective(ObjectiveSense.Minimize, Expr.dot(C, x));

if (remove_loops)
M.constraint(x.diag(), Domain.equalsTo(0.));

if (remove_2_hop_loops)
M.constraint(Expr.add(x, x.transpose()), Domain.lessThan(1.0));

int it = 0;

while (true) {
it = it + 1;
M.solve();

try {
System.out.printf("\nit #%d - solution cost: %f\n", it, M.primalObjValue());

} catch (SolutionError e) {}

ArrayList<ArrayList< int[] > > cycles = new ArrayList<ArrayList< int[] > >();

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {

try {
if (x.level()[i * n + j] <= 0.5) continue;

} catch (SolutionError e) {}

boolean found = false;
for (ArrayList<int[]> c : cycles) {

for (int[] a : c)
if (i == a[0] || j == a[0] ||

i == a[1] || j == a[1]) {
c.add(new int[] {i, j});
found = true;
break;

}
if (found == true) break;

}

if (found != true) {
ArrayList< int[] > ll = new ArrayList<int[]>();
ll.add(new int[] {i, j});
cycles.add(ll);

}
}

}

System.out.printf("\ncycles:\n");
for (ArrayList<int[]> c : cycles) {

for (int[] a : c)
System.out.printf("[%d,%d] - ", a[0], a[1]);

System.out.printf("\n");
}

if (cycles.size() == 1) break;

(continues on next page)

138

(continued from previous page)

for (ArrayList<int []> c : cycles) {
int [][] cc = new int[c.size()][2];
c.toArray(cc);
M.constraint(Expr.sum(x.pick(cc)), Domain.lessThan(1.0 * c.size() - 1));

}
}

try {
System.out.printf("\nsolution:\n");
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++)
System.out.printf(" %d ", ((int) x.level()[i * n + j]));

System.out.printf("\n");
}

} catch (SolutionError e) {}
}

}

11.9 Nearest Correlation Matrix Problem

A correlation matrix is a symmetric positive definite matrix with unit diagonal. This term has origins in
statistics, since the matrix whose entries are the correlation coefficients of a sequence of random variables
has all these properties.

In this section we study variants of the problem of approximating a given symmetric matrix 𝐴 with
correlation matrices:

• find the correlation matrix 𝑋 nearest to 𝐴 in the Frobenius norm,

• find an approximation of the form 𝐷+𝑋 where 𝐷 is a diagonal matrix with positive diagonal and
𝑋 is a positive semidefinite matrix of low rank, using the combination of Frobenius and nuclear
norm.

Both problems are related to portfolio optimization, where one can often have a matrix 𝐴 that only
approximates the correlations of stocks. For subsequent optimizations one would like to approximate 𝐴
with a correlation matrix or, in the factor model, with 𝐷 + 𝑉 𝑉 𝑇 with 𝑉 𝑉 𝑇 of small rank.

11.9.1 Nearest correlation with the Frobenius norm
The Frobenius norm of a real matrix 𝑀 is defined as

‖𝑀‖𝐹 =

⎛⎝∑︁
𝑖,𝑗

𝑀2
𝑖,𝑗

⎞⎠1/2

and with respect to this norm our optimization problem can be expressed simply as:

minimize ‖𝐴−𝑋‖𝐹
subject to diag(𝑋) = 𝑒,

𝑋 ⪰ 0.
(11.36)

We can exploit the symmetry of 𝐴 and 𝑋 to get a compact vector representation. To this end we make
use of the following mapping from a symmetric matrix to a flattened vector containing the (scaled) lower
triangular part of the matrix:

vec : R𝑛×𝑛 → R𝑛(𝑛+1)/2

vec(𝑀) = (𝛼11𝑀11, 𝛼21𝑀21, 𝛼22𝑀22, . . . , 𝛼𝑛1𝑀𝑛1, . . . , 𝛼𝑛𝑛𝑀𝑛𝑛)

𝛼𝑖𝑗 =

{︃
1 𝑗 = 𝑖√

2 𝑗 < 𝑖

(11.37)

Note that ‖𝑀‖𝐹 = ‖vec(𝑀)‖2. The Fusion implementation of vec is as follows:

139

Listing 11.18: Implementation of function 𝑣𝑒𝑐 in (11.37).

/** Assuming that e is an NxN expression, return the lower triangular part as a␣
→˓vector.

*/
public static Expression vec(Expression e) {

int N = e.getShape()[0];
int[] msubi = new int[N * (N + 1) / 2];
int[] msubj = new int[N * (N + 1) / 2];
double[] mcof = new double[N * (N + 1) / 2];

for (int i = 0, k = 0; i < N; ++i)
for (int j = 0; j < i + 1; ++j, ++k) {

msubi[k] = k;
msubj[k] = i * N + j;
if (i == j) mcof[k] = 1.0;
else mcof[k] = Math.sqrt(2);

}

Matrix S = Matrix.sparse(N * (N + 1) / 2, N * N, msubi, msubj, mcof);
return Expr.mul(S, Expr.flatten(e));

}

That leads to an optimization problem with both conic quadratic and semidefinite constraints:

minimize 𝑡
subject to (𝑡, vec(𝐴−𝑋)) ∈ 𝒬,

diag(𝑋) = 𝑒,
𝑋 ⪰ 0.

(11.38)

Code example

Listing 11.19: Implementation of problem (11.38).

private static void nearestcorr(Matrix A)
throws SolutionError {

int N = A.numRows();

Model M = new Model("NearestCorrelation");
try {

// Setting up the variables
Variable X = M.variable("X", Domain.inPSDCone(N));
Variable t = M.variable("t", 1, Domain.unbounded());

// (t, vec (A-X)) \in Q
M.constraint(Expr.vstack(t, vec(Expr.sub(A, X))), Domain.inQCone());

// diag(X) = e
M.constraint(X.diag(), Domain.equalsTo(1.0));

// Objective: Minimize t
M.objective(ObjectiveSense.Minimize, t);

// Solve the problem
M.solve();

// Get the solution values
(continues on next page)

140

(continued from previous page)

System.out.println("X = \n" + mattostr(X.level(), N));
System.out.println("t = \n" + mattostr(t.level(), N));

} finally {
M.dispose();

}
}

We use the following input

Listing 11.20: Input for the nearest correlation problem.

int N = 5;
Matrix A = Matrix.dense(N, N,

new double[] { 0.0, 0.5, -0.1, -0.2, 0.5,
0.5, 1.25, -0.05, -0.1, 0.25,
-0.1, -0.05, 0.51, 0.02, -0.05,
-0.2, -0.1, 0.02, 0.54, -0.1,
0.5, 0.25, -0.05, -0.1, 1.25

});

The expected output is the following (small differences may apply):

X =
[[1. 0.50001941 -0.09999994 -0.20000084 0.50001941]
[0.50001941 1. -0.04999551 -0.09999154 0.24999101]
[-0.09999994 -0.04999551 1. 0.01999746 -0.04999551]
[-0.20000084 -0.09999154 0.01999746 1. -0.09999154]
[0.50001941 0.24999101 -0.04999551 -0.09999154 1.]]

11.9.2 Nearest Correlation with Nuclear-norm Penalty
Next, we consider the approximation of 𝐴 of the form 𝐷 + 𝑋 where 𝐷 = diag(𝑤), 𝑤 ≥ 0 and 𝑋 ⪰ 0.
We will also aim at minimizing the rank of 𝑋. This can be approximated by a relaxed linear objective
penalizing the trace Tr(𝑋) (which in this case is the nuclear norm of 𝑋 and happens to be the sum of
its eigenvalues).

The combination of these constraints leads to a problem:

minimize ‖𝑋 + diag(𝑤) −𝐴‖𝐹 + 𝛾Tr(𝑋),
subject to 𝑋 ⪰ 0, 𝑤 ≥ 0,

where the parameter 𝛾 controls the tradeoff between the quality of approximation and the rank of 𝑋.
Exploit the mapping vec defined in (11.37) we can express this problem as:

minimize 𝑡 + 𝛾Tr(𝑋)
subject to (𝑡, vec(𝑋 + diag(𝑤) −𝐴)) ∈ 𝒬,

𝑋 ⪰ 0, 𝑤 ≥ 0.
(11.39)

Code example

Listing 11.21: Implementation of problem (11.39).

/* Nearest correlation with nuclear norm penalty */
private static void nearestcorr_nn(Matrix A, double[] gammas, double[] res, int[]␣

→˓rank)
throws SolutionError {

int N = A.numRows();
Model M = new Model("NucNorm");

(continues on next page)

141

(continued from previous page)

try {
// Setup variables
Variable t = M.variable("t", 1, Domain.unbounded());
Variable X = M.variable("X", Domain.inPSDCone(N));
Variable w = M.variable("w", N, Domain.greaterThan(0.0));

// (t, vec (X + diag(w) - A)) in Q
Expression D = Expr.mulElm(Matrix.eye(N), Var.repeat(w, N, 1));
M.constraint(Expr.vstack(t, vec(Expr.sub(Expr.add(X, D), A))), Domain.

→˓inQCone());

// Trace(X)
Expression TX = Expr.sum(X.diag());

for (int k = 0; k < gammas.length; ++k) {
// Objective: Minimize t + gamma*Tr(X)
M.objective(ObjectiveSense.Minimize, Expr.add(t, Expr.mul(gammas[k], TX)));
M.solve();

// Get the eigenvalues of X and approximate its rank
double[] d = new double[N];
LinAlg.syeig(mosek.uplo.lo, N, X.level(), d);
int rnk = 0; for (int i = 0; i < d.length; ++i) if (d[i] > 1e-6) ++rnk;

res[k] = t.level()[0];
rank[k] = rnk;

}
} finally {

M.dispose();
}

}

We feed MOSEK with the same input as in Sec. 11.9.1. The problem is solved for a range of values
𝛾 values, to demonstrate how the penalty term helps achieve a low rank solution. To this extent we
report both the rank of 𝑋 and the residual norm ‖𝑋 + diag(𝑤) −𝐴‖𝐹 .

--- Nearest Correlation with Nuclear Norm---
gamma=0.000000, res=3.076163e-01, rank=4
gamma=0.100000, res=4.251692e-01, rank=2
gamma=0.200000, res=5.112082e-01, rank=1
gamma=0.300000, res=5.298432e-01, rank=1
gamma=0.400000, res=5.592686e-01, rank=1
gamma=0.500000, res=6.045702e-01, rank=1
gamma=0.600000, res=6.764402e-01, rank=1
gamma=0.700000, res=8.009913e-01, rank=1
gamma=0.800000, res=1.062385e+00, rank=1
gamma=0.900000, res=1.129513e+00, rank=0
gamma=1.000000, res=1.129513e+00, rank=0

142

11.10 Semidefinite Relaxation of MIQCQO Problems

In this case study we will discuss a fairly common application for Semidefinite Optimization: to define
a continuous semidefinite relaxation of a mixed-integer quadratic optimization problem. This section is
based on the method by Park and Boyd [PB15].

We will focus on problems of the form:

minimize 𝑥𝑇𝑃𝑥 + 2𝑞𝑇𝑥
subject to 𝑥 ∈ Z𝑛 (11.40)

where 𝑞 ∈ R𝑛 and 𝑃 ∈ 𝒮𝑛×𝑛
+ is positive semidefinite. There are many important problems that can be

reformulated as (11.40), for example:

• integer least squares: minimize ‖𝐴𝑥− 𝑏‖22 subject to 𝑥 ∈ Z𝑛,

• closest vector problem: minimize ‖𝑣 − 𝑧‖2 subject to 𝑧 ∈ {𝐵𝑥 | 𝑥 ∈ Z𝑛}.

Following [PB15], we can derive a relaxed continuous model. We first relax the integrality constraint

minimize 𝑥𝑇𝑃𝑥 + 2𝑞𝑇𝑥
subject to 𝑥𝑖(𝑥𝑖 − 1) ≥ 0 𝑖 = 1, . . . , 𝑛.

The last constraint is still non-convex. We introduce a new variable 𝑋 ∈ R𝑛×𝑛, such that 𝑋 = 𝑥 · 𝑥𝑇 .
This allows us to write an equivalent formulation:

minimize Tr(𝑃𝑋) + 2𝑞𝑇𝑥
subject to diag(𝑋) ≥ 𝑥,

𝑋 = 𝑥 · 𝑥𝑇 .

To get a conic problem we relax the last constraint and apply the Schur complement. The final relaxation
follows:

minimize Tr(𝑃𝑋) + 2𝑞𝑇𝑥
subject to diag(𝑋) ≥ 𝑥,[︂

𝑋 𝑥
𝑥𝑇 1

]︂
∈ 𝒮𝑛+1

+ .
(11.41)

Fusion Implementation

Implementing model (11.41) in Fusion is very simple. We assume the input 𝑛, 𝑃 and 𝑞. Then we proceed
creating the optimization model

Model M = new Model();

The important step is to define a single PSD variable

𝑍 =

[︂
𝑋 𝑥
𝑥𝑇 1

]︂
∈ 𝒮𝑛+1

+ .

Our code will create 𝑍 and two slices that correspond to 𝑋 and 𝑥:

Variable Z = M.variable("Z", Domain.inPSDCone(n + 1));

Variable X = Z.slice(new int[] {0, 0}, new int[] {n, n});
Variable x = Z.slice(new int[] {0, n}, new int[] {n, n + 1});

Then we define the constraints:

M.constraint(Expr.sub(X.diag(), x), Domain.greaterThan(0.));
M.constraint(Z.index(n, n), Domain.equalsTo(1.));

The objective function uses several available linear expressions:

143

M.objective(ObjectiveSense.Minimize, Expr.add(
Expr.sum(Expr.mulElm(P, X)),
Expr.mul(2.0, Expr.dot(x, q))

));

Note that the trace operator is not directly available in Fusion, but it can easily be defined from
scratch.

Complete code

Listing 11.22: Fusion implementation of model (11.41).

static Model miqcqp_sdo_relaxation(int n, Matrix P, double[] q) {
Model M = new Model();

Variable Z = M.variable("Z", Domain.inPSDCone(n + 1));

Variable X = Z.slice(new int[] {0, 0}, new int[] {n, n});
Variable x = Z.slice(new int[] {0, n}, new int[] {n, n + 1});

M.constraint(Expr.sub(X.diag(), x), Domain.greaterThan(0.));
M.constraint(Z.index(n, n), Domain.equalsTo(1.));

M.objective(ObjectiveSense.Minimize, Expr.add(
Expr.sum(Expr.mulElm(P, X)),
Expr.mul(2.0, Expr.dot(x, q))

));

return M;
}

Numerical Examples

We present now some simple numerical experiments for the integer least squares problem:

minimize ‖𝐴𝑥− 𝑏‖22
subject to 𝑥 ∈ Z𝑛.

(11.42)

It corresponds to the problem (11.40) with 𝑃 = 𝐴𝑇𝐴 and 𝑞 = −𝐴𝑇 𝑏. Following [PB15] we will generate
the input data by taking all entries of 𝐴 from the normal distribution 𝒩 (0, 1) and setting 𝑏 = 𝐴𝑐 where
𝑐 comes from the uniform distribution on [0, 1].

We implement the linear algebra operations using the LinAlg module available in MOSEK.
An integer rounding xRound of the solution to (11.41) is a feasible integer solution to (11.42). We

can compare it to the actual optimal integer solution xOpt, whenever the latter is available. Of course it
is very simple to formulate the integer least squares problem in Fusion:

static Model int_least_squares(int n, Matrix A, double[] b) {
Model M = new Model();

Variable x = M.variable("x", n, Domain.integral(Domain.unbounded()));
Variable t = M.variable("t", 1, Domain.unbounded());

M.constraint(Expr.vstack(t, Expr.sub(Expr.mul(A, x), b)), Domain.inQCone());
M.objective(ObjectiveSense.Minimize, t);

return M;
}

All that remains is to compare the values of the objective function ‖𝐴𝑥− 𝑏‖2 for the two solutions.

144

Listing 11.23: The comparison of two solutions.

// problem dimensions
int n = 20;
int m = 2 * n;

// problem data
double[] A = new double[m * n];
double[] b = new double[m];
double[] c = new double[n];
double[] P = new double[n * n];
double[] q = new double[n];

for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++)

A[i * n + j] = rnd.nextGaussian();
c[j] = rnd.nextDouble();

}

// P = A^T A
LinAlg.syrk(mosek.uplo.lo, mosek.transpose.yes,

n, m, 1.0, A, 0., P);
for (int j = 0; j < n; j++) for (int i = j + 1; i < n; i++) P[i * n + j] = P[j *␣

→˓n + i];

// q = -P c, b = A c
LinAlg.gemv(mosek.transpose.no, n, n, -1.0, P, c, 0., q);
LinAlg.gemv(mosek.transpose.no, m, n, 1.0, A, c, 0., b);

// Solve the problems
Model M = miqcqp_sdo_relaxation(n, Matrix.dense(n, n, P), q);
Model Mint = int_least_squares(n, Matrix.dense(n, m, A).transpose(), b);
M.solve();
Mint.solve();

// rounded and optimal solution
double[] xRound = M.getVariable("Z").slice(new int[] {0, n}, new int[] {n, n + 1}

→˓).level();
for (int i = 0; i < n; i++) xRound[i] = java.lang.Math.round(xRound[i]);
double[] yRound = b.clone();
double[] xOpt = Mint.getVariable("x").level();
double[] yOpt = b.clone();
LinAlg.gemv(mosek.transpose.no, m, n, 1.0, A, xRound, -1.0, yRound); //␣

→˓Ax_round-b
LinAlg.gemv(mosek.transpose.no, m, n, 1.0, A, xOpt, -1.0, yOpt); //␣

→˓Ax_opt-b

System.out.println(M.getSolverDoubleInfo("optimizerTime") + " " + Mint.
→˓getSolverDoubleInfo("optimizerTime"));

System.out.println(java.lang.Math.sqrt(LinAlg.dot(m, yRound, yRound)) + " " +
java.lang.Math.sqrt(LinAlg.dot(m, yOpt, yOpt)));

Experimentally the objective value for xRound approximates the optimal solution with a factor of
1.1-1.4. We refer to [PB15] for a more involved iterative rounding procedure, producing integer solutions
of even better quality, and for a detailed discussion of test results.

145

Chapter 12

Problem Formulation and Solutions

In this chapter we will discuss the following topics:

• The formal, mathematical formulations of the problem types that MOSEK can solve and their
duals.

• The solution information produced by MOSEK.

• The infeasibility certificate produced by MOSEK if the problem is infeasible.

For the underlying mathematical concepts, derivations and proofs see the Modeling Cookbook or any
book on convex optimization. This chapter explains how the related data is organized specifically within
the MOSEK API.

12.1 Linear Optimization

MOSEK accepts linear optimization problems of the form

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

(12.1)

where

• 𝑚 is the number of constraints.

• 𝑛 is the number of decision variables.

• 𝑥 ∈ R𝑛 is a vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear part of the objective function.

• 𝑐𝑓 ∈ R is a constant term in the objective

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

Lower and upper bounds can be infinite, or in other words the corresponding bound may be omitted.
A primal solution (𝑥) is (primal) feasible if it satisfies all constraints in (12.1). If (12.1) has at least

one primal feasible solution, then (12.1) is said to be (primal) feasible. In case (12.1) does not have a
feasible solution, the problem is said to be (primal) infeasible

146

https://docs.mosek.com/modeling-cookbook/index.html

12.1.1 Duality for Linear Optimization
Corresponding to the primal problem (12.1), there is a dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

(12.2)

where

• 𝑠𝑐𝑙 are the dual variables for lower bounds of constraints,

• 𝑠𝑐𝑢 are the dual variables for upper bounds of constraints,

• 𝑠𝑥𝑙 are the dual variables for lower bounds of variables,

• 𝑠𝑥𝑢 are the dual variables for upper bounds of variables.

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at
0, and we use the convention that the product of the bound value and the corresponding dual variable is
0. This is equivalent to removing the corresponding dual variable from the dual problem. For example:

𝑙𝑥𝑗 = −∞ ⇒ (𝑠𝑥𝑙)𝑗 = 0 and 𝑙𝑥𝑗 · (𝑠𝑥𝑙)𝑗 = 0.

A solution

(𝑦, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢)

to the dual problem is feasible if it satisfies all the constraints in (12.2). If (12.2) has at least one feasible
solution, then (12.2) is (dual) feasible, otherwise the problem is (dual) infeasible.

A solution

(𝑥*, 𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*)

is denoted a primal-dual feasible solution, if (𝑥*) is a solution to the primal problem (12.1) and
(𝑦*, (𝑠𝑐𝑙)

, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*) is a solution to the corresponding dual problem (12.2). We also define
an auxiliary vector

(𝑥𝑐)* := 𝐴𝑥*

containing the activities of linear constraints.
For a primal-dual feasible solution we define the duality gap as the difference between the primal and

the dual objective value,

𝑐𝑇𝑥* + 𝑐𝑓 −
{︀

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* + 𝑐𝑓

}︀
=
∑︀𝑚−1

𝑖=0 [(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) + (𝑠𝑐𝑢)*𝑖 (𝑢𝑐

𝑖 − (𝑥𝑐
𝑖)

*)]

+
∑︀𝑛−1

𝑗=0

[︀
(𝑠𝑥𝑙)*𝑗 (𝑥𝑗 − 𝑙𝑥𝑗) + (𝑠𝑥𝑢)*𝑗 (𝑢𝑥

𝑗 − 𝑥*
𝑗)
]︀
≥ 0

(12.3)

where the first relation can be obtained by transposing and multiplying the dual constraints (12.2) by
𝑥* and (𝑥𝑐)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

It is well-known that a linear optimization problem has an optimal solution if and only if there exist
feasible primal-dual solution so that the duality gap is zero, or, equivalently, that the complementarity
conditions

(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑐𝑢)*𝑖 (𝑢𝑐
𝑖 − (𝑥𝑐

𝑖)
*) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑥𝑙)*𝑗 (𝑥*
𝑗 − 𝑙𝑥𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,

(𝑠𝑥𝑢)*𝑗 (𝑢𝑥
𝑗 − 𝑥*

𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,

are satisfied.
If (12.1) has an optimal solution and MOSEK solves the problem successfully, both the primal and

dual solution are reported, including a status indicating the exact state of the solution.

147

12.1.2 Infeasibility for Linear Optimization

Primal Infeasible Problems

If the problem (12.1) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

(12.4)

such that the objective value is strictly positive, i.e. a solution

(𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*)

to (12.4) so that

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* > 0.

Such a solution implies that (12.4) is unbounded, and that (12.1) is infeasible.

Dual Infeasible Problems

If the problem (12.2) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize 𝑐𝑇𝑥

subject to 𝑙̂𝑐 ≤ 𝐴𝑥 ≤ 𝑢̂𝑐,

𝑙̂𝑥 ≤ 𝑥 ≤ 𝑢̂𝑥,

(12.5)

where

𝑙̂𝑐𝑖 =

{︂
0 if 𝑙𝑐𝑖 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑐

𝑖 :=

{︂
0 if 𝑢𝑐

𝑖 < ∞,
∞ otherwise,

}︂
and

𝑙̂𝑥𝑗 =

{︂
0 if 𝑙𝑥𝑗 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑥

𝑗 :=

{︂
0 if 𝑢𝑥

𝑗 < ∞,
∞ otherwise,

}︂
such that

𝑐𝑇𝑥 < 0.

Such a solution implies that (12.5) is unbounded, and that (12.2) is infeasible.
In case that both the primal problem (12.1) and the dual problem (12.2) are infeasible, MOSEK

will report only one of the two possible certificates — which one is not defined (MOSEK returns the
first certificate found).

12.1.3 Minimalization vs. Maximalization
When the objective sense of problem (12.1) is maximization, i.e.

maximize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

148

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (12.2). The dual problem thus takes the form

minimize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0.

This means that the duality gap, defined in (12.3) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0,

(12.6)

such that the objective value is strictly negative

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* < 0.

Similarly, the certificate of dual infeasibility is an 𝑥 satisfying the requirements of (12.5) such that
𝑐𝑇𝑥 > 0.

12.2 Conic Optimization

Conic optimization is an extension of linear optimization (see Sec. 12.1) allowing conic domains to be
specified for affine expressions. A conic optimization problem to be solved by MOSEK can be written
as

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟,

(12.7)

where

• 𝑚 is the number of constraints.

• 𝑛 is the number of decision variables.

• 𝑥 ∈ R𝑛 is a vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear part of the objective function.

• 𝑐𝑓 ∈ R is a constant term in the objective

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

is the same as in Sec. 12.1 and moreover:

• 𝐹 ∈ R𝑘×𝑛 is the affine conic constraint matrix.,

• 𝑔 ∈ R𝑘 is the affine conic constraint constant term vector.,

• 𝒟 is a Cartesian product of conic domains, namely 𝒟 = 𝒟1 × · · · × 𝒟𝑝, where 𝑝 is the number of
individual affine conic constraints (ACCs), and each domain is one from Sec. 14.8.

The total dimension of the domain 𝒟 must be equal to 𝑘, the number of rows in 𝐹 and 𝑔. Lower and
upper bounds can be infinite, or in other words the corresponding bound may be omitted.

MOSEK supports also the cone of positive semidefinite matrices. In order not to obscure this section
with additional notation, that extension is discussed in Sec. 12.3.

149

12.2.1 Duality for Conic Optimization
Corresponding to the primal problem (12.7), there is a dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 𝑔𝑇 𝑦̇ + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 𝑐,

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑦̇ ∈ 𝒟*,

(12.8)

where

• 𝑠𝑐𝑙 are the dual variables for lower bounds of constraints,

• 𝑠𝑐𝑢 are the dual variables for upper bounds of constraints,

• 𝑠𝑥𝑙 are the dual variables for lower bounds of variables,

• 𝑠𝑥𝑢 are the dual variables for upper bounds of variables,

• 𝑦̇ are the dual variables for affine conic constraints,

• the dual domain 𝒟* = 𝒟*
1 × · · · × 𝒟*

𝑝 is a Cartesian product of cones dual to 𝒟𝑖.

One can check that the dual problem of the dual problem is identical to the original primal problem.
If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at

0, and we use the convention that the product of the bound value and the corresponding dual variable
is 0. This is equivalent to removing the corresponding dual variable (𝑠𝑥𝑙)𝑗 from the dual problem. For
example:

𝑙𝑥𝑗 = −∞ ⇒ (𝑠𝑥𝑙)𝑗 = 0 and 𝑙𝑥𝑗 · (𝑠𝑥𝑙)𝑗 = 0.

A solution

(𝑦, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢, 𝑦̇)

to the dual problem is feasible if it satisfies all the constraints in (12.8). If (12.8) has at least one feasible
solution, then (12.8) is (dual) feasible, otherwise the problem is (dual) infeasible.

A solution

(𝑥*, 𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*, (𝑦̇)*)

is denoted a primal-dual feasible solution, if (𝑥*) is a solution to the primal problem (12.7) and
(𝑦*, (𝑠𝑐𝑙)

, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*, (𝑦̇)*) is a solution to the corresponding dual problem (12.8). We also define
an auxiliary vector

(𝑥𝑐)* := 𝐴𝑥*

containing the activities of linear constraints.
For a primal-dual feasible solution we define the duality gap as the difference between the primal and

the dual objective value,

𝑐𝑇𝑥* + 𝑐𝑓 −
{︀

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* − 𝑔𝑇 (𝑦̇)* + 𝑐𝑓

}︀
=
∑︀𝑚−1

𝑖=0 [(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) + (𝑠𝑐𝑢)*𝑖 (𝑢𝑐

𝑖 − (𝑥𝑐
𝑖)

*)]

+
∑︀𝑛−1

𝑗=0

[︀
(𝑠𝑥𝑙)*𝑗 (𝑥𝑗 − 𝑙𝑥𝑗) + (𝑠𝑥𝑢)*𝑗 (𝑢𝑥

𝑗 − 𝑥*
𝑗)
]︀

+((𝑦̇)*)𝑇 (𝐹𝑥* + 𝑔) ≥ 0

(12.9)

where the first relation can be obtained by transposing and multiplying the dual constraints (12.2) by
𝑥* and (𝑥𝑐)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

150

It is well-known that, under some non-degeneracy assumptions that exclude ill-posed cases, a conic
optimization problem has an optimal solution if and only if there exist feasible primal-dual solution so
that the duality gap is zero, or, equivalently, that the complementarity conditions

(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑐𝑢)*𝑖 (𝑢𝑐
𝑖 − (𝑥𝑐

𝑖)
*) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑥𝑙)*𝑗 (𝑥*
𝑗 − 𝑙𝑥𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,

(𝑠𝑥𝑢)*𝑗 (𝑢𝑥
𝑗 − 𝑥*

𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,
((𝑦̇)*)𝑇 (𝐹𝑥* + 𝑔) = 0,

(12.10)

are satisfied.
If (12.7) has an optimal solution and MOSEK solves the problem successfully, both the primal and

dual solution are reported, including a status indicating the exact state of the solution.

12.2.2 Infeasibility for Conic Optimization

Primal Infeasible Problems

If the problem (12.7) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 𝑔𝑇 𝑦̇
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑦̇ ∈ 𝒟*,

(12.11)

such that the objective value is strictly positive, i.e. a solution

(𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*, (𝑦̇)*)

to (12.11) so that

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* − 𝑔𝑇 𝑦̇ > 0.

Such a solution implies that (12.11) is unbounded, and that (12.7) is infeasible.

Dual Infeasible Problems

If the problem (12.8) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize 𝑐𝑇𝑥

subject to 𝑙̂𝑐 ≤ 𝐴𝑥 ≤ 𝑢̂𝑐,

𝑙̂𝑥 ≤ 𝑥 ≤ 𝑢̂𝑥,
𝐹𝑥 ∈ 𝒟

(12.12)

where

𝑙̂𝑐𝑖 =

{︂
0 if 𝑙𝑐𝑖 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑐

𝑖 :=

{︂
0 if 𝑢𝑐

𝑖 < ∞,
∞ otherwise,

}︂
(12.13)

and

𝑙̂𝑥𝑗 =

{︂
0 if 𝑙𝑥𝑗 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑥

𝑗 :=

{︂
0 if 𝑢𝑥

𝑗 < ∞,
∞ otherwise,

}︂
(12.14)

151

such that

𝑐𝑇𝑥 < 0.

Such a solution implies that (12.12) is unbounded, and that (12.8) is infeasible.
In case that both the primal problem (12.7) and the dual problem (12.8) are infeasible, MOSEK

will report only one of the two possible certificates — which one is not defined (MOSEK returns the
first certificate found).

12.2.3 Minimalization vs. Maximalization
When the objective sense of problem (12.7) is maximization, i.e.

maximize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟,

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (12.2). The dual problem thus takes the form

minimize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 𝑔𝑇 𝑦̇ + 𝑐𝑓

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0,

−𝑦̇ ∈ 𝒟*

This means that the duality gap, defined in (12.9) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0,

−𝑦̇ ∈ 𝒟*

(12.15)

such that the objective value is strictly negative

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* − 𝑔𝑇 𝑦̇ < 0.

Similarly, the certificate of dual infeasibility is an 𝑥 satisfying the requirements of (12.12) such that
𝑐𝑇𝑥 > 0.

12.3 Semidefinite Optimization

Semidefinite optimization is an extension of conic optimization (see Sec. 12.2) allowing positive semidefi-
nite matrix variables to be used in addition to the usual scalar variables. All the other parts of the input
are defined exactly as in Sec. 12.2, and the discussion from that section applies verbatim to all properties
of problems with semidefinite variables. We only briefly indicate how the corresponding formulae should
be modified with semidefinite terms.

A semidefinite optimization problem can be written as

minimize 𝑐𝑇𝑥 + ⟨𝐶,𝑋⟩ + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 + ⟨𝐴,𝑋⟩ ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + ⟨𝐹 ,𝑋⟩ + 𝑔 ∈ 𝒟,
𝑋𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 1, . . . , 𝑠

where

152

• 𝑚 is the number of constraints.

• 𝑛 is the number of decision variables.

• 𝑥 ∈ R𝑛 is a vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear part of the objective function.

• 𝑐𝑓 ∈ R is a constant term in the objective

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

• 𝐹 ∈ R𝑘×𝑛 is the affine conic constraint matrix.,

• 𝑔 ∈ R𝑘 is the affine conic constraint constant term vector.,

• 𝒟 is a Cartesian product of conic domains, namely 𝒟 = 𝒟1 × · · · × 𝒟𝑝, where 𝑝 is the number of
individual affine conic constraints (ACCs), and each domain is one from Sec. 14.8.

is the same as in Sec. 12.2 and moreover:

• there are 𝑠 symmetric positive semidefinite variables, the 𝑗-th of which is 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ of dimension

𝑟𝑗 ,

• 𝐶 = (𝐶𝑗)𝑗=1,...,𝑠 is a collection of symmetric coefficient matrices in the objective, with 𝐶𝑗 ∈ 𝒮𝑟𝑗 ,
and we interpret the notation ⟨𝐶,𝑋⟩ as a shorthand for

⟨𝐶,𝑋⟩ :=

𝑠∑︁
𝑗=1

⟨𝐶𝑗 , 𝑋𝑗⟩.

• 𝐴 = (𝐴𝑖𝑗)𝑖=1,...,𝑚,𝑗=1,...,𝑠 is a collection of symmetric coefficient matrices in the constraints, with
𝐴𝑖𝑗 ∈ 𝒮𝑟𝑗 , and we interpret the notation ⟨𝐴,𝑋⟩ as a shorthand for the vector

⟨𝐴,𝑋⟩ :=

⎛⎝ 𝑠∑︁
𝑗=1

⟨𝐴𝑖𝑗 , 𝑋𝑗⟩

⎞⎠
𝑖=1,...,𝑚

.

• 𝐹 = (𝐹 𝑖𝑗)𝑖=1,...,𝑘,𝑗=1,...,𝑠 is a collection of symmetric coefficient matrices in the affine conic con-
straints, with 𝐹 𝑖𝑗 ∈ 𝒮𝑟𝑗 , and we interpret the notation ⟨𝐹 ,𝑋⟩ as a shorthand for the vector

⟨𝐹 ,𝑋⟩ :=

⎛⎝ 𝑠∑︁
𝑗=1

⟨𝐹 𝑖𝑗 , 𝑋𝑗⟩

⎞⎠
𝑖=1,...,𝑘

.

In each case the matrix inner product between symmetric matrices of the same dimension 𝑟 is defined
as

⟨𝑈, 𝑉 ⟩ :=

𝑟∑︁
𝑖=1

𝑟∑︁
𝑗=1

𝑈𝑖𝑗𝑉𝑖𝑗 .

To summarize, above the formulation extends that from Sec. 12.2 by the possibility of including
semidefinite terms in the objective, constraints and affine conic constraints.

153

Duality

The definition of the dual problem (12.8) becomes:

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 𝑔𝑇 𝑦̇ + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 𝑐,

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,

𝐶𝑗 −
∑︀𝑚

𝑖=1 𝑦𝑖𝐴𝑖𝑗 −
∑︀𝑘

𝑖=1 𝑦̇𝑖𝐹 𝑖𝑗 = 𝑆𝑗 , 𝑗 = 1, . . . , 𝑠,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑦̇ ∈ 𝒟*,
𝑆𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 1, . . . , 𝑠.

(12.16)

Complementarity conditions (12.10) include the additional relation:

⟨𝑋𝑗 , 𝑆𝑗⟩ = 0 𝑗 = 1, . . . , 𝑠. (12.17)

Infeasibility

A certificate of primal infeasibility (12.11) is now a feasible solution to:

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 𝑔𝑇 𝑦̇
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,

−
∑︀𝑚

𝑖=1 𝑦𝑖𝐴𝑖𝑗 −
∑︀𝑘

𝑖=1 𝑦̇𝑖𝐹 𝑖𝑗 = 𝑆𝑗 , 𝑗 = 1, . . . , 𝑠,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑦̇ ∈ 𝒟*,
𝑆𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 1, . . . , 𝑠.

(12.18)

such that the objective value is strictly positive.
Similarly, a dual infeasibility certificate (12.12) is a feasible solution to

minimize 𝑐𝑇𝑥 + ⟨𝐶,𝑋⟩
subject to 𝑙̂𝑐 ≤ 𝐴𝑥 + ⟨𝐴,𝑋⟩ ≤ 𝑢̂𝑐,

𝑙̂𝑥 ≤ 𝑥 ≤ 𝑢̂𝑥,
𝐹𝑥 + ⟨𝐹 ,𝑋⟩ ∈ 𝒟,

𝑋𝑗 ∈ 𝒮𝑟𝑗
+ , 𝑗 = 1, . . . , 𝑠

(12.19)

where the modified bounds are as in (12.13) and (12.14) and the objective value is strictly negative.
Below is an outline of the different problem types for quick reference.

Continuous problem formulations

• Linear optimization (LO)

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

• Conic optimization (CO)

Conic optimization extends linear optimization with affine conic constraints (ACC):

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟,

where 𝒟 is a product of domains from Sec. 14.8.

154

• Semidefinite optimization (SDO)

A conic optimization problem can be further extended with semidefinite variables:

minimize 𝑐𝑇𝑥 + ⟨𝐶,𝑋⟩ + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 + ⟨𝐴,𝑋⟩ ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + ⟨𝐹 ,𝑋⟩ + 𝑔 ∈ 𝒟,
𝑋 ∈ 𝒮+,

where 𝒟 is a product of domains from Sec. 14.8 and 𝒮+ is a product of PSD cones meaning that
𝑋 is a sequence of PSD matrix variables.

Mixed-integer extensions

Coninuous problems can be extended with constraints requiring the mixed-integer optimizer. We outline
them briefly here. The continuous part of a mixed-integer problem is formulated according to one of the
continuous types above, however only the primal information and solution fields are relevant, there are
no dual values and no infeasibility certificates.

• Integer variables. Specifies that a subset of variables take integer values, that is

𝑥𝐼 ∈ Z

for some index set 𝐼.

• Disjunctive constraints. Appends disjunctions of the form

𝑡⋁︁
𝑖=1

𝑠𝑖⋀︁
𝑗=1

(𝐷𝑖𝑗𝑥 + 𝑑𝑖𝑗 ∈ 𝒟𝑖𝑗)

ie. a disjunction of conjunctions of linear constraints, where each 𝐷𝑖𝑗𝑥+ 𝑑𝑖𝑗 is an affine expression
of the optimization variables and each 𝒟𝑖𝑗 is an affine domain. Linear and conic problems can be
extended with disjunctive constraints.

155

Chapter 13

Optimizers

The most essential part of MOSEK are the optimizers:

• primal simplex (linear problems),

• dual simplex (linear problems),

• interior-point (linear, quadratic and conic problems),

• mixed-integer (problems with integer variables).

The structure of a successful optimization process is roughly:

• Presolve

1. Elimination: Reduce the size of the problem.

2. Dualizer : Choose whether to solve the primal or the dual form of the problem.

3. Scaling : Scale the problem for better numerical stability.

• Optimization

1. Optimize: Solve the problem using selected method.

2. Terminate: Stop the optimization when specific termination criteria have been met.

3. Report : Return the solution or an infeasibility certificate.

The preprocessing stage is transparent to the user, but useful to know about for tuning purposes.
The purpose of the preprocessing steps is to make the actual optimization more efficient and robust. We
discuss the details of the above steps in the following sections.

13.1 Presolve

Before an optimizer actually performs the optimization the problem is preprocessed using the so-called
presolve. The purpose of the presolve is to

1. remove redundant constraints,

2. eliminate fixed variables,

3. remove linear dependencies,

4. substitute out (implied) free variables, and

5. reduce the size of the optimization problem in general.

156

After the presolved problem has been optimized the solution is automatically postsolved so that the
returned solution is valid for the original problem. Hence, the presolve is completely transparent. For
further details about the presolve phase, please see [AA95] and [AGMeszarosX96].

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If presolve consumes
too much time or memory compared to the reduction in problem size gained it may be disabled. This is
done by setting the parameter presolveUse to "off" .

In the following we describe in more detail the presolve applied to continuous, i.e., linear and conic
optimization problems, see Sec. 13.2 and Sec. 13.3. The mixed-integer optimizer, Sec. 13.4, applies similar
techniques. The two most time-consuming steps of the presolve for continuous optimization problems
are

• the eliminator, and

• the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.

Numerical issues in the presolve

During the presolve the problem is reformulated so that it hopefully solves faster. However, in rare
cases the presolved problem may be harder to solve then the original problem. The presolve may also
be infeasible although the original problem is not. If it is suspected that presolved problem is much
harder to solve than the original, we suggest to first turn the eliminator off by setting the parameter
presolveEliminatorMaxNumTries to 0. If that does not help, then trying to turn entire presolve off
may help.

Since all computations are done in finite precision, the presolve employs some tolerances when con-
cluding a variable is fixed or a constraint is redundant. If it happens that MOSEK incorrectly concludes
a problem is primal or dual infeasible, then it is worthwhile to try to reduce the parameters presolveTolX
and presolveTolS . However, if reducing the parameters actually helps then this should be taken as an
indication that the problem is badly formulated.

Eliminator

The purpose of the eliminator is to eliminate free and implied free variables from the problem using
substitution. For instance, given the constraints

𝑦 =
∑︀

𝑗 𝑥𝑗 ,

𝑦, 𝑥 ≥ 0,

y is an implied free variable that can be substituted out of the problem, if deemed worthwhile. If the
eliminator consumes too much time or memory compared to the reduction in problem size gained it may
be disabled. This can be done by setting the parameter presolveEliminatorMaxNumTries to 0. In rare
cases the eliminator may cause that the problem becomes much hard to solve.

Linear dependency checker

The purpose of the linear dependency check is to remove linear dependencies among the linear equalities.
For instance, the three linear equalities

𝑥1 + 𝑥2 + 𝑥3 = 1,
𝑥1 + 0.5𝑥2 = 0.5,
0.5𝑥2 + 𝑥3 = 0.5.

contain exactly one linear dependency. This implies that one of the constraints can be dropped without
changing the set of feasible solutions. Removing linear dependencies is in general a good idea since it
reduces the size of the problem. Moreover, the linear dependencies are likely to introduce numerical
problems in the optimization phase. It is best practice to build models without linear dependencies, but
that is not always easy for the user to control. If the linear dependencies are removed at the modeling
stage, the linear dependency check can safely be disabled by setting the parameter presolveLindepUse
to "off" .

157

Dualizer

All linear, conic, and convex optimization problems have an equivalent dual problem associated with
them. MOSEK has built-in heuristics to determine if it is more efficient to solve the primal or dual
problem. The form (primal or dual) is displayed in the MOSEK log and available as an information
item from the solver. Should the internal heuristics not choose the most efficient form of the problem it
may be worthwhile to set the dualizer manually by setting the parameters:

• intpntSolveForm : In case of the interior-point optimizer.

• simSolveForm : In case of the simplex optimizer.

Note that currently only linear and conic (but not semidefinite) problems may be automatically
dualized.

Scaling

Problems containing data with large and/or small coefficients, say 1.0𝑒 + 9 or 1.0𝑒 − 7, are often hard
to solve. Significant digits may be truncated in calculations with finite precision, which can result in
the optimizer relying on inaccurate data. Since computers work in finite precision, extreme coefficients
should be avoided. In general, data around the same order of magnitude is preferred, and we will refer to
a problem, satisfying this loose property, as being well-scaled. If the problem is not well scaled, MOSEK
will try to scale (multiply) constraints and variables by suitable constants. MOSEK solves the scaled
problem to improve the numerical properties.

The scaling process is transparent, i.e. the solution to the original problem is reported. It is important
to be aware that the optimizer terminates when the termination criterion is met on the scaled problem,
therefore significant primal or dual infeasibilities may occur after unscaling for badly scaled problems.
The best solution of this issue is to reformulate the problem, making it better scaled.

By default MOSEK heuristically chooses a suitable scaling. The scaling for interior-point and
simplex optimizers can be controlled with the parameters intpntScaling and simScaling respectively.

13.2 Linear Optimization

13.2.1 Optimizer Selection
Two different types of optimizers are available for linear problems: The default is an interior-point
method, and the alternative is the simplex method (primal or dual). The optimizer can be selected using
the parameter optimizer .

The Interior-point or the Simplex Optimizer?

Given a linear optimization problem, which optimizer is the best: the simplex or the interior-point
optimizer? It is impossible to provide a general answer to this question. However, the interior-point
optimizer behaves more predictably: it tends to use between 20 and 100 iterations, almost independently
of problem size, but cannot perform warm-start. On the other hand the simplex method can take
advantage of an initial solution, but is less predictable from cold-start. The interior-point optimizer is
used by default.

The Primal or the Dual Simplex Variant?

MOSEK provides both a primal and a dual simplex optimizer. Predicting which simplex optimizer is
faster is impossible, however, in recent years the dual optimizer has seen several algorithmic and compu-
tational improvements, which, in our experience, make it faster on average than the primal version. Still,
it depends much on the problem structure and size. Setting the optimizer parameter to "freeSimplex"
instructs MOSEK to choose one of the simplex variants automatically.

To summarize, if you want to know which optimizer is faster for a given problem type, it is best to
try all the options.

158

13.2.2 The Interior-point Optimizer
The purpose of this section is to provide information about the algorithm employed in the MOSEK
interior-point optimizer for linear problems and about its termination criteria.

The homogeneous primal-dual problem

In order to keep the discussion simple it is assumed that MOSEK solves linear optimization problems
of standard form

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ 0.
(13.1)

This is in fact what happens inside MOSEK; for efficiency reasons MOSEK converts the problem to
standard form before solving, then converts it back to the input form when reporting the solution.

Since it is not known beforehand whether problem (13.1) has an optimal solution, is primal infeasible
or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason
why MOSEK solves the so-called homogeneous model

𝐴𝑥− 𝑏𝜏 = 0,
𝐴𝑇 𝑦 + 𝑠− 𝑐𝜏 = 0,

−𝑐𝑇𝑥 + 𝑏𝑇 𝑦 − 𝜅 = 0,
𝑥, 𝑠, 𝜏, 𝜅 ≥ 0,

(13.2)

where 𝑦 and 𝑠 correspond to the dual variables in (13.1), and 𝜏 and 𝜅 are two additional scalar variables.
Note that the homogeneous model (13.2) always has solution since

(𝑥, 𝑦, 𝑠, 𝜏, 𝜅) = (0, 0, 0, 0, 0)

is a solution, although not a very interesting one. Any solution

(𝑥*, 𝑦*, 𝑠*, 𝜏*, 𝜅*)

to the homogeneous model (13.2) satisfies

𝑥*
𝑗𝑠

*
𝑗 = 0 and 𝜏*𝜅* = 0.

Moreover, there is always a solution that has the property 𝜏* + 𝜅* > 0.
First, assume that 𝜏* > 0 . It follows that

𝐴𝑥*

𝜏* = 𝑏,

𝐴𝑇 𝑦*

𝜏* + 𝑠*

𝜏* = 𝑐,

−𝑐𝑇 𝑥*

𝜏* + 𝑏𝑇 𝑦*

𝜏* = 0,
𝑥*, 𝑠*, 𝜏*, 𝜅* ≥ 0.

This shows that 𝑥*

𝜏* is a primal optimal solution and (𝑦*

𝜏* ,
𝑠*

𝜏*) is a dual optimal solution; this is reported
as the optimal interior-point solution since

(𝑥, 𝑦, 𝑠) =

{︂
𝑥*

𝜏*
,
𝑦*

𝜏*
,
𝑠*

𝜏*

}︂
is a primal-dual optimal solution (see Sec. 12.1 for the mathematical background on duality and opti-
mality).

On other hand, if 𝜅* > 0 then

𝐴𝑥* = 0,
𝐴𝑇 𝑦* + 𝑠* = 0,

−𝑐𝑇𝑥* + 𝑏𝑇 𝑦* = 𝜅*,
𝑥*, 𝑠*, 𝜏*, 𝜅* ≥ 0.

159

This implies that at least one of

𝑐𝑇𝑥* < 0 (13.3)

or

𝑏𝑇 𝑦* > 0 (13.4)

is satisfied. If (13.3) is satisfied then 𝑥* is a certificate of dual infeasibility, whereas if (13.4) is satisfied
then 𝑦* is a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information re-
quired for a solution to the original problem is obtained. A solution to the homogeneous model can be
computed using a primal-dual interior-point algorithm [And09].

Interior-point Termination Criterion

For efficiency reasons it is not practical to solve the homogeneous model exactly. Hence, an exact optimal
solution or an exact infeasibility certificate cannot be computed and a reasonable termination criterion
has to be employed.

In the 𝑘-th iteration of the interior-point algorithm a trial solution

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘)

to homogeneous model is generated, where

𝑥𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘 > 0.

Optimal case

Whenever the trial solution satisfies the criterion⃦⃦⃦
𝐴𝑥𝑘

𝜏𝑘 − 𝑏
⃦⃦⃦
∞

≤ 𝜖𝑝(1 + ‖𝑏‖∞),⃦⃦⃦
𝐴𝑇 𝑦𝑘

𝜏𝑘 + 𝑠𝑘

𝜏𝑘 − 𝑐
⃦⃦⃦
∞

≤ 𝜖𝑑(1 + ‖𝑐‖∞), and

min
(︁

(𝑥𝑘)𝑇 𝑠𝑘

(𝜏𝑘)2
, | 𝑐

𝑇 𝑥𝑘

𝜏𝑘 − 𝑏𝑇 𝑦𝑘

𝜏𝑘 |
)︁

≤ 𝜖𝑔 max

(︂
1,

min(|𝑐𝑇 𝑥𝑘|,|𝑏𝑇 𝑦𝑘|)
𝜏𝑘

)︂
,

(13.5)

the interior-point optimizer is terminated and

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘)

𝜏𝑘

is reported as the primal-dual optimal solution. The interpretation of (13.5) is that the optimizer is
terminated if

• 𝑥𝑘

𝜏𝑘 is approximately primal feasible,

•
{︁

𝑦𝑘

𝜏𝑘 ,
𝑠𝑘

𝜏𝑘

}︁
is approximately dual feasible, and

• the duality gap is almost zero.

Dual infeasibility certificate

On the other hand, if the trial solution satisfies

−𝜖𝑖𝑐
𝑇𝑥𝑘 >

‖𝑐‖∞
max (1, ‖𝑏‖∞)

⃦⃦
𝐴𝑥𝑘

⃦⃦
∞

then the problem is declared dual infeasible and 𝑥𝑘 is reported as a certificate of dual infeasibility. The
motivation for this stopping criterion is as follows: First assume that

⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ = 0 ; then 𝑥𝑘 is an exact

certificate of dual infeasibility. Next assume that this is not the case, i.e.⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ > 0,

160

and define

𝑥̄ := 𝜖𝑖
max (1, ‖𝑏‖∞)

‖𝐴𝑥𝑘‖∞ ‖𝑐‖∞
𝑥𝑘.

It is easy to verify that

‖𝐴𝑥̄‖∞ = 𝜖𝑖
max (1, ‖𝑏‖∞)

‖𝑐‖∞
and − 𝑐𝑇 𝑥̄ > 1,

which shows 𝑥̄ is an approximate certificate of dual infeasibility, where 𝜀𝑖 controls the quality of the
approximation. A smaller value means a better approximation.

Primal infeasibility certificate

Finally, if

𝜖𝑖𝑏
𝑇 𝑦𝑘 >

‖𝑏‖∞
max (1, ‖𝑐‖∞)

⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘

⃦⃦
∞

then 𝑦𝑘 is reported as a certificate of primal infeasibility.

Adjusting optimality criteria

It is possible to adjust the tolerances 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖 using parameters; see table for details.

Table 13.1: Parameters employed in termination criterion

ToleranceParameter name

𝜀𝑝 intpntTolPfeas
𝜀𝑑 intpntTolDfeas
𝜀𝑔 intpntTolRelGap
𝜀𝑖 intpntTolInfeas

The default values of the termination tolerances are chosen such that for a majority of problems
appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the
tolerances usually is not worthwhile. However, an inspection of (13.5) reveals that the quality of the
solution depends on ‖𝑏‖∞ and ‖𝑐‖∞; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal
and dual feasibility at the same rate [And09]. This means that if the optimizer is stopped prematurely
then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that
in most cases all the tolerances, 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖, have to be relaxed together to achieve an effect.

The basis identification discussed in Sec. 13.2.2 requires an optimal solution to work well; hence basis
identification should be turned off if the termination criterion is relaxed.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

Basis Identification

An interior-point optimizer does not return an optimal basic solution unless the problem has a unique
primal and dual optimal solution. Therefore, the interior-point optimizer has an optional post-processing
step that computes an optimal basic solution starting from the optimal interior-point solution. More
information about the basis identification procedure may be found in [AY96]. In the following we provide
an overall idea of the procedure.

There are some cases in which a basic solution could be more valuable:

• a basic solution is often more accurate than an interior-point solution,

• a basic solution can be used to warm-start the simplex algorithm in case of reoptimization,

• a basic solution is in general more sparse, i.e. more variables are fixed to zero. This is partic-
ularly appealing when solving continuous relaxations of mixed integer problems, as well as in all
applications in which sparser solutions are preferred.

161

To illustrate how the basis identification routine works, we use the following trivial example:

minimize 𝑥 + 𝑦
subject to 𝑥 + 𝑦 = 1,

𝑥, 𝑦 ≥ 0.

It is easy to see that all feasible solutions are also optimal. In particular, there are two basic solutions,
namely

(𝑥*
1, 𝑦

*
1) = (1, 0),

(𝑥*
2, 𝑦

*
2) = (0, 1).

The interior point algorithm will actually converge to the center of the optimal set, i.e. to (𝑥*, 𝑦*) =
(1/2, 1/2) (to see this in MOSEK deactivate Presolve).

In practice, when the algorithm gets close to the optimal solution, it is possible to construct in
polynomial time an initial basis for the simplex algorithm from the current interior point solution. This
basis is used to warm-start the simplex algorithm that will provide the optimal basic solution. In most
cases the constructed basis is optimal, or very few iterations are required by the simplex algorithm to
make it optimal and hence the final clean-up phase be short. However, for some cases of ill-conditioned
problems the additional simplex clean up phase may take of lot a time.

By default MOSEK performs a basis identification. However, if a basic solution is not needed, the
basis identification procedure can be turned off. The parameters

• intpntBasis ,

• biIgnoreMaxIter , and

• biIgnoreNumError

control when basis identification is performed.
The type of simplex algorithm to be used (primal/dual) can be tuned with the parameter

biCleanOptimizer , and the maximum number of iterations can be set with biMaxIterations .
Finally, it should be mentioned that there is no guarantee on which basic solution will be returned.

The Interior-point Log

Below is a typical log output from the interior-point optimizer:

Optimizer - threads : 1
Optimizer - solved problem : the dual
Optimizer - Constraints : 2
Optimizer - Cones : 0
Optimizer - Scalar variables : 6 conic : 0
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 3 after factor : 3
Factor - dense dim. : 0 flops : 7.
→˓00e+001
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU ␣
→˓ TIME
0 1.0e+000 8.6e+000 6.1e+000 1.00e+000 0.000000000e+000 -2.208000000e+003 1.
→˓0e+000 0.00
1 1.1e+000 2.5e+000 1.6e-001 0.00e+000 -7.901380925e+003 -7.394611417e+003 2.
→˓5e+000 0.00
2 1.4e-001 3.4e-001 2.1e-002 8.36e-001 -8.113031650e+003 -8.055866001e+003 3.3e-
→˓001 0.00
3 2.4e-002 5.8e-002 3.6e-003 1.27e+000 -7.777530698e+003 -7.766471080e+003 5.7e-
→˓002 0.01
4 1.3e-004 3.2e-004 2.0e-005 1.08e+000 -7.668323435e+003 -7.668207177e+003 3.2e-

(continues on next page)

162

(continued from previous page)

→˓004 0.01
5 1.3e-008 3.2e-008 2.0e-009 1.00e+000 -7.668000027e+003 -7.668000015e+003 3.2e-
→˓008 0.01
6 1.3e-012 3.2e-012 2.0e-013 1.00e+000 -7.667999994e+003 -7.667999994e+003 3.2e-
→˓012 0.01

The first line displays the number of threads used by the optimizer and the second line indicates if
the optimizer chose to solve the primal or dual problem (see intpntSolveForm). The next lines display
the problem dimensions as seen by the optimizer, and the Factor... lines show various statistics. This
is followed by the iteration log.

Using the same notation as in Sec. 13.2.2 the columns of the iteration log have the following meaning:

• ITE: Iteration index 𝑘.

• PFEAS:
⃦⃦
𝐴𝑥𝑘 − 𝑏𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards zero

but may stall at low level due to rounding errors.

• DFEAS:
⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘 − 𝑐𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards

zero but may stall at low level due to rounding errors.

• GFEAS: |− 𝑐𝑇𝑥𝑘 + 𝑏𝑇 𝑦𝑘 −𝜅𝑘| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

• PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to −1 if that is not the case.

• POBJ: 𝑐𝑇𝑥𝑘/𝜏𝑘. An estimate for the primal objective value.

• DOBJ: 𝑏𝑇 𝑦𝑘/𝜏𝑘. An estimate for the dual objective value.

• MU: (𝑥𝑘)𝑇 𝑠𝑘+𝜏𝑘𝜅𝑘

𝑛+1 . The numbers in this column should always converge to zero.

• TIME: Time spent since the optimization started.

13.2.3 The Simplex Optimizer
An alternative to the interior-point optimizer is the simplex optimizer. The simplex optimizer uses a
different method that allows exploiting an initial guess for the optimal solution to reduce the solution
time. Depending on the problem it may be faster or slower to use an initial guess; see Sec. 13.2.1 for a
discussion. MOSEK provides both a primal and a dual variant of the simplex optimizer.

Simplex Termination Criterion

The simplex optimizer terminates when it finds an optimal basic solution or an infeasibility certificate.
A basic solution is optimal when it is primal and dual feasible; see Sec. 12.1 for a definition of the primal
and dual problem. Due to the fact that computations are performed in finite precision MOSEK allows
violations of primal and dual feasibility within certain tolerances. The user can control the allowed
primal and dual tolerances with the parameters basisTolX and basisTolS .

Setting the parameter optimizer to "freeSimplex" instructs MOSEK to select automatically
between the primal and the dual simplex optimizers. Hence, MOSEK tries to choose the best optimizer
for the given problem and the available solution. The same parameter can also be used to force one of
the variants.

163

Starting From an Existing Solution

When using the simplex optimizer it may be possible to reuse an existing solution and thereby reduce
the solution time significantly. When a simplex optimizer starts from an existing solution it is said to
perform a warm-start. If the user is solving a sequence of optimization problems by solving the problem,
making modifications, and solving again, MOSEK will warm-start automatically.

By default MOSEK uses presolve when performing a warm-start. If the optimizer only needs very
few iterations to find the optimal solution it may be better to turn off the presolve.

Numerical Difficulties in the Simplex Optimizers

Though MOSEK is designed to minimize numerical instability, completely avoiding it is impossible
when working in finite precision. MOSEK treats a “numerically unexpected behavior” event inside the
optimizer as a set-back. The user can define how many set-backs the optimizer accepts; if that number
is exceeded, the optimization will be aborted. Set-backs are a way to escape long sequences where the
optimizer tries to recover from an unstable situation.

Examples of set-backs are: repeated singularities when factorizing the basis matrix, repeated loss
of feasibility, degeneracy problems (no progress in objective) and other events indicating numerical
difficulties. If the simplex optimizer encounters a lot of set-backs the problem is usually badly scaled; in
such a situation try to reformulate it into a better scaled problem. Then, if a lot of set-backs still occur,
trying one or more of the following suggestions may be worthwhile:

• Raise tolerances for allowed primal or dual feasibility: increase the value of

– basisTolX , and
– basisTolS .

• Raise or lower pivot tolerance: Change the simplexAbsTolPiv parameter.

• Switch optimizer: Try another optimizer.

• Switch off crash: Set both simPrimalCrash and simDualCrash to 0.

• Experiment with other pricing strategies: Try different values for the parameters

– simPrimalSelection and
– simDualSelection .

• If you are using warm-starts, in rare cases switching off this feature may improve stability. This is
controlled by the simHotstart parameter.

• Increase maximum number of set-backs allowed controlled by simMaxNumSetbacks .

• If the problem repeatedly becomes infeasible try switching off the special degeneracy handling. See
the parameter simDegen for details.

The Simplex Log

Below is a typical log output from the simplex optimizer:

Optimizer - solved problem : the primal
Optimizer - Constraints : 667
Optimizer - Scalar variables : 1424 conic : 0
Optimizer - hotstart : no
ITER DEGITER(%) PFEAS DFEAS POBJ DOBJ ␣
→˓ TIME TOTTIME
0 0.00 1.43e+05 NA 6.5584140832e+03 NA ␣
→˓ 0.00 0.02
1000 1.10 0.00e+00 NA 1.4588289726e+04 NA ␣
→˓ 0.13 0.14
2000 0.75 0.00e+00 NA 7.3705564855e+03 NA ␣

(continues on next page)

164

(continued from previous page)

→˓ 0.21 0.22
3000 0.67 0.00e+00 NA 6.0509727712e+03 NA ␣
→˓ 0.29 0.31
4000 0.52 0.00e+00 NA 5.5771203906e+03 NA ␣
→˓ 0.38 0.39
4533 0.49 0.00e+00 NA 5.5018458883e+03 NA ␣
→˓ 0.42 0.44

The first lines summarize the problem the optimizer is solving. This is followed by the iteration log,
with the following meaning:

• ITER: Number of iterations.

• DEGITER(%): Ratio of degenerate iterations.

• PFEAS: Primal feasibility measure reported by the simplex optimizer. The numbers should be 0 if
the problem is primal feasible (when the primal variant is used).

• DFEAS: Dual feasibility measure reported by the simplex optimizer. The number should be 0 if the
problem is dual feasible (when the dual variant is used).

• POBJ: An estimate for the primal objective value (when the primal variant is used).

• DOBJ: An estimate for the dual objective value (when the dual variant is used).

• TIME: Time spent since this instance of the simplex optimizer was invoked (in seconds).

• TOTTIME: Time spent since optimization started (in seconds).

13.3 Conic Optimization - Interior-point optimizer

For conic optimization problems only an interior-point type optimizer is available.

13.3.1 The homogeneous primal-dual problem
The interior-point optimizer is an implementation of the so-called homogeneous and self-dual algorithm.
For a detailed description of the algorithm, please see [ART03]. In order to keep our discussion simple
we will assume that MOSEK solves a conic optimization problem of the form:

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ∈ 𝒦
(13.6)

where 𝐾 is a convex cone. The corresponding dual problem is

maximize 𝑏𝑇 𝑦
subject to 𝐴𝑇 𝑦 + 𝑠 = 𝑐,

𝑠 ∈ 𝒦*
(13.7)

where 𝒦* is the dual cone of 𝒦. See Sec. 12.2 for definitions.
Since it is not known beforehand whether problem (13.6) has an optimal solution, is primal infeasible

or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason
that MOSEK solves the so-called homogeneous model

𝐴𝑥− 𝑏𝜏 = 0,
𝐴𝑇 𝑦 + 𝑠− 𝑐𝜏 = 0,

−𝑐𝑇𝑥 + 𝑏𝑇 𝑦 − 𝜅 = 0,
𝑥 ∈ 𝒦,
𝑠 ∈ 𝒦*,

𝜏, 𝜅 ≥ 0,

(13.8)

165

where 𝑦 and 𝑠 correspond to the dual variables in (13.6), and 𝜏 and 𝜅 are two additional scalar variables.
Note that the homogeneous model (13.8) always has a solution since

(𝑥, 𝑦, 𝑠, 𝜏, 𝜅) = (0, 0, 0, 0, 0)

is a solution, although not a very interesting one. Any solution

(𝑥*, 𝑦*, 𝑠*, 𝜏*, 𝜅*)

to the homogeneous model (13.8) satisfies

(𝑥*)𝑇 𝑠* + 𝜏*𝜅* = 0

i.e. complementarity. Observe that 𝑥* ∈ 𝒦 and 𝑠* ∈ 𝒦* implies

(𝑥*)𝑇 𝑠* ≥ 0

and therefore

𝜏*𝜅* = 0.

since 𝜏*, 𝜅* ≥ 0. Hence, at least one of 𝜏* and 𝜅* is zero.
First, assume that 𝜏* > 0 and hence 𝜅* = 0. It follows that

𝐴𝑥*

𝜏* = 𝑏,

𝐴𝑇 𝑦*

𝜏* + 𝑠*

𝜏* = 𝑐,

−𝑐𝑇 𝑥*

𝜏* + 𝑏𝑇 𝑦*

𝜏* = 0,
𝑥*/𝜏* ∈ 𝒦,
𝑠*/𝜏* ∈ 𝒦*.

This shows that 𝑥*

𝜏* is a primal optimal solution and (𝑦*

𝜏* ,
𝑠*

𝜏*) is a dual optimal solution; this is reported
as the optimal interior-point solution since

(𝑥, 𝑦, 𝑠) =

(︂
𝑥*

𝜏*
,
𝑦*

𝜏*
,
𝑠*

𝜏*

)︂
is a primal-dual optimal solution.

On other hand, if 𝜅* > 0 then

𝐴𝑥* = 0,
𝐴𝑇 𝑦* + 𝑠* = 0,

−𝑐𝑇𝑥* + 𝑏𝑇 𝑦* = 𝜅*,
𝑥* ∈ 𝒦,
𝑠* ∈ 𝒦*.

This implies that at least one of

𝑐𝑇𝑥* < 0 (13.9)

or

𝑏𝑇 𝑦* > 0 (13.10)

holds. If (13.9) is satisfied, then 𝑥* is a certificate of dual infeasibility, whereas if (13.10) holds then 𝑦*

is a certificate of primal infeasibility.
In summary, by computing an appropriate solution to the homogeneous model, all information re-

quired for a solution to the original problem is obtained. A solution to the homogeneous model can be
computed using a primal-dual interior-point algorithm [And09].

166

13.3.2 Interior-point Termination Criterion
Since computations are performed in finite precision, and for efficiency reasons, it is not possible to solve
the homogeneous model exactly in general. Hence, an exact optimal solution or an exact infeasibility
certificate cannot be computed and a reasonable termination criterion has to be employed.

In every iteration 𝑘 of the interior-point algorithm a trial solution

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘)

to the homogeneous model is generated, where

𝑥𝑘 ∈ 𝒦, 𝑠𝑘 ∈ 𝒦*, 𝜏𝑘, 𝜅𝑘 > 0.

Therefore, it is possible to compute the values:

𝜌𝑘𝑝 = arg min𝜌

{︁
𝜌 |
⃦⃦⃦
𝐴𝑥𝑘

𝜏𝑘 − 𝑏
⃦⃦⃦
∞

≤ 𝜌𝜀𝑝(1 + ‖𝑏‖∞)
}︁
,

𝜌𝑘𝑑 = arg min𝜌

{︁
𝜌 |
⃦⃦⃦
𝐴𝑇 𝑦𝑘

𝜏𝑘 + 𝑠𝑘

𝜏𝑘 − 𝑐
⃦⃦⃦
∞

≤ 𝜌𝜀𝑑(1 + ‖𝑐‖∞)
}︁
,

𝜌𝑘𝑔 = arg min𝜌

{︂
𝜌 |
(︁

(𝑥𝑘)𝑇 𝑠𝑘

(𝜏𝑘)2
, | 𝑐

𝑇 𝑥𝑘

𝜏𝑘 − 𝑏𝑇 𝑦𝑘

𝜏𝑘 |
)︁
≤ 𝜌𝜀𝑔 max

(︂
1,

min(|𝑐𝑇 𝑥𝑘|,|𝑏𝑇 𝑦𝑘|)
𝜏𝑘

)︂}︂
,

𝜌𝑘𝑝𝑖 = arg min𝜌

{︀
𝜌 |
⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘

⃦⃦
∞ ≤ 𝜌𝜀𝑖𝑏

𝑇 𝑦𝑘, 𝑏𝑇 𝑦𝑘 > 0
}︀

and
𝜌𝑘𝑑𝑖 = arg min𝜌

{︀
𝜌 |
⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ ≤ −𝜌𝜀𝑖𝑐

𝑇𝑥𝑘, 𝑐𝑇𝑥𝑘 < 0
}︀
.

Note 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖 are nonnegative user specified tolerances.

