
MOSEK Optimizer API for Python
Release 10.0.39

MOSEK ApS

20 March 2023

Contents

1 Introduction 1
1.1 Why the Optimizer API for Python? . 2

2 Contact Information 3

3 License Agreement 4
3.1 MOSEK end-user license agreement . 4
3.2 Third party licenses . 4

4 Installation 10
4.1 Anaconda . 10
4.2 PIP and Wheels . 10
4.3 Manual installation . 11
4.4 Testing the Installation . 11
4.5 Troubleshooting . 11

5 Design Overview 13
5.1 Modeling . 13
5.2 “Hello World!” in MOSEK . 13

6 Optimization Tutorials 15
6.1 Linear Optimization . 16
6.2 From Linear to Conic Optimization . 22
6.3 Conic Quadratic Optimization . 29
6.4 Power Cone Optimization . 34
6.5 Conic Exponential Optimization . 38
6.6 Geometric Programming . 41
6.7 Semidefinite Optimization . 44
6.8 Integer Optimization . 54
6.9 Disjunctive constraints . 59
6.10 Quadratic Optimization . 65
6.11 Problem Modification and Reoptimization . 72
6.12 Parallel optimization . 77
6.13 Retrieving infeasibility certificates . 78

7 Solver Interaction Tutorials 81
7.1 Environment and task . 81
7.2 Accessing the solution . 82
7.3 Errors and exceptions . 85
7.4 Input/Output . 87
7.5 Setting solver parameters . 89
7.6 Retrieving information items . 90
7.7 Progress and data callback . 91
7.8 MOSEK OptServer . 93

8 Debugging Tutorials 97
8.1 Understanding optimizer log . 98

i

8.2 Addressing numerical issues . 102
8.3 Debugging infeasibility . 104
8.4 Python Console . 109

9 Advanced Numerical Tutorials 111
9.1 Solving Linear Systems Involving the Basis Matrix . 111
9.2 Calling BLAS/LAPACK Routines from MOSEK . 118
9.3 Computing a Sparse Cholesky Factorization . 120

10 Technical guidelines 123
10.1 Memory management and garbage collection . 123
10.2 Names . 123
10.3 Multithreading . 124
10.4 Efficiency . 124
10.5 The license system . 125
10.6 Deployment . 126

11 Case Studies 127
11.1 Portfolio Optimization . 127
11.2 Logistic regression . 148
11.3 Concurrent optimizer . 152

12 Problem Formulation and Solutions 156
12.1 Linear Optimization . 156
12.2 Conic Optimization . 159
12.3 Semidefinite Optimization . 162
12.4 Quadratic and Quadratically Constrained Optimization 164

13 Optimizers 167
13.1 Presolve . 167
13.2 Linear Optimization . 169
13.3 Conic Optimization - Interior-point optimizer . 176
13.4 The Optimizer for Mixed-Integer Problems . 180

14 Additional features 191
14.1 Problem Analyzer . 191
14.2 Automatic Repair of Infeasible Problems . 192
14.3 Sensitivity Analysis . 196

15 API Reference 204
15.1 API Conventions . 204
15.2 Functions grouped by topic . 208
15.3 Class Env . 219
15.4 Class Task . 228
15.5 Exceptions . 345
15.6 Parameters grouped by topic . 345
15.7 Parameters (alphabetical list sorted by type) . 357
15.8 Response codes . 403
15.9 Enumerations . 424
15.10 Function Types . 450
15.11 Supported domains . 451

16 Supported File Formats 454
16.1 The LP File Format . 455
16.2 The MPS File Format . 459
16.3 The OPF Format . 471
16.4 The CBF Format . 481
16.5 The PTF Format . 498
16.6 The Task Format . 504

ii

16.7 The JSON Format . 505
16.8 The Solution File Format . 511

17 List of examples 514

18 Interface changes 516
18.1 Important changes compared to version 9 . 516
18.2 Changes compared to version 9 . 517
18.3 Functions compared to version 9 . 517
18.4 Parameters compared to version 9 . 520
18.5 Constants compared to version 9 . 521
18.6 Response Codes compared to version 9 . 523

Bibliography 526

Symbol Index 527

Index 544

iii

Chapter 1

Introduction

The MOSEK Optimization Suite 10.0.39 is a powerful software package capable of solving large-scale
optimization problems of the following kind:

• linear,

• conic:

– conic quadratic (also known as second-order cone),
– involving the exponential cone,
– involving the power cone,
– semidefinite,

• convex quadratic and quadratically constrained,

• integer.

In order to obtain an overview of features in the MOSEK Optimization Suite consult the product
introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all rela-
tions are linear. The tremendous success of both applications and theory of linear optimization can be
ascribed to the following factors:

• The required data are simple, i.e. just matrices and vectors.

• Convexity is guaranteed since the problem is convex by construction.

• Linear functions are trivially differentiable.

• There exist very efficient algorithms and software for solving linear problems.

• Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the
advantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

𝐴𝑥− 𝑏 ≥ 0.

In conic optimization this is replaced with a wider class of constraints

𝐴𝑥− 𝑏 ∈ 𝒦

where 𝒦 is a convex cone. For example in 3 dimensions 𝒦 may correspond to an ice cream cone. The
conic optimizer in MOSEK supports a number of different types of cones 𝒦, which allows a surprisingly
large number of nonlinear relations to be modeled, as described in the MOSEK Modeling Cookbook,
while preserving the nice algorithmic and theoretical properties of linear optimization.

1

https://docs.mosek.com/10.0/intro/index.html
https://docs.mosek.com/10.0/intro/index.html
https://docs.mosek.com/modeling-cookbook/index.html

1.1 Why the Optimizer API for Python?

The Optimizer API for Python provides an object-oriented interface to the MOSEK optimizers. This
object oriented design is common to Java, Python and .NET and is based on a thin class-based interface
to the native C optimizer API. The overhead introduced by this mapping is minimal.

The Optimizer API for Python can be used with any application running on recent Python 3 inter-
preters. It consists of a single mosek package which can be used in Python scripts and interactive shells
making it suited for fast prototyping and inspection of models.

The Optimizer API for Python provides access to:

• Linear Optimization (LO)

• Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)

• Power Cone Optimization

• Conic Exponential Optimization (CEO)

• Convex Quadratic and Quadratically Constrained Optimization (QO, QCQO)

• Semidefinite Optimization (SDO)

• Mixed-Integer Optimization (MIO)

as well as to additional functions for

• problem analysis,

• sensitivity analysis,

• infeasibility diagnostics,

• BLAS/LAPACK linear algebra routines.

2

Chapter 2

Contact Information

Phone +45 7174 9373
Website mosek.com
Email

sales@mosek.com Sales, pricing, and licensing
support@mosek.com Technical support, questions and bug reports
info@mosek.com Everything else.

Mailing Address
MOSEK ApS
Fruebjergvej 3
Symbion Science Park, Box 16
2100 Copenhagen O
Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger https://blog.mosek.com/
Google Group https://groups.google.com/forum/#!forum/mosek
Twitter https://twitter.com/mosektw
Linkedin https://www.linkedin.com/company/mosek-aps
Youtube https://www.youtube.com/channel/UCvIyectEVLP31NXeD5mIbEw

In particular Twitter is used for news, updates and release announcements.

3

https://mosek.com/
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com
https://blog.mosek.com/
https://groups.google.com/forum/#!forum/mosek
https://twitter.com/mosektw
https://www.linkedin.com/company/mosek-aps
https://www.youtube.com/channel/UCvIyectEVLP31NXeD5mIbEw

Chapter 3

License Agreement

3.1 MOSEK end-user license agreement

Before using the MOSEK software, please read the license agreement available in the distribution
at <MSKHOME>/mosek/10.0/mosek-eula.pdf or on the MOSEK website https://mosek.com/products/
license-agreement. By using MOSEK you agree to the terms of that license agreement.

3.2 Third party licenses

MOSEK uses some third-party open-source libraries. Their license details follow.

zlib

MOSEK uses the zlib library obtained from the zlib website. The license agreement for zlib is shown
in Listing 3.1.

Listing 3.1: zlib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

4

https://mosek.com/products/license-agreement
https://mosek.com/products/license-agreement
http://zlib.org

fplib

MOSEK uses the floating point formatting library developed by David M. Gay obtained from the netlib
website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

{fmt}

MOSEK uses the formatting library {fmt} developed by Victor Zverovich obtained form github/fmt
and distributed under the MIT license. The license agreement fot {fmt} is shown in Listing 3.3.

Listing 3.3: {fmt} license.

Copyright (c) 2012 - present, Victor Zverovich

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

5

http://www.netlib.org
http://www.netlib.org
https://github.com/fmtlib/fmt

Zstandard

MOSEK uses the Zstandard library developed by Facebook obtained from github/zstd. The license
agreement for Zstandard is shown in Listing 3.4.

Listing 3.4: Zstandard license.

BSD License

For Zstandard software

Copyright (c) 2016-present, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name Facebook nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

OpenSSL

MOSEK uses the LibReSSL library, which is build on OpenSSL. OpenSSL is included under the
OpenSSL license, Listing 3.5, and the LibReSSL additions are licensed under the ISC license, Listing
3.6.

Listing 3.5: OpenSSL license

==
Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in

(continues on next page)

6

https://github.com/facebook/zstd
https://www.libressl.org/

(continued from previous page)

the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.
==

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Listing 3.6: ISC license

Copyright (C) 1994-2017 Free Software Foundation, Inc.
Copyright (c) 2014 Jeremie Courreges-Anglas <jca@openbsd.org>
Copyright (c) 2014-2015 Joel Sing <jsing@openbsd.org>
Copyright (c) 2014 Ted Unangst <tedu@openbsd.org>
Copyright (c) 2015-2016 Bob Beck <beck@openbsd.org>
Copyright (c) 2015 Marko Kreen <markokr@gmail.com>
Copyright (c) 2015 Reyk Floeter <reyk@openbsd.org>
Copyright (c) 2016 Tobias Pape <tobias@netshed.de>

Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all
copies.

(continues on next page)

7

(continued from previous page)

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

mimalloc

MOSEK uses the mimalloc memory allocator library from github/mimalloc. The license agreement for
mimalloc is shown in Listing 3.7.

Listing 3.7: mimalloc license.

MIT License

Copyright (c) 2019 Microsoft Corporation, Daan Leijen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

BLASFEO

MOSEK uses the BLASFEO linear algebra library developed by Gianluca Frison, obtained from
github/blasfeo. The license agreement for BLASFEO is shown in Listing 3.8.

Listing 3.8: blasfeo license.

BLASFEO -- BLAS For Embedded Optimization.
Copyright (C) 2019 by Gianluca Frison.
Developed at IMTEK (University of Freiburg) under the supervision of Moritz Diehl.
All rights reserved.

The 2-Clause BSD License

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
(continues on next page)

8

https://github.com/microsoft/mimalloc
https://github.com/giaf/blasfeo

(continued from previous page)

list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

oneTBB

MOSEK uses the oneTBB parallelization library which is part of oneAPI developed by Intel, obtained
from github/oneTBB, licensed under the Apache License 2.0. The license agreement for oneTBB can be
found in https://github.com/oneapi-src/oneTBB/blob/master/LICENSE.txt .

9

https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB/blob/master/LICENSE.txt

Chapter 4

Installation

In this section we discuss how to install and setup the MOSEK Optimizer API for Python.

Important: Before running this MOSEK interface please make sure that you:

• Installed MOSEK correctly. Some operating systems require extra steps. See the Installation
guide for instructions and common troubleshooting tips.

• Set up a license. See the Licensing guide for instructions.

Compatibility

The Optimizer API for Python requires Python 3. The supported versions of Python are shown below:

Table 4.1: Supported Python versions.
Platform Python
Linux 64 bit x86 3.6+
Linux 64 bit ARM 3.7+
macOS 64 bit x86 3.6+
macOS 64 bit ARM 3.8+
Windows 64 bit x86 3.6+

4.1 Anaconda

The MOSEK Optimization Suite can be installed as an Anaconda package, see https://anaconda.org/
MOSEK/mosek, for example by running

conda install -c mosek mosek

If you installed the MOSEK package as part of Anaconda, no additional setup is required.

4.2 PIP and Wheels

The MOSEK Optimization Suite can be installed as a Wheels package with PIP, using

pip install Mosek --user

(skip --user for a system-wide installation).
If you installed the MOSEK package with PIP, no additional setup is required.

10

https://docs.mosek.com/10.0/install/index.html
https://docs.mosek.com/10.0/install/index.html
https://docs.mosek.com/10.0/licensing/index.html
https://anaconda.org/MOSEK/mosek
https://anaconda.org/MOSEK/mosek

4.3 Manual installation

Locating files in the MOSEK Optimization Suite

The relevant files of the Optimizer API for Python are organized as reported in Table 4.2.

Table 4.2: Relevant files for the Optimizer API for Python.
Relative Path Description Label
<MSKHOME>/mosek/10.0/tools/platform/<PLATFORM>/python/
3

Python 3 install <PYTHON3DIR>

<MSKHOME>/mosek/10.0/tools/examples/python Examples <EXDIR>
<MSKHOME>/mosek/10.0/tools/examples/data Additional data <MISCDIR>

where

• <MSKHOME> is the folder in which the MOSEK Optimization Suite has been installed,

• <PLATFORM> is the actual platform among those supported by MOSEK, i.e. win64x86, linux64x86
or osx64x86.

Manual install and setting up paths

To install MOSEK for Python run the <PYTHON3DIR>/setup.py script. This will add the MOSEK
module to your Python distribution’s library of modules. The script accepts the standard options typical
for Python setup scripts. For instance, to install MOSEK in the user’s local library run:

$ python <PYTHON3DIR>/setup.py install --user

on Linux and macOS or

C:\> python <PYTHON3DIR>\setup.py install --user

on Windows.
For a system-wide installation drop the --user flag.

4.4 Testing the Installation

First of all, to check that the Optimizer API for Python was properly installed, start Python and try

import mosek

The installation can further be tested by running some of the enclosed examples. Open a terminal,
change folder to <EXDIR> and use Python to run a selected example, for instance:

python lo1.py

4.5 Troubleshooting

error: could not create ‘build’: Access is denied

If an attempt to install the Python interface results in an error such as

error: could not create 'build': Access is denied

then you have no write permissions to the folder where MOSEK is installed. This can happen for
example if the package was installed by an administrator, and a user is trying to set up the Python
interface. One solution is to install MOSEK in another location. Another solution is to specify the
location of the build folder in a place the user can write to, for example:

11

python setup.py build --build-base=SOME_FOLDER install --user

12

Chapter 5

Design Overview

5.1 Modeling

Optimizer API for Python is an interface for specifying optimization problems directly in matrix form.
It means that an optimization problem such as:

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 ≤ 𝑏,

𝑥 ∈ 𝒦

is specified by describing the matrix 𝐴, vectors 𝑏, 𝑐 and a list of cones 𝒦 directly.
The main characteristics of this interface are:

• Simplicity: once the problem data is assembled in matrix form, it is straightforward to input it
into the optimizer.

• Exploiting sparsity: data is entered in sparse format, enabling huge, sparse problems to be
defined and solved efficiently.

• Efficiency: the Optimizer API incurs almost no overhead between the user’s representation of the
problem and MOSEK’s internal one.

Optimizer API for Python does not aid with modeling. It is the user’s responsibility to express the
problem in MOSEK’s standard form, introducing, if necessary, auxiliary variables and constraints. See
Sec. 12 for the precise formulations of problems MOSEK solves.

5.2 “Hello World!” in MOSEK

Here we present the most basic workflow pattern when using Optimizer API for Python.

Creating an environment and task

Optionally, an interaction with MOSEK using Optimizer API for Python can begin by creating a
MOSEK environment. It coordinates the access to MOSEK from the current process.

In most cases the user does not interact directly with the environment, except for creating optimiza-
tion tasks, which contain actual problem specifications and where optimization takes place. In this case
the user can directly create tasks without invoking an environment, as we do here.

13

Defining tasks

After a task is created, the input data can be specified. An optimization problem consists of several
components; objective, objective sense, constraints, variable bounds etc. See Sec. 6 for basic tutorials on
how to specify and solve various types of optimization problems.

Retrieving the solutions

When the model is set up, the optimizer is invoked with the call to Task.optimize . When the opti-
mization is over, the user can check the results and retrieve numerical values. See further details in Sec.
7.

We refer also to Sec. 7 for information about more advanced mechanisms of interacting with the
solver.

Source code example

Below is the most basic code sample that defines and solves a trivial optimization problem

minimize 𝑥
subject to 2.0 ≤ 𝑥 ≤ 3.0.

For simplicity the example does not contain any error or status checks.

Listing 5.1: “Hello World!” in MOSEK

##
Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
#
File: helloworld.py
#
The most basic example of how to get started with MOSEK.

from mosek import *

with Env() as env: # Create Environment
with env.Task(0, 1) as task: # Create Task

task.appendvars(1) # 1 variable x
task.putcj(0, 1.0) # c_0 = 1.0
task.putvarbound(0, boundkey.ra, 2.0, 3.0) # 2.0 <= x <= 3.0
task.putobjsense(objsense.minimize) # minimize

task.optimize() # Optimize

x = task.getxx(soltype.itr) # Get solution
print("Solution x = {}".format(x[0])) # Print solution

14

Chapter 6

Optimization Tutorials

In this section we demonstrate how to set up basic types of optimization problems. Each short tutorial
contains a working example of formulating problems, defining variables and constraints and retrieving
solutions.

• Model setup and linear optimization tutorial (LO)

– Sec. 6.1. Linear optimization tutorial, recommended first reading for all users. Apart from
setting up a linear problem it also demonstrates how to work with an optimizer task: initialize
it, add variables and constraints and retrieve the solution.

• Conic optimization tutorials (CO)

– Sec. 6.2. A step by step introduction to programming with affine conic constraints (ACC).
Explains all the steps required to input a conic problem. Recommended first reading for users
of the conic optimizer.

Further basic examples demonstrating various types of conic constraints:

– Sec. 6.3. A basic example with a quadratic cone (CQO).
– Sec. 6.4. A basic example with a power cone.
– Sec. 6.5. A basic example with a exponential cone (CEO).
– Sec. 6.6. A basic tutorial of geometric programming (GP).

• Semidefinite optimization tutorial (SDO)

– Sec. 6.7. Examples showing how to solve semidefinite optimization problems with one or more
semidefinite variables.

• Mixed-integer optimization tutorials (MIO)

– Sec. 6.8. Shows how to declare integer variables for linear and conic problems and how to set
an initial solution.

– Sec. 6.9. Demonstrates how to create a problem with disjunctive constraints (DJC).

• Quadratic optimization tutorial (QO, QCQO)

– Sec. 6.10. Examples showing how to solve a quadratic or quadratically constrained problem.

• Reoptimization tutorials

– Sec. 6.11. Various techniques for modifying and reoptimizing a problem.

• Parallel optimization tutorial

– Sec. 6.12. Shows how to optimize tasks in parallel.

• Infeasibility certificates

– Sec. 6.13. Shows how to retrieve and analyze a primal infeasibility certificate for continuous
problems.

15

6.1 Linear Optimization

The simplest optimization problem is a purely linear problem. A linear optimization problem is a problem
of the following form:

Minimize or maximize the objective function

𝑛−1∑︁
𝑗=0

𝑐𝑗𝑥𝑗 + 𝑐𝑓

subject to the linear constraints

𝑙𝑐𝑘 ≤
𝑛−1∑︁
𝑗=0

𝑎𝑘𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

and the bounds

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1.

The problem description consists of the following elements:

• 𝑚 and 𝑛 — the number of constraints and variables, respectively,

• 𝑥 — the variable vector of length 𝑛,

• 𝑐 — the coefficient vector of length 𝑛

𝑐 =

⎡⎢⎣ 𝑐0
...

𝑐𝑛−1

⎤⎥⎦ ,

• 𝑐𝑓 — fixed term in the objective,

• 𝐴 — an 𝑚× 𝑛 matrix of coefficients

𝐴 =

⎡⎢⎣ 𝑎0,0 · · · 𝑎0,(𝑛−1)

... · · ·
...

𝑎(𝑚−1),0 · · · 𝑎(𝑚−1),(𝑛−1)

⎤⎥⎦ ,

• 𝑙𝑐 and 𝑢𝑐 — the lower and upper bounds on constraints,

• 𝑙𝑥 and 𝑢𝑥 — the lower and upper bounds on variables.

Please note that we are using 0 as the first index: 𝑥0 is the first element in variable vector 𝑥.

6.1.1 Example LO1
The following is an example of a small linear optimization problem:

maximize 3𝑥0 + 1𝑥1 + 5𝑥2 + 1𝑥3

subject to 3𝑥0 + 1𝑥1 + 2𝑥2 = 30,
2𝑥0 + 1𝑥1 + 3𝑥2 + 1𝑥3 ≥ 15,

2𝑥1 + 3𝑥3 ≤ 25,

(6.1)

under the bounds

0 ≤ 𝑥0 ≤ ∞,
0 ≤ 𝑥1 ≤ 10,
0 ≤ 𝑥2 ≤ ∞,
0 ≤ 𝑥3 ≤ ∞.

16

Solving the problem

To solve the problem above we go through the following steps:

1. (Optionally) Create an environment.

2. Create an optimization task.

3. Load a problem into the task object.

4. Optimization.

5. Extracting the solution.

Below we explain each of these steps.

Create an environment.

The user can start by creating a MOSEK environment, but it is not necessary if the user does not need
access to other functionalities, license management, additional routines, etc. Therefore in this tutorial
we don’t create an explicit environment.

Create an optimization task.

We create an empty task object. A task object represents all the data (inputs, outputs, parameters,
information items etc.) associated with one optimization problem.

Create a task object
with mosek.Task() as task:

Attach a log stream printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

We also connect a call-back function to the task log stream. Messages related to the task are passed
to the call-back function. In this case the stream call-back function writes its messages to the standard
output stream. See Sec. 7.4.

Load a problem into the task object.

Before any problem data can be set, variables and constraints must be added to the problem via calls to
the functions Task.appendcons and Task.appendvars .

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

New variables can now be referenced from other functions with indexes in 0, . . . , numvar− 1 and new
constraints can be referenced with indexes in 0, . . . , numcon − 1. More variables and/or constraints can
be appended later as needed, these will be assigned indexes from numvar/numcon and up.

Next step is to set the problem data. We loop over each variable index 𝑗 = 0, . . . , numvar− 1 calling
functions to set problem data. We first set the objective coefficient 𝑐𝑗 = c[j] by calling the function
Task.putcj .

task.putcj(j, c[j])

17

Setting bounds on variables

The bounds on variables are stored in the arrays

Bound keys for variables
bkx = [mosek.boundkey.lo,

mosek.boundkey.ra,
mosek.boundkey.lo,
mosek.boundkey.lo]

Bound values for variables
blx = [0.0, 0.0, 0.0, 0.0]
bux = [+inf, 10.0, +inf, +inf]

and are set with calls to Task.putvarbound .

Set the bounds on variable j
blx[j] <= x_j <= bux[j]
task.putvarbound(j, bkx[j], blx[j], bux[j])

The Bound key stored in bkx specifies the type of the bound according to Table 6.1.

Table 6.1: Bound keys as defined in the enum boundkey.
Bound key Type of bound Lower bound Upper bound
boundkey.fx 𝑢𝑗 = 𝑙𝑗 Finite Identical to the lower bound
boundkey.fr Free −∞ +∞
boundkey.lo 𝑙𝑗 ≤ · · · Finite +∞
boundkey.ra 𝑙𝑗 ≤ · · · ≤ 𝑢𝑗 Finite Finite
boundkey.up · · · ≤ 𝑢𝑗 −∞ Finite

For instance bkx[0]= boundkey.lo means that 𝑥0 ≥ 𝑙𝑥0 . Finally, the numerical values of the bounds
on variables are given by

𝑙𝑥𝑗 = blx[j]

and

𝑢𝑥
𝑗 = bux[j].

Defining the linear constraint matrix.

Recall that in our example the 𝐴 matrix is given by

𝐴 =

⎡⎣ 3 1 2 0
2 1 3 1
0 2 0 3

⎤⎦ .

This matrix is stored in sparse format in the arrays:

asub = [[0, 1],
[0, 1, 2],
[0, 1],
[1, 2]]

aval = [[3.0, 2.0],
[1.0, 1.0, 2.0],
[2.0, 3.0],
[1.0, 3.0]]

The array aval[j] contains the non-zero values of column 𝑗 and asub[j] contains the row indices
of these non-zeros.

Using the function Task.putacol we set column 𝑗 of 𝐴

18

task.putacol(j, # Variable (column) index.
asub[j], # Row index of non-zeros in column j.
aval[j]) # Non-zero Values of column j.

There are many alternative formats for entering the 𝐴 matrix. See functions such as Task.putarow ,
Task.putarowlist , Task.putaijlist and similar.

Finally, the bounds on each constraint are set by looping over each constraint index 𝑖 =
0, . . . , numcon− 1

Set the bounds on constraints.
blc[i] <= constraint_i <= buc[i]

for i in range(numcon):
task.putconbound(i, bkc[i], blc[i], buc[i])

Optimization

After the problem is set-up the task can be optimized by calling the function Task.optimize .

task.optimize()

Extracting the solution.

After optimizing the status of the solution is examined with a call to Task.getsolsta . If the solution
status is reported as solsta.optimal the solution is extracted in the lines below:

xx = task.getxx(mosek.soltype.bas)

The Task.getxx function obtains the solution. MOSEK may compute several solutions depending
on the optimizer employed. In this example the basic solution is requested by setting the first argument
to soltype.bas .

Catching exceptions

We catch any exceptions thrown by MOSEK in the lines:

except mosek.Error as e:
print("ERROR: %s" % str(e.errno))
if e.msg is not None:

print("\t%s" % e.msg)
sys.exit(1)

The types of exceptions that MOSEK can throw can be seen in Sec. 15.5. See also Sec. 7.3.

Source code

The complete source code lo1.py of this example appears below. See also lo2.py for a version where
the 𝐴 matrix is entered row-wise.

Listing 6.1: Linear optimization example.

import sys
import mosek

Since the value of infinity is ignored, we define it solely
for symbolic purposes
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
(continues on next page)

19

(continued from previous page)

sys.stdout.flush()

def main():
Create a task object
with mosek.Task() as task:

Attach a log stream printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

Bound keys for constraints
bkc = [mosek.boundkey.fx,

mosek.boundkey.lo,
mosek.boundkey.up]

Bound values for constraints
blc = [30.0, 15.0, -inf]
buc = [30.0, +inf, 25.0]

Bound keys for variables
bkx = [mosek.boundkey.lo,

mosek.boundkey.ra,
mosek.boundkey.lo,
mosek.boundkey.lo]

Bound values for variables
blx = [0.0, 0.0, 0.0, 0.0]
bux = [+inf, 10.0, +inf, +inf]

Objective coefficients
c = [3.0, 1.0, 5.0, 1.0]

Below is the sparse representation of the A
matrix stored by column.
asub = [[0, 1],

[0, 1, 2],
[0, 1],
[1, 2]]

aval = [[3.0, 2.0],
[1.0, 1.0, 2.0],
[2.0, 3.0],
[1.0, 3.0]]

numvar = len(bkx)
numcon = len(bkc)

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

for j in range(numvar):
Set the linear term c_j in the objective.
task.putcj(j, c[j])

(continues on next page)

20

(continued from previous page)

Set the bounds on variable j
blx[j] <= x_j <= bux[j]
task.putvarbound(j, bkx[j], blx[j], bux[j])

Input column j of A
task.putacol(j, # Variable (column) index.

asub[j], # Row index of non-zeros in column j.
aval[j]) # Non-zero Values of column j.

Set the bounds on constraints.
blc[i] <= constraint_i <= buc[i]

for i in range(numcon):
task.putconbound(i, bkc[i], blc[i], buc[i])

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.maximize)

Solve the problem
task.optimize()
Print a summary containing information
about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)

Get status information about the solution
solsta = task.getsolsta(mosek.soltype.bas)

if (solsta == mosek.solsta.optimal):
xx = task.getxx(mosek.soltype.bas)

print("Optimal solution: ")
for i in range(numvar):

print("x[" + str(i) + "]=" + str(xx[i]))
elif (solsta == mosek.solsta.dual_infeas_cer or

solsta == mosek.solsta.prim_infeas_cer):
print("Primal or dual infeasibility certificate found.\n")

elif solsta == mosek.solsta.unknown:
print("Unknown solution status")

else:
print("Other solution status")

call the main function
try:

main()
except mosek.Error as e:

print("ERROR: %s" % str(e.errno))
if e.msg is not None:

print("\t%s" % e.msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

21

6.2 From Linear to Conic Optimization

In Sec. 6.1 we demonstrated setting up the linear part of an optimization problem, that is the objective,
linear bounds, linear equalities and inequalities. In this tutorial we show how to define conic constraints.
We recommend going through this general conic tutorial before proceeding to examples with specific
cone types.

MOSEK accepts conic constraints in the form

𝐹𝑥 + 𝑔 ∈ 𝒟

where

• 𝑥 ∈ R𝑛 is the optimization variable,

• 𝐷 ⊆ R𝑘 is a conic domain of some dimension 𝑘, representing one of the cone types supported by
MOSEK ,

• 𝐹 ∈ R𝑘×𝑛 and 𝑔 ∈ R𝑘 are data which constitute the sequence of 𝑘 affine expressions appearing
in the rows of 𝐹𝑥 + 𝑔.

Constraints of this form will be called affine conic constraints, or ACC for short. Therefore in
this section we show how to set up a problem of the form

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟1 × · · · × 𝒟𝑝,

with some number 𝑝 of affine conic constraints.
Note that conic constraints are a natural generalization of linear constraints to the general nonlinear

case. For example, a typical linear constraint of the form

𝐴𝑥 + 𝑏 ≥ 0

can be also written as membership in the cone of nonnegative real numbers:

𝐴𝑥 + 𝑏 ∈ R𝑑
≥0,

and that naturally generalizes to

𝐹𝑥 + 𝑔 ∈ 𝒟

for more complicated domains 𝒟 from Sec. 15.11 of which 𝒟 = R𝑑
≥0 is a special case.

6.2.1 Running example
In this tutorial we will consider a sample problem of the form

maximize 𝑐𝑇𝑥
subject to

∑︀
𝑖 𝑥𝑖 = 1,

𝛾 ≥ ‖𝐺𝑥 + ℎ‖2,
(6.2)

where 𝑥 ∈ R𝑛 is the optimization variable and 𝐺 ∈ R𝑘×𝑛, ℎ ∈ R𝑘, 𝑐 ∈ R𝑛 and 𝛾 ∈ R. We will use the
following sample data:

𝑛 = 3, 𝑘 = 2, 𝑥 ∈ R3, 𝑐 = [2, 3,−1]𝑇 , 𝛾 = 0.03, 𝐺 =

[︂
1.5 0.1 0
0.3 0 2.1

]︂
, ℎ =

[︂
0

0.1

]︂
.

To be explicit, the problem we are going to solve is therefore:

maximize 2𝑥0 + 3𝑥1 − 𝑥2

subject to 𝑥0 + 𝑥1 + 𝑥2 = 1,

0.03 ≥
√︀

(1.5𝑥0 + 0.1𝑥1)2 + (0.3𝑥0 + 2.1𝑥2 + 0.1)2.
(6.3)

22

Consulting the definition of a quadratic cone 𝒬 we see that the conic form of this problem is:

maximize 2𝑥0 + 3𝑥1 − 𝑥2

subject to 𝑥0 + 𝑥1 + 𝑥2 = 1,
(0.03, 1.5𝑥0 + 0.1𝑥1, 0.3𝑥0 + 2.1𝑥2 + 0.1) ∈ 𝒬3.

(6.4)

The conic constraint has an affine conic representation 𝐹𝑥 + 𝑔 ∈ 𝒟 as follows:⎡⎣ 0 0 0
1.5 0.1 0
0.3 0 2.1

⎤⎦𝑥 +

⎡⎣ 0.03
0

0.1

⎤⎦ ∈ 𝒬3. (6.5)

Of course by the same logic in the general case the conic form of the problem (6.2) would be

maximize 𝑐𝑇𝑥
subject to

∑︀
𝑖 𝑥𝑖 = 1,

(𝛾,𝐺𝑥 + ℎ) ∈ 𝒬𝑘+1
(6.6)

and the ACC representation of the constraint (𝛾,𝐺𝑥 + ℎ) ∈ 𝒬𝑘+1 would be[︂
0
𝐺

]︂
𝑥 +

[︂
𝛾
ℎ

]︂
∈ 𝒬𝑘+1.

Now we show how to add the ACC (6.5). This involves three steps:

• storing the affine expressions which appear in the constraint,

• creating a domain, and

• combining the two into an ACC.

6.2.2 Step 1: add affine expressions
To store affine expressions (AFE for short) MOSEK provides a matrix F and a vector g with the
understanding that every row of

F𝑥 + g

defines one affine expression. The API functions with infix afe are used to operate on F and g, add
rows, add columns, set individual elements, set blocks etc. similarly to the methods for operating on the
𝐴 matrix of linear constraints. The storage matrix F is a sparse matrix, therefore only nonzero elements
have to be explicitly added.

Remark: the storage F,g may, but does not have to be, equal to the pair 𝐹, 𝑔 appearing in the
expression 𝐹𝑥 + 𝑔. It is possible to store the AFEs in different order than the order they will be used
in 𝐹, 𝑔, as well as store some expressions only once if they appear multiple times in 𝐹𝑥 + 𝑔. In this first
turorial, however, we will for simplicity store all expressions in the same order we will later use them, so
that (F,g) = (𝐹, 𝑔).

In our example we create only one conic constraint (6.5) with three (in general 𝑘+1) affine expressions

0.03,
1.5𝑥0 + 0.1𝑥1,
0.3𝑥0 + 2.1𝑥2 + 0.1.

Given the previous remark, we initialize the AFE storage as:

F =

⎡⎣ 0 0 0
1.5 0.1 0
0.3 0 2.1

⎤⎦ , g =

⎡⎣ 0.03
0

0.1

⎤⎦ . (6.7)

Initially F and g are empty (have 0 rows). We construct them as follows. First, we append a number of
empty rows:

23

Append empty AFE rows for affine expression storage
task.appendafes(k + 1)

We now have F and g with 3 rows of zeros and we fill them up to obtain (6.7).

G matrix in sparse form
Gsubi = [0, 0, 1, 1]
Gsubj = [0, 1, 0, 2]
Gval = [1.5, 0.1, 0.3, 2.1]
Other data
h = [0, 0.1]
gamma = 0.03

Construct F matrix in sparse form
Fsubi = [i + 1 for i in Gsubi] # G will be placed from row number 1 in F
Fsubj = Gsubj
Fval = Gval

Fill in F storage
task.putafefentrylist(Fsubi, Fsubj, Fval)

Fill in g storage
task.putafeg(0, gamma)
task.putafegslice(1, k+1, h)

We have now created the matrices from (6.7). Note that at this point we have not defined any ACC
yet. All we did was define some affine expressions and place them in a generic AFE storage facility to
be used later.

6.2.3 Step 2: create a domain
Next, we create the domain to which the ACC belongs. Domains are created with functions with infix
domain. In the case of (6.5) we need a quadratic cone domain of dimension 3 (in general 𝑘 + 1), which
we create with:

Define a conic quadratic domain
quadDom = task.appendquadraticconedomain(k + 1)

The function returns a domain index, which is just the position in the list of all domains (potentially)
created for the problem. At this point the domain is just stored in the list of domains, but not yet used
for anything.

6.2.4 Step 3: create the actual constraint
We are now in position to create the affine conic constraint. ACCs are created with functions with
infix acc. The most basic variant, Task.appendacc will append an affine conic constraint based on the
following data:

• the list afeidx of indices of AFEs to be used in the constraint. These are the row numbers in F,g
which contain the required affine expressions.

• the index domidx of the domain to which the constraint belongs.

Note that number of AFEs used in afeidx must match the dimension of the domain.
In case of (6.5) we have already arranged F,g in such a way that their (only) three rows contain

the three affine expressions we need (in the correct order), and we already defined the quadratic cone
domain of matching dimension 3. The ACC is now constructed with the following call:

Create the ACC
task.appendacc(quadDom, # Domain index

(continues on next page)

24

(continued from previous page)

range(k+1), # Indices of AFE rows [0,...,k]
None) # Ignored

This completes the setup of the affine conic constraint.

6.2.5 Example ACC1
We refer to Sec. 6.1 for instructions how to set up the objective and linear constraint 𝑥0 + 𝑥1 + 𝑥2 = 1.
All else that remains is to set up the MOSEK environment, task, add variables, call the solver with
Task.optimize and retrieve the solution with Task.getxx . Since our problem contains a nonlinear
constraint we fetch the interior-point solution. The full code solving problem (6.3) is shown below.

Listing 6.2: Full code of example ACC1.

import sys, mosek

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

Define problem data
n, k = 3, 2
Only a symbolic constant
inf = 0.0

Make a MOSEK environment
with mosek.Env() as env:

Attach a printer to the environment
env.set_Stream(mosek.streamtype.log, streamprinter)

Create a task
with env.Task(0, 0) as task:

Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

Create n free variables
task.appendvars(n)
task.putvarboundsliceconst(0, n, mosek.boundkey.fr, -inf, inf)

Set up the objective
c = [2, 3, -1]
task.putobjsense(mosek.objsense.maximize)
task.putclist(range(n), c)

One linear constraint - sum(x) = 1
task.appendcons(1)
task.putarow(0, range(n), [1]*n)
task.putconbound(0, mosek.boundkey.fx, 1.0, 1.0)

Append empty AFE rows for affine expression storage
task.appendafes(k + 1)

G matrix in sparse form
Gsubi = [0, 0, 1, 1]
Gsubj = [0, 1, 0, 2]
Gval = [1.5, 0.1, 0.3, 2.1]

(continues on next page)

25

(continued from previous page)

Other data
h = [0, 0.1]
gamma = 0.03

Construct F matrix in sparse form
Fsubi = [i + 1 for i in Gsubi] # G will be placed from row number 1 in F
Fsubj = Gsubj
Fval = Gval

Fill in F storage
task.putafefentrylist(Fsubi, Fsubj, Fval)

Fill in g storage
task.putafeg(0, gamma)
task.putafegslice(1, k+1, h)

Define a conic quadratic domain
quadDom = task.appendquadraticconedomain(k + 1)

Create the ACC
task.appendacc(quadDom, # Domain index

range(k+1), # Indices of AFE rows [0,...,k]
None) # Ignored

Solve and retrieve solution
task.optimize()
xx = task.getxx(mosek.soltype.itr)
if task.getsolsta(mosek.soltype.itr) == mosek.solsta.optimal:

print("Solution: {xx}".format(xx=list(xx)))

The answer is

[-0.07838011145615721, 1.1289128998004547, -0.0505327883442975]

The dual values 𝑦̇ of an ACC can be obtained with Task.getaccdoty if required.

Demonstrate retrieving the dual of ACC
doty = task.getaccdoty(mosek.soltype.itr,

0) # ACC index
print("Dual of ACC:: {doty}".format(doty=list(doty)))

6.2.6 Example ACC2 - more conic constraints
Now that we know how to enter one affine conic constraint (ACC) we will demonstrate a problem with
two ACCs. From there it should be clear how to add multiple ACCs. To keep things familiar we will
reuse the previous problem, but this time cast it into a conic optimization problem with two ACCs as
follows:

maximize 𝑐𝑇𝑥
subject to (

∑︀
𝑖 𝑥𝑖 − 1, 𝛾, 𝐺𝑥 + ℎ) ∈ {0} × 𝒬𝑘+1 (6.8)

or, using the data from the example:

maximize 2𝑥0 + 3𝑥1 − 𝑥2

subject to 𝑥0 + 𝑥1 + 𝑥2 − 1 ∈ {0},
(0.03, 1.5𝑥0 + 0.1𝑥1, 0.3𝑥0 + 2.1𝑥2 + 0.1) ∈ 𝒬3

In other words, we transformed the linear constraint into an ACC with the one-point zero domain.

26

As before, we proceed in three steps. First, we add the variables and create the storage F, g containing
all affine expressions that appear throughout all off the ACCs. It means we will require 4 rows:

F =

⎡⎢⎢⎣
1 1 1
0 0 0

1.5 0.1 0
0.3 0 2.1

⎤⎥⎥⎦ , g =

⎡⎢⎢⎣
−1
0.03

0
0.1

⎤⎥⎥⎦ . (6.9)

Set AFE rows representing the linear constraint
task.appendafes(1)
task.putafefrow(0, range(n), [1]*n)
task.putafeg(0, -1.0)

Set AFE rows representing the quadratic constraint
task.appendafes(k + 1)
task.putafefrow(2, # afeidx, row number

[0, 1], # varidx, column numbers
[1.5, 0.1]) # values

task.putafefrow(3, # afeidx, row number
[0, 2], # varidx, column numbers
[0.3, 2.1]) # values

h = [0, 0.1]
gamma = 0.03
task.putafeg(1, gamma)
task.putafegslice(2, k+2, h)

Next, we add the required domains: the zero domain of dimension 1, and the quadratic cone domain
of dimension 3.

Define domains
zeroDom = task.appendrzerodomain(1)
quadDom = task.appendquadraticconedomain(k + 1)

Finally, we create both ACCs. The first ACCs picks the 0-th row of F,g and places it in the zero
domain:

task.appendacc(zeroDom, # Domain index
[0], # Indices of AFE rows
None) # Ignored

The second ACC picks rows 1, 2, 3 in F,g and places them in the quadratic cone domain:

task.appendacc(quadDom, # Domain index
[1,2,3], # Indices of AFE rows
None) # Ignored

The completes the construction and we can solve the problem like before:

Listing 6.3: Full code of example ACC2.

import sys, mosek

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

Define problem data
n, k = 3, 2

(continues on next page)

27

(continued from previous page)

Only a symbolic constant
inf = 0.0

Make a MOSEK environment
with mosek.Env() as env:

Attach a printer to the environment
env.set_Stream(mosek.streamtype.log, streamprinter)

Create a task
with env.Task(0, 0) as task:

Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

Create n free variables
task.appendvars(n)
task.putvarboundsliceconst(0, n, mosek.boundkey.fr, -inf, inf)

Set up the objective
c = [2, 3, -1]
task.putobjsense(mosek.objsense.maximize)
task.putclist(range(n), c)

Set AFE rows representing the linear constraint
task.appendafes(1)
task.putafefrow(0, range(n), [1]*n)
task.putafeg(0, -1.0)

Set AFE rows representing the quadratic constraint
task.appendafes(k + 1)
task.putafefrow(2, # afeidx, row number

[0, 1], # varidx, column numbers
[1.5, 0.1]) # values

task.putafefrow(3, # afeidx, row number
[0, 2], # varidx, column numbers
[0.3, 2.1]) # values

h = [0, 0.1]
gamma = 0.03
task.putafeg(1, gamma)
task.putafegslice(2, k+2, h)

Define domains
zeroDom = task.appendrzerodomain(1)
quadDom = task.appendquadraticconedomain(k + 1)

Append affine conic constraints
task.appendacc(zeroDom, # Domain index

[0], # Indices of AFE rows
None) # Ignored

task.appendacc(quadDom, # Domain index
[1,2,3], # Indices of AFE rows
None) # Ignored

Solve and retrieve solution
task.optimize()
xx = task.getxx(mosek.soltype.itr)

(continues on next page)

28

(continued from previous page)

if task.getsolsta(mosek.soltype.itr) == mosek.solsta.optimal:
print("Solution: {xx}".format(xx=list(xx)))

We obtain the same result:

[-0.07838011145615721, 1.1289128998004547, -0.0505327883442975]

6.2.7 Summary and extensions
In this section we presented the most basic usage of the affine expression storage F,g to input affine
expressions used together with domains to create affine conic constraints. Now we briefly point out
additional features of his interface which can be useful in some situations for more demanding users.
They will be demonstrated in various examples in other tutorials and case studies in this manual.

• It is important to remember that F,g has only a storage function and during the ACC construction
we can pick an arbitrary list of row indices and place them in a conic domain. It means for example
that:

– It is not necessary to store the AFEs in the same order they will appear in ACCs.

– The same AFE index can appear more than once in one and/or more conic constraints (this
can be used to reduce storage if the same affine expression is used in multiple ACCs).

– The F,g storage can even include rows that are not presently used in any ACC.

• Domains can be reused: multiple ACCs can use the same domain. On the other hand the same
type of domain can appear under many domidx positions. In this sense the list of created domains
also plays only a storage role: the domains are only used when they enter an ACC.

• Affine expressions can also contain semidefinite terms, ie. the most general form of an ACC is in
fact

𝐹𝑥 + ⟨𝐹 ,𝑋⟩ + 𝑔 ∈ 𝒟

These terms are input into the rows of AFE storage using the functions with infix afebarf, creating
an additional storage structure F̄.

• The same affine expression storage F,g is shared between affine conic and disjunctive constraints
(see Sec. 6.9).

• If, on the other hand, the user chooses to always store the AFEs one by one sequentially in the
same order as they appear in ACCs then sequential functions such as Task.appendaccseq and
Task.appendaccsseq make it easy to input one or more ACCs by just specifying the starting AFE
index and dimension.

• It is possible to add a number of ACCs in one go using Task.appendaccs .

• When defining an ACC an additional constant vector 𝑏 can be provided to modify the constant
terms coming from g but only for this particular ACC. This could be useful to reduce F storage
space if, for example, many expressions 𝑓𝑇𝑥 + 𝑏𝑖 with the same linear part 𝑓𝑇𝑥, but varying
constant terms 𝑏𝑖, are to be used throughout ACCs.

6.3 Conic Quadratic Optimization

The structure of a typical conic optimization problem is

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟,

29

(see Sec. 12 for detailed formulations). We recommend Sec. 6.2 for a tutorial on how problems of that
form are represented in MOSEK and what data structures are relevant. Here we discuss how to set-up
problems with the (rotated) quadratic cones.

MOSEK supports two types of quadratic cones, namely:

• Quadratic cone:

𝒬𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 : 𝑥0 ≥

⎯⎸⎸⎷𝑛−1∑︁
𝑗=1

𝑥2
𝑗

⎫⎬⎭ .

• Rotated quadratic cone:

𝒬𝑛
r =

⎧⎨⎩𝑥 ∈ R𝑛 : 2𝑥0𝑥1 ≥
𝑛−1∑︁
𝑗=2

𝑥2
𝑗 , 𝑥0 ≥ 0, 𝑥1 ≥ 0

⎫⎬⎭ .

For example, consider the following constraint:

(𝑥4, 𝑥0, 𝑥2) ∈ 𝒬3

which describes a convex cone in R3 given by the inequality:

𝑥4 ≥
√︁
𝑥2
0 + 𝑥2

2.

For other types of cones supported by MOSEK, see Sec. 15.11 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

6.3.1 Example CQO1
Consider the following conic quadratic problem which involves some linear constraints, a quadratic cone
and a rotated quadratic cone.

minimize 𝑥4 + 𝑥5 + 𝑥6

subject to 𝑥1 + 𝑥2 + 2𝑥3 = 1,
𝑥1, 𝑥2, 𝑥3 ≥ 0,

𝑥4 ≥
√︀
𝑥2
1 + 𝑥2

2,
2𝑥5𝑥6 ≥ 𝑥2

3

(6.10)

The two conic constraints can be expressed in the ACC form as shown in (6.11)⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ 𝒬3 ×𝒬3
𝑟. (6.11)

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

30

Setting up the conic constraints

In order to append the conic constraints we first input the matrix F and vector g appearing in (6.11).
The matrix F is sparse and we input only its nonzeros using Task.putafefentrylist . Since g is zero,
nothing needs to be done about this vector.

Each of the conic constraints is appended using the function Task.appendacc . In the first case we
append the quadratic cone determined by the first three rows of F and then the rotated quadratic cone
depending on the remaining three rows of F.

Create a matrix F such that F * x = [x(3),x(0),x(1),x(4),x(5),x(2)]
task.appendafes(6)
task.putafefentrylist(range(6), # Rows

[3, 0, 1, 4, 5, 2], # Columns
[1.0] * 6)

Quadratic cone (x(3),x(0),x(1)) \in QUAD_3
quadcone = task.appendquadraticconedomain(3)
task.appendacc(quadcone, # Domain

[0, 1, 2], # Rows from F
None) # Unused

Rotated quadratic cone (x(4),x(5),x(2)) \in RQUAD_3
rquadcone = task.appendrquadraticconedomain(3);
task.appendacc(rquadcone, # Domain

[3, 4, 5], # Rows from F
None) # Unused

The first argument selects the domain, which must be appended before being used, and must have
the dimension matching the number of affine expressions appearing in the constraint. Variants of this
method are available to append multiple ACCs at a time. It is also possible to define the matrix F using
a variety of methods (row after row, column by column, individual entries, etc.) similarly as for the
linear constraint matrix 𝐴.

For a more thorough exposition of the affine expression storage (AFE) matrix F and vector g see
Sec. 6.2.

Source code

Listing 6.4: Source code solving problem (6.10).

import sys
import mosek

Since the actual value of Infinity is ignores, we define it solely
for symbolic purposes:
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main():
Create a task
with mosek.Task() as task:

Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

(continues on next page)

31

(continued from previous page)

bkc = [mosek.boundkey.fx]
blc = [1.0]
buc = [1.0]

c = [0.0, 0.0, 0.0,
1.0, 1.0, 1.0]

bkx = [mosek.boundkey.lo, mosek.boundkey.lo, mosek.boundkey.lo,
mosek.boundkey.fr, mosek.boundkey.fr, mosek.boundkey.fr]

blx = [0.0, 0.0, 0.0,
-inf, -inf, -inf]

bux = [inf, inf, inf,
inf, inf, inf]

asub = [[0], [0], [0]]
aval = [[1.0], [1.0], [2.0]]

numvar = len(bkx)
numcon = len(bkc)
NUMANZ = 4

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

#Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

for j in range(numvar):
Set the linear term c_j in the objective.
task.putcj(j, c[j])
Set the bounds on variable j
blx[j] <= x_j <= bux[j]
task.putvarbound(j, bkx[j], blx[j], bux[j])

for j in range(len(aval)):
Input column j of A
task.putacol(j, # Variable (column) index.

Row index of non-zeros in column j.
asub[j],
aval[j]) # Non-zero Values of column j.

for i in range(numcon):
task.putconbound(i, bkc[i], blc[i], buc[i])

Input the affine conic constraints
Create a matrix F such that F * x = [x(3),x(0),x(1),x(4),x(5),x(2)]
task.appendafes(6)
task.putafefentrylist(range(6), # Rows

[3, 0, 1, 4, 5, 2], # Columns
[1.0] * 6)

Quadratic cone (x(3),x(0),x(1)) \in QUAD_3
quadcone = task.appendquadraticconedomain(3)
task.appendacc(quadcone, # Domain

[0, 1, 2], # Rows from F
(continues on next page)

32

(continued from previous page)

None) # Unused

Rotated quadratic cone (x(4),x(5),x(2)) \in RQUAD_3
rquadcone = task.appendrquadraticconedomain(3);
task.appendacc(rquadcone, # Domain

[3, 4, 5], # Rows from F
None) # Unused

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.minimize)

Optimize the task
task.optimize()
task.writedata("cqo1.ptf")
Print a summary containing information
about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)
prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

Output a solution
xx = task.getxx(mosek.soltype.itr)

if solsta == mosek.solsta.optimal:
print("Optimal solution: %s" % xx)

elif solsta == mosek.solsta.dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif mosek.solsta.unknown:
print("Unknown solution status")

else:
print("Other solution status")

call the main function
try:

main()
except mosek.MosekException as e:

print("ERROR: %s" % str(e.errno))
print("\t%s" % e.msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

33

6.4 Power Cone Optimization

The structure of a typical conic optimization problem is

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟,

(see Sec. 12 for detailed formulations). We recommend Sec. 6.2 for a tutorial on how problems of that
form are represented in MOSEK and what data structures are relevant. Here we discuss how to set-up
problems with the primal/dual power cones.

MOSEK supports the primal and dual power cones, defined as below:

• Primal power cone:

𝒫𝛼𝑘
𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 :

𝑛ℓ−1∏︁
𝑖=0

𝑥𝛽𝑖

𝑖 ≥

⎯⎸⎸⎷ 𝑛−1∑︁
𝑗=𝑛ℓ

𝑥2
𝑗 , 𝑥0 . . . , 𝑥𝑛ℓ−1 ≥ 0

⎫⎬⎭
where 𝑠 =

∑︀
𝑖 𝛼𝑖 and 𝛽𝑖 = 𝛼𝑖/𝑠, so that

∑︀
𝑖 𝛽𝑖 = 1.

• Dual power cone:

(𝒫𝛼𝑘
𝑛) =

⎧⎨⎩𝑥 ∈ R𝑛 :

𝑛ℓ−1∏︁
𝑖=0

(︂
𝑥𝑖

𝛽𝑖

)︂𝛽𝑖

≥

⎯⎸⎸⎷ 𝑛−1∑︁
𝑗=𝑛ℓ

𝑥2
𝑗 , 𝑥0 . . . , 𝑥𝑛ℓ−1 ≥ 0

⎫⎬⎭
where 𝑠 =

∑︀
𝑖 𝛼𝑖 and 𝛽𝑖 = 𝛼𝑖/𝑠, so that

∑︀
𝑖 𝛽𝑖 = 1.

Perhaps the most important special case is the three-dimensional power cone family:

𝒫𝛼,1−𝛼
3 =

{︀
𝑥 ∈ R3 : 𝑥𝛼

0𝑥
1−𝛼
1 ≥ |𝑥2|, 𝑥0, 𝑥1 ≥ 0

}︀
.

which has the corresponding dual cone:
For example, the conic constraint (𝑥, 𝑦, 𝑧) ∈ 𝒫0.25,0.75

3 is equivalent to 𝑥0.25𝑦0.75 ≥ |𝑧|, or simply
𝑥𝑦3 ≥ 𝑧4 with 𝑥, 𝑦 ≥ 0.

For other types of cones supported by MOSEK, see Sec. 15.11 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

6.4.1 Example POW1
Consider the following optimization problem which involves powers of variables:

maximize 𝑥0.2
0 𝑥0.8

1 + 𝑥0.4
2 − 𝑥0

subject to 𝑥0 + 𝑥1 + 1
2𝑥2 = 2,

𝑥0, 𝑥1, 𝑥2 ≥ 0.
(6.12)

We convert (6.12) into affine conic form using auxiliary variables as bounds for the power expressions:

maximize 𝑥3 + 𝑥4 − 𝑥0

subject to 𝑥0 + 𝑥1 + 1
2𝑥2 = 2,

(𝑥0, 𝑥1, 𝑥3) ∈ 𝒫0.2,0.8
3 ,

(𝑥2, 1.0, 𝑥4) ∈ 𝒫0.4,0.6
3 .

(6.13)

The two conic constraints shown in (6.13) can be expressed in the ACC form as shown in (6.14):

34

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
𝑥0

𝑥1

𝑥2

𝑥3

𝑥4

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ 𝒫0.2,0.8
3 × 𝒫0.4,0.6

3 . (6.14)

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

In order to append the conic constraints we first input the matrix F and vector g which together
determine all the six affine expressions appearing in the conic constraints of (6.13)

Append two power cone domains
pc1 = task.appendprimalpowerconedomain(3, [0.2, 0.8])
pc2 = task.appendprimalpowerconedomain(3, [4.0, 6.0])

Create data structures F,g so that
#
F * x + g = (x(0), x(1), x(3), x(2), 1.0, x(4))
#
task.appendafes(6)
task.putafefentrylist([0, 1, 2, 3, 5], # Rows

[0, 1, 3, 2, 4], #Columns
[1.0, 1.0, 1.0, 1.0, 1.0])

task.putafeg(4, 1.0)

Append the two conic constraints
task.appendacc(pc1, # Domain

[0, 1, 2], # Rows from F
None) # Unused

task.appendacc(pc2, # Domain
[3, 4, 5], # Rows from F
None) # Unused

Following that, each of the affine conic constraints is appended using the function Task.appendacc .
The first argument selects the domain, which must be appended before being used, and must have the
dimension matching the number of affine expressions appearing in the constraint. In the first case we
append the power cone determined by the first three rows of F and g while in the second call we use the
remaining three rows of F and g.

Variants of this method are available to append multiple ACCs at a time. It is also possible to define
the matrix F using a variety of methods (row after row, column by column, individual entries, etc.)
similarly as for the linear constraint matrix 𝐴.

For a more thorough exposition of the affine expression storage (AFE) matrix F and vector g see
Sec. 6.2.

35

Source code

Listing 6.5: Source code solving problem (6.12).

import sys
import mosek

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main():

Only a symbolic constant
inf = 0.0

Create a task
with mosek.Task() as task:

Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

csub = [3, 4, 0]
cval = [1.0, 1.0, -1.0]
asub = [0, 1, 2]
aval = [1.0, 1.0, 0.5]
numvar, numcon = 5, 1 # x,y,z and 2 auxiliary variables for conic␣

→˓constraints

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

Set up the linear part of the problem
task.putclist(csub, cval)
task.putarow(0, asub, aval)
task.putvarboundslice(0, numvar, [mosek.boundkey.fr] * numvar, [inf] * numvar,

→˓ [inf] * numvar)
task.putconbound(0, mosek.boundkey.fx, 2.0, 2.0)

Input the conic constraints
Append two power cone domains
pc1 = task.appendprimalpowerconedomain(3, [0.2, 0.8])
pc2 = task.appendprimalpowerconedomain(3, [4.0, 6.0])

Create data structures F,g so that
#
F * x + g = (x(0), x(1), x(3), x(2), 1.0, x(4))
#
task.appendafes(6)
task.putafefentrylist([0, 1, 2, 3, 5], # Rows

[0, 1, 3, 2, 4], #Columns
[1.0, 1.0, 1.0, 1.0, 1.0])

(continues on next page)

36

(continued from previous page)

task.putafeg(4, 1.0)

Append the two conic constraints
task.appendacc(pc1, # Domain

[0, 1, 2], # Rows from F
None) # Unused

task.appendacc(pc2, # Domain
[3, 4, 5], # Rows from F
None) # Unused

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.maximize)

Optimize the task
task.optimize()

Print a summary containing information
about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)
prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

Output a solution
xx = task.getxx(mosek.soltype.itr)

if solsta == mosek.solsta.optimal:
print("Optimal solution: %s" % xx[0:3])

elif solsta == mosek.solsta.dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif mosek.solsta.unknown:
print("Unknown solution status")

else:
print("Other solution status")

call the main function
try:

main()
except mosek.MosekException as e:

print("ERROR: %s" % str(e.code))
if msg is not None:

print("\t%s" % e.msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

37

6.5 Conic Exponential Optimization

The structure of a typical conic optimization problem is

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟,

(see Sec. 12 for detailed formulations). We recommend Sec. 6.2 for a tutorial on how problems of that
form are represented in MOSEK and what data structures are relevant. Here we discuss how to set-up
problems with the primal/dual exponential cones.

MOSEK supports two exponential cones, namely:

• Primal exponential cone:

𝐾exp =
{︀
𝑥 ∈ R3 : 𝑥0 ≥ 𝑥1 exp(𝑥2/𝑥1), 𝑥0, 𝑥1 ≥ 0

}︀
.

• Dual exponential cone:

𝐾*
exp =

{︀
𝑠 ∈ R3 : 𝑠0 ≥ −𝑠2𝑒

−1 exp(𝑠1/𝑠2), 𝑠2 ≤ 0, 𝑠0 ≥ 0
}︀
.

For example, consider the following constraint:

(𝑥4, 𝑥0, 𝑥2) ∈ 𝐾exp

which describes a convex cone in R3 given by the inequalities:

𝑥4 ≥ 𝑥0 exp(𝑥2/𝑥0), 𝑥0, 𝑥4 ≥ 0.

For other types of cones supported by MOSEK, see Sec. 15.11 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

6.5.1 Example CEO1
Consider the following basic conic exponential problem which involves some linear constraints and an
exponential inequality:

minimize 𝑥0 + 𝑥1

subject to 𝑥0 + 𝑥1 + 𝑥2 = 1,
𝑥0 ≥ 𝑥1 exp(𝑥2/𝑥1),

𝑥0, 𝑥1 ≥ 0.

(6.15)

The affine conic form of (6.15) is:

minimize 𝑥0 + 𝑥1

subject to 𝑥0 + 𝑥1 + 𝑥2 = 1,
𝐼𝑥 ∈ 𝐾exp,
𝑥 ∈ R3.

(6.16)

where 𝐼 is the 3 × 3 identity matrix.

38

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

In order to append the conic constraints we first input the sparse identity matrix F as indicated by
(6.16).

The affine conic constraint is then appended using the function Task.appendacc , with the primal
exponential domain and the list of F rows, in this case consisting of all rows in their natural order.

Create a 3x3 identity matrix F
task.appendafes(3)
task.putafefentrylist([0, 1, 2], # Rows

[0, 1, 2], # Columns
[1.0] * 3)

Exponential cone (x(0),x(1),x(2)) \in EXP
expdomain = task.appendprimalexpconedomain()
task.appendacc(expdomain, # Domain

[0, 1, 2], # Rows from F
None) # Unused

The first argument selects the domain, which must be appended before being used, and must have
the dimension matching the number of affine expressions appearing in the constraint. Variants of this
method are available to append multiple ACCs at a time. It is also possible to define the matrix F using
a variety of methods (row after row, column by column, individual entries, etc.) similarly as for the
linear constraint matrix 𝐴.

For a more thorough exposition of the affine expression storage (AFE) matrix F and vector g see
Sec. 6.2.

Source code

Listing 6.6: Source code solving problem (6.15).

import sys
import mosek

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main():

Only a symbolic constant
inf = 0.0

Create a task
with mosek.Task() as task:

Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

c = [1.0, 1.0, 0.0]
a = [1.0, 1.0, 1.0]
numvar, numcon = 3, 1

(continues on next page)

39

(continued from previous page)

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

Set up the linear part of the problem
task.putcslice(0, numvar, c)
task.putarow(0, [0, 1, 2], a)
task.putvarboundslice(0, numvar, [mosek.boundkey.fr] * numvar, [inf] * numvar,

→˓ [inf] * numvar)
task.putconbound(0, mosek.boundkey.fx, 1.0, 1.0)

Add a conic constraint
Create a 3x3 identity matrix F
task.appendafes(3)
task.putafefentrylist([0, 1, 2], # Rows

[0, 1, 2], # Columns
[1.0] * 3)

Exponential cone (x(0),x(1),x(2)) \in EXP
expdomain = task.appendprimalexpconedomain()
task.appendacc(expdomain, # Domain

[0, 1, 2], # Rows from F
None) # Unused

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.minimize)

Optimize the task
task.optimize()
Print a summary containing information
about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)
prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

Output a solution
xx = task.getxx(mosek.soltype.itr)

if solsta == mosek.solsta.optimal:
print("Optimal solution: %s" % xx)

elif solsta == mosek.solsta.dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif mosek.solsta.unknown:
print("Unknown solution status")

else:
print("Other solution status")

call the main function
(continues on next page)

40

(continued from previous page)

try:
main()

except mosek.MosekException as e:
print("ERROR: %s" % str(e.code))
if msg is not None:

print("\t%s" % e.msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

6.6 Geometric Programming

Geometric programs (GP) are a particular class of optimization problems which can be expressed in
special polynomial form as positive sums of generalized monomials. More precisely, a geometric problem
in canonical form is

minimize 𝑓0(𝑥)
subject to 𝑓𝑖(𝑥) ≤ 1, 𝑖 = 1, . . . ,𝑚,

𝑥𝑗 > 0, 𝑗 = 1, . . . , 𝑛,
(6.17)

where each 𝑓0, . . . , 𝑓𝑚 is a posynomial, that is a function of the form

𝑓(𝑥) =
∑︁
𝑘

𝑐𝑘𝑥
𝛼𝑘1
1 𝑥𝛼𝑘2

2 · · ·𝑥𝛼𝑘𝑛
𝑛

with arbitrary real 𝛼𝑘𝑖 and 𝑐𝑘 > 0. The standard way to formulate GPs in convex form is to introduce
a variable substitution

𝑥𝑖 = exp(𝑦𝑖).

Under this substitution all constraints in a GP can be reduced to the form

log(
∑︁
𝑘

exp(𝑎𝑇𝑘 𝑦 + 𝑏𝑘)) ≤ 0 (6.18)

involving a log-sum-exp bound. Moreover, constraints involving only a single monomial in 𝑥 can be even
more simply written as a linear inequality:

𝑎𝑇𝑘 𝑦 + 𝑏𝑘 ≤ 0

We refer to the MOSEK Modeling Cookbook and to [BKVH07] for more details on this reformulation. A
geometric problem formulated in convex form can be entered into MOSEK with the help of exponential
cones.

6.6.1 Example GP1
The following problem comes from [BKVH07]. Consider maximizing the volume of a ℎ × 𝑤 × 𝑑 box
subject to upper bounds on the area of the floor and of the walls and bounds on the ratios ℎ/𝑤 and 𝑑/𝑤:

maximize ℎ𝑤𝑑
subject to 2(ℎ𝑤 + ℎ𝑑) ≤ 𝐴wall,

𝑤𝑑 ≤ 𝐴floor,
𝛼 ≤ ℎ/𝑤 ≤ 𝛽,
𝛾 ≤ 𝑑/𝑤 ≤ 𝛿.

(6.19)

The decision variables in the problem are ℎ,𝑤, 𝑑. We make a substitution

ℎ = exp(𝑥), 𝑤 = exp(𝑦), 𝑑 = exp(𝑧)

41

https://docs.mosek.com/modeling-cookbook/index.html

after which (6.19) becomes

maximize 𝑥 + 𝑦 + 𝑧
subject to log(exp(𝑥 + 𝑦 + log(2/𝐴wall)) + exp(𝑥 + 𝑧 + log(2/𝐴wall))) ≤ 0,

𝑦 + 𝑧 ≤ log(𝐴floor),
log(𝛼) ≤ 𝑥− 𝑦 ≤ log(𝛽),
log(𝛾) ≤ 𝑧 − 𝑦 ≤ log(𝛿).

(6.20)

Next, we demonstrate how to implement a log-sum-exp constraint (6.18). It can be written as:

𝑢𝑘 ≥ exp(𝑎𝑇𝑘 𝑦 + 𝑏𝑘), (equiv. (𝑢𝑘, 1, 𝑎
𝑇
𝑘 𝑦 + 𝑏𝑘) ∈ 𝐾exp),∑︀

𝑘 𝑢𝑘 = 1.
(6.21)

This presentation requires one extra variable 𝑢𝑘 for each monomial appearing in the original posynomial
constraint. In this case the affine conic constraints (ACC, see Sec. 6.2) take the form:⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0
0 0 0 0 0
1 1 0 0 0
0 0 0 0 1
0 0 0 0 0
1 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
𝑥
𝑦
𝑧
𝑢1

𝑢2

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
0
1

log(2/𝐴wall)
0
1

log(2/𝐴wall)

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ 𝐾exp ×𝐾exp.

As a matter of demonstration we will also add the constraint

𝑢1 + 𝑢2 − 1 = 0

as an affine conic constraint. It means that to define the all the ACCs we need to produce the following
affine expressions (AFE) and store them:

𝑢1, 𝑢2, 𝑥 + 𝑦 + log(2/𝐴wall), 𝑥 + 𝑧 + log(2/𝐴wall), 1.0, 𝑢1 + 𝑢2 − 1.0.

We implement it by adding all the affine expressions (AFE) and then picking the ones required for each
ACC:

Listing 6.7: Implementation of log-sum-exp as in (6.21).

Affine expressions appearing in affine conic constraints
in this order:
u1, u2, x+y+log(2/Awall), x+z+log(2/Awall), 1.0, u1+u2-1.0
numafe = 6
u1, u2 = 3, 4 # Indices of slack variables
afeidx = [0, 1, 2, 2, 3, 3, 5, 5]
varidx = [u1, u2, x, y, x, z, u1, u2]
fval = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
gfull = [0, 0, log(2/Aw), log(2/Aw), 1.0, -1.0]

New variables u1, u2
task.appendvars(2)
task.putvarboundsliceconst(u1, u2+1, boundkey.fr, -inf, inf)

Append affine expressions
task.appendafes(numafe)
task.putafefentrylist(afeidx, varidx, fval)
task.putafegslice(0, numafe, gfull)

Two affine conic constraints
expdom = task.appendprimalexpconedomain()

(u1, 1, x+y+log(2/Awall)) \in EXP
(continues on next page)

42

(continued from previous page)

task.appendacc(expdom, [0, 4, 2], None)

(u2, 1, x+z+log(2/Awall)) \in EXP
task.appendacc(expdom, [1, 4, 3], None)

The constraint u1+u2-1 \in \ZERO is added also as an ACC
task.appendacc(task.appendrzerodomain(1), [5], None)

We can now use this function to assemble all constraints in the model. The linear part of the problem
is entered as in Sec. 6.1.

Listing 6.8: Source code solving problem (6.20).

def max_volume_box(Aw, Af, alpha, beta, gamma, delta):
Basic dimensions of our problem
numvar = 3 # Variables in original problem
x, y, z = 0, 1, 2 # Indices of variables
numcon = 3 # Linear constraints in original problem

Linear part of the problem
cval = [1, 1, 1]
asubi = [0, 0, 1, 1, 2, 2]
asubj = [y, z, x, y, z, y]
aval = [1.0, 1.0, 1.0, -1.0, 1.0, -1.0]
bkc = [boundkey.up, boundkey.ra, boundkey.ra]
blc = [-inf, log(alpha), log(gamma)]
buc = [log(Af), log(beta), log(delta)]

with Task() as task:
task.set_Stream(streamtype.log, streamprinter)

Add variables and constraints
task.appendvars(numvar)
task.appendcons(numcon)

Objective is the sum of three first variables
task.putobjsense(objsense.maximize)
task.putcslice(0, numvar, cval)
task.putvarboundsliceconst(0, numvar, boundkey.fr, -inf, inf)

Add the three linear constraints
task.putaijlist(asubi, asubj, aval)
task.putconboundslice(0, numvar, bkc, blc, buc)

Affine expressions appearing in affine conic constraints
in this order:
u1, u2, x+y+log(2/Awall), x+z+log(2/Awall), 1.0, u1+u2-1.0
numafe = 6
u1, u2 = 3, 4 # Indices of slack variables
afeidx = [0, 1, 2, 2, 3, 3, 5, 5]
varidx = [u1, u2, x, y, x, z, u1, u2]
fval = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
gfull = [0, 0, log(2/Aw), log(2/Aw), 1.0, -1.0]

New variables u1, u2
task.appendvars(2)
task.putvarboundsliceconst(u1, u2+1, boundkey.fr, -inf, inf)

(continues on next page)

43

(continued from previous page)

Append affine expressions
task.appendafes(numafe)
task.putafefentrylist(afeidx, varidx, fval)
task.putafegslice(0, numafe, gfull)

Two affine conic constraints
expdom = task.appendprimalexpconedomain()

(u1, 1, x+y+log(2/Awall)) \in EXP
task.appendacc(expdom, [0, 4, 2], None)

(u2, 1, x+z+log(2/Awall)) \in EXP
task.appendacc(expdom, [1, 4, 3], None)

The constraint u1+u2-1 \in \ZERO is added also as an ACC
task.appendacc(task.appendrzerodomain(1), [5], None)

Solve and map to original h, w, d
task.optimize()
task.writedata("gp1.ptf");
xyz = task.getxxslice(soltype.itr, 0, numvar)
return exp(xyz)

Given sample data we obtain the solution ℎ,𝑤, 𝑑 as follows:

Listing 6.9: Sample data for problem (6.19).

