Mo sek

MOSEK Optimizer API for Python
Release 10.0.46

MOSEK ApS

23 May 2023

Contents

1 Introduction
1.1 Why the Optimizer API for Python?

2 Contact Information

3 License Agreement

3.1 MOSEK end-user license agreement Lo Lo
3.2 Third party licenses L e
4 Installation
4.1 Anaconda e
4.2 PIP and Wheels o e
4.3 Manual installation Lo
4.4 Testing the Installation e
4.5 Troubleshooting L
5 Design Overview
5.1 Modeling L e e e e e e
5.2 “Hello World!” in MOSEK e
6 Optimization Tutorials
6.1 Linear Optimization e
6.2 From Linear to Conic Optimization
6.3 Conic Quadratic Optimization e
6.4 Power Cone Optimization e
6.5 Conic Exponential Optimization o
6.6 Geometric Programming e e e
6.7 Semidefinite Optimization
6.8 Integer Optimization e
6.9 Disjunctive constraints L L e
6.10 Quadratic Optimization oL e
6.11 Problem Modification and Reoptimization
6.12 Parallel optimization L e
6.13 Retrieving infeasibility certificates L oo oo
7 Solver Interaction Tutorials
7.1 Environment and tasko L L Lo
7.2 Accessing the solution
7.3 Errors and exceptions Lo e
7.4 Input/Output
7.5 Setting solver parameters e e e e e e
7.6 Retrieving information items oL L
7.7 Progress and data callback
7.8 MOSEK OptServer o e e e

8 Debugging Tutorials
8.1 Understanding optimizer log« . L e

10
10
10
11
11
11

13
13
13

15
16
22
29
34
38
41
44
54
99
65
72
T
78

81
81
82
85
87
89
90
91
93

97

8.2
8.3
8.4

Addressing numerical iSSues L. L e
Debugging infeasibility
Python Console e

9 Advanced Numerical Tutorials

9.1
9.2
9.3

Solving Linear Systems Involving the Basis Matrix
Calling BLAS/LAPACK Routines from MOSEK
Computing a Sparse Cholesky Factorization

10 Technical guidelines

10.1
10.2
10.3
10.4
10.5
10.6

Memory management and garbage collection o0,
Names e e
Multithreading 0 o e e e e e e e
Efficiency e e e
The license system L e e
Deploymento

11 Case Studies

11.1
11.2
11.3

Portfolio Optimization e
Logistic regression L .o e e e e e e e
Concurrent optimizer oL L e e e

12 Problem Formulation and Solutions

12.1
12.2
12.3
12.4

Linear Optimization 0 0 e
Conic Optimization e
Semidefinite Optimization e
Quadratic and Quadratically Constrained Optimization

13 Optimizers

13.1
13.2
13.3
13.4

Presolve oL
Linear Optimization e e
Conic Optimization - Interior-point optimizer
The Optimizer for Mixed-Integer Problems

14 Additional features

14.1
14.2
14.3

Problem Analyzer e
Automatic Repair of Infeasible Problems
Sensitivity Analysis oL

15 API Reference

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9

API Conventions e
Functions grouped by topic e
Class Env . . . o 0 0o e e
Class Task 0 0 e e e e e
Exceptions L e e
Parameters grouped by topic e e
Parameters (alphabetical list sorted by type) oL
Response codes o e e e
Enumerations e e e e e

15.10 Function Types o L
15.11 Supported domains oL L e e e

16 Supported File Formats

16.1
16.2
16.3
16.4
16.5
16.6

The LP File Format e
The MPS File Format e
The OPF Format e e e e e e
The CBF Format e e e e
The PTF Format
The Task Format e

ii

111
111
118
120

123
123
123
124
124
125
126

127
127
148
152

156
156
159
162
164

167
167
169
176
180

191
191
192
196

204
204
208
219
228
345
345
357
403
424
450
451

16.7 The JSON Format
16.8 The Solution File Format

17 List of examples

18 Interface changes

18.1 Important changes compared to version 9 L Lo Lo

18.2 Changes compared to version 9
18.3 Functions compared to version 9
18.4 Parameters compared to version 9 . . .
18.5 Constants compared to version 9

18.6 Response Codes compared to version 9
Bibliography
Symbol Index

Index

iii

514

516
516
517
517
520
521
923

526

527

544

Chapter 1

Introduction

The MOSEK Optimization Suite 10.0.46 is a powerful software package capable of solving large-scale
optimization problems of the following kind:

e linear,

e conic:

conic quadratic (also known as second-order cone),

involving the exponential cone,

involving the power cone,

semidefinite,
e convex quadratic and quadratically constrained,
e integer.

In order to obtain an overview of features in the MOSEK Optimization Suite consult the product
introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all rela-
tions are linear. The tremendous success of both applications and theory of linear optimization can be
ascribed to the following factors:

e The required data are simple, i.e. just matrices and vectors.

e Convexity is guaranteed since the problem is convex by construction.

e Linear functions are trivially differentiable.

e There exist very efficient algorithms and software for solving linear problems.
e Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the
advantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

Ax —b> 0.
In conic optimization this is replaced with a wider class of constraints

Az —-be K

where KC is a convexr cone. For example in 3 dimensions K may correspond to an ice cream cone. The
conic optimizer in MOSEK supports a number of different types of cones K, which allows a surprisingly
large number of nonlinear relations to be modeled, as described in the MOSEK Modeling Cookbook,
while preserving the nice algorithmic and theoretical properties of linear optimization.

https://docs.mosek.com/10.0/intro/index.html
https://docs.mosek.com/10.0/intro/index.html
https://docs.mosek.com/modeling-cookbook/index.html

1.1 Why the Optimizer API for Python?

The Optimizer API for Python provides an object-oriented interface to the MOSEK optimizers. This
object oriented design is common to Java, Python and .NET and is based on a thin class-based interface
to the native C optimizer API. The overhead introduced by this mapping is minimal.

Optimizer API

Python Java .NET

The Optimizer API for Python can be used with any application running on recent Python 3 inter-
preters. It consists of a single mosek package which can be used in Python scripts and interactive shells
making it suited for fast prototyping and inspection of models.

The Optimizer API for Python provides access to:

e Linear Optimization (LO)

Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)

Power Cone Optimization

Conic Exponential Optimization (CEO)

Convex Quadratic and Quadratically Constrained Optimization (QO, QCQO)

Semidefinite Optimization (SDO)
e Mixed-Integer Optimization (MIO)
as well as to additional functions for
e problem analysis,

e sensitivity analysis,

e infeasibility diagnostics,

e BLAS/LAPACK linear algebra routines.

Chapter 2

Contact

Information

Phone +45 7174 9373

Website mosek.com

Email
sales@mosek.com Sales, pricing, and licensing
support@mosek.com Technical support, questions and bug reports
info@mosek.com Everything else.

Mailing Address
MOSEK ApS

Fruebjergvej 3

Symbion Science Park, Box 16

2100 Copenhagen O

Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger

https://blog.mosek.com

Google Group | https://groups.google.com/forum /#!forum /mosek

Twitter https://twitter.com /mosektw
Linkedin https: //www.linkedin.com /company /mosek-aps
Youtube https://www.youtube.com /channel /UCvlyect EVLP31NXeD5mIbEw

In particular Twit

ter is used for news, updates and release announcements.

https://mosek.com/
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com
https://blog.mosek.com/
https://groups.google.com/forum/#!forum/mosek
https://twitter.com/mosektw
https://www.linkedin.com/company/mosek-aps
https://www.youtube.com/channel/UCvIyectEVLP31NXeD5mIbEw

Chapter 3

License Agreement

3.1 MOSEK end-user license agreement
Before using the MOSEK software, please read the license agreement available in the distribution

at <MSKHOME>/mosek/10.0/mosek-eula.pdf or on the MOSEK website https://mosek.com/products
license-agreement. By using MOSEK you agree to the terms of that license agreement.

3.2 Third party licenses
MOSEK uses some third-party open-source libraries. Their license details follow.

zlib

MOSEK uses the zlib library obtained from the zlib website. The license agreement for zlib is shown
in Listing 3.1.

Listing 3.1: zlib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

https://mosek.com/products/license-agreement
https://mosek.com/products/license-agreement
http://zlib.org

fplib

MOSEK uses the floating point formatting library developed by David M. Gay obtained from the netlib
website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/KK KoK KK oK oK KoK KoK oK ok oK oK K oK KoK o Kok K oK o oK K ok oK ok K ok sk ok oK ok K ok Kok ok ok oK ok oK ok ok Kok ok
The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*
*
*
b3
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting

* documentation for such software.

*

*

*

*

*

£ 3

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. 1IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

***/

{fmt}

MOSEK uses the formatting library {fmt} developed by Victor Zverovich obtained form github/fmt
and distributed under the MIT license. The license agreement fot {fmt} is shown in Listing 3.3.

Listing 3.3: {fmt} license.