Optimal Case

Observe 𝜌𝑘𝑝 measures how far 𝑥𝑘/𝜏𝑘 is from being a good approximate primal feasible solution. Indeed
if 𝜌𝑘𝑝 ≤ 1, then ⃦⃦⃦⃦

𝐴
𝑥𝑘

𝜏𝑘
− 𝑏

⃦⃦⃦⃦
∞

≤ 𝜀𝑝(1 + ‖𝑏‖∞). (13.11)

This shows the violations in the primal equality constraints for the solution 𝑥𝑘/𝜏𝑘 is small compared to
the size of 𝑏 given 𝜀𝑝 is small.

Similarly, if 𝜌𝑘𝑑 ≤ 1, then (𝑦𝑘, 𝑠𝑘)/𝜏𝑘 is an approximate dual feasible solution. If in addition 𝜌𝑔 ≤ 1,
then the solution (𝑥𝑘, 𝑦𝑘, 𝑠𝑘)/𝜏𝑘 is approximate optimal because the associated primal and dual objective
values are almost identical.

In other words if max(𝜌𝑘𝑝, 𝜌
𝑘
𝑑, 𝜌

𝑘
𝑔) ≤ 1, then

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘)

𝜏𝑘

is an approximate optimal solution.

Dual Infeasibility Certificate

Next assume that 𝜌𝑘𝑑𝑖 ≤ 1 and hence⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ ≤ −𝜀𝑖𝑐

𝑇𝑥𝑘 and − 𝑐𝑇𝑥𝑘 > 0

holds. Now in this case the problem is declared dual infeasible and 𝑥𝑘 is reported as a certificate of dual
infeasibility. The motivation for this stopping criterion is as follows. Let

𝑥̄ :=
𝑥𝑘

−𝑐𝑇𝑥𝑘

and it is easy to verify that

‖𝐴𝑥̄‖∞ ≤ 𝜀𝑖 and 𝑐𝑇 𝑥̄ = −1

which shows 𝑥̄ is an approximate certificate of dual infeasibility, where 𝜀𝑖 controls the quality of the
approximation.

167

Primal Infeasiblity Certificate

Next assume that 𝜌𝑘𝑝𝑖 ≤ 1 and hence⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘

⃦⃦
∞ ≤ 𝜀𝑖𝑏

𝑇 𝑦𝑘 and 𝑏𝑇 𝑦𝑘 > 0

holds. Now in this case the problem is declared primal infeasible and (𝑦𝑘, 𝑠𝑘) is reported as a certificate
of primal infeasibility. The motivation for this stopping criterion is as follows. Let

𝑦 :=
𝑦𝑘

𝑏𝑇 𝑦𝑘
and 𝑠 :=

𝑠𝑘

𝑏𝑇 𝑦𝑘

and it is easy to verify that ⃦⃦
𝐴𝑇 𝑦 + 𝑠

⃦⃦
∞ ≤ 𝜀𝑖 and 𝑏𝑇 𝑦 = 1

which shows (𝑦𝑘, 𝑠𝑘) is an approximate certificate of dual infeasibility, where 𝜀𝑖 controls the quality of
the approximation.

13.3.3 Adjusting optimality criteria
It is possible to adjust the tolerances 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖 using parameters; see the next table for details.

Table 13.2: Parameters employed in termination criterion

ToleranceParameter Name (for conic problems)

𝜀𝑝 intpntCoTolPfeas
𝜀𝑑 intpntCoTolDfeas
𝜀𝑔 intpntCoTolRelGap
𝜀𝑖 intpntCoTolInfeas

The default values of the termination tolerances are chosen such that for a majority of problems
appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the
tolerances usually is not worthwhile. However, an inspection of (13.11) reveals that the quality of the
solution depends on ‖𝑏‖∞ and ‖𝑐‖∞; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal
and dual feasibility at the same rate [And09]. This means that if the optimizer is stopped prematurely
then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that
in most cases all the tolerances, 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖, have to be relaxed together to achieve an effect.

If the optimizer terminates without locating a solution that satisfies the termination criteria, for
example because of a stall or other numerical issues, then it will check if the solution found up to that
point satisfies the same criteria with all tolerances multiplied by the value of intpntCoTolNearRel . If
this is the case, the solution is still declared as optimal.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

13.3.4 The Interior-point Log
Below is a typical log output from the interior-point optimizer:

Optimizer - threads : 20
Optimizer - solved problem : the primal
Optimizer - Constraints : 1
Optimizer - Cones : 2
Optimizer - Scalar variables : 6 conic : 6
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 1 after factor : 1
Factor - dense dim. : 0 flops : 1.

(continues on next page)

168

(continued from previous page)

→˓70e+01
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU ␣
→˓ TIME
0 1.0e+00 2.9e-01 3.4e+00 0.00e+00 2.414213562e+00 0.000000000e+00 1.0e+00␣
→˓ 0.01
1 2.7e-01 7.9e-02 2.2e+00 8.83e-01 6.969257574e-01 -9.685901771e-03 2.7e-01␣
→˓ 0.01
2 6.5e-02 1.9e-02 1.2e+00 1.16e+00 7.606090061e-01 6.046141322e-01 6.5e-02␣
→˓ 0.01
3 1.7e-03 5.0e-04 2.2e-01 1.12e+00 7.084385672e-01 7.045122560e-01 1.7e-03␣
→˓ 0.01
4 1.4e-08 4.2e-09 4.9e-08 1.00e+00 7.071067941e-01 7.071067599e-01 1.4e-08␣
→˓ 0.01

The first line displays the number of threads used by the optimizer and the second line indicates if
the optimizer chose to solve the primal or dual problem (see intpntSolveForm). The next lines display
the problem dimensions as seen by the optimizer, and the Factor... lines show various statistics. This
is followed by the iteration log.

Using the same notation as in Sec. 13.3.1 the columns of the iteration log have the following meaning:

• ITE: Iteration index 𝑘.

• PFEAS:
⃦⃦
𝐴𝑥𝑘 − 𝑏𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards zero

but may stall at low level due to rounding errors.

• DFEAS:
⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘 − 𝑐𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards

zero but may stall at low level due to rounding errors.

• GFEAS: |− 𝑐𝑇𝑥𝑘 + 𝑏𝑇 𝑦𝑘 −𝜅𝑘| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

• PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to −1 if that is not the case.

• POBJ: 𝑐𝑇𝑥𝑘/𝜏𝑘. An estimate for the primal objective value.

• DOBJ: 𝑏𝑇 𝑦𝑘/𝜏𝑘. An estimate for the dual objective value.

• MU: (𝑥𝑘)𝑇 𝑠𝑘+𝜏𝑘𝜅𝑘

𝑛+1 . The numbers in this column should always converge to zero.

• TIME: Time spent since the optimization started (in seconds).

13.4 The Optimizer for Mixed-Integer Problems

Solving optimization problems where one or more of the variables are constrained to be integer valued is
called Mixed-Integer Optimization (MIO). For an introduction to model building with integer variables,
the reader is recommended to consult the MOSEK Modeling Cookbook, and for further reading we
highlight textbooks such as [Wol98] or [CCornuejolsZ14].

MOSEK can perform mixed-integer linear (MILO) and conic (MICO) problems, except for mixed-
integer semidefinite problems.

By default the mixed-integer optimizer is run-to-run deterministic. This means that if a problem is
solved twice on the same computer with identical parameter settings and no time limit, then the obtained
solutions will be identical. The mixed-integer optimizer is parallelized, i.e., it can exploit multiple cores
during the optimization.

In practice, it often happens that the integer variables in MIO problems are actuall binary variables,
taking values in {0, 1}, leading to Mixed- or pure binary problems. In the general setting however, an
integer variable may have arbitrary lower and upper bounds.

169

https://docs.mosek.com/modeling-cookbook/mio.html

13.4.1 Branch-and-Bound
In order to succeed in solving mixed-integer problems, it can be useful to have a basic understanding of
the underlying solution algorithms. The most important concept in this regard is arguably the so-called
Branch-and-Bound algorithm, employed also by MOSEK. The more experienced reader may skip this
section and advance directly to Sec. 13.4.2.

In order to comprehend Branch-and-Bound, the concept of a relaxation is important. Consider for
example a mixed-integer linear optimization problem of minimization type

𝑧* = minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0
𝑥𝑗 ∈ Z, ∀𝑗 ∈ 𝒥 .

(13.12)

It has the continuous relaxation

𝑧 = minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0,
(13.13)

simply obtained by ignoring the integrality restrictions. The first step in Branch-and-Bound is to solve
this so-called root relaxation, which is a continuous optimization problem. Since (13.13) is less constrained
than (13.12), one certainly gets

𝑧 ≤ 𝑧*,

and 𝑧 is therefore called the objective bound : it bounds the optimal objective value from below.
After the solution of the root relaxation, in the most likely outcome there will be one or more integer

constrained variables with fractional values, i.e., violating the integrality constraints. Branch-and-Bound
now takes such a variable, 𝑥𝑗 = 𝑓𝑗 ∈ R∖Z with 𝑗 ∈ 𝒥 , say, and creates two branches leading to relaxations
with the additional constraint 𝑥𝑗 ≤ ⌊𝑓𝑗⌋ or 𝑥𝑗 ≥ ⌈𝑓𝑗⌉, respectively. The intuitive idea here is to exclude
the undesired fractional value from the outcomes in the two created branches. If the integer variable was
actually a binary variable, branching would lead to fixing its value to 0 in one branch, and to 1 in the
other.

The Branch-and-Bound process continues in this way and successively solves relaxations and creates
branches to refined relaxations. Whenever the solution 𝑥̂ to some relaxation does not violate any inte-
grality constraints, it is feasible to (13.12) and is called an integer feasible solution. There is no guarantee
though that it is also optimal, its solution value 𝑧 := 𝑐𝑇 𝑥̂ is only an upper bound on the optimal objective
value,

𝑧* ≤ 𝑧.

By the successive addition of constraints in the created branches, the objective bound 𝑧 (now defined as
the minimum over all solution values of so far solved relaxations) can only increase during the algorithm.
At the same time, the upper bound 𝑧 (the solution value of the best integer feasible solution encountered
so far, also called incumbent solution) can only decrease during the algorithm. Since at any time we also
have

𝑧 ≤ 𝑧* ≤ 𝑧,

objective bound and incumbent solution value are encapsulating the optimal objective value, eventually
converging to it.

The Branch-and-Bound scheme can be depicted by means of a tree, where branches and relaxations
correspond to edges and nodes. Figure Fig. 13.1 shows an example of such a tree. The strength of
Branch-and-Bound is its ability to prune nodes in this tree, meaning that no new child nodes will be
created. Pruning can occur in several cases:

• A relaxation leads to an integer feasible solution 𝑥̂. In this case we may update the incumbent and
its solution value 𝑧, but no new branches need to be created.

• A relaxation is infeasible. The subtree rooted at this node cannot contain any feasible relaxation,
so it can be discarded.

170

• A relaxation has a solution value that exceeds 𝑧. The subtree rooted at this node cannot contain
any integer feasible solution with a solution value better than the incumbent we already have, so
it can be discarded.

root
x2 = 0.7

infeas. x1 = 0.4

x3 = 1.3

z = 2.7

int. feas.
z̄ = 2.0

x2 = 0 x2 = 1

x1 = 0 x1 = 1

x3 ≤ 1 x3 ≥ 2

...

Fig. 13.1: An examplary Branch-and-Bound tree. Pruned nodes are shown in light blue.

Having objective bound and incumbent solution value is a quite fundamental property of Branch-
and-Bound, and helps to asses solution quality and control termination of the algorithm, as we detail
in the next section. Note that the above explanation is coined for minimization problems, but the
Branch-and-bound scheme has a straightforward extension to maximization problems.

13.4.2 Solution quality and termination criteria
The issue of terminating the mixed-integer optimizer is rather delicate. Mixed-integer optimization is
generally much harder than continuous optimization; in fact, solving continuous sub-problems is just one
component of a mixed-integer optimizer. Despite the ability to prune nodes in the tree, the computational
effort required to solve mixed-integer problems grows exponentially with the size of the problem in a
worst-case scenario (solving mixed-integer problems is NP-hard). For instance, a problem with 𝑛 binary
variables, may require the solution of 2𝑛 relaxations. The value of 2𝑛 is huge even for moderate values of
𝑛. In practice it is often advisable to accept near-optimal or appproximate solutions in order to counteract
this complexity burden. The user has numerous possibilities of influencing optimizer termination with
various parameters, in particular related to solution quality, and the most important ones are highlighted
here.

Solution quality in terms of optimality

In order to assess the quality of any incumbent solution in terms of its objective value, one may check
the optimality gap, defined as

𝜖 = |(incumbent solution value) − (objective bound)| = |𝑧 − 𝑧|.

It measures how much the objectives of the incumbent and the optimal solution can deviate in the
worst case. Often it is more meaningful to look at the relative optimality gap

𝜖rel =
|𝑧 − 𝑧|

max(𝛿1, |𝑧|)
.

171

This is essentially the above absolute optimality gap normalized against the magnitude of the incum-
bent solution value; the purpose of the (small) constant 𝛿1 is to avoid overweighing incumbent solution
values that are very close to zero. The relative optimality gap can thus be interpreted as answering the
question: “Within what fraction of the optimal solution is the incumbent solution in the worst case?”

Absolute and relative optimality gaps provide useful means to define termination criteria for the
mixed-integer optimizer in MOSEK. The idea is to terminate the optimization process as soon as the
quality of the incumbent solution, measured in absolute or relative gap, is good enough. In fact, whenever
an incumbent solution is located, the criterion

𝜖 ≤ 𝛿2 or 𝜖rel ≤ 𝛿3

is checked. If satisfied, i.e., if either absolute or relative optimality gap are below the thresholds 𝛿2 or
𝛿3 (see Table 13.3), the optimizer terminates and reports the incumbent as an optimal solution. The
optimality gaps at termination can always be retrieved through the information items "mioObjAbsGap"
and "mioObjRelGap" .

The tolerances discussed above can be adjusted using suitable parameters, see Table 13.3. By default,
the optimality parameters 𝛿2 and 𝛿3 are quite small, i.e., restrictive. These default values for the absolute
and relative gap amount to solving any instance to (almost) optimality: the incumbent is required to be
within at most a tiny percentage of the optimal solution. As anticipated, this is not tractable in many
practical situations, and one should resort to finding near-optimal solutions quickly rather than insisting
on finding the optimal one. It may happen, for example, that an optimal or close-to-optimal solution
is found very early by the optimizer, but it spends a huge amount of further computational time for
branching, trying to increase 𝑧 that last missing bit: a typical situation that practioneers would want to
avoid. The concept of optimality gaps is fundamental for controlling solution quality when resorting to
near-optimal solutions.

MIO performance tweaks: termination criteria
One of the first things to do in order to cut down excessive solution time is to increase the relative

gap tolerance mioTolRelGap to some non-default value, so as to not insist on finding optimal solutions.
Typical values could be 0.01, 0.05 or 0.1, guaranteeing that the delivered solutions lie within 1%, 5% or
10% of the optimum. Increasing the tolerance will lead to less computational time spent by the optimizer.

Solution quality in terms of feasibility

For an optimizer relying on floating-point arithmetic like the mixed-integer optimizer in MOSEK, it
may be hard to achieve exact integrality of the solution values of integer variables in most cases, and it
makes sense to numerically relax this constraint. Any candidate solution 𝑥̂ is accepted as integer feasible
if the criterion

min(𝑥𝑗 − ⌊𝑥𝑗⌋, ⌈𝑥𝑗⌉ − 𝑥𝑗) ≤ 𝛿4 ∀𝑗 ∈ 𝒥

is satisfied, meaning that 𝑥𝑗 is at most 𝛿4 away from the nearest integer. As above, 𝛿4 can be adjusted
using a parameter, see Table 13.3, and impacts the quality of the acieved solution in terms of integer
feasibility. By influencing what solution may be accepted as imcumbent, it can also have an impact on
the termination of the optimizer.

MIO performance tweaks: feasibility criteria
Whether increasing the integer feasibility tolerance mioTolAbsRelaxInt leads to less solution time is

highly problem dependent. Intuitively, the optimizer is more flexible in finding new incumbent soutions
so as to improve 𝑧. But this effect has do be examined with care on indivuidual instances: it may worsen
solution quality with no effect at all on the solution time. It may in some cases even lead to contrary
effects on the solution time.

172

Table 13.3: Tolerances for the mixed-integer optimizer.

Tolerance Parameter name Default value

𝛿1 mioRelGapConst 1.0e-10
𝛿2 mioTolAbsGap 0.0
𝛿3 mioTolRelGap 1.0e-4
𝛿4 mioTolAbsRelaxInt 1.0e-5

Further controlling optimizer termination

There are more ways to limit the computational effort employed by the mixed-integer optimizer by simply
limiting the number of explored branches, solved relaxations or updates of the incumbent solution. When
any of the imposed limits is hit, the optimizer terminates and the incumbent solution may be retrieved.
See Table 13.4 for a list of corresponding parameters. In contrast to the parameters discussed in Sec.
13.4.2, interfering with these does not maintain any guarantees in terms of solution quality.

Table 13.4: Other parameters affecting the integer optimizer ter-
mination criterion.

Parameter name Explanation

mioMaxNumBranches Maximum number of branches allowed.
mioMaxNumRelaxs Maximum number of relaxations allowed.
mioMaxNumSolutions Maximum number of feasible integer solutions allowed.

13.4.3 The Mixed-Integer Log
The Branch-and-Bound scheme from Sec. 13.4.1 is only the basic skeleton of the mixed-integer optimizer
in MOSEK, and several components are built on top of that in order to enhance its functionality and
increase its speed. A mixed-integer optimizer is sometimes referred to as a “giant bag of tricks”, and
it would be impossible to describe all of these tricks here. Yet, some of the additional components are
worth mentioning. They can be influenced by various user parameters, and although the default values of
these parameters are optimized to work well on average mixed-integer problems, it may pay off to adjust
them for an individual problem, or a specific problem class. The mixed-integer log can give insights on
which parameters might be worth an adjustment. Below is a typical log output:

Presolve started.
Presolve terminated. Time = 0.23, probing time = 0.09
Presolved problem: 1176 variables, 1344 constraints, 4968 non-zeros
Presolved problem: 328 general integer, 392 binary, 456 continuous
Clique table size: 55
Symmetry factor : 0.79 (detection time = 0.01)
Removed blocks : 2
BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_OBJ BEST_RELAX_OBJ REL_GAP(
→˓%) TIME
0 0 1 0 8.3888091139e+07 NA NA ␣
→˓ 0.2
0 1 1 0 8.3888091139e+07 2.5492512136e+07 69.61 ␣
→˓ 0.3
0 1 1 0 3.1273162420e+07 2.5492512136e+07 18.48 ␣
→˓ 0.4
0 1 1 0 2.6047699632e+07 2.5492512136e+07 2.13 ␣
→˓ 0.4
Rooot cut generation started.
0 1 1 0 2.6047699632e+07 2.5492512136e+07 2.13 ␣
→˓ 0.4
0 2 1 0 2.6047699632e+07 2.5589986247e+07 1.76 ␣

(continues on next page)

173

(continued from previous page)

→˓ 0.4
Rooot cut generation terminated. Time = 0.05
0 4 1 0 2.5990071367e+07 2.5662741991e+07 1.26 ␣
→˓ 0.5
0 8 1 0 2.5971002767e+07 2.5662741991e+07 1.19 ␣
→˓ 0.6
0 11 1 0 2.5925040617e+07 2.5662741991e+07 1.01 ␣
→˓ 0.6
0 12 1 0 2.5915504014e+07 2.5662741991e+07 0.98 ␣
→˓ 0.6
2 23 1 0 2.5915504014e+07 2.5662741991e+07 0.98 ␣
→˓ 0.7
14 35 1 0 2.5915504014e+07 2.5662741991e+07 0.98 ␣
→˓ 0.7

[...]

Objective of best integer solution : 2.578282162804e+07
Best objective bound : 2.569877601306e+07
Construct solution objective : Not employed
User objective cut value : Not employed
Number of cuts generated : 192

Number of Gomory cuts : 52
Number of CMIR cuts : 137
Number of clique cuts : 3

Number of branches : 29252
Number of relaxations solved : 31280
Number of interior point iterations: 16
Number of simplex iterations : 105440
Time spend presolving the root : 0.23
Time spend optimizing the root : 0.07
Mixed integer optimizer terminated. Time: 6.96

The main part here is the iteration log, a progressing series of similar rows reflecting the progress
made during the Branch-and-bound process. The columns have the following meanings:

• BRANCHES: Number of branches / nodes generated.

• RELAXS: Number of relaxations solved.

• ACT_NDS: Number of active / non-processed nodes.

• DEPTH: Depth of the last solved node.

• BEST_INT_OBJ: The incumbent solution / best integer objective value, 𝑧.

• BEST_RELAX_OBJ: The objective bound, 𝑧.

• REL_GAP(%): Relative optimality gap, 100% · 𝜖rel

• TIME: Time (in seconds) from the start of optimization.

Also a short solution summary with several statistics is printed. When the solution time for a mixed-
integer problem has to be cut down, the log can help to understand where time is spent and what might
be improved. We go into some more detail about some further items in the mixed-integer log giving hints
about individual components of the optimizer. Alternatively, most of these items can also be retrieved
as information items, see Sec. 8.5.

174

Presolve

Similar to the case of continuous problems, see Sec. 13.1, the mixed-integer optimizer applies various
presolve reductions before the actual Branch-and-bound is initiated. The first lines of the mixed-integer
log contain a summary of the presolve process, including the time spent therein (Presolve terminated.
Time = 0.23...). Just as in the continuous case, the use of presolve can be controlled with the parameter
presolveUse . If presolve time seems excessive, instead of switching it off completely one may also try
to reduce the time spent in one or more of its individual components. On some models it can also make
sense to increase the use of a certain presolve technique. Table Table 13.5 lists some of these with their
respective parameters.

Table 13.5: Parameters affecting presolve

Parameter name Explanation Possible reference in log

mioProbingLevel Probing aggressivity level. ... probing time = 0.09
mioSymmetryLevel Symmetry detection aggressivity

level.
Symmetry factor : 0.79 (detection
time = 0.01)

mioIndependentBlockLevelBlock structure detection level, see
Sec. 13.4.3.

Removed blocks : 2

mioCliqueTableSizeFactorMaximum size of the clqiue table. Clique table size: 55
mioPresolveAggregatorUseShould variable agggregation be

enabled?
–

Primal Heuristics

It might happen that the value in the colum BEST_INT_OBJ stalls over a long period of log lines, an indi-
cation that the optimizer has a hard time improving the incumbent solution, i.e., 𝑧. Solving relaxations
in the tree to an integer feasible solution 𝑥̂ is not the only way to find new incumbent solutions. There
is a variety of procedures that, given a mixed-integer problem in a generic form like (13.12), attempt to
produce integer feasible solutions in an ad-hoc way. These procedures are called Primal Heuristics, and
several of them are implemented in MOSEK. For example, whenever a relaxation leads to a fractional
solution, one may round the solution values of the integer variables, in various ways, and hope that
the outcome is still feasible to the remaining constraints. Primal heuristics are mostly employed while
processing the root node, but play a role throughout the whole solution process. The goal of a primal
heuristic is to improve the incumbent solution and thus the bound 𝑧, and this can of course affect the
quality of the solution that is returned after termination of the optimizer. The user parameters affecting
primal heuristics are listed in Table 13.6.

MIO performance tweaks: primal heuristics

• If the mixed-integer optimizer struggles to improve the incumbent solution BEST_INT_OBJ, it can
be helpful to intensify the use of primal heuristics.

– Set parameters related to primal heuristics to more aggressive values than the default ones,
so that more effort is spent in this component. A List of the respective parameters can be
found in Table 13.6. In particular, if the optimizer has difficulties finding any integer feasible
solution at all, indicated by NA in the column BEST_INT_OBJ in the mixed-integer log, one may
try to activate a construction heuristic like the Feasibility Pump with mioFeaspumpLevel .

– Specify a good initial solution: In many cases a good feasible solution is either known or
easily computed using problem-specific knowledge that the optimizer does not have. If so, it
is usually worthwhile to use this as a starting point for the mixed-integer optimizer. See also
the parameter mioConstructSol , and Section Sec. 7.7.2.

– For feasibility problems, i.e., problems having a constant objective, the goal is to find a single
integer feasible solution, and this can be hard by itself on some instances. Try setting the
objective to something meaningful anyway, even if the underlying application does not require
this. After all, the feasible set is not changed, but the optimizer might benefit from being able
to pursue a concrete goal.

175

• In rare cases it may also happen that the optimizer spends an excessive amount of time on primal
heuristics without drawing any benefit from it, and one may try to limit their use with the respective
parameters.

Table 13.6: Parameters affecting primal heuristics

Parameter name Explanation

mioHeuristicLevel Primal heuristics aggressivity level.
mioRinsMaxNodes Maximum number of nodes allowed in the RINS heuristic.
mioRensMaxNodes Maximum number of nodes allowed in the RENS heuristic.
mioCrossoverMaxNodes Maximum number of nodes allowed in the Crossover heuristic.
mioOptFaceMaxNodes Maximum number of nodes allowed in the optimal face heuristic.
mioFeaspumpLevel Way of using the Feasibility Pump heuristic.

Cutting Planes

It might as well happen that the value in the colum BEST_RELAX_OBJ stalls over a long period of log
lines, an indication that the optimizer has a struggles to improve the objective bound 𝑧. A component of
the optimizer designed to act on the objective bound is given by Cutting planes, also called cuts or valid
inequalities. Cuts do not remove any integer feasible solutions from the feasible set of the mixed-integer
problem (13.12). They may, however, remove solutions from the feasible set of the relaxation (13.13),
ideally making it a stronger relaxation with better objective bound.

As an example, take the constraints

2𝑥1 + 3𝑥2 + 𝑥3 ≤ 4, 𝑥1, 𝑥2 ∈ {0, 1}, 𝑥3 ≥ 0. (13.14)

One may realize that there cannot be a feasible solution in which both binary variables take on a value
of 1. So certainly

𝑥1 + 𝑥2 ≤ 1 (13.15)

is a valid inequality (there is no integer solution satisfying (13.14), but violating (13.15)). The latter
does cut off a portion of the feasible region of the continuous relaxation of (13.14) though, obtained by
replacing 𝑥1, 𝑥2 ∈ {0, 1} with 𝑥1, 𝑥2 ∈ [0, 1]. For example, the fractional point (𝑥1, 𝑥2, 𝑥3) = (0.5, 1, 0) is
feasible to the relaxation, but violates the cut (13.15).

There are many classes of general-purpose cuttting planes that may be generated for a mixed-integer
problem in a generic form like (13.12), and MOSEK’s mixed-integer optimizer supports several of them.
For instance, the above is an example of a so-called clique cut. The most effort on generating cutting
planes is spent after the solution of the root relaxation; the beginning and the end of root cut generation
is highlighted in the log, and the number of log lines in between reflects to the computational effort spent
here. Also the solution summary at the end of the log highlights for each cut class the number of generated
cuts. Cuts can also be generated later on in the tree, which is why we also use the term Branch-and-cut,
an extension of the basic Branch-and-bound scheme. Cuts aim at improving the objective bound 𝑧 and
can thus have significant impact on the solution time. The user parameters affecting cut generation can
be seen in Table 13.7.

MIO performance tweaks: cutting planes

• If the mixed-integer optimizer struggles to improve the objective bound BEST_RELAX_OBJ, it can
be helpful to intensify the use of cutting planes.

– Some types of cutting planes are not activated by default, but doing so may help to improve
the objective bound.

– The parameters mioTolRelDualBoundImprovement and mioCutSelectionLevel determine
how aggressively cuts will be generated and selected.

176

– If some valid inequalities can be deduced from problem-specific knowledge that the optimizer
does not have, it may be helpful to add these to the problem formulation as constraints.
This has to be done with care, since there is a tradeoff between the benefit obtained from an
improved objective boud, and the amount of additional constraints that make the relaxations
larger.

• In rare cases it may also be observed that the optimizer spends an excessive effort on cutting
planes, and one may limit their use with mioMaxNumRootCutRounds , or by disabling a certain type
of cutting planes.

Table 13.7: Parameters affecting cutting planes

Parameter name Explanation

mioCutClique Should clique cuts be enabled?
mioCutCmir Should mixed-integer rounding cuts be enabled?
mioCutGmi Should GMI cuts be enabled?
mioCutImpliedBound Should implied bound cuts be enabled?
mioCutKnapsackCover Should knapsack cover cuts be enabled?
mioCutLipro Should lift-and-project cuts be enabled?
mioCutSelectionLevel Cut selection aggressivity level.
mioMaxNumRootCutRounds Maximum number of root cut rounds.
mioTolRelDualBoundImprovementMinimum required objective bound improvement during root cut

generation.

Restarts

The mixed-integer optimizer employs so-called restarts, i.e., if the progress made while exploring the tree
is deemed unsufficient, it might decide to restart the solution process from scratch, possibly making use
of the information collected so far. When a restart happens, this is displayed in the log:

[...]

1948 4664 699 36 NA 1.1800000000e+02 NA ␣
→˓ 7.2
1970 4693 705 50 NA 1.1800000000e+02 NA ␣
→˓ 7.2

Performed MIP restart 1.
Presolve started.
Presolve terminated. Time = 0.01, probing time = 0.00
Presolved problem: 523 variables, 765 constraints, 3390 non-zeros
Presolved problem: 0 general integer, 404 binary, 119 continuous
Clique table size: 143
BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_OBJ BEST_RELAX_OBJ REL_GAP(
→˓%) TIME
1988 4729 1 0 NA 1.1800000000e+02 NA ␣
→˓ 7.3
1988 4730 1 0 4.0000000000e+01 1.1800000000e+02 195.00 ␣
→˓ 7.3

[...]

Restarts tend to be useful especially for hard models. However, in individual cases the optimizer may
decide to perform a restart while it would have been better to continue exploring the tree. Their use can
be controlled with the parameter mioMaxNumRestarts .

177

Block decomposition

Sometimes the optimizer faces a model that actually represents two or more completely independent
subproblems. For a linear problem such as (13.13), this means that the constraint matrix 𝐴 is a block-
diagonal. Block-diagonal structure can occur after MOSEK applies some presolve reductions, e.g., a
variable is fixed that was the only variable connecting two otherwise independent subproblems. Or, more
rarely, the original model provided by the user is already block-diagonal.

In principle, solving such blocks independently is easier than letting the optimizer work on the single,
large model, and MOSEK thus tries to exploit this structure. Some blocks may be completely solved
and removed from the model during presolve, which can be seen by a line at the end of the presolve
summary, see also Sec. 13.4.3. If after presolve there are still independent blocks, MOSEK can apply a
dedicated algorithm to solve them independently while periodically combining their individual solution
statusses (such as incumbent solutions and objective bounds) to the solution status of the original model.
Just like the removal of blocks during presolve, the application of this latter strategy is indicated in the
log:

[...]

15 38 1 0 4.1759800000e+05 3.8354200000e+05 8.16 ␣
→˓ 0.9
Root cut generation started.
15 38 1 0 4.1759800000e+05 3.8354200000e+05 8.16 ␣
→˓ 1.1
Root cut generation terminated. Time = 0.11
15 40 1 0 4.1645600000e+05 3.8934425000e+05 6.51 ␣
→˓ 2.0
15 41 1 0 4.1622400000e+05 3.8934425000e+05 6.46 ␣
→˓ 2.0
23 52 1 0 4.1622400000e+05 3.8934425000e+05 6.46 ␣
→˓ 2.0
Decomposition solver started with 5 independent blocks.
532 425 5 118 4.1592600000e+05 3.8935275000e+05 6.39 ␣
→˓ 4.5
1858 11911 815 286 4.1007800000e+05 3.8946400000e+05 5.03 ␣
→˓ 11.8

[...]

How block-diagonal structure is detected and handled by the optimizer can be controlled with the
parameter mioIndependentBlockLevel .

13.4.4 Mixed-Integer Nonlinear Optimization
Due to the involved non-linearities, MI(QC)QO or MICO problems are on average harder than MILO
problems of comparable size. Yet, the Branch-and-Bound scheme can be applied to these probelm
classes in a straightforward manner. The relaxations have to be solved as conic problems with the
interior point algorithm in that case, see Sec. 13.3, opposed to MILO where it is often beneficial to solve
relaxations with the dual simplex method, see Sec. 13.2.3. There is another solution approach for these
types of problems implemented in MOSEK, namely the Outer-Approximation algorithm, making use
of dynamically refined linear approximations of the non-linearities.

MICO performance tweaks: choice of algorithm
Whether conic Branch-and-Bound or Outer-Approximation is applied to a mixed-integer conic prob-

lem can be set with mioConicOuterApproximation . The best value for this option is highly problem
dependent.

178

13.4.5 Disjunctive constraints
Problems with disjunctive constraints (DJC) see Sec. 7.8 are typically reformulated to mixed-integer
problems, and even if this is not the case they are solved with an algorithm that is based on the mixed-
integer optimizer. In MOSEK, these problems thus fall into the realm of MIO. In particular, MOSEK
automatically attempts to replace any DJC by so called big-M constraints, potentially after transforming
it to several, less complicated DJCs. As an example, take the DJC

[𝑧 = 0] ∨ [𝑧 = 1, 𝑥1 + 𝑥2 ≥ 1000],

where 𝑧 ∈ {0, 1} and 𝑥1, 𝑥2 ∈ [0, 750]. This is an example of a DJC formulation of a so-called indicator
constraint. A big-M reformulation is given by

𝑥1 + 𝑥2 ≥ 1000 −𝑀 · (1 − 𝑧),

where 𝑀 > 0 is a large constant. The practical difficulty of these constructs is that 𝑀 should always
be sufficiently large, but ideally not larger. Too large values for 𝑀 can be harmful for the mixed-integer
optimizer. During presolve, and taking into account the bounds of the involved variables, MOSEK au-
tomatically reformulates DJCs to big-M constraints if the required 𝑀 values do not exceed the parameter
mioDjcMaxBigm . From a performance point-of-view, all DJCs would ideally be linearized to big-Ms after
presolve without changing this parameter’s default value of 1.0e6. Whether or not this is the case can
be seen by retrieving the information item "mioPresolvedNumdjc" , or by a line in the mixed-integer
optimizer’s log as in the example below. Both state the number of remaining disjunctions after presolve.

Presolved problem: 305 variables, 204 constraints, 708 non-zeros
Presolved problem: 0 general integer, 100 binary, 205 continuous
Presolved problem: 100 disjunctions
Clique table size: 0
BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_OBJ BEST_RELAX_OBJ REL_GAP(
→˓%) TIME
0 1 1 0 NA 0.0000000000e+00 NA ␣
→˓ 0.0
0 1 1 0 5.0574653969e+05 0.0000000000e+00 100.00 ␣
→˓ 0.0

[...]

DJC performance tweaks: managing variable bounds

• Always specify the tightest known bounds on the variables of any problem with DJCs, even if they
seem trivial from the user-perspective. The mixed-integer optimizer can only benefit from these
when reformulating DJCs and thus gain performance; even if bounds don’t help with reformulations,
it is very unlikely that they hurt the optimizer.

• Increasing mioDjcMaxBigm can lead to more DJC reformulations and thus increase optimizer speed,
but it may in turn hurt numerical solution quality and has to be examined with care. The other
way round, on numerically challenging instances with DJCs, decreasing mioDjcMaxBigm may lead
to numerically more robust solutions.

179

13.4.6 Randomization
A mixed-integer optimizer is usually prone to performance variability, meaning that a small change in
either

• problem data, or

• computer hardware, or

• algorithmic parameters

can lead to significant changes in solution time, due to different solution paths in the Branch-and-cut
tree. In extreme cases the exact same problem can vary from being solvable in less than a second to
seemingly unsolvable in any reasonable amount of time on a different computer.

One practical implication of this is that one should ideally verify whether a seemingly beneficial set
of parameters, established experimentally on a single problem, is still beneficial (on average) on a larger
set of problems from the same problem class. This protects against making parameter changes that had
positive effects only due to random effects on that single problem.

In the absence of a large set of test problems, one may also change the random seed of the opti-
mizer to a series of different values in order to hedge against drawing such wrong conclusions regarding
parameters. The random seed, accessible through mioSeed , impacts for example random tie-breaking
in many of the mixed-integer optimizer’s components. Changing the random seed can be combined
with a permutation of the problem data to further incite randomness, accessible through the parameter
mioDataPermutationMethod .

13.4.7 Further performance tweaks
In addition to what was mentioned previously, there may be other ways to speed up the solution of a
given mixed-integer problem. For example, there are further user parameters affecting some algorithmic
settings in the mixed-integer optimizer. As mentioned above, default parameter values are optimized to
work well on average, but on individual problems they may be adjusted.

MIO performance tweaks: miscellaneous

• While exploring the tree, the optimizer applies certain strategies to decide which fractional variable
to branch on, see Sec. 13.4.1. The chosen strategy can have a big impact on performance, and may
be controlled with mioVarSelection .

• Similarly, the strategy to chose the next node to explore in the tree is controlled with
mioNodeSelection .

• The optimizer employs specialized techniques to learn from infeasible nodes and use that knowledge
to avoid creating similar nodes in other parts of the tree. The effort spent here can be influenced
with mioDualRayAnalysisLevel and mioConflictAnalysisLevel .

• When relaxations in the tree are linear optimization problems (e.g., in MILO or when solving
MICO probelms with the Outer-Approximation method), it is usually best to employ the dual
simplex method for their solution. In rare cases the primal simplex method may actually be the
better choice, and this can be set with the parameter mioNodeOptimizer .

• Some problems are numerically more challenging than others, for example if the ratio between the
smallest and the largest involved coefficients is large, say ≥ 1𝑒9. An indication of numerical issues
are, for example, large violations in the final solution, observable in the solution summery of the
log output, see Sec. 9.1.3. Similarly, a problem that is known to be feasible by the user may be
declared infeasible by the optimizer. In such cases it is usually best to try to rescale the model.
Otherwise, the mixed-integer optimizer can be instructed to be more cautios regarding numerics
with the parameter mioNumericalEmphasisLevel . This may in turn be at the cost of solution
speed though.

• Improve the formulation: A MIO problem may be impossible to solve in one form and quite easy
in another form. However, it is beyond the scope of this manual to discuss good formulations for
mixed-integer problems. For discussions on this topic see for example [Wol98].

180

Chapter 14

Fusion API Reference

• General API conventions

• mosek.fusion classes

– Quick links: Model , Expr , Expression , Variable , Parameter , Var , Domain , Matrix ,
Constraint , DJC

– Full list

• Optimizer parameters:

– Double, Integer , String
– Full list
– Browse by topic

• Optimizer information items:

– Double, Integer , Long

• Enumerations

• Constants

• Exceptions

• List of supported domains

• Linear algebra utilities

14.1 Fusion API conventions

14.1.1 General conventions
All the classes of the Fusion interface are contained in the package mosek.fusion. The user should not
directly instantiate objects of any class other than creating a Model .

Model M = new Model();

The model is the main access point to an optimization problem and its solution. All other objects
should be created through the model (Model.variable , Model.constraint , etc.) or using static factory
methods (Matrix.sparse etc.).

181

14.2 Class list

Common

• Constraint : Abstract base class for Constraint objects.

• DJC : A class providing static methods to manipulate terms of disjunctive constraints (DJC).

• DisjunctionTerms : Excapsulates the clauses of a disjunctive constraint

• Domain : Base class for variable and constraint domains.

• Expr : Represents a linear expression and provides linear operators.

• Expression : Abstract base class for all objects which can be used as linear expressions.

• Matrix : Base class for all matrix objects.

• Model : The object containing all data related to a single optimization model.

• Param : Provides static methods for manipulating parameters

• Parameter : Abstract class representing model parameters whose values can be modified.

• Set : Handles shapes.

• Var : Provides basic operations on variable objects.

• Variable : Abstract base class for Variable objects.

Infrequent

• BaseExpression : Base class for most expressions

• BaseVariable : Abstract base class for Variable objects with default implementations.

• BoundInterfaceConstraint : Interface to either the upper bound or the lower bound of a ranged
constraint.

• BoundInterfaceVariable : Interface to either the upper bound or the lower bound of a ranged
variable.

• ConeDomain : Represent a domain defined by a conic constraints

• ConicConstraint : Represent a conic constraint.

• ConicVariable : Represent a conic variable.

• Disjunction : A class representing a disjunctive constraint.

• ExprDomain : Interface for objects that can be converted into disjunctive constraint term.

• LinearConstraint : An object representing a block of linear constraints of the same type.

• LinearDomain : Represent a domain defined by linear constraints

• LinearPSDConstraint : Represents a semidefinite conic constraint.

• LinearPSDVariable : This class represents a positive semidefinite variable.

• LinearVariable : An object representing a block of linear variables of the same type.

• ModelConstraint : Represent a block of constraints.

• ModelVariable : Represent a block of variables.

• NDSparseArray : Representation of a sparse n-dimensional array.

• PSDConstraint : Represents a semidefinite conic constraint.

182

• PSDDomain : Represent the domain od PSD matrices.

• PSDVariable : This class represents a positive semidefinite variable.

• RangeDomain : The range domain represents a ranged subset of the euclidean space.

• RangedConstraint : Represents a ranged constraint.

• RangedVariable : Represents a ranged variable.

• SimpleTerm : A class representing simple term, a basic building block for disjunctive constraints.

• SliceConstraint : An alias for a subset of constraints from a single ModelConstraint.

• SliceVariable : An alias for a subset of variables from a single model variable.

• Term : A class representing a term, which ultimately enters a disjunctive constraint.

• WorkStack : Stack object used to store expression evaluations. For internal use.

14.2.1 Class BaseExpression

mosek.fusion.BaseExpression
Base class for most expressions

Members
BaseExpression.eval – Evaluate the expression and push the result onto the work
stack.
BaseExpression.getDim – Return the d’th dimension in the expression.
BaseExpression.getModel – Get the associated model.
BaseExpression.getND – Return the number of dimensions in the expression.
BaseExpression.getShape – Get the shape of the expression.
BaseExpression.getSize – Return the total number of elements in the expression
(the product of the dimensions).
BaseExpression.index – Get a single element in the expression.
BaseExpression.pick – Pick a number of elements from the expression.
BaseExpression.slice – Get a slice of the expression.
BaseExpression.toString – Return a string representation of the expression ob-
ject.

Implemented by
Expr

BaseExpression.eval

void eval(WorkStack rs, WorkStack ws, WorkStack xs)

Evaluate the expression and push the result onto the rs work stack.

Parameters
• rs (WorkStack) – The stack where the result of the evaluation is stored.
• ws (WorkStack) – The stack used by evaluation to perform intermediate com-

putations. It will be returned in the same state as when the function is called.
• xs (WorkStack) – An auxiliary stack.

BaseExpression.getDim

int getDim(int d)

Return the d’th dimension in the expression.

Parameters
d (int)

Return
(int)

183

BaseExpression.getModel

Model getModel()

Get the associated model.

Return
(Model)

BaseExpression.getND

int getND()

Return the number of dimensions in the expression.

Return
(int)

BaseExpression.getShape

int[] getShape()

Get the shape of the expression.

Return
(int[])

BaseExpression.getSize

long getSize()

Return the total number of elements in the expression (the product of the dimensions).

Return
(long)

BaseExpression.index

Expression index(int i)
Expression index(int[] indexes)

Get a single element in the expression.

Parameters
• i (int) – Index of the element to pick.
• indexes (int[]) – Multi-dimensional index of the element to pick.

Return
(Expression)

BaseExpression.pick

Expression pick(int[] indexes)
Expression pick(int[][] indexrows)

Picks a number of elements from the expression and returns them as a one-dimensional expression.

Parameters
• indexes (int[]) – Indexes of the elements to pick
• indexrows (int[][]) – Indexes of the elements to pick. Each row defines a separate

multi-dimensional index.
Return

(Expression)

184

BaseExpression.slice

Expression slice(int first, int last)
Expression slice(int[] firsta, int[] lasta)

Get a slice of the expression.

Parameters
• first (int) – Index of the first element in the slice.
• last (int) – Index of the last element in the slice plus one.
• firsta (int[]) – Multi-dimensional index of the first element in the slice.
• lasta (int[]) – Multi-dimensional index of the element after the end of the slice.

Return
(Expression)

BaseExpression.toString

String toString()

Return a string representation of the expression object.

Return
(String)

14.2.2 Class BaseVariable

mosek.fusion.BaseVariable

An abstract variable object. This is class provides various default implementations of methods in
Variable .

Members
BaseVariable.antidiag – Return the antidiagonal of a square variable matrix.
BaseVariable.asExpr – Create an expression corresponding to the variable object.
BaseVariable.diag – Return the diagonal of a square variable matrix.
BaseVariable.dual – Get the dual solution value of the variable.
BaseVariable.eval – Evaluate the expression and push the result onto the work
stack.
BaseVariable.fromTril – Convert from a trilinear representation into a square
variable.
BaseVariable.getDim – Return the d’th dimension in the expression.
BaseVariable.getModel – Get the associated model.
BaseVariable.getND – Get the number of dimensions in the variable shape.
BaseVariable.getShape – Get the variable shape.
BaseVariable.getSize – Get the total number of elements in the variable.
BaseVariable.index – Return a variable slice of size 1 corresponding to a single
element in the variable object..
BaseVariable.level – Get the primal solution value of the variable.
BaseVariable.makeContinuous – Drop integrality constraints on the variable, if
any.
BaseVariable.makeInteger – Apply integrality constraints on the variable. Has
no effect on elements of semidefinite matrix variables.
BaseVariable.pick – Create a one-dimensional variable by picking a list of indexes
from this variable.
BaseVariable.remove – Remove the variable from the model.
BaseVariable.reshape – Reshape the variable. The new shape must have the same
total size as the current.
BaseVariable.setLevel – Input solution values for this variable
BaseVariable.slice – Create a slice variable by picking a range of indexes for each
variable dimension.

185

BaseVariable.toString – Create a string representation of the variable.
BaseVariable.transpose – Transpose the variable.
BaseVariable.tril – Convert from a square variable to a trilinear representation.

Implemented by
ModelVariable , SliceVariable

BaseVariable.antidiag

Variable antidiag()
Variable antidiag(int index)

Return the antidiagonal of a square variable matrix.

Parameters
index (int) – Index of the anti-diagonal

Return
(Variable)

BaseVariable.asExpr

Expression asExpr()

Create an Expression object corresponding to 𝐼 · 𝑉 , where 𝐼 is the identity matrix and 𝑉 is this
variable.

Return
(Expression)

BaseVariable.diag

Variable diag()
Variable diag(int index)

Return the diagonal of a square variable matrix.

Parameters
index (int) – Index of the anti-diagonal

Return
(Variable)

BaseVariable.dual

double[] dual()

Get the dual solution value of the variable as an array. When the selected slice is multi-dimensional,
this corresponds to the flattened slice of solution values.

Return
(double[])

BaseVariable.eval

void eval(WorkStack rs, WorkStack ws, WorkStack xs)

Evaluate the expression and push the result onto the rs work stack.

Parameters
• rs (WorkStack) – The stack where the result of the evaluation is stored.
• ws (WorkStack) – The stack used by evaluation to perform intermediate com-

putations. It will be returned in the same state as when the function is called.
• xs (WorkStack) – An auxiliary stack.

186

BaseVariable.fromTril

Variable fromTril(int d)
Variable fromTril(int dim0, int d)

Convert from a trilinear representation into a square variable.

Parameters
• d (int) – Dimension of the square variable.
• dim0 (int) – Index of the trilinear variable slices in a multi-dimensional repre-

sentation.
Return

(Variable)

BaseVariable.getDim

int getDim(int d)

Return the d’th dimension in the expression.

Parameters
d (int)

Return
(int)

BaseVariable.getModel

Model getModel()

Get the associated model.

Return
(Model)

BaseVariable.getND

int getND()

Get the number of dimensions in the variable shape.

Return
(int)

BaseVariable.getShape

int[] getShape()

Get the variable shape.

Return
(int[])

BaseVariable.getSize

long getSize()

Get the total number of elements in the variable.

Return
(long)

BaseVariable.index

187

Variable index(int index)
Variable index(int[] index)
Variable index(int i0, int i1)
Variable index(int i0, int i1, int i2)

Return a variable slice of size 1 corresponding to a single element in the variable object..

Parameters
• index (int)
• index (int[])
• i0 (int) – Index in the first dimension of the element requested.
• i1 (int) – Index in the second dimension of the element requested.
• i2 (int) – Index in the second dimension of the element requested.

Return
(Variable)

BaseVariable.level

double[] level()

Get the primal solution value of the variable as an array. When the selected slice is multi-
dimensional, this corresponds to the flattened slice of solution values.

Return
(double[])

BaseVariable.makeContinuous

void makeContinuous()

Drop integrality constraints on the variable, if any.
BaseVariable.makeInteger

void makeInteger()

Apply integrality constraints on the variable. Has no effect on elements of semidefinite matrix
variables.

BaseVariable.pick

Variable pick(int[] idxs)
Variable pick(int[][] midxs)
Variable pick(int[] i0, int[] i1)
Variable pick(int[] i0, int[] i1, int[] i2)

Create a one-dimensional variable by picking a list of indexes from this variable.

Parameters
• idxs (int[]) – Indexes of the elements requested.
• midxs (int[][]) – A sequence of multi-dimensional indexes of the elements re-

quested.
• i0 (int[]) – Index along the first dimension.
• i1 (int[]) – Index along the second dimension.
• i2 (int[]) – Index along the third dimension.

Return
(Variable)

BaseVariable.remove

188

void remove()

Remove the variable from the model and remove it from any constraints where it appears. Using
the variable object after this method has been called results in undefined behavior.

BaseVariable.reshape

Variable reshape(int[] shape)
Variable reshape(int dim0)
Variable reshape(int dim0, int dim1)
Variable reshape(int dim0, int dim1, int dim2)

Reshape the variable. The new shape must have the same total size as the current.

Parameters
• shape (int[]) – The new shape.
• dim0 (int) – First dimension of new shape
• dim1 (int) – Second dimension of new shape
• dim2 (int) – Third dimension of new shape

Return
(Variable)

BaseVariable.setLevel

void setLevel(double[] v)

Set values for an initial solution for this variable. Note that these values are buffered until the
solver is called; they are not available through the level() methods.

Parameters
v (double[]) – An array of values to be assigned to the variable.

BaseVariable.slice

Variable slice(int first, int last)
Variable slice(int[] first, int[] last)

Create a slice variable by picking a range of indexes for each variable dimension.

Parameters
• first (int) – The index from which the slice begins.
• first (int[]) – The index from which the slice begins.
• last (int) – The index after the last element of the slice.
• last (int[]) – The index after the last element of the slice.

Return
(Variable)

BaseVariable.toString

String toString()

Create a string representation of the variable.

Return
(String)

BaseVariable.transpose

Variable transpose()

Return the transpose of the current variable. The variable must have at most two dimensions.

189

Return
(Variable)

BaseVariable.tril

Variable tril()
Variable tril(int dim1, int dim2)

Convert from a square variable to a trilinear representation.

Parameters
• dim1 (int) – First dimension in the current shape containing the square variables.
• dim2 (int) – Second dimension in the current shape containing the square vari-

ables.
Return

(Variable)

14.2.3 Class BoundInterfaceConstraint

mosek.fusion.BoundInterfaceConstraint

Interface to either the upper bound or the lower bound of a ranged constraint.

This class is never explicitly instantiated; is is created by a RangedConstraint to allow accessing a
bound value and the dual variable value corresponding to the relevant bound as a separate object.
The constraint

𝑏𝑙 ≤ 𝑎𝑇𝑥 ≤ 𝑏𝑢

has two bounds and two dual variables; these are not immediately available through the
RangedConstraint object, but can be accessed through a BoundInterfaceConstraint .

Implements
SliceConstraint

Members
BoundInterfaceConstraint.dual – Get the dual solution values of the constraint.
BoundInterfaceConstraint.index – Get a single element from a one-dimensional
constraint.
BoundInterfaceConstraint.slice – Create a slice constraint.
Constraint.getModel – Return the model that the constraint belongs to.
Constraint.getND – Return the number of dimensions in the constraint shape.
Constraint.getShape – Return the constraint’s shape.
Constraint.getSize – Return the total number of elements in the constraint.
Constraint.level – Get the primal solution values of the constraint.
Constraint.remove – Remove the constraint from the model.
Constraint.update – Update part of a constraint.
SliceConstraint.toString – Create a human readable string representation of the
constraint.

BoundInterfaceConstraint.dual

double[] dual()

Get the dual solution value of the constraint as an array.

Return
(double[])

BoundInterfaceConstraint.index

190

Constraint index(int idx)
Constraint index(int[] idxa)

Get a single element from a one-dimensional constraint.

Parameters
• idx (int) – The element index.
• idxa (int[]) – Array of integer coordinates in each dimension.

Return
(Constraint)

BoundInterfaceConstraint.slice

Constraint slice(int first, int last)
Constraint slice(int[] firsta, int[] lasta)

Create a slice constraint.

Parameters
• first (int) – Index of the first element in the slice.
• last (int) – Index of the first element after the end of the slice.
• firsta (int[]) – The indexes of first elements in the slice along each dimension.
• lasta (int[]) – The indexes of first elements after the end of the slice along each

dimension.
Return

(Constraint)

14.2.4 Class BoundInterfaceVariable

mosek.fusion.BoundInterfaceVariable
Interface to either the upper bound or the lower bound of a ranged variable.

This class is never explicitly instantiated; is is created by a RangedVariable to allow accessing a
bound value and the dual variable value corresponding to the relevant bound as a separate object.
The variable

𝑏𝑙 ≤ 𝑥 ≤ 𝑏𝑢

has two bounds and two dual variables; these are not immediately available through the
RangedVariable object, but can be accessed through a BoundInterfaceVariable .

Implements
SliceVariable

Members
BaseVariable.asExpr – Create an expression corresponding to the variable object.
BaseVariable.eval – Evaluate the expression and push the result onto the work
stack.
BaseVariable.fromTril – Convert from a trilinear representation into a square
variable.
BaseVariable.getDim – Return the d’th dimension in the expression.
BaseVariable.getModel – Get the associated model.
BaseVariable.getND – Get the number of dimensions in the variable shape.
BaseVariable.getShape – Get the variable shape.
BaseVariable.getSize – Get the total number of elements in the variable.
BaseVariable.index – Return a variable slice of size 1 corresponding to a single
element in the variable object..
BaseVariable.level – Get the primal solution value of the variable.
BaseVariable.makeContinuous – Drop integrality constraints on the variable, if
any.

191

BaseVariable.makeInteger – Apply integrality constraints on the variable. Has
no effect on elements of semidefinite matrix variables.
BaseVariable.remove – Remove the variable from the model.
BaseVariable.reshape – Reshape the variable. The new shape must have the same
total size as the current.
BaseVariable.setLevel – Input solution values for this variable
BaseVariable.toString – Create a string representation of the variable.
BaseVariable.tril – Convert from a square variable to a trilinear representation.
BoundInterfaceVariable.antidiag – Return the antidiagonal of a square variable
matrix.
BoundInterfaceVariable.diag – Return the diagonal of a square variable matrix.
BoundInterfaceVariable.dual – Get the dual solution value of the variable.
BoundInterfaceVariable.pick – Create a one-dimensional variable by picking a
list of indexes from this variable.
BoundInterfaceVariable.slice – Create a slice variable by picking a range of
indexes for each variable dimension.
BoundInterfaceVariable.transpose – Transpose the variable.

BoundInterfaceVariable.antidiag

Variable antidiag()
Variable antidiag(int index)

Return the antidiagonal of a square variable matrix.

Parameters
index (int) – Index of the anti-diagonal

Return
(Variable)

BoundInterfaceVariable.diag

Variable diag()
Variable diag(int index)

Return the diagonal of a square variable matrix.

Parameters
index (int) – Index of the anti-diagonal

Return
(Variable)

BoundInterfaceVariable.dual

double[] dual()

Get the dual solution value of the variable as an array. When the selected slice is multi-dimensional,
this corresponds to the flattened slice of solution values.

Return
(double[])

BoundInterfaceVariable.pick

Variable pick(int[] idxs)
Variable pick(int[][] midxs)
Variable pick(int[] i0, int[] i1)
Variable pick(int[] i0, int[] i1, int[] i2)

Create a one-dimensional variable by picking a list of indexes from this variable.

192

Parameters
• idxs (int[]) – Indexes of the elements requested.
• midxs (int[][]) – A sequence of multi-dimensional indexes of the elements re-

quested.
• i0 (int[]) – Index along the first dimension.
• i1 (int[]) – Index along the second dimension.
• i2 (int[]) – Index along the third dimension.

Return
(Variable)

BoundInterfaceVariable.slice

Variable slice(int first, int last)
Variable slice(int[] firsta, int[] lasta)

Create a slice variable by picking a range of indexes for each variable dimension.

Parameters
• first (int) – The index from which the slice begins.
• last (int) – The index after the last element of the slice.
• firsta (int[])
• lasta (int[])

Return
(Variable)

BoundInterfaceVariable.transpose

Variable transpose()

Return the transpose of the current variable. The variable must have at most two dimensions.

Return
(Variable)

14.2.5 Class ConeDomain

mosek.fusion.ConeDomain
Represent a domain defined by a conic constraints

Members
ConeDomain.axis – Set the dimension along which the cones are created.
ConeDomain.axisIsSet – Returns true if the cone axis was set
ConeDomain.getAxis – Get the dimension along which the cones are created.
ConeDomain.integral – Creates a domain of integral variables.
ConeDomain.withNamesOnAxis – Set index names in a specific axis.
ConeDomain.withShape – Set the shape of the domain.

ConeDomain.axis

ConeDomain axis(int a)

Set the dimension along which the cones are created.

Parameters
a (int)

Return
(ConeDomain)

ConeDomain.axisIsSet

193

boolean axisIsSet()

Returns true if the cone axis was set

Return
(boolean)

ConeDomain.getAxis

int getAxis()

Get the dimension along which the cones are created.

Return
(int)

ConeDomain.integral

ConeDomain integral()

Modify a given domain restricting its elements to be integral.

Return
(ConeDomain)

ConeDomain.withNamesOnAxis

ConeDomain withNamesOnAxis(String[] names, int axis)

Set index names in a specific axis.

Parameters
• names (String[]) – List of names, this must match the actual dimension on that

axis.
• axis (int) – The axis to change names on.

Return
(ConeDomain)

ConeDomain.withShape

ConeDomain withShape(int[] shp)
ConeDomain withShape(int dim0)
ConeDomain withShape(int dim0, int dim1)
ConeDomain withShape(int dim0, int dim1, int dim2)

Set the shape of the domain.

Parameters
• shp (int[]) – The shape of the domain
• dim0 (int) – First dimension
• dim1 (int) – Second dimension
• dim2 (int) – Third dimension

Return
(ConeDomain)

194

14.2.6 Class ConicConstraint

mosek.fusion.ConicConstraint

This class represents a conic constraint of the form

𝐴𝑥− 𝑏 ∈ 𝒦

where 𝒦 is a cone. Then class is never explicitly instantiated, but is created using Model.
constraint by specifying a conic domain.

Note that a conic constraint in Fusion is always dense in the sense that all member constraints are
created in the underlying optimization problem immediately.

Implements
ModelConstraint

Members
ConicConstraint.toString – Create a human readable string representation of the
constraint.
Constraint.dual – Get the dual solution values of the constraint.
Constraint.getModel – Return the model that the constraint belongs to.
Constraint.getND – Return the number of dimensions in the constraint shape.
Constraint.getShape – Return the constraint’s shape.
Constraint.getSize – Return the total number of elements in the constraint.
Constraint.index – Get a single element from a constraint.
Constraint.level – Get the primal solution values of the constraint.
Constraint.slice – Create a slice constraint.
Constraint.update – Update part of a constraint.
ModelConstraint.remove – Remove the constraint from the model.

ConicConstraint.toString

String toString()

Create a human readable string representation of the constraint.

Return
(String)

14.2.7 Class ConicVariable

mosek.fusion.ConicVariable

This class represents a conic variable of the form

𝑥 ∈ 𝒦

where 𝒦 is a cone. Then class is never explicitly instantiated, but is created using Model.variable
by specifying a conic domain.

Note that a conic variable in Fusion is always dense in the sense that all member variables are
created in the underlying optimization problem immediately.

Implements
ModelVariable

Members
BaseVariable.antidiag – Return the antidiagonal of a square variable matrix.
BaseVariable.asExpr – Create an expression corresponding to the variable object.
BaseVariable.diag – Return the diagonal of a square variable matrix.
BaseVariable.dual – Get the dual solution value of the variable.
BaseVariable.eval – Evaluate the expression and push the result onto the work
stack.

195

BaseVariable.fromTril – Convert from a trilinear representation into a square
variable.
BaseVariable.getDim – Return the d’th dimension in the expression.
BaseVariable.getModel – Get the associated model.
BaseVariable.getND – Get the number of dimensions in the variable shape.
BaseVariable.getShape – Get the variable shape.
BaseVariable.getSize – Get the total number of elements in the variable.
BaseVariable.index – Return a variable slice of size 1 corresponding to a single
element in the variable object..
BaseVariable.level – Get the primal solution value of the variable.
BaseVariable.makeContinuous – Drop integrality constraints on the variable, if
any.
BaseVariable.makeInteger – Apply integrality constraints on the variable. Has
no effect on elements of semidefinite matrix variables.
BaseVariable.pick – Create a one-dimensional variable by picking a list of indexes
from this variable.
BaseVariable.reshape – Reshape the variable. The new shape must have the same
total size as the current.
BaseVariable.setLevel – Input solution values for this variable
BaseVariable.slice – Create a slice variable by picking a range of indexes for each
variable dimension.
BaseVariable.transpose – Transpose the variable.
BaseVariable.tril – Convert from a square variable to a trilinear representation.
ConicVariable.toString – Create a string representation of the variable.
ModelVariable.remove – Remove the variable from the model.

ConicVariable.toString

String toString()

Create a string representation of the variable.

Return
(String)

14.2.8 Class Constraint

mosek.fusion.Constraint

An abstract constraint object. This is the base class for all constraint types in Fusion.

The Constraint object can be an interface to the normal model constraint, e.g.
LinearConstraint and ConicConstraint , to slices of other constraints or to concatenations of
other constraints.

Primal and dual solution values can be accessed through the Constraint object.

Members
Constraint.dual – Get the dual solution values of the constraint.
Constraint.getModel – Return the model that the constraint belongs to.
Constraint.getND – Return the number of dimensions in the constraint shape.
Constraint.getShape – Return the constraint’s shape.
Constraint.getSize – Return the total number of elements in the constraint.
Constraint.index – Get a single element from a constraint.
Constraint.level – Get the primal solution values of the constraint.
Constraint.remove – Remove the constraint from the model.
Constraint.slice – Create a slice constraint.
Constraint.toString – Create a human readable string representation of the con-
straint.
Constraint.update – Update part of a constraint.

196

Static members
Constraint.hstack – Stack a number of constraints horizontally.
Constraint.stack – Stack a number of constraints.
Constraint.vstack – Stack a number of constraints vertically.

Implemented by
ModelConstraint , SliceConstraint

Constraint.dual

double[] dual()

Get the dual solution values of the constraint or its slice. When the selected slice is multi-
dimensional, this corresponds to the flattened slice of solution values.

Return
(double[])

Constraint.getModel

Model getModel()

Return the model that the constraint belongs to.

Return
(Model)

Constraint.getND

int getND()

Return the number of dimensions in the constraint shape.

Return
(int)

Constraint.getShape

int[] getShape()

Return the constraint’s shape.

Return
(int[])

Constraint.getSize

int getSize()

Return the total number of elements in the constraint.

Return
(int)

Constraint.hstack

Constraint Constraint.hstack(Constraint v1, Constraint v2)
Constraint Constraint.hstack(Constraint v1, Constraint v2, Constraint v3)
Constraint Constraint.hstack(Constraint[] clist)

Stack a number of constraints horizontally.

Parameters
• v1 (Constraint) – The first constraint in the stack.

197

• v2 (Constraint) – The second constraint in the stack.
• v3 (Constraint) – The third constraint in the stack.
• clist (Constraint []) – The constraints in the stack.

Return
(Constraint)

Constraint.index

Constraint index(int idx)
Constraint index(int[] idxa)

Get a single element from a one-dimensional constraint.

Parameters
• idx (int) – The index of the element.
• idxa (int[]) – A multi-dimensional index of the element.

Return
(Constraint)

Constraint.level

double[] level()

Get the primal solution values of the constraint. This amounts to evaluating the 𝐴𝑥 part of the
constraint expression for the relevant solution value. When the selected slice is multi-dimensional,
this corresponds to the flattened slice of solution values.

Return
(double[])

Constraint.remove

void remove()

Remove the constraint from the model. Using the constraint object after this method has been
called results in undefined behavior.

Constraint.slice

Constraint slice(int first, int last)
Constraint slice(int[] firsta, int[] lasta)

Create a slice constraint.

Parameters
• first (int) – Index of the first element in the slice.
• last (int) – Index of the first element after the end of the slice.
• firsta (int[]) – The indexes of first elements in the slice along each dimension.
• lasta (int[]) – The indexes of first elements after the end of the slice along each

dimension.
Return

(Constraint)

Constraint.stack

Constraint Constraint.stack(Constraint v1, Constraint v2, int dim)
Constraint Constraint.stack(Constraint v1, Constraint v2, Constraint v3, int dim)
Constraint Constraint.stack(Constraint[] clist, int dim)

Stack a number of constraints.

198

Parameters
• v1 (Constraint) – The first constraint in the stack.
• v2 (Constraint) – The second constraint in the stack.
• dim (int) – The dimension in which to stack, 0 means vertically.
• v3 (Constraint) – The third constraint in the stack.
• clist (Constraint []) – The constraints in the stack.

Return
(Constraint)

Constraint.toString

String toString()

Create a human readable string representation of the constraint.

Return
(String)

Constraint.update

void update(Expression expr, Variable x)
void update(Expression expr, Variable x, boolean bfixupdate)
void update(Expression expr)
void update(double[] bfix)

Update entire or part of the left-hand side of a constraint (the expression). See Sec. 7.10 for a
tutorial.

If only expr is given, replace the entire previous expression with expr. The shape of expr must
match the shape of the constraint.

If only bfix is given, replace the constant term of the expression with bfix. The length of bfix
must match the size of the expression.

If x is given, replace all columns in the constraint defined by x by terms defined by expr, possibly
including constant terms. Currently it is only possible to update linear columns. Attempting to
update columns of semidefinite variables will result in an error.

Parameters
• expr (Expression) – The expression to update with.
• x (Variable) – Variable object defining the columns to update.
• bfixupdate (boolean) – Whether to include fixed terms as well.
• bfix (double[]) – The fixed term to update with.

Constraint.vstack

Constraint Constraint.vstack(Constraint v1, Constraint v2)
Constraint Constraint.vstack(Constraint v1, Constraint v2, Constraint v3)
Constraint Constraint.vstack(Constraint[] clist)

Stack a number of constraints vertically.

Parameters
• v1 (Constraint) – The first constraint in the stack.
• v2 (Constraint) – The second constraint in the stack.
• v3 (Constraint) – The third constraint in the stack.
• clist (Constraint []) – The constraints in the stack.

Return
(Constraint)

199

14.2.9 Class DJC

mosek.fusion.DJC

A class providing static methods to manipulate terms of disjunctive constraints (DJC).

Static members
DJC.AND – Create a conjunction of simple terms.
DJC.term – Create a simple term.

DJC.AND

Term DJC.AND(SimpleTerm[] slist)
Term DJC.AND(SimpleTerm s1)
Term DJC.AND(SimpleTerm s1, SimpleTerm s2)
Term DJC.AND(SimpleTerm s1, SimpleTerm s2, SimpleTerm s3)

Creates a conjunction of existing simple terms 𝑆1, . . . , 𝑆𝑛, that is a term representing:

𝑆1 AND · · · AND 𝑆𝑛.

Parameters
• slist (SimpleTerm []) – A list of simple terms in the conjunction.
• s1 (SimpleTerm) – A simple term.
• s2 (SimpleTerm) – A simple term.
• s3 (SimpleTerm) – A simple term.

Return
(Term)

DJC.term

SimpleTerm DJC.term(Variable x, LinearDomain dom)
SimpleTerm DJC.term(Expression expr, LinearDomain dom)
SimpleTerm DJC.term(Variable x, RangeDomain dom)
SimpleTerm DJC.term(Expression expr, RangeDomain dom)

Creates a simple term, that is a condition which can be used as a building block in disjunctive
constraints. A simple term has the form an expression belongs to a domain. Only linear and ranged
domains are allowed in a disjunctive constraint.