Aw, Af, alpha, beta, gamma, delta = 200.0, 50.0, 2.0, 10.0, 2.0, 10.0
h,w,d = max_volume_box(Aw, Af, alpha, beta, gamma, delta)
print("h={0:.3f}, w={1:.3f}, d={2:.3f}".format(h, w, d))

6.7 Semidefinite Optimization

Semidefinite optimization is a generalization of conic optimization, allowing the use of matrix variables
belonging to the convex cone of positive semidefinite matrices

𝒮𝑟
+ =

{︀
𝑋 ∈ 𝒮𝑟 : 𝑧𝑇𝑋𝑧 ≥ 0, ∀𝑧 ∈ R𝑟

}︀
,

where 𝒮𝑟 is the set of 𝑟 × 𝑟 real-valued symmetric matrices.
MOSEK can solve semidefinite optimization problems stated in the primal form,

minimize
∑︀𝑝−1

𝑗=0

⟨︀
𝐶𝑗 , 𝑋𝑗

⟩︀
+
∑︀𝑛−1

𝑗=0 𝑐𝑗𝑥𝑗 + 𝑐𝑓

subject to 𝑙𝑐𝑖 ≤
∑︀𝑝−1

𝑗=0

⟨︀
𝐴𝑖𝑗 , 𝑋𝑗

⟩︀
+
∑︀𝑛−1

𝑗=0 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑖 , 𝑖 = 0, . . . ,𝑚− 1,∑︀𝑝−1

𝑗=0

⟨︀
𝐹 𝑖𝑗 , 𝑋𝑗

⟩︀
+
∑︀𝑛−1

𝑗=0 𝑓𝑖𝑗𝑥𝑗 + 𝑔𝑖 ∈ 𝒦𝑖, 𝑖 = 0, . . . , 𝑞 − 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1,

𝑥 ∈ 𝒦, 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ , 𝑗 = 0, . . . , 𝑝− 1

(6.22)

where the problem has 𝑝 symmetric positive semidefinite variables 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ of dimension 𝑟𝑗 . The

symmetric coefficient matrices 𝐶𝑗 ∈ 𝒮𝑟𝑗 and 𝐴𝑖,𝑗 ∈ 𝒮𝑟𝑗 are used to specify PSD terms in the linear
objective and the linear constraints, respectively. The symmetric coefficient matrices 𝐹 𝑖,𝑗 ∈ 𝒮𝑟𝑗 are used
to specify PSD terms in the affine conic constraints. Note that 𝑞 ((6.22)) is the total dimension of all
the cones, i.e. 𝑞 = dim(𝒦1× . . .×𝒦𝑘), given there are 𝑘 ACCs. We use standard notation for the matrix
inner product, i.e., for 𝐴,𝐵 ∈ R𝑚×𝑛 we have

⟨𝐴,𝐵⟩ :=

𝑚−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝐴𝑖𝑗𝐵𝑖𝑗 .

44

In addition to the primal form presented above, semidefinite problems can be expressed in their dual
form. Constraints in this form are usually called linear matrix inequalities (LMIs). LMIs can be
easily specified in MOSEK using the vectorized positive semidefinite cone which is defined as:

• Vectorized semidefinite domain:

𝒮𝑑,vec
+ =

{︀
(𝑥1, . . . , 𝑥𝑑(𝑑+1)/2) ∈ R𝑛 : sMat(𝑥) ∈ 𝒮𝑑

+

}︀
,

where 𝑛 = 𝑑(𝑑 + 1)/2 and,

sMat(𝑥) =

⎡⎢⎢⎣
𝑥1 𝑥2/

√
2 · · · 𝑥𝑑/

√
2

𝑥2/
√

2 𝑥𝑑+1 · · · 𝑥2𝑑−1/
√

2
· · · · · · · · · · · ·

𝑥𝑑/
√

2 𝑥2𝑑−1/
√

2 · · · 𝑥𝑑(𝑑+1)/2

⎤⎥⎥⎦ ,

or equivalently

𝒮𝑑,vec
+ =

{︀
sVec(𝑋) : 𝑋 ∈ 𝒮𝑑

+

}︀
,

where

sVec(𝑋) = (𝑋11,
√

2𝑋21, . . . ,
√

2𝑋𝑑1, 𝑋22,
√

2𝑋32, . . . , 𝑋𝑑𝑑).

In other words, the domain consists of vectorizations of the lower-triangular part of a positive semidef-
inite matrix, with the non-diagonal elements additionally rescaled. LMIs can be expressed by restricting
appropriate affine expressions to this cone type.

For other types of cones supported by MOSEK, see Sec. 15.11 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

We demonstrate the setup of semidefinite variables and their coefficient matrices in the following
examples:

• Sec. 6.7.1: A problem with one semidefinite variable and linear and conic constraints.

• Sec. 6.7.2: A problem with two semidefinite variables with a linear constraint and bound.

• Sec. 6.7.3: A problem with linear matrix inequalities and the vectorized semidefinite domain.

6.7.1 Example SDO1
We consider the simple optimization problem with semidefinite and conic quadratic constraints:

minimize

⟨⎡⎣ 2 1 0
1 2 1
0 1 2

⎤⎦ , 𝑋

⟩
+ 𝑥0

subject to

⟨⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ , 𝑋

⟩
+ 𝑥0 = 1,

⟨⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ , 𝑋

⟩
+ 𝑥1 + 𝑥2 = 1/2,

𝑥0 ≥
√
𝑥1

2 + 𝑥2
2, 𝑋 ⪰ 0,

(6.23)

The problem description contains a 3-dimensional symmetric semidefinite variable which can be written
explicitly as:

𝑋 =

⎡⎣ 𝑋00 𝑋10 𝑋20

𝑋10 𝑋11 𝑋21

𝑋20 𝑋21 𝑋22

⎤⎦ ∈ 𝒮3
+,

45

and an affine conic constraint (ACC) (𝑥0, 𝑥1, 𝑥2) ∈ 𝒬3. The objective is to minimize

2(𝑋00 + 𝑋10 + 𝑋11 + 𝑋21 + 𝑋22) + 𝑥0,

subject to the two linear constraints

𝑋00 + 𝑋11 + 𝑋22 + 𝑥0 = 1,
𝑋00 + 𝑋11 + 𝑋22 + 2(𝑋10 + 𝑋20 + 𝑋21) + 𝑥1 + 𝑥2 = 1/2.

Setting up the linear and conic part

The linear and conic parts (constraints, variables, objective, ACC) are set up using the methods described
in the relevant tutorials; Sec. 6.1, Sec. 6.2. Here we only discuss the aspects directly involving semidefinite
variables.

Appending semidefinite variables

First, we need to declare the number of semidefinite variables in the problem, similarly to the number
of linear variables and constraints. This is done with the function Task.appendbarvars .

task.appendbarvars(BARVARDIM)

Appending coefficient matrices

Coefficient matrices 𝐶𝑗 and 𝐴𝑖𝑗 are constructed as weighted combinations of sparse symmetric matrices
previously appended with the function Task.appendsparsesymmat .

symc = task.appendsparsesymmat(BARVARDIM[0],
barci,
barcj,
barcval)

syma0 = task.appendsparsesymmat(BARVARDIM[0],
barai[0],
baraj[0],
baraval[0])

syma1 = task.appendsparsesymmat(BARVARDIM[0],
barai[1],
baraj[1],
baraval[1])

The arguments specify the dimension of the symmetric matrix, followed by its description in the
sparse triplet format. Only lower-triangular entries should be included. The function produces a unique
index of the matrix just entered in the collection of all coefficient matrices defined by the user.

After one or more symmetric matrices have been created using Task.appendsparsesymmat , we can
combine them to set up the objective matrix coefficient 𝐶𝑗 using Task.putbarcj , which forms a linear
combination of one or more symmetric matrices. In this example we form the objective matrix directly,
i.e. as a weighted combination of a single symmetric matrix.

task.putbarcj(0, [symc], [1.0])

Similarly, a constraint matrix coefficient 𝐴𝑖𝑗 is set up by the function Task.putbaraij .

task.putbaraij(0, 0, [syma0], [1.0])
task.putbaraij(1, 0, [syma1], [1.0])

46

Retrieving the solution

After the problem is solved, we read the solution using Task.getbarxj :

barx = task.getbarxj(mosek.soltype.itr, 0)

The function returns the half-vectorization of 𝑋𝑗 (the lower triangular part stacked as a column
vector), where the semidefinite variable index 𝑗 is passed as an argument.

Source code

Listing 6.10: Source code solving problem (6.23).

import sys
import mosek

Since the value of infinity is ignored, we define it solely
for symbolic purposes
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main():
Create a task object and attach log stream printer
with mosek.Task() as task:

task.set_Stream(mosek.streamtype.log, streamprinter)

Bound keys for constraints
bkc = [mosek.boundkey.fx,

mosek.boundkey.fx]

Bound values for constraints
blc = [1.0, 0.5]
buc = [1.0, 0.5]

Below is the sparse representation of the A
matrix stored by row.
asub = [[0],

[1, 2]]
aval = [[1.0],

[1.0, 1.0]]

barci = [0, 1, 1, 2, 2]
barcj = [0, 0, 1, 1, 2]
barcval = [2.0, 1.0, 2.0, 1.0, 2.0]

barai = [[0, 1, 2],
[0, 1, 2, 1, 2, 2]]

baraj = [[0, 1, 2],
[0, 0, 0, 1, 1, 2]]

baraval = [[1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]

numvar = 3
(continues on next page)

47

(continued from previous page)

numcon = len(bkc)
BARVARDIM = [3]

Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

Append matrix variables of sizes in 'BARVARDIM'.
The variables will initially be fixed at zero.
task.appendbarvars(BARVARDIM)

Set the linear term c_0 in the objective.
task.putcj(0, 1.0)

for j in range(numvar):
Set the bounds on variable j
blx[j] <= x_j <= bux[j]
task.putvarbound(j, mosek.boundkey.fr, -inf, +inf)

for i in range(numcon):
Set the bounds on constraints.
blc[i] <= constraint_i <= buc[i]
task.putconbound(i, bkc[i], blc[i], buc[i])

Input row i of A
task.putarow(i, # Constraint (row) index.

asub[i], # Column index of non-zeros in␣
→˓constraint i.

aval[i]) # Non-zero values of row i.

Add the quadratic cone constraint
task.appendafes(3)
Diagonal F matrix
task.putafefentrylist(range(3), range(3), [1.0]*3)
task.appendaccseq(task.appendquadraticconedomain(3), 0, None)

symc = task.appendsparsesymmat(BARVARDIM[0],
barci,
barcj,
barcval)

syma0 = task.appendsparsesymmat(BARVARDIM[0],
barai[0],
baraj[0],
baraval[0])

syma1 = task.appendsparsesymmat(BARVARDIM[0],
barai[1],
baraj[1],
baraval[1])

task.putbarcj(0, [symc], [1.0])
(continues on next page)

48

(continued from previous page)

task.putbaraij(0, 0, [syma0], [1.0])
task.putbaraij(1, 0, [syma1], [1.0])

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.minimize)

Solve the problem and print summary
task.optimize()
task.solutionsummary(mosek.streamtype.msg)

Get status information about the solution
prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

if (solsta == mosek.solsta.optimal):
xx = task.getxx(mosek.soltype.itr)
barx = task.getbarxj(mosek.soltype.itr, 0)

print("Optimal solution:\nx=%s\nbarx=%s" % (xx, barx))
elif (solsta == mosek.solsta.dual_infeas_cer or

solsta == mosek.solsta.prim_infeas_cer):
print("Primal or dual infeasibility certificate found.\n")

elif solsta == mosek.solsta.unknown:
print("Unknown solution status")

else:
print("Other solution status")

call the main function
try:

main()
except mosek.MosekException as e:

print("ERROR: %s" % str(e.errno))
if e.msg is not None:

print("\t%s" % e.msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

6.7.2 Example SDO2
We now demonstrate how to define more than one semidefinite variable using the following problem with
two matrix variables and two types of constraints:

minimize ⟨𝐶1, 𝑋1⟩ + ⟨𝐶2, 𝑋2⟩
subject to ⟨𝐴1, 𝑋1⟩ + ⟨𝐴2, 𝑋2⟩ = 𝑏,

(𝑋2)01 ≤ 𝑘,
𝑋1, 𝑋2 ⪰ 0.

(6.24)

In our example dim(𝑋1) = 3, dim(𝑋2) = 4, 𝑏 = 23, 𝑘 = −3 and

𝐶1 =

⎡⎣ 1 0 0
0 0 0
0 0 6

⎤⎦ , 𝐴1 =

⎡⎣ 1 0 1
0 0 0
1 0 2

⎤⎦ ,

49

𝐶2 =

⎡⎢⎢⎣
1 −3 0 0
−3 2 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎦ , 𝐴2 =

⎡⎢⎢⎣
0 1 0 0
1 −1 0 0
0 0 0 0
0 0 0 −3

⎤⎥⎥⎦ ,

are constant symmetric matrices.
Note that this problem does not contain any scalar variables, but they could be added in the same

fashion as in Sec. 6.7.1.
Other than in Sec. 6.7.1 we don’t append coefficient matrices separately but we directly input

all nonzeros in each constraint and all nonzeros in the objective at once. Every term of the form
(𝐴𝑖,𝑗)𝑘,𝑙(𝑋𝑗)𝑘,𝑙 is determined by four indices (𝑖, 𝑗, 𝑘, 𝑙) and a coefficient value 𝑣 = (𝐴𝑖,𝑗)𝑘,𝑙. Here 𝑖
is the number of the constraint in which the term appears, 𝑗 is the index of the semidefinite vari-
able it involves and (𝑘, 𝑙) is the position in that variable. This data is passed in the call to Task.
putbarablocktriplet . Note that only the lower triangular part should be specified explicitly, that is
one always has 𝑘 ≥ 𝑙. Semidefinite terms (𝐶𝑗)𝑘,𝑙(𝑋𝑗)𝑘,𝑙 of the objective are specified in the same way in
Task.putbarcblocktriplet but only include (𝑗, 𝑘, 𝑙) and 𝑣.

For explanations of other data structures used in the example see Sec. 6.7.1.
The code representing the above problem is shown below.

Listing 6.11: Implementation of model (6.24).

Make mosek environment
with Env() as env:

Create a task object and attach log stream printer
with env.Task(0, 0) as task:

Set log handler for debugging ootput
task.set_Stream(streamtype.log, streamprinter)

Append two symmetric variables of dimension 3, 4
barvardims = [3, 4]
task.appendbarvars(barvardims)

Semidefinite part of objective function
task.putbarcblocktriplet(

[0]*len(C1_v) + [1]*len(C2_v), # Which SDP variable (j)
C1_k + C2_k, # Entries: (k,l)->v
C1_l + C2_l,
C1_v + C2_v,
)

Append two constraints
task.appendcons(2)

First constraint (equality)
task.putbarablocktriplet(

[0]*(len(A1_v)+len(A2_v)), # Which constraint (i = 0)
[0]*len(A1_v) + [1]*len(A2_v), # Which SDP variable (j)
A1_k + A2_k, # Entries: (k,l)->v
A1_l + A2_l,
A1_v + A2_v,
)

Second constraint (X2)_{1,2} <= k
task.putbarablocktriplet(

[1], # Which constraint (i = 1)
[1], # Which SDP variable (j = 1)
[1], [0], [0.5] # Entries: (k,l)->v
)

(continues on next page)

50

(continued from previous page)

Set bounds for constraints
task.putconboundlist([0,1], [boundkey.fx, boundkey.up],

[b, -inf],
[b, k])

Write the problem for human inspection
task.writedata("test.ptf")

Optimize
task.optimize()
task.solutionsummary(streamtype.msg)

Get status information about the solution
solsta = task.getsolsta(soltype.itr)

if solsta == solsta.optimal:
Assuming the optimization succeeded read solution
print("Solution (lower-triangular part vectorized): ")
for i in range(2):

X = task.getbarxj(soltype.itr, i)
print("X{i} = {X}".format(i=i, X=X))

elif (solsta == solsta.dual_infeas_cer or
solsta == solsta.prim_infeas_cer):

print("Primal or dual infeasibility certificate found.\n")
elif solsta == solsta.unknown:

print("Unknown solution status")
else:

print("Other solution status")

6.7.3 Example SDO_LMI: Linear matrix inequalities and the vectorized semidef-
inite domain

The standard form of a semidefinite problem is usually either based on semidefinite variables (primal
form) or on linear matrix inequalities (dual form). However, MOSEK allows mixing of these two forms,
as shown in (6.25)

minimize
⟨[︂

1 0
0 1

]︂
, 𝑋

⟩
+ 𝑥0 + 𝑥1 + 1

subject to
⟨[︂

0 1
1 0

]︂
, 𝑋

⟩
− 𝑥0 − 𝑥1 ∈ R1

≥0,

𝑥0

[︂
0 1
1 3

]︂
+ 𝑥1

[︂
3 1
1 0

]︂
−
[︂

1 0
0 1

]︂
⪰ 0,

𝑋 ⪰ 0.

(6.25)

The first affine expression is restricted to a linear domain and could also be modelled as a linear constraint
(instead of an ACC). The lower triangular part of the linear matrix inequality (second constraint) can be
vectorized and restricted to the domaintype.svec_psd_cone . This allows us to express the constraints
in (6.25) as the affine conic constraints shown in (6.26).⟨[︂

0 1
1 0

]︂
, 𝑋

⟩
+

[︀
−1 −1

]︀
𝑥 +

[︀
0
]︀

∈ R1
≥0,⎡⎣ 0 3√

2
√

2
3 0

⎤⎦𝑥 +

⎡⎣ −1
0
−1

⎤⎦ ∈ 𝒮3,vec
+

(6.26)

Vectorization of the LMI is performed as explained in Sec. 15.11.

51

Setting up the linear part

The linear parts (objective, constraints, variables) and the semidefinite terms in the linear expressions
are defined exactly as shown in the previous examples.

Setting up the affine conic constraints with semidefinite terms

To define the affine conic constraints, we first set up the affine expressions. The 𝐹 matrix and the 𝑔
vector are defined as usual. Additionally, we specify the coefficients for the semidefinite variables. The
semidefinite coefficients shown in (6.26) are setup using the function Task.putafebarfblocktriplet .

task.putafebarfblocktriplet(barfi, barfj, barfk, barfl, barfv)

These affine expressions are then included in their corresponding domains to construct the affine
conic constraints. Lastly, the ACCs are appended to the task.

Append R+ domain and the corresponding ACC
task.appendacc(task.appendrplusdomain(1), [0], None)
Append SVEC_PSD domain and the corresponding ACC
task.appendacc(task.appendsvecpsdconedomain(3), [1,2,3], None)

Source code

Listing 6.12: Source code solving problem (6.25).

import sys
from numpy import sqrt
import mosek

Since the value of infinity is ignored, we define it solely
for symbolic purposes
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main():
Create a task object and attach log stream printer
with mosek.Task() as task:

task.set_Stream(mosek.streamtype.log, streamprinter)

Below is the sparse triplet representation of the F matrix.
afeidx = [0, 0, 1, 2, 2, 3]
varidx = [0, 1, 1, 0, 1, 0]
f_val = [-1, -1, 3, sqrt(2), sqrt(2), 3]
g = [0, -1, 0, -1]

barcj = [0, 0]
barck = [0, 1]
barcl = [0, 1]
barcv = [1, 1]

barfi = [0,0]
barfj = [0,0]
barfk = [0,1]

(continues on next page)

52

(continued from previous page)

barfl = [0,0]
barfv = [0,1]

numvar = 2
numafe = 4
BARVARDIM = [2]

Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

Append 'numafe' empty affine expressions.
task.appendafes(numafe)

Append matrix variables of sizes in 'BARVARDIM'.
The variables will initially be fixed at zero.
task.appendbarvars(BARVARDIM)

Set the linear terms in the objective.
task.putcj(0, 1.0)
task.putcj(1, 1.0)
task.putcfix(1.0)
task.putbarcblocktriplet(barcj, barck, barcl, barcv)

for j in range(numvar):
Set the bounds on variable j
blx[j] <= x_j <= bux[j]
task.putvarbound(j, mosek.boundkey.fr, -inf, +inf)

Set up the F matrix of the problem
task.putafefentrylist(afeidx, varidx, f_val)
Set up the g vector of the problem
task.putafegslice(0, numafe, g)
task.putafebarfblocktriplet(barfi, barfj, barfk, barfl, barfv)

Append R+ domain and the corresponding ACC
task.appendacc(task.appendrplusdomain(1), [0], None)
Append SVEC_PSD domain and the corresponding ACC
task.appendacc(task.appendsvecpsdconedomain(3), [1,2,3], None)

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.minimize)

Solve the problem and print summary
task.optimize()
task.solutionsummary(mosek.streamtype.msg)

Get status information about the solution
prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

if (solsta == mosek.solsta.optimal):
xx = task.getxx(mosek.soltype.itr)
barx = task.getbarxj(mosek.soltype.itr, 0)

print("Optimal solution:\nx=%s\nbarx=%s" % (xx, barx))
(continues on next page)

53

(continued from previous page)

elif (solsta == mosek.solsta.dual_infeas_cer or
solsta == mosek.solsta.prim_infeas_cer):

print("Primal or dual infeasibility certificate found.\n")
elif solsta == mosek.solsta.unknown:

print("Unknown solution status")
else:

print("Other solution status")

call the main function
try:

main()
except mosek.MosekException as e:

print("ERROR: %s" % str(e.errno))
if e.msg is not None:

print("\t%s" % e.msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

6.8 Integer Optimization

An optimization problem where one or more of the variables are constrained to integer values is called a
(mixed) integer optimization problem. MOSEK supports integer variables in combination with linear,
quadratic and quadratically constrtained and conic problems (except semidefinite). See the previous
tutorials for an introduction to how to model these types of problems.

6.8.1 Example MILO1
We use the example

maximize 𝑥0 + 0.64𝑥1

subject to 50𝑥0 + 31𝑥1 ≤ 250,
3𝑥0 − 2𝑥1 ≥ −4,
𝑥0, 𝑥1 ≥ 0 and integer

(6.27)

to demonstrate how to set up and solve a problem with integer variables. It has the structure of a linear
optimization problem (see Sec. 6.1) except for integrality constraints on the variables. Therefore, only
the specification of the integer constraints requires something new compared to the linear optimization
problem discussed previously.

First, the integrality constraints are imposed using the function Task.putvartype :

task.putvartypelist([0, 1],
[mosek.variabletype.type_int,
mosek.variabletype.type_int])

Next, the example demonstrates how to set various useful parameters of the mixed-integer optimizer.
See Sec. 13.4 for details.

Set max solution time
task.putdouparam(mosek.dparam.mio_max_time, 60.0);

The complete source for the example is listed Listing 6.13. Please note that when Task.
getsolutionslice is called, the integer solution is requested by using soltype.itg . No dual solution
is defined for integer optimization problems.

54

Listing 6.13: Source code implementing problem (6.27).

import sys
import mosek

Since the actual value of Infinity is ignores, we define it solely
for symbolic purposes:
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main():
Make a MOSEK environment
with mosek.Env() as env:

Attach a printer to the environment
env.set_Stream(mosek.streamtype.log, streamprinter)

Create a task
with env.Task(0, 0) as task:

Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

bkc = [mosek.boundkey.up, mosek.boundkey.lo]
blc = [-inf, -4.0]
buc = [250.0, inf]

bkx = [mosek.boundkey.lo, mosek.boundkey.lo]
blx = [0.0, 0.0]
bux = [inf, inf]

c = [1.0, 0.64]

asub = [[0, 1], [0, 1]]
aval = [[50.0, 3.0], [31.0, -2.0]]

numvar = len(bkx)
numcon = len(bkc)

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

#Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

for j in range(numvar):
Set the linear term c_j in the objective.
task.putcj(j, c[j])
Set the bounds on variable j
blx[j] <= x_j <= bux[j]
task.putvarbound(j, bkx[j], blx[j], bux[j])
Input column j of A

(continues on next page)

55

(continued from previous page)

task.putacol(j, # Variable (column) index.
Row index of non-zeros in column j.
asub[j],
aval[j]) # Non-zero Values of column j.

task.putconboundlist(range(numcon), bkc, blc, buc)

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.maximize)

Define variables to be integers
task.putvartypelist([0, 1],

[mosek.variabletype.type_int,
mosek.variabletype.type_int])

Set max solution time
task.putdouparam(mosek.dparam.mio_max_time, 60.0);

Optimize the task
task.optimize()
task.writedata("milo1.ptf")

Print a summary containing information
about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)

prosta = task.getprosta(mosek.soltype.itg)
solsta = task.getsolsta(mosek.soltype.itg)

Output a solution
xx = task.getxx(mosek.soltype.itg)

if solsta in [mosek.solsta.integer_optimal]:
print("Optimal solution: %s" % xx)

elif solsta == mosek.solsta.prim_feas:
print("Feasible solution: %s" % xx)

elif mosek.solsta.unknown:
if prosta == mosek.prosta.prim_infeas_or_unbounded:

print("Problem status Infeasible or unbounded.\n")
elif prosta == mosek.prosta.prim_infeas:

print("Problem status Infeasible.\n")
elif prosta == mosek.prosta.unkown:

print("Problem status unkown.\n")
else:

print("Other problem status.\n")
else:

print("Other solution status")

call the main function
try:

main()
except mosek.MosekException as msg:

#print "ERROR: %s" % str(code)
if msg is not None:

print("\t%s" % msg)
(continues on next page)

56

(continued from previous page)

sys.exit(1)
except:

import traceback
traceback.print_exc()
sys.exit(1)

6.8.2 Specifying an initial solution
It is a common strategy to provide a starting feasible point (if one is known in advance) to the mixed-
integer solver. This can in many cases reduce solution time.

There are two modes for MOSEK to utilize an initial solution.

• A complete solution. MOSEK will first try to check if the current value of the primal variable
solution is a feasible point. The solution can either come from a previous solver call or can be
entered by the user, however the full solution with values for all variables (both integer and con-
tinuous) must be provided. This check is always performed and does not require any extra action
from the user. The outcome of this process can be inspected via information items iinfitem.
mio_initial_feasible_solution and dinfitem.mio_initial_feasible_solution_obj , and
via the Initial feasible solution objective entry in the log.

• A partial integer solution. MOSEK can also try to construct a feasible solution by fixing
integer variables to the values provided by the user (rounding if necessary) and optimizing over
the remaining continuous variables. In this setup the user must provide initial values for all
integer variables. This action is only performed if the parameter iparam.mio_construct_sol
is switched on. The outcome of this process can be inspected via information items iinfitem.
mio_construct_solution and dinfitem.mio_construct_solution_obj , and via the Construct
solution objective entry in the log.

In the following example we focus on inputting a partial integer solution.

maximize 7𝑥0 + 10𝑥1 + 𝑥2 + 5𝑥3

subject to 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 ≤ 2.5
𝑥0, 𝑥1, 𝑥2 ∈ Z
𝑥0, 𝑥1, 𝑥2, 𝑥3 ≥ 0

(6.28)

Solution values can be set using Task.putsolution .

Listing 6.14: Implementation of problem (6.28) specifying an initial
solution.

Assign values to integer variables.
(We only set a slice of xx)
task.putxxslice(mosek.soltype.itg, 0, 3, [1.0, 1.0, 0.0])

Request constructing the solution from integer variable values
task.putintparam(mosek.iparam.mio_construct_sol, mosek.onoffkey.on)

The log output from the optimizer will in this case indicate that the inputted values were used to
construct an initial feasible solution:

Construct solution objective : 1.950000000000e+01

The same information can be obtained from the API:

Listing 6.15: Retrieving information about usage of initial solution

constr = task.getintinf(mosek.iinfitem.mio_construct_solution)
constrVal = task.getdouinf(mosek.dinfitem.mio_construct_solution_obj)
print("Construct solution utilization: {0}\nConstruct solution␣

→˓objective: {1:.3f}\n".format(constr, constrVal))

57

6.8.3 Example MICO1
Integer variables can also be used arbitrarily in conic problems (except semidefinite). We refer to the
previous tutorials for how to set up a conic optimization problem. Here we present sample code that
sets up a simple optimization problem:

minimize 𝑥2 + 𝑦2

subject to 𝑥 ≥ 𝑒𝑦 + 3.8,
𝑥, 𝑦 integer.

(6.29)

The canonical conic formulation of (6.29) suitable for Optimizer API for Python is

minimize 𝑡

subject to (𝑡, 𝑥, 𝑦) ∈ 𝒬3 (𝑡 ≥
√︀
𝑥2 + 𝑦2)

(𝑥− 3.8, 1, 𝑦) ∈ 𝐾exp (𝑥− 3.8 ≥ 𝑒𝑦)
𝑥, 𝑦 integer,
𝑡 ∈ R.

(6.30)

Listing 6.16: Implementation of problem (6.30).

with mosek.Task() as task:
task.set_Stream(mosek.streamtype.log, streamprinter)

task.appendvars(3) # x, y, t
x, y, t = 0, 1, 2
task.putvarboundsliceconst(0, 3, mosek.boundkey.fr, -0.0, 0.0)

Integrality constraints
task.putvartypelist([x,y], [mosek.variabletype.type_int]*2)

Set up the affine expression
x, x-3.8, y, t, 1.0
task.appendafes(5)
task.putafefentrylist([0, 1, 2, 3],

[x,x,y,t],
[1,1,1,1])

task.putafegslice(0, 5, [0, -3.8, 0, 0, 1.0])

Add constraint (x-3.8, 1, y) \in \EXP
task.appendacc(task.appendprimalexpconedomain(), [1, 4, 2], None)

Add constraint (t, x, y) \in \QUAD
task.appendacc(task.appendquadraticconedomain(3), [3, 0, 2], None)

Objective
task.putobjsense(mosek.objsense.minimize)
task.putcj(t, 1)

Optimize the task
task.optimize()
task.solutionsummary(mosek.streamtype.msg)

xx = task.getxxslice(mosek.soltype.itg, 0, 2)
print(xx)

Error and solution status handling were omitted for readability.

58

6.9 Disjunctive constraints

A disjunctive constraint (DJC) involves of a number of affine conditions combined with the logical
operators or (∨) and optionally and (∧) into a formula in disjunctive normal form, that is a disjunction
of conjunctions. Specifically, a disjunctive constraint has the form of a disjunction

𝑇1 or 𝑇2 or · · · or 𝑇𝑡 (6.31)

where each 𝑇𝑖 is written as a conjunction

𝑇𝑖 = 𝑇𝑖,1 and 𝑇𝑖,2 and · · · and 𝑇𝑖,𝑠𝑖 (6.32)

and each 𝑇𝑖,𝑗 is an affine condition (affine equation or affine inequality) of the form 𝐷𝑖𝑗𝑥+𝑑𝑖𝑗 ∈ 𝒟𝑖𝑗 with
𝒟𝑖𝑗 being one of the affine domains from Sec. 15.11.1. A disjunctive constraint (DJC) can therefore be
succinctly written as

𝑡⋁︁
𝑖=1

𝑠𝑖⋀︁
𝑗=1

𝑇𝑖,𝑗 (6.33)

where each 𝑇𝑖,𝑗 is an affine condition.
Each 𝑇𝑖 is called a term of the disjunctive constraint and 𝑡 is the number of terms. Each condition

𝑇𝑖,𝑗 is called a simple term and 𝑠𝑖 is called the size of the 𝑖-th term.
A disjunctive constraint is satisfied if at least one of its terms is satisfied. A term is satisfied if all of

its constituent simple terms are satisfied. A problem containing DJCs will be solved by the mixed-integer
optimizer.

Note that nonlinear cones are not allowed as one of the domains 𝒟𝑖𝑗 inside a DJC.

6.9.1 Applications
Disjunctive constraints are a convenient and expressive syntactical tool. Then can be used to phrase
many constructions appearing especially in mixed-integer modelling. Here are some examples.

• Complementarity. The condition 𝑥𝑦 = 0, where 𝑥, 𝑦 are scalar variables, is equivalent to

𝑥 = 0 or 𝑦 = 0.

It is a DJC with two terms, each of size 1.

• Semicontinuous variable. A semicontinuous variable is a scalar variable which takes values in
{0} ∪ [𝑎,+∞]. This can be expressed as

𝑥 = 0 or 𝑥 ≥ 𝑎.

It is again a DJC with two terms, each of size 1.

• Exact absolute value. The constraint 𝑡 = |𝑥| is not convex, but can be written as

(𝑥 ≥ 0 and 𝑡 = 𝑥) or (𝑥 ≤ 0 and 𝑡 = −𝑥)

It is a DJC with two terms, each of size 2.

• Indicator. Suppose 𝑧 is a Boolean variable. Then we can write the indicator constraint 𝑧 = 1 =⇒
𝑎𝑇𝑥 ≤ 𝑏 as

(𝑧 = 1 and 𝑎𝑇𝑥 ≤ 𝑏) or (𝑧 = 0)

which is a DJC with two terms, of sizes, respectively, 2 and 1.

59

• Piecewise linear functions. Suppose 𝑎1 ≤ · · · ≤ 𝑎𝑘+1 and 𝑓 : [𝑎1, 𝑎𝑘+1] → R is a piecewise
linear function, given on the 𝑖-th of 𝑘 intervals [𝑎𝑖, 𝑎𝑖+1] by a different affine expression 𝑓𝑖(𝑥). Then
we can write the constraint 𝑦 = 𝑓(𝑥) as

𝑘⋁︁
𝑖=1

(𝑎𝑖 ≤ 𝑦 and 𝑦 ≤ 𝑎𝑖+1 and 𝑦 − 𝑓𝑖(𝑥) = 0)

making it a DJC with 𝑘 terms, each of size 3.

On the other hand most DJCs are equivalent to a mixed-integer linear program through a big-M
reformulation. In some cases, when a suitable big-M is known to the user, writing such a formulation
directly may be more efficient than formulating the problem as a DJC. See Sec. 13.4.6 for a discussion
of this topic.

Disjunctive constraints can be added to any problem which includes linear constraints, affine conic
constraints (without semidefinite domains) or integer variables.

6.9.2 Example DJC1
In this tutorial we will consider the following sample demonstration problem:

minimize 2𝑥0 + 𝑥1 + 3𝑥2 + 𝑥3

subject to 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 ≥ −10,⎛⎝ 𝑥0 − 2𝑥1 ≤ −1
and

𝑥2 = 𝑥3 = 0

⎞⎠ or

⎛⎝ 𝑥2 − 3𝑥3 ≤ −2
and

𝑥0 = 𝑥1 = 0

⎞⎠ ,

𝑥𝑖 = 2.5 for at least one 𝑖 ∈ {0, 1, 2, 3}.

(6.34)

The problem has two DJCs: the first one has 2 terms. The second one, which we can write as
⋁︀3

𝑖=0(𝑥𝑖 =
2.5), has 4 terms.

We begin by expressing problem (6.34) in the format where all simple terms are of the form 𝐷𝑖𝑗𝑥+𝑑𝑖𝑗 ∈
𝒟𝑖𝑗 , that is of the form a sequence of affine expressions belongs to a linear domain:

minimize 2𝑥0 + 𝑥1 + 3𝑥2 + 𝑥3

subject to 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 ≥ −10,⎛⎝ 𝑥0 − 2𝑥1 + 1 ∈ R1
≤0

and
(𝑥2, 𝑥3) ∈ 02

⎞⎠ or

⎛⎝ 𝑥2 − 3𝑥3 + 2 ∈ R1
≤0

and
(𝑥0, 𝑥1) ∈ 02

⎞⎠ ,

(𝑥0 − 2.5 ∈ 01) or (𝑥1 − 2.5 ∈ 01) or (𝑥2 − 2.5 ∈ 01) or (𝑥3 − 2.5 ∈ 01),

(6.35)

where 0𝑛 denotes the 𝑛-dimensional zero domain and R𝑛
≤0 denotes the 𝑛-dimensional nonpositive orthant,

as in Sec. 15.11.
Now we show how to add the two DJCs from (6.35). This involves three steps:

• storing the affine expressions which appear in the DJCs,

• creating the required domains, and

• combining the two into the description of the DJCs.

Readers familiar with Sec. 6.2 will find that the process is completely analogous to the process of
adding affine conic constraints (ACCs). In fact we would recommend Sec. 6.2 as a means of familiarizing
with the structures used here at a slightly lower level of complexity.

60

6.9.3 Step 1: add affine expressions
In the first step we need to store all affine expressions appearing in the problem, that is the rows of the
expressions 𝐷𝑖𝑗𝑥 + 𝑑𝑖𝑗 . In problem (6.35) the disjunctive constraints contain altogether the following
affine expressions:

(0) 𝑥0 − 2𝑥1 + 1
(1) 𝑥2 − 3𝑥3 + 2
(2) 𝑥0

(3) 𝑥1

(4) 𝑥2

(5) 𝑥3

(6) 𝑥0 − 2.5
(7) 𝑥1 − 2.5
(8) 𝑥2 − 2.5
(9) 𝑥3 − 2.5

(6.36)

To store affine expressions (AFE for short) MOSEK provides a matrix F and a vector g with the
understanding that every row of

F𝑥 + g

defines one affine expression. The API functions with infix afe are used to operate on F and g, add
rows, add columns, set individual elements, set blocks etc. similarly to the methods for operating on the
𝐴 matrix of linear constraints. The storage matrix F is a sparse matrix, therefore only nonzero elements
have to be explicitly added.

Remark: the storage F,g may, but does not have to be, kept in the same order in which the expressions
enter DJCs. In fact in (6.36) we have chosen to list the linear expressions in a different, convenient order.
It is also possible to store some expressions only once if they appear multiple times in DJCs.

Given the list (6.36), we initialize the AFE storage as (only nonzeros are listed and for convenience
we list the content of (6.36) alongside in the leftmost column):

(0) 𝑥0 − 2𝑥1 + 1
(1) 𝑥2 − 3𝑥3 + 2
(2) 𝑥0

(3) 𝑥1

(4) 𝑥2

(5) 𝑥3

(6) 𝑥0 − 2.5
(7) 𝑥1 − 2.5
(8) 𝑥2 − 2.5
(9) 𝑥3 − 2.5

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2
1 −3

1
1

1
1

1
1

1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, g =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

−2.5
−2.5
−2.5
−2.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.37)

Initially F and g are empty (have 0 rows). We construct them as follows. First, we append a number of
empty rows:

numafe = 10
task.appendafes(numafe)

We now have F and g with 10 rows of zeros and we fill them up to obtain (6.37).

fafeidx = [0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9]
fvaridx = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
fval = [1.0, -2.0, 1.0, -3.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
g = [1.0, 2.0, 0.0, 0.0, 0.0, 0.0, -2.5, -2.5, -2.5, -2.5]

task.putafefentrylist(fafeidx, fvaridx, fval)
task.putafegslice(0, numafe, g)

We have now created the matrices from (6.37). Note that at this point we have not defined any DJCs
yet. All we did was define some affine expressions and place them in a generic AFE storage facility to
be used later.

61

6.9.4 Step 2: create domains
Next, we create all the domains 𝒟𝑖𝑗 appearing in all the simple terms of all DJCs. Domains are created
with functions with infix domain. In the case of (6.35) there are three different domains appearing:

01, 02, R1
≤0.

We create them with the corresponding functions:

zero1 = task.appendrzerodomain(1)
zero2 = task.appendrzerodomain(2)
rminus1 = task.appendrminusdomain(1)

The function returns a domain index, which is just the position in the list of all domains (potentially)
created for the problem. At this point the domains are just stored in the list of domains, but not yet
used for anything.

6.9.5 Step 3: create the actual disjunctive constraints
We are now in position to create the disjunctive constraints. DJCs are created with functions with infix
djc. The function Task.appenddjcs will append a number of initially empty DJCs to the task:

numdjc = 2
task.appenddjcs(numdjc)

We can then define each disjunction with the method Task.putdjc . It will require the following
data:

• the list termsizelist of the sizes of all terms of the DJC,

• the list afeidxlist of indices of AFEs to be used in the constraint. These are the row numbers in
F,g which contain the required affine expressions.

• the list domidxlist of the domains for all the simple terms.

For example, consider the first DJC of (6.35). Below we format this DJC by replacing each affine
expression with the index of that expression in (6.37) and each domain with its index we obtained in
Step 2:(︀

𝑥0 − 2𝑥1 + 1 ∈ R1
≤0 and (𝑥2, 𝑥3) ∈ 02

)︀
or

(︀
𝑥2 − 3𝑥3 + 2 ∈ R1

≤0 and (𝑥0, 𝑥1) ∈ 02
)︀

((0) ∈ rminus1 and ((4), (5)) ∈ zero2)⏟ ⏞
term of size 2

or ((1) ∈ rminus1 and ((2), (3)) ∈ zero2)⏟ ⏞
term of size 2

(6.38)

It implies that the DJC will be represented by the following data:

• termsizelist = [2, 2],

• afeidxlist = [0, 4, 5, 1, 2, 3],

• domidxlist = [rminus1, zero2, rminus1, zero2].

The code adding this DJC will therefore look as follows:

task.putdjc(0, # DJC index
[rminus1, zero2, rminus1, zero2], # Domains ␣

→˓(domidxlist)
[0, 4, 5, 1, 2, 3], # AFE indices␣

→˓(afeidxlist)
None, # Unused
[2, 2]) # Term sizes ␣

→˓(termsizelist)

62

Note that number of AFEs used in afeidxlist must match the sum of dimensions of all the domains
(here: 6 == 1 + 2 + 1 + 2) and the number of domains must match the sum of all term sizes (here:
4 == 2 + 2).

For similar reasons the second DJC of problem (6.35) will have the description:

𝑥0 − 2.5 ∈ 01 or 𝑥1 − 2.5 ∈ 01 or 𝑥2 − 2.5 ∈ 01 or 𝑥3 − 2.5 ∈ 01

(6) ∈ zero1⏟ ⏞
term of size 1

or (7) ∈ zero1⏟ ⏞
term of size 1

or (8) ∈ zero1⏟ ⏞
term of size 1

or (9) ∈ zero1⏟ ⏞
term of size 1

(6.39)

• termsizelist = [1, 1, 1, 1],

• afeidxlist = [6, 7, 8, 9],

• domidxlist = [zero1, zero1, zero1, zero1].

task.putdjc(1, # DJC index
[zero1, zero1, zero1, zero1], # Domains ␣

→˓(domidxlist)
[6, 7, 8, 9], # AFE indices␣

→˓(afeidxlist)
None, # Unused
[1, 1, 1, 1]) # Term sizes ␣

→˓(termidxlist)

This completes the setup of the disjunctive constraints.

6.9.6 Example DJC1 full code
We refer to Sec. 6.1 for instructions how to initialize a MOSEK session, add variables and set up the
objective and linear constraints. All else that remains is to call the solver with Task.optimize and
retrieve the solution with Task.getxx . Since our problem contains a DJC, and thus is solved by the
mixed-integer optimizer, we fetch the integer solution. The full code solving problem (6.34) is shown
below.

Listing 6.17: Full code of example DJC1.

import sys
from mosek import *

Since the value of infinity is ignored, we define it solely
for symbolic purposes
inf = 0.0

def main():
Make mosek environment
with Env() as env:

Create a task object
with env.Task(0, 0) as task:

Append free variables
numvar = 4
task.appendvars(numvar)
task.putvarboundsliceconst(0, numvar, boundkey.fr, -inf, inf)

The linear part: the linear constraint
task.appendcons(1)
task.putarow(0, range(numvar), [1] * numvar)
task.putconbound(0, boundkey.lo, -10.0, -10.0)

The linear part: objective
(continues on next page)

63

(continued from previous page)

task.putobjsense(objsense.minimize)
task.putclist(range(numvar), [2, 1, 3, 1])

Fill in the affine expression storage F, g
numafe = 10
task.appendafes(numafe)

fafeidx = [0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9]
fvaridx = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
fval = [1.0, -2.0, 1.0, -3.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
g = [1.0, 2.0, 0.0, 0.0, 0.0, 0.0, -2.5, -2.5, -2.5, -2.5]

task.putafefentrylist(fafeidx, fvaridx, fval)
task.putafegslice(0, numafe, g)

Create domains
zero1 = task.appendrzerodomain(1)
zero2 = task.appendrzerodomain(2)
rminus1 = task.appendrminusdomain(1)

Append disjunctive constraints
numdjc = 2
task.appenddjcs(numdjc)

First disjunctive constraint
task.putdjc(0, # DJC index

[rminus1, zero2, rminus1, zero2], # Domains ␣
→˓(domidxlist)

[0, 4, 5, 1, 2, 3], # AFE indices␣
→˓(afeidxlist)

None, # Unused
[2, 2]) # Term sizes ␣

→˓(termsizelist)

Second disjunctive constraint
task.putdjc(1, # DJC index

[zero1, zero1, zero1, zero1], # Domains ␣
→˓(domidxlist)

[6, 7, 8, 9], # AFE indices␣
→˓(afeidxlist)

None, # Unused
[1, 1, 1, 1]) # Term sizes ␣

→˓(termidxlist)

Useful for debugging
task.writedata("djc.ptf") # Write file in human-

→˓readable format
task.set_Stream(streamtype.log, sys.stdout.write) # Attach a log stream␣

→˓printer to the task

Solve the problem
task.optimize()

Print a summary containing information
about the solution for debugging purposes
task.solutionsummary(streamtype.msg)

(continues on next page)

64

(continued from previous page)

Get status information about the solution
sta = task.getsolsta(soltype.itg)

if (sta == solsta.integer_optimal):
xx = task.getxx(soltype.itg)

print("Optimal solution: ")
for i in range(numvar):

print("x[" + str(i) + "]=" + str(xx[i]))
else:

print("Another solution status")

The answer is

[0, 0, -12.5, 2.5]

6.9.7 Summary and extensions
In this section we presented the most basic usage of the affine expression storage F,g to input affine
expressions used together with domains to create disjunctive constraints (DJC). Now we briefly point
out additional features of his interface which can be useful in some situations for more demanding users.
They will be demonstrated in various examples in other tutorials and case studies in this manual.

• It is important to remember that F,g has only a storage function and during the DJC construction
we can pick an arbitrary list of row indices and place them in a domain. It means for example that:

– It is not necessary to store the AFEs in the same order they will appear in DJCs.

– The same AFE index can appear more than once in one and/or more conic constraints (this
can be used to reduce storage if the same affine expression is used in multiple DJCs).

– The F,g storage can even include rows that are not presently used in any DJC.

• Domains can be reused: multiple DJCs can use the same domain. On the other hand the same
type of domain can appear under many domidx positions. In this sense the list of created domains
also plays only a storage role: the domains are only used when they enter a DJC.

• The same affine expression storage F,g is shared between disjunctive constraints and affine conic
constraints (ACCs, see Sec. 6.2).

• When defining an DJC an additional constant vector 𝑏 can be provided to modify the constant
terms coming from g but only for this particular DJC. This could be useful to reduce F storage
space if, for example, many expressions 𝐷𝑇𝑥 + 𝑏𝑖 with the same linear part 𝐷𝑇𝑥, but varying
constant terms 𝑏𝑖, are to be used throughout DJCs.

6.10 Quadratic Optimization

MOSEK can solve quadratic and quadratically constrained problems, as long as they are convex. This
class of problems can be formulated as follows:

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐𝑘 ≤ 1
2𝑥

𝑇𝑄𝑘𝑥 +
∑︀𝑛−1

𝑗=0 𝑎𝑘,𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1.

(6.40)

Without loss of generality it is assumed that 𝑄𝑜 and 𝑄𝑘 are all symmetric because

𝑥𝑇𝑄𝑥 =
1

2
𝑥𝑇 (𝑄 + 𝑄𝑇)𝑥.

This implies that a non-symmetric 𝑄 can be replaced by the symmetric matrix 1
2 (𝑄 + 𝑄𝑇).

65

The problem is required to be convex. More precisely, the matrix 𝑄𝑜 must be positive semi-definite
and the 𝑘th constraint must be of the form

𝑙𝑐𝑘 ≤ 1

2
𝑥𝑇𝑄𝑘𝑥 +

𝑛−1∑︁
𝑗=0

𝑎𝑘,𝑗𝑥𝑗 (6.41)

with a negative semi-definite 𝑄𝑘 or of the form

1

2
𝑥𝑇𝑄𝑘𝑥 +

𝑛−1∑︁
𝑗=0

𝑎𝑘,𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘.

with a positive semi-definite 𝑄𝑘. This implies that quadratic equalities are not allowed. Specifying a
non-convex problem will result in an error when the optimizer is called.

A matrix is positive semidefinite if all the eigenvalues of 𝑄 are nonnegative. An alternative statement
of the positive semidefinite requirement is

𝑥𝑇𝑄𝑥 ≥ 0, ∀𝑥.

If the convexity (i.e. semidefiniteness) conditions are not met MOSEK will not produce reliable results
or work at all.

6.10.1 Example: Quadratic Objective
We look at a small problem with linear constraints and quadratic objective:

minimize 𝑥2
1 + 0.1𝑥2

2 + 𝑥2
3 − 𝑥1𝑥3 − 𝑥2

subject to 1 ≤ 𝑥1 + 𝑥2 + 𝑥3

0 ≤ 𝑥.
(6.42)

The matrix formulation of (6.42) has:

𝑄𝑜 =

⎡⎣ 2 0 −1
0 0.2 0
−1 0 2

⎤⎦ , 𝑐 =

⎡⎣ 0
−1
0

⎤⎦ , 𝐴 =
[︀

1 1 1
]︀
,

with the bounds:

𝑙𝑐 = 1, 𝑢𝑐 = ∞, 𝑙𝑥 =

⎡⎣ 0
0
0

⎤⎦ and 𝑢𝑥 =

⎡⎣ ∞
∞
∞

⎤⎦
Please note the explicit 1

2 in the objective function of (6.40) which implies that diagonal elements must
be doubled in 𝑄, i.e. 𝑄11 = 2 even though 1 is the coefficient in front of 𝑥2

1 in (6.42).

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the quadratic objective

The quadratic objective is specified using the function Task.putqobj . Since 𝑄𝑜 is symmetric only the
lower triangular part of 𝑄𝑜 is inputted. In fact entries from above the diagonal may not appear in the
input.

The lower triangular part of the matrix 𝑄𝑜 is specified using an unordered sparse triplet format (for
details, see Sec. 15.1.4):

qsubi = [0, 1, 2, 2]
qsubj = [0, 1, 0, 2]
qval = [2.0, 0.2, -1.0, 2.0]

66

Please note that

• only non-zero elements are specified (any element not specified is 0 by definition),

• the order of the non-zero elements is insignificant, and

• only the lower triangular part should be specified.

Finally, this definition of 𝑄𝑜 is loaded into the task:

task.putqobj(qsubi, qsubj, qval)

Source code

Listing 6.18: Source code implementing problem (6.42).

import sys, os, mosek

Since the actual value of Infinity is ignored, we define it solely
for symbolic purposes:
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main():
Open MOSEK and create an environment and task
Make a MOSEK environment
with mosek.Env() as env:

Attach a printer to the environment
env.set_Stream(mosek.streamtype.log, streamprinter)
Create a task
with env.Task() as task:

task.set_Stream(mosek.streamtype.log, streamprinter)
Set up and input bounds and linear coefficients
bkc = [mosek.boundkey.lo]
blc = [1.0]
buc = [inf]
numvar = 3
bkx = [mosek.boundkey.lo] * numvar
blx = [0.0] * numvar
bux = [inf] * numvar
c = [0.0, -1.0, 0.0]
asub = [[0], [0], [0]]
aval = [[1.0], [1.0], [1.0]]

numvar = len(bkx)
numcon = len(bkc)

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).

(continues on next page)

67

(continued from previous page)

task.appendvars(numvar)

for j in range(numvar):
Set the linear term c_j in the objective.
task.putcj(j, c[j])
Set the bounds on variable j
blx[j] <= x_j <= bux[j]
task.putvarbound(j, bkx[j], blx[j], bux[j])
Input column j of A
task.putacol(j, # Variable (column) index.

Row index of non-zeros in column j.
asub[j],
aval[j]) # Non-zero Values of column j.

for i in range(numcon):
task.putconbound(i, bkc[i], blc[i], buc[i])

Set up and input quadratic objective
qsubi = [0, 1, 2, 2]
qsubj = [0, 1, 0, 2]
qval = [2.0, 0.2, -1.0, 2.0]

task.putqobj(qsubi, qsubj, qval)

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.minimize)

Optimize
task.optimize()
Print a summary containing information
about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)

prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

Output a solution
xx = task.getxx(mosek.soltype.itr)

if solsta == mosek.solsta.optimal:
print("Optimal solution: %s" % xx)

elif solsta == mosek.solsta.dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif mosek.solsta.unknown:
print("Unknown solution status")

else:
print("Other solution status")

call the main function
try:

main()
except mosek.MosekException as e:

print("ERROR: %s" % str(e.errno))
if e.msg is not None:

(continues on next page)

68

(continued from previous page)

import traceback
traceback.print_exc()
print("\t%s" % e.msg)

sys.exit(1)
except:

import traceback
traceback.print_exc()
sys.exit(1)

6.10.2 Example: Quadratic constraints
In this section we show how to solve a problem with quadratic constraints. Please note that quadratic
constraints are subject to the convexity requirement (6.41).

Consider the problem:

minimize 𝑥2
1 + 0.1𝑥2

2 + 𝑥2
3 − 𝑥1𝑥3 − 𝑥2

subject to 1 ≤ 𝑥1 + 𝑥2 + 𝑥3 − 𝑥2
1 − 𝑥2

2 − 0.1𝑥2
3 + 0.2𝑥1𝑥3,

𝑥 ≥ 0.

This is equivalent to

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥
subject to 1

2𝑥
𝑇𝑄0𝑥 + 𝐴𝑥 ≥ 𝑏,
𝑥 ≥ 0,

(6.43)

where

𝑄𝑜 =

⎡⎣ 2 0 −1
0 0.2 0
−1 0 2

⎤⎦ , 𝑐 =
[︀

0 −1 0
]︀𝑇

, 𝐴 =
[︀

1 1 1
]︀
, 𝑏 = 1.

𝑄0 =

⎡⎣ −2 0 0.2
0 −2 0

0.2 0 −0.2

⎤⎦ .

The linear parts and quadratic objective are set up the way described in the previous tutorial.

Setting up quadratic constraints

To add quadratic terms to the constraints we use the function Task.putqconk .

qsubi = [0, 1, 2, 2]
qsubj = [0, 1, 2, 0]
qval = [-2.0, -2.0, -0.2, 0.2]

put Q^0 in constraint with index 0.

task.putqconk(0, qsubi, qsubj, qval)

While Task.putqconk adds quadratic terms to a specific constraint, it is also possible to input all
quadratic terms in one chunk using the Task.putqcon function.

69

Source code

Listing 6.19: Implementation of the quadratically constrained
problem (6.43).

import sys
import mosek

Since the actual value of Infinity is ignores, we define it solely
for symbolic purposes:
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main():
Make a MOSEK environment
with mosek.Env() as env:

Attach a printer to the environment
env.set_Stream(mosek.streamtype.log, streamprinter)

Create a task
with env.Task(0, 0) as task:

Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

Set up and input bounds and linear coefficients
bkc = [mosek.boundkey.lo]
blc = [1.0]
buc = [inf]

bkx = [mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey.lo]

blx = [0.0, 0.0, 0.0]
bux = [inf, inf, inf]

c = [0.0, -1.0, 0.0]

asub = [[0], [0], [0]]
aval = [[1.0], [1.0], [1.0]]

numvar = len(bkx)
numcon = len(bkc)
NUMANZ = 3
Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

#Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

#Optionally add a constant term to the objective.
(continues on next page)

70

(continued from previous page)

task.putcfix(0.0)

for j in range(numvar):
Set the linear term c_j in the objective.
task.putcj(j, c[j])
Set the bounds on variable j
blx[j] <= x_j <= bux[j]
task.putvarbound(j, bkx[j], blx[j], bux[j])
Input column j of A
task.putacol(j, # Variable (column) index.

Row index of non-zeros in column j.
asub[j],
aval[j]) # Non-zero Values of column j.

for i in range(numcon):
task.putconbound(i, bkc[i], blc[i], buc[i])

Set up and input quadratic objective

qsubi = [0, 1, 2, 2]
qsubj = [0, 1, 0, 2]
qval = [2.0, 0.2, -1.0, 2.0]

task.putqobj(qsubi, qsubj, qval)

The lower triangular part of the Q^0
matrix in the first constraint is specified.
This corresponds to adding the term
- x0^2 - x1^2 - 0.1 x2^2 + 0.2 x0 x2

qsubi = [0, 1, 2, 2]
qsubj = [0, 1, 2, 0]
qval = [-2.0, -2.0, -0.2, 0.2]

put Q^0 in constraint with index 0.

task.putqconk(0, qsubi, qsubj, qval)

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.minimize)

Optimize the task
task.optimize()

Print a summary containing information
about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)

prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

Output a solution
xx = task.getxx(mosek.soltype.itr)

if solsta == mosek.solsta.optimal:
print("Optimal solution: %s" % xx)

(continues on next page)

71

(continued from previous page)

elif solsta == mosek.solsta.dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif mosek.solsta.unknown:
print("Unknown solution status")

else:
print("Other solution status")

call the main function
try:

main()
except mosek.MosekException as e:

print("ERROR: %s" % str(e.errno))
print("\t%s" % e.msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

6.11 Problem Modification and Reoptimization

Often one might want to solve not just a single optimization problem, but a sequence of problems, each
differing only slightly from the previous one. This section demonstrates how to modify and re-optimize
an existing problem.

The example we study is a simple production planning model.
Problem modifications regarding variables, cones, objective function and constraints can be grouped

in categories:

• add/remove,

• coefficient modifications,

• bounds modifications.

Especially removing variables and constraints can be costly. Special care must be taken with respect
to constraints and variable indexes that may be invalidated.

Depending on the type of modification, MOSEK may be able to optimize the modified problem more
efficiently exploiting the information and internal state from the previous execution. After optimization,
the solution is always stored internally, and is available before next optimization. The former optimal
solution may be still feasible, but no longer optimal; or it may remain optimal if the modification of the
objective function was small. This special case is discussed in Sec. 14.3.

In general, MOSEK exploits dual information and availability of an optimal basis from the previous
execution. The simplex optimizer is well suited for exploiting an existing primal or dual feasible solution.
Restarting capabilities for interior-point methods are still not as reliable and effective as those for the
simplex algorithm. More information can be found in Chapter 10 of the book [Chvatal83].

Parameter settings (see Sec. 7.5) can also be changed between optimizations.

72

6.11.1 Example: Production Planning
A company manufactures three types of products. Suppose the stages of manufacturing can be split into
three parts: Assembly, Polishing and Packing. In the table below we show the time required for each
stage as well as the profit associated with each product.

Product no. Assembly (minutes) Polishing (minutes) Packing (minutes) Profit ($)
0 2 3 2 1.50
1 4 2 3 2.50
2 3 3 2 3.00

With the current resources available, the company has 100, 000 minutes of assembly time, 50, 000
minutes of polishing time and 60, 000 minutes of packing time available per year. We want to know how
many items of each product the company should produce each year in order to maximize profit?

Denoting the number of items of each type by 𝑥0, 𝑥1 and 𝑥2, this problem can be formulated as a
linear optimization problem:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2

subject to 2𝑥0 + 4𝑥1 + 3𝑥2 ≤ 100000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 50000,
2𝑥0 + 3𝑥1 + 2𝑥2 ≤ 60000,

(6.44)

and

𝑥0, 𝑥1, 𝑥2 ≥ 0.

Code in Listing 6.20 loads and solves this problem.

Listing 6.20: Setting up and solving problem (6.44)

Create a MOSEK environment
with mosek.Env() as env:

Create a task
with env.Task(0, 0) as task:

Bound keys for constraints
bkc = [mosek.boundkey.up,

mosek.boundkey.up,
mosek.boundkey.up]

Bound values for constraints
blc = [-inf, -inf, -inf]
buc = [100000.0, 50000.0, 60000.0]
Bound keys for variables
bkx = [mosek.boundkey.lo,

mosek.boundkey.lo,
mosek.boundkey.lo]

Bound values for variables
blx = [0.0, 0.0, 0.0]
bux = [+inf, +inf, +inf]
Objective coefficients
csub = [0, 1, 2]
cval = [1.5, 2.5, 3.0]
We input the A matrix column-wise
asub contains row indexes
asub = [0, 1, 2,

0, 1, 2,
0, 1, 2]

acof contains coefficients
acof = [2.0, 3.0, 2.0,

4.0, 2.0, 3.0,
(continues on next page)

73

(continued from previous page)

3.0, 3.0, 2.0]
aptrb and aptre contains the offsets into asub and acof where
columns start and end respectively
aptrb = [0, 3, 6]
aptre = [3, 6, 9]

numvar = len(bkx)
numcon = len(bkc)

Append the constraints
task.appendcons(numcon)

Append the variables.
task.appendvars(numvar)

Input objective
task.putcfix(0.0)
task.putclist(csub, cval)

Put constraint bounds
task.putconboundslice(0, numcon, bkc, blc, buc)

Put variable bounds
task.putvarboundslice(0, numvar, bkx, blx, bux)

Input A non-zeros by columns
for j in range(numvar):

ptrb, ptre = aptrb[j], aptre[j]
task.putacol(j,

asub[ptrb:ptre],
acof[ptrb:ptre])

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.maximize)

Optimize the task
task.optimize()

Output a solution
xx = task.getsolutionslice(mosek.soltype.bas,

mosek.solitem.xx,
0, numvar)

print("xx = {}".format(xx))

6.11.2 Changing the Linear Constraint Matrix
Suppose we want to change the time required for assembly of product 0 to 3 minutes. This corresponds
to setting 𝑎0,0 = 3, which is done by calling the function Task.putaij as shown below.

task.putaij(0, 0, 3.0)

The problem now has the form:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2

subject to 3𝑥0 + 4𝑥1 + 3𝑥2 ≤ 100000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 50000,
2𝑥0 + 3𝑥1 + 2𝑥2 ≤ 60000,

(6.45)

74

and

𝑥0, 𝑥1, 𝑥2 ≥ 0.

After this operation we can reoptimize the problem.

6.11.3 Appending Variables
We now want to add a new product with the following data:

Product no. Assembly (minutes) Polishing (minutes) Packing (minutes) Profit ($)
3 4 0 1 1.00

This corresponds to creating a new variable 𝑥3, appending a new column to the 𝐴 matrix and setting
a new term in the objective. We do this in Listing 6.21

Listing 6.21: How to add a new variable (column)

################### Add a new variable ######################
task.appendvars(1)
numvar+=1

Set bounds on new varaible
task.putvarbound(task.getnumvar() - 1,

mosek.boundkey.lo,
0,
+inf)

Change objective
task.putcj(task.getnumvar() - 1, 1.0)

Put new values in the A matrix
acolsub = [0, 2]
acolval = [4.0, 1.0]

task.putacol(task.getnumvar() - 1, # column index
acolsub,
acolval)

After this operation the new problem is:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2 + 1.0𝑥3

subject to 3𝑥0 + 4𝑥1 + 3𝑥2 + 4𝑥3 ≤ 100000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 50000,
2𝑥0 + 3𝑥1 + 2𝑥2 + 1𝑥3 ≤ 60000,

(6.46)

and

𝑥0, 𝑥1, 𝑥2, 𝑥3 ≥ 0.

6.11.4 Appending Constraints
Now suppose we want to add a new stage to the production process called Quality control for which
30000 minutes are available. The time requirement for this stage is shown below:

Product no. Quality control (minutes)
0 1
1 2
2 1
3 1

75

This corresponds to adding the constraint

𝑥0 + 2𝑥1 + 𝑥2 + 𝑥3 ≤ 30000

to the problem. This is done as follows.

Listing 6.22: Adding a new constraint.

############# Add a new constraint #######################
task.appendcons(1)
numcon+=1

Set bounds on new constraint
task.putconbound(task.getnumcon() - 1,

mosek.boundkey.up, -inf, 30000)

Put new values in the A matrix
arowsub = [0, 1, 2, 3]
arowval = [1.0, 2.0, 1.0, 1.0]

task.putarow(task.getnumcon() - 1, # row index
arowsub,
arowval)

Again, we can continue with re-optimizing the modified problem.

6.11.5 Changing bounds
One typical reoptimization scenario is to change bounds. Suppose for instance that we must operate
with limited time resources, and we must change the upper bounds in the problem as follows:

Operation Time available (before) Time available (new)
Assembly 100000 80000
Polishing 50000 40000
Packing 60000 50000
Quality control 30000 22000

That means we would like to solve the problem:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2 + 1.0𝑥3

subject to 3𝑥0 + 4𝑥1 + 3𝑥2 + 4𝑥3 ≤ 80000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 40000,
2𝑥0 + 3𝑥1 + 2𝑥2 + 1𝑥3 ≤ 50000,
𝑥0 + 2𝑥1 + 𝑥2 + 𝑥3 ≤ 22000.

(6.47)

In this case all we need to do is redefine the upper bound vector for the constraints, as shown in the next
listing.

Listing 6.23: Change constraint bounds.

############# Change constraint bounds #######################
newbkc = [mosek.boundkey.up] * numcon
newblc = [-inf] * numcon
newbuc = [80000, 40000, 50000, 22000]

task.putconboundslice(0, numcon, newbkc, newblc, newbuc)

Again, we can continue with re-optimizing the modified problem.

76

6.11.6 Advanced hot-start
If the optimizer used the data from the previous run to hot-start the optimizer for reoptimization, this
will be indicated in the log:

Optimizer - hotstart : yes

When performing re-optimizations, instead of removing a basic variable it may be more efficient to
fix the variable at zero and then remove it when the problem is re-optimized and it has left the basis.
This makes it easier for MOSEK to restart the simplex optimizer.

6.12 Parallel optimization

In this section we demonstrate the method Env.optimizebatch which is a parallel optimization mech-
anism built-in in MOSEK. It has the following features:

• One license token checked out by the environment will be shared by the tasks.

• It allows to fine-tune the balance between the total number of threads in use by the parallel solver
and the number of threads used for each individual task.

• It is very efficient for optimizing a large number of task of similar size, for example tasks obtained
by cloning an initial task and changing some coefficients.

In the example below we simply load a few different tasks and optimize them together. When all
tasks complete we access the response codes, solutions and other information in the standard way, as if
each task was optimized separately.

Listing 6.24: Calling the parallel optimizer.

Example of how to use env.optimizebatch()
Optimizes tasks whose names were read from command line.
def main(argv):

n = len(argv) - 1
tasks = []

threadpoolsize = 6 # Size of thread pool available for all tasks

with mosek.Env() as env:
Set up some example list of tasks to optimize
for i in range(n):

t = mosek.Task(env, 0, 0)
t.readdata(argv[i+1])

We can set the number of threads for each task
t.putintparam(mosek.iparam.num_threads, 2)
tasks.append(t)

Optimize all the given tasks in parallel
trm, res = env.optimizebatch(False, # No race

-1.0, # No time limit
threadpoolsize,
tasks) # List of tasks to optimize

for i in range(n):
print("Task {0} res {1} trm {2} obj_val {3} time {4}".format(

i,
res[i],
trm[i],
tasks[i].getdouinf(mosek.dinfitem.intpnt_primal_obj),
tasks[i].getdouinf(mosek.dinfitem.optimizer_time)))

77

Another, slightly more advanced application of the parallel optimizer is presented in Sec. 11.3.

6.13 Retrieving infeasibility certificates

When a continuous problem is declared as primal or dual infeasible, MOSEK provides a Farkas-type
infeasibility certificate. If, as it happens in many cases, the problem is infeasible due to an unintended
mistake in the formulation or because some individual constraint is too tight, then it is likely that
infeasibility can be isolated to a few linear constraints/bounds that mutually contradict each other. In
this case it is easy to identify the source of infeasibility. The tutorial in Sec. 8.3 has instructions on
how to deal with this situation and debug it by hand. We recommend Sec. 8.3 as an introduction to
infeasibility certificates and how to deal with infeasibilities in general.

Some users, however, would prefer to obtain the infeasibility certificate using Optimizer API for
Python, for example in order to repair the issue automatically, display the information to the user, or
perhaps simply because the infeasibility was one of the intended outcomes that should be analyzed in
the code.

In this tutorial we show how to obtain such an infeasibility certificate with Optimizer API for Python
in the most typical case, that is when the linear part of a problem is primal infeasible. A Farkas-type
primal infeasibility certificate consists of the dual values of linear constraints and bounds. The names
of duals corresponding to various parts of the problem are defined in Sec. 12.1.2. Each of the dual
values (multipliers) indicates that a certain multiple of the corresponding constraint should be taken
into account when forming the collection of mutually contradictory equalities/inequalities.

6.13.1 Example PINFEAS
For the purpose of this tutorial we use the same example as in Sec. 8.3, that is the primal infeasible
problem

minimize 𝑥0 + 2𝑥1 + 5𝑥2 + 2𝑥3 + 𝑥4 + 2𝑥5 + 𝑥6

subject to 𝑠0 : 𝑥0 + 𝑥1 ≤ 200,
𝑠1 : 𝑥2 + 𝑥3 ≤ 1000,
𝑠2 : 𝑥4 + 𝑥5 + 𝑥6 ≤ 1000,
𝑑0 : 𝑥0 + 𝑥4 = 1100,
𝑑1 : 𝑥1 = 200,
𝑑2 : 𝑥2 + 𝑥5 = 500,
𝑑3 : 𝑥3 + 𝑥6 = 500,

𝑥𝑖 ≥ 0.

(6.48)

Checking infeasible status and adjusting settings

After the model has been solved we check that it is indeed infeasible. If yes, then we choose a threshold
for when a certificate value is considered as an important contributor to infeasibility (ideally we would
like to list all nonzero duals, but just like an optimal solution, an infeasibility certificate is also subject
to floating-point rounding errors). All these steps are demonstrated in the snippet below:

Check problem status, we use the interior point solution
if task.getprosta(soltype.itr) == prosta.prim_infeas:

Set the tolerance at which we consider a dual value as essential
eps = 1e-7

78

Going through the certificate for a single item

We can define a fairly generic function which takes an array of lower and upper dual values and all other
required data and prints out the positions of those entries whose dual values exceed the given threshold.
These are precisely the values we are interested in:

Analyzes and prints infeasibility contributing elements
sl - dual values for lower bounds
su - dual values for upper bounds
eps - tolerance for when a nunzero dual value is significant
def analyzeCertificate(sl, su, eps):

n = len(sl)
for i in range(n):

if abs(sl[i]) > eps:
print(f"#{i}: lower, dual = {sl[i]}")

if abs(su[i]) > eps:
print(f"#{i}: upper, dual = {su[i]}")

Full source code

All that remains is to call this function for all variable and constraint bounds for which we want to know
their contribution to infeasibility. Putting all these pieces together we obtain the following full code:

Listing 6.25: Demonstrates how to retrieve a primal infeasibility
certificate.

from mosek import *
import sys

Set up a simple linear problem from the manual for test purposes
def testProblem():

inf = 0.0
task = Task()
task.appendvars(7)
task.appendcons(7)
task.putclist(range(0, 7), [1, 2, 5, 2, 1, 2, 1])
task.putaijlist([0,0,1,1,2,2,2,3,3,4,5,5,6,6],

[0,1,2,3,4,5,6,0,4,1,2,5,3,6],
[1] * 14)

task.putconboundslice(0, 7, [boundkey.up]*3+[boundkey.fx]*4,
[-inf, -inf, -inf, 1100, 200, 500, 500],
[200, 1000, 1000, 1100, 200, 500, 500])

task.putvarboundsliceconst(0, 7, boundkey.lo, 0, +inf)
return task

Analyzes and prints infeasibility contributing elements
sl - dual values for lower bounds
su - dual values for upper bounds
eps - tolerance for when a nunzero dual value is significant
def analyzeCertificate(sl, su, eps):

n = len(sl)
for i in range(n):

if abs(sl[i]) > eps:
print(f"#{i}: lower, dual = {sl[i]}")

if abs(su[i]) > eps:
print(f"#{i}: upper, dual = {su[i]}")

def pinfeas():
(continues on next page)

79

(continued from previous page)

In this example we set up a simple problem
One could use any task or a task read from a file
task = testProblem()

Useful for debugging
task.writedata("pinfeas.ptf")
task.set_Stream(streamtype.log, sys.stdout.write)

Perform the optimization.
task.optimize()
task.solutionsummary(streamtype.log)

Check problem status, we use the interior point solution
if task.getprosta(soltype.itr) == prosta.prim_infeas:

Set the tolerance at which we consider a dual value as essential
eps = 1e-7

print("Variable bounds important for infeasibility: ")
analyzeCertificate(task.getslx(soltype.itr), task.getsux(soltype.itr), eps)

print("Constraint bounds important for infeasibility: ")
analyzeCertificate(task.getslc(soltype.itr), task.getsuc(soltype.itr), eps)

else:
print("The problem is not primal infeasible, no certificate to show");

pinfeas()

Running this code will produce the following output:

Variable bounds important for infeasibility:
#6: lower, dual = 1.000000e+00
#7: lower, dual = 1.000000e+00
Constraint bounds important for infeasibility:
#1: upper, dual = 1.000000e+00
#3: upper, dual = 1.000000e+00
#4: lower, dual = 1.000000e+00
#5: lower, dual = 1.000000e+00

indicating the positions of bounds which appear in the infeasibility certificate with nonzero values.
For a more in-depth treatment see the following sections:

• Sec. 11 for more advanced and complicated optimization examples.