Copyright (c) 2012 - present, Victor Zverovich

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation

the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR

A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER

IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN

CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

http://www.netlib.org
http://www.netlib.org
https://github.com/fmtlib/fmt

Zstandard

MOSEK uses the Zstandard library developed by Facebook obtained from github/zstd. The license
agreement for Zstandard is shown in Listing 3.4.

Listing 3.4: Zstandard license.

BSD License
For Zstandard software
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name Facebook nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

OpenSSL

MOSEK uses the LibReSSL library, which is build on OpenSSL. OpenSSL is included under the
OpenSSL license, Listing 3.5, and the LibReSSL additions are licensed under the ISC license, Listing
3.6.

Listing 3.5: OpenSSL license

Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in

(continues on next page)

https://github.com/facebook/zstd
https://www.libressl.org/

(continued from previous page)

the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ~“AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Listing 3.6: ISC license

Copyright (C) 1994-2017 Free Software Foundation, Inc.
Copyright (c) 2014 Jeremie Courreges-Anglas <jca@openbsd.org>
Copyright (c) 2014-2015 Joel Sing <jsing@openbsd.org>
Copyright (c) 2014 Ted Unangst <tedu@openbsd.org>

Copyright (c) 2015-2016 Bob Beck <beck@openbsd.org>

Copyright (c) 2015 Marko Kreen <markokr@gmail.com>

Copyright (c) 2015 Reyk Floeter <reyk@openbsd.org>

Copyright (c) 2016 Tobias Pape <tobias@netshed.de>

Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all
copies.

(continues on next page)

(continued from previous page)

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

mimalloc

MOSEK uses the mimalloc memory allocator library from github/mimalloc. The license agreement for
mimalloc is shown in Listing 3.7.

Listing 3.7: mimalloc license.

MIT License
Copyright (c) 2019 Microsoft Corporation, Daan Leijen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
0UT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

BLASFEO

MOSEK uses the BLASFFEO linear algebra library developed by Gianluca Frison, obtained from
github /blasfeo. The license agreement for BLASFEQ is shown in Listing 3.8.

Listing 3.8: blasfeo license.

BLASFEO -- BLAS For Embedded Optimization.

Copyright (C) 2019 by Gianluca Frison.

Developed at IMTEK (University of Freiburg) under the supervision of Moritz Diehl.
All rights reserved.

The 2-Clause BSD License

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this

(continues on next page)

https://github.com/microsoft/mimalloc
https://github.com/giaf/blasfeo

(continued from previous page)

list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

oneTBB

MOSEK uses the oneTBB parallelization library which is part of oneAPI developed by Intel, obtained
from github/oneTBB, licensed under the Apache License 2.0. The license agreement for oneTBB can be
found in https://github.com /oneapi-src/oneTBB /blob/master/ LICENSE.txt .

https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB/blob/master/LICENSE.txt

Chapter 4

Installation

In this section we discuss how to install and setup the MOSEK Optimizer API for Python.

Important: Before running this MOSEK interface please make sure that you:

e Installed MOSEK correctly. Some operating systems require extra steps. See the Installation
guide for instructions and common troubleshooting tips.

e Set up a license. See the Licensing guide for instructions.

Compatibility
The Optimizer API for Python requires Python 3. The supported versions of Python are shown below:

Table 4.1: Supported Python versions.

Platform Python
Linux 64 bit x86 3.6+
Linux 64 bit ARM 3.7+
macOS 64 bit x86 3.6+
macOS 64 bit ARM | 3.8+
Windows 64 bit x86 | 3.6+

4.1 Anaconda

The MOSEK Optimization Suite can be installed as an Anaconda package, see https://anaconda.org/
MOSEK /mosek, for example by running

conda install -c mosek mosek

If you installed the MOSEK package as part of Anaconda, no additional setup is required.

4.2 PIP and Wheels

The MOSEK Optimization Suite can be installed as a Wheels package with PIP, using

pip install Mosek --user

(skip --user for a system-wide installation).
If you installed the MOSEK package with PIP, no additional setup is required.

10

https://docs.mosek.com/10.0/install/index.html
https://docs.mosek.com/10.0/install/index.html
https://docs.mosek.com/10.0/licensing/index.html
https://anaconda.org/MOSEK/mosek
https://anaconda.org/MOSEK/mosek

4.3 Manual installation

Locating files in the MOSEK Optimization Suite
The relevant files of the Optimizer API for Python are organized as reported in Table 4.2.

Table 4.2: Relevant files for the Optimizer API for Python.

Relative Path Description Label
<MSKHOME>/mosek/10.0/tools/platform/<PLATFORM>/python/ | Python 3 install | <PYTHON3DIR>
3

<MSKHOME>/mosek/10.0/tools/examples/python Examples <EXDIR>
<MSKHOME>/mosek/10.0/tools/examples/data Additional data | <MISCDIR>
where

e <MSKHOME> is the folder in which the MOSEK Optimization Suite has been installed,

e <PLATFORM> is the actual platform among those supported by MOSEK, i.e. win64x86, 1inux64x86
or 0sx64x86.

Manual install and setting up paths

To install MOSEK for Python run the <PYTHON3DIR>/setup.py script. This will add the MOSEK
module to your Python distribution’s library of modules. The script accepts the standard options typical
for Python setup scripts. For instance, to install MOSEK in the user’s local library run:

$ python <PYTHON3DIR>/setup.py install --user

on Linux and macOS or

C:\> python <PYTHON3DIR>\setup.py install --user

on Windows.
For a system-wide installation drop the --user flag.

4.4 Testing the Installation

First of all, to check that the Optimizer API for Python was properly installed, start Python and try

import mosek

The installation can further be tested by running some of the enclosed examples. Open a terminal,
change folder to <EXDIR> and use Python to run a selected example, for instance:

python lol.py

4.5 Troubleshooting

error: could not create ‘build’: Access is denied

If an attempt to install the Python interface results in an error such as

error: could not create 'build': Access is denied

then you have no write permissions to the folder where MOSEK is installed. This can happen for
example if the package was installed by an administrator, and a user is trying to set up the Python
interface. One solution is to install MOSEK in another location. Another solution is to specify the
location of the build folder in a place the user can write to, for example:

11

python setup.py build --build-base=SOME_FOLDER install --user

12

Chapter 5

Design Overview

5.1 Modeling

Optimizer API for Python is an interface for specifying optimization problems directly in matrix form.
It means that an optimization problem such as:

minimize ¢’z
subject to Az < b,
rek

is specified by describing the matrix A, vectors b, ¢ and a list of cones IC directly.
The main characteristics of this interface are:

e Simplicity: once the problem data is assembled in matrix form, it is straightforward to input it
into the optimizer.

e Exploiting sparsity: data is entered in sparse format, enabling huge, sparse problems to be
defined and solved efficiently.

e Efficiency: the Optimizer API incurs almost no overhead between the user’s representation of the
problem and MOSEK’s internal one.

Optimizer API for Python does not aid with modeling. It is the user’s responsibility to express the
problem in MOSEK’s standard form, introducing, if necessary, auxiliary variables and constraints. See
Sec. 12 for the precise formulations of problems MOSEK solves.

5.2 “Hello World!” in MOSEK

Here we present the most basic workflow pattern when using Optimizer API for Python.

Creating an environment and task

Optionally, an interaction with MOSEK using Optimizer API for Python can begin by creating a
MOSEK environment. It coordinates the access to MOSEK from the current process.

In most cases the user does not interact directly with the environment, except for creating optimiza-
tion tasks, which contain actual problem specifications and where optimization takes place. In this case
the user can directly create tasks without invoking an environment, as we do here.

13

Defining tasks

After a task is created, the input data can be specified. An optimization problem consists of several
components; objective, objective sense, constraints, variable bounds etc. See Sec. 6 for basic tutorials on
how to specify and solve various types of optimization problems.

Retrieving the solutions

When the model is set up, the optimizer is invoked with the call to Task.optimize. When the opti-
mization is over, the user can check the results and retrieve numerical values. See further details in Sec.
7.
We refer also to Sec. 7 for information about more advanced mechanisms of interacting with the

solver.
Source code example
Below is the most basic code sample that defines and solves a trivial optimization problem

minimize x

subject to 2.0 <z < 3.0.

For simplicity the example does not contain any error or status checks.

Listing 5.1: “Hello World!” in MOSEK

##

Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
#

File: helloworld.py

#

The most basic example of how to get started with MOSEK.

from mosek import *

with Env() as env: # Create Environment
with env.Task(0, 1) as task: # Create Task

task.appendvars (1) # 1 variable z
task.putcj(0, 1.0) #c.0=1.0
task.putvarbound(0, boundkey.ra, 2.0, 3.0) # 2.0 <=z <= 3.0
task.putobjsense(objsense.minimize) # minimize
task.optimize() # Optimize
x = task.getxx(soltype.itr) # Get solution
print ("Solution x = {}".format(x[0])) # Print solution

14

Chapter 6

Optimization Tutorials

In this section we demonstrate how to set up basic types of optimization problems. Each short tutorial
contains a working example of formulating problems, defining variables and constraints and retrieving
solutions.

e Model setup and linear optimization tutorial (LO)

— Sec. 6.1. Linear optimization tutorial, recommended first reading for all users. Apart from
setting up a linear problem it also demonstrates how to work with an optimizer task: initialize
it, add variables and constraints and retrieve the solution.

e Conic optimization tutorials (CO)

— Sec. 6.2. A step by step introduction to programming with affine conic constraints (ACC).
Explains all the steps required to input a conic problem. Recommended first reading for users
of the conic optimizer.

