masek

MOSEK Optimization Server
Release 11.0.21

MOSEK ApS

28 May 2025

Contents

1 Introduction
1.1 Why the Optimization Server? e

2 Contact Information

3 License Agreement

3.1 MOSEK end-user license agreement Lo Lo

3.2 Third party licenses L e
4 OptServerLight

4.1 Imstallation 0L

4.2 Testing the installation e
5 Full OptServer

5.1 Dockerfile e

5.2 Installation L e

5.3 Testing the installation L L

6 Testing the installation

6.1 Test connection L L e e e
6.2 Test optimization e e e e e e
6.3 Further tests and usage L L e

7 Overview

7.1 Synchronous Optimization i
7.2 Asynchronous Optimization L e
7.3 With or without the MOSEK API
7.4 Light and full version

8 MOSEK API tutorial

9 REST API tutorials
9.1 Single-call synchronous L
9.2 Synchronous L e e e
9.3 Asynchronous

10 OptServer Reference
10.1 OptServer REST API
10.2 Parameters grouped by topico
10.3 Parameters (alphabetical list sorted by type) o L.
10.4 Response codes. o oL e e e e e e
10.5 Constants o o Lo e e e e

11 Supported File Formats
11.1 The LP File Format e e
11.2 The MPS File Format e
11.3 The OPF Format e
11.4 The CBF Format e e e e

11.5 The PTF Format e e e e e e e e e e e e 204

11.6 The Task Format e e 210
11.7 The JSON Format o e e e e e e e e e e e e 211
11.8 The Solution File Format e e 216
Bibliography 220
Symbol Index 221
Index 229

ii

Chapter 1

Introduction

The MOSEK Optimization Suite 11.0.21 is a powerful software package capable of solving large-scale
optimization problems of the following kind:

e linear,

e conic:

conic quadratic (also known as second-order cone),

involving the exponential cone,

involving the power cone,

semidefinite,
e convex quadratic and quadratically constrained,
e integer.

In order to obtain an overview of features in the MOSEK Optimization Suite consult the product
introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all rela-
tions are linear. The tremendous success of both applications and theory of linear optimization can be
ascribed to the following factors:

e The required data are simple, i.e. just matrices and vectors.

e Convexity is guaranteed since the problem is convex by construction.

e Linear functions are trivially differentiable.

e There exist very efficient algorithms and software for solving linear problems.
e Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the
advantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

Ax —b> 0.
In conic optimization this is replaced with a wider class of constraints

Az —-be K

where KC is a convexr cone. For example in 3 dimensions K may correspond to an ice cream cone. The
conic optimizer in MOSEK supports a number of different types of cones K, which allows a surprisingly
large number of nonlinear relations to be modeled, as described in the MOSEK Modeling Cookbook,
while preserving the nice algorithmic and theoretical properties of linear optimization.

https://docs.mosek.com/11.0/intro/index.html
https://docs.mosek.com/11.0/intro/index.html
https://docs.mosek.com/modeling-cookbook/index.html

1.1 Why the Optimization Server?

The MOSEK OptServer is a simple solver service. It receives optimization tasks, solves them, and
returns solution and log information. A typical application would be offloading heavy computations from
client computers, when the problem is set up, to a remote powerful machine, and returning solutions
back.

The OptServer can be used in a few ways:

e Users of the Optimizer and Fusion API can use the OptServer directly from the API by providing
the server, port number and credentials (if appropriate). This way then can switch between running
the same optimization locally and remotely with no change to the rest of their MOSEK code except
for the optimize or solve call.

e Similarly to the above, but in asynchronous mode, where the local call does not wait for the remote
optimization to terminate. Instead the user should periodically poll the server for a solution.

e Optimization models in standard file formats (MPS, LP, CBF, OPF, MOSEK task) can also be
sent to the server using a REST API over HI'TP or HTTPS and the server returns a file with the
solution.

The documentation of the relevant Optimizer API contains examples of calling the remote server
using the first two API-based methods.

Chapter 2

Contact Information

Phone +45 7174 9373 Office
+45 7174 5700 Sales

Website mosek.com

Email
sales@mosek.com Sales, pricing, and licensing
support@mosek.com Technical support, questions and bug reports
info@mosek.com Everything else.

Mailing Address

MOSEK ApS

Fruebjergvej 3

Symbion Science Park, Box 16
2100 Copenhagen O

Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger https:,
Google Group https:/,
Twitter https:/
Linkedin https:
Youtube https:/

/blog.mosek.com/
'groups.google.com /forum /#!forum /mosek
/twitter.com /mosektw

www.linkedin.com /company/mosek-aps

/www.youtube.com /channel /UCvIyect EVLP31NXeD5mIbEw

In particular Twitter is used for news, updates and release announcements.

https://mosek.com/
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com
https://blog.mosek.com/
https://groups.google.com/forum/#!forum/mosek
https://twitter.com/mosektw
https://www.linkedin.com/company/mosek-aps
https://www.youtube.com/channel/UCvIyectEVLP31NXeD5mIbEw

Chapter 3

License Agreement

3.1 MOSEK end-user license agreement

Before using the MOSEK software, please read the license agreement available in the distribution
at <MSKHOME>/mosek/11.0/mosek-eula.pdf or on the MOSEK website https://mosek.com/products
license-agreement. By using MOSEK you agree to the terms of that license agreement.

3.2 Third party licenses

MOSEK uses some third-party open-source libraries. Their license details follow.

zlib

MOSEK uses the zlib library obtained from the zlib website. The license agreement for zlib is shown
in Listing 3.1.

Listing 3.1: zlib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

https://mosek.com/products/license-agreement
https://mosek.com/products/license-agreement
http://zlib.org

fplib

MOSEK uses the floating point formatting library developed by David M. Gay obtained from the netlib
website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/ sk sk sk ok sk sk ok o ok sk sk ok ok o ok sk ok ok o ok sk sk ok o ok sk sk ok o ok sk ok o o ok sk sk ok o sk sk ok o sk sk ok o sk sk ok sk o ok sk ok ok o
The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*
*
*
£ 3
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting

* documentation for such software.

%

*

*

*

*

£ 3

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. 1IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

***/

{fmt}

MOSEK uses the formatting library {fmt} developed by Victor Zverovich obtained form github/fmt
and distributed under the MIT license. The license agreement fot {fmt} is shown in Listing 3.3.

Listing 3.3: {fmt} license.

Copyright (c) 2012 - present, Victor Zverovich

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation

the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR

A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER

IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN

CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

http://www.netlib.org
http://www.netlib.org
https://github.com/fmtlib/fmt

Zstandard

MOSEK uses the Zstandard library developed by Facebook obtained from github/zstd. The license
agreement for Zstandard is shown in Listing 3.4.

Listing 3.4: Zstandard license.
BSD License

For Zstandard software
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name Facebook nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

OpenSSL

MOSEK uses the LibReSSL library, which is build on OpenSSL. OpenSSL is included under the
OpenSSL license, Listing 3.5, and the LibReSSL additions are licensed under the ISC license, Listing
3.6.

Listing 3.5: OpenSSL license

Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in

(continues on next page)

https://github.com/facebook/zstd
https://www.libressl.org/

the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this

software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

(continued from previous page)

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"

nor may "OpenSSL" appear in their names without prior written

permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ~“AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED.

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

This product includes cryptographic software written by Eric Young

(eay@cryptsoft.com) .

Hudson (tjh@cryptsoft.com).

Copyright
Copyright
Copyright
Copyright
Copyright
Copyright
Copyright
Copyright

©)
(c)
(c)
(c)
(c)
(c)
(c)
(c)

Listing 3.6: ISC license

1994-2017 Free Software Foundation, Inc.

2014 Jeremie Courreges-Anglas <jca@openbsd.org>
2014-2015 Joel Sing <jsing@openbsd.org>

2014 Ted Unangst <tedu@openbsd.org>

2015-2016 Bob Beck <beck@openbsd.org>

2015 Marko Kreen <markokr@gmail.com>

2015 Reyk Floeter <reyk@openbsd.org>

2016 Tobias Pape <tobias@netshed.de>

This product includes software written by Tim

Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the

above copyright notice and this permission notice appear in all

copies.

(continues on next page)

(continued from previous page)

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

mimalloc

MOSEK uses the mimalloc memory allocator library from github/mimalloc. The license agreement for
mimalloc is shown in Listing 3.7.

Listing 3.7: mimalloc license.

MIT License
Copyright (c) 2019 Microsoft Corporation, Daan Leijen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
0UT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

BLASFEO

MOSEK uses the BLASFFEO linear algebra library developed by Gianluca Frison, obtained from
github /blasfeo. The license agreement for BLASFEQ is shown in Listing 3.8.

Listing 3.8: blasfeo license.

BLASFEO -- BLAS For Embedded Optimization.

Copyright (C) 2019 by Gianluca Frison.

Developed at IMTEK (University of Freiburg) under the supervision of Moritz Diehl.
All rights reserved.

The 2-Clause BSD License

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this

(continues on next page)

https://github.com/microsoft/mimalloc
https://github.com/giaf/blasfeo

(continued from previous page)

list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

oneTBB

MOSEK uses the oneTBB parallelization library which is part of oneAPI developed by Intel, obtained
from github/oneTBB, licensed under the Apache License 2.0. The license agreement for oneTBB can be
found in https://github.com /oneapi-src/oneTBB /blob/master/ LICENSE.txt .

https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB/blob/master/LICENSE.txt

Chapter 4

OptServerLight

This page is about installing and running OptServerLight, the light version (OptServerLight) is a stateless
in-memory solver service, which can be started and run from the command line with no configuration.
See Sec. 7.4 for the differences between OptServerLight and the full version.

4.1

Installation

4.1.1 Requirements and files

The OptServerLight is available for all platforms supported by MOSEK.

Download the MOSEK distribution from https://mosek.com/downloads/ first, unpack/install it
and locate the bin folder with MOSEK binaries.

The OptServerLight consists of binaries and shared libraries present in the bin folder of the
MOSEK distribution, namely: optserverlight, mosekpipe, solconv and libmosek (with ap-
propriate extensions as per the operating system and version). The most convenient option is to
run optserverlight directly from the bin folder of MOSEK.

OptServerLight distributed with MOSEK version 11.0 is compatible with and optimized for
MOSEK clients of version 11.0. Supporting clients from other major.minor MOSEK versions is
not guaranteed. The general REST API is always supported.

The service runs in-memory and does not create any files on disk, except a logfile, if requested.

4.1.2 Starting OptServerLight

To start OptServerLight launch the binary optserverlight or optserverlight.exe from the bin folder
of the MOSEK installation:

optserverlight

That will start the OptServerLight with the default options. A typical installation should at least
customize the following most important options:

optserverlight -port 34567 -solver-timeout 10 -max-task 50 -size-limit 100000000

where:

-port is the port number where the application listens for jobs,

-solver-timeout is the time limit for one job (in seconds), after which the solver will be termi-
nated,

-max-task is the maximum number of jobs solved at once, if more jobs arrive they will be kept
waiting,

-size-1limit is the maximal size (in bytes) of the file that will be accepted.

10

https://mosek.com/downloads/

Full list of configuration options with descriptions can be obtained with:

optserverlight -h

4.2 Testing the installation
The server started successfully if the log output does not indicate any errors, and contains the host/port

at which the server was started.
To further test the setup continue to the section Sec. 6.

11

Chapter 5

Full OptServer

This page is about installing and running the full version of OptServer, which is a remote solver service
additionally equipped with task storage, user management and additional management features.

Important:

e We recommend all users interested with remote optimization to try the light version, Opt-
ServerLight, first. It requires no extra setup, is much easier to start, and has all the same ca-
pabilities regarding optimization itself.

e This documentation for the full OptServer is intentionally terse and does not cover all possible
options in detail. If in doubt please check the config file to see all configuration options, or ideally
contact MOSEK support for help with the setup.

See Sec. 7.4 for the differences between OptServerLight and the full version.

5.1 Dockerfile

You can set up a fully functional self-contained demo version as a Docker container on Linux using
https://github.com /MOSEK /Dockerfiles/tree/master /optserver-demo

The Dockerfile and optserver.conf from the above project can also serve as examples of installign
and configuring the server.

5.2 Installation

Below is an outline of steps required to install, initialize and start the OptServer.

5.2.1 Requirements and files
e OptServer is available for 1inux64x86 and win64x86.
e Install MOSEK following the installation instructions.

e Download the OptServer, which is a separate package available from http://download.mosek.com
optserver /index.html and unpack it.

e The OptServer installation consists of three folders, containing:

— bin - the OptServer binary optserver/optserver.exe.
— etc/mosek - the configuration file optserver.conf.

— var - HTML pages and the default location for database and jobs files created on runtime.

All paths are fully configurable, so the components of OptServer can be moved around to arbitrary
locations.

12

https://github.com/MOSEK/Dockerfiles/tree/master/optserver-demo
http://download.mosek.com/optserver/index.html
http://download.mosek.com/optserver/index.html

5.2.2 The config file

Locate and familiarize yourself with the configuration file. It contains default settings, many of which
may need to be adjusted later. The file is divided into major sections:

e [API] - specifies the API to be used.
e [Database] - database configuration.
e [Http] - settings for the HTTP/HTTPS service.
e [Paths] - paths to MOSEK, log and data files.

e [Tasks] - settings for managing server load, limits for task sizes and similar.

5.2.3 Initializing database

OptServer supports three database backends: Sqlite, MySql and Postgres. Edit the Database.Driver
entry in the config file to choose the required backend, and fill in the respective subsection of [Database]
with the required configuration for that backend.
The simple built-in Sqlite backend is recommend for initial test. In this case only the Database.
Sqlite.Path entry needs to be configured to point to the location of the database file (or left as default).
Initialize the database by running

optserver --config path_to_config file.conf --log-file - --create-db initialize

5.2.4 Connecting MOSEK solver

OptServer needs to know where to find the MOSEK solver. This is configured with the option Paths.
Mosek, which is a list of paths, each leading to the bin folder of the MOSEK installation you wish to
use.

For example, assuming that MOSEK version 11.0 on Linux is installed in the folder /opt/
mosek_inst, you would configure the path as

[Paths]
Mosek = ["/opt/mosek_inst/11.0/tools/platform/1inux64x86/bin"]

The list can contain multiple paths for various MOSEK installations coming from different MOSEK
versions. When remote optimization is invoked from the MOSEK client the OptServer will choose the
binaries corresponding to the version of the caller. Therefore all the MOSEK versions (major/minor
X.Y) that will be used by clients must be available and configured on the server.

5.2.5 Major options to configure

The following are the major options the user may be interested in editing. This can be done either in the
config file or in the command-line invocation (see optserver --help for a list of command-line options).

e Database.Driver and specific backend settings - as discussed above.
e Http.Port - the port to listen on.

e Http.UseTLS - whether to run on https. In this case the TLS key and certificate paths must be
provided in the same section. Recommended false for initial testing.

e Paths - the paths to the log file, working directory for storing task files, and paths to MOSEK
solver (see above).

e Paths.License - the path to the MOSEK license file, if not using a default location (see licenese
manual).

e Tasks.NumWorkers - maximum number of concurrent jobs to be optimized.

e Tasks.QueueCapacity - maximum number of accepted connections before new arriving jobs are
rejeccted.

13

e Tasks.SolveTimeout - maximum solver time per job.
e Tasks.TaskSizeLimit - maximum size of a task in bytes.

Options can also be provided on command line, for example Tasks.NumWorkers=6. Command-line
options override configuration file options.

5.2.6 Starting the OptServer

To start the OptServer run

optserver --config path_to_config_file.conf [OPTIONS]
Additional startup options that may be useful
e --logfile - - write the log to stdout.
e —-verbose - more verbose log.

e --debug - very verbose log.

5.2.7 Web GUI
Web GUI is available via,

https://server:port/index.html

when using SSL. The initial password for the admin user can be set using the command-line (see
optserver --help).

5.3 Testing the installation
The server started successfully if the log output does not indicate any errors, contains the printout of

the configuration used and the host/port at which the server was started.
To further test the setup continue to the section Sec. 6.

14

Chapter 6

Testing the installation

6.1 Test connection

A simple test to check that OptServer is up and running can be performed by opening the URL:

http://SERVER:PORT/api/vl/version

where http://SERVER:PORT (or https://SERVER:PORT if using SSL) are the coordinates of the server.
The correct response contains the version number of the OptServer and optionally of the MOSEK
solver underneath and should be similar to:

11.0.1-1ight/11.0.1 (for OptServerLight)
3.0.15 (for full OptServer)

6.2 Test optimization

Assuming the connection works fine a simple Hello World test of the optimization capabilities can be
performed by running the following python script with the URL of the server as an argument.

python3 test_helloworld.py http://SERVER:PORT

The expected outcome is to obtain the solver’s log output, and a confirmation that the solution is
correct. Any errors related to licensing or configuration issues should be detected at this point and can
be corrected, possibly with the help of the server’s log file.

Listing 6.1: A HelloWorld test of the OptServer.

import requests, sys, json

URL = sys.argv[1]
PROBLEM = """
{"Task/data":{"var":{"bk": ["1lo","ra","lo","1l0"],"bl":[0,0,0,0],"bu":[1e+30,10,1e+30,
—1e+30] ,"type": ["cont","cont","cont","cont"]},
"con":{"bk":["fx","lo","up"],"bl":[30,15,-1e+30],"bu": [30,1e+30,25]},
"objective":{"sense": "max","c":{"subj":[0,1,2,3],"val":[3,1,5,1]}," " cfix":
-0},
"A":{"subi":[1,0,2,1,0,1,0,2,1],"subj":[0,0,1,1,1,2,2,3,3],"val":[2,3,2,
-1,1,3,2,3,11}}}

verify = False # Whether to wverify SSL certificates

with requests.Session() as s:
p = s.post(URL + "/api/vl/submit+solve",
data = PROBLEM,

(continues on next page)

15

(continued from previous page)

headers = { "Content-Type" : "application/x-mosek-jtask", "Accept":
—"application/x-mosek-jtask"},
verify = verify)
if p.status_code != 200:
print(f"Status {p.status_codel}")
print (p.text)
print (p.headers)
else:
token = p.headers['X-Mosek-Job-Token']
sol = json.loads(p.text)

1l = s.get(URL + "/api/v1l/log",
headers = { "X-Mosek-Job-Token" : token 1},
verify = verify)

print (1.text)

print (f"Status {p.status_code}")
print (f"MOSEK response {p.headers['X-Mosek-Res-Code']}")

x = sol['Task/solutions'] ['interior']['xx']
print (f"Received solution:", *(f"{xi:.2f}" for xi in x))
print (f"Expected solution: 0.00 0.00 15.00 8.33")

6.3 Further tests and usage

o If using the OptServer from a MOSEK API, consult the manual for your API for instructions
on how to use remote optimization. They can be found in the section Solver interaction tutori-
als/MOSEK OptServer of your API manual. In most basic cases this amounts to providing the
URL of the server when calling the API method which actually optimizes. See also Sec. 8.

e If using MOSEK from a third-party or MOSEK API remote optimization can also be requested
by setting the parameter MSK_SPAR_REMOTE_OPTSERVER_HOST.

e If you plan to use the OptServer directly via REST API canns consult the tutorial in Sec. 9 and
the API reference in Sec. 10.

16

Chapter 7

Overview

In this section we present the basic mechanism of the OptServer.
e Sec. 7.1
e Sec. 7.2

7.1 Synchronous Optimization

The easiest way to submit an optimization problem to the OptServer is in synchronous mode, where the
caller is blocked while waiting for the optimization:

1.

A submission request is sent over to the OptServer and the problem is transferred.

2. The submitter is put on hold.
3.
4
5

The OptServer runs the optimizer and wait for the results.

. When the optimizer terminates the OptServer collects the result and passes over to the client.

. The client receives the solution and resumes.

The process can be represented as in Fig. 77.
This workflow has the following advantages:

e It is effective for problems where the solution is expected reasonably quickly.

e The changes to the code compared to a local optimization are almost nonexistent. They boil down

to invoking a different method in place of the usual optimize or similar.

7.2 Asynchronous Optimization

The OptServer accepts jobs also in asynchronous mode, where the client is not blocked while waiting for
the result:

. A submission request is sent over to the OptServer and the problem is transferred.
. The client regains control and continues its own execution flow.

1
2
3.
4
5

The client can poll the OptServer at any time about the job status and solution availability.

. The OptServer runs the optimizer and wait for the results.

. When the optimizer terminates the OptServer collects the results, which are available to the client

next time it queries.

The process can be represented as in Fig. 77.
Asynchronous mode is particularly suitable when

e A job is expected to run for long time.

e One wants to submit a set of jobs to run in parallel.

e The submitter is a short-lived process.

17

’ OptServer

---.;]---X ---.;r

_ c _ c
S| S T 5.
S z . o)
= n_Wu 0.
@ !
2] :
2
o !
(@) '
Ié. [} jmg < j|
A H A H A A
! - ! ! !
! @ ! ! !
: S " PO Lo
! o ! e ' Q@
2 :) : I | 13
= ' — ' == = ' ®
% ! o : S '® 2=
c c [2]
= c| £ Q= o| '@
[= Y > = Y (0] _a — =
N ..nlv._ % ..Dlv._ = A — @©
! ! =[5 S| =
£ = o g2 gl i3
o h N h O 7]
' — ' = @
X o] ' 4 m ' ' i
o e ' wE = ' + O '
%m ' %m 3 ' e '
=° m =° °l m m

18

7.3 With or without the MOSEK API

Calling OptServer using the MOSEK API

The MOSEK API provides an interface to invoke the OptServer from the client, both in synchronous an
asynchronous mode. It is currently available for the Optimizer APT (synchronous and asynchronous) and
Fusion (synchronous). The API is a set of functions such as optimizermt, asyncoptimize, asyncpoll
and similar, which form a replacement for the standard optimize call, while the rest of the MOSEK
code (creating task, loading data, retrieving results) remains the same. The details and examples can
be found in the manuals for the Optimizer and Fusion APIs. It is possible to retrieve the log via a log
handler and to interrupt a solver from a callback handler also during remote optimization. See Sec. 8
for a simple example.

Calling OptServer directly

Alternatively it is possible to call the OptServer through a REST API, submitting an optimization
problem in one of formats supported by MOSEK. In this case the caller is responsible for assembling
the data, communicating with the solver and interpreting the answer. Details and examples can be
found in Sec. 9. Using this approach it is possible to perform optimization from environments that
cannot support a MOSEK client, for example from a Web application.

7.4 Light and full version

The OptServer is available in two variants.

OptServerLight

A minimalistic binary. Shipped in the distribution, started directly from command line with minimal
or no configuration, works out-of-the-box, available for all platforms. Keeps no state, works in-memory,
suitable as a simple solver service in container pipelines. Very basic load balancing and configuration are
available.

Recommended for:

e familiarizing with remote optimization,
e a fully functional solver service,
e synchronous optimization using the MOSEK library,

e most applications where the remote optimizer is treated as a black-box drop-in replacement for
optimize().

This version is likely sufficient for a majority of users.

Full OptServer

In addition to the solver service provides a user API, job history, authentication, API tokens, various
levels of permissions, persistent state, administrator/user accounts, statistics, web interface and more.
Requires a more elaborate setup, including configuring a database.

Recommended if you require:

e asynchronous optimization,
e storing tasks,

e user management or more advanced configuration.

19

Chapter 8

MOSEK API tutorial

In this section we show the simplest usage of OptServer directly from the MOSEK API. For the purpose
of short demonstration we include the code in the MOSEK Optimizer API for Python. Please check
the section Solver interaction tutorials/MOSEK OptServer in your API manual for an example in your
preferred API and a further discussion of both the synchronous and asynchronous case.

To perform synchronous remote optimization the only modification to existing code is pointing the
solver to the URL of the remote server; everything else happens transparently for the user. This, depnding
on the API, can be done by

e calling a method, like putoptserverhost in the example below,
e passing an argument to solve() or similar optimization call,

e setting the parameter ¥SK_SPAR_REMOTE_OPTSERVER_HOST,

e other ways, see your API manual.

Below is a Python example that loads a problem from a file and optimizes it on a remote OptServer.

Listing 8.1: Optimizing remotely from Python Optimizer API.

Create task and read example data

task = mosek.Task()

task.readdata(infile)
task.set_Stream(mosek.streamtype.log, sys.stdout.write)

Specify the UOptServer coordinates
task.putoptserverhost (URL)

Only relevant 1if using HTTPS, otherwise ignore
task.putstrparam(mosek. sparam.remote_tls_cert_path, cert)

Solve (remotely)
task.optimize ()

Print some sample results (adjust to your task type)

print (f"Solution status {task.getsolsta(mosek.soltype.itr)}")
print (f"Objective value {task.getprimalobj(mosek.soltype.itr)}")

20

Chapter 9

REST API tutorials

This section contains tutorials for the OptServer REST API. Note that this should not be necessary in
typical applications, where invoking the OptServer directly through the MOSEK API as discussed in
Sec. 8 is easier and more natural.

e Sec. 9.1

— problem submission and optimization with one REST API call,

— retrieving the solver log.
e Sec. 9.2

— problem submission,
— solving and retrieving the result,

— retrieving the solver log.
e Sec. 9.3

— problem submission,

— solving,

— checking if the solution is available,
— retrieving the solver log in chunks,
— retrieving the solution,

— stopping the solver.

9.1 Single-call synchronous

This tutorial demonstrates the simplest synchronous OptServer API where the problem is submitted and
optimzied in a single call.

Assuming that an HTTP/HTTPS connection to the OptServer was established, we submit a problem
using submit+solve. The file format is passed in the Content-Type header and the requested solution
format in the Accept header.

Listing 9.1: Submit a problem.

POST problem data

submit = s.post(URL + "/api/v1l/submit+solve",
data = probdata,
headers = { "Content-Type" : intype, "Accept": outtype 7},
verify = verify)

The request will return when optimization terminates. If there were no errors, the status codes are
available in the headers and the solution in the body of the response.

21

Listing 9.2: Retrieving results.

if submit.status_code == 200:

if outtype in ["application/json", "application/x-mosek-jtask"]:
solution = json.loads(submit.text)

else:
solution = submit.text

token = submit.headers['X-Mosek-Job-Token']

res = submit.headers['X-Mosek-Res-Code']

trm = submit.headers['X-Mosek-Trm-Code']

It is also possible to retrieve the log from the solver (log) if we remembered the job token returned
by the first call. Otherwise the token is not necessary.

Listing 9.3: Retrieving optimization log.

log = s.get(URL + "/api/v1l/log",
headers = { "X-Mosek-Job-Token" : token },
verify = verify)

print(log.text)

The full example is shown below.

Listing 9.4: How to submit a job and solve the problem syn-
chronously in one request.

Create a connection
with requests.Session() as s:
with open(infile,'rb') as probdata:
POST problem data
submit = s.post(URL + "/api/v1/submit+solve",
data = probdata,
headers = { "Content-Type" : intype, "Accept": outtype I},
verify = verify)
if submit.status_code == 200:
if outtype in ["application/json", "application/x-mosek-jtask"]:
solution = json.loads(submit.text)
else:
solution = submit.text
token = submit.headers['X-Mosek-Job-Token']
res = submit.headers['X-Mosek-Res-Code']
trm = submit.headers['X-Mosek-Trm-Code']

Obtain the solver log output
log = s.get(URL + "/api/v1l/log",
headers = { "X-Mosek-Job-Token" : token },
verify = verify)
print (log.text)
print (f"Solution: {solution}")
print (f"Response code: {res}")
print (f"Termination code: {trm}")
else:
In case of error in the first submission
print (f"Unexpected status {submit.status_codel}")
print (f"Response: {submit.text}")
print(f"Headers: {submit.headers}")

22

9.2 Synchronous

For the purpose of the tutorial we assume that the problem to be solved is read from a file, and the
solutions will be saved to a file, i.e. we don’t go into the logic which sets up the problem and interprets
the solution. See file formats for specifications of file formats.

We demonstrate synchronous optimization, see Sec. 7.1. Assuming that an HTTP /HTTPS connection
to the OptServer was established, we first submit a problem using submit. The file format is passed in
the Content-Type header.

Listing 9.5: Submit a problem.

POST problem data

submit = s.post(URL + "/api/vl/submit",
data = probdata,
headers = { "Content-Type" : intype I},
verify = verify)

if submit.status_code == 200:
token = submit.headers['X-Mosek-Job-Token']

The response contains a token used to identify the job in future requests. If no errors have occurred,
we use solve to request running the solver for the given job token. When requesting the solution we set
the Accept header to indicate expected solution format.

Listing 9.6: Starting the solver synchronously.

Request the server to solwe the problem
solve = s.get(URL + "/api/vl/solve",
headers = { "X-Mosek-Job-Token" : token,
"Accept": outtype 1,
verify = verify)

The request will return when optimization terminates. If there were no errors, the status codes are
available in the headers and the solution in the body of the response.

Listing 9.7: Retrieving results.

if solve.status_code == 200:
if outtype in ["application/json", "application/x-mosek-jtask"]:
solution = json.loads(solve.text)
else:
solution = solve.text
res = solve.headers["X-Mosek-Res-Code"]
trm = solve.headers["X-Mosek-Trm-Code"]

It is also possible to retrieve the log from the solver (log):

Listing 9.8: Retrieving optimization log.

0Obtain the solver log output

log = s.get(URL + "/api/v1l/log",
headers = { "X-Mosek-Job-Token" : token },
verify = verify)

print(log.text)

The full example is shown below.

Listing 9.9: How to submit a job and solve the problem syn-
chronously.

Create a connection
(continues on next page)

23

(continued from previous page)

with requests.Session() as s:
with open(infile,'rb') as probdata:
POST problem data
submit = s.post(URL + "/api/v1l/submit",
data = probdata,
headers = { "Content-Type" : intype 7},
verify = verify)

if submit.status_code == 200:
token = submit.headers['X-Mosek-Job-Token']
print ("Submit: success")

Request the server to solve the problem
solve = s.get(URL + "/api/vl/solve",
headers = { "X-Mosek-Job-Token" : token,
"Accept": outtype },
verify = verify)

if solve.status_code == 200:
if outtype in ["application/json", "application/x-mosek-jtask"]:
solution = json.loads(solve.text)
else:
solution = solve.text
res = solve.headers["X-Mosek-Res-Code"]
trm = solve.headers["X-Mosek-Trm-Code"]

Obtain the solwer log output

log = s.get(URL + "/api/v1/log",
headers = { "X-Mosek-Job-Token" : token 1},
verify = verify)

print(log.text)

print (f"Solution: {solution}")
print (f"Response code: {res}")
print (f"Termination code: {trm}")
else:
print (f"Error solving the problem, status = {solve.status_codel}")
else:
print (f"Unexpected status {submit.status_codel}")
print (f"Response: {submit.text}")
print(f"Headers: {submit.headers}")

9.3 Asynchronous

This tutorial demonstrates most features of the asynchronous OptServer API, that is submitting a
problem, polling for solution, retrieving the solution, breaking the solver and retrieving the log output.

Since the stateless OptServerLight forgets a problem shortly after solving it, the full OptServer should
be considered for serious asynchronous optimization applications where the solution is to be retrieved,
possibly, a long and unspecified time after the job’s submission.

For the purpose of the tutorial we assume that the problem to be solved is read from a file, and the
solutions will be saved to a file, i.e. we don’t go into the logic which sets up the problem and interprets
the solution. See file formats for specifications of file formats.

24

Starting the solver

Assuming that an HTTP/HTTPS connection to the OptServer was established, we first submit a problem
using submit. The file format is passed in the Content-Type header.

Listing 9.10: Submit a problem.

POST problem data

submit = s.post(URL + "/api/v1l/submit",
data = probdata,
headers = { "Content-Type" : intype I,
verify = verify)

The response contains a token used to identify the job in future requests. Note that this operation
is identical to the synchronuous case. If no errors have occurred, we use solve-background to initiate
solving the problem identified by the token:

Listing 9.11: Start solving the submission.

Request the server to solve the problem in the background
solve = s.get(URL + "/api/vl/solve-background",
headers = { "X-Mosek-Job-Token" : token 1},
verify = verify)

The calling program regains control immediately.

Waiting for and retrieving the solution

We can now periodically start polling for the solution via solution. We set the Accept header to indicate
expected solution format. If the response is empty then the solution is not yet available:

Listing 9.12: Polling for the solution.

pollCount += 1
sol = s.get(URL + "/api/vl/solution",
headers = { "X-Mosek-Job-Token" : token ,
"Accept" : outtype 1},
verify = verify)

if sol.status_code == requests.codes.no_content:
Solution no yet avatilable
print(f"Solution not available in poll {pollCount}, continuing")
time.sleep(1.0)

When the response becomes non-empty we can retrieve the solution:

25

Listing 9.13: Retrieving the solution when available.

elif sol.status_code == requests.codes.ok:

Solution ts available

solved = True

if outtype in ["application/json", "application/x-mosek-jtask"]:
solution = json.loads(sol.text)

else:
solution = sol.text

res = sol.headers["X-Mosek-Res-Code"]

trm = sol.headers["X-Mosek-Trm-Code"]

Stopping the solver

At some point we can decide that the optimization should be stopped. That can be done with break.

Listing 9.14: Stopping the solver.

After too many attempts we indicate the solver to stop
if not solved and pollCount >= maxPolls:
s.get (URL + "/api/v1/break",
headers = { "X-Mosek-Job-Token" : token },
verify = verify)

Note that the solver need not break immediately, in particular it can enter a few more loops of checking
for solution. The MOSEK termination code in this case will be ¥SK_RES_TRM_USER_CALLBACK.

Retrieving the log

The log output from the solver can be retrieved gradually in each polling loop. The caller needs to keep
track of how much of the log was already read and provide it as an offset in a call to log.

Listing 9.15: Retrieving log output.

Get the log from the last call until now

log = s.get(URL + "/api/vl/log" + f"7offset={logOffsetl}",
headers = { "X-Mosek-Job-Token" : token },
verify = verify)

print(log.text)

logOffset += len(log.text)

Complete code

The full example is shown below.

Listing 9.16: How to submit a job and solve the problem asyn-
chronously.

Create a connection
token = ""
with requests.Session() as s:
with open(infile,'rb') as probdata:
POST problem data
submit = s.post(URL + "/api/v1l/submit",
data = probdata,
headers = { "Content-Type" : intype },
verify = verify)
if submit.status_code == requests.codes.ok:

(continues on next page)

26

(continued from previous page)

token = submit.headers['X-Mosek-Job-Token']
print ("Submit: success")

Request the server to solve the problem in the background
solve = s.get(URL + "/api/vl/solve-background",
headers = { "X-Mosek-Job-Token" : token },
verify = verify)
if solve.status_code not in [requests.codes.ok, requests.codes.no_
—content] :
print (f"Error initiating solve, status = {solve.status_codel}")
sys.exit(-1)
else:
print (f"Error submitting job, status = {submit.status_codel}")
sys.exit(-1)

Begin watting for the solution
solved = False
pollCount = O
logOffset = O

with requests.Session() as s:
while not solved:
pollCount += 1
sol = s.get(URL + "/api/vl/solution",
headers = { "X-Mosek-Job-Token" : token ,
"Accept" : outtype 1,
verify = verify)

if sol.status_code == requests.codes.no_content:
Solution no yet avatilable
print (f£"Solution not available in poll {pollCount}, continuing")
time.sleep(1.0)
elif sol.status_code == requests.codes.ok:
Solution ts available
solved = True
if outtype in ["application/json", "application/x-mosek-jtask"]:
solution = json.loads(sol.text)
else:
solution = sol.text
res = sol.headers["X-Mosek-Res-Code"]
trm = sol.headers["X-Mosek-Trm-Code"]
else:
print (f"Error querying for solution, status = {sol.status_code}")

After too many attempts we indicate the solver to stop
if not solved and pollCount >= maxPolls:
s.get (URL + "/api/v1/break",
headers = { "X-Mosek-Job-Token" : token 1},
verify = verify)

Get the log from the last call until now

log = s.get(URL + "/api/vl/log" + f"7offset={logOffsetl}",
headers = { "X-Mosek-Job-Token" : token },
verify = verify)

print(log.text)

logOffset += len(log.text)

(continues on next page)

27

(continued from previous page)

if solved:
print(f"Solution: {solution}")
print (f"Response code: {res}t")

print (f"Termination code: {trm}")

A complete reference for the REST API can be found in Sec. 10.1.

28

Chapter 10

OptServer Reference

e REST API Protocol specification

e Optimizer parameters:
— Double, Integer, String
— Full list

— Browse by topic

o Optimizer response codes

10.1 OptServer REST API

10.1.1 Commands

This section describes the REST API of the OptServer. Additional authentication options, common to
all commands, are described in Sec. 10.1.2.

POST /api/v1/submit+solve

Submit a problem to the server and get the solution.

Performs the actions of submit and solve in one request. The problem file should be submitted in
the content of the request. The Content-Type header should specify the file format of the submission (if
not present, the solver may guess incorrect format and fail to start the solver). The recognized content
types are listed in Table 10.1.

See Sec. 11 for descriptions of supported formats.

The file format of the solution can be specified in the Accept header (if not present, a plain text
ASCII solution will be returned), as in Table 10.2. The solution is returned as the content of the response
and the headers are set as in Table 10.3.

The name of the job can be specified in a query string jobname=. . ..

On response 0K a token identifying the problem is returned in the header X-Mosek-Job-Token. That
token is required to identify the job in future request.

POST /api/v1/submit

Submit a problem to the server.

The problem file should be submitted in the content of the request. The Content-Type header should
specify the file format of the submission (if not present, the solver may guess incorrect format and fail
to start the solver). The recognized content types are listed in Table 10.1.

29

Table 10.1: Content types in submit and submit-solve.

Content-Type File format

application /x-mosek-task MOSEK Task

application /x-mosek-jtask MOSEK JTask (JSON)
application/json MOSEK JTask (JSON)
application /x-mosek-1p LP format

application /x-mosek-mps MPS format

application /x-mosek-opf OPF format
application/x-mosek-cbf CBF format
application/x-mosek-ptf PTF format

application /x-mosek-XXX+gzip XXX format compressed with gzip
application /x-mosek-XXX+zstd XXX format compressed with zstd

See Sec. 11 for descriptions of supported formats.

The name of the job can be specified in a query string jobname=. . ..

On response 0K a token identifying the problem is returned in the response body, in the session cookie
and in the header X-Mosek-Job-Token. That token is required to identify the job in future request.

GET /api/vl/solve

Start solving and wait for the solver to finish.
The job to start is specified in the query string token=. .. or with the header X-Mosek-Job-Token.
The file format of the solution can be specified in the Accept header (if not present, a plain text
ASCII solution will be returned), as in Table 10.2.
The solution is returned as the content of the response and the headers are set as in Table 10.3.

GET /api/v1/solve-background

Start solving in the background and return immediately.
The job to start is specified in the query string token=. .. or with the header X-Mosek-Job-Token.
It returns OK if the solver started successfully.

GET /api/v1l/solution

Return the solution

The problem whose solution is requested is specified in the query string token=. .. or with the header
X-Mosek-Job-Token.

The file format of the solution can be specified in the Accept header (if not present, a plain text
ASCII solution will be returned). The recognized types are:

Table 10.2: Accepted solution formats in solution and solve.

Accept Solution format

application /x-mosek-task MOSEK Task
application/x-mosek-jtask MOSEK JSol file (JSON)
application/json MOSEK JSol file (JSON)
text/plain Plain text

See Sec. 11 for descriptions of supported solution formats.

If the solution is not yet available, the call returns an empty response with no content.

If the solution is available it is returned as the content of the response and the following headers are
set:

30

Table 10.3: Headers set in the response to solution and solve.

Header Value

Content-Type Solution type as requested in Accept
X-Mosek-Process-Time Time to solve the problem
X-Mosek-Res-Code Response code from the optimizer
X-Mosek-Trm-Code Termination code from the optimizer
X-Mosek-Job-Token Job token

Content-Length Length of the solution

If an unexpected error occurred then X-Mosek-Res-Code will be set to MSK_RES_UNKNOWN and the
other fields are not defined.
GET /api/v1/log

Return the log.

The problem for which the log output is requested is specified in the query string token=. .. or with
the header X-Mosek-Job-Token.

If the query string contains the parameter of f set=XXXX, the log file will be returned from offset XXXX
until the end of what is currently available. Otherwise the whole log is returned.

The response header X-Mosek-Job-State is set to done or not-done, indicating if the optimization
was completed.
GET /api/v1/break

Attempt to terminate the solver.
The problem to be terminated is specified in the query string token=... or with the header
X-Mosek-Job-Token.

GET /api/vl/version

Return the version number.
Returns the string with the version number of the OptServer and of the underlying MOSEK solver
if using OptServerLight.

10.1.2 Authentication

If the OptServer allows anonymous job submission then no authentication is required. Otherwise all of
the commands require authentication in one of the following ways:

e The user’s access token is passed as a query string access-token=. .. in the request.
e The user’s access token is passed in the header X-Mosek-Access-Token of the request.
e Through a session cookie, if the user has logged in and authenticated within an open session.

Access tokens for users can be generated through the Web GUI.

10.2 Parameters grouped by topic

Analysis
o MSK_DPAR_ANA_SOL_INFEAS_TOL
o MSK_IPAR_ANA_SOL_BASIS
o MSK_IPAR_ANA_SOL_PRINT_VIOLATED

o MSK_IPAR_LOG_ANA_PRO

31

Basis identification

MSK_DPAR_SIM_LU_TOL_REL_PIV
MSK_IPAR_BI_CLEAN_OPTIMIZER
MSK_IPAR_BI_IGNORE_MAX_ITER
MSK_IPAR_BI_IGNORE_NUM_ERROR
MSK_IPAR_BI_MAX_ITERATIONS
MSK_IPAR_INTPNT_BASIS
MSK_IPAR_LOG_BI

MSK_IPAR_LOG_BI_FREQ

Conic interior-point method

Data

MSK_DPAR_INTPNT_CO_TOL_DFEAS
MSK_DPAR_INTPNT_CO_TOL_INFEAS
MSK_DPAR_INTPNT_CO_TOL_MU_RED
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
MSK_DPAR_INTPNT_CO_TOL_PFEAS

MSK_DPAR_INTPNT_CO_TOL_REL_GAP

check
MSK_DPAR_DATA_SYM_MAT_TOL
MSK_DPAR_DATA_SYM_MAT_TOL_HUGE
MSK_DPAR_DATA_SYM_MAT_TOL_LARGE
MSK_DPAR_DATA_TOL_AIJ_HUGE
MSK_DPAR_DATA_TOL_AIJ_LARGE
MSK_DPAR_DATA_TOL_BOUND_INF
MSK_DPAR_DATA_TOL_BOUND_WRN
MSK_DPAR_DATA_TOL_C_HUGE
MSK_DPAR_DATA_TOL_CJ_LARGE
MSK_DPAR_DATA_TOL_QIJ
MSK_DPAR_DATA_TOL_X

MSK_DPAR_SEMIDEFINITE_TOL_APPROX

32

Data input/output
o MSK_IPAR_INFEAS_REPORT_AUTO
o MSK_IPAR_LOG_FILE
o MSK_IPAR_OPF_WRITE_HEADER
o MSK_IPAR_OPF_WRITE_HINTS
o MSK_IPAR_OPF_WRITE_LINE_LENGTH
o MSK_IPAR_OPF_WRITE_PARAMETERS
e MSK_IPAR_OPF_WRITE_PROBLEM
e MSK_IPAR_OPF_WRITE_SOL_BAS
e MSK_IPAR_OPF_WRITE_SOL_ITG
e MSK_IPAR_OPF_WRITE_SOL_ITR
e MSK_IPAR_OPF_WRITE_SOLUTIONS
o MSK_IPAR_PARAM_READ_CASE_NAME
o MSK_IPAR_PARAM_READ_IGN_ERROR
o MSK_IPAR_PTF_WRITE_PARAMETERS
o MSK_IPAR_PTF_WRITE_SINGLE_PSD_TERMS
o MSK_IPAR_PTF_WRITE_SOLUTIONS
o MSK_IPAR_PTF_WRITE_TRANSFORM
o MSK_IPAR_READ_ASYNC
o MSK_IPAR_READ_DEBUG
o MSK_IPAR_READ_KEEP_FREE_CON
o MSK_IPAR_READ_MPS_FORMAT
o MSK_IPAR_READ_MPS_WIDTH
o MSK_IPAR_READ_TASK_IGNORE_PARAM
o MSK_IPAR_SOL_READ_NAME_WIDTH
o MSK_IPAR_SOL_READ_WIDTH
o MSK_IPAR_WRITE_ASYNC
e MSK_IPAR_WRITE_BAS_CONSTRAINTS
o MSK_IPAR_WRITE_BAS_HEAD
o MSK_IPAR_WRITE_BAS_VARIABLES
o MSK_IPAR_WRITE_COMPRESSION
e MSK_IPAR_WRITE_FREE_CON
o MSK_IPAR_WRITE_GENERIC_NAMES
o MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS
o MSK_IPAR_WRITE_INT_CONSTRAINTS

o MSK_IPAR_WRITE_INT_HEAD

33

MSK_IPAR_WRITE_INT_VARIABLES
MSK_IPAR_WRITE_JSON_INDENTATION
MSK_IPAR_WRITE_LP_FULL_0BJ
MSK_IPAR_WRITE_LP_LINE_WIDTH
MSK_IPAR_WRITE_MPS_FORMAT
MSK_IPAR_WRITE_MPS_INT
MSK_IPAR_WRITE_SOL_BARVARIABLES
MSK_IPAR_WRITE_SOL_CONSTRAINTS

MSK_IPAR_WRITE_SOL_HEAD

MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES

MSK_IPAR_WRITE_SOL_VARIABLES
MSK_SPAR_BAS_SOL_FILE_NAME
MSK_SPAR_DATA_FILE_NAME
MSK_SPAR_DEBUG_FILE_NAME
MSK_SPAR_INT_SOL_FILE_NAME
MSK_SPAR_ITR_SOL_FILE_NAME
MSK_SPAR_MIO_DEBUG_STRING
MSK_SPAR_PARAM_COMMENT_SIGN
MSK_SPAR_PARAM_READ_FILE_NAME
MSK_SPAR_PARAM_WRITE_FILE_NAME
MSK_SPAR_READ_MPS_BOU_NAME
MSK_SPAR_READ_MPS_OBJ_NAME
MSK_SPAR_READ_MPS_RAN_NAME
MSK_SPAR_READ_MPS_RHS_NAME
MSK_SPAR_SENSITIVITY_FILE_NAME
MSK_SPAR_SENSITIVITY_RES_FILE_NAME
MSK_SPAR_SOL_FILTER_XC_LOW
MSK_SPAR_SOL_FILTER_XC_UPR
MSK_SPAR_SOL_FILTER_XX_LOW
MSK_SPAR_SOL_FILTER_XX_UPR
MSK_SPAR_STAT_KEY

MSK_SPAR_STAT_NAME

34

Debugging

o MSK_IPAR_AUTO_SORT_A_BEFORE_OPT

Dual simplex

o MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION

MSK_IPAR_SIM_DUAL_CRASH

MSK_IPAR_SIM_DUAL_SELECTION

Infeasibility report

MSK_IPAR_INFEAS_GENERIC_NAMES
MSK_IPAR_INFEAS_REPORT_LEVEL

MSK_IPAR_LOG_INFEAS_ANA

Interior-point method

MSK_DPAR_INTPNT_CO_TOL_DFEAS
MSK_DPAR_INTPNT_CO_TOL_INFEAS
MSK_DPAR_INTPNT_CO_TOL_MU_RED
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
MSK_DPAR_INTPNT_CO_TOL_PFEAS
MSK_DPAR_INTPNT_CO_TOL_REL_GAP
MSK_DPAR_INTPNT_QO_TOL_DFEAS
MSK_DPAR_INTPNT_QO_TOL_INFEAS
MSK_DPAR_INTPNT_QO0_TOL_MU_RED
MSK_DPAR_INTPNT_GO0_TOL_NEAR_REL
MSK_DPAR_INTPNT_QO_TOL_PFEAS
MSK_DPAR_INTPNT_QO_TOL_REL_GAP
MSK_DPAR_INTPNT_TOL_DFEAS
MSK_DPAR_INTPNT_TOL_DSAFE
MSK_DPAR_INTPNT_TOL_INFEAS
MSK_DPAR_INTPNT_TOL_MU_RED
MSK_DPAR_INTPNT_TOL_PATH
MSK_DPAR_INTPNT_TOL_PFEAS
MSK_DPAR_INTPNT_TOL_PSAFE
MSK_DPAR_INTPNT_TOL_REL_GAP
MSK_DPAR_INTPNT_TOL_REL_STEP

MSK_DPAR_INTPNT_TOL_STEP_SIZE

MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL

35

MSK_IPAR_BI_IGNORE_MAX_ITER
MSK_IPAR_BI_IGNORE_NUM_ERROR
MSK_IPAR_INTPNT_BASIS
MSK_IPAR_INTPNT_DIFF_STEP
MSK_IPAR_INTPNT_HOTSTART
MSK_IPAR_INTPNT_MAX_ITERATIONS
MSK_IPAR_INTPNT_MAX_NUM_COR
MSK_IPAR_INTPNT_OFF_COL_TRH
MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS
MSK_IPAR_INTPNT_ORDER_METHOD
MSK_IPAR_INTPNT_REGULARIZATION_USE
MSK_IPAR_INTPNT_SCALING
MSK_IPAR_INTPNT_SOLVE_FORM
MSK_IPAR_INTPNT_STARTING_POINT

MSK_IPAR_LOG_INTPNT

License manager

MSK_IPAR_CACHE_LICENSE
MSK_IPAR_LICENSE_DEBUG
MSK_IPAR_LICENSE_PAUSE_TINME
MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS
MSK_IPAR_LICENSE_TRH_EXPIRY_WRN

MSK_IPAR_LICENSE_WAIT

Logging

MSK_IPAR_HEARTBEAT_SIM_FRE(Q_TICKS
MSK_IPAR_LOG
MSK_IPAR_LOG_ANA_PRO
MSK_IPAR_LOG_BI
MSK_IPAR_LOG_BI_FREQ
MSK_IPAR_LOG_CUT_SECOND_OPT
MSK_IPAR_LOG_EXPAND
MSK_IPAR_LOG_FEAS_REPAIR
MSK_IPAR_LOG_FILE
MSK_IPAR_LOG_INCLUDE_SUMMARY

MSK_IPAR_LOG_INFEAS_ANA

36

o MSK_IPAR_LOG_INTPNT

o MSK_IPAR_LOG_LOCAL_INFO

o MSK_IPAR_LOG_MIO

o MSK_IPAR_LOG_MIO_FREQ

o MSK_IPAR_LOG_ORDER

o MSK_IPAR_LOG_PRESOLVE

o MSK_IPAR_LOG_SENSITIVITY

o MSK_IPAR_LOG_SENSITIVITY_OPT
o MSK_IPAR_LOG_SIM

o MSK_IPAR_LOG_SIM_FRE(Q

o MSK_IPAR_LOG_SIM_FREQ_GIGA_TICKS

o MSK_IPAR_LOG_STORAGE

Mixed-integer optimization
o MSK_DPAR_MIO_CLIQUE_TABLE_SIZE_FACTOR
o MSK_DPAR_MIO_DJC_MAX_BIGM
o MSK_DPAR_MIO_MAX_TIME
o MSK_DPAR_MIO_REL_GAP_CONST
o MSK_DPAR_MIO_TOL_ABS_GAP
o MSK_DPAR_MIO_TOL_ABS_RELAX_INT
o MSK_DPAR_MIO_TOL_FEAS
o MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT
o MSK_DPAR_MIO_TOL_REL_GAP
e MSK_IPAR_LOG_MIO
o MSK_IPAR_LOG_MIO_FREQ
o MSK_IPAR_MIO_BRANCH_DIR
® MSK_IPAR_MIO_CONFLICT_ANALYSIS_LEVEL
o MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION
o MSK_IPAR_MIO_CONSTRUCT_SOL
o MSK_IPAR_MIO_CROSSOVER_MAX_NODES
® MSK_IPAR_MIO_CUT_CLIQUE
o MSK_IPAR_MIO_CUT_CMIR
o MSK_IPAR_MIO_CUT_GMI
o MSK_IPAR_MIO_CUT_IMPLIED_BOUND
o MSK_IPAR_MIO_CUT_KNAPSACK_COVER

o MSK_IPAR_MIO_CUT_LIPRO

37

MSK_IPAR_MIO_CUT_SELECTION_LEVEL
MSK_IPAR_MIO_DATA_PERMUTATION_METHOD
MSK_IPAR_MIO_DUAL_RAY_ANALYSIS_LEVEL
MSK_IPAR_MIO_FEASPUMP_LEVEL
MSK_IPAR_MIO_HEURISTIC_LEVEL
MSK_IPAR_MIO_INDEPENDENT_BLOCK_LEVEL
MSK_IPAR_MIO_MAX_NUM_BRANCHES
MSK_IPAR_MIO_MAX_NUM_RELAXS
MSK_IPAR_MIO_MAX_NUM_RESTARTS
MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS
MSK_IPAR_MIO_MEMORY_EMPHASIS_LEVEL
MSK_IPAR_MIO_MIN_REL
MSK_IPAR_MIO_NODE_OPTIMIZER
MSK_IPAR_MIO_NODE_SELECTION
MSK_IPAR_MIO_NUMERICAL_EMPHASIS_LEVEL
MSK_IPAR_MIO_OPT_FACE_MAX_NODES
MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE
MSK_IPAR_MIO_PROBING_LEVEL
MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT
MSK_IPAR_MIO_QCQO_REFORMULATION_METHOD
MSK_IPAR_MIO_RENS_MAX_NODES
MSK_IPAR_MIO_RINS_MAX_NODES
MSK_IPAR_MIO_ROOT_OPTIMIZER
MSK_IPAR_MIO_SEED
MSK_IPAR_MIO_SYMMETRY_LEVEL
MSK_IPAR_MIO_VAR_SELECTION

MSK_IPAR_MIO_VB_DETECTION_LEVEL

38

Output information

MSK_IPAR_HEARTBEAT_SIM_FREQ_TICKS
MSK_IPAR_INFEAS_REPORT_LEVEL
MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS
MSK_IPAR_LICENSE_TRH_EXPIRY_WRN
MSK_IPAR_LOG

MSK_IPAR_LOG_BI
MSK_IPAR_LOG_BI_FREQ
MSK_IPAR_LOG_CUT_SECOND_OPT
MSK_IPAR_LOG_EXPAND
MSK_IPAR_LOG_FEAS_REPAIR
MSK_IPAR_LOG_FILE
MSK_IPAR_LOG_INCLUDE_SUMMARY
MSK_IPAR_LOG_INFEAS_ANA
MSK_IPAR_LOG_INTPNT
MSK_IPAR_LOG_LOCAL_INFO
MSK_IPAR_LOG_MIO
MSK_IPAR_LOG_MIO_FREQ
MSK_IPAR_LOG_ORDER
MSK_IPAR_LOG_SENSITIVITY
MSK_IPAR_LOG_SENSITIVITY_OPT
MSK_IPAR_LOG_SINM
MSK_IPAR_LOG_SIM_FREQ
MSK_IPAR_LOG_SIM_FREQ_GIGA_TICKS
MSK_IPAR_LOG_STORAGE
MSK_IPAR_MAX_NUM_WARNINGS