• Sec. 11.1 for examples related to portfolio optimization.

• Sec. 12 for formal mathematical formulations of problems MOSEK can solve, dual problems and
infeasibility certificates.

80

Chapter 7

Solver Interaction Tutorials

In this section we cover the interaction with the solver.

7.1 Environment and task

All interaction with Optimizer API for Python proceeds through one of two entry points: the MOSEK
tasks and, to a lesser degree the MOSEK environment .

7.1.1 Task
The MOSEK task Task provides a representation of one optimization problem. It is the main interface
through which all optimization is performed. Many tasks can be created and disposed of in one process.

A typical scenario for working with a task is shown below:

with mosek.Task() as task:
Define and solve an optimization problem here
...

If a task is created outside of a context that ensures automatic garbage collection then it can be
disposed of manually using Task.__del__ .

7.1.2 Environment
The MOSEK environment Env coordinates access to MOSEK from the current process. It provides
various general functionalities, in particular those related to license management, linear algebra, parallel
optimization and certain other auxiliary functions. All tasks are explicitly or implicitly attached to some
environment. It is recommended to have at most one environment per process.

Creating an environment is optional and only recommended for those users who will require
some of the features it provides. Most users will NOT need their own environment and can skip
this object. In this case MOSEK will internally create a global environment transparently for the user.
This environment will not be accessible for the user.

A typical scenario for working with MOSEK through an explicit environment is shown below:

with mosek.Env() as env:
Create one or more tasks
with env.Task() as task:

Define and solve an optimization problem here
...

If an environment is created outside of a context that ensures automatic garbage collection then it
can be disposed of manually using Env.__del__ .

81

7.2 Accessing the solution

This section contains important information about the status of the solver and the status of the solution,
which must be checked in order to properly interpret the results of the optimization.

7.2.1 Solver termination
The optimizer provides two status codes relevant for error handling:

• Response code of type rescode . It indicates if any unexpected error (such as an out of memory
error, licensing error etc.) has occurred. The expected value for a successful optimization is
rescode.ok .

• Termination code: It provides information about why the optimizer terminated, for instance if
a predefined time limit has been reached. These are not errors, but ordinary events that can be
expected (depending on parameter settings and the type of optimizer used).

If the optimization was successful then the method Task.optimize returns normally and its output
is the termination code. If an error occurs then the method throws an exception, which contains the
response code. See Sec. 7.3 for how to access it.

If a runtime error causes the program to crash during optimization, the first debugging step is to
enable logging and check the log output. See Sec. 7.4.

If the optimization completes successfully, the next step is to check the solution status, as explained
below.

7.2.2 Available solutions
MOSEK uses three kinds of optimizers and provides three types of solutions:

• basic solution from the simplex optimizer,

• interior-point solution from the interior-point optimizer,

• integer solution from the mixed-integer optimizer.

Under standard parameters settings the following solutions will be available for various problem types:

Table 7.1: Types of solutions available from MOSEK
Simplex opti-
mizer

Interior-point opti-
mizer

Mixed-integer opti-
mizer

Linear problem soltype.bas soltype.itr
Nonlinear continuous prob-
lem

soltype.itr

Problem with integer vari-
ables

soltype.itg

For linear problems the user can force a specific optimizer choice making only one of the two solutions
available. For example, if the user disables basis identification, then only the interior point solution will
be available for a linear problem. Numerical issues may cause one of the solutions to be unknown even
if another one is feasible.

Not all components of a solution are always available. For example, there is no dual solution for
integer problems and no dual conic variables from the simplex optimizer.

The user will always need to specify which solution should be accessed.

82

7.2.3 Problem and solution status
Assuming that the optimization terminated without errors, the next important step is to check the
problem and solution status. There is one for every type of solution, as explained above.

Problem status

Problem status (prosta) determines whether the problem is certified as feasible. Its values can roughly
be divided into the following broad categories:

• feasible — the problem is feasible. For continuous problems and when the solver is run with
default parameters, the feasibility status should ideally be prosta.prim_and_dual_feas .

• primal/dual infeasible — the problem is infeasible or unbounded or a combination of those.
The exact problem status will indicate the type of infeasibility.

• unknown — the solver was unable to reach a conclusion, most likely due to numerical issues.

Solution status

Solution status (solsta) provides the information about what the solution values actually contain. The
most important broad categories of values are:

• optimal (solsta.optimal) — the solution values are feasible and optimal.

• certificate — the solution is in fact a certificate of infeasibility (primal or dual, depending on the
solution).

• unknown/undefined — the solver could not solve the problem or this type of solution is not
available for a given problem.

Problem and solution status for each solution can be retrieved with Task.getprosta and Task.
getsolsta , respectively.

The solution status determines the action to be taken. For example, in some cases a suboptimal
solution may still be valuable and deserve attention. It is the user’s responsibility to check the status
and quality of the solution.

Typical status reports

Here are the most typical optimization outcomes described in terms of the problem and solution statuses.
Note that these do not cover all possible situations that can occur.

Table 7.2: Continuous problems (solution status for interior-point
and basic solution)

Outcome Problem status Solution status
Optimal prosta.

prim_and_dual_feas
solsta.optimal

Primal infeasible prosta.prim_infeas solsta.
prim_infeas_cer

Dual infeasible (unbounded) prosta.dual_infeas solsta.
dual_infeas_cer

Uncertain (stall, numerical issues, etc.) prosta.unknown solsta.unknown

Table 7.3: Integer problems (solution status for integer solution,
others undefined)

Outcome Problem status Solution status
Integer optimal prosta.prim_feas solsta.integer_optimal
Infeasible prosta.prim_infeas solsta.unknown
Integer feasible point prosta.prim_feas solsta.prim_feas
No conclusion prosta.unknown solsta.unknown

83

7.2.4 Retrieving solution values
After the meaning and quality of the solution (or certificate) have been established, we can query for the
actual numerical values. They can be accessed using:

• Task.getprimalobj , Task.getdualobj — the primal and dual objective value.

• Task.getxx — solution values for the variables.

• Task.getsolution — a full solution with primal and dual values

and many more specialized methods, see the API reference.

7.2.5 Source code example
Below is a source code example with a simple framework for assessing and retrieving the solution to a
conic optimization problem.

Listing 7.1: Sample framework for checking optimization result.

import mosek
import sys

A log message
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main(args):
filename = args[0] if len(args) >= 1 else "../data/cqo1.mps"

try:
Create environment and task
with mosek.Env() as env:

with env.Task(0, 0) as task:
(Optional) set a log stream
task.set_Stream(mosek.streamtype.log, streamprinter)

(Optional) uncomment to see what happens when solution status is unknown
task.putintparam(mosek.iparam.intpnt_max_iterations, 1)

In this example we read data from a file
task.readdata(filename)

Optimize
trmcode = task.optimize()
task.solutionsummary(mosek.streamtype.log)

We expect solution status OPTIMAL
solsta = task.getsolsta(mosek.soltype.itr)

if solsta == mosek.solsta.optimal:
Optimal solution. Fetch and print it.
print("An optimal interior-point solution is located.")
numvar = task.getnumvar()
xx = task.getxx(mosek.soltype.itr)
for i in range(numvar):

print("x[{0}] = {1}".format(i, xx[i]))

elif solsta == mosek.solsta.dual_infeas_cer:
(continues on next page)

84

(continued from previous page)

print("Dual infeasibility certificate found.")

elif solsta == mosek.solsta.prim_infeas_cer:
print("Primal infeasibility certificate found.")

elif solsta == mosek.solsta.unknown:
The solutions status is unknown. The termination code
indicates why the optimizer terminated prematurely.
print("The solution status is unknown.")
symname, desc = mosek.Env.getcodedesc(trmcode)
print(" Termination code: {0} {1}".format(symname, desc))

else:
print("An unexpected solution status {0} is obtained.".format(str(solsta)))

except mosek.Error as e:
print("Unexpected error ({0}) {1}".format(e.errno, e.msg))

if __name__ == '__main__':
main(sys.argv[1:])

7.3 Errors and exceptions

Exceptions

Almost every function in Optimizer API for Python can throw an exception informing that the requested
operation was not performed correctly, and indicating the type of error that occurred. This is the case
in situations such as for instance:

• referencing a nonexisting variable (for example with too large index),

• defining an invalid value for a parameter,

• accessing an undefined solution,

• repeating a variable name, etc.

It is therefore a good idea to catch exceptions of type Error . The one case where it is extremely
important to do so is when Task.optimize is invoked. We will say more about this in Sec. 7.2.

The exception contains a response code (element of the enum rescode) and short diagnostic messages.
They can be accessed as in the following example.

try:
task.putdouparam(mosek.dparam.intpnt_co_tol_rel_gap, -1.0e-7)

except mosek.Error as e:
print("Response code {0}\nMessage {1}".format(e.errno, e.msg))

It will produce as output:

Response code rescode.err_param_is_too_small
Message The parameter value -1e-07 is too small for parameter 'MSK_DPAR_INTPNT_
→˓CO_TOL_REL_GAP'.

Another way to obtain a human-readable string corresponding to a response code is the method Env.
getcodedesc . A full list of exceptions, as well as response codes, can be found in the API reference.

85

Optimizer errors and warnings

The optimizer may also produce warning messages. They indicate non-critical but important events,
that will not prevent solver execution, but may be an indication that something in the optimization
problem might be improved. Warning messages are normally printed to a log stream (see Sec. 7.4). A
typical warning is, for example:

MOSEK warning 53: A numerically large upper bound value 6.6e+09 is specified for␣
→˓constraint 'C69200' (46020).

Warnings can also be suppressed by setting the iparam.max_num_warnings parameter to zero, if
they are well-understood.

Error and solution status handling example

Below is a source code example with a simple framework for handling major errors when assessing and
retrieving the solution to a conic optimization problem.

Listing 7.2: Sample framework for checking optimization result.

import mosek
import sys

A log message
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main(args):
filename = args[0] if len(args) >= 1 else "../data/cqo1.mps"

try:
Create environment and task
with mosek.Env() as env:

with env.Task(0, 0) as task:
(Optional) set a log stream
task.set_Stream(mosek.streamtype.log, streamprinter)

(Optional) uncomment to see what happens when solution status is unknown
task.putintparam(mosek.iparam.intpnt_max_iterations, 1)

In this example we read data from a file
task.readdata(filename)

Optimize
trmcode = task.optimize()
task.solutionsummary(mosek.streamtype.log)

We expect solution status OPTIMAL
solsta = task.getsolsta(mosek.soltype.itr)

if solsta == mosek.solsta.optimal:
Optimal solution. Fetch and print it.
print("An optimal interior-point solution is located.")
numvar = task.getnumvar()
xx = task.getxx(mosek.soltype.itr)
for i in range(numvar):

print("x[{0}] = {1}".format(i, xx[i]))

(continues on next page)

86

(continued from previous page)

elif solsta == mosek.solsta.dual_infeas_cer:
print("Dual infeasibility certificate found.")

elif solsta == mosek.solsta.prim_infeas_cer:
print("Primal infeasibility certificate found.")

elif solsta == mosek.solsta.unknown:
The solutions status is unknown. The termination code
indicates why the optimizer terminated prematurely.
print("The solution status is unknown.")
symname, desc = mosek.Env.getcodedesc(trmcode)
print(" Termination code: {0} {1}".format(symname, desc))

else:
print("An unexpected solution status {0} is obtained.".format(str(solsta)))

except mosek.Error as e:
print("Unexpected error ({0}) {1}".format(e.errno, e.msg))

if __name__ == '__main__':
main(sys.argv[1:])

7.4 Input/Output

The logging and I/O features are provided mainly by the MOSEK task and to some extent by the
MOSEK environment objects.

7.4.1 Stream logging
By default the solver runs silently and does not produce any output to the console or otherwise. However,
the log output can be redirected to a user-defined output stream or stream callback function. The log
output is analogous to the one produced by the command-line version of MOSEK.

The log messages are partitioned in three streams:

• messages, streamtype.msg

• warnings, streamtype.wrn

• errors, streamtype.err

These streams are aggregated in the streamtype.log stream. A stream handler can be defined for
each stream separately.

A stream handler is simply a user-defined function of type streamfunc that accepts a string, for
example:

def myStream(msg):
sys.stdout.write(msg)
sys.stdout.flush()

It is attached to a stream as follows:

task.set_Stream(streamtype.log,myStream)

The stream can be detached by calling

task.set_Stream(streamtype.log,None)

After optimization is completed an additional short summary of the solution and optimization process
can be printed to any stream using the method Task.solutionsummary .

87

7.4.2 Log verbosity
The logging verbosity can be controlled by setting the relevant parameters, as for instance

• iparam.log ,

• iparam.log_intpnt ,

• iparam.log_mio ,

• iparam.log_cut_second_opt ,

• iparam.log_sim , and

• iparam.log_sim_minor .

Each parameter controls the output level of a specific functionality or algorithm. The main switch is
iparam.log which affect the whole output. The actual log level for a specific functionality is determined
as the minimum between iparam.log and the relevant parameter. For instance, the log level for the
output produce by the interior-point algorithm is tuned by the iparam.log_intpnt ; the actual log level
is defined by the minimum between iparam.log and iparam.log_intpnt .

Tuning the solver verbosity may require adjusting several parameters. It must be noticed that verbose
logging is supposed to be of interest during debugging and tuning. When output is no more of interest,
the user can easily disable it globally with iparam.log . Larger values of iparam.log do not necessarily
result in increased output.

By default MOSEK will reduce the amount of log information after the first optimization on a given
problem. To get full log output on subsequent re-optimizations set iparam.log_cut_second_opt to
zero.

7.4.3 Saving a problem to a file
An optimization problem can be dumped to a file using the method Task.writedata . The file format
will be determined from the extension of the filename. Supported formats are listed in Sec. 16 together
with a table of problem types supported by each.

For instance the problem can be written to a human-readable PTF file (see Sec. 16.5) with

task.writedata("data.ptf")

All formats can be compressed with gzip by appending the .gz extension, and with ZStandard by
appending the .zst extension, for example

task.writedata("data.task.gz")

Some remarks:

• Unnamed variables are given generic names. It is therefore recommended to use meaningful variable
names if the problem file is meant to be human-readable.

• The task format is MOSEK’s native file format which contains all the problem data as well as
solver settings.

7.4.4 Reading a problem from a file
A problem saved in any of the supported file formats can be read directly into a task using Task.
readdata . The task must be created in advance. Afterwards the problem can be optimized, modified,
etc. If the file contained solutions, then are also imported, but the status of any solution will be set to
solsta.unknown (solutions can also be read separately using Task.readsolution). If the file contains
parameters, they will be set accordingly.

task = env.Task()
try:

task.readdata("file.task.gz")
task.optimize()

except mosek.Error:
print("Problem reading the file")

88

7.5 Setting solver parameters

MOSEK comes with a large number of parameters that allows the user to tune the behavior of the
optimizer. The typical settings which can be changed with solver parameters include:

• choice of the optimizer for linear problems,

• choice of primal/dual solver,

• turning presolve on/off,

• turning heuristics in the mixed-integer optimizer on/off,

• level of multi-threading,

• feasibility tolerances,

• solver termination criteria,

• behaviour of the license manager,

and more. All parameters have default settings which will be suitable for most typical users.
The API reference contains:

• Full list of parameters

• List of parameters grouped by topic

Setting parameters

Each parameter is identified by a unique name. There are three types of parameters depending on the
values they take:

• Integer parameters. They take either either simple integer values or values from an enumeration
provided for readability and compatibility of the code. Set with Task.putintparam .

• Double (floating point) parameters. Set with Task.putdouparam .

• String parameters. Set with Task.putstrparam .

There are also parameter setting functions which operate fully on symbolic strings containing generic
command-line style names of parameters and their values. See the example below. The optimizer will
try to convert the given argument to the exact expected type, and will error if that fails.

If an incorrect value is provided then the parameter is left unchanged.
For example, the following piece of code sets up parameters which choose and tune the interior point

optimizer before solving a problem.

Listing 7.3: Parameter setting example.

Set log level (integer parameter)
task.putintparam(mosek.iparam.log, 1)
Select interior-point optimizer... (integer parameter)
task.putintparam(mosek.iparam.optimizer, mosek.optimizertype.intpnt)
... without basis identification (integer parameter)
task.putintparam(mosek.iparam.intpnt_basis, mosek.basindtype.never)
Set relative gap tolerance (double parameter)
task.putdouparam(mosek.dparam.intpnt_co_tol_rel_gap, 1.0e-7)

The same using explicit string names
task.putparam ("MSK_DPAR_INTPNT_CO_TOL_REL_GAP", "1.0e-7")
task.putnadouparam("MSK_DPAR_INTPNT_CO_TOL_REL_GAP", 1.0e-7)

Incorrect value
(continues on next page)

89

(continued from previous page)

try:
task.putdouparam(mosek.dparam.intpnt_co_tol_rel_gap, -1.0)

except:
print('Wrong parameter value')

Reading parameter values

The functions Task.getintparam , Task.getdouparam , Task.getstrparam can be used to inspect the
current value of a parameter, for example:

param = task.getdouparam(mosek.dparam.intpnt_co_tol_rel_gap)
print('Current value for parameter intpnt_co_tol_rel_gap = {}'.format(param))

7.6 Retrieving information items

After the optimization the user has access to the solution as well as to a report containing a large amount
of additional information items. For example, one can obtain information about:

• timing: total optimization time, time spent in various optimizer subroutines, number of iterations,
etc.

• solution quality: feasibility measures, solution norms, constraint and bound violations, etc.

• problem structure: counts of variables of different types, constraints, nonzeros, etc.

• integer optimizer: integrality gap, objective bound, number of cuts, etc.

and more. Information items are numerical values of integer, long integer or double type. The full
list can be found in the API reference:

• Double

• Integer

• Long

Certain information items make sense, and are made available, also during the optimization process.
They can be accessed from a callback function, see Sec. 7.7 for details.

Remark

For efficiency reasons, not all information items are automatically computed after optimization. To force
all information items to be updated use the parameter iparam.auto_update_sol_info .

Retrieving the values

Values of information items are fetched using one of the methods

• Task.getdouinf for a double information item,

• Task.getintinf for an integer information item,

• Task.getlintinf for a long integer information item.

Each information item is identified by a unique name. The example below reads two pieces of data
from the solver: total optimization time and the number of interior-point iterations.

Listing 7.4: Information items example.

tm = task.getdouinf(mosek.dinfitem.optimizer_time)
it = task.getintinf(mosek.iinfitem.intpnt_iter)

print('Time: {0}\nIterations: {1}'.format(tm,it))

90

7.7 Progress and data callback

Callbacks are a very useful mechanism that allow the caller to track the progress of the MOSEK
optimizer. A callback function provided by the user is regularly called during the optimization and can
be used to

• obtain a customized log of the solver execution,

• collect information for debugging purposes or

• ask the solver to terminate.

Optimizer API for Python has the following callback mechanisms:

• progress callback, which provides only the basic status of the solver.

• data callback, which provides the solver status and a complete set of information items that
describe the progress of the optimizer in detail.

Warning

The callbacks functions must not invoke any functions of the solver, environment or task. Otherwise the
state of the solver and its outcome are undefined. The only exception is the possibility to retrieve an
integer solution, see below.

Retrieving mixed-integer solutions

If the mixed-integer optimizer is used, the callback will take place, in particular, every time an improved
integer solution is found. In that case it is possible to retrieve the current values of the best integer
solution from within the callback function. It can be useful for implementing complex termination
criteria for integer optimization. The example in Listing 7.5 shows how to do it by handling the callback
code callbackcode.new_int_mio .

7.7.1 Data callback
In the data callback MOSEK passes a callback code and values of all information items to a user-defined
function. The callback function is called, in particular, at the beginning of each iteration of the interior-
point optimizer. For the simplex optimizers iparam.log_sim_freq controls how frequently the call-back
is called. Note that the callback is done quite frequently, which can lead to degraded performance. If
the information items are not required, the simpler progress callback may be a better choice.

The callback is set by calling the method Task.set_InfoCallback and providing a handle to a
user-defined function callbackfunc .

Non-zero return value of the callback function indicates that the optimizer should be terminated.

7.7.2 Progress callback
In the progress callback MOSEK provides a single code indicating the current stage of the optimization
process.

The callback is set by calling the method Task.set_Progress and providing a handle to a user-
defined function progresscallbackfunc .

Non-zero return value of the callback function indicates that the optimizer should be terminated.

91

7.7.3 Working example: Data callback
The following example defines a data callback function that prints out some of the information items. It
interrupts the solver after a certain time limit.

Listing 7.5: An example of a data callback function.

def makeUserCallback(maxtime, task):
pass

def userCallback(caller,
douinf,
intinf,
lintinf):

opttime = 0.0

if caller == callbackcode.begin_intpnt:
print("Starting interior-point optimizer")

elif caller == callbackcode.intpnt:
itrn = intinf[iinfitem.intpnt_iter]
pobj = douinf[dinfitem.intpnt_primal_obj]
dobj = douinf[dinfitem.intpnt_dual_obj]
stime = douinf[dinfitem.intpnt_time]
opttime = douinf[dinfitem.optimizer_time]

print("Iterations: %-3d" % itrn)
print(" Elapsed time: %6.2f(%.2f) " % (opttime, stime))
print(" Primal obj.: %-18.6e Dual obj.: %-18.6e" % (pobj, dobj))

elif caller == callbackcode.end_intpnt:
print("Interior-point optimizer finished.")

elif caller == callbackcode.begin_primal_simplex:
print("Primal simplex optimizer started.")

elif caller == callbackcode.update_primal_simplex:
itrn = intinf[iinfitem.sim_primal_iter]
pobj = douinf[dinfitem.sim_obj]
stime = douinf[dinfitem.sim_time]
opttime = douinf[dinfitem.optimizer_time]

print("Iterations: %-3d" % itrn)
print(" Elapsed time: %6.2f(%.2f)" % (opttime, stime))
print(" Obj.: %-18.6e" % pobj)

elif caller == callbackcode.end_primal_simplex:
print("Primal simplex optimizer finished.")

elif caller == callbackcode.begin_dual_simplex:
print("Dual simplex optimizer started.")

elif caller == callbackcode.update_dual_simplex:
itrn = intinf[iinfitem.sim_dual_iter]
pobj = douinf[dinfitem.sim_obj]
stime = douinf[dinfitem.sim_time]
opttime = douinf[dinfitem.optimizer_time]
print("Iterations: %-3d" % itrn)
print(" Elapsed time: %6.2f(%.2f)" % (opttime, stime))
print(" Obj.: %-18.6e" % pobj)

elif caller == callbackcode.end_dual_simplex:
print("Dual simplex optimizer finished.")

elif caller == callbackcode.new_int_mio:
print("New integer solution has been located.")
xx = task.getxx(soltype.itg)

(continues on next page)

92

(continued from previous page)

print(xx)
print("Obj.: %f" % douinf[dinfitem.mio_obj_int])

else:
pass

if opttime >= maxtime:
mosek is spending too much time. Terminate it.
print("Terminating.")
return 1

return 0
return userCallback

Assuming that we have defined a task task and a time limit maxtime, the callback function is attached
as follows:

Listing 7.6: Attaching the data callback function to the model.

usercallback = makeUserCallback(maxtime=0.05, task=task)
task.set_InfoCallback(usercallback)

7.8 MOSEK OptServer

MOSEK provides an easy way to offload optimization problem to a remote server. This section demon-
strates related functionalities from the client side, i.e. sending optimization tasks to the remote server
and retrieving solutions.

Setting up and configuring the remote server is described in a separate manual for the OptServer.

7.8.1 Synchronous Remote Optimization
In synchronous mode the client sends an optimization problem to the server and blocks, waiting for the
optimization to end. Once the result has been received, the program can continue. This is the simplest
mode all it takes is to provide the address of the server before starting optimization. The rest of the
code remains untouched.

Note that it is impossible to recover the job in case of a broken connection.

Source code example

Listing 7.7: Using the OptServer in synchronous mode.

import mosek
import sys

def streamprinter(msg):
sys.stdout.write(msg)
sys.stdout.flush()

if len(sys.argv) <= 2:
print("Missing argument, syntax is:")
print(" opt_server_sync inputfile addr [certpath]")

else:

inputfile = sys.argv[1]
serveraddr = sys.argv[2]
tlscert = None if len(sys.argv) < 4 else sys.argv[3]

(continues on next page)

93

(continued from previous page)

Create the mosek environment.
with mosek.Env() as env:

Create a task object linked with the environment env.
We create it with 0 variables and 0 constraints initially,
since we do not know the size of the problem.
with env.Task(0, 0) as task:

task.set_Stream(mosek.streamtype.log, streamprinter)

We assume that a problem file was given as the first command
line argument (received in `argv')
task.readdata(inputfile)

Set OptServer URL
task.putoptserverhost(serveraddr)

Path to certificate, if any
if tlscert is not None:

task.putstrparam(mosek.sparam.remote_tls_cert_path, tlscert)

Solve the problem remotely, no access token
trm = task.optimize()

Print a summary of the solution
task.solutionsummary(mosek.streamtype.log)

7.8.2 Asynchronous Remote Optimization
In asynchronous mode the client sends a job to the remote server and the execution of the client code
continues. In particular, it is the client’s responsibility to periodically check the optimization status and,
when ready, fetch the results. The client can also interrupt optimization. The most relevant methods
are:

• Task.asyncoptimize : Offload the optimization task to a solver server.

• Task.asyncpoll : Request information about the status of the remote job.

• Task.asyncgetresult : Request the results from a completed remote job.

• Task.asyncstop : Terminate a remote job.

Source code example

In the example below the program enters in a polling loop that regularly checks whether the result of
the optimization is available.

Listing 7.8: Using the OptServer in asynchronous mode.

import mosek
import sys
import time

def streamprinter(msg):
sys.stdout.write(msg)
sys.stdout.flush()

if len(sys.argv) < 4:
(continues on next page)

94

(continued from previous page)

print("Missing argument, syntax is:")
print(" opt-server-async inputfile host:port numpolls [cert]")

else:
filename = sys.argv[1]
addr = sys.argv[2]
numpolls = int(sys.argv[3])
token = None
cert = None if len(sys.argv) < 5 else sys.argv[4]

with mosek.Env() as env:

with env.Task(0, 0) as task:

print("reading task from file")
task.readdata(filename)

if cert is not None:
task.putstrparam(mosek.sparam.remote_tls_cert_path,cert)

print("Solve the problem remotely (async)")
token = task.asyncoptimize(addr,"")

print("Task token: %s" % token)

with env.Task(0, 0) as task:

task.readdata(filename)

if cert is not None:
task.putstrparam(mosek.sparam.remote_tls_cert_path,cert)

task.set_Stream(mosek.streamtype.log, streamprinter)

i = 0

while i < numpolls:

time.sleep(0.1)

print("poll %d..." % i)
respavailable, res, trm = task.asyncpoll(addr,

"",
token)

print("done!")

if respavailable:
print("solution available!")

respavailable, res, trm = task.asyncgetresult(addr,
"",
token)

task.solutionsummary(mosek.streamtype.log)
break

(continues on next page)

95

(continued from previous page)

i = i + 1

if i == numpolls:
print("max number of polls reached, stopping host.")
task.asyncstop(addr,"", token)

96

Chapter 8

Debugging Tutorials

This collection of tutorials contains basic techniques for debugging optimization problems using tools
available in MOSEK: optimizer log, solution summary, infeasibility report, command-line tools. It is
intended as a first line of technical help for issues such as: Why do I get solution status unknown and
how can I fix it? Why is my model infeasible while it shouldn’t be? Should I change some parameters?
Can the model solve faster? etc.

The major steps when debugging a model are always:

• Enable log output. See Sec. 7.4.1 for how to do it. In the simplest case:

Create a log handler function:

def myStream(msg):
sys.stdout.write(msg)
sys.stdout.flush()

attach it to the log stream:

task.set_Stream(streamtype.log,myStream)

and include solution summary after the call to optimize:

task.optimize()
task.solutionsummary(streamtype.log)

• Run the optimization and analyze the log output, see Sec. 8.1. In particular:

– check if the problem setup (number of constraints/variables etc.) matches your expectation.

– check solution summary and solution status.

• Dump the problem to disk if necessary to continue analysis. See Sec. 7.4.3.

– use a human-readable text format, preferably *.ptf if you want to check the problem structure
by hand. Assign names to variables and constraints to make them easier to identify.

task.writedata("data.ptf")

– use the MOSEK native format *.task.gz when submitting a bug report or support question.

task.writedata("data.task.gz")

• Fix problem setup, improve the model, locate infeasibility or adjust parameters, depending on the
diagnosis.

See the following sections for details.

97

8.1 Understanding optimizer log

The optimizer produces a log which splits roughly into four sections:

1. summary of the input data,

2. presolve and other pre-optimize problem setup stages,

3. actual optimizer iterations,

4. solution summary.

In this tutorial we show how to analyze the most important parts of the log when initially debugging
a model: input data (1) and solution summary (4). For the iterations log (3) see Sec. 13.3.4 or Sec.
13.4.4.

8.1.1 Input data
If MOSEK behaves very far from expectations it may be due to errors in problem setup. The log file
will begin with a summary of the structure of the problem, which looks for instance like:

Problem
Name :
Objective sense : minimize
Type : CONIC (conic optimization problem)
Constraints : 234
Affine conic cons. : 5348
Disjunctive cons. : 0
Cones : 0
Scalar variables : 20693
Matrix variables : 0
Integer variables : 0

This can be consulted to eliminate simple errors: wrong objective sense, wrong number of variables
etc. Note that some modeling tools can introduce additional variables and constraints to the model and
perturb the model even further (such as by dualizing). In most MOSEK APIs the problem dimensions
should match exactly what the user specified.

If this is not sufficient a bit more information can be obtained by dumping the problem to a file (see
Sec. 8) and using the anapro option of any of the command line tools. It can also be done directly with
the function Task.analyzeproblem . This will produce a longer summary similar to:

** Variables
scalar: 20414 integer: 0 matrix: 0
low: 2082 up: 5014 ranged: 0 free: 12892 fixed: 426

** Constraints
all: 20413
low: 10028 up: 0 ranged: 0 free: 0 fixed: 10385

** Affine conic constraints (ACC)
QUAD: 1 dims: 2865: 1
RQUAD: 2507 dims: 3: 2507

** Problem data (numerics)
|c| nnz: 10028 min=2.09e-05 max=1.00e+00
|A| nnz: 597023 min=1.17e-10 max=1.00e+00
blx fin: 2508 min=-3.60e+09 max=2.75e+05
bux fin: 5440 min=0.00e+00 max=2.94e+08
blc fin: 20413 min=-7.61e+05 max=7.61e+05
buc fin: 10385 min=-5.00e-01 max=0.00e+00

(continues on next page)

98

(continued from previous page)

|F| nnz: 612301 min=8.29e-06 max=9.31e+01
|g| nnz: 1203 min=5.00e-03 max=1.00e+00

Again, this can be used to detect simple errors, such as:

• Wrong type of conic constraint was used or it has wrong dimension.

• The bounds for variables or constraints are incorrect or incomplete. Check if you defined bound
keys for all variables. A variable for which no bound was defined is by default fixed at 0.

• The model is otherwise incomplete.

• Suspicious values of coefficients.

• For various data sizes the model does not scale as expected.

Finally saving the problem in a human-friendly text format such as LP or PTF (see Sec. 8) and
analyzing it by hand can reveal if the model is correct.

Warnings and errors

At this stage the user can encounter warnings which should not be ignored, unless they are well-
understood. They can also serve as hints as to numerical issues with the problem data. A typical
warning of this kind is

MOSEK warning 53: A numerically large upper bound value 2.9e+08 is specified for␣
→˓variable 'absh[107]' (2613).

Warnings do not stop the problem setup. If, on the other hand, an error occurs then the model will
become invalid. The user should make sure to test for errors/exceptions from all API calls that set up
the problem and validate the data. See Sec. 7.3 for more details.

8.1.2 Solution summary
The last item in the log is the solution summary. In the Optimizer API it is only printed by invoking
the function Task.solutionsummary .

Continuous problem

Optimal solution

A typical solution summary for a continuous (linear, conic, quadratic) problem looks like:

Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 8.7560516107e+01 nrm: 1e+02 Viol. con: 3e-12 var: 0e+00 ␣
→˓acc: 3e-11
Dual. obj: 8.7560521345e+01 nrm: 1e+00 Viol. con: 5e-09 var: 9e-11 ␣
→˓acc: 0e+00

It contains the following elements:

• Problem and solution status. For details see Sec. 7.2.3.

• A summary of the primal solution: objective value, infinity norm of the solution vector and maximal
violations of variables and constraints of different types. The violation of a linear constraint such
as 𝑎𝑇𝑥 ≤ 𝑏 is max(𝑎𝑇𝑥− 𝑏, 0). The violation of a conic constraint is the distance to the cone.

• The same for the dual solution.

The features of the solution summary which characterize a very good and accurate solution and a
well-posed model are:

• Status: The solution status is OPTIMAL.

99

• Duality gap: The primal and dual objective values are (almost) identical, which proves the
solution is (almost) optimal.

• Norms: Ideally the norms of the solution and the objective values should not be too large. This of
course depends on the input data, but a huge solution norm can be an indicator of issues with the
scaling, conditioning and/or well-posedness of the model. It may also indicate that the problem is
borderline between feasibility and infeasibility and sensitive to small perturbations in this respect.

• Violations: The violations are close to zero, which proves the solution is (almost) feasible. Observe
that due to rounding errors it can be expected that the violations are proportional to the norm
(nrm:) of the solution. It is rarely the case that violations are exactly zero.

Solution status UNKNOWN

A typical example with solution status UNKNOWN due to numerical problems will look like:

Problem status : UNKNOWN
Solution status : UNKNOWN
Primal. obj: 1.3821656824e+01 nrm: 1e+01 Viol. con: 2e-03 var: 0e+00 ␣
→˓acc: 0e+00
Dual. obj: 3.0119004098e-01 nrm: 5e+07 Viol. con: 4e-16 var: 1e-01 ␣
→˓acc: 0e+00

Note that:

• The primal and dual objective are very different.

• The dual solution has very large norm.

• There are considerable violations so the solution is likely far from feasible.

Follow the hints in Sec. 8.2 to resolve the issue.

Solution status UNKNOWN with a potentially useful solution

Solution status UNKNOWN does not necessarily mean that the solution is completely useless. It only means
that the solver was unable to make any more progress due to numerical difficulties, and it was not able
to reach the accuracy required by the termination criteria (see Sec. 13.3.2). Consider for instance:

Problem status : UNKNOWN
Solution status : UNKNOWN
Primal. obj: 3.4531019648e+04 nrm: 1e+05 Viol. con: 7e-02 var: 0e+00 ␣
→˓acc: 0e+00
Dual. obj: 3.4529720645e+04 nrm: 8e+03 Viol. con: 1e-04 var: 2e-04 ␣
→˓acc: 0e+00

Such a solution may still be useful, and it is always up to the user to decide. It may be a good enough
approximation of the optimal point. For example, the large constraint violation may be due to the fact
that one constraint contained a huge coefficient.

Infeasibility certificate

A primal infeasibility certificate is stored in the dual variables:

Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 2.9238975853e+02 nrm: 6e+02 Viol. con: 0e+00 var: 1e-11 ␣
→˓acc: 0e+00

It is a Farkas-type certificate as described in Sec. 12.2.2. In particular, for a good certificate:

• The dual objective is positive for a minimization problem, negative for a maximization problem.
Ideally it is well bounded away from zero.

100

• The norm is not too big and the violations are small (as for a solution).

If the model was not expected to be infeasible, the likely cause is an error in the problem formulation.
Use the hints in Sec. 8.1.1 and Sec. 8.3 to locate the issue.

Just like a solution, the infeasibility certificate can be of better or worse quality. The infeasibility
certificate above is very solid. However, there can be less clear-cut cases, such as for example:

Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 1.6378689238e-06 nrm: 6e+05 Viol. con: 7e-03 var: 2e-04 ␣
→˓acc: 0e+00

This infeasibility certificate is more dubious because the dual objective is positive, but barely so in
comparison with the large violations. It also has rather large norm. This is more likely an indication
that the problem is borderline between feasibility and infeasibility or simply ill-posed and sensitive to
tiny variations in input data. See Sec. 8.3 and Sec. 8.2.

The same remarks apply to dual infeasibility (i.e. unboundedness) certificates. Here the primal
objective should be negative a minimization problem and positive for a maximization problem.

8.1.3 Mixed-integer problem

Optimal integer solution

For a mixed-integer problem there is no dual solution and a typical optimal solution report will look as
follows:

Problem status : PRIMAL_FEASIBLE
Solution status : INTEGER_OPTIMAL
Primal. obj: 6.0111122960e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-14 ␣
→˓itg: 5e-15

The interpretation of all elements is as for a continuous problem. The additional field itg denotes
the maximum violation of an integer variable from being an exact integer.

Feasible integer solution

If the solver found an integer solution but did not prove optimality, for instance because of a time limit,
the solution status will be PRIMAL_FEASIBLE:

Problem status : PRIMAL_FEASIBLE
Solution status : PRIMAL_FEASIBLE
Primal. obj: 6.0114607792e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-13 ␣
→˓itg: 4e-15

In this case it is valuable to go back to the optimizer summary to see how good the best solution is:

31 35 1 0 6.0114607792e+06 6.0078960892e+06 0.06 ␣
→˓ 4.1

Objective of best integer solution : 6.011460779193e+06
Best objective bound : 6.007896089225e+06

In this case the best integer solution found has objective value 6.011460779193e+06, the best proved
lower bound is 6.007896089225e+06 and so the solution is guaranteed to be within 0.06% from optimum.
The same data can be obtained as information items through an API. See also Sec. 13.4 for more details.

101

Infeasible problem

If the problem is declared infeasible the summary is simply

Problem status : PRIMAL_INFEASIBLE
Solution status : UNKNOWN
Primal. obj: 0.0000000000e+00 nrm: 0e+00 Viol. con: 0e+00 var: 0e+00 ␣
→˓itg: 0e+00

If infeasibility was not expected, consult Sec. 8.3.

8.2 Addressing numerical issues

The suggestions in this section should help diagnose and solve issues with numerical instability, in
particular UNKNOWN solution status or solutions with large violations. Since numerically stable models
tend to solve faster, following these hints can also dramatically shorten solution times.

We always recommend that issues of this kind are addressed by reformulating or rescaling the model,
since it is the modeler who has the best insight into the structure of the problem and can fix the cause
of the issue.

8.2.1 Formulating problems

Scaling

Make sure that all the data in the problem are of comparable orders of magnitude. This applies especially
to the linear constraint matrix. Use Sec. 8.1.1 if necessary. For example a report such as

|A| nnz: 597023 min=1.17e-6 max=2.21e+5

means that the ratio of largest to smallest elements in A is 1011. In this case the user should rescale
or reformulate the model to avoid such spread which makes it difficult for MOSEK to scale the problem
internally. In many cases it may be possible to change the units, i.e. express the model in terms of
rescaled variables (for instance work with millions of dollars instead of dollars, etc.).

Similarly, if the objective contains very different coefficients, say

maximize 1010𝑥 + 𝑦

then it is likely to lead to inaccuracies. The objective will be dominated by the contribution from 𝑥 and
𝑦 will become insignificant.

Removing huge bounds

Never use a very large number as replacement for ∞. Instead define the variable or constraint as
unbounded from below/above. Similarly, avoid artificial huge bounds if you expect they will not become
tight in the optimal solution.

Avoiding linear dependencies

As much as possible try to avoid linear dependencies and near-linear dependencies in the model. See
Example 8.3.

102

Avoiding ill-posedness

Avoid continuous models which are ill-posed: the solution space is degenerate, for example consists of a
single point (technically, the Slater condition is not satisfied). In general, this refers to problems which
are borderline between feasible and infeasible. See Example 8.1.

Scaling the expected solution

Try to formulate the problem in such a way that the expected solution (both primal and dual) is not
very large. Consult the solution summary Sec. 8.1.2 to check the objective values or solution norms.

8.2.2 Further suggestions
Here are other simple suggestions that can help locate the cause of the issues. They can also be used as
hints for how to tune the optimizer if fixing the root causes of the issue is not possible.

• Remove the objective and solve the feasibility problem. This can reveal issues with the objective.

• Change the objective or change the objective sense from minimization to maximization (if appli-
cable). If the two objective values are almost identical, this may indicate that the feasible set is
very small, possibly degenerate.

• Perturb the data, for instance bounds, very slightly, and compare the results.

• For linear problems: solve the problem using a different optimizer by setting the parameter iparam.
optimizer and compare the results.

• Force the optimizer to solve the primal/dual versions of the problem by setting the parameter
iparam.intpnt_solve_form or iparam.sim_solve_form . MOSEK has a heuristic to decide
whether to dualize, but for some problems the guess is wrong an explicit choice may give better
results.

• Solve the problem without presolve or some of its parts by setting the parameter iparam.
presolve_use , see Sec. 13.1.

• Use different numbers of threads (iparam.num_threads) and compare the results. Very different
results indicate numerical issues resulting from round-off errors.

If the problem was dumped to a file, experimenting with various parameters is facilitated with the
MOSEK Command Line Tool or MOSEK Python Console Sec. 8.4.

8.2.3 Typical pitfalls

Example 8.1 (Ill-posedness). A toy example of this situation is the feasibility problem

(𝑥− 1)2 ≤ 1, (𝑥 + 1)2 ≤ 1

whose only solution is 𝑥 = 0 and moreover replacing any 1 on the right hand side by 1 − 𝜀 makes
the problem infeasible and replacing it by 1 + 𝜀 yields a problem whose solution set is an interval
(fully-dimensional). This is an example of ill-posedness.

Example 8.2 (Huge solution). If the norm of the expected solution is very large it may lead to
numerical issues or infeasibility. For example the problem

(10−4, 𝑥, 103) ∈ 𝒬3
r

may be declared infeasible because the expected solution must satisfy 𝑥 ≥ 5 · 109.

103

Example 8.3 (Near linear dependency). Consider the following problem:

minimize
subject to 𝑥1 + 𝑥2 = 1,

𝑥3 + 𝑥4 = 1,
− 𝑥1 − 𝑥3 = −1 + 𝜀,

− 𝑥2 − 𝑥4 = −1,
𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0.

If we add the equalities together we obtain:

0 = 𝜀

which is infeasible for any 𝜀 ̸= 0. Here infeasibility is caused by a linear dependency in the constraint
matrix coupled with a precision error represented by the 𝜀. Indeed if a problem contains linear
dependencies then the problem is either infeasible or contains redundant constraints. In the above
case any of the equality constraints can be removed while not changing the set of feasible solutions.
To summarize linear dependencies in the constraints can give rise to infeasible problems and therefore
it is better to avoid them.

Example 8.4 (Presolving very tight bounds). Next consider the problem

minimize
subject to 𝑥1 − 0.01𝑥2 = 0,

𝑥2 − 0.01𝑥3 = 0,
𝑥3 − 0.01𝑥4 = 0,

𝑥1 ≥ −10−9,
𝑥1 ≤ 10−9,
𝑥4 ≥ 10−4.

Now the MOSEK presolve will, for the sake of efficiency, fix variables (and constraints) that have
tight bounds where tightness is controlled by the parameter dparam.presolve_tol_x . Since the
bounds

−10−9 ≤ 𝑥1 ≤ 10−9

are tight, presolve will set 𝑥1 = 0. It easy to see that this implies 𝑥4 = 0, which leads to the incorrect
conclusion that the problem is infeasible. However a tiny change of the value 10−9 makes the problem
feasible. In general it is recommended to avoid ill-posed problems, but if that is not possible then one
solution is to reduce parameters such as dparam.presolve_tol_x to say 10−10. This will at least
make sure that presolve does not make the undesired reduction.

8.3 Debugging infeasibility

When solving an optimization problem one typically expects to get an optimal solution, but in some
cases, either by design, or (most frequently) due to an error in the formulation, the problem may become
infeasible (have no solution at all).

This section

• describes the intuitions behind infeasibility,

• helps to debug (unexpectedly) infeasible problems using the command line tool and by inspecting
infeasibility reports and problem data by hand,

• gives some hints for how to modify the formulation to identify the reasons for infeasibility.

If, instead, you want to fetch an infeasibility certificate directly using Optimizer API for Python, see
the tutorial in Sec. 6.13.

104

An infeasibility certificate is only available for continuous problems, however the hints in Sec. 8.3.4
apply to a large extent also to mixed-integer problems.

8.3.1 Numerical issues
Infeasible problem status may be just an artifact of numerical issues appearing when the problem is
badly-scaled, barely feasible or otherwise ill-conditioned so that it is unstable under small perturbations
of the data or round-off errors. This may be visible in the solution summary if the infeasibility certificate
has poor quality. See Sec. 8.1.2 for how to diagnose that and Sec. 8.2 for possible hints. Sec. 8.2.3
contains examples of situations which may lead to infeasibility for numerical reasons.

We refer to Sec. 8.2 for further information on dealing with those sort of issues. For the rest of this
section we concentrate on the case when the solution summary leaves little doubt that the problem solved
by the optimizer actually is infeasible.

8.3.2 Locating primal infeasibility
As an example of a primal infeasible problem consider minimizing the cost of transportation between a
number of production plants and stores: Each plant produces a fixed number of goods, and each store
has a fixed demand that must be met. Supply, demand and cost of transportation per unit are given in
Fig. 8.1.

Supply Demand

1

2

5

2

1

2

1

Plant 1

Plant 2

Plant 3
Store 4

Store 3

Store 2

Store 1

1000

1000

200

500

500

200
1100

Fig. 8.1: Supply, demand and cost of transportation.

The problem represented in Fig. 8.1 is infeasible, since the total demand

2300 = 1100 + 200 + 500 + 500

exceeds the total supply

2200 = 200 + 1000 + 1000

If we denote the number of transported goods from plant 𝑖 to store 𝑗 by 𝑥𝑖𝑗 , the problem can be

105

formulated as the LP:

minimize 𝑥11 + 2𝑥12 + 5𝑥23 + 2𝑥24 + 𝑥31 + 2𝑥33 + 𝑥34

subject to 𝑠0 : 𝑥11 + 𝑥12 ≤ 200,
𝑠1 : 𝑥23 + 𝑥24 ≤ 1000,
𝑠2 : 𝑥31 + 𝑥33 + 𝑥34 ≤ 1000,
𝑑1 : 𝑥11 + 𝑥31 = 1100,
𝑑2 : 𝑥12 = 200,
𝑑3 : 𝑥23 + 𝑥33 = 500,
𝑑4 : 𝑥24 + 𝑥34 = 500,

𝑥𝑖𝑗 ≥ 0.

(8.1)

Solving problem (8.1) using MOSEK will result in an infeasibility status. The infeasibility certificate
is contained in the dual variables an can be accessed from an API. The variables and constraints with
nonzero solution values form an infeasible subproblem, which frequently is very small. See Sec. 12.1.2 or
Sec. 12.2.2 for detailed specifications of infeasibility certificates.

A short infeasibility report can also be printed to the log stream. It can be turned on by setting the
parameter iparam.infeas_report_auto to onoffkey.on . This causes MOSEK to print a report on
variables and constraints which are involved in infeasibility in the above sense, i.e. have nonzero values
in the certificate. The parameter iparam.infeas_report_level controls the amount of information
presented in the infeasibility report. The default value is 1. For the above example the report is

MOSEK PRIMAL INFEASIBILITY REPORT.

Problem status: The problem is primal infeasible

The following constraints are involved in the primal infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper
0 s0 NONE 2.000000e+002 0.000000e+000 1.000000e+000
2 s2 NONE 1.000000e+003 0.000000e+000 1.000000e+000
3 d1 1.100000e+003 1.100000e+003 1.000000e+000 0.000000e+000
4 d2 2.000000e+002 2.000000e+002 1.000000e+000 0.000000e+000

The following bound constraints are involved in the infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper
8 x33 0.000000e+000 NONE 1.000000e+000 0.000000e+000
10 x34 0.000000e+000 NONE 1.000000e+000 0.000000e+000

The infeasibility report is divided into two sections corresponding to constraints and variables. It
is a selection of those lines from the problem solution which are important in understanding primal
infeasibility. In this case the constraints s0, s2, d1, d2 and variables x33, x34 are of importance because
of nonzero dual values. The columns Dual lower and Dual upper contain the values of dual variables
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠𝑥𝑙 and 𝑠𝑥𝑢 in the primal infeasibility certificate (see Sec. 12.1.2).

In our example the certificate means that an appropriate linear combination of constraints s0, s1
with coefficient 𝑠𝑐𝑢 = 1, constraints d1 and d2 with coefficient 𝑠𝑐𝑢 − 𝑠𝑐𝑙 = 0 − 1 = −1 and lower bounds
on x33 and x34 with coefficient −𝑠𝑥𝑙 = −1 gives a contradiction. Indeed, the combination of the four
involved constraints is 𝑥33 +𝑥34 ≤ −100 (as indicated in the introduction, the difference between supply
and demand).

It is also possible to extract the infeasible subproblem with the command-line tool. For an infeasible
problem called infeas.lp the command:

mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.lp -info rinfeas.lp

will produce the file rinfeas.bas.inf.lp which contains the infeasible subproblem. Because of its
size it may be easier to work with than the original problem file.

Returning to the transportation example, we discover that removing the fifth constraint 𝑥12 = 200
makes the problem feasible. Almost all undesired infeasibilities should be fixable at the modeling stage.

106

8.3.3 Locating dual infeasibility
A problem may also be dual infeasible. In this case the primal problem is usually unbounded, meaning
that feasible solutions exists such that the objective tends towards infinity. For example, consider the
problem

maximize 200𝑦1 + 1000𝑦2 + 1000𝑦3 + 1100𝑦4 + 200𝑦5 + 500𝑦6 + 500𝑦7
subject to 𝑦1 + 𝑦4 ≤ 1, 𝑦1 + 𝑦5 ≤ 2, 𝑦2 + 𝑦6 ≤ 5, 𝑦2 + 𝑦7 ≤ 2,

𝑦3 + 𝑦4 ≤ 1, 𝑦3 + 𝑦6 ≤ 2, 𝑦3 + 𝑦7 ≤ 1
𝑦1, 𝑦2, 𝑦3 ≤ 0

which is dual to (8.1) (and therefore is dual infeasible). The dual infeasibility report may look as follows:

MOSEK DUAL INFEASIBILITY REPORT.

Problem status: The problem is dual infeasible

The following constraints are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper␣
→˓bound
5 x33 -1.000000e+00 NONE 2.
→˓000000e+00
6 x34 -1.000000e+00 NONE 1.
→˓000000e+00

The following variables are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper␣
→˓bound
0 y1 -1.000000e+00 2.000000e+02 NONE 0.
→˓000000e+00
2 y3 -1.000000e+00 1.000000e+03 NONE 0.
→˓000000e+00
3 y4 1.000000e+00 1.100000e+03 NONE NONE
4 y5 1.000000e+00 2.000000e+02 NONE NONE

Interior-point solution summary
Problem status : DUAL_INFEASIBLE
Solution status : DUAL_INFEASIBLE_CER
Primal. obj: 1.0000000000e+02 nrm: 1e+00 Viol. con: 0e+00 var: 0e+00

In the report we see that the variables y1, y3, y4, y5 and two constraints contribute to infeasibility
with non-zero values in the Activity column. Therefore

(𝑦1, . . . , 𝑦7) = (−1, 0,−1, 1, 1, 0, 0)

is the dual infeasibility certificate as in Sec. 12.1.2. This just means, that along the ray

(0, 0, 0, 0, 0, 0, 0) + 𝑡(𝑦1, . . . , 𝑦7) = (−𝑡, 0,−𝑡, 𝑡, 𝑡, 0, 0), 𝑡 > 0,

which belongs to the feasible set, the objective value 100𝑡 can be arbitrarily large, i.e. the problem is
unbounded.

In the example problem we could

• Add a lower bound on y3. This will directly invalidate the certificate of dual infeasibility.

• Increase the objective coefficient of y3. Changing the coefficients sufficiently will invalidate the
inequality 𝑐𝑇 𝑦* > 0 and thus the certificate.

107

8.3.4 Suggestions

Primal infeasibility

When trying to understand what causes the unexpected primal infeasible status use the following hints:

• Remove the objective function. This does not change the infeasibility status but simplifies the
problem, eliminating any possibility of issues related to the objective function.

• Remove cones, semidefinite variables and integer constraints. Solve only the linear part of the
problem. Typical simple modeling errors will lead to infeasibility already at this stage.

• Consider whether your problem has some obvious necessary conditions for feasibility and examine
if these are satisfied, e.g. total supply should be greater than or equal to total demand.

• Verify that coefficients and bounds are reasonably sized in your problem.

• See if there are any obvious contradictions, for instance a variable is bounded both in the variables
and constraints section, and the bounds are contradictory.

• Consider replacing suspicious equality constraints by inequalities. For instance, instead of 𝑥12 = 200
see what happens for 𝑥12 ≥ 200 or 𝑥12 ≤ 200.

• Relax bounds of the suspicious constraints or variables.

• For integer problems, remove integrality constraints on some/all variables and see if the problem
solves.

• Remember that variables without explicitly initialized bounds are fixed at zero.

• Form an elastic model: allow to violate constraints at a cost. Introduce slack variables and add
them to the objective as penalty. For instance, suppose we have a constraint

minimize 𝑐𝑇𝑥,
subject to 𝑎𝑇𝑥 ≤ 𝑏.

which might be causing infeasibility. Then create a new variable 𝑦 and form the problem which
contains:

minimize 𝑐𝑇𝑥 + 𝑦,
subject to 𝑎𝑇𝑥 ≤ 𝑏 + 𝑦.

Solving this problem will reveal by how much the constraint needs to be relaxed in order to become
feasible. This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

• If you think you have a feasible solution or its part, fix all or some of the variables to those values.
Presolve will propagate them through the model and potentially reveal more localized sources of
infeasibility.

• Dump the problem in PTF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Dual infeasibility

When trying to understand what causes the unexpected dual infeasible status use the following hints:

• Verify that the objective coefficients are reasonably sized.

• Check if no bounds and constraints are missing, for example if all variables that should be nonneg-
ative have been declared as such etc.

• Strengthen bounds of the suspicious constraints or variables.

• Remember that constraints without explicitly initialized bounds are free (no bound).

108

• Form an series of models with decreasing bounds on the objective, that is, instead of objective

minimize 𝑐𝑇𝑥

solve the problem with an additional constraint such as

𝑐𝑇𝑥 = −105

and inspect the solution to figure out the mechanism behind arbitrarily decreasing objective values.
This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

• Dump the problem in PTF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Please note that modifying the problem to invalidate the reported certificate does not imply that the
problem becomes feasible — the reason for infeasibility may simply move, resulting a problem that is
still infeasible, but for a different reason. More often, the reported certificate can be used to give a hint
about errors or inconsistencies in the model that produced the problem.

8.4 Python Console

The MOSEK Python Console is an alternative to the MOSEK Command Line Tool. It can be used for
interactive loading, solving and debugging optimization problems stored in files, for example MOSEK
task files. It facilitates debugging techniques described in Sec. 8.

8.4.1 Usage
The tool requires Python 3. The MOSEK interface for Python must be installed following the instal-
lation instructions for Python API or Python Fusion API. The easiest option is

pip install Mosek

The Python Console is contained in the file mosekconsole.py in the folder with MOSEK binaries. It
can be copied to an arbitrary location. The file is also available for download here (mosekconsole.py).

To run the console in interactive mode use

python mosekconsole.py

To run the console in batch mode provide a semicolon-separated list of commands as the second
argument of the script, for example:

python mosekconsole.py "read data.task.gz; solve form=dual; writesol data"

The script is written using the MOSEK Python API and can be extended by the user if more specific
functionality is required. We refer to the documentation of the Python API.

8.4.2 Examples
To read a problem from data.task.gz, solve it, and write solutions to data.sol, data.bas or data.itg:

read data.task.gz; solve; writesol data

To convert between file formats:

read data.task.gz; write data.mps

To set a parameter before solving:

read data.task.gz; param INTPNT_CO_TOL_DFEAS 1e-9; solve"

To list parameter values related to the mixed-integer optimizer in the task file:

109

read data.task.gz; param MIO

To print a summary of problem structure:

read data.task.gz; anapro

To solve a problem forcing the dual and switching off presolve:

read data.task.gz; solve form=dual presolve=no

To write an infeasible subproblem to a file for debugging purposes:

read data.task.gz; solve; infsub; write inf.opf

8.4.3 Full list of commands
Below is a brief description of all the available commands. Detailed information about a specific command
cmd and its options can be obtained with

help cmd

Table 8.1: List of commands of the MOSEK Python Console.
Command Description
help [command] Print list of commands or info about a specific command
log filename Save the session to a file
intro Print MOSEK splashscreen
testlic Test the license system
read filename Load problem from file
reread Reload last problem file
solve
[options]

Solve current problem

write filename Write current problem to file
param [name
[value]]

Set a parameter or get parameter values

paramdef Set all parameters to default values
paramdiff Show parameters with non-default values
info [name] Get an information item
anapro Analyze problem data
hist Plot a histogram of problem data
histsol Plot a histogram of the solutions
spy Plot the sparsity pattern of the data matrices
truncate
epsilon

Truncate small coefficients down to 0

resobj [fac] Rescale objective by a factor
anasol Analyze solutions
removeitg Remove integrality constraints
removecones Remove all cones and leave just the linear part
infsub Replace current problem with its infeasible subproblem
writesol
basename

Write solution(s) to file(s) with given basename

delsol Remove all solutions from the task
optserver
[url]

Use an OptServer to optimize

exit Leave

110

Chapter 9

Advanced Numerical Tutorials

9.1 Solving Linear Systems Involving the Basis Matrix

A linear optimization problem always has an optimal solution which is also a basic solution. In an optimal
basic solution there are exactly 𝑚 basic variables where 𝑚 is the number of rows in the constraint matrix
𝐴. Define

𝐵 ∈ R𝑚×𝑚

as a matrix consisting of the columns of 𝐴 corresponding to the basic variables. The basis matrix 𝐵 is
always non-singular, i.e.

det(𝐵) ̸= 0

or, equivalently, 𝐵−1 exists. This implies that the linear systems

𝐵𝑥̄ = 𝑤 (9.1)

and

𝐵𝑇 𝑥̄ = 𝑤 (9.2)

each have a unique solution for all 𝑤.
MOSEK provides functions for solving the linear systems (9.1) and (9.2) for an arbitrary 𝑤.
In the next sections we will show how to use MOSEK to

• identify the solution basis,

• solve arbitrary linear systems.

9.1.1 Basis identification
To use the solutions to (9.1) and (9.2) it is important to know how the basis matrix 𝐵 is constructed.

Internally MOSEK employs the linear optimization problem

maximize 𝑐𝑇𝑥
subject to 𝐴𝑥− 𝑥𝑐 = 0,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,
𝑙𝑐 ≤ 𝑥𝑐 ≤ 𝑢𝑐.

(9.3)

where

𝑥𝑐 ∈ R𝑚 and 𝑥 ∈ R𝑛.

The basis matrix is constructed of 𝑚 columns taken from[︀
𝐴 −𝐼

]︀
.

111

If variable 𝑥𝑗 is a basis variable, then the 𝑗-th column of 𝐴, denoted 𝑎:,𝑗 , will appear in 𝐵. Similarly,
if 𝑥𝑐

𝑖 is a basis variable, then the 𝑖-th column of −𝐼 will appear in the basis. The ordering of the basis
variables and therefore the ordering of the columns of 𝐵 is arbitrary. The ordering of the basis variables
may be retrieved by calling the function Task.initbasissolve . This function initializes data structures
for later use and returns the indexes of the basic variables in the array basis. The interpretation of the
basis is as follows. If we have

basis[𝑖] < numcon

then the 𝑖-th basis variable is

𝑥𝑐
basis[𝑖].

Moreover, the 𝑖-th column in 𝐵 will be the 𝑖-th column of −𝐼. On the other hand if

basis[𝑖] ≥ numcon,

then the 𝑖-th basis variable is the variable

𝑥basis[𝑖]−numcon

and the 𝑖-th column of 𝐵 is the column

𝐴:,(basis[𝑖]−numcon).

For instance if basis[0] = 4 and numcon = 5, then since basis[0] < numcon, the first basis variable is 𝑥𝑐
4.

Therefore, the first column of 𝐵 is the fourth column of −𝐼. Similarly, if basis[1] = 7, then the second
variable in the basis is 𝑥basis[1]−numcon = 𝑥2. Hence, the second column of 𝐵 is identical to 𝑎:,2.

An example

Consider the linear optimization problem:

minimize 𝑥0 + 𝑥1

subject to 𝑥0 + 2𝑥1 ≤ 2,
𝑥0 + 𝑥1 ≤ 6,

𝑥0, 𝑥1 ≥ 0.

(9.4)

Suppose a call to Task.initbasissolve returns an array basis so that

basis[0] = 1,
basis[1] = 2.

Then the basis variables are 𝑥𝑐
1 and 𝑥0 and the corresponding basis matrix 𝐵 is[︂

0 1
−1 1

]︂
.

Please note the ordering of the columns in 𝐵 .

Listing 9.1: A program showing how to identify the basis.

import mosek
import sys

def streamprinter(text):
sys.stdout.write(text)
sys.stdout.flush()

def main():
numcon = 2

(continues on next page)

112

(continued from previous page)

numvar = 2

Since the value infinity is never used, we define
'infinity' symbolic purposes only
infinity = 0

c = [1.0, 1.0]
ptrb = [0, 2]
ptre = [2, 3]
asub = [0, 1,

0, 1]
aval = [1.0, 1.0,

2.0, 1.0]
bkc = [mosek.boundkey.up,

mosek.boundkey.up]

blc = [-infinity,
-infinity]

buc = [2.0,
6.0]

bkx = [mosek.boundkey.lo,
mosek.boundkey.lo]

blx = [0.0,
0.0]

bux = [+infinity,
+infinity]

w1 = [2.0, 6.0]
w2 = [1.0, 0.0]

try:
with mosek.Env() as env:

with env.Task(0, 0) as task:
task.set_Stream(mosek.streamtype.log, streamprinter)
task.inputdata(numcon, numvar,

c,
0.0,
ptrb,
ptre,
asub,
aval,
bkc,
blc,
buc,
bkx,
blx,
bux)

task.putobjsense(mosek.objsense.maximize)
r = task.optimize()
if r != mosek.rescode.ok:

print("Mosek warning:", r)

basis = task.initbasissolve()

#List basis variables corresponding to columns of B
(continues on next page)

113

(continued from previous page)

varsub = [0, 1]

for i in range(numcon):
if basis[varsub[i]] < numcon:

print("Basis variable no %d is xc%d" % (i, basis[i]))
else:

print("Basis variable no %d is x%d" %
(i, basis[i] - numcon))

solve Bx = w1
varsub contains index of non-zeros in b.
On return b contains the solution x and
varsub the index of the non-zeros in x.
nz = 2

nz = task.solvewithbasis(False, nz, varsub, w1)
print("nz = %s" % nz)
print("Solution to Bx = w1:")

for i in range(nz):
if basis[varsub[i]] < numcon:

print("xc %s = %s" % (basis[varsub[i]], w1[varsub[i]]))
else:

print("x%s = %s" %
(basis[varsub[i]] - numcon, w1[varsub[i]]))

Solve B^Tx = w2
nz = 1
varsub[0] = 0

nz = task.solvewithbasis(True, nz, varsub, w2)

print("Solution to B^Tx = w2:")

for i in range(nz):
if basis[varsub[i]] < numcon:

print("xc %s = %s" % (basis[varsub[i]], w2[varsub[i]]))
else:

print("x %s = %s" %
(basis[varsub[i]] - numcon, w2[varsub[i]]))

except Exception as e:
print(e)

if __name__ == '__main__':
main()

In the example above the linear system is solved using the optimal basis for (9.4) and the original
right-hand side of the problem. Thus the solution to the linear system is the optimal solution to the
problem. When running the example program the following output is produced.

basis[0] = 1
Basis variable no 0 is xc1.
basis[1] = 2
Basis variable no 1 is x0.

Solution to Bx = b:

(continues on next page)

114

(continued from previous page)

x0 = 2.000000e+00
xc1 = -4.000000e+00

Solution to B^Tx = c:

x1 = -1.000000e+00
x0 = 1.000000e+00

Please note that the ordering of the basis variables is[︂
𝑥𝑐
1

𝑥0

]︂
and thus the basis is given by:

𝐵 =

[︂
0 1
−1 1

]︂
It can be verified that [︂

𝑥𝑐
1

𝑥0

]︂
=

[︂
−4
2

]︂
is a solution to [︂

0 1
−1 1

]︂ [︂
𝑥𝑐
1

𝑥0

]︂
=

[︂
2
6

]︂
.

9.1.2 Solving arbitrary linear systems
MOSEK can be used to solve an arbitrary (rectangular) linear system

𝐴𝑥 = 𝑏

using the Task.solvewithbasis function without optimizing the problem as in the previous example.
This is done by setting up an 𝐴 matrix in the task, setting all variables to basic and calling the Task.
solvewithbasis function with the 𝑏 vector as input. The solution is returned by the function.

An example

Below we demonstrate how to solve the linear system[︂
0 1
−1 1

]︂ [︂
𝑥0

𝑥1

]︂
=

[︂
𝑏1
𝑏2

]︂
(9.5)

with two inputs 𝑏 = (1,−2) and 𝑏 = (7, 0) .

import mosek

def setup(task,
aval,
asub,
ptrb,
ptre,
numvar,
basis):

Since the value infinity is never used, we define
'infinity' symbolic purposes only
infinity = 0

(continues on next page)

115

(continued from previous page)

skx = [mosek.stakey.bas] * numvar
skc = [mosek.stakey.fix] * numvar

task.appendvars(numvar)
task.appendcons(numvar)

for i in range(len(asub)):
task.putacol(i, asub[i], aval[i])

for i in range(numvar):
task.putconbound(i, mosek.boundkey.fx, 0.0, 0.0)

for i in range(numvar):
task.putvarbound(i,

mosek.boundkey.fr,
-infinity,
infinity)

Define a basic solution by specifying
status keys for variables & constraints.
task.deletesolution(mosek.soltype.bas);

task.putskcslice(mosek.soltype.bas, 0, numvar, skc);
task.putskxslice(mosek.soltype.bas, 0, numvar, skx);

task.initbasissolve(basis);

def main():
numcon = 2
numvar = 2

aval = [[-1.0],
[1.0, 1.0]]

asub = [[1],
[0, 1]]

ptrb = [0, 1]
ptre = [1, 3]

with mosek.Task() as task:
Directs the log task stream to the user specified
method task_msg_obj.streamCB
task.set_Stream(mosek.streamtype.log,

lambda msg: sys.stdout.write(msg))
Put A matrix and factor A.
Call this function only once for a given task.

basis = [0] * numvar
b = [0.0, -2.0]
bsub = [0, 1]

setup(task,
aval,
asub,
ptrb,

(continues on next page)

116

(continued from previous page)

ptre,
numvar,
basis)

now solve rhs
b = [1, -2]
bsub = [0, 1]
nz = task.solvewithbasis(False, 2, bsub, b)
print("\nSolution to Bx = b:\n")

Print solution and show correspondents
to original variables in the problem
for i in range(nz):

if basis[bsub[i]] < numcon:
print("This should never happen")

else:
print("x%d = %d" % (basis[bsub[i]] - numcon, b[bsub[i]]))

b[0] = 7
bsub[0] = 0

nz = task.solvewithbasis(False, 1, bsub, b)

print("\nSolution to Bx = b:\n")
Print solution and show correspondents
to original variables in the problem
for i in range(nz):

if basis[bsub[i]] < numcon:
print("This should never happen")

else:
print("x%d = %d" % (basis[bsub[i]] - numcon, b[bsub[i]]))

if __name__ == "__main__":
try:

main()
except:

import traceback
traceback.print_exc()

The most important step in the above example is the definition of the basic solution, where we define
the status key for each variable. The actual values of the variables are not important and can be selected
arbitrarily, so we set them to zero. All variables corresponding to columns in the linear system we want
to solve are set to basic and the slack variables for the constraints, which are all non-basic, are set to
their bound.

The program produces the output:

Solution to Bx = b:

x1 = 1
x0 = 3

Solution to Bx = b:

x1 = 7
x0 = 7

117

9.2 Calling BLAS/LAPACK Routines from MOSEK

Sometimes users need to perform linear algebra operations that involve dense matrices and vectors.
Also MOSEK extensively uses high-performance linear algebra routines from the BLAS and LAPACK
packages and some of these routines are included in the package shipped to the users.

The MOSEK versions of BLAS/LAPACK routines:

• use MOSEK data types and return value conventions,

• preserve the BLAS/LAPACK naming convention.

Therefore the user can leverage on efficient linear algebra routines, with a simplified interface, with
no need for additional packages.

List of available routines

Table 9.1: BLAS routines available.
BLAS Name MOSEK function Math Expression
AXPY Env.axpy 𝑦 = 𝛼𝑥 + 𝑦
DOT Env.dot 𝑥𝑇 𝑦
GEMV Env.gemv 𝑦 = 𝛼𝐴𝑥 + 𝛽𝑦
GEMM Env.gemm 𝐶 = 𝛼𝐴𝐵 + 𝛽𝐶
SYRK Env.syrk 𝐶 = 𝛼𝐴𝐴𝑇 + 𝛽𝐶

Table 9.2: LAPACK routines available.
LAPACK Name MOSEK function Description
POTRF Env.potrf Cholesky factorization of a semidefinite symmetric matrix
SYEVD Env.syevd Eigenvalues and eigenvectors of a symmetric matrix
SYEIG Env.syeig Eigenvalues of a symmetric matrix

Source code examples

In Listing 9.2 we provide a simple working example. It has no practical meaning except showing how to
organize the input and call the methods.