A simple term can be used to construct a conjunctive term with DJC.AND or it can enter directly
as a term into a disjunctive constraint via Model.disjunction .

Parameters
• x (Variable) – A variable.
• dom (LinearDomain) – The domain of this simple term.
• dom (RangeDomain) – The domain of this simple term.
• expr (Expression) – An expression.

Return
(SimpleTerm)

14.2.10 Class Disjunction

mosek.fusion.Disjunction

A class representing a disjunctive constraint.

200

14.2.11 Class DisjunctionTerms

mosek.fusion.DisjunctionTerms

Excapsulates the clauses of a disjunctive constraint

14.2.12 Class Domain

mosek.fusion.Domain

The Domain class defines a set of static method for creating various variable and constraint domains.
A Domain object specifies a subset of R𝑛, which can be used to define the feasible domain of variables
and expressions.

For further details on the use of these, see Model.variable and Model.constraint .

Static members
Domain.axis – Set the dimension along which the cones are created.
Domain.binary – Creates a domain of binary variables.
Domain.equalsTo – Defines the domain consisting of a fixed point.
Domain.greaterThan – Defines the domain specified by a lower bound in each di-
mension.
Domain.inDExpCone – Defines the dual exponential cone.
Domain.inDGeoMeanCone – Defines the domain of dual geometric mean cones.
Domain.inDPowerCone – Defines the dual power cone.
Domain.inPExpCone – Defines the primal exponential cone.
Domain.inPGeoMeanCone – Defines the domain of primal geometric mean cones.
Domain.inPPowerCone – Defines the primal power cone.
Domain.inPSDCone – Creates a domain of Positive Semidefinite matrices.
Domain.inQCone – Defines the domain of quadratic cones.
Domain.inRange – Creates a domain specified by a range in each dimension.
Domain.inRotatedQCone – Defines the domain of rotated quadratic cones.
Domain.inSVecPSDCone – Creates a domain of vectorized Positive Semidefinite ma-
trices.
Domain.integral – Creates a domain of integral variables.
Domain.isTrilPSD – Creates a domain of Positive Semidefinite matrices.
Domain.lessThan – Defines the domain specified by an upper bound in each dimen-
sion.
Domain.sparse – Use a sparse representation.
Domain.unbounded – Creates a domain in which variables are unbounded.

Domain.axis

ConeDomain Domain.axis(ConeDomain c, int a)

Set the dimension along which the cones are created. If this conic domain is used for a variable or
expression of dimension 𝑑, then the conic constraint will be applicable to all vectors obtained by
fixing the coordinates other than 𝑎-th and moving along the 𝑎-th coordinate. If 𝑑 = 2 this can be
used to define the conditions “every row of the matrix is in a cone” and “every column of a matrix
is in a cone”.

The default is the last dimension 𝑎 = 𝑑− 1.

Parameters
• c (ConeDomain) – A conic domain.
• a (int) – The axis.

Return
(ConeDomain)

Domain.binary

201

RangeDomain Domain.binary(int n)
RangeDomain Domain.binary(int m, int n)
RangeDomain Domain.binary(int[] dims)
RangeDomain Domain.binary()

Create a domain of binary variables. A binary domain can only be used when creating variables,
but is not allowed in a constraint. Another way of restricting variables to be integers is the method
Variable.makeInteger .

Parameters
• n (int) – Dimension size.
• m (int) – Dimension size.
• dims (int[]) – A list of dimension sizes.

Return
(RangeDomain)

Domain.equalsTo

LinearDomain Domain.equalsTo(double b)
LinearDomain Domain.equalsTo(double b, int n)
LinearDomain Domain.equalsTo(double b, int m, int n)
LinearDomain Domain.equalsTo(double b, int[] dims)
LinearDomain Domain.equalsTo(double[] a1)
LinearDomain Domain.equalsTo(double[][] a2)
LinearDomain Domain.equalsTo(double[] a1, int[] dims)
LinearDomain Domain.equalsTo(Matrix mx)

Defines the domain consisting of a fixed point.

Parameters
• b (double) – A single value. This is scalable: it means that each element in the

variable or constraint is fixed to 𝑏.
• n (int) – Dimension size.
• m (int) – Dimension size.
• dims (int[]) – A list of dimension sizes.
• a1 (double[]) – A one-dimensional array of bounds. The shape must match the

variable or constraint with which it is used.
• a2 (double[][]) – A two-dimensional array of bounds. The shape must match the

variable or constraint with which it is used.
• mx (Matrix) – A matrix of bound values. The shape must match the variable or

constraint with which it is used.
Return

(LinearDomain)

Domain.greaterThan

LinearDomain Domain.greaterThan(double b)
LinearDomain Domain.greaterThan(double b, int n)
LinearDomain Domain.greaterThan(double b, int m, int n)
LinearDomain Domain.greaterThan(double b, int[] dims)
LinearDomain Domain.greaterThan(double[] a1)
LinearDomain Domain.greaterThan(double[][] a2)
LinearDomain Domain.greaterThan(double[] a1, int[] dims)
LinearDomain Domain.greaterThan(Matrix mx)

Defines the domain specified by a lower bound in each dimension.

Parameters

202

• b (double) – A single value. This is scalable: it means that each element in the
variable or constraint is greater than or equal to 𝑏.

• n (int) – Dimension size.
• m (int) – Dimension size.
• dims (int[]) – A list of dimension sizes.
• a1 (double[]) – A one-dimensional array of bounds. The shape must match the

variable or constraint with which it is used.
• a2 (double[][]) – A two-dimensional array of bounds. The shape must match the

variable or constraint with which it is used.
• mx (Matrix) – A matrix of bound values. The shape must match the variable or

constraint with which it is used.
Return

(LinearDomain)

Domain.inDExpCone

ConeDomain Domain.inDExpCone()
ConeDomain Domain.inDExpCone(int m)
ConeDomain Domain.inDExpCone(int[] dims)

Defines the domain of dual exponential cones:{︁
𝑥 ∈ R3 : 𝑥1 ≥ −𝑥3𝑒

−1𝑒𝑥2/𝑥3 , 𝑥1 > 0, 𝑥3 < 0
}︁

The conic domain scales as follows. If a variable or expression constrained to an exponential cone
is not a single vector but a 𝑑-dimensional variable then the conic domain is applicable to all vectors
obtained by fixing the first 𝑑 − 1 coordinates and moving along the last coordinate. If 𝑑 = 2 it
means that each row of a matrix must belong to a cone. See also Domain.axis .

If 𝑚 was given the domain is a product of 𝑚 such cones.

Parameters
• m (int) – The number of cones (default 1).
• dims (int[]) – Shape of the domain.

Return
(ConeDomain)

Domain.inDGeoMeanCone

ConeDomain Domain.inDGeoMeanCone()
ConeDomain Domain.inDGeoMeanCone(int n)
ConeDomain Domain.inDGeoMeanCone(int m, int n)
ConeDomain Domain.inDGeoMeanCone(int[] dims)

Defines the domain of dual geometric mean cones:⎧⎨⎩𝑥 ∈ R𝑛 : (𝑛− 1)

(︃
𝑛−1∏︁
𝑖=1

𝑥𝑖

)︃1/(𝑛−1)

≥ |𝑥𝑛|, 𝑥1, . . . , 𝑥𝑛−1 ≥ 0

⎫⎬⎭
The conic domain scales as follows. If a variable or expression constrained to a cone is not a single
vector but a 𝑑-dimensional variable then the conic domain is applicable to all vectors obtained by
fixing the first 𝑑− 1 coordinates and moving along the last coordinate. If 𝑑 = 2 it means that each
row of a matrix must belong to a cone. See also Domain.axis .

If 𝑚 was given the domain is a product of 𝑚 such cones.

Parameters
• n (int) – The size of each cone; at least 2.
• m (int) – The number of cones (default 1).

203

• dims (int[]) – Shape of the domain.
Return

(ConeDomain)

Domain.inDPowerCone

ConeDomain Domain.inDPowerCone(double alpha)
ConeDomain Domain.inDPowerCone(double alpha, int m)
ConeDomain Domain.inDPowerCone(double alpha, int[] dims)
ConeDomain Domain.inDPowerCone(double[] alphas)
ConeDomain Domain.inDPowerCone(double[] alphas, int m)
ConeDomain Domain.inDPowerCone(double[] alphas, int[] dims)

Defines the domain of dual power cones. For a single double argument alpha it defines the set⎧⎨⎩𝑥 ∈ R𝑛 :
(︁𝑥1

𝛼

)︁𝛼(︂ 𝑥2

1 − 𝛼

)︂1−𝛼

≥

⎯⎸⎸⎷ 𝑛∑︁
𝑖=3

𝑥2
𝑖 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ .

For an array alphas of length 𝑛𝑙, consisting of weights for the cone, it defines the set{︃
𝑥 ∈ R𝑛 :

𝑛𝑙∏︁
𝑖=1

(︂
𝑥𝑖

𝛽𝑖

)︂𝛽𝑖

≥
√︁

𝑥2
𝑛𝑙+1 + · · · + 𝑥2

𝑛, 𝑥1, . . . , 𝑥𝑛𝑙
≥ 0

}︃
.

where 𝛽𝑖 are the weights normalized to add up to 1, ie. 𝛽𝑖 = 𝛼𝑖/(
∑︀

𝑗 𝛼𝑗) for 𝑖 = 1, . . . , 𝑛𝑙.
The conic domain scales as follows. If a variable or expression constrained to a power cone is
not a single vector but a 𝑑-dimensional variable then the conic domain is applicable to all vectors
obtained by fixing the first 𝑑 − 1 coordinates and moving along the last coordinate. If 𝑑 = 2 it
means that each row of a matrix must belong to a cone. See also Domain.axis .
If 𝑚 was given the domain is a product of 𝑚 such cones.

Parameters
• alpha (double) – The exponent of the power cone. Must be between 0 and 1.
• m (int) – The number of cones (default 1).
• dims (int[]) – Shape of the domain.
• alphas (double[]) – The weights of the power cone. Must be positive.

Return
(ConeDomain)

Domain.inPExpCone

ConeDomain Domain.inPExpCone()
ConeDomain Domain.inPExpCone(int m)
ConeDomain Domain.inPExpCone(int[] dims)

Defines the domain of primal exponential cones:{︁
𝑥 ∈ R3 : 𝑥1 ≥ 𝑥2𝑒

𝑥3/𝑥2 , 𝑥1, 𝑥2 > 0
}︁

The conic domain scales as follows. If a variable or expression constrained to an exponential cone
is not a single vector but a 𝑑-dimensional variable then the conic domain is applicable to all vectors
obtained by fixing the first 𝑑 − 1 coordinates and moving along the last coordinate. If 𝑑 = 2 it
means that each row of a matrix must belong to a cone. See also Domain.axis .
If 𝑚 was given the domain is a product of 𝑚 such cones.

Parameters
• m (int) – The number of cones (default 1).
• dims (int[]) – Shape of the domain.

Return
(ConeDomain)

204

Domain.inPGeoMeanCone

ConeDomain Domain.inPGeoMeanCone()
ConeDomain Domain.inPGeoMeanCone(int n)
ConeDomain Domain.inPGeoMeanCone(int m, int n)
ConeDomain Domain.inPGeoMeanCone(int[] dims)

Defines the domain of primal geometric mean cones:⎧⎨⎩𝑥 ∈ R𝑛 :

(︃
𝑛−1∏︁
𝑖=1

𝑥𝑖

)︃1/(𝑛−1)

≥ |𝑥𝑛|, 𝑥1 . . . , 𝑥𝑛−1 ≥ 0

⎫⎬⎭
The conic domain scales as follows. If a variable or expression constrained to a cone is not a single
vector but a 𝑑-dimensional variable then the conic domain is applicable to all vectors obtained by
fixing the first 𝑑− 1 coordinates and moving along the last coordinate. If 𝑑 = 2 it means that each
row of a matrix must belong to a cone. See also Domain.axis .
If 𝑚 was given the domain is a product of 𝑚 such cones.

Parameters
• n (int) – The size of each cone; at least 2.
• m (int) – The number of cones (default 1).
• dims (int[]) – Shape of the domain.

Return
(ConeDomain)

Domain.inPPowerCone

ConeDomain Domain.inPPowerCone(double alpha)
ConeDomain Domain.inPPowerCone(double alpha, int m)
ConeDomain Domain.inPPowerCone(double alpha, int[] dims)
ConeDomain Domain.inPPowerCone(double[] alphas)
ConeDomain Domain.inPPowerCone(double[] alphas, int m)
ConeDomain Domain.inPPowerCone(double[] alphas, int[] dims)

Defines the domain of primal power cones. For a single double argument alpha it defines the set⎧⎨⎩𝑥 ∈ R𝑛 : 𝑥𝛼
1𝑥

1−𝛼
2 ≥

⎯⎸⎸⎷ 𝑛∑︁
𝑖=3

𝑥2
𝑖 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ .

For an array alphas of length 𝑛𝑙, consisting of weights for the cone, it defines the set{︃
𝑥 ∈ R𝑛 :

𝑛𝑙∏︁
𝑖=1

𝑥𝛽𝑖

𝑖 ≥
√︁
𝑥2
𝑛𝑙+1 + · · · + 𝑥2

𝑛, 𝑥1, . . . , 𝑥𝑛𝑙
≥ 0

}︃
.

where 𝛽𝑖 are the weights normalized to add up to 1, ie. 𝛽𝑖 = 𝛼𝑖/(
∑︀

𝑗 𝛼𝑗) for 𝑖 = 1, . . . , 𝑛𝑙.
The conic domain scales as follows. If a variable or expression constrained to a power cone is
not a single vector but a 𝑑-dimensional variable then the conic domain is applicable to all vectors
obtained by fixing the first 𝑑 − 1 coordinates and moving along the last coordinate. If 𝑑 = 2 it
means that each row of a matrix must belong to a cone. See also Domain.axis .
If 𝑚 was given the domain is a product of 𝑚 such cones.

Parameters
• alpha (double) – The exponent of the power cone. Must be between 0 and 1.
• m (int) – The number of cones (default 1).
• dims (int[]) – Shape of the domain.
• alphas (double[]) – The weights of the power cone. Must be positive.

Return
(ConeDomain)

205

Domain.inPSDCone

PSDDomain Domain.inPSDCone()
PSDDomain Domain.inPSDCone(int n)
PSDDomain Domain.inPSDCone(int n, int m)

When used to create a new variable in Model.variable it defines a domain of symmetric positive
semidefinite matrices, that is

𝒮𝑛
+ =

{︀
𝑋 ∈ R𝑛×𝑛 : 𝑋 = 𝑋𝑇 , 𝑦𝑇𝑋𝑦 ≥ 0, for all 𝑦

}︀
.

The shape of the result is 𝑛× 𝑛. If 𝑚 was given the domain is a product of 𝑚 such cones, that is
of shape 𝑚× 𝑛× 𝑛.

When used to impose a constraint in Model.constraint it defines a domain{︂
𝑋 ∈ R𝑛×𝑛 :

1

2
(𝑋 + 𝑋𝑇) ∈ 𝒮𝑛

+

}︂
.

i.e. a positive semidefinite matrix without the symmetry assumption.

Parameters
• n (int) – Dimension of the PSD matrix.
• m (int) – Number of matrices (default 1).

Return
(PSDDomain)

Domain.inQCone

ConeDomain Domain.inQCone()
ConeDomain Domain.inQCone(int n)
ConeDomain Domain.inQCone(int m, int n)
ConeDomain Domain.inQCone(int[] dims)

Defines the domain of quadratic cones:{︃
𝑥 ∈ R𝑛 : 𝑥2

1 ≥
𝑛∑︁

𝑖=2

𝑥2
𝑖 , 𝑥1 ≥ 0

}︃

The conic domain scales as follows. If a variable or expression constrained to a quadratic cone is
not a single vector but a 𝑑-dimensional variable then the conic domain is applicable to all vectors
obtained by fixing the first 𝑑 − 1 coordinates and moving along the last coordinate. If 𝑑 = 2 it
means that each row of a matrix must belong to a cone. See also Domain.axis .

If 𝑚 was given the domain is a product of 𝑚 such cones.

Parameters
• n (int) – The size of each cone; at least 2.
• m (int) – The number of cones (default 1).
• dims (int[]) – Shape of the domain.

Return
(ConeDomain)

Domain.inRange

RangeDomain Domain.inRange(double lb, double ub)
RangeDomain Domain.inRange(double lb, double[] uba)
RangeDomain Domain.inRange(double[] lba, double ub)
RangeDomain Domain.inRange(double[] lba, double[] uba)
RangeDomain Domain.inRange(double lb, double ub, int[] dims)

(continues on next page)

206

(continued from previous page)

RangeDomain Domain.inRange(double lb, double[] uba, int[] dims)
RangeDomain Domain.inRange(double[] lba, double ub, int[] dims)
RangeDomain Domain.inRange(double[] lba, double[] uba, int[] dims)
RangeDomain Domain.inRange(double[][] lba, double[][] uba)
RangeDomain Domain.inRange(Matrix lbm, Matrix ubm)

Creates a domain specified by a range in each dimension.

Parameters
• lb (double) – The lower bound as a common scalar value.
• ub (double) – The upper bound as a common scalar value.
• uba (double[]) – The upper bounds as an array.
• uba (double[][]) – The upper bounds as an array.
• lba (double[]) – The lower bounds as an array.
• lba (double[][]) – The lower bounds as an array.
• dims (int[]) – A list of dimension sizes.
• lbm (Matrix) – The lower bounds as a Matrix object.
• ubm (Matrix) – The upper bounds as a Matrix object.

Return
(RangeDomain)

Domain.inRotatedQCone

ConeDomain Domain.inRotatedQCone()
ConeDomain Domain.inRotatedQCone(int n)
ConeDomain Domain.inRotatedQCone(int m, int n)
ConeDomain Domain.inRotatedQCone(int[] dims)

Defines the domain of rotated quadratic cones:{︃
𝑥 ∈ R𝑛 : 2𝑥1𝑥2 ≥

𝑛∑︁
𝑖=3

𝑥2
𝑖 , 𝑥1, 𝑥2 ≥ 0

}︃

The conic domain scales as follows. If a variable or expression constrained to a quadratic cone is
not a single vector but a 𝑑-dimensional variable then the conic domain is applicable to all vectors
obtained by fixing the first 𝑑 − 1 coordinates and moving along the last coordinate. If 𝑑 = 2 it
means that each row of a matrix must belong to a cone. See also Domain.axis .

If 𝑚 was given the domain is a product of 𝑚 such cones.

Parameters
• n (int) – The size of each cone; at least 3.
• m (int) – The number of cones (default 1).
• dims (int[]) – Shape of the domain.

Return
(ConeDomain)

Domain.inSVecPSDCone

ConeDomain Domain.inSVecPSDCone()
ConeDomain Domain.inSVecPSDCone(int n)
ConeDomain Domain.inSVecPSDCone(int d1, int d2)
ConeDomain Domain.inSVecPSDCone(int[] dims)

Creates a domain of vectorized Positive Semidefinite matrices:

{(𝑥1, . . . , 𝑥𝑑(𝑑+1)/2) ∈ R𝑛 : sMat(𝑥) ∈ 𝒮𝑑
+} = {sVec(𝑋) : 𝑋 ∈ 𝒮𝑑

+},

207

where

sVec(𝑋) = (𝑋11,
√

2𝑋21, . . . ,
√

2𝑋𝑑1, 𝑋22,
√

2𝑋32, . . . , 𝑋𝑑𝑑),

and

sMat(𝑥) =

⎡⎢⎢⎣
𝑥1 𝑥2/

√
2 · · · 𝑥𝑑/

√
2

𝑥2/
√

2 𝑥𝑑+1 · · · 𝑥2𝑑−1/
√

2
· · · · · · · · · · · ·

𝑥𝑑/
√

2 𝑥2𝑑−1/
√

2 · · · 𝑥𝑑(𝑑+1)/2

⎤⎥⎥⎦ .

In other words, the domain consists of vectorizations of the lower-triangular part of a positive
semidefinite matrix, with the non-diagonal elements additionally rescaled.

Parameters
• n (int) – Length of the vectorization - this must be of the form 𝑑 * (𝑑+ 1)/2 for

some positive integer 𝑑.
• d1 (int) – Size of first dimension of the domain.
• d2 (int) – Size of second dimension of the domain.
• dims (int[]) – Shape of the domain.

Return
(ConeDomain)

Domain.integral

ConeDomain Domain.integral(ConeDomain c)
LinearDomain Domain.integral(LinearDomain ld)
RangeDomain Domain.integral(RangeDomain rd)

Modify a given domain restricting its elements to be integral. An integral domain can only be used
when creating variables, but is not allowed in a constraint. Another way of restricting variables to
be integers is the method Variable.makeInteger .

Parameters
• c (ConeDomain) – A conic domain.
• ld (LinearDomain) – A linear domain.
• rd (RangeDomain) – A ranged domain.

Return
• (ConeDomain)
• (LinearDomain)
• (RangeDomain)

Domain.isTrilPSD

PSDDomain Domain.isTrilPSD()
PSDDomain Domain.isTrilPSD(int n)
PSDDomain Domain.isTrilPSD(int n, int m)

Creates an object representing a cone of the form{︀
𝑋 ∈ R𝑛×𝑛 : tril(𝑋) ∈ 𝒮𝑛

+

}︀
.

i.e. the lower triangular part of 𝑋 defines the symmetric matrix that is positive semidefinite. The
shape of the result is 𝑛 × 𝑛. If 𝑚 was given the domain is a product of 𝑚 such cones, that is of
shape 𝑚× 𝑛× 𝑛.

Parameters
• n (int) – Dimension of the PSD matrix.
• m (int) – Number of matrices (default 1).

Return
(PSDDomain)

208

Domain.lessThan

LinearDomain Domain.lessThan(double b)
LinearDomain Domain.lessThan(double b, int n)
LinearDomain Domain.lessThan(double b, int m, int n)
LinearDomain Domain.lessThan(double b, int[] dims)
LinearDomain Domain.lessThan(double[] a1)
LinearDomain Domain.lessThan(double[][] a2)
LinearDomain Domain.lessThan(double[] a1, int[] dims)
LinearDomain Domain.lessThan(Matrix mx)

Defines the domain specified by an upper bound in each dimension.

Parameters
• b (double) – A single value. This is scalable: it means that each element in the

variable or constraint is less than or equal to 𝑏.
• n (int) – Dimension size.
• m (int) – Dimension size.
• dims (int[]) – A list of dimension sizes.
• a1 (double[]) – A one-dimensional array of bounds. The shape must match the

variable or constraint with which it is used.
• a2 (double[][]) – A two-dimensional array of bounds. The shape must match the

variable or constraint with which it is used.
• mx (Matrix) – A matrix of bound values. The shape must match the variable or

constraint with which it is used.
Return

(LinearDomain)

Domain.sparse

LinearDomain Domain.sparse(LinearDomain ld, int[] sparsity)
LinearDomain Domain.sparse(LinearDomain ld, int[][] sparsity)
RangeDomain Domain.sparse(RangeDomain rd, int[] sparsity)
RangeDomain Domain.sparse(RangeDomain rd, int[][] sparsity)

Given a linear domain, this method explicitly suggest to Fusion that a sparse representation is
helpful.

Parameters
• ld (LinearDomain) – The linear sparse domain.
• sparsity (int[]) – Sparsity pattern.
• sparsity (int[][]) – Sparsity pattern.
• rd (RangeDomain) – The ranged sparse domain.

Return
• (LinearDomain)
• (RangeDomain)

Domain.unbounded

LinearDomain Domain.unbounded()
LinearDomain Domain.unbounded(int n)
LinearDomain Domain.unbounded(int m, int n)
LinearDomain Domain.unbounded(int[] dims)

Creates a domain in which variables are unbounded.

Parameters
• n (int) – Dimension size.

209

• m (int) – Dimension size.
• dims (int[]) – A list of dimension sizes.

Return
(LinearDomain)

14.2.13 Class Expr

mosek.fusion.Expr
It represents an expression of the form 𝐴𝑥 + 𝑏, where 𝐴 is a matrix on sparse form, 𝑥 is a variable
vector and 𝑏 is a vector of scalars.

Additionally, the class defines a set of static methods for constructing and manipulating various
expressions.

Implements
BaseExpression

Members
BaseExpression.getDim – Return the d’th dimension in the expression.
BaseExpression.getModel – Get the associated model.
BaseExpression.getND – Return the number of dimensions in the expression.
BaseExpression.getShape – Get the shape of the expression.
BaseExpression.getSize – Return the total number of elements in the expression
(the product of the dimensions).
BaseExpression.index – Get a single element in the expression.
BaseExpression.pick – Pick a number of elements from the expression.
BaseExpression.slice – Get a slice of the expression.
BaseExpression.toString – Return a string representation of the expression ob-
ject.
Expr.eval – Evaluate the expression and push the result onto the work stack.

Static members
Expr.add – Compute the sum of expressions.
Expr.condense – Flatten expression and remove all structural zeros.
Expr.constTerm – Create an expression consisting of a constant vector of values.
Expr.dot – Return a scalar expression object representing the dot-product of two
items.
Expr.flatten – Reshape the expression into a vector.
Expr.hstack – Stack a list of expressions horizontally (i.e. along the second dimen-
sion).
Expr.mul – Multiply two items.
Expr.mulDiag – Compute the diagonal of the product of two matrices.
Expr.mulElm – Element-wise product of two items.
Expr.neg – Change the sign of an expression
Expr.ones – Create an expression consisting of ones.
Expr.outer – Return the outer-product of two vectors.
Expr.repeat – Repeat an expression a number of times in the given dimension.
Expr.reshape – Reshape the expression into a different shape with the same number
of elements.
Expr.stack – Stack a list of expressions in an arbitrary dimension.
Expr.sub – Compute the difference of two expressions.
Expr.sum – Sum the elements of an expression.
Expr.transpose – Transpose a two-dimensional expression.
Expr.vstack – Stack a list of expressions vertically (i.e. along the first dimension).
Expr.zeros – Create an expression consisting of zeros.

Expr.add

Expression Expr.add(Expression e1, Expression e2)
Expression Expr.add(Expression e1, double[] a1)

(continues on next page)

210

(continued from previous page)

Expression Expr.add(Expression e1, double[][] a2)
Expression Expr.add(double[] a1, Expression e2)
Expression Expr.add(double[][] a2, Expression e2)
Expression Expr.add(Expression e1, double c)
Expression Expr.add(double c, Expression e2)
Expression Expr.add(Expression e1, Matrix m)
Expression Expr.add(Matrix m, Expression e2)
Expression Expr.add(Expression e1, NDSparseArray n)
Expression Expr.add(NDSparseArray n, Expression e2)
Expression Expr.add(Variable[] vs)
Expression Expr.add(Expression[] exps)

Computes the sum of two or more expressions or variables. The following types of arguments are
allowed:

A B

Variable Variable
Expression Expression
double
double[]
double[,]
Matrix
NDSparseArray

By symmetry both add(A,B) and add(B,A) are available.

The arguments must have the same shapes and the returned expression also has that shape. If one
of the arguments is a single scalar, it is promoted to the shape that matches the shape of the other
argument, i.e. the scalar is added to all entries of the other argument.

Parameters
• e1 (Expression) – An expression.
• e2 (Expression) – An expression.
• a1 (double[]) – A one-dimensional array of constants.
• a2 (double[][]) – A two-dimensional array of constants.
• c (double) – A constant.
• m (Matrix) – A Matrix object.
• n (NDSparseArray) – An NDSparseArray object.
• vs (Variable []) – A list of variables. All variables in the array must have the

same shape. The list must contain at least one element.
• exps (Expression []) – A list of expressions. All expressions in the array must

have the same shape. The list must contain at least one element.
Return

(Expression)

Expr.condense

Expression Expr.condense(Expression e)

Flatten expression and remove all structural zeros.

Parameters
e (Expression) – Expression to be condensed.

Return
(Expression)

211

Expr.constTerm

Expression Expr.constTerm(double[] vals1)
Expression Expr.constTerm(double[][] vals2)
Expression Expr.constTerm(int size, double val)
Expression Expr.constTerm(int[] shp, double val)
Expression Expr.constTerm(int[] shp, int[][] sparsity, double[] vals1)
Expression Expr.constTerm(int[] shp, int[][] sparsity, double val)
Expression Expr.constTerm(double val)
Expression Expr.constTerm(Matrix m)
Expression Expr.constTerm(NDSparseArray nda)

Create an expression consisting of a constant vector of values.

Parameters
• vals1 (double[]) – A vector initializing the expression.
• vals2 (double[][]) – An array initializing the expression.
• size (int) – Length of the vector to be constructed.
• val (double) – A scalar value to be repeated in all entries of the expression.
• shp (int[]) – Defines the shape of the expression.
• sparsity (int[][]) – Sparsity pattern.
• m (Matrix) – A matrix of values initializing the expression.
• nda (NDSparseArray) – An multi-dimensional sparse array initializing the ex-

pression.
Return

(Expression)

Expr.dot

Expression Expr.dot(Parameter p, Expression e)
Expression Expr.dot(Expression e, Parameter p)
Expression Expr.dot(double[] c1, Expression e)
Expression Expr.dot(double[][] c2, Expression e)
Expression Expr.dot(NDSparseArray nda, Expression e)
Expression Expr.dot(Matrix m, Expression e)
Expression Expr.dot(Expression e, double[] c1)
Expression Expr.dot(Expression e, NDSparseArray nda)
Expression Expr.dot(Expression e, double[][] c2)
Expression Expr.dot(Expression e, Matrix m)

Return an object representing the inner product (dot product) 𝑥𝑇 𝑦 =
∑︀𝑛

𝑖=1 𝑥𝑖𝑦𝑖 of two objects
𝑥, 𝑦 of size 𝑛.

Both arguments must have the same length when flattened. In particular, they can be two vectors
of the same length or two matrices of the same shape.

Parameters
• p (Parameter) – A parameter.
• e (Expression) – An expression object.
• c1 (double[]) – A one-dimensional coefficient vector.
• c2 (double[][]) – A two-dimensional coefficient array.
• nda (NDSparseArray) – A multi-dimensional sparse array.
• m (Matrix) – A matrix object.

Return
(Expression)

Expr.eval

212

void eval(WorkStack rs, WorkStack ws, WorkStack xs)

Evaluate the expression and push the result onto the rs work stack.

Parameters
• rs (WorkStack) – The stack where the result of the evaluation is stored.
• ws (WorkStack) – The stack used by evaluation to perform intermediate com-

putations. It will be returned in the same state as when the function is called.
• xs (WorkStack) – An auxiliary stack.

Expr.flatten

Expression Expr.flatten(Expression e)

Reshape the expression into a vector.

Parameters
e (Expression) – The expression to be flattened.

Return
(Expression)

Expr.hstack

Expression Expr.hstack(Expression[] exprs)
Expression Expr.hstack(Expression e1, Expression e2)
Expression Expr.hstack(Expression e1, double a2)
Expression Expr.hstack(double a1, Expression e2)
Expression Expr.hstack(double a1, double a2, Expression e3)
Expression Expr.hstack(double a1, Expression e2, double a3)
Expression Expr.hstack(double a1, Expression e2, Expression e3)
Expression Expr.hstack(Expression e1, double a2, double a3)
Expression Expr.hstack(Expression e1, double a2, Expression e3)
Expression Expr.hstack(Expression e1, Expression e2, double a3)
Expression Expr.hstack(Expression e1, Expression e2, Expression e3)

Stack a list of expressions horizontally (i.e. along the second dimension). The expressions must
have the same shape, except for the second dimension. The arguments may be any combination of
expressions, scalar constants and variables.

For example, if 𝑥1, 𝑥2, 𝑥3 are three vectors of length 𝑛 then their horizontal stack is the matrix⎡⎣ | | |
𝑥1 𝑥2 𝑥3

| | |

⎤⎦
of shape (n,3).

Parameters
• exprs (Expression []) – A list of expressions.
• e1 (Expression) – An expression.
• e2 (Expression) – An expression.
• a2 (double) – A scalar constant.
• a1 (double) – A scalar constant.
• e3 (Expression) – An expression.
• a3 (double) – A scalar constant.

Return
(Expression)

Expr.mul

213

Expression Expr.mul(Parameter p, Expression expr)
Expression Expr.mul(Expression expr, Parameter p)
Expression Expr.mul(Matrix mx, Variable v)
Expression Expr.mul(Variable v, Matrix mx)
Expression Expr.mul(double[][] mx, Variable v)
Expression Expr.mul(Variable v, double[][] mx)
Expression Expr.mul(Matrix mx, Expression expr)
Expression Expr.mul(Expression expr, Matrix mx)
Expression Expr.mul(double[][] a, Expression expr)
Expression Expr.mul(Expression expr, double[][] a)
Expression Expr.mul(double[] a, Expression expr)
Expression Expr.mul(Expression expr, double[] a)
Expression Expr.mul(double c, Expression expr)
Expression Expr.mul(Expression expr, double c)

Compute the product (in the sense of matrix multiplication or scalar-by-matrix multiplication) of
two arguments.

The operands must be at most two-dimensional. One of the arguments must be a constant, a
vector of constants or a matrix of constants. The other argument can be a variable or expression.
This allows to produce matrix expressions where the entries are linear combinations of variables.

The size and shape of the arguments must adhere to the rules of linear algebra.

Parameters
• p (Parameter) – A parameter object.
• expr (Expression) – An expression.
• mx (Matrix) – A matrix.
• mx (double[][]) – A matrix.
• v (Variable) – A variable.
• a (double[][]) – Scalar data.
• a (double[]) – Scalar data.
• c (double) – A scalar value.

Return
(Expression)

Expr.mulDiag

Expression Expr.mulDiag(double[][] a, Expression expr)
Expression Expr.mulDiag(double[][] a, Variable v)
Expression Expr.mulDiag(Expression expr, double[][] a)
Expression Expr.mulDiag(Variable v, double[][] a)
Expression Expr.mulDiag(Matrix mx, Expression expr)
Expression Expr.mulDiag(Expression expr, Matrix mx)
Expression Expr.mulDiag(Matrix mx, Variable v)
Expression Expr.mulDiag(Variable v, Matrix mx)
Expression Expr.mulDiag(Parameter p, Expression expr)
Expression Expr.mulDiag(Expression expr, Parameter p)
Expression Expr.mulDiag(Parameter p, Variable v)
Expression Expr.mulDiag(Variable v, Parameter p)

Compute the diagonal of the product of two matrices. If 𝐴 ∈ M(𝑚,𝑛) and 𝐵 ∈ M(𝑛,𝑚), the result
is a vector expression of length 𝑚 equal to diag(𝐴𝐵).

Parameters
• a (double[][]) – A constant matrix.
• expr (Expression) – An expression object.
• v (Variable) – A variable object.

214

• mx (Matrix) – A matrix object.
• p (Parameter) – A parameter object.

Return
(Expression)

Expr.mulElm

Expression Expr.mulElm(Expression expr, Parameter p)
Expression Expr.mulElm(Parameter p, Expression expr)
Expression Expr.mulElm(Expression expr, NDSparseArray spm)
Expression Expr.mulElm(Expression expr, double[] a1)
Expression Expr.mulElm(Expression expr, double[][] a2)
Expression Expr.mulElm(Expression expr, Matrix m)
Expression Expr.mulElm(double[] a1, Expression expr)
Expression Expr.mulElm(double[][] a2, Expression expr)
Expression Expr.mulElm(NDSparseArray spm, Expression expr)
Expression Expr.mulElm(Matrix m, Expression expr)

Returns the element-wise product of two items. The two operands must have the same shape and
the returned expression also has this shape.

Parameters
• expr (Expression) – An expression object.
• p (Parameter) – A parameter object.
• spm (NDSparseArray) – A multidimensional sparse array object.
• a1 (double[]) – A one-dimensional coefficient array.
• a2 (double[][]) – A two-dimensional coefficient array.
• m (Matrix) – A matrix object.

Return
(Expression)

Expr.neg

Expression Expr.neg(Expression e)

Return a new expression object representing the given one with opposite sign.

Parameters
e (Expression) – An expression object.

Return
(Expression)

Expr.ones

Expression Expr.ones(int size)
Expression Expr.ones(int[] shp)
Expression Expr.ones(int[] shp, int[][] sparsity)
Expression Expr.ones()

Create an expression consisting of ones.

Parameters
• size (int) – Length of the vector to be constructed.
• shp (int[]) – Defines the shape of the expression.
• sparsity (int[][]) – Defines the sparsity pattern of the expression - everything

outside the sparsitry patterm will be zero.
Return

(Expression)

215

Expr.outer

Expression Expr.outer(Expression e, double[] a)
Expression Expr.outer(double[] a, Expression e)
Expression Expr.outer(Expression e, Matrix m)
Expression Expr.outer(Matrix m, Expression e)
Expression Expr.outer(Expression e, Parameter p)
Expression Expr.outer(Parameter p, Expression e)

Return an expression representing the outer product 𝑥𝑦𝑇 of two vectors 𝑥, 𝑦. If 𝑥 has length k and
𝑦 has length n then the result is of shape (k,n).

Parameters
• e (Expression) – A vector expression.
• a (double[]) – A vector of constants.
• m (Matrix) – A one-dimensional matrix.
• p (Parameter) – A vector parameter.

Return
(Expression)

Expr.repeat

Expression Expr.repeat(Expression e, int n, int d)
Expression Expr.repeat(Variable x, int n, int d)

Repeat an expression a number of times in the given dimension. This is equivalent to stacking 𝑛
copies of the expression in dimension 𝑑; see Expr.stack .

Parameters
• e (Expression) – The expression to repeat.
• n (int) – Number of times to repeat. Must be strictly positive.
• d (int) – The dimension in which to repeat. Must define a valid dimension

index.
• x (Variable) – The variable to repeat.

Return
(Expression)

Expr.reshape

Expression Expr.reshape(Expression e, int[] newshape)
Expression Expr.reshape(Expression e, int size)
Expression Expr.reshape(Expression e, int dimi, int dimj)

Reshape the expression into a different shape with the same number of elements.

Parameters
• e (Expression) – The expression to reshape.
• newshape (int[]) – Reshape into an expression of this shape.
• size (int) – Reshape into a one-dimensional expression of this size.
• dimi (int) – The first dimension size.
• dimj (int) – The second dimension size.

Return
(Expression)

Expr.stack

216

Expression Expr.stack(int dim, Expression[] exprs)
Expression Expr.stack(int dim, Expression e1, Expression e2)
Expression Expr.stack(int dim, Expression e1, double a2)
Expression Expr.stack(int dim, double a1, Expression e2)
Expression Expr.stack(int dim, double a1, double a2, Expression e1)
Expression Expr.stack(int dim, double a1, Expression e2, double a3)
Expression Expr.stack(int dim, double a1, Expression e2, Expression e3)
Expression Expr.stack(int dim, Expression e1, double a2, double a3)
Expression Expr.stack(int dim, Expression e1, double a2, Expression e3)
Expression Expr.stack(int dim, Expression e1, Expression e2, double a3)
Expression Expr.stack(int dim, Expression e1, Expression e2, Expression e3)
Expression Expr.stack(Expression[][] exprs)

Stack a list of expressions along an arbitrary dimension. All expressions must have the same shape,
except for dimension dim. The arguments may be any combination of expressions, scalar constants
and variables.

For example, suppose 𝐴,𝐵 are two 𝑛 × 𝑚 matrices. Then stacking them in the first dimension
produces a matrix of shape (2n,m): [︂

𝐴
𝐵

]︂
,

stacking them in the second dimension produces a matrix of shape (n,2m):[︀
𝐴 𝐵

]︀
,

and stacking them in the third dimension produces a three-dimensional array of shape (n,m,2).

The version which takes a two-dimensional array of expressions constructs a block matrix with the
given expressions as blocks. The dimensions of the blocks must be suitably compatible.

Parameters
• dim (int) – The dimension in which to stack.
• exprs (Expression []) – A list of expressions.
• exprs (Expression [][]) – A list of expressions.
• e1 (Expression) – An expression.
• e2 (Expression) – An expression.
• a2 (double) – A scalar constant.
• a1 (double) – A scalar constant.
• a3 (double) – A scalar constant.
• e3 (Expression) – An expression.

Return
(Expression)

Expr.sub

Expression Expr.sub(Expression e1, Expression e2)
Expression Expr.sub(Expression e1, double[] a1)
Expression Expr.sub(Expression e1, double[][] a2)
Expression Expr.sub(double[] a1, Expression e2)
Expression Expr.sub(double[][] a2, Expression e2)
Expression Expr.sub(Expression e1, double c)
Expression Expr.sub(double c, Expression e2)
Expression Expr.sub(Expression e1, Matrix m)
Expression Expr.sub(Matrix m, Expression e2)
Expression Expr.sub(Expression e1, NDSparseArray n)
Expression Expr.sub(NDSparseArray n, Expression e2)

217

Computes the difference of two expressions. The expressions must have the same shape and the
result will be also an expression of that shape. The allowed combinations of arguments are the
same as for Expr.add .

Parameters
• e1 (Expression) – An expression.
• e2 (Expression) – An expression.
• a1 (double[]) – An array of constants.
• a2 (double[][]) – An array of constants.
• c (double) – A constant.
• m (Matrix) – A Matrix object.
• n (NDSparseArray) – An NDSparseArray object.

Return
(Expression)

Expr.sum

Expression Expr.sum(Expression expr)
Expression Expr.sum(Expression expr, int dim)
Expression Expr.sum(Expression expr, int[] dims)

Sum the elements of an expression. Without extra arguments, all elements are summed into a
scalar expression of size 1.

With argument dim, elements are summed along a specific dimension, resulting in an expression of
reduced dimension. Note that the result of summing over a dimension of size 0 is 0.0. This means
that for an expression of shape (2,0,2), summing over the second dimension yields an expression
of shape (2,2) of zeros.

For example, if the argument is an 𝑛×𝑚 matrix then summing along the 0-th dimension computes
the 1×𝑚 vector of column sums, and summing along the 1-st dimension computes the 𝑛×1 vector
of row sums.

Parameters
• expr (Expression) – An expression object.
• dim (int) – The dimension along which to sum.
• dims (int[]) – The dimensions along which to sum.

Return
(Expression)

Expr.transpose

Expression Expr.transpose(Expression e)

Transpose a two-dimensional expression.

Parameters
e (Expression) – Expression to transpose.

Return
(Expression)

Expr.vstack

Expression Expr.vstack(Expression[] exprs)
Expression Expr.vstack(Expression e1, Expression e2)
Expression Expr.vstack(Expression e1, double a2)
Expression Expr.vstack(double a1, Expression e2)
Expression Expr.vstack(Expression e1, Expression e2, Expression e3)
Expression Expr.vstack(Expression e1, Expression e2, double a3)

(continues on next page)

218

(continued from previous page)

Expression Expr.vstack(Expression e1, double a2, Expression e3)
Expression Expr.vstack(Expression e1, double a2, double a3)
Expression Expr.vstack(double a1, Expression e2, Expression e3)
Expression Expr.vstack(double a1, Expression e2, double a3)
Expression Expr.vstack(double a1, double a2, Expression e3)
Expression Expr.vstack(double a1, double a2, double a3)

Stack a list of expressions vertically (i.e. along the first dimension). The expressions must have the
same shape, except for the first dimension. The arguments may be any combination of expressions,
scalar constants and variables.
For example, if 𝑦1, 𝑦2, 𝑦3 are three horizontal vectors of length 𝑛 (and shape (1,n)) then their
vertical stack is the matrix ⎡⎣ −𝑦1−

−𝑦2−
−𝑦3−

⎤⎦
of shape (3,n).

Parameters
• exprs (Expression []) – A list of expressions.
• e1 (Expression) – An expression.
• e2 (Expression) – An expression.
• a2 (double) – A scalar constant.
• a1 (double) – A scalar constant.
• e3 (Expression) – An expression.
• a3 (double) – A scalar constant.

Return
(Expression)

Expr.zeros

Expression Expr.zeros(int size)
Expression Expr.zeros(int[] shp)

Create an expression consisting of zeros.

Parameters
• size (int) – Length of the vector to be constructed.
• shp (int[]) – Defines the shape of the expression.

Return
(Expression)

14.2.14 Class ExprDomain

mosek.fusion.ExprDomain
Interface for objects that can be converted into disjunctive constraint term.

Members
ExprDomain.toDJCTerm – Convert object into a disjunctive constraint term

Implemented by
Term

ExprDomain.toDJCTerm

Term toDJCTerm()

Convert object into a disjunctive constraint term

Return
(Term)

219

14.2.15 Class Expression

mosek.fusion.Expression
Abstract base class for all objects which can be used as linear expressions of the form 𝐴𝑥 + 𝑏.

The main use of this class is to store the result of expressions created by the static methods provided
by Expr .

Members
Expression.eval – Evaluate the expression and push the result onto the work stack.
Expression.getDim – Return the d’th dimension in the expression.
Expression.getModel – Get the associated model.
Expression.getND – Return the number of dimensions in the expression.
Expression.getShape – Get the shape of the expression.
Expression.getSize – Return the total number of elements in the expression (the
product of the dimensions).
Expression.index – Get a single element in the expression.
Expression.pick – Pick a number of elements from the expression.
Expression.slice – Get a slice of the expression.
Expression.toString – Return a string representation of the expression object.

Implemented by
BaseExpression , Parameter , Variable

Expression.eval

void eval(WorkStack rs, WorkStack ws, WorkStack xs)

Evaluate the expression and push the result onto the rs work stack.

Parameters
• rs (WorkStack) – The stack where the result of the evaluation is stored.
• ws (WorkStack) – The stack used by evaluation to perform intermediate com-

putations. It will be returned in the same state as when the function is called.
• xs (WorkStack) – An auxiliary stack.

Expression.getDim

int getDim(int d)

Return the d’th dimension in the expression.

Parameters
d (int)

Return
(int)

Expression.getModel

Model getModel()

Get the associated model.

Return
(Model)

Expression.getND

int getND()

Return the number of dimensions in the expression.

Return
(int)

220

Expression.getShape

int[] getShape()

Get the shape of the expression.

Return
(int[])

Expression.getSize

long getSize()

Return the total number of elements in the expression (the product of the dimensions).

Return
(long)

Expression.index

Expression index(int i)
Expression index(int[] indexes)

Get a single element in the expression.

Parameters
• i (int) – Index of the element to pick.
• indexes (int[]) – Multi-dimensional index of the element to pick.

Return
(Expression)

Expression.pick

Expression pick(int[] indexes)
Expression pick(int[][] indexrows)

Picks a number of elements from the expression and returns them as a one-dimensional expression.

Parameters
• indexes (int[]) – Indexes of the elements to pick
• indexrows (int[][]) – Indexes of the elements to pick. Each row defines a separate

multi-dimensional index.
Return

(Expression)

Expression.slice

Expression slice(int first, int last)
Expression slice(int[] firsta, int[] lasta)

Get a slice of the expression.

Parameters
• first (int) – Index of the first element in the slice.
• last (int) – Index of the last element in the slice plus one.
• firsta (int[]) – Multi-dimensional index of the first element in the slice.
• lasta (int[]) – Multi-dimensional index of the element after the end of the slice.

Return
(Expression)

Expression.toString

221

String toString()

Return a string representation of the expression object.

Return
(String)

14.2.16 Class LinearConstraint

mosek.fusion.LinearConstraint

A linear constraint defines a block of constraints with the same linear domain. The domain is
either a product of product of one-dimensional half-spaces (linear inequalities), a fixed value vector
(equalities) or the whole space (free constraints).

The type of a linear variable is immutable; it is either free, an inequality or an equality, but the
linear expression and the right-hand side can be modified.

The class is not meant to be instantiated directly, but must be created by calling the Model.
variable method.

Implements
ModelConstraint

Members
Constraint.dual – Get the dual solution values of the constraint.
Constraint.getModel – Return the model that the constraint belongs to.
Constraint.getND – Return the number of dimensions in the constraint shape.
Constraint.getShape – Return the constraint’s shape.
Constraint.getSize – Return the total number of elements in the constraint.
Constraint.index – Get a single element from a constraint.
Constraint.level – Get the primal solution values of the constraint.
Constraint.slice – Create a slice constraint.
Constraint.update – Update part of a constraint.
LinearConstraint.toString – Create a human readable string representation of
the constraint.
ModelConstraint.remove – Remove the constraint from the model.

LinearConstraint.toString

String toString()

Create a human readable string representation of the constraint.

Return
(String)

14.2.17 Class LinearDomain

mosek.fusion.LinearDomain

Represent a domain defined by linear constraints

Members
LinearDomain.integral – Creates a domain of integral variables.
LinearDomain.sparse – Creates a domain exploiting sparsity.
LinearDomain.withNamesOnAxis – Set index names in a specific axis.
LinearDomain.withShape – Set the shape of the domain.

LinearDomain.integral

LinearDomain integral()

Modify a given domain restricting its elements to be integral.

222

Return
(LinearDomain)

LinearDomain.sparse

LinearDomain sparse()
LinearDomain sparse(int[] sparsity)
LinearDomain sparse(int[][] sparsity)

Creates a domain exploiting sparsity.

Parameters
• sparsity (int[])
• sparsity (int[][])

Return
(LinearDomain)

LinearDomain.withNamesOnAxis

LinearDomain withNamesOnAxis(String[] names, int axis)

Set index names in a specific axis.

Parameters
• names (String[]) – List of names, this must match the actual dimension on that

axis.
• axis (int) – The axis to change names on.

Return
(LinearDomain)

LinearDomain.withShape

LinearDomain withShape(int[] shp)
LinearDomain withShape(int dim0)
LinearDomain withShape(int dim0, int dim1)
LinearDomain withShape(int dim0, int dim1, int dim2)

Set the shape of the domain.

Parameters
• shp (int[]) – The shape of the domain
• dim0 (int) – First dimension
• dim1 (int) – Second dimension
• dim2 (int) – Third dimension

Return
(LinearDomain)

14.2.18 Class LinearPSDConstraint

mosek.fusion.LinearPSDConstraint

This class represents a semidefinite conic constraint of the form

𝐴𝑥− 𝑏 ⪰ 0

i.e. 𝐴𝑥− 𝑏 must be positive semidefinite

Implements
ModelConstraint

223

Members
Constraint.dual – Get the dual solution values of the constraint.
Constraint.getModel – Return the model that the constraint belongs to.
Constraint.getND – Return the number of dimensions in the constraint shape.
Constraint.getShape – Return the constraint’s shape.
Constraint.getSize – Return the total number of elements in the constraint.
Constraint.index – Get a single element from a constraint.
Constraint.level – Get the primal solution values of the constraint.
Constraint.slice – Create a slice constraint.
Constraint.update – Update part of a constraint.
ModelConstraint.remove – Remove the constraint from the model.
ModelConstraint.toString – Create a human readable string representation of the
constraint.

14.2.19 Class LinearPSDVariable

mosek.fusion.LinearPSDVariable
This class represents a positive semidefinite variable.

Implements
ModelVariable

Members
BaseVariable.antidiag – Return the antidiagonal of a square variable matrix.
BaseVariable.asExpr – Create an expression corresponding to the variable object.
BaseVariable.diag – Return the diagonal of a square variable matrix.
BaseVariable.dual – Get the dual solution value of the variable.
BaseVariable.eval – Evaluate the expression and push the result onto the work
stack.
BaseVariable.fromTril – Convert from a trilinear representation into a square
variable.
BaseVariable.getDim – Return the d’th dimension in the expression.
BaseVariable.getModel – Get the associated model.
BaseVariable.getND – Get the number of dimensions in the variable shape.
BaseVariable.getShape – Get the variable shape.
BaseVariable.getSize – Get the total number of elements in the variable.
BaseVariable.index – Return a variable slice of size 1 corresponding to a single
element in the variable object..
BaseVariable.level – Get the primal solution value of the variable.
BaseVariable.makeContinuous – Drop integrality constraints on the variable, if
any.
BaseVariable.makeInteger – Apply integrality constraints on the variable. Has
no effect on elements of semidefinite matrix variables.
BaseVariable.pick – Create a one-dimensional variable by picking a list of indexes
from this variable.
BaseVariable.reshape – Reshape the variable. The new shape must have the same
total size as the current.
BaseVariable.setLevel – Input solution values for this variable
BaseVariable.slice – Create a slice variable by picking a range of indexes for each
variable dimension.
BaseVariable.transpose – Transpose the variable.
BaseVariable.tril – Convert from a square variable to a trilinear representation.
LinearPSDVariable.toString – Create a string representation of the variable.
ModelVariable.remove – Remove the variable from the model.

LinearPSDVariable.toString

String toString()

Create a string representation of the variable.

224

Return
(String)

14.2.20 Class LinearVariable

mosek.fusion.LinearVariable

A linear variable defines a block of variables with the same linear domain. The domain is ei-
ther a product of product of one-dimensional half-spaces (linear inequalities), a fixed value vector
(equalities) or the whole space (free variables).

The type of a linear variable is immutable; it is either free, an inequality or an equality.

The class is not meant to be instantiated directly, but must be created by calling the Model.
variable method.

Implements
ModelVariable

Members
BaseVariable.antidiag – Return the antidiagonal of a square variable matrix.
BaseVariable.asExpr – Create an expression corresponding to the variable object.
BaseVariable.diag – Return the diagonal of a square variable matrix.
BaseVariable.dual – Get the dual solution value of the variable.
BaseVariable.eval – Evaluate the expression and push the result onto the work
stack.
BaseVariable.fromTril – Convert from a trilinear representation into a square
variable.
BaseVariable.getDim – Return the d’th dimension in the expression.
BaseVariable.getModel – Get the associated model.
BaseVariable.getND – Get the number of dimensions in the variable shape.
BaseVariable.getShape – Get the variable shape.
BaseVariable.getSize – Get the total number of elements in the variable.
BaseVariable.index – Return a variable slice of size 1 corresponding to a single
element in the variable object..
BaseVariable.level – Get the primal solution value of the variable.
BaseVariable.makeContinuous – Drop integrality constraints on the variable, if
any.
BaseVariable.makeInteger – Apply integrality constraints on the variable. Has
no effect on elements of semidefinite matrix variables.
BaseVariable.pick – Create a one-dimensional variable by picking a list of indexes
from this variable.
BaseVariable.reshape – Reshape the variable. The new shape must have the same
total size as the current.
BaseVariable.setLevel – Input solution values for this variable
BaseVariable.slice – Create a slice variable by picking a range of indexes for each
variable dimension.
BaseVariable.transpose – Transpose the variable.
BaseVariable.tril – Convert from a square variable to a trilinear representation.
LinearVariable.toString – Create a string representation of the variable.
ModelVariable.remove – Remove the variable from the model.

LinearVariable.toString

String toString()

Create a string representation of the variable.

Return
(String)

225

14.2.21 Class Matrix

mosek.fusion.Matrix
Base class for all matrix objects. It can be used to create and manipulate matrices of constant
coefficients both in dense and sparse format. To operate with matrices containing variables and
linear expressions use the classes Expr and Variable .

Members
Matrix.get – Get a single entry.
Matrix.getDataAsArray – Return a dense array of values.
Matrix.getDataAsTriplets – Return the matrix data in sparse triplet format.
Matrix.isSparse – Returns true if the matrix is sparse.
Matrix.numColumns – Returns the number of columns in the matrix.
Matrix.numNonzeros – Returns the number of non-zeros in the matrix.
Matrix.numRows – Returns the number of rows in the matrix.
Matrix.toString – Get a string representation of the matrix.
Matrix.transpose – Transpose the matrix.

Static members
Matrix.antidiag – Create a sparse square matrix with a given vector as anti-
diagonal.
Matrix.dense – Create a dense matrix from the given data.
Matrix.diag – Create a sparse square matrix with a given vector as diagonal.
Matrix.eye – Create the identity matrix.
Matrix.ones – Create a matrix filled with all ones.
Matrix.sparse – Create a sparse matrix from the given data.

Matrix.antidiag

Matrix Matrix.antidiag(double[] d)
Matrix Matrix.antidiag(double[] d, int k)
Matrix Matrix.antidiag(int n, double val)
Matrix Matrix.antidiag(int n, double val, int k)

Create a sparse square matrix with a given vector as anti-diagonal.

Parameters
• d (double[]) – The anti-diagonal vector.
• k (int) – The anti-diagonal index. 𝑘 = 0 is the default and means the main anti-

diagonal. 𝑘 > 0 means above, and 𝑘 < 0 means below the main anti-diagonal.
• n (int) – The dimension of the matrix.
• val (double) – Use this value for all anti-diagonal elements.

Return
(Matrix)

Matrix.dense

Matrix Matrix.dense(double[][] data)
Matrix Matrix.dense(int dimi, int dimj, double[] data)
Matrix Matrix.dense(int dimi, int dimj, double value)
Matrix Matrix.dense(Matrix other)

Create a dense matrix from the given data.

Parameters
• data (double[][]) – A one- or two-dimensional array of matrix coefficients.
• data (double[]) – A one- or two-dimensional array of matrix coefficients.
• dimi (int) – Number of rows.
• dimj (int) – Number of columns.
• value (double) – Use this value for all elements.

226

• other (Matrix) – Create a dense matrix from another matrix.
Return

(Matrix)

Matrix.diag

Matrix Matrix.diag(double[] d)
Matrix Matrix.diag(double[] d, int k)
Matrix Matrix.diag(int n, double val)
Matrix Matrix.diag(int n, double val, int k)
Matrix Matrix.diag(Matrix[] md)
Matrix Matrix.diag(int num, Matrix mv)

Create a sparse square matrix with a given vector as diagonal.

Parameters
• d (double[]) – The diagonal vector.
• k (int) – The diagonal index. 𝑘 = 0 is the default and means the main diagonal.
𝑘 > 0 means above, and 𝑘 < 0 means below the main diagonal.

• n (int) – The dimension of the matrix.
• val (double) – Use this value for all diagonal elements.
• md (Matrix []) – A list of square matrices that are used to create a block-diagonal

square matrix.
• num (int) – Number of times to repeat the mv matrix.
• mv (Matrix) – A matrix to be repeated in all blocks of a block-diagonal square

matrix.
Return

(Matrix)

Matrix.eye

Matrix Matrix.eye(int n)

Construct the identity matrix of size 𝑛.

Parameters
n (int) – The dimension of the matrix.

Return
(Matrix)

Matrix.get

double get(int i, int j)

Get a single entry.

Parameters
• i (int) – Row index.
• j (int) – Column index.

Return
(double)

Matrix.getDataAsArray

double[] getDataAsArray()

Return the matrix elements as a dense array in row-major format.

Return
(double[])

227

Matrix.getDataAsTriplets

void getDataAsTriplets(int[] subi, int[] subj, double[] val)

Return the matrix data in sparse triplet format. Data is copied to the arrays subi, subj and val
which must be pre-allocated to hold at least the number of non-zeros in the matrix.

The data returned must be ordered with subi as primary key and subj as secondary key.

Parameters
• subi (int[]) – Row subscripts are returned in this array.
• subj (int[]) – Column subscripts are returned in this array.
• val (double[]) – Coefficient values are returned in this array.

Matrix.isSparse

boolean isSparse()

Returns true if the matrix is sparse.

Return
(boolean)

Matrix.numColumns

int numColumns()

Returns the number of columns in the matrix.

Return
(int)

Matrix.numNonzeros

long numNonzeros()

Returns the number of non-zeros in the matrix.

Return
(long)

Matrix.numRows

int numRows()

Returns the number of rows in the matrix.

Return
(int)

Matrix.ones

Matrix Matrix.ones(int n, int m)

Construct a matrix filled with ones.

Parameters
• n (int) – Number of rows.
• m (int) – Number of columns.

Return
(Matrix)

Matrix.sparse

228

Matrix Matrix.sparse(int nrow, int ncol, int[] subi, int[] subj, double[] val)
Matrix Matrix.sparse(int[] subi, int[] subj, double[] val)
Matrix Matrix.sparse(int[] subi, int[] subj, double val)
Matrix Matrix.sparse(int nrow, int ncol, int[] subi, int[] subj, double val)
Matrix Matrix.sparse(int nrow, int ncol)
Matrix Matrix.sparse(double[][] data)
Matrix Matrix.sparse(Matrix[][] blocks)
Matrix Matrix.sparse(Matrix mx)

Create a sparse matrix from the given data.

Parameters
• nrow (int) – Number of rows.
• ncol (int) – Number of columns.
• subi (int[]) – Row subscripts of non-zero elements.
• subj (int[]) – Column subscripts of non-zero elements.
• val (double[]) – Coefficients of non-zero elements.
• val (double) – Coefficients of non-zero elements.
• data (double[][]) – Dense data array.
• blocks (Matrix [][]) – The matrix data in block format. All elements in a row

must have the same height, and all elements in a column must have the same
width. Entries that are null will be interpreted as a block of zeros whose height
and width are deduced from the other elements in the same row and column.
Any row that contains only null entries will have height 0, and any column that
contains only null entries will have width 0.

• mx (Matrix) – A Matrix object.
Return

(Matrix)

Matrix.toString

String toString()

Get a string representation of the matrix.

Return
(String)

Matrix.transpose

Matrix transpose()

Transpose the matrix.

Return
(Matrix)

14.2.22 Class Model

mosek.fusion.Model

The object containing all data related to a single optimization model.

Implements
BaseModel

Members
Model.acceptedSolutionStatus – Set the accepted solution status.
Model.breakSolver – Request that the solver terminates as soon as possible.
Model.clone – Return a copy of the model.

229

Model.constraint – Create a new constraint in the model.
Model.dataReport – Print out a report about problem data.
Model.disjunction – Create a new disjunctive constraint in the model.
Model.dispose – Destroy the Model object
Model.dualObjValue – Get the dual objective value in the current solution.
Model.flushParameters – Flush all parameters to the underlying task.
Model.flushSolutions – If any solution values have been provided, flush those
values to the underlying task.
Model.getAcceptedSolutionStatus – Get the accepted solution status.
Model.getConstraint – Get the constraint matching the given name or linear index.
Model.getDualSolutionStatus – Return the status of the dual solution.
Model.getName – Return the model name, or an empty string if it has not been set.
Model.getParameter – Get the parameter matching the given name.
Model.getPrimalSolutionStatus – Return the status of the primal solution.
Model.getProblemStatus – Return the status of the problem.
Model.getSolverDoubleInfo – Fetch a solution information item from the solver
Model.getSolverIntInfo – Fetch a solution information item from the solver
Model.getSolverLIntInfo – Fetch a solution information item from the solver
Model.getTask – Return the underlying MOSEK task object.
Model.getVariable – Get the variable matching the given name or linear index.
Model.hasConstraint – Check whether the model contains a constraint with a
given name.
Model.hasParameter – Check whether the model contains a parameter with a given
name.
Model.hasVariable – Check whether the model contains a variable with a given
name.
Model.objective – Replace the objective expression.
Model.optserverHost – Specify an OptServer for remote calls.
Model.parameter – Create a new parameter in the model.
Model.primalObjValue – Get the primal objective value in the current solution.
Model.selectedSolution – Chooses a solution.
Model.setCallbackHandler – Attach a progress callback handler.
Model.setDataCallbackHandler – Attach a data callback handler.
Model.setLogHandler – Attach a log handler.
Model.setSolverParam – Set a solver parameter
Model.solve – Attempt to optimize the model.
Model.updateObjective – Update part of the objective.
Model.variable – Create a new variable in the model.
Model.writeTask – Dump the current solver task to a file.
Model.writeTaskStream – Write the current solver task to a stream.

Static members
Model.getVersion – Return MOSEK version.
Model.putlicensecode – Set the license code in the global environment.
Model.putlicensepath – Set the license path in the global environment.
Model.putlicensewait – Set the license wait flag in the global environment.
Model.solveBatch – Attempt to optimize a collection of models in parallel.

Model.acceptedSolutionStatus

void acceptedSolutionStatus(AccSolutionStatus what)

Set the accepted solution status. This defines which solution status values are considered as ac-
ceptable when fetching a solution. Requesting a solution value for a variable or constraint when
the status does not match at least the accepted value will cause an error.

By default the accepted solution status is AccSolutionStatus.Optimal . It is necessary to change
the accepted status to access sub-optimal solutions and infeasibility certificates.

The methods Model.getPrimalSolutionStatus and Model.getDualSolutionStatus can be
used to get the actual status of the solutions.

230

Parameters
what (AccSolutionStatus) – The new accepted solution status.

Model.breakSolver

void breakSolver()

Request that the solver terminates as soon as possible. This must be called from another thread
than the one in which solve() was called, or from a callback function.
The method does not stop the solver directly, rather it sets a flag that the solver checks occasionally,
indicating it should terminate.

Model.clone

Model clone()

Return a copy of the model.

Return
(Model)

Model.constraint

Constraint constraint(String name, Expression expr, PSDDomain psddom)
Constraint constraint(Expression expr, PSDDomain psddom)
Constraint constraint(String name, Expression expr, LinearDomain ldom)
Constraint constraint(Expression expr, LinearDomain ldom)
Constraint constraint(String name, Expression expr, ConeDomain qdom)
Constraint constraint(Expression expr, ConeDomain qdom)
RangedConstraint constraint(String name, Expression expr, RangeDomain rdom)
RangedConstraint constraint(Expression expr, RangeDomain rdom)

Adds a new constraint to the model. A constraint is always a statement that an expression or
variable belongs to a domain. Constraints can have optional names.
Typical domains used for defining constraints include:

• Domain.lessThan , Domain.greaterThan , Domain.inRange , Domain.equalsTo — puts lin-
ear bounds 𝐸 ≤ 𝑢, 𝑙 ≤ 𝐸, 𝑙 ≤ 𝐸 ≤ 𝑢 or 𝐸 = 𝑐 on an expresion 𝐸.

• Domain.inQCone , Domain.inRotatedQCone — constrains a vector or matrix expression 𝐸 to
a second-order cone.

• Domain.inPExpCone , Domain.inPPowerCone — constrains a vector or matrix expression 𝐸
to an exponential or power cone.

• Domain.inPSDCone — constrains a square matrix expression 𝐸 to be positive semidefinite.

See Domain for a full list of domains.

Parameters
• name (String) – Name of the constraint. This must be unique among all con-

straints in the model. The value null is allowed instead of a unique name.
• expr (Expression) – An expression.
• psddom (PSDDomain) – A positive semidefinte domain.
• ldom (LinearDomain) – A linear domain.
• qdom (ConeDomain) – A domain in a cone.
• rdom (RangeDomain) – A ranged domain.

Return
• (Constraint)
• (RangedConstraint)

Model.dataReport

231

void dataReport(int detail)
void dataReport()

Prints out a text report about the dimensions and numerical properties of the problem data. The
report is printed to the currently attached log stream. The report is generated for the internal
low-level optimizer task as a rough guidance for the user; some care may be needed to relate it
correctly to the Fusion model.

Parameters
detail (int) – The amount of detail to include, where 0 means nothing and 10 is
full. If not provided then a full report is printed.

Model.disjunction

Disjunction disjunction(String name, Term t1)
Disjunction disjunction(String name, Term t1, Term t2)
Disjunction disjunction(String name, Term t1, Term t2, Term t3)
Disjunction disjunction(Term t1)
Disjunction disjunction(Term t1, Term t2)
Disjunction disjunction(Term t1, Term t2, Term t3)
Disjunction disjunction(Term[] terms)
Disjunction disjunction(String name, Term[] terms)

Adds a new disjunctive constraint to the model. A disjunctive constraint with terms 𝑇1, . . . , 𝑇𝑛 is:

𝑇1 OR · · · OR 𝑇𝑛.

Each term 𝑇𝑖 of a disjunctive constraint is a Term , which can be created with DJC.term or with
DJC.AND .

Parameters
• name (String) – The name of this disjunctive constraint.
• t1 (Term) – A term in the disjunction.
• t2 (Term) – A term in the disjunction.
• t3 (Term) – A term in the disjunction.
• terms (Term []) – A list of terms forming the disjunctive constraint.

Return
(Disjunction)

Model.dispose

void dispose()

Destroy the Model object. This removes all references to other objects from the Model.

This helps garbage collection by removing cyclic references, and in some cases it is necessary to
ensure that the garbage collector can collect the Model object and assosiated objects.

Model.dualObjValue

double dualObjValue()

Get the dual objective value in the current solution.