Overall solver

MSK_IPAR_BI_CLEAN_OPTIMIZER
MSK_IPAR_LICENSE_WAIT
MSK_IPAR_MIO_MODE

MSK_IPAR_OPTIMIZER
MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS
MSK_IPAR_PRESOLVE_USE
MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER
MSK_IPAR_SENSITIVITY_ALL
MSK_IPAR_SENSITIVITY_TYPE
MSK_IPAR_SIM_PRECISION

39

Overall system

o MSK_IPAR_AUTO_UPDATE_SOL_INFO

o MSK_IPAR_LICENSE_WAIT

o MSK_IPAR_LOG_STORAGE

o MSK_IPAR_MT_SPINCOUNT

o MSK_IPAR_NUM_THREADS

o MSK_IPAR_REMOVE_UNUSED_SOLUTIONS
o MSK_IPAR_TIMING_LEVEL

o MSK_SPAR_REMOTE_OPTSERVER_HOST
o MSK_SPAR_REMOTE_TLS_CERT

o MSK_SPAR_REMOTE_TLS_CERT_PATH

Presolve
o MSK_DPAR_FOLDING_TOL_EQ
® MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP
® MSK_DPAR_PRESOLVE_TOL_PRIMAL_INFEAS_PERTURBATION
® MSK_DPAR_PRESOLVE_TOL_REL_LINDEP
o MSK_DPAR_PRESOLVE_TOL_S
o MSK_DPAR_PRESOLVE_TOL_X
o MSK_IPAR_FOLDING_USE
o MSK_IPAR_MIO_PRESOLVE_AGGREGATOR_USE
o MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL
o MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
o MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH
o MSK_IPAR_PRESOLVE_LINDEP_NEW
o MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH
o MSK_IPAR_PRESOLVE_LINDEP_USE
o MSK_IPAR_PRESOLVE_MAX_NUM_PASS
o MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS

o MSK_IPAR_PRESOLVE_USE

Primal simplex

o MSK_IPAR_SIM_PRIMAL_CRASH
o MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION

o MSK_IPAR_SIM_PRIMAL_SELECTION

40

Simplex optimizer

MSK_DPAR_BASIS_REL_TOL_S
MSK_DPAR_BASIS_TOL_S
MSK_DPAR_BASIS_TOL_X
MSK_DPAR_SIM_LU_TOL_REL_PIV
MSK_DPAR_SIM_PRECISION_SCALING_EXTENDED
MSK_DPAR_SIM_PRECISION_SCALING_NORMAL
MSK_DPAR_SIMPLEX_ABS_TOL_PIV
MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE
MSK_IPAR_HEARTBEAT_SIM_FRE(Q_TICKS
MSK_IPAR_LOG_SINM
MSK_IPAR_LOG_SIM_FREQ
MSK_IPAR_LOG_SIM_FREQ_GIGA_TICKS
MSK_IPAR_SIM_BASIS_FACTOR_USE
MSK_IPAR_SIM_DEGEN
MSK_IPAR_SIM_DETECT_PWL
MSK_IPAR_SIM_DUAL_PHASEONE_METHOD
MSK_IPAR_SIM_EXPLOIT_DUPVEC
MSK_IPAR_SIM_HOTSTART
MSK_IPAR_SIM_HOTSTART_LU
MSK_IPAR_SIM_MAX_ITERATIONS
MSK_IPAR_SIM_MAX_NUM_SETBACKS
MSK_IPAR_SIM_NON_SINGULAR
MSK_IPAR_SIM_PRECISION_BOOST
MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD
MSK_IPAR_SIM_REFACTOR_FRE(Q
MSK_IPAR_SIM_REFORMULATION
MSK_IPAR_SIM_SAVE_LU
MSK_IPAR_SIM_SCALING
MSK_IPAR_SIM_SCALING_METHOD
MSK_IPAR_SIM_SEED
MSK_IPAR_SIM_SOLVE_FORM

MSK_IPAR_SIM_SWITCH_OPTIMIZER

41

Solution input/output

MSK_IPAR_INFEAS_REPORT_AUTO
MSK_IPAR_SOL_FILTER_KEEP_BASIC
MSK_IPAR_SOL_READ_NAME_WIDTH
MSK_IPAR_SOL_READ_WIDTH
MSK_IPAR_WRITE_BAS_CONSTRAINTS
MSK_IPAR_WRITE_BAS_HEAD
MSK_IPAR_WRITE_BAS_VARIABLES
MSK_IPAR_WRITE_INT_CONSTRAINTS
MSK_IPAR_WRITE_INT_HEAD
MSK_IPAR_WRITE_INT_VARIABLES
MSK_IPAR_WRITE_SOL_BARVARIABLES
MSK_IPAR_WRITE_SOL_CONSTRAINTS

MSK_IPAR_WRITE_SOL_HEAD

MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES

MSK_IPAR_WRITE_SOL_VARIABLES
MSK_SPAR_BAS_SOL_FILE_NAME
MSK_SPAR_INT_SOL_FILE_NAME
MSK_SPAR_ITR_SOL_FILE_NAME
MSK_SPAR_SOL_FILTER_XC_LOW
MSK_SPAR_SOL_FILTER_XC_UPR
MSK_SPAR_SOL_FILTER_XX_LOW

MSK_SPAR_SOL_FILTER_XX_UPR

Termination criteria

MSK_DPAR_BASIS_REL_TOL_S
MSK_DPAR_BASIS_TOL_S
MSK_DPAR_BASIS_TOL_X
MSK_DPAR_INTPNT_CO_TOL_DFEAS
MSK_DPAR_INTPNT_CO_TOL_INFEAS
MSK_DPAR_INTPNT_CO_TOL_MU_RED
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
MSK_DPAR_INTPNT_CO_TOL_PFEAS
MSK_DPAR_INTPNT_CO_TOL_REL_GAP
MSK_DPAR_INTPNT_QO_TOL_DFEAS

MSK_DPAR_INTPNT_QO_TOL_INFEAS

42

o MSK_DPAR_INTPNT_QO_TOL_MU_RED

o MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

o MSK_DPAR_INTPNT_QO_TOL_PFEAS

o MSK_DPAR_INTPNT_QO_TOL_REL_GAP

o MSK_DPAR_INTPNT_TOL_DFEAS

o MSK_DPAR_INTPNT_TOL_INFEAS

o MSK_DPAR_INTPNT_TOL_MU_RED

o MSK_DPAR_INTPNT_TOL_PFEAS

o MSK_DPAR_INTPNT_TOL_REL_GAP

o MSK_DPAR_LOWER_OBJ_CUT

o MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH

o MSK_DPAR_MIO_MAX_TIME

o MSK_DPAR_MIO_REL_GAP_CONST

o MSK_DPAR_MIO_TOL_REL_GAP

o MSK_DPAR_OPTIMIZER_MAX_TICKS

o MSK_DPAR_OPTIMIZER_MAX_TIME

o MSK_DPAR_SIM_PRECISION_SCALING_EXTENDED
o MSK_DPAR_SIM_PRECISION_SCALING_NORMAL
o MSK_DPAR_UPPER_OBJ_CUT

o MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH

o MSK_IPAR_BI_MAX_ITERATIONS

o MSK_IPAR_INTPNT_MAX_ITERATIONS

o MSK_IPAR_MIO_MAX_NUM_BRANCHES

o MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS
o MSK_IPAR_MIO_MAX_NUM_SOLUTIONS

o MSK_IPAR_SIM_MAX_ITERATIONS

Other
o MSK_IPAR_COMPRESS_STATFILE

o MSK_IPAR_GETDUAL_CONVERT_LMIS
o MSK_IPAR_NG

o MSK_IPAR_REMOTE_USE_COMPRESSION

43

10.3 Parameters (alphabetical list sorted by type)

e Double parameters
e [nteger parameters

e String parameters

10.3.1 Double parameters

MSK_DPAR_ANA_SOL_INFEAS_TOL

If a constraint violates its bound with an amount larger than this value, the constraint name, index
and violation will be printed by the solution analyzer.

Default
le-6
Accepted
[0.0; +inf]
Example
mosek -d MSK_DPAR_ANA_SOL_INFEAS_TOL 1le-6 file

Groups
Analysis

MSK_DPAR_BASIS_REL_TOL_S

Maximum relative dual bound violation allowed in an optimal basic solution.

Default
1.0e-12

Accepted
[0.0; +inf]
Example
mosek -d MSK_DPAR_BASIS_REL_TOL_S 1.0e-12 file
Groups
Simplex optimizer, Termination criteria
MSK_DPAR_BASIS_TOL_S

Maximum absolute dual bound violation in an optimal basic solution.

Default
1.0e-6

Accepted
[1.0e-9; +inf]
Example
mosek -d MSK_DPAR_BASIS_TOL_S 1.0e-6 file
Groups
Simplex optimizer, Termination criteria
MSK_DPAR_BASIS_TOL_X

Maximum absolute primal bound violation allowed in an optimal basic solution.

Default
1.0e-6
Accepted
[1.0e-9; +inf]
Example
mosek -d MSK_DPAR_BASIS_TOL_X 1.0e-6 file

Groups
Simplex optimizer, Termination criteria

44

MSK_DPAR_DATA_SYM_MAT_TOL

Absolute zero tolerance for elements in in symmetric matrices. If any value in a symmetric matrix
is smaller than this parameter in absolute terms MOSEK will treat the values as zero and generate
a warning.

Default
1.0e-12
Accepted
[1.0e-16; 1.0e-6]
Example
mosek -d MSK_DPAR_DATA_SYM_MAT_TOL 1.0e-12 file

Groups
Data check

MSK_DPAR_DATA_SYM_MAT_TOL_HUGE

An element in a symmetric matrix which is larger than this value in absolute size causes an error.

Default
1.0e20
Accepted
[0.0; +inf]
Example
mosek -d MSK_DPAR_DATA_SYM_MAT_TOL_HUGE 1.0e20 file

Groups
Data check

MSK_DPAR_DATA_SYM_MAT_TOL_LARGE

An element in a symmetric matrix which is larger than this value in absolute size causes a warning
message to be printed.

Default
1.0e10
Accepted
[0.0; +inf]
Example
mosek -d MSK_DPAR_DATA_SYM_MAT_TOL_LARGE 1.0el10 file

Groups
Data check

MSK_DPAR_DATA_TOL_AIJ_HUGE

An element in A which is larger than this value in absolute size causes an error.

Default
1.0e20

Accepted
[0.0; +inf]

Example
mosek -d MSK_DPAR_DATA_TOL_AIJ_HUGE 1.0e20 file

Groups
Data check

MSK_DPAR_DATA_TOL_AIJ_LARGE
An element in A which is larger than this value in absolute size causes a warning message to be

printed.

Default
1.0e10

Accepted
[0.0; +inf]

45

Example
mosek -d MSK_DPAR_DATA_TOL_AIJ_LARGE 1.0e10 file

Groups
Data check

MSK_DPAR_DATA_TOL_BOUND_INF

Any bound which in absolute value is greater than this parameter is considered infinite.

Default
1.0el6
Accepted
[0.0; +inf]
Example
mosek -d MSK_DPAR_DATA_TOL_BOUND_INF 1.0el6 file

Groups
Data check

MSK_DPAR_DATA_TOL_BOUND_WRN

If a bound value is larger than this value in absolute size, then a warning message is issued.

Default
1.0e8
Accepted
[0.0; +inf]
Example
mosek -d MSK_DPAR_DATA_TOL_BOUND_WRN 1.0e8 file

Groups
Data check

MSK_DPAR_DATA_TOL_C_HUGE

An element in ¢ which is larger than the value of this parameter in absolute terms is considered to
be huge and generates an error.

Default
1.0el16
Accepted
[0.0; +inf]
Example
mosek -d MSK_DPAR_DATA_TOL_C_HUGE 1.0el16 file

Groups
Data check

MSK_DPAR_DATA_TOL_CJ_LARGE

An element in ¢ which is larger than this value in absolute terms causes a warning message to be
printed.

Default
1.0e8
Accepted
[0.0; +inf]
Example
mosek -d MSK_DPAR_DATA_TOL_CJ_LARGE 1.0e8 file

Groups
Data check

46

MSK_DPAR_DATA_TOL_QIJ

Absolute zero tolerance for elements in () matrices.

Default
1.0e-16
Accepted
[0.0; +inf]
Example
mosek -d MSK_DPAR_DATA_TOL_QIJ 1.0e-16 file

Groups
Data check

MSK_DPAR_DATA_TOL_X

Zero tolerance for constraints and variables i.e. if the distance between the lower and upper bound
is less than this value, then the lower and upper bound is considered identical.

Default
1.0e-8
Accepted
[0.0; +inf]
Example
mosek -d MSK_DPAR_DATA_TOL_X 1.0e-8 file

Groups
Data check

MSK_DPAR_FOLDING_TOL_EQ

Tolerance for coefficient equality during folding.

Default
le-9
Accepted
[0.0; +inf]
Example
mosek -d MSK_DPAR_FOLDING_TOL_EQ 1e-9 file

Groups
Presolve

MSK_DPAR_INTPNT_CO_TOL_DFEAS

Dual feasibility tolerance used by the interior-point optimizer for conic problems.

Default
1.0e-8
Accepted
[0.0; 1.0]
Example
mosek -d MSK_DPAR_INTPNT_CO_TOL_DFEAS 1.0e-8 file

See also
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

Groups
Interior-point method, Termination criteria, Conic interior-point method
MSK_DPAR_INTPNT_CO_TOL_INFEAS

Infeasibility tolerance used by the interior-point optimizer for conic problems. Controls when the
interior-point optimizer declares the model primal or dual infeasible. A small number means the
optimizer gets more conservative about declaring the model infeasible.

Default
1.0e-12

47

Accepted
[0.0; 1.0]
Example
mosek -d MSK_DPAR_INTPNT_CO_TOL_INFEAS 1.0e-12 file

Groups
Interior-point method, Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_MU_RED

Relative complementarity gap tolerance used by the interior-point optimizer for conic problems.

Default
1.0e-8
Accepted
[0.0; 1.0]
Example
mosek -d MSK_DPAR_INTPNT_CO_TOL_MU_RED 1.0e-8 file

Groups
Interior-point method, Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

Optimality tolerance used by the interior-point optimizer for conic problems. If MOSEK cannot
compute a solution that has the prescribed accuracy then it will check if the solution found satisfies
the termination criteria with all tolerances multiplied by the value of this parameter. If yes, then
the solution is also declared optimal.

Default
1000
Accepted
[1.0; +inf]
Example
mosek -d MSK_DPAR_INTPNT_CO_TOL_NEAR_REL 1000 file
Groups
Interior-point method, Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_PFEAS

Primal feasibility tolerance used by the interior-point optimizer for conic problems.

Default
1.0e-8
Accepted
[0.0; 1.0]
Example
mosek -d MSK_DPAR_INTPNT_CO_TOL_PFEAS 1.0e-8 file

See also
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

Groups
Interior-point method, Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_CO_TOL_REL_GAP
Relative gap termination tolerance used by the interior-point optimizer for conic problems.

Default
1.0e-8
Accepted
[0.0; 1.0]
Example
mosek -d MSK_DPAR_INTPNT_CO_TOL_REL_GAP 1.0e-8 file

48

See also
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
Groups
Interior-point method, Termination criteria, Conic interior-point method

MSK_DPAR_INTPNT_QO_TOL_DFEAS

Dual feasibility tolerance used by the interior-point optimizer for quadratic problems.

Default
1.0e-8
Accepted
[0.0; 1.0]
Example
mosek -d MSK_DPAR_INTPNT_QO_TOL_DFEAS 1.0e-8 file
See also
MSK_DPAR_INTPNT_QO_TOL_NEAR_REL
Groups
Interior-point method, Termination criteria

MSK_DPAR_INTPNT_QO_TOL_INFEAS
Infeasibility tolerance used by the interior-point optimizer for quadratic problems. Controls when

the interior-point optimizer declares the model primal or dual infeasible. A small number means
the optimizer gets more conservative about declaring the model infeasible.

Default
1.0e-12
Accepted
[0.0; 1.0]
Example
mosek -d MSK_DPAR_INTPNT_QO_TOL_INFEAS 1.0e-12 file
Groups
Interior-point method, Termination criteria

MSK_DPAR_INTPNT_QO_TOL_MU_RED

Relative complementarity gap tolerance used by the interior-point optimizer for quadratic problems.

Default
1.0e-8
Accepted
[0.0; 1.0]
Example
mosek -d MSK_DPAR_INTPNT_QO_TOL_MU_RED 1.0e-8 file
Groups
Interior-point method, Termination criteria

MSK_DPAR_INTPNT_QO_TOL_NEAR_REL
Optimality tolerance used by the interior-point optimizer for quadratic problems. If MOSEK
cannot compute a solution that has the prescribed accuracy then it will check if the solution found

satisfies the termination criteria with all tolerances multiplied by the value of this parameter. If
yes, then the solution is also declared optimal.

Default
1000
Accepted
[1.0; +inf]
Example
mosek -d MSK_DPAR_INTPNT_QO_TOL_NEAR_REL 1000 file
Groups
Interior-point method, Termination criteria

49

MSK_DPAR_INTPNT_QO_TOL_PFEAS

Primal feasibility tolerance used by the interior-point optimizer for quadratic problems.

Default
1.0e-8
Accepted
[0.0; 1.0]
Example
mosek -d MSK_DPAR_INTPNT_QO_TOL_PFEAS 1.0e-8 file
See also
MSK_DPAR_INTPNT_{O_TOL_NEAR_REL

Groups
Interior-point method, Termination criteria

MSK_DPAR_INTPNT_QO_TOL_REL_GAP

Relative gap termination tolerance used by the interior-point optimizer for quadratic problems.

Default
1.0e-8
Accepted
[0.0; 1.0]
Example
mosek -d MSK_DPAR_INTPNT_QO_TOL_REL_GAP 1.0e-8 file
See also
MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

Groups
Interior-point method, Termination criteria

MSK_DPAR_INTPNT_TOL_DFEAS

Dual feasibility tolerance used by the interior-point optimizer for linear problems.

Default
1.0e-8
Accepted
[0.0; 1.0]
Example
mosek -d MSK_DPAR_INTPNT_TOL_DFEAS 1.0e-8 file

Groups
Interior-point method, Termination criteria

MSK_DPAR_INTPNT_TOL_DSAFE

Controls the initial dual starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly and/or the constraint or variable bounds are very large, then it might
be worthwhile to increase this value.

Default
1.0
Accepted
[1.0e-4; +inf]
Example
mosek -d MSK_DPAR_INTPNT_TOL_DSAFE 1.0 file
Groups

Interior-point method
MSK_DPAR_INTPNT_TOL_INFEAS

Infeasibility tolerance used by the interior-point optimizer for linear problems. Controls when the
interior-point optimizer declares the model primal or dual infeasible. A small number means the
optimizer gets more conservative about declaring the model infeasible.

50

Default
1.0e-10
Accepted
[0.0; 1.0]
Example
mosek -d MSK_DPAR_INTPNT_TOL_INFEAS 1.0e-10 file

Groups
Interior-point method, Termination criteria

MSK_DPAR_INTPNT_TOL_MU_RED

Relative complementarity gap tolerance used by the interior-point optimizer for linear problems.

Default
1.0e-16
Accepted
[0.0; 1.0]
Example
mosek -d MSK_DPAR_INTPNT_TOL_MU_RED 1.0e-16 file
Groups
Interior-point method, Termination criteria

MSK_DPAR_INTPNT_TOL_PATH

Controls how close the interior-point optimizer follows the central path. A large value of this
parameter means the central path is followed very closely. On numerically unstable problems it
may be worthwhile to increase this parameter.

Default
1.0e-8

Accepted
[0.0; 0.9999]

Example
mosek -d MSK_DPAR_INTPNT_TOL_PATH 1.0e-8 file

Groups
Interior-point method

MSK_DPAR_INTPNT_TOL_PFEAS

Primal feasibility tolerance used by the interior-point optimizer for linear problems.

Default
1.0e-8
Accepted
[0.0; 1.0]
Example
mosek -d MSK_DPAR_INTPNT_TOL_PFEAS 1.0e-8 file

Groups
Interior-point method, Termination criteria

MSK_DPAR_INTPNT_TOL_PSAFE

Controls the initial primal starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly and/or the constraint or variable bounds are very large, then it may be
worthwhile to increase this value.

Default
1.0

Accepted
[1.0e-4; +inf]
Example
mosek -d MSK_DPAR_INTPNT_TOL_PSAFE 1.0 file

51

Groups
Interior-point method

MSK_DPAR_INTPNT_TOL_REL_GAP

Relative gap termination tolerance used by the interior-point optimizer for linear problems.

Default
1.0e-8
Accepted
[1.0e-14; +inf]
Example
mosek -d MSK_DPAR_INTPNT_TOL_REL_GAP 1.0e-8 file

Groups
Termination criteria, Interior-point method

MSK_DPAR_INTPNT_TOL_REL_STEP

Relative step size to the boundary for linear and quadratic optimization problems.

Default
0.9999

Accepted
[1.0e-4; 0.999999]

Example
mosek -d MSK_DPAR_INTPNT_TOL_REL_STEP 0.9999 file

Groups
Interior-point method

MSK_DPAR_INTPNT_TOL_STEP_SIZE

Minimal step size tolerance. If the step size falls below the value of this parameter, then the
interior-point optimizer assumes that it is stalled. In other words the interior-point optimizer does
not make any progress and therefore it is better to stop.

Default
1.0e-6
Accepted
[0.0; 1.0]
Example
mosek -d MSK_DPAR_INTPNT_TOL_STEP_SIZE 1.0e-6 file

Groups
Interior-point method

MSK_DPAR_LOWER_OBJ_CUT

If either a primal or dual feasible solution is found proving that the optimal objective value is
outside the interval | MSK_DPAR_LOWER_0BJ_CUT, MSK_DPAR_UPPER_0BJ_CUT |, then MOSEK is
terminated.

Default
-INFINITY
Accepted
[-inf; +inf]
Example
mosek -d MSK_DPAR_LOWER_OBJ_CUT -INFINITY file

See also
MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH

Groups
Termination criteria

52

MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH

If the lower objective cut is less than the value of this parameter value, then the lower objective
cut i.e. MSK_DPAR_LOWER_OBJ_CUT is treated as —oo.

Default
-0.5e30
Accepted
[-inf; +inf]
Example
mosek -d MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH -0.5e30 file

Groups
Termination criteria

MSK_DPAR_MIO_CLIQUE_TABLE_SIZE_FACTOR

Controlls the maximum size of the clique table as a factor of the number of nonzeros in the A
matrix. A negative value implies MOSEK decides.

Default
-1
Accepted
[-1; +inf]
Example
mosek -d MSK_DPAR_MIO_CLIQUE_TABLE_SIZE_FACTOR -1 file
Groups

Mized-integer optimization
MSK_DPAR_MIO_DJC_MAX_BIGM

Maximum allowed big-M value when reformulating disjunctive constraints to linear constraints.
Higher values make it more likely that a disjunction is reformulated to linear constraints, but also
increase the risk of numerical problems.

Default
1.0e6
Accepted
[0; +inf]
Example
mosek -d MSK_DPAR_MIO_DJC_MAX_BIGM 1.0e6 file

Groups
Mized-integer optimization

MSK_DPAR_MIO_MAX_TIME
This parameter limits the maximum time spent by the mixed-integer optimizer (in seconds). A

negative number means infinity.

Default
-1.0

Accepted
[-inf; +inf]
Example
mosek -d MSK_DPAR_MIO_MAX TIME -1.0 file
Groups
Mized-integer optimization, Termination criteria
MSK_DPAR_MIO_REL_GAP_CONST

This value is used to compute the relative gap for the solution to a mixed-integer optimization
problem.

Default
1.0e-10

53

Accepted

[1.0e-15; +inf]
Example

mosek -d MSK_DPAR_MIO_REL_GAP_CONST 1.0e-10 file
Groups

Mized-integer optimization, Termination criteria

MSK_DPAR_MIO_TOL_ABS_GAP

Absolute optimality tolerance employed by the mixed-integer optimizer.

Default
0.0
Accepted
[0.0; +inf]
Example
mosek -d MSK_DPAR_MIO_TOL_ABS_GAP 0.0 file

Groups
Mized-integer optimization

MSK_DPAR_MIO_TOL_ABS_RELAX_INT

Absolute integer feasibility tolerance. If the distance to the nearest integer is less than this tolerance
then an integer constraint is assumed to be satisfied.

Default
1.0e-5

Accepted
[Le-9; +inf]

Example
mosek -d MSK_DPAR_MIO_TOL_ABS_RELAX_INT 1.0e-5 file

Groups
Mized-integer optimization

MSK_DPAR_MIO_TOL_FEAS
Feasibility tolerance for mixed integer solver.

Default
1.0e-6
Accepted
[1e-9; le-3]
Example
mosek -d MSK_DPAR_MIO_TOL_FEAS 1.0e-6 file
Groups

Mixed-integer optimization
MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT

If the relative improvement of the dual bound is smaller than this value, the solver will terminate
the root cut generation. A value of 0.0 means that the value is selected automatically.

Default
0.0
Accepted
[0.0; 1.0]
Example
mosek -d MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT 0.0 file

Groups
Mized-integer optimization

54

MSK_DPAR_MIO_TOL_REL_GAP

Relative optimality tolerance employed by the mixed-integer optimizer.

Default
1.0e-4
Accepted
[0.0; +inf]
Example
mosek -d MSK_DPAR_MIO_TOL_REL_GAP 1.0e-4 file

Groups
Mized-integer optimization, Termination criteria

MSK_DPAR_OPTIMIZER_MAX_TICKS
CURRENTLY NOT IN USE.

Maximum amount of ticks the optimizer is allowed to spent on the optimization. A negative number
means infinity.

Default
-1.0

Accepted
[-inf; +inf]
Example
mosek -d MSK_DPAR_OPTIMIZER_MAX_TICKS -1.0 file
Groups
Termination criteria
MSK_DPAR_OPTIMIZER_MAX_TIME

Maximum amount of time the optimizer is allowed to spent on the optimization (in seconds). A
negative number means infinity.

Default
-1.0
Accepted
[-inf; +inf]
Example
mosek -d MSK_DPAR_OPTIMIZER_MAX_TIME -1.0 file

Groups
Termination criteria

MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP
Absolute tolerance employed by the linear dependency checker.
Default

1.0e-6

Accepted
[0.0; +inf]
Example
mosek -d MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP 1.0e-6 file

Groups
Presolve

MSK_DPAR_PRESOLVE_TOL_PRIMAL_INFEAS_PERTURBATION

The presolve is allowed to perturb a bound on a constraint or variable by this amount if it removes
an infeasibility.

Default
1.0e-6

55

Accepted
[0.0; +inf]
Example
mosek -d MSK_DPAR_PRESOLVE_TOL_PRIMAL_INFEAS_PERTURBATION 1.0e-6 file

Groups
Presolve

MSK_DPAR_PRESOLVE_TOL_REL_LINDEP

Relative tolerance employed by the linear dependency checker.

Default
1.0e-10
Accepted
[0.0; +inf]
Example
mosek -d MSK_DPAR_PRESOLVE_TOL_REL_LINDEP 1.0e-10 file

Groups
Presolve

MSK_DPAR_PRESOLVE_TOL_S

Absolute zero tolerance employed for s; in the presolve.

Default
1.0e-8
Accepted
[0.0; +inf]
Example
mosek -d MSK_DPAR_PRESOLVE_TOL_S 1.0e-8 file
Groups

Presolve
MSK_DPAR_PRESOLVE_TOL_X

Absolute zero tolerance employed for x; in the presolve.

Default
1.0e-8
Accepted
[0.0; +inf]
Example
mosek -d MSK_DPAR_PRESOLVE_TOL_X 1.0e-8 file
Groups

Presolve
MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL

This parameter determines when columns are dropped in incomplete Cholesky factorization during
reformulation of quadratic problems.

Default
le-15
Accepted
[0; +inf]
Example
mosek -d MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL 1le-15 file

Groups
Interior-point method

56

MSK_DPAR_SEMIDEFINITE_TOL_APPROX

Tolerance to define a matrix to be positive semidefinite.

Default
1.0e-10
Accepted
[1.0e-15; +inf]
Example
mosek -d MSK_DPAR_SEMIDEFINITE_TOL_APPROX 1.0e-10 file

Groups
Data check

MSK_DPAR_SIM_LU_TOL_REL_PIV

Relative pivot tolerance employed when computing the LU factorization of the basis in the simplex
optimizers and in the basis identification procedure. A value closer to 1.0 generally improves
numerical stability but typically also implies an increase in the computational work.

Default
0.01

Accepted
[1.0e-6; 0.999999]

Example
mosek -d MSK_DPAR_SIM_LU_TOL_REL_PIV 0.01 file

Groups
Basis identification, Simplex optimizer
MSK_DPAR_SIM_PRECISION_SCALING_EXTENDED

Experimental. Usage not recommended.

Default
2.0

Accepted
[1.0; +inf]
Example
mosek -d MSK_DPAR_SIM_PRECISION_SCALING_EXTENDED 2.0 file
Groups
Simplex optimizer, Termination criteria
MSK_DPAR_SIM_PRECISION_SCALING_NORMAL

Experimental. Usage not recommended.

Default
1.0

Accepted
[1.0; +inf]
Example
mosek -d MSK_DPAR_SIM_PRECISION_SCALING_NORMAL 1.0 file
Groups
Simplex optimizer, Termination criteria
MSK_DPAR_SIMPLEX_ABS_TOL_PIV

Absolute pivot tolerance employed by the simplex optimizers.

Default
1.0e-7

Accepted
[1.0e-12; +inf]

57

Example

mosek -d MSK_DPAR_SIMPLEX_ABS_TOL_PIV 1.0e-7 file
Groups

Simplex optimizer

MSK_DPAR_UPPER_0OBJ_CUT

If either a primal or dual feasible solution is found proving that the optimal objective value is
outside the interval [MSK_DPAR_LOWER_OBJ_CUT, MSK_DPAR_UPPER_0BJ_CUT], then MOSEK is
terminated.

Default
INFINITY
Accepted
[-inf; +inf]
Example
mosek -d MSK_DPAR_UPPER_OBJ_CUT INFINITY file
See also
MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH
Groups
Termination criteria

MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH

If the upper objective cut is greater than the value of this parameter, then the upper objective cut
MSK_DPAR_UPPER_0BJ_CUT is treated as oo.

Default
0.5e30
Accepted
[-inf; +inf]
Example
mosek -d MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH 0.5e30 file
Groups
Termination criteria

10.3.2 Integer parameters

MSK_IPAR_ANA_SOL_BASIS

Controls whether the basis matrix is analyzed in solution analyzer.

Default
oN

Accepted

ON, OFF
Example

mosek -d MSK_IPAR_ANA_SOL_BASIS MSK_ON file
Groups

Analysis

MSK_IPAR_ANA_SOL_PRINT_VIOLATED

A parameter of the problem analyzer. Controls whether a list of violated constraints is printed. All
constraints violated by more than the value set by the parameter MSK_DPAR_ANA_SOL_INFEAS_TOL
will be printed.

Default
OFF

Accepted
ON, OFF

58

Example
mosek -d MSK_TIPAR_ANA_SOL_PRINT_VIOLATED MSK_OFF file

Groups
Analysis

MSK_IPAR_AUTO_SORT_A_BEFORE_OPT

Controls whether the elements in each column of A are sorted before an optimization is performed.
This is not required but makes the optimization more deterministic.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_AUTO_SORT_A_BEFORE_OPT MSK_OFF file

Groups
Debugging

MSK_IPAR_AUTO_UPDATE_SOL_INFO

Controls whether the solution information items are automatically updated after an optimization
is performed.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_AUTO_UPDATE_SOL_INFO MSK_OFF file

Groups
Overall system

MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE

If a slack variable is in the basis, then the corresponding column in the basis is a unit vector with
-1 in the right position. However, if this parameter is set to ¥SK_0N, -1 is replaced by 1.

Default
OFF
Accepted
ON, OFF
Example
mosek -d MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE MSK_OFF file
Groups
Simplex optimizer

MSK_IPAR_BI_CLEAN_OPTIMIZER
Controls which simplex optimizer is used in the clean-up phase. Anything else
than MSK_OPTIMIZER_PRIMAL_SIMPLEX or MSK_OPTIMIZER_DUAL_SIMPLEX 1is equivalent to
MSK_OPTIMIZER_FREE_SIMPLEX.

Default
FREE
Accepted
FREE, INTPNT, CONIC, PRIMAL_SIMPLEX, DUAL_SIMPLEX, NEW_PRIMAL_SIMPLEX,
NEW_DUAL_SIMPLEX, FREE_SIMPLEX, MIXED_INT
Example
mosek -d MSK_IPAR_BI_CLEAN_OPTIMIZER MSK_OPTIMIZER_FREE file
Groups
Basis identification, Overall solver

59

MSK_IPAR_BI_IGNORE_MAX_ITER

If the parameter MSK_IPAR_INTPNT_BASIS has the value MSK_BI_NO_ERROR and the interior-point
optimizer has terminated due to maximum number of iterations, then basis identification is per-
formed if this parameter has the value ¥SK_0N.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_BI_IGNORE_MAX_ITER MSK_OFF file

Groups
Interior-point method, Basis identification

MSK_IPAR_BI_IGNORE_NUM_ERROR

If the parameter MSK_IPAR_INTPNT_BASIS has the value MSK_BI_NO_ERROR and the interior-point
optimizer has terminated due to a numerical problem, then basis identification is performed if this
parameter has the value ¥SK_0N.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_BI_IGNORE_NUM_ERROR MSK_QOFF file

Groups
Interior-point method, Basis identification
MSK_IPAR_BI_MAX_ITERATIONS

Controls the maximum number of simplex iterations allowed to optimize a basis after the basis
identification.

Default
1000000
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_BI_MAX_ITERATIONS 1000000 file

Groups
Basis identification, Termination criteria

MSK_IPAR_CACHE_LICENSE

Specifies if the license is kept checked out for the lifetime of the MOSEK environ-
ment /model/process (MSK_0N) or returned to the server immediately after the optimization
(MSK_OFF)

Check-in and check-out of licenses have an overhead. Frequent communication with the license
server should be avoided.

Default
onN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_CACHE_LICENSE MSK_ON file

Groups
License manager

60

MSK_IPAR_COMPRESS_STATFILE

Control compression of stat files.

Default
oN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_COMPRESS_STATFILE MSK_ON file

MSK_IPAR_FOLDING_USE

Controls whether and how to use problem folding (symmetry detection for continuous problems).
Note that for symmetry detection for mixed-integer problems one should instead use the parameter
MSK_IPAR_MIO_SYMMETRY_LEVEL.

Default
FREE_UNLESS_BASIC

Accepted
OFF, FREE, FREE_UNLESS_BASIC, FORCE

Example
mosek -d MSK_IPAR_FOLDING_USE MSK_FOLDING_MODE_FREE_UNLESS_BASIC file

Groups
Presolve

MSK_IPAR_GETDUAL_CONVERT_LMIS
Whether to perform LMI detection and optimization in the user-level dualizer.
Default

on

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_GETDUAL_CONVERT_LMIS MSK_ON file
MSK_IPAR_HEARTBEAT_SIM_FREQ_TICKS

Controls how frequent the new simplex optimizer calls the user-defined callback function is called.

e —1. Logging is disabled.
e 0. Logging at highest frequency (every iteration).
e > 1. Logging at given frequency measured in ticks.

Default
1000000

Accepted
[-1; +inf]
Example
mosek -d MSK_IPAR_HEARTBEAT_SIM_FREQ_TICKS 1000000 file
Groups
Simplex optimizer, Output information, Logging
MSK_IPAR_INFEAS_GENERIC_NAMES

Controls whether generic names are used when an infeasible subproblem is created.

Default
OFF

Accepted
ON, OFF

61

Example
mosek -d MSK_IPAR_INFEAS_GENERIC_NAMES MSK_OFF file

Groups
Infeasibility report
MSK_IPAR_INFEAS_REPORT_AUTO

Controls whether an infeasibility report is automatically produced after the optimization if the
problem is primal or dual infeasible.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_OFF file

Groups
Data input/output, Solution input/output
MSK_IPAR_INFEAS_REPORT_LEVEL

Controls the amount of information presented in an infeasibility report. Higher values imply more
information.

Default
1
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_INFEAS_REPORT_LEVEL 1 file
Groups
Infeasibility report, Output information

MSK_IPAR_INTPNT_BASIS

Controls whether the interior-point optimizer also computes an optimal basis.

Default
ALWAYS

Accepted

NEVER, ALWAYS, NO_ERROR, IF_FEASIBLE, RESERVERED
Example

mosek -d MSK_IPAR_INTPNT_BASIS MSK_BI_ALWAYS file

See also
MSK_IPAR_BI_IGNORE_MAX_ITER, MSK_IPAR_BI_IGNORE_NUM_ERROR,
MSK_IPAR_BI_MAX_ITERATIONS, MSK_IPAR_BI_CLEAN_OPTIMIZER

Groups
Interior-point method, Basis identification
MSK_IPAR_INTPNT_DIFF_STEP

Controls whether different step sizes are allowed in the primal and dual space.

Default
onN

Accepted
e (U: Different step sizes are allowed.
e (FF: Different step sizes are not allowed.

Example
mosek -d MSK_IPAR_INTPNT_DIFF_STEP MSK_ON file

Groups
Interior-point method

62

MSK_IPAR_INTPNT_HOTSTART

Currently not in use.

Default
NONE

Accepted
NONE , PRIMAL, DUAL, PRIMAL_DUAL

Example
mosek -d MSK_IPAR_INTPNT_HOTSTART MSK_INTPNT_HOTSTART_NONE file

Groups
Interior-point method

MSK_IPAR_INTPNT_MAX_ITERATIONS

Controls the maximum number of iterations allowed in the interior-point optimizer.

Default
400
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_INTPNT_MAX_ITERATIONS 400 file
Groups

Interior-point method, Termination criteria
MSK_IPAR_INTPNT_MAX_NUM_COR

Controls the maximum number of correctors allowed by the multiple corrector procedure. A neg-
ative value means that MOSEK is making the choice.

Default
-1
Accepted
[-1; +inf]
Example
mosek -d MSK_IPAR_INTPNT_MAX_NUM_COR -1 file

Groups
Interior-point method

MSK_IPAR_INTPNT_OFF_COL_TRH

Controls how many offending columns are detected in the Jacobian of the constraint matrix.

0 no detection
1 aggressive detection
> 1 higher values mean less aggressive detection

Default
40

Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_INTPNT_OFF_COL_TRH 40 file
Groups
Interior-point method
MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS

The GP ordering is dependent on a random seed. Therefore, trying several random seeds may lead
to a better ordering. This parameter controls the number of random seeds tried.

A value of 0 means that MOSEK makes the choice.

63

Default
0
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS 0 file

Groups
Interior-point method

MSK_IPAR_INTPNT_ORDER_METHOD

Controls the ordering strategy used by the interior-point optimizer when factorizing the Newton
equation system.

Default
FREE

Accepted
FREE, APPMINLOC, EXPERIMENTAL , TRY_GRAPHPAR, FORCE_GRAPHPAR, NONE

Example
mosek -d MSK_IPAR_INTPNT_ORDER_METHOD MSK_ORDER_METHOD_FREE file

Groups
Interior-point method

MSK_IPAR_INTPNT_REGULARIZATION_USE

Controls whether regularization is allowed.

Default
oN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_INTPNT_REGULARIZATION_USE MSK_ON file

Groups
Interior-point method

MSK_IPAR_INTPNT_SCALING

Controls how the problem is scaled before the interior-point optimizer is used.

Default
FREE

Accepted
FREE, NONE

Example
mosek -d MSK_TPAR_INTPNT_SCALING MSK_SCALING_FREE file

Groups
Interior-point method

MSK_IPAR_INTPNT_SOLVE_FORM
Controls whether the primal or the dual problem is solved.

Default
FREE

Accepted
FREE, PRIMAL , DUAL

Example
mosek -d MSK_IPAR_INTPNT_SOLVE_FORM MSK_SOLVE_FREE file

Groups
Interior-point method

64

MSK_IPAR_INTPNT_STARTING_POINT

Starting point used by the interior-point optimizer.

Default
FREE

Accepted
FREE, GUESS, CONSTANT

Example
mosek -d MSK_IPAR_INTPNT_STARTING_POINT MSK_STARTING_POINT_FREE file

Groups
Interior-point method

MSK_IPAR_LICENSE_DEBUG

This option is used to turn on debugging of the license manager.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_LICENSE_DEBUG MSK_OFF file

Groups
License manager

MSK_IPAR_LICENSE_PAUSE_TIME

If MSK_IPAR_LICENSE_WAIT is MSK_ON and no license is available, then MOSEK sleeps a number
of milliseconds between each check of whether a license has become free.

Default
100

Accepted
[0; 1000000]

Example
mosek -d MSK_IPAR_LICENSE_PAUSE_TIME 100 file

Groups
License manager

MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS

Controls whether license features expire warnings are suppressed.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS MSK_OFF file

Groups
License manager, Qutput information
MSK_IPAR_LICENSE_TRH_EXPIRY_WRN
If a license feature expires in a numbers of days less than the value of this parameter then a warning

will be issued.

Default
7

Accepted
[0; +inf]

65

Example
mosek -d MSK_IPAR_LICENSE_TRH_EXPIRY_WRN 7 file

Groups
License manager, Output information
MSK_IPAR_LICENSE_WAIT

If all licenses are in use MOSEK returns with an error code. However, by turning on this parameter
MOSEK will wait for an available license.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_LICENSE_WAIT MSK_OFF file

Groups
Overall solver, Overall system, License manager

MSK_IPAR_LOG
Controls the amount of log information. The value 0 implies that all log information is suppressed.
A higher level implies that more information is logged.

Please note that if a task is employed to solve a sequence of optimization problems the value of
this parameter is reduced by the value of ¥SK_IPAR_LOG_CUT_SECOND_OPT for the second and any
subsequent optimizations.

Default
10
Accepted
[0; +inf]
Example
mosek -d MSK_TPAR_LOG 10 file

See also
MSK_IPAR_LOG_CUT_SECOND_OPT

Groups
Output information, Logging
MSK_IPAR_LOG_ANA_PRO

Controls amount of output from the problem analyzer.

Default
1
Accepted
[0; +inf]
Example
mosek -d MSK_TPAR_LOG_ANA_PRO 1 file

Groups
Analysis, Logging

MSK_IPAR_LOG_BI

Controls the amount of output printed by the basis identification procedure. A higher level implies
that more information is logged.

Default
1
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_LOG_BI 1 file

66

Groups
Basis identification, Output information, Logging

MSK_IPAR_LOG_BI_FREQ

Controls how frequently the optimizer outputs information about the basis identification and how
frequent the user-defined callback function is called.

Default
2500
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_LOG_BI_FREQ 2500 file

Groups
Basis identification, Output information, Logging

MSK_IPAR_LOG_CUT_SECOND_OPT

If a task is employed to solve a sequence of optimization problems, then the value of the log levels
is reduced by the value of this parameter. E.g ¥SK_IPAR_LOG and MSK_IPAR_LOG_SIM are reduced
by the value of this parameter for the second and any subsequent optimizations.

Default
1
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_LOG_CUT_SECOND_OPT 1 file

See also
MSK_IPAR_LOG, MSK_IPAR_LOG_INTPNT, MSK_IPAR_LOG_MIO, MSK_IPAR_LOG_SIM

Groups
Output information, Logging

MSK_IPAR_LOG_EXPAND

Controls the amount of logging when a data item such as the maximum number constrains is
expanded.

Default
1

Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_LOG_EXPAND 1 file

Groups
Output information, Logging

MSK_IPAR_LOG_FEAS_REPAIR

Controls the amount of output printed when performing feasibility repair. A value higher than one
means extensive logging.

Default
1
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_LOG_FEAS_REPAIR 1 file

Groups
Output information, Logging

67

MSK_IPAR_LOG_FILE

If turned on, then some log info is printed when a file is written or read.

Default
1
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_LOG_FILE 1 file

Groups
Data input/output, Output information, Logging

MSK_IPAR_LOG_INCLUDE_SUMMARY
Not relevant for this APIL.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_LOG_INCLUDE_SUMMARY MSK_OFF file

Groups
Output information, Logging
MSK_IPAR_LOG_INFEAS_ANA

Controls amount of output printed by the infeasibility analyzer procedures. A higher level implies
that more information is logged.

Default
1

Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_LOG_INFEAS_ANA 1 file
Groups
Infeasibility report, Output information, Logging
MSK_IPAR_LOG_INTPNT

Controls amount of output printed by the interior-point optimizer. A higher level implies that
more information is logged.

Default
1
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_LOG_INTPNT 1 file
Groups

Interior-point method, Output information, Logging
MSK_IPAR_LOG_LOCAL_INFO

Controls whether local identifying information like environment variables, filenames, IP addresses
etc. are printed to the log.

Note that this will only affect some functions. Some functions that specifically emit system infor-
mation will not be affected.

Default
oN

68

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_LOG_LOCAL_INFO MSK_ON file

Groups
Output information, Logging

MSK_IPAR_LOG_MIO

Controls the log level for the mixed-integer optimizer. A higher level implies that more information
is logged.

Default
4

Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_LOG_MIO 4 file
Groups
Mized-integer optimization, Output information, Logging

MSK_IPAR_LOG_MIO_FREQ

Controls how frequent the mixed-integer optimizer prints the log line. It will print line every time
MSK_IPAR_LOG_MIO_FREQR relaxations have been solved.

Default
10
Accepted
[-inf; +inf]
Example
mosek -d MSK_IPAR_LOG_MIO_FREQ 10 file
Groups

Mixed-integer optimization, Output information, Logging
MSK_IPAR_LOG_ORDER

If turned on, then factor lines are added to the log.

Default
1
Accepted
[0; +inf]
Example
mosek -d MSK_TIPAR_LOG_ORDER 1 file

Groups
Output information, Logging

MSK_IPAR_LOG_PRESOLVE

Controls amount of output printed by the presolve procedure. A higher level implies that more
information is logged.

Default
1

Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_LOG_PRESOLVE 1 file

Groups
Logging

69

MSK_IPAR_LOG_SENSITIVITY

Controls the amount of logging during the sensitivity analysis.

e 0. Means no logging information is produced.
e 1. Timing information is printed.

e 2. Sensitivity results are printed.

Default
1
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_LOG_SENSITIVITY 1 file

Groups
Output information, Logging

MSK_IPAR_LOG_SENSITIVITY_OPT

Controls the amount of logging from the optimizers employed during the sensitivity analysis. 0
means no logging information is produced.

Default
0
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_LOG_SENSITIVITY_OPT O file

Groups
Output information, Logging

MSK_IPAR_LOG_SIM

Controls amount of output printed by the simplex optimizer. A higher level implies that more
information is logged.

Default
4
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_LOG_SIM 4 file
Groups
Simplex optimizer, Output information, Logging

MSK_IPAR_LOG_SIM_FREQ

Controls how frequent the simplex optimizer outputs information about the optimization and how
frequent the user-defined callback function is called.

Default
1000
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_LOG_SIM_FREQ 1000 file
Groups
Simplex optimizer, Output information, Logging

70

MSK_IPAR_LOG_SIM_FREQ_GIGA_TICKS

Controls how frequent the new simplex optimizer outputs information about the optimization and
how frequent the user-defined callback function is called.

e —1. Logging is disabled.
e 0. Logging at highest frequency (every iteration).

e > 1. Logging at given frequency measured in giga ticks.

Default
100
Accepted
[-1; +inf]
Example
mosek -d MSK_IPAR_LOG_SIM_FREQ_GIGA_TICKS 100 file

Groups
Simplex optimizer, Output information, Logging

MSK_IPAR_LOG_STORAGE

When turned on, MOSEK prints messages regarding the storage usage and allocation.

Default
0
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_LOG_STORAGE 0 file

Groups
Output information, Overall system, Logging

MSK_IPAR_MAX_NUM_WARNINGS

Each warning is shown a limited number of times controlled by this parameter. A negative value
is identical to infinite number of times.

Default
10

Accepted
[-inf; +inf]
Example
mosek -d MSK_IPAR_MAX_NUM_WARNINGS 10 file
Groups
Output information
MSK_IPAR_MIO_BRANCH_DIR

Controls whether the mixed-integer optimizer is branching up or down by default.

Default
FREE

Accepted
FREE, UP, DOWN, NEAR, FAR, ROOT_LP, GUIDED, PSEUDOCOST

Example
mosek -d MSK_IPAR_MIO_BRANCH_DIR MSK_BRANCH_DIR_FREE file

Groups
Mized-integer optimization

71

MSK_IPAR_MIO_CONFLICT_ANALYSIS_LEVEL

Controls the amount of conflict analysis employed by the mixed-integer optimizer.

e —1. The optimizer chooses the level of conflict analysis employed
e 0. conflict analysis is disabled
e 1. A lower amount of conflict analysis is employed

e 2. A higher amount of conflict analysis is employed

Default
-1
Accepted
-1; 2|
Example
mosek -d MSK_IPAR_MIO_CONFLICT_ANALYSIS_LEVEL -1 file
Groups
Mized-integer optimization
MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION

If this option is turned on outer approximation is used when solving relaxations of conic problems;
otherwise interior point is used.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_TPAR_MIO_CONIC_OUTER_APPROXIMATION MSK_OFF file

Groups
Mized-integer optimization
MSK_IPAR_MIO_CONSTRUCT_SOL

If set to MSK_0N and all integer variables have been given a value for which a feasible mixed integer
solution exists, then MOSEK generates an initial solution to the mixed integer problem by fixing
all integer values and solving the remaining problem.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_MIO_CONSTRUCT_SOL MSK_OFF file

Groups
Mized-integer optimization
MSK_IPAR_MIO_CROSSOVER_MAX_NODES

Controls the maximum number of nodes allowed in each call to the Crossover heuristic. The default
value of -1 means that the value is determined automatically. A value of zero turns off the heuristic.

Default
-1
Accepted
[-1; +inf]
Example
mosek -d MSK_IPAR_MIO_CROSSOVER_MAX_NODES -1 file

Groups
Mized-integer optimization

72

MSK_IPAR_MIO_CUT_CLIQUE
Controls whether clique cuts should be generated.

Default
oN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_MIO_CUT_CLIQUE MSK_ON file

Groups
Mized-integer optimization

MSK_IPAR_MIO_CUT_CMIR

Controls whether mixed integer rounding cuts should be generated.

Default
ov
Accepted
ON, OFF

Example
mosek -d MSK_IPAR_MIO_CUT_CMIR MSK_ON file

Groups
Mized-integer optimization
MSK_IPAR_MIO_CUT_GMI
Controls whether GMI cuts should be generated.

Default
onN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_MIO_CUT_GMI MSK_ON file

Groups
Mized-integer optimization
MSK_IPAR_MIO_CUT_IMPLIED_BQOUND
Controls whether implied bound cuts should be generated.

Default
oN

Accepted
ON, OFF

Example

mosek -d MSK_TIPAR_MIO_CUT_IMPLIED_BOUND MSK_ON file
Groups

Mized-integer optimization

MSK_IPAR_MIO_CUT_KNAPSACK_COVER
Controls whether knapsack cover cuts should be generated.
Default
ov

Accepted
0N, OFF
Example
mosek -d MSK_TIPAR_MIQO_CUT_KNAPSACK_COVER MSK_ON file

Groups
Mized-integer optimization

73

MSK_IPAR_MIO_CUT_LIPRO
Controls whether lift-and-project cuts should be generated.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_MIO_CUT_LIPRO MSK_OFF file

Groups
Mized-integer optimization
MSK_IPAR_MIO_CUT_SELECTION_LEVEL

Controls how aggressively generated cuts are selected to be included in the relaxation.

e —1. The optimizer chooses the level of cut selection
e 0. Generated cuts less likely to be added to the relaxation

e 1. Cuts are more aggressively selected to be included in the relaxation

Default
-1
Accepted
[-1; +1]
Example
mosek -d MSK_IPAR_MIO_CUT_SELECTION_LEVEL -1 file

Groups
Mized-integer optimization
MSK_IPAR_MIO_DATA_PERMUTATION_METHOD

Controls what problem data permutation method is appplied to mixed-integer problems.

Default
NONE

Accepted
NONE, CYCLIC_SHIFT, RANDOM

Example
mosek -d MSK_IPAR_MIQO_DATA_PERMUTATION_METHOD
MSK_MIO_DATA_PERMUTATION_METHOD_NONE file

Groups
Mized-integer optimization
MSK_IPAR_MIO_DUAL_RAY_ANALYSIS_LEVEL

Controls the amount of dual ray analysis employed by the mixed-integer optimizer.

e —1. The optimizer chooses the level of dual ray analysis employed
e (. Dual ray analysis is disabled
e 1. A lower amount of dual ray analysis is employed
e 2. A higher amount of dual ray analysis is employed
Default
-1
Accepted
-1; 2]
Example
mosek -d MSK_IPAR_MIO_DUAL_RAY_ANALYSIS_LEVEL -1 file

Groups
Mized-integer optimization

74

MSK_IPAR_

MIO_FEASPUMP_LEVEL

Controls the way the Feasibility Pump heuristic is employed by the mixed-integer optimizer.

MSK_IPAR_

—1. The optimizer chooses how the Feasibility Pump is used
0. The Feasibility Pump is disabled
1. The Feasibility Pump is enabled with an effort to improve solution quality
2. The Feasibility Pump is enabled with an effort to reach feasibility early
Default
-1
Accepted
-1; 2|
Example
mosek -d MSK_IPAR_MIO_FEASPUMP_LEVEL -1 file

Groups
Mized-integer optimization

MIO_HEURISTIC_LEVEL

Controls the heuristic employed by the mixed-integer optimizer to locate an initial good integer
feasible solution. A value of zero means the heuristic is not used at all. A larger value than 0 means
that a gradually more sophisticated heuristic is used which is computationally more expensive. A
negative value implies that the optimizer chooses the heuristic. Normally a value around 3 to 5
should be optimal.

Default
-1
Accepted
[-inf; +inf]
Example
mosek -d MSK_IPAR_MIO_HEURISTIC_LEVEL -1 file
Groups
Mized-integer optimization

MSK_IPAR_MIO_INDEPENDENT_BLOCK_LEVEL

Controls the way the mixed-integer optimizer tries to find and exploit a decomposition of the
problem into independent blocks.