Listing 9.2: Calling BLAS and LAPACK routines from Optimizer
API for Python.

import mosek

def print_matrix(x, r, c):
for i in range(r):

print([x[j * r + i] for j in range(c)])

with mosek.Env() as env:

n = 3
m = 2
k = 3

alpha = 2.0
beta = 0.5

x = [1.0, 1.0, 1.0]
y = [1.0, 2.0, 3.0]
z = [1.0, 1.0]
v = [0.0, 0.0]

(continues on next page)

118

(continued from previous page)

#A has m=2 rows and k=3 cols
A = [1.0, 1.0, 2.0, 2.0, 3., 3.]
#B has k=3 rows and n=3 cols
B = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
C = [0.0 for i in range(n * m)]
D = [1.0, 1.0, 1.0, 1.0]
Q = [1.0, 0.0, 0.0, 2.0]

BLAS routines

xy = env.dot(n, x, y)
print("dot results= %f\n" % xy)

env.axpy(n, alpha, x, y)
print("\naxpy results is ")
print_matrix(y, 1, len(y))

env.gemv(mosek.transpose.no, m, n, alpha, A, x, beta, z)
print("\ngemv results is ")
print_matrix(z, 1, len(z))

env.gemm(mosek.transpose.no, mosek.transpose.no,
m, n, k, alpha, A, B, beta, C)

print("\ngemm results is ")
print_matrix(C, m, n)

env.syrk(mosek.uplo.lo, mosek.transpose.no, m, k, alpha, A, beta, D)
print("\nsyrk results is")
print_matrix(D, m, m)

LAPACK routines

env.potrf(mosek.uplo.lo, m, Q)
print("\npotrf results is ")
print_matrix(Q, m, m)

env.syeig(mosek.uplo.lo, m, Q, v)
print("\nsyeig results is")
print_matrix(v, 1, m)

env.syevd(mosek.uplo.lo, m, Q, v)
print("\nsyevd results is")
print('v: ')
print_matrix(v, 1, m)
print('Q: ')
print_matrix(Q, m, m)

print("Exiting...")

119

9.3 Computing a Sparse Cholesky Factorization

Given a positive semidefinite symmetric (PSD) matrix

𝐴 ∈ R𝑛×𝑛

it is well known there exists a matrix 𝐿 such that

𝐴 = 𝐿𝐿𝑇 .

If the matrix 𝐿 is lower triangular then it is called a Cholesky factorization. Given 𝐴 is positive definite
(nonsingular) then 𝐿 is also nonsingular. A Cholesky factorization is useful for many reasons:

• A system of linear equations 𝐴𝑥 = 𝑏 can be solved by first solving the lower triangular system
𝐿𝑦 = 𝑏 followed by the upper triangular system 𝐿𝑇𝑥 = 𝑦.

• A quadratic term 𝑥𝑇𝐴𝑥 in a constraint or objective can be replaced with 𝑦𝑇 𝑦 for 𝑦 = 𝐿𝑇𝑥,
potentially leading to a more robust formulation (see [And13]).

Therefore, MOSEK provides a function that can compute a Cholesky factorization of a PSD matrix.
In addition a function for solving linear systems with a nonsingular lower or upper triangular matrix is
available.

In practice 𝐴 may be very large with 𝑛 is in the range of millions. However, then 𝐴 is typically sparse
which means that most of the elements in 𝐴 are zero, and sparsity can be exploited to reduce the cost
of computing the Cholesky factorization. The computational savings depend on the positions of zeros in
𝐴. For example, below a matrix 𝐴 is given together with a Cholesky factor up to 5 digits of accuracy:

𝐴 =

⎡⎢⎢⎣
4 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

⎤⎥⎥⎦ , 𝐿 =

⎡⎢⎢⎣
2.0000 0 0 0
0.5000 0.8660 0 0
0.5000 −0.2887 0.8165 0
0.5000 −0.2887 −0.4082 0.7071

⎤⎥⎥⎦ . (9.6)

However, if we symmetrically permute the rows and columns of 𝐴 using a permutation matrix 𝑃

𝑃 =

⎡⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤⎥⎥⎦ , 𝐴′ = 𝑃𝐴𝑃𝑇 =

⎡⎢⎢⎣
1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 4

⎤⎥⎥⎦ ,

then the Cholesky factorization of 𝐴′ = 𝐿′𝐿′𝑇 is

𝐿′ =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1

⎤⎥⎥⎦
which is sparser than 𝐿.

Computing a permutation matrix that leads to the sparsest Cholesky factorization or the minimal
amount of work is NP-hard. Good permutations can be chosen by using heuristics, such as the minimum
degree heuristic and variants. The function Env.computesparsecholesky provided by MOSEK for
computing a Cholesky factorization has a build in permutation aka. reordering heuristic. The following
code illustrates the use of Env.computesparsecholesky and Env.sparsetriangularsolvedense .

Listing 9.3: How to use the sparse Cholesky factorization routine
available in MOSEK.

try:
perm, diag, lnzc, lptrc, lensubnval, lsubc, lvalc = env.computesparsecholesky(

0, # Mosek chooses number of threads
1, # Use reordering heuristic

(continues on next page)

120

(continued from previous page)

1.0e-14,# Singularity tolerance
anzc, aptrc, asubc, avalc)

printsparse(n, perm, diag, lnzc, lptrc, lensubnval, lsubc, lvalc)

x = [b[p] for p in perm] # Permuted b is stored as x.

Compute inv(L)*x.
env.sparsetriangularsolvedense(mosek.transpose.no,

lnzc, lptrc, lsubc, lvalc, x)

Compute inv(L^T)*x.
env.sparsetriangularsolvedense(mosek.transpose.yes,

lnzc, lptrc, lsubc, lvalc, x)

print("\nSolution Ax=b: x = ", numpy.array(
[x[j] for i in range(n) for j in range(n) if perm[j] == i]), "\n")

except:
raise

We can set up the data to recreate the matrix 𝐴 from (9.6):

Observe that anzc, aptrc, asubc and avalc only specify the lower
triangular part.
n = 4
anzc = [4, 1, 1, 1]
asubc = [0, 1, 2, 3, 1, 2, 3]
aptrc = [0, 4, 5, 6]
avalc = [4.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
b = [13.0, 3.0, 4.0, 5.0]

and we obtain the following output:

Example with positive definite A.
P = [3 2 0 1]
diag(D) = [0.00 0.00 0.00 0.00]
L=
1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
1.00 1.00 1.41 0.00
0.00 0.00 0.71 0.71

Solution A x = b, x = [1.00 2.00 3.00 4.00]

The output indicates that with the permutation matrix

𝑃 =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

⎤⎥⎥⎦
there is a Cholesky factorization 𝑃𝐴𝑃𝑇 = 𝐿𝐿𝑇 , where

𝐿 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
1 1 1.4142 0
0 0 0.7071 0.7071

⎤⎥⎥⎦
The remaining part of the code solvers the linear system 𝐴𝑥 = 𝑏 for 𝑏 = [13, 3, 4, 5]𝑇 . The solution is
reported to be 𝑥 = [1, 2, 3, 4]𝑇 , which is correct.

121

The second example shows what happens when we compute a sparse Cholesky factorization of a
singular matrix. In this example 𝐴 is a rank 1 matrix

𝐴 =

⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ =

⎡⎣ 1
1
1

⎤⎦⎡⎣ 1
1
1

⎤⎦𝑇

(9.7)

#Example 2 - singular A
n = 3
anzc = [3, 2, 1]
asubc = [0, 1, 2, 1, 2, 2]
aptrc = [0, 3, 5]
avalc = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

Now we get the output

P = [0 2 1]
diag(D) = [0.00e+00 1.00e-14 1.00e-14]
L=
1.00e+00 0.00e+00 0.00e+00
1.00e+00 1.00e-07 0.00e+00
1.00e+00 0.00e+00 1.00e-07

which indicates the decomposition

𝑃𝐴𝑃𝑇 = 𝐿𝐿𝑇 −𝐷

where

𝑃 =

⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦ , 𝐿 =

⎡⎣ 1 0 0
1 10−7 0
1 0 10−7

⎤⎦ , 𝐷 =

⎡⎣ 1 0 0
0 10−14 0
0 0 10−14

⎤⎦ .

Since 𝐴 is only positive semdefinite, but not of full rank, some of diagonal elements of 𝐴 are boosted
to make it truely positive definite. The amount of boosting is passed as an argument to Env.
computesparsecholesky , in this case 10−14. Note that

𝑃𝐴𝑃𝑇 = 𝐿𝐿𝑇 −𝐷

where 𝐷 is a small matrix so the computed Cholesky factorization is exact of slightly perturbed 𝐴. In
general this is the best we can hope for in finite precision and when 𝐴 is singular or close to being
singular.

We will end this section by a word of caution. Computing a Cholesky factorization of a matrix that
is not of full rank and that is not suffciently well conditioned may lead to incorrect results i.e. a matrix
that is indefinite may declared positive semidefinite and vice versa.

122

Chapter 10

Technical guidelines

This section contains some more in-depth technical guidelines for Optimizer API for Python, not strictly
necessary for basic use of MOSEK.

10.1 Memory management and garbage collection

Users who experience memory leaks, especially:

• memory usage not decreasing after the solver terminates,

• memory usage increasing when solving a sequence of problems,

should make sure that the Task objects are properly garbage collected. Since each Task object links
to a MOSEK task resource in a linked library, it is sometimes the case that the garbage collector is
unable to reclaim it automatically. This means that substantial amounts of memory may be leaked. For
this reason it is very important to make sure that the Task object is disposed of, either automatically
or manually, when it is not used any more.

The Task class supports the Context Manager protocol, so it will be destroyed properly when used
in a with statement:

with mosek.Env() as env:
with env.Task(0, 0) as task:

Build an optimization problem
...

If this is not possible, then the necessary cleanup is performed by the methods Task.__del__ and
Env.__del__ which should be called explicitly.

10.2 Names

All elements of an optimization problem in MOSEK (objective, constraints, variables, etc.) can be given
names. Assigning meaningful names to variables and constraints makes it much easier to understand
and debug optimization problems dumped to a file. On the other hand, note that assigning names can
substantially increase setup time, so it should be avoided in time-critical applications.

Names of various elements of the problem can be set and retrieved using various functions listed in
the Names section of Sec. 15.2.

Note that file formats impose various restrictions on names, so not all names can be written verbatim
to each type of file. If at least one name cannot be written to a given format then generic names and
substitutions of offending characters will be used when saving to a file, resulting in a transformation of
all names in the problem. See Sec. 16.

123

10.3 Multithreading

Thread safety

Sharing a task between threads is safe, as long as it is not accessed from more than one thread at a time.
Multiple tasks can be created and used in parallel without any problems.

Parallelization

The interior-point and mixed-integer optimizers in MOSEK are parallelized. By default MOSEK will
automatically select the number of threads. However, the maximum number of threads allowed can
be changed by setting the parameter iparam.num_threads and related parameters. This should never
exceed the number of cores.

The speed-up obtained when using multiple threads is highly problem and hardware dependent. We
recommend experimenting with various thread numbers to determine the optimal settings. For small
problems using multiple threads may be counter-productive because of the associated overhead. Note
also that not all parts of the algorithm can be parallelized, so there are times when CPU utilization is
only 1 even if more cores are available.

Determinism

By default the optimizer is run-to-run deterministic, which means that it will return the same answer
each time it is run on the same machine with the same input, the same parameter settings (including
number of threads) and no time limits.

Setting the number of threads

The number of threads the optimizer uses can be changed with the parameter iparam.num_threads .
The parameter iparam.num_threads affects only the optimizer. It may be the case that numpy

is consuming more threads. In most cases this can be limited by setting the environment variable
MKL_NUM_THREADS. See the numpy documentation for more details.

10.4 Efficiency

Although MOSEK is implemented to handle memory efficiently, the user may have valuable knowledge
about a problem, which could be used to improve the performance of MOSEK This section discusses
some tricks and general advice that hopefully make MOSEK process your problem faster.

Reduce the number of function calls and avoid input loops

For example, instead of setting the entries in the linear constraint matrix one by one (Task.putaij)
define them all at once (Task.putaijlist) or in convenient large chunks (Task.putacollist etc.)

Use one environment only

If possible share the environment between several tasks. For most applications you need to create only
a single environment.

Read part of the solution

When fetching the solution, data has to be copied from the optimizer to the user’s data structures.
Instead of fetching the whole solution, consider fetching only the interesting part (see for example Task.
getxxslice and similar).

124

Avoiding memory fragmentation

MOSEK stores the optimization problem in internal data structures in the memory. Initially MOSEK
will allocate structures of a certain size, and as more items are added to the problem the structures are
reallocated. For large problems the same structures may be reallocated many times causing memory
fragmentation. One way to avoid this is to give MOSEK an estimated size of your problem using the
functions:

• Task.putmaxnumvar . Estimate for the number of variables.

• Task.putmaxnumcon . Estimate for the number of constraints.

• Task.putmaxnumbarvar . Estimate for the number of semidefinite matrix variables.

• Task.putmaxnumanz . Estimate for the number of non-zeros in 𝐴.

• Task.putmaxnumqnz . Estimate for the number of non-zeros in the quadratic terms.

None of these functions changes the problem, they only serve as hints. If the problem ends up growing
larger, the estimates are automatically increased.

Do not mix put- and get- functions

MOSEK will queue put- requests internally until a get- function is called. If put- and get- calls are
interleaved, the queue will have to be flushed more frequently, decreasing efficiency.

In general get- commands should not be called often (or at all) during problem setup.

Use the LIFO principle

When removing constraints and variables, try to use a LIFO (Last In First Out) approach. MOSEK
can more efficiently remove constraints and variables with a high index than a small index.

An alternative to removing a constraint or a variable is to fix it at 0, and set all relevant coefficients
to 0. Generally this will not have any impact on the optimization speed.

Add more constraints and variables than you need (now)

The cost of adding one constraint or one variable is about the same as adding many of them. Therefore,
it may be worthwhile to add many variables instead of one. Initially fix the unused variable at zero, and
then later unfix them as needed. Similarly, you can add multiple free constraints and then use them as
needed.

Do not remove basic variables

When performing re-optimizations, instead of removing a basic variable it may be more efficient to fix
the variable at zero and then remove it when the problem is re-optimized and it has left the basis. This
makes it easier for MOSEK to restart the simplex optimizer.

10.5 The license system

MOSEK is a commercial product that always needs a valid license to work. MOSEK uses a third
party license manager to implement license checking. The number of license tokens provided determines
the number of optimizations that can be run simultaneously.

By default a license token remains checked out from the first optimization until the end of the
MOSEK session, i.e.

• a license token is checked out when Task.optimize is first called, and

• it is returned when the MOSEK environment is deleted.

Calling Task.optimize from different threads using the same MOSEK environment only consumes
one license token.

Starting the optimization when no license tokens are available will result in an error.
Default behaviour of the license system can be changed in several ways:

125

• Setting the parameter iparam.cache_license to onoffkey.off will force MOSEK to return
the license token immediately after the optimization completed.

• Setting the license wait flag with the parameter iparam.license_wait will force MOSEK to wait
until a license token becomes available instead of returning with an error. The wait time between
checks can be set with Env.putlicensewait .

• Additional license checkouts and checkins can be performed with the functions Env.
checkinlicense and Env.checkoutlicense .

• Usually the license system is stopped automatically when the MOSEK library is unloaded. How-
ever, when the user explicitly unloads the library (using e.g. FreeLibrary), the license system
must be stopped before the library is unloaded. This can be done by calling the function Env.
licensecleanup as the last function call to MOSEK.

10.6 Deployment

When redistributing a Python application using the MOSEK Optimizer API for Python 10.0.39, the
following shared libraries from the MOSEK bin folder are required:

• Linux : libmosek64, libmosekxx, libtbb,

• Windows : mosek64, mosekxx, tbb, svml_dispmd,

• OSX : libmosek64, libmosekxx, libtbb.

Furthermore, the folder python/3/mosek must be in the PYTHONPATH.
By default the MOSEK Python API will look for the binary libraries in the MOSEK module

directory, i.e. the directory containing __init__.py. Alternatively, if the binary libraries reside in
another directory, the application can pre-load the mosekxx library from another location before mosek
is imported, e.g. like this

import ctypes ; ctypes.CDLL('my/path/to/mosekxx.dll')

126

Chapter 11

Case Studies

In this section we present some case studies in which the Optimizer API for Python is used to solve
real-life applications. These examples involve some more advanced modeling skills and possibly some
input data. The user is strongly recommended to first read the basic tutorials of Sec. 6 before going
through these advanced case studies.

• Portfolio Optimization

– Keywords: Markowitz model, variance, risk, efficient frontier, factor model, transaction cost,
market impact cost

– Type: Conic Quadratic, Power Cone, Mixed-Integer Optimization

• Logistic regression

– Keywords: machine learning, logistic regression, classifier, log-sum-exp, softplus, regulariza-
tion

– Type: Exponential Cone, Quadratic Cone

• Concurrent Optimizer

– Keywords: Concurrent optimization

– Type: Linear Optimization, Mixed-Integer Optimization

11.1 Portfolio Optimization

In this section the Markowitz portfolio optimization problem and variants are implemented using Opti-
mizer API for Python.

Familiarity with Sec. 6.2 is recommended to follow the syntax used to create affine conic constraints
(ACCs) throughout all the models appearing in this case study.

• Basic Markowitz model

• Efficient frontier

• Factor model and efficiency

• Market impact costs

• Transaction costs

• Cardinality constraints

127

11.1.1 The Basic Model
The classical Markowitz portfolio optimization problem considers investing in 𝑛 stocks or assets held
over a period of time. Let 𝑥𝑗 denote the amount invested in asset 𝑗, and assume a stochastic model
where the return of the assets is a random variable 𝑟 with known mean

𝜇 = E𝑟

and covariance

Σ = E(𝑟 − 𝜇)(𝑟 − 𝜇)𝑇 .

The return of the investment is also a random variable 𝑦 = 𝑟𝑇𝑥 with mean (or expected return)

E𝑦 = 𝜇𝑇𝑥

and variance

E(𝑦 −E𝑦)2 = 𝑥𝑇 Σ𝑥.

The standard deviation
√
𝑥𝑇 Σ𝑥

is usually associated with risk.
The problem facing the investor is to rebalance the portfolio to achieve a good compromise between

risk and expected return, e.g., maximize the expected return subject to a budget constraint and an upper
bound (denoted 𝛾) on the tolerable risk. This leads to the optimization problem

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

𝑥𝑇 Σ𝑥 ≤ 𝛾2,
𝑥 ≥ 0.

(11.1)

The variables 𝑥 denote the investment i.e. 𝑥𝑗 is the amount invested in asset 𝑗 and 𝑥0
𝑗 is the initial

holding of asset 𝑗. Finally, 𝑤 is the initial amount of cash available.
A popular choice is 𝑥0 = 0 and 𝑤 = 1 because then 𝑥𝑗 may be interpreted as the relative amount of

the total portfolio that is invested in asset 𝑗.
Since 𝑒 is the vector of all ones then

𝑒𝑇𝑥 =

𝑛∑︁
𝑗=1

𝑥𝑗

is the total investment. Clearly, the total amount invested must be equal to the initial wealth, which is

𝑤 + 𝑒𝑇𝑥0.

This leads to the first constraint

𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0.

The second constraint

𝑥𝑇 Σ𝑥 ≤ 𝛾2

128

ensures that the variance, is bounded by the parameter 𝛾2. Therefore, 𝛾 specifies an upper bound of
the standard deviation (risk) the investor is willing to undertake. Finally, the constraint

𝑥𝑗 ≥ 0

excludes the possibility of short-selling. This constraint can of course be excluded if short-selling is
allowed.

The covariance matrix Σ is positive semidefinite by definition and therefore there exist a matrix
𝐺 ∈ R𝑛×𝑘 such that

Σ = 𝐺𝐺𝑇 . (11.2)

In general the choice of 𝐺 is not unique and one possible choice of 𝐺 is the Cholesky factorization of Σ.
However, in many cases another choice is better for efficiency reasons as discussed in Sec. 11.1.3. For a
given 𝐺 we have that

𝑥𝑇 Σ𝑥 = 𝑥𝑇𝐺𝐺𝑇𝑥

=
⃦⃦
𝐺𝑇𝑥

⃦⃦2
.

Hence, we may write the risk constraint as

𝛾 ≥
⃦⃦
𝐺𝑇𝑥

⃦⃦
or equivalently

(𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑘+1,

where 𝒬𝑘+1 is the (𝑘 + 1)-dimensional quadratic cone. Note that specifically when 𝐺 is derived using
Cholesky factorization, 𝑘 = 𝑛.

Therefore, problem (11.1) can be written as

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

(𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑘+1,
𝑥 ≥ 0,

(11.3)

which is a conic quadratic optimization problem that can easily be formulated and solved with Optimizer
API for Python. Subsequently we will use the example data

𝜇 =
[︀

0.0720, 0.1552, 0.1754, 0.0898, 0.4290, 0.3929, 0.3217, 0.1838
]︀𝑇

and

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0946 0.0374 0.0349 0.0348 0.0542 0.0368 0.0321 0.0327
0.0374 0.0775 0.0387 0.0367 0.0382 0.0363 0.0356 0.0342
0.0349 0.0387 0.0624 0.0336 0.0395 0.0369 0.0338 0.0243
0.0348 0.0367 0.0336 0.0682 0.0402 0.0335 0.0436 0.0371
0.0542 0.0382 0.0395 0.0402 0.1724 0.0789 0.0700 0.0501
0.0368 0.0363 0.0369 0.0335 0.0789 0.0909 0.0536 0.0449
0.0321 0.0356 0.0338 0.0436 0.0700 0.0536 0.0965 0.0442
0.0327 0.0342 0.0243 0.0371 0.0501 0.0449 0.0442 0.0816

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using Cholesky factorization, this implies

𝐺𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3076 0.1215 0.1134 0.1133 0.1763 0.1197 0.1044 0.1064
0. 0.2504 0.0995 0.0916 0.0669 0.0871 0.0917 0.0851
0. 0. 0.1991 0.0587 0.0645 0.0737 0.0647 0.0191
0. 0. 0. 0.2088 0.0493 0.0365 0.0938 0.0774
0. 0. 0. 0. 0.3609 0.1257 0.1016 0.0571
0. 0. 0. 0. 0. 0.2155 0.0566 0.0619
0. 0. 0. 0. 0. 0. 0.2251 0.0333
0. 0. 0. 0. 0. 0. 0. 0.2202

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In Sec. 11.1.3, we present a different way of obtaining 𝐺 based on a factor model, that leads to more
efficient computation.

129

Why a Conic Formulation?

Problem (11.1) is a convex quadratically constrained optimization problem that can be solved directly
using MOSEK. Why then reformulate it as a conic quadratic optimization problem (11.3)? The main
reason for choosing a conic model is that it is more robust and usually solves faster and more reliably. For
instance it is not always easy to numerically validate that the matrix Σ in (11.1) is positive semidefinite
due to the presence of rounding errors. It is also very easy to make a mistake so Σ becomes indefinite.
These problems are completely eliminated in the conic formulation.

Moreover, observe the constraint ⃦⃦
𝐺𝑇𝑥

⃦⃦
≤ 𝛾

more numerically robust than

𝑥𝑇 Σ𝑥 ≤ 𝛾2

for very small and very large values of 𝛾. Indeed, if say 𝛾 ≈ 104 then 𝛾2 ≈ 108, which introduces a
scaling issue in the model. Hence, using conic formulation we work with the standard deviation instead
of variance, which usually gives rise to a better scaled model.

Example code

Listing 11.1 demonstrates how the basic Markowitz model (11.3) is implemented.

Listing 11.1: Code implementing problem (11.3).

with mosek.Env() as env:
with env.Task(0, 0) as task:

task.set_Stream(mosek.streamtype.log, sys.stdout.write)

Holding variable x of length n
No other auxiliary variables are needed in this formulation
task.appendvars(numvar)

Optionally we can give the variables names
for j in range(0, n):

task.putvarname(voff_x + j, "x[%d]" % (1 + j))

No short-selling in this model, all of x >= 0
task.putvarboundsliceconst(voff_x, n, mosek.boundkey.lo, 0.0, inf)

One linear constraint: total budget
task.appendcons(1)
task.putconname(coff_bud, "budget")
task.putaijlist([coff_bud] * n, range(voff_x, voff_x + n), [1.0] * n) ␣

→˓ # e^T x
rtemp = w + sum(x0)
task.putconbound(coff_bud, mosek.boundkey.fx, rtemp, rtemp) # equals w␣

→˓+ sum(x0)

Input (gamma, GTx) in the AFE (affine expression) storage
We need k+1 rows
task.appendafes(k + 1)
The first affine expression = gamma
task.putafeg(0, gamma)
The remaining k expressions comprise GT*x, we add them row by row
In more realisic scenarios it would be better to extract nonzeros and␣

→˓input in sparse form
for i in range(0, k):

(continues on next page)

130

(continued from previous page)

task.putafefrow(i + 1, range(voff_x, voff_x + n), GT[i])

Input the affine conic constraint (gamma, GT*x) \in QCone
Add the quadratic domain of dimension k+1
qdom = task.appendquadraticconedomain(k + 1)
Add the constraint
task.appendaccseq(qdom, 0, None)
task.putaccname(0, "risk")

Objective: maximize expected return mu^T x
task.putclist(range(voff_x, voff_x + n), mu)
task.putobjsense(mosek.objsense.maximize)

Dump the problem to a human readable PTF file.
task.writedata("dump.ptf")

Solve the problem
task.optimize()

Display solution summary for quick inspection of results.
In this simplified example we skip checks for problem and solution␣

→˓status
task.solutionsummary(mosek.streamtype.msg)

Retrieve results
xx = task.getxxslice(mosek.soltype.itr, voff_x, voff_x + n)
expret = task.getprimalobj(mosek.soltype.itr)

print(f'Expected return: {expret:.10e} Std. deviation: {gamma:.4e}')
np.set_printoptions(precision=4)
print(f'Optimal portfolio: {np.array(xx)}')

The code is organized as follows:

• We have 𝑛 optimization variables, one per each asset in the portfolio. They correspond to the
variable 𝑥 from (11.1) and their indices as variables in the task are from 0 to 𝑛− 1 (inclusive).

• The linear part of the problem: budget constraint, no-short-selling bounds and the objective are
added in the linear data of the task (𝐴 matrix, 𝑐 vector and bounds) following the techniques
introduced in the tutorial of Sec. 6.1.

• For the quadratic constraint we follow the path introduced in the tutorial of Sec. 6.2. We add
the vector (𝛾,𝐺𝑇𝑥) to the affine expression storage (AFE), create a quadratic domain of suitable
length, and add the affine conic constraint (ACC) with the selected affine expressions. In the
segment

Input the affine conic constraint (gamma, GT*x) \in QCone
Add the quadratic domain of dimension k+1
qdom = task.appendquadraticconedomain(k + 1)
Add the constraint
task.appendaccseq(qdom, 0, None)

we use Task.appendaccseq to append a single ACC with the quadratic domain qdom and with
a sequence of affine expressions starting at position 0 in the AFE storage and of length equal to
the dimension of qdom. This is the simplest way to achieve what we need, since previously we also
stored the required rows in AFE in the same order.

131

11.1.2 The Efficient Frontier
The portfolio computed by the Markowitz model is efficient in the sense that there is no other portfolio
giving a strictly higher return for the same amount of risk. An efficient portfolio is also sometimes called
a Pareto optimal portfolio. Clearly, an investor should only invest in efficient portfolios and therefore it
may be relevant to present the investor with all efficient portfolios so the investor can choose the portfolio
that has the desired tradeoff between return and risk.

Given a nonnegative 𝛼 the problem

maximize 𝜇𝑇𝑥− 𝛼𝑥𝑇 Σ𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

𝑥 ≥ 0.
(11.4)

is one standard way to trade the expected return against penalizing variance. Note that, in contrast to
the previous example, we explicitly use the variance (‖𝐺𝑇𝑥‖22) rather than standard deviation (‖𝐺𝑇𝑥‖2),
therefore the conic model includes a rotated quadratic cone:

maximize 𝜇𝑇𝑥− 𝛼𝑠
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

(𝑠, 0.5, 𝐺𝑇𝑥) ∈ 𝑄𝑘+2
𝑟 (equiv. to 𝑠 ≥ ‖𝐺𝑇𝑥‖22 = 𝑥𝑇 Σ𝑥),

𝑥 ≥ 0.

(11.5)

The parameter 𝛼 specifies the tradeoff between expected return and variance. Ideally the problem (11.4)
should be solved for all values 𝛼 ≥ 0 but in practice it is impossible. Using the example data from Sec.
11.1.1, the optimal values of return and variance for several values of 𝛼 are shown in the figure.

Example code

Listing 11.2 demonstrates how to compute the efficient portfolios for several values of 𝛼.

Listing 11.2: Code for the computation of the efficient frontier
based on problem (11.4).

with mosek.Env() as env:
with env.Task(0, 0) as task:

task.set_Stream(mosek.streamtype.log, sys.stdout.write)

Variables:
task.appendvars(numvar)

Optionally we can give the variables names
for j in range(0, n):

task.putvarname(voff_x + j, "x[%d]" % (1 + j))
task.putvarname(voff_s, "s")

No short-selling in this model, all of x >= 0
task.putvarboundsliceconst(voff_x, n, mosek.boundkey.lo, 0.0, inf)

s is free variable
task.putvarbound(voff_s, mosek.boundkey.fr, -inf, inf)

One linear constraint: total budget
task.appendcons(1)
task.putconname(coff_bud, "budget")
task.putaijlist([coff_bud] * n, range(voff_x, voff_x + n), [1.0] * n) ␣

→˓ # e^T x
rtemp = w + sum(x0)
task.putconbound(coff_bud, mosek.boundkey.fx, rtemp, rtemp) # equals w␣

→˓+ sum(x0)

(continues on next page)

132

0 0.005 0.01 0.015 0.02 0.025 0.03
0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

Fig. 11.1: The efficient frontier for the sample data.

133

(continued from previous page)

Input (gamma, GTx) in the AFE (affine expression) storage
We build the following F and g for variables [x, s]:
[0, 1] [0]
F = [0, 0], g = [0.5]
[GT,0] [0]
We need k+2 rows
task.appendafes(k + 2)
The first affine expression is variable s (last variable, index n)
task.putafefrow(0, [n], [1.0])
The second affine expression is constant 0.5
task.putafeg(1, 0.5)
The remaining k affine expressions comprise GT*x, we add them row by␣

→˓row
In more realisic scenarios it would be better to extract nonzeros and␣

→˓input in sparse form
for i in range(0, k):

task.putafefrow(i + 2, range(voff_x, voff_x + n), GT[i])

Input the affine conic constraint (s, 0.5, GT*x) \in RQCone
Add the quadratic domain of dimension k+1
rqdom = task.appendrquadraticconedomain(k + 2)
Add the constraint
task.appendaccseq(rqdom, 0, None)
task.putaccname(0, "risk")

Set objective coefficients (x part): mu'x - alpha * s
task.putclist(range(voff_x, voff_x + n), mu)

task.putobjsense(mosek.objsense.maximize)

Turn all log output off.
task.putintparam(mosek.iparam.log, 0)

for alpha in alphas:
Dump the problem to a human readable PTF file.
task.writedata("dump.ptf")

task.putcj(voff_s, -alpha)

task.optimize()

Display the solution summary for quick inspection of results.
task.solutionsummary(mosek.streamtype.msg)

solsta = task.getsolsta(mosek.soltype.itr)

if solsta in [mosek.solsta.optimal]:
expret = 0.0
x = task.getxxslice(mosek.soltype.itr, voff_x, voff_x + n)
for j in range(0, n):

expret += mu[j] * x[j]

stddev = np.sqrt(task.getxxslice(mosek.soltype.itr, voff_s, voff_
→˓s + 1))

print("alpha = {0:.2e} exp. ret. = {1:.3e}, std. dev. {2:.3e}".
→˓format(alpha, expret, stddev[0])) (continues on next page)

134

(continued from previous page)

else:
print("An error occurred when solving for alpha=%e\n" % alpha)

Note that we changed the coefficient 𝛼 of the variable 𝑠 in a loop. This way we were able to reuse the
same model for all solves along the efficient frontier, simply changing the value of 𝛼 between the solves.

11.1.3 Factor model and efficiency
In practice it is often important to solve the portfolio problem very quickly. Therefore, in this section
we discuss how to improve computational efficiency at the modeling stage.

The computational cost is of course to some extent dependent on the number of constraints and
variables in the optimization problem. However, in practice a more important factor is the sparsity: the
number of nonzeros used to represent the problem. Indeed it is often better to focus on the number of
nonzeros in 𝐺 see (11.2) and try to reduce that number by for instance changing the choice of 𝐺.

In other words if the computational efficiency should be improved then it is always good idea to start
with focusing at the covariance matrix. As an example assume that

Σ = 𝐷 + 𝑉 𝑉 𝑇

where 𝐷 is a positive definite diagonal matrix. Moreover, 𝑉 is a matrix with 𝑛 rows and 𝑘 columns.
Such a model for the covariance matrix is called a factor model and usually 𝑘 is much smaller than 𝑛.
In practice 𝑘 tends to be a small number independent of 𝑛, say less than 100.

One possible choice for 𝐺 is the Cholesky factorization of Σ which requires storage proportional to
𝑛(𝑛 + 1)/2. However, another choice is

𝐺 =
[︀
𝐷1/2 𝑉

]︀
because then

𝐺𝐺𝑇 = 𝐷 + 𝑉 𝑉 𝑇 .

This choice requires storage proportional to 𝑛 + 𝑘𝑛 which is much less than for the Cholesky choice of
𝐺. Indeed assuming 𝑘 is a constant storage requirements are reduced by a factor of 𝑛.

The example above exploits the so-called factor structure and demonstrates that an alternative choice
of 𝐺 may lead to a significant reduction in the amount of storage used to represent the problem. This
will in most cases also lead to a significant reduction in the solution time.

The lesson to be learned is that it is important to investigate how the covariance matrix is formed.
Given this knowledge it might be possible to make a special choice for 𝐺 that helps reducing the storage
requirements and enhance the computational efficiency. More details about this process can be found in
[And13].

Factor model in finance

Factor model structure is typical in financial context. It is common to model security returns as the
sum of two components using a factor model. The first component is the linear combination of a small
number of factors common among a group of securities. The second component is a residual, specific
to each security. It can be written as 𝑅 =

∑︀
𝑗 𝛽𝑗𝐹𝑗 + 𝜃, where 𝑅 is a random variable representing the

return of a security at a particular point in time, 𝐹𝑗 is the random variable representing the common
factor 𝑗, 𝛽𝑗 is the exposure of the return to factor 𝑗, and 𝜃 is the specific component.

Such a model will result in the covariance structure

Σ = Σ𝜃 + 𝛽Σ𝐹𝛽
𝑇 ,

where Σ𝐹 is the covariance of the factors and Σ𝜃 is the residual covariance. This structure is of the form
discussed earlier with 𝐷 = Σ𝜃 and 𝑉 = 𝛽𝑃 , assuming the decomposition Σ𝐹 = 𝑃𝑃𝑇 . If the number of
factors 𝑘 is low and Σ𝜃 is diagonal, we get a very sparse 𝐺 that provides the storage and solution time
benefits.

135

Example code

Here we will work with the example data of a two-factor model (𝑘 = 2) built using the variables

𝛽 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.4256 0.1869
0.2413 0.3877
0.2235 0.3697
0.1503 0.4612
1.5325 −0.2633
1.2741 −0.2613
0.6939 0.2372
0.5425 0.2116

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

𝜃 = [0.0720, 0.0508, 0.0377, 0.0394, 0.0663, 0.0224, 0.0417, 0.0459],

and the factor covariance matrix is

Σ𝐹 =

[︂
0.0620 0.0577
0.0577 0.0908

]︂
,

giving

𝑃 =

[︂
0.2491 0.
0.2316 0.1928

]︂
.

Then the matrix 𝐺 would look like

𝐺 =
[︁
𝛽𝑃 Σ

1/2
𝜃

]︁
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1493 0.0360 0.2683 0. 0. 0. 0. 0. 0. 0.
0.1499 0.0747 0. 0.2254 0. 0. 0. 0. 0. 0.
0.1413 0.0713 0. 0. 0.1942 0. 0. 0. 0. 0.
0.1442 0.0889 0. 0. 0. 0.1985 0. 0. 0. 0.
0.3207 −0.0508 0. 0. 0. 0. 0.2576 0. 0. 0.
0.2568 −0.0504 0. 0. 0. 0. 0. 0.1497 0. 0.
0.2277 0.0457 0. 0. 0. 0. 0. 0. 0.2042 0.
0.1841 0.0408 0. 0. 0. 0. 0. 0. 0. 0.2142

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This matrix is indeed very sparse.
In general, we get an 𝑛× (𝑛+𝑘) size matrix this way with 𝑘 full columns and an 𝑛×𝑛 diagonal part.

In order to maintain a sparse representation we do not construct the matrix 𝐺 explicitly in the code but
instead work with two pieces of data: the dense matrix 𝐺factor = 𝛽𝑃 of shape 𝑛 × 𝑘 and the diagonal
vector 𝜃 of length 𝑛.

Example code

In the following we demonstrate how to write code to compute the matrix 𝐺factor of the factor model.
We start with the inputs

Listing 11.3: Inputs for the computation of the matrix 𝐺factor from
the factor model.

B = np.array([
[0.4256, 0.1869],
[0.2413, 0.3877],
[0.2235, 0.3697],
[0.1503, 0.4612],
[1.5325, -0.2633],
[1.2741, -0.2613],
[0.6939, 0.2372],
[0.5425, 0.2116]

])
S_F = np.array([

(continues on next page)

136

(continued from previous page)

[0.0620, 0.0577],
[0.0577, 0.0908]

])
theta = np.array([0.0720, 0.0508, 0.0377, 0.0394, 0.0663, 0.0224, 0.0417, 0.0459])

Then the matrix 𝐺factor is obtained as:

P = np.linalg.cholesky(S_F)
G_factor = B @ P

The code for computing an optimal portfolio in the factor model is very similar to the one from the
basic model in Listing 11.1 with one notable exception: we construct the expression 𝐺𝑇𝑥 appearing in
the conic constraint by stacking together two separate vectors 𝐺𝑇

factor𝑥 and Σ
1/2
𝜃 𝑥:

Input (gamma, G_factor_T x, diag(sqrt(theta))*x) in the AFE (affine␣
→˓expression) storage

We need k+n+1 rows and we fill them in in three parts
task.appendafes(k + n + 1)
1. The first affine expression = gamma, will be specified later
2. The next k expressions comprise G_factor_T*x, we add them row by row
transposing the matrix G_factor on the fly
for i in range(0, k):

task.putafefrow(i + 1, range(voff_x, voff_x + n), np.array(G_factor[:,
→˓i]))

3. The remaining n rows contain sqrt(theta) on the diagonal
task.putafefentrylist(range(k + 1, k + 1 + n), range(voff_x, voff_x + n),␣

→˓np.sqrt(theta))

The full code is demonstrated below:

Listing 11.4: Implementation of portfolio optimization in the factor
model.

import mosek
import sys
import numpy as np

if __name__ == '__main__':

n = 8
w = 1.0
mu = [0.07197, 0.15518, 0.17535, 0.08981, 0.42896, 0.39292, 0.32171, 0.18379]
x0 = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
B = np.array([

[0.4256, 0.1869],
[0.2413, 0.3877],
[0.2235, 0.3697],
[0.1503, 0.4612],
[1.5325, -0.2633],
[1.2741, -0.2613],
[0.6939, 0.2372],
[0.5425, 0.2116]

])
S_F = np.array([

[0.0620, 0.0577],
[0.0577, 0.0908]

])
theta = np.array([0.0720, 0.0508, 0.0377, 0.0394, 0.0663, 0.0224, 0.0417, 0.0459])

(continues on next page)

137

(continued from previous page)

P = np.linalg.cholesky(S_F)
G_factor = B @ P

k = G_factor.shape[1]
gammas = [0.24, 0.28, 0.32, 0.36, 0.4, 0.44, 0.48]

inf = 0.0 # This value has no significance

Variable offsets
numvar = n
voff_x = 0

Constraints offsets
numcon = 1
coff_bud = 0

with mosek.Env() as env:
with env.Task(0, 0) as task:

task.set_Stream(mosek.streamtype.log, sys.stdout.write)

Holding variable x of length n
No other auxiliary variables are needed in this formulation
task.appendvars(numvar)

Optionally we can give the variables names
for j in range(0, n):

task.putvarname(voff_x + j, "x[%d]" % (1 + j))

No short-selling in this model, all of x >= 0
task.putvarboundsliceconst(voff_x, n, mosek.boundkey.lo, 0.0, inf)

One linear constraint: total budget
task.appendcons(1)
task.putconname(coff_bud, "budget")
task.putaijlist([coff_bud] * n, range(voff_x, voff_x + n), [1.0] * n) ␣

→˓ # e^T x
rtemp = w + sum(x0)
task.putconbound(coff_bud, mosek.boundkey.fx, rtemp, rtemp) # equals w␣

→˓+ sum(x0)

Input (gamma, G_factor_T x, diag(sqrt(theta))*x) in the AFE (affine␣
→˓expression) storage

We need k+n+1 rows and we fill them in in three parts
task.appendafes(k + n + 1)
1. The first affine expression = gamma, will be specified later
2. The next k expressions comprise G_factor_T*x, we add them row by row
transposing the matrix G_factor on the fly
for i in range(0, k):

task.putafefrow(i + 1, range(voff_x, voff_x + n), np.array(G_factor[:,
→˓i]))

3. The remaining n rows contain sqrt(theta) on the diagonal
task.putafefentrylist(range(k + 1, k + 1 + n), range(voff_x, voff_x + n),␣

→˓np.sqrt(theta))

Input the affine conic constraint (gamma, G_factor_T x,␣
→˓diag(sqrt(theta))*x) \in QCone

(continues on next page)

138

(continued from previous page)

Add the quadratic domain of dimension k+n+1
qdom = task.appendquadraticconedomain(k + n + 1)
Add the constraint
task.appendaccseq(qdom, 0, None)
task.putaccname(0, "risk")

Objective: maximize expected return mu^T x
task.putclist(range(voff_x, voff_x + n), mu)
task.putobjsense(mosek.objsense.maximize)

for gamma in gammas:
Specify gamma in ACC
task.putafeg(0, gamma)

Dump the problem to a human readable PTF file.
task.writedata("dump.ptf")

Solve the problem
task.optimize()

Display solution summary for quick inspection of results.
In this simplified example we skip checks for problem and solution␣

→˓status
task.solutionsummary(mosek.streamtype.msg)

Retrieve results
xx = task.getxxslice(mosek.soltype.itr, voff_x, voff_x + n)
expret = task.getprimalobj(mosek.soltype.itr)

print(f'Expected return: {expret:.10e} Std. deviation: {gamma:.4e}')
np.set_printoptions(precision=4)
print(f'Optimal portfolio: {np.array(xx)}')

11.1.4 Slippage Cost
The basic Markowitz model assumes that there are no costs associated with trading the assets and that
the returns of the assets are independent of the amount traded. Neither of those assumptions is usually
valid in practice. Therefore, a more realistic model is

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 +

∑︀𝑛
𝑗=1 𝑇𝑗(∆𝑥𝑗) = 𝑤 + 𝑒𝑇𝑥0,

𝑥𝑇 Σ𝑥 ≤ 𝛾2,
𝑥 ≥ 0.

(11.6)

Here ∆𝑥𝑗 is the change in the holding of asset 𝑗 i.e.

∆𝑥𝑗 = 𝑥𝑗 − 𝑥0
𝑗

and 𝑇𝑗(∆𝑥𝑗) specifies the transaction costs when the holding of asset 𝑗 is changed from its initial value.
In the next two sections we show two different variants of this problem with two nonlinear cost functions
𝑇 .

139

11.1.5 Market Impact Costs
If the initial wealth is fairly small and no short selling is allowed, then the holdings will be small and the
traded amount of each asset must also be small. Therefore, it is reasonable to assume that the prices
of the assets are independent of the amount traded. However, if a large volume of an asset is sold or
purchased, the price, and hence return, can be expected to change. This effect is called market impact
costs. It is common to assume that the market impact cost for asset 𝑗 can be modeled by

𝑇𝑗(∆𝑥𝑗) = 𝑚𝑗 |∆𝑥𝑗 |3/2

where 𝑚𝑗 is a constant that is estimated in some way by the trader. See [GK00] [p. 452] for details.
From the Modeling Cookbook we know that 𝑡 ≥ |𝑧|3/2 can be modeled directly using the power cone
𝒫2/3,1/3
3 :

{(𝑡, 𝑧) : 𝑡 ≥ |𝑧|3/2} = {(𝑡, 𝑧) : (𝑡, 1, 𝑧) ∈ 𝒫2/3,1/3
3 }

Hence, it follows that
∑︀𝑛

𝑗=1 𝑇𝑗(∆𝑥𝑗) =
∑︀𝑛

𝑗=1 𝑚𝑗 |𝑥𝑗 − 𝑥0
𝑗 |3/2 can be modeled by

∑︀𝑛
𝑗=1 𝑚𝑗𝑡𝑗 under the

constraints

𝑧𝑗 = |𝑥𝑗 − 𝑥0
𝑗 |,

(𝑡𝑗 , 1, 𝑧𝑗) ∈ 𝒫2/3,1/3
3 .

Unfortunately this set of constraints is nonconvex due to the constraint

𝑧𝑗 = |𝑥𝑗 − 𝑥0
𝑗 | (11.7)

but in many cases the constraint may be replaced by the relaxed constraint

𝑧𝑗 ≥ |𝑥𝑗 − 𝑥0
𝑗 |, (11.8)

For instance if the universe of assets contains a risk free asset then

𝑧𝑗 > |𝑥𝑗 − 𝑥0
𝑗 | (11.9)

cannot hold for an optimal solution.
If the optimal solution has the property (11.9) then the market impact cost within the model is larger

than the true market impact cost and hence money are essentially considered garbage and removed by
generating transaction costs. This may happen if a portfolio with very small risk is requested because
the only way to obtain a small risk is to get rid of some of the assets by generating transaction costs.
We generally assume that this is not the case and hence the models (11.7) and (11.8) are equivalent.

The above observations lead to

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 + 𝑚𝑇 𝑡 = 𝑤 + 𝑒𝑇𝑥0,

(𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑘+1,

(𝑡𝑗 , 1, 𝑥𝑗 − 𝑥0
𝑗) ∈ 𝒫2/3,1/3

3 , 𝑗 = 1, . . . , 𝑛,
𝑥 ≥ 0.

(11.10)

The revised budget constraint

𝑒𝑇𝑥 + 𝑚𝑇 𝑡 = 𝑤 + 𝑒𝑇𝑥0

specifies that the initial wealth covers the investment and the transaction costs. It should be mentioned
that transaction costs of the form

𝑡𝑗 ≥ |𝑧𝑗 |𝑝

where 𝑝 > 1 is a real number can be modeled with the power cone as

(𝑡𝑗 , 1, 𝑧𝑗) ∈ 𝒫1/𝑝,1−1/𝑝
3 .

See the Modeling Cookbook for details.

140

https://docs.mosek.com/modeling-cookbook/index.html
https://docs.mosek.com/modeling-cookbook/index.html

Example code

Listing 11.5 demonstrates how to compute an optimal portfolio when market impact cost are included.

Listing 11.5: Implementation of model (11.10).

with mosek.Env() as env:
with env.Task(0, 0) as task:

task.set_Stream(mosek.streamtype.log, sys.stdout.write)

Variables (vector of x, c, z)
task.appendvars(numvar)
for j in range(0, n):

task.putvarname(voff_x + j, "x[%d]" % (j + 1))
task.putvarname(voff_c + j, "c[%d]" % (j + 1))
task.putvarname(voff_z + j, "z[%d]" % (j + 1))

Apply variable bounds (x >= 0, c and z free)
task.putvarboundsliceconst(voff_x, voff_x + n, mosek.boundkey.lo, 0.0,␣

→˓inf)
task.putvarboundsliceconst(voff_c, voff_c + n, mosek.boundkey.fr, -inf,␣

→˓inf)
task.putvarboundsliceconst(voff_z, voff_z + n, mosek.boundkey.fr, -inf,␣

→˓inf)

Linear constraints
- Budget
task.appendcons(1)
task.putconname(coff_bud, "budget")
task.putaijlist([coff_bud] * n, range(voff_x, voff_x + n), [1.0] * n)

→˓# e^T x
task.putaijlist([coff_bud] * n, range(voff_c, voff_c + n), m)

→˓# m^T c
rtemp = w + sum(x0)
task.putconbound(coff_bud, mosek.boundkey.fx, rtemp, rtemp) # equals w␣

→˓+ sum(x0)

- Absolute value
task.appendcons(2 * n)
for i in range(0, n):

task.putconname(coff_abs1 + i, "zabs1[%d]" % (1 + i))
task.putconname(coff_abs2 + i, "zabs2[%d]" % (1 + i))

task.putaijlist(range(coff_abs1, coff_abs1 + n), range(voff_x, voff_x +␣
→˓n), n * [-1.0])

task.putaijlist(range(coff_abs1, coff_abs1 + n), range(voff_z, voff_z +␣
→˓n), n * [1.0])

task.putconboundlist(range(coff_abs1, coff_abs1 + n), [mosek.boundkey.lo]␣
→˓* n, [-x0[j] for j in range(0, n)], [inf] * n)

task.putaijlist(range(coff_abs2, coff_abs2 + n), range(voff_x, voff_x +␣
→˓n), n * [1.0])

task.putaijlist(range(coff_abs2, coff_abs2 + n), range(voff_z, voff_z +␣
→˓n), n * [1.0])

task.putconboundlist(range(coff_abs2, coff_abs2 + n), [mosek.boundkey.lo]␣
→˓* n, x0, [inf] * n)

ACCs
aoff_q = 0
aoff_pow = k + 1

(continues on next page)

141

(continued from previous page)

- (gamma, GTx) in Q(k+1)
The part of F and g for variable x:
[0, 0, 0] [gamma]
F = [GT, 0, 0], g = [0]
task.appendafes(k + 1)
task.putafeg(aoff_q, gamma)
for i in range(0, k):

task.putafefrow(aoff_q + 1 + i, range(voff_x, voff_x + n), GT[i])
qdom = task.appendquadraticconedomain(k + 1)
task.appendaccseq(qdom, aoff_q, None)
task.putaccname(aoff_q, "risk")

- (c_j, 1, z_j) in P3(2/3, 1/3)
The part of F and g for variables [c, z]:
[0, I, 0] [0]
F = [0, 0, I], g = [0]
[0, 0, 0] [1]
task.appendafes(2 * n + 1)
task.putafefentrylist(range(aoff_pow, aoff_pow + n), range(voff_c, voff_c␣

→˓+ n), [1.0] * n)
task.putafefentrylist(range(aoff_pow + n, aoff_pow + 2 * n), range(voff_z,

→˓ voff_z + n), [1.0] * n)
task.putafeg(aoff_pow + 2 * n, 1.0)
We use one row from F and g for both c_j and z_j, and the last row of F␣

→˓and g for the constant 1.
NOTE: Here we reuse the last AFE and the power cone n times, but we␣

→˓store them only once.
powdom = task.appendprimalpowerconedomain(3, [2, 1])
afe_list = [(aoff_pow + i, aoff_pow + 2 * n, aoff_pow + n + i) for i in␣

→˓range(0, n)]
flat_afe_list = [idx for sublist in afe_list for idx in sublist]
task.appendaccs([powdom] * n, flat_afe_list, None)
for i in range(0, n):

task.putaccname(i + 1, "market_impact[%d]" % i)

Objective
task.putclist(range(voff_x, voff_x + n), mu)
task.putobjsense(mosek.objsense.maximize)

Turn all log output off.
task.putintparam(mosek.iparam.log,0)

Dump the problem to a human readable PTF file.
task.writedata("dump.ptf")

task.optimize()

Display the solution summary for quick inspection of results.
task.solutionsummary(mosek.streamtype.msg)

expret = 0.0
x = task.getxxslice(mosek.soltype.itr, voff_x, voff_x + n)
for j in range(0, n):

expret += mu[j] * x[j]

print("\nExpected return %e for gamma %e\n" % (expret, gamma))

142

Note that in the following part of the code:

task.putafeg(aoff_pow + 2 * n, 1.0)
We use one row from F and g for both c_j and z_j, and the last row of F␣

→˓and g for the constant 1.
NOTE: Here we reuse the last AFE and the power cone n times, but we␣

→˓store them only once.
powdom = task.appendprimalpowerconedomain(3, [2, 1])
afe_list = [(aoff_pow + i, aoff_pow + 2 * n, aoff_pow + n + i) for i in␣

→˓range(0, n)]
flat_afe_list = [idx for sublist in afe_list for idx in sublist]
task.appendaccs([powdom] * n, flat_afe_list, None)
for i in range(0, n):

task.putaccname(i + 1, "market_impact[%d]" % i)

we create a sequence of power cones of the form (𝑡𝑘, 1, 𝑥𝑘 − 𝑥0
𝑘) ∈ 𝒫2/3,1/3

3 . The power cones are
determined by the sequence of exponents (2, 1); we create a single domain to account for that.

Moreover, note that the second coordinate of all these affine conic constraints is the same affine
expression equal to 1, and we use the feature that allows us to define this affine expression only once (as
AFE number aoff_pow + 2 * n) and reuse it in all the ACCs.

11.1.6 Transaction Costs
Now assume there is a cost associated with trading asset 𝑗 given by

𝑇𝑗(∆𝑥𝑗) =

{︂
0, ∆𝑥𝑗 = 0,
𝑓𝑗 + 𝑔𝑗 |∆𝑥𝑗 |, otherwise.

Hence, whenever asset 𝑗 is traded we pay a fixed setup cost 𝑓𝑗 and a variable cost of 𝑔𝑗 per unit traded.
Given the assumptions about transaction costs in this section problem (11.6) may be formulated as

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 + 𝑓𝑇 𝑦 + 𝑔𝑇 𝑧 = 𝑤 + 𝑒𝑇𝑥0,

(𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑘+1,
𝑧𝑗 ≥ 𝑥𝑗 − 𝑥0

𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 ≥ 𝑥0

𝑗 − 𝑥𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 ≤ 𝑈𝑗𝑦𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑦𝑗 ∈ {0, 1}, 𝑗 = 1, . . . , 𝑛,
𝑥 ≥ 0.

(11.11)

First observe that

𝑧𝑗 ≥ |𝑥𝑗 − 𝑥0
𝑗 | = |∆𝑥𝑗 |.

We choose 𝑈𝑗 as some a priori upper bound on the amount of trading in asset 𝑗 and therefore if 𝑧𝑗 > 0
then 𝑦𝑗 = 1 has to be the case. This implies that the transaction cost for asset 𝑗 is given by

𝑓𝑗𝑦𝑗 + 𝑔𝑗𝑧𝑗 .

Example code

The following example code demonstrates how to compute an optimal portfolio when transaction costs
are included.

143

Listing 11.6: Code solving problem (11.11).

with mosek.Env() as env:
with env.Task(0, 0) as task:

task.set_Stream(mosek.streamtype.log, sys.stdout.write)

Variables (vector of x, z, y)
task.appendvars(numvar)
for j in range(0, n):

task.putvarname(voff_x + j, "x[%d]" % (j + 1))
task.putvarname(voff_z + j, "z[%d]" % (j + 1))
task.putvarname(voff_y + j, "y[%d]" % (j + 1))

Apply variable bounds (x >= 0, z free, y binary)
task.putvarboundsliceconst(voff_x, voff_x + n, mosek.boundkey.lo, 0.0,␣

→˓inf)
task.putvarboundsliceconst(voff_z, voff_z + n, mosek.boundkey.fr, -inf,␣

→˓inf)
task.putvarboundsliceconst(voff_y, voff_y + n, mosek.boundkey.ra, 0.0, 1.

→˓0)
task.putvartypelist(range(voff_y, voff_y + n), [mosek.variabletype.type_

→˓int] * n)

Linear constraints
- Budget
task.appendcons(1)
task.putconname(coff_bud, "budget")
task.putaijlist([0] * n, range(voff_x, voff_x + n), [1.0] * n) # e^T x
task.putaijlist([0] * n, range(voff_z, voff_z + n), g) # g^T z
task.putaijlist([0] * n, range(voff_y, voff_y + n), f) # f^T y
U = w + sum(x0)
task.putconbound(coff_bud, mosek.boundkey.fx, U, U) # equals w +␣

→˓sum(x0)

- Absolute value
task.appendcons(2 * n)
for i in range(0, n):

task.putconname(coff_abs1 + i, "zabs1[%d]" % (1 + i))
task.putconname(coff_abs2 + i, "zabs2[%d]" % (1 + i))

task.putaijlist(range(coff_abs1, coff_abs1 + n), range(voff_x, voff_x +␣
→˓n), [-1.0] * n)

task.putaijlist(range(coff_abs1, coff_abs1 + n), range(voff_z, voff_z +␣
→˓n), [1.0] * n)

task.putconboundlist(range(coff_abs1, coff_abs1 + n), [mosek.boundkey.lo]␣
→˓* n, [-x0[j] for j in range(0, n)], [inf] * n)

task.putaijlist(range(coff_abs2, coff_abs2 + n), range(voff_x, voff_x +␣
→˓n), [1.0] * n)

task.putaijlist(range(coff_abs2, coff_abs2 + n), range(voff_z, voff_z +␣
→˓n), [1.0] * n)

task.putconboundlist(range(coff_abs2, coff_abs2 + n), [mosek.boundkey.lo]␣
→˓* n, x0, [inf] * n)

- Switch
task.appendcons(n)
for i in range(0, n):

task.putconname(coff_swi + i, "switch[%d]" % (1 + i))
task.putaijlist(range(coff_swi, coff_swi + n), range(voff_z, voff_z + n),␣

→˓[1.0] * n)
(continues on next page)

144

(continued from previous page)

task.putaijlist(range(coff_swi, coff_swi + n), range(voff_y, voff_y + n),␣
→˓[-U] * n)

task.putconboundlist(range(coff_swi, coff_swi + n), [mosek.boundkey.up] *␣
→˓n, [-inf] * n, [0.0] * n)

ACCs
aoff_q = 0
- (gamma, GTx) in Q(k+1)
The part of F and g for variable x:
[0, 0, 0] [gamma]
F = [GT, 0, 0], g = [0]
task.appendafes(k + 1)
task.putafeg(aoff_q, gamma)
for i in range(0, k):

task.putafefrow(aoff_q + i + 1, range(voff_x, voff_x + n), GT[i])
qdom = task.appendquadraticconedomain(k + 1)
task.appendaccseq(qdom, aoff_q, None)
task.putaccname(0, "risk")

Objective
task.putclist(range(voff_x, voff_x + n), mu)
task.putobjsense(mosek.objsense.maximize)

Turn all log output off.
task.putintparam(mosek.iparam.log,0)

Dump the problem to a human readable PTF file.
task.writedata("dump.ptf")

task.optimize()

Display the solution summary for quick inspection of results.
task.solutionsummary(mosek.streamtype.msg)

expret = 0.0
x = task.getxxslice(mosek.soltype.itg, voff_x, voff_x + n)
for j in range(0, n):

expret += mu[j] * x[j]

tcost = 0.0
z = task.getxxslice(mosek.soltype.itg, voff_z, voff_z + n)
y = task.getxxslice(mosek.soltype.itg, voff_y, voff_y + n)
for j in range(0, n):

tcost += g[j] * z[j] + f[j] * y[j]

print("\nExpected return %e for gamma %e. Transaction cost: %e\n" %␣
→˓(expret, gamma, tcost))

145

11.1.7 Cardinality constraints
Another method to reduce costs involved with processing transactions is to only change positions in a
small number of assets. In other words, at most 𝐾 of the differences |∆𝑥𝑗 | = |𝑥𝑗 − 𝑥0

𝑗 | are allowed to be
non-zero, where 𝐾 is (much) smaller than the total number of assets 𝑛.

This type of constraint can be again modeled by introducing a binary variable 𝑦𝑗 which indicates if
∆𝑥𝑗 ̸= 0 and bounding the sum of 𝑦𝑗 . The basic Markowitz model then gets updated as follows:

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

(𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑘+1,
𝑧𝑗 ≥ 𝑥𝑗 − 𝑥0

𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 ≥ 𝑥0

𝑗 − 𝑥𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 ≤ 𝑈𝑗𝑦𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑦𝑗 ∈ {0, 1}, 𝑗 = 1, . . . , 𝑛,

𝑒𝑇 𝑦 ≤ 𝐾,
𝑥 ≥ 0,

(11.12)

were 𝑈𝑗 is some a priori chosen upper bound on the amount of trading in asset 𝑗.

Example code

The following example code demonstrates how to compute an optimal portfolio with cardinality bounds.

Listing 11.7: Code solving problem (11.12).

def markowitz_with_card(n, k, x0, w, gamma, mu, GT, K):
with mosek.Env() as env:

with env.Task(0, 0) as task:
task.set_Stream(mosek.streamtype.log, sys.stdout.write)

Offset of variables.
numvar = 3 * n
voff_x, voff_z, voff_y = 0, n, 2 * n

Offset of constraints.
numcon = 3 * n + 2
coff_bud, coff_abs1, coff_abs2, coff_swi, coff_card = 0, 1, 1 + n, 1 + 2␣

→˓* n, 1 + 3 * n

Variables (vector of x, z, y)
task.appendvars(numvar)
for j in range(0, n):

task.putvarname(voff_x + j, "x[%d]" % (j + 1))
task.putvarname(voff_z + j, "z[%d]" % (j + 1))
task.putvarname(voff_y + j, "y[%d]" % (j + 1))

Apply variable bounds (x >= 0, z free, y binary)
task.putvarboundsliceconst(voff_x, voff_x + n, mosek.boundkey.lo, 0.0,␣

→˓inf)
task.putvarboundsliceconst(voff_z, voff_z + n, mosek.boundkey.fr, -inf,␣

→˓inf)
task.putvarboundsliceconst(voff_y, voff_y + n, mosek.boundkey.ra, 0.0, 1.

→˓0)
task.putvartypelist(range(voff_y, voff_y + n), [mosek.variabletype.type_

→˓int] * n)

(continues on next page)

146

(continued from previous page)

Linear constraints
- Budget
task.appendcons(1)
task.putconname(coff_bud, "budget")
task.putaijlist([coff_bud] * n, range(voff_x, voff_x + n), [1.0] * n)

→˓# e^T x
U = w + sum(x0)
task.putconbound(coff_bud, mosek.boundkey.fx, U, U) # = w + sum(x0)

- Absolute value
task.appendcons(2 * n)
for i in range(0, n):

task.putconname(coff_abs1 + i, "zabs1[%d]" % (1 + i))
task.putconname(coff_abs2 + i, "zabs2[%d]" % (1 + i))

task.putaijlist(range(coff_abs1, coff_abs1 + n), range(voff_x, voff_x +␣
→˓n), [-1.0] * n)

task.putaijlist(range(coff_abs1, coff_abs1 + n), range(voff_z, voff_z +␣
→˓n), [1.0] * n)

task.putconboundlist(range(coff_abs1, coff_abs1 + n), [mosek.boundkey.lo]␣
→˓* n, [-x0[j] for j in range(0, n)], [inf] * n)

task.putaijlist(range(coff_abs2, coff_abs2 + n), range(voff_x, voff_x +␣
→˓n), [1.0] * n)

task.putaijlist(range(coff_abs2, coff_abs2 + n), range(voff_z, voff_z +␣
→˓n), [1.0] * n)

task.putconboundlist(range(coff_abs2, coff_abs2 + n), [mosek.boundkey.lo]␣
→˓* n, x0, [inf] * n)

- Switch
task.appendcons(n)
for i in range(0, n):

task.putconname(coff_swi + i, "switch[%d]" % (1 + i))
task.putaijlist(range(coff_swi, coff_swi + n), range(voff_z, voff_z + n),␣

→˓[1.0] * n)
task.putaijlist(range(coff_swi, coff_swi + n), range(voff_y, voff_y + n),␣

→˓[-U] * n)
task.putconboundlist(range(coff_swi, coff_swi + n), [mosek.boundkey.up] *␣

→˓n, [-inf] * n, [0.0] * n)

- Cardinality
task.appendcons(1)
task.putconname(coff_card, "cardinality")
task.putaijlist([coff_card] * n, range(voff_y, voff_y + n), [1.0] * n)

→˓# e^T y
task.putconbound(coff_card, mosek.boundkey.up, -inf, K) # <= K

ACCs
aoff_q = 0
- (gamma, GTx) in Q(k+1)
The part of F and g for variable x:
[0, 0, 0] [gamma]
F = [GT, 0, 0], g = [0]
task.appendafes(k + 1)
task.putafeg(aoff_q, gamma)
for i in range(0, k):

task.putafefrow(aoff_q + i + 1, range(voff_x, voff_x + n), GT[i])
qdom = task.appendquadraticconedomain(k + 1)

(continues on next page)

147

(continued from previous page)

task.appendaccseq(qdom, aoff_q, None)
task.putaccname(0, "risk")

Objective
task.putclist(range(voff_x, voff_x + n), mu)
task.putobjsense(mosek.objsense.maximize)

Turn all log output off.
task.putintparam(mosek.iparam.log,0)

Dump the problem to a human readable PTF file.
task.writedata("dump.ptf")

task.optimize()

Display the solution summary for quick inspection of results.
#task.solutionsummary(mosek.streamtype.msg)

return task.getxxslice(mosek.soltype.itg, voff_x + 0, voff_x + n)

If we solve our running example with 𝐾 = 1, . . . , 𝑛 then we get the following solutions, with increasing
expected returns:

Bound 1 Solution: 0.0000e+00 0.0000e+00 1.0000e+00 0.0000e+00 0.0000e+00 ␣
→˓0.0000e+00 0.0000e+00 0.0000e+00
Bound 2 Solution: 0.0000e+00 0.0000e+00 3.5691e-01 0.0000e+00 0.0000e+00 ␣
→˓6.4309e-01 -0.0000e+00 0.0000e+00
Bound 3 Solution: 0.0000e+00 0.0000e+00 1.9258e-01 0.0000e+00 0.0000e+00 ␣
→˓5.4592e-01 2.6150e-01 0.0000e+00
Bound 4 Solution: 0.0000e+00 0.0000e+00 2.0391e-01 0.0000e+00 6.7098e-02 ␣
→˓4.9181e-01 2.3718e-01 0.0000e+00
Bound 5 Solution: 0.0000e+00 3.1970e-02 1.7028e-01 0.0000e+00 7.0741e-02 ␣
→˓4.9551e-01 2.3150e-01 0.0000e+00
Bound 6 Solution: 0.0000e+00 3.1970e-02 1.7028e-01 0.0000e+00 7.0740e-02 ␣
→˓4.9551e-01 2.3150e-01 0.0000e+00
Bound 7 Solution: 0.0000e+00 3.1970e-02 1.7028e-01 0.0000e+00 7.0740e-02 ␣
→˓4.9551e-01 2.3150e-01 0.0000e+00
Bound 8 Solution: 1.9557e-10 2.6992e-02 1.6706e-01 2.9676e-10 7.1245e-02 ␣
→˓4.9559e-01 2.2943e-01 9.6905e-03

11.2 Logistic regression

Logistic regression is an example of a binary classifier, where the output takes one two values 0 or 1 for
each data point. We call the two values classes.

148

Formulation as an optimization problem

Define the sigmoid function

𝑆(𝑥) =
1

1 + exp(−𝑥)
.

Next, given an observation 𝑥 ∈ R𝑑 and a weights 𝜃 ∈ R𝑑 we set

ℎ𝜃(𝑥) = 𝑆(𝜃𝑇𝑥) =
1

1 + exp(−𝜃𝑇𝑥)
.

The weights vector 𝜃 is part of the setup of the classifier. The expression ℎ𝜃(𝑥) is interpreted as the
probability that 𝑥 belongs to class 1. When asked to classify 𝑥 the returned answer is

𝑥 ↦→

{︃
1 ℎ𝜃(𝑥) ≥ 1/2,

0 ℎ𝜃(𝑥) < 1/2.

When training a logistic regression algorithm we are given a sequence of training examples 𝑥𝑖, each
labelled with its class 𝑦𝑖 ∈ {0, 1} and we seek to find the weights 𝜃 which maximize the likelihood
function ∏︁

𝑖

ℎ𝜃(𝑥𝑖)
𝑦𝑖(1 − ℎ𝜃(𝑥𝑖))

1−𝑦𝑖 .

Of course every single 𝑦𝑖 equals 0 or 1, so just one factor appears in the product for each training data
point. By taking logarithms we can define the logistic loss function:

𝐽(𝜃) = −
∑︁

𝑖:𝑦𝑖=1

log(ℎ𝜃(𝑥𝑖)) −
∑︁

𝑖:𝑦𝑖=0

log(1 − ℎ𝜃(𝑥𝑖)).

The training problem with regularization (a standard technique to prevent overfitting) is now equivalent
to

min
𝜃

𝐽(𝜃) + 𝜆‖𝜃‖2.

This can equivalently be phrased as

minimize
∑︀

𝑖 𝑡𝑖 + 𝜆𝑟
subject to 𝑡𝑖 ≥ − log(ℎ𝜃(𝑥)) = log(1 + exp(−𝜃𝑇𝑥𝑖)) if 𝑦𝑖 = 1,

𝑡𝑖 ≥ − log(1 − ℎ𝜃(𝑥)) = log(1 + exp(𝜃𝑇𝑥𝑖)) if 𝑦𝑖 = 0,
𝑟 ≥ ‖𝜃‖2.

(11.13)

Implementation

As can be seen from (11.13) the key point is to implement the softplus bound 𝑡 ≥ log(1 + 𝑒𝑢), which is
the simplest example of a log-sum-exp constraint for two terms. Here 𝑡 is a scalar variable and 𝑢 will be
the affine expression of the form ±𝜃𝑇𝑥𝑖. This is equivalent to

exp(𝑢− 𝑡) + exp(−𝑡) ≤ 1

and further to

(𝑧1, 1, 𝑢− 𝑡) ∈ 𝐾exp (𝑧1 ≥ exp(𝑢− 𝑡)),
(𝑧2, 1,−𝑡) ∈ 𝐾exp (𝑧2 ≥ exp(−𝑡)),

𝑧1 + 𝑧2 ≤ 1.
(11.14)

This formulation can be entered using affine conic constraints (see Sec. 6.2).

149

Listing 11.8: Implementation of 𝑡 ≥ log(1 + 𝑒𝑢) as in (11.14).