Return
(double)

Model.flushParameters

void flushParameters()

Flush all parameters to the underlying task.

232

Model.flushSolutions

void flushSolutions()

If any solution values have been provided, flush those values to the underlying task.
Model.getAcceptedSolutionStatus

AccSolutionStatus getAcceptedSolutionStatus()

Get the accepted solution status.

Return
(AccSolutionStatus)

Model.getConstraint

Constraint getConstraint(String name)
Constraint getConstraint(int index)

Get the constraint matching the given name or linear index. Constraints are assigned indices in
the order they are added to the model.

Parameters
• name (String) – The constraint’s name.
• index (int) – The constraint’s linear index.

Return
(Constraint)

Model.getDualSolutionStatus

SolutionStatus getDualSolutionStatus(SolutionType which)
SolutionStatus getDualSolutionStatus()

Return the status of the dual solution. If no solution type is given the solution set with Model.
selectedSolution is checked. It is recommended to check the problem and solution status before
accessing the solution values.

Parameters
which (SolutionType) – The type of the solution for which status is requested.

Return
(SolutionStatus)

Model.getName

String getName()

Return the model name, or an empty string if it has not been set.

Return
(String)

Model.getParameter

Parameter getParameter(String name)

Get the parameter matching the given name.

Parameters
name (String) – The parameter’s name.

Return
(Parameter)

233

Model.getPrimalSolutionStatus

SolutionStatus getPrimalSolutionStatus(SolutionType which)
SolutionStatus getPrimalSolutionStatus()

Return the status of the primal solution. If no solution type is given the solution set with Model.
selectedSolution is checked. It is recommended to check the problem and solution status before
accessing the solution values.

Parameters
which (SolutionType) – The type of the solution for which status is requested.

Return
(SolutionStatus)

Model.getProblemStatus

ProblemStatus getProblemStatus(SolutionType which)
ProblemStatus getProblemStatus()

Return the status of the problem. If no solution type is given the solution set with Model.
selectedSolution is checked. It is recommended to check the problem and solution status before
accessing the solution values.

Parameters
which (SolutionType) – The type of the solution.

Return
(ProblemStatus)

Model.getSolverDoubleInfo

double getSolverDoubleInfo(String name)

This method returns the value for the specified double solver information item. The information
items become available during and after the solver execution. A runtime exception is thrown if
a non-existing information item is requested. The double information items are listed in Section
Double information items.

Parameters
name (String) – A string name of the information item.

Return
(double)

Model.getSolverIntInfo

int getSolverIntInfo(String name)

This method returns the value for the specified integer solver information item. The information
items become available during and after the solver execution. A runtime exception is thrown if
a non-existing information item is requested. The integer information items are listed in Section
Integer information items..

Parameters
name (String) – A string name of the information item.

Return
(int)

Model.getSolverLIntInfo

long getSolverLIntInfo(String name)

234

This method returns the value for the specified long solver information item. The information
items become available during and after the solver execution. A runtime exception is thrown if a
non-existing information item is requested. The long integer information items are listed in Section
Long integer information items..

Parameters
name (String) – A string name of the information item.

Return
(long)

Model.getTask

mosek.Task getTask()

Returns the underlying MOSEK Task object. Note that the returned object is the actual under-
lying object, not a copy. This means if the returned object is modified by the user, the Model
object may become invalid. Accessing the task object should never be necessary, except maybe for
advanced debugging. For details on the Task object see the Optimizer API documentation.

Return
(Task)

Model.getVariable

Variable getVariable(String name)
Variable getVariable(int index)

Get the variable matching the given name or linear index. Variables are assigned indices in the
order they are added to the model.

Parameters
• name (String) – The variable’s name.
• index (int) – The variable’s linear index.

Return
(Variable)

Model.getVersion

String Model.getVersion()

Returns the MOSEK version as a string, for example “11.0.21”.

Return
(String)

Model.hasConstraint

boolean hasConstraint(String name)

Check whether the model contains a constraint with a given name.

Parameters
name (String) – The constraint name.

Return
(boolean)

Model.hasParameter

boolean hasParameter(String name)

Check whether the model contains a parameter with a given name.

235

Parameters
name (String) – The parameter’s name.

Return
(boolean)

Model.hasVariable

boolean hasVariable(String name)

Check whether the model contains a variable with a given name.

Parameters
name (String) – The variable name.

Return
(boolean)

Model.objective

void objective(String name, ObjectiveSense sense, Expression expr)
void objective(String name, ObjectiveSense sense, double c)
void objective(String name, double c)
void objective(ObjectiveSense sense, Expression expr)
void objective(ObjectiveSense sense, double c)
void objective(double c)

Replace the objective expression. This method must be called at least once before the first Model.
solve .

Parameters
• name (String) – Name of the objective. This may be any string, and it has no

function except when writing the problem to an external file format.
• sense (ObjectiveSense) – The objective sense. Defines whether the objective

must be minimized or maximized.
• expr (Expression) – The objective expression. This must be an affine expression

that evaluates to a scalar.
• c (double) – A constant scalar.

Model.optserverHost

void optserverHost(String addr)

Specify an OptServer URL for remote calls. The URL should contain protocol, host and port in
the form http://server:port or https://server:port. If the URL is set using this function, all
subsequent calls to Model.solve will be sent to the specified OptServer instead of being executed
locally. Passing NULL deactivates this redirection.

Parameters
addr (String) – Address of the OptServer. It should be a valid URL, for example
http://server:port or https://server:port.

Model.parameter

Parameter parameter(int[] shape, int[][] sparsity)
Parameter parameter(int[] shape, long[] sp)
Parameter parameter(int[] shape)
Parameter parameter(int d1)
Parameter parameter(int d1, int d2)
Parameter parameter(int d1, int d2, int d3)
Parameter parameter()

(continues on next page)

236

(continued from previous page)

Parameter parameter(String name, int[] shape, int[][] sparsity)
Parameter parameter(String name, int[] shape, long[] sp)
Parameter parameter(String name, int[] shape)
Parameter parameter(String name, int d1)
Parameter parameter(String name, int d1, int d2)
Parameter parameter(String name, int d1, int d2, int d3)
Parameter parameter(String name)

Create a new parameter in the model. A parameter is a placeholder for a constant (scalar or array)
value that can be assigned and reset after the model is built and between optimizations.

If the shape is not provided, the parameter is a scalar parameter. The default value of a newly
created parameter is 0. To set the value use Parameter.setValue .

Parameters
• shape (int[]) – Shape of the parameter.
• sparsity (int[][]) – Non-zero sparsity pattern, if the parameter is sparse.
• sp (long[]) – Non-zero sparsity pattern as a list of linear indexes, if the parameter

is sparse.
• d1 (int) – First dimension of a parameter.
• d2 (int) – Second dimension of a parameter.
• d3 (int) – Third dimension of a parameter.
• name (String) – Name of the parameter.

Return
(Parameter)

Model.primalObjValue

double primalObjValue()

Get the primal objective value in the current solution.

Return
(double)

Model.putlicensecode

void Model.putlicensecode(int[] code)

Set the license code in the global environment. This function has an effect only before the first
optimization in the current process.

Parameters
code (int[])

Model.putlicensepath

void Model.putlicensepath(String licfile)

Set the license path in the global environment. This function has an effect only before the first
optimization in the current process.

Parameters
licfile (String)

Model.putlicensewait

void Model.putlicensewait(boolean wait)

237

Set the license wait flag in the global environment. If set, MOSEK will wait until a license becomes
available.

Parameters
wait (boolean)

Model.selectedSolution

void selectedSolution(SolutionType soltype)

Chooses a solution. The values of variables and constraints will be read from the chosen solution.
The default is to consider all solution types in the order of SolutionType.Default .

Parameters
soltype (SolutionType) – The solution type to select as default.

Model.setCallbackHandler

void setCallbackHandler(System.CallbackHandler h)

Attach a progress callback handler. During optimization this handler will be called, providing a
code with the current state of the solver. Passing null detaches the current handler. See Section
Progress and data callback for details and examples and the Optimizer API for information about
callback codes.

The progress callback handler is an object of type mosek.ProgressCallback.

Parameters
h (CallbackHandler) – The callback handler or null.

Model.setDataCallbackHandler

void setDataCallbackHandler(System.DataCallbackHandler h)

Attach a data callback handler. During optimization this handler will be called, providing various
information about the current state of the solution and solver. Passing null detaches the current
handler. See Section Progress and data callback for details and examples and the Optimizer API
for information about callback codes.

The data callback handler is an object of type mosek.DataCallback.

Parameters
h (DataCallbackHandler) – The callback handler or null.

Model.setLogHandler

void setLogHandler(System.StreamWriter h)

Attach a log handler. The solver log information will be sent to the stream handler. Passing null
detaches the current handler.

The log handler is an object of type java.io.Writer, for example

M.setLogHandler(new java.io.PrintWriter(System.out))

Parameters
h (StreamWriter) – The log handler object or null.

Model.setSolverParam

void setSolverParam(String name, String strval)
void setSolverParam(String name, int intval)
void setSolverParam(String name, double floatval)

238

Set a solver parameter. Solver parameter values can be either symbolic values, integers or doubles,
depending on the parameter. The value is automatically converted to a suitable type whenever
possible. If this fails, an exception will be thrown. For example, if the parameter accepts a double
value and is given a string, the string will be parsed to produce a double.

See Section Parameters (alphabetical list sorted by type) for a listing of all parameter settings.

Parameters
• name (String) – Name of the parameter to set
• strval (String) – A string value to assign to the parameter.
• intval (int) – An integer value to assign to the parameter.
• floatval (double) – A floating point value to assign to the parameter.

Model.solve

void solve()
void solve(String addr, String accesstoken)

This calls the MOSEK solver to solve the problem defined in the model.

If no error occurs, on exit a solution status will be defined for the primal and the
dual solutions. These can be obtained with Model.getPrimalSolutionStatus and Model.
getDualSolutionStatus . Depending on the solution status, various values may be defined:

• If the model is primal-dual feasible, or nearly so, and the solver found a solution, the solution
values can be accessed through the Variable and Constraint objects in the model. For
integer problems only the primal solution is defined, while for continuous problems both
primal and dual solutions are available.

• If the model is primal or dual infeasible, only the primal or the dual solution is defined,
depending on the solution status. The available solution contains a certificate of infeasibility.

• If the status is unknown the solver ran into problems and did not find anything useful. In
this case the solution values may be garbage.

The solution can be obtained with Model.primalObjValue and Variable.level and their dual
analogues.

By default, trying to fetch a non-optimal solution using Variable.level or Variable.dual will
cause an exception. To fetch infeasibility certificates or other less optimal solutions it is necessary
to change the accepted solution flag with Model.acceptedSolutionStatus .

Parameters
• addr (String) – Address of the OptServer if optimizing remotely. It should be

a valid URL, for example http://server:port or https://server:port.
• accesstoken (String) – Access token if optimizing remotely with authentica-

tion.

Model.solveBatch

SolverStatus[] Model.solveBatch(boolean israce, double maxtime, int numthreads,␣
→˓Model[] models)

Calls the MOSEK solver to solve all the provided models in parallel. All callbacks and log output
streams are disabled.

Assuming that each model takes about same time and there many more models than threads then a
linear speedup can be achieved, also known as strong scaling. A typical application of this method
is to solve many small models of similar type; in this case it is recommended that each of them is
allocated a single thread by setting numThreads to 1.

If the parameters israce or maxtime are used, then the result may not be deterministic, in the
sense that the models which complete first may vary between runs.

239

The remaining behavior is the same as if each model was solved separately with Model.solve .
The return array describes if each model solved, failed or wasn’t attempted because another one
finished first (if israce is used). Debugging a failed model can be done by solving it individually.

This method parallelizes the call to the numerical solver; additional operations such as postpro-
cessing the optimizer solution into the solution of the Fusion model are still performed sequentially.

Parameters
• israce (boolean) – If true, then the function is terminated after the first model

completed.
• maxtime (double) – Time limit: if nonnegative, then the function is terminated

after this time (seconds).
• numthreads (int) – The number of threads for the whole pool available to all

models. If set to 0 the number of threads used will be equal to the number of
cores detected on the machine.

• models (Model []) – An array of models to be solved.
Return

(SolverStatus [])

Model.updateObjective

void updateObjective(Expression expr, Variable x)

Update the columns in the objective expression defined by x.

Parameters
• expr (Expression) – The expression to update with. This must have size 1.
• x (Variable) – The columns to replace.

Model.variable

Variable variable(String name)
Variable variable(String name, int size)
Variable variable(String name, int size, LinearDomain ldom)
RangedVariable variable(String name, int size, RangeDomain rdom)
Variable variable(String name, int size, ConeDomain qdom)
Variable variable(String name, int[] shp)
Variable variable(String name, int[] shp, LinearDomain ldom)
RangedVariable variable(String name, int[] shp, RangeDomain rdom)
Variable variable(String name, int[] shp, ConeDomain qdom)
Variable variable(String name, LinearDomain ldom)
RangedVariable variable(String name, RangeDomain rdom)
Variable variable(String name, ConeDomain qdom)
Variable variable()
Variable variable(int size)
Variable variable(int size, LinearDomain ldom)
RangedVariable variable(int size, RangeDomain rdom)
Variable variable(int size, ConeDomain qdom)
Variable variable(int[] shp)
Variable variable(int[] shp, LinearDomain ldom)
RangedVariable variable(int[] shp, RangeDomain rdom)
Variable variable(int[] shp, ConeDomain qdom)
Variable variable(LinearDomain ldom)
RangedVariable variable(RangeDomain rdom)
Variable variable(ConeDomain qdom)
Variable variable(String name, int[] shp, PSDDomain psddom)
Variable variable(String name, int n, PSDDomain psddom)
Variable variable(String name, int n, int m, PSDDomain psddom)

(continues on next page)

240

(continued from previous page)

Variable variable(String name, PSDDomain psddom)
Variable variable(int n, PSDDomain psddom)
Variable variable(int n, int m, PSDDomain psddom)
Variable variable(PSDDomain psddom)

Create a new variable in the model. All variables must be created using this method. The many
versions of the method accept a name (optional), the shape of the variable and its domain. The
domain must be suitable for the given variable shape. If the domain is not provided, it is assumed
that the variable is unbounded. If the dimension is not provided the variable is a single scalar
variable.
Typical domains used for creating variables include:

• Domain.lessThan , Domain.greaterThan , Domain.inRange — creates a variable 𝑥 with
bounds 𝑥 ≤ 𝑢, 𝑙 ≤ 𝑥 or 𝑙 ≤ 𝑥 ≤ 𝑢.

• Domain.inPSDCone — creates a symmetric positive definite variable of dimension 𝑛.

Parameters
• name (String) – Name of the variable. This must be unique among all variables

in the model. The value null is allowed instead of a unique name.
• size (int) – Size of the variable. The variable becomes a one-dimensional vector

of the given size.
• ldom (LinearDomain) – A linear domain for the variable.
• rdom (RangeDomain) – A ranged domain for the variable.
• qdom (ConeDomain) – A conic domain for the variable.
• shp (int[]) – Defines the shape of the variable.
• psddom (PSDDomain) – A semidefinte domain for the variable.
• n (int) – Dimension of the semidefinite variable.
• m (int) – Number of semidefinite variables.

Return
• (Variable)
• (RangedVariable)

Model.writeTask

void writeTask(String filename)

Dump the current solver task to a file. The file extension determines the file format, see Section
Supported File Formats for details. The file can be read with the command line MOSEK or with
the Optimizer API for debugging purposes.

Parameters
filename (String) – Name of the output file.

Model.writeTaskStream

void writeTaskStream(String ext, System.DataStream stream)

Write the current solver task to a stream object. The extension determines the file format, see
Section Supported File Formats, and it should be a string such as "ptf", "task.gz", etc. that
would be used for file extension in Model.writeTask .
stream is an object of type java.io.OutputStream, for example

M.writeTaskStream("jtask", System.out);

M.writeTaskStream("ptf", new java.io.FileOutputStream("dump.ptf"));

Parameters
• ext (String) – Extension, which determines the file format.
• stream (DataStream) – The output stream.

241

14.2.23 Class ModelConstraint

mosek.fusion.ModelConstraint

Base class for all constraints that directly corresponds to a block of constraints in the underlying
task, i.e. all objects created from Model.constraint .

Implements
Constraint

Members
Constraint.dual – Get the dual solution values of the constraint.
Constraint.getModel – Return the model that the constraint belongs to.
Constraint.getND – Return the number of dimensions in the constraint shape.
Constraint.getShape – Return the constraint’s shape.
Constraint.getSize – Return the total number of elements in the constraint.
Constraint.index – Get a single element from a constraint.
Constraint.level – Get the primal solution values of the constraint.
Constraint.slice – Create a slice constraint.
Constraint.update – Update part of a constraint.
ModelConstraint.remove – Remove the constraint from the model.
ModelConstraint.toString – Create a human readable string representation of the
constraint.

Implemented by
LinearConstraint , ConicConstraint , RangedConstraint , PSDConstraint ,
LinearPSDConstraint

ModelConstraint.remove

void remove()

Remove the constraint from the model. Using the constraint object after this method has been
called results in undefined behavior.

ModelConstraint.toString

String toString()

Create a human readable string representation of the constraint.

Return
(String)

14.2.24 Class ModelVariable

mosek.fusion.ModelVariable

Base class for all variables that directly corresponds to a block of variables in the underlying task,
i.e. all objects created from Model.variable .

Implements
BaseVariable

Members
BaseVariable.antidiag – Return the antidiagonal of a square variable matrix.
BaseVariable.asExpr – Create an expression corresponding to the variable object.
BaseVariable.diag – Return the diagonal of a square variable matrix.
BaseVariable.dual – Get the dual solution value of the variable.
BaseVariable.eval – Evaluate the expression and push the result onto the work
stack.
BaseVariable.fromTril – Convert from a trilinear representation into a square
variable.
BaseVariable.getDim – Return the d’th dimension in the expression.
BaseVariable.getModel – Get the associated model.

242

BaseVariable.getND – Get the number of dimensions in the variable shape.
BaseVariable.getShape – Get the variable shape.
BaseVariable.getSize – Get the total number of elements in the variable.
BaseVariable.index – Return a variable slice of size 1 corresponding to a single
element in the variable object..
BaseVariable.level – Get the primal solution value of the variable.
BaseVariable.makeContinuous – Drop integrality constraints on the variable, if
any.
BaseVariable.makeInteger – Apply integrality constraints on the variable. Has
no effect on elements of semidefinite matrix variables.
BaseVariable.pick – Create a one-dimensional variable by picking a list of indexes
from this variable.
BaseVariable.reshape – Reshape the variable. The new shape must have the same
total size as the current.
BaseVariable.setLevel – Input solution values for this variable
BaseVariable.slice – Create a slice variable by picking a range of indexes for each
variable dimension.
BaseVariable.toString – Create a string representation of the variable.
BaseVariable.transpose – Transpose the variable.
BaseVariable.tril – Convert from a square variable to a trilinear representation.
ModelVariable.remove – Remove the variable from the model.

Implemented by
ConicVariable , LinearVariable , PSDVariable , LinearPSDVariable ,
RangedVariable

ModelVariable.remove

void remove()

Remove the variable from the model and remove it from any constraints where it appears. Using
the variable object after this method has been called results in undefined behavior.

14.2.25 Class NDSparseArray

mosek.fusion.NDSparseArray

Representation of a sparse n-dimensional array.

Static members
NDSparseArray.make – Create a sparse n-dimensional matrix (tensor).

NDSparseArray.make

NDSparseArray NDSparseArray.make(int[] dims, int[][] sub, double[] cof)
NDSparseArray NDSparseArray.make(int[] dims, long[] inst, double[] cof)
NDSparseArray NDSparseArray.make(Matrix m)

Create a sparse n-dimensional matrix (tensor).

Parameters
• dims (int[]) – Dimensions.
• sub (int[][]) – Positions of nonzeros. Array where each row is an 𝑛-dimensional

index.
• cof (double[]) – Values of nonzero elements. Array of coefficients corresponding

to subscripts.
• inst (long[]) – Positions of nonzeros using linear indexes into the array.
• m (Matrix) – An initializing matrix.

Return
(NDSparseArray)

243

14.2.26 Class PSDConstraint

mosek.fusion.PSDConstraint

This class represents a semidefinite conic constraint of the form

𝐴𝑥− 𝑏 ⪰ 0

i.e. 𝐴𝑥− 𝑏 must be positive semidefinite

Implements
ModelConstraint

Members
Constraint.dual – Get the dual solution values of the constraint.
Constraint.getModel – Return the model that the constraint belongs to.
Constraint.getND – Return the number of dimensions in the constraint shape.
Constraint.getShape – Return the constraint’s shape.
Constraint.getSize – Return the total number of elements in the constraint.
Constraint.index – Get a single element from a constraint.
Constraint.level – Get the primal solution values of the constraint.
Constraint.slice – Create a slice constraint.
Constraint.update – Update part of a constraint.
ModelConstraint.remove – Remove the constraint from the model.
PSDConstraint.toString – Create a human readable string representation of the
constraint.

PSDConstraint.toString

String toString()

Create a human readable string representation of the constraint.

Return
(String)

14.2.27 Class PSDDomain

mosek.fusion.PSDDomain

Represent the domain od PSD matrices.

Members
PSDDomain.axis – Set the dimension along which the cones are created in a multi-
dimensional domain.
PSDDomain.withNamesOnAxis – Set index names in a specific axis.

PSDDomain.axis

PSDDomain axis(int conedim1, int conedim2)

Set the dimension along which the cones are created in a multi-dimensional domain.

Parameters
• conedim1 (int) – First dimension.
• conedim2 (int) – Second dimension.

Return
(PSDDomain)

PSDDomain.withNamesOnAxis

PSDDomain withNamesOnAxis(String[] names, int axis)

244

Set index names in a specific axis.

Parameters
• names (String[]) – List of names, this must match the actual dimension on that

axis.
• axis (int) – The axis to change names on.

Return
(PSDDomain)

14.2.28 Class PSDVariable

mosek.fusion.PSDVariable

This class represents a positive semidefinite variable.

Implements
ModelVariable

Members
BaseVariable.antidiag – Return the antidiagonal of a square variable matrix.
BaseVariable.asExpr – Create an expression corresponding to the variable object.
BaseVariable.diag – Return the diagonal of a square variable matrix.
BaseVariable.dual – Get the dual solution value of the variable.
BaseVariable.eval – Evaluate the expression and push the result onto the work
stack.
BaseVariable.fromTril – Convert from a trilinear representation into a square
variable.
BaseVariable.getDim – Return the d’th dimension in the expression.
BaseVariable.getModel – Get the associated model.
BaseVariable.getND – Get the number of dimensions in the variable shape.
BaseVariable.getShape – Get the variable shape.
BaseVariable.getSize – Get the total number of elements in the variable.
BaseVariable.index – Return a variable slice of size 1 corresponding to a single
element in the variable object..
BaseVariable.level – Get the primal solution value of the variable.
BaseVariable.makeContinuous – Drop integrality constraints on the variable, if
any.
BaseVariable.makeInteger – Apply integrality constraints on the variable. Has
no effect on elements of semidefinite matrix variables.
BaseVariable.pick – Create a one-dimensional variable by picking a list of indexes
from this variable.
BaseVariable.reshape – Reshape the variable. The new shape must have the same
total size as the current.
BaseVariable.setLevel – Input solution values for this variable
BaseVariable.slice – Create a slice variable by picking a range of indexes for each
variable dimension.
BaseVariable.transpose – Transpose the variable.
BaseVariable.tril – Convert from a square variable to a trilinear representation.
ModelVariable.remove – Remove the variable from the model.
PSDVariable.toString – Create a string representation of the variable.

PSDVariable.toString

String toString()

Create a string representation of the variable.

Return
(String)

245

14.2.29 Class Param

mosek.fusion.Param

The class defines a set of static methods for manipulating parameters.

Static members
Param.hstack – Stack a list of parameters horizontally (i.e. along the second di-
mension).
Param.repeat – Repeat a parameter a number of times in the given dimension.
Param.stack – Stack a list of parameters in an arbitrary dimension.
Param.vstack – Stack a list of parameters vertically (i.e. along the first dimension).

Param.hstack

Parameter Param.hstack(Parameter[] p)
Parameter Param.hstack(Parameter p1, Parameter p2)
Parameter Param.hstack(Parameter p1, Parameter p2, Parameter p3)

Stack a list of parameters horizontally (i.e. along the second dimension). The parameters must
have the same shape, except for the second dimension.

For example, if 𝑝1, 𝑝2, 𝑝3 are three parameters of shape (n,1) then their horizontal stack is the
two-dimensional parameter ⎡⎣ | | |

𝑝1 𝑝2 𝑝3

| | |

⎤⎦
of shape (n,3).

Parameters
• p (Parameter []) – Parameters to stack.
• p1 (Parameter) – First parameter to stack.
• p2 (Parameter) – Second parameter to stack.
• p3 (Parameter) – Third parameter to stack.

Return
(Parameter)

Param.repeat

Parameter Param.repeat(Parameter p, int n, int dim)

Repeat a parameter a number of times in the given dimension. This is equivalent to stacking n
copies of the parameter in dimension dim; see Param.stack .

Parameters
• p (Parameter) – The parameter to repeat.
• n (int) – Number of times to repeat. Must be strictly positive.
• dim (int) – The dimension in which to repeat. Must define a valid dimension

index.
Return

(Parameter)

Param.stack

Parameter Param.stack(Parameter[][] p)
Parameter Param.stack(int dim, Parameter[] p)
Parameter Param.stack(int dim, Parameter p1, Parameter p2)
Parameter Param.stack(int dim, Parameter p1, Parameter p2, Parameter p3)

246

Stack a list of parameters along an arbitrary dimension. All parameters must have the same shape,
except for dimension dim.

For example, suppose 𝑃,𝑄 are two 𝑛×𝑚 parameters. Then stacking them in the first dimension
produces a parameter of shape (2n,m): [︂

𝑃
𝑄

]︂
,

stacking them in the second dimension produces a parameter of shape (n,2m):[︀
𝑃 𝑄

]︀
,

and stacking them in the third dimension produces a three-dimensional parameter of shape (n,m,
2).

The version which takes a two-dimensional array of parameters constructs a block matrix parameter
with the given parameters as blocks. The dimensions of the blocks must be suitably compatible.

Parameters
• p (Parameter [][]) – Parameters to stack.
• p (Parameter []) – Parameters to stack.
• dim (int) – The dimension in which to stack.
• p1 (Parameter) – First parameter to stack.
• p2 (Parameter) – Second parameter to stack.
• p3 (Parameter) – Third parameter to stack.

Return
(Parameter)

Param.vstack

Parameter Param.vstack(Parameter[] p)
Parameter Param.vstack(Parameter p1, Parameter p2)
Parameter Param.vstack(Parameter p1, Parameter p2, Parameter p3)

Stack a list of parameters vertically (i.e. along the first dimension). The parameters must have the
same shape, except for the first dimension.

For example, if 𝑝1, 𝑝2, 𝑝3 are three parameters of shape (1,n) then their vertical stack is the
two-dimensional parameter ⎡⎣ −𝑝1−

−𝑝2−
−𝑝3−

⎤⎦
of shape (3,n).

Parameters
• p (Parameter []) – Parameters to stack.
• p1 (Parameter) – First parameter to stack.
• p2 (Parameter) – Second parameter to stack.
• p3 (Parameter) – Third parameter to stack.

Return
(Parameter)

247

14.2.30 Class Parameter

mosek.fusion.Parameter

The parameter class defines a parameter belonging to a specific model. A parameter is a placeholder
for a constant (of any shape) whose value can be changed at any point in the life of the model.
The Parameter object is not created directly, but through the factory methods Model.parameter .

Implements
Expression

Members
Expression.eval – Evaluate the expression and push the result onto the work stack.
Expression.getModel – Get the associated model.
Expression.index – Get a single element in the expression.
Expression.toString – Return a string representation of the expression object.
Parameter.asExpr – Convert parameter to an expression
Parameter.getNumNonzero – Get number of non-zero elements in the parameter.
This means the number of elements in the sparsity pattern - not the number of
numeric non-zeros.
Parameter.getSize – Get the total number of elements in the parameter
Parameter.getValue – Get the current parameter values.
Parameter.isSparse – Return whether the parameter has a sparsity pattern.
Parameter.pick – Pick a number of elements from the expression.
Parameter.reshape – Reshape the parameter. The new shape must have the same
size as the old.
Parameter.setValue – Set the parameter values.
Parameter.slice – Take a slice of the parameter.
Parameter.transpose – Transpose a one- or two-dimensional parameter.

Parameter.asExpr

Expression asExpr()

Convert parameter to an expression

Return
(Expression)

Parameter.getNumNonzero

int getNumNonzero()

Get number of non-zero elements in the parameter. This means the number of elements in the
sparsity pattern - not the number of numeric non-zeros.

Return
(int)

Parameter.getSize

long getSize()

Get the total number of elements in the parameter

Return
(long)

Parameter.getValue

double[] getValue()

Get the current parameter values.

248

Return
(double[])

Parameter.isSparse

boolean isSparse()

Return whether the parameter has a sparsity pattern.

Return
(boolean)

Parameter.pick

Parameter pick(int[] idxs)
Parameter pick(int[][] midxs)

Picks a number of elements from the expression and returns them as a one-dimensional expression.

Parameters
• idxs (int[])
• midxs (int[][])

Return
(Parameter)

Parameter.reshape

Parameter reshape(int[] dims)

Reshape the parameter. The new shape must have the same size as the old.

Parameters
dims (int[]) – The new shape

Return
(Parameter)

Parameter.setValue

void setValue(double value)
void setValue(double[] values)
void setValue(double[][] values2)

Sets the value of this parameter.

The number of input values must match the size of the shape of the parameter. If the parameter
is sparse, values on zero-positions are simply ignored.

Parameters
• value (double) – Set all parameter elements to this value.
• values (double[]) – Set parameter elements to these values. The length of the

array must match the size of the parameter. This form is valid no matter the
shape of the parameter.

• values2 (double[][]) – Set parameter elements to these values. The shape must
exactly match the shape of the two-dimensional parameter.

Parameter.slice

Parameter slice(int start, int stop)
Parameter slice(int[] astart, int[] astop)

Take a slice of the parameter.

249

Parameters
• start (int) – The first index in a one-dimensional parameter.
• stop (int) – The last-plus-one index in a one-dimensional parameter.
• astart (int[]) – The first index in the parameter.
• astop (int[]) – The last-plus-one index in the parameter.

Return
(Parameter)

Parameter.transpose

Parameter transpose()

Transpose a one- or two-dimensional parameter.

Return
(Parameter)

14.2.31 Class RangeDomain

mosek.fusion.RangeDomain

The RangeDomain object is never instantiated directly: Instead use the relevant methods in Domain .

Members
RangeDomain.integral – Creates a domain of integral variables.
RangeDomain.sparse – Creates a domain exploiting sparsity.
RangeDomain.withNamesOnAxis – Set index names in a specific axis.
RangeDomain.withShape – Set the shape of the domain.

RangeDomain.integral

RangeDomain integral()

Modify a given domain restricting its elements to be integral.

Return
(RangeDomain)

RangeDomain.sparse

RangeDomain sparse()
RangeDomain sparse(int[] sparsity)
RangeDomain sparse(int[][] sparsity)

Creates a domain exploiting sparsity.

Parameters
• sparsity (int[])
• sparsity (int[][])

Return
(RangeDomain)

RangeDomain.withNamesOnAxis

RangeDomain withNamesOnAxis(String[] names, int axis)

Set index names in a specific axis.

Parameters
• names (String[]) – List of names, this must match the actual dimension on that

axis.

250

• axis (int) – The axis to change names on.
Return

(RangeDomain)

RangeDomain.withShape

RangeDomain withShape(int[] shp)
RangeDomain withShape(int dim0)
RangeDomain withShape(int dim0, int dim1)
RangeDomain withShape(int dim0, int dim1, int dim2)

Set the shape of the domain.

Parameters
• shp (int[]) – The shape of the domain
• dim0 (int) – First dimension
• dim1 (int) – Second dimension
• dim2 (int) – Third dimension

Return
(RangeDomain)

14.2.32 Class RangedConstraint

mosek.fusion.RangedConstraint

Represents a ranged constraint. The dual of a ranged constraint is the difference between upper and
lower dual. To get them separately use the intermediate objects created with RangedConstraint.
lowerBoundCon and RangedConstraint.upperBoundCon .

Implements
ModelConstraint

Members
Constraint.dual – Get the dual solution values of the constraint.
Constraint.getModel – Return the model that the constraint belongs to.
Constraint.getND – Return the number of dimensions in the constraint shape.
Constraint.getShape – Return the constraint’s shape.
Constraint.getSize – Return the total number of elements in the constraint.
Constraint.index – Get a single element from a constraint.
Constraint.level – Get the primal solution values of the constraint.
Constraint.slice – Create a slice constraint.
Constraint.update – Update part of a constraint.
ModelConstraint.remove – Remove the constraint from the model.
ModelConstraint.toString – Create a human readable string representation of the
constraint.
RangedConstraint.lowerBoundCon – Obtain the interface to the variable’s lower
bound.
RangedConstraint.upperBoundCon – Obtain the interface to the variable’s upper
bound.

RangedConstraint.lowerBoundCon

BoundInterfaceConstraint lowerBoundCon()

Obtain the interface to the variable’s lower bound.

Return
(BoundInterfaceConstraint)

RangedConstraint.upperBoundCon

251

BoundInterfaceConstraint upperBoundCon()

Obtain the interface to the variable’s upper bound.

Return
(BoundInterfaceConstraint)

14.2.33 Class RangedVariable

mosek.fusion.RangedVariable

Represents a ranged variable.

The dual of a ranged variable is the difference between upper and lower dual. To get them separately
use the intermediate objects created with RangedVariable.lowerBoundVar and RangedVariable.
upperBoundVar .

Implements
ModelVariable

Members
BaseVariable.antidiag – Return the antidiagonal of a square variable matrix.
BaseVariable.asExpr – Create an expression corresponding to the variable object.
BaseVariable.diag – Return the diagonal of a square variable matrix.
BaseVariable.dual – Get the dual solution value of the variable.
BaseVariable.eval – Evaluate the expression and push the result onto the work
stack.
BaseVariable.fromTril – Convert from a trilinear representation into a square
variable.
BaseVariable.getDim – Return the d’th dimension in the expression.
BaseVariable.getModel – Get the associated model.
BaseVariable.getND – Get the number of dimensions in the variable shape.
BaseVariable.getShape – Get the variable shape.
BaseVariable.getSize – Get the total number of elements in the variable.
BaseVariable.index – Return a variable slice of size 1 corresponding to a single
element in the variable object..
BaseVariable.level – Get the primal solution value of the variable.
BaseVariable.makeContinuous – Drop integrality constraints on the variable, if
any.
BaseVariable.makeInteger – Apply integrality constraints on the variable. Has
no effect on elements of semidefinite matrix variables.
BaseVariable.pick – Create a one-dimensional variable by picking a list of indexes
from this variable.
BaseVariable.reshape – Reshape the variable. The new shape must have the same
total size as the current.
BaseVariable.setLevel – Input solution values for this variable
BaseVariable.slice – Create a slice variable by picking a range of indexes for each
variable dimension.
BaseVariable.toString – Create a string representation of the variable.
BaseVariable.transpose – Transpose the variable.
BaseVariable.tril – Convert from a square variable to a trilinear representation.
ModelVariable.remove – Remove the variable from the model.
RangedVariable.lowerBoundVar – Obtain the interface to the variable’s lower
bound.
RangedVariable.upperBoundVar – Obtain the interface to the variable’s upper
bound.

RangedVariable.lowerBoundVar

BoundInterfaceVariable lowerBoundVar()

252

Obtain the interface to the variable’s lower bound.

Return
(BoundInterfaceVariable)

RangedVariable.upperBoundVar

BoundInterfaceVariable upperBoundVar()

Obtain the interface to the variable’s upper bound.

Return
(BoundInterfaceVariable)

14.2.34 Class Set

mosek.fusion.Set
This class contains static methods for creating and manipulating shape specifications.

Static members
Set.make – Creates a shape.
Set.scalar – Create a shape of size 1.
Set.strides – Compute the strides from a shape.

Set.make

int[] Set.make(String[] names)
int[] Set.make(int sz)
int[] Set.make(int s1, int s2)
int[] Set.make(int s1, int s2, int s3)
int[] Set.make(int[] sizes)
int[] Set.make(int[] set1, int[] set2)

This static method is a factory for different kind of set objects:

• A (multi-dimensional) set of integers (shape).

• A set whose elements are strings.

• A set obtained as Cartesian product of sets given in a list.

Parameters
• names (String[]) – A list of strings for a set of strings.
• sz (int) – The size of a one-dimensional set of integers.
• s1 (int) – Size of the first dimension.
• s2 (int) – Size of the second dimension.
• s3 (int) – Size of the third dimension.
• sizes (int[]) – The sizes of dimensions for a multi-dimensional integer set.
• set1 (int[]) – First factor in a Cartesian product.
• set2 (int[]) – Second factor in a Cartesian product.

Return
(int[])

Set.scalar

int[] Set.scalar()

Create a shape of size 1.

Return
(int[])

253

Set.strides

long[] Set.strides(int[] shape)

Compute the strides from a shape.

Parameters
shape (int[])

Return
(long[])

14.2.35 Class SimpleTerm

mosek.fusion.SimpleTerm

A class representing simple term, a basic building block for disjunctive constraints.

Implements
Term

Members
Term.size – Total size of the term.
Term.toDJCTerm – Convert object into a disjunctive constraint term

14.2.36 Class SliceConstraint

mosek.fusion.SliceConstraint

An alias for a subset of constraints from a single ModelConstraint.

This class acts as a proxy for accessing a portion of a ModelConstraint. It is possible to access
and modify the properties of the original variable using this alias. It does not access the Model
directly, only through the original variable.

Implements
Constraint

Members
Constraint.dual – Get the dual solution values of the constraint.
Constraint.getModel – Return the model that the constraint belongs to.
Constraint.getND – Return the number of dimensions in the constraint shape.
Constraint.getShape – Return the constraint’s shape.
Constraint.getSize – Return the total number of elements in the constraint.
Constraint.index – Get a single element from a constraint.
Constraint.level – Get the primal solution values of the constraint.
Constraint.remove – Remove the constraint from the model.
Constraint.slice – Create a slice constraint.
Constraint.update – Update part of a constraint.
SliceConstraint.toString – Create a human readable string representation of the
constraint.

Implemented by
BoundInterfaceConstraint

SliceConstraint.toString

String toString()

Create a human readable string representation of the constraint.

Return
(String)

254

14.2.37 Class SliceVariable

mosek.fusion.SliceVariable

An alias for a subset of variables from a single ModelVariable .

This class acts as a proxy for accessing a portion of a ModelVariable . It is possible to access
and modify the properties of the original variable using this alias, and the object can be used in
expressions as any other Variable object.

Implements
BaseVariable

Members
BaseVariable.antidiag – Return the antidiagonal of a square variable matrix.
BaseVariable.asExpr – Create an expression corresponding to the variable object.
BaseVariable.diag – Return the diagonal of a square variable matrix.
BaseVariable.dual – Get the dual solution value of the variable.
BaseVariable.eval – Evaluate the expression and push the result onto the work
stack.
BaseVariable.fromTril – Convert from a trilinear representation into a square
variable.
BaseVariable.getDim – Return the d’th dimension in the expression.
BaseVariable.getModel – Get the associated model.
BaseVariable.getND – Get the number of dimensions in the variable shape.
BaseVariable.getShape – Get the variable shape.
BaseVariable.getSize – Get the total number of elements in the variable.
BaseVariable.index – Return a variable slice of size 1 corresponding to a single
element in the variable object..
BaseVariable.level – Get the primal solution value of the variable.
BaseVariable.makeContinuous – Drop integrality constraints on the variable, if
any.
BaseVariable.makeInteger – Apply integrality constraints on the variable. Has
no effect on elements of semidefinite matrix variables.
BaseVariable.pick – Create a one-dimensional variable by picking a list of indexes
from this variable.
BaseVariable.remove – Remove the variable from the model.
BaseVariable.reshape – Reshape the variable. The new shape must have the same
total size as the current.
BaseVariable.setLevel – Input solution values for this variable
BaseVariable.slice – Create a slice variable by picking a range of indexes for each
variable dimension.
BaseVariable.toString – Create a string representation of the variable.
BaseVariable.transpose – Transpose the variable.
BaseVariable.tril – Convert from a square variable to a trilinear representation.

Implemented by
BoundInterfaceVariable

14.2.38 Class Term

mosek.fusion.Term

A class representing a term, which ultimately enters a disjunctive constraint. A term can be a
simple term, such as a (possibly multidimensional) inequality or equality constructed with DJC.
term or a conjunction of simple terms constructed with DJC.AND .

Members
Term.size – Total size of the term.
Term.toDJCTerm – Convert object into a disjunctive constraint term

Implemented by
SimpleTerm

255

Term.size

int size()

Total size of the term.

Return
(int)

Term.toDJCTerm

Term toDJCTerm()

Convert object into a disjunctive constraint term

Return
(Term)

14.2.39 Class Var

mosek.fusion.Var
Contains several static methods for manipulating variable objects and creating new variables from
old ones.
Primal and dual solution values and additional operations on variables are available from the
Variable class.

Static members
Var.compress – Reshape a variable object by removing all dimensions of size 1.
Var.empty – Produce a new empty variable of the given shape.
Var.flatten – Create a one-dimensional logical view of a variable object.
Var.hrepeat – Repeat a variable a number of times in the second dimension.
Var.hstack – Stack a list of variables horizontally (i.e. along the second dimension).
Var.promote – Pad variable shape.
Var.repeat – Repeat a variable a number of times in the given dimension.
Var.reshape – Create a reshaped view of the given variable.
Var.stack – Stack a list of variables in an arbitrary dimension.
Var.vrepeat – Repeat a variable a number of times in the first dimension.
Var.vstack – Stack a list of variables vertically (i.e. along the first dimension).

Var.compress

Variable Var.compress(Variable v)

Reshape a variable object by removing all dimensions of size 1. The result contains the same
number of elements, but all dimensions are larger than 1 (except if the original variable contains
exactly one element).

Parameters
v (Variable) – The variable object to compress.

Return
(Variable)

Var.empty

Variable Var.empty(int[] shape)

Produce a new empty variable of the given shape.

Parameters
shape (int[]) – The shape of a variable.

Return
(Variable)

256

Var.flatten

Variable Var.flatten(Variable v)

Create a one-dimensional Variable object that represents a logical view of the 𝑘−dimensional vari-
able 𝑉 . The 𝑉 matrix is traversed starting from the innermost dimension. For a two-dimensional
matrix this means it is traversed row after row.

The returned view is a one-dimensional array of size equal to the product of dimensions of 𝑉 .

Parameters
v (Variable) – The variable to be flattened.

Return
(Variable)

Var.hrepeat

Variable Var.hrepeat(Variable v, int n)

Repeat a variable a number of times in the second dimension. This is equivalent to horizontal
stacking of 𝑛 copies of the variable; see Var.hstack .

Parameters
• v (Variable) – A variable object.
• n (int) – Number of times to repeat v.

Return
(Variable)

Var.hstack

Variable Var.hstack(Variable[] v)
Variable Var.hstack(Variable v1, Variable v2)
Variable Var.hstack(Variable v1, Variable v2, Variable v3)

Stack a list of variables horizontally (i.e. along the second dimension). The variables must have
the same shape, except for the second dimension.

For example, if 𝑥1, 𝑥2, 𝑥3 are three one-dimensional variables of length 𝑛 then their horizontal stack
is the matrix variable ⎡⎣ | | |

𝑥1 𝑥2 𝑥3

| | |

⎤⎦
of shape (n,3).

Parameters
• v (Variable []) – List of variables to stack.
• v1 (Variable) – First variable in the stack.
• v2 (Variable) – Second variable in the stack.
• v3 (Variable) – Third variable in the stack.

Return
(Variable)

Var.promote

Variable Var.promote(Variable v, int nd)

Pad the variable shape up to nd dimensions.

Parameters
• v (Variable) – Variable to pad.

257

• nd (int) – Final number of dimensions.
Return

(Variable)

Var.repeat

Variable Var.repeat(Variable v, int n, int dim)
Variable Var.repeat(Variable v, int n)

Repeat a variable a number of times in the given dimension. If dim is non-negative this is equivalent
to stacking 𝑛 copies of the variable in dimension dim; see Var.stack .

If dim is negative then a new dimension is added in front, so the new variable has shape (n,
v.shape()).

The default is repeating in the first dimension as in Var.vrepeat .

Parameters
• v (Variable) – A variable object.
• n (int) – Number of times to repeat v.
• dim (int) – Dimension to repeat in.

Return
(Variable)

Var.reshape

Variable Var.reshape(Variable v, int[] shape)
Variable Var.reshape(Variable v, int d1, int d2)
Variable Var.reshape(Variable v, int d1)

Create a reshaped view of the given variable.

Parameters
• v (Variable) – A variable object.
• shape (int[]) – An array containing the shape of the new variable.
• d1 (int) – Size of first dimension in the result.
• d2 (int) – Size of second dimension in the result.

Return
(Variable)

Var.stack

Variable Var.stack(int dim, Variable v1, Variable v2)
Variable Var.stack(int dim, Variable v1, Variable v2, Variable v3)
Variable Var.stack(int dim, Variable[] v)
Variable Var.stack(Variable v1, Variable v2, int dim)
Variable Var.stack(Variable v1, Variable v2, Variable v3, int dim)
Variable Var.stack(Variable[] v, int dim)
Variable Var.stack(Variable[][] vlist)

Stack a list of variables along an arbitrary dimension. All variables must have the same shape,
except for dimension dim.

For example, suppose 𝑥, 𝑦 are two matrix variables of shape 𝑛×𝑚. Then stacking them in the first
dimension produces a matrix variable of shape (2n,m):[︂

𝑥
𝑦

]︂
,

stacking them in the second dimension produces a matrix variable of shape (n,2m):[︀
𝑥 𝑦

]︀
,

258

and stacking them in the third dimension produces a three-dimensional variable of shape (n,m,2).

The version which takes a two-dimensional array of variables constructs a block matrix variable
with the given variables as blocks. The dimensions of the blocks must be suitably compatible.
The variables may be more than two-dimensional, if they have the same size in the remaining
dimensions; the block stacking still takes place in the first and second dimension.

Parameters
• dim (int) – Dimension in which to stack.
• v1 (Variable) – First variable in the stack.
• v2 (Variable) – Second variable in the stack.
• v3 (Variable) – Third variable in the stack.
• v (Variable []) – List of variables to stack.
• vlist (Variable [][]) – List of variables to stack.

Return
(Variable)

Var.vrepeat

Variable Var.vrepeat(Variable v, int n)

Repeat a variable a number of times in the first dimension. This is equivalent to vertically stacking
of 𝑛 copies of the variable; see Var.vstack .

Parameters
• v (Variable) – A variable object.
• n (int) – Number of times to repeat v.

Return
(Variable)

Var.vstack

Variable Var.vstack(Variable[] v)
Variable Var.vstack(Variable v1, Variable v2)
Variable Var.vstack(Variable v1, Variable v2, Variable v3)

Stack a list of variables vertically (i.e. along the first dimension). The variables must have the
same shape, except for the first dimension.

For example, if 𝑦1, 𝑦2, 𝑦3 are three horizontal vector variables of length 𝑛 (and shape (1,n)) then
their vertical stack is the matrix variable ⎡⎣ −𝑦1−

−𝑦2−
−𝑦3−

⎤⎦
of shape (3,n).

Parameters
• v (Variable []) – List of variables to stack.
• v1 (Variable) – First variable in the stack.
• v2 (Variable) – Second variable in the stack.
• v3 (Variable) – Third variable in the stack.

Return
(Variable)

259

14.2.40 Class Variable

mosek.fusion.Variable
An abstract variable object. This is the base class for all variable types in Fusion, and it contains
several methods for manipulating variable objects.
The Variable object can be an interface to the normal model variables, e.g. LinearVariable
and ConicVariable , to slices of other variables or to concatenations of other variables.
Primal and dual solution values can be accessed through the Variable object.
More static methods to manipulate variables are available in the Var class.

Implements
Expression

Members
Expression.eval – Evaluate the expression and push the result onto the work stack.
Expression.getDim – Return the d’th dimension in the expression.
Expression.getModel – Get the associated model.
Variable.antidiag – Return the anti-diagonal of a variable matrix.
Variable.asExpr – Create an expression corresponding to the variable object.
Variable.diag – Return the diagonal of a variable matrix.
Variable.dual – Get the dual solution value of the variable.
Variable.fromTril – Convert from a linear representation of the lower triangular
part of a square variable into a square variable.
Variable.getND – Get the number of dimensions in the variable shape.
Variable.getShape – Return the shape of the variable.
Variable.getSize – Get the total number of elements in the variable.
Variable.index – Return a single entry in the variable.
Variable.level – Return the primal value of the variable as an array.
Variable.makeContinuous – Drop integrality constraints on the variable, if any.
Variable.makeInteger – Apply integrality constraints on the variable. Has no
effect on elements of semidefinite matrix variables.
Variable.pick – Create a one-dimensional variable by picking a list of indexes from
this variable.
Variable.remove – Remove the variable from the model.
Variable.reshape – Reshape the variable. The new shape must have the same
total size as the current.
Variable.setLevel – Input solution values for this variable
Variable.slice – Create a slice variable by picking a range of indexes for each
variable dimension.
Variable.toString – Create a string representation of the variable.
Variable.transpose – Transpose the variable.
Variable.tril – Convert a square variable into a linear representation of the lower
triangular part of the variable.

Implemented by
BaseVariable

Variable.antidiag

Variable antidiag(int index)
Variable antidiag()

Return the anti-diagonal of a variable matrix in a one-dimensional variable object. The main
anti-diagonal is defined as starting with the element in the first row and last column.

Parameters
index (int) – Index of the anti-diagonal. Index 0 means the main anti-diagonal,
negative indices are below it and positive indices are above it.

Return
(Variable)

260

Variable.asExpr

Expression asExpr()

Create an Expression object corresponding to 𝐼 · 𝑉 , where 𝐼 is the identity matrix and 𝑉 is this
variable.

Return
(Expression)

Variable.diag

Variable diag(int index)
Variable diag()

Return the diagonal of a square variable matrix in a one-dimensional variable object. The main
diagonal is defined as starting with the element in the first row and first column.

Parameters
index (int) – Index of the diagonal. Index 0 means the main diagonal, negative
indices are below it and positive indices are above it.

Return
(Variable)

Variable.dual

double[] dual()

Get the dual solution value of the variable as an array. When the selected slice is multi-dimensional,
this corresponds to the flattened slice of solution values.

Return
(double[])

Variable.fromTril

Variable fromTril(int dim)

Convert from a linear representation of the lower triangular part of a square variable into a square
variable.

Parameters
dim (int) – Dimension of the square variable.

Return
(Variable)

Variable.getND

int getND()

Get the number of dimensions in the variable shape.

Return
(int)

Variable.getShape

int[] getShape()

Get the variable shape.

Return
(int[])

261

Variable.getSize

long getSize()

Get the total number of elements in the variable.

Return
(long)

Variable.index

Variable index(int i1)
Variable index(int i1, int i2)
Variable index(int i1, int i2, int i3)
Variable index(int[] idx)

Return a variable of size one corresponding to a single element in the variable object.

Parameters
• i1 (int) – Index in the first dimension of the element requested.
• i2 (int) – Index in the second dimension of the element requested.
• i3 (int) – Index in the third dimension of the element requested.
• idx (int[]) – List of indexes of the elements requested.

Return
(Variable)

Variable.level

double[] level()

Get the primal solution value of the variable as an array. When the selected slice is multi-
dimensional, this corresponds to the flattened slice of solution values.

Return
(double[])

Variable.makeContinuous

void makeContinuous()

Drop integrality constraints on the variable, if any.
Variable.makeInteger

void makeInteger()

Apply integrality constraints on the variable. Has no effect on elements of semidefinite matrix
variables.

Variable.pick

Variable pick(int[] idxs)
Variable pick(int[][] midxs)
Variable pick(int[] i1, int[] i2)
Variable pick(int[] i1, int[] i2, int[] i3)

Create a one-dimensional variable by picking a list of indexes from this variable.

Parameters
• idxs (int[]) – Indexes of the elements requested.
• midxs (int[][]) – A sequence of multi-dimensional indexes of the elements re-

quested.

262

• i1 (int[]) – Index along the first dimension.
• i2 (int[]) – Index along the second dimension.
• i3 (int[]) – Index along the third dimension.

Return
(Variable)

Variable.remove

void remove()

Remove the variable from the model and remove it from any constraints where it appears. Using
the variable object after this method has been called results in undefined behavior.

Variable.reshape

Variable reshape(int[] shape)
Variable reshape(int dim0)
Variable reshape(int dim0, int dim1)
Variable reshape(int dim0, int dim1, int dim2)

Reshape the variable. The new shape must have the same total size as the current.

Parameters
• shape (int[]) – The new shape.
• dim0 (int) – First dimension of new shape
• dim1 (int) – Second dimension of new shape
• dim2 (int) – Third dimension of new shape

Return
(Variable)

Variable.setLevel

void setLevel(double[] v)

Set values for an initial solution for this variable. Note that these values are buffered until the
solver is called; they are not available through the level() methods.

Parameters
v (double[]) – An array of values to be assigned to the variable.

Variable.slice

Variable slice(int first, int last)
Variable slice(int[] firsta, int[] lasta)

Create a slice variable by picking a range of indexes for each variable dimension.

Parameters
• first (int) – The index from which the slice begins.
• last (int) – The index after the last element of the slice.
• firsta (int[]) – The indices from which the slice of a multidimensional variable

begins.
• lasta (int[]) – The indices after the last element of slice of a multidimensional

variable.
Return

(Variable)

Variable.toString

263

String toString()

Create a string representation of the variable.

Return
(String)

Variable.transpose

Variable transpose()

Return the transpose of the current variable. The variable must have at most two dimensions.

Return
(Variable)

Variable.tril

Variable tril()

Convert a square variable into a linear representation of the lower triangular part of the variable.

Return
(Variable)

14.2.41 Class WorkStack

mosek.fusion.WorkStack

Stack object used to store expression evaluations. For internal use.

Members
WorkStack.allocf64 – Allocate n doubles and return the stack index of the first
WorkStack.alloci32 – Allocate n int32s and return the stack index of the first
WorkStack.alloci64 – Allocate n int64s and return the stack index of the first
WorkStack.clear – Clear all stacks
WorkStack.ensuref64 – Make sure that the double stack has capacity for n new
items
WorkStack.ensurei32 – Make sure that the int32 stack has capacity for n new items
WorkStack.ensurei64 – Make sure that the int64 stack has capacity for n new items
WorkStack.peekf64 – Peek at one double item from stack
WorkStack.peeki32 – Peek at one int32 item from stack
WorkStack.peeki64 – Peek at one int64 item from stack
WorkStack.popf64 – Pop one or more double items from stack
WorkStack.popi32 – Pop one or more int32 items from stack
WorkStack.popi64 – Pop one or more int64 items from stack
WorkStack.pushf64 – Push an double value
WorkStack.pushi32 – Push an int32 value
WorkStack.pushi64 – Push an int64 value

WorkStack.allocf64

int allocf64(int n)

Allocate n doubles and return the stack index of the first

Parameters
n (int)

Return
(int)

264

WorkStack.alloci32

int alloci32(int n)

Allocate n int32s and return the stack index of the first

Parameters
n (int)

Return
(int)

WorkStack.alloci64

int alloci64(int n)

Allocate n int64s and return the stack index of the first

Parameters
n (int)

Return
(int)

WorkStack.clear

void clear()

Clear all stacks
WorkStack.ensuref64

void ensuref64(int n)

Make sure that the double stack has capacity for n new items

Parameters
n (int) – Number of items to make space for

WorkStack.ensurei32

void ensurei32(int n)

Make sure that the int32 stack has capacity for n new items

Parameters
n (int) – Number of items to make space for

WorkStack.ensurei64

void ensurei64(int n)

Make sure that the int64 stack has capacity for n new items

Parameters
n (int) – Number of items to make space for

WorkStack.peekf64

double peekf64(int i)
double peekf64()

Peek at one double item from stack

Parameters
i (int) – Peek at this index on the stack (default is 0)

265

Return
(double)

WorkStack.peeki32

int peeki32(int i)
int peeki32()

Peek at one int32 item from stack

Parameters
i (int) – Peek at this index on the stack (default is 0)

Return
(int)

WorkStack.peeki64

long peeki64(int i)
long peeki64()

Peek at one int64 item from stack

Parameters
i (int) – Peek at this index on the stack (default is 0)

Return
(long)

WorkStack.popf64

double popf64()
void popf64(int n, double[] r, int ofs)
int popf64(int n)

Pop one or more double items from stack

Parameters
• n (int) – Number of items to pop (default is 1)
• r (double[]) – Copy popped item to this array
• ofs (int) – Copy popped items to this offset in r

Return
• (double)
• (int)

WorkStack.popi32

int popi32()
void popi32(int n, int[] r, int ofs)
int popi32(int n)

Pop one or more int32 items from stack

Parameters
• n (int) – Number of items to pop (default is 1)
• r (int[]) – Copy popped item to this array
• ofs (int) – Copy popped items to this offset in r

Return
(int)

WorkStack.popi64

266

long popi64()
void popi64(int n, long[] r, int ofs)
int popi64(int n)

Pop one or more int64 items from stack

Parameters
• n (int) – Number of items to pop (default is 1)
• r (long[]) – Copy popped item to this array
• ofs (int) – Copy popped items to this offset in r

Return
• (long)
• (int)

WorkStack.pushf64

void pushf64(double v)

Push an double value

Parameters
v (double) – The value to store

WorkStack.pushi32

void pushi32(int v)

Push an int32 value

Parameters
v (int) – The value to store

WorkStack.pushi64

void pushi64(long v)

Push an int64 value

Parameters
v (long) – The value to store

14.3 Parameters grouped by topic

Basis identification

• simLuTolRelPiv

• biCleanOptimizer

• biIgnoreMaxIter

• biIgnoreNumError

• biMaxIterations

• intpntBasis

• logBi

• logBiFreq

267

Conic interior-point method

• intpntCoTolDfeas

• intpntCoTolInfeas

• intpntCoTolMuRed

• intpntCoTolNearRel

• intpntCoTolPfeas

• intpntCoTolRelGap

Data check

• semidefiniteTolApprox

Data input/output

• infeasReportAuto

• logFile

• ptfWriteParameters

• ptfWriteSinglePsdTerms

• ptfWriteSolutions

• ptfWriteTransform

• writeJsonIndentation

• writeLpFullObj

• writeLpLineWidth

• writeMpsFormat

• dataFileName

Debugging

• autoSortABeforeOpt

Dual simplex

• simDualCrash

• simDualRestrictSelection

• simDualSelection

268

Interior-point method

• intpntCoTolDfeas

• intpntCoTolInfeas

• intpntCoTolMuRed

• intpntCoTolNearRel

• intpntCoTolPfeas

• intpntCoTolRelGap

• intpntTolDfeas

• intpntTolDsafe

• intpntTolInfeas

• intpntTolMuRed

• intpntTolPath

• intpntTolPfeas

• intpntTolPsafe

• intpntTolRelGap

• intpntTolRelStep

• intpntTolStepSize

• biIgnoreMaxIter

• biIgnoreNumError

• intpntBasis

• intpntDiffStep

• intpntMaxIterations

• intpntMaxNumCor

• intpntOffColTrh

• intpntOrderGpNumSeeds

• intpntOrderMethod

• intpntRegularizationUse

• intpntScaling

• intpntSolveForm

• intpntStartingPoint

• logIntpnt

269

License manager

• cacheLicense

• licenseDebug

• licensePauseTime

• licenseSuppressExpireWrns

• licenseTrhExpiryWrn

• licenseWait

Logging

• heartbeatSimFreqTicks

• log

• logBi

• logBiFreq

• logCutSecondOpt

• logExpand

• logFile

• logIntpnt

• logLocalInfo

• logMio

• logMioFreq

• logOrder

• logPresolve

• logSim

• logSimFreq

• logSimFreqGigaTicks

Mixed-integer optimization

• mioCliqueTableSizeFactor

• mioDjcMaxBigm

• mioMaxTime

• mioRelGapConst

• mioTolAbsGap

• mioTolAbsRelaxInt

• mioTolFeas

• mioTolRelDualBoundImprovement

• mioTolRelGap

270

• logMio

• logMioFreq

• mioBranchDir

• mioConflictAnalysisLevel

• mioConicOuterApproximation

• mioConstructSol

• mioCrossoverMaxNodes

• mioCutClique

• mioCutCmir

• mioCutGmi

• mioCutImpliedBound

• mioCutKnapsackCover

• mioCutLipro

• mioCutSelectionLevel

• mioDataPermutationMethod

• mioDualRayAnalysisLevel

• mioFeaspumpLevel

• mioHeuristicLevel

• mioIndependentBlockLevel

• mioMaxNumBranches

• mioMaxNumRelaxs

• mioMaxNumRestarts

• mioMaxNumRootCutRounds

• mioMaxNumSolutions

• mioMemoryEmphasisLevel

• mioMinRel

• mioNodeOptimizer

• mioNodeSelection

• mioNumericalEmphasisLevel

• mioOptFaceMaxNodes

• mioPerspectiveReformulate

• mioProbingLevel

• mioPropagateObjectiveConstraint

• mioQcqoReformulationMethod

• mioRensMaxNodes

• mioRinsMaxNodes

271

• mioRootOptimizer

• mioSeed

• mioSymmetryLevel

• mioVarSelection

• mioVbDetectionLevel

Output information

• heartbeatSimFreqTicks

• licenseSuppressExpireWrns

• licenseTrhExpiryWrn

• log

• logBi

• logBiFreq

• logCutSecondOpt

• logExpand

• logFile

• logIntpnt

• logLocalInfo

• logMio

• logMioFreq

• logOrder

• logSim

• logSimFreq

• logSimFreqGigaTicks

Overall solver

• biCleanOptimizer

• licenseWait

• mioMode

• optimizer

• presolveUse

• simPrecision

272

Overall system

• autoUpdateSolInfo

• licenseWait

• mtSpincount

• numThreads

• removeUnusedSolutions

• remoteOptserverHost

• remoteTlsCert

• remoteTlsCertPath

Presolve

• foldingTolEq

• presolveTolAbsLindep

• presolveTolPrimalInfeasPerturbation

• presolveTolRelLindep

• presolveTolS

• presolveTolX

• foldingUse

• mioPresolveAggregatorUse

• presolveEliminatorMaxFill

• presolveEliminatorMaxNumTries

• presolveLindepAbsWorkTrh

• presolveLindepNew

• presolveLindepRelWorkTrh

• presolveLindepUse

• presolveMaxNumPass

• presolveUse

Primal simplex

• simPrimalCrash

• simPrimalRestrictSelection

• simPrimalSelection

273

Simplex optimizer

• basisRelTolS

• basisTolS

• basisTolX

• simLuTolRelPiv

• simPrecisionScalingExtended

• simPrecisionScalingNormal

• simplexAbsTolPiv

• heartbeatSimFreqTicks

• logSim

• logSimFreq

• logSimFreqGigaTicks

• simBasisFactorUse

• simDegen

• simDualPhaseoneMethod

• simExploitDupvec

• simHotstart

• simHotstartLu

• simMaxIterations

• simMaxNumSetbacks

• simNonSingular

• simPrecisionBoost

• simPrimalPhaseoneMethod

• simRefactorFreq

• simReformulation

• simSaveLu

• simScaling

• simScalingMethod

• simSeed

• simSolveForm

• simSwitchOptimizer

274

Solution input/output

• infeasReportAuto

Termination criteria

• basisRelTolS

• basisTolS

• basisTolX

• intpntCoTolDfeas

• intpntCoTolInfeas

• intpntCoTolMuRed

• intpntCoTolNearRel

• intpntCoTolPfeas

• intpntCoTolRelGap

• intpntTolDfeas

• intpntTolInfeas

• intpntTolMuRed

• intpntTolPfeas

• intpntTolRelGap

• lowerObjCut

• lowerObjCutFiniteTrh

• mioMaxTime

• mioRelGapConst

• mioTolRelGap

• optimizerMaxTicks

• optimizerMaxTime

• simPrecisionScalingExtended

• simPrecisionScalingNormal

• upperObjCut

• upperObjCutFiniteTrh

• biMaxIterations

• intpntMaxIterations

• mioMaxNumBranches

• mioMaxNumRootCutRounds

• mioMaxNumSolutions

• simMaxIterations

275

Other

• remoteUseCompression

14.4 Parameters (alphabetical list sorted by type)

• Double parameters

• Integer parameters

• String parameters

14.4.1 Double parameters

"basisRelTolS"

Maximum relative dual bound violation allowed in an optimal basic solution.

Default
1.0e-12

Accepted
[0.0; +inf]

Example
M.setSolverParam("basisRelTolS", 1.0e-12)

Generic name
MSK_DPAR_BASIS_REL_TOL_S

Groups
Simplex optimizer , Termination criteria

"basisTolS"

Maximum absolute dual bound violation in an optimal basic solution.

Default
1.0e-6

Accepted
[1.0e-9; +inf]

Example
M.setSolverParam("basisTolS", 1.0e-6)

Generic name
MSK_DPAR_BASIS_TOL_S

Groups
Simplex optimizer , Termination criteria

"basisTolX"

Maximum absolute primal bound violation allowed in an optimal basic solution.

Default
1.0e-6

Accepted
[1.0e-9; +inf]

Example
M.setSolverParam("basisTolX", 1.0e-6)

Generic name
MSK_DPAR_BASIS_TOL_X

Groups
Simplex optimizer , Termination criteria

276

"foldingTolEq"

Tolerance for coefficient equality during folding.

Default
1e-9

Accepted
[0.0; +inf]

Example
M.setSolverParam("foldingTolEq", 1e-9)

Generic name
MSK_DPAR_FOLDING_TOL_EQ

Groups
Presolve

"intpntCoTolDfeas"

Dual feasibility tolerance used by the interior-point optimizer for conic problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
M.setSolverParam("intpntCoTolDfeas", 1.0e-8)

See also
intpntCoTolNearRel

Generic name
MSK_DPAR_INTPNT_CO_TOL_DFEAS

Groups
Interior-point method , Termination criteria, Conic interior-point method

"intpntCoTolInfeas"

Infeasibility tolerance used by the interior-point optimizer for conic problems. Controls when the
interior-point optimizer declares the model primal or dual infeasible. A small number means the
optimizer gets more conservative about declaring the model infeasible.

Default
1.0e-12

Accepted
[0.0; 1.0]

Example
M.setSolverParam("intpntCoTolInfeas", 1.0e-12)

Generic name
MSK_DPAR_INTPNT_CO_TOL_INFEAS

Groups
Interior-point method , Termination criteria, Conic interior-point method

"intpntCoTolMuRed"

Relative complementarity gap tolerance used by the interior-point optimizer for conic problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
M.setSolverParam("intpntCoTolMuRed", 1.0e-8)

Generic name
MSK_DPAR_INTPNT_CO_TOL_MU_RED

277

Groups
Interior-point method , Termination criteria, Conic interior-point method

"intpntCoTolNearRel"

Optimality tolerance used by the interior-point optimizer for conic problems. If MOSEK cannot
compute a solution that has the prescribed accuracy then it will check if the solution found satisfies
the termination criteria with all tolerances multiplied by the value of this parameter. If yes, then
the solution is also declared optimal.

Default
1000

Accepted
[1.0; +inf]

Example
M.setSolverParam("intpntCoTolNearRel", 1000)

Generic name
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

Groups
Interior-point method , Termination criteria, Conic interior-point method

"intpntCoTolPfeas"

Primal feasibility tolerance used by the interior-point optimizer for conic problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
M.setSolverParam("intpntCoTolPfeas", 1.0e-8)

See also
intpntCoTolNearRel

Generic name
MSK_DPAR_INTPNT_CO_TOL_PFEAS

Groups
Interior-point method , Termination criteria, Conic interior-point method

"intpntCoTolRelGap"

Relative gap termination tolerance used by the interior-point optimizer for conic problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
M.setSolverParam("intpntCoTolRelGap", 1.0e-8)

See also
intpntCoTolNearRel

Generic name
MSK_DPAR_INTPNT_CO_TOL_REL_GAP

Groups
Interior-point method , Termination criteria, Conic interior-point method

"intpntTolDfeas"

Dual feasibility tolerance used by the interior-point optimizer for linear problems.