—1. The optimizer chooses how independent-block structure is handled
0. No independent-block structure is detected
1. Independent-block structure may be exploited only in presolve

2. Independent-block structure may be exploited through a dedicated algorithm after the root
node

3. Independent-block structure may be exploited through a dedicated algorithm before the
root node

Default
-1
Accepted
[-1; 3]
Example
mosek -d MSK_IPAR_MIO_INDEPENDENT_BLOCK_LEVEL -1 file

Groups
Mized-integer optimization

(0]

MSK_IPAR_MIO_MAX_NUM_BRANCHES

Maximum number of branches allowed during the branch and bound search. A negative value
means infinite.

Default
-1
Accepted
[-inf; +inf]
Example
mosek -d MSK_IPAR_MIO_MAX_NUM_BRANCHES -1 file

Groups
Mized-integer optimization, Termination criteria

MSK_TIPAR_MIO_MAX_NUM_RELAXS

Maximum number of relaxations allowed during the branch and bound search. A negative value
means infinite.

Default
-1
Accepted
[-inf; +inf]
Example
mosek -d MSK_TPAR_MIO_MAX_NUM_RELAXS -1 file

Groups
Mized-integer optimization

MSK_TIPAR_MIO_MAX_NUM_RESTARTS

Maximum number of restarts allowed during the branch and bound search.

Default
10
Accepted
[0; +inf]
Example
mosek -d MSK_TIPAR_MIO_MAX_NUM_RESTARTS 10 file

Groups
Mized-integer optimization

MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS

Maximum number of cut separation rounds at the root node.

Default
100

Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS 100 file
Groups
Mized-integer optimization, Termination criteria
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS

The mixed-integer optimizer can be terminated after a certain number of different feasible solutions
has been located. If this parameter has the value n > 0, then the mixed-integer optimizer will be
terminated when n feasible solutions have been located.

Default
-1
Accepted
[-inf; +inf]

76

Example
mosek -d MSK_TPAR_MIO_MAX_NUM_SOLUTIONS -1 file

Groups
Mized-integer optimization, Termination criteria

MSK_IPAR_MIO_MEMORY_EMPHASIS_LEVEL

Controls how much emphasis is put on reducing memory usage. Being more conservative about
memory usage may come at the cost of decreased solution speed.

e 0. The optimizer chooses

e 1. More emphasis is put on reducing memory usage and less on speed

Default
0
Accepted
[0; +1]
Example
mosek -d MSK_IPAR_MIO_MEMORY_EMPHASIS_LEVEL O file

Groups
Mized-integer optimization

MSK_IPAR_MIO_MIN_REL

Number of times a variable must have been branched on for its pseudocost to be considered reliable.

Default
5
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_MIO_MIN_REL 5 file

Groups
Mized-integer optimization

MSK_IPAR_MIO_MODE

Controls whether the optimizer includes the integer restrictions and disjunctive constraints when
solving a (mixed) integer optimization problem.

Default
SATISFIED

Accepted
IGNORED, SATISFIED

Example
mosek -d MSK_IPAR_MIO_MODE MSK_MIO_MODE_SATISFIED file

Groups
Owerall solver
MSK_IPAR_MIO_NODE_OPTIMIZER

Controls which optimizer is employed at the non-root nodes in the mixed-integer optimizer.

Default
FREE
Accepted
FREE, INTPNT, CONIC, PRIMAL_SIMPLEX, DUAL_SIMPLEX, NEW_PRIMAL_SIMPLEX,
NEW_DUAL_SIMPLEX, FREE_SIMPLEX, MIXED_INT
Example
mosek -d MSK_IPAR_MIO_NODE_OPTIMIZER MSK_OPTIMIZER_FREE file

Groups
Mized-integer optimization

7

MSK_IPAR_MIO_NODE_SELECTION

Controls the node selection strategy employed by the mixed-integer optimizer.

Default
FREE

Accepted
FREE, FIRST, BEST, PSEUDO

Example
mosek -d MSK_IPAR_MIO_NODE_SELECTION MSK_MIO_NODE_SELECTION_FREE file

Groups
Mized-integer optimization

MSK_IPAR_MIO_NUMERICAL_EMPHASIS_LEVEL

Controls how much emphasis is put on reducing numerical problems possibly at the expense of
solution speed.

e (0. The optimizer chooses
e 1. More emphasis is put on reducing numerical problems

e 2. Even more emphasis

Default
0
Accepted
[0; +2]
Example
mosek -d MSK_IPAR_MIO_NUMERICAL_EMPHASIS_LEVEL O file

Groups
Mized-integer optimization

MSK_IPAR_MIO_OPT_FACE_MAX_NODES

Controls the maximum number of nodes allowed in each call to the optimal face heuristic. The
default value of -1 means that the value is determined automatically. A value of zero turns off the
heuristic.

Default
-1
Accepted
[-1; +inf]
Example
mosek -d MSK_IPAR_MIO_OPT_FACE_MAX_NODES -1 file
Groups

Mized-integer optimization
MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE

Enables or disables perspective reformulation in presolve.

Default
oN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE MSK_ON file

Groups
Mized-integer optimization

78

MSK_IPAR_

MIO_PRESOLVE_AGGREGATOR_USE

Controls if the aggregator should be used.

MSK_IPAR_

Default
oN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_MIO_PRESOLVE_AGGREGATOR_USE MSK_ON file

Groups
Presolve

MIO_PROBING_LEVEL

Controls the amount of probing employed by the mixed-integer optimizer in presolve.

—1. The optimizer chooses the level of probing employed
0. Probing is disabled
1. A low amount of probing is employed
2. A medium amount of probing is employed
3. A high amount of probing is employed
Default
1
Accepted
-1; 3]
Example
mosek -d MSK_IPAR_MIO_PROBING_LEVEL -1 file

Groups
Mized-integer optimization

MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT

Use objective domain propagation.

Default
OFF
Accepted
ON, OFF
Example
mosek -d MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT MSK_OFF file
Groups
Mized-integer optimization

MSK_IPAR_MIO_QCQO_REFORMULATION_METHOD

Controls what reformulation method is applied to mixed-integer quadratic problems.

Default
FREE

Accepted
FREE, NONE, LINEARIZATION, EIGEN_VAL_METHOD, DIAG_SDP, RELAX_SDP
Example
mosek -d MSK_IPAR_MIO_QCQO_REFORMULATION_METHOD
MSK_MIO_QCQO_REFORMULATION_METHOD_FREE file
Groups
Mized-integer optimization

79

MSK_IPAR_MIO_RENS_MAX_NODES

Controls the maximum number of nodes allowed in each call to the RENS heuristic. The default
value of -1 means that the value is determined automatically. A value of zero turns off the heuristic.

Default
-1
Accepted
[-1; +inf]
Example
mosek -d MSK_IPAR_MIO_RENS_MAX_NODES -1 file
Groups
Mized-integer optimization
MSK_IPAR_MIO_RINS_MAX_NODES

Controls the maximum number of nodes allowed in each call to the RINS heuristic. The default
value of -1 means that the value is determined automatically. A value of zero turns off the heuristic.

Default
-1
Accepted
[-1; +inf]
Example
mosek -d MSK_TIPAR_MIO_RINS_MAX_NODES -1 file

Groups
Mized-integer optimization

MSK_IPAR_MIO_ROOT_OPTIMIZER
Controls which optimizer is employed at the root node in the mixed-integer optimizer.
Default

FREE

Accepted
FREE, INTPNT, CONIC, PRIMAL_SIMPLEX, DUAL_SIMPLEX, NEW_PRIMAL_SIMPLEX,
NEW_DUAL_SIMPLEX, FREE_SIMPLEX, MIXED_INT

Example
mosek -d MSK_TIPAR_MIO_ROOT_OPTIMIZER MSK_OPTIMIZER_FREE file

Groups
Mized-integer optimization
MSK_IPAR_MIO_SEED
Sets the random seed used for randomization in the mixed integer optimizer. Selecting a different
seed can change the path the optimizer takes to the optimal solution.
Default
42
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_MIO_SEED 42 file

Groups
Mixed-integer optimization

MSK_IPAR_MIO_SYMMETRY_LEVEL

Controls the amount of symmetry detection and handling employed by the mixed-integer optimizer
in presolve.

e —1. The optimizer chooses the level of symmetry detection and handling employed

e 0. Symmetry detection and handling is disabled

80

e 1. A low amount of symmetry detection and handling is employed
e 2. A medium amount of symmetry detection and handling is employed
e 3. A high amount of symmetry detection and handling is employed

e 4. An extremely high amount of symmetry detection and handling is employed

Default
-1
Accepted
[-1; 4]
Example
mosek -d MSK_IPAR_MIO_SYMMETRY_LEVEL -1 file
Groups
Mized-integer optimization
MSK_IPAR_MIO_VAR_SELECTION

Controls the variable selection strategy employed by the mixed-integer optimizer.

Default
FREE

Accepted
FREE, PSEUDOCOST, STRONG

Example
mosek -d MSK_IPAR_MIQO_VAR_SELECTION MSK_MIQO_VAR_SELECTION_FREE file

Groups
Mized-integer optimization
MSK_IPAR_MIO_VB_DETECTION_LEVEL

Controls how much effort is put into detecting variable bounds.

e —1. The optimizer chooses
e 0. No variable bounds are detected
e 1. Only detect variable bounds that are directly represented in the problem

e 2. Detect variable bounds in probing

Default
-1
Accepted
[-1; +2]
Example
mosek -d MSK_IPAR_MIO_VB_DETECTION_LEVEL -1 file
Groups
Mized-integer optimization
MSK_IPAR_MT_SPINCOUNT

Set the number of iterations to spin before sleeping.

Default
0

Accepted
[0; 1000000000]

Example
mosek -d MSK_IPAR_MT_SPINCOUNT O file

Groups
Owverall system

81

MSK_IPAR_NG

Not in use.

Default
OFF

Accepted
0N, OFF

Example
mosek -d MSK_IPAR_NG MSK_OFF file

MSK_IPAR_NUM_THREADS

Controls the number of threads employed by the optimizer. If set to 0 the number of threads used
will be equal to the number of cores detected on the machine.

Default
0
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_NUM_THREADS 0 file

Groups
Overall system

MSK_IPAR_OPF_WRITE_HEADER
Write a text header with date and MOSEK version in an OPF file.

Default
onN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_OPF_WRITE_HEADER MSK_ON file

Groups
Data input/output

MSK_IPAR_OPF_WRITE_HINTS

Write a hint section with problem dimensions in the beginning of an OPF file.

Default
oN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_OPF_WRITE_HINTS MSK_ON file

Groups
Data input/output

MSK_IPAR_OPF_WRITE_LINE_LENGTH
Aim to keep lines in OPF files not much longer than this.

Default
80
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_OPF_WRITE_LINE_LENGTH 80 file

Groups
Data input/output

82

MSK_IPAR_OPF_WRITE_PARAMETERS

Write a parameter section in an OPF file.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_OPF_WRITE_PARAMETERS MSK_OFF file

Groups
Data input/output

MSK_IPAR_OPF_WRITE_PROBLEM

Write objective, constraints, bounds etc. to an OPF file.

Default
oN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_OPF_WRITE_PROBLEM MSK_ON file

Groups
Data input/output

MSK_IPAR_OPF_WRITE_SOL_BAS

If MSK_IPAR_OPF_WRITE_SOLUTIONS is MSK_0ON and a basic solution is defined, include the basic
solution in OPF files.

Default
onN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_OPF_WRITE_SOL_BAS MSK_ON file

Groups
Data input/output

MSK_IPAR_OPF_WRITE_SOL_ITG

If MSK_IPAR_OPF_WRITE_SOLUTIONS is MSK_ON and an integer solution is defined, write the integer
solution in OPF files.

Default
oN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_OPF_WRITE_SOL_ITG MSK_ON file

Groups
Data input/output
MSK_IPAR_OPF_WRITE_SOL_ITR
If MSK_IPAR_OPF_WRITE_SOLUTIONS is MSK_ON and an interior solution is defined, write the interior
solution in OPF files.
Default
oN

Accepted
ON, OFF

83

Example
mosek -d MSK_IPAR_OPF_WRITE_SOL_ITR MSK_ON file

Groups
Data input/output

MSK_IPAR_OPF_WRITE_SOLUTIONS

Enable inclusion of solutions in the OPF files.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_OPF_WRITE_SOLUTIONS MSK_OFF file

Groups
Data input/output

MSK_IPAR_OPTIMIZER

The parameter controls which optimizer is used to optimize the task.

Default
FREE

Accepted
FREE, INTPNT, CONIC, PRIMAL_SIMPLEX, DUAL_SIMPLEX, NEW_PRIMAL_SIMPLEX,
NEW_DUAL_SIMPLEX, FREE_SIMPLEX, MIXED_INT

Example
mosek -d MSK_IPAR_OPTIMIZER MSK_OPTIMIZER_FREE file

Groups
Owerall solver
MSK_IPAR_PARAM_READ_CASE_NAME

If turned on, then names in the parameter file are case sensitive.

Default
oN

Accepted
0N, OFF

Example
mosek -d MSK_IPAR_PARAM_READ_CASE_NAME MSK_ON file

Groups
Data input/output
MSK_IPAR_PARAM_READ_IGN_ERROR
If turned on, then errors in parameter settings is ignored.
Default

OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_PARAM_READ_IGN_ERROR MSK_OFF file

Groups
Data input/output

MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL

Controls the maximum amount of fill-in that can be created by one pivot in the elimination phase
of the presolve. A negative value means the parameter value is selected automatically.

84

Default
-1
Accepted
[-inf; +inf]
Example
mosek -d MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL -1 file

Groups
Presolve

MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES

Control the maximum number of times the eliminator is tried. A negative value implies MOSEK
decides.

Default
-1
Accepted
[-inf; +inf]
Example
mosek -d MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES -1 file
Groups
Presolve
MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH

Controls linear dependency check in presolve. The linear dependency check is potentially compu-
tationally expensive.

Default
100
Accepted
[-inf; +inf]
Example
mosek -d MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH 100 file
Groups
Presolve
MSK_IPAR_PRESOLVE_LINDEP_NEW

Controls whether a new experimental linear dependency checker is employed.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_PRESOLVE_LINDEP_NEW MSK_OFF file

Groups
Presolve

MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH

Controls linear dependency check in presolve. The linear dependency check is potentially compu-
tationally expensive.

Default
100
Accepted
[-inf; +inf]
Example
mosek -d MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH 100 file
Groups
Presolve

85

MSK_IPAR_PRESOLVE_LINDEP_USE

Controls whether the linear constraints are checked for linear dependencies.

Default
oN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_PRESOLVE_LINDEP_USE MSK_ON file

Groups
Presolve

MSK_IPAR_PRESOLVE_MAX_NUM_PASS

Control the maximum number of times presolve passes over the problem. A negative value implies
MOSEK decides.

Default
-1
Accepted
[-inf; +inf]
Example
mosek -d MSK_IPAR_PRESOLVE_MAX_NUM_PASS -1 file

Groups
Presolve

MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS

Controls the maximum number of reductions performed by the presolve. The value of the parameter
is normally only changed in connection with debugging. A negative value implies that an infinite
number of reductions are allowed.

Default
-1
Accepted
[-inf; +inf]
Example
mosek -d MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS -1 file

Groups
Overall solver, Presolve

MSK_IPAR_PRESOLVE_USE

Controls whether the presolve is applied to a problem before it is optimized.

Default
FREE

Accepted
OFF, ON, FREE

Example
mosek -d MSK_IPAR_PRESOLVE_USE MSK_PRESOLVE_MODE_FREE file

Groups
Overall solver, Presolve
MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER

Controls which optimizer that is used to find the optimal repair.

Default
FREE

Accepted
FREE, INTPNT, CONIC, PRIMAL_SIMPLEX, DUAL_SIMPLEX, NEW_PRIMAL_SIMPLEX,
NEW_DUAL_SIMPLEX, FREE_SIMPLEX, MIXED_INT

86

Example
mosek -d MSK_IPAR_PRIMAL_REPATIR_OPTIMIZER MSK_OPTIMIZER_FREE file

Groups
Owerall solver

MSK_IPAR_PTF_WRITE_PARAMETERS
If MSK_IPAR_PTF_WRITE_PARAMETERS is MSK_ON, the parameters section is written.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_PTF_WRITE_PARAMETERS MSK_OFF file

Groups
Data input/output

MSK_IPAR_PTF_WRITE_SINGLE_PSD_TERMS

Controls whether PSD terms with a coefficient matrix of just one non-zero are written as a single
term instead of as a matrix term.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_PTF_WRITE_SINGLE_PSD_TERMS MSK_OFF file

Groups
Data input/output

MSK_IPAR_PTF_WRITE_SOLUTIONS

If MSK_IPAR_PTF_WRITE_SOLUTIONS is MSK_ON, the solution section is written if any solutions are
available, otherwise solution section is not written even if solutions are available.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_PTF_WRITE_SOLUTIONS MSK_OFF file

Groups
Data input/output

MSK_IPAR_PTF_WRITE_TRANSFORM

If MSK_IPAR_PTF_WRITE_TRANSFORM is MSK_ON, constraint blocks with identifiable conic slacks are
transformed into conic constraints and the slacks are eliminated.

Default
oN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_PTF_WRITE_TRANSFORM MSK_ON file

Groups
Data input/output

87

MSK_IPAR_READ_ASYNC

Controls whether files are read using synchronous or asynchronous reader.

Default
OFF

Accepted
e (UN: Use asynchronous reader
e (FF: Use synchronous reader

Example
mosek -d MSK_IPAR_READ_ASYNC MSK_OFF file

Groups
Data input/output

MSK_IPAR_READ_DEBUG
Turns on additional debugging information when reading files.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_READ_DEBUG MSK_OFF file

Groups
Data input/output

MSK_IPAR_READ_KEEP_FREE_CON
Controls whether the free constraints are included in the problem. Applies to MPS files.

Default
OFF

Accepted
e (ON: The free constraints are kept.
e (FF: The free constraints are discarded.

Example
mosek -d MSK_IPAR_READ_KEEP_FREE_CON MSK_OFF file

Groups
Data input/output

MSK_IPAR_READ_MPS_FORMAT
Controls how strictly the MPS file reader interprets the MPS format.

Default
FREE

Accepted
STRICT, RELAXED, FREE, CPLEX

Example
mosek -d MSK_IPAR_READ_MPS_FORMAT MSK_MPS_FORMAT_FREE file

Groups
Data input/output

MSK_IPAR_READ_MPS_WIDTH

Controls the maximal number of characters allowed in one line of the MPS file.

Default
1024

Accepted
[80; +inf]

88

Example
mosek -d MSK_IPAR_READ_MPS_WIDTH 1024 file

Groups
Data input/output

MSK_IPAR_READ_TASK_IGNORE_PARAM

Controls whether MOSEK should ignore the parameter setting defined in the task file and use
the default parameter setting instead.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_READ_TASK_IGNORE_PARAM MSK_OFF file

Groups
Data input/output

MSK_IPAR_REMOTE_USE_COMPRESSION

Use compression when sending data to an optimization server.

Default
ZSTD

Accepted
NONE, FREE, GZIP, ZSTD

Example
mosek -d MSK_IPAR_REMOTE_USE_COMPRESSION MSK_COMPRESS_ZSTD file

MSK_IPAR_REMOVE_UNUSED_SOLUTIONS

Removes unused solutions before the optimization is performed.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_REMOVE_UNUSED_SOLUTIONS MSK_OFF file

Groups
Overall system
MSK_IPAR_SENSITIVITY_ALL
Not applicable.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_SENSITIVITY_ALL MSK_OFF file

Groups
Owverall solver
MSK_IPAR_SENSITIVITY_TYPE
Controls which type of sensitivity analysis is to be performed.

Default
BASIS

Accepted
BASIS

89

Example
mosek -d MSK_TIPAR_SENSITIVITY_TYPE MSK_SENSITIVITY_TYPE_BASIS file

Groups
Overall solver

MSK_IPAR_SIM_BASIS_FACTOR_USE

Controls whether an LU factorization of the basis is used in a hot-start. Forcing a refactorization
sometimes improves the stability of the simplex optimizers, but in most cases there is a performance
penalty.

Default
oN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_SIM_BASIS_FACTOR_USE MSK_ON file

Groups
Simplex optimizer

MSK_IPAR_SIM_DEGEN

Controls how aggressively degeneration is handled.

Default
FREE

Accepted
NONE, FREE, AGGRESSIVE, MODERATE , MINIMUM

Example
mosek -d MSK_IPAR_SIM_DEGEN MSK_SIM_DEGEN_FREE file

Groups
Simplex optimizer
MSK_IPAR_SIM_DETECT_PWL

Not in use.

Default
oN

Accepted
o (N: PWL are detected.
e (JFF: PWL are not detected.

Example
mosek -d MSK_IPAR_SIM_DETECT_PWL MSK_ON file

Groups
Simplex optimizer
MSK_IPAR_SIM_DUAL_CRASH

Controls whether crashing is performed in the dual simplex optimizer. If this parameter is set to
x, then a crash will be performed if a basis consists of more than (100 —) mod f, entries, where
fv is the number of fixed variables.

Default
90
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_SIM_DUAL_CRASH 90 file

Groups
Dual simplex

90

MSK_IPAR_SIM_DUAL_PHASEONE_METHOD

An experimental feature.

Default
0
Accepted
[0; 10]
Example
mosek -d MSK_IPAR_SIM_DUAL_PHASEONE_METHOD O file
Groups
Simplex optimizer

MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION

The dual simplex optimizer can use a so-called restricted selection/pricing strategy to choose the
outgoing variable. Hence, if restricted selection is applied, then the dual simplex optimizer first
choose a subset of all the potential outgoing variables. Next, for some time it will choose the
outgoing variable only among the subset. From time to time the subset is redefined. A larger value
of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e.
a value of 0 implies that the restriction strategy is not applied at all.

Default
50
Accepted
[0; 100]
Example
mosek -d MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION 50 file

Groups
Dual simplex

MSK_IPAR_SIM_DUAL_SELECTION
Controls the choice of the incoming variable, known as the selection strategy, in the dual simplex
optimizer.
Default
FREE

Accepted
FREE, FULL, ASE, DEVEX, SE, PARTIAL

Example
mosek -d MSK_IPAR_SIM_DUAL_SELECTION MSK_SIM_SELECTION_FREE file

Groups
Dual simplex
MSK_IPAR_SIM_EXPLOIT_DUPVEC
Controls if the simplex optimizers are allowed to exploit duplicated columns.

Default
OFF

Accepted
ON, OFF, FREE

Example
mosek -d MSK_IPAR_SIM_EXPLOIT_DUPVEC MSK_SIM_EXPLOIT_DUPVEC_OFF file

Groups
Simplex optimizer

MSK_IPAR_SIM_HOTSTART
Controls the type of hot-start that the simplex optimizer perform.

Default
FREE

91

Accepted
NONE, FREE, STATUS_KEYS

Example
mosek -d MSK_IPAR_SIM_HOTSTART MSK_SIM_HOTSTART_FREE file

Groups
Simplex optimizer

MSK_IPAR_SIM_HOTSTART_LU

Determines if the simplex optimizer should exploit the initial factorization.

Default
oN

Accepted
e (IN: Factorization is reused if possible.
e (FF: Factorization is recomputed.

Example
mosek -d MSK_IPAR_SIM_HOTSTART_LU MSK_ON file

Groups
Simplex optimizer

MSK_IPAR_SIM_MAX_ITERATIONS

Maximum number of iterations that can be used by a simplex optimizer.

Default
10000000

Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_SIM_MAX_ITERATIONS 10000000 file
Groups
Simplex optimizer, Termination criteria
MSK_IPAR_SIM_MAX_NUM_SETBACKS

Controls how many set-backs are allowed within a simplex optimizer. A set-back is an event where
the optimizer moves in the wrong direction. This is impossible in theory but may happen due to
numerical problems.

Default
250
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_SIM_MAX_NUM_SETBACKS 250 file
Groups

Simplex optimizer
MSK_IPAR_SIM_NON_SINGULAR

Controls if the simplex optimizer ensures a non-singular basis, if possible.

Default
oN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_SIM_NON_SINGULAR MSK_ON file

Groups
Simplex optimizer

92

MSK_IPAR_SIM_PRECISION

Experimental. Usage not recommended.

Default
NORMAL

Accepted
NORMAL , EXTENDED

Example
mosek -d MSK_IPAR_SIM_PRECISION MSK_SIM_PRECISION_NORMAL file

Groups
Ovwerall solver

MSK_IPAR_SIM_PRECISION_BOOST

Controls whether the simplex optimizer is allowed to boost the precision during the computations
if possible.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_SIM_PRECISION_BOOST MSK_OFF file

Groups
Simplex optimizer

MSK_IPAR_SIM_PRIMAL_CRASH

Controls whether crashing is performed in the primal simplex optimizer. In general, if a basis
consists of more than (100-this parameter value)% fixed variables, then a crash will be performed.

Default
90
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_SIM_PRIMAL_CRASH 90 file
Groups
Primal simplex

MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD

An experimental feature.

Default
0
Accepted
[0; 10]
Example
mosek -d MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD O file
Groups
Simplex optimizer

MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION

The primal simplex optimizer can use a so-called restricted selection/pricing strategy to choose
the outgoing variable. Hence, if restricted selection is applied, then the primal simplex optimizer
first choose a subset of all the potential incoming variables. Next, for some time it will choose the
incoming variable only among the subset. From time to time the subset is redefined. A larger value
of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e.
a value of 0 implies that the restriction strategy is not applied at all.

93

Default
50
Accepted
[0; 100]
Example
mosek -d MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION 50 file

Groups
Primal simplex

MSK_IPAR_SIM_PRIMAL_SELECTION

Controls the choice of the incoming variable, known as the selection strategy, in the primal simplex
optimizer.

Default
FREE

Accepted
FREE, FULL, ASE, DEVEX, SE, PARTIAL
Example
mosek -d MSK_IPAR_SIM_PRIMAL_SELECTION MSK_SIM_SELECTION_FREE file

Groups
Primal simplex

MSK_IPAR_SIM_REFACTOR_FREQ

Controls how frequent the basis is refactorized. The value 0 means that the optimizer determines
the best point of refactorization. It is strongly recommended NOT to change this parameter.

Default
0
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_SIM_REFACTOR_FREQ O file
Groups
Simplex optimizer

MSK_IPAR_SIM_REFORMULATION
Controls if the simplex optimizers are allowed to reformulate the problem.

Default
OFF

Accepted
ON, OFF, FREE, AGGRESSIVE

Example

mosek -d MSK_IPAR_SIM_REFORMULATION MSK_SIM_REFORMULATION_OFF file
Groups

Simplex optimizer

MSK_IPAR_SIM_SAVE_LU

Controls if the LU factorization stored should be replaced with the LU factorization corresponding
to the initial basis.

Default
OFF

Accepted
ON, OFF
Example
mosek -d MSK_IPAR_SIM_SAVE_LU MSK_OFF file

Groups
Simplex optimizer

94

MSK_IPAR_SIM_SCALING

Controls how much effort is used in scaling the problem before a simplex optimizer is used.

Default
FREE

Accepted
FREE, NONE

Example
mosek -d MSK_TPAR_SIM_SCALING MSK_SCALING_FREE file

Groups
Simplex optimizer

MSK_IPAR_SIM_SCALING_METHOD

Controls how the problem is scaled before a simplex optimizer is used.

Default
POW2

Accepted
POW2, FREE

Example
mosek -d MSK_IPAR_SIM_SCALING_METHOD MSK_SCALING_METHOD_POW2 file

Groups
Simplex optimizer

MSK_IPAR_SIM_SEED

Sets the random seed used for randomization in the simplex optimizers.

Default
23456
Accepted
[0; 32749]
Example
mosek -d MSK_IPAR_SIM_SEED 23456 file
Groups
Simplex optimizer

MSK_IPAR_SIM_SOLVE_FORM

Controls whether the primal or the dual problem is solved by the primal-/dual-simplex optimizer.

Default
FREE

Accepted
FREE, PRIMAL , DUAL

Example
mosek -d MSK_IPAR_SIM_SOLVE_FORM MSK_SOLVE_FREE file

Groups
Simplex optimizer

MSK_IPAR_SIM_SWITCH_OPTIMIZER

The simplex optimizer sometimes chooses to solve the dual problem instead of the primal problem.
This implies that if you have chosen to use the dual simplex optimizer and the problem is dualized,
then it actually makes sense to use the primal simplex optimizer instead. If this parameter is on
and the problem is dualized and furthermore the simplex optimizer is chosen to be the primal

(dual) one, then it is switched to the dual (primal).

Default
OFF

Accepted
ON, OFF

95

Example
mosek -d MSK_IPAR_SIM_SWITCH_OPTIMIZER MSK_OFF file

Groups
Simplex optimizer

MSK_IPAR_SOL_FILTER_KEEP_BASIC

If turned on, then basic and super basic constraints and variables are written to the solution file
independent of the filter setting.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_SOL_FILTER_KEEP_BASIC MSK_OFF file

Groups
Solution input/output

MSK_IPAR_SOL_READ_NAME_WIDTH

When a solution is read by MOSEK and some constraint, variable or cone names contain blanks,
then a maximum name width much be specified. A negative value implies that no name contain
blanks.

Default
-1
Accepted
[-inf; +inf]
Example
mosek -d MSK_IPAR_SOL_READ_NAME_WIDTH -1 file

Groups
Data input/output, Solution input/output

MSK_IPAR_SOL_READ_WIDTH
Controls the maximal acceptable width of line in the solutions when read by MOSEK.

Default
1024
Accepted
[80; +inf]
Example
mosek -d MSK_IPAR_SOL_READ_WIDTH 1024 file

Groups
Data input/output, Solution input/output

MSK_IPAR_TIMING_LEVEL
Controls the amount of timing performed inside MOSEK.

Default
1
Accepted
[0; +inf]
Example
mosek -d MSK_IPAR_TIMING_LEVEL 1 file

Groups
Overall system

96

MSK_IPAR_WRITE_ASYNC

Controls whether files are read using synchronous or asynchronous writer.

Default
OFF

Accepted
e (N: Use asynchronous writer
e (FF: Use synchronous writer

Example
mosek -d MSK_IPAR_WRITE_ASYNC MSK_OFF file

Groups
Data input/output

MSK_IPAR_WRITE_BAS_CONSTRAINTS
Controls whether the constraint section is written to the basic solution file.

Default
oN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_WRITE_BAS_CONSTRAINTS MSK_ON file

Groups
Data input/output, Solution input/output

MSK_IPAR_WRITE_BAS_HEAD

Controls whether the header section is written to the basic solution file.

Default
oN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_WRITE_BAS_HEAD MSK_ON file

Groups
Data input/output, Solution input/output

MSK_IPAR_WRITE_BAS_VARIABLES

Controls whether the variables section is written to the basic solution file.

Default
oN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_WRITE_BAS_VARIABLES MSK_ON file

Groups
Data input/output, Solution inputl/output

MSK_IPAR_WRITE_COMPRESSION
Controls whether the data file is compressed while it is written. 0 means no compression while

higher values mean more compression.

Default
9

Accepted
[0; +inf]

97

Example
mosek -d MSK_IPAR_WRITE_COMPRESSION 9 file

Groups
Data input/output

MSK_IPAR_WRITE_FREE_CON
Controls whether the free constraints are written to the data file. Applies to MPS files.

Default
oN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_WRITE_FREE_CON MSK_ON file

Groups
Data input/output

MSK_IPAR_WRITE_GENERIC_NAMES

Controls whether generic names should be used instead of user-defined names when writing to the
data file.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_WRITE_GENERIC_NAMES MSK_OFF file

Groups
Data input/output

MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS

Controls if the writer ignores incompatible problem items when writing files.

Default
OFF

Accepted
e (OI: Ignore items that cannot be written to the current output file format.

e (FF: Produce an error if the problem contains items that cannot the written to
the current output file format.

Example
mosek -d MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS MSK_OFF file

Groups
Data input/output

MSK_IPAR_WRITE_INT_CONSTRAINTS

Controls whether the constraint section is written to the integer solution file.

Default
oN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_WRITE_INT_CONSTRAINTS MSK_ON file

Groups
Data input/output, Solution input/output

98

MSK_IPAR_WRITE_INT_HEAD
Controls whether the header section is written to the integer solution file.

Default
oN

Accepted
ON, OFF

Example

mosek -d MSK_IPAR_WRITE_INT_HEAD MSK_ON file
Groups

Data input/output, Solution inputl/output

MSK_IPAR_WRITE_INT_VARIABLES
Controls whether the variables section is written to the integer solution file.

Default
oN

Accepted
ON, OFF

Example

mosek -d MSK_IPAR_WRITE_INT_VARIABLES MSK_ON file
Groups

Data input/output, Solution input/output

MSK_IPAR_WRITE_JSON_INDENTATION
When set, the JSON task and solution files are written with indentation for better readability.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_WRITE_JSON_INDENTATION MSK_OFF file

Groups
Data input/output

MSK_IPAR_WRITE_LP_FULL_OBJ

Write all variables, including the ones with 0-coefficients, in the objective.

Default
oN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_WRITE_LP_FULL_OBJ MSK_ON file

Groups
Data input/output

MSK_IPAR_WRITE_LP_LINE_WIDTH
Maximum width of line in an LP file written by MOSEK.

Default
80
Accepted
[40; +inf]
Example
mosek -d MSK_IPAR_WRITE_LP_LINE_WIDTH 80 file

Groups
Data input/output

99

MSK_IPAR_WRITE_MPS_FORMAT
Controls in which format the MPS file is written.

Default
FREE

Accepted
STRICT, RELAXED, FREE, CPLEX
Example
mosek -d MSK_IPAR_WRITE_MPS_FORMAT MSK_MPS_FORMAT_FREE file

Groups
Data input/output

MSK_IPAR_WRITE_MPS_INT

Controls if marker records are written to the MPS file to indicate whether variables are integer
restricted.

Default
oN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_WRITE_MPS_INT MSK_ON file

Groups
Data input/output

MSK_IPAR_WRITE_SOL_BARVARIABLES

Controls whether the symmetric matrix variables section is written to the solution file.

Default
onN

Accepted

ON, OFF
Example

mosek -d MSK_IPAR_WRITE_SOL_BARVARIABLES MSK_ON file
Groups

Data input/output, Solution input/output

MSK_IPAR_WRITE_SOL_CONSTRAINTS

Controls whether the constraint section is written to the solution file.

Default
oN

Accepted
ON, OFF

Example

mosek -d MSK_TIPAR_WRITE_SOL_CONSTRAINTS MSK_ON file
Groups

Data input/output, Solution input/output

MSK_IPAR_WRITE_SOL_HEAD
Controls whether the header section is written to the solution file.
Default

onN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_WRITE_SOL_HEAD MSK_ON file

100

Groups
Data input/output, Solution input/output

MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES

Even if the names are invalid MPS names, then they are employed when writing the solution file.

Default
OFF

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES MSK_OFF file

Groups
Data input/output, Solution input/output

MSK_IPAR_WRITE_SOL_VARIABLES

Controls whether the variables section is written to the solution file.

Default
oN

Accepted
ON, OFF

Example
mosek -d MSK_IPAR_WRITE_SOL_VARIABLES MSK_ON file

Groups
Data input/output, Solution input/output

10.3.3 String parameters

MSK_SPAR_BAS_SOL_FILE_NAME
Name of the bas solution file.

Accepted
Any valid file name.

Example
mosek -d MSK_SPAR_BAS_SOL_FILE_NAME somevalue file

Groups
Data input/output, Solution input/output

MSK_SPAR_DATA_FILE_NAME

Data are read and written to this file.

Accepted
Any valid file name.

Example
mosek -d MSK_SPAR_DATA_FILE_NAME somevalue file

Groups
Data input/output

MSK_SPAR_DEBUG_FILE_NAME
MOSEK debug file.

Accepted
Any valid file name.

Example
mosek -d MSK_SPAR_DEBUG_FILE_NAME somevalue file

Groups
Data input/output

101

MSK_SPAR_INT_SOL_FILE_NAME

Name of the int solution file.

Accepted
Any valid file name.

Example
mosek -d MSK_SPAR_INT_SOL_FILE_NAME somevalue file

Groups
Data input/output, Solution input/output

MSK_SPAR_ITR_SOL_FILE_NAME

Name of the itr solution file.

Accepted
Any valid file name.

Example
mosek -d MSK_SPAR_ITR_SOL_FILE_NAME somevalue file

Groups
Data input/output, Solution input/output

MSK_SPAR_MIO_DEBUG_STRING

For internal debugging purposes.

Accepted
Any valid string.

Example
mosek -d MSK_SPAR_MIO_DEBUG_STRING somevalue file

Groups
Data input/output
MSK_SPAR_PARAM_COMMENT_SIGN

Only the first character in this string is used. It is considered as a start of comment sign in the
MOSEK parameter file. Spaces are ignored in the string.

Default
%%

Accepted
Any valid string.

Example
mosek -d MSK_SPAR_PARAM_COMMENT_SIGN %% file

Groups
Data input/output
MSK_SPAR_PARAM_READ_FILE_NAME
Modifications to the parameter database is read from this file.
Accepted

Any valid file name.

Example
mosek -d MSK_SPAR_PARAM_READ_FILE_NAME somevalue file

Groups
Data input/output

MSK_SPAR_PARAM_WRITE_FILE_NAME

The parameter database is written to this file.

Accepted
Any valid file name.

102

Example
mosek -d MSK_SPAR_PARAM_WRITE_FILE_NAME somevalue file

Groups
Data input/output

MSK_SPAR_READ_MPS_BOU_NAME
Name of the BOUNDS vector used. An empty name means that the first BOUNDS vector is used.

Accepted
Any valid MPS name.

Example
mosek -d MSK_SPAR_READ_MPS_BOU_NAME somevalue file

Groups
Data input/output

MSK_SPAR_READ_MPS_0BJ_NAME

Name of the free constraint used as objective function. An empty name means that the first
constraint is used as objective function.

Accepted
Any valid MPS name.

Example
mosek -d MSK_SPAR_READ_MPS_0OBJ_NAME somevalue file

Groups
Data input/output

MSK_SPAR_READ_MPS_RAN_NAME
Name of the RANGE vector used. An empty name means that the first RANGE vector is used.

Accepted
Any valid MPS name.

Example
mosek -d MSK_SPAR_READ_MPS_RAN_NAME somevalue file

Groups
Data input/output

MSK_SPAR_READ_MPS_RHS_NAME
Name of the RHS used. An empty name means that the first RHS vector is used.

Accepted
Any valid MPS name.

Example
mosek -d MSK_SPAR_READ_MPS_RHS_NAME somevalue file

Groups
Data input/output

MSK_SPAR_REMOTE_OPTSERVER_HOST

URL of the remote optimization server in the format (httplhttps)://server:port. If set, all
subsequent calls to any MOSEK function that involves synchronous optimization will be sent to
the specified OptServer instead of being executed locally. Passing empty string deactivates this
redirection.

Accepted
Any valid URL.

Example
mosek -d MSK_SPAR_REMOTE_OPTSERVER_HOST somevalue file

Groups
Overall system

103

MSK_SPAR_REMOTE_TLS_CERT

List of known server certificates in PEM format.

Accepted
PEM files separated by new-lines.

Example
mosek -d MSK_SPAR_REMOTE_TLS_CERT somevalue file

Groups
Overall system

MSK_SPAR_REMOTE_TLS_CERT_PATH

Path to known server certificates in PEM format.

Accepted
Any valid path.

Example
mosek -d MSK_SPAR_REMOTE_TLS_CERT_PATH somevalue file

Groups
Overall system

MSK_SPAR_SENSITIVITY_FILE_NAME

If defined, MOSEK reads this file as a sensitivity analysis data file specifying the type of analysis
to be done.

Accepted
Any valid string.

Example
mosek -d MSK_SPAR_SENSITIVITY_FILE_NAME somevalue file

Groups
Data input/output

MSK_SPAR_SENSITIVITY_RES_FILE_NAME

Accepted
Any valid string.
Example
mosek -d MSK_SPAR_SENSITIVITY_RES_FILE_NAME somevalue file

Groups
Data input/output

MSK_SPAR_SOL_FILTER_XC_LOW

A filter used to determine which constraints should be listed in the solution file. A value of 0.5 means
that all constraints having xc[i]1>0.5 should be listed, whereas +0.5 means that all constraints
having xc[1i]1>=blc[i]+0.5 should be listed. An empty filter means that no filter is applied.

Accepted
Any valid filter.

Example
mosek -d MSK_SPAR_SOL_FILTER_XC_LOW somevalue file

Groups
Data input/output, Solution input/output
MSK_SPAR_SOL_FILTER_XC_UPR

A filter used to determine which constraints should be listed in the solution file. A value of 0.5
means that all constraints having xc[1]<0.5 should be listed, whereas -0.5 means all constraints
having xc[i]<=buc[i]-0.5 should be listed. An empty filter means that no filter is applied.

Accepted
Any valid filter.

104

Example

mosek -d MSK_SPAR_SOL_FILTER_XC_UPR somevalue file
Groups

Data input/output, Solution input/output

MSK_SPAR_SOL_FILTER_XX_LOW

A filter used to determine which variables should be listed in the solution file. A value of “0.5” means
that all constraints having xx[j1>=0.5 should be listed, whereas “+0.5” means that all constraints
having xx[j1>=b1lx[j]1+0.5 should be listed. An empty filter means no filter is applied.

Accepted

Any valid filter.
Example

mosek -d MSK_SPAR_SOL_FILTER_XX_LOW somevalue file
Groups

Data input/output, Solution input/output

MSK_SPAR_SOL_FILTER_XX_UPR

A filter used to determine which variables should be listed in the solution file. A value of “0.5”
means that all constraints having xx [j1<0.5 should be printed, whereas “-0.5” means all constraints
having xx[j]<=bux[j]-0.5 should be listed. An empty filter means no filter is applied.

Accepted

Any valid file name.
Example

mosek -d MSK_SPAR_SOL_FILTER_XX_UPR somevalue file
Groups

Data input/output, Solution input/output

MSK_SPAR_STAT_KEY

Key used when writing the summary file.

Accepted
Any valid string.
Example
mosek -d MSK_SPAR_STAT_KEY somevalue file

Groups
Data input/output

MSK_SPAR_STAT_NAME

Name used when writing the statistics file.

Accepted

Any valid XML string.
Example

mosek -d MSK_SPAR_STAT_NAME somevalue file
Groups

Data input/output

10.4 Response codes

Response codes include:
o Termination codes
o Warnings
o Frrors

The numerical code (in brackets) identifies the response in error messages and in the log output.

105

10.4.1 Termination

MSK_RES_OK (0)

No error occurred.
MSK_RES_TRM_MAX_ITERATIONS (100000)

The optimizer terminated at the maximum number of iterations.
MSK_RES_TRM_MAX_TIME (100001)

The optimizer terminated at the maximum amount of time.
MSK_RES_TRM_OBJECTIVE_RANGE (100002)

The optimizer terminated with an objective value outside the objective range.
MSK_RES_TRM_MIO_NUM_RELAXS (100008)

The mixed-integer optimizer terminated as the maximum number of relaxations was reached.
MSK_RES_TRM_MIO_NUM_BRANCHES (100009)

The mixed-integer optimizer terminated as the maximum number of branches was reached.
MSK_RES_TRM_NUM_MAX_NUM_INT_SOLUTIONS (100015)

The mixed-integer optimizer terminated as the maximum number of feasible solutions was reached.
MSK_RES_TRM_STALL (100006)

The optimizer is terminated due to slow progress.

Stalling means that numerical problems prevent the optimizer from making reasonable progress
and that it makes no sense to continue. In many cases this happens if the problem is badly scaled
or otherwise ill-conditioned. There is no guarantee that the solution will be feasible or optimal.
However, often stalling happens near the optimum, and the returned solution may be of good
quality. Therefore, it is recommended to check the status of the solution. If the solution status is
optimal the solution is most likely good enough for most practical purposes.

Please note that if a linear optimization problem is solved using the interior-point optimizer with
basis identification turned on, the returned basic solution likely to have high accuracy, even though
the optimizer stalled.

Some common causes of stalling are a) badly scaled models, b) near feasible or near infeasible
problems.
MSK_RES_TRM_USER_CALLBACK (100007)

The optimizer terminated due to the return of the user-defined callback function.
MSK_RES_TRM_MAX_NUM_SETBACKS (100020)

The optimizer terminated as the maximum number of set-backs was reached. This indicates serious
numerical problems and a possibly badly formulated problem.
MSK_RES_TRM_NUMERICAL_PROBLEM (100025)

The optimizer terminated due to numerical problems.
MSK_RES_TRM_LOST_RACE (100027)

Lost a race.
MSK_RES_TRM_INTERNAL (100030)

The optimizer terminated due to some internal reason. Please contact MOSEK support.
MSK_RES_TRM_INTERNAL_STOP (100031)

The optimizer terminated for internal reasons. Please contact MOSEK support.
MSK_RES_TRM_SERVER_MAX_TIME (100032)

remote server terminated MOSEK on time limit criteria.
MSK_RES_TRM_SERVER_MAX_MEMORY (100033)

remote server terminated MOSEK on memory limit criteria.

106

10.4.2 Warnings

MSK_RES_WRN_OPEN_PARAM_FILE (50)

The parameter file could not be opened.
MSK_RES_WRN_LARGE_BOUND (51)

A numerically large bound value is specified.
MSK_RES_WRN_LARGE_LO_BOUND (52)

A numerically large lower bound value is specified.
MSK_RES_WRN_LARGE_UP_BOUND (53)

A numerically large upper bound value is specified.
MSK_RES_WRN_LARGE_CON_FX (54)

An equality constraint is fixed to a numerically large value. This can cause numerical problems.
MSK_RES_WRN_LARGE_CJ (57)

A numerically large value is specified for one c;.
MSK_RES_WRN_LARGE_AIJ (62)

A numerically large value is specified for an a;; element in A. The parameter

MSK_DPAR_DATA_TOL_AIJ_LARGE controls when an a; ; is considered large.
MSK_RES_WRN_ZERO_AIJ (63)

One or more zero elements are specified in A.
MSK_RES_WRN_NAME_MAX_LEN (65)

A name is longer than the buffer that is supposed to hold it.
MSK_RES_WRN_SPAR_MAX_LEN (66)

A value for a string parameter is longer than the buffer that is supposed to hold it.
MSK_RES_WRN_MPS_SPLIT_RHS_VECTOR (70)

An RHS vector is split into several nonadjacent parts in an MPS file.
MSK_RES_WRN_MPS_SPLIT_RAN_VECTOR (71)

A RANGE vector is split into several nonadjacent parts in an MPS file.
MSK_RES_WRN_MPS_SPLIT_BOU_VECTOR (72)

A BOUNDS vector is split into several nonadjacent parts in an MPS file.
MSK_RES_WRN_LP_OLD_QUAD_FORMAT (80)

Missing ‘/2’ after quadratic expressions in bound or objective.
MSK_RES_WRN_LP_DROP_VARIABLE (85)

Ignored a variable because the variable was not previously defined. Usually this implies that a
variable appears in the bound section but not in the objective or the constraints.
MSK_RES_WRN_NZ_IN_UPR_TRI (200)

Non-zero elements specified in the upper triangle of a matrix were ignored.
MSK_RES_WRN_DROPPED_NZ_QOBJ (201)

One or more non-zero elements were dropped in the Q matrix in the objective.
MSK_RES_WRN_IGNORE_INTEGER (250)

Ignored integer constraints.
MSK_RES_WRN_NO_GLOBAL_OPTIMIZER (251)

No global optimizer is available.
MSK_RES_WRN_MIO_INFEASIBLE_FINAL (270)

The final mixed-integer problem with all the integer variables fixed at their optimal values is
infeasible.
MSK_RES_WRN_SOL_FILTER (300)

Invalid solution filter is specified.
MSK_RES_WRN_UNDEF_SOL_FILE_NAME (350)

Undefined name occurred in a solution.
MSK_RES_WRN_SOL_FILE_IGNORED_CON (351)

One or more lines in the constraint section were ignored when reading a solution file.
MSK_RES_WRN_SOL_FILE_IGNORED_VAR (352)

One or more lines in the variable section were ignored when reading a solution file.

107

MSK_RES_WRN_TOO_FEW_BASIS_VARS (400)

An incomplete basis has been specified. Too few basis variables are specified.
MSK_RES_WRN_TOO_MANY_BASIS_VARS (405)

A basis with too many variables has been specified.
MSK_RES_WRN_LICENSE_EXPIRE (500)

The license expires.
MSK_RES_WRN_LICENSE_SERVER (501)

The license server is not responding.
MSK_RES_WRN_EMPTY_NAME (502)

A variable or constraint name is empty. The output file may be invalid.
MSK_RES_WRN_USING_GENERIC_NAMES (503)

Generic names are used because a name invalid. For instance when writing an LP file the names
must not contain blanks or start with a digit. Also remeber to give the objective function a name.
MSK_RES_WRN_INVALID_MPS_NAME (504)

A name e.g. a row name is not a valid MPS name.
MSK_RES_WRN_INVALID_MPS_OBJ_NAME (505)

The objective name is not a valid MPS name.
MSK_RES_WRN_LICENSE_FEATURE_EXPIRE (509)

The license expires.
MSK_RES_WRN_PARAM_NAME_DOU (510)

The parameter name is not recognized as a double parameter.
MSK_RES_WRN_PARAM_NAME_INT (511)

The parameter name is not recognized as a integer parameter.
MSK_RES_WRN_PARAM_NAME_STR (512)

The parameter name is not recognized as a string parameter.
MSK_RES_WRN_PARAM_STR_VALUE (515)

The string is not recognized as a symbolic value for the parameter.
MSK_RES_WRN_PARAM_IGNORED_CMIO (516)

A parameter was ignored by the conic mixed integer optimizer.
MSK_RES_WRN_ZEROS_IN_SPARSE_ROW (705)

One or more (near) zero elements are specified in a sparse row of a matrix. Since, it is redundant
to specify zero elements then it may indicate an error.
MSK_RES_WRN_ZEROS_IN_SPARSE_COL (710)

One or more (near) zero elements are specified in a sparse column of a matrix. It is redundant to
specify zero elements. Hence, it may indicate an error.
MSK_RES_WRN_INCOMPLETE_LINEAR_DEPENDENCY_CHECK (800)

The linear dependency check(s) is incomplete. Normally this is not an important warning unless
the optimization problem has been formulated with linear dependencies. Linear dependencies may
prevent MOSEK from solving the problem.

MSK_RES_WRN_ELIMINATOR_SPACE (801)

The eliminator is skipped at least once due to lack of space.
MSK_RES_WRN_PRESOLVE_QUTOFSPACE (802)

The presolve is incomplete due to lack of space.
MSK_RES_WRN_PRESOLVE_PRIMAL_PERTURBATIONS (803)

The presolve perturbed the bounds of the primal problem. This is an indication that the problem
is nearly infeasible.
MSK_RES_WRN_WRITE_CHANGED_NAMES (830)

Some names were changed because they were invalid for the output file format.
MSK_RES_WRN_WRITE_DISCARDED_CFIX (831)

The fixed objective term could not be converted to a variable and was discarded in the output file.
MSK_RES_WRN_DUPLICATE_CONSTRAINT_NAMES (850)

Two constraint names are identical.

108

MSK_RES_WRN_DUPLICATE_VARIABLE_NAMES (851)

Two variable names are identical.
MSK_RES_WRN_DUPLICATE_BARVARIABLE_NAMES (852)

Two barvariable names are identical.
MSK_RES_WRN_DUPLICATE_CONE_NAMES (853)

Two cone names are identical.
MSK_RES_WRN_ANA_LARGE_BOUNDS (900)

This warning is issued by the problem analyzer, if one or more constraint or variable bounds are
very large. One should consider omitting these bounds entirely by setting them to +inf or -inf.
MSK_RES_WRN_ANA_C_ZERO (901)

This warning is issued by the problem analyzer, if the coefficients in the linear part of the objective
are all zero.
MSK_RES_WRN_ANA_EMPTY_COLS (902)

This warning is issued by the problem analyzer, if columns, in which all coefficients are zero, are
found.
MSK_RES_WRN_ANA_CLOSE_BOUNDS (903)

This warning is issued by problem analyzer, if ranged constraints or variables with very close upper
and lower bounds are detected. One should consider treating such constraints as equalities and
such variables as constants.

MSK_RES_WRN_ANA_ALMOST_INT_BOUNDS (904)

This warning is issued by the problem analyzer if a constraint is bound nearly integral.
MSK_RES_WRN_NO_INFEASIBILITY_REPORT_WHEN_MATRIX_VARIABLES (930)

An infeasibility report is not available when the problem contains matrix variables.
MSK_RES_WRN_GETDUAL_IGNORES_INTEGRALITY (940)

Dualizer ignores integer variables and disjunctive constraints.
MSK_RES_WRN_NO_DUALIZER (950)

No automatic dualizer is available for the specified problem. The primal problem is solved.
MSK_RES_WRN_SYM_MAT_LARGE (960)

A numerically large value is specified for an e;; element in E. The parameter
MSK_DPAR_DATA_SYM_MAT_TOL_LARGE controls when an e; ; is considered large.
MSK_RES_WRN_MODIFIED_DOUBLE_PARAMETER (970)

A double parameter related to solver tolerances has a non-default value.
MSK_RES_WRN_LARGE_FIJ (980)

A numerically large value is specified for an f;; element in F. The parameter
MSK_DPAR_DATA_TOL_AIJ_LARGE controls when an f; ; is considered large.
MSK_RES_WRN_PTF_UNKNOWN_SECTION (981)

Unexpected section in PTF file

10.4.3 Errors

MSK_RES_ERR_LICENSE (1000)

Invalid license.
MSK_RES_ERR_LICENSE_EXPIRED (1001)

The license has expired.
MSK_RES_ERR_LICENSE_VERSION (1002)

The license is valid for another version of MOSEK.
MSK_RES_ERR_LICENSE_OLD_SERVER_VERSION (1003)

The version of the FlexLM license server is too old. You should upgrade the license server to one
matching this version of MOSEK. It will support this and all older versions of MOSEK.

This error can appear if the client was updated to a new version which includes an upgrade of the
licensing module, making it incompatible with a much older license server.
MSK_RES_ERR_SIZE_LICENSE (1005)

The problem is bigger than the license.