Further basic examples demonstrating various types of conic constraints:

— Sec. 6.3. A basic example with a quadratic cone (CQO).

Sec. 6.4. A basic example with a power cone.

Sec. 6.5. A basic example with a exponential cone (CEO).

Sec. 6.6. A basic tutorial of geometric programming (GP).
e Semidefinite optimization tutorial (SDO)

— Sec. 6.7. Examples showing how to solve semidefinite optimization problems with one or more
semidefinite variables.

e Mixed-integer optimization tutorials (MIO)

— Sec. 6.8. Shows how to declare integer variables for linear and conic problems and how to set
an initial solution.

— Sec. 6.9. Demonstrates how to create a problem with disjunctive constraints (DJC).
e Quadratic optimization tutorial (QO, QCQO)
— Sec. 6.10. Examples showing how to solve a quadratic or quadratically constrained problem.
¢ Reoptimization tutorials
— Sec. 6.11. Various techniques for modifying and reoptimizing a problem.
¢ Parallel optimization tutorial
— Sec. 6.12. Shows how to optimize tasks in parallel.
e Infeasibility certificates

— Sec. 6.13. Shows how to retrieve and analyze a primal infeasibility certificate for continuous
problems.

15

6.1 Linear Optimization

The simplest optimization problem is a purely linear problem. A linear optimization problem is a problem
of the following form:
Minimize or maximize the objective function

n—1
Z Ty + !
§=0
subject to the linear constraints
n—1
I < Zakﬂj <uf, k=0,....m-—1,
j=0

and the bounds

l;” <z Suf, j=0,...,n—1.
The problem description consists of the following elements:
e m and n — the number of constraints and variables, respectively,

e r — the variable vector of length n,

e ¢ — the coefficient vector of length n

Co
c= ,
Cn—1

e ¢/ — fixed term in the objective,

e A — an m x n matrix of coefficients

ao,0 T ag,(n—1)
A= : ,
A(m-1),0 " A(m-1),(n—1)

e [and u® — the lower and upper bounds on constraints,
e [T and u® — the lower and upper bounds on variables.

Please note that we are using 0 as the first index: x(is the first element in variable vector x.

6.1.1 Example LO1

The following is an example of a small linear optimization problem:

maximize 3xzg + lz; + Ddxe + lag

subject to 3xp + 1lxz; + 2x9 = 30, 6.1)
2¢g + lay + 322 + 1lzg > 15, ’
221 + 3z3 < 25,
under the bounds
0 S Zo S 0,
0 < =z < 10,
0 S) S o0,
0 < z3 < oo

16

Solving the problem

To solve the problem above we go through the following steps:

—

. (Optionally) Create an environment.
2. Create an optimization task.

3. Load a problem into the task object.
4. Optimization.

5. Extracting the solution.

Below we explain each of these steps.

Create an environment.

The user can start by creating a MOSEK environment, but it is not necessary if the user does not need
access to other functionalities, license management, additional routines, etc. Therefore in this tutorial
we don’t create an explicit environment.

Create an optimization task.

We create an empty task object. A task object represents all the data (inputs, outputs, parameters,
information items etc.) associated with one optimization problem.

Create a task object

with mosek.Task() as task:
Attach a log stream printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

We also connect a call-back function to the task log stream. Messages related to the task are passed
to the call-back function. In this case the stream call-back function writes its messages to the standard
output stream. See Sec. 7.4.

Load a problem into the task object.

Before any problem data can be set, variables and constraints must be added to the problem via calls to
the functions Task. appendcons and Task.appendvars.

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons (numcon)

Append 'numvar' wvariables.
The vartables will tnitially be fized at zero (z=0).
task.appendvars (numvar)

New variables can now be referenced from other functions with indexes in 0, ...,numvar — 1 and new
constraints can be referenced with indexes in 0, ...,numcon — 1. More variables and/or constraints can
be appended later as needed, these will be assigned indexes from numvar/numcon and up.

Next step is to set the problem data. We loop over each variable index j = 0,...,numvar — 1 calling
functions to set problem data. We first set the objective coefficient ¢; = c[j] by calling the function
Task.putcy.

task.putcj(j, <[jl)

17

Setting bounds on variables

The bounds on variables are stored in the arrays

Bound keys for wariables

bkx = [mosek.boundkey.lo,
mosek.boundkey.ra,
mosek.boundkey. lo,
mosek . boundkey.1o]

Bound values for wvariables
blx = [0.0, 0.0, 0.0, 0.0]
bux [+inf, 10.0, +inf, +inf]

Il

and are set with calls to Task.putvarbound.

Set the bounds on wvariable j
blz[g] <= z_j <= buz[j]
task.putvarbound(j, bkx[j], blx[j]l, bux[jl)

The Bound key stored in bkx specifies the type of the bound according to Table 6.1.

Table 6.1: Bound keys as defined in the enum boundkey.

Bound key Type of bound | Lower bound | Upper bound

boundkey. fz | uj; =1; Finite Identical to the lower bound
boundkey. fr | Free —00 400

boundkey.lo | l; <--- Finite +00

boundkey.ra | l; <--- <y Finite Finite

boundkey. up <y —00 Finite

For instance bkx [0]= boundkey. lo means that ¢ > [§. Finally, the numerical values of the bounds
on variables are given by

l;” = blx[j]
and

uf = bux[j].

Defining the linear constraint matrix.

Recall that in our example the A matrix is given by

A=

SN W
DO =
S W N
w = O

This matrix is stored in sparse format in the arrays:

[[o, 11,

[o, 1, 21,

(o, 11,

[1, 2]]

[[3.0, 2.0],
[1.0, 1.0, 2.0],
[2.0, 3.01,
[1.0, 3.0]1]

asub

aval

The array aval[j] contains the non-zero values of column j and asub[j] contains the row indices
of these non-zeros.
Using the function Task.putacol we set column j of A

18

task.putacol(j, # Variable (column) index.
asub[j], # Row indexz of mon-zeros inm column j.
avalljl) # Non-zero Values of column 7.

There are many alternative formats for entering the A matrix. See functions such as Task.putarow,
Task.putarowlist, Task.putatjlist and similar.

Finally, the bounds on each constraint are set by looping over each constraint index i =
0,...,numcon — 1

Set the bounds on constraints.
blcl[i] <= comstraint_i <= buc[i]
for i in range(numcon) :
task.putconbound (i, bkc[i], blc[i], buc[i])

Optimization

After the problem is set-up the task can be optimized by calling the function Task.optimize.

task.optimize ()

Extracting the solution.

After optimizing the status of the solution is examined with a call to Task.getsolsta. If the solution
status is reported as solsta.optimal the solution is extracted in the lines below:

xx = task.getxx(mosek.soltype.bas)

The Task. getzz function obtains the solution. MOSEK may compute several solutions depending
on the optimizer employed. In this example the basic solution is requested by setting the first argument
to soltype.bas.

Catching exceptions

We catch any exceptions thrown by MOSEK in the lines:

except mosek.Error as e:
print ("ERROR: 7s" 7 str(e.errno))
if e.msg is not None:
print("\t%s" 7 e.msg)
sys.exit(1)

The types of exceptions that MOSEK can throw can be seen in Sec. 15.5. See also Sec. 7.3.

Source code

The complete source code lol.py of this example appears below. See also 102.py for a version where
the A matrix is entered row-wise.

Listing 6.1: Linear optimization example.

import sys
import mosek

Since the wvalue of wnfinity is ignored, we define it solely
for symbolic purposes
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):
sys.stdout.write(text)

(continues on next page)

19

(continued from previous page)

sys.stdout.flush()

def main():
Create a task object
with mosek.Task() as task:
Attach a log stream printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

Bound keys for constraints

bkc = [mosek.boundkey.fx,
mosek.boundkey. lo,
mosek . boundkey . up]

Bound values for constraints
blc = [30.0, 15.0, -inf]
buc = [30.0, +inf, 25.0]

Bound keys for wvariables

bkx = [mosek.boundkey.lo,
mosek.boundkey.ra,
mosek.boundkey.lo,
mosek . boundkey.1o]

Bound values for wvariables
blx = [0.0, 0.0, 0.0, 0.0]
bux = [+inf, 10.0, +inf, +inf]

Objective coefficients
c = [3.0, 1.0, 5.0, 1.0]

Below 1s the sparse representation of the 4
matriz stored by column.
asub = [[0, 1],
(o, 1, 21,
o, 11,
(1, 211
aval = [[3.0, 2.0],
(1.0, 1.0, 2.0],
[2.0, 3.0],
[1.0, 3.0]]

numvar = len(bkx)
numcon = len(bkc)

Append 'mumcon' empty comstraints.
The constraints will initially have no bounds.
task.appendcons (numcon)

Append 'mumvar' wvartiables.
The wvariables will initially be fized at zero (z=0).
task.appendvars (numvar)

for j in range(numvar):
Set the linear term c_j in the objective.
task.putcj(j, c[jl)

20

(continues on next page)

(continued from previous page)

Set the bounds on wvariable j
blz[j] <= z_j <= buz(j]
task.putvarbound(j, bkx[jl, blx[jl, bux[jl)

Input column j of 4

task.putacol(j, # Variable (column) index.
asubl[j], # Row tindex of mom-zeros in column j.
avall[jl) # Non-zero Values of column j.