Default
1.0e-8

278

Accepted
[0.0; 1.0]

Example
M.setSolverParam("intpntTolDfeas", 1.0e-8)

Generic name
MSK_DPAR_INTPNT_TOL_DFEAS

Groups
Interior-point method , Termination criteria

"intpntTolDsafe"

Controls the initial dual starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly and/or the constraint or variable bounds are very large, then it might
be worthwhile to increase this value.

Default
1.0

Accepted
[1.0e-4; +inf]

Example
M.setSolverParam("intpntTolDsafe", 1.0)

Generic name
MSK_DPAR_INTPNT_TOL_DSAFE

Groups
Interior-point method

"intpntTolInfeas"

Infeasibility tolerance used by the interior-point optimizer for linear problems. Controls when the
interior-point optimizer declares the model primal or dual infeasible. A small number means the
optimizer gets more conservative about declaring the model infeasible.

Default
1.0e-10

Accepted
[0.0; 1.0]

Example
M.setSolverParam("intpntTolInfeas", 1.0e-10)

Generic name
MSK_DPAR_INTPNT_TOL_INFEAS

Groups
Interior-point method , Termination criteria

"intpntTolMuRed"

Relative complementarity gap tolerance used by the interior-point optimizer for linear problems.

Default
1.0e-16

Accepted
[0.0; 1.0]

Example
M.setSolverParam("intpntTolMuRed", 1.0e-16)

Generic name
MSK_DPAR_INTPNT_TOL_MU_RED

Groups
Interior-point method , Termination criteria

279

"intpntTolPath"

Controls how close the interior-point optimizer follows the central path. A large value of this
parameter means the central path is followed very closely. On numerically unstable problems it
may be worthwhile to increase this parameter.

Default
1.0e-8

Accepted
[0.0; 0.9999]

Example
M.setSolverParam("intpntTolPath", 1.0e-8)

Generic name
MSK_DPAR_INTPNT_TOL_PATH

Groups
Interior-point method

"intpntTolPfeas"

Primal feasibility tolerance used by the interior-point optimizer for linear problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
M.setSolverParam("intpntTolPfeas", 1.0e-8)

Generic name
MSK_DPAR_INTPNT_TOL_PFEAS

Groups
Interior-point method , Termination criteria

"intpntTolPsafe"

Controls the initial primal starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly and/or the constraint or variable bounds are very large, then it may be
worthwhile to increase this value.

Default
1.0

Accepted
[1.0e-4; +inf]

Example
M.setSolverParam("intpntTolPsafe", 1.0)

Generic name
MSK_DPAR_INTPNT_TOL_PSAFE

Groups
Interior-point method

"intpntTolRelGap"

Relative gap termination tolerance used by the interior-point optimizer for linear problems.

Default
1.0e-8

Accepted
[1.0e-14; +inf]

Example
M.setSolverParam("intpntTolRelGap", 1.0e-8)

Generic name
MSK_DPAR_INTPNT_TOL_REL_GAP

280

Groups
Termination criteria, Interior-point method

"intpntTolRelStep"
Relative step size to the boundary for linear and quadratic optimization problems.

Default
0.9999

Accepted
[1.0e-4; 0.999999]

Example
M.setSolverParam("intpntTolRelStep", 0.9999)

Generic name
MSK_DPAR_INTPNT_TOL_REL_STEP

Groups
Interior-point method

"intpntTolStepSize"
Minimal step size tolerance. If the step size falls below the value of this parameter, then the
interior-point optimizer assumes that it is stalled. In other words the interior-point optimizer does
not make any progress and therefore it is better to stop.

Default
1.0e-6

Accepted
[0.0; 1.0]

Example
M.setSolverParam("intpntTolStepSize", 1.0e-6)

Generic name
MSK_DPAR_INTPNT_TOL_STEP_SIZE

Groups
Interior-point method

"lowerObjCut"
If either a primal or dual feasible solution is found proving that the optimal objective value is
outside the interval [lowerObjCut , upperObjCut], then MOSEK is terminated.

Default
-INFINITY

Accepted
[-inf; +inf]

Example
M.setSolverParam("lowerObjCut", -INFINITY)

See also
lowerObjCutFiniteTrh

Generic name
MSK_DPAR_LOWER_OBJ_CUT

Groups
Termination criteria

"lowerObjCutFiniteTrh"
If the lower objective cut is less than the value of this parameter value, then the lower objective
cut i.e. lowerObjCut is treated as −∞.

Default
-0.5e30

Accepted
[-inf; +inf]

281

Example
M.setSolverParam("lowerObjCutFiniteTrh", -0.5e30)

Generic name
MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH

Groups
Termination criteria

"mioCliqueTableSizeFactor"
Controlls the maximum size of the clique table as a factor of the number of nonzeros in the A
matrix. A negative value implies MOSEK decides.

Default
-1

Accepted
[-1; +inf]

Example
M.setSolverParam("mioCliqueTableSizeFactor", -1)

Generic name
MSK_DPAR_MIO_CLIQUE_TABLE_SIZE_FACTOR

Groups
Mixed-integer optimization

"mioDjcMaxBigm"
Maximum allowed big-M value when reformulating disjunctive constraints to linear constraints.
Higher values make it more likely that a disjunction is reformulated to linear constraints, but also
increase the risk of numerical problems.

Default
1.0e6

Accepted
[0; +inf]

Example
M.setSolverParam("mioDjcMaxBigm", 1.0e6)

Generic name
MSK_DPAR_MIO_DJC_MAX_BIGM

Groups
Mixed-integer optimization

"mioMaxTime"
This parameter limits the maximum time spent by the mixed-integer optimizer (in seconds). A
negative number means infinity.

Default
-1.0

Accepted
[-inf; +inf]

Example
M.setSolverParam("mioMaxTime", -1.0)

Generic name
MSK_DPAR_MIO_MAX_TIME

Groups
Mixed-integer optimization, Termination criteria

"mioRelGapConst"
This value is used to compute the relative gap for the solution to a mixed-integer optimization
problem.

Default
1.0e-10

282

Accepted
[1.0e-15; +inf]

Example
M.setSolverParam("mioRelGapConst", 1.0e-10)

Generic name
MSK_DPAR_MIO_REL_GAP_CONST

Groups
Mixed-integer optimization, Termination criteria

"mioTolAbsGap"
Absolute optimality tolerance employed by the mixed-integer optimizer.

Default
0.0

Accepted
[0.0; +inf]

Example
M.setSolverParam("mioTolAbsGap", 0.0)

Generic name
MSK_DPAR_MIO_TOL_ABS_GAP

Groups
Mixed-integer optimization

"mioTolAbsRelaxInt"
Absolute integer feasibility tolerance. If the distance to the nearest integer is less than this tolerance
then an integer constraint is assumed to be satisfied.

Default
1.0e-5

Accepted
[1e-9; +inf]

Example
M.setSolverParam("mioTolAbsRelaxInt", 1.0e-5)

Generic name
MSK_DPAR_MIO_TOL_ABS_RELAX_INT

Groups
Mixed-integer optimization

"mioTolFeas"
Feasibility tolerance for mixed integer solver.

Default
1.0e-6

Accepted
[1e-9; 1e-3]

Example
M.setSolverParam("mioTolFeas", 1.0e-6)

Generic name
MSK_DPAR_MIO_TOL_FEAS

Groups
Mixed-integer optimization

"mioTolRelDualBoundImprovement"
If the relative improvement of the dual bound is smaller than this value, the solver will terminate
the root cut generation. A value of 0.0 means that the value is selected automatically.

Default
0.0

283

Accepted
[0.0; 1.0]

Example
M.setSolverParam("mioTolRelDualBoundImprovement", 0.0)

Generic name
MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT

Groups
Mixed-integer optimization

"mioTolRelGap"

Relative optimality tolerance employed by the mixed-integer optimizer.

Default
1.0e-4

Accepted
[0.0; +inf]

Example
M.setSolverParam("mioTolRelGap", 1.0e-4)

Generic name
MSK_DPAR_MIO_TOL_REL_GAP

Groups
Mixed-integer optimization, Termination criteria

"optimizerMaxTicks"

CURRENTLY NOT IN USE.

Maximum amount of ticks the optimizer is allowed to spent on the optimization. A negative number
means infinity.

Default
-1.0

Accepted
[-inf; +inf]

Example
M.setSolverParam("optimizerMaxTicks", -1.0)

Generic name
MSK_DPAR_OPTIMIZER_MAX_TICKS

Groups
Termination criteria

"optimizerMaxTime"

Maximum amount of time the optimizer is allowed to spent on the optimization (in seconds). A
negative number means infinity.

Default
-1.0

Accepted
[-inf; +inf]

Example
M.setSolverParam("optimizerMaxTime", -1.0)

Generic name
MSK_DPAR_OPTIMIZER_MAX_TIME

Groups
Termination criteria

"presolveTolAbsLindep"

Absolute tolerance employed by the linear dependency checker.

284

Default
1.0e-6

Accepted
[0.0; +inf]

Example
M.setSolverParam("presolveTolAbsLindep", 1.0e-6)

Generic name
MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP

Groups
Presolve

"presolveTolPrimalInfeasPerturbation"

The presolve is allowed to perturb a bound on a constraint or variable by this amount if it removes
an infeasibility.

Default
1.0e-6

Accepted
[0.0; +inf]

Example
M.setSolverParam("presolveTolPrimalInfeasPerturbation", 1.0e-6)

Generic name
MSK_DPAR_PRESOLVE_TOL_PRIMAL_INFEAS_PERTURBATION

Groups
Presolve

"presolveTolRelLindep"

Relative tolerance employed by the linear dependency checker.

Default
1.0e-10

Accepted
[0.0; +inf]

Example
M.setSolverParam("presolveTolRelLindep", 1.0e-10)

Generic name
MSK_DPAR_PRESOLVE_TOL_REL_LINDEP

Groups
Presolve

"presolveTolS"

Absolute zero tolerance employed for 𝑠𝑖 in the presolve.

Default
1.0e-8

Accepted
[0.0; +inf]

Example
M.setSolverParam("presolveTolS", 1.0e-8)

Generic name
MSK_DPAR_PRESOLVE_TOL_S

Groups
Presolve

"presolveTolX"

Absolute zero tolerance employed for 𝑥𝑗 in the presolve.

285

Default
1.0e-8

Accepted
[0.0; +inf]

Example
M.setSolverParam("presolveTolX", 1.0e-8)

Generic name
MSK_DPAR_PRESOLVE_TOL_X

Groups
Presolve

"semidefiniteTolApprox"

Tolerance to define a matrix to be positive semidefinite.

Default
1.0e-10

Accepted
[1.0e-15; +inf]

Example
M.setSolverParam("semidefiniteTolApprox", 1.0e-10)

Generic name
MSK_DPAR_SEMIDEFINITE_TOL_APPROX

Groups
Data check

"simLuTolRelPiv"

Relative pivot tolerance employed when computing the LU factorization of the basis in the simplex
optimizers and in the basis identification procedure. A value closer to 1.0 generally improves
numerical stability but typically also implies an increase in the computational work.

Default
0.01

Accepted
[1.0e-6; 0.999999]

Example
M.setSolverParam("simLuTolRelPiv", 0.01)

Generic name
MSK_DPAR_SIM_LU_TOL_REL_PIV

Groups
Basis identification, Simplex optimizer

"simPrecisionScalingExtended"

Experimental. Usage not recommended.

Default
2.0

Accepted
[1.0; +inf]

Example
M.setSolverParam("simPrecisionScalingExtended", 2.0)

Generic name
MSK_DPAR_SIM_PRECISION_SCALING_EXTENDED

Groups
Simplex optimizer , Termination criteria

286

"simPrecisionScalingNormal"
Experimental. Usage not recommended.

Default
1.0

Accepted
[1.0; +inf]

Example
M.setSolverParam("simPrecisionScalingNormal", 1.0)

Generic name
MSK_DPAR_SIM_PRECISION_SCALING_NORMAL

Groups
Simplex optimizer , Termination criteria

"simplexAbsTolPiv"
Absolute pivot tolerance employed by the simplex optimizers.

Default
1.0e-7

Accepted
[1.0e-12; +inf]

Example
M.setSolverParam("simplexAbsTolPiv", 1.0e-7)

Generic name
MSK_DPAR_SIMPLEX_ABS_TOL_PIV

Groups
Simplex optimizer

"upperObjCut"
If either a primal or dual feasible solution is found proving that the optimal objective value is
outside the interval [lowerObjCut , upperObjCut], then MOSEK is terminated.

Default
INFINITY

Accepted
[-inf; +inf]

Example
M.setSolverParam("upperObjCut", INFINITY)

See also
upperObjCutFiniteTrh

Generic name
MSK_DPAR_UPPER_OBJ_CUT

Groups
Termination criteria

"upperObjCutFiniteTrh"
If the upper objective cut is greater than the value of this parameter, then the upper objective cut
upperObjCut is treated as ∞.

Default
0.5e30

Accepted
[-inf; +inf]

Example
M.setSolverParam("upperObjCutFiniteTrh", 0.5e30)

Generic name
MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH

Groups
Termination criteria

287

14.4.2 Integer parameters

"autoSortABeforeOpt"

Controls whether the elements in each column of 𝐴 are sorted before an optimization is performed.
This is not required but makes the optimization more deterministic.

Default
"off"

Accepted
"on" , "off"

Example
M.setSolverParam("autoSortABeforeOpt", "off")

Generic name
MSK_IPAR_AUTO_SORT_A_BEFORE_OPT

Groups
Debugging

"autoUpdateSolInfo"

Controls whether the solution information items are automatically updated after an optimization
is performed.

Default
"off"

Accepted
"on" , "off"

Example
M.setSolverParam("autoUpdateSolInfo", "off")

Generic name
MSK_IPAR_AUTO_UPDATE_SOL_INFO

Groups
Overall system

"biCleanOptimizer"

Controls which simplex optimizer is used in the clean-up phase. Anything else than
"primalSimplex" or "dualSimplex" is equivalent to "freeSimplex" .

Default
"free"

Accepted
"free" , "intpnt" , "conic" , "primalSimplex" , "dualSimplex" ,
"newPrimalSimplex" , "newDualSimplex" , "freeSimplex" , "mixedInt"

Example
M.setSolverParam("biCleanOptimizer", "free")

Generic name
MSK_IPAR_BI_CLEAN_OPTIMIZER

Groups
Basis identification, Overall solver

"biIgnoreMaxIter"

If the parameter intpntBasis has the value "noError" and the interior-point optimizer has
terminated due to maximum number of iterations, then basis identification is performed if this
parameter has the value "on" .

Default
"off"

Accepted
"on" , "off"

288

Example
M.setSolverParam("biIgnoreMaxIter", "off")

Generic name
MSK_IPAR_BI_IGNORE_MAX_ITER

Groups
Interior-point method , Basis identification

"biIgnoreNumError"

If the parameter intpntBasis has the value "noError" and the interior-point optimizer has
terminated due to a numerical problem, then basis identification is performed if this parameter has
the value "on" .

Default
"off"

Accepted
"on" , "off"

Example
M.setSolverParam("biIgnoreNumError", "off")

Generic name
MSK_IPAR_BI_IGNORE_NUM_ERROR

Groups
Interior-point method , Basis identification

"biMaxIterations"

Controls the maximum number of simplex iterations allowed to optimize a basis after the basis
identification.

Default
1000000

Accepted
[0; +inf]

Example
M.setSolverParam("biMaxIterations", 1000000)

Generic name
MSK_IPAR_BI_MAX_ITERATIONS

Groups
Basis identification, Termination criteria

"cacheLicense"

Specifies if the license is kept checked out for the lifetime of the MOSEK environ-
ment/model/process ("on") or returned to the server immediately after the optimization ("off").

By default the license is checked out for the lifetime of the process by the first call to Model.solve .

Check-in and check-out of licenses have an overhead. Frequent communication with the license
server should be avoided.

Default
"on"

Accepted
"on" , "off"

Example
M.setSolverParam("cacheLicense", "on")

Generic name
MSK_IPAR_CACHE_LICENSE

Groups
License manager

289

"foldingUse"
Controls whether and how to use problem folding (symmetry detection for continuous problems).
Note that for symmetry detection for mixed-integer problems one should instead use the parameter
mioSymmetryLevel .

Default
"freeUnlessBasic"

Accepted
"off" , "free" , "freeUnlessBasic" , "force"

Example
M.setSolverParam("foldingUse", "freeUnlessBasic")

Generic name
MSK_IPAR_FOLDING_USE

Groups
Presolve

"heartbeatSimFreqTicks"
Controls how frequent the new simplex optimizer calls the user-defined callback function is called.

• −1. Logging is disabled.
• 0. Logging at highest frequency (every iteration).
• ≥ 1. Logging at given frequency measured in ticks.

Default
1000000

Accepted
[-1; +inf]

Example
M.setSolverParam("heartbeatSimFreqTicks", 1000000)

Generic name
MSK_IPAR_HEARTBEAT_SIM_FREQ_TICKS

Groups
Simplex optimizer , Output information, Logging

"infeasReportAuto"
Controls whether an infeasibility report is automatically produced after the optimization if the
problem is primal or dual infeasible.

Default
"off"

Accepted
"on" , "off"

Example
M.setSolverParam("infeasReportAuto", "off")

Generic name
MSK_IPAR_INFEAS_REPORT_AUTO

Groups
Data input/output , Solution input/output

"intpntBasis"
Controls whether the interior-point optimizer also computes an optimal basis.

Default
"always"

Accepted
"never" , "always" , "noError" , "ifFeasible" , "reservered"

Example
M.setSolverParam("intpntBasis", "always")

290

See also
biIgnoreMaxIter , biIgnoreNumError , biMaxIterations , biCleanOptimizer

Generic name
MSK_IPAR_INTPNT_BASIS

Groups
Interior-point method , Basis identification

"intpntDiffStep"
Controls whether different step sizes are allowed in the primal and dual space.

Default
"on"

Accepted
• "on" : Different step sizes are allowed.
• "off" : Different step sizes are not allowed.

Example
M.setSolverParam("intpntDiffStep", "on")

Generic name
MSK_IPAR_INTPNT_DIFF_STEP

Groups
Interior-point method

"intpntMaxIterations"
Controls the maximum number of iterations allowed in the interior-point optimizer.

Default
400

Accepted
[0; +inf]

Example
M.setSolverParam("intpntMaxIterations", 400)

Generic name
MSK_IPAR_INTPNT_MAX_ITERATIONS

Groups
Interior-point method , Termination criteria

"intpntMaxNumCor"
Controls the maximum number of correctors allowed by the multiple corrector procedure. A neg-
ative value means that MOSEK is making the choice.

Default
-1

Accepted
[-1; +inf]

Example
M.setSolverParam("intpntMaxNumCor", -1)

Generic name
MSK_IPAR_INTPNT_MAX_NUM_COR

Groups
Interior-point method

"intpntOffColTrh"
Controls how many offending columns are detected in the Jacobian of the constraint matrix.

0 no detection
1 aggressive detection
> 1 higher values mean less aggressive detection

291

Default
40

Accepted
[0; +inf]

Example
M.setSolverParam("intpntOffColTrh", 40)

Generic name
MSK_IPAR_INTPNT_OFF_COL_TRH

Groups
Interior-point method

"intpntOrderGpNumSeeds"

The GP ordering is dependent on a random seed. Therefore, trying several random seeds may lead
to a better ordering. This parameter controls the number of random seeds tried.

A value of 0 means that MOSEK makes the choice.

Default
0

Accepted
[0; +inf]

Example
M.setSolverParam("intpntOrderGpNumSeeds", 0)

Generic name
MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS

Groups
Interior-point method

"intpntOrderMethod"

Controls the ordering strategy used by the interior-point optimizer when factorizing the Newton
equation system.

Default
"free"

Accepted
"free" , "appminloc" , "experimental" , "tryGraphpar" , "forceGraphpar" ,
"none"

Example
M.setSolverParam("intpntOrderMethod", "free")

Generic name
MSK_IPAR_INTPNT_ORDER_METHOD

Groups
Interior-point method

"intpntRegularizationUse"

Controls whether regularization is allowed.

Default
"on"

Accepted
"on" , "off"

Example
M.setSolverParam("intpntRegularizationUse", "on")

Generic name
MSK_IPAR_INTPNT_REGULARIZATION_USE

Groups
Interior-point method

292

"intpntScaling"

Controls how the problem is scaled before the interior-point optimizer is used.

Default
"free"

Accepted
"free" , "none"

Example
M.setSolverParam("intpntScaling", "free")

Generic name
MSK_IPAR_INTPNT_SCALING

Groups
Interior-point method

"intpntSolveForm"

Controls whether the primal or the dual problem is solved.

Default
"free"

Accepted
"free" , "primal" , "dual"

Example
M.setSolverParam("intpntSolveForm", "free")

Generic name
MSK_IPAR_INTPNT_SOLVE_FORM

Groups
Interior-point method

"intpntStartingPoint"

Starting point used by the interior-point optimizer.

Default
"free"

Accepted
"free" , "guess" , "constant"

Example
M.setSolverParam("intpntStartingPoint", "free")

Generic name
MSK_IPAR_INTPNT_STARTING_POINT

Groups
Interior-point method

"licenseDebug"

This option is used to turn on debugging of the license manager.

Default
"off"

Accepted
"on" , "off"

Example
M.setSolverParam("licenseDebug", "off")

Generic name
MSK_IPAR_LICENSE_DEBUG

Groups
License manager

293

"licensePauseTime"
If licenseWait is "on" and no license is available, then MOSEK sleeps a number of milliseconds
between each check of whether a license has become free.

Default
100

Accepted
[0; 1000000]

Example
M.setSolverParam("licensePauseTime", 100)

Generic name
MSK_IPAR_LICENSE_PAUSE_TIME

Groups
License manager

"licenseSuppressExpireWrns"
Controls whether license features expire warnings are suppressed.

Default
"off"

Accepted
"on" , "off"

Example
M.setSolverParam("licenseSuppressExpireWrns", "off")

Generic name
MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS

Groups
License manager , Output information

"licenseTrhExpiryWrn"
If a license feature expires in a numbers of days less than the value of this parameter then a warning
will be issued.

Default
7

Accepted
[0; +inf]

Example
M.setSolverParam("licenseTrhExpiryWrn", 7)

Generic name
MSK_IPAR_LICENSE_TRH_EXPIRY_WRN

Groups
License manager , Output information

"licenseWait"
If all licenses are in use MOSEK returns with an error code. However, by turning on this parameter
MOSEK will wait for an available license.

Default
"off"

Accepted
"on" , "off"

Example
M.setSolverParam("licenseWait", "off")

Generic name
MSK_IPAR_LICENSE_WAIT

Groups
Overall solver , Overall system, License manager

294

"log"

Controls the amount of log information. The value 0 implies that all log information is suppressed.
A higher level implies that more information is logged.

Please note that if a task is employed to solve a sequence of optimization problems the value of
this parameter is reduced by the value of logCutSecondOpt for the second and any subsequent
optimizations.

Default
10

Accepted
[0; +inf]

Example
M.setSolverParam("log", 10)

See also
logCutSecondOpt

Generic name
MSK_IPAR_LOG

Groups
Output information, Logging

"logBi"

Controls the amount of output printed by the basis identification procedure. A higher level implies
that more information is logged.

Default
1

Accepted
[0; +inf]

Example
M.setSolverParam("logBi", 1)

Generic name
MSK_IPAR_LOG_BI

Groups
Basis identification, Output information, Logging

"logBiFreq"

Controls how frequently the optimizer outputs information about the basis identification and how
frequent the user-defined callback function is called.

Default
2500

Accepted
[0; +inf]

Example
M.setSolverParam("logBiFreq", 2500)

Generic name
MSK_IPAR_LOG_BI_FREQ

Groups
Basis identification, Output information, Logging

"logCutSecondOpt"

If a task is employed to solve a sequence of optimization problems, then the value of the log levels
is reduced by the value of this parameter. E.g log and logSim are reduced by the value of this
parameter for the second and any subsequent optimizations.

Default
1

295

Accepted
[0; +inf]

Example
M.setSolverParam("logCutSecondOpt", 1)

See also
log , logIntpnt , logMio , logSim

Generic name
MSK_IPAR_LOG_CUT_SECOND_OPT

Groups
Output information, Logging

"logExpand"

Controls the amount of logging when a data item such as the maximum number constrains is
expanded.

Default
1

Accepted
[0; +inf]

Example
M.setSolverParam("logExpand", 1)

Generic name
MSK_IPAR_LOG_EXPAND

Groups
Output information, Logging

"logFile"

If turned on, then some log info is printed when a file is written or read.

Default
1

Accepted
[0; +inf]

Example
M.setSolverParam("logFile", 1)

Generic name
MSK_IPAR_LOG_FILE

Groups
Data input/output , Output information, Logging

"logIntpnt"

Controls amount of output printed by the interior-point optimizer. A higher level implies that
more information is logged.

Default
1

Accepted
[0; +inf]

Example
M.setSolverParam("logIntpnt", 1)

Generic name
MSK_IPAR_LOG_INTPNT

Groups
Interior-point method , Output information, Logging

296

"logLocalInfo"

Controls whether local identifying information like environment variables, filenames, IP addresses
etc. are printed to the log.

Note that this will only affect some functions. Some functions that specifically emit system infor-
mation will not be affected.

Default
"on"

Accepted
"on" , "off"

Example
M.setSolverParam("logLocalInfo", "on")

Generic name
MSK_IPAR_LOG_LOCAL_INFO

Groups
Output information, Logging

"logMio"

Controls the log level for the mixed-integer optimizer. A higher level implies that more information
is logged.

Default
4

Accepted
[0; +inf]

Example
M.setSolverParam("logMio", 4)

Generic name
MSK_IPAR_LOG_MIO

Groups
Mixed-integer optimization, Output information, Logging

"logMioFreq"

Controls how frequent the mixed-integer optimizer prints the log line. It will print line every time
logMioFreq relaxations have been solved.

Default
10

Accepted
[-inf; +inf]

Example
M.setSolverParam("logMioFreq", 10)

Generic name
MSK_IPAR_LOG_MIO_FREQ

Groups
Mixed-integer optimization, Output information, Logging

"logOrder"

If turned on, then factor lines are added to the log.

Default
1

Accepted
[0; +inf]

Example
M.setSolverParam("logOrder", 1)

297

Generic name
MSK_IPAR_LOG_ORDER

Groups
Output information, Logging

"logPresolve"

Controls amount of output printed by the presolve procedure. A higher level implies that more
information is logged.

Default
1

Accepted
[0; +inf]

Example
M.setSolverParam("logPresolve", 1)

Generic name
MSK_IPAR_LOG_PRESOLVE

Groups
Logging

"logSim"

Controls amount of output printed by the simplex optimizer. A higher level implies that more
information is logged.

Default
4

Accepted
[0; +inf]

Example
M.setSolverParam("logSim", 4)

Generic name
MSK_IPAR_LOG_SIM

Groups
Simplex optimizer , Output information, Logging

"logSimFreq"

Controls how frequent the simplex optimizer outputs information about the optimization and how
frequent the user-defined callback function is called.

Default
1000

Accepted
[0; +inf]

Example
M.setSolverParam("logSimFreq", 1000)

Generic name
MSK_IPAR_LOG_SIM_FREQ

Groups
Simplex optimizer , Output information, Logging

"logSimFreqGigaTicks"

Controls how frequent the new simplex optimizer outputs information about the optimization and
how frequent the user-defined callback function is called.

• −1. Logging is disabled.

• 0. Logging at highest frequency (every iteration).

• ≥ 1. Logging at given frequency measured in giga ticks.

298

Default
100

Accepted
[-1; +inf]

Example
M.setSolverParam("logSimFreqGigaTicks", 100)

Generic name
MSK_IPAR_LOG_SIM_FREQ_GIGA_TICKS

Groups
Simplex optimizer , Output information, Logging

"mioBranchDir"
Controls whether the mixed-integer optimizer is branching up or down by default.

Default
"free"

Accepted
"free" , "up" , "down" , "near" , "far" , "rootLp" , "guided" , "pseudocost"

Example
M.setSolverParam("mioBranchDir", "free")

Generic name
MSK_IPAR_MIO_BRANCH_DIR

Groups
Mixed-integer optimization

"mioConflictAnalysisLevel"
Controls the amount of conflict analysis employed by the mixed-integer optimizer.

• −1. The optimizer chooses the level of conflict analysis employed
• 0. conflict analysis is disabled
• 1. A lower amount of conflict analysis is employed
• 2. A higher amount of conflict analysis is employed

Default
-1

Accepted
[-1; 2]

Example
M.setSolverParam("mioConflictAnalysisLevel", -1)

Generic name
MSK_IPAR_MIO_CONFLICT_ANALYSIS_LEVEL

Groups
Mixed-integer optimization

"mioConicOuterApproximation"
If this option is turned on outer approximation is used when solving relaxations of conic problems;
otherwise interior point is used.

Default
"off"

Accepted
"on" , "off"

Example
M.setSolverParam("mioConicOuterApproximation", "off")

Generic name
MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION

Groups
Mixed-integer optimization

299

"mioConstructSol"
If set to "on" and all integer variables have been given a value for which a feasible mixed integer
solution exists, then MOSEK generates an initial solution to the mixed integer problem by fixing
all integer values and solving the remaining problem.

Default
"off"

Accepted
"on" , "off"

Example
M.setSolverParam("mioConstructSol", "off")

Generic name
MSK_IPAR_MIO_CONSTRUCT_SOL

Groups
Mixed-integer optimization

"mioCrossoverMaxNodes"
Controls the maximum number of nodes allowed in each call to the Crossover heuristic. The default
value of -1 means that the value is determined automatically. A value of zero turns off the heuristic.

Default
-1

Accepted
[-1; +inf]

Example
M.setSolverParam("mioCrossoverMaxNodes", -1)

Generic name
MSK_IPAR_MIO_CROSSOVER_MAX_NODES

Groups
Mixed-integer optimization

"mioCutClique"
Controls whether clique cuts should be generated.

Default
"on"

Accepted
"on" , "off"

Example
M.setSolverParam("mioCutClique", "on")

Generic name
MSK_IPAR_MIO_CUT_CLIQUE

Groups
Mixed-integer optimization

"mioCutCmir"
Controls whether mixed integer rounding cuts should be generated.

Default
"on"

Accepted
"on" , "off"

Example
M.setSolverParam("mioCutCmir", "on")

Generic name
MSK_IPAR_MIO_CUT_CMIR

Groups
Mixed-integer optimization

300

"mioCutGmi"

Controls whether GMI cuts should be generated.

Default
"on"

Accepted
"on" , "off"

Example
M.setSolverParam("mioCutGmi", "on")

Generic name
MSK_IPAR_MIO_CUT_GMI

Groups
Mixed-integer optimization

"mioCutImpliedBound"

Controls whether implied bound cuts should be generated.

Default
"on"

Accepted
"on" , "off"

Example
M.setSolverParam("mioCutImpliedBound", "on")

Generic name
MSK_IPAR_MIO_CUT_IMPLIED_BOUND

Groups
Mixed-integer optimization

"mioCutKnapsackCover"

Controls whether knapsack cover cuts should be generated.

Default
"on"

Accepted
"on" , "off"

Example
M.setSolverParam("mioCutKnapsackCover", "on")

Generic name
MSK_IPAR_MIO_CUT_KNAPSACK_COVER

Groups
Mixed-integer optimization

"mioCutLipro"

Controls whether lift-and-project cuts should be generated.

Default
"off"

Accepted
"on" , "off"

Example
M.setSolverParam("mioCutLipro", "off")

Generic name
MSK_IPAR_MIO_CUT_LIPRO

Groups
Mixed-integer optimization

301

"mioCutSelectionLevel"

Controls how aggressively generated cuts are selected to be included in the relaxation.

• −1. The optimizer chooses the level of cut selection

• 0. Generated cuts less likely to be added to the relaxation

• 1. Cuts are more aggressively selected to be included in the relaxation

Default
-1

Accepted
[-1; +1]

Example
M.setSolverParam("mioCutSelectionLevel", -1)

Generic name
MSK_IPAR_MIO_CUT_SELECTION_LEVEL

Groups
Mixed-integer optimization

"mioDataPermutationMethod"

Controls what problem data permutation method is appplied to mixed-integer problems.

Default
"none"

Accepted
"none" , "cyclicShift" , "random"

Example
M.setSolverParam("mioDataPermutationMethod", "none")

Generic name
MSK_IPAR_MIO_DATA_PERMUTATION_METHOD

Groups
Mixed-integer optimization

"mioDualRayAnalysisLevel"

Controls the amount of dual ray analysis employed by the mixed-integer optimizer.

• −1. The optimizer chooses the level of dual ray analysis employed

• 0. Dual ray analysis is disabled

• 1. A lower amount of dual ray analysis is employed

• 2. A higher amount of dual ray analysis is employed

Default
-1

Accepted
[-1; 2]

Example
M.setSolverParam("mioDualRayAnalysisLevel", -1)

Generic name
MSK_IPAR_MIO_DUAL_RAY_ANALYSIS_LEVEL

Groups
Mixed-integer optimization

"mioFeaspumpLevel"

Controls the way the Feasibility Pump heuristic is employed by the mixed-integer optimizer.

• −1. The optimizer chooses how the Feasibility Pump is used

• 0. The Feasibility Pump is disabled

302

• 1. The Feasibility Pump is enabled with an effort to improve solution quality

• 2. The Feasibility Pump is enabled with an effort to reach feasibility early

Default
-1

Accepted
[-1; 2]

Example
M.setSolverParam("mioFeaspumpLevel", -1)

Generic name
MSK_IPAR_MIO_FEASPUMP_LEVEL

Groups
Mixed-integer optimization

"mioHeuristicLevel"

Controls the heuristic employed by the mixed-integer optimizer to locate an initial good integer
feasible solution. A value of zero means the heuristic is not used at all. A larger value than 0 means
that a gradually more sophisticated heuristic is used which is computationally more expensive. A
negative value implies that the optimizer chooses the heuristic. Normally a value around 3 to 5
should be optimal.

Default
-1

Accepted
[-inf; +inf]

Example
M.setSolverParam("mioHeuristicLevel", -1)

Generic name
MSK_IPAR_MIO_HEURISTIC_LEVEL

Groups
Mixed-integer optimization

"mioIndependentBlockLevel"

Controls the way the mixed-integer optimizer tries to find and exploit a decomposition of the
problem into independent blocks.

• −1. The optimizer chooses how independent-block structure is handled

• 0. No independent-block structure is detected

• 1. Independent-block structure may be exploited only in presolve

• 2. Independent-block structure may be exploited through a dedicated algorithm after the root
node

• 3. Independent-block structure may be exploited through a dedicated algorithm before the
root node

Default
-1

Accepted
[-1; 3]

Example
M.setSolverParam("mioIndependentBlockLevel", -1)

Generic name
MSK_IPAR_MIO_INDEPENDENT_BLOCK_LEVEL

Groups
Mixed-integer optimization

303

"mioMaxNumBranches"
Maximum number of branches allowed during the branch and bound search. A negative value
means infinite.

Default
-1

Accepted
[-inf; +inf]

Example
M.setSolverParam("mioMaxNumBranches", -1)

Generic name
MSK_IPAR_MIO_MAX_NUM_BRANCHES

Groups
Mixed-integer optimization, Termination criteria

"mioMaxNumRelaxs"
Maximum number of relaxations allowed during the branch and bound search. A negative value
means infinite.

Default
-1

Accepted
[-inf; +inf]

Example
M.setSolverParam("mioMaxNumRelaxs", -1)

Generic name
MSK_IPAR_MIO_MAX_NUM_RELAXS

Groups
Mixed-integer optimization

"mioMaxNumRestarts"
Maximum number of restarts allowed during the branch and bound search.

Default
10

Accepted
[0; +inf]

Example
M.setSolverParam("mioMaxNumRestarts", 10)

Generic name
MSK_IPAR_MIO_MAX_NUM_RESTARTS

Groups
Mixed-integer optimization

"mioMaxNumRootCutRounds"
Maximum number of cut separation rounds at the root node.

Default
100

Accepted
[0; +inf]

Example
M.setSolverParam("mioMaxNumRootCutRounds", 100)

Generic name
MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS

Groups
Mixed-integer optimization, Termination criteria

304

"mioMaxNumSolutions"
The mixed-integer optimizer can be terminated after a certain number of different feasible solutions
has been located. If this parameter has the value 𝑛 > 0, then the mixed-integer optimizer will be
terminated when 𝑛 feasible solutions have been located.

Default
-1

Accepted
[-inf; +inf]

Example
M.setSolverParam("mioMaxNumSolutions", -1)

Generic name
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS

Groups
Mixed-integer optimization, Termination criteria

"mioMemoryEmphasisLevel"
Controls how much emphasis is put on reducing memory usage. Being more conservative about
memory usage may come at the cost of decreased solution speed.

• 0. The optimizer chooses
• 1. More emphasis is put on reducing memory usage and less on speed

Default
0

Accepted
[0; +1]

Example
M.setSolverParam("mioMemoryEmphasisLevel", 0)

Generic name
MSK_IPAR_MIO_MEMORY_EMPHASIS_LEVEL

Groups
Mixed-integer optimization

"mioMinRel"
Number of times a variable must have been branched on for its pseudocost to be considered reliable.

Default
5

Accepted
[0; +inf]

Example
M.setSolverParam("mioMinRel", 5)

Generic name
MSK_IPAR_MIO_MIN_REL

Groups
Mixed-integer optimization

"mioMode"
Controls whether the optimizer includes the integer restrictions and disjunctive constraints when
solving a (mixed) integer optimization problem.

Default
"satisfied"

Accepted
"ignored" , "satisfied"

Example
M.setSolverParam("mioMode", "satisfied")

305

Generic name
MSK_IPAR_MIO_MODE

Groups
Overall solver

"mioNodeOptimizer"

Controls which optimizer is employed at the non-root nodes in the mixed-integer optimizer.

Default
"free"

Accepted
"free" , "intpnt" , "conic" , "primalSimplex" , "dualSimplex" ,
"newPrimalSimplex" , "newDualSimplex" , "freeSimplex" , "mixedInt"

Example
M.setSolverParam("mioNodeOptimizer", "free")

Generic name
MSK_IPAR_MIO_NODE_OPTIMIZER

Groups
Mixed-integer optimization

"mioNodeSelection"

Controls the node selection strategy employed by the mixed-integer optimizer.

Default
"free"

Accepted
"free" , "first" , "best" , "pseudo"

Example
M.setSolverParam("mioNodeSelection", "free")

Generic name
MSK_IPAR_MIO_NODE_SELECTION

Groups
Mixed-integer optimization

"mioNumericalEmphasisLevel"

Controls how much emphasis is put on reducing numerical problems possibly at the expense of
solution speed.

• 0. The optimizer chooses

• 1. More emphasis is put on reducing numerical problems

• 2. Even more emphasis

Default
0

Accepted
[0; +2]

Example
M.setSolverParam("mioNumericalEmphasisLevel", 0)

Generic name
MSK_IPAR_MIO_NUMERICAL_EMPHASIS_LEVEL

Groups
Mixed-integer optimization

"mioOptFaceMaxNodes"

Controls the maximum number of nodes allowed in each call to the optimal face heuristic. The
default value of -1 means that the value is determined automatically. A value of zero turns off the
heuristic.

306

Default
-1

Accepted
[-1; +inf]

Example
M.setSolverParam("mioOptFaceMaxNodes", -1)

Generic name
MSK_IPAR_MIO_OPT_FACE_MAX_NODES

Groups
Mixed-integer optimization

"mioPerspectiveReformulate"
Enables or disables perspective reformulation in presolve.

Default
"on"

Accepted
"on" , "off"

Example
M.setSolverParam("mioPerspectiveReformulate", "on")

Generic name
MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE

Groups
Mixed-integer optimization

"mioPresolveAggregatorUse"
Controls if the aggregator should be used.

Default
"on"

Accepted
"on" , "off"

Example
M.setSolverParam("mioPresolveAggregatorUse", "on")

Generic name
MSK_IPAR_MIO_PRESOLVE_AGGREGATOR_USE

Groups
Presolve

"mioProbingLevel"
Controls the amount of probing employed by the mixed-integer optimizer in presolve.

• −1. The optimizer chooses the level of probing employed
• 0. Probing is disabled
• 1. A low amount of probing is employed
• 2. A medium amount of probing is employed
• 3. A high amount of probing is employed

Default
-1

Accepted
[-1; 3]

Example
M.setSolverParam("mioProbingLevel", -1)

Generic name
MSK_IPAR_MIO_PROBING_LEVEL

Groups
Mixed-integer optimization

307

"mioPropagateObjectiveConstraint"
Use objective domain propagation.

Default
"off"

Accepted
"on" , "off"

Example
M.setSolverParam("mioPropagateObjectiveConstraint", "off")

Generic name
MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT

Groups
Mixed-integer optimization

"mioQcqoReformulationMethod"
Controls what reformulation method is applied to mixed-integer quadratic problems.

Default
"free"

Accepted
"free" , "none" , "linearization" , "eigenValMethod" , "diagSdp" , "relaxSdp"

Example
M.setSolverParam("mioQcqoReformulationMethod", "free")

Generic name
MSK_IPAR_MIO_QCQO_REFORMULATION_METHOD

Groups
Mixed-integer optimization

"mioRensMaxNodes"
Controls the maximum number of nodes allowed in each call to the RENS heuristic. The default
value of -1 means that the value is determined automatically. A value of zero turns off the heuristic.

Default
-1

Accepted
[-1; +inf]

Example
M.setSolverParam("mioRensMaxNodes", -1)

Generic name
MSK_IPAR_MIO_RENS_MAX_NODES

Groups
Mixed-integer optimization

"mioRinsMaxNodes"
Controls the maximum number of nodes allowed in each call to the RINS heuristic. The default
value of -1 means that the value is determined automatically. A value of zero turns off the heuristic.

Default
-1

Accepted
[-1; +inf]

Example
M.setSolverParam("mioRinsMaxNodes", -1)

Generic name
MSK_IPAR_MIO_RINS_MAX_NODES

Groups
Mixed-integer optimization

308

"mioRootOptimizer"
Controls which optimizer is employed at the root node in the mixed-integer optimizer.

Default
"free"

Accepted
"free" , "intpnt" , "conic" , "primalSimplex" , "dualSimplex" ,
"newPrimalSimplex" , "newDualSimplex" , "freeSimplex" , "mixedInt"

Example
M.setSolverParam("mioRootOptimizer", "free")

Generic name
MSK_IPAR_MIO_ROOT_OPTIMIZER

Groups
Mixed-integer optimization

"mioSeed"
Sets the random seed used for randomization in the mixed integer optimizer. Selecting a different
seed can change the path the optimizer takes to the optimal solution.

Default
42

Accepted
[0; +inf]

Example
M.setSolverParam("mioSeed", 42)

Generic name
MSK_IPAR_MIO_SEED

Groups
Mixed-integer optimization

"mioSymmetryLevel"
Controls the amount of symmetry detection and handling employed by the mixed-integer optimizer
in presolve.

• −1. The optimizer chooses the level of symmetry detection and handling employed

• 0. Symmetry detection and handling is disabled

• 1. A low amount of symmetry detection and handling is employed

• 2. A medium amount of symmetry detection and handling is employed

• 3. A high amount of symmetry detection and handling is employed

• 4. An extremely high amount of symmetry detection and handling is employed

Default
-1

Accepted
[-1; 4]

Example
M.setSolverParam("mioSymmetryLevel", -1)

Generic name
MSK_IPAR_MIO_SYMMETRY_LEVEL

Groups
Mixed-integer optimization

"mioVarSelection"
Controls the variable selection strategy employed by the mixed-integer optimizer.

Default
"free"

309

Accepted
"free" , "pseudocost" , "strong"

Example
M.setSolverParam("mioVarSelection", "free")

Generic name
MSK_IPAR_MIO_VAR_SELECTION

Groups
Mixed-integer optimization

"mioVbDetectionLevel"
Controls how much effort is put into detecting variable bounds.

• −1. The optimizer chooses

• 0. No variable bounds are detected

• 1. Only detect variable bounds that are directly represented in the problem

• 2. Detect variable bounds in probing

Default
-1

Accepted
[-1; +2]

Example
M.setSolverParam("mioVbDetectionLevel", -1)

Generic name
MSK_IPAR_MIO_VB_DETECTION_LEVEL

Groups
Mixed-integer optimization

"mtSpincount"
Set the number of iterations to spin before sleeping.

Default
0

Accepted
[0; 1000000000]

Example
M.setSolverParam("mtSpincount", 0)

Generic name
MSK_IPAR_MT_SPINCOUNT

Groups
Overall system

"numThreads"
Controls the number of threads employed by the optimizer. If set to 0 the number of threads used
will be equal to the number of cores detected on the machine.

Default
0

Accepted
[0; +inf]

Example
M.setSolverParam("numThreads", 0)

Generic name
MSK_IPAR_NUM_THREADS

Groups
Overall system

310

"optimizer"

The parameter controls which optimizer is used to optimize the task.

Default
"free"

Accepted
"free" , "intpnt" , "conic" , "primalSimplex" , "dualSimplex" ,
"newPrimalSimplex" , "newDualSimplex" , "freeSimplex" , "mixedInt"

Example
M.setSolverParam("optimizer", "free")

Generic name
MSK_IPAR_OPTIMIZER

Groups
Overall solver

"presolveEliminatorMaxFill"

Controls the maximum amount of fill-in that can be created by one pivot in the elimination phase
of the presolve. A negative value means the parameter value is selected automatically.

Default
-1

Accepted
[-inf; +inf]

Example
M.setSolverParam("presolveEliminatorMaxFill", -1)

Generic name
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL

Groups
Presolve

"presolveEliminatorMaxNumTries"

Control the maximum number of times the eliminator is tried. A negative value implies MOSEK
decides.

Default
-1

Accepted
[-inf; +inf]

Example
M.setSolverParam("presolveEliminatorMaxNumTries", -1)

Generic name
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES

Groups
Presolve

"presolveLindepAbsWorkTrh"

Controls linear dependency check in presolve. The linear dependency check is potentially compu-
tationally expensive.

Default
100

Accepted
[-inf; +inf]

Example
M.setSolverParam("presolveLindepAbsWorkTrh", 100)

Generic name
MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH

311

Groups
Presolve

"presolveLindepNew"
Controls whether a new experimental linear dependency checker is employed.

Default
"off"

Accepted
"on" , "off"

Example
M.setSolverParam("presolveLindepNew", "off")

Generic name
MSK_IPAR_PRESOLVE_LINDEP_NEW

Groups
Presolve

"presolveLindepRelWorkTrh"
Controls linear dependency check in presolve. The linear dependency check is potentially compu-
tationally expensive.

Default
100

Accepted
[-inf; +inf]

Example
M.setSolverParam("presolveLindepRelWorkTrh", 100)

Generic name
MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH

Groups
Presolve

"presolveLindepUse"
Controls whether the linear constraints are checked for linear dependencies.

Default
"on"

Accepted
"on" , "off"

Example
M.setSolverParam("presolveLindepUse", "on")

Generic name
MSK_IPAR_PRESOLVE_LINDEP_USE

Groups
Presolve

"presolveMaxNumPass"
Control the maximum number of times presolve passes over the problem. A negative value implies
MOSEK decides.

Default
-1

Accepted
[-inf; +inf]

Example
M.setSolverParam("presolveMaxNumPass", -1)

Generic name
MSK_IPAR_PRESOLVE_MAX_NUM_PASS

312

Groups
Presolve

"presolveUse"
Controls whether the presolve is applied to a problem before it is optimized.

Default
"free"

Accepted
"off" , "on" , "free"

Example
M.setSolverParam("presolveUse", "free")

Generic name
MSK_IPAR_PRESOLVE_USE

Groups
Overall solver , Presolve

"ptfWriteParameters"
If ptfWriteParameters is "on" , the parameters section is written.

Default
"off"

Accepted
"on" , "off"

Example
M.setSolverParam("ptfWriteParameters", "off")

Generic name
MSK_IPAR_PTF_WRITE_PARAMETERS

Groups
Data input/output

"ptfWriteSinglePsdTerms"
Controls whether PSD terms with a coefficient matrix of just one non-zero are written as a single
term instead of as a matrix term.

Default
"off"

Accepted
"on" , "off"

Example
M.setSolverParam("ptfWriteSinglePsdTerms", "off")

Generic name
MSK_IPAR_PTF_WRITE_SINGLE_PSD_TERMS

Groups
Data input/output

"ptfWriteSolutions"
If ptfWriteSolutions is "on" , the solution section is written if any solutions are available, oth-
erwise solution section is not written even if solutions are available.

Default
"off"

Accepted
"on" , "off"

Example
M.setSolverParam("ptfWriteSolutions", "off")

Generic name
MSK_IPAR_PTF_WRITE_SOLUTIONS

313

Groups
Data input/output

"ptfWriteTransform"
If ptfWriteTransform is "on" , constraint blocks with identifiable conic slacks are transformed
into conic constraints and the slacks are eliminated.

Default
"on"

Accepted
"on" , "off"

Example
M.setSolverParam("ptfWriteTransform", "on")

Generic name
MSK_IPAR_PTF_WRITE_TRANSFORM

Groups
Data input/output

"remoteUseCompression"
Use compression when sending data to an optimization server.

Default
"zstd"

Accepted
"none" , "free" , "gzip" , "zstd"

Example
M.setSolverParam("remoteUseCompression", "zstd")

Generic name
MSK_IPAR_REMOTE_USE_COMPRESSION

"removeUnusedSolutions"
Removes unused solutions before the optimization is performed.

Default
"off"

Accepted
"on" , "off"

Example
M.setSolverParam("removeUnusedSolutions", "off")

Generic name
MSK_IPAR_REMOVE_UNUSED_SOLUTIONS

Groups
Overall system

"simBasisFactorUse"
Controls whether an LU factorization of the basis is used in a hot-start. Forcing a refactorization
sometimes improves the stability of the simplex optimizers, but in most cases there is a performance
penalty.

Default
"on"

Accepted
"on" , "off"

Example
M.setSolverParam("simBasisFactorUse", "on")

Generic name
MSK_IPAR_SIM_BASIS_FACTOR_USE

Groups
Simplex optimizer

314

"simDegen"
Controls how aggressively degeneration is handled.

Default
"free"

Accepted
"none" , "free" , "aggressive" , "moderate" , "minimum"

Example
M.setSolverParam("simDegen", "free")

Generic name
MSK_IPAR_SIM_DEGEN

Groups
Simplex optimizer

"simDualCrash"
Controls whether crashing is performed in the dual simplex optimizer. If this parameter is set to
𝑥, then a crash will be performed if a basis consists of more than (100− 𝑥) mod 𝑓𝑣 entries, where
𝑓𝑣 is the number of fixed variables.

Default
90

Accepted
[0; +inf]

Example
M.setSolverParam("simDualCrash", 90)

Generic name
MSK_IPAR_SIM_DUAL_CRASH

Groups
Dual simplex

"simDualPhaseoneMethod"
An experimental feature.

Default
0

Accepted
[0; 10]

Example
M.setSolverParam("simDualPhaseoneMethod", 0)

Generic name
MSK_IPAR_SIM_DUAL_PHASEONE_METHOD

Groups
Simplex optimizer

"simDualRestrictSelection"
The dual simplex optimizer can use a so-called restricted selection/pricing strategy to choose the
outgoing variable. Hence, if restricted selection is applied, then the dual simplex optimizer first
choose a subset of all the potential outgoing variables. Next, for some time it will choose the
outgoing variable only among the subset. From time to time the subset is redefined. A larger value
of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e.
a value of 0 implies that the restriction strategy is not applied at all.

Default
50

Accepted
[0; 100]

Example
M.setSolverParam("simDualRestrictSelection", 50)

315

Generic name
MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION

Groups
Dual simplex

"simDualSelection"
Controls the choice of the incoming variable, known as the selection strategy, in the dual simplex
optimizer.

Default
"free"

Accepted
"free" , "full" , "ase" , "devex" , "se" , "partial"

Example
M.setSolverParam("simDualSelection", "free")

Generic name
MSK_IPAR_SIM_DUAL_SELECTION

Groups
Dual simplex

"simExploitDupvec"
Controls if the simplex optimizers are allowed to exploit duplicated columns.

Default
"off"

Accepted
"on" , "off" , "free"

Example
M.setSolverParam("simExploitDupvec", "off")

Generic name
MSK_IPAR_SIM_EXPLOIT_DUPVEC

Groups
Simplex optimizer

"simHotstart"
Controls the type of hot-start that the simplex optimizer perform.

Default
"free"

Accepted
"none" , "free" , "statusKeys"

Example
M.setSolverParam("simHotstart", "free")

Generic name
MSK_IPAR_SIM_HOTSTART

Groups
Simplex optimizer

"simHotstartLu"
Determines if the simplex optimizer should exploit the initial factorization.

Default
"on"

Accepted
• "on" : Factorization is reused if possible.
• "off" : Factorization is recomputed.

Example
M.setSolverParam("simHotstartLu", "on")

316

Generic name
MSK_IPAR_SIM_HOTSTART_LU

Groups
Simplex optimizer

"simMaxIterations"
Maximum number of iterations that can be used by a simplex optimizer.

Default
10000000

Accepted
[0; +inf]

Example
M.setSolverParam("simMaxIterations", 10000000)

Generic name
MSK_IPAR_SIM_MAX_ITERATIONS

Groups
Simplex optimizer , Termination criteria

"simMaxNumSetbacks"
Controls how many set-backs are allowed within a simplex optimizer. A set-back is an event where
the optimizer moves in the wrong direction. This is impossible in theory but may happen due to
numerical problems.

Default
250

Accepted
[0; +inf]

Example
M.setSolverParam("simMaxNumSetbacks", 250)

Generic name
MSK_IPAR_SIM_MAX_NUM_SETBACKS

Groups
Simplex optimizer

"simNonSingular"
Controls if the simplex optimizer ensures a non-singular basis, if possible.

Default
"on"

Accepted
"on" , "off"

Example
M.setSolverParam("simNonSingular", "on")

Generic name
MSK_IPAR_SIM_NON_SINGULAR

Groups
Simplex optimizer

"simPrecision"
Experimental. Usage not recommended.

Default
"normal"

Accepted
"normal" , "extended"

Example
M.setSolverParam("simPrecision", "normal")

317

Generic name
MSK_IPAR_SIM_PRECISION

Groups
Overall solver

"simPrecisionBoost"
Controls whether the simplex optimizer is allowed to boost the precision during the computations
if possible.

Default
"off"

Accepted
"on" , "off"

Example
M.setSolverParam("simPrecisionBoost", "off")

Generic name
MSK_IPAR_SIM_PRECISION_BOOST

Groups
Simplex optimizer

"simPrimalCrash"
Controls whether crashing is performed in the primal simplex optimizer. In general, if a basis
consists of more than (100-this parameter value)% fixed variables, then a crash will be performed.

Default
90

Accepted
[0; +inf]

Example
M.setSolverParam("simPrimalCrash", 90)

Generic name
MSK_IPAR_SIM_PRIMAL_CRASH

Groups
Primal simplex

"simPrimalPhaseoneMethod"
An experimental feature.

Default
0

Accepted
[0; 10]

Example
M.setSolverParam("simPrimalPhaseoneMethod", 0)

Generic name
MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD

Groups
Simplex optimizer

"simPrimalRestrictSelection"
The primal simplex optimizer can use a so-called restricted selection/pricing strategy to choose
the outgoing variable. Hence, if restricted selection is applied, then the primal simplex optimizer
first choose a subset of all the potential incoming variables. Next, for some time it will choose the
incoming variable only among the subset. From time to time the subset is redefined. A larger value
of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e.
a value of 0 implies that the restriction strategy is not applied at all.

Default
50

318

Accepted
[0; 100]

Example
M.setSolverParam("simPrimalRestrictSelection", 50)

Generic name
MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION

Groups
Primal simplex

"simPrimalSelection"

Controls the choice of the incoming variable, known as the selection strategy, in the primal simplex
optimizer.

Default
"free"

Accepted
"free" , "full" , "ase" , "devex" , "se" , "partial"

Example
M.setSolverParam("simPrimalSelection", "free")

Generic name
MSK_IPAR_SIM_PRIMAL_SELECTION

Groups
Primal simplex

"simRefactorFreq"

Controls how frequent the basis is refactorized. The value 0 means that the optimizer determines
the best point of refactorization. It is strongly recommended NOT to change this parameter.

Default
0

Accepted
[0; +inf]

Example
M.setSolverParam("simRefactorFreq", 0)

Generic name
MSK_IPAR_SIM_REFACTOR_FREQ

Groups
Simplex optimizer

"simReformulation"

Controls if the simplex optimizers are allowed to reformulate the problem.

Default
"off"

Accepted
"on" , "off" , "free" , "aggressive"

Example
M.setSolverParam("simReformulation", "off")

Generic name
MSK_IPAR_SIM_REFORMULATION

Groups
Simplex optimizer

"simSaveLu"

Controls if the LU factorization stored should be replaced with the LU factorization corresponding
to the initial basis.

319

Default
"off"

Accepted
"on" , "off"

Example
M.setSolverParam("simSaveLu", "off")

Generic name
MSK_IPAR_SIM_SAVE_LU

Groups
Simplex optimizer

"simScaling"
Controls how much effort is used in scaling the problem before a simplex optimizer is used.

Default
"free"

Accepted
"free" , "none"

Example
M.setSolverParam("simScaling", "free")

Generic name
MSK_IPAR_SIM_SCALING

Groups
Simplex optimizer

"simScalingMethod"
Controls how the problem is scaled before a simplex optimizer is used.

Default
"pow2"

Accepted
"pow2" , "free"

Example
M.setSolverParam("simScalingMethod", "pow2")

Generic name
MSK_IPAR_SIM_SCALING_METHOD

Groups
Simplex optimizer

"simSeed"
Sets the random seed used for randomization in the simplex optimizers.

Default
23456

Accepted
[0; 32749]

Example
M.setSolverParam("simSeed", 23456)

Generic name
MSK_IPAR_SIM_SEED

Groups
Simplex optimizer

"simSolveForm"
Controls whether the primal or the dual problem is solved by the primal-/dual-simplex optimizer.

Default
"free"

320

Accepted
"free" , "primal" , "dual"

Example
M.setSolverParam("simSolveForm", "free")

Generic name
MSK_IPAR_SIM_SOLVE_FORM

Groups
Simplex optimizer

"simSwitchOptimizer"

The simplex optimizer sometimes chooses to solve the dual problem instead of the primal problem.
This implies that if you have chosen to use the dual simplex optimizer and the problem is dualized,
then it actually makes sense to use the primal simplex optimizer instead. If this parameter is on
and the problem is dualized and furthermore the simplex optimizer is chosen to be the primal
(dual) one, then it is switched to the dual (primal).

Default
"off"

Accepted
"on" , "off"

Example
M.setSolverParam("simSwitchOptimizer", "off")

Generic name
MSK_IPAR_SIM_SWITCH_OPTIMIZER

Groups
Simplex optimizer

"writeJsonIndentation"

When set, the JSON task and solution files are written with indentation for better readability.

Default
"off"

Accepted
"on" , "off"

Example
M.setSolverParam("writeJsonIndentation", "off")

Generic name
MSK_IPAR_WRITE_JSON_INDENTATION

Groups
Data input/output

"writeLpFullObj"

Write all variables, including the ones with 0-coefficients, in the objective.

Default
"on"

Accepted
"on" , "off"

Example
M.setSolverParam("writeLpFullObj", "on")

Generic name
MSK_IPAR_WRITE_LP_FULL_OBJ

Groups
Data input/output

321

"writeLpLineWidth"

Maximum width of line in an LP file written by MOSEK.

Default
80

Accepted
[40; +inf]

Example
M.setSolverParam("writeLpLineWidth", 80)

Generic name
MSK_IPAR_WRITE_LP_LINE_WIDTH

Groups
Data input/output

"writeMpsFormat"

Controls in which format the MPS file is written.

Default
"free"

Accepted
"strict" , "relaxed" , "free" , "cplex"

Example
M.setSolverParam("writeMpsFormat", "free")

Generic name
MSK_IPAR_WRITE_MPS_FORMAT

Groups
Data input/output

14.4.3 String parameters

"dataFileName"

Data are read and written to this file.

Accepted
Any valid file name.

Example
M.setSolverParam("dataFileName", "somevalue")

Generic name
MSK_SPAR_DATA_FILE_NAME

Groups
Data input/output

"remoteOptserverHost"

URL of the remote optimization server in the format (http|https)://server:port. If set, all
subsequent calls to any MOSEK function that involves synchronous optimization will be sent to
the specified OptServer instead of being executed locally. Passing empty string deactivates this
redirection.

Accepted
Any valid URL.

Example
M.setSolverParam("remoteOptserverHost", "somevalue")

Generic name
MSK_SPAR_REMOTE_OPTSERVER_HOST

Groups
Overall system

322

"remoteTlsCert"
List of known server certificates in PEM format.

Accepted
PEM files separated by new-lines.

Example
M.setSolverParam("remoteTlsCert", "somevalue")

Generic name
MSK_SPAR_REMOTE_TLS_CERT

Groups
Overall system

"remoteTlsCertPath"
Path to known server certificates in PEM format.

Accepted
Any valid path.

Example
M.setSolverParam("remoteTlsCertPath", "somevalue")

Generic name
MSK_SPAR_REMOTE_TLS_CERT_PATH

Groups
Overall system

14.5 Enumerations

AccSolutionStatus
Constants used for defining which solutions statuses are acceptable.

Anything
Accept all solution status except SolutionStatus.Undefined .

Optimal
Accept only optimal solution status.

Feasible
Accept any feasible solution, even if not optimal.

Certificate
Accept only a certificate.

ObjectiveSense
Used in Model.objective to define the objective sense of the Model .

Undefined
The sense is not defined; trying to optimize a Model whose objective sense is undefined is an
error.

Minimize
Minimize the objective.

Maximize
Maximize the objective.

ProblemStatus
Constants defining the problem status.

Unknown
Unknown problem status.

PrimalAndDualFeasible
The problem is primal and dual feasible.

323

PrimalFeasible

The problem is at least primal feasible.

DualFeasible

The problem is at least least dual feasible.

PrimalInfeasible

The problem is primal infeasible.

DualInfeasible

The problem is dual infeasible.

PrimalAndDualInfeasible

The problem is primal and dual infeasible.

IllPosed

The problem is illposed.

PrimalInfeasibleOrUnbounded

The problem is primal infeasible or unbounded.
SolutionStatus

Defines properties of either a primal or a dual solution. A model may contain multiple solutions
which may have different status. Specifically, there will be individual solutions, and thus solution
statuses, for the interior-point, simplex and integer solvers.

Undefined

Undefined solution. This means that no values exist for the relevant solution.

Unknown

The solution status is unknown; this will happen if the user inputs values or a solution is read
from a file or the solver stalled.

Optimal

The solution values are feasible and optimal.

Feasible

The solution is feasible.

Certificate

The solution is a certificate of infeasibility.

IllposedCert

The solution is a certificate of illposedness.
SolutionType

Used when requesting a specific solution from a Model .

Default

Auto-select the default solution; usually this will be the integer solution, if available, otherwise
the basic solution, if available, otherwise the interior-point solution.

Basic

Select the basic solution.

Interior

Select the interior-point solution.

Integer

Select the integer solution.
SolverStatus

Constants used for reporting solver status from Model.solveBatch .

OK

No error.

324

Error

An error occurred.

LostRace

The model was not solved because it lost the race.

14.6 Constants

14.6.1 Basis identification

"never"

Never do basis identification.
"always"

Basis identification is always performed even if the interior-point optimizer terminates abnormally.
"noError"

Basis identification is performed if the interior-point optimizer terminates without an error.
"ifFeasible"

Basis identification is not performed if the interior-point optimizer terminates with a problem status
saying that the problem is primal or dual infeasible.

"reservered"

Not currently in use.

14.6.2 Bound keys

"lo"

The constraint or variable has a finite lower bound and an infinite upper bound.
"up"

The constraint or variable has an infinite lower bound and an finite upper bound.
"fx"

The constraint or variable is fixed.
"fr"

The constraint or variable is free.
"ra"

The constraint or variable is ranged.

14.6.3 Mark

"lo"

The lower bound is selected for sensitivity analysis.
"up"

The upper bound is selected for sensitivity analysis.

14.6.4 Experimental. Usage not recommended.

"normal"

Experimental. Usage not recommended.
"extended"

Experimental. Usage not recommended.

325

14.6.5 Degeneracy strategies

"none"

The simplex optimizer should use no degeneration strategy.
"free"

The simplex optimizer chooses the degeneration strategy.
"aggressive"

The simplex optimizer should use an aggressive degeneration strategy.
"moderate"

The simplex optimizer should use a moderate degeneration strategy.
"minimum"

The simplex optimizer should use a minimum degeneration strategy.

14.6.6 Transposed matrix.

"no"

No transpose is applied.
"yes"

A transpose is applied.

14.6.7 Triangular part of a symmetric matrix.

"lo"

Lower part.
"up"

Upper part.

14.6.8 Problem reformulation.

"on"

Allow the simplex optimizer to reformulate the problem.
"off"

Disallow the simplex optimizer to reformulate the problem.
"free"

The simplex optimizer can choose freely.
"aggressive"

The simplex optimizer should use an aggressive reformulation strategy.

14.6.9 Exploit duplicate columns.

"on"

Allow the simplex optimizer to exploit duplicated columns.
"off"

Disallow the simplex optimizer to exploit duplicated columns.
"free"

The simplex optimizer can choose freely.

326

14.6.10 Hot-start type employed by the simplex optimizer

"none"

The simplex optimizer performs a coldstart.
"free"

The simplex optimize chooses the hot-start type.
"statusKeys"

Only the status keys of the constraints and variables are used to choose the type of hot-start.

14.6.11 Hot-start type employed by the interior-point optimizers.

"none"

The interior-point optimizer performs a coldstart.
"primal"

The interior-point optimizer exploits the primal solution only.
"dual"

The interior-point optimizer exploits the dual solution only.
"primalDual"

The interior-point optimizer exploits both the primal and dual solution.

14.6.12 Progress callback codes

"beginBi"

The basis identification procedure has been started.
"beginConic"

The callback function is called when the conic optimizer is started.
"beginDualBi"

The callback function is called from within the basis identification procedure when the dual phase
is started.

"beginDualSensitivity"

Dual sensitivity analysis is started.
"beginDualSetupBi"

The callback function is called when the dual BI phase is started.
"beginDualSimplex"

The callback function is called when the dual simplex optimizer started.
"beginDualSimplexBi"

The callback function is called from within the basis identification procedure when the dual simplex
clean-up phase is started.

"beginFolding"

The calback function is called at the beginning of folding.
"beginFoldingBi"

TBD
"beginFoldingBiDual"

TBD
"beginFoldingBiInitialize"

TBD
"beginFoldingBiOptimizer"

TBD
"beginFoldingBiPrimal"

TBD
"beginInfeasAna"

The callback function is called when the infeasibility analyzer is started.

327

"beginInitializeBi"
The callback function is called from within the basis identification procedure when the initialization
phase is started.

"beginIntpnt"
The callback function is called when the interior-point optimizer is started.

"beginLicenseWait"
Begin waiting for license.

"beginMio"
The callback function is called when the mixed-integer optimizer is started.

"beginOptimizeBi"
TBD.

"beginOptimizer"
The callback function is called when the optimizer is started.

"beginPresolve"
The callback function is called when the presolve is started.

"beginPrimalBi"
The callback function is called from within the basis identification procedure when the primal phase
is started.

"beginPrimalRepair"
Begin primal feasibility repair.

"beginPrimalSensitivity"
Primal sensitivity analysis is started.

"beginPrimalSetupBi"
The callback function is called when the primal BI setup is started.

"beginPrimalSimplex"
The callback function is called when the primal simplex optimizer is started.

"beginPrimalSimplexBi"
The callback function is called from within the basis identification procedure when the primal
simplex clean-up phase is started.

"beginQcqoReformulate"
Begin QCQO reformulation.

"beginRead"
MOSEK has started reading a problem file.

"beginRootCutgen"
The callback function is called when root cut generation is started.

