
MOSEK Optimization Toolbox for
MATLAB

Release 11.0.21

MOSEK ApS

28 May 2025

Contents

1 Introduction 1
1.1 Why the Optimization Toolbox for MATLAB? . 2

2 Contact Information 3

3 License Agreement 4
3.1 MOSEK end-user license agreement . 4
3.2 Third party licenses . 4

4 Installation 10
4.1 Testing the installation . 11
4.2 Troubleshooting . 11

5 Design Overview 14
5.1 Modeling . 14
5.2 “Hello World!” in MOSEK . 14

6 Optimization Tutorials 16
6.1 Linear Optimization . 17
6.2 From Linear to Conic Optimization . 20
6.3 Conic Quadratic Optimization . 23
6.4 Power Cone Optimization . 25
6.5 Conic Exponential Optimization . 27
6.6 Geometric Programming . 29
6.7 Semidefinite Optimization . 32
6.8 Integer Optimization . 38
6.9 Quadratic Optimization . 41
6.10 Problem Modification and Reoptimization . 44
6.11 Retrieving infeasibility certificates . 49

7 Solver Interaction Tutorials 52
7.1 Accessing the solution . 52
7.2 Errors and exceptions . 55
7.3 Input/Output . 57
7.4 Setting solver parameters . 59
7.5 Retrieving information items . 60
7.6 Progress and data callback . 60
7.7 MOSEK OptServer . 62

8 Debugging Tutorials 63
8.1 Understanding optimizer log . 63
8.2 Addressing numerical issues . 68
8.3 Debugging infeasibility . 70
8.4 Python Console . 75

9 Advanced Numerical Tutorials 78
9.1 Advanced hot-start . 78

i

10 Technical guidelines 83
10.1 Integration with MATLAB . 83
10.2 Names . 84
10.3 Timing . 84
10.4 Multithreading . 84
10.5 The license system . 85

11 Case Studies 86
11.1 Portfolio Optimization . 86
11.2 Least Squares and Other Norm Minimization Problems 101
11.3 Robust linear Optimization . 106

12 Problem Formulation and Solutions 119
12.1 Linear Optimization . 119
12.2 Conic Optimization . 122
12.3 Semidefinite Optimization . 125
12.4 Quadratic and Quadratically Constrained Optimization 127

13 Optimizers 130
13.1 Presolve . 130
13.2 Linear Optimization . 132
13.3 Conic Optimization - Interior-point optimizer . 139
13.4 The Optimizer for Mixed-Integer Problems . 143

14 Additional features 155
14.1 Problem Analyzer . 155
14.2 Automatic Repair of Infeasible Problems . 156
14.3 Sensitivity Analysis . 160

15 Toolbox API Reference 168
15.1 API conventions . 168
15.2 Command Reference . 169
15.3 Data Structures and Notation . 176
15.4 Parameters grouped by topic . 184
15.5 Parameters (alphabetical list sorted by type) . 196
15.6 Response codes . 258
15.7 Enumerations . 282
15.8 Supported domains . 313

16 Supported File Formats 316
16.1 The LP File Format . 317
16.2 The MPS File Format . 321
16.3 The OPF Format . 333
16.4 The CBF Format . 344
16.5 The PTF Format . 361
16.6 The Task Format . 367
16.7 The JSON Format . 368
16.8 The Solution File Format . 374

17 List of examples 377

18 Interface changes 379
18.1 Important changes compared to version 10 . 379
18.2 Changes compared to version 10 . 379

Bibliography 384

Symbol Index 385

Index 400

ii

Chapter 1

Introduction

The MOSEK Optimization Suite 11.0.21 is a powerful software package capable of solving large-scale
optimization problems of the following kind:

• linear,

• conic:

– conic quadratic (also known as second-order cone),
– involving the exponential cone,
– involving the power cone,
– semidefinite,

• convex quadratic and quadratically constrained,

• integer.

In order to obtain an overview of features in the MOSEK Optimization Suite consult the product
introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all rela-
tions are linear. The tremendous success of both applications and theory of linear optimization can be
ascribed to the following factors:

• The required data are simple, i.e. just matrices and vectors.

• Convexity is guaranteed since the problem is convex by construction.

• Linear functions are trivially differentiable.

• There exist very efficient algorithms and software for solving linear problems.

• Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the
advantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

𝐴𝑥− 𝑏 ≥ 0.

In conic optimization this is replaced with a wider class of constraints

𝐴𝑥− 𝑏 ∈ 𝒦

where 𝒦 is a convex cone. For example in 3 dimensions 𝒦 may correspond to an ice cream cone. The
conic optimizer in MOSEK supports a number of different types of cones 𝒦, which allows a surprisingly
large number of nonlinear relations to be modeled, as described in the MOSEK Modeling Cookbook,
while preserving the nice algorithmic and theoretical properties of linear optimization.

1

https://docs.mosek.com/11.0/intro/index.html
https://docs.mosek.com/11.0/intro/index.html
https://docs.mosek.com/modeling-cookbook/index.html

1.1 Why the Optimization Toolbox for MATLAB?

The Optimization Toolbox for MATLAB provides access to most of the functionality of MOSEK from
a MATLAB environment. In addition the toolbox includes functions that replace functions from the
MATLAB optimization toolbox available from MathWorks.

The Optimization Toolbox for MATLAB provides access to:

• Linear Optimization (LO)

• Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)

• Power Cone Optimization

• Conic Exponential Optimization (CEO)

• Convex Quadratic and Quadratically Constrained Optimization (QO, QCQO)

• Semidefinite Optimization (SDO)

• Mixed-Integer Optimization (MIO)

as well as to additional functions for:

• problem analysis,

• sensitivity analysis,

• infeasibility diagnostics.

2

Chapter 2

Contact Information

Phone +45 7174 9373 Office
+45 7174 5700 Sales

Website mosek.com
Email

sales@mosek.com Sales, pricing, and licensing
support@mosek.com Technical support, questions and bug reports
info@mosek.com Everything else.

Mailing Address
MOSEK ApS
Fruebjergvej 3
Symbion Science Park, Box 16
2100 Copenhagen O
Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger https://blog.mosek.com/
Google Group https://groups.google.com/forum/#!forum/mosek
Twitter https://twitter.com/mosektw
Linkedin https://www.linkedin.com/company/mosek-aps
Youtube https://www.youtube.com/channel/UCvIyectEVLP31NXeD5mIbEw

In particular Twitter is used for news, updates and release announcements.

3

https://mosek.com/
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com
https://blog.mosek.com/
https://groups.google.com/forum/#!forum/mosek
https://twitter.com/mosektw
https://www.linkedin.com/company/mosek-aps
https://www.youtube.com/channel/UCvIyectEVLP31NXeD5mIbEw

Chapter 3

License Agreement

3.1 MOSEK end-user license agreement

Before using the MOSEK software, please read the license agreement available in the distribution
at <MSKHOME>/mosek/11.0/mosek-eula.pdf or on the MOSEK website https://mosek.com/products/
license-agreement. By using MOSEK you agree to the terms of that license agreement.

3.2 Third party licenses

MOSEK uses some third-party open-source libraries. Their license details follow.

zlib

MOSEK uses the zlib library obtained from the zlib website. The license agreement for zlib is shown
in Listing 3.1.

Listing 3.1: zlib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

4

https://mosek.com/products/license-agreement
https://mosek.com/products/license-agreement
http://zlib.org

fplib

MOSEK uses the floating point formatting library developed by David M. Gay obtained from the netlib
website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

{fmt}

MOSEK uses the formatting library {fmt} developed by Victor Zverovich obtained form github/fmt
and distributed under the MIT license. The license agreement fot {fmt} is shown in Listing 3.3.

Listing 3.3: {fmt} license.

Copyright (c) 2012 - present, Victor Zverovich

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

5

http://www.netlib.org
http://www.netlib.org
https://github.com/fmtlib/fmt

Zstandard

MOSEK uses the Zstandard library developed by Facebook obtained from github/zstd. The license
agreement for Zstandard is shown in Listing 3.4.

Listing 3.4: Zstandard license.

BSD License

For Zstandard software

Copyright (c) 2016-present, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name Facebook nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

OpenSSL

MOSEK uses the LibReSSL library, which is build on OpenSSL. OpenSSL is included under the
OpenSSL license, Listing 3.5, and the LibReSSL additions are licensed under the ISC license, Listing
3.6.

Listing 3.5: OpenSSL license

==
Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in

(continues on next page)

6

https://github.com/facebook/zstd
https://www.libressl.org/

(continued from previous page)

the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.
==

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Listing 3.6: ISC license

Copyright (C) 1994-2017 Free Software Foundation, Inc.
Copyright (c) 2014 Jeremie Courreges-Anglas <jca@openbsd.org>
Copyright (c) 2014-2015 Joel Sing <jsing@openbsd.org>
Copyright (c) 2014 Ted Unangst <tedu@openbsd.org>
Copyright (c) 2015-2016 Bob Beck <beck@openbsd.org>
Copyright (c) 2015 Marko Kreen <markokr@gmail.com>
Copyright (c) 2015 Reyk Floeter <reyk@openbsd.org>
Copyright (c) 2016 Tobias Pape <tobias@netshed.de>

Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all
copies.

(continues on next page)

7

(continued from previous page)

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

mimalloc

MOSEK uses the mimalloc memory allocator library from github/mimalloc. The license agreement for
mimalloc is shown in Listing 3.7.

Listing 3.7: mimalloc license.

MIT License

Copyright (c) 2019 Microsoft Corporation, Daan Leijen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

BLASFEO

MOSEK uses the BLASFEO linear algebra library developed by Gianluca Frison, obtained from
github/blasfeo. The license agreement for BLASFEO is shown in Listing 3.8.

Listing 3.8: blasfeo license.

BLASFEO -- BLAS For Embedded Optimization.
Copyright (C) 2019 by Gianluca Frison.
Developed at IMTEK (University of Freiburg) under the supervision of Moritz Diehl.
All rights reserved.

The 2-Clause BSD License

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
(continues on next page)

8

https://github.com/microsoft/mimalloc
https://github.com/giaf/blasfeo

(continued from previous page)

list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

oneTBB

MOSEK uses the oneTBB parallelization library which is part of oneAPI developed by Intel, obtained
from github/oneTBB, licensed under the Apache License 2.0. The license agreement for oneTBB can be
found in https://github.com/oneapi-src/oneTBB/blob/master/LICENSE.txt .

9

https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB/blob/master/LICENSE.txt

Chapter 4

Installation

In this section we discuss how to install and setup the MOSEK Optimization Toolbox for MATLAB.

Important: Before running this MOSEK interface please make sure that you:

• Installed MOSEK correctly. Some operating systems require extra steps. See the Installation
guide for instructions and common troubleshooting tips.

• Set up a license. See the Licensing guide for instructions.

Compatibility

The Optimization Toolbox for MATLAB can be used with MATLAB version R2019b or newer on
linux64x86, win64x86 and R2022b Beta or newer on osxaarch64 (see next paragraph). On the Apple
Sillicon (M1/M2/M3) platform you must be using the Apple Sillicon release of MATLAB (MATLAB
architecture tag MACA64).

Locating files in the MOSEK Optimization Suite

The relevant files of the Optimization Toolbox for MATLAB are organized as reported in Table 4.1.

Table 4.1: Relevant files for the Optimization Toolbox for MAT-
LAB.

Relative Path Description Label

<MSKHOME>/mosek/11.0/toolbox/<TOOLBOXVER> Toolbox <TOOLBOXDIR>
<MSKHOME>/mosek/11.0/toolbox/
<TOOLBOXVER>om

Toolbox (without overload-
ing)

<TOOLBOXOMDIR>

<MSKHOME>/mosek/11.0/toolbox/examples Examples <EXDIR>
<MSKHOME>/mosek/11.0/toolbox/data Additional data <MISCDIR>

where

• <MSKHOME> is the folder in which the MOSEK Optimization Suite has been installed,

• <TOOLBOXVER> denotes the toolbox version string:

– r2022b on osxaarch64

– r2019b on linux64x86, win64x86.

10

https://docs.mosek.com/11.0/install/index.html
https://docs.mosek.com/11.0/install/index.html
https://docs.mosek.com/11.0/licensing/index.html

Setting up the paths

To use Optimization Toolbox for MATLAB the path to the toolbox directory must be added via the
addpath command in MATLAB. Use the command

addpath <MSKHOME>/mosek/11.0/toolbox/r2019b (linux64x86)
addpath <MSKHOME>/mosek/11.0/toolbox/r2022b (osxaarch64)
addpath <MSKHOME>\mosek\11.0\toolbox\r2019b (win64x86)

or, if you do not want to overload functions such as linprog and quadprog from the MATLAB
Optimization Toolbox with their MOSEK versions, then write

addpath <MSKHOME>/mosek/11.0/toolbox/r2019bom (linux64x86)
addpath <MSKHOME>/mosek/11.0/toolbox/r2022bom (osxaarch64)
addpath <MSKHOME>\mosek\11.0\toolbox\r2019bom (win64x86)

Alternatively, the path to Optimization Toolbox for MATLAB may be set from the command line
or it can be added to MATLAB permanently using the configuration file startup.m or from the FileSet
Path menu item. We refer to MATLAB documentation for details.

4.1 Testing the installation

You can verify that Optimization Toolbox for MATLAB works by executing

mosekdiag

in MATLAB. This should produce a message similar to this:

>> mosekdiag
Matlab version : 9.2.0.538062 (R2017a)
Architecture : GLNXA64
mosekopt path : /home/user/somepath/toolbox/r2017a/mosekopt.mexa64
MOSEK version : 10.0.18
Test linear solve: Success
mosekopt works OK. You can use MOSEK in MATLAB.

Debug and license path information can also be obtained with:

mosekopt('debug(10)')

4.2 Troubleshooting

Missing library files such as libmosek64.10.0.dylib or similar

If you are using macOS and get an error such as

Library not loaded: libmosek64.10.0.dylib
Referenced from:
/Users/.../mosek/10.0/toolbox/r2017a/mosekopt.mexmaci64
Reason: image not found.

Error in callmosek>doCall (line 224)
[res,sol] = mosekopt('minimize info',prob,param);

then most likely you did not run the MOSEK installation script install.py found in the bin
directory. See also the Installation guide for details.

11

https://docs.mosek.com/11.0/install/index.html

Windows, invalid MEX-file, cannot find shared libraries

If you are using Windows and get an error such as

Invalid MEX-file <MSKHOME>\Mosek\11.0\toolbox\r2019a\mosekopt.mexw64: The specified␣
→˓module could not be found.

then MATLAB cannot load the MOSEK shared libraries, because the folder containing them is
not in the system search path for DLLs. This can happen if MOSEK was installed manually and
not using the MSI installer. The solution is to add the path <MSKHOME>\mosek\11.0\tools\platform\
<PLATFORM>\bin to the system environment variable PATH. This can also be done per MATLAB session
by using the setenv command in MATLAB before using MOSEK, for example:

setenv('PATH', [getenv('PATH') ';<MSKHOME>\Mosek\11.0\tools\platform\win64x86\bin']);

Adjust the path to match your MOSEK location.
See also the Installation guide for details.

MATLAB String type is not supported

From R2017a MATLAB provides a new string type (with double quotes). It is not supported by the
Optimization Toolbox for MATLAB and may cause confusing error messages. For example the following
will give an error:

mosekopt("minimize", prob)

Return code - 1200 [MSK_RES_ERR_IN_ARGUMENT] [A function argument is incorrect.]

Always use old-fashioned character arrays (strings in single quotes).

MOSEK does not see new license file

If you updated your license file but MOSEK does not detect it then restart MATLAB. MOSEK is
caching the license and it will not notice the change in the license file on disk.

Undefined Function or Variable mosekopt

If you get the MATLAB error message

Undefined function or variable 'mosekopt'

you have not added the path to the Optimization Toolbox for MATLAB correctly as described above.

Invalid MEX-file

For certain versions of Windows and MATLAB, the path to MEX files cannot contain spaces. Therefore,
if you have installed MOSEK in C:\Program Files\Mosek and get a MATLAB error similar to:

Invalid MEX-file <MSKHOME>\Mosek\10.0\toolbox\r2017a\mosekopt.mexw64

try installing MOSEK in a different directory, for example C:\Users\<someuser >\ .

Output Arguments not assigned

If you encounter an error like

Error in ==> mosekopt at 1
function [r,res] = mosekopt(cmd,prob,param,callback)

Output argument "r" (and maybe others) not assigned during call to
"C:\Users\username\mosek\10.0\toolbox\r2017a\mosekopt.m>mosekopt".

then a mismatch between 32 and 64 bit versions of MOSEK and MATLAB is likely. From MATLAB
type

12

https://docs.mosek.com/11.0/install/index.html

which mosekopt

which (for a successful installation) should point to a MEX file,

<MSKHOME>\mosek\10.0\toolbox\r2017a\mosekopt.mexw64

and not to a MATLAB .m file,

<MSKHOME>\mosek\10.0\toolbox\r2017a\mosekopt.m

Security exception in MacOS 10.15+ (Catalina)

If an attempt to run MOSEK on Mac OS 10.15 (Catalina) and later produces security exceptions
(developer cannot be verified and similar) then use xattr to remove the quarantine attribute from
all MOSEK executables and binaries. This can be done in one go with

xattr -dr com.apple.quarantine mosek

where mosek is the folder which contains the full MOSEK installation or MOSEK binaries. See
https://themosekblog.blogspot.com/2019/12/macos-1015-catalina-mosek-installation.html for more in-
formation. If that does not help, use the system settings to allow running arbitrary unverified applica-
tions.

13

https://themosekblog.blogspot.com/2019/12/macos-1015-catalina-mosek-installation.html

Chapter 5

Design Overview

5.1 Modeling

Optimization Toolbox for MATLAB is an interface for specifying optimization problems directly in
matrix form. It means that an optimization problem such as:

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 ≤ 𝑏,

𝑥 ∈ 𝒦

or

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 ≤ 𝑏,

𝐹𝑥 + 𝑔 ∈ 𝒦

is specified by describing the matrices 𝐴, 𝐹 , vectors 𝑏, 𝑐, 𝑔 and a list of cones 𝒦 directly.
The main characteristics of this interface are:

• Simplicity: once the problem data is assembled in matrix form, it is straightforward to input it
into the optimizer.

• Exploiting sparsity: data is entered in sparse format, enabling huge, sparse problems to be
defined and solved efficiently.

• Efficiency: the API incurs almost no overhead between the user’s representation of the problem
and MOSEK’s internal one.

Optimization Toolbox for MATLAB does not aid with modeling. It is the user’s responsibility to
express the problem in MOSEK’s standard form, introducing, if necessary, auxiliary variables and
constraints. See Sec. 12 for the precise formulations of problems MOSEK solves.

5.2 “Hello World!” in MOSEK

Here we present the most basic workflow pattern when using Optimization Toolbox for MATLAB.

Create a prob structure

Optimization problems using Optimization Toolbox for MATLAB are specified using a prob structure
that describes the numerical data of the problem. In most cases it consists of matrices of floating-point
numbers.

14

Retrieving the solutions

When the problem is set up, the optimizer is invoked with the call to mosekopt . The call will return a
response and a structure containing the solution to all variables. See further details in Sec. 7.

We refer also to Sec. 7 for information about more advanced mechanisms of interacting with the
solver.

Source code example

Below is the most basic code sample that defines and solves a trivial optimization problem

minimize 𝑥
subject to 2.0 ≤ 𝑥 ≤ 3.0.

For simplicity the example does not contain any error or status checks.

Listing 5.1: “Hello World!” in MOSEK

%%
% Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
% File: helloworld.m
%
% The most basic example of how to get started with MOSEK.

prob.a = sparse(0,1) % 0 linear constraints, 1 variable
prob.c = [1.0]' % Only objective coefficient
prob.blx= [2.0]' % Lower bound(s) on variable(s)
prob.bux= [3.0]' % Upper bound(s) on variable(s)

% Optimize
[r, res] = mosekopt('minimize', prob);

% Print answer
res.sol.itr.xx

15

Chapter 6

Optimization Tutorials

In this section we demonstrate how to set up basic types of optimization problems. Each short tutorial
contains a working example of formulating problems, defining variables and constraints and retrieving
solutions.

• Model setup and linear optimization tutorial (LO)

– Sec. 6.1. Linear optimization tutorial, recommended first reading for all users. Apart from
setting up a linear problem it also demonstrates how to work with the optimizer: initialize
data structures, pass them to the solver and retrieve the solutions.

• Conic optimization tutorials (CO)

– Sec. 6.2. A step by step introduction to programming with affine conic constraints (ACC).
Explains all the steps required to input a conic problem. Recommended first reading for users
of the conic optimizer.

Further basic examples demonstrating various types of conic constraints:

– Sec. 6.3. A basic example with a quadratic cone (CQO).

– Sec. 6.4. A basic example with a power cone.

– Sec. 6.5. A basic example with a exponential cone (CEO).

– Sec. 6.6. A basic tutorial of geometric programming (GP).

• Semidefinite optimization tutorial (SDO)

– Sec. 6.7. Examples showing how to solve semidefinite optimization problems with one or more
semidefinite variables.

• Mixed-integer optimization tutorials (MIO)

– Sec. 6.8. Shows how to declare integer variables for linear and conic problems and how to set
an initial solution.

• Quadratic optimization tutorial (QO, QCQO)

– Sec. 6.9. Examples showing how to solve a quadratic or quadratically constrained problem.

• Reoptimization tutorials

– Sec. 6.10. Various techniques for modifying and reoptimizing a problem.

• Infeasibility certificates

– Sec. 6.11. Shows how to retrieve and analyze a primal infeasibility certificate for continuous
problems.

16

6.1 Linear Optimization

The simplest optimization problem is a purely linear problem. A linear optimization problem (see also
Sec. 12.1) is a problem of the following form:

Minimize or maximize the objective function

𝑛−1∑︁
𝑗=0

𝑐𝑗𝑥𝑗 + 𝑐𝑓

subject to the linear constraints

𝑙𝑐𝑘 ≤
𝑛−1∑︁
𝑗=0

𝑎𝑘𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

and the bounds

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1.

The problem description consists of the following elements:

• 𝑚 and 𝑛 — the number of constraints and variables, respectively,

• 𝑥 — the variable vector of length 𝑛,

• 𝑐 — the coefficient vector of length 𝑛

𝑐 =

⎡⎢⎣ 𝑐0
...

𝑐𝑛−1

⎤⎥⎦ ,

• 𝑐𝑓 — fixed term in the objective,

• 𝐴 — an 𝑚× 𝑛 matrix of coefficients

𝐴 =

⎡⎢⎣ 𝑎0,0 · · · 𝑎0,(𝑛−1)

... · · ·
...

𝑎(𝑚−1),0 · · · 𝑎(𝑚−1),(𝑛−1)

⎤⎥⎦ ,

• 𝑙𝑐 and 𝑢𝑐 — the lower and upper bounds on constraints,

• 𝑙𝑥 and 𝑢𝑥 — the lower and upper bounds on variables.

Please note that we are using 0 as the first index: 𝑥0 is the first element in variable vector 𝑥.

6.1.1 Example LO1
The following is an example of a small linear optimization problem:

maximize 3𝑥0 + 1𝑥1 + 5𝑥2 + 1𝑥3

subject to 3𝑥0 + 1𝑥1 + 2𝑥2 = 30,
2𝑥0 + 1𝑥1 + 3𝑥2 + 1𝑥3 ≥ 15,

2𝑥1 + 3𝑥3 ≤ 25,

(6.1)

under the bounds

0 ≤ 𝑥0 ≤ ∞,
0 ≤ 𝑥1 ≤ 10,
0 ≤ 𝑥2 ≤ ∞,
0 ≤ 𝑥3 ≤ ∞.

17

Example: Linear optimization using msklpopt

A linear optimization problem such as (6.1) can be solved using the msklpopt function. The first step
in solving the example is to setup the data for problem (6.1) i.e. the 𝑐, 𝐴, etc. Afterwards the problem
is solved using an appropriate call to msklpopt .

Listing 6.1: Script implementing problem (6.1) using msklpopt .

function lo1()

c = [3 1 5 1]';
a = [[3 1 2 0];[2 1 3 1];[0 2 0 3]];
blc = [30 15 -inf]';
buc = [30 inf 25]';
blx = zeros(4,1);
bux = [inf 10 inf inf]';

[res] = msklpopt(c,a,blc,buc,blx,bux,[],'maximize');
sol = res.sol;

% Interior-point solution.

sol.itr.xx' % x solution.
sol.itr.sux' % Dual variables corresponding to buc.
sol.itr.slx' % Dual variables corresponding to blx.

% Basic solution.

sol.bas.xx' % x solution in basic solution.

Please note that:

• Infinite bounds are specified using -inf and inf. Moreover, using [] for bux, buc, blx or blc
means there are no bounds of the corresponding type.

• Retrieving different solution types is discussed in Sec. 7.1.

Example: Linear optimization using mosekopt

The function msklpopt is just a wrapper around the mosekopt , which is the main interface to MOSEK
and is the only choice for more complicated problems, for instance with conic constraints. We demonstrate
how to solve (6.1) directly with mosekopt . The following MATLAB code demonstrate how to set up the
prob structure for the example (6.1) and solve the problem using mosekopt .

Listing 6.2: Script implementing problem (6.1) using mosekopt .

function lo2()
clear prob;

% Specify the c vector.
prob.c = [3 1 5 1]';

% Specify a in sparse format.
subi = [1 1 1 2 2 2 2 3 3];
subj = [1 2 3 1 2 3 4 2 4];
valij = [3 1 2 2 1 3 1 2 3];

prob.a = sparse(subi,subj,valij);

% Specify lower bounds of the constraints.
(continues on next page)

18

(continued from previous page)

prob.blc = [30 15 -inf]';

% Specify upper bounds of the constraints.
prob.buc = [30 inf 25]';

% Specify lower bounds of the variables.
prob.blx = zeros(4,1);

% Specify upper bounds of the variables.
prob.bux = [inf 10 inf inf]';

% Perform the optimization.
[r,res] = mosekopt('maximize',prob);

% Show the optimal x solution.
res.sol.bas.xx

Please note that

• A MATLAB structure named prob containing all the relevant problem data is defined.

• All fields of this structure are optional except prob.a which is required to be a sparse matrix.
The dimension of this matrix determine the number of constraints and variables in the problem.

• Different parts of the solution can be accessed as described in Sec. 7.1.

Example: Linear optimization using linprog

MOSEK also provides a function linprog with a function of the same name from the MATLAB
Optimization Toolbox. Consult Sec. 10.1 for details.

Listing 6.3: Script implementing problem (6.1) using linprog .

f = - [3 1 5 1]'; % minus because we maximize
A = [[-2 -1 -3 -1]; [0 2 0 3]];
b = [-15 25]';
Aeq = [3 1 2 0];
beq = 30;
l = zeros(4,1);
u = [inf 10 inf inf]';

% Example of setting options for linprog
% Get default options
opt = mskoptimset('');
% Turn on diagnostic output
opt = mskoptimset(opt,'Diagnostics','on');
% Set a MOSEK option, in this case turn basic identification off.
opt = mskoptimset(opt,'MSK_IPAR_INTPNT_BASIS','MSK_OFF');
% Modify a MOSEK parameter with double value
opt = mskoptimset(opt,'MSK_DPAR_INTPNT_TOL_INFEAS',1e-12);

[x,fval,exitflag,output,lambda] = linprog(f,A,b,Aeq,beq,l,u,opt);

x
fval
exitflag
output
lambda

19

6.2 From Linear to Conic Optimization

In Sec. 6.1 we demonstrated setting up the linear part of an optimization problem, namely the objective,
linear bounds and linear (in)equalities. In this tutorial we show how to define conic constraints.

A single conic constraint in MOSEK is constructed in the following form

𝐹𝑖𝑥 + 𝑔𝑖 ∈ 𝒟𝑖 (6.2)

where

• 𝑥 ∈ R𝑛‘ is the optimization variable vector of length 𝑛,

• 𝐹𝑖 ∈ R𝑑×𝑛 is a 𝑑 × 𝑛 matrix of coefficients (problem data), where 𝑑 is the number of affine
expressions (AFEs) in the conic constraint,

• 𝑔𝑖 ∈ R𝑑 is a vector of constants (problem data). Thus, the affine combination 𝐹𝑖𝑥 + 𝑔𝑖 results in a
𝑑-vector where each element is a scalar-valued AFE,

• 𝒟𝑖 ⊆ R𝑑 is a conic domain of dimension 𝑑, representing one of the cone types supported by
MOSEK .

Constraints of this form are called affine conic constraints, or ACC for short. Therefore, in this
section we show how to set up a problem of the form

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟1 × · · · × 𝒟𝑙,

(6.3)

where 𝐹 ∈ R𝑘×𝑛, 𝑔 ∈ R𝑘, 𝑘 =
∑︀𝑙

𝑖=1 𝑑𝑖 and 𝑑𝑖 = dim(𝒟𝑖). The problem in (6.3) consists of 𝑙 affine conic
constraints. The first ACC is made by restricting the first 𝑑1 affine expressions (out of the total 𝑘) to the
𝒟1 domain. The 𝑑2 AFEs thereafter belong to the 𝒟2 domain, forming the second ACC, and so on. The
complete ACC data of a problem is therefore obtained by stacking together the descriptions of 𝑙 ACCs.

Generalization of linear constraints

Conic constraints are a natural generalization of linear constraints to the general nonlinear case. For
example, a typical linear constraint of the form

𝐴𝑥 + 𝑏 ≥ 0

can also be written as membership in the cone of nonnegative real numbers (also called the positive
orthant cone):

𝐴𝑥 + 𝑏 ∈ R𝑑
≥0,

and that naturally generalizes to

𝐹𝑥 + 𝑔 ∈ 𝒟

for more complicated domains 𝒟 from Sec. 15.8.

6.2.1 Example AFFCO1
Consider the following simple optimization problem:

maximize 𝑥
1/3
1 + (𝑥1 + 𝑥2 + 0.1)1/4

subject to (𝑥1 − 0.5)2 + (𝑥2 − 0.6)2 ≤ 1,
𝑥1 − 𝑥2 ≤ 1.

(6.4)

20

Adding auxiliary variables we convert this problem into an equivalent conic form:

maximize 𝑡1 + 𝑡2
subject to (1, 𝑥1 − 0.5, 𝑥2 − 0.6) ∈ 𝒬3,

(𝑥1, 1, 𝑡1) ∈ 𝒫(1/3,2/3)
3 ,

(𝑥1 + 𝑥2 + 0.1, 1, 𝑡2) ∈ 𝒫(1/4,3/4)
3 ,

𝑥1 − 𝑥2 ≤ 1.

(6.5)

Note that each of the vectors constrained to a cone is in a natural way an affine combination of the
problem variables.

We first set up the linear part of the problem, including the number of variables, objective and all
bounds precisely as in Sec. 6.1. Affine conic constraints will be defined using the accs structure. We
construct the matrices 𝐹, 𝑔 for each of the three ACCs. For example, the constraint (1, 𝑥1−0.5, 𝑥2−0.6) ∈
𝒬3 is written in matrix form as⎡⎣ 0 0 0 0

1 0 0 0
0 1 0 0

⎤⎦
⎡⎢⎢⎣

𝑥1

𝑥2

𝑡1
𝑡2

⎤⎥⎥⎦+

⎡⎣ 1
−0.5
−0.6

⎤⎦ ∈ 𝒬3.

Below we set up the matrices and define the conic domain type as a quadratic cone of length 3:

% The quadratic cone
FQ = sparse([zeros(1,4); speye(2) zeros(2,2)]);
gQ = [1 -0.5 -0.6]';
cQ = [res.symbcon.MSK_DOMAIN_QUADRATIC_CONE 3];

Next we demonstrate how to do the same for the second of the power cone constraints. Its affine
representation is: ⎡⎣ 1 1 0 0

0 0 0 0
0 0 0 1

⎤⎦
⎡⎢⎢⎣

𝑥1

𝑥2

𝑡1
𝑡2

⎤⎥⎥⎦+

⎡⎣ 0.1
1
0

⎤⎦ ∈ 𝒫(1/4,3/4)
3 .

The power cone is defined by its type, length, number of additional parameters (here equal to 2) and the
exponents 𝛼𝑖 appearing in the power cone definition:

% The power cone for (x_1+x_2+0.1, 1, t_2) \in POW3^(1/4,3/4)
FP2 = sparse([1 1 zeros(1,2); zeros(1,4); zeros(1,2) 0 1]);
gP2 = [0.1 1 0]';
cP2 = [res.symbcon.MSK_DOMAIN_PRIMAL_POWER_CONE 3 2 1.0 3.0];

Once affine conic descriptions of all constraints are ready it remains to stack them vertically into
the matrix 𝐹 and vector 𝑔 and concatenate the ACC descriptions in one list. Below is the full code for
problem (6.5).

Listing 6.4: Script implementing conic version of problem (6.4).

function affco1()

[rcode, res] = mosekopt('symbcon echo(0)');
prob = [];

% Variables [x1; x2; t1; t2]
prob.c = [0, 0, 1, 1];

% Linear inequality x_1 - x_2 <= 1
prob.a = sparse([1, -1, 0, 0]);
prob.buc = 1;
prob.blc = [];

(continues on next page)

21

(continued from previous page)

% The quadratic cone
FQ = sparse([zeros(1,4); speye(2) zeros(2,2)]);
gQ = [1 -0.5 -0.6]';
cQ = [res.symbcon.MSK_DOMAIN_QUADRATIC_CONE 3];

% The power cone for (x_1, 1, t_1) \in POW3^(1/3,2/3)
FP1 = sparse([1 0 zeros(1,2); zeros(1,4); zeros(1,2) 1 0]);
gP1 = [0 1 0]';
cP1 = [res.symbcon.MSK_DOMAIN_PRIMAL_POWER_CONE 3 2 1/3 2/3];

% The power cone for (x_1+x_2+0.1, 1, t_2) \in POW3^(1/4,3/4)
FP2 = sparse([1 1 zeros(1,2); zeros(1,4); zeros(1,2) 0 1]);
gP2 = [0.1 1 0]';
cP2 = [res.symbcon.MSK_DOMAIN_PRIMAL_POWER_CONE 3 2 1.0 3.0];

% All cones
prob.f = [FQ; FP1; FP2];
prob.g = [gQ; gP1; gP2];
prob.accs = [cQ cP1 cP2];

[r, res] = mosekopt('maximize', prob);

res.sol.itr.pobjval
res.sol.itr.xx(1:2)

6.2.2 Example AFFCO2
Consider the following simple linear dynamical system. A point in R𝑛 moves along a trajectory given by
𝑧(𝑡) = 𝑧(0) exp(𝐴𝑡), where 𝑧(0) is the starting position and 𝐴 = Diag(𝑎1, . . . , 𝑎𝑛) is a diagonal matrix
with 𝑎𝑖 < 0. Find the time after which 𝑧(𝑡) is within euclidean distance 𝑑 from the origin. Denoting the
coordinates of the starting point by 𝑧(0) = (𝑧1, . . . , 𝑧𝑛) we can write this as an optimization problem in
one variable 𝑡:

minimize 𝑡

subject to
√︁∑︀

𝑖 (𝑧𝑖 exp(𝑎𝑖𝑡))
2 ≤ 𝑑,

which can be cast into conic form as:

minimize 𝑡
subject to (𝑑, 𝑧1𝑦1, . . . , 𝑧𝑛𝑦𝑛) ∈ 𝒬𝑛+1,

(𝑦𝑖, 1, 𝑎𝑖𝑡) ∈ 𝐾exp, 𝑖 = 1, . . . , 𝑛,
(6.6)

with variable vector 𝑥 = [𝑡, 𝑦1, . . . , 𝑦𝑛]𝑇 .
We assemble all conic constraints in the form

𝐹𝑥 + 𝑔 ∈ 𝒬𝑛+1 × (𝐾exp)𝑛.

For the conic quadratic constraint this representation is[︂
0 0𝑇𝑛
0𝑛 Diag(𝑧1, . . . , 𝑧𝑛)

]︂ [︂
𝑡
𝑦

]︂
+

[︂
𝑑
0𝑛

]︂
∈ 𝒬𝑛+1.

For the 𝑖-th exponential cone we have⎡⎣ 0 𝑒𝑇𝑖
0 0𝑛
𝑎𝑖 0𝑛

⎤⎦[︂ 𝑡
𝑦

]︂
+

⎡⎣ 0
1
0

⎤⎦ ∈ 𝐾exp,

where 𝑒𝑖 denotes a vector of length 𝑛 with a single 1 in position 𝑖.

22

Listing 6.5: Script implementing problem (6.6).

function t = firstHittingTime(n, z, a, d)

[rcode, res] = mosekopt('symbcon echo(0)');
prob = [];

% Variables [t, y1, ..., yn]
prob.a = sparse(0, n+1);
prob.c = [1 zeros(1,n)];

% Quadratic cone
FQ = diag([0; z]);
gQ = [d; zeros(n,1)];

% All exponential cones
FE = sparse([1:3:3*n 3:3:3*n], ...

[2:n+1 ones(1,n)], ...
[ones(1,n) a']);

gE = repmat([0; 1; 0], n, 1);

% Assemble input data
prob.f = [FQ; FE];
prob.g = [gQ; gE];
prob.accs = [res.symbcon.MSK_DOMAIN_QUADRATIC_CONE n+1 repmat([res.symbcon.MSK_DOMAIN_
→˓PRIMAL_EXP_CONE 3], 1, n)];

% Solve
[r, res] = mosekopt('minimize', prob);
t = res.sol.itr.xx(1)

6.3 Conic Quadratic Optimization

The structure of a typical conic optimization problem is

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟,

(see Sec. 12 for detailed formulations). We recommend Sec. 6.2 for a tutorial on how problems of that
form are represented in MOSEK and what data structures are relevant. Here we discuss how to set-up
problems with the (rotated) quadratic cones.

MOSEK supports two types of quadratic cones, namely:

• Quadratic cone:

𝒬𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 : 𝑥0 ≥

⎯⎸⎸⎷𝑛−1∑︁
𝑗=1

𝑥2
𝑗

⎫⎬⎭ .

• Rotated quadratic cone:

𝒬𝑛
r =

⎧⎨⎩𝑥 ∈ R𝑛 : 2𝑥0𝑥1 ≥
𝑛−1∑︁
𝑗=2

𝑥2
𝑗 , 𝑥0 ≥ 0, 𝑥1 ≥ 0

⎫⎬⎭ .

23

For example, consider the following constraint:

(𝑥4, 𝑥0, 𝑥2) ∈ 𝒬3

which describes a convex cone in R3 given by the inequality:

𝑥4 ≥
√︁
𝑥2
0 + 𝑥2

2.

For other types of cones supported by MOSEK, see Sec. 15.8 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

6.3.1 Example CQO1
Consider the following conic quadratic problem which involves some linear constraints, a quadratic cone
and a rotated quadratic cone.

minimize 𝑥4 + 𝑥5 + 𝑥6

subject to 𝑥1 + 𝑥2 + 2𝑥3 = 1,
𝑥1, 𝑥2, 𝑥3 ≥ 0,

𝑥4 ≥
√︀
𝑥2
1 + 𝑥2

2,
2𝑥5𝑥6 ≥ 𝑥2

3

(6.7)

The two conic constraints can be expressed in the ACC form as shown in (6.8)⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ 𝒬3 ×𝒬3
𝑟. (6.8)

Setting up the linear part

The linear parts (constraints, variables, objective) are set up exactly the same way as for linear problems,
and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such as defining an
optimization problem, retrieving the solution and so on.

Setting up the conic constraints

To define the conic constraints, we set the prob.f and prob.g equal to the matrix and vector shown
in (6.8). Since g is zero it can be omitted. The domains and dimensions of affine conic constraints are
specified using the structure accs .

Listing 6.6 demonstrates how to solve the example (6.7) using MOSEK.

Listing 6.6: Script implementing problem (6.7).

function cqo1()

clear prob;

[r, res] = mosekopt('symbcon');
% Specify the non-conic part of the problem.

prob.c = [0 0 0 1 1 1];
prob.a = sparse([1 1 2 0 0 0]);
prob.blc = 1;
prob.buc = 1;
prob.blx = [0 0 0 -inf -inf -inf];
prob.bux = inf*ones(6,1);

(continues on next page)

24

(continued from previous page)

% Specify the cones as affine conic constraints.
% Two conic constrains: one with QUAD, one with RQUAD, both of dimension 3

prob.accs = [res.symbcon.MSK_DOMAIN_QUADRATIC_CONE 3 res.symbcon.MSK_DOMAIN_
→˓RQUADRATIC_CONE 3];

% The matrix such that f * x = [x(4), x(1), x(2), x(5), x(6), x(3)]

prob.f = sparse(1:6, [4, 1, 2, 5, 6, 3], ones(1, 6));

% That implies:
% (x(4), x(1), x(2)) \in QUAD_3
% (x(5), x(6), x(3)) \in RQUAD_3

% Optimize the problem.

[r,res]=mosekopt('minimize',prob);

% Display the primal solution.

res.sol.itr.xx'

For a step by step introduction to formulating problems with affine conic constraints (ACC) see also
Sec. 6.2.

6.4 Power Cone Optimization

The structure of a typical conic optimization problem is

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟,

(see Sec. 12 for detailed formulations). Here we discuss how to set-up problems with the primal/dual
power cones.

MOSEK supports the primal and dual power cones, defined as below:

• Primal power cone:

𝒫𝛼𝑘
𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 :

𝑛ℓ−1∏︁
𝑖=0

𝑥𝛽𝑖

𝑖 ≥

⎯⎸⎸⎷ 𝑛−1∑︁
𝑗=𝑛ℓ

𝑥2
𝑗 , 𝑥0 . . . , 𝑥𝑛ℓ−1 ≥ 0

⎫⎬⎭
where 𝑠 =

∑︀
𝑖 𝛼𝑖 and 𝛽𝑖 = 𝛼𝑖/𝑠, so that

∑︀
𝑖 𝛽𝑖 = 1.

• Dual power cone:

(𝒫𝛼𝑘
𝑛) =

⎧⎨⎩𝑥 ∈ R𝑛 :

𝑛ℓ−1∏︁
𝑖=0

(︂
𝑥𝑖

𝛽𝑖

)︂𝛽𝑖

≥

⎯⎸⎸⎷ 𝑛−1∑︁
𝑗=𝑛ℓ

𝑥2
𝑗 , 𝑥0 . . . , 𝑥𝑛ℓ−1 ≥ 0

⎫⎬⎭
where 𝑠 =

∑︀
𝑖 𝛼𝑖 and 𝛽𝑖 = 𝛼𝑖/𝑠, so that

∑︀
𝑖 𝛽𝑖 = 1.

25

Perhaps the most important special case is the three-dimensional power cone family:

𝒫𝛼,1−𝛼
3 =

{︀
𝑥 ∈ R3 : 𝑥𝛼

0𝑥
1−𝛼
1 ≥ |𝑥2|, 𝑥0, 𝑥1 ≥ 0

}︀
.

which has the corresponding dual cone:
For example, the conic constraint (𝑥, 𝑦, 𝑧) ∈ 𝒫0.25,0.75

3 is equivalent to 𝑥0.25𝑦0.75 ≥ |𝑧|, or simply
𝑥𝑦3 ≥ 𝑧4 with 𝑥, 𝑦 ≥ 0.

For other types of cones supported by MOSEK, see Sec. 15.8 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

6.4.1 Example POW1
Consider the following optimization problem which involves powers of variables:

maximize 𝑥0.2
0 𝑥0.8

1 + 𝑥0.4
2 − 𝑥0

subject to 𝑥0 + 𝑥1 + 1
2𝑥2 = 2,

𝑥0, 𝑥1, 𝑥2 ≥ 0.
(6.9)

We convert (6.9) into affine conic form using auxiliary variables as bounds for the power expressions:

maximize 𝑥3 + 𝑥4 − 𝑥0

subject to 𝑥0 + 𝑥1 + 1
2𝑥2 = 2,

(𝑥0, 𝑥1, 𝑥3) ∈ 𝒫0.2,0.8
3 ,

(𝑥2, 1.0, 𝑥4) ∈ 𝒫0.4,0.6
3 .

(6.10)

The two conic constraints shown in (6.10) can be expressed in the ACC form as shown in (6.11):

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
𝑥0

𝑥1

𝑥2

𝑥3

𝑥4

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ 𝒫0.2,0.8
3 × 𝒫0.4,0.6

3 . (6.11)

Setting up the linear part

The linear parts (constraints, variables, objective) are set up exactly the same way as for linear problems,
and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such as defining an
optimization problem, retrieving the solution and so on.

Setting up the conic constraints

To define the conic constraints, we set the prob.f and prob.g in such a way that 𝐹𝑥 + 𝑔‘ is the vector
consisting of the six affine expressions appearing in the conic constraints of (6.10) in the same order.
The domains and dimensions of affine conic constraints are specified using the structure accs . Each
power cone is specified using its dimension (3), followed by the number of additional parameters (2) and
finally those parameters (the 𝛼 exponents for each cone).

Listing 6.7 demonstrates how to solve the example (6.9) using MOSEK.

Listing 6.7: Script implementing problem (6.9).

function pow1()

clear prob;

[r, res] = mosekopt('symbcon');

% Specify the non-conic part of the problem.
(continues on next page)

26

(continued from previous page)

% Variables number 1,2,3 correspond to x,y,z, variables 4,5 are auxiliary
prob.c = [-1 0 0 1 1];
prob.a = [1 1 0.5 0 0];
prob.blc = [2.0];
prob.buc = [2.0];
prob.blx = [-inf -inf -inf -inf -inf];
prob.bux = [inf inf inf inf inf];

% Specify the cones as affine conic constraints.
% Two conic constrains with the power cone, both of dimension 3

prob.accs = [res.symbcon.MSK_DOMAIN_PRIMAL_POWER_CONE 3 2 0.2 0.8 res.symbcon.MSK_
→˓DOMAIN_PRIMAL_POWER_CONE 3 2 0.4 0.6];

% The matrices such that f * x + g = [x(1), x(2), x(4), x(3), 1, x(5)]

prob.f = sparse([1, 2, 3, 4, 6], [1, 2, 4, 3, 5], ones(1, 5));
prob.g = [0 0 0 0 1 0];

% That means
%
% (x(1), x(2), x(4)) \ in PPOW_3(0.2, 0.8)
% (x(3), 1, x(5)) \ in PPOW_3(0.4, 0.6)
%
% which is equivalent to
%
% |x(4)| <= x(1)^0.2 * x(2)^0.8
% |x(5)| <= x(3)^0.4

% Optimize the problem.

[r,res]=mosekopt('maximize',prob);

% Display the primal solution.

res.sol.itr.xx'

For a step by step introduction to formulating problems with affine conic constraints (ACC) see also
Sec. 6.2.

6.5 Conic Exponential Optimization

The structure of a typical conic optimization problem is

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟,

(see Sec. 12 for detailed formulations). We recommend Sec. 6.2 for a tutorial on how problems of that
form are represented in MOSEK and what data structures are relevant. Here we discuss how to set-up
problems with the primal/dual exponential cones.

MOSEK supports two exponential cones, namely:

• Primal exponential cone:

27

𝐾exp =
{︀
𝑥 ∈ R3 : 𝑥0 ≥ 𝑥1 exp(𝑥2/𝑥1), 𝑥0, 𝑥1 ≥ 0

}︀
.

• Dual exponential cone:

𝐾*
exp =

{︀
𝑠 ∈ R3 : 𝑠0 ≥ −𝑠2𝑒

−1 exp(𝑠1/𝑠2), 𝑠2 ≤ 0, 𝑠0 ≥ 0
}︀
.

For example, consider the following constraint:

(𝑥4, 𝑥0, 𝑥2) ∈ 𝐾exp

which describes a convex cone in R3 given by the inequalities:

𝑥4 ≥ 𝑥0 exp(𝑥2/𝑥0), 𝑥0, 𝑥4 ≥ 0.

For other types of cones supported by MOSEK, see Sec. 15.8 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

6.5.1 Example CEO1
Consider the following basic conic exponential problem which involves some linear constraints and an
exponential inequality:

minimize 𝑥0 + 𝑥1

subject to 𝑥0 + 𝑥1 + 𝑥2 = 1,
𝑥0 ≥ 𝑥1 exp(𝑥2/𝑥1),

𝑥0, 𝑥1 ≥ 0.

(6.12)

The affine conic form of (6.12) is:

minimize 𝑥0 + 𝑥1

subject to 𝑥0 + 𝑥1 + 𝑥2 = 1,
𝐼𝑥 ∈ 𝐾exp,
𝑥 ∈ R3.

(6.13)

where 𝐼 is the 3 × 3 identity matrix.

Setting up the linear part

The linear parts (constraints, variables, objective) are set up exactly the same way as for linear problems,
and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such as defining an
optimization problem, retrieving the solution and so on.

Setting up the conic constraints

To define the conic constraint, we set the prob.f equal to the sparse identity matrix, as required in
(6.13). Since g is zero it can be omitted. The domains and dimensions of affine conic constraints are
specified using the structure accs (the exponential cone always has dimension 3 but the value is still
required).

Listing 6.8 demonstrates how to solve the example (6.12) using MOSEK.

Listing 6.8: Script implementing problem (6.12).

function ceo1()

clear prob;

(continues on next page)

28

(continued from previous page)

[r, res] = mosekopt('symbcon');
% Specify the non-conic part of the problem.

prob.c = [1 1 0];
prob.a = sparse([1 1 1]);
prob.blc = 1;
prob.buc = 1;
prob.blx = [-inf -inf -inf];
prob.bux = [inf inf inf];

% Specify the affine conic constraint with one exponential cone.

prob.accs = [res.symbcon.MSK_DOMAIN_PRIMAL_EXP_CONE 3];
prob.f = speye(3);

% prob.accs the domain types, in this case a single exponential cone
% The matrix f is the ientity, meaning that
%
% I * x \in EXP
%
% which is exactly
%
% x(1) >= x(2)*exp(x(3)/x(2))

% Optimize the problem.

[r,res]=mosekopt('minimize',prob);

% Display the primal solution.

res.sol.itr.xx'

For a step by step introduction to formulating problems with affine conic constraints (ACC) see also
Sec. 6.2.

6.6 Geometric Programming

Geometric programs (GP) are a particular class of optimization problems which can be expressed in
special polynomial form as positive sums of generalized monomials. More precisely, a geometric problem
in canonical form is

minimize 𝑓0(𝑥)
subject to 𝑓𝑖(𝑥) ≤ 1, 𝑖 = 1, . . . ,𝑚,

𝑥𝑗 > 0, 𝑗 = 1, . . . , 𝑛,
(6.14)

where each 𝑓0, . . . , 𝑓𝑚 is a posynomial, that is a function of the form

𝑓(𝑥) =
∑︁
𝑘

𝑐𝑘𝑥
𝛼𝑘1
1 𝑥𝛼𝑘2

2 · · ·𝑥𝛼𝑘𝑛
𝑛

with arbitrary real 𝛼𝑘𝑖 and 𝑐𝑘 > 0. The standard way to formulate GPs in convex form is to introduce
a variable substitution

𝑥𝑖 = exp(𝑦𝑖).

Under this substitution all constraints in a GP can be reduced to the form

log(
∑︁
𝑘

exp(𝑎𝑇𝑘 𝑦 + 𝑏𝑘)) ≤ 0 (6.15)

29

involving a log-sum-exp bound. Moreover, constraints involving only a single monomial in 𝑥 can be even
more simply written as a linear inequality:

𝑎𝑇𝑘 𝑦 + 𝑏𝑘 ≤ 0

We refer to the MOSEK Modeling Cookbook and to [BKVH07] for more details on this reformulation. A
geometric problem formulated in convex form can be entered into MOSEK with the help of exponential
cones.

6.6.1 Example GP1
The following problem comes from [BKVH07]. Consider maximizing the volume of a ℎ × 𝑤 × 𝑑 box
subject to upper bounds on the area of the floor and of the walls and bounds on the ratios ℎ/𝑤 and 𝑑/𝑤:

maximize ℎ𝑤𝑑
subject to 2(ℎ𝑤 + ℎ𝑑) ≤ 𝐴wall,

𝑤𝑑 ≤ 𝐴floor,
𝛼 ≤ ℎ/𝑤 ≤ 𝛽,
𝛾 ≤ 𝑑/𝑤 ≤ 𝛿.

(6.16)

The decision variables in the problem are ℎ,𝑤, 𝑑. We make a substitution

ℎ = exp(𝑥), 𝑤 = exp(𝑦), 𝑑 = exp(𝑧)

after which (6.16) becomes

maximize 𝑥 + 𝑦 + 𝑧
subject to log(exp(𝑥 + 𝑦 + log(2/𝐴wall)) + exp(𝑥 + 𝑧 + log(2/𝐴wall))) ≤ 0,

𝑦 + 𝑧 ≤ log(𝐴floor),
log(𝛼) ≤ 𝑥− 𝑦 ≤ log(𝛽),
log(𝛾) ≤ 𝑧 − 𝑦 ≤ log(𝛿).

(6.17)

Next, we demonstrate how to implement a log-sum-exp constraint (6.15). It can be written as:

𝑢𝑘 ≥ exp(𝑎𝑇𝑘 𝑦 + 𝑏𝑘), (equiv. (𝑢𝑘, 1, 𝑎
𝑇
𝑘 𝑦 + 𝑏𝑘) ∈ 𝐾exp),∑︀

𝑘 𝑢𝑘 = 1.
(6.18)

This presentation requires one extra variable 𝑢𝑘 for each monomial appearing in the original posynomial
constraint. The explicit representation of affine conic constraints (ACC, see Sec. 6.2) in this case is:⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0
0 0 0 0 0
1 1 0 0 0
0 0 0 0 1
0 0 0 0 0
1 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
𝑥
𝑦
𝑧
𝑢1

𝑢2

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
0
1

log(2/𝐴wall)
0
1

log(2/𝐴wall)

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ 𝐾exp ×𝐾exp.

We can now use this representation to assemble all constraints in the model. The linear part of the
problem is entered as in Sec. 6.1.

Listing 6.9: Source code solving problem (6.17).

[r,res] = mosekopt('symbcon');

% Input data
Awall = 200;
Afloor = 50;
alpha = 2;
beta = 10;
gamma = 2;

(continues on next page)

30

https://docs.mosek.com/modeling-cookbook/index.html

(continued from previous page)

delta = 10;

% Objective
prob = [];
prob.c = [1, 1, 1, 0, 0]';

% Linear constraints:
% [0 0 0 1 1] == 1
% [0 1 1 0 0] <= log(Afloor)
% [1 -1 0 0 0] in [log(alpha), log(beta)]
% [0 -1 1 0 0] in [log(gamma), log(delta)]
%
prob.a = [0 0 0 1 1;

0 1 1 0 0;
1 -1 0 0 0;
0 -1 1 0 0];

prob.blc = [1; -inf; log(alpha); log(gamma)];
prob.buc = [1; log(Afloor); log(beta); log(delta)];

prob.blx = [-inf; -inf; -inf; -inf; -inf];
prob.bux = [inf; inf; inf; inf; inf];

% The affine conic part FX+g \in Kexp x Kexp
% x y z u v
% [0 0 0 1 0] 0
% [0 0 0 0 0] + 1 in Kexp
% [1 1 0 0 0] log(2/Awall)
%
% [0 0 0 0 1] 0
% [0 0 0 0 0] + 1 in Kexp
% [1 0 1 0 0] log(2/Awall)
%
%
prob.f = sparse([0 0 0 1 0;

0 0 0 0 0;
1 1 0 0 0;
0 0 0 0 1;
0 0 0 0 0;
1 0 1 0 0]);

prob.g = [0; 1; log(2/Awall); 0; 1; log(2/Awall)];

prob.accs = [res.symbcon.MSK_DOMAIN_PRIMAL_EXP_CONE, 3, res.symbcon.MSK_DOMAIN_
→˓PRIMAL_EXP_CONE, 3];

% Optimize and print results
[r,res]=mosekopt('maximize',prob);
exp(res.sol.itr.xx(1:3))

31

6.7 Semidefinite Optimization

Semidefinite optimization is a generalization of conic optimization, allowing the use of matrix variables
belonging to the convex cone of positive semidefinite matrices

𝒮𝑟
+ =

{︀
𝑋 ∈ 𝒮𝑟 : 𝑧𝑇𝑋𝑧 ≥ 0, ∀𝑧 ∈ R𝑟

}︀
,

where 𝒮𝑟 is the set of 𝑟 × 𝑟 real-valued symmetric matrices.
MOSEK can solve semidefinite optimization problems stated in the primal form,

minimize
∑︀𝑝−1

𝑗=0

⟨︀
𝐶𝑗 , 𝑋𝑗

⟩︀
+
∑︀𝑛−1

𝑗=0 𝑐𝑗𝑥𝑗 + 𝑐𝑓

subject to 𝑙𝑐𝑖 ≤
∑︀𝑝−1

𝑗=0

⟨︀
𝐴𝑖𝑗 , 𝑋𝑗

⟩︀
+
∑︀𝑛−1

𝑗=0 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑖 , 𝑖 = 0, . . . ,𝑚− 1,∑︀𝑝−1

𝑗=0

⟨︀
𝐹 𝑖𝑗 , 𝑋𝑗

⟩︀
+
∑︀𝑛−1

𝑗=0 𝑓𝑖𝑗𝑥𝑗 + 𝑔𝑖 ∈ 𝒦𝑖, 𝑖 = 0, . . . , 𝑞 − 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1,

𝑥 ∈ 𝒦, 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ , 𝑗 = 0, . . . , 𝑝− 1

(6.19)

where the problem has 𝑝 symmetric positive semidefinite variables 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ of dimension 𝑟𝑗 . The

symmetric coefficient matrices 𝐶𝑗 ∈ 𝒮𝑟𝑗 and 𝐴𝑖,𝑗 ∈ 𝒮𝑟𝑗 are used to specify PSD terms in the linear
objective and the linear constraints, respectively. The symmetric coefficient matrices 𝐹 𝑖,𝑗 ∈ 𝒮𝑟𝑗 are used
to specify PSD terms in the affine conic constraints. Note that 𝑞 ((6.19)) is the total dimension of all
the cones, i.e. 𝑞 = dim(𝒦1× . . .×𝒦𝑘), given there are 𝑘 ACCs. We use standard notation for the matrix
inner product, i.e., for 𝐴,𝐵 ∈ R𝑚×𝑛 we have

⟨𝐴,𝐵⟩ :=

𝑚−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝐴𝑖𝑗𝐵𝑖𝑗 .

In addition to the primal form presented above, semidefinite problems can be expressed in their dual
form. Constraints in this form are usually called linear matrix inequalities (LMIs). LMIs can be
easily specified in MOSEK using the vectorized positive semidefinite cone which is defined as:

• Vectorized semidefinite domain:

𝒮𝑑,vec
+ =

{︀
(𝑥1, . . . , 𝑥𝑑(𝑑+1)/2) ∈ R𝑛 : sMat(𝑥) ∈ 𝒮𝑑

+

}︀
,

where 𝑛 = 𝑑(𝑑 + 1)/2 and,

sMat(𝑥) =

⎡⎢⎢⎣
𝑥1 𝑥2/

√
2 · · · 𝑥𝑑/

√
2

𝑥2/
√

2 𝑥𝑑+1 · · · 𝑥2𝑑−1/
√

2
· · · · · · · · · · · ·

𝑥𝑑/
√

2 𝑥2𝑑−1/
√

2 · · · 𝑥𝑑(𝑑+1)/2

⎤⎥⎥⎦ ,

or equivalently

𝒮𝑑,vec
+ =

{︀
sVec(𝑋) : 𝑋 ∈ 𝒮𝑑

+

}︀
,

where

sVec(𝑋) = (𝑋11,
√

2𝑋21, . . . ,
√

2𝑋𝑑1, 𝑋22,
√

2𝑋32, . . . , 𝑋𝑑𝑑).

In other words, the domain consists of vectorizations of the lower-triangular part of a positive semidef-
inite matrix, with the non-diagonal elements additionally rescaled. LMIs can be expressed by restricting
appropriate affine expressions to this cone type.

For other types of cones supported by MOSEK, see Sec. 15.8 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

We demonstrate the setup of semidefinite variables and their coefficient matrices in the following
examples:

• Sec. 6.7.1: A problem with one semidefinite variable and linear and conic constraints.

• Sec. 6.7.2: A problem with two semidefinite variables with a linear constraint and bound.

• Sec. 6.7.3: A problem with linear matrix inequalities and the vectorized semidefinite domain.

32

6.7.1 Example SDO1
We consider the simple optimization problem with semidefinite and conic quadratic constraints:

minimize

⟨⎡⎣ 2 1 0
1 2 1
0 1 2

⎤⎦ , 𝑋

⟩
+ 𝑥0

subject to

⟨⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ , 𝑋

⟩
+ 𝑥0 = 1,

⟨⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ , 𝑋

⟩
+ 𝑥1 + 𝑥2 = 1/2,

𝑥0 ≥
√
𝑥1

2 + 𝑥2
2, 𝑋 ⪰ 0,

(6.20)

The problem description contains a 3-dimensional symmetric semidefinite variable which can be written
explicitly as:

𝑋 =

⎡⎣ 𝑋00 𝑋10 𝑋20

𝑋10 𝑋11 𝑋21

𝑋20 𝑋21 𝑋22

⎤⎦ ∈ 𝒮3
+,

and an affine conic constraint (ACC) (𝑥0, 𝑥1, 𝑥2) ∈ 𝒬3. The objective is to minimize

2(𝑋00 + 𝑋10 + 𝑋11 + 𝑋21 + 𝑋22) + 𝑥0,

subject to the two linear constraints

𝑋00 + 𝑋11 + 𝑋22 + 𝑥0 = 1,
𝑋00 + 𝑋11 + 𝑋22 + 2(𝑋10 + 𝑋20 + 𝑋21) + 𝑥1 + 𝑥2 = 1/2.

Setting up the linear and conic part

The linear and conic parts (constraints, variables, objective, ACC) are set up using the methods described
in the relevant tutorials; Sec. 6.1, Sec. 6.2. Here we only discuss the aspects directly involving semidefinite
variables.

Appending semidefinite variables

The dimensions of semidefinite variables are passed in prob.bardim.

Coefficients of semidefinite terms.

Every term of the form (𝐴𝑖,𝑗)𝑘,𝑙(𝑋𝑗)𝑘,𝑙 is determined by four indices (𝑖, 𝑗, 𝑘, 𝑙) and a coefficient value
𝑣 = (𝐴𝑖,𝑗)𝑘,𝑙. Here 𝑖 is the number of the constraint in which the term appears, 𝑗 is the index of
the semidefinite variable it involves and (𝑘, 𝑙) is the position in that variable. This data is passed in
the structure bara . Note that only the lower triangular part should be specified explicitly, that is one
always has 𝑘 ≥ 𝑙.

Semidefinite terms (𝐶𝑗)𝑘,𝑙(𝑋𝑗)𝑘,𝑙 of the objective are specified in the same way in barc but only
include (𝑗, 𝑘, 𝑙) and 𝑣.

Source code

Listing 6.10: Code implementing problem (6.20).

function sdo1()
[r, res] = mosekopt('symbcon');

prob.c = [1, 0, 0];
(continues on next page)

33

(continued from previous page)

prob.bardim = [3];
prob.barc.subj = [1, 1, 1, 1, 1];
prob.barc.subk = [1, 2, 2, 3, 3];
prob.barc.subl = [1, 1, 2, 2, 3];
prob.barc.val = [2.0, 1.0, 2.0, 1.0, 2.0];

prob.blc = [1, 0.5];
prob.buc = [1, 0.5];

% It is a good practice to provide the correct
% dimmension of A as the last two arguments
% because it facilitates better error checking.
prob.a = sparse([1, 2, 2], [1, 2, 3], [1, 1, 1], 2, 3);
prob.bara.subi = [1, 1, 1, 2, 2, 2, 2, 2, 2];
prob.bara.subj = [1, 1, 1, 1, 1, 1, 1, 1, 1];
prob.bara.subk = [1, 2, 3, 1, 2, 3, 2, 3, 3];
prob.bara.subl = [1, 2, 3, 1, 1, 1, 2, 2, 3];
prob.bara.val = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];

% The scalar variables appear in an affine conic constraint
prob.accs = [res.symbcon.MSK_DOMAIN_QUADRATIC_CONE 3];
prob.f = speye(3);

[r,res] = mosekopt('minimize info',prob);

X = zeros(3);
X([1,2,3,5,6,9]) = res.sol.itr.barx;
X = X + tril(X,-1)';

x = res.sol.itr.xx;

The solution 𝑥 is returned in res.sol.itr.xx and the numerical values of 𝑋𝑗 are returned in res.
sol.itr.barx; the lower triangular part of each 𝑋𝑗 is stacked column-by-column into an array, and each
array is then concatenated forming a single array res.sol.itr.barx representing 𝑋1, . . . , 𝑋𝑝. Similarly,
the dual semidefinite variables 𝑆𝑗 are recovered through res.sol.itr.bars.

6.7.2 Example SDO2
We now demonstrate how to define more than one semidefinite variable using the following problem with
two matrix variables and two types of constraints:

minimize ⟨𝐶1, 𝑋1⟩ + ⟨𝐶2, 𝑋2⟩
subject to ⟨𝐴1, 𝑋1⟩ + ⟨𝐴2, 𝑋2⟩ = 𝑏,

(𝑋2)01 ≤ 𝑘,
𝑋1, 𝑋2 ⪰ 0.

(6.21)

In our example dim(𝑋1) = 3, dim(𝑋2) = 4, 𝑏 = 23, 𝑘 = −3 and

𝐶1 =

⎡⎣ 1 0 0
0 0 0
0 0 6

⎤⎦ , 𝐴1 =

⎡⎣ 1 0 1
0 0 0
1 0 2

⎤⎦ ,

𝐶2 =

⎡⎢⎢⎣
1 −3 0 0
−3 2 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎦ , 𝐴2 =

⎡⎢⎢⎣
0 1 0 0
1 −1 0 0
0 0 0 0
0 0 0 −3

⎤⎥⎥⎦ ,

are constant symmetric matrices.

34

Note that this problem does not contain any scalar variables, but they could be added in the same
fashion as in Sec. 6.7.1.

For explanations of data structures used in the example see Sec. 6.7.1. Note that the field bardim is
used to specify that we have two semidefinite variables of dimensions 3 and 4.

The code representing the above problem is shown below.

Listing 6.11: Implementation of model (6.21).

% Sample data
C1 = [1 0 0; 0 0 0; 0 0 6];
A1 = [1 0 1; 0 0 0; 1 0 2];
C2 = [1 -3 0 0; -3 2 0 0; 0 0 1 0; 0 0 0 0];
A2 = [0 1 0 0; 1 -1 0 0; 0 0 0 0; 0 0 0 -3];
b = 23;
k = -3;

% The scalar part, as in linear optimization examples
prob.c = [];
prob.a = sparse([], [], [], 2, 0); % 2 constraints, no scalar variables
prob.blc = [b -inf]; % Bounds
prob.buc = [b k];

% Dimensions of PSD variables
prob.bardim = [3, 4];

% Coefficients in the objective
[r1,c1,v1] = find(tril(C1));
[r2,c2,v2] = find(tril(C2));

prob.barc.subj = [repmat(1,length(v1),1); % Which PSD variable (j)
repmat(2,length(v2),1)];

prob.barc.subk = [r1; r2]; % Which matrix entry and␣
→˓value ((k,l)->v)
prob.barc.subl = [c1; c2];
prob.barc.val = [v1; v2];

% Coefficients in the constraints
[r1,c1,v1] = find(tril(A1));
[r2,c2,v2] = find(tril(A2));

prob.bara.subi = [ones(length(v1)+length(v2),1); % Which constraint (i)
2];

prob.bara.subj = [repmat(1,length(v1),1);
repmat(2,length(v2),1);
2]; % Which PSD variable (j)

prob.bara.subk = [r1; r2; 2]; % Which matrix entry and␣
→˓value ((k,l)->v)
prob.bara.subl = [c1; c2; 1];
prob.bara.val = [v1; v2; 0.5];

% Solve with log output
[r, res] = mosekopt('write(test.ptf) minimize echo(10)', prob);

% Retrieve the result assuming primal and dual feasible
X1 = zeros(3);
X1([1,2,3,5,6,9]) = res.sol.itr.barx(1:6);
X1 = X1 + tril(X1,-1)';

(continues on next page)

35

(continued from previous page)

X2 = zeros(4);
X2([1,2,3,4,6,7,8,11,12,16]) = res.sol.itr.barx(7:16);
X2 = X2 + tril(X2,-1)';

X1
X2

The numerical values of 𝑋𝑗 are returned in res.sol.itr.barx; the lower triangular part of each 𝑋𝑗

is stacked column-by-column into an array, and each array is then concatenated forming a single array
res.sol.itr.barx representing 𝑋1, . . . , 𝑋𝑝. Similarly, the dual semidefinite variables 𝑆𝑗 are recovered
through res.sol.itr.bars.

6.7.3 Example SDO_LMI: Linear matrix inequalities and the vectorized semidef-
inite domain

The standard form of a semidefinite problem is usually either based on semidefinite variables (primal
form) or on linear matrix inequalities (dual form). However, MOSEK allows mixing of these two forms,
as shown in (6.22)

minimize
⟨[︂

1 0
0 1

]︂
, 𝑋

⟩
+ 𝑥0 + 𝑥1 + 1

subject to
⟨[︂

0 1
1 0

]︂
, 𝑋

⟩
− 𝑥0 − 𝑥1 ∈ R1

≥0,

𝑥0

[︂
0 1
1 3

]︂
+ 𝑥1

[︂
3 1
1 0

]︂
−
[︂

1 0
0 1

]︂
⪰ 0,

𝑋 ⪰ 0.

(6.22)

The first affine expression is restricted to a linear domain and could also be modelled as a linear constraint
(instead of an ACC). The lower triangular part of the linear matrix inequality (second constraint) can be
vectorized and restricted to the "MSK_DOMAIN_SVEC_PSD_CONE" . This allows us to express the constraints
in (6.22) as the affine conic constraints shown in (6.23).⟨[︂

0 1
1 0

]︂
, 𝑋

⟩
+

[︀
−1 −1

]︀
𝑥 +

[︀
0
]︀

∈ R1
≥0,⎡⎣ 0 3√

2
√

2
3 0

⎤⎦𝑥 +

⎡⎣ −1
0
−1

⎤⎦ ∈ 𝒮3,vec
+

(6.23)

Vectorization of the LMI is performed as explained in Sec. 15.8.

Setting up the linear part

The linear parts (objective, constraints, variables) and the semidefinite terms in the linear expressions
are defined exactly as shown in the previous examples.

Setting up the affine conic constraints with semidefinite terms

To define affine conic constraints, we set prob.f and prob.g to the values that are shown in (6.23). The
coefficient for the semidefinite variable is defined by setting barf equal to the symmetric matrix shown
in (6.23).

prob.barf.subi = [1, 1];
prob.barf.subj = [1, 1];
prob.barf.subk = [1, 2];
prob.barf.subl = [1, 1];
prob.barf.val = [0, 1];

The domains are specified in accs , first the real nonnegative domain of dimension 1 (first affine
expression) and then the vectorized PSD cone domain (the following three affine expressions)

36

% Specify the affine conic structure
prob.accs = [symbcon.MSK_DOMAIN_RPLUS 1 symbcon.MSK_DOMAIN_SVEC_PSD_CONE 3];

Source code

Listing 6.12: Source code solving problem (6.22).

[r, res] = mosekopt('symbcon');
symbcon = res.symbcon;

% The scalar part, as in linear optimization examples
prob.c = [1.0 1.0];
prob.cfix = 1.0;
prob.a = sparse([], [], [], 0, 2); % 0 constraints, 2 scalar variables
prob.blc = []; % Bounds
prob.buc = [];
prob.blx = [-inf, -inf];
prob.bux = [inf, inf];

prob.f = sparse([1, 1, 2, 3, 3, 4], ...
[1, 2, 2, 1, 2, 1], ...
[-1, -1, 3, sqrt(2), sqrt(2), 3], ...
4, 2);

prob.g = [0, -1, 0, -1];

% Specify the affine conic structure
prob.accs = [symbcon.MSK_DOMAIN_RPLUS 1 symbcon.MSK_DOMAIN_SVEC_PSD_CONE 3];

% Dimensions of PSD variables
prob.bardim = [2];

% Block triplet format specifying the lower triangular part
% of the symmetric coefficient matrix 'barc':
prob.barc.subj = [1, 1, 1];
prob.barc.subk = [1, 2, 2];
prob.barc.subl = [1, 1, 2];
prob.barc.val = [1, 0, 1];

% Block triplet format specifying the lower triangular part
% of the symmetric coefficient matrix 'barF' for the ACC:
prob.barf.subi = [1, 1];
prob.barf.subj = [1, 1];
prob.barf.subk = [1, 2];
prob.barf.subl = [1, 1];
prob.barf.val = [0, 1];

% Solve with log output
[r, res] = mosekopt('minimize', prob);

% Print the solution
X = zeros(2);
X([1,2,4]) = res.sol.itr.barx;
X = X + tril(X,-1)';

x = res.sol.itr.xx;

(continues on next page)

37

(continued from previous page)

X
x

6.8 Integer Optimization

An optimization problem where one or more of the variables are constrained to integer values is called a
(mixed) integer optimization problem. MOSEK supports integer variables in combination with linear,
quadratic and quadratically constrtained and conic problems (except semidefinite). See the previous
tutorials for an introduction to how to model these types of problems.

6.8.1 Example MILO1
We use the example

maximize 𝑥0 + 0.64𝑥1

subject to 50𝑥0 + 31𝑥1 ≤ 250,
3𝑥0 − 2𝑥1 ≥ −4,
𝑥0, 𝑥1 ≥ 0 and integer

(6.24)

to demonstrate how to set up and solve a problem with integer variables. It has the structure of a linear
optimization problem except for integrality constraints on the variables. Therefore, only the specification
of the integer constraints requires something new compared to the linear optimization problem discussed
previously.

The complete source for the example is listed in Listing 6.13.

Listing 6.13: How to solve problem (6.24).

function milo1()
clear prob
prob.c = [1 0.64];
prob.a = [[50 31];[3 -2]];
prob.blc = [-inf -4];
prob.buc = [250 inf];
prob.blx = [0 0];
prob.bux = [inf inf];

% Specify indexes of variables that are integer
% constrained.

prob.ints.sub = [1 2];

% Optimize the problem.
[r,res] = mosekopt('maximize',prob);

try
% Display the optimal solution.
res.sol.int
res.sol.int.xx'

catch
fprintf('MSKERROR: Could not get solution')

end

Please note that compared to a linear optimization problem with no integer-constrained variables:

• The prob.ints.sub field is used to specify the indexes of the variables that are integer-constrained.

• The optimal integer solution is returned in the res.sol.int MATLAB structure.

MOSEK also provides a wrapper for the intlinprog function found in the MATLAB optimization
toolbox. This function solves linear problems wth integer variables; see the reference section for details.

38

6.8.2 Specifying an initial solution
It is a common strategy to provide a starting feasible point (if one is known in advance) to the mixed-
integer solver. This can in many cases reduce solution time.

There are two modes for MOSEK to utilize an initial solution.

• A complete solution. MOSEK will first try to check if the current value of the pri-
mal variable solution is a feasible point. The solution can either come from a previ-
ous solver call or can be entered by the user, however the full solution with values for
all variables (both integer and continuous) must be provided. This check is always per-
formed and does not require any extra action from the user. The outcome of this process
can be inspected via information items "MSK_IINF_MIO_INITIAL_FEASIBLE_SOLUTION" and
"MSK_DINF_MIO_INITIAL_FEASIBLE_SOLUTION_OBJ" , and via the Initial feasible solution
objective entry in the log.

• A partial integer solution. MOSEK can also try to construct a feasible solution by fixing
integer variables to the values provided by the user (rounding if necessary) and optimizing over
the remaining continuous variables. In this setup the user must provide initial values for all in-
teger variables. This action is only performed if the parameter MSK_IPAR_MIO_CONSTRUCT_SOL
is switched on. The outcome of this process can be inspected via information items
"MSK_IINF_MIO_CONSTRUCT_SOLUTION" and "MSK_DINF_MIO_CONSTRUCT_SOLUTION_OBJ" , and via
the Construct solution objective entry in the log.

In the following example we focus on inputting a partial integer solution.

maximize 7𝑥0 + 10𝑥1 + 𝑥2 + 5𝑥3

subject to 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 ≤ 2.5
𝑥0, 𝑥1, 𝑥2 ∈ Z
𝑥0, 𝑥1, 𝑥2, 𝑥3 ≥ 0

(6.25)

Solution values can be set using the appropriate fields in the problem structure .

Listing 6.14: Implementation of problem (6.25) specifying an initial
solution.

% Specify start guess for the integer variables.
prob.sol.int.xx = [1 1 0 nan]';

% Request constructing the solution from integer variable values
param.MSK_IPAR_MIO_CONSTRUCT_SOL = 1;

The log output from the optimizer will in this case indicate that the inputted values were used to
construct an initial feasible solution:

Construct solution objective : 1.950000000000e+01

The same information can be obtained from the API:

39

Listing 6.15: Retrieving information about usage of initial solution

res.info.MSK_IINF_MIO_CONSTRUCT_SOLUTION
res.info.MSK_DINF_MIO_CONSTRUCT_SOLUTION_OBJ

6.8.3 Example MICO1
Integer variables can also be used arbitrarily in conic problems (except semidefinite). We refer to the
previous tutorials for how to set up a conic optimization problem. Here we present sample code that
sets up a simple optimization problem:

minimize 𝑥2 + 𝑦2

subject to 𝑥 ≥ 𝑒𝑦 + 3.8,
𝑥, 𝑦 integer.

(6.26)

The canonical conic formulation of (6.26) suitable for Optimization Toolbox for MATLAB is

minimize 𝑡

subject to (𝑡, 𝑥, 𝑦) ∈ 𝒬3 (𝑡 ≥
√︀
𝑥2 + 𝑦2)

(𝑥− 3.8, 1, 𝑦) ∈ 𝐾exp (𝑥− 3.8 ≥ 𝑒𝑦)
𝑥, 𝑦 integer,
𝑡 ∈ R.

(6.27)

Listing 6.16: Implementation of problem (6.27).

[rcode, res] = mosekopt('symbcon echo(0)');
symbcon = res.symbcon;
clear prob

% The full variable is [t; x; y]
prob.c = [1 0 0];
prob.a = sparse(0,3); % No constraints

% Conic part of the problem
prob.f = sparse([eye(3);

0 1 0;
0 0 0;
0 0 1]);

prob.g = [0 0 0 -3.8 1 0]';
prob.accs = [symbcon.MSK_DOMAIN_QUADRATIC_CONE 3 symbcon.MSK_DOMAIN_PRIMAL_EXP_CONE␣
→˓3];

% Specify indexes of variables that are integers
prob.ints.sub = [2 3];

% It is as always possible (but not required) to input an initial solution
% to start the mixed-integer solver.
prob.sol.int.xx = [100, 9, -1];

% Optimize the problem.
[r,res] = mosekopt('minimize info',prob);

% The integer solution (x,y)
res.sol.int.xx(2:3)

Error and solution status handling were omitted for readability.

40

6.9 Quadratic Optimization

MOSEK can solve quadratic and quadratically constrained problems, as long as they are convex. This
class of problems can be formulated as follows:

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐𝑘 ≤ 1
2𝑥

𝑇𝑄𝑘𝑥 +
∑︀𝑛−1

𝑗=0 𝑎𝑘,𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1.

(6.28)

Without loss of generality it is assumed that 𝑄𝑜 and 𝑄𝑘 are all symmetric because

𝑥𝑇𝑄𝑥 =
1

2
𝑥𝑇 (𝑄 + 𝑄𝑇)𝑥.

This implies that a non-symmetric 𝑄 can be replaced by the symmetric matrix 1
2 (𝑄 + 𝑄𝑇).

The problem is required to be convex. More precisely, the matrix 𝑄𝑜 must be positive semi-definite
and the 𝑘th constraint must be of the form

𝑙𝑐𝑘 ≤ 1

2
𝑥𝑇𝑄𝑘𝑥 +

𝑛−1∑︁
𝑗=0

𝑎𝑘,𝑗𝑥𝑗 (6.29)

with a negative semi-definite 𝑄𝑘 or of the form

1

2
𝑥𝑇𝑄𝑘𝑥 +

𝑛−1∑︁
𝑗=0

𝑎𝑘,𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘.

with a positive semi-definite 𝑄𝑘. This implies that quadratic equalities are not allowed. Specifying a
non-convex problem will result in an error when the optimizer is called.

A matrix is positive semidefinite if all the eigenvalues of 𝑄 are nonnegative. An alternative statement
of the positive semidefinite requirement is

𝑥𝑇𝑄𝑥 ≥ 0, ∀𝑥.

If the convexity (i.e. semidefiniteness) conditions are not met MOSEK will not produce reliable results
or work at all.

6.9.1 Example: Quadratic Objective
We look at a small problem with linear constraints and quadratic objective:

minimize 𝑥2
1 + 0.1𝑥2

2 + 𝑥2
3 − 𝑥1𝑥3 − 𝑥2

subject to 1 ≤ 𝑥1 + 𝑥2 + 𝑥3

0 ≤ 𝑥.
(6.30)

The matrix formulation of (6.30) has:

𝑄𝑜 =

⎡⎣ 2 0 −1
0 0.2 0
−1 0 2

⎤⎦ , 𝑐 =

⎡⎣ 0
−1
0

⎤⎦ , 𝐴 =
[︀

1 1 1
]︀
,

with the bounds:

𝑙𝑐 = 1, 𝑢𝑐 = ∞, 𝑙𝑥 =

⎡⎣ 0
0
0

⎤⎦ and 𝑢𝑥 =

⎡⎣ ∞
∞
∞

⎤⎦
Please note the explicit 1

2 in the objective function of (6.28) which implies that diagonal elements must
be doubled in 𝑄, i.e. 𝑄11 = 2 even though 1 is the coefficient in front of 𝑥2

1 in (6.30).

41

Using mosekopt

In Listing 6.17 we show how to use mosekopt to solve problem (6.30). This is the preferred way.

Listing 6.17: How to solve problem (6.30) using mosekopt.

function qo2()

clear prob;

% c vector.
prob.c = [0 -1 0]';

% Define the data.

% First the lower triangular part of q in the objective
% is specified in a sparse format. The format is:
%
% Q(prob.qosubi(t),prob.qosubj(t)) = prob.qoval(t), t=1,...,4

prob.qosubi = [1 3 2 3]';
prob.qosubj = [1 1 2 3]';
prob.qoval = [2 -1 0.2 2]';

% a, the constraint matrix
subi = ones(3,1);
subj = 1:3;
valij = ones(3,1);

prob.a = sparse(subi,subj,valij);

% Lower bounds of constraints.
prob.blc = [1.0]';

% Upper bounds of constraints.
prob.buc = [inf]';

% Lower bounds of variables.
prob.blx = sparse(3,1);

% Upper bounds of variables.
prob.bux = []; % There are no bounds.

[r,res] = mosekopt('minimize',prob);

% Display return code.
fprintf('Return code: %d\n',r);

% Display primal solution for the constraints.
res.sol.itr.xc'

% Display primal solution for the variables.
res.sol.itr.xx'

This sequence of commands looks much like the one that was used to solve the linear optimization
example using mosekopt except that the definition of the 𝑄 matrix in prob. mosekopt requires that 𝑄
is specified in a sparse format. Indeed the vectors qosubi, qosubj, and qoval are used to specify the
coefficients of 𝑄 in the objective using the principle

𝑄qosubi(t),qosubj(t) = qoval(t), for 𝑡 = 1, . . . , length(qosubi).

42

An important observation is that due to 𝑄 being symmetric, only the lower triangular part of 𝑄 should
be specified.

Using mskqpopt

In Listing 6.18 we show how to use mskqpopt to solve problem (6.30).

Listing 6.18: Function solving problem (6.30) using mskqpopt.

function qo1()

% Set up Q.
q = [[2 0 -1];[0 0.2 0];[-1 0 2]];

% Set up the linear part of the problem.
c = [0 -1 0]';
a = ones(1,3);
blc = [1.0];
buc = [inf];
blx = sparse(3,1);
bux = [];

% Optimize the problem.
[res] = mskqpopt(q,c,a,blc,buc,blx,bux);

% Show the primal solution.
res.sol.itr.xx

It should be clear that the format for calling mskqpopt is very similar to calling msklpopt except
that the 𝑄 matrix is included as the first argument of the call. Similarly, the solution can be inspected
by viewing the res.sol field.

6.9.2 Example: Quadratic constraints
In this section we show how to solve a problem with quadratic constraints. Please note that quadratic
constraints are subject to the convexity requirement (6.29).

Consider the problem:

minimize 𝑥2
1 + 0.1𝑥2

2 + 𝑥2
3 − 𝑥1𝑥3 − 𝑥2

subject to 1 ≤ 𝑥1 + 𝑥2 + 𝑥3 − 𝑥2
1 − 𝑥2

2 − 0.1𝑥2
3 + 0.2𝑥1𝑥3,

𝑥 ≥ 0.

This is equivalent to

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥
subject to 1

2𝑥
𝑇𝑄0𝑥 + 𝐴𝑥 ≥ 𝑏,
𝑥 ≥ 0,

(6.31)

where

𝑄𝑜 =

⎡⎣ 2 0 −1
0 0.2 0
−1 0 2

⎤⎦ , 𝑐 =
[︀

0 −1 0
]︀𝑇

, 𝐴 =
[︀

1 1 1
]︀
, 𝑏 = 1.

𝑄0 =

⎡⎣ −2 0 0.2
0 −2 0

0.2 0 −0.2

⎤⎦ .

The linear parts and quadratic objective are set up the way described in the previous tutorial.

43

Setting up quadratic constraints

Listing 6.19: Script implementing problem (6.31).

function qcqo1()
clear prob;

% Specify the linear objective terms.
prob.c = [0, -1, 0];

% Specify the quadratic terms of the constraints.
prob.qcsubk = [1 1 1 1]';
prob.qcsubi = [1 2 3 3]';
prob.qcsubj = [1 2 3 1]';
prob.qcval = [-2.0 -2.0 -0.2 0.2]';

% Specify the quadratic terms of the objective.
prob.qosubi = [1 2 3 3]';
prob.qosubj = [1 2 3 1]';
prob.qoval = [2.0 0.2 2.0 -1.0]';

% Specify the linear constraint matrix
prob.a = [1 1 1];

% Specify the lower bounds
prob.blc = [1];
prob.blx = zeros(3,1);

[r,res] = mosekopt('minimize',prob);

% Display the solution.
fprintf('\nx:');
fprintf(' %-.4e',res.sol.itr.xx');
fprintf('\n||x||: %-.4e',norm(res.sol.itr.xx));

6.10 Problem Modification and Reoptimization

Often one might want to solve not just a single optimization problem, but a sequence of problems, each
differing only slightly from the previous one. This section demonstrates how to modify and re-optimize
an existing problem.

The example we study is a simple production planning model.
Problem modifications regarding variables, cones, objective function and constraints can be grouped

in categories:

• add/remove,

• coefficient modifications,

• bounds modifications.

Especially removing variables and constraints can be costly. Special care must be taken with respect
to constraints and variable indexes that may be invalidated.

Depending on the type of modification, MOSEK may be able to optimize the modified problem more
efficiently exploiting the information and internal state from the previous execution. After optimization,
the solution is always stored internally, and is available before next optimization. The former optimal
solution may be still feasible, but no longer optimal; or it may remain optimal if the modification of the
objective function was small. This special case is discussed in Sec. 14.3.

In general, MOSEK exploits dual information and availability of an optimal basis from the previous
execution. The simplex optimizer is well suited for exploiting an existing primal or dual feasible solution.

44

Restarting capabilities for interior-point methods are still not as reliable and effective as those for the
simplex algorithm. More information can be found in Chapter 10 of the book [Chvatal83].

6.10.1 Example: Production Planning
A company manufactures three types of products. Suppose the stages of manufacturing can be split into
three parts: Assembly, Polishing and Packing. In the table below we show the time required for each
stage as well as the profit associated with each product.

Product no. Assembly (minutes) Polishing (minutes) Packing (minutes) Profit ($)

0 2 3 2 1.50
1 4 2 3 2.50
2 3 3 2 3.00

With the current resources available, the company has 100, 000 minutes of assembly time, 50, 000
minutes of polishing time and 60, 000 minutes of packing time available per year. We want to know how
many items of each product the company should produce each year in order to maximize profit?

Denoting the number of items of each type by 𝑥0, 𝑥1 and 𝑥2, this problem can be formulated as a
linear optimization problem:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2

subject to 2𝑥0 + 4𝑥1 + 3𝑥2 ≤ 100000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 50000,
2𝑥0 + 3𝑥1 + 2𝑥2 ≤ 60000,

(6.32)

and

𝑥0, 𝑥1, 𝑥2 ≥ 0.

Code in Listing 6.20 loads and solves this problem.

Listing 6.20: Setting up and solving problem (6.32)

% Specify the c vector.
prob.c = [1.5 2.5 3.0]';

% Specify a in sparse format.
subi = [1 1 1 2 2 2 3 3 3];
subj = [1 2 3 1 2 3 1 2 3];
valij = [2 4 3 3 2 3 2 3 2];

prob.a = sparse(subi,subj,valij);

% Specify lower bounds of the constraints.
prob.blc = [-inf -inf -inf]';

% Specify upper bounds of the constraints.
prob.buc = [100000 50000 60000]';

% Specify lower bounds of the variables.
prob.blx = zeros(3,1);

% Specify upper bounds of the variables.
prob.bux = [inf inf inf]';

% Perform the optimization.
param.MSK_IPAR_OPTIMIZER = 'MSK_OPTIMIZER_FREE_SIMPLEX';
[r,res] = mosekopt('maximize',prob,param);

(continues on next page)

45

(continued from previous page)

% Show the optimal x solution.
res.sol.bas.xx

6.10.2 Changing the Linear Constraint Matrix
Suppose we want to change the time required for assembly of product 0 to 3 minutes. This corresponds
to setting 𝑎0,0 = 3, which is done by directly modifying the A matrix of the problem, as shown below.

prob.a(1,1) = 3.0;

The problem now has the form:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2

subject to 3𝑥0 + 4𝑥1 + 3𝑥2 ≤ 100000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 50000,
2𝑥0 + 3𝑥1 + 2𝑥2 ≤ 60000,

(6.33)

and

𝑥0, 𝑥1, 𝑥2 ≥ 0.

After this operation we can reoptimize the problem.

6.10.3 Appending Variables
We now want to add a new product with the following data:

Product no. Assembly (minutes) Polishing (minutes) Packing (minutes) Profit ($)

3 4 0 1 1.00

This corresponds to creating a new variable 𝑥3, appending a new column to the 𝐴 matrix and setting
a new term in the objective. We do this in Listing 6.21

Listing 6.21: How to add a new variable (column)

prob.c = [prob.c;1.0];
prob.a = [prob.a,sparse([4.0 0.0 1.0]')];
prob.blx = [prob.blx; 0.0];
prob.bux = [prob.bux; inf];

After this operation the new problem is:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2 + 1.0𝑥3

subject to 3𝑥0 + 4𝑥1 + 3𝑥2 + 4𝑥3 ≤ 100000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 50000,
2𝑥0 + 3𝑥1 + 2𝑥2 + 1𝑥3 ≤ 60000,

(6.34)

and

𝑥0, 𝑥1, 𝑥2, 𝑥3 ≥ 0.

46

6.10.4 Appending Constraints
Now suppose we want to add a new stage to the production process called Quality control for which
30000 minutes are available. The time requirement for this stage is shown below:

Product no. Quality control (minutes)

0 1
1 2
2 1
3 1

This corresponds to adding the constraint

𝑥0 + 2𝑥1 + 𝑥2 + 𝑥3 ≤ 30000

to the problem. This is done as follows.

Listing 6.22: Adding a new constraint.

prob.a = [prob.a;sparse([1.0 2.0 1.0 1.0])];
prob.blc = [prob.blc; -inf];
prob.buc = [prob.buc; 30000.0];

Again, we can continue with re-optimizing the modified problem.

6.10.5 Changing bounds
One typical reoptimization scenario is to change bounds. Suppose for instance that we must operate
with limited time resources, and we must change the upper bounds in the problem as follows:

Operation Time available (before) Time available (new)

Assembly 100000 80000
Polishing 50000 40000
Packing 60000 50000
Quality control 30000 22000

That means we would like to solve the problem:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2 + 1.0𝑥3

subject to 3𝑥0 + 4𝑥1 + 3𝑥2 + 4𝑥3 ≤ 80000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 40000,
2𝑥0 + 3𝑥1 + 2𝑥2 + 1𝑥3 ≤ 50000,
𝑥0 + 2𝑥1 + 𝑥2 + 𝑥3 ≤ 22000.

(6.35)

In this case all we need to do is redefine the upper bound vector for the constraints, as shown in the next
listing.

47

Listing 6.23: Change constraint bounds.

prob.buc = [80000 40000 50000 22000]';
prob.sol = res.sol;
[r,res] = mosekopt('maximize',prob,param);
res.sol.bas.xx

Again, we can continue with re-optimizing the modified problem.

6.10.6 Advanced hot-start
In order to exploit the possibility of hot-starting the simplex algorithms it is necessary to pass the old
basic solution when the modified problem is re-optimized. Without this operation the optimizer will
simply start from scratch. Any subset of the basic solution may be provided, but to achieve the best
results all fields of res.sol.bas should be present, that is xx,xc,y,slx,sux,slc,suc,skx,skc.

Listing 6.24: Passing the full basic solution.

% Reoptimize with changed coefficient
% Use previous solution to perform very simple hot-start.
% This part can be skipped, but then the optimizer will start
% from scratch on the new problem, i.e. without any hot-start.
prob.sol = [];
prob.sol.bas = res.sol.bas;
[r,res] = mosekopt('maximize',prob,param);
res.sol.bas.xx

If the dimensions of the problem (number of variables, constraints) have changed, the lengths of all
fields have to be adjusted to be compatible with the reformulated problem. For example, here is an
adjustment when adding a new variable:

Listing 6.25: Adjusting lengths in the solution fields related to
variables.

% Reoptimize with a new variable and hot-start
% All parts of the solution must be extended to the new dimensions.
prob.sol = [];
prob.sol.bas = res.sol.bas;
prob.sol.bas.xx = [prob.sol.bas.xx; 0.0];
prob.sol.bas.slx = [prob.sol.bas.slx; 0.0];
prob.sol.bas.sux = [prob.sol.bas.sux; 0.0];
prob.sol.bas.skx = [prob.sol.bas.skx; 'UN'];
[r,res] = mosekopt('maximize',prob,param);
res.sol.bas.xx

If the optimizer used the data from the previous run to hot-start the optimizer for reoptimization,
this will be indicated in the log:

Optimizer - hotstart : yes

When performing re-optimizations, instead of removing a basic variable it may be more efficient to
fix the variable at zero and then remove it when the problem is re-optimized and it has left the basis.
This makes it easier for MOSEK to restart the simplex optimizer.

A more advanced discussion of hot-start is presented in Sec. 9.1.

48

6.11 Retrieving infeasibility certificates

When a continuous problem is declared as primal or dual infeasible, MOSEK provides a Farkas-type
infeasibility certificate. If, as it happens in many cases, the problem is infeasible due to an unintended
mistake in the formulation or because some individual constraint is too tight, then it is likely that
infeasibility can be isolated to a few linear constraints/bounds that mutually contradict each other. In
this case it is easy to identify the source of infeasibility. The tutorial in Sec. 8.3 has instructions on
how to deal with this situation and debug it by hand. We recommend Sec. 8.3 as an introduction to
infeasibility certificates and how to deal with infeasibilities in general.

Some users, however, would prefer to obtain the infeasibility certificate using Optimization Toolbox
for MATLAB, for example in order to repair the issue automatically, display the information to the user,
or perhaps simply because the infeasibility was one of the intended outcomes that should be analyzed in
the code.

In this tutorial we show how to obtain such an infeasibility certificate with Optimization Toolbox
for MATLAB in the most typical case, that is when the linear part of a problem is primal infeasible. A
Farkas-type primal infeasibility certificate consists of the dual values of linear constraints and bounds.
The names of duals corresponding to various parts of the problem are defined in Sec. 12.1.2. Each of
the dual values (multipliers) indicates that a certain multiple of the corresponding constraint should be
taken into account when forming the collection of mutually contradictory equalities/inequalities.

6.11.1 Example PINFEAS
For the purpose of this tutorial we use the same example as in Sec. 8.3, that is the primal infeasible
problem

minimize 𝑥0 + 2𝑥1 + 5𝑥2 + 2𝑥3 + 𝑥4 + 2𝑥5 + 𝑥6

subject to 𝑠0 : 𝑥0 + 𝑥1 ≤ 200,
𝑠1 : 𝑥2 + 𝑥3 ≤ 1000,
𝑠2 : 𝑥4 + 𝑥5 + 𝑥6 ≤ 1000,
𝑑0 : 𝑥0 + 𝑥4 = 1100,
𝑑1 : 𝑥1 = 200,
𝑑2 : 𝑥2 + 𝑥5 = 500,
𝑑3 : 𝑥3 + 𝑥6 = 500,

𝑥𝑖 ≥ 0.

(6.36)

Checking infeasible status and adjusting settings

After the model has been solved we check that it is indeed infeasible. If yes, then we choose a threshold
for when a certificate value is considered as an important contributor to infeasibility (ideally we would
like to list all nonzero duals, but just like an optimal solution, an infeasibility certificate is also subject
to floating-point rounding errors). All these steps are demonstrated in the snippet below:

% Check problem status
if strcmp(res.sol.itr.prosta, 'PRIMAL_INFEASIBLE')

% Set the tolerance at which we consider a dual value as essential
eps = 1e-7;

Going through the certificate for a single item

We can define a fairly generic function which takes an array of lower and upper dual values and all other
required data and prints out the positions of those entries whose dual values exceed the given threshold.
These are precisely the values we are interested in:

% Analyzes and prints infeasibility contributing elements
% sl - dual values for lower bounds
% su - dual values for upper bounds
% eps - tolerance for when a nunzero dual value is significant
function analyzeCertificate(sl, su, eps)

(continues on next page)

49

(continued from previous page)

n = size(sl);
for i=1:n

if abs(sl(i)) > eps
disp(sprintf("#%d: lower, dual = %e", i, sl(i)));

end
if abs(su(i)) > eps

disp(sprintf("#%d: upper, dual = %e", i, su(i)));
end

end

Full source code

All that remains is to call this function for all variable and constraint bounds for which we want to know
their contribution to infeasibility. Putting all these pieces together we obtain the following full code:

Listing 6.26: Demonstrates how to retrieve a primal infeasibility
certificate.

function pinfeas()

% In this example we set up a simple problem
[prob] = testProblem();

% Perform the optimization.
[rcode, res] = mosekopt('minimize', prob);

% Check problem status
if strcmp(res.sol.itr.prosta, 'PRIMAL_INFEASIBLE')

% Set the tolerance at which we consider a dual value as essential
eps = 1e-7;

disp("Variable bounds important for infeasibility: ");
analyzeCertificate(res.sol.itr.slx, res.sol.itr.sux, eps);

disp("Constraint bounds important for infeasibility: ")
analyzeCertificate(res.sol.itr.slc, res.sol.itr.suc, eps);

else
disp("The problem is not primal infeasible, no certificate to show");

end

% Set up a simple linear problem from the manual for test purposes
function [prob] = testProblem()
prob = [];
prob.c = [1, 2, 5, 2, 1, 2, 1];
prob.a = sparse([1,1,2,2,3,3,3,4,4,5,6,6,7,7],...

[1,2,3,4,5,6,7,1,5,2,3,6,4,7],...
[1,1,1,1,1,1,1,1,1,1,1,1,1,1],...
7, 7);

prob.blc = [-inf, -inf, -inf, 1100, 200, 500, 500];
prob.buc = [200, 1000, 1000, 1100, 200, 500, 500];
prob.blx = [0, 0, 0, 0, 0, 0, 0];
prob.bux = repmat(inf, 1, 7);
prob

% Analyzes and prints infeasibility contributing elements
% sl - dual values for lower bounds

(continues on next page)

50

(continued from previous page)

% su - dual values for upper bounds
% eps - tolerance for when a nunzero dual value is significant
function analyzeCertificate(sl, su, eps)
n = size(sl);
for i=1:n

if abs(sl(i)) > eps
disp(sprintf("#%d: lower, dual = %e", i, sl(i)));

end
if abs(su(i)) > eps

disp(sprintf("#%d: upper, dual = %e", i, su(i)));
end

end

Running this code will produce the following output:

Variable bounds important for infeasibility:
#6: lower, dual = 1.000000e+00
#7: lower, dual = 1.000000e+00
Constraint bounds important for infeasibility:
#1: upper, dual = 1.000000e+00
#3: upper, dual = 1.000000e+00
#4: lower, dual = 1.000000e+00
#5: lower, dual = 1.000000e+00

indicating the positions of bounds which appear in the infeasibility certificate with nonzero values.
For a more in-depth treatment see the following sections:

• Sec. 11 for more advanced and complicated optimization examples.

• Sec. 11.1 for examples related to portfolio optimization.

• Sec. 12 for formal mathematical formulations of problems MOSEK can solve, dual problems and
infeasibility certificates.

51

Chapter 7

Solver Interaction Tutorials

In this section we cover the interaction with the solver.

7.1 Accessing the solution

This section contains important information about the status of the solver and the status of the solution,
which must be checked in order to properly interpret the results of the optimization.

7.1.1 Solver termination
The optimizer provides a response code of type rescode , relevant for error handling. It indicates if
any errors occurred in any phase of optimization (including processing input data). It will also indicate
system-related errors (such as an out of memory error, licensing error etc.). Finally, it will also indicate
if the optimizer terminated correctly, but for a non-standard reason, for example because it reached a
time limit or met another criterion set by the user. Such termination codes are not errors. The expected
value for a typical successful optimization without any special settings is "MSK_RES_OK" .

If a runtime error causes the program to crash during optimization, the first debugging step is to
enable logging and check the log output. See Sec. 7.3.

If the optimization completes successfully, the next step is to check the solution status, as explained
below.

7.1.2 Available solutions
MOSEK uses three kinds of optimizers and provides three types of solutions:

• basic solution from the simplex optimizer,

• interior-point solution from the interior-point optimizer,

• integer solution from the mixed-integer optimizer.

Under standard parameters settings the following solutions will be available for various problem types:

Table 7.1: Types of solutions available from MOSEK

Simplex opti-
mizer

Interior-point opti-
mizer

Mixed-integer opti-
mizer

Linear problem res.sol.bas res.sol.itr
Nonlinear continuous prob-
lem

res.sol.itr

Problem with integer vari-
ables

res.sol.int

For linear problems the user can force a specific optimizer choice making only one of the two solutions
available. For example, if the user disables basis identification, then only the interior point solution will
be available for a linear problem. Numerical issues may cause one of the solutions to be unknown even
if another one is feasible.

52

Not all components of a solution are always available. For example, there is no dual solution for
integer problems and no dual conic variables from the simplex optimizer.

The user will always need to specify which solution should be accessed.

7.1.3 Problem and solution status
Assuming that the optimization terminated without errors, the next important step is to check the
problem and solution status and availability of solutions. There is one for every type of solution, as
explained above.

Problem status

Problem status (prosta) determines whether the problem is certified as feasible. Its values can roughly
be divided into the following broad categories:

• feasible — the problem is feasible. For continuous problems and when the solver is run with
default parameters, the feasibility status should ideally be "MSK_PRO_STA_PRIM_AND_DUAL_FEAS" .

• primal/dual infeasible — the problem is infeasible or unbounded or a combination of those.
The exact problem status will indicate the type of infeasibility.

• unknown — the solver was unable to reach a conclusion, most likely due to numerical issues.

Solution status

Solution status (solsta) provides the information about what the solution values actually contain. The
most important broad categories of values are:

• optimal ("MSK_SOL_STA_OPTIMAL") — the solution values are feasible and optimal.

• certificate — the solution is in fact a certificate of infeasibility (primal or dual, depending on the
solution).

• unknown/undefined — the solver could not solve the problem or this type of solution is not
available for a given problem.

Problem and solution status can be found in the fields prosta and solsta of a solution structure
solution , for instance res.sol.itr.prosta, res.sol.itr.solsta for the interior-point solution.

The solution status determines the action to be taken. For example, in some cases a suboptimal
solution may still be valuable and deserve attention. It is the user’s responsibility to check the status
and quality of the solution.

Typical status reports

Here are the most typical optimization outcomes described in terms of the problem and solution statuses.
Note that these do not cover all possible situations that can occur.

Table 7.2: Continuous problems (solution status for interior-point
and basic solution)

Outcome Problem status Solution status

Optimal "MSK_PRO_STA_PRIM_AND_DUAL_FEAS
"

"MSK_SOL_STA_OPTIMAL"

Primal infeasible "MSK_PRO_STA_PRIM_INFEAS"
"MSK_SOL_STA_PRIM_INFEAS_CER
"

Dual infeasible (unbounded) "MSK_PRO_STA_DUAL_INFEAS"
"MSK_SOL_STA_DUAL_INFEAS_CER
"

Uncertain (stall, numerical is-
sues, etc.)

"MSK_PRO_STA_UNKNOWN" "MSK_SOL_STA_UNKNOWN"

53

Table 7.3: Integer problems (solution status for integer solution,
others undefined)

Outcome Problem status Solution status

Integer optimal "MSK_PRO_STA_PRIM_FEAS" "MSK_SOL_STA_INTEGER_OPTIMAL"
Infeasible "MSK_PRO_STA_PRIM_INFEAS" "MSK_SOL_STA_UNKNOWN"
Integer feasible point "MSK_PRO_STA_PRIM_FEAS" "MSK_SOL_STA_PRIM_FEAS"
No conclusion "MSK_PRO_STA_UNKNOWN" "MSK_SOL_STA_UNKNOWN"

7.1.4 Retrieving solution values
After the meaning and quality of the solution (or certificate) have been established, we can query for the
actual numerical values. They can be accessed using:

• res.sol.itr.pobjval, res.sol.itr.dobjval — the primal and dual objective value.

• res.sol.itr.xx — solution values for the variables.

• res.sol.itr.y, res.sol.itr.slx and so on — dual values for the linear constraints

and many other fields of the solution structure (replace itr with bas or int for other solution
types). Note that if the optimization failed then the res.sol field may not exist and attempting to
access it will cause an error.

7.1.5 Source code example
Below is a source code example with a simple framework for assessing and retrieving the solution to a
conic optimization problem.

Listing 7.1: Sample framework for checking optimization result.

function response(inputfile)

cmd = sprintf('read(%s)', inputfile)
% In this example we read the problem from file
[r, res] = mosekopt(cmd)

% Read was successful
if strcmp(res.rcodestr, 'MSK_RES_OK')

prob = res.prob;
param = []

% (Optionally) Uncomment the next line to get solution status Unknown
% param.MSK_IPAR_INTPNT_MAX_ITERATIONS = 1

% Perform the optimization.
[r, res] = mosekopt('minimize', prob, param);

% Expected result: The solution status of the interior-point solution is␣
→˓optimal.

% Check if we have non-error termination code or OK
if isempty(strfind(res.rcodestr, 'MSK_RES_ERR'))

solsta = strcat('MSK_SOL_STA_', res.sol.itr.solsta)

if strcmp(solsta, 'MSK_SOL_STA_OPTIMAL')
(continues on next page)

54

(continued from previous page)

fprintf('An optimal interior-point solution is located:\n');
res.sol.itr.xx;

elseif strcmp(solsta, 'MSK_SOL_STA_DUAL_INFEASIBLE_CER')
fprintf('Dual infeasibility certificate found.');

elseif strcmp(solsta, 'MSK_SOL_STA_PRIMAL_INFEASIBLE_CER')
fprintf('Primal infeasibility certificate found.');

elseif strcmp(solsta, 'MSK_SOL_STA_UNKNOWN')
% The solutions status is unknown. The termination code
% indicates why the optimizer terminated prematurely.
fprintf('The solution status is unknown.\n');
fprintf('Termination code: %s (%d) %s.\n', res.rcodestr, res.rcode, res.

→˓rmsg);
else

fprintf('An unexpected solution status is obtained.');
end

else
fprintf('Error during optimization: %s (%d) %s.\n', res.rcodestr, res.rcode,

→˓ res.rmsg);
end

else
fprintf('Could not read input file, error: %s (%d) %s.\n', res.rcodestr, res.

→˓rcode, res.rmsg)
end

end

7.2 Errors and exceptions

Response codes

The function mosekopt and its variants return a response code (and its human-readable descrip-
tion), informing if optimization was performed correctly, and if not, what error occurred. The expected
response, indicating successful execution, is always "MSK_RES_OK" . Typical errors include:

• referencing a nonexisting variable (for example with too large index),

• incompatible dimensions of input data matrices,

• NaN in the input data,

• duplicate conic variable,

• error in the optimizer.

Some errors in data preprocessing, such as incorrect command or wrong parameter value will result
in mosekopt exiting without assigning output; the error message will just be printed out. For this reason
it may be a good idea to call mosekopt in a try-catch block. A full list of response codes, error, warning
and termination codes can be found in the API reference. For example, the following code

prob.a = sparse(0,1);
prob.c = [NaN];
[r, res] = mosekopt('minimize', prob);
res

55

will produce as output:

res =

rcode: 1470
rmsg: 'The objective vector c contains an invalid value for variable '' (0).'

rcodestr: 'MSK_RES_ERR_NAN_IN_C'

Optimizer errors and warnings

The optimizer may also produce warning messages. They indicate non-critical but important events,
that will not prevent solver execution, but may be an indication that something in the optimization
problem might be improved. Warning messages are normally printed to a log stream (see Sec. 7.3). A
typical warning is, for example:

MOSEK warning 53: A numerically large upper bound value 6.6e+09 is specified for␣
→˓constraint 'C69200' (46020).

Warnings can also be suppressed by setting the MSK_IPAR_MAX_NUM_WARNINGS parameter to zero, if
they are well-understood.

Error and solution status handling example

Below is a source code example with a simple framework for handling major errors when assessing and
retrieving the solution to a conic optimization problem.

Listing 7.2: Sample framework for checking optimization result.

function response(inputfile)

cmd = sprintf('read(%s)', inputfile)
% In this example we read the problem from file
[r, res] = mosekopt(cmd)

% Read was successful
if strcmp(res.rcodestr, 'MSK_RES_OK')

prob = res.prob;
param = []

% (Optionally) Uncomment the next line to get solution status Unknown
% param.MSK_IPAR_INTPNT_MAX_ITERATIONS = 1

% Perform the optimization.
[r, res] = mosekopt('minimize', prob, param);

% Expected result: The solution status of the interior-point solution is␣
→˓optimal.

% Check if we have non-error termination code or OK
if isempty(strfind(res.rcodestr, 'MSK_RES_ERR'))

solsta = strcat('MSK_SOL_STA_', res.sol.itr.solsta)

if strcmp(solsta, 'MSK_SOL_STA_OPTIMAL')
fprintf('An optimal interior-point solution is located:\n');
res.sol.itr.xx;

elseif strcmp(solsta, 'MSK_SOL_STA_DUAL_INFEASIBLE_CER')
(continues on next page)

56

(continued from previous page)

fprintf('Dual infeasibility certificate found.');

elseif strcmp(solsta, 'MSK_SOL_STA_PRIMAL_INFEASIBLE_CER')
fprintf('Primal infeasibility certificate found.');

elseif strcmp(solsta, 'MSK_SOL_STA_UNKNOWN')
% The solutions status is unknown. The termination code
% indicates why the optimizer terminated prematurely.
fprintf('The solution status is unknown.\n');
fprintf('Termination code: %s (%d) %s.\n', res.rcodestr, res.rcode, res.

→˓rmsg);
else

fprintf('An unexpected solution status is obtained.');
end

else
fprintf('Error during optimization: %s (%d) %s.\n', res.rcodestr, res.rcode,

→˓ res.rmsg);
end

else
fprintf('Could not read input file, error: %s (%d) %s.\n', res.rcodestr, res.

→˓rcode, res.rmsg)
end

end

7.3 Input/Output

7.3.1 Stream logging
By default the solver prints a log output analogous to the one produced by the command-line version of
MOSEK. Logging may be turned off using the command echo(0), for example:

[r, res] = mosekopt('minimize echo(0)', prob);

Log output may be redirected to a file using the command log, for example:

[r, res] = mosekopt('minimize log(fileName.txt)', prob);

Note that in recent versions of MATLAB the log is not displayed on screen until optimization is
completed, which may be an inconvenience for longer tasks. The log written to a file does not have this
issue.

Note also that leaving log output on can lead to a dramatic slowdown, visible especially on very small
problems.