Adds ACCs for t_i >= log (1 + exp((1-2*y[i]) * theta' * X[i]))
Adds auxiliary variables, AFE rows and constraints
def softplus(task, d, n, theta, t, X, y):

nvar = task.getnumvar()
ncon = task.getnumcon()
nafe = task.getnumafe()
task.appendvars(2*n) # z1, z2
task.appendcons(n) # z1 + z2 = 1
task.appendafes(4*n) #theta * X[i] - t[i], -t[i], z1[i], z2[i]
z1, z2 = nvar, nvar+n
zcon = ncon
thetaafe, tafe, z1afe, z2afe = nafe, nafe+n, nafe+2*n, nafe+3*n
for i in range(n):

task.putvarname(z1+i,f"z1[{i}]")
task.putvarname(z2+i,f"z2[{i}]")

z1 + z2 = 1
task.putaijlist(range(zcon, zcon+n), range(z1, z1+n), [1]*n)
task.putaijlist(range(zcon, zcon+n), range(z2, z2+n), [1]*n)
task.putconboundsliceconst(zcon, zcon+n, boundkey.fx, 1, 1)
task.putvarboundsliceconst(nvar, nvar+2*n, boundkey.fr, -inf, inf)

Affine conic expressions
afeidx, varidx, fval = [], [], []

Thetas
for i in range(n):

for j in range(d):
afeidx.append(thetaafe + i)
varidx.append(theta + j)
fval.append(-X[i][j] if y[i]==1 else X[i][j])

-t[i]
afeidx.extend([thetaafe + i for i in range(n)] + [tafe + i for i in range(n)])
varidx.extend([t + i for i in range(n)] + [t + i for i in range(n)])
fval.extend([-1.0]*(2*n))

z1, z2
afeidx.extend([z1afe + i for i in range(n)] + [z2afe + i for i in range(n)])
varidx.extend([z1 + i for i in range(n)] + [z2 + i for i in range(n)])
fval.extend([1.0]*(2*n))

Add the expressions
task.putafefentrylist(afeidx, varidx, fval)

Add a single row with the constant expression "1.0"
oneafe = task.getnumafe()
task.appendafes(1)
task.putafeg(oneafe, 1.0)

Add an exponential cone domain
expdomain = task.appendprimalexpconedomain()

Conic constraints
acci = task.getnumacc()

(continues on next page)

150

(continued from previous page)

for i in range(n):
task.appendacc(expdomain, [z1afe+i, oneafe, thetaafe+i], None)
task.appendacc(expdomain, [z2afe+i, oneafe, tafe+i], None)
task.putaccname(acci, f"z1:theta[{i}]")
task.putaccname(acci+1,f"z2:t[{i}]")
acci += 2

Once we have this subroutine, it is easy to implement a function that builds the regularized loss
function model (11.13).

Listing 11.9: Implementation of (11.13).

Model logistic regression (regularized with full 2-norm of theta)
X - n x d matrix of data points
y - length n vector classifying training points
lamb - regularization parameter
def logisticRegression(env, X, y, lamb=1.0):

n, d = int(X.shape[0]), int(X.shape[1]) # num samples, dimension

with env.Task() as task:
Variables [r; theta; t; u]
nvar = 1+d+2*n
task.appendvars(nvar)
task.putvarboundsliceconst(0, nvar, boundkey.fr, -inf, inf)
r, theta, t = 0, 1, 1+d
task.putvarname(r,"r");
for j in range(d): task.putvarname(theta+j,f"theta[{j}]");
for j in range(n): task.putvarname(t+j,f"t[{j}]");

Objective lambda*r + sum(t)
task.putobjsense(objsense.minimize)
task.putcj(r, lamb)
task.putclist(range(t, t+n), [1.0]*n)

Softplus function constraints
softplus(task, d, n, theta, t, X, y);

Regularization
Append a sequence of linear expressions (r, theta) to F
numafe = task.getnumafe()
task.appendafes(1+d)
task.putafefentry(numafe, r, 1.0)
for i in range(d):

task.putafefentry(numafe + i + 1, theta + i, 1.0)

Add the constraint
task.appendaccseq(task.appendquadraticconedomain(1+d), numafe, None)

Solution
task.writedata('logistic.ptf')
task.optimize()
xx = task.getxxslice(soltype.itr, theta, theta+d)

return xx

151

Example: 2D dataset fitting

In the next figure we apply logistic regression to the training set of 2D points taken from the example
ex2data2.txt . The two-dimensional dataset was converted into a feature vector 𝑥 ∈ R28 using monomial
coordinates of degrees at most 6.

Fig. 11.2: Logistic regression example with none, medium and strong regularization (small, medium,
large 𝜆). Without regularization we get obvious overfitting.

11.3 Concurrent optimizer

The idea of the concurrent optimizer is to run multiple optimizations of the same problem simulta-
neously, and pick the one that provides the fastest or best answer. This approach is especially useful for
problems which require a very long time and it is hard to say in advance which optimizer or algorithm
will perform best.

The major applications of concurrent optimization we describe in this section are:

• Using the interior-point and simplex optimizers simultaneously on a linear problem. Note that
any solution present in the task will also be used for hot-starting the simplex algorithms. One
possible scenario would therefore be running a hot-start simplex in parallel with interior point,
taking advantage of both the stability of the interior-point method and the ability of the simplex
method to use an initial solution.

• Using multiple instances of the mixed-integer optimizer to solve many copies of one mixed-integer
problem. This is not in contradiction with the run-to-run determinism of MOSEK if a different
value of the MIO seed parameter iparam.mio_seed is set in each instance. As a result each setting
leads to a different optimizer run (each of them being deterministic in its own right).

The downloadable file contains usage examples of both kinds.

11.3.1 Common setup
We first define a method that runs a number of optimization tasks in parallel, using the standard
multithreading setup available in the language. All tasks register for a callback function which will
signal them to interrupt as soon as the first task completes successfully (with response code rescode.
ok).

Listing 11.10: Simple callback function which signals the optimizer
to stop.

Defines a Mosek callback function whose only function
is to indicate if the optimizer should be stopped.
stop = False
firstStop = -1
def cbFun(code):

return 1 if stop else 0

When all remaining tasks respond to the stop signal, response codes and statuses are returned to the
caller, together with the index of the task which won the race.

152

https://www.r-bloggers.com/logistic-regression-regularized-with-optimization/

Listing 11.11: A routine for parallel task race.

def runTask(num, task, res, trm):
global stop
global firstStop
try:

trm[num] = task.optimize();
res[num] = mosek.rescode.ok

except mosek.MosekException as e:
trm[num] = mosek.rescode.err_unknown
res[num] = e.errno

finally:
If this finished with success, inform other tasks to interrupt
if res[num] == mosek.rescode.ok:

if not stop:
firstStop = num

stop = True

def optimize(tasks):
n = len(tasks)
res = [mosek.rescode.err_unknown] * n
trm = [mosek.rescode.err_unknown] * n

Set a callback function
for t in tasks:

t.set_Progress(cbFun)

Start parallel optimizations, one per task
jobs = [Thread(target=runTask, args=(i, tasks[i], res, trm)) for i in range(n)]
for j in jobs:

j.start()
for j in jobs:

j.join()

For debugging, print res and trm codes for all optimizers
for i in range(n):

print("Optimizer {0} res {1} trm {2}".format(i, res[i], trm[i]))

return firstStop, res, trm

11.3.2 Linear optimization
We use the multithreaded setup to run the interior-point and simplex optimizers simultaneously on a
linear problem. The next methods simply clones the given task and sets a different optimizer for each.
The result is the clone which finished first.

Listing 11.12: Concurrent optimization with different optimizers.

def optimizeconcurrent(task, optimizers):
n = len(optimizers)
tasks = [mosek.Task(task) for _ in range(n)]

Choose various optimizers for cloned tasks
for i in range(n):

tasks[i].putintparam(mosek.iparam.optimizer, optimizers[i])

Solve tasks in parallel
(continues on next page)

153

(continued from previous page)

firstOK, res, trm = optimize(tasks)

if firstOK >= 0:
return firstOK, tasks[firstOK], trm[firstOK], res[firstOK]

else:
return -1, None, None, None

It remains to call the method with a choice of optimizers, for example:

Listing 11.13: Calling concurrent linear optimization.

optimizers = [
mosek.optimizertype.conic,
mosek.optimizertype.dual_simplex,
mosek.optimizertype.primal_simplex

]

idx, t, trm, res = optimizeconcurrent(task, optimizers)

11.3.3 Mixed-integer optimization
We use the multithreaded setup to run many, differently seeded copies of the mixed-integer optimizer.
This approach is most useful for hard problems where we don’t expect an optimal solution in reasonable
time. The input task would typically contain a time limit. It is possible that all the cloned tasks reach
the time limit, in which case it doesn’t really mater which one terminated first. Instead we examine all
the task clones for the best objective value.

Listing 11.14: Concurrent optimization of a mixed-integer problem.

def optimizeconcurrentMIO(task, seeds):
n = len(seeds)
tasks = [mosek.Task(task) for _ in range(n)]

Choose various seeds for cloned tasks
for i in range(n):

tasks[i].putintparam(mosek.iparam.mio_seed, seeds[i])

Solve tasks in parallel
firstOK, res, trm = optimize(tasks)

if firstOK >= 0:
Pick the task that ended with res = ok
and contains an integer solution with best objective value
sense = task.getobjsense();
bestObj = 1.0e+10 if sense == mosek.objsense.minimize else -1.0e+10
bestPos = -1

for i in range(n):
print("{0} {1}".format(i,tasks[i].getprimalobj(mosek.soltype.itg)))

for i in range(n):
if ((res[i] == mosek.rescode.ok) and

(tasks[i].getsolsta(mosek.soltype.itg) == mosek.solsta.prim_feas or
tasks[i].getsolsta(mosek.soltype.itg) == mosek.solsta.integer_optimal) and

((tasks[i].getprimalobj(mosek.soltype.itg) < bestObj)
if (sense == mosek.objsense.minimize) else

(tasks[i].getprimalobj(mosek.soltype.itg) > bestObj))):
(continues on next page)

154

(continued from previous page)

bestObj = tasks[i].getprimalobj(mosek.soltype.itg)
bestPos = i

if bestPos >= 0:
return bestPos, tasks[bestPos], trm[bestPos], res[bestPos]

return -1, None, None, None

It remains to call the method with a choice of seeds, for example:

Listing 11.15: Calling concurrent integer optimization.

seeds = [42, 13, 71749373]

idx, t, trm, res = optimizeconcurrentMIO(task, seeds)

155

Chapter 12

Problem Formulation and Solutions

In this chapter we will discuss the following topics:

• The formal, mathematical formulations of the problem types that MOSEK can solve and their
duals.

• The solution information produced by MOSEK.

• The infeasibility certificate produced by MOSEK if the problem is infeasible.

For the underlying mathematical concepts, derivations and proofs see the Modeling Cookbook or any
book on convex optimization. This chapter explains how the related data is organized specifically within
the MOSEK API.

12.1 Linear Optimization

MOSEK accepts linear optimization problems of the form

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

(12.1)

where

• 𝑚 is the number of constraints.

• 𝑛 is the number of decision variables.

• 𝑥 ∈ R𝑛 is a vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear part of the objective function.

• 𝑐𝑓 ∈ R is a constant term in the objective

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

Lower and upper bounds can be infinite, or in other words the corresponding bound may be omitted.
A primal solution (𝑥) is (primal) feasible if it satisfies all constraints in (12.1). If (12.1) has at least

one primal feasible solution, then (12.1) is said to be (primal) feasible. In case (12.1) does not have a
feasible solution, the problem is said to be (primal) infeasible

156

https://docs.mosek.com/modeling-cookbook/index.html

12.1.1 Duality for Linear Optimization
Corresponding to the primal problem (12.1), there is a dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

(12.2)

where

• 𝑠𝑐𝑙 are the dual variables for lower bounds of constraints,

• 𝑠𝑐𝑢 are the dual variables for upper bounds of constraints,

• 𝑠𝑥𝑙 are the dual variables for lower bounds of variables,

• 𝑠𝑥𝑢 are the dual variables for upper bounds of variables.

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at
0, and we use the convention that the product of the bound value and the corresponding dual variable is
0. This is equivalent to removing the corresponding dual variable from the dual problem. For example:

𝑙𝑥𝑗 = −∞ ⇒ (𝑠𝑥𝑙)𝑗 = 0 and 𝑙𝑥𝑗 · (𝑠𝑥𝑙)𝑗 = 0.

A solution

(𝑦, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢)

to the dual problem is feasible if it satisfies all the constraints in (12.2). If (12.2) has at least one feasible
solution, then (12.2) is (dual) feasible, otherwise the problem is (dual) infeasible.

A solution

(𝑥*, 𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*)

is denoted a primal-dual feasible solution, if (𝑥*) is a solution to the primal problem (12.1) and
(𝑦*, (𝑠𝑐𝑙)

, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*) is a solution to the corresponding dual problem (12.2). We also define
an auxiliary vector

(𝑥𝑐)* := 𝐴𝑥*

containing the activities of linear constraints.
For a primal-dual feasible solution we define the duality gap as the difference between the primal and

the dual objective value,

𝑐𝑇𝑥* + 𝑐𝑓 −
{︀

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* + 𝑐𝑓

}︀
=
∑︀𝑚−1

𝑖=0 [(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) + (𝑠𝑐𝑢)*𝑖 (𝑢𝑐

𝑖 − (𝑥𝑐
𝑖)

*)]

+
∑︀𝑛−1

𝑗=0

[︀
(𝑠𝑥𝑙)*𝑗 (𝑥𝑗 − 𝑙𝑥𝑗) + (𝑠𝑥𝑢)*𝑗 (𝑢𝑥

𝑗 − 𝑥*
𝑗)
]︀
≥ 0

(12.3)

where the first relation can be obtained by transposing and multiplying the dual constraints (12.2) by
𝑥* and (𝑥𝑐)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

It is well-known that a linear optimization problem has an optimal solution if and only if there exist
feasible primal-dual solution so that the duality gap is zero, or, equivalently, that the complementarity
conditions

(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑐𝑢)*𝑖 (𝑢𝑐
𝑖 − (𝑥𝑐

𝑖)
*) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑥𝑙)*𝑗 (𝑥*
𝑗 − 𝑙𝑥𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,

(𝑠𝑥𝑢)*𝑗 (𝑢𝑥
𝑗 − 𝑥*

𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,

are satisfied.
If (12.1) has an optimal solution and MOSEK solves the problem successfully, both the primal and

dual solution are reported, including a status indicating the exact state of the solution.

157

12.1.2 Infeasibility for Linear Optimization

Primal Infeasible Problems

If the problem (12.1) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

(12.4)

such that the objective value is strictly positive, i.e. a solution

(𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*)

to (12.4) so that

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* > 0.

Such a solution implies that (12.4) is unbounded, and that (12.1) is infeasible.

Dual Infeasible Problems

If the problem (12.2) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize 𝑐𝑇𝑥

subject to 𝑙̂𝑐 ≤ 𝐴𝑥 ≤ 𝑢̂𝑐,

𝑙̂𝑥 ≤ 𝑥 ≤ 𝑢̂𝑥,

(12.5)

where

𝑙̂𝑐𝑖 =

{︂
0 if 𝑙𝑐𝑖 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑐

𝑖 :=

{︂
0 if 𝑢𝑐

𝑖 < ∞,
∞ otherwise,

}︂
and

𝑙̂𝑥𝑗 =

{︂
0 if 𝑙𝑥𝑗 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑥

𝑗 :=

{︂
0 if 𝑢𝑥

𝑗 < ∞,
∞ otherwise,

}︂
such that

𝑐𝑇𝑥 < 0.

Such a solution implies that (12.5) is unbounded, and that (12.2) is infeasible.
In case that both the primal problem (12.1) and the dual problem (12.2) are infeasible, MOSEK

will report only one of the two possible certificates — which one is not defined (MOSEK returns the
first certificate found).

12.1.3 Minimalization vs. Maximalization
When the objective sense of problem (12.1) is maximization, i.e.

maximize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

158

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (12.2). The dual problem thus takes the form

minimize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0.

This means that the duality gap, defined in (12.3) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0,

(12.6)

such that the objective value is strictly negative

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* < 0.

Similarly, the certificate of dual infeasibility is an 𝑥 satisfying the requirements of (12.5) such that
𝑐𝑇𝑥 > 0.

12.2 Conic Optimization

Conic optimization is an extension of linear optimization (see Sec. 12.1) allowing conic domains to be
specified for affine expressions. A conic optimization problem to be solved by MOSEK can be written
as

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟,

(12.7)

where

• 𝑚 is the number of constraints.

• 𝑛 is the number of decision variables.

• 𝑥 ∈ R𝑛 is a vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear part of the objective function.

• 𝑐𝑓 ∈ R is a constant term in the objective

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

is the same as in Sec. 12.1 and moreover:

• 𝐹 ∈ R𝑘×𝑛 is the affine conic constraint matrix.,

• 𝑔 ∈ R𝑘 is the affine conic constraint constant term vector.,

• 𝒟 is a Cartesian product of conic domains, namely 𝒟 = 𝒟1 × · · · × 𝒟𝑝, where 𝑝 is the number of
individual affine conic constraints (ACCs), and each domain is one from Sec. 15.11.

The total dimension of the domain 𝒟 must be equal to 𝑘, the number of rows in 𝐹 and 𝑔. Lower and
upper bounds can be infinite, or in other words the corresponding bound may be omitted.

MOSEK supports also the cone of positive semidefinite matrices. In order not to obscure this section
with additional notation, that extension is discussed in Sec. 12.3.

159

12.2.1 Duality for Conic Optimization
Corresponding to the primal problem (12.7), there is a dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 𝑔𝑇 𝑦̇ + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 𝑐,

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑦̇ ∈ 𝒟*,

(12.8)

where

• 𝑠𝑐𝑙 are the dual variables for lower bounds of constraints,

• 𝑠𝑐𝑢 are the dual variables for upper bounds of constraints,

• 𝑠𝑥𝑙 are the dual variables for lower bounds of variables,

• 𝑠𝑥𝑢 are the dual variables for upper bounds of variables,

• 𝑦̇ are the dual variables for affine conic constraints,

• the dual domain 𝒟* = 𝒟*
1 × · · · × 𝒟*

𝑝 is a Cartesian product of cones dual to 𝒟𝑖.

One can check that the dual problem of the dual problem is identical to the original primal problem.
If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at

0, and we use the convention that the product of the bound value and the corresponding dual variable
is 0. This is equivalent to removing the corresponding dual variable (𝑠𝑥𝑙)𝑗 from the dual problem. For
example:

𝑙𝑥𝑗 = −∞ ⇒ (𝑠𝑥𝑙)𝑗 = 0 and 𝑙𝑥𝑗 · (𝑠𝑥𝑙)𝑗 = 0.

A solution

(𝑦, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢, 𝑦̇)

to the dual problem is feasible if it satisfies all the constraints in (12.8). If (12.8) has at least one feasible
solution, then (12.8) is (dual) feasible, otherwise the problem is (dual) infeasible.

A solution

(𝑥*, 𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*, (𝑦̇)*)

is denoted a primal-dual feasible solution, if (𝑥*) is a solution to the primal problem (12.7) and
(𝑦*, (𝑠𝑐𝑙)

, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*, (𝑦̇)*) is a solution to the corresponding dual problem (12.8). We also define
an auxiliary vector

(𝑥𝑐)* := 𝐴𝑥*

containing the activities of linear constraints.
For a primal-dual feasible solution we define the duality gap as the difference between the primal and

the dual objective value,

𝑐𝑇𝑥* + 𝑐𝑓 −
{︀

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* − 𝑔𝑇 (𝑦̇)* + 𝑐𝑓

}︀
=
∑︀𝑚−1

𝑖=0 [(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) + (𝑠𝑐𝑢)*𝑖 (𝑢𝑐

𝑖 − (𝑥𝑐
𝑖)

*)]

+
∑︀𝑛−1

𝑗=0

[︀
(𝑠𝑥𝑙)*𝑗 (𝑥𝑗 − 𝑙𝑥𝑗) + (𝑠𝑥𝑢)*𝑗 (𝑢𝑥

𝑗 − 𝑥*
𝑗)
]︀

+((𝑦̇)*)𝑇 (𝐹𝑥* + 𝑔) ≥ 0

(12.9)

where the first relation can be obtained by transposing and multiplying the dual constraints (12.2) by
𝑥* and (𝑥𝑐)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

160

It is well-known that, under some non-degeneracy assumptions that exclude ill-posed cases, a conic
optimization problem has an optimal solution if and only if there exist feasible primal-dual solution so
that the duality gap is zero, or, equivalently, that the complementarity conditions

(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑐𝑢)*𝑖 (𝑢𝑐
𝑖 − (𝑥𝑐

𝑖)
*) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑥𝑙)*𝑗 (𝑥*
𝑗 − 𝑙𝑥𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,

(𝑠𝑥𝑢)*𝑗 (𝑢𝑥
𝑗 − 𝑥*

𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,
((𝑦̇)*)𝑇 (𝐹𝑥* + 𝑔) = 0,

(12.10)

are satisfied.
If (12.7) has an optimal solution and MOSEK solves the problem successfully, both the primal and

dual solution are reported, including a status indicating the exact state of the solution.

12.2.2 Infeasibility for Conic Optimization

Primal Infeasible Problems

If the problem (12.7) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 𝑔𝑇 𝑦̇
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑦̇ ∈ 𝒟*,

(12.11)

such that the objective value is strictly positive, i.e. a solution

(𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*, (𝑦̇)*)

to (12.11) so that

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* − 𝑔𝑇 𝑦̇ > 0.

Such a solution implies that (12.11) is unbounded, and that (12.7) is infeasible.

Dual Infeasible Problems

If the problem (12.8) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize 𝑐𝑇𝑥

subject to 𝑙̂𝑐 ≤ 𝐴𝑥 ≤ 𝑢̂𝑐,

𝑙̂𝑥 ≤ 𝑥 ≤ 𝑢̂𝑥,
𝐹𝑥 ∈ 𝒟

(12.12)

where

𝑙̂𝑐𝑖 =

{︂
0 if 𝑙𝑐𝑖 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑐

𝑖 :=

{︂
0 if 𝑢𝑐

𝑖 < ∞,
∞ otherwise,

}︂
(12.13)

and

𝑙̂𝑥𝑗 =

{︂
0 if 𝑙𝑥𝑗 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑥

𝑗 :=

{︂
0 if 𝑢𝑥

𝑗 < ∞,
∞ otherwise,

}︂
(12.14)

161

such that

𝑐𝑇𝑥 < 0.

Such a solution implies that (12.12) is unbounded, and that (12.8) is infeasible.
In case that both the primal problem (12.7) and the dual problem (12.8) are infeasible, MOSEK

will report only one of the two possible certificates — which one is not defined (MOSEK returns the
first certificate found).

12.2.3 Minimalization vs. Maximalization
When the objective sense of problem (12.7) is maximization, i.e.

maximize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟,

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (12.2). The dual problem thus takes the form

minimize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 𝑔𝑇 𝑦̇ + 𝑐𝑓

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0,

−𝑦̇ ∈ 𝒟*

This means that the duality gap, defined in (12.9) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0,

−𝑦̇ ∈ 𝒟*

(12.15)

such that the objective value is strictly negative

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* − 𝑔𝑇 𝑦̇ < 0.

Similarly, the certificate of dual infeasibility is an 𝑥 satisfying the requirements of (12.12) such that
𝑐𝑇𝑥 > 0.

12.3 Semidefinite Optimization

Semidefinite optimization is an extension of conic optimization (see Sec. 12.2) allowing positive semidefi-
nite matrix variables to be used in addition to the usual scalar variables. All the other parts of the input
are defined exactly as in Sec. 12.2, and the discussion from that section applies verbatim to all properties
of problems with semidefinite variables. We only briefly indicate how the corresponding formulae should
be modified with semidefinite terms.

A semidefinite optimization problem can be written as

minimize 𝑐𝑇𝑥 + ⟨𝐶,𝑋⟩ + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 + ⟨𝐴,𝑋⟩ ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + ⟨𝐹 ,𝑋⟩ + 𝑔 ∈ 𝒟,
𝑋𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 1, . . . , 𝑠

where

162

• 𝑚 is the number of constraints.

• 𝑛 is the number of decision variables.

• 𝑥 ∈ R𝑛 is a vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear part of the objective function.

• 𝑐𝑓 ∈ R is a constant term in the objective

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

• 𝐹 ∈ R𝑘×𝑛 is the affine conic constraint matrix.,

• 𝑔 ∈ R𝑘 is the affine conic constraint constant term vector.,

• 𝒟 is a Cartesian product of conic domains, namely 𝒟 = 𝒟1 × · · · × 𝒟𝑝, where 𝑝 is the number of
individual affine conic constraints (ACCs), and each domain is one from Sec. 15.11.

is the same as in Sec. 12.2 and moreover:

• there are 𝑠 symmetric positive semidefinite variables, the 𝑗-th of which is 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ of dimension

𝑟𝑗 ,

• 𝐶 = (𝐶𝑗)𝑗=1,...,𝑠 is a collection of symmetric coefficient matrices in the objective, with 𝐶𝑗 ∈ 𝒮𝑟𝑗 ,
and we interpret the notation ⟨𝐶,𝑋⟩ as a shorthand for

⟨𝐶,𝑋⟩ :=

𝑠∑︁
𝑗=1

⟨𝐶𝑗 , 𝑋𝑗⟩.

• 𝐴 = (𝐴𝑖𝑗)𝑖=1,...,𝑚,𝑗=1,...,𝑠 is a collection of symmetric coefficient matrices in the constraints, with
𝐴𝑖𝑗 ∈ 𝒮𝑟𝑗 , and we interpret the notation ⟨𝐴,𝑋⟩ as a shorthand for the vector

⟨𝐴,𝑋⟩ :=

⎛⎝ 𝑠∑︁
𝑗=1

⟨𝐴𝑖𝑗 , 𝑋𝑗⟩

⎞⎠
𝑖=1,...,𝑚

.

• 𝐹 = (𝐹 𝑖𝑗)𝑖=1,...,𝑘,𝑗=1,...,𝑠 is a collection of symmetric coefficient matrices in the affine conic con-
straints, with 𝐹 𝑖𝑗 ∈ 𝒮𝑟𝑗 , and we interpret the notation ⟨𝐹 ,𝑋⟩ as a shorthand for the vector

⟨𝐹 ,𝑋⟩ :=

⎛⎝ 𝑠∑︁
𝑗=1

⟨𝐹 𝑖𝑗 , 𝑋𝑗⟩

⎞⎠
𝑖=1,...,𝑘

.

In each case the matrix inner product between symmetric matrices of the same dimension 𝑟 is defined
as

⟨𝑈, 𝑉 ⟩ :=

𝑟∑︁
𝑖=1

𝑟∑︁
𝑗=1

𝑈𝑖𝑗𝑉𝑖𝑗 .

To summarize, above the formulation extends that from Sec. 12.2 by the possibility of including
semidefinite terms in the objective, constraints and affine conic constraints.

163

Duality

The definition of the dual problem (12.8) becomes:

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 𝑔𝑇 𝑦̇ + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 𝑐,

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,

𝐶𝑗 −
∑︀𝑚

𝑖=1 𝑦𝑖𝐴𝑖𝑗 −
∑︀𝑘

𝑖=1 𝑦̇𝑖𝐹 𝑖𝑗 = 𝑆𝑗 , 𝑗 = 1, . . . , 𝑠,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑦̇ ∈ 𝒟*,
𝑆𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 1, . . . , 𝑠.

(12.16)

Complementarity conditions (12.10) include the additional relation:

⟨𝑋𝑗 , 𝑆𝑗⟩ = 0 𝑗 = 1, . . . , 𝑠. (12.17)

Infeasibility

A certificate of primal infeasibility (12.11) is now a feasible solution to:

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 − 𝑔𝑇 𝑦̇
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝐹𝑇 𝑦̇ = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,

−
∑︀𝑚

𝑖=1 𝑦𝑖𝐴𝑖𝑗 −
∑︀𝑘

𝑖=1 𝑦̇𝑖𝐹 𝑖𝑗 = 𝑆𝑗 , 𝑗 = 1, . . . , 𝑠,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑦̇ ∈ 𝒟*,
𝑆𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 1, . . . , 𝑠.

(12.18)

such that the objective value is strictly positive.
Similarly, a dual infeasibility certificate (12.12) is a feasible solution to

minimize 𝑐𝑇𝑥 + ⟨𝐶,𝑋⟩
subject to 𝑙̂𝑐 ≤ 𝐴𝑥 + ⟨𝐴,𝑋⟩ ≤ 𝑢̂𝑐,

𝑙̂𝑥 ≤ 𝑥 ≤ 𝑢̂𝑥,
𝐹𝑥 + ⟨𝐹 ,𝑋⟩ ∈ 𝒟,

𝑋𝑗 ∈ 𝒮𝑟𝑗
+ , 𝑗 = 1, . . . , 𝑠

(12.19)

where the modified bounds are as in (12.13) and (12.14) and the objective value is strictly negative.

12.4 Quadratic and Quadratically Constrained Optimization

A convex quadratic and quadratically constrained optimization problem has the form

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐𝑘 ≤ 1
2𝑥

𝑇𝑄𝑘𝑥 +
∑︀𝑛−1

𝑗=0 𝑎𝑘𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1,

(12.20)

where all variables and bounds have the same meaning as for linear problems (see Sec. 12.1) and 𝑄𝑜 and
all 𝑄𝑘 are symmetric matrices. Moreover, for convexity, 𝑄𝑜 must be a positive semidefinite matrix and
𝑄𝑘 must satisfy

−∞ < 𝑙𝑐𝑘 ⇒ 𝑄𝑘 is negative semidefinite,
𝑢𝑐
𝑘 < ∞ ⇒ 𝑄𝑘 is positive semidefinite,

−∞ < 𝑙𝑐𝑘 ≤ 𝑢𝑐
𝑘 < ∞ ⇒ 𝑄𝑘 = 0.

The convexity requirement is very important and MOSEK checks whether it is fulfilled.

164

12.4.1 A Recommendation
Any convex quadratic optimization problem can be reformulated as a conic quadratic optimization prob-
lem, see Modeling Cookbook and [And13]. In fact MOSEK does such conversion internally as a part
of the solution process for the following reasons:

• the conic optimizer is numerically more robust than the one for quadratic problems.

• the conic optimizer is usually faster because quadratic cones are simpler than quadratic functions,
even though the conic reformulation usually has more constraints and variables than the original
quadratic formulation.

• it is easy to dualize the conic formulation if deemed worthwhile potentially leading to (huge)
computational savings.

However, instead of relying on the automatic reformulation we recommend to formulate the problem
as a conic problem from scratch because:

• it saves the computational overhead of the reformulation including the convexity check. A conic
problem is convex by construction and hence no convexity check is needed for conic problems.

• usually the modeler can do a better reformulation than the automatic method because the modeler
can exploit the knowledge of the problem at hand.

To summarize we recommend to formulate quadratic problems and in particular quadratically con-
strained problems directly in conic form.

12.4.2 Duality for Quadratic and Quadratically Constrained Optimization
The dual problem corresponding to the quadratic and quadratically constrained optimization problem
(12.20) is given by

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 1
2𝑥

𝑇
{︁∑︀𝑚−1

𝑘=0 𝑦𝑘𝑄
𝑘 −𝑄𝑜

}︁
𝑥 + 𝑐𝑓

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 +
{︁∑︀𝑚−1

𝑘=0 𝑦𝑘𝑄
𝑘 −𝑄𝑜

}︁
𝑥 = 𝑐,

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0.

(12.21)

The dual problem is related to the dual problem for linear optimization (see Sec. 12.1.1), but depends
on the variable 𝑥 which in general can not be eliminated. In the solutions reported by MOSEK, the
value of 𝑥 is the same for the primal problem (12.20) and the dual problem (12.21).

12.4.3 Infeasibility for Quadratic Optimization
In case MOSEK finds a problem to be infeasible it reports a certificate of infeasibility. We write them
out explicitly for quadratic problems, that is when 𝑄𝑘 = 0 for all 𝑘 and quadratic terms appear only
in the objective 𝑄𝑜. In this case the constraints both in the primal and dual problem are linear, and
MOSEK produces for them the same infeasibility certificate as for linear problems.

The certificate of primal infeasibility is a solution to the problem (12.4) such that the objective value
is strictly positive.

The certificate of dual infeasibility is a solution to the problem (12.5) together with an additional
constraint

𝑄𝑜𝑥 = 0

such that the objective value is strictly negative.
Below is an outline of the different problem types for quick reference.

165

https://docs.mosek.com/modeling-cookbook/index.html

Continuous problem formulations

• Linear optimization (LO)

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

• Conic optimization (CO)

Conic optimization extends linear optimization with affine conic constraints (ACC):

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + 𝑔 ∈ 𝒟,

where 𝒟 is a product of domains from Sec. 15.11.

• Semidefinite optimization (SDO)

A conic optimization problem can be further extended with semidefinite variables:

minimize 𝑐𝑇𝑥 + ⟨𝐶,𝑋⟩ + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 + ⟨𝐴,𝑋⟩ ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝐹𝑥 + ⟨𝐹 ,𝑋⟩ + 𝑔 ∈ 𝒟,
𝑋 ∈ 𝒮+,

where 𝒟 is a product of domains from Sec. 15.11 and 𝒮+ is a product of PSD cones meaning that
𝑋 is a sequence of PSD matrix variables.

• Quadratic and quadratically constrained optimization (QO, QCQO)

A quadratic problem or quadratically constrained problem has the form

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 1
2𝑥

𝑇𝑄𝑐𝑥 + 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

Mixed-integer extensions

Coninuous problems can be extended with constraints requiring the mixed-integer optimizer. We outline
them briefly here. The continuous part of a mixed-integer problem is formulated according to one of the
continuous types above, however only the primal information and solution fields are relevant, there are
no dual values and no infeasibility certificates.

• Integer variables. Specifies that a subset of variables take integer values, that is

𝑥𝐼 ∈ Z

for some index set 𝐼. Available for problems of type LO, CO, QO and QCQO.

• Disjunctive constraints. Appends disjunctions of the form

𝑡⋁︁
𝑖=1

𝑠𝑖⋀︁
𝑗=1

(𝐷𝑖𝑗𝑥 + 𝑑𝑖𝑗 ∈ 𝒟𝑖𝑗)

ie. a disjunction of conjunctions of linear constraints, where each 𝐷𝑖𝑗𝑥+ 𝑑𝑖𝑗 is an affine expression
of the optimization variables and each 𝒟𝑖𝑗 is an affine domain. Available for problems of type LO
and CO.

166

Chapter 13

Optimizers

The most essential part of MOSEK are the optimizers:

• primal simplex (linear problems),

• dual simplex (linear problems),

• interior-point (linear, quadratic and conic problems),

• mixed-integer (problems with integer variables).

The structure of a successful optimization process is roughly:

• Presolve

1. Elimination: Reduce the size of the problem.

2. Dualizer : Choose whether to solve the primal or the dual form of the problem.

3. Scaling : Scale the problem for better numerical stability.

• Optimization

1. Optimize: Solve the problem using selected method.

2. Terminate: Stop the optimization when specific termination criteria have been met.

3. Report : Return the solution or an infeasibility certificate.

The preprocessing stage is transparent to the user, but useful to know about for tuning purposes.
The purpose of the preprocessing steps is to make the actual optimization more efficient and robust. We
discuss the details of the above steps in the following sections.

13.1 Presolve

Before an optimizer actually performs the optimization the problem is preprocessed using the so-called
presolve. The purpose of the presolve is to

1. remove redundant constraints,

2. eliminate fixed variables,

3. remove linear dependencies,

4. substitute out (implied) free variables, and

5. reduce the size of the optimization problem in general.

167

After the presolved problem has been optimized the solution is automatically postsolved so that the
returned solution is valid for the original problem. Hence, the presolve is completely transparent. For
further details about the presolve phase, please see [AA95] and [AGMeszarosX96].

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If presolve consumes
too much time or memory compared to the reduction in problem size gained it may be disabled. This is
done by setting the parameter iparam.presolve_use to presolvemode.off .

In the following we describe in more detail the presolve applied to continuous, i.e., linear and conic
optimization problems, see Sec. 13.2 and Sec. 13.3. The mixed-integer optimizer, Sec. 13.4, applies similar
techniques. The two most time-consuming steps of the presolve for continuous optimization problems
are

• the eliminator, and

• the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.

Numerical issues in the presolve

During the presolve the problem is reformulated so that it hopefully solves faster. However, in rare
cases the presolved problem may be harder to solve then the original problem. The presolve may also
be infeasible although the original problem is not. If it is suspected that presolved problem is much
harder to solve than the original, we suggest to first turn the eliminator off by setting the parameter
iparam.presolve_eliminator_max_num_tries to 0. If that does not help, then trying to turn entire
presolve off may help.

Since all computations are done in finite precision, the presolve employs some tolerances when con-
cluding a variable is fixed or a constraint is redundant. If it happens that MOSEK incorrectly concludes
a problem is primal or dual infeasible, then it is worthwhile to try to reduce the parameters dparam.
presolve_tol_x and dparam.presolve_tol_s . However, if reducing the parameters actually helps
then this should be taken as an indication that the problem is badly formulated.

Eliminator

The purpose of the eliminator is to eliminate free and implied free variables from the problem using
substitution. For instance, given the constraints

𝑦 =
∑︀

𝑗 𝑥𝑗 ,

𝑦, 𝑥 ≥ 0,

y is an implied free variable that can be substituted out of the problem, if deemed worthwhile. If the
eliminator consumes too much time or memory compared to the reduction in problem size gained it may
be disabled. This can be done by setting the parameter iparam.presolve_eliminator_max_num_tries
to 0. In rare cases the eliminator may cause that the problem becomes much hard to solve.

Linear dependency checker

The purpose of the linear dependency check is to remove linear dependencies among the linear equalities.
For instance, the three linear equalities

𝑥1 + 𝑥2 + 𝑥3 = 1,
𝑥1 + 0.5𝑥2 = 0.5,
0.5𝑥2 + 𝑥3 = 0.5.

contain exactly one linear dependency. This implies that one of the constraints can be dropped without
changing the set of feasible solutions. Removing linear dependencies is in general a good idea since it
reduces the size of the problem. Moreover, the linear dependencies are likely to introduce numerical
problems in the optimization phase. It is best practice to build models without linear dependencies,
but that is not always easy for the user to control. If the linear dependencies are removed at the
modeling stage, the linear dependency check can safely be disabled by setting the parameter iparam.
presolve_lindep_use to onoffkey.off .

168

Dualizer

All linear, conic, and convex optimization problems have an equivalent dual problem associated with
them. MOSEK has built-in heuristics to determine if it is more efficient to solve the primal or dual
problem. The form (primal or dual) is displayed in the MOSEK log and available as an information
item from the solver. Should the internal heuristics not choose the most efficient form of the problem it
may be worthwhile to set the dualizer manually by setting the parameters:

• iparam.intpnt_solve_form : In case of the interior-point optimizer.

• iparam.sim_solve_form : In case of the simplex optimizer.

Note that currently only linear and conic (but not semidefinite) problems may be automatically
dualized.

Scaling

Problems containing data with large and/or small coefficients, say 1.0𝑒 + 9 or 1.0𝑒 − 7, are often hard
to solve. Significant digits may be truncated in calculations with finite precision, which can result in
the optimizer relying on inaccurate data. Since computers work in finite precision, extreme coefficients
should be avoided. In general, data around the same order of magnitude is preferred, and we will refer to
a problem, satisfying this loose property, as being well-scaled. If the problem is not well scaled, MOSEK
will try to scale (multiply) constraints and variables by suitable constants. MOSEK solves the scaled
problem to improve the numerical properties.

The scaling process is transparent, i.e. the solution to the original problem is reported. It is important
to be aware that the optimizer terminates when the termination criterion is met on the scaled problem,
therefore significant primal or dual infeasibilities may occur after unscaling for badly scaled problems.
The best solution of this issue is to reformulate the problem, making it better scaled.

By default MOSEK heuristically chooses a suitable scaling. The scaling for interior-point and
simplex optimizers can be controlled with the parameters iparam.intpnt_scaling and iparam.
sim_scaling respectively.

13.2 Linear Optimization

13.2.1 Optimizer Selection
Two different types of optimizers are available for linear problems: The default is an interior-point
method, and the alternative is the simplex method (primal or dual). The optimizer can be selected using
the parameter iparam.optimizer .

The Interior-point or the Simplex Optimizer?

Given a linear optimization problem, which optimizer is the best: the simplex or the interior-point
optimizer? It is impossible to provide a general answer to this question. However, the interior-point
optimizer behaves more predictably: it tends to use between 20 and 100 iterations, almost independently
of problem size, but cannot perform warm-start. On the other hand the simplex method can take
advantage of an initial solution, but is less predictable from cold-start. The interior-point optimizer is
used by default.

The Primal or the Dual Simplex Variant?

MOSEK provides both a primal and a dual simplex optimizer. Predicting which simplex optimizer
is faster is impossible, however, in recent years the dual optimizer has seen several algorithmic and
computational improvements, which, in our experience, make it faster on average than the primal version.
Still, it depends much on the problem structure and size. Setting the iparam.optimizer parameter to
optimizertype.free_simplex instructs MOSEK to choose one of the simplex variants automatically.

To summarize, if you want to know which optimizer is faster for a given problem type, it is best to
try all the options.

169

13.2.2 The Interior-point Optimizer
The purpose of this section is to provide information about the algorithm employed in the MOSEK
interior-point optimizer for linear problems and about its termination criteria.

The homogeneous primal-dual problem

In order to keep the discussion simple it is assumed that MOSEK solves linear optimization problems
of standard form

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ 0.
(13.1)

This is in fact what happens inside MOSEK; for efficiency reasons MOSEK converts the problem to
standard form before solving, then converts it back to the input form when reporting the solution.

Since it is not known beforehand whether problem (13.1) has an optimal solution, is primal infeasible
or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason
why MOSEK solves the so-called homogeneous model

𝐴𝑥− 𝑏𝜏 = 0,
𝐴𝑇 𝑦 + 𝑠− 𝑐𝜏 = 0,

−𝑐𝑇𝑥 + 𝑏𝑇 𝑦 − 𝜅 = 0,
𝑥, 𝑠, 𝜏, 𝜅 ≥ 0,

(13.2)

where 𝑦 and 𝑠 correspond to the dual variables in (13.1), and 𝜏 and 𝜅 are two additional scalar variables.
Note that the homogeneous model (13.2) always has solution since

(𝑥, 𝑦, 𝑠, 𝜏, 𝜅) = (0, 0, 0, 0, 0)

is a solution, although not a very interesting one. Any solution

(𝑥*, 𝑦*, 𝑠*, 𝜏*, 𝜅*)

to the homogeneous model (13.2) satisfies

𝑥*
𝑗𝑠

*
𝑗 = 0 and 𝜏*𝜅* = 0.

Moreover, there is always a solution that has the property 𝜏* + 𝜅* > 0.
First, assume that 𝜏* > 0 . It follows that

𝐴𝑥*

𝜏* = 𝑏,

𝐴𝑇 𝑦*

𝜏* + 𝑠*

𝜏* = 𝑐,

−𝑐𝑇 𝑥*

𝜏* + 𝑏𝑇 𝑦*

𝜏* = 0,
𝑥*, 𝑠*, 𝜏*, 𝜅* ≥ 0.

This shows that 𝑥*

𝜏* is a primal optimal solution and (𝑦*

𝜏* ,
𝑠*

𝜏*) is a dual optimal solution; this is reported
as the optimal interior-point solution since

(𝑥, 𝑦, 𝑠) =

{︂
𝑥*

𝜏*
,
𝑦*

𝜏*
,
𝑠*

𝜏*

}︂
is a primal-dual optimal solution (see Sec. 12.1 for the mathematical background on duality and opti-
mality).

On other hand, if 𝜅* > 0 then

𝐴𝑥* = 0,
𝐴𝑇 𝑦* + 𝑠* = 0,

−𝑐𝑇𝑥* + 𝑏𝑇 𝑦* = 𝜅*,
𝑥*, 𝑠*, 𝜏*, 𝜅* ≥ 0.

170

This implies that at least one of

𝑐𝑇𝑥* < 0 (13.3)

or

𝑏𝑇 𝑦* > 0 (13.4)

is satisfied. If (13.3) is satisfied then 𝑥* is a certificate of dual infeasibility, whereas if (13.4) is satisfied
then 𝑦* is a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information re-
quired for a solution to the original problem is obtained. A solution to the homogeneous model can be
computed using a primal-dual interior-point algorithm [And09].

Interior-point Termination Criterion

For efficiency reasons it is not practical to solve the homogeneous model exactly. Hence, an exact optimal
solution or an exact infeasibility certificate cannot be computed and a reasonable termination criterion
has to be employed.

In the 𝑘-th iteration of the interior-point algorithm a trial solution

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘)

to homogeneous model is generated, where

𝑥𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘 > 0.

Optimal case

Whenever the trial solution satisfies the criterion⃦⃦⃦
𝐴𝑥𝑘

𝜏𝑘 − 𝑏
⃦⃦⃦
∞

≤ 𝜖𝑝(1 + ‖𝑏‖∞),⃦⃦⃦
𝐴𝑇 𝑦𝑘

𝜏𝑘 + 𝑠𝑘

𝜏𝑘 − 𝑐
⃦⃦⃦
∞

≤ 𝜖𝑑(1 + ‖𝑐‖∞), and

min
(︁

(𝑥𝑘)𝑇 𝑠𝑘

(𝜏𝑘)2
, | 𝑐

𝑇 𝑥𝑘

𝜏𝑘 − 𝑏𝑇 𝑦𝑘

𝜏𝑘 |
)︁

≤ 𝜖𝑔 max

(︂
1,

min(|𝑐𝑇 𝑥𝑘|,|𝑏𝑇 𝑦𝑘|)
𝜏𝑘

)︂
,

(13.5)

the interior-point optimizer is terminated and

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘)

𝜏𝑘

is reported as the primal-dual optimal solution. The interpretation of (13.5) is that the optimizer is
terminated if

• 𝑥𝑘

𝜏𝑘 is approximately primal feasible,

•
{︁

𝑦𝑘

𝜏𝑘 ,
𝑠𝑘

𝜏𝑘

}︁
is approximately dual feasible, and

• the duality gap is almost zero.

Dual infeasibility certificate

On the other hand, if the trial solution satisfies

−𝜖𝑖𝑐
𝑇𝑥𝑘 >

‖𝑐‖∞
max (1, ‖𝑏‖∞)

⃦⃦
𝐴𝑥𝑘

⃦⃦
∞

then the problem is declared dual infeasible and 𝑥𝑘 is reported as a certificate of dual infeasibility. The
motivation for this stopping criterion is as follows: First assume that

⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ = 0 ; then 𝑥𝑘 is an exact

certificate of dual infeasibility. Next assume that this is not the case, i.e.⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ > 0,

171

and define

𝑥̄ := 𝜖𝑖
max (1, ‖𝑏‖∞)

‖𝐴𝑥𝑘‖∞ ‖𝑐‖∞
𝑥𝑘.

It is easy to verify that

‖𝐴𝑥̄‖∞ = 𝜖𝑖
max (1, ‖𝑏‖∞)

‖𝑐‖∞
and − 𝑐𝑇 𝑥̄ > 1,

which shows 𝑥̄ is an approximate certificate of dual infeasibility, where 𝜀𝑖 controls the quality of the
approximation. A smaller value means a better approximation.

Primal infeasibility certificate

Finally, if

𝜖𝑖𝑏
𝑇 𝑦𝑘 >

‖𝑏‖∞
max (1, ‖𝑐‖∞)

⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘

⃦⃦
∞

then 𝑦𝑘 is reported as a certificate of primal infeasibility.

Adjusting optimality criteria

It is possible to adjust the tolerances 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖 using parameters; see table for details.

Table 13.1: Parameters employed in termination criterion
ToleranceParameter name
𝜀𝑝 dparam.intpnt_tol_pfeas
𝜀𝑑 dparam.intpnt_tol_dfeas
𝜀𝑔 dparam.intpnt_tol_rel_gap
𝜀𝑖 dparam.intpnt_tol_infeas

The default values of the termination tolerances are chosen such that for a majority of problems
appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the
tolerances usually is not worthwhile. However, an inspection of (13.5) reveals that the quality of the
solution depends on ‖𝑏‖∞ and ‖𝑐‖∞; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal
and dual feasibility at the same rate [And09]. This means that if the optimizer is stopped prematurely
then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that
in most cases all the tolerances, 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖, have to be relaxed together to achieve an effect.

The basis identification discussed in Sec. 13.2.2 requires an optimal solution to work well; hence basis
identification should be turned off if the termination criterion is relaxed.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

Basis Identification

An interior-point optimizer does not return an optimal basic solution unless the problem has a unique
primal and dual optimal solution. Therefore, the interior-point optimizer has an optional post-processing
step that computes an optimal basic solution starting from the optimal interior-point solution. More
information about the basis identification procedure may be found in [AY96]. In the following we provide
an overall idea of the procedure.

There are some cases in which a basic solution could be more valuable:

• a basic solution is often more accurate than an interior-point solution,

• a basic solution can be used to warm-start the simplex algorithm in case of reoptimization,

• a basic solution is in general more sparse, i.e. more variables are fixed to zero. This is partic-
ularly appealing when solving continuous relaxations of mixed integer problems, as well as in all
applications in which sparser solutions are preferred.

172

To illustrate how the basis identification routine works, we use the following trivial example:

minimize 𝑥 + 𝑦
subject to 𝑥 + 𝑦 = 1,

𝑥, 𝑦 ≥ 0.

It is easy to see that all feasible solutions are also optimal. In particular, there are two basic solutions,
namely

(𝑥*
1, 𝑦

*
1) = (1, 0),

(𝑥*
2, 𝑦

*
2) = (0, 1).

The interior point algorithm will actually converge to the center of the optimal set, i.e. to (𝑥*, 𝑦*) =
(1/2, 1/2) (to see this in MOSEK deactivate Presolve).

In practice, when the algorithm gets close to the optimal solution, it is possible to construct in
polynomial time an initial basis for the simplex algorithm from the current interior point solution. This
basis is used to warm-start the simplex algorithm that will provide the optimal basic solution. In most
cases the constructed basis is optimal, or very few iterations are required by the simplex algorithm to
make it optimal and hence the final clean-up phase be short. However, for some cases of ill-conditioned
problems the additional simplex clean up phase may take of lot a time.

By default MOSEK performs a basis identification. However, if a basic solution is not needed, the
basis identification procedure can be turned off. The parameters

• iparam.intpnt_basis ,

• iparam.bi_ignore_max_iter , and

• iparam.bi_ignore_num_error

control when basis identification is performed.
The type of simplex algorithm to be used (primal/dual) can be tuned with the parameter

iparam.bi_clean_optimizer , and the maximum number of iterations can be set with iparam.
bi_max_iterations .

Finally, it should be mentioned that there is no guarantee on which basic solution will be returned.

The Interior-point Log

Below is a typical log output from the interior-point optimizer:

Optimizer - threads : 1
Optimizer - solved problem : the dual
Optimizer - Constraints : 2
Optimizer - Cones : 0
Optimizer - Scalar variables : 6 conic : 0
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 3 after factor : 3
Factor - dense dim. : 0 flops : 7.
→˓00e+001
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU ␣
→˓ TIME
0 1.0e+000 8.6e+000 6.1e+000 1.00e+000 0.000000000e+000 -2.208000000e+003 1.
→˓0e+000 0.00
1 1.1e+000 2.5e+000 1.6e-001 0.00e+000 -7.901380925e+003 -7.394611417e+003 2.
→˓5e+000 0.00
2 1.4e-001 3.4e-001 2.1e-002 8.36e-001 -8.113031650e+003 -8.055866001e+003 3.3e-
→˓001 0.00
3 2.4e-002 5.8e-002 3.6e-003 1.27e+000 -7.777530698e+003 -7.766471080e+003 5.7e-
→˓002 0.01
4 1.3e-004 3.2e-004 2.0e-005 1.08e+000 -7.668323435e+003 -7.668207177e+003 3.2e-
→˓004 0.01

(continues on next page)

173

(continued from previous page)

5 1.3e-008 3.2e-008 2.0e-009 1.00e+000 -7.668000027e+003 -7.668000015e+003 3.2e-
→˓008 0.01
6 1.3e-012 3.2e-012 2.0e-013 1.00e+000 -7.667999994e+003 -7.667999994e+003 3.2e-
→˓012 0.01

The first line displays the number of threads used by the optimizer and the second line indicates if
the optimizer chose to solve the primal or dual problem (see iparam.intpnt_solve_form). The next
lines display the problem dimensions as seen by the optimizer, and the Factor... lines show various
statistics. This is followed by the iteration log.

Using the same notation as in Sec. 13.2.2 the columns of the iteration log have the following meaning:

• ITE: Iteration index 𝑘.

• PFEAS:
⃦⃦
𝐴𝑥𝑘 − 𝑏𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards zero

but may stall at low level due to rounding errors.

• DFEAS:
⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘 − 𝑐𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards

zero but may stall at low level due to rounding errors.

• GFEAS: |− 𝑐𝑇𝑥𝑘 + 𝑏𝑇 𝑦𝑘 −𝜅𝑘| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

• PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to −1 if that is not the case.

• POBJ: 𝑐𝑇𝑥𝑘/𝜏𝑘. An estimate for the primal objective value.

• DOBJ: 𝑏𝑇 𝑦𝑘/𝜏𝑘. An estimate for the dual objective value.

• MU: (𝑥𝑘)𝑇 𝑠𝑘+𝜏𝑘𝜅𝑘

𝑛+1 . The numbers in this column should always converge to zero.

• TIME: Time spent since the optimization started.

13.2.3 The Simplex Optimizer
An alternative to the interior-point optimizer is the simplex optimizer. The simplex optimizer uses a
different method that allows exploiting an initial guess for the optimal solution to reduce the solution
time. Depending on the problem it may be faster or slower to use an initial guess; see Sec. 13.2.1 for a
discussion. MOSEK provides both a primal and a dual variant of the simplex optimizer.

Simplex Termination Criterion

The simplex optimizer terminates when it finds an optimal basic solution or an infeasibility certificate.
A basic solution is optimal when it is primal and dual feasible; see Sec. 12.1 for a definition of the primal
and dual problem. Due to the fact that computations are performed in finite precision MOSEK allows
violations of primal and dual feasibility within certain tolerances. The user can control the allowed
primal and dual tolerances with the parameters dparam.basis_tol_x and dparam.basis_tol_s .

Setting the parameter iparam.optimizer to optimizertype.free_simplex instructs MOSEK to
select automatically between the primal and the dual simplex optimizers. Hence, MOSEK tries to
choose the best optimizer for the given problem and the available solution. The same parameter can also
be used to force one of the variants.

174

Starting From an Existing Solution

When using the simplex optimizer it may be possible to reuse an existing solution and thereby reduce
the solution time significantly. When a simplex optimizer starts from an existing solution it is said to
perform a warm-start. If the user is solving a sequence of optimization problems by solving the problem,
making modifications, and solving again, MOSEK will warm-start automatically.

By default MOSEK uses presolve when performing a warm-start. If the optimizer only needs very
few iterations to find the optimal solution it may be better to turn off the presolve.

Numerical Difficulties in the Simplex Optimizers

Though MOSEK is designed to minimize numerical instability, completely avoiding it is impossible
when working in finite precision. MOSEK treats a “numerically unexpected behavior” event inside the
optimizer as a set-back. The user can define how many set-backs the optimizer accepts; if that number
is exceeded, the optimization will be aborted. Set-backs are a way to escape long sequences where the
optimizer tries to recover from an unstable situation.

Examples of set-backs are: repeated singularities when factorizing the basis matrix, repeated loss
of feasibility, degeneracy problems (no progress in objective) and other events indicating numerical
difficulties. If the simplex optimizer encounters a lot of set-backs the problem is usually badly scaled; in
such a situation try to reformulate it into a better scaled problem. Then, if a lot of set-backs still occur,
trying one or more of the following suggestions may be worthwhile:

• Raise tolerances for allowed primal or dual feasibility: increase the value of

– dparam.basis_tol_x , and
– dparam.basis_tol_s .

• Raise or lower pivot tolerance: Change the dparam.simplex_abs_tol_piv parameter.

• Switch optimizer: Try another optimizer.

• Switch off crash: Set both iparam.sim_primal_crash and iparam.sim_dual_crash to 0.

• Experiment with other pricing strategies: Try different values for the parameters

– iparam.sim_primal_selection and
– iparam.sim_dual_selection .

• If you are using warm-starts, in rare cases switching off this feature may improve stability. This is
controlled by the iparam.sim_hotstart parameter.

• Increase maximum number of set-backs allowed controlled by iparam.sim_max_num_setbacks .

• If the problem repeatedly becomes infeasible try switching off the special degeneracy handling. See
the parameter iparam.sim_degen for details.

The Simplex Log

Below is a typical log output from the simplex optimizer:

Optimizer - solved problem : the primal
Optimizer - Constraints : 667
Optimizer - Scalar variables : 1424 conic : 0
Optimizer - hotstart : no
ITER DEGITER(%) PFEAS DFEAS POBJ DOBJ ␣
→˓ TIME TOTTIME
0 0.00 1.43e+05 NA 6.5584140832e+03 NA ␣
→˓ 0.00 0.02
1000 1.10 0.00e+00 NA 1.4588289726e+04 NA ␣
→˓ 0.13 0.14
2000 0.75 0.00e+00 NA 7.3705564855e+03 NA ␣
→˓ 0.21 0.22

(continues on next page)

175

(continued from previous page)

3000 0.67 0.00e+00 NA 6.0509727712e+03 NA ␣
→˓ 0.29 0.31
4000 0.52 0.00e+00 NA 5.5771203906e+03 NA ␣
→˓ 0.38 0.39
4533 0.49 0.00e+00 NA 5.5018458883e+03 NA ␣
→˓ 0.42 0.44

The first lines summarize the problem the optimizer is solving. This is followed by the iteration log,
with the following meaning:

• ITER: Number of iterations.

• DEGITER(%): Ratio of degenerate iterations.

• PFEAS: Primal feasibility measure reported by the simplex optimizer. The numbers should be 0 if
the problem is primal feasible (when the primal variant is used).

• DFEAS: Dual feasibility measure reported by the simplex optimizer. The number should be 0 if the
problem is dual feasible (when the dual variant is used).

• POBJ: An estimate for the primal objective value (when the primal variant is used).

• DOBJ: An estimate for the dual objective value (when the dual variant is used).

• TIME: Time spent since this instance of the simplex optimizer was invoked (in seconds).

• TOTTIME: Time spent since optimization started (in seconds).

13.3 Conic Optimization - Interior-point optimizer

For conic optimization problems only an interior-point type optimizer is available. The same optimizer
is used for quadratic optimization problems which are internally reformulated to conic form.

13.3.1 The homogeneous primal-dual problem
The interior-point optimizer is an implementation of the so-called homogeneous and self-dual algorithm.
For a detailed description of the algorithm, please see [ART03]. In order to keep our discussion simple
we will assume that MOSEK solves a conic optimization problem of the form:

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ∈ 𝒦
(13.6)

where 𝐾 is a convex cone. The corresponding dual problem is

maximize 𝑏𝑇 𝑦
subject to 𝐴𝑇 𝑦 + 𝑠 = 𝑐,

𝑠 ∈ 𝒦*
(13.7)

where 𝒦* is the dual cone of 𝒦. See Sec. 12.2 for definitions.
Since it is not known beforehand whether problem (13.6) has an optimal solution, is primal infeasible

or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason
that MOSEK solves the so-called homogeneous model

𝐴𝑥− 𝑏𝜏 = 0,
𝐴𝑇 𝑦 + 𝑠− 𝑐𝜏 = 0,

−𝑐𝑇𝑥 + 𝑏𝑇 𝑦 − 𝜅 = 0,
𝑥 ∈ 𝒦,
𝑠 ∈ 𝒦*,

𝜏, 𝜅 ≥ 0,

(13.8)

176

where 𝑦 and 𝑠 correspond to the dual variables in (13.6), and 𝜏 and 𝜅 are two additional scalar variables.
Note that the homogeneous model (13.8) always has a solution since

(𝑥, 𝑦, 𝑠, 𝜏, 𝜅) = (0, 0, 0, 0, 0)

is a solution, although not a very interesting one. Any solution

(𝑥*, 𝑦*, 𝑠*, 𝜏*, 𝜅*)

to the homogeneous model (13.8) satisfies

(𝑥*)𝑇 𝑠* + 𝜏*𝜅* = 0

i.e. complementarity. Observe that 𝑥* ∈ 𝒦 and 𝑠* ∈ 𝒦* implies

(𝑥*)𝑇 𝑠* ≥ 0

and therefore

𝜏*𝜅* = 0.

since 𝜏*, 𝜅* ≥ 0. Hence, at least one of 𝜏* and 𝜅* is zero.
First, assume that 𝜏* > 0 and hence 𝜅* = 0. It follows that

𝐴𝑥*

𝜏* = 𝑏,

𝐴𝑇 𝑦*

𝜏* + 𝑠*

𝜏* = 𝑐,

−𝑐𝑇 𝑥*

𝜏* + 𝑏𝑇 𝑦*

𝜏* = 0,
𝑥*/𝜏* ∈ 𝒦,
𝑠*/𝜏* ∈ 𝒦*.

This shows that 𝑥*

𝜏* is a primal optimal solution and (𝑦*

𝜏* ,
𝑠*

𝜏*) is a dual optimal solution; this is reported
as the optimal interior-point solution since

(𝑥, 𝑦, 𝑠) =

(︂
𝑥*

𝜏*
,
𝑦*

𝜏*
,
𝑠*

𝜏*

)︂
is a primal-dual optimal solution.

On other hand, if 𝜅* > 0 then

𝐴𝑥* = 0,
𝐴𝑇 𝑦* + 𝑠* = 0,

−𝑐𝑇𝑥* + 𝑏𝑇 𝑦* = 𝜅*,
𝑥* ∈ 𝒦,
𝑠* ∈ 𝒦*.

This implies that at least one of

𝑐𝑇𝑥* < 0 (13.9)

or

𝑏𝑇 𝑦* > 0 (13.10)

holds. If (13.9) is satisfied, then 𝑥* is a certificate of dual infeasibility, whereas if (13.10) holds then 𝑦*

is a certificate of primal infeasibility.
In summary, by computing an appropriate solution to the homogeneous model, all information re-

quired for a solution to the original problem is obtained. A solution to the homogeneous model can be
computed using a primal-dual interior-point algorithm [And09].

177

13.3.2 Interior-point Termination Criterion
Since computations are performed in finite precision, and for efficiency reasons, it is not possible to solve
the homogeneous model exactly in general. Hence, an exact optimal solution or an exact infeasibility
certificate cannot be computed and a reasonable termination criterion has to be employed.

In every iteration 𝑘 of the interior-point algorithm a trial solution

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘)

to the homogeneous model is generated, where

𝑥𝑘 ∈ 𝒦, 𝑠𝑘 ∈ 𝒦*, 𝜏𝑘, 𝜅𝑘 > 0.

Therefore, it is possible to compute the values:

𝜌𝑘𝑝 = arg min𝜌

{︁
𝜌 |
⃦⃦⃦
𝐴𝑥𝑘

𝜏𝑘 − 𝑏
⃦⃦⃦
∞

≤ 𝜌𝜀𝑝(1 + ‖𝑏‖∞)
}︁
,

𝜌𝑘𝑑 = arg min𝜌

{︁
𝜌 |
⃦⃦⃦
𝐴𝑇 𝑦𝑘

𝜏𝑘 + 𝑠𝑘

𝜏𝑘 − 𝑐
⃦⃦⃦
∞

≤ 𝜌𝜀𝑑(1 + ‖𝑐‖∞)
}︁
,

𝜌𝑘𝑔 = arg min𝜌

{︂
𝜌 |
(︁

(𝑥𝑘)𝑇 𝑠𝑘

(𝜏𝑘)2
, | 𝑐

𝑇 𝑥𝑘

𝜏𝑘 − 𝑏𝑇 𝑦𝑘

𝜏𝑘 |
)︁
≤ 𝜌𝜀𝑔 max

(︂
1,

min(|𝑐𝑇 𝑥𝑘|,|𝑏𝑇 𝑦𝑘|)
𝜏𝑘

)︂}︂
,

𝜌𝑘𝑝𝑖 = arg min𝜌

{︀
𝜌 |
⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘

⃦⃦
∞ ≤ 𝜌𝜀𝑖𝑏

𝑇 𝑦𝑘, 𝑏𝑇 𝑦𝑘 > 0
}︀

and
𝜌𝑘𝑑𝑖 = arg min𝜌

{︀
𝜌 |
⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ ≤ −𝜌𝜀𝑖𝑐

𝑇𝑥𝑘, 𝑐𝑇𝑥𝑘 < 0
}︀
.

Note 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖 are nonnegative user specified tolerances.

Optimal Case

Observe 𝜌𝑘𝑝 measures how far 𝑥𝑘/𝜏𝑘 is from being a good approximate primal feasible solution. Indeed
if 𝜌𝑘𝑝 ≤ 1, then ⃦⃦⃦⃦

𝐴
𝑥𝑘

𝜏𝑘
− 𝑏

⃦⃦⃦⃦
∞

≤ 𝜀𝑝(1 + ‖𝑏‖∞). (13.11)

This shows the violations in the primal equality constraints for the solution 𝑥𝑘/𝜏𝑘 is small compared to
the size of 𝑏 given 𝜀𝑝 is small.

Similarly, if 𝜌𝑘𝑑 ≤ 1, then (𝑦𝑘, 𝑠𝑘)/𝜏𝑘 is an approximate dual feasible solution. If in addition 𝜌𝑔 ≤ 1,
then the solution (𝑥𝑘, 𝑦𝑘, 𝑠𝑘)/𝜏𝑘 is approximate optimal because the associated primal and dual objective
values are almost identical.

In other words if max(𝜌𝑘𝑝, 𝜌
𝑘
𝑑, 𝜌

𝑘
𝑔) ≤ 1, then

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘)

𝜏𝑘

is an approximate optimal solution.

Dual Infeasibility Certificate

Next assume that 𝜌𝑘𝑑𝑖 ≤ 1 and hence⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ ≤ −𝜀𝑖𝑐

𝑇𝑥𝑘 and − 𝑐𝑇𝑥𝑘 > 0

holds. Now in this case the problem is declared dual infeasible and 𝑥𝑘 is reported as a certificate of dual
infeasibility. The motivation for this stopping criterion is as follows. Let

𝑥̄ :=
𝑥𝑘

−𝑐𝑇𝑥𝑘

and it is easy to verify that

‖𝐴𝑥̄‖∞ ≤ 𝜀𝑖 and 𝑐𝑇 𝑥̄ = −1

which shows 𝑥̄ is an approximate certificate of dual infeasibility, where 𝜀𝑖 controls the quality of the
approximation.

178

Primal Infeasiblity Certificate

Next assume that 𝜌𝑘𝑝𝑖 ≤ 1 and hence⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘

⃦⃦
∞ ≤ 𝜀𝑖𝑏

𝑇 𝑦𝑘 and 𝑏𝑇 𝑦𝑘 > 0

holds. Now in this case the problem is declared primal infeasible and (𝑦𝑘, 𝑠𝑘) is reported as a certificate
of primal infeasibility. The motivation for this stopping criterion is as follows. Let

𝑦 :=
𝑦𝑘

𝑏𝑇 𝑦𝑘
and 𝑠 :=

𝑠𝑘

𝑏𝑇 𝑦𝑘

and it is easy to verify that ⃦⃦
𝐴𝑇 𝑦 + 𝑠

⃦⃦
∞ ≤ 𝜀𝑖 and 𝑏𝑇 𝑦 = 1

which shows (𝑦𝑘, 𝑠𝑘) is an approximate certificate of dual infeasibility, where 𝜀𝑖 controls the quality of
the approximation.

13.3.3 Adjusting optimality criteria
It is possible to adjust the tolerances 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖 using parameters; see the next table for details.
Note that although this section discusses the conic optimizer, if the problem was originally input as a
quadratic or quadratically constrained optimization problem then the parameter names that apply are
those from the third column (with infix QO instead of CO).

Table 13.2: Parameters employed in termination criterion
ToleranceParameter Name (for conic problems) Name (for quadratic problems)
𝜀𝑝 dparam.intpnt_co_tol_pfeas dparam.intpnt_qo_tol_pfeas
𝜀𝑑 dparam.intpnt_co_tol_dfeas dparam.intpnt_qo_tol_dfeas
𝜀𝑔 dparam.intpnt_co_tol_rel_gap dparam.intpnt_qo_tol_rel_gap
𝜀𝑖 dparam.intpnt_co_tol_infeas dparam.intpnt_qo_tol_infeas

The default values of the termination tolerances are chosen such that for a majority of problems
appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the
tolerances usually is not worthwhile. However, an inspection of (13.11) reveals that the quality of the
solution depends on ‖𝑏‖∞ and ‖𝑐‖∞; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal
and dual feasibility at the same rate [And09]. This means that if the optimizer is stopped prematurely
then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that
in most cases all the tolerances, 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖, have to be relaxed together to achieve an effect.

If the optimizer terminates without locating a solution that satisfies the termination criteria, for exam-
ple because of a stall or other numerical issues, then it will check if the solution found up to that point sat-
isfies the same criteria with all tolerances multiplied by the value of dparam.intpnt_co_tol_near_rel .
If this is the case, the solution is still declared as optimal.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

13.3.4 The Interior-point Log
Below is a typical log output from the interior-point optimizer:

Optimizer - threads : 20
Optimizer - solved problem : the primal
Optimizer - Constraints : 1
Optimizer - Cones : 2
Optimizer - Scalar variables : 6 conic : 6
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00

(continues on next page)

179

(continued from previous page)

Factor - nonzeros before factor : 1 after factor : 1
Factor - dense dim. : 0 flops : 1.
→˓70e+01
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU ␣
→˓ TIME
0 1.0e+00 2.9e-01 3.4e+00 0.00e+00 2.414213562e+00 0.000000000e+00 1.0e+00␣
→˓ 0.01
1 2.7e-01 7.9e-02 2.2e+00 8.83e-01 6.969257574e-01 -9.685901771e-03 2.7e-01␣
→˓ 0.01
2 6.5e-02 1.9e-02 1.2e+00 1.16e+00 7.606090061e-01 6.046141322e-01 6.5e-02␣
→˓ 0.01
3 1.7e-03 5.0e-04 2.2e-01 1.12e+00 7.084385672e-01 7.045122560e-01 1.7e-03␣
→˓ 0.01
4 1.4e-08 4.2e-09 4.9e-08 1.00e+00 7.071067941e-01 7.071067599e-01 1.4e-08␣
→˓ 0.01

The first line displays the number of threads used by the optimizer and the second line indicates if
the optimizer chose to solve the primal or dual problem (see iparam.intpnt_solve_form). The next
lines display the problem dimensions as seen by the optimizer, and the Factor... lines show various
statistics. This is followed by the iteration log.

Using the same notation as in Sec. 13.3.1 the columns of the iteration log have the following meaning:

• ITE: Iteration index 𝑘.

• PFEAS:
⃦⃦
𝐴𝑥𝑘 − 𝑏𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards zero

but may stall at low level due to rounding errors.

• DFEAS:
⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘 − 𝑐𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards

zero but may stall at low level due to rounding errors.

• GFEAS: |− 𝑐𝑇𝑥𝑘 + 𝑏𝑇 𝑦𝑘 −𝜅𝑘| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

• PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to −1 if that is not the case.

• POBJ: 𝑐𝑇𝑥𝑘/𝜏𝑘. An estimate for the primal objective value.

• DOBJ: 𝑏𝑇 𝑦𝑘/𝜏𝑘. An estimate for the dual objective value.

• MU: (𝑥𝑘)𝑇 𝑠𝑘+𝜏𝑘𝜅𝑘

𝑛+1 . The numbers in this column should always converge to zero.

• TIME: Time spent since the optimization started (in seconds).

13.4 The Optimizer for Mixed-Integer Problems

Solving optimization problems where one or more of the variables are constrained to be integer valued is
called Mixed-Integer Optimization (MIO). For an introduction to model building with integer variables,
the reader is recommended to consult the MOSEK Modeling Cookbook, and for further reading we
highlight textbooks such as [Wol98] or [CCornuejolsZ14].