"beginSimplex"
The callback function is called when the simplex optimizer is started.

"beginSolveRootRelax"
The callback function is called when solution of root relaxation is started.

"beginToConic"
Begin conic reformulation.

"beginWrite"
MOSEK has started writing a problem file.

"conic"
The callback function is called from within the conic optimizer after the information database has
been updated.

"decompMio"
The callback function is called when the dedicated algorithm for independent blocks inside the
mixed-integer solver is started.

"dualSimplex"
The callback function is called from within the dual simplex optimizer.

"endBi"
The callback function is called when the basis identification procedure is terminated.

328

"endConic"

The callback function is called when the conic optimizer is terminated.
"endDualBi"

The callback function is called from within the basis identification procedure when the dual phase
is terminated.

"endDualSensitivity"

Dual sensitivity analysis is terminated.
"endDualSetupBi"

The callback function is called when the dual BI phase is terminated.
"endDualSimplex"

The callback function is called when the dual simplex optimizer is terminated.
"endDualSimplexBi"

The callback function is called from within the basis identification procedure when the dual clean-up
phase is terminated.

"endFolding"

The calback function is called at the end of folding.
"endFoldingBi"

TBD
"endFoldingBiDual"

TBD
"endFoldingBiInitialize"

TBD
"endFoldingBiOptimizer"

TBD
"endFoldingBiPrimal"

TBD
"endInfeasAna"

The callback function is called when the infeasibility analyzer is terminated.
"endInitializeBi"

The callback function is called from within the basis identification procedure when the initialization
phase is terminated.

"endIntpnt"

The callback function is called when the interior-point optimizer is terminated.
"endLicenseWait"

End waiting for license.
"endMio"

The callback function is called when the mixed-integer optimizer is terminated.
"endOptimizeBi"

TBD.
"endOptimizer"

The callback function is called when the optimizer is terminated.
"endPresolve"

The callback function is called when the presolve is completed.
"endPrimalBi"

The callback function is called from within the basis identification procedure when the primal phase
is terminated.

"endPrimalRepair"

End primal feasibility repair.
"endPrimalSensitivity"

Primal sensitivity analysis is terminated.
"endPrimalSetupBi"

The callback function is called when the primal BI setup is terminated.

329

"endPrimalSimplex"
The callback function is called when the primal simplex optimizer is terminated.

"endPrimalSimplexBi"
The callback function is called from within the basis identification procedure when the primal
clean-up phase is terminated.

"endQcqoReformulate"
End QCQO reformulation.

"endRead"
MOSEK has finished reading a problem file.

"endRootCutgen"
The callback function is called when root cut generation is terminated.

"endSimplex"
The callback function is called when the simplex optimizer is terminated.

"endSimplexBi"
The callback function is called from within the basis identification procedure when the simplex
clean-up phase is terminated.

"endSolveRootRelax"
The callback function is called when solution of root relaxation is terminated.

"endToConic"
End conic reformulation.

"endWrite"
MOSEK has finished writing a problem file.

"foldingBiDual"
TBD

"foldingBiOptimizer"
TBD

"foldingBiPrimal"
TBD

"heartbeat"
A heartbeat callback.

"imDualSensivity"
The callback function is called at an intermediate stage of the dual sensitivity analysis.

"imDualSimplex"
The callback function is called at an intermediate point in the dual simplex optimizer.

"imLicenseWait"
MOSEK is waiting for a license.

"imLu"
The callback function is called from within the LU factorization procedure at an intermediate point.

"imMio"
The callback function is called at an intermediate point in the mixed-integer optimizer.

"imMioDualSimplex"
The callback function is called at an intermediate point in the mixed-integer optimizer while running
the dual simplex optimizer.

"imMioIntpnt"
The callback function is called at an intermediate point in the mixed-integer optimizer while running
the interior-point optimizer.

"imMioPrimalSimplex"
The callback function is called at an intermediate point in the mixed-integer optimizer while running
the primal simplex optimizer.

"imOrder"
The callback function is called from within the matrix ordering procedure at an intermediate point.

"imPrimalSensivity"
The callback function is called at an intermediate stage of the primal sensitivity analysis.

330

"imPrimalSimplex"

The callback function is called at an intermediate point in the primal simplex optimizer.
"imRead"

Intermediate stage in reading.
"imRootCutgen"

The callback is called from within root cut generation at an intermediate stage.
"imSimplex"

The callback function is called from within the simplex optimizer at an intermediate point.
"intpnt"

The callback function is called from within the interior-point optimizer after the information
database has been updated.

"newIntMio"

The callback function is called after a new integer solution has been located by the mixed-integer
optimizer.

"optimizeBi"

TBD.
"primalSimplex"

The callback function is called from within the primal simplex optimizer.
"qoReformulate"

The callback function is called at an intermediate stage of the conic quadratic reformulation.
"readOpf"

The callback function is called from the OPF reader.
"readOpfSection"

A chunk of 𝑄 non-zeros has been read from a problem file.
"restartMio"

The callback function is called when the mixed-integer optimizer is restarted.
"solvingRemote"

The callback function is called while the task is being solved on a remote server.
"updateDualBi"

The callback function is called from within the basis identification procedure at an intermediate
point in the dual phase.

"updateDualSimplex"

The callback function is called in the dual simplex optimizer.
"updateDualSimplexBi"

The callback function is called from within the basis identification procedure at an intermediate
point in the dual simplex clean-up phase. The frequency of the callbacks is controlled by the
logSimFreq parameter.

"updatePresolve"

The callback function is called from within the presolve procedure.
"updatePrimalBi"

The callback function is called from within the basis identification procedure at an intermediate
point in the primal phase.

"updatePrimalSimplex"

The callback function is called in the primal simplex optimizer.
"updatePrimalSimplexBi"

The callback function is called from within the basis identification procedure at an intermediate
point in the primal simplex clean-up phase. The frequency of the callbacks is controlled by the
logSimFreq parameter.

"updateSimplex"

The callback function is called from simplex optimizer.
"writeOpf"

The callback function is called from the OPF writer.

331

14.6.13 Compression types

"none"
No compression is used.

"free"
The type of compression used is chosen automatically.

"gzip"
The type of compression used is gzip compatible.

"zstd"
The type of compression used is zstd compatible.

14.6.14 Cone types

"quad"
The cone is a quadratic cone.

"rquad"
The cone is a rotated quadratic cone.

"pexp"
A primal exponential cone.

"dexp"
A dual exponential cone.

"ppow"
A primal power cone.

"dpow"
A dual power cone.

"zero"
The zero cone.

14.6.15 Cone types

"r"

R.

"rzero"
The zero vector.

"rplus"
The positive orthant.

"rminus"
The negative orthant.

"quadraticCone"
The quadratic cone.

"rquadraticCone"
The rotated quadratic cone.

"primalExpCone"
The primal exponential cone.

"dualExpCone"
The dual exponential cone.

"primalPowerCone"
The primal power cone.

"dualPowerCone"
The dual power cone.

"primalGeoMeanCone"
The primal geometric mean cone.

332

"dualGeoMeanCone"

The dual geometric mean cone.
"svecPsdCone"

The vectorized positive semidefinite cone.

14.6.16 Name types

"gen"

General names. However, no duplicate and blank names are allowed.
"mps"

MPS type names.
"lp"

LP type names.

14.6.17 Cone types

"sparse"

Sparse symmetric matrix.

14.6.18 Data format types

"extension"

The file extension is used to determine the data file format.
"mps"

The data file is MPS formatted.
"lp"

The data file is LP formatted.
"op"

The data file is an optimization problem formatted file.
"freeMps"

The data a free MPS formatted file.
"task"

Generic task dump file.
"ptf"

(P)retty (T)ext (F)format.
"cb"

Conic benchmark format,
"jsonTask"

JSON based task format.

14.6.19 Data format types

"extension"

The file extension is used to determine the data file format.
"b"

Simple binary format
"task"

Tar based format.
"jsonTask"

JSON based format.

333

14.6.20 Double information items

"anaProScalarizedConstraintMatrixDensity"

Density percentage of the scalarized constraint matrix.
"biCleanTime"

Time spent within the clean-up phase of the basis identification procedure since its invocation (in
seconds).

"biDualTime"

Time spent within the dual phase basis identification procedure since its invocation (in seconds).
"biPrimalTime"

Time spent within the primal phase of the basis identification procedure since its invocation (in
seconds).

"biTime"

Time spent within the basis identification procedure since its invocation (in seconds).
"foldingBiOptimizeTime"

TBD
"foldingBiUnfoldDualTime"

TBD
"foldingBiUnfoldInitializeTime"

TBD
"foldingBiUnfoldPrimalTime"

TBD
"foldingBiUnfoldTime"

TBD
"foldingFactor"

Problem size after folding as a fraction of the original size.
"foldingTime"

Total time spent in folding for continuous problems (in seconds).
"intpntDualFeas"

Dual feasibility measure reported by the interior-point optimizer. (For the interior-point opti-
mizer this measure is not directly related to the original problem because a homogeneous model is
employed.)

"intpntDualObj"

Dual objective value reported by the interior-point optimizer.
"intpntFactorNumFlops"

An estimate of the number of flops used in the factorization.
"intpntOptStatus"

A measure of optimality of the solution. It should converge to +1 if the problem has a primal-dual
optimal solution, and converge to −1 if the problem is (strictly) primal or dual infeasible. If the
measure converges to another constant, or fails to settle, the problem is usually ill-posed.

"intpntOrderTime"

Order time (in seconds).
"intpntPrimalFeas"

Primal feasibility measure reported by the interior-point optimizer. (For the interior-point opti-
mizer this measure is not directly related to the original problem because a homogeneous model is
employed).

"intpntPrimalObj"

Primal objective value reported by the interior-point optimizer.
"intpntTime"

Time spent within the interior-point optimizer since its invocation (in seconds).
"mioCliqueSelectionTime"

Selection time for clique cuts (in seconds).

334

"mioCliqueSeparationTime"

Separation time for clique cuts (in seconds).
"mioCmirSelectionTime"

Selection time for CMIR cuts (in seconds).
"mioCmirSeparationTime"

Separation time for CMIR cuts (in seconds).
"mioConstructSolutionObj"

If MOSEK has successfully constructed an integer feasible solution, then this item contains the
optimal objective value corresponding to the feasible solution.

"mioDualBoundAfterPresolve"

Value of the dual bound after presolve but before cut generation.
"mioGmiSelectionTime"

Selection time for GMI cuts (in seconds).
"mioGmiSeparationTime"

Separation time for GMI cuts (in seconds).
"mioImpliedBoundSelectionTime"

Selection time for implied bound cuts (in seconds).
"mioImpliedBoundSeparationTime"

Separation time for implied bound cuts (in seconds).
"mioInitialFeasibleSolutionObj"

If the user provided solution was found to be feasible this information item contains it’s objective
value.

"mioKnapsackCoverSelectionTime"

Selection time for knapsack cover (in seconds).
"mioKnapsackCoverSeparationTime"

Separation time for knapsack cover (in seconds).
"mioLiproSelectionTime"

Selection time for lift-and-project cuts (in seconds).
"mioLiproSeparationTime"

Separation time for lift-and-project cuts (in seconds).
"mioObjAbsGap"

Given the mixed-integer optimizer has computed a feasible solution and a bound on the optimal
objective value, then this item contains the absolute gap defined by

|(objective value of feasible solution) − (objective bound)|.

Otherwise it has the value -1.0.
"mioObjBound"

The best known bound on the objective function. This value is undefined until at least one
relaxation has been solved: To see if this is the case check that "mioNumRelax" is strictly positive.

"mioObjInt"

The primal objective value corresponding to the best integer feasible solution. Please note that at
least one integer feasible solution must have been located i.e. check "mioNumIntSolutions" .

"mioObjRelGap"

Given that the mixed-integer optimizer has computed a feasible solution and a bound on the
optimal objective value, then this item contains the relative gap defined by

|(objective value of feasible solution) − (objective bound)|
max(𝛿, |(objective value of feasible solution)|)

.

where 𝛿 is given by the parameter mioRelGapConst . Otherwise it has the value −1.0.
"mioProbingTime"

Total time for probing (in seconds).

335

"mioRootCutSelectionTime"

Total time for cut selection (in seconds).
"mioRootCutSeparationTime"

Total time for cut separation (in seconds).
"mioRootOptimizerTime"

Time spent in the contiuous optimizer while processing the root node relaxation (in seconds).
"mioRootPresolveTime"

Time spent presolving the problem at the root node (in seconds).
"mioRootTime"

Time spent processing the root node (in seconds).
"mioSymmetryDetectionTime"

Total time for symmetry detection (in seconds).
"mioSymmetryFactor"

Degree to which the problem is affected by detected symmetry.
"mioTime"

Time spent in the mixed-integer optimizer (in seconds).
"mioUserObjCut"

If the objective cut is used, then this information item has the value of the cut.
"optimizerTicks"

Total number of ticks spent in the optimizer since it was invoked. It is strictly negative if it is not
available.

"optimizerTime"

Total time spent in the optimizer since it was invoked (in seconds).
"presolveEliTime"

Total time spent in the eliminator since the presolve was invoked (in seconds).
"presolveLindepTime"

Total time spent in the linear dependency checker since the presolve was invoked (in seconds).
"presolveTime"

Total time spent in the presolve since it was invoked (in seconds).
"presolveTotalPrimalPerturbation"

Total perturbation of the bounds of the primal problem.
"primalRepairPenaltyObj"

The optimal objective value of the penalty function.
"qcqoReformulateMaxPerturbation"

Maximum absolute diagonal perturbation occurring during the QCQO reformulation.
"qcqoReformulateTime"

Time spent with conic quadratic reformulation (in seconds).
"qcqoReformulateWorstCholeskyColumnScaling"

Worst Cholesky column scaling.
"qcqoReformulateWorstCholeskyDiagScaling"

Worst Cholesky diagonal scaling.
"readDataTime"

Time spent reading the data file (in seconds).
"remoteTime"

The total real time in seconds spent when optimizing on a server by the process performing the
optimization on the server (in seconds).

"simDualTime"

Time spent in the dual simplex optimizer since invoking it (in seconds).
"simFeas"

Feasibility measure reported by the simplex optimizer.
"simObj"

Objective value reported by the simplex optimizer.

336

"simPrimalTime"

Time spent in the primal simplex optimizer since invoking it (in seconds).
"simTime"

Time spent in the simplex optimizer since invoking it (in seconds).
"solBasDualObj"

Dual objective value of the basic solution. Updated if autoUpdateSolInfo is set .
"solBasDviolcon"

Maximal dual bound violation for 𝑥𝑐 in the basic solution. Updated if autoUpdateSolInfo is set .
"solBasDviolvar"

Maximal dual bound violation for 𝑥𝑥 in the basic solution. Updated if autoUpdateSolInfo is set
.

"solBasNrmBarx"

Infinity norm of 𝑋 in the basic solution.
"solBasNrmSlc"

Infinity norm of 𝑠𝑐𝑙 in the basic solution.
"solBasNrmSlx"

Infinity norm of 𝑠𝑥𝑙 in the basic solution.
"solBasNrmSuc"

Infinity norm of 𝑠𝑐𝑢 in the basic solution.
"solBasNrmSux"

Infinity norm of 𝑠𝑋𝑢 in the basic solution.
"solBasNrmXc"

Infinity norm of 𝑥𝑐 in the basic solution.
"solBasNrmXx"

Infinity norm of 𝑥𝑥 in the basic solution.
"solBasNrmY"

Infinity norm of 𝑦 in the basic solution.
"solBasPrimalObj"

Primal objective value of the basic solution. Updated if autoUpdateSolInfo is set .
"solBasPviolcon"

Maximal primal bound violation for 𝑥𝑐 in the basic solution. Updated if autoUpdateSolInfo is
set .

"solBasPviolvar"

Maximal primal bound violation for 𝑥𝑥 in the basic solution. Updated if autoUpdateSolInfo is
set .

"solItgNrmBarx"

Infinity norm of 𝑋 in the integer solution.
"solItgNrmXc"

Infinity norm of 𝑥𝑐 in the integer solution.
"solItgNrmXx"

Infinity norm of 𝑥𝑥 in the integer solution.
"solItgPrimalObj"

Primal objective value of the integer solution. Updated if autoUpdateSolInfo is set .
"solItgPviolacc"

Maximal primal violation for affine conic constraints in the integer solution. Updated if
autoUpdateSolInfo is set .

"solItgPviolbarvar"

Maximal primal bound violation for 𝑋 in the integer solution. Updated if autoUpdateSolInfo is
set .

"solItgPviolcon"

Maximal primal bound violation for 𝑥𝑐 in the integer solution. Updated if autoUpdateSolInfo is
set .

337

"solItgPviolcones"

Maximal primal violation for primal conic constraints in the integer solution. Updated if
autoUpdateSolInfo is set .

"solItgPvioldjc"

Maximal primal violation for disjunctive constraints in the integer solution. Updated if
autoUpdateSolInfo is set .

"solItgPviolitg"

Maximal violation for the integer constraints in the integer solution. Updated if
autoUpdateSolInfo is set .

"solItgPviolvar"

Maximal primal bound violation for 𝑥𝑥 in the integer solution. Updated if autoUpdateSolInfo is
set .

"solItrDualObj"

Dual objective value of the interior-point solution. Updated if autoUpdateSolInfo is set .
"solItrDviolacc"

Maximal dual violation for the affine conic constraints in the interior-point solution. Updated if
autoUpdateSolInfo is set .

"solItrDviolbarvar"

Maximal dual bound violation for 𝑋 in the interior-point solution. Updated if autoUpdateSolInfo
is set .

"solItrDviolcon"

Maximal dual bound violation for 𝑥𝑐 in the interior-point solution. Updated if autoUpdateSolInfo
is set .

"solItrDviolcones"

Maximal dual violation for conic constraints in the interior-point solution. Updated if
autoUpdateSolInfo is set .

"solItrDviolvar"

Maximal dual bound violation for 𝑥𝑥 in the interior-point solution. Updated if autoUpdateSolInfo
is set .

"solItrNrmBars"

Infinity norm of 𝑆 in the interior-point solution.
"solItrNrmBarx"

Infinity norm of 𝑋 in the interior-point solution.
"solItrNrmSlc"

Infinity norm of 𝑠𝑐𝑙 in the interior-point solution.
"solItrNrmSlx"

Infinity norm of 𝑠𝑥𝑙 in the interior-point solution.
"solItrNrmSnx"

Infinity norm of 𝑠𝑥𝑛 in the interior-point solution.
"solItrNrmSuc"

Infinity norm of 𝑠𝑐𝑢 in the interior-point solution.
"solItrNrmSux"

Infinity norm of 𝑠𝑋𝑢 in the interior-point solution.
"solItrNrmXc"

Infinity norm of 𝑥𝑐 in the interior-point solution.
"solItrNrmXx"

Infinity norm of 𝑥𝑥 in the interior-point solution.
"solItrNrmY"

Infinity norm of 𝑦 in the interior-point solution.
"solItrPrimalObj"

Primal objective value of the interior-point solution. Updated if autoUpdateSolInfo is set .

338

"solItrPviolacc"

Maximal primal violation for affine conic constraints in the interior-point solution. Updated if
autoUpdateSolInfo is set .

"solItrPviolbarvar"

Maximal primal bound violation for 𝑋 in the interior-point solution. Updated if
autoUpdateSolInfo is set .

"solItrPviolcon"

Maximal primal bound violation for 𝑥𝑐 in the interior-point solution. Updated if
autoUpdateSolInfo is set .

"solItrPviolcones"

Maximal primal violation for conic constraints in the interior-point solution. Updated if
autoUpdateSolInfo is set .

"solItrPviolvar"

Maximal primal bound violation for 𝑥𝑥 in the interior-point solution. Updated if
autoUpdateSolInfo is set .

"toConicTime"

Time spent in the last to conic reformulation (in seconds).
"writeDataTime"

Time spent writing the data file (in seconds).

14.6.21 License feature

"pts"

Base system.
"pton"

Conic extension.

14.6.22 Long integer information items.

"anaProScalarizedConstraintMatrixNumColumns"

Number of columns in the scalarized constraint matrix.
"anaProScalarizedConstraintMatrixNumNz"

Number of non-zero entries in the scalarized constraint matrix.
"anaProScalarizedConstraintMatrixNumRows"

Number of rows in the scalarized constraint matrix.
"biCleanIter"

Number of clean iterations performed in the basis identification.
"biDualIter"

Number of dual pivots performed in the basis identification.
"biPrimalIter"

Number of primal pivots performed in the basis identification.
"foldingBiDualIter"

TBD
"foldingBiOptimizerIter"

TBD
"foldingBiPrimalIter"

TBD
"intpntFactorNumNz"

Number of non-zeros in factorization.
"mioAnz"

Number of non-zero entries in the constraint matrix of the problem to be solved by the mixed-
integer optimizer.

339

"mioFinalAnz"

Number of non-zero entries in the constraint matrix of the mixed-integer optimizer’s final problem.
"mioIntpntIter"

Number of interior-point iterations performed by the mixed-integer optimizer.
"mioNumDualIllposedCer"

Number of dual illposed certificates encountered by the mixed-integer optimizer.
"mioNumPrimIllposedCer"

Number of primal illposed certificates encountered by the mixed-integer optimizer.
"mioPresolvedAnz"

Number of non-zero entries in the constraint matrix of the problem after the mixed-integer opti-
mizer’s presolve.

"mioSimplexIter"

Number of simplex iterations performed by the mixed-integer optimizer.
"rdNumacc"

Number of affince conic constraints.
"rdNumanz"

Number of non-zeros in A that is read.
"rdNumdjc"

Number of disjuncive constraints.
"rdNumqnz"

Number of Q non-zeros.
"simplexIter"

Number of iterations performed by the simplex optimizer.

14.6.23 Integer information items.

"anaProNumCon"

Number of constraints in the problem.
"anaProNumConEq"

Number of equality constraints.
"anaProNumConFr"

Number of unbounded constraints.
"anaProNumConLo"

Number of constraints with a lower bound and an infinite upper bound.
"anaProNumConRa"

Number of constraints with finite lower and upper bounds.
"anaProNumConUp"

Number of constraints with an upper bound and an infinite lower bound.
"anaProNumVar"

Number of variables in the problem.
"anaProNumVarBin"

Number of binary (0-1) variables.
"anaProNumVarCont"

Number of continuous variables.
"anaProNumVarEq"

Number of fixed variables.
"anaProNumVarFr"

Number of free variables.
"anaProNumVarInt"

Number of general integer variables.
"anaProNumVarLo"

Number of variables with a lower bound and an infinite upper bound.

340

"anaProNumVarRa"
Number of variables with finite lower and upper bounds.

"anaProNumVarUp"
Number of variables with an upper bound and an infinite lower bound.

"foldingApplied"
Non-zero if folding was exploited.

"intpntFactorDimDense"
Dimension of the dense sub system in factorization.

"intpntIter"
Number of interior-point iterations since invoking the interior-point optimizer.

"intpntNumThreads"
Number of threads that the interior-point optimizer is using.

"intpntSolveDual"
Non-zero if the interior-point optimizer is solving the dual problem.

"mioAbsgapSatisfied"
Non-zero if absolute gap is within tolerances.

"mioCliqueTableSize"
Size of the clique table.

"mioConstructSolution"
This item informs if MOSEK constructed an initial integer feasible solution.

• -1: tried, but failed,
• 0: no partial solution supplied by the user,
• 1: constructed feasible solution.

"mioFinalNumbin"
Number of binary variables in the mixed-integer optimizer’s final problem.

"mioFinalNumbinconevar"
Number of binary cone variables in the mixed-integer optimizer’s final problem.

"mioFinalNumcon"
Number of constraints in the mixed-integer optimizer’s final problem.

"mioFinalNumcone"
Number of cones in the mixed-integer optimizer’s final problem.

"mioFinalNumconevar"
Number of cone variables in the mixed-integer optimizer’s final problem.

"mioFinalNumcont"
Number of continuous variables in the mixed-integer optimizer’s final problem.

"mioFinalNumcontconevar"
Number of continuous cone variables in the mixed-integer optimizer’s final problem.

"mioFinalNumdexpcones"
Number of dual exponential cones in the mixed-integer optimizer’s final problem.

"mioFinalNumdjc"
Number of disjunctive constraints in the mixed-integer optimizer’s final problem.

"mioFinalNumdpowcones"
Number of dual power cones in the mixed-integer optimizer’s final problem.

"mioFinalNumint"
Number of integer variables in the mixed-integer optimizer’s final problem.

"mioFinalNumintconevar"
Number of integer cone variables in the mixed-integer optimizer’s final problem.

"mioFinalNumpexpcones"
Number of primal exponential cones in the mixed-integer optimizer’s final problem.

"mioFinalNumppowcones"
Number of primal power cones in the mixed-integer optimizer’s final problem.

341

"mioFinalNumqcones"
Number of quadratic cones in the mixed-integer optimizer’s final problem.

"mioFinalNumrqcones"
Number of rotated quadratic cones in the mixed-integer optimizer’s final problem.

"mioFinalNumvar"
Number of variables in the mixed-integer optimizer’s final problem.

"mioInitialFeasibleSolution"
This item informs if MOSEK found the solution provided by the user to be feasible

• 0: solution provided by the user was not found to be feasible for the current problem,

• 1: user provided solution was found to be feasible.

"mioNodeDepth"
Depth of the last node solved.

"mioNumActiveNodes"
Number of active branch and bound nodes.

"mioNumActiveRootCuts"
Number of active cuts in the final relaxation after the mixed-integer optimizer’s root cut generation.

"mioNumBlocksSolvedInBb"
Number of independent decomposition blocks solved though a dedicated algorithm.

"mioNumBlocksSolvedInPresolve"
Number of independent decomposition blocks solved during presolve.

"mioNumBranch"
Number of branches performed during the optimization.

"mioNumIntSolutions"
Number of integer feasible solutions that have been found.

"mioNumRelax"
Number of relaxations solved during the optimization.

"mioNumRepeatedPresolve"
Number of times presolve was repeated at root.

"mioNumRestarts"
Number of restarts performed during the optimization.

"mioNumRootCutRounds"
Number of cut separation rounds at the root node of the mixed-integer optimizer.

"mioNumSelectedCliqueCuts"
Number of clique cuts selected to be included in the relaxation.

"mioNumSelectedCmirCuts"
Number of Complemented Mixed Integer Rounding (CMIR) cuts selected to be included in the
relaxation.

"mioNumSelectedGomoryCuts"
Number of Gomory cuts selected to be included in the relaxation.

"mioNumSelectedImpliedBoundCuts"
Number of implied bound cuts selected to be included in the relaxation.

"mioNumSelectedKnapsackCoverCuts"
Number of clique cuts selected to be included in the relaxation.

"mioNumSelectedLiproCuts"
Number of lift-and-project cuts selected to be included in the relaxation.

"mioNumSeparatedCliqueCuts"
Number of separated clique cuts.

"mioNumSeparatedCmirCuts"
Number of separated Complemented Mixed Integer Rounding (CMIR) cuts.

"mioNumSeparatedGomoryCuts"
Number of separated Gomory cuts.

342

"mioNumSeparatedImpliedBoundCuts"
Number of separated implied bound cuts.

"mioNumSeparatedKnapsackCoverCuts"
Number of separated clique cuts.

"mioNumSeparatedLiproCuts"
Number of separated lift-and-project cuts.

"mioNumSolvedNodes"
Number of branch and bounds nodes solved in the main branch and bound tree.

"mioNumbin"
Number of binary variables in the problem to be solved by the mixed-integer optimizer.

"mioNumbinconevar"
Number of binary cone variables in the problem to be solved by the mixed-integer optimizer.

"mioNumcon"
Number of constraints in the problem to be solved by the mixed-integer optimizer.

"mioNumcone"
Number of cones in the problem to be solved by the mixed-integer optimizer.

"mioNumconevar"
Number of cone variables in the problem to be solved by the mixed-integer optimizer.

"mioNumcont"
Number of continuous variables in the problem to be solved by the mixed-integer optimizer.

"mioNumcontconevar"
Number of continuous cone variables in the problem to be solved by the mixed-integer optimizer.

"mioNumdexpcones"
Number of dual exponential cones in the problem to be solved by the mixed-integer optimizer.

"mioNumdjc"
Number of disjunctive constraints in the problem to be solved by the mixed-integer optimizer.

"mioNumdpowcones"
Number of dual power cones in the problem to be solved by the mixed-integer optimizer.

"mioNumint"
Number of integer variables in the problem to be solved by the mixed-integer optimizer.

"mioNumintconevar"
Number of integer cone variables in the problem to be solved by the mixed-integer optimizer.

"mioNumpexpcones"
Number of primal exponential cones in the problem to be solved by the mixed-integer optimizer.

"mioNumppowcones"
Number of primal power cones in the problem to be solved by the mixed-integer optimizer.

"mioNumqcones"
Number of quadratic cones in the problem to be solved by the mixed-integer optimizer.

"mioNumrqcones"
Number of rotated quadratic cones in the problem to be solved by the mixed-integer optimizer.

"mioNumvar"
Number of variables in the problem to be solved by the mixed-integer optimizer.

"mioObjBoundDefined"
Non-zero if a valid objective bound has been found, otherwise zero.

"mioPresolvedNumbin"
Number of binary variables in the problem after the mixed-integer optimizer’s presolve.

"mioPresolvedNumbinconevar"
Number of binary cone variables in the problem after the mixed-integer optimizer’s presolve.

"mioPresolvedNumcon"
Number of constraints in the problem after the mixed-integer optimizer’s presolve.

"mioPresolvedNumcone"
Number of cones in the problem after the mixed-integer optimizer’s presolve.

343

"mioPresolvedNumconevar"

Number of cone variables in the problem after the mixed-integer optimizer’s presolve.
"mioPresolvedNumcont"

Number of continuous variables in the problem after the mixed-integer optimizer’s presolve.
"mioPresolvedNumcontconevar"

Number of continuous cone variables in the problem after the mixed-integer optimizer’s presolve.
"mioPresolvedNumdexpcones"

Number of dual exponential cones in the problem after the mixed-integer optimizer’s presolve.
"mioPresolvedNumdjc"

Number of disjunctive constraints in the problem after the mixed-integer optimizer’s presolve.
"mioPresolvedNumdpowcones"

Number of dual power cones in the problem after the mixed-integer optimizer’s presolve.
"mioPresolvedNumint"

Number of integer variables in the problem after the mixed-integer optimizer’s presolve.
"mioPresolvedNumintconevar"

Number of integer cone variables in the problem after the mixed-integer optimizer’s presolve.
"mioPresolvedNumpexpcones"

Number of primal exponential cones in the problem after the mixed-integer optimizer’s presolve.
"mioPresolvedNumppowcones"

Number of primal power cones in the problem after the mixed-integer optimizer’s presolve.
"mioPresolvedNumqcones"

Number of quadratic cones in the problem after the mixed-integer optimizer’s presolve.
"mioPresolvedNumrqcones"

Number of rotated quadratic cones in the problem after the mixed-integer optimizer’s presolve.
"mioPresolvedNumvar"

Number of variables in the problem after the mixed-integer optimizer’s presolve.
"mioRelgapSatisfied"

Non-zero if relative gap is within tolerances.
"mioTotalNumSelectedCuts"

Total number of cuts selected to be included in the relaxation by the mixed-integer optimizer.
"mioTotalNumSeparatedCuts"

Total number of cuts separated by the mixed-integer optimizer.
"mioUserObjCut"

If it is non-zero, then the objective cut is used.
"optNumcon"

Number of constraints in the problem solved when the optimizer is called.
"optNumvar"

Number of variables in the problem solved when the optimizer is called
"optimizeResponse"

The response code returned by optimize.
"presolveNumPrimalPerturbations"

Number perturbations to thhe bounds of the primal problem.
"purifyDualSuccess"

Is nonzero if the dual solution is purified.
"purifyPrimalSuccess"

Is nonzero if the primal solution is purified.
"rdNumbarvar"

Number of symmetric variables read.
"rdNumcon"

Number of constraints read.
"rdNumcone"

Number of conic constraints read.

344

"rdNumintvar"

Number of integer-constrained variables read.
"rdNumq"

Number of nonempty Q matrices read.
"rdNumvar"

Number of variables read.
"rdProtype"

Problem type.
"simDualDegIter"

The number of dual degenerate iterations.
"simDualHotstart"

If 1 then the dual simplex algorithm is solving from an advanced basis.
"simDualHotstartLu"

If 1 then a valid basis factorization of full rank was located and used by the dual simplex algorithm.
"simDualInfIter"

The number of iterations taken with dual infeasibility.
"simDualIter"

Number of dual simplex iterations during the last optimization.
"simNumcon"

Number of constraints in the problem solved by the simplex optimizer.
"simNumvar"

Number of variables in the problem solved by the simplex optimizer.
"simPrimalDegIter"

The number of primal degenerate iterations.
"simPrimalHotstart"

If 1 then the primal simplex algorithm is solving from an advanced basis.
"simPrimalHotstartLu"

If 1 then a valid basis factorization of full rank was located and used by the primal simplex
algorithm.

"simPrimalInfIter"

The number of iterations taken with primal infeasibility.
"simPrimalIter"

Number of primal simplex iterations during the last optimization.
"simSolveDual"

Is non-zero if dual problem is solved.
"solBasProsta"

Problem status of the basic solution. Updated after each optimization.
"solBasSolsta"

Solution status of the basic solution. Updated after each optimization.
"solItgProsta"

Problem status of the integer solution. Updated after each optimization.
"solItgSolsta"

Solution status of the integer solution. Updated after each optimization.
"solItrProsta"

Problem status of the interior-point solution. Updated after each optimization.
"solItrSolsta"

Solution status of the interior-point solution. Updated after each optimization.
"stoNumARealloc"

Number of times the storage for storing 𝐴 has been changed. A large value may indicates that
memory fragmentation may occur.

345

14.6.24 Information item types

"douType"

Is a double information type.
"intType"

Is an integer.
"lintType"

Is a long integer.

14.6.25 Input/output modes

"read"

The file is read-only.
"write"

The file is write-only. If the file exists then it is truncated when it is opened. Otherwise it is created
when it is opened.

"readwrite"

The file is to read and write.

14.6.26 Specifies the branching direction.

"free"

The mixed-integer optimizer decides which branch to choose.
"up"

The mixed-integer optimizer always chooses the up branch first.
"down"

The mixed-integer optimizer always chooses the down branch first.
"near"

Branch in direction nearest to selected fractional variable.
"far"

Branch in direction farthest from selected fractional variable.
"rootLp"

Chose direction based on root lp value of selected variable.
"guided"

Branch in direction of current incumbent.
"pseudocost"

Branch based on the pseudocost of the variable.

14.6.27 Specifies the reformulation method for mixed-integer quadratic problems.

"free"

The mixed-integer optimizer decides which reformulation method to apply.
"none"

No reformulation method is applied.
"linearization"

A reformulation via linearization is applied.
"eigenValMethod"

The eigenvalue method is applied.
"diagSdp"

A perturbation of matrix diagonals via the solution of SDPs is applied.
"relaxSdp"

A Reformulation based on the solution of an SDP-relaxation of the problem is applied.

346

14.6.28 Specifies the problem data permutation method for mixed-integer prob-
lems.

"none"

No problem data permutation is applied.
"cyclicShift"

A random cyclic shift is applied to permute the problem data.
"random"

A random permutation is applied to the problem data.

14.6.29 Continuous mixed-integer solution type

"none"

No interior-point or basic solution are reported when the mixed-integer optimizer is used.
"root"

The reported interior-point and basic solutions are a solution to the root node problem when
mixed-integer optimizer is used.

"itg"

The reported interior-point and basic solutions are a solution to the problem with all integer
variables fixed at the value they have in the integer solution. A solution is only reported in case
the problem has a primal feasible solution.

"itgRel"

In case the problem is primal feasible then the reported interior-point and basic solutions are a
solution to the problem with all integer variables fixed at the value they have in the integer solution.
If the problem is primal infeasible, then the solution to the root node problem is reported.

14.6.30 Integer restrictions

"ignored"

The integer constraints are ignored and the problem is solved as a continuous problem.
"satisfied"

Integer restrictions should be satisfied.

14.6.31 Mixed-integer node selection types

"free"

The optimizer decides the node selection strategy.
"first"

The optimizer employs a depth first node selection strategy.
"best"

The optimizer employs a best bound node selection strategy.
"pseudo"

The optimizer employs selects the node based on a pseudo cost estimate.

14.6.32 Mixed-integer variable selection types

"free"

The optimizer decides the variable selection strategy.
"pseudocost"

The optimizer employs pseudocost variable selection.
"strong"

The optimizer employs strong branching varfiable selection

347

14.6.33 MPS file format type

"strict"

It is assumed that the input file satisfies the MPS format strictly.
"relaxed"

It is assumed that the input file satisfies a slightly relaxed version of the MPS format.
"free"

It is assumed that the input file satisfies the free MPS format. This implies that spaces are not
allowed in names. Otherwise the format is free.

"cplex"

The CPLEX compatible version of the MPS format is employed.

14.6.34 Objective sense types

"minimize"

The problem should be minimized.
"maximize"

The problem should be maximized.

14.6.35 On/off

"on"

Switch the option on.
"off"

Switch the option off.

14.6.36 Optimizer types

"conic"

The optimizer for problems having conic constraints.
"dualSimplex"

The dual simplex optimizer is used.
"free"

The optimizer is chosen automatically.
"freeSimplex"

One of the simplex optimizers is used.
"intpnt"

The interior-point optimizer is used.
"mixedInt"

The mixed-integer optimizer.
"newDualSimplex"

The new dual simplex optimizer is used.
"newPrimalSimplex"

The new primal simplex optimizer is used. It is not recommended to use this option.
"primalSimplex"

The primal simplex optimizer is used.

348

14.6.37 Ordering strategies

"free"

The ordering method is chosen automatically.
"appminloc"

Approximate minimum local fill-in ordering is employed.
"experimental"

This option should not be used.
"tryGraphpar"

Always try the graph partitioning based ordering.
"forceGraphpar"

Always use the graph partitioning based ordering even if it is worse than the approximate minimum
local fill ordering.

"none"

No ordering is used. Note using this value almost always leads to a significantly slow down.

14.6.38 Presolve method.

"off"

The problem is not presolved before it is optimized.
"on"

The problem is presolved before it is optimized.
"free"

It is decided automatically whether to presolve before the problem is optimized.

14.6.39 Method of folding (symmetry detection for continuous problems).

"off"

Disabled.
"free"

The solver decides on the usage and amount of folding.
"freeUnlessBasic"

If only the interior-point solution is requested then the solver decides; if the basic solution is
requested then folding is disabled.

"force"

Full folding is always performed regardless of workload.

14.6.40 Parameter type

"invalidType"

Not a valid parameter.
"douType"

Is a double parameter.
"intType"

Is an integer parameter.
"strType"

Is a string parameter.

349

14.6.41 Problem data items

"var"

Item is a variable.
"con"

Item is a constraint.
"cone"

Item is a cone.

14.6.42 Problem types

"lo"

The problem is a linear optimization problem.
"qo"

The problem is a quadratic optimization problem.
"qcqo"

The problem is a quadratically constrained optimization problem.
"conic"

A conic optimization.
"mixed"

General nonlinear constraints and conic constraints. This combination can not be solved by
MOSEK.

14.6.43 Problem status keys

"unknown"

Unknown problem status.
"primAndDualFeas"

The problem is primal and dual feasible.
"primFeas"

The problem is primal feasible.
"dualFeas"

The problem is dual feasible.
"primInfeas"

The problem is primal infeasible.
"dualInfeas"

The problem is dual infeasible.
"primAndDualInfeas"

The problem is primal and dual infeasible.
"illPosed"

The problem is ill-posed. For example, it may be primal and dual feasible but have a positive
duality gap.

"primInfeasOrUnbounded"

The problem is either primal infeasible or unbounded. This may occur for mixed-integer problems.

350

14.6.44 Response code type

"ok"

The response code is OK.
"wrn"

The response code is a warning.
"trm"

The response code is an optimizer termination status.
"err"

The response code is an error.
"unk"

The response code does not belong to any class.

14.6.45 Scaling type

"free"

The optimizer chooses the scaling heuristic.
"none"

No scaling is performed.

14.6.46 Scaling method

"pow2"

Scales only with power of 2 leaving the mantissa untouched.
"free"

The optimizer chooses the scaling heuristic.

14.6.47 Sensitivity types

"basis"

Basis sensitivity analysis is performed.

14.6.48 Simplex selection strategy

"free"

The optimizer chooses the pricing strategy.
"full"

The optimizer uses full pricing.
"ase"

The optimizer uses approximate steepest-edge pricing.
"devex"

The optimizer uses devex steepest-edge pricing (or if it is not available an approximate steep-edge
selection).

"se"

The optimizer uses steepest-edge selection (or if it is not available an approximate steep-edge
selection).

"partial"

The optimizer uses a partial selection approach. The approach is usually beneficial if the number
of variables is much larger than the number of constraints.

351

14.6.49 Solution items

"xc"

Solution for the constraints.
"xx"

Variable solution.
"y"

Lagrange multipliers for equations.
"slc"

Lagrange multipliers for lower bounds on the constraints.
"suc"

Lagrange multipliers for upper bounds on the constraints.
"slx"

Lagrange multipliers for lower bounds on the variables.
"sux"

Lagrange multipliers for upper bounds on the variables.
"snx"

Lagrange multipliers corresponding to the conic constraints on the variables.

14.6.50 Solution status keys

"unknown"

Status of the solution is unknown.
"optimal"

The solution is optimal.
"primFeas"

The solution is primal feasible.
"dualFeas"

The solution is dual feasible.
"primAndDualFeas"

The solution is both primal and dual feasible.
"primInfeasCer"

The solution is a certificate of primal infeasibility.
"dualInfeasCer"

The solution is a certificate of dual infeasibility.
"primIllposedCer"

The solution is a certificate that the primal problem is illposed.
"dualIllposedCer"

The solution is a certificate that the dual problem is illposed.
"integerOptimal"

The primal solution is integer optimal.

14.6.51 Solution types

"bas"

The basic solution.
"itr"

The interior solution.
"itg"

The integer solution.

352

14.6.52 Solve primal or dual form

"free"

The optimizer is free to solve either the primal or the dual problem.
"primal"

The optimizer should solve the primal problem.
"dual"

The optimizer should solve the dual problem.

14.6.53 Status keys

"unk"

The status for the constraint or variable is unknown.
"bas"

The constraint or variable is in the basis.
"supbas"

The constraint or variable is super basic.
"low"

The constraint or variable is at its lower bound.
"upr"

The constraint or variable is at its upper bound.
"fix"

The constraint or variable is fixed.
"inf"

The constraint or variable is infeasible in the bounds.

14.6.54 Starting point types

"free"

The starting point is chosen automatically.
"guess"

The optimizer guesses a starting point.
"constant"

The optimizer constructs a starting point by assigning a constant value to all primal and dual
variables. This starting point is normally robust.

14.6.55 Stream types

"log"

Log stream. Contains the aggregated contents of all other streams. This means that a message
written to any other stream will also be written to this stream.

"msg"

Message stream. Log information relating to performance and progress of the optimization is
written to this stream.

"err"

Error stream. Error messages are written to this stream.
"wrn"

Warning stream. Warning messages are written to this stream.

353

14.6.56 Integer values

"maxStrLen"
Maximum string length allowed in MOSEK.

"licenseBufferLength"
The length of a license key buffer.

14.6.57 Variable types

"typeCont"
Is a continuous variable.

"typeInt"
Is an integer variable.

14.7 Exceptions

• DeletionError : This item cannot be removed.

• DimensionError : Thrown when a given object has the wrong number of dimensions, or they have
not the right size.

• DomainError : Invalid domain.

• ExpressionError : Tried to construct an expression from invalid.

• FatalError : A fatal error has happened.

• FusionException : Base class for all normal exceptions in fusion.

• FusionRuntimeException : Base class for all run-time exceptions in fusion.

• IOError : Error when reading or writing a stream, or opening a file.

• IndexError : Index out of bound, or a multi-dimensional index had wrong number of dimensions.

• LengthError : An array did not have the required length, or two arrays were expected to have
same length.

• MatrixError : Thrown if data used in construction of a matrix contained inconsistencies or errors.

• ModelError : Thrown when objects from different models were mixed.

• NameError : Name clash; tries to add a variable or constraint with a name that already exists.

• OptimizeError : An error occurred during optimization.

• ParameterError : Tried to use an invalid parameter for a value that was invalid for a specific
parameter.

• RangeError : Invalid range specified

• SetDefinitionError : Invalid data for constructing set.

• SliceError : Invalid slice definition, negative slice or slice index out of bounds.

• SolutionError : Requested a solution that was undefined or whose status was not acceptable.

• SparseFormatError : The given sparsity patters was invalid or specified an index that was out of
bounds.

• UnexpectedError : An unexpected error has happened. No specific excepion could have been risen.

• UnimplementedError : Called a stub. Functionality has not yet been implemented.

• UpdateError : Invalid slice definition, negative slice or slice index out of bounds.

• ValueConversionError : Error casting or converting a value.

354

14.7.1 Exception DeletionError

mosek.fusion.DeletionError

This item cannot be removed.

Implements
FusionRuntimeException

Members
FusionRuntimeException.toString – Return the exception message.

14.7.2 Exception DimensionError

mosek.fusion.DimensionError

Thrown when a given object has the wrong number of dimensions, or they have not the right size.

Implements
FusionRuntimeException

Members
FusionRuntimeException.toString – Return the exception message.

14.7.3 Exception DomainError

mosek.fusion.DomainError

Invalid domain.

Implements
FusionRuntimeException

Members
FusionRuntimeException.toString – Return the exception message.

14.7.4 Exception ExpressionError

mosek.fusion.ExpressionError

Tried to construct an expression from invalid.

Implements
FusionRuntimeException

Members
FusionRuntimeException.toString – Return the exception message.

14.7.5 Exception FatalError

mosek.fusion.FatalError

A fatal error has happened.

Implements
RuntimeException

Members
RuntimeException.toString – Return the exception message.

355

14.7.6 Exception FusionException

mosek.fusion.FusionException

Base class for all normal exceptions in fusion.

Implements
Exception

Members
FusionException.toString – Return the exception message.

Implemented by
SolutionError

FusionException.toString

String toString()

Return the exception message.

Return
(String)

14.7.7 Exception FusionRuntimeException

mosek.fusion.FusionRuntimeException

Base class for all run-time exceptions in fusion.

Implements
RuntimeException

Members
FusionRuntimeException.toString – Return the exception message.

Implemented by
IOError , ExpressionError , ParameterError , ValueConversionError ,
DomainError , IndexError , RangeError , LengthError , DimensionError ,
MatrixError , ModelError , DeletionError , NameError , OptimizeError ,
SetDefinitionError , UpdateError , SliceError , SparseFormatError

FusionRuntimeException.toString

String toString()

Return the exception message.

Return
(String)

14.7.8 Exception IOError

mosek.fusion.IOError

Error when reading or writing a stream, or opening a file.

Implements
FusionRuntimeException

Members
FusionRuntimeException.toString – Return the exception message.

356

14.7.9 Exception IndexError

mosek.fusion.IndexError

Index out of bound, or a multi-dimensional index had wrong number of dimensions.

Implements
FusionRuntimeException

Members
FusionRuntimeException.toString – Return the exception message.

14.7.10 Exception LengthError

mosek.fusion.LengthError

An array did not have the required length, or two arrays were expected to have same length.

Implements
FusionRuntimeException

Members
FusionRuntimeException.toString – Return the exception message.

14.7.11 Exception MatrixError

mosek.fusion.MatrixError

Thrown if data used in construction of a matrix contained inconsistencies or errors.

Implements
FusionRuntimeException

Members
FusionRuntimeException.toString – Return the exception message.

14.7.12 Exception ModelError

mosek.fusion.ModelError

Thrown when objects from different models were mixed.

Implements
FusionRuntimeException

Members
FusionRuntimeException.toString – Return the exception message.

14.7.13 Exception NameError

mosek.fusion.NameError

Name clash; tries to add a variable or constraint with a name that already exists.

Implements
FusionRuntimeException

Members
FusionRuntimeException.toString – Return the exception message.

357

14.7.14 Exception OptimizeError

mosek.fusion.OptimizeError

An error occurred during optimization.

Implements
FusionRuntimeException

Members
FusionRuntimeException.toString – Return the exception message.

14.7.15 Exception ParameterError

mosek.fusion.ParameterError

Tried to use an invalid parameter for a value that was invalid for a specific parameter.

Implements
FusionRuntimeException

Members
FusionRuntimeException.toString – Return the exception message.

14.7.16 Exception RangeError

mosek.fusion.RangeError

Invalid range specified

Implements
FusionRuntimeException

Members
FusionRuntimeException.toString – Return the exception message.

14.7.17 Exception SetDefinitionError

mosek.fusion.SetDefinitionError

Invalid data for constructing set.

Implements
FusionRuntimeException

Members
FusionRuntimeException.toString – Return the exception message.

14.7.18 Exception SliceError

mosek.fusion.SliceError

Invalid slice definition, negative slice or slice index out of bounds.

Implements
FusionRuntimeException

Members
FusionRuntimeException.toString – Return the exception message.

358

14.7.19 Exception SolutionError

mosek.fusion.SolutionError

Requested a solution that was undefined or whose status was not acceptable.

Implements
FusionException

Members
FusionException.toString – Return the exception message.

14.7.20 Exception SparseFormatError

mosek.fusion.SparseFormatError

The given sparsity patters was invalid or specified an index that was out of bounds.

Implements
FusionRuntimeException

Members
FusionRuntimeException.toString – Return the exception message.

14.7.21 Exception UnexpectedError

mosek.fusion.UnexpectedError

An unexpected error has happened. No specific excepion could have been risen.

Implements
RuntimeException

Members
RuntimeException.toString – Return the exception message.

14.7.22 Exception UnimplementedError

mosek.fusion.UnimplementedError

Called a stub. Functionality has not yet been implemented.

Implements
RuntimeException

Members
RuntimeException.toString – Return the exception message.

14.7.23 Exception UpdateError

mosek.fusion.UpdateError

Invalid slice definition, negative slice or slice index out of bounds.

Implements
FusionRuntimeException

Members
FusionRuntimeException.toString – Return the exception message.

359

14.7.24 Exception ValueConversionError

mosek.fusion.ValueConversionError

Error casting or converting a value.

Implements
FusionRuntimeException

Members
FusionRuntimeException.toString – Return the exception message.

14.8 Supported domains

This section lists the domains supported by MOSEK. See Sec. 7 for how to apply domains to specify
conic constraints and disjunctive constraints (DJCs).

14.8.1 Affine domains
• Domain.equalsTo : the fixed domain consisting of a single point,

• Domain.lessThan : the upper-bounded domain specified by an upper bound in each dimension,

• Domain.greaterThan : the lower-bounded domain specified by a lower bound in each dimension,

• Domain.inRange : the ranged domain specified by an interval in each dimension,

• Domain.unbounded : the unbounded domain R.

Membership in an affine domain imposes linear constraints in the model. The unbounded domain
imposes no restriction.

14.8.2 Quadratic cone domains
The quadratic domains are determined by the dimension 𝑛.

• Domain.inQCone : the quadratic cone domain is the subset of R𝑛 defined as

𝒬𝑛 =

{︂
𝑥 ∈ R𝑛 : 𝑥1 ≥

√︁
𝑥2
2 + · · · + 𝑥2

𝑛

}︂
.

• Domain.inRotatedQCone : the rotated quadratic cone domain is the subset of R𝑛 defined as

𝒬𝑛
𝑟 =

{︀
𝑥 ∈ R𝑛 : 2𝑥1𝑥2 ≥ 𝑥2

3 + · · · + 𝑥2
𝑛, 𝑥1, 𝑥2 ≥ 0

}︀
.

14.8.3 Exponential cone domains

• Domain.inPExpCone : the primal exponential cone domain is the subset of R3 defined as

𝐾exp =
{︀

(𝑥1, 𝑥2, 𝑥3) ∈ R3 : 𝑥1 ≥ 𝑥2 exp(𝑥3/𝑥2), 𝑥1, 𝑥2 ≥ 0
}︀
.

• Domain.inDExpCone : the dual exponential cone domain is the subset of R3 defined as

𝐾*
exp =

{︀
(𝑥1, 𝑥2, 𝑥3) ∈ R3 : 𝑥1 ≥ −𝑥3 exp(𝑥2/𝑥3 − 1), 𝑥1 ≥ 0, 𝑥3 ≤ 0

}︀
.

360

14.8.4 Power cone domains
A power cone domain is determined by the dimension 𝑛 and a sequence of 1 ≤ 𝑛𝑙 < 𝑛 positive real
numbers (weights) 𝛼1, . . . , 𝛼𝑛𝑙

.

• Domain.inPPowerCone : the primal power cone domain is the subset of R𝑛 defined as

𝒫(𝛼1,...,𝛼𝑛𝑙
)

𝑛 =

{︃
𝑥 ∈ R𝑛 :

𝑛𝑙∏︁
𝑖=1

𝑥𝛽𝑖

𝑖 ≥
√︁

𝑥2
𝑛𝑙+1 + · · · + 𝑥2

𝑛, 𝑥1, . . . , 𝑥𝑛𝑙
≥ 0

}︃
.

where 𝛽𝑖 are the weights normalized to add up to 1, ie. 𝛽𝑖 = 𝛼𝑖/(
∑︀

𝑗 𝛼𝑗) for 𝑖 = 1, . . . , 𝑛𝑙.
The name 𝑛𝑙 reads as “n left”, the length of the product on the left-hand side of the definition.

• Domain.inDPowerCone : the dual power cone domain is the subset of R𝑛 defined as

(︁
𝒫(𝛼1,...,𝛼𝑛𝑙

)
𝑛

)︁*
=

{︃
𝑥 ∈ R𝑛 :

𝑛𝑙∏︁
𝑖=1

(︂
𝑥𝑖

𝛽𝑖

)︂𝛽𝑖

≥
√︁
𝑥2
𝑛𝑙+1 + · · · + 𝑥2

𝑛, 𝑥1, . . . , 𝑥𝑛𝑙
≥ 0

}︃
.

where 𝛽𝑖 are the weights normalized to add up to 1, ie. 𝛽𝑖 = 𝛼𝑖/(
∑︀

𝑗 𝛼𝑗) for 𝑖 = 1, . . . , 𝑛𝑙.
The name 𝑛𝑙 reads as “n left”, the length of the product on the left-hand side of the definition.

• Remark: in MOSEK 9 power cones were available only in the special case with 𝑛𝑙 = 2 and weights
(𝛼, 1 − 𝛼) for some 0 < 𝛼 < 1 specified as cone parameter.

14.8.5 Geometric mean cone domains
A geometric mean cone domain is determined by the dimension 𝑛.

• Domain.inPGeoMeanCone : the primal geometric mean cone domain is the subset of R𝑛 defined
as

𝒢ℳ𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 :

(︃
𝑛−1∏︁
𝑖=1

𝑥𝑖

)︃1/(𝑛−1)

≥ |𝑥𝑛|, 𝑥1, . . . , 𝑥𝑛−1 ≥ 0

⎫⎬⎭ .

It is a special case of the primal power cone domain with 𝑛𝑙 = 𝑛−1 and weights 𝛼 = (1, . . . , 1).

• Domain.inDGeoMeanCone : the dual geometric mean cone domain is the subset of R𝑛 defined
as

(𝒢ℳ𝑛)* =

⎧⎨⎩𝑥 ∈ R𝑛 : (𝑛− 1)

(︃
𝑛−1∏︁
𝑖=1

𝑥𝑖

)︃1/(𝑛−1)

≥ |𝑥𝑛|, 𝑥1, . . . , 𝑥𝑛−1 ≥ 0

⎫⎬⎭ .

It is a special case of the dual power cone domain with 𝑛𝑙 = 𝑛−1 and weights 𝛼 = (1, . . . , 1).

14.8.6 Positive semidefinite cone domain

• Domain.inPSDCone is the domain 𝒮𝑑
+ of symmetric positive-semidefinite variables of a given di-

mension 𝑑. It can only be applied to objects of shape (𝑑, 𝑑).

361

14.9 Class LinAlg

mosek.LinAlg

BLAS/LAPACK linear algebra routines.

Static members
LinAlg.axpy – Computes vector addition and multiplication by a scalar.
LinAlg.dot – Computes the inner product of two vectors.
LinAlg.gemm – Performs a dense matrix multiplication.
LinAlg.gemv – Computes dense matrix times a dense vector product.
LinAlg.potrf – Computes a Cholesky factorization of a dense matrix.
LinAlg.syeig – Computes all eigenvalues of a symmetric dense matrix.
LinAlg.syevd – Computes all the eigenvalues and eigenvectors of a symmetric dense
matrix, and thus its eigenvalue decomposition.
LinAlg.syrk – Performs a rank-k update of a symmetric matrix.

LinAlg.axpy

void LinAlg.axpy(int n, double alpha, double[] x, double[] y)

Adds 𝛼𝑥 to 𝑦, i.e. performs the update

𝑦 := 𝛼𝑥 + 𝑦.

Note that the result is stored overwriting 𝑦. It must not overlap with the other input arrays.

Parameters
• n (int) – Length of the vectors.
• alpha (double) – The scalar that multiplies 𝑥.
• x (double[]) – The 𝑥 vector.
• y (double[]) – The 𝑦 vector.

LinAlg.dot

double LinAlg.dot(int n, double[] x, double[] y)

Computes the inner product of two vectors 𝑥, 𝑦 of length 𝑛 ≥ 0, i.e

𝑥 · 𝑦 =

𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖.

Note that if 𝑛 = 0, then the result of the operation is 0.

Parameters
• n (int) – Length of the vectors.
• x (double[]) – The 𝑥 vector.
• y (double[]) – The 𝑦 vector.

Return
(double)

LinAlg.gemm

void LinAlg.gemm(mosek.transpose transa, mosek.transpose transb, int m, int n,␣
→˓int k, double alpha, double[] a, double[] b, double beta, double[] c)

Performs a matrix multiplication plus addition of dense matrices. Given 𝐴, 𝐵 and 𝐶 of compatible
dimensions, this function computes

𝐶 := 𝛼𝑜𝑝(𝐴)𝑜𝑝(𝐵) + 𝛽𝐶

362

where 𝛼, 𝛽 are two scalar values. The function 𝑜𝑝(𝑋) denotes 𝑋 if transX is NO, or 𝑋𝑇 if set
to YES. The matrix 𝐶 has 𝑚 rows and 𝑛 columns, and the other matrices must have compatible
dimensions.

The result of this operation is stored in 𝐶. It must not overlap with the other input arrays.

Parameters
• transa (transpose) – Indicates if 𝐴 should be transposed. See the Optimizer

API documentation for the definition of these constants.
• transb (transpose) – Indicates if 𝐵 should be transposed. See the Optimizer

API documentation for the definition of these constants.
• m (int) – Indicates the number of rows of matrix 𝐶.
• n (int) – Indicates the number of columns of matrix 𝐶.
• k (int) – Specifies the common dimension along which 𝑜𝑝(𝐴) and 𝑜𝑝(𝐵) are

multiplied. For example, if neither 𝐴 nor 𝐵 are transposed, then this is the
number of columns in 𝐴 and also the number of rows in 𝐵.

• alpha (double) – A scalar value multiplying the result of the matrix multiplica-
tion.

• a (double[]) – The pointer to the array storing matrix 𝐴 in a column-major
format.

• b (double[]) – The pointer to the array storing matrix 𝐵 in a column-major
format.

• beta (double) – A scalar value that multiplies 𝐶.
• c (double[]) – The pointer to the array storing matrix 𝐶 in a column-major

format.

LinAlg.gemv

void LinAlg.gemv(mosek.transpose trans, int m, int n, double alpha, double[] a,␣
→˓double[] x, double beta, double[] y)

Computes the multiplication of a scaled dense matrix times a dense vector, plus a scaled dense
vector. Precisely, if trans is NO then the update is

𝑦 := 𝛼𝐴𝑥 + 𝛽𝑦,

and if trans is YES then

𝑦 := 𝛼𝐴𝑇𝑥 + 𝛽𝑦,

where 𝛼, 𝛽 are scalar values and 𝐴 is a matrix with 𝑚 rows and 𝑛 columns.

Note that the result is stored overwriting 𝑦. It must not overlap with the other input arrays.

Parameters
• trans (transpose) – Indicates if 𝐴 should be transposed. See the Optimizer

API documentation for the definition of these constants.
• m (int) – Specifies the number of rows of the matrix 𝐴.
• n (int) – Specifies the number of columns of the matrix 𝐴.
• alpha (double) – A scalar value multiplying the matrix 𝐴.
• a (double[]) – A pointer to the array storing matrix 𝐴 in a column-major format.
• x (double[]) – A pointer to the array storing the vector 𝑥.
• beta (double) – A scalar value multiplying the vector 𝑦.
• y (double[]) – A pointer to the array storing the vector 𝑦.

LinAlg.potrf

363

void LinAlg.potrf(mosek.uplo uplo, int n, double[] a)

Computes a Cholesky factorization of a real symmetric positive definite dense matrix.

Parameters
• uplo (uplo) – Indicates whether the upper or lower triangular part of the ma-

trix is used. See the Optimizer API documentation for the definition of these
constants.

• n (int) – Specifies the dimension of the symmetric matrix.
• a (double[]) – A symmetric matrix stored in column-major order. Only the

lower or the upper triangular part is used, accordingly with the uplo argument.
It will contain the result on exit.

LinAlg.syeig

void LinAlg.syeig(mosek.uplo uplo, int n, double[] a, double[] w)

Computes all eigenvalues of a real symmetric matrix 𝐴. Given a matrix 𝐴 ∈ R𝑛×𝑛 it returns a
vector 𝑤 ∈ R𝑛 containing the eigenvalues of 𝐴.

Parameters
• uplo (uplo) – Indicates whether the upper or lower triangular part of the ma-

trix is used. See the Optimizer API documentation for the definition of these
constants.

• n (int) – Specifies the dimension of the symmetric matrix.
• a (double[]) – A symmetric matrix stored in column-major order. Only the

lower or the upper triangular part is used, accordingly with the uplo argument.
It will contain the result on exit.

• w (double[]) – Array of length at least n containing the eigenvalues of 𝐴.

LinAlg.syevd

void LinAlg.syevd(mosek.uplo uplo, int n, double[] a, double[] w)

Computes all the eigenvalues and eigenvectors a real symmetric matrix. Given the input matrix
𝐴 ∈ R𝑛×𝑛, this function returns a vector 𝑤 ∈ R𝑛 containing the eigenvalues of 𝐴 and it also
computes the eigenvectors of 𝐴. Therefore, this function computes the eigenvalue decomposition
of 𝐴 as

𝐴 = 𝑈𝑉 𝑈𝑇 ,

where 𝑉 = diag(𝑤) and 𝑈 contains the eigenvectors of 𝐴.

Note that the matrix 𝑈 overwrites the input data 𝐴.

Parameters
• uplo (uplo) – Indicates whether the upper or lower triangular part of the ma-

trix is used. See the Optimizer API documentation for the definition of these
constants.

• n (int) – Specifies the dimension of the symmetric matrix.
• a (double[]) – A symmetric matrix stored in column-major order. Only the

lower or the upper triangular part is used, accordingly with the uplo argument.
It will contain the result on exit.

• w (double[]) – Array of length at least n containing the eigenvalues of 𝐴.

LinAlg.syrk

void LinAlg.syrk(mosek.uplo uplo, mosek.transpose trans, int n, int k, double␣
→˓alpha, double[] a, double beta, double[] c)

364

Performs a symmetric rank-𝑘 update for a symmetric matrix.

Given a symmetric matrix 𝐶 ∈ R𝑛×𝑛, two scalars 𝛼, 𝛽 and a matrix 𝐴 of rank 𝑘 ≤ 𝑛, it computes
either

𝐶 := 𝛼𝐴𝐴𝑇 + 𝛽𝐶,

when trans is set to NO and 𝐴 ∈ R𝑛×𝑘, or

𝐶 := 𝛼𝐴𝑇𝐴 + 𝛽𝐶,

when trans is set to YES and 𝐴 ∈ R𝑘×𝑛.

Only the part of 𝐶 indicated by uplo is used and only that part is updated with the result. It
must not overlap with the other input arrays.

Parameters
• uplo (uplo) – Indicates whether the upper or lower triangular part of 𝐶 is used.

See the Optimizer API documentation for the definition of these constants.
• trans (transpose) – Indicates if 𝐴 should be transposed. See the Optimizer

API documentation for the definition of these constants.
• n (int) – Specifies the order of 𝐶.
• k (int) – Indicates the number of rows or columns of 𝐴, depending on whether

or not it is transposed, and its rank.
• alpha (double) – A scalar value multiplying the result of the matrix multiplica-

tion.
• a (double[]) – The pointer to the array storing matrix 𝐴 in a column-major

format.
• beta (double) – A scalar value that multiplies 𝐶.
• c (double[]) – The pointer to the array storing matrix 𝐶 in a column-major

format.

365

Chapter 15

Supported File Formats

MOSEK supports a range of problem and solution formats listed in Table 15.1 and Table 15.2.
The most important are:

• the Task format, MOSEK‘s native binary format which supports all features that MOSEK
supports. It is the closest possible representation of the internal data in a task and it is ideal for
submitting problem data support questions.

• the PTF format, MOSEK‘s human-readable format that supports all linear, conic and mixed-
integer features. It is ideal for debugging. It is not an exact copy of all the data in the task, but
it contains all information required to reconstruct it, presented in a readable fashion.

• MPS, LP, CBF formats are industry standards, each supporting some limited set of features, and
potentially requiring some degree of reformulation during read/write.

Problem formats

Table 15.1: List of supported file formats for optimization prob-
lems.

Format Type Ext. Binary/Text LP QCQO ACC SDP DJC Sol Param

LP lp plain text X X
MPS mps plain text X X
PTF ptf plain text X X X X X X
CBF cbf plain text X X X
Task format task binary X X X X X X X
Jtask format jtask text/JSON X X X X X X X
OPF (deprecated for conic problems) opf plain text X X X X

The columns of the table indicate if the specified file format supports:

• LP - linear problems, possibly with integer variables,

• QCQO - quadratic objective or constraints,

• ACC - affine conic constraints,

• SDP - semidefinite cone/variables,

• DJC - disjunctive constraints,

• Sol - solutions,

• Param - optimizer parameters.

366

Solution formats

Table 15.2: List of supported solution formats.

Format Type Ext. Binary/Text Description

SOL sol plain text Interior Solution
bas plain text Basic Solution
int plain text Integer

Jsol format jsol text/JSON All solutions

Compression

MOSEK supports GZIP and Zstandard compression. Problem files with extension .gz (for GZIP) and
.zst (for Zstandard) are assumed to be compressed when read, and are automatically compressed when
written. For example, a file called

problem.mps.zst

will be considered as a Zstandard compressed MPS file.

15.1 The LP File Format

MOSEK supports the LP file format with some extensions. The LP format is not a completely well-
defined standard and hence different optimization packages may interpret the same LP file in slightly
different ways. MOSEK tries to emulate as closely as possible CPLEX’s behavior, but tries to stay
backward compatible.

The LP file format can specify problems of the form

minimize/maximize 𝑐𝑇𝑥 + 1
2𝑞

𝑜(𝑥)
subject to 𝑙𝑐 ≤ 𝐴𝑥 + 1

2𝑞(𝑥) ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥𝒥 integer,

where

• 𝑥 ∈ R𝑛 is the vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear term in the objective.

• 𝑞𝑜 :∈ R𝑛 → R is the quadratic term in the objective where

𝑞𝑜(𝑥) = 𝑥𝑇𝑄𝑜𝑥

and it is assumed that

𝑄𝑜 = (𝑄𝑜)𝑇 .

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

• 𝑞 : R𝑛 → R is a vector of quadratic functions. Hence,

367

𝑞𝑖(𝑥) = 𝑥𝑇𝑄𝑖𝑥

where it is assumed that

𝑄𝑖 = (𝑄𝑖)𝑇 .

• 𝒥 ⊆ {1, 2, . . . , 𝑛} is an index set of the integer constrained variables.

15.1.1 File Sections
An LP formatted file contains a number of sections specifying the objective, constraints, variable bounds,
and variable types. The section keywords may be any mix of upper and lower case letters.