It is also possible to register a user-defined callback function that will receive and handle all log
output, see the callback argument of mosekopt .

57

7.3.2 Log verbosity
The logging verbosity can be controlled by setting the relevant parameters, as for instance

• MSK_IPAR_LOG ,

• MSK_IPAR_LOG_INTPNT ,

• MSK_IPAR_LOG_MIO ,

• MSK_IPAR_LOG_CUT_SECOND_OPT ,

• MSK_IPAR_LOG_SIM .

Each parameter controls the output level of a specific functionality or algorithm. The main switch
is MSK_IPAR_LOG which affect the whole output. The actual log level for a specific functionality is
determined as the minimum between MSK_IPAR_LOG and the relevant parameter. For instance, the log
level for the output produce by the interior-point algorithm is tuned by the MSK_IPAR_LOG_INTPNT ; the
actual log level is defined by the minimum between MSK_IPAR_LOG and MSK_IPAR_LOG_INTPNT .

Tuning the solver verbosity may require adjusting several parameters. It must be noticed that verbose
logging is supposed to be of interest during debugging and tuning. When output is no more of interest, the
user can easily disable it globally with MSK_IPAR_LOG . Larger values of MSK_IPAR_LOG do not necessarily
result in increased output.

By default MOSEK will reduce the amount of log information after the first optimization on a given
problem. To get full log output on subsequent re-optimizations set MSK_IPAR_LOG_CUT_SECOND_OPT to
zero.

7.3.3 Saving a problem to a file
An optimization problem can be dumped to a file using the command write. The file format will be
determined from the filename’s extension. Supported formats are listed in Sec. 16 together with a table
of problem types supported by each.

For instance the problem can be written to a human-readable PTF file (see Sec. 16.5) with

[r, res] = mosekopt('write(dump.ptf)', prob);

All formats can be compressed with gzip by appending the .gz extension, and with ZStandard by
appending the .zst extension, for example

[r, res] = mosekopt('write(dump.task.gz)', prob);

When using MATLAB-like functions the file name can be set using the options structure, for exam-
ple:

opt.Write = 'problem.ptf';
linprog(f,A,b,[],[],[],[],opt);

Some remarks:

• The problem is written to the file as it is represented in the underlying optimizer task.

• Unnamed variables are given generic names. It is therefore recommended to use meaningful variable
names if the problem file is meant to be human-readable.

• The task format is MOSEK’s native file format which contains all the problem data as well as
solver settings.

58

7.3.4 Reading a problem from a file
A problem saved in any of the supported file formats can be read directly into a prob structure using
the command read. Afterwards the problem can be optimized, modified, etc.

[r, res] = mosekopt('read(dump.ptf)');
prob = res.prob;

7.4 Setting solver parameters

MOSEK comes with a large number of parameters that allows the user to tune the behavior of the
optimizer. The typical settings which can be changed with solver parameters include:

• choice of the optimizer for linear problems,

• choice of primal/dual solver,

• turning presolve on/off,

• turning heuristics in the mixed-integer optimizer on/off,

• level of multi-threading,

• feasibility tolerances,

• solver termination criteria,

• behaviour of the license manager,

and more. All parameters have default settings which will be suitable for most typical users.
The API reference contains:

• Full list of parameters

• List of parameters grouped by topic

Setting parameters

Each parameter is identified by a unique name and it can accept either integers, floating point values,
symbolic strings or symbolic values. Parameters are set in the structure param and passed as a separate
argument to mosekopt .

Some parameters can accept symbolic strings or symbolic values from a fixed set. The set of accepted
values for every parameter is provided in the API reference.

For example, the following piece of code sets up some parameters before solving a problem.

Listing 7.3: Parameter setting example.

% Set log level (integer parameter)
param.MSK_IPAR_LOG = 1;
% Select interior-point optimizer... (integer parameter)
param.MSK_IPAR_OPTIMIZER = 'MSK_OPTIMIZER_INTPNT';
% ... without basis identification (integer parameter)
param.MSK_IPAR_INTPNT_BASIS = 'MSK_BI_NEVER';
% Set relative gap tolerance (double parameter)
param.MSK_DPAR_INTPNT_CO_TOL_REL_GAP = 1.0e-7;

% Use in mosekopt
[r,resp] = mosekopt('minimize', prob, param);

59

7.5 Retrieving information items

After the optimization the user has access to the solution as well as to a report containing a large amount
of additional information items. For example, one can obtain information about:

• timing: total optimization time, time spent in various optimizer subroutines, number of iterations,
etc.

• solution quality: feasibility measures, solution norms, constraint and bound violations, etc.

• problem structure: counts of variables of different types, constraints, nonzeros, etc.

• integer optimizer: integrality gap, objective bound, number of cuts, etc.

and more. Information items are numerical values of integer, long integer or double type. The full
list can be found in the API reference:

• Double

• Integer

• Long

Certain information items make sense, and are made available, also during the optimization process.
They can be accessed from a callback function, see Sec. 7.6 for details.

Remark

For efficiency reasons, not all information items are automatically computed after optimization. To force
all information items to be updated use the parameter MSK_IPAR_AUTO_UPDATE_SOL_INFO .

Retrieving the values

Values of information items are only returned if the info command is used in mosekopt . They are
available in the field res.info.

Each information item is identified by a unique name. The example below reads two pieces of data
from the solver: total optimization time and the number of interior-point iterations.

Listing 7.4: Information items example.

[r,res] = mosekopt('minimize info', prob);

res.info.MSK_DINF_OPTIMIZER_TIME
res.info.MSK_IINF_INTPNT_ITER

7.6 Progress and data callback

Callbacks are a very useful mechanism that allow the caller to track the progress of the MOSEK
optimizer. A callback function provided by the user is regularly called during the optimization and can
be used to

• obtain a customized log of the solver execution,

• collect information for debugging purposes or

• ask the solver to terminate.

60

7.6.1 Data callback
In the data callback MOSEK passes a callback code and values of all information items to a user-
defined function. The callback function is called, in particular, at the beginning of each iteration of the
interior-point optimizer. For the simplex optimizers MSK_IPAR_LOG_SIM_FREQ controls how frequently
the call-back is called.

The callback is set by attaching a structure callback as a parameter in mosekopt . This structure
specifies a global callback function and can contain arbitrary user-defined data.

7.6.2 Working example: Data callback
The following example defines a data callback function that prints out some of the information items. It
interrupts the solver after a certain time limit.

Listing 7.5: An example of a data callback function.

function [r] = callback_handler(handle,where,info)

r = 0; % r should always be assigned a value.

if handle.symbcon.MSK_CALLBACK_BEGIN_INTPNT==where
disp(sprintf('Interior point optimizer started\n'));

end

if handle.symbcon.MSK_CALLBACK_END_INTPNT==where
disp(sprintf('Interior-point optimizer terminated\n'));
disp(sprintf('Interior-point primal obj.: %e\n', info.MSK_DINF_INTPNT_PRIMAL_OBJ));
disp(sprintf('Iterations: %d\n', info.MSK_IINF_INTPNT_ITER));

end

if handle.symbcon.MSK_CALLBACK_NEW_INT_MIO==where
disp(sprintf('New mixed-integer solution found\n'));
disp(sprintf('Best objective.: %e\n', info.MSK_DINF_MIO_OBJ_BOUND));

end

% Decide if to terminate the optimization
% Terminate when cputime > handle.maxtime
if info.MSK_DINF_INTPNT_TIME > handle.maxtime

r = 1;
else

r = 0;
end

Assuming that we have defined some problem prob the callback function is attached as follows:

61

Listing 7.6: Attaching the data callback function to the model.

% Define user defined handle.
[r,res] = mosekopt('echo(0) symbcon');
data.maxtime = 100.0;
data.symbcon = res.symbcon;

callback.iter = 'callback_handler'; % Defined in callback_handler.m
callback.iterhandle = data;

% Perform the optimization.
[r,res] = mosekopt('minimize echo(0)',prob,[],callback);

7.7 MOSEK OptServer

MOSEK provides an easy way to offload optimization problem to a remote server. This section demon-
strates related functionalities from the client side, i.e. sending optimization tasks to the remote server
and retrieving solutions.

Setting up and configuring the remote server is described in a separate manual for the OptServer.
The URL of the remote server required in all client-side calls should be a string of the form http://

host:port or https://host:port.

7.7.1 Synchronous Remote Optimization
In synchronous mode the client sends an optimization problem to the server and blocks, waiting for the
optimization to end. Once the result has been received, the program can continue. This is the simplest
mode all it takes is to provide the address of the server before starting optimization. The rest of the
code remains untouched.

Note that it is impossible to recover the job in case of a broken connection.

Source code example

Listing 7.7: Using the OptServer in synchronous mode.

function opt_server_sync(inputfile, url, cert)
clear prob;
clear param;
clear optserver;

% We read some problem from a file or set it up here
cmd = sprintf('read(%s)', inputfile);
[r,res] = mosekopt(cmd);
prob = res.prob;

% OptServer data
optserver.host = url;
param.MSK_SPAR_REMOTE_TLS_CERT_PATH = cert;

% Perform the optimization with full log output.
[r,res] = mosekopt(sprintf('%s echo(10)', prob.objsense), prob, param, [], optserver);
→˓

% Use the optimal x solution.
xx = res.sol.bas.xx;

62

Chapter 8

Debugging Tutorials

This collection of tutorials contains basic techniques for debugging optimization problems using tools
available in MOSEK: optimizer log, solution summary, infeasibility report, command-line tools. It is
intended as a first line of technical help for issues such as: Why do I get solution status unknown and
how can I fix it? Why is my model infeasible while it shouldn’t be? Should I change some parameters?
Can the model solve faster? etc.

The major steps when debugging a model are always:

• Consult the log output. It is enabled by default, but if neccessary switch it on explicitly with:

[r, res] = mosekopt('minimize echo(10)', prob);

• Run the optimization and analyze the log output, see Sec. 8.1. In particular:

– check if the problem setup (number of constraints/variables etc.) matches your expectation.
– check solution summary and solution status.

• Dump the problem to disk if necessary to continue analysis. See Sec. 7.3.3.

– use a human-readable text format, preferably *.ptf if you want to check the problem structure
by hand. Assign names to variables and constraints to make them easier to identify.

[r, res] = mosekopt('write(dump.ptf)', prob);

– use the MOSEK native format *.task.gz when submitting a bug report or support question.

[r, res] = mosekopt('write(dump.task.gz)', prob);

• Fix problem setup, improve the model, locate infeasibility or adjust parameters, depending on the
diagnosis.

See the following sections for details.

8.1 Understanding optimizer log

The optimizer produces a log which splits roughly into four sections:

1. summary of the input data,

2. presolve and other pre-optimize problem setup stages,

3. actual optimizer iterations,

4. solution summary.

In this tutorial we show how to analyze the most important parts of the log when initially debugging
a model: input data (1) and solution summary (4). For the iterations log (3) see Sec. 13.3.4 or Sec.
13.4.3.

63

8.1.1 Input data
If MOSEK behaves very far from expectations it may be due to errors in problem setup. The log file
will begin with a summary of the structure of the problem, which looks for instance like:

Problem
Name :
Objective sense : minimize
Type : CONIC (conic optimization problem)
Constraints : 234
Affine conic cons. : 5348 (6444 rows)
Disjunctive cons. : 0
Cones : 0
Scalar variables : 20693
Matrix variables : 1 (scalarized: 45)
Integer variables : 0

This can be consulted to eliminate simple errors: wrong objective sense, wrong number of variables
etc. Note that some modeling tools can introduce additional variables and constraints to the model and
perturb the model even further (such as by dualizing). In most MOSEK APIs the problem dimensions
should match exactly what the user specified.

If this is not sufficient a bit more information can be obtained by dumping the problem to a file
(see Sec. 8) and using the anapro option of any of the command line tools. This will produce a longer
summary similar to:

** Variables
scalar: 20414 integer: 0 matrix: 0
low: 2082 up: 5014 ranged: 0 free: 12892 fixed: 426

** Constraints
all: 20413
low: 10028 up: 0 ranged: 0 free: 0 fixed: 10385

** Affine conic constraints (ACC)
QUAD: 1 dims: 2865: 1
RQUAD: 2507 dims: 3: 2507

** Problem data (numerics)
|c| nnz: 10028 min=2.09e-05 max=1.00e+00
|A| nnz: 597023 min=1.17e-10 max=1.00e+00
blx fin: 2508 min=-3.60e+09 max=2.75e+05
bux fin: 5440 min=0.00e+00 max=2.94e+08
blc fin: 20413 min=-7.61e+05 max=7.61e+05
buc fin: 10385 min=-5.00e-01 max=0.00e+00
|F| nnz: 612301 min=8.29e-06 max=9.31e+01
|g| nnz: 1203 min=5.00e-03 max=1.00e+00

Again, this can be used to detect simple errors, such as:

• Wrong type of conic constraint was used or it has wrong dimension.

• The bounds for variables or constraints are incorrect or incomplete.

• The model is otherwise incomplete.

• Suspicious values of coefficients.

• For various data sizes the model does not scale as expected.

Finally saving the problem in a human-friendly text format such as LP or PTF (see Sec. 8) and
analyzing it by hand can reveal if the model is correct.

64

Warnings and errors

At this stage the user can encounter warnings which should not be ignored, unless they are well-
understood. They can also serve as hints as to numerical issues with the problem data. A typical
warning of this kind is

MOSEK warning 53: A numerically large upper bound value 2.9e+08 is specified for␣
→˓variable 'absh[107]' (2613).

Warnings do not stop the problem setup. If, on the other hand, an error occurs then the model will
become invalid. The user should make sure to test for errors/exceptions from all API calls that set up
the problem and validate the data. See Sec. 7.2 for more details.

8.1.2 Solution summary
The last item in the log is the solution summary.

Continuous problem

Optimal solution

A typical solution summary for a continuous (linear, conic, quadratic) problem looks like:

Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 8.7560516107e+01 nrm: 1e+02 Viol. con: 3e-12 var: 0e+00 ␣
→˓acc: 3e-11
Dual. obj: 8.7560521345e+01 nrm: 1e+00 Viol. con: 5e-09 var: 9e-11 ␣
→˓acc: 0e+00

It contains the following elements:

• Problem and solution status. For details see Sec. 7.1.3.

• A summary of the primal solution: objective value, infinity norm of the solution vector and maximal
violations of variables and constraints of different types. The violation of a linear constraint such
as 𝑎𝑇𝑥 ≤ 𝑏 is max(𝑎𝑇𝑥− 𝑏, 0). The violation of a conic constraint is the distance to the cone.

• The same for the dual solution.

The features of the solution summary which characterize a very good and accurate solution and a
well-posed model are:

• Status: The solution status is OPTIMAL.

• Duality gap: The primal and dual objective values are (almost) identical, which proves the
solution is (almost) optimal.

• Norms: Ideally the norms of the solution and the objective values should not be too large. This of
course depends on the input data, but a huge solution norm can be an indicator of issues with the
scaling, conditioning and/or well-posedness of the model. It may also indicate that the problem is
borderline between feasibility and infeasibility and sensitive to small perturbations in this respect.

• Violations: The violations are close to zero, which proves the solution is (almost) feasible. Observe
that due to rounding errors it can be expected that the violations are proportional to the norm
(nrm:) of the solution. It is rarely the case that violations are exactly zero.

65

Solution status UNKNOWN

A typical example with solution status UNKNOWN due to numerical problems will look like:

Problem status : UNKNOWN
Solution status : UNKNOWN
Primal. obj: 1.3821656824e+01 nrm: 1e+01 Viol. con: 2e-03 var: 0e+00 ␣
→˓acc: 0e+00
Dual. obj: 3.0119004098e-01 nrm: 5e+07 Viol. con: 4e-16 var: 1e-01 ␣
→˓acc: 0e+00

Note that:

• The primal and dual objective are very different.

• The dual solution has very large norm.

• There are considerable violations so the solution is likely far from feasible.

Follow the hints in Sec. 8.2 to resolve the issue.

Solution status UNKNOWN with a potentially useful solution

Solution status UNKNOWN does not necessarily mean that the solution is completely useless. It only means
that the solver was unable to make any more progress due to numerical difficulties, and it was not able
to reach the accuracy required by the termination criteria (see Sec. 13.3.2). Consider for instance:

Problem status : UNKNOWN
Solution status : UNKNOWN
Primal. obj: 3.4531019648e+04 nrm: 1e+05 Viol. con: 7e-02 var: 0e+00 ␣
→˓acc: 0e+00
Dual. obj: 3.4529720645e+04 nrm: 8e+03 Viol. con: 1e-04 var: 2e-04 ␣
→˓acc: 0e+00

Such a solution may still be useful, and it is always up to the user to decide. It may be a good enough
approximation of the optimal point. For example, the large constraint violation may be due to the fact
that one constraint contained a huge coefficient.

Infeasibility certificate

A primal infeasibility certificate is stored in the dual variables:

Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 2.9238975853e+02 nrm: 6e+02 Viol. con: 0e+00 var: 1e-11 ␣
→˓acc: 0e+00

It is a Farkas-type certificate as described in Sec. 12.2.2. In particular, for a good certificate:

• The dual objective is positive for a minimization problem, negative for a maximization problem.
Ideally it is well bounded away from zero.

• The norm is not too big and the violations are small (as for a solution).

If the model was not expected to be infeasible, the likely cause is an error in the problem formulation.
Use the hints in Sec. 8.1.1 and Sec. 8.3 to locate the issue.

Just like a solution, the infeasibility certificate can be of better or worse quality. The infeasibility
certificate above is very solid. However, there can be less clear-cut cases, such as for example:

Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 1.6378689238e-06 nrm: 6e+05 Viol. con: 7e-03 var: 2e-04 ␣
→˓acc: 0e+00

66

This infeasibility certificate is more dubious because the dual objective is positive, but barely so in
comparison with the large violations. It also has rather large norm. This is more likely an indication
that the problem is borderline between feasibility and infeasibility or simply ill-posed and sensitive to
tiny variations in input data. See Sec. 8.3 and Sec. 8.2.

The same remarks apply to dual infeasibility (i.e. unboundedness) certificates. Here the primal
objective should be negative a minimization problem and positive for a maximization problem.

8.1.3 Mixed-integer problem

Optimal integer solution

For a mixed-integer problem there is no dual solution and a typical optimal solution report will look as
follows:

Problem status : PRIMAL_FEASIBLE
Solution status : INTEGER_OPTIMAL
Primal. obj: 6.0111122960e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-14 ␣
→˓itg: 5e-15

The interpretation of all elements is as for a continuous problem. The additional field itg denotes
the maximum violation of an integer variable from being an exact integer.

Feasible integer solution

If the solver found an integer solution but did not prove optimality, for instance because of a time limit,
the solution status will be PRIMAL_FEASIBLE:

Problem status : PRIMAL_FEASIBLE
Solution status : PRIMAL_FEASIBLE
Primal. obj: 6.0114607792e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-13 ␣
→˓itg: 4e-15

In this case it is valuable to go back to the optimizer summary to see how good the best solution is:

31 35 1 0 6.0114607792e+06 6.0078960892e+06 0.06 ␣
→˓ 4.1

Objective of best integer solution : 6.011460779193e+06
Best objective bound : 6.007896089225e+06

In this case the best integer solution found has objective value 6.011460779193e+06, the best proved
lower bound is 6.007896089225e+06 and so the solution is guaranteed to be within 0.06% from optimum.
The same data can be obtained as information items through an API. See also Sec. 13.4 for more details.

Infeasible problem

If the problem is declared infeasible the summary is simply

Problem status : PRIMAL_INFEASIBLE
Solution status : UNKNOWN
Primal. obj: 0.0000000000e+00 nrm: 0e+00 Viol. con: 0e+00 var: 0e+00 ␣
→˓itg: 0e+00

If infeasibility was not expected, consult Sec. 8.3.

67

8.2 Addressing numerical issues

The suggestions in this section should help diagnose and solve issues with numerical instability, in
particular UNKNOWN solution status or solutions with large violations. Since numerically stable models
tend to solve faster, following these hints can also dramatically shorten solution times.

We always recommend that issues of this kind are addressed by reformulating or rescaling the model,
since it is the modeler who has the best insight into the structure of the problem and can fix the cause
of the issue.

Some information about the numerical properties of the data can be obtained by dumping the problem
to a file (see Sec. 8) and using the anapro option of any of the command line tools.

8.2.1 Formulating problems

Scaling

Make sure that all the data in the problem are of comparable orders of magnitude. This applies especially
to the linear constraint matrix. Use Sec. 8.1.1 if necessary. For example a report such as

|A| nnz: 597023 min=1.17e-6 max=2.21e+5

means that the ratio of largest to smallest elements in A is 1011. In this case the user should rescale
or reformulate the model to avoid such spread which makes it difficult for MOSEK to scale the problem
internally. In many cases it may be possible to change the units, i.e. express the model in terms of
rescaled variables (for instance work with millions of dollars instead of dollars, etc.).

Similarly, if the objective contains very different coefficients, say

maximize 1010𝑥 + 𝑦

then it is likely to lead to inaccuracies. The objective will be dominated by the contribution from 𝑥 and
𝑦 will become insignificant.

Removing huge bounds

Never use a very large number as replacement for ∞. Instead define the variable or constraint as
unbounded from below/above. Similarly, avoid artificial huge bounds if you expect they will not become
tight in the optimal solution.

Avoiding linear dependencies

As much as possible try to avoid linear dependencies and near-linear dependencies in the model. See
Example 8.3.

Avoiding ill-posedness

Avoid continuous models which are ill-posed: the solution space is degenerate, for example consists of a
single point (technically, the Slater condition is not satisfied). In general, this refers to problems which
are borderline between feasible and infeasible. See Example 8.1.

Scaling the expected solution

Try to formulate the problem in such a way that the expected solution (both primal and dual) is not
very large. Consult the solution summary Sec. 8.1.2 to check the objective values or solution norms.

68

8.2.2 Further suggestions
Here are other simple suggestions that can help locate the cause of the issues. They can also be used as
hints for how to tune the optimizer if fixing the root causes of the issue is not possible.

• Remove the objective and solve the feasibility problem. This can reveal issues with the objective.

• Change the objective or change the objective sense from minimization to maximization (if appli-
cable). If the two objective values are almost identical, this may indicate that the feasible set is
very small, possibly degenerate.

• Perturb the data, for instance bounds, very slightly, and compare the results.

• For linear problems: solve the problem using a different optimizer by setting the parameter
MSK_IPAR_OPTIMIZER and compare the results.

• Force the optimizer to solve the primal/dual versions of the problem by setting the parameter
MSK_IPAR_INTPNT_SOLVE_FORM or MSK_IPAR_SIM_SOLVE_FORM . MOSEK has a heuristic to decide
whether to dualize, but for some problems the guess is wrong an explicit choice may give better
results.

• Solve the problem without presolve or some of its parts by setting the parameter
MSK_IPAR_PRESOLVE_USE , see Sec. 13.1.

• Use different numbers of threads (MSK_IPAR_NUM_THREADS) and compare the results. Very different
results indicate numerical issues resulting from round-off errors.

If the problem was dumped to a file, experimenting with various parameters is facilitated with the
MOSEK Command Line Tool or MOSEK Python Console Sec. 8.4.

8.2.3 Typical pitfalls

Example 8.1 (Ill-posedness). A toy example of this situation is the feasibility problem

(𝑥− 1)2 ≤ 1, (𝑥 + 1)2 ≤ 1

whose only solution is 𝑥 = 0 and moreover replacing any 1 on the right hand side by 1 − 𝜀 makes
the problem infeasible and replacing it by 1 + 𝜀 yields a problem whose solution set is an interval
(fully-dimensional). This is an example of ill-posedness.

Example 8.2 (Huge solution). If the norm of the expected solution is very large it may lead to
numerical issues or infeasibility. For example the problem

(10−4, 𝑥, 103) ∈ 𝒬3
r

may be declared infeasible because the expected solution must satisfy 𝑥 ≥ 5 · 109.

Example 8.3 (Near linear dependency). Consider the following problem:

minimize
subject to 𝑥1 + 𝑥2 = 1,

𝑥3 + 𝑥4 = 1,
− 𝑥1 − 𝑥3 = −1 + 𝜀,

− 𝑥2 − 𝑥4 = −1,
𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0.

If we add the equalities together we obtain:

0 = 𝜀

69

which is infeasible for any 𝜀 ̸= 0. Here infeasibility is caused by a linear dependency in the constraint
matrix coupled with a precision error represented by the 𝜀. Indeed if a problem contains linear
dependencies then the problem is either infeasible or contains redundant constraints. In the above
case any of the equality constraints can be removed while not changing the set of feasible solutions.
To summarize linear dependencies in the constraints can give rise to infeasible problems and therefore
it is better to avoid them.

Example 8.4 (Presolving very tight bounds). Next consider the problem

minimize
subject to 𝑥1 − 0.01𝑥2 = 0,

𝑥2 − 0.01𝑥3 = 0,
𝑥3 − 0.01𝑥4 = 0,

𝑥1 ≥ −10−9,
𝑥1 ≤ 10−9,
𝑥4 ≥ 10−4.

Now the MOSEK presolve will, for the sake of efficiency, fix variables (and constraints) that have
tight bounds where tightness is controlled by the parameter MSK_DPAR_PRESOLVE_TOL_X . Since the
bounds

−10−9 ≤ 𝑥1 ≤ 10−9

are tight, presolve will set 𝑥1 = 0. It easy to see that this implies 𝑥4 = 0, which leads to the incorrect
conclusion that the problem is infeasible. However a tiny change of the value 10−9 makes the problem
feasible. In general it is recommended to avoid ill-posed problems, but if that is not possible then one
solution is to reduce parameters such as MSK_DPAR_PRESOLVE_TOL_X to say 10−10. This will at least
make sure that presolve does not make the undesired reduction.

8.3 Debugging infeasibility

When solving an optimization problem one typically expects to get an optimal solution, but in some
cases, either by design, or (most frequently) due to an error in the formulation, the problem may become
infeasible (have no solution at all).

This section

• describes the intuitions behind infeasibility,

• helps to debug (unexpectedly) infeasible problems using the command line tool and by inspecting
infeasibility reports and problem data by hand,

• gives some hints for how to modify the formulation to identify the reasons for infeasibility.

If, instead, you want to fetch an infeasibility certificate directly using Optimization Toolbox for
MATLAB, see the tutorial in Sec. 6.11.

An infeasibility certificate is only available for continuous problems, however the hints in Sec. 8.3.4
apply to a large extent also to mixed-integer problems.

70

8.3.1 Numerical issues
Infeasible problem status may be just an artifact of numerical issues appearing when the problem is
badly-scaled, barely feasible or otherwise ill-conditioned so that it is unstable under small perturbations
of the data or round-off errors. This may be visible in the solution summary if the infeasibility certificate
has poor quality. See Sec. 8.1.2 for how to diagnose that and Sec. 8.2 for possible hints. Sec. 8.2.3
contains examples of situations which may lead to infeasibility for numerical reasons.

We refer to Sec. 8.2 for further information on dealing with those sort of issues. For the rest of this
section we concentrate on the case when the solution summary leaves little doubt that the problem solved
by the optimizer actually is infeasible.

8.3.2 Locating primal infeasibility
As an example of a primal infeasible problem consider minimizing the cost of transportation between a
number of production plants and stores: Each plant produces a fixed number of goods, and each store
has a fixed demand that must be met. Supply, demand and cost of transportation per unit are given in
Fig. 8.1.

Supply Demand

1

2

5

2

1

2

1

Plant 1

Plant 2

Plant 3
Store 4

Store 3

Store 2

Store 1

1000

1000

200

500

500

200
1100

Fig. 8.1: Supply, demand and cost of transportation.

The problem represented in Fig. 8.1 is infeasible, since the total demand

2300 = 1100 + 200 + 500 + 500

exceeds the total supply

2200 = 200 + 1000 + 1000

If we denote the number of transported goods from plant 𝑖 to store 𝑗 by 𝑥𝑖𝑗 , the problem can be
formulated as the LP:

minimize 𝑥11 + 2𝑥12 + 5𝑥23 + 2𝑥24 + 𝑥31 + 2𝑥33 + 𝑥34

subject to 𝑠0 : 𝑥11 + 𝑥12 ≤ 200,
𝑠1 : 𝑥23 + 𝑥24 ≤ 1000,
𝑠2 : 𝑥31 + 𝑥33 + 𝑥34 ≤ 1000,
𝑑0 : 𝑥11 + 𝑥31 = 1100,
𝑑1 : 𝑥12 = 200,
𝑑2 : 𝑥23 + 𝑥33 = 500,
𝑑3 : 𝑥24 + 𝑥34 = 500,

𝑥𝑖𝑗 ≥ 0.

(8.1)

71

Solving problem (8.1) using MOSEK will result in an infeasibility status. The infeasibility certificate
is contained in the dual variables an can be accessed from an API. The variables and constraints with
nonzero solution values form an infeasible subproblem, which frequently is very small. See Sec. 12.1.2 or
Sec. 12.2.2 for detailed specifications of infeasibility certificates.

A short infeasibility report can also be printed to the log stream. It can be turned on by setting
the parameter MSK_IPAR_INFEAS_REPORT_AUTO to "MSK_ON" . This causes MOSEK to print a report on
variables and constraints which are involved in infeasibility in the above sense, i.e. have nonzero values
in the certificate. The parameter MSK_IPAR_INFEAS_REPORT_LEVEL controls the amount of information
presented in the infeasibility report. The default value is 1. For the above example the report is

Primal infeasibility report

Problem status: The problem is primal infeasible

The following constraints are involved in the primal infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper
0 s0 none 200 0 1
2 s2 none 1000 0 1
3 d0 1100 1100 1 0
4 d1 200 200 1 0

The following bound constraints are involved in the primal infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper
5 x33 0 none 1 0
6 x34 0 none 1 0

The infeasibility report is divided into two sections corresponding to constraints and variables. It
is a selection of those lines from the problem solution which are important in understanding primal
infeasibility. In this case the constraints s0, s2, d0, d1 and variables x33, x34 are of importance because
of nonzero dual values. The columns Dual lower and Dual upper contain the values of dual variables
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠𝑥𝑙 and 𝑠𝑥𝑢 in the primal infeasibility certificate (see Sec. 12.1.2).

In our example the certificate means that an appropriate linear combination of constraints s0, s1
with coefficient 𝑠𝑐𝑢 = 1, constraints d0 and d1 with coefficient 𝑠𝑐𝑢 − 𝑠𝑐𝑙 = 0 − 1 = −1 and lower bounds
on x33 and x34 with coefficient −𝑠𝑥𝑙 = −1 gives a contradiction. Indeed, the combination of the four
involved constraints is 𝑥33 +𝑥34 ≤ −100 (as indicated in the introduction, the difference between supply
and demand).

It is also possible to extract the infeasible subproblem with the command-line tool. For an infeasible
problem called infeas.lp the command:

mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.lp -info rinfeas.lp

will produce the file rinfeas.bas.inf.lp which contains the infeasible subproblem. Because of its
size it may be easier to work with than the original problem file.

Returning to the transportation example, we discover that removing the fifth constraint 𝑥12 = 200
makes the problem feasible. Almost all undesired infeasibilities should be fixable at the modeling stage.

72

8.3.3 Locating dual infeasibility
A problem may also be dual infeasible. In this case the primal problem is usually unbounded, meaning
that feasible solutions exists such that the objective tends towards infinity. For example, consider the
problem

maximize 200𝑦1 + 1000𝑦2 + 1000𝑦3 + 1100𝑦4 + 200𝑦5 + 500𝑦6 + 500𝑦7
subject to 𝑦1 + 𝑦4 ≤ 1, 𝑦1 + 𝑦5 ≤ 2, 𝑦2 + 𝑦6 ≤ 5, 𝑦2 + 𝑦7 ≤ 2,

𝑦3 + 𝑦4 ≤ 1, 𝑦3 + 𝑦6 ≤ 2, 𝑦3 + 𝑦7 ≤ 1
𝑦1, 𝑦2, 𝑦3 ≤ 0

which is dual to (8.1) (and therefore is dual infeasible). The dual infeasibility report may look as follows:

Dual infeasibility report

Problem status: The problem is dual infeasible

The following constraints are involved in the dual infeasibility.

Index Name Activity Objective Lower bound Upper bound
5 x33 -1 none 2
6 x34 -1 none 1

The following variables are involved in the dual infeasibility.

Index Name Activity Objective Lower bound Upper bound
0 y1 -1 200 none 0
2 y3 -1 1000 none 0
3 y4 1 1100 none none
4 y5 1 200 none none

In the report we see that the variables y1, y3, y4, y5 and two constraints contribute to infeasibility
with non-zero values in the Activity column. Therefore

(𝑦1, . . . , 𝑦7) = (−1, 0,−1, 1, 1, 0, 0)

is the dual infeasibility certificate as in Sec. 12.1.2. This just means, that along the ray

(0, 0, 0, 0, 0, 0, 0) + 𝑡(𝑦1, . . . , 𝑦7) = (−𝑡, 0,−𝑡, 𝑡, 𝑡, 0, 0), 𝑡 > 0,

which belongs to the feasible set, the objective value 100𝑡 can be arbitrarily large, i.e. the problem is
unbounded.

In the example problem we could

• Add a lower bound on y3. This will directly invalidate the certificate of dual infeasibility.

• Increase the objective coefficient of y3. Changing the coefficients sufficiently will invalidate the
inequality 𝑐𝑇 𝑦* > 0 and thus the certificate.

73

8.3.4 Suggestions

Primal infeasibility

When trying to understand what causes the unexpected primal infeasible status use the following hints:

• Remove the objective function. This does not change the infeasibility status but simplifies the
problem, eliminating any possibility of issues related to the objective function.

• Remove cones, semidefinite variables and integer constraints. Solve only the linear part of the
problem. Typical simple modeling errors will lead to infeasibility already at this stage.

• Consider whether your problem has some obvious necessary conditions for feasibility and examine
if these are satisfied, e.g. total supply should be greater than or equal to total demand.

• Verify that coefficients and bounds are reasonably sized in your problem.

• See if there are any obvious contradictions, for instance a variable is bounded both in the variables
and constraints section, and the bounds are contradictory.

• Consider replacing suspicious equality constraints by inequalities. For instance, instead of 𝑥12 = 200
see what happens for 𝑥12 ≥ 200 or 𝑥12 ≤ 200.

• Relax bounds of the suspicious constraints or variables.

• For integer problems, remove integrality constraints on some/all variables and see if the problem
solves.

• Form an elastic model: allow to violate constraints at a cost. Introduce slack variables and add
them to the objective as penalty. For instance, suppose we have a constraint

minimize 𝑐𝑇𝑥,
subject to 𝑎𝑇𝑥 ≤ 𝑏.

which might be causing infeasibility. Then create a new variable 𝑦 and form the problem which
contains:

minimize 𝑐𝑇𝑥 + 𝑦,
subject to 𝑎𝑇𝑥 ≤ 𝑏 + 𝑦.

Solving this problem will reveal by how much the constraint needs to be relaxed in order to become
feasible. This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

• If you think you have a feasible solution or its part, fix all or some of the variables to those values.
Presolve will propagate them through the model and potentially reveal more localized sources of
infeasibility.

• Dump the problem in PTF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Dual infeasibility

When trying to understand what causes the unexpected dual infeasible status use the following hints:

• Verify that the objective coefficients are reasonably sized.

• Check if no bounds and constraints are missing, for example if all variables that should be nonneg-
ative have been declared as such etc.

• Strengthen bounds of the suspicious constraints or variables.

74

• Form an series of models with decreasing bounds on the objective, that is, instead of objective

minimize 𝑐𝑇𝑥

solve the problem with an additional constraint such as

𝑐𝑇𝑥 = −105

and inspect the solution to figure out the mechanism behind arbitrarily decreasing objective values.
This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

• Dump the problem in PTF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Please note that modifying the problem to invalidate the reported certificate does not imply that the
problem becomes feasible — the reason for infeasibility may simply move, resulting a problem that is
still infeasible, but for a different reason. More often, the reported certificate can be used to give a hint
about errors or inconsistencies in the model that produced the problem.

8.4 Python Console

The MOSEK Python Console is an alternative to the MOSEK Command Line Tool. It can be used for
interactive loading, solving and debugging optimization problems stored in files, for example MOSEK
task files. It facilitates debugging techniques described in Sec. 8.

8.4.1 Usage
The tool requires Python 3. The MOSEK interface for Python must be installed following the instal-
lation instructions for Python API or Python Fusion API. The easiest option is

pip install Mosek

The Python Console is contained in the file mosekconsole.py in the folder with MOSEK binaries. It
can be copied to an arbitrary location. The file is also available for download here (mosekconsole.py).

To run the console in interactive mode use

python mosekconsole.py

To run the console in batch mode provide a semicolon-separated list of commands as the second
argument of the script, for example:

python mosekconsole.py "read data.task.gz; solve form=dual; writesol data"

The script is written using the MOSEK Python API and can be extended by the user if more specific
functionality is required. We refer to the documentation of the Python API.

8.4.2 Examples
To read a problem from data.task.gz, solve it, and write solutions to data.sol, data.bas or data.itg:

read data.task.gz; solve; writesol data

To convert between file formats:

read data.task.gz; write data.mps

To set a parameter before solving:

read data.task.gz; param INTPNT_CO_TOL_DFEAS 1e-9; solve"

To list parameter values related to the mixed-integer optimizer in the task file:

75

read data.task.gz; param MIO

To print a summary of problem structure:

read data.task.gz; anapro

To solve a problem forcing the dual and switching off presolve:

read data.task.gz; solve form=dual presolve=no

To write an infeasible subproblem to a file for debugging purposes:

read data.task.gz; solve; infsub; write inf.opf

8.4.3 Full list of commands
Below is a brief description of all the available commands. Detailed information about a specific command
cmd and its options can be obtained with

help cmd

Table 8.1: List of commands of the MOSEK Python Console.

Command Description

help [command] Print list of commands or info about a specific command
log filename Save the session to a file
intro Print MOSEK splashscreen
testlic Test the license system
read filename Load problem from file
reread Reload last problem file
solve
[options]

Solve current problem

write filename Write current problem to file
param [name
[value]]

Set a parameter or get parameter values

paramdef Set all parameters to default values
paramdiff Show parameters with non-default values
paramval name Show available values for a parameter
info [name] Get an information item
anapro Analyze problem data
anapro+ Analyze problem data with the internal analyzer
hist Plot a histogram of problem data
histsol Plot a histogram of the solutions
spy Plot the sparsity pattern of the data matrices
truncate
epsilon

Truncate small coefficients down to 0

resobj [fac] Rescale objective by a factor
anasol Analyze solutions
removeitg Remove integrality constraints
removecones Remove all cones and leave just the linear part
delsol Remove solutions
infsub Replace current problem with its infeasible subproblem
dualize Replace current problem with its dual
writesol
basename

Write solution(s) to file(s) with given basename

writejsonsol
name

Write solutions to JSON file with given name

ptf Print the PTF representation of the problem
continues on next page

76

Table 8.1 – continued from previous page

Command Description

optserver
[url]

Use an OptServer to optimize

ls List the current folder
exit Leave

77

Chapter 9

Advanced Numerical Tutorials

9.1 Advanced hot-start

In practice it frequently occurs that when an optimization problem has been solved, then the same
problem slightly modified should be reoptimized. Moreover, if it is just a small the modification, it can
be expected that the optimal solution to the original problem is a good approximation to the modified
problem. Therefore, it should be efficient to start the optimization of the modified problem from the
previous optimal solution.

Currently, the interior-point optimizer in MOSEK cannot take advantage of a previous optimal
solution, however, the simplex optimizer can exploit any basic solution.

We work with the simple linear problem:

minimize 𝑥1 + 2𝑥2

subject to 4 ≤ 𝑥1 + 𝑥3 ≤ 6,
1 ≤ 𝑥1 + 𝑥2,
0 ≤ 𝑥1, 𝑥2, 𝑥3.

9.1.1 Initial hot-start
A quick inspection of the problem indicates that (𝑥1, 𝑥3) = (1, 3) is an optimal solution. Hence, it seems
to be a good idea to let the initial basis consist of 𝑥1 and 𝑥3 and all the other variables be at their lower
bounds. This idea is used in the example code:

Listing 9.1: Passing the full basic solution.

% Specify an initial basic solution.
bas.skc = ['LL';'LL'];
bas.skx = ['BS';'LL';'BS'];
bas.xc = [4 1]';
bas.xx = [1 3 0]';

prob.sol.bas = bas;

% Specify the problem data.
prob.c = [1 2 0]';
subi = [1 2 2 1];
subj = [1 1 2 3];
valij = [1.0 1.0 1.0 1.0];
prob.a = sparse(subi,subj,valij);
prob.blc = [4.0 1.0]';
prob.buc = [6.0 inf]';
prob.blx = sparse(3,1);
prob.bux = [];

(continues on next page)

78

(continued from previous page)

% Use the primal simplex optimizer.
param.MSK_IPAR_OPTIMIZER = 'MSK_OPTIMIZER_PRIMAL_SIMPLEX';
[r,res] = mosekopt('minimize',prob,param)

Comments:

• In the example the dual solution is not defined. This is acceptable because the primal simplex
optimizer is used for the reoptimization and it does not exploit a dual solution. Otherwise it will
be important that a good dual solution is specified.

• The status keys bas.skc and bas.skx must contain only the entries BS, EQ, LL, UL, SB. Moreover,
e.g. EQ must be specified only for a fixed constraint or variable. LL and UL can be used only for a
variable that has a finite lower or upper bound respectively. For an explanation of status keys see
stakey .

• The number of constraints and variables defined to be basic must correspond exactly to the number
of constraints.

9.1.2 Adding a new variable
Next, assume we modify the problem by adding a new variable:

minimize 𝑥1 + 2𝑥2 − 𝑥4

subject to 4 ≤ 𝑥1 + 𝑥3 + 𝑥4 ≤ 6,
1 ≤ 𝑥1 + 𝑥2,
0 ≤ 𝑥1, 𝑥2, 𝑥3, 𝑥4.

In continuation of the previous example this problem can be solved as follows, using the full previous
basic solution in hot-start:

Listing 9.2: Hot-start when adding a new variable.

prob.c = [prob.c;-1.0];
prob.a = [prob.a,sparse([1.0 0.0]')];
prob.blx = sparse(4,1);

% Reuse the old optimal basic solution.
bas = res.sol.bas;

% Add to the status key.
bas.skx = [res.sol.bas.skx;'LL'];

% The new variable is at it lower bound.
bas.xx = [res.sol.bas.xx;0.0];
bas.slx = [res.sol.bas.slx;0.0];
bas.sux = [res.sol.bas.sux;0.0];

prob.sol.bas = bas;

[rcode,res] = mosekopt('minimize',prob,param);

% The new primal optimal solution
res.sol.bas.xx'

79

9.1.3 Fixing a variable
In e.g. branch-and-bound methods for integer programming problems it is necessary to reoptimize the
problem after a variable has been fixed to a value. This can easily be achieved as follows:

Listing 9.3: Hot-start with a fixed variable.

prob.blx(4) = 1;
prob.bux = [inf inf inf 1]';

% Reuse the basis.
prob.sol.bas = res.sol.bas;

[rcode,res] = mosekopt('minimize',prob,param);

% Display the optimal solution.
res.sol.bas.xx'

9.1.4 Adding a new constraint
Now assume that the constraint

𝑥1 + 𝑥2 ≥ 2

should be added to the problem and the problem should be reoptimized. The following example demon-
strates how to do this.

Listing 9.4: Hot-start when adding a new constraint.

% Modify the problem.
prob.a = [prob.a;sparse([1.0 1.0 0.0 0.0])];
prob.blc = [prob.blc;2.0];
prob.buc = [prob.buc;inf];

% Obtain the previous optimal basis.
bas = res.sol.bas;

% Set the solution to the modified problem.
bas.skc = [bas.skc;'BS'];
bas.xc = [bas.xc;bas.xx(1)+bas.xx(2)];
bas.y = [bas.y;0.0];
bas.slc = [bas.slc;0.0];
bas.suc = [bas.suc;0.0];

% Reuse the basis.
prob.sol.bas = bas;

% Reoptimize.
[rcode,res] = mosekopt('minimize',prob,param);

res.sol.bas.xx'

Please note that the slack variable corresponding to the new constraint is declared basic. This implies
that the new basis is nonsingular and can be reused.

80

9.1.5 Removing a constraint
We can remove a constraint in two ways:

• Set the bounds for the constraint to ±∞ as appropriate.

• Remove the corresponding row from prob.a and other parts of the data and update the basis.

In the following example we use the latter approach to again remove the constraint 𝑥1 + 𝑥2 ≥ 2.

Listing 9.5: Hot-start when removing a constraint.

% Modify the problem.
prob.a = prob.a(1:end-1,:);
prob.blc = prob.blc(1:end-1);
prob.buc = prob.buc(1:end-1);

% Obtain the previous optimal basis.
bas = res.sol.bas;

% Set the solution to the modified problem.
bas.skc = bas.skc(1:end-1,:);
bas.xc = bas.xc(1:end-1);
bas.y = bas.y(1:end-1);
bas.slc = bas.slc(1:end-1);
bas.suc = bas.suc(1:end-1);

% Reuse the basis.
prob.sol.bas = bas;

% Reoptimize.
[rcode,res] = mosekopt('minimize',prob,param);

res.sol.bas.xx'

9.1.6 Removing a variable
Similarly we can remove a variable in two ways:

• Fix the variable to zero.

• Remove the corresponding column from prob.a and other parts of the data and update the basis.

The following example uses the latter approach to remove 𝑥4.

Listing 9.6: Hot-start when removing a constraint.

% Modify the problem.
prob.c = prob.c(1:end-1);
prob.a = prob.a(:,1:end-1);
prob.blx = prob.blx(1:end-1);
prob.bux = prob.bux(1:end-1);

% Obtain the previous optimal basis.
bas = res.sol.bas;

% Set the solution to the modified problem.
bas.xx = bas.xx(1:end-1);
bas.skx = bas.skx(1:end-1,:);
bas.slx = bas.slx(1:end-1);

(continues on next page)

81

(continued from previous page)

bas.sux = bas.sux(1:end-1);

% Reuse the basis.
prob.sol.bas = bas;

% Reoptimize.
[rcode,res] = mosekopt('minimize',prob,param);

res.sol.bas.xx'

82

Chapter 10

Technical guidelines

This section contains some more in-depth technical guidelines for Optimization Toolbox for MATLAB,
not strictly necessary for basic use of MOSEK.

10.1 Integration with MATLAB

The mosekopt MEX file

The central part of Optimization Toolbox for MATLAB is the mosekopt MEX file. It provides an
interface to MOSEK that is employed by all the other functions provided in the toolbox. Therefore, we
recommend to mosekopt function if possible because that give rise to the least overhead and provides
the maximum of features.

Compatibility with the MATLAB Optimization Toolbox

For compatibility with the MATLAB Optimization Toolbox, MOSEK provides the following functions:

• linprog : Solves linear optimization problems.

• intlinprog : Solves a linear optimization problem with integer constrained variables.

• quadprog : Solves quadratic optimization problems.

• lsqlin : Minimizes a least-squares objective with linear constraints.

• lsqnonneg : Minimizes a least-squares objective with nonnegativity constraints.

• mskoptimget : Getting an options structure for MATLAB compatible functions.

• mskoptimset : Setting up an options structure for MATLAB compatible functions.

These functions are described in detail in Sec. 15.2. The functions mskoptimget and mskoptimset
are not fully compatible with the MATLAB counterparts, optimget and optimset, so the MOSEK
versions should only be used in conjunction with the MOSEK implementations of linprog , etc., and
similarly optimget should be used in conjunction with the MATLAB implementations.

Caveats using the MATLAB compiler

When using MOSEK with the MATLAB compiler it is necessary manually:

• to remove mosekopt.m before compilation,

• copy the MEX file to the directory with MATLAB binary files and

• copy the mosekopt.m file back after compilation.

83

10.2 Names

All elements of an optimization problem in MOSEK (objective, constraints, variables, etc.) can be given
names. Assigning meaningful names to variables and constraints makes it much easier to understand
and debug optimization problems dumped to a file. On the other hand, note that assigning names can
substantially increase setup time, so it should be avoided in time-critical applications.

Names of various elements of the problem are assigned using the names structure within an opti-
mization problem specification prob .

Note that file formats impose various restrictions on names, so not all names can be written verbatim
to each type of file. If at least one name cannot be written to a given format then generic names and
substitutions of offending characters will be used when saving to a file, resulting in a transformation of
all names in the problem. See Sec. 16.

10.3 Timing

Unless otherwise mentioned all parameters, information items and log output entries in MOSEK which
refer to time measurement are expressed in seconds of wall-clock time.

10.4 Multithreading

Parallelization

The interior-point and mixed-integer optimizers in MOSEK are parallelized. By default MOSEK will
automatically select the number of threads. However, the maximum number of threads allowed can be
changed by setting the parameter MSK_IPAR_NUM_THREADS and related parameters. This should never
exceed the number of cores.

The speed-up obtained when using multiple threads is highly problem and hardware dependent. We
recommend experimenting with various thread numbers to determine the optimal settings. For small
problems using multiple threads may be counter-productive because of the associated overhead. Note
also that not all parts of the algorithm can be parallelized, so there are times when CPU utilization is
only 1 even if more cores are available.

Determinism

By default the optimizer is run-to-run deterministic, which means that it will return the same answer
each time it is run on the same machine with the same input, the same parameter settings (including
number of threads) and no time limits.

Setting the number of threads

The number of threads the optimizer uses can be changed with the parameter MSK_IPAR_NUM_THREADS .

The MATLAB Parallel Computing Toolbox

Running MOSEK with the MATLAB Parallel Computing Toolbox requires multiple MOSEK licenses,
since each thread runs a separate instance of the MOSEK optimizer. Each thread thus requires a
MOSEK license.

84

10.5 The license system

MOSEK is a commercial product that always needs a valid license to work. MOSEK uses a third
party license manager to implement license checking. The number of license tokens provided determines
the number of optimizations that can be run simultaneously.

By default a license token remains checked out from the first optimization until the end of the
MOSEK session, i.e.

• a license token is checked out when any MOSEK function involving optimization, as for instance
mosekopt , is called the first time and

• it is returned when MATLAB is terminated.

Starting the optimization when no license tokens are available will result in an error.
Default behaviour of the license system can be changed in several ways:

• Setting the parameter MSK_IPAR_CACHE_LICENSE to "MSK_OFF" will force MOSEK to return the
license token immediately after the optimization completed.

• Setting the parameter MSK_IPAR_LICENSE_WAIT will force MOSEK to wait until a license token
becomes available instead of returning with an error.

• All licenses currently checked out and not in use can be released on demand using the nokeepenv
command of mosekopt .

mosekopt('nokeepenv');

85

Chapter 11

Case Studies

In this section we present some case studies in which the Optimization Toolbox for MATLAB is used
to solve real-life applications. These examples involve some more advanced modeling skills and possibly
some input data. The user is strongly recommended to first read the basic tutorials of Sec. 6 before
going through these advanced case studies.

• Portfolio Optimization

– Keywords: Markowitz model, variance, risk, efficient frontier, factor model, transaction cost,
market impact cost, cardinality constraints

– Type: Conic Quadratic, Power Cone, Mixed-Integer

• Least squares and other norm minimization problems

– Keywords: Least squares, regression, 2-norm, 1-norm, p-norm, ridge, lasso

– Type: Conic Quadratic, Power Cone

• Robust linear optimization

– Keywords: Robust optimization, ellipsoidal uncertainty

– Type: Conic Quadratic

11.1 Portfolio Optimization

In this section the Markowitz portfolio optimization problem and variants are implemented using Opti-
mization Toolbox for MATLAB.

Familiarity with Sec. 6.2 is recommended to follow the syntax used to create affine conic constraints
(ACCs) throughout all the models appearing in this case study.

• Basic Markowitz model

• Efficient frontier

• Factor model and efficiency

• Market impact costs

• Transaction costs

• Cardinality constraints

86

11.1.1 The Basic Model
The classical Markowitz portfolio optimization problem considers investing in 𝑛 stocks or assets held
over a period of time. Let 𝑥𝑗 denote the amount invested in asset 𝑗, and assume a stochastic model
where the return of the assets is a random variable 𝑟 with known mean

𝜇 = E𝑟

and covariance

Σ = E(𝑟 − 𝜇)(𝑟 − 𝜇)𝑇 .

The return of the investment is also a random variable 𝑦 = 𝑟𝑇𝑥 with mean (or expected return)

E𝑦 = 𝜇𝑇𝑥

and variance

E(𝑦 −E𝑦)2 = 𝑥𝑇 Σ𝑥.

The standard deviation
√
𝑥𝑇 Σ𝑥

is usually associated with risk.
The problem facing the investor is to rebalance the portfolio to achieve a good compromise between

risk and expected return, e.g., maximize the expected return subject to a budget constraint and an upper
bound (denoted 𝛾) on the tolerable risk. This leads to the optimization problem

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

𝑥𝑇 Σ𝑥 ≤ 𝛾2,
𝑥 ≥ 0.

(11.1)

The variables 𝑥 denote the investment i.e. 𝑥𝑗 is the amount invested in asset 𝑗 and 𝑥0
𝑗 is the initial

holding of asset 𝑗. Finally, 𝑤 is the initial amount of cash available.
A popular choice is 𝑥0 = 0 and 𝑤 = 1 because then 𝑥𝑗 may be interpreted as the relative amount of

the total portfolio that is invested in asset 𝑗.
Since 𝑒 is the vector of all ones then

𝑒𝑇𝑥 =

𝑛∑︁
𝑗=1

𝑥𝑗

is the total investment. Clearly, the total amount invested must be equal to the initial wealth, which is

𝑤 + 𝑒𝑇𝑥0.

This leads to the first constraint

𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0.

The second constraint

𝑥𝑇 Σ𝑥 ≤ 𝛾2

87

ensures that the variance, is bounded by the parameter 𝛾2. Therefore, 𝛾 specifies an upper bound of
the standard deviation (risk) the investor is willing to undertake. Finally, the constraint

𝑥𝑗 ≥ 0

excludes the possibility of short-selling. This constraint can of course be excluded if short-selling is
allowed.

The covariance matrix Σ is positive semidefinite by definition and therefore there exist a matrix
𝐺 ∈ R𝑛×𝑘 such that

Σ = 𝐺𝐺𝑇 . (11.2)

In general the choice of 𝐺 is not unique and one possible choice of 𝐺 is the Cholesky factorization of Σ.
However, in many cases another choice is better for efficiency reasons as discussed in Sec. 11.1.3. For a
given 𝐺 we have that

𝑥𝑇 Σ𝑥 = 𝑥𝑇𝐺𝐺𝑇𝑥

=
⃦⃦
𝐺𝑇𝑥

⃦⃦2
.

Hence, we may write the risk constraint as

𝛾 ≥
⃦⃦
𝐺𝑇𝑥

⃦⃦
or equivalently

(𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑘+1,

where 𝒬𝑘+1 is the (𝑘 + 1)-dimensional quadratic cone. Note that specifically when 𝐺 is derived using
Cholesky factorization, 𝑘 = 𝑛.

Therefore, problem (11.1) can be written as

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

(𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑘+1,
𝑥 ≥ 0,

(11.3)

which is a conic quadratic optimization problem that can easily be formulated and solved with Opti-
mization Toolbox for MATLAB. Subsequently we will use the example data

𝜇 =
[︀

0.0720, 0.1552, 0.1754, 0.0898, 0.4290, 0.3929, 0.3217, 0.1838
]︀𝑇

and

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0946 0.0374 0.0349 0.0348 0.0542 0.0368 0.0321 0.0327
0.0374 0.0775 0.0387 0.0367 0.0382 0.0363 0.0356 0.0342
0.0349 0.0387 0.0624 0.0336 0.0395 0.0369 0.0338 0.0243
0.0348 0.0367 0.0336 0.0682 0.0402 0.0335 0.0436 0.0371
0.0542 0.0382 0.0395 0.0402 0.1724 0.0789 0.0700 0.0501
0.0368 0.0363 0.0369 0.0335 0.0789 0.0909 0.0536 0.0449
0.0321 0.0356 0.0338 0.0436 0.0700 0.0536 0.0965 0.0442
0.0327 0.0342 0.0243 0.0371 0.0501 0.0449 0.0442 0.0816

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using Cholesky factorization, this implies

𝐺𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3076 0.1215 0.1134 0.1133 0.1763 0.1197 0.1044 0.1064
0. 0.2504 0.0995 0.0916 0.0669 0.0871 0.0917 0.0851
0. 0. 0.1991 0.0587 0.0645 0.0737 0.0647 0.0191
0. 0. 0. 0.2088 0.0493 0.0365 0.0938 0.0774
0. 0. 0. 0. 0.3609 0.1257 0.1016 0.0571
0. 0. 0. 0. 0. 0.2155 0.0566 0.0619
0. 0. 0. 0. 0. 0. 0.2251 0.0333
0. 0. 0. 0. 0. 0. 0. 0.2202

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In Sec. 11.1.3, we present a different way of obtaining 𝐺 based on a factor model, that leads to more
efficient computation.

88

Why a Conic Formulation?

Problem (11.1) is a convex quadratically constrained optimization problem that can be solved directly
using MOSEK. Why then reformulate it as a conic quadratic optimization problem (11.3)? The main
reason for choosing a conic model is that it is more robust and usually solves faster and more reliably. For
instance it is not always easy to numerically validate that the matrix Σ in (11.1) is positive semidefinite
due to the presence of rounding errors. It is also very easy to make a mistake so Σ becomes indefinite.
These problems are completely eliminated in the conic formulation.

Moreover, observe the constraint ⃦⃦
𝐺𝑇𝑥

⃦⃦
≤ 𝛾

more numerically robust than

𝑥𝑇 Σ𝑥 ≤ 𝛾2

for very small and very large values of 𝛾. Indeed, if say 𝛾 ≈ 104 then 𝛾2 ≈ 108, which introduces a
scaling issue in the model. Hence, using conic formulation we work with the standard deviation instead
of variance, which usually gives rise to a better scaled model.

Example code

Listing 11.1 demonstrates how the basic Markowitz model (11.3) is implemented.

Listing 11.1: Code implementing problem (11.3).

function [er, x] = BasicMarkowitz(n,mu,GT,x0,w,gamma)

[rcode, res] = mosekopt('symbcon echo(0)');
prob = [];

% Objective vector - expected return
prob.c = mu;

% The budget constraint - e'x = w + sum(x0)
prob.a = ones(1,n);
prob.blc = w + sum(x0);
prob.buc = w + sum(x0);

% Bounds exclude shortselling
prob.blx = zeros(n,1);
prob.bux = inf*ones(n,1);

% An affine conic constraint: [gamma, GT*x] in quadratic cone
prob.f = sparse([zeros(1,n); GT]);
prob.g = [gamma; zeros(n,1)];
prob.accs = [res.symbcon.MSK_DOMAIN_QUADRATIC_CONE n+1];

% Maximize problem and return the objective value
[rcode,res] = mosekopt('maximize echo(0)', prob, []);

% Check if the interior point solution is an optimal point
% See https://docs.mosek.com/latest/toolbox/accessing-solution.html about handling␣
→˓solution statuses.
if startsWith(res.rcodestr, 'MSK_RES_ERR') | ~strcmp(res.sol.itr.solsta, 'OPTIMAL')

throw(MException('mosek:solsta', 'Not an optimal solution'));
end

x = res.sol.itr.xx;
er = mu'*x;

89

The source code should be self-explanatory except perhaps for

prob.f = sparse([zeros(1,n); GT]);
prob.g = [gamma; zeros(n,1)];
prob.accs = [res.symbcon.MSK_DOMAIN_QUADRATIC_CONE n+1];

where the constraint (︀
𝛾,𝐺𝑇𝑥

)︀
∈ 𝒬𝑘+1

is created as an affine conic constraint format of the form 𝐹𝑥 + 𝑔 ∈ 𝒦, in this specific case:[︂
0
𝐺𝑇

]︂
𝑥 +

[︂
𝛾
0

]︂
∈ 𝒬𝑘+1.

11.1.2 The Efficient Frontier
The portfolio computed by the Markowitz model is efficient in the sense that there is no other portfolio
giving a strictly higher return for the same amount of risk. An efficient portfolio is also sometimes called
a Pareto optimal portfolio. Clearly, an investor should only invest in efficient portfolios and therefore it
may be relevant to present the investor with all efficient portfolios so the investor can choose the portfolio
that has the desired tradeoff between return and risk.

Given a nonnegative 𝛼 the problem

maximize 𝜇𝑇𝑥− 𝛼𝑥𝑇 Σ𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

𝑥 ≥ 0.
(11.4)

is one standard way to trade the expected return against penalizing variance. Note that, in contrast to
the previous example, we explicitly use the variance (‖𝐺𝑇𝑥‖22) rather than standard deviation (‖𝐺𝑇𝑥‖2),
therefore the conic model includes a rotated quadratic cone:

maximize 𝜇𝑇𝑥− 𝛼𝑠
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

(𝑠, 0.5, 𝐺𝑇𝑥) ∈ 𝑄𝑘+2
𝑟 (equiv. to 𝑠 ≥ ‖𝐺𝑇𝑥‖22 = 𝑥𝑇 Σ𝑥),

𝑥 ≥ 0.

(11.5)

The parameter 𝛼 specifies the tradeoff between expected return and variance. Ideally the problem (11.4)
should be solved for all values 𝛼 ≥ 0 but in practice it is impossible. Using the example data from Sec.
11.1.1, the optimal values of return and variance for several values of 𝛼 are shown in the figure.

Example code

Listing 11.2 demonstrates how to compute the efficient portfolios for several values of 𝛼.

Listing 11.2: Code for the computation of the efficient frontier
based on problem (11.4).

function frontier = EfficientFrontier(n,mu,GT,x0,w,alphas)

frontier = [];
[rcode, res] = mosekopt('symbcon echo(0)');
prob = [];

% The budget constraint in terms of variables [x; s]
prob.a = [ones(1,n), 0.0];
prob.blc = w + sum(x0);
prob.buc = w + sum(x0);

% No shortselling
(continues on next page)

90

0 0.005 0.01 0.015 0.02 0.025 0.03
0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

Fig. 11.1: The efficient frontier for the sample data.

91

(continued from previous page)

prob.blx = [zeros(n,1); -inf];
prob.bux = inf*ones(n+1,1);

% An affine conic constraint: [s, 0.5, GT*x] in rotated quadratic cone
% In matrix form
% [0 1] [x] [0]
% [0 0] [] + [0.5] \in Q_r
% [GT 0] [s] [0]
prob.f = sparse([[zeros(1,n), 1.0]; zeros(1, n+1); [GT, zeros(n,1)]]);
prob.g = [0; 0.5; zeros(n, 1)]
prob.accs = [res.symbcon.MSK_DOMAIN_RQUADRATIC_CONE n+2];

for alpha = alphas
% Objective mu'*x - alpha*s
prob.c = [mu; -alpha];

[rcode,res] = mosekopt('maximize echo(0)',prob,[]);

% Check if the interior point solution is an optimal point
% See https://docs.mosek.com/latest/toolbox/accessing-solution.html about␣

→˓handling solution statuses.
if startsWith(res.rcodestr, 'MSK_RES_ERR') | ~strcmp(res.sol.itr.solsta, 'OPTIMAL

→˓')
throw(MException('mosek:solsta', 'Not an optimal solution'));

end

x = res.sol.itr.xx(1:n);
s = res.sol.itr.xx(n+1);

frontier = [frontier; [alpha, mu'*x, sqrt(s)]];
end

11.1.3 Factor model and efficiency
In practice it is often important to solve the portfolio problem very quickly. Therefore, in this section
we discuss how to improve computational efficiency at the modeling stage.

The computational cost is of course to some extent dependent on the number of constraints and
variables in the optimization problem. However, in practice a more important factor is the sparsity: the
number of nonzeros used to represent the problem. Indeed it is often better to focus on the number of
nonzeros in 𝐺 see (11.2) and try to reduce that number by for instance changing the choice of 𝐺.

In other words if the computational efficiency should be improved then it is always good idea to start
with focusing at the covariance matrix. As an example assume that

Σ = 𝐷 + 𝑉 𝑉 𝑇

where 𝐷 is a positive definite diagonal matrix. Moreover, 𝑉 is a matrix with 𝑛 rows and 𝑘 columns.
Such a model for the covariance matrix is called a factor model and usually 𝑘 is much smaller than 𝑛.
In practice 𝑘 tends to be a small number independent of 𝑛, say less than 100.

One possible choice for 𝐺 is the Cholesky factorization of Σ which requires storage proportional to
𝑛(𝑛 + 1)/2. However, another choice is

𝐺 =
[︀
𝐷1/2 𝑉

]︀
because then

𝐺𝐺𝑇 = 𝐷 + 𝑉 𝑉 𝑇 .

92

This choice requires storage proportional to 𝑛 + 𝑘𝑛 which is much less than for the Cholesky choice of
𝐺. Indeed assuming 𝑘 is a constant storage requirements are reduced by a factor of 𝑛.

The example above exploits the so-called factor structure and demonstrates that an alternative choice
of 𝐺 may lead to a significant reduction in the amount of storage used to represent the problem. This
will in most cases also lead to a significant reduction in the solution time.

The lesson to be learned is that it is important to investigate how the covariance matrix is formed.
Given this knowledge it might be possible to make a special choice for 𝐺 that helps reducing the storage
requirements and enhance the computational efficiency. More details about this process can be found in
[And13].

Factor model in finance

Factor model structure is typical in financial context. It is common to model security returns as the
sum of two components using a factor model. The first component is the linear combination of a small
number of factors common among a group of securities. The second component is a residual, specific
to each security. It can be written as 𝑅 =

∑︀
𝑗 𝛽𝑗𝐹𝑗 + 𝜃, where 𝑅 is a random variable representing the

return of a security at a particular point in time, 𝐹𝑗 is the random variable representing the common
factor 𝑗, 𝛽𝑗 is the exposure of the return to factor 𝑗, and 𝜃 is the specific component.

Such a model will result in the covariance structure

Σ = Σ𝜃 + 𝛽Σ𝐹𝛽
𝑇 ,

where Σ𝐹 is the covariance of the factors and Σ𝜃 is the residual covariance. This structure is of the form
discussed earlier with 𝐷 = Σ𝜃 and 𝑉 = 𝛽𝑃 , assuming the decomposition Σ𝐹 = 𝑃𝑃𝑇 . If the number of
factors 𝑘 is low and Σ𝜃 is diagonal, we get a very sparse 𝐺 that provides the storage and solution time
benefits.

Example code

Here we will work with the example data of a two-factor model (𝑘 = 2) built using the variables

𝛽 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.4256 0.1869
0.2413 0.3877
0.2235 0.3697
0.1503 0.4612
1.5325 −0.2633
1.2741 −0.2613
0.6939 0.2372
0.5425 0.2116

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

𝜃 = [0.0720, 0.0508, 0.0377, 0.0394, 0.0663, 0.0224, 0.0417, 0.0459],

and the factor covariance matrix is

Σ𝐹 =

[︂
0.0620 0.0577
0.0577 0.0908

]︂
,

giving

𝑃 =

[︂
0.2491 0.
0.2316 0.1928

]︂
.

Then the matrix 𝐺 would look like

𝐺 =
[︁
𝛽𝑃 Σ

1/2
𝜃

]︁
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1493 0.0360 0.2683 0. 0. 0. 0. 0. 0. 0.
0.1499 0.0747 0. 0.2254 0. 0. 0. 0. 0. 0.
0.1413 0.0713 0. 0. 0.1942 0. 0. 0. 0. 0.
0.1442 0.0889 0. 0. 0. 0.1985 0. 0. 0. 0.
0.3207 −0.0508 0. 0. 0. 0. 0.2576 0. 0. 0.
0.2568 −0.0504 0. 0. 0. 0. 0. 0.1497 0. 0.
0.2277 0.0457 0. 0. 0. 0. 0. 0. 0.2042 0.
0.1841 0.0408 0. 0. 0. 0. 0. 0. 0. 0.2142

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

93

This matrix is indeed very sparse.
In general, we get an 𝑛× (𝑛+𝑘) size matrix this way with 𝑘 full columns and an 𝑛×𝑛 diagonal part.

In order to maintain a sparse representation we do not construct the matrix 𝐺 explicitly in the code but
instead work with two pieces of data: the dense matrix 𝐺factor = 𝛽𝑃 of shape 𝑛 × 𝑘 and the diagonal
vector 𝜃 of length 𝑛.

Example code

In the following we demonstrate how to write code to compute the matrix 𝐺factor of the factor model.
We start with the inputs

Listing 11.3: Inputs for the computation of the matrix 𝐺factor from
the factor model.

B = [0.4256, 0.1869; ...
0.2413, 0.3877; ...
0.2235, 0.3697; ...
0.1503, 0.4612; ...
1.5325, -0.2633; ...
1.2741, -0.2613; ...
0.6939, 0.2372; ...
0.5425, 0.2116];

S_F = [0.0620, 0.0577; ...
0.0577, 0.0908];

theta = [0.0720 0.0508 0.0377 0.0394 0.0663 0.0224 0.0417 0.0459];

Then the matrix 𝐺factor is obtained as:

P = chol(S_F)';
G_factor = B * P;
G_factor_T = G_factor';

The code for computing an optimal portfolio in the factor model is very similar to the one from the
basic model in Listing 11.1 with one notable exception: we construct the expression 𝐺𝑇𝑥 appearing in
the conic constraint by stacking together two separate vectors 𝐺𝑇

factor𝑥 and Σ
1/2
𝜃 𝑥:

prob.f = sparse([zeros(1,n); G_factor_T; diag(sqrt(theta))]);
prob.g = [gamma; zeros(size(G_factor_T,1)+n,1)];
prob.accs = [res.symbcon.MSK_DOMAIN_QUADRATIC_CONE size(G_factor_T,1)+n+1];

The full code is demonstrated below:

Listing 11.4: Implementation of portfolio optimization in the factor
model.

function [er, x] = FactorMarkowitz(n,mu,G_factor_T,theta,x0,w,gamma)

[rcode, res] = mosekopt('symbcon echo(0)');
prob = [];

% Objective vector - expected return
prob.c = mu;

% The budget constraint - e'x = w + sum(x0)
prob.a = ones(1,n);
prob.blc = w + sum(x0);
prob.buc = w + sum(x0);

(continues on next page)

94

(continued from previous page)

% Bounds exclude shortselling
prob.blx = zeros(n,1);
prob.bux = inf*ones(n,1);

% An affine conic constraint: [gamma, G_factor_T*x, sqrt(theta).'x] in quadratic␣
→˓cone
prob.f = sparse([zeros(1,n); G_factor_T; diag(sqrt(theta))]);
prob.g = [gamma; zeros(size(G_factor_T,1)+n,1)];
prob.accs = [res.symbcon.MSK_DOMAIN_QUADRATIC_CONE size(G_factor_T,1)+n+1];

% Maximize problem and return the objective value
[rcode,res] = mosekopt('maximize echo(0)', prob, []);

% Check if the interior point solution is an optimal point
% See https://docs.mosek.com/latest/toolbox/accessing-solution.html about handling␣
→˓solution statuses.
if startsWith(res.rcodestr, 'MSK_RES_ERR') | ~strcmp(res.sol.itr.solsta, 'OPTIMAL')

throw(MException('mosek:solsta', 'Not an optimal solution'));
end

x = res.sol.itr.xx;
er = mu'*x;

11.1.4 Slippage Cost
The basic Markowitz model assumes that there are no costs associated with trading the assets and that
the returns of the assets are independent of the amount traded. Neither of those assumptions is usually
valid in practice. Therefore, a more realistic model is

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 +

∑︀𝑛
𝑗=1 𝑇𝑗(∆𝑥𝑗) = 𝑤 + 𝑒𝑇𝑥0,

𝑥𝑇 Σ𝑥 ≤ 𝛾2,
𝑥 ≥ 0.

(11.6)

Here ∆𝑥𝑗 is the change in the holding of asset 𝑗 i.e.

∆𝑥𝑗 = 𝑥𝑗 − 𝑥0
𝑗

and 𝑇𝑗(∆𝑥𝑗) specifies the transaction costs when the holding of asset 𝑗 is changed from its initial value.
In the next two sections we show two different variants of this problem with two nonlinear cost functions
𝑇 .

11.1.5 Market Impact Costs
If the initial wealth is fairly small and no short selling is allowed, then the holdings will be small and the
traded amount of each asset must also be small. Therefore, it is reasonable to assume that the prices
of the assets are independent of the amount traded. However, if a large volume of an asset is sold or
purchased, the price, and hence return, can be expected to change. This effect is called market impact
costs. It is common to assume that the market impact cost for asset 𝑗 can be modeled by

𝑇𝑗(∆𝑥𝑗) = 𝑚𝑗 |∆𝑥𝑗 |3/2

where 𝑚𝑗 is a constant that is estimated in some way by the trader. See [GK00] [p. 452] for details.
From the Modeling Cookbook we know that 𝑡 ≥ |𝑧|3/2 can be modeled directly using the power cone
𝒫2/3,1/3
3 :

{(𝑡, 𝑧) : 𝑡 ≥ |𝑧|3/2} = {(𝑡, 𝑧) : (𝑡, 1, 𝑧) ∈ 𝒫2/3,1/3
3 }

95

https://docs.mosek.com/modeling-cookbook/index.html

Hence, it follows that
∑︀𝑛

𝑗=1 𝑇𝑗(∆𝑥𝑗) =
∑︀𝑛

𝑗=1 𝑚𝑗 |𝑥𝑗 − 𝑥0
𝑗 |3/2 can be modeled by

∑︀𝑛
𝑗=1 𝑚𝑗𝑡𝑗 under the

constraints

𝑧𝑗 = |𝑥𝑗 − 𝑥0
𝑗 |,

(𝑡𝑗 , 1, 𝑧𝑗) ∈ 𝒫2/3,1/3
3 .

Unfortunately this set of constraints is nonconvex due to the constraint

𝑧𝑗 = |𝑥𝑗 − 𝑥0
𝑗 | (11.7)

but in many cases the constraint may be replaced by the relaxed constraint

𝑧𝑗 ≥ |𝑥𝑗 − 𝑥0
𝑗 |, (11.8)

For instance if the universe of assets contains a risk free asset then

𝑧𝑗 > |𝑥𝑗 − 𝑥0
𝑗 | (11.9)

cannot hold for an optimal solution.
If the optimal solution has the property (11.9) then the market impact cost within the model is larger

than the true market impact cost and hence money are essentially considered garbage and removed by
generating transaction costs. This may happen if a portfolio with very small risk is requested because
the only way to obtain a small risk is to get rid of some of the assets by generating transaction costs.
We generally assume that this is not the case and hence the models (11.7) and (11.8) are equivalent.

The above observations lead to

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 + 𝑚𝑇 𝑡 = 𝑤 + 𝑒𝑇𝑥0,

(𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑘+1,

(𝑡𝑗 , 1, 𝑥𝑗 − 𝑥0
𝑗) ∈ 𝒫2/3,1/3

3 , 𝑗 = 1, . . . , 𝑛,
𝑥 ≥ 0.

(11.10)

The revised budget constraint

𝑒𝑇𝑥 + 𝑚𝑇 𝑡 = 𝑤 + 𝑒𝑇𝑥0

specifies that the initial wealth covers the investment and the transaction costs. It should be mentioned
that transaction costs of the form

𝑡𝑗 ≥ |𝑧𝑗 |𝑝

where 𝑝 > 1 is a real number can be modeled with the power cone as

(𝑡𝑗 , 1, 𝑧𝑗) ∈ 𝒫1/𝑝,1−1/𝑝
3 .

See the Modeling Cookbook for details.

Example code

Listing 11.5 demonstrates how to compute an optimal portfolio when market impact cost are included.

Listing 11.5: Implementation of model (11.10).

function [x, t] = MarkowitzWithMarketImpact(n,mu,GT,x0,w,gamma,m)

[rcode, res] = mosekopt('symbcon echo(0)');

% unrolled variable ordered as (x, t)
prob = [];
prob.c = [mu; zeros(n,1)];

(continues on next page)

96

https://docs.mosek.com/modeling-cookbook/index.html

(continued from previous page)

In = speye(n);
On = sparse([],[],[],n,n);

% Linear part
% [e' m'] * [x; t] = w + e'*x0
prob.a = [ones(1,n), m'];
prob.blc = [w + sum(x0)];
prob.buc = [w + sum(x0)];

% No shortselling and no other bounds
prob.blx = [zeros(n,1); -inf*ones(n,1)];
prob.bux = inf*ones(2*n,1);

% Affine conic constraints representing [gamma, GT*x] in quadratic cone
prob.f = sparse([zeros(1,2*n); [GT On]]);
prob.g = [gamma; zeros(n,1)];
prob.accs = [res.symbcon.MSK_DOMAIN_QUADRATIC_CONE n+1];

% Extend the affine conic constraints
% with power cones representing t(i) >= |x(i)-x0(i)|^1.5
fi = [];
fj = [];
g = [];
fv = repmat([1; 1], n, 1);
for k=1:n

fi = [fi; 3*k-2; 3*k];
fj = [fj; n+k; k];
g = [g; 0; 1; -x0(k)];

end
prob.f = [prob.f; sparse(fi, fj, fv)];
prob.g = [prob.g; g];
prob.accs = [prob.accs repmat([res.symbcon.MSK_DOMAIN_PRIMAL_POWER_CONE, 3, 2, 2.0, 1.
→˓0], 1, n)];

[rcode,res] = mosekopt('maximize echo(0)',prob,[]);

% Check if the interior point solution is an optimal point
% See https://docs.mosek.com/latest/toolbox/accessing-solution.html about handling␣
→˓solution statuses.
if startsWith(res.rcodestr, 'MSK_RES_ERR') | ~strcmp(res.sol.itr.solsta, 'OPTIMAL')

throw(MException('mosek:solsta', 'Not an optimal solution'));
end

x = res.sol.itr.xx(1:n);
t = res.sol.itr.xx(n+(1:n));

In the last part of the code we extend the affine conic constraint with triples of the form (𝑡𝑘, 1, 𝑥𝑘−𝑥0
𝑘).

Such a triple is constructed as an affine conic constraint with:⎡⎣ 𝑒𝑇𝑛+𝑘

0
𝑒𝑇𝑘

⎤⎦ ·
[︂

𝑥
𝑡

]︂
+

⎡⎣ 0
1

−𝑥0
𝑘

⎤⎦
where 𝑒𝑗 denotes the vector of length 2𝑛 with 1 at position 𝑗 and 0 otherwise. Membership of a sequence
of triples in power cones 𝒫2/3,1/3

3 is specified with the syntax:

97

prob.accs = [prob.accs repmat([res.symbcon.MSK_DOMAIN_PRIMAL_POWER_CONE, 3, 2, 2.0, 1.
→˓0], 1, n)];

Note that the construction [res.symbcon.MSK_CT_PPOW, d, 2, a, b] creates a power done of di-
mension 𝑑 with exponents

𝑎

𝑎 + 𝑏
,

𝑏

𝑎 + 𝑏
.

11.1.6 Transaction Costs
Now assume there is a cost associated with trading asset 𝑗 given by

𝑇𝑗(∆𝑥𝑗) =

{︂
0, ∆𝑥𝑗 = 0,
𝑓𝑗 + 𝑔𝑗 |∆𝑥𝑗 |, otherwise.

Hence, whenever asset 𝑗 is traded we pay a fixed setup cost 𝑓𝑗 and a variable cost of 𝑔𝑗 per unit traded.
Given the assumptions about transaction costs in this section problem (11.6) may be formulated as

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 + 𝑓𝑇 𝑦 + 𝑔𝑇 𝑧 = 𝑤 + 𝑒𝑇𝑥0,

(𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑘+1,
𝑧𝑗 ≥ 𝑥𝑗 − 𝑥0

𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 ≥ 𝑥0

𝑗 − 𝑥𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 ≤ 𝑈𝑗𝑦𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑦𝑗 ∈ {0, 1}, 𝑗 = 1, . . . , 𝑛,
𝑥 ≥ 0.

(11.11)

First observe that

𝑧𝑗 ≥ |𝑥𝑗 − 𝑥0
𝑗 | = |∆𝑥𝑗 |.

We choose 𝑈𝑗 as some a priori upper bound on the amount of trading in asset 𝑗 and therefore if 𝑧𝑗 > 0
then 𝑦𝑗 = 1 has to be the case. This implies that the transaction cost for asset 𝑗 is given by

𝑓𝑗𝑦𝑗 + 𝑔𝑗𝑧𝑗 .

Example code

The following example code demonstrates how to compute an optimal portfolio when transaction costs
are included.

Listing 11.6: Code solving problem (11.11).

function [x, z, y] = MarkowitzWithTransactionsCost(n,mu,GT,x0,w,gamma,f,g)

[rcode, res] = mosekopt('symbcon echo(0)');

% Upper bound on the traded amount
u = w+sum(x0);

% unrolled variable ordered as (x, z, y)
prob = [];
prob.c = [mu; zeros(2*n,1)];
In = speye(n);
On = sparse([],[],[],n,n);

% Linear constraints
(continues on next page)

98

(continued from previous page)

% [e' g' f'] [x] = w + e'*x0
% [I -I 0] * [z] <= x0
% [I I 0] [y] >= x0
% [0 I -U] <= 0
prob.a = [[ones(1,n), g', f']; In -In On; In In On; On In -u*In];
prob.blc = [w + sum(x0); -inf*ones(n,1); x0; -inf*ones(n,1)];
prob.buc = [w + sum(x0); x0; inf*ones(n,1); zeros(n,1)];

% No shortselling and the linear bound 0 <= y <= 1
prob.blx = [zeros(n,1); -inf*ones(n,1); zeros(n,1)];
prob.bux = [inf*ones(2*n,1); ones(n,1)];

% Affine conic constraints representing [gamma, GT*x] in quadratic cone
prob.f = sparse([zeros(1,3*n); [GT On On];]);
prob.g = [gamma; zeros(n,1)];
prob.accs = [res.symbcon.MSK_DOMAIN_QUADRATIC_CONE n+1];

% Demand y to be integer (hence binary)
prob.ints.sub = 2*n+(1:n);

[rcode,res] = mosekopt('maximize echo(0)',prob,[]);

% Check if the integer solution is an optimal point
% See https://docs.mosek.com/latest/toolbox/accessing-solution.html about handling␣
→˓solution statuses.
if startsWith(res.rcodestr, 'MSK_RES_ERR') | ~strcmp(res.sol.int.solsta, 'INTEGER_
→˓OPTIMAL')

throw(MException('mosek:solsta', 'Not an optimal solution'));
end

x = res.sol.int.xx(1:n);
z = res.sol.int.xx(n+(1:n));
y = res.sol.int.xx(2*n+(1:n));

11.1.7 Cardinality constraints
Another method to reduce costs involved with processing transactions is to only change positions in a
small number of assets. In other words, at most 𝐾 of the differences |∆𝑥𝑗 | = |𝑥𝑗 − 𝑥0

𝑗 | are allowed to be
non-zero, where 𝐾 is (much) smaller than the total number of assets 𝑛.

This type of constraint can be again modeled by introducing a binary variable 𝑦𝑗 which indicates if
∆𝑥𝑗 ̸= 0 and bounding the sum of 𝑦𝑗 . The basic Markowitz model then gets updated as follows:

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

(𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑘+1,
𝑧𝑗 ≥ 𝑥𝑗 − 𝑥0

𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 ≥ 𝑥0

𝑗 − 𝑥𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 ≤ 𝑈𝑗𝑦𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑦𝑗 ∈ {0, 1}, 𝑗 = 1, . . . , 𝑛,

𝑒𝑇 𝑦 ≤ 𝐾,
𝑥 ≥ 0,

(11.12)

were 𝑈𝑗 is some a priori chosen upper bound on the amount of trading in asset 𝑗.

99

Example code

The following example code demonstrates how to compute an optimal portfolio with cardinality bounds.

Listing 11.7: Code solving problem (11.12).

function x = MarkowitzWithCardinality(n,mu,GT,x0,w,gamma,k)

[rcode, res] = mosekopt('symbcon echo(0)');

% Upper bound on the traded amount
u = w+sum(x0);

% unrolled variable ordered as (x, z, y)
prob = [];
prob.c = [mu; zeros(2*n,1)];
In = speye(n);
On = sparse([],[],[],n,n);

% Linear constraints
% [e' 0 0] = w + e'*x0
% [I -I 0] [x] <= x0
% [I I 0] * [z] >= x0
% [0 I -U] [y] <= 0
% [0 0 e'] <= k
prob.a = [[ones(1,n), zeros(1,2*n)]; In -In On; In In On; On In -u*In; zeros(1,
→˓2*n) ones(1,n)];
prob.blc = [w + sum(x0); -inf*ones(n,1); x0; -inf*ones(n,1); 0];
prob.buc = [w + sum(x0); x0; inf*ones(n,1); zeros(n,1); k];

% No shortselling and the linear bound 0 <= y <= 1
prob.blx = [zeros(n,1); -inf*ones(n,1); zeros(n,1)];
prob.bux = [inf*ones(2*n,1); ones(n,1)];

% Affine conic constraints representing [gamma, GT*x] in quadratic cone
prob.f = sparse([zeros(1,3*n); [GT On On];]);
prob.g = [gamma; zeros(n,1)];
prob.accs = [res.symbcon.MSK_DOMAIN_QUADRATIC_CONE n+1];

% Demand y to be integer (hence binary)
prob.ints.sub = 2*n+(1:n);

[rcode,res] = mosekopt('maximize echo(0)',prob,[]);

% Check if the integer solution is an optimal point
% See https://docs.mosek.com/latest/toolbox/accessing-solution.html about handling␣
→˓solution statuses.
if startsWith(res.rcodestr, 'MSK_RES_ERR') | ~strcmp(res.sol.int.solsta, 'INTEGER_
→˓OPTIMAL')

throw(MException('mosek:solsta', 'Not an optimal solution'));
end

x = res.sol.int.xx(1:n);

If we solve our running example with 𝐾 = 1, . . . , 𝑛 then we get the following solutions, with increasing
expected returns:

Bound 1 Solution: 0.0000e+00 0.0000e+00 1.0000e+00 0.0000e+00 0.0000e+00 ␣
→˓0.0000e+00 0.0000e+00 0.0000e+00

(continues on next page)

100

(continued from previous page)

Bound 2 Solution: 0.0000e+00 0.0000e+00 3.5691e-01 0.0000e+00 0.0000e+00 ␣
→˓6.4309e-01 -0.0000e+00 0.0000e+00
Bound 3 Solution: 0.0000e+00 0.0000e+00 1.9258e-01 0.0000e+00 0.0000e+00 ␣
→˓5.4592e-01 2.6150e-01 0.0000e+00
Bound 4 Solution: 0.0000e+00 0.0000e+00 2.0391e-01 0.0000e+00 6.7098e-02 ␣
→˓4.9181e-01 2.3718e-01 0.0000e+00
Bound 5 Solution: 0.0000e+00 3.1970e-02 1.7028e-01 0.0000e+00 7.0741e-02 ␣
→˓4.9551e-01 2.3150e-01 0.0000e+00
Bound 6 Solution: 0.0000e+00 3.1970e-02 1.7028e-01 0.0000e+00 7.0740e-02 ␣
→˓4.9551e-01 2.3150e-01 0.0000e+00
Bound 7 Solution: 0.0000e+00 3.1970e-02 1.7028e-01 0.0000e+00 7.0740e-02 ␣
→˓4.9551e-01 2.3150e-01 0.0000e+00
Bound 8 Solution: 1.9557e-10 2.6992e-02 1.6706e-01 2.9676e-10 7.1245e-02 ␣
→˓4.9559e-01 2.2943e-01 9.6905e-03

11.2 Least Squares and Other Norm Minimization Problems

A frequently occurring problem in statistics and in many other areas of science is a norm minimization
problem

minimize ‖𝐹𝑥− 𝑔‖,
subject to 𝐴𝑥 = 𝑏,

(11.13)

where 𝑥 ∈ R𝑛 and of course we can allow other types of constraints. The objective can involve various
norms: infinity norm, 1-norm, 2-norm, 𝑝-norms and so on. For instance the most popular case of
the 2-norm corresponds to the least squares linear regression, since it is equivalent to minimization of
‖𝐹𝑥− 𝑔‖22.

11.2.1 Least squares, 2-norm
In the case of the 2-norm we specify the problem directly in conic quadratic form

minimize 𝑡,
subject to (𝑡, 𝐹𝑥− 𝑔) ∈ 𝒬𝑘+1,

𝐴𝑥 = 𝑏.
(11.14)

The first constraint of the problem can be represented as an affine conic constraint. This leads to the
following model.

Listing 11.8: Script solving problem (11.14)

% Least squares regression
% minimize \|Fx-g\|_2
function x = norm_lse(F,g,A,b)
clear prob;
[r, res] = mosekopt('symbcon echo(0)');
n = size(F,2);
k = size(g,1);
m = size(A,1);

% Linear constraints in [x; t]
prob.a = [A, zeros(m,1)];
prob.buc = b;
prob.blc = b;
prob.blx = -inf*ones(n+1,1);
prob.bux = inf*ones(n+1,1);
prob.c = [zeros(n,1); 1];

(continues on next page)

101

(continued from previous page)

% Affine conic constraint
prob.f = sparse([zeros(1,n), 1; F, zeros(k,1)]);
prob.g = [0; -g];
prob.accs = [res.symbcon.MSK_DOMAIN_QUADRATIC_CONE k+1];

% Solve
[r, res] = mosekopt('minimize echo(0)', prob);
x = res.sol.itr.xx(1:n);
end

11.2.2 Ridge regularisation
Regularisation is classically applied to reduce the impact of outliers and to control overfitting. In the
conic version of ridge (Tychonov) regression we consider the problem

minimize ‖𝐹𝑥− 𝑔‖2 + 𝛾‖𝑥‖2,
subject to 𝐴𝑥 = 𝑏,

(11.15)

which can be written explicitly as

minimize 𝑡1 + 𝛾𝑡2,
subject to (𝑡1, 𝐹𝑥− 𝑔) ∈ 𝒬𝑘+1,

(𝑡2, 𝑥) ∈ 𝒬𝑛+1,
𝐴𝑥 = 𝑏.

(11.16)

The implementation is a small extension of that from the previous section.

Listing 11.9: Script solving problem (11.16)

% Least squares regression with regularization
% minimize \|Fx-g\|_2 + gamma*\|x\|_2
function x = norm_lse_reg(F,g,A,b,gamma)
clear prob;
[r, res] = mosekopt('symbcon echo(0)');
n = size(F,2);
k = size(g,1);
m = size(A,1);

% Linear constraints in [x; t1; t2]
prob.a = [A, zeros(m,2)];
prob.buc = b;
prob.blc = b;
prob.blx = -inf*ones(n+2,1);
prob.bux = inf*ones(n+2,1);
prob.c = [zeros(n,1); 1; gamma];

% Affine conic constraint
prob.f = sparse([zeros(1,n), 1, 0; ...

F, zeros(k,2); ...
zeros(1,n), 0, 1; ...
eye(n), zeros(n,2)]);

prob.g = [0; -g; zeros(n+1,1)];
prob.accs = [res.symbcon.MSK_DOMAIN_QUADRATIC_CONE k+1 res.symbcon.MSK_DOMAIN_
→˓QUADRATIC_CONE n+1];

% Solve
(continues on next page)

102

(continued from previous page)

[r, res] = mosekopt('minimize echo(0)', prob);
x = res.sol.itr.xx(1:n);
end

Note that classically least squares problems are formulated as quadratic problems and then the
objective function would be written as

‖𝐹𝑥− 𝑔‖22 + 𝛾‖𝑥‖22.

This version can easily be obtained by replacing the quadratic cone with an appropriate rotated quadratic
cone in (11.16). Then they core of the implementation would change as follows:

Listing 11.10: Script solving classical quadratic ridge regression

prob.f = sparse([zeros(1,n), 1, 0; ...
zeros(1,n+2) ; ...
F, zeros(k,2); ...
zeros(1,n), 0, 1; ...
zeros(1,n+2) ; ...
eye(n), zeros(n,2)]);

prob.g = [0; 0.5; -g; 0; 0.5; zeros(n,1)];
prob.accs = [res.symbcon.MSK_DOMAIN_RQUADRATIC_CONE k+2 res.symbcon.MSK_DOMAIN_
→˓RQUADRATIC_CONE n+2];

Fig. 11.2 shows the solution to a polynomial fitting problem for a few variants of least squares
regression with and without ridge regularization.

Fig. 11.2: Three fits to a dataset at various levels of regularization.

11.2.3 Lasso regularization
In lasso or least absolute shrinkage and selection operator the regularization term is the 1-norm of the
solution

minimize ‖𝐹𝑥− 𝑔‖2 + 𝛾‖𝑥‖1,
subject to 𝐴𝑥 = 𝑏.

(11.17)

This variant typically tends to give preference to sparser solutions, i.e. solutions where only a few elements
of 𝑥 are nonzero, and therefore it is used as an efficient approximation to the cardinality constrained
problem with an upper bound on the 0-norm of 𝑥. To see how it works we first implement (11.17) adding
the constraint 𝑡 ≥ ‖𝑥‖1 as a series of linear constraints

𝑢𝑖 ≥ −𝑥𝑖, 𝑢𝑖 ≥ 𝑥𝑖, 𝑡 ≥
∑︁

𝑢𝑖,

103

so that eventually the problem becomes

minimize 𝑡1 + 𝛾𝑡2,
subject to 𝑢 + 𝑥 ≥ 0,

𝑢− 𝑥 ≥ 0,
𝑡2 − 𝑒𝑇𝑢 ≥ 0,
𝐴𝑥 = 𝑏,
(𝑡1, 𝐹𝑥− 𝑔) ∈ 𝒬𝑘+1.

Listing 11.11: Script solving problem (11.17)

% Least squares regression with lasso regularization
% minimize \|Fx-g\|_2 + gamma*\|x\|_1
function x = norm_lse_lasso(F,g,A,b,gamma)
clear prob;
[r, res] = mosekopt('symbcon echo(0)');
n = size(F,2);
k = size(g,1);
m = size(A,1);

% Linear constraints in [x; u; t1; t2]
prob.a = [A, zeros(m,n+2) ; ...

eye(n), eye(n), zeros(n,2); ...
-eye(n), eye(n), zeros(n,2); ...
zeros(1,n) -ones(1,n), 0, 1];

prob.buc = [b; inf*ones(2*n+1,1)];
prob.blc = [b; zeros(2*n+1,1)];
prob.blx = -inf*ones(2*n+2,1);
prob.bux = inf*ones(2*n+2,1);
prob.c = [zeros(2*n,1); 1; gamma];

% Affine conic constraint
prob.f = sparse([zeros(1,2*n), 1, 0; F, zeros(k,n+2)]);
prob.g = [0; -g];
prob.accs = [res.symbcon.MSK_DOMAIN_QUADRATIC_CONE k+1];

% Solve
[r, res] = mosekopt('minimize echo(0)', prob);
x = res.sol.itr.xx(1:n);
end

The sparsity pattern of the solution of a large random regression problem can look for example as
follows:

Lasso regularization
Gamma 0.0100 density 99% |Fx-g|_2: 54.3722
Gamma 0.1000 density 87% |Fx-g|_2: 54.3939
Gamma 0.3000 density 67% |Fx-g|_2: 54.5319
Gamma 0.6000 density 40% |Fx-g|_2: 54.8379
Gamma 0.9000 density 26% |Fx-g|_2: 55.0720
Gamma 1.3000 density 12% |Fx-g|_2: 55.1903

104

11.2.4 p-norm minimization
Now we consider the minimization of the 𝑝-norm defined for 𝑝 > 1 as

‖𝑦‖𝑝 =

(︃∑︁
𝑖

|𝑦𝑖|𝑝
)︃1/𝑝

. (11.18)

We have the optimization problem:

minimize ‖𝐹𝑥− 𝑔‖𝑝,
subject to 𝐴𝑥 = 𝑏.

(11.19)

Increasing the value of 𝑝 forces stronger penalization of outliers as ultimately, when 𝑝 → ∞, the 𝑝-norm
‖𝑦‖𝑝 converges to the infinity norm ‖𝑦‖∞ of 𝑦. According to the Modeling Cookbook the 𝑝-norm bound
𝑡 ≥ ‖𝐹𝑥 − 𝑔‖𝑝 can be added to the model using a sequence of three-dimensional power cones and we
obtain an equivalent problem

minimize 𝑡

subject to (𝑟𝑖, 𝑡, (𝐹𝑥− 𝑔)𝑖) ∈ 𝒫1/𝑝,1−1/𝑝
3 ,

𝑒𝑇 𝑟 = 𝑡,
𝐴𝑥 = 𝑏.

(11.20)

The power cones can be added one by one to the structure representing affine conic constraints. Each
power cone will require one 𝑟𝑖, one copy of 𝑡 and one row from 𝐹 and 𝑔. An alternative solution is to
create the vector

[𝑟1; . . . ; 𝑟𝑘; 𝑡; . . . ; 𝑡;𝐹𝑥− 𝑔]

and then reshuffle its elements into

[𝑟1; 𝑡;𝐹1𝑥− 𝑔1; . . . ; 𝑟𝑘; 𝑡;𝐹𝑘𝑥− 𝑔𝑘]

using an appropriate permutation matrix. This approach is demonstrated in the code below.

Listing 11.12: Script solving problem (11.20)

% P-norm minimization
% minimize \|Fx-g\|_p
function x = norm_p_norm(F,g,A,b,p)
clear prob;
[r, res] = mosekopt('symbcon echo(0)');
n = size(F,2);
k = size(g,1);
m = size(A,1);

% Linear constraints in [x; r; t]
prob.a = [A, zeros(m,k+1); zeros(1,n), ones(1,k), -1];
prob.buc = [b; 0];
prob.blc = [b; 0];
prob.blx = -inf*ones(n+k+1,1);
prob.bux = inf*ones(n+k+1,1);
prob.c = [zeros(n+k,1); 1];

% Permutation matrix which picks triples (r_i, t, F_ix-g_i)
M = [];
for i=1:3

M = [M, sparse(i:3:3*k, 1:k, ones(k,1), 3*k, k)];
end

(continues on next page)

105

https://docs.mosek.com/modeling-cookbook/index.html

(continued from previous page)

% Affine conic constraint
prob.f = M * sparse([zeros(k,n), eye(k), zeros(k,1); zeros(k,n+k), ones(k,1); F,␣
→˓zeros(k,k+1)]);
prob.g = M * [zeros(2*k,1); -g];
prob.accs = [repmat([res.symbcon.MSK_DOMAIN_PRIMAL_POWER_CONE, 3, 2, 1.0, p-1], 1,␣
→˓k)];

% Solve
[r, res] = mosekopt('minimize echo(0)', prob);
x = res.sol.itr.xx(1:n);
end

Fig. 11.3: 𝑝-norm minimizing fits of a polynomial of degree at most 5 to the data for various values of 𝑝.

11.3 Robust linear Optimization

In most linear optimization examples discussed in this manual it is implicitly assumed that the problem
data, such as 𝑐 and 𝐴, is known with certainty. However, in practice this is seldom the case, e.g. the
data may just be roughly estimated, affected by measurement errors or be affected by random events.

In this section a robust linear optimization methodology is presented which removes the assumption
that the problem data is known exactly. Rather it is assumed that the data belongs to some set, i.e. a
box or an ellipsoid.

The computations are performed using the MOSEK optimization toolbox for MATLAB but could
equally well have been implemented using the MOSEK API.

This section is co-authored with A. Ben-Tal and A. Nemirovski. For further information about robust
linear optimization consult [BTN00], [BenTalN01].

106

11.3.1 Introductory Example
Consider the following toy-sized linear optimization problem: A company produces two kinds of drugs,
DrugI and DrugII, containing a specific active agent A, which is extracted from a raw materials that
should be purchased on the market. The drug production data are as follows:

Selling price $ per 1000 packs 6200 6900
Content of agent A gm per 100 packs 0.500 0.600
Production expenses
$ per 1000 packs
Manpower, hours 90.0 100.0
Equipment, hours 40.0 50.0
Operational cost, $ 700 800

There are two kinds of raw materials, RawI and RawII, which can be used as sources of the active
agent. The related data is as follows:

Raw material Purchasing price, Content of agent A,

RawI 100.00 0.01
RawII 199.90 0.02

Finally, the monthly resources dedicated to producing the drugs are as follows:

Budget,` Manpower Equipment Capacity of raw materials

100000 2000 800 1000

The problem is to find the production plan which maximizes the profit of the company, i.e. minimize
the purchasing and operational costs

100 · RawI + 199.90 · RawII + 700 · DrugI + 800 · DrugII

and maximize the income

6200 · DrugI + 6900 · DrugII

The problem can be stated as the following linear programming program:
Minimize

−{100 · RawI + 199.90 · RawII + 700 · DrugI + 800 · DrugII} + {6200 · DrugI + 6900 · DrugII} (11.21)

subject to

0.01 · RawI + 0.02 · RawII− 0.500 · DrugI− 0.600 · DrugII ≥ 0 (𝑎)
RawI + RawII ≤ 1000 (𝑏)

90.0 · DrugI + 100.0 · DrugII ≤ 2000 (𝑐)
40.0 · DrugI + 50.0 · DrugII ≤ 800 (𝑑)

100.0 · RawI + 199.90 · RawII + 700 · DrugI + 800 · DrugII ≤ 100000 (𝑑)
RawI, RawII, DrugI, DrugII ≥ 0 (𝑒)

where the variables are the amounts RawI, RawII (in kg) of raw materials to be purchased and the
amounts DrugI, DrugII (in 1000 of packs) of drugs to be produced. The objective (11.21) denotes the
profit to be maximized, and the inequalities can be interpreted as follows:

• Balance of the active agent.

• Storage restriction.

• Manpower restriction.

107

• Equipment restriction.

• Ducget restriction.

Listing 11.13 is the MATLAB script which specifies the problem and solves it using the MOSEK
optimization toolbox:

Listing 11.13: Script rlo1.m.

function rlo1()

prob.c = [-100;-199.9;6200-700;6900-800];
prob.a = sparse([0.01,0.02,-0.500,-0.600;1,1,0,0;

0,0,90.0,100.0;0,0,40.0,50.0;100.0,199.9,700,800]);
prob.blc = [0;-inf;-inf;-inf;-inf];
prob.buc = [inf;1000;2000;800;100000];
prob.blx = [0;0;0;0];
prob.bux = [inf;inf;inf;inf];
[r,res] = mosekopt('maximize',prob);
xx = res.sol.itr.xx;
RawI = xx(1);
RawII = xx(2);
DrugI = xx(3);
DrugII = xx(4);

disp(sprintf('*** Optimal value: %8.3f',prob.c'*xx));
disp('*** Optimal solution:');
disp(sprintf('RawI: %8.3f',RawI));
disp(sprintf('RawII: %8.3f',RawII));
disp(sprintf('DrugI: %8.3f',DrugI));
disp(sprintf('DrugII: %8.3f',DrugII));

When executing this script, the following is displayed:

Listing 11.14: Output of script rlo1.m

*** Optimal value: 8819.658
*** Optimal solution:
RawI: 0.000
RawII: 438.789
DrugI: 17.552
DrugII: 0.000

We see that the optimal solution promises the company a modest but quite respectful profit of 8.8%.
Please note that at the optimal solution the balance constraint is active: the production process utilizes
the full amount of the active agent contained in the raw materials.

11.3.2 Data Uncertainty and its Consequences.
Please note that not all problem data can be regarded as absolutely reliable; e.g. one can hardly believe
that the contents of the active agent in the raw materials are exactly the nominal data 0.01 gm/kg for RawI
and 0.02 gm/kg for RawII. In reality, these contents definitely vary around the indicated values. A natural
assumption here is that the actual contents of the active agent 𝑎𝑖 in RawI and 𝑎𝐼𝐼 in RawII are realizations
of random variables somehow distributed around the nominal contents 𝑎n𝑖 = 0.01 and 𝑎n𝐼𝐼 = 0.02. To
be more specific, assume that 𝑎𝑖 drifts in the 0.5% margin of 𝑎n𝑖 , i.e. it takes with probability 0.5 the
values from the interval 𝑎n𝑖 (1 ± 0.005) = 𝑎n𝑖 {0.00995; 0.01005}. Similarly, assume that 𝑎𝐼𝐼 drifts in the
2% margin of 𝑎n𝐼𝐼 , taking with probabilities 0.5 the values 𝑎n𝐼𝐼(1 ± 0.02) = 𝑎n𝑖 {0.0196; 0.0204}. How do
the perturbations of the contents of the active agent affect the production process?

The optimal solution prescribes to purchase 438.8 kg of RawII and to produce 17552 packs of DrugI.
With the above random fluctuations in the content of the active agent in RawII, this production plan,
with probability 0.5, will be infeasible – with this probability, the actual content of the active agent in

108

the raw materials will be less than required to produce the planned amount of DrugI. For the sake of
simplicity, assume that this difficulty is resolved in the simplest way: when the actual content of the
active agent in the raw materials is insufficient, the output of the drug is reduced accordingly. With this
policy, the actual production of DrugI becomes a random variable which takes, with probabilities 0.5,
the nominal value of 17552 packs and the 2% less value of 17201 packs. These 2% fluctuations in the
production affect the profit as well; the latter becomes a random variable taking, with probabilities 0.5,
the nominal value 8,820 and the 21% less value 6,929. The expected profit is 7,843, which is by 11% less
than the nominal profit 8,820 promised by the optimal solution of the problem.

We see that in our toy example that small (and in reality unavoidable) perturbations of the data may
make the optimal solution infeasible, and a straightforward adjustment to the actual solution values may
heavily affect the solution quality.

It turns out that the outlined phenomenon is found in many linear programs of practical origin. Usu-
ally, in these programs at least part of the data is not known exactly and can vary around its nominal
values, and these data perturbations can make the nominal optimal solution – the one corresponding
to the nominal data – infeasible. It turns out that the consequences of data uncertainty can be much
more severe than in our toy example. The analysis of linear optimization problems from the NETLIB
collection1 reported in [BTN00] demonstrates that for 13 of 94 NETLIB problems, already 0.01% pertur-
bations of “clearly uncertain” data can make the nominal optimal solution severely infeasible: with these
perturbations, the solution, with a non-negligible probability, violates some of the constraints by 50%
and more. It should be added that in the general case, in contrast to the toy example we have considered,
there is no evident way to adjust the optimal solution by a small modification to the actual values of the
data. Moreover there are cases when such an adjustment is impossible — in order to become feasible for
the perturbed data, the nominal optimal solution should be completely reshaped.

11.3.3 Robust Linear Optimization Methodology
A natural approach to handling data uncertainty in optimization is offered by the Robust Optimization
Methodology which, as applied to linear optimization, is as follows.

Uncertain Linear Programs and their Robust Counterparts.

Consider a linear optimization problem

minimize 𝑐𝑇𝑥
subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,
(11.22)

with the data (𝑐, 𝐴, 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥), and assume that this data is not known exactly; all we know is that
the data varies in a given uncertainty set 𝒰 . The simplest example is the one of interval uncertainty,
where every data entry can run through a given interval:

𝒰 = {(𝑐, 𝐴, 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥) :
(𝑐n − 𝑑𝑐,𝐴n − 𝑑𝐴, 𝑙n𝑐 − 𝑑𝑙𝑐, 𝑢

n
𝑐 − 𝑑𝑢𝑐, 𝑙

n
𝑥 − 𝑑𝑙𝑥, 𝑢

n
𝑥 − 𝑑𝑢𝑥) ≤ (𝑐, 𝐴, 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥)

≤ (𝑐n + 𝑑𝑐,𝐴n + 𝑑𝐴, 𝑙n𝑐 + 𝑑𝑙𝑐, 𝑢
n
𝑐 + 𝑑𝑢𝑐, 𝑙

n
𝑥 + 𝑑𝑙𝑥, 𝑢

n
𝑥 + 𝑑𝑢𝑥)}.

(11.23)

Here

(𝑐n, 𝐴n, 𝑙n𝑐 , 𝑢
n
𝑐 , 𝑙

n
𝑥 , 𝑢

n
𝑥)

is the nominal data,

𝑑𝑐, 𝑑𝐴, 𝑑𝑙𝑐, 𝑑𝑢𝑐, 𝑑𝑙𝑥, 𝑑𝑢𝑥 ≥ 0

is the data perturbation bounds. Please note that some of the entries in the data perturbation bounds
can be zero, meaning that the corresponding data entries are certain (the expected values equals the
actual values).

• The family of instances (11.22) with data running through a given uncertainty set 𝒰 is called an
uncertain linear optimization problem.

1 NETLIB is a collection of LP’s, mainly of the real world origin, which is a standard benchmark for evaluating LP
algorithms

109

• Vector 𝑥 is called a robust feasible solution to an uncertain linear optimization problem, if it remains
feasible for all realizations of the data from the uncertainty set, i.e. if

𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐, 𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥

for all

(𝑐, 𝐴, 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥) ∈ 𝒰 .

• If for some value 𝑡 we have 𝑐𝑇𝑥 ≤ 𝑡 for all realizations of the objective from the uncertainty set,
we say that robust value of the objective at 𝑥 does not exceed 𝑡.

The Robust Optimization methodology proposes to associate with an uncertain linear program its
robust counterpart (RC) which is the problem of minimizing the robust optimal value over the set of all
robust feasible solutions, i.e. the problem

min
𝑡,𝑥

{︀
𝑡 : 𝑐𝑇𝑥 ≤ 𝑡, 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐, 𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥∀(𝑐, 𝐴, 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥) ∈ 𝒰

}︀
. (11.24)

The optimal solution to (11.24) is treated as the uncertainty-immuned solution to the original uncertain
linear programming program.

Robust Counterpart of an Uncertain Linear Optimization Problem with Interval Uncertainty

In general, the RC (11.24) of an uncertain linear optimization problem is not a linear optimization
problem since (11.24) has infinitely many linear constraints. There are, however, cases when (11.24) can
be rewritten equivalently as a linear programming program; in particular, this is the case for interval
uncertainty (11.23). Specifically, in the case of (11.23), the robust counterpart of uncertain linear program
is equivalent to the following linear program in variables 𝑥, 𝑦, 𝑡:

minimize 𝑡
subject to (𝑐n)𝑇𝑥 + (𝑑𝑐)𝑇 𝑦 − 𝑡 ≤ 0, (𝑎)

𝑙n𝑐 + 𝑑𝑙𝑐 ≤ (𝐴n)𝑥− (𝑑𝐴)𝑦, (𝑏)
(𝐴n)𝑥 + (𝑑𝐴)𝑦 ≤ 𝑢n

𝑐 − 𝑑𝑢𝑐, (𝑐)
0 ≤ 𝑥 + 𝑦, (𝑑)
0 ≤ −𝑥 + 𝑦, (𝑒)

𝑙n𝑥 + 𝑑𝑙𝑥 ≤ 𝑥 ≤ 𝑢n
𝑥 − 𝑑𝑢𝑥, (𝑓)

(11.25)

The origin of (11.25) is quite transparent: The constraints 𝑑 − 𝑒 in (11.25) linking 𝑥 and 𝑦 merely say
that 𝑦𝑖 ≥ |𝑥𝑖| for all 𝑖. With this in mind, it is evident that at every feasible solution to (11.25) the
entries in the vector

(𝐴n)𝑥− (𝑑𝐴)𝑦

are lower bounds on the entries of 𝐴𝑥 with 𝐴 from the uncertainty set (11.23), so that (𝑏) in (11.25)
ensures that 𝑙𝑐 ≤ 𝐴𝑥 for all data from the uncertainty set. Similarly, (𝑐), (𝑎) ans 𝑓 in (11.25) ensure, for
all data from the uncertainty set, that 𝐴𝑥 ≤ 𝑢𝑐, 𝑐𝑇𝑥 ≤ 𝑡, and that the entries in 𝑥 satisfy the required
lower and upper bounds, respectively.

Please note that at the optimal solution to (11.25), one clearly has 𝑦𝑗 = |𝑥𝑗 |. It follows that when
the bounds on the entries of 𝑥 impose nonnegativity (nonpositivity) of an entry 𝑥𝑗 , then there is no need
to introduce the corresponding additional variable 𝑦𝑖 — from the very beginning it can be replaced with
𝑥𝑗 , if 𝑥𝑗 is nonnegative, or with −𝑥𝑗 , if 𝑥𝑗 is nonpositive.