Set the bounds on constraints.
blc[i] <= comstraint_i <= buc[i]
for i in range(numcon):
task.putconbound (i, bkcl[il, blcl[il, buclil)

Input the objective sense (minimize/mazimize)
task.putobjsense(mosek.objsense.maximize)

Solve the problem

task.optimize ()

Print a summary containing information

about the solution for debugging purposes
task.solutionsummary (mosek.streamtype.msg)

Get status information about the solution
solsta = task.getsolsta(mosek.soltype.bas)

if (solsta == mosek.solsta.optimal):
xx = task.getxx(mosek.soltype.bas)

print ("Optimal solution: ")
for i in range(numvar):
print("x[" + str(i) + "1=" + str(xx[il))
elif (solsta == mosek.solsta.dual_infeas_cer or
solsta == mosek.solsta.prim_infeas_cer):

print ("Primal or dual infeasibility certificate found.\n")
elif solsta == mosek.solsta.unknown:

print ("Unknown solution status")
else:

print ("Other solution status")

call the main function
try:
main()
except mosek.Error as e:
print ("ERROR: 7s" % str(e.errno))
if e.msg is not None:
print("\t%s" % e.msg)
sys.exit (1)
except:
import traceback
traceback.print_exc()
sys.exit (1)

21

6.2 From Linear to Conic Optimization

In Sec. 6.1 we demonstrated setting up the linear part of an optimization problem, that is the objective,
linear bounds, linear equalities and inequalities. In this tutorial we show how to define conic constraints.
We recommend going through this general conic tutorial before proceeding to examples with specific
cone types.

MOSEK accepts conic constraints in the form

Fx+geD

where
e z € R" is the optimization variable,

e D C R* is a conic domain of some dimension k, representing one of the cone types supported by
MOSEK,

e F € R**" and g € R* are data which constitute the sequence of k affine expressions appearing
in the rows of Fz + g.

Constraints of this form will be called affine conic constraints, or ACC for short. Therefore in
this section we show how to set up a problem of the form

minimize A+l
subject to ¢ < Ax < wuf,
r < €T < u®,
Fr+g € Dix-xDy,

with some number p of affine conic constraints.
Note that conic constraints are a natural generalization of linear constraints to the general nonlinear
case. For example, a typical linear constraint of the form

Ar+b>0
can be also written as membership in the cone of nonnegative real numbers:
Az +beRY,
and that naturally generalizes to
Fx+geD
for more complicated domains D from Sec. 15.11 of which D = R%o is a special case.

6.2.1 Running example

In this tutorial we will consider a sample problem of the form

T

maximize c'x
subject to Y . x; =1, (6.2)
7 = |Gz + k2,

where 2 € R” is the optimization variable and G € R**" h € R¥ ¢ € R" and v € R. We will use the
following sample data:

_ _ 3 _ 1T _ |15 01 0)
n=3, k=2 zeR’ c¢=][2,3,-1]", ~=0.03, G[O.?) 0 21 | h = 01 |-

To be explicit, the problem we are going to solve is therefore:

maximize 2xg+ 3r1 — To
subject to xg + x1 + x2 =1, (6.3)
0.03 > /(1.5 + 0.1z1)2 + (0.3z0 + 2.122 + 0.1)2.

22

Consulting the definition of a quadratic cone Q we see that the conic form of this problem is:

maximize 2xg+ 3xr1 — T2
subject to xg + x1 + z2 = 1, (6.4)
(0037 1.5zg + 0.121, 0.3x¢ + 2.1x2 + 01) € QB.

The conic constraint has an affine conic representation F'xz + g € D as follows:

0 0 0 0.03
1.5 01 0 |z+| 0 |eQ (6.5)
03 0 21 0.1

Of course by the same logic in the general case the conic form of the problem (6.2) would be

maximize Tz

subject to Y, x; =1, (6.6)
(7,Gz + h) € QFF!

and the ACC representation of the constraint (v, Gx + h) € Q¥+ would be

{g}z+[2]eg“k

Now we show how to add the ACC (6.5). This involves three steps:
e storing the affine expressions which appear in the constraint,
e creating a domain, and

e combining the two into an ACC.

6.2.2 Step 1: add affine expressions

To store affine expressions (AFE for short) MOSEK provides a matrix F and a vector g with the
understanding that every row of

Fr+g

defines one affine expression. The API functions with infix afe are used to operate on F and g, add
rows, add columns, set individual elements, set blocks etc. similarly to the methods for operating on the
A matrix of linear constraints. The storage matrix F is a sparse matrix, therefore only nonzero elements
have to be explicitly added.

Remark: the storage F,g may, but does not have to be, equal to the pair F,g appearing in the
expression Fx + g. It is possible to store the AFEs in different order than the order they will be used
in F, g, as well as store some expressions only once if they appear multiple times in Fx + ¢g. In this first
turorial, however, we will for simplicity store all expressions in the same order we will later use them, so
that (F,g) = (F, g).

In our example we create only one conic constraint (6.5) with three (in general k4 1) affine expressions

0.03,
1.5I0 + 0.1561,
0.31’0 + 2.1%2 + 0.1.

Given the previous remark, we initialize the AFE storage as:

0 0 0 0.03
F=|15 01 0 |, g=| 0 |. (6.7)
03 0 21 0.1

Initially F and g are empty (have 0 rows). We construct them as follows. First, we append a number of
empty rows:

23

Append empty AFE rows for affine expression storage
task.appendafes(k + 1)

We now have F and g with 3 rows of zeros and we fill them up to obtain (6.7).

G matriz in sparse form
Gsubi = [0, 0, 1, 1]

Gsubj = [0, 1, 0, 2]

Gval = [1.5, 0.1, 0.3, 2.1]
Other data

h = [0, 0.1]

gamma = 0.03

Construct F matriz in sparse form

Fsubi = [i + 1 for i in Gsubi] # G will be placed from row number 1 in F
Fsubj = Gsubj
Fval = Gval

Fill in F storage
task.putafefentrylist(Fsubi, Fsubj, Fval)

Fill in g storage
task.putafeg(0, gamma)
task.putafegslice(1l, k+1, h)

We have now created the matrices from (6.7). Note that at this point we have not defined any ACC
yet. All we did was define some affine expressions and place them in a generic AFE storage facility to
be used later.

6.2.3 Step 2: create a domain

Next, we create the domain to which the ACC belongs. Domains are created with functions with infix
domain. In the case of (6.5) we need a quadratic cone domain of dimension 3 (in general k + 1), which
we create with:

Define a conic quadratic domain
quadDom = task.appendquadraticconedomain(k + 1)

The function returns a domain index, which is just the position in the list of all domains (potentially)
created for the problem. At this point the domain is just stored in the list of domains, but not yet used
for anything.

6.2.4 Step 3: create the actual constraint

We are now in position to create the affine conic constraint. ACCs are created with functions with
infix acc. The most basic variant, Task.appendacc will append an affine conic constraint based on the
following data:

e the list afeidx of indices of AFEs to be used in the constraint. These are the row numbers in F, g
which contain the required affine expressions.

e the index domidx of the domain to which the constraint belongs.

Note that number of AFESs used in afeidx must match the dimension of the domain.

In case of (6.5) we have already arranged F,g in such a way that their (only) three rows contain
the three affine expressions we need (in the correct order), and we already defined the quadratic cone
domain of matching dimension 3. The ACC is now constructed with the following call:

Create the ACC
task.appendacc (quadDom, # Domain index

(continues on next page)

24

(continued from previous page)

range(k+1), # Indices of AFE rows [0,...,k]
None) # Ignored

This completes the setup of the affine conic constraint.

6.2.5 Example ACC1

We refer to Sec. 6.1 for instructions how to set up the objective and linear constraint xg + x1 + zo = 1.
All else that remains is to set up the MOSEK environment, task, add variables, call the solver with
Task.optimize and retrieve the solution with Task.getzz. Since our problem contains a nonlinear
constraint we fetch the interior-point solution. The full code solving problem (6.3) is shown below.