Objective Function

The first section beginning with one of the keywords

max
maximum
maximize
min
minimum
minimize

defines the objective sense and the objective function, i.e.

𝑐𝑇𝑥 +
1

2
𝑥𝑇𝑄𝑜𝑥.

The objective may be given a name by writing

myname:

before the expressions.
The objective function contains linear and quadratic terms. The linear terms are written as

4 x1 + x2 - 0.1 x3

and so forth. The quadratic terms are written in square brackets ([]/2) and are either squared or
multiplied as in the examples

x1^2

and

x1 * x2

There may be zero or more pairs of brackets containing quadratic expressions.
An example of an objective section is

minimize
myobj: 4 x1 + x2 - 0.1 x3 + [x1^2 + 2.1 x1 * x2]/2

Please note that the quadratic expressions are multiplied with 1
2 , so that the above expression means

minimize 4𝑥1 + 𝑥2 − 0.1 · 𝑥3 + 1
2 (𝑥2

1 + 2.1 · 𝑥1 · 𝑥2)

If the same variable occurs more than once in the linear part, the coefficients are added, so that 4 x1 +
2 x1 is equivalent to 6 x1. In the quadratic expressions x1 * x2 is equivalent to x2 * x1 and, as in the
linear part, if the same variables multiplied or squared occur several times their coefficients are added.

368

Constraints

The second section beginning with one of the keywords

subj to
subject to
s.t.
st

defines the linear constraint matrix 𝐴 and the quadratic matrices 𝑄𝑖.
A constraint contains a name (optional), expressions adhering to the same rules as in the objective

and a bound:

subject to
con1: x1 + x2 + [x3^2]/2 <= 5.1

The bound type (here <=) may be any of <, <=, =, >, >= (< and <= mean the same), and the bound
may be any number.

Ranged constraints cannot be written in LP format, and have to be split into a separate upper and
lower bound.

Bounds

Bounds on the variables can be specified in the bound section beginning with one of the keywords

bound
bounds

The bounds section is optional but should, if present, follow the subject to section. All variables
listed in the bounds section must occur in either the objective or a constraint.

The default lower and upper bounds are 0 and +∞ . A variable may be declared free with the keyword
free, which means that the lower bound is −∞ and the upper bound is +∞ . Furthermore it may be
assigned a finite lower and upper bound. The bound definitions for a given variable may be written in
one or two lines, and bounds can be any number or ±∞ (written as +inf/-inf/+infinity/-infinity)
as in the example

bounds
x1 free
x2 <= 5
0.1 <= x2
x3 = 42
2 <= x4 < +inf

Variable Types

The final two sections are optional and must begin with one of the keywords

bin
binaries
binary

and

gen
general

Under general all integer variables are listed, and under binary all binary (integer variables with
bounds 0 and 1) are listed:

general
x1 x2

(continues on next page)

369

(continued from previous page)

binary
x3 x4

Again, all variables listed in the binary or general sections must occur in either the objective or a
constraint.

Terminating Section

Finally, an LP formatted file must be terminated with the keyword

end

15.1.2 LP File Examples

Linear example lo1.lp

\ File: lo1.lp
maximize
obj: 3 x1 + x2 + 5 x3 + x4
subject to
c1: 3 x1 + x2 + 2 x3 = 30
c2: 2 x1 + x2 + 3 x3 + x4 >= 15
c3: 2 x2 + 3 x4 <= 25
bounds
0 <= x1 <= +infinity
0 <= x2 <= 10
0 <= x3 <= +infinity
0 <= x4 <= +infinity

end

Mixed integer example milo1.lp

maximize
obj: x1 + 6.4e-01 x2
subject to
c1: 5e+01 x1 + 3.1e+01 x2 <= 2.5e+02
c2: 3e+00 x1 - 2e+00 x2 >= -4e+00
bounds
0 <= x1 <= +infinity
0 <= x2 <= +infinity

general
x1 x2

end

15.1.3 LP Format peculiarities

Comments

Anything on a line after a \ is ignored and is treated as a comment.

370

Names

A name for an objective, a constraint or a variable may contain the letters a-z, A-Z, the digits 0-9 and
the characters

!"#$%&()/,.;?@_'`|~

The first character in a name must not be a number, a period or the letter e or E. Keywords must
not be used as names.

MOSEK accepts any character as valid for names, except \0. A name that is not allowed in LP file
will be changed and a warning will be issued.

The algorithm for making names LP valid works as follows: The name is interpreted as an utf-8
string. For a Unicode character c:

• If c==_ (underscore), the output is __ (two underscores).

• If c is a valid LP name character, the output is just c.

• If c is another character in the ASCII range, the output is _XX, where XX is the hexadecimal code
for the character.

• If c is a character in the range 127-65535, the output is _uXXXX, where XXXX is the hexadecimal
code for the character.

• If c is a character above 65535, the output is _UXXXXXXXX, where XXXXXXXX is the hexadecimal
code for the character.

Invalid utf-8 substrings are escaped as _XX', and if a name starts with a period, e or E, that character
is escaped as _XX.

Variable Bounds

Specifying several upper or lower bounds on one variable is possible but MOSEK uses only the tightest
bounds. If a variable is fixed (with =), then it is considered the tightest bound.

15.2 The MPS File Format

MOSEK supports the standard MPS format with some extensions. For a detailed description of the
MPS format see the book by Nazareth [Naz87].

15.2.1 MPS File Structure
The version of the MPS format supported by MOSEK allows specification of an optimization problem
of the form

maximize/minimize 𝑐𝑇𝑥 + 𝑞0(𝑥)
𝑙𝑐 ≤ 𝐴𝑥 + 𝑞(𝑥) ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ 𝒦,
𝑥𝒥 integer,

(15.1)

where

• 𝑥 ∈ R𝑛 is the vector of decision variables.

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

371

• 𝑞 : R𝑛 → R is a vector of quadratic functions. Hence,

𝑞𝑖(𝑥) =
1

2
𝑥𝑇𝑄𝑖𝑥

where it is assumed that 𝑄𝑖 = (𝑄𝑖)𝑇 . Please note the explicit 1
2 in the quadratic term and that 𝑄𝑖

is required to be symmetric. The same applies to 𝑞0.

• 𝒦 is a convex cone.

• 𝒥 ⊆ {1, 2, . . . , 𝑛} is an index set of the integer-constrained variables.

• 𝑐 is the vector of objective coefficients.

An MPS file with one row and one column can be illustrated like this:

* 1 2 3 4 5 6
*23456789012345678901234567890123456789012345678901234567890
NAME [name]
OBJSENSE

[objsense]
OBJNAME [objname]
ROWS
? [cname1]

COLUMNS
[vname1] [cname1] [value1] [cname2] [value2]

RHS
[name] [cname1] [value1] [cname2] [value2]

RANGES
[name] [cname1] [value1] [cname2] [value2]

QSECTION [cname1]
[vname1] [vname2] [value1] [vname3] [value2]

QMATRIX
[vname1] [vname2] [value1]

QUADOBJ
[vname1] [vname2] [value1]

QCMATRIX [cname1]
[vname1] [vname2] [value1]

BOUNDS
?? [name] [vname1] [value1]

CSECTION [kname1] [value1] [ktype]
[vname1]

ENDATA

Here the names in capitals are keywords of the MPS format and names in brackets are custom defined
names or values. A couple of notes on the structure:

• Fields: All items surrounded by brackets appear in fields. The fields named “valueN” are numerical
values. Hence, they must have the format

[+|-]XXXXXXX.XXXXXX[[e|E][+|-]XXX]

where

X = [0|1|2|3|4|5|6|7|8|9].

• Sections: The MPS file consists of several sections where the names in capitals indicate the begin-
ning of a new section. For example, COLUMNS denotes the beginning of the columns section.

• Comments: Lines starting with an * are comment lines and are ignored by MOSEK.

• Keys: The question marks represent keys to be specified later.

372

• Extensions: The sections QSECTION and CSECTION are specific MOSEK extensions of the MPS
format. The sections QMATRIX, QUADOBJ and QCMATRIX are included for sake of compatibility with
other vendors extensions to the MPS format.

• The standard MPS format is a fixed format, i.e. everything in the MPS file must be within certain
fixed positions. MOSEK also supports a free format. See Sec. 15.2.5 for details.

Linear example lo1.mps

A concrete example of a MPS file is presented below:

* File: lo1.mps
NAME lo1
OBJSENSE

MAX
ROWS
N obj
E c1
G c2
L c3

COLUMNS
x1 obj 3
x1 c1 3
x1 c2 2
x2 obj 1
x2 c1 1
x2 c2 1
x2 c3 2
x3 obj 5
x3 c1 2
x3 c2 3
x4 obj 1
x4 c2 1
x4 c3 3

RHS
rhs c1 30
rhs c2 15
rhs c3 25

RANGES
BOUNDS
UP bound x2 10

ENDATA

Subsequently each individual section in the MPS format is discussed.

373

NAME (optional)

In this section a name ([name]) is assigned to the problem.

OBJSENSE (optional)

This is an optional section that can be used to specify the sense of the objective function. The OBJSENSE
section contains one line at most which can be one of the following:

MIN
MINIMIZE
MAX
MAXIMIZE

It should be obvious what the implication is of each of these four lines.

OBJNAME (optional)

This is an optional section that can be used to specify the name of the row that is used as objective
function. objname should be a valid row name.

ROWS

A record in the ROWS section has the form

? [cname1]

where the requirements for the fields are as follows:

Field Starting Position Max Width required Description

? 2 1 Yes Constraint key
[cname1] 5 8 Yes Constraint name

Hence, in this section each constraint is assigned a unique name denoted by [cname1]. Please note
that [cname1] starts in position 5 and the field can be at most 8 characters wide. An initial key ? must
be present to specify the type of the constraint. The key can have values E, G, L, or N with the following
interpretation:

Constraint type 𝑙𝑐𝑖 𝑢𝑐
𝑖

E (equal) finite = 𝑙𝑐𝑖
G (greater) finite ∞
L (lower) −∞ finite
N (none) −∞ ∞

In the MPS format the objective vector is not specified explicitly, but one of the constraints having
the key N will be used as the objective vector 𝑐 . In general, if multiple N type constraints are specified,
then the first will be used as the objective vector 𝑐, unless something else was specified in the section
OBJNAME.

COLUMNS

In this section the elements of 𝐴 are specified using one or more records having the form:

[vname1] [cname1] [value1] [cname2] [value2]

where the requirements for each field are as follows:

374

Field Starting Position Max Width required Description

[vname1] 5 8 Yes Variable name
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

Hence, a record specifies one or two elements 𝑎𝑖𝑗 of 𝐴 using the principle that [vname1] and [cname1]
determines 𝑗 and 𝑖 respectively. Please note that [cname1] must be a constraint name specified in the
ROWS section. Finally, [value1] denotes the numerical value of 𝑎𝑖𝑗 . Another optional element is specified
by [cname2], and [value2] for the variable specified by [vname1]. Some important comments are:

• All elements belonging to one variable must be grouped together.

• Zero elements of 𝐴 should not be specified.

• At least one element for each variable should be specified.

RHS (optional)

A record in this section has the format

[name] [cname1] [value1] [cname2] [value2]

where the requirements for each field are as follows:

Field Starting Position Max Width required Description

[name] 5 8 Yes Name of the RHS vector
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

The interpretation of a record is that [name] is the name of the RHS vector to be specified. In general,
several vectors can be specified. [cname1] denotes a constraint name previously specified in the ROWS
section. Now, assume that this name has been assigned to the 𝑖 -h constraint and 𝑣1 denotes the value
specified by [value1], then the interpretation of 𝑣1 is:

Constraint 𝑙𝑐𝑖 𝑢𝑐
𝑖

E 𝑣1 𝑣1
G 𝑣1
L 𝑣1
N

An optional second element is specified by [cname2] and [value2] and is interpreted in the same
way. Please note that it is not necessary to specify zero elements, because elements are assumed to be
zero.

375

RANGES (optional)

A record in this section has the form

[name] [cname1] [value1] [cname2] [value2]

where the requirements for each fields are as follows:

Field Starting Position Max Width required Description

[name] 5 8 Yes Name of the RANGE vector
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

The records in this section are used to modify the bound vectors for the constraints, i.e. the values
in 𝑙𝑐 and 𝑢𝑐 . A record has the following interpretation:[name] is the name of the RANGE vector and
[cname1] is a valid constraint name. Assume that [cname1] is assigned to the 𝑖-th constraint and let
𝑣1 be the value specified by [value1], then a record has the interpretation:

Constraint type Sign of 𝑣1 𝑙𝑐𝑖 𝑢𝑐
𝑖

E − 𝑢𝑐
𝑖 + 𝑣1

E + 𝑙𝑐𝑖 + 𝑣1
G − or + 𝑙𝑐𝑖 + |𝑣1|
L − or + 𝑢𝑐

𝑖 − |𝑣1|
N

Another constraint bound can optionally be modified using [cname2] and [value2] the same way.

QSECTION (optional)

Within the QSECTION the label [cname1] must be a constraint name previously specified in the ROWS
section. The label [cname1] denotes the constraint to which the quadratic terms belong. A record in
the QSECTION has the form

[vname1] [vname2] [value1] [vname3] [value2]

where the requirements for each field are:

Field Starting Position Max Width required Description

[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value
[vname3] 40 8 No Variable name
[value2] 50 12 No Numerical value

A record specifies one or two elements in the lower triangular part of the 𝑄𝑖 matrix where [cname1]
specifies the 𝑖 . Hence, if the names [vname1] and [vname2] have been assigned to the 𝑘-th and 𝑗-th
variable, then 𝑄𝑖

𝑘𝑗 is assigned the value given by [value1] An optional second element is specified in
the same way by the fields [vname1], [vname3], and [value2].

The example

minimize −𝑥2 + 1
2 (2𝑥2

1 − 2𝑥1𝑥3 + 0.2𝑥2
2 + 2𝑥2

3)
subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,

𝑥 ≥ 0

has the following MPS file representation

376

* File: qo1.mps
NAME qo1
ROWS
N obj
G c1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0

QSECTION obj
x1 x1 2.0
x1 x3 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Regarding the QSECTIONs please note that:

• Only one QSECTION is allowed for each constraint.

• The QSECTIONs can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QSECTION must already be specified in the COLUMNS section.

• All entries specified in a QSECTION are assumed to belong to the lower triangular part of the
quadratic term of 𝑄 .

QMATRIX/QUADOBJ (optional)

The QMATRIX and QUADOBJ sections allow to define the quadratic term of the objective function. They
differ in how the quadratic term of the objective function is stored:

• QMATRIX stores all the nonzeros coefficients, without taking advantage of the symmetry of the 𝑄
matrix.

• QUADOBJ stores the upper diagonal nonzero elements of the 𝑄 matrix.

A record in both sections has the form:

[vname1] [vname2] [value1]

where the requirements for each field are:

Field Starting Position Max Width required Description

[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value

A record specifies one elements of the 𝑄 matrix in the objective function . Hence, if the names
[vname1] and [vname2] have been assigned to the 𝑘-th and 𝑗-th variable, then 𝑄𝑘𝑗 is assigned the value
given by [value1]. Note that a line must appear for each off-diagonal coefficient if using a QMATRIX
section, while only one entry is required in a QUADOBJ section. The quadratic part of the objective
function will be evaluated as 1/2𝑥𝑇𝑄𝑥.

The example

minimize −𝑥2 + 1
2 (2𝑥2

1 − 2𝑥1𝑥3 + 0.2𝑥2
2 + 2𝑥2

3)
subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,

𝑥 ≥ 0

has the following MPS file representation using QMATRIX

377

* File: qo1_matrix.mps
NAME qo1_qmatrix
ROWS
N obj
G c1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0

QMATRIX
x1 x1 2.0
x1 x3 -1.0
x3 x1 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

or the following using QUADOBJ

* File: qo1_quadobj.mps
NAME qo1_quadobj
ROWS
N obj
G c1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0

QUADOBJ
x1 x1 2.0
x1 x3 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Please also note that:

• A QMATRIX/QUADOBJ section can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QMATRIX/QUADOBJ section must already be specified in the
COLUMNS section.

QCMATRIX (optional)

A QCMATRIX section allows to specify the quadratic part of a given constraint. Within the QCMATRIX the
label [cname1] must be a constraint name previously specified in the ROWS section. The label [cname1]
denotes the constraint to which the quadratic term belongs. A record in the QSECTION has the form

[vname1] [vname2] [value1]

where the requirements for each field are:

378

Field Starting Position Max Width required Description

[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value

A record specifies an entry of the 𝑄𝑖 matrix where [cname1] specifies the 𝑖. Hence, if the names
[vname1] and [vname2] have been assigned to the 𝑘-th and 𝑗-th variable, then 𝑄𝑖

𝑘𝑗 is assigned the value
given by [value1]. Moreover, the quadratic term is represented as 1/2𝑥𝑇𝑄𝑥.

The example

minimize 𝑥2

subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,
1
2 (−2𝑥1𝑥3 + 0.2𝑥2

2 + 2𝑥2
3) ≤ 10,

𝑥 ≥ 0

has the following MPS file representation

* File: qo1.mps
NAME qo1
ROWS
N obj
G c1
L q1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0
rhs q1 10.0

QCMATRIX q1
x1 x1 2.0
x1 x3 -1.0
x3 x1 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Regarding the QCMATRIXs please note that:

• Only one QCMATRIX is allowed for each constraint.

• The QCMATRIXs can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QSECTION must already be specified in the COLUMNS section.

• QCMATRIX does not exploit the symmetry of 𝑄: an off-diagonal entry (𝑖, 𝑗) should appear twice.

BOUNDS (optional)

In the BOUNDS section changes to the default bounds vectors 𝑙𝑥 and 𝑢𝑥 are specified. The default bounds
vectors are 𝑙𝑥 = 0 and 𝑢𝑥 = ∞ . Moreover, it is possible to specify several sets of bound vectors. A
record in this section has the form

?? [name] [vname1] [value1]

where the requirements for each field are:

379

Field Starting Position Max Width Required Description

?? 2 2 Yes Bound key
[name] 5 8 Yes Name of the BOUNDS vector
[vname1] 15 8 Yes Variable name
[value1] 25 12 No Numerical value

Hence, a record in the BOUNDS section has the following interpretation:[name] is the name of the
bound vector and [vname1] is the name of the variable for which the bounds are modified by the record.
?? and [value1] are used to modify the bound vectors according to the following table:

?? 𝑙𝑥𝑗 𝑢𝑥
𝑗 Made integer (added to 𝒥)

FR −∞ ∞ No
FX 𝑣1 𝑣1 No
LO 𝑣1 unchanged No
MI −∞ unchanged No
PL unchanged ∞ No
UP unchanged 𝑣1 No
BV 0 1 Yes
LI ⌈𝑣1⌉ unchanged Yes
UI unchanged ⌊𝑣1⌋ Yes

Here 𝑣1 is the value specified by [value1].

CSECTION (optional)

The purpose of the CSECTION is to specify the conic constraint

𝑥 ∈ 𝒦

in (15.1). It is assumed that 𝒦 satisfies the following requirements. Let

𝑥𝑡 ∈ R𝑛𝑡

, 𝑡 = 1, . . . , 𝑘

be vectors comprised of parts of the decision variables 𝑥 so that each decision variable is a member of
exactly one vector 𝑥𝑡, for example

𝑥1 =

⎡⎣ 𝑥1

𝑥4

𝑥7

⎤⎦ and 𝑥2 =

⎡⎢⎢⎣
𝑥6

𝑥5

𝑥3

𝑥2

⎤⎥⎥⎦ .

Next define

𝒦 :=
{︀
𝑥 ∈ R𝑛 : 𝑥𝑡 ∈ 𝒦𝑡, 𝑡 = 1, . . . , 𝑘

}︀
where 𝒦𝑡 must have one of the following forms:

• R set:

𝒦𝑡 = R𝑛𝑡

.

• Zero cone:

𝒦𝑡 = {0} ⊆ R𝑛𝑡

. (15.2)

• Quadratic cone:

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 𝑥1 ≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=2

𝑥2
𝑗

⎫⎬⎭ . (15.3)

380

• Rotated quadratic cone:

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 2𝑥1𝑥2 ≥
𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ . (15.4)

• Primal exponential cone:

𝒦𝑡 =
{︀
𝑥 ∈ R3 : 𝑥1 ≥ 𝑥2 exp(𝑥3/𝑥2), 𝑥1, 𝑥2 ≥ 0

}︀
. (15.5)

• Primal power cone (with parameter 0 < 𝛼 < 1):

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 𝑥𝛼
1𝑥

1−𝛼
2 ≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ . (15.6)

• Dual exponential cone:

𝒦𝑡 =
{︀
𝑥 ∈ R3 : 𝑥1 ≥ −𝑥3𝑒

−1 exp(𝑥2/𝑥3), 𝑥3 ≤ 0, 𝑥1 ≥ 0
}︀
. (15.7)

• Dual power cone (with parameter 0 < 𝛼 < 1):

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

:
(︁𝑥1

𝛼

)︁𝛼(︂ 𝑥2

1 − 𝛼

)︂1−𝛼

≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ . (15.8)

In general, membership in the R set is not specified. If a variable is not a member of any other cone
then it is assumed to be a member of the R cone.

Next, let us study an example. Assume that the power cone

𝑥
1/3
4 𝑥

2/3
5 ≥ |𝑥8|

and the rotated quadratic cone

2𝑥3𝑥7 ≥ 𝑥2
1 + 𝑥2

0, 𝑥3, 𝑥7 ≥ 0,

should be specified in the MPS file. One CSECTION is required for each cone and they are specified as
follows:

* 1 2 3 4 5 6
*23456789012345678901234567890123456789012345678901234567890
CSECTION konea 3e-1 PPOW
x4
x5
x8
CSECTION koneb 0.0 RQUAD
x7
x3
x1
x0

In general, a CSECTION header has the format

CSECTION [kname1] [value1] [ktype]

where the requirements for each field are as follows:

Field Starting Position Max Width Required Description

[kname1] 15 8 Yes Name of the cone
[value1] 25 12 No Cone parameter
[ktype] 40 Yes Type of the cone.

381

The possible cone type keys are:

[ktype] Members [value1] Interpretation.

ZERO ≥ 0 unused Zero cone (15.2).
QUAD ≥ 1 unused Quadratic cone (15.3).
RQUAD ≥ 2 unused Rotated quadratic cone (15.4).
PEXP 3 unused Primal exponential cone (15.5).
PPOW ≥ 2 𝛼 Primal power cone (15.6).
DEXP 3 unused Dual exponential cone (15.7).
DPOW ≥ 2 𝛼 Dual power cone (15.8).

A record in the CSECTION has the format

[vname1]

where the requirements for each field are

Field Starting Position Max Width required Description

[vname1] 5 8 Yes A valid variable name

A variable must occur in at most one CSECTION.

ENDATA

This keyword denotes the end of the MPS file.

15.2.2 Integer Variables
Using special bound keys in the BOUNDS section it is possible to specify that some or all of the variables
should be integer-constrained i.e. be members of 𝒥 . However, an alternative method is available. This
method is available only for backward compatibility and we recommend that it is not used. This method
requires that markers are placed in the COLUMNS section as in the example:

COLUMNS
x1 obj -10.0 c1 0.7
x1 c2 0.5 c3 1.0
x1 c4 0.1
* Start of integer-constrained variables.
MARK000 'MARKER' 'INTORG'
x2 obj -9.0 c1 1.0
x2 c2 0.8333333333 c3 0.66666667
x2 c4 0.25
x3 obj 1.0 c6 2.0
MARK001 'MARKER' 'INTEND'
* End of integer-constrained variables.

Please note that special marker lines are used to indicate the start and the end of the integer variables.
Furthermore be aware of the following

• All variables between the markers are assigned a default lower bound of 0 and a default upper
bound of 1. This may not be what is intended. If it is not intended, the correct bounds
should be defined in the BOUNDS section of the MPS formatted file.

• MOSEK ignores field 1, i.e. MARK0001 and MARK001, however, other optimization systems require
them.

• Field 2, i.e. MARKER, must be specified including the single quotes. This implies that no row can
be assigned the name MARKER.

• Field 3 is ignored and should be left blank.

382

• Field 4, i.e. INTORG and INTEND, must be specified.

• It is possible to specify several such integer marker sections within the COLUMNS section.

15.2.3 General Limitations
• An MPS file should be an ASCII file.

15.2.4 Interpretation of the MPS Format
Several issues related to the MPS format are not well-defined by the industry standard. However,
MOSEK uses the following interpretation:

• If a matrix element in the COLUMNS section is specified multiple times, then the multiple entries are
added together.

• If a matrix element in a QSECTION section is specified multiple times, then the multiple entries are
added together.

15.2.5 The Free MPS Format
MOSEK supports a free format variation of the MPS format. The free format is similar to the MPS file
format but less restrictive, e.g. it allows longer names. However, a name must not contain any blanks.

Warning: This file format is to a large extent deprecated. While it can still be used for linear
and quadratic problems, for conic problems the Sec. 15.5 is recommended.

15.3 The OPF Format

The Optimization Problem Format (OPF) is an alternative to LP and MPS files for specifying optimiza-
tion problems. It is row-oriented, inspired by the CPLEX LP format.

Apart from containing objective, constraints, bounds etc. it may contain complete or partial solutions,
comments and extra information relevant for solving the problem. It is designed to be easily read and
modified by hand and to be forward compatible with possible future extensions.

Intended use

The OPF file format is meant to replace several other files:

• The LP file format: Any problem that can be written as an LP file can be written as an OPF file
too; furthermore it naturally accommodates ranged constraints and variables as well as arbitrary
characters in names, fixed expressions in the objective, empty constraints, and conic constraints.

• Parameter files: It is possible to specify integer, double and string parameters along with the
problem (or in a separate OPF file).

• Solution files: It is possible to store a full or a partial solution in an OPF file and later reload it.

15.3.1 The File Format
The format uses tags to structure data. A simple example with the basic sections may look like this:

[comment]
This is a comment. You may write almost anything here...
[/comment]

This is a single-line comment.

(continues on next page)

383

(continued from previous page)

[objective min 'myobj']
x + 3 y + x^2 + 3 y^2 + z + 1
[/objective]

[constraints]
[con 'con01'] 4 <= x + y [/con]
[/constraints]

[bounds]
[b] -10 <= x,y <= 10 [/b]

[cone quad] x,y,z [/cone]
[/bounds]

A scope is opened by a tag of the form [tag] and closed by a tag of the form [/tag]. An opening
tag may accept a list of unnamed and named arguments, for examples:

[tag value] tag with one unnamed argument [/tag]
[tag arg=value] tag with one named argument [/tag]

Unnamed arguments are identified by their order, while named arguments may appear in any order,
but never before an unnamed argument. The value can be a quoted, single-quoted or double-quoted
text string, i.e.

[tag 'value'] single-quoted value [/tag]
[tag arg='value'] single-quoted value [/tag]
[tag "value"] double-quoted value [/tag]
[tag arg="value"] double-quoted value [/tag]

15.3.2 Sections
The recognized tags are

[comment]

A comment section. This can contain almost any text: Between single quotes (’) or double quotes (")
any text may appear. Outside quotes the markup characters ([and]) must be prefixed by backslashes.
Both single and double quotes may appear alone or inside a pair of quotes if it is prefixed by a backslash.

[objective]

The objective function: This accepts one or two parameters, where the first one (in the above example
min) is either min or max (regardless of case) and defines the objective sense, and the second one (above
myobj), if present, is the objective name. The section may contain linear and quadratic expressions.

If several objectives are specified, all but the last are ignored.

[constraints]

This does not directly contain any data, but may contain subsections con defining a linear constraint.

384

[con]

Defines a single constraint; if an argument is present ([con NAME]) this is used as the name of the
constraint, otherwise it is given a null-name. The section contains a constraint definition written as
linear and quadratic expressions with a lower bound, an upper bound, with both or with an equality.
Examples:

[constraints]
[con 'con1'] 0 <= x + y [/con]
[con 'con2'] 0 >= x + y [/con]
[con 'con3'] 0 <= x + y <= 10 [/con]
[con 'con4'] x + y = 10 [/con]
[/constraints]

Constraint names are unique. If a constraint is specified which has the same name as a previously
defined constraint, the new constraint replaces the existing one.

[bounds]

This does not directly contain any data, but may contain subsections b (linear bounds on variables) and
cone (cones).

[b]

Bound definition on one or several variables separated by comma (,). An upper or lower bound on a
variable replaces any earlier defined bound on that variable. If only one bound (upper or lower) is given
only this bound is replaced. This means that upper and lower bounds can be specified separately. So
the OPF bound definition:

[b] x,y >= -10 [/b]
[b] x,y <= 10 [/b]

results in the bound −10 ≤ 𝑥, 𝑦 ≤ 10.

[cone]

Specifies a cone. A cone is defined as a sequence of variables which belong to a single unique cone. The
supported cone types are:

• quad: a quadratic cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of the form

𝑥2
1 ≥

𝑛∑︁
𝑖=2

𝑥2
𝑖 , 𝑥1 ≥ 0.

• rquad: a rotated quadratic cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of the form

2𝑥1𝑥2 ≥
𝑛∑︁

𝑖=3

𝑥2
𝑖 , 𝑥1, 𝑥2 ≥ 0.

• pexp: primal exponential cone of 3 variables 𝑥1, 𝑥2, 𝑥3 defines a constraint of the form

𝑥1 ≥ 𝑥2 exp(𝑥3/𝑥2), 𝑥1, 𝑥2 ≥ 0.

• ppow with parameter 0 < 𝛼 < 1: primal power cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint
of the form

𝑥𝛼
1𝑥

1−𝛼
2 ≥

⎯⎸⎸⎷ 𝑛∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0.

385

• dexp: dual exponential cone of 3 variables 𝑥1, 𝑥2, 𝑥3 defines a constraint of the form

𝑥1 ≥ −𝑥3𝑒
−1 exp(𝑥2/𝑥3), 𝑥3 ≤ 0, 𝑥1 ≥ 0.

• dpow with parameter 0 < 𝛼 < 1: dual power cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of
the form

(︁𝑥1

𝛼

)︁𝛼(︂ 𝑥2

1 − 𝛼

)︂1−𝛼

≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0.

• zero: zero cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of the form

𝑥1 = · · · = 𝑥𝑛 = 0

A [bounds]-section example:

[bounds]
[b] 0 <= x,y <= 10 [/b] # ranged bound
[b] 10 >= x,y >= 0 [/b] # ranged bound
[b] 0 <= x,y <= inf [/b] # using inf
[b] x,y free [/b] # free variables
Let (x,y,z,w) belong to the cone K
[cone rquad] x,y,z,w [/cone] # rotated quadratic cone
[cone ppow '3e-01' 'a'] x1, x2, x3 [/cone] # power cone with alpha=1/3 and name 'a'
[/bounds]

By default all variables are free.

[variables]

This defines an ordering of variables as they should appear in the problem. This is simply a space-
separated list of variable names.

[integer]

This contains a space-separated list of variables and defines the constraint that the listed variables must
be integer-valued.

[hints]

This may contain only non-essential data; for example estimates of the number of variables, constraints
and non-zeros. Placed before all other sections containing data this may reduce the time spent reading
the file.

In the hints section, any subsection which is not recognized by MOSEK is simply ignored. In this
section a hint is defined as follows:

[hint ITEM] value [/hint]

The hints recognized by MOSEK are:

• numvar (number of variables),

• numcon (number of linear/quadratic constraints),

• numanz (number of linear non-zeros in constraints),

• numqnz (number of quadratic non-zeros in constraints).

386

[solutions]

This section can contain a set of full or partial solutions to a problem. Each solution must be specified
using a [solution]-section, i.e.

[solutions]
[solution]...[/solution] #solution 1
[solution]...[/solution] #solution 2
#other solutions....
[solution]...[/solution] #solution n
[/solutions]

The syntax of a [solution]-section is the following:

[solution SOLTYPE status=STATUS]...[/solution]

where SOLTYPE is one of the strings

• interior, a non-basic solution,

• basic, a basic solution,

• integer, an integer solution,

and STATUS is one of the strings

• UNKNOWN,

• OPTIMAL,

• INTEGER_OPTIMAL,

• PRIM_FEAS,

• DUAL_FEAS,

• PRIM_AND_DUAL_FEAS,

• NEAR_OPTIMAL,

• NEAR_PRIM_FEAS,

• NEAR_DUAL_FEAS,

• NEAR_PRIM_AND_DUAL_FEAS,

• PRIM_INFEAS_CER,

• DUAL_INFEAS_CER,

• NEAR_PRIM_INFEAS_CER,

• NEAR_DUAL_INFEAS_CER,

• NEAR_INTEGER_OPTIMAL.

Most of these values are irrelevant for input solutions; when constructing a solution for simplex
hot-start or an initial solution for a mixed integer problem the safe setting is UNKNOWN.

A [solution]-section contains [con] and [var] sections. Each [con] and [var] section defines
solution information for a single variable or constraint, specified as list of KEYWORD/value pairs, in any
order, written as

KEYWORD=value

Allowed keywords are as follows:

• sk. The status of the item, where the value is one of the following strings:

– LOW, the item is on its lower bound.

387

– UPR, the item is on its upper bound.

– FIX, it is a fixed item.

– BAS, the item is in the basis.

– SUPBAS, the item is super basic.

– UNK, the status is unknown.

– INF, the item is outside its bounds (infeasible).

• lvl Defines the level of the item.

• sl Defines the level of the dual variable associated with its lower bound.

• su Defines the level of the dual variable associated with its upper bound.

• sn Defines the level of the variable associated with its cone.

• y Defines the level of the corresponding dual variable (for constraints only).

A [var] section should always contain the items sk, lvl, sl and su. Items sl and su are not required
for integer solutions.

A [con] section should always contain sk, lvl, sl, su and y.
An example of a solution section

[solution basic status=UNKNOWN]
[var x0] sk=LOW lvl=5.0 [/var]
[var x1] sk=UPR lvl=10.0 [/var]
[var x2] sk=SUPBAS lvl=2.0 sl=1.5 su=0.0 [/var]

[con c0] sk=LOW lvl=3.0 y=0.0 [/con]
[con c0] sk=UPR lvl=0.0 y=5.0 [/con]
[/solution]

• [vendor] This contains solver/vendor specific data. It accepts one argument, which is a vendor
ID – for MOSEK the ID is simply mosek – and the section contains the subsection parameters
defining solver parameters. When reading a vendor section, any unknown vendor can be safely
ignored. This is described later.

Comments using the # may appear anywhere in the file. Between the # and the following line-break
any text may be written, including markup characters.

15.3.3 Numbers
Numbers, when used for parameter values or coefficients, are written in the usual way by the printf
function. That is, they may be prefixed by a sign (+ or -) and may contain an integer part, decimal part
and an exponent. The decimal point is always . (a dot). Some examples are

1
1.0
.0
1.
1e10
1e+10
1e-10

Some invalid examples are

e10 # invalid, must contain either integer or decimal part
. # invalid
.e10 # invalid

More formally, the following standard regular expression describes numbers as used:

388

[+|-]?([0-9]+[.][0-9]*|[.][0-9]+)([eE][+|-]?[0-9]+)?

15.3.4 Names
Variable names, constraint names and objective name may contain arbitrary characters, which in some
cases must be enclosed by quotes (single or double) that in turn must be preceded by a backslash.
Unquoted names must begin with a letter (a-z or A-Z) and contain only the following characters: the
letters a-z and A-Z, the digits 0-9, braces ({ and }) and underscore (_).

Some examples of legal names:

an_unquoted_name
another_name{123}
'single quoted name'
"double quoted name"
"name with \\"quote\\" in it"
"name with []s in it"

15.3.5 Parameters Section
In the vendor section solver parameters are defined inside the parameters subsection. Each parameter
is written as

[p PARAMETER_NAME] value [/p]

where PARAMETER_NAME is replaced by a MOSEK parameter name, usually of the form MSK_IPAR_.
.., MSK_DPAR_... or MSK_SPAR_..., and the value is replaced by the value of that parameter; both
integer values and named values may be used. Some simple examples are

[vendor mosek]
[parameters]
[p MSK_IPAR_OPF_MAX_TERMS_PER_LINE] 10 [/p]
[p MSK_IPAR_OPF_WRITE_PARAMETERS] MSK_ON [/p]
[p MSK_DPAR_DATA_TOL_BOUND_INF] 1.0e18 [/p]
[/parameters]
[/vendor]

15.3.6 Writing OPF Files from MOSEK
To write an OPF file add the .opf extension to the file name.

15.3.7 Examples
This section contains a set of small examples written in OPF and describing how to formulate linear,
quadratic and conic problems.

Linear Example lo1.opf

Consider the example:

maximize 3𝑥0 + 1𝑥1 + 5𝑥2 + 1𝑥3

subject to 3𝑥0 + 1𝑥1 + 2𝑥2 = 30,
2𝑥0 + 1𝑥1 + 3𝑥2 + 1𝑥3 ≥ 15,

2𝑥1 + 3𝑥3 ≤ 25,

having the bounds

0 ≤ 𝑥0 ≤ ∞,
0 ≤ 𝑥1 ≤ 10,
0 ≤ 𝑥2 ≤ ∞,
0 ≤ 𝑥3 ≤ ∞.

389

In the OPF format the example is displayed as shown in Listing 15.1.

Listing 15.1: Example of an OPF file for a linear problem.

[comment]
The lo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 4 [/hint]
[hint NUMCON] 3 [/hint]
[hint NUMANZ] 9 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2 x3 x4

[/variables]

[objective maximize 'obj']
3 x1 + x2 + 5 x3 + x4

[/objective]

[constraints]
[con 'c1'] 3 x1 + x2 + 2 x3 = 30 [/con]
[con 'c2'] 2 x1 + x2 + 3 x3 + x4 >= 15 [/con]
[con 'c3'] 2 x2 + 3 x4 <= 25 [/con]

[/constraints]

[bounds]
[b] 0 <= * [/b]
[b] 0 <= x2 <= 10 [/b]

[/bounds]

Quadratic Example qo1.opf

An example of a quadratic optimization problem is

minimize 𝑥2
1 + 0.1𝑥2

2 + 𝑥2
3 − 𝑥1𝑥3 − 𝑥2

subject to 1 ≤ 𝑥1 + 𝑥2 + 𝑥3,
𝑥 ≥ 0.

This can be formulated in opf as shown below.

Listing 15.2: Example of an OPF file for a quadratic problem.

[comment]
The qo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 3 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 3 [/hint]
[hint NUMQNZ] 4 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2 x3

[/variables]
(continues on next page)

390

(continued from previous page)

[objective minimize 'obj']
The quadratic terms are often written with a factor of 1/2 as here,
but this is not required.

- x2 + 0.5 (2.0 x1 ^ 2 - 2.0 x3 * x1 + 0.2 x2 ^ 2 + 2.0 x3 ^ 2)
[/objective]

[constraints]
[con 'c1'] 1.0 <= x1 + x2 + x3 [/con]

[/constraints]

[bounds]
[b] 0 <= * [/b]

[/bounds]

Conic Quadratic Example cqo1.opf

Consider the example:

minimize 𝑥3 + 𝑥4 + 𝑥5

subject to 𝑥0 + 𝑥1 + 2𝑥2 = 1,
𝑥0, 𝑥1, 𝑥2 ≥ 0,

𝑥3 ≥
√︀
𝑥2
0 + 𝑥2

1,
2𝑥4𝑥5 ≥ 𝑥2

2.

Please note that the type of the cones is defined by the parameter to [cone ...]; the content of the
cone-section is the names of variables that belong to the cone. The resulting OPF file is in Listing 15.3.

Listing 15.3: Example of an OPF file for a conic quadratic problem.

[comment]
The cqo1 example in OPF format.

[/comment]

[hints]
[hint NUMVAR] 6 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 3 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2 x3 x4 x5 x6

[/variables]

[objective minimize 'obj']
x4 + x5 + x6

[/objective]

[constraints]
[con 'c1'] x1 + x2 + 2e+00 x3 = 1e+00 [/con]

[/constraints]

[bounds]
We let all variables default to the positive orthant
[b] 0 <= * [/b]

(continues on next page)

391

(continued from previous page)

...and change those that differ from the default
[b] x4,x5,x6 free [/b]

Define quadratic cone: x4 >= sqrt(x1^2 + x2^2)
[cone quad 'k1'] x4, x1, x2 [/cone]

Define rotated quadratic cone: 2 x5 x6 >= x3^2
[cone rquad 'k2'] x5, x6, x3 [/cone]

[/bounds]

Mixed Integer Example milo1.opf

Consider the mixed integer problem:

maximize 𝑥0 + 0.64𝑥1

subject to 50𝑥0 + 31𝑥1 ≤ 250,
3𝑥0 − 2𝑥1 ≥ −4,
𝑥0, 𝑥1 ≥ 0 and integer

This can be implemented in OPF with the file in Listing 15.4.

Listing 15.4: Example of an OPF file for a mixed-integer linear
problem.

[comment]
The milo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 2 [/hint]
[hint NUMCON] 2 [/hint]
[hint NUMANZ] 4 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2

[/variables]

[objective maximize 'obj']
x1 + 6.4e-1 x2

[/objective]

[constraints]
[con 'c1'] 5e+1 x1 + 3.1e+1 x2 <= 2.5e+2 [/con]
[con 'c2'] -4 <= 3 x1 - 2 x2 [/con]

[/constraints]

[bounds]
[b] 0 <= * [/b]

[/bounds]

[integer]
x1 x2

[/integer]

392

15.4 The CBF Format

This document constitutes the technical reference manual of the Conic Benchmark Format with file
extension: .cbf or .CBF. It unifies linear, second-order cone (also known as conic quadratic), expo-
nential cone, power cone and semidefinite optimization with mixed-integer variables. The format has
been designed with benchmark libraries in mind, and therefore focuses on compact and easily parsable
representations. The CBF format separates problem structure from the problem data.

15.4.1 How Instances Are Specified
This section defines the spectrum of conic optimization problems that can be formulated in terms of the
keywords of the CBF format.

In the CBF format, conic optimization problems are considered in the following form:

min /max 𝑔𝑜𝑏𝑗

𝑔𝑖 ∈ 𝒦𝑖, 𝑖 ∈ ℐ,
s.t. 𝐺𝑖 ∈ 𝒦𝑖, 𝑖 ∈ ℐ𝑃𝑆𝐷,

𝑥𝑗 ∈ 𝒦𝑗 , 𝑗 ∈ 𝒥 ,
𝑋𝑗 ∈ 𝒦𝑗 , 𝑗 ∈ 𝒥 𝑃𝑆𝐷.

(15.9)

• Variables are either scalar variables, 𝑥𝑗 for 𝑗 ∈ 𝒥 , or matrix variables, 𝑋𝑗 for 𝑗 ∈ 𝒥 𝑃𝑆𝐷. Scalar
variables can also be declared as integer.

• Constraints are affine expressions of the variables, either scalar-valued 𝑔𝑖 for 𝑖 ∈ ℐ, or matrix-
valued 𝐺𝑖 for 𝑖 ∈ ℐ𝑃𝑆𝐷

𝑔𝑖 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹𝑖𝑗 , 𝑋𝑗⟩ +
∑︁
𝑗∈𝒥

𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖,

𝐺𝑖 =
∑︁
𝑗∈𝒥

𝑥𝑗𝐻𝑖𝑗 + 𝐷𝑖.

• The objective function is a scalar-valued affine expression of the variables, either to be minimized
or maximized. We refer to this expression as 𝑔𝑜𝑏𝑗

𝑔𝑜𝑏𝑗 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹 𝑜𝑏𝑗
𝑗 , 𝑋𝑗⟩ +

∑︁
𝑗∈𝒥

𝑎𝑜𝑏𝑗𝑗 𝑥𝑗 + 𝑏𝑜𝑏𝑗 .

As of version 4 of the format, CBF files can represent the following non-parametric cones 𝒦:

• Free domain - A cone in the linear family defined by

{𝑥 ∈ R𝑛}, for 𝑛 ≥ 1.

• Positive orthant - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 ≥ 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

• Negative orthant - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 ≤ 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

• Fixpoint zero - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 = 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

393

• Quadratic cone - A cone in the second-order cone family defined by

{︂(︂
𝑝
𝑥

)︂
∈ R× R𝑛−1, 𝑝2 ≥ 𝑥𝑇𝑥, 𝑝 ≥ 0

}︂
, for 𝑛 ≥ 2.

• Rotated quadratic cone - A cone in the second-order cone family defined by

⎧⎨⎩
⎛⎝ 𝑝

𝑞
𝑥

⎞⎠ ∈ R× R× R𝑛−2, 2𝑝𝑞 ≥ 𝑥𝑇𝑥, 𝑝 ≥ 0, 𝑞 ≥ 0

⎫⎬⎭ , for 𝑛 ≥ 3.

• Exponential cone - A cone in the exponential cone family defined by

cl(𝑆1) = 𝑆1 ∪ 𝑆2

where,

𝑆1 =

⎧⎨⎩
⎛⎝ 𝑡

𝑠
𝑟

⎞⎠ ∈ R3, 𝑡 ≥ 𝑠𝑒
𝑟
𝑠 , 𝑠 ≥ 0

⎫⎬⎭ .

and,

𝑆2 =

⎧⎨⎩
⎛⎝ 𝑡

𝑠
𝑟

⎞⎠ ∈ R3, 𝑡 ≥ 0, 𝑟 ≤ 0, 𝑠 = 0

⎫⎬⎭ .

• Dual Exponential cone - A cone in the exponential cone family defined by

cl(𝑆1) = 𝑆1 ∪ 𝑆2

where,

𝑆1 =

⎧⎨⎩
⎛⎝ 𝑡

𝑠
𝑟

⎞⎠ ∈ R3, 𝑒𝑡 ≥ (−𝑟)𝑒
𝑠
𝑟 , −𝑟 ≥ 0

⎫⎬⎭ .

and,

𝑆2 =

⎧⎨⎩
⎛⎝ 𝑡

𝑠
𝑟

⎞⎠ ∈ R3, 𝑒𝑡 ≥ 0, 𝑠 ≥ 0, 𝑟 = 0

⎫⎬⎭ .

• Radial geometric mean cone - A cone in the power cone family defined by

⎧⎪⎨⎪⎩
(︂

𝑝
𝑥

)︂
∈ R𝑘

+ × R1,

⎛⎝ 𝑘∏︁
𝑗=1

𝑝𝑗

⎞⎠ 1
𝑘

≥ |𝑥|

⎫⎪⎬⎪⎭ , for 𝑛 = 𝑘 + 1 ≥ 2.

• Dual radial geometric mean cone - A cone in the power cone family defined by

⎧⎪⎨⎪⎩
(︂

𝑝
𝑥

)︂
∈ R𝑘

+ × R1,

⎛⎝ 𝑘∏︁
𝑗=1

𝑘𝑝𝑗

⎞⎠ 1
𝑘

≥ |𝑥|

⎫⎪⎬⎪⎭ , for 𝑛 = 𝑘 + 1 ≥ 2.

394

and, the following parametric cones:

• Radial power cone - A cone in the power cone family defined by

⎧⎪⎨⎪⎩
(︂

𝑝
𝑥

)︂
∈ R𝑘

+ × R𝑛−𝑘,

⎛⎝ 𝑘∏︁
𝑗=1

𝑝
𝛼𝑗

𝑗

⎞⎠ 1
𝜎

≥ ‖𝑥‖2

⎫⎪⎬⎪⎭ , for 𝑛 ≥ 𝑘 ≥ 1.

where, 𝜎 =
∑︀𝑘

𝑗=1 𝛼𝑗 and 𝛼 = R𝑘
++.

• Dual radial power cone - A cone in the power cone family defined by

⎧⎪⎨⎪⎩
(︂

𝑝
𝑥

)︂
∈ R𝑘

+ × R𝑛−𝑘,

⎛⎝ 𝑘∏︁
𝑗=1

(︂
𝜎𝑝𝑗
𝛼𝑗

)︂𝛼𝑗

⎞⎠ 1
𝜎

≥ ‖𝑥‖2

⎫⎪⎬⎪⎭ , for 𝑛 ≥ 𝑘 ≥ 1.

where, 𝜎 =
∑︀𝑘

𝑗=1 𝛼𝑗 and 𝛼 = R𝑘
++.

15.4.2 The Structure of CBF Files
This section defines how information is written in the CBF format, without being specific about the type
of information being communicated.

All information items belong to exactly one of the three groups of information. These information
groups, and the order they must appear in, are:

1. File format.

2. Problem structure.

3. Problem data.

The first group, file format, provides information on how to interpret the file. The second group,
problem structure, provides the information needed to deduce the type and size of the problem instance.
Finally, the third group, problem data, specifies the coefficients and constants of the problem instance.

Information items

The format is composed as a list of information items. The first line of an information item is the
KEYWORD, revealing the type of information provided. The second line - of some keywords only - is the
HEADER, typically revealing the size of information that follows. The remaining lines are the BODY holding
the actual information to be specified.

KEYWORD
BODY

KEYWORD
HEADER
BODY

The KEYWORD determines how each line in the HEADER and BODY is structured. Moreover, the number
of lines in the BODY follows either from the KEYWORD, the HEADER, or from another information item
required to precede it.

395

File encoding and line width restrictions

The format is based on the US-ASCII printable character set with two extensions as listed below. Note,
by definition, that none of these extensions can be misinterpreted as printable US-ASCII characters:

• A line feed marks the end of a line, carriage returns are ignored.

• Comment-lines may contain unicode characters in UTF-8 encoding.

The line width is restricted to 512 bytes, with 3 bytes reserved for the potential carriage return, line
feed and null-terminator.

Integers and floating point numbers must follow the ISO C decimal string representation in the
standard C locale. The format does not impose restrictions on the magnitude of, or number of significant
digits in numeric data, but the use of 64-bit integers and 64-bit IEEE 754 floating point numbers should
be sufficient to avoid loss of precision.

Comment-line and whitespace rules

The format allows single-line comments respecting the following rule:

• Lines having first byte equal to ’#’ (US-ASCII 35) are comments, and should be ignored. Comments
are only allowed between information items.

Given that a line is not a comment-line, whitespace characters should be handled according to the
following rules:

• Leading and trailing whitespace characters should be ignored.

– The seperator between multiple pieces of information on one line, is either one or more whites-
pace characters.

• Lines containing only whitespace characters are empty, and should be ignored. Empty lines are
only allowed between information items.

15.4.3 Problem Specification

The problem structure

The problem structure defines the objective sense, whether it is minimization and maximization. It also
defines the index sets, 𝒥 , 𝒥 𝑃𝑆𝐷, ℐ and ℐ𝑃𝑆𝐷, which are all numbered from zero, {0, 1, . . .}, and empty
until explicitly constructed.

• Scalar variables are constructed in vectors restricted to a conic domain, such as (𝑥0, 𝑥1) ∈ R2
+,

(𝑥2, 𝑥3, 𝑥4) ∈ 𝒬3, etc. In terms of the Cartesian product, this generalizes to

𝑥 ∈ 𝒦𝑛1
1 ×𝒦𝑛2

2 × · · · × 𝒦𝑛𝑘

𝑘

which in the CBF format becomes:

VAR
n k
K1 n1
K2 n2
...
Kk nk

where
∑︀

𝑖 𝑛𝑖 = 𝑛 is the total number of scalar variables. The list of supported cones is found in
Table 15.3. Integrality of scalar variables can be specified afterwards.

• PSD variables are constructed one-by-one. That is, 𝑋𝑗 ⪰ 0𝑛𝑗×𝑛𝑗 for 𝑗 ∈ 𝒥 𝑃𝑆𝐷, constructs a
matrix-valued variable of size 𝑛𝑗 ×𝑛𝑗 restricted to be symmetric positive semidefinite. In the CBF
format, this list of constructions becomes:

396

PSDVAR
N
n1
n2
...
nN

where 𝑁 is the total number of PSD variables.

• Scalar constraints are constructed in vectors restricted to a conic domain, such as (𝑔0, 𝑔1) ∈ R2
+,

(𝑔2, 𝑔3, 𝑔4) ∈ 𝒬3, etc. In terms of the Cartesian product, this generalizes to

𝑔 ∈ 𝒦𝑚1
1 ×𝒦𝑚2

2 × · · · × 𝒦𝑚𝑘

𝑘

which in the CBF format becomes:

CON
m k
K1 m1
K2 m2
..
Kk mk

where
∑︀

𝑖 𝑚𝑖 = 𝑚 is the total number of scalar constraints. The list of supported cones is found
in Table 15.3.

• PSD constraints are constructed one-by-one. That is, 𝐺𝑖 ⪰ 0𝑚𝑖×𝑚𝑖 for 𝑖 ∈ ℐ𝑃𝑆𝐷, constructs a
matrix-valued affine expressions of size 𝑚𝑖 ×𝑚𝑖 restricted to be symmetric positive semidefinite.
In the CBF format, this list of constructions becomes

PSDCON
M
m1
m2
..
mM

where 𝑀 is the total number of PSD constraints.

With the objective sense, variables (with integer indications) and constraints, the definitions of the
many affine expressions follow in problem data.

Problem data

The problem data defines the coefficients and constants of the affine expressions of the problem instance.
These are considered zero until explicitly defined, implying that instances with no keywords from this
information group are, in fact, valid. Duplicating or conflicting information is a failure to comply with
the standard. Consequently, two coefficients written to the same position in a matrix (or to transposed
positions in a symmetric matrix) is an error.

The affine expressions of the objective, 𝑔𝑜𝑏𝑗 , of the scalar constraints, 𝑔𝑖, and of the PSD constraints,
𝐺𝑖, are defined separately. The following notation uses the standard trace inner product for matrices,
⟨𝑋,𝑌 ⟩ =

∑︀
𝑖,𝑗 𝑋𝑖𝑗𝑌𝑖𝑗 .

• The affine expression of the objective is defined as

𝑔𝑜𝑏𝑗 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹 𝑜𝑏𝑗
𝑗 , 𝑋𝑗⟩ +

∑︁
𝑗∈𝒥

𝑎𝑜𝑏𝑗𝑗 𝑥𝑗 + 𝑏𝑜𝑏𝑗 ,

in terms of the symmetric matrices, 𝐹 𝑜𝑏𝑗
𝑗 , and scalars, 𝑎𝑜𝑏𝑗𝑗 and 𝑏𝑜𝑏𝑗 .

397

• The affine expressions of the scalar constraints are defined, for 𝑖 ∈ ℐ, as

𝑔𝑖 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹𝑖𝑗 , 𝑋𝑗⟩ +
∑︁
𝑗∈𝒥

𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖,

in terms of the symmetric matrices, 𝐹𝑖𝑗 , and scalars, 𝑎𝑖𝑗 and 𝑏𝑖.

• The affine expressions of the PSD constraints are defined, for 𝑖 ∈ ℐ𝑃𝑆𝐷, as

𝐺𝑖 =
∑︁
𝑗∈𝒥

𝑥𝑗𝐻𝑖𝑗 + 𝐷𝑖,

in terms of the symmetric matrices, 𝐻𝑖𝑗 and 𝐷𝑖.

List of cones

The format uses an explicit syntax for symmetric positive semidefinite cones as shown above. For scalar
variables and constraints, constructed in vectors, the supported conic domains and their sizes are given
as follows.

Table 15.3: Cones available in the CBF format

Name CBF keyword Cone family Cone size

Free domain F linear 𝑛 ≥ 1
Positive orthant L+ linear 𝑛 ≥ 1
Negative orthant L- linear 𝑛 ≥ 1
Fixpoint zero L= linear 𝑛 ≥ 1
Quadratic cone Q second-order 𝑛 ≥ 1
Rotated quadratic cone QR second-order 𝑛 ≥ 2
Exponential cone EXP exponential 𝑛 = 3
Dual exponential cone EXP* exponential 𝑛 = 3
Radial geometric mean cone GMEANABS power 𝑛 = 𝑘 + 1 ≥ 2
Dual radial geometric mean cone GMEANABS* power 𝑛 = 𝑘 + 1 ≥ 2
Radial power cone (parametric) POW power 𝑛 ≥ 𝑘 ≥ 1
Dual radial power cone (parametric) POW* power 𝑛 ≥ 𝑘 ≥ 1

15.4.4 File Format Keywords

VER

Description: The version of the Conic Benchmark Format used to write the file.
HEADER: None
BODY: One line formatted as:

INT

This is the version number.
Must appear exactly once in a file, as the first keyword.

POWCONES

Description: Define a lookup table for power cone domains.
HEADER: One line formatted as:

INT INT

This is the number of cones to be specified and the combined length of their dense parameter vectors.

BODY: A list of chunks each specifying the dense parameter vector of a power cone.
CHUNKHEADER: One line formatted as:

398

INT

This is the parameter vector length.

CHUNKBODY: A list of lines formatted as:

REAL

This is the parameter vector values. The number of lines should match the number stated in the
chunk header.

The cone specified at index k (with 0-based indexing) is registered under the CBF name @k:POW.

POW*CONES

Description: Define a lookup table for dual power cone domains.
HEADER: One line formatted as:

INT INT

This is the number of cones to be specified and the combined length of their dense parameter vectors.

BODY: A list of chunks each specifying the dense parameter vector of a dual power cone.
CHUNKHEADER: One line formatted as:

INT

This is the parameter vector length.

CHUNKBODY: A list of lines formatted as:

REAL

This is the parameter vector values. The number of lines should match the number stated in the
chunk header.

The cone specified at index k (with 0-based indexing) is registered under the CBF name @k:POW*.

OBJSENSE

Description: Define the objective sense.
HEADER: None
BODY: One line formatted as:

STR

having MIN indicates minimize, and MAX indicates maximize. Upper-case letters are required.
Must appear exactly once in a file.

PSDVAR

Description: Construct the PSD variables.
HEADER: One line formatted as:

INT

This is the number of PSD variables in the problem.
BODY: A list of lines formatted as:

INT

This indicates the number of rows (equal to the number of columns) in the matrix-valued PSD
variable. The number of lines should match the number stated in the header.

399

VAR

Description: Construct the scalar variables.
HEADER: One line formatted as:

INT INT

This is the number of scalar variables, followed by the number of conic domains they are restricted
to.

BODY: A list of lines formatted as:

STR INT

This indicates the cone name (see Table 15.3), and the number of scalar variables restricted to this
cone. These numbers should add up to the number of scalar variables stated first in the header. The
number of lines should match the second number stated in the header.

INT

Description: Declare integer requirements on a selected subset of scalar variables.
HEADER: one line formatted as:

INT

This is the number of integer scalar variables in the problem.
BODY: a list of lines formatted as:

INT

This indicates the scalar variable index 𝑗 ∈ 𝒥 . The number of lines should match the number stated
in the header.

Can only be used after the keyword VAR.

PSDCON

Description: Construct the PSD constraints.
HEADER: One line formatted as:

INT

This is the number of PSD constraints in the problem.
BODY: A list of lines formatted as:

INT

This indicates the number of rows (equal to the number of columns) in the matrix-valued affine
expression of the PSD constraint. The number of lines should match the number stated in the header.

Can only be used after these keywords: PSDVAR, VAR.

CON

Description: Construct the scalar constraints.
HEADER: One line formatted as:

INT INT

This is the number of scalar constraints, followed by the number of conic domains they restrict to.
BODY: A list of lines formatted as:

STR INT

This indicates the cone name (see Table 15.3), and the number of affine expressions restricted to this
cone. These numbers should add up to the number of scalar constraints stated first in the header. The
number of lines should match the second number stated in the header.

Can only be used after these keywords: PSDVAR, VAR

400

OBJFCOORD

Description: Input sparse coordinates (quadruplets) to define the symmetric matrices 𝐹 𝑜𝑏𝑗
𝑗 , as used in

the objective.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT INT REAL

This indicates the PSD variable index 𝑗 ∈ 𝒥 𝑃𝑆𝐷, the row index, the column index and the coefficient
value. The number of lines should match the number stated in the header.

OBJACOORD

Description: Input sparse coordinates (pairs) to define the scalars, 𝑎𝑜𝑏𝑗𝑗 , as used in the objective.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT REAL

This indicates the scalar variable index 𝑗 ∈ 𝒥 and the coefficient value. The number of lines should
match the number stated in the header.

OBJBCOORD

Description: Input the scalar, 𝑏𝑜𝑏𝑗 , as used in the objective.
HEADER: None.
BODY: One line formatted as:

REAL

This indicates the coefficient value.

FCOORD

Description: Input sparse coordinates (quintuplets) to define the symmetric matrices, 𝐹𝑖𝑗 , as used in the
scalar constraints.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT INT INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ, the PSD variable index 𝑗 ∈ 𝒥 𝑃𝑆𝐷, the row index,
the column index and the coefficient value. The number of lines should match the number stated in the
header.

401

ACOORD

Description: Input sparse coordinates (triplets) to define the scalars, 𝑎𝑖𝑗 , as used in the scalar constraints.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ, the scalar variable index 𝑗 ∈ 𝒥 and the coefficient
value. The number of lines should match the number stated in the header.

BCOORD

Description: Input sparse coordinates (pairs) to define the scalars, 𝑏𝑖, as used in the scalar constraints.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ and the coefficient value. The number of lines should
match the number stated in the header.

HCOORD

Description: Input sparse coordinates (quintuplets) to define the symmetric matrices, 𝐻𝑖𝑗 , as used in
the PSD constraints.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as

INT INT INT INT REAL

This indicates the PSD constraint index 𝑖 ∈ ℐ𝑃𝑆𝐷, the scalar variable index 𝑗 ∈ 𝒥 , the row index,
the column index and the coefficient value. The number of lines should match the number stated in the
header.

DCOORD

Description: Input sparse coordinates (quadruplets) to define the symmetric matrices, 𝐷𝑖, as used in
the PSD constraints.

HEADER: One line formatted as

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT INT REAL

This indicates the PSD constraint index 𝑖 ∈ ℐ𝑃𝑆𝐷, the row index, the column index and the coefficient
value. The number of lines should match the number stated in the header.

402

15.4.5 CBF Format Examples

Minimal Working Example

The conic optimization problem (15.10) , has three variables in a quadratic cone - first one is integer -
and an affine expression in domain 0 (equality constraint).

minimize 5.1𝑥0

subject to 6.2𝑥1 + 7.3𝑥2 − 8.4 ∈ {0}
𝑥 ∈ 𝒬3, 𝑥0 ∈ Z.

(15.10)

Its formulation in the Conic Benchmark Format begins with the version of the CBF format used, to
safeguard against later revisions.

VER
4

Next follows the problem structure, consisting of the objective sense, the number and domain of
variables, the indices of integer variables, and the number and domain of scalar-valued affine expressions
(i.e., the equality constraint).

OBJSENSE
MIN

VAR
3 1
Q 3

INT
1
0

CON
1 1
L= 1

Finally follows the problem data, consisting of the coefficients of the objective, the coefficients of the
constraints, and the constant terms of the constraints. All data is specified on a sparse coordinate form.

OBJACOORD
1
0 5.1

ACOORD
2
0 1 6.2
0 2 7.3

BCOORD
1
0 -8.4

This concludes the example.

403

Mixing Linear, Second-order and Semidefinite Cones

The conic optimization problem (15.11), has a semidefinite cone, a quadratic cone over unordered
subindices, and two equality constraints.

minimize

⟨⎡⎣ 2 1 0
1 2 1
0 1 2

⎤⎦ , 𝑋1

⟩
+ 𝑥1

subject to

⟨⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ , 𝑋1

⟩
+ 𝑥1 = 1.0 ,

⟨⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ , 𝑋1

⟩
+ 𝑥0 + 𝑥2 = 0.5 ,

𝑥1 ≥
√︀
𝑥2
0 + 𝑥2

2 ,
𝑋1 ⪰ 0 .

(15.11)

The equality constraints are easily rewritten to the conic form, (𝑔0, 𝑔1) ∈ {0}2, by moving constants such
that the right-hand-side becomes zero. The quadratic cone does not fit under the VAR keyword in this
variable permutation. Instead, it takes a scalar constraint (𝑔2, 𝑔3, 𝑔4) = (𝑥1, 𝑥0, 𝑥2) ∈ 𝒬3, with scalar
variables constructed as (𝑥0, 𝑥1, 𝑥2) ∈ R3. Its formulation in the CBF format is reported in the following
list

File written using this version of the Conic Benchmark Format:
| Version 4.
VER
4

The sense of the objective is:
| Minimize.
OBJSENSE
MIN

One PSD variable of this size:
| Three times three.
PSDVAR
1
3

Three scalar variables in this one conic domain:
| Three are free.
VAR
3 1
F 3

Five scalar constraints with affine expressions in two conic domains:
| Two are fixed to zero.
| Three are in conic quadratic domain.
CON
5 2
L= 2
Q 3

Five coordinates in F^{obj}_j coefficients:
| F^{obj}[0][0,0] = 2.0
| F^{obj}[0][1,0] = 1.0
| and more...
OBJFCOORD
5

(continues on next page)

404

(continued from previous page)

0 0 0 2.0
0 1 0 1.0
0 1 1 2.0
0 2 1 1.0
0 2 2 2.0

One coordinate in a^{obj}_j coefficients:
| a^{obj}[1] = 1.0
OBJACOORD
1
1 1.0

Nine coordinates in F_ij coefficients:
| F[0,0][0,0] = 1.0
| F[0,0][1,1] = 1.0
| and more...
FCOORD
9
0 0 0 0 1.0
0 0 1 1 1.0
0 0 2 2 1.0
1 0 0 0 1.0
1 0 1 0 1.0
1 0 2 0 1.0
1 0 1 1 1.0
1 0 2 1 1.0
1 0 2 2 1.0

Six coordinates in a_ij coefficients:
| a[0,1] = 1.0
| a[1,0] = 1.0
| and more...
ACOORD
6
0 1 1.0
1 0 1.0
1 2 1.0
2 1 1.0
3 0 1.0
4 2 1.0

Two coordinates in b_i coefficients:
| b[0] = -1.0
| b[1] = -0.5
BCOORD
2
0 -1.0
1 -0.5

405

Mixing Semidefinite Variables and Linear Matrix Inequalities

The standard forms in semidefinite optimization are usually based either on semidefinite variables or
linear matrix inequalities. In the CBF format, both forms are supported and can even be mixed as
shown.

minimize
⟨[︂

1 0
0 1

]︂
, 𝑋1

⟩
+ 𝑥1 + 𝑥2 + 1

subject to
⟨[︂

0 1
1 0

]︂
, 𝑋1

⟩
− 𝑥1 − 𝑥2 ≥ 0.0 ,

𝑥1

[︂
0 1
1 3

]︂
+ 𝑥2

[︂
3 1
1 0

]︂
−
[︂

1 0
0 1

]︂
⪰ 0 ,

𝑋1 ⪰ 0 .

(15.12)

Its formulation in the CBF format is written in what follows

File written using this version of the Conic Benchmark Format:
| Version 4.
VER
4

The sense of the objective is:
| Minimize.
OBJSENSE
MIN

One PSD variable of this size:
| Two times two.
PSDVAR
1
2

Two scalar variables in this one conic domain:
| Two are free.
VAR
2 1
F 2

One PSD constraint of this size:
| Two times two.
PSDCON
1
2

One scalar constraint with an affine expression in this one conic domain:
| One is greater than or equal to zero.
CON
1 1
L+ 1

Two coordinates in F^{obj}_j coefficients:
| F^{obj}[0][0,0] = 1.0
| F^{obj}[0][1,1] = 1.0
OBJFCOORD
2
0 0 0 1.0
0 1 1 1.0

Two coordinates in a^{obj}_j coefficients:
(continues on next page)

406

(continued from previous page)

| a^{obj}[0] = 1.0
| a^{obj}[1] = 1.0
OBJACOORD
2
0 1.0
1 1.0

One coordinate in b^{obj} coefficient:
| b^{obj} = 1.0
OBJBCOORD
1.0

One coordinate in F_ij coefficients:
| F[0,0][1,0] = 1.0
FCOORD
1
0 0 1 0 1.0

Two coordinates in a_ij coefficients:
| a[0,0] = -1.0
| a[0,1] = -1.0
ACOORD
2
0 0 -1.0
0 1 -1.0

Four coordinates in H_ij coefficients:
| H[0,0][1,0] = 1.0
| H[0,0][1,1] = 3.0
| and more...
HCOORD
4
0 0 1 0 1.0
0 0 1 1 3.0
0 1 0 0 3.0
0 1 1 0 1.0

Two coordinates in D_i coefficients:
| D[0][0,0] = -1.0
| D[0][1,1] = -1.0
DCOORD
2
0 0 0 -1.0
0 1 1 -1.0

407

The exponential cone

The conic optimization problem (15.13), has one equality constraint, one quadratic cone constraint and
an exponential cone constraint.

minimize 𝑥0 − 𝑥3

subject to 𝑥0 + 2𝑥1 − 𝑥2 ∈ {0}
(5.0, 𝑥0, 𝑥1) ∈ 𝒬3

(𝑥2, 1.0, 𝑥3) ∈ 𝐸𝑋𝑃.