Another possible formulation of problem (11.25) is the following. Let

𝑙n𝑐 + 𝑑𝑙𝑐 = (𝐴n)𝑥− (𝑑𝐴)𝑦 − 𝑓, 𝑓 ≥ 0

then this equation is equivalent to (𝑎)− (𝑏) in (11.25). If (𝑙𝑐)𝑖 = −∞, then equation 𝑖 should be dropped
from the computations. Similarly,

−𝑥 + 𝑦 = 𝑔 ≥ 0

110

is equivalent to (𝑑) in (11.25). This implies that

𝑙n𝑐 + 𝑑𝑙𝑐 − (𝐴n)𝑥 + 𝑓 = −(𝑑𝐴)𝑦

and that

𝑦 = 𝑔 + 𝑥

Substituting these values into (11.25) gives

minimize 𝑡
subject to (𝑐n)𝑇𝑥 + (𝑑𝑐)𝑇 (𝑔 + 𝑥) − 𝑡 ≤ 0,

0 ≤ 𝑓,
2(𝐴n)𝑥 + (𝑑𝐴)(𝑔 + 𝑥) + 𝑓 + 𝑙n𝑐 + 𝑑𝑙𝑐 ≤ 𝑢n

𝑐 − 𝑑𝑢𝑐,
0 ≤ 𝑔,
0 ≤ 2𝑥 + 𝑔,

𝑙n𝑥 + 𝑑𝑙𝑥 ≤ 𝑥 ≤ 𝑢n
𝑥 − 𝑑𝑢𝑥,

which after some simplifications leads to

minimize 𝑡
subject to (𝑐n + 𝑑𝑐)𝑇𝑥 + (𝑑𝑐)𝑇 𝑔 − 𝑡 ≤ 0, (𝑎)

0 ≤ 𝑓, (𝑏)
2(𝐴n + 𝑑𝐴)𝑥 + (𝑑𝐴)𝑔 + 𝑓 − (𝑙n𝑐 + 𝑑𝑙𝑐) ≤ 𝑢n

𝑐 − 𝑑𝑢𝑐, (𝑐)
0 ≤ 𝑔, (𝑑)
0 ≤ 2𝑥 + 𝑔, (𝑒)

𝑙n𝑥 + 𝑑𝑙𝑥 ≤ 𝑥 ≤ 𝑢n
𝑥 − 𝑑𝑢𝑥, (𝑓)

and

minimize 𝑡
subject to (𝑐n + 𝑑𝑐)𝑇𝑥 + (𝑑𝑐)𝑇 𝑔 − 𝑡 ≤ 0, (𝑎)

2(𝐴n + 𝑑𝐴)𝑥 + (𝑑𝐴)𝑔 + 𝑓 ≤ 𝑢n
𝑐 − 𝑑𝑢𝑐 + 𝑙n𝑐 + 𝑑𝑙𝑐, (𝑏)

0 ≤ 2𝑥 + 𝑔, (𝑐)
0 ≤ 𝑓, (𝑑)
0 ≤ 𝑔, (𝑒)

𝑙n𝑥 + 𝑑𝑙𝑥 ≤ 𝑥 ≤ 𝑢n
𝑥 − 𝑑𝑢𝑥. (𝑓)

(11.26)

Please note that this problem has more variables but much fewer constraints than (11.25). Therefore,
(11.26) is likely to be solved faster than (11.25). Note too that (11.26).𝑏 is trivially redundant if 𝑙n𝑥 +𝑑𝑙𝑥 ≥
0.

Introductory Example (continued)

Let us apply the Robust Optimization methodology to our drug production example presented in Sec.
11.3.1, assuming that the only uncertain data is the contents of the active agent in the raw materials,
and that these contents vary in 0.5% and 2% neighborhoods of the respective nominal values 0.01 and
0.02. With this assumption, the problem becomes an uncertain LP affected by interval uncertainty; the
robust counterpart (11.25) of this uncertain LP is the linear program

(Drug_RC) :
maximize
𝑡
subject to
𝑡 ≤ −100 · RawI− 199.9 · RawII + 5500 · DrugI + 6100 · DrugII
0.01 · 0.995 · RawI + 0.02 · 0.98 · RawII− 0.500 · DrugI− 0.600 · DrugII ≥ 0
RawI + RawII ≤ 1000
90.0 · DrugI + 100.0 · DrugII ≤ 2000
40.0 · DrugI + 50.0 · DrugII ≤ 800
100.0 · RawI + 199.90 · RawII + 700 · DrugI + 800 · DrugII ≤ 100000
RawI, RawII, DrugI, DrugII ≥ 0

(11.27)

Solving this problem with MOSEK we get the following output:

111

Listing 11.15: Output solving problem (11.27).

*** Optimal value: 8294.567
*** Optimal solution:
RawI: 877.732
RawII: 0.000
DrugI: 17.467
DrugII: 0.000

We see that the robust optimal solution we have built costs money – it promises a profit of just
8, 295 (cf. with the profit of 8, 820 promised by the nominal optimal solution). Please note, however,
that the robust optimal solution remains feasible whatever are the realizations of the uncertain data
from the uncertainty set in question, while the nominal optimal solution requires adjustment to this
data and, with this adjustment, results in the average profit of 7, 843, which is by 5.4% less than the
profit of ` 8,295 guaranteed by the robust optimal solution. Note too that the robust optimal solution
is significantly different from the nominal one: both solutions prescribe to produce the same drug DrugI
(in the amounts 17, 467 and 17, 552 packs, respectively) but from different raw materials, RawI in the
case of the robust solution and RawII in the case of the nominal solution. The reason is that although
the price per unit of the active agent for RawII is sligthly less than for RawI, the content of the agent
in RawI is more stable, so when possible fluctuations of the contents are taken into account, RawI turns
out to be more profitable than RawII.

11.3.4 Random Uncertainty and Ellipsoidal Robust Counterpart
In some cases, it is natural to assume that the perturbations affecting different uncertain data entries
are random and independent of each other. In these cases, the robust counterpart based on the interval
model of uncertainty seems to be too conservative: Why should we expect that all the data will be
simultaneously driven to its most unfavorable values and immune the solution against this highly unlikely
situation? A less conservative approach is offered by the ellipsoidal model of uncertainty. To motivate
this model, let us seseee what happens with a particular linear constraint

𝑎𝑇𝑥 ≤ 𝑏 (11.28)

at a given candidate solution 𝑥 in the case when the vector 𝑎 of coefficients of the constraint is affected
by random perturbations:

𝑎 = 𝑎n + 𝜁, (11.29)

where 𝑎n is the vector of nominal coefficients and 𝜁 is a random perturbation vector with zero mean
and covariance matrix 𝑉𝑎. In this case the value of the left-hand side of (11.28), evaluated at a given 𝑥,
becomes a random variable with the expected value (𝑎n)𝑇𝑥 and the standard deviation

√︀
𝑥𝑇𝑉𝑎𝑥. Now

let us act as an engineer who believes that the value of a random variable never exceeds its mean plus
3 times the standard deviation; we do not intend to be that specific and replace 3 in the above rule by
a safety parameter Ω which will be in our control. Believing that the value of a random variable never
exceeds its mean plus Ω times the standard deviation, we conclude that a safe version of (11.28) is the
inequality

(𝑎n)𝑇𝑥 + Ω
√︀
𝑥𝑇𝑉𝑎𝑥 ≤ 𝑏. (11.30)

The word safe above admits a quantitative interpretation: If 𝑥 satisfies (11.30), one can bound from
above the probability of the event that random perturbations (11.29) result in violating the constraint
(11.28) evaluated at 𝑥. The bound in question depends on what we know about the distribution of 𝜁,
e.g.

• We always have the bound given by the Tschebyshev inequality: 𝑥 satisfies (11.30) ⇒

Prob
{︀
𝑎𝑇𝑥 > 𝑏

}︀
≤ 1

Ω2
.

• When 𝜁 is Gaussian, then the Tschebyshev bound can be improved to: 𝑥 satisfies (11.30) ⇒

112

Prob
{︀
𝑎𝑇𝑥 > 𝑏

}︀
≤ 1√

2𝜋

∫︁ ∞

Ω

exp{−𝑡2/2}𝑑𝑡 ≤ 0.5 exp{−Ω2/2}. (11.31)

• Assume that 𝜁 = 𝐷𝜉, where ∆ is certain 𝑛×𝑚 matrix, and 𝜉 = (𝜉1, . . . , 𝜉𝑚)𝑇 is a random vector
with independent coordinates 𝜉1, . . . , 𝜉𝑚 symmetrically distributed in the segment [−1, 1]. Setting
𝑉 = 𝐷𝐷𝑇 (V is a natural upper bound on the covariance matrix of 𝜁), one has: 𝑥 satisfies (11.30)
implies

Prob
{︀
𝑎𝑇𝑥 > 𝑏

}︀
≤ 0.5 exp{−Ω2/2}. (11.32)

Please note that in order to ensure the bounds in (11.31) and (11.32)) to be ≤ 10−6, it suffices to set
Ω = 5.13.

Now, assume that we are given a linear program affected by random perturbations:

minimize [𝑐n + 𝑑𝑐]𝑇𝑥
subject to (𝑙𝑐)𝑖 ≤ [𝑎n𝑖 + 𝑑𝑎𝑖]

𝑇𝑥 ≤ (𝑢𝑐)𝑖, 𝑖 = 1, . . . ,𝑚,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

(11.33)

where (𝑐n, {𝑎n𝑖 }𝑚𝑖=1, 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥) are the nominal data, and 𝑑𝑐, 𝑑𝑎𝑖 are random perturbations with zero
means3. Assume, for the sake of definiteness, that every one of the random perturbations 𝑑𝑐, 𝑑𝑎1, . . . , 𝑑𝑎𝑚
satisfies either the assumption of item 2 or the assumption of item 3, and let 𝑉𝑐, 𝑉1, . . . , 𝑉𝑚 be the corre-
sponding (upper bounds on the) covariance matrices of the perturbations. Choosing a safety parameter
Ω and replacing the objective and the bodies of all the constraints by their safe bounds as explained
above, we arrive at the following optimization problem:

minimize 𝑡

subject to [𝑐n]𝑇𝑥 + Ω
√︀
𝑥𝑇𝑉𝑐𝑥 ≤ 𝑡,

(𝑙𝑐)𝑖 ≤ [𝑎n𝑖]𝑇𝑥− Ω
√︀
𝑥𝑇𝑉𝑎𝑖

𝑥,

[𝑎n𝑖]𝑇𝑥 + Ω
√︀
𝑥𝑇𝑉𝑎𝑖

𝑥 ≤ (𝑢𝑐)𝑖, 𝑖 = 1, . . . ,𝑚,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

(11.34)

The relation between problems (11.34) and (11.33) is as follows:

• If (𝑥, 𝑡) is a feasible solution of (11.34), then with probability at least

𝑝 = 1 − (𝑚 + 1) exp{−Ω2/2}

x is feasible for randomly perturbed problem (11.33), and 𝑡 is an upper bound on the objective of (11.33)
evaluated at 𝑥.

• We see that if Ω is not too small (11.34) can be treated as a “safe version” of (11.33).

On the other hand, it is easily seen that (11.34) is nothing but the robust counterpart of the uncertain
linear optimization problem with the nominal data (𝑐n, {𝑎n𝑖 }𝑚𝑖=1, 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥) and the row-wise ellipsoidal
uncertainty given by the matrices 𝑉𝑐, 𝑉𝑎1

, . . . , 𝑉𝑎𝑚
. In the corresponding uncertainty set, the uncertainty

affects the coefficients of the objective and the constraint matrix only, and the perturbation vectors
affecting the objective and the vectors of coefficients of the linear constraints run, independently of each
other, through the respective ellipsoids

𝐸𝑐 ={︁
𝑑𝑐 = Ω𝑉

1/2
𝑐 𝑢 : 𝑢𝑇𝑢 ≤ 1

}︁
𝐸𝑎𝑖 ={︁

𝑑𝑎𝑖 = Ω𝑉
1/2
𝑎𝑖 𝑢 : 𝑢𝑇𝑢 ≤ 1

}︁
, 𝑖 = 1, . . . ,𝑚.

It turns out that in many cases the ellipsoidal model of uncertainty is significantly less conservative and
thus better suited for practice, than the interval model of uncertainty.

3 For the sake of simplicity, we assume that the bounds 𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥 are not affected by uncertainty; extensions to the
case when it is not so are evident.

113

Last but not least, it should be mentioned that problem (11.34) is equivalent to a conic quadratic
program, specifically to the program

minimize 𝑡
subject to [𝑐n]𝑇𝑥 + Ω𝑧 ≤ 𝑡,

(𝑙𝑐)𝑖 ≤ [𝑎n𝑖]𝑇𝑥− Ω𝑧𝑖,
[𝑎n𝑖]𝑇𝑥 + Ω𝑧𝑖 ≤ (𝑢𝑐)𝑖, 𝑖 = 1, . . . ,𝑚,

0 = 𝑤 −𝐷𝑐𝑥
0 = 𝑤𝑖 −𝐷𝑎𝑖

𝑥, 𝑖 = 1, . . . ,𝑚,

0 ≤ 𝑧 −
√
𝑤𝑇𝑤,

0 ≤ 𝑧𝑖 −
√︀

(𝑤𝑖)𝑇𝑤𝑖, 𝑖 = 1, . . . ,𝑚,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

where 𝐷𝑐 and 𝐷𝑎𝑖
are matrices satisfying the relations

𝑉𝑐 = 𝐷𝑇
𝑐 𝐷𝑐, 𝑉𝑎𝑖

= 𝐷𝑇
𝑎𝑖
𝐷𝑎𝑖

, 𝑖 = 1, . . . ,𝑚.

Example: Interval and Ellipsoidal Robust Counterparts of Uncertain Linear Constraint with Indepen-
dent Random Perturbations of Coefficients

Consider a linear constraint

𝑙 ≤
𝑛∑︁

𝑗=1

𝑎𝑗𝑥𝑗 ≤ 𝑢 (11.35)

and assume that the 𝑎𝑗 coefficients of the body of the constraint are uncertain and vary in intervals
𝑎n𝑗 ± 𝜎𝑗 . The worst-case_oriented model of uncertainty here is the interval one, and the corresponding
robust counterpart of the constraint is given by the system of linear inequalities

𝑙 ≤
∑︀𝑛

𝑗=1 𝑎
n
𝑗 𝑥𝑗 −

∑︀𝑛
𝑗=1 𝜎𝑗𝑦𝑗 ,∑︀𝑛

𝑗=1 𝑎
n
𝑗 𝑥𝑗 +

∑︀𝑛
𝑗=1 𝜎𝑗𝑦𝑗 ≤ 𝑢,

0 ≤ 𝑥𝑗 + 𝑦𝑗 ,
0 ≤ −𝑥𝑗 + 𝑦𝑗 , 𝑗 = 1, . . . , 𝑛.

(11.36)

Now, assume that we have reasons to believe that the true values of the coefficients 𝑎𝑗 are obtained
from their nominal values 𝑎n𝑗 by random perturbations, independent for different 𝑗 and symmetrically
distributed in the segments [-sigma_j,sigma_j]. With this assumption, we are in the situation of item 3
and can replace the uncertain constraint (11.35) with its ellipsoidal robust counterpart

𝑙 ≤
∑︀𝑛

𝑗=1 𝑎
n
𝑗 𝑥𝑗 − Ω𝑧,∑︀𝑛

𝑗=1 𝑎
n
𝑗 𝑥𝑗 + Ω𝑧 ≤ 𝑢,

0 ≤ 𝑧 −
√︁∑︀𝑛

𝑗=1 𝜎
2
𝑗𝑥

2
𝑗 .

(11.37)

Please note that with the model of random perturbations, a vector 𝑥 satisfying (11.37) satisfies a real-
ization of (11.35) with probability at least 1− exp{Ω2/2}; for Ω = 6. This probability is ≥ 1−1.5 ·10−8,
which for all practical purposes is the same as sayiong that 𝑥 satisfies all realizations of (11.35). On the
other hand, the uncertainty set associated with (11.36) is the box

𝐵 =
{︀
𝑎 = (𝑎1, . . . , 𝑎𝑛)𝑇 : 𝑎n𝑗 − 𝜎𝑗 ≤ 𝑎𝑗 ≤ 𝑎n𝑗 + 𝜎𝑗 , 𝑗 = 1, . . . , 𝑛

}︀
,

while the uncertainty set associated with (11.37) is the ellipsoid

𝐸(Ω) =

⎧⎨⎩𝑎 = (𝑎1, . . . , 𝑎𝑛)𝑇 :

𝑛∑︁
𝑗=1

(𝑎𝑗 − 𝑎n𝑗)
2

𝜎2
𝑗 ≤ Ω2

⎫⎬⎭ .

For a moderate value of Ω, say Ω = 6, and 𝑛 ≥ 40, the ellipsoid 𝐸(Ω) in its diameter, typical linear
sizes, volume, etc. is incomparably less than the box 𝐵, the difference becoming more dramatic the
larger the dimension 𝑛 of the box and the ellipsoid. It follows that the ellipsoidal robust counterpart
(11.37) of the randomly perturbed uncertain constraint (11.35) is much less conservative than the interval

114

robust counterpart (11.36), while ensuring basically the same “robustness guarantees”. To illustrate this
important point, consider the following numerical examples:

There are 𝑛 different assets on the market. The return on 1 invested in asset 𝑗 is a random variable
distributed symmetrically in the segment [𝛿𝑗 − 𝜎𝑗 , 𝛿𝑗 + 𝜎𝑗], and the returns on different assets are in-
dependent of each other. The problem is to distribute ` 1 among the assets in order to get the largest
possible total return on the resulting portfolio.

A natural model of the problem is an uncertain linear optimization problem

maximize
∑︀𝑛

𝑗=1 𝑎𝑗𝑥𝑗

subject to
∑︀𝑛

𝑗=1 𝑥𝑗 = 1,

0 ≤ 𝑥𝑗 , 𝑗 = 1, . . . , 𝑛.

where 𝑎𝑗 are the uncertain returns of the assets. Both the nominal optimal solution (set all returns 𝑎𝑗
equal to their nominal values 𝛿𝑗) and the risk-neutral Stochastic Programming approach (maximize the
expected total return) result in the same solution: Our money should be invested in the most promising
asset(s) – the one(s) with the maximal nominal return. This solution, however, can be very unreliable
if, as is typically the case in reality, the most promising asset has the largest volatility 𝜎 and is in this
sense the most risky. To reduce the risk, one can use the Robust Counterpart approach which results in
the following optimization problems.

The Interval Model of Uncertainty:

maximize 𝑡
subject to 0 ≤ −𝑡 +

∑︀𝑛
𝑗=1(𝛿𝑗 − 𝜎𝑗)𝑥𝑗 ,∑︀𝑛

𝑗=1 𝑥𝑗 = 1,

0 ≤ 𝑥𝑗 , 𝑗 = 1, . . . , 𝑛

(11.38)

and

The ellipsoidal Model of Uncertainty:}

maximize 𝑡
subject to 0 ≤ −𝑡 +

∑︀𝑛
𝑗=1(𝛿𝑗)𝑥𝑗 − Ω𝑧,

0 ≤ 𝑧 −
√︁∑︀𝑛

𝑗=1 𝜎
2
𝑗𝑥

2
𝑗 ,∑︀𝑛

𝑗=1 𝑥𝑗 = 1,

0 ≤ 𝑥𝑗 , 𝑗 = 1, . . . , 𝑛.

(11.39)

Note that the problem (11.39) is essentially the risk-averted portfolio model proposed in mid-50’s by
Markowitz.

The solution of (11.38) is evident — our `1 should be invested in the asset(s) with the largest possible
guaranteed return 𝛿𝑗−𝜎𝑗 . In contrast to this very conservative policy (which in reality prescribes to keep
the initial capital in a bank or in the most reliable, and thus low profit, assets), the optimal solution to
(11.39) prescribes a quite reasonable diversification of investments which allows to get much better total
return than (11.38) with basically zero risk2. To illustrate this, assume that there are 𝑛 = 300 assets
with the nominal returns (per year) varying from 1.04 (bank savings) to 2.00:

𝛿𝑗 = 1.04 + 0.96
𝑗 − 1

𝑛− 1
, 𝑗 = 1, 2, . . . , 𝑛 = 300

and volatilities varying from 0 for the bank savings to 1.2 for the most promising asset:

𝜎𝑗 = 1.152
𝑗 − 1

𝑛− 1
, 𝑗 = 1, . . . , 𝑛 = 300.

In Listing 11.16 a MATLAB script which builds the associated problem (11.39), solves it via the MOSEK
optimization toolbox, displays the resulting robust optimal value of the total return and the distribu-
tion of investments, and finally runs 10,000 simulations to get the distribution of the total return on
the resulting portfolio (in these simulations, the returns on all assets are uniformly distributed in the
corresponding intervals) is presented.

2 Recall that in our discussion we have assumed the returns on different assets to be independent of each other. In
reality, this is not so and this is why diversification of investments, although reducing the risk, never eliminates it completely

115

Listing 11.16: Script that implements problem (11.39).

function rlo2(n, Omega, draw)

n = str2num(n)
Omega = str2num(Omega)
draw

[r, res] = mosekopt('symbcon echo(0)');
sym = res.symbcon;

% Set nominal returns and volatilities
delta = (0.96/(n-1))*[0:1:n-1]+1.04;
sigma = (1.152/(n-1))*[0:1:n-1];

% Set mosekopt description of the problem
prob.c = [1;zeros(n+1,1)];
A = [-1, delta, -Omega; ...

0, ones(1,n), 0];
prob.a = sparse(A);
prob.blc = [0;1];
prob.buc = [inf;1];
prob.blx = [-inf;zeros(n,1);0];
prob.bux = inf*ones(n+2,1);
F = [zeros(1,n+1), 1; ...

zeros(n,1), diag(sigma), zeros(n,1)];
prob.f = sparse(F);
prob.accs = [sym.MSK_DOMAIN_QUADRATIC_CONE n+1];

% Run mosekopt
[r,res]=mosekopt('maximize echo(3)',prob);

xx = res.sol.itr.xx;
t = xx(1);
disp(sprintf('Robust optimal value: %5.4f',t));
x = max(xx(2:1+n),zeros(n,1));

if draw == true
% Display the solution
plot([1:1:n],x,'-m');
grid on;

disp('Press <Enter> to run simulations');
pause

% Run simulations

Nsim = 10000;
out = zeros(Nsim,1);
for i=1:Nsim,

returns = delta+(2*rand(1,n)-1).*sigma;
out(i) = returns*x;

end;
disp(sprintf('Actual returns over %d simulations:',Nsim));
disp(sprintf('Min=%5.4f Mean=%5.4f Max=%5.4f StD=%5.2f',...

min(out),mean(out),max(out),std(out)));
hist(out);

(continues on next page)

116

(continued from previous page)

end

Here are the results displayed by the script:

Listing 11.17: Output of script rlo2.m.

Robust optimal value: 1.3428
Actual returns over 10000 simulations:
Min=1.5724 Mean=1.6965 Max=1.8245 StD= 0.03

Fig. 11.4: Distribution of investments among the assets in the optimal solution of.

Please note that with our set-up there is exactly one asset with guaranteed return greater than 1
– asset # 1 (bank savings, return 1.04, zero volatility). Consequently, the interval robust counterpart
(11.38) prescribes to put our ` #1 in the bank, thus getting a 4% profit. In contrast to this, the diversified
portfolio given by the optimal solution of (11.39) never yields profit less than 57.2%, and yields at average
a 69.67% profit with pretty low (0.03) standard deviation. We see that in favorable circumstances the
ellipsoidal robust counterpart of an uncertain linear program indeed is less conservative than, although
basically as reliable as, the interval robust counterpart.

Finally, let us compare our results with those given by the nominal optimal solution. The latter
prescribes to invest everything we have in the most promising asset (in our example this is the asset #
300 with a nominal return of 2.00 and volatility of 1.152). Assuming that the actual return is uniformly
distributed in the corresponding interval and running 10,000 simulations, we get the following results:

Nominal optimal value: 2.0000
Actual returns over 10000 simulations:
Min=0.8483 Mean=1.9918 Max=3.1519 StD= 0.66

We see that the nominal solution results in a portfolio which is much more risky, although better at

117

average, than the portfolio given by the robust solution.

Combined Interval-Ellipsoidal Robust Counterpart

We have considered the case when the coefficients 𝑎𝑗 of uncertain linear constraint (11.35) are affected by
uncorrelated random perturbations symmetrically distributed in given intervals [−𝜎𝑗 , 𝜎𝑗], and we have
discussed two ways to model the uncertainty:

• The interval uncertainty model (the uncertainty set 𝒰 is the box 𝐵), where we ignore the stochas-
tic nature of the perturbations and their independence. This model yields the Interval Robust
Counterpart (11.36);

• The ellipsoidal uncertainty model (𝒰 is the ellipsoid 𝐸(Ω)), which takes into account the stochastic
nature of data perturbations and yields the Ellipsoidal Robust Counterpart (11.37).

Please note that although for large 𝑛 the ellipsoid 𝐸(Ω) in its diameter, volume and average linear sizes
is incomparably smaller than the box 𝐵, in the case of Ω > 1 the ellipsoid 𝐸(Ω) in certain directions goes
beyond the box. E.g. the ellipsoid 𝐸(6), although much more narrow than 𝐵 in most of the directions,
is 6 times wider than 𝐵 in the directions of the coordinate axes. Intuition says that it hardly makes
sense to keep in the uncertainty set realizations of the data which are outside of 𝐵 and thus forbidden
by our model of perturbations, so in the situation under consideration the intersection of 𝐸(Ω) and 𝐵 is
a better model of the uncertainty set than the ellipsoid 𝐸(Ω) itself. What happens when the model of
the uncertainty set is the combined interval-ellipsoidal uncertainty 𝒰(Ω) = 𝐸(Ω) ∩𝐵?

First, it turns out that the RC of (11.35) corresponding to the uncertainty set 𝒰(Ω) is still given by
a system of linear and conic quadratic inequalities, specifically the system

𝑙 ≤
∑︀𝑛

𝑗=1 𝑎
n
𝑗 𝑥𝑗 −

∑︀𝑛
𝑗=1 𝜎𝑗𝑦𝑗 − Ω

√︁∑︀𝑛
𝑗=1 𝜎

2
𝑗𝑢

2
𝑗 ,∑︀𝑛

𝑗=1 𝑎
n
𝑗 𝑥𝑗 +

∑︀𝑛
𝑗=1 𝜎𝑗𝑧𝑗 + Ω

√︁∑︀𝑛
𝑗=1 𝜎

2
𝑗 𝑣

2
𝑗 ≤ 𝑢,

−𝑦𝑗 ≤ 𝑥𝑗 − 𝑢𝑗 ≤ 𝑦𝑗 , 𝑗 = 1, . . . , 𝑛,
−𝑧𝑗 ≤ 𝑥𝑗 − 𝑣𝑗 ≤ 𝑧𝑗 , 𝑗 = 1, . . . , 𝑛.

(11.40)

Second, it turns out that our intuition is correct: As a model of uncertainty, 𝑈(Ω) is as reliable as the
ellipsoid 𝐸(Ω). Specifically, if 𝑥 can be extended to a feasible solution of (11.40), then the probability
for 𝑥 to satisfy a realization of (11.35) is ≥ 1 − exp{−Ω2/2}.

The conclusion is that if we have reasons to assume that the perturbations of uncertain coefficients in
a constraint of an uncertain linear optimization problem are (a) random, (b) independent of each other,
and (c) symmetrically distributed in given intervals, then it makes sense to associate with this constraint
an interval-ellipsoidal model of uncertainty and use a system of linear and conic quadratic inequalities
(11.40). Please note that when building the robust counterpart of an uncertain linear optimization
problem, one can use different models of the uncertainty (e.g., interval, ellipsoidal, combined interval-
ellipsoidal) for different uncertain constraints within the same problem.

118

Chapter 12

Problem Formulation and Solutions

In this chapter we will discuss the following topics:

• The formal, mathematical formulations of the problem types that MOSEK can solve and their
duals.

• The solution information produced by MOSEK.

• The infeasibility certificate produced by MOSEK if the problem is infeasible.

For the underlying mathematical concepts, derivations and proofs see the Modeling Cookbook or any
book on convex optimization. This chapter explains how the related data is organized specifically within
the MOSEK API.

12.1 Linear Optimization

MOSEK accepts linear optimization problems of the form

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

(12.1)

where

• 𝑚 is the number of constraints.

• 𝑛 is the number of decision variables.

• 𝑥 ∈ R𝑛 is a vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear part of the objective function.

• 𝑐𝑓 ∈ R is a constant term in the objective

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

Lower and upper bounds can be infinite, or in other words the corresponding bound may be omitted.
A primal solution (𝑥) is (primal) feasible if it satisfies all constraints in (12.1). If (12.1) has at least

one primal feasible solution, then (12.1) is said to be (primal) feasible. In case (12.1) does not have a
feasible solution, the problem is said to be (primal) infeasible

119

https://docs.mosek.com/modeling-cookbook/index.html

12.1.1 Duality for Linear Optimization
Corresponding to the primal problem (12.1), there is a dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

(12.2)

where

• 𝑠𝑐𝑙 are the dual variables for lower bounds of constraints,

• 𝑠𝑐𝑢 are the dual variables for upper bounds of constraints,

• 𝑠𝑥𝑙 are the dual variables for lower bounds of variables,

• 𝑠𝑥𝑢 are the dual variables for upper bounds of variables.

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at
0, and we use the convention that the product of the bound value and the corresponding dual variable is
0. This is equivalent to removing the corresponding dual variable from the dual problem. For example:

𝑙𝑥𝑗 = −∞ ⇒ (𝑠𝑥𝑙)𝑗 = 0 and 𝑙𝑥𝑗 · (𝑠𝑥𝑙)𝑗 = 0.

A solution

(𝑦, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢)

to the dual problem is feasible if it satisfies all the constraints in (12.2). If (12.2) has at least one feasible
solution, then (12.2) is (dual) feasible, otherwise the problem is (dual) infeasible.

A solution

(𝑥*, 𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*)

is denoted a primal-dual feasible solution, if (𝑥*) is a solution to the primal problem (12.1) and
(𝑦*, (𝑠𝑐𝑙)

, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*) is a solution to the corresponding dual problem (12.2). We also define
an auxiliary vector

(𝑥𝑐)* := 𝐴𝑥*

containing the activities of linear constraints.
For a primal-dual feasible solution we define the duality gap as the difference between the primal and

the dual objective value,

𝑐𝑇𝑥* + 𝑐𝑓 −
{︀

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* + 𝑐𝑓

}︀
=
∑︀𝑚−1

𝑖=0 [(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) + (𝑠𝑐𝑢)*𝑖 (𝑢𝑐

𝑖 − (𝑥𝑐
𝑖)

*)]

+
∑︀𝑛−1

𝑗=0

[︀
(𝑠𝑥𝑙)*𝑗 (𝑥𝑗 − 𝑙𝑥𝑗) + (𝑠𝑥𝑢)*𝑗 (𝑢𝑥

𝑗 − 𝑥*
𝑗)
]︀
≥ 0

(12.3)

where the first relation can be obtained by transposing and multiplying the dual constraints (12.2) by
𝑥* and (𝑥𝑐)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

It is well-known that a linear optimization problem has an optimal solution if and only if there exist
feasible primal-dual solution so that the duality gap is zero, or, equivalently, that the complementarity
conditions

(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑐𝑢)*𝑖 (𝑢𝑐
𝑖 − (𝑥𝑐

𝑖)
*) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑥𝑙)*𝑗 (𝑥*
𝑗 − 𝑙𝑥𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,

(𝑠𝑥𝑢)*𝑗 (𝑢𝑥
𝑗 − 𝑥*

𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,

are satisfied.
If (12.1) has an optimal solution and MOSEK solves the problem successfully, both the primal and

dual solution are reported, including a status indicating the exact state of the solution.

120

12.1.2 Infeasibility for Linear Optimization

Primal Infeasible Problems

If the problem (12.1) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

(12.4)

such that the objective value is strictly positive, i.e. a solution

(𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*)

to (12.4) so that

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* > 0.

Such a solution implies that (12.4) is unbounded, and that (12.1) is infeasible.

Dual Infeasible Problems

If the problem (12.2) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize 𝑐𝑇𝑥

subject to 𝑙̂𝑐 ≤ 𝐴𝑥 ≤ 𝑢̂𝑐,

𝑙̂𝑥 ≤ 𝑥 ≤ 𝑢̂𝑥,

(12.5)

where

𝑙̂𝑐𝑖 =

{︂
0 if 𝑙𝑐𝑖 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑐

𝑖 :=

{︂
0 if 𝑢𝑐

𝑖 < ∞,
∞ otherwise,

}︂
and

𝑙̂𝑥𝑗 =

{︂
0 if 𝑙𝑥𝑗 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑥

𝑗 :=

{︂
0 if 𝑢𝑥

𝑗 < ∞,
∞ otherwise,

}︂
such that

𝑐𝑇𝑥 < 0.

Such a solution implies that (12.5) is unbounded, and that (12.2) is infeasible.
In case that both the primal problem (12.1) and the dual problem (12.2) are infeasible, MOSEK

will report only one of the two possible certificates — which one is not defined (MOSEK returns the
first certificate found).

12.1.3 Minimalization vs. Maximalization
When the objective sense of problem (12.1) is maximization, i.e.

maximize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

121

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (12.2). The dual problem thus takes the form

minimize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0.

This means that the duality gap, defined in (12.3) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0,

(12.6)

such that the objective value is strictly negative

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* < 0.

Similarly, the certificate of dual infeasibility is an 𝑥 satisfying the requirements of (12.5) such that
𝑐𝑇𝑥 > 0.

12.2 Conic Optimization

Conic optimization is an extension of linear optimization (see Sec. 12.1) allowing conic domains to be
specified for affine expressions. A conic optimization problem to be solved by MOSEK can be written
as

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟,

(12.7)

where

• 𝑚 is the number of constraints.

• 𝑛 is the number of decision variables.

• 𝑥 ∈ R𝑛 is a vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear part of the objective function.

• 𝑐𝑓 ∈ R is a constant term in the objective

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

is the same as in Sec. 12.1 and moreover:

• 𝐹 ∈ R𝑘×𝑛 is the affine conic constraint matrix.,

• 𝑔 ∈ R𝑘 is the affine conic constraint constant term vector.,

• 𝒟 is a Cartesian product of conic domains, namely 𝒟 = 𝒟1 × · · · × 𝒟𝑝, where 𝑝 is the number of
individual affine conic constraints (ACCs), and each domain is one from Sec. 15.8.

The total dimension of the domain 𝒟 must be equal to 𝑘, the number of rows in 𝐹 and 𝑔. Lower and
upper bounds can be infinite, or in other words the corresponding bound may be omitted.

MOSEK supports also the cone of positive semidefinite matrices. In order not to obscure this section
with additional notation, that extension is discussed in Sec. 12.3.

122

12.2.1 Duality for Conic Optimization
Corresponding to the primal problem (12.7), there is a dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 𝑔𝑇 𝑦̇ + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 𝑐,

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑦̇ ∈ 𝒟*,

(12.8)

where

• 𝑠𝑐𝑙 are the dual variables for lower bounds of constraints,

• 𝑠𝑐𝑢 are the dual variables for upper bounds of constraints,

• 𝑠𝑥𝑙 are the dual variables for lower bounds of variables,

• 𝑠𝑥𝑢 are the dual variables for upper bounds of variables,

• 𝑦̇ are the dual variables for affine conic constraints,

• the dual domain 𝒟* = 𝒟*
1 × · · · × 𝒟*

𝑝 is a Cartesian product of cones dual to 𝒟𝑖.

One can check that the dual problem of the dual problem is identical to the original primal problem.
If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at

0, and we use the convention that the product of the bound value and the corresponding dual variable
is 0. This is equivalent to removing the corresponding dual variable (𝑠𝑥𝑙)𝑗 from the dual problem. For
example:

𝑙𝑥𝑗 = −∞ ⇒ (𝑠𝑥𝑙)𝑗 = 0 and 𝑙𝑥𝑗 · (𝑠𝑥𝑙)𝑗 = 0.

A solution

(𝑦, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢, 𝑦̇)

to the dual problem is feasible if it satisfies all the constraints in (12.8). If (12.8) has at least one feasible
solution, then (12.8) is (dual) feasible, otherwise the problem is (dual) infeasible.

A solution

(𝑥*, 𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*, (𝑦̇)*)

is denoted a primal-dual feasible solution, if (𝑥*) is a solution to the primal problem (12.7) and
(𝑦*, (𝑠𝑐𝑙)

, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*, (𝑦̇)*) is a solution to the corresponding dual problem (12.8). We also define
an auxiliary vector

(𝑥𝑐)* := 𝐴𝑥*

containing the activities of linear constraints.
For a primal-dual feasible solution we define the duality gap as the difference between the primal and

the dual objective value,

𝑐𝑇𝑥* + 𝑐𝑓 −
{︀

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* − 𝑔𝑇 (𝑦̇)* + 𝑐𝑓

}︀
=
∑︀𝑚−1

𝑖=0 [(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) + (𝑠𝑐𝑢)*𝑖 (𝑢𝑐

𝑖 − (𝑥𝑐
𝑖)

*)]

+
∑︀𝑛−1

𝑗=0

[︀
(𝑠𝑥𝑙)*𝑗 (𝑥𝑗 − 𝑙𝑥𝑗) + (𝑠𝑥𝑢)*𝑗 (𝑢𝑥

𝑗 − 𝑥*
𝑗)
]︀

+((𝑦̇)*)𝑇 (𝐹𝑥* + 𝑔) ≥ 0

(12.9)

where the first relation can be obtained by transposing and multiplying the dual constraints (12.2) by
𝑥* and (𝑥𝑐)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

123

It is well-known that, under some non-degeneracy assumptions that exclude ill-posed cases, a conic
optimization problem has an optimal solution if and only if there exist feasible primal-dual solution so
that the duality gap is zero, or, equivalently, that the complementarity conditions

(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑐𝑢)*𝑖 (𝑢𝑐
𝑖 − (𝑥𝑐

𝑖)
*) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑥𝑙)*𝑗 (𝑥*
𝑗 − 𝑙𝑥𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,

(𝑠𝑥𝑢)*𝑗 (𝑢𝑥
𝑗 − 𝑥*

𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,
((𝑦̇)*)𝑇 (𝐹𝑥* + 𝑔) = 0,

(12.10)

are satisfied.
If (12.7) has an optimal solution and MOSEK solves the problem successfully, both the primal and

dual solution are reported, including a status indicating the exact state of the solution.

12.2.2 Infeasibility for Conic Optimization

Primal Infeasible Problems

If the problem (12.7) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 𝑔𝑇 𝑦̇
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑦̇ ∈ 𝒟*,

(12.11)

such that the objective value is strictly positive, i.e. a solution

(𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*, (𝑦̇)*)

to (12.11) so that

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* − 𝑔𝑇 𝑦̇ > 0.

Such a solution implies that (12.11) is unbounded, and that (12.7) is infeasible.

Dual Infeasible Problems

If the problem (12.8) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize 𝑐𝑇𝑥

subject to 𝑙̂𝑐 ≤ 𝐴𝑥 ≤ 𝑢̂𝑐,

𝑙̂𝑥 ≤ 𝑥 ≤ 𝑢̂𝑥,
𝐹𝑥 ∈ 𝒟

(12.12)

where

𝑙̂𝑐𝑖 =

{︂
0 if 𝑙𝑐𝑖 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑐

𝑖 :=

{︂
0 if 𝑢𝑐

𝑖 < ∞,
∞ otherwise,

}︂
(12.13)

and

𝑙̂𝑥𝑗 =

{︂
0 if 𝑙𝑥𝑗 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑥

𝑗 :=

{︂
0 if 𝑢𝑥

𝑗 < ∞,
∞ otherwise,

}︂
(12.14)

124

such that

𝑐𝑇𝑥 < 0.

Such a solution implies that (12.12) is unbounded, and that (12.8) is infeasible.
In case that both the primal problem (12.7) and the dual problem (12.8) are infeasible, MOSEK

will report only one of the two possible certificates — which one is not defined (MOSEK returns the
first certificate found).

12.2.3 Minimalization vs. Maximalization
When the objective sense of problem (12.7) is maximization, i.e.

maximize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟,

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (12.2). The dual problem thus takes the form

minimize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 𝑔𝑇 𝑦̇ + 𝑐𝑓

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0,

−𝑦̇ ∈ 𝒟*

This means that the duality gap, defined in (12.9) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0,

−𝑦̇ ∈ 𝒟*

(12.15)

such that the objective value is strictly negative

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* − 𝑔𝑇 𝑦̇ < 0.

Similarly, the certificate of dual infeasibility is an 𝑥 satisfying the requirements of (12.12) such that
𝑐𝑇𝑥 > 0.

12.3 Semidefinite Optimization

Semidefinite optimization is an extension of conic optimization (see Sec. 12.2) allowing positive semidefi-
nite matrix variables to be used in addition to the usual scalar variables. All the other parts of the input
are defined exactly as in Sec. 12.2, and the discussion from that section applies verbatim to all properties
of problems with semidefinite variables. We only briefly indicate how the corresponding formulae should
be modified with semidefinite terms.

A semidefinite optimization problem can be written as

minimize 𝑐𝑇𝑥 + ⟨𝐶,𝑋⟩ + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 + ⟨𝐴,𝑋⟩ ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + ⟨𝐹 ,𝑋⟩ + 𝑔 ∈ 𝒟,
𝑋𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 1, . . . , 𝑠

where

125

• 𝑚 is the number of constraints.

• 𝑛 is the number of decision variables.

• 𝑥 ∈ R𝑛 is a vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear part of the objective function.

• 𝑐𝑓 ∈ R is a constant term in the objective

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

• 𝐹 ∈ R𝑘×𝑛 is the affine conic constraint matrix.,

• 𝑔 ∈ R𝑘 is the affine conic constraint constant term vector.,

• 𝒟 is a Cartesian product of conic domains, namely 𝒟 = 𝒟1 × · · · × 𝒟𝑝, where 𝑝 is the number of
individual affine conic constraints (ACCs), and each domain is one from Sec. 15.8.

is the same as in Sec. 12.2 and moreover:

• there are 𝑠 symmetric positive semidefinite variables, the 𝑗-th of which is 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ of dimension

𝑟𝑗 ,

• 𝐶 = (𝐶𝑗)𝑗=1,...,𝑠 is a collection of symmetric coefficient matrices in the objective, with 𝐶𝑗 ∈ 𝒮𝑟𝑗 ,
and we interpret the notation ⟨𝐶,𝑋⟩ as a shorthand for

⟨𝐶,𝑋⟩ :=

𝑠∑︁
𝑗=1

⟨𝐶𝑗 , 𝑋𝑗⟩.

• 𝐴 = (𝐴𝑖𝑗)𝑖=1,...,𝑚,𝑗=1,...,𝑠 is a collection of symmetric coefficient matrices in the constraints, with
𝐴𝑖𝑗 ∈ 𝒮𝑟𝑗 , and we interpret the notation ⟨𝐴,𝑋⟩ as a shorthand for the vector

⟨𝐴,𝑋⟩ :=

⎛⎝ 𝑠∑︁
𝑗=1

⟨𝐴𝑖𝑗 , 𝑋𝑗⟩

⎞⎠
𝑖=1,...,𝑚

.

• 𝐹 = (𝐹 𝑖𝑗)𝑖=1,...,𝑘,𝑗=1,...,𝑠 is a collection of symmetric coefficient matrices in the affine conic con-
straints, with 𝐹 𝑖𝑗 ∈ 𝒮𝑟𝑗 , and we interpret the notation ⟨𝐹 ,𝑋⟩ as a shorthand for the vector

⟨𝐹 ,𝑋⟩ :=

⎛⎝ 𝑠∑︁
𝑗=1

⟨𝐹 𝑖𝑗 , 𝑋𝑗⟩

⎞⎠
𝑖=1,...,𝑘

.

In each case the matrix inner product between symmetric matrices of the same dimension 𝑟 is defined
as

⟨𝑈, 𝑉 ⟩ :=

𝑟∑︁
𝑖=1

𝑟∑︁
𝑗=1

𝑈𝑖𝑗𝑉𝑖𝑗 .

To summarize, above the formulation extends that from Sec. 12.2 by the possibility of including
semidefinite terms in the objective, constraints and affine conic constraints.

126

Duality

The definition of the dual problem (12.8) becomes:

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 𝑔𝑇 𝑦̇ + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 𝑐,

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,

𝐶𝑗 −
∑︀𝑚

𝑖=1 𝑦𝑖𝐴𝑖𝑗 −
∑︀𝑘

𝑖=1 𝑦̇𝑖𝐹 𝑖𝑗 = 𝑆𝑗 , 𝑗 = 1, . . . , 𝑠,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑦̇ ∈ 𝒟*,
𝑆𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 1, . . . , 𝑠.

(12.16)

Complementarity conditions (12.10) include the additional relation:

⟨𝑋𝑗 , 𝑆𝑗⟩ = 0 𝑗 = 1, . . . , 𝑠. (12.17)

Infeasibility

A certificate of primal infeasibility (12.11) is now a feasible solution to:

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 𝑔𝑇 𝑦̇
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,

−
∑︀𝑚

𝑖=1 𝑦𝑖𝐴𝑖𝑗 −
∑︀𝑘

𝑖=1 𝑦̇𝑖𝐹 𝑖𝑗 = 𝑆𝑗 , 𝑗 = 1, . . . , 𝑠,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑦̇ ∈ 𝒟*,
𝑆𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 1, . . . , 𝑠.

(12.18)

such that the objective value is strictly positive.
Similarly, a dual infeasibility certificate (12.12) is a feasible solution to

minimize 𝑐𝑇𝑥 + ⟨𝐶,𝑋⟩
subject to 𝑙̂𝑐 ≤ 𝐴𝑥 + ⟨𝐴,𝑋⟩ ≤ 𝑢̂𝑐,

𝑙̂𝑥 ≤ 𝑥 ≤ 𝑢̂𝑥,
𝐹𝑥 + ⟨𝐹 ,𝑋⟩ ∈ 𝒟,

𝑋𝑗 ∈ 𝒮𝑟𝑗
+ , 𝑗 = 1, . . . , 𝑠

(12.19)

where the modified bounds are as in (12.13) and (12.14) and the objective value is strictly negative.

12.4 Quadratic and Quadratically Constrained Optimization

A convex quadratic and quadratically constrained optimization problem has the form

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐𝑘 ≤ 1
2𝑥

𝑇𝑄𝑘𝑥 +
∑︀𝑛−1

𝑗=0 𝑎𝑘𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1,

(12.20)

where all variables and bounds have the same meaning as for linear problems (see Sec. 12.1) and 𝑄𝑜 and
all 𝑄𝑘 are symmetric matrices. Moreover, for convexity, 𝑄𝑜 must be a positive semidefinite matrix and
𝑄𝑘 must satisfy

−∞ < 𝑙𝑐𝑘 ⇒ 𝑄𝑘 is negative semidefinite,
𝑢𝑐
𝑘 < ∞ ⇒ 𝑄𝑘 is positive semidefinite,

−∞ < 𝑙𝑐𝑘 ≤ 𝑢𝑐
𝑘 < ∞ ⇒ 𝑄𝑘 = 0.

The convexity requirement is very important and MOSEK checks whether it is fulfilled.

127

12.4.1 A Recommendation
Any convex quadratic optimization problem can be reformulated as a conic quadratic optimization prob-
lem, see Modeling Cookbook and [And13]. In fact MOSEK does such conversion internally as a part
of the solution process for the following reasons:

• the conic optimizer is numerically more robust than the one for quadratic problems.

• the conic optimizer is usually faster because quadratic cones are simpler than quadratic functions,
even though the conic reformulation usually has more constraints and variables than the original
quadratic formulation.

• it is easy to dualize the conic formulation if deemed worthwhile potentially leading to (huge)
computational savings.

However, instead of relying on the automatic reformulation we recommend to formulate the problem
as a conic problem from scratch because:

• it saves the computational overhead of the reformulation including the convexity check. A conic
problem is convex by construction and hence no convexity check is needed for conic problems.

• usually the modeler can do a better reformulation than the automatic method because the modeler
can exploit the knowledge of the problem at hand.

To summarize we recommend to formulate quadratic problems and in particular quadratically con-
strained problems directly in conic form.

12.4.2 Duality for Quadratic and Quadratically Constrained Optimization
The dual problem corresponding to the quadratic and quadratically constrained optimization problem
(12.20) is given by

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 1
2𝑥

𝑇
{︁∑︀𝑚−1

𝑘=0 𝑦𝑘𝑄
𝑘 −𝑄𝑜

}︁
𝑥 + 𝑐𝑓

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 +
{︁∑︀𝑚−1

𝑘=0 𝑦𝑘𝑄
𝑘 −𝑄𝑜

}︁
𝑥 = 𝑐,

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0.

(12.21)

The dual problem is related to the dual problem for linear optimization (see Sec. 12.1.1), but depends
on the variable 𝑥 which in general can not be eliminated. In the solutions reported by MOSEK, the
value of 𝑥 is the same for the primal problem (12.20) and the dual problem (12.21).

12.4.3 Infeasibility for Quadratic Optimization
In case MOSEK finds a problem to be infeasible it reports a certificate of infeasibility. We write them
out explicitly for quadratic problems, that is when 𝑄𝑘 = 0 for all 𝑘 and quadratic terms appear only
in the objective 𝑄𝑜. In this case the constraints both in the primal and dual problem are linear, and
MOSEK produces for them the same infeasibility certificate as for linear problems.

The certificate of primal infeasibility is a solution to the problem (12.4) such that the objective value
is strictly positive.

The certificate of dual infeasibility is a solution to the problem (12.5) together with an additional
constraint

𝑄𝑜𝑥 = 0

such that the objective value is strictly negative.
Below is an outline of the different problem types for quick reference.

128

https://docs.mosek.com/modeling-cookbook/index.html

Continuous problem formulations

• Linear optimization (LO)

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

• Conic optimization (CO)

Conic optimization extends linear optimization with affine conic constraints (ACC):

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟,

where 𝒟 is a product of domains from Sec. 15.8.

• Semidefinite optimization (SDO)

A conic optimization problem can be further extended with semidefinite variables:

minimize 𝑐𝑇𝑥 + ⟨𝐶,𝑋⟩ + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 + ⟨𝐴,𝑋⟩ ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + ⟨𝐹 ,𝑋⟩ + 𝑔 ∈ 𝒟,
𝑋 ∈ 𝒮+,

where 𝒟 is a product of domains from Sec. 15.8 and 𝒮+ is a product of PSD cones meaning that
𝑋 is a sequence of PSD matrix variables.

• Quadratic and quadratically constrained optimization (QO, QCQO)

A quadratic problem or quadratically constrained problem has the form

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 1
2𝑥

𝑇𝑄𝑐𝑥 + 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

Mixed-integer extensions

Coninuous problems can be extended with constraints requiring the mixed-integer optimizer. We outline
them briefly here. The continuous part of a mixed-integer problem is formulated according to one of the
continuous types above, however only the primal information and solution fields are relevant, there are
no dual values and no infeasibility certificates.

• Integer variables. Specifies that a subset of variables take integer values, that is

𝑥𝐼 ∈ Z

for some index set 𝐼.

129

Chapter 13

Optimizers

The most essential part of MOSEK are the optimizers:

• primal simplex (linear problems),

• dual simplex (linear problems),

• interior-point (linear, quadratic and conic problems),

• mixed-integer (problems with integer variables).

The structure of a successful optimization process is roughly:

• Presolve

1. Elimination: Reduce the size of the problem.

2. Dualizer : Choose whether to solve the primal or the dual form of the problem.

3. Scaling : Scale the problem for better numerical stability.

• Optimization

1. Optimize: Solve the problem using selected method.

2. Terminate: Stop the optimization when specific termination criteria have been met.

3. Report : Return the solution or an infeasibility certificate.

The preprocessing stage is transparent to the user, but useful to know about for tuning purposes.
The purpose of the preprocessing steps is to make the actual optimization more efficient and robust. We
discuss the details of the above steps in the following sections.

13.1 Presolve

Before an optimizer actually performs the optimization the problem is preprocessed using the so-called
presolve. The purpose of the presolve is to

1. remove redundant constraints,

2. eliminate fixed variables,

3. remove linear dependencies,

4. substitute out (implied) free variables, and

5. reduce the size of the optimization problem in general.

130

After the presolved problem has been optimized the solution is automatically postsolved so that the
returned solution is valid for the original problem. Hence, the presolve is completely transparent. For
further details about the presolve phase, please see [AA95] and [AGMeszarosX96].

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If presolve consumes
too much time or memory compared to the reduction in problem size gained it may be disabled. This is
done by setting the parameter MSK_IPAR_PRESOLVE_USE to "MSK_PRESOLVE_MODE_OFF" .

In the following we describe in more detail the presolve applied to continuous, i.e., linear and conic
optimization problems, see Sec. 13.2 and Sec. 13.3. The mixed-integer optimizer, Sec. 13.4, applies similar
techniques. The two most time-consuming steps of the presolve for continuous optimization problems
are

• the eliminator, and

• the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.

Numerical issues in the presolve

During the presolve the problem is reformulated so that it hopefully solves faster. However, in rare
cases the presolved problem may be harder to solve then the original problem. The presolve may also
be infeasible although the original problem is not. If it is suspected that presolved problem is much
harder to solve than the original, we suggest to first turn the eliminator off by setting the parameter
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES to 0. If that does not help, then trying to turn entire
presolve off may help.

Since all computations are done in finite precision, the presolve employs some tolerances when con-
cluding a variable is fixed or a constraint is redundant. If it happens that MOSEK incorrectly con-
cludes a problem is primal or dual infeasible, then it is worthwhile to try to reduce the parameters
MSK_DPAR_PRESOLVE_TOL_X and MSK_DPAR_PRESOLVE_TOL_S . However, if reducing the parameters ac-
tually helps then this should be taken as an indication that the problem is badly formulated.

Eliminator

The purpose of the eliminator is to eliminate free and implied free variables from the problem using
substitution. For instance, given the constraints

𝑦 =
∑︀

𝑗 𝑥𝑗 ,

𝑦, 𝑥 ≥ 0,

y is an implied free variable that can be substituted out of the problem, if deemed worthwhile. If the elim-
inator consumes too much time or memory compared to the reduction in problem size gained it may be
disabled. This can be done by setting the parameter MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
to 0. In rare cases the eliminator may cause that the problem becomes much hard to solve.

Linear dependency checker

The purpose of the linear dependency check is to remove linear dependencies among the linear equalities.
For instance, the three linear equalities

𝑥1 + 𝑥2 + 𝑥3 = 1,
𝑥1 + 0.5𝑥2 = 0.5,
0.5𝑥2 + 𝑥3 = 0.5.

contain exactly one linear dependency. This implies that one of the constraints can be dropped with-
out changing the set of feasible solutions. Removing linear dependencies is in general a good idea
since it reduces the size of the problem. Moreover, the linear dependencies are likely to introduce
numerical problems in the optimization phase. It is best practice to build models without linear de-
pendencies, but that is not always easy for the user to control. If the linear dependencies are removed
at the modeling stage, the linear dependency check can safely be disabled by setting the parameter
MSK_IPAR_PRESOLVE_LINDEP_USE to "MSK_OFF" .

131

Dualizer

All linear, conic, and convex optimization problems have an equivalent dual problem associated with
them. MOSEK has built-in heuristics to determine if it is more efficient to solve the primal or dual
problem. The form (primal or dual) is displayed in the MOSEK log and available as an information
item from the solver. Should the internal heuristics not choose the most efficient form of the problem it
may be worthwhile to set the dualizer manually by setting the parameters:

• MSK_IPAR_INTPNT_SOLVE_FORM : In case of the interior-point optimizer.

• MSK_IPAR_SIM_SOLVE_FORM : In case of the simplex optimizer.

Note that currently only linear and conic (but not semidefinite) problems may be automatically
dualized.

Scaling

Problems containing data with large and/or small coefficients, say 1.0𝑒 + 9 or 1.0𝑒 − 7, are often hard
to solve. Significant digits may be truncated in calculations with finite precision, which can result in
the optimizer relying on inaccurate data. Since computers work in finite precision, extreme coefficients
should be avoided. In general, data around the same order of magnitude is preferred, and we will refer to
a problem, satisfying this loose property, as being well-scaled. If the problem is not well scaled, MOSEK
will try to scale (multiply) constraints and variables by suitable constants. MOSEK solves the scaled
problem to improve the numerical properties.

The scaling process is transparent, i.e. the solution to the original problem is reported. It is important
to be aware that the optimizer terminates when the termination criterion is met on the scaled problem,
therefore significant primal or dual infeasibilities may occur after unscaling for badly scaled problems.
The best solution of this issue is to reformulate the problem, making it better scaled.

By default MOSEK heuristically chooses a suitable scaling. The scaling for interior-point
and simplex optimizers can be controlled with the parameters MSK_IPAR_INTPNT_SCALING and
MSK_IPAR_SIM_SCALING respectively.

13.2 Linear Optimization

13.2.1 Optimizer Selection
Two different types of optimizers are available for linear problems: The default is an interior-point
method, and the alternative is the simplex method (primal or dual). The optimizer can be selected using
the parameter MSK_IPAR_OPTIMIZER .

The Interior-point or the Simplex Optimizer?

Given a linear optimization problem, which optimizer is the best: the simplex or the interior-point
optimizer? It is impossible to provide a general answer to this question. However, the interior-point
optimizer behaves more predictably: it tends to use between 20 and 100 iterations, almost independently
of problem size, but cannot perform warm-start. On the other hand the simplex method can take
advantage of an initial solution, but is less predictable from cold-start. The interior-point optimizer is
used by default.

The Primal or the Dual Simplex Variant?

MOSEK provides both a primal and a dual simplex optimizer. Predicting which simplex optimizer is
faster is impossible, however, in recent years the dual optimizer has seen several algorithmic and com-
putational improvements, which, in our experience, make it faster on average than the primal version.
Still, it depends much on the problem structure and size. Setting the MSK_IPAR_OPTIMIZER parameter
to "MSK_OPTIMIZER_FREE_SIMPLEX" instructs MOSEK to choose one of the simplex variants automat-
ically.

To summarize, if you want to know which optimizer is faster for a given problem type, it is best to
try all the options.

132

13.2.2 The Interior-point Optimizer
The purpose of this section is to provide information about the algorithm employed in the MOSEK
interior-point optimizer for linear problems and about its termination criteria.

The homogeneous primal-dual problem

In order to keep the discussion simple it is assumed that MOSEK solves linear optimization problems
of standard form

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ 0.
(13.1)

This is in fact what happens inside MOSEK; for efficiency reasons MOSEK converts the problem to
standard form before solving, then converts it back to the input form when reporting the solution.

Since it is not known beforehand whether problem (13.1) has an optimal solution, is primal infeasible
or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason
why MOSEK solves the so-called homogeneous model

𝐴𝑥− 𝑏𝜏 = 0,
𝐴𝑇 𝑦 + 𝑠− 𝑐𝜏 = 0,

−𝑐𝑇𝑥 + 𝑏𝑇 𝑦 − 𝜅 = 0,
𝑥, 𝑠, 𝜏, 𝜅 ≥ 0,

(13.2)

where 𝑦 and 𝑠 correspond to the dual variables in (13.1), and 𝜏 and 𝜅 are two additional scalar variables.
Note that the homogeneous model (13.2) always has solution since

(𝑥, 𝑦, 𝑠, 𝜏, 𝜅) = (0, 0, 0, 0, 0)

is a solution, although not a very interesting one. Any solution

(𝑥*, 𝑦*, 𝑠*, 𝜏*, 𝜅*)

to the homogeneous model (13.2) satisfies

𝑥*
𝑗𝑠

*
𝑗 = 0 and 𝜏*𝜅* = 0.

Moreover, there is always a solution that has the property 𝜏* + 𝜅* > 0.
First, assume that 𝜏* > 0 . It follows that

𝐴𝑥*

𝜏* = 𝑏,

𝐴𝑇 𝑦*

𝜏* + 𝑠*

𝜏* = 𝑐,

−𝑐𝑇 𝑥*

𝜏* + 𝑏𝑇 𝑦*

𝜏* = 0,
𝑥*, 𝑠*, 𝜏*, 𝜅* ≥ 0.

This shows that 𝑥*

𝜏* is a primal optimal solution and (𝑦*

𝜏* ,
𝑠*

𝜏*) is a dual optimal solution; this is reported
as the optimal interior-point solution since

(𝑥, 𝑦, 𝑠) =

{︂
𝑥*

𝜏*
,
𝑦*

𝜏*
,
𝑠*

𝜏*

}︂
is a primal-dual optimal solution (see Sec. 12.1 for the mathematical background on duality and opti-
mality).

On other hand, if 𝜅* > 0 then

𝐴𝑥* = 0,
𝐴𝑇 𝑦* + 𝑠* = 0,

−𝑐𝑇𝑥* + 𝑏𝑇 𝑦* = 𝜅*,
𝑥*, 𝑠*, 𝜏*, 𝜅* ≥ 0.

133

This implies that at least one of

𝑐𝑇𝑥* < 0 (13.3)

or

𝑏𝑇 𝑦* > 0 (13.4)

is satisfied. If (13.3) is satisfied then 𝑥* is a certificate of dual infeasibility, whereas if (13.4) is satisfied
then 𝑦* is a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information re-
quired for a solution to the original problem is obtained. A solution to the homogeneous model can be
computed using a primal-dual interior-point algorithm [And09].

Interior-point Termination Criterion

For efficiency reasons it is not practical to solve the homogeneous model exactly. Hence, an exact optimal
solution or an exact infeasibility certificate cannot be computed and a reasonable termination criterion
has to be employed.

In the 𝑘-th iteration of the interior-point algorithm a trial solution

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘)

to homogeneous model is generated, where

𝑥𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘 > 0.

Optimal case

Whenever the trial solution satisfies the criterion⃦⃦⃦
𝐴𝑥𝑘

𝜏𝑘 − 𝑏
⃦⃦⃦
∞

≤ 𝜖𝑝(1 + ‖𝑏‖∞),⃦⃦⃦
𝐴𝑇 𝑦𝑘

𝜏𝑘 + 𝑠𝑘

𝜏𝑘 − 𝑐
⃦⃦⃦
∞

≤ 𝜖𝑑(1 + ‖𝑐‖∞), and

min
(︁

(𝑥𝑘)𝑇 𝑠𝑘

(𝜏𝑘)2
, | 𝑐

𝑇 𝑥𝑘

𝜏𝑘 − 𝑏𝑇 𝑦𝑘

𝜏𝑘 |
)︁

≤ 𝜖𝑔 max

(︂
1,

min(|𝑐𝑇 𝑥𝑘|,|𝑏𝑇 𝑦𝑘|)
𝜏𝑘

)︂
,

(13.5)

the interior-point optimizer is terminated and

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘)

𝜏𝑘

is reported as the primal-dual optimal solution. The interpretation of (13.5) is that the optimizer is
terminated if

• 𝑥𝑘

𝜏𝑘 is approximately primal feasible,

•
{︁

𝑦𝑘

𝜏𝑘 ,
𝑠𝑘

𝜏𝑘

}︁
is approximately dual feasible, and

• the duality gap is almost zero.

Dual infeasibility certificate

On the other hand, if the trial solution satisfies

−𝜖𝑖𝑐
𝑇𝑥𝑘 >

‖𝑐‖∞
max (1, ‖𝑏‖∞)

⃦⃦
𝐴𝑥𝑘

⃦⃦
∞

then the problem is declared dual infeasible and 𝑥𝑘 is reported as a certificate of dual infeasibility. The
motivation for this stopping criterion is as follows: First assume that

⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ = 0 ; then 𝑥𝑘 is an exact

certificate of dual infeasibility. Next assume that this is not the case, i.e.⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ > 0,

134

and define

𝑥̄ := 𝜖𝑖
max (1, ‖𝑏‖∞)

‖𝐴𝑥𝑘‖∞ ‖𝑐‖∞
𝑥𝑘.

It is easy to verify that

‖𝐴𝑥̄‖∞ = 𝜖𝑖
max (1, ‖𝑏‖∞)

‖𝑐‖∞
and − 𝑐𝑇 𝑥̄ > 1,

which shows 𝑥̄ is an approximate certificate of dual infeasibility, where 𝜀𝑖 controls the quality of the
approximation. A smaller value means a better approximation.

Primal infeasibility certificate

Finally, if

𝜖𝑖𝑏
𝑇 𝑦𝑘 >

‖𝑏‖∞
max (1, ‖𝑐‖∞)

⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘

⃦⃦
∞

then 𝑦𝑘 is reported as a certificate of primal infeasibility.

Adjusting optimality criteria

It is possible to adjust the tolerances 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖 using parameters; see table for details.

Table 13.1: Parameters employed in termination criterion

ToleranceParameter name

𝜀𝑝 MSK_DPAR_INTPNT_TOL_PFEAS
𝜀𝑑 MSK_DPAR_INTPNT_TOL_DFEAS
𝜀𝑔 MSK_DPAR_INTPNT_TOL_REL_GAP
𝜀𝑖 MSK_DPAR_INTPNT_TOL_INFEAS

The default values of the termination tolerances are chosen such that for a majority of problems
appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the
tolerances usually is not worthwhile. However, an inspection of (13.5) reveals that the quality of the
solution depends on ‖𝑏‖∞ and ‖𝑐‖∞; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal
and dual feasibility at the same rate [And09]. This means that if the optimizer is stopped prematurely
then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that
in most cases all the tolerances, 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖, have to be relaxed together to achieve an effect.

The basis identification discussed in Sec. 13.2.2 requires an optimal solution to work well; hence basis
identification should be turned off if the termination criterion is relaxed.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

Basis Identification

An interior-point optimizer does not return an optimal basic solution unless the problem has a unique
primal and dual optimal solution. Therefore, the interior-point optimizer has an optional post-processing
step that computes an optimal basic solution starting from the optimal interior-point solution. More
information about the basis identification procedure may be found in [AY96]. In the following we provide
an overall idea of the procedure.

There are some cases in which a basic solution could be more valuable:

• a basic solution is often more accurate than an interior-point solution,

• a basic solution can be used to warm-start the simplex algorithm in case of reoptimization,

• a basic solution is in general more sparse, i.e. more variables are fixed to zero. This is partic-
ularly appealing when solving continuous relaxations of mixed integer problems, as well as in all
applications in which sparser solutions are preferred.

135

To illustrate how the basis identification routine works, we use the following trivial example:

minimize 𝑥 + 𝑦
subject to 𝑥 + 𝑦 = 1,

𝑥, 𝑦 ≥ 0.

It is easy to see that all feasible solutions are also optimal. In particular, there are two basic solutions,
namely

(𝑥*
1, 𝑦

*
1) = (1, 0),

(𝑥*
2, 𝑦

*
2) = (0, 1).

The interior point algorithm will actually converge to the center of the optimal set, i.e. to (𝑥*, 𝑦*) =
(1/2, 1/2) (to see this in MOSEK deactivate Presolve).

In practice, when the algorithm gets close to the optimal solution, it is possible to construct in
polynomial time an initial basis for the simplex algorithm from the current interior point solution. This
basis is used to warm-start the simplex algorithm that will provide the optimal basic solution. In most
cases the constructed basis is optimal, or very few iterations are required by the simplex algorithm to
make it optimal and hence the final clean-up phase be short. However, for some cases of ill-conditioned
problems the additional simplex clean up phase may take of lot a time.

By default MOSEK performs a basis identification. However, if a basic solution is not needed, the
basis identification procedure can be turned off. The parameters

• MSK_IPAR_INTPNT_BASIS ,

• MSK_IPAR_BI_IGNORE_MAX_ITER , and

• MSK_IPAR_BI_IGNORE_NUM_ERROR

control when basis identification is performed.
The type of simplex algorithm to be used (primal/dual) can be tuned with the param-

eter MSK_IPAR_BI_CLEAN_OPTIMIZER , and the maximum number of iterations can be set with
MSK_IPAR_BI_MAX_ITERATIONS .

Finally, it should be mentioned that there is no guarantee on which basic solution will be returned.

The Interior-point Log

Below is a typical log output from the interior-point optimizer:

Optimizer - threads : 1
Optimizer - solved problem : the dual
Optimizer - Constraints : 2
Optimizer - Cones : 0
Optimizer - Scalar variables : 6 conic : 0
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 3 after factor : 3
Factor - dense dim. : 0 flops : 7.
→˓00e+001
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU ␣
→˓ TIME
0 1.0e+000 8.6e+000 6.1e+000 1.00e+000 0.000000000e+000 -2.208000000e+003 1.
→˓0e+000 0.00
1 1.1e+000 2.5e+000 1.6e-001 0.00e+000 -7.901380925e+003 -7.394611417e+003 2.
→˓5e+000 0.00
2 1.4e-001 3.4e-001 2.1e-002 8.36e-001 -8.113031650e+003 -8.055866001e+003 3.3e-
→˓001 0.00
3 2.4e-002 5.8e-002 3.6e-003 1.27e+000 -7.777530698e+003 -7.766471080e+003 5.7e-
→˓002 0.01

(continues on next page)

136

(continued from previous page)

4 1.3e-004 3.2e-004 2.0e-005 1.08e+000 -7.668323435e+003 -7.668207177e+003 3.2e-
→˓004 0.01
5 1.3e-008 3.2e-008 2.0e-009 1.00e+000 -7.668000027e+003 -7.668000015e+003 3.2e-
→˓008 0.01
6 1.3e-012 3.2e-012 2.0e-013 1.00e+000 -7.667999994e+003 -7.667999994e+003 3.2e-
→˓012 0.01

The first line displays the number of threads used by the optimizer and the second line indicates if
the optimizer chose to solve the primal or dual problem (see MSK_IPAR_INTPNT_SOLVE_FORM). The next
lines display the problem dimensions as seen by the optimizer, and the Factor... lines show various
statistics. This is followed by the iteration log.

Using the same notation as in Sec. 13.2.2 the columns of the iteration log have the following meaning:

• ITE: Iteration index 𝑘.

• PFEAS:
⃦⃦
𝐴𝑥𝑘 − 𝑏𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards zero

but may stall at low level due to rounding errors.

• DFEAS:
⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘 − 𝑐𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards

zero but may stall at low level due to rounding errors.

• GFEAS: |− 𝑐𝑇𝑥𝑘 + 𝑏𝑇 𝑦𝑘 −𝜅𝑘| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

• PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to −1 if that is not the case.

• POBJ: 𝑐𝑇𝑥𝑘/𝜏𝑘. An estimate for the primal objective value.

• DOBJ: 𝑏𝑇 𝑦𝑘/𝜏𝑘. An estimate for the dual objective value.

• MU: (𝑥𝑘)𝑇 𝑠𝑘+𝜏𝑘𝜅𝑘

𝑛+1 . The numbers in this column should always converge to zero.

• TIME: Time spent since the optimization started.

13.2.3 The Simplex Optimizer
An alternative to the interior-point optimizer is the simplex optimizer. The simplex optimizer uses a
different method that allows exploiting an initial guess for the optimal solution to reduce the solution
time. Depending on the problem it may be faster or slower to use an initial guess; see Sec. 13.2.1 for a
discussion. MOSEK provides both a primal and a dual variant of the simplex optimizer.

Simplex Termination Criterion

The simplex optimizer terminates when it finds an optimal basic solution or an infeasibility certificate.
A basic solution is optimal when it is primal and dual feasible; see Sec. 12.1 for a definition of the primal
and dual problem. Due to the fact that computations are performed in finite precision MOSEK allows
violations of primal and dual feasibility within certain tolerances. The user can control the allowed
primal and dual tolerances with the parameters MSK_DPAR_BASIS_TOL_X and MSK_DPAR_BASIS_TOL_S .

Setting the parameter MSK_IPAR_OPTIMIZER to "MSK_OPTIMIZER_FREE_SIMPLEX" instructs
MOSEK to select automatically between the primal and the dual simplex optimizers. Hence, MOSEK
tries to choose the best optimizer for the given problem and the available solution. The same parameter
can also be used to force one of the variants.

137

Starting From an Existing Solution

When using the simplex optimizer it may be possible to reuse an existing solution and thereby reduce
the solution time significantly. When a simplex optimizer starts from an existing solution it is said to
perform a warm-start. If the user is solving a sequence of optimization problems by solving the problem,
making modifications, and solving again, MOSEK will warm-start automatically.

By default MOSEK uses presolve when performing a warm-start. If the optimizer only needs very
few iterations to find the optimal solution it may be better to turn off the presolve.

Numerical Difficulties in the Simplex Optimizers

Though MOSEK is designed to minimize numerical instability, completely avoiding it is impossible
when working in finite precision. MOSEK treats a “numerically unexpected behavior” event inside the
optimizer as a set-back. The user can define how many set-backs the optimizer accepts; if that number
is exceeded, the optimization will be aborted. Set-backs are a way to escape long sequences where the
optimizer tries to recover from an unstable situation.

Examples of set-backs are: repeated singularities when factorizing the basis matrix, repeated loss
of feasibility, degeneracy problems (no progress in objective) and other events indicating numerical
difficulties. If the simplex optimizer encounters a lot of set-backs the problem is usually badly scaled; in
such a situation try to reformulate it into a better scaled problem. Then, if a lot of set-backs still occur,
trying one or more of the following suggestions may be worthwhile:

• Raise tolerances for allowed primal or dual feasibility: increase the value of

– MSK_DPAR_BASIS_TOL_X , and
– MSK_DPAR_BASIS_TOL_S .

• Raise or lower pivot tolerance: Change the MSK_DPAR_SIMPLEX_ABS_TOL_PIV parameter.

• Switch optimizer: Try another optimizer.

• Switch off crash: Set both MSK_IPAR_SIM_PRIMAL_CRASH and MSK_IPAR_SIM_DUAL_CRASH to 0.

• Experiment with other pricing strategies: Try different values for the parameters

– MSK_IPAR_SIM_PRIMAL_SELECTION and
– MSK_IPAR_SIM_DUAL_SELECTION .

• If you are using warm-starts, in rare cases switching off this feature may improve stability. This is
controlled by the MSK_IPAR_SIM_HOTSTART parameter.

• Increase maximum number of set-backs allowed controlled by MSK_IPAR_SIM_MAX_NUM_SETBACKS .

• If the problem repeatedly becomes infeasible try switching off the special degeneracy handling. See
the parameter MSK_IPAR_SIM_DEGEN for details.

The Simplex Log

Below is a typical log output from the simplex optimizer:

Optimizer - solved problem : the primal
Optimizer - Constraints : 667
Optimizer - Scalar variables : 1424 conic : 0
Optimizer - hotstart : no
ITER DEGITER(%) PFEAS DFEAS POBJ DOBJ ␣
→˓ TIME TOTTIME
0 0.00 1.43e+05 NA 6.5584140832e+03 NA ␣
→˓ 0.00 0.02
1000 1.10 0.00e+00 NA 1.4588289726e+04 NA ␣
→˓ 0.13 0.14
2000 0.75 0.00e+00 NA 7.3705564855e+03 NA ␣

(continues on next page)

138

(continued from previous page)

→˓ 0.21 0.22
3000 0.67 0.00e+00 NA 6.0509727712e+03 NA ␣
→˓ 0.29 0.31
4000 0.52 0.00e+00 NA 5.5771203906e+03 NA ␣
→˓ 0.38 0.39
4533 0.49 0.00e+00 NA 5.5018458883e+03 NA ␣
→˓ 0.42 0.44

The first lines summarize the problem the optimizer is solving. This is followed by the iteration log,
with the following meaning:

• ITER: Number of iterations.

• DEGITER(%): Ratio of degenerate iterations.

• PFEAS: Primal feasibility measure reported by the simplex optimizer. The numbers should be 0 if
the problem is primal feasible (when the primal variant is used).

• DFEAS: Dual feasibility measure reported by the simplex optimizer. The number should be 0 if the
problem is dual feasible (when the dual variant is used).

• POBJ: An estimate for the primal objective value (when the primal variant is used).

• DOBJ: An estimate for the dual objective value (when the dual variant is used).

• TIME: Time spent since this instance of the simplex optimizer was invoked (in seconds).

• TOTTIME: Time spent since optimization started (in seconds).

13.3 Conic Optimization - Interior-point optimizer

For conic optimization problems only an interior-point type optimizer is available. The same optimizer
is used for quadratic optimization problems which are internally reformulated to conic form.

13.3.1 The homogeneous primal-dual problem
The interior-point optimizer is an implementation of the so-called homogeneous and self-dual algorithm.
For a detailed description of the algorithm, please see [ART03]. In order to keep our discussion simple
we will assume that MOSEK solves a conic optimization problem of the form:

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ∈ 𝒦
(13.6)

where 𝐾 is a convex cone. The corresponding dual problem is

maximize 𝑏𝑇 𝑦
subject to 𝐴𝑇 𝑦 + 𝑠 = 𝑐,

𝑠 ∈ 𝒦*
(13.7)

where 𝒦* is the dual cone of 𝒦. See Sec. 12.2 for definitions.
Since it is not known beforehand whether problem (13.6) has an optimal solution, is primal infeasible

or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason
that MOSEK solves the so-called homogeneous model

𝐴𝑥− 𝑏𝜏 = 0,
𝐴𝑇 𝑦 + 𝑠− 𝑐𝜏 = 0,

−𝑐𝑇𝑥 + 𝑏𝑇 𝑦 − 𝜅 = 0,
𝑥 ∈ 𝒦,
𝑠 ∈ 𝒦*,

𝜏, 𝜅 ≥ 0,

(13.8)

139

where 𝑦 and 𝑠 correspond to the dual variables in (13.6), and 𝜏 and 𝜅 are two additional scalar variables.
Note that the homogeneous model (13.8) always has a solution since

(𝑥, 𝑦, 𝑠, 𝜏, 𝜅) = (0, 0, 0, 0, 0)

is a solution, although not a very interesting one. Any solution

(𝑥*, 𝑦*, 𝑠*, 𝜏*, 𝜅*)

to the homogeneous model (13.8) satisfies

(𝑥*)𝑇 𝑠* + 𝜏*𝜅* = 0

i.e. complementarity. Observe that 𝑥* ∈ 𝒦 and 𝑠* ∈ 𝒦* implies

(𝑥*)𝑇 𝑠* ≥ 0

and therefore

𝜏*𝜅* = 0.

since 𝜏*, 𝜅* ≥ 0. Hence, at least one of 𝜏* and 𝜅* is zero.
First, assume that 𝜏* > 0 and hence 𝜅* = 0. It follows that

𝐴𝑥*

𝜏* = 𝑏,

𝐴𝑇 𝑦*

𝜏* + 𝑠*

𝜏* = 𝑐,

−𝑐𝑇 𝑥*

𝜏* + 𝑏𝑇 𝑦*

𝜏* = 0,
𝑥*/𝜏* ∈ 𝒦,
𝑠*/𝜏* ∈ 𝒦*.

This shows that 𝑥*

𝜏* is a primal optimal solution and (𝑦*

𝜏* ,
𝑠*

𝜏*) is a dual optimal solution; this is reported
as the optimal interior-point solution since

(𝑥, 𝑦, 𝑠) =

(︂
𝑥*

𝜏*
,
𝑦*

𝜏*
,
𝑠*

𝜏*

)︂
is a primal-dual optimal solution.

On other hand, if 𝜅* > 0 then

𝐴𝑥* = 0,
𝐴𝑇 𝑦* + 𝑠* = 0,

−𝑐𝑇𝑥* + 𝑏𝑇 𝑦* = 𝜅*,
𝑥* ∈ 𝒦,
𝑠* ∈ 𝒦*.

This implies that at least one of

𝑐𝑇𝑥* < 0 (13.9)

or

𝑏𝑇 𝑦* > 0 (13.10)

holds. If (13.9) is satisfied, then 𝑥* is a certificate of dual infeasibility, whereas if (13.10) holds then 𝑦*

is a certificate of primal infeasibility.
In summary, by computing an appropriate solution to the homogeneous model, all information re-

quired for a solution to the original problem is obtained. A solution to the homogeneous model can be
computed using a primal-dual interior-point algorithm [And09].

140

13.3.2 Interior-point Termination Criterion
Since computations are performed in finite precision, and for efficiency reasons, it is not possible to solve
the homogeneous model exactly in general. Hence, an exact optimal solution or an exact infeasibility
certificate cannot be computed and a reasonable termination criterion has to be employed.

In every iteration 𝑘 of the interior-point algorithm a trial solution

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘)

to the homogeneous model is generated, where

𝑥𝑘 ∈ 𝒦, 𝑠𝑘 ∈ 𝒦*, 𝜏𝑘, 𝜅𝑘 > 0.

Therefore, it is possible to compute the values:

𝜌𝑘𝑝 = arg min𝜌

{︁
𝜌 |
⃦⃦⃦
𝐴𝑥𝑘

𝜏𝑘 − 𝑏
⃦⃦⃦
∞

≤ 𝜌𝜀𝑝(1 + ‖𝑏‖∞)
}︁
,

𝜌𝑘𝑑 = arg min𝜌

{︁
𝜌 |
⃦⃦⃦
𝐴𝑇 𝑦𝑘

𝜏𝑘 + 𝑠𝑘

𝜏𝑘 − 𝑐
⃦⃦⃦
∞

≤ 𝜌𝜀𝑑(1 + ‖𝑐‖∞)
}︁
,

𝜌𝑘𝑔 = arg min𝜌

{︂
𝜌 |
(︁

(𝑥𝑘)𝑇 𝑠𝑘

(𝜏𝑘)2
, | 𝑐

𝑇 𝑥𝑘

𝜏𝑘 − 𝑏𝑇 𝑦𝑘

𝜏𝑘 |
)︁
≤ 𝜌𝜀𝑔 max

(︂
1,

min(|𝑐𝑇 𝑥𝑘|,|𝑏𝑇 𝑦𝑘|)
𝜏𝑘

)︂}︂
,

𝜌𝑘𝑝𝑖 = arg min𝜌

{︀
𝜌 |
⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘

⃦⃦
∞ ≤ 𝜌𝜀𝑖𝑏

𝑇 𝑦𝑘, 𝑏𝑇 𝑦𝑘 > 0
}︀

and
𝜌𝑘𝑑𝑖 = arg min𝜌

{︀
𝜌 |
⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ ≤ −𝜌𝜀𝑖𝑐

𝑇𝑥𝑘, 𝑐𝑇𝑥𝑘 < 0
}︀
.

Note 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖 are nonnegative user specified tolerances.

Optimal Case

Observe 𝜌𝑘𝑝 measures how far 𝑥𝑘/𝜏𝑘 is from being a good approximate primal feasible solution. Indeed
if 𝜌𝑘𝑝 ≤ 1, then ⃦⃦⃦⃦

𝐴
𝑥𝑘

𝜏𝑘
− 𝑏

⃦⃦⃦⃦
∞

≤ 𝜀𝑝(1 + ‖𝑏‖∞). (13.11)

This shows the violations in the primal equality constraints for the solution 𝑥𝑘/𝜏𝑘 is small compared to
the size of 𝑏 given 𝜀𝑝 is small.

Similarly, if 𝜌𝑘𝑑 ≤ 1, then (𝑦𝑘, 𝑠𝑘)/𝜏𝑘 is an approximate dual feasible solution. If in addition 𝜌𝑔 ≤ 1,
then the solution (𝑥𝑘, 𝑦𝑘, 𝑠𝑘)/𝜏𝑘 is approximate optimal because the associated primal and dual objective
values are almost identical.

In other words if max(𝜌𝑘𝑝, 𝜌
𝑘
𝑑, 𝜌

𝑘
𝑔) ≤ 1, then

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘)

𝜏𝑘

is an approximate optimal solution.

Dual Infeasibility Certificate

Next assume that 𝜌𝑘𝑑𝑖 ≤ 1 and hence⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ ≤ −𝜀𝑖𝑐

𝑇𝑥𝑘 and − 𝑐𝑇𝑥𝑘 > 0

holds. Now in this case the problem is declared dual infeasible and 𝑥𝑘 is reported as a certificate of dual
infeasibility. The motivation for this stopping criterion is as follows. Let

𝑥̄ :=
𝑥𝑘

−𝑐𝑇𝑥𝑘

and it is easy to verify that

‖𝐴𝑥̄‖∞ ≤ 𝜀𝑖 and 𝑐𝑇 𝑥̄ = −1

which shows 𝑥̄ is an approximate certificate of dual infeasibility, where 𝜀𝑖 controls the quality of the
approximation.

141

Primal Infeasiblity Certificate

Next assume that 𝜌𝑘𝑝𝑖 ≤ 1 and hence⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘

⃦⃦
∞ ≤ 𝜀𝑖𝑏

𝑇 𝑦𝑘 and 𝑏𝑇 𝑦𝑘 > 0

holds. Now in this case the problem is declared primal infeasible and (𝑦𝑘, 𝑠𝑘) is reported as a certificate
of primal infeasibility. The motivation for this stopping criterion is as follows. Let

𝑦 :=
𝑦𝑘

𝑏𝑇 𝑦𝑘
and 𝑠 :=

𝑠𝑘

𝑏𝑇 𝑦𝑘

and it is easy to verify that ⃦⃦
𝐴𝑇 𝑦 + 𝑠

⃦⃦
∞ ≤ 𝜀𝑖 and 𝑏𝑇 𝑦 = 1

which shows (𝑦𝑘, 𝑠𝑘) is an approximate certificate of dual infeasibility, where 𝜀𝑖 controls the quality of
the approximation.

13.3.3 Adjusting optimality criteria
It is possible to adjust the tolerances 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖 using parameters; see the next table for details.
Note that although this section discusses the conic optimizer, if the problem was originally input as a
quadratic or quadratically constrained optimization problem then the parameter names that apply are
those from the third column (with infix QO instead of CO).

Table 13.2: Parameters employed in termination criterion

ToleranceParameter Name (for conic problems) Name (for quadratic problems)

𝜀𝑝 MSK_DPAR_INTPNT_CO_TOL_PFEAS MSK_DPAR_INTPNT_QO_TOL_PFEAS
𝜀𝑑 MSK_DPAR_INTPNT_CO_TOL_DFEAS MSK_DPAR_INTPNT_QO_TOL_DFEAS
𝜀𝑔 MSK_DPAR_INTPNT_CO_TOL_REL_GAP MSK_DPAR_INTPNT_QO_TOL_REL_GAP
𝜀𝑖 MSK_DPAR_INTPNT_CO_TOL_INFEAS MSK_DPAR_INTPNT_QO_TOL_INFEAS

The default values of the termination tolerances are chosen such that for a majority of problems
appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the
tolerances usually is not worthwhile. However, an inspection of (13.11) reveals that the quality of the
solution depends on ‖𝑏‖∞ and ‖𝑐‖∞; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal
and dual feasibility at the same rate [And09]. This means that if the optimizer is stopped prematurely
then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that
in most cases all the tolerances, 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖, have to be relaxed together to achieve an effect.

If the optimizer terminates without locating a solution that satisfies the termination crite-
ria, for example because of a stall or other numerical issues, then it will check if the solution
found up to that point satisfies the same criteria with all tolerances multiplied by the value of
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL . If this is the case, the solution is still declared as optimal.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

13.3.4 The Interior-point Log
Below is a typical log output from the interior-point optimizer:

Optimizer - threads : 20
Optimizer - solved problem : the primal
Optimizer - Constraints : 1
Optimizer - Cones : 2
Optimizer - Scalar variables : 6 conic : 6
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00

(continues on next page)

142

(continued from previous page)

Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 1 after factor : 1
Factor - dense dim. : 0 flops : 1.
→˓70e+01
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU ␣
→˓ TIME
0 1.0e+00 2.9e-01 3.4e+00 0.00e+00 2.414213562e+00 0.000000000e+00 1.0e+00␣
→˓ 0.01
1 2.7e-01 7.9e-02 2.2e+00 8.83e-01 6.969257574e-01 -9.685901771e-03 2.7e-01␣
→˓ 0.01
2 6.5e-02 1.9e-02 1.2e+00 1.16e+00 7.606090061e-01 6.046141322e-01 6.5e-02␣
→˓ 0.01
3 1.7e-03 5.0e-04 2.2e-01 1.12e+00 7.084385672e-01 7.045122560e-01 1.7e-03␣
→˓ 0.01
4 1.4e-08 4.2e-09 4.9e-08 1.00e+00 7.071067941e-01 7.071067599e-01 1.4e-08␣
→˓ 0.01

The first line displays the number of threads used by the optimizer and the second line indicates if
the optimizer chose to solve the primal or dual problem (see MSK_IPAR_INTPNT_SOLVE_FORM). The next
lines display the problem dimensions as seen by the optimizer, and the Factor... lines show various
statistics. This is followed by the iteration log.

Using the same notation as in Sec. 13.3.1 the columns of the iteration log have the following meaning:

• ITE: Iteration index 𝑘.

• PFEAS:
⃦⃦
𝐴𝑥𝑘 − 𝑏𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards zero

but may stall at low level due to rounding errors.

• DFEAS:
⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘 − 𝑐𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards

zero but may stall at low level due to rounding errors.

• GFEAS: |− 𝑐𝑇𝑥𝑘 + 𝑏𝑇 𝑦𝑘 −𝜅𝑘| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

• PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to −1 if that is not the case.

• POBJ: 𝑐𝑇𝑥𝑘/𝜏𝑘. An estimate for the primal objective value.

• DOBJ: 𝑏𝑇 𝑦𝑘/𝜏𝑘. An estimate for the dual objective value.

• MU: (𝑥𝑘)𝑇 𝑠𝑘+𝜏𝑘𝜅𝑘

𝑛+1 . The numbers in this column should always converge to zero.

• TIME: Time spent since the optimization started (in seconds).

13.4 The Optimizer for Mixed-Integer Problems

Solving optimization problems where one or more of the variables are constrained to be integer valued is
called Mixed-Integer Optimization (MIO). For an introduction to model building with integer variables,
the reader is recommended to consult the MOSEK Modeling Cookbook, and for further reading we
highlight textbooks such as [Wol98] or [CCornuejolsZ14].

MOSEK can perform mixed-integer

• linear (MILO),

• quadratic (MIQO) and quadratically constrained (MIQCQO), and

• conic (MICO)

143

https://docs.mosek.com/modeling-cookbook/mio.html

optimization, except for mixed-integer semidefinite problems.
By default the mixed-integer optimizer is run-to-run deterministic. This means that if a problem is

solved twice on the same computer with identical parameter settings and no time limit, then the obtained
solutions will be identical. The mixed-integer optimizer is parallelized, i.e., it can exploit multiple cores
during the optimization.

In practice, it often happens that the integer variables in MIO problems are actuall binary variables,
taking values in {0, 1}, leading to Mixed- or pure binary problems. In the general setting however, an
integer variable may have arbitrary lower and upper bounds.

13.4.1 Branch-and-Bound
In order to succeed in solving mixed-integer problems, it can be useful to have a basic understanding of
the underlying solution algorithms. The most important concept in this regard is arguably the so-called
Branch-and-Bound algorithm, employed also by MOSEK. The more experienced reader may skip this
section and advance directly to Sec. 13.4.2.

In order to comprehend Branch-and-Bound, the concept of a relaxation is important. Consider for
example a mixed-integer linear optimization problem of minimization type

𝑧* = minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0
𝑥𝑗 ∈ Z, ∀𝑗 ∈ 𝒥 .

(13.12)

It has the continuous relaxation

𝑧 = minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0,
(13.13)

simply obtained by ignoring the integrality restrictions. The first step in Branch-and-Bound is to solve
this so-called root relaxation, which is a continuous optimization problem. Since (13.13) is less constrained
than (13.12), one certainly gets

𝑧 ≤ 𝑧*,

and 𝑧 is therefore called the objective bound : it bounds the optimal objective value from below.
After the solution of the root relaxation, in the most likely outcome there will be one or more integer

constrained variables with fractional values, i.e., violating the integrality constraints. Branch-and-Bound
now takes such a variable, 𝑥𝑗 = 𝑓𝑗 ∈ R∖Z with 𝑗 ∈ 𝒥 , say, and creates two branches leading to relaxations
with the additional constraint 𝑥𝑗 ≤ ⌊𝑓𝑗⌋ or 𝑥𝑗 ≥ ⌈𝑓𝑗⌉, respectively. The intuitive idea here is to exclude
the undesired fractional value from the outcomes in the two created branches. If the integer variable was
actually a binary variable, branching would lead to fixing its value to 0 in one branch, and to 1 in the
other.

The Branch-and-Bound process continues in this way and successively solves relaxations and creates
branches to refined relaxations. Whenever the solution 𝑥̂ to some relaxation does not violate any inte-
grality constraints, it is feasible to (13.12) and is called an integer feasible solution. There is no guarantee
though that it is also optimal, its solution value 𝑧 := 𝑐𝑇 𝑥̂ is only an upper bound on the optimal objective
value,

𝑧* ≤ 𝑧.

By the successive addition of constraints in the created branches, the objective bound 𝑧 (now defined as
the minimum over all solution values of so far solved relaxations) can only increase during the algorithm.
At the same time, the upper bound 𝑧 (the solution value of the best integer feasible solution encountered
so far, also called incumbent solution) can only decrease during the algorithm. Since at any time we also
have

𝑧 ≤ 𝑧* ≤ 𝑧,

objective bound and incumbent solution value are encapsulating the optimal objective value, eventually
converging to it.

144

The Branch-and-Bound scheme can be depicted by means of a tree, where branches and relaxations
correspond to edges and nodes. Figure Fig. 13.1 shows an example of such a tree. The strength of
Branch-and-Bound is its ability to prune nodes in this tree, meaning that no new child nodes will be
created. Pruning can occur in several cases:

• A relaxation leads to an integer feasible solution 𝑥̂. In this case we may update the incumbent and
its solution value 𝑧, but no new branches need to be created.

• A relaxation is infeasible. The subtree rooted at this node cannot contain any feasible relaxation,
so it can be discarded.

• A relaxation has a solution value that exceeds 𝑧. The subtree rooted at this node cannot contain
any integer feasible solution with a solution value better than the incumbent we already have, so
it can be discarded.

root
x2 = 0.7

infeas. x1 = 0.4

x3 = 1.3

z = 2.7

int. feas.
z̄ = 2.0

x2 = 0 x2 = 1

x1 = 0 x1 = 1

x3 ≤ 1 x3 ≥ 2

...

Fig. 13.1: An examplary Branch-and-Bound tree. Pruned nodes are shown in light blue.

Having objective bound and incumbent solution value is a quite fundamental property of Branch-
and-Bound, and helps to asses solution quality and control termination of the algorithm, as we detail
in the next section. Note that the above explanation is coined for minimization problems, but the
Branch-and-bound scheme has a straightforward extension to maximization problems.

13.4.2 Solution quality and termination criteria
The issue of terminating the mixed-integer optimizer is rather delicate. Mixed-integer optimization is
generally much harder than continuous optimization; in fact, solving continuous sub-problems is just one
component of a mixed-integer optimizer. Despite the ability to prune nodes in the tree, the computational
effort required to solve mixed-integer problems grows exponentially with the size of the problem in a
worst-case scenario (solving mixed-integer problems is NP-hard). For instance, a problem with 𝑛 binary
variables, may require the solution of 2𝑛 relaxations. The value of 2𝑛 is huge even for moderate values of
𝑛. In practice it is often advisable to accept near-optimal or appproximate solutions in order to counteract
this complexity burden. The user has numerous possibilities of influencing optimizer termination with
various parameters, in particular related to solution quality, and the most important ones are highlighted
here.

145

Solution quality in terms of optimality

In order to assess the quality of any incumbent solution in terms of its objective value, one may check
the optimality gap, defined as

𝜖 = |(incumbent solution value) − (objective bound)| = |𝑧 − 𝑧|.

It measures how much the objectives of the incumbent and the optimal solution can deviate in the
worst case. Often it is more meaningful to look at the relative optimality gap

𝜖rel =
|𝑧 − 𝑧|

max(𝛿1, |𝑧|)
.

This is essentially the above absolute optimality gap normalized against the magnitude of the incum-
bent solution value; the purpose of the (small) constant 𝛿1 is to avoid overweighing incumbent solution
values that are very close to zero. The relative optimality gap can thus be interpreted as answering the
question: “Within what fraction of the optimal solution is the incumbent solution in the worst case?”

Absolute and relative optimality gaps provide useful means to define termination criteria for the
mixed-integer optimizer in MOSEK. The idea is to terminate the optimization process as soon as the
quality of the incumbent solution, measured in absolute or relative gap, is good enough. In fact, whenever
an incumbent solution is located, the criterion

𝜖 ≤ 𝛿2 or 𝜖rel ≤ 𝛿3

is checked. If satisfied, i.e., if either absolute or relative optimality gap are below the thresholds
𝛿2 or 𝛿3 (see Table 13.3), the optimizer terminates and reports the incumbent as an optimal solu-
tion. The optimality gaps at termination can always be retrieved through the information items
"MSK_DINF_MIO_OBJ_ABS_GAP" and "MSK_DINF_MIO_OBJ_REL_GAP" .

The tolerances discussed above can be adjusted using suitable parameters, see Table 13.3. By default,
the optimality parameters 𝛿2 and 𝛿3 are quite small, i.e., restrictive. These default values for the absolute
and relative gap amount to solving any instance to (almost) optimality: the incumbent is required to be
within at most a tiny percentage of the optimal solution. As anticipated, this is not tractable in many
practical situations, and one should resort to finding near-optimal solutions quickly rather than insisting
on finding the optimal one. It may happen, for example, that an optimal or close-to-optimal solution
is found very early by the optimizer, but it spends a huge amount of further computational time for
branching, trying to increase 𝑧 that last missing bit: a typical situation that practioneers would want to
avoid. The concept of optimality gaps is fundamental for controlling solution quality when resorting to
near-optimal solutions.

MIO performance tweaks: termination criteria
One of the first things to do in order to cut down excessive solution time is to increase the relative gap

tolerance MSK_DPAR_MIO_TOL_REL_GAP to some non-default value, so as to not insist on finding optimal
solutions. Typical values could be 0.01, 0.05 or 0.1, guaranteeing that the delivered solutions lie within
1%, 5% or 10% of the optimum. Increasing the tolerance will lead to less computational time spent by
the optimizer.

Solution quality in terms of feasibility

For an optimizer relying on floating-point arithmetic like the mixed-integer optimizer in MOSEK, it
may be hard to achieve exact integrality of the solution values of integer variables in most cases, and it
makes sense to numerically relax this constraint. Any candidate solution 𝑥̂ is accepted as integer feasible
if the criterion

min(𝑥𝑗 − ⌊𝑥𝑗⌋, ⌈𝑥𝑗⌉ − 𝑥𝑗) ≤ 𝛿4 ∀𝑗 ∈ 𝒥

146

is satisfied, meaning that 𝑥𝑗 is at most 𝛿4 away from the nearest integer. As above, 𝛿4 can be adjusted
using a parameter, see Table 13.3, and impacts the quality of the acieved solution in terms of integer
feasibility. By influencing what solution may be accepted as imcumbent, it can also have an impact on
the termination of the optimizer.

MIO performance tweaks: feasibility criteria
Whether increasing the integer feasibility tolerance MSK_DPAR_MIO_TOL_ABS_RELAX_INT leads to less

solution time is highly problem dependent. Intuitively, the optimizer is more flexible in finding new
incumbent soutions so as to improve 𝑧. But this effect has do be examined with care on indivuidual
instances: it may worsen solution quality with no effect at all on the solution time. It may in some cases
even lead to contrary effects on the solution time.

Table 13.3: Tolerances for the mixed-integer optimizer.

Tolerance Parameter name Default value

𝛿1 MSK_DPAR_MIO_REL_GAP_CONST 1.0e-10
𝛿2 MSK_DPAR_MIO_TOL_ABS_GAP 0.0
𝛿3 MSK_DPAR_MIO_TOL_REL_GAP 1.0e-4
𝛿4 MSK_DPAR_MIO_TOL_ABS_RELAX_INT 1.0e-5

Further controlling optimizer termination

There are more ways to limit the computational effort employed by the mixed-integer optimizer by simply
limiting the number of explored branches, solved relaxations or updates of the incumbent solution. When
any of the imposed limits is hit, the optimizer terminates and the incumbent solution may be retrieved.
See Table 13.4 for a list of corresponding parameters. In contrast to the parameters discussed in Sec.
13.4.2, interfering with these does not maintain any guarantees in terms of solution quality.

Table 13.4: Other parameters affecting the integer optimizer ter-
mination criterion.

Parameter name Explanation

MSK_IPAR_MIO_MAX_NUM_BRANCHES Maximum number of branches allowed.
MSK_IPAR_MIO_MAX_NUM_RELAXS Maximum number of relaxations allowed.
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS Maximum number of feasible integer solutions allowed.

13.4.3 The Mixed-Integer Log
The Branch-and-Bound scheme from Sec. 13.4.1 is only the basic skeleton of the mixed-integer optimizer
in MOSEK, and several components are built on top of that in order to enhance its functionality and
increase its speed. A mixed-integer optimizer is sometimes referred to as a “giant bag of tricks”, and
it would be impossible to describe all of these tricks here. Yet, some of the additional components are
worth mentioning. They can be influenced by various user parameters, and although the default values of
these parameters are optimized to work well on average mixed-integer problems, it may pay off to adjust
them for an individual problem, or a specific problem class. The mixed-integer log can give insights on
which parameters might be worth an adjustment. Below is a typical log output:

Presolve started.
Presolve terminated. Time = 0.23, probing time = 0.09
Presolved problem: 1176 variables, 1344 constraints, 4968 non-zeros
Presolved problem: 328 general integer, 392 binary, 456 continuous
Clique table size: 55
Symmetry factor : 0.79 (detection time = 0.01)
Removed blocks : 2
BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_OBJ BEST_RELAX_OBJ REL_GAP(
→˓%) TIME

(continues on next page)

147

(continued from previous page)

0 0 1 0 8.3888091139e+07 NA NA ␣
→˓ 0.2
0 1 1 0 8.3888091139e+07 2.5492512136e+07 69.61 ␣
→˓ 0.3
0 1 1 0 3.1273162420e+07 2.5492512136e+07 18.48 ␣
→˓ 0.4
0 1 1 0 2.6047699632e+07 2.5492512136e+07 2.13 ␣
→˓ 0.4
Rooot cut generation started.
0 1 1 0 2.6047699632e+07 2.5492512136e+07 2.13 ␣
→˓ 0.4
0 2 1 0 2.6047699632e+07 2.5589986247e+07 1.76 ␣
→˓ 0.4
Rooot cut generation terminated. Time = 0.05
0 4 1 0 2.5990071367e+07 2.5662741991e+07 1.26 ␣
→˓ 0.5
0 8 1 0 2.5971002767e+07 2.5662741991e+07 1.19 ␣
→˓ 0.6
0 11 1 0 2.5925040617e+07 2.5662741991e+07 1.01 ␣
→˓ 0.6
0 12 1 0 2.5915504014e+07 2.5662741991e+07 0.98 ␣
→˓ 0.6
2 23 1 0 2.5915504014e+07 2.5662741991e+07 0.98 ␣
→˓ 0.7
14 35 1 0 2.5915504014e+07 2.5662741991e+07 0.98 ␣
→˓ 0.7

[...]

Objective of best integer solution : 2.578282162804e+07
Best objective bound : 2.569877601306e+07
Construct solution objective : Not employed
User objective cut value : Not employed
Number of cuts generated : 192

Number of Gomory cuts : 52
Number of CMIR cuts : 137
Number of clique cuts : 3

Number of branches : 29252
Number of relaxations solved : 31280
Number of interior point iterations: 16
Number of simplex iterations : 105440
Time spend presolving the root : 0.23
Time spend optimizing the root : 0.07
Mixed integer optimizer terminated. Time: 6.96

The main part here is the iteration log, a progressing series of similar rows reflecting the progress
made during the Branch-and-bound process. The columns have the following meanings:

• BRANCHES: Number of branches / nodes generated.

• RELAXS: Number of relaxations solved.

• ACT_NDS: Number of active / non-processed nodes.

• DEPTH: Depth of the last solved node.

• BEST_INT_OBJ: The incumbent solution / best integer objective value, 𝑧.

• BEST_RELAX_OBJ: The objective bound, 𝑧.

148

• REL_GAP(%): Relative optimality gap, 100% · 𝜖rel

• TIME: Time (in seconds) from the start of optimization.

Also a short solution summary with several statistics is printed. When the solution time for a mixed-
integer problem has to be cut down, the log can help to understand where time is spent and what might
be improved. We go into some more detail about some further items in the mixed-integer log giving hints
about individual components of the optimizer. Alternatively, most of these items can also be retrieved
as information items, see Sec. 7.5.

Presolve

Similar to the case of continuous problems, see Sec. 13.1, the mixed-integer optimizer applies various
presolve reductions before the actual Branch-and-bound is initiated. The first lines of the mixed-integer
log contain a summary of the presolve process, including the time spent therein (Presolve terminated.
Time = 0.23...). Just as in the continuous case, the use of presolve can be controlled with the parameter
MSK_IPAR_PRESOLVE_USE . If presolve time seems excessive, instead of switching it off completely one may
also try to reduce the time spent in one or more of its individual components. On some models it can
also make sense to increase the use of a certain presolve technique. Table Table 13.5 lists some of these
with their respective parameters.

Table 13.5: Parameters affecting presolve

Parameter name Explanation Possible reference in log

MSK_IPAR_MIO_PROBING_LEVEL Probing aggressivity level. ... probing time = 0.09
MSK_IPAR_MIO_SYMMETRY_LEVELSymmetry detection aggressiv-

ity level.
Symmetry factor : 0.79
(detection time = 0.01)

MSK_IPAR_MIO_INDEPENDENT_BLOCK_LEVELBlock structure detection
level, see Sec. 13.4.3.

Removed blocks : 2

MSK_DPAR_MIO_CLIQUE_TABLE_SIZE_FACTORMaximum size of the clqiue ta-
ble.

Clique table size: 55

MSK_IPAR_MIO_PRESOLVE_AGGREGATOR_USEShould variable agggregation
be enabled?

–

Primal Heuristics

It might happen that the value in the colum BEST_INT_OBJ stalls over a long period of log lines, an indi-
cation that the optimizer has a hard time improving the incumbent solution, i.e., 𝑧. Solving relaxations
in the tree to an integer feasible solution 𝑥̂ is not the only way to find new incumbent solutions. There
is a variety of procedures that, given a mixed-integer problem in a generic form like (13.12), attempt to
produce integer feasible solutions in an ad-hoc way. These procedures are called Primal Heuristics, and
several of them are implemented in MOSEK. For example, whenever a relaxation leads to a fractional
solution, one may round the solution values of the integer variables, in various ways, and hope that
the outcome is still feasible to the remaining constraints. Primal heuristics are mostly employed while
processing the root node, but play a role throughout the whole solution process. The goal of a primal
heuristic is to improve the incumbent solution and thus the bound 𝑧, and this can of course affect the
quality of the solution that is returned after termination of the optimizer. The user parameters affecting
primal heuristics are listed in Table 13.6.

MIO performance tweaks: primal heuristics

• If the mixed-integer optimizer struggles to improve the incumbent solution BEST_INT_OBJ, it can
be helpful to intensify the use of primal heuristics.

– Set parameters related to primal heuristics to more aggressive values than the default ones, so
that more effort is spent in this component. A List of the respective parameters can be found in
Table 13.6. In particular, if the optimizer has difficulties finding any integer feasible solution at
all, indicated by NA in the column BEST_INT_OBJ in the mixed-integer log, one may try to acti-
vate a construction heuristic like the Feasibility Pump with MSK_IPAR_MIO_FEASPUMP_LEVEL .

149

– Specify a good initial solution: In many cases a good feasible solution is either known or
easily computed using problem-specific knowledge that the optimizer does not have. If so, it
is usually worthwhile to use this as a starting point for the mixed-integer optimizer. See also
the parameter MSK_IPAR_MIO_CONSTRUCT_SOL , and Section Sec. 6.8.2.

– For feasibility problems, i.e., problems having a constant objective, the goal is to find a single
integer feasible solution, and this can be hard by itself on some instances. Try setting the
objective to something meaningful anyway, even if the underlying application does not require
this. After all, the feasible set is not changed, but the optimizer might benefit from being able
to pursue a concrete goal.

• In rare cases it may also happen that the optimizer spends an excessive amount of time on primal
heuristics without drawing any benefit from it, and one may try to limit their use with the respective
parameters.

Table 13.6: Parameters affecting primal heuristics

Parameter name Explanation

MSK_IPAR_MIO_HEURISTIC_LEVEL Primal heuristics aggressivity level.
MSK_IPAR_MIO_RINS_MAX_NODES Maximum number of nodes allowed in the RINS heuristic.
MSK_IPAR_MIO_RENS_MAX_NODES Maximum number of nodes allowed in the RENS heuristic.
MSK_IPAR_MIO_CROSSOVER_MAX_NODES Maximum number of nodes allowed in the Crossover heuristic.
MSK_IPAR_MIO_OPT_FACE_MAX_NODES Maximum number of nodes allowed in the optimal face heuris-

tic.
MSK_IPAR_MIO_FEASPUMP_LEVEL Way of using the Feasibility Pump heuristic.

Cutting Planes

It might as well happen that the value in the colum BEST_RELAX_OBJ stalls over a long period of log
lines, an indication that the optimizer has a struggles to improve the objective bound 𝑧. A component of
the optimizer designed to act on the objective bound is given by Cutting planes, also called cuts or valid
inequalities. Cuts do not remove any integer feasible solutions from the feasible set of the mixed-integer
problem (13.12). They may, however, remove solutions from the feasible set of the relaxation (13.13),
ideally making it a stronger relaxation with better objective bound.

As an example, take the constraints

2𝑥1 + 3𝑥2 + 𝑥3 ≤ 4, 𝑥1, 𝑥2 ∈ {0, 1}, 𝑥3 ≥ 0. (13.14)

One may realize that there cannot be a feasible solution in which both binary variables take on a value
of 1. So certainly

𝑥1 + 𝑥2 ≤ 1 (13.15)

is a valid inequality (there is no integer solution satisfying (13.14), but violating (13.15)). The latter
does cut off a portion of the feasible region of the continuous relaxation of (13.14) though, obtained by
replacing 𝑥1, 𝑥2 ∈ {0, 1} with 𝑥1, 𝑥2 ∈ [0, 1]. For example, the fractional point (𝑥1, 𝑥2, 𝑥3) = (0.5, 1, 0) is
feasible to the relaxation, but violates the cut (13.15).

There are many classes of general-purpose cuttting planes that may be generated for a mixed-integer
problem in a generic form like (13.12), and MOSEK’s mixed-integer optimizer supports several of them.
For instance, the above is an example of a so-called clique cut. The most effort on generating cutting
planes is spent after the solution of the root relaxation; the beginning and the end of root cut generation
is highlighted in the log, and the number of log lines in between reflects to the computational effort spent
here. Also the solution summary at the end of the log highlights for each cut class the number of generated
cuts. Cuts can also be generated later on in the tree, which is why we also use the term Branch-and-cut,
an extension of the basic Branch-and-bound scheme. Cuts aim at improving the objective bound 𝑧 and
can thus have significant impact on the solution time. The user parameters affecting cut generation can
be seen in Table 13.7.

MIO performance tweaks: cutting planes

150

• If the mixed-integer optimizer struggles to improve the objective bound BEST_RELAX_OBJ, it can
be helpful to intensify the use of cutting planes.

– Some types of cutting planes are not activated by default, but doing so may help to improve
the objective bound.

– The parameters MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT and
MSK_IPAR_MIO_CUT_SELECTION_LEVEL determine how aggressively cuts will be gener-
ated and selected.

– If some valid inequalities can be deduced from problem-specific knowledge that the optimizer
does not have, it may be helpful to add these to the problem formulation as constraints.
This has to be done with care, since there is a tradeoff between the benefit obtained from an
improved objective boud, and the amount of additional constraints that make the relaxations
larger.

• In rare cases it may also be observed that the optimizer spends an excessive effort on cutting planes,
and one may limit their use with MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS , or by disabling a
certain type of cutting planes.

Table 13.7: Parameters affecting cutting planes

Parameter name Explanation

MSK_IPAR_MIO_CUT_CLIQUE Should clique cuts be enabled?
MSK_IPAR_MIO_CUT_CMIR Should mixed-integer rounding cuts be enabled?
MSK_IPAR_MIO_CUT_GMI Should GMI cuts be enabled?
MSK_IPAR_MIO_CUT_IMPLIED_BOUND Should implied bound cuts be enabled?
MSK_IPAR_MIO_CUT_KNAPSACK_COVER Should knapsack cover cuts be enabled?
MSK_IPAR_MIO_CUT_LIPRO Should lift-and-project cuts be enabled?
MSK_IPAR_MIO_CUT_SELECTION_LEVEL Cut selection aggressivity level.
MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDSMaximum number of root cut rounds.
MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENTMinimum required objective bound improvement during

root cut generation.

Restarts

The mixed-integer optimizer employs so-called restarts, i.e., if the progress made while exploring the tree
is deemed unsufficient, it might decide to restart the solution process from scratch, possibly making use
of the information collected so far. When a restart happens, this is displayed in the log:

[...]