MOSEK can perform mixed-integer

• linear (MILO),

• quadratic (MIQO) and quadratically constrained (MIQCQO), and

• conic (MICO)

180

https://docs.mosek.com/modeling-cookbook/mio.html

optimization, except for mixed-integer semidefinite problems.
By default the mixed-integer optimizer is run-to-run deterministic. This means that if a problem is

solved twice on the same computer with identical parameter settings and no time limit, then the obtained
solutions will be identical. The mixed-integer optimizer is parallelized, i.e., it can exploit multiple cores
during the optimization.

In practice, a predominant special case of integer variables are binary variables, taking values in
{0, 1}. Mixed- or pure binary problems are important subclasses of mixed-integer optimization where all
integer variables are of this type. In the general setting however, an integer variable may have arbitrary
lower and upper bounds.

13.4.1 Branch-and-Bound
In order to succeed in solving mixed-integer problems, it can be useful to have a basic understanding of
the underlying solution algorithms. The most important concept in this regard is arguably the so-called
Branch-and-Bound algorithm, employed also by MOSEK. In order to comprehend Branch-and-Bound,
the concept of a relaxation is important.

Consider for example a mixed-integer linear optimization problem of minimization type

𝑧* = minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0
𝑥𝑗 ∈ Z, ∀𝑗 ∈ 𝒥 .

(13.12)

It has the continuous relaxation

𝑧 = minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏

𝑥 ≥ 0,
(13.13)

obtained simply by ignoring the integrality restrictions. The first step in Branch-and-Bound is to solve
this so-called root relaxation, which is a continuous optimization problem. Since (13.13) is less constrained
than (13.12), one certainly gets

𝑧 ≤ 𝑧*,

and 𝑧 is therefore called the objective bound : it bounds the optimal objective value from below.
After the solution of the root relaxation, in the most likely outcome there will be one or more integer

constrained variables with fractional values, i.e., violating the integrality constraints. Branch-and-Bound
now takes such a variable, 𝑥𝑗 = 𝑓𝑗 ∈ R∖Z with 𝑗 ∈ 𝒥 , say, and creates two branches leading to relaxations
with the additional constraint 𝑥𝑗 ≤ ⌊𝑓𝑗⌋ or 𝑥𝑗 ≥ ⌈𝑓𝑗⌉, respectively. The intuitive idea here is to push
the variable away from the fractional value, closer towards integrality. If the variable was binary, say,
branching would lead to fixing its value to 0 in one branch, and to 1 in the other.

The Branch-and-Bound process continues in this way and successively solves relaxations and cre-
ates branches to refined relaxations. Whenever a relaxation solution 𝑥̂ does not violate any integrality
constraints, it is feasible to (13.12) and is called an integer feasible solution. Clearly, its solution value
𝑧 := 𝑐𝑇 𝑥̂ is an upper bound on the optimal objective value,

𝑧* ≤ 𝑧.

Since refining a relaxation by adding constraints to it can only increase its solution value, the objective
bound 𝑧, now defined as the minimum over all solution values of so far solved relaxations, can only
increase during the algorithm. If as upper bound 𝑧 one records the solution value of the best integer
feasible solution encountered so far, the so-called incumbent solution, 𝑧 can only decrease during the
algorithm. Since at any time we also have

𝑧 ≤ 𝑧* ≤ 𝑧,

objective bound and incumbent solution value are encapsulating the optimal objective value, eventually
converging to it.

The Branch-and-Bound scheme can be depicted by means of a tree, where branches and relaxations
correspond to edges and nodes. Figure Fig. 13.1 shows an example of such a tree. The strength of
Branch-and-Bound is its ability to prune nodes in this tree, meaning that no new child nodes will be
created. Pruning can occur in several cases:

181

• A relaxation leads to an integer feasible solution 𝑥̂. In this case we may update the incumbent and
its solution value 𝑧, but no new branches need to be created.

• A relaxation is infeasible. The subtree rooted at this node cannot contain any feasible relaxation,
so it can be discarded.

• A relaxation has a solution value that exceeds 𝑧. The subtree rooted at this node cannot contain
any integer feasible solution with a solution value better than the incumbent we already have, so
it can be discarded.

root
x2 = 0.7

infeas. x1 = 0.4

x3 = 1.3

z = 2.7

int. feas.
z̄ = 2.0

x2 = 0 x2 = 1

x1 = 0 x1 = 1

x3 ≤ 1 x3 ≥ 2

...

Fig. 13.1: An examplary Branch-and-Bound tree. Pruned nodes are shown in light blue.

Having objective bound and incumbent solution value is a quite fundamental property of Branch-
and-Bound, and helps to asses solution quality and control termination of the algorithm, as we detail
in the next section. Note that the above explanation is coined for minimization problems, but the
Branch-and-bound scheme has a straightforward extension to maximization problems.

13.4.2 Solution quality and termination criteria
The issue of terminating the mixed-integer optimizer is rather delicate. Recalling the Branch-and-Bound
scheme from the previous section, one may see that mixed-integer optimization is generally much harder
than continuous optimization; in fact, solving continuous sub-problems is just one component of a mixed-
integer optimizer. Despite the ability to prune nodes in the tree, the computational effort required to
solve mixed-integer problems grows exponentially with the size of the problem in a worst-case scenario
(solving mixed-integer problems is NP-hard). For instance, a problem with 𝑛 binary variables, may
require the solution of 2𝑛 relaxations. The value of 2𝑛 is huge even for moderate values of 𝑛. In
practice it is often advisable to accept near-optimal or appproximate solutions in order to counteract
this complexity burden. The user has numerous possibilities of influencing optimizer termination with
various parameters, in particular related to solution quality, and the most important ones are highlighted
here.

Solution quality in terms of optimality

In order to assess the quality of any incumbent solution in terms of its objective value, one may check
the optimality gap, defined as

𝜖 = |(incumbent solution value) − (objective bound)| = |𝑧 − 𝑧|.

It measures how much the objectives of the incumbent and the optimal solution can deviate in the
worst case. Often it is more meaningful to look at the relative optimality gap

182

𝜖rel =
|𝑧 − 𝑧|

max(𝛿1, |𝑧|)
.

This is essentially the above absolute optimality gap normalized against the magnitude of the incum-
bent solution value; the purpose of the (small) constant 𝛿1 is to avoid overweighing incumbent solution
values that are very close to zero. The relative optimality gap can thus be interpreted as answering the
question: “Within what fraction of the optimal solution is the incumbent solution in the worst case?”

Absolute and relative optimality gaps provide useful means to define termination criteria for the
mixed-integer optimizer in MOSEK. The idea is to terminate the optimization process as soon as the
quality of the incumbent solution, measured in absolute or relative gap, is good enough. In fact, whenever
an incumbent solution is located, the criterion

𝑧 − 𝑧 ≤ max(𝛿2, 𝛿3 max(𝛿1, |𝑧|))

is checked. If satisfied, i.e., if either absolute or relative optimality gap are below the thresholds 𝛿2
or 𝛿3, respectively, the optimizer terminates and reports the incumbent as an optimal solution. The
optimality gaps can always be retrieved through the information items dinfitem.mio_obj_abs_gap
and dinfitem.mio_obj_rel_gap .

The tolerances discussed above can be adjusted using suitable parameters, see Table 13.3. By default,
the optimality parameters 𝛿2 and 𝛿3 are quite small, i.e., restrictive. These default values for the absolute
and relative gap amount to solving any instance to (almost) optimality: the incumbent is required to
be within at most a tiny percentage of the optimal solution. As anticipated, this is not tractable in
most practical situations, and one should resort to finding near-optimal solutions quickly rather than
insisting on finding the optimal one. It may happen, for example, that an optimal or close-to-optimal
solution is found very early by the optimizer, but it does not terminate because the objective bound 𝑧
is of poor quality. Instead, the vast majority of computational time is spent on trying to improve 𝑧: a
typical situation that practioneers would want to avoid. The concept of optimality gaps is fundamental
for controlling solution quality when resorting to near-optimal solutions.

MIO performance tweaks: termination criteria
One of the first things to do in order to cut down excessive solution time is to increase the relative

gap tolerance dparam.mio_tol_rel_gap to some non-default value, so as to not insist on finding optimal
solutions. Typical values could be 0.01, 0.05 or 0.1, guaranteeing that the delivered solutions lie within
1%, 5% or 10% of the optimum. Increasing the tolerance will lead to less computational time spent by
the optimizer.

Solution quality in terms of feasibility

For an optimizer relying on floating-point arithmetic like the mixed-integer optimizer in MOSEK, it
may be hard to achieve exact integrality of the solution values of integer variables in most cases, and it
makes sense to numerically relax this constraint. Any candidate solution 𝑥̂ is accepted as integer feasible
if the criterion

min(𝑥𝑗 − ⌊𝑥𝑗⌋, ⌈𝑥𝑗⌉ − 𝑥𝑗) ≤ 𝛿4 ∀𝑗 ∈ 𝒥

is satisfied, meaning that 𝑥𝑗 is at most 𝛿4 away from the nearest integer. As above, 𝛿4 can be adjusted
using a parameter, see Table 13.3, and impacts the quality of the acieved solution in terms of integer
feasibility. By influencing what solution may be accepted as imcumbent, it can also have an impact on
the termination of the optimizer.

MIO performance tweaks: feasibility criteria
Whether increasing the integer feasibility tolerance dparam.mio_tol_abs_relax_int leads to less

solution time is highly problem dependent. Intuitively, the optimizer is more flexible in finding new
incumbent soutions so as to improve 𝑧. But this effect has do be examined with care on indivuidual
instances: it may worsen solution quality with no effect at all on the solution time. It may in some cases
even lead to contrary effects on the solution time.

183

Table 13.3: Tolerances for the mixed-integer optimizer.
Tolerance Parameter name Default value
𝛿1 dparam.mio_rel_gap_const 1.0e-10
𝛿2 dparam.mio_tol_abs_gap 0.0
𝛿3 dparam.mio_tol_rel_gap 1.0e-4
𝛿4 dparam.mio_tol_abs_relax_int 1.0e-5

Further controlling optimizer termination

There are more ways to limit the computational effort employed by the mixed-integer optimizer by simply
limiting the number of explored branches, solved relaxations or updates of the incumbent solution. When
any of the imposed limits is hit, the optimizer terminates and the incumbent solution may be retrieved.
See Table 13.4 for a list of corresponding parameters. In contrast to the parameters discussed in Sec.
13.4.2, interfering with these does not maintain any guarantees in terms of solution quality.

Table 13.4: Other parameters affecting the integer optimizer ter-
mination criterion.

Parameter name Explanation
iparam.mio_max_num_branches Maximum number of branches allowed.
iparam.mio_max_num_relaxs Maximum number of relaxations allowed.
iparam.mio_max_num_solutions Maximum number of feasible integer solutions allowed.

13.4.3 Additional components of the mixed-integer Optimizer
The Branch-and-Bound scheme from Sec. 13.4.1 is only the basic skeleton of the mixed-integer optimizer
in MOSEK, and several components are built on top of that in order to enhance its functionality and
increase its speed. A mixed-integer optimizer is sometimes referred to as a “giant bag of tricks”, and
it would be impossible to describe all of these tricks here. Yet, some of the additional components are
worth mentioning to the user. They can be influenced by various user parameters, and although the
default values of these parameters are optimized to work well on average mixed-integer problems, it may
pay off to adjust them for an individual problem, or a specific problem class.

Presolve

Similar to the case of continuous problems, see Sec. 13.1, the mixed-integer optimizer applies various
presolve reductions before the actual solution process is initiated. Just as in the continuous case, the use
of presolve can be controlled with the parameter iparam.presolve_use .

Primal Heuristics

Solving relaxations in the Branch-and-bound tree to an integer feasible solution 𝑥̂ is not the only way
to find new incumbent solutions. There is a variety of procedures that, given a mixed-integer problem
in a generic form like (13.12), attempt to produce integer feasible solutions in an ad-hoc way. These
procedures are called Primal Heuristics, and several of them are implemented in MOSEK. For example,
whenever a relaxation leads to a fractional solution, one may round the solution values of the integer
variables, in various ways, and hope that the outcome is still feasible to the remaining constraints.
Primal heuristics are mostly employed while processing the root node, but play a role throughout the
whole solution process. The goal of a primal heuristic is to improve the incumbent solution and thus the
bound 𝑧, and this can of course affect the quality of the solution that is returned after termination of
the optimizer. The user parameters affecting primal heuristics are listed in Table 13.5.

MIO performance tweaks: primal heuristics

• If the mixed-integer optimizer struggles to improve the incumbent solution 𝑧, see Sec. 13.4.4, it can
be helpful to intensify the use of primal heuristics.

– Set parameters related to primal heuristics to more aggressive values than the default ones, so
that more effort is spent in this component. A List of the respective parameters can be found

184

in Table 13.5. In particular, if the optimizer has difficulties finding any integer feasible solution
at all, indicated by NA in the column BEST_INT_OBJ in the mixed-integer log, one may try to
activate a construction heuristic like the Feasibility Pump with iparam.mio_feaspump_level .

– Specify a good initial solution: In many cases a good feasible solution is either known or
easily computed using problem-specific knowledge that the optimizer does not have. If so, it
is usually worthwhile to use this as a starting point for the mixed-integer optimizer. See Sec.
6.8.2.

– For feasibility problems, i.e., problems having a constant objective, the goal is to find a single
integer feasible solution, and this can be hard by itself on some instances. Try setting the
objective to something meaningful anyway, even if the underlying application does not require
this. After all, the feasible set is not changed, but the optimizer might benefit from being able
to pursue a concrete goal.

• In rare cases it may also happen that the optimizer spends an excessive amount of time on primal
heuristics without drawing any benefit from it, and one may try to limit their use with the respective
parameters.

Table 13.5: Parameters affecting primal heuristics
Parameter name Explanation
iparam.mio_heuristic_level Primal heuristics aggressivity level.
iparam.mio_rins_max_nodes Maximum number of nodes allowed in the RINS heuristic.
iparam.mio_feaspump_level Way of using the Feasibility Pump heuristic.

Cutting Planes

Cutting planes (cuts) are simply constraints that are valid for a mixed-integer problem, for example
in the form (13.12), meaning they do not remove any integer feasible solutions from the feasible set.
Therefore they are also called valid inequalities. They do not have to be valid for the relaxation (13.13)
though, and of interest and potentially useful are those cuts that do remove solutions from the feasible
set of the relaxation. The latter is a superset of the feasible region of the mixed-integer problem, and
the rationale behind cuts is thus to bring the integer problem and its relaxation closer together in terms
of their feasible sets.

As an example, take the constraints

2𝑥1 + 3𝑥2 + 𝑥3 ≤ 4, 𝑥1, 𝑥2 ∈ {0, 1}, 𝑥3 ≥ 0. (13.14)

One may realize that there cannot be a feasible solution in which both binary variables take on a value
of 1. So certainly

𝑥1 + 𝑥2 ≤ 1 (13.15)

is a valid inequality. In fact, there is no integer solution satisfying (13.14), but violating (13.15). The
latter does cut off a portion of the feasible region of the continuous relaxation of (13.14) though, obtained
by replacing 𝑥1, 𝑥2 ∈ {0, 1} with 𝑥1, 𝑥2 ∈ [0, 1]. For example, the fractional point (𝑥1, 𝑥2, 𝑥3) = (0.5, 1, 0)
is feasible to the relaxation, but violates the cut (13.15).

There are many classes of general-purpose cuttting planes that may be generated for a mixed-integer
problem in a generic form like (13.12), and MOSEK’s mixed-integer optimizer supports several of them.
For instance, the above is an example of a so-called clique cut. The most effort on generating cutting
planes is spent after the solution of the root relaxation, but cuts can also be generated later on in the
Branch-and-Bound tree. Cuts aim at improving the objective bound 𝑧 and can thus have significant
impact on the solution time. The user parameters affecting cut generation can be seen in Table 13.6.

MIO performance tweaks: cutting planes

• If the mixed-integer optimizer struggles to improve the objective bound 𝑧, see Sec. 13.4.4, it can
be helpful to intensify the use of cutting planes.

185

– Some types of cutting planes are not activated by default, but doing so may help to improve
the objective bound.

– The parameters dparam.mio_tol_rel_dual_bound_improvement and iparam.
mio_cut_selection_level determine how aggressively cuts will be generated and
selected.

– If some valid inequalities can be deduced from problem-specific knowledge that the optimizer
does not have, it may be helpful to add these to the problem formulation as constraints.
This has to be done with care, since there is a tradeoff between the benefit obtained from an
improved objective boud, and the amount of additional constraints that make the relaxations
larger.

• In rare cases it may also be observed that the optimizer spends an excessive amount
of time on cutting planes, see Sec. 13.4.4, and one may limit their use with iparam.
mio_max_num_root_cut_rounds , or by disabling a certain type of cutting planes.

Table 13.6: Parameters affecting cutting planes
Parameter name Explanation
iparam.mio_cut_clique Should clique cuts be enabled?
iparam.mio_cut_cmir Should mixed-integer rounding cuts be enabled?
iparam.mio_cut_gmi Should GMI cuts be enabled?
iparam.mio_cut_implied_bound Should implied bound cuts be enabled?
iparam.mio_cut_knapsack_cover Should knapsack cover cuts be enabled?
iparam.mio_cut_lipro Should lift-and-project cuts be enabled?
iparam.mio_cut_selection_level Cut selection aggressivity level.
iparam.mio_max_num_root_cut_roundsMaximum number of root cut rounds.
dparam.mio_tol_rel_dual_bound_improvementMinimum required objective bound improvement during

root cut generation.

13.4.4 The Mixed-Integer Log
Below is a typical log output from the mixed-integer optimizer:

Presolved problem: 1176 variables, 1344 constraints, 4968 non-zeros
Presolved problem: 328 general integer, 392 binary, 456 continuous
Clique table size: 55
BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_OBJ BEST_RELAX_OBJ REL_GAP(
→˓%) TIME
0 0 1 0 8.3888091139e+07 NA NA ␣
→˓ 0.0
0 1 1 0 8.3888091139e+07 2.5492512136e+07 69.61 ␣
→˓ 0.1
0 1 1 0 3.1273162420e+07 2.5492512136e+07 18.48 ␣
→˓ 0.1
0 1 1 0 2.6047699632e+07 2.5492512136e+07 2.13 ␣
→˓ 0.2
Cut generation started.
0 1 1 0 2.6047699632e+07 2.5492512136e+07 2.13 ␣
→˓ 0.2
0 2 1 0 2.6047699632e+07 2.5589986247e+07 1.76 ␣
→˓ 0.2
Cut generation terminated. Time = 0.05
0 4 1 0 2.5990071367e+07 2.5662741991e+07 1.26 ␣
→˓ 0.3
0 8 1 0 2.5971002767e+07 2.5662741991e+07 1.19 ␣
→˓ 0.5

(continues on next page)

186

(continued from previous page)

0 11 1 0 2.5925040617e+07 2.5662741991e+07 1.01 ␣
→˓ 0.5
0 12 1 0 2.5915504014e+07 2.5662741991e+07 0.98 ␣
→˓ 0.5
2 23 1 0 2.5915504014e+07 2.5662741991e+07 0.98 ␣
→˓ 0.6
14 35 1 0 2.5915504014e+07 2.5662741991e+07 0.98 ␣
→˓ 0.6

[...]

Objective of best integer solution : 2.578282162804e+07
Best objective bound : 2.569877601306e+07
Construct solution objective : Not employed
User objective cut value : Not employed
Number of cuts generated : 192

Number of Gomory cuts : 52
Number of CMIR cuts : 137
Number of clique cuts : 3

Number of branches : 29252
Number of relaxations solved : 31280
Number of interior point iterations: 16
Number of simplex iterations : 105440
Time spend presolving the root : 0.03
Time spend optimizing the root : 0.07
Mixed integer optimizer terminated. Time: 6.46

The first lines contain a summary of the problem after mixed-integer presolve has been applied. This
is followed by the iteration log, reflecting the progress made during the Branch-and-bound process. The
columns have the following meanings:

• BRANCHES: Number of branches / nodes generated.

• RELAXS: Number of relaxations solved.

• ACT_NDS: Number of active / non-processed nodes.

• DEPTH: Depth of the last solved node.

• BEST_INT_OBJ: The incumbent solution / best integer objective value, 𝑧.

• BEST_RELAX_OBJ: The objective bound, 𝑧.

• REL_GAP(%): Relative optimality gap, 100% · 𝜖rel

• TIME: Time (in seconds) from the start of optimization.

The beginning and the end of the root cut generation is highlighted as well, and the number of log
lines in between reflects to the computational effort spent here.

Finally there is a summary of the optimization process, containing also information on the type of
generated cuts and the total number of iterations needed to solve all occuring continuous relaxations.

When the solution time for a mixed-integer problem has to be cut down, it can sometimes be useful to
examine the log in order to understand where time is spent and what might be improved. In particular,
it might happen that the values in either of the colums BEST_INT_OBJ or BEST_RELAX_OBJ stall over a
long period of log lines, an indication that the optimizer has a hard time improving either the incumbent
solution, i.e., 𝑧, or the objective bound 𝑧, see also Sec. 13.4.3 and Sec. 13.4.3.

187

13.4.5 Mixed-Integer Nonlinear Optimization
Due to the involved non-linearities, MI(QC)QO or MICO problems are on average harder than MILO
problems of comparable size. Yet, the Branch-and-Bound scheme can be applied to these probelm
classes in a straightforward manner. The relaxations have to be solved as conic problems with the
interior point algorithm in that case, see Sec. 13.3, opposed to MILO where it is often beneficial to solve
relaxations with the dual simplex method, see Sec. 13.2.3. There is another solution approach for these
types of problems implemented in MOSEK, namely the Outer-Approximation algorithm, making use
of dynamically refined linear approximations of the non-linearities.

MICO performance tweaks: choice of algorithm
Whether conic Branch-and-Bound or Outer-Approximation is applied to a mixed-integer conic prob-

lem can be set with iparam.mio_conic_outer_approximation . The best value for this option is highly
problem dependent.

MI(QC)QO

MOSEK is specialized in solving linear and conic optimization problems, both with or without mixed-
integer variables. Just like for continuous problems, mixed-integer quadratic problems are converted
internally to conic form, see Sec. 12.4.1

Contrary to the continuous case, MOSEK can solve certain mixed-integer quadratic problems where
one or more of the involved matrices are not positive semidefinite, so-called non-convex MI(QC)QO prob-
lems. These are automatically reformulated to an equivalent convex MI(QC)QO problem, provided that
such a reformulation is possible on the given instance (otherwiese MOSEK will reject the problem and
issue an error message). The concept of reformulations can also affect the solution times of MI(QC)QO
problems.

MI(QC)QO performance tweaks: applying a reformulation method
There are several reformulation methods for MI(QC)QO problems, available through the parameter

iparam.mio_qcqo_reformulation_method . The chosen method can have significant impact on the
mixed-integer optimizer’s speed on such problems, both convex and non-convex. The best value for this
option is highly problem dependent.

13.4.6 Disjunctive constraints
Problems with disjunctive constraints (DJC) see Sec. 6.9 are typically reformulated to mixed-integer
problems, and even if this is not the case they are solved with an algorithm that is based on the mixed-
integer optimizer. In MOSEK, these problems thus fall into the realm of MIO. In particular, MOSEK
automatically attempts to replace any DJC by so called big-M constraints, potentially after transforming
it to several, less complicated DJCs. As an example, take the DJC

[𝑧 = 0] ∨ [𝑧 = 1, 𝑥1 + 𝑥2 ≥ 1000],

where 𝑧 ∈ {0, 1} and 𝑥1, 𝑥2 ∈ [0, 750]. This is an example of a DJC formulation of a so-called indicator
constraint. A big-M reformulation is given by

𝑥1 + 𝑥2 ≥ 1000 −𝑀 · (1 − 𝑧),

where 𝑀 > 0 is a large constant. The practical difficulty of these constructs is that 𝑀 should always
be sufficiently large, but ideally not larger. Too large values for 𝑀 can be harmful for the mixed-integer
optimizer. During presolve, and taking into account the bounds of the involved variables, MOSEK auto-
matically reformulates DJCs to big-M constraints if the required 𝑀 values do not exceed the parameter
dparam.mio_djc_max_bigm . From a performance point-of-view, all DJCs would ideally be linearized
to big-Ms after presolve without changing this parameter’s default value of 1.0e6. Whether or not this
is the case can be seen by retrieving the information item iinfitem.mio_presolved_numdjc , or by a
line in the mixed-integer optimizer’s log as in the example below. Both state the number of remaining
disjunctions after presolve.

188

Presolved problem: 305 variables, 204 constraints, 708 non-zeros
Presolved problem: 0 general integer, 100 binary, 205 continuous
Presolved problem: 100 disjunctions
Clique table size: 0
BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_OBJ BEST_RELAX_OBJ REL_GAP(
→˓%) TIME
0 1 1 0 NA 0.0000000000e+00 NA ␣
→˓ 0.0
0 1 1 0 5.0574653969e+05 0.0000000000e+00 100.00 ␣
→˓ 0.0

[...]

DJC performance tweaks: managing variable bounds

• Always specify the tightest known bounds on the variables of any problem with DJCs, even if they
seem trivial from the user-perspective. The mixed-integer optimizer can only benefit from these
when reformulating DJCs and thus gain performance; even if bounds don’t help with reformulations,
it is very unlikely that they hurt the optimizer.

• Increasing dparam.mio_djc_max_bigm can lead to more DJC reformulations and thus increase
optimizer speed, but it may in turn hurt numerical solution quality and has to be examined with
care. The other way round, on numerically challenging instances with DJCs, decreasing dparam.
mio_djc_max_bigm may lead to numerically more robust solutions.

13.4.7 Randomization
A mixed-integer optimizer is usually prone to performance variability, meaning that a small change in
either

• problem data, or

• computer hardware, or

• algorithmic parameters

can lead to significant changes in solution time, due to different solution paths in the Branch-and-
Bound tree. In extreme cases the exact same problem can vary from being solvable in less than a second
to seemingly unsolvable in any reasonable amount of time on a different computer.

One practical implication of this is that one should ideally verify whether a seemingly beneficial set
of parameters, established experimentally on a single problem, is still beneficial (on average) on a larger
set of problems from the same problem class. This protects against making parameter changes that had
positive effects only due to random effects on that single problem.

In the absence of a large set of test problems, one may also change the random seed of the optimizer to
a series of different values in order to hedge against drawing such wrong conclusions regarding parameters.
The random seed, accessible through iparam.mio_seed , impacts for example random tie-breaking in
many of the mixed-integer optimizer’s components. Changing the random seed can be combined with a
permutation of the problem data to further incite randomness, accessible through the parameter iparam.
mio_data_permutation_method .

189

13.4.8 Further performance tweaks
In addition to what was mentioned previously, there may be other ways to speed up the solution of a
given mixed-integer problem. For example, there are further user parameters affecting some algorithmic
settings in the mixed-integer optimizer. As mentioned above, default parameter values are optimized to
work well on average, but on individual problems they may be adjusted.

MIO performance tweaks: miscellaneous

• When relaxations in the the Branch-and-Bound tree are linear optimization problems (e.g., in
MILO or when solving MICO probelms with the Outer-Approximation method), it is usually best
to employ the dual simplex method for their solution. In rare cases the primal simplex method may
actually be the better choice, and this can be set with the parameter iparam.mio_node_optimizer .

• Some problems are numerically more challenging than others, for example if the ratio between the
smallest and the largest involved coefficients is large, say ≥ 1𝑒9. An indication of numerical issues
are, for example, large violations in the final solution, observable in the solution summery of the
log output, see Sec. 8.1.3. Similarly, a problem that is known to be feasible by the user may be
declared infeasible by the optimizer. In such cases it is usually best to try to rescale the model.
Otherwise, the mixed-integer optimizer can be instructed to be more cautios regarding numerics
with the parameter iparam.mio_numerical_emphasis_level . This may in turn be at the cost of
solution speed though.

• Improve the formulation: A MIO problem may be impossible to solve in one form and quite easy
in another form. However, it is beyond the scope of this manual to discuss good formulations for
mixed-integer problems. For discussions on this topic see for example [Wol98].

190

Chapter 14

Additional features

In this section we describe additional features and tools which enable more detailed analysis of optimiza-
tion problems with MOSEK.

14.1 Problem Analyzer

The problem analyzer prints a survey of the structure of the problem, with information about linear
constraints and objective, quadratic constraints, conic constraints and variables.

In the initial stages of model formulation the problem analyzer may be used as a quick way of
verifying that the model has been built or imported correctly. In later stages it can help revealing special
structures within the model that may be used to tune the optimizer’s performance or to identify the
causes of numerical difficulties.

The problem analyzer is run using Task.analyzeproblem . It prints its output to a log stream. The
output is similar to the one below (this is the problem survey of the aflow30a problem from the MIPLIB
2003 collection).

Analyzing the problem

*** Structural report
Dimensions
Constraints Variables Matrix var. Cones
479 842 0 0

Constraint and bound types
Free Lower Upper Ranged Fixed

Constraints: 0 0 421 0 58
Variables: 0 0 0 842 0

Integer constraint types
Binary General
421 0

*** Data report
Nonzeros Min Max

|cj|: 421 1.1e+01 5.0e+02
|Aij|: 2091 1.0e+00 1.0e+02

finite Min Max
|blci|: 58 1.0e+00 1.0e+01
|buci|: 479 0.0e+00 1.0e+01
|blxj|: 842 0.0e+00 0.0e+00
|buxj|: 842 1.0e+00 1.0e+02

(continues on next page)

191

(continued from previous page)

*** Done analyzing the problem

The survey is divided into a structural and numerical report. The content should be self-explanatory.

14.2 Automatic Repair of Infeasible Problems

MOSEK provides an automatic repair tool for infeasible linear problems which we cover in this section.
Note that most infeasible models are so due to bugs which can (and should) be more reliably fixed
manually, using the knowledge of the model structure. We discuss this approach in Sec. 8.3.

14.2.1 Automatic repair
The main idea can be described as follows. Consider the linear optimization problem with 𝑚 constraints
and 𝑛 variables

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

which is assumed to be infeasible.
One way of making the problem feasible is to reduce the lower bounds and increase the upper bounds.

If the change is sufficiently large the problem becomes feasible. Now an obvious idea is to compute the
optimal relaxation by solving an optimization problem. The problem

minimize 𝑝(𝑣𝑐𝑙 , 𝑣
𝑐
𝑢, 𝑣

𝑥
𝑙 , 𝑣

𝑥
𝑢)

subject to 𝑙𝑐 − 𝑣𝑐𝑙 ≤ 𝐴𝑥 ≤ 𝑢𝑐 + 𝑣𝑐𝑢,
𝑙𝑥 − 𝑣𝑥𝑙 ≤ 𝑥 ≤ 𝑢𝑥 + 𝑣𝑥𝑢,

𝑣𝑐𝑙 , 𝑣
𝑐
𝑢, 𝑣

𝑥
𝑙 , 𝑣

𝑥
𝑢 ≥ 0

(14.1)

does exactly that. The additional variables (𝑣𝑐𝑙)𝑖, (𝑣𝑐𝑢)𝑖, (𝑣𝑥𝑙)𝑗 and (𝑣𝑐𝑢)𝑗 are elasticity variables because
they allow a constraint to be violated and hence add some elasticity to the problem. For instance, the
elasticity variable (𝑣𝑐𝑙)𝑖 controls how much the lower bound (𝑙𝑐)𝑖 should be relaxed to make the problem
feasible. Finally, the so-called penalty function

𝑝(𝑣𝑐𝑙 , 𝑣
𝑐
𝑢, 𝑣

𝑥
𝑙 , 𝑣

𝑥
𝑢)

is chosen so it penalizes changes to bounds. Given the weights

• 𝑤𝑐
𝑙 ∈ R𝑚 (associated with 𝑙𝑐),

• 𝑤𝑐
𝑢 ∈ R𝑚 (associated with 𝑢𝑐),

• 𝑤𝑥
𝑙 ∈ R𝑛 (associated with 𝑙𝑥),

• 𝑤𝑥
𝑢 ∈ R𝑛 (associated with 𝑢𝑥),

a natural choice is

𝑝(𝑣𝑐𝑙 , 𝑣
𝑐
𝑢, 𝑣

𝑥
𝑙 , 𝑣

𝑥
𝑢) = (𝑤𝑐

𝑙)
𝑇 𝑣𝑐𝑙 + (𝑤𝑐

𝑢)𝑇 𝑣𝑐𝑢 + (𝑤𝑥
𝑙)𝑇 𝑣𝑥𝑙 + (𝑤𝑥

𝑢)𝑇 𝑣𝑥𝑢.

Hence, the penalty function 𝑝() is a weighted sum of the elasticity variables and therefore the problem
(14.1) keeps the amount of relaxation at a minimum. Please observe that

• the problem (14.1) is always feasible.

• a negative weight implies problem (14.1) is unbounded. For this reason if the value of a weight is
negative MOSEK fixes the associated elasticity variable to zero. Clearly, if one or more of the
weights are negative, it may imply that it is not possible to repair the problem.

A simple choice of weights is to set them all to 1, but of course that does not take into account that
constraints may have different importance.

192

Caveats

Observe if the infeasible problem

minimize 𝑥 + 𝑧
subject to 𝑥 = −1,

𝑥 ≥ 0

is repaired then it will become unbounded. Hence, a repaired problem may not have an optimal solution.
Another and more important caveat is that only a minimal repair is performed i.e. the repair that

barely makes the problem feasible. Hence, the repaired problem is barely feasible and that sometimes
makes the repaired problem hard to solve.

Using the automatic repair tool

In this subsection we consider an infeasible linear optimization example:

minimize −10𝑥1 −9𝑥2,
subject to 7/10𝑥1 + 1𝑥2 ≤ 630,

1/2𝑥1 + 5/6𝑥2 ≤ 600,
1𝑥1 + 2/3𝑥2 ≤ 708,

1/10𝑥1 + 1/4𝑥2 ≤ 135,
𝑥1, 𝑥2 ≥ 0,

𝑥2 ≥ 650.

(14.2)

The function Task.primalrepair can be used to repair an infeasible problem. This can be used for
linear and conic optimization problems, possibly with integer variables.

Listing 14.1: An example of feasibility repair applied to problem
(14.2).

import sys
import mosek

Since the actual value of Infinity is ignores, we define it solely
for symbolic purposes:
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main(inputfile):
Make a MOSEK environment
with mosek.Env() as env:

with env.Task(0, 0) as task:
Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

Read data
task.readdata(inputfile)

task.putintparam(mosek.iparam.log_feas_repair, 3)

task.primalrepair(None, None, None, None)

sum_viol = task.getdouinf(mosek.dinfitem.primal_repair_penalty_obj)
print("Minimized sum of violations = %e" % sum_viol)

(continues on next page)

193

(continued from previous page)

task.optimize()

task.solutionsummary(mosek.streamtype.msg)

call the main function
try:

filename = "../data/feasrepair.lp"
if len(sys.argv) > 1:

filename = sys.argv[1]
main(filename)

except Exception as e:
print(e)
raise

The above code will produce the following log report:

MOSEK Version 9.0.0.25(ALPHA) (Build date: 2017-11-7 16:11:50)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86

Open file 'feasrepair.lp'
Reading started.
Reading terminated. Time: 0.00

Read summary
Type : LO (linear optimization problem)
Objective sense : min
Scalar variables : 2
Matrix variables : 0
Constraints : 4
Cones : 0
Time : 0.0

Problem
Name :
Objective sense : min
Type : LO (linear optimization problem)
Constraints : 4
Cones : 0
Scalar variables : 2
Matrix variables : 0
Integer variables : 0

Primal feasibility repair started.
Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 2
Eliminator terminated.
Eliminator - tries : 1 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem

(continues on next page)

194

(continued from previous page)

Name :
Objective sense : min
Type : LO (linear optimization problem)
Constraints : 8
Cones : 0
Scalar variables : 14
Matrix variables : 0
Integer variables : 0

Optimizer - threads : 20
Optimizer - solved problem : the primal
Optimizer - Constraints : 2
Optimizer - Cones : 0
Optimizer - Scalar variables : 5 conic : 0
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 3 after factor : 3
Factor - dense dim. : 0 flops : 5.
→˓00e+01
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU ␣
→˓ TIME
0 2.7e+01 1.0e+00 4.0e+00 1.00e+00 3.000000000e+00 0.000000000e+00 1.0e+00␣
→˓ 0.00
1 2.5e+01 9.1e-01 1.4e+00 0.00e+00 8.711262850e+00 1.115287830e+01 2.4e+00␣
→˓ 0.00
2 2.4e+00 8.8e-02 1.4e-01 -7.33e-01 4.062505701e+01 4.422203730e+01 2.3e-01␣
→˓ 0.00
3 9.4e-02 3.4e-03 5.5e-03 1.33e+00 4.250700434e+01 4.258548510e+01 9.1e-03␣
→˓ 0.00
4 2.0e-05 7.2e-07 1.1e-06 1.02e+00 4.249996599e+01 4.249998669e+01 1.9e-06␣
→˓ 0.00
5 2.0e-09 7.2e-11 1.1e-10 1.00e+00 4.250000000e+01 4.250000000e+01 1.9e-10␣
→˓ 0.00
Basis identification started.
Basis identification terminated. Time: 0.00
Optimizer terminated. Time: 0.01

Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 4.2500000000e+01 nrm: 6e+02 Viol. con: 1e-13 var: 0e+00
Dual. obj: 4.2499999999e+01 nrm: 2e+00 Viol. con: 0e+00 var: 9e-11

Optimal objective value of the penalty problem: 4.250000000000e+01

Repairing bounds.
Increasing the upper bound 1.35e+02 on constraint 'c4' (3) with 2.25e+01.
Decreasing the lower bound 6.50e+02 on variable 'x2' (4) with 2.00e+01.
Primal feasibility repair terminated.
Optimizer started.
Optimizer terminated. Time: 0.00

Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL

(continues on next page)

195

(continued from previous page)

Primal. obj: -5.6700000000e+03 nrm: 6e+02 Viol. con: 0e+00 var: 0e+00
Dual. obj: -5.6700000000e+03 nrm: 1e+01 Viol. con: 0e+00 var: 0e+00

Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -5.6700000000e+03 nrm: 6e+02 Viol. con: 0e+00 var: 0e+00
Dual. obj: -5.6700000000e+03 nrm: 1e+01 Viol. con: 0e+00 var: 0e+00

Optimizer summary
Optimizer - time: 0.00

Interior-point - iterations : 0 time: 0.00
Basis identification - time: 0.00

Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00

Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00

Mixed integer - relaxations: 0 time: 0.00

It will also modify the task according to the optimal elasticity variables found. In this case the
optimal repair it is to increase the upper bound on constraint c4 by 22.5 and decrease the lower bound
on variable x2 by 20.

14.3 Sensitivity Analysis

Given an optimization problem it is often useful to obtain information about how the optimal objective
value changes when the problem parameters are perturbed. E.g, assume that a bound represents the
capacity of a machine. Now, it may be possible to expand the capacity for a certain cost and hence it is
worthwhile knowing what the value of additional capacity is. This is precisely the type of questions the
sensitivity analysis deals with.

Analyzing how the optimal objective value changes when the problem data is changed is called
sensitivity analysis.

References

The book [Chvatal83] discusses the classical sensitivity analysis in Chapter 10 whereas the book [RTV97]
presents a modern introduction to sensitivity analysis. Finally, it is recommended to read the short paper
[Wal00] to avoid some of the pitfalls associated with sensitivity analysis.

Warning: Currently, sensitivity analysis is only available for continuous linear optimization
problems. Moreover, MOSEK can only deal with perturbations of bounds and objective function
coefficients.

196

14.3.1 Sensitivity Analysis for Linear Problems

The Optimal Objective Value Function

Assume that we are given the problem

𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥, 𝑐) = minimize 𝑐𝑇𝑥
subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,
(14.3)

and we want to know how the optimal objective value changes as 𝑙𝑐𝑖 is perturbed. To answer this question
we define the perturbed problem for 𝑙𝑐𝑖 as follows

𝑓𝑙𝑐𝑖 (𝛽) = minimize 𝑐𝑇𝑥
subject to 𝑙𝑐 + 𝛽𝑒𝑖 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

where 𝑒𝑖 is the 𝑖-th column of the identity matrix. The function

𝑓𝑙𝑐𝑖 (𝛽) (14.4)

shows the optimal objective value as a function of 𝛽. Please note that a change in 𝛽 corresponds to a
perturbation in 𝑙𝑐𝑖 and hence (14.4) shows the optimal objective value as a function of varying 𝑙𝑐𝑖 with
the other bounds fixed.

It is possible to prove that the function (14.4) is a piecewise linear and convex function, i.e. its graph
may look like in Fig. 14.1 and Fig. 14.2.

f()β

0 ββ β1 2

Fig. 14.1: 𝛽 = 0 is in the interior of linearity interval.

Clearly, if the function 𝑓𝑙𝑐𝑖 (𝛽) does not change much when 𝛽 is changed, then we can conclude that
the optimal objective value is insensitive to changes in 𝑙𝑐𝑖 . Therefore, we are interested in the rate of
change in 𝑓𝑙𝑐𝑖 (𝛽) for small changes in 𝛽 — specifically the gradient

𝑓 ′
𝑙𝑐𝑖

(0),

which is called the shadow price related to 𝑙𝑐𝑖 . The shadow price specifies how the objective value changes
for small changes of 𝛽 around zero. Moreover, we are interested in the linearity interval

𝛽 ∈ [𝛽1, 𝛽2]

197

f()β

0 βββ 21

Fig. 14.2: 𝛽 = 0 is a breakpoint.

for which

𝑓 ′
𝑙𝑐𝑖

(𝛽) = 𝑓 ′
𝑙𝑐𝑖

(0).

Since 𝑓𝑙𝑐𝑖 is not a smooth function 𝑓 ′
𝑙𝑐𝑖

may not be defined at 0, as illustrated in Fig. 14.2. In this case
we can define a left and a right shadow price and a left and a right linearity interval.

The function 𝑓𝑙𝑐𝑖 considered only changes in 𝑙𝑐𝑖 . We can define similar functions for the remaining
parameters of the 𝑧 defined in (14.3) as well:

𝑓𝑙𝑐𝑖 (𝛽) = 𝑧(𝑙𝑐 + 𝛽𝑒𝑖, 𝑢
𝑐, 𝑙𝑥, 𝑢𝑥, 𝑐), 𝑖 = 1, . . . ,𝑚,

𝑓𝑢𝑐
𝑖
(𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐 + 𝛽𝑒𝑖, 𝑙

𝑥, 𝑢𝑥, 𝑐), 𝑖 = 1, . . . ,𝑚,
𝑓𝑙𝑥𝑗 (𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥 + 𝛽𝑒𝑗 , 𝑢

𝑥, 𝑐), 𝑗 = 1, . . . , 𝑛,

𝑓𝑢𝑥
𝑗
(𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥 + 𝛽𝑒𝑗 , 𝑐), 𝑗 = 1, . . . , 𝑛,

𝑓𝑐𝑗 (𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥, 𝑐 + 𝛽𝑒𝑗), 𝑗 = 1, . . . , 𝑛.

Given these definitions it should be clear how linearity intervals and shadow prices are defined for the
parameters 𝑢𝑐

𝑖 etc.

Equality Constraints

In MOSEK a constraint can be specified as either an equality constraint or a ranged constraint. If
some constraint 𝑒𝑐𝑖 is an equality constraint, we define the optimal value function for this constraint as

𝑓𝑒𝑐𝑖 (𝛽) = 𝑧(𝑙𝑐 + 𝛽𝑒𝑖, 𝑢
𝑐 + 𝛽𝑒𝑖, 𝑙

𝑥, 𝑢𝑥, 𝑐)

Thus for an equality constraint the upper and the lower bounds (which are equal) are perturbed simul-
taneously. Therefore, MOSEK will handle sensitivity analysis differently for a ranged constraint with
𝑙𝑐𝑖 = 𝑢𝑐

𝑖 and for an equality constraint.

198

The Basis Type Sensitivity Analysis

The classical sensitivity analysis discussed in most textbooks about linear optimization, e.g. [Chvatal83],
is based on an optimal basis. This method may produce misleading results [RTV97] but is computation-
ally cheap. This is the type of sensitivity analysis implemented in MOSEK.

We will now briefly discuss the basis type sensitivity analysis. Given an optimal basic solution which
provides a partition of variables into basic and non-basic variables, the basis type sensitivity analysis
computes the linearity interval [𝛽1, 𝛽2] so that the basis remains optimal for the perturbed problem. A
shadow price associated with the linearity interval is also computed. However, it is well-known that an
optimal basic solution may not be unique and therefore the result depends on the optimal basic solution
employed in the sensitivity analysis. If the optimal objective value function has a breakpoint for 𝛽 = 0
then the basis type sensitivity method will only provide a subset of either the left or the right linearity
interval.

In summary, the basis type sensitivity analysis is computationally cheap but does not provide complete
information. Hence, the results of the basis type sensitivity analysis should be used with care.

Example: Sensitivity Analysis

As an example we will use the following transportation problem. Consider the problem of minimizing the
transportation cost between a number of production plants and stores. Each plant supplies a number of
goods and each store has a given demand that must be met. Supply, demand and cost of transportation
per unit are shown in Fig. 14.3.

Supply Demand

1

2

5

2

1

2

1

Plant 1

Plant 2

Plant 3
Store 4

Store 3

Store 2

Store 1

1000

500

500

800

100

400

1200

Fig. 14.3: Supply, demand and cost of transportation.

If we denote the number of transported goods from location 𝑖 to location 𝑗 by 𝑥𝑖𝑗 , problem can be
formulated as the linear optimization problem of minimizing

1𝑥11 + 2𝑥12 + 5𝑥23 + 2𝑥24 + 1𝑥31 + 2𝑥33 + 1𝑥34

subject to

𝑥11 + 𝑥12 ≤ 400,
𝑥23 + 𝑥24 ≤ 1200,

𝑥31 + 𝑥33 + 𝑥34 ≤ 1000,
𝑥11 + 𝑥31 = 800,

𝑥12 = 100,
𝑥23 + 𝑥33 = 500,

𝑥24 + 𝑥34 = 500,
𝑥11, 𝑥12, 𝑥23, 𝑥24, 𝑥31, 𝑥33, 𝑥34 ≥ 0.

(14.5)

The sensitivity parameters are shown in Table 14.1 and Table 14.2.

199

Table 14.1: Ranges and shadow prices related to bounds on con-
straints and variables.

Con. 𝛽1 𝛽2 𝜎1 𝜎2

1 −300.00 0.00 3.00 3.00
2 −700.00 +∞ 0.00 0.00
3 −500.00 0.00 3.00 3.00
4 −0.00 500.00 4.00 4.00
5 −0.00 300.00 5.00 5.00
6 −0.00 700.00 5.00 5.00
7 −500.00 700.00 2.00 2.00
Var. 𝛽1 𝛽2 𝜎1 𝜎2

𝑥11 −∞ 300.00 0.00 0.00
𝑥12 −∞ 100.00 0.00 0.00
𝑥23 −∞ 0.00 0.00 0.00
𝑥24 −∞ 500.00 0.00 0.00
𝑥31 −∞ 500.00 0.00 0.00
𝑥33 −∞ 500.00 0.00 0.00
𝑥34 −0.000000 500.00 2.00 2.00

Table 14.2: Ranges and shadow prices related to the objective co-
efficients.

Var. 𝛽1 𝛽2 𝜎1 𝜎2

𝑐1 −∞ 3.00 300.00 300.00
𝑐2 −∞ ∞ 100.00 100.00
𝑐3 −2.00 ∞ 0.00 0.00
𝑐4 −∞ 2.00 500.00 500.00
𝑐5 −3.00 ∞ 500.00 500.00
𝑐6 −∞ 2.00 500.00 500.00
𝑐7 −2.00 ∞ 0.00 0.00

Examining the results from the sensitivity analysis we see that for constraint number 1 we have
𝜎1 = 3 and 𝛽1 = −300, 𝛽2 = 0.

If the upper bound on constraint 1 is decreased by

𝛽 ∈ [0, 300]

then the optimal objective value will increase by the value

𝜎1𝛽 = 3𝛽.

14.3.2 Sensitivity Analysis with MOSEK
MOSEK provides the functions Task.primalsensitivity and Task.dualsensitivity for performing
sensitivity analysis. The code in Listing 14.2 gives an example of its use.

Listing 14.2: Example of sensitivity analysis with the MOSEK
Optimizer API for Python.

import sys
import mosek

(continues on next page)

200

(continued from previous page)

Since the actual value of Infinity is ignores, we define it solely
for symbolic purposes:
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main():
Create a MOSEK environment
with mosek.Env() as env:

Attach a printer to the environment
env.set_Stream(mosek.streamtype.log, streamprinter)

Create a task
with env.Task(0, 0) as task:

Attach a printer to the task
task.set_Stream(mosek.streamtype.log, streamprinter)

Set up data
bkc = [mosek.boundkey.up, mosek.boundkey.up,

mosek.boundkey.up, mosek.boundkey.fx,
mosek.boundkey.fx, mosek.boundkey.fx,
mosek.boundkey.fx]

blc = [-inf, -inf, -inf, 800., 100., 500., 500.]
buc = [400., 1200., 1000., 800., 100., 500., 500.]

bkx = [mosek.boundkey.lo, mosek.boundkey.lo,
mosek.boundkey.lo, mosek.boundkey.lo,
mosek.boundkey.lo, mosek.boundkey.lo,
mosek.boundkey.lo]

c = [1.0, 2.0, 5.0, 2.0, 1.0, 2.0, 1.0]
blx = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
bux = [inf, inf, inf, inf, inf, inf, inf]

ptrb = [0, 2, 4, 6, 8, 10, 12]
ptre = [2, 4, 6, 8, 10, 12, 14]
sub = [0, 3, 0, 4, 1, 5, 1, 6, 2, 3, 2, 5, 2, 6]

val = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

numcon = len(bkc)
numvar = len(bkx)
numanz = len(val)

Input linear data
task.inputdata(numcon, numvar,

c, 0.0,
ptrb, ptre, sub, val,
bkc, blc, buc,
bkx, blx, bux)

Set objective sense
task.putobjsense(mosek.objsense.minimize)

(continues on next page)

201

(continued from previous page)

Optimize
task.optimize()

Analyze upper bound on c1 and the equality constraint on c4
subi = [0, 3]
marki = [mosek.mark.up, mosek.mark.up]

Analyze lower bound on the variables x12 and x31
subj = [1, 4]
markj = [mosek.mark.lo, mosek.mark.lo]

(leftpricei, rightpricei, leftrangei, rightrangei,
leftpricej, rightpricej, leftrangej, rightrangej) = task.

→˓primalsensitivity(subi,
␣

→˓ marki,
␣

→˓ subj,
␣

→˓ markj)

print('Results from sensitivity analysis on bounds:')
print('\tleftprice | rightprice | leftrange | rightrange ')
print('For constraints:')

for i in range(2):
print('\t%10f %10f %10f %10f' % (leftpricei[i],

rightpricei[i],
leftrangei[i],
rightrangei[i]))

print('For variables:')
for i in range(2):

print('\t%10f %10f %10f %10f' % (leftpricej[i],
rightpricej[i],
leftrangej[i],
rightrangej[i]))

subc = [2, 5]

leftprice, rightprice, leftrange, rightrange = task.dualsensitivity(subc)

print('Results from sensitivity analysis on objective coefficients:')

for i in range(2):
print('\t%10f %10f %10f %10f' % (leftprice[i],

rightprice[i],
leftrange[i],
rightrange[i]))

return None

call the main function
try:

main()
(continues on next page)

202

(continued from previous page)

except mosek.MosekException as e:
print("ERROR: %s" % str(e.errno))
if e.msg is not None:

print("\t%s" % e.msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

203

Chapter 15

API Reference

This section contains the complete reference of the MOSEK Optimizer API for Python. It is organized
as follows:

• General API conventions.

• Methods:

– Class Env (The MOSEK environment)
– Class Task (An optimization task)
– Browse by topic

• Optimizer parameters:

– Double, Integer , String
– Full list
– Browse by topic

• Optimizer information items:

– Double , Integer , Long

• Optimizer response codes

• Enumerations

• Exceptions

• User-defined function types

• List of supported domains

15.1 API Conventions

15.1.1 Function arguments

Naming Convention

In the definition of the MOSEK Optimizer API for Python a consistent naming convention has been
used. This implies that whenever for example numcon is an argument in a function definition it indicates
the number of constraints. In Table 15.1 the variable names used to specify the problem parameters are
listed.

204

Table 15.1: Naming conventions used in the MOSEK Optimizer
API for Python.

API name API type Dimension Related problem parameter
numcon int 𝑚
numvar int 𝑛
numcone int 𝑡
aptrb int[] numvar 𝑎𝑖𝑗
aptre int[] numvar 𝑎𝑖𝑗
asub int[] aptre[numvar-1] 𝑎𝑖𝑗
aval float[] aptre[numvar-1] 𝑎𝑖𝑗
c float[] numvar 𝑐𝑗
cfix float 𝑐𝑓

blc float[] numcon 𝑙𝑐𝑘
buc float[] numcon 𝑢𝑐

𝑘

blx float[] numvar 𝑙𝑥𝑘
bux float[] numvar 𝑢𝑥

𝑘

numqonz int 𝑞𝑜𝑖𝑗
qosubi int[] numqonz 𝑞𝑜𝑖𝑗
qosubj int[] numqonz 𝑞𝑜𝑖𝑗
qoval float[] numqonz 𝑞𝑜𝑖𝑗
numqcnz int 𝑞𝑘𝑖𝑗
qcsubk int[] numqcnz 𝑞𝑘𝑖𝑗
qcsubi int[] numqcnz 𝑞𝑘𝑖𝑗
qcsubj int[] numqcnz 𝑞𝑘𝑖𝑗
qcval float[] numqcnz 𝑞𝑘𝑖𝑗
bkc int[] numcon 𝑙𝑐𝑘 and 𝑢𝑐

𝑘

bkx int[] numvar 𝑙𝑥𝑘 and 𝑢𝑥
𝑘

The relation between the variable names and the problem parameters is as follows:

• The quadratic terms in the objective: 𝑞𝑜qosubi[t],qosubj[t] = qoval[t], 𝑡 = 0, . . . , numqonz− 1.

• The linear terms in the objective : 𝑐𝑗 = c[j], 𝑗 = 0, . . . , numvar− 1

• The fixed term in the objective : 𝑐𝑓 = cfix.

• The quadratic terms in the constraints: 𝑞
qcsubk[t]
qcsubi[t],qcsubj[t] = qcval[t], 𝑡 = 0, . . . , numqcnz− 1

• The linear terms in the constraints: 𝑎asub[t],j = aval[t], 𝑡 = ptrb[j], . . . , ptre[j] − 1, 𝑗 =
0, . . . , numvar− 1

Information about input/output arguments

The following are purely informational tags which indicate how MOSEK treats a specific function
argument.

• (input) An input argument. It is used to input data to MOSEK.

• (output) An output argument. It can be a user-preallocated data structure, a reference, a string
buffer etc. where MOSEK will output some data.

• (input/output) An input/output argument. MOSEK will read the data and overwrite it with
new/updated information.

205

15.1.2 Bounds
The bounds on the constraints and variables are specified using the variables bkc, blc, and buc. The
components of the integer array bkc specify the bound type according to Table 15.2

Table 15.2: Symbolic key for variable and constraint bounds.
Symbolic constant Lower bound Upper bound
boundkey.fx finite identical to the lower bound
boundkey.fr minus infinity plus infinity
boundkey.lo finite plus infinity
boundkey.ra finite finite
boundkey.up minus infinity finite

For instance bkc[2]=boundkey.lo means that −∞ < 𝑙𝑐2 and 𝑢𝑐
2 = ∞. Even if a variable or constraint

is bounded only from below, e.g. 𝑥 ≥ 0, both bounds are inputted or extracted; the irrelevant value is
ignored.

Finally, the numerical values of the bounds are given by

𝑙𝑐𝑘 = blc[k], 𝑘 = 0, . . . , numcon− 1

𝑢𝑐
𝑘 = buc[k], 𝑘 = 0, . . . , numcon− 1.

The bounds on the variables are specified using the variables bkx, blx, and bux in the same way. The
numerical values for the lower bounds on the variables are given by

𝑙𝑥𝑗 = blx[j], 𝑗 = 0, . . . , numvar− 1.

𝑢𝑥
𝑗 = bux[j], 𝑗 = 0, . . . , numvar− 1.

15.1.3 Vector Formats
Three different vector formats are used in the MOSEK API:

Full (dense) vector

This is simply an array where the first element corresponds to the first item, the second element to the
second item etc. For example to get the linear coefficients of the objective in task with numvar variables,
one would write

c = zeros(numvar,float)
task.getc(c)

Vector slice

A vector slice is a range of values from first up to and not including last entry in the vector, i.e.
for the set of indices i such that first <= i < last. For example, to get the bounds associated with
constrains 2 through 9 (both inclusive) one would write

upper_bound = zeros(8,float)
lower_bound = zeros(8,float)
bound_key = array([0] * 8)

task.getconboundslice(2, 10,
bound_key,lower_bound,upper_bound)

206

Sparse vector

A sparse vector is given as an array of indexes and an array of values. The indexes need not be ordered.
For example, to input a set of bounds associated with constraints number 1, 6, 3, and 9, one might write

bound_index = [1, 6, 3, 9]
bound_key = [boundkey.fr,boundkey.lo,boundkey.up,boundkey.fx]
lower_bound = [0.0, -10.0, 0.0, 5.0]
upper_bound = [0.0, 0.0, 6.0, 5.0]
task.putconboundlist(bound_index,

bound_key,lower_bound,upper_bound)

15.1.4 Matrix Formats
The coefficient matrices in a problem are inputted and extracted in a sparse format. That means only
the nonzero entries are listed.

Unordered Triplets

In unordered triplet format each entry is defined as a row index, a column index and a coefficient. For
example, to input the 𝐴 matrix coefficients for 𝑎1,2 = 1.1, 𝑎3,3 = 4.3 , and 𝑎5,4 = 0.2 , one would write
as follows:

subi = array([1, 3, 5])
subj = array([2, 3, 4])
cof = array([1.1, 4.3, 0.2])
task.putaijlist(subi,subj,cof)

Please note that in some cases (like Task.putaijlist) only the specified indexes are modified — all
other are unchanged. In other cases (such as Task.putqconk) the triplet format is used to modify all
entries — entries that are not specified are set to 0.

Column or Row Ordered Sparse Matrix

In a sparse matrix format only the non-zero entries of the matrix are stored. MOSEK uses a sparse
packed matrix format ordered either by columns or rows. Here we describe the column-wise format. The
row-wise format is based on the same principle.

Column ordered sparse format

A sparse matrix in column ordered format is essentially a list of all non-zero entries read column by
column from left to right and from top to bottom within each column. The exact representation uses
four arrays:

• asub: Array of size equal to the number of nonzeros. List of row indexes.

• aval: Array of size equal to the number of nonzeros. List of non-zero entries of 𝐴 ordered by
columns.

• ptrb: Array of size numcol, where ptrb[j] is the position of the first value/index in aval/ asub
for the 𝑗-th column.

• ptre: Array of size numcol, where ptre[j] is the position of the last value/index plus one in aval
/ asub for the 𝑗-th column.

With this representation the values of a matrix 𝐴 with numcol columns are assigned using:

𝑎asub[𝑘],𝑗 = aval[𝑘] for 𝑗 = 0, . . . , numcol− 1, 𝑘 = ptrb[𝑗], . . . , ptre[𝑗] − 1.

As an example consider the matrix

𝐴 =

⎡⎢⎢⎣
1.1 1.3 1.4

2.2 2.5
3.1 3.4

4.4

⎤⎥⎥⎦ (15.1)

207

which can be represented in the column ordered sparse matrix format as

ptrb = [0, 2, 3, 5, 7],
ptre = [2, 3, 5, 7, 8],
asub = [0, 2, 1, 0, 3, 0, 2, 1],
aval = [1.1, 3.1, 2.2, 1.3, 4.4, 1.4, 3.4, 2.5].

Fig. 15.1 illustrates how the matrix 𝐴 in (15.1) is represented in column ordered sparse matrix format.

ptrb

ptre

asub

aval

0 2 3 5

2 3 5 7

0 2 1 0 3 0 1 2

1.1 3.1 2.2 1.3 4.4 1.4 3.4 2.5

Column 0 Column 1

Fig. 15.1: The matrix 𝐴 (15.1) represented in column ordered packed sparse matrix format.

Column ordered sparse format with nonzeros

Note that nzc[j] := ptre[j]-ptrb[j] is exactly the number of nonzero elements in the 𝑗-th column
of 𝐴. In some functions a sparse matrix will be represented using the equivalent dataset asub, aval,
ptrb, nzc. The matrix 𝐴 (15.1) would now be represented as:

ptrb = [0, 2, 3, 5, 7],
nzc = [2, 1, 2, 2, 1],
asub = [0, 2, 1, 0, 3, 0, 2, 1],
aval = [1.1, 3.1, 2.2, 1.3, 4.4, 1.4, 3.4, 2.5].

Row ordered sparse matrix

The matrix 𝐴 (15.1) can also be represented in the row ordered sparse matrix format as:

ptrb = [0, 3, 5, 7],
ptre = [3, 5, 7, 8],
asub = [0, 2, 3, 1, 4, 0, 3, 2],
aval = [1.1, 1.3, 1.4, 2.2, 2.5, 3.1, 3.4, 4.4].

15.2 Functions grouped by topic

Callback

• Task.set_InfoCallback – Receive callbacks with solver status and information during optimiza-
tion.

• Task.set_Progress – Receive callbacks about current status of the solver during optimization.

• Task.set_Stream – Directs all output from a task stream to a callback function.

• Infrequent: Env.set_Stream

208

Environment and task management

• Env.Env – Constructor of a new environment.

• Task.Task – Constructor of a new optimization task.

• Env.Task – Creates a new task.

• Task.puttaskname – Assigns a new name to the task.

• Infrequent: Task.__del__ , Env.__del__ , Task.commitchanges , Task.deletesolution , Task.
putmaxnumacc , Task.putmaxnumafe , Task.putmaxnumanz , Task.putmaxnumbarvar , Task.
putmaxnumcon , Task.putmaxnumdjc , Task.putmaxnumdomain , Task.putmaxnumqnz , Task.
putmaxnumvar , Task.resizetask

• Deprecated: Task.putmaxnumcone

Infeasibility diagnostic

• Task.getinfeasiblesubproblem – Obtains an infeasible subproblem.

• Task.infeasibilityreport – Prints the infeasibility report to an output stream.

• Task.primalrepair – Repairs a primal infeasible optimization problem by adjusting the bounds
on the constraints and variables.

Information items and statistics

• Task.getdouinf – Obtains a double information item.

• Task.getintinf – Obtains an integer information item.

• Task.getlintinf – Obtains a long integer information item.

• Task.updatesolutioninfo – Update the information items related to the solution.

Input/Output

• Task.writedata – Writes problem data to a file.

• Task.writedatastream – Write problem data to a stream.

• Task.writesolution – Write a solution to a file.

• Infrequent: Task.readbsolution , Task.readdata , Task.readdataformat , Task.readjsonsol ,
Task.readjsonstring , Task.readlpstring , Task.readopfstring , Task.readparamfile ,
Task.readptfstring , Task.readsolution , Task.readsolutionfile , Task.readsummary ,
Task.readtask , Task.writebsolution , Task.writejsonsol , Task.writeparamfile , Task.
writesolutionfile , Task.writetask

Inspecting the task

• Task.analyzeproblem – Analyze the data of a task.

• Task.getnumcon – Obtains the number of constraints.

• Task.getnumvar – Obtains the number of variables.

209

• Infrequent: Task.analyzesolution , Task.getaccafeidxlist , Task.getaccb , Task.
getaccbarfnumblocktriplets , Task.getaccdomain , Task.getaccfnumnz , Task.getaccftrip ,
Task.getaccgvector , Task.getaccn , Task.getaccname , Task.getaccnamelen , Task.
getaccntot , Task.getaccs , Task.getacol , Task.getacolnumnz , Task.getacolslice ,
Task.getacolslicenumnz , Task.getacolslicetrip , Task.getafebarfnumblocktriplets ,
Task.getafebarfnumrowentries , Task.getafebarfrow , Task.getafebarfrowinfo , Task.
getafefnumnz , Task.getafefrow , Task.getafefrownumnz , Task.getafeftrip , Task.
getafeg , Task.getafegslice , Task.getaij , Task.getapiecenumnz , Task.getarow , Task.
getarownumnz , Task.getarowslice , Task.getarowslicenumnz , Task.getarowslicetrip ,
Task.getatrip , Task.getbarablocktriplet , Task.getbaraidx , Task.getbaraidxij , Task.
getbaraidxinfo , Task.getbarasparsity , Task.getbarcblocktriplet , Task.getbarcidx ,
Task.getbarcidxinfo , Task.getbarcidxj , Task.getbarcsparsity , Task.getbarvarname ,
Task.getbarvarnameindex , Task.getbarvarnamelen , Task.getc , Task.getcfix , Task.
getcj , Task.getclist , Task.getconbound , Task.getconboundslice , Task.getconname ,
Task.getconnameindex , Task.getconnamelen , Task.getcslice , Task.getdimbarvarj , Task.
getdjcafeidxlist , Task.getdjcb , Task.getdjcdomainidxlist , Task.getdjcname , Task.
getdjcnamelen , Task.getdjcnumafe , Task.getdjcnumafetot , Task.getdjcnumdomain , Task.
getdjcnumdomaintot , Task.getdjcnumterm , Task.getdjcnumtermtot , Task.getdjcs , Task.
getdjctermsizelist , Task.getdomainn , Task.getdomainname , Task.getdomainnamelen ,
Task.getdomaintype , Task.getlenbarvarj , Task.getmaxnumanz , Task.getmaxnumbarvar ,
Task.getmaxnumcon , Task.getmaxnumqnz , Task.getmaxnumvar , Task.getnumacc , Task.
getnumafe , Task.getnumanz , Task.getnumanz64 , Task.getnumbarablocktriplets , Task.
getnumbaranz , Task.getnumbarcblocktriplets , Task.getnumbarcnz , Task.getnumbarvar ,
Task.getnumdjc , Task.getnumdomain , Task.getnumintvar , Task.getnumparam , Task.
getnumqconknz , Task.getnumqobjnz , Task.getnumsymmat , Task.getobjname , Task.
getobjnamelen , Task.getpowerdomainalpha , Task.getpowerdomaininfo , Task.getprobtype ,
Task.getqconk , Task.getqobj , Task.getqobjij , Task.getsparsesymmat , Task.
getsymmatinfo , Task.gettaskname , Task.gettasknamelen , Task.getvarbound , Task.
getvarboundslice , Task.getvarname , Task.getvarnameindex , Task.getvarnamelen , Task.
getvartype , Task.getvartypelist , Task.readsummary

• Deprecated: Task.getcone, Task.getconeinfo, Task.getconename, Task.getconenameindex,
Task.getconenamelen, Task.getmaxnumcone, Task.getnumcone, Task.getnumconemem

License system

• Env.checkoutlicense – Check out a license feature from the license server ahead of time.

• Env.putlicensedebug – Enables debug information for the license system.

• Env.putlicensepath – Set the path to the license file.

• Env.putlicensewait – Control whether mosek should wait for an available license if no license is
available.

• Infrequent: Env.checkinall , Env.checkinlicense , Env.expirylicenses , Env.
licensecleanup , Env.putlicensecode , Env.resetexpirylicenses

Linear algebra

• Infrequent: Env.axpy , Env.computesparsecholesky , Env.dot , Env.gemm , Env.gemv , Env.
potrf , Env.sparsetriangularsolvedense , Env.syeig , Env.syevd , Env.syrk

210

Logging

• Task.linkfiletostream – Directs all output from a task stream to a file.

• Task.onesolutionsummary – Prints a short summary of a specified solution.

• Task.optimizersummary – Prints a short summary with optimizer statistics from last optimiza-
tion.

• Task.set_Stream – Directs all output from a task stream to a callback function.

• Task.solutionsummary – Prints a short summary of the current solutions.

• Infrequent: Env.echointro , Env.linkfiletostream , Env.set_Stream

Names

• Env.getcodedesc – Obtains a short description of a response code.

• Task.putaccname – Sets the name of an affine conic constraint.

• Task.putbarvarname – Sets the name of a semidefinite variable.

• Task.putconname – Sets the name of a constraint.

• Task.putdjcname – Sets the name of a disjunctive constraint.

• Task.putdomainname – Sets the name of a domain.

• Task.putobjname – Assigns a new name to the objective.

• Task.puttaskname – Assigns a new name to the task.

• Task.putvarname – Sets the name of a variable.

• Infrequent: Task.analyzenames , Task.generateaccnames , Task.generatebarvarnames ,
Task.generateconnames , Task.generatedjcnames , Task.generatevarnames , Task.
getaccname , Task.getaccnamelen , Task.getbarvarname , Task.getbarvarnameindex ,
Task.getbarvarnamelen , Task.getconname , Task.getconnameindex , Task.getconnamelen ,
Task.getdjcname , Task.getdjcnamelen , Task.getdomainname , Task.getdomainnamelen ,
Task.getobjname , Task.getobjnamelen , Task.getstrparam , Task.getstrparamlen , Task.
gettaskname , Task.gettasknamelen , Task.getvarname , Task.getvarnameindex , Task.
getvarnamelen , Task.isdouparname , Task.isintparname , Task.isstrparname , Task.
strtosk

• Deprecated: Task.generateconenames, Task.getconename, Task.getconenameindex,
Task.getconenamelen, Task.putconename, Task.strtoconetype

Optimization

• Task.optimize – Optimizes the problem.

• Env.optimizebatch – Optimize a number of tasks in parallel using a specified number of threads.

211

Parameters

• Task.putdouparam – Sets a double parameter.

• Task.putintparam – Sets an integer parameter.

• Task.putparam – Modifies the value of parameter.

• Task.putstrparam – Sets a string parameter.

• Task.setdefaults – Resets all parameter values.

• Infrequent: Task.getatruncatetol , Task.getdouparam , Task.getintparam , Task.
getnumparam , Task.getstrparam , Task.getstrparamlen , Task.isdouparname , Task.
isintparname , Task.isstrparname , Task.putnadouparam , Task.putnaintparam , Task.
putnastrparam , Task.readparamfile , Task.writeparamfile

Problem data - affine conic constraints

• Task.appendacc – Appends an affine conic constraint to the task.

• Task.getaccdoty – Obtains the doty vector for an affine conic constraint.

• Task.putaccname – Sets the name of an affine conic constraint.

• Infrequent: Task.appendaccs , Task.appendaccseq , Task.appendaccsseq , Task.
evaluateacc , Task.evaluateaccs , Task.getaccafeidxlist , Task.getaccb , Task.
getaccbarfnumblocktriplets , Task.getaccdomain , Task.getaccdotys , Task.getaccfnumnz ,
Task.getaccftrip , Task.getaccgvector , Task.getaccn , Task.getaccname , Task.
getaccnamelen , Task.getaccntot , Task.getaccs , Task.getnumacc , Task.putacc , Task.
putaccb , Task.putaccbj , Task.putaccdoty , Task.putacclist , Task.putmaxnumacc

Problem data - affine expressions

• Task.appendafes – Appends a number of empty affine expressions to the optimization task.

• Task.putafebarfentry – Inputs one entry in barF.