Listing 6.2: Full code of example ACC1.

import sys, mosek

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)

sys.stdout.flush()

Define problem data

n, k=3, 2
Only a symbolic constant
inf = 0.0

Make a MOSEK environment

with mosek.Env() as env:
Attach a printer to the environment
env.set_Stream(mosek.streamtype.log, streamprinter)

Create a task

with env.Task(0, 0) as task:
Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

Create n free wariables
task.appendvars (n)
task.putvarboundsliceconst(0, n, mosek.boundkey.fr, -inf, inf)

Set up the objective

c = [2, 3, -1]
task.putobjsense(mosek.objsense.maximize)
task.putclist(range(n), c)

One linear constraint - sum(z) = 1
task.appendcons (1)

task.putarow(0, range(n), [1]*n)
task.putconbound (0, mosek.boundkey.fx, 1.0, 1.0)

Append empty AFE rows for affine expression storage
task.appendafes(k + 1)

G matriz tn sparse form
Gsubi = [0, O, 1, 1]

Gsubj = [0, 1, 0, 2]

Gval [1.5, 0.1, 0.3, 2.1]

(continues on next page)

25

(continued from previous page)

Other data
h = [0, 0.1]
gamma = 0.03

Construct F matrixz in sparse form

Fsubi = [i + 1 for i in Gsubi] # G will be placed from row number 1 in F
Fsubj = Gsubj
Fval = Gval

Fill in F storage
task.putafefentrylist(Fsubi, Fsubj, Fval)

Fill in g storage
task.putafeg(0, gamma)
task.putafegslice(l, k+1, h)

Define a conic quadratic domain
quadDom = task.appendquadraticconedomain(k + 1)

Create the ACC

task.appendacc (quadDom, # Domain index
range(k+1), # Indices of AFE rows [0,...,k]
None) # Ignored

Solve and retrieve solution

task.optimize ()

xx = task.getxx(mosek.soltype.itr)

if task.getsolsta(mosek.soltype.itr) == mosek.solsta.optimal:
print("Solution: {xx}".format(xx=1list(xx)))

The answer is

[-0.07838011145615721, 1.1289128998004547, -0.0505327883442975]

The dual values g of an ACC can be obtained with Task.getaccdoty if required.

Demonstrate retrieving the dual of ACC
doty = task.getaccdoty(mosek.soltype.itr,
0) # ACC index
print ("Dual of ACC:: {dotyl}".format(doty=list(doty)))

6.2.6 Example ACC2 - more conic constraints

Now that we know how to enter one affine conic constraint (ACC) we will demonstrate a problem with
two ACCs. From there it should be clear how to add multiple ACCs. To keep things familiar we will
reuse the previous problem, but this time cast it into a conic optimization problem with two ACCs as

follows:
. . T
maximize c'x

subject to (3, z; — 1, v, Go +h) € {0} x QF+1 (6.8)
or, using the data from the example:

maximize 2xg+ 3x1 — X2
subject to xg+x1 + 12 — 1 € {0},
(0.03, 1.5z + 0.1z1, 0.3z + 2.1z5 + 0.1) € Q

In other words, we transformed the linear constraint into an ACC with the one-point zero domain.

26

As before, we proceed in three steps. First, we add the variables and create the storage F, g containing
all affine expressions that appear throughout all off the ACCs. It means we will require 4 rows:

1 1 1 -1
0 0 0 0.03

F=11501 0] 8| o |- (6.9)
03 0 21 0.1

Set AFE rows representing the linear constraint
task.appendafes (1)

task.putafefrow(0, range(n), [1]*n)
task.putafeg(0, -1.0)

Set AFE rows representing the quadratic constraint
task.appendafes(k + 1)

task.putafefrow(2, # afeidz, Tow number
[o, 17, # varidz, column numbers
[1.5, 0.1]) # walues
task.putafefrow(3, # afeidz, Tow number
[o, 21, # waridz, column numbers
[0.3, 2.1]) # walues
h = [0, 0.1]
gamma = 0.03

task.putafeg(l, gamma)
task.putafegslice(2, k+2, h)

Next, we add the required domains: the zero domain of dimension 1, and the quadratic cone domain
of dimension 3.

Define domains
zeroDom = task.appendrzerodomain (1)
quadDom = task.appendquadraticconedomain(k + 1)

Finally, we create both ACCs. The first ACCs picks the 0-th row of F,g and places it in the zero
domain:

task.appendacc (zeroDom, # Domain index
[o], # Indices of AFE rows
None) # Ignored

The second ACC picks rows 1,2,3 in F, g and places them in the quadratic cone domain:

task.appendacc (quadDom, # Domain index
[1,2,3], # Indices of AFE Tows
None) # Ignored

The completes the construction and we can solve the problem like before:

Listing 6.3: Full code of example ACC2.

import sys, mosek

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)

sys.stdout.flush()

Define problem data
n, k=3, 2

(continues on next page)

27

(continued from previous page)

Only a symbolic constant
inf = 0.0

Make a MOSEK environment

with mosek.Env() as env:
Attach a printer to the environment
env.set_Stream(mosek.streamtype.log, streamprinter)

Create a task

with env.Task(0, 0) as task:
Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

Create n free wvariables
task.appendvars (n)
task.putvarboundsliceconst(0, n, mosek.boundkey.fr, -inf

Set up the objective

c = [2, 3, -1]
task.putobjsense(mosek.objsense.maximize)
task.putclist(range(n), c)

Set AFE rows representing the linear constraint
task.appendafes (1)

task.putafefrow(0, range(n), [1]#*n)
task.putafeg(0, -1.0)

Set AFE rows representing the quadratic constraint

task.appendafes(k + 1)

task.putafefrow(2, # afeidr, Tow number
[o, 11, # wvaridz, column numbers
[1.5, 0.1]) # walues

task.putafefrow(3, # afeidz, Tow number

[0, 21, # varidz, column numbers

#

[0.3, 2.1]) values

h [0, 0.1]

gamma = 0.03

task.putafeg(l, gamma)
task.putafegslice(2, k+2, h)

Define domains
zeroDom = task.appendrzerodomain (1)

quadDom = task.appendquadraticconedomain(k + 1)

Append affine conic constraints

task.appendacc(zeroDom, # Domain index
(o], # Indices of AFE rows
None) # Ignored
task.appendacc (quadDom, # Domatin tindex
[1,2,3], # Indices of AFE rows
None) # Ignored

Solve and retrieve solution
task.optimize()
xx = task.getxx(mosek.soltype.itr)

, inf)

28

(continues on next page)

(continued from previous page)

if task.getsolsta(mosek.soltype.itr) == mosek.solsta.optimal:
print ("Solution: {xx}".format(xx=1list(xx)))

We obtain the same result:

[-0.07838011145615721, 1.1289128998004547, -0.0505327883442975]

6.2.7 Summary and extensions

In this section we presented the most basic usage of the affine expression storage F,g to input affine
expressions used together with domains to create affine conic constraints. Now we briefly point out
additional features of his interface which can be useful in some situations for more demanding users.
They will be demonstrated in various examples in other tutorials and case studies in this manual.

e [t is important to remember that F', g has only a storage function and during the ACC construction
we can pick an arbitrary list of row indices and place them in a conic domain. It means for example
that:

— It is not necessary to store the AFEs in the same order they will appear in ACCs.

— The same AFE index can appear more than once in one and/or more conic constraints (this
can be used to reduce storage if the same affine expression is used in multiple ACCs).

— The F, g storage can even include rows that are not presently used in any ACC.
e Domains can be reused: multiple ACCs can use the same domain. On the other hand the same

type of domain can appear under many domidx positions. In this sense the list of created domains
also plays only a storage role: the domains are only used when they enter an ACC.

e Affine expressions can also contain semidefinite terms, ie. the most general form of an ACC is in
fact

Fr+ (F,X)+g€D

These terms are input into the rows of AFE storage using the functions with infix afebarf, creating
an additional storage structure F.

e The same affine expression storage F, g is shared between affine conic and disjunctive constraints
(see Sec. 6.9).

e If, on the other hand, the user chooses to always store the AFEs one by one sequentially in the
same order as they appear in ACCs then sequential functions such as Task.appendaccseq and
Task. appendaccsseq make it easy to input one or more ACCs by just specifying the starting AFE
index and dimension.

e It is possible to add a number of ACCs in one go using Task.appendaccs.

e When defining an ACC an additional constant vector b can be provided to modify the constant
terms coming from g but only for this particular ACC. This could be useful to reduce F storage
space if, for example, many expressions 7z + b; with the same linear part f”x, but varying
constant terms b;, are to be used throughout ACCs.

6.3 Conic Quadratic Optimization

The structure of a typical conic optimization problem is

minimize e+ cf
subject to ¢ < Az < uc,
r < T < u®,
Fz+g € D,

29

(see Sec. 12 for detailed formulations). We recommend Sec. 6.2 for a tutorial on how problems of that
form are represented in MOSEK and what data structures are relevant. Here we discuss how to set-up
problems with the (rotated) quadratic cones.

MOSEK supports two types of quadratic cones, namely:

e Quadratic cone:

e Rotated quadratic cone:

n—1
or = xER”:ngxlzzzi, g >0, x>0
i=2

For example, consider the following constraint:
(1'43 $0,$2) € Q3

which describes a convex cone in R? given by the inequality:

T4 > \/ngrz%.