1948 4664 699 36 NA 1.1800000000e+02 NA ␣
→˓ 7.2
1970 4693 705 50 NA 1.1800000000e+02 NA ␣
→˓ 7.2

Performed MIP restart 1.
Presolve started.
Presolve terminated. Time = 0.01, probing time = 0.00
Presolved problem: 523 variables, 765 constraints, 3390 non-zeros
Presolved problem: 0 general integer, 404 binary, 119 continuous
Clique table size: 143
BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_OBJ BEST_RELAX_OBJ REL_GAP(
→˓%) TIME
1988 4729 1 0 NA 1.1800000000e+02 NA ␣
→˓ 7.3
1988 4730 1 0 4.0000000000e+01 1.1800000000e+02 195.00 ␣

(continues on next page)

151

(continued from previous page)

→˓ 7.3

[...]

Restarts tend to be useful especially for hard models. However, in individual cases the optimizer may
decide to perform a restart while it would have been better to continue exploring the tree. Their use can
be controlled with the parameter MSK_IPAR_MIO_MAX_NUM_RESTARTS .

Block decomposition

Sometimes the optimizer faces a model that actually represents two or more completely independent
subproblems. For a linear problem such as (13.13), this means that the constraint matrix 𝐴 is a block-
diagonal. Block-diagonal structure can occur after MOSEK applies some presolve reductions, e.g., a
variable is fixed that was the only variable connecting two otherwise independent subproblems. Or, more
rarely, the original model provided by the user is already block-diagonal.

In principle, solving such blocks independently is easier than letting the optimizer work on the single,
large model, and MOSEK thus tries to exploit this structure. Some blocks may be completely solved
and removed from the model during presolve, which can be seen by a line at the end of the presolve
summary, see also Sec. 13.4.3. If after presolve there are still independent blocks, MOSEK can apply a
dedicated algorithm to solve them independently while periodically combining their individual solution
statusses (such as incumbent solutions and objective bounds) to the solution status of the original model.
Just like the removal of blocks during presolve, the application of this latter strategy is indicated in the
log:

[...]

15 38 1 0 4.1759800000e+05 3.8354200000e+05 8.16 ␣
→˓ 0.9
Root cut generation started.
15 38 1 0 4.1759800000e+05 3.8354200000e+05 8.16 ␣
→˓ 1.1
Root cut generation terminated. Time = 0.11
15 40 1 0 4.1645600000e+05 3.8934425000e+05 6.51 ␣
→˓ 2.0
15 41 1 0 4.1622400000e+05 3.8934425000e+05 6.46 ␣
→˓ 2.0
23 52 1 0 4.1622400000e+05 3.8934425000e+05 6.46 ␣
→˓ 2.0
Decomposition solver started with 5 independent blocks.
532 425 5 118 4.1592600000e+05 3.8935275000e+05 6.39 ␣
→˓ 4.5
1858 11911 815 286 4.1007800000e+05 3.8946400000e+05 5.03 ␣
→˓ 11.8

[...]

How block-diagonal structure is detected and handled by the optimizer can be controlled with the
parameter MSK_IPAR_MIO_INDEPENDENT_BLOCK_LEVEL .

152

13.4.4 Mixed-Integer Nonlinear Optimization
Due to the involved non-linearities, MI(QC)QO or MICO problems are on average harder than MILO
problems of comparable size. Yet, the Branch-and-Bound scheme can be applied to these probelm
classes in a straightforward manner. The relaxations have to be solved as conic problems with the
interior point algorithm in that case, see Sec. 13.3, opposed to MILO where it is often beneficial to solve
relaxations with the dual simplex method, see Sec. 13.2.3. There is another solution approach for these
types of problems implemented in MOSEK, namely the Outer-Approximation algorithm, making use
of dynamically refined linear approximations of the non-linearities.

MICO performance tweaks: choice of algorithm
Whether conic Branch-and-Bound or Outer-Approximation is applied to a mixed-integer conic prob-

lem can be set with MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION . The best value for this option is
highly problem dependent.

MI(QC)QO

MOSEK is specialized in solving linear and conic optimization problems, both with or without mixed-
integer variables. Just like for continuous problems, mixed-integer quadratic problems are converted
internally to conic form, see Sec. 12.4.1

Contrary to the continuous case, MOSEK can solve certain mixed-integer quadratic problems where
one or more of the involved matrices are not positive semidefinite, so-called non-convex MI(QC)QO prob-
lems. These are automatically reformulated to an equivalent convex MI(QC)QO problem, provided that
such a reformulation is possible on the given instance (otherwiese MOSEK will reject the problem and
issue an error message). The concept of reformulations can also affect the solution times of MI(QC)QO
problems.

MI(QC)QO performance tweaks: applying a reformulation method
There are several reformulation methods for MI(QC)QO problems, available through the parameter

MSK_IPAR_MIO_QCQO_REFORMULATION_METHOD . The chosen method can have significant impact on the
mixed-integer optimizer’s speed on such problems, both convex and non-convex. The best value for this
option is highly problem dependent.

13.4.5 Randomization
A mixed-integer optimizer is usually prone to performance variability, meaning that a small change in
either

• problem data, or

• computer hardware, or

• algorithmic parameters

can lead to significant changes in solution time, due to different solution paths in the Branch-and-cut
tree. In extreme cases the exact same problem can vary from being solvable in less than a second to
seemingly unsolvable in any reasonable amount of time on a different computer.

One practical implication of this is that one should ideally verify whether a seemingly beneficial set
of parameters, established experimentally on a single problem, is still beneficial (on average) on a larger
set of problems from the same problem class. This protects against making parameter changes that had
positive effects only due to random effects on that single problem.

In the absence of a large set of test problems, one may also change the random seed of the optimizer to
a series of different values in order to hedge against drawing such wrong conclusions regarding parameters.
The random seed, accessible through MSK_IPAR_MIO_SEED , impacts for example random tie-breaking in
many of the mixed-integer optimizer’s components. Changing the random seed can be combined with
a permutation of the problem data to further incite randomness, accessible through the parameter
MSK_IPAR_MIO_DATA_PERMUTATION_METHOD .

153

13.4.6 Further performance tweaks
In addition to what was mentioned previously, there may be other ways to speed up the solution of a
given mixed-integer problem. For example, there are further user parameters affecting some algorithmic
settings in the mixed-integer optimizer. As mentioned above, default parameter values are optimized to
work well on average, but on individual problems they may be adjusted.

MIO performance tweaks: miscellaneous

• While exploring the tree, the optimizer applies certain strategies to decide which fractional variable
to branch on, see Sec. 13.4.1. The chosen strategy can have a big impact on performance, and may
be controlled with MSK_IPAR_MIO_VAR_SELECTION .

• Similarly, the strategy to chose the next node to explore in the tree is controlled with
MSK_IPAR_MIO_NODE_SELECTION .

• The optimizer employs specialized techniques to learn from infeasible nodes and use that knowledge
to avoid creating similar nodes in other parts of the tree. The effort spent here can be influenced
with MSK_IPAR_MIO_DUAL_RAY_ANALYSIS_LEVEL and MSK_IPAR_MIO_CONFLICT_ANALYSIS_LEVEL .

• When relaxations in the tree are linear optimization problems (e.g., in MILO or when solving
MICO probelms with the Outer-Approximation method), it is usually best to employ the dual
simplex method for their solution. In rare cases the primal simplex method may actually be the
better choice, and this can be set with the parameter MSK_IPAR_MIO_NODE_OPTIMIZER .

• Some problems are numerically more challenging than others, for example if the ratio between the
smallest and the largest involved coefficients is large, say ≥ 1𝑒9. An indication of numerical issues
are, for example, large violations in the final solution, observable in the solution summery of the
log output, see Sec. 8.1.3. Similarly, a problem that is known to be feasible by the user may be
declared infeasible by the optimizer. In such cases it is usually best to try to rescale the model.
Otherwise, the mixed-integer optimizer can be instructed to be more cautios regarding numerics
with the parameter MSK_IPAR_MIO_NUMERICAL_EMPHASIS_LEVEL . This may in turn be at the cost
of solution speed though.

• Improve the formulation: A MIO problem may be impossible to solve in one form and quite easy
in another form. However, it is beyond the scope of this manual to discuss good formulations for
mixed-integer problems. For discussions on this topic see for example [Wol98].

154

Chapter 14

Additional features

In this section we describe additional features and tools which enable more detailed analysis of optimiza-
tion problems with MOSEK.

14.1 Problem Analyzer

The problem analyzer prints a survey of the structure of the problem, with information about linear
constraints and objective, quadratic constraints, conic constraints and variables.

In the initial stages of model formulation the problem analyzer may be used as a quick way of
verifying that the model has been built or imported correctly. In later stages it can help revealing special
structures within the model that may be used to tune the optimizer’s performance or to identify the
causes of numerical difficulties.

The problem analyzer is run using the mosekopt (’anapro’) command and produces output similar
to the following (this is the problem analyzer’s survey of the aflow30a problem from the MIPLIB 2003
collection).

Analyzing the problem

*** Structural report
Dimensions
Constraints Variables Matrix var. Cones
479 842 0 0

Constraint and bound types
Free Lower Upper Ranged Fixed

Constraints: 0 0 421 0 58
Variables: 0 0 0 842 0

Integer constraint types
Binary General
421 0

*** Data report
Nonzeros Min Max

|cj|: 421 1.1e+01 5.0e+02
|Aij|: 2091 1.0e+00 1.0e+02

finite Min Max
|blci|: 58 1.0e+00 1.0e+01
|buci|: 479 0.0e+00 1.0e+01
|blxj|: 842 0.0e+00 0.0e+00
|buxj|: 842 1.0e+00 1.0e+02

(continues on next page)

155

(continued from previous page)

*** Done analyzing the problem

The survey is divided into a structural and numerical report. The content should be self-explanatory.

14.2 Automatic Repair of Infeasible Problems

MOSEK provides an automatic repair tool for infeasible linear problems which we cover in this section.
Note that most infeasible models are so due to bugs which can (and should) be more reliably fixed
manually, using the knowledge of the model structure. We discuss this approach in Sec. 8.3.

14.2.1 Automatic repair
The main idea can be described as follows. Consider the linear optimization problem with 𝑚 constraints
and 𝑛 variables

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

which is assumed to be infeasible.
One way of making the problem feasible is to reduce the lower bounds and increase the upper bounds.

If the change is sufficiently large the problem becomes feasible. Now an obvious idea is to compute the
optimal relaxation by solving an optimization problem. The problem

minimize 𝑝(𝑣𝑐𝑙 , 𝑣
𝑐
𝑢, 𝑣

𝑥
𝑙 , 𝑣

𝑥
𝑢)

subject to 𝑙𝑐 − 𝑣𝑐𝑙 ≤ 𝐴𝑥 ≤ 𝑢𝑐 + 𝑣𝑐𝑢,
𝑙𝑥 − 𝑣𝑥𝑙 ≤ 𝑥 ≤ 𝑢𝑥 + 𝑣𝑥𝑢,

𝑣𝑐𝑙 , 𝑣
𝑐
𝑢, 𝑣

𝑥
𝑙 , 𝑣

𝑥
𝑢 ≥ 0

(14.1)

does exactly that. The additional variables (𝑣𝑐𝑙)𝑖, (𝑣𝑐𝑢)𝑖, (𝑣𝑥𝑙)𝑗 and (𝑣𝑐𝑢)𝑗 are elasticity variables because
they allow a constraint to be violated and hence add some elasticity to the problem. For instance, the
elasticity variable (𝑣𝑐𝑙)𝑖 controls how much the lower bound (𝑙𝑐)𝑖 should be relaxed to make the problem
feasible. Finally, the so-called penalty function

𝑝(𝑣𝑐𝑙 , 𝑣
𝑐
𝑢, 𝑣

𝑥
𝑙 , 𝑣

𝑥
𝑢)

is chosen so it penalizes changes to bounds. Given the weights

• 𝑤𝑐
𝑙 ∈ R𝑚 (associated with 𝑙𝑐),

• 𝑤𝑐
𝑢 ∈ R𝑚 (associated with 𝑢𝑐),

• 𝑤𝑥
𝑙 ∈ R𝑛 (associated with 𝑙𝑥),

• 𝑤𝑥
𝑢 ∈ R𝑛 (associated with 𝑢𝑥),

a natural choice is

𝑝(𝑣𝑐𝑙 , 𝑣
𝑐
𝑢, 𝑣

𝑥
𝑙 , 𝑣

𝑥
𝑢) = (𝑤𝑐

𝑙)
𝑇 𝑣𝑐𝑙 + (𝑤𝑐

𝑢)𝑇 𝑣𝑐𝑢 + (𝑤𝑥
𝑙)𝑇 𝑣𝑥𝑙 + (𝑤𝑥

𝑢)𝑇 𝑣𝑥𝑢.

Hence, the penalty function 𝑝() is a weighted sum of the elasticity variables and therefore the problem
(14.1) keeps the amount of relaxation at a minimum. Please observe that

• the problem (14.1) is always feasible.

• a negative weight implies problem (14.1) is unbounded. For this reason if the value of a weight is
negative MOSEK fixes the associated elasticity variable to zero. Clearly, if one or more of the
weights are negative, it may imply that it is not possible to repair the problem.

A simple choice of weights is to set them all to 1, but of course that does not take into account that
constraints may have different importance.

156

Caveats

Observe if the infeasible problem

minimize 𝑥 + 𝑧
subject to 𝑥 = −1,

𝑥 ≥ 0

is repaired then it will become unbounded. Hence, a repaired problem may not have an optimal solution.
Another and more important caveat is that only a minimal repair is performed i.e. the repair that

barely makes the problem feasible. Hence, the repaired problem is barely feasible and that sometimes
makes the repaired problem hard to solve.

Using the automatic repair tool

In this subsection we consider an infeasible linear optimization example:

minimize −10𝑥1 −9𝑥2,
subject to 7/10𝑥1 + 1𝑥2 ≤ 630,

1/2𝑥1 + 5/6𝑥2 ≤ 600,
1𝑥1 + 2/3𝑥2 ≤ 708,

1/10𝑥1 + 1/4𝑥2 ≤ 135,
𝑥1, 𝑥2 ≥ 0,

𝑥2 ≥ 650.

(14.2)

The code following code will form the repaired problem and solve it.

Listing 14.1: An example of feasibility repair applied to problem
(14.2).

function feasrepairex1(inputfile)

cmd = sprintf('read(%s)', inputfile);
[r,res]=mosekopt(cmd);

res.prob.primalrepair = [];
res.prob.primalrepair.wux = [1,1];
res.prob.primalrepair.wlx = [1,1];
res.prob.primalrepair.wuc = [1,1,1,1];
res.prob.primalrepair.wlc = [1,1,1,1];

param.MSK_IPAR_LOG_FEAS_REPAIR = 3;
[r,res]=mosekopt('minimize primalrepair',res.prob,param);
fprintf('Return code: %d\n',r);

end

The parameter MSK_IPAR_LOG_FEAS_REPAIR controls the amount of log output from the repair. A
value of 2 causes the optimal repair to printed out. If the fields wlx, wux, wlc or wuc are not specified,
they are all assumed to be 1-vectors of appropriate dimensions.

The above code will produce the following log report:

MOSEK Version 9.0.0.25(ALPHA) (Build date: 2017-11-7 16:11:50)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86

Open file 'feasrepair.lp'
Reading started.
Reading terminated. Time: 0.00

(continues on next page)

157

(continued from previous page)

Read summary
Type : LO (linear optimization problem)
Objective sense : min
Scalar variables : 2
Matrix variables : 0
Constraints : 4
Cones : 0
Time : 0.0

Problem
Name :
Objective sense : min
Type : LO (linear optimization problem)
Constraints : 4
Cones : 0
Scalar variables : 2
Matrix variables : 0
Integer variables : 0

Primal feasibility repair started.
Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 2
Eliminator terminated.
Eliminator - tries : 1 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem

Name :
Objective sense : min
Type : LO (linear optimization problem)
Constraints : 8
Cones : 0
Scalar variables : 14
Matrix variables : 0
Integer variables : 0

Optimizer - threads : 20
Optimizer - solved problem : the primal
Optimizer - Constraints : 2
Optimizer - Cones : 0
Optimizer - Scalar variables : 5 conic : 0
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 3 after factor : 3
Factor - dense dim. : 0 flops : 5.
→˓00e+01
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU ␣
→˓ TIME
0 2.7e+01 1.0e+00 4.0e+00 1.00e+00 3.000000000e+00 0.000000000e+00 1.0e+00␣
→˓ 0.00

(continues on next page)

158

(continued from previous page)

1 2.5e+01 9.1e-01 1.4e+00 0.00e+00 8.711262850e+00 1.115287830e+01 2.4e+00␣
→˓ 0.00
2 2.4e+00 8.8e-02 1.4e-01 -7.33e-01 4.062505701e+01 4.422203730e+01 2.3e-01␣
→˓ 0.00
3 9.4e-02 3.4e-03 5.5e-03 1.33e+00 4.250700434e+01 4.258548510e+01 9.1e-03␣
→˓ 0.00
4 2.0e-05 7.2e-07 1.1e-06 1.02e+00 4.249996599e+01 4.249998669e+01 1.9e-06␣
→˓ 0.00
5 2.0e-09 7.2e-11 1.1e-10 1.00e+00 4.250000000e+01 4.250000000e+01 1.9e-10␣
→˓ 0.00
Basis identification started.
Basis identification terminated. Time: 0.00
Optimizer terminated. Time: 0.01

Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 4.2500000000e+01 nrm: 6e+02 Viol. con: 1e-13 var: 0e+00
Dual. obj: 4.2499999999e+01 nrm: 2e+00 Viol. con: 0e+00 var: 9e-11

Optimal objective value of the penalty problem: 4.250000000000e+01

Repairing bounds.
Increasing the upper bound 1.35e+02 on constraint 'c4' (3) with 2.25e+01.
Decreasing the lower bound 6.50e+02 on variable 'x2' (4) with 2.00e+01.
Primal feasibility repair terminated.
Optimizer started.
Optimizer terminated. Time: 0.00

Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -5.6700000000e+03 nrm: 6e+02 Viol. con: 0e+00 var: 0e+00
Dual. obj: -5.6700000000e+03 nrm: 1e+01 Viol. con: 0e+00 var: 0e+00

Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -5.6700000000e+03 nrm: 6e+02 Viol. con: 0e+00 var: 0e+00
Dual. obj: -5.6700000000e+03 nrm: 1e+01 Viol. con: 0e+00 var: 0e+00

Optimizer summary
Optimizer - time: 0.00

Interior-point - iterations : 0 time: 0.00
Basis identification - time: 0.00

Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00

Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00

Mixed integer - relaxations: 0 time: 0.00

It will also modify the task according to the optimal elasticity variables found. In this case the
optimal repair it is to increase the upper bound on constraint c4 by 22.5 and decrease the lower bound
on variable x2 by 20.

159

14.3 Sensitivity Analysis

Given an optimization problem it is often useful to obtain information about how the optimal objective
value changes when the problem parameters are perturbed. E.g, assume that a bound represents the
capacity of a machine. Now, it may be possible to expand the capacity for a certain cost and hence it is
worthwhile knowing what the value of additional capacity is. This is precisely the type of questions the
sensitivity analysis deals with.

Analyzing how the optimal objective value changes when the problem data is changed is called
sensitivity analysis.

References

The book [Chvatal83] discusses the classical sensitivity analysis in Chapter 10 whereas the book [RTV97]
presents a modern introduction to sensitivity analysis. Finally, it is recommended to read the short paper
[Wal00] to avoid some of the pitfalls associated with sensitivity analysis.

Warning: Currently, sensitivity analysis is only available for continuous linear optimization
problems. Moreover, MOSEK can only deal with perturbations of bounds and objective function
coefficients.

14.3.1 Sensitivity Analysis for Linear Problems

The Optimal Objective Value Function

Assume that we are given the problem

𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥, 𝑐) = minimize 𝑐𝑇𝑥
subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,
(14.3)

and we want to know how the optimal objective value changes as 𝑙𝑐𝑖 is perturbed. To answer this question
we define the perturbed problem for 𝑙𝑐𝑖 as follows

𝑓𝑙𝑐𝑖 (𝛽) = minimize 𝑐𝑇𝑥
subject to 𝑙𝑐 + 𝛽𝑒𝑖 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

where 𝑒𝑖 is the 𝑖-th column of the identity matrix. The function

𝑓𝑙𝑐𝑖 (𝛽) (14.4)

shows the optimal objective value as a function of 𝛽. Please note that a change in 𝛽 corresponds to a
perturbation in 𝑙𝑐𝑖 and hence (14.4) shows the optimal objective value as a function of varying 𝑙𝑐𝑖 with
the other bounds fixed.

It is possible to prove that the function (14.4) is a piecewise linear and convex function, i.e. its graph
may look like in Fig. 14.1 and Fig. 14.2.

Clearly, if the function 𝑓𝑙𝑐𝑖 (𝛽) does not change much when 𝛽 is changed, then we can conclude that
the optimal objective value is insensitive to changes in 𝑙𝑐𝑖 . Therefore, we are interested in the rate of
change in 𝑓𝑙𝑐𝑖 (𝛽) for small changes in 𝛽 — specifically the gradient

𝑓 ′
𝑙𝑐𝑖

(0),

which is called the shadow price related to 𝑙𝑐𝑖 . The shadow price specifies how the objective value changes
for small changes of 𝛽 around zero. Moreover, we are interested in the linearity interval

𝛽 ∈ [𝛽1, 𝛽2]

for which

𝑓 ′
𝑙𝑐𝑖

(𝛽) = 𝑓 ′
𝑙𝑐𝑖

(0).

160

f()β

0 ββ β1 2

Fig. 14.1: 𝛽 = 0 is in the interior of linearity interval.

f()β

0 βββ 21

Fig. 14.2: 𝛽 = 0 is a breakpoint.

161

Since 𝑓𝑙𝑐𝑖 is not a smooth function 𝑓 ′
𝑙𝑐𝑖

may not be defined at 0, as illustrated in Fig. 14.2. In this case
we can define a left and a right shadow price and a left and a right linearity interval.

The function 𝑓𝑙𝑐𝑖 considered only changes in 𝑙𝑐𝑖 . We can define similar functions for the remaining
parameters of the 𝑧 defined in (14.3) as well:

𝑓𝑙𝑐𝑖 (𝛽) = 𝑧(𝑙𝑐 + 𝛽𝑒𝑖, 𝑢
𝑐, 𝑙𝑥, 𝑢𝑥, 𝑐), 𝑖 = 1, . . . ,𝑚,

𝑓𝑢𝑐
𝑖
(𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐 + 𝛽𝑒𝑖, 𝑙

𝑥, 𝑢𝑥, 𝑐), 𝑖 = 1, . . . ,𝑚,
𝑓𝑙𝑥𝑗 (𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥 + 𝛽𝑒𝑗 , 𝑢

𝑥, 𝑐), 𝑗 = 1, . . . , 𝑛,

𝑓𝑢𝑥
𝑗
(𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥 + 𝛽𝑒𝑗 , 𝑐), 𝑗 = 1, . . . , 𝑛,

𝑓𝑐𝑗 (𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥, 𝑐 + 𝛽𝑒𝑗), 𝑗 = 1, . . . , 𝑛.

Given these definitions it should be clear how linearity intervals and shadow prices are defined for the
parameters 𝑢𝑐

𝑖 etc.

Equality Constraints

In MOSEK a constraint can be specified as either an equality constraint or a ranged constraint. If
some constraint 𝑒𝑐𝑖 is an equality constraint, we define the optimal value function for this constraint as

𝑓𝑒𝑐𝑖 (𝛽) = 𝑧(𝑙𝑐 + 𝛽𝑒𝑖, 𝑢
𝑐 + 𝛽𝑒𝑖, 𝑙

𝑥, 𝑢𝑥, 𝑐)

Thus for an equality constraint the upper and the lower bounds (which are equal) are perturbed simul-
taneously. Therefore, MOSEK will handle sensitivity analysis differently for a ranged constraint with
𝑙𝑐𝑖 = 𝑢𝑐

𝑖 and for an equality constraint.

The Basis Type Sensitivity Analysis

The classical sensitivity analysis discussed in most textbooks about linear optimization, e.g. [Chvatal83],
is based on an optimal basis. This method may produce misleading results [RTV97] but is computation-
ally cheap. This is the type of sensitivity analysis implemented in MOSEK.

We will now briefly discuss the basis type sensitivity analysis. Given an optimal basic solution which
provides a partition of variables into basic and non-basic variables, the basis type sensitivity analysis
computes the linearity interval [𝛽1, 𝛽2] so that the basis remains optimal for the perturbed problem. A
shadow price associated with the linearity interval is also computed. However, it is well-known that an
optimal basic solution may not be unique and therefore the result depends on the optimal basic solution
employed in the sensitivity analysis. If the optimal objective value function has a breakpoint for 𝛽 = 0
then the basis type sensitivity method will only provide a subset of either the left or the right linearity
interval.

In summary, the basis type sensitivity analysis is computationally cheap but does not provide complete
information. Hence, the results of the basis type sensitivity analysis should be used with care.

Example: Sensitivity Analysis

As an example we will use the following transportation problem. Consider the problem of minimizing the
transportation cost between a number of production plants and stores. Each plant supplies a number of
goods and each store has a given demand that must be met. Supply, demand and cost of transportation
per unit are shown in Fig. 14.3.

If we denote the number of transported goods from location 𝑖 to location 𝑗 by 𝑥𝑖𝑗 , problem can be
formulated as the linear optimization problem of minimizing

1𝑥11 + 2𝑥12 + 5𝑥23 + 2𝑥24 + 1𝑥31 + 2𝑥33 + 1𝑥34

subject to

𝑥11 + 𝑥12 ≤ 400,
𝑥23 + 𝑥24 ≤ 1200,

𝑥31 + 𝑥33 + 𝑥34 ≤ 1000,
𝑥11 + 𝑥31 = 800,

𝑥12 = 100,
𝑥23 + 𝑥33 = 500,

𝑥24 + 𝑥34 = 500,
𝑥11, 𝑥12, 𝑥23, 𝑥24, 𝑥31, 𝑥33, 𝑥34 ≥ 0.

(14.5)

162

Supply Demand

1

2

5

2

1

2

1

Plant 1

Plant 2

Plant 3
Store 4

Store 3

Store 2

Store 1

1000

500

500

800

100

400

1200

Fig. 14.3: Supply, demand and cost of transportation.

The sensitivity parameters are shown in Table 14.1 and Table 14.2.

Table 14.1: Ranges and shadow prices related to bounds on con-
straints and variables.

Con. 𝛽1 𝛽2 𝜎1 𝜎2

1 −300.00 0.00 3.00 3.00
2 −700.00 +∞ 0.00 0.00
3 −500.00 0.00 3.00 3.00
4 −0.00 500.00 4.00 4.00
5 −0.00 300.00 5.00 5.00
6 −0.00 700.00 5.00 5.00
7 −500.00 700.00 2.00 2.00
Var. 𝛽1 𝛽2 𝜎1 𝜎2

𝑥11 −∞ 300.00 0.00 0.00
𝑥12 −∞ 100.00 0.00 0.00
𝑥23 −∞ 0.00 0.00 0.00
𝑥24 −∞ 500.00 0.00 0.00
𝑥31 −∞ 500.00 0.00 0.00
𝑥33 −∞ 500.00 0.00 0.00
𝑥34 −0.000000 500.00 2.00 2.00

Table 14.2: Ranges and shadow prices related to the objective co-
efficients.

Var. 𝛽1 𝛽2 𝜎1 𝜎2

𝑐1 −∞ 3.00 300.00 300.00
𝑐2 −∞ ∞ 100.00 100.00
𝑐3 −2.00 ∞ 0.00 0.00
𝑐4 −∞ 2.00 500.00 500.00
𝑐5 −3.00 ∞ 500.00 500.00
𝑐6 −∞ 2.00 500.00 500.00
𝑐7 −2.00 ∞ 0.00 0.00

163

Examining the results from the sensitivity analysis we see that for constraint number 1 we have
𝜎1 = 3 and 𝛽1 = −300, 𝛽2 = 0.

If the upper bound on constraint 1 is decreased by

𝛽 ∈ [0, 300]

then the optimal objective value will increase by the value

𝜎1𝛽 = 3𝛽.

14.3.2 Sensitivity Analysis with MOSEK
The following describe sensitivity analysis from the MATLAB toolbox.

On bounds

The index of bounds/variables to analyzed for sensitivity are specified in the following subfields of the
MATLAB structure prob:

• .prisen.cons.subu Indexes of constraints, where upper bounds are analyzed for sensitivity.

• .prisen.cons.subl Indexes of constraints, where lower bounds are analyzed for sensitivity.

• .prisen.vars.subu Indexes of variables, where upper bounds are analyzed for sensitivity.

• .prisen.vars.subl Indexes of variables, where lower bounds are analyzed for sensitivity.

• .duasen.sub Index of variables where coefficients are analyzed for sensitivity.

For an equality constraint, the index can be specified in either subu or subl. After calling mosekopt
the results are returned in the subfields prisen and duasen of res.

prisen

The field prisen is structured as follows:

• .cons: a MATLAB structure with subfields:

– .lr_bl Left value 𝛽1 in the linearity interval for a lower bound.
– .rr_bl Right value 𝛽2 in the linearity interval for a lower bound.
– .ls_bl Left shadow price 𝑠𝑙 for a lower bound.
– .rs_bl Right shadow price 𝑠𝑟 for a lower bound.
– .lr_bu Left value 𝛽1 in the linearity interval for an upper bound.
– .rr_bu Right value 𝛽2 in the linearity interval for an upper bound.
– .ls_bu Left shadow price 𝑠𝑙 for an upper bound.
– .rs_bu Right shadow price 𝑠𝑟 for an upper bound.

• .var: MATLAB structure with subfields:

– .lr_bl Left value 𝛽1 in the linearity interval for a lower bound on a varable.
– .rr_bl Right value 𝛽2 in the linearity interval for a lower bound on a varable.
– .ls_bl Left shadow price 𝑠𝑙 for a lower bound on a varable.
– .rs_bl Right shadow price 𝑠𝑟 for lower bound on a varable.
– .lr_bu Left value 𝛽1 in the linearity interval for an upper bound on a varable.
– .rr_bu Right value 𝛽2 in the linearity interval for an upper bound on a varable.
– .ls_bu Left shadow price 𝑠𝑙 for an upper bound on a varables.
– .rs_bu Right shadow price 𝑠𝑟 for an upper bound on a varables.

164

duasen

The field duasen is structured as follows:

• .lr_c Left value 𝛽1 of linearity interval for an objective coefficient.

• .rr_c Right value 𝛽2 of linearity interval for an objective coefficient.

• .ls_c Left shadow price 𝑠𝑙 for an objective coefficients .

• .rs_c Right shadow price 𝑠𝑟 for an objective coefficients.

Example

Consider the problem defined in (14.5). Suppose we wish to perform sensitivity analysis on all bounds
and coefficients. The following example demonstrates this as well as the method for changing between
basic and full sensitivity analysis.

Listing 14.2: A script to perform sensitivity analysis on problem
(14.5).

function sensitivity()

clear prob;

% Obtain all symbolic constants
% defined by MOSEK.
[r,res] = mosekopt('symbcon');
sc = res.symbcon;

prob.blc = [-Inf, -Inf, -Inf, 800,100,500,500];
prob.buc = [400, 1200, 1000, 800,100,500,500];
prob.c = [1.0,2.0,5.0,2.0,1.0,2.0,1.0]';
prob.blx = [0.0,0.0,0.0,0.0,0.0,0.0,0.0];
prob.bux = [Inf,Inf,Inf,Inf, Inf,Inf,Inf];

subi = [1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 6, 6, 7, 7];
subj = [1, 2, 3, 4, 5, 6, 7, 1, 5, 6, 3, 6, 4, 7];
val = [1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0];

prob.a = sparse(subi,subj,val);

% analyse upper bound 1:7
prob.prisen.cons.subl = [];
prob.prisen.cons.subu = [1:7];
% analyse lower bound on variables 1:7
prob.prisen.vars.subl = [1:7];
prob.prisen.vars.subu = [];
% analyse coeficient 1:7
prob.duasen.sub = [1:7];
[r,res] = mosekopt('minimize echo(0)',prob);

%Print results

fprintf('\nBasis sensitivity results:\n')
fprintf('\nSensitivity for bounds on constraints:\n')
for i = 1:length(prob.prisen.cons.subl)

fprintf (...
'con = %d, beta_1 = %.1f, beta_2 = %.1f, delta_1 = %.1f,delta_2 = %.1f\n', ...
prob.prisen.cons.subl(i),res.prisen.cons.lr_bl(i), ...

(continues on next page)

165

(continued from previous page)

res.prisen.cons.rr_bl(i),...
res.prisen.cons.ls_bl(i),...
res.prisen.cons.rs_bl(i));

end

for i = 1:length(prob.prisen.cons.subu)
fprintf (...
'con = %d, beta_1 = %.1f, beta_2 = %.1f, delta_1 = %.1f,delta_2 = %.1f\n', ...
prob.prisen.cons.subu(i),res.prisen.cons.lr_bu(i), ...
res.prisen.cons.rr_bu(i),...
res.prisen.cons.ls_bu(i),...
res.prisen.cons.rs_bu(i));

end
fprintf('Sensitivity for bounds on variables:\n')
for i = 1:length(prob.prisen.vars.subl)
fprintf (...
'var = %d, beta_1 = %.1f, beta_2 = %.1f, delta_1 = %.1f,delta_2 = %.1f\n', ...
prob.prisen.vars.subl(i),res.prisen.vars.lr_bl(i), ...
res.prisen.vars.rr_bl(i),...
res.prisen.vars.ls_bl(i),...
res.prisen.vars.rs_bl(i));

end

for i = 1:length(prob.prisen.vars.subu)
fprintf (...
'var = %d, beta_1 = %.1f, beta_2 = %.1f, delta_1 = %.1f,delta_2 = %.1f\n', ...
prob.prisen.vars.subu(i),res.prisen.vars.lr_bu(i), ...
res.prisen.vars.rr_bu(i),...
res.prisen.vars.ls_bu(i),...
res.prisen.vars.rs_bu(i));

end

fprintf('Sensitivity for coefficients in objective:\n')
for i = 1:length(prob.duasen.sub)

fprintf (...
'var = %d, beta_1 = %.1f, beta_2 = %.1f, delta_1 = %.1f,delta_2 = %.1f\n', ...
prob.duasen.sub(i),res.duasen.lr_c(i), ...
res.duasen.rr_c(i),...
res.duasen.ls_c(i),...
res.duasen.rs_c(i));

end

The output from running the example in Listing 14.2 is shown below.

Sensitivity for bounds on constraints:
con = 1, beta_1 = -300.0, beta_2 = 0.0, delta_1 = 3.0,delta_2 = 3.0
con = 2, beta_1 = -700.0, beta_2 = Inf, delta_1 = 0.0,delta_2 = 0.0
con = 3, beta_1 = -500.0, beta_2 = 0.0, delta_1 = 3.0,delta_2 = 3.0
con = 4, beta_1 = -0.0, beta_2 = 500.0, delta_1 = 4.0,delta_2 = 4.0
con = 5, beta_1 = -0.0, beta_2 = 300.0, delta_1 = 5.0,delta_2 = 5.0
con = 6, beta_1 = -0.0, beta_2 = 700.0, delta_1 = 5.0,delta_2 = 5.0
con = 7, beta_1 = -500.0, beta_2 = 700.0, delta_1 = 2.0,delta_2 = 2.0
Sensitivity for bounds on variables:
var = 1, beta_1 = Inf, beta_2 = 300.0, delta_1 = 0.0,delta_2 = 0.0
var = 2, beta_1 = Inf, beta_2 = 100.0, delta_1 = 0.0,delta_2 = 0.0
var = 3, beta_1 = Inf, beta_2 = 0.0, delta_1 = 0.0,delta_2 = 0.0
var = 4, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 0.0

(continues on next page)

166

(continued from previous page)

var = 5, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 0.0
var = 6, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 0.0
var = 7, beta_1 = -0.0, beta_2 = 500.0, delta_1 = 2.0,delta_2 = 2.0
Sensitivity for coefficients in objective:
var = 1, beta_1 = Inf, beta_2 = 3.0, delta_1 = 300.0,delta_2 = 300.0
var = 2, beta_1 = Inf, beta_2 = Inf, delta_1 = 100.0,delta_2 = 100.0
var = 3, beta_1 = -2.0, beta_2 = Inf, delta_1 = 0.0,delta_2 = 0.0
var = 4, beta_1 = Inf, beta_2 = 2.0, delta_1 = 500.0,delta_2 = 500.0
var = 5, beta_1 = -3.0, beta_2 = Inf, delta_1 = 500.0,delta_2 = 500.0
var = 6, beta_1 = Inf, beta_2 = 2.0, delta_1 = 500.0,delta_2 = 500.0
var = 7, beta_1 = -2.0, beta_2 = Inf, delta_1 = 0.0,delta_2 = 0.0

167

Chapter 15

Toolbox API Reference

• General API conventions.

• Command reference:

– Complete list of functions
– mosekopt - the main interface
– Data structures

• Optimizer parameters:

– Double, Integer , String
– Full list
– Browse by topic

• Optimizer information items:

– Double , Integer , Long

• Optimizer response codes

• Constants

• Functions compatible with the MATLAB Optimization Toolbox

• List of supported domains

15.1 API conventions

Problem setup

An optimization problem in Optimization Toolbox for MATLAB is specified using the prob structure.
The specification of numerical part of the data can be found in Sec. 15.3.1.

Constants

Constants mentioned in Sec. 15.7 and Sec. 15.5 can be used as strings or as symbolic constants. To get
the structure with all symbolic constants available execute:

[r, res] = mosekopt('symbcon');

They can later be used simply as, for example:

res.symbcon.MSK_IPAR_OPTIMIZER

168

15.2 Command Reference

The MOSEK toolbox provides a set of functions to interface to the MOSEK solver.

Main interface

mosekopt is the main interface to MOSEK.

Helper functions

These functions provide an easy-to-use but less flexible interface than the mosekopt function. They are
just wrappers around the mosekopt interface written in MATLAB.

• msklpopt : Solves linear optimization problems.

• mskqpopt : Solves quadratic optimization problems.

Options

Functions for manipulating parameter values.

• mskoptimget : Get the solver parameters.

• mskoptimset : Set the solver parameters.

MATLAB Optimization Toolbox compatible functions.

Functions that override standard functions from the MATLAB Optimization Toolbox (the user may
choose not to install those).

• linprog : Solves linear optimization problems.

• quadprog : Solves quadratic optimization problems.

• intlinprog : Solves linear optimization problems with integer variables.

• lsqlin : Solves least-squares with linear constraints.

• lsqnonneg : Solves least-squares with non-negativity constraints.

15.2.1 Main Interface

rcode, res = mosekopt(cmd, prob, param, callback, optserver)
Solves an optimization problem. Data specifying the optimization problem can either be read from
a file or be inputted directly from MATLAB. It also makes it possible to write a file and provides
other functionalities.

The behavior is specified by the cmd parameter which recognizes the following commands:

• anapro: Runs the problem analyzer.
• echo(n): Controls how much log information is printed to the screen. n must be a nonnegative

integer, where 0 means silent. See Sec. 7.3.1.
• info: Return the complete task information database in res.info. See Sec. 7.5.
• param: Return the complete parameter database in res.param. See Sec. 7.4.
• primalrepair: Performs a primal feasibility repair. See Sec. 14.2.
• maximize: Maximize the objective.
• max : Sets the objective sense (similar to maximize), without performing an optimization.
• minimize: Minimize the objective.
• min: Sets the objective sense (similar to minimize), without performing an optimization.
• nokeepenv: Release resources related to the MOSEK environment. In particular, check in

all the licenses currently checked out, see Sec. 10.5.

169

• read(name): Request that data is read from a file name. See Sec. 7.3.4.
• statuskeys(n): Controls the format of status keys (problem status, solution status etc.) in

the returned problem:
– statuskeys(0) – all the status keys are returned as strings,
– statuskeys(1) – all the status keys are returned as numeric codes.

• symbcon: Return the list of symbolic constants in res.symbcon.
• write(name): Write problem to the file name. See Sec. 7.3.3.
• log(name): Write solver log output to the file name. See Sec. 7.3.1.
• version: Return the MOSEK version numbers in res.version.
• debug(n): Prints debug information including license paths. n must be a nonnegative integer

which determines how much to print.
• toconic prob: Deprecated! Convert a quadratic problem to conic form.
• lic: Provide a license code as the last argument.

Parameters
• cmd (string) – The commands to be executed. By default it takes the value
minimize.

• prob (prob) – A structure containing the problem data. (optional)
• param (struct) – A structure specifying MOSEK parameters. See Sec. 7.4.

(optional)
• callback (callback) – A MATLAB structure defining call-back data and func-

tions. See Sec. 7.6. (optional)
• optserver (optserver) – A MATLAB structure specifying the OptServer to be

used for remote optimization. (optional)
Return

• rcode (rescode) – A response code. See also Sec. 7.1.
• res (res) – A structure containing solutions and other results from the call. See

Sec. 7.1.

15.2.2 Helper Functions

res = msklpopt(c, a, blc, buc, blx, bux, param, cmd)
Solves a linear optimization problem of the form

minimize 𝑐𝑇𝑥
subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

blc=[] and buc=[] mean that the lower and upper bounds are −∞ and +∞, respectively. The
same interpretation is used for blx and bux. The value -inf is allowed in blc and blx. Similarly,
inf is allowed in buc and bux.

Parameters
• [in] (string cmd) – The objective function vector.
• [in] – A (preferably sparse) matrix.
• [in] – Constraints lower bounds.
• [in] – Constraints upper bounds.
• [in] – Variables lower bounds.
• [in] – Variables upper bounds.
• [in] – MOSEK parameters. (optional)
• [in] – The command list. See mosekopt for a list of available commands.

(optional)
Return

res (res) – Solution information.

170

res = mskqpopt(q, c, a, blc, buc, blx, bux, param, cmd)
Solves the optimization problem

minimize 1
2𝑥

𝑇𝑄𝑥 + 𝑐𝑇𝑥
subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

blc=[] and buc=[] mean that the lower and upper bounds are −∞ and +∞, respectively. The
same interpretation is used for blx and bux. The value -inf is allowed in blc and blx. Similarly,
inf is allowed in buc and bux.

Parameters
• q (double[]) – The matrix 𝑄, which must be symmetric positive semidefinite.
• [in] (string cmd) – The objective function vector.
• a (double[][]) – A (preferably) sparse matrix.
• [in] – Constraints lower bounds.
• [in] – Constraints upper bounds
• [in] – Variables lower bounds
• [in] – Variables upper bounds
• [in] – MOSEK parameters. (optional)
• [in] – The command list. See mosekopt for a list of available commands.

(optional)
Return

res (res) – Solution information.

15.2.3 Options

val = mskoptimget(options, param, default)
Obtains the value of an optimization parameter. See the mskoptimset function for which param-
eters that can be set.

Parameters
• [in] (string default) – The optimization options structure.
• [in] – Name of the optimization parameter for which the value should be ob-

tained.
• [in] – If param is not defined, the value of default is returned instead. (op-

tional)
Return

val (list) – Value of the required option. If the option does not exist, then []
is returned unless the value default is defined in which case the default value is
returned.

options = mskoptimset(arg1, arg2, param1, value1, param2, value2, ...)
Obtains and modifies the optimization options structure. Only a subset of the fields in the opti-
mization structure recognized by the MATLAB Optimization Toolbox is recognized by MOSEK.
In addition the optimization options structure can be used to modify all the MOSEK specific
parameters defined in Sec. 15.5.

• .Diagnostics Used to control how much diagnostic information is printed. Following values
are accepted:

off No diagnostic information is printed.
on Diagnostic information is printed.

• .Display Defines what information is displayed. The following values are accepted:

off No output is displayed.
iter Some output is displayed for each iteration.
final Only the final output is displayed.

171

• .MaxIter Maximum number of iterations allowed.

• .Write A file name to write the problem to. If equal to the empty string no file is written.
E.g the option Write(myfile.opf) writes the file myfile.opf in the opf format.

Parameters
• [in] (None value2) – Is allowed to be any of the following two things (optional):

– Any string — The same as using no argument.
– A structure — The argument is assumed to be a structure containing options,

which are copied to the return options.
• [in] – A string containing the name of a parameter that should be modified.

(optional)
• [in] – The new value assigned to the parameter with the name param1. (op-

tional)
• [in] – See param1. (optional)
• [in] – See value1. (optional)

Return
options (struct) – The updated optimization options structure.

15.2.4 MATLAB Optimization Toolbox Compatible Functions.

x, fval, exitflag, output = intlinprog(f, intcon, A, b, B, c, l, u, options)
x, fval, exitflag, output = intlinprog(problem)

Solves the mixed-integer linear optimization problem:

minimize 𝑓𝑇𝑥
subject to 𝐴𝑥 ≤ 𝑏,

𝐵𝑥 = 𝑐,
𝑙 ≤ 𝑥 ≤ 𝑢,

𝑥(intcon) ∈ Z.

Parameters
• [in] (struct problem) – The objective function.
• [in] – The list of variables constrained to the set Z.
• [in] – Constraint matrix for the inequalities. Use A=[] if there are no inequali-

ties.
• [in] – Right-hand side for the inequalities. Use b=[] if there are no inequalities.
• [in] – Constraint matrix for the equalities. (optional)
• [in] – Right-hand side for the equalities. (optional)
• [in] – Lower bounds for variables. Use -inf to represent infinite lower bounds.

(optional)
• [in] – Upper bounds for variables. Use inf to represent infinite upper bounds.

(optional)
• [in] – An optimization options structure. See the mskoptimset function for the

definition of the optimization options structure (optional). This function uses
the options
– .Diagnostics
– .Display
– .MaxTime Time limit in seconds.
– .MaxNodes The maximum number of branch-and-bounds allowed.
– .Write Name of file to save the problem.

• [in] – A structure containing the fields f, intcon, A, b, B, c, l, u and
options.

Return
• x (double[]) – The solution 𝑥.

172

• fval (double) – The objective 𝑓𝑇𝑥.
• exitflag (int) – A number which has the interpretation:

– 1 The function returned an integer feasible solution.
– −2 The problem is infeasible.
– −4 MaxNodes reached without converging.
– −5 MaxTime reached without converging.

x, fval, exitflag, output, lambda = linprog(f, A, b, B, c, l, u, options)
x, fval, exitflag, output, lambda = linprog(problem)

Solves the linear optimization problem:

minimize 𝑓𝑇𝑥
subject to 𝐴𝑥 ≤ 𝑏,

𝐵𝑥 = 𝑐,
𝑙 ≤ 𝑥 ≤ 𝑢.

Parameters
• [in] (struct lambda) – The objective function.
• [in] – Constraint matrix for the inequalities. Use 𝐴 = [] if there are no inequal-

ities.
• [in] – Right-hand side for the inequalities. Use 𝑏 = [] if there are no inequalities.
• [in] – Constraint matrix for the equalities. (optional)
• [in] – Right-hand side for the equalities. (optional)
• [in] – Lower bounds on the variables. Use -inf to represent infinite lower

bounds. (optional)
• [in] – Upper bounds on the variables. Use inf to represent infinite upper

bounds. (optional)
• [in] – An optimization options structure (optional). See the mskoptimset

function for the definition of the optimization options structure. This function
uses the options
– .Diagnostics
– .Display
– .MaxIter
– .Simplex Choose the simplex algorithm: 'on' — the optimizer chooses wither

primal or dual simplex (as in "MSK_OPTIMIZER_FREE_SIMPLEX"), 'primal' —
use primal simplex, 'dual' — use dual simplex. The 'primal' and 'dual'
values are specific for the MOSEK interface, and not present in the standard
MATLAB version.

– .Write Name of file to save the problem.
• [in] – structure containing the fields f, A, b, B, c, l, u and options.
• [in] – A structure with the following fields

– .iterations Number of interior-point iterations spent to reach the optimum.
– .algorithm Always defined as 'MOSEK'.

• [in] – A struct with the following fields
– .lower Lagrange multipliers for lower bounds 𝑙.
– .upper Lagrange multipliers for upper bounds 𝑢.
– .ineqlin Lagrange multipliers for the inequalities.
– .eqlin Lagrange multipliers for the equalities.

Return
• x (double[]) – The optimal 𝑥 solution.
• fval (double) – The optimal objective value, i.e. 𝑓𝑇𝑥.
• exitflag (int) – A number which has the interpretation [in]:

– < 0 The problem is likely to be either primal or dual infeasible.
– = 0 The maximum number of iterations was reached.
– > 0 𝑥 is an optimal solution.

173

x, resnorm, residual, exitflag, output, lambda = lsqlin(C, d, A, b, B, c, l, u, x0, options)
Solves the linear least squares problem:

minimize 1
2 ‖𝐶𝑥− 𝑑‖22

subject to 𝐴𝑥 ≤ 𝑏,
𝐵𝑥 = 𝑐,
𝑙 ≤ 𝑥 ≤ 𝑢.

Parameters
• [in] (struct options) – The matrix in the objective.
• [in] – The vector in the objective.
• [in] – Constraint matrix for the inequalities. Use 𝐴 = [] if there are no inequal-

ities.
• [in] – Right-hand side for the inequalities. Use 𝑏 = [] if there are no inequalities.
• [in] – Constraint matrix for the equalities. (optional)
• [in] – Right-hand side for the equalities. (optional)
• [in] – Lower bounds on the variables. Use -inf to represent infinite lower

bounds. (optional)
• [in] – Upper bounds on the variables. Use inf to represent infinite upper

bounds. (optional)
• [in] – Ignored by MOSEK. (optional)
• [in] – An optimization options structure (optional). See the function
mskoptimset function for the definition of the optimization options structure.
This function uses the options
– .Diagnostics
– .Display
– .MaxIter
– .Write

Return
• x (double[]) – The optimal 𝑥 solution.
• resnorm (double) – The squared norm of the optimal residuals, i.e. ‖𝐶𝑥− 𝑑‖22

evaluated at the optimal solution.
• residual (double) – The residual 𝐶𝑥− 𝑑.
• exitflag (int) – A scalar which has the interpretation:

– < 0 The problem is likely to be either primal or dual infeasible.
– = 0 The maximum number of iterations was reached.
– > 0 𝑥 is the optimal solution.

• output (struct) –
– .iterations Number of iterations spent to reach the optimum.
– .algorithm Always defined as 'MOSEK'.

• lambda (struct) –
– .lower Lagrange multipliers for lower bounds 𝑙.
– .upper Lagrange multipliers for upper bounds 𝑢.
– .ineqlin Lagrange multipliers for inequalities.
– .eqlin Lagrange multipliers for equalities.

x, resnorm, residual, exitflag, output, lambda = lsqnonneg(C, d, x0, options)
Solves the linear least squares problem:

minimize 1
2 ‖𝐶𝑥− 𝑑‖22

subject to 𝑥 ≥ 0.

Parameters
• [in] (struct options) – The matrix in the objective.

174

• [in] – The vector in the objective.
• [in] – Ignored by MOSEK. (optional)
• [in] – An optimization options structure (optional). See the mskoptimset

function for the definition of the optimization options structure. This function
uses the options
– .Diagnostics
– .Display
– .MaxIter
– .Write

Return
• x (double[]) – The 𝑥 solution.
• resnorm (double) – The squared norm of the optimal residuals, i.e. ‖𝐶𝑥− 𝑑‖22

evaluated at the optimal solution.
• exitflag (int) – A number which has the interpretation:

– < 0 The problem is likely to be either primal or dual infeasible.
– = 0 The maximum number of iterations was reached.
– > 0 𝑥 is optimal solution.

• output (struct) –
– .iterations Number of iterations spend to reach the optimum.
– .algorithm Always defined to be 'MOSEK'.

• lambda (struct) –
– .lower Lagrange multipliers for lower bounds 𝑙.
– .upper Lagrange multipliers for upper bounds 𝑢.
– .ineqlin Lagrange multipliers for inequalities.
– .eqlin Lagrange multipliers for equalities.

x, fval, exitflag, output, lambda = quadprog(H, f, A, b, B, c, l, u, x0, options)
Solves the quadratic optimization problem:

minimize 1
2𝑥

𝑇𝐻𝑥 + 𝑓𝑇𝑥
subject to 𝐴𝑥 ≤ 𝑏,

𝐵𝑥 = 𝑐,
𝑙 ≤ 𝑥 ≤ 𝑢.

Parameters
• [in] (struct options) – Hessian of the objective function. The matrix 𝐻 must

be symmetric positive semidefinite. Contrary to the MATLAB optimization
toolbox, MOSEK handles only the cases where 𝐻 is positive semidefinite. On
the other hand MOSEK always computes a global optimum.

• [in] – The linear term of the objective.
• [in] – Constraint matrix for the inequalities. Use 𝐴 = [] if there are no inequal-

ities.
• [in] – Right-hand side for the inequalities. Use 𝑏 = [] if there are no inequalities.
• [in] – Constraint matrix for the equalities. (optional)
• [in] – Right-hand side for the equalities. (optional)
• [in] – Lower bounds on the variables. Use -inf to represent infinite lower

bounds. (optional)
• [in] – Upper bounds on the variables. Use inf to represent infinite upper

bounds. (optional)
• [in] – Ignored by MOSEK. (optional)
• [in] – An optimization options structure (optional). See the mskoptimset

function for the definition of the optimizations options structure. This function
uses the options
– .Diagnostics

175

– .Display
– .MaxIter
– .Write

Return
• x (double[]) – The 𝑥 solution.
• fval (double) – The optimal objective value i.e. 1

2𝑥
𝑇𝐻𝑥 + 𝑓𝑇𝑥.

• exitflag (int) – A scalar which has the interpretation:
– < 0 The problem is likely to be either primal or dual infeasible.
– = 0 The maximum number of iterations was reached.
– > 0 𝑥 is an optimal solution.

• output (struct) – A structure with the following fields
– .iterations Number of iterations spent to reach the optimum.
– .algorithm Always defined as 'MOSEK'.

• lambda (struct) – A structure with the following fields
– .lower Lagrange multipliers for lower bounds 𝑙.
– .upper Lagrange multipliers for upper bounds 𝑢.
– .ineqlin Lagrange multipliers for inequalities.
– .eqlin Lagrange multipliers for equalities.

15.3 Data Structures and Notation

We specify the notation and data structures used in the interface.

Problem definition

• prob — describes an optimization problem.

• accs — structure of affine conic constraints.

• names — names of objects in the optimization problem.

• barc , bara , barf — description of the semidefinite part.

Solutions

• res — result returned by mosekopt .

• solver_solutions — solutions.

• solution — one solution.

Other

• primal_repair — used in feasibility repair.

• prisen , prisen_data , duasen — used in sensitivity analysis.

• callback — used to set up a callback function.

• optserver — used to set up remote optimization.

176

15.3.1 Notation
The mathematical formulations of problem types solvable by MOSEK are discussed in full detail in Sec.
12. Here we summarize them in the context of the Optimization Toolbox for MATLAB API.

Linear problem

A linear problem has the form:

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

(15.1)

It has 𝑛 variables and 𝑚 linear constraints. See Sec. 12.1.

Conic problem

A conic problem with affine conic constraints (ACC) is an extension of a linear problem and has the
form:

minimize 𝑐𝑇𝑥 + ⟨𝐶,𝑋⟩ + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 + ⟨𝐴,𝑋⟩ ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + ⟨𝐹 ,𝑋⟩ + 𝑔 ∈ 𝒟,
𝑋 ∈ 𝒮+,

(15.2)

where 𝒟 is a product of domains from Sec. 15.8 and 𝒮+ is a product of PSD cones meaning that 𝑋 is a
sequence of PSD matrix variables. The available conic domain types are listed in Sec. 15.8.

Quadratic and quadratically constrained problems

A problem with quadratic objective or constraints has the form:

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 1
2𝑥

𝑇𝑄𝑐𝑥 + 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

(15.3)

It has 𝑛 variables, and 𝑚 constraints. The matrix 𝑄𝑜 = (𝑞𝑜𝑖𝑗)𝑖=1,...,𝑛,𝑗=1,...,𝑛 must be symmetric positive
semidefinite. See also Sec. 12.4. Each of the matrices 𝑄𝑖 = (𝑞𝑖𝑗𝑘)𝑗=1,...,𝑛,𝑘=1,...,𝑛 for 𝑗 = 1 . . . ,𝑚 must be

• negative semidefinite if −∞ < 𝑙𝑐𝑖 , 𝑢𝑐
𝑖 = +∞,

• positive semidefinite if −∞ = 𝑙𝑐𝑖 , 𝑢𝑐
𝑖 < +∞,

• zero otherwise.

Mixed-integer problems

All problems without semidefinite variables or domains may be integer-constrained, i.e., for some set
𝒥 ⊆ {1, . . . , 𝑛} we require

𝑥𝑗 ∈ Z for all 𝑗 ∈ 𝒥 (15.4)

Minimization vs. Maximization

The objective of every problem can be maximized rather than minimized without any change. In case
of quadratic problems the matrix 𝑄𝑜 must be negative semidefinite.

177

Data specification in MATLAB

• The linear constraint matrix 𝐴 = (𝑎𝑖𝑗)𝑖=1...,𝑚,𝑗=1,...,𝑛 must be a sparse matrix. The dimensions of
𝐴 are used to determine the number of constraints 𝑚 and the number of variables 𝑛 in the problem.

• The affine conic constraint matrix 𝐹 = (𝑓𝑖𝑗)𝑖=1...,𝑘,𝑗=1,...,𝑛 must be a sparse matrix. The dimensions
of 𝐹 are used to determine the total dimension of all conic domains in 𝒟.

• The symmetric matrices 𝑄𝑜, 𝑄𝑖, 𝐶𝑗 , 𝐴𝑖𝑗 , 𝐹 𝑖𝑗 are specified in sparse triplet format discarding zero
elements, and since they are symmetric, only the lower triangular parts should be specified. A
generic matrix 𝑀 specified in sparse triplet format is given by three arrays subi, subj and val of
the same length such that

𝑀subi[t],subj[t] = val[t], 𝑡 = 1, . . . , len(val)

• For a specification of the domains 𝒟 see accs .

• For a specification of the semidefinite part see barf , bara and barc .

The parameters of the optimization problem are stored using one or more subfields of the prob
structure using the naming convention in Table 15.1. Only a is obligatory. All other fields are optional
depending on what problem type is defined.

Table 15.1: The relation between fields and problem parameters

Field name Type Dimension Problem parameters

a sparse matrix 𝑚× 𝑛 𝑎𝑖𝑗
c double[] 𝑛 𝑐𝑗
cfix double 1 𝑐𝑓

blc double[] 𝑚 𝑙𝑐𝑖
buc double[] 𝑚 𝑢𝑐

𝑖

blx double[] 𝑛 𝑙𝑥𝑗
bux double[] 𝑛 𝑢𝑥

𝑗

ints.subs int[] |𝒥 | 𝒥
cones cones 𝒦
f sparse matrix 𝑘 × 𝑛 𝐹
g double[] 𝑘 𝑔
bardim int[] 𝑠 𝑟𝑗
barc barc 𝐶𝑗

bara bara 𝐴𝑖𝑗

barf barf 𝐹 𝑖𝑗

qosubi int[] len(qoval) 𝑞𝑜𝑖𝑗 , sparse rep.
qosubj int[] len(qoval) 𝑞𝑜𝑖𝑗 , sparse rep.
qoval double[] len(qoval) 𝑞𝑜𝑖𝑗 , sparse rep.
qcsubk int[] len(qcval) 𝑞𝑘𝑖𝑗 , sparse rep.
qcsubi int[] len(qcval) 𝑞𝑘𝑖𝑗 , sparse rep.
qcsubj int[] len(qcval) 𝑞𝑘𝑖𝑗 , sparse rep.
qcval double[] len(qcval) 𝑞𝑘𝑖𝑗 , sparse rep.

The int type indicates that the field must contain an integer value, double indicates any real number.
This distinction is only a convenience for the reader — all actual data structures in MATLAB are ordinary
matrices/arrays of floating-point numbers.

The sparse representation of quadratic terms is:

𝑞𝑜qosubi(t),qoval(t) = qoval(t), 𝑡 = 1, 2, . . . , length(qoval),

𝑞
qcsubk(t)
qcsubi(t),qcsubj(t) = qcval(t), 𝑡 = 1, 2, . . . , length(qcval).

(15.5)

Since 𝑄𝑜, 𝑄𝑖 are by assumption symmetric, all elements are assumed to belong to the lower triangular
part. If an element is specified multiple times, the different elements are added together.

178

15.3.2 Data Types and Structures

prob

The prob data structure is used to communicate an optimization problem to MOSEK or for
MOSEK to return an optimization problem to the user. It defines an optimization problem using
a number of subfields. Most of the fields are optional, depending on what problem type is being
solved.

Fields
• names (names) – A structure which contains the names of the problem, variables,

constraints and so on.
• a (double[][]) – The linear constraint matrix. It is obligatory, and its dimensions

define the number of variables and constraints. It must be a sparse matrix.
This field should always be defined, even if the problem does not have any con-
straints. In that case a sparse matrix having zero rows and the correct number
of columns is the appropriate definition of the field.

• c (double[]) – Linear term in the objective.
• cfix (double) – Fixed term in the objective.
• blc (double[]) – Lower bounds of the constraints. −∞ denotes an infinite lower

bound. If the field is not defined or blc==[], then all the lower bounds are
assumed to be equal to −∞.

• buc (double[]) – Upper bounds of the constraints. ∞ denotes an infinite upper
bound. If the field is not defined or buc==[], then all the upper bounds are
assumed to be equal to ∞.

• blx (double[]) – Lower bounds on the variables. −∞ denotes an infinite lower
bound. If the field is not defined or blx==[], then all the lower bounds are
assumed to be equal to −∞.

• bux (double[]) – Upper bounds on the variables. ∞ denotes an infinite upper
bound. If the field is not defined or bux==[], then all the upper bounds are
assumed to be equal to ∞.

• bardim (int[]) – A list with the dimensions of the semidefinite variables.
• barc (barc) – A structure for specifying 𝐶𝑗 .
• bara (bara) – A structure for specifying 𝐴𝑖𝑗 .
• qosubi (int[]) – 𝑖 subscripts in the sparse specification of 𝑞𝑜𝑖𝑗 in 𝑄𝑜. See (15.5).
• qosubj (int[]) – 𝑗 subscripts in the sparse specification of 𝑞𝑜𝑖𝑗 in 𝑄𝑜. See (15.5).
• qoval (double[]) – Numerical values in the sparse specification of 𝑞𝑜𝑖𝑗 in 𝑄𝑜. See

(15.5).
• qcsubk (int[]) – 𝑘 subscripts in the sparse specification of 𝑞𝑘𝑖𝑗 in 𝑄𝑘. See (15.5)
• qcsubi (int[]) – 𝑖 subscripts in the sparse specification of 𝑞𝑘𝑖𝑗 in 𝑄𝑘. See (15.5)
• qcsubj (double[]) – 𝑗 subscripts in the sparse specification of 𝑞𝑘𝑖𝑗 in 𝑄𝑘. See

(15.5)
• qcval (double[]) – Numerical values in the sparse specification of 𝑞𝑘𝑖𝑗 in 𝑄𝑘. See

(15.5)
• accs (accs) – A structure defining the structural data (list of domains) for affine

conic constraints (ACC), see (15.2).
• f (double[][]) – The matrix of affine conic constraints. It must be a sparse matrix.
• g (double[]) – The constant term of affine conic constraints. If not present or
g==[] it is assumed 𝑔 = 0.

• barf (barf) – A structure for specifying 𝐹 𝑖𝑗 .
• cones (cones) – Deprecated.
• ints.sub (int[]) – A list of indexes of integer-constrained variables. ints.sub is

identical to the set | in (15.4).
• sol (solver_solutions) – A structure containing a guess on the optimal solu-

tion which some of the optimizers in MOSEK may exploit.

179

• primlarepair (primal_repair) – Specification of primal feasibility repair. See
Sec. 14.2.1.

• prisen (prisen) – Request sensitivity analysis. See Sec. 14.3.
• duasen (duasen) – Request sensitivity analysis. See Sec. 14.3.

res
Contains a response from mosekopt .

Fields
• sol (solver_solutions) – A structure containing solutions (if any).
• rcode (int) – The numerical response code from the solver. See Sec. 7.2.
• rcodestr (string) – The response code from the solver as a symbolic string. See

Sec. 7.2.
• rmsg (string) – A message explaining the error (if any). See Sec. 7.2.
• info (struct) – A structure containing information items (if requested by the

command info in mosekopt). See Sec. 7.5.
• prob (prob) – Contains the problem data, if the command read was used to

read a problem from a file. See Sec. 7.3.4.
• param (struct) – A structure which contains the complete MOSEK parameter

database (if requested by the command param in mosekopt). See Sec. 7.4.
• symbcon (struct) – A structure which contains symbolic constants and their

numerical values (if requested by the command symbcon in mosekopt). See Sec.
15.7 and Sec. 15.6.

• version (struct) – A structure which contains the MOSEK version numbers (if
requested by the command version in mosekopt).

• prisen (prisen) – A structure with results of sensitivity analysis (if requested
by passing prisen data in prob). See Sec. 14.3.

• duasen (duasen) – A structure with results of sensitivity analysis (if requested
by passing duasen data in prob). See Sec. 14.3.

solver_solutions
It contains informations about initial/final solutions. Availability of solutions depends on the
problem/algorithm type, see Sec. 7.1.2.

Fields
• itr (solution) – Interior solution.
• bas (solution) – Basic solution.
• int (solution) – Integer solution.

solution
Stores information about one solution. See Sec. 7.1.2.

Fields
• prosta (string) – Problem status (prosta).
• solsta (string) – Solution status (solsta).
• skc (string[]) – Linear constraint status keys (stakey).
• skx (string[]) – Variable status keys (stakey).
• skn (string[]) – Conic constraint status keys (stakey , not in basic solution).
• xc (double[]) – Constraint activities, i.e., 𝑥𝑐 = 𝐴𝑥 where 𝑥 is the optimal solution.
• xx (double[]) – The optimal 𝑥 solution.
• barx (list) – Semidefinite variable solution (not in basic solution).
• y (double[]) – Identical to sol.slc-sol.suc (not in integer solution).
• slc (double[]) – Dual variable for constraint lower bounds (not in integer solu-

tion).
• suc (double[]) – Dual variable for constraint upper bounds (not in integer solu-

tion).

180

• slx (double[]) – Dual variable for variable lower bounds (not in integer solution).
• sux (double[]) – Dual variable for variable upper bounds (not in integer solution).
• snx (double[]) – Dual variable of conic constraints (not in basic or integer solu-

tion).
• doty (double[]) – Dual variables of affine conic constraints (not in basic or integer

solution).
• bars (list) – Dual variable of semidefinite domains (not in basic or integer solu-

tion).
• pobjval (double) – The primal objective value.
• dobjval (double) – The dual objective value (not in integer solution).

names

This structure is used to store all the names of individual items in the optimization problem such
as the constraints and the variables.

Fields
• name (string) – contains the problem name.
• obj (string) – contains the name of the objective.
• con (cell) – a cell array where names.con{i} contains the name of the 𝑖-th

constraint.
• var (cell) – a cell array where names.var{j} contains the name of the 𝑗-th

variable.
• acc (cell) – a cell array where names.acc{j} contains the name of the 𝑗-th affine

conic constraint.
• cone (cell) – Deprecated.
• barvar (cell) – a cell array where names.barvar{j} contains the name of the
𝑗-th semidefinite variable.

cones

Deprecated. Represents structural information for old style cones. Use accs instead. If necessary
consult the manual for version 9.

accs

Represents structural information about affine conic constraints (ACC). The numerical data is
contained in prob.f, prob.g and barf .

For a problem with 𝑠 affine conic constraints 𝐹𝑥+ ⟨𝐹 ,𝑋⟩+ 𝑔 ∈ 𝒟, where 𝒟 = 𝒟1 × · · ·×𝒟𝑠, accs
is a list consisting of 𝑠 concatenated conic domain descriptions. For a list of domains see Sec. 15.8.

If a domain definition requires no additional parameters (quadratic, rotated quadratic, exponential,
geometric mean, linear) then its description is

[type, len]

where type is the type (domaintype) and len is the length (dimension). The length must be
present.

Any additional parameters defining the domain should follow. Currently this is only the case for
the power cones, whose description has the form

[type, len, 𝑛𝑙, 𝛼1, . . . , 𝛼𝑛𝑙
]

where 𝑛𝑙 is integer and 𝛼1, . . . , 𝛼𝑛𝑙
∈ R are the additional parameters.

Example. Suppose we have two affine conic constraints: one with a quadratic cone of dimension
5 and one with a power cone 𝒫(40,60)

4 . Then 𝒟 = 𝒬5 × 𝒫(40,60)
4 . We specify this data as

prob.accs = [res.symbcon.MSK_DOMAIN_QUADRATIC_CONE 5 res.symbcon.MSK_DOMAIN_
→˓PRIMAL_POWER_CONE, 4, 2, 40.0, 60.0];

181

barc

Together with field bardim this structure specifies the symmetric matrices 𝐶𝑗 in the objective for
semidefinite problems.
The symmetric matrices are specified in block-triplet format as

[𝐶barc.subj(t)]barc.subk(t),barc.subl(t) = barc.val(t), 𝑡 = 1, 2, . . . , length(barc.subj).

Only the lower triangular parts of 𝐶𝑗 are specified, i.e., it is required that

barc.subk(t) ≥ barc.subl(t), 𝑡 = 1, 2, . . . , length(barc.subk),

and that

1 ≤ barc.subk(t) ≤ bardim(barc.subj(t)), 𝑡 = 1, 2, . . . , length(barc.subj).,

All the structure fields must be arrays of the same length.

Fields
• subj (int[]) – Semidefinite variable indices 𝑗.
• subk (int[]) – 𝑘 subscripts of nonzeros elements.
• subl (int[]) – 𝑙 subscripts of nonzeros elements.
• val (double) – Numerical values.

bara

Together with the field bardim this structure specifies the symmetric matrices 𝐴𝑖𝑗 in the constraints
of semidefinite problems.
The symmetric matrices are specified in block-triplet format as

[𝐴bara.subi(t),bara.subj(t)]bara.subk(t),bara.subl(t) = bara.val(t), 𝑡 = 1, 2, . . . , length(bara.subi).

Only the lower triangular parts of 𝐴𝑖𝑗 are specified, i.e., it is required that

bara.subk(t) ≥ bara.subl(t), 𝑡 = 1, 2, . . . , length(bara.subk),

and that

1 ≤ bara.subk(t) ≤ bardim(bara.subj(t)), 𝑡 = 1, 2, . . . , length(bara.subj),

All the structure fields must be arrays of the same length.

Fields
• subi (int[]) – Constraint indices 𝑖.
• subj (int[]) – Semidefinite variable indices 𝑗.
• subk (int[]) – 𝑘 subscripts of nonzeros elements.
• subl (int[]) – 𝑙 subscripts of nonzeros elements.
• val (double[]) – Numerical values.

barf

Together with the field bardim this structure specifies the symmetric matrices 𝐹 𝑖𝑗 in the affine
expressions appearing in affine conic constraints.
The symmetric matrices are specified in block-triplet format as

[𝐹 barf.subi(t),barf.subj(t)]barf.subk(t),barf.subl(t) = barf.val(t), 𝑡 = 1, 2, . . . , length(barf.subi).

Only the lower triangular parts of 𝐹 𝑖𝑗 are specified, i.e., it is required that

barf.subk(t) ≥ barf.subl(t), 𝑡 = 1, 2, . . . , length(barf.subk),

and that

1 ≤ barf.subk(t) ≤ bardim(barf.subj(t)), 𝑡 = 1, 2, . . . , length(barf.subj),

All the structure fields must be arrays of the same length.

182

Fields
• subi (int[]) – Indices 𝑖 defining the affine row in the affine conic constraints

specification.
• subj (int[]) – Semidefinite variable indices 𝑗.
• subk (int[]) – 𝑘 subscripts of nonzeros elements.
• subl (int[]) – 𝑙 subscripts of nonzeros elements.
• val (double[]) – Numerical values.

primal_repair
A structure holding data for primal feasibility repair. If either of the subfields is missing, it assumed
to be a vector with value 1 of appropriate dimension. See Sec. 14.2.1.

Fields
• wlc (double[]) – Weights for lower bounds on constraints.
• wuc (double[]) – Weights for upper bounds on constraints.
• wlx (double[]) – Weights for lower bounds on variables.
• wux (double[]) – Weights for upper bounds on variables.

prisen
A structure holding information about primal sensitivity analysis. See Sec. 14.3.

Fields
• cons (prisen_data) – Constraints shadow prices.
• vars (prisen_data) – Variables shadow prices.

prisen_data
A structure holding information about shadow prices of constraints or variables.

Fields
• subl (int[]) – Indices of variables/constraints to be analyzed for lower bounds.
• subu (int[]) – Indices of variables/constraints to be analyzed for upper bounds.
• lr_bl (double[]) – Left value 𝛽1 in the linearity interval for a lower bound.
• rr_bl (double[]) – Right value 𝛽2 in the linearity interval for a lower bound.
• ls_bl (double[]) – Left shadow price 𝑠𝑙 for a lower bound.
• rs_bl (double[]) – Right shadow price 𝑠𝑟 for a lower bound.
• lr_bu (double[]) – Left value 𝛽1 in the linearity interval for an upper bound.
• rr_bu (double[]) – Right value 𝛽2 in the linearity interval for an upper bound.
• ls_bu (double[]) – Left shadow price 𝑠𝑙 for an upper bound.
• rs_bu (double[]) – Right shadow price 𝑠𝑟 for an upper bound.

duasen
A structure holding information about dual sensitivity analysis. See Sec. 14.3.

Fields
• sub (int[]) – Indices of variables to be analyzed.
• lr_c (double) – Left value 𝛽1 in linearity interval for an objective coefficient
• rr_c (double) – Right value 𝛽2 in linearity interval for an objective coefficient
• ls_c (double) – Left shadow price 𝑠𝑙 for an objective coefficient
• rs_c (double) – Right shadow price 𝑠𝑟 for an objective coefficient

callback
A structure containing callback information (all subfields are optional).

Fields
• loghandle (struct) – A data structure or just [].
• log (string) – Log handler. The name of a user-defined function which must

accept two input arguments, e.g.,

183

function myprint(handle,str)

where handle will be identical to callback.handle when myfunc is called, and
str is a string of text from the log.

• iterhandle (struct) – A data structure or just [].
• iter (string) – Progress callback handler. The name of a user-defined function

which must accept three input arguments,

function [r] = callback_handler(handle,where,info)

where handle will be identical to callback.iterhandle when the handler is
called, where indicates the current progress of the solver (callback) and info
is the current information items list. See Sec. 7.6 for further details.

optserver
A structure containing information about the OptServer which should be used for remote opti-
mization.

Fields
host (string) – URL of the OptServer in the form http://server:port or https:
//server:port.

15.4 Parameters grouped by topic

Analysis

• MSK_DPAR_ANA_SOL_INFEAS_TOL

• MSK_IPAR_ANA_SOL_BASIS

• MSK_IPAR_ANA_SOL_PRINT_VIOLATED

• MSK_IPAR_LOG_ANA_PRO

Basis identification

• MSK_DPAR_SIM_LU_TOL_REL_PIV

• MSK_IPAR_BI_CLEAN_OPTIMIZER

• MSK_IPAR_BI_IGNORE_MAX_ITER

• MSK_IPAR_BI_IGNORE_NUM_ERROR

• MSK_IPAR_BI_MAX_ITERATIONS

• MSK_IPAR_INTPNT_BASIS

• MSK_IPAR_LOG_BI

• MSK_IPAR_LOG_BI_FREQ

Conic interior-point method

• MSK_DPAR_INTPNT_CO_TOL_DFEAS

• MSK_DPAR_INTPNT_CO_TOL_INFEAS

• MSK_DPAR_INTPNT_CO_TOL_MU_RED

• MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

• MSK_DPAR_INTPNT_CO_TOL_PFEAS

• MSK_DPAR_INTPNT_CO_TOL_REL_GAP

184

Data check

• MSK_DPAR_DATA_SYM_MAT_TOL

• MSK_DPAR_DATA_SYM_MAT_TOL_HUGE

• MSK_DPAR_DATA_SYM_MAT_TOL_LARGE

• MSK_DPAR_DATA_TOL_AIJ_HUGE

• MSK_DPAR_DATA_TOL_AIJ_LARGE

• MSK_DPAR_DATA_TOL_BOUND_INF

• MSK_DPAR_DATA_TOL_BOUND_WRN

• MSK_DPAR_DATA_TOL_C_HUGE

• MSK_DPAR_DATA_TOL_CJ_LARGE

• MSK_DPAR_DATA_TOL_QIJ

• MSK_DPAR_DATA_TOL_X

• MSK_DPAR_SEMIDEFINITE_TOL_APPROX

Data input/output

• MSK_IPAR_INFEAS_REPORT_AUTO

• MSK_IPAR_LOG_FILE

• MSK_IPAR_OPF_WRITE_HEADER

• MSK_IPAR_OPF_WRITE_HINTS

• MSK_IPAR_OPF_WRITE_LINE_LENGTH

• MSK_IPAR_OPF_WRITE_PARAMETERS

• MSK_IPAR_OPF_WRITE_PROBLEM

• MSK_IPAR_OPF_WRITE_SOL_BAS

• MSK_IPAR_OPF_WRITE_SOL_ITG

• MSK_IPAR_OPF_WRITE_SOL_ITR

• MSK_IPAR_OPF_WRITE_SOLUTIONS

• MSK_IPAR_PARAM_READ_CASE_NAME

• MSK_IPAR_PARAM_READ_IGN_ERROR

• MSK_IPAR_PTF_WRITE_PARAMETERS

• MSK_IPAR_PTF_WRITE_SINGLE_PSD_TERMS

• MSK_IPAR_PTF_WRITE_SOLUTIONS

• MSK_IPAR_PTF_WRITE_TRANSFORM

• MSK_IPAR_READ_ASYNC

• MSK_IPAR_READ_DEBUG

• MSK_IPAR_READ_KEEP_FREE_CON

• MSK_IPAR_READ_MPS_FORMAT

185

• MSK_IPAR_READ_MPS_WIDTH

• MSK_IPAR_READ_TASK_IGNORE_PARAM

• MSK_IPAR_SOL_READ_NAME_WIDTH

• MSK_IPAR_SOL_READ_WIDTH

• MSK_IPAR_WRITE_ASYNC

• MSK_IPAR_WRITE_BAS_CONSTRAINTS

• MSK_IPAR_WRITE_BAS_HEAD

• MSK_IPAR_WRITE_BAS_VARIABLES

• MSK_IPAR_WRITE_COMPRESSION

• MSK_IPAR_WRITE_FREE_CON

• MSK_IPAR_WRITE_GENERIC_NAMES

• MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS

• MSK_IPAR_WRITE_INT_CONSTRAINTS

• MSK_IPAR_WRITE_INT_HEAD

• MSK_IPAR_WRITE_INT_VARIABLES

• MSK_IPAR_WRITE_JSON_INDENTATION

• MSK_IPAR_WRITE_LP_FULL_OBJ

• MSK_IPAR_WRITE_LP_LINE_WIDTH

• MSK_IPAR_WRITE_MPS_FORMAT

• MSK_IPAR_WRITE_MPS_INT

• MSK_IPAR_WRITE_SOL_BARVARIABLES

• MSK_IPAR_WRITE_SOL_CONSTRAINTS

• MSK_IPAR_WRITE_SOL_HEAD

• MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES

• MSK_IPAR_WRITE_SOL_VARIABLES

• MSK_SPAR_BAS_SOL_FILE_NAME

• MSK_SPAR_DATA_FILE_NAME

• MSK_SPAR_DEBUG_FILE_NAME

• MSK_SPAR_INT_SOL_FILE_NAME

• MSK_SPAR_ITR_SOL_FILE_NAME

• MSK_SPAR_MIO_DEBUG_STRING

• MSK_SPAR_PARAM_COMMENT_SIGN

• MSK_SPAR_PARAM_READ_FILE_NAME

• MSK_SPAR_PARAM_WRITE_FILE_NAME

• MSK_SPAR_READ_MPS_BOU_NAME

• MSK_SPAR_READ_MPS_OBJ_NAME

186

• MSK_SPAR_READ_MPS_RAN_NAME

• MSK_SPAR_READ_MPS_RHS_NAME

• MSK_SPAR_SENSITIVITY_FILE_NAME

• MSK_SPAR_SENSITIVITY_RES_FILE_NAME

• MSK_SPAR_SOL_FILTER_XC_LOW

• MSK_SPAR_SOL_FILTER_XC_UPR

• MSK_SPAR_SOL_FILTER_XX_LOW

• MSK_SPAR_SOL_FILTER_XX_UPR

• MSK_SPAR_STAT_KEY

• MSK_SPAR_STAT_NAME

Debugging

• MSK_IPAR_AUTO_SORT_A_BEFORE_OPT

Dual simplex

• MSK_IPAR_SIM_DUAL_CRASH

• MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION

• MSK_IPAR_SIM_DUAL_SELECTION

Infeasibility report

• MSK_IPAR_INFEAS_GENERIC_NAMES

• MSK_IPAR_INFEAS_REPORT_LEVEL

• MSK_IPAR_LOG_INFEAS_ANA

Interior-point method

• MSK_DPAR_INTPNT_CO_TOL_DFEAS

• MSK_DPAR_INTPNT_CO_TOL_INFEAS

• MSK_DPAR_INTPNT_CO_TOL_MU_RED

• MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

• MSK_DPAR_INTPNT_CO_TOL_PFEAS

• MSK_DPAR_INTPNT_CO_TOL_REL_GAP

• MSK_DPAR_INTPNT_QO_TOL_DFEAS

• MSK_DPAR_INTPNT_QO_TOL_INFEAS

• MSK_DPAR_INTPNT_QO_TOL_MU_RED

• MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

• MSK_DPAR_INTPNT_QO_TOL_PFEAS

• MSK_DPAR_INTPNT_QO_TOL_REL_GAP

187

• MSK_DPAR_INTPNT_TOL_DFEAS

• MSK_DPAR_INTPNT_TOL_DSAFE

• MSK_DPAR_INTPNT_TOL_INFEAS

• MSK_DPAR_INTPNT_TOL_MU_RED

• MSK_DPAR_INTPNT_TOL_PATH

• MSK_DPAR_INTPNT_TOL_PFEAS

• MSK_DPAR_INTPNT_TOL_PSAFE

• MSK_DPAR_INTPNT_TOL_REL_GAP

• MSK_DPAR_INTPNT_TOL_REL_STEP

• MSK_DPAR_INTPNT_TOL_STEP_SIZE

• MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL

• MSK_IPAR_BI_IGNORE_MAX_ITER

• MSK_IPAR_BI_IGNORE_NUM_ERROR

• MSK_IPAR_INTPNT_BASIS

• MSK_IPAR_INTPNT_DIFF_STEP

• MSK_IPAR_INTPNT_HOTSTART

• MSK_IPAR_INTPNT_MAX_ITERATIONS

• MSK_IPAR_INTPNT_MAX_NUM_COR

• MSK_IPAR_INTPNT_OFF_COL_TRH

• MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS

• MSK_IPAR_INTPNT_ORDER_METHOD

• MSK_IPAR_INTPNT_REGULARIZATION_USE

• MSK_IPAR_INTPNT_SCALING

• MSK_IPAR_INTPNT_SOLVE_FORM

• MSK_IPAR_INTPNT_STARTING_POINT

• MSK_IPAR_LOG_INTPNT

License manager

• MSK_IPAR_CACHE_LICENSE

• MSK_IPAR_LICENSE_DEBUG

• MSK_IPAR_LICENSE_PAUSE_TIME

• MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS

• MSK_IPAR_LICENSE_TRH_EXPIRY_WRN

• MSK_IPAR_LICENSE_WAIT

188

Logging

• MSK_IPAR_HEARTBEAT_SIM_FREQ_TICKS

• MSK_IPAR_LOG

• MSK_IPAR_LOG_ANA_PRO

• MSK_IPAR_LOG_BI

• MSK_IPAR_LOG_BI_FREQ

• MSK_IPAR_LOG_CUT_SECOND_OPT

• MSK_IPAR_LOG_EXPAND

• MSK_IPAR_LOG_FEAS_REPAIR

• MSK_IPAR_LOG_FILE

• MSK_IPAR_LOG_INCLUDE_SUMMARY

• MSK_IPAR_LOG_INFEAS_ANA

• MSK_IPAR_LOG_INTPNT

• MSK_IPAR_LOG_LOCAL_INFO

• MSK_IPAR_LOG_MIO

• MSK_IPAR_LOG_MIO_FREQ

• MSK_IPAR_LOG_ORDER

• MSK_IPAR_LOG_PRESOLVE

• MSK_IPAR_LOG_SENSITIVITY

• MSK_IPAR_LOG_SENSITIVITY_OPT

• MSK_IPAR_LOG_SIM

• MSK_IPAR_LOG_SIM_FREQ

• MSK_IPAR_LOG_SIM_FREQ_GIGA_TICKS

• MSK_IPAR_LOG_STORAGE

Mixed-integer optimization

• MSK_DPAR_MIO_CLIQUE_TABLE_SIZE_FACTOR

• MSK_DPAR_MIO_DJC_MAX_BIGM

• MSK_DPAR_MIO_MAX_TIME

• MSK_DPAR_MIO_REL_GAP_CONST

• MSK_DPAR_MIO_TOL_ABS_GAP

• MSK_DPAR_MIO_TOL_ABS_RELAX_INT

• MSK_DPAR_MIO_TOL_FEAS

• MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT

• MSK_DPAR_MIO_TOL_REL_GAP

• MSK_IPAR_LOG_MIO

189

• MSK_IPAR_LOG_MIO_FREQ

• MSK_IPAR_MIO_BRANCH_DIR

• MSK_IPAR_MIO_CONFLICT_ANALYSIS_LEVEL

• MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION

• MSK_IPAR_MIO_CONSTRUCT_SOL

• MSK_IPAR_MIO_CROSSOVER_MAX_NODES

• MSK_IPAR_MIO_CUT_CLIQUE

• MSK_IPAR_MIO_CUT_CMIR

• MSK_IPAR_MIO_CUT_GMI

• MSK_IPAR_MIO_CUT_IMPLIED_BOUND

• MSK_IPAR_MIO_CUT_KNAPSACK_COVER

• MSK_IPAR_MIO_CUT_LIPRO

• MSK_IPAR_MIO_CUT_SELECTION_LEVEL

• MSK_IPAR_MIO_DATA_PERMUTATION_METHOD

• MSK_IPAR_MIO_DUAL_RAY_ANALYSIS_LEVEL

• MSK_IPAR_MIO_FEASPUMP_LEVEL

• MSK_IPAR_MIO_HEURISTIC_LEVEL

• MSK_IPAR_MIO_INDEPENDENT_BLOCK_LEVEL

• MSK_IPAR_MIO_MAX_NUM_BRANCHES

• MSK_IPAR_MIO_MAX_NUM_RELAXS

• MSK_IPAR_MIO_MAX_NUM_RESTARTS

• MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS

• MSK_IPAR_MIO_MAX_NUM_SOLUTIONS

• MSK_IPAR_MIO_MEMORY_EMPHASIS_LEVEL

• MSK_IPAR_MIO_MIN_REL

• MSK_IPAR_MIO_NODE_OPTIMIZER

• MSK_IPAR_MIO_NODE_SELECTION

• MSK_IPAR_MIO_NUMERICAL_EMPHASIS_LEVEL

• MSK_IPAR_MIO_OPT_FACE_MAX_NODES

• MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE

• MSK_IPAR_MIO_PROBING_LEVEL

• MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT

• MSK_IPAR_MIO_QCQO_REFORMULATION_METHOD

• MSK_IPAR_MIO_RENS_MAX_NODES

• MSK_IPAR_MIO_RINS_MAX_NODES

• MSK_IPAR_MIO_ROOT_OPTIMIZER

190

• MSK_IPAR_MIO_SEED

• MSK_IPAR_MIO_SYMMETRY_LEVEL

• MSK_IPAR_MIO_VAR_SELECTION

• MSK_IPAR_MIO_VB_DETECTION_LEVEL

Output information

• MSK_IPAR_HEARTBEAT_SIM_FREQ_TICKS

• MSK_IPAR_INFEAS_REPORT_LEVEL

• MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS

• MSK_IPAR_LICENSE_TRH_EXPIRY_WRN

• MSK_IPAR_LOG

• MSK_IPAR_LOG_BI

• MSK_IPAR_LOG_BI_FREQ

• MSK_IPAR_LOG_CUT_SECOND_OPT

• MSK_IPAR_LOG_EXPAND

• MSK_IPAR_LOG_FEAS_REPAIR

• MSK_IPAR_LOG_FILE

• MSK_IPAR_LOG_INCLUDE_SUMMARY

• MSK_IPAR_LOG_INFEAS_ANA

• MSK_IPAR_LOG_INTPNT

• MSK_IPAR_LOG_LOCAL_INFO

• MSK_IPAR_LOG_MIO

• MSK_IPAR_LOG_MIO_FREQ

• MSK_IPAR_LOG_ORDER

• MSK_IPAR_LOG_SENSITIVITY

• MSK_IPAR_LOG_SENSITIVITY_OPT

• MSK_IPAR_LOG_SIM

• MSK_IPAR_LOG_SIM_FREQ

• MSK_IPAR_LOG_SIM_FREQ_GIGA_TICKS

• MSK_IPAR_LOG_STORAGE

• MSK_IPAR_MAX_NUM_WARNINGS

191

Overall solver

• MSK_IPAR_BI_CLEAN_OPTIMIZER

• MSK_IPAR_LICENSE_WAIT

• MSK_IPAR_MIO_MODE

• MSK_IPAR_OPTIMIZER

• MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS

• MSK_IPAR_PRESOLVE_USE

• MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER

• MSK_IPAR_SENSITIVITY_ALL

• MSK_IPAR_SENSITIVITY_TYPE

• MSK_IPAR_SIM_PRECISION

Overall system

• MSK_IPAR_AUTO_UPDATE_SOL_INFO

• MSK_IPAR_LICENSE_WAIT

• MSK_IPAR_LOG_STORAGE

• MSK_IPAR_MT_SPINCOUNT

• MSK_IPAR_NUM_THREADS

• MSK_IPAR_REMOVE_UNUSED_SOLUTIONS

• MSK_IPAR_TIMING_LEVEL

• MSK_SPAR_REMOTE_OPTSERVER_HOST

• MSK_SPAR_REMOTE_TLS_CERT

• MSK_SPAR_REMOTE_TLS_CERT_PATH

Presolve

• MSK_DPAR_FOLDING_TOL_EQ

• MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP

• MSK_DPAR_PRESOLVE_TOL_PRIMAL_INFEAS_PERTURBATION

• MSK_DPAR_PRESOLVE_TOL_REL_LINDEP

• MSK_DPAR_PRESOLVE_TOL_S

• MSK_DPAR_PRESOLVE_TOL_X

• MSK_IPAR_FOLDING_USE

• MSK_IPAR_MIO_PRESOLVE_AGGREGATOR_USE

• MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL

• MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES

• MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH

192

• MSK_IPAR_PRESOLVE_LINDEP_NEW

• MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH

• MSK_IPAR_PRESOLVE_LINDEP_USE

• MSK_IPAR_PRESOLVE_MAX_NUM_PASS

• MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS

• MSK_IPAR_PRESOLVE_USE

Primal simplex

• MSK_IPAR_SIM_PRIMAL_CRASH

• MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION

• MSK_IPAR_SIM_PRIMAL_SELECTION

Simplex optimizer

• MSK_DPAR_BASIS_REL_TOL_S

• MSK_DPAR_BASIS_TOL_S

• MSK_DPAR_BASIS_TOL_X

• MSK_DPAR_SIM_LU_TOL_REL_PIV

• MSK_DPAR_SIM_PRECISION_SCALING_EXTENDED

• MSK_DPAR_SIM_PRECISION_SCALING_NORMAL

• MSK_DPAR_SIMPLEX_ABS_TOL_PIV

• MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE

• MSK_IPAR_HEARTBEAT_SIM_FREQ_TICKS

• MSK_IPAR_LOG_SIM

• MSK_IPAR_LOG_SIM_FREQ

• MSK_IPAR_LOG_SIM_FREQ_GIGA_TICKS

• MSK_IPAR_SIM_BASIS_FACTOR_USE

• MSK_IPAR_SIM_DEGEN

• MSK_IPAR_SIM_DETECT_PWL

• MSK_IPAR_SIM_DUAL_PHASEONE_METHOD

• MSK_IPAR_SIM_EXPLOIT_DUPVEC

• MSK_IPAR_SIM_HOTSTART

• MSK_IPAR_SIM_HOTSTART_LU

• MSK_IPAR_SIM_MAX_ITERATIONS

• MSK_IPAR_SIM_MAX_NUM_SETBACKS

• MSK_IPAR_SIM_NON_SINGULAR

• MSK_IPAR_SIM_PRECISION_BOOST

193

• MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD

• MSK_IPAR_SIM_REFACTOR_FREQ

• MSK_IPAR_SIM_REFORMULATION

• MSK_IPAR_SIM_SAVE_LU

• MSK_IPAR_SIM_SCALING

• MSK_IPAR_SIM_SCALING_METHOD

• MSK_IPAR_SIM_SEED

• MSK_IPAR_SIM_SOLVE_FORM

• MSK_IPAR_SIM_SWITCH_OPTIMIZER

Solution input/output

• MSK_IPAR_INFEAS_REPORT_AUTO

• MSK_IPAR_SOL_FILTER_KEEP_BASIC

• MSK_IPAR_SOL_READ_NAME_WIDTH

• MSK_IPAR_SOL_READ_WIDTH

• MSK_IPAR_WRITE_BAS_CONSTRAINTS

• MSK_IPAR_WRITE_BAS_HEAD

• MSK_IPAR_WRITE_BAS_VARIABLES

• MSK_IPAR_WRITE_INT_CONSTRAINTS

• MSK_IPAR_WRITE_INT_HEAD

• MSK_IPAR_WRITE_INT_VARIABLES

• MSK_IPAR_WRITE_SOL_BARVARIABLES

• MSK_IPAR_WRITE_SOL_CONSTRAINTS

• MSK_IPAR_WRITE_SOL_HEAD

• MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES

• MSK_IPAR_WRITE_SOL_VARIABLES

• MSK_SPAR_BAS_SOL_FILE_NAME

• MSK_SPAR_INT_SOL_FILE_NAME

• MSK_SPAR_ITR_SOL_FILE_NAME

• MSK_SPAR_SOL_FILTER_XC_LOW

• MSK_SPAR_SOL_FILTER_XC_UPR

• MSK_SPAR_SOL_FILTER_XX_LOW

• MSK_SPAR_SOL_FILTER_XX_UPR

194

Termination criteria

• MSK_DPAR_BASIS_REL_TOL_S

• MSK_DPAR_BASIS_TOL_S

• MSK_DPAR_BASIS_TOL_X

• MSK_DPAR_INTPNT_CO_TOL_DFEAS

• MSK_DPAR_INTPNT_CO_TOL_INFEAS

• MSK_DPAR_INTPNT_CO_TOL_MU_RED

• MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

• MSK_DPAR_INTPNT_CO_TOL_PFEAS

• MSK_DPAR_INTPNT_CO_TOL_REL_GAP

• MSK_DPAR_INTPNT_QO_TOL_DFEAS

• MSK_DPAR_INTPNT_QO_TOL_INFEAS

• MSK_DPAR_INTPNT_QO_TOL_MU_RED

• MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

• MSK_DPAR_INTPNT_QO_TOL_PFEAS

• MSK_DPAR_INTPNT_QO_TOL_REL_GAP

• MSK_DPAR_INTPNT_TOL_DFEAS

• MSK_DPAR_INTPNT_TOL_INFEAS

• MSK_DPAR_INTPNT_TOL_MU_RED

• MSK_DPAR_INTPNT_TOL_PFEAS

• MSK_DPAR_INTPNT_TOL_REL_GAP

• MSK_DPAR_LOWER_OBJ_CUT

• MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH

• MSK_DPAR_MIO_MAX_TIME

• MSK_DPAR_MIO_REL_GAP_CONST

• MSK_DPAR_MIO_TOL_REL_GAP

• MSK_DPAR_OPTIMIZER_MAX_TICKS

• MSK_DPAR_OPTIMIZER_MAX_TIME

• MSK_DPAR_SIM_PRECISION_SCALING_EXTENDED

• MSK_DPAR_SIM_PRECISION_SCALING_NORMAL

• MSK_DPAR_UPPER_OBJ_CUT

• MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH

• MSK_IPAR_BI_MAX_ITERATIONS

• MSK_IPAR_INTPNT_MAX_ITERATIONS

• MSK_IPAR_MIO_MAX_NUM_BRANCHES

• MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS

• MSK_IPAR_MIO_MAX_NUM_SOLUTIONS

• MSK_IPAR_SIM_MAX_ITERATIONS

195

Other

• MSK_IPAR_COMPRESS_STATFILE

• MSK_IPAR_GETDUAL_CONVERT_LMIS

• MSK_IPAR_NG

• MSK_IPAR_REMOTE_USE_COMPRESSION

15.5 Parameters (alphabetical list sorted by type)

• Double parameters

• Integer parameters

• String parameters

15.5.1 Double parameters

dparam

The enumeration type containing all double parameters.
MSK_DPAR_ANA_SOL_INFEAS_TOL

If a constraint violates its bound with an amount larger than this value, the constraint name, index
and violation will be printed by the solution analyzer.

Default
1e-6

Accepted
[0.0; +inf]

Example
param.MSK_DPAR_ANA_SOL_INFEAS_TOL = 1e-6

Groups
Analysis

MSK_DPAR_BASIS_REL_TOL_S

Maximum relative dual bound violation allowed in an optimal basic solution.

Default
1.0e-12

Accepted
[0.0; +inf]

Example
param.MSK_DPAR_BASIS_REL_TOL_S = 1.0e-12

Groups
Simplex optimizer , Termination criteria

MSK_DPAR_BASIS_TOL_S

Maximum absolute dual bound violation in an optimal basic solution.

Default
1.0e-6

Accepted
[1.0e-9; +inf]

Example
param.MSK_DPAR_BASIS_TOL_S = 1.0e-6

Groups
Simplex optimizer , Termination criteria

196

MSK_DPAR_BASIS_TOL_X

Maximum absolute primal bound violation allowed in an optimal basic solution.

Default
1.0e-6

Accepted
[1.0e-9; +inf]

Example
param.MSK_DPAR_BASIS_TOL_X = 1.0e-6

Groups
Simplex optimizer , Termination criteria

MSK_DPAR_DATA_SYM_MAT_TOL

Absolute zero tolerance for elements in in symmetric matrices. If any value in a symmetric matrix
is smaller than this parameter in absolute terms MOSEK will treat the values as zero and generate
a warning.

Default
1.0e-12

Accepted
[1.0e-16; 1.0e-6]

Example
param.MSK_DPAR_DATA_SYM_MAT_TOL = 1.0e-12

Groups
Data check

MSK_DPAR_DATA_SYM_MAT_TOL_HUGE

An element in a symmetric matrix which is larger than this value in absolute size causes an error.

Default
1.0e20

Accepted
[0.0; +inf]

Example
param.MSK_DPAR_DATA_SYM_MAT_TOL_HUGE = 1.0e20

Groups
Data check

MSK_DPAR_DATA_SYM_MAT_TOL_LARGE

An element in a symmetric matrix which is larger than this value in absolute size causes a warning
message to be printed.

Default
1.0e10

Accepted
[0.0; +inf]

Example
param.MSK_DPAR_DATA_SYM_MAT_TOL_LARGE = 1.0e10

Groups
Data check

MSK_DPAR_DATA_TOL_AIJ_HUGE

An element in 𝐴 which is larger than this value in absolute size causes an error.

Default
1.0e20

Accepted
[0.0; +inf]

197

Example
param.MSK_DPAR_DATA_TOL_AIJ_HUGE = 1.0e20

Groups
Data check

MSK_DPAR_DATA_TOL_AIJ_LARGE

An element in 𝐴 which is larger than this value in absolute size causes a warning message to be
printed.

Default
1.0e10

Accepted
[0.0; +inf]

Example
param.MSK_DPAR_DATA_TOL_AIJ_LARGE = 1.0e10

Groups
Data check

MSK_DPAR_DATA_TOL_BOUND_INF

Any bound which in absolute value is greater than this parameter is considered infinite.

Default
1.0e16

Accepted
[0.0; +inf]

Example
param.MSK_DPAR_DATA_TOL_BOUND_INF = 1.0e16

Groups
Data check

MSK_DPAR_DATA_TOL_BOUND_WRN

If a bound value is larger than this value in absolute size, then a warning message is issued.

Default
1.0e8

Accepted
[0.0; +inf]

Example
param.MSK_DPAR_DATA_TOL_BOUND_WRN = 1.0e8

Groups
Data check

MSK_DPAR_DATA_TOL_C_HUGE

An element in 𝑐 which is larger than the value of this parameter in absolute terms is considered to
be huge and generates an error.

Default
1.0e16

Accepted
[0.0; +inf]

Example
param.MSK_DPAR_DATA_TOL_C_HUGE = 1.0e16

Groups
Data check

198

MSK_DPAR_DATA_TOL_CJ_LARGE

An element in 𝑐 which is larger than this value in absolute terms causes a warning message to be
printed.

Default
1.0e8

Accepted
[0.0; +inf]

Example
param.MSK_DPAR_DATA_TOL_CJ_LARGE = 1.0e8

Groups
Data check

MSK_DPAR_DATA_TOL_QIJ

Absolute zero tolerance for elements in 𝑄 matrices.

Default
1.0e-16

Accepted
[0.0; +inf]

Example
param.MSK_DPAR_DATA_TOL_QIJ = 1.0e-16

Groups
Data check

MSK_DPAR_DATA_TOL_X

Zero tolerance for constraints and variables i.e. if the distance between the lower and upper bound
is less than this value, then the lower and upper bound is considered identical.

Default
1.0e-8

Accepted
[0.0; +inf]

Example
param.MSK_DPAR_DATA_TOL_X = 1.0e-8

Groups
Data check

MSK_DPAR_FOLDING_TOL_EQ

Tolerance for coefficient equality during folding.

Default
1e-9

Accepted
[0.0; +inf]

Example
param.MSK_DPAR_FOLDING_TOL_EQ = 1e-9

Groups
Presolve

MSK_DPAR_INTPNT_CO_TOL_DFEAS

Dual feasibility tolerance used by the interior-point optimizer for conic problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

199

Example
param.MSK_DPAR_INTPNT_CO_TOL_DFEAS = 1.0e-8

See also
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

Groups
Interior-point method , Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_INFEAS

Infeasibility tolerance used by the interior-point optimizer for conic problems. Controls when the
interior-point optimizer declares the model primal or dual infeasible. A small number means the
optimizer gets more conservative about declaring the model infeasible.

Default
1.0e-12

Accepted
[0.0; 1.0]

Example
param.MSK_DPAR_INTPNT_CO_TOL_INFEAS = 1.0e-12

Groups
Interior-point method , Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_MU_RED

Relative complementarity gap tolerance used by the interior-point optimizer for conic problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
param.MSK_DPAR_INTPNT_CO_TOL_MU_RED = 1.0e-8

Groups
Interior-point method , Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

Optimality tolerance used by the interior-point optimizer for conic problems. If MOSEK cannot
compute a solution that has the prescribed accuracy then it will check if the solution found satisfies
the termination criteria with all tolerances multiplied by the value of this parameter. If yes, then
the solution is also declared optimal.

Default
1000

Accepted
[1.0; +inf]

Example
param.MSK_DPAR_INTPNT_CO_TOL_NEAR_REL = 1000

Groups
Interior-point method , Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_PFEAS

Primal feasibility tolerance used by the interior-point optimizer for conic problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
param.MSK_DPAR_INTPNT_CO_TOL_PFEAS = 1.0e-8

200

See also
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

Groups
Interior-point method , Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_REL_GAP
Relative gap termination tolerance used by the interior-point optimizer for conic problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
param.MSK_DPAR_INTPNT_CO_TOL_REL_GAP = 1.0e-8

See also
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

Groups
Interior-point method , Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_QO_TOL_DFEAS
Dual feasibility tolerance used by the interior-point optimizer for quadratic problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
param.MSK_DPAR_INTPNT_QO_TOL_DFEAS = 1.0e-8

See also
MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

Groups
Interior-point method , Termination criteria

MSK_DPAR_INTPNT_QO_TOL_INFEAS
Infeasibility tolerance used by the interior-point optimizer for quadratic problems. Controls when
the interior-point optimizer declares the model primal or dual infeasible. A small number means
the optimizer gets more conservative about declaring the model infeasible.

Default
1.0e-12

Accepted
[0.0; 1.0]

Example
param.MSK_DPAR_INTPNT_QO_TOL_INFEAS = 1.0e-12

Groups
Interior-point method , Termination criteria

MSK_DPAR_INTPNT_QO_TOL_MU_RED
Relative complementarity gap tolerance used by the interior-point optimizer for quadratic problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
param.MSK_DPAR_INTPNT_QO_TOL_MU_RED = 1.0e-8

Groups
Interior-point method , Termination criteria

201

MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

Optimality tolerance used by the interior-point optimizer for quadratic problems. If MOSEK
cannot compute a solution that has the prescribed accuracy then it will check if the solution found
satisfies the termination criteria with all tolerances multiplied by the value of this parameter. If
yes, then the solution is also declared optimal.

Default
1000

Accepted
[1.0; +inf]

Example
param.MSK_DPAR_INTPNT_QO_TOL_NEAR_REL = 1000

Groups
Interior-point method , Termination criteria

MSK_DPAR_INTPNT_QO_TOL_PFEAS

Primal feasibility tolerance used by the interior-point optimizer for quadratic problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
param.MSK_DPAR_INTPNT_QO_TOL_PFEAS = 1.0e-8

See also
MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

Groups
Interior-point method , Termination criteria

MSK_DPAR_INTPNT_QO_TOL_REL_GAP

Relative gap termination tolerance used by the interior-point optimizer for quadratic problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
param.MSK_DPAR_INTPNT_QO_TOL_REL_GAP = 1.0e-8

See also
MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

Groups
Interior-point method , Termination criteria

MSK_DPAR_INTPNT_TOL_DFEAS

Dual feasibility tolerance used by the interior-point optimizer for linear problems.

Default
1.0e-8

Accepted
[0.0; 1.0]

Example
param.MSK_DPAR_INTPNT_TOL_DFEAS = 1.0e-8

Groups
Interior-point method , Termination criteria

202

MSK_DPAR_INTPNT_TOL_DSAFE
Controls the initial dual starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly and/or the constraint or variable bounds are very large, then it might
be worthwhile to increase this value.

Default
1.0

Accepted
[1.0e-4; +inf]

Example
param.MSK_DPAR_INTPNT_TOL_DSAFE = 1.0

Groups
Interior-point method

MSK_DPAR_INTPNT_TOL_INFEAS
Infeasibility tolerance used by the interior-point optimizer for linear problems. Controls when the
interior-point optimizer declares the model primal or dual infeasible. A small number means the
optimizer gets more conservative about declaring the model infeasible.

Default
1.0e-10

Accepted
[0.0; 1.0]

Example
param.MSK_DPAR_INTPNT_TOL_INFEAS = 1.0e-10

Groups
Interior-point method , Termination criteria

MSK_DPAR_INTPNT_TOL_MU_RED
Relative complementarity gap tolerance used by the interior-point optimizer for linear problems.

Default
1.0e-16

Accepted
[0.0; 1.0]

Example
param.MSK_DPAR_INTPNT_TOL_MU_RED = 1.0e-16

Groups
Interior-point method , Termination criteria

MSK_DPAR_INTPNT_TOL_PATH
Controls how close the interior-point optimizer follows the central path. A large value of this
parameter means the central path is followed very closely. On numerically unstable problems it
may be worthwhile to increase this parameter.

Default
1.0e-8

Accepted
[0.0; 0.9999]

Example
param.MSK_DPAR_INTPNT_TOL_PATH = 1.0e-8

Groups
Interior-point method

MSK_DPAR_INTPNT_TOL_PFEAS
Primal feasibility tolerance used by the interior-point optimizer for linear problems.

Default
1.0e-8

203

Accepted
[0.0; 1.0]

Example
param.MSK_DPAR_INTPNT_TOL_PFEAS = 1.0e-8

Groups
Interior-point method , Termination criteria

MSK_DPAR_INTPNT_TOL_PSAFE
Controls the initial primal starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly and/or the constraint or variable bounds are very large, then it may be
worthwhile to increase this value.

Default
1.0

Accepted
[1.0e-4; +inf]

Example
param.MSK_DPAR_INTPNT_TOL_PSAFE = 1.0

Groups
Interior-point method

MSK_DPAR_INTPNT_TOL_REL_GAP
Relative gap termination tolerance used by the interior-point optimizer for linear problems.

Default
1.0e-8

Accepted
[1.0e-14; +inf]

Example
param.MSK_DPAR_INTPNT_TOL_REL_GAP = 1.0e-8

Groups
Termination criteria, Interior-point method

MSK_DPAR_INTPNT_TOL_REL_STEP
Relative step size to the boundary for linear and quadratic optimization problems.

Default
0.9999

Accepted
[1.0e-4; 0.999999]

Example
param.MSK_DPAR_INTPNT_TOL_REL_STEP = 0.9999

Groups
Interior-point method

MSK_DPAR_INTPNT_TOL_STEP_SIZE
Minimal step size tolerance. If the step size falls below the value of this parameter, then the
interior-point optimizer assumes that it is stalled. In other words the interior-point optimizer does
not make any progress and therefore it is better to stop.

Default
1.0e-6

Accepted
[0.0; 1.0]

Example
param.MSK_DPAR_INTPNT_TOL_STEP_SIZE = 1.0e-6

Groups
Interior-point method

204

MSK_DPAR_LOWER_OBJ_CUT

If either a primal or dual feasible solution is found proving that the optimal objective value is
outside the interval [MSK_DPAR_LOWER_OBJ_CUT , MSK_DPAR_UPPER_OBJ_CUT], then MOSEK is
terminated.

Default
-INFINITY

Accepted
[-inf; +inf]

Example
param.MSK_DPAR_LOWER_OBJ_CUT = -INFINITY

See also
MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH

Groups
Termination criteria

MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH

If the lower objective cut is less than the value of this parameter value, then the lower objective
cut i.e. MSK_DPAR_LOWER_OBJ_CUT is treated as −∞.

Default
-0.5e30

Accepted
[-inf; +inf]

Example
param.MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH = -0.5e30

Groups
Termination criteria

MSK_DPAR_MIO_CLIQUE_TABLE_SIZE_FACTOR

Controlls the maximum size of the clique table as a factor of the number of nonzeros in the A
matrix. A negative value implies MOSEK decides.

Default
-1

Accepted
[-1; +inf]

Example
param.MSK_DPAR_MIO_CLIQUE_TABLE_SIZE_FACTOR = -1

Groups
Mixed-integer optimization

MSK_DPAR_MIO_DJC_MAX_BIGM

Maximum allowed big-M value when reformulating disjunctive constraints to linear constraints.
Higher values make it more likely that a disjunction is reformulated to linear constraints, but also
increase the risk of numerical problems.

Default
1.0e6

Accepted
[0; +inf]

Example
param.MSK_DPAR_MIO_DJC_MAX_BIGM = 1.0e6

Groups
Mixed-integer optimization

205

MSK_DPAR_MIO_MAX_TIME

This parameter limits the maximum time spent by the mixed-integer optimizer (in seconds). A
negative number means infinity.

Default
-1.0

Accepted
[-inf; +inf]

Example
param.MSK_DPAR_MIO_MAX_TIME = -1.0

Groups
Mixed-integer optimization, Termination criteria

MSK_DPAR_MIO_REL_GAP_CONST

This value is used to compute the relative gap for the solution to a mixed-integer optimization
problem.

Default
1.0e-10

Accepted
[1.0e-15; +inf]

Example
param.MSK_DPAR_MIO_REL_GAP_CONST = 1.0e-10

Groups
Mixed-integer optimization, Termination criteria

MSK_DPAR_MIO_TOL_ABS_GAP

Absolute optimality tolerance employed by the mixed-integer optimizer.

Default
0.0

Accepted
[0.0; +inf]

Example
param.MSK_DPAR_MIO_TOL_ABS_GAP = 0.0

Groups
Mixed-integer optimization

MSK_DPAR_MIO_TOL_ABS_RELAX_INT

Absolute integer feasibility tolerance. If the distance to the nearest integer is less than this tolerance
then an integer constraint is assumed to be satisfied.

Default
1.0e-5

Accepted
[1e-9; +inf]

Example
param.MSK_DPAR_MIO_TOL_ABS_RELAX_INT = 1.0e-5

Groups
Mixed-integer optimization

MSK_DPAR_MIO_TOL_FEAS

Feasibility tolerance for mixed integer solver.