• Task.putafebarfentrylist – Inputs a list of entries in barF.

• Task.putafebarfrow – Inputs a row of barF.

• Task.putafefcol – Replaces all elements in one column of the F matrix in the affine expressions.

• Task.putafefentry – Replaces one entry in F.

• Task.putafefentrylist – Replaces a list of entries in F.

• Task.putafefrow – Replaces all elements in one row of the F matrix in the affine expressions.

• Task.putafefrowlist – Replaces all elements in a number of rows of the F matrix in the affine
expressions.

• Task.putafeg – Replaces one element in the g vector in the affine expressions.

• Task.putafegslice – Modifies a slice of the vector g.

• Infrequent: Task.emptyafebarfrow , Task.emptyafebarfrowlist , Task.emptyafefcol ,
Task.emptyafefcollist , Task.emptyafefrow , Task.emptyafefrowlist , Task.
getaccbarfblocktriplet , Task.getafebarfblocktriplet , Task.getafebarfnumrowentries ,
Task.getafebarfrow , Task.getafebarfrowinfo , Task.getafefnumnz , Task.getafefrow ,
Task.getafefrownumnz , Task.getafeftrip , Task.getafeg , Task.getafegslice , Task.
getnumafe , Task.putafebarfblocktriplet , Task.putafeglist , Task.putmaxnumafe

212

Problem data - bounds

• Task.putconbound – Changes the bound for one constraint.

• Task.putconboundslice – Changes the bounds for a slice of the constraints.

• Task.putvarbound – Changes the bounds for one variable.

• Task.putvarboundslice – Changes the bounds for a slice of the variables.

• Infrequent: Task.chgconbound , Task.chgvarbound , Task.getconbound , Task.
getconboundslice , Task.getvarbound , Task.getvarboundslice , Task.inputdata , Task.
putconboundlist , Task.putconboundlistconst , Task.putconboundsliceconst , Task.
putvarboundlist , Task.putvarboundlistconst , Task.putvarboundsliceconst

Problem data - cones (deprecated)

• Deprecated: Task.appendcone, Task.appendconeseq, Task.appendconesseq,
Task.generateconenames, Task.getcone, Task.getconeinfo, Task.getconename,
Task.getconenameindex, Task.getconenamelen, Task.getmaxnumcone, Task.getnumcone,
Task.getnumconemem, Task.putcone, Task.putconename, Task.putmaxnumcone,
Task.removecones

Problem data - constraints

• Task.appendcons – Appends a number of constraints to the optimization task.

• Task.getnumcon – Obtains the number of constraints.

• Task.putconbound – Changes the bound for one constraint.

• Task.putconboundslice – Changes the bounds for a slice of the constraints.

• Task.putconname – Sets the name of a constraint.

• Task.removecons – Removes a number of constraints.

• Infrequent: Task.chgconbound , Task.generateconnames , Task.getconbound , Task.
getconboundslice , Task.getconname , Task.getconnameindex , Task.getconnamelen ,
Task.getmaxnumcon , Task.getnumqconknz , Task.getqconk , Task.inputdata , Task.
putconboundlist , Task.putconboundlistconst , Task.putconboundsliceconst , Task.
putmaxnumcon

Problem data - disjunctive constraints

• Task.appenddjcs – Appends a number of empty disjunctive constraints to the task.

• Task.putdjc – Inputs a disjunctive constraint.

• Task.putdjcname – Sets the name of a disjunctive constraint.

• Task.putdjcslice – Inputs a slice of disjunctive constraints.

• Infrequent: Task.getdjcafeidxlist , Task.getdjcb , Task.getdjcdomainidxlist ,
Task.getdjcname , Task.getdjcnamelen , Task.getdjcnumafe , Task.getdjcnumafetot ,
Task.getdjcnumdomain , Task.getdjcnumdomaintot , Task.getdjcnumterm , Task.
getdjcnumtermtot , Task.getdjcs , Task.getdjctermsizelist , Task.getnumdjc , Task.
putmaxnumdjc

213

Problem data - domain

• Task.appenddualexpconedomain – Appends the dual exponential cone domain.

• Task.appenddualgeomeanconedomain – Appends the dual geometric mean cone domain.

• Task.appenddualpowerconedomain – Appends the dual power cone domain.

• Task.appendprimalexpconedomain – Appends the primal exponential cone domain.

• Task.appendprimalgeomeanconedomain – Appends the primal geometric mean cone domain.

• Task.appendprimalpowerconedomain – Appends the primal power cone domain.

• Task.appendquadraticconedomain – Appends the n dimensional quadratic cone domain.

• Task.appendrdomain – Appends the n dimensional real number domain.

• Task.appendrminusdomain – Appends the n dimensional negative orthant to the list of domains.

• Task.appendrplusdomain – Appends the n dimensional positive orthant to the list of domains.

• Task.appendrquadraticconedomain – Appends the n dimensional rotated quadratic cone domain.

• Task.appendrzerodomain – Appends the n dimensional 0 domain.

• Task.appendsvecpsdconedomain – Appends the vectorized SVEC PSD cone domain.

• Task.putdomainname – Sets the name of a domain.

• Infrequent: Task.getdomainn , Task.getdomainname , Task.getdomainnamelen ,
Task.getdomaintype , Task.getnumdomain , Task.getpowerdomainalpha , Task.
getpowerdomaininfo , Task.putmaxnumdomain

Problem data - linear part

• Task.appendcons – Appends a number of constraints to the optimization task.

• Task.appendvars – Appends a number of variables to the optimization task.

• Task.getnumcon – Obtains the number of constraints.

• Task.putacol – Replaces all elements in one column of the linear constraint matrix.

• Task.putacolslice – Replaces all elements in a sequence of columns the linear constraint matrix.

• Task.putaij – Changes a single value in the linear coefficient matrix.

• Task.putaijlist – Changes one or more coefficients in the linear constraint matrix.

• Task.putarow – Replaces all elements in one row of the linear constraint matrix.

• Task.putarowslice – Replaces all elements in several rows the linear constraint matrix.

• Task.putcfix – Replaces the fixed term in the objective.

• Task.putcj – Modifies one linear coefficient in the objective.

• Task.putconbound – Changes the bound for one constraint.

• Task.putconboundslice – Changes the bounds for a slice of the constraints.

• Task.putconname – Sets the name of a constraint.

• Task.putcslice – Modifies a slice of the linear objective coefficients.

• Task.putobjname – Assigns a new name to the objective.

• Task.putobjsense – Sets the objective sense.

214

• Task.putvarbound – Changes the bounds for one variable.

• Task.putvarboundslice – Changes the bounds for a slice of the variables.

• Task.putvarname – Sets the name of a variable.

• Task.removecons – Removes a number of constraints.

• Task.removevars – Removes a number of variables.

• Infrequent: Task.chgconbound , Task.chgvarbound , Task.generatebarvarnames , Task.
generateconnames , Task.generatevarnames , Task.getacol , Task.getacolnumnz ,
Task.getacolslice , Task.getacolslicenumnz , Task.getacolslicetrip , Task.getaij ,
Task.getapiecenumnz , Task.getarow , Task.getarownumnz , Task.getarowslice , Task.
getarowslicenumnz , Task.getarowslicetrip , Task.getatrip , Task.getatruncatetol ,
Task.getc , Task.getcfix , Task.getcj , Task.getclist , Task.getconbound , Task.
getconboundslice , Task.getconname , Task.getconnameindex , Task.getconnamelen ,
Task.getcslice , Task.getmaxnumanz , Task.getmaxnumcon , Task.getmaxnumvar ,
Task.getnumanz , Task.getnumanz64 , Task.getobjsense , Task.getvarbound , Task.
getvarboundslice , Task.getvarname , Task.getvarnameindex , Task.getvarnamelen , Task.
inputdata , Task.putacollist , Task.putarowlist , Task.putatruncatetol , Task.putclist ,
Task.putconboundlist , Task.putconboundlistconst , Task.putconboundsliceconst ,
Task.putmaxnumanz , Task.putvarboundlist , Task.putvarboundlistconst , Task.
putvarboundsliceconst

Problem data - objective

• Task.putbarcj – Changes one element in barc.

• Task.putcfix – Replaces the fixed term in the objective.

• Task.putcj – Modifies one linear coefficient in the objective.

• Task.putcslice – Modifies a slice of the linear objective coefficients.

• Task.putobjname – Assigns a new name to the objective.

• Task.putobjsense – Sets the objective sense.

• Task.putqobj – Replaces all quadratic terms in the objective.

• Task.putqobjij – Replaces one coefficient in the quadratic term in the objective.

• Infrequent: Task.putclist

Problem data - quadratic part

• Task.putqcon – Replaces all quadratic terms in constraints.

• Task.putqconk – Replaces all quadratic terms in a single constraint.

• Task.putqobj – Replaces all quadratic terms in the objective.

• Task.putqobjij – Replaces one coefficient in the quadratic term in the objective.

• Infrequent: Task.getmaxnumqnz , Task.getnumqconknz , Task.getnumqobjnz , Task.getqconk ,
Task.getqobj , Task.getqobjij , Task.putmaxnumqnz

• Deprecated: Task.toconic

215

Problem data - semidefinite

• Task.appendbarvars – Appends semidefinite variables to the problem.

• Task.appendsparsesymmat – Appends a general sparse symmetric matrix to the storage of sym-
metric matrices.

• Task.appendsparsesymmatlist – Appends a general sparse symmetric matrix to the storage of
symmetric matrices.

• Task.putafebarfentry – Inputs one entry in barF.

• Task.putafebarfentrylist – Inputs a list of entries in barF.

• Task.putafebarfrow – Inputs a row of barF.

• Task.putbaraij – Inputs an element of barA.

• Task.putbaraijlist – Inputs list of elements of barA.

• Task.putbararowlist – Replace a set of rows of barA

• Task.putbarcj – Changes one element in barc.

• Task.putbarvarname – Sets the name of a semidefinite variable.

• Infrequent: Task.emptyafebarfrow , Task.emptyafebarfrowlist , Task.
getaccbarfblocktriplet , Task.getaccbarfnumblocktriplets , Task.
getafebarfblocktriplet , Task.getafebarfnumblocktriplets , Task.
getafebarfnumrowentries , Task.getafebarfrow , Task.getafebarfrowinfo , Task.
getbarablocktriplet , Task.getbaraidx , Task.getbaraidxij , Task.getbaraidxinfo , Task.
getbarasparsity , Task.getbarcblocktriplet , Task.getbarcidx , Task.getbarcidxinfo ,
Task.getbarcidxj , Task.getbarcsparsity , Task.getdimbarvarj , Task.getlenbarvarj ,
Task.getmaxnumbarvar , Task.getnumbarablocktriplets , Task.getnumbaranz , Task.
getnumbarcblocktriplets , Task.getnumbarcnz , Task.getnumbarvar , Task.getnumsymmat ,
Task.getsparsesymmat , Task.getsymmatinfo , Task.putafebarfblocktriplet , Task.
putbarablocktriplet , Task.putbarcblocktriplet , Task.putmaxnumbarvar , Task.
removebarvars

Problem data - variables

• Task.appendvars – Appends a number of variables to the optimization task.

• Task.getnumvar – Obtains the number of variables.

• Task.putvarbound – Changes the bounds for one variable.

• Task.putvarboundslice – Changes the bounds for a slice of the variables.

• Task.putvarname – Sets the name of a variable.

• Task.putvartype – Sets the variable type of one variable.

• Task.removevars – Removes a number of variables.

• Infrequent: Task.chgvarbound , Task.generatebarvarnames , Task.generatevarnames ,
Task.getc , Task.getcj , Task.getmaxnumvar , Task.getnumintvar , Task.getvarbound ,
Task.getvarboundslice , Task.getvarname , Task.getvarnameindex , Task.getvarnamelen ,
Task.getvartype , Task.getvartypelist , Task.putclist , Task.putmaxnumvar , Task.
putvarboundlist , Task.putvarboundlistconst , Task.putvarboundsliceconst , Task.
putvartypelist

216

Remote optimization

• Task.asyncgetresult – Request a solution from a remote job.

• Task.asyncoptimize – Offload the optimization task to a solver server in asynchronous mode.

• Task.asyncpoll – Requests information about the status of the remote job.

• Task.asyncstop – Request that the job identified by the token is terminated.

• Task.optimizermt – Offload the optimization task to a solver server and wait for the solution.

• Task.putoptserverhost – Specify an OptServer for remote calls.

Responses, errors and warnings

• Env.getcodedesc – Obtains a short description of a response code.

Sensitivity analysis

• Task.dualsensitivity – Performs sensitivity analysis on objective coefficients.

• Task.primalsensitivity – Perform sensitivity analysis on bounds.

• Task.sensitivityreport – Creates a sensitivity report.

Solution - dual

• Task.getaccdoty – Obtains the doty vector for an affine conic constraint.

• Task.getdualobj – Computes the dual objective value associated with the solution.

• Task.gety – Obtains the y vector for a solution.

• Task.getyslice – Obtains a slice of the y vector for a solution.

• Infrequent: Task.getaccdotys , Task.getreducedcosts , Task.getslc , Task.getslcslice ,
Task.getslx , Task.getslxslice , Task.getsnx , Task.getsnxslice , Task.getsolution ,
Task.getsolutionnew , Task.getsolutionslice , Task.getsuc , Task.getsucslice , Task.
getsux , Task.getsuxslice , Task.putaccdoty , Task.putconsolutioni , Task.putslc , Task.
putslcslice , Task.putslx , Task.putslxslice , Task.putsnx , Task.putsnxslice , Task.
putsolution , Task.putsolutionnew , Task.putsolutionyi , Task.putsuc , Task.putsucslice ,
Task.putsux , Task.putsuxslice , Task.putvarsolutionj , Task.putyslice

Solution - primal

• Task.getprimalobj – Computes the primal objective value for the desired solution.

• Task.getxx – Obtains the xx vector for a solution.

• Task.getxxslice – Obtains a slice of the xx vector for a solution.

• Task.putxx – Sets the xx vector for a solution.

• Task.putxxslice – Sets a slice of the xx vector for a solution.

• Infrequent: Task.evaluateacc , Task.evaluateaccs , Task.getsolution , Task.
getsolutionnew , Task.getsolutionslice , Task.getxc , Task.getxcslice , Task.
putconsolutioni , Task.putsolution , Task.putsolutionnew , Task.putvarsolutionj ,
Task.putxc , Task.putxcslice , Task.puty

217

Solution - semidefinite

• Task.getbarsj – Obtains the dual solution for a semidefinite variable.

• Task.getbarsslice – Obtains the dual solution for a sequence of semidefinite variables.

• Task.getbarxj – Obtains the primal solution for a semidefinite variable.

• Task.getbarxslice – Obtains the primal solution for a sequence of semidefinite variables.

• Infrequent: Task.putbarsj , Task.putbarxj

Solution information

• Task.getdualobj – Computes the dual objective value associated with the solution.

• Task.getprimalobj – Computes the primal objective value for the desired solution.

• Task.getprosta – Obtains the problem status.

• Task.getpviolcon – Computes the violation of a primal solution associated to a constraint.

• Task.getpviolvar – Computes the violation of a primal solution for a list of scalar variables.

• Task.getsolsta – Obtains the solution status.

• Task.getsolutioninfo – Obtains information about of a solution.

• Task.getsolutioninfonew – Obtains information about of a solution.

• Task.onesolutionsummary – Prints a short summary of a specified solution.

• Task.solutiondef – Checks whether a solution is defined.

• Task.solutionsummary – Prints a short summary of the current solutions.

• Infrequent: Task.analyzesolution , Task.deletesolution , Task.getdualsolutionnorms ,
Task.getdviolacc , Task.getdviolbarvar , Task.getdviolcon , Task.getdviolvar , Task.
getprimalsolutionnorms , Task.getpviolacc , Task.getpviolbarvar , Task.getpvioldjc ,
Task.getskc , Task.getskcslice , Task.getskn , Task.getskx , Task.getskxslice , Task.
getsolution , Task.getsolutionnew , Task.getsolutionslice , Task.putconsolutioni , Task.
putskc , Task.putskcslice , Task.putskx , Task.putskxslice , Task.putsolution , Task.
putsolutionnew , Task.putsolutionyi , Task.putvarsolutionj

• Deprecated: Task.getdviolcones, Task.getpviolcones

Solving systems with basis matrix

• Infrequent: Task.basiscond , Task.initbasissolve , Task.solvewithbasis

System, memory and debugging

• Infrequent: Task.checkmem , Task.getmemusage

Versions

• Env.getversion – Obtains MOSEK version information.

218

15.3 Class Env

mosek.Env
The MOSEK global environment.

Env.Env

Env()

Env(licensefile=None, debugfile=None)

Constructor of a new environment.

Parameters
• licensefile (str) – License file to use. (input)
• debugfile (str) – File where the memory debugging log is written. (input)

Env.Task

Task() -> task

Task(numcon, numvar) -> task

Creates a new task.

Parameters
• numcon (int) – An optional hint about the maximal number of constraints in

the task. (input)
• numvar (int) – An optional hint about the maximal number of variables in the

task. (input)
Return task (Task) – A new task.

Env.__del__

__del__()

Free the underlying native allocation.
Env.axpy

axpy(n,alpha,x,y)

Adds 𝛼𝑥 to 𝑦, i.e. performs the update

𝑦 := 𝛼𝑥 + 𝑦.

Note that the result is stored overwriting 𝑦. It must not overlap with the other input arrays.

Parameters
• n (int) – Length of the vectors. (input)
• alpha (float) – The scalar that multiplies 𝑥. (input)
• x (float[]) – The 𝑥 vector. (input)
• y (float[]) – The 𝑦 vector. (input/output)

Groups Linear algebra

Env.checkinall

219

checkinall()

Check in all unused license features to the license token server.

Groups License system

Env.checkinlicense

checkinlicense(feature)

Check in a license feature to the license server. By default all licenses consumed by functions using
a single environment are kept checked out for the lifetime of the MOSEK environment. This
function checks in a given license feature back to the license server immediately.

If the given license feature is not checked out at all, or it is in use by a call to Task.optimize ,
calling this function has no effect.

Please note that returning a license to the license server incurs a small overhead, so frequent calls
to this function should be avoided.

Parameters feature (mosek.feature) – Feature to check in to the license system.
(input)

Groups License system

Env.checkoutlicense

checkoutlicense(feature)

Checks out a license feature from the license server. Normally the required license features will be
automatically checked out the first time they are needed by the function Task.optimize . This
function can be used to check out one or more features ahead of time.

The feature will remain checked out until the environment is deleted or the function Env.
checkinlicense is called.

If a given feature is already checked out when this function is called, the call has no effect.

Parameters feature (mosek.feature) – Feature to check out from the license system.
(input)

Groups License system

Env.computesparsecholesky

computesparsecholesky(numthreads,
ordermethod,
tolsingular,
anzc,
aptrc,
asubc,
avalc) ->

(perm,
diag,
lnzc,
lptrc,
lensubnval,
lsubc,
lvalc)

220

The function computes a Cholesky factorization of a sparse positive semidefinite matrix. Sparsity
is exploited during the computations to reduce the amount of space and work required. Both the
input and output matrices are represented using the sparse format.

To be precise, given a symmetric matrix 𝐴 ∈ R𝑛×𝑛 the function computes a nonsingular lower
triangular matrix 𝐿, a diagonal matrix 𝐷 and a permutation matrix 𝑃 such that

𝐿𝐿𝑇 −𝐷 = 𝑃𝐴𝑃𝑇 .

If ordermethod is zero then reordering heuristics are not employed and 𝑃 is the identity.

If a pivot during the computation of the Cholesky factorization is less than

−𝜌 · max((𝑃𝐴𝑃𝑇)𝑗𝑗 , 1.0)

then the matrix is declared negative semidefinite. On the hand if a pivot is smaller than

𝜌 · max((𝑃𝐴𝑃𝑇)𝑗𝑗 , 1.0),

then 𝐷𝑗𝑗 is increased from zero to

𝜌 · max((𝑃𝐴𝑃𝑇)𝑗𝑗 , 1.0).

Therefore, if 𝐴 is sufficiently positive definite then 𝐷 will be the zero matrix. Here 𝜌 is set equal
to value of tolsingular.

Parameters
• numthreads (int) – The number threads that can be used to do the computation.

0 means the code makes the choice. NOTE: API change in version 10: in versions
up to 9 the argument in this position indicated whether to use multithreading
or not. (input)

• ordermethod (int) – If nonzero, then a sparsity preserving ordering will be
employed. (input)

• tolsingular (float) – A positive parameter controlling when a pivot is declared
zero. (input)

• anzc (int[]) – anzc[j] is the number of nonzeros in the 𝑗-th column of 𝐴.
(input)

• aptrc (int[]) – aptrc[j] is a pointer to the first element in column 𝑗 of 𝐴.
(input)

• asubc (int[]) – Row indexes for each column stored in increasing order. (input)
• avalc (float[]) – The value corresponding to row indexed stored in asubc.

(input)
Return

• perm (int[]) – Permutation array used to specify the permutation matrix 𝑃
computed by the function.

• diag (float[]) – The diagonal elements of matrix 𝐷.
• lnzc (int[]) – lnzc[j] is the number of non zero elements in column 𝑗 of 𝐿.
• lptrc (int[]) – lptrc[j] is a pointer to the first row index and value in column
𝑗 of 𝐿.

• lensubnval (int) – Number of elements in lsubc and lvalc.
• lsubc (int[]) – Row indexes for each column stored in increasing order.
• lvalc (float[]) – The values corresponding to row indexed stored in lsubc.

Groups Linear algebra

Env.dot

221

dot(n,x,y) -> (xty)

Computes the inner product of two vectors 𝑥, 𝑦 of length 𝑛 ≥ 0, i.e

𝑥 · 𝑦 =

𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖.

Note that if 𝑛 = 0, then the result of the operation is 0.

Parameters
• n (int) – Length of the vectors. (input)
• x (float[]) – The 𝑥 vector. (input)
• y (float[]) – The 𝑦 vector. (input)

Return xty (float) – The result of the inner product between 𝑥 and 𝑦.
Groups Linear algebra

Env.echointro

echointro(longver)

Prints an intro to message stream.

Parameters longver (int) – If non-zero, then the intro is slightly longer. (input)
Groups Logging

Env.expirylicenses

expirylicenses() -> (expiry)

Reports when the first license feature expires. It reports the number of days to the expiry of the
first feature of all the features that were ever checked out from the start of the process, or from
the last call to Env.resetexpirylicenses , until now.

Return expiry (int) – If nonnegative, then it is the minimum number days to expiry
of any feature that has been checked out.

Groups License system

Env.gemm

gemm(transa,transb,m,n,k,alpha,a,b,beta,c)

Performs a matrix multiplication plus addition of dense matrices. Given 𝐴, 𝐵 and 𝐶 of compatible
dimensions, this function computes

𝐶 := 𝛼𝑜𝑝(𝐴)𝑜𝑝(𝐵) + 𝛽𝐶

where 𝛼, 𝛽 are two scalar values. The function 𝑜𝑝(𝑋) denotes 𝑋 if transX is transpose.no , or
𝑋𝑇 if set to transpose.yes . The matrix 𝐶 has 𝑚 rows and 𝑛 columns, and the other matrices
must have compatible dimensions.

The result of this operation is stored in 𝐶. It must not overlap with the other input arrays.

Parameters
• transa (mosek.transpose) – Indicates whether the matrix 𝐴 must be trans-

posed. (input)
• transb (mosek.transpose) – Indicates whether the matrix 𝐵 must be trans-

posed. (input)
• m (int) – Indicates the number of rows of matrix 𝐶. (input)

222

• n (int) – Indicates the number of columns of matrix 𝐶. (input)
• k (int) – Specifies the common dimension along which 𝑜𝑝(𝐴) and 𝑜𝑝(𝐵) are

multiplied. For example, if neither 𝐴 nor 𝐵 are transposed, then this is the
number of columns in 𝐴 and also the number of rows in 𝐵. (input)

• alpha (float) – A scalar value multiplying the result of the matrix multiplica-
tion. (input)

• a (float[]) – The pointer to the array storing matrix 𝐴 in a column-major
format. (input)

• b (float[]) – The pointer to the array storing matrix 𝐵 in a column-major
format. (input)

• beta (float) – A scalar value that multiplies 𝐶. (input)
• c (float[]) – The pointer to the array storing matrix 𝐶 in a column-major

format. (input/output)
Groups Linear algebra

Env.gemv

gemv(transa,m,n,alpha,a,x,beta,y)

Computes the multiplication of a scaled dense matrix times a dense vector, plus a scaled dense
vector. Precisely, if trans is transpose.no then the update is

𝑦 := 𝛼𝐴𝑥 + 𝛽𝑦,

and if trans is transpose.yes then

𝑦 := 𝛼𝐴𝑇𝑥 + 𝛽𝑦,

where 𝛼, 𝛽 are scalar values and 𝐴 is a matrix with 𝑚 rows and 𝑛 columns.

Note that the result is stored overwriting 𝑦. It must not overlap with the other input arrays.

Parameters
• transa (mosek.transpose) – Indicates whether the matrix 𝐴 must be trans-

posed. (input)
• m (int) – Specifies the number of rows of the matrix 𝐴. (input)
• n (int) – Specifies the number of columns of the matrix 𝐴. (input)
• alpha (float) – A scalar value multiplying the matrix 𝐴. (input)
• a (float[]) – A pointer to the array storing matrix 𝐴 in a column-major format.

(input)
• x (float[]) – A pointer to the array storing the vector 𝑥. (input)
• beta (float) – A scalar value multiplying the vector 𝑦. (input)
• y (float[]) – A pointer to the array storing the vector 𝑦. (input/output)

Groups Linear algebra

Env.getcodedesc

@staticmethod
getcodedesc(code) -> (symname,str)

Obtains a short description of the meaning of the response code given by code.

Parameters code (mosek.rescode) – A valid MOSEK response code. (input)
Return

• symname (str) – Symbolic name corresponding to code.
• str (str) – Obtains a short description of a response code.

223

Groups Names, Responses, errors and warnings

Env.getversion

@staticmethod
getversion() -> (major,minor,revision)

Obtains MOSEK version information.

Return
• major (int) – Major version number.
• minor (int) – Minor version number.
• revision (int) – Revision number.

Groups Versions

Env.licensecleanup

@staticmethod
licensecleanup()

Stops all threads and deletes all handles used by the license system. If this function is called, it
must be called as the last MOSEK API call. No other MOSEK API calls are valid after this.

Groups License system

Env.linkfiletostream

linkfiletostream(whichstream,filename,append)

Sends all output from the stream defined by whichstream to the file given by filename.

Parameters
• whichstream (mosek.streamtype) – Index of the stream. (input)
• filename (str) – A valid file name. (input)
• append (int) – If this argument is 0 the file will be overwritten, otherwise it will

be appended to. (input)
Groups Logging

Env.optimizebatch

optimizebatch(israce,
maxtime,
numthreads,
task,
trmcode,
rcode)

optimizebatch(israce,maxtime,numthreads,task) -> (trmcode,rcode)

Optimize a number of tasks in parallel using a specified number of threads. All callbacks and log
output streams are disabled.

Assuming that each task takes about same time and there many more tasks than number of threads
then a linear speedup can be achieved, also known as strong scaling. A typical application of this
method is to solve many small tasks of similar type; in this case it is recommended that each of
them is allocated a single thread by setting iparam.num_threads to 1.

224

If the parameters israce or maxtime are used, then the result may not be deterministic, in the
sense that the tasks which complete first may vary between runs.

The remaining behavior, including termination and response codes returned for each task, are the
same as if each task was optimized separately.

Parameters
• israce (bool) – If nonzero, then the function is terminated after the first task

has been completed. (input)
• maxtime (float) – Time limit for the function: if nonnegative, then the function

is terminated after maxtime (seconds) has expired. (input)
• numthreads (int) – Number of threads to be employed. (input)
• task (Task []) – An array of tasks to optimize in parallel. (input)
• trmcode (mosek.rescode []) – The termination code for each task. (output)
• rcode (mosek.rescode []) – The response code for each task. (output)

Return
• trmcode (mosek.rescode []) – The termination code for each task.
• rcode (mosek.rescode []) – The response code for each task.

Groups Optimization

Env.potrf

potrf(uplo,n,a)

Computes a Cholesky factorization of a real symmetric positive definite dense matrix.

Parameters
• uplo (mosek.uplo) – Indicates whether the upper or lower triangular part of

the matrix is stored. (input)
• n (int) – Dimension of the symmetric matrix. (input)
• a (float[]) – A symmetric matrix stored in column-major order. Only the lower

or the upper triangular part is used, accordingly with the uplo parameter. It
will contain the result on exit. (input/output)

Groups Linear algebra

Env.putlicensecode

putlicensecode(code)

Input a runtime license code.

Parameters code (int[]) – A runtime license code. (input)
Groups License system

Env.putlicensedebug

putlicensedebug(licdebug)

Enables debug information for the license system. If licdebug is non-zero, then MOSEK will
print debug info regarding the license checkout.

Parameters licdebug (int) – Whether license checkout debug info should be printed.
(input)

Groups License system

Env.putlicensepath

225

putlicensepath(licensepath)

Set the path to the license file.

Parameters licensepath (str) – A path specifying where to search for the license.
(input)

Groups License system

Env.putlicensewait

putlicensewait(licwait)

Control whether MOSEK should wait for an available license if no license is available. If licwait
is non-zero, then MOSEK will wait for licwait-1 milliseconds between each check for an available
license.

Parameters licwait (int) – Whether MOSEK should wait for a license if no license
is available. (input)

Groups License system

Env.resetexpirylicenses

resetexpirylicenses()

Reset the license expiry reporting startpoint.

Groups License system

Env.set_Stream

set_Stream(whichstream, callback)

Directs all output from a environment stream to a callback function.

Parameters
• whichstream (streamtype) – Index of the stream. (input)
• callback (streamfunc) – The callback function. (input)

Env.sparsetriangularsolvedense

sparsetriangularsolvedense(transposed,lnzc,lptrc,lsubc,lvalc,b)

The function solves a triangular system of the form

𝐿𝑥 = 𝑏

or

𝐿𝑇𝑥 = 𝑏

where 𝐿 is a sparse lower triangular nonsingular matrix. This implies in particular that diagonals
in 𝐿 are nonzero.

Parameters
• transposed (mosek.transpose) – Controls whether to use with 𝐿 or 𝐿𝑇 . (in-

put)
• lnzc (int[]) – lnzc[j] is the number of nonzeros in column j. (input)

226

• lptrc (int[]) – lptrc[j] is a pointer to the first row index and value in column
j. (input)

• lsubc (int[]) – Row indexes for each column stored sequentially. Must be
stored in increasing order for each column. (input)

• lvalc (float[]) – The value corresponding to the row index stored in lsubc.
(input)

• b (float[]) – The right-hand side of linear equation system to be solved as a
dense vector. (input/output)

Groups Linear algebra

Env.syeig

syeig(uplo,n,a,w)

syeig(uplo,n,a) -> (w)

Computes all eigenvalues of a real symmetric matrix 𝐴. Given a matrix 𝐴 ∈ R𝑛×𝑛 it returns a
vector 𝑤 ∈ R𝑛 containing the eigenvalues of 𝐴.

Parameters
• uplo (mosek.uplo) – Indicates whether the upper or lower triangular part is

used. (input)
• n (int) – Dimension of the symmetric input matrix. (input)
• a (float[]) – A symmetric matrix 𝐴 stored in column-major order. Only the

part indicated by uplo is used. (input)
• w (float[]) – Array of length at least n containing the eigenvalues of 𝐴. (output)

Return w (float[]) – Array of length at least n containing the eigenvalues of 𝐴.
Groups Linear algebra

Env.syevd

syevd(uplo,n,a,w)

syevd(uplo,n,a) -> (w)

Computes all the eigenvalues and eigenvectors a real symmetric matrix. Given the input matrix
𝐴 ∈ R𝑛×𝑛, this function returns a vector 𝑤 ∈ R𝑛 containing the eigenvalues of 𝐴 and it also
computes the eigenvectors of 𝐴. Therefore, this function computes the eigenvalue decomposition
of 𝐴 as

𝐴 = 𝑈𝑉 𝑈𝑇 ,

where 𝑉 = diag(𝑤) and 𝑈 contains the eigenvectors of 𝐴.

Note that the matrix 𝑈 overwrites the input data 𝐴.

Parameters
• uplo (mosek.uplo) – Indicates whether the upper or lower triangular part is

used. (input)
• n (int) – Dimension of the symmetric input matrix. (input)
• a (float[]) – A symmetric matrix 𝐴 stored in column-major order. Only the

part indicated by uplo is used. On exit it will be overwritten by the matrix 𝑈 .
(input/output)

• w (float[]) – Array of length at least n containing the eigenvalues of 𝐴. (output)
Return w (float[]) – Array of length at least n containing the eigenvalues of 𝐴.
Groups Linear algebra

227

Env.syrk

syrk(uplo,trans,n,k,alpha,a,beta,c)

Performs a symmetric rank-𝑘 update for a symmetric matrix.

Given a symmetric matrix 𝐶 ∈ R𝑛×𝑛, two scalars 𝛼, 𝛽 and a matrix 𝐴 of rank 𝑘 ≤ 𝑛, it computes
either

𝐶 := 𝛼𝐴𝐴𝑇 + 𝛽𝐶,

when trans is set to transpose.no and 𝐴 ∈ R𝑛×𝑘, or

𝐶 := 𝛼𝐴𝑇𝐴 + 𝛽𝐶,

when trans is set to transpose.yes and 𝐴 ∈ R𝑘×𝑛.

Only the part of 𝐶 indicated by uplo is used and only that part is updated with the result. It
must not overlap with the other input arrays.

Parameters
• uplo (mosek.uplo) – Indicates whether the upper or lower triangular part of 𝐶

is used. (input)
• trans (mosek.transpose) – Indicates whether the matrix 𝐴 must be transposed.

(input)
• n (int) – Specifies the order of 𝐶. (input)
• k (int) – Indicates the number of rows or columns of 𝐴, depending on whether

or not it is transposed, and its rank. (input)
• alpha (float) – A scalar value multiplying the result of the matrix multiplica-

tion. (input)
• a (float[]) – The pointer to the array storing matrix 𝐴 in a column-major

format. (input)
• beta (float) – A scalar value that multiplies 𝐶. (input)
• c (float[]) – The pointer to the array storing matrix 𝐶 in a column-major

format. (input/output)
Groups Linear algebra

15.4 Class Task

mosek.Task
Represents an optimization task.

Task.Task

Task()

Task(env)

Task(env, numcon, numvar)

Task(task)

Constructor of a new optimization task.

Parameters
• env (Env) – Parent environment. (input)

228

• numcon (int) – An optional hint about the maximal number of constraints in
the task. (input)

• numvar (int) – An optional hint about the maximal number of variables in the
task. (input)

• task (Task) – A task that will be cloned. (input)

Task.__del__

__del__()

Free the underlying native allocation.
Task.analyzenames

analyzenames(whichstream,nametype)

The function analyzes the names and issues an error if a name is invalid.

Parameters
• whichstream (mosek.streamtype) – Index of the stream. (input)
• nametype (mosek.nametype) – The type of names e.g. valid in MPS or LP files.

(input)
Groups Names

Task.analyzeproblem

analyzeproblem(whichstream)

The function analyzes the data of a task and writes out a report.

Parameters whichstream (mosek.streamtype) – Index of the stream. (input)
Groups Inspecting the task

Task.analyzesolution

analyzesolution(whichstream,whichsol)

Print information related to the quality of the solution and other solution statistics.

By default this function prints information about the largest infeasibilites in the solution, the
primal (and possibly dual) objective value and the solution status.

Following parameters can be used to configure the printed statistics:

• iparam.ana_sol_basis enables or disables printing of statistics specific to the basis solution
(condition number, number of basic variables etc.). Default is on.

• iparam.ana_sol_print_violated enables or disables listing names of all constraints (both
primal and dual) which are violated by the solution. Default is off.

• dparam.ana_sol_infeas_tol is the tolerance defining when a constraint is considered vio-
lated. If a constraint is violated more than this, it will be listed in the summary.

Parameters
• whichstream (mosek.streamtype) – Index of the stream. (input)
• whichsol (mosek.soltype) – Selects a solution. (input)

Groups Solution information, Inspecting the task

Task.appendacc

229

appendacc(domidx,afeidxlist,b)

Appends an affine conic constraint to the task. The affine constraint has the form a sequence of
affine expressions belongs to a domain.

The domain index is specified with domidx and should refer to a domain previously appended with
one of the append...domain functions.

The length of the affine expression list afeidxlist must be equal to the dimension 𝑛 of the domain.
The elements of afeidxlist are indexes to the store of affine expressions, i.e. the affine expressions
appearing in the affine conic constraint are:

𝐹afeidxlist[𝑘],:𝑥 + 𝑔afeidxlist[𝑘] for 𝑘 = 0, . . . , 𝑛− 1.

If an optional vector b of the same length as afeidxlist is specified then the expressions appearing
in the affine constraint will instead be taken as:

𝐹afeidxlist[𝑘],:𝑥 + 𝑔afeidxlist[𝑘] − 𝑏𝑘 for 𝑘 = 0, . . . , 𝑛− 1.

Parameters
• domidx (int) – Domain index. (input)
• afeidxlist (int[]) – List of affine expression indexes. (input)
• b (float[]) – The vector of constant terms added to affine expressions. Optional,

can be NULL. (input)
Groups Problem data - affine conic constraints

Task.appendaccs

appendaccs(domidxs,afeidxlist,b)

Appends numaccs affine conic constraint to the task. Each single affine conic constraint should be
specified as in Task.appendacc and the input of this function should contain the concatenation of
all these descriptions.

In particular, the length of afeidxlist must equal the sum of dimensions of domains indexed in
domainsidxs.

Parameters
• domidxs (int[]) – Domain indices. (input)
• afeidxlist (int[]) – List of affine expression indexes. (input)
• b (float[]) – The vector of constant terms added to affine expressions. Optional,

can be NULL. (input)
Groups Problem data - affine conic constraints

Task.appendaccseq

appendaccseq(domidx,afeidxfirst,b)

Appends an affine conic constraint to the task, as in Task.appendacc . The function assumes
the affine expressions forming the constraint are sequential. The affine constraint has the form a
sequence of affine expressions belongs to a domain.

The domain index is specified with domidx and should refer to a domain previously appended with
one of the append...domain functions.

The number of affine expressions should be equal to the dimension 𝑛 of the domain. The affine
expressions forming the affine constraint are arranged sequentially in a contiguous block of the affine
expression store starting from position afeidxfirst. That is, the affine expressions appearing in
the affine conic constraint are:

𝐹afeidxfirst+𝑘,:𝑥 + 𝑔afeidxfirst+𝑘 for 𝑘 = 0, . . . , 𝑛− 1.

230

If an optional vector b of length numafeidx is specified then the expressions appearing in the affine
constraint will instead be taken as

𝐹afeidxfirst+𝑘,:𝑥 + 𝑔afeidxfirst+𝑘 − 𝑏𝑘 for 𝑘 = 0, . . . , 𝑛− 1.

Parameters
• domidx (int) – Domain index. (input)
• afeidxfirst (int) – Index of the first affine expression. (input)
• b (float[]) – The vector of constant terms added to affine expressions. Optional,

can be NULL. (input)
Groups Problem data - affine conic constraints

Task.appendaccsseq

appendaccsseq(domidxs,numafeidx,afeidxfirst,b)

Appends numaccs affine conic constraint to the task. It is the block variant of Task.appendaccs ,
that is it assumes that the affine expressions appearing in the affine conic constraints are sequential
in the affine expression store, starting from position afeidxfirst.

Parameters
• domidxs (int[]) – Domain indices. (input)
• numafeidx (int) – Number of affine expressions in the affine expression list (must

equal the sum of dimensions of the domains). (input)
• afeidxfirst (int) – Index of the first affine expression. (input)
• b (float[]) – The vector of constant terms added to affine expressions. Optional,

can be NULL. (input)
Groups Problem data - affine conic constraints

Task.appendafes

appendafes(num)

Appends a number of empty affine expressions to the task.

Parameters num (int) – Number of empty affine expressions which should be appended.
(input)

Groups Problem data - affine expressions

Task.appendbarvars

appendbarvars(dim)

Appends positive semidefinite matrix variables of dimensions given by dim to the problem.

Parameters dim (int[]) – Dimensions of symmetric matrix variables to be added.
(input)

Groups Problem data - semidefinite

Task.appendcone Deprecated

appendcone(ct,conepar,submem)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

231

Appends a new conic constraint to the problem. Hence, add a constraint

𝑥̂ ∈ 𝒦

to the problem, where 𝒦 is a convex cone. 𝑥̂ is a subset of the variables which will be specified by
the argument submem. Cone type is specified by ct.
Define

𝑥̂ = 𝑥submem[0], . . . , 𝑥submem[nummem−1].

Depending on the value of ct this function appends one of the constraints:

• Quadratic cone (conetype.quad , requires nummem ≥ 1):

𝑥̂0 ≥

⎯⎸⎸⎷𝑖<nummem∑︁
𝑖=1

𝑥̂2
𝑖

• Rotated quadratic cone (conetype.rquad , requires nummem ≥ 2):

2𝑥̂0𝑥̂1 ≥
𝑖<nummem∑︁

𝑖=2

𝑥̂2
𝑖 , 𝑥̂0, 𝑥̂1 ≥ 0

• Primal exponential cone (conetype.pexp , requires nummem = 3):

𝑥̂0 ≥ 𝑥̂1 exp(𝑥̂2/𝑥̂1), 𝑥̂0, 𝑥̂1 ≥ 0

• Primal power cone (conetype.ppow , requires nummem ≥ 2):

𝑥̂𝛼
0 𝑥̂

1−𝛼
1 ≥

⎯⎸⎸⎷𝑖<nummem∑︁
𝑖=2

𝑥̂2
𝑖 , 𝑥̂0, 𝑥̂1 ≥ 0

where 𝛼 is the cone parameter specified by conepar.
• Dual exponential cone (conetype.dexp , requires nummem = 3):

𝑥̂0 ≥ −𝑥̂2𝑒
−1 exp(𝑥̂1/𝑥̂2), 𝑥̂2 ≤ 0, 𝑥̂0 ≥ 0

• Dual power cone (conetype.dpow , requires nummem ≥ 2):

(︂
𝑥̂0

𝛼

)︂𝛼(︂
𝑥̂1

1 − 𝛼

)︂1−𝛼

≥

⎯⎸⎸⎷𝑖<nummem∑︁
𝑖=2

𝑥̂2
𝑖 , 𝑥̂0, 𝑥̂1 ≥ 0

where 𝛼 is the cone parameter specified by conepar.
• Zero cone (conetype.zero):

𝑥̂𝑖 = 0 for all 𝑖

Please note that the sets of variables appearing in different conic constraints must be disjoint.
For an explained code example see Sec. 6.3, Sec. 6.5 or Sec. 6.4.

Parameters
• ct (mosek.conetype) – Specifies the type of the cone. (input)
• conepar (float) – For the power cone it denotes the exponent alpha. For other

cone types it is unused and can be set to 0. (input)
• submem (int[]) – Variable subscripts of the members in the cone. (input)

Groups Problem data - cones (deprecated)

Task.appendconeseq Deprecated

232

appendconeseq(ct,conepar,nummem,j)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Appends a new conic constraint to the problem, as in Task.appendcone. The function assumes
the members of cone are sequential where the first member has index j and the last j+nummem-1.

Parameters
• ct (mosek.conetype) – Specifies the type of the cone. (input)
• conepar (float) – For the power cone it denotes the exponent alpha. For other

cone types it is unused and can be set to 0. (input)
• nummem (int) – Number of member variables in the cone. (input)
• j (int) – Index of the first variable in the conic constraint. (input)

Groups Problem data - cones (deprecated)

Task.appendconesseq Deprecated

appendconesseq(ct,conepar,nummem,j)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Appends a number of conic constraints to the problem, as in Task.appendcone. The 𝑘th cone is
assumed to be of dimension nummem[k]. Moreover, it is assumed that the first variable of the first
cone has index 𝑗 and starting from there the sequentially following variables belong to the first
cone, then to the second cone and so on.

Parameters
• ct (mosek.conetype []) – Specifies the type of the cone. (input)
• conepar (float[]) – For the power cone it denotes the exponent alpha. For

other cone types it is unused and can be set to 0. (input)
• nummem (int[]) – Numbers of member variables in the cones. (input)
• j (int) – Index of the first variable in the first cone to be appended. (input)

Groups Problem data - cones (deprecated)

Task.appendcons

appendcons(num)

Appends a number of constraints to the model. Appended constraints will be declared free. Please
note that MOSEK will automatically expand the problem dimension to accommodate the addi-
tional constraints.

Parameters num (int) – Number of constraints which should be appended. (input)
Groups Problem data - linear part , Problem data - constraints

Task.appenddjcs

appenddjcs(num)

Appends a number of empty disjunctive constraints to the task.

Parameters num (int) – Number of empty disjunctive constraints which should be
appended. (input)

Groups Problem data - disjunctive constraints

233

Task.appenddualexpconedomain

appenddualexpconedomain() -> (domidx)

Appends the dual exponential cone
{︀
𝑥 ∈ R3 : 𝑥0 ≥ −𝑥2𝑒

−1𝑒𝑥1/𝑥2 , 𝑥0 > 0, 𝑥2 < 0
}︀

to the list of
domains.

Return domidx (int) – Index of the domain.
Groups Problem data - domain

Task.appenddualgeomeanconedomain

appenddualgeomeanconedomain(n) -> (domidx)

Appends the dual geometric mean cone
{︂
𝑥 ∈ R𝑛 : (𝑛− 1)

(︁∏︀𝑛−2
𝑖=0 𝑥𝑖

)︁1/(𝑛−1)

≥ |𝑥𝑛−1|, 𝑥0, . . . , 𝑥𝑛−2 ≥ 0

}︂
to the list of domains.

Parameters n (int) – Dimmension of the domain. (input)
Return domidx (int) – Index of the domain.
Groups Problem data - domain

Task.appenddualpowerconedomain

appenddualpowerconedomain(n,alpha) -> (domidx)

Appends the dual power cone domain of dimension 𝑛, with 𝑛ℓ variables appearing on the left-hand
side, where 𝑛ℓ is the length of 𝛼, and with a homogenous sequence of exponents 𝛼0, . . . , 𝛼𝑛ℓ−1.
Formally, let 𝑠 =

∑︀
𝑖 𝛼𝑖 and 𝛽𝑖 = 𝛼𝑖/𝑠, so that

∑︀
𝑖 𝛽𝑖 = 1. Then the dual power cone is defined as

follows: ⎧⎨⎩𝑥 ∈ R𝑛 :

𝑛ℓ−1∏︁
𝑖=0

(︂
𝑥𝑖

𝛽𝑖

)︂𝛽𝑖

≥

⎯⎸⎸⎷ 𝑛−1∑︁
𝑗=𝑛ℓ

𝑥2
𝑗 , 𝑥0 . . . , 𝑥𝑛ℓ−1 ≥ 0

⎫⎬⎭
Parameters

• n (int) – Dimension of the domain. (input)
• alpha (float[]) – The sequence proportional to exponents. Must be positive.

(input)
Return domidx (int) – Index of the domain.
Groups Problem data - domain

Task.appendprimalexpconedomain

appendprimalexpconedomain() -> (domidx)

Appends the primal exponential cone
{︀
𝑥 ∈ R3 : 𝑥0 ≥ 𝑥1𝑒

𝑥2/𝑥1 , 𝑥0, 𝑥1 > 0
}︀

to the list of domains.

Return domidx (int) – Index of the domain.
Groups Problem data - domain

Task.appendprimalgeomeanconedomain

appendprimalgeomeanconedomain(n) -> (domidx)

Appends the primal geometric mean cone
{︂
𝑥 ∈ R𝑛 :

(︁∏︀𝑛−2
𝑖=0 𝑥𝑖

)︁1/(𝑛−1)

≥ |𝑥𝑛−1|, 𝑥0 . . . , 𝑥𝑛−2 ≥ 0

}︂
to the list of domains.

234

Parameters n (int) – Dimmension of the domain. (input)
Return domidx (int) – Index of the domain.
Groups Problem data - domain

Task.appendprimalpowerconedomain

appendprimalpowerconedomain(n,alpha) -> (domidx)

Appends the primal power cone domain of dimension 𝑛, with 𝑛ℓ variables appearing on the left-hand
side, where 𝑛ℓ is the length of 𝛼, and with a homogenous sequence of exponents 𝛼0, . . . , 𝛼𝑛ℓ−1.

Formally, let 𝑠 =
∑︀

𝑖 𝛼𝑖 and 𝛽𝑖 = 𝛼𝑖/𝑠, so that
∑︀

𝑖 𝛽𝑖 = 1. Then the primal power cone is defined
as follows: ⎧⎨⎩𝑥 ∈ R𝑛 :

𝑛ℓ−1∏︁
𝑖=0

𝑥𝛽𝑖

𝑖 ≥

⎯⎸⎸⎷ 𝑛−1∑︁
𝑗=𝑛ℓ

𝑥2
𝑗 , 𝑥0 . . . , 𝑥𝑛ℓ−1 ≥ 0

⎫⎬⎭
Parameters

• n (int) – Dimension of the domain. (input)
• alpha (float[]) – The sequence proportional to exponents. Must be positive.

(input)
Return domidx (int) – Index of the domain.
Groups Problem data - domain

Task.appendquadraticconedomain

appendquadraticconedomain(n) -> (domidx)

Appends the 𝑛-dimensional quadratic cone
{︂
𝑥 ∈ R𝑛 : 𝑥0 ≥

√︁∑︀𝑛−1
𝑖=1 𝑥2

𝑖

}︂
to the list of domains.

Parameters n (int) – Dimmension of the domain. (input)
Return domidx (int) – Index of the domain.
Groups Problem data - domain

Task.appendrdomain

appendrdomain(n) -> (domidx)

Appends the 𝑛-dimensional real space {𝑥 ∈ R𝑛} to the list of domains.

Parameters n (int) – Dimmension of the domain. (input)
Return domidx (int) – Index of the domain.
Groups Problem data - domain

Task.appendrminusdomain

appendrminusdomain(n) -> (domidx)

Appends the 𝑛-dimensional negative orthant {𝑥 ∈ R𝑛 : 𝑥 ≤ 0} to the list of domains.

Parameters n (int) – Dimmension of the domain. (input)
Return domidx (int) – Index of the domain.
Groups Problem data - domain

Task.appendrplusdomain

235

appendrplusdomain(n) -> (domidx)

Appends the 𝑛-dimensional positive orthant {𝑥 ∈ R𝑛 : 𝑥 ≥ 0} to the list of domains.

Parameters n (int) – Dimmension of the domain. (input)
Return domidx (int) – Index of the domain.
Groups Problem data - domain

Task.appendrquadraticconedomain

appendrquadraticconedomain(n) -> (domidx)

Appends the 𝑛-dimensional rotated quadratic cone
{︁
𝑥 ∈ R𝑛 : 2𝑥0𝑥1 ≥

∑︀𝑛−1
𝑖=2 𝑥2

𝑖 , 𝑥0, 𝑥1 ≥ 0
}︁

to
the list of domains.

Parameters n (int) – Dimmension of the domain. (input)
Return domidx (int) – Index of the domain.
Groups Problem data - domain

Task.appendrzerodomain

appendrzerodomain(n) -> (domidx)

Appends the zero in 𝑛-dimensional real space {𝑥 ∈ R𝑛 : 𝑥 = 0} to the list of domains.

Parameters n (int) – Dimmension of the domain. (input)
Return domidx (int) – Index of the domain.
Groups Problem data - domain

Task.appendsparsesymmat

appendsparsesymmat(dim,subi,subj,valij) -> (idx)

MOSEK maintains a storage of symmetric data matrices that is used to build 𝐶 and 𝐴. The
storage can be thought of as a vector of symmetric matrices denoted 𝐸. Hence, 𝐸𝑖 is a symmetric
matrix of certain dimension.

This function appends a general sparse symmetric matrix on triplet form to the vector 𝐸 of sym-
metric matrices. The vectors subi, subj, and valij contains the row subscripts, column subscripts
and values of each element in the symmetric matrix to be appended. Since the matrix that is ap-
pended is symmetric, only the lower triangular part should be specified. Moreover, duplicates are
not allowed.

Observe the function reports the index (position) of the appended matrix in 𝐸. This index should
be used for later references to the appended matrix.

Parameters
• dim (int) – Dimension of the symmetric matrix that is appended. (input)
• subi (int[]) – Row subscript in the triplets. (input)
• subj (int[]) – Column subscripts in the triplets. (input)
• valij (float[]) – Values of each triplet. (input)

Return idx (int) – Unique index assigned to the inputted matrix that can be used for
later reference.

Groups Problem data - semidefinite

Task.appendsparsesymmatlist

236

appendsparsesymmatlist(dims,nz,subi,subj,valij,idx)

appendsparsesymmatlist(dims,nz,subi,subj,valij) -> (idx)

MOSEK maintains a storage of symmetric data matrices that is used to build 𝐶 and 𝐴. The
storage can be thought of as a vector of symmetric matrices denoted 𝐸. Hence, 𝐸𝑖 is a symmetric
matrix of certain dimension.

This function appends general sparse symmetric matrixes on triplet form to the vector 𝐸 of sym-
metric matrices. The vectors subi, subj, and valij contains the row subscripts, column subscripts
and values of each element in the symmetric matrix to be appended. Since the matrix that is ap-
pended is symmetric, only the lower triangular part should be specified. Moreover, duplicates are
not allowed.

Observe the function reports the index (position) of the appended matrix in 𝐸. This index should
be used for later references to the appended matrix.

Parameters
• dims (int[]) – Dimensions of the symmetric matrixes. (input)
• nz (int[]) – Number of nonzeros for each matrix. (input)
• subi (int[]) – Row subscript in the triplets. (input)
• subj (int[]) – Column subscripts in the triplets. (input)
• valij (float[]) – Values of each triplet. (input)
• idx (int[]) – Unique index assigned to the inputted matrix that can be used

for later reference. (output)
Return idx (int[]) – Unique index assigned to the inputted matrix that can be used

for later reference.
Groups Problem data - semidefinite

Task.appendsvecpsdconedomain

appendsvecpsdconedomain(n) -> (domidx)

Appends the domain consisting of vectors of length 𝑛 = 𝑑(𝑑 + 1)/2 defined as follows

{(𝑥1, . . . , 𝑥𝑑(𝑑+1)/2) ∈ R𝑛 : sMat(𝑥) ∈ 𝒮𝑑
+} = {sVec(𝑋) : 𝑋 ∈ 𝒮𝑑

+},

where

sVec(𝑋) = (𝑋11,
√

2𝑋21, . . . ,
√

2𝑋𝑑1, 𝑋22,
√

2𝑋32, . . . , 𝑋𝑑𝑑),

and

sMat(𝑥) =

⎡⎢⎢⎣
𝑥1 𝑥2/

√
2 · · · 𝑥𝑑/

√
2

𝑥2/
√

2 𝑥𝑑+1 · · · 𝑥2𝑑−1/
√

2
· · · · · · · · · · · ·

𝑥𝑑/
√

2 𝑥2𝑑−1/
√

2 · · · 𝑥𝑑(𝑑+1)/2

⎤⎥⎥⎦ .

In other words, the domain consists of vectorizations of the lower-triangular part of a positive
semidefinite matrix, with the non-diagonal elements additionally rescaled.

This domain is a self-dual cone.

Parameters n (int) – Dimension of the domain, must be of the form 𝑑(𝑑+1)/2. (input)
Return domidx (int) – Index of the domain.
Groups Problem data - domain

Task.appendvars

237

appendvars(num)

Appends a number of variables to the model. Appended variables will be fixed at zero. Please note
that MOSEK will automatically expand the problem dimension to accommodate the additional
variables.

Parameters num (int) – Number of variables which should be appended. (input)
Groups Problem data - linear part , Problem data - variables

Task.asyncgetresult

asyncgetresult(address,accesstoken,token) -> (respavailable,resp,trm)

Request a solution from a remote job identified by the argument token. For other arguments see
Task.asyncoptimize . If the solution is available it will be retrieved and loaded into the local task.

Parameters
• address (str) – Address of the OptServer. (input)
• accesstoken (str) – Access token. (input)
• token (str) – The task token. (input)

Return
• respavailable (bool) – Indicates if a remote response is available. If this is not

true, resp and trm should be ignored.
• resp (mosek.rescode) – Is the response code from the remote solver.
• trm (mosek.rescode) – Is either rescode.ok or a termination response code.

Groups Remote optimization

Task.asyncoptimize

asyncoptimize(address,accesstoken) -> (token)

Offload the optimization task to an instance of OptServer specified by addr, which should be a valid
URL, for example http://server:port or https://server:port. The call will exit immediately.

If the server requires authentication, the authentication token can be passed in the accesstoken
argument.

If the server requires encryption, the keys can be passed using one of the solver parameters sparam.
remote_tls_cert or sparam.remote_tls_cert_path .

The function returns a token which should be used in future calls to identify the task.

Parameters
• address (str) – Address of the OptServer. (input)
• accesstoken (str) – Access token. (input)

Return token (str) – Returns the task token.
Groups Remote optimization

Task.asyncpoll

asyncpoll(address,accesstoken,token) -> (respavailable,resp,trm)

Requests information about the status of the remote job identified by the argument token. For
other arguments see Task.asyncoptimize .

Parameters
• address (str) – Address of the OptServer. (input)
• accesstoken (str) – Access token. (input)

238

• token (str) – The task token. (input)
Return

• respavailable (bool) – Indicates if a remote response is available. If this is not
true, resp and trm should be ignored.

• resp (mosek.rescode) – Is the response code from the remote solver.
• trm (mosek.rescode) – Is either rescode.ok or a termination response code.

Groups Remote optimization

Task.asyncstop

asyncstop(address,accesstoken,token)

Request that the remote job identified by token is terminated. For other arguments see Task.
asyncoptimize .

Parameters
• address (str) – Address of the OptServer. (input)
• accesstoken (str) – Access token. (input)
• token (str) – The task token. (input)

Groups Remote optimization

Task.basiscond

basiscond() -> (nrmbasis,nrminvbasis)

If a basic solution is available and it defines a nonsingular basis, then this function computes the
1-norm estimate of the basis matrix and a 1-norm estimate for the inverse of the basis matrix. The
1-norm estimates are computed using the method outlined in [Ste98], pp. 388-391.

By definition the 1-norm condition number of a matrix 𝐵 is defined as

𝜅1(𝐵) := ‖𝐵‖1‖𝐵−1‖1.

Moreover, the larger the condition number is the harder it is to solve linear equation systems
involving 𝐵. Given estimates for ‖𝐵‖1 and ‖𝐵−1‖1 it is also possible to estimate 𝜅1(𝐵).

Return
• nrmbasis (float) – An estimate for the 1-norm of the basis.
• nrminvbasis (float) – An estimate for the 1-norm of the inverse of the basis.

Groups Solving systems with basis matrix

Task.checkmem

checkmem(file,line)

Checks the memory allocated by the task.

Parameters
• file (str) – File from which the function is called. (input)
• line (int) – Line in the file from which the function is called. (input)

Groups System, memory and debugging

Task.chgconbound

chgconbound(i,lower,finite,value)

239

Changes a bound for one constraint.

If lower is non-zero, then the lower bound is changed as follows:

new lower bound =

{︂
−∞, finite = 0,
value otherwise.

Otherwise if lower is zero, then

new upper bound =

{︂
∞, finite = 0,
value otherwise.

Please note that this function automatically updates the bound key for the bound, in particular,
if the lower and upper bounds are identical, the bound key is changed to fixed.

Parameters
• i (int) – Index of the constraint for which the bounds should be changed. (input)
• lower (int) – If non-zero, then the lower bound is changed, otherwise the upper

bound is changed. (input)
• finite (int) – If non-zero, then value is assumed to be finite. (input)
• value (float) – New value for the bound. (input)

Groups Problem data - bounds, Problem data - constraints, Problem data - linear part

Task.chgvarbound

chgvarbound(j,lower,finite,value)

Changes a bound for one variable.

If lower is non-zero, then the lower bound is changed as follows:

new lower bound =

{︂
−∞, finite = 0,
value otherwise.

Otherwise if lower is zero, then

new upper bound =

{︂
∞, finite = 0,
value otherwise.

Please note that this function automatically updates the bound key for the bound, in particular,
if the lower and upper bounds are identical, the bound key is changed to fixed.

Parameters
• j (int) – Index of the variable for which the bounds should be changed. (input)
• lower (int) – If non-zero, then the lower bound is changed, otherwise the upper

bound is changed. (input)
• finite (int) – If non-zero, then value is assumed to be finite. (input)
• value (float) – New value for the bound. (input)

Groups Problem data - bounds, Problem data - variables, Problem data - linear part

Task.commitchanges

commitchanges()

Commits all cached problem changes to the task. It is usually not necessary to call this function
explicitly since changes will be committed automatically when required.

Groups Environment and task management

Task.deletesolution

240

deletesolution(whichsol)

Undefine a solution and free the memory it uses.

Parameters whichsol (mosek.soltype) – Selects a solution. (input)
Groups Environment and task management , Solution information

Task.dualsensitivity

dualsensitivity(subj,
leftpricej,
rightpricej,
leftrangej,
rightrangej)

dualsensitivity(subj) ->
(leftpricej,
rightpricej,
leftrangej,
rightrangej)

Calculates sensitivity information for objective coefficients. The indexes of the coefficients to
analyze are

{subj[𝑖] | 𝑖 = 0, . . . , numj− 1}

The type of sensitivity analysis to perform (basis or optimal partition) is controlled by the param-
eter iparam.sensitivity_type .

For an example, please see Section Example: Sensitivity Analysis.

Parameters
• subj (int[]) – Indexes of objective coefficients to analyze. (input)
• leftpricej (float[]) – leftpricej[𝑗] is the left shadow price for the coefficient

with index subj[j]. (output)
• rightpricej (float[]) – rightpricej[𝑗] is the right shadow price for the co-

efficient with index subj[j]. (output)
• leftrangej (float[]) – leftrangej[𝑗] is the left range 𝛽1 for the coefficient

with index subj[j]. (output)
• rightrangej (float[]) – rightrangej[𝑗] is the right range 𝛽2 for the coefficient

with index subj[j]. (output)
Return

• leftpricej (float[]) – leftpricej[𝑗] is the left shadow price for the coefficient
with index subj[j].

• rightpricej (float[]) – rightpricej[𝑗] is the right shadow price for the co-
efficient with index subj[j].

• leftrangej (float[]) – leftrangej[𝑗] is the left range 𝛽1 for the coefficient
with index subj[j].

• rightrangej (float[]) – rightrangej[𝑗] is the right range 𝛽2 for the coefficient
with index subj[j].

Groups Sensitivity analysis

Task.emptyafebarfrow

emptyafebarfrow(afeidx)

Clears a row in 𝐹 i.e. sets 𝐹 afeidx,* = 0.

241

Parameters afeidx (int) – Row index of 𝐹 . (input)
Groups Problem data - affine expressions, Problem data - semidefinite

Task.emptyafebarfrowlist

emptyafebarfrowlist(afeidxlist)

Clears a number of rows in 𝐹 i.e. sets 𝐹 𝑖,* = 0 for all indices 𝑖 in afeidxlist.

Parameters afeidxlist (int[]) – Indices of rows in 𝐹 to clear. (input)
Groups Problem data - affine expressions, Problem data - semidefinite

Task.emptyafefcol

emptyafefcol(varidx)

Clears one column in the affine constraint matrix 𝐹 , that is sets 𝐹*,varidx = 0.

Parameters varidx (int) – Index of a variable (column in 𝐹). (input)
Groups Problem data - affine expressions

Task.emptyafefcollist

emptyafefcollist(varidx)

Clears a number of columns in 𝐹 i.e. sets 𝐹*,𝑗 = 0 for all indices 𝑗 in varidx.

Parameters varidx (int[]) – Indices of variables (columns) in 𝐹 to clear. (input)
Groups Problem data - affine expressions

Task.emptyafefrow

emptyafefrow(afeidx)

Clears one row in the affine constraint matrix 𝐹 , that is sets 𝐹afeidx,* = 0.

Parameters afeidx (int) – Index of a row in 𝐹 . (input)
Groups Problem data - affine expressions

Task.emptyafefrowlist

emptyafefrowlist(afeidx)

Clears a number of rows in 𝐹 i.e. sets 𝐹𝑖,* = 0 for all indices 𝑖 in afeidx.

Parameters afeidx (int[]) – Indices of rows in 𝐹 to clear. (input)
Groups Problem data - affine expressions

Task.evaluateacc

evaluateacc(whichsol,accidx,activity)

evaluateacc(whichsol,accidx) -> (activity)

Evaluates the activity of an affine conic constraint.

Parameters

242

• whichsol (mosek.soltype) – Selects a solution. (input)
• accidx (int) – The index of the affine conic constraint. (input)
• activity (float[]) – The activity of the affine conic constraint. The array

should have length equal to the dimension of the constraint. (output)
Return activity (float[]) – The activity of the affine conic constraint. The array

should have length equal to the dimension of the constraint.
Groups Solution - primal , Problem data - affine conic constraints

Task.evaluateaccs

evaluateaccs(whichsol,activity)

evaluateaccs(whichsol) -> (activity)

Evaluates the activities of all affine conic constraints.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• activity (float[]) – The activity of affine conic constraints. The array should

have length equal to the sum of dimensions of all affine conic constraints. (out-
put)

Return activity (float[]) – The activity of affine conic constraints. The array should
have length equal to the sum of dimensions of all affine conic constraints.

Groups Solution - primal , Problem data - affine conic constraints

Task.generateaccnames

generateaccnames(sub,fmt,dims,sp,namedaxisidxs,names)

Internal.

Parameters
• sub (int[]) – Indexes of the affine conic constraints. (input)
• fmt (str) – The variable name formatting string. (input)
• dims (int[]) – Dimensions in the shape. (input)
• sp (int[]) – Items that should be named. (input)
• namedaxisidxs (int[]) – List if named index axes (input)
• names (str[]) – All axis names. (input)

Groups Names

Task.generatebarvarnames

generatebarvarnames(subj,fmt,dims,sp,namedaxisidxs,names)

Generates systematic names for variables.

Parameters
• subj (int[]) – Indexes of the variables. (input)
• fmt (str) – The variable name formatting string. (input)
• dims (int[]) – Dimensions in the shape. (input)
• sp (int[]) – Items that should be named. (input)
• namedaxisidxs (int[]) – List if named index axes (input)
• names (str[]) – All axis names. (input)

Groups Names, Problem data - variables, Problem data - linear part

243

Task.generateconenames Deprecated

generateconenames(subk,fmt,dims,sp,namedaxisidxs,names)

Internal, deprecated.

Parameters
• subk (int[]) – Indexes of the cone. (input)
• fmt (str) – The cone name formatting string. (input)
• dims (int[]) – Dimensions in the shape. (input)
• sp (int[]) – Items that should be named. (input)
• namedaxisidxs (int[]) – List if named index axes (input)
• names (str[]) – All axis names. (input)

Groups Names, Problem data - cones (deprecated)

Task.generateconnames

generateconnames(subi,fmt,dims,sp,namedaxisidxs,names)

Generates systematic names for constraints.

Parameters
• subi (int[]) – Indexes of the constraints. (input)
• fmt (str) – The constraint name formatting string. (input)
• dims (int[]) – Dimensions in the shape. (input)
• sp (int[]) – Items that should be named. (input)
• namedaxisidxs (int[]) – List if named index axes (input)
• names (str[]) – All axis names. (input)

Groups Names, Problem data - constraints, Problem data - linear part

Task.generatedjcnames

generatedjcnames(sub,fmt,dims,sp,namedaxisidxs,names)

Internal.

Parameters
• sub (int[]) – Indexes of the disjunctive constraints. (input)
• fmt (str) – The variable name formatting string. (input)
• dims (int[]) – Dimensions in the shape. (input)
• sp (int[]) – Items that should be named. (input)
• namedaxisidxs (int[]) – List if named index axes (input)
• names (str[]) – All axis names. (input)

Groups Names

Task.generatevarnames

generatevarnames(subj,fmt,dims,sp,namedaxisidxs,names)

Generates systematic names for variables.

Parameters
• subj (int[]) – Indexes of the variables. (input)
• fmt (str) – The variable name formatting string. (input)

244

• dims (int[]) – Dimensions in the shape. (input)
• sp (int[]) – Items that should be named. (input)
• namedaxisidxs (int[]) – List if named index axes (input)
• names (str[]) – All axis names. (input)

Groups Names, Problem data - variables, Problem data - linear part

Task.getaccafeidxlist

getaccafeidxlist(accidx,afeidxlist)

getaccafeidxlist(accidx) -> (afeidxlist)

Obtains the list of affine expressions appearing in the affine conic constraint.

Parameters
• accidx (int) – Index of the affine conic constraint. (input)
• afeidxlist (int[]) – List of indexes of affine expressions appearing in the

constraint. (output)
Return afeidxlist (int[]) – List of indexes of affine expressions appearing in the

constraint.
Groups Problem data - affine conic constraints, Inspecting the task

Task.getaccb

getaccb(accidx,b)

getaccb(accidx) -> (b)

Obtains the additional constant term vector appearing in the affine conic constraint.

Parameters
• accidx (int) – Index of the affine conic constraint. (input)
• b (float[]) – The vector b appearing in the constraint. (output)

Return b (float[]) – The vector b appearing in the constraint.
Groups Problem data - affine conic constraints, Inspecting the task

Task.getaccbarfblocktriplet

getaccbarfblocktriplet(acc_afe,bar_var,blk_row,blk_col,blk_val) -> (numtrip)

getaccbarfblocktriplet() ->
(numtrip,
acc_afe,
bar_var,
blk_row,
blk_col,
blk_val)

Obtains 𝐹 , implied by the ACCs, in block triplet form. If the AFEs passed to the ACCs were out
of order, then this function can be used to obtain the barF as seen by the ACCs.

Parameters
• acc_afe (int[]) – Index of the AFE within the concatenated list of AFEs in

ACCs. (output)
• bar_var (int[]) – Symmetric matrix variable index. (output)

245

• blk_row (int[]) – Block row index. (output)
• blk_col (int[]) – Block column index. (output)
• blk_val (float[]) – The numerical value associated with each block triplet.

(output)
Return

• numtrip (int) – Number of elements in the block triplet form.
• acc_afe (int[]) – Index of the AFE within the concatenated list of AFEs in

ACCs.
• bar_var (int[]) – Symmetric matrix variable index.
• blk_row (int[]) – Block row index.
• blk_col (int[]) – Block column index.
• blk_val (float[]) – The numerical value associated with each block triplet.

Groups Problem data - affine expressions, Problem data - semidefinite

Task.getaccbarfnumblocktriplets

getaccbarfnumblocktriplets() -> (numtrip)

Obtains an upper bound on the number of elements in the block triplet form of 𝐹 , as used within
the ACCs.

Return numtrip (int) – An upper bound on the number of elements in the block triplet
form of 𝐹 ., as used within the ACCs.

Groups Problem data - semidefinite, Problem data - affine conic constraints, Inspecting
the task

Task.getaccdomain

getaccdomain(accidx) -> (domidx)

Obtains the domain appearing in the affine conic constraint.

Parameters accidx (int) – The index of the affine conic constraint. (input)
Return domidx (int) – The index of domain in the affine conic constraint.
Groups Problem data - affine conic constraints, Inspecting the task

Task.getaccdoty

getaccdoty(whichsol,accidx,doty)

getaccdoty(whichsol,accidx) -> (doty)

Obtains the 𝑦̇ vector for a solution (the dual values of an affine conic constraint).