For other types of cones supported by MOSEK, see Sec. 15.11 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

6.3.1 Example CQO1

Consider the following conic quadratic problem which involves some linear constraints, a quadratic cone
and a rotated quadratic cone.

minimize T4+ T5 + Tg
subject to x1 +xo+2x3 =
Ty, T2, T3 > 0, (6.10)

Ty 2 \V4 ZL’% +x%a

2
2z5w6 > 23

The two conic constraints can be expressed in the ACC form as shown in (6.11)

000100 a1 0
100000 o 0

010000 5 0 s

000010 e |t o | €L (6.11)
000001 5 0

001000 6 0

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

30

Setting up the conic constraints

In order to append the conic constraints we first input the matrix F and vector g appearing in (6.11).
The matrix F is sparse and we input only its nonzeros using Task.putafefentrylist. Since g is zero,
nothing needs to be done about this vector.

Each of the conic constraints is appended using the function Task.appendacc. In the first case we
append the quadratic cone determined by the first three rows of F and then the rotated quadratic cone
depending on the remaining three rows of F.

Create a matriz F such that F * ¢ = [2(3),z(0),z(1),2(4{),z(5),z(2)]
task.appendafes(6)

task.putafefentrylist(range(6), # Rows
[3, 0o, 1, 4, 5, 2], # Columns
[1.0] * 6)

Quadratic come (xz(3),z(0),xz(1)) \in QUAD_3

quadcone = task.appendquadraticconedomain(3)
task.appendacc(quadcone, # Domain
[0, 1, 271, # Rows from F
None) # Unused

Rotated quadratic cone (z(4),z(5),z(2)) \in RQUAD_3
rquadcone = task.appendrquadraticconedomain(3);

task.appendacc(rquadcone, # Domain
[3, 4, 5], # Rows from F
None) # Unused

The first argument selects the domain, which must be appended before being used, and must have
the dimension matching the number of affine expressions appearing in the constraint. Variants of this
method are available to append multiple ACCs at a time. It is also possible to define the matrix F using
a variety of methods (row after row, column by column, individual entries, etc.) similarly as for the
linear constraint matrix A.

For a more thorough exposition of the affine expression storage (AFE) matrix F and vector g see
Sec. 6.2.

Source code

Listing 6.4: Source code solving problem (6.10).

import sys
import mosek

Since the actual value of Infinity is ignores, we define it solely
for symbolic purposes:
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)

sys.stdout.flush()

def main():
Create a task
with mosek.Task() as task:
Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

(continues on next page)

31

(continued from previous page)

bkc = [mosek.boundkey.fx]
blc = [1.0]
buc = [1.0]

¢ = [0.0, 0.0, 0.0,

1.0, 1.0, 1.0]
bkx = [mosek.boundkey.lo, mosek.boundkey.lo, mosek.boundkey.lo,
mosek.boundkey.fr, mosek.boundkey.fr, mosek.boundkey.fr]
(0.0, 0.0, 0.0,
-inf, -inf, -inf]
bux = [inf, inf, inf,

inf, inf, inf]

blx

[[ol, [0], [0]]
[[t.0], [1.0], [2.0]]

asub
aval

numvar = len(bkx)
numcon = len(bkc)
NUMANZ = 4

Append 'mumcon' empty constraints.
The constraints will initzally have no bounds.
task.appendcons (numcon)

#Append 'numvar' wariables.
The wvariables will initially be fized at zero (z=0).
task.appendvars (numvar)

for j in range(numvar):
Set the linear term c_j in the objective.
task.putcj(j, c[jl)
Set the bounds on wvartable j
blz[j] <= z_j <= buz[j]
task.putvarbound(j, bkx[jl, blx[jl, bux[jl)

for j in range(len(aval)):
Input column j of 4

task.putacol(j, # Variable (column) index.
Row index of mon-zeros in column 7.
asubl[j],
avall[jl) # Non-zero Values of column j.

for i in range(numcon) :
task.putconbound (i, bkc[i], blc[i], buc[i])

Input the affine conic constraints
Create a matriz F such that F * ¢ = [z2(3),z(0),z(1),z(4),z(5),z(2)]
task.appendafes(6)

task.putafefentrylist (range(6), # Rows
[3, 0, 1, 4, 5, 2], # Columns
[1.0] * 6)

Quadratic come (xz(3),z(0),xz(1)) \in QUAD_3

quadcone = task.appendquadraticconedomain(3)
task.appendacc(quadcone, # Domain
[o, 1, 21, # Rows from F

(continues on next page)

32

(continued from previous page)

None) # Unused

Rotated quadratic cone (z(4),z(5),z(2)) \in RQUAD_3
rquadcone = task.appendrquadraticconedomain(3);

task.appendacc(rquadcone, # Domain
(3, 4, 51, # Rows from F
None) # Unused

Input the objective sense (minimize/mazimize)
task.putobjsense(mosek.objsense.minimize)

Optimize the task

task.optimize()

task.writedata("cqol.ptf")

Print a summary containing information

about the solution for debugging purposes
task.solutionsummary (mosek.streamtype.msg)
prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

Output a solution
xx = task.getxx(mosek.soltype.itr)

if solsta == mosek.solsta.optimal:
print ("Optimal solution: %s" 7% xx)
elif solsta == mosek.solsta.dual_infeas_cer:
print ("Primal or dual infeasibility.\n")
elif solsta == mosek.solsta.prim_infeas_cer:
print ("Primal or dual infeasibility.\n")
elif mosek.solsta.unknown:
print ("Unknown solution status")
else:
print ("Other solution status")

call the main function

try:
main()

except mosek.MosekException as e:
print ("ERROR: 7s" 7 str(e.errno))
print ("\t%s" % e.msg)
sys.exit (1)

except:
import traceback
traceback.print_exc()
sys.exit (1)

33

6.4 Power Cone Optimization

The structure of a typical conic optimization problem is

minimize e+l
subject to ¢ < Ax < wuc,
r < T < u®,
Fx+g € D,

(see Sec. 12 for detailed formulations). We recommend Sec. 6.2 for a tutorial on how problems of that
form are represented in MOSEK and what data structures are relevant. Here we discuss how to set-up
problems with the primal/dual power cones.

MOSEK supports the primal and dual power cones, defined as below:

e Primal power cone:

ne—1

Pk =(xeR" : fo’ Zo...,Tp,—1 =0
i=0

where s =), a; and f; = /s, so that). 3; = 1.

e Dual power cone:

ng—1) Bi
(,ng): reR"™ : H (?) > To..., Tny—1 >0
[

=0

where s =). a; and §; = /s, so that), 3; = 1.
Perhaps the most important special case is the three-dimensional power cone family:
P?’l_a = {:c € R3: afal™ > |aal, zo, 21 > 0}.

which has the corresponding dual cone:

For example, the conic constraint (z,y,2z) € Py>>"™ is equivalent to 20247 > |z|, or simply
xy3 > 2% with z,y > 0.

For other types of cones supported by MOSEK, see Sec. 15.11 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

6.4.1 Example POW1

Consider the following optimization problem which involves powers of variables:
maximize 232298 + 294 — 2
subject to To+ T1 + 220 2, (6.12)

zg,r1,72 = 0.

We convert (6.12) into affine conic form using auxiliary variables as bounds for the power expressions:

maximize T3 + T4 — o
subject to xg+ x1 + %xz _
6.13
(vo,x1,23) € PyHOE (6.13)
(22,1.0,24) € 'p:())l470.6-

The two conic constraints shown in (6.13) can be expressed in the ACC form as shown in (6.14):

34

1 00 00 . 0
01000 xo 0

00010 ! 0 0.2,0.8 _ 10.4,0.6

00 10 0 w2 |+ o | €Ps x Py 0o, (6.14)
0000 0 3 1

00001 T4 0

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

In order to append the conic constraints we first input the matrix F and vector g which together
determine all the six affine expressions appearing in the conic constraints of (6.13)

Append two power cone domains
pcl = task.appendprimalpowerconedomain(3, [0.2, 0.8])
pc2 = task.appendprimalpowerconedomain(3, [4.0, 6.0])

Create data structures F,g so that

#

F +ax+g = (z(0), z(1), =(3), =(2), 1.0, =(4))
#

task.appendafes(6)

task.putafefentrylist ([0, 1, 2, 3, 5], # Rows

[o, 1, 3, 2, 4], #Columns
(1.0, 1.0, 1.0, 1.0, 1.0D)
task.putafeg(4, 1.0)

Append the two conic constraints

task.appendacc(pcl, # Domain
[o, 1, 271, # Rows from F
None) # Unused
task.appendacc(pc2, # Domain
[3, 4, 5], # Rows from F
None) # Unused

Following that, each of the affine conic constraints is appended using the function Task.appendacc.
The first argument selects the domain, which must be appended before being used, and must have the
dimension matching the number of affine expressions appearing in the constraint. In the first case we
append the power cone determined by the first three rows of F and g while in the second call we use the
remaining three rows of F and g.