109

MSK_RES_ERR_PROB_LICENSE (1006)

The software is not licensed to solve the problem.
MSK_RES_ERR_FILE_LICENSE (1007)

Invalid license file.
MSK_RES_ERR_MISSING_LICENSE_FILE (1008)

MOSEK cannot find license file or a token server. See the MOSEK licensing manual for details.
MSK_RES_ERR_SIZE_LICENSE_CON (1010)

The problem has too many constraints to be solved with the available license.
MSK_RES_ERR_SIZE_LICENSE_VAR (1011)

The problem has too many variables to be solved with the available license.
MSK_RES_ERR_SIZE_LICENSE_INTVAR (1012)

The problem contains too many integer variables to be solved with the available license.
MSK_RES_ERR_OPTIMIZER_LICENSE (1013)

The optimizer required is not licensed.
MSK_RES_ERR_FLEXLM (1014)

The FLEXIm license manager reported an error.
MSK_RES_ERR_LICENSE_SERVER (1015)

The license server is not responding.
MSK_RES_ERR_LICENSE_MAX (1016)

Maximum number of licenses is reached.
MSK_RES_ERR_LICENSE_MOSEKLM_DAEMON (1017)

The MOSEKLM license manager daemon is not up and running.
MSK_RES_ERR_LICENSE_FEATURE (1018)

A requested feature is not available in the license file(s). Most likely due to an incorrect license
system setup.
MSK_RES_ERR_PLATFORM_NOT_LICENSED (1019)

A requested license feature is not available for the required platform.
MSK_RES_ERR_LICENSE_CANNOT_ALLOCATE (1020)

The license system cannot allocate the memory required.
MSK_RES_ERR_LICENSE_CANNOT_CONNECT (1021)

MOSEK cannot connect to the license server. Most likely the license server is not up and running.
MSK_RES_ERR_LICENSE_INVALID_HOSTID (1025)

The host ID specified in the license file does not match the host ID of the computer.
MSK_RES_ERR_LICENSE_SERVER_VERSION (1026)

The version specified in the checkout request is greater than the highest version number the daemon
supports.
MSK_RES_ERR_LICENSE_NO_SERVER_SUPPORT (1027)

The license server does not support the requested feature. Possible reasons for this error include:

e The feature has expired.
e The feature’s start date is later than today’s date.
e The version requested is higher than feature’s the highest supported version.
e A corrupted license file.
Try restarting the license and inspect the license server debug file, usually called 1mgrd.log.
MSK_RES_ERR_LICENSE_NO_SERVER_LINE (1028)

There is no SERVER line in the license file. All non-zero license count features need at least one
SERVER line.
MSK_RES_ERR_OLDER_DLL (1035)

The dynamic link library is older than the specified version.
MSK_RES_ERR_NEWER_DLL (1036)

The dynamic link library is newer than the specified version.

110

MSK_RES_ERR_LINK_FILE_DLL (1040)

A file cannot be linked to a stream in the DLL version.
MSK_RES_ERR_THREAD_MUTEX_INIT (1045)

Could not initialize a mutex.
MSK_RES_ERR_THREAD_MUTEX_LOCK (1046)

Could not lock a mutex.
MSK_RES_ERR_THREAD_MUTEX_UNLOCK (1047)

Could not unlock a mutex.
MSK_RES_ERR_THREAD_CREATE (1048)

Could not create a thread. This error may occur if a large number of environments are created
and not deleted again. In any case it is a good practice to minimize the number of environments
created.

MSK_RES_ERR_THREAD_COND_INIT (1049)

Could not initialize a condition.
MSK_RES_ERR_UNKNOWN (1050)

Unknown error.
MSK_RES_ERR_SPACE (1051)

Out of space.
MSK_RES_ERR_FILE_QOPEN (1052)

Error while opening a file.
MSK_RES_ERR_FILE_READ (1053)

File read error.
MSK_RES_ERR_FILE_WRITE (1054)

File write error.
MSK_RES_ERR_DATA_FILE_EXT (1055)

The data file format cannot be determined from the file name.
MSK_RES_ERR_INVALID_FILE_NAME (1056)

An invalid file name has been specified.
MSK_RES_ERR_INVALID_SOL_FILE_NAME (1057)

An invalid file name has been specified.
MSK_RES_ERR_END_OF_FILE (1059)

End of file has been reached unexpectedly.
MSK_RES_ERR_NULL_ENV (1060)

env is a NULL pointer.
MSK_RES_ERR_NULL_TASK (1061)

task is a NULL pointer.
MSK_RES_ERR_INVALID_STREAM (1062)

An invalid stream is referenced.
MSK_RES_ERR_NO_INIT_ENV (1063)

env is not initialized.
MSK_RES_ERR_INVALID_TASK (1064)

The task is invalid.
MSK_RES_ERR_NULL_POINTER (1065)

An argument to a function is unexpectedly a NULL pointer.
MSK_RES_ERR_LIVING_TASKS (1066)

All tasks associated with an enviroment must be deleted before the environment is deleted. There
are still some undeleted tasks.
MSK_RES_ERR_READ_GZIP (1067)

Error encountered in GZIP stream.
MSK_RES_ERR_READ_ZSTD (1068)

Error encountered in ZSTD stream.

111

MSK_RES_ERR_READ_ASYNC (1069)

Error encountered in async stream.
MSK_RES_ERR_BLANK_NAME (1070)

An all blank name has been specified.
MSK_RES_ERR_DUP_NAME (1071)

The same name was used multiple times for the same problem item type.
MSK_RES_ERR_FORMAT_STRING (1072)

The name format string is invalid.
MSK_RES_ERR_SPARSITY_SPECIFICATION (1073)

The sparsity included an index that was out of bounds of the shape.
MSK_RES_ERR_MISMATCHING_DIMENSION (1074)

Mismatching dimensions specified in arguments
MSK_RES_ERR_INVALID_OBJ_NAME (1075)

An invalid objective name is specified.
MSK_RES_ERR_INVALID_CON_NAME (1076)

An invalid constraint name is used.
MSK_RES_ERR_INVALID_VAR_NAME (1077)

An invalid variable name is used.
MSK_RES_ERR_INVALID_CONE_NAME (1078)

An invalid cone name is used.
MSK_RES_ERR_INVALID_BARVAR_NAME (1079)

An invalid symmetric matrix variable name is used.
MSK_RES_ERR_SPACE_LEAKING (1080)

MOSEK is leaking memory. This can be due to either an incorrect use of MOSEK or a bug.
MSK_RES_ERR_SPACE_NO_INFO (1081)

No available information about the space usage.
MSK_RES_ERR_DIMENSION_SPECIFICATION (1082)

Invalid dimension specification
MSK_RES_ERR_AXIS_NAME_SPECIFICATION (1083)

Invalid axis names specification
MSK_RES_ERR_READ_PREMATURE_EQOF (1089)

Encountered premature end-of-file in input stream.
MSK_RES_ERR_READ_FORMAT (1090)

The specified format cannot be read.
MSK_RES_ERR_WRITE_LP_INVALID_VAR_NAMES (1091)

Invalid variable name. Cannot write valid LP file.
MSK_RES_ERR_WRITE_LP_DUPLICATE_VAR_NAMES (1092)

Duplicate variable names. Cannot write valid LP file.
MSK_RES_ERR_WRITE_LP_INVALID_CON_NAMES (1093)

Invalid constraint name. Cannot write valid LP file.
MSK_RES_ERR_WRITE_LP_DUPLICATE_CON_NAMES (1094)

Duplicate constraint names. Cannot write valid LP file.
MSK_RES_ERR_MPS_FILE (1100)

An error occurred while reading an MPS file.
MSK_RES_ERR_MPS_INV_FIELD (1101)

A field in the MPS file is invalid. Probably it is too wide.
MSK_RES_ERR_MPS_INV_MARKER (1102)

An invalid marker has been specified in the MPS file.
MSK_RES_ERR_MPS_NULL_CON_NAME (1103)

An empty constraint name is used in an MPS file.
MSK_RES_ERR_MPS_NULL_VAR_NAME (1104)

An empty variable name is used in an MPS file.

112

MSK_RES_ERR_MPS_UNDEF_CON_NAME (1105)

An undefined constraint name occurred in an MPS file.
MSK_RES_ERR_MPS_UNDEF_VAR_NAME (1106)

An undefined variable name occurred in an MPS file.
MSK_RES_ERR_MPS_INVALID_CON_KEY (1107)

An invalid constraint key occurred in an MPS file.
MSK_RES_ERR_MPS_INVALID_BOUND_KEY (1108)

An invalid bound key occurred in an MPS file.
MSK_RES_ERR_MPS_INVALID_SEC_NAME (1109)

An invalid section name occurred in an MPS file.
MSK_RES_ERR_MPS_NO_O0BJECTIVE (1110)

No objective is defined in an MPS file.
MSK_RES_ERR_MPS_SPLITTED_VAR (1111)

All elements in a column of the A matrix must be specified consecutively. Hence, it is illegal to
specify non-zero elements in A for variable 1, then for variable 2 and then variable 1 again.
MSK_RES_ERR_MPS_MUL_CON_NAME (1112)

A constraint name was specified multiple times in the ROWS section.
MSK_RES_ERR_MPS_MUL_QSEC (1113)

Multiple QSECTIONs are specified for a constraint in the MPS data file.
MSK_RES_ERR_MPS_MUL_QOBJ (1114)

The Q term in the objective is specified multiple times in the MPS data file.
MSK_RES_ERR_MPS_INV_SEC_ORDER (1115)

The sections in the MPS data file are not in the correct order.
MSK_RES_ERR_MPS_MUL_CSEC (1116)

Multiple CSECTIONs are given the same name.
MSK_RES_ERR_MPS_CONE_TYPE (1117)

Invalid cone type specified in a CSECTION.
MSK_RES_ERR_MPS_CONE_OVERLAP (1118)

A variable is specified to be a member of several cones.
MSK_RES_ERR_MPS_CONE_REPEAT (1119)

A variable is repeated within the CSECTION.
MSK_RES_ERR_MPS_NON_SYMMETRIC_Q (1120)

A non symmetric matrix has been speciefied.
MSK_RES_ERR_MPS_DUPLICATE_Q_ELEMENT (1121)

Duplicate elements is specfied in a) matrix.
MSK_RES_ERR_MPS_INVALID_OBJSENSE (1122)

An invalid objective sense is specified.
MSK_RES_ERR_MPS_TAB_IN_FIELD2 (1125)

A tab char occurred in field 2.
MSK_RES_ERR_MPS_TAB_IN_FIELD3 (1126)

A tab char occurred in field 3.
MSK_RES_ERR_MPS_TAB_IN_FIELD5 (1127)

A tab char occurred in field 5.
MSK_RES_ERR_MPS_INVALID_OBJ_NAME (1128)

An invalid objective name is specified.
MSK_RES_ERR_MPS_INVALID_KEY (1129)

An invalid indicator key occurred in an MPS file.
MSK_RES_ERR_MPS_INVALID_INDICATOR_CONSTRAINT (1130)

An invalid indicator constraint is used. It must not be a ranged constraint.
MSK_RES_ERR_MPS_INVALID_INDICATOR_VARIABLE (1131)

An invalid indicator variable is specfied. It must be a binary variable.

113

MSK_RES_ERR_MPS_INVALID_INDICATOR_VALUE (1132)

An invalid indicator value is specfied. It must be either 0 or 1.
MSK_RES_ERR_MPS_INVALID_INDICATOR_QUADRATIC_CONSTRAINT (1133)

A quadratic constraint can be be an indicator constraint.
MSK_RES_ERR_OPF_SYNTAX (1134)

Syntax error in an OPF file
MSK_RES_ERR_OPF_PREMATURE_EOF (1136)

Premature end of file in an OPF file.
MSK_RES_ERR_OPF_MISMATCHED_TAG (1137)

Mismatched end-tag in OPF file
MSK_RES_ERR_OPF_DUPLICATE_BOUND (1138)

Either upper or lower bound was specified twice in OPF file
MSK_RES_ERR_OPF_DUPLICATE_CONSTRAINT_NAME (1139)

Duplicate constraint name in OPF File
MSK_RES_ERR_OPF_INVALID_CONE_TYPE (1140)

Invalid cone type in OPF File
MSK_RES_ERR_OPF_INCORRECT_TAG_PARAM (1141)

Invalid number of parameters in start-tag in OPF File
MSK_RES_ERR_OPF_INVALID_TAG (1142)

Invalid start-tag in OPF File
MSK_RES_ERR_OPF_DUPLICATE_CONE_ENTRY (1143)

Same variable appears in multiple cones in OPF File
MSK_RES_ERR_OPF_TOO_LARGE (1144)

The problem is too large to be correctly loaded
MSK_RES_ERR_OPF_DUAL_INTEGER_SOLUTION (1146)

Dual solution values are not allowed in OPF File
MSK_RES_ERR_LP_EMPTY (1151)

The problem cannot be written to an LP formatted file.
MSK_RES_ERR_WRITE_MPS_INVALID_NAME (1153)

An invalid name is created while writing an MPS file. Usually this will make the MPS file unread-
able.
MSK_RES_ERR_LP_INVALID_VAR_NAME (1154)

A variable name is invalid when used in an LP formatted file.
MSK_RES_ERR_WRITE_OPF_INVALID_VAR_NAME (1156)

Empty variable names cannot be written to OPF files.
MSK_RES_ERR_LP_FILE_FORMAT (1157)

Syntax error in an LP file.
MSK_RES_ERR_LP_EXPECTED_NUMBER (1158)

Expected a number in LP file
MSK_RES_ERR_READ_LP_MISSING_END_TAG (1159)

Syntax error in LP file. Possibly missing End tag.
MSK_RES_ERR_LP_INDICATOR_VAR (1160)

An indicator variable was not declared binary
MSK_RES_ERR_LP_EXPECTED_OBJECTIVE (1161)

Expected an objective section in LP file
MSK_RES_ERR_LP_EXPECTED_CONSTRAINT_RELATION (1162)

Expected constraint relation
MSK_RES_ERR_LP_AMBIGUOUS_CONSTRAINT_BOUND (1163)

Constraint has ambiguous or invalid bound
MSK_RES_ERR_LP_DUPLICATE_SECTION (1164)

Duplicate section

114

MSK_RES_ERR_READ_LP_DELAYED_ROWS_NOT_SUPPORTED (1165)

Duplicate section
MSK_RES_ERR_WRITING_FILE (1166)

An error occurred while writing file
MSK_RES_ERR_WRITE_ASYNC (1167)

An error occurred while performing asynchronous writing
MSK_RES_ERR_INVALID_NAME_IN_SOL_FILE (1170)

An invalid name occurred in a solution file.
MSK_RES_ERR_JSON_SYNTAX (1175)

Syntax error in an JSON data
MSK_RES_ERR_JSON_STRING (1176)

Error in JSON string.
MSK_RES_ERR_JSON_NUMBER_OVERFLOW (1177)

Invalid number entry - wrong type or value overflow.
MSK_RES_ERR_JSON_FORMAT (1178)

Error in an JSON Task file
MSK_RES_ERR_JSON_DATA (1179)

Inconsistent data in JSON Task file
MSK_RES_ERR_JSON_MISSING_DATA (1180)

Missing data section in JSON task file.
MSK_RES_ERR_PTF_INCOMPATIBILITY (1181)

Incompatible item
MSK_RES_ERR_PTF_UNDEFINED_ITEM (1182)

Undefined symbol referenced
MSK_RES_ERR_PTF_INCONSISTENCY (1183)

Inconsistent size of item
MSK_RES_ERR_PTF_FORMAT (1184)

Syntax error in an PTF file
MSK_RES_ERR_ARGUMENT_LENNEQ (1197)

Incorrect length of arguments.
MSK_RES_ERR_ARGUMENT_TYPE (1198)

Incorrect argument type.
MSK_RES_ERR_NUM_ARGUMENTS (1199)

Incorrect number of function arguments.
MSK_RES_ERR_IN_ARGUMENT (1200)

A function argument is incorrect.
MSK_RES_ERR_ARGUMENT_DIMENSION (1201)

A function argument is of incorrect dimension.
MSK_RES_ERR_SHAPE_IS_TOO_LARGE (1202)

The size of the n-dimensional shape is too large.
MSK_RES_ERR_INDEX_IS_TOO_SMALL (1203)

An index in an argument is too small.
MSK_RES_ERR_INDEX_IS_TOO_LARGE (1204)

An index in an argument is too large.
MSK_RES_ERR_INDEX_IS_NOT_UNIQUE (1205)

An index in an argument is not unique.
MSK_RES_ERR_PARAM_NAME (1206)

The parameter name is not correct.
MSK_RES_ERR_PARAM_NAME_DQU (1207)

The parameter name is not correct for a double parameter.
MSK_RES_ERR_PARAM_NAME_INT (1208)

The parameter name is not correct for an integer parameter.

115

MSK_RES_ERR_PARAM_NAME_STR (1209)

The parameter name is not correct for a string parameter.
MSK_RES_ERR_PARAM_INDEX (1210)

Parameter index is out of range.
MSK_RES_ERR_PARAM_IS_TOO_LARGE (1215)

The parameter value is too large.
MSK_RES_ERR_PARAM_IS_TOO_SMALL (1216)

The parameter value is too small.
MSK_RES_ERR_PARAM_VALUE_STR (1217)

The parameter value string is incorrect.
MSK_RES_ERR_PARAM_TYPE (1218)

The parameter type is invalid.
MSK_RES_ERR_INF_DOU_INDEX (1219)

A double information index is out of range for the specified type.
MSK_RES_ERR_INF_INT_INDEX (1220)

An integer information index is out of range for the specified type.
MSK_RES_ERR_INDEX_ARR_IS_TOO_SMALL (1221)

An index in an array argument is too small.
MSK_RES_ERR_INDEX_ARR_IS_TOO_LARGE (1222)

An index in an array argument is too large.
MSK_RES_ERR_INF_LINT_INDEX (1225)

A long integer information index is out of range for the specified type.
MSK_RES_ERR_ARG_IS_TOO_SMALL (1226)

The value of a argument is too small.
MSK_RES_ERR_ARG_IS_TOO_LARGE (1227)

The value of a argument is too large.
MSK_RES_ERR_INVALID_WHICHSOL (1228)

whichsol is invalid.
MSK_RES_ERR_INF_DOU_NAME (1230)

A double information name is invalid.
MSK_RES_ERR_INF_INT_NAME (1231)

An integer information name is invalid.
MSK_RES_ERR_INF_TYPE (1232)

The information type is invalid.
MSK_RES_ERR_INF_LINT_NAME (1234)

A long integer information name is invalid.
MSK_RES_ERR_INDEX (1235)

An index is out of range.
MSK_RES_ERR_WHICHSOL (1236)

The solution defined by whichsol does not exists.
MSK_RES_ERR_SOLITEM (1237)

The solution item number solitem is invalid. Please note that ¥Sk_SOL_ITEM_SNX is invalid for
the basic solution.
MSK_RES_ERR_WHICHITEM_NOT_ALLOWED (1238)
whichitem is unacceptable.
MSK_RES_ERR_MAXNUMCON (1240)
The maximum number of constraints specified is smaller than the number of constraints in the
task.
MSK_RES_ERR_MAXNUMVAR (1241)
The maximum number of variables specified is smaller than the number of variables in the task.
MSK_RES_ERR_MAXNUMBARVAR (1242)
The maximum number of semidefinite variables specified is smaller than the number of semidefinite
variables in the task.

116

MSK_RES_ERR_MAXNUMQNZ (1243)

The maximum number of non-zeros specified for the) matrices is smaller than the number of
non-zeros in the current () matrices.
MSK_RES_ERR_TOO_SMALL_MAX_NUM_NZ (1245)

The maximum number of non-zeros specified is too small.
MSK_RES_ERR_INVALID_IDX (1246)

A specified index is invalid.
MSK_RES_ERR_INVALID_MAX_NUM (1247)

A specified index is invalid.
MSK_RES_ERR_UNALLOWED_WHICHSOL (1248)

The value od whichsol is not allowed.
MSK_RES_ERR_NUMCONLIM (1250)

Maximum number of constraints limit is exceeded.
MSK_RES_ERR_NUMVARLIM (1251)

Maximum number of variables limit is exceeded.
MSK_RES_ERR_TOO_SMALL_MAXNUMANZ (1252)

The maximum number of non-zeros specified for A is smaller than the number of non-zeros in the
current A.
MSK_RES_ERR_INV_APTRE (1253)

aptre[j] is strictly smaller than aptrb[j] for some j.
MSK_RES_ERR_MUL_A_ELEMENT (1254)

An element in A is defined multiple times.
MSK_RES_ERR_INV_BK (1255)

Invalid bound key.
MSK_RES_ERR_INV_BKC (1256)

Invalid bound key is specified for a constraint.
MSK_RES_ERR_INV_BKX (1257)

An invalid bound key is specified for a variable.
MSK_RES_ERR_INV_VAR_TYPE (1258)

An invalid variable type is specified for a variable.
MSK_RES_ERR_SOLVER_PROBTYPE (1259)

Problem type does not match the chosen optimizer.
MSK_RES_ERR_OBJECTIVE_RANGE (1260)

Empty objective range.
MSK_RES_ERR_INV_RESCODE (1261)

Invalid response code.
MSK_RES_ERR_INV_IINF (1262)

Invalid integer information item.
MSK_RES_ERR_INV_LIINF (1263)

Invalid long integer information item.
MSK_RES_ERR_INV_DINF (1264)

Invalid double information item.
MSK_RES_ERR_BASIS (1266)

An invalid basis is specified. Either too many or too few basis variables are specified.
MSK_RES_ERR_INV_SKC (1267)

Invalid value in skc.
MSK_RES_ERR_INV_SKX (1268)

Invalid value in skx.
MSK_RES_ERR_INV_SKN (1274)

Invalid value in skn.
MSK_RES_ERR_INV_SK_STR (1269)

Invalid status key string encountered.

117

MSK_RES_ERR_INV_SK (1270)
Invalid status key code.
MSK_RES_ERR_INV_CONE_TYPE_STR (1271)
Invalid cone type string encountered.
MSK_RES_ERR_INV_CONE_TYPE (1272)
Invalid cone type code is encountered.
MSK_RES_ERR_INVALID_SURPLUS (1275)
Invalid surplus.
MSK_RES_ERR_INV_NAME_ITEM (1280)
An invalid name item code is used.
MSK_RES_ERR_PRO_ITEM (1281)
An invalid problem is used.
MSK_RES_ERR_INVALID_FORMAT_TYPE (1283)
Invalid format type.
MSK_RES_ERR_FIRSTI (1285)
Invalid firsti.
MSK_RES_ERR_LASTI (1286)
Invalid lasti.
MSK_RES_ERR_FIRSTJ (1287)
Invalid firstj.
MSK_RES_ERR_LASTJ (1288)
Invalid lastj.
MSK_RES_ERR_MAX_LEN_IS_TOO_SMALL (1289)
A maximum length that is too small has been specified.
MSK_RES_ERR_NONLINEAR_EQUALITY (1290)
The model contains a nonlinear equality which defines a nonconvex set.
MSK_RES_ERR_NONCONVEX (1291)
The optimization problem is nonconvex.
MSK_RES_ERR_NONLINEAR_RANGED (1292)
Nonlinear constraints with finite lower and upper bound always define a nonconvex feasible set.
MSK_RES_ERR_CON_Q_NOT_PSD (1293)
The quadratic constraint matrix is not positive semidefinite as expected for a constraint with finite
upper bound. This results in a nonconvex problem.
MSK_RES_ERR_CON_Q_NOT_NSD (1294)
The quadratic constraint matrix is not negative semidefinite as expected for a constraint with finite
lower bound. This results in a nonconvex problem.
MSK_RES_ERR_0BJ_Q_NOT_PSD (1295)

The quadratic coefficient matrix in the objective is not positive semidefinite as expected for a
minimization problem.
MSK_RES_ERR_OBJ_Q_NOT_NSD (1296)

The quadratic coefficient matrix in the objective is not negative semidefinite as expected for a
maximization problem.
MSK_RES_ERR_ARGUMENT_PERM_ARRAY (1299)

An invalid permutation array is specified.
MSK_RES_ERR_CONE_INDEX (1300)

An index of a non-existing cone has been specified.
MSK_RES_ERR_CONE_SIZE (1301)

A cone with incorrect number of members is specified.
MSK_RES_ERR_CONE_OVERLAP (1302)

One or more of the variables in the cone to be added is already member of another cone. Now
assume the variable is z; then add a new variable say z; and the constraint

Tj =Tk

and then let x be member of the cone to be appended.

118

MSK_RES_ERR_CONE_REP_VAR (1303)

A variable is included multiple times in the cone.
MSK_RES_ERR_MAXNUMCONE (1304)

The value specified for maxnumcone is too small.
MSK_RES_ERR_CONE_TYPE (1305)

Invalid cone type specified.
MSK_RES_ERR_CONE_TYPE_STR (1306)

Invalid cone type specified.
MSK_RES_ERR_CONE_OVERLAP_APPEND (1307)

The cone to be appended has one variable which is already member of another cone.
MSK_RES_ERR_REMOVE_CONE_VARIABLE (1310)

A variable cannot be removed because it will make a cone invalid.
MSK_RES_ERR_APPENDING_TOO_BIG_CONE (1311)

Trying to append a too big cone.
MSK_RES_ERR_CONE_PARAMETER (1320)

An invalid cone parameter.
MSK_RES_ERR_SOL_FILE_INVALID_NUMBER (1350)

An invalid number is specified in a solution file.
MSK_RES_ERR_HUGE_C (1375)

A huge value in absolute size is specified for one c;.
MSK_RES_ERR_HUGE_AIJ (1380)

A numerically huge value is specified for an a;; element in A. The parameter
MSK_DPAR_DATA_TOL_AIJ_HUGE controls when an a; ; is considered huge.
MSK_RES_ERR_DUPLICATE_AIJ (1385)
An element in the A matrix is specified twice.
MSK_RES_ERR_LOWER_BOUND_IS_A_NAN (1390)

The lower bound specified is not a number (nan).
MSK_RES_ERR_UPPER_BOUND_IS_A_NAN (1391)

The upper bound specified is not a number (nan).
MSK_RES_ERR_INFINITE_BOUND (1400)

A numerically huge bound value is specified.
MSK_RES_ERR_INV_QOBJ_SUBI (1401)

Invalid value in qosubi.
MSK_RES_ERR_INV_QOBJ_SUBJ (1402)

Invalid value in qosubj.
MSK_RES_ERR_INV_QOBJ_VAL (1403)

Invalid value in qoval.
MSK_RES_ERR_INV_QCON_SUBK (1404)

Invalid value in gcsubk.
MSK_RES_ERR_INV_QCON_SUBI (1405)

Invalid value in gqcsubi.
MSK_RES_ERR_INV_QCON_SUBJ (1406)

Invalid value in gcsubj.
MSK_RES_ERR_INV_QCON_VAL (1407)

Invalid value in gcval.
MSK_RES_ERR_QCON_SUBI_TOO_SMALL (1408)

Invalid value in gcsubi.
MSK_RES_ERR_QCON_SUBI_TOO_LARGE (1409)

Invalid value in gcsubi.
MSK_RES_ERR_QOBJ_UPPER_TRIANGLE (1415)

An element in the upper triangle of Q° is specified. Only elements in the lower triangle should be
specified.

119

MSK_RES_ERR_QCON_UPPER_TRIANGLE (1417)

An element in the upper triangle of a Q¥ is specified. Only elements in the lower triangle should
be specified.

MSK_RES_ERR_FIXED_BOUND_VALUES (1420)
A fixed constraint/variable has been specified using the bound keys but the numerical value of the
lower and upper bound is different.

MSK_RES_ERR_TOO_SMALL_A_TRUNCATION_VALUE (1421)

A too small value for the A trucation value is specified.
MSK_RES_ERR_INVALID_OBJECTIVE_SENSE (1445)

An invalid objective sense is specified.
MSK_RES_ERR_UNDEFINED_OBJECTIVE_SENSE (1446)

The objective sense has not been specified before the optimization.
MSK_RES_ERR_Y_IS_UNDEFINED (1449)

The solution item y is undefined.
MSK_RES_ERR_NAN_IN_DQOUBLE_DATA (1450)

An invalid floating point value was used in some double data.
MSK_RES_ERR_INF_IN_DOUBLE_DATA (1451)

An infinite floating point value was used in some double data.
MSK_RES_ERR_NAN_IN_BLC (1461)

¢ contains an invalid floating point value, i.e. a NaN or Inf.
MSK_RES_ERR_NAN_IN_BUC (1462)

u€ contains an invalid floating point value, i.e. a NaN of Inf.
MSK_RES_ERR_INVALID_CFIX (1469)

An invalid fixed term in the objective is speficied.
MSK_RES_ERR_NAN_IN_C (1470)

¢ contains an invalid floating point value, i.e. a NaN or Inf.
MSK_RES_ERR_NAN_IN_BLX (1471)

[” contains an invalid floating point value, i.e. a NaN or Inf.
MSK_RES_ERR_NAN_IN_BUX (1472)

u” contains an invalid floating point value, i.e. a NaN or Inf.
MSK_RES_ERR_INVALID_AIJ (1473)

a;,; contains an invalid floating point value, i.e. a NaN or an infinite value.
MSK_RES_ERR_INVALID_CJ (1474)

c¢; contains an invalid floating point value, i.e. a NaN or an infinite value.
MSK_RES_ERR_SYM_MAT_INVALID (1480)

A symmetric matrix contains an invalid floating point value, i.e. a NaN or an infinite value.
MSK_RES_ERR_SYM_MAT_HUGE (1482)

A symmetric matrix contains a huge value in absolute size. The parameter

MSK_DPAR_DATA_SYM_MAT_TOL_HUGE controls when an e; ; is considered huge.
MSK_RES_ERR_INV_PROBLEM (1500)

Invalid problem type. Probably a nonconvex problem has been specified.
MSK_RES_ERR_MIXED_CONIC_AND_NL (1501)

The problem contains nonlinear terms conic constraints. The requested operation cannot be applied
to this type of problem.
MSK_RES_ERR_GLOBAL_INV_CONIC_PROBLEM (1503)

The global optimizer can only be applied to problems without semidefinite variables.
MSK_RES_ERR_INV_OPTIMIZER (1550)

An invalid optimizer has been chosen for the problem.
MSK_RES_ERR_MIO_NO_OPTIMIZER (1551)

No optimizer is available for the current class of integer optimization problems.
MSK_RES_ERR_NO_OPTIMIZER_VAR_TYPE (1552)

No optimizer is available for this class of optimization problems.

120

MSK_RES_ERR_FINAL_SOLUTION (1560)

An error occurred during the solution finalization.
MSK_RES_ERR_FIRST (1570)

Invalid first.
MSK_RES_ERR_LAST (1571)

Invalid index last. A given index was out of expected range.
MSK_RES_ERR_SLICE_SIZE (1572)

Invalid slice size specified.
MSK_RES_ERR_NEGATIVE_SURPLUS (1573)

Negative surplus.
MSK_RES_ERR_NEGATIVE_APPEND (1578)

Cannot append a negative number.
MSK_RES_ERR_POSTSOLVE (1580)

An error occurred during the postsolve. Please contact MOSEK support.
MSK_RES_ERR_OVERFLOW (1590)

A computation produced an overflow i.e. a very large number.
MSK_RES_ERR_NO_BASIS_SOL (1600)

No basic solution is defined.
MSK_RES_ERR_BASIS_FACTOR (1610)

The factorization of the basis is invalid.
MSK_RES_ERR_BASIS_SINGULAR (1615)

The basis is singular and hence cannot be factored.
MSK_RES_ERR_FACTOR (1650)

An error occurred while factorizing a matrix.
MSK_RES_ERR_FEASREPAIR_CANNOT_RELAX (1700)

An optimization problem cannot be relaxed.
MSK_RES_ERR_FEASREPATIR_SOLVING_RELAXED (1701)

The relaxed problem could not be solved to optimality. Please consult the log file for further details.
MSK_RES_ERR_FEASREPAIR_INCONSISTENT_BOUND (1702)

The upper bound is less than the lower bound for a variable or a constraint. Please correct this
before running the feasibility repair.
MSK_RES_ERR_REPAIR_INVALID_PROBLEM (1710)

The feasibility repair does not support the specified problem type.
MSK_RES_ERR_REPAIR_OPTIMIZATION_FAILED (1711)

Computation the optimal relaxation failed. The cause may have been numerical problems.
MSK_RES_ERR_NAME_MAX_LEN (1750)

A name is longer than the buffer that is supposed to hold it.
MSK_RES_ERR_NAME_IS_NULL (1760)

The name buffer is a NULL pointer.
MSK_RES_ERR_INVALID_COMPRESSION (1800)

Invalid compression type.
MSK_RES_ERR_INVALID_IOMODE (1801)

Invalid io mode.
MSK_RES_ERR_NO_PRIMAL_INFEAS_CER (2000)

A certificate of primal infeasibility is not available.
MSK_RES_ERR_NO_DUAL_INFEAS_CER (2001)

A certificate of infeasibility is not available.
MSK_RES_ERR_NO_SOLUTION_IN_CALLBACK (2500)

The required solution is not available.
MSK_RES_ERR_INV_MARKI (2501)

Invalid value in marki.

121

MSK_RES_ERR_INV_MARKJ (2502)

Invalid value in markj.
MSK_RES_ERR_INV_NUMI (2503)

Invalid numi.
MSK_RES_ERR_INV_NUMJ (2504)

Invalid numj.
MSK_RES_ERR_TASK_INCOMPATIBLE (2560)

The Task file is incompatible with this platform. This results from reading a file on a 32 bit
platform generated on a 64 bit platform.
MSK_RES_ERR_TASK_INVALID (2561)

The Task file is invalid.
MSK_RES_ERR_TASK_WRITE (2562)

Failed to write the task file.
MSK_RES_ERR_READ_WRITE (2563)

Failed to read or write due to an I/O error.
MSK_RES_ERR_TASK_PREMATURE_EQF (2564)

The Task file ended prematurely.
MSK_RES_ERR_LU_MAX_NUM_TRIES (2800)

Could not compute the LU factors of the matrix within the maximum number of allowed tries.
MSK_RES_ERR_INVALID_UTF8 (2900)

An invalid UTFS string is encountered.
MSK_RES_ERR_INVALID_WCHAR (2901)

An invalid wchar string is encountered.
MSK_RES_ERR_NO_DUAL_FOR_ITG_SOL (2950)

No dual information is available for the integer solution.
MSK_RES_ERR_NO_SNX_FOR_BAS_SOL (2953)

s¥ is not available for the basis solution.
MSK_RES_ERR_INTERNAL (3000)

An internal error occurred. Please report this problem.
MSK_RES_ERR_API_ARRAY_TOO_SMALL (3001)

An input array was too short.
MSK_RES_ERR_API_CB_CONNECT (3002)

Failed to connect a callback object.
MSK_RES_ERR_API_FATAL_ERROR (3005)

An internal error occurred in the API. Please report this problem.
MSK_RES_ERR_API_INTERNAL (3999)

An internal fatal error occurred in an interface function.
MSK_RES_ERR_SEN_FORMAT (3050)

Syntax error in sensitivity analysis file.
MSK_RES_ERR_SEN_UNDEF_NAME (3051)

An undefined name was encountered in the sensitivity analysis file.
MSK_RES_ERR_SEN_INDEX_RANGE (3052)

Index out of range in the sensitivity analysis file.
MSK_RES_ERR_SEN_BOUND_INVALID_UP (3053)

Analysis of upper bound requested for an index, where no upper bound exists.
MSK_RES_ERR_SEN_BOUND_INVALID_LO (3054)

Analysis of lower bound requested for an index, where no lower bound exists.
MSK_RES_ERR_SEN_INDEX_INVALID (3055)

Invalid range given in the sensitivity file.
MSK_RES_ERR_SEN_INVALID_REGEXP (3056)

Syntax error in regexp or regexp longer than 1024.

122

MSK_RES_ERR_SEN_SOLUTION_STATUS (3057)

No optimal solution found to the original problem given for sensitivity analysis.
MSK_RES_ERR_SEN_NUMERICAL (3058)

Numerical difficulties encountered performing the sensitivity analysis.
MSK_RES_ERR_SEN_UNHANDLED_PROBLEM_TYPE (3080)

Sensitivity analysis cannot be performed for the specified problem. Sensitivity analysis is only
possible for linear problems.
MSK_RES_ERR_UNB_STEP_SIZE (3100)

A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes

unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen

only if the problem is badly formulated. Please contact MOSEK support if this error occurs.
MSK_RES_ERR_IDENTICAL_TASKS (3101)

Some tasks related to this function call were identical. Unique tasks were expected.
MSK_RES_ERR_AD_INVALID_CODELIST (3102)

The code list data was invalid.
MSK_RES_ERR_INTERNAL_TEST_FAILED (3500)

An internal unit test function failed.
MSK_RES_ERR_INT64_TO_INT32_CAST (3800)

A 64 bit integer could not be cast to a 32 bit integer.
MSK_RES_ERR_INFEAS_UNDEFINED (3910)

The requested value is not defined for this solution type.
MSK_RES_ERR_NO_BARX_FOR_SOLUTION (3915)

There is no X available for the solution specified. In particular note there are no X defined for the

basic and integer solutions.
MSK_RES_ERR_NO_BARS_FOR_SOLUTION (3916)

There is no § available for the solution specified. In particular note there are no § defined for the

basic and integer solutions.
MSK_RES_ERR_BAR_VAR_DIM (3920)

The dimension of a symmetric matrix variable has to be greater than 0.
MSK_RES_ERR_SYM_MAT_INVALID_ROW_INDEX (3940)

A row index specified for sparse symmetric matrix is invalid.
MSK_RES_ERR_SYM_MAT_INVALID_COL_INDEX (3941)

A column index specified for sparse symmetric matrix is invalid.
MSK_RES_ERR_SYM_MAT_NOT_LOWER_TRINGULAR (3942)

Only the lower triangular part of sparse symmetric matrix should be specified.
MSK_RES_ERR_SYM_MAT_INVALID_VALUE (3943)

The numerical value specified in a sparse symmetric matrix is not a floating point value.
MSK_RES_ERR_SYM_MAT_DUPLICATE (3944)

A value in a symmetric matric as been specified more than once.
MSK_RES_ERR_INVALID_SYM_MAT_DIM (3950)

A sparse symmetric matrix of invalid dimension is specified.
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_SYM_MAT (4000)

The file format does not support a problem with symmetric matrix variables.
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_CFIX (4001)

The file format does not support a problem with nonzero fixed term in c.
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_RANGED_CONSTRAINTS (4002)

The file format does not support a problem with ranged constraints.
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_FREE_CONSTRAINTS (4003)

The file format does not support a problem with free constraints.
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_CONES (4005)

The file format does not support a problem with the simple cones (deprecated).
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_QUADRATIC_TERMS (4006)

The file format does not support a problem with quadratic terms.

123

MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_NONLINEAR (4010)

The file format does not support a problem with nonlinear terms.
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_DISJUNCTIVE_CONSTRAINTS (4011)

The file format does not support a problem with disjunctive constraints.
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_AFFINE_CONIC_CONSTRAINTS (4012)

The file format does not support a problem with affine conic constraints.
MSK_RES_ERR_DUPLICATE_CONSTRAINT_NAMES (4500)

Two constraint names are identical.
MSK_RES_ERR_DUPLICATE_VARIABLE_NAMES (4501)

Two variable names are identical.
MSK_RES_ERR_DUPLICATE_BARVARIABLE_NAMES (4502)

Two barvariable names are identical.
MSK_RES_ERR_DUPLICATE_CONE_NAMES (4503)

Two cone names are identical.
MSK_RES_ERR_DUPLICATE_DOMAIN_NAMES (4504)

Two domain names are identical.
MSK_RES_ERR_DUPLICATE_DJC_NAMES (4505)

Two disjunctive constraint names are identical.
MSK_RES_ERR_NON_UNIQUE_ARRAY (5000)

An array does not contain unique elements.
MSK_RES_ERR_ARGUMENT_IS_TOO_SMALL (5004)

The value of a function argument is too small.
MSK_RES_ERR_ARGUMENT_IS_TOO_LARGE (5005)

The value of a function argument is too large.
MSK_RES_ERR_MIO_INTERNAL (5010)

A fatal error occurred in the mixed integer optimizer. Please contact MOSEK support.

MSK_RES_ERR_INVALID_PROBLEM_TYPE (6000)

An invalid problem type.
MSK_RES_ERR_UNHANDLED_SOLUTION_STATUS (6010)

Unhandled solution status.
MSK_RES_ERR_UPPER_TRIANGLE (6020)

An element in the upper triangle of a lower triangular matrix is specified.
MSK_RES_ERR_LAU_SINGULAR_MATRIX (7000)

A matrix is singular.
MSK_RES_ERR_LAU_NOT_POSITIVE_DEFINITE (7001)

A matrix is not positive definite.
MSK_RES_ERR_LAU_INVALID_LOWER_TRIANGULAR_MATRIX (7002)

An invalid lower triangular matrix.
MSK_RES_ERR_LAU_UNKNOWN (7005)

An unknown error.
MSK_RES_ERR_LAU_ARG_M (7010)

Invalid argument m.
MSK_RES_ERR_LAU_ARG_N (7011)

Invalid argument n.
MSK_RES_ERR_LAU_ARG_K (7012)

Invalid argument k.
MSK_RES_ERR_LAU_ARG_TRANSA (7015)

Invalid argument transa.
MSK_RES_ERR_LAU_ARG_TRANSB (7016)

Invalid argument transb.
MSK_RES_ERR_LAU_ARG_UPLO (7017)

Invalid argument uplo.

124

MSK_RES_ERR_LAU_ARG_TRANS (7018)

Invalid argument trans.
MSK_RES_ERR_LAU_INVALID_SPARSE_SYMMETRIC_MATRIX (7019)

An invalid sparse symmetric matrix is specfified. Note only the lower triangular part with no
duplicates is specifed.
MSK_RES_ERR_CBF_PARSE (7100)

An error occurred while parsing an CBF file.
MSK_RES_ERR_CBF_OBJ_SENSE (7101)

An invalid objective sense is specified.
MSK_RES_ERR_CBF_NO_VARIABLES (7102)

No variables are specified.
MSK_RES_ERR_CBF_TOO0_MANY_CONSTRAINTS (7103)

Too many constraints specified.
MSK_RES_ERR_CBF_TO0_MANY_VARIABLES (7104)

Too many variables specified.
MSK_RES_ERR_CBF_NO_VERSION_SPECIFIED (7105)

No version specified.
MSK_RES_ERR_CBF_SYNTAX (7106)

Invalid syntax.
MSK_RES_ERR_CBF_DUPLICATE_0BJ (7107)

Duplicate OBJ keyword.
MSK_RES_ERR_CBF_DUPLICATE_CON (7108)

Duplicate CON keyword.
MSK_RES_ERR_CBF_DUPLICATE_VAR (7110)

Duplicate VAR keyword.
MSK_RES_ERR_CBF_DUPLICATE_INT (7111)

Duplicate INT keyword.
MSK_RES_ERR_CBF_INVALID_VAR_TYPE (7112)

Invalid variable type.
MSK_RES_ERR_CBF_INVALID_CON_TYPE (7113)

Invalid constraint type.
MSK_RES_ERR_CBF_INVALID_DOMAIN_DIMENSION (7114)

Invalid domain dimension.
MSK_RES_ERR_CBF_DUPLICATE_OBJACOORD (7115)

Duplicate index in OBJCOORD.
MSK_RES_ERR_CBF_DUPLICATE_BCOORD (7116)

Duplicate index in BCOORD.
MSK_RES_ERR_CBF_DUPLICATE_ACOORD (7117)

Duplicate index in ACOORD.
MSK_RES_ERR_CBF_TOO0_FEW_VARIABLES (7118)

Too few variables defined.
MSK_RES_ERR_CBF_TOO_FEW_CONSTRAINTS (7119)

Too few constraints defined.
MSK_RES_ERR_CBF_TOO_FEW_INTS (7120)

Too few ints are specified.
MSK_RES_ERR_CBF_TOO_MANY_INTS (7121)

Too many ints are specified.
MSK_RES_ERR_CBF_INVALID_INT_INDEX (7122)

Invalid INT index.
MSK_RES_ERR_CBF_UNSUPPORTED (7123)

Unsupported feature is present.

125

MSK_RES_ERR_CBF_DUPLICATE_PSDVAR (7124)

Duplicate PSDVAR keyword.
MSK_RES_ERR_CBF_INVALID_PSDVAR_DIMENSION (7125)

Invalid PSDVAR dimension.
MSK_RES_ERR_CBF_TOO_FEW_PSDVAR (7126)

Too few variables defined.
MSK_RES_ERR_CBF_INVALID_EXP_DIMENSION (7127)

Invalid dimension of a exponential cone.
MSK_RES_ERR_CBF_DUPLICATE_POW_CONES (7130)

Multiple POWCONES specified.
MSK_RES_ERR_CBF_DUPLICATE_POW_STAR_CONES (7131)

Multiple POW*CONES specified.
MSK_RES_ERR_CBF_INVALID_POWER (7132)

Invalid power specified.
MSK_RES_ERR_CBF_POWER_CONE_IS_TOO_LONG (7133)

Power cone is too long.
MSK_RES_ERR_CBF_INVALID_POWER_CONE_INDEX (7134)

Invalid power cone index.
MSK_RES_ERR_CBF_INVALID_POWER_STAR_CONE_INDEX (7135)

Invalid power star cone index.
MSK_RES_ERR_CBF_UNHANDLED_POWER_CONE_TYPE (7136)

An unhandled power cone type.
MSK_RES_ERR_CBF_UNHANDLED_POWER_STAR_CONE_TYPE (7137)

An unhandled power star cone type.
MSK_RES_ERR_CBF_POWER_CONE_MISMATCH (7138)

The power cone does not match with it definition.
MSK_RES_ERR_CBF_POWER_STAR_CONE_MISMATCH (7139)

The power star cone does not match with it definition.
MSK_RES_ERR_CBF_INVALID_NUMBER_OF_CONES (7140)

Invalid number of cones.
MSK_RES_ERR_CBF_INVALID_DIMENSION_OF_CONES (7141)

Invalid number of cones.
MSK_RES_ERR_CBF_INVALID_NUM_OBJACOORD (7150)

Invalid number of OBJACOORD.
MSK_RES_ERR_CBF_INVALID_NUM_OBJFCOORD (7151)

Invalid number of OBJFCOORD.
MSK_RES_ERR_CBF_INVALID_NUM_ACOORD (7152)

Invalid number of ACOORD.
MSK_RES_ERR_CBF_INVALID_NUM_BCOORD (7153)

Invalid number of BCOORD.
MSK_RES_ERR_CBF_INVALID_NUM_FCOORD (7155)

Invalid number of FCOORD.
MSK_RES_ERR_CBF_INVALID_NUM_HCOORD (7156)

Invalid number of HCOORD.
MSK_RES_ERR_CBF_INVALID_NUM_DCOORD (7157)

Invalid number of DCOORD.
MSK_RES_ERR_CBF_EXPECTED_A_KEYWORD (7158)

Expected a key word.
MSK_RES_ERR_CBF_INVALID_NUM_PSDCON (7200)

Invalid number of PSDCON.
MSK_RES_ERR_CBF_DUPLICATE_PSDCON (7201)

Duplicate CON keyword.

126

MSK_RES_ERR_CBF_INVALID_DIMENSION_OF_PSDCON (7202)

Invalid PSDCON dimension.
MSK_RES_ERR_CBF_INVALID_PSDCON_INDEX (7203)

Invalid PSDCON index.
MSK_RES_ERR_CBF_INVALID_PSDCON_VARIABLE_INDEX (7204)

Invalid PSDCON index.
MSK_RES_ERR_CBF_INVALID_PSDCON_BLOCK_INDEX (7205)

Invalid PSDCON index.
MSK_RES_ERR_CBF_UNSUPPORTED_CHANGE (7210)

The CHANGE section is not supported.
MSK_RES_ERR_MIO_INVALID_ROOT_OPTIMIZER (7700)

An invalid root optimizer was selected for the problem type.
MSK_RES_ERR_MIO_INVALID_NODE_OPTIMIZER (7701)

An invalid node optimizer was selected for the problem type.
MSK_RES_ERR_MPS_WRITE_CPLEX_INVALID_CONE_TYPE (7750)

An invalid cone type occurs when writing a CPLEX formatted MPS file.
MSK_RES_ERR_TOCONIC_CONSTR_Q_NOT_PSD (7800)

The matrix defining the quadratric part of constraint is not positive semidefinite.
MSK_RES_ERR_TOCONIC_CONSTRAINT_FX (7801)

The quadratic constraint is an equality, thus not convex.
MSK_RES_ERR_TOCONIC_CONSTRAINT_RA (7802)

The quadratic constraint has finite lower and upper bound, and therefore it is not convex.
MSK_RES_ERR_TOCONIC_CONSTR_NOT_CONIC (7803)

The constraint is not conic representable.
MSK_RES_ERR_TOCONIC_OBJECTIVE_NOT_PSD (7804)

The matrix defining the quadratric part of the objective function is not positive semidefinite.
MSK_RES_ERR_GETDUAL_NOT_AVAILABLE (7820)

The simple dualizer is not available for this problem class.
MSK_RES_ERR_SERVER_CONNECT (8000)

Failed to connect to remote solver server. The server string or the port string were invalid, or the
server did not accept connection.
MSK_RES_ERR_SERVER_PROTOCOL (8001)

Unexpected message or data from solver server.
MSK_RES_ERR_SERVER_STATUS (8002)

Server returned non-ok HTTP status code
MSK_RES_ERR_SERVER_TOKEN (8003)

The job ID specified is incorrect or invalid
MSK_RES_ERR_SERVER_ADDRESS (8004)

Invalid address string
MSK_RES_ERR_SERVER_CERTIFICATE (8005)

Invalid TLS certificate format or path
MSK_RES_ERR_SERVER_TLS_CLIENT (8006)

Failed to create TLS cleint
MSK_RES_ERR_SERVER_ACCESS_TOKEN (8007)

Invalid access token
MSK_RES_ERR_SERVER_PROBLEM_SIZE (8008)

The size of the problem exceeds the dimensions permitted by the instance of the OptServer where
it was run.
MSK_RES_ERR_SERVER_HARD_TIMEQUT (8009)

The hard timeout limit was reached on solver server, and the solver process was killed
MSK_RES_ERR_DUPLICATE_INDEX_IN_A_SPARSE_MATRIX (20050)

An element in a sparse matrix is specified twice.

127

MSK_RES_ERR_DUPLICATE_INDEX_IN_AFEIDX_LIST (20060)

An index is specified twice in an affine expression list.
MSK_RES_ERR_DUPLICATE_FIJ (20100)

An element in the F matrix is specified twice.
MSK_RES_ERR_INVALID_FIJ (20101)

fi,; contains an invalid floating point value, i.e. a NaN or an infinite value.
MSK_RES_ERR_HUGE_FIJ (20102)

A numerically huge value is specified for an f;; element in F. The parameter
MSK_DPAR_DATA_TOL_AIJ_HUGE controls when an f; ; is considered huge.
MSK_RES_ERR_INVALID_G (20103)

g contains an invalid floating point value, i.e. a NaN or an infinite value.
MSK_RES_ERR_INVALID_B (20150)

b contains an invalid floating point value, i.e. a NaN or an infinite value.
MSK_RES_ERR_DOMAIN_INVALID_INDEX (20400)

A domain index is invalid.
MSK_RES_ERR_DOMAIN_DIMENSION (20401)

A domain dimension is invalid.
MSK_RES_ERR_DOMAIN_DIMENSION_PSD (20402)

A PSD domain dimension is invalid.
MSK_RES_ERR_NOT_POWER_DOMAIN (20403)

The function is only applicable to primal and dual power cone domains.
MSK_RES_ERR_DOMAIN_POWER_INVALID_ALPHA (20404)

Alpha contains an invalid floating point value, i.e. a NaN or an infinite value.
MSK_RES_ERR_DOMAIN_POWER_NEGATIVE_ALPHA (20405)

Alpha contains a negative value or zero.
MSK_RES_ERR_DOMAIN_POWER_NLEFT (20406)

The value of njeg is not in [1,n — 1] where n is the dimension.
MSK_RES_ERR_AFE_INVALID_INDEX (20500)

An affine expression index is invalid.
MSK_RES_ERR_ACC_INVALID_INDEX (20600)

A affine conic constraint index is invalid.
MSK_RES_ERR_ACC_INVALID_ENTRY_INDEX (20601)

The index of an element in an affine conic constraint is invalid.
MSK_RES_ERR_ACC_AFE_DOMAIN_MISMATCH (20602)

There is a mismatch between between the number of affine expressions and total dimension of the
domain(s).
MSK_RES_ERR_DJC_INVALID_INDEX (20700)

A disjunctive constraint index is invalid.
MSK_RES_ERR_DJC_UNSUPPORTED_DOMAIN_TYPE (20701)

An unsupported domain type has been used in a disjunctive constraint.
MSK_RES_ERR_DJC_AFE_DOMAIN_MISMATCH (20702)

There is a mismatch between the number of affine expressions and total dimension of the domain(s).
MSK_RES_ERR_DJC_INVALID_TERM_SIZE (20703)

A termize is invalid.
MSK_RES_ERR_DJC_DOMAIN_TERMSIZE_MISMATCH (20704)

There is a mismatch between the number of domains and the term sizes.
MSK_RES_ERR_DJC_TOTAL_NUM_TERMS_MISMATCH (20705)

There total number of terms in all domains does not match.
MSK_RES_ERR_UNDEF_SOLUTION (22000)

MOSEK has the following solution types:

e an interior-point solution,

e a basic solution,

128

e and an integer solution.

Each optimizer may set one or more of these solutions; e.g by default a successful optimization
with the interior-point optimizer defines the interior-point solution and, for linear problems, also
the basic solution. This error occurs when asking for a solution or for information about a solution
that is not defined.

MSK_RES_ERR_NO_DOTY (22010)

No doty is available

10.5 Constants

10.5.1 Basis identification

MSK_BI_NEVER

Never do basis identification.
MSK_BI_ALWAYS

Basis identification is always performed even if the interior-point optimizer terminates abnormally.
MSK_BI_NO_ERROR

Basis identification is performed if the interior-point optimizer terminates without an error.
MSK_BI_IF_FEASIBLE

Basis identification is not performed if the interior-point optimizer terminates with a problem status
saying that the problem is primal or dual infeasible.
MSK_BI_RESERVERED

Not currently in use.

10.5.2 Bound keys

MSK_BK_LO

The constraint or variable has a finite lower bound and an infinite upper bound.
MSK_BK_UP

The constraint or variable has an infinite lower bound and an finite upper bound.
MSK_BK_FX

The constraint or variable is fixed.
MSK_BK_FR

The constraint or variable is free.
MSK_BK_RA

The constraint or variable is ranged.

10.5.3 Mark

MSK_MARK_LO

The lower bound is selected for sensitivity analysis.
MSK_MARK_UP

The upper bound is selected for sensitivity analysis.

129

10.5.4 Experimental. Usage not recommended.

MSK_SIM_PRECISION_NORMAL

Experimental. Usage not recommended.
MSK_SIM_PRECISION_EXTENDED

Experimental. Usage not recommended.