Default
1.0e-6

Accepted
[1e-9; 1e-3]

206

Example
param.MSK_DPAR_MIO_TOL_FEAS = 1.0e-6

Groups
Mixed-integer optimization

MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT

If the relative improvement of the dual bound is smaller than this value, the solver will terminate
the root cut generation. A value of 0.0 means that the value is selected automatically.

Default
0.0

Accepted
[0.0; 1.0]

Example
param.MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT = 0.0

Groups
Mixed-integer optimization

MSK_DPAR_MIO_TOL_REL_GAP

Relative optimality tolerance employed by the mixed-integer optimizer.

Default
1.0e-4

Accepted
[0.0; +inf]

Example
param.MSK_DPAR_MIO_TOL_REL_GAP = 1.0e-4

Groups
Mixed-integer optimization, Termination criteria

MSK_DPAR_OPTIMIZER_MAX_TICKS

CURRENTLY NOT IN USE.

Maximum amount of ticks the optimizer is allowed to spent on the optimization. A negative number
means infinity.

Default
-1.0

Accepted
[-inf; +inf]

Example
param.MSK_DPAR_OPTIMIZER_MAX_TICKS = -1.0

Groups
Termination criteria

MSK_DPAR_OPTIMIZER_MAX_TIME

Maximum amount of time the optimizer is allowed to spent on the optimization (in seconds). A
negative number means infinity.

Default
-1.0

Accepted
[-inf; +inf]

Example
param.MSK_DPAR_OPTIMIZER_MAX_TIME = -1.0

Groups
Termination criteria

207

MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP

Absolute tolerance employed by the linear dependency checker.

Default
1.0e-6

Accepted
[0.0; +inf]

Example
param.MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP = 1.0e-6

Groups
Presolve

MSK_DPAR_PRESOLVE_TOL_PRIMAL_INFEAS_PERTURBATION

The presolve is allowed to perturb a bound on a constraint or variable by this amount if it removes
an infeasibility.

Default
1.0e-6

Accepted
[0.0; +inf]

Example
param.MSK_DPAR_PRESOLVE_TOL_PRIMAL_INFEAS_PERTURBATION = 1.0e-6

Groups
Presolve

MSK_DPAR_PRESOLVE_TOL_REL_LINDEP

Relative tolerance employed by the linear dependency checker.

Default
1.0e-10

Accepted
[0.0; +inf]

Example
param.MSK_DPAR_PRESOLVE_TOL_REL_LINDEP = 1.0e-10

Groups
Presolve

MSK_DPAR_PRESOLVE_TOL_S

Absolute zero tolerance employed for 𝑠𝑖 in the presolve.

Default
1.0e-8

Accepted
[0.0; +inf]

Example
param.MSK_DPAR_PRESOLVE_TOL_S = 1.0e-8

Groups
Presolve

MSK_DPAR_PRESOLVE_TOL_X

Absolute zero tolerance employed for 𝑥𝑗 in the presolve.

Default
1.0e-8

Accepted
[0.0; +inf]

Example
param.MSK_DPAR_PRESOLVE_TOL_X = 1.0e-8

208

Groups
Presolve

MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL
This parameter determines when columns are dropped in incomplete Cholesky factorization during
reformulation of quadratic problems.

Default
1e-15

Accepted
[0; +inf]

Example
param.MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL = 1e-15

Groups
Interior-point method

MSK_DPAR_SEMIDEFINITE_TOL_APPROX
Tolerance to define a matrix to be positive semidefinite.

Default
1.0e-10

Accepted
[1.0e-15; +inf]

Example
param.MSK_DPAR_SEMIDEFINITE_TOL_APPROX = 1.0e-10

Groups
Data check

MSK_DPAR_SIM_LU_TOL_REL_PIV
Relative pivot tolerance employed when computing the LU factorization of the basis in the simplex
optimizers and in the basis identification procedure. A value closer to 1.0 generally improves
numerical stability but typically also implies an increase in the computational work.

Default
0.01

Accepted
[1.0e-6; 0.999999]

Example
param.MSK_DPAR_SIM_LU_TOL_REL_PIV = 0.01

Groups
Basis identification, Simplex optimizer

MSK_DPAR_SIM_PRECISION_SCALING_EXTENDED
Experimental. Usage not recommended.

Default
2.0

Accepted
[1.0; +inf]

Example
param.MSK_DPAR_SIM_PRECISION_SCALING_EXTENDED = 2.0

Groups
Simplex optimizer , Termination criteria

MSK_DPAR_SIM_PRECISION_SCALING_NORMAL
Experimental. Usage not recommended.

Default
1.0

209

Accepted
[1.0; +inf]

Example
param.MSK_DPAR_SIM_PRECISION_SCALING_NORMAL = 1.0

Groups
Simplex optimizer , Termination criteria

MSK_DPAR_SIMPLEX_ABS_TOL_PIV

Absolute pivot tolerance employed by the simplex optimizers.

Default
1.0e-7

Accepted
[1.0e-12; +inf]

Example
param.MSK_DPAR_SIMPLEX_ABS_TOL_PIV = 1.0e-7

Groups
Simplex optimizer

MSK_DPAR_UPPER_OBJ_CUT

If either a primal or dual feasible solution is found proving that the optimal objective value is
outside the interval [MSK_DPAR_LOWER_OBJ_CUT , MSK_DPAR_UPPER_OBJ_CUT], then MOSEK is
terminated.

Default
INFINITY

Accepted
[-inf; +inf]

Example
param.MSK_DPAR_UPPER_OBJ_CUT = INFINITY

See also
MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH

Groups
Termination criteria

MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH

If the upper objective cut is greater than the value of this parameter, then the upper objective cut
MSK_DPAR_UPPER_OBJ_CUT is treated as ∞.

Default
0.5e30

Accepted
[-inf; +inf]

Example
param.MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH = 0.5e30

Groups
Termination criteria

15.5.2 Integer parameters

iparam

The enumeration type containing all integer parameters.
MSK_IPAR_ANA_SOL_BASIS

Controls whether the basis matrix is analyzed in solution analyzer.

Default
"ON"

210

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_ANA_SOL_BASIS = 'MSK_ON'

Groups
Analysis

MSK_IPAR_ANA_SOL_PRINT_VIOLATED
A parameter of the problem analyzer. Controls whether a list of violated constraints is printed. All
constraints violated by more than the value set by the parameter MSK_DPAR_ANA_SOL_INFEAS_TOL
will be printed.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_ANA_SOL_PRINT_VIOLATED = 'MSK_OFF'

Groups
Analysis

MSK_IPAR_AUTO_SORT_A_BEFORE_OPT
Controls whether the elements in each column of 𝐴 are sorted before an optimization is performed.
This is not required but makes the optimization more deterministic.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_AUTO_SORT_A_BEFORE_OPT = 'MSK_OFF'

Groups
Debugging

MSK_IPAR_AUTO_UPDATE_SOL_INFO
Controls whether the solution information items are automatically updated after an optimization
is performed.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_AUTO_UPDATE_SOL_INFO = 'MSK_OFF'

Groups
Overall system

MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE
If a slack variable is in the basis, then the corresponding column in the basis is a unit vector with
-1 in the right position. However, if this parameter is set to "MSK_ON" , -1 is replaced by 1.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE = 'MSK_OFF'

Groups
Simplex optimizer

211

MSK_IPAR_BI_CLEAN_OPTIMIZER

Controls which simplex optimizer is used in the clean-up phase. Anything else than
"MSK_OPTIMIZER_PRIMAL_SIMPLEX" or "MSK_OPTIMIZER_DUAL_SIMPLEX" is equivalent to
"MSK_OPTIMIZER_FREE_SIMPLEX" .

Default
"FREE"

Accepted
"FREE" , "INTPNT" , "CONIC" , "PRIMAL_SIMPLEX" , "DUAL_SIMPLEX" ,
"NEW_PRIMAL_SIMPLEX" , "NEW_DUAL_SIMPLEX" , "FREE_SIMPLEX" , "MIXED_INT"

Example
param.MSK_IPAR_BI_CLEAN_OPTIMIZER = 'MSK_OPTIMIZER_FREE'

Groups
Basis identification, Overall solver

MSK_IPAR_BI_IGNORE_MAX_ITER

If the parameter MSK_IPAR_INTPNT_BASIS has the value "MSK_BI_NO_ERROR" and the interior-
point optimizer has terminated due to maximum number of iterations, then basis identification is
performed if this parameter has the value "MSK_ON" .

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_BI_IGNORE_MAX_ITER = 'MSK_OFF'

Groups
Interior-point method , Basis identification

MSK_IPAR_BI_IGNORE_NUM_ERROR

If the parameter MSK_IPAR_INTPNT_BASIS has the value "MSK_BI_NO_ERROR" and the interior-
point optimizer has terminated due to a numerical problem, then basis identification is performed
if this parameter has the value "MSK_ON" .

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_BI_IGNORE_NUM_ERROR = 'MSK_OFF'

Groups
Interior-point method , Basis identification

MSK_IPAR_BI_MAX_ITERATIONS

Controls the maximum number of simplex iterations allowed to optimize a basis after the basis
identification.

Default
1000000

Accepted
[0; +inf]

Example
param.MSK_IPAR_BI_MAX_ITERATIONS = 1000000

Groups
Basis identification, Termination criteria

212

MSK_IPAR_CACHE_LICENSE

Specifies if the license is kept checked out for the lifetime of the MOSEK environ-
ment/model/process ("MSK_ON") or returned to the server immediately after the optimization
("MSK_OFF").

By default the license is checked out for the lifetime of the session at the start of first optimization.

Check-in and check-out of licenses have an overhead. Frequent communication with the license
server should be avoided.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_CACHE_LICENSE = 'MSK_ON'

Groups
License manager

MSK_IPAR_COMPRESS_STATFILE

Control compression of stat files.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_COMPRESS_STATFILE = 'MSK_ON'

MSK_IPAR_FOLDING_USE

Controls whether and how to use problem folding (symmetry detection for continuous problems).
Note that for symmetry detection for mixed-integer problems one should instead use the parameter
MSK_IPAR_MIO_SYMMETRY_LEVEL .

Default
"FREE_UNLESS_BASIC"

Accepted
"OFF" , "FREE" , "FREE_UNLESS_BASIC" , "FORCE"

Example
param.MSK_IPAR_FOLDING_USE = 'MSK_FOLDING_MODE_FREE_UNLESS_BASIC'

Groups
Presolve

MSK_IPAR_GETDUAL_CONVERT_LMIS

Whether to perform LMI detection and optimization in the user-level dualizer.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_GETDUAL_CONVERT_LMIS = 'MSK_ON'

MSK_IPAR_HEARTBEAT_SIM_FREQ_TICKS

Controls how frequent the new simplex optimizer calls the user-defined callback function is called.

• −1. Logging is disabled.

• 0. Logging at highest frequency (every iteration).

• ≥ 1. Logging at given frequency measured in ticks.

213

Default
1000000

Accepted
[-1; +inf]

Example
param.MSK_IPAR_HEARTBEAT_SIM_FREQ_TICKS = 1000000

Groups
Simplex optimizer , Output information, Logging

MSK_IPAR_INFEAS_GENERIC_NAMES
Controls whether generic names are used when an infeasible subproblem is created.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_INFEAS_GENERIC_NAMES = 'MSK_OFF'

Groups
Infeasibility report

MSK_IPAR_INFEAS_REPORT_AUTO
Controls whether an infeasibility report is automatically produced after the optimization if the
problem is primal or dual infeasible.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_INFEAS_REPORT_AUTO = 'MSK_OFF'

Groups
Data input/output , Solution input/output

MSK_IPAR_INFEAS_REPORT_LEVEL
Controls the amount of information presented in an infeasibility report. Higher values imply more
information.

Default
1

Accepted
[0; +inf]

Example
param.MSK_IPAR_INFEAS_REPORT_LEVEL = 1

Groups
Infeasibility report , Output information

MSK_IPAR_INTPNT_BASIS
Controls whether the interior-point optimizer also computes an optimal basis.

Default
"ALWAYS"

Accepted
"NEVER" , "ALWAYS" , "NO_ERROR" , "IF_FEASIBLE" , "RESERVERED"

Example
param.MSK_IPAR_INTPNT_BASIS = 'MSK_BI_ALWAYS'

See also
MSK_IPAR_BI_IGNORE_MAX_ITER , MSK_IPAR_BI_IGNORE_NUM_ERROR ,
MSK_IPAR_BI_MAX_ITERATIONS , MSK_IPAR_BI_CLEAN_OPTIMIZER

214

Groups
Interior-point method , Basis identification

MSK_IPAR_INTPNT_DIFF_STEP
Controls whether different step sizes are allowed in the primal and dual space.

Default
"ON"

Accepted
• "ON" : Different step sizes are allowed.
• "OFF" : Different step sizes are not allowed.

Example
param.MSK_IPAR_INTPNT_DIFF_STEP = 'MSK_ON'

Groups
Interior-point method

MSK_IPAR_INTPNT_HOTSTART
Currently not in use.

Default
"NONE"

Accepted
"NONE" , "PRIMAL" , "DUAL" , "PRIMAL_DUAL"

Example
param.MSK_IPAR_INTPNT_HOTSTART = 'MSK_INTPNT_HOTSTART_NONE'

Groups
Interior-point method

MSK_IPAR_INTPNT_MAX_ITERATIONS
Controls the maximum number of iterations allowed in the interior-point optimizer.

Default
400

Accepted
[0; +inf]

Example
param.MSK_IPAR_INTPNT_MAX_ITERATIONS = 400

Groups
Interior-point method , Termination criteria

MSK_IPAR_INTPNT_MAX_NUM_COR
Controls the maximum number of correctors allowed by the multiple corrector procedure. A neg-
ative value means that MOSEK is making the choice.

Default
-1

Accepted
[-1; +inf]

Example
param.MSK_IPAR_INTPNT_MAX_NUM_COR = -1

Groups
Interior-point method

MSK_IPAR_INTPNT_OFF_COL_TRH
Controls how many offending columns are detected in the Jacobian of the constraint matrix.

0 no detection
1 aggressive detection
> 1 higher values mean less aggressive detection

215

Default
40

Accepted
[0; +inf]

Example
param.MSK_IPAR_INTPNT_OFF_COL_TRH = 40

Groups
Interior-point method

MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS
The GP ordering is dependent on a random seed. Therefore, trying several random seeds may lead
to a better ordering. This parameter controls the number of random seeds tried.

A value of 0 means that MOSEK makes the choice.

Default
0

Accepted
[0; +inf]

Example
param.MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS = 0

Groups
Interior-point method

MSK_IPAR_INTPNT_ORDER_METHOD
Controls the ordering strategy used by the interior-point optimizer when factorizing the Newton
equation system.

Default
"FREE"

Accepted
"FREE" , "APPMINLOC" , "EXPERIMENTAL" , "TRY_GRAPHPAR" , "FORCE_GRAPHPAR" ,
"NONE"

Example
param.MSK_IPAR_INTPNT_ORDER_METHOD = 'MSK_ORDER_METHOD_FREE'

Groups
Interior-point method

MSK_IPAR_INTPNT_REGULARIZATION_USE
Controls whether regularization is allowed.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_INTPNT_REGULARIZATION_USE = 'MSK_ON'

Groups
Interior-point method

MSK_IPAR_INTPNT_SCALING
Controls how the problem is scaled before the interior-point optimizer is used.

Default
"FREE"

Accepted
"FREE" , "NONE"

Example
param.MSK_IPAR_INTPNT_SCALING = 'MSK_SCALING_FREE'

216

Groups
Interior-point method

MSK_IPAR_INTPNT_SOLVE_FORM
Controls whether the primal or the dual problem is solved.

Default
"FREE"

Accepted
"FREE" , "PRIMAL" , "DUAL"

Example
param.MSK_IPAR_INTPNT_SOLVE_FORM = 'MSK_SOLVE_FREE'

Groups
Interior-point method

MSK_IPAR_INTPNT_STARTING_POINT
Starting point used by the interior-point optimizer.

Default
"FREE"

Accepted
"FREE" , "GUESS" , "CONSTANT"

Example
param.MSK_IPAR_INTPNT_STARTING_POINT = 'MSK_STARTING_POINT_FREE'

Groups
Interior-point method

MSK_IPAR_LICENSE_DEBUG
This option is used to turn on debugging of the license manager.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_LICENSE_DEBUG = 'MSK_OFF'

Groups
License manager

MSK_IPAR_LICENSE_PAUSE_TIME
If MSK_IPAR_LICENSE_WAIT is "MSK_ON" and no license is available, then MOSEK sleeps a number
of milliseconds between each check of whether a license has become free.

Default
100

Accepted
[0; 1000000]

Example
param.MSK_IPAR_LICENSE_PAUSE_TIME = 100

Groups
License manager

MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS
Controls whether license features expire warnings are suppressed.

Default
"OFF"

Accepted
"ON" , "OFF"

217

Example
param.MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS = 'MSK_OFF'

Groups
License manager , Output information

MSK_IPAR_LICENSE_TRH_EXPIRY_WRN
If a license feature expires in a numbers of days less than the value of this parameter then a warning
will be issued.

Default
7

Accepted
[0; +inf]

Example
param.MSK_IPAR_LICENSE_TRH_EXPIRY_WRN = 7

Groups
License manager , Output information

MSK_IPAR_LICENSE_WAIT
If all licenses are in use MOSEK returns with an error code. However, by turning on this parameter
MOSEK will wait for an available license.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_LICENSE_WAIT = 'MSK_OFF'

Groups
Overall solver , Overall system, License manager

MSK_IPAR_LOG
Controls the amount of log information. The value 0 implies that all log information is suppressed.
A higher level implies that more information is logged.

Please note that if a task is employed to solve a sequence of optimization problems the value of
this parameter is reduced by the value of MSK_IPAR_LOG_CUT_SECOND_OPT for the second and any
subsequent optimizations.

Default
10

Accepted
[0; +inf]

Example
param.MSK_IPAR_LOG = 10

See also
MSK_IPAR_LOG_CUT_SECOND_OPT

Groups
Output information, Logging

MSK_IPAR_LOG_ANA_PRO
Controls amount of output from the problem analyzer.

Default
1

Accepted
[0; +inf]

Example
param.MSK_IPAR_LOG_ANA_PRO = 1

218

Groups
Analysis, Logging

MSK_IPAR_LOG_BI

Controls the amount of output printed by the basis identification procedure. A higher level implies
that more information is logged.

Default
1

Accepted
[0; +inf]

Example
param.MSK_IPAR_LOG_BI = 1

Groups
Basis identification, Output information, Logging

MSK_IPAR_LOG_BI_FREQ

Controls how frequently the optimizer outputs information about the basis identification and how
frequent the user-defined callback function is called.

Default
2500

Accepted
[0; +inf]

Example
param.MSK_IPAR_LOG_BI_FREQ = 2500

Groups
Basis identification, Output information, Logging

MSK_IPAR_LOG_CUT_SECOND_OPT

If a task is employed to solve a sequence of optimization problems, then the value of the log levels
is reduced by the value of this parameter. E.g MSK_IPAR_LOG and MSK_IPAR_LOG_SIM are reduced
by the value of this parameter for the second and any subsequent optimizations.

Default
1

Accepted
[0; +inf]

Example
param.MSK_IPAR_LOG_CUT_SECOND_OPT = 1

See also
MSK_IPAR_LOG , MSK_IPAR_LOG_INTPNT , MSK_IPAR_LOG_MIO , MSK_IPAR_LOG_SIM

Groups
Output information, Logging

MSK_IPAR_LOG_EXPAND

Controls the amount of logging when a data item such as the maximum number constrains is
expanded.

Default
1

Accepted
[0; +inf]

Example
param.MSK_IPAR_LOG_EXPAND = 1

Groups
Output information, Logging

219

MSK_IPAR_LOG_FEAS_REPAIR

Controls the amount of output printed when performing feasibility repair. A value higher than one
means extensive logging.

Default
1

Accepted
[0; +inf]

Example
param.MSK_IPAR_LOG_FEAS_REPAIR = 1

Groups
Output information, Logging

MSK_IPAR_LOG_FILE

If turned on, then some log info is printed when a file is written or read.

Default
1

Accepted
[0; +inf]

Example
param.MSK_IPAR_LOG_FILE = 1

Groups
Data input/output , Output information, Logging

MSK_IPAR_LOG_INCLUDE_SUMMARY

Not relevant for this API.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_LOG_INCLUDE_SUMMARY = 'MSK_OFF'

Groups
Output information, Logging

MSK_IPAR_LOG_INFEAS_ANA

Controls amount of output printed by the infeasibility analyzer procedures. A higher level implies
that more information is logged.

Default
1

Accepted
[0; +inf]

Example
param.MSK_IPAR_LOG_INFEAS_ANA = 1

Groups
Infeasibility report , Output information, Logging

MSK_IPAR_LOG_INTPNT

Controls amount of output printed by the interior-point optimizer. A higher level implies that
more information is logged.

Default
1

Accepted
[0; +inf]

220

Example
param.MSK_IPAR_LOG_INTPNT = 1

Groups
Interior-point method , Output information, Logging

MSK_IPAR_LOG_LOCAL_INFO
Controls whether local identifying information like environment variables, filenames, IP addresses
etc. are printed to the log.

Note that this will only affect some functions. Some functions that specifically emit system infor-
mation will not be affected.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_LOG_LOCAL_INFO = 'MSK_ON'

Groups
Output information, Logging

MSK_IPAR_LOG_MIO
Controls the log level for the mixed-integer optimizer. A higher level implies that more information
is logged.

Default
4

Accepted
[0; +inf]

Example
param.MSK_IPAR_LOG_MIO = 4

Groups
Mixed-integer optimization, Output information, Logging

MSK_IPAR_LOG_MIO_FREQ
Controls how frequent the mixed-integer optimizer prints the log line. It will print line every time
MSK_IPAR_LOG_MIO_FREQ relaxations have been solved.

Default
10

Accepted
[-inf; +inf]

Example
param.MSK_IPAR_LOG_MIO_FREQ = 10

Groups
Mixed-integer optimization, Output information, Logging

MSK_IPAR_LOG_ORDER
If turned on, then factor lines are added to the log.

Default
1

Accepted
[0; +inf]

Example
param.MSK_IPAR_LOG_ORDER = 1

Groups
Output information, Logging

221

MSK_IPAR_LOG_PRESOLVE

Controls amount of output printed by the presolve procedure. A higher level implies that more
information is logged.

Default
1

Accepted
[0; +inf]

Example
param.MSK_IPAR_LOG_PRESOLVE = 1

Groups
Logging

MSK_IPAR_LOG_SENSITIVITY

Controls the amount of logging during the sensitivity analysis.

• 0. Means no logging information is produced.

• 1. Timing information is printed.

• 2. Sensitivity results are printed.

Default
1

Accepted
[0; +inf]

Example
param.MSK_IPAR_LOG_SENSITIVITY = 1

Groups
Output information, Logging

MSK_IPAR_LOG_SENSITIVITY_OPT

Controls the amount of logging from the optimizers employed during the sensitivity analysis. 0
means no logging information is produced.

Default
0

Accepted
[0; +inf]

Example
param.MSK_IPAR_LOG_SENSITIVITY_OPT = 0

Groups
Output information, Logging

MSK_IPAR_LOG_SIM

Controls amount of output printed by the simplex optimizer. A higher level implies that more
information is logged.

Default
4

Accepted
[0; +inf]

Example
param.MSK_IPAR_LOG_SIM = 4

Groups
Simplex optimizer , Output information, Logging

222

MSK_IPAR_LOG_SIM_FREQ

Controls how frequent the simplex optimizer outputs information about the optimization and how
frequent the user-defined callback function is called.

Default
1000

Accepted
[0; +inf]

Example
param.MSK_IPAR_LOG_SIM_FREQ = 1000

Groups
Simplex optimizer , Output information, Logging

MSK_IPAR_LOG_SIM_FREQ_GIGA_TICKS

Controls how frequent the new simplex optimizer outputs information about the optimization and
how frequent the user-defined callback function is called.

• −1. Logging is disabled.

• 0. Logging at highest frequency (every iteration).

• ≥ 1. Logging at given frequency measured in giga ticks.

Default
100

Accepted
[-1; +inf]

Example
param.MSK_IPAR_LOG_SIM_FREQ_GIGA_TICKS = 100

Groups
Simplex optimizer , Output information, Logging

MSK_IPAR_LOG_STORAGE

When turned on, MOSEK prints messages regarding the storage usage and allocation.

Default
0

Accepted
[0; +inf]

Example
param.MSK_IPAR_LOG_STORAGE = 0

Groups
Output information, Overall system, Logging

MSK_IPAR_MAX_NUM_WARNINGS

Each warning is shown a limited number of times controlled by this parameter. A negative value
is identical to infinite number of times.

Default
10

Accepted
[-inf; +inf]

Example
param.MSK_IPAR_MAX_NUM_WARNINGS = 10

Groups
Output information

223

MSK_IPAR_MIO_BRANCH_DIR

Controls whether the mixed-integer optimizer is branching up or down by default.

Default
"FREE"

Accepted
"FREE" , "UP" , "DOWN" , "NEAR" , "FAR" , "ROOT_LP" , "GUIDED" , "PSEUDOCOST"

Example
param.MSK_IPAR_MIO_BRANCH_DIR = 'MSK_BRANCH_DIR_FREE'

Groups
Mixed-integer optimization

MSK_IPAR_MIO_CONFLICT_ANALYSIS_LEVEL

Controls the amount of conflict analysis employed by the mixed-integer optimizer.

• −1. The optimizer chooses the level of conflict analysis employed

• 0. conflict analysis is disabled

• 1. A lower amount of conflict analysis is employed

• 2. A higher amount of conflict analysis is employed

Default
-1

Accepted
[-1; 2]

Example
param.MSK_IPAR_MIO_CONFLICT_ANALYSIS_LEVEL = -1

Groups
Mixed-integer optimization

MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION

If this option is turned on outer approximation is used when solving relaxations of conic problems;
otherwise interior point is used.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION = 'MSK_OFF'

Groups
Mixed-integer optimization

MSK_IPAR_MIO_CONSTRUCT_SOL

If set to "MSK_ON" and all integer variables have been given a value for which a feasible mixed
integer solution exists, then MOSEK generates an initial solution to the mixed integer problem
by fixing all integer values and solving the remaining problem.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_MIO_CONSTRUCT_SOL = 'MSK_OFF'

Groups
Mixed-integer optimization

224

MSK_IPAR_MIO_CROSSOVER_MAX_NODES

Controls the maximum number of nodes allowed in each call to the Crossover heuristic. The default
value of -1 means that the value is determined automatically. A value of zero turns off the heuristic.

Default
-1

Accepted
[-1; +inf]

Example
param.MSK_IPAR_MIO_CROSSOVER_MAX_NODES = -1

Groups
Mixed-integer optimization

MSK_IPAR_MIO_CUT_CLIQUE

Controls whether clique cuts should be generated.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_MIO_CUT_CLIQUE = 'MSK_ON'

Groups
Mixed-integer optimization

MSK_IPAR_MIO_CUT_CMIR

Controls whether mixed integer rounding cuts should be generated.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_MIO_CUT_CMIR = 'MSK_ON'

Groups
Mixed-integer optimization

MSK_IPAR_MIO_CUT_GMI

Controls whether GMI cuts should be generated.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_MIO_CUT_GMI = 'MSK_ON'

Groups
Mixed-integer optimization

MSK_IPAR_MIO_CUT_IMPLIED_BOUND

Controls whether implied bound cuts should be generated.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_MIO_CUT_IMPLIED_BOUND = 'MSK_ON'

225

Groups
Mixed-integer optimization

MSK_IPAR_MIO_CUT_KNAPSACK_COVER

Controls whether knapsack cover cuts should be generated.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_MIO_CUT_KNAPSACK_COVER = 'MSK_ON'

Groups
Mixed-integer optimization

MSK_IPAR_MIO_CUT_LIPRO

Controls whether lift-and-project cuts should be generated.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_MIO_CUT_LIPRO = 'MSK_OFF'

Groups
Mixed-integer optimization

MSK_IPAR_MIO_CUT_SELECTION_LEVEL

Controls how aggressively generated cuts are selected to be included in the relaxation.

• −1. The optimizer chooses the level of cut selection

• 0. Generated cuts less likely to be added to the relaxation

• 1. Cuts are more aggressively selected to be included in the relaxation

Default
-1

Accepted
[-1; +1]

Example
param.MSK_IPAR_MIO_CUT_SELECTION_LEVEL = -1

Groups
Mixed-integer optimization

MSK_IPAR_MIO_DATA_PERMUTATION_METHOD

Controls what problem data permutation method is appplied to mixed-integer problems.

Default
"NONE"

Accepted
"NONE" , "CYCLIC_SHIFT" , "RANDOM"

Example
param.MSK_IPAR_MIO_DATA_PERMUTATION_METHOD = 'MSK_MIO_DATA_PERMUTATION_METHOD_NONE'

Groups
Mixed-integer optimization

226

MSK_IPAR_MIO_DUAL_RAY_ANALYSIS_LEVEL
Controls the amount of dual ray analysis employed by the mixed-integer optimizer.

• −1. The optimizer chooses the level of dual ray analysis employed
• 0. Dual ray analysis is disabled
• 1. A lower amount of dual ray analysis is employed
• 2. A higher amount of dual ray analysis is employed

Default
-1

Accepted
[-1; 2]

Example
param.MSK_IPAR_MIO_DUAL_RAY_ANALYSIS_LEVEL = -1

Groups
Mixed-integer optimization

MSK_IPAR_MIO_FEASPUMP_LEVEL
Controls the way the Feasibility Pump heuristic is employed by the mixed-integer optimizer.

• −1. The optimizer chooses how the Feasibility Pump is used
• 0. The Feasibility Pump is disabled
• 1. The Feasibility Pump is enabled with an effort to improve solution quality
• 2. The Feasibility Pump is enabled with an effort to reach feasibility early

Default
-1

Accepted
[-1; 2]

Example
param.MSK_IPAR_MIO_FEASPUMP_LEVEL = -1

Groups
Mixed-integer optimization

MSK_IPAR_MIO_HEURISTIC_LEVEL
Controls the heuristic employed by the mixed-integer optimizer to locate an initial good integer
feasible solution. A value of zero means the heuristic is not used at all. A larger value than 0 means
that a gradually more sophisticated heuristic is used which is computationally more expensive. A
negative value implies that the optimizer chooses the heuristic. Normally a value around 3 to 5
should be optimal.

Default
-1

Accepted
[-inf; +inf]

Example
param.MSK_IPAR_MIO_HEURISTIC_LEVEL = -1

Groups
Mixed-integer optimization

MSK_IPAR_MIO_INDEPENDENT_BLOCK_LEVEL
Controls the way the mixed-integer optimizer tries to find and exploit a decomposition of the
problem into independent blocks.

• −1. The optimizer chooses how independent-block structure is handled
• 0. No independent-block structure is detected
• 1. Independent-block structure may be exploited only in presolve

227

• 2. Independent-block structure may be exploited through a dedicated algorithm after the root
node

• 3. Independent-block structure may be exploited through a dedicated algorithm before the
root node

Default
-1

Accepted
[-1; 3]

Example
param.MSK_IPAR_MIO_INDEPENDENT_BLOCK_LEVEL = -1

Groups
Mixed-integer optimization

MSK_IPAR_MIO_MAX_NUM_BRANCHES

Maximum number of branches allowed during the branch and bound search. A negative value
means infinite.

Default
-1

Accepted
[-inf; +inf]

Example
param.MSK_IPAR_MIO_MAX_NUM_BRANCHES = -1

Groups
Mixed-integer optimization, Termination criteria

MSK_IPAR_MIO_MAX_NUM_RELAXS

Maximum number of relaxations allowed during the branch and bound search. A negative value
means infinite.

Default
-1

Accepted
[-inf; +inf]

Example
param.MSK_IPAR_MIO_MAX_NUM_RELAXS = -1

Groups
Mixed-integer optimization

MSK_IPAR_MIO_MAX_NUM_RESTARTS

Maximum number of restarts allowed during the branch and bound search.

Default
10

Accepted
[0; +inf]

Example
param.MSK_IPAR_MIO_MAX_NUM_RESTARTS = 10

Groups
Mixed-integer optimization

MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS

Maximum number of cut separation rounds at the root node.

Default
100

228

Accepted
[0; +inf]

Example
param.MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS = 100

Groups
Mixed-integer optimization, Termination criteria

MSK_IPAR_MIO_MAX_NUM_SOLUTIONS

The mixed-integer optimizer can be terminated after a certain number of different feasible solutions
has been located. If this parameter has the value 𝑛 > 0, then the mixed-integer optimizer will be
terminated when 𝑛 feasible solutions have been located.

Default
-1

Accepted
[-inf; +inf]

Example
param.MSK_IPAR_MIO_MAX_NUM_SOLUTIONS = -1

Groups
Mixed-integer optimization, Termination criteria

MSK_IPAR_MIO_MEMORY_EMPHASIS_LEVEL

Controls how much emphasis is put on reducing memory usage. Being more conservative about
memory usage may come at the cost of decreased solution speed.

• 0. The optimizer chooses

• 1. More emphasis is put on reducing memory usage and less on speed

Default
0

Accepted
[0; +1]

Example
param.MSK_IPAR_MIO_MEMORY_EMPHASIS_LEVEL = 0

Groups
Mixed-integer optimization

MSK_IPAR_MIO_MIN_REL

Number of times a variable must have been branched on for its pseudocost to be considered reliable.

Default
5

Accepted
[0; +inf]

Example
param.MSK_IPAR_MIO_MIN_REL = 5

Groups
Mixed-integer optimization

MSK_IPAR_MIO_MODE

Controls whether the optimizer includes the integer restrictions and disjunctive constraints when
solving a (mixed) integer optimization problem.

Default
"SATISFIED"

Accepted
"IGNORED" , "SATISFIED"

229

Example
param.MSK_IPAR_MIO_MODE = 'MSK_MIO_MODE_SATISFIED'

Groups
Overall solver

MSK_IPAR_MIO_NODE_OPTIMIZER
Controls which optimizer is employed at the non-root nodes in the mixed-integer optimizer.

Default
"FREE"

Accepted
"FREE" , "INTPNT" , "CONIC" , "PRIMAL_SIMPLEX" , "DUAL_SIMPLEX" ,
"NEW_PRIMAL_SIMPLEX" , "NEW_DUAL_SIMPLEX" , "FREE_SIMPLEX" , "MIXED_INT"

Example
param.MSK_IPAR_MIO_NODE_OPTIMIZER = 'MSK_OPTIMIZER_FREE'

Groups
Mixed-integer optimization

MSK_IPAR_MIO_NODE_SELECTION
Controls the node selection strategy employed by the mixed-integer optimizer.

Default
"FREE"

Accepted
"FREE" , "FIRST" , "BEST" , "PSEUDO"

Example
param.MSK_IPAR_MIO_NODE_SELECTION = 'MSK_MIO_NODE_SELECTION_FREE'

Groups
Mixed-integer optimization

MSK_IPAR_MIO_NUMERICAL_EMPHASIS_LEVEL
Controls how much emphasis is put on reducing numerical problems possibly at the expense of
solution speed.

• 0. The optimizer chooses

• 1. More emphasis is put on reducing numerical problems

• 2. Even more emphasis

Default
0

Accepted
[0; +2]

Example
param.MSK_IPAR_MIO_NUMERICAL_EMPHASIS_LEVEL = 0

Groups
Mixed-integer optimization

MSK_IPAR_MIO_OPT_FACE_MAX_NODES
Controls the maximum number of nodes allowed in each call to the optimal face heuristic. The
default value of -1 means that the value is determined automatically. A value of zero turns off the
heuristic.

Default
-1

Accepted
[-1; +inf]

Example
param.MSK_IPAR_MIO_OPT_FACE_MAX_NODES = -1

230

Groups
Mixed-integer optimization

MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE

Enables or disables perspective reformulation in presolve.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE = 'MSK_ON'

Groups
Mixed-integer optimization

MSK_IPAR_MIO_PRESOLVE_AGGREGATOR_USE

Controls if the aggregator should be used.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_MIO_PRESOLVE_AGGREGATOR_USE = 'MSK_ON'

Groups
Presolve

MSK_IPAR_MIO_PROBING_LEVEL

Controls the amount of probing employed by the mixed-integer optimizer in presolve.

• −1. The optimizer chooses the level of probing employed

• 0. Probing is disabled

• 1. A low amount of probing is employed

• 2. A medium amount of probing is employed

• 3. A high amount of probing is employed

Default
-1

Accepted
[-1; 3]

Example
param.MSK_IPAR_MIO_PROBING_LEVEL = -1

Groups
Mixed-integer optimization

MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT

Use objective domain propagation.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT = 'MSK_OFF'

Groups
Mixed-integer optimization

231

MSK_IPAR_MIO_QCQO_REFORMULATION_METHOD
Controls what reformulation method is applied to mixed-integer quadratic problems.

Default
"FREE"

Accepted
"FREE" , "NONE" , "LINEARIZATION" , "EIGEN_VAL_METHOD" , "DIAG_SDP" ,
"RELAX_SDP"

Example
param.MSK_IPAR_MIO_QCQO_REFORMULATION_METHOD =
'MSK_MIO_QCQO_REFORMULATION_METHOD_FREE'

Groups
Mixed-integer optimization

MSK_IPAR_MIO_RENS_MAX_NODES
Controls the maximum number of nodes allowed in each call to the RENS heuristic. The default
value of -1 means that the value is determined automatically. A value of zero turns off the heuristic.

Default
-1

Accepted
[-1; +inf]

Example
param.MSK_IPAR_MIO_RENS_MAX_NODES = -1

Groups
Mixed-integer optimization

MSK_IPAR_MIO_RINS_MAX_NODES
Controls the maximum number of nodes allowed in each call to the RINS heuristic. The default
value of -1 means that the value is determined automatically. A value of zero turns off the heuristic.

Default
-1

Accepted
[-1; +inf]

Example
param.MSK_IPAR_MIO_RINS_MAX_NODES = -1

Groups
Mixed-integer optimization

MSK_IPAR_MIO_ROOT_OPTIMIZER
Controls which optimizer is employed at the root node in the mixed-integer optimizer.

Default
"FREE"

Accepted
"FREE" , "INTPNT" , "CONIC" , "PRIMAL_SIMPLEX" , "DUAL_SIMPLEX" ,
"NEW_PRIMAL_SIMPLEX" , "NEW_DUAL_SIMPLEX" , "FREE_SIMPLEX" , "MIXED_INT"

Example
param.MSK_IPAR_MIO_ROOT_OPTIMIZER = 'MSK_OPTIMIZER_FREE'

Groups
Mixed-integer optimization

MSK_IPAR_MIO_SEED
Sets the random seed used for randomization in the mixed integer optimizer. Selecting a different
seed can change the path the optimizer takes to the optimal solution.

Default
42

232

Accepted
[0; +inf]

Example
param.MSK_IPAR_MIO_SEED = 42

Groups
Mixed-integer optimization

MSK_IPAR_MIO_SYMMETRY_LEVEL

Controls the amount of symmetry detection and handling employed by the mixed-integer optimizer
in presolve.

• −1. The optimizer chooses the level of symmetry detection and handling employed

• 0. Symmetry detection and handling is disabled

• 1. A low amount of symmetry detection and handling is employed

• 2. A medium amount of symmetry detection and handling is employed

• 3. A high amount of symmetry detection and handling is employed

• 4. An extremely high amount of symmetry detection and handling is employed

Default
-1

Accepted
[-1; 4]

Example
param.MSK_IPAR_MIO_SYMMETRY_LEVEL = -1

Groups
Mixed-integer optimization

MSK_IPAR_MIO_VAR_SELECTION

Controls the variable selection strategy employed by the mixed-integer optimizer.

Default
"FREE"

Accepted
"FREE" , "PSEUDOCOST" , "STRONG"

Example
param.MSK_IPAR_MIO_VAR_SELECTION = 'MSK_MIO_VAR_SELECTION_FREE'

Groups
Mixed-integer optimization

MSK_IPAR_MIO_VB_DETECTION_LEVEL

Controls how much effort is put into detecting variable bounds.

• −1. The optimizer chooses

• 0. No variable bounds are detected

• 1. Only detect variable bounds that are directly represented in the problem

• 2. Detect variable bounds in probing

Default
-1

Accepted
[-1; +2]

Example
param.MSK_IPAR_MIO_VB_DETECTION_LEVEL = -1

Groups
Mixed-integer optimization

233

MSK_IPAR_MT_SPINCOUNT
Set the number of iterations to spin before sleeping.

Default
0

Accepted
[0; 1000000000]

Example
param.MSK_IPAR_MT_SPINCOUNT = 0

Groups
Overall system

MSK_IPAR_NG
Not in use.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_NG = 'MSK_OFF'

MSK_IPAR_NUM_THREADS
Controls the number of threads employed by the optimizer. If set to 0 the number of threads used
will be equal to the number of cores detected on the machine.

Default
0

Accepted
[0; +inf]

Example
param.MSK_IPAR_NUM_THREADS = 0

Groups
Overall system

MSK_IPAR_OPF_WRITE_HEADER
Write a text header with date and MOSEK version in an OPF file.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_OPF_WRITE_HEADER = 'MSK_ON'

Groups
Data input/output

MSK_IPAR_OPF_WRITE_HINTS
Write a hint section with problem dimensions in the beginning of an OPF file.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_OPF_WRITE_HINTS = 'MSK_ON'

Groups
Data input/output

234

MSK_IPAR_OPF_WRITE_LINE_LENGTH

Aim to keep lines in OPF files not much longer than this.

Default
80

Accepted
[0; +inf]

Example
param.MSK_IPAR_OPF_WRITE_LINE_LENGTH = 80

Groups
Data input/output

MSK_IPAR_OPF_WRITE_PARAMETERS

Write a parameter section in an OPF file.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_OPF_WRITE_PARAMETERS = 'MSK_OFF'

Groups
Data input/output

MSK_IPAR_OPF_WRITE_PROBLEM

Write objective, constraints, bounds etc. to an OPF file.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_OPF_WRITE_PROBLEM = 'MSK_ON'

Groups
Data input/output

MSK_IPAR_OPF_WRITE_SOL_BAS

If MSK_IPAR_OPF_WRITE_SOLUTIONS is "MSK_ON" and a basic solution is defined, include the basic
solution in OPF files.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_OPF_WRITE_SOL_BAS = 'MSK_ON'

Groups
Data input/output

MSK_IPAR_OPF_WRITE_SOL_ITG

If MSK_IPAR_OPF_WRITE_SOLUTIONS is "MSK_ON" and an integer solution is defined, write the
integer solution in OPF files.

Default
"ON"

Accepted
"ON" , "OFF"

235

Example
param.MSK_IPAR_OPF_WRITE_SOL_ITG = 'MSK_ON'

Groups
Data input/output

MSK_IPAR_OPF_WRITE_SOL_ITR

If MSK_IPAR_OPF_WRITE_SOLUTIONS is "MSK_ON" and an interior solution is defined, write the
interior solution in OPF files.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_OPF_WRITE_SOL_ITR = 'MSK_ON'

Groups
Data input/output

MSK_IPAR_OPF_WRITE_SOLUTIONS

Enable inclusion of solutions in the OPF files.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_OPF_WRITE_SOLUTIONS = 'MSK_OFF'

Groups
Data input/output

MSK_IPAR_OPTIMIZER

The parameter controls which optimizer is used to optimize the task.

Default
"FREE"

Accepted
"FREE" , "INTPNT" , "CONIC" , "PRIMAL_SIMPLEX" , "DUAL_SIMPLEX" ,
"NEW_PRIMAL_SIMPLEX" , "NEW_DUAL_SIMPLEX" , "FREE_SIMPLEX" , "MIXED_INT"

Example
param.MSK_IPAR_OPTIMIZER = 'MSK_OPTIMIZER_FREE'

Groups
Overall solver

MSK_IPAR_PARAM_READ_CASE_NAME

If turned on, then names in the parameter file are case sensitive.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_PARAM_READ_CASE_NAME = 'MSK_ON'

Groups
Data input/output

236

MSK_IPAR_PARAM_READ_IGN_ERROR

If turned on, then errors in parameter settings is ignored.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_PARAM_READ_IGN_ERROR = 'MSK_OFF'

Groups
Data input/output

MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL

Controls the maximum amount of fill-in that can be created by one pivot in the elimination phase
of the presolve. A negative value means the parameter value is selected automatically.

Default
-1

Accepted
[-inf; +inf]

Example
param.MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL = -1

Groups
Presolve

MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES

Control the maximum number of times the eliminator is tried. A negative value implies MOSEK
decides.

Default
-1

Accepted
[-inf; +inf]

Example
param.MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES = -1

Groups
Presolve

MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH

Controls linear dependency check in presolve. The linear dependency check is potentially compu-
tationally expensive.

Default
100

Accepted
[-inf; +inf]

Example
param.MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH = 100

Groups
Presolve

MSK_IPAR_PRESOLVE_LINDEP_NEW

Controls whether a new experimental linear dependency checker is employed.

Default
"OFF"

Accepted
"ON" , "OFF"

237

Example
param.MSK_IPAR_PRESOLVE_LINDEP_NEW = 'MSK_OFF'

Groups
Presolve

MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH

Controls linear dependency check in presolve. The linear dependency check is potentially compu-
tationally expensive.

Default
100

Accepted
[-inf; +inf]

Example
param.MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH = 100

Groups
Presolve

MSK_IPAR_PRESOLVE_LINDEP_USE

Controls whether the linear constraints are checked for linear dependencies.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_PRESOLVE_LINDEP_USE = 'MSK_ON'

Groups
Presolve

MSK_IPAR_PRESOLVE_MAX_NUM_PASS

Control the maximum number of times presolve passes over the problem. A negative value implies
MOSEK decides.

Default
-1

Accepted
[-inf; +inf]

Example
param.MSK_IPAR_PRESOLVE_MAX_NUM_PASS = -1

Groups
Presolve

MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS

Controls the maximum number of reductions performed by the presolve. The value of the parameter
is normally only changed in connection with debugging. A negative value implies that an infinite
number of reductions are allowed.

Default
-1

Accepted
[-inf; +inf]

Example
param.MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS = -1

Groups
Overall solver , Presolve

238

MSK_IPAR_PRESOLVE_USE

Controls whether the presolve is applied to a problem before it is optimized.

Default
"FREE"

Accepted
"OFF" , "ON" , "FREE"

Example
param.MSK_IPAR_PRESOLVE_USE = 'MSK_PRESOLVE_MODE_FREE'

Groups
Overall solver , Presolve

MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER

Controls which optimizer that is used to find the optimal repair.

Default
"FREE"

Accepted
"FREE" , "INTPNT" , "CONIC" , "PRIMAL_SIMPLEX" , "DUAL_SIMPLEX" ,
"NEW_PRIMAL_SIMPLEX" , "NEW_DUAL_SIMPLEX" , "FREE_SIMPLEX" , "MIXED_INT"

Example
param.MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER = 'MSK_OPTIMIZER_FREE'

Groups
Overall solver

MSK_IPAR_PTF_WRITE_PARAMETERS

If MSK_IPAR_PTF_WRITE_PARAMETERS is "MSK_ON" , the parameters section is written.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_PTF_WRITE_PARAMETERS = 'MSK_OFF'

Groups
Data input/output

MSK_IPAR_PTF_WRITE_SINGLE_PSD_TERMS

Controls whether PSD terms with a coefficient matrix of just one non-zero are written as a single
term instead of as a matrix term.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_PTF_WRITE_SINGLE_PSD_TERMS = 'MSK_OFF'

Groups
Data input/output

MSK_IPAR_PTF_WRITE_SOLUTIONS

If MSK_IPAR_PTF_WRITE_SOLUTIONS is "MSK_ON" , the solution section is written if any solutions
are available, otherwise solution section is not written even if solutions are available.

Default
"OFF"

Accepted
"ON" , "OFF"

239

Example
param.MSK_IPAR_PTF_WRITE_SOLUTIONS = 'MSK_OFF'

Groups
Data input/output

MSK_IPAR_PTF_WRITE_TRANSFORM

If MSK_IPAR_PTF_WRITE_TRANSFORM is "MSK_ON" , constraint blocks with identifiable conic slacks
are transformed into conic constraints and the slacks are eliminated.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_PTF_WRITE_TRANSFORM = 'MSK_ON'

Groups
Data input/output

MSK_IPAR_READ_ASYNC

Controls whether files are read using synchronous or asynchronous reader.

Default
"OFF"

Accepted
• "ON" : Use asynchronous reader
• "OFF" : Use synchronous reader

Example
param.MSK_IPAR_READ_ASYNC = 'MSK_OFF'

Groups
Data input/output

MSK_IPAR_READ_DEBUG

Turns on additional debugging information when reading files.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_READ_DEBUG = 'MSK_OFF'

Groups
Data input/output

MSK_IPAR_READ_KEEP_FREE_CON

Controls whether the free constraints are included in the problem. Applies to MPS files.

Default
"OFF"

Accepted
• "ON" : The free constraints are kept.
• "OFF" : The free constraints are discarded.

Example
param.MSK_IPAR_READ_KEEP_FREE_CON = 'MSK_OFF'

Groups
Data input/output

240

MSK_IPAR_READ_MPS_FORMAT
Controls how strictly the MPS file reader interprets the MPS format.

Default
"FREE"

Accepted
"STRICT" , "RELAXED" , "FREE" , "CPLEX"

Example
param.MSK_IPAR_READ_MPS_FORMAT = 'MSK_MPS_FORMAT_FREE'

Groups
Data input/output

MSK_IPAR_READ_MPS_WIDTH
Controls the maximal number of characters allowed in one line of the MPS file.

Default
1024

Accepted
[80; +inf]

Example
param.MSK_IPAR_READ_MPS_WIDTH = 1024

Groups
Data input/output

MSK_IPAR_READ_TASK_IGNORE_PARAM
Controls whether MOSEK should ignore the parameter setting defined in the task file and use
the default parameter setting instead.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_READ_TASK_IGNORE_PARAM = 'MSK_OFF'

Groups
Data input/output

MSK_IPAR_REMOTE_USE_COMPRESSION
Use compression when sending data to an optimization server.

Default
"ZSTD"

Accepted
"NONE" , "FREE" , "GZIP" , "ZSTD"

Example
param.MSK_IPAR_REMOTE_USE_COMPRESSION = 'MSK_COMPRESS_ZSTD'

MSK_IPAR_REMOVE_UNUSED_SOLUTIONS
Removes unused solutions before the optimization is performed.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_REMOVE_UNUSED_SOLUTIONS = 'MSK_OFF'

Groups
Overall system

241

MSK_IPAR_SENSITIVITY_ALL
Not applicable.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_SENSITIVITY_ALL = 'MSK_OFF'

Groups
Overall solver

MSK_IPAR_SENSITIVITY_TYPE
Controls which type of sensitivity analysis is to be performed.

Default
"BASIS"

Accepted
"BASIS"

Example
param.MSK_IPAR_SENSITIVITY_TYPE = 'MSK_SENSITIVITY_TYPE_BASIS'

Groups
Overall solver

MSK_IPAR_SIM_BASIS_FACTOR_USE
Controls whether an LU factorization of the basis is used in a hot-start. Forcing a refactorization
sometimes improves the stability of the simplex optimizers, but in most cases there is a performance
penalty.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_SIM_BASIS_FACTOR_USE = 'MSK_ON'

Groups
Simplex optimizer

MSK_IPAR_SIM_DEGEN
Controls how aggressively degeneration is handled.

Default
"FREE"

Accepted
"NONE" , "FREE" , "AGGRESSIVE" , "MODERATE" , "MINIMUM"

Example
param.MSK_IPAR_SIM_DEGEN = 'MSK_SIM_DEGEN_FREE'

Groups
Simplex optimizer

MSK_IPAR_SIM_DETECT_PWL
Not in use.

Default
"ON"

Accepted
• "ON" : PWL are detected.
• "OFF" : PWL are not detected.

242

Example
param.MSK_IPAR_SIM_DETECT_PWL = 'MSK_ON'

Groups
Simplex optimizer

MSK_IPAR_SIM_DUAL_CRASH

Controls whether crashing is performed in the dual simplex optimizer. If this parameter is set to
𝑥, then a crash will be performed if a basis consists of more than (100− 𝑥) mod 𝑓𝑣 entries, where
𝑓𝑣 is the number of fixed variables.

Default
90

Accepted
[0; +inf]

Example
param.MSK_IPAR_SIM_DUAL_CRASH = 90

Groups
Dual simplex

MSK_IPAR_SIM_DUAL_PHASEONE_METHOD

An experimental feature.

Default
0

Accepted
[0; 10]

Example
param.MSK_IPAR_SIM_DUAL_PHASEONE_METHOD = 0

Groups
Simplex optimizer

MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION

The dual simplex optimizer can use a so-called restricted selection/pricing strategy to choose the
outgoing variable. Hence, if restricted selection is applied, then the dual simplex optimizer first
choose a subset of all the potential outgoing variables. Next, for some time it will choose the
outgoing variable only among the subset. From time to time the subset is redefined. A larger value
of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e.
a value of 0 implies that the restriction strategy is not applied at all.

Default
50

Accepted
[0; 100]

Example
param.MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION = 50

Groups
Dual simplex

MSK_IPAR_SIM_DUAL_SELECTION

Controls the choice of the incoming variable, known as the selection strategy, in the dual simplex
optimizer.

Default
"FREE"

Accepted
"FREE" , "FULL" , "ASE" , "DEVEX" , "SE" , "PARTIAL"

Example
param.MSK_IPAR_SIM_DUAL_SELECTION = 'MSK_SIM_SELECTION_FREE'

243

Groups
Dual simplex

MSK_IPAR_SIM_EXPLOIT_DUPVEC
Controls if the simplex optimizers are allowed to exploit duplicated columns.

Default
"OFF"

Accepted
"ON" , "OFF" , "FREE"

Example
param.MSK_IPAR_SIM_EXPLOIT_DUPVEC = 'MSK_SIM_EXPLOIT_DUPVEC_OFF'

Groups
Simplex optimizer

MSK_IPAR_SIM_HOTSTART
Controls the type of hot-start that the simplex optimizer perform.

Default
"FREE"

Accepted
"NONE" , "FREE" , "STATUS_KEYS"

Example
param.MSK_IPAR_SIM_HOTSTART = 'MSK_SIM_HOTSTART_FREE'

Groups
Simplex optimizer

MSK_IPAR_SIM_HOTSTART_LU
Determines if the simplex optimizer should exploit the initial factorization.

Default
"ON"

Accepted
• "ON" : Factorization is reused if possible.
• "OFF" : Factorization is recomputed.

Example
param.MSK_IPAR_SIM_HOTSTART_LU = 'MSK_ON'

Groups
Simplex optimizer

MSK_IPAR_SIM_MAX_ITERATIONS
Maximum number of iterations that can be used by a simplex optimizer.

Default
10000000

Accepted
[0; +inf]

Example
param.MSK_IPAR_SIM_MAX_ITERATIONS = 10000000

Groups
Simplex optimizer , Termination criteria

MSK_IPAR_SIM_MAX_NUM_SETBACKS
Controls how many set-backs are allowed within a simplex optimizer. A set-back is an event where
the optimizer moves in the wrong direction. This is impossible in theory but may happen due to
numerical problems.

Default
250

244

Accepted
[0; +inf]

Example
param.MSK_IPAR_SIM_MAX_NUM_SETBACKS = 250

Groups
Simplex optimizer

MSK_IPAR_SIM_NON_SINGULAR

Controls if the simplex optimizer ensures a non-singular basis, if possible.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_SIM_NON_SINGULAR = 'MSK_ON'

Groups
Simplex optimizer

MSK_IPAR_SIM_PRECISION

Experimental. Usage not recommended.

Default
"NORMAL"

Accepted
"NORMAL" , "EXTENDED"

Example
param.MSK_IPAR_SIM_PRECISION = 'MSK_SIM_PRECISION_NORMAL'

Groups
Overall solver

MSK_IPAR_SIM_PRECISION_BOOST

Controls whether the simplex optimizer is allowed to boost the precision during the computations
if possible.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_SIM_PRECISION_BOOST = 'MSK_OFF'

Groups
Simplex optimizer

MSK_IPAR_SIM_PRIMAL_CRASH

Controls whether crashing is performed in the primal simplex optimizer. In general, if a basis
consists of more than (100-this parameter value)% fixed variables, then a crash will be performed.

Default
90

Accepted
[0; +inf]

Example
param.MSK_IPAR_SIM_PRIMAL_CRASH = 90

Groups
Primal simplex

245

MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD

An experimental feature.

Default
0

Accepted
[0; 10]

Example
param.MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD = 0

Groups
Simplex optimizer

MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION

The primal simplex optimizer can use a so-called restricted selection/pricing strategy to choose
the outgoing variable. Hence, if restricted selection is applied, then the primal simplex optimizer
first choose a subset of all the potential incoming variables. Next, for some time it will choose the
incoming variable only among the subset. From time to time the subset is redefined. A larger value
of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e.
a value of 0 implies that the restriction strategy is not applied at all.

Default
50

Accepted
[0; 100]

Example
param.MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION = 50

Groups
Primal simplex

MSK_IPAR_SIM_PRIMAL_SELECTION

Controls the choice of the incoming variable, known as the selection strategy, in the primal simplex
optimizer.

Default
"FREE"

Accepted
"FREE" , "FULL" , "ASE" , "DEVEX" , "SE" , "PARTIAL"

Example
param.MSK_IPAR_SIM_PRIMAL_SELECTION = 'MSK_SIM_SELECTION_FREE'

Groups
Primal simplex

MSK_IPAR_SIM_REFACTOR_FREQ

Controls how frequent the basis is refactorized. The value 0 means that the optimizer determines
the best point of refactorization. It is strongly recommended NOT to change this parameter.

Default
0

Accepted
[0; +inf]

Example
param.MSK_IPAR_SIM_REFACTOR_FREQ = 0

Groups
Simplex optimizer

246

MSK_IPAR_SIM_REFORMULATION

Controls if the simplex optimizers are allowed to reformulate the problem.

Default
"OFF"

Accepted
"ON" , "OFF" , "FREE" , "AGGRESSIVE"

Example
param.MSK_IPAR_SIM_REFORMULATION = 'MSK_SIM_REFORMULATION_OFF'

Groups
Simplex optimizer

MSK_IPAR_SIM_SAVE_LU

Controls if the LU factorization stored should be replaced with the LU factorization corresponding
to the initial basis.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_SIM_SAVE_LU = 'MSK_OFF'

Groups
Simplex optimizer

MSK_IPAR_SIM_SCALING

Controls how much effort is used in scaling the problem before a simplex optimizer is used.

Default
"FREE"

Accepted
"FREE" , "NONE"

Example
param.MSK_IPAR_SIM_SCALING = 'MSK_SCALING_FREE'

Groups
Simplex optimizer

MSK_IPAR_SIM_SCALING_METHOD

Controls how the problem is scaled before a simplex optimizer is used.

Default
"POW2"

Accepted
"POW2" , "FREE"

Example
param.MSK_IPAR_SIM_SCALING_METHOD = 'MSK_SCALING_METHOD_POW2'

Groups
Simplex optimizer

MSK_IPAR_SIM_SEED

Sets the random seed used for randomization in the simplex optimizers.

Default
23456

Accepted
[0; 32749]

Example
param.MSK_IPAR_SIM_SEED = 23456

247

Groups
Simplex optimizer

MSK_IPAR_SIM_SOLVE_FORM

Controls whether the primal or the dual problem is solved by the primal-/dual-simplex optimizer.

Default
"FREE"

Accepted
"FREE" , "PRIMAL" , "DUAL"

Example
param.MSK_IPAR_SIM_SOLVE_FORM = 'MSK_SOLVE_FREE'

Groups
Simplex optimizer

MSK_IPAR_SIM_SWITCH_OPTIMIZER

The simplex optimizer sometimes chooses to solve the dual problem instead of the primal problem.
This implies that if you have chosen to use the dual simplex optimizer and the problem is dualized,
then it actually makes sense to use the primal simplex optimizer instead. If this parameter is on
and the problem is dualized and furthermore the simplex optimizer is chosen to be the primal
(dual) one, then it is switched to the dual (primal).

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_SIM_SWITCH_OPTIMIZER = 'MSK_OFF'

Groups
Simplex optimizer

MSK_IPAR_SOL_FILTER_KEEP_BASIC

If turned on, then basic and super basic constraints and variables are written to the solution file
independent of the filter setting.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_SOL_FILTER_KEEP_BASIC = 'MSK_OFF'

Groups
Solution input/output

MSK_IPAR_SOL_READ_NAME_WIDTH

When a solution is read by MOSEK and some constraint, variable or cone names contain blanks,
then a maximum name width much be specified. A negative value implies that no name contain
blanks.

Default
-1

Accepted
[-inf; +inf]

Example
param.MSK_IPAR_SOL_READ_NAME_WIDTH = -1

Groups
Data input/output , Solution input/output

248

MSK_IPAR_SOL_READ_WIDTH
Controls the maximal acceptable width of line in the solutions when read by MOSEK.

Default
1024

Accepted
[80; +inf]

Example
param.MSK_IPAR_SOL_READ_WIDTH = 1024

Groups
Data input/output , Solution input/output

MSK_IPAR_TIMING_LEVEL
Controls the amount of timing performed inside MOSEK.

Default
1

Accepted
[0; +inf]

Example
param.MSK_IPAR_TIMING_LEVEL = 1

Groups
Overall system

MSK_IPAR_WRITE_ASYNC
Controls whether files are read using synchronous or asynchronous writer.

Default
"OFF"

Accepted
• "ON" : Use asynchronous writer
• "OFF" : Use synchronous writer

Example
param.MSK_IPAR_WRITE_ASYNC = 'MSK_OFF'

Groups
Data input/output

MSK_IPAR_WRITE_BAS_CONSTRAINTS
Controls whether the constraint section is written to the basic solution file.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_WRITE_BAS_CONSTRAINTS = 'MSK_ON'

Groups
Data input/output , Solution input/output

MSK_IPAR_WRITE_BAS_HEAD
Controls whether the header section is written to the basic solution file.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_WRITE_BAS_HEAD = 'MSK_ON'

249

Groups
Data input/output , Solution input/output

MSK_IPAR_WRITE_BAS_VARIABLES
Controls whether the variables section is written to the basic solution file.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_WRITE_BAS_VARIABLES = 'MSK_ON'

Groups
Data input/output , Solution input/output

MSK_IPAR_WRITE_COMPRESSION
Controls whether the data file is compressed while it is written. 0 means no compression while
higher values mean more compression.

Default
9

Accepted
[0; +inf]

Example
param.MSK_IPAR_WRITE_COMPRESSION = 9

Groups
Data input/output

MSK_IPAR_WRITE_FREE_CON
Controls whether the free constraints are written to the data file. Applies to MPS files.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_WRITE_FREE_CON = 'MSK_ON'

Groups
Data input/output

MSK_IPAR_WRITE_GENERIC_NAMES
Controls whether generic names should be used instead of user-defined names when writing to the
data file.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_WRITE_GENERIC_NAMES = 'MSK_OFF'

Groups
Data input/output

MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS
Controls if the writer ignores incompatible problem items when writing files.

Default
"OFF"

Accepted

250

• "ON" : Ignore items that cannot be written to the current output file format.
• "OFF" : Produce an error if the problem contains items that cannot the written

to the current output file format.
Example

param.MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS = 'MSK_OFF'
Groups

Data input/output

MSK_IPAR_WRITE_INT_CONSTRAINTS

Controls whether the constraint section is written to the integer solution file.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_WRITE_INT_CONSTRAINTS = 'MSK_ON'

Groups
Data input/output , Solution input/output

MSK_IPAR_WRITE_INT_HEAD

Controls whether the header section is written to the integer solution file.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_WRITE_INT_HEAD = 'MSK_ON'

Groups
Data input/output , Solution input/output

MSK_IPAR_WRITE_INT_VARIABLES

Controls whether the variables section is written to the integer solution file.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_WRITE_INT_VARIABLES = 'MSK_ON'

Groups
Data input/output , Solution input/output

MSK_IPAR_WRITE_JSON_INDENTATION

When set, the JSON task and solution files are written with indentation for better readability.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_WRITE_JSON_INDENTATION = 'MSK_OFF'

Groups
Data input/output

251

MSK_IPAR_WRITE_LP_FULL_OBJ

Write all variables, including the ones with 0-coefficients, in the objective.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_WRITE_LP_FULL_OBJ = 'MSK_ON'

Groups
Data input/output

MSK_IPAR_WRITE_LP_LINE_WIDTH

Maximum width of line in an LP file written by MOSEK.

Default
80

Accepted
[40; +inf]

Example
param.MSK_IPAR_WRITE_LP_LINE_WIDTH = 80

Groups
Data input/output

MSK_IPAR_WRITE_MPS_FORMAT

Controls in which format the MPS file is written.

Default
"FREE"

Accepted
"STRICT" , "RELAXED" , "FREE" , "CPLEX"

Example
param.MSK_IPAR_WRITE_MPS_FORMAT = 'MSK_MPS_FORMAT_FREE'

Groups
Data input/output

MSK_IPAR_WRITE_MPS_INT

Controls if marker records are written to the MPS file to indicate whether variables are integer
restricted.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_WRITE_MPS_INT = 'MSK_ON'

Groups
Data input/output

MSK_IPAR_WRITE_SOL_BARVARIABLES

Controls whether the symmetric matrix variables section is written to the solution file.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_WRITE_SOL_BARVARIABLES = 'MSK_ON'

252

Groups
Data input/output , Solution input/output

MSK_IPAR_WRITE_SOL_CONSTRAINTS

Controls whether the constraint section is written to the solution file.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_WRITE_SOL_CONSTRAINTS = 'MSK_ON'

Groups
Data input/output , Solution input/output

MSK_IPAR_WRITE_SOL_HEAD

Controls whether the header section is written to the solution file.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_WRITE_SOL_HEAD = 'MSK_ON'

Groups
Data input/output , Solution input/output

MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES

Even if the names are invalid MPS names, then they are employed when writing the solution file.

Default
"OFF"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES = 'MSK_OFF'

Groups
Data input/output , Solution input/output

MSK_IPAR_WRITE_SOL_VARIABLES

Controls whether the variables section is written to the solution file.

Default
"ON"

Accepted
"ON" , "OFF"

Example
param.MSK_IPAR_WRITE_SOL_VARIABLES = 'MSK_ON'

Groups
Data input/output , Solution input/output

253

15.5.3 String parameters

sparam

The enumeration type containing all string parameters.
MSK_SPAR_BAS_SOL_FILE_NAME

Name of the bas solution file.

Accepted
Any valid file name.

Example
param.MSK_SPAR_BAS_SOL_FILE_NAME = 'somevalue'

Groups
Data input/output , Solution input/output

MSK_SPAR_DATA_FILE_NAME

Data are read and written to this file.

Accepted
Any valid file name.

Example
param.MSK_SPAR_DATA_FILE_NAME = 'somevalue'

Groups
Data input/output

MSK_SPAR_DEBUG_FILE_NAME

MOSEK debug file.

Accepted
Any valid file name.

Example
param.MSK_SPAR_DEBUG_FILE_NAME = 'somevalue'

Groups
Data input/output

MSK_SPAR_INT_SOL_FILE_NAME

Name of the int solution file.

Accepted
Any valid file name.

Example
param.MSK_SPAR_INT_SOL_FILE_NAME = 'somevalue'

Groups
Data input/output , Solution input/output

MSK_SPAR_ITR_SOL_FILE_NAME

Name of the itr solution file.

Accepted
Any valid file name.

Example
param.MSK_SPAR_ITR_SOL_FILE_NAME = 'somevalue'

Groups
Data input/output , Solution input/output

MSK_SPAR_MIO_DEBUG_STRING

For internal debugging purposes.

Accepted
Any valid string.

254

Example
param.MSK_SPAR_MIO_DEBUG_STRING = 'somevalue'

Groups
Data input/output

MSK_SPAR_PARAM_COMMENT_SIGN
Only the first character in this string is used. It is considered as a start of comment sign in the
MOSEK parameter file. Spaces are ignored in the string.

Default
%%

Accepted
Any valid string.

Example
param.MSK_SPAR_PARAM_COMMENT_SIGN = '%%'

Groups
Data input/output

MSK_SPAR_PARAM_READ_FILE_NAME
Modifications to the parameter database is read from this file.

Accepted
Any valid file name.

Example
param.MSK_SPAR_PARAM_READ_FILE_NAME = 'somevalue'

Groups
Data input/output

MSK_SPAR_PARAM_WRITE_FILE_NAME
The parameter database is written to this file.

Accepted
Any valid file name.

Example
param.MSK_SPAR_PARAM_WRITE_FILE_NAME = 'somevalue'

Groups
Data input/output

MSK_SPAR_READ_MPS_BOU_NAME
Name of the BOUNDS vector used. An empty name means that the first BOUNDS vector is used.

Accepted
Any valid MPS name.

Example
param.MSK_SPAR_READ_MPS_BOU_NAME = 'somevalue'

Groups
Data input/output

MSK_SPAR_READ_MPS_OBJ_NAME
Name of the free constraint used as objective function. An empty name means that the first
constraint is used as objective function.

Accepted
Any valid MPS name.

Example
param.MSK_SPAR_READ_MPS_OBJ_NAME = 'somevalue'

Groups
Data input/output

255

MSK_SPAR_READ_MPS_RAN_NAME

Name of the RANGE vector used. An empty name means that the first RANGE vector is used.

Accepted
Any valid MPS name.

Example
param.MSK_SPAR_READ_MPS_RAN_NAME = 'somevalue'

Groups
Data input/output

MSK_SPAR_READ_MPS_RHS_NAME

Name of the RHS used. An empty name means that the first RHS vector is used.

Accepted
Any valid MPS name.

Example
param.MSK_SPAR_READ_MPS_RHS_NAME = 'somevalue'

Groups
Data input/output

MSK_SPAR_REMOTE_OPTSERVER_HOST

URL of the remote optimization server in the format (http|https)://server:port. If set, all
subsequent calls to any MOSEK function that involves synchronous optimization will be sent to
the specified OptServer instead of being executed locally. Passing empty string deactivates this
redirection.

Accepted
Any valid URL.

Example
param.MSK_SPAR_REMOTE_OPTSERVER_HOST = 'somevalue'

Groups
Overall system

MSK_SPAR_REMOTE_TLS_CERT

List of known server certificates in PEM format.

Accepted
PEM files separated by new-lines.

Example
param.MSK_SPAR_REMOTE_TLS_CERT = 'somevalue'

Groups
Overall system

MSK_SPAR_REMOTE_TLS_CERT_PATH

Path to known server certificates in PEM format.

Accepted
Any valid path.

Example
param.MSK_SPAR_REMOTE_TLS_CERT_PATH = 'somevalue'

Groups
Overall system

MSK_SPAR_SENSITIVITY_FILE_NAME

If defined, MOSEK reads this file as a sensitivity analysis data file specifying the type of analysis
to be done.

Accepted
Any valid string.

256

Example
param.MSK_SPAR_SENSITIVITY_FILE_NAME = 'somevalue'

Groups
Data input/output

MSK_SPAR_SENSITIVITY_RES_FILE_NAME

Accepted
Any valid string.

Example
param.MSK_SPAR_SENSITIVITY_RES_FILE_NAME = 'somevalue'

Groups
Data input/output

MSK_SPAR_SOL_FILTER_XC_LOW

A filter used to determine which constraints should be listed in the solution file. A value of 0.5 means
that all constraints having xc[i]>0.5 should be listed, whereas +0.5 means that all constraints
having xc[i]>=blc[i]+0.5 should be listed. An empty filter means that no filter is applied.

Accepted
Any valid filter.

Example
param.MSK_SPAR_SOL_FILTER_XC_LOW = 'somevalue'

Groups
Data input/output , Solution input/output

MSK_SPAR_SOL_FILTER_XC_UPR

A filter used to determine which constraints should be listed in the solution file. A value of 0.5
means that all constraints having xc[i]<0.5 should be listed, whereas -0.5 means all constraints
having xc[i]<=buc[i]-0.5 should be listed. An empty filter means that no filter is applied.

Accepted
Any valid filter.

Example
param.MSK_SPAR_SOL_FILTER_XC_UPR = 'somevalue'

Groups
Data input/output , Solution input/output

MSK_SPAR_SOL_FILTER_XX_LOW

A filter used to determine which variables should be listed in the solution file. A value of “0.5” means
that all constraints having xx[j]>=0.5 should be listed, whereas “+0.5” means that all constraints
having xx[j]>=blx[j]+0.5 should be listed. An empty filter means no filter is applied.

Accepted
Any valid filter.

Example
param.MSK_SPAR_SOL_FILTER_XX_LOW = 'somevalue'

Groups
Data input/output , Solution input/output

MSK_SPAR_SOL_FILTER_XX_UPR

A filter used to determine which variables should be listed in the solution file. A value of “0.5”
means that all constraints having xx[j]<0.5 should be printed, whereas “-0.5” means all constraints
having xx[j]<=bux[j]-0.5 should be listed. An empty filter means no filter is applied.

Accepted
Any valid file name.

Example
param.MSK_SPAR_SOL_FILTER_XX_UPR = 'somevalue'

257

Groups
Data input/output , Solution input/output

MSK_SPAR_STAT_KEY

Key used when writing the summary file.

Accepted
Any valid string.

Example
param.MSK_SPAR_STAT_KEY = 'somevalue'

Groups
Data input/output

MSK_SPAR_STAT_NAME

Name used when writing the statistics file.

Accepted
Any valid XML string.

Example
param.MSK_SPAR_STAT_NAME = 'somevalue'

Groups
Data input/output

15.6 Response codes

Response codes include:

• Termination codes

• Warnings

• Errors

The numerical code (in brackets) identifies the response in error messages and in the log output.
rescode

The enumeration type containing all response codes.

15.6.1 Termination

"MSK_RES_OK" (0)

No error occurred.
"MSK_RES_TRM_MAX_ITERATIONS" (100000)

The optimizer terminated at the maximum number of iterations.
"MSK_RES_TRM_MAX_TIME" (100001)

The optimizer terminated at the maximum amount of time.
"MSK_RES_TRM_OBJECTIVE_RANGE" (100002)

The optimizer terminated with an objective value outside the objective range.
"MSK_RES_TRM_MIO_NUM_RELAXS" (100008)

The mixed-integer optimizer terminated as the maximum number of relaxations was reached.
"MSK_RES_TRM_MIO_NUM_BRANCHES" (100009)

The mixed-integer optimizer terminated as the maximum number of branches was reached.
"MSK_RES_TRM_NUM_MAX_NUM_INT_SOLUTIONS" (100015)

The mixed-integer optimizer terminated as the maximum number of feasible solutions was reached.

258

"MSK_RES_TRM_STALL" (100006)

The optimizer is terminated due to slow progress.

Stalling means that numerical problems prevent the optimizer from making reasonable progress
and that it makes no sense to continue. In many cases this happens if the problem is badly scaled
or otherwise ill-conditioned. There is no guarantee that the solution will be feasible or optimal.
However, often stalling happens near the optimum, and the returned solution may be of good
quality. Therefore, it is recommended to check the status of the solution. If the solution status is
optimal the solution is most likely good enough for most practical purposes.

Please note that if a linear optimization problem is solved using the interior-point optimizer with
basis identification turned on, the returned basic solution likely to have high accuracy, even though
the optimizer stalled.

Some common causes of stalling are a) badly scaled models, b) near feasible or near infeasible
problems.

"MSK_RES_TRM_USER_CALLBACK" (100007)

The optimizer terminated due to the return of the user-defined callback function.
"MSK_RES_TRM_MAX_NUM_SETBACKS" (100020)

The optimizer terminated as the maximum number of set-backs was reached. This indicates serious
numerical problems and a possibly badly formulated problem.

"MSK_RES_TRM_NUMERICAL_PROBLEM" (100025)

The optimizer terminated due to numerical problems.
"MSK_RES_TRM_LOST_RACE" (100027)

Lost a race.
"MSK_RES_TRM_INTERNAL" (100030)

The optimizer terminated due to some internal reason. Please contact MOSEK support.
"MSK_RES_TRM_INTERNAL_STOP" (100031)

The optimizer terminated for internal reasons. Please contact MOSEK support.
"MSK_RES_TRM_SERVER_MAX_TIME" (100032)

remote server terminated MOSEK on time limit criteria.
"MSK_RES_TRM_SERVER_MAX_MEMORY" (100033)

remote server terminated MOSEK on memory limit criteria.

15.6.2 Warnings

"MSK_RES_WRN_OPEN_PARAM_FILE" (50)

The parameter file could not be opened.
"MSK_RES_WRN_LARGE_BOUND" (51)

A numerically large bound value is specified.
"MSK_RES_WRN_LARGE_LO_BOUND" (52)

A numerically large lower bound value is specified.
"MSK_RES_WRN_LARGE_UP_BOUND" (53)

A numerically large upper bound value is specified.
"MSK_RES_WRN_LARGE_CON_FX" (54)

An equality constraint is fixed to a numerically large value. This can cause numerical problems.
"MSK_RES_WRN_LARGE_CJ" (57)

A numerically large value is specified for one 𝑐𝑗 .
"MSK_RES_WRN_LARGE_AIJ" (62)

A numerically large value is specified for an 𝑎𝑖,𝑗 element in 𝐴. The parameter
MSK_DPAR_DATA_TOL_AIJ_LARGE controls when an 𝑎𝑖,𝑗 is considered large.

"MSK_RES_WRN_ZERO_AIJ" (63)

One or more zero elements are specified in A.
"MSK_RES_WRN_NAME_MAX_LEN" (65)

A name is longer than the buffer that is supposed to hold it.

259

"MSK_RES_WRN_SPAR_MAX_LEN" (66)

A value for a string parameter is longer than the buffer that is supposed to hold it.
"MSK_RES_WRN_MPS_SPLIT_RHS_VECTOR" (70)

An RHS vector is split into several nonadjacent parts in an MPS file.
"MSK_RES_WRN_MPS_SPLIT_RAN_VECTOR" (71)

A RANGE vector is split into several nonadjacent parts in an MPS file.
"MSK_RES_WRN_MPS_SPLIT_BOU_VECTOR" (72)

A BOUNDS vector is split into several nonadjacent parts in an MPS file.
"MSK_RES_WRN_LP_OLD_QUAD_FORMAT" (80)

Missing ‘/2’ after quadratic expressions in bound or objective.
"MSK_RES_WRN_LP_DROP_VARIABLE" (85)

Ignored a variable because the variable was not previously defined. Usually this implies that a
variable appears in the bound section but not in the objective or the constraints.

"MSK_RES_WRN_NZ_IN_UPR_TRI" (200)

Non-zero elements specified in the upper triangle of a matrix were ignored.
"MSK_RES_WRN_DROPPED_NZ_QOBJ" (201)

One or more non-zero elements were dropped in the Q matrix in the objective.
"MSK_RES_WRN_IGNORE_INTEGER" (250)

Ignored integer constraints.
"MSK_RES_WRN_NO_GLOBAL_OPTIMIZER" (251)

No global optimizer is available.
"MSK_RES_WRN_MIO_INFEASIBLE_FINAL" (270)

The final mixed-integer problem with all the integer variables fixed at their optimal values is
infeasible.

"MSK_RES_WRN_SOL_FILTER" (300)

Invalid solution filter is specified.
"MSK_RES_WRN_UNDEF_SOL_FILE_NAME" (350)

Undefined name occurred in a solution.
"MSK_RES_WRN_SOL_FILE_IGNORED_CON" (351)

One or more lines in the constraint section were ignored when reading a solution file.
"MSK_RES_WRN_SOL_FILE_IGNORED_VAR" (352)

One or more lines in the variable section were ignored when reading a solution file.
"MSK_RES_WRN_TOO_FEW_BASIS_VARS" (400)

An incomplete basis has been specified. Too few basis variables are specified.
"MSK_RES_WRN_TOO_MANY_BASIS_VARS" (405)

A basis with too many variables has been specified.
"MSK_RES_WRN_LICENSE_EXPIRE" (500)

The license expires.
"MSK_RES_WRN_LICENSE_SERVER" (501)

The license server is not responding.
"MSK_RES_WRN_EMPTY_NAME" (502)

A variable or constraint name is empty. The output file may be invalid.
"MSK_RES_WRN_USING_GENERIC_NAMES" (503)

Generic names are used because a name invalid. For instance when writing an LP file the names
must not contain blanks or start with a digit. Also remeber to give the objective function a name.

"MSK_RES_WRN_INVALID_MPS_NAME" (504)

A name e.g. a row name is not a valid MPS name.
"MSK_RES_WRN_INVALID_MPS_OBJ_NAME" (505)

The objective name is not a valid MPS name.
"MSK_RES_WRN_LICENSE_FEATURE_EXPIRE" (509)

The license expires.

260

"MSK_RES_WRN_PARAM_NAME_DOU" (510)

The parameter name is not recognized as a double parameter.
"MSK_RES_WRN_PARAM_NAME_INT" (511)

The parameter name is not recognized as a integer parameter.
"MSK_RES_WRN_PARAM_NAME_STR" (512)

The parameter name is not recognized as a string parameter.
"MSK_RES_WRN_PARAM_STR_VALUE" (515)

The string is not recognized as a symbolic value for the parameter.
"MSK_RES_WRN_PARAM_IGNORED_CMIO" (516)

A parameter was ignored by the conic mixed integer optimizer.
"MSK_RES_WRN_ZEROS_IN_SPARSE_ROW" (705)

One or more (near) zero elements are specified in a sparse row of a matrix. Since, it is redundant
to specify zero elements then it may indicate an error.

"MSK_RES_WRN_ZEROS_IN_SPARSE_COL" (710)

One or more (near) zero elements are specified in a sparse column of a matrix. It is redundant to
specify zero elements. Hence, it may indicate an error.

"MSK_RES_WRN_INCOMPLETE_LINEAR_DEPENDENCY_CHECK" (800)

The linear dependency check(s) is incomplete. Normally this is not an important warning unless
the optimization problem has been formulated with linear dependencies. Linear dependencies may
prevent MOSEK from solving the problem.

"MSK_RES_WRN_ELIMINATOR_SPACE" (801)

The eliminator is skipped at least once due to lack of space.
"MSK_RES_WRN_PRESOLVE_OUTOFSPACE" (802)

The presolve is incomplete due to lack of space.
"MSK_RES_WRN_PRESOLVE_PRIMAL_PERTURBATIONS" (803)

The presolve perturbed the bounds of the primal problem. This is an indication that the problem
is nearly infeasible.

"MSK_RES_WRN_WRITE_CHANGED_NAMES" (830)

Some names were changed because they were invalid for the output file format.
"MSK_RES_WRN_WRITE_DISCARDED_CFIX" (831)

The fixed objective term could not be converted to a variable and was discarded in the output file.
"MSK_RES_WRN_DUPLICATE_CONSTRAINT_NAMES" (850)

Two constraint names are identical.
"MSK_RES_WRN_DUPLICATE_VARIABLE_NAMES" (851)

Two variable names are identical.
"MSK_RES_WRN_DUPLICATE_BARVARIABLE_NAMES" (852)

Two barvariable names are identical.
"MSK_RES_WRN_DUPLICATE_CONE_NAMES" (853)

Two cone names are identical.
"MSK_RES_WRN_ANA_LARGE_BOUNDS" (900)

This warning is issued by the problem analyzer, if one or more constraint or variable bounds are
very large. One should consider omitting these bounds entirely by setting them to +inf or -inf.

"MSK_RES_WRN_ANA_C_ZERO" (901)

This warning is issued by the problem analyzer, if the coefficients in the linear part of the objective
are all zero.

"MSK_RES_WRN_ANA_EMPTY_COLS" (902)

This warning is issued by the problem analyzer, if columns, in which all coefficients are zero, are
found.

"MSK_RES_WRN_ANA_CLOSE_BOUNDS" (903)

This warning is issued by problem analyzer, if ranged constraints or variables with very close upper
and lower bounds are detected. One should consider treating such constraints as equalities and
such variables as constants.

261

"MSK_RES_WRN_ANA_ALMOST_INT_BOUNDS" (904)

This warning is issued by the problem analyzer if a constraint is bound nearly integral.
"MSK_RES_WRN_NO_INFEASIBILITY_REPORT_WHEN_MATRIX_VARIABLES" (930)

An infeasibility report is not available when the problem contains matrix variables.
"MSK_RES_WRN_GETDUAL_IGNORES_INTEGRALITY" (940)

Dualizer ignores integer variables and disjunctive constraints.
"MSK_RES_WRN_NO_DUALIZER" (950)

No automatic dualizer is available for the specified problem. The primal problem is solved.
"MSK_RES_WRN_SYM_MAT_LARGE" (960)

A numerically large value is specified for an 𝑒𝑖,𝑗 element in 𝐸. The parameter
MSK_DPAR_DATA_SYM_MAT_TOL_LARGE controls when an 𝑒𝑖,𝑗 is considered large.

"MSK_RES_WRN_MODIFIED_DOUBLE_PARAMETER" (970)

A double parameter related to solver tolerances has a non-default value.
"MSK_RES_WRN_LARGE_FIJ" (980)

A numerically large value is specified for an 𝑓𝑖,𝑗 element in 𝐹 . The parameter
MSK_DPAR_DATA_TOL_AIJ_LARGE controls when an 𝑓𝑖,𝑗 is considered large.

"MSK_RES_WRN_PTF_UNKNOWN_SECTION" (981)

Unexpected section in PTF file

15.6.3 Errors

"MSK_RES_ERR_LICENSE" (1000)

Invalid license.
"MSK_RES_ERR_LICENSE_EXPIRED" (1001)

The license has expired.
"MSK_RES_ERR_LICENSE_VERSION" (1002)

The license is valid for another version of MOSEK.
"MSK_RES_ERR_LICENSE_OLD_SERVER_VERSION" (1003)

The version of the FlexLM license server is too old. You should upgrade the license server to one
matching this version of MOSEK. It will support this and all older versions of MOSEK.

This error can appear if the client was updated to a new version which includes an upgrade of the
licensing module, making it incompatible with a much older license server.

"MSK_RES_ERR_SIZE_LICENSE" (1005)

The problem is bigger than the license.
"MSK_RES_ERR_PROB_LICENSE" (1006)

The software is not licensed to solve the problem.
"MSK_RES_ERR_FILE_LICENSE" (1007)

Invalid license file.
"MSK_RES_ERR_MISSING_LICENSE_FILE" (1008)

MOSEK cannot find license file or a token server. See the MOSEK licensing manual for details.
"MSK_RES_ERR_SIZE_LICENSE_CON" (1010)

The problem has too many constraints to be solved with the available license.
"MSK_RES_ERR_SIZE_LICENSE_VAR" (1011)

The problem has too many variables to be solved with the available license.
"MSK_RES_ERR_SIZE_LICENSE_INTVAR" (1012)

The problem contains too many integer variables to be solved with the available license.
"MSK_RES_ERR_OPTIMIZER_LICENSE" (1013)

The optimizer required is not licensed.
"MSK_RES_ERR_FLEXLM" (1014)

The FLEXlm license manager reported an error.
"MSK_RES_ERR_LICENSE_SERVER" (1015)

The license server is not responding.

262

"MSK_RES_ERR_LICENSE_MAX" (1016)

Maximum number of licenses is reached.
"MSK_RES_ERR_LICENSE_MOSEKLM_DAEMON" (1017)

The MOSEKLM license manager daemon is not up and running.
"MSK_RES_ERR_LICENSE_FEATURE" (1018)

A requested feature is not available in the license file(s). Most likely due to an incorrect license
system setup.

"MSK_RES_ERR_PLATFORM_NOT_LICENSED" (1019)

A requested license feature is not available for the required platform.
"MSK_RES_ERR_LICENSE_CANNOT_ALLOCATE" (1020)

The license system cannot allocate the memory required.
"MSK_RES_ERR_LICENSE_CANNOT_CONNECT" (1021)

MOSEK cannot connect to the license server. Most likely the license server is not up and running.
"MSK_RES_ERR_LICENSE_INVALID_HOSTID" (1025)

The host ID specified in the license file does not match the host ID of the computer.
"MSK_RES_ERR_LICENSE_SERVER_VERSION" (1026)

The version specified in the checkout request is greater than the highest version number the daemon
supports.

"MSK_RES_ERR_LICENSE_NO_SERVER_SUPPORT" (1027)

The license server does not support the requested feature. Possible reasons for this error include:

• The feature has expired.

• The feature’s start date is later than today’s date.

• The version requested is higher than feature’s the highest supported version.

• A corrupted license file.

Try restarting the license and inspect the license server debug file, usually called lmgrd.log.
"MSK_RES_ERR_LICENSE_NO_SERVER_LINE" (1028)

There is no SERVER line in the license file. All non-zero license count features need at least one
SERVER line.

"MSK_RES_ERR_OLDER_DLL" (1035)

The dynamic link library is older than the specified version.
"MSK_RES_ERR_NEWER_DLL" (1036)

The dynamic link library is newer than the specified version.
"MSK_RES_ERR_LINK_FILE_DLL" (1040)

A file cannot be linked to a stream in the DLL version.
"MSK_RES_ERR_THREAD_MUTEX_INIT" (1045)

Could not initialize a mutex.
"MSK_RES_ERR_THREAD_MUTEX_LOCK" (1046)

Could not lock a mutex.
"MSK_RES_ERR_THREAD_MUTEX_UNLOCK" (1047)

Could not unlock a mutex.
"MSK_RES_ERR_THREAD_CREATE" (1048)

Could not create a thread. This error may occur if a large number of environments are created
and not deleted again. In any case it is a good practice to minimize the number of environments
created.

"MSK_RES_ERR_THREAD_COND_INIT" (1049)

Could not initialize a condition.
"MSK_RES_ERR_UNKNOWN" (1050)

Unknown error.
"MSK_RES_ERR_SPACE" (1051)

Out of space.

263

"MSK_RES_ERR_FILE_OPEN" (1052)

Error while opening a file.
"MSK_RES_ERR_FILE_READ" (1053)

File read error.
"MSK_RES_ERR_FILE_WRITE" (1054)

File write error.
"MSK_RES_ERR_DATA_FILE_EXT" (1055)

The data file format cannot be determined from the file name.
"MSK_RES_ERR_INVALID_FILE_NAME" (1056)

An invalid file name has been specified.
"MSK_RES_ERR_INVALID_SOL_FILE_NAME" (1057)

An invalid file name has been specified.
"MSK_RES_ERR_END_OF_FILE" (1059)

End of file has been reached unexpectedly.
"MSK_RES_ERR_NULL_ENV" (1060)

env is a NULL pointer.
"MSK_RES_ERR_NULL_TASK" (1061)

task is a NULL pointer.
"MSK_RES_ERR_INVALID_STREAM" (1062)

An invalid stream is referenced.
"MSK_RES_ERR_NO_INIT_ENV" (1063)

env is not initialized.
"MSK_RES_ERR_INVALID_TASK" (1064)

The task is invalid.
"MSK_RES_ERR_NULL_POINTER" (1065)

An argument to a function is unexpectedly a NULL pointer.
"MSK_RES_ERR_LIVING_TASKS" (1066)

All tasks associated with an enviroment must be deleted before the environment is deleted. There
are still some undeleted tasks.

"MSK_RES_ERR_READ_GZIP" (1067)

Error encountered in GZIP stream.
"MSK_RES_ERR_READ_ZSTD" (1068)

Error encountered in ZSTD stream.
"MSK_RES_ERR_READ_ASYNC" (1069)

Error encountered in async stream.
"MSK_RES_ERR_BLANK_NAME" (1070)

An all blank name has been specified.
"MSK_RES_ERR_DUP_NAME" (1071)

The same name was used multiple times for the same problem item type.
"MSK_RES_ERR_FORMAT_STRING" (1072)

The name format string is invalid.
"MSK_RES_ERR_SPARSITY_SPECIFICATION" (1073)

The sparsity included an index that was out of bounds of the shape.
"MSK_RES_ERR_MISMATCHING_DIMENSION" (1074)

Mismatching dimensions specified in arguments
"MSK_RES_ERR_INVALID_OBJ_NAME" (1075)

An invalid objective name is specified.
"MSK_RES_ERR_INVALID_CON_NAME" (1076)

An invalid constraint name is used.
"MSK_RES_ERR_INVALID_VAR_NAME" (1077)

An invalid variable name is used.

264

"MSK_RES_ERR_INVALID_CONE_NAME" (1078)

An invalid cone name is used.
"MSK_RES_ERR_INVALID_BARVAR_NAME" (1079)

An invalid symmetric matrix variable name is used.
"MSK_RES_ERR_SPACE_LEAKING" (1080)

MOSEK is leaking memory. This can be due to either an incorrect use of MOSEK or a bug.
"MSK_RES_ERR_SPACE_NO_INFO" (1081)

No available information about the space usage.
"MSK_RES_ERR_DIMENSION_SPECIFICATION" (1082)

Invalid dimension specification
"MSK_RES_ERR_AXIS_NAME_SPECIFICATION" (1083)

Invalid axis names specification
"MSK_RES_ERR_READ_PREMATURE_EOF" (1089)

Encountered premature end-of-file in input stream.
"MSK_RES_ERR_READ_FORMAT" (1090)

The specified format cannot be read.
"MSK_RES_ERR_WRITE_LP_INVALID_VAR_NAMES" (1091)

Invalid variable name. Cannot write valid LP file.
"MSK_RES_ERR_WRITE_LP_DUPLICATE_VAR_NAMES" (1092)

Duplicate variable names. Cannot write valid LP file.
"MSK_RES_ERR_WRITE_LP_INVALID_CON_NAMES" (1093)

Invalid constraint name. Cannot write valid LP file.
"MSK_RES_ERR_WRITE_LP_DUPLICATE_CON_NAMES" (1094)

Duplicate constraint names. Cannot write valid LP file.
"MSK_RES_ERR_MPS_FILE" (1100)

An error occurred while reading an MPS file.
"MSK_RES_ERR_MPS_INV_FIELD" (1101)

A field in the MPS file is invalid. Probably it is too wide.
"MSK_RES_ERR_MPS_INV_MARKER" (1102)

An invalid marker has been specified in the MPS file.
"MSK_RES_ERR_MPS_NULL_CON_NAME" (1103)

An empty constraint name is used in an MPS file.
"MSK_RES_ERR_MPS_NULL_VAR_NAME" (1104)

An empty variable name is used in an MPS file.
"MSK_RES_ERR_MPS_UNDEF_CON_NAME" (1105)

An undefined constraint name occurred in an MPS file.
"MSK_RES_ERR_MPS_UNDEF_VAR_NAME" (1106)

An undefined variable name occurred in an MPS file.
"MSK_RES_ERR_MPS_INVALID_CON_KEY" (1107)

An invalid constraint key occurred in an MPS file.
"MSK_RES_ERR_MPS_INVALID_BOUND_KEY" (1108)

An invalid bound key occurred in an MPS file.
"MSK_RES_ERR_MPS_INVALID_SEC_NAME" (1109)

An invalid section name occurred in an MPS file.
"MSK_RES_ERR_MPS_NO_OBJECTIVE" (1110)

No objective is defined in an MPS file.
"MSK_RES_ERR_MPS_SPLITTED_VAR" (1111)

All elements in a column of the 𝐴 matrix must be specified consecutively. Hence, it is illegal to
specify non-zero elements in 𝐴 for variable 1, then for variable 2 and then variable 1 again.

"MSK_RES_ERR_MPS_MUL_CON_NAME" (1112)

A constraint name was specified multiple times in the ROWS section.

265

"MSK_RES_ERR_MPS_MUL_QSEC" (1113)
Multiple QSECTIONs are specified for a constraint in the MPS data file.

"MSK_RES_ERR_MPS_MUL_QOBJ" (1114)
The Q term in the objective is specified multiple times in the MPS data file.

"MSK_RES_ERR_MPS_INV_SEC_ORDER" (1115)
The sections in the MPS data file are not in the correct order.

"MSK_RES_ERR_MPS_MUL_CSEC" (1116)
Multiple CSECTIONs are given the same name.

"MSK_RES_ERR_MPS_CONE_TYPE" (1117)
Invalid cone type specified in a CSECTION.

"MSK_RES_ERR_MPS_CONE_OVERLAP" (1118)
A variable is specified to be a member of several cones.

"MSK_RES_ERR_MPS_CONE_REPEAT" (1119)
A variable is repeated within the CSECTION.

"MSK_RES_ERR_MPS_NON_SYMMETRIC_Q" (1120)
A non symmetric matrix has been speciefied.

"MSK_RES_ERR_MPS_DUPLICATE_Q_ELEMENT" (1121)
Duplicate elements is specfied in a 𝑄 matrix.

"MSK_RES_ERR_MPS_INVALID_OBJSENSE" (1122)
An invalid objective sense is specified.

"MSK_RES_ERR_MPS_TAB_IN_FIELD2" (1125)
A tab char occurred in field 2.

"MSK_RES_ERR_MPS_TAB_IN_FIELD3" (1126)
A tab char occurred in field 3.

"MSK_RES_ERR_MPS_TAB_IN_FIELD5" (1127)
A tab char occurred in field 5.

"MSK_RES_ERR_MPS_INVALID_OBJ_NAME" (1128)
An invalid objective name is specified.

"MSK_RES_ERR_MPS_INVALID_KEY" (1129)
An invalid indicator key occurred in an MPS file.

"MSK_RES_ERR_MPS_INVALID_INDICATOR_CONSTRAINT" (1130)
An invalid indicator constraint is used. It must not be a ranged constraint.

"MSK_RES_ERR_MPS_INVALID_INDICATOR_VARIABLE" (1131)
An invalid indicator variable is specfied. It must be a binary variable.

"MSK_RES_ERR_MPS_INVALID_INDICATOR_VALUE" (1132)
An invalid indicator value is specfied. It must be either 0 or 1.

"MSK_RES_ERR_MPS_INVALID_INDICATOR_QUADRATIC_CONSTRAINT" (1133)
A quadratic constraint can be be an indicator constraint.

"MSK_RES_ERR_OPF_SYNTAX" (1134)
Syntax error in an OPF file

"MSK_RES_ERR_OPF_PREMATURE_EOF" (1136)
Premature end of file in an OPF file.

"MSK_RES_ERR_OPF_MISMATCHED_TAG" (1137)
Mismatched end-tag in OPF file

"MSK_RES_ERR_OPF_DUPLICATE_BOUND" (1138)
Either upper or lower bound was specified twice in OPF file

"MSK_RES_ERR_OPF_DUPLICATE_CONSTRAINT_NAME" (1139)
Duplicate constraint name in OPF File

"MSK_RES_ERR_OPF_INVALID_CONE_TYPE" (1140)
Invalid cone type in OPF File

"MSK_RES_ERR_OPF_INCORRECT_TAG_PARAM" (1141)
Invalid number of parameters in start-tag in OPF File

266

"MSK_RES_ERR_OPF_INVALID_TAG" (1142)

Invalid start-tag in OPF File
"MSK_RES_ERR_OPF_DUPLICATE_CONE_ENTRY" (1143)

Same variable appears in multiple cones in OPF File
"MSK_RES_ERR_OPF_TOO_LARGE" (1144)

The problem is too large to be correctly loaded
"MSK_RES_ERR_OPF_DUAL_INTEGER_SOLUTION" (1146)

Dual solution values are not allowed in OPF File
"MSK_RES_ERR_LP_EMPTY" (1151)

The problem cannot be written to an LP formatted file.
"MSK_RES_ERR_WRITE_MPS_INVALID_NAME" (1153)

An invalid name is created while writing an MPS file. Usually this will make the MPS file unread-
able.

"MSK_RES_ERR_LP_INVALID_VAR_NAME" (1154)

A variable name is invalid when used in an LP formatted file.
"MSK_RES_ERR_WRITE_OPF_INVALID_VAR_NAME" (1156)

Empty variable names cannot be written to OPF files.
"MSK_RES_ERR_LP_FILE_FORMAT" (1157)

Syntax error in an LP file.
"MSK_RES_ERR_LP_EXPECTED_NUMBER" (1158)

Expected a number in LP file
"MSK_RES_ERR_READ_LP_MISSING_END_TAG" (1159)

Syntax error in LP file. Possibly missing End tag.
"MSK_RES_ERR_LP_INDICATOR_VAR" (1160)

An indicator variable was not declared binary
"MSK_RES_ERR_LP_EXPECTED_OBJECTIVE" (1161)

Expected an objective section in LP file
"MSK_RES_ERR_LP_EXPECTED_CONSTRAINT_RELATION" (1162)

Expected constraint relation
"MSK_RES_ERR_LP_AMBIGUOUS_CONSTRAINT_BOUND" (1163)

Constraint has ambiguous or invalid bound
"MSK_RES_ERR_LP_DUPLICATE_SECTION" (1164)

Duplicate section
"MSK_RES_ERR_READ_LP_DELAYED_ROWS_NOT_SUPPORTED" (1165)

Duplicate section
"MSK_RES_ERR_WRITING_FILE" (1166)

An error occurred while writing file
"MSK_RES_ERR_WRITE_ASYNC" (1167)

An error occurred while performing asynchronous writing
"MSK_RES_ERR_INVALID_NAME_IN_SOL_FILE" (1170)

An invalid name occurred in a solution file.
"MSK_RES_ERR_JSON_SYNTAX" (1175)

Syntax error in an JSON data
"MSK_RES_ERR_JSON_STRING" (1176)

Error in JSON string.
"MSK_RES_ERR_JSON_NUMBER_OVERFLOW" (1177)

Invalid number entry - wrong type or value overflow.
"MSK_RES_ERR_JSON_FORMAT" (1178)

Error in an JSON Task file
"MSK_RES_ERR_JSON_DATA" (1179)

Inconsistent data in JSON Task file

267

"MSK_RES_ERR_JSON_MISSING_DATA" (1180)
Missing data section in JSON task file.

"MSK_RES_ERR_PTF_INCOMPATIBILITY" (1181)
Incompatible item

"MSK_RES_ERR_PTF_UNDEFINED_ITEM" (1182)
Undefined symbol referenced

"MSK_RES_ERR_PTF_INCONSISTENCY" (1183)
Inconsistent size of item

"MSK_RES_ERR_PTF_FORMAT" (1184)
Syntax error in an PTF file

"MSK_RES_ERR_ARGUMENT_LENNEQ" (1197)
Incorrect length of arguments.

"MSK_RES_ERR_ARGUMENT_TYPE" (1198)
Incorrect argument type.

"MSK_RES_ERR_NUM_ARGUMENTS" (1199)
Incorrect number of function arguments.

"MSK_RES_ERR_IN_ARGUMENT" (1200)
A function argument is incorrect.

"MSK_RES_ERR_ARGUMENT_DIMENSION" (1201)
A function argument is of incorrect dimension.

"MSK_RES_ERR_SHAPE_IS_TOO_LARGE" (1202)
The size of the n-dimensional shape is too large.

"MSK_RES_ERR_INDEX_IS_TOO_SMALL" (1203)
An index in an argument is too small.

"MSK_RES_ERR_INDEX_IS_TOO_LARGE" (1204)
An index in an argument is too large.

"MSK_RES_ERR_INDEX_IS_NOT_UNIQUE" (1205)
An index in an argument is not unique.

"MSK_RES_ERR_PARAM_NAME" (1206)
The parameter name is not correct.

"MSK_RES_ERR_PARAM_NAME_DOU" (1207)
The parameter name is not correct for a double parameter.

"MSK_RES_ERR_PARAM_NAME_INT" (1208)
The parameter name is not correct for an integer parameter.

"MSK_RES_ERR_PARAM_NAME_STR" (1209)
The parameter name is not correct for a string parameter.

"MSK_RES_ERR_PARAM_INDEX" (1210)
Parameter index is out of range.

"MSK_RES_ERR_PARAM_IS_TOO_LARGE" (1215)
The parameter value is too large.

"MSK_RES_ERR_PARAM_IS_TOO_SMALL" (1216)
The parameter value is too small.

"MSK_RES_ERR_PARAM_VALUE_STR" (1217)
The parameter value string is incorrect.

"MSK_RES_ERR_PARAM_TYPE" (1218)
The parameter type is invalid.

"MSK_RES_ERR_INF_DOU_INDEX" (1219)
A double information index is out of range for the specified type.

"MSK_RES_ERR_INF_INT_INDEX" (1220)
An integer information index is out of range for the specified type.

"MSK_RES_ERR_INDEX_ARR_IS_TOO_SMALL" (1221)
An index in an array argument is too small.

268

"MSK_RES_ERR_INDEX_ARR_IS_TOO_LARGE" (1222)
An index in an array argument is too large.

"MSK_RES_ERR_INF_LINT_INDEX" (1225)
A long integer information index is out of range for the specified type.

"MSK_RES_ERR_ARG_IS_TOO_SMALL" (1226)
The value of a argument is too small.

"MSK_RES_ERR_ARG_IS_TOO_LARGE" (1227)
The value of a argument is too large.

"MSK_RES_ERR_INVALID_WHICHSOL" (1228)
whichsol is invalid.

"MSK_RES_ERR_INF_DOU_NAME" (1230)
A double information name is invalid.

"MSK_RES_ERR_INF_INT_NAME" (1231)
An integer information name is invalid.

"MSK_RES_ERR_INF_TYPE" (1232)
The information type is invalid.

"MSK_RES_ERR_INF_LINT_NAME" (1234)
A long integer information name is invalid.

"MSK_RES_ERR_INDEX" (1235)
An index is out of range.

"MSK_RES_ERR_WHICHSOL" (1236)
The solution defined by whichsol does not exists.

"MSK_RES_ERR_SOLITEM" (1237)
The solution item number solitem is invalid. Please note that "MSK_SOL_ITEM_SNX" is invalid for
the basic solution.

"MSK_RES_ERR_WHICHITEM_NOT_ALLOWED" (1238)
whichitem is unacceptable.

"MSK_RES_ERR_MAXNUMCON" (1240)
The maximum number of constraints specified is smaller than the number of constraints in the
task.

"MSK_RES_ERR_MAXNUMVAR" (1241)
The maximum number of variables specified is smaller than the number of variables in the task.

"MSK_RES_ERR_MAXNUMBARVAR" (1242)
The maximum number of semidefinite variables specified is smaller than the number of semidefinite
variables in the task.

"MSK_RES_ERR_MAXNUMQNZ" (1243)
The maximum number of non-zeros specified for the 𝑄 matrices is smaller than the number of
non-zeros in the current 𝑄 matrices.

"MSK_RES_ERR_TOO_SMALL_MAX_NUM_NZ" (1245)
The maximum number of non-zeros specified is too small.

"MSK_RES_ERR_INVALID_IDX" (1246)
A specified index is invalid.

"MSK_RES_ERR_INVALID_MAX_NUM" (1247)
A specified index is invalid.

"MSK_RES_ERR_UNALLOWED_WHICHSOL" (1248)
The value od whichsol is not allowed.

"MSK_RES_ERR_NUMCONLIM" (1250)
Maximum number of constraints limit is exceeded.

"MSK_RES_ERR_NUMVARLIM" (1251)
Maximum number of variables limit is exceeded.

"MSK_RES_ERR_TOO_SMALL_MAXNUMANZ" (1252)
The maximum number of non-zeros specified for 𝐴 is smaller than the number of non-zeros in the
current 𝐴.

269

"MSK_RES_ERR_INV_APTRE" (1253)

aptre[j] is strictly smaller than aptrb[j] for some j.
"MSK_RES_ERR_MUL_A_ELEMENT" (1254)

An element in 𝐴 is defined multiple times.
"MSK_RES_ERR_INV_BK" (1255)

Invalid bound key.
"MSK_RES_ERR_INV_BKC" (1256)

Invalid bound key is specified for a constraint.
"MSK_RES_ERR_INV_BKX" (1257)

An invalid bound key is specified for a variable.
"MSK_RES_ERR_INV_VAR_TYPE" (1258)

An invalid variable type is specified for a variable.
"MSK_RES_ERR_SOLVER_PROBTYPE" (1259)

Problem type does not match the chosen optimizer.
"MSK_RES_ERR_OBJECTIVE_RANGE" (1260)

Empty objective range.
"MSK_RES_ERR_INV_RESCODE" (1261)

Invalid response code.
"MSK_RES_ERR_INV_IINF" (1262)

Invalid integer information item.
"MSK_RES_ERR_INV_LIINF" (1263)

Invalid long integer information item.
"MSK_RES_ERR_INV_DINF" (1264)

Invalid double information item.
"MSK_RES_ERR_BASIS" (1266)

An invalid basis is specified. Either too many or too few basis variables are specified.
"MSK_RES_ERR_INV_SKC" (1267)

Invalid value in skc.
"MSK_RES_ERR_INV_SKX" (1268)

Invalid value in skx.
"MSK_RES_ERR_INV_SKN" (1274)

Invalid value in skn.
"MSK_RES_ERR_INV_SK_STR" (1269)

Invalid status key string encountered.
"MSK_RES_ERR_INV_SK" (1270)

Invalid status key code.
"MSK_RES_ERR_INV_CONE_TYPE_STR" (1271)

Invalid cone type string encountered.
"MSK_RES_ERR_INV_CONE_TYPE" (1272)

Invalid cone type code is encountered.
"MSK_RES_ERR_INVALID_SURPLUS" (1275)

Invalid surplus.
"MSK_RES_ERR_INV_NAME_ITEM" (1280)

An invalid name item code is used.
"MSK_RES_ERR_PRO_ITEM" (1281)

An invalid problem is used.
"MSK_RES_ERR_INVALID_FORMAT_TYPE" (1283)

Invalid format type.
"MSK_RES_ERR_FIRSTI" (1285)

Invalid firsti.
"MSK_RES_ERR_LASTI" (1286)

Invalid lasti.

270

"MSK_RES_ERR_FIRSTJ" (1287)

Invalid firstj.
"MSK_RES_ERR_LASTJ" (1288)

Invalid lastj.
"MSK_RES_ERR_MAX_LEN_IS_TOO_SMALL" (1289)

A maximum length that is too small has been specified.
"MSK_RES_ERR_NONLINEAR_EQUALITY" (1290)

The model contains a nonlinear equality which defines a nonconvex set.
"MSK_RES_ERR_NONCONVEX" (1291)

The optimization problem is nonconvex.
"MSK_RES_ERR_NONLINEAR_RANGED" (1292)

Nonlinear constraints with finite lower and upper bound always define a nonconvex feasible set.
"MSK_RES_ERR_CON_Q_NOT_PSD" (1293)

The quadratic constraint matrix is not positive semidefinite as expected for a constraint with finite
upper bound. This results in a nonconvex problem.

"MSK_RES_ERR_CON_Q_NOT_NSD" (1294)

The quadratic constraint matrix is not negative semidefinite as expected for a constraint with finite
lower bound. This results in a nonconvex problem.

"MSK_RES_ERR_OBJ_Q_NOT_PSD" (1295)

The quadratic coefficient matrix in the objective is not positive semidefinite as expected for a
minimization problem.

"MSK_RES_ERR_OBJ_Q_NOT_NSD" (1296)

The quadratic coefficient matrix in the objective is not negative semidefinite as expected for a
maximization problem.

"MSK_RES_ERR_ARGUMENT_PERM_ARRAY" (1299)

An invalid permutation array is specified.
"MSK_RES_ERR_CONE_INDEX" (1300)

An index of a non-existing cone has been specified.
"MSK_RES_ERR_CONE_SIZE" (1301)

A cone with incorrect number of members is specified.
"MSK_RES_ERR_CONE_OVERLAP" (1302)

One or more of the variables in the cone to be added is already member of another cone. Now
assume the variable is 𝑥𝑗 then add a new variable say 𝑥𝑘 and the constraint

𝑥𝑗 = 𝑥𝑘

and then let 𝑥𝑘 be member of the cone to be appended.
"MSK_RES_ERR_CONE_REP_VAR" (1303)

A variable is included multiple times in the cone.
"MSK_RES_ERR_MAXNUMCONE" (1304)

The value specified for maxnumcone is too small.
"MSK_RES_ERR_CONE_TYPE" (1305)

Invalid cone type specified.
"MSK_RES_ERR_CONE_TYPE_STR" (1306)

Invalid cone type specified.
"MSK_RES_ERR_CONE_OVERLAP_APPEND" (1307)

The cone to be appended has one variable which is already member of another cone.
"MSK_RES_ERR_REMOVE_CONE_VARIABLE" (1310)

A variable cannot be removed because it will make a cone invalid.
"MSK_RES_ERR_APPENDING_TOO_BIG_CONE" (1311)

Trying to append a too big cone.
"MSK_RES_ERR_CONE_PARAMETER" (1320)

An invalid cone parameter.