Variants of this method are available to append multiple ACCs at a time. It is also possible to define
the matrix F using a variety of methods (row after row, column by column, individual entries, etc.)
similarly as for the linear constraint matrix A.

For a more thorough exposition of the affine expression storage (AFE) matrix F and vector g see
Sec. 6.2.

35

Source code

Listing 6.5: Source code solving problem (6.12).

import sys
import mosek

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)

sys.stdout.flush()

def main():

Only a symbolic constant
inf = 0.0

Create a task

with mosek.Task() as task:
Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

csub = [3, 4, 0]

cval [1.0, 1.0, -1.0]

asub = [0, 1, 2]

aval = [1.0, 1.0, 0.5]

numvar, numcon = 5, 1 # z,y,z and 2 auziliary variables for conicy
—constraints

Append 'mumcon' empty comstraints.
The constraints will initially have no bounds.
task.appendcons (numcon)

Append 'numvar' wvariables.
The wvariables will initially be fized at zero (z=0).
task.appendvars (numvar)

Set up the linear part of the problem

task.putclist(csub, cval)

task.putarow(0, asub, aval)

task.putvarboundslice (0, numvar, [mosek.boundkey.fr] * numvar, [inf] * numvar,
— [inf] * numvar)

task.putconbound (0, mosek.boundkey.fx, 2.0, 2.0)

Input the conic constraints

Append two power cone domains

pcl = task.appendprimalpowerconedomain(3, [0.2, 0.8])
pc2 = task.appendprimalpowerconedomain(3, [4.0, 6.0])

Create data structures F,g so that

#

Fxz+g = (z(0), (1), =(3), z(2), 1.0, z(4))

#

task.appendafes(6)

task.putafefentrylist ([0, 1, 2, 3, 5], # Rows
(o, 1, 3, 2, 4], #Columns

[t.0, 1.0, 1.0, 1.0, 1.01)

(continues on next page)

36

(continued from previous page)

task.putafeg(4, 1.0)

Append the two conic constraints

task.appendacc(pcl, # Domain
[o, 1, 271, # Rows from F
None) # Unused
task.appendacc(pc2, # Domain
[3, 4, 5], # Rows from F
None) # Unused

Input the objective sense (minimize/mazimize)
task.putobjsense (mosek.objsense.maximize)

Optimize the task
task.optimize ()

Print a summary containing information

about the solution for debugging purposes
task.solutionsummary (mosek.streamtype.msg)
prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

Output a solution
xx = task.getxx(mosek.soltype.itr)

if solsta == mosek.solsta.optimal:
print ("Optimal solution: %s" % xx[0:3])
elif solsta == mosek.solsta.dual_infeas_cer:
print ("Primal or dual infeasibility.\n")
elif solsta == mosek.solsta.prim_infeas_cer:
print("Primal or dual infeasibility.\n")
elif mosek.solsta.unknown:
print ("Unknown solution status")
else:
print ("Other solution status")

call the main function
try:
main()
except mosek.MosekException as e:
print ("ERROR: 7s" % str(e.code))
if msg is not None:
print("\t%s" 7 e.msg)
sys.exit (1)
except:
import traceback
traceback.print_exc()
sys.exit (1)

37

6.5 Conic Exponential Optimization

The structure of a typical conic optimization problem is

minimize e+l
subject to ¢ < Ax < wuc,
r < T < u®,
Fx+g € D,

(see Sec. 12 for detailed formulations). We recommend Sec. 6.2 for a tutorial on how problems of that
form are represented in MOSEK and what data structures are relevant. Here we discuss how to set-up
problems with the primal/dual exponential cones.

MOSEK supports two exponential cones, namely:

e Primal exponential cone:

Kexp = {x € R : zg > zy exp(a/21), 0,21 > O}.

e Dual exponential cone:

K:xp = {s eR?: 59> —s9e ! exp(s1/s2), s2 <0,s0 > 0}.
For example, consider the following constraint:
(24,20, 22) € Kexp
which describes a convex cone in R? given by the inequalities:
x4 > xoexp(ra/x0), To,x4 > 0.

For other types of cones supported by MOSEK, see Sec. 15.11 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

6.5.1 Example CEO1

Consider the following basic conic exponential problem which involves some linear constraints and an
exponential inequality:

minimize Ty + x1
subject to zo+x1+2x2 = 1,
6.15
o) 2 T exp(xg/xl), ()
Zo, L1 > 0.
The affine conic form of (6.15) is:
minimize Ty + 21
subject to zg+x1+x2 = 1,
Iz € Kep, (6.16)
r € RS

where I is the 3 x 3 identity matrix.

38

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

In order to append the conic constraints we first input the sparse identity matrix F as indicated by
(6.16).

The affine conic constraint is then appended using the function Task.appendacc, with the primal
exponential domain and the list of F rows, in this case consisting of all rows in their natural order.

Create a 3z3 identity matrixz F
task.appendafes(3)

task.putafefentrylist ([0, 1, 2], # Rows
o, 1, 21, # Columns
[1.0] * 3)

Ezponential cone (z(0),z(1),xz(2)) \in EXP

expdomain = task.appendprimalexpconedomain()
task.appendacc (expdomain, # Domain
[o, 1, 21, # Rows from F
None) # Unused

The first argument selects the domain, which must be appended before being used, and must have
the dimension matching the number of affine expressions appearing in the constraint. Variants of this
method are available to append multiple ACCs at a time. It is also possible to define the matrix F using
a variety of methods (row after row, column by column, individual entries, etc.) similarly as for the
linear constraint matrix A.

For a more thorough exposition of the affine expression storage (AFE) matrix F and vector g see
Sec. 6.2.

Source code

Listing 6.6: Source code solving problem (6.15).

import sys
import mosek

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)

sys.stdout.flush()

def main():

Only a symbolic constant
inf = 0.0

Create a task

with mosek.Task() as task:
Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

c=1[1.0, 1.0, 0.0]
a=[1.0, 1.0, 1.0]
numvar, numcon = 3, 1

(continues on next page)

39

(continued from previous page)

Append 'mumcon' empty comstraints.
The constraints will wnitially have no bounds.
task.appendcons (numcon)

Append 'numvar' wvariables.
The wvariables will initially be fized at zero (z=0).
task.appendvars (numvar)

Set up the linear part of the problem

task.putcslice(0, numvar, c)

task.putarow(0, [0, 1, 2], a)

task.putvarboundslice (0, numvar, [mosek.boundkey.fr] * numvar, [inf] * numvar,
< [inf] * numvar)

task.putconbound (0, mosek.boundkey.fx, 1.0, 1.0)

Add a contic comstraint
Create a 3z3 identity matriz F
task.appendafes(3)

task.putafefentrylist ([0, 1, 2], # Rows
(o, 1, 2], # Columns
[1.0] = 3)

Ezponential cone (z(0),z(1),z(2)) \in EXP

expdomain = task.appendprimalexpconedomain()
task.appendacc (expdomain, # Domain
[0, 1, 271, # Rows from F
None) # Unused

Input the objective sense (minimize/mazimize)
task.putobjsense(mosek.objsense.minimize)

Optimize the task

task.optimize()

Print a summary containing information

about the solution for debugging purposes
task.solutionsummary (mosek.streamtype.msg)
prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

Output a solution
xx = task.getxx(mosek.soltype.itr)

if solsta == mosek.solsta.optimal:
print ("Optimal solution: %s" % xx)
elif solsta == mosek.solsta.dual_infeas_cer:
print("Primal or dual infeasibility.\n")
elif solsta == mosek.solsta.prim_infeas_cer:
print ("Primal or dual infeasibility.\n")
elif mosek.solsta.unknown:
print ("Unknown solution status")
else:
print ("Other solution status")

call the main function

(continues on next page)

40

(continued from previous page)

try:
main()
except mosek.MosekException as e:
print ("ERROR: 7%s" % str(e.code))
if msg is not None:
print("\t%s" 7 e.msg)
sys.exit (1)
except:
import traceback
traceback.print_exc()
sys.exit (1)

6.6 Geometric Programming

Geometric programs (GP) are a particular class of optimization problems which can be expressed in
special polynomial form as positive sums of generalized monomials. More precisely, a geometric problem
in canonical form is

minimize fo(z)

subject to fi(z) <1, i=1,...,m, (6.17)
$j>0, j=1,...,n,
where each fo, ..., fin is a posynomial, that is a function of the form

f(x) — Z ckxlllklxglﬂ Coo g Qen
k

with arbitrary real ay; and ¢ > 0. The standard way to formulate GPs in convex form is to introduce
a variable substitution

x; = exp(y;).
Under this substitution all constraints in a GP can be reduced to the form

log(D_exp(afy +bx)) <0 (6.18)
k

involving a log-sum-exp bound. Moreover, constraints involving only a single monomial in x can be even
more simply written as a linear inequality:

aty+b, <0

We refer to the MOSEK Modeling Cookbook and to [BKVHO07] for more details on this reformulation. A
geometric problem formulated in convex form can be entered into MOSEK with the help of exponential
cones.