10.5.5 Degeneracy strategies

MSK_SIM_DEGEN_NONE

The simplex optimizer should use no degeneration strategy.
MSK_SIM_DEGEN_FREE

The simplex optimizer chooses the degeneration strategy.
MSK_SIM_DEGEN_AGGRESSIVE

The simplex optimizer should use an aggressive degeneration strategy.
MSK_SIM_DEGEN_MODERATE

The simplex optimizer should use a moderate degeneration strategy.
MSK_SIM_DEGEN_MINIMUM

The simplex optimizer should use a minimum degeneration strategy.

10.5.6 Transposed matrix.

MSK_TRANSPOSE_NO

No transpose is applied.
MSK_TRANSPOSE_YES

A transpose is applied.

10.5.7 Triangular part of a symmetric matrix.

MSK_UPLO_LO

Lower part.
MSK_UPLO_UP

Upper part.

10.5.8 Problem reformulation.

MSK_SIM_REFORMULATION_ON

Allow the simplex optimizer to reformulate the problem.
MSK_SIM_REFORMULATION_OFF

Disallow the simplex optimizer to reformulate the problem.
MSK_SIM_REFORMULATION_FREE

The simplex optimizer can choose freely.
MSK_SIM_REFORMULATION_AGGRESSIVE

The simplex optimizer should use an aggressive reformulation strategy.

130

10.5.9 Exploit duplicate columns.

MSK_SIM_EXPLOIT_DUPVEC_ON

Allow the simplex optimizer to exploit duplicated columns.
MSK_SIM_EXPLOIT_DUPVEC_OFF

Disallow the simplex optimizer to exploit duplicated columns.
MSK_SIM_EXPLOIT_DUPVEC_FREE

The simplex optimizer can choose freely.

10.5.10 Hot-start type employed by the simplex optimizer

MSK_SIM_HOTSTART_NONE

The simplex optimizer performs a coldstart.
MSK_SIM_HOTSTART_FREE

The simplex optimize chooses the hot-start type.
MSK_SIM_HOTSTART_STATUS_KEYS

Only the status keys of the constraints and variables are used to choose the type of hot-start.

10.5.11 Hot-start type employed by the interior-point optimizers.

MSK_INTPNT_HOTSTART_NONE

The interior-point optimizer performs a coldstart.
MSK_INTPNT_HOTSTART_PRIMAL

The interior-point optimizer exploits the primal solution only.
MSK_INTPNT_HOTSTART_DUAL

The interior-point optimizer exploits the dual solution only.
MSK_INTPNT_HOTSTART_PRIMAL_DUAL

The interior-point optimizer exploits both the primal and dual solution.

10.5.12 Progress callback codes

MSK_CALLBACK_BEGIN_BI

The basis identification procedure has been started.
MSK_CALLBACK_BEGIN_CONIC

The callback function is called when the conic optimizer is started.
MSK_CALLBACK_BEGIN_DUAL_BI

The callback function is called from within the basis identification procedure when the dual phase
is started.
MSK_CALLBACK_BEGIN_DUAL_SENSITIVITY

Dual sensitivity analysis is started.
MSK_CALLBACK_BEGIN_DUAL_SETUP_BI

The callback function is called when the dual BI phase is started.
MSK_CALLBACK_BEGIN_DUAL_SIMPLEX

The callback function is called when the dual simplex optimizer started.
MSK_CALLBACK_BEGIN_DUAL_SIMPLEX_BI

The callback function is called from within the basis identification procedure when the dual simplex
clean-up phase is started.
MSK_CALLBACK_BEGIN_FOLDING

The calback function is called at the beginning of folding.
MSK_CALLBACK_BEGIN_FOLDING_BI

TBD
MSK_CALLBACK_BEGIN_FOLDING_BI_DUAL

TBD

131

MSK_CALLBACK_BEGIN_FOLDING_BI_INITIALIZE
TBD
MSK_CALLBACK_BEGIN_FOLDING_BI_OPTIMIZER
TBD
MSK_CALLBACK_BEGIN_FOLDING_BI_PRIMAL
TBD
MSK_CALLBACK_BEGIN_INFEAS_ANA
The callback function is called when the infeasibility analyzer is started.
MSK_CALLBACK_BEGIN_INITIALIZE_BI
The callback function is called from within the basis identification procedure when the initialization
phase is started.
MSK_CALLBACK_BEGIN_INTPNT

The callback function is called when the interior-point optimizer is started.
MSK_CALLBACK_BEGIN_LICENSE_WAIT

Begin waiting for license.
MSK_CALLBACK_BEGIN_MIO

The callback function is called when the mixed-integer optimizer is started.
MSK_CALLBACK_BEGIN_OPTIMIZE_BI

TBD.
MSK_CALLBACK_BEGIN_OPTIMIZER

The callback function is called when the optimizer is started.
MSK_CALLBACK_BEGIN_PRESOLVE

The callback function is called when the presolve is started.
MSK_CALLBACK_BEGIN_PRIMAL_BI

The callback function is called from within the basis identification procedure when the primal phase
is started.
MSK_CALLBACK_BEGIN_PRIMAL_REPAIR
Begin primal feasibility repair.
MSK_CALLBACK_BEGIN_PRIMAL_SENSITIVITY
Primal sensitivity analysis is started.
MSK_CALLBACK_BEGIN_PRIMAL_SETUP_BI

The callback function is called when the primal BI setup is started.
MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX

The callback function is called when the primal simplex optimizer is started.
MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX_BI

The callback function is called from within the basis identification procedure when the primal
simplex clean-up phase is started.
MSK_CALLBACK_BEGIN_QCQO_REFORMULATE

Begin QCQO reformulation.
MSK_CALLBACK_BEGIN_READ

MOSEK has started reading a problem file.
MSK_CALLBACK_BEGIN_ROOT_CUTGEN

The callback function is called when root cut generation is started.
MSK_CALLBACK_BEGIN_SIMPLEX

The callback function is called when the simplex optimizer is started.
MSK_CALLBACK_BEGIN_SOLVE_ROOT_RELAX

The callback function is called when solution of root relaxation is started.
MSK_CALLBACK_BEGIN_TO_CONIC

Begin conic reformulation.
MSK_CALLBACK_BEGIN_WRITE

MOSEK has started writing a problem file.

132

MSK_CALLBACK_CONIC
The callback function is called from within the conic optimizer after the information database has
been updated.

MSK_CALLBACK_DECOMP_MIO
The callback function is called when the dedicated algorithm for independent blocks inside the
mixed-integer solver is started.

MSK_CALLBACK_DUAL_SIMPLEX
The callback function is called from within the dual simplex optimizer.

MSK_CALLBACK_END_BI

The callback function is called when the basis identification procedure is terminated.
MSK_CALLBACK_END_CONIC

The callback function is called when the conic optimizer is terminated.
MSK_CALLBACK_END_DUAL_BI

The callback function is called from within the basis identification procedure when the dual phase
is terminated.
MSK_CALLBACK_END_DUAL_SENSITIVITY
Dual sensitivity analysis is terminated.
MSK_CALLBACK_END_DUAL_SETUP_BI
The callback function is called when the dual BI phase is terminated.
MSK_CALLBACK_END_DUAL_STMPLEX

The callback function is called when the dual simplex optimizer is terminated.
MSK_CALLBACK_END_DUAL_SIMPLEX_BI

The callback function is called from within the basis identification procedure when the dual clean-up
phase is terminated.
MSK_CALLBACK_END_FOLDING
The calback function is called at the end of folding.
MSK_CALLBACK_END_FOLDING_BI
TBD
MSK_CALLBACK_END_FOLDING_BI_DUAL
TBD
MSK_CALLBACK_END_FOLDING_BI_INITIALIZE
TBD
MSK_CALLBACK_END_FOLDING_BI_OPTIMIZER
TBD
MSK_CALLBACK_END_FOLDING_BI_PRIMAL
TBD
MSK_CALLBACK_END_INFEAS_ANA
The callback function is called when the infeasibility analyzer is terminated.
MSK_CALLBACK_END_INITIALIZE_BI
The callback function is called from within the basis identification procedure when the initialization
phase is terminated.
MSK_CALLBACK_END_INTPNT

The callback function is called when the interior-point optimizer is terminated.
MSK_CALLBACK_END_LICENSE_WAIT

End waiting for license.
MSK_CALLBACK_END_MIO

The callback function is called when the mixed-integer optimizer is terminated.
MSK_CALLBACK_END_OPTIMIZE_BI

TBD.
MSK_CALLBACK_END_OPTIMIZER

The callback function is called when the optimizer is terminated.
MSK_CALLBACK_END_PRESOLVE

The callback function is called when the presolve is completed.

133

MSK_CALLBACK_END_PRIMAL_BI

The callback function is called from within the basis identification procedure when the primal phase
is terminated.
MSK_CALLBACK_END_PRIMAL_REPAIR
End primal feasibility repair.
MSK_CALLBACK_END_PRIMAL_SENSITIVITY
Primal sensitivity analysis is terminated.
MSK_CALLBACK_END_PRIMAL_SETUP_BI
The callback function is called when the primal BI setup is terminated.
MSK_CALLBACK_END_PRIMAL_SIMPLEX
The callback function is called when the primal simplex optimizer is terminated.
MSK_CALLBACK_END_PRIMAL_SIMPLEX_BI
The callback function is called from within the basis identification procedure when the primal
clean-up phase is terminated.
MSK_CALLBACK_END_QCQO_REFORMULATE
End QCQO reformulation.
MSK_CALLBACK_END_READ
MOSEK has finished reading a problem file.
MSK_CALLBACK_END_ROOT_CUTGEN
The callback function is called when root cut generation is terminated.
MSK_CALLBACK_END_SIMPLEX
The callback function is called when the simplex optimizer is terminated.
MSK_CALLBACK_END_SIMPLEX_BI
The callback function is called from within the basis identification procedure when the simplex
clean-up phase is terminated.
MSK_CALLBACK_END_SOLVE_ROOT_RELAX
The callback function is called when solution of root relaxation is terminated.
MSK_CALLBACK_END_TO_CONIC
End conic reformulation.
MSK_CALLBACK_END_WRITE
MOSEK has finished writing a problem file.
MSK_CALLBACK_FOLDING_BI_DUAL
TBD
MSK_CALLBACK_FOLDING_BI_OPTIMIZER
TBD
MSK_CALLBACK_FOLDING_BI_PRIMAL
TBD
MSK_CALLBACK_HEARTBEAT
A heartbeat callback.
MSK_CALLBACK_IM_DUAL_SENSIVITY
The callback function is called at an intermediate stage of the dual sensitivity analysis.
MSK_CALLBACK_IM_DUAL_SIMPLEX
The callback function is called at an intermediate point in the dual simplex optimizer.
MSK_CALLBACK_IM_LICENSE_WAIT
MOSEK is waiting for a license.
MSK_CALLBACK_IM_LU
The callback function is called from within the LU factorization procedure at an intermediate point.
MSK_CALLBACK_IM_MIO
The callback function is called at an intermediate point in the mixed-integer optimizer.
MSK_CALLBACK_IM_MIO_DUAL_SIMPLEX

The callback function is called at an intermediate point in the mixed-integer optimizer while running
the dual simplex optimizer.

134

MSK_CALLBACK_IM_MIO_INTPNT

The callback function is called at an intermediate point in the mixed-integer optimizer while running
the interior-point optimizer.
MSK_CALLBACK_IM_MIO_PRIMAIL_SIMPLEX

The callback function is called at an intermediate point in the mixed-integer optimizer while running
the primal simplex optimizer.
MSK_CALLBACK_IM_ORDER

The callback function is called from within the matrix ordering procedure at an intermediate point.
MSK_CALLBACK_IM_PRIMAL_SENSIVITY

The callback function is called at an intermediate stage of the primal sensitivity analysis.
MSK_CALLBACK_IM_PRIMAL_SIMPLEX

The callback function is called at an intermediate point in the primal simplex optimizer.
MSK_CALLBACK_IM_READ

Intermediate stage in reading.
MSK_CALLBACK_IM_ROOT_CUTGEN

The callback is called from within root cut generation at an intermediate stage.
MSK_CALLBACK_IM_SIMPLEX

The callback function is called from within the simplex optimizer at an intermediate point.
MSK_CALLBACK_INTPNT

The callback function is called from within the interior-point optimizer after the information
database has been updated.
MSK_CALLBACK_NEW_INT_MIO

The callback function is called after a new integer solution has been located by the mixed-integer
optimizer.
MSK_CALLBACK_OPTIMIZE_BI

TBD.
MSK_CALLBACK_PRIMAL_SIMPLEX

The callback function is called from within the primal simplex optimizer.
MSK_CALLBACK_QO_REFORMULATE

The callback function is called at an intermediate stage of the conic quadratic reformulation.
MSK_CALLBACK_READ_OPF

The callback function is called from the OPF reader.
MSK_CALLBACK_READ_OPF_SECTION

A chunk of) non-zeros has been read from a problem file.
MSK_CALLBACK_RESTART_MIO

The callback function is called when the mixed-integer optimizer is restarted.
MSK_CALLBACK_SOLVING_REMOTE

The callback function is called while the task is being solved on a remote server.
MSK_CALLBACK_UPDATE_DUAL_BI

The callback function is called from within the basis identification procedure at an intermediate
point in the dual phase.
MSK_CALLBACK_UPDATE_DUAL_SIMPLEX

The callback function is called in the dual simplex optimizer.
MSK_CALLBACK_UPDATE_DUAL_SIMPLEX_BI
The callback function is called from within the basis identification procedure at an intermediate
point in the dual simplex clean-up phase. The frequency of the callbacks is controlled by the
MSK_IPAR_LOG_SIM_FRE(Q parameter.
MSK_CALLBACK_UPDATE_PRESOLVE

The callback function is called from within the presolve procedure.
MSK_CALLBACK_UPDATE_PRIMAL_BI

The callback function is called from within the basis identification procedure at an intermediate
point in the primal phase.

135

MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX

The callback function is called in the primal simplex optimizer.
MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX_BI

The callback function is called from within the basis identification procedure at an intermediate
point in the primal simplex clean-up phase. The frequency of the callbacks is controlled by the
MSK_IPAR_LOG_SIM_FRE(Q parameter.

MSK_CALLBACK_UPDATE_SIMPLEX

The callback function is called from simplex optimizer.
MSK_CALLBACK_WRITE_OPF

The callback function is called from the OPF writer.

10.5.13 Compression types

MSK_COMPRESS_NONE

No compression is used.
MSK_COMPRESS_FREE

The type of compression used is chosen automatically.
MSK_COMPRESS_GZIP

The type of compression used is gzip compatible.
MSK_COMPRESS_ZSTD

The type of compression used is zstd compatible.

10.5.14 Cone types

MSK_CT_QUAD

The cone is a quadratic cone.
MSK_CT_RQUAD

The cone is a rotated quadratic cone.
MSK_CT_PEXP

A primal exponential cone.
MSK_CT_DEXP

A dual exponential cone.
MSK_CT_PPOW

A primal power cone.
MSK_CT_DPOW

A dual power cone.
MSK_CT_ZERO

The zero cone.

10.5.15 Cone types

MSK_DOMAIN_R

R.

MSK_DOMAIN_RZERO

The zero vector.
MSK_DOMAIN_RPLUS

The positive orthant.
MSK_DOMAIN_RMINUS

The negative orthant.
MSK_DOMAIN_QUADRATIC_CONE

The quadratic cone.

136

MSK_DOMAIN_RQUADRATIC_CONE

The rotated quadratic cone.
MSK_DOMAIN_PRIMAL_EXP_CONE

The primal exponential cone.
MSK_DOMAIN_DUAL_EXP_CONE

The dual exponential cone.
MSK_DOMAIN_PRIMAL_POWER_CONE

The primal power cone.
MSK_DOMAIN_DUAL_POWER_CONE

The dual power cone.
MSK_DOMAIN_PRIMAL_GEO_MEAN_CONE

The primal geometric mean cone.
MSK_DOMAIN_DUAL_GEO_MEAN_CONE

The dual geometric mean cone.
MSK_DOMAIN_SVEC_PSD_CONE

The vectorized positive semidefinite cone.

10.5.16 Name types

MSK_NAME_TYPE_GEN

General names. However, no duplicate and blank names are allowed.
MSK_NAME_TYPE_MPS

MPS type names.
MSK_NAME_TYPE_LP

LP type names.

10.5.17 Cone types

MSK_SYMMAT_TYPE_SPARSE

Sparse symmetric matrix.

10.5.18 Data format types

MSK_DATA_FORMAT_EXTENSION

The file extension is used to determine the data file format.
MSK_DATA_FORMAT_MPS

The data file is MPS formatted.
MSK_DATA_FORMAT_LP

The data file is LP formatted.
MSK_DATA_FORMAT_OP

The data file is an optimization problem formatted file.
MSK_DATA_FORMAT_FREE_MPS

The data a free MPS formatted file.
MSK_DATA_FORMAT_TASK

Generic task dump file.
MSK_DATA_FORMAT_PTF

(P)retty (T)ext (F)format.
MSK_DATA_FORMAT_CB

Conic benchmark format,
MSK_DATA_FORMAT_JSON_TASK

JSON based task format.

137

10.5.19 Data format types

MSK_SOL_FORMAT_EXTENSION

The file extension is used to determine the data file format.
MSK_SOL_FORMAT_B

Simple binary format
MSK_SOL_FORMAT_TASK

Tar based format.
MSK_SOL_FORMAT_JSON_TASK

JSON based format.

10.5.20 Double information items

MSK_DINF_ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_DENSITY

Density percentage of the scalarized constraint matrix.
MSK_DINF_BI_CLEAN_TIME
Time spent within the clean-up phase of the basis identification procedure since its invocation (in
seconds).
MSK_DINF_BI_DUAL_TIME
Time spent within the dual phase basis identification procedure since its invocation (in seconds).
MSK_DINF_BI_PRIMAL_TIME
Time spent within the primal phase of the basis identification procedure since its invocation (in
seconds).
MSK_DINF_BI_TIME
Time spent within the basis identification procedure since its invocation (in seconds).
MSK_DINF_FOLDING_BI_OPTIMIZE_TIME
TBD
MSK_DINF_FOLDING_BI_UNFOLD_DUAL_TIME
TBD
MSK_DINF_FOLDING_BI_UNFOLD_INITIALIZE_TIME
TBD
MSK_DINF_FOLDING_BI_UNFOLD_PRIMAL_TIME
TBD
MSK_DINF_FOLDING_BI_UNFOLD_TIME
TBD
MSK_DINF_FOLDING_FACTOR
Problem size after folding as a fraction of the original size.
MSK_DINF_FOLDING_TIME
Total time spent in folding for continuous problems (in seconds).
MSK_DINF_INTPNT_DUAL_FEAS
Dual feasibility measure reported by the interior-point optimizer. (For the interior-point opti-
mizer this measure is not directly related to the original problem because a homogeneous model is
employed.)
MSK_DINF_INTPNT_DUAL_OBJ
Dual objective value reported by the interior-point optimizer.
MSK_DINF_INTPNT_FACTOR_NUM_FLOPS
An estimate of the number of flops used in the factorization.
MSK_DINF_INTPNT_OPT_STATUS
A measure of optimality of the solution. It should converge to +1 if the problem has a primal-dual
optimal solution, and converge to —1 if the problem is (strictly) primal or dual infeasible. If the
measure converges to another constant, or fails to settle, the problem is usually ill-posed.
MSK_DINF_INTPNT_ORDER_TIME

Order time (in seconds).

138

MSK_DINF_INTPNT_PRIMAL_FEAS

Primal feasibility measure reported by the interior-point optimizer. (For the interior-point opti-
mizer this measure is not directly related to the original problem because a homogeneous model is
employed).
MSK_DINF_INTPNT_PRIMAL_0OBJ
Primal objective value reported by the interior-point optimizer.
MSK_DINF_INTPNT_TIME
Time spent within the interior-point optimizer since its invocation (in seconds).
MSK_DINF_MIO_CLIQUE_SELECTION_TIME
Selection time for clique cuts (in seconds).
MSK_DINF_MIO_CLIQUE_SEPARATION_TIME
Separation time for clique cuts (in seconds).
MSK_DINF_MIO_CMIR_SELECTION_TIME

Selection time for CMIR cuts (in seconds).
MSK_DINF_MIO_CMIR_SEPARATION_TIME

Separation time for CMIR cuts (in seconds).
MSK_DINF_MIO_CONSTRUCT_SOLUTION_OBJ
If MOSEK has successfully constructed an integer feasible solution, then this item contains the
optimal objective value corresponding to the feasible solution.
MSK_DINF_MIO_DUAL_BOUND_AFTER_PRESOLVE
Value of the dual bound after presolve but before cut generation.
MSK_DINF_MIO_GMI_SELECTION_TIME
Selection time for GMI cuts (in seconds).
MSK_DINF_MIO_GMI_SEPARATION_TIME
Separation time for GMI cuts (in seconds).
MSK_DINF_MIO_IMPLIED_BOUND_SELECTION_TIME
Selection time for implied bound cuts (in seconds).
MSK_DINF_MIO_IMPLIED_BOUND_SEPARATION_TIME
Separation time for implied bound cuts (in seconds).
MSK_DINF_MIO_INITIAL_FEASIBLE_SOLUTION_OBJ
If the user provided solution was found to be feasible this information item contains it’s objective
value.
MSK_DINF_MIO_KNAPSACK_COVER_SELECTION_TIME
Selection time for knapsack cover (in seconds).
MSK_DINF_MIO_KNAPSACK_COVER_SEPARATION_TIME
Separation time for knapsack cover (in seconds).
MSK_DINF_MIO_LIPRO_SELECTION_TIME
Selection time for lift-and-project cuts (in seconds).
MSK_DINF_MIO_LIPRO_SEPARATION_TIME
Separation time for lift-and-project cuts (in seconds).
MSK_DINF_MIO_OBJ_ABS_GAP
Given the mixed-integer optimizer has computed a feasible solution and a bound on the optimal
objective value, then this item contains the absolute gap defined by

|(objective value of feasible solution) — (objective bound)].

Otherwise it has the value -1.0.

MSK_DINF_MIO_0BJ_BOUND
The best known bound on the objective function. This value is undefined until at least one
relaxation has been solved: To see if this is the case check that MSK_ITNF_MIO_NUM_RELAX is
strictly positive.

MSK_DINF_MIO_OBJ_INT
The primal objective value corresponding to the best integer feasible solution. Please
note that at least one integer feasible solution must have been located i.e. check
MSK_IINF_MIO_NUM_INT_SOLUTIONS.

139

MSK_DINF_MIO_OBJ_REL_GAP

Given that the mixed-integer optimizer has computed a feasible solution and a bound on the
optimal objective value, then this item contains the relative gap defined by

|(objective value of feasible solution) — (objective bound)]

max(d, | (objective value of feasible solution)|)

where ¢ is given by the parameter MSK_DPAR_MIO_REL_GAP_CONST. Otherwise it has the value —1.0.
MSK_DINF_MIO_PROBING_TIME

Total time for probing (in seconds).
MSK_DINF_MIO_ROOT_CUT_SELECTION_TIME

Total time for cut selection (in seconds).
MSK_DINF_MIO_ROOT_CUT_SEPARATION_TIME

Total time for cut separation (in seconds).
MSK_DINF_MIO_ROOT_OPTIMIZER_TIME

Time spent in the contiuous optimizer while processing the root node relaxation (in seconds).
MSK_DINF_MIO_ROOT_PRESOLVE_TIME

Time spent presolving the problem at the root node (in seconds).
MSK_DINF_MIO_ROOT_TIME

Time spent processing the root node (in seconds).
MSK_DINF_MIO_SYMMETRY_DETECTION_TIME

Total time for symmetry detection (in seconds).
MSK_DINF_MIO_SYMMETRY_FACTOR

Degree to which the problem is affected by detected symmetry.
MSK_DINF_MIO_TIME

Time spent in the mixed-integer optimizer (in seconds).
MSK_DINF_MIO_USER_0BJ_CUT

If the objective cut is used, then this information item has the value of the cut.
MSK_DINF_OPTIMIZER_TICKS

Total number of ticks spent in the optimizer since it was invoked. It is strictly negative if it is not
available.
MSK_DINF_OPTIMIZER_TIME

Total time spent in the optimizer since it was invoked (in seconds).
MSK_DINF_PRESOLVE_ELI_TIME

Total time spent in the eliminator since the presolve was invoked (in seconds).
MSK_DINF_PRESOLVE_LINDEP_TIME

Total time spent in the linear dependency checker since the presolve was invoked (in seconds).
MSK_DINF_PRESOLVE_TIME

Total time spent in the presolve since it was invoked (in seconds).
MSK_DINF_PRESOLVE_TOTAL_PRIMAL_PERTURBATION

Total perturbation of the bounds of the primal problem.
MSK_DINF_PRIMAL_REPAIR_PENALTY_O0BJ

The optimal objective value of the penalty function.
MSK_DINF_QCQO_REFORMULATE_MAX_PERTURBATION

Maximum absolute diagonal perturbation occurring during the QCQO reformulation.
MSK_DINF_QCQO_REFORMULATE_TIME

Time spent with conic quadratic reformulation (in seconds).
MSK_DINF_QCQO_REFORMULATE_WORST_CHOLESKY_COLUMN_SCALING

Worst Cholesky column scaling.
MSK_DINF_QCQO_REFORMULATE_WORST_CHOLESKY_DIAG_SCALING

Worst Cholesky diagonal scaling.
MSK_DINF_READ_DATA_TIME

Time spent reading the data file (in seconds).

140

MSK_DINF_REMOTE_TIME

The total real time in seconds spent when optimizing on a server by the process performing the

optimization on the server (in seconds).
MSK_DINF_SIM_DUAL_TIME

Time spent in the dual simplex optimizer since invoking it (in seconds).

MSK_DINF_SIM_FEAS

Feasibility measure reported by the simplex optimizer.
MSK_DINF_SIM_0BJ

Objective value reported by the simplex optimizer.
MSK_DINF_SIM_PRIMAL_TIME

Time spent in the primal simplex optimizer since invoking it (in seconds).

MSK_DINF_SIM_TIME

Time spent in the simplex optimizer since invoking it (in seconds).

MSK_DINF_SOL_BAS_DUAL_0BJ

Dual objective value of the basic solution. Updated if ¥SK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_BAS_DVIOLCON

Maximal dual bound violation for ¢ in the

MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .
MSK_DINF_SOL_BAS_DVIOLVAR

Maximal dual bound violation for ¥ in the

MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .
MSK_DINF_SOL_BAS_NRM_BARX

Infinity norm of X in the basic solution.
MSK_DINF_SOL_BAS_NRM_SLC

Infinity norm of sj in the basic solution.
MSK_DINF_SOL_BAS_NRM_SLX

Infinity norm of sf in the basic solution.
MSK_DINF_SOL_BAS_NRM_SUC

Infinity norm of s in the basic solution.
MSK_DINF_SOL_BAS_NRM_SUX

Infinity norm of s in the basic solution.
MSK_DINF_SOL_BAS_NRM_XC

Infinity norm of z¢ in the basic solution.
MSK_DINF_SOL_BAS_NRM_XX

Infinity norm of 2 in the basic solution.
MSK_DINF_SOL_BAS_NRM_Y

Infinity norm of y in the basic solution.
MSK_DINF_SOL_BAS_PRIMAL_OBJ

basic

basic

solution.

solution.

Updated

Updated

if

if

Primal objective value of the basic solution. Updated if MSK_IPAR_AUTO_UPDATE_SOL_INFO is set

MSK_DINF_SOL_BAS_PVIOLCON

Maximal primal bound violation for ¢ in the

MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .
MSK_DINF_SOL_BAS_PVIOLVAR

Maximal primal bound violation for z® in the

MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .
MSK_DINF_SOL_ITG_NRM_BARX

Infinity norm of X in the integer solution.
MSK_DINF_SOL_ITG_NRM_XC

Infinity norm of z¢ in the integer solution.
MSK_DINF_SOL_ITG_NRM_XX

Infinity norm of x* in the integer solution.

141

basic

basic

solution.

solution.

Updated

Updated

if

if

MSK_DINF_SOL_ITG_PRIMAL_QOBJ

Primal objective value of the integer solution. Updated if ¥SK_IPAR_AUTO_UPDATE_SOL_INFO is
set .
MSK_DINF_SOL_ITG_PVIOLACC

Maximal primal violation for affine conic constraints in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .
MSK_DINF_SOL_ITG_PVIOLBARVAR

Maximal primal bound violation for X in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .
MSK_DINF_SOL_ITG_PVIOLCON

Maximal primal bound violation for z¢ in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .
MSK_DINF_SOL_ITG_PVIOLCONES

Maximal primal violation for primal conic constraints in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .
MSK_DINF_SOL_ITG_PVIOLDJC

Maximal primal violation for disjunctive constraints in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .
MSK_DINF_SOL_ITG_PVIOLITG

Maximal violation for the integer constraints in the integer solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .
MSK_DINF_SOL_ITG_PVIOLVAR

Maximal primal bound violation for =«
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .
MSK_DINF_SOL_ITR_DUAL_OBJ
Dual objective value of the interior-point solution. Updated if ¥SK_IPAR_AUTO_UPDATE_SOL_INFO
is set .
MSK_DINF_SOL_ITR_DVIOLACC
Maximal dual violation for the affine conic constraints in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .
MSK_DINF_SOL_ITR_DVIOLBARVAR

x

in the integer solution. Updated if

Maximal dual bound violation for X in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_ITR_DVIOLCON
Maximal dual bound violation for z¢ in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_ITR_DVIOLCONES
Maximal dual violation for conic constraints in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .

MSK_DINF_SOL_ITR_DVIOLVAR

Maximal dual bound violation for x* in the interior-point solution. Updated if
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .
MSK_DINF_SOL_ITR_NRM_BARS

Infinity norm of S in the interior-point solution.
MSK_DINF_SOL_ITR_NRM_BARX

Infinity norm of X in the interior-point solution.
MSK_DINF_SOL_ITR_NRM_SLC

Infinity norm of sj in the interior-point solution.
MSK_DINF_SOL_ITR_NRM_SLX

Infinity norm of si in the interior-point solution.
MSK_DINF_SOL_ITR_NRM_SNX

Infinity norm of s? in the interior-point solution.

142

MSK_DINF_SOL_ITR_NRM_SUC

Infinity norm of s in the interior-point solution.
MSK_DINF_SOL_ITR_NRM_SUX

Infinity norm of s in the interior-point solution.
MSK_DINF_SOL_ITR_NRM_XC

Infinity norm of z¢ in the interior-point solution.
MSK_DINF_SOL_ITR_NRM_XX

Infinity norm of z” in the interior-point solution.
MSK_DINF_SOL_ITR_NRM_Y

Infinity norm of y in the interior-point solution.
MSK_DINF_SOL_ITR_PRIMAL_OBJ

Primal objective value of the interior-point solution. Updated if ¥SK_IPAR_AUTO_UPDATE_SOL_INFO

is set .
MSK_DINF_SOL_ITR_PVIOLACC

Maximal primal violation for affine conic constraints in the interior-point solution. Updated

MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .
MSK_DINF_SOL_ITR_PVIOLBARVAR

Maximal primal bound violation for X in the interior-point solution.
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .
MSK_DINF_SOL_ITR_PVIOLCON

Maximal primal bound violation for =z in the interior-point solution.
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .
MSK_DINF_SOL_ITR_PVIOLCONES

Maximal primal violation for conic constraints in the interior-point solution.

MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .
MSK_DINF_SOL_ITR_PVIOLVAR

Maximal primal bound violation for x* in the interior-point solution.
MSK_IPAR_AUTO_UPDATE_SOL_INFO is set .
MSK_DINF_TO_CONIC_TIME

Time spent in the last to conic reformulation (in seconds).
MSK_DINF_WRITE_DATA_TIME

Time spent writing the data file (in seconds).

10.5.21 License feature

MSK_FEATURE_PTS

Base system.
MSK_FEATURE_PTON

Conic extension.

10.5.22 Long integer information items.

MSK_LIINF_ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_NUM_COLUMNS

Number of columns in the scalarized constraint matrix.
MSK_LIINF_ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_NUM_NZ

Number of non-zero entries in the scalarized constraint matrix.
MSK_LIINF_ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_NUM_ROWS

Number of rows in the scalarized constraint matrix.
MSK_LIINF_BI_CLEAN_ITER

Number of clean iterations performed in the basis identification.
MSK_LIINF_BI_DUAL_ITER

Number of dual pivots performed in the basis identification.

143

Updated

Updated

Updated

Updated

=N

i

=

i

if

if

if

MSK_LIINF_BI_PRIMAL_ITER

Number of primal pivots performed in the basis identification.
MSK_LIINF_FOLDING_BI_DUAL_ITER

TBD
MSK_LIINF_FOLDING_BI_OPTIMIZER_ITER

TBD
MSK_LIINF_FOLDING_BI_PRIMAL_ITER

TBD
MSK_LIINF_INTPNT_FACTOR_NUM_NZ

Number of non-zeros in factorization.
MSK_LIINF_MIO_ANZ

Number of non-zero entries in the constraint matrix of the problem to be solved by the mixed-
integer optimizer.
MSK_LIINF_MIQO_FINAL_ANZ

Number of non-zero entries in the constraint matrix of the mixed-integer optimizer’s final problem.
MSK_LIINF_MIQO_INTPNT_ITER

Number of interior-point iterations performed by the mixed-integer optimizer.
MSK_LIINF_MIO_NUM_DUAL_ILLPOSED_CER

Number of dual illposed certificates encountered by the mixed-integer optimizer.
MSK_LIINF_MIO_NUM_PRIM_ILLPOSED_CER

Number of primal illposed certificates encountered by the mixed-integer optimizer.
MSK_LIINF_MIO_PRESOLVED_ANZ

Number of non-zero entries in the constraint matrix of the problem after the mixed-integer opti-
mizer’s presolve.
MSK_LIINF_MIQO_SIMPLEX_ITER

Number of simplex iterations performed by the mixed-integer optimizer.
MSK_LIINF_RD_NUMACC

Number of affince conic constraints.
MSK_LIINF_RD_NUMANZ

Number of non-zeros in A that is read.
MSK_LIINF_RD_NUMDJC

Number of disjuncive constraints.
MSK_LIINF_RD_NUMQNZ

Number of Q non-zeros.
MSK_LIINF_SIMPLEX_ITER

Number of iterations performed by the simplex optimizer.

10.5.23 Integer information items.

MSK_IINF_ANA_PRO_NUM_CON

Number of constraints in the problem.
MSK_IINF_ANA_PRO_NUM_CON_EQ

Number of equality constraints.
MSK_IINF_ANA_PRO_NUM_CON_FR

Number of unbounded constraints.
MSK_IINF_ANA_PRO_NUM_CON_LO

Number of constraints with a lower bound and an infinite upper bound.
MSK_IINF_ANA_PRO_NUM_CON_RA

Number of constraints with finite lower and upper bounds.
MSK_IINF_ANA_PRO_NUM_CON_UP

Number of constraints with an upper bound and an infinite lower bound.
MSK_IINF_ANA_PRO_NUM_VAR

Number of variables in the problem.

144

MSK_IINF_ANA_PRO_NUM_VAR_BIN

Number of binary (0-1) variables.
MSK_IINF_ANA_PRO_NUM_VAR_CONT

Number of continuous variables.
MSK_IINF_ANA_PRO_NUM_VAR_EQ

Number of fixed variables.
MSK_IINF_ANA_PRO_NUM_VAR_FR

Number of free variables.
MSK_IINF_ANA_PRO_NUM_VAR_INT

Number of general integer variables.
MSK_IINF_ANA_PRO_NUM_VAR_LO

Number of variables with a lower bound and an infinite upper bound.
MSK_IINF_ANA_PRO_NUM_VAR_RA

Number of variables with finite lower and upper bounds.
MSK_IINF_ANA_PRO_NUM_VAR_UP

Number of variables with an upper bound and an infinite lower bound.
MSK_IINF_FOLDING_APPLIED

Non-zero if folding was exploited.
MSK_IINF_INTPNT_FACTOR_DIM_DENSE

Dimension of the dense sub system in factorization.
MSK_IINF_INTPNT_ITER

Number of interior-point iterations since invoking the interior-point optimizer.
MSK_IINF_INTPNT_NUM_THREADS

Number of threads that the interior-point optimizer is using.
MSK_IINF_INTPNT_SOLVE_DUAL

Non-zero if the interior-point optimizer is solving the dual problem.
MSK_IINF_MIO_ABSGAP_SATISFIED

Non-zero if absolute gap is within tolerances.
MSK_IINF_MIO_CLIQUE_TABLE_SIZE

Size of the clique table.
MSK_IINF_MIO_CONSTRUCT_SOLUTION

This item informs if MOSEK constructed an initial integer feasible solution.

e -1: tried, but failed,
e 0: no partial solution supplied by the user,

e 1: constructed feasible solution.

MSK_IINF_MIO_FINAL_NUMBIN

Number of binary variables in the mixed-integer optimizer’s final problem.
MSK_IINF_MIO_FINAL_NUMBINCONEVAR

Number of binary cone variables in the mixed-integer optimizer’s final problem.
MSK_IINF_MIO_FINAL_NUMCON

Number of constraints in the mixed-integer optimizer’s final problem.
MSK_IINF_MIO_FINAL_NUMCONE

Number of cones in the mixed-integer optimizer’s final problem.
MSK_IINF_MIO_FINAL_NUMCONEVAR

Number of cone variables in the mixed-integer optimizer’s final problem.
MSK_IINF_MIO_FINAL_NUMCONT

Number of continuous variables in the mixed-integer optimizer’s final problem.
MSK_IINF_MIO_FINAL_NUMCONTCONEVAR

Number of continuous cone variables in the mixed-integer optimizer’s final problem.
MSK_IINF_MIO_FINAL_NUMDEXPCONES

Number of dual exponential cones in the mixed-integer optimizer’s final problem.

145

MSK_IINF_MIO_FINAL_NUMDJC

Number of disjunctive constraints in the mixed-integer optimizer’s final problem.
MSK_IINF_MIO_FINAL_NUMDPOWCONES

Number of dual power cones in the mixed-integer optimizer’s final problem.
MSK_IINF_MIO_FINAL_NUMINT

Number of integer variables in the mixed-integer optimizer’s final problem.
MSK_IINF_MIO_FINAL_NUMINTCONEVAR

Number of integer cone variables in the mixed-integer optimizer’s final problem.
MSK_IINF_MIO_FINAL_NUMPEXPCONES

Number of primal exponential cones in the mixed-integer optimizer’s final problem.
MSK_IINF_MIO_FINAL_NUMPPOWCONES

Number of primal power cones in the mixed-integer optimizer’s final problem.
MSK_IINF_MIO_FINAL_NUMQCONES

Number of quadratic cones in the mixed-integer optimizer’s final problem.
MSK_IINF_MIO_FINAL_NUMRQCONES

Number of rotated quadratic cones in the mixed-integer optimizer’s final problem.
MSK_IINF_MIO_FINAL_NUMVAR

Number of variables in the mixed-integer optimizer’s final problem.
MSK_IINF_MIO_INITIAL_FEASIBLE_SOLUTION

This item informs if MOSEK found the solution provided by the user to be feasible

e 0: solution provided by the user was not found to be feasible for the current problem,

e 1: user provided solution was found to be feasible.

MSK_IINF_MIO_NODE_DEPTH

Depth of the last node solved.
MSK_IINF_MIO_NUM_ACTIVE_NODES

Number of active branch and bound nodes.
MSK_IINF_MIO_NUM_ACTIVE_ROOT_CUTS

Number of active cuts in the final relaxation after the mixed-integer optimizer’s root cut generation.
MSK_IINF_MIO_NUM_BLOCKS_SOLVED_IN_BB

Number of independent decomposition blocks solved though a dedicated algorithm.
MSK_IINF_MIO_NUM_BLOCKS_SOLVED_IN_PRESOLVE

Number of independent decomposition blocks solved during presolve.
MSK_IINF_MIO_NUM_BRANCH

Number of branches performed during the optimization.
MSK_IINF_MIO_NUM_INT_SOLUTIONS

Number of integer feasible solutions that have been found.
MSK_IINF_MIO_NUM_RELAX

Number of relaxations solved during the optimization.
MSK_IINF_MIO_NUM_REPEATED_PRESOLVE

Number of times presolve was repeated at root.
MSK_IINF_MIO_NUM_RESTARTS

Number of restarts performed during the optimization.
MSK_IINF_MIO_NUM_ROOT_CUT_ROUNDS

Number of cut separation rounds at the root node of the mixed-integer optimizer.
MSK_IINF_MIO_NUM_SELECTED_CLIQUE_CUTS

Number of clique cuts selected to be included in the relaxation.
MSK_IINF_MIO_NUM_SELECTED_CMIR_CUTS

Number of Complemented Mixed Integer Rounding (CMIR) cuts selected to be included in the
relaxation.
MSK_IINF_MIO_NUM_SELECTED_GOMORY_CUTS

Number of Gomory cuts selected to be included in the relaxation.

146

MSK_IINF_MIO_NUM_SELECTED_IMPLIED_BOUND_CUTS

Number of implied bound cuts selected to be included in the relaxation.
MSK_IINF_MIO_NUM_SELECTED_KNAPSACK_COVER_CUTS

Number of clique cuts selected to be included in the relaxation.
MSK_IINF_MIO_NUM_SELECTED_LIPRO_CUTS

Number of lift-and-project cuts selected to be included in the relaxation.
MSK_IINF_MIO_NUM_SEPARATED_CLIQUE_CUTS

Number of separated clique cuts.
MSK_IINF_MIO_NUM_SEPARATED_CMIR_CUTS

Number of separated Complemented Mixed Integer Rounding (CMIR) cuts.
MSK_IINF_MIO_NUM_SEPARATED_GOMORY_CUTS

Number of separated Gomory cuts.
MSK_IINF_MIO_NUM_SEPARATED_IMPLIED_BOUND_CUTS

Number of separated implied bound cuts.
MSK_IINF_MIO_NUM_SEPARATED_KNAPSACK_COVER_CUTS

Number of separated clique cuts.
MSK_IINF_MIO_NUM_SEPARATED_LIPRO_CUTS

Number of separated lift-and-project cuts.
MSK_IINF_MIO_NUM_SOLVED_NODES

Number of branch and bounds nodes solved in the main branch and bound tree.
MSK_IINF_MIO_NUMBIN

Number of binary variables in the problem to be solved by the mixed-integer optimizer.
MSK_IINF_MIO_NUMBINCONEVAR

Number of binary cone variables in the problem to be solved by the mixed-integer optimizer.
MSK_IINF_MIO_NUMCON

Number of constraints in the problem to be solved by the mixed-integer optimizer.
MSK_IINF_MIO_NUMCONE

Number of cones in the problem to be solved by the mixed-integer optimizer.
MSK_IINF_MIO_NUMCONEVAR

Number of cone variables in the problem to be solved by the mixed-integer optimizer.
MSK_IINF_MIO_NUMCONT

Number of continuous variables in the problem to be solved by the mixed-integer optimizer.
MSK_IINF_MIO_NUMCONTCONEVAR

Number of continuous cone variables in the problem to be solved by the mixed-integer optimizer.
MSK_IINF_MIO_NUMDEXPCONES

Number of dual exponential cones in the problem to be solved by the mixed-integer optimizer.
MSK_IINF_MIO_NUMDJC

Number of disjunctive constraints in the problem to be solved by the mixed-integer optimizer.
MSK_IINF_MIO_NUMDPOWCONES

Number of dual power cones in the problem to be solved by the mixed-integer optimizer.
MSK_IINF_MIO_NUMINT

Number of integer variables in the problem to be solved by the mixed-integer optimizer.
MSK_IINF_MIO_NUMINTCONEVAR

Number of integer cone variables in the problem to be solved by the mixed-integer optimizer.
MSK_IINF_MIO_NUMPEXPCONES

Number of primal exponential cones in the problem to be solved by the mixed-integer optimizer.
MSK_IINF_MIO_NUMPPOWCONES

Number of primal power cones in the problem to be solved by the mixed-integer optimizer.
MSK_IINF_MIO_NUMQCONES

Number of quadratic cones in the problem to be solved by the mixed-integer optimizer.
MSK_IINF_MIO_NUMRQCONES

Number of rotated quadratic cones in the problem to be solved by the mixed-integer optimizer.

147

MSK_IINF_MIO_NUMVAR

Number of variables in the problem to be solved by the mixed-integer optimizer.
MSK_IINF_MIO_0BJ_BOUND_DEFINED

Non-zero if a valid objective bound has been found, otherwise zero.
MSK_IINF_MIO_PRESOLVED_NUMBIN

Number of binary variables in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMBINCONEVAR

Number of binary cone variables in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMCON

Number of constraints in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMCONE

Number of cones in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMCONEVAR

Number of cone variables in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMCONT

Number of continuous variables in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMCONTCONEVAR

Number of continuous cone variables in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMDEXPCONES

Number of dual exponential cones in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMDJC

Number of disjunctive constraints in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMDPOWCONES

Number of dual power cones in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMINT

Number of integer variables in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMINTCONEVAR

Number of integer cone variables in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMPEXPCONES

Number of primal exponential cones in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMPPOWCONES

Number of primal power cones in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMQCONES

Number of quadratic cones in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMRQCONES

Number of rotated quadratic cones in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_PRESOLVED_NUMVAR

Number of variables in the problem after the mixed-integer optimizer’s presolve.
MSK_IINF_MIO_RELGAP_SATISFIED

Non-zero if relative gap is within tolerances.
MSK_IINF_MIO_TOTAL_NUM_SELECTED_CUTS

Total number of cuts selected to be included in the relaxation by the mixed-integer optimizer.
MSK_IINF_MIO_TOTAL_NUM_SEPARATED_CUTS

Total number of cuts separated by the mixed-integer optimizer.
MSK_IINF_MIO_USER_0BJ_CUT

If it is non-zero, then the objective cut is used.
MSK_IINF_OPT_NUMCON

Number of constraints in the problem solved when the optimizer is called.
MSK_IINF_OPT_NUMVAR

Number of variables in the problem solved when the optimizer is called
MSK_IINF_OPTIMIZE_RESPONSE

The response code returned by optimize.

148

MSK_IINF_PRESOLVE_NUM_PRIMAL_PERTURBATIONS

Number perturbations to thhe bounds of the primal problem.
MSK_IINF_PURIFY_DUAL_SUCCESS

Is nonzero if the dual solution is purified.
MSK_IINF_PURIFY_PRIMAL_SUCCESS

Is nonzero if the primal solution is purified.
MSK_IINF_RD_NUMBARVAR

Number of symmetric variables read.
MSK_IINF_RD_NUMCON

Number of constraints read.
MSK_IINF_RD_NUMCONE

Number of conic constraints read.
MSK_IINF_RD_NUMINTVAR

Number of integer-constrained variables read.
MSK_IINF_RD_NUMQ

Number of nonempty Q matrices read.
MSK_IINF_RD_NUMVAR

Number of variables read.
MSK_IINF_RD_PROTYPE

Problem type.
MSK_IINF_SIM_DUAL_DEG_ITER

The number of dual degenerate iterations.
MSK_IINF_SIM_DUAL_HOTSTART

If 1 then the dual simplex algorithm is solving from an advanced basis.
MSK_IINF_SIM_DUAL_HOTSTART_LU

If 1 then a valid basis factorization of full rank was located and used by the dual simplex algorithm.
MSK_IINF_SIM_DUAL_INF_ITER

The number of iterations taken with dual infeasibility.
MSK_IINF_SIM_DUAL_ITER

Number of dual simplex iterations during the last optimization.
MSK_IINF_SIM_NUMCON

Number of constraints in the problem solved by the simplex optimizer.
MSK_IINF_SIM_NUMVAR

Number of variables in the problem solved by the simplex optimizer.
MSK_IINF_SIM_PRIMAL_DEG_ITER

The number of primal degenerate iterations.
MSK_IINF_SIM_PRIMAL_HOTSTART

If 1 then the primal simplex algorithm is solving from an advanced basis.
MSK_IINF_SIM_PRIMAL_HOTSTART_LU

If 1 then a valid basis factorization of full rank was located and used by the primal simplex
algorithm.
MSK_IINF_SIM_PRIMAL_INF_ITER

The number of iterations taken with primal infeasibility.
MSK_IINF_SIM_PRIMAL_ITER

Number of primal simplex iterations during the last optimization.
MSK_IINF_SIM_SOLVE_DUAL

Is non-zero if dual problem is solved.
MSK_IINF_SOL_BAS_PROSTA

Problem status of the basic solution. Updated after each optimization.
MSK_IINF_SOL_BAS_SOLSTA

Solution status of the basic solution. Updated after each optimization.

149

MSK_IINF_SOL_ITG_PROSTA

Problem status of the integer solution. Updated after each optimization.
MSK_IINF_SOL_ITG_SOLSTA

Solution status of the integer solution. Updated after each optimization.
MSK_IINF_SOL_ITR_PROSTA

Problem status of the interior-point solution. Updated after each optimization.
MSK_IINF_SOL_ITR_SOLSTA

Solution status of the interior-point solution. Updated after each optimization.
MSK_IINF_STO_NUM_A_REALLOC

Number of times the storage for storing A has been changed. A large value may indicates that
memory fragmentation may occur.

10.5.24 Information item types

MSK_INF_DOU_TYPE

Is a double information type.
MSK_INF_INT_TYPE

Is an integer.
MSK_INF_LINT_TYPE

Is a long integer.

10.5.25 Input/output modes

MSK_IOMODE_READ

The file is read-only.
MSK_IOMODE_WRITE

The file is write-only. If the file exists then it is truncated when it is opened. Otherwise it is created
when it is opened.
MSK_IOMODE_READWRITE

The file is to read and write.

10.5.26 Specifies the branching direction.

MSK_BRANCH_DIR_FREE

The mixed-integer optimizer decides which branch to choose.
MSK_BRANCH_DIR_UP

The mixed-integer optimizer always chooses the up branch first.
MSK_BRANCH_DIR_DOWN

The mixed-integer optimizer always chooses the down branch first.
MSK_BRANCH_DIR_NEAR

Branch in direction nearest to selected fractional variable.
MSK_BRANCH_DIR_FAR

Branch in direction farthest from selected fractional variable.
MSK_BRANCH_DIR_ROOT_LP

Chose direction based on root Ip value of selected variable.
MSK_BRANCH_DIR_GUIDED

Branch in direction of current incumbent.
MSK_BRANCH_DIR_PSEUDOCOST

Branch based on the pseudocost of the variable.

150

10.5.27 Specifies the reformulation method for mixed-integer quadratic problems.

MSK_MIO_QCQO_REFORMULATION_METHOD_FREE

The mixed-integer optimizer decides which reformulation method to apply.
MSK_MIO_QCQO_REFORMULATION_METHOD_NONE

No reformulation method is applied.
MSK_MIO_QCQO_REFORMULATION_METHOD_LINEARIZATION

A reformulation via linearization is applied.
MSK_MIO_QCQO_REFORMULATION_METHOD_EIGEN_VAL_METHOD

The eigenvalue method is applied.
MSK_MIO_QCQO_REFORMULATION_METHOD_DIAG_SDP

A perturbation of matrix diagonals via the solution of SDPs is applied.
MSK_MIO_QCQO_REFORMULATION_METHOD_RELAX_SDP

A Reformulation based on the solution of an SDP-relaxation of the problem is applied.

10.5.28 Specifies the problem data permutation method for mixed-integer prob-
lems.

MSK_MIO_DATA_PERMUTATION_METHOD_NONE

No problem data permutation is applied.
MSK_MIO_DATA_PERMUTATION_METHOD_CYCLIC_SHIFT

A random cyclic shift is applied to permute the problem data.
MSK_MIO_DATA_PERMUTATION_METHOD_RANDOM

A random permutation is applied to the problem data.

10.5.29 Continuous mixed-integer solution type

MSK_MIO_CONT_SOL_NONE

No interior-point or basic solution are reported when the mixed-integer optimizer is used.
MSK_MIO_CONT_SOL_ROOT

The reported interior-point and basic solutions are a solution to the root node problem when
mixed-integer optimizer is used.
MSK_MIO_CONT_SOL_ITG

The reported interior-point and basic solutions are a solution to the problem with all integer
variables fixed at the value they have in the integer solution. A solution is only reported in case
the problem has a primal feasible solution.

MSK_MIO_CONT_SOL_ITG_REL

In case the problem is primal feasible then the reported interior-point and basic solutions are a
solution to the problem with all integer variables fixed at the value they have in the integer solution.
If the problem is primal infeasible, then the solution to the root node problem is reported.

10.5.30 Integer restrictions

MSK_MIO_MODE_IGNORED

The integer constraints are ignored and the problem is solved as a continuous problem.
MSK_MIO_MODE_SATISFIED

Integer restrictions should be satisfied.

151

10.5.31 Mixed-integer node selection types

MSK_MIO_NODE_SELECTION_FREE

The optimizer decides the node selection strategy.
MSK_MIO_NODE_SELECTION_FIRST

The optimizer employs a depth first node selection strategy.
MSK_MIO_NODE_SELECTION_BEST

The optimizer employs a best bound node selection strategy.
MSK_MIO_NODE_SELECTION_PSEUDO

The optimizer employs selects the node based on a pseudo cost estimate.

10.5.32 Mixed-integer variable selection types

MSK_MIO_VAR_SELECTION_FREE

The optimizer decides the variable selection strategy.
MSK_MIO_VAR_SELECTION_PSEUDOCOST

The optimizer employs pseudocost variable selection.
MSK_MIO_VAR_SELECTION_STRONG

The optimizer employs strong branching varfiable selection

10.5.33 MPS file format type

MSK_MPS_FORMAT_STRICT

It is assumed that the input file satisfies the MPS format strictly.
MSK_MPS_FORMAT_RELAXED

It is assumed that the input file satisfies a slightly relaxed version of the MPS format.
MSK_MPS_FORMAT_FREE

It is assumed that the input file satisfies the free MPS format. This implies that spaces are not
allowed in names. Otherwise the format is free.
MSK_MPS_FORMAT_CPLEX

The CPLEX compatible version of the MPS format is employed.

10.5.34 Objective sense types

MSK_OBJECTIVE_SENSE_MINIMIZE

The problem should be minimized.
MSK_0OBJECTIVE_SENSE_MAXIMIZE

The problem should be maximized.

10.5.35 On/off

MSK_ON

Switch the option on.
MSK_QOFF

Switch the option off.

152

10.5.36 Optimizer types

MSK_OPTIMIZER_CONIC

The optimizer for problems having conic constraints.
MSK_OPTIMIZER_DUAL_SIMPLEX

The dual simplex optimizer is used.
MSK_OPTIMIZER_FREE

The optimizer is chosen automatically.
MSK_OPTIMIZER_FREE_SIMPLEX

One of the simplex optimizers is used.
MSK_OPTIMIZER_INTPNT

The interior-point optimizer is used.
MSK_OPTIMIZER_MIXED_INT

The mixed-integer optimizer.
MSK_OPTIMIZER_NEW_DUAL_SIMPLEX

The new dual simplex optimizer is used.
MSK_OPTIMIZER_NEW_PRIMAL_SIMPLEX

The new primal simplex optimizer is used. It is not recommended to use this option.
MSK_OPTIMIZER_PRIMAL_SIMPLEX

The primal simplex optimizer is used.