271

"MSK_RES_ERR_SOL_FILE_INVALID_NUMBER" (1350)

An invalid number is specified in a solution file.
"MSK_RES_ERR_HUGE_C" (1375)

A huge value in absolute size is specified for one 𝑐𝑗 .
"MSK_RES_ERR_HUGE_AIJ" (1380)

A numerically huge value is specified for an 𝑎𝑖,𝑗 element in 𝐴. The parameter
MSK_DPAR_DATA_TOL_AIJ_HUGE controls when an 𝑎𝑖,𝑗 is considered huge.

"MSK_RES_ERR_DUPLICATE_AIJ" (1385)

An element in the A matrix is specified twice.
"MSK_RES_ERR_LOWER_BOUND_IS_A_NAN" (1390)

The lower bound specified is not a number (nan).
"MSK_RES_ERR_UPPER_BOUND_IS_A_NAN" (1391)

The upper bound specified is not a number (nan).
"MSK_RES_ERR_INFINITE_BOUND" (1400)

A numerically huge bound value is specified.
"MSK_RES_ERR_INV_QOBJ_SUBI" (1401)

Invalid value in qosubi.
"MSK_RES_ERR_INV_QOBJ_SUBJ" (1402)

Invalid value in qosubj.
"MSK_RES_ERR_INV_QOBJ_VAL" (1403)

Invalid value in qoval.
"MSK_RES_ERR_INV_QCON_SUBK" (1404)

Invalid value in qcsubk.
"MSK_RES_ERR_INV_QCON_SUBI" (1405)

Invalid value in qcsubi.
"MSK_RES_ERR_INV_QCON_SUBJ" (1406)

Invalid value in qcsubj.
"MSK_RES_ERR_INV_QCON_VAL" (1407)

Invalid value in qcval.
"MSK_RES_ERR_QCON_SUBI_TOO_SMALL" (1408)

Invalid value in qcsubi.
"MSK_RES_ERR_QCON_SUBI_TOO_LARGE" (1409)

Invalid value in qcsubi.
"MSK_RES_ERR_QOBJ_UPPER_TRIANGLE" (1415)

An element in the upper triangle of 𝑄𝑜 is specified. Only elements in the lower triangle should be
specified.

"MSK_RES_ERR_QCON_UPPER_TRIANGLE" (1417)

An element in the upper triangle of a 𝑄𝑘 is specified. Only elements in the lower triangle should
be specified.

"MSK_RES_ERR_FIXED_BOUND_VALUES" (1420)

A fixed constraint/variable has been specified using the bound keys but the numerical value of the
lower and upper bound is different.

"MSK_RES_ERR_TOO_SMALL_A_TRUNCATION_VALUE" (1421)

A too small value for the A trucation value is specified.
"MSK_RES_ERR_INVALID_OBJECTIVE_SENSE" (1445)

An invalid objective sense is specified.
"MSK_RES_ERR_UNDEFINED_OBJECTIVE_SENSE" (1446)

The objective sense has not been specified before the optimization.
"MSK_RES_ERR_Y_IS_UNDEFINED" (1449)

The solution item 𝑦 is undefined.
"MSK_RES_ERR_NAN_IN_DOUBLE_DATA" (1450)

An invalid floating point value was used in some double data.

272

"MSK_RES_ERR_INF_IN_DOUBLE_DATA" (1451)

An infinite floating point value was used in some double data.
"MSK_RES_ERR_NAN_IN_BLC" (1461)

𝑙𝑐 contains an invalid floating point value, i.e. a NaN or Inf.
"MSK_RES_ERR_NAN_IN_BUC" (1462)

𝑢𝑐 contains an invalid floating point value, i.e. a NaN of Inf.
"MSK_RES_ERR_INVALID_CFIX" (1469)

An invalid fixed term in the objective is speficied.
"MSK_RES_ERR_NAN_IN_C" (1470)

𝑐 contains an invalid floating point value, i.e. a NaN or Inf.
"MSK_RES_ERR_NAN_IN_BLX" (1471)

𝑙𝑥 contains an invalid floating point value, i.e. a NaN or Inf.
"MSK_RES_ERR_NAN_IN_BUX" (1472)

𝑢𝑥 contains an invalid floating point value, i.e. a NaN or Inf.
"MSK_RES_ERR_INVALID_AIJ" (1473)

𝑎𝑖,𝑗 contains an invalid floating point value, i.e. a NaN or an infinite value.
"MSK_RES_ERR_INVALID_CJ" (1474)

𝑐𝑗 contains an invalid floating point value, i.e. a NaN or an infinite value.
"MSK_RES_ERR_SYM_MAT_INVALID" (1480)

A symmetric matrix contains an invalid floating point value, i.e. a NaN or an infinite value.
"MSK_RES_ERR_SYM_MAT_HUGE" (1482)

A symmetric matrix contains a huge value in absolute size. The parameter
MSK_DPAR_DATA_SYM_MAT_TOL_HUGE controls when an 𝑒𝑖,𝑗 is considered huge.

"MSK_RES_ERR_INV_PROBLEM" (1500)

Invalid problem type. Probably a nonconvex problem has been specified.
"MSK_RES_ERR_MIXED_CONIC_AND_NL" (1501)

The problem contains nonlinear terms conic constraints. The requested operation cannot be applied
to this type of problem.

"MSK_RES_ERR_GLOBAL_INV_CONIC_PROBLEM" (1503)

The global optimizer can only be applied to problems without semidefinite variables.
"MSK_RES_ERR_INV_OPTIMIZER" (1550)

An invalid optimizer has been chosen for the problem.
"MSK_RES_ERR_MIO_NO_OPTIMIZER" (1551)

No optimizer is available for the current class of integer optimization problems.
"MSK_RES_ERR_NO_OPTIMIZER_VAR_TYPE" (1552)

No optimizer is available for this class of optimization problems.
"MSK_RES_ERR_FINAL_SOLUTION" (1560)

An error occurred during the solution finalization.
"MSK_RES_ERR_FIRST" (1570)

Invalid first.
"MSK_RES_ERR_LAST" (1571)

Invalid index last. A given index was out of expected range.
"MSK_RES_ERR_SLICE_SIZE" (1572)

Invalid slice size specified.
"MSK_RES_ERR_NEGATIVE_SURPLUS" (1573)

Negative surplus.
"MSK_RES_ERR_NEGATIVE_APPEND" (1578)

Cannot append a negative number.
"MSK_RES_ERR_POSTSOLVE" (1580)

An error occurred during the postsolve. Please contact MOSEK support.
"MSK_RES_ERR_OVERFLOW" (1590)

A computation produced an overflow i.e. a very large number.

273

"MSK_RES_ERR_NO_BASIS_SOL" (1600)

No basic solution is defined.
"MSK_RES_ERR_BASIS_FACTOR" (1610)

The factorization of the basis is invalid.
"MSK_RES_ERR_BASIS_SINGULAR" (1615)

The basis is singular and hence cannot be factored.
"MSK_RES_ERR_FACTOR" (1650)

An error occurred while factorizing a matrix.
"MSK_RES_ERR_FEASREPAIR_CANNOT_RELAX" (1700)

An optimization problem cannot be relaxed.
"MSK_RES_ERR_FEASREPAIR_SOLVING_RELAXED" (1701)

The relaxed problem could not be solved to optimality. Please consult the log file for further details.
"MSK_RES_ERR_FEASREPAIR_INCONSISTENT_BOUND" (1702)

The upper bound is less than the lower bound for a variable or a constraint. Please correct this
before running the feasibility repair.

"MSK_RES_ERR_REPAIR_INVALID_PROBLEM" (1710)

The feasibility repair does not support the specified problem type.
"MSK_RES_ERR_REPAIR_OPTIMIZATION_FAILED" (1711)

Computation the optimal relaxation failed. The cause may have been numerical problems.
"MSK_RES_ERR_NAME_MAX_LEN" (1750)

A name is longer than the buffer that is supposed to hold it.
"MSK_RES_ERR_NAME_IS_NULL" (1760)

The name buffer is a NULL pointer.
"MSK_RES_ERR_INVALID_COMPRESSION" (1800)

Invalid compression type.
"MSK_RES_ERR_INVALID_IOMODE" (1801)

Invalid io mode.
"MSK_RES_ERR_NO_PRIMAL_INFEAS_CER" (2000)

A certificate of primal infeasibility is not available.
"MSK_RES_ERR_NO_DUAL_INFEAS_CER" (2001)

A certificate of infeasibility is not available.
"MSK_RES_ERR_NO_SOLUTION_IN_CALLBACK" (2500)

The required solution is not available.
"MSK_RES_ERR_INV_MARKI" (2501)

Invalid value in marki.
"MSK_RES_ERR_INV_MARKJ" (2502)

Invalid value in markj.
"MSK_RES_ERR_INV_NUMI" (2503)

Invalid numi.
"MSK_RES_ERR_INV_NUMJ" (2504)

Invalid numj.
"MSK_RES_ERR_TASK_INCOMPATIBLE" (2560)

The Task file is incompatible with this platform. This results from reading a file on a 32 bit
platform generated on a 64 bit platform.

"MSK_RES_ERR_TASK_INVALID" (2561)

The Task file is invalid.
"MSK_RES_ERR_TASK_WRITE" (2562)

Failed to write the task file.
"MSK_RES_ERR_READ_WRITE" (2563)

Failed to read or write due to an I/O error.
"MSK_RES_ERR_TASK_PREMATURE_EOF" (2564)

The Task file ended prematurely.

274

"MSK_RES_ERR_LU_MAX_NUM_TRIES" (2800)

Could not compute the LU factors of the matrix within the maximum number of allowed tries.
"MSK_RES_ERR_INVALID_UTF8" (2900)

An invalid UTF8 string is encountered.
"MSK_RES_ERR_INVALID_WCHAR" (2901)

An invalid wchar string is encountered.
"MSK_RES_ERR_NO_DUAL_FOR_ITG_SOL" (2950)

No dual information is available for the integer solution.
"MSK_RES_ERR_NO_SNX_FOR_BAS_SOL" (2953)

𝑠𝑥𝑛 is not available for the basis solution.
"MSK_RES_ERR_INTERNAL" (3000)

An internal error occurred. Please report this problem.
"MSK_RES_ERR_API_ARRAY_TOO_SMALL" (3001)

An input array was too short.
"MSK_RES_ERR_API_CB_CONNECT" (3002)

Failed to connect a callback object.
"MSK_RES_ERR_API_FATAL_ERROR" (3005)

An internal error occurred in the API. Please report this problem.
"MSK_RES_ERR_API_INTERNAL" (3999)

An internal fatal error occurred in an interface function.
"MSK_RES_ERR_SEN_FORMAT" (3050)

Syntax error in sensitivity analysis file.
"MSK_RES_ERR_SEN_UNDEF_NAME" (3051)

An undefined name was encountered in the sensitivity analysis file.
"MSK_RES_ERR_SEN_INDEX_RANGE" (3052)

Index out of range in the sensitivity analysis file.
"MSK_RES_ERR_SEN_BOUND_INVALID_UP" (3053)

Analysis of upper bound requested for an index, where no upper bound exists.
"MSK_RES_ERR_SEN_BOUND_INVALID_LO" (3054)

Analysis of lower bound requested for an index, where no lower bound exists.
"MSK_RES_ERR_SEN_INDEX_INVALID" (3055)

Invalid range given in the sensitivity file.
"MSK_RES_ERR_SEN_INVALID_REGEXP" (3056)

Syntax error in regexp or regexp longer than 1024.
"MSK_RES_ERR_SEN_SOLUTION_STATUS" (3057)

No optimal solution found to the original problem given for sensitivity analysis.
"MSK_RES_ERR_SEN_NUMERICAL" (3058)

Numerical difficulties encountered performing the sensitivity analysis.
"MSK_RES_ERR_SEN_UNHANDLED_PROBLEM_TYPE" (3080)

Sensitivity analysis cannot be performed for the specified problem. Sensitivity analysis is only
possible for linear problems.

"MSK_RES_ERR_UNB_STEP_SIZE" (3100)

A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes
unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen
only if the problem is badly formulated. Please contact MOSEK support if this error occurs.

"MSK_RES_ERR_IDENTICAL_TASKS" (3101)

Some tasks related to this function call were identical. Unique tasks were expected.
"MSK_RES_ERR_AD_INVALID_CODELIST" (3102)

The code list data was invalid.
"MSK_RES_ERR_INTERNAL_TEST_FAILED" (3500)

An internal unit test function failed.

275

"MSK_RES_ERR_INT64_TO_INT32_CAST" (3800)

A 64 bit integer could not be cast to a 32 bit integer.
"MSK_RES_ERR_INFEAS_UNDEFINED" (3910)

The requested value is not defined for this solution type.
"MSK_RES_ERR_NO_BARX_FOR_SOLUTION" (3915)

There is no 𝑋 available for the solution specified. In particular note there are no 𝑋 defined for the
basic and integer solutions.

"MSK_RES_ERR_NO_BARS_FOR_SOLUTION" (3916)

There is no 𝑠 available for the solution specified. In particular note there are no 𝑠 defined for the
basic and integer solutions.

"MSK_RES_ERR_BAR_VAR_DIM" (3920)

The dimension of a symmetric matrix variable has to be greater than 0.
"MSK_RES_ERR_SYM_MAT_INVALID_ROW_INDEX" (3940)

A row index specified for sparse symmetric matrix is invalid.
"MSK_RES_ERR_SYM_MAT_INVALID_COL_INDEX" (3941)

A column index specified for sparse symmetric matrix is invalid.
"MSK_RES_ERR_SYM_MAT_NOT_LOWER_TRINGULAR" (3942)

Only the lower triangular part of sparse symmetric matrix should be specified.
"MSK_RES_ERR_SYM_MAT_INVALID_VALUE" (3943)

The numerical value specified in a sparse symmetric matrix is not a floating point value.
"MSK_RES_ERR_SYM_MAT_DUPLICATE" (3944)

A value in a symmetric matric as been specified more than once.
"MSK_RES_ERR_INVALID_SYM_MAT_DIM" (3950)

A sparse symmetric matrix of invalid dimension is specified.
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_SYM_MAT" (4000)

The file format does not support a problem with symmetric matrix variables.
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_CFIX" (4001)

The file format does not support a problem with nonzero fixed term in c.
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_RANGED_CONSTRAINTS" (4002)

The file format does not support a problem with ranged constraints.
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_FREE_CONSTRAINTS" (4003)

The file format does not support a problem with free constraints.
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_CONES" (4005)

The file format does not support a problem with the simple cones (deprecated).
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_QUADRATIC_TERMS" (4006)

The file format does not support a problem with quadratic terms.
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_NONLINEAR" (4010)

The file format does not support a problem with nonlinear terms.
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_DISJUNCTIVE_CONSTRAINTS" (4011)

The file format does not support a problem with disjunctive constraints.
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_AFFINE_CONIC_CONSTRAINTS" (4012)

The file format does not support a problem with affine conic constraints.
"MSK_RES_ERR_DUPLICATE_CONSTRAINT_NAMES" (4500)

Two constraint names are identical.
"MSK_RES_ERR_DUPLICATE_VARIABLE_NAMES" (4501)

Two variable names are identical.
"MSK_RES_ERR_DUPLICATE_BARVARIABLE_NAMES" (4502)

Two barvariable names are identical.
"MSK_RES_ERR_DUPLICATE_CONE_NAMES" (4503)

Two cone names are identical.
"MSK_RES_ERR_DUPLICATE_DOMAIN_NAMES" (4504)

Two domain names are identical.

276

"MSK_RES_ERR_DUPLICATE_DJC_NAMES" (4505)

Two disjunctive constraint names are identical.
"MSK_RES_ERR_NON_UNIQUE_ARRAY" (5000)

An array does not contain unique elements.
"MSK_RES_ERR_ARGUMENT_IS_TOO_SMALL" (5004)

The value of a function argument is too small.
"MSK_RES_ERR_ARGUMENT_IS_TOO_LARGE" (5005)

The value of a function argument is too large.
"MSK_RES_ERR_MIO_INTERNAL" (5010)

A fatal error occurred in the mixed integer optimizer. Please contact MOSEK support.
"MSK_RES_ERR_INVALID_PROBLEM_TYPE" (6000)

An invalid problem type.
"MSK_RES_ERR_UNHANDLED_SOLUTION_STATUS" (6010)

Unhandled solution status.
"MSK_RES_ERR_UPPER_TRIANGLE" (6020)

An element in the upper triangle of a lower triangular matrix is specified.
"MSK_RES_ERR_LAU_SINGULAR_MATRIX" (7000)

A matrix is singular.
"MSK_RES_ERR_LAU_NOT_POSITIVE_DEFINITE" (7001)

A matrix is not positive definite.
"MSK_RES_ERR_LAU_INVALID_LOWER_TRIANGULAR_MATRIX" (7002)

An invalid lower triangular matrix.
"MSK_RES_ERR_LAU_UNKNOWN" (7005)

An unknown error.
"MSK_RES_ERR_LAU_ARG_M" (7010)

Invalid argument m.
"MSK_RES_ERR_LAU_ARG_N" (7011)

Invalid argument n.
"MSK_RES_ERR_LAU_ARG_K" (7012)

Invalid argument k.
"MSK_RES_ERR_LAU_ARG_TRANSA" (7015)

Invalid argument transa.
"MSK_RES_ERR_LAU_ARG_TRANSB" (7016)

Invalid argument transb.
"MSK_RES_ERR_LAU_ARG_UPLO" (7017)

Invalid argument uplo.
"MSK_RES_ERR_LAU_ARG_TRANS" (7018)

Invalid argument trans.
"MSK_RES_ERR_LAU_INVALID_SPARSE_SYMMETRIC_MATRIX" (7019)

An invalid sparse symmetric matrix is specfified. Note only the lower triangular part with no
duplicates is specifed.

"MSK_RES_ERR_CBF_PARSE" (7100)

An error occurred while parsing an CBF file.
"MSK_RES_ERR_CBF_OBJ_SENSE" (7101)

An invalid objective sense is specified.
"MSK_RES_ERR_CBF_NO_VARIABLES" (7102)

No variables are specified.
"MSK_RES_ERR_CBF_TOO_MANY_CONSTRAINTS" (7103)

Too many constraints specified.
"MSK_RES_ERR_CBF_TOO_MANY_VARIABLES" (7104)

Too many variables specified.

277

"MSK_RES_ERR_CBF_NO_VERSION_SPECIFIED" (7105)
No version specified.

"MSK_RES_ERR_CBF_SYNTAX" (7106)
Invalid syntax.

"MSK_RES_ERR_CBF_DUPLICATE_OBJ" (7107)
Duplicate OBJ keyword.

"MSK_RES_ERR_CBF_DUPLICATE_CON" (7108)
Duplicate CON keyword.

"MSK_RES_ERR_CBF_DUPLICATE_VAR" (7110)
Duplicate VAR keyword.

"MSK_RES_ERR_CBF_DUPLICATE_INT" (7111)
Duplicate INT keyword.

"MSK_RES_ERR_CBF_INVALID_VAR_TYPE" (7112)
Invalid variable type.

"MSK_RES_ERR_CBF_INVALID_CON_TYPE" (7113)
Invalid constraint type.

"MSK_RES_ERR_CBF_INVALID_DOMAIN_DIMENSION" (7114)
Invalid domain dimension.

"MSK_RES_ERR_CBF_DUPLICATE_OBJACOORD" (7115)
Duplicate index in OBJCOORD.

"MSK_RES_ERR_CBF_DUPLICATE_BCOORD" (7116)
Duplicate index in BCOORD.

"MSK_RES_ERR_CBF_DUPLICATE_ACOORD" (7117)
Duplicate index in ACOORD.

"MSK_RES_ERR_CBF_TOO_FEW_VARIABLES" (7118)
Too few variables defined.

"MSK_RES_ERR_CBF_TOO_FEW_CONSTRAINTS" (7119)
Too few constraints defined.

"MSK_RES_ERR_CBF_TOO_FEW_INTS" (7120)
Too few ints are specified.

"MSK_RES_ERR_CBF_TOO_MANY_INTS" (7121)
Too many ints are specified.

"MSK_RES_ERR_CBF_INVALID_INT_INDEX" (7122)
Invalid INT index.

"MSK_RES_ERR_CBF_UNSUPPORTED" (7123)
Unsupported feature is present.

"MSK_RES_ERR_CBF_DUPLICATE_PSDVAR" (7124)
Duplicate PSDVAR keyword.

"MSK_RES_ERR_CBF_INVALID_PSDVAR_DIMENSION" (7125)
Invalid PSDVAR dimension.

"MSK_RES_ERR_CBF_TOO_FEW_PSDVAR" (7126)
Too few variables defined.

"MSK_RES_ERR_CBF_INVALID_EXP_DIMENSION" (7127)
Invalid dimension of a exponential cone.

"MSK_RES_ERR_CBF_DUPLICATE_POW_CONES" (7130)
Multiple POWCONES specified.

"MSK_RES_ERR_CBF_DUPLICATE_POW_STAR_CONES" (7131)
Multiple POW*CONES specified.

"MSK_RES_ERR_CBF_INVALID_POWER" (7132)
Invalid power specified.

"MSK_RES_ERR_CBF_POWER_CONE_IS_TOO_LONG" (7133)
Power cone is too long.

278

"MSK_RES_ERR_CBF_INVALID_POWER_CONE_INDEX" (7134)
Invalid power cone index.

"MSK_RES_ERR_CBF_INVALID_POWER_STAR_CONE_INDEX" (7135)
Invalid power star cone index.

"MSK_RES_ERR_CBF_UNHANDLED_POWER_CONE_TYPE" (7136)
An unhandled power cone type.

"MSK_RES_ERR_CBF_UNHANDLED_POWER_STAR_CONE_TYPE" (7137)
An unhandled power star cone type.

"MSK_RES_ERR_CBF_POWER_CONE_MISMATCH" (7138)
The power cone does not match with it definition.

"MSK_RES_ERR_CBF_POWER_STAR_CONE_MISMATCH" (7139)
The power star cone does not match with it definition.

"MSK_RES_ERR_CBF_INVALID_NUMBER_OF_CONES" (7140)
Invalid number of cones.

"MSK_RES_ERR_CBF_INVALID_DIMENSION_OF_CONES" (7141)
Invalid number of cones.

"MSK_RES_ERR_CBF_INVALID_NUM_OBJACOORD" (7150)
Invalid number of OBJACOORD.

"MSK_RES_ERR_CBF_INVALID_NUM_OBJFCOORD" (7151)
Invalid number of OBJFCOORD.

"MSK_RES_ERR_CBF_INVALID_NUM_ACOORD" (7152)
Invalid number of ACOORD.

"MSK_RES_ERR_CBF_INVALID_NUM_BCOORD" (7153)
Invalid number of BCOORD.

"MSK_RES_ERR_CBF_INVALID_NUM_FCOORD" (7155)
Invalid number of FCOORD.

"MSK_RES_ERR_CBF_INVALID_NUM_HCOORD" (7156)
Invalid number of HCOORD.

"MSK_RES_ERR_CBF_INVALID_NUM_DCOORD" (7157)
Invalid number of DCOORD.

"MSK_RES_ERR_CBF_EXPECTED_A_KEYWORD" (7158)
Expected a key word.

"MSK_RES_ERR_CBF_INVALID_NUM_PSDCON" (7200)
Invalid number of PSDCON.

"MSK_RES_ERR_CBF_DUPLICATE_PSDCON" (7201)
Duplicate CON keyword.

"MSK_RES_ERR_CBF_INVALID_DIMENSION_OF_PSDCON" (7202)
Invalid PSDCON dimension.

"MSK_RES_ERR_CBF_INVALID_PSDCON_INDEX" (7203)
Invalid PSDCON index.

"MSK_RES_ERR_CBF_INVALID_PSDCON_VARIABLE_INDEX" (7204)
Invalid PSDCON index.

"MSK_RES_ERR_CBF_INVALID_PSDCON_BLOCK_INDEX" (7205)
Invalid PSDCON index.

"MSK_RES_ERR_CBF_UNSUPPORTED_CHANGE" (7210)
The CHANGE section is not supported.

"MSK_RES_ERR_MIO_INVALID_ROOT_OPTIMIZER" (7700)
An invalid root optimizer was selected for the problem type.

"MSK_RES_ERR_MIO_INVALID_NODE_OPTIMIZER" (7701)
An invalid node optimizer was selected for the problem type.

"MSK_RES_ERR_MPS_WRITE_CPLEX_INVALID_CONE_TYPE" (7750)
An invalid cone type occurs when writing a CPLEX formatted MPS file.

279

"MSK_RES_ERR_TOCONIC_CONSTR_Q_NOT_PSD" (7800)
The matrix defining the quadratric part of constraint is not positive semidefinite.

"MSK_RES_ERR_TOCONIC_CONSTRAINT_FX" (7801)
The quadratic constraint is an equality, thus not convex.

"MSK_RES_ERR_TOCONIC_CONSTRAINT_RA" (7802)
The quadratic constraint has finite lower and upper bound, and therefore it is not convex.

"MSK_RES_ERR_TOCONIC_CONSTR_NOT_CONIC" (7803)
The constraint is not conic representable.

"MSK_RES_ERR_TOCONIC_OBJECTIVE_NOT_PSD" (7804)
The matrix defining the quadratric part of the objective function is not positive semidefinite.

"MSK_RES_ERR_GETDUAL_NOT_AVAILABLE" (7820)
The simple dualizer is not available for this problem class.

"MSK_RES_ERR_SERVER_CONNECT" (8000)
Failed to connect to remote solver server. The server string or the port string were invalid, or the
server did not accept connection.

"MSK_RES_ERR_SERVER_PROTOCOL" (8001)
Unexpected message or data from solver server.

"MSK_RES_ERR_SERVER_STATUS" (8002)
Server returned non-ok HTTP status code

"MSK_RES_ERR_SERVER_TOKEN" (8003)
The job ID specified is incorrect or invalid

"MSK_RES_ERR_SERVER_ADDRESS" (8004)
Invalid address string

"MSK_RES_ERR_SERVER_CERTIFICATE" (8005)
Invalid TLS certificate format or path

"MSK_RES_ERR_SERVER_TLS_CLIENT" (8006)
Failed to create TLS cleint

"MSK_RES_ERR_SERVER_ACCESS_TOKEN" (8007)
Invalid access token

"MSK_RES_ERR_SERVER_PROBLEM_SIZE" (8008)
The size of the problem exceeds the dimensions permitted by the instance of the OptServer where
it was run.

"MSK_RES_ERR_SERVER_HARD_TIMEOUT" (8009)
The hard timeout limit was reached on solver server, and the solver process was killed

"MSK_RES_ERR_DUPLICATE_INDEX_IN_A_SPARSE_MATRIX" (20050)
An element in a sparse matrix is specified twice.

"MSK_RES_ERR_DUPLICATE_INDEX_IN_AFEIDX_LIST" (20060)
An index is specified twice in an affine expression list.

"MSK_RES_ERR_DUPLICATE_FIJ" (20100)
An element in the F matrix is specified twice.

"MSK_RES_ERR_INVALID_FIJ" (20101)
𝑓𝑖,𝑗 contains an invalid floating point value, i.e. a NaN or an infinite value.

"MSK_RES_ERR_HUGE_FIJ" (20102)
A numerically huge value is specified for an 𝑓𝑖,𝑗 element in 𝐹 . The parameter
MSK_DPAR_DATA_TOL_AIJ_HUGE controls when an 𝑓𝑖,𝑗 is considered huge.

"MSK_RES_ERR_INVALID_G" (20103)
𝑔 contains an invalid floating point value, i.e. a NaN or an infinite value.

"MSK_RES_ERR_INVALID_B" (20150)
𝑏 contains an invalid floating point value, i.e. a NaN or an infinite value.

"MSK_RES_ERR_DOMAIN_INVALID_INDEX" (20400)
A domain index is invalid.

"MSK_RES_ERR_DOMAIN_DIMENSION" (20401)
A domain dimension is invalid.

280

"MSK_RES_ERR_DOMAIN_DIMENSION_PSD" (20402)

A PSD domain dimension is invalid.
"MSK_RES_ERR_NOT_POWER_DOMAIN" (20403)

The function is only applicable to primal and dual power cone domains.
"MSK_RES_ERR_DOMAIN_POWER_INVALID_ALPHA" (20404)

Alpha contains an invalid floating point value, i.e. a NaN or an infinite value.
"MSK_RES_ERR_DOMAIN_POWER_NEGATIVE_ALPHA" (20405)

Alpha contains a negative value or zero.
"MSK_RES_ERR_DOMAIN_POWER_NLEFT" (20406)

The value of 𝑛left is not in [1, 𝑛− 1] where 𝑛 is the dimension.
"MSK_RES_ERR_AFE_INVALID_INDEX" (20500)

An affine expression index is invalid.
"MSK_RES_ERR_ACC_INVALID_INDEX" (20600)

A affine conic constraint index is invalid.
"MSK_RES_ERR_ACC_INVALID_ENTRY_INDEX" (20601)

The index of an element in an affine conic constraint is invalid.
"MSK_RES_ERR_ACC_AFE_DOMAIN_MISMATCH" (20602)

There is a mismatch between between the number of affine expressions and total dimension of the
domain(s).

"MSK_RES_ERR_DJC_INVALID_INDEX" (20700)

A disjunctive constraint index is invalid.
"MSK_RES_ERR_DJC_UNSUPPORTED_DOMAIN_TYPE" (20701)

An unsupported domain type has been used in a disjunctive constraint.
"MSK_RES_ERR_DJC_AFE_DOMAIN_MISMATCH" (20702)

There is a mismatch between the number of affine expressions and total dimension of the domain(s).
"MSK_RES_ERR_DJC_INVALID_TERM_SIZE" (20703)

A termize is invalid.
"MSK_RES_ERR_DJC_DOMAIN_TERMSIZE_MISMATCH" (20704)

There is a mismatch between the number of domains and the term sizes.
"MSK_RES_ERR_DJC_TOTAL_NUM_TERMS_MISMATCH" (20705)

There total number of terms in all domains does not match.
"MSK_RES_ERR_UNDEF_SOLUTION" (22000)

MOSEK has the following solution types:

• an interior-point solution,

• a basic solution,

• and an integer solution.

Each optimizer may set one or more of these solutions; e.g by default a successful optimization
with the interior-point optimizer defines the interior-point solution and, for linear problems, also
the basic solution. This error occurs when asking for a solution or for information about a solution
that is not defined.

"MSK_RES_ERR_NO_DOTY" (22010)

No doty is available

281

15.7 Enumerations

basindtype

Basis identification

"MSK_BI_NEVER"

Never do basis identification.

"MSK_BI_ALWAYS"

Basis identification is always performed even if the interior-point optimizer terminates abnor-
mally.

"MSK_BI_NO_ERROR"

Basis identification is performed if the interior-point optimizer terminates without an error.

"MSK_BI_IF_FEASIBLE"

Basis identification is not performed if the interior-point optimizer terminates with a problem
status saying that the problem is primal or dual infeasible.

"MSK_BI_RESERVERED"

Not currently in use.
boundkey

Bound keys

"MSK_BK_LO"

The constraint or variable has a finite lower bound and an infinite upper bound.

"MSK_BK_UP"

The constraint or variable has an infinite lower bound and an finite upper bound.

"MSK_BK_FX"

The constraint or variable is fixed.

"MSK_BK_FR"

The constraint or variable is free.

"MSK_BK_RA"

The constraint or variable is ranged.
mark

Mark

"MSK_MARK_LO"

The lower bound is selected for sensitivity analysis.

"MSK_MARK_UP"

The upper bound is selected for sensitivity analysis.
simprecision

Experimental. Usage not recommended.

"MSK_SIM_PRECISION_NORMAL"

Experimental. Usage not recommended.

"MSK_SIM_PRECISION_EXTENDED"

Experimental. Usage not recommended.
simdegen

Degeneracy strategies

"MSK_SIM_DEGEN_NONE"

The simplex optimizer should use no degeneration strategy.

"MSK_SIM_DEGEN_FREE"

The simplex optimizer chooses the degeneration strategy.

282

"MSK_SIM_DEGEN_AGGRESSIVE"

The simplex optimizer should use an aggressive degeneration strategy.

"MSK_SIM_DEGEN_MODERATE"

The simplex optimizer should use a moderate degeneration strategy.

"MSK_SIM_DEGEN_MINIMUM"

The simplex optimizer should use a minimum degeneration strategy.
transpose

Transposed matrix.

"MSK_TRANSPOSE_NO"

No transpose is applied.

"MSK_TRANSPOSE_YES"

A transpose is applied.
uplo

Triangular part of a symmetric matrix.

"MSK_UPLO_LO"

Lower part.

"MSK_UPLO_UP"

Upper part.
simreform

Problem reformulation.

"MSK_SIM_REFORMULATION_ON"

Allow the simplex optimizer to reformulate the problem.

"MSK_SIM_REFORMULATION_OFF"

Disallow the simplex optimizer to reformulate the problem.

"MSK_SIM_REFORMULATION_FREE"

The simplex optimizer can choose freely.

"MSK_SIM_REFORMULATION_AGGRESSIVE"

The simplex optimizer should use an aggressive reformulation strategy.
simdupvec

Exploit duplicate columns.

"MSK_SIM_EXPLOIT_DUPVEC_ON"

Allow the simplex optimizer to exploit duplicated columns.

"MSK_SIM_EXPLOIT_DUPVEC_OFF"

Disallow the simplex optimizer to exploit duplicated columns.

"MSK_SIM_EXPLOIT_DUPVEC_FREE"

The simplex optimizer can choose freely.
simhotstart

Hot-start type employed by the simplex optimizer

"MSK_SIM_HOTSTART_NONE"

The simplex optimizer performs a coldstart.

"MSK_SIM_HOTSTART_FREE"

The simplex optimize chooses the hot-start type.

"MSK_SIM_HOTSTART_STATUS_KEYS"

Only the status keys of the constraints and variables are used to choose the type of hot-start.
intpnthotstart

Hot-start type employed by the interior-point optimizers.

283

"MSK_INTPNT_HOTSTART_NONE"

The interior-point optimizer performs a coldstart.

"MSK_INTPNT_HOTSTART_PRIMAL"

The interior-point optimizer exploits the primal solution only.

"MSK_INTPNT_HOTSTART_DUAL"

The interior-point optimizer exploits the dual solution only.

"MSK_INTPNT_HOTSTART_PRIMAL_DUAL"

The interior-point optimizer exploits both the primal and dual solution.
callbackcode

Progress callback codes

"MSK_CALLBACK_BEGIN_BI"

The basis identification procedure has been started.

"MSK_CALLBACK_BEGIN_CONIC"

The callback function is called when the conic optimizer is started.

"MSK_CALLBACK_BEGIN_DUAL_BI"

The callback function is called from within the basis identification procedure when the dual
phase is started.

"MSK_CALLBACK_BEGIN_DUAL_SENSITIVITY"

Dual sensitivity analysis is started.

"MSK_CALLBACK_BEGIN_DUAL_SETUP_BI"

The callback function is called when the dual BI phase is started.

"MSK_CALLBACK_BEGIN_DUAL_SIMPLEX"

The callback function is called when the dual simplex optimizer started.

"MSK_CALLBACK_BEGIN_DUAL_SIMPLEX_BI"

The callback function is called from within the basis identification procedure when the dual
simplex clean-up phase is started.

"MSK_CALLBACK_BEGIN_FOLDING"

The calback function is called at the beginning of folding.

"MSK_CALLBACK_BEGIN_FOLDING_BI"

TBD

"MSK_CALLBACK_BEGIN_FOLDING_BI_DUAL"

TBD

"MSK_CALLBACK_BEGIN_FOLDING_BI_INITIALIZE"

TBD

"MSK_CALLBACK_BEGIN_FOLDING_BI_OPTIMIZER"

TBD

"MSK_CALLBACK_BEGIN_FOLDING_BI_PRIMAL"

TBD

"MSK_CALLBACK_BEGIN_INFEAS_ANA"

The callback function is called when the infeasibility analyzer is started.

"MSK_CALLBACK_BEGIN_INITIALIZE_BI"

The callback function is called from within the basis identification procedure when the ini-
tialization phase is started.

"MSK_CALLBACK_BEGIN_INTPNT"

The callback function is called when the interior-point optimizer is started.

284

"MSK_CALLBACK_BEGIN_LICENSE_WAIT"

Begin waiting for license.

"MSK_CALLBACK_BEGIN_MIO"

The callback function is called when the mixed-integer optimizer is started.

"MSK_CALLBACK_BEGIN_OPTIMIZE_BI"

TBD.

"MSK_CALLBACK_BEGIN_OPTIMIZER"

The callback function is called when the optimizer is started.

"MSK_CALLBACK_BEGIN_PRESOLVE"

The callback function is called when the presolve is started.

"MSK_CALLBACK_BEGIN_PRIMAL_BI"

The callback function is called from within the basis identification procedure when the primal
phase is started.

"MSK_CALLBACK_BEGIN_PRIMAL_REPAIR"

Begin primal feasibility repair.

"MSK_CALLBACK_BEGIN_PRIMAL_SENSITIVITY"

Primal sensitivity analysis is started.

"MSK_CALLBACK_BEGIN_PRIMAL_SETUP_BI"

The callback function is called when the primal BI setup is started.

"MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX"

The callback function is called when the primal simplex optimizer is started.

"MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX_BI"

The callback function is called from within the basis identification procedure when the primal
simplex clean-up phase is started.

"MSK_CALLBACK_BEGIN_QCQO_REFORMULATE"

Begin QCQO reformulation.

"MSK_CALLBACK_BEGIN_READ"

MOSEK has started reading a problem file.

"MSK_CALLBACK_BEGIN_ROOT_CUTGEN"

The callback function is called when root cut generation is started.

"MSK_CALLBACK_BEGIN_SIMPLEX"

The callback function is called when the simplex optimizer is started.

"MSK_CALLBACK_BEGIN_SOLVE_ROOT_RELAX"

The callback function is called when solution of root relaxation is started.

"MSK_CALLBACK_BEGIN_TO_CONIC"

Begin conic reformulation.

"MSK_CALLBACK_BEGIN_WRITE"

MOSEK has started writing a problem file.

"MSK_CALLBACK_CONIC"

The callback function is called from within the conic optimizer after the information database
has been updated.

"MSK_CALLBACK_DECOMP_MIO"

The callback function is called when the dedicated algorithm for independent blocks inside
the mixed-integer solver is started.

"MSK_CALLBACK_DUAL_SIMPLEX"

The callback function is called from within the dual simplex optimizer.

285

"MSK_CALLBACK_END_BI"

The callback function is called when the basis identification procedure is terminated.

"MSK_CALLBACK_END_CONIC"

The callback function is called when the conic optimizer is terminated.

"MSK_CALLBACK_END_DUAL_BI"

The callback function is called from within the basis identification procedure when the dual
phase is terminated.

"MSK_CALLBACK_END_DUAL_SENSITIVITY"

Dual sensitivity analysis is terminated.

"MSK_CALLBACK_END_DUAL_SETUP_BI"

The callback function is called when the dual BI phase is terminated.

"MSK_CALLBACK_END_DUAL_SIMPLEX"

The callback function is called when the dual simplex optimizer is terminated.

"MSK_CALLBACK_END_DUAL_SIMPLEX_BI"

The callback function is called from within the basis identification procedure when the dual
clean-up phase is terminated.

"MSK_CALLBACK_END_FOLDING"

The calback function is called at the end of folding.

"MSK_CALLBACK_END_FOLDING_BI"

TBD

"MSK_CALLBACK_END_FOLDING_BI_DUAL"

TBD

"MSK_CALLBACK_END_FOLDING_BI_INITIALIZE"

TBD

"MSK_CALLBACK_END_FOLDING_BI_OPTIMIZER"

TBD

"MSK_CALLBACK_END_FOLDING_BI_PRIMAL"

TBD

"MSK_CALLBACK_END_INFEAS_ANA"

The callback function is called when the infeasibility analyzer is terminated.

"MSK_CALLBACK_END_INITIALIZE_BI"

The callback function is called from within the basis identification procedure when the ini-
tialization phase is terminated.

"MSK_CALLBACK_END_INTPNT"

The callback function is called when the interior-point optimizer is terminated.

"MSK_CALLBACK_END_LICENSE_WAIT"

End waiting for license.

"MSK_CALLBACK_END_MIO"

The callback function is called when the mixed-integer optimizer is terminated.

"MSK_CALLBACK_END_OPTIMIZE_BI"

TBD.

"MSK_CALLBACK_END_OPTIMIZER"

The callback function is called when the optimizer is terminated.

"MSK_CALLBACK_END_PRESOLVE"

The callback function is called when the presolve is completed.

286

"MSK_CALLBACK_END_PRIMAL_BI"

The callback function is called from within the basis identification procedure when the primal
phase is terminated.

"MSK_CALLBACK_END_PRIMAL_REPAIR"

End primal feasibility repair.

"MSK_CALLBACK_END_PRIMAL_SENSITIVITY"

Primal sensitivity analysis is terminated.

"MSK_CALLBACK_END_PRIMAL_SETUP_BI"

The callback function is called when the primal BI setup is terminated.

"MSK_CALLBACK_END_PRIMAL_SIMPLEX"

The callback function is called when the primal simplex optimizer is terminated.

"MSK_CALLBACK_END_PRIMAL_SIMPLEX_BI"

The callback function is called from within the basis identification procedure when the primal
clean-up phase is terminated.

"MSK_CALLBACK_END_QCQO_REFORMULATE"

End QCQO reformulation.

"MSK_CALLBACK_END_READ"

MOSEK has finished reading a problem file.

"MSK_CALLBACK_END_ROOT_CUTGEN"

The callback function is called when root cut generation is terminated.

"MSK_CALLBACK_END_SIMPLEX"

The callback function is called when the simplex optimizer is terminated.

"MSK_CALLBACK_END_SIMPLEX_BI"

The callback function is called from within the basis identification procedure when the simplex
clean-up phase is terminated.

"MSK_CALLBACK_END_SOLVE_ROOT_RELAX"

The callback function is called when solution of root relaxation is terminated.

"MSK_CALLBACK_END_TO_CONIC"

End conic reformulation.

"MSK_CALLBACK_END_WRITE"

MOSEK has finished writing a problem file.

"MSK_CALLBACK_FOLDING_BI_DUAL"

TBD

"MSK_CALLBACK_FOLDING_BI_OPTIMIZER"

TBD

"MSK_CALLBACK_FOLDING_BI_PRIMAL"

TBD

"MSK_CALLBACK_HEARTBEAT"

A heartbeat callback.

"MSK_CALLBACK_IM_DUAL_SENSIVITY"

The callback function is called at an intermediate stage of the dual sensitivity analysis.

"MSK_CALLBACK_IM_DUAL_SIMPLEX"

The callback function is called at an intermediate point in the dual simplex optimizer.

"MSK_CALLBACK_IM_LICENSE_WAIT"

MOSEK is waiting for a license.

287

"MSK_CALLBACK_IM_LU"
The callback function is called from within the LU factorization procedure at an intermediate
point.

"MSK_CALLBACK_IM_MIO"
The callback function is called at an intermediate point in the mixed-integer optimizer.

"MSK_CALLBACK_IM_MIO_DUAL_SIMPLEX"
The callback function is called at an intermediate point in the mixed-integer optimizer while
running the dual simplex optimizer.

"MSK_CALLBACK_IM_MIO_INTPNT"
The callback function is called at an intermediate point in the mixed-integer optimizer while
running the interior-point optimizer.

"MSK_CALLBACK_IM_MIO_PRIMAL_SIMPLEX"
The callback function is called at an intermediate point in the mixed-integer optimizer while
running the primal simplex optimizer.

"MSK_CALLBACK_IM_ORDER"
The callback function is called from within the matrix ordering procedure at an intermediate
point.

"MSK_CALLBACK_IM_PRIMAL_SENSIVITY"
The callback function is called at an intermediate stage of the primal sensitivity analysis.

"MSK_CALLBACK_IM_PRIMAL_SIMPLEX"
The callback function is called at an intermediate point in the primal simplex optimizer.

"MSK_CALLBACK_IM_READ"
Intermediate stage in reading.

"MSK_CALLBACK_IM_ROOT_CUTGEN"
The callback is called from within root cut generation at an intermediate stage.

"MSK_CALLBACK_IM_SIMPLEX"
The callback function is called from within the simplex optimizer at an intermediate point.

"MSK_CALLBACK_INTPNT"
The callback function is called from within the interior-point optimizer after the information
database has been updated.

"MSK_CALLBACK_NEW_INT_MIO"
The callback function is called after a new integer solution has been located by the mixed-
integer optimizer.

"MSK_CALLBACK_OPTIMIZE_BI"
TBD.

"MSK_CALLBACK_PRIMAL_SIMPLEX"
The callback function is called from within the primal simplex optimizer.

"MSK_CALLBACK_QO_REFORMULATE"
The callback function is called at an intermediate stage of the conic quadratic reformulation.

"MSK_CALLBACK_READ_OPF"
The callback function is called from the OPF reader.

"MSK_CALLBACK_READ_OPF_SECTION"
A chunk of 𝑄 non-zeros has been read from a problem file.

"MSK_CALLBACK_RESTART_MIO"
The callback function is called when the mixed-integer optimizer is restarted.

"MSK_CALLBACK_SOLVING_REMOTE"
The callback function is called while the task is being solved on a remote server.

288

"MSK_CALLBACK_UPDATE_DUAL_BI"

The callback function is called from within the basis identification procedure at an interme-
diate point in the dual phase.

"MSK_CALLBACK_UPDATE_DUAL_SIMPLEX"

The callback function is called in the dual simplex optimizer.

"MSK_CALLBACK_UPDATE_DUAL_SIMPLEX_BI"

The callback function is called from within the basis identification procedure at an interme-
diate point in the dual simplex clean-up phase. The frequency of the callbacks is controlled
by the MSK_IPAR_LOG_SIM_FREQ parameter.

"MSK_CALLBACK_UPDATE_PRESOLVE"

The callback function is called from within the presolve procedure.

"MSK_CALLBACK_UPDATE_PRIMAL_BI"

The callback function is called from within the basis identification procedure at an interme-
diate point in the primal phase.

"MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX"

The callback function is called in the primal simplex optimizer.

"MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX_BI"

The callback function is called from within the basis identification procedure at an interme-
diate point in the primal simplex clean-up phase. The frequency of the callbacks is controlled
by the MSK_IPAR_LOG_SIM_FREQ parameter.

"MSK_CALLBACK_UPDATE_SIMPLEX"

The callback function is called from simplex optimizer.

"MSK_CALLBACK_WRITE_OPF"

The callback function is called from the OPF writer.
compresstype

Compression types

"MSK_COMPRESS_NONE"

No compression is used.

"MSK_COMPRESS_FREE"

The type of compression used is chosen automatically.

"MSK_COMPRESS_GZIP"

The type of compression used is gzip compatible.

"MSK_COMPRESS_ZSTD"

The type of compression used is zstd compatible.
conetype

Cone types

"MSK_CT_QUAD"

The cone is a quadratic cone.

"MSK_CT_RQUAD"

The cone is a rotated quadratic cone.

"MSK_CT_PEXP"

A primal exponential cone.

"MSK_CT_DEXP"

A dual exponential cone.

"MSK_CT_PPOW"

A primal power cone.

289

"MSK_CT_DPOW"

A dual power cone.

"MSK_CT_ZERO"

The zero cone.
domaintype

Cone types

"MSK_DOMAIN_R"

R.

"MSK_DOMAIN_RZERO"

The zero vector.

"MSK_DOMAIN_RPLUS"

The positive orthant.

"MSK_DOMAIN_RMINUS"

The negative orthant.

"MSK_DOMAIN_QUADRATIC_CONE"

The quadratic cone.

"MSK_DOMAIN_RQUADRATIC_CONE"

The rotated quadratic cone.

"MSK_DOMAIN_PRIMAL_EXP_CONE"

The primal exponential cone.

"MSK_DOMAIN_DUAL_EXP_CONE"

The dual exponential cone.

"MSK_DOMAIN_PRIMAL_POWER_CONE"

The primal power cone.

"MSK_DOMAIN_DUAL_POWER_CONE"

The dual power cone.

"MSK_DOMAIN_PRIMAL_GEO_MEAN_CONE"

The primal geometric mean cone.

"MSK_DOMAIN_DUAL_GEO_MEAN_CONE"

The dual geometric mean cone.

"MSK_DOMAIN_SVEC_PSD_CONE"

The vectorized positive semidefinite cone.
nametype

Name types

"MSK_NAME_TYPE_GEN"

General names. However, no duplicate and blank names are allowed.

"MSK_NAME_TYPE_MPS"

MPS type names.

"MSK_NAME_TYPE_LP"

LP type names.
symmattype

Cone types

"MSK_SYMMAT_TYPE_SPARSE"

Sparse symmetric matrix.
dataformat

Data format types

290

"MSK_DATA_FORMAT_EXTENSION"
The file extension is used to determine the data file format.

"MSK_DATA_FORMAT_MPS"
The data file is MPS formatted.

"MSK_DATA_FORMAT_LP"
The data file is LP formatted.

"MSK_DATA_FORMAT_OP"
The data file is an optimization problem formatted file.

"MSK_DATA_FORMAT_FREE_MPS"
The data a free MPS formatted file.

"MSK_DATA_FORMAT_TASK"
Generic task dump file.

"MSK_DATA_FORMAT_PTF"
(P)retty (T)ext (F)format.

"MSK_DATA_FORMAT_CB"
Conic benchmark format,

"MSK_DATA_FORMAT_JSON_TASK"
JSON based task format.

solformat
Data format types

"MSK_SOL_FORMAT_EXTENSION"
The file extension is used to determine the data file format.

"MSK_SOL_FORMAT_B"
Simple binary format

"MSK_SOL_FORMAT_TASK"
Tar based format.

"MSK_SOL_FORMAT_JSON_TASK"
JSON based format.

dinfitem
Double information items

"MSK_DINF_ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_DENSITY"
Density percentage of the scalarized constraint matrix.

"MSK_DINF_BI_CLEAN_TIME"
Time spent within the clean-up phase of the basis identification procedure since its invocation
(in seconds).

"MSK_DINF_BI_DUAL_TIME"
Time spent within the dual phase basis identification procedure since its invocation (in sec-
onds).

"MSK_DINF_BI_PRIMAL_TIME"
Time spent within the primal phase of the basis identification procedure since its invocation
(in seconds).

"MSK_DINF_BI_TIME"
Time spent within the basis identification procedure since its invocation (in seconds).

"MSK_DINF_FOLDING_BI_OPTIMIZE_TIME"
TBD

"MSK_DINF_FOLDING_BI_UNFOLD_DUAL_TIME"
TBD

291

"MSK_DINF_FOLDING_BI_UNFOLD_INITIALIZE_TIME"
TBD

"MSK_DINF_FOLDING_BI_UNFOLD_PRIMAL_TIME"
TBD

"MSK_DINF_FOLDING_BI_UNFOLD_TIME"
TBD

"MSK_DINF_FOLDING_FACTOR"
Problem size after folding as a fraction of the original size.

"MSK_DINF_FOLDING_TIME"
Total time spent in folding for continuous problems (in seconds).

"MSK_DINF_INTPNT_DUAL_FEAS"
Dual feasibility measure reported by the interior-point optimizer. (For the interior-point
optimizer this measure is not directly related to the original problem because a homogeneous
model is employed.)

"MSK_DINF_INTPNT_DUAL_OBJ"
Dual objective value reported by the interior-point optimizer.

"MSK_DINF_INTPNT_FACTOR_NUM_FLOPS"
An estimate of the number of flops used in the factorization.

"MSK_DINF_INTPNT_OPT_STATUS"
A measure of optimality of the solution. It should converge to +1 if the problem has a primal-
dual optimal solution, and converge to −1 if the problem is (strictly) primal or dual infeasible.
If the measure converges to another constant, or fails to settle, the problem is usually ill-posed.

"MSK_DINF_INTPNT_ORDER_TIME"
Order time (in seconds).

"MSK_DINF_INTPNT_PRIMAL_FEAS"
Primal feasibility measure reported by the interior-point optimizer. (For the interior-point
optimizer this measure is not directly related to the original problem because a homogeneous
model is employed).

"MSK_DINF_INTPNT_PRIMAL_OBJ"
Primal objective value reported by the interior-point optimizer.

"MSK_DINF_INTPNT_TIME"
Time spent within the interior-point optimizer since its invocation (in seconds).

"MSK_DINF_MIO_CLIQUE_SELECTION_TIME"
Selection time for clique cuts (in seconds).

"MSK_DINF_MIO_CLIQUE_SEPARATION_TIME"
Separation time for clique cuts (in seconds).

"MSK_DINF_MIO_CMIR_SELECTION_TIME"
Selection time for CMIR cuts (in seconds).

"MSK_DINF_MIO_CMIR_SEPARATION_TIME"
Separation time for CMIR cuts (in seconds).

"MSK_DINF_MIO_CONSTRUCT_SOLUTION_OBJ"
If MOSEK has successfully constructed an integer feasible solution, then this item contains
the optimal objective value corresponding to the feasible solution.

"MSK_DINF_MIO_DUAL_BOUND_AFTER_PRESOLVE"
Value of the dual bound after presolve but before cut generation.

"MSK_DINF_MIO_GMI_SELECTION_TIME"
Selection time for GMI cuts (in seconds).

292

"MSK_DINF_MIO_GMI_SEPARATION_TIME"

Separation time for GMI cuts (in seconds).

"MSK_DINF_MIO_IMPLIED_BOUND_SELECTION_TIME"

Selection time for implied bound cuts (in seconds).

"MSK_DINF_MIO_IMPLIED_BOUND_SEPARATION_TIME"

Separation time for implied bound cuts (in seconds).

"MSK_DINF_MIO_INITIAL_FEASIBLE_SOLUTION_OBJ"

If the user provided solution was found to be feasible this information item contains it’s
objective value.

"MSK_DINF_MIO_KNAPSACK_COVER_SELECTION_TIME"

Selection time for knapsack cover (in seconds).

"MSK_DINF_MIO_KNAPSACK_COVER_SEPARATION_TIME"

Separation time for knapsack cover (in seconds).

"MSK_DINF_MIO_LIPRO_SELECTION_TIME"

Selection time for lift-and-project cuts (in seconds).

"MSK_DINF_MIO_LIPRO_SEPARATION_TIME"

Separation time for lift-and-project cuts (in seconds).

"MSK_DINF_MIO_OBJ_ABS_GAP"

Given the mixed-integer optimizer has computed a feasible solution and a bound on the
optimal objective value, then this item contains the absolute gap defined by

|(objective value of feasible solution) − (objective bound)|.

Otherwise it has the value -1.0.

"MSK_DINF_MIO_OBJ_BOUND"

The best known bound on the objective function. This value is undefined until at least one
relaxation has been solved: To see if this is the case check that "MSK_IINF_MIO_NUM_RELAX"
is strictly positive.

"MSK_DINF_MIO_OBJ_INT"

The primal objective value corresponding to the best integer feasible solution. Please
note that at least one integer feasible solution must have been located i.e. check
"MSK_IINF_MIO_NUM_INT_SOLUTIONS" .

"MSK_DINF_MIO_OBJ_REL_GAP"

Given that the mixed-integer optimizer has computed a feasible solution and a bound on the
optimal objective value, then this item contains the relative gap defined by

|(objective value of feasible solution) − (objective bound)|
max(𝛿, |(objective value of feasible solution)|)

.

where 𝛿 is given by the parameter MSK_DPAR_MIO_REL_GAP_CONST . Otherwise it has the value
−1.0.

"MSK_DINF_MIO_PROBING_TIME"

Total time for probing (in seconds).

"MSK_DINF_MIO_ROOT_CUT_SELECTION_TIME"

Total time for cut selection (in seconds).

"MSK_DINF_MIO_ROOT_CUT_SEPARATION_TIME"

Total time for cut separation (in seconds).

"MSK_DINF_MIO_ROOT_OPTIMIZER_TIME"

Time spent in the contiuous optimizer while processing the root node relaxation (in seconds).

293

"MSK_DINF_MIO_ROOT_PRESOLVE_TIME"
Time spent presolving the problem at the root node (in seconds).

"MSK_DINF_MIO_ROOT_TIME"
Time spent processing the root node (in seconds).

"MSK_DINF_MIO_SYMMETRY_DETECTION_TIME"
Total time for symmetry detection (in seconds).

"MSK_DINF_MIO_SYMMETRY_FACTOR"
Degree to which the problem is affected by detected symmetry.

"MSK_DINF_MIO_TIME"
Time spent in the mixed-integer optimizer (in seconds).

"MSK_DINF_MIO_USER_OBJ_CUT"
If the objective cut is used, then this information item has the value of the cut.

"MSK_DINF_OPTIMIZER_TICKS"
Total number of ticks spent in the optimizer since it was invoked. It is strictly negative if it
is not available.

"MSK_DINF_OPTIMIZER_TIME"
Total time spent in the optimizer since it was invoked (in seconds).

"MSK_DINF_PRESOLVE_ELI_TIME"
Total time spent in the eliminator since the presolve was invoked (in seconds).

"MSK_DINF_PRESOLVE_LINDEP_TIME"
Total time spent in the linear dependency checker since the presolve was invoked (in seconds).

"MSK_DINF_PRESOLVE_TIME"
Total time spent in the presolve since it was invoked (in seconds).

"MSK_DINF_PRESOLVE_TOTAL_PRIMAL_PERTURBATION"
Total perturbation of the bounds of the primal problem.

"MSK_DINF_PRIMAL_REPAIR_PENALTY_OBJ"
The optimal objective value of the penalty function.

"MSK_DINF_QCQO_REFORMULATE_MAX_PERTURBATION"
Maximum absolute diagonal perturbation occurring during the QCQO reformulation.

"MSK_DINF_QCQO_REFORMULATE_TIME"
Time spent with conic quadratic reformulation (in seconds).

"MSK_DINF_QCQO_REFORMULATE_WORST_CHOLESKY_COLUMN_SCALING"
Worst Cholesky column scaling.

"MSK_DINF_QCQO_REFORMULATE_WORST_CHOLESKY_DIAG_SCALING"
Worst Cholesky diagonal scaling.

"MSK_DINF_READ_DATA_TIME"
Time spent reading the data file (in seconds).

"MSK_DINF_REMOTE_TIME"
The total real time in seconds spent when optimizing on a server by the process performing
the optimization on the server (in seconds).

"MSK_DINF_SIM_DUAL_TIME"
Time spent in the dual simplex optimizer since invoking it (in seconds).

"MSK_DINF_SIM_FEAS"
Feasibility measure reported by the simplex optimizer.

"MSK_DINF_SIM_OBJ"
Objective value reported by the simplex optimizer.

294

"MSK_DINF_SIM_PRIMAL_TIME"
Time spent in the primal simplex optimizer since invoking it (in seconds).

"MSK_DINF_SIM_TIME"
Time spent in the simplex optimizer since invoking it (in seconds).

"MSK_DINF_SOL_BAS_DUAL_OBJ"
Dual objective value of the basic solution. Updated if MSK_IPAR_AUTO_UPDATE_SOL_INFO is
set .

"MSK_DINF_SOL_BAS_DVIOLCON"
Maximal dual bound violation for 𝑥𝑐 in the basic solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_BAS_DVIOLVAR"
Maximal dual bound violation for 𝑥𝑥 in the basic solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_BAS_NRM_BARX"

Infinity norm of 𝑋 in the basic solution.

"MSK_DINF_SOL_BAS_NRM_SLC"
Infinity norm of 𝑠𝑐𝑙 in the basic solution.

"MSK_DINF_SOL_BAS_NRM_SLX"
Infinity norm of 𝑠𝑥𝑙 in the basic solution.

"MSK_DINF_SOL_BAS_NRM_SUC"
Infinity norm of 𝑠𝑐𝑢 in the basic solution.

"MSK_DINF_SOL_BAS_NRM_SUX"

Infinity norm of 𝑠𝑋𝑢 in the basic solution.

"MSK_DINF_SOL_BAS_NRM_XC"
Infinity norm of 𝑥𝑐 in the basic solution.

"MSK_DINF_SOL_BAS_NRM_XX"
Infinity norm of 𝑥𝑥 in the basic solution.

"MSK_DINF_SOL_BAS_NRM_Y"
Infinity norm of 𝑦 in the basic solution.

"MSK_DINF_SOL_BAS_PRIMAL_OBJ"
Primal objective value of the basic solution. Updated if MSK_IPAR_AUTO_UPDATE_SOL_INFO
is set .

"MSK_DINF_SOL_BAS_PVIOLCON"
Maximal primal bound violation for 𝑥𝑐 in the basic solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_BAS_PVIOLVAR"
Maximal primal bound violation for 𝑥𝑥 in the basic solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITG_NRM_BARX"

Infinity norm of 𝑋 in the integer solution.

"MSK_DINF_SOL_ITG_NRM_XC"
Infinity norm of 𝑥𝑐 in the integer solution.

"MSK_DINF_SOL_ITG_NRM_XX"
Infinity norm of 𝑥𝑥 in the integer solution.

"MSK_DINF_SOL_ITG_PRIMAL_OBJ"
Primal objective value of the integer solution. Updated if MSK_IPAR_AUTO_UPDATE_SOL_INFO
is set .

295

"MSK_DINF_SOL_ITG_PVIOLACC"

Maximal primal violation for affine conic constraints in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITG_PVIOLBARVAR"

Maximal primal bound violation for 𝑋 in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITG_PVIOLCON"

Maximal primal bound violation for 𝑥𝑐 in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITG_PVIOLCONES"

Maximal primal violation for primal conic constraints in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITG_PVIOLDJC"

Maximal primal violation for disjunctive constraints in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITG_PVIOLITG"

Maximal violation for the integer constraints in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITG_PVIOLVAR"

Maximal primal bound violation for 𝑥𝑥 in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITR_DUAL_OBJ"

Dual objective value of the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITR_DVIOLACC"

Maximal dual violation for the affine conic constraints in the interior-point solution. Updated
if MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITR_DVIOLBARVAR"

Maximal dual bound violation for 𝑋 in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITR_DVIOLCON"

Maximal dual bound violation for 𝑥𝑐 in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITR_DVIOLCONES"

Maximal dual violation for conic constraints in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITR_DVIOLVAR"

Maximal dual bound violation for 𝑥𝑥 in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITR_NRM_BARS"

Infinity norm of 𝑆 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_BARX"

Infinity norm of 𝑋 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_SLC"

Infinity norm of 𝑠𝑐𝑙 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_SLX"

Infinity norm of 𝑠𝑥𝑙 in the interior-point solution.

296

"MSK_DINF_SOL_ITR_NRM_SNX"

Infinity norm of 𝑠𝑥𝑛 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_SUC"

Infinity norm of 𝑠𝑐𝑢 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_SUX"

Infinity norm of 𝑠𝑋𝑢 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_XC"

Infinity norm of 𝑥𝑐 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_XX"

Infinity norm of 𝑥𝑥 in the interior-point solution.

"MSK_DINF_SOL_ITR_NRM_Y"

Infinity norm of 𝑦 in the interior-point solution.

"MSK_DINF_SOL_ITR_PRIMAL_OBJ"

Primal objective value of the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITR_PVIOLACC"

Maximal primal violation for affine conic constraints in the interior-point solution. Updated
if MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITR_PVIOLBARVAR"

Maximal primal bound violation for 𝑋 in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITR_PVIOLCON"

Maximal primal bound violation for 𝑥𝑐 in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITR_PVIOLCONES"

Maximal primal violation for conic constraints in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_SOL_ITR_PVIOLVAR"

Maximal primal bound violation for 𝑥𝑥 in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

"MSK_DINF_TO_CONIC_TIME"

Time spent in the last to conic reformulation (in seconds).

"MSK_DINF_WRITE_DATA_TIME"

Time spent writing the data file (in seconds).
feature

License feature

"MSK_FEATURE_PTS"

Base system.

"MSK_FEATURE_PTON"

Conic extension.
liinfitem

Long integer information items.

"MSK_LIINF_ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_NUM_COLUMNS"

Number of columns in the scalarized constraint matrix.

"MSK_LIINF_ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_NUM_NZ"

Number of non-zero entries in the scalarized constraint matrix.

297

"MSK_LIINF_ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_NUM_ROWS"

Number of rows in the scalarized constraint matrix.

"MSK_LIINF_BI_CLEAN_ITER"

Number of clean iterations performed in the basis identification.

"MSK_LIINF_BI_DUAL_ITER"

Number of dual pivots performed in the basis identification.

"MSK_LIINF_BI_PRIMAL_ITER"

Number of primal pivots performed in the basis identification.

"MSK_LIINF_FOLDING_BI_DUAL_ITER"

TBD

"MSK_LIINF_FOLDING_BI_OPTIMIZER_ITER"

TBD

"MSK_LIINF_FOLDING_BI_PRIMAL_ITER"

TBD

"MSK_LIINF_INTPNT_FACTOR_NUM_NZ"

Number of non-zeros in factorization.

"MSK_LIINF_MIO_ANZ"

Number of non-zero entries in the constraint matrix of the problem to be solved by the mixed-
integer optimizer.

"MSK_LIINF_MIO_FINAL_ANZ"

Number of non-zero entries in the constraint matrix of the mixed-integer optimizer’s final
problem.

"MSK_LIINF_MIO_INTPNT_ITER"

Number of interior-point iterations performed by the mixed-integer optimizer.

"MSK_LIINF_MIO_NUM_DUAL_ILLPOSED_CER"

Number of dual illposed certificates encountered by the mixed-integer optimizer.

"MSK_LIINF_MIO_NUM_PRIM_ILLPOSED_CER"

Number of primal illposed certificates encountered by the mixed-integer optimizer.

"MSK_LIINF_MIO_PRESOLVED_ANZ"

Number of non-zero entries in the constraint matrix of the problem after the mixed-integer
optimizer’s presolve.

"MSK_LIINF_MIO_SIMPLEX_ITER"

Number of simplex iterations performed by the mixed-integer optimizer.

"MSK_LIINF_RD_NUMACC"

Number of affince conic constraints.

"MSK_LIINF_RD_NUMANZ"

Number of non-zeros in A that is read.

"MSK_LIINF_RD_NUMDJC"

Number of disjuncive constraints.

"MSK_LIINF_RD_NUMQNZ"

Number of Q non-zeros.

"MSK_LIINF_SIMPLEX_ITER"

Number of iterations performed by the simplex optimizer.
iinfitem

Integer information items.

298

"MSK_IINF_ANA_PRO_NUM_CON"

Number of constraints in the problem.

"MSK_IINF_ANA_PRO_NUM_CON_EQ"

Number of equality constraints.

"MSK_IINF_ANA_PRO_NUM_CON_FR"

Number of unbounded constraints.

"MSK_IINF_ANA_PRO_NUM_CON_LO"

Number of constraints with a lower bound and an infinite upper bound.

"MSK_IINF_ANA_PRO_NUM_CON_RA"

Number of constraints with finite lower and upper bounds.

"MSK_IINF_ANA_PRO_NUM_CON_UP"

Number of constraints with an upper bound and an infinite lower bound.

"MSK_IINF_ANA_PRO_NUM_VAR"

Number of variables in the problem.

"MSK_IINF_ANA_PRO_NUM_VAR_BIN"

Number of binary (0-1) variables.

"MSK_IINF_ANA_PRO_NUM_VAR_CONT"

Number of continuous variables.

"MSK_IINF_ANA_PRO_NUM_VAR_EQ"

Number of fixed variables.

"MSK_IINF_ANA_PRO_NUM_VAR_FR"

Number of free variables.

"MSK_IINF_ANA_PRO_NUM_VAR_INT"

Number of general integer variables.

"MSK_IINF_ANA_PRO_NUM_VAR_LO"

Number of variables with a lower bound and an infinite upper bound.

"MSK_IINF_ANA_PRO_NUM_VAR_RA"

Number of variables with finite lower and upper bounds.

"MSK_IINF_ANA_PRO_NUM_VAR_UP"

Number of variables with an upper bound and an infinite lower bound.

"MSK_IINF_FOLDING_APPLIED"

Non-zero if folding was exploited.

"MSK_IINF_INTPNT_FACTOR_DIM_DENSE"

Dimension of the dense sub system in factorization.

"MSK_IINF_INTPNT_ITER"

Number of interior-point iterations since invoking the interior-point optimizer.

"MSK_IINF_INTPNT_NUM_THREADS"

Number of threads that the interior-point optimizer is using.

"MSK_IINF_INTPNT_SOLVE_DUAL"

Non-zero if the interior-point optimizer is solving the dual problem.

"MSK_IINF_MIO_ABSGAP_SATISFIED"

Non-zero if absolute gap is within tolerances.

"MSK_IINF_MIO_CLIQUE_TABLE_SIZE"

Size of the clique table.

299

"MSK_IINF_MIO_CONSTRUCT_SOLUTION"

This item informs if MOSEK constructed an initial integer feasible solution.

• -1: tried, but failed,
• 0: no partial solution supplied by the user,
• 1: constructed feasible solution.

"MSK_IINF_MIO_FINAL_NUMBIN"

Number of binary variables in the mixed-integer optimizer’s final problem.

"MSK_IINF_MIO_FINAL_NUMBINCONEVAR"

Number of binary cone variables in the mixed-integer optimizer’s final problem.

"MSK_IINF_MIO_FINAL_NUMCON"

Number of constraints in the mixed-integer optimizer’s final problem.

"MSK_IINF_MIO_FINAL_NUMCONE"

Number of cones in the mixed-integer optimizer’s final problem.

"MSK_IINF_MIO_FINAL_NUMCONEVAR"

Number of cone variables in the mixed-integer optimizer’s final problem.

"MSK_IINF_MIO_FINAL_NUMCONT"

Number of continuous variables in the mixed-integer optimizer’s final problem.

"MSK_IINF_MIO_FINAL_NUMCONTCONEVAR"

Number of continuous cone variables in the mixed-integer optimizer’s final problem.

"MSK_IINF_MIO_FINAL_NUMDEXPCONES"

Number of dual exponential cones in the mixed-integer optimizer’s final problem.

"MSK_IINF_MIO_FINAL_NUMDJC"

Number of disjunctive constraints in the mixed-integer optimizer’s final problem.

"MSK_IINF_MIO_FINAL_NUMDPOWCONES"

Number of dual power cones in the mixed-integer optimizer’s final problem.

"MSK_IINF_MIO_FINAL_NUMINT"

Number of integer variables in the mixed-integer optimizer’s final problem.

"MSK_IINF_MIO_FINAL_NUMINTCONEVAR"

Number of integer cone variables in the mixed-integer optimizer’s final problem.

"MSK_IINF_MIO_FINAL_NUMPEXPCONES"

Number of primal exponential cones in the mixed-integer optimizer’s final problem.

"MSK_IINF_MIO_FINAL_NUMPPOWCONES"

Number of primal power cones in the mixed-integer optimizer’s final problem.

"MSK_IINF_MIO_FINAL_NUMQCONES"

Number of quadratic cones in the mixed-integer optimizer’s final problem.

"MSK_IINF_MIO_FINAL_NUMRQCONES"

Number of rotated quadratic cones in the mixed-integer optimizer’s final problem.

"MSK_IINF_MIO_FINAL_NUMVAR"

Number of variables in the mixed-integer optimizer’s final problem.

"MSK_IINF_MIO_INITIAL_FEASIBLE_SOLUTION"

This item informs if MOSEK found the solution provided by the user to be feasible

• 0: solution provided by the user was not found to be feasible for the current problem,
• 1: user provided solution was found to be feasible.

"MSK_IINF_MIO_NODE_DEPTH"

Depth of the last node solved.

300

"MSK_IINF_MIO_NUM_ACTIVE_NODES"
Number of active branch and bound nodes.

"MSK_IINF_MIO_NUM_ACTIVE_ROOT_CUTS"
Number of active cuts in the final relaxation after the mixed-integer optimizer’s root cut
generation.

"MSK_IINF_MIO_NUM_BLOCKS_SOLVED_IN_BB"
Number of independent decomposition blocks solved though a dedicated algorithm.

"MSK_IINF_MIO_NUM_BLOCKS_SOLVED_IN_PRESOLVE"
Number of independent decomposition blocks solved during presolve.

"MSK_IINF_MIO_NUM_BRANCH"
Number of branches performed during the optimization.

"MSK_IINF_MIO_NUM_INT_SOLUTIONS"
Number of integer feasible solutions that have been found.

"MSK_IINF_MIO_NUM_RELAX"
Number of relaxations solved during the optimization.

"MSK_IINF_MIO_NUM_REPEATED_PRESOLVE"
Number of times presolve was repeated at root.

"MSK_IINF_MIO_NUM_RESTARTS"
Number of restarts performed during the optimization.

"MSK_IINF_MIO_NUM_ROOT_CUT_ROUNDS"
Number of cut separation rounds at the root node of the mixed-integer optimizer.

"MSK_IINF_MIO_NUM_SELECTED_CLIQUE_CUTS"
Number of clique cuts selected to be included in the relaxation.

"MSK_IINF_MIO_NUM_SELECTED_CMIR_CUTS"
Number of Complemented Mixed Integer Rounding (CMIR) cuts selected to be included in
the relaxation.

"MSK_IINF_MIO_NUM_SELECTED_GOMORY_CUTS"
Number of Gomory cuts selected to be included in the relaxation.

"MSK_IINF_MIO_NUM_SELECTED_IMPLIED_BOUND_CUTS"
Number of implied bound cuts selected to be included in the relaxation.

"MSK_IINF_MIO_NUM_SELECTED_KNAPSACK_COVER_CUTS"
Number of clique cuts selected to be included in the relaxation.

"MSK_IINF_MIO_NUM_SELECTED_LIPRO_CUTS"
Number of lift-and-project cuts selected to be included in the relaxation.

"MSK_IINF_MIO_NUM_SEPARATED_CLIQUE_CUTS"
Number of separated clique cuts.

"MSK_IINF_MIO_NUM_SEPARATED_CMIR_CUTS"
Number of separated Complemented Mixed Integer Rounding (CMIR) cuts.

"MSK_IINF_MIO_NUM_SEPARATED_GOMORY_CUTS"
Number of separated Gomory cuts.

"MSK_IINF_MIO_NUM_SEPARATED_IMPLIED_BOUND_CUTS"
Number of separated implied bound cuts.

"MSK_IINF_MIO_NUM_SEPARATED_KNAPSACK_COVER_CUTS"
Number of separated clique cuts.

"MSK_IINF_MIO_NUM_SEPARATED_LIPRO_CUTS"
Number of separated lift-and-project cuts.

301

"MSK_IINF_MIO_NUM_SOLVED_NODES"
Number of branch and bounds nodes solved in the main branch and bound tree.

"MSK_IINF_MIO_NUMBIN"
Number of binary variables in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMBINCONEVAR"
Number of binary cone variables in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMCON"
Number of constraints in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMCONE"
Number of cones in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMCONEVAR"
Number of cone variables in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMCONT"
Number of continuous variables in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMCONTCONEVAR"
Number of continuous cone variables in the problem to be solved by the mixed-integer opti-
mizer.

"MSK_IINF_MIO_NUMDEXPCONES"
Number of dual exponential cones in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMDJC"
Number of disjunctive constraints in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMDPOWCONES"
Number of dual power cones in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMINT"
Number of integer variables in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMINTCONEVAR"
Number of integer cone variables in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMPEXPCONES"
Number of primal exponential cones in the problem to be solved by the mixed-integer opti-
mizer.

"MSK_IINF_MIO_NUMPPOWCONES"
Number of primal power cones in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMQCONES"
Number of quadratic cones in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMRQCONES"
Number of rotated quadratic cones in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_NUMVAR"
Number of variables in the problem to be solved by the mixed-integer optimizer.

"MSK_IINF_MIO_OBJ_BOUND_DEFINED"
Non-zero if a valid objective bound has been found, otherwise zero.

"MSK_IINF_MIO_PRESOLVED_NUMBIN"
Number of binary variables in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMBINCONEVAR"
Number of binary cone variables in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMCON"
Number of constraints in the problem after the mixed-integer optimizer’s presolve.

302

"MSK_IINF_MIO_PRESOLVED_NUMCONE"
Number of cones in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMCONEVAR"
Number of cone variables in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMCONT"
Number of continuous variables in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMCONTCONEVAR"
Number of continuous cone variables in the problem after the mixed-integer optimizer’s pre-
solve.

"MSK_IINF_MIO_PRESOLVED_NUMDEXPCONES"
Number of dual exponential cones in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMDJC"
Number of disjunctive constraints in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMDPOWCONES"
Number of dual power cones in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMINT"
Number of integer variables in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMINTCONEVAR"
Number of integer cone variables in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMPEXPCONES"
Number of primal exponential cones in the problem after the mixed-integer optimizer’s pre-
solve.

"MSK_IINF_MIO_PRESOLVED_NUMPPOWCONES"
Number of primal power cones in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMQCONES"
Number of quadratic cones in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMRQCONES"
Number of rotated quadratic cones in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_PRESOLVED_NUMVAR"
Number of variables in the problem after the mixed-integer optimizer’s presolve.

"MSK_IINF_MIO_RELGAP_SATISFIED"
Non-zero if relative gap is within tolerances.

"MSK_IINF_MIO_TOTAL_NUM_SELECTED_CUTS"
Total number of cuts selected to be included in the relaxation by the mixed-integer optimizer.

"MSK_IINF_MIO_TOTAL_NUM_SEPARATED_CUTS"
Total number of cuts separated by the mixed-integer optimizer.

"MSK_IINF_MIO_USER_OBJ_CUT"
If it is non-zero, then the objective cut is used.

"MSK_IINF_OPT_NUMCON"
Number of constraints in the problem solved when the optimizer is called.

"MSK_IINF_OPT_NUMVAR"
Number of variables in the problem solved when the optimizer is called

"MSK_IINF_OPTIMIZE_RESPONSE"
The response code returned by optimize.

"MSK_IINF_PRESOLVE_NUM_PRIMAL_PERTURBATIONS"
Number perturbations to thhe bounds of the primal problem.

303

"MSK_IINF_PURIFY_DUAL_SUCCESS"
Is nonzero if the dual solution is purified.

"MSK_IINF_PURIFY_PRIMAL_SUCCESS"
Is nonzero if the primal solution is purified.

"MSK_IINF_RD_NUMBARVAR"
Number of symmetric variables read.

"MSK_IINF_RD_NUMCON"
Number of constraints read.

"MSK_IINF_RD_NUMCONE"
Number of conic constraints read.

"MSK_IINF_RD_NUMINTVAR"
Number of integer-constrained variables read.

"MSK_IINF_RD_NUMQ"
Number of nonempty Q matrices read.

"MSK_IINF_RD_NUMVAR"
Number of variables read.

"MSK_IINF_RD_PROTYPE"
Problem type.

"MSK_IINF_SIM_DUAL_DEG_ITER"
The number of dual degenerate iterations.

"MSK_IINF_SIM_DUAL_HOTSTART"
If 1 then the dual simplex algorithm is solving from an advanced basis.

"MSK_IINF_SIM_DUAL_HOTSTART_LU"
If 1 then a valid basis factorization of full rank was located and used by the dual simplex
algorithm.

"MSK_IINF_SIM_DUAL_INF_ITER"
The number of iterations taken with dual infeasibility.

"MSK_IINF_SIM_DUAL_ITER"
Number of dual simplex iterations during the last optimization.

"MSK_IINF_SIM_NUMCON"
Number of constraints in the problem solved by the simplex optimizer.

"MSK_IINF_SIM_NUMVAR"
Number of variables in the problem solved by the simplex optimizer.

"MSK_IINF_SIM_PRIMAL_DEG_ITER"
The number of primal degenerate iterations.

"MSK_IINF_SIM_PRIMAL_HOTSTART"
If 1 then the primal simplex algorithm is solving from an advanced basis.

"MSK_IINF_SIM_PRIMAL_HOTSTART_LU"
If 1 then a valid basis factorization of full rank was located and used by the primal simplex
algorithm.

"MSK_IINF_SIM_PRIMAL_INF_ITER"
The number of iterations taken with primal infeasibility.

"MSK_IINF_SIM_PRIMAL_ITER"
Number of primal simplex iterations during the last optimization.

"MSK_IINF_SIM_SOLVE_DUAL"
Is non-zero if dual problem is solved.

304

"MSK_IINF_SOL_BAS_PROSTA"

Problem status of the basic solution. Updated after each optimization.

"MSK_IINF_SOL_BAS_SOLSTA"

Solution status of the basic solution. Updated after each optimization.

"MSK_IINF_SOL_ITG_PROSTA"

Problem status of the integer solution. Updated after each optimization.

"MSK_IINF_SOL_ITG_SOLSTA"

Solution status of the integer solution. Updated after each optimization.

"MSK_IINF_SOL_ITR_PROSTA"

Problem status of the interior-point solution. Updated after each optimization.

"MSK_IINF_SOL_ITR_SOLSTA"

Solution status of the interior-point solution. Updated after each optimization.

"MSK_IINF_STO_NUM_A_REALLOC"

Number of times the storage for storing 𝐴 has been changed. A large value may indicates
that memory fragmentation may occur.

inftype

Information item types

"MSK_INF_DOU_TYPE"

Is a double information type.

"MSK_INF_INT_TYPE"

Is an integer.

"MSK_INF_LINT_TYPE"

Is a long integer.
iomode

Input/output modes

"MSK_IOMODE_READ"

The file is read-only.

"MSK_IOMODE_WRITE"

The file is write-only. If the file exists then it is truncated when it is opened. Otherwise it is
created when it is opened.

"MSK_IOMODE_READWRITE"

The file is to read and write.
branchdir

Specifies the branching direction.

"MSK_BRANCH_DIR_FREE"

The mixed-integer optimizer decides which branch to choose.

"MSK_BRANCH_DIR_UP"

The mixed-integer optimizer always chooses the up branch first.

"MSK_BRANCH_DIR_DOWN"

The mixed-integer optimizer always chooses the down branch first.

"MSK_BRANCH_DIR_NEAR"

Branch in direction nearest to selected fractional variable.

"MSK_BRANCH_DIR_FAR"

Branch in direction farthest from selected fractional variable.

"MSK_BRANCH_DIR_ROOT_LP"

Chose direction based on root lp value of selected variable.

305

"MSK_BRANCH_DIR_GUIDED"
Branch in direction of current incumbent.

"MSK_BRANCH_DIR_PSEUDOCOST"
Branch based on the pseudocost of the variable.

miqcqoreformmethod
Specifies the reformulation method for mixed-integer quadratic problems.

"MSK_MIO_QCQO_REFORMULATION_METHOD_FREE"
The mixed-integer optimizer decides which reformulation method to apply.

"MSK_MIO_QCQO_REFORMULATION_METHOD_NONE"
No reformulation method is applied.

"MSK_MIO_QCQO_REFORMULATION_METHOD_LINEARIZATION"
A reformulation via linearization is applied.

"MSK_MIO_QCQO_REFORMULATION_METHOD_EIGEN_VAL_METHOD"
The eigenvalue method is applied.

"MSK_MIO_QCQO_REFORMULATION_METHOD_DIAG_SDP"
A perturbation of matrix diagonals via the solution of SDPs is applied.

"MSK_MIO_QCQO_REFORMULATION_METHOD_RELAX_SDP"
A Reformulation based on the solution of an SDP-relaxation of the problem is applied.

miodatapermmethod
Specifies the problem data permutation method for mixed-integer problems.

"MSK_MIO_DATA_PERMUTATION_METHOD_NONE"
No problem data permutation is applied.

"MSK_MIO_DATA_PERMUTATION_METHOD_CYCLIC_SHIFT"
A random cyclic shift is applied to permute the problem data.

"MSK_MIO_DATA_PERMUTATION_METHOD_RANDOM"
A random permutation is applied to the problem data.

miocontsoltype
Continuous mixed-integer solution type

"MSK_MIO_CONT_SOL_NONE"
No interior-point or basic solution are reported when the mixed-integer optimizer is used.

"MSK_MIO_CONT_SOL_ROOT"
The reported interior-point and basic solutions are a solution to the root node problem when
mixed-integer optimizer is used.

"MSK_MIO_CONT_SOL_ITG"
The reported interior-point and basic solutions are a solution to the problem with all integer
variables fixed at the value they have in the integer solution. A solution is only reported in
case the problem has a primal feasible solution.

"MSK_MIO_CONT_SOL_ITG_REL"
In case the problem is primal feasible then the reported interior-point and basic solutions are
a solution to the problem with all integer variables fixed at the value they have in the integer
solution. If the problem is primal infeasible, then the solution to the root node problem is
reported.

miomode
Integer restrictions

"MSK_MIO_MODE_IGNORED"
The integer constraints are ignored and the problem is solved as a continuous problem.

"MSK_MIO_MODE_SATISFIED"
Integer restrictions should be satisfied.

306

mionodeseltype
Mixed-integer node selection types

"MSK_MIO_NODE_SELECTION_FREE"
The optimizer decides the node selection strategy.

"MSK_MIO_NODE_SELECTION_FIRST"
The optimizer employs a depth first node selection strategy.

"MSK_MIO_NODE_SELECTION_BEST"
The optimizer employs a best bound node selection strategy.

"MSK_MIO_NODE_SELECTION_PSEUDO"
The optimizer employs selects the node based on a pseudo cost estimate.

miovarseltype
Mixed-integer variable selection types

"MSK_MIO_VAR_SELECTION_FREE"
The optimizer decides the variable selection strategy.

"MSK_MIO_VAR_SELECTION_PSEUDOCOST"
The optimizer employs pseudocost variable selection.

"MSK_MIO_VAR_SELECTION_STRONG"
The optimizer employs strong branching varfiable selection

mpsformat
MPS file format type

"MSK_MPS_FORMAT_STRICT"
It is assumed that the input file satisfies the MPS format strictly.

"MSK_MPS_FORMAT_RELAXED"
It is assumed that the input file satisfies a slightly relaxed version of the MPS format.

"MSK_MPS_FORMAT_FREE"
It is assumed that the input file satisfies the free MPS format. This implies that spaces are
not allowed in names. Otherwise the format is free.

"MSK_MPS_FORMAT_CPLEX"
The CPLEX compatible version of the MPS format is employed.

objsense
Objective sense types

"MSK_OBJECTIVE_SENSE_MINIMIZE"
The problem should be minimized.

"MSK_OBJECTIVE_SENSE_MAXIMIZE"
The problem should be maximized.

onoffkey
On/off

"MSK_ON"
Switch the option on.

"MSK_OFF"
Switch the option off.

optimizertype
Optimizer types

"MSK_OPTIMIZER_CONIC"
The optimizer for problems having conic constraints.

"MSK_OPTIMIZER_DUAL_SIMPLEX"
The dual simplex optimizer is used.

307

"MSK_OPTIMIZER_FREE"

The optimizer is chosen automatically.

"MSK_OPTIMIZER_FREE_SIMPLEX"

One of the simplex optimizers is used.

"MSK_OPTIMIZER_INTPNT"

The interior-point optimizer is used.

"MSK_OPTIMIZER_MIXED_INT"

The mixed-integer optimizer.

"MSK_OPTIMIZER_NEW_DUAL_SIMPLEX"

The new dual simplex optimizer is used.

"MSK_OPTIMIZER_NEW_PRIMAL_SIMPLEX"

The new primal simplex optimizer is used. It is not recommended to use this option.

"MSK_OPTIMIZER_PRIMAL_SIMPLEX"

The primal simplex optimizer is used.
orderingtype

Ordering strategies

"MSK_ORDER_METHOD_FREE"

The ordering method is chosen automatically.

"MSK_ORDER_METHOD_APPMINLOC"

Approximate minimum local fill-in ordering is employed.

"MSK_ORDER_METHOD_EXPERIMENTAL"

This option should not be used.

"MSK_ORDER_METHOD_TRY_GRAPHPAR"

Always try the graph partitioning based ordering.

"MSK_ORDER_METHOD_FORCE_GRAPHPAR"

Always use the graph partitioning based ordering even if it is worse than the approximate
minimum local fill ordering.

"MSK_ORDER_METHOD_NONE"

No ordering is used. Note using this value almost always leads to a significantly slow down.
presolvemode

Presolve method.

"MSK_PRESOLVE_MODE_OFF"

The problem is not presolved before it is optimized.

"MSK_PRESOLVE_MODE_ON"

The problem is presolved before it is optimized.

"MSK_PRESOLVE_MODE_FREE"

It is decided automatically whether to presolve before the problem is optimized.
foldingmode

Method of folding (symmetry detection for continuous problems).

"MSK_FOLDING_MODE_OFF"

Disabled.

"MSK_FOLDING_MODE_FREE"

The solver decides on the usage and amount of folding.

"MSK_FOLDING_MODE_FREE_UNLESS_BASIC"

If only the interior-point solution is requested then the solver decides; if the basic solution is
requested then folding is disabled.

308

"MSK_FOLDING_MODE_FORCE"
Full folding is always performed regardless of workload.

parametertype
Parameter type

"MSK_PAR_INVALID_TYPE"
Not a valid parameter.

"MSK_PAR_DOU_TYPE"
Is a double parameter.

"MSK_PAR_INT_TYPE"
Is an integer parameter.

"MSK_PAR_STR_TYPE"
Is a string parameter.

problemitem
Problem data items

"MSK_PI_VAR"
Item is a variable.

"MSK_PI_CON"
Item is a constraint.

"MSK_PI_CONE"
Item is a cone.

problemtype
Problem types

"MSK_PROBTYPE_LO"
The problem is a linear optimization problem.

"MSK_PROBTYPE_QO"
The problem is a quadratic optimization problem.

"MSK_PROBTYPE_QCQO"
The problem is a quadratically constrained optimization problem.

"MSK_PROBTYPE_CONIC"
A conic optimization.

"MSK_PROBTYPE_MIXED"
General nonlinear constraints and conic constraints. This combination can not be solved by
MOSEK.

prosta
Problem status keys

"MSK_PRO_STA_UNKNOWN"
Unknown problem status.

"MSK_PRO_STA_PRIM_AND_DUAL_FEAS"
The problem is primal and dual feasible.

"MSK_PRO_STA_PRIM_FEAS"
The problem is primal feasible.

"MSK_PRO_STA_DUAL_FEAS"
The problem is dual feasible.

"MSK_PRO_STA_PRIM_INFEAS"
The problem is primal infeasible.

"MSK_PRO_STA_DUAL_INFEAS"
The problem is dual infeasible.

309

"MSK_PRO_STA_PRIM_AND_DUAL_INFEAS"

The problem is primal and dual infeasible.

"MSK_PRO_STA_ILL_POSED"

The problem is ill-posed. For example, it may be primal and dual feasible but have a positive
duality gap.

"MSK_PRO_STA_PRIM_INFEAS_OR_UNBOUNDED"

The problem is either primal infeasible or unbounded. This may occur for mixed-integer
problems.

rescodetype

Response code type

"MSK_RESPONSE_OK"

The response code is OK.

"MSK_RESPONSE_WRN"

The response code is a warning.

"MSK_RESPONSE_TRM"

The response code is an optimizer termination status.

"MSK_RESPONSE_ERR"

The response code is an error.

"MSK_RESPONSE_UNK"

The response code does not belong to any class.
scalingtype

Scaling type

"MSK_SCALING_FREE"

The optimizer chooses the scaling heuristic.

"MSK_SCALING_NONE"

No scaling is performed.
scalingmethod

Scaling method

"MSK_SCALING_METHOD_POW2"

Scales only with power of 2 leaving the mantissa untouched.

"MSK_SCALING_METHOD_FREE"

The optimizer chooses the scaling heuristic.
sensitivitytype

Sensitivity types

"MSK_SENSITIVITY_TYPE_BASIS"

Basis sensitivity analysis is performed.
simseltype

Simplex selection strategy

"MSK_SIM_SELECTION_FREE"

The optimizer chooses the pricing strategy.

"MSK_SIM_SELECTION_FULL"

The optimizer uses full pricing.

"MSK_SIM_SELECTION_ASE"

The optimizer uses approximate steepest-edge pricing.

"MSK_SIM_SELECTION_DEVEX"

The optimizer uses devex steepest-edge pricing (or if it is not available an approximate steep-
edge selection).

310

"MSK_SIM_SELECTION_SE"

The optimizer uses steepest-edge selection (or if it is not available an approximate steep-edge
selection).

"MSK_SIM_SELECTION_PARTIAL"

The optimizer uses a partial selection approach. The approach is usually beneficial if the
number of variables is much larger than the number of constraints.

solitem

Solution items

"MSK_SOL_ITEM_XC"

Solution for the constraints.

"MSK_SOL_ITEM_XX"

Variable solution.

"MSK_SOL_ITEM_Y"

Lagrange multipliers for equations.

"MSK_SOL_ITEM_SLC"

Lagrange multipliers for lower bounds on the constraints.

"MSK_SOL_ITEM_SUC"

Lagrange multipliers for upper bounds on the constraints.

"MSK_SOL_ITEM_SLX"

Lagrange multipliers for lower bounds on the variables.

"MSK_SOL_ITEM_SUX"

Lagrange multipliers for upper bounds on the variables.

"MSK_SOL_ITEM_SNX"

Lagrange multipliers corresponding to the conic constraints on the variables.
solsta

Solution status keys

"MSK_SOL_STA_UNKNOWN"

Status of the solution is unknown.

"MSK_SOL_STA_OPTIMAL"

The solution is optimal.

"MSK_SOL_STA_PRIM_FEAS"

The solution is primal feasible.

"MSK_SOL_STA_DUAL_FEAS"

The solution is dual feasible.

"MSK_SOL_STA_PRIM_AND_DUAL_FEAS"

The solution is both primal and dual feasible.

"MSK_SOL_STA_PRIM_INFEAS_CER"

The solution is a certificate of primal infeasibility.

"MSK_SOL_STA_DUAL_INFEAS_CER"

The solution is a certificate of dual infeasibility.

"MSK_SOL_STA_PRIM_ILLPOSED_CER"

The solution is a certificate that the primal problem is illposed.

"MSK_SOL_STA_DUAL_ILLPOSED_CER"

The solution is a certificate that the dual problem is illposed.

"MSK_SOL_STA_INTEGER_OPTIMAL"

The primal solution is integer optimal.

311

soltype

Solution types

"MSK_SOL_BAS"

The basic solution.

"MSK_SOL_ITR"

The interior solution.

"MSK_SOL_ITG"

The integer solution.
solveform

Solve primal or dual form

"MSK_SOLVE_FREE"

The optimizer is free to solve either the primal or the dual problem.

"MSK_SOLVE_PRIMAL"

The optimizer should solve the primal problem.

"MSK_SOLVE_DUAL"

The optimizer should solve the dual problem.
stakey

Status keys

"MSK_SK_UNK"

The status for the constraint or variable is unknown.

"MSK_SK_BAS"

The constraint or variable is in the basis.

"MSK_SK_SUPBAS"

The constraint or variable is super basic.

"MSK_SK_LOW"

The constraint or variable is at its lower bound.

"MSK_SK_UPR"

The constraint or variable is at its upper bound.

"MSK_SK_FIX"

The constraint or variable is fixed.

"MSK_SK_INF"

The constraint or variable is infeasible in the bounds.
startpointtype

Starting point types

"MSK_STARTING_POINT_FREE"

The starting point is chosen automatically.

"MSK_STARTING_POINT_GUESS"

The optimizer guesses a starting point.

"MSK_STARTING_POINT_CONSTANT"

The optimizer constructs a starting point by assigning a constant value to all primal and dual
variables. This starting point is normally robust.

streamtype

Stream types

"MSK_STREAM_LOG"

Log stream. Contains the aggregated contents of all other streams. This means that a message
written to any other stream will also be written to this stream.

312

"MSK_STREAM_MSG"
Message stream. Log information relating to performance and progress of the optimization is
written to this stream.

"MSK_STREAM_ERR"
Error stream. Error messages are written to this stream.

"MSK_STREAM_WRN"
Warning stream. Warning messages are written to this stream.

value
Integer values

"MSK_MAX_STR_LEN"
Maximum string length allowed in MOSEK.

"MSK_LICENSE_BUFFER_LENGTH"
The length of a license key buffer.

variabletype
Variable types

"MSK_VAR_TYPE_CONT"
Is a continuous variable.

"MSK_VAR_TYPE_INT"
Is an integer variable.

15.8 Supported domains

This section lists the domains supported by MOSEK. See Sec. 6 for how to apply domains to specify
affine conic constraints (ACCs).

15.8.1 Linear domains
Each linear domain is determined by the dimension 𝑛.

• "MSK_DOMAIN_RZERO" : the zero domain, consisting of the origin 0𝑛 ∈ R𝑛.

• "MSK_DOMAIN_RPLUS" : the nonnegative orthant domain R𝑛
≥0.

• "MSK_DOMAIN_RMINUS" : the nonpositive orthant domain R𝑛
≤0.

• "MSK_DOMAIN_R" : the free domain, consisting of the whole R𝑛.

Membership in a linear domain is equivalent to imposing the corresponding set of 𝑛 linear constraints,
for instance 𝐹𝑥+ 𝑔 ∈ 0𝑛 is equivalent to 𝐹𝑥+ 𝑔 = 0 and so on. The free domain imposes no restriction.

15.8.2 Quadratic cone domains
The quadratic domains are determined by the dimension 𝑛.

• "MSK_DOMAIN_QUADRATIC_CONE" : the quadratic cone domain is the subset of R𝑛 defined as

𝒬𝑛 =

{︂
𝑥 ∈ R𝑛 : 𝑥1 ≥

√︁
𝑥2
2 + · · · + 𝑥2

𝑛

}︂
.

• "MSK_DOMAIN_RQUADRATIC_CONE" : the rotated quadratic cone domain is the subset of R𝑛

defined as

𝒬𝑛
𝑟 =

{︀
𝑥 ∈ R𝑛 : 2𝑥1𝑥2 ≥ 𝑥2

3 + · · · + 𝑥2
𝑛, 𝑥1, 𝑥2 ≥ 0

}︀
.

313

15.8.3 Exponential cone domains

• "MSK_DOMAIN_PRIMAL_EXP_CONE" : the primal exponential cone domain is the subset of R3

defined as

𝐾exp =
{︀

(𝑥1, 𝑥2, 𝑥3) ∈ R3 : 𝑥1 ≥ 𝑥2 exp(𝑥3/𝑥2), 𝑥1, 𝑥2 ≥ 0
}︀
.

• "MSK_DOMAIN_DUAL_EXP_CONE" : the dual exponential cone domain is the subset of R3 defined
as

𝐾*
exp =

{︀
(𝑥1, 𝑥2, 𝑥3) ∈ R3 : 𝑥1 ≥ −𝑥3 exp(𝑥2/𝑥3 − 1), 𝑥1 ≥ 0, 𝑥3 ≤ 0

}︀
.

15.8.4 Power cone domains
A power cone domain is determined by the dimension 𝑛 and a sequence of 1 ≤ 𝑛𝑙 < 𝑛 positive real
numbers (weights) 𝛼1, . . . , 𝛼𝑛𝑙

.

• "MSK_DOMAIN_PRIMAL_POWER_CONE" : the primal power cone domain is the subset of R𝑛 defined
as

𝒫(𝛼1,...,𝛼𝑛𝑙
)

𝑛 =

{︃
𝑥 ∈ R𝑛 :

𝑛𝑙∏︁
𝑖=1

𝑥𝛽𝑖

𝑖 ≥
√︁

𝑥2
𝑛𝑙+1 + · · · + 𝑥2

𝑛, 𝑥1, . . . , 𝑥𝑛𝑙
≥ 0

}︃
.

where 𝛽𝑖 are the weights normalized to add up to 1, ie. 𝛽𝑖 = 𝛼𝑖/(
∑︀

𝑗 𝛼𝑗) for 𝑖 = 1, . . . , 𝑛𝑙.
The name 𝑛𝑙 reads as “n left”, the length of the product on the left-hand side of the definition.

• "MSK_DOMAIN_DUAL_POWER_CONE" : the dual power cone domain is the subset of R𝑛 defined as

(︁
𝒫(𝛼1,...,𝛼𝑛𝑙

)
𝑛

)︁*
=

{︃
𝑥 ∈ R𝑛 :

𝑛𝑙∏︁
𝑖=1

(︂
𝑥𝑖

𝛽𝑖

)︂𝛽𝑖

≥
√︁
𝑥2
𝑛𝑙+1 + · · · + 𝑥2

𝑛, 𝑥1, . . . , 𝑥𝑛𝑙
≥ 0

}︃
.

where 𝛽𝑖 are the weights normalized to add up to 1, ie. 𝛽𝑖 = 𝛼𝑖/(
∑︀

𝑗 𝛼𝑗) for 𝑖 = 1, . . . , 𝑛𝑙.
The name 𝑛𝑙 reads as “n left”, the length of the product on the left-hand side of the definition.

• Remark: in MOSEK 9 power cones were available only in the special case with 𝑛𝑙 = 2 and weights
(𝛼, 1 − 𝛼) for some 0 < 𝛼 < 1 specified as cone parameter.

15.8.5 Geometric mean cone domains
A geometric mean cone domain is determined by the dimension 𝑛.

• "MSK_DOMAIN_PRIMAL_GEO_MEAN_CONE" : the primal geometric mean cone domain is the
subset of R𝑛 defined as

𝒢ℳ𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 :

(︃
𝑛−1∏︁
𝑖=1

𝑥𝑖

)︃1/(𝑛−1)

≥ |𝑥𝑛|, 𝑥1, . . . , 𝑥𝑛−1 ≥ 0

⎫⎬⎭ .

It is a special case of the primal power cone domain with 𝑛𝑙 = 𝑛−1 and weights 𝛼 = (1, . . . , 1).

• "MSK_DOMAIN_DUAL_GEO_MEAN_CONE" : the dual geometric mean cone domain is the subset of
R𝑛 defined as

(𝒢ℳ𝑛)* =

⎧⎨⎩𝑥 ∈ R𝑛 : (𝑛− 1)

(︃
𝑛−1∏︁
𝑖=1

𝑥𝑖

)︃1/(𝑛−1)

≥ |𝑥𝑛|, 𝑥1, . . . , 𝑥𝑛−1 ≥ 0

⎫⎬⎭ .

It is a special case of the dual power cone domain with 𝑛𝑙 = 𝑛−1 and weights 𝛼 = (1, . . . , 1).

314

15.8.6 Vectorized semidefinite domain
• "MSK_DOMAIN_SVEC_PSD_CONE" : the vectorized PSD cone domain is determined by the dimen-

sion 𝑛, which must be of the form 𝑛 = 𝑑(𝑑 + 1)/2. Then the domain is defined as

𝒮𝑑,vec
+ =

{︀
(𝑥1, . . . , 𝑥𝑑(𝑑+1)/2) ∈ R𝑛 : sMat(𝑥) ∈ 𝒮𝑑

+

}︀
,

where

sMat(𝑥) =

⎡⎢⎢⎣
𝑥1 𝑥2/

√
2 · · · 𝑥𝑑/

√
2

𝑥2/
√

2 𝑥𝑑+1 · · · 𝑥2𝑑−1/
√

2
· · · · · · · · · · · ·

𝑥𝑑/
√

2 𝑥2𝑑−1/
√

2 · · · 𝑥𝑑(𝑑+1)/2

⎤⎥⎥⎦ ,

or equivalently

𝒮𝑑,vec
+ =

{︀
sVec(𝑋) : 𝑋 ∈ 𝒮𝑑

+

}︀
,

where

sVec(𝑋) = (𝑋11,
√

2𝑋21, . . . ,
√

2𝑋𝑑1, 𝑋22,
√

2𝑋32, . . . , 𝑋𝑑𝑑).

In other words, the domain consists of vectorizations of the lower-triangular part of a positive
semidefinite matrix, with the non-diagonal elements additionally rescaled.

315

Chapter 16

Supported File Formats

MOSEK supports a range of problem and solution formats listed in Table 16.1 and Table 16.2.
The most important are:

• the Task format, MOSEK‘s native binary format which supports all features that MOSEK
supports. It is the closest possible representation of the internal data in a task and it is ideal for
submitting problem data support questions.

• the PTF format, MOSEK‘s human-readable format that supports all linear, conic and mixed-
integer features. It is ideal for debugging. It is not an exact copy of all the data in the task, but
it contains all information required to reconstruct it, presented in a readable fashion.

• MPS, LP, CBF formats are industry standards, each supporting some limited set of features, and
potentially requiring some degree of reformulation during read/write.

Problem formats

Table 16.1: List of supported file formats for optimization prob-
lems.

Format Type Ext. Binary/Text LP QCQO ACC SDP DJC Sol Param

LP lp plain text X X
MPS mps plain text X X
PTF ptf plain text X X X X X X
CBF cbf plain text X X X
Task format task binary X X X X X X X
Jtask format jtask text/JSON X X X X X X X
OPF (deprecated for conic problems) opf plain text X X X X

The columns of the table indicate if the specified file format supports:

• LP - linear problems, possibly with integer variables,

• QCQO - quadratic objective or constraints,

• ACC - affine conic constraints,

• SDP - semidefinite cone/variables,

• DJC - disjunctive constraints,

• Sol - solutions,

• Param - optimizer parameters.

316

Solution formats

Table 16.2: List of supported solution formats.

Format Type Ext. Binary/Text Description

SOL sol plain text Interior Solution
bas plain text Basic Solution
int plain text Integer

Jsol format jsol text/JSON All solutions

Compression

MOSEK supports GZIP and Zstandard compression. Problem files with extension .gz (for GZIP) and
.zst (for Zstandard) are assumed to be compressed when read, and are automatically compressed when
written. For example, a file called

problem.mps.zst

will be considered as a Zstandard compressed MPS file.

16.1 The LP File Format

MOSEK supports the LP file format with some extensions. The LP format is not a completely well-
defined standard and hence different optimization packages may interpret the same LP file in slightly
different ways. MOSEK tries to emulate as closely as possible CPLEX’s behavior, but tries to stay
backward compatible.

The LP file format can specify problems of the form

minimize/maximize 𝑐𝑇𝑥 + 1
2𝑞

𝑜(𝑥)
subject to 𝑙𝑐 ≤ 𝐴𝑥 + 1

2𝑞(𝑥) ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥𝒥 integer,

where

• 𝑥 ∈ R𝑛 is the vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear term in the objective.

• 𝑞𝑜 :∈ R𝑛 → R is the quadratic term in the objective where

𝑞𝑜(𝑥) = 𝑥𝑇𝑄𝑜𝑥

and it is assumed that

𝑄𝑜 = (𝑄𝑜)𝑇 .

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

• 𝑞 : R𝑛 → R is a vector of quadratic functions. Hence,

317

𝑞𝑖(𝑥) = 𝑥𝑇𝑄𝑖𝑥

where it is assumed that

𝑄𝑖 = (𝑄𝑖)𝑇 .

• 𝒥 ⊆ {1, 2, . . . , 𝑛} is an index set of the integer constrained variables.

16.1.1 File Sections
An LP formatted file contains a number of sections specifying the objective, constraints, variable bounds,
and variable types. The section keywords may be any mix of upper and lower case letters.

Objective Function

The first section beginning with one of the keywords

max
maximum
maximize
min
minimum
minimize

defines the objective sense and the objective function, i.e.

𝑐𝑇𝑥 +
1

2
𝑥𝑇𝑄𝑜𝑥.

The objective may be given a name by writing

myname:

before the expressions.
The objective function contains linear and quadratic terms. The linear terms are written as

4 x1 + x2 - 0.1 x3

and so forth. The quadratic terms are written in square brackets ([]/2) and are either squared or
multiplied as in the examples

x1^2

and

x1 * x2

There may be zero or more pairs of brackets containing quadratic expressions.
An example of an objective section is

minimize
myobj: 4 x1 + x2 - 0.1 x3 + [x1^2 + 2.1 x1 * x2]/2

Please note that the quadratic expressions are multiplied with 1
2 , so that the above expression means

minimize 4𝑥1 + 𝑥2 − 0.1 · 𝑥3 + 1
2 (𝑥2

1 + 2.1 · 𝑥1 · 𝑥2)

If the same variable occurs more than once in the linear part, the coefficients are added, so that 4 x1 +
2 x1 is equivalent to 6 x1. In the quadratic expressions x1 * x2 is equivalent to x2 * x1 and, as in the
linear part, if the same variables multiplied or squared occur several times their coefficients are added.

318

Constraints

The second section beginning with one of the keywords

subj to
subject to
s.t.
st

defines the linear constraint matrix 𝐴 and the quadratic matrices 𝑄𝑖.
A constraint contains a name (optional), expressions adhering to the same rules as in the objective

and a bound:

subject to
con1: x1 + x2 + [x3^2]/2 <= 5.1

The bound type (here <=) may be any of <, <=, =, >, >= (< and <= mean the same), and the bound
may be any number.

Ranged constraints cannot be written in LP format, and have to be split into a separate upper and
lower bound.

Bounds

Bounds on the variables can be specified in the bound section beginning with one of the keywords

bound
bounds

The bounds section is optional but should, if present, follow the subject to section. All variables
listed in the bounds section must occur in either the objective or a constraint.

The default lower and upper bounds are 0 and +∞ . A variable may be declared free with the keyword
free, which means that the lower bound is −∞ and the upper bound is +∞ . Furthermore it may be
assigned a finite lower and upper bound. The bound definitions for a given variable may be written in
one or two lines, and bounds can be any number or ±∞ (written as +inf/-inf/+infinity/-infinity)
as in the example

bounds
x1 free
x2 <= 5
0.1 <= x2
x3 = 42
2 <= x4 < +inf

Variable Types

The final two sections are optional and must begin with one of the keywords

bin
binaries
binary

and

gen
general

Under general all integer variables are listed, and under binary all binary (integer variables with
bounds 0 and 1) are listed:

general
x1 x2

(continues on next page)

319

(continued from previous page)

binary
x3 x4

Again, all variables listed in the binary or general sections must occur in either the objective or a
constraint.

Terminating Section

Finally, an LP formatted file must be terminated with the keyword

end

16.1.2 LP File Examples

Linear example lo1.lp

\ File: lo1.lp
maximize
obj: 3 x1 + x2 + 5 x3 + x4
subject to
c1: 3 x1 + x2 + 2 x3 = 30
c2: 2 x1 + x2 + 3 x3 + x4 >= 15
c3: 2 x2 + 3 x4 <= 25
bounds
0 <= x1 <= +infinity
0 <= x2 <= 10
0 <= x3 <= +infinity
0 <= x4 <= +infinity

end

Mixed integer example milo1.lp

maximize
obj: x1 + 6.4e-01 x2
subject to
c1: 5e+01 x1 + 3.1e+01 x2 <= 2.5e+02
c2: 3e+00 x1 - 2e+00 x2 >= -4e+00
bounds
0 <= x1 <= +infinity
0 <= x2 <= +infinity

general
x1 x2

end

16.1.3 LP Format peculiarities

Comments

Anything on a line after a \ is ignored and is treated as a comment.

320

Names

A name for an objective, a constraint or a variable may contain the letters a-z, A-Z, the digits 0-9 and
the characters

!"#$%&()/,.;?@_'`|~

The first character in a name must not be a number, a period or the letter e or E. Keywords must
not be used as names.

MOSEK accepts any character as valid for names, except \0. A name that is not allowed in LP file
will be changed and a warning will be issued.

The algorithm for making names LP valid works as follows: The name is interpreted as an utf-8
string. For a Unicode character c:

• If c==_ (underscore), the output is __ (two underscores).

• If c is a valid LP name character, the output is just c.

• If c is another character in the ASCII range, the output is _XX, where XX is the hexadecimal code
for the character.

• If c is a character in the range 127-65535, the output is _uXXXX, where XXXX is the hexadecimal
code for the character.

• If c is a character above 65535, the output is _UXXXXXXXX, where XXXXXXXX is the hexadecimal
code for the character.

Invalid utf-8 substrings are escaped as _XX', and if a name starts with a period, e or E, that character
is escaped as _XX.

Variable Bounds

Specifying several upper or lower bounds on one variable is possible but MOSEK uses only the tightest
bounds. If a variable is fixed (with =), then it is considered the tightest bound.

16.2 The MPS File Format

MOSEK supports the standard MPS format with some extensions. For a detailed description of the
MPS format see the book by Nazareth [Naz87].

16.2.1 MPS File Structure
The version of the MPS format supported by MOSEK allows specification of an optimization problem
of the form

maximize/minimize 𝑐𝑇𝑥 + 𝑞0(𝑥)
𝑙𝑐 ≤ 𝐴𝑥 + 𝑞(𝑥) ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ 𝒦,
𝑥𝒥 integer,

(16.1)

where

• 𝑥 ∈ R𝑛 is the vector of decision variables.

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

321

• 𝑞 : R𝑛 → R is a vector of quadratic functions. Hence,

𝑞𝑖(𝑥) =
1

2
𝑥𝑇𝑄𝑖𝑥

where it is assumed that 𝑄𝑖 = (𝑄𝑖)𝑇 . Please note the explicit 1
2 in the quadratic term and that 𝑄𝑖

is required to be symmetric. The same applies to 𝑞0.

• 𝒦 is a convex cone.