(15.13)

The nonlinear conic constraints enforce
√︀

𝑥2
0 + 𝑥2

1 ≤ 0.5 and 𝑥3 ≤ log(𝑥2).

File written using this version of the Conic Benchmark Format:
| Version 3.
VER
3

The sense of the objective is:
| Minimize.
OBJSENSE
MIN

Four scalar variables in this one conic domain:
| Four are free.
VAR
4 1
F 4

Seven scalar constraints with affine expressions in three conic domains:
| One is fixed to zero.
| Three are in conic quadratic domain.
| Three are in exponential cone domain.
CON
7 3
L= 1
Q 3
EXP 3

Two coordinates in a^{obj}_j coefficients:
| a^{obj}[0] = 1.0
| a^{obj}[3] = -1.0
OBJACOORD
2
0 1.0
3 -1.0

Seven coordinates in a_ij coefficients:
| a[0,0] = 1.0
| a[0,1] = 2.0
| and more...
ACOORD
7
0 0 1.0
0 1 2.0
0 2 -1.0
2 0 1.0
3 1 1.0
4 2 1.0
6 3 1.0

(continues on next page)

408

(continued from previous page)

Two coordinates in b_i coefficients:
| b[1] = 5.0
| b[5] = 1.0
BCOORD
2
1 5.0
5 1.0

Parametric cones

The problem (15.14), has three variables in a power cone with parameter 𝛼1 = (1, 1) and two power cone
constraints each with parameter 𝛼0 = (8, 1).

minimize 𝑥3

subject to (1.0, 𝑥1, 𝑥1 + 𝑥2) ∈ 𝑃𝑂𝑊𝛼0

(1.0, 𝑥2, 𝑥1 + 𝑥2) ∈ 𝑃𝑂𝑊𝛼0

𝑥 ∈ 𝑃𝑂𝑊𝛼1 .

(15.14)

The nonlinear conic constraints enforce 𝑥3 ≤ 𝑥1𝑥2 and 𝑥1 + 𝑥2 ≤ min(𝑥
1
9
1 , 𝑥

1
9
2).

File written using this version of the Conic Benchmark Format:
| Version 3.
VER
3

Two power cone domains defined in a total of four parameters:
| @0:POW (specification 0) has two parameters:
| alpha[0] = 8.0.
| alpha[1] = 1.0.
| @1:POW (specification 1) has two parameters:
| alpha[0] = 1.0.
| alpha[1] = 1.0.
POWCONES
2 4
2
8.0
1.0
2
1.0
1.0

The sense of the objective is:
| Maximize.
OBJSENSE
MAX

Three scalar variable in this one conic domain:
| Three are in power cone domain (specification 1).
VAR
3 1
@1:POW 3

Six scalar constraints with affine expressions in two conic domains:
| Three are in power cone domain (specification 0).
| Three are in power cone domain (specification 0).

(continues on next page)

409

(continued from previous page)

CON
6 2
@0:POW 3
@0:POW 3

One coordinate in a^{obj}_j coefficients:
| a^{obj}[2] = 1.0
OBJACOORD
1
2 1.0

Six coordinates in a_ij coefficients:
| a[1,0] = 1.0
| a[2,0] = 1.0
| and more...
ACOORD
6
1 0 1.0
2 0 1.0
2 1 1.0
4 1 1.0
5 0 1.0
5 1 1.0

Two coordinates in b_i coefficients:
| b[0] = 1.0
| b[3] = 1.0
BCOORD
2
0 1.0
3 1.0

15.5 The PTF Format

The PTF format is a human-readable, natural text format that supports all linear, conic and mixed-
integer features.

15.5.1 The overall format
The format is indentation based, where each section is started by a head line and followed by a section
body with deeper indentation that the head line. For example:

Header line
Body line 1
Body line 1
Body line 1

Section can also be nested:

Header line A
Body line in A
Header line A.1

Body line in A.1
Body line in A.1

Body line in A

410

The indentation of blank lines is ignored, so a subsection can contain a blank line with no indentation.
The character # defines a line comment and anything between the # character and the end of the line is
ignored.

In a PTF file, the first section must be a Task section. The order of the remaining section is arbitrary,
and sections may occur multiple times or not at all.

MOSEK will ignore any top-level section it does not recognize.

Names

In the description of the format we use following definitions for name strings:

NAME: PLAIN_NAME | QUOTED_NAME
PLAIN_NAME: [a-zA-Z_] [a-zA-Z0-9_-.!|]
QUOTED_NAME: "'" ([^'\\\r\n] | "\\" ([\\rn] | "x" [0-9a-fA-F] [0-9a-fA-F]))* "'"

Expressions

An expression is a sum of terms. A term is either a linear term (a coefficient and a variable name, where
the coefficient can be left out if it is 1.0), or a matrix inner product.

An expression:

EXPR: EMPTY | [+-]? TERM ([+-] TERM)*
TERM: LINEAR_TERM | MATRIX_TERM

A linear term

LINEAR_TERM: FLOAT? NAME

A matrix term

MATRIX_TERM: "<" FLOAT? NAME ([+-] FLOAT? NAME)* ";" NAME ">"

Here the right-hand name is the name of a (semidefinite) matrix variable, and the left-hand side is a
sum of symmetric matrixes. The actual matrixes are defined in a separate section.

Expressions can span multiple lines by giving subsequent lines a deeper indentation.
For example following two section are equivalent:

Everything on one line:
x1 + x2 + x3 + x4

Split into multiple lines:
x1

+ x2
+ x3
+ x4

15.5.2 Task section
The first section of the file must be a Task. The text in this section is not used and may contain
comments, or meta-information from the writer or about the content.

Format:

Task NAME
Anything goes here...

NAME is a the task name.

411

15.5.3 Objective section
The Objective section defines the objective name, sense and function. The format:

"Objective" NAME?
("Minimize" | "Maximize") EXPR

For example:

Objective 'obj'
Minimize x1 + 0.2 x2 + < M1 ; X1 >

15.5.4 Constraints section
The constraints section defines a series of constraints. A constraint defines a term 𝐴 · 𝑥 + 𝑏 ∈ 𝐾. For
linear constraints A is just one row, while for conic constraints it can be multiple rows. If a constraint
spans multiple rows these can either be written inline separated by semi-colons, or each expression in a
separete sub-section.

Simple linear constraints:

"Constraints"
NAME? "[" [-+] (FLOAT | "Inf") (";" [-+] (FLOAT | "Inf"))? "]" EXPR

If the brackets contain two values, they are used as upper and lower bounds. It they contain one
value the constraint is an equality.

For example:

Constraints
'c1' [0;10] x1 + x2 + x3
[0] x1 + x2 + x3

Constraint blocks put the expression either in a subsection or inline. The cone type (domain) is
written in the brackets, and MOSEK currently supports following types:

• SOC(N) Second order cone of dimension N

• RSOC(N) Rotated second order cone of dimension N

• PSD(N) Symmetric positive semidefinite cone of dimension N. This contains N*(N+1)/2 elements.

• PEXP Primal exponential cone of dimension 3

• DEXP Dual exponential cone of dimension 3

• PPOW(N,P) Primal power cone of dimension N with parameter P

• DPOW(N,P) Dual power cone of dimension N with parameter P

• ZERO(N) The zero-cone of dimension N.

"Constraints"
NAME? "[" DOMAIN "]" EXPR_LIST

For example:

Constraints
'K1' [SOC(3)] x1 + x2 ; x2 + x3 ; x3 + x1
'K2' [RSOC(3)]

x1 + x2
x2 + x3
x3 + x1

412

15.5.5 Variables section
Any variable used in an expression must be defined in a variable section. The variable section defines
each variable domain.

"Variables"
NAME "[" [-+] (FLOAT | "Inf") (";" [-+] (FLOAT | "Inf"))? "]"
NAME "[" DOMAIN "]" NAMES

For example, a linear variable

Variables
x1 [0;Inf]

As with constraints, members of a conic domain can be listed either inline or in a subsection:

Variables
k1 [SOC(3)] x1 ; x2 ; x3
k2 [RSOC(3)]

x1
x2
x3

15.5.6 Integer section
This section contains a list of variables that are integral. For example:

Integer
x1 x2 x3

15.5.7 SymmetricMatrixes section
This section defines the symmetric matrixes used for matrix coefficients in matrix inner product terms.
The section lists named matrixes, each with a size and a number of non-zeros. Only non-zeros in the
lower triangular part should be defined.

"SymmetricMatrixes"
NAME "SYMMAT" "(" INT ")" ("(" INT "," INT "," FLOAT ")")*
...

For example:

SymmetricMatrixes
M1 SYMMAT(3) (0,0,1.0) (1,1,2.0) (2,1,0.5)
M2 SYMMAT(3)

(0,0,1.0)
(1,1,2.0)
(2,1,0.5)

413

15.5.8 Solutions section
Each subsection defines a solution. A solution defines for each constraint and for each variable exactly
one primal value and either one (for conic domains) or two (for linear domains) dual values. The values
follow the same logic as in the MOSEK C API. A primal and a dual solution status defines the meaning
of the values primal and dual (solution, certificate, unknown, etc.)

The format is this:

"Solutions"
"Solution" WHICHSOL

"ProblemStatus" PROSTA PROSTA?
"SolutionStatus" SOLSTA SOLSTA?
"Objective" FLOAT FLOAT
"Variables"

Linear variable status: level, slx, sux
NAME "[" STATUS "]" FLOAT (FLOAT FLOAT)?
Conic variable status: level, snx
NAME

"[" STATUS "]" FLOAT FLOAT?
...

"Constraints"
Linear variable status: level, slx, sux
NAME "[" STATUS "]" FLOAT (FLOAT FLOAT)?
Conic variable status: level, snx
NAME

"[" STATUS "]" FLOAT FLOAT?
...

Following values for WHICHSOL are supported:

• interior Interior solution, the result of an interior-point solver.

• basic Basic solution, as produced by a simplex solver.

• integer Integer solution, the solution to a mixed-integer problem. This does not define a dual
solution.

Following values for PROSTA are supported:

• unknown The problem status is unknown

• feasible The problem has been proven feasible

• infeasible The problem has been proven infeasible

• illposed The problem has been proved to be ill posed

• infeasible_or_unbounded The problem is infeasible or unbounded

Following values for SOLSTA are supported:

• unknown The solution status is unknown

• feasible The solution is feasible

• optimal The solution is optimal

• infeas_cert The solution is a certificate of infeasibility

• illposed_cert The solution is a certificate of illposedness

Following values for STATUS are supported:

• unknown The value is unknown

• super_basic The value is super basic

414

• at_lower The value is basic and at its lower bound

• at_upper The value is basic and at its upper bound

• fixed The value is basic fixed

• infinite The value is at infinity

15.5.9 Examples

Linear example lo1.ptf

Task ''
Written by MOSEK v10.0.13
problemtype: Linear Problem
number of linear variables: 4
number of linear constraints: 3
number of old-style A nonzeros: 9

Objective obj
Maximize + 3 x1 + x2 + 5 x3 + x4

Constraints
c1 [3e+1] + 3 x1 + x2 + 2 x3
c2 [1.5e+1;+inf] + 2 x1 + x2 + 3 x3 + x4
c3 [-inf;2.5e+1] + 2 x2 + 3 x4

Variables
x1 [0;+inf]
x2 [0;1e+1]
x3 [0;+inf]
x4 [0;+inf]

Conic example cqo1.ptf

Task ''
Written by MOSEK v10.0.17
problemtype: Conic Problem
number of linear variables: 6
number of linear constraints: 1
number of old-style cones: 0
number of positive semidefinite variables: 0
number of positive semidefinite matrixes: 0
number of affine conic constraints: 2
number of disjunctive constraints: 0
number scalar affine expressions/nonzeros : 6/6
number of old-style A nonzeros: 3

Objective obj
Minimize + x4 + x5 + x6

Constraints
c1 [1] + x1 + x2 + 2 x3
k1 [QUAD(3)]

@ac1: + x4
@ac2: + x1
@ac3: + x2

k2 [RQUAD(3)]
@ac4: + x5
@ac5: + x6
@ac6: + x3

Variables
(continues on next page)

415

(continued from previous page)

x4
x1 [0;+inf]
x2 [0;+inf]
x5
x6
x3 [0;+inf]

Disjunctive example djc1.ptf

Task djc1
Objective ''

Minimize + 2 'x[0]' + 'x[1]' + 3 'x[2]' + 'x[3]'
Constraints

@c0 [-10;+inf] + 'x[0]' + 'x[1]' + 'x[2]' + 'x[3]'
@D0 [OR]

[AND]
[NEGATIVE(1)]

+ 'x[0]' - 2 'x[1]' + 1
[ZERO(2)]

+ 'x[2]'
+ 'x[3]'

[AND]
[NEGATIVE(1)]

+ 'x[2]' - 3 'x[3]' + 2
[ZERO(2)]

+ 'x[0]'
+ 'x[1]'

@D1 [OR]
[ZERO(1)]

+ 'x[0]' - 2.5
[ZERO(1)]

+ 'x[1]' - 2.5
[ZERO(1)]

+ 'x[2]' - 2.5
[ZERO(1)]

+ 'x[3]' - 2.5
Variables

'x[0]'
'x[1]'
'x[2]'
'x[3]'

15.6 The Task Format

The Task format is MOSEK‘s native binary format. It contains a complete image of a MOSEK task,
i.e.

• Problem data: Linear, conic, semidefinite and quadratic data

• Problem item names: Variable names, constraints names, cone names etc.

• Parameter settings

• Solutions

There are a few things to be aware of:

416

• Status of a solution read from a file will always be unknown.

• Parameter settings in a task file always override any parameters set on the command line or in a
parameter file.

The format is based on the TAR (USTar) file format. This means that the individual pieces of data
in a .task file can be examined by unpacking it as a TAR file. Please note that the inverse may not
work: Creating a file using TAR will most probably not create a valid MOSEK Task file since the order
of the entries is important.

15.7 The JSON Format

MOSEK provides the possibility to read/write problems and solutions in JSON format. The official
JSON website http://www.json.org provides plenty of information along with the format definition.
JSON is an industry standard for data exchange and JSON files can be easily written and read in most
programming languages using dedicated libraries.

MOSEK uses two JSON-based formats:

• JTASK, for storing problem instances together with solutions and parameters. The JTASK for-
mat contains the same information as a native MOSEK task task format , that is a very close
representation of the internal data storage in the task object.

You can write a JTASK file specifying the extension .jtask. When the parameter
writeJsonIndentation is set the JTASK file will be indented to slightly improve readability.

• JSOL, for storing solutions and information items.

It is not directly accessible via Fusion API for Java but only from the lower-level Optimizer API
and command line tools.

15.7.1 JTASK Specification
The JTASK is a dictionary containing the following sections. All sections are optional and can be omitted
if irrelevant for the problem.

• $schema: JSON schema.

• Task/name: The name of the task (string).

• Task/INFO: Information about problem data dimensions and similar. These are treated as hints
when reading the file.

– numvar: number of variables (int32).

– numcon: number of constraints (int32).

– numcone: number of cones (int32, deprecated).

– numbarvar: number of symmetric matrix variables (int32).

– numanz: number of nonzeros in A (int64).

– numsymmat: number of matrices in the symmetric matrix storage E (int64).

– numafe: number of affine expressions in AFE storage (int64).

– numfnz: number of nonzeros in F (int64).

– numacc: number of affine conic constraints (ACCs) (int64).

– numdjc: number of disjunctive constraints (DJCs) (int64).

– numdom: number of domains (int64).

– mosekver: MOSEK version (list(int32)).

• Task/data: Numerical and structural data of the problem.

– var: Information about variables. All fields present must have the same length as bk. All or
none of bk, bl, and bu must appear.

417

http://www.json.org

∗ name: Variable names (list(string)).
∗ bk: Bound keys (list(string)).
∗ bl: Lower bounds (list(double)).
∗ bu: Upper bounds (list(double)).
∗ type: Variable types (list(string)).

– con: Information about linear constraints. All fields present must have the same length as
bk. All or none of bk, bl, and bu must appear.

∗ name: Constraint names (list(string)).
∗ bk: Bound keys (list(string)).
∗ bl: Lower bounds (list(double)).
∗ bu: Upper bounds (list(double)).

– barvar: Information about symmetric matrix variables. All fields present must have the same
length as dim.

∗ name: Barvar names (list(string)).
∗ dim: Dimensions (list(int32)).

– objective: Information about the objective.

∗ name: Objective name (string).
∗ sense: Objective sense (string).
∗ c: The linear part 𝑐 of the objective as a sparse vector. Both arrays must have the same

length.
· subj: indices of nonzeros (list(int32)).
· val: values of nonzeros (list(double)).

∗ cfix: Constant term in the objective (double).
∗ Q: The quadratic part 𝑄𝑜 of the objective as a sparse matrix, only lower-triangular part

included. All arrays must have the same length.
· subi: row indices of nonzeros (list(int32)).
· subj: column indices of nonzeros (list(int32)).
· val: values of nonzeros (list(double)).

∗ barc: The semidefinite part 𝐶 of the objective (list). Each element of the list is a list
describing one entry 𝐶𝑗 using three fields:

· index 𝑗 (int32).
· weights of the matrices from the storage 𝐸 forming 𝐶𝑗 (list(double)).
· indices of the matrices from the storage 𝐸 forming 𝐶𝑗 (list(int64)).

– A: The linear constraint matrix 𝐴 as a sparse matrix. All arrays must have the same length.

∗ subi: row indices of nonzeros (list(int32)).
∗ subj: column indices of nonzeros (list(int32)).
∗ val: values of nonzeros (list(double)).

– bara: The semidefinite part 𝐴 of the constraints (list). Each element of the list is a list
describing one entry 𝐴𝑖𝑗 using four fields:

∗ index 𝑖 (int32).
∗ index 𝑗 (int32).
∗ weights of the matrices from the storage 𝐸 forming 𝐴𝑖𝑗 (list(double)).
∗ indices of the matrices from the storage 𝐸 forming 𝐴𝑖𝑗 (list(int64)).

– AFE: The affine expression storage.

∗ numafe: number of rows in the storage (int64).
∗ F: The matrix 𝐹 as a sparse matrix. All arrays must have the same length.

· subi: row indices of nonzeros (list(int64)).
· subj: column indices of nonzeros (list(int32)).
· val: values of nonzeros (list(double)).

418

∗ g: The vector 𝑔 of constant terms as a sparse vector. Both arrays must have the same
length.

· subi: indices of nonzeros (list(int64)).
· val: values of nonzeros (list(double)).

∗ barf: The semidefinite part 𝐹 of the expressions in AFE storage (list). Each element of
the list is a list describing one entry 𝐹 𝑖𝑗 using four fields:

· index 𝑖 (int64).
· index 𝑗 (int32).
· weights of the matrices from the storage 𝐸 forming 𝐹 𝑖𝑗 (list(double)).
· indices of the matrices from the storage 𝐸 forming 𝐹 𝑖𝑗 (list(int64)).

– domains: Information about domains. All fields present must have the same length as type.

∗ name: Domain names (list(string)).
∗ type: Description of the type of each domain (list). Each element of the list is a list

describing one domain using at least one field:
· domain type (string).
· (except pexp, dexp) dimension (int64).
· (only ppow, dpow) weights (list(double)).

– ACC: Information about affine conic constraints (ACC). All fields present must have the same
length as domain.

∗ name: ACC names (list(string)).
∗ domain: Domains (list(int64)).
∗ afeidx: AFE indices, grouped by ACC (list(list(int64))).
∗ b: constant vectors 𝑏, grouped by ACC (list(list(double))).

– DJC: Information about disjunctive constraints (DJC). All fields present must have the same
length as termsize.

∗ name: DJC names (list(string)).
∗ termsize: Term sizes, grouped by DJC (list(list(int64))).
∗ domain: Domains, grouped by DJC (list(list(int64))).
∗ afeidx: AFE indices, grouped by DJC (list(list(int64))).
∗ b: constant vectors 𝑏, grouped by DJC (list(list(double))).

– MatrixStore: The symmetric matrix storage 𝐸 (list). Each element of the list is a list
describing one entry 𝐸 using four fields in sparse matrix format, lower-triangular part only:

∗ dimension (int32).
∗ row indices of nonzeros (list(int32)).
∗ column indices of nonzeros (list(int32)).
∗ values of nonzeros (list(double)).

– Q: The quadratic part 𝑄𝑐 of the constraints (list). Each element of the list is a list describing
one entry 𝑄𝑐

𝑖 using four fields in sparse matrix format, lower-triangular part only:

∗ the row index 𝑖 (int32).
∗ row indices of nonzeros (list(int32)).
∗ column indices of nonzeros (list(int32)).
∗ values of nonzeros (list(double)).

– qcone (deprecated). The description of cones. All fields present must have the same length
as type.

∗ name: Cone names (list(string)).
∗ type: Cone types (list(string)).
∗ par: Additional cone parameters (list(double)).
∗ members: Members, grouped by cone (list(list(int32))).

• Task/solutions: Solutions. This section can contain up to three subsections called:

419

– interior

– basic

– integer

corresponding to the three solution types in MOSEK. Each of these sections has the same structure:

– prosta: problem status (string).

– solsta: solution status (string).

– xx, xc, y, slc, suc, slx, sux, snx: one for each component of the solution of the same name
(list(double)).

– skx, skc, skn: status keys (list(string)).

– doty: the dual 𝑦̇ solution, grouped by ACC (list(list(double))).

– barx, bars: the primal/dual semidefinite solution, grouped by matrix variable
(list(list(double))).

• Task/parameters: Parameters.

– iparam: Integer parameters (dictionary). A dictionary with entries of the form name:value,
where name is a shortened parameter name (without leading MSK_IPAR_) and value is either
an integer or string if the parameter takes values from an enum.

– dparam: Double parameters (dictionary). A dictionary with entries of the form name:value,
where name is a shortened parameter name (without leading MSK_DPAR_) and value is a
double.

– sparam: String parameters (dictionary). A dictionary with entries of the form name:value,
where name is a shortened parameter name (without leading MSK_SPAR_) and value is a string.
Note that this section is allowed but MOSEK ignores it both when writing and reading JTASK
files.

15.7.2 JSOL Specification
The JSOL is a dictionary containing the following sections. All sections are optional and can be omitted
if irrelevant for the problem.

• $schema: JSON schema.

• Task/name: The name of the task (string).

• Task/solutions: Solutions. This section can contain up to three subsections called:

– interior

– basic

– integer

corresponding to the three solution types in MOSEK. Each of these section has the same structure:

– prosta: problem status (string).

– solsta: solution status (string).

– xx, xc, y, slc, suc, slx, sux, snx: one for each component of the solution of the same name
(list(double)).

– skx, skc, skn: status keys (list(string)).

– doty: the dual 𝑦̇ solution, grouped by ACC (list(list(double))).

– barx, bars: the primal/dual semidefinite solution, grouped by matrix variable
(list(list(double))).

• Task/information: Information items from the optimizer.

– int32: int32 information items (dictionary). A dictionary with entries of the form name:
value.

420

– int64: int64 information items (dictionary). A dictionary with entries of the form name:
value.

– double: double information items (dictionary). A dictionary with entries of the form name:
value.

15.7.3 A jtask example

Listing 15.5: A formatted jtask file for a simple portfolio opti-
mization problem.

{
"$schema":"http://mosek.com/json/schema#",
"Task/name":"Markowitz portfolio with market impact",
"Task/INFO":{"numvar":7,"numcon":1,"numcone":0,"numbarvar":0,"numanz":6,"numsymmat

→˓":0,"numafe":13,"numfnz":12,"numacc":4,"numdjc":0,"numdom":3,"mosekver":[10,0,0,3]},
"Task/data":{

"var":{
"name":["1.0","x[0]","x[1]","x[2]","t[0]","t[1]","t[2]"],
"bk":["fx","lo","lo","lo","fr","fr","fr"],
"bl":[1,0.0,0.0,0.0,-1e+30,-1e+30,-1e+30],
"bu":[1,1e+30,1e+30,1e+30,1e+30,1e+30,1e+30],
"type":["cont","cont","cont","cont","cont","cont","cont"]

},
"con":{

"name":["budget[]"],
"bk":["fx"],
"bl":[1],
"bu":[1]

},
"objective":{

"sense":"max",
"name":"obj",
"c":{

"subj":[1,2,3],
"val":[0.1073,0.0737,0.0627]

},
"cfix":0.0

},
"A":{

"subi":[0,0,0,0,0,0],
"subj":[1,2,3,4,5,6],
"val":[1,1,1,0.01,0.01,0.01]

},
"AFE":{

"numafe":13,
"F":{

"subi":[1,1,1,2,2,3,4,6,7,9,10,12],
"subj":[1,2,3,2,3,3,4,1,5,2,6,3],
"val":[0.166673333200005,0.0232190712557243,0.0012599496030238,0.

→˓102863378954911,-0.00222873156550421,0.0338148677744977,1,1,1,1,1,1]
},
"g":{

"subi":[0,5,8,11],
"val":[0.035,1,1,1]

}
},
"domains":{

(continues on next page)

421

(continued from previous page)

"type":[["r",0],
["quad",4],
["ppow",3,[0.6666666666666666,0.33333333333333337]]]

},
"ACC":{

"name":["risk[]","tz[0]","tz[1]","tz[2]"],
"domain":[1,2,2,2],
"afeidx":[[0,1,2,3],

[4,5,6],
[7,8,9],
[10,11,12]]

}
},
"Task/solutions":{

"interior":{
"prosta":"unknown",
"solsta":"unknown",
"skx":["fix","supbas","supbas","supbas","supbas","supbas","supbas"],
"skc":["fix"],
"xx":[1,0.10331580274282556,0.11673185566457132,0.7724326587076371,0.

→˓033208600335718846,0.03988270849469869,0.6788769587942524],
"xc":[1],
"slx":[0.0,-5.585840467641202e-10,-8.945844685006369e-10,-7.815248786428623e-

→˓11,0.0,0.0,0.0],
"sux":[0.0,0.0,0.0,0.0,0.0,0.0,0.0],
"snx":[0.0,0.0,0.0,0.0,0.0,0.0,0.0],
"slc":[0.0],
"suc":[-0.046725814048521205],
"y":[0.046725814048521205],
"doty":[[-0.6062603164682975,0.3620818321879349,0.17817754087278295,0.

→˓4524390346223723],
[-4.6725842015519993e-4,-7.708781121860897e-6,2.24800624747081e-4],
[-4.6725842015519993e-4,-9.268264309496919e-6,2.390390600079771e-4],
[-4.6725842015519993e-4,-1.5854982159992136e-4,6.159249331148646e-4]]

}
},
"Task/parameters":{

"iparam":{
"LICENSE_DEBUG":"ON",
"MIO_SEED":422

},
"dparam":{

"MIO_MAX_TIME":100
},
"sparam":{
}

}
}

422

15.8 The Solution File Format

MOSEK can output solutions to a text file:

• basis solution file (extension .bas) if the problem is optimized using the simplex optimizer or basis
identification is performed,

• interior solution file (extension .sol) if a problem is optimized using the interior-point optimizer
and no basis identification is required,

• integer solution file (extension .int) if the problem is solved with the mixed-integer optimizer.

All solution files have the format:

NAME : <problem name>
PROBLEM STATUS : <status of the problem>
SOLUTION STATUS : <status of the solution>
OBJECTIVE NAME : <name of the objective function>
PRIMAL OBJECTIVE : <primal objective value corresponding to the solution>
DUAL OBJECTIVE : <dual objective value corresponding to the solution>

CONSTRAINTS
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER
? <name> ?? <a value> <a value> <a value> <a value> <a value>

AFFINE CONIC CONSTRAINTS
INDEX NAME I ACTIVITY DUAL
? <name> <a value> <a value> <a value>

VARIABLES
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER ␣
→˓[CONIC DUAL]
? <name> ?? <a value> <a value> <a value> <a value> <a value> ␣
→˓[<a value>]

SYMMETRIC MATRIX VARIABLES
INDEX NAME I J PRIMAL DUAL
? <name> <a value> <a value> <a value> <a value>

The fields ?, ?? and <> will be filled with problem and solution specific information as described
below. The solution contains sections corresponding to parts of the input. Empty sections may be
omitted and fields in [] are optional, depending on what type of problem is solved. The notation below
follows the MOSEK naming convention for parts of the solution as defined in the problem specifications
in Sec. 12.

• HEADER
In this section, first the name of the problem is listed and afterwards the problem and solution
status are shown. Next the primal and dual objective values are displayed.

• CONSTRAINTS

– INDEX: A sequential index assigned to the constraint by MOSEK

– NAME: The name of the constraint assigned by the user or autogenerated.

– AT: The status key bkc of the constraint as in Table 15.4.

– ACTIVITY: the activity xc of the constraint expression.

– LOWER LIMIT: the lower bound blc of the constraint.

– UPPER LIMIT: the upper bound buc of the constraint.

– DUAL LOWER: the dual multiplier slc corresponding to the lower limit on the constraint.

– DUAL UPPER: the dual multiplier suc corresponding to the upper limit on the constraint.

423

• AFFINE CONIC CONSTRAINTS

– INDEX: A sequential index assigned to the affine expressions by MOSEK
– NAME: The name of the affine conic constraint assigned by the user or autogenerated.
– I: The sequential index of the affine expression in the affine conic constraint.
– ACTIVITY: the activity of the I-th affine expression in the affine conic constraint.
– DUAL: the dual multiplier doty for the I-th entry in the affine conic constraint.

• VARIABLES

– INDEX: A sequential index assigned to the variable by MOSEK
– NAME: The name of the variable assigned by the user or autogenerated.
– AT: The status key bkx of the variable as in Table 15.4.
– ACTIVITY: the value xx of the variable.
– LOWER LIMIT: the lower bound blx of the variable.
– UPPER LIMIT: the upper bound bux of the variable.
– DUAL LOWER: the dual multiplier slx corresponding to the lower limit on the variable.
– DUAL UPPER: the dual multiplier sux corresponding to the upper limit on the variable.
– CONIC DUAL: the dual multiplier skx corresponding to a conic variable (deprecated).

• SYMMETRIC MATRIX VARIABLES

– INDEX: A sequential index assigned to each symmetric matrix entry by MOSEK
– NAME: The name of the symmetric matrix variable assigned by the user or autogenerated.
– I: The row index in the symmetric matrix variable.
– J: The column index in the symmetric matrix variable.
– PRIMAL: the value of barx for the (I, J)-th entry in the symmetric matrix variable.
– DUAL: the dual multiplier bars for the (I, J)-th entry in the symmetric matrix variable.

Table 15.4: Status keys.

Status key Interpretation

UN Unknown status
BS Is basic
SB Is superbasic
LL Is at the lower limit (bound)
UL Is at the upper limit (bound)
EQ Lower limit is identical to upper limit
** Is infeasible i.e. the lower limit is greater than the upper limit.

Example.

Below is an example of a solution file.

Listing 15.6: An example of .sol file.

NAME :
PROBLEM STATUS : PRIMAL_AND_DUAL_FEASIBLE
SOLUTION STATUS : OPTIMAL
OBJECTIVE NAME : OBJ
PRIMAL OBJECTIVE : 0.70571049347734
DUAL OBJECTIVE : 0.70571048919757

CONSTRAINTS
(continues on next page)

424

(continued from previous page)

INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT ␣
→˓ DUAL LOWER DUAL UPPER

AFFINE CONIC CONSTRAINTS
INDEX NAME I ACTIVITY DUAL
0 A1 0 1.0000000009656 0.54475821296644
1 A1 1 0.50000000152223 0.32190455246225
2 A2 0 0.25439922724695 0.4552417870329
3 A2 1 0.17988741850378 -0.32190455246178
4 A2 2 0.17988741850378 -0.32190455246178

VARIABLES
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT ␣
→˓ DUAL LOWER DUAL UPPER
0 X1 SB 0.25439922724695 NONE NONE ␣
→˓ 0 0
1 X2 SB 0.17988741850378 NONE NONE ␣
→˓ 0 0
2 X3 SB 0.17988741850378 NONE NONE ␣
→˓ 0 0

SYMMETRIC MATRIX VARIABLES
INDEX NAME I J PRIMAL DUAL
0 BARX1 0 0 0.21725733689874 1.1333372337141
1 BARX1 1 0 -0.25997257078534 0.
→˓67809544651396
2 BARX1 2 0 0.21725733648507 -0.
→˓3219045527104
3 BARX1 1 1 0.31108610088839 1.1333372332693
4 BARX1 2 1 -0.25997257078534 0.
→˓67809544651435
5 BARX1 2 2 0.21725733689874 1.1333372337145
6 BARX2 0 0 4.8362272828127e-10 0.
→˓54475821339698
7 BARX2 1 0 0 0
8 BARX2 1 1 4.8362272828127e-10 0.
→˓54475821339698

425

Chapter 16

List of examples

List of examples shipped in the distribution of Fusion API for Java:

Table 16.1: List of distributed examples

File Description

TrafficNetworkModel.
java

Demonstrates a traffic network problem as a conic quadratic problem (CQO)

alan.java A portfolio choice model alan.gms from the GAMS model library
baker.java A small bakery revenue maximization linear problem
breaksolver.
java

Shows how to break a long-running task

callback.java An example of data/progress callback
ceo1.java A simple conic exponential problem
cqo1.java A simple conic quadratic problem
diet.java Solving Stigler’s Nutrition model diet from the GAMS model library
djc1.java A simple problem with disjunctive constraints (DJC)
duality.java Shows how to access the dual solution
elastic.java Linear regression with elastic net. Demonstrates model parametrization.
facility_location.
java

Demonstrates a small one-facility location problem (CQO)

gp1.java A simple geometric program (GP) in conic form
lo1.java A simple linear problem
logistic.java Implements logistic regression and simple log-sum-exp (CEO)
lownerjohn_ellipsoid.
java

Computes the Lowner-John inner and outer ellipsoidal approximations of a poly-
tope (SDO, Power Cone)

lpt.java Demonstrates how to solve the multi-processor scheduling problem and input an
integer feasible point (MIP)

mico1.java A simple mixed-integer conic problem
milo1.java A simple mixed-integer linear problem
mioinitsol.
java

A simple mixed-integer linear problem with an initial guess

nearestcorr.
java

Solves the nearest correlation matrix problem (SDO, CQO)

opt_server_sync.
java

Uses MOSEK OptServer to solve an optimization problem synchronously

parallel.java Demonstrates parallel optimization using a batch method in MOSEK
parameters.
java

Shows how to set optimizer parameters and read information items

pinfeas.java Shows how to obtain and analyze a primal infeasibility certificate
portfolio_1_basic.
java

Portfolio optimization - basic Markowitz model

portfolio_2_frontier.
java

Portfolio optimization - efficient frontier

continues on next page

426

Table 16.1 – continued from previous page

File Description

portfolio_3_impact.
java

Portfolio optimization - market impact costs

portfolio_4_transcost.
java

Portfolio optimization - transaction costs

portfolio_5_card.
java

Portfolio optimization - cardinality constraints

portfolio_6_factor.
java

Portfolio optimization - factor model

pow1.java A simple power cone problem
primal_svm.
java

Implements a simple soft-margin Support Vector Machine (CQO)

qcqp_sdo_relaxation.
java

Demonstrate how to use SDP to solve convex relaxation of a mixed-integer QCQO
problem

reoptimization.
java

Demonstrate how to modify and re-optimize a linear problem

response.java Demonstrates proper response handling
sdo1.java A simple semidefinite problem with one matrix variable and a quadratic cone
sdo2.java A simple semidefinite problem with two matrix variables
sdo3.java A simple semidefinite problem with many matrix variables of the same dimension
sospoly.java Models the cone of nonnegative polynomials and nonnegative trigonometric poly-

nomials using Nesterov’s framework
sudoku.java A SUDOKU solver (MIP)
total_variation.
java

Demonstrates how to solve a total variation problem (CQO)

tsp.java Solves a simple Travelling Salesman Problem and shows how to add constraints
to a model and re-optimize (MIP)

Additional examples can be found on the MOSEK website and in other MOSEK publications.

427

Chapter 17

Interface changes

The section shows interface-specific changes to the MOSEK Fusion API for Java in version 11.0 com-
pared to version 10. See the release notes for general changes and new features of the MOSEK Opti-
mization Suite.

17.1 Important changes compared to version 10

• Parameters. Users who set parameters to tune the performance and numerical properties of the
solver (termination criteria, tolerances, solving primal or dual, presolve etc.) are recommended to
reevaluate such tuning. It may be that other, or default, parameter settings will be more beneficial
in the current version. The hints in Sec. 9 may be useful for some cases.

• Shapes. Some operations have a stricter approach to shapes, especially in the context of multi-
plication, for instance using shape (n) where (1,n) is strictly required is no longer possible.

• Var.repeat. Var.repeat has inverted order of arguments to make it resemble Expr.repeat .

17.2 Changes compared to version 10

17.2.1 Parameters compared to version 10

Added

• foldingTolEq

• mioCliqueTableSizeFactor

• simPrecisionScalingExtended

• simPrecisionScalingNormal

• foldingUse

• heartbeatSimFreqTicks

• logSimFreqGigaTicks

• mioConflictAnalysisLevel

• mioCrossoverMaxNodes

• mioIndependentBlockLevel

• mioOptFaceMaxNodes

• mioRensMaxNodes

• ptfWriteSinglePsdTerms

• simPrecision

• simPrecisionBoost

428

https://docs.mosek.com/11.0/releasenotes/index.html

Removed

• checkConvexityRelTol

• presolveTolAij

• infeasPreferPrimal

• intpntMaxNumRefinementSteps

• intpntPurify

• logResponse

• logSimMinor

• mioRootRepeatPresolveLevel

• presolveLevel

• sensitivityOptimizer

• simStabilityPriority

• solFilterKeepRanged

• solutionCallback

• writeDataParam

• writeGenericNamesIo

• writeTaskIncSol

• writeXmlMode

• writeLpGenVarName

17.2.2 Constants compared to version 10

Added

Removed

• beginSimplexBi

• imBi

• imConic

• imDualBi

• imIntpnt

• imPresolve

• imPrimalBi

• imQoReformulate

• imSimplexBi

• biCleanDualTime

• biCleanPrimalTime

• biCleanDualDegIter

• biCleanDualIter

• biCleanPrimalDegIter

• biCleanPrimalIter

429

Bibliography

[AA95] E. D. Andersen and K. D. Andersen. Presolving in linear programming. Math. Programming,
71(2):221–245, 1995.

[AGMeszarosX96] E. D. Andersen, J. Gondzio, Cs. Mészáros, and X. Xu. Implementation of interior
point methods for large scale linear programming. In T. Terlaky, editor, Interior-point meth-
ods of mathematical programming, pages 189–252. Kluwer Academic Publishers, 1996.

[ART03] E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual interior-point
method for conic quadratic optimization. Math. Programming, February 2003.

[AY96] E. D. Andersen and Y. Ye. Combining interior-point and pivoting algorithms. Management
Sci., 42(12):1719–1731, December 1996.

[And09] Erling D. Andersen. The homogeneous and self-dual model and algorithm for linear opti-
mization. Technical Report TR-1-2009, MOSEK ApS, 2009. URL: http://docs.mosek.com/
whitepapers/homolo.pdf.

[And13] Erling D. Andersen. On formulating quadratic functions in optimization models. Technical
Report TR-1-2013, MOSEK ApS, 2013. Last revised 23-feb-2016. URL: http://docs.mosek.
com/whitepapers/qmodel.pdf.

[BKVH07] S. Boyd, S.J. Kim, L. Vandenberghe, and A. Hassibi. A Tutorial on Geometric Programming.
Optimization and Engineering, 8(1):67–127, 2007. Available at http://www.stanford.edu/
\protect\unhbox\voidb@x\penalty\@M\boyd/gp_tutorial.html.

[Chvatal83] V. Chvátal. Linear programming. W.H. Freeman and Company, 1983.

[CCornuejolsZ14] M. Conforti, G. Cornu/'ejols, and G. Zambelli. Integer programming. Springer, 2014.

[GJ79] Michael R Gary and David S Johnson. Computers and intractability: a guide to the theory
of np-completeness. 1979.

[GY05] Donald Goldfarb and Wotao Yin. Second-order cone programming methods for total
variation-based image restoration. SIAM Journal on Scientific Computing, 27(2):622–645,
2005.

[Gra69] Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM journal on Applied
Mathematics, 17(2):416–429, 1969.

[GK00] Richard C. Grinold and Ronald N. Kahn. Active portfolio management. McGraw-Hill, New
York, 2 edition, 2000.

[Naz87] J. L. Nazareth. Computer Solution of Linear Programs. Oxford University Press, New York,
1987.

[PB15] Jaehyun Park and Stephen Boyd. A semidefinite programming method for integer convex
quadratic minimization. arXiv preprint arXiv:1504.07672, 2015.

[Pat03] Gábor Pataki. Teaching integer programming formulations using the traveling salesman prob-
lem. SIAM review, 45(1):116–123, 2003.

[Wol98] L. A. Wolsey. Integer programming. John Wiley and Sons, 1998.

[BenTalN01] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization: Analysis, Algo-
rithms, and Engineering Applications. MPS/SIAM Series on Optimization. SIAM, 2001.

430

http://docs.mosek.com/whitepapers/homolo.pdf
http://docs.mosek.com/whitepapers/homolo.pdf
http://docs.mosek.com/whitepapers/qmodel.pdf
http://docs.mosek.com/whitepapers/qmodel.pdf
http://www.stanford.edu/\protect \unhbox \voidb@x \penalty \@M \ boyd/gp_tutorial.html
http://www.stanford.edu/\protect \unhbox \voidb@x \penalty \@M \ boyd/gp_tutorial.html

Symbol Index

Classes
BaseExpression, 183
BaseVariable, 185
BoundInterfaceConstraint, 190
BoundInterfaceVariable, 191
ConeDomain, 193
ConicConstraint, 195
ConicVariable, 195
Constraint, 196
Disjunction, 200
DisjunctionTerms, 201
DJC, 200
Domain, 201
Expr, 210
ExprDomain, 219
Expression, 220
LinearConstraint, 222
LinearDomain, 222
LinearPSDConstraint, 223
LinearPSDVariable, 224
LinearVariable, 225
Matrix, 226
Model, 229
ModelConstraint, 242
ModelVariable, 242
NDSparseArray, 243
Param, 246
Parameter, 248
PSDConstraint, 244
PSDDomain, 244
PSDVariable, 245
RangedConstraint, 251
RangeDomain, 250
RangedVariable, 252
Set, 253
SimpleTerm, 254
SliceConstraint, 254
SliceVariable, 255
Term, 255
Var, 256
Variable, 260
WorkStack, 264
LinAlg, 362

Enumerations
AccSolutionStatus, 323
AccSolutionStatus.Optimal, 323
AccSolutionStatus.Feasible, 323

AccSolutionStatus.Certificate, 323
AccSolutionStatus.Anything, 323
ObjectiveSense, 323
ObjectiveSense.Undefined, 323
ObjectiveSense.Minimize, 323
ObjectiveSense.Maximize, 323
ProblemStatus, 323
ProblemStatus.Unknown, 323
ProblemStatus.PrimalInfeasibleOrUnbounded,

324
ProblemStatus.PrimalInfeasible, 324
ProblemStatus.PrimalFeasible, 323
ProblemStatus.PrimalAndDualInfeasible, 324
ProblemStatus.PrimalAndDualFeasible, 323
ProblemStatus.IllPosed, 324
ProblemStatus.DualInfeasible, 324
ProblemStatus.DualFeasible, 324
SolutionStatus, 324
SolutionStatus.Unknown, 324
SolutionStatus.Undefined, 324
SolutionStatus.Optimal, 324
SolutionStatus.IllposedCert, 324
SolutionStatus.Feasible, 324
SolutionStatus.Certificate, 324
SolutionType, 324
SolutionType.Interior, 324
SolutionType.Integer, 324
SolutionType.Default, 324
SolutionType.Basic, 324
SolverStatus, 324
SolverStatus.OK, 324
SolverStatus.LostRace, 325
SolverStatus.Error, 324

Exceptions
DeletionError, 355
DimensionError, 355
DomainError, 355
ExpressionError, 355
FatalError, 355
FusionException, 356
FusionRuntimeException, 356
IndexError, 357
IOError, 356
LengthError, 357
MatrixError, 357
ModelError, 357
NameError, 357
OptimizeError, 358

431

ParameterError, 358
RangeError, 358
SetDefinitionError, 358
SliceError, 358
SolutionError, 359
SparseFormatError, 359
UnexpectedError, 359
UnimplementedError, 359
UpdateError, 359
ValueConversionError, 360

Parameters
Double parameters, 276
basisRelTolS, 276
basisTolS, 276
basisTolX, 276
foldingTolEq, 276
intpntCoTolDfeas, 277
intpntCoTolInfeas, 277
intpntCoTolMuRed, 277
intpntCoTolNearRel, 278
intpntCoTolPfeas, 278
intpntCoTolRelGap, 278
intpntTolDfeas, 278
intpntTolDsafe, 279
intpntTolInfeas, 279
intpntTolMuRed, 279
intpntTolPath, 279
intpntTolPfeas, 280
intpntTolPsafe, 280
intpntTolRelGap, 280
intpntTolRelStep, 281
intpntTolStepSize, 281
lowerObjCut, 281
lowerObjCutFiniteTrh, 281
mioCliqueTableSizeFactor, 282
mioDjcMaxBigm, 282
mioMaxTime, 282
mioRelGapConst, 282
mioTolAbsGap, 283
mioTolAbsRelaxInt, 283
mioTolFeas, 283
mioTolRelDualBoundImprovement, 283
mioTolRelGap, 284
optimizerMaxTicks, 284
optimizerMaxTime, 284
presolveTolAbsLindep, 284
presolveTolPrimalInfeasPerturbation, 285
presolveTolRelLindep, 285
presolveTolS, 285
presolveTolX, 285
semidefiniteTolApprox, 286
simLuTolRelPiv, 286
simPrecisionScalingExtended, 286
simPrecisionScalingNormal, 286
simplexAbsTolPiv, 287
upperObjCut, 287
upperObjCutFiniteTrh, 287

Integer parameters, 288
autoSortABeforeOpt, 288
autoUpdateSolInfo, 288
biCleanOptimizer, 288
biIgnoreMaxIter, 288
biIgnoreNumError, 289
biMaxIterations, 289
cacheLicense, 289
foldingUse, 289
heartbeatSimFreqTicks, 290
infeasReportAuto, 290
intpntBasis, 290
intpntDiffStep, 291
intpntMaxIterations, 291
intpntMaxNumCor, 291
intpntOffColTrh, 291
intpntOrderGpNumSeeds, 292
intpntOrderMethod, 292
intpntRegularizationUse, 292
intpntScaling, 292
intpntSolveForm, 293
intpntStartingPoint, 293
licenseDebug, 293
licensePauseTime, 293
licenseSuppressExpireWrns, 294
licenseTrhExpiryWrn, 294
licenseWait, 294
log, 294
logBi, 295
logBiFreq, 295
logCutSecondOpt, 295
logExpand, 296
logFile, 296
logIntpnt, 296
logLocalInfo, 296
logMio, 297
logMioFreq, 297
logOrder, 297
logPresolve, 298
logSim, 298
logSimFreq, 298
logSimFreqGigaTicks, 298
mioBranchDir, 299
mioConflictAnalysisLevel, 299
mioConicOuterApproximation, 299
mioConstructSol, 299
mioCrossoverMaxNodes, 300
mioCutClique, 300
mioCutCmir, 300
mioCutGmi, 300
mioCutImpliedBound, 301
mioCutKnapsackCover, 301
mioCutLipro, 301
mioCutSelectionLevel, 301
mioDataPermutationMethod, 302
mioDualRayAnalysisLevel, 302
mioFeaspumpLevel, 302
mioHeuristicLevel, 303

432

mioIndependentBlockLevel, 303
mioMaxNumBranches, 303
mioMaxNumRelaxs, 304
mioMaxNumRestarts, 304
mioMaxNumRootCutRounds, 304
mioMaxNumSolutions, 304
mioMemoryEmphasisLevel, 305
mioMinRel, 305
mioMode, 305
mioNodeOptimizer, 306
mioNodeSelection, 306
mioNumericalEmphasisLevel, 306
mioOptFaceMaxNodes, 306
mioPerspectiveReformulate, 307
mioPresolveAggregatorUse, 307
mioProbingLevel, 307
mioPropagateObjectiveConstraint, 307
mioQcqoReformulationMethod, 308
mioRensMaxNodes, 308
mioRinsMaxNodes, 308
mioRootOptimizer, 308
mioSeed, 309
mioSymmetryLevel, 309
mioVarSelection, 309
mioVbDetectionLevel, 310
mtSpincount, 310
numThreads, 310
optimizer, 310
presolveEliminatorMaxFill, 311
presolveEliminatorMaxNumTries, 311
presolveLindepAbsWorkTrh, 311
presolveLindepNew, 312
presolveLindepRelWorkTrh, 312
presolveLindepUse, 312
presolveMaxNumPass, 312
presolveUse, 313
ptfWriteParameters, 313
ptfWriteSinglePsdTerms, 313
ptfWriteSolutions, 313
ptfWriteTransform, 314
remoteUseCompression, 314
removeUnusedSolutions, 314
simBasisFactorUse, 314
simDegen, 314
simDualCrash, 315
simDualPhaseoneMethod, 315
simDualRestrictSelection, 315
simDualSelection, 316
simExploitDupvec, 316
simHotstart, 316
simHotstartLu, 316
simMaxIterations, 317
simMaxNumSetbacks, 317
simNonSingular, 317
simPrecision, 317
simPrecisionBoost, 318
simPrimalCrash, 318
simPrimalPhaseoneMethod, 318

simPrimalRestrictSelection, 318
simPrimalSelection, 319
simRefactorFreq, 319
simReformulation, 319
simSaveLu, 319
simScaling, 320
simScalingMethod, 320
simSeed, 320
simSolveForm, 320
simSwitchOptimizer, 321
writeJsonIndentation, 321
writeLpFullObj, 321
writeLpLineWidth, 321
writeMpsFormat, 322
String parameters, 322
dataFileName, 322
remoteOptserverHost, 322
remoteTlsCert, 322
remoteTlsCertPath, 323

Response codes

433

Index

A
algorithm

approximation, 121, 144
approximation

algorithm, 121, 144
correlation matrix, 139

asset, see portfolio optimization
assignment problem, 130

B
basic

solution, 60
basis identification, 161
bound

constraint, 23, 146, 149, 153
linear optimization, 23
variable, 23, 146, 149, 153

Branch-and-Bound, 169

C
callback, 70
cardinality constraints, 109
CBF format, 392
certificate, 61

dual, 148, 151
infeasibility, 55
infeasible, 55
primal, 148, 151

Cholesky factorization, 101
CLASSPATH, 10
complementarity, 147, 151
cone, 15

dual, 150
dual exponential, 31
exponential, 31
power, 28, 129
quadratic, 25
rotated quadratic, 25
semidefinite, 36

conic exponential optimization, 31
conic optimization, 25, 28, 31, 149

interior-point, 165
mixed-integer, 177
modeling, 15
termination criteria, 167

conic quadratic optimization, 25
constraint

bound, 23, 146, 149, 153
linear optimization, 23

matrix, 23, 146, 149, 153
modeling, 17

constraint programming, 45
correlation matrix, 95, 139

approximation, 139
covariance matrix, see correlation matrix
cuts, 176
cutting planes, 176

D
denoising, 115
dense

matrix, 91
determinant, 129
determinism, 91
disjunction, 45
disjunctive constraints, 45
DJC, 45
domain, 360
dual

certificate, 148, 151
cone, 150
feasible, 147
infeasible, 147, 148, 151
problem, 147, 150, 154
solution, 26, 29, 32, 62
variable, 147, 150

duality
conic, 150
linear, 147
semidefinite, 154

dualizer, 157

E
efficient frontier, 99
elastic net, 48
eliminator, 157
ellipsoid, 126
environment variable

CLASSPATH, 10
error

optimization, 60
errors, 64
exceptions, 64
exponential cone, 31
expression

modeling, 16

434

F
factor model, 101, 139
feasibility

integer feasibility, 172
feasibility problem, 130
feasible

dual, 147
primal, 146, 159, 166
problem, 146

format, 67
CBF, 392
json, 417
LP, 367
MPS, 371
OPF, 383
PTF, 410
sol, 423
task, 416

Frobenius norm, 139
Fusion

reformulation, 14

G
geometric mean, 129
geometric programming, 33
GP, 33

H
heuristic, 175
hot-start, 163

I
I/O, 67
infeasibility, 61, 148, 151

linear optimization, 148
semidefinite, 154

infeasibility certificate, 55
infeasible

dual, 147, 148, 151
primal, 146, 148, 151, 159, 166
problem, 146, 148, 154

information item, 68, 70
installation, 9

nmake (command), 11, 12
requirements, 9
troubleshooting, 9

integer
solution, 60
variable, 41

integer feasibility, 172
feasibility, 172

integer optimization, 41, 45
initial solution, 43, 121
parameter, 42

interior-point
conic optimization, 165
linear optimization, 159
logging, 162, 168

optimizer, 159, 165
solution, 60
termination criteria, 160, 167

J
json format, 417

L
Löwner-John ellipsoid, 126
lasso, 48
least squares

integer, 143
license, 93

checkout, 93
parameter, 93
path, 93

limitations, 89
linear constraint matrix, 23
linear dependency, 157
linear optimization, 23, 146

bound, 23
constraint, 23
infeasibility, 148
interior-point, 159
objective, 23
simplex, 163
termination criteria, 160, 163
variable, 23

log-sum-exp, 124
logging, 66

interior-point, 162, 168
mixed-integer optimizer, 173
optimizer, 162, 164, 168
simplex, 164

logistic regression, 123
LP format, 367

M
machine learning

large margin classification, 111
logistic regression, 123
separating hyperplane, 111
Support-Vector Machine, 111

makespan, 120
market impact cost, 105
Markowitz model, 95
matrix

constraint, 23, 146, 149, 153
dense, 91
low rank, 141
modeling, 18
semidefinite, 36
sparse, 91
symmetric, 36

MI(QC)QO, 178
MICO, 177
MIP, see integer optimization
mixed-integer, see integer

435

conic optimization, 177
optimizer, 169
presolve, 174
quadratic, 178

mixed-integer optimization, see integer opti-
mization, 169

mixed-integer optimizer
logging, 173

modeling
conic optimization, 15
constraint, 17
design, 12
expression, 16
matrix, 18
objective, 17
variable, 15

MPS format, 371
free, 383

N
norm

Frobenius, 139
nuclear, 141

nuclear norm, 141
numerical issues

presolve, 157
scaling, 158
simplex, 164

O
objective, 146, 149, 153

linear optimization, 23
modeling, 17

OPF format, 383
optimal

solution, 61
optimality gap, 171
optimization

conic, 149
conic quadratic, 149
error, 60
integer, 45
linear, 23, 146
semidefinite, 152

optimizer
determinism, 91
interior-point, 159, 165
interrupt, 69, 70
logging, 162, 164, 168
mixed-integer, 45, 169
parallel, 54
selection, 157, 158
simplex, 163
termination, 171
time limit, 69

Optimizer API, 73
reformulation, 14

P
parallel optimization, 54
parallelization, 91
parameter, 67

integer optimization, 42
license, 93
simplex, 164

parameters, 48
parametrization, 92
Pareto optimality, 95
path

license, 93
penalty, 112
portfolio optimization, 95

cardinality constraints, 109
correlation matrix, 139
efficient frontier, 99
factor model, 101, 139
market impact cost, 105
Markowitz model, 95
Pareto optimality, 95
slippage cost, 105
transaction cost, 107

power cone, 28, 129
power cone optimization, 28
presolve, 156

eliminator, 157
linear dependency check, 157
mixed-integer, 174
numerical issues, 157

primal
certificate, 148, 151
feasible, 146, 159, 166
infeasible, 146, 148, 151, 159, 166
problem, 147, 150, 154
solution, 26, 29, 32, 62, 146

primal heuristics, 175
primal-dual

problem, 159, 165
solution, 147

problem
dual, 147, 150, 154
feasible, 146
infeasible, 146, 148, 154
load, 67
primal, 147, 150, 154
primal-dual, 159, 165
save, 67
status, 60
unbounded, 148, 152

PTF format, 410

Q
quadratic

mixed-integer, 178
quadratic cone, 25

436

R
regression, 48

logistic, 123
regularization, 48
relaxation, 143, 169
reoptimization, 21, 48, 135
response code, 64
ridge, 48
rotated quadratic cone, 25

S
scaling, 158
scheduling, 120
Schur complement, 143
semidefinite

cone, 36
infeasibility, 154
matrix, 36
variable, 36

semidefinite optimization, 36, 152
separating hyperplane, 111
simplex

linear optimization, 163
logging, 164
numerical issues, 164
optimizer, 163
parameter, 164
termination criteria, 163

slice
variable, 19, 92, 117

slippage cost, 105
sol format, 423
solution

basic, 60
dual, 26, 29, 32, 62
file format, 423
integer, 60
interior-point, 60
optimal, 61
primal, 26, 29, 32, 62, 146
primal-dual, 147
retrieve, 60
status, 61

sparse
matrix, 91

stacking, 19
status

problem, 60
solution, 61

symmetric
matrix, 36

T
task format, 416
termination, 60

optimizer, 171
termination criteria, 70, 171

conic optimization, 167

interior-point, 160, 167
linear optimization, 160, 163
simplex, 163
tolerance, 161, 168

thread, 91
time, 91
time limit, 69, 70
timing, 91
tolerance

termination criteria, 161, 168
transaction cost, 107
travelling salesman problem, 134
troubleshooting

installation, 9

U
unbounded

problem, 148, 152
user callback, see callback

V
valid inequalities, 176
variable, 146, 149, 153

bound, 23, 146, 149, 153
dual, 147, 150
integer, 41
limitations, 89
linear optimization, 23
modeling, 15
semidefinite, 36
slice, 19, 92, 117

vectorization, 20, 92

437

	Introduction
	Why the Fusion API for Java?

	Contact Information
	License Agreement
	MOSEK end-user license agreement
	Third party licenses

	Installation
	Building Examples and Testing the Installation
	Windows
	macOS and Linux

	Design Overview
	Conic Modeling
	The model
	Variables
	Expressions and linear operators
	Constraints and objective
	Matrices
	Parameters
	Stacking and views
	Vectorization
	Reoptimization

	Optimization Tutorials
	Linear Optimization
	Example LO1

	Conic Quadratic Optimization
	Example CQO1

	Power Cone Optimization
	Example POW1

	Conic Exponential Optimization
	Example CEO1

	Geometric Programming
	Example GP1

	Semidefinite Optimization
	Example SDO1
	Example SDO2
	Example SDO3

	Integer Optimization
	Example MILO1
	Specifying an initial solution
	Example MICO1

	Disjunctive constraints
	Applications
	Example DJC1

	Model Parametrization and Reoptimization
	Creating a model
	Setting parameters
	Changing parameters
	Additional remarks

	Problem Modification and Reoptimization
	Example: Production Planning
	Changing the Linear Constraint Matrix
	Appending Variables
	Appending Constraints
	Changing bounds
	Advanced hot-start

	Parallel optimization
	Retrieving infeasibility certificates
	Example PINFEAS

	Solver Interaction Tutorials
	Accessing the solution
	Solver termination
	Available solutions
	Problem and solution status
	Retrieving solution values
	Source code example

	Errors and exceptions
	Input/Output
	Stream logging
	Log verbosity
	Saving a problem to a file
	Reading a problem from a file

	Setting solver parameters
	Retrieving information items
	Stopping the solver
	Example: Setting a Time Limit

	Progress and data callback
	Data callback
	Progress callback
	Working example: Data callback

	Optimizer API Task
	MOSEK OptServer
	Synchronous Remote Optimization

	Debugging Tutorials
	Understanding optimizer log
	Input data
	Solution summary
	Continuous problem

	Mixed-integer problem

	Addressing numerical issues
	Formulating problems
	Further suggestions
	Typical pitfalls

	Debugging infeasibility
	Numerical issues
	Locating primal infeasibility
	Locating dual infeasibility
	Suggestions

	Python Console
	Usage
	Examples
	Full list of commands

	Technical guidelines
	Limitations
	Memory management and garbage collection
	Names
	Timing
	Multithreading
	Efficiency
	The license system
	Deployment

	Case Studies
	Portfolio Optimization
	The Basic Model
	The Efficient Frontier
	Factor model and efficiency
	Slippage Cost
	Market Impact Costs
	Transaction Costs
	Cardinality constraints

	Primal Support-Vector Machine (SVM)
	2D Total Variation
	Multiprocessor Scheduling
	Logistic regression
	Inner and outer Löwner-John Ellipsoids
	Inner Löwner-John Ellipsoids
	Outer Löwner-John Ellipsoids
	Bound on the Determinant Root

	SUDOKU
	Travelling Salesman Problem (TSP)
	Nearest Correlation Matrix Problem
	Nearest correlation with the Frobenius norm
	Nearest Correlation with Nuclear-norm Penalty

	Semidefinite Relaxation of MIQCQO Problems

	Problem Formulation and Solutions
	Linear Optimization
	Duality for Linear Optimization
	Infeasibility for Linear Optimization
	Primal Infeasible Problems
	Dual Infeasible Problems

	Minimalization vs. Maximalization

	Conic Optimization
	Duality for Conic Optimization
	Infeasibility for Conic Optimization
	Primal Infeasible Problems
	Dual Infeasible Problems

	Minimalization vs. Maximalization

	Semidefinite Optimization

	Optimizers
	Presolve
	Linear Optimization
	Optimizer Selection
	The Interior-point Optimizer
	The homogeneous primal-dual problem
	Interior-point Termination Criterion
	Adjusting optimality criteria
	Basis Identification
	The Interior-point Log

	The Simplex Optimizer
	Simplex Termination Criterion
	Starting From an Existing Solution
	Numerical Difficulties in the Simplex Optimizers
	The Simplex Log

	Conic Optimization - Interior-point optimizer
	The homogeneous primal-dual problem
	Interior-point Termination Criterion
	Adjusting optimality criteria
	The Interior-point Log

	The Optimizer for Mixed-Integer Problems
	Branch-and-Bound
	Solution quality and termination criteria
	Solution quality in terms of optimality
	Solution quality in terms of feasibility
	Further controlling optimizer termination

	The Mixed-Integer Log
	Presolve
	Primal Heuristics
	Cutting Planes
	Restarts
	Block decomposition

	Mixed-Integer Nonlinear Optimization
	Disjunctive constraints
	Randomization
	Further performance tweaks

	Fusion API Reference
	Fusion API conventions
	General conventions

	Class list
	Class BaseExpression
	Class BaseVariable
	Class BoundInterfaceConstraint
	Class BoundInterfaceVariable
	Class ConeDomain
	Class ConicConstraint
	Class ConicVariable
	Class Constraint
	Class DJC
	Class Disjunction
	Class DisjunctionTerms
	Class Domain
	Class Expr
	Class ExprDomain
	Class Expression
	Class LinearConstraint
	Class LinearDomain
	Class LinearPSDConstraint
	Class LinearPSDVariable
	Class LinearVariable
	Class Matrix
	Class Model
	Class ModelConstraint
	Class ModelVariable
	Class NDSparseArray
	Class PSDConstraint
	Class PSDDomain
	Class PSDVariable
	Class Param
	Class Parameter
	Class RangeDomain
	Class RangedConstraint
	Class RangedVariable
	Class Set
	Class SimpleTerm
	Class SliceConstraint
	Class SliceVariable
	Class Term
	Class Var
	Class Variable
	Class WorkStack

	Parameters grouped by topic
	Parameters (alphabetical list sorted by type)
	Double parameters
	Integer parameters
	String parameters

	Enumerations
	Constants
	Basis identification
	Bound keys
	Mark
	Experimental. Usage not recommended.
	Degeneracy strategies
	Transposed matrix.
	Triangular part of a symmetric matrix.
	Problem reformulation.
	Exploit duplicate columns.
	Hot-start type employed by the simplex optimizer
	Hot-start type employed by the interior-point optimizers.
	Progress callback codes
	Compression types
	Cone types
	Cone types
	Name types
	Cone types
	Data format types
	Data format types
	Double information items
	License feature
	Long integer information items.
	Integer information items.
	Information item types
	Input/output modes
	Specifies the branching direction.
	Specifies the reformulation method for mixed-integer quadratic problems.
	Specifies the problem data permutation method for mixed-integer problems.
	Continuous mixed-integer solution type
	Integer restrictions
	Mixed-integer node selection types
	Mixed-integer variable selection types
	MPS file format type
	Objective sense types
	On/off
	Optimizer types
	Ordering strategies
	Presolve method.
	Method of folding (symmetry detection for continuous problems).
	Parameter type
	Problem data items
	Problem types
	Problem status keys
	Response code type
	Scaling type
	Scaling method
	Sensitivity types
	Simplex selection strategy
	Solution items
	Solution status keys
	Solution types
	Solve primal or dual form
	Status keys
	Starting point types
	Stream types
	Integer values
	Variable types

	Exceptions
	Exception DeletionError
	Exception DimensionError
	Exception DomainError
	Exception ExpressionError
	Exception FatalError
	Exception FusionException
	Exception FusionRuntimeException
	Exception IOError
	Exception IndexError
	Exception LengthError
	Exception MatrixError
	Exception ModelError
	Exception NameError
	Exception OptimizeError
	Exception ParameterError
	Exception RangeError
	Exception SetDefinitionError
	Exception SliceError
	Exception SolutionError
	Exception SparseFormatError
	Exception UnexpectedError
	Exception UnimplementedError
	Exception UpdateError
	Exception ValueConversionError

	Supported domains
	Affine domains
	Quadratic cone domains
	Exponential cone domains
	Power cone domains
	Geometric mean cone domains
	Positive semidefinite cone domain

	Class LinAlg

	Supported File Formats
	The LP File Format
	File Sections
	Objective Function
	Constraints
	Bounds
	Variable Types
	Terminating Section

	LP File Examples
	LP Format peculiarities
	Comments
	Names
	Variable Bounds

	The MPS File Format
	MPS File Structure
	NAME (optional)
	OBJSENSE (optional)
	OBJNAME (optional)
	ROWS
	COLUMNS
	RHS (optional)
	RANGES (optional)
	QSECTION (optional)
	QMATRIX/QUADOBJ (optional)
	QCMATRIX (optional)
	BOUNDS (optional)
	CSECTION (optional)
	ENDATA

	Integer Variables
	General Limitations
	Interpretation of the MPS Format
	The Free MPS Format

	The OPF Format
	The File Format
	Sections
	Numbers
	Names
	Parameters Section
	Writing OPF Files from MOSEK
	Examples
	Linear Example lo1.opf
	Quadratic Example qo1.opf
	Conic Quadratic Example cqo1.opf
	Mixed Integer Example milo1.opf

	The CBF Format
	How Instances Are Specified
	The Structure of CBF Files
	Problem Specification
	File Format Keywords
	VER
	POWCONES
	POW*CONES
	OBJSENSE
	PSDVAR
	VAR
	INT
	PSDCON
	CON
	OBJFCOORD
	OBJACOORD
	OBJBCOORD
	FCOORD
	ACOORD
	BCOORD
	HCOORD
	DCOORD

	CBF Format Examples
	Minimal Working Example
	Mixing Linear, Second-order and Semidefinite Cones
	Mixing Semidefinite Variables and Linear Matrix Inequalities
	The exponential cone
	Parametric cones

	The PTF Format
	The overall format
	Names
	Expressions

	Task section
	Objective section
	Constraints section
	Variables section
	Integer section
	SymmetricMatrixes section
	Solutions section
	Examples

	The Task Format
	The JSON Format
	JTASK Specification
	JSOL Specification
	A jtask example

	The Solution File Format

	List of examples
	Interface changes
	Important changes compared to version 10
	Changes compared to version 10
	Parameters compared to version 10
	Constants compared to version 10

	Bibliography
	Symbol Index
	Index