10.5.37 Ordering strategies

MSK_ORDER_METHOD_FREE

The ordering method is chosen automatically.
MSK_ORDER_METHOD_APPMINLOC

Approximate minimum local fill-in ordering is employed.
MSK_ORDER_METHOD_EXPERIMENTAL

This option should not be used.
MSK_ORDER_METHOD_TRY_GRAPHPAR

Always try the graph partitioning based ordering.
MSK_ORDER_METHOD_FORCE_GRAPHPAR

Always use the graph partitioning based ordering even if it is worse than the approximate minimum
local fill ordering.
MSK_ORDER_METHOD_NONE

No ordering is used. Note using this value almost always leads to a significantly slow down.

10.5.38 Presolve method.

MSK_PRESOLVE_MODE_OFF

The problem is not presolved before it is optimized.
MSK_PRESOLVE_MODE_ON

The problem is presolved before it is optimized.
MSK_PRESOLVE_MODE_FREE

It is decided automatically whether to presolve before the problem is optimized.

153

10.5.39 Method of folding (symmetry detection for continuous problems).

MSK_FOLDING_MODE_OFF

Disabled.
MSK_FOLDING_MODE_FREE

The solver decides on the usage and amount of folding.
MSK_FOLDING_MODE_FREE_UNLESS_BASIC

If only the interior-point solution is requested then the solver decides; if the basic solution is
requested then folding is disabled.
MSK_FOLDING_MODE_FORCE

Full folding is always performed regardless of workload.

10.5.40 Parameter type

MSK_PAR_INVALID_TYPE

Not a valid parameter.
MSK_PAR_DOU_TYPE

Is a double parameter.
MSK_PAR_INT_TYPE

Is an integer parameter.
MSK_PAR_STR_TYPE

Is a string parameter.

10.5.41 Problem data items

MSK_PI_VAR

Item is a variable.
MSK_PI_CON

Item is a constraint.
MSK_PI_CONE

Item is a cone.

10.5.42 Problem types

MSK_PROBTYPE_LO

The problem is a linear optimization problem.
MSK_PROBTYPE_QO

The problem is a quadratic optimization problem.
MSK_PROBTYPE_QCQO

The problem is a quadratically constrained optimization problem.
MSK_PROBTYPE_CONIC

A conic optimization.
MSK_PROBTYPE_MIXED

General nonlinear constraints and conic constraints. This combination can not be solved by
MOSEK.

154

10.5.43 Problem status keys

MSK_PRO_STA_UNKNOWN

Unknown problem status.
MSK_PRO_STA_PRIM_AND_DUAL_FEAS

The problem is primal and dual feasible.
MSK_PRO_STA_PRIM_FEAS

The problem is primal feasible.
MSK_PRO_STA_DUAL_FEAS

The problem is dual feasible.
MSK_PRO_STA_PRIM_INFEAS

The problem is primal infeasible.
MSK_PRO_STA_DUAL_INFEAS

The problem is dual infeasible.
MSK_PRO_STA_PRIM_AND_DUAL_INFEAS

The problem is primal and dual infeasible.
MSK_PRO_STA_ILL_POSED

The problem is ill-posed. For example, it may be primal and dual feasible but have a positive
duality gap.
MSK_PRO_STA_PRIM_INFEAS_OR_UNBOUNDED

The problem is either primal infeasible or unbounded. This may occur for mixed-integer problems.

10.5.44 Response code type

MSK_RESPONSE_OK

The response code is OK.
MSK_RESPONSE_WRN

The response code is a warning.
MSK_RESPONSE_TRM

The response code is an optimizer termination status.
MSK_RESPONSE_ERR

The response code is an error.
MSK_RESPONSE_UNK

The response code does not belong to any class.

10.5.45 Scaling type

MSK_SCALING_FREE

The optimizer chooses the scaling heuristic.
MSK_SCALING_NONE

No scaling is performed.

10.5.46 Scaling method

MSK_SCALING_METHOD_POW2

Scales only with power of 2 leaving the mantissa untouched.
MSK_SCALING_METHOD_FREE

The optimizer chooses the scaling heuristic.

155

10.5.47 Sensitivity types

MSK_SENSITIVITY_TYPE_BASIS

Basis sensitivity analysis is performed.

10.5.48 Simplex selection strategy

MSK_SIM_SELECTION_FREE

The optimizer chooses the pricing strategy.
MSK_SIM_SELECTION_FULL

The optimizer uses full pricing.
MSK_SIM_SELECTION_ASE

The optimizer uses approximate steepest-edge pricing.
MSK_SIM_SELECTION_DEVEX

The optimizer uses devex steepest-edge pricing (or if it is not available an approximate steep-edge
selection).
MSK_SIM_SELECTION_SE

The optimizer uses steepest-edge selection (or if it is not available an approximate steep-edge
selection).
MSK_SIM_SELECTION_PARTIAL

The optimizer uses a partial selection approach. The approach is usually beneficial if the number
of variables is much larger than the number of constraints.

10.5.49 Solution items

MSK_SOL_ITEM_XC

Solution for the constraints.
MSK_SOL_ITEM_XX

Variable solution.
MSK_SOL_ITEM_Y

Lagrange multipliers for equations.
MSK_SOL_ITEM_SLC

Lagrange multipliers for lower bounds on the constraints.
MSK_SOL_ITEM_SUC

Lagrange multipliers for upper bounds on the constraints.
MSK_SOL_ITEM_SLX

Lagrange multipliers for lower bounds on the variables.
MSK_SOL_ITEM_SUX

Lagrange multipliers for upper bounds on the variables.
MSK_SOL_ITEM_SNX

Lagrange multipliers corresponding to the conic constraints on the variables.

10.5.50 Solution status keys

MSK_SOL_STA_UNKNOWN

Status of the solution is unknown.
MSK_SOL_STA_OPTIMAL

The solution is optimal.
MSK_SOL_STA_PRIM_FEAS

The solution is primal feasible.
MSK_SOL_STA_DUAL_FEAS

The solution is dual feasible.
MSK_SOL_STA_PRIM_AND_DUAL_FEAS

The solution is both primal and dual feasible.

156

MSK_SOL_STA_PRIM_INFEAS_CER

The solution is a certificate of primal infeasibility.
MSK_SOL_STA_DUAL_INFEAS_CER

The solution is a certificate of dual infeasibility.
MSK_SOL_STA_PRIM_ILLPOSED_CER

The solution is a certificate that the primal problem is illposed.
MSK_SOL_STA_DUAL_ILLPOSED_CER

The solution is a certificate that the dual problem is illposed.
MSK_SOL_STA_INTEGER_OPTIMAL

The primal solution is integer optimal.

10.5.51 Solution types

MSK_SOL_BAS

The basic solution.
MSK_SOL_ITR

The interior solution.
MSK_SOL_ITG

The integer solution.

10.5.52 Solve primal or dual form

MSK_SOLVE_FREE

The optimizer is free to solve either the primal or the dual problem.
MSK_SOLVE_PRIMAL

The optimizer should solve the primal problem.
MSK_SOLVE_DUAL

The optimizer should solve the dual problem.

10.5.53 Status keys

MSK_SK_UNK

The status for the constraint or variable is unknown.
MSK_SK_BAS

The constraint or variable is in the basis.
MSK_SK_SUPBAS

The constraint or variable is super basic.
MSK_SK_LOW

The constraint or variable is at its lower bound.
MSK_SK_UPR

The constraint or variable is at its upper bound.
MSK_SK_FIX

The constraint or variable is fixed.
MSK_SK_INF

The constraint or variable is infeasible in the bounds.

157

10.5.54 Starting point types

MSK_STARTING_POINT_FREE

The starting point is chosen automatically.
MSK_STARTING_POINT_GUESS

The optimizer guesses a starting point.
MSK_STARTING_POINT_CONSTANT

The optimizer constructs a starting point by assigning a constant value to all primal and dual
variables. This starting point is normally robust.

10.5.55 Stream types

MSK_STREAM_LOG

Log stream. Contains the aggregated contents of all other streams. This means that a message
written to any other stream will also be written to this stream.
MSK_STREAM_MSG

Message stream. Log information relating to performance and progress of the optimization is
written to this stream.
MSK_STREAM_ERR

Error stream. Error messages are written to this stream.
MSK_STREAM_WRN

Warning stream. Warning messages are written to this stream.

10.5.56 Integer values

MSK_MAX_STR_LEN

Maximum string length allowed in MOSEK.
MSK_LICENSE_BUFFER_LENGTH

The length of a license key buffer.

10.5.57 Variable types

MSK_VAR_TYPE_CONT

Is a continuous variable.
MSK_VAR_TYPE_INT

Is an integer variable.

158

Chapter 11

Supported File Formats

MOSEK supports a range of problem and solution formats listed in Table 11.1 and Table 11.2.
The most important are:

e the Task format, MOSEK's native binary format which supports all features that MOSEK
supports. It is the closest possible representation of the internal data in a task and it is ideal for
submitting problem data support questions.

e the PTF format, MOSEK's human-readable format that supports all linear, conic and mixed-
integer features. It is ideal for debugging. It is not an exact copy of all the data in the task, but
it contains all information required to reconstruct it, presented in a readable fashion.

e MPS, LP, CBF formats are industry standards, each supporting some limited set of features, and
potentially requiring some degree of reformulation during read/write.

Problem formats

Table 11.1: List of supported file formats for optimization prob-

lems.
‘ Format Type ‘ Ext. ‘ Binary/Text ‘ LP QCQO ‘ ACC ‘ SDP ‘ DJC @ Sol ‘ Param ‘

LP Ip plain text X X

MPS mps plain text X X

PTF ptf plain text X X X X X X
CBF cbf plain text X X X

Task format task binary X X X X X X X
Jtask format jtask | text/JSON | X X X X X X X
OPF (deprecated for conic problems) | opf plain text X X X X

The columns of the table indicate if the specified file format supports:

e LP - linear problems, possibly with integer variables,

QCQO - quadratic objective or constraints,
e ACC - affine conic constraints,

e SDP - semidefinite cone/variables,

e DJC - disjunctive constraints,

e Sol - solutions,

e Param - optimizer parameters.

159

Solution formats

Table 11.2: List of supported solution formats.

| Format Type | Ext. Binary/Text | Description \

SOL sol plain text | Interior Solution
bas plain text | Basic Solution
int plain text | Integer
Jsol format | jsol = text/JSON | All solutions

Compression

MOSEK supports GZIP and Zstandard compression. Problem files with extension .gz (for GZIP) and
.zst (for Zstandard) are assumed to be compressed when read, and are automatically compressed when
written. For example, a file called

problem.mps.zst

will be considered as a Zstandard compressed MPS file.

11.1 The LP File Format

MOSEK supports the LP file format with some extensions. The LP format is not a completely well-
defined standard and hence different optimization packages may interpret the same LP file in slightly
different ways. MOSEK tries to emulate as closely as possible CPLEX’s behavior, but tries to stay
backward compatible.

The LP file format can specify problems of the form

minimize,/maximize e+ 1¢°(x)
subject to I° < Ax+ EQ@) <l
* < T < wf
T 7 integer,

where
e z € R" is the vector of decision variables.
e c € R” is the linear term in the objective.
e ¢°:€ R” — R is the quadratic term in the objective where
¢°(z) =" Q%
and it is assumed that
Q°=(Q)".

o A c R™X"™ is the constraint matrix.

1¢ € R™ is the lower limit on the activity for the constraints.

u® € R™ is the upper limit on the activity for the constraints.

[* € R™ is the lower limit on the activity for the variables.

u® € R™ is the upper limit on the activity for the variables.

q : R™ — R is a vector of quadratic functions. Hence,

160

¢i(z) = 2T Q'x
where it is assumed that
Q" = (@)
e 7 C{1,2,...,n} is an index set of the integer constrained variables.

11.1.1 File Sections

An LP formatted file contains a number of sections specifying the objective, constraints, variable bounds,
and variable types. The section keywords may be any mix of upper and lower case letters.

Objective Function

The first section beginning with one of the keywords

max
maximum
maximize
min
minimum
minimize

defines the objective sense and the objective function, i.e.
T 1 T no
cx+ §m Q°x.
The objective may be given a name by writing

myname :

before the expressions.
The objective function contains linear and quadratic terms. The linear terms are written as

4 x1 + x2 - 0.1 x3

and so forth. The quadratic terms are written in square brackets ([1/2) and are either squared or
multiplied as in the examples

x1°2
and
x1 * x2

There may be zero or more pairs of brackets containing quadratic expressions.
An example of an objective section is

minimize
myobj: 4 x1 + x2 - 0.1 x3 + [x1°2 + 2.1 x1 * x2]/2

Please note that the quadratic expressions are multiplied with % , so that the above expression means
minimize 4z +x9 — 0.1 23+ %(l’% +2.1 21 - x2)
If the same variable occurs more than once in the linear part, the coefficients are added, so that 4 x1 +

2 x1 is equivalent to 6 x1. In the quadratic expressions x1 * x2 is equivalent to x2 * x1 and, as in the
linear part, if the same variables multiplied or squared occur several times their coefficients are added.

161

Constraints

The second section beginning with one of the keywords

subj to
subject to
s.t.

st

defines the linear constraint matrix A and the quadratic matrices Q°.
A constraint contains a name (optional), expressions adhering to the same rules as in the objective
and a bound:

subject to
conl: x1 + x2 + [x372]/2 <= 5.1

The bound type (here <=) may be any of <, <=, = >, >= (< and <= mean the same), and the bound
may be any number.

Ranged constraints cannot be written in LP format, and have to be split into a separate upper and
lower bound.

Bounds

Bounds on the variables can be specified in the bound section beginning with one of the keywords

bound
bounds

The bounds section is optional but should, if present, follow the subject to section. All variables
listed in the bounds section must occur in either the objective or a constraint.

The default lower and upper bounds are 0 and 400 . A variable may be declared free with the keyword
free, which means that the lower bound is —oco and the upper bound is +oc . Furthermore it may be
assigned a finite lower and upper bound. The bound definitions for a given variable may be written in
one or two lines, and bounds can be any number or +oco (written as +inf/-inf /+infinity/-infinity)
as in the example

bounds

x1 free

x2 <= b

0.1 <= x2

x3 = 42

2 <= x4 < +inf

Variable Types

The final two sections are optional and must begin with one of the keywords
bin

binaries

binary

and

gen
general

Under general all integer variables are listed, and under binary all binary (integer variables with
bounds 0 and 1) are listed:

general
x1 x2

(continues on next page)

162

(continued from previous page)

binary
x3 x4

Again, all variables listed in the binary or general sections must occur in either the objective or a
constraint.

Terminating Section

Finally, an LP formatted file must be terminated with the keyword

end

11.1.2 LP File Examples

Linear example lol.1p

\ File: lol.1lp
maximize

obj: 3 x1 + x2 +5 x3 + x4
subject to

cl: 3 x1 +x2+ 2x3 =230
c2: 2x1 +x2+ 3 x3 + x4 > 15
c3: 2 x2 + 3 x4 <=25
bounds

0 <= x1 <= +infinity

0 <= x2 <= 10

0 <= x3 <= +infinity

0 <= x4 <= +infinity

end

Mixed integer example milol.1p

maximize
obj: x1 + 6.4e-01 x2
subject to
cl: bet01 x1 + 3.1e+t01 x2 <= 2.5e+02
c2: 3et00 x1 - 2e+00 x2 >= -4e+00
bounds
0 <= x1 <= +infinity
0 <= x2 <= +infinity
general
x1 x2
end

11.1.3 LP Format peculiarities

Comments

Anything on a line after a \ is ignored and is treated as a comment.

163

Names

A name for an objective, a constraint or a variable may contain the letters a-z, A-Z, the digits 0-9 and
the characters

VHSRE)/, . 57e T |

The first character in a name must not be a number, a period or the letter e or E. Keywords must
not be used as names.

MOSEK accepts any character as valid for names, except \0. A name that is not allowed in LP file
will be changed and a warning will be issued.

The algorithm for making names LP valid works as follows: The name is interpreted as an utf-8
string. For a Unicode character c:

e If c==_ (underscore), the output is __ (two underscores).

e If c is a valid LP name character, the output is just c.

If ¢ is another character in the ASCII range, the output is _XX, where XX is the hexadecimal code
for the character.

If c is a character in the range 127-65535, the output is _uXXXX, where XXXX is the hexadecimal
code for the character.

e If c is a character above 65535, the output is _UXXXXXXXX, where XXXXXXXX is the hexadecimal
code for the character.

Invalid utf-8 substrings are escaped as _XX', and if a name starts with a period, e or E, that character
is escaped as _XX.

Variable Bounds

Specifying several upper or lower bounds on one variable is possible but MOSEK uses only the tightest
bounds. If a variable is fixed (with =), then it is considered the tightest bound.

11.2 The MPS File Format

MOSEK supports the standard MPS format with some extensions. For a detailed description of the
MPS format see the book by Nazareth [Naz87].

11.2.1 MPS File Structure

The version of the MPS format supported by MOSEK allows specification of an optimization problem
of the form

maximize/minimize o+ qo(x)
©° < Azr+qx) <
r < x < u®, (11.1)
z ek,

xg integer,
where
e x € R™ is the vector of decision variables.
e A € R™*" is the constraint matrix.

e [€ R™ is the lower limit on the activity for the constraints.

u® € R™ is the upper limit on the activity for the constraints.

[* € R™ is the lower limit on the activity for the variables.

u® € R™ is the upper limit on the activity for the variables.

164

e ¢:R"™ — R is a vector of quadratic functions. Hence,

1 .
qi(x) = ixTsz

where it is assumed that Q° = (Q%)T. Please note the explicit % in the quadratic term and that Q*
is required to be symmetric. The same applies to qq.

e K is a convex cone.
e 7 C{1,2,...,n} is an index set of the integer-constrained variables.
e c is the vector of objective coefficients.

An MPS file with one row and one column can be illustrated like this:

* 1 2 3 4 5 6
*23456789012345678901234567890123456789012345678901234567890
NAME [name]
OBJSENSE
[objsense]
0BJNAME [objname]
ROWS
? [cnamel]
COLUMNS
[vnamel] [cnamel] [valuel] [cname2] [value2]
RHS
[name] [cnamel] [valuell] [cname2] [value2]
RANGES
[name] [cnamel] [valuell] [cname2] [value2]
QSECTION [cnamel]
[vnamel] [vname2] [valuel] [vname3] [value2]
QMATRIX
[vnamel] [vname2] [valuel]
QUADOBJ
[vnamel] [vname2] [valuel]
QCMATRIX [cname1]
[vnamel] [vname2] [valuel]
BOUNDS
?? [name] [vnamel] [valuell]
CSECTION [knamel] [valuel] [ktype]
[vname1]
ENDATA

Here the names in capitals are keywords of the MPS format and names in brackets are custom defined
names or values. A couple of notes on the structure:

e Fields: All items surrounded by brackets appear in fields. The fields named “valueN” are numerical
values. Hence, they must have the format

[+] -] XXXXXXX.XXXXXX[[e|E] [+] -] XXX]

where

X = [ol112]314l516]7I819].

e Sections: The MPS file consists of several sections where the names in capitals indicate the begin-
ning of a new section. For example, COLUMNS denotes the beginning of the columns section.

e Comments: Lines starting with an * are comment lines and are ignored by MOSEK.

e Keys: The question marks represent keys to be specified later.

165

e Extensions: The sections QSECTION and CSECTION are specific MOSEK extensions of the MPS
format. The sections QMATRIX, QUADOBJ and QCMATRIX are included for sake of compatibility with
other vendors extensions to the MPS format.

e The standard MPS format is a fixed format, i.e. everything in the MPS file must be within certain
fixed positions. MOSEK also supports a free format. See Sec. 11.2.5 for details.

Linear example lol.mps

A concrete example of a MPS file is presented below:

* File: lol.mps

NAME lol
OBJSENSE
MAX
ROWS
N obj
E c1
G c2
L c3
COLUMNS
x1 obj 3
x1 cl 3
x1 c2 2
x2 obj 1
x2 cl 1
x2 c2 1
x2 c3 2
x3 obj 5
x3 cl 2
x3 c2 3
x4 obj 1
x4 c2 1
x4 c3 3
RHS
rhs cl 30
rhs c2 15
rhs c3 25
RANGES
BOUNDS
UP bound x2 10
ENDATA

Subsequently each individual section in the MPS format is discussed.

166

NAME (optional)

In this section a name ([name]) is assigned to the problem.

OBJSENSE (optional)

This is an optional section that can be used to specify the sense of the objective function. The 0BJSENSE
section contains one line at most which can be one of the following:

MIN
MINIMIZE
MAX
MAXIMIZE

It should be obvious what the implication is of each of these four lines.

OBJNAME (optional)

This is an optional section that can be used to specify the name of the row that is used as objective
function. objname should be a valid row name.

ROWS
A record in the ROWS section has the form
? [cnamel]

where the requirements for the fields are as follows:

Field Starting Position Max Width required Description
? 2 1 Yes Constraint key
[cnamel] 5 8 Yes Constraint name

Hence, in this section each constraint is assigned a unique name denoted by [cnamel]. Please note
that [cnamel] starts in position 5 and the field can be at most 8 characters wide. An initial key ? must
be present to specify the type of the constraint. The key can have values E, G, L, or N with the following
interpretation:

Constraint type [ug

E (equal) finite =1¢
G (greater) finite oo

L (lower) —oo finite
N (none) —00 ™

In the MPS format the objective vector is not specified explicitly, but one of the constraints having
the key N will be used as the objective vector ¢ . In general, if multiple N type constraints are specified,
then the first will be used as the objective vector ¢, unless something else was specified in the section
OBJNAME.

COLUMNS

In this section the elements of A are specified using one or more records having the form:

[vhamel] [cnamel] [valuel] [cname2] [valueZ2]

where the requirements for each field are as follows:

167

Field Starting Position Max Width required Description

[vnamel] 5 8 Yes Variable name

[cnamel] 15 8 Yes Constraint name
[valuel] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

Hence, a record specifies one or two elements a;; of A using the principle that [vname1] and [cname1]
determines j and 7 respectively. Please note that [cnamel] must be a constraint name specified in the
ROWS section. Finally, [valuel] denotes the numerical value of a;; . Another optional element is specified
by [cname2], and [value2] for the variable specified by [vnamel]. Some important comments are:

e All elements belonging to one variable must be grouped together.
e Zero elements of A should not be specified.

e At least one element for each variable should be specified.
RHS (optional)
A record in this section has the format

[name] [cnamel] [valuel] [cname2] [value2]

where the requirements for each field are as follows:

Field Starting Position Max Width required Description

[name] 5 8 Yes Name of the RHS vector
[cnamel] 15 8 Yes Constraint name
[valuel] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

The interpretation of a record is that [name] is the name of the RHS vector to be specified. In general,
several vectors can be specified. [cnamel] denotes a constraint name previously specified in the ROWS
section. Now, assume that this name has been assigned to the ¢ -h constraint and v; denotes the value
specified by [valuel], then the interpretation of vy is:

Constraint I§ uf

E V1 U1
G V1
L U1
N

An optional second element is specified by [cname2] and [value2] and is interpreted in the same
way. Please note that it is not necessary to specify zero elements, because elements are assumed to be
Zero.

168

RANGES (optional)

A record in this section has the form

[name] [cname1] [value1] [cname2] [value2]

where the requirements for each fields are as follows:

Field Starting Position Max Width required Description

[name] 5 8 Yes Name of the RANGE vector
[cnamel] 15 8 Yes Constraint name
[valuel] 25 12 Yes Numerical value

[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

The records in this section are used to modify the bound vectors for the constraints, i.e. the values
in ¢ and u® . A record has the following interpretation: [name] is the name of the RANGE vector and
[cnamel] is a valid constraint name. Assume that [cnamel] is assigned to the i-th constraint and let
v1 be the value specified by [valuel], then a record has the interpretation:

Constraint type Sign of v [§ ug

E = uj + vq

E + I§ +v1
G —or + 18+ |v|
L —or + u§ — |vg]

N

Another constraint bound can optionally be modified using [cname2] and [value2] the same way.

QSECTION (optional)

Within the QSECTION the label [cnamel] must be a constraint name previously specified in the ROWS
section. The label [cnamel] denotes the constraint to which the quadratic terms belong. A record in
the QSECTION has the form

[vhamel] [vname2] [value1l] [vhame3] [value2]

where the requirements for each field are:

Field Starting Position Max Width required Description
[vnamel] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[valuel] 25 12 Yes Numerical value
[vname3] 40 8 No Variable name
[value2] 50 12 No Numerical value

A record specifies one or two elements in the lower triangular part of the * matrix where [cname1]
specifies the 7 . Hence, if the names [vnamel] and [vname2] have been assigned to the k-th and j-th
variable, then Q};j is assigned the value given by [valuel] An optional second element is specified in
the same way by the fields [vnamel], [vname3], and [value2].

The example

minimize —x2 + 1(22% — 22123 4 0.203 + 223)
subject to r1 + xo + X3 > 1,
x>0

has the following MPS file representation

169

* File: qol.mps

NAME qol
ROWS
N obj
G ci
COLUMNS
x1 cl 1.0
x2 obj -1.0
x2 cl 1.0
x3 cl 1.0
RHS
rhs cl 1.0
QSECTION obj
x1 x1 2.0
x1 x3 -1.0
x2 x2 0.2
x3 x3 2.0
ENDATA

Regarding the QSECTIONs please note that:
e Only one QSECTION is allowed for each constraint.
e The QSECTIONs can appear in an arbitrary order after the COLUMNS section.
e All variable names occurring in the QSECTION must already be specified in the COLUMNS section.
e All entries specified in a QSECTION are assumed to belong to the lower triangular part of the
quadratic term of () .
QMATRIX/QUADOBJ (optional)

The QMATRIX and QUADOBJ sections allow to define the quadratic term of the objective function. They
differ in how the quadratic term of the objective function is stored:

e QMATRIX stores all the nonzeros coefficients, without taking advantage of the symmetry of the @
matrix.

e QUADOBJ stores the upper diagonal nonzero elements of the @ matrix.
A record in both sections has the form:
[vnamel] [vname2] [valuel]

where the requirements for each field are:

Field Starting Position Max Width required Description
[vhamel] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[valuel]l 25 12 Yes Numerical value

A record specifies one elements of the () matrix in the objective function . Hence, if the names
[vname1] and [vname2] have been assigned to the k-th and j-th variable, then @} is assigned the value
given by [valuel]. Note that a line must appear for each off-diagonal coefficient if using a QMATRIX
section, while only one entry is required in a QUADOBJ section. The quadratic part of the objective
function will be evaluated as 1/227 Qu.

The example

minimize —xs + 3(22% — 22123 + 0.223 + 223)
subject to T1 + To + X3 > 1,
x>0

has the following MPS file representation using QMATRIX

170

* File: qol_matrix.mps

NAME qol_gmatrix
ROWS
N obj
G ci
COLUMNS
x1 cl 1.0
x2 obj -1.0
x2 cl 1.0
x3 cl 1.0
RHS
rhs cl 1.0
QMATRIX
x1 x1 2.0
x1 x3 -1.0
x3 x1 -1.0
x2 x2 0.2
x3 x3 2.0
ENDATA

or the following using QUADOBJ

* File: qol_quadobj.mps

NAME gol_quadobj
ROWS
N obj
G ci
COLUMNS
x1 cl 1.0
x2 obj -1.0
x2 cl 1.0
x3 cl 1.0
RHS
rhs cl 1.0
QUADOBJ
x1 x1 2.0
x1 x3 -1.0
x2 x2 0.2
x3 x3 2.0
ENDATA

Please also note that:
e A QMATRIX/QUADOBJ section can appear in an arbitrary order after the COLUMNS section.
e All variable names occurring in the QMATRIX/QUADOBJ section must already be specified in the
COLUMNS section.
QCMATRIX (optional)

A QCMATRIX section allows to specify the quadratic part of a given constraint. Within the QCMATRIX the
label [cnamel] must be a constraint name previously specified in the ROWS section. The label [cname1]
denotes the constraint to which the quadratic term belongs. A record in the QSECTION has the form

[vhamel] [vname2] [value1l]

where the requirements for each field are:

171

Field Starting Position Max Width required Description

[vhamel] 5 8 Yes Variable name
[vhame2] 15 8 Yes Variable name
[valuel]l 25 12 Yes Numerical value

A record specifies an entry of the @ matrix where [cnamel] specifies the i. Hence, if the names
[vnamel] and [vname2] have been assigned to the k-th and j-th variable, then Q; ; 1s assigned the value
given by [value1l. Moreover, the quadratic term is represented as 1/2z7Qx.

The example

minimize T2
subject to T+ X9 + 23 > 1,
3(—2x125 +0.203 4+ 223) < 10,
z>0

has the following MPS file representation

* File: qol.mps

NAME qol

ROWS

N obj

G ci

L q1

COLUMNS
x1 cl 1.0
x2 obj -1.0
x2 cl 1.0
x3 cl 1.0

RHS
rhs cl 1.0
rhs ql 10.0

QCMATRIX ql
x1 x1 2.0
x1 x3 -1.0
x3 x1 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Regarding the QCMATRIXs please note that:

e Only one QCMATRIX is allowed for each constraint.

e The QCMATRIXs can appear in an arbitrary order after the COLUMNS section.

e All variable names occurring in the QSECTION must already be specified in the COLUMNS section.

e QCMATRIX does not exploit the symmetry of @Q: an off-diagonal entry (i,) should appear twice.

BOUNDS (optional)

In the BOUNDS section changes to the default bounds vectors I* and u® are specified. The default bounds
vectors are [= 0 and u® = oo . Moreover, it is possible to specify several sets of bound vectors. A
record in this section has the form

?? [name] [vname1] [valuell]

where the requirements for each field are:

172

Field Starting Position Max Width Required Description

?? 2 2 Yes Bound key

[name] 5 8 Yes Name of the BOUNDS vector
[vnamel] 15 8 Yes Variable name

[valuel]l 25 12 No Numerical value

Hence, a record in the BOUNDS section has the following interpretation: [name] is the name of the
bound vector and [vnamel] is the name of the variable for which the bounds are modified by the record.
7?7 and [valuel] are used to modify the bound vectors according to the following table:

7 I uf Made integer (added to J)
FR —o0 00 No
FX 1 v No
L0 v unchanged No
MI — unchanged No
PL unchanged oo No
UP unchanged No
BV 0 1 Yes
LI [vq] unchanged Yes
UI unchanged |v1] Yes

Here vy is the value specified by [valuel].

CSECTION (optional)

The purpose of the CSECTION is to specify the conic constraint

re K

in (11.1). It is assumed that /C satisfies the following requirements. Let

zt e R”t,

t=1,...k

be vectors comprised of parts of the decision variables x so that each decision variable is a member of
exactly one vector z¢, for example

Next define

where Iy must have one of the following forms:

o R set:

e Zero cone:

e Quadratic cone:

Te
T

b= | a4 and 22 = 5

x 3

7 T

K:= {:EG]R": zt € Ky, tzl,...,k}
Ki=R".

Ki = {0} CR"™. (11.2)
Ki=azeR" 12> (11.3)

173

Rotated quadratic cone:

n

t

t
K = xeR”:lexQEZx?, T1,22 >0
=3

Primal exponential cone:

K = {x € R : 2y > a9 exp(a3/22),

Primal power cone (with parameter 0 < a < 1):

t —
Ki={zeR" :afal >

Dual exponential cone:

K = {x eR?: 2z > —x3e? exp(za/x3),

Dual power cone (with parameter 0 < o < 1):

K= doerts (2)"(

T1,x2 Z 0}

T1,T2 20

(11.4)

(11.5)

(11.6)

(11.7)

(11.8)

In general, membership in the R set is not specified. If a variable is not a member of any other cone

then it is assumed to be a member of the R cone.

Next, let us study an example. Assume that the power cone

2y 222 > |y

and the rotated quadratic cone

2 2
23:3377 2 Ty + T, xr3,T7 2 07

should be specified in the MPS file. One CSECTION is required for each cone and they are specified as

follows:

* 1 2 3 4

CSECTION konea 3e-1 PPOW
x4

x5

x8

CSECTION koneb 0.0 RQUAD
x7

x3

x1

x0

In general, a CSECTION header has the format

CSECTION [kname1] [valuel] [ktype]

where the requirements for each field are as follows:

5
*23456789012345678901234567890123456789012345678901234567890

6

Field Starting Position Max Width Required Description
[knamel] 15 8 Yes Name of the cone
[valuell 25 12 No Cone parameter
[ktypel 40 Yes Type of the cone.

174

The possible cone type keys are:

[ktypel Members [valuel]l Interpretation.

ZERO >0 unused Zero cone (11.2).

QUAD >1 unused Quadratic cone (11.3).

RQUAD > 2 unused Rotated quadratic cone (11.4).
PEXP 3 unused Primal exponential cone (11.5).
PPOW > 2 a Primal power cone (11.6).
DEXP 3 unused Dual exponential cone (11.7).
DPOW > 2 e Dual power cone (11.8).

A record in the CSECTION has the format

[vname1]

where the requirements for each field are

Field Starting Position Max Width required Description

[vhamel] 5 8 Yes A valid variable name

A variable must occur in at most one CSECTION.

ENDATA
This keyword denotes the end of the MPS file.

11.2.2 Integer Variables

Using special bound keys in the BOUNDS section it is possible to specify that some or all of the variables
should be integer-constrained i.e. be members of 7. However, an alternative method is available. This
method is available only for backward compatibility and we recommend that it is not used. This method
requires that markers are placed in the COLUMNS section as in the example:

COLUMNS

x1 obj -10.0 cl 0.7
x1 c2 0.5 c3 1.0
x1 c4 0.1

* Start of integer-constrained variables.
MARKOOO 'MARKER' 'INTORG'

x2 obj -9.0 cl 1.0
x2 c2 0.8333333333 c3 0.66666667
x2 c4 0.25

x3 obj 1.0 c6 2.0
MARKOO1 'MARKER' "INTEND'

* End of integer-constrained variables.

Please note that special marker lines are used to indicate the start and the end of the integer variables.
Furthermore be aware of the following

e All variables between the markers are assigned a default lower bound of 0 and a default upper
bound of 1. This may not be what is intended. If it is not intended, the correct bounds
should be defined in the BOUNDS section of the MPS formatted file.

e MOSEK ignores field 1, i.e. MARKO0O01 and MARKOO1, however, other optimization systems require
them.

e Field 2, i.e. MARKER, must be specified including the single quotes. This implies that no row can
be assigned the name MARKER.

e Field 3 is ignored and should be left blank.

175

e Field 4, i.e. INTORG and INTEND, must be specified.

e It is possible to specify several such integer marker sections within the COLUMNS section.

11.2.3 General Limitations
e An MPS file should be an ASCII file.

11.2.4 Interpretation of the MPS Format

Several issues related to the MPS format are not well-defined by the industry standard. However,
MOSEK uses the following interpretation:

e If a matrix element in the COLUMNS section is specified multiple times, then the multiple entries are
added together.

e If a matrix element in a QSECTION section is specified multiple times, then the multiple entries are
added together.

11.2.5 The Free MPS Format

MOSEK supports a free format variation of the MPS format. The free format is similar to the MPS file
format but less restrictive, e.g. it allows longer names. However, a name must not contain any blanks.
Moreover, by default a line in the MPS file must not contain more than 1024 characters. By modifying
the parameter ¥SK_IPAR_READ_MPS_WIDTH an arbitrary large line width will be accepted.
The free MPS format is default. To change to the strict and other formats use the parameter
MSK_IPAR_READ_MPS_FORMAT.

Warning: This file format is to a large extent deprecated. While it can still be used for linear
and quadratic problems, for conic problems the Sec. 11.5 is recommended.

11.3 The OPF Format

The Optimization Problem Format (OPF) is an alternative to LP and MPS files for specifying optimiza-
tion problems. It is row-oriented, inspired by the CPLEX LP format.

Apart from containing objective, constraints, bounds etc. it may contain complete or partial solutions,
comments and extra information relevant for solving the problem. It is designed to be easily read and
modified by hand and to be forward compatible with possible future extensions.

Intended use

The OPF file format is meant to replace several other files:

e The LP file format: Any problem that can be written as an LP file can be written as an OPF file
too; furthermore it naturally accommodates ranged constraints and variables as well as arbitrary
characters in names, fixed expressions in the objective, empty constraints, and conic constraints.

e Parameter files: It is possible to specify integer, double and string parameters along with the
problem (or in a separate OPF file).

e Solution files: It is possible to store a full or a partial solution in an OPF file and later reload it.

176

11.3.1 The File Format
The format uses tags to structure data. A simple example with the basic sections may look like this:

[comment]
This is a comment. You may write almost anything here...
[/comment]

This is a single-line comment.

[objective min 'myobj']
x+3y+x2+3y2+z+1
[/objective]

[constraints]
[con 'con01'] 4 <= x +y [/conl]
[/constraints]

[bounds]
[b] -10 <= x,y <= 10 [/b]

[cone quad] x,y,z [/conel
[/bounds]

A scope is opened by a tag of the form [tag] and closed by a tag of the form [/tag]. An opening
tag may accept a list of unnamed and named arguments, for examples:

[tag value] tag with one unnamed argument [/tag]
[tag arg=value] tag with one named argument [/tag]

Unnamed arguments are identified by their order, while named arguments may appear in any order,
but never before an unnamed argument. The value can be a quoted, single-quoted or double-quoted
text string, i.e.

[tag 'value'] single-quoted value [/tag]
[tag arg='value'] single-quoted value [/tag]
[tag "value"] double-quoted value [/tag]

[tag arg="value"] double-quoted value [/tag]

11.3.2 Sections

The recognized tags are

177

[comment]

A comment section. This can contain almost any text: Between single quotes () or double quotes (")
any text may appear. Outside quotes the markup characters ([and]) must be prefixed by backslashes.
Both single and double quotes may appear alone or inside a pair of quotes if it is prefixed by a backslash.

[objective]

The objective function: This accepts one or two parameters, where the first one (in the above example
min) is either min or max (regardless of case) and defines the objective sense, and the second one (above
myobj), if present, is the objective name. The section may contain linear and quadratic expressions.

If several objectives are specified, all but the last are ignored.

[constraints]

This does not directly contain any data, but may contain subsections con defining a linear constraint.

[con]

Defines a single constraint; if an argument is present ([con NAME]) this is used as the name of the
constraint, otherwise it is given a null-name. The section contains a constraint definition written as
linear and quadratic expressions with a lower bound, an upper bound, with both or with an equality.
Examples:

[constraints]

[con 'conl'] 0 <= x + ¥ [/con]
[con 'con2'] 0 >=x + ¥ [/con]
[con 'con3'] 0 <= x + y <= 10 [/con]
[con 'con4'] x +y =10 [/con]

[/constraints]

Constraint names are unique. If a constraint is specified which has the same name as a previously
defined constraint, the new constraint replaces the existing one.
[bounds]
This does not directly contain any data, but may contain subsections b (linear bounds on variables) and
cone (cones).
[b]

Bound definition on one or several variables separated by comma (,). An upper or lower bound on a
variable replaces any earlier defined bound on that variable. If only one bound (upper or lower) is given
only this bound is replaced. This means that upper and lower bounds can be specified separately. So
the OPF bound definition:

[b] x,y >= -10 [/b]
[p] x,y <= 10 [/b]

results in the bound —10 < x,y < 10.

178

[conel

Specifies a cone. A cone is defined as a sequence of variables which belong to a single unique cone. The
supported cone types are:

e quad: a quadratic cone of n variables z1,...,x, defines a constraint of the form
n
xi > Zx?, 1 > 0.
i=2
e rquad: a rotated quadratic cone of n variables z1,...,z, defines a constraint of the form
n
2110 > ZSU?’ x1,%2 > 0.
i=3
e pexp: primal exponential cone of 3 variables x1,xo, x3 defines a constraint of the form

xy > xoexp(xs/w2), x1,22 > 0.

e ppow with parameter 0 < o < 1: primal power cone of n variables z1,...,x, defines a constraint
of the form

e dexp: dual exponential cone of 3 variables x1, x2, x3 defines a constraint of the form

1 > —x3e ! exp(za/x3), x3<0,27 >0.

e dpow with parameter 0 < « < 1: dual power cone of n variables z1,...,x, defines a constraint of
the form

e zero: zero cone of n variables x1,...,z, defines a constraint of the form

r1=-=x,=0

A [bounds]-section example:

[bounds]

[b] 0 <= x,y <= 10 [/b]
[b] 10 >= x,y >= 0 [/b]
[b] 0 <= x,y <= inf [/b] # using inf

[b] x,y free [/b] free variables

Let (x,y,z,w) belong to the cone K

[cone rquad] x,y,z,w [/cone] # rotated quadratic cone

[cone ppow '3e-01' 'a'] x1, x2, x3 [/cone] # power cone with alpha=1/3 and name 'a'
[/bounds]

ranged bound

#
ranged bound
#
#

By default all variables are free.

179

[variables]

This defines an ordering of variables as they should appear in the problem. This is simply a space-
separated list of variable names.

[integer]

This contains a space-separated list of variables and defines the constraint that the listed variables must
be integer-valued.

[hints]

This may contain only non-essential data; for example estimates of the number of variables, constraints

and non-zeros. Placed before all other sections containing data this may reduce the time spent reading
the file.

In the hints section, any subsection which is not recognized by MOSEK is simply ignored. In this
section a hint is defined as follows:

[hint ITEM] value [/hint]
The hints recognized by MOSEK are:
e numvar (number of variables),
e numcon (number of linear/quadratic constraints),
e numanz (number of linear non-zeros in constraints),
(

e numgnz (number of quadratic non-zeros in constraints).

[solutions]

This section can contain a set of full or partial solutions to a problem. Each solution must be specified
using a [solution]-section, i.e.

[solutions]

[solution]...[/solution] #solution 1
[solution]...[/solution] #solution 2
#other solutions....
[solution]...[/solution] #solution n
[/solutions]

The syntax of a [solution]-section is the following:
[solution SOLTYPE status=STATUS]...[/solution]

where SOLTYPE is one of the strings

e interior, a non-basic solution,

e basic, a basic solution,

e integer, an integer solution,

and STATUS is one of the strings

e UNKNOWN,

OPTIMAL,

INTEGER_OPTIMAL,

PRIM_FEAS,

DUAL_FEAS,

PRIM_AND_DUAL_FEAS,

180

e NEAR_OPTIMAL,

e NEAR_PRIM_FEAS,

e NEAR_DUAL_FEAS,

e NEAR_PRIM_AND_DUAL_FEAS,

e PRIM_INFEAS_CER,

e DUAL_INFEAS_CER,

e NEAR_PRIM_INFEAS_CER,

e NEAR_DUAL_INFEAS_CER,

e NEAR_INTEGER_OPTIMAL.

Most of these values are irrelevant for input solutions; when constructing a solution for simplex
hot-start or an initial solution for a mixed integer problem the safe setting is UNKNOWN.

A [solution]-section contains [con] and [var] sections. Each [con] and [var] section defines
solution information for a single variable or constraint, specified as list of KEYWORD/value pairs, in any
order, written as

KEYWORD=value

Allowed keywords are as follows:

e sk. The status of the item, where the value is one of the following strings:

LOW, the item is on its lower bound.
UPR, the item is on its upper bound.
FIX, it is a fixed item.

BAS, the item is in the basis.
SUPBAS, the item is super basic.
UNK, the status is unknown.

INF, the item is outside its bounds (infeasible).

1v1 Defines the level of the item.

sl Defines the level of the dual variable associated with its lower bound.

e su Defines the level of the dual variable associated with its upper bound.

sn Defines the level of the variable associated with its cone.

y Defines the level of the corresponding dual variable (for constraints only).

A [var] section should always contain the items sk, 1vl, s1 and su. Items s1 and su are not required
for integer solutions.

A [con] section should always contain sk, 1vl, s1, su and y.

An example of a solution section

[solution basic status=UNKNOWN]

[var x0] sk=LOW 1vl=5.0 [/var]

[var x1] sk=UPR 1v1=10.0 [/var]

[var x2] sk=SUPBAS 1v1=2.0 sl1=1.5 su=0.0 [/var]
[con c0] sk=LOW 1v1=3.0 y=0.0 [/con]

[con c0] sk=UPR 1v1=0.0 y=5.0 [/con]
[/solution]

181

e [vendor] This contains solver/vendor specific data. It accepts one argument, which is a vendor
ID — for MOSEK the ID is simply mosek — and the section contains the subsection parameters
defining solver parameters. When reading a vendor section, any unknown vendor can be safely
ignored. This is described later.

Comments using the # may appear anywhere in the file. Between the # and the following line-break
any text may be written, including markup characters.

11.3.3 Numbers

Numbers, when used for parameter values or coefficients, are written in the usual way by the printf
function. That is, they may be prefixed by a sign (+ or -) and may contain an integer part, decimal part
and an exponent. The decimal point is always . (a dot). Some examples are

1.0
.0

1.
1e10
le+10
le-10

Some invalid examples are

el0 # invalid, must contain either integer or decimal part
: # invalid
.e10 # invalid

More formally, the following standard regular expression describes numbers as used:

[+1-17([0-9]1+[.1[0-9]1*|[.1[0-9]1+) ([eE] [+|-]17[0-9]+)7

11.3.4 Names

Variable names, constraint names and objective name may contain arbitrary characters, which in some
cases must be enclosed by quotes (single or double) that in turn must be preceded by a backslash.
Unquoted names must begin with a letter (a-z or A-Z) and contain only the following characters: the
letters a-z and A-Z, the digits 0-9, braces ({ and }) and underscore (_).

Some examples of legal names:

an_unquoted_name
another_name{123}

'single quoted name'

"double quoted name"

"name with \\"quote\\" in it"
"name with []s in it"

11.3.5 Parameters Section

In the vendor section solver parameters are defined inside the parameters subsection. Each parameter
is written as

[p PARAMETER_NAME] value [/p]

where PARAMETER_NAME is replaced by a MOSEK parameter name, usually of the form MSK_IPAR_.
.., MSK_DPAR_... or MSK_SPAR_. .., and the value is replaced by the value of that parameter; both
integer values and named values may be used. Some simple examples are

182

[vendor mosek]

[parameters]

[p MSK_IPAR_OPF_MAX_TERMS_PER_LINE] 10 [/p]
[p MSK_IPAR_OPF_WRITE_PARAMETERS] MSK_ON [/p]
[p MSK_DPAR_DATA_TOL_BOUND_INF] 1.0e18 [/p]
[/parameters]

[/vendor]

11.3.6 Writing OPF Files from MOSEK

To write an OPF file then make sure the file extension is .opf.
Then modify the following parameters to define what the file should contain:

MSK_IPAR_OPF_WRITE_SOL_BAS Include basic solution, if defined.

MSK_IPAR_OPF_WRITE_SOL_ITG Include integer solution, if defined.
MSK_IPAR_OPF_WRITE_SOL_ITR Include interior solution, if defined.

MSK_IPAR_OPF_WRITE_SOLUTION Include solutions if they are defined. If this is off, no solutions are

included.

MSK_IPAR_OPF_WRITE_HEADER Include a small header with comments.

MSK_IPAR_OPF_WRITE_PROBLEM Include the problem itself — objective, constraints and bounds.

MSK_IPAR_OPF_WRITE_PARAMETE Include all parameter settings.

MSK_IPAR_OPF_WRITE_HINTS Include hints about the size of the problem.

11.3.7 Examples

This section contains a set of small examples written in OPF and describing how to formulate linear,

quadratic and conic problems.

Linear Example 1o1.opf

Consider the example:

1:131 +
]."El +
].(El +
2371

maximize 3xg
subject to 3zq
2$0

+ 4+ +

having the bounds

Zo
Z1
Z2
zs3

oo o
ININININA
INIAINIA

0

51‘2
21’2
3l‘2

lxg

11‘3
3.’[73

In the OPF format the example is displayed as shown in Listing 11.1.

Listing 11.1: Example of an OPF file for a linear problem.

[comment]
The lol example in OPF format
[/comment]

[hints]
[hint NUMVAR] 4 [/hint]
[hint NUMCON] 3 [/hint]
[hint NUMANZ] 9 [/hint]
[/hints]

183

INIV I

30,
15,
25,

(continues on next page)

[variables disallow_new_variables]

x1 x2 x3 x4
[/variables]

[objective maximize 'obj']

3 x1 +x2 + 5 x3 + x4
[/objective]

[constraints]

[con 'c1'] 3 x1 + x2 + 2 x3

= 30 [/con]

[con 'c2'] 2 x1 + x2 + 3 x3 + x4 >= 15 [/conl]

[con 'c3'] 2 x2
[/constraints]

[bounds]

[b] 0 <= * [/1p]

[b] 0 <= x2 <= 10 [/1b]
[/bounds]

Quadratic Example go1l.opf

+ 3 x4 <= 25 [/con]

An example of a quadratic optimization problem is

minimize

22 4+ 0.123 + 23 — 2123 — T2

subject to 1 < 1+ 22+ 3,

z > 0.

This can be formulated in opf as shown below.

(continued from previous page)

Listing 11.2: Example of an OPF file for a quadratic problem.

[comment]

The gol example in OPF format

[/comment]

[hints]
[hint NUMVAR] 3 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 3 [/hint]
[hint NUMQNZ] 4 [/hint]
[/hints]

[variables disallow_new_variables]

x1 x2 x3
[/variables]

[objective minimize 'obj']

The quadratic terms are often written with a factor of 1/2 as here,

but this is not required.

-x2+0.5(2.0x1~2-2.0x3*x1+0.2%x2"~2+2.0%x3"2)

[/objective]

[constraints]

[con 'c1'] 1.0 <= x1 + x2 + x3 [/con]

[/constraints]

184

(continues on next page)

(continued from previous page)

[bounds]
[b] 0 <= * [/b]
[/bounds]

Conic Quadratic Example cqol.opf

Consider the example:

minimize T3+ T4 + T5
subject to g+ x1 + 225
Lo, L1, L2

x3 > i + 22,

2
2zy5 > 25.

IV 1l
=)

Please note that the type of the cones is defined by the parameter to [cone ...]; the content of the
cone-section is the names of variables that belong to the cone. The resulting OPF file is in Listing 11.3.

Listing 11.3: Example of an OPF file for a conic quadratic problem.

[comment]
The cqol example in OPF format.
[/comment]

[hints]
[hint NUMVAR] 6 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 3 [/hint]
[/hints]

[variables disallow_new_variables]
x1 x2 x3 x4 x5 x6
[/variables]

[objective minimize 'obj']
x4 + x5 + x6
[/objective]

[constraints]
[con 'cl'] =x1 + x2 + 2e+00 x3 = 1e+00 [/conl]
[/constraints]

[bounds]
We let all variables default to the positive orthant
[b] 0 <= * [/1]

...and change those that differ from the default
[b] x4,x5,x6 free [/Db]

Define quadratic cone: x4 >= sqrt(x1°2 + x272)
[cone quad 'k1'] x4, x1, x2 [/cone]

Define rotated quadratic cone: 2 x5 x6 >= x372

[cone rquad 'k2'] x5, x6, x3 [/cone]
[/bounds]

185

Mixed Integer Example milol.opf

Consider the mixed integer problem:

maximize xg + 0.64x,

subject to 50xg + 31z < 250,
3.1’0 — 2.1?1 Z —47
xg,x1 >0 and integer

This can be implemented in OPF with the file in Listing 11.4.

Listing 11.4: Example of an OPF file for a mixed-integer linear

problem.
[comment]
The milol example in OPF format
[/comment]
[hints]

[hint NUMVAR] 2 [/hint]

[hint NUMCON] 2 [/hint]

[hint NUMANZ] 4 [/hint]
[/hints]

[variables disallow_new_variables]
x1 x2
[/variables]

[objective maximize 'obj']
x1 + 6.4e-1 x2
[/objective]

[constraints]
[con 'c1'] Be+1l x1 + 3.1le+l x2 <= 2.5e+2 [/conl]
[con 'c2'] -4 <= 3 x1 - 2 x2 [/con]
[/constraints]

[bounds]
[b] 0 <= * [/b]
[/bounds]

[integer]

x1 x2
[/integer]

186

11.4 The CBF Format

This document constitutes the technical reference manual of the Conic Benchmark Format with file
extension: .cbf or .CBF. It unifies linear, second-order cone (also known as conic quadratic), expo-
nential cone, power cone and semidefinite optimization with mixed-integer variables. The format has
been designed with benchmark libraries in mind, and therefore focuses on compact and easily parsable
representations. The CBF format separates problem structure from the problem data.

11.4.1 How Instances Are Specified

This section defines the spectrum of conic optimization problems that can be formulated in terms of the
keywords of the CBF format.
In the CBF format, conic optimization problems are considered in the following form:

min / max g°%
gi € Iciv i€ Iv

s.t. G, €K;, ieIPSP, (11.9)
T; € Kj, jE J,
Yj GIC]‘, jEjPSD.

e Variables are either scalar variables, z; for j € J, or matrix variables, X; for j € JF9P. Scalar
variables can also be declared as integer.

e Constraints are affine expressions of the variables, either scalar-valued g; for ¢ € Z, or matrix-
valued G; for i € TFSP

9i = Z (Fyj, Xj) + Z aijx; + by,
JEJFSD Jjeg

JjeJ

e The objective function is a scalar-valued affine expression of the variables, either to be minimized
or maximized. We refer to this expression as g°%

gObj = Z <Ffbj,Xj> + Z a;’bjwj + bObj.
VISV A Jjeg

As of version 4 of the format, CBF files can represent the following non-parametric cones KC:

e Free domain - A cone in the linear family defined by

{z e R"}, for n > 1.

e Positive orthant - A cone in the linear family defined by

{reR"|z; >0for j=1,...,n}, forn>1.

e Negative orthant - A cone in the linear family defined by

{x eR"|z; <O0for j=1,...,n}, forn>1.

e Fixpoint zero - A cone in the linear family defined by

r€R"|z;=0forj=1,...,n}, forn >1.
J

187

e Quadratic cone - A cone in the second-order cone family defined by

{(Z)eRxR"l,pQZxTx,pZO}, for n > 2.

e Rotated quadratic cone - A cone in the second-order cone family defined by

p

g | eERxRxR" 2 2pg>alz, p>0,¢>0}, forn>3.
T

e Exponential cone - A cone in the exponential cone family defined by

Cl(Sl) = Sl U SQ

where,

S

r
s

eER3 t>se5,5>0

=< »w oo

and,

Sy = s | eR3 t>0,r<0,s=0

e Dual Exponential cone - A cone in the exponential cone family defined by

Cl(Sl) = Sl U Sg

where,
S = s € R3, etZ(—r)e%, —-r>0
and,
t
So = s | eR® et>0,5>0,r=0
r

e Radial geometric mean cone - A cone in the power cone family defined by

. ,
p k
(x)€R+XR1’ 1—[1pj >zl p, forn=k+12>2.
j=

e Dual radial geometric mean cone - A cone in the power cone family defined by

1
k

k
p
<x>eRixR1, Hkpj >lx|p, forn=k+12>2.
j=1

188

and, the following parametric cones:

¢ Radial power cone - A cone in the power cone family defined by

-

k
p k —k (o7
<$>€R+XR”) rllij > x|y p, forn>k>1.
j=

q

k
where, 0 = 3., aj and a = R% .

e Dual radial power cone - A cone in the power cone family defined by

Ea

k Qg
P - ap;
<x>€RiXR" 3 H(J) > ||zll, §, forn >k > 1.
j=1

a;

k
where, 0 =} ., o and a = RE .