• 𝒥 ⊆ {1, 2, . . . , 𝑛} is an index set of the integer-constrained variables.

• 𝑐 is the vector of objective coefficients.

An MPS file with one row and one column can be illustrated like this:

* 1 2 3 4 5 6
*23456789012345678901234567890123456789012345678901234567890
NAME [name]
OBJSENSE

[objsense]
OBJNAME [objname]
ROWS
? [cname1]

COLUMNS
[vname1] [cname1] [value1] [cname2] [value2]

RHS
[name] [cname1] [value1] [cname2] [value2]

RANGES
[name] [cname1] [value1] [cname2] [value2]

QSECTION [cname1]
[vname1] [vname2] [value1] [vname3] [value2]

QMATRIX
[vname1] [vname2] [value1]

QUADOBJ
[vname1] [vname2] [value1]

QCMATRIX [cname1]
[vname1] [vname2] [value1]

BOUNDS
?? [name] [vname1] [value1]

CSECTION [kname1] [value1] [ktype]
[vname1]

ENDATA

Here the names in capitals are keywords of the MPS format and names in brackets are custom defined
names or values. A couple of notes on the structure:

• Fields: All items surrounded by brackets appear in fields. The fields named “valueN” are numerical
values. Hence, they must have the format

[+|-]XXXXXXX.XXXXXX[[e|E][+|-]XXX]

where

X = [0|1|2|3|4|5|6|7|8|9].

• Sections: The MPS file consists of several sections where the names in capitals indicate the begin-
ning of a new section. For example, COLUMNS denotes the beginning of the columns section.

• Comments: Lines starting with an * are comment lines and are ignored by MOSEK.

• Keys: The question marks represent keys to be specified later.

322

• Extensions: The sections QSECTION and CSECTION are specific MOSEK extensions of the MPS
format. The sections QMATRIX, QUADOBJ and QCMATRIX are included for sake of compatibility with
other vendors extensions to the MPS format.

• The standard MPS format is a fixed format, i.e. everything in the MPS file must be within certain
fixed positions. MOSEK also supports a free format. See Sec. 16.2.5 for details.

Linear example lo1.mps

A concrete example of a MPS file is presented below:

* File: lo1.mps
NAME lo1
OBJSENSE

MAX
ROWS
N obj
E c1
G c2
L c3

COLUMNS
x1 obj 3
x1 c1 3
x1 c2 2
x2 obj 1
x2 c1 1
x2 c2 1
x2 c3 2
x3 obj 5
x3 c1 2
x3 c2 3
x4 obj 1
x4 c2 1
x4 c3 3

RHS
rhs c1 30
rhs c2 15
rhs c3 25

RANGES
BOUNDS
UP bound x2 10

ENDATA

Subsequently each individual section in the MPS format is discussed.

323

NAME (optional)

In this section a name ([name]) is assigned to the problem.

OBJSENSE (optional)

This is an optional section that can be used to specify the sense of the objective function. The OBJSENSE
section contains one line at most which can be one of the following:

MIN
MINIMIZE
MAX
MAXIMIZE

It should be obvious what the implication is of each of these four lines.

OBJNAME (optional)

This is an optional section that can be used to specify the name of the row that is used as objective
function. objname should be a valid row name.

ROWS

A record in the ROWS section has the form

? [cname1]

where the requirements for the fields are as follows:

Field Starting Position Max Width required Description

? 2 1 Yes Constraint key
[cname1] 5 8 Yes Constraint name

Hence, in this section each constraint is assigned a unique name denoted by [cname1]. Please note
that [cname1] starts in position 5 and the field can be at most 8 characters wide. An initial key ? must
be present to specify the type of the constraint. The key can have values E, G, L, or N with the following
interpretation:

Constraint type 𝑙𝑐𝑖 𝑢𝑐
𝑖

E (equal) finite = 𝑙𝑐𝑖
G (greater) finite ∞
L (lower) −∞ finite
N (none) −∞ ∞

In the MPS format the objective vector is not specified explicitly, but one of the constraints having
the key N will be used as the objective vector 𝑐 . In general, if multiple N type constraints are specified,
then the first will be used as the objective vector 𝑐, unless something else was specified in the section
OBJNAME.

COLUMNS

In this section the elements of 𝐴 are specified using one or more records having the form:

[vname1] [cname1] [value1] [cname2] [value2]

where the requirements for each field are as follows:

324

Field Starting Position Max Width required Description

[vname1] 5 8 Yes Variable name
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

Hence, a record specifies one or two elements 𝑎𝑖𝑗 of 𝐴 using the principle that [vname1] and [cname1]
determines 𝑗 and 𝑖 respectively. Please note that [cname1] must be a constraint name specified in the
ROWS section. Finally, [value1] denotes the numerical value of 𝑎𝑖𝑗 . Another optional element is specified
by [cname2], and [value2] for the variable specified by [vname1]. Some important comments are:

• All elements belonging to one variable must be grouped together.

• Zero elements of 𝐴 should not be specified.

• At least one element for each variable should be specified.

RHS (optional)

A record in this section has the format

[name] [cname1] [value1] [cname2] [value2]

where the requirements for each field are as follows:

Field Starting Position Max Width required Description

[name] 5 8 Yes Name of the RHS vector
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

The interpretation of a record is that [name] is the name of the RHS vector to be specified. In general,
several vectors can be specified. [cname1] denotes a constraint name previously specified in the ROWS
section. Now, assume that this name has been assigned to the 𝑖 -h constraint and 𝑣1 denotes the value
specified by [value1], then the interpretation of 𝑣1 is:

Constraint 𝑙𝑐𝑖 𝑢𝑐
𝑖

E 𝑣1 𝑣1
G 𝑣1
L 𝑣1
N

An optional second element is specified by [cname2] and [value2] and is interpreted in the same
way. Please note that it is not necessary to specify zero elements, because elements are assumed to be
zero.

325

RANGES (optional)

A record in this section has the form

[name] [cname1] [value1] [cname2] [value2]

where the requirements for each fields are as follows:

Field Starting Position Max Width required Description

[name] 5 8 Yes Name of the RANGE vector
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

The records in this section are used to modify the bound vectors for the constraints, i.e. the values
in 𝑙𝑐 and 𝑢𝑐 . A record has the following interpretation:[name] is the name of the RANGE vector and
[cname1] is a valid constraint name. Assume that [cname1] is assigned to the 𝑖-th constraint and let
𝑣1 be the value specified by [value1], then a record has the interpretation:

Constraint type Sign of 𝑣1 𝑙𝑐𝑖 𝑢𝑐
𝑖

E − 𝑢𝑐
𝑖 + 𝑣1

E + 𝑙𝑐𝑖 + 𝑣1
G − or + 𝑙𝑐𝑖 + |𝑣1|
L − or + 𝑢𝑐

𝑖 − |𝑣1|
N

Another constraint bound can optionally be modified using [cname2] and [value2] the same way.

QSECTION (optional)

Within the QSECTION the label [cname1] must be a constraint name previously specified in the ROWS
section. The label [cname1] denotes the constraint to which the quadratic terms belong. A record in
the QSECTION has the form

[vname1] [vname2] [value1] [vname3] [value2]

where the requirements for each field are:

Field Starting Position Max Width required Description

[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value
[vname3] 40 8 No Variable name
[value2] 50 12 No Numerical value

A record specifies one or two elements in the lower triangular part of the 𝑄𝑖 matrix where [cname1]
specifies the 𝑖 . Hence, if the names [vname1] and [vname2] have been assigned to the 𝑘-th and 𝑗-th
variable, then 𝑄𝑖

𝑘𝑗 is assigned the value given by [value1] An optional second element is specified in
the same way by the fields [vname1], [vname3], and [value2].

The example

minimize −𝑥2 + 1
2 (2𝑥2

1 − 2𝑥1𝑥3 + 0.2𝑥2
2 + 2𝑥2

3)
subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,

𝑥 ≥ 0

has the following MPS file representation

326

* File: qo1.mps
NAME qo1
ROWS
N obj
G c1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0

QSECTION obj
x1 x1 2.0
x1 x3 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Regarding the QSECTIONs please note that:

• Only one QSECTION is allowed for each constraint.

• The QSECTIONs can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QSECTION must already be specified in the COLUMNS section.

• All entries specified in a QSECTION are assumed to belong to the lower triangular part of the
quadratic term of 𝑄 .

QMATRIX/QUADOBJ (optional)

The QMATRIX and QUADOBJ sections allow to define the quadratic term of the objective function. They
differ in how the quadratic term of the objective function is stored:

• QMATRIX stores all the nonzeros coefficients, without taking advantage of the symmetry of the 𝑄
matrix.

• QUADOBJ stores the upper diagonal nonzero elements of the 𝑄 matrix.

A record in both sections has the form:

[vname1] [vname2] [value1]

where the requirements for each field are:

Field Starting Position Max Width required Description

[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value

A record specifies one elements of the 𝑄 matrix in the objective function . Hence, if the names
[vname1] and [vname2] have been assigned to the 𝑘-th and 𝑗-th variable, then 𝑄𝑘𝑗 is assigned the value
given by [value1]. Note that a line must appear for each off-diagonal coefficient if using a QMATRIX
section, while only one entry is required in a QUADOBJ section. The quadratic part of the objective
function will be evaluated as 1/2𝑥𝑇𝑄𝑥.

The example

minimize −𝑥2 + 1
2 (2𝑥2

1 − 2𝑥1𝑥3 + 0.2𝑥2
2 + 2𝑥2

3)
subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,

𝑥 ≥ 0

has the following MPS file representation using QMATRIX

327

* File: qo1_matrix.mps
NAME qo1_qmatrix
ROWS
N obj
G c1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0

QMATRIX
x1 x1 2.0
x1 x3 -1.0
x3 x1 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

or the following using QUADOBJ

* File: qo1_quadobj.mps
NAME qo1_quadobj
ROWS
N obj
G c1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0

QUADOBJ
x1 x1 2.0
x1 x3 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Please also note that:

• A QMATRIX/QUADOBJ section can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QMATRIX/QUADOBJ section must already be specified in the
COLUMNS section.

QCMATRIX (optional)

A QCMATRIX section allows to specify the quadratic part of a given constraint. Within the QCMATRIX the
label [cname1] must be a constraint name previously specified in the ROWS section. The label [cname1]
denotes the constraint to which the quadratic term belongs. A record in the QSECTION has the form

[vname1] [vname2] [value1]

where the requirements for each field are:

328

Field Starting Position Max Width required Description

[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value

A record specifies an entry of the 𝑄𝑖 matrix where [cname1] specifies the 𝑖. Hence, if the names
[vname1] and [vname2] have been assigned to the 𝑘-th and 𝑗-th variable, then 𝑄𝑖

𝑘𝑗 is assigned the value
given by [value1]. Moreover, the quadratic term is represented as 1/2𝑥𝑇𝑄𝑥.

The example

minimize 𝑥2

subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,
1
2 (−2𝑥1𝑥3 + 0.2𝑥2

2 + 2𝑥2
3) ≤ 10,

𝑥 ≥ 0

has the following MPS file representation

* File: qo1.mps
NAME qo1
ROWS
N obj
G c1
L q1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0
rhs q1 10.0

QCMATRIX q1
x1 x1 2.0
x1 x3 -1.0
x3 x1 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Regarding the QCMATRIXs please note that:

• Only one QCMATRIX is allowed for each constraint.

• The QCMATRIXs can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QSECTION must already be specified in the COLUMNS section.

• QCMATRIX does not exploit the symmetry of 𝑄: an off-diagonal entry (𝑖, 𝑗) should appear twice.

BOUNDS (optional)

In the BOUNDS section changes to the default bounds vectors 𝑙𝑥 and 𝑢𝑥 are specified. The default bounds
vectors are 𝑙𝑥 = 0 and 𝑢𝑥 = ∞ . Moreover, it is possible to specify several sets of bound vectors. A
record in this section has the form

?? [name] [vname1] [value1]

where the requirements for each field are:

329

Field Starting Position Max Width Required Description

?? 2 2 Yes Bound key
[name] 5 8 Yes Name of the BOUNDS vector
[vname1] 15 8 Yes Variable name
[value1] 25 12 No Numerical value

Hence, a record in the BOUNDS section has the following interpretation:[name] is the name of the
bound vector and [vname1] is the name of the variable for which the bounds are modified by the record.
?? and [value1] are used to modify the bound vectors according to the following table:

?? 𝑙𝑥𝑗 𝑢𝑥
𝑗 Made integer (added to 𝒥)

FR −∞ ∞ No
FX 𝑣1 𝑣1 No
LO 𝑣1 unchanged No
MI −∞ unchanged No
PL unchanged ∞ No
UP unchanged 𝑣1 No
BV 0 1 Yes
LI ⌈𝑣1⌉ unchanged Yes
UI unchanged ⌊𝑣1⌋ Yes

Here 𝑣1 is the value specified by [value1].

CSECTION (optional)

The purpose of the CSECTION is to specify the conic constraint

𝑥 ∈ 𝒦

in (16.1). It is assumed that 𝒦 satisfies the following requirements. Let

𝑥𝑡 ∈ R𝑛𝑡

, 𝑡 = 1, . . . , 𝑘

be vectors comprised of parts of the decision variables 𝑥 so that each decision variable is a member of
exactly one vector 𝑥𝑡, for example

𝑥1 =

⎡⎣ 𝑥1

𝑥4

𝑥7

⎤⎦ and 𝑥2 =

⎡⎢⎢⎣
𝑥6

𝑥5

𝑥3

𝑥2

⎤⎥⎥⎦ .

Next define

𝒦 :=
{︀
𝑥 ∈ R𝑛 : 𝑥𝑡 ∈ 𝒦𝑡, 𝑡 = 1, . . . , 𝑘

}︀
where 𝒦𝑡 must have one of the following forms:

• R set:

𝒦𝑡 = R𝑛𝑡

.

• Zero cone:

𝒦𝑡 = {0} ⊆ R𝑛𝑡

. (16.2)

• Quadratic cone:

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 𝑥1 ≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=2

𝑥2
𝑗

⎫⎬⎭ . (16.3)

330

• Rotated quadratic cone:

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 2𝑥1𝑥2 ≥
𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ . (16.4)

• Primal exponential cone:

𝒦𝑡 =
{︀
𝑥 ∈ R3 : 𝑥1 ≥ 𝑥2 exp(𝑥3/𝑥2), 𝑥1, 𝑥2 ≥ 0

}︀
. (16.5)

• Primal power cone (with parameter 0 < 𝛼 < 1):

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 𝑥𝛼
1𝑥

1−𝛼
2 ≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ . (16.6)

• Dual exponential cone:

𝒦𝑡 =
{︀
𝑥 ∈ R3 : 𝑥1 ≥ −𝑥3𝑒

−1 exp(𝑥2/𝑥3), 𝑥3 ≤ 0, 𝑥1 ≥ 0
}︀
. (16.7)

• Dual power cone (with parameter 0 < 𝛼 < 1):

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

:
(︁𝑥1

𝛼

)︁𝛼(︂ 𝑥2

1 − 𝛼

)︂1−𝛼

≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ . (16.8)

In general, membership in the R set is not specified. If a variable is not a member of any other cone
then it is assumed to be a member of the R cone.

Next, let us study an example. Assume that the power cone

𝑥
1/3
4 𝑥

2/3
5 ≥ |𝑥8|

and the rotated quadratic cone

2𝑥3𝑥7 ≥ 𝑥2
1 + 𝑥2

0, 𝑥3, 𝑥7 ≥ 0,

should be specified in the MPS file. One CSECTION is required for each cone and they are specified as
follows:

* 1 2 3 4 5 6
*23456789012345678901234567890123456789012345678901234567890
CSECTION konea 3e-1 PPOW
x4
x5
x8
CSECTION koneb 0.0 RQUAD
x7
x3
x1
x0

In general, a CSECTION header has the format

CSECTION [kname1] [value1] [ktype]

where the requirements for each field are as follows:

Field Starting Position Max Width Required Description

[kname1] 15 8 Yes Name of the cone
[value1] 25 12 No Cone parameter
[ktype] 40 Yes Type of the cone.

331

The possible cone type keys are:

[ktype] Members [value1] Interpretation.

ZERO ≥ 0 unused Zero cone (16.2).
QUAD ≥ 1 unused Quadratic cone (16.3).
RQUAD ≥ 2 unused Rotated quadratic cone (16.4).
PEXP 3 unused Primal exponential cone (16.5).
PPOW ≥ 2 𝛼 Primal power cone (16.6).
DEXP 3 unused Dual exponential cone (16.7).
DPOW ≥ 2 𝛼 Dual power cone (16.8).

A record in the CSECTION has the format

[vname1]

where the requirements for each field are

Field Starting Position Max Width required Description

[vname1] 5 8 Yes A valid variable name

A variable must occur in at most one CSECTION.

ENDATA

This keyword denotes the end of the MPS file.

16.2.2 Integer Variables
Using special bound keys in the BOUNDS section it is possible to specify that some or all of the variables
should be integer-constrained i.e. be members of 𝒥 . However, an alternative method is available. This
method is available only for backward compatibility and we recommend that it is not used. This method
requires that markers are placed in the COLUMNS section as in the example:

COLUMNS
x1 obj -10.0 c1 0.7
x1 c2 0.5 c3 1.0
x1 c4 0.1
* Start of integer-constrained variables.
MARK000 'MARKER' 'INTORG'
x2 obj -9.0 c1 1.0
x2 c2 0.8333333333 c3 0.66666667
x2 c4 0.25
x3 obj 1.0 c6 2.0
MARK001 'MARKER' 'INTEND'
* End of integer-constrained variables.

Please note that special marker lines are used to indicate the start and the end of the integer variables.
Furthermore be aware of the following

• All variables between the markers are assigned a default lower bound of 0 and a default upper
bound of 1. This may not be what is intended. If it is not intended, the correct bounds
should be defined in the BOUNDS section of the MPS formatted file.

• MOSEK ignores field 1, i.e. MARK0001 and MARK001, however, other optimization systems require
them.

• Field 2, i.e. MARKER, must be specified including the single quotes. This implies that no row can
be assigned the name MARKER.

• Field 3 is ignored and should be left blank.

332

• Field 4, i.e. INTORG and INTEND, must be specified.

• It is possible to specify several such integer marker sections within the COLUMNS section.

16.2.3 General Limitations
• An MPS file should be an ASCII file.

16.2.4 Interpretation of the MPS Format
Several issues related to the MPS format are not well-defined by the industry standard. However,
MOSEK uses the following interpretation:

• If a matrix element in the COLUMNS section is specified multiple times, then the multiple entries are
added together.

• If a matrix element in a QSECTION section is specified multiple times, then the multiple entries are
added together.

16.2.5 The Free MPS Format
MOSEK supports a free format variation of the MPS format. The free format is similar to the MPS file
format but less restrictive, e.g. it allows longer names. However, a name must not contain any blanks.

Moreover, by default a line in the MPS file must not contain more than 1024 characters. By modifying
the parameter MSK_IPAR_READ_MPS_WIDTH an arbitrary large line width will be accepted.

The free MPS format is default. To change to the strict and other formats use the parameter
MSK_IPAR_READ_MPS_FORMAT .

Warning: This file format is to a large extent deprecated. While it can still be used for linear
and quadratic problems, for conic problems the Sec. 16.5 is recommended.

16.3 The OPF Format

The Optimization Problem Format (OPF) is an alternative to LP and MPS files for specifying optimiza-
tion problems. It is row-oriented, inspired by the CPLEX LP format.

Apart from containing objective, constraints, bounds etc. it may contain complete or partial solutions,
comments and extra information relevant for solving the problem. It is designed to be easily read and
modified by hand and to be forward compatible with possible future extensions.

Intended use

The OPF file format is meant to replace several other files:

• The LP file format: Any problem that can be written as an LP file can be written as an OPF file
too; furthermore it naturally accommodates ranged constraints and variables as well as arbitrary
characters in names, fixed expressions in the objective, empty constraints, and conic constraints.

• Parameter files: It is possible to specify integer, double and string parameters along with the
problem (or in a separate OPF file).

• Solution files: It is possible to store a full or a partial solution in an OPF file and later reload it.

333

16.3.1 The File Format
The format uses tags to structure data. A simple example with the basic sections may look like this:

[comment]
This is a comment. You may write almost anything here...
[/comment]

This is a single-line comment.

[objective min 'myobj']
x + 3 y + x^2 + 3 y^2 + z + 1
[/objective]

[constraints]
[con 'con01'] 4 <= x + y [/con]
[/constraints]

[bounds]
[b] -10 <= x,y <= 10 [/b]

[cone quad] x,y,z [/cone]
[/bounds]

A scope is opened by a tag of the form [tag] and closed by a tag of the form [/tag]. An opening
tag may accept a list of unnamed and named arguments, for examples:

[tag value] tag with one unnamed argument [/tag]
[tag arg=value] tag with one named argument [/tag]

Unnamed arguments are identified by their order, while named arguments may appear in any order,
but never before an unnamed argument. The value can be a quoted, single-quoted or double-quoted
text string, i.e.

[tag 'value'] single-quoted value [/tag]
[tag arg='value'] single-quoted value [/tag]
[tag "value"] double-quoted value [/tag]
[tag arg="value"] double-quoted value [/tag]

16.3.2 Sections
The recognized tags are

334

[comment]

A comment section. This can contain almost any text: Between single quotes (’) or double quotes (")
any text may appear. Outside quotes the markup characters ([and]) must be prefixed by backslashes.
Both single and double quotes may appear alone or inside a pair of quotes if it is prefixed by a backslash.

[objective]

The objective function: This accepts one or two parameters, where the first one (in the above example
min) is either min or max (regardless of case) and defines the objective sense, and the second one (above
myobj), if present, is the objective name. The section may contain linear and quadratic expressions.

If several objectives are specified, all but the last are ignored.

[constraints]

This does not directly contain any data, but may contain subsections con defining a linear constraint.

[con]

Defines a single constraint; if an argument is present ([con NAME]) this is used as the name of the
constraint, otherwise it is given a null-name. The section contains a constraint definition written as
linear and quadratic expressions with a lower bound, an upper bound, with both or with an equality.
Examples:

[constraints]
[con 'con1'] 0 <= x + y [/con]
[con 'con2'] 0 >= x + y [/con]
[con 'con3'] 0 <= x + y <= 10 [/con]
[con 'con4'] x + y = 10 [/con]
[/constraints]

Constraint names are unique. If a constraint is specified which has the same name as a previously
defined constraint, the new constraint replaces the existing one.

[bounds]

This does not directly contain any data, but may contain subsections b (linear bounds on variables) and
cone (cones).

[b]

Bound definition on one or several variables separated by comma (,). An upper or lower bound on a
variable replaces any earlier defined bound on that variable. If only one bound (upper or lower) is given
only this bound is replaced. This means that upper and lower bounds can be specified separately. So
the OPF bound definition:

[b] x,y >= -10 [/b]
[b] x,y <= 10 [/b]

results in the bound −10 ≤ 𝑥, 𝑦 ≤ 10.

335

[cone]

Specifies a cone. A cone is defined as a sequence of variables which belong to a single unique cone. The
supported cone types are:

• quad: a quadratic cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of the form

𝑥2
1 ≥

𝑛∑︁
𝑖=2

𝑥2
𝑖 , 𝑥1 ≥ 0.

• rquad: a rotated quadratic cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of the form

2𝑥1𝑥2 ≥
𝑛∑︁

𝑖=3

𝑥2
𝑖 , 𝑥1, 𝑥2 ≥ 0.

• pexp: primal exponential cone of 3 variables 𝑥1, 𝑥2, 𝑥3 defines a constraint of the form

𝑥1 ≥ 𝑥2 exp(𝑥3/𝑥2), 𝑥1, 𝑥2 ≥ 0.

• ppow with parameter 0 < 𝛼 < 1: primal power cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint
of the form

𝑥𝛼
1𝑥

1−𝛼
2 ≥

⎯⎸⎸⎷ 𝑛∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0.

• dexp: dual exponential cone of 3 variables 𝑥1, 𝑥2, 𝑥3 defines a constraint of the form

𝑥1 ≥ −𝑥3𝑒
−1 exp(𝑥2/𝑥3), 𝑥3 ≤ 0, 𝑥1 ≥ 0.

• dpow with parameter 0 < 𝛼 < 1: dual power cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of
the form

(︁𝑥1

𝛼

)︁𝛼(︂ 𝑥2

1 − 𝛼

)︂1−𝛼

≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0.

• zero: zero cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of the form

𝑥1 = · · · = 𝑥𝑛 = 0

A [bounds]-section example:

[bounds]
[b] 0 <= x,y <= 10 [/b] # ranged bound
[b] 10 >= x,y >= 0 [/b] # ranged bound
[b] 0 <= x,y <= inf [/b] # using inf
[b] x,y free [/b] # free variables
Let (x,y,z,w) belong to the cone K
[cone rquad] x,y,z,w [/cone] # rotated quadratic cone
[cone ppow '3e-01' 'a'] x1, x2, x3 [/cone] # power cone with alpha=1/3 and name 'a'
[/bounds]

By default all variables are free.

336

[variables]

This defines an ordering of variables as they should appear in the problem. This is simply a space-
separated list of variable names.

[integer]

This contains a space-separated list of variables and defines the constraint that the listed variables must
be integer-valued.

[hints]

This may contain only non-essential data; for example estimates of the number of variables, constraints
and non-zeros. Placed before all other sections containing data this may reduce the time spent reading
the file.

In the hints section, any subsection which is not recognized by MOSEK is simply ignored. In this
section a hint is defined as follows:

[hint ITEM] value [/hint]

The hints recognized by MOSEK are:

• numvar (number of variables),

• numcon (number of linear/quadratic constraints),

• numanz (number of linear non-zeros in constraints),

• numqnz (number of quadratic non-zeros in constraints).

[solutions]

This section can contain a set of full or partial solutions to a problem. Each solution must be specified
using a [solution]-section, i.e.

[solutions]
[solution]...[/solution] #solution 1
[solution]...[/solution] #solution 2
#other solutions....
[solution]...[/solution] #solution n
[/solutions]

The syntax of a [solution]-section is the following:

[solution SOLTYPE status=STATUS]...[/solution]

where SOLTYPE is one of the strings

• interior, a non-basic solution,

• basic, a basic solution,

• integer, an integer solution,

and STATUS is one of the strings

• UNKNOWN,

• OPTIMAL,

• INTEGER_OPTIMAL,

• PRIM_FEAS,

• DUAL_FEAS,

• PRIM_AND_DUAL_FEAS,

337

• NEAR_OPTIMAL,

• NEAR_PRIM_FEAS,

• NEAR_DUAL_FEAS,

• NEAR_PRIM_AND_DUAL_FEAS,

• PRIM_INFEAS_CER,

• DUAL_INFEAS_CER,

• NEAR_PRIM_INFEAS_CER,

• NEAR_DUAL_INFEAS_CER,

• NEAR_INTEGER_OPTIMAL.

Most of these values are irrelevant for input solutions; when constructing a solution for simplex
hot-start or an initial solution for a mixed integer problem the safe setting is UNKNOWN.

A [solution]-section contains [con] and [var] sections. Each [con] and [var] section defines
solution information for a single variable or constraint, specified as list of KEYWORD/value pairs, in any
order, written as

KEYWORD=value

Allowed keywords are as follows:

• sk. The status of the item, where the value is one of the following strings:

– LOW, the item is on its lower bound.

– UPR, the item is on its upper bound.

– FIX, it is a fixed item.

– BAS, the item is in the basis.

– SUPBAS, the item is super basic.

– UNK, the status is unknown.

– INF, the item is outside its bounds (infeasible).

• lvl Defines the level of the item.

• sl Defines the level of the dual variable associated with its lower bound.

• su Defines the level of the dual variable associated with its upper bound.

• sn Defines the level of the variable associated with its cone.

• y Defines the level of the corresponding dual variable (for constraints only).

A [var] section should always contain the items sk, lvl, sl and su. Items sl and su are not required
for integer solutions.

A [con] section should always contain sk, lvl, sl, su and y.
An example of a solution section

[solution basic status=UNKNOWN]
[var x0] sk=LOW lvl=5.0 [/var]
[var x1] sk=UPR lvl=10.0 [/var]
[var x2] sk=SUPBAS lvl=2.0 sl=1.5 su=0.0 [/var]

[con c0] sk=LOW lvl=3.0 y=0.0 [/con]
[con c0] sk=UPR lvl=0.0 y=5.0 [/con]
[/solution]

338

• [vendor] This contains solver/vendor specific data. It accepts one argument, which is a vendor
ID – for MOSEK the ID is simply mosek – and the section contains the subsection parameters
defining solver parameters. When reading a vendor section, any unknown vendor can be safely
ignored. This is described later.

Comments using the # may appear anywhere in the file. Between the # and the following line-break
any text may be written, including markup characters.

16.3.3 Numbers
Numbers, when used for parameter values or coefficients, are written in the usual way by the printf
function. That is, they may be prefixed by a sign (+ or -) and may contain an integer part, decimal part
and an exponent. The decimal point is always . (a dot). Some examples are

1
1.0
.0
1.
1e10
1e+10
1e-10

Some invalid examples are

e10 # invalid, must contain either integer or decimal part
. # invalid
.e10 # invalid

More formally, the following standard regular expression describes numbers as used:

[+|-]?([0-9]+[.][0-9]*|[.][0-9]+)([eE][+|-]?[0-9]+)?

16.3.4 Names
Variable names, constraint names and objective name may contain arbitrary characters, which in some
cases must be enclosed by quotes (single or double) that in turn must be preceded by a backslash.
Unquoted names must begin with a letter (a-z or A-Z) and contain only the following characters: the
letters a-z and A-Z, the digits 0-9, braces ({ and }) and underscore (_).

Some examples of legal names:

an_unquoted_name
another_name{123}
'single quoted name'
"double quoted name"
"name with \\"quote\\" in it"
"name with []s in it"

16.3.5 Parameters Section
In the vendor section solver parameters are defined inside the parameters subsection. Each parameter
is written as

[p PARAMETER_NAME] value [/p]

where PARAMETER_NAME is replaced by a MOSEK parameter name, usually of the form MSK_IPAR_.
.., MSK_DPAR_... or MSK_SPAR_..., and the value is replaced by the value of that parameter; both
integer values and named values may be used. Some simple examples are

339

[vendor mosek]
[parameters]
[p MSK_IPAR_OPF_MAX_TERMS_PER_LINE] 10 [/p]
[p MSK_IPAR_OPF_WRITE_PARAMETERS] MSK_ON [/p]
[p MSK_DPAR_DATA_TOL_BOUND_INF] 1.0e18 [/p]
[/parameters]
[/vendor]

16.3.6 Writing OPF Files from MOSEK
To write an OPF file then make sure the file extension is .opf.

Then modify the following parameters to define what the file should contain:

MSK_IPAR_OPF_WRITE_SOL_BAS Include basic solution, if defined.
MSK_IPAR_OPF_WRITE_SOL_ITG Include integer solution, if defined.
MSK_IPAR_OPF_WRITE_SOL_ITR Include interior solution, if defined.
MSK_IPAR_OPF_WRITE_SOLUTIONSInclude solutions if they are defined. If this is off, no solutions are

included.
MSK_IPAR_OPF_WRITE_HEADER Include a small header with comments.
MSK_IPAR_OPF_WRITE_PROBLEM Include the problem itself — objective, constraints and bounds.
MSK_IPAR_OPF_WRITE_PARAMETERSInclude all parameter settings.
MSK_IPAR_OPF_WRITE_HINTS Include hints about the size of the problem.

16.3.7 Examples
This section contains a set of small examples written in OPF and describing how to formulate linear,
quadratic and conic problems.

Linear Example lo1.opf

Consider the example:

maximize 3𝑥0 + 1𝑥1 + 5𝑥2 + 1𝑥3

subject to 3𝑥0 + 1𝑥1 + 2𝑥2 = 30,
2𝑥0 + 1𝑥1 + 3𝑥2 + 1𝑥3 ≥ 15,

2𝑥1 + 3𝑥3 ≤ 25,

having the bounds

0 ≤ 𝑥0 ≤ ∞,
0 ≤ 𝑥1 ≤ 10,
0 ≤ 𝑥2 ≤ ∞,
0 ≤ 𝑥3 ≤ ∞.

In the OPF format the example is displayed as shown in Listing 16.1.

Listing 16.1: Example of an OPF file for a linear problem.

[comment]
The lo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 4 [/hint]
[hint NUMCON] 3 [/hint]
[hint NUMANZ] 9 [/hint]

[/hints]

(continues on next page)

340

(continued from previous page)

[variables disallow_new_variables]
x1 x2 x3 x4

[/variables]

[objective maximize 'obj']
3 x1 + x2 + 5 x3 + x4

[/objective]

[constraints]
[con 'c1'] 3 x1 + x2 + 2 x3 = 30 [/con]
[con 'c2'] 2 x1 + x2 + 3 x3 + x4 >= 15 [/con]
[con 'c3'] 2 x2 + 3 x4 <= 25 [/con]

[/constraints]

[bounds]
[b] 0 <= * [/b]
[b] 0 <= x2 <= 10 [/b]

[/bounds]

Quadratic Example qo1.opf

An example of a quadratic optimization problem is

minimize 𝑥2
1 + 0.1𝑥2

2 + 𝑥2
3 − 𝑥1𝑥3 − 𝑥2

subject to 1 ≤ 𝑥1 + 𝑥2 + 𝑥3,
𝑥 ≥ 0.

This can be formulated in opf as shown below.

Listing 16.2: Example of an OPF file for a quadratic problem.

[comment]
The qo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 3 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 3 [/hint]
[hint NUMQNZ] 4 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2 x3

[/variables]

[objective minimize 'obj']
The quadratic terms are often written with a factor of 1/2 as here,
but this is not required.

- x2 + 0.5 (2.0 x1 ^ 2 - 2.0 x3 * x1 + 0.2 x2 ^ 2 + 2.0 x3 ^ 2)
[/objective]

[constraints]
[con 'c1'] 1.0 <= x1 + x2 + x3 [/con]

[/constraints]

(continues on next page)

341

(continued from previous page)

[bounds]
[b] 0 <= * [/b]

[/bounds]

Conic Quadratic Example cqo1.opf

Consider the example:

minimize 𝑥3 + 𝑥4 + 𝑥5

subject to 𝑥0 + 𝑥1 + 2𝑥2 = 1,
𝑥0, 𝑥1, 𝑥2 ≥ 0,

𝑥3 ≥
√︀
𝑥2
0 + 𝑥2

1,
2𝑥4𝑥5 ≥ 𝑥2

2.

Please note that the type of the cones is defined by the parameter to [cone ...]; the content of the
cone-section is the names of variables that belong to the cone. The resulting OPF file is in Listing 16.3.

Listing 16.3: Example of an OPF file for a conic quadratic problem.

[comment]
The cqo1 example in OPF format.

[/comment]

[hints]
[hint NUMVAR] 6 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 3 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2 x3 x4 x5 x6

[/variables]

[objective minimize 'obj']
x4 + x5 + x6

[/objective]

[constraints]
[con 'c1'] x1 + x2 + 2e+00 x3 = 1e+00 [/con]

[/constraints]

[bounds]
We let all variables default to the positive orthant
[b] 0 <= * [/b]

...and change those that differ from the default
[b] x4,x5,x6 free [/b]

Define quadratic cone: x4 >= sqrt(x1^2 + x2^2)
[cone quad 'k1'] x4, x1, x2 [/cone]

Define rotated quadratic cone: 2 x5 x6 >= x3^2
[cone rquad 'k2'] x5, x6, x3 [/cone]

[/bounds]

342

Mixed Integer Example milo1.opf

Consider the mixed integer problem:

maximize 𝑥0 + 0.64𝑥1

subject to 50𝑥0 + 31𝑥1 ≤ 250,
3𝑥0 − 2𝑥1 ≥ −4,
𝑥0, 𝑥1 ≥ 0 and integer

This can be implemented in OPF with the file in Listing 16.4.

Listing 16.4: Example of an OPF file for a mixed-integer linear
problem.

[comment]
The milo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 2 [/hint]
[hint NUMCON] 2 [/hint]
[hint NUMANZ] 4 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2

[/variables]

[objective maximize 'obj']
x1 + 6.4e-1 x2

[/objective]

[constraints]
[con 'c1'] 5e+1 x1 + 3.1e+1 x2 <= 2.5e+2 [/con]
[con 'c2'] -4 <= 3 x1 - 2 x2 [/con]

[/constraints]

[bounds]
[b] 0 <= * [/b]

[/bounds]

[integer]
x1 x2

[/integer]

343

16.4 The CBF Format

This document constitutes the technical reference manual of the Conic Benchmark Format with file
extension: .cbf or .CBF. It unifies linear, second-order cone (also known as conic quadratic), expo-
nential cone, power cone and semidefinite optimization with mixed-integer variables. The format has
been designed with benchmark libraries in mind, and therefore focuses on compact and easily parsable
representations. The CBF format separates problem structure from the problem data.

16.4.1 How Instances Are Specified
This section defines the spectrum of conic optimization problems that can be formulated in terms of the
keywords of the CBF format.

In the CBF format, conic optimization problems are considered in the following form:

min /max 𝑔𝑜𝑏𝑗

𝑔𝑖 ∈ 𝒦𝑖, 𝑖 ∈ ℐ,
s.t. 𝐺𝑖 ∈ 𝒦𝑖, 𝑖 ∈ ℐ𝑃𝑆𝐷,

𝑥𝑗 ∈ 𝒦𝑗 , 𝑗 ∈ 𝒥 ,
𝑋𝑗 ∈ 𝒦𝑗 , 𝑗 ∈ 𝒥 𝑃𝑆𝐷.

(16.9)

• Variables are either scalar variables, 𝑥𝑗 for 𝑗 ∈ 𝒥 , or matrix variables, 𝑋𝑗 for 𝑗 ∈ 𝒥 𝑃𝑆𝐷. Scalar
variables can also be declared as integer.

• Constraints are affine expressions of the variables, either scalar-valued 𝑔𝑖 for 𝑖 ∈ ℐ, or matrix-
valued 𝐺𝑖 for 𝑖 ∈ ℐ𝑃𝑆𝐷

𝑔𝑖 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹𝑖𝑗 , 𝑋𝑗⟩ +
∑︁
𝑗∈𝒥

𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖,

𝐺𝑖 =
∑︁
𝑗∈𝒥

𝑥𝑗𝐻𝑖𝑗 + 𝐷𝑖.

• The objective function is a scalar-valued affine expression of the variables, either to be minimized
or maximized. We refer to this expression as 𝑔𝑜𝑏𝑗

𝑔𝑜𝑏𝑗 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹 𝑜𝑏𝑗
𝑗 , 𝑋𝑗⟩ +

∑︁
𝑗∈𝒥

𝑎𝑜𝑏𝑗𝑗 𝑥𝑗 + 𝑏𝑜𝑏𝑗 .

As of version 4 of the format, CBF files can represent the following non-parametric cones 𝒦:

• Free domain - A cone in the linear family defined by

{𝑥 ∈ R𝑛}, for 𝑛 ≥ 1.

• Positive orthant - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 ≥ 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

• Negative orthant - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 ≤ 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

• Fixpoint zero - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 = 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

344

• Quadratic cone - A cone in the second-order cone family defined by

{︂(︂
𝑝
𝑥

)︂
∈ R× R𝑛−1, 𝑝2 ≥ 𝑥𝑇𝑥, 𝑝 ≥ 0

}︂
, for 𝑛 ≥ 2.

• Rotated quadratic cone - A cone in the second-order cone family defined by

⎧⎨⎩
⎛⎝ 𝑝

𝑞
𝑥

⎞⎠ ∈ R× R× R𝑛−2, 2𝑝𝑞 ≥ 𝑥𝑇𝑥, 𝑝 ≥ 0, 𝑞 ≥ 0

⎫⎬⎭ , for 𝑛 ≥ 3.

• Exponential cone - A cone in the exponential cone family defined by

cl(𝑆1) = 𝑆1 ∪ 𝑆2

where,

𝑆1 =

⎧⎨⎩
⎛⎝ 𝑡

𝑠
𝑟

⎞⎠ ∈ R3, 𝑡 ≥ 𝑠𝑒
𝑟
𝑠 , 𝑠 ≥ 0

⎫⎬⎭ .

and,

𝑆2 =

⎧⎨⎩
⎛⎝ 𝑡

𝑠
𝑟

⎞⎠ ∈ R3, 𝑡 ≥ 0, 𝑟 ≤ 0, 𝑠 = 0

⎫⎬⎭ .

• Dual Exponential cone - A cone in the exponential cone family defined by

cl(𝑆1) = 𝑆1 ∪ 𝑆2

where,

𝑆1 =

⎧⎨⎩
⎛⎝ 𝑡

𝑠
𝑟

⎞⎠ ∈ R3, 𝑒𝑡 ≥ (−𝑟)𝑒
𝑠
𝑟 , −𝑟 ≥ 0

⎫⎬⎭ .

and,

𝑆2 =

⎧⎨⎩
⎛⎝ 𝑡

𝑠
𝑟

⎞⎠ ∈ R3, 𝑒𝑡 ≥ 0, 𝑠 ≥ 0, 𝑟 = 0

⎫⎬⎭ .

• Radial geometric mean cone - A cone in the power cone family defined by

⎧⎪⎨⎪⎩
(︂

𝑝
𝑥

)︂
∈ R𝑘

+ × R1,

⎛⎝ 𝑘∏︁
𝑗=1

𝑝𝑗

⎞⎠ 1
𝑘

≥ |𝑥|

⎫⎪⎬⎪⎭ , for 𝑛 = 𝑘 + 1 ≥ 2.

• Dual radial geometric mean cone - A cone in the power cone family defined by

⎧⎪⎨⎪⎩
(︂

𝑝
𝑥

)︂
∈ R𝑘

+ × R1,

⎛⎝ 𝑘∏︁
𝑗=1

𝑘𝑝𝑗

⎞⎠ 1
𝑘

≥ |𝑥|

⎫⎪⎬⎪⎭ , for 𝑛 = 𝑘 + 1 ≥ 2.

345

and, the following parametric cones:

• Radial power cone - A cone in the power cone family defined by

⎧⎪⎨⎪⎩
(︂

𝑝
𝑥

)︂
∈ R𝑘

+ × R𝑛−𝑘,

⎛⎝ 𝑘∏︁
𝑗=1

𝑝
𝛼𝑗

𝑗

⎞⎠ 1
𝜎

≥ ‖𝑥‖2

⎫⎪⎬⎪⎭ , for 𝑛 ≥ 𝑘 ≥ 1.

where, 𝜎 =
∑︀𝑘

𝑗=1 𝛼𝑗 and 𝛼 = R𝑘
++.

• Dual radial power cone - A cone in the power cone family defined by

⎧⎪⎨⎪⎩
(︂

𝑝
𝑥

)︂
∈ R𝑘

+ × R𝑛−𝑘,

⎛⎝ 𝑘∏︁
𝑗=1

(︂
𝜎𝑝𝑗
𝛼𝑗

)︂𝛼𝑗

⎞⎠ 1
𝜎

≥ ‖𝑥‖2

⎫⎪⎬⎪⎭ , for 𝑛 ≥ 𝑘 ≥ 1.

where, 𝜎 =
∑︀𝑘

𝑗=1 𝛼𝑗 and 𝛼 = R𝑘
++.

16.4.2 The Structure of CBF Files
This section defines how information is written in the CBF format, without being specific about the type
of information being communicated.

All information items belong to exactly one of the three groups of information. These information
groups, and the order they must appear in, are:

1. File format.

2. Problem structure.

3. Problem data.

The first group, file format, provides information on how to interpret the file. The second group,
problem structure, provides the information needed to deduce the type and size of the problem instance.
Finally, the third group, problem data, specifies the coefficients and constants of the problem instance.

Information items

The format is composed as a list of information items. The first line of an information item is the
KEYWORD, revealing the type of information provided. The second line - of some keywords only - is the
HEADER, typically revealing the size of information that follows. The remaining lines are the BODY holding
the actual information to be specified.

KEYWORD
BODY

KEYWORD
HEADER
BODY

The KEYWORD determines how each line in the HEADER and BODY is structured. Moreover, the number
of lines in the BODY follows either from the KEYWORD, the HEADER, or from another information item
required to precede it.

346

File encoding and line width restrictions

The format is based on the US-ASCII printable character set with two extensions as listed below. Note,
by definition, that none of these extensions can be misinterpreted as printable US-ASCII characters:

• A line feed marks the end of a line, carriage returns are ignored.

• Comment-lines may contain unicode characters in UTF-8 encoding.

The line width is restricted to 512 bytes, with 3 bytes reserved for the potential carriage return, line
feed and null-terminator.

Integers and floating point numbers must follow the ISO C decimal string representation in the
standard C locale. The format does not impose restrictions on the magnitude of, or number of significant
digits in numeric data, but the use of 64-bit integers and 64-bit IEEE 754 floating point numbers should
be sufficient to avoid loss of precision.

Comment-line and whitespace rules

The format allows single-line comments respecting the following rule:

• Lines having first byte equal to ’#’ (US-ASCII 35) are comments, and should be ignored. Comments
are only allowed between information items.

Given that a line is not a comment-line, whitespace characters should be handled according to the
following rules:

• Leading and trailing whitespace characters should be ignored.

– The seperator between multiple pieces of information on one line, is either one or more whites-
pace characters.

• Lines containing only whitespace characters are empty, and should be ignored. Empty lines are
only allowed between information items.

16.4.3 Problem Specification

The problem structure

The problem structure defines the objective sense, whether it is minimization and maximization. It also
defines the index sets, 𝒥 , 𝒥 𝑃𝑆𝐷, ℐ and ℐ𝑃𝑆𝐷, which are all numbered from zero, {0, 1, . . .}, and empty
until explicitly constructed.

• Scalar variables are constructed in vectors restricted to a conic domain, such as (𝑥0, 𝑥1) ∈ R2
+,

(𝑥2, 𝑥3, 𝑥4) ∈ 𝒬3, etc. In terms of the Cartesian product, this generalizes to

𝑥 ∈ 𝒦𝑛1
1 ×𝒦𝑛2

2 × · · · × 𝒦𝑛𝑘

𝑘

which in the CBF format becomes:

VAR
n k
K1 n1
K2 n2
...
Kk nk

where
∑︀

𝑖 𝑛𝑖 = 𝑛 is the total number of scalar variables. The list of supported cones is found in
Table 16.3. Integrality of scalar variables can be specified afterwards.

• PSD variables are constructed one-by-one. That is, 𝑋𝑗 ⪰ 0𝑛𝑗×𝑛𝑗 for 𝑗 ∈ 𝒥 𝑃𝑆𝐷, constructs a
matrix-valued variable of size 𝑛𝑗 ×𝑛𝑗 restricted to be symmetric positive semidefinite. In the CBF
format, this list of constructions becomes:

347

PSDVAR
N
n1
n2
...
nN

where 𝑁 is the total number of PSD variables.

• Scalar constraints are constructed in vectors restricted to a conic domain, such as (𝑔0, 𝑔1) ∈ R2
+,

(𝑔2, 𝑔3, 𝑔4) ∈ 𝒬3, etc. In terms of the Cartesian product, this generalizes to

𝑔 ∈ 𝒦𝑚1
1 ×𝒦𝑚2

2 × · · · × 𝒦𝑚𝑘

𝑘

which in the CBF format becomes:

CON
m k
K1 m1
K2 m2
..
Kk mk

where
∑︀

𝑖 𝑚𝑖 = 𝑚 is the total number of scalar constraints. The list of supported cones is found
in Table 16.3.

• PSD constraints are constructed one-by-one. That is, 𝐺𝑖 ⪰ 0𝑚𝑖×𝑚𝑖 for 𝑖 ∈ ℐ𝑃𝑆𝐷, constructs a
matrix-valued affine expressions of size 𝑚𝑖 ×𝑚𝑖 restricted to be symmetric positive semidefinite.
In the CBF format, this list of constructions becomes

PSDCON
M
m1
m2
..
mM

where 𝑀 is the total number of PSD constraints.

With the objective sense, variables (with integer indications) and constraints, the definitions of the
many affine expressions follow in problem data.

Problem data

The problem data defines the coefficients and constants of the affine expressions of the problem instance.
These are considered zero until explicitly defined, implying that instances with no keywords from this
information group are, in fact, valid. Duplicating or conflicting information is a failure to comply with
the standard. Consequently, two coefficients written to the same position in a matrix (or to transposed
positions in a symmetric matrix) is an error.

The affine expressions of the objective, 𝑔𝑜𝑏𝑗 , of the scalar constraints, 𝑔𝑖, and of the PSD constraints,
𝐺𝑖, are defined separately. The following notation uses the standard trace inner product for matrices,
⟨𝑋,𝑌 ⟩ =

∑︀
𝑖,𝑗 𝑋𝑖𝑗𝑌𝑖𝑗 .

• The affine expression of the objective is defined as

𝑔𝑜𝑏𝑗 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹 𝑜𝑏𝑗
𝑗 , 𝑋𝑗⟩ +

∑︁
𝑗∈𝒥

𝑎𝑜𝑏𝑗𝑗 𝑥𝑗 + 𝑏𝑜𝑏𝑗 ,

in terms of the symmetric matrices, 𝐹 𝑜𝑏𝑗
𝑗 , and scalars, 𝑎𝑜𝑏𝑗𝑗 and 𝑏𝑜𝑏𝑗 .

348

• The affine expressions of the scalar constraints are defined, for 𝑖 ∈ ℐ, as

𝑔𝑖 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹𝑖𝑗 , 𝑋𝑗⟩ +
∑︁
𝑗∈𝒥

𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖,

in terms of the symmetric matrices, 𝐹𝑖𝑗 , and scalars, 𝑎𝑖𝑗 and 𝑏𝑖.

• The affine expressions of the PSD constraints are defined, for 𝑖 ∈ ℐ𝑃𝑆𝐷, as

𝐺𝑖 =
∑︁
𝑗∈𝒥

𝑥𝑗𝐻𝑖𝑗 + 𝐷𝑖,

in terms of the symmetric matrices, 𝐻𝑖𝑗 and 𝐷𝑖.

List of cones

The format uses an explicit syntax for symmetric positive semidefinite cones as shown above. For scalar
variables and constraints, constructed in vectors, the supported conic domains and their sizes are given
as follows.

Table 16.3: Cones available in the CBF format

Name CBF keyword Cone family Cone size

Free domain F linear 𝑛 ≥ 1
Positive orthant L+ linear 𝑛 ≥ 1
Negative orthant L- linear 𝑛 ≥ 1
Fixpoint zero L= linear 𝑛 ≥ 1
Quadratic cone Q second-order 𝑛 ≥ 1
Rotated quadratic cone QR second-order 𝑛 ≥ 2
Exponential cone EXP exponential 𝑛 = 3
Dual exponential cone EXP* exponential 𝑛 = 3
Radial geometric mean cone GMEANABS power 𝑛 = 𝑘 + 1 ≥ 2
Dual radial geometric mean cone GMEANABS* power 𝑛 = 𝑘 + 1 ≥ 2
Radial power cone (parametric) POW power 𝑛 ≥ 𝑘 ≥ 1
Dual radial power cone (parametric) POW* power 𝑛 ≥ 𝑘 ≥ 1

16.4.4 File Format Keywords

VER

Description: The version of the Conic Benchmark Format used to write the file.
HEADER: None
BODY: One line formatted as:

INT

This is the version number.
Must appear exactly once in a file, as the first keyword.

POWCONES

Description: Define a lookup table for power cone domains.
HEADER: One line formatted as:

INT INT

This is the number of cones to be specified and the combined length of their dense parameter vectors.

BODY: A list of chunks each specifying the dense parameter vector of a power cone.
CHUNKHEADER: One line formatted as:

349

INT

This is the parameter vector length.

CHUNKBODY: A list of lines formatted as:

REAL

This is the parameter vector values. The number of lines should match the number stated in the
chunk header.

The cone specified at index k (with 0-based indexing) is registered under the CBF name @k:POW.

POW*CONES

Description: Define a lookup table for dual power cone domains.
HEADER: One line formatted as:

INT INT

This is the number of cones to be specified and the combined length of their dense parameter vectors.

BODY: A list of chunks each specifying the dense parameter vector of a dual power cone.
CHUNKHEADER: One line formatted as:

INT

This is the parameter vector length.

CHUNKBODY: A list of lines formatted as:

REAL

This is the parameter vector values. The number of lines should match the number stated in the
chunk header.

The cone specified at index k (with 0-based indexing) is registered under the CBF name @k:POW*.

OBJSENSE

Description: Define the objective sense.
HEADER: None
BODY: One line formatted as:

STR

having MIN indicates minimize, and MAX indicates maximize. Upper-case letters are required.
Must appear exactly once in a file.

PSDVAR

Description: Construct the PSD variables.
HEADER: One line formatted as:

INT

This is the number of PSD variables in the problem.
BODY: A list of lines formatted as:

INT

This indicates the number of rows (equal to the number of columns) in the matrix-valued PSD
variable. The number of lines should match the number stated in the header.

350

VAR

Description: Construct the scalar variables.
HEADER: One line formatted as:

INT INT

This is the number of scalar variables, followed by the number of conic domains they are restricted
to.

BODY: A list of lines formatted as:

STR INT

This indicates the cone name (see Table 16.3), and the number of scalar variables restricted to this
cone. These numbers should add up to the number of scalar variables stated first in the header. The
number of lines should match the second number stated in the header.

INT

Description: Declare integer requirements on a selected subset of scalar variables.
HEADER: one line formatted as:

INT

This is the number of integer scalar variables in the problem.
BODY: a list of lines formatted as:

INT

This indicates the scalar variable index 𝑗 ∈ 𝒥 . The number of lines should match the number stated
in the header.

Can only be used after the keyword VAR.

PSDCON

Description: Construct the PSD constraints.
HEADER: One line formatted as:

INT

This is the number of PSD constraints in the problem.
BODY: A list of lines formatted as:

INT

This indicates the number of rows (equal to the number of columns) in the matrix-valued affine
expression of the PSD constraint. The number of lines should match the number stated in the header.

Can only be used after these keywords: PSDVAR, VAR.

CON

Description: Construct the scalar constraints.
HEADER: One line formatted as:

INT INT

This is the number of scalar constraints, followed by the number of conic domains they restrict to.
BODY: A list of lines formatted as:

STR INT

This indicates the cone name (see Table 16.3), and the number of affine expressions restricted to this
cone. These numbers should add up to the number of scalar constraints stated first in the header. The
number of lines should match the second number stated in the header.

Can only be used after these keywords: PSDVAR, VAR

351

OBJFCOORD

Description: Input sparse coordinates (quadruplets) to define the symmetric matrices 𝐹 𝑜𝑏𝑗
𝑗 , as used in

the objective.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT INT REAL

This indicates the PSD variable index 𝑗 ∈ 𝒥 𝑃𝑆𝐷, the row index, the column index and the coefficient
value. The number of lines should match the number stated in the header.

OBJACOORD

Description: Input sparse coordinates (pairs) to define the scalars, 𝑎𝑜𝑏𝑗𝑗 , as used in the objective.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT REAL

This indicates the scalar variable index 𝑗 ∈ 𝒥 and the coefficient value. The number of lines should
match the number stated in the header.

OBJBCOORD

Description: Input the scalar, 𝑏𝑜𝑏𝑗 , as used in the objective.
HEADER: None.
BODY: One line formatted as:

REAL

This indicates the coefficient value.

FCOORD

Description: Input sparse coordinates (quintuplets) to define the symmetric matrices, 𝐹𝑖𝑗 , as used in the
scalar constraints.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT INT INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ, the PSD variable index 𝑗 ∈ 𝒥 𝑃𝑆𝐷, the row index,
the column index and the coefficient value. The number of lines should match the number stated in the
header.

352

ACOORD

Description: Input sparse coordinates (triplets) to define the scalars, 𝑎𝑖𝑗 , as used in the scalar constraints.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ, the scalar variable index 𝑗 ∈ 𝒥 and the coefficient
value. The number of lines should match the number stated in the header.

BCOORD

Description: Input sparse coordinates (pairs) to define the scalars, 𝑏𝑖, as used in the scalar constraints.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ and the coefficient value. The number of lines should
match the number stated in the header.

HCOORD

Description: Input sparse coordinates (quintuplets) to define the symmetric matrices, 𝐻𝑖𝑗 , as used in
the PSD constraints.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as

INT INT INT INT REAL

This indicates the PSD constraint index 𝑖 ∈ ℐ𝑃𝑆𝐷, the scalar variable index 𝑗 ∈ 𝒥 , the row index,
the column index and the coefficient value. The number of lines should match the number stated in the
header.

DCOORD

Description: Input sparse coordinates (quadruplets) to define the symmetric matrices, 𝐷𝑖, as used in
the PSD constraints.

HEADER: One line formatted as

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT INT REAL

This indicates the PSD constraint index 𝑖 ∈ ℐ𝑃𝑆𝐷, the row index, the column index and the coefficient
value. The number of lines should match the number stated in the header.

353

16.4.5 CBF Format Examples

Minimal Working Example

The conic optimization problem (16.10) , has three variables in a quadratic cone - first one is integer -
and an affine expression in domain 0 (equality constraint).

minimize 5.1𝑥0

subject to 6.2𝑥1 + 7.3𝑥2 − 8.4 ∈ {0}
𝑥 ∈ 𝒬3, 𝑥0 ∈ Z.

(16.10)

Its formulation in the Conic Benchmark Format begins with the version of the CBF format used, to
safeguard against later revisions.

VER
4

Next follows the problem structure, consisting of the objective sense, the number and domain of
variables, the indices of integer variables, and the number and domain of scalar-valued affine expressions
(i.e., the equality constraint).

OBJSENSE
MIN

VAR
3 1
Q 3

INT
1
0

CON
1 1
L= 1

Finally follows the problem data, consisting of the coefficients of the objective, the coefficients of the
constraints, and the constant terms of the constraints. All data is specified on a sparse coordinate form.

OBJACOORD
1
0 5.1

ACOORD
2
0 1 6.2
0 2 7.3

BCOORD
1
0 -8.4

This concludes the example.

354

Mixing Linear, Second-order and Semidefinite Cones

The conic optimization problem (16.11), has a semidefinite cone, a quadratic cone over unordered
subindices, and two equality constraints.

minimize

⟨⎡⎣ 2 1 0
1 2 1
0 1 2

⎤⎦ , 𝑋1

⟩
+ 𝑥1

subject to

⟨⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ , 𝑋1

⟩
+ 𝑥1 = 1.0 ,

⟨⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ , 𝑋1

⟩
+ 𝑥0 + 𝑥2 = 0.5 ,

𝑥1 ≥
√︀
𝑥2
0 + 𝑥2

2 ,
𝑋1 ⪰ 0 .

(16.11)

The equality constraints are easily rewritten to the conic form, (𝑔0, 𝑔1) ∈ {0}2, by moving constants such
that the right-hand-side becomes zero. The quadratic cone does not fit under the VAR keyword in this
variable permutation. Instead, it takes a scalar constraint (𝑔2, 𝑔3, 𝑔4) = (𝑥1, 𝑥0, 𝑥2) ∈ 𝒬3, with scalar
variables constructed as (𝑥0, 𝑥1, 𝑥2) ∈ R3. Its formulation in the CBF format is reported in the following
list

File written using this version of the Conic Benchmark Format:
| Version 4.
VER
4

The sense of the objective is:
| Minimize.
OBJSENSE
MIN

One PSD variable of this size:
| Three times three.
PSDVAR
1
3

Three scalar variables in this one conic domain:
| Three are free.
VAR
3 1
F 3

Five scalar constraints with affine expressions in two conic domains:
| Two are fixed to zero.
| Three are in conic quadratic domain.
CON
5 2
L= 2
Q 3

Five coordinates in F^{obj}_j coefficients:
| F^{obj}[0][0,0] = 2.0
| F^{obj}[0][1,0] = 1.0
| and more...
OBJFCOORD
5

(continues on next page)

355

(continued from previous page)

0 0 0 2.0
0 1 0 1.0
0 1 1 2.0
0 2 1 1.0
0 2 2 2.0

One coordinate in a^{obj}_j coefficients:
| a^{obj}[1] = 1.0
OBJACOORD
1
1 1.0

Nine coordinates in F_ij coefficients:
| F[0,0][0,0] = 1.0
| F[0,0][1,1] = 1.0
| and more...
FCOORD
9
0 0 0 0 1.0
0 0 1 1 1.0
0 0 2 2 1.0
1 0 0 0 1.0
1 0 1 0 1.0
1 0 2 0 1.0
1 0 1 1 1.0
1 0 2 1 1.0
1 0 2 2 1.0

Six coordinates in a_ij coefficients:
| a[0,1] = 1.0
| a[1,0] = 1.0
| and more...
ACOORD
6
0 1 1.0
1 0 1.0
1 2 1.0
2 1 1.0
3 0 1.0
4 2 1.0

Two coordinates in b_i coefficients:
| b[0] = -1.0
| b[1] = -0.5
BCOORD
2
0 -1.0
1 -0.5

356

Mixing Semidefinite Variables and Linear Matrix Inequalities

The standard forms in semidefinite optimization are usually based either on semidefinite variables or
linear matrix inequalities. In the CBF format, both forms are supported and can even be mixed as
shown.

minimize
⟨[︂

1 0
0 1

]︂
, 𝑋1

⟩
+ 𝑥1 + 𝑥2 + 1

subject to
⟨[︂

0 1
1 0

]︂
, 𝑋1

⟩
− 𝑥1 − 𝑥2 ≥ 0.0 ,

𝑥1

[︂
0 1
1 3

]︂
+ 𝑥2

[︂
3 1
1 0

]︂
−
[︂

1 0
0 1

]︂
⪰ 0 ,

𝑋1 ⪰ 0 .

(16.12)

Its formulation in the CBF format is written in what follows

File written using this version of the Conic Benchmark Format:
| Version 4.
VER
4

The sense of the objective is:
| Minimize.
OBJSENSE
MIN

One PSD variable of this size:
| Two times two.
PSDVAR
1
2

Two scalar variables in this one conic domain:
| Two are free.
VAR
2 1
F 2

One PSD constraint of this size:
| Two times two.
PSDCON
1
2

One scalar constraint with an affine expression in this one conic domain:
| One is greater than or equal to zero.
CON
1 1
L+ 1

Two coordinates in F^{obj}_j coefficients:
| F^{obj}[0][0,0] = 1.0
| F^{obj}[0][1,1] = 1.0
OBJFCOORD
2
0 0 0 1.0
0 1 1 1.0

Two coordinates in a^{obj}_j coefficients:
(continues on next page)

357

(continued from previous page)

| a^{obj}[0] = 1.0
| a^{obj}[1] = 1.0
OBJACOORD
2
0 1.0
1 1.0

One coordinate in b^{obj} coefficient:
| b^{obj} = 1.0
OBJBCOORD
1.0

One coordinate in F_ij coefficients:
| F[0,0][1,0] = 1.0
FCOORD
1
0 0 1 0 1.0

Two coordinates in a_ij coefficients:
| a[0,0] = -1.0
| a[0,1] = -1.0
ACOORD
2
0 0 -1.0
0 1 -1.0

Four coordinates in H_ij coefficients:
| H[0,0][1,0] = 1.0
| H[0,0][1,1] = 3.0
| and more...
HCOORD
4
0 0 1 0 1.0
0 0 1 1 3.0
0 1 0 0 3.0
0 1 1 0 1.0

Two coordinates in D_i coefficients:
| D[0][0,0] = -1.0
| D[0][1,1] = -1.0
DCOORD
2
0 0 0 -1.0
0 1 1 -1.0

358

The exponential cone

The conic optimization problem (16.13), has one equality constraint, one quadratic cone constraint and
an exponential cone constraint.

minimize 𝑥0 − 𝑥3

subject to 𝑥0 + 2𝑥1 − 𝑥2 ∈ {0}
(5.0, 𝑥0, 𝑥1) ∈ 𝒬3

(𝑥2, 1.0, 𝑥3) ∈ 𝐸𝑋𝑃.

(16.13)

The nonlinear conic constraints enforce
√︀

𝑥2
0 + 𝑥2

1 ≤ 0.5 and 𝑥3 ≤ log(𝑥2).

File written using this version of the Conic Benchmark Format:
| Version 3.
VER
3

The sense of the objective is:
| Minimize.
OBJSENSE
MIN

Four scalar variables in this one conic domain:
| Four are free.
VAR
4 1
F 4

Seven scalar constraints with affine expressions in three conic domains:
| One is fixed to zero.
| Three are in conic quadratic domain.
| Three are in exponential cone domain.
CON
7 3
L= 1
Q 3
EXP 3

Two coordinates in a^{obj}_j coefficients:
| a^{obj}[0] = 1.0
| a^{obj}[3] = -1.0
OBJACOORD
2
0 1.0
3 -1.0

Seven coordinates in a_ij coefficients:
| a[0,0] = 1.0
| a[0,1] = 2.0
| and more...
ACOORD
7
0 0 1.0
0 1 2.0
0 2 -1.0
2 0 1.0
3 1 1.0
4 2 1.0
6 3 1.0

(continues on next page)

359

(continued from previous page)

Two coordinates in b_i coefficients:
| b[1] = 5.0
| b[5] = 1.0
BCOORD
2
1 5.0
5 1.0

Parametric cones

The problem (16.14), has three variables in a power cone with parameter 𝛼1 = (1, 1) and two power cone
constraints each with parameter 𝛼0 = (8, 1).

minimize 𝑥3

subject to (1.0, 𝑥1, 𝑥1 + 𝑥2) ∈ 𝑃𝑂𝑊𝛼0

(1.0, 𝑥2, 𝑥1 + 𝑥2) ∈ 𝑃𝑂𝑊𝛼0

𝑥 ∈ 𝑃𝑂𝑊𝛼1 .

(16.14)

The nonlinear conic constraints enforce 𝑥3 ≤ 𝑥1𝑥2 and 𝑥1 + 𝑥2 ≤ min(𝑥
1
9
1 , 𝑥

1
9
2).

File written using this version of the Conic Benchmark Format:
| Version 3.
VER
3

Two power cone domains defined in a total of four parameters:
| @0:POW (specification 0) has two parameters:
| alpha[0] = 8.0.
| alpha[1] = 1.0.
| @1:POW (specification 1) has two parameters:
| alpha[0] = 1.0.
| alpha[1] = 1.0.
POWCONES
2 4
2
8.0
1.0
2
1.0
1.0

The sense of the objective is:
| Maximize.
OBJSENSE
MAX

Three scalar variable in this one conic domain:
| Three are in power cone domain (specification 1).
VAR
3 1
@1:POW 3

Six scalar constraints with affine expressions in two conic domains:
| Three are in power cone domain (specification 0).
| Three are in power cone domain (specification 0).

(continues on next page)

360

(continued from previous page)

CON
6 2
@0:POW 3
@0:POW 3

One coordinate in a^{obj}_j coefficients:
| a^{obj}[2] = 1.0
OBJACOORD
1
2 1.0

Six coordinates in a_ij coefficients:
| a[1,0] = 1.0
| a[2,0] = 1.0
| and more...
ACOORD
6
1 0 1.0
2 0 1.0
2 1 1.0
4 1 1.0
5 0 1.0
5 1 1.0

Two coordinates in b_i coefficients:
| b[0] = 1.0
| b[3] = 1.0
BCOORD
2
0 1.0
3 1.0

16.5 The PTF Format

The PTF format is a human-readable, natural text format that supports all linear, conic and mixed-
integer features.

16.5.1 The overall format
The format is indentation based, where each section is started by a head line and followed by a section
body with deeper indentation that the head line. For example:

Header line
Body line 1
Body line 1
Body line 1

Section can also be nested:

Header line A
Body line in A
Header line A.1

Body line in A.1
Body line in A.1

Body line in A

361

The indentation of blank lines is ignored, so a subsection can contain a blank line with no indentation.
The character # defines a line comment and anything between the # character and the end of the line is
ignored.

In a PTF file, the first section must be a Task section. The order of the remaining section is arbitrary,
and sections may occur multiple times or not at all.

MOSEK will ignore any top-level section it does not recognize.

Names

In the description of the format we use following definitions for name strings:

NAME: PLAIN_NAME | QUOTED_NAME
PLAIN_NAME: [a-zA-Z_] [a-zA-Z0-9_-.!|]
QUOTED_NAME: "'" ([^'\\\r\n] | "\\" ([\\rn] | "x" [0-9a-fA-F] [0-9a-fA-F]))* "'"

Expressions

An expression is a sum of terms. A term is either a linear term (a coefficient and a variable name, where
the coefficient can be left out if it is 1.0), or a matrix inner product.

An expression:

EXPR: EMPTY | [+-]? TERM ([+-] TERM)*
TERM: LINEAR_TERM | MATRIX_TERM

A linear term

LINEAR_TERM: FLOAT? NAME

A matrix term

MATRIX_TERM: "<" FLOAT? NAME ([+-] FLOAT? NAME)* ";" NAME ">"

Here the right-hand name is the name of a (semidefinite) matrix variable, and the left-hand side is a
sum of symmetric matrixes. The actual matrixes are defined in a separate section.

Expressions can span multiple lines by giving subsequent lines a deeper indentation.
For example following two section are equivalent:

Everything on one line:
x1 + x2 + x3 + x4

Split into multiple lines:
x1

+ x2
+ x3
+ x4

16.5.2 Task section
The first section of the file must be a Task. The text in this section is not used and may contain
comments, or meta-information from the writer or about the content.

Format:

Task NAME
Anything goes here...

NAME is a the task name.

362

16.5.3 Objective section
The Objective section defines the objective name, sense and function. The format:

"Objective" NAME?
("Minimize" | "Maximize") EXPR

For example:

Objective 'obj'
Minimize x1 + 0.2 x2 + < M1 ; X1 >

16.5.4 Constraints section
The constraints section defines a series of constraints. A constraint defines a term 𝐴 · 𝑥 + 𝑏 ∈ 𝐾. For
linear constraints A is just one row, while for conic constraints it can be multiple rows. If a constraint
spans multiple rows these can either be written inline separated by semi-colons, or each expression in a
separete sub-section.

Simple linear constraints:

"Constraints"
NAME? "[" [-+] (FLOAT | "Inf") (";" [-+] (FLOAT | "Inf"))? "]" EXPR

If the brackets contain two values, they are used as upper and lower bounds. It they contain one
value the constraint is an equality.

For example:

Constraints
'c1' [0;10] x1 + x2 + x3
[0] x1 + x2 + x3

Constraint blocks put the expression either in a subsection or inline. The cone type (domain) is
written in the brackets, and MOSEK currently supports following types:

• SOC(N) Second order cone of dimension N

• RSOC(N) Rotated second order cone of dimension N

• PSD(N) Symmetric positive semidefinite cone of dimension N. This contains N*(N+1)/2 elements.

• PEXP Primal exponential cone of dimension 3

• DEXP Dual exponential cone of dimension 3

• PPOW(N,P) Primal power cone of dimension N with parameter P

• DPOW(N,P) Dual power cone of dimension N with parameter P

• ZERO(N) The zero-cone of dimension N.

"Constraints"
NAME? "[" DOMAIN "]" EXPR_LIST

For example:

Constraints
'K1' [SOC(3)] x1 + x2 ; x2 + x3 ; x3 + x1
'K2' [RSOC(3)]

x1 + x2
x2 + x3
x3 + x1

363

16.5.5 Variables section
Any variable used in an expression must be defined in a variable section. The variable section defines
each variable domain.

"Variables"
NAME "[" [-+] (FLOAT | "Inf") (";" [-+] (FLOAT | "Inf"))? "]"
NAME "[" DOMAIN "]" NAMES

For example, a linear variable

Variables
x1 [0;Inf]

As with constraints, members of a conic domain can be listed either inline or in a subsection:

Variables
k1 [SOC(3)] x1 ; x2 ; x3
k2 [RSOC(3)]

x1
x2
x3

16.5.6 Integer section
This section contains a list of variables that are integral. For example:

Integer
x1 x2 x3

16.5.7 SymmetricMatrixes section
This section defines the symmetric matrixes used for matrix coefficients in matrix inner product terms.
The section lists named matrixes, each with a size and a number of non-zeros. Only non-zeros in the
lower triangular part should be defined.

"SymmetricMatrixes"
NAME "SYMMAT" "(" INT ")" ("(" INT "," INT "," FLOAT ")")*
...

For example:

SymmetricMatrixes
M1 SYMMAT(3) (0,0,1.0) (1,1,2.0) (2,1,0.5)
M2 SYMMAT(3)

(0,0,1.0)
(1,1,2.0)
(2,1,0.5)

364

16.5.8 Solutions section
Each subsection defines a solution. A solution defines for each constraint and for each variable exactly
one primal value and either one (for conic domains) or two (for linear domains) dual values. The values
follow the same logic as in the MOSEK C API. A primal and a dual solution status defines the meaning
of the values primal and dual (solution, certificate, unknown, etc.)

The format is this:

"Solutions"
"Solution" WHICHSOL

"ProblemStatus" PROSTA PROSTA?
"SolutionStatus" SOLSTA SOLSTA?
"Objective" FLOAT FLOAT
"Variables"

Linear variable status: level, slx, sux
NAME "[" STATUS "]" FLOAT (FLOAT FLOAT)?
Conic variable status: level, snx
NAME

"[" STATUS "]" FLOAT FLOAT?
...

"Constraints"
Linear variable status: level, slx, sux
NAME "[" STATUS "]" FLOAT (FLOAT FLOAT)?
Conic variable status: level, snx
NAME

"[" STATUS "]" FLOAT FLOAT?
...

Following values for WHICHSOL are supported:

• interior Interior solution, the result of an interior-point solver.

• basic Basic solution, as produced by a simplex solver.

• integer Integer solution, the solution to a mixed-integer problem. This does not define a dual
solution.

Following values for PROSTA are supported:

• unknown The problem status is unknown

• feasible The problem has been proven feasible

• infeasible The problem has been proven infeasible

• illposed The problem has been proved to be ill posed

• infeasible_or_unbounded The problem is infeasible or unbounded

Following values for SOLSTA are supported:

• unknown The solution status is unknown

• feasible The solution is feasible

• optimal The solution is optimal

• infeas_cert The solution is a certificate of infeasibility

• illposed_cert The solution is a certificate of illposedness

Following values for STATUS are supported:

• unknown The value is unknown

• super_basic The value is super basic

365

• at_lower The value is basic and at its lower bound

• at_upper The value is basic and at its upper bound

• fixed The value is basic fixed

• infinite The value is at infinity

16.5.9 Examples

Linear example lo1.ptf

Task ''
Written by MOSEK v10.0.13
problemtype: Linear Problem
number of linear variables: 4
number of linear constraints: 3
number of old-style A nonzeros: 9

Objective obj
Maximize + 3 x1 + x2 + 5 x3 + x4

Constraints
c1 [3e+1] + 3 x1 + x2 + 2 x3
c2 [1.5e+1;+inf] + 2 x1 + x2 + 3 x3 + x4
c3 [-inf;2.5e+1] + 2 x2 + 3 x4

Variables
x1 [0;+inf]
x2 [0;1e+1]
x3 [0;+inf]
x4 [0;+inf]

Conic example cqo1.ptf

Task ''
Written by MOSEK v10.0.17
problemtype: Conic Problem
number of linear variables: 6
number of linear constraints: 1
number of old-style cones: 0
number of positive semidefinite variables: 0
number of positive semidefinite matrixes: 0
number of affine conic constraints: 2
number of disjunctive constraints: 0
number scalar affine expressions/nonzeros : 6/6
number of old-style A nonzeros: 3

Objective obj
Minimize + x4 + x5 + x6

Constraints
c1 [1] + x1 + x2 + 2 x3
k1 [QUAD(3)]

@ac1: + x4
@ac2: + x1
@ac3: + x2

k2 [RQUAD(3)]
@ac4: + x5
@ac5: + x6
@ac6: + x3

Variables
(continues on next page)

366

(continued from previous page)

x4
x1 [0;+inf]
x2 [0;+inf]
x5
x6
x3 [0;+inf]

Disjunctive example djc1.ptf

Task djc1
Objective ''

Minimize + 2 'x[0]' + 'x[1]' + 3 'x[2]' + 'x[3]'
Constraints

@c0 [-10;+inf] + 'x[0]' + 'x[1]' + 'x[2]' + 'x[3]'
@D0 [OR]

[AND]
[NEGATIVE(1)]

+ 'x[0]' - 2 'x[1]' + 1
[ZERO(2)]

+ 'x[2]'
+ 'x[3]'

[AND]
[NEGATIVE(1)]

+ 'x[2]' - 3 'x[3]' + 2
[ZERO(2)]

+ 'x[0]'
+ 'x[1]'

@D1 [OR]
[ZERO(1)]

+ 'x[0]' - 2.5
[ZERO(1)]

+ 'x[1]' - 2.5
[ZERO(1)]

+ 'x[2]' - 2.5
[ZERO(1)]

+ 'x[3]' - 2.5
Variables

'x[0]'
'x[1]'
'x[2]'
'x[3]'

16.6 The Task Format

The Task format is MOSEK‘s native binary format. It contains a complete image of a MOSEK task,
i.e.

• Problem data: Linear, conic, semidefinite and quadratic data

• Problem item names: Variable names, constraints names, cone names etc.

• Parameter settings

• Solutions

There are a few things to be aware of:

367

• Status of a solution read from a file will always be unknown.

• Parameter settings in a task file always override any parameters set on the command line or in a
parameter file.

The format is based on the TAR (USTar) file format. This means that the individual pieces of data
in a .task file can be examined by unpacking it as a TAR file. Please note that the inverse may not
work: Creating a file using TAR will most probably not create a valid MOSEK Task file since the order
of the entries is important.

16.7 The JSON Format

MOSEK provides the possibility to read/write problems and solutions in JSON format. The official
JSON website http://www.json.org provides plenty of information along with the format definition.
JSON is an industry standard for data exchange and JSON files can be easily written and read in most
programming languages using dedicated libraries.

MOSEK uses two JSON-based formats:

• JTASK, for storing problem instances together with solutions and parameters. The JTASK for-
mat contains the same information as a native MOSEK task task format , that is a very close
representation of the internal data storage in the task object.

You can write a JTASK file specifying the extension .jtask. When the parameter
MSK_IPAR_WRITE_JSON_INDENTATION is set the JTASK file will be indented to slightly improve
readability.

• JSOL, for storing solutions and information items.

It is not directly accessible via Optimization Toolbox for MATLAB but only from the lower-level
Optimizer API and command line tools.

16.7.1 JTASK Specification
The JTASK is a dictionary containing the following sections. All sections are optional and can be omitted
if irrelevant for the problem.

• $schema: JSON schema.

• Task/name: The name of the task (string).

• Task/INFO: Information about problem data dimensions and similar. These are treated as hints
when reading the file.

– numvar: number of variables (int32).
– numcon: number of constraints (int32).
– numcone: number of cones (int32, deprecated).
– numbarvar: number of symmetric matrix variables (int32).
– numanz: number of nonzeros in A (int64).
– numsymmat: number of matrices in the symmetric matrix storage E (int64).
– numafe: number of affine expressions in AFE storage (int64).
– numfnz: number of nonzeros in F (int64).
– numacc: number of affine conic constraints (ACCs) (int64).
– numdjc: number of disjunctive constraints (DJCs) (int64).
– numdom: number of domains (int64).
– mosekver: MOSEK version (list(int32)).

• Task/data: Numerical and structural data of the problem.

– var: Information about variables. All fields present must have the same length as bk. All or
none of bk, bl, and bu must appear.

368

http://www.json.org

∗ name: Variable names (list(string)).
∗ bk: Bound keys (list(string)).
∗ bl: Lower bounds (list(double)).
∗ bu: Upper bounds (list(double)).
∗ type: Variable types (list(string)).

– con: Information about linear constraints. All fields present must have the same length as
bk. All or none of bk, bl, and bu must appear.

∗ name: Constraint names (list(string)).
∗ bk: Bound keys (list(string)).
∗ bl: Lower bounds (list(double)).
∗ bu: Upper bounds (list(double)).

– barvar: Information about symmetric matrix variables. All fields present must have the same
length as dim.

∗ name: Barvar names (list(string)).
∗ dim: Dimensions (list(int32)).

– objective: Information about the objective.

∗ name: Objective name (string).
∗ sense: Objective sense (string).
∗ c: The linear part 𝑐 of the objective as a sparse vector. Both arrays must have the same

length.
· subj: indices of nonzeros (list(int32)).
· val: values of nonzeros (list(double)).

∗ cfix: Constant term in the objective (double).
∗ Q: The quadratic part 𝑄𝑜 of the objective as a sparse matrix, only lower-triangular part

included. All arrays must have the same length.
· subi: row indices of nonzeros (list(int32)).
· subj: column indices of nonzeros (list(int32)).
· val: values of nonzeros (list(double)).

∗ barc: The semidefinite part 𝐶 of the objective (list). Each element of the list is a list
describing one entry 𝐶𝑗 using three fields:

· index 𝑗 (int32).
· weights of the matrices from the storage 𝐸 forming 𝐶𝑗 (list(double)).
· indices of the matrices from the storage 𝐸 forming 𝐶𝑗 (list(int64)).

– A: The linear constraint matrix 𝐴 as a sparse matrix. All arrays must have the same length.

∗ subi: row indices of nonzeros (list(int32)).
∗ subj: column indices of nonzeros (list(int32)).
∗ val: values of nonzeros (list(double)).

– bara: The semidefinite part 𝐴 of the constraints (list). Each element of the list is a list
describing one entry 𝐴𝑖𝑗 using four fields:

∗ index 𝑖 (int32).
∗ index 𝑗 (int32).
∗ weights of the matrices from the storage 𝐸 forming 𝐴𝑖𝑗 (list(double)).
∗ indices of the matrices from the storage 𝐸 forming 𝐴𝑖𝑗 (list(int64)).

– AFE: The affine expression storage.

∗ numafe: number of rows in the storage (int64).
∗ F: The matrix 𝐹 as a sparse matrix. All arrays must have the same length.

· subi: row indices of nonzeros (list(int64)).
· subj: column indices of nonzeros (list(int32)).
· val: values of nonzeros (list(double)).

369

∗ g: The vector 𝑔 of constant terms as a sparse vector. Both arrays must have the same
length.

· subi: indices of nonzeros (list(int64)).
· val: values of nonzeros (list(double)).

∗ barf: The semidefinite part 𝐹 of the expressions in AFE storage (list). Each element of
the list is a list describing one entry 𝐹 𝑖𝑗 using four fields:

· index 𝑖 (int64).
· index 𝑗 (int32).
· weights of the matrices from the storage 𝐸 forming 𝐹 𝑖𝑗 (list(double)).
· indices of the matrices from the storage 𝐸 forming 𝐹 𝑖𝑗 (list(int64)).

– domains: Information about domains. All fields present must have the same length as type.

∗ name: Domain names (list(string)).
∗ type: Description of the type of each domain (list). Each element of the list is a list

describing one domain using at least one field:
· domain type (string).
· (except pexp, dexp) dimension (int64).
· (only ppow, dpow) weights (list(double)).

– ACC: Information about affine conic constraints (ACC). All fields present must have the same
length as domain.

∗ name: ACC names (list(string)).
∗ domain: Domains (list(int64)).
∗ afeidx: AFE indices, grouped by ACC (list(list(int64))).
∗ b: constant vectors 𝑏, grouped by ACC (list(list(double))).

– DJC: Information about disjunctive constraints (DJC). All fields present must have the same
length as termsize.

∗ name: DJC names (list(string)).
∗ termsize: Term sizes, grouped by DJC (list(list(int64))).
∗ domain: Domains, grouped by DJC (list(list(int64))).
∗ afeidx: AFE indices, grouped by DJC (list(list(int64))).
∗ b: constant vectors 𝑏, grouped by DJC (list(list(double))).

– MatrixStore: The symmetric matrix storage 𝐸 (list). Each element of the list is a list
describing one entry 𝐸 using four fields in sparse matrix format, lower-triangular part only:

∗ dimension (int32).
∗ row indices of nonzeros (list(int32)).
∗ column indices of nonzeros (list(int32)).
∗ values of nonzeros (list(double)).

– Q: The quadratic part 𝑄𝑐 of the constraints (list). Each element of the list is a list describing
one entry 𝑄𝑐

𝑖 using four fields in sparse matrix format, lower-triangular part only:

∗ the row index 𝑖 (int32).
∗ row indices of nonzeros (list(int32)).
∗ column indices of nonzeros (list(int32)).
∗ values of nonzeros (list(double)).

– qcone (deprecated). The description of cones. All fields present must have the same length
as type.

∗ name: Cone names (list(string)).
∗ type: Cone types (list(string)).
∗ par: Additional cone parameters (list(double)).
∗ members: Members, grouped by cone (list(list(int32))).

• Task/solutions: Solutions. This section can contain up to three subsections called:

370

– interior

– basic

– integer

corresponding to the three solution types in MOSEK. Each of these sections has the same structure:

– prosta: problem status (string).

– solsta: solution status (string).

– xx, xc, y, slc, suc, slx, sux, snx: one for each component of the solution of the same name
(list(double)).

– skx, skc, skn: status keys (list(string)).

– doty: the dual 𝑦̇ solution, grouped by ACC (list(list(double))).

– barx, bars: the primal/dual semidefinite solution, grouped by matrix variable
(list(list(double))).

• Task/parameters: Parameters.

– iparam: Integer parameters (dictionary). A dictionary with entries of the form name:value,
where name is a shortened parameter name (without leading MSK_IPAR_) and value is either
an integer or string if the parameter takes values from an enum.

– dparam: Double parameters (dictionary). A dictionary with entries of the form name:value,
where name is a shortened parameter name (without leading MSK_DPAR_) and value is a
double.

– sparam: String parameters (dictionary). A dictionary with entries of the form name:value,
where name is a shortened parameter name (without leading MSK_SPAR_) and value is a string.
Note that this section is allowed but MOSEK ignores it both when writing and reading JTASK
files.

16.7.2 JSOL Specification
The JSOL is a dictionary containing the following sections. All sections are optional and can be omitted
if irrelevant for the problem.

• $schema: JSON schema.

• Task/name: The name of the task (string).

• Task/solutions: Solutions. This section can contain up to three subsections called:

– interior

– basic

– integer

corresponding to the three solution types in MOSEK. Each of these section has the same structure:

– prosta: problem status (string).

– solsta: solution status (string).

– xx, xc, y, slc, suc, slx, sux, snx: one for each component of the solution of the same name
(list(double)).

– skx, skc, skn: status keys (list(string)).

– doty: the dual 𝑦̇ solution, grouped by ACC (list(list(double))).

– barx, bars: the primal/dual semidefinite solution, grouped by matrix variable
(list(list(double))).

• Task/information: Information items from the optimizer.

– int32: int32 information items (dictionary). A dictionary with entries of the form name:
value.

371

– int64: int64 information items (dictionary). A dictionary with entries of the form name:
value.

– double: double information items (dictionary). A dictionary with entries of the form name:
value.

16.7.3 A jtask example

Listing 16.5: A formatted jtask file for a simple portfolio opti-
mization problem.

{
"$schema":"http://mosek.com/json/schema#",
"Task/name":"Markowitz portfolio with market impact",
"Task/INFO":{"numvar":7,"numcon":1,"numcone":0,"numbarvar":0,"numanz":6,"numsymmat

→˓":0,"numafe":13,"numfnz":12,"numacc":4,"numdjc":0,"numdom":3,"mosekver":[10,0,0,3]},
"Task/data":{

"var":{
"name":["1.0","x[0]","x[1]","x[2]","t[0]","t[1]","t[2]"],
"bk":["fx","lo","lo","lo","fr","fr","fr"],
"bl":[1,0.0,0.0,0.0,-1e+30,-1e+30,-1e+30],
"bu":[1,1e+30,1e+30,1e+30,1e+30,1e+30,1e+30],
"type":["cont","cont","cont","cont","cont","cont","cont"]

},
"con":{

"name":["budget[]"],
"bk":["fx"],
"bl":[1],
"bu":[1]

},
"objective":{

"sense":"max",
"name":"obj",
"c":{

"subj":[1,2,3],
"val":[0.1073,0.0737,0.0627]

},
"cfix":0.0

},
"A":{

"subi":[0,0,0,0,0,0],
"subj":[1,2,3,4,5,6],
"val":[1,1,1,0.01,0.01,0.01]

},
"AFE":{

"numafe":13,
"F":{

"subi":[1,1,1,2,2,3,4,6,7,9,10,12],
"subj":[1,2,3,2,3,3,4,1,5,2,6,3],
"val":[0.166673333200005,0.0232190712557243,0.0012599496030238,0.

→˓102863378954911,-0.00222873156550421,0.0338148677744977,1,1,1,1,1,1]
},
"g":{

"subi":[0,5,8,11],
"val":[0.035,1,1,1]

}
},
"domains":{

(continues on next page)

372

(continued from previous page)

"type":[["r",0],
["quad",4],
["ppow",3,[0.6666666666666666,0.33333333333333337]]]

},
"ACC":{

"name":["risk[]","tz[0]","tz[1]","tz[2]"],
"domain":[1,2,2,2],
"afeidx":[[0,1,2,3],

[4,5,6],
[7,8,9],
[10,11,12]]

}
},
"Task/solutions":{

"interior":{
"prosta":"unknown",
"solsta":"unknown",
"skx":["fix","supbas","supbas","supbas","supbas","supbas","supbas"],
"skc":["fix"],
"xx":[1,0.10331580274282556,0.11673185566457132,0.7724326587076371,0.

→˓033208600335718846,0.03988270849469869,0.6788769587942524],
"xc":[1],
"slx":[0.0,-5.585840467641202e-10,-8.945844685006369e-10,-7.815248786428623e-

→˓11,0.0,0.0,0.0],
"sux":[0.0,0.0,0.0,0.0,0.0,0.0,0.0],
"snx":[0.0,0.0,0.0,0.0,0.0,0.0,0.0],
"slc":[0.0],
"suc":[-0.046725814048521205],
"y":[0.046725814048521205],
"doty":[[-0.6062603164682975,0.3620818321879349,0.17817754087278295,0.

→˓4524390346223723],
[-4.6725842015519993e-4,-7.708781121860897e-6,2.24800624747081e-4],
[-4.6725842015519993e-4,-9.268264309496919e-6,2.390390600079771e-4],
[-4.6725842015519993e-4,-1.5854982159992136e-4,6.159249331148646e-4]]

}
},
"Task/parameters":{

"iparam":{
"LICENSE_DEBUG":"ON",
"MIO_SEED":422

},
"dparam":{

"MIO_MAX_TIME":100
},
"sparam":{
}

}
}

373

16.8 The Solution File Format

MOSEK can output solutions to a text file:

• basis solution file (extension .bas) if the problem is optimized using the simplex optimizer or basis
identification is performed,

• interior solution file (extension .sol) if a problem is optimized using the interior-point optimizer
and no basis identification is required,

• integer solution file (extension .int) if the problem is solved with the mixed-integer optimizer.

All solution files have the format:

NAME : <problem name>
PROBLEM STATUS : <status of the problem>
SOLUTION STATUS : <status of the solution>
OBJECTIVE NAME : <name of the objective function>
PRIMAL OBJECTIVE : <primal objective value corresponding to the solution>
DUAL OBJECTIVE : <dual objective value corresponding to the solution>

CONSTRAINTS
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER
? <name> ?? <a value> <a value> <a value> <a value> <a value>

AFFINE CONIC CONSTRAINTS
INDEX NAME I ACTIVITY DUAL
? <name> <a value> <a value> <a value>

VARIABLES
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER ␣
→˓[CONIC DUAL]
? <name> ?? <a value> <a value> <a value> <a value> <a value> ␣
→˓[<a value>]

SYMMETRIC MATRIX VARIABLES
INDEX NAME I J PRIMAL DUAL
? <name> <a value> <a value> <a value> <a value>

The fields ?, ?? and <> will be filled with problem and solution specific information as described
below. The solution contains sections corresponding to parts of the input. Empty sections may be
omitted and fields in [] are optional, depending on what type of problem is solved. The notation below
follows the MOSEK naming convention for parts of the solution as defined in the problem specifications
in Sec. 12.

• HEADER
In this section, first the name of the problem is listed and afterwards the problem and solution
status are shown. Next the primal and dual objective values are displayed.

• CONSTRAINTS

– INDEX: A sequential index assigned to the constraint by MOSEK

– NAME: The name of the constraint assigned by the user or autogenerated.

– AT: The status key bkc of the constraint as in Table 16.4.

– ACTIVITY: the activity xc of the constraint expression.

– LOWER LIMIT: the lower bound blc of the constraint.

– UPPER LIMIT: the upper bound buc of the constraint.

– DUAL LOWER: the dual multiplier slc corresponding to the lower limit on the constraint.

– DUAL UPPER: the dual multiplier suc corresponding to the upper limit on the constraint.

374

• AFFINE CONIC CONSTRAINTS

– INDEX: A sequential index assigned to the affine expressions by MOSEK
– NAME: The name of the affine conic constraint assigned by the user or autogenerated.
– I: The sequential index of the affine expression in the affine conic constraint.
– ACTIVITY: the activity of the I-th affine expression in the affine conic constraint.
– DUAL: the dual multiplier doty for the I-th entry in the affine conic constraint.

• VARIABLES

– INDEX: A sequential index assigned to the variable by MOSEK
– NAME: The name of the variable assigned by the user or autogenerated.
– AT: The status key bkx of the variable as in Table 16.4.
– ACTIVITY: the value xx of the variable.
– LOWER LIMIT: the lower bound blx of the variable.
– UPPER LIMIT: the upper bound bux of the variable.
– DUAL LOWER: the dual multiplier slx corresponding to the lower limit on the variable.
– DUAL UPPER: the dual multiplier sux corresponding to the upper limit on the variable.
– CONIC DUAL: the dual multiplier skx corresponding to a conic variable (deprecated).

• SYMMETRIC MATRIX VARIABLES

– INDEX: A sequential index assigned to each symmetric matrix entry by MOSEK
– NAME: The name of the symmetric matrix variable assigned by the user or autogenerated.
– I: The row index in the symmetric matrix variable.
– J: The column index in the symmetric matrix variable.
– PRIMAL: the value of barx for the (I, J)-th entry in the symmetric matrix variable.
– DUAL: the dual multiplier bars for the (I, J)-th entry in the symmetric matrix variable.

Table 16.4: Status keys.

Status key Interpretation

UN Unknown status
BS Is basic
SB Is superbasic
LL Is at the lower limit (bound)
UL Is at the upper limit (bound)
EQ Lower limit is identical to upper limit
** Is infeasible i.e. the lower limit is greater than the upper limit.

Example.

Below is an example of a solution file.

Listing 16.6: An example of .sol file.

NAME :
PROBLEM STATUS : PRIMAL_AND_DUAL_FEASIBLE
SOLUTION STATUS : OPTIMAL
OBJECTIVE NAME : OBJ
PRIMAL OBJECTIVE : 0.70571049347734
DUAL OBJECTIVE : 0.70571048919757

CONSTRAINTS
(continues on next page)

375

(continued from previous page)

INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT ␣
→˓ DUAL LOWER DUAL UPPER

AFFINE CONIC CONSTRAINTS
INDEX NAME I ACTIVITY DUAL
0 A1 0 1.0000000009656 0.54475821296644
1 A1 1 0.50000000152223 0.32190455246225
2 A2 0 0.25439922724695 0.4552417870329
3 A2 1 0.17988741850378 -0.32190455246178
4 A2 2 0.17988741850378 -0.32190455246178

VARIABLES
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT ␣
→˓ DUAL LOWER DUAL UPPER
0 X1 SB 0.25439922724695 NONE NONE ␣
→˓ 0 0
1 X2 SB 0.17988741850378 NONE NONE ␣
→˓ 0 0
2 X3 SB 0.17988741850378 NONE NONE ␣
→˓ 0 0

SYMMETRIC MATRIX VARIABLES
INDEX NAME I J PRIMAL DUAL
0 BARX1 0 0 0.21725733689874 1.1333372337141
1 BARX1 1 0 -0.25997257078534 0.
→˓67809544651396
2 BARX1 2 0 0.21725733648507 -0.
→˓3219045527104
3 BARX1 1 1 0.31108610088839 1.1333372332693
4 BARX1 2 1 -0.25997257078534 0.
→˓67809544651435
5 BARX1 2 2 0.21725733689874 1.1333372337145
6 BARX2 0 0 4.8362272828127e-10 0.
→˓54475821339698
7 BARX2 1 0 0 0
8 BARX2 1 1 4.8362272828127e-10 0.
→˓54475821339698

376

Chapter 17

List of examples

List of examples shipped in the distribution of Optimization Toolbox for MATLAB:

Table 17.1: List of distributed examples

File Description

advs.m Advanced simplex hot-start examples
affco1.m A simple problem using affine conic constraints
affco2.m A simple problem using affine conic constraints
callback.m An example of data/progress callback
callback_handler.
m

Log handler definition for callback.m

ceo1.m A simple conic exponential problem
cqo1.m A simple conic quadratic problem
feasrepairex1.
m

A simple example of how to repair an infeasible problem

gp1.m A simple geometric program (GP) in conic form
helloworld.m A Hello World example
lo1.m A simple linear problem using msklpopt
lo2.m A simple linear problem using mosekopt
lo3.m A simple linear problem using linprog
mico1.m A simple mixed-integer conic problem
milo1.m A simple mixed-integer linear problem
mindisk.m Smallest disk covering a subset of points (MICQO)
mioinitsol.m A simple mixed-integer linear problem with an initial guess
normex.m Demonstrates least squares and other norm minimization problems
opt_server_sync.
m

Uses MOSEK OptServer to solve an optimization problem synchronously

parameters.m Shows how to set optimizer parameters and read information items
pinfeas.m Shows how to obtain and analyze a primal infeasibility certificate
portfolio_1_basic.
m

Portfolio optimization - basic Markowitz model

portfolio_2_frontier.
m

Portfolio optimization - efficient frontier

portfolio_3_impact.
m

Portfolio optimization - market impact costs

portfolio_4_transcost.
m

Portfolio optimization - transaction costs

portfolio_5_card.
m

Portfolio optimization - cardinality constraints

portfolio_6_factor.
m

Portfolio optimization - factor model

pow1.m A simple power cone problem
qcqo1.m A simple quadratically constrained quadratic problem

continues on next page

377

Table 17.1 – continued from previous page

File Description

qo1.m A simple quadratic problem
qo2.m A simple quadratic problem
reoptimization.
m

Demonstrate how to modify and re-optimize a linear problem

response.m Demonstrates proper response handling
rlo1.m Robust linear optimization example, part 1
rlo2.m Robust linear optimization example, part 2
sdo1.m A simple semidefinite problem with one matrix variable and a quadratic cone
sdo2.m A simple semidefinite problem with two matrix variables
sdo_lmi.m A simple semidefinite problem with an LMI using the SVEC domain.
sensitivity.m Sensitivity analysis performed on a small linear problem
sensitivity2.m Sensitivity analysis performed on a small linear problem
simple.m A simple I/O example: read problem from a file, solve and write solutions
solutionquality.
m

Demonstrates how to examine the quality of a solution

Additional examples can be found on the MOSEK website and in other MOSEK publications.

378

Chapter 18

Interface changes

The section shows interface-specific changes to the MOSEK Optimization Toolbox for MATLAB in
version 11.0 compared to version 10. See the release notes for general changes and new features of the
MOSEK Optimization Suite.

18.1 Important changes compared to version 10

• Parameters. Users who set parameters to tune the performance and numerical properties of the
solver (termination criteria, tolerances, solving primal or dual, presolve etc.) are recommended to
reevaluate such tuning. It may be that other, or default, parameter settings will be more beneficial
in the current version. The hints in Sec. 8 may be useful for some cases.

• Deprecation notice. The Optimization Toolbox for MATLAB is now considered a legacy without
active development other than bugfixing. It will be removed in some future MOSEK version. We
encourage users to consider a transition to the new MOSEK API for MATLAB.

18.2 Changes compared to version 10

18.2.1 Parameters compared to version 10

Added

• MSK_DPAR_FOLDING_TOL_EQ

• MSK_DPAR_MIO_CLIQUE_TABLE_SIZE_FACTOR

• MSK_DPAR_SIM_PRECISION_SCALING_EXTENDED

• MSK_DPAR_SIM_PRECISION_SCALING_NORMAL

• MSK_IPAR_FOLDING_USE

• MSK_IPAR_GETDUAL_CONVERT_LMIS

• MSK_IPAR_HEARTBEAT_SIM_FREQ_TICKS

• MSK_IPAR_LOG_SIM_FREQ_GIGA_TICKS

• MSK_IPAR_MIO_CONFLICT_ANALYSIS_LEVEL

• MSK_IPAR_MIO_CROSSOVER_MAX_NODES

• MSK_IPAR_MIO_INDEPENDENT_BLOCK_LEVEL

• MSK_IPAR_MIO_OPT_FACE_MAX_NODES

• MSK_IPAR_MIO_RENS_MAX_NODES

379

https://docs.mosek.com/11.0/releasenotes/index.html

• MSK_IPAR_PTF_WRITE_SINGLE_PSD_TERMS

• MSK_IPAR_READ_ASYNC

• MSK_IPAR_SIM_PRECISION

• MSK_IPAR_SIM_PRECISION_BOOST

• MSK_IPAR_WRITE_ASYNC

Removed

• MSK_DPAR_CHECK_CONVEXITY_REL_TOL

• MSK_DPAR_PRESOLVE_TOL_AIJ

• MSK_IPAR_INFEAS_PREFER_PRIMAL

• MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS

• MSK_IPAR_INTPNT_PURIFY

• MSK_IPAR_LOG_RESPONSE

• MSK_IPAR_LOG_SIM_MINOR

• MSK_IPAR_MIO_ROOT_REPEAT_PRESOLVE_LEVEL

• MSK_IPAR_PRESOLVE_LEVEL

• MSK_IPAR_SENSITIVITY_OPTIMIZER

• MSK_IPAR_SIM_STABILITY_PRIORITY

• MSK_IPAR_SOL_FILTER_KEEP_RANGED

• MSK_IPAR_SOLUTION_CALLBACK

• MSK_IPAR_WRITE_DATA_PARAM

• MSK_IPAR_WRITE_GENERIC_NAMES_IO

• MSK_IPAR_WRITE_TASK_INC_SOL

• MSK_IPAR_WRITE_XML_MODE

• MSK_SPAR_WRITE_LP_GEN_VAR_NAME

18.2.2 Constants compared to version 10

Added

• "MSK_CALLBACK_BEGIN_FOLDING"

• "MSK_CALLBACK_BEGIN_FOLDING_BI"

• "MSK_CALLBACK_BEGIN_FOLDING_BI_DUAL"

• "MSK_CALLBACK_BEGIN_FOLDING_BI_INITIALIZE"

• "MSK_CALLBACK_BEGIN_FOLDING_BI_OPTIMIZER"

• "MSK_CALLBACK_BEGIN_FOLDING_BI_PRIMAL"

• "MSK_CALLBACK_BEGIN_INITIALIZE_BI"

380

• "MSK_CALLBACK_BEGIN_OPTIMIZE_BI"

• "MSK_CALLBACK_DECOMP_MIO"

• "MSK_CALLBACK_END_FOLDING"

• "MSK_CALLBACK_END_FOLDING_BI"

• "MSK_CALLBACK_END_FOLDING_BI_DUAL"

• "MSK_CALLBACK_END_FOLDING_BI_INITIALIZE"

• "MSK_CALLBACK_END_FOLDING_BI_OPTIMIZER"

• "MSK_CALLBACK_END_FOLDING_BI_PRIMAL"

• "MSK_CALLBACK_END_INITIALIZE_BI"

• "MSK_CALLBACK_END_OPTIMIZE_BI"

• "MSK_CALLBACK_FOLDING_BI_DUAL"

• "MSK_CALLBACK_FOLDING_BI_OPTIMIZER"

• "MSK_CALLBACK_FOLDING_BI_PRIMAL"

• "MSK_CALLBACK_HEARTBEAT"

• "MSK_CALLBACK_OPTIMIZE_BI"

• "MSK_CALLBACK_QO_REFORMULATE"

• "MSK_DINF_FOLDING_BI_OPTIMIZE_TIME"

• "MSK_DINF_FOLDING_BI_UNFOLD_DUAL_TIME"

• "MSK_DINF_FOLDING_BI_UNFOLD_INITIALIZE_TIME"

• "MSK_DINF_FOLDING_BI_UNFOLD_PRIMAL_TIME"

• "MSK_DINF_FOLDING_BI_UNFOLD_TIME"

• "MSK_DINF_FOLDING_FACTOR"

• "MSK_DINF_FOLDING_TIME"

• "MSK_IINF_FOLDING_APPLIED"

• "MSK_IINF_MIO_FINAL_NUMBIN"

• "MSK_IINF_MIO_FINAL_NUMBINCONEVAR"

• "MSK_IINF_MIO_FINAL_NUMCON"

• "MSK_IINF_MIO_FINAL_NUMCONE"

• "MSK_IINF_MIO_FINAL_NUMCONEVAR"

• "MSK_IINF_MIO_FINAL_NUMCONT"

• "MSK_IINF_MIO_FINAL_NUMCONTCONEVAR"

• "MSK_IINF_MIO_FINAL_NUMDEXPCONES"

• "MSK_IINF_MIO_FINAL_NUMDJC"

381

• "MSK_IINF_MIO_FINAL_NUMDPOWCONES"

• "MSK_IINF_MIO_FINAL_NUMINT"

• "MSK_IINF_MIO_FINAL_NUMINTCONEVAR"

• "MSK_IINF_MIO_FINAL_NUMPEXPCONES"

• "MSK_IINF_MIO_FINAL_NUMPPOWCONES"

• "MSK_IINF_MIO_FINAL_NUMQCONES"

• "MSK_IINF_MIO_FINAL_NUMRQCONES"

• "MSK_IINF_MIO_FINAL_NUMVAR"

• "MSK_IINF_MIO_NUM_BLOCKS_SOLVED_IN_BB"

• "MSK_IINF_MIO_NUM_BLOCKS_SOLVED_IN_PRESOLVE"

• "MSK_LIINF_BI_CLEAN_ITER"

• "MSK_LIINF_FOLDING_BI_DUAL_ITER"

• "MSK_LIINF_FOLDING_BI_OPTIMIZER_ITER"

• "MSK_LIINF_FOLDING_BI_PRIMAL_ITER"

• "MSK_LIINF_MIO_FINAL_ANZ"

• "MSK_OPTIMIZER_NEW_DUAL_SIMPLEX"

• "MSK_OPTIMIZER_NEW_PRIMAL_SIMPLEX"

Removed

• MSK_CALLBACKCODE_BEGIN_SIMPLEX_BI

• MSK_CALLBACKCODE_IM_BI

• MSK_CALLBACKCODE_IM_CONIC

• MSK_CALLBACKCODE_IM_DUAL_BI

• MSK_CALLBACKCODE_IM_INTPNT

• MSK_CALLBACKCODE_IM_PRESOLVE

• MSK_CALLBACKCODE_IM_PRIMAL_BI

• MSK_CALLBACKCODE_IM_QO_REFORMULATE

• MSK_CALLBACKCODE_IM_SIMPLEX_BI

• MSK_DINFITEM_BI_CLEAN_DUAL_TIME

• MSK_DINFITEM_BI_CLEAN_PRIMAL_TIME

• MSK_LIINFITEM_BI_CLEAN_DUAL_DEG_ITER

• MSK_LIINFITEM_BI_CLEAN_DUAL_ITER

• MSK_LIINFITEM_BI_CLEAN_PRIMAL_DEG_ITER

• MSK_LIINFITEM_BI_CLEAN_PRIMAL_ITER

382

18.2.3 Response Codes compared to version 10

Added

• "MSK_RES_ERR_GETDUAL_NOT_AVAILABLE"

• "MSK_RES_ERR_READ_ASYNC"

• "MSK_RES_ERR_READ_PREMATURE_EOF"

• "MSK_RES_ERR_READ_WRITE"

• "MSK_RES_ERR_SERVER_HARD_TIMEOUT"

• "MSK_RES_ERR_TASK_PREMATURE_EOF"

• "MSK_RES_ERR_WRITE_ASYNC"

• "MSK_RES_ERR_WRITE_LP_DUPLICATE_CON_NAMES"

• "MSK_RES_ERR_WRITE_LP_DUPLICATE_VAR_NAMES"

• "MSK_RES_ERR_WRITE_LP_INVALID_CON_NAMES"

• "MSK_RES_ERR_WRITE_LP_INVALID_VAR_NAMES"

• "MSK_RES_TRM_SERVER_MAX_MEMORY"

• "MSK_RES_TRM_SERVER_MAX_TIME"

• "MSK_RES_WRN_GETDUAL_IGNORES_INTEGRALITY"

• "MSK_RES_WRN_PRESOLVE_PRIMAL_PERTURBATIONS"

• "MSK_RES_WRN_PTF_UNKNOWN_SECTION"

Removed

• MSK_RES_ERR_INVALID_AMPL_STUB

• MSK_RES_ERR_SIZE_LICENSE_NUMCORES

• MSK_RES_ERR_XML_INVALID_PROBLEM_TYPE

• MSK_RES_WRN_PRESOLVE_PRIMAL_PERTUBATIONS

• MSK_RES_WRN_WRITE_LP_DUPLICATE_CON_NAMES

• MSK_RES_WRN_WRITE_LP_DUPLICATE_VAR_NAMES

• MSK_RES_WRN_WRITE_LP_INVALID_CON_NAMES

• MSK_RES_WRN_WRITE_LP_INVALID_VAR_NAMES

383

Bibliography

[AA95] E. D. Andersen and K. D. Andersen. Presolving in linear programming. Math. Programming,
71(2):221–245, 1995.

[AGMeszarosX96] E. D. Andersen, J. Gondzio, Cs. Mészáros, and X. Xu. Implementation of interior
point methods for large scale linear programming. In T. Terlaky, editor, Interior-point meth-
ods of mathematical programming, pages 189–252. Kluwer Academic Publishers, 1996.

[ART03] E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual interior-point
method for conic quadratic optimization. Math. Programming, February 2003.

[AY96] E. D. Andersen and Y. Ye. Combining interior-point and pivoting algorithms. Management
Sci., 42(12):1719–1731, December 1996.

[And09] Erling D. Andersen. The homogeneous and self-dual model and algorithm for linear opti-
mization. Technical Report TR-1-2009, MOSEK ApS, 2009. URL: http://docs.mosek.com/
whitepapers/homolo.pdf.

[And13] Erling D. Andersen. On formulating quadratic functions in optimization models. Technical
Report TR-1-2013, MOSEK ApS, 2013. Last revised 23-feb-2016. URL: http://docs.mosek.
com/whitepapers/qmodel.pdf.

[BTN00] A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems contami-
nated with uncertain data. Math. Programming, 88(3):411–424, 2000.

[BKVH07] S. Boyd, S.J. Kim, L. Vandenberghe, and A. Hassibi. A Tutorial on Geometric Programming.
Optimization and Engineering, 8(1):67–127, 2007. Available at http://www.stanford.edu/
\protect\unhbox\voidb@x\penalty\@M\boyd/gp_tutorial.html.

[Chvatal83] V. Chvátal. Linear programming. W.H. Freeman and Company, 1983.

[CCornuejolsZ14] M. Conforti, G. Cornu/'ejols, and G. Zambelli. Integer programming. Springer, 2014.

[GK00] Richard C. Grinold and Ronald N. Kahn. Active portfolio management. McGraw-Hill, New
York, 2 edition, 2000.

[Naz87] J. L. Nazareth. Computer Solution of Linear Programs. Oxford University Press, New York,
1987.

[RTV97] C. Roos, T. Terlaky, and J. -Ph. Vial. Theory and algorithms for linear optimization: an
interior point approach. John Wiley and Sons, New York, 1997.

[Wal00] S. W. Wallace. Decision making under uncertainty: is sensitivity of any use. Oper. Res.,
48(1):20–25, January 2000.

[Wol98] L. A. Wolsey. Integer programming. John Wiley and Sons, 1998.

[BenTalN01] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization: Analysis, Algo-
rithms, and Engineering Applications. MPS/SIAM Series on Optimization. SIAM, 2001.