6.6.1 Example GP1

The following problem comes from [BKVHO07]. Consider maximizing the volume of a h x w x d box
subject to upper bounds on the area of the floor and of the walls and bounds on the ratios h/w and d/w:

maximize hwd
subject to 2(hw + hd) < Ayan,
wd S Aﬂoor, (619)
a <h/w<p,
v <d/w <.

The decision variables in the problem are h, w,d. We make a substitution

h = exp(z),w = exp(y), d = exp(2)

41

https://docs.mosek.com/modeling-cookbook/index.html

after which (6.19) becomes

maximize x4y -+ z

subject to log(exp(z + y + log(2/Awan)) + exp(z + z + log(2/Awan))) < 0,
y+ 2z < log(Afor), (6.20)
log(a) <z —y <log(p),
log(v) < z —y < log(d).

Next, we demonstrate how to implement a log-sum-exp constraint (6.18). It can be written as:

ug > exp(aly +by), (equiv. (uk,1,aly + by) € Kexp),

Zkuk =1.

This presentation requires one extra variable uy for each monomial appearing in the original posynomial
constraint. In this case the affine conic constraints (ACC, see Sec. 6.2) take the form:

(6.21)

00010 0
0000 0 gyc 1

11000 log(2/Awan)

0000 1|37 + 0 € Keoxp X Kexp.
00000 ul 1

1 0100 2 log(2/Awan)

As a matter of demonstration we will also add the constraint
Uy + ug — 1=0

as an affine conic constraint. It means that to define the all the ACCs we need to produce the following
affine expressions (AFE) and store them:

uy, uz, T +y+10g(2/Awan), *+ 2z +log(2/Awan), 1.0, us + ug — 1.0.

We implement it by adding all the affine expressions (AFE) and then picking the ones required for each
ACC:

Listing 6.7: Implementation of log-sum-exp as in (6.21).

Affine expressions appearing in affine conic constraints

2n thts order:

ul, u2, zty+tlog(2/4wall), z+ztlog(2/Awall), 1.0, ultul-1.0
numafe =6

ul, u2 = 3, 4 # Indices of slack wvariables

afeidx = [0, 1, 2, 2, 3, 3, 5, 5]

varidx [ul, w2, x, y, x, 2z, ul, u2]

fval = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

gfull [0, 0, log(2/Aw), log(2/Aw), 1.0, -1.0]

New variables ul, u2
task.appendvars(2)
task.putvarboundsliceconst(ul, u2+1, boundkey.fr, -inf, inf)

Append affine expressions
task.appendafes (numafe)
task.putafefentrylist(afeidx, varidx, fval)
task.putafegslice(0, numafe, gfull)

Two affine conic constraints
expdom = task.appendprimalexpconedomain()

(ul, 1, zty+log(2/4wall)) \in EXP

(continues on next page)

42

(continued from previous page)

task.appendacc(expdom, [0, 4, 2], None)

(u2, 1, ztz+log(2/4wall)) \in EXP
task.appendacc(expdom, [1, 4, 3], None)

The constraint uwl+u2-1 \in \ZERO is added also as an ACC
task.appendacc (task.appendrzerodomain(1), [5], None)

We can now use this function to assemble all constraints in the model. The linear part of the problem
is entered as in Sec. 6.1.

Listing 6.8: Source code solving problem (6.20).

def max_volume_box(Aw, Af, alpha, beta, gamma, delta):
Basic dimensions of our problem

numvar =3 # Variables in original problem
X, ¥, 2 =0, 1, 2 # Indices of variables
numcon =3 # Linear constraints in original problem

Linear part of the problem
cval = [1, 1, 1]

asubi = [0, 0, 1, 1, 2, 2]

asubj = [y, z, x, y, 2z, vl

aval = [t.0, 1.0, 1.0, -1.0, 1.0, -1.0]

bkc = [boundkey.up, boundkey.ra, boundkey.ra]
blc = [-inf, log(alpha), log(gamma)]

buc = [log(Af), log(beta), log(delta)]

with Task() as task:
task.set_Stream(streamtype.log, streamprinter)

Add variables and constraints
task.appendvars (numvar)
task.appendcons (numcon)

Objective ts the sum of three first wvariables
task.putobjsense(objsense.maximize)

task.putcslice(0, numvar, cval)

task.putvarboundsliceconst (0, numvar, boundkey.fr, -inf, inf)

Add the three linear constraints
task.putaijlist(asubi, asubj, aval)
task.putconboundslice(0, numvar, bkc, blc, buc)

Affine expressions appearing in affine conic constraints

2n thts order:

ul, ue2, ztytlog(2/4wall), z+ztlog(2/Awall), 1.0, ultu2-1.0
numafe =6

ul, u2 = 3, 4 # Indices of slack wvariables

afeidx = [0, 1, 2, 2, 3, 3, 5, 5]

varidx = [ul, u2, x, y, x, z, ul, u2]

fval [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

gfull [0, 0, log(2/Aw), log(2/Aw), 1.0, -1.0]

New wvariables ul, u2
task.appendvars (2)
task.putvarboundsliceconst(ul, u2+1, boundkey.fr, -inf, inf)

(continues on next page)

43

(continued from previous page)

Append affine expressions
task.appendafes (numafe)
task.putafefentrylist(afeidx, varidx, fval)
task.putafegslice(0, numafe, gfull)

Two affine conic constraints
expdom = task.appendprimalexpconedomain()

(u1l, 1, zty+log(2/4wall)) \in EXP
task.appendacc (expdom, [0, 4, 2], None)

(u2, 1, z+z+log(2/4wall)) \in EXP
task.appendacc(expdom, [1, 4, 3], None)

The constraint ul+u2-1 \in \ZERO <s added also as an ACC
task.appendacc (task.appendrzerodomain(1), [5], None)

Solve and map to original h, w, d
task.optimize()

task.writedata("gpl.ptf");

xyz = task.getxxslice(soltype.itr, O, numvar)
return exp(xyz)

Given sample data we obtain the solution h,w, d as follows:

Listing 6.9: Sample data for problem (6.19).

Aw, Af, alpha, beta, gamma, delta = 200.0, 50.0, 2.0, 10.0, 2.0, 10.0
h,w,d = max_volume_box(Aw, Af, alpha, beta, gamma, delta)
print ("h={0:.3f}, w={1:.3f}, d={2:.3f}".format(h, w, d))

6.7 Semidefinite Optimization

Semidefinite optimization is a generalization of conic optimization, allowing the use of matrix variables

belonging to the convex cone of positive semidefinite matrices
Si:{XGST:zTXZEO, VzE]RT},

where 8" is the set of r X r real-valued symmetric matrices.
MOSEK can solve semidefinite optimization problems stated in the primal form,

minimize Z?;é (C;,X;) + Z;L:_(} cjzj +cf
subject to I§ < Z?;é (Aij, X ;) + Z?;Ol a;jT; < wf, i=0,....,m—1,
Z?};é <Fijayj>+2?;ol fijzj+g9i € Ki, i=0,...,q—1,
S T, < uf, j=0,...,n—1,
ek, X; eS8, j=0,...,p—1

(6.22)

where the problem has p symmetric positive semidefinite variables X; € S}’ of dimension r;. The
symmetric coefficient matrices C; € 8" and A;; € 8™ are used to specify PSD terms in the linear
objective and the linear constraints, respectively. The symmetric coefficient matrices Fi,j € 8’7 are used
to specify PSD terms in the affine conic constraints. Note that ¢ ((6.22)) is the total dimension of all
the cones, i.e. ¢ =dim(Ky x ... x Ky), given there are k¥ ACCs. We use standard notation for the matrix

inner product, i.e., for A, B € R™*" we have

m—1n—1

<A,B> = Z ZA”B”

i=0 j=0

44

In addition to the primal form presented above, semidefinite problems can be expressed in their dual
form. Constraints in this form are usually called linear matrix inequalities (LMIs). LMIs can be
easily specified in MOSEK using the vectorized positive semidefinite cone which is defined as:

e Vectorized semidefinite domain:

SEY = {(21,. .. Taqasn)2) ER™ : sMat(z) € S},
where n = d(d+ 1)/2 and,

T 172/\/5 Id/\/§
Mat(a) = | F2/V2 e V2

Ta/V2 @21 /V2 0 Ty

or equivalently
Stvee = [sVee(X) : X € S},
where

sVec(X) = (X1, V2Xa1, ..., V2Xa1, Xoo, V2 X302, . . ., Xaa)-

In other words, the domain consists of vectorizations of the lower-triangular part of a positive semidef-
inite matrix, with the non-diagonal elements additionally rescaled. LMIs can be expressed by restricting
appropriate affine expressions to this cone type.

For other types of cones supported by MOSEK, see Sec. 15.11 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

We demonstrate the setup of semidefinite variables and their coefficient matrices in the following
examples:

e Sec. 6.7.1: A problem with one semidefinite variable and linear and conic constraints.
e Sec. 6.7.2: A problem with two semidefinite variables with a linear constraint and bound.

e Sec. 6.7.3: A problem with linear matrix inequalities and the vec