11.4.2 The Structure of CBF Files

This section defines how information is written in the CBF format, without being specific about the type
of information being communicated.

All information items belong to exactly one of the three groups of information. These information
groups, and the order they must appear in, are:

1. File format.
2. Problem structure.
3. Problem data.

The first group, file format, provides information on how to interpret the file. The second group,
problem structure, provides the information needed to deduce the type and size of the problem instance.
Finally, the third group, problem data, specifies the coeflicients and constants of the problem instance.

Information items

The format is composed as a list of information items. The first line of an information item is the
KEYWORD, revealing the type of information provided. The second line - of some keywords only - is the
HEADER, typically revealing the size of information that follows. The remaining lines are the BODY holding
the actual information to be specified.

KEYWORD
BODY

KEYWORD
HEADER
BODY

The KEYWORD determines how each line in the HEADER and BODY is structured. Moreover, the number
of lines in the BODY follows either from the KEYWORD, the HEADER, or from another information item
required to precede it.

189

File encoding and line width restrictions

The format is based on the US-ASCII printable character set with two extensions as listed below. Note,
by definition, that none of these extensions can be misinterpreted as printable US-ASCII characters:

e A line feed marks the end of a line, carriage returns are ignored.
e Comment-lines may contain unicode characters in UTF-8 encoding.

The line width is restricted to 512 bytes, with 3 bytes reserved for the potential carriage return, line
feed and null-terminator.

Integers and floating point numbers must follow the ISO C decimal string representation in the
standard C locale. The format does not impose restrictions on the magnitude of, or number of significant
digits in numeric data, but the use of 64-bit integers and 64-bit IEEE 754 floating point numbers should
be sufficient to avoid loss of precision.

Comment-line and whitespace rules

The format allows single-line comments respecting the following rule:

e Lines having first byte equal to '# (US-ASCII 35) are comments, and should be ignored. Comments
are only allowed between information items.

Given that a line is not a comment-line, whitespace characters should be handled according to the
following rules:

e Leading and trailing whitespace characters should be ignored.

— The seperator between multiple pieces of information on one line, is either one or more whites-
pace characters.

e Lines containing only whitespace characters are empty, and should be ignored. Empty lines are
only allowed between information items.
11.4.3 Problem Specification

The problem structure

The problem structure defines the objective sense, whether it is minimization and maximization. It also
defines the index sets, 7, J79P, T and Z"9P, which are all numbered from zero, {0,1,...}, and empty
until explicitly constructed.

e Scalar variables are constructed in vectors restricted to a conic domain, such as (zg,z1) € R%,
(19,3, 24) € @3, etc. In terms of the Cartesian product, this generalizes to

x €K X K52 x - x Kp*
which in the CBF format becomes:

VAR
n k
K1 ni
K2 n2

Kk nk
where), n; = n is the total number of scalar variables. The list of supported cones is found in
Table 11.3. Integrality of scalar variables can be specified afterwards.

e PSD variables are constructed one-by-one. That is, X, > 0"*"™ for j € JFPSP . constructs a
matrix-valued variable of size n; X n; restricted to be symmetric positive semidefinite. In the CBF
format, this list of constructions becomes:

190

PSDVAR
N

nl

n2

nN
where N is the total number of PSD variables.

Scalar constraints are constructed in vectors restricted to a conic domain, such as (go, g1) € Ri,
(g2,93,94) € Q3, etc. In terms of the Cartesian product, this generalizes to

g € K" X 5™ x -+ x K™
which in the CBF format becomes:

CON
m k
K1 ml
K2 m2

Kk mk
where). m; = m is the total number of scalar constraints. The list of supported cones is found
in Table 11.3.

PSD constraints are constructed one-by-one. That is, G; > 0™ for § € TPSP | constructs a
matrix-valued affine expressions of size m; x m; restricted to be symmetric positive semidefinite.
In the CBF format, this list of constructions becomes

PSDCON
M

mil

m2

mM
where M is the total number of PSD constraints.

With the objective sense, variables (with integer indications) and constraints, the definitions of the

many affine expressions follow in problem data.

Problem data

The problem data defines the coefficients and constants of the affine expressions of the problem instance.
These are considered zero until explicitly defined, implying that instances with no keywords from this
information group are, in fact, valid. Duplicating or conflicting information is a failure to comply with
the standard. Consequently, two coefficients written to the same position in a matrix (or to transposed
positions in a symmetric matrix) is an error.

The affine expressions of the objective, g°*, of the scalar constraints, g;, and of the PSD constraints,

G;, are defined separately. The following notation uses the standard trace inner product for matrices,
(X,Y) = Zi,j XijYij.

e The affine expression of the objective is defined as

g = 3T FM X+ a4 b,
jegrspb JjeT

in terms of the symmetric matrices, F"”, and scalars, aj” and bobs .

191

e The affine expressions of the scalar constraints are defined, for ¢ € Z, as
gi = Z (Fij, X5) + Z a;xj + bi,
jEJPSD]EJ
in terms of the symmetric matrices, Fj;, and scalars, a;; and b;.
e The affine expressions of the PSD constraints are defined, for i € Z7%P as
Gi = Z :L'jHij + Di,
JjE€ET

in terms of the symmetric matrices, H;; and D;.

List of cones

The format uses an explicit syntax for symmetric positive semidefinite cones as shown above. For scalar
variables and constraints, constructed in vectors, the supported conic domains and their sizes are given
as follows.

Table 11.3: Cones available in the CBF format

Name CBF keyword Cone family ~ Cone size
Free domain F linear n>1
Positive orthant L+ linear n>1
Negative orthant L- linear n>1
Fixpoint zero L= linear n>1
Quadratic cone Q second-order n >1
Rotated quadratic cone QR second-order n > 2
Exponential cone EXP exponential n =3

Dual exponential cone EXP* exponential n =3

Radial geometric mean cone GMEANABS power n=k+1>2
Dual radial geometric mean cone GMEANABS* power n=k+1>2
Radial power cone (parametric) POW power n>k>1
Dual radial power cone (parametric) POWx power n>k>1

11.4.4 File Format Keywords
VER

Description: The version of the Conic Benchmark Format used to write the file.
HEADER: None
BODY: One line formatted as:

INT

This is the version number.
Must appear exactly once in a file, as the first keyword.

POWCONES

Description: Define a lookup table for power cone domains.
HEADER: One line formatted as:

INT INT
This is the number of cones to be specified and the combined length of their dense parameter vectors.

BODY: A list of chunks each specifying the dense parameter vector of a power cone.
CHUNKHEADER: One line formatted as:

192

INT
This is the parameter vector length.
CHUNKBODY: A list of lines formatted as:

REAL

This is the parameter vector values. The number of lines should match the number stated in the
chunk header.

The cone specified at index k (with 0-based indexing) is registered under the CBF name @k:POW.

POW*CONES

Description: Define a lookup table for dual power cone domains.
HEADER: One line formatted as:

INT INT
This is the number of cones to be specified and the combined length of their dense parameter vectors.

BODY: A list of chunks each specifying the dense parameter vector of a dual power cone.
CHUNKHEADER: One line formatted as:

INT
This is the parameter vector length.
CHUNKBODY: A list of lines formatted as:

REAL

This is the parameter vector values. The number of lines should match the number stated in the
chunk header.

The cone specified at index k (with 0-based indexing) is registered under the CBF name @k:POW*.

OBJSENSE

Description: Define the objective sense.
HEADER: None
BODY: One line formatted as:

STR
having MIN indicates minimize, and MAX indicates maximize. Upper-case letters are required.
Must appear exactly once in a file.

PSDVAR

Description: Construct the PSD variables.
HEADER: One line formatted as:

INT

This is the number of PSD variables in the problem.
BODY: A list of lines formatted as:

INT

This indicates the number of rows (equal to the number of columns) in the matrix-valued PSD
variable. The number of lines should match the number stated in the header.

193

VAR

Description: Construct the scalar variables.
HEADER: One line formatted as:

INT INT

This is the number of scalar variables, followed by the number of conic domains they are restricted
to.
BODY: A list of lines formatted as:

STR INT

This indicates the cone name (see Table 11.3), and the number of scalar variables restricted to this
cone. These numbers should add up to the number of scalar variables stated first in the header. The
number of lines should match the second number stated in the header.

INT

Description: Declare integer requirements on a selected subset of scalar variables.
HEADER: one line formatted as:

INT

This is the number of integer scalar variables in the problem.
BODY: a list of lines formatted as:

INT

This indicates the scalar variable index j € J. The number of lines should match the number stated
in the header.

Can only be used after the keyword VAR.
PSDCON

Description: Construct the PSD constraints.
HEADER: One line formatted as:

INT

This is the number of PSD constraints in the problem.
BODY: A list of lines formatted as:

INT

This indicates the number of rows (equal to the number of columns) in the matrix-valued affine
expression of the PSD constraint. The number of lines should match the number stated in the header.
Can only be used after these keywords: PSDVAR, VAR.
CON

Description: Construct the scalar constraints.
HEADER: One line formatted as:

INT INT

This is the number of scalar constraints, followed by the number of conic domains they restrict to.
BODY: A list of lines formatted as:

STR INT

This indicates the cone name (see Table 11.3), and the number of affine expressions restricted to this
cone. These numbers should add up to the number of scalar constraints stated first in the header. The
number of lines should match the second number stated in the header.

Can only be used after these keywords: PSDVAR, VAR

194

OBJFCOORD

Description: Input sparse coordinates (quadruplets) to define the symmetric matrices Ffbj , as used in
the objective.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT INT REAL

This indicates the PSD variable index j € J7°P, the row index, the column index and the coefficient
value. The number of lines should match the number stated in the header.

OBJACOORD

Description: Input sparse coordinates (pairs) to define the scalars, a;bj , as used in the objective.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT REAL

This indicates the scalar variable index j € J and the coeflicient value. The number of lines should
match the number stated in the header.

OBJBCOORD

Description: Input the scalar, b°, as used in the objective.
HEADER: None.
BODY: One line formatted as:

REAL

This indicates the coeflicient value.

FCOORD

Description: Input sparse coordinates (quintuplets) to define the symmetric matrices, Fj;, as used in the
scalar constraints.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT INT INT REAL

This indicates the scalar constraint index i € Z, the PSD variable index j € J75P | the row index,
the column index and the coefficient value. The number of lines should match the number stated in the
header.

195

ACOORD

Description: Input sparse coordinates (triplets) to define the scalars, a;;, as used in the scalar constraints.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT REAL

This indicates the scalar constraint index i € Z, the scalar variable index j € J and the coefficient
value. The number of lines should match the number stated in the header.

BCOORD

Description: Input sparse coordinates (pairs) to define the scalars, b;, as used in the scalar constraints.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT REAL

This indicates the scalar constraint index ¢ € Z and the coefficient value. The number of lines should
match the number stated in the header.

HCOORD

Description: Input sparse coordinates (quintuplets) to define the symmetric matrices, H;;, as used in
the PSD constraints.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as

INT INT INT INT REAL

This indicates the PSD constraint index i € Z”9P | the scalar variable index j € 7, the row index,
the column index and the coefficient value. The number of lines should match the number stated in the
header.

DCOORD

Description: Input sparse coordinates (quadruplets) to define the symmetric matrices, D;, as used in
the PSD constraints.
HEADER: One line formatted as

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT INT REAL

This indicates the PSD constraint index i € Z”5P | the row index, the column index and the coefficient
value. The number of lines should match the number stated in the header.

196

11.4.5 CBF Format Examples

Minimal Working Example

The conic optimization problem (11.10) , has three variables in a quadratic cone - first one is integer -
and an affine expression in domain 0 (equality constraint).

minimize 5.1z
subject to 6.2x; + 7.3x2 — 8.4 € {0} (11.10)
re Q3 xy€Z

Its formulation in the Conic Benchmark Format begins with the version of the CBF format used, to
safeguard against later revisions.

VER
4

Next follows the problem structure, consisting of the objective sense, the number and domain of
variables, the indices of integer variables, and the number and domain of scalar-valued affine expressions
(i.e., the equality constraint).

0OBJSENSE
MIN

CON
11
L=1

Finally follows the problem data, consisting of the coefficients of the objective, the coefficients of the
constraints, and the constant terms of the constraints. All data is specified on a sparse coordinate form.

0BJACOGRD
1
05.1

ACOORD

O ON
N =
~N O
w N

BCOORD
1
0 -8.4

This concludes the example.

197

Mixing Linear, Second-order and Semidefinite Cones

The conic optimization problem (11.11), has a semidefinite cone, a quadratic cone over unordered

subindices, and two equality constraints.

[2 1 0]
minimize < 1 2 1 ,X1>—|—a:1
0 1 2
1 0 0]
subject to < 0 1 0 ,X1>+x1 = 1.0,
0 0 1
101 1]
< 1 1 1 ,X1>+$0+$2 = 0.5,
|1 1 1

[

SﬂlZ \/1')+ %a

X;1>~0.

(11.11)

The equality constraints are easily rewritten to the conic form, (go, g1) € {0}, by moving constants such
that the right-hand-side becomes zero. The quadratic cone does not fit under the VAR keyword in this
variable permutation. Instead, it takes a scalar constraint (go,gs,g4) = (1, %0, 72) € Q3, with scalar
variables constructed as (zg, 21, 22) € R3. Its formulation in the CBF format is reported in the following

list

File written using this version of the Conic Benchmark Format:
| Version 4.

VER

4

The sense of the objective is:
| Minimize.

OBJSENSE

MIN

One PSD variable of this size:
| Three times three.
PSDVAR

1

3

Three scalar variables in this one conic domain:
| Three are free.

VAR

31

F 3

Five scalar constraints with affine expressions in two conic domains:

| Two are fixed to zero.

| Three are in conic quadratic domain.
CON

52

L= 2

Q3

Five coordinates in F~{obj}_j coefficients:

| F~{obj}[0][0,0] = 2.0
| F~{obj}[0][1,0] = 1.0
| and more. ..

0OBJFCOORD

5

(continues on next page)

198

O O O O O
NN = O
N~ P, OO
N = N~ N
coooo

One coordinate in a~{obj}_j coefficients:

| a~{obj}[1] = 1.0
0BJACOORD

1

11.0

Nine coordinates in F_ij coefficients:
| F[0,0]1[0,0] = 1.0
| F[0,0][1,1] = 1.0
| and more. ..
FCOORD

9

00001.0

00111.0

00221.0

10001.0

10101.0

10201.0

10111.0

10211.0

10221.0

Six coordinates in a_ij coefficients:
| af0,1] = 1.0

| af1,0] = 1.0

| and more. ..
ACOORD

6

011.0

101.0

121.0

211.0

301.0

421.0

Two coordinates in b_i coefficients:
| b[0] = -1.0

| b[1] = -0.5

BCOORD

2

0 -1.0

1 -0.5

199

(continued from previous page)

Mixing Semidefinite Variables and Linear Matrix Inequalities

The standard forms in semidefinite optimization are usually based either on semidefinite variables or
linear matrix inequalities. In the CBF format, both forms are supported and can even be mixed as
shown.

minimize (1) (1) X1)+z1+a0+1
bject t 01 X)) —x — > 0.0
subject to 1o X T1 — To > 0.0, (11.12)
0 1 3 1 10
“[1 3]“32{10} {01} = 0
1=0

Its formulation in the CBF format is written in what follows

File written using this version of the Conic Benchmark Format:
| Version 4.

VER

4

The sense of the objective is:
| Minimize.

OBJSENSE

MIN

One PSD variable of this size:
| Two times two.

PSDVAR

1

2

Two scalar variables in this one conic domain:
| Two are free.

VAR

21

F 2

One PSD constraint of this size:
| Two times two.

PSDCON

1

2

One scalar constraint with an affine expression in this one conic domain:
| One is greater than or equal to zero.

CON

11

L+ 1

Two coordinates in F~{obj}_j coefficients:

| F~{obj}[01[0,0] = 1.0
| F~{obj}[0][1,1] = 1.0
0OBJFCOORD

2

0001.0

0111.0

Two coordinates in a~{obj}_j coefficients:

(continues on next page)

200

(continued from previous page)

| a~{obj}[0] = 1.0
| a~{obj}[1] = 1.0
OBJACOORD

2

01.0

11.0

One coordinate in b~{obj} coefficient:

| b~{obj} = 1.0
0BJBCOORD
1.0

One coordinate in F_ij coefficients:

| ¥[0,0][1,0] = 1.0
FCOORD

1

00101.0

Two coordinates in a_ij coefficients:

| af0,0] = -1.0

| af0,1] = -1.0
ACOORD

2

00 -1.0

01-1.0

Four coordinates in H_ij coefficients:
| H[0,0]1[1,0] = 1.0
| H[0,0][1,1] = 3.0
| and more...
HCOORD

4

00101.0

00113.0

0100 3.0

01101.0

Two coordinates in D_i coefficients:

| bfo][0,0] = -1.0
| bfo][1,1] = -1.0
DCOORD

2

000 -1.0

011-1.0

201

The exponential cone

The conic optimization problem (11.13), has one equality constraint, one quadratic cone constraint and
an exponential cone constraint.

minimize xg— x3

subject to xg + 2z — 22 € {0}
(5.0, 29, 71) € Q°
(1]2, 1.0, 373) € EXP.

(11.13)

The nonlinear conic constraints enforce \/m% + m% < 0.5 and z3 < log(xs).

File written using this version of the Conic Benchmark Format:
| Version 3.

VER

3

The sense of the objective is:
| Minimize.

OBJSENSE

MIN

Four scalar variables in this one conic domain:
| Four are free.

VAR

4 1

F 4

Seven scalar constraints with affine expressions in three conic domains:
| One is fixed to zero.

| Three are in conic quadratic domain.

| Three are in exponential cone domain.

CON

73

L= 1

Q3

EXP 3

Two coordinates in a~{obj}_j coefficients:
| a~{obj}[0] = 1.0

| a~{obj}[3] = -1.0

OBJACOORD

2

01.0

3 -1.0

Seven coordinates in a_ij coefficients:
| al0,0] = 1.0

| af0,1] = 2.0

| and more. ..

ACOORD

D P WNO OO N
W N, ONF- O
T
ocooo-

(continues on next page)

202

(continued from previous page)

Two coordinates in b_i coefficients:

| b[1] = 5.0
| b[5] = 1.0
BCOORD

2

15.0

51.0

Parametric cones

The problem (11.14), has three variables in a power cone with parameter a; = (1, 1) and two power cone
constraints each with parameter ag = (8,1).

minimize x3

subject to (1.0, z1, 21 + z2) € POW,,
(1.0, z2,x1 + z2) € POW,,
xr € POW,,.

(11.14)

11
The nonlinear conic constraints enforce 3 < x129 and x; + 2 < min(z{,zJ).

File written using this version of the Conic Benchmark Format:

| Version 3.

VER

3

Two power cone domains defined in a total of four parameters:
| @0:POW (specification 0O) has two parameters:
| alpha[0] = 8.0.

| alpha[1] = 1.0.

| @1:POW (specification 1) has two parameters:
| alpha[0] = 1.0.

| alpha[1] = 1.0.

POWCONES

2 4

2

8.0

1.0

2

1.0

1.0

The sense of the objective is:
| Maximize.

OBJSENSE

MAX

Three scalar variable in this one conic domain:

| Three are in power cone domain (specification 1).
VAR

31

@1:POW 3

Six scalar constraints with affine expressions in two conic domains:
| Three are in power cone domain (specification 0).
| Three are in power cone domain (specification 0).

(continues on next page)

203

(continued from previous page)

CON
6 2
©@0:POW 3
Q0:POW 3

One coordinate in a~{obj}_j coefficients:
| a~{obj}[2] = 1.0

0BJACOORD

1

21.0

Six coordinates in a_ij coefficients:

| af[1,0] = 1.0
| a[2,0] = 1.0
| and more. ..
ACOORD

OO NN~ O
= O R P OO
N e
cooooo

Two coordinates in b_i coefficients:

| b[o] = 1.0
| b[3] = 1.0
BCOORD

2

01.0

31.0

11.5 The PTF Format

The PTF format is a human-readable, natural text format that supports all linear, conic and mixed-
integer features.

11.5.1 The overall format

The format is indentation based, where each section is started by a head line and followed by a section
body with deeper indentation that the head line. For example:

Header line
Body line 1
Body line 1
Body line 1

Section can also be nested:

Header line A
Body line in A
Header line A.1
Body line in A.1
Body line in A.1
Body line in A

204

The indentation of blank lines is ignored, so a subsection can contain a blank line with no indentation.
The character # defines a line comment and anything between the # character and the end of the line is
ignored.

In a PTF file, the first section must be a Task section. The order of the remaining section is arbitrary,
and sections may occur multiple times or not at all.

MOSEK will ignore any top-level section it does not recognize.

Names

In the description of the format we use following definitions for name strings:

NAME: PLAIN_NAME | QUOTED_NAME
PLAIN_NAME: [a-zA-Z_] [a-zA-Z0-9_-.!']]
QUOTED_NAME: "'" (C [~"\\\r\n] | "\\" C [\\rn] | "x" [0-9a-fA-F] [0-9a-fA-F]))x "'n

Expressions

An expression is a sum of terms. A term is either a linear term (a coefficient and a variable name, where
the coefficient can be left out if it is 1.0), or a matrix inner product.
An expression:

EXPR: EMPTY | [+-]7 TERM ([+-] TERM)=*
TERM: LINEAR_TERM | MATRIX_TERM

A linear term

LINEAR_TERM: FLOAT? NAME

A matrix term

MATRIX_TERM: "<" FLOAT? NAME ([+-] FLOAT? NAME)* ";" NAME ">"

Here the right-hand name is the name of a (semidefinite) matrix variable, and the left-hand side is a
sum of symmetric matrixes. The actual matrixes are defined in a separate section.

Expressions can span multiple lines by giving subsequent lines a deeper indentation.

For example following two section are equivalent:

Everything on one line:
x1 + x2 + x3 + x4

Split into multiple lines:
x1

+ x2

+ x3

+ x4

11.5.2 Task section

The first section of the file must be a Task. The text in this section is not used and may contain
comments, or meta-information from the writer or about the content.
Format:

Task NAME
Anything goes here...

NAME is a the task name.

205

11.5.3 Objective section
The Objective section defines the objective name, sense and function. The format:
"Objective" NAME?

("Minimize" | "Maximize") EXPR

For example:

Objective 'obj'
Minimize x1 + 0.2 x2 + < M1 ; X1 >

11.5.4 Constraints section

The constraints section defines a series of constraints. A constraint defines a term A -x +b € K. For
linear constraints A is just one row, while for conic constraints it can be multiple rows. If a constraint
spans multiple rows these can either be written inline separated by semi-colons, or each expression in a
separete sub-section.

Simple linear constraints:

"Constraints"
NAME? "[" [-+] (FLOAT | "Inf") (";" [-+] (FLOAT | "Inf"))7 "]" EXPR

If the brackets contain two values, they are used as upper and lower bounds. It they contain one
value the constraint is an equality.
For example:

Constraints
'c1' [0;10] x1 + x2 + x3
[0] x1 + x2 + x3

Constraint blocks put the expression either in a subsection or inline. The cone type (domain) is
written in the brackets, and MOSEK currently supports following types:

e SOC(N) Second order cone of dimension N

RSOC(N) Rotated second order cone of dimension N

PSD(N) Symmetric positive semidefinite cone of dimension N. This contains N* (N+1) /2 elements.

PEXP Primal exponential cone of dimension 3

DEXP Dual exponential cone of dimension 3

PPOW(N,P) Primal power cone of dimension N with parameter P

DPOW(N,P) Dual power cone of dimension N with parameter P

ZERO(N) The zero-cone of dimension N.

"Constraints"
NAME? "[" DOMAIN "]" EXPR_LIST

For example:

Constraints
'K1' [SOC(3)] x1 + x2 ; x2 + x3 ; x3 + x1
'K2' [RSOC(3)]
x1 + x2
x2 + x3
x3 + x1

206

11.5.5 Variables section

Any variable used in an expression must be defined in a variable section. The variable section defines
each variable domain.

"Variables"
NAME "[" [-+] (FLOAT | "Inf") (";" [-+] (FLOAT | "Inf"))? "]"
NAME "[" DOMAIN "]" NAMES

For example, a linear variable

Variables
x1 [0;Inf]

As with constraints, members of a conic domain can be listed either inline or in a subsection:

Variables
k1 [SOC(3)] x1 ; x2 ; x3
k2 [RS0OC(3)]
x1
x2
x3

11.5.6 Integer section

This section contains a list of variables that are integral. For example:

Integer
x1 x2 x3

11.5.7 SymmetricMatrixes section

This section defines the symmetric matrixes used for matrix coefficients in matrix inner product terms.
The section lists named matrixes, each with a size and a number of non-zeros. Only non-zeros in the
lower triangular part should be defined.

"SymmetricMatrixes"
NAME IISYMMATII n (II INT ll) n (n (II INT n s n INT n , n FLOAT II) n)*

For example:

SymmetricMatrixes
M1 SYMMAT(3) (0,0,1.0) (1,1,2.0) (2,1,0.5)
M2 SYMMAT(3)
(0,0,1.0)
(1,1,2.0)
(2,1,0.5)

207

11.5.8 Solutions section

Each subsection defines a solution. A solution defines for each constraint and for each variable exactly
one primal value and either one (for conic domains) or two (for linear domains) dual values. The values
follow the same logic as in the MOSEK C API. A primal and a dual solution status defines the meaning
of the values primal and dual (solution, certificate, unknown, etc.)

The format is this:

"Solutions"
"Solution" WHICHSOL
"ProblemStatus" PROSTA PROSTA?
"SolutionStatus" SOLSTA SOLSTA?
"Objective" FLOAT FLOAT
"Variables"
Linear variable status: level, slx, sux
NAME "[" STATUS "]" FLOAT (FLOAT FLOAT)?
Conic variable status: level, snx
NAME
"[" STATUS "]" FLOAT FLOAT?

"Constraints"
Linear variable status: level, slx, sux
NAME "[" STATUS "]" FLOAT (FLOAT FLOAT)?
Conic variable status: level, snx
NAME
"[" STATUS "]" FLOAT FLOAT?

Following values for WHICHSOL are supported:
e interior Interior solution, the result of an interior-point solver.
e basic Basic solution, as produced by a simplex solver.

e integer Integer solution, the solution to a mixed-integer problem. This does not define a dual
solution.

Following values for PROSTA are supported:

e unknown The problem status is unknown

e feasible The problem has been proven feasible

e infeasible The problem has been proven infeasible

e illposed The problem has been proved to be ill posed

e infeasible_or_unbounded The problem is infeasible or unbounded
Following values for SOLSTA are supported:

e unknown The solution status is unknown

e feasible The solution is feasible

e optimal The solution is optimal

e infeas_cert The solution is a certificate of infeasibility

e illposed_cert The solution is a certificate of illposedness
Following values for STATUS are supported:

e unknown The value is unknown

e super_basic The value is super basic

208

at_lower The value is basic and at its lower bound

at_upper The value is basic and at its upper bound

fixed The value is basic fixed

e infinite The value is at infinity

11.5.9 Examples

Linear example lo1l.ptf

Task ''
Written by MOSEK v10.0.13
problemtype: Linear Problem
number of linear variables: 4
number of linear constraints: 3

number of old-style A nonzeros: 9
Objective obj

Maximize + 3 x1 + x2 + 5 x3 + x4
Constraints

cl [3e+1] + 3 x1 + x2 + 2 x3

c2 [1.5e+1;+inf] + 2 x1 + x2 + 3 x3 + x4

c3 [-inf;2.5e+1] + 2 x2 + 3 x4
Variables

x1 [0;+inf]

x2 [0;1e+1]

x3 [0;+inf]

x4 [0;+inf]

H H H

Conic example cqol.ptf

Task ''

Written by MOSEK v10.0.17

problemtype: Conic Problem

number of linear variables: 6

number of linear constraints: 1

number of old-style cones: 0O

number of positive semidefinite variables:

number of affine conic constraints: 2
number of disjunctive constraints: 0
number scalar affine expressions/nonzeros

number of old-style A nonzeros: 3
Objective obj

Minimize + x4 + x5 + x6
Constraints

cl [1] + x1 + x2 + 2 %3

k1 [QUAD(3)]

H OH H OH H H H H HH

Q@acl: + x4
Q@ac2: + x1
Qac3: + x2
k2 [RQUAD(3)]
@ac4: + x5
Q@ach: + x6
Q@ac6: + x3
Variables

209

number of positive semidefinite matrixes: O

0

: 6/6

(continues on next page)

(continued from previous page)

x4
x1 [0;+inf]
x2 [0;+inf]
x5
x6
x3 [0;+inf]

Disjunctive example djcl.ptf

Task djcil
Objective ''

Minimize + 2 'x[0]' + 'x[1]' + 3 'x[2]' + 'x[3]"'

Constraints

@cO0 [-10;+inf] + 'x[0]' + 'x[1]' + 'x[2]"' + 'x[3]"
@D0 [OR]
[AND]
[NEGATIVE(1)]
+ 'x[0]" - 2 'x[1]"' + 1
[ZERO(2)]
+ 'x[2]"
+ 'x[3]"
[AND]
[NEGATIVE(1)]
+ 'x[2]" - 3 'x[3]' + 2
[ZERO(2)]
+ 'x[0]"
+ 'x[1]"
@1 [0R]
[ZERO(1)]
+ IX[O]I
[ZERO(1)]
+ 'x[1]" - 2.5
[ZERO(1)]
+ 'x[2]' - 2.5
[ZERO(1)]
+ 'x[3]'" - 2.5

I
N
o

Variables

IX[O:ll
lx[l]l
|X[2]l
|X[3]l

11.6 The Task Format

The Task format is MOSEK' s native binary format. It contains a complete image of a MOSEK task,

ie.

Problem data: Linear, conic, semidefinite and quadratic data
Problem item names: Variable names, constraints names, cone names etc.
Parameter settings

Solutions

There are a few things to be aware of:

210

e Status of a solution read from a file will always be unknown.

e Parameter settings in a task file always override any parameters set on the command line or in a

parameter file.

The format is based on the TAR (USTar) file format. This means that the individual pieces of data
in a .task file can be examined by unpacking it as a TAR file. Please note that the inverse may not
work: Creating a file using TAR will most probably not create a valid MOSEK Task file since the order

of the entries is important.

11.7 The JSON Format

MOSEK provides the possibility to read/write problems and solutions in JSON format. The official
www.json.org provides plenty of information along with the format definition.
JSON is an industry standard for data exchange and JSON files can be easily written and read in most

JSON website http:

programming languages using dedicated libraries.
MOSEK uses two JSON-based formats:

e JTASK, for storing problem instances together with solutions and parameters. The JTASK for-
mat contains the same information as a native MOSEK task task format, that is a very close

representation of the internal data storage in the task object.

You

MSK_

can write a JTASK file specifying the extension .jtask. When the parameter
IPAR_WRITE_JSON_INDENTATION is set the JTASK file will be indented to slightly improve

readability.

e JSOL, for storing solutions and information items.

11.7.1 JTASK Specification

The JTASK is a dictionary containing the following sections. All sections are optional and can be omitted

if irrelevant for the problem.

o $schema: JSON schema.

e Task/name: The name of the task (string).

e Task/INFO: Information about problem data dimensions and similar. These are treated as hints

when reading the file.

numvar: number of variables (int32).

numcon: number of constraints (int32).

numcone: number of cones (int32, deprecated).

numbarvar: number of symmetric matrix variables (int32).
numanz: number of nonzeros in A (int64).

numsymmat: number of matrices in the symmetric matrix storage E (int64).
numafe: number of affine expressions in AFE storage (int64).
numfnz: number of nonzeros in F (int64).

numacc: number of affine conic constraints (ACCs) (int64).
numdjc: number of disjunctive constraints (DJCs) (int64).
numdom: number of domains (int64).

mosekver: MOSEK version (list(int32)).

e Task/data: Numerical and structural data of the problem.

var: Information about variables. All fields present must have the same length as bk. All or

none of bk, bl, and bu must appear.

* name: Variable names (list(string)).

211

http://www.json.org

*

*

*

*

bk: Bound keys (list(string)).

bl: Lower bounds (list(double)).
bu: Upper bounds (list(double)).
type: Variable types (list(string)).

— con: Information about linear constraints. All fields present must have the same length as
bk. All or none of bk, bl, and bu must appear.

*

*

*

*

name: Constraint names (list(string)).
bk: Bound keys (list(string)).

bl: Lower bounds (list(double)).

bu: Upper bounds (list(double)).

— barvar: Information about symmetric matrix variables. All fields present must have the same
length as dim.

*

*

name: Barvar names (list(string)).
dim: Dimensions (list(int32)).

— objective: Information about the objective.

*

*

*

name: Objective name (string).
sense: Objective sense (string).

c: The linear part ¢ of the objective as a sparse vector. Both arrays must have the same
length.

- subj: indices of nonzeros (list(int32)).
- val: values of nonzeros (list(double)).
cfix: Constant term in the objective (double).

Q: The quadratic part Q° of the objective as a sparse matrix, only lower-triangular part
included. All arrays must have the same length.

- subi: row indices of nonzeros (list(int32)).
- subj: column indices of nonzeros (list(int32)).
- val: values of nonzeros (list(double)).

barc: The semidefinite part C' of the objective (list). Each element of the list is a list
describing one entry C; using three fields:

- index j (int32).
- weights of the matrices from the storage E forming C; (list(double)).
- indices of the matrices from the storage E forming C; (list(int64)).

— A: The linear constraint matrix A as a sparse matrix. All arrays must have the same length.

*

*

*

subi: row indices of nonzeros (list(int32)).
subj: column indices of nonzeros (list(int32)).
val: values of nonzeros (list(double)).

— bara: The semidefinite part A of the constraints (list). Each element of the list is a list
describing one entry A;; using four fields:

*
*
*
*

index 7 (int32).

index j (int32).

weights of the matrices from the storage E forming A;; (list(double)).
indices of the matrices from the storage E forming A;; (list(int64)).

— AFE: The affine expression storage.

*

*

*

numafe: number of rows in the storage (int64).

F: The matrix F' as a sparse matrix. All arrays must have the same length.
- subi: row indices of nonzeros (list(int64)).
- subj: column indices of nonzeros (list(int32)).
- val: values of nonzeros (list(double)).

g: The vector g of constant terms as a sparse vector. Both arrays must have the same
length.

212

- subi: indices of nonzeros (list(int64)).
- val: values of nonzeros (list(double)).

% barf: The semidefinite part F of the > expressions in AFE storage (list). Each element of
the list is a list describing one entry F;; using four fields:

- index ¢ (int64).
- index j (int32).
- weights of the matrices from the storage E forming F;; (list(double)).
- indices of the matrices from the storage E forming F;; (list(int64)).
— domains: Information about domains. All fields present must have the same length as type.

* name: Domain names (list(string)).

* type: Description of the type of each domain (list). Each element of the list is a list
describing one domain using at least one field:

- domain type (string).
- (except pexp, dexp) dimension (int64).
- (only ppow, dpow) weights (list(double)).
— ACC: Information about affine conic constraints (ACC). All fields present must have the same
length as domain.
* name: ACC names (list(string)).
* domain: Domains (list(int64)).
* afeidx: AFE indices, grouped by ACC (list(list(int64))).
% b: constant vectors b, grouped by ACC (list(list(double))).
— DJC: Information about disjunctive constraints (DJC). All fields present must have the same
length as termsize.
% name: DJC names (list(string)).
* termsize: Term sizes, grouped by DJC (list(list(int64))).
* domain: Domains, grouped by DJC (list(list(int64))).
* afeidx: AFE indices, grouped by DJC (list(list(int64))).
% b: constant vectors b, grouped by DJC (list(list(double))).
— MatrixStore: The symmetric matrix storage E (list). Each element of the list is a list
describing one entry E using four fields in sparse matrix format, lower-triangular part only:
% dimension (int32).
* row indices of nonzeros (list(int32)).
% column indices of nonzeros (list(int32)).
* values of nonzeros (list(double)).
— Q: The quadratic part Q° of the constraints (list). Each element of the list is a list describing
one entry Q)¢ using four fields in sparse matrix format, lower-triangular part only:
* the row index 7 (int32).
* row indices of nonzeros (list(int32)).
* column indices of nonzeros (list(int32)).
* values of nonzeros (list(double)).
— qcone (deprecated). The description of cones. All fields present must have the same length
as type.
* name: Cone names (list(string)).
% type: Cone types (list(string)).
* par: Additional cone parameters (list(double)).
* members: Members, grouped by cone (list(list(int32))).

e Task/solutions: Solutions. This section can contain up to three subsections called:

— interior

— basic

213

integer

corresponding to the three solution types in MOSEK. Each of these sections has the same structure:

prosta: problem status (string).
solsta: solution status (string).

XX, XC, y, slc, suc, slx, sux, snx: one for each component of the solution of the same name

(list(double)).
skx, skc, skn: status keys (list(string)).
doty: the dual § solution, grouped by ACC (list(list(double))).

barx, bars: the primal/dual semidefinite solution, grouped by matrix variable
(list(list(double))).

e Task/parameters: Parameters.

iparam: Integer parameters (dictionary). A dictionary with entries of the form name:value,
where name is a shortened parameter name (without leading MSK_IPAR_) and value is either
an integer or string if the parameter takes values from an enum.

dparam: Double parameters (dictionary). A dictionary with entries of the form name:value,
where name is a shortened parameter name (without leading MSK_DPAR_) and value is a
double.

sparam: String parameters (dictionary). A dictionary with entries of the form name:value,
where name is a shortened parameter name (without leading MSK_SPAR_) and value is a string.
Note that this section is allowed but MOSEK ignores it both when writing and reading JTASK
files.

11.7.2 JSOL Specification

The JSOL is a dictionary containing the following sections. All sections are optional and can be omitted
if irrelevant for the problem.

e $schema: JSON schema.

e Task/name: The name of the task (string).

e Task/solutions: Solutions. This section can contain up to three subsections called:

interior
basic

integer

corresponding to the three solution types in MOSEK. Each of these section has the same structure:

prosta: problem status (string).
solsta: solution status (string).

XX, XC, y, slc, suc, slx, sux, snx: one for each component of the solution of the same name

(list(double)).
skx, skc, skn: status keys (list(string)).
doty: the dual § solution, grouped by ACC (list(list(double))).

barx, bars: the primal/dual semidefinite solution, grouped by matrix variable
(list(list (double))).

e Task/information: Information items from the optimizer.

int32: int32 information items (dictionary). A dictionary with entries of the form name:
value.

int64: int64 information items (dictionary). A dictionary with entries of the form name:
value.

double: double information items (dictionary). A dictionary with entries of the form name:
value.

214

11.7.3 A jtask example

Listing 11.5: A formatted jtask file for a simple portfolio opti-
mization problem.

"$schema":"http://mosek.com/json/schema#",
"Task/name":"Markowitz portfolio with market impact",
"Task/INFO":{"numvar":7,"numcon":1, "numcone":0, "numbarvar":0, "numanz" :6, "numsymmat
q":O,"numafe":lS,"numfnz":12,"numacc”:4,"numdjc”:O,"numdom":S,"mosekver":[10,0,0,3]},
"Task/data":{
"var":{

"name":["1.0","x[0]","x[1]","x[2]","t[O]","t[1]","t[2]"],

"bk": ["fx","lo","lo","lo","fr","fr","fr"],

"b1":[1,0.0,0.0,0.0,-1e+30,-1e+30,-1e+30],

"bu": [1,1e+30,1e+30,1e+30,1e+30,1e+30,1e+30],

"type" . ["cont" s "cont" s "cont" s "cont" s "cont" s "cont" s "cont n]

1
"con":
"name": ["budget[]1"],
"pk": ["fX"] s
"bl": [1] s
"bu": [1]
s

"objective":{
"sense":"max",
Ilnamell . llobj n ,
"C" :{
"subj":[1,2,3],
"val":[0.1073,0.0737,0.0627]

})
"cfix":0.0
}’
IIAII:{

"subi":[0,0,0,0,0,0],
"subj":[1,2,3,4,5,6],
"val":[1,1,1,0.01,0.01,0.01]
},
"AFE" : {
"numafe":13,
"Fre{
"subi":[1,1,1,2,2,3,4,6,7,9,10,12],
"subj":[1,2,3,2,3,3,4,1,5,2,6,3],
"val": [0.166673333200005,0.0232190712557243,0.0012599496030238,0.
—102863378954911,-0.00222873156550421,0.0338148677744977,1,1,1,1,1,1]
}s
ngu:{
"subi":[0,5,8,11],
"val":[0.035,1,1,1]
}
Ye
"domains":{
"type": [["r",0],
["quad",4],
["ppow",3, [0.6666666666666666,0.33333333333333337]11]
},
"ACC": {

(continues on next page)

215

(continued from previous page)
"name": ["risk[]","tz[0]","t=z[1]1","t=z[2]"],
"domain":[1,2,2,2],
"afeidx":[[0,1,2,3],
[4,5,6],
[7,8,9],
[10,11,12]]
}
},
"Task/solutions":{
"interior":{
"prosta":"unknown",
"solsta":"unknown",
"skx":["fix","supbas","supbas","supbas","supbas","supbas", "supbas"],
"skc": ["fix"],
"xx":[1,0.10331580274282556,0.11673185566457132,0.7724326587076371,0.
—033208600335718846,0.03988270849469869,0.6788769587942524] ,
Tsze g [,

"s1x":[0.0,-5.585840467641202e-10,-8.945844685006369e-10,-7.815248786428623e-
~11,0.0,0.0,0.0],

"sux":[0.0,0.0,0.0,0.0,0.0,0.0,0.0],
"snx":[0.0,0.0,0.0,0.0,0.0,0.0,0.0],
"slc":[0.0],

suc":[-0.046725814048521205] ,

"y":[0.046725814048521205],

"doty": [[-0.6062603164682975,0.3620818321879349,0.17817754087278295,0.
—4524390346223723] ,
[-4.6725842015519993e-4,-7.708781121860897e-6,2.24800624747081e-4] ,
[-4.6725842015519993e-4,-9.268264309496919e-6,2.390390600079771e-4],

[-4.6725842015519993e-4,-1.5854982159992136e-4,6.159249331148646e-4]]
}

I
"Task/parameters":{
"iparam":q{
"LICENSE_DEBUG":"ON",
"MIO_SEED" :422
Irs
"dparam": {
"MIO_MAX_TIME":100
}3
"sparam":{

}

11.8 The Solution File Format

MOSEK can output solutions to a text file:

o basis solution file (extension .bas) if the problem is optimized using the simplex optimizer or basis
identification is performed,

e interior solution file (extension .sol) if a problem is optimized using the interior-point optimizer
and no basis identification is required,

e integer solution file (extension .int) if the problem is solved with the mixed-integer optimizer.

All solution files have the format:

216

NAME : <problem name>

PROBLEM STATUS : <status of the problem>

SOLUTION STATUS : <status of the solution>

OBJECTIVE NAME : <name of the objective function>

PRIMAL OBJECTIVE : <primal objective value corresponding to the solution>

DUAL OBJECTIVE : <dual objective value corresponding to the solution>
CONSTRAINTS

INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER
? <name> ?? <a value> <a value> <a value> <a value> <a value>

AFFINE CONIC CONSTRAINTS

INDEX NAME I ACTIVITY DUAL

? <name> <a value> <a value> <a value>

VARIABLES

INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER
— [CONIC DUAL]

7 <name> 7?7 <a value> <a value> <a value> <a value>

< [<a value>]

SYMMETRIC MATRIX VARIABLES
INDEX NAME I J PRIMAL DUAL
7 <name> <a value> <a value> <a value> <a value>

The fields ?, 77 and <> will be filled with problem and solution specific information as described
below. The solution contains sections corresponding to parts of the input. Empty sections may be

omitted and fields in [] are optional, depending on what type of problem is solved.

e HEADER

In this section, first the name of the problem is listed and afterwards the problem and solution
status are shown. Next the primal and dual objective values are displayed.

e CONSTRAINTS

INDEX: A sequential index assigned to the constraint by MOSEK

— NAME: The name of the constraint assigned by the user or autogenerated.
— AT: The status key bkc of the constraint as in Table 11.4.

— ACTIVITY: the activity xc of the constraint expression.

— LOWER LIMIT: the lower bound blc of the constraint.

— UPPER LIMIT: the upper bound buc of the constraint.

DUAL UPPER

<a value>

— DUAL LOWER: the dual multiplier slc corresponding to the lower limit on the constraint.

— DUAL UPPER: the dual multiplier suc corresponding to the upper limit on the constraint.

e AFFINE CONIC CONSTRAINTS

INDEX: A sequential index assigned to the affine expressions by MOSEK

— NAME: The name of the affine conic constraint assigned by the user or autogenerated.

I: The sequential index of the affine expression in the affine conic constraint.

ACTIVITY: the activity of the I-th affine expression in the affine conic constraint.

— DUAL: the dual multiplier doty for the I-th entry in the affine conic constraint.

e VARIABLES

— INDEX: A sequential index assigned to the variable by MOSEK
— NAME: The name of the variable assigned by the user or autogenerated.
— AT: The status key bkx of the variable as in Table 11.4.

217

ACTIVITY: the value xx of the variable.
LOWER LIMIT: the lower bound blx of the variable.

— UPPER LIMIT: the upper bound bux of the variable.

DUAL LOWER: the dual multiplier s1x corresponding to the lower limit on the variable.
DUAL UPPER: the dual multiplier sux corresponding to the upper limit on the variable.

— CONIC DUAL: the dual multiplier skx corresponding to a conic variable (deprecated).

e SYMMETRIC MATRIX VARIABLES

INDEX: A sequential index assigned to each symmetric matrix entry by MOSEK

— NAME: The name of the symmetric matrix variable assigned by the user or autogenerated.

I: The row index in the symmetric matrix variable.

J: The column index in the symmetric matrix variable.

— PRIMAL: the value of barx for the (I, J)-th entry in the symmetric matrix variable.

DUAL: the dual multiplier bars for the (I, J)-th entry in the symmetric matrix variable.

Table 11.4: Status keys.

Status key

Interpretation

UN
BS
SB
LL
UL
EQ

* X%

Unknown status

Is basic

Is superbasic

Is at the lower limit (bound)

Is at the upper limit (bound)

Lower limit is identical to upper limit

Is infeasible i.e. the lower limit is greater than the upper limit.

Example.

Below is an example of a solution file.

NAME

PROBLEM STATUS
SOLUTION STATUS
OBJECTIVE NAME
PRIMAL OBJECTIVE
DUAL OBJECTIVE

CONSTRAINTS
INDEX NAME
s DUAL LOWER

Listing 11.6: An example of .sol file.

: PRIMAL_AND_DUAL_FEASIBLE
: OPTIMAL

: 0BJ

: 0.70571049347734

: 0.70571048919757

AFFINE CONIC CONSTRAINTS

INDEX NAME

0 Al

1 Al

2 A2

3 A2

4 A2
VARIABLES

INDEX NAME

. DUAL LOWER

AT ACTIVITY LOWER LIMIT UPPER LIMIT
DUAL UPPER

I ACTIVITY DUAL

0 1.0000000009656 0.54475821296644

1 0.50000000152223 0.32190455246225

0 0.25439922724695 0.4552417870329

1 0.17988741850378 -0.32190455246178

2 0.17988741850378 -0.32190455246178

AT ACTIVITY LOWER LIMIT UPPER LIMIT
DUAL UPPER

(continues on next page)

218

0 X1
- 0
1 X2
- 0
2 X3
- 0

SYMMETRIC MATRIX VARIABLES

INDEX NAME
0 BARX1
1 BARX1
—67809544651396
2 BARX1
3219045527104
3 BARX1
4 BARX1
—67809544651435
5 BARX1
6 BARX2
—54475821339698
7 BARX2
8 BARX2
—54475821339698

SB 0.25439922724695

0

SB 0.17988741850378

0

SB 0.17988741850378

0

o

219

(continued from previous page)

NONE

NONE

NONE

PRIMAL
0.21725733689874
-0.25997257078534

0.21725733648507

0.31108610088839
-0.25997257078534

0.21725733689874
4.8362272828127e-10

0
4.8362272828127e-10

NONE .

NONE L

NONE .
DUAL

1.1333372337141
0.

-0.

1.1333372332693
0.

1.1333372337145
0.

Bibliography

[Naz87] J. L. Nazareth. Computer Solution of Linear Programs. Oxford University Press, New York,
1987.