384

http://docs.mosek.com/whitepapers/homolo.pdf
http://docs.mosek.com/whitepapers/homolo.pdf
http://docs.mosek.com/whitepapers/qmodel.pdf
http://docs.mosek.com/whitepapers/qmodel.pdf
http://www.stanford.edu/\protect \unhbox \voidb@x \penalty \@M \ boyd/gp_tutorial.html
http://www.stanford.edu/\protect \unhbox \voidb@x \penalty \@M \ boyd/gp_tutorial.html

Symbol Index

Enumerations
basindtype, 282
"MSK_BI_RESERVERED", 282
"MSK_BI_NO_ERROR", 282
"MSK_BI_NEVER", 282
"MSK_BI_IF_FEASIBLE", 282
"MSK_BI_ALWAYS", 282
boundkey, 282
"MSK_BK_UP", 282
"MSK_BK_RA", 282
"MSK_BK_LO", 282
"MSK_BK_FX", 282
"MSK_BK_FR", 282
branchdir, 305
"MSK_BRANCH_DIR_UP", 305
"MSK_BRANCH_DIR_ROOT_LP", 305
"MSK_BRANCH_DIR_PSEUDOCOST", 306
"MSK_BRANCH_DIR_NEAR", 305
"MSK_BRANCH_DIR_GUIDED", 305
"MSK_BRANCH_DIR_FREE", 305
"MSK_BRANCH_DIR_FAR", 305
"MSK_BRANCH_DIR_DOWN", 305
callbackcode, 284
"MSK_CALLBACK_WRITE_OPF", 289
"MSK_CALLBACK_UPDATE_SIMPLEX", 289
"MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX_BI",

289
"MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX", 289
"MSK_CALLBACK_UPDATE_PRIMAL_BI", 289
"MSK_CALLBACK_UPDATE_PRESOLVE", 289
"MSK_CALLBACK_UPDATE_DUAL_SIMPLEX_BI", 289
"MSK_CALLBACK_UPDATE_DUAL_SIMPLEX", 289
"MSK_CALLBACK_UPDATE_DUAL_BI", 288
"MSK_CALLBACK_SOLVING_REMOTE", 288
"MSK_CALLBACK_RESTART_MIO", 288
"MSK_CALLBACK_READ_OPF_SECTION", 288
"MSK_CALLBACK_READ_OPF", 288
"MSK_CALLBACK_QO_REFORMULATE", 288
"MSK_CALLBACK_PRIMAL_SIMPLEX", 288
"MSK_CALLBACK_OPTIMIZE_BI", 288
"MSK_CALLBACK_NEW_INT_MIO", 288
"MSK_CALLBACK_INTPNT", 288
"MSK_CALLBACK_IM_SIMPLEX", 288
"MSK_CALLBACK_IM_ROOT_CUTGEN", 288
"MSK_CALLBACK_IM_READ", 288
"MSK_CALLBACK_IM_PRIMAL_SIMPLEX", 288
"MSK_CALLBACK_IM_PRIMAL_SENSIVITY", 288
"MSK_CALLBACK_IM_ORDER", 288

"MSK_CALLBACK_IM_MIO_PRIMAL_SIMPLEX", 288
"MSK_CALLBACK_IM_MIO_INTPNT", 288
"MSK_CALLBACK_IM_MIO_DUAL_SIMPLEX", 288
"MSK_CALLBACK_IM_MIO", 288
"MSK_CALLBACK_IM_LU", 287
"MSK_CALLBACK_IM_LICENSE_WAIT", 287
"MSK_CALLBACK_IM_DUAL_SIMPLEX", 287
"MSK_CALLBACK_IM_DUAL_SENSIVITY", 287
"MSK_CALLBACK_HEARTBEAT", 287
"MSK_CALLBACK_FOLDING_BI_PRIMAL", 287
"MSK_CALLBACK_FOLDING_BI_OPTIMIZER", 287
"MSK_CALLBACK_FOLDING_BI_DUAL", 287
"MSK_CALLBACK_END_WRITE", 287
"MSK_CALLBACK_END_TO_CONIC", 287
"MSK_CALLBACK_END_SOLVE_ROOT_RELAX", 287
"MSK_CALLBACK_END_SIMPLEX_BI", 287
"MSK_CALLBACK_END_SIMPLEX", 287
"MSK_CALLBACK_END_ROOT_CUTGEN", 287
"MSK_CALLBACK_END_READ", 287
"MSK_CALLBACK_END_QCQO_REFORMULATE", 287
"MSK_CALLBACK_END_PRIMAL_SIMPLEX_BI", 287
"MSK_CALLBACK_END_PRIMAL_SIMPLEX", 287
"MSK_CALLBACK_END_PRIMAL_SETUP_BI", 287
"MSK_CALLBACK_END_PRIMAL_SENSITIVITY", 287
"MSK_CALLBACK_END_PRIMAL_REPAIR", 287
"MSK_CALLBACK_END_PRIMAL_BI", 286
"MSK_CALLBACK_END_PRESOLVE", 286
"MSK_CALLBACK_END_OPTIMIZER", 286
"MSK_CALLBACK_END_OPTIMIZE_BI", 286
"MSK_CALLBACK_END_MIO", 286
"MSK_CALLBACK_END_LICENSE_WAIT", 286
"MSK_CALLBACK_END_INTPNT", 286
"MSK_CALLBACK_END_INITIALIZE_BI", 286
"MSK_CALLBACK_END_INFEAS_ANA", 286
"MSK_CALLBACK_END_FOLDING_BI_PRIMAL", 286
"MSK_CALLBACK_END_FOLDING_BI_OPTIMIZER",

286
"MSK_CALLBACK_END_FOLDING_BI_INITIALIZE",

286
"MSK_CALLBACK_END_FOLDING_BI_DUAL", 286
"MSK_CALLBACK_END_FOLDING_BI", 286
"MSK_CALLBACK_END_FOLDING", 286
"MSK_CALLBACK_END_DUAL_SIMPLEX_BI", 286
"MSK_CALLBACK_END_DUAL_SIMPLEX", 286
"MSK_CALLBACK_END_DUAL_SETUP_BI", 286
"MSK_CALLBACK_END_DUAL_SENSITIVITY", 286
"MSK_CALLBACK_END_DUAL_BI", 286
"MSK_CALLBACK_END_CONIC", 286
"MSK_CALLBACK_END_BI", 285

385

"MSK_CALLBACK_DUAL_SIMPLEX", 285
"MSK_CALLBACK_DECOMP_MIO", 285
"MSK_CALLBACK_CONIC", 285
"MSK_CALLBACK_BEGIN_WRITE", 285
"MSK_CALLBACK_BEGIN_TO_CONIC", 285
"MSK_CALLBACK_BEGIN_SOLVE_ROOT_RELAX", 285
"MSK_CALLBACK_BEGIN_SIMPLEX", 285
"MSK_CALLBACK_BEGIN_ROOT_CUTGEN", 285
"MSK_CALLBACK_BEGIN_READ", 285
"MSK_CALLBACK_BEGIN_QCQO_REFORMULATE", 285
"MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX_BI", 285
"MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX", 285
"MSK_CALLBACK_BEGIN_PRIMAL_SETUP_BI", 285
"MSK_CALLBACK_BEGIN_PRIMAL_SENSITIVITY",

285
"MSK_CALLBACK_BEGIN_PRIMAL_REPAIR", 285
"MSK_CALLBACK_BEGIN_PRIMAL_BI", 285
"MSK_CALLBACK_BEGIN_PRESOLVE", 285
"MSK_CALLBACK_BEGIN_OPTIMIZER", 285
"MSK_CALLBACK_BEGIN_OPTIMIZE_BI", 285
"MSK_CALLBACK_BEGIN_MIO", 285
"MSK_CALLBACK_BEGIN_LICENSE_WAIT", 284
"MSK_CALLBACK_BEGIN_INTPNT", 284
"MSK_CALLBACK_BEGIN_INITIALIZE_BI", 284
"MSK_CALLBACK_BEGIN_INFEAS_ANA", 284
"MSK_CALLBACK_BEGIN_FOLDING_BI_PRIMAL", 284
"MSK_CALLBACK_BEGIN_FOLDING_BI_OPTIMIZER",

284
"MSK_CALLBACK_BEGIN_FOLDING_BI_INITIALIZE",

284
"MSK_CALLBACK_BEGIN_FOLDING_BI_DUAL", 284
"MSK_CALLBACK_BEGIN_FOLDING_BI", 284
"MSK_CALLBACK_BEGIN_FOLDING", 284
"MSK_CALLBACK_BEGIN_DUAL_SIMPLEX_BI", 284
"MSK_CALLBACK_BEGIN_DUAL_SIMPLEX", 284
"MSK_CALLBACK_BEGIN_DUAL_SETUP_BI", 284
"MSK_CALLBACK_BEGIN_DUAL_SENSITIVITY", 284
"MSK_CALLBACK_BEGIN_DUAL_BI", 284
"MSK_CALLBACK_BEGIN_CONIC", 284
"MSK_CALLBACK_BEGIN_BI", 284
compresstype, 289
"MSK_COMPRESS_ZSTD", 289
"MSK_COMPRESS_NONE", 289
"MSK_COMPRESS_GZIP", 289
"MSK_COMPRESS_FREE", 289
conetype, 289
"MSK_CT_ZERO", 290
"MSK_CT_RQUAD", 289
"MSK_CT_QUAD", 289
"MSK_CT_PPOW", 289
"MSK_CT_PEXP", 289
"MSK_CT_DPOW", 289
"MSK_CT_DEXP", 289
dataformat, 290
"MSK_DATA_FORMAT_TASK", 291
"MSK_DATA_FORMAT_PTF", 291
"MSK_DATA_FORMAT_OP", 291
"MSK_DATA_FORMAT_MPS", 291

"MSK_DATA_FORMAT_LP", 291
"MSK_DATA_FORMAT_JSON_TASK", 291
"MSK_DATA_FORMAT_FREE_MPS", 291
"MSK_DATA_FORMAT_EXTENSION", 290
"MSK_DATA_FORMAT_CB", 291
dinfitem, 291
"MSK_DINF_WRITE_DATA_TIME", 297
"MSK_DINF_TO_CONIC_TIME", 297
"MSK_DINF_SOL_ITR_PVIOLVAR", 297
"MSK_DINF_SOL_ITR_PVIOLCONES", 297
"MSK_DINF_SOL_ITR_PVIOLCON", 297
"MSK_DINF_SOL_ITR_PVIOLBARVAR", 297
"MSK_DINF_SOL_ITR_PVIOLACC", 297
"MSK_DINF_SOL_ITR_PRIMAL_OBJ", 297
"MSK_DINF_SOL_ITR_NRM_Y", 297
"MSK_DINF_SOL_ITR_NRM_XX", 297
"MSK_DINF_SOL_ITR_NRM_XC", 297
"MSK_DINF_SOL_ITR_NRM_SUX", 297
"MSK_DINF_SOL_ITR_NRM_SUC", 297
"MSK_DINF_SOL_ITR_NRM_SNX", 296
"MSK_DINF_SOL_ITR_NRM_SLX", 296
"MSK_DINF_SOL_ITR_NRM_SLC", 296
"MSK_DINF_SOL_ITR_NRM_BARX", 296
"MSK_DINF_SOL_ITR_NRM_BARS", 296
"MSK_DINF_SOL_ITR_DVIOLVAR", 296
"MSK_DINF_SOL_ITR_DVIOLCONES", 296
"MSK_DINF_SOL_ITR_DVIOLCON", 296
"MSK_DINF_SOL_ITR_DVIOLBARVAR", 296
"MSK_DINF_SOL_ITR_DVIOLACC", 296
"MSK_DINF_SOL_ITR_DUAL_OBJ", 296
"MSK_DINF_SOL_ITG_PVIOLVAR", 296
"MSK_DINF_SOL_ITG_PVIOLITG", 296
"MSK_DINF_SOL_ITG_PVIOLDJC", 296
"MSK_DINF_SOL_ITG_PVIOLCONES", 296
"MSK_DINF_SOL_ITG_PVIOLCON", 296
"MSK_DINF_SOL_ITG_PVIOLBARVAR", 296
"MSK_DINF_SOL_ITG_PVIOLACC", 295
"MSK_DINF_SOL_ITG_PRIMAL_OBJ", 295
"MSK_DINF_SOL_ITG_NRM_XX", 295
"MSK_DINF_SOL_ITG_NRM_XC", 295
"MSK_DINF_SOL_ITG_NRM_BARX", 295
"MSK_DINF_SOL_BAS_PVIOLVAR", 295
"MSK_DINF_SOL_BAS_PVIOLCON", 295
"MSK_DINF_SOL_BAS_PRIMAL_OBJ", 295
"MSK_DINF_SOL_BAS_NRM_Y", 295
"MSK_DINF_SOL_BAS_NRM_XX", 295
"MSK_DINF_SOL_BAS_NRM_XC", 295
"MSK_DINF_SOL_BAS_NRM_SUX", 295
"MSK_DINF_SOL_BAS_NRM_SUC", 295
"MSK_DINF_SOL_BAS_NRM_SLX", 295
"MSK_DINF_SOL_BAS_NRM_SLC", 295
"MSK_DINF_SOL_BAS_NRM_BARX", 295
"MSK_DINF_SOL_BAS_DVIOLVAR", 295
"MSK_DINF_SOL_BAS_DVIOLCON", 295
"MSK_DINF_SOL_BAS_DUAL_OBJ", 295
"MSK_DINF_SIM_TIME", 295
"MSK_DINF_SIM_PRIMAL_TIME", 294
"MSK_DINF_SIM_OBJ", 294

386

"MSK_DINF_SIM_FEAS", 294
"MSK_DINF_SIM_DUAL_TIME", 294
"MSK_DINF_REMOTE_TIME", 294
"MSK_DINF_READ_DATA_TIME", 294
"MSK_DINF_QCQO_REFORMULATE_WORST_CHOLESKY_DIAG_SCALING",

294
"MSK_DINF_QCQO_REFORMULATE_WORST_CHOLESKY_COLUMN_SCALING",

294
"MSK_DINF_QCQO_REFORMULATE_TIME", 294
"MSK_DINF_QCQO_REFORMULATE_MAX_PERTURBATION",

294
"MSK_DINF_PRIMAL_REPAIR_PENALTY_OBJ", 294
"MSK_DINF_PRESOLVE_TOTAL_PRIMAL_PERTURBATION",

294
"MSK_DINF_PRESOLVE_TIME", 294
"MSK_DINF_PRESOLVE_LINDEP_TIME", 294
"MSK_DINF_PRESOLVE_ELI_TIME", 294
"MSK_DINF_OPTIMIZER_TIME", 294
"MSK_DINF_OPTIMIZER_TICKS", 294
"MSK_DINF_MIO_USER_OBJ_CUT", 294
"MSK_DINF_MIO_TIME", 294
"MSK_DINF_MIO_SYMMETRY_FACTOR", 294
"MSK_DINF_MIO_SYMMETRY_DETECTION_TIME", 294
"MSK_DINF_MIO_ROOT_TIME", 294
"MSK_DINF_MIO_ROOT_PRESOLVE_TIME", 293
"MSK_DINF_MIO_ROOT_OPTIMIZER_TIME", 293
"MSK_DINF_MIO_ROOT_CUT_SEPARATION_TIME",

293
"MSK_DINF_MIO_ROOT_CUT_SELECTION_TIME", 293
"MSK_DINF_MIO_PROBING_TIME", 293
"MSK_DINF_MIO_OBJ_REL_GAP", 293
"MSK_DINF_MIO_OBJ_INT", 293
"MSK_DINF_MIO_OBJ_BOUND", 293
"MSK_DINF_MIO_OBJ_ABS_GAP", 293
"MSK_DINF_MIO_LIPRO_SEPARATION_TIME", 293
"MSK_DINF_MIO_LIPRO_SELECTION_TIME", 293
"MSK_DINF_MIO_KNAPSACK_COVER_SEPARATION_TIME",

293
"MSK_DINF_MIO_KNAPSACK_COVER_SELECTION_TIME",

293
"MSK_DINF_MIO_INITIAL_FEASIBLE_SOLUTION_OBJ",

293
"MSK_DINF_MIO_IMPLIED_BOUND_SEPARATION_TIME",

293
"MSK_DINF_MIO_IMPLIED_BOUND_SELECTION_TIME",

293
"MSK_DINF_MIO_GMI_SEPARATION_TIME", 292
"MSK_DINF_MIO_GMI_SELECTION_TIME", 292
"MSK_DINF_MIO_DUAL_BOUND_AFTER_PRESOLVE",

292
"MSK_DINF_MIO_CONSTRUCT_SOLUTION_OBJ", 292
"MSK_DINF_MIO_CMIR_SEPARATION_TIME", 292
"MSK_DINF_MIO_CMIR_SELECTION_TIME", 292
"MSK_DINF_MIO_CLIQUE_SEPARATION_TIME", 292
"MSK_DINF_MIO_CLIQUE_SELECTION_TIME", 292
"MSK_DINF_INTPNT_TIME", 292
"MSK_DINF_INTPNT_PRIMAL_OBJ", 292
"MSK_DINF_INTPNT_PRIMAL_FEAS", 292

"MSK_DINF_INTPNT_ORDER_TIME", 292
"MSK_DINF_INTPNT_OPT_STATUS", 292
"MSK_DINF_INTPNT_FACTOR_NUM_FLOPS", 292
"MSK_DINF_INTPNT_DUAL_OBJ", 292
"MSK_DINF_INTPNT_DUAL_FEAS", 292
"MSK_DINF_FOLDING_TIME", 292
"MSK_DINF_FOLDING_FACTOR", 292
"MSK_DINF_FOLDING_BI_UNFOLD_TIME", 292
"MSK_DINF_FOLDING_BI_UNFOLD_PRIMAL_TIME",

292
"MSK_DINF_FOLDING_BI_UNFOLD_INITIALIZE_TIME",

291
"MSK_DINF_FOLDING_BI_UNFOLD_DUAL_TIME", 291
"MSK_DINF_FOLDING_BI_OPTIMIZE_TIME", 291
"MSK_DINF_BI_TIME", 291
"MSK_DINF_BI_PRIMAL_TIME", 291
"MSK_DINF_BI_DUAL_TIME", 291
"MSK_DINF_BI_CLEAN_TIME", 291
"MSK_DINF_ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_DENSITY",

291
domaintype, 290
"MSK_DOMAIN_SVEC_PSD_CONE", 290
"MSK_DOMAIN_RZERO", 290
"MSK_DOMAIN_RQUADRATIC_CONE", 290
"MSK_DOMAIN_RPLUS", 290
"MSK_DOMAIN_RMINUS", 290
"MSK_DOMAIN_R", 290
"MSK_DOMAIN_QUADRATIC_CONE", 290
"MSK_DOMAIN_PRIMAL_POWER_CONE", 290
"MSK_DOMAIN_PRIMAL_GEO_MEAN_CONE", 290
"MSK_DOMAIN_PRIMAL_EXP_CONE", 290
"MSK_DOMAIN_DUAL_POWER_CONE", 290
"MSK_DOMAIN_DUAL_GEO_MEAN_CONE", 290
"MSK_DOMAIN_DUAL_EXP_CONE", 290
dparam, 196
feature, 297
"MSK_FEATURE_PTS", 297
"MSK_FEATURE_PTON", 297
foldingmode, 308
"MSK_FOLDING_MODE_OFF", 308
"MSK_FOLDING_MODE_FREE_UNLESS_BASIC", 308
"MSK_FOLDING_MODE_FREE", 308
"MSK_FOLDING_MODE_FORCE", 308
iinfitem, 298
"MSK_IINF_STO_NUM_A_REALLOC", 305
"MSK_IINF_SOL_ITR_SOLSTA", 305
"MSK_IINF_SOL_ITR_PROSTA", 305
"MSK_IINF_SOL_ITG_SOLSTA", 305
"MSK_IINF_SOL_ITG_PROSTA", 305
"MSK_IINF_SOL_BAS_SOLSTA", 305
"MSK_IINF_SOL_BAS_PROSTA", 304
"MSK_IINF_SIM_SOLVE_DUAL", 304
"MSK_IINF_SIM_PRIMAL_ITER", 304
"MSK_IINF_SIM_PRIMAL_INF_ITER", 304
"MSK_IINF_SIM_PRIMAL_HOTSTART_LU", 304
"MSK_IINF_SIM_PRIMAL_HOTSTART", 304
"MSK_IINF_SIM_PRIMAL_DEG_ITER", 304
"MSK_IINF_SIM_NUMVAR", 304

387

"MSK_IINF_SIM_NUMCON", 304
"MSK_IINF_SIM_DUAL_ITER", 304
"MSK_IINF_SIM_DUAL_INF_ITER", 304
"MSK_IINF_SIM_DUAL_HOTSTART_LU", 304
"MSK_IINF_SIM_DUAL_HOTSTART", 304
"MSK_IINF_SIM_DUAL_DEG_ITER", 304
"MSK_IINF_RD_PROTYPE", 304
"MSK_IINF_RD_NUMVAR", 304
"MSK_IINF_RD_NUMQ", 304
"MSK_IINF_RD_NUMINTVAR", 304
"MSK_IINF_RD_NUMCONE", 304
"MSK_IINF_RD_NUMCON", 304
"MSK_IINF_RD_NUMBARVAR", 304
"MSK_IINF_PURIFY_PRIMAL_SUCCESS", 304
"MSK_IINF_PURIFY_DUAL_SUCCESS", 303
"MSK_IINF_PRESOLVE_NUM_PRIMAL_PERTURBATIONS",

303
"MSK_IINF_OPTIMIZE_RESPONSE", 303
"MSK_IINF_OPT_NUMVAR", 303
"MSK_IINF_OPT_NUMCON", 303
"MSK_IINF_MIO_USER_OBJ_CUT", 303
"MSK_IINF_MIO_TOTAL_NUM_SEPARATED_CUTS",

303
"MSK_IINF_MIO_TOTAL_NUM_SELECTED_CUTS", 303
"MSK_IINF_MIO_RELGAP_SATISFIED", 303
"MSK_IINF_MIO_PRESOLVED_NUMVAR", 303
"MSK_IINF_MIO_PRESOLVED_NUMRQCONES", 303
"MSK_IINF_MIO_PRESOLVED_NUMQCONES", 303
"MSK_IINF_MIO_PRESOLVED_NUMPPOWCONES", 303
"MSK_IINF_MIO_PRESOLVED_NUMPEXPCONES", 303
"MSK_IINF_MIO_PRESOLVED_NUMINTCONEVAR", 303
"MSK_IINF_MIO_PRESOLVED_NUMINT", 303
"MSK_IINF_MIO_PRESOLVED_NUMDPOWCONES", 303
"MSK_IINF_MIO_PRESOLVED_NUMDJC", 303
"MSK_IINF_MIO_PRESOLVED_NUMDEXPCONES", 303
"MSK_IINF_MIO_PRESOLVED_NUMCONTCONEVAR",

303
"MSK_IINF_MIO_PRESOLVED_NUMCONT", 303
"MSK_IINF_MIO_PRESOLVED_NUMCONEVAR", 303
"MSK_IINF_MIO_PRESOLVED_NUMCONE", 302
"MSK_IINF_MIO_PRESOLVED_NUMCON", 302
"MSK_IINF_MIO_PRESOLVED_NUMBINCONEVAR", 302
"MSK_IINF_MIO_PRESOLVED_NUMBIN", 302
"MSK_IINF_MIO_OBJ_BOUND_DEFINED", 302
"MSK_IINF_MIO_NUMVAR", 302
"MSK_IINF_MIO_NUMRQCONES", 302
"MSK_IINF_MIO_NUMQCONES", 302
"MSK_IINF_MIO_NUMPPOWCONES", 302
"MSK_IINF_MIO_NUMPEXPCONES", 302
"MSK_IINF_MIO_NUMINTCONEVAR", 302
"MSK_IINF_MIO_NUMINT", 302
"MSK_IINF_MIO_NUMDPOWCONES", 302
"MSK_IINF_MIO_NUMDJC", 302
"MSK_IINF_MIO_NUMDEXPCONES", 302
"MSK_IINF_MIO_NUMCONTCONEVAR", 302
"MSK_IINF_MIO_NUMCONT", 302
"MSK_IINF_MIO_NUMCONEVAR", 302
"MSK_IINF_MIO_NUMCONE", 302

"MSK_IINF_MIO_NUMCON", 302
"MSK_IINF_MIO_NUMBINCONEVAR", 302
"MSK_IINF_MIO_NUMBIN", 302
"MSK_IINF_MIO_NUM_SOLVED_NODES", 301
"MSK_IINF_MIO_NUM_SEPARATED_LIPRO_CUTS",

301
"MSK_IINF_MIO_NUM_SEPARATED_KNAPSACK_COVER_CUTS",

301
"MSK_IINF_MIO_NUM_SEPARATED_IMPLIED_BOUND_CUTS",

301
"MSK_IINF_MIO_NUM_SEPARATED_GOMORY_CUTS",

301
"MSK_IINF_MIO_NUM_SEPARATED_CMIR_CUTS", 301
"MSK_IINF_MIO_NUM_SEPARATED_CLIQUE_CUTS",

301
"MSK_IINF_MIO_NUM_SELECTED_LIPRO_CUTS", 301
"MSK_IINF_MIO_NUM_SELECTED_KNAPSACK_COVER_CUTS",

301
"MSK_IINF_MIO_NUM_SELECTED_IMPLIED_BOUND_CUTS",

301
"MSK_IINF_MIO_NUM_SELECTED_GOMORY_CUTS",

301
"MSK_IINF_MIO_NUM_SELECTED_CMIR_CUTS", 301
"MSK_IINF_MIO_NUM_SELECTED_CLIQUE_CUTS",

301
"MSK_IINF_MIO_NUM_ROOT_CUT_ROUNDS", 301
"MSK_IINF_MIO_NUM_RESTARTS", 301
"MSK_IINF_MIO_NUM_REPEATED_PRESOLVE", 301
"MSK_IINF_MIO_NUM_RELAX", 301
"MSK_IINF_MIO_NUM_INT_SOLUTIONS", 301
"MSK_IINF_MIO_NUM_BRANCH", 301
"MSK_IINF_MIO_NUM_BLOCKS_SOLVED_IN_PRESOLVE",

301
"MSK_IINF_MIO_NUM_BLOCKS_SOLVED_IN_BB", 301
"MSK_IINF_MIO_NUM_ACTIVE_ROOT_CUTS", 301
"MSK_IINF_MIO_NUM_ACTIVE_NODES", 300
"MSK_IINF_MIO_NODE_DEPTH", 300
"MSK_IINF_MIO_INITIAL_FEASIBLE_SOLUTION",

300
"MSK_IINF_MIO_FINAL_NUMVAR", 300
"MSK_IINF_MIO_FINAL_NUMRQCONES", 300
"MSK_IINF_MIO_FINAL_NUMQCONES", 300
"MSK_IINF_MIO_FINAL_NUMPPOWCONES", 300
"MSK_IINF_MIO_FINAL_NUMPEXPCONES", 300
"MSK_IINF_MIO_FINAL_NUMINTCONEVAR", 300
"MSK_IINF_MIO_FINAL_NUMINT", 300
"MSK_IINF_MIO_FINAL_NUMDPOWCONES", 300
"MSK_IINF_MIO_FINAL_NUMDJC", 300
"MSK_IINF_MIO_FINAL_NUMDEXPCONES", 300
"MSK_IINF_MIO_FINAL_NUMCONTCONEVAR", 300
"MSK_IINF_MIO_FINAL_NUMCONT", 300
"MSK_IINF_MIO_FINAL_NUMCONEVAR", 300
"MSK_IINF_MIO_FINAL_NUMCONE", 300
"MSK_IINF_MIO_FINAL_NUMCON", 300
"MSK_IINF_MIO_FINAL_NUMBINCONEVAR", 300
"MSK_IINF_MIO_FINAL_NUMBIN", 300
"MSK_IINF_MIO_CONSTRUCT_SOLUTION", 299
"MSK_IINF_MIO_CLIQUE_TABLE_SIZE", 299

388

"MSK_IINF_MIO_ABSGAP_SATISFIED", 299
"MSK_IINF_INTPNT_SOLVE_DUAL", 299
"MSK_IINF_INTPNT_NUM_THREADS", 299
"MSK_IINF_INTPNT_ITER", 299
"MSK_IINF_INTPNT_FACTOR_DIM_DENSE", 299
"MSK_IINF_FOLDING_APPLIED", 299
"MSK_IINF_ANA_PRO_NUM_VAR_UP", 299
"MSK_IINF_ANA_PRO_NUM_VAR_RA", 299
"MSK_IINF_ANA_PRO_NUM_VAR_LO", 299
"MSK_IINF_ANA_PRO_NUM_VAR_INT", 299
"MSK_IINF_ANA_PRO_NUM_VAR_FR", 299
"MSK_IINF_ANA_PRO_NUM_VAR_EQ", 299
"MSK_IINF_ANA_PRO_NUM_VAR_CONT", 299
"MSK_IINF_ANA_PRO_NUM_VAR_BIN", 299
"MSK_IINF_ANA_PRO_NUM_VAR", 299
"MSK_IINF_ANA_PRO_NUM_CON_UP", 299
"MSK_IINF_ANA_PRO_NUM_CON_RA", 299
"MSK_IINF_ANA_PRO_NUM_CON_LO", 299
"MSK_IINF_ANA_PRO_NUM_CON_FR", 299
"MSK_IINF_ANA_PRO_NUM_CON_EQ", 299
"MSK_IINF_ANA_PRO_NUM_CON", 298
inftype, 305
"MSK_INF_LINT_TYPE", 305
"MSK_INF_INT_TYPE", 305
"MSK_INF_DOU_TYPE", 305
intpnthotstart, 283
"MSK_INTPNT_HOTSTART_PRIMAL_DUAL", 284
"MSK_INTPNT_HOTSTART_PRIMAL", 284
"MSK_INTPNT_HOTSTART_NONE", 283
"MSK_INTPNT_HOTSTART_DUAL", 284
iomode, 305
"MSK_IOMODE_WRITE", 305
"MSK_IOMODE_READWRITE", 305
"MSK_IOMODE_READ", 305
iparam, 210
liinfitem, 297
"MSK_LIINF_SIMPLEX_ITER", 298
"MSK_LIINF_RD_NUMQNZ", 298
"MSK_LIINF_RD_NUMDJC", 298
"MSK_LIINF_RD_NUMANZ", 298
"MSK_LIINF_RD_NUMACC", 298
"MSK_LIINF_MIO_SIMPLEX_ITER", 298
"MSK_LIINF_MIO_PRESOLVED_ANZ", 298
"MSK_LIINF_MIO_NUM_PRIM_ILLPOSED_CER", 298
"MSK_LIINF_MIO_NUM_DUAL_ILLPOSED_CER", 298
"MSK_LIINF_MIO_INTPNT_ITER", 298
"MSK_LIINF_MIO_FINAL_ANZ", 298
"MSK_LIINF_MIO_ANZ", 298
"MSK_LIINF_INTPNT_FACTOR_NUM_NZ", 298
"MSK_LIINF_FOLDING_BI_PRIMAL_ITER", 298
"MSK_LIINF_FOLDING_BI_OPTIMIZER_ITER", 298
"MSK_LIINF_FOLDING_BI_DUAL_ITER", 298
"MSK_LIINF_BI_PRIMAL_ITER", 298
"MSK_LIINF_BI_DUAL_ITER", 298
"MSK_LIINF_BI_CLEAN_ITER", 298
"MSK_LIINF_ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_NUM_ROWS",

297

"MSK_LIINF_ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_NUM_NZ",
297

"MSK_LIINF_ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_NUM_COLUMNS",
297

mark, 282
"MSK_MARK_UP", 282
"MSK_MARK_LO", 282
miocontsoltype, 306
"MSK_MIO_CONT_SOL_ROOT", 306
"MSK_MIO_CONT_SOL_NONE", 306
"MSK_MIO_CONT_SOL_ITG_REL", 306
"MSK_MIO_CONT_SOL_ITG", 306
miodatapermmethod, 306
"MSK_MIO_DATA_PERMUTATION_METHOD_RANDOM",

306
"MSK_MIO_DATA_PERMUTATION_METHOD_NONE", 306
"MSK_MIO_DATA_PERMUTATION_METHOD_CYCLIC_SHIFT",

306
miomode, 306
"MSK_MIO_MODE_SATISFIED", 306
"MSK_MIO_MODE_IGNORED", 306
mionodeseltype, 306
"MSK_MIO_NODE_SELECTION_PSEUDO", 307
"MSK_MIO_NODE_SELECTION_FREE", 307
"MSK_MIO_NODE_SELECTION_FIRST", 307
"MSK_MIO_NODE_SELECTION_BEST", 307
miovarseltype, 307
"MSK_MIO_VAR_SELECTION_STRONG", 307
"MSK_MIO_VAR_SELECTION_PSEUDOCOST", 307
"MSK_MIO_VAR_SELECTION_FREE", 307
miqcqoreformmethod, 306
"MSK_MIO_QCQO_REFORMULATION_METHOD_RELAX_SDP",

306
"MSK_MIO_QCQO_REFORMULATION_METHOD_NONE",

306
"MSK_MIO_QCQO_REFORMULATION_METHOD_LINEARIZATION",

306
"MSK_MIO_QCQO_REFORMULATION_METHOD_FREE",

306
"MSK_MIO_QCQO_REFORMULATION_METHOD_EIGEN_VAL_METHOD",

306
"MSK_MIO_QCQO_REFORMULATION_METHOD_DIAG_SDP",

306
mpsformat, 307
"MSK_MPS_FORMAT_STRICT", 307
"MSK_MPS_FORMAT_RELAXED", 307
"MSK_MPS_FORMAT_FREE", 307
"MSK_MPS_FORMAT_CPLEX", 307
nametype, 290
"MSK_NAME_TYPE_MPS", 290
"MSK_NAME_TYPE_LP", 290
"MSK_NAME_TYPE_GEN", 290
objsense, 307
"MSK_OBJECTIVE_SENSE_MINIMIZE", 307
"MSK_OBJECTIVE_SENSE_MAXIMIZE", 307
onoffkey, 307
"MSK_ON", 307
"MSK_OFF", 307

389

optimizertype, 307
"MSK_OPTIMIZER_PRIMAL_SIMPLEX", 308
"MSK_OPTIMIZER_NEW_PRIMAL_SIMPLEX", 308
"MSK_OPTIMIZER_NEW_DUAL_SIMPLEX", 308
"MSK_OPTIMIZER_MIXED_INT", 308
"MSK_OPTIMIZER_INTPNT", 308
"MSK_OPTIMIZER_FREE_SIMPLEX", 308
"MSK_OPTIMIZER_FREE", 307
"MSK_OPTIMIZER_DUAL_SIMPLEX", 307
"MSK_OPTIMIZER_CONIC", 307
orderingtype, 308
"MSK_ORDER_METHOD_TRY_GRAPHPAR", 308
"MSK_ORDER_METHOD_NONE", 308
"MSK_ORDER_METHOD_FREE", 308
"MSK_ORDER_METHOD_FORCE_GRAPHPAR", 308
"MSK_ORDER_METHOD_EXPERIMENTAL", 308
"MSK_ORDER_METHOD_APPMINLOC", 308
parametertype, 309
"MSK_PAR_STR_TYPE", 309
"MSK_PAR_INVALID_TYPE", 309
"MSK_PAR_INT_TYPE", 309
"MSK_PAR_DOU_TYPE", 309
presolvemode, 308
"MSK_PRESOLVE_MODE_ON", 308
"MSK_PRESOLVE_MODE_OFF", 308
"MSK_PRESOLVE_MODE_FREE", 308
problemitem, 309
"MSK_PI_VAR", 309
"MSK_PI_CONE", 309
"MSK_PI_CON", 309
problemtype, 309
"MSK_PROBTYPE_QO", 309
"MSK_PROBTYPE_QCQO", 309
"MSK_PROBTYPE_MIXED", 309
"MSK_PROBTYPE_LO", 309
"MSK_PROBTYPE_CONIC", 309
prosta, 309
"MSK_PRO_STA_UNKNOWN", 309
"MSK_PRO_STA_PRIM_INFEAS_OR_UNBOUNDED", 310
"MSK_PRO_STA_PRIM_INFEAS", 309
"MSK_PRO_STA_PRIM_FEAS", 309
"MSK_PRO_STA_PRIM_AND_DUAL_INFEAS", 309
"MSK_PRO_STA_PRIM_AND_DUAL_FEAS", 309
"MSK_PRO_STA_ILL_POSED", 310
"MSK_PRO_STA_DUAL_INFEAS", 309
"MSK_PRO_STA_DUAL_FEAS", 309
rescode, 258
rescodetype, 310
"MSK_RESPONSE_WRN", 310
"MSK_RESPONSE_UNK", 310
"MSK_RESPONSE_TRM", 310
"MSK_RESPONSE_OK", 310
"MSK_RESPONSE_ERR", 310
scalingmethod, 310
"MSK_SCALING_METHOD_POW2", 310
"MSK_SCALING_METHOD_FREE", 310
scalingtype, 310
"MSK_SCALING_NONE", 310

"MSK_SCALING_FREE", 310
sensitivitytype, 310
"MSK_SENSITIVITY_TYPE_BASIS", 310
simdegen, 282
"MSK_SIM_DEGEN_NONE", 282
"MSK_SIM_DEGEN_MODERATE", 283
"MSK_SIM_DEGEN_MINIMUM", 283
"MSK_SIM_DEGEN_FREE", 282
"MSK_SIM_DEGEN_AGGRESSIVE", 282
simdupvec, 283
"MSK_SIM_EXPLOIT_DUPVEC_ON", 283
"MSK_SIM_EXPLOIT_DUPVEC_OFF", 283
"MSK_SIM_EXPLOIT_DUPVEC_FREE", 283
simhotstart, 283
"MSK_SIM_HOTSTART_STATUS_KEYS", 283
"MSK_SIM_HOTSTART_NONE", 283
"MSK_SIM_HOTSTART_FREE", 283
simprecision, 282
"MSK_SIM_PRECISION_NORMAL", 282
"MSK_SIM_PRECISION_EXTENDED", 282
simreform, 283
"MSK_SIM_REFORMULATION_ON", 283
"MSK_SIM_REFORMULATION_OFF", 283
"MSK_SIM_REFORMULATION_FREE", 283
"MSK_SIM_REFORMULATION_AGGRESSIVE", 283
simseltype, 310
"MSK_SIM_SELECTION_SE", 310
"MSK_SIM_SELECTION_PARTIAL", 311
"MSK_SIM_SELECTION_FULL", 310
"MSK_SIM_SELECTION_FREE", 310
"MSK_SIM_SELECTION_DEVEX", 310
"MSK_SIM_SELECTION_ASE", 310
solformat, 291
"MSK_SOL_FORMAT_TASK", 291
"MSK_SOL_FORMAT_JSON_TASK", 291
"MSK_SOL_FORMAT_EXTENSION", 291
"MSK_SOL_FORMAT_B", 291
solitem, 311
"MSK_SOL_ITEM_Y", 311
"MSK_SOL_ITEM_XX", 311
"MSK_SOL_ITEM_XC", 311
"MSK_SOL_ITEM_SUX", 311
"MSK_SOL_ITEM_SUC", 311
"MSK_SOL_ITEM_SNX", 311
"MSK_SOL_ITEM_SLX", 311
"MSK_SOL_ITEM_SLC", 311
solsta, 311
"MSK_SOL_STA_UNKNOWN", 311
"MSK_SOL_STA_PRIM_INFEAS_CER", 311
"MSK_SOL_STA_PRIM_ILLPOSED_CER", 311
"MSK_SOL_STA_PRIM_FEAS", 311
"MSK_SOL_STA_PRIM_AND_DUAL_FEAS", 311
"MSK_SOL_STA_OPTIMAL", 311
"MSK_SOL_STA_INTEGER_OPTIMAL", 311
"MSK_SOL_STA_DUAL_INFEAS_CER", 311
"MSK_SOL_STA_DUAL_ILLPOSED_CER", 311
"MSK_SOL_STA_DUAL_FEAS", 311
soltype, 311

390

"MSK_SOL_ITR", 312
"MSK_SOL_ITG", 312
"MSK_SOL_BAS", 312
solveform, 312
"MSK_SOLVE_PRIMAL", 312
"MSK_SOLVE_FREE", 312
"MSK_SOLVE_DUAL", 312
sparam, 254
stakey, 312
"MSK_SK_UPR", 312
"MSK_SK_UNK", 312
"MSK_SK_SUPBAS", 312
"MSK_SK_LOW", 312
"MSK_SK_INF", 312
"MSK_SK_FIX", 312
"MSK_SK_BAS", 312
startpointtype, 312
"MSK_STARTING_POINT_GUESS", 312
"MSK_STARTING_POINT_FREE", 312
"MSK_STARTING_POINT_CONSTANT", 312
streamtype, 312
"MSK_STREAM_WRN", 313
"MSK_STREAM_MSG", 312
"MSK_STREAM_LOG", 312
"MSK_STREAM_ERR", 313
symmattype, 290
"MSK_SYMMAT_TYPE_SPARSE", 290
transpose, 283
"MSK_TRANSPOSE_YES", 283
"MSK_TRANSPOSE_NO", 283
uplo, 283
"MSK_UPLO_UP", 283
"MSK_UPLO_LO", 283
value, 313
"MSK_MAX_STR_LEN", 313
"MSK_LICENSE_BUFFER_LENGTH", 313
variabletype, 313
"MSK_VAR_TYPE_INT", 313
"MSK_VAR_TYPE_CONT", 313

Functions
intlinprog, 172
linprog, 173
lsqlin, 173
lsqnonneg, 174
mosekopt, 169
msklpopt, 170
mskoptimget, 171
mskoptimset, 171
mskqpopt, 170
quadprog, 175

Parameters
Double parameters, 196
MSK_DPAR_ANA_SOL_INFEAS_TOL, 196
MSK_DPAR_BASIS_REL_TOL_S, 196
MSK_DPAR_BASIS_TOL_S, 196
MSK_DPAR_BASIS_TOL_X, 196

MSK_DPAR_DATA_SYM_MAT_TOL, 197
MSK_DPAR_DATA_SYM_MAT_TOL_HUGE, 197
MSK_DPAR_DATA_SYM_MAT_TOL_LARGE, 197
MSK_DPAR_DATA_TOL_AIJ_HUGE, 197
MSK_DPAR_DATA_TOL_AIJ_LARGE, 198
MSK_DPAR_DATA_TOL_BOUND_INF, 198
MSK_DPAR_DATA_TOL_BOUND_WRN, 198
MSK_DPAR_DATA_TOL_C_HUGE, 198
MSK_DPAR_DATA_TOL_CJ_LARGE, 198
MSK_DPAR_DATA_TOL_QIJ, 199
MSK_DPAR_DATA_TOL_X, 199
MSK_DPAR_FOLDING_TOL_EQ, 199
MSK_DPAR_INTPNT_CO_TOL_DFEAS, 199
MSK_DPAR_INTPNT_CO_TOL_INFEAS, 200
MSK_DPAR_INTPNT_CO_TOL_MU_RED, 200
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL, 200
MSK_DPAR_INTPNT_CO_TOL_PFEAS, 200
MSK_DPAR_INTPNT_CO_TOL_REL_GAP, 201
MSK_DPAR_INTPNT_QO_TOL_DFEAS, 201
MSK_DPAR_INTPNT_QO_TOL_INFEAS, 201
MSK_DPAR_INTPNT_QO_TOL_MU_RED, 201
MSK_DPAR_INTPNT_QO_TOL_NEAR_REL, 201
MSK_DPAR_INTPNT_QO_TOL_PFEAS, 202
MSK_DPAR_INTPNT_QO_TOL_REL_GAP, 202
MSK_DPAR_INTPNT_TOL_DFEAS, 202
MSK_DPAR_INTPNT_TOL_DSAFE, 202
MSK_DPAR_INTPNT_TOL_INFEAS, 203
MSK_DPAR_INTPNT_TOL_MU_RED, 203
MSK_DPAR_INTPNT_TOL_PATH, 203
MSK_DPAR_INTPNT_TOL_PFEAS, 203
MSK_DPAR_INTPNT_TOL_PSAFE, 204
MSK_DPAR_INTPNT_TOL_REL_GAP, 204
MSK_DPAR_INTPNT_TOL_REL_STEP, 204
MSK_DPAR_INTPNT_TOL_STEP_SIZE, 204
MSK_DPAR_LOWER_OBJ_CUT, 204
MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 205
MSK_DPAR_MIO_CLIQUE_TABLE_SIZE_FACTOR, 205
MSK_DPAR_MIO_DJC_MAX_BIGM, 205
MSK_DPAR_MIO_MAX_TIME, 205
MSK_DPAR_MIO_REL_GAP_CONST, 206
MSK_DPAR_MIO_TOL_ABS_GAP, 206
MSK_DPAR_MIO_TOL_ABS_RELAX_INT, 206
MSK_DPAR_MIO_TOL_FEAS, 206
MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT,

207
MSK_DPAR_MIO_TOL_REL_GAP, 207
MSK_DPAR_OPTIMIZER_MAX_TICKS, 207
MSK_DPAR_OPTIMIZER_MAX_TIME, 207
MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP, 207
MSK_DPAR_PRESOLVE_TOL_PRIMAL_INFEAS_PERTURBATION,

208
MSK_DPAR_PRESOLVE_TOL_REL_LINDEP, 208
MSK_DPAR_PRESOLVE_TOL_S, 208
MSK_DPAR_PRESOLVE_TOL_X, 208
MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL, 209
MSK_DPAR_SEMIDEFINITE_TOL_APPROX, 209
MSK_DPAR_SIM_LU_TOL_REL_PIV, 209

391

MSK_DPAR_SIM_PRECISION_SCALING_EXTENDED,
209

MSK_DPAR_SIM_PRECISION_SCALING_NORMAL, 209
MSK_DPAR_SIMPLEX_ABS_TOL_PIV, 210
MSK_DPAR_UPPER_OBJ_CUT, 210
MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH, 210
Integer parameters, 210
MSK_IPAR_ANA_SOL_BASIS, 210
MSK_IPAR_ANA_SOL_PRINT_VIOLATED, 211
MSK_IPAR_AUTO_SORT_A_BEFORE_OPT, 211
MSK_IPAR_AUTO_UPDATE_SOL_INFO, 211
MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE, 211
MSK_IPAR_BI_CLEAN_OPTIMIZER, 211
MSK_IPAR_BI_IGNORE_MAX_ITER, 212
MSK_IPAR_BI_IGNORE_NUM_ERROR, 212
MSK_IPAR_BI_MAX_ITERATIONS, 212
MSK_IPAR_CACHE_LICENSE, 212
MSK_IPAR_COMPRESS_STATFILE, 213
MSK_IPAR_FOLDING_USE, 213
MSK_IPAR_GETDUAL_CONVERT_LMIS, 213
MSK_IPAR_HEARTBEAT_SIM_FREQ_TICKS, 213
MSK_IPAR_INFEAS_GENERIC_NAMES, 214
MSK_IPAR_INFEAS_REPORT_AUTO, 214
MSK_IPAR_INFEAS_REPORT_LEVEL, 214
MSK_IPAR_INTPNT_BASIS, 214
MSK_IPAR_INTPNT_DIFF_STEP, 215
MSK_IPAR_INTPNT_HOTSTART, 215
MSK_IPAR_INTPNT_MAX_ITERATIONS, 215
MSK_IPAR_INTPNT_MAX_NUM_COR, 215
MSK_IPAR_INTPNT_OFF_COL_TRH, 215
MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS, 216
MSK_IPAR_INTPNT_ORDER_METHOD, 216
MSK_IPAR_INTPNT_REGULARIZATION_USE, 216
MSK_IPAR_INTPNT_SCALING, 216
MSK_IPAR_INTPNT_SOLVE_FORM, 217
MSK_IPAR_INTPNT_STARTING_POINT, 217
MSK_IPAR_LICENSE_DEBUG, 217
MSK_IPAR_LICENSE_PAUSE_TIME, 217
MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS, 217
MSK_IPAR_LICENSE_TRH_EXPIRY_WRN, 218
MSK_IPAR_LICENSE_WAIT, 218
MSK_IPAR_LOG, 218
MSK_IPAR_LOG_ANA_PRO, 218
MSK_IPAR_LOG_BI, 219
MSK_IPAR_LOG_BI_FREQ, 219
MSK_IPAR_LOG_CUT_SECOND_OPT, 219
MSK_IPAR_LOG_EXPAND, 219
MSK_IPAR_LOG_FEAS_REPAIR, 219
MSK_IPAR_LOG_FILE, 220
MSK_IPAR_LOG_INCLUDE_SUMMARY, 220
MSK_IPAR_LOG_INFEAS_ANA, 220
MSK_IPAR_LOG_INTPNT, 220
MSK_IPAR_LOG_LOCAL_INFO, 221
MSK_IPAR_LOG_MIO, 221
MSK_IPAR_LOG_MIO_FREQ, 221
MSK_IPAR_LOG_ORDER, 221
MSK_IPAR_LOG_PRESOLVE, 221
MSK_IPAR_LOG_SENSITIVITY, 222

MSK_IPAR_LOG_SENSITIVITY_OPT, 222
MSK_IPAR_LOG_SIM, 222
MSK_IPAR_LOG_SIM_FREQ, 222
MSK_IPAR_LOG_SIM_FREQ_GIGA_TICKS, 223
MSK_IPAR_LOG_STORAGE, 223
MSK_IPAR_MAX_NUM_WARNINGS, 223
MSK_IPAR_MIO_BRANCH_DIR, 223
MSK_IPAR_MIO_CONFLICT_ANALYSIS_LEVEL, 224
MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION, 224
MSK_IPAR_MIO_CONSTRUCT_SOL, 224
MSK_IPAR_MIO_CROSSOVER_MAX_NODES, 224
MSK_IPAR_MIO_CUT_CLIQUE, 225
MSK_IPAR_MIO_CUT_CMIR, 225
MSK_IPAR_MIO_CUT_GMI, 225
MSK_IPAR_MIO_CUT_IMPLIED_BOUND, 225
MSK_IPAR_MIO_CUT_KNAPSACK_COVER, 226
MSK_IPAR_MIO_CUT_LIPRO, 226
MSK_IPAR_MIO_CUT_SELECTION_LEVEL, 226
MSK_IPAR_MIO_DATA_PERMUTATION_METHOD, 226
MSK_IPAR_MIO_DUAL_RAY_ANALYSIS_LEVEL, 226
MSK_IPAR_MIO_FEASPUMP_LEVEL, 227
MSK_IPAR_MIO_HEURISTIC_LEVEL, 227
MSK_IPAR_MIO_INDEPENDENT_BLOCK_LEVEL, 227
MSK_IPAR_MIO_MAX_NUM_BRANCHES, 228
MSK_IPAR_MIO_MAX_NUM_RELAXS, 228
MSK_IPAR_MIO_MAX_NUM_RESTARTS, 228
MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS, 228
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS, 229
MSK_IPAR_MIO_MEMORY_EMPHASIS_LEVEL, 229
MSK_IPAR_MIO_MIN_REL, 229
MSK_IPAR_MIO_MODE, 229
MSK_IPAR_MIO_NODE_OPTIMIZER, 230
MSK_IPAR_MIO_NODE_SELECTION, 230
MSK_IPAR_MIO_NUMERICAL_EMPHASIS_LEVEL, 230
MSK_IPAR_MIO_OPT_FACE_MAX_NODES, 230
MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE, 231
MSK_IPAR_MIO_PRESOLVE_AGGREGATOR_USE, 231
MSK_IPAR_MIO_PROBING_LEVEL, 231
MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT,

231
MSK_IPAR_MIO_QCQO_REFORMULATION_METHOD, 231
MSK_IPAR_MIO_RENS_MAX_NODES, 232
MSK_IPAR_MIO_RINS_MAX_NODES, 232
MSK_IPAR_MIO_ROOT_OPTIMIZER, 232
MSK_IPAR_MIO_SEED, 232
MSK_IPAR_MIO_SYMMETRY_LEVEL, 233
MSK_IPAR_MIO_VAR_SELECTION, 233
MSK_IPAR_MIO_VB_DETECTION_LEVEL, 233
MSK_IPAR_MT_SPINCOUNT, 233
MSK_IPAR_NG, 234
MSK_IPAR_NUM_THREADS, 234
MSK_IPAR_OPF_WRITE_HEADER, 234
MSK_IPAR_OPF_WRITE_HINTS, 234
MSK_IPAR_OPF_WRITE_LINE_LENGTH, 234
MSK_IPAR_OPF_WRITE_PARAMETERS, 235
MSK_IPAR_OPF_WRITE_PROBLEM, 235
MSK_IPAR_OPF_WRITE_SOL_BAS, 235
MSK_IPAR_OPF_WRITE_SOL_ITG, 235

392

MSK_IPAR_OPF_WRITE_SOL_ITR, 236
MSK_IPAR_OPF_WRITE_SOLUTIONS, 236
MSK_IPAR_OPTIMIZER, 236
MSK_IPAR_PARAM_READ_CASE_NAME, 236
MSK_IPAR_PARAM_READ_IGN_ERROR, 236
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL, 237
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES,

237
MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH, 237
MSK_IPAR_PRESOLVE_LINDEP_NEW, 237
MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH, 238
MSK_IPAR_PRESOLVE_LINDEP_USE, 238
MSK_IPAR_PRESOLVE_MAX_NUM_PASS, 238
MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS, 238
MSK_IPAR_PRESOLVE_USE, 238
MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER, 239
MSK_IPAR_PTF_WRITE_PARAMETERS, 239
MSK_IPAR_PTF_WRITE_SINGLE_PSD_TERMS, 239
MSK_IPAR_PTF_WRITE_SOLUTIONS, 239
MSK_IPAR_PTF_WRITE_TRANSFORM, 240
MSK_IPAR_READ_ASYNC, 240
MSK_IPAR_READ_DEBUG, 240
MSK_IPAR_READ_KEEP_FREE_CON, 240
MSK_IPAR_READ_MPS_FORMAT, 240
MSK_IPAR_READ_MPS_WIDTH, 241
MSK_IPAR_READ_TASK_IGNORE_PARAM, 241
MSK_IPAR_REMOTE_USE_COMPRESSION, 241
MSK_IPAR_REMOVE_UNUSED_SOLUTIONS, 241
MSK_IPAR_SENSITIVITY_ALL, 241
MSK_IPAR_SENSITIVITY_TYPE, 242
MSK_IPAR_SIM_BASIS_FACTOR_USE, 242
MSK_IPAR_SIM_DEGEN, 242
MSK_IPAR_SIM_DETECT_PWL, 242
MSK_IPAR_SIM_DUAL_CRASH, 243
MSK_IPAR_SIM_DUAL_PHASEONE_METHOD, 243
MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION, 243
MSK_IPAR_SIM_DUAL_SELECTION, 243
MSK_IPAR_SIM_EXPLOIT_DUPVEC, 244
MSK_IPAR_SIM_HOTSTART, 244
MSK_IPAR_SIM_HOTSTART_LU, 244
MSK_IPAR_SIM_MAX_ITERATIONS, 244
MSK_IPAR_SIM_MAX_NUM_SETBACKS, 244
MSK_IPAR_SIM_NON_SINGULAR, 245
MSK_IPAR_SIM_PRECISION, 245
MSK_IPAR_SIM_PRECISION_BOOST, 245
MSK_IPAR_SIM_PRIMAL_CRASH, 245
MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD, 245
MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION, 246
MSK_IPAR_SIM_PRIMAL_SELECTION, 246
MSK_IPAR_SIM_REFACTOR_FREQ, 246
MSK_IPAR_SIM_REFORMULATION, 246
MSK_IPAR_SIM_SAVE_LU, 247
MSK_IPAR_SIM_SCALING, 247
MSK_IPAR_SIM_SCALING_METHOD, 247
MSK_IPAR_SIM_SEED, 247
MSK_IPAR_SIM_SOLVE_FORM, 248
MSK_IPAR_SIM_SWITCH_OPTIMIZER, 248
MSK_IPAR_SOL_FILTER_KEEP_BASIC, 248

MSK_IPAR_SOL_READ_NAME_WIDTH, 248
MSK_IPAR_SOL_READ_WIDTH, 248
MSK_IPAR_TIMING_LEVEL, 249
MSK_IPAR_WRITE_ASYNC, 249
MSK_IPAR_WRITE_BAS_CONSTRAINTS, 249
MSK_IPAR_WRITE_BAS_HEAD, 249
MSK_IPAR_WRITE_BAS_VARIABLES, 250
MSK_IPAR_WRITE_COMPRESSION, 250
MSK_IPAR_WRITE_FREE_CON, 250
MSK_IPAR_WRITE_GENERIC_NAMES, 250
MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS,

250
MSK_IPAR_WRITE_INT_CONSTRAINTS, 251
MSK_IPAR_WRITE_INT_HEAD, 251
MSK_IPAR_WRITE_INT_VARIABLES, 251
MSK_IPAR_WRITE_JSON_INDENTATION, 251
MSK_IPAR_WRITE_LP_FULL_OBJ, 251
MSK_IPAR_WRITE_LP_LINE_WIDTH, 252
MSK_IPAR_WRITE_MPS_FORMAT, 252
MSK_IPAR_WRITE_MPS_INT, 252
MSK_IPAR_WRITE_SOL_BARVARIABLES, 252
MSK_IPAR_WRITE_SOL_CONSTRAINTS, 253
MSK_IPAR_WRITE_SOL_HEAD, 253
MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES,

253
MSK_IPAR_WRITE_SOL_VARIABLES, 253
String parameters, 254
MSK_SPAR_BAS_SOL_FILE_NAME, 254
MSK_SPAR_DATA_FILE_NAME, 254
MSK_SPAR_DEBUG_FILE_NAME, 254
MSK_SPAR_INT_SOL_FILE_NAME, 254
MSK_SPAR_ITR_SOL_FILE_NAME, 254
MSK_SPAR_MIO_DEBUG_STRING, 254
MSK_SPAR_PARAM_COMMENT_SIGN, 255
MSK_SPAR_PARAM_READ_FILE_NAME, 255
MSK_SPAR_PARAM_WRITE_FILE_NAME, 255
MSK_SPAR_READ_MPS_BOU_NAME, 255
MSK_SPAR_READ_MPS_OBJ_NAME, 255
MSK_SPAR_READ_MPS_RAN_NAME, 255
MSK_SPAR_READ_MPS_RHS_NAME, 256
MSK_SPAR_REMOTE_OPTSERVER_HOST, 256
MSK_SPAR_REMOTE_TLS_CERT, 256
MSK_SPAR_REMOTE_TLS_CERT_PATH, 256
MSK_SPAR_SENSITIVITY_FILE_NAME, 256
MSK_SPAR_SENSITIVITY_RES_FILE_NAME, 257
MSK_SPAR_SOL_FILTER_XC_LOW, 257
MSK_SPAR_SOL_FILTER_XC_UPR, 257
MSK_SPAR_SOL_FILTER_XX_LOW, 257
MSK_SPAR_SOL_FILTER_XX_UPR, 257
MSK_SPAR_STAT_KEY, 258
MSK_SPAR_STAT_NAME, 258

Response codes
Termination, 258
"MSK_RES_OK", 258
"MSK_RES_TRM_INTERNAL", 259
"MSK_RES_TRM_INTERNAL_STOP", 259
"MSK_RES_TRM_LOST_RACE", 259

393

"MSK_RES_TRM_MAX_ITERATIONS", 258
"MSK_RES_TRM_MAX_NUM_SETBACKS", 259
"MSK_RES_TRM_MAX_TIME", 258
"MSK_RES_TRM_MIO_NUM_BRANCHES", 258
"MSK_RES_TRM_MIO_NUM_RELAXS", 258
"MSK_RES_TRM_NUM_MAX_NUM_INT_SOLUTIONS",

258
"MSK_RES_TRM_NUMERICAL_PROBLEM", 259
"MSK_RES_TRM_OBJECTIVE_RANGE", 258
"MSK_RES_TRM_SERVER_MAX_MEMORY", 259
"MSK_RES_TRM_SERVER_MAX_TIME", 259
"MSK_RES_TRM_STALL", 258
"MSK_RES_TRM_USER_CALLBACK", 259
Warnings, 259
"MSK_RES_WRN_ANA_ALMOST_INT_BOUNDS", 261
"MSK_RES_WRN_ANA_C_ZERO", 261
"MSK_RES_WRN_ANA_CLOSE_BOUNDS", 261
"MSK_RES_WRN_ANA_EMPTY_COLS", 261
"MSK_RES_WRN_ANA_LARGE_BOUNDS", 261
"MSK_RES_WRN_DROPPED_NZ_QOBJ", 260
"MSK_RES_WRN_DUPLICATE_BARVARIABLE_NAMES",

261
"MSK_RES_WRN_DUPLICATE_CONE_NAMES", 261
"MSK_RES_WRN_DUPLICATE_CONSTRAINT_NAMES",

261
"MSK_RES_WRN_DUPLICATE_VARIABLE_NAMES", 261
"MSK_RES_WRN_ELIMINATOR_SPACE", 261
"MSK_RES_WRN_EMPTY_NAME", 260
"MSK_RES_WRN_GETDUAL_IGNORES_INTEGRALITY",

262
"MSK_RES_WRN_IGNORE_INTEGER", 260
"MSK_RES_WRN_INCOMPLETE_LINEAR_DEPENDENCY_CHECK",

261
"MSK_RES_WRN_INVALID_MPS_NAME", 260
"MSK_RES_WRN_INVALID_MPS_OBJ_NAME", 260
"MSK_RES_WRN_LARGE_AIJ", 259
"MSK_RES_WRN_LARGE_BOUND", 259
"MSK_RES_WRN_LARGE_CJ", 259
"MSK_RES_WRN_LARGE_CON_FX", 259
"MSK_RES_WRN_LARGE_FIJ", 262
"MSK_RES_WRN_LARGE_LO_BOUND", 259
"MSK_RES_WRN_LARGE_UP_BOUND", 259
"MSK_RES_WRN_LICENSE_EXPIRE", 260
"MSK_RES_WRN_LICENSE_FEATURE_EXPIRE", 260
"MSK_RES_WRN_LICENSE_SERVER", 260
"MSK_RES_WRN_LP_DROP_VARIABLE", 260
"MSK_RES_WRN_LP_OLD_QUAD_FORMAT", 260
"MSK_RES_WRN_MIO_INFEASIBLE_FINAL", 260
"MSK_RES_WRN_MODIFIED_DOUBLE_PARAMETER",

262
"MSK_RES_WRN_MPS_SPLIT_BOU_VECTOR", 260
"MSK_RES_WRN_MPS_SPLIT_RAN_VECTOR", 260
"MSK_RES_WRN_MPS_SPLIT_RHS_VECTOR", 260
"MSK_RES_WRN_NAME_MAX_LEN", 259
"MSK_RES_WRN_NO_DUALIZER", 262
"MSK_RES_WRN_NO_GLOBAL_OPTIMIZER", 260
"MSK_RES_WRN_NO_INFEASIBILITY_REPORT_WHEN_MATRIX_VARIABLES",

262

"MSK_RES_WRN_NZ_IN_UPR_TRI", 260
"MSK_RES_WRN_OPEN_PARAM_FILE", 259
"MSK_RES_WRN_PARAM_IGNORED_CMIO", 261
"MSK_RES_WRN_PARAM_NAME_DOU", 260
"MSK_RES_WRN_PARAM_NAME_INT", 261
"MSK_RES_WRN_PARAM_NAME_STR", 261
"MSK_RES_WRN_PARAM_STR_VALUE", 261
"MSK_RES_WRN_PRESOLVE_OUTOFSPACE", 261
"MSK_RES_WRN_PRESOLVE_PRIMAL_PERTURBATIONS",

261
"MSK_RES_WRN_PTF_UNKNOWN_SECTION", 262
"MSK_RES_WRN_SOL_FILE_IGNORED_CON", 260
"MSK_RES_WRN_SOL_FILE_IGNORED_VAR", 260
"MSK_RES_WRN_SOL_FILTER", 260
"MSK_RES_WRN_SPAR_MAX_LEN", 259
"MSK_RES_WRN_SYM_MAT_LARGE", 262
"MSK_RES_WRN_TOO_FEW_BASIS_VARS", 260
"MSK_RES_WRN_TOO_MANY_BASIS_VARS", 260
"MSK_RES_WRN_UNDEF_SOL_FILE_NAME", 260
"MSK_RES_WRN_USING_GENERIC_NAMES", 260
"MSK_RES_WRN_WRITE_CHANGED_NAMES", 261
"MSK_RES_WRN_WRITE_DISCARDED_CFIX", 261
"MSK_RES_WRN_ZERO_AIJ", 259
"MSK_RES_WRN_ZEROS_IN_SPARSE_COL", 261
"MSK_RES_WRN_ZEROS_IN_SPARSE_ROW", 261
Errors, 262
"MSK_RES_ERR_ACC_AFE_DOMAIN_MISMATCH", 281
"MSK_RES_ERR_ACC_INVALID_ENTRY_INDEX", 281
"MSK_RES_ERR_ACC_INVALID_INDEX", 281
"MSK_RES_ERR_AD_INVALID_CODELIST", 275
"MSK_RES_ERR_AFE_INVALID_INDEX", 281
"MSK_RES_ERR_API_ARRAY_TOO_SMALL", 275
"MSK_RES_ERR_API_CB_CONNECT", 275
"MSK_RES_ERR_API_FATAL_ERROR", 275
"MSK_RES_ERR_API_INTERNAL", 275
"MSK_RES_ERR_APPENDING_TOO_BIG_CONE", 271
"MSK_RES_ERR_ARG_IS_TOO_LARGE", 269
"MSK_RES_ERR_ARG_IS_TOO_SMALL", 269
"MSK_RES_ERR_ARGUMENT_DIMENSION", 268
"MSK_RES_ERR_ARGUMENT_IS_TOO_LARGE", 277
"MSK_RES_ERR_ARGUMENT_IS_TOO_SMALL", 277
"MSK_RES_ERR_ARGUMENT_LENNEQ", 268
"MSK_RES_ERR_ARGUMENT_PERM_ARRAY", 271
"MSK_RES_ERR_ARGUMENT_TYPE", 268
"MSK_RES_ERR_AXIS_NAME_SPECIFICATION", 265
"MSK_RES_ERR_BAR_VAR_DIM", 276
"MSK_RES_ERR_BASIS", 270
"MSK_RES_ERR_BASIS_FACTOR", 274
"MSK_RES_ERR_BASIS_SINGULAR", 274
"MSK_RES_ERR_BLANK_NAME", 264
"MSK_RES_ERR_CBF_DUPLICATE_ACOORD", 278
"MSK_RES_ERR_CBF_DUPLICATE_BCOORD", 278
"MSK_RES_ERR_CBF_DUPLICATE_CON", 278
"MSK_RES_ERR_CBF_DUPLICATE_INT", 278
"MSK_RES_ERR_CBF_DUPLICATE_OBJ", 278
"MSK_RES_ERR_CBF_DUPLICATE_OBJACOORD", 278
"MSK_RES_ERR_CBF_DUPLICATE_POW_CONES", 278

394

"MSK_RES_ERR_CBF_DUPLICATE_POW_STAR_CONES",
278

"MSK_RES_ERR_CBF_DUPLICATE_PSDCON", 279
"MSK_RES_ERR_CBF_DUPLICATE_PSDVAR", 278
"MSK_RES_ERR_CBF_DUPLICATE_VAR", 278
"MSK_RES_ERR_CBF_EXPECTED_A_KEYWORD", 279
"MSK_RES_ERR_CBF_INVALID_CON_TYPE", 278
"MSK_RES_ERR_CBF_INVALID_DIMENSION_OF_CONES",

279
"MSK_RES_ERR_CBF_INVALID_DIMENSION_OF_PSDCON",

279
"MSK_RES_ERR_CBF_INVALID_DOMAIN_DIMENSION",

278
"MSK_RES_ERR_CBF_INVALID_EXP_DIMENSION",

278
"MSK_RES_ERR_CBF_INVALID_INT_INDEX", 278
"MSK_RES_ERR_CBF_INVALID_NUM_ACOORD", 279
"MSK_RES_ERR_CBF_INVALID_NUM_BCOORD", 279
"MSK_RES_ERR_CBF_INVALID_NUM_DCOORD", 279
"MSK_RES_ERR_CBF_INVALID_NUM_FCOORD", 279
"MSK_RES_ERR_CBF_INVALID_NUM_HCOORD", 279
"MSK_RES_ERR_CBF_INVALID_NUM_OBJACOORD",

279
"MSK_RES_ERR_CBF_INVALID_NUM_OBJFCOORD",

279
"MSK_RES_ERR_CBF_INVALID_NUM_PSDCON", 279
"MSK_RES_ERR_CBF_INVALID_NUMBER_OF_CONES",

279
"MSK_RES_ERR_CBF_INVALID_POWER", 278
"MSK_RES_ERR_CBF_INVALID_POWER_CONE_INDEX",

278
"MSK_RES_ERR_CBF_INVALID_POWER_STAR_CONE_INDEX",

279
"MSK_RES_ERR_CBF_INVALID_PSDCON_BLOCK_INDEX",

279
"MSK_RES_ERR_CBF_INVALID_PSDCON_INDEX", 279
"MSK_RES_ERR_CBF_INVALID_PSDCON_VARIABLE_INDEX",

279
"MSK_RES_ERR_CBF_INVALID_PSDVAR_DIMENSION",

278
"MSK_RES_ERR_CBF_INVALID_VAR_TYPE", 278
"MSK_RES_ERR_CBF_NO_VARIABLES", 277
"MSK_RES_ERR_CBF_NO_VERSION_SPECIFIED", 277
"MSK_RES_ERR_CBF_OBJ_SENSE", 277
"MSK_RES_ERR_CBF_PARSE", 277
"MSK_RES_ERR_CBF_POWER_CONE_IS_TOO_LONG",

278
"MSK_RES_ERR_CBF_POWER_CONE_MISMATCH", 279
"MSK_RES_ERR_CBF_POWER_STAR_CONE_MISMATCH",

279
"MSK_RES_ERR_CBF_SYNTAX", 278
"MSK_RES_ERR_CBF_TOO_FEW_CONSTRAINTS", 278
"MSK_RES_ERR_CBF_TOO_FEW_INTS", 278
"MSK_RES_ERR_CBF_TOO_FEW_PSDVAR", 278
"MSK_RES_ERR_CBF_TOO_FEW_VARIABLES", 278
"MSK_RES_ERR_CBF_TOO_MANY_CONSTRAINTS", 277
"MSK_RES_ERR_CBF_TOO_MANY_INTS", 278
"MSK_RES_ERR_CBF_TOO_MANY_VARIABLES", 277

"MSK_RES_ERR_CBF_UNHANDLED_POWER_CONE_TYPE",
279

"MSK_RES_ERR_CBF_UNHANDLED_POWER_STAR_CONE_TYPE",
279

"MSK_RES_ERR_CBF_UNSUPPORTED", 278
"MSK_RES_ERR_CBF_UNSUPPORTED_CHANGE", 279
"MSK_RES_ERR_CON_Q_NOT_NSD", 271
"MSK_RES_ERR_CON_Q_NOT_PSD", 271
"MSK_RES_ERR_CONE_INDEX", 271
"MSK_RES_ERR_CONE_OVERLAP", 271
"MSK_RES_ERR_CONE_OVERLAP_APPEND", 271
"MSK_RES_ERR_CONE_PARAMETER", 271
"MSK_RES_ERR_CONE_REP_VAR", 271
"MSK_RES_ERR_CONE_SIZE", 271
"MSK_RES_ERR_CONE_TYPE", 271
"MSK_RES_ERR_CONE_TYPE_STR", 271
"MSK_RES_ERR_DATA_FILE_EXT", 264
"MSK_RES_ERR_DIMENSION_SPECIFICATION", 265
"MSK_RES_ERR_DJC_AFE_DOMAIN_MISMATCH", 281
"MSK_RES_ERR_DJC_DOMAIN_TERMSIZE_MISMATCH",

281
"MSK_RES_ERR_DJC_INVALID_INDEX", 281
"MSK_RES_ERR_DJC_INVALID_TERM_SIZE", 281
"MSK_RES_ERR_DJC_TOTAL_NUM_TERMS_MISMATCH",

281
"MSK_RES_ERR_DJC_UNSUPPORTED_DOMAIN_TYPE",

281
"MSK_RES_ERR_DOMAIN_DIMENSION", 280
"MSK_RES_ERR_DOMAIN_DIMENSION_PSD", 280
"MSK_RES_ERR_DOMAIN_INVALID_INDEX", 280
"MSK_RES_ERR_DOMAIN_POWER_INVALID_ALPHA",

281
"MSK_RES_ERR_DOMAIN_POWER_NEGATIVE_ALPHA",

281
"MSK_RES_ERR_DOMAIN_POWER_NLEFT", 281
"MSK_RES_ERR_DUP_NAME", 264
"MSK_RES_ERR_DUPLICATE_AIJ", 272
"MSK_RES_ERR_DUPLICATE_BARVARIABLE_NAMES",

276
"MSK_RES_ERR_DUPLICATE_CONE_NAMES", 276
"MSK_RES_ERR_DUPLICATE_CONSTRAINT_NAMES",

276
"MSK_RES_ERR_DUPLICATE_DJC_NAMES", 276
"MSK_RES_ERR_DUPLICATE_DOMAIN_NAMES", 276
"MSK_RES_ERR_DUPLICATE_FIJ", 280
"MSK_RES_ERR_DUPLICATE_INDEX_IN_A_SPARSE_MATRIX",

280
"MSK_RES_ERR_DUPLICATE_INDEX_IN_AFEIDX_LIST",

280
"MSK_RES_ERR_DUPLICATE_VARIABLE_NAMES", 276
"MSK_RES_ERR_END_OF_FILE", 264
"MSK_RES_ERR_FACTOR", 274
"MSK_RES_ERR_FEASREPAIR_CANNOT_RELAX", 274
"MSK_RES_ERR_FEASREPAIR_INCONSISTENT_BOUND",

274
"MSK_RES_ERR_FEASREPAIR_SOLVING_RELAXED",

274
"MSK_RES_ERR_FILE_LICENSE", 262

395

"MSK_RES_ERR_FILE_OPEN", 263
"MSK_RES_ERR_FILE_READ", 264
"MSK_RES_ERR_FILE_WRITE", 264
"MSK_RES_ERR_FINAL_SOLUTION", 273
"MSK_RES_ERR_FIRST", 273
"MSK_RES_ERR_FIRSTI", 270
"MSK_RES_ERR_FIRSTJ", 270
"MSK_RES_ERR_FIXED_BOUND_VALUES", 272
"MSK_RES_ERR_FLEXLM", 262
"MSK_RES_ERR_FORMAT_STRING", 264
"MSK_RES_ERR_GETDUAL_NOT_AVAILABLE", 280
"MSK_RES_ERR_GLOBAL_INV_CONIC_PROBLEM", 273
"MSK_RES_ERR_HUGE_AIJ", 272
"MSK_RES_ERR_HUGE_C", 272
"MSK_RES_ERR_HUGE_FIJ", 280
"MSK_RES_ERR_IDENTICAL_TASKS", 275
"MSK_RES_ERR_IN_ARGUMENT", 268
"MSK_RES_ERR_INDEX", 269
"MSK_RES_ERR_INDEX_ARR_IS_TOO_LARGE", 268
"MSK_RES_ERR_INDEX_ARR_IS_TOO_SMALL", 268
"MSK_RES_ERR_INDEX_IS_NOT_UNIQUE", 268
"MSK_RES_ERR_INDEX_IS_TOO_LARGE", 268
"MSK_RES_ERR_INDEX_IS_TOO_SMALL", 268
"MSK_RES_ERR_INF_DOU_INDEX", 268
"MSK_RES_ERR_INF_DOU_NAME", 269
"MSK_RES_ERR_INF_IN_DOUBLE_DATA", 272
"MSK_RES_ERR_INF_INT_INDEX", 268
"MSK_RES_ERR_INF_INT_NAME", 269
"MSK_RES_ERR_INF_LINT_INDEX", 269
"MSK_RES_ERR_INF_LINT_NAME", 269
"MSK_RES_ERR_INF_TYPE", 269
"MSK_RES_ERR_INFEAS_UNDEFINED", 276
"MSK_RES_ERR_INFINITE_BOUND", 272
"MSK_RES_ERR_INT64_TO_INT32_CAST", 275
"MSK_RES_ERR_INTERNAL", 275
"MSK_RES_ERR_INTERNAL_TEST_FAILED", 275
"MSK_RES_ERR_INV_APTRE", 269
"MSK_RES_ERR_INV_BK", 270
"MSK_RES_ERR_INV_BKC", 270
"MSK_RES_ERR_INV_BKX", 270
"MSK_RES_ERR_INV_CONE_TYPE", 270
"MSK_RES_ERR_INV_CONE_TYPE_STR", 270
"MSK_RES_ERR_INV_DINF", 270
"MSK_RES_ERR_INV_IINF", 270
"MSK_RES_ERR_INV_LIINF", 270
"MSK_RES_ERR_INV_MARKI", 274
"MSK_RES_ERR_INV_MARKJ", 274
"MSK_RES_ERR_INV_NAME_ITEM", 270
"MSK_RES_ERR_INV_NUMI", 274
"MSK_RES_ERR_INV_NUMJ", 274
"MSK_RES_ERR_INV_OPTIMIZER", 273
"MSK_RES_ERR_INV_PROBLEM", 273
"MSK_RES_ERR_INV_QCON_SUBI", 272
"MSK_RES_ERR_INV_QCON_SUBJ", 272
"MSK_RES_ERR_INV_QCON_SUBK", 272
"MSK_RES_ERR_INV_QCON_VAL", 272
"MSK_RES_ERR_INV_QOBJ_SUBI", 272
"MSK_RES_ERR_INV_QOBJ_SUBJ", 272

"MSK_RES_ERR_INV_QOBJ_VAL", 272
"MSK_RES_ERR_INV_RESCODE", 270
"MSK_RES_ERR_INV_SK", 270
"MSK_RES_ERR_INV_SK_STR", 270
"MSK_RES_ERR_INV_SKC", 270
"MSK_RES_ERR_INV_SKN", 270
"MSK_RES_ERR_INV_SKX", 270
"MSK_RES_ERR_INV_VAR_TYPE", 270
"MSK_RES_ERR_INVALID_AIJ", 273
"MSK_RES_ERR_INVALID_B", 280
"MSK_RES_ERR_INVALID_BARVAR_NAME", 265
"MSK_RES_ERR_INVALID_CFIX", 273
"MSK_RES_ERR_INVALID_CJ", 273
"MSK_RES_ERR_INVALID_COMPRESSION", 274
"MSK_RES_ERR_INVALID_CON_NAME", 264
"MSK_RES_ERR_INVALID_CONE_NAME", 264
"MSK_RES_ERR_INVALID_FIJ", 280
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_AFFINE_CONIC_CONSTRAINTS",

276
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_CFIX",

276
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_CONES",

276
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_DISJUNCTIVE_CONSTRAINTS",

276
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_FREE_CONSTRAINTS",

276
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_NONLINEAR",

276
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_QUADRATIC_TERMS",

276
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_RANGED_CONSTRAINTS",

276
"MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_SYM_MAT",

276
"MSK_RES_ERR_INVALID_FILE_NAME", 264
"MSK_RES_ERR_INVALID_FORMAT_TYPE", 270
"MSK_RES_ERR_INVALID_G", 280
"MSK_RES_ERR_INVALID_IDX", 269
"MSK_RES_ERR_INVALID_IOMODE", 274
"MSK_RES_ERR_INVALID_MAX_NUM", 269
"MSK_RES_ERR_INVALID_NAME_IN_SOL_FILE", 267
"MSK_RES_ERR_INVALID_OBJ_NAME", 264
"MSK_RES_ERR_INVALID_OBJECTIVE_SENSE", 272
"MSK_RES_ERR_INVALID_PROBLEM_TYPE", 277
"MSK_RES_ERR_INVALID_SOL_FILE_NAME", 264
"MSK_RES_ERR_INVALID_STREAM", 264
"MSK_RES_ERR_INVALID_SURPLUS", 270
"MSK_RES_ERR_INVALID_SYM_MAT_DIM", 276
"MSK_RES_ERR_INVALID_TASK", 264
"MSK_RES_ERR_INVALID_UTF8", 275
"MSK_RES_ERR_INVALID_VAR_NAME", 264
"MSK_RES_ERR_INVALID_WCHAR", 275
"MSK_RES_ERR_INVALID_WHICHSOL", 269
"MSK_RES_ERR_JSON_DATA", 267
"MSK_RES_ERR_JSON_FORMAT", 267
"MSK_RES_ERR_JSON_MISSING_DATA", 267
"MSK_RES_ERR_JSON_NUMBER_OVERFLOW", 267

396

"MSK_RES_ERR_JSON_STRING", 267
"MSK_RES_ERR_JSON_SYNTAX", 267
"MSK_RES_ERR_LAST", 273
"MSK_RES_ERR_LASTI", 270
"MSK_RES_ERR_LASTJ", 271
"MSK_RES_ERR_LAU_ARG_K", 277
"MSK_RES_ERR_LAU_ARG_M", 277
"MSK_RES_ERR_LAU_ARG_N", 277
"MSK_RES_ERR_LAU_ARG_TRANS", 277
"MSK_RES_ERR_LAU_ARG_TRANSA", 277
"MSK_RES_ERR_LAU_ARG_TRANSB", 277
"MSK_RES_ERR_LAU_ARG_UPLO", 277
"MSK_RES_ERR_LAU_INVALID_LOWER_TRIANGULAR_MATRIX",

277
"MSK_RES_ERR_LAU_INVALID_SPARSE_SYMMETRIC_MATRIX",

277
"MSK_RES_ERR_LAU_NOT_POSITIVE_DEFINITE",

277
"MSK_RES_ERR_LAU_SINGULAR_MATRIX", 277
"MSK_RES_ERR_LAU_UNKNOWN", 277
"MSK_RES_ERR_LICENSE", 262
"MSK_RES_ERR_LICENSE_CANNOT_ALLOCATE", 263
"MSK_RES_ERR_LICENSE_CANNOT_CONNECT", 263
"MSK_RES_ERR_LICENSE_EXPIRED", 262
"MSK_RES_ERR_LICENSE_FEATURE", 263
"MSK_RES_ERR_LICENSE_INVALID_HOSTID", 263
"MSK_RES_ERR_LICENSE_MAX", 262
"MSK_RES_ERR_LICENSE_MOSEKLM_DAEMON", 263
"MSK_RES_ERR_LICENSE_NO_SERVER_LINE", 263
"MSK_RES_ERR_LICENSE_NO_SERVER_SUPPORT",

263
"MSK_RES_ERR_LICENSE_OLD_SERVER_VERSION",

262
"MSK_RES_ERR_LICENSE_SERVER", 262
"MSK_RES_ERR_LICENSE_SERVER_VERSION", 263
"MSK_RES_ERR_LICENSE_VERSION", 262
"MSK_RES_ERR_LINK_FILE_DLL", 263
"MSK_RES_ERR_LIVING_TASKS", 264
"MSK_RES_ERR_LOWER_BOUND_IS_A_NAN", 272
"MSK_RES_ERR_LP_AMBIGUOUS_CONSTRAINT_BOUND",

267
"MSK_RES_ERR_LP_DUPLICATE_SECTION", 267
"MSK_RES_ERR_LP_EMPTY", 267
"MSK_RES_ERR_LP_EXPECTED_CONSTRAINT_RELATION",

267
"MSK_RES_ERR_LP_EXPECTED_NUMBER", 267
"MSK_RES_ERR_LP_EXPECTED_OBJECTIVE", 267
"MSK_RES_ERR_LP_FILE_FORMAT", 267
"MSK_RES_ERR_LP_INDICATOR_VAR", 267
"MSK_RES_ERR_LP_INVALID_VAR_NAME", 267
"MSK_RES_ERR_LU_MAX_NUM_TRIES", 274
"MSK_RES_ERR_MAX_LEN_IS_TOO_SMALL", 271
"MSK_RES_ERR_MAXNUMBARVAR", 269
"MSK_RES_ERR_MAXNUMCON", 269
"MSK_RES_ERR_MAXNUMCONE", 271
"MSK_RES_ERR_MAXNUMQNZ", 269
"MSK_RES_ERR_MAXNUMVAR", 269
"MSK_RES_ERR_MIO_INTERNAL", 277

"MSK_RES_ERR_MIO_INVALID_NODE_OPTIMIZER",
279

"MSK_RES_ERR_MIO_INVALID_ROOT_OPTIMIZER",
279

"MSK_RES_ERR_MIO_NO_OPTIMIZER", 273
"MSK_RES_ERR_MISMATCHING_DIMENSION", 264
"MSK_RES_ERR_MISSING_LICENSE_FILE", 262
"MSK_RES_ERR_MIXED_CONIC_AND_NL", 273
"MSK_RES_ERR_MPS_CONE_OVERLAP", 266
"MSK_RES_ERR_MPS_CONE_REPEAT", 266
"MSK_RES_ERR_MPS_CONE_TYPE", 266
"MSK_RES_ERR_MPS_DUPLICATE_Q_ELEMENT", 266
"MSK_RES_ERR_MPS_FILE", 265
"MSK_RES_ERR_MPS_INV_FIELD", 265
"MSK_RES_ERR_MPS_INV_MARKER", 265
"MSK_RES_ERR_MPS_INV_SEC_ORDER", 266
"MSK_RES_ERR_MPS_INVALID_BOUND_KEY", 265
"MSK_RES_ERR_MPS_INVALID_CON_KEY", 265
"MSK_RES_ERR_MPS_INVALID_INDICATOR_CONSTRAINT",

266
"MSK_RES_ERR_MPS_INVALID_INDICATOR_QUADRATIC_CONSTRAINT",

266
"MSK_RES_ERR_MPS_INVALID_INDICATOR_VALUE",

266
"MSK_RES_ERR_MPS_INVALID_INDICATOR_VARIABLE",

266
"MSK_RES_ERR_MPS_INVALID_KEY", 266
"MSK_RES_ERR_MPS_INVALID_OBJ_NAME", 266
"MSK_RES_ERR_MPS_INVALID_OBJSENSE", 266
"MSK_RES_ERR_MPS_INVALID_SEC_NAME", 265
"MSK_RES_ERR_MPS_MUL_CON_NAME", 265
"MSK_RES_ERR_MPS_MUL_CSEC", 266
"MSK_RES_ERR_MPS_MUL_QOBJ", 266
"MSK_RES_ERR_MPS_MUL_QSEC", 265
"MSK_RES_ERR_MPS_NO_OBJECTIVE", 265
"MSK_RES_ERR_MPS_NON_SYMMETRIC_Q", 266
"MSK_RES_ERR_MPS_NULL_CON_NAME", 265
"MSK_RES_ERR_MPS_NULL_VAR_NAME", 265
"MSK_RES_ERR_MPS_SPLITTED_VAR", 265
"MSK_RES_ERR_MPS_TAB_IN_FIELD2", 266
"MSK_RES_ERR_MPS_TAB_IN_FIELD3", 266
"MSK_RES_ERR_MPS_TAB_IN_FIELD5", 266
"MSK_RES_ERR_MPS_UNDEF_CON_NAME", 265
"MSK_RES_ERR_MPS_UNDEF_VAR_NAME", 265
"MSK_RES_ERR_MPS_WRITE_CPLEX_INVALID_CONE_TYPE",

279
"MSK_RES_ERR_MUL_A_ELEMENT", 270
"MSK_RES_ERR_NAME_IS_NULL", 274
"MSK_RES_ERR_NAME_MAX_LEN", 274
"MSK_RES_ERR_NAN_IN_BLC", 273
"MSK_RES_ERR_NAN_IN_BLX", 273
"MSK_RES_ERR_NAN_IN_BUC", 273
"MSK_RES_ERR_NAN_IN_BUX", 273
"MSK_RES_ERR_NAN_IN_C", 273
"MSK_RES_ERR_NAN_IN_DOUBLE_DATA", 272
"MSK_RES_ERR_NEGATIVE_APPEND", 273
"MSK_RES_ERR_NEGATIVE_SURPLUS", 273
"MSK_RES_ERR_NEWER_DLL", 263

397

"MSK_RES_ERR_NO_BARS_FOR_SOLUTION", 276
"MSK_RES_ERR_NO_BARX_FOR_SOLUTION", 276
"MSK_RES_ERR_NO_BASIS_SOL", 273
"MSK_RES_ERR_NO_DOTY", 281
"MSK_RES_ERR_NO_DUAL_FOR_ITG_SOL", 275
"MSK_RES_ERR_NO_DUAL_INFEAS_CER", 274
"MSK_RES_ERR_NO_INIT_ENV", 264
"MSK_RES_ERR_NO_OPTIMIZER_VAR_TYPE", 273
"MSK_RES_ERR_NO_PRIMAL_INFEAS_CER", 274
"MSK_RES_ERR_NO_SNX_FOR_BAS_SOL", 275
"MSK_RES_ERR_NO_SOLUTION_IN_CALLBACK", 274
"MSK_RES_ERR_NON_UNIQUE_ARRAY", 277
"MSK_RES_ERR_NONCONVEX", 271
"MSK_RES_ERR_NONLINEAR_EQUALITY", 271
"MSK_RES_ERR_NONLINEAR_RANGED", 271
"MSK_RES_ERR_NOT_POWER_DOMAIN", 281
"MSK_RES_ERR_NULL_ENV", 264
"MSK_RES_ERR_NULL_POINTER", 264
"MSK_RES_ERR_NULL_TASK", 264
"MSK_RES_ERR_NUM_ARGUMENTS", 268
"MSK_RES_ERR_NUMCONLIM", 269
"MSK_RES_ERR_NUMVARLIM", 269
"MSK_RES_ERR_OBJ_Q_NOT_NSD", 271
"MSK_RES_ERR_OBJ_Q_NOT_PSD", 271
"MSK_RES_ERR_OBJECTIVE_RANGE", 270
"MSK_RES_ERR_OLDER_DLL", 263
"MSK_RES_ERR_OPF_DUAL_INTEGER_SOLUTION",

267
"MSK_RES_ERR_OPF_DUPLICATE_BOUND", 266
"MSK_RES_ERR_OPF_DUPLICATE_CONE_ENTRY", 267
"MSK_RES_ERR_OPF_DUPLICATE_CONSTRAINT_NAME",

266
"MSK_RES_ERR_OPF_INCORRECT_TAG_PARAM", 266
"MSK_RES_ERR_OPF_INVALID_CONE_TYPE", 266
"MSK_RES_ERR_OPF_INVALID_TAG", 266
"MSK_RES_ERR_OPF_MISMATCHED_TAG", 266
"MSK_RES_ERR_OPF_PREMATURE_EOF", 266
"MSK_RES_ERR_OPF_SYNTAX", 266
"MSK_RES_ERR_OPF_TOO_LARGE", 267
"MSK_RES_ERR_OPTIMIZER_LICENSE", 262
"MSK_RES_ERR_OVERFLOW", 273
"MSK_RES_ERR_PARAM_INDEX", 268
"MSK_RES_ERR_PARAM_IS_TOO_LARGE", 268
"MSK_RES_ERR_PARAM_IS_TOO_SMALL", 268
"MSK_RES_ERR_PARAM_NAME", 268
"MSK_RES_ERR_PARAM_NAME_DOU", 268
"MSK_RES_ERR_PARAM_NAME_INT", 268
"MSK_RES_ERR_PARAM_NAME_STR", 268
"MSK_RES_ERR_PARAM_TYPE", 268
"MSK_RES_ERR_PARAM_VALUE_STR", 268
"MSK_RES_ERR_PLATFORM_NOT_LICENSED", 263
"MSK_RES_ERR_POSTSOLVE", 273
"MSK_RES_ERR_PRO_ITEM", 270
"MSK_RES_ERR_PROB_LICENSE", 262
"MSK_RES_ERR_PTF_FORMAT", 268
"MSK_RES_ERR_PTF_INCOMPATIBILITY", 268
"MSK_RES_ERR_PTF_INCONSISTENCY", 268
"MSK_RES_ERR_PTF_UNDEFINED_ITEM", 268

"MSK_RES_ERR_QCON_SUBI_TOO_LARGE", 272
"MSK_RES_ERR_QCON_SUBI_TOO_SMALL", 272
"MSK_RES_ERR_QCON_UPPER_TRIANGLE", 272
"MSK_RES_ERR_QOBJ_UPPER_TRIANGLE", 272
"MSK_RES_ERR_READ_ASYNC", 264
"MSK_RES_ERR_READ_FORMAT", 265
"MSK_RES_ERR_READ_GZIP", 264
"MSK_RES_ERR_READ_LP_DELAYED_ROWS_NOT_SUPPORTED",

267
"MSK_RES_ERR_READ_LP_MISSING_END_TAG", 267
"MSK_RES_ERR_READ_PREMATURE_EOF", 265
"MSK_RES_ERR_READ_WRITE", 274
"MSK_RES_ERR_READ_ZSTD", 264
"MSK_RES_ERR_REMOVE_CONE_VARIABLE", 271
"MSK_RES_ERR_REPAIR_INVALID_PROBLEM", 274
"MSK_RES_ERR_REPAIR_OPTIMIZATION_FAILED",

274
"MSK_RES_ERR_SEN_BOUND_INVALID_LO", 275
"MSK_RES_ERR_SEN_BOUND_INVALID_UP", 275
"MSK_RES_ERR_SEN_FORMAT", 275
"MSK_RES_ERR_SEN_INDEX_INVALID", 275
"MSK_RES_ERR_SEN_INDEX_RANGE", 275
"MSK_RES_ERR_SEN_INVALID_REGEXP", 275
"MSK_RES_ERR_SEN_NUMERICAL", 275
"MSK_RES_ERR_SEN_SOLUTION_STATUS", 275
"MSK_RES_ERR_SEN_UNDEF_NAME", 275
"MSK_RES_ERR_SEN_UNHANDLED_PROBLEM_TYPE",

275
"MSK_RES_ERR_SERVER_ACCESS_TOKEN", 280
"MSK_RES_ERR_SERVER_ADDRESS", 280
"MSK_RES_ERR_SERVER_CERTIFICATE", 280
"MSK_RES_ERR_SERVER_CONNECT", 280
"MSK_RES_ERR_SERVER_HARD_TIMEOUT", 280
"MSK_RES_ERR_SERVER_PROBLEM_SIZE", 280
"MSK_RES_ERR_SERVER_PROTOCOL", 280
"MSK_RES_ERR_SERVER_STATUS", 280
"MSK_RES_ERR_SERVER_TLS_CLIENT", 280
"MSK_RES_ERR_SERVER_TOKEN", 280
"MSK_RES_ERR_SHAPE_IS_TOO_LARGE", 268
"MSK_RES_ERR_SIZE_LICENSE", 262
"MSK_RES_ERR_SIZE_LICENSE_CON", 262
"MSK_RES_ERR_SIZE_LICENSE_INTVAR", 262
"MSK_RES_ERR_SIZE_LICENSE_VAR", 262
"MSK_RES_ERR_SLICE_SIZE", 273
"MSK_RES_ERR_SOL_FILE_INVALID_NUMBER", 271
"MSK_RES_ERR_SOLITEM", 269
"MSK_RES_ERR_SOLVER_PROBTYPE", 270
"MSK_RES_ERR_SPACE", 263
"MSK_RES_ERR_SPACE_LEAKING", 265
"MSK_RES_ERR_SPACE_NO_INFO", 265
"MSK_RES_ERR_SPARSITY_SPECIFICATION", 264
"MSK_RES_ERR_SYM_MAT_DUPLICATE", 276
"MSK_RES_ERR_SYM_MAT_HUGE", 273
"MSK_RES_ERR_SYM_MAT_INVALID", 273
"MSK_RES_ERR_SYM_MAT_INVALID_COL_INDEX",

276
"MSK_RES_ERR_SYM_MAT_INVALID_ROW_INDEX",

276

398

"MSK_RES_ERR_SYM_MAT_INVALID_VALUE", 276
"MSK_RES_ERR_SYM_MAT_NOT_LOWER_TRINGULAR",

276
"MSK_RES_ERR_TASK_INCOMPATIBLE", 274
"MSK_RES_ERR_TASK_INVALID", 274
"MSK_RES_ERR_TASK_PREMATURE_EOF", 274
"MSK_RES_ERR_TASK_WRITE", 274
"MSK_RES_ERR_THREAD_COND_INIT", 263
"MSK_RES_ERR_THREAD_CREATE", 263
"MSK_RES_ERR_THREAD_MUTEX_INIT", 263
"MSK_RES_ERR_THREAD_MUTEX_LOCK", 263
"MSK_RES_ERR_THREAD_MUTEX_UNLOCK", 263
"MSK_RES_ERR_TOCONIC_CONSTR_NOT_CONIC", 280
"MSK_RES_ERR_TOCONIC_CONSTR_Q_NOT_PSD", 279
"MSK_RES_ERR_TOCONIC_CONSTRAINT_FX", 280
"MSK_RES_ERR_TOCONIC_CONSTRAINT_RA", 280
"MSK_RES_ERR_TOCONIC_OBJECTIVE_NOT_PSD",

280
"MSK_RES_ERR_TOO_SMALL_A_TRUNCATION_VALUE",

272
"MSK_RES_ERR_TOO_SMALL_MAX_NUM_NZ", 269
"MSK_RES_ERR_TOO_SMALL_MAXNUMANZ", 269
"MSK_RES_ERR_UNALLOWED_WHICHSOL", 269
"MSK_RES_ERR_UNB_STEP_SIZE", 275
"MSK_RES_ERR_UNDEF_SOLUTION", 281
"MSK_RES_ERR_UNDEFINED_OBJECTIVE_SENSE",

272
"MSK_RES_ERR_UNHANDLED_SOLUTION_STATUS",

277
"MSK_RES_ERR_UNKNOWN", 263
"MSK_RES_ERR_UPPER_BOUND_IS_A_NAN", 272
"MSK_RES_ERR_UPPER_TRIANGLE", 277
"MSK_RES_ERR_WHICHITEM_NOT_ALLOWED", 269
"MSK_RES_ERR_WHICHSOL", 269
"MSK_RES_ERR_WRITE_ASYNC", 267
"MSK_RES_ERR_WRITE_LP_DUPLICATE_CON_NAMES",

265
"MSK_RES_ERR_WRITE_LP_DUPLICATE_VAR_NAMES",

265
"MSK_RES_ERR_WRITE_LP_INVALID_CON_NAMES",

265
"MSK_RES_ERR_WRITE_LP_INVALID_VAR_NAMES",

265
"MSK_RES_ERR_WRITE_MPS_INVALID_NAME", 267
"MSK_RES_ERR_WRITE_OPF_INVALID_VAR_NAME",

267
"MSK_RES_ERR_WRITING_FILE", 267
"MSK_RES_ERR_Y_IS_UNDEFINED", 272

Structures
accs, 181
bara, 182
barc, 181
barf, 182
callback, 183
cones, 181
duasen, 183
names, 181

optserver, 184
primal_repair, 183
prisen, 183
prisen_data, 183
prob, 179
res, 180
solution, 180
solver_solutions, 180

399

Index

A
affine conic constraint, 20
analysis

infeasibility, 156
asset, see portfolio optimization

B
basic

solution, 52
basis identification, 135
basis type

sensitivity analysis, 162
big-M, 153
bound

constraint, 17, 119, 122, 126
linear optimization, 17
variable, 17, 119, 122, 126

Branch-and-Bound, 144

C
callback, 60
cardinality constraints, 99
CBF format, 343
certificate, 53

dual, 121, 124
infeasibility, 49
infeasible, 49
primal, 121, 124

Cholesky factorization, 92
complementarity, 120, 124
cone

dual, 123
dual exponential, 27
exponential, 27
power, 25
quadratic, 23
rotated quadratic, 23
semidefinite, 32

conic exponential optimization, 27
conic optimization, 20, 23, 25, 27, 122

interior-point, 139
mixed-integer, 152
termination criteria, 141

conic quadratic optimization, 23
constraint

bound, 17, 119, 122, 126
linear optimization, 17
matrix, 17, 119, 122, 126
quadratic, 127

correlation matrix, 87
covariance matrix, see correlation matrix
cuts, 150
cutting planes, 150

D
determinism, 84
disjunctive constraint, 153
domain, 313
dual

certificate, 121, 124
cone, 123
feasible, 120
infeasible, 120, 121, 124
problem, 120, 123, 127
solution, 54
variable, 120, 123

duality
conic, 123
linear, 120
semidefinite, 127

dualizer, 131

E
efficient frontier, 90
eliminator, 131
error

optimization, 52
errors, 55
example

qo1, 41
quadratic objective, 41

exceptions, 55
exponential cone, 27

F
factor model, 92
feasibility

integer feasibility, 146
feasible

dual, 120
primal, 119, 133, 140
problem, 119

format, 58
CBF, 343
json, 368
LP, 317
MPS, 321
OPF, 333

400

PTF, 361
sol, 374
task, 367

G
geometric programming, 29
GP, 29

H
heuristic, 149
hot-start, 137

I
I/O, 58
infeasibility, 53, 121, 124

analysis, 156
linear optimization, 121
repair, 156
semidefinite, 127

infeasibility certificate, 49
infeasible

dual, 120, 121, 124
primal, 119, 121, 124, 133, 140
problem, 119, 121, 127

information item, 60, 61
installation, 9

path setup, 10
requirements, 9
troubleshooting, 9, 11

integer
solution, 52
variable, 38

integer feasibility, 146
feasibility, 146

integer optimization, 38
initial solution, 39

interior-point
conic optimization, 139
linear optimization, 133
logging, 136, 142
optimizer, 133, 139
solution, 52
termination criteria, 134, 141

J
json format, 368

L
license, 85
linear constraint matrix, 17
linear dependency, 131
linear optimization, 17, 119

bound, 17
constraint, 17
infeasibility, 121
interior-point, 133
objective, 17
simplex, 137

termination criteria, 134, 137
variable, 17

linearity interval, 160
logging, 57

interior-point, 136, 142
mixed-integer optimizer, 147
optimizer, 136, 138, 142
simplex, 138

LP format, 317

M
market impact cost, 95
Markowitz model, 87
matrix

constraint, 17, 119, 122, 126
semidefinite, 32
symmetric, 32

MI(QC)QO, 153
MICO, 152
MIP, see integer optimization
mixed-integer, see integer

conic optimization, 152
optimizer, 143
presolve, 149
quadratic, 153

mixed-integer optimization, see integer opti-
mization, 143

mixed-integer optimizer
logging, 147

modeling
design, 13

MPS format, 321
free, 333

N
numerical issues

presolve, 131
scaling, 132
simplex, 138

O
objective, 119, 122, 126

linear optimization, 17
OPF format, 333
optimal

solution, 53
optimality gap, 145
optimization

conic, 122
conic quadratic, 122
error, 52
linear, 17, 119
semidefinite, 125

optimizer
determinism, 84
interior-point, 133, 139
interrupt, 60
logging, 136, 138, 142

401

mixed-integer, 143
selection, 131, 132
simplex, 137
termination, 145

P
parallelization, 84
parameter, 59

simplex, 138
Pareto optimality, 87
portfolio optimization, 86

cardinality constraints, 99
efficient frontier, 90
factor model, 92
market impact cost, 95
Markowitz model, 87
Pareto optimality, 87
slippage cost, 95
transaction cost, 98

positive semidefinite, 41
power cone, 25
power cone optimization, 25
presolve, 130

eliminator, 131
linear dependency check, 131
mixed-integer, 149
numerical issues, 131

primal
certificate, 121, 124
feasible, 119, 133, 140
infeasible, 119, 121, 124, 133, 140
problem, 120, 123, 127
solution, 54, 119

primal heuristics, 149
primal-dual

problem, 133, 139
solution, 120

problem
dual, 120, 123, 127
feasible, 119
infeasible, 119, 121, 127
load, 59
primal, 120, 123, 127
primal-dual, 133, 139
save, 58
status, 52
unbounded, 121, 125

PTF format, 361

Q
qo1

example, 41
quadratic

constraint, 127
mixed-integer, 153

quadratic cone, 23
quadratic objective

example, 41

quadratic optimization, 127

R
relaxation, 144
repair

infeasibility, 156
response code, 55
rotated quadratic cone, 23

S
scaling, 132
semidefinite

cone, 32
infeasibility, 127
matrix, 32
variable, 32

semidefinite optimization, 32, 125
sensitivity analysis, 160

basis type, 162
shadow price, 160
simplex

linear optimization, 137
logging, 138
numerical issues, 138
optimizer, 137
parameter, 138
termination criteria, 137

slippage cost, 95
sol format, 374
solution

basic, 52
dual, 54
file format, 374
integer, 52
interior-point, 52
optimal, 53
primal, 54, 119
primal-dual, 120
retrieve, 52
status, 53

status
problem, 52
solution, 53

symmetric
matrix, 32

T
task format, 367
termination, 52

optimizer, 145
termination criteria, 60, 145

conic optimization, 141
interior-point, 134, 141
linear optimization, 134, 137
simplex, 137
tolerance, 135, 142

thread, 84
time, 84

402

time limit, 60
timing, 84
tolerance

termination criteria, 135, 142
transaction cost, 98
troubleshooting

installation, 9

U
unbounded

problem, 121, 125
user callback, see callback

V
valid inequalities, 150
variable, 119, 122, 126

bound, 17, 119, 122, 126
dual, 120, 123
integer, 38
linear optimization, 17
semidefinite, 32

403

	Introduction
	Why the Optimization Toolbox for MATLAB?

	Contact Information
	License Agreement
	MOSEK end-user license agreement
	Third party licenses

	Installation
	Testing the installation
	Troubleshooting

	Design Overview
	Modeling
	“Hello World!” in MOSEK

	Optimization Tutorials
	Linear Optimization
	Example LO1

	From Linear to Conic Optimization
	Example AFFCO1
	Example AFFCO2

	Conic Quadratic Optimization
	Example CQO1

	Power Cone Optimization
	Example POW1

	Conic Exponential Optimization
	Example CEO1

	Geometric Programming
	Example GP1

	Semidefinite Optimization
	Example SDO1
	Example SDO2
	Example SDO_LMI: Linear matrix inequalities and the vectorized semidefinite domain

	Integer Optimization
	Example MILO1
	Specifying an initial solution
	Example MICO1

	Quadratic Optimization
	Example: Quadratic Objective
	Example: Quadratic constraints

	Problem Modification and Reoptimization
	Example: Production Planning
	Changing the Linear Constraint Matrix
	Appending Variables
	Appending Constraints
	Changing bounds
	Advanced hot-start

	Retrieving infeasibility certificates
	Example PINFEAS

	Solver Interaction Tutorials
	Accessing the solution
	Solver termination
	Available solutions
	Problem and solution status
	Retrieving solution values
	Source code example

	Errors and exceptions
	Input/Output
	Stream logging
	Log verbosity
	Saving a problem to a file
	Reading a problem from a file

	Setting solver parameters
	Retrieving information items
	Progress and data callback
	Data callback
	Working example: Data callback

	MOSEK OptServer
	Synchronous Remote Optimization

	Debugging Tutorials
	Understanding optimizer log
	Input data
	Solution summary
	Continuous problem

	Mixed-integer problem

	Addressing numerical issues
	Formulating problems
	Further suggestions
	Typical pitfalls

	Debugging infeasibility
	Numerical issues
	Locating primal infeasibility
	Locating dual infeasibility
	Suggestions

	Python Console
	Usage
	Examples
	Full list of commands

	Advanced Numerical Tutorials
	Advanced hot-start
	Initial hot-start
	Adding a new variable
	Fixing a variable
	Adding a new constraint
	Removing a constraint
	Removing a variable

	Technical guidelines
	Integration with MATLAB
	Names
	Timing
	Multithreading
	The license system

	Case Studies
	Portfolio Optimization
	The Basic Model
	The Efficient Frontier
	Factor model and efficiency
	Slippage Cost
	Market Impact Costs
	Transaction Costs
	Cardinality constraints

	Least Squares and Other Norm Minimization Problems
	Least squares, 2-norm
	Ridge regularisation
	Lasso regularization
	p-norm minimization

	Robust linear Optimization
	Introductory Example
	Data Uncertainty and its Consequences.
	Robust Linear Optimization Methodology
	Uncertain Linear Programs and their Robust Counterparts.
	Robust Counterpart of an Uncertain Linear Optimization Problem with Interval Uncertainty
	Introductory Example (continued)

	Random Uncertainty and Ellipsoidal Robust Counterpart
	Example: Interval and Ellipsoidal Robust Counterparts of Uncertain Linear Constraint with Independent Random Perturbations of Coefficients
	Combined Interval-Ellipsoidal Robust Counterpart

	Problem Formulation and Solutions
	Linear Optimization
	Duality for Linear Optimization
	Infeasibility for Linear Optimization
	Primal Infeasible Problems
	Dual Infeasible Problems

	Minimalization vs. Maximalization

	Conic Optimization
	Duality for Conic Optimization
	Infeasibility for Conic Optimization
	Primal Infeasible Problems
	Dual Infeasible Problems

	Minimalization vs. Maximalization

	Semidefinite Optimization
	Quadratic and Quadratically Constrained Optimization
	A Recommendation
	Duality for Quadratic and Quadratically Constrained Optimization
	Infeasibility for Quadratic Optimization

	Optimizers
	Presolve
	Linear Optimization
	Optimizer Selection
	The Interior-point Optimizer
	The homogeneous primal-dual problem
	Interior-point Termination Criterion
	Adjusting optimality criteria
	Basis Identification
	The Interior-point Log

	The Simplex Optimizer
	Simplex Termination Criterion
	Starting From an Existing Solution
	Numerical Difficulties in the Simplex Optimizers
	The Simplex Log

	Conic Optimization - Interior-point optimizer
	The homogeneous primal-dual problem
	Interior-point Termination Criterion
	Adjusting optimality criteria
	The Interior-point Log

	The Optimizer for Mixed-Integer Problems
	Branch-and-Bound
	Solution quality and termination criteria
	Solution quality in terms of optimality
	Solution quality in terms of feasibility
	Further controlling optimizer termination

	The Mixed-Integer Log
	Presolve
	Primal Heuristics
	Cutting Planes
	Restarts
	Block decomposition

	Mixed-Integer Nonlinear Optimization
	MI(QC)QO

	Randomization
	Further performance tweaks

	Additional features
	Problem Analyzer
	Automatic Repair of Infeasible Problems
	Automatic repair
	Using the automatic repair tool

	Sensitivity Analysis
	Sensitivity Analysis for Linear Problems
	The Optimal Objective Value Function
	Equality Constraints

	The Basis Type Sensitivity Analysis
	Example: Sensitivity Analysis

	Sensitivity Analysis with MOSEK
	On bounds
	prisen
	duasen

	Toolbox API Reference
	API conventions
	Command Reference
	Main Interface
	Helper Functions
	Options
	MATLAB Optimization Toolbox Compatible Functions.

	Data Structures and Notation
	Notation
	Data Types and Structures

	Parameters grouped by topic
	Parameters (alphabetical list sorted by type)
	Double parameters
	Integer parameters
	String parameters

	Response codes
	Termination
	Warnings
	Errors

	Enumerations
	Supported domains
	Linear domains
	Quadratic cone domains
	Exponential cone domains
	Power cone domains
	Geometric mean cone domains
	Vectorized semidefinite domain

	Supported File Formats
	The LP File Format
	File Sections
	Objective Function
	Constraints
	Bounds
	Variable Types
	Terminating Section

	LP File Examples
	LP Format peculiarities
	Comments
	Names
	Variable Bounds

	The MPS File Format
	MPS File Structure
	NAME (optional)
	OBJSENSE (optional)
	OBJNAME (optional)
	ROWS
	COLUMNS
	RHS (optional)
	RANGES (optional)
	QSECTION (optional)
	QMATRIX/QUADOBJ (optional)
	QCMATRIX (optional)
	BOUNDS (optional)
	CSECTION (optional)
	ENDATA

	Integer Variables
	General Limitations
	Interpretation of the MPS Format
	The Free MPS Format

	The OPF Format
	The File Format
	Sections
	Numbers
	Names
	Parameters Section
	Writing OPF Files from MOSEK
	Examples
	Linear Example lo1.opf
	Quadratic Example qo1.opf
	Conic Quadratic Example cqo1.opf
	Mixed Integer Example milo1.opf

	The CBF Format
	How Instances Are Specified
	The Structure of CBF Files
	Problem Specification
	File Format Keywords
	VER
	POWCONES
	POW*CONES
	OBJSENSE
	PSDVAR
	VAR
	INT
	PSDCON
	CON
	OBJFCOORD
	OBJACOORD
	OBJBCOORD
	FCOORD
	ACOORD
	BCOORD
	HCOORD
	DCOORD

	CBF Format Examples
	Minimal Working Example
	Mixing Linear, Second-order and Semidefinite Cones
	Mixing Semidefinite Variables and Linear Matrix Inequalities
	The exponential cone
	Parametric cones

	The PTF Format
	The overall format
	Names
	Expressions

	Task section
	Objective section
	Constraints section
	Variables section
	Integer section
	SymmetricMatrixes section
	Solutions section
	Examples

	The Task Format
	The JSON Format
	JTASK Specification
	JSOL Specification
	A jtask example

	The Solution File Format

	List of examples
	Interface changes
	Important changes compared to version 10
	Changes compared to version 10
	Parameters compared to version 10
	Constants compared to version 10
	Response Codes compared to version 10

	Bibliography
	Symbol Index
	Index