220

Symbol Index

Functions

Parameters

Double parameters, 44
MSK_DPAR_ANA_SOL_INFEAS_TOL, 44
MSK_DPAR_BASIS_REL_TOL_S, 44
MSK_DPAR_BASIS_TOL_S, 44
MSK_DPAR_BASIS_TOL_X, 44
MSK_DPAR_DATA_SYM_MAT_TOL, 44
MSK_DPAR_DATA_SYM_MAT_TOL_HUGE, 45
MSK_DPAR_DATA_SYM_MAT_TOL_LARGE, 45
MSK_DPAR_DATA_TOL_AIJ_HUGE, 45
MSK_DPAR_DATA_TOL_AIJ_LARGE, 45
MSK_DPAR_DATA_TOL_BOUND_INF, 46
MSK_DPAR_DATA_TOL_BOUND_WRN, 46
MSK_DPAR_DATA_TOL_C_HUGE, 46
MSK_DPAR_DATA_TOL_CJ_LARGE, 46
MSK_DPAR_DATA_TOL_QIJ, 46
MSK_DPAR_DATA_TOL_X, 47
MSK_DPAR_FOLDING_TOL_EQ, 47
MSK_DPAR_INTPNT_CO_TOL_DFEAS, 47
MSK_DPAR_INTPNT_CO_TOL_INFEAS, 47
MSK_DPAR_INTPNT_CO_TOL_MU_RED, 48
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL, 48
MSK_DPAR_INTPNT_CO_TOL_PFEAS, 48
MSK_DPAR_INTPNT_CO_TOL_REL_GAP, 48
MSK_DPAR_INTPNT_QO_TOL_DFEAS, 49
MSK_DPAR_INTPNT_QO_TOL_INFEAS, 49
MSK_DPAR_INTPNT_QO_TOL_MU_RED, 49
MSK_DPAR_INTPNT_QO_TOL_NEAR_REL, 49
MSK_DPAR_INTPNT_QO_TOL_PFEAS, 49
MSK_DPAR_INTPNT_QO_TOL_REL_GAP, 50
MSK_DPAR_INTPNT_TOL_DFEAS, 50
MSK_DPAR_INTPNT_TOL_DSAFE, 50
MSK_DPAR_INTPNT_TOL_INFEAS, 50
MSK_DPAR_INTPNT_TOL_MU_RED, 51
MSK_DPAR_INTPNT_TOL_PATH, 51
MSK_DPAR_INTPNT_TOL_PFEAS, 51
MSK_DPAR_INTPNT_TOL_PSAFE, 51
MSK_DPAR_INTPNT_TOL_REL_GAP, 52
MSK_DPAR_INTPNT_TOL_REL_STEP, 52
MSK_DPAR_INTPNT_TOL_STEP_SIZE, 52
MSK_DPAR_LOWER_OBJ_CUT, 52
MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 52
MSK_DPAR_MIO_CLIQUE_TABLE_SIZE_FACTOR, 53
MSK_DPAR_MIO_DJC_MAX_BIGM, 53
MSK_DPAR_MIO_MAX_TIME, 53
MSK_DPAR_MIO_REL_GAP_CONST, 53
MSK_DPAR_MIO_TOL_ABS_GAP, 54

MSK_DPAR_MIO_TOL_ABS_RELAX_INT, 54
MSK_DPAR_MIO_TOL_FEAS, 54
MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT,
54
MSK_DPAR_MIO_TOL_REL_GAP, 54
MSK_DPAR_OPTIMIZER_MAX_TICKS, 55
MSK_DPAR_OPTIMIZER_MAX_TIME, 55
MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP, 55
MSK_DPAR_PRESOLVE_TOL_PRIMAL_INFEAS_PERTURBATION,
55
MSK_DPAR_PRESOLVE_TOL_REL_LINDEP, 56
MSK_DPAR_PRESOLVE_TOL_S, 56
MSK_DPAR_PRESOLVE_TOL_X, 56
MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL, 56
MSK_DPAR_SEMIDEFINITE_TOL_APPROX, 56
MSK_DPAR_SIM_LU_TOL_REL_PIV, 57
MSK_DPAR_SIM_PRECISION_SCALING_EXTENDED, 57
MSK_DPAR_SIM_PRECISION_SCALING_NORMAL, 57
MSK_DPAR_SIMPLEX_ABS_TOL_PIV, 57
MSK_DPAR_UPPER_0OBJ_CUT, 58
MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH, 58
Integer parameters, 58
MSK_IPAR_ANA_SOL_BASIS, 58
MSK_IPAR_ANA_SOL_PRINT_VIOLATED, 58
MSK_IPAR_AUTO_SORT_A_BEFORE_OPT, 59
MSK_IPAR_AUTO_UPDATE_SOL_INFQO, 59
MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE, 59
MSK_IPAR_BI_CLEAN_OPTIMIZER, 59
MSK_IPAR_BI_IGNORE_MAX_ITER, 59
MSK_IPAR_BI_IGNORE_NUM_ERROR, GO
MSK_IPAR_BI_MAX_ITERATIONS, 60
MSK_IPAR_CACHE_LICENSE, 60
MSK_IPAR_COMPRESS_STATFILE, 60
MSK_IPAR_FOLDING_USE, 61
MSK_IPAR_GETDUAL_CONVERT_LMIS, 61
MSK_IPAR_HEARTBEAT_SIM_FREQ_TICKS, 61
MSK_IPAR_INFEAS_GENERIC_NAMES, 61
MSK_IPAR_INFEAS_REPORT_AUTO, 62
MSK_IPAR_INFEAS_REPORT_LEVEL, (62
MSK_IPAR_INTPNT_BASIS, 62
MSK_IPAR_INTPNT_DIFF_STEP, 62
MSK_IPAR_INTPNT_HOTSTART, 62
MSK_IPAR_INTPNT_MAX_ITERATIONS, 63
MSK_IPAR_INTPNT_MAX_NUM_COR, 63
MSK_IPAR_INTPNT_OFF_COL_TRH, 63
MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS, 63
MSK_IPAR_INTPNT_ORDER_METHOD, 64
MSK_IPAR_INTPNT_REGULARIZATION_USE, 64
MSK_IPAR_INTPNT_SCALING, 64

221

MSK_IPAR_INTPNT_SOLVE_FORM, 64
MSK_IPAR_INTPNT_STARTING_POINT, 64
MSK_IPAR_LICENSE_DEBUG, 65
MSK_IPAR_LICENSE_PAUSE_TIME, 65
MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS, 65
MSK_IPAR_LICENSE_TRH_EXPIRY_WRN, 65
MSK_IPAR_LICENSE_WAIT, 66
MSK_IPAR_LOG, 66

MSK_IPAR_LOG_ANA_PRO, 66
MSK_IPAR_LOG_BI, 66
MSK_IPAR_LOG_BI_FREQ, 67
MSK_IPAR_LOG_CUT_SECOND_OPT, 67
MSK_IPAR_LOG_EXPAND, 67
MSK_IPAR_LOG_FEAS_REPAIR, 67
MSK_IPAR_LOG_FILE, 67
MSK_IPAR_LOG_INCLUDE_SUMMARY, 683
MSK_IPAR_LOG_INFEAS_ANA, 68
MSK_IPAR_LOG_INTPNT, 68
MSK_IPAR_LOG_LOCAL_INFO, 68
MSK_IPAR_LOG_MIO, 69
MSK_IPAR_LOG_MIO_FREQ, 69
MSK_IPAR_LOG_ORDER, 69
MSK_IPAR_LOG_PRESOLVE, 69
MSK_IPAR_LOG_SENSITIVITY, 69
MSK_IPAR_LOG_SENSITIVITY_OPT, 70
MSK_IPAR_LOG_SIM, 70
MSK_IPAR_LOG_SIM_FREQ, 70
MSK_IPAR_LOG_SIM_FREQ_GIGA_TICKS, 70
MSK_IPAR_LOG_STORAGE, 71
MSK_IPAR_MAX_NUM_WARNINGS, 71
MSK_IPAR_MIO_BRANCH_DIR, 71
MSK_IPAR_MIO_CONFLICT_ANALYSIS_LEVEL, 71
MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION, 72
MSK_IPAR_MIO_CONSTRUCT_SOL, 72
MSK_IPAR_MIO_CROSSOVER_MAX_NODES, 72
MSK_IPAR_MIQ_CUT_CLIQUE, 72
MSK_IPAR_MIO_CUT_CMIR, 73
MSK_IPAR_MIO_CUT_GMI, 73
MSK_IPAR_MIQ_CUT_IMPLIED_BOUND, 73
MSK_IPAR_MIO_CUT_KNAPSACK_COVER, 73
MSK_IPAR_MIO_CUT_LIPRO, 73
MSK_IPAR_MIO_CUT_SELECTION_LEVEL, 74
MSK_IPAR_MIO_DATA_PERMUTATION_METHOD, 74
MSK_IPAR_MIO_DUAL_RAY_ANALYSIS_LEVEL, 74
MSK_IPAR_MIO_FEASPUMP_LEVEL, 74
MSK_IPAR_MIO_HEURISTIC_LEVEL, 75
MSK_IPAR_MIOQ_INDEPENDENT_BLOCK_LEVEL, 75
MSK_IPAR_MIO_MAX_NUM_BRANCHES, 75
MSK_IPAR_MIO_MAX_NUM_RELAXS, 76
MSK_IPAR_MIO_MAX_NUM_RESTARTS, 76
MSK_IPAR_MIO_MAX_NUM_ROQT_CUT_ROUNDS, 76
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS, 76
MSK_IPAR_MIO_MEMORY_EMPHASIS_LEVEL, 77
MSK_IPAR_MIO_MIN_REL, 77
MSK_IPAR_MIO_MODE, 77
MSK_IPAR_MIO_NODE_OPTIMIZER, 77
MSK_IPAR_MIO_NODE_SELECTION, 77
MSK_IPAR_MIO_NUMERICAL_EMPHASIS_LEVEL, 78

MSK_IPAR_MIO_OPT_FACE_MAX_NODES, 78
MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE, 78
MSK_IPAR_MIO_PRESOLVE_AGGREGATOR_USE, 78
MSK_IPAR_MIO_PROBING_LEVEL, 79
MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT,
79
MSK_IPAR_MIO_QCQO_REFORMULATION_METHOD, 79
MSK_IPAR_MIO_RENS_MAX_NODES, 79
MSK_IPAR_MIO_RINS_MAX_NODES, 80
MSK_IPAR_MIO_ROOT_OPTIMIZER, 80
MSK_IPAR_MIO_SEED, 80
MSK_IPAR_MIO_SYMMETRY_LEVEL, 80
MSK_IPAR_MIO_VAR_SELECTION, &1
MSK_IPAR_MIO_VB_DETECTION_LEVEL, 81
MSK_IPAR_MT_SPINCOUNT, 81
MSK_IPAR_NG, 81
MSK_IPAR_NUM_THREADS, 82
MSK_IPAR_OPF_WRITE_HEADER, 82
MSK_IPAR_OPF_WRITE_HINTS, 82
MSK_IPAR_OPF_WRITE_LINE_LENGTH, 82
MSK_IPAR_OPF_WRITE_PARAMETERS, 82
MSK_IPAR_OPF_WRITE_PROBLEM, 83
MSK_IPAR_OPF_WRITE_SOL_BAS, 83
MSK_IPAR_OPF_WRITE_SOL_ITG, 83
MSK_IPAR_OPF_WRITE_SOL_ITR, 83
MSK_IPAR_OPF_WRITE_SOLUTIONS, 84
MSK_IPAR_OPTIMIZER, 84
MSK_IPAR_PARAM_READ_CASE_NAME, 84
MSK_IPAR_PARAM_READ_IGN_ERROR, 84
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL, 84
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES,
85
MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH, 85
MSK_IPAR_PRESOLVE_LINDEP_NEW, 85
MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH, 85
MSK_IPAR_PRESOLVE_LINDEP_USE, 85
MSK_IPAR_PRESOLVE_MAX_NUM_PASS, 86
MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS, 86
MSK_IPAR_PRESOLVE_USE, 86
MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER, 86
MSK_IPAR_PTF_WRITE_PARAMETERS, 87
MSK_IPAR_PTF_WRITE_SINGLE_PSD_TERMS, 87
MSK_IPAR_PTF_WRITE_SOLUTIONS, 87
MSK_IPAR_PTF_WRITE_TRANSFORM, 87
MSK_IPAR_READ_ASYNC, 87
MSK_IPAR_READ_DEBUG, 88
MSK_IPAR_READ_KEEP_FREE_CON, 88
MSK_IPAR_READ_MPS_FORMAT, 88
MSK_IPAR_READ_MPS_WIDTH, 88
MSK_IPAR_READ_TASK_IGNORE_PARANM, 89
MSK_IPAR_REMOTE_USE_COMPRESSION, 89
MSK_IPAR_REMOVE_UNUSED_SOLUTIONS, 89
MSK_IPAR_SENSITIVITY_ALL, 89
MSK_IPAR_SENSITIVITY_TYPE, 89
MSK_IPAR_SIM_BASIS_FACTOR_USE, 90
MSK_IPAR_SIM_DEGEN, 90
MSK_IPAR_SIM_DETECT_PWL, 90
MSK_IPAR_SIM_DUAL_CRASH, 90

222

MSK_IPAR_SIM_DUAL_PHASEONE_METHOD, 90 MSK_SPAR_PARAM_READ_FILE_NAME, 102

MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION, 91 MSK_SPAR_PARAM_WRITE_FILE_NAME, 102
MSK_IPAR_SIM_DUAL_SELECTION, 91 MSK_SPAR_READ_MPS_BOU_NAME, 103
MSK_IPAR_SIM_EXPLOIT_DUPVEC, 91 MSK_SPAR_READ_MPS_OBJ_NAME, 103
MSK_IPAR_SIM_HOTSTART, 91 MSK_SPAR_READ_MPS_RAN_NAME, 103
MSK_IPAR_SIM_HOTSTART_LU, 92 MSK_SPAR_READ_MPS_RHS_NAME, 103
MSK_IPAR_SIM_MAX_ITERATIONS, 92 MSK_SPAR_REMOTE_OPTSERVER_HOST, 103
MSK_IPAR_SIM_MAX_NUM_SETBACKS, 92 MSK_SPAR_REMOTE_TLS_CERT, 103
MSK_IPAR_SIM_NON_SINGULAR, 92 MSK_SPAR_REMOTE_TLS_CERT_PATH, 104
MSK_IPAR_SIM_PRECISION, 92 MSK_SPAR_SENSITIVITY_FILE_NAME, 104
MSK_IPAR_SIM_PRECISION_BOOST, 93 MSK_SPAR_SENSITIVITY_RES_FILE_NAME, 104
MSK_IPAR_SIM_PRIMAL_CRASH, 93 MSK_SPAR_SOL_FILTER_XC_LOW, 104
MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD, 93 MSK_SPAR_SOL_FILTER_XC_UPR, 104
MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION, 93 MSK_SPAR_SOL_FILTER_XX_LOW, 105
MSK_IPAR_SIM_PRIMAL_SELECTION, 94 MSK_SPAR_SOL_FILTER_XX_UPR, 105
MSK_IPAR_SIM_REFACTOR_FREQ, 94 MSK_SPAR_STAT_KEY, 105
MSK_IPAR_SIM_REFORMULATION, 94 MSK_SPAR_STAT_NAME, 105
MSK_IPAR_SIM_SAVE_LU, 94
MSK_IPAR_SIM_SCALING, 94 Response codes
MSK_IPAR_SIM_SCALING_METHOD, 95 Termination, 106
MSK_IPAR_SIM_SEED, 95 MSK_RES_OK, 106
MSK_IPAR_SIM_SOLVE_FORM, 95 MSK_RES_TRM_INTERNAL, 106
MSK_IPAR_SIM_SWITCH_OPTIMIZER, 95 MSK_RES_TRM_INTERNAL_STOP, 106
MSK_IPAR_SOL_FILTER_KEEP_BASIC, 96 MSK_RES_TRM_LOST_RACE, 106
MSK_IPAR_SOL_READ_NAME_WIDTH, 96 MSK_RES_TRM_MAX_ITERATIONS, 106
MSK_IPAR_SOL_READ_WIDTH, 96 MSK_RES_TRM_MAX_NUM_SETBACKS, 106
MSK_IPAR_TIMING_LEVEL, 96 MSK_RES_TRM_MAX_TIME, 106
MSK_IPAR_WRITE_ASYNC, 96 MSK_RES_TRM_MIO_NUM_BRANCHES, 106
MSK_IPAR_WRITE_BAS_CONSTRAINTS, 97 MSK_RES_TRM_MIO_NUM_RELAXS, 106
MSK_IPAR_WRITE_BAS_HEAD, 97 MSK_RES_TRM_NUM_MAX_NUM_INT_SOLUTIONS, 106
MSK_IPAR_WRITE_BAS_VARIABLES, 97 MSK_RES_TRM_NUMERICAL_PROBLEM, 106
MSK_IPAR_WRITE_COMPRESSION, 97 MSK_RES_TRM_OBJECTIVE_RANGE, 106
MSK_IPAR_WRITE_FREE_CON, 98 MSK_RES_TRM_SERVER_MAX_MEMORY, 106
MSK_IPAR_WRITE_GENERIC_NAMES, 98 MSK_RES_TRM_SERVER_MAX_TIME, 106
MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS, MSK_RES_TRM_STALL, 106

98 MSK_RES_TRM_USER_CALLBACK, 106
MSK_IPAR_WRITE_INT_CONSTRAINTS, 98 Warnings, 107
MSK_IPAR_WRITE_INT_HEAD, 98 MSK_RES_WRN_ANA_ALMOST_INT_BOUNDS, 109
MSK_IPAR_WRITE_INT_VARIABLES, 99 MSK_RES_WRN_ANA_C_ZERO, 109
MSK_IPAR_WRITE_JSON_INDENTATION, 99 MSK_RES_WRN_ANA_CLOSE_BOUNDS, 109
MSK_IPAR_WRITE_LP_FULL_QOBJ, 99 MSK_RES_WRN_ANA_EMPTY_COLS, 109
MSK_IPAR_WRITE_LP_LINE_WIDTH, 99 MSK_RES_WRN_ANA_LARGE_BOUNDS, 109
MSK_IPAR_WRITE_MPS_FORMAT, 99 MSK_RES_WRN_DROPPED_NZ_QOBJ, 107
MSK_IPAR_WRITE_MPS_INT, 100 MSK_RES_WRN_DUPLICATE_BARVARIABLE_NAMES,
MSK_IPAR_WRITE_SOL_BARVARIABLES, 100 109
MSK_IPAR_WRITE_SOL_CONSTRAINTS, 100 MSK_RES_WRN_DUPLICATE_CONE_NAMES, 109
MSK_IPAR_WRITE_SOL_HEAD, 100 MSK_RES_WRN_DUPLICATE_CONSTRAINT_NAMES, 108
MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES, MSK_RES_WRN_DUPLICATE_VARIABLE_NAMES, 108

101 MSK_RES_WRN_ELIMINATOR_SPACE, 108
MSK_IPAR_WRITE_SOL_VARIABLES, 101 MSK_RES_WRN_EMPTY_NAME, 108
String parameters, 101 MSK_RES_WRN_GETDUAL_IGNORES_INTEGRALITY,
MSK_SPAR_BAS_SOL_FILE_NAME, 101 109
MSK_SPAR_DATA_FILE_NAME, 101 MSK_RES_WRN_IGNORE_INTEGER, 107
MSK_SPAR_DEBUG_FILE_NAME, 101 MSK_RES_WRN_INCOMPLETE_LINEAR_DEPENDENCY_CHECK,
MSK_SPAR_INT_SOL_FILE_NAME, 101 108
MSK_SPAR_ITR_SOL_FILE_NAME, 102 MSK_RES_WRN_INVALID_MPS_NAME, 108
MSK_SPAR_MIO_DEBUG_STRING, 102 MSK_RES_WRN_INVALID_MPS_Q0BJ_NAME, 108
MSK_SPAR_PARAM_COMMENT_SIGN, 102 MSK_RES_WRN_LARGE_AIJ, 107

223

MSK_RES_WRN_LARGE_BOUND, 107
MSK_RES_WRN_LARGE_CJ, 107
MSK_RES_WRN_LARGE_CON_FX, 107
MSK_RES_WRN_LARGE_FIJ, 109
MSK_RES_WRN_LARGE_LO_BOUND, 107
MSK_RES_WRN_LARGE_UP_BOUND, 107
MSK_RES_WRN_LICENSE_EXPIRE, 108
MSK_RES_WRN_LICENSE_FEATURE_EXPIRE, 108
MSK_RES_WRN_LICENSE_SERVER, 108
MSK_RES_WRN_LP_DROP_VARIABLE, 107
MSK_RES_WRN_LP_OLD_QUAD_FORMAT, 107
MSK_RES_WRN_MIO_INFEASIBLE_FINAL, 107

MSK_RES_WRN_MODIFIED_DOUBLE_PARAMETER, 109

MSK_RES_WRN_MPS_SPLIT_BOU_VECTOR, 107
MSK_RES_WRN_MPS_SPLIT_RAN_VECTOR, 107
MSK_RES_WRN_MPS_SPLIT_RHS_VECTOR, 107
MSK_RES_WRN_NAME_MAX_LEN, 107
MSK_RES_WRN_NO_DUALIZER, 109
MSK_RES_WRN_NO_GLOBAL_OPTIMIZER, 107

MSK_RES_ERR_ARG_IS_TOO_SMALL, 116
MSK_RES_ERR_ARGUMENT_DIMENSION, 115
MSK_RES_ERR_ARGUMENT_IS_TOO_LARGE, 124
MSK_RES_ERR_ARGUMENT_IS_TOO_SMALL, 124
MSK_RES_ERR_ARGUMENT_LENNEQ, 115
MSK_RES_ERR_ARGUMENT_PERM_ARRAY, 118
MSK_RES_ERR_ARGUMENT_TYPE, 115
MSK_RES_ERR_AXIS_NAME_SPECIFICATION, 112
MSK_RES_ERR_BAR_VAR_DIM, 123
MSK_RES_ERR_BASIS, 117
MSK_RES_ERR_BASIS_FACTOR, 121
MSK_RES_ERR_BASIS_SINGULAR, 121
MSK_RES_ERR_BLANK_NAME, 112
MSK_RES_ERR_CBF_DUPLICATE_ACOORD, 125
MSK_RES_ERR_CBF_DUPLICATE_BCOORD, 125
MSK_RES_ERR_CBF_DUPLICATE_CON, 125
MSK_RES_ERR_CBF_DUPLICATE_INT, 125
MSK_RES_ERR_CBF_DUPLICATE_O0BJ, 125
MSK_RES_ERR_CBF_DUPLICATE_OBJACOORD, 125

MSK_RES_WRN_NO_INFEASIBILITY_REPORT_WHEN_MATREK_RERIERRESBF_DUPLICATE_POW_CONES, 126

109
MSK_RES_WRN_NZ_IN_UPR_TRI, 107
MSK_RES_WRN_OPEN_PARAM_FILE, 107
MSK_RES_WRN_PARAM_IGNORED_CMIO, 108
MSK_RES_WRN_PARAM_NAME_DQU, 108
MSK_RES_WRN_PARAM_NAME_INT, 108
MSK_RES_WRN_PARAM_NAME_STR, 108
MSK_RES_WRN_PARAM_STR_VALUE, 108
MSK_RES_WRN_PRESOLVE_QUTOFSPACE, 108

MSK_RES_WRN_PRESOLVE_PRIMAL_PERTURBATIONS,

108
MSK_RES_WRN_PTF_UNKNOWN_SECTION, 109
MSK_RES_WRN_SOL_FILE_IGNORED_CON, 107
MSK_RES_WRN_SOL_FILE_IGNORED_VAR, 107
MSK_RES_WRN_SOL_FILTER, 107
MSK_RES_WRN_SPAR_MAX_LEN, 107
MSK_RES_WRN_SYM_MAT_LARGE, 109
MSK_RES_WRN_TOO_FEW_BASIS_VARS, 107
MSK_RES_WRN_TOO_MANY_BASIS_VARS, 108
MSK_RES_WRN_UNDEF_SOL_FILE_NAME, 107
MSK_RES_WRN_USING_GENERIC_NAMES, 108
MSK_RES_WRN_WRITE_CHANGED_NAMES, 108
MSK_RES_WRN_WRITE_DISCARDED_CFIX, 108
MSK_RES_WRN_ZERO_AIJ, 107
MSK_RES_WRN_ZEROS_IN_SPARSE_COL, 108
MSK_RES_WRN_ZEROS_IN_SPARSE_ROW, 108
Errors, 109
MSK_RES_ERR_ACC_AFE_DOMAIN_MISMATCH, 128
MSK_RES_ERR_ACC_INVALID_ENTRY_INDEX, 128
MSK_RES_ERR_ACC_INVALID_INDEX, 128
MSK_RES_ERR_AD_INVALID_CODELIST, 123
MSK_RES_ERR_AFE_INVALID_INDEX, 128
MSK_RES_ERR_API_ARRAY_TOO_SMALL, 122
MSK_RES_ERR_API_CB_CONNECT, 122
MSK_RES_ERR_API_FATAL_ERROR, 122
MSK_RES_ERR_API_INTERNAL, 122
MSK_RES_ERR_APPENDING_TOO_BIG_CONE, 119
MSK_RES_ERR_ARG_IS_TOO_LARGE, 116

MSK_RES_ERR_CBF_DUPLICATE_POW_STAR_CONES,
126
MSK_RES_ERR_CBF_DUPLICATE_PSDCON, 126
MSK_RES_ERR_CBF_DUPLICATE_PSDVAR, 125
MSK_RES_ERR_CBF_DUPLICATE_VAR, 125
MSK_RES_ERR_CBF_EXPECTED_A_KEYWORD, 126
MSK_RES_ERR_CBF_INVALID_CON_TYPE, 125
MSK_RES_ERR_CBF_INVALID_DIMENSION_QOF_CONES,
126
MSK_RES_ERR_CBF_INVALID_DIMENSION_OF_PSDCON,
126
MSK_RES_ERR_CBF_INVALID_DOMAIN_DIMENSION,
125
MSK_RES_ERR_CBF_INVALID_EXP_DIMENSION, 126
MSK_RES_ERR_CBF_INVALID_INT_INDEX, 125
MSK_RES_ERR_CBF_INVALID_NUM_ACOORD, 126
MSK_RES_ERR_CBF_INVALID_NUM_BCOORD, 126
MSK_RES_ERR_CBF_INVALID_NUM_DCOORD, 126
MSK_RES_ERR_CBF_INVALID_NUM_FCOORD, 126
MSK_RES_ERR_CBF_INVALID_NUM_HCOORD, 126
MSK_RES_ERR_CBF_INVALID_NUM_OBJACOORD, 126
MSK_RES_ERR_CBF_INVALID_NUM_0BJFCOORD, 126
MSK_RES_ERR_CBF_INVALID_NUM_PSDCON, 126
MSK_RES_ERR_CBF_INVALID_NUMBER_OF_CONES,
126
MSK_RES_ERR_CBF_INVALID_POWER, 126
MSK_RES_ERR_CBF_INVALID_POWER_CONE_INDEX,
126
MSK_RES_ERR_CBF_INVALID_POWER_STAR_CONE_INDEX,
126
MSK_RES_ERR_CBF_INVALID_PSDCON_BLOCK_INDEX,
127
MSK_RES_ERR_CBF_INVALID_PSDCON_INDEX, 127
MSK_RES_ERR_CBF_INVALID_PSDCON_VARIABLE_INDEX,
127
MSK_RES_ERR_CBF_INVALID_PSDVAR_DIMENSION,
126
MSK_RES_ERR_CBF_INVALID_VAR_TYPE, 125

224

MSK_RES_ERR_CBF_NO_VARIABLES, 125
MSK_RES_ERR_CBF_NO_VERSION_SPECIFIED, 125
MSK_RES_ERR_CBF_0OBJ_SENSE, 125
MSK_RES_ERR_CBF_PARSE, 125
MSK_RES_ERR_CBF_POWER_CONE_IS_TOO_LONG, 126
MSK_RES_ERR_CBF_POWER_CONE_MISMATCH, 126
MSK_RES_ERR_CBF_POWER_STAR_CONE_MISMATCH,
126
MSK_RES_ERR_CBF_SYNTAX, 125
MSK_RES_ERR_CBF_TO0_FEW_CONSTRAINTS, 125
MSK_RES_ERR_CBF_TOO_FEW_INTS, 125
MSK_RES_ERR_CBF_TOO_FEW_PSDVAR, 126
MSK_RES_ERR_CBF_TOO_FEW_VARIABLES, 125
MSK_RES_ERR_CBF_TOO_MANY_CONSTRAINTS, 125
MSK_RES_ERR_CBF_TO0_MANY_INTS, 125
MSK_RES_ERR_CBF_TO0_MANY_VARIABLES, 125
MSK_RES_ERR_CBF_UNHANDLED_POWER_CONE_TYPE,
126

MSK_RES_ERR_DUPLICATE_FIJ, 128

MSK_RES_ERR_DUPLICATE_INDEX_IN_A_SPARSE_MATRIX,

127
MSK_RES_ERR_DUPLICATE_INDEX_IN_AFEIDX_LIST,

127
MSK_RES_ERR_DUPLICATE_VARIABLE_NAMES, 124
MSK_RES_ERR_END_OF_FILE, 111
MSK_RES_ERR_FACTOR, 121
MSK_RES_ERR_FEASREPAIR_CANNOT_RELAX, 121
MSK_RES_ERR_FEASREPAIR_INCONSISTENT_BOUND,

121
MSK_RES_ERR_FEASREPAIR_SOLVING_RELAXED, 121
MSK_RES_ERR_FILE_LICENSE, 110
MSK_RES_ERR_FILE_OPEN, 111
MSK_RES_ERR_FILE_READ, 111
MSK_RES_ERR_FILE_WRITE, 111
MSK_RES_ERR_FINAL_SOLUTION, 120
MSK_RES_ERR_FIRST, 121

MSK_RES_ERR_CBF_UNHANDLED_POWER_STAR_CONE_TYMEK_RES_ERR_FIRSTI, 118

126
MSK_RES_ERR_CBF_UNSUPPORTED, 125
MSK_RES_ERR_CBF_UNSUPPORTED_CHANGE, 127
MSK_RES_ERR_CON_Q_NOT_NSD, 118
MSK_RES_ERR_CON_Q_NOT_PSD, 118
MSK_RES_ERR_CONE_INDEX, 118
MSK_RES_ERR_CONE_OVERLAP, 118
MSK_RES_ERR_CONE_OVERLAP_APPEND, 119
MSK_RES_ERR_CONE_PARAMETER, 119
MSK_RES_ERR_CONE_REP_VAR, 118
MSK_RES_ERR_CONE_SIZE, 118
MSK_RES_ERR_CONE_TYPE, 119
MSK_RES_ERR_CONE_TYPE_STR, 119
MSK_RES_ERR_DATA_FILE_EXT, 111
MSK_RES_ERR_DIMENSION_SPECIFICATION, 112
MSK_RES_ERR_DJC_AFE_DOMAIN_MISMATCH, 128
MSK_RES_ERR_DJC_DOMAIN_TERMSIZE_MISMATCH,

128
MSK_RES_ERR_DJC_INVALID_INDEX, 128
MSK_RES_ERR_DJC_INVALID_TERM_SIZE, 128
MSK_RES_ERR_DJC_TOTAL_NUM_TERMS_MISMATCH,

128
MSK_RES_ERR_DJC_UNSUPPORTED_DOMAIN_TYPE,

128
MSK_RES_ERR_DOMAIN_DIMENSION, 128
MSK_RES_ERR_DOMAIN_DIMENSION_PSD, 128
MSK_RES_ERR_DOMAIN_INVALID_INDEX, 128
MSK_RES_ERR_DOMAIN_POWER_INVALID_ALPHA, 128
MSK_RES_ERR_DOMAIN_POWER_NEGATIVE_ALPHA,

128
MSK_RES_ERR_DOMAIN_POWER_NLEFT, 128
MSK_RES_ERR_DUP_NAME, 112
MSK_RES_ERR_DUPLICATE_AIJ, 119
MSK_RES_ERR_DUPLICATE_BARVARIABLE_NAMES,

124
MSK_RES_ERR_DUPLICATE_CONE_NAMES, 124
MSK_RES_ERR_DUPLICATE_CONSTRAINT_NAMES, 124
MSK_RES_ERR_DUPLICATE_DJC_NAMES, 124
MSK_RES_ERR_DUPLICATE_DOMAIN_NAMES, 124

MSK_RES_ERR_FIRSTJ, 118
MSK_RES_ERR_FIXED_BOUND_VALUES, 120
MSK_RES_ERR_FLEXLM, 110
MSK_RES_ERR_FORMAT_STRING, 112
MSK_RES_ERR_GETDUAL_NOT_AVAILABLE, 127
MSK_RES_ERR_GLOBAL_INV_CONIC_PROBLEM, 120
MSK_RES_ERR_HUGE_AIJ, 119
MSK_RES_ERR_HUGE_C, 119
MSK_RES_ERR_HUGE_FIJ, 128
MSK_RES_ERR_IDENTICAL_TASKS, 123
MSK_RES_ERR_IN_ARGUMENT, 115
MSK_RES_ERR_INDEX, 116
MSK_RES_ERR_INDEX_ARR_IS_TOO_LARGE, 116
MSK_RES_ERR_INDEX_ARR_IS_TOO_SMALL, 116
MSK_RES_ERR_INDEX_IS_NOT_UNIQUE, 115
MSK_RES_ERR_INDEX_IS_TOO_LARGE, 115
MSK_RES_ERR_INDEX_IS_TOO_SMALL, 115
MSK_RES_ERR_INF_DOU_INDEX, 116
MSK_RES_ERR_INF_DOU_NAME, 116
MSK_RES_ERR_INF_IN_DOUBLE_DATA, 120
MSK_RES_ERR_INF_INT_INDEX, 116
MSK_RES_ERR_INF_INT_NAME, 116
MSK_RES_ERR_INF_LINT_INDEX, 116
MSK_RES_ERR_INF_LINT_NAME, 116
MSK_RES_ERR_INF_TYPE, 116
MSK_RES_ERR_INFEAS_UNDEFINED, 123
MSK_RES_ERR_INFINITE_BOUND, 119
MSK_RES_ERR_INT64_TO_INT32_CAST, 123
MSK_RES_ERR_INTERNAL, 122
MSK_RES_ERR_INTERNAL_TEST_FAILED, 123
MSK_RES_ERR_INV_APTRE, 117
MSK_RES_ERR_INV_BK, 117
MSK_RES_ERR_INV_BKC, 117
MSK_RES_ERR_INV_BKX, 117
MSK_RES_ERR_INV_CONE_TYPE, 118
MSK_RES_ERR_INV_CONE_TYPE_STR, 118
MSK_RES_ERR_INV_DINF, 117
MSK_RES_ERR_INV_IINF, 117
MSK_RES_ERR_INV_LIINF, 117

225

MSK_RES_ERR_INV_MARKI, 121
MSK_RES_ERR_INV_MARKJ, 121
MSK_RES_ERR_INV_NAME_ITEM, 118
MSK_RES_ERR_INV_NUMI, 122
MSK_RES_ERR_INV_NUMJ, 122
MSK_RES_ERR_INV_OPTIMIZER, 120
MSK_RES_ERR_INV_PROBLEM, 120
MSK_RES_ERR_INV_QCON_SUBI, 119
MSK_RES_ERR_INV_QCON_SUBJ, 119
MSK_RES_ERR_INV_QCON_SUBK, 119
MSK_RES_ERR_INV_QCON_VAL, 119
MSK_RES_ERR_INV_QOBJ_SUBI, 119
MSK_RES_ERR_INV_QOBJ_SUBJ, 119
MSK_RES_ERR_INV_QOBJ_VAL, 119
MSK_RES_ERR_INV_RESCODE, 117
MSK_RES_ERR_INV_SK, 117
MSK_RES_ERR_INV_SK_STR, 117
MSK_RES_ERR_INV_SKC, 117
MSK_RES_ERR_INV_SKN, 117
MSK_RES_ERR_INV_SKX, 117
MSK_RES_ERR_INV_VAR_TYPE, 117
MSK_RES_ERR_INVALID_AIJ, 120
MSK_RES_ERR_INVALID_B, 128
MSK_RES_ERR_INVALID_BARVAR_NAME, 112
MSK_RES_ERR_INVALID_CFIX, 120
MSK_RES_ERR_INVALID_CJ, 120
MSK_RES_ERR_INVALID_COMPRESSION, 121
MSK_RES_ERR_INVALID_CON_NAME, 112
MSK_RES_ERR_INVALID_CONE_NAME, 112
MSK_RES_ERR_INVALID_FIJ, 128
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_
124
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_
123
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_
123
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_
124
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_
123
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_
123
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_
123
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_
123
MSK_RES_ERR_INVALID_FILE_FORMAT_FOR_
123
MSK_RES_ERR_INVALID_FILE_NAME, 111
MSK_RES_ERR_INVALID_FORMAT_TYPE, 118
MSK_RES_ERR_INVALID_G, 128
MSK_RES_ERR_INVALID_IDX, 117
MSK_RES_ERR_INVALID_IOMODE, 121
MSK_RES_ERR_INVALID_MAX_NUM, 117
MSK_RES_ERR_INVALID_NAME_IN_SOL_FILE
MSK_RES_ERR_INVALID_OBJ_NAME, 112
MSK_RES_ERR_INVALID_OBJECTIVE_SENSE,
MSK_RES_ERR_INVALID_PROBLEM_TYPE, 124

MSK_RES_ERR_INVALID_SOL_FILE_NAME, 111
MSK_RES_ERR_INVALID_STREAM, 111
MSK_RES_ERR_INVALID_SURPLUS, 118
MSK_RES_ERR_INVALID_SYM_MAT_DIM, 123
MSK_RES_ERR_INVALID_TASK, 111
MSK_RES_ERR_INVALID_UTFS8, 122
MSK_RES_ERR_INVALID_VAR_NAME, 112
MSK_RES_ERR_INVALID_WCHAR, 122
MSK_RES_ERR_INVALID_WHICHSOL, 116
MSK_RES_ERR_JSON_DATA, 115
MSK_RES_ERR_JSON_FORMAT, 115
MSK_RES_FERR_JSON_MISSING_DATA, 115
MSK_RES_FRR_JSON_NUMBER_OVERFLOW, 115
MSK_RES_ERR_JSON_STRING, 115
MSK_RES_ERR_JSON_SYNTAX, 115
MSK_RES_ERR_LAST, 121
MSK_RES_ERR_LASTI, 118
MSK_RES_ERR_LASTJ, 118
MSK_RES_ERR_LAU_ARG_K, 124
MSK_RES_ERR_LAU_ARG_M, 124
MSK_RES_ERR_LAU_ARG_N, 124
MSK_RES_ERR_LAU_ARG_TRANS, 124
MSK_RES_ERR_LAU_ARG_TRANSA, 124
MSK_RES_ERR_LAU_ARG_TRANSB, 124
MSK_RES_ERR_LAU_ARG_UPLO, 124
MSK_RES_ERR_LAU_INVALID_LOWER_TRIANGULAR_MATRIX,
124
MSK_RES_FRR_LAU_INVALID_SPARSE_SYMMETRIC_MATRIX,
125
MSK_RES_ERR_LAU_NOT_POSITIVE_DEFINITE, 124
AFFINE_CHBKCRESNERRALNUSSINGULAR_MATRIX, 124
MSK_RES_ERR_LAU_UNKNOWN, 124
CFIX, MSK_RES_ERR_LICENSE, 109
MSK_RES_ERR_LICENSE_CANNOT_ALLOCATE, 110
CONES, MSK_RES_ERR_LICENSE_CANNOT_CONNECT, 110
MSK_RES_ERR_LICENSE_EXPIRED, 109
DISJUNCTEBE_BBBSFRRINTSENSE_FEATURE, 110
MSK_RES_ERR_LICENSE_INVALID_HOSTID, 110
FREE_CONSSKARESSERR_LICENSE_MAX, 110
MSK_RES_ERR_LICENSE_MOSEKLM_DAEMON, 110
NONLINEARSK_RES_ERR_LICENSE_NO_SERVER_LINE, 110
MSK_RES_ERR_LICENSE_NO_SERVER_SUPPORT, 110
QUADRATIMSKERES, ERR_LICENSE_OLD_SERVER_VERSION, 109
MSK_RES_FERR_LICENSE_SERVER, 110
RANGED_CEBSTRESNESR_LICENSE_SERVER_VERSION, 110
MSK_RES_ERR_LICENSE_VERSION, 109
SYM_MAT, MSK_RES_ERR_LINK_FILE_DLL, 110
MSK_RES_ERR_LIVING_TASKS, 111
MSK_RES_FERR_LOWER_BOUND_IS_A_NAN, 119
MSK_RES_ERR_LP_AMBIGUOUS_CONSTRAINT_BOUND,
114
MSK_RES_ERR_LP_DUPLICATE_SECTION, 114
MSK_RES_ERR_LP_EMPTY, 114
MSK_RES_ERR_LP_EXPECTED_CONSTRAINT_RELATION,

, 115 114
MSK_RES_ERR_LP_EXPECTED_NUMBER, 114
120 MSK_RES_ERR_LP_EXPECTED_OBJECTIVE, 114

MSK_RES_ERR_LP_FILE_FORMAT, 114

226

MSK_RES_ERR_LP_INDICATOR_VAR, 114
MSK_RES_ERR_LP_INVALID_VAR_NAME, 114
MSK_RES_ERR_LU_MAX_NUM_TRIES, 122
MSK_RES_ERR_MAX_LEN_IS_TOO_SMALL, 118
MSK_RES_ERR_MAXNUMBARVAR, 116
MSK_RES_ERR_MAXNUMCON, 116
MSK_RES_ERR_MAXNUMCONE, 119
MSK_RES_ERR_MAXNUMQNZ, 116
MSK_RES_ERR_MAXNUMVAR, 116
MSK_RES_ERR_MIO_INTERNAL, 124
MSK_RES_ERR_MIO_INVALID_NODE_OPTIMIZER, 127
MSK_RES_ERR_MIO_INVALID_ROOT_OPTIMIZER, 127
MSK_RES_ERR_MIO_NO_OPTIMIZER, 120
MSK_RES_ERR_MISMATCHING_DIMENSION, 112
MSK_RES_ERR_MISSING_LICENSE_FILE, 110
MSK_RES_ERR_MIXED_CONIC_AND_NL, 120
MSK_RES_ERR_MPS_CONE_OVERLAP, 113
MSK_RES_ERR_MPS_CONE_REPEAT, 113
MSK_RES_ERR_MPS_CONE_TYPE, 113
MSK_RES_ERR_MPS_DUPLICATE_Q_ELEMENT, 113
MSK_RES_ERR_MPS_FILE, 112
MSK_RES_ERR_MPS_INV_FIELD, 112
MSK_RES_ERR_MPS_INV_MARKER, 112
MSK_RES_ERR_MPS_INV_SEC_ORDER, 113
MSK_RES_ERR_MPS_INVALID_BOUND_KEY, 113
MSK_RES_ERR_MPS_INVALID_CON_KEY, 113

MSK_RES_ERR_NAN_IN_BLX, 120
MSK_RES_ERR_NAN_IN_BUC, 120
MSK_RES_ERR_NAN_IN_BUX, 120
MSK_RES_ERR_NAN_IN_C, 120
MSK_RES_ERR_NAN_IN_DOUBLE_DATA, 120
MSK_RES_ERR_NEGATIVE_APPEND, 121
MSK_RES_ERR_NEGATIVE_SURPLUS, 121
MSK_RES_ERR_NEWER_DLL, 110
MSK_RES_ERR_NO_BARS_FOR_SOLUTION, 123
MSK_RES_ERR_NO_BARX_FOR_SOLUTION, 123
MSK_RES_ERR_NO_BASIS_SOL, 121
MSK_RES_ERR_NO_DOTY, 129
MSK_RES_ERR_NO_DUAL_FOR_ITG_SOL, 122
MSK_RES_ERR_NO_DUAL_INFEAS_CER, 121
MSK_RES_ERR_NO_INIT_ENV, 111
MSK_RES_ERR_NO_OPTIMIZER_VAR_TYPE, 120
MSK_RES_ERR_NO_PRIMAL_INFEAS_CER, 121
MSK_RES_ERR_NO_SNX_FOR_BAS_SOL, 122
MSK_RES_ERR_NO_SOLUTION_IN_CALLBACK, 121
MSK_RES_ERR_NON_UNIQUE_ARRAY, 124
MSK_RES_ERR_NONCONVEX, 118
MSK_RES_ERR_NONLINEAR_EQUALITY, 118
MSK_RES_ERR_NONLINEAR_RANGED, 118
MSK_RES_ERR_NOT_POWER_DOMAIN, 128
MSK_RES_ERR_NULL_ENV, 111
MSK_RES_ERR_NULL_POINTER, 111

MSK_RES_ERR_MPS_INVALID_INDICATOR_CONSTRAINTMSK_RES_ERR_NULL_TASK, 111

113

MSK_RES_ERR_NUM_ARGUMENTS, 115

MSK_RES_ERR_MPS_INVALID_INDICATOR_QUADRATIC_®MSKSRESIERR_NUMCONLIM, 117

114
MSK_RES_ERR_MPS_INVALID_INDICATOR_VALUE,
113

MSK_RES_ERR_MPS_INVALID_INDICATOR_VARIABLE,

113
MSK_RES_ERR_MPS_INVALID_KEY, 113
MSK_RES_ERR_MPS_INVALID_OBJ_NAME, 113
MSK_RES_ERR_MPS_INVALID_OBJSENSE, 113
MSK_RES_ERR_MPS_INVALID_SEC_NAME, 113
MSK_RES_ERR_MPS_MUL_CON_NAME, 113
MSK_RES_ERR_MPS_MUL_CSEC, 113
MSK_RES_ERR_MPS_MUL_QOBJ, 113
MSK_RES_ERR_MPS_MUL_QSEC, 113
MSK_RES_ERR_MPS_NO_OBJECTIVE, 113
MSK_RES_ERR_MPS_NON_SYMMETRIC_Q, 113
MSK_RES_ERR_MPS_NULL_CON_NAME, 112
MSK_RES_ERR_MPS_NULL_VAR_NAME, 112
MSK_RES_ERR_MPS_SPLITTED_VAR, 113
MSK_RES_ERR_MPS_TAB_IN_FIELD2, 113
MSK_RES_ERR_MPS_TAB_IN_FIELD3, 113
MSK_RES_ERR_MPS_TAB_IN_FIELD5, 113
MSK_RES_ERR_MPS_UNDEF_CON_NAME, 112
MSK_RES_ERR_MPS_UNDEF_VAR_NAME, 113

MSK_RES_ERR_NUMVARLIM, 117
MSK_RES_ERR_0OBJ_Q_NOT_NSD, 118
MSK_RES_ERR_0BJ_Q_NOT_PSD, 118
MSK_RES_ERR_OBJECTIVE_RANGE, 117
MSK_RES_ERR_OLDER_DLL, 110
MSK_RES_ERR_OPF_DUAL_INTEGER_SOLUTION, 114
MSK_RES_ERR_OPF_DUPLICATE_BOUND, 114
MSK_RES_ERR_OPF_DUPLICATE_CONE_ENTRY, 114
MSK_RES_ERR_OPF_DUPLICATE_CONSTRAINT_NAME,
114
MSK_RES_ERR_OPF_INCORRECT_TAG_PARAM, 114
MSK_RES_ERR_OPF_INVALID_CONE_TYPE, 114
MSK_RES_ERR_OPF_INVALID_TAG, 114
MSK_RES_ERR_OPF_MISMATCHED_TAG, 114
MSK_RES_ERR_OPF_PREMATURE_EOQF, 114
MSK_RES_ERR_OPF_SYNTAX, 114
MSK_RES_ERR_OPF_TOO_LARGE, 114
MSK_RES_ERR_OPTIMIZER_LICENSE, 110
MSK_RES_ERR_OVERFLOW, 121
MSK_RES_ERR_PARAM_INDEX, 116
MSK_RES_ERR_PARAM_IS_TOO_LARGE, 116
MSK_RES_ERR_PARAM_IS_TOO_SMALL, 116
MSK_RES_ERR_PARAM_NAME, 115

MSK_RES_ERR_MPS_WRITE_CPLEX_INVALID_CONE_TYPHSK_RES_ERR_PARAM_NAME_DOQU, 115

127
MSK_RES_ERR_MUL_A_ELEMENT, 117
MSK_RES_ERR_NAME_IS_NULL, 121
MSK_RES_ERR_NAME_MAX_LEN, 121
MSK_RES_ERR_NAN_IN_BLC, 120

MSK_RES_ERR_PARAM_NAME_INT, 115
MSK_RES_ERR_PARAM_NAME_STR, 115
MSK_RES_ERR_PARAM_TYPE, 116
MSK_RES_ERR_PARAM_VALUE_STR, 116
MSK_RES_ERR_PLATFORM_NOT_LICENSED, 110

227

MSK_RES_ERR_POSTSOLVE, 121
MSK_RES_ERR_PRO_ITEM, 118
MSK_RES_ERR_PROB_LICENSE, 109
MSK_RES_ERR_PTF_FORMAT, 115
MSK_RES_ERR_PTF_INCOMPATIBILITY, 115
MSK_RES_ERR_PTF_INCONSISTENCY, 115
MSK_RES_ERR_PTF_UNDEFINED_ITEM, 115
MSK_RES_ERR_QCON_SUBI_TOO_LARGE, 119
MSK_RES_ERR_QCON_SUBI_TOO_SMALL, 119
MSK_RES_ERR_QCON_UPPER_TRIANGLE, 119
MSK_RES_ERR_QOBJ_UPPER_TRIANGLE, 119
MSK_RES_ERR_READ_ASYNC, 111
MSK_RES_ERR_READ_FORMAT, 112
MSK_RES_ERR_READ_GZIP, 111

MSK_RES_ERR_SYM_MAT_INVALID, 120
MSK_RES_ERR_SYM_MAT_INVALID_COL_INDEX, 123
MSK_RES_ERR_SYM_MAT_INVALID_ROW_INDEX, 123
MSK_RES_ERR_SYM_MAT_INVALID_VALUE, 123
MSK_RES_ERR_SYM_MAT_NOT_LOWER_TRINGULAR,
123
MSK_RES_ERR_TASK_INCOMPATIBLE, 122
MSK_RES_ERR_TASK_INVALID, 122
MSK_RES_ERR_TASK_PREMATURE_EQF, 122
MSK_RES_ERR_TASK_WRITE, 122
MSK_RES_ERR_THREAD_COND_INIT, 111
MSK_RES_ERR_THREAD_CREATE, 111
MSK_RES_ERR_THREAD_MUTEX_INIT, 111
MSK_RES_ERR_THREAD_MUTEX_LOCK, 111

MSK_RES_ERR_READ_LP_DELAYED_ROWS_NOT_SUPPORTHMBK_RES_ERR_THREAD_MUTEX_UNLOCK, 111

114
MSK_RES_ERR_READ_LP_MISSING_END_TAG, 114
MSK_RES_ERR_READ_PREMATURE_EOQF, 112
MSK_RES_ERR_READ_WRITE, 122
MSK_RES_ERR_READ_ZSTD, 111
MSK_RES_ERR_REMOVE_CONE_VARIABLE, 119
MSK_RES_ERR_REPAIR_INVALID_PROBLEM, 121
MSK_RES_ERR_REPAIR_OPTIMIZATION_FAILED, 121
MSK_RES_ERR_SEN_BOUND_INVALID_LO, 122
MSK_RES_ERR_SEN_BOUND_INVALID_UP, 122
MSK_RES_ERR_SEN_FORMAT, 122
MSK_RES_ERR_SEN_INDEX_INVALID, 122
MSK_RES_ERR_SEN_INDEX_RANGE, 122
MSK_RES_ERR_SEN_INVALID_REGEXP, 122
MSK_RES_ERR_SEN_NUMERICAL, 123
MSK_RES_ERR_SEN_SOLUTION_STATUS, 122
MSK_RES_ERR_SEN_UNDEF_NAME, 122
MSK_RES_ERR_SEN_UNHANDLED_PROBLEM_TYPE, 123
MSK_RES_ERR_SERVER_ACCESS_TOKEN, 127
MSK_RES_ERR_SERVER_ADDRESS, 127
MSK_RES_ERR_SERVER_CERTIFICATE, 127
MSK_RES_ERR_SERVER_CONNECT, 127
MSK_RES_ERR_SERVER_HARD_TIMEQUT, 127
MSK_RES_ERR_SERVER_PROBLEM_SIZE, 127
MSK_RES_ERR_SERVER_PROTOCOL, 127
MSK_RES_ERR_SERVER_STATUS, 127
MSK_RES_ERR_SERVER_TLS_CLIENT, 127
MSK_RES_ERR_SERVER_TOKEN, 127
MSK_RES_ERR_SHAPE_IS_TOO_LARGE, 115
MSK_RES_ERR_SIZE_LICENSE, 109
MSK_RES_ERR_SIZE_LICENSE_CON, 110
MSK_RES_ERR_SIZE_LICENSE_INTVAR, 110
MSK_RES_ERR_SIZE_LICENSE_VAR, 110
MSK_RES_ERR_SLICE_SIZE, 121
MSK_RES_ERR_SOL_FILE_INVALID_NUMBER, 119
MSK_RES_ERR_SOLITEM, 116
MSK_RES_ERR_SOLVER_PROBTYPE, 117
MSK_RES_ERR_SPACE, 111
MSK_RES_ERR_SPACE_LEAKING, 112
MSK_RES_ERR_SPACE_NO_INFO, 112
MSK_RES_ERR_SPARSITY_SPECIFICATION, 112
MSK_RES_ERR_SYM_MAT_DUPLICATE, 123
MSK_RES_ERR_SYM_MAT_HUGE, 120

MSK_RES_ERR_TOCONIC_CONSTR_NOT_CONIC, 127
MSK_RES_ERR_TOCONIC_CONSTR_Q_NOT_PSD, 127
MSK_RES_ERR_TOCONIC_CONSTRAINT_FX, 127
MSK_RES_ERR_TOCONIC_CONSTRAINT_RA, 127
MSK_RES_ERR_TOCONIC_OBJECTIVE_NOT_PSD, 127
MSK_RES_ERR_TOO_SMALL_A_TRUNCATION_VALUE,
120
MSK_RES_ERR_TOO_SMALL_MAX_NUM_NZ, 117
MSK_RES_ERR_T00_SMALL_MAXNUMANZ, 117
MSK_RES_ERR_UNALLOWED_WHICHSOL, 117
MSK_RES_ERR_UNB_STEP_SIZE, 123
MSK_RES_ERR_UNDEF_SOLUTION, 128
MSK_RES_ERR_UNDEFINED_OBJECTIVE_SENSE, 120
MSK_RES_ERR_UNHANDLED_SOLUTION_STATUS, 124
MSK_RES_ERR_UNKNOWN, 111
MSK_RES_ERR_UPPER_BOUND_IS_A_NAN, 119
MSK_RES_ERR_UPPER_TRIANGLE, 124
MSK_RES_ERR_WHICHITEM_NOT_ALLOWED, 116
MSK_RES_ERR_WHICHSOL, 116
MSK_RES_ERR_WRITE_ASYNC, 115
MSK_RES_ERR_WRITE_LP_DUPLICATE_CON_NAMES,
112
MSK_RES_ERR_WRITE_LP_DUPLICATE_VAR_NAMES,
112
MSK_RES_ERR_WRITE_LP_INVALID_CON_NAMES, 112
MSK_RES_ERR_WRITE_LP_INVALID_VAR_NAMES, 112
MSK_RES_ERR_WRITE_MPS_INVALID_NAME, 114
MSK_RES_ERR_WRITE_OPF_INVALID_VAR_NAME, 114
MSK_RES_ERR_WRITING_FILE, 115
MSK_RES_ERR_Y_IS_UNDEFINED, 120

228

Index

C

CBF format, 186

F

format
CBF, 186
json, 211
LP, 160
MPS, 164
OPF, 176
PTF, 204
sol, 216
task, 210

J

json format, 211

L

LP format, 160

M

MPS format, 164
free, 176

O

OPF format, 176

P

PTF format, 204

S

sol format, 216
solution
file format, 216

T

task format, 210

229

	Introduction
	Why the Optimization Server?

	Contact Information
	License Agreement
	MOSEK end-user license agreement
	Third party licenses

	OptServerLight
	Installation
	Requirements and files
	Starting OptServerLight

	Testing the installation

	Full OptServer
	Dockerfile
	Installation
	Requirements and files
	The config file
	Initializing database
	Connecting MOSEK solver
	Major options to configure
	Starting the OptServer
	Web GUI

	Testing the installation

	Testing the installation
	Test connection
	Test optimization
	Further tests and usage

	Overview
	Synchronous Optimization
	Asynchronous Optimization
	With or without the MOSEK API
	Light and full version

	MOSEK API tutorial
	REST API tutorials
	Single-call synchronous
	Synchronous
	Asynchronous

	OptServer Reference
	OptServer REST API
	Commands
	Authentication

	Parameters grouped by topic
	Parameters (alphabetical list sorted by type)
	Double parameters
	Integer parameters
	String parameters

	Response codes
	Termination
	Warnings
	Errors

	Constants
	Basis identification
	Bound keys
	Mark
	Experimental. Usage not recommended.
	Degeneracy strategies
	Transposed matrix.
	Triangular part of a symmetric matrix.
	Problem reformulation.
	Exploit duplicate columns.
	Hot-start type employed by the simplex optimizer
	Hot-start type employed by the interior-point optimizers.
	Progress callback codes
	Compression types
	Cone types
	Cone types
	Name types
	Cone types
	Data format types
	Data format types
	Double information items
	License feature
	Long integer information items.
	Integer information items.
	Information item types
	Input/output modes
	Specifies the branching direction.
	Specifies the reformulation method for mixed-integer quadratic problems.
	Specifies the problem data permutation method for mixed-integer problems.
	Continuous mixed-integer solution type
	Integer restrictions
	Mixed-integer node selection types
	Mixed-integer variable selection types
	MPS file format type
	Objective sense types
	On/off
	Optimizer types
	Ordering strategies
	Presolve method.
	Method of folding (symmetry detection for continuous problems).
	Parameter type
	Problem data items
	Problem types
	Problem status keys
	Response code type
	Scaling type
	Scaling method
	Sensitivity types
	Simplex selection strategy
	Solution items
	Solution status keys
	Solution types
	Solve primal or dual form
	Status keys
	Starting point types
	Stream types
	Integer values
	Variable types

	Supported File Formats
	The LP File Format
	File Sections
	Objective Function
	Constraints
	Bounds
	Variable Types
	Terminating Section

	LP File Examples
	LP Format peculiarities
	Comments
	Names
	Variable Bounds

	The MPS File Format
	MPS File Structure
	NAME (optional)
	OBJSENSE (optional)
	OBJNAME (optional)
	ROWS
	COLUMNS
	RHS (optional)
	RANGES (optional)
	QSECTION (optional)
	QMATRIX/QUADOBJ (optional)
	QCMATRIX (optional)
	BOUNDS (optional)
	CSECTION (optional)
	ENDATA

	Integer Variables
	General Limitations
	Interpretation of the MPS Format
	The Free MPS Format

	The OPF Format
	The File Format
	Sections
	Numbers
	Names
	Parameters Section
	Writing OPF Files from MOSEK
	Examples
	Linear Example lo1.opf
	Quadratic Example qo1.opf
	Conic Quadratic Example cqo1.opf
	Mixed Integer Example milo1.opf

	The CBF Format
	How Instances Are Specified
	The Structure of CBF Files
	Problem Specification
	File Format Keywords
	VER
	POWCONES
	POW*CONES
	OBJSENSE
	PSDVAR
	VAR
	INT
	PSDCON
	CON
	OBJFCOORD
	OBJACOORD
	OBJBCOORD
	FCOORD
	ACOORD
	BCOORD
	HCOORD
	DCOORD

	CBF Format Examples
	Minimal Working Example
	Mixing Linear, Second-order and Semidefinite Cones
	Mixing Semidefinite Variables and Linear Matrix Inequalities
	The exponential cone
	Parametric cones

	The PTF Format
	The overall format
	Names
	Expressions

	Task section
	Objective section
	Constraints section
	Variables section
	Integer section
	SymmetricMatrixes section
	Solutions section
	Examples

	The Task Format
	The JSON Format
	JTASK Specification
	JSOL Specification
	A jtask example

	The Solution File Format

	Bibliography
	Symbol Index
	Index