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• accidx (int) – The index of the affine conic constraint. (input)
• doty (float[]) – The dual values for this affine conic constraint. The array

should have length equal to the dimension of the constraint. (output)
Return doty (float[]) – The dual values for this affine conic constraint. The array

should have length equal to the dimension of the constraint.
Groups Solution - dual , Problem data - affine conic constraints

Task.getaccdotys

246

getaccdotys(whichsol,doty)

getaccdotys(whichsol) -> (doty)

Obtains the 𝑦̇ vector for a solution (the dual values of all affine conic constraint).

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• doty (float[]) – The dual values of affine conic constraints. The array should

have length equal to the sum of dimensions of all affine conic constraints. (out-
put)

Return doty (float[]) – The dual values of affine conic constraints. The array should
have length equal to the sum of dimensions of all affine conic constraints.

Groups Solution - dual , Problem data - affine conic constraints

Task.getaccfnumnz

getaccfnumnz() -> (accfnnz)

If the AFEs are not added sequentially to the ACCs, then the present function gives the number
of nonzero elements in the F matrix that would be implied by the ordering of AFEs within ACCs.

Return accfnnz (int) – Number of non-zeros in 𝐹 implied by ACCs.
Groups Problem data - affine conic constraints, Inspecting the task

Task.getaccftrip

getaccftrip(frow,fcol,fval)

getaccftrip() -> (frow,fcol,fval)

Obtains the 𝐹 (that would be implied by the ordering of the AFEs within the ACCs) in triplet
format.

Parameters
• frow (int[]) – Row indices of nonzeros in the implied F matrix. (output)
• fcol (int[]) – Column indices of nonzeros in the implied F matrix. (output)
• fval (float[]) – Values of nonzero entries in the implied F matrix. (output)

Return
• frow (int[]) – Row indices of nonzeros in the implied F matrix.
• fcol (int[]) – Column indices of nonzeros in the implied F matrix.
• fval (float[]) – Values of nonzero entries in the implied F matrix.

Groups Problem data - affine conic constraints, Inspecting the task

Task.getaccgvector

getaccgvector(g)

getaccgvector() -> (g)

If the AFEs are passed out of sequence to the ACCs, then this function can be used to obtain the
vector 𝑔 of constant terms used within the ACCs.

Parameters g (float[]) – The 𝑔 used within the ACCs as a dense vector. The length
is sum of the dimensions of the ACCs. (output)

247

Return g (float[]) – The 𝑔 used within the ACCs as a dense vector. The length is
sum of the dimensions of the ACCs.

Groups Inspecting the task , Problem data - affine conic constraints

Task.getaccn

getaccn(accidx) -> (n)

Obtains the dimension of the affine conic constraint.

Parameters accidx (int) – The index of the affine conic constraint. (input)
Return n (int) – The dimension of the affine conic constraint (equal to the dimension

of its domain).
Groups Problem data - affine conic constraints, Inspecting the task

Task.getaccname

getaccname(accidx) -> (name)

Obtains the name of an affine conic constraint.

Parameters accidx (int) – Index of an affine conic constraint. (input)
Return name (str) – Returns the required name.
Groups Names, Problem data - affine conic constraints, Inspecting the task

Task.getaccnamelen

getaccnamelen(accidx) -> (len)

Obtains the length of the name of an affine conic constraint.

Parameters accidx (int) – Index of an affine conic constraint. (input)
Return len (int) – Returns the length of the indicated name.
Groups Names, Problem data - affine conic constraints, Inspecting the task

Task.getaccntot

getaccntot() -> (n)

Obtains the total dimension of all affine conic constraints (the sum of all their dimensions).

Return n (int) – The total dimension of all affine conic constraints.
Groups Problem data - affine conic constraints, Inspecting the task

Task.getaccs

getaccs(domidxlist,afeidxlist,b)

getaccs() -> (domidxlist,afeidxlist,b)

Obtains full data of all affine conic constraints. The output array domainidxlist must have at
least length determined by Task.getnumacc . The output arrays afeidxlist and b must have at
least length determined by Task.getaccntot .

Parameters
• domidxlist (int[]) – The list of domains appearing in all affine conic con-

straints. (output)

248

• afeidxlist (int[]) – The concatenation of index lists of affine expressions
appearing in all affine conic constraints. (output)

• b (float[]) – The concatenation of vectors b appearing in all affine conic con-
straints. (output)

Return
• domidxlist (int[]) – The list of domains appearing in all affine conic con-

straints.
• afeidxlist (int[]) – The concatenation of index lists of affine expressions

appearing in all affine conic constraints.
• b (float[]) – The concatenation of vectors b appearing in all affine conic con-

straints.
Groups Problem data - affine conic constraints, Inspecting the task

Task.getacol

getacol(j,subj,valj) -> (nzj)

getacol(j) -> (nzj,subj,valj)

Obtains one column of 𝐴 in a sparse format.

Parameters
• j (int) – Index of the column. (input)
• subj (int[]) – Row indices of the non-zeros in the column obtained. (output)
• valj (float[]) – Numerical values in the column obtained. (output)

Return
• nzj (int) – Number of non-zeros in the column obtained.
• subj (int[]) – Row indices of the non-zeros in the column obtained.
• valj (float[]) – Numerical values in the column obtained.

Groups Problem data - linear part , Inspecting the task

Task.getacolnumnz

getacolnumnz(i) -> (nzj)

Obtains the number of non-zero elements in one column of 𝐴.

Parameters i (int) – Index of the column. (input)
Return nzj (int) – Number of non-zeros in the 𝑗-th column of 𝐴.
Groups Problem data - linear part , Inspecting the task

Task.getacolslice

getacolslice(first,last,ptrb,ptre,sub,val)

getacolslice(first,last) -> (ptrb,ptre,sub,val)

Obtains a sequence of columns from 𝐴 in sparse format.

Parameters
• first (int) – Index of the first column in the sequence. (input)
• last (int) – Index of the last column in the sequence plus one. (input)
• ptrb (int[]) – ptrb[t] is an index pointing to the first element in the 𝑡-th

column obtained. (output)

249

• ptre (int[]) – ptre[t] is an index pointing to the last element plus one in the
𝑡-th column obtained. (output)

• sub (int[]) – Contains the row subscripts. (output)
• val (float[]) – Contains the coefficient values. (output)

Return
• ptrb (int[]) – ptrb[t] is an index pointing to the first element in the 𝑡-th

column obtained.
• ptre (int[]) – ptre[t] is an index pointing to the last element plus one in the
𝑡-th column obtained.

• sub (int[]) – Contains the row subscripts.
• val (float[]) – Contains the coefficient values.

Groups Problem data - linear part , Inspecting the task

Task.getacolslicenumnz

getacolslicenumnz(first,last) -> (numnz)

Obtains the number of non-zeros in a slice of columns of 𝐴.

Parameters
• first (int) – Index of the first column in the sequence. (input)
• last (int) – Index of the last column plus one in the sequence. (input)

Return numnz (int) – Number of non-zeros in the slice.
Groups Problem data - linear part , Inspecting the task

Task.getacolslicetrip

getacolslicetrip(first,last,subi,subj,val)

getacolslicetrip(first,last) -> (subi,subj,val)

Obtains a sequence of columns from 𝐴 in sparse triplet format. The function returns the content
of all columns whose index j satisfies first <= j < last. The triplets corresponding to nonzero
entries are stored in the arrays subi, subj and val.

Parameters
• first (int) – Index of the first column in the sequence. (input)
• last (int) – Index of the last column in the sequence plus one. (input)
• subi (int[]) – Constraint subscripts. (output)
• subj (int[]) – Column subscripts. (output)
• val (float[]) – Values. (output)

Return
• subi (int[]) – Constraint subscripts.
• subj (int[]) – Column subscripts.
• val (float[]) – Values.

Groups Problem data - linear part , Inspecting the task

Task.getafebarfblocktriplet

getafebarfblocktriplet(afeidx,barvaridx,subk,subl,valkl) -> (numtrip)

250

getafebarfblocktriplet() ->
(numtrip,
afeidx,
barvaridx,
subk,
subl,
valkl)

Obtains 𝐹 in block triplet form.

Parameters
• afeidx (int[]) – Constraint index. (output)
• barvaridx (int[]) – Symmetric matrix variable index. (output)
• subk (int[]) – Block row index. (output)
• subl (int[]) – Block column index. (output)
• valkl (float[]) – The numerical value associated with each block triplet. (out-

put)
Return

• numtrip (int) – Number of elements in the block triplet form.
• afeidx (int[]) – Constraint index.
• barvaridx (int[]) – Symmetric matrix variable index.
• subk (int[]) – Block row index.
• subl (int[]) – Block column index.
• valkl (float[]) – The numerical value associated with each block triplet.

Groups Problem data - affine expressions, Problem data - semidefinite

Task.getafebarfnumblocktriplets

getafebarfnumblocktriplets() -> (numtrip)

Obtains an upper bound on the number of elements in the block triplet form of 𝐹 .

Return numtrip (int) – An upper bound on the number of elements in the block triplet
form of 𝐹 .

Groups Problem data - semidefinite, Inspecting the task

Task.getafebarfnumrowentries

getafebarfnumrowentries(afeidx) -> (numentr)

Obtains the number of nonzero entries in one row of 𝐹 , that is the number of 𝑗 such that 𝐹 afeidx,𝑗

is not the zero matrix.

Parameters afeidx (int) – Row index of 𝐹 . (input)
Return numentr (int) – Number of nonzero entries in a row of 𝐹 .
Groups Problem data - affine expressions, Problem data - semidefinite, Inspecting the

task

Task.getafebarfrow

getafebarfrow(afeidx,
barvaridx,
ptrterm,
numterm,
termidx,
termweight)

251

getafebarfrow(afeidx) ->
(barvaridx,
ptrterm,
numterm,
termidx,
termweight)

Obtains all nonzero entries in one row 𝐹 afeidx,* of 𝐹 . For every 𝑘 there is a nonzero entry
𝐹 afeidx,barvaridx[𝑘], which is represented as a weighted sum of numterm[𝑘] terms. The indices in the
matrix store 𝐸 and their weights for the 𝑘-th entry appear in the arrays termidx and termweight
in positions

ptrterm[𝑘], . . . ,ptrterm[𝑘] + numterm[𝑘] − 1.

The arrays should be long enough to accommodate the data; their required lengths can be obtained
with Task.getafebarfrowinfo .

Parameters
• afeidx (int) – Row index of 𝐹 . (input)
• barvaridx (int[]) – Semidefinite variable indices of nonzero entries in the row

of 𝐹 . (output)
• ptrterm (int[]) – Pointers to the start of each entry’s description. (output)
• numterm (int[]) – Number of terms in the weighted sum representation of each

entry. (output)
• termidx (int[]) – Indices of semidefinite matrices from the matrix store 𝐸.

(output)
• termweight (float[]) – Weights appearing in the weighted sum representations

of all entries. (output)
Return

• barvaridx (int[]) – Semidefinite variable indices of nonzero entries in the row
of 𝐹 .

• ptrterm (int[]) – Pointers to the start of each entry’s description.
• numterm (int[]) – Number of terms in the weighted sum representation of each

entry.
• termidx (int[]) – Indices of semidefinite matrices from the matrix store 𝐸.
• termweight (float[]) – Weights appearing in the weighted sum representations

of all entries.
Groups Problem data - affine expressions, Problem data - semidefinite, Inspecting the

task

Task.getafebarfrowinfo

getafebarfrowinfo(afeidx) -> (numentr,numterm)

Obtains information about one row of 𝐹 : the number of nonzero entries, that is the number of 𝑗
such that 𝐹 afeidx,𝑗 is not the zero matrix, as well as the total number of terms in the representations
of all these entries as weighted sums of matrices from 𝐸. This information provides the data sizes
required for a call to Task.getafebarfrow .

Parameters afeidx (int) – Row index of 𝐹 . (input)
Return

• numentr (int) – Number of nonzero entries in a row of 𝐹 .
• numterm (int) – Number of terms in the weighted sums representation of the

row of 𝐹 .
Groups Problem data - affine expressions, Problem data - semidefinite, Inspecting the

task

252

Task.getafefnumnz

getafefnumnz() -> (numnz)

Obtains the total number of nonzeros in 𝐹 .

Return numnz (int) – Number of non-zeros in 𝐹 .
Groups Problem data - affine expressions, Inspecting the task

Task.getafefrow

getafefrow(afeidx,varidx,val) -> (numnz)

getafefrow(afeidx) -> (numnz,varidx,val)

Obtains one row of 𝐹 in sparse format.

Parameters
• afeidx (int) – Index of a row in 𝐹 . (input)
• varidx (int[]) – Column indices of the non-zeros in the row obtained. (output)
• val (float[]) – Values of the non-zeros in the row obtained. (output)

Return
• numnz (int) – Number of non-zeros in the row obtained.
• varidx (int[]) – Column indices of the non-zeros in the row obtained.
• val (float[]) – Values of the non-zeros in the row obtained.

Groups Problem data - affine expressions, Inspecting the task

Task.getafefrownumnz

getafefrownumnz(afeidx) -> (numnz)

Obtains the number of nonzeros in one row of 𝐹 .

Parameters afeidx (int) – Index of a row in 𝐹 . (input)
Return numnz (int) – Number of non-zeros in row afeidx of 𝐹 .
Groups Problem data - affine expressions, Inspecting the task

Task.getafeftrip

getafeftrip(afeidx,varidx,val)

getafeftrip() -> (afeidx,varidx,val)

Obtains the 𝐹 in triplet format.

Parameters
• afeidx (int[]) – Row indices of nonzeros. (output)
• varidx (int[]) – Column indices of nonzeros. (output)
• val (float[]) – Values of nonzero entries. (output)

Return
• afeidx (int[]) – Row indices of nonzeros.
• varidx (int[]) – Column indices of nonzeros.
• val (float[]) – Values of nonzero entries.

Groups Problem data - affine expressions, Inspecting the task

253

Task.getafeg

getafeg(afeidx) -> (g)

Obtains a single coefficient in 𝑔.

Parameters afeidx (int) – Index of an element in 𝑔. (input)
Return g (float) – The value of 𝑔afeidx.
Groups Problem data - affine expressions, Inspecting the task

Task.getafegslice

getafegslice(first,last,g)

getafegslice(first,last) -> (g)

Obtains a sequence of elements from the vector 𝑔 of constant terms in the affine expressions list.

Parameters
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• g (float[]) – The slice 𝑔 as a dense vector. The length is last-first. (output)

Return g (float[]) – The slice 𝑔 as a dense vector. The length is last-first.
Groups Inspecting the task , Problem data - affine expressions

Task.getaij

getaij(i,j) -> (aij)

Obtains a single coefficient in 𝐴.

Parameters
• i (int) – Row index of the coefficient to be returned. (input)
• j (int) – Column index of the coefficient to be returned. (input)

Return aij (float) – The required coefficient 𝑎𝑖,𝑗 .
Groups Problem data - linear part , Inspecting the task

Task.getapiecenumnz

getapiecenumnz(firsti,lasti,firstj,lastj) -> (numnz)

Obtains the number non-zeros in a rectangular piece of 𝐴, i.e. the number of elements in the set

{(𝑖, 𝑗) : 𝑎𝑖,𝑗 ̸= 0, firsti ≤ 𝑖 ≤ lasti− 1, firstj ≤ 𝑗 ≤ lastj− 1}

This function is not an efficient way to obtain the number of non-zeros in one row or column. In
that case use the function Task.getarownumnz or Task.getacolnumnz .

Parameters
• firsti (int) – Index of the first row in the rectangular piece. (input)
• lasti (int) – Index of the last row plus one in the rectangular piece. (input)
• firstj (int) – Index of the first column in the rectangular piece. (input)
• lastj (int) – Index of the last column plus one in the rectangular piece. (input)

Return numnz (int) – Number of non-zero 𝐴 elements in the rectangular piece.
Groups Problem data - linear part , Inspecting the task

254

Task.getarow

getarow(i,subi,vali) -> (nzi)

getarow(i) -> (nzi,subi,vali)

Obtains one row of 𝐴 in a sparse format.

Parameters
• i (int) – Index of the row. (input)
• subi (int[]) – Column indices of the non-zeros in the row obtained. (output)
• vali (float[]) – Numerical values of the row obtained. (output)

Return
• nzi (int) – Number of non-zeros in the row obtained.
• subi (int[]) – Column indices of the non-zeros in the row obtained.
• vali (float[]) – Numerical values of the row obtained.

Groups Problem data - linear part , Inspecting the task

Task.getarownumnz

getarownumnz(i) -> (nzi)

Obtains the number of non-zero elements in one row of 𝐴.

Parameters i (int) – Index of the row. (input)
Return nzi (int) – Number of non-zeros in the 𝑖-th row of 𝐴.
Groups Problem data - linear part , Inspecting the task

Task.getarowslice

getarowslice(first,last,ptrb,ptre,sub,val)

getarowslice(first,last) -> (ptrb,ptre,sub,val)

Obtains a sequence of rows from 𝐴 in sparse format.

Parameters
• first (int) – Index of the first row in the sequence. (input)
• last (int) – Index of the last row in the sequence plus one. (input)
• ptrb (int[]) – ptrb[t] is an index pointing to the first element in the 𝑡-th row

obtained. (output)
• ptre (int[]) – ptre[t] is an index pointing to the last element plus one in the
𝑡-th row obtained. (output)

• sub (int[]) – Contains the column subscripts. (output)
• val (float[]) – Contains the coefficient values. (output)

Return
• ptrb (int[]) – ptrb[t] is an index pointing to the first element in the 𝑡-th row

obtained.
• ptre (int[]) – ptre[t] is an index pointing to the last element plus one in the
𝑡-th row obtained.

• sub (int[]) – Contains the column subscripts.
• val (float[]) – Contains the coefficient values.

Groups Problem data - linear part , Inspecting the task

255

Task.getarowslicenumnz

getarowslicenumnz(first,last) -> (numnz)

Obtains the number of non-zeros in a slice of rows of 𝐴.

Parameters
• first (int) – Index of the first row in the sequence. (input)
• last (int) – Index of the last row plus one in the sequence. (input)

Return numnz (int) – Number of non-zeros in the slice.
Groups Problem data - linear part , Inspecting the task

Task.getarowslicetrip

getarowslicetrip(first,last,subi,subj,val)

getarowslicetrip(first,last) -> (subi,subj,val)

Obtains a sequence of rows from 𝐴 in sparse triplet format. The function returns the content of
all rows whose index i satisfies first <= i < last. The triplets corresponding to nonzero entries
are stored in the arrays subi, subj and val.

Parameters
• first (int) – Index of the first row in the sequence. (input)
• last (int) – Index of the last row in the sequence plus one. (input)
• subi (int[]) – Constraint subscripts. (output)
• subj (int[]) – Column subscripts. (output)
• val (float[]) – Values. (output)

Return
• subi (int[]) – Constraint subscripts.
• subj (int[]) – Column subscripts.
• val (float[]) – Values.

Groups Problem data - linear part , Inspecting the task

Task.getatrip

getatrip(subi,subj,val)

getatrip() -> (subi,subj,val)

Obtains 𝐴 in sparse triplet format. The triplets corresponding to nonzero entries are stored in the
arrays subi, subj and val.

Parameters
• subi (int[]) – Constraint subscripts. (output)
• subj (int[]) – Column subscripts. (output)
• val (float[]) – Values. (output)

Return
• subi (int[]) – Constraint subscripts.
• subj (int[]) – Column subscripts.
• val (float[]) – Values.

Groups Problem data - linear part , Inspecting the task

Task.getatruncatetol

256

getatruncatetol(tolzero)

getatruncatetol() -> (tolzero)

Obtains the tolerance value set with Task.putatruncatetol .

Parameters tolzero (float[]) – All elements |𝑎𝑖,𝑗 | less than this tolerance is truncated
to zero. (output)

Return tolzero (float[]) – All elements |𝑎𝑖,𝑗 | less than this tolerance is truncated to
zero.

Groups Parameters, Problem data - linear part

Task.getbarablocktriplet

getbarablocktriplet(subi,subj,subk,subl,valijkl) -> (num)

getbarablocktriplet() -> (num,subi,subj,subk,subl,valijkl)

Obtains 𝐴 in block triplet form.

Parameters
• subi (int[]) – Constraint index. (output)
• subj (int[]) – Symmetric matrix variable index. (output)
• subk (int[]) – Block row index. (output)
• subl (int[]) – Block column index. (output)
• valijkl (float[]) – The numerical value associated with each block triplet.

(output)
Return

• num (int) – Number of elements in the block triplet form.
• subi (int[]) – Constraint index.
• subj (int[]) – Symmetric matrix variable index.
• subk (int[]) – Block row index.
• subl (int[]) – Block column index.
• valijkl (float[]) – The numerical value associated with each block triplet.

Groups Problem data - semidefinite, Inspecting the task

Task.getbaraidx

getbaraidx(idx,sub,weights) -> (i,j,num)

getbaraidx(idx) -> (i,j,num,sub,weights)

Obtains information about an element in 𝐴. Since 𝐴 is a sparse matrix of symmetric matrices,
only the nonzero elements in 𝐴 are stored in order to save space. Now 𝐴 is stored vectorized i.e.
as one long vector. This function makes it possible to obtain information such as the row index
and the column index of a particular element of the vectorized form of 𝐴.

Please observe if one element of 𝐴 is inputted multiple times then it may be stored several times
in vectorized form. In that case the element with the highest index is the one that is used.

Parameters
• idx (int) – Position of the element in the vectorized form. (input)
• sub (int[]) – A list indexes of the elements from symmetric matrix storage that

appear in the weighted sum. (output)
• weights (float[]) – The weights associated with each term in the weighted

sum. (output)

257

Return
• i (int) – Row index of the element at position idx.
• j (int) – Column index of the element at position idx.
• num (int) – Number of terms in weighted sum that forms the element.
• sub (int[]) – A list indexes of the elements from symmetric matrix storage that

appear in the weighted sum.
• weights (float[]) – The weights associated with each term in the weighted

sum.
Groups Problem data - semidefinite, Inspecting the task

Task.getbaraidxij

getbaraidxij(idx) -> (i,j)

Obtains information about an element in 𝐴. Since 𝐴 is a sparse matrix of symmetric matrices,
only the nonzero elements in 𝐴 are stored in order to save space. Now 𝐴 is stored vectorized i.e.
as one long vector. This function makes it possible to obtain information such as the row index
and the column index of a particular element of the vectorized form of 𝐴.

Please note that if one element of 𝐴 is inputted multiple times then it may be stored several times
in vectorized form. In that case the element with the highest index is the one that is used.

Parameters idx (int) – Position of the element in the vectorized form. (input)
Return

• i (int) – Row index of the element at position idx.
• j (int) – Column index of the element at position idx.

Groups Problem data - semidefinite, Inspecting the task

Task.getbaraidxinfo

getbaraidxinfo(idx) -> (num)

Each nonzero element in 𝐴𝑖𝑗 is formed as a weighted sum of symmetric matrices. Using this
function the number of terms in the weighted sum can be obtained. See description of Task.
appendsparsesymmat for details about the weighted sum.

Parameters idx (int) – The internal position of the element for which information
should be obtained. (input)

Return num (int) – Number of terms in the weighted sum that form the specified
element in 𝐴.

Groups Problem data - semidefinite, Inspecting the task

Task.getbarasparsity

getbarasparsity(idxij) -> (numnz)

getbarasparsity() -> (numnz,idxij)

The matrix 𝐴 is assumed to be a sparse matrix of symmetric matrices. This implies that many of
the elements in 𝐴 are likely to be zero matrices. Therefore, in order to save space, only nonzero
elements in 𝐴 are stored on vectorized form. This function is used to obtain the sparsity pattern
of 𝐴 and the position of each nonzero element in the vectorized form of 𝐴. From the index
detailed information about each nonzero 𝐴𝑖,𝑗 can be obtained using Task.getbaraidxinfo and
Task.getbaraidx .

Parameters idxij (int[]) – Position of each nonzero element in the vectorized form
of 𝐴. (output)

258

Return
• numnz (int) – Number of nonzero elements in 𝐴.
• idxij (int[]) – Position of each nonzero element in the vectorized form of 𝐴.

Groups Problem data - semidefinite, Inspecting the task

Task.getbarcblocktriplet

getbarcblocktriplet(subj,subk,subl,valjkl) -> (num)

getbarcblocktriplet() -> (num,subj,subk,subl,valjkl)

Obtains 𝐶 in block triplet form.

Parameters
• subj (int[]) – Symmetric matrix variable index. (output)
• subk (int[]) – Block row index. (output)
• subl (int[]) – Block column index. (output)
• valjkl (float[]) – The numerical value associated with each block triplet.

(output)
Return

• num (int) – Number of elements in the block triplet form.
• subj (int[]) – Symmetric matrix variable index.
• subk (int[]) – Block row index.
• subl (int[]) – Block column index.
• valjkl (float[]) – The numerical value associated with each block triplet.

Groups Problem data - semidefinite, Inspecting the task

Task.getbarcidx

getbarcidx(idx,sub,weights) -> (j,num)

getbarcidx(idx) -> (j,num,sub,weights)

Obtains information about an element in 𝐶.

Parameters
• idx (int) – Index of the element for which information should be obtained.

(input)
• sub (int[]) – Elements appearing the weighted sum. (output)
• weights (float[]) – Weights of terms in the weighted sum. (output)

Return
• j (int) – Row index in 𝐶.
• num (int) – Number of terms in the weighted sum.
• sub (int[]) – Elements appearing the weighted sum.
• weights (float[]) – Weights of terms in the weighted sum.

Groups Problem data - semidefinite, Inspecting the task

Task.getbarcidxinfo

getbarcidxinfo(idx) -> (num)

Obtains the number of terms in the weighted sum that forms a particular element in 𝐶.

Parameters idx (int) – Index of the element for which information should be obtained.
The value is an index of a symmetric sparse variable. (input)

259

Return num (int) – Number of terms that appear in the weighted sum that forms the
requested element.

Groups Problem data - semidefinite, Inspecting the task

Task.getbarcidxj

getbarcidxj(idx) -> (j)

Obtains the row index of an element in 𝐶.

Parameters idx (int) – Index of the element for which information should be obtained.
(input)

Return j (int) – Row index in 𝐶.
Groups Problem data - semidefinite, Inspecting the task

Task.getbarcsparsity

getbarcsparsity(idxj) -> (numnz)

getbarcsparsity() -> (numnz,idxj)

Internally only the nonzero elements of 𝐶 are stored in a vector. This function is used to obtain the
nonzero elements of 𝐶 and their indexes in the internal vector representation (in idx). From the
index detailed information about each nonzero 𝐶𝑗 can be obtained using Task.getbarcidxinfo
and Task.getbarcidx .

Parameters idxj (int[]) – Internal positions of the nonzeros elements in 𝐶. (output)
Return

• numnz (int) – Number of nonzero elements in 𝐶.
• idxj (int[]) – Internal positions of the nonzeros elements in 𝐶.

Groups Problem data - semidefinite, Inspecting the task

Task.getbarsj

getbarsj(whichsol,j,barsj)

getbarsj(whichsol,j) -> (barsj)

Obtains the dual solution for a semidefinite variable. Only the lower triangular part of 𝑆𝑗 is
returned because the matrix by construction is symmetric. The format is that the columns are
stored sequentially in the natural order.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• j (int) – Index of the semidefinite variable. (input)
• barsj (float[]) – Value of 𝑆𝑗 . (output)

Return barsj (float[]) – Value of 𝑆𝑗 .
Groups Solution - semidefinite

Task.getbarsslice

getbarsslice(whichsol,first,last,slicesize,barsslice)

getbarsslice(whichsol,first,last,slicesize) -> (barsslice)

260

Obtains the dual solution for a sequence of semidefinite variables. The format is that matrices are
stored sequentially, and in each matrix the columns are stored as in Task.getbarsj .

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – Index of the first semidefinite variable in the slice. (input)
• last (int) – Index of the last semidefinite variable in the slice plus one. (input)
• slicesize (int) – Denotes the length of the array barsslice. (input)
• barsslice (float[]) – Dual solution values of symmetric matrix variables in

the slice, stored sequentially. (output)
Return barsslice (float[]) – Dual solution values of symmetric matrix variables in

the slice, stored sequentially.
Groups Solution - semidefinite

Task.getbarvarname

getbarvarname(i) -> (name)

Obtains the name of a semidefinite variable.

Parameters i (int) – Index of the variable. (input)
Return name (str) – The requested name is copied to this buffer.
Groups Names, Inspecting the task

Task.getbarvarnameindex

getbarvarnameindex(somename) -> (asgn,index)

Obtains the index of semidefinite variable from its name.

Parameters somename (str) – The name of the variable. (input)
Return

• asgn (int) – Non-zero if the name somename is assigned to some semidefinite
variable.

• index (int) – The index of a semidefinite variable with the name somename (if
one exists).

Groups Names, Inspecting the task

Task.getbarvarnamelen

getbarvarnamelen(i) -> (len)

Obtains the length of the name of a semidefinite variable.

Parameters i (int) – Index of the variable. (input)
Return len (int) – Returns the length of the indicated name.
Groups Names, Inspecting the task

Task.getbarxj

getbarxj(whichsol,j,barxj)

getbarxj(whichsol,j) -> (barxj)

Obtains the primal solution for a semidefinite variable. Only the lower triangular part of 𝑋𝑗 is
returned because the matrix by construction is symmetric. The format is that the columns are
stored sequentially in the natural order.

261

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• j (int) – Index of the semidefinite variable. (input)
• barxj (float[]) – Value of 𝑋𝑗 . (output)

Return barxj (float[]) – Value of 𝑋𝑗 .
Groups Solution - semidefinite

Task.getbarxslice

getbarxslice(whichsol,first,last,slicesize,barxslice)

getbarxslice(whichsol,first,last,slicesize) -> (barxslice)

Obtains the primal solution for a sequence of semidefinite variables. The format is that matrices
are stored sequentially, and in each matrix the columns are stored as in Task.getbarxj .

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – Index of the first semidefinite variable in the slice. (input)
• last (int) – Index of the last semidefinite variable in the slice plus one. (input)
• slicesize (int) – Denotes the length of the array barxslice. (input)
• barxslice (float[]) – Solution values of symmetric matrix variables in the

slice, stored sequentially. (output)
Return barxslice (float[]) – Solution values of symmetric matrix variables in the

slice, stored sequentially.
Groups Solution - semidefinite

Task.getc

getc(c)

getc() -> (c)

Obtains all objective coefficients 𝑐.

Parameters c (float[]) – Linear terms of the objective as a dense vector. The length
is the number of variables. (output)

Return c (float[]) – Linear terms of the objective as a dense vector. The length is
the number of variables.

Groups Problem data - linear part , Inspecting the task , Problem data - variables

Task.getcfix

getcfix() -> (cfix)

Obtains the fixed term in the objective.

Return cfix (float) – Fixed term in the objective.
Groups Problem data - linear part , Inspecting the task

Task.getcj

getcj(j) -> (cj)

Obtains one coefficient of 𝑐.

262

Parameters j (int) – Index of the variable for which the 𝑐 coefficient should be ob-
tained. (input)

Return cj (float) – The value of 𝑐𝑗 .
Groups Problem data - linear part , Inspecting the task , Problem data - variables

Task.getclist

getclist(subj,c)

getclist(subj) -> (c)

Obtains a sequence of elements in 𝑐.

Parameters
• subj (int[]) – A list of variable indexes. (input)
• c (float[]) – Linear terms of the requested list of the objective as a dense

vector. (output)
Return c (float[]) – Linear terms of the requested list of the objective as a dense

vector.
Groups Inspecting the task , Problem data - linear part

Task.getconbound

getconbound(i) -> (bk,bl,bu)

Obtains bound information for one constraint.

Parameters i (int) – Index of the constraint for which the bound information should
be obtained. (input)

Return
• bk (mosek.boundkey) – Bound keys.
• bl (float) – Values for lower bounds.
• bu (float) – Values for upper bounds.

Groups Problem data - linear part , Inspecting the task , Problem data - bounds, Problem
data - constraints

Task.getconboundslice

getconboundslice(first,last,bk,bl,bu)

getconboundslice(first,last) -> (bk,bl,bu)

Obtains bounds information for a slice of the constraints.

Parameters
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• bk (mosek.boundkey []) – Bound keys. (output)
• bl (float[]) – Values for lower bounds. (output)
• bu (float[]) – Values for upper bounds. (output)

Return
• bk (mosek.boundkey []) – Bound keys.
• bl (float[]) – Values for lower bounds.
• bu (float[]) – Values for upper bounds.

263

Groups Problem data - linear part , Inspecting the task , Problem data - bounds, Problem
data - constraints

Task.getcone Deprecated

getcone(k,submem) -> (ct,conepar,nummem)

getcone(k) -> (ct,conepar,nummem,submem)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Parameters
• k (int) – Index of the cone. (input)
• submem (int[]) – Variable subscripts of the members in the cone. (output)

Return
• ct (mosek.conetype) – Specifies the type of the cone.
• conepar (float) – For the power cone it denotes the exponent alpha. For other

cone types it is unused and can be set to 0.
• nummem (int) – Number of member variables in the cone.
• submem (int[]) – Variable subscripts of the members in the cone.

Groups Inspecting the task , Problem data - cones (deprecated)

Task.getconeinfo Deprecated

getconeinfo(k) -> (ct,conepar,nummem)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Parameters k (int) – Index of the cone. (input)
Return

• ct (mosek.conetype) – Specifies the type of the cone.
• conepar (float) – For the power cone it denotes the exponent alpha. For other

cone types it is unused and can be set to 0.
• nummem (int) – Number of member variables in the cone.

Groups Inspecting the task , Problem data - cones (deprecated)

Task.getconename Deprecated

getconename(i) -> (name)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Parameters i (int) – Index of the cone. (input)
Return name (str) – The required name.
Groups Names, Problem data - cones (deprecated), Inspecting the task

Task.getconenameindex Deprecated

264

getconenameindex(somename) -> (asgn,index)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Checks whether the name somename has been assigned to any cone. If it has been assigned to a
cone, then the index of the cone is reported.

Parameters somename (str) – The name which should be checked. (input)
Return

• asgn (int) – Is non-zero if the name somename is assigned to some cone.
• index (int) – If the name somename is assigned to some cone, then index is the

index of the cone.
Groups Names, Problem data - cones (deprecated), Inspecting the task

Task.getconenamelen Deprecated

getconenamelen(i) -> (len)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Parameters i (int) – Index of the cone. (input)
Return len (int) – Returns the length of the indicated name.
Groups Names, Problem data - cones (deprecated), Inspecting the task

Task.getconname

getconname(i) -> (name)

Obtains the name of a constraint.

Parameters i (int) – Index of the constraint. (input)
Return name (str) – The required name.
Groups Names, Problem data - linear part , Problem data - constraints, Inspecting the

task

Task.getconnameindex

getconnameindex(somename) -> (asgn,index)

Checks whether the name somename has been assigned to any constraint. If so, the index of the
constraint is reported.

Parameters somename (str) – The name which should be checked. (input)
Return

• asgn (int) – Is non-zero if the name somename is assigned to some constraint.
• index (int) – If the name somename is assigned to a constraint, then index is

the index of the constraint.
Groups Names, Problem data - linear part , Problem data - constraints, Inspecting the

task

Task.getconnamelen

265

getconnamelen(i) -> (len)

Obtains the length of the name of a constraint.

Parameters i (int) – Index of the constraint. (input)
Return len (int) – Returns the length of the indicated name.
Groups Names, Problem data - linear part , Problem data - constraints, Inspecting the

task

Task.getcslice

getcslice(first,last,c)

getcslice(first,last) -> (c)

Obtains a sequence of elements in 𝑐.

Parameters
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• c (float[]) – Linear terms of the requested slice of the objective as a dense

vector. The length is last-first. (output)
Return c (float[]) – Linear terms of the requested slice of the objective as a dense

vector. The length is last-first.
Groups Inspecting the task , Problem data - linear part

Task.getdimbarvarj

getdimbarvarj(j) -> (dimbarvarj)

Obtains the dimension of a symmetric matrix variable.

Parameters j (int) – Index of the semidefinite variable whose dimension is requested.
(input)

Return dimbarvarj (int) – The dimension of the 𝑗-th semidefinite variable.
Groups Inspecting the task , Problem data - semidefinite

Task.getdjcafeidxlist

getdjcafeidxlist(djcidx,afeidxlist)

getdjcafeidxlist(djcidx) -> (afeidxlist)

Obtains the list of affine expression indexes in a disjunctive constraint.

Parameters
• djcidx (int) – Index of the disjunctive constraint. (input)
• afeidxlist (int[]) – List of affine expression indexes. (output)

Return afeidxlist (int[]) – List of affine expression indexes.
Groups Problem data - disjunctive constraints, Inspecting the task

Task.getdjcb

getdjcb(djcidx,b)

266

getdjcb(djcidx) -> (b)

Obtains the optional constant term vector of a disjunctive constraint.

Parameters
• djcidx (int) – Index of the disjunctive constraint. (input)
• b (float[]) – The vector b. (output)

Return b (float[]) – The vector b.
Groups Problem data - disjunctive constraints, Inspecting the task

Task.getdjcdomainidxlist

getdjcdomainidxlist(djcidx,domidxlist)

getdjcdomainidxlist(djcidx) -> (domidxlist)

Obtains the list of domain indexes in a disjunctive constraint.

Parameters
• djcidx (int) – Index of the disjunctive constraint. (input)
• domidxlist (int[]) – List of term sizes. (output)

Return domidxlist (int[]) – List of term sizes.
Groups Problem data - disjunctive constraints, Inspecting the task

Task.getdjcname

getdjcname(djcidx) -> (name)

Obtains the name of a disjunctive constraint.

Parameters djcidx (int) – Index of a disjunctive constraint. (input)
Return name (str) – Returns the required name.
Groups Names, Problem data - disjunctive constraints, Inspecting the task

Task.getdjcnamelen

getdjcnamelen(djcidx) -> (len)

Obtains the length of the name of a disjunctive constraint.

Parameters djcidx (int) – Index of a disjunctive constraint. (input)
Return len (int) – Returns the length of the indicated name.
Groups Names, Problem data - disjunctive constraints, Inspecting the task

Task.getdjcnumafe

getdjcnumafe(djcidx) -> (numafe)

Obtains the number of affine expressions in the disjunctive constraint.

Parameters djcidx (int) – Index of the disjunctive constraint. (input)
Return numafe (int) – Number of affine expressions in the disjunctive constraint.
Groups Problem data - disjunctive constraints, Inspecting the task

Task.getdjcnumafetot

267

getdjcnumafetot() -> (numafetot)

Obtains the total number of affine expressions in all disjunctive constraints.

Return numafetot (int) – Number of affine expressions in all disjunctive constraints.
Groups Problem data - disjunctive constraints, Inspecting the task

Task.getdjcnumdomain

getdjcnumdomain(djcidx) -> (numdomain)

Obtains the number of domains in the disjunctive constraint.

Parameters djcidx (int) – Index of the disjunctive constraint. (input)
Return numdomain (int) – Number of domains in the disjunctive constraint.
Groups Problem data - disjunctive constraints, Inspecting the task

Task.getdjcnumdomaintot

getdjcnumdomaintot() -> (numdomaintot)

Obtains the total number of domains in all disjunctive constraints.

Return numdomaintot (int) – Number of domains in all disjunctive constraints.
Groups Problem data - disjunctive constraints, Inspecting the task

Task.getdjcnumterm

getdjcnumterm(djcidx) -> (numterm)

Obtains the number terms in the disjunctive constraint.

Parameters djcidx (int) – Index of the disjunctive constraint. (input)
Return numterm (int) – Number of terms in the disjunctive constraint.
Groups Problem data - disjunctive constraints, Inspecting the task

Task.getdjcnumtermtot

getdjcnumtermtot() -> (numtermtot)

Obtains the total number of terms in all disjunctive constraints.

Return numtermtot (int) – Total number of terms in all disjunctive constraints.
Groups Problem data - disjunctive constraints, Inspecting the task

Task.getdjcs

getdjcs(domidxlist,
afeidxlist,
b,
termsizelist,
numterms)

268

getdjcs() ->
(domidxlist,
afeidxlist,
b,
termsizelist,
numterms)

Obtains full data of all disjunctive constraints. The output arrays must have minimal lengths de-
termined by the following methods: domainidxlist by Task.getdjcnumdomaintot , afeidxlist
and b by Task.getdjcnumafetot , termsizelist by Task.getdjcnumtermtot and numterms by
Task.getnumdomain .

Parameters
• domidxlist (int[]) – The concatenation of index lists of domains appearing in

all disjunctive constraints. (output)
• afeidxlist (int[]) – The concatenation of index lists of affine expressions

appearing in all disjunctive constraints. (output)
• b (float[]) – The concatenation of vectors b appearing in all disjunctive con-

straints. (output)
• termsizelist (int[]) – The concatenation of lists of term sizes appearing in

all disjunctive constraints. (output)
• numterms (int[]) – The number of terms in each of the disjunctive constraints.

(output)
Return

• domidxlist (int[]) – The concatenation of index lists of domains appearing in
all disjunctive constraints.

• afeidxlist (int[]) – The concatenation of index lists of affine expressions
appearing in all disjunctive constraints.

• b (float[]) – The concatenation of vectors b appearing in all disjunctive con-
straints.

• termsizelist (int[]) – The concatenation of lists of term sizes appearing in
all disjunctive constraints.

• numterms (int[]) – The number of terms in each of the disjunctive constraints.
Groups Problem data - disjunctive constraints, Inspecting the task

Task.getdjctermsizelist

getdjctermsizelist(djcidx,termsizelist)

getdjctermsizelist(djcidx) -> (termsizelist)

Obtains the list of term sizes in a disjunctive constraint.

Parameters
• djcidx (int) – Index of the disjunctive constraint. (input)
• termsizelist (int[]) – List of term sizes. (output)

Return termsizelist (int[]) – List of term sizes.
Groups Problem data - disjunctive constraints, Inspecting the task

Task.getdomainn

getdomainn(domidx) -> (n)

Obtains the dimension of the domain.

Parameters domidx (int) – Index of the domain. (input)

269

Return n (int) – Dimension of the domain.
Groups Problem data - domain, Inspecting the task

Task.getdomainname

getdomainname(domidx) -> (name)

Obtains the name of a domain.

Parameters domidx (int) – Index of a domain. (input)
Return name (str) – Returns the required name.
Groups Names, Problem data - domain, Inspecting the task

Task.getdomainnamelen

getdomainnamelen(domidx) -> (len)

Obtains the length of the name of a domain.

Parameters domidx (int) – Index of a domain. (input)
Return len (int) – Returns the length of the indicated name.
Groups Names, Problem data - domain, Inspecting the task

Task.getdomaintype

getdomaintype(domidx) -> (domtype)

Returns the type of the domain.

Parameters domidx (int) – Index of the domain. (input)
Return domtype (mosek.domaintype) – The type of the domain.
Groups Problem data - domain, Inspecting the task

Task.getdouinf

getdouinf(whichdinf) -> (dvalue)

Obtains a double information item from the task information database.

Parameters whichdinf (mosek.dinfitem) – Specifies a double information item. (in-
put)

Return dvalue (float) – The value of the required double information item.
Groups Information items and statistics

Task.getdouparam

getdouparam(param) -> (parvalue)

Obtains the value of a double parameter.

Parameters param (mosek.dparam) – Which parameter. (input)
Return parvalue (float) – Parameter value.
Groups Parameters

Task.getdualobj

270

getdualobj(whichsol) -> (dualobj)

Computes the dual objective value associated with the solution. Note that if the solution is a
primal infeasibility certificate, then the fixed term in the objective value is not included.

Moreover, since there is no dual solution associated with an integer solution, an error will be
reported if the dual objective value is requested for the integer solution.

Parameters whichsol (mosek.soltype) – Selects a solution. (input)
Return dualobj (float) – Objective value corresponding to the dual solution.
Groups Solution information, Solution - dual

Task.getdualsolutionnorms

getdualsolutionnorms(whichsol) ->
(nrmy,
nrmslc,
nrmsuc,
nrmslx,
nrmsux,
nrmsnx,
nrmbars)

Compute norms of the dual solution.

Parameters whichsol (mosek.soltype) – Selects a solution. (input)
Return

• nrmy (float) – The norm of the 𝑦 vector.
• nrmslc (float) – The norm of the 𝑠𝑐𝑙 vector.
• nrmsuc (float) – The norm of the 𝑠𝑐𝑢 vector.
• nrmslx (float) – The norm of the 𝑠𝑥𝑙 vector.
• nrmsux (float) – The norm of the 𝑠𝑥𝑢 vector.
• nrmsnx (float) – The norm of the 𝑠𝑥𝑛 vector.
• nrmbars (float) – The norm of the 𝑆 vector.

Groups Solution information

Task.getdviolacc

getdviolacc(whichsol,accidxlist,viol)

getdviolacc(whichsol,accidxlist) -> (viol)

Let (𝑠𝑥𝑛)* be the value of variable (𝑠𝑥𝑛) for the specified solution. For simplicity let us assume that
𝑠𝑥𝑛 is a member of a quadratic cone, then the violation is computed as follows{︂

max(0, (‖𝑠𝑥𝑛‖*2:𝑛 − (𝑠𝑥𝑛)*1)/
√

2, (𝑠𝑥𝑛)* ≥ −‖(𝑠𝑥𝑛)*2:𝑛‖,
‖(𝑠𝑥𝑛)*‖, otherwise.

Both when the solution is a certificate of primal infeasibility or when it is a dual feasible solution
the violation should be small.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• accidxlist (int[]) – An array of indexes of conic constraints. (input)
• viol (float[]) – viol[k] is the violation of the dual solution associated with

the conic constraint sub[k]. (output)

271

Return viol (float[]) – viol[k] is the violation of the dual solution associated with
the conic constraint sub[k].

Groups Solution information

Task.getdviolbarvar

getdviolbarvar(whichsol,sub,viol)

getdviolbarvar(whichsol,sub) -> (viol)

Let (𝑆𝑗)
* be the value of variable 𝑆𝑗 for the specified solution. Then the dual violation of the

solution associated with variable 𝑆𝑗 is given by

max(−𝜆min(𝑆𝑗), 0.0).

Both when the solution is a certificate of primal infeasibility and when it is dual feasible solution
the violation should be small.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• sub (int[]) – An array of indexes of 𝑋 variables. (input)
• viol (float[]) – viol[k] is the violation of the solution for the constraint
𝑆sub[𝑘] ∈ 𝒮+. (output)

Return viol (float[]) – viol[k] is the violation of the solution for the constraint
𝑆sub[𝑘] ∈ 𝒮+.

Groups Solution information

Task.getdviolcon

getdviolcon(whichsol,sub,viol)

getdviolcon(whichsol,sub) -> (viol)

The violation of the dual solution associated with the 𝑖-th constraint is computed as follows

max(𝜌((𝑠𝑐𝑙)
*
𝑖 , (𝑏

𝑐
𝑙)𝑖), 𝜌((𝑠𝑐𝑢)*𝑖 ,−(𝑏𝑐𝑢)𝑖), | − 𝑦𝑖 + (𝑠𝑐𝑙)

*
𝑖 − (𝑠𝑐𝑢)*𝑖 |)

where

𝜌(𝑥, 𝑙) =

{︂
−𝑥, 𝑙 > −∞,
|𝑥|, otherwise.

Both when the solution is a certificate of primal infeasibility or it is a dual feasible solution the
violation should be small.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• sub (int[]) – An array of indexes of constraints. (input)
• viol (float[]) – viol[k] is the violation of dual solution associated with the

constraint sub[k]. (output)
Return viol (float[]) – viol[k] is the violation of dual solution associated with the

constraint sub[k].
Groups Solution information

Task.getdviolcones Deprecated

272

getdviolcones(whichsol,sub,viol)

getdviolcones(whichsol,sub) -> (viol)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Let (𝑠𝑥𝑛)* be the value of variable (𝑠𝑥𝑛) for the specified solution. For simplicity let us assume that
𝑠𝑥𝑛 is a member of a quadratic cone, then the violation is computed as follows{︂

max(0, (‖𝑠𝑥𝑛‖*2:𝑛 − (𝑠𝑥𝑛)*1)/
√

2, (𝑠𝑥𝑛)* ≥ −‖(𝑠𝑥𝑛)*2:𝑛‖,
‖(𝑠𝑥𝑛)*‖, otherwise.

Both when the solution is a certificate of primal infeasibility or when it is a dual feasible solution
the violation should be small.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• sub (int[]) – An array of indexes of conic constraints. (input)
• viol (float[]) – viol[k] is the violation of the dual solution associated with

the conic constraint sub[k]. (output)
Return viol (float[]) – viol[k] is the violation of the dual solution associated with

the conic constraint sub[k].
Groups Solution information

Task.getdviolvar

getdviolvar(whichsol,sub,viol)

getdviolvar(whichsol,sub) -> (viol)

The violation of the dual solution associated with the 𝑗-th variable is computed as follows

max

(︃
𝜌((𝑠𝑥𝑙)*𝑗 , (𝑏

𝑥
𝑙)𝑗), 𝜌((𝑠𝑥𝑢)*𝑗 ,−(𝑏𝑥𝑢)𝑗), |

𝑛𝑢𝑚𝑐𝑜𝑛−1∑︁
𝑖=0

𝑎𝑖𝑗𝑦𝑖 + (𝑠𝑥𝑙)*𝑗 − (𝑠𝑥𝑢)*𝑗 − 𝜏𝑐𝑗 |

)︃

where

𝜌(𝑥, 𝑙) =

{︂
−𝑥, 𝑙 > −∞,
|𝑥|, otherwise

and 𝜏 = 0 if the solution is a certificate of primal infeasibility and 𝜏 = 1 otherwise. The formula
for computing the violation is only shown for the linear case but is generalized appropriately for
the more general problems. Both when the solution is a certificate of primal infeasibility or when
it is a dual feasible solution the violation should be small.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• sub (int[]) – An array of indexes of 𝑥 variables. (input)
• viol (float[]) – viol[k] is the violation of dual solution associated with the

variable sub[k]. (output)
Return viol (float[]) – viol[k] is the violation of dual solution associated with the

variable sub[k].
Groups Solution information

Task.getinfeasiblesubproblem

273

getinfeasiblesubproblem(whichsol) -> (inftask)

Given the solution is a certificate of primal or dual infeasibility then a primal or dual infeasible
subproblem is obtained respectively. The subproblem tends to be much smaller than the original
problem and hence it is easier to locate the infeasibility inspecting the subproblem than the original
problem.

For the procedure to be useful it is important to assign meaningful names to constraints, variables
etc. in the original task because those names will be duplicated in the subproblem.

The function is only applicable to linear and conic quadratic optimization problems.

For more information see Sec. 8.3 and Sec. 14.2.

Parameters whichsol (mosek.soltype) – Which solution to use when determining
the infeasible subproblem. (input)

Return inftask (mosek.Task) – A new task containing the infeasible subproblem.
Groups Infeasibility diagnostic

Task.getintinf

getintinf(whichiinf) -> (ivalue)

Obtains an integer information item from the task information database.

Parameters whichiinf (mosek.iinfitem) – Specifies an integer information item. (in-
put)

Return ivalue (int) – The value of the required integer information item.
Groups Information items and statistics

Task.getintparam

getintparam(param) -> (parvalue)

Obtains the value of an integer parameter.

Parameters param (mosek.iparam) – Which parameter. (input)
Return parvalue (int) – Parameter value.
Groups Parameters

Task.getlenbarvarj

getlenbarvarj(j) -> (lenbarvarj)

Obtains the length of the 𝑗-th semidefinite variable i.e. the number of elements in the lower
triangular part.

Parameters j (int) – Index of the semidefinite variable whose length if requested.
(input)

Return lenbarvarj (int) – Number of scalar elements in the lower triangular part of
the semidefinite variable.

Groups Inspecting the task , Problem data - semidefinite

Task.getlintinf

getlintinf(whichliinf) -> (ivalue)

Obtains a long integer information item from the task information database.

274

Parameters whichliinf (mosek.liinfitem) – Specifies a long information item. (in-
put)

Return ivalue (int) – The value of the required long integer information item.
Groups Information items and statistics

Task.getmaxnumanz

getmaxnumanz() -> (maxnumanz)

Obtains number of preallocated non-zeros in 𝐴. When this number of non-zeros is reached
MOSEK will automatically allocate more space for 𝐴.

Return maxnumanz (int) – Number of preallocated non-zero linear matrix elements.
Groups Inspecting the task , Problem data - linear part

Task.getmaxnumbarvar

getmaxnumbarvar() -> (maxnumbarvar)

Obtains maximum number of symmetric matrix variables for which space is currently preallocated.

Return maxnumbarvar (int) – Maximum number of symmetric matrix variables for
which space is currently preallocated.

Groups Inspecting the task , Problem data - semidefinite

Task.getmaxnumcon

getmaxnumcon() -> (maxnumcon)

Obtains the number of preallocated constraints in the optimization task. When this number of
constraints is reached MOSEK will automatically allocate more space for constraints.

Return maxnumcon (int) – Number of preallocated constraints in the optimization task.
Groups Inspecting the task , Problem data - linear part , Problem data - constraints

Task.getmaxnumcone Deprecated

getmaxnumcone() -> (maxnumcone)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Obtains the number of preallocated cones in the optimization task. When this number of cones is
reached MOSEK will automatically allocate space for more cones.

Return maxnumcone (int) – Number of preallocated conic constraints in the optimiza-
tion task.

Groups Inspecting the task , Problem data - cones (deprecated)

Task.getmaxnumqnz

getmaxnumqnz() -> (maxnumqnz)

Obtains the number of preallocated non-zeros for 𝑄 (both objective and constraints). When this
number of non-zeros is reached MOSEK will automatically allocate more space for 𝑄.

Return maxnumqnz (int) – Number of non-zero elements preallocated in quadratic co-
efficient matrices.

275

Groups Inspecting the task , Problem data - quadratic part

Task.getmaxnumvar

getmaxnumvar() -> (maxnumvar)

Obtains the number of preallocated variables in the optimization task. When this number of
variables is reached MOSEK will automatically allocate more space for variables.

Return maxnumvar (int) – Number of preallocated variables in the optimization task.
Groups Inspecting the task , Problem data - linear part , Problem data - variables

Task.getmemusage

getmemusage() -> (meminuse,maxmemuse)

Obtains information about the amount of memory used by a task.

Return
• meminuse (int) – Amount of memory currently used by the task.
• maxmemuse (int) – Maximum amount of memory used by the task until now.

Groups System, memory and debugging

Task.getnumacc

getnumacc() -> (num)

Obtains the number of affine conic constraints.

Return num (int) – The number of affine conic constraints.
Groups Problem data - affine conic constraints, Inspecting the task

Task.getnumafe

getnumafe() -> (numafe)

Obtains the number of affine expressions.

Return numafe (int) – Number of affine expressions.
Groups Problem data - affine expressions, Inspecting the task

Task.getnumanz

getnumanz() -> (numanz)

Obtains the number of non-zeros in 𝐴.

Return numanz (int) – Number of non-zero elements in the linear constraint matrix.
Groups Inspecting the task , Problem data - linear part

Task.getnumanz64

getnumanz64() -> (numanz)

Obtains the number of non-zeros in 𝐴.

Return numanz (int) – Number of non-zero elements in the linear constraint matrix.

276

Groups Inspecting the task , Problem data - linear part

Task.getnumbarablocktriplets

getnumbarablocktriplets() -> (num)

Obtains an upper bound on the number of elements in the block triplet form of 𝐴.

Return num (int) – An upper bound on the number of elements in the block triplet
form of 𝐴.

Groups Problem data - semidefinite, Inspecting the task

Task.getnumbaranz

getnumbaranz() -> (nz)

Get the number of nonzero elements in 𝐴.

Return nz (int) – The number of nonzero block elements in 𝐴 i.e. the number of 𝐴𝑖𝑗

elements that are nonzero.
Groups Problem data - semidefinite, Inspecting the task

Task.getnumbarcblocktriplets

getnumbarcblocktriplets() -> (num)

Obtains an upper bound on the number of elements in the block triplet form of 𝐶.

Return num (int) – An upper bound on the number of elements in the block triplet
form of 𝐶.

Groups Problem data - semidefinite, Inspecting the task

Task.getnumbarcnz

getnumbarcnz() -> (nz)

Obtains the number of nonzero elements in 𝐶.

Return nz (int) – The number of nonzeros in 𝐶 i.e. the number of elements 𝐶𝑗 that
are nonzero.

Groups Problem data - semidefinite, Inspecting the task

Task.getnumbarvar

getnumbarvar() -> (numbarvar)

Obtains the number of semidefinite variables.

Return numbarvar (int) – Number of semidefinite variables in the problem.
Groups Inspecting the task , Problem data - semidefinite

Task.getnumcon

getnumcon() -> (numcon)

Obtains the number of constraints.

Return numcon (int) – Number of constraints.

277

Groups Problem data - linear part , Problem data - constraints, Inspecting the task

Task.getnumcone Deprecated

getnumcone() -> (numcone)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Return numcone (int) – Number of conic constraints.
Groups Problem data - cones (deprecated), Inspecting the task

Task.getnumconemem Deprecated

getnumconemem(k) -> (nummem)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Parameters k (int) – Index of the cone. (input)
Return nummem (int) – Number of member variables in the cone.
Groups Problem data - cones (deprecated), Inspecting the task

Task.getnumdjc

getnumdjc() -> (num)

Obtains the number of disjunctive constraints.

Return num (int) – The number of disjunctive constraints.
Groups Problem data - disjunctive constraints, Inspecting the task

Task.getnumdomain

getnumdomain() -> (numdomain)

Obtain the number of domains defined.

Return numdomain (int) – Number of domains in the task.
Groups Inspecting the task , Problem data - domain

Task.getnumintvar

getnumintvar() -> (numintvar)

Obtains the number of integer-constrained variables.

Return numintvar (int) – Number of integer variables.
Groups Inspecting the task , Problem data - variables

Task.getnumparam

getnumparam(partype) -> (numparam)

Obtains the number of parameters of a given type.

278

Parameters partype (mosek.parametertype) – Parameter type. (input)
Return numparam (int) – The number of parameters of type partype.
Groups Inspecting the task , Parameters

Task.getnumqconknz

getnumqconknz(k) -> (numqcnz)

Obtains the number of non-zero quadratic terms in a constraint.

Parameters k (int) – Index of the constraint for which the number quadratic terms
should be obtained. (input)

Return numqcnz (int) – Number of quadratic terms.
Groups Inspecting the task , Problem data - constraints, Problem data - quadratic part

Task.getnumqobjnz

getnumqobjnz() -> (numqonz)

Obtains the number of non-zero quadratic terms in the objective.

Return numqonz (int) – Number of non-zero elements in the quadratic objective terms.
Groups Inspecting the task , Problem data - quadratic part

Task.getnumsymmat

getnumsymmat() -> (num)

Obtains the number of symmetric matrices stored in the vector 𝐸.

Return num (int) – The number of symmetric sparse matrices.
Groups Problem data - semidefinite, Inspecting the task

Task.getnumvar

getnumvar() -> (numvar)

Obtains the number of variables.

Return numvar (int) – Number of variables.
Groups Inspecting the task , Problem data - variables

Task.getobjname

getobjname() -> (objname)

Obtains the name assigned to the objective function.

Return objname (str) – Assigned the objective name.
Groups Inspecting the task , Names

Task.getobjnamelen

getobjnamelen() -> (len)

Obtains the length of the name assigned to the objective function.

279

Return len (int) – Assigned the length of the objective name.
Groups Inspecting the task , Names

Task.getobjsense

getobjsense() -> (sense)

Gets the objective sense of the task.

Return sense (mosek.objsense) – The returned objective sense.
Groups Problem data - linear part

Task.getpowerdomainalpha

getpowerdomainalpha(domidx,alpha)

getpowerdomainalpha(domidx) -> (alpha)

Obtains the exponent vector 𝛼 of a primal or dual power cone domain.

Parameters
• domidx (int) – Index of the domain. (input)
• alpha (float[]) – The vector 𝛼. (output)

Return alpha (float[]) – The vector 𝛼.
Groups Problem data - domain, Inspecting the task

Task.getpowerdomaininfo

getpowerdomaininfo(domidx) -> (n,nleft)

Obtains structural information about a primal or dual power cone domain.

Parameters domidx (int) – Index of the domain. (input)
Return

• n (int) – Dimension of the domain.
• nleft (int) – Number of variables on the left hand side.

Groups Problem data - domain, Inspecting the task

Task.getprimalobj

getprimalobj(whichsol) -> (primalobj)

Computes the primal objective value for the desired solution. Note that if the solution is an
infeasibility certificate, then the fixed term in the objective is not included.

Parameters whichsol (mosek.soltype) – Selects a solution. (input)
Return primalobj (float) – Objective value corresponding to the primal solution.
Groups Solution information, Solution - primal

Task.getprimalsolutionnorms

getprimalsolutionnorms(whichsol) -> (nrmxc,nrmxx,nrmbarx)

Compute norms of the primal solution.

Parameters whichsol (mosek.soltype) – Selects a solution. (input)

280

Return
• nrmxc (float) – The norm of the 𝑥𝑐 vector.
• nrmxx (float) – The norm of the 𝑥 vector.
• nrmbarx (float) – The norm of the 𝑋 vector.

Groups Solution information

Task.getprobtype

getprobtype() -> (probtype)

Obtains the problem type.

Return probtype (mosek.problemtype) – The problem type.
Groups Inspecting the task

Task.getprosta

getprosta(whichsol) -> (problemsta)

Obtains the problem status.

Parameters whichsol (mosek.soltype) – Selects a solution. (input)
Return problemsta (mosek.prosta) – Problem status.
Groups Solution information

Task.getpviolacc

getpviolacc(whichsol,accidxlist,viol)

getpviolacc(whichsol,accidxlist) -> (viol)

Computes the primal solution violation for a set of affine conic constraints. Let 𝑥* be the value
of the variable 𝑥 for the specified solution. For simplicity let us assume that 𝑥 is a member of a
quadratic cone, then the violation is computed as follows{︂

max(0, ‖𝑥2:𝑛‖ − 𝑥1)/
√

2, 𝑥1 ≥ −‖𝑥2:𝑛‖,
‖𝑥‖, otherwise.

Both when the solution is a certificate of dual infeasibility or when it is primal feasible the violation
should be small.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• accidxlist (int[]) – An array of indexes of conic constraints. (input)
• viol (float[]) – viol[k] is the violation of the solution associated with the

affine conic constraint number accidxlist[k]. (output)
Return viol (float[]) – viol[k] is the violation of the solution associated with the

affine conic constraint number accidxlist[k].
Groups Solution information

Task.getpviolbarvar

getpviolbarvar(whichsol,sub,viol)

281

getpviolbarvar(whichsol,sub) -> (viol)

Computes the primal solution violation for a set of semidefinite variables. Let (𝑋𝑗)
* be the value

of the variable 𝑋𝑗 for the specified solution. Then the primal violation of the solution associated
with variable 𝑋𝑗 is given by

max(−𝜆min(𝑋𝑗), 0.0).

Both when the solution is a certificate of dual infeasibility or when it is primal feasible the violation
should be small.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• sub (int[]) – An array of indexes of 𝑋 variables. (input)
• viol (float[]) – viol[k] is how much the solution violates the constraint
𝑋sub[𝑘] ∈ 𝒮+. (output)

Return viol (float[]) – viol[k] is how much the solution violates the constraint
𝑋sub[𝑘] ∈ 𝒮+.

Groups Solution information

Task.getpviolcon

getpviolcon(whichsol,sub,viol)

getpviolcon(whichsol,sub) -> (viol)

Computes the primal solution violation for a set of constraints. The primal violation of the solution
associated with the 𝑖-th constraint is given by

max(𝜏 𝑙𝑐𝑖 − (𝑥𝑐
𝑖)

*, (𝑥𝑐
𝑖)

* − 𝜏𝑢𝑐
𝑖), |

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑗=0

𝑎𝑖𝑗𝑥
*
𝑗 − 𝑥𝑐

𝑖 |)

where 𝜏 = 0 if the solution is a certificate of dual infeasibility and 𝜏 = 1 otherwise. Both when
the solution is a certificate of dual infeasibility and when it is primal feasible the violation should
be small. The above formula applies for the linear case but is appropriately generalized in other
cases.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• sub (int[]) – An array of indexes of constraints. (input)
• viol (float[]) – viol[k] is the violation associated with the solution for the

constraint sub[k]. (output)
Return viol (float[]) – viol[k] is the violation associated with the solution for the

constraint sub[k].
Groups Solution information

Task.getpviolcones Deprecated

getpviolcones(whichsol,sub,viol)

getpviolcones(whichsol,sub) -> (viol)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

282

Computes the primal solution violation for a set of conic constraints. Let 𝑥* be the value of the
variable 𝑥 for the specified solution. For simplicity let us assume that 𝑥 is a member of a quadratic
cone, then the violation is computed as follows{︂

max(0, ‖𝑥2:𝑛‖ − 𝑥1)/
√

2, 𝑥1 ≥ −‖𝑥2:𝑛‖,
‖𝑥‖, otherwise.

Both when the solution is a certificate of dual infeasibility or when it is primal feasible the violation
should be small.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• sub (int[]) – An array of indexes of conic constraints. (input)
• viol (float[]) – viol[k] is the violation of the solution associated with the

conic constraint number sub[k]. (output)
Return viol (float[]) – viol[k] is the violation of the solution associated with the

conic constraint number sub[k].
Groups Solution information

Task.getpvioldjc

getpvioldjc(whichsol,djcidxlist,viol)

getpvioldjc(whichsol,djcidxlist) -> (viol)

Computes the primal solution violation for a set of disjunctive constraints. For a single DJC the
violation is defined as

viol

⎛⎝ 𝑡⋁︁
𝑖=1

𝑠𝑖⋀︁
𝑗=1

𝑇𝑖,𝑗

⎞⎠ = min
𝑖=1,...,𝑡

(︂
max

𝑗=1,...,𝑠𝑗
(viol(𝑇𝑖,𝑗))

)︂

where the violation of each simple term 𝑇𝑖,𝑗 is defined as for an ordinary linear constraint.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• djcidxlist (int[]) – An array of indexes of disjunctive constraints. (input)
• viol (float[]) – viol[k] is the violation of the solution associated with the

disjunctive constraint number djcidxlist[k]. (output)
Return viol (float[]) – viol[k] is the violation of the solution associated with the

disjunctive constraint number djcidxlist[k].
Groups Solution information

Task.getpviolvar

getpviolvar(whichsol,sub,viol)

getpviolvar(whichsol,sub) -> (viol)

Computes the primal solution violation associated to a set of variables. Let 𝑥*
𝑗 be the value of 𝑥𝑗

for the specified solution. Then the primal violation of the solution associated with variable 𝑥𝑗 is
given by

max(𝜏 𝑙𝑥𝑗 − 𝑥*
𝑗 , 𝑥*

𝑗 − 𝜏𝑢𝑥
𝑗 , 0).

where 𝜏 = 0 if the solution is a certificate of dual infeasibility and 𝜏 = 1 otherwise. Both when the
solution is a certificate of dual infeasibility and when it is primal feasible the violation should be
small.

283

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• sub (int[]) – An array of indexes of 𝑥 variables. (input)
• viol (float[]) – viol[k] is the violation associated with the solution for the

variable 𝑥sub[k]. (output)
Return viol (float[]) – viol[k] is the violation associated with the solution for the

variable 𝑥sub[k].
Groups Solution information

Task.getqconk

getqconk(k,qcsubi,qcsubj,qcval) -> (numqcnz)

getqconk(k) -> (numqcnz,qcsubi,qcsubj,qcval)

Obtains all the quadratic terms in a constraint. The quadratic terms are stored sequentially in
qcsubi, qcsubj, and qcval.

Parameters
• k (int) – Which constraint. (input)
• qcsubi (int[]) – Row subscripts for quadratic constraint matrix. (output)
• qcsubj (int[]) – Column subscripts for quadratic constraint matrix. (output)
• qcval (float[]) – Quadratic constraint coefficient values. (output)

Return
• numqcnz (int) – Number of quadratic terms.
• qcsubi (int[]) – Row subscripts for quadratic constraint matrix.
• qcsubj (int[]) – Column subscripts for quadratic constraint matrix.
• qcval (float[]) – Quadratic constraint coefficient values.

Groups Inspecting the task , Problem data - quadratic part , Problem data - constraints

Task.getqobj

getqobj(qosubi,qosubj,qoval) -> (numqonz)

getqobj() -> (numqonz,qosubi,qosubj,qoval)

Obtains the quadratic terms in the objective. The required quadratic terms are stored sequentially
in qosubi, qosubj, and qoval.

Parameters
• qosubi (int[]) – Row subscripts for quadratic objective coefficients. (output)
• qosubj (int[]) – Column subscripts for quadratic objective coefficients. (out-

put)
• qoval (float[]) – Quadratic objective coefficient values. (output)

Return
• numqonz (int) – Number of non-zero elements in the quadratic objective terms.
• qosubi (int[]) – Row subscripts for quadratic objective coefficients.
• qosubj (int[]) – Column subscripts for quadratic objective coefficients.
• qoval (float[]) – Quadratic objective coefficient values.

Groups Inspecting the task , Problem data - quadratic part

Task.getqobjij

284

getqobjij(i,j) -> (qoij)

Obtains one coefficient 𝑞𝑜𝑖𝑗 in the quadratic term of the objective.

Parameters
• i (int) – Row index of the coefficient. (input)
• j (int) – Column index of coefficient. (input)

Return qoij (float) – The required coefficient.
Groups Inspecting the task , Problem data - quadratic part

Task.getreducedcosts

getreducedcosts(whichsol,first,last,redcosts)

getreducedcosts(whichsol,first,last) -> (redcosts)

Computes the reduced costs for a slice of variables and returns them in the array redcosts i.e.

redcosts[𝑗 − first] = (𝑠𝑥𝑙)𝑗 − (𝑠𝑥𝑢)𝑗 , 𝑗 = first, . . . , last− 1 (15.2)

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – The index of the first variable in the sequence. (input)
• last (int) – The index of the last variable in the sequence plus 1. (input)
• redcosts (float[]) – The reduced costs for the required slice of variables. (out-

put)
Return redcosts (float[]) – The reduced costs for the required slice of variables.
Groups Solution - dual

Task.getskc

getskc(whichsol,skc)

getskc(whichsol) -> (skc)

Obtains the status keys for the constraints.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• skc (mosek.stakey []) – Status keys for the constraints. (output)

Return skc (mosek.stakey []) – Status keys for the constraints.
Groups Solution information

Task.getskcslice

getskcslice(whichsol,first,last,skc)

getskcslice(whichsol,first,last) -> (skc)

Obtains the status keys for a slice of the constraints.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)

285

• skc (mosek.stakey []) – Status keys for the constraints. (output)
Return skc (mosek.stakey []) – Status keys for the constraints.
Groups Solution information

Task.getskn

getskn(whichsol,skn)

getskn(whichsol) -> (skn)

Obtains the status keys for the conic constraints.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• skn (mosek.stakey []) – Status keys for the conic constraints. (output)

Return skn (mosek.stakey []) – Status keys for the conic constraints.
Groups Solution information

Task.getskx

getskx(whichsol,skx)

getskx(whichsol) -> (skx)

Obtains the status keys for the scalar variables.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• skx (mosek.stakey []) – Status keys for the variables. (output)

Return skx (mosek.stakey []) – Status keys for the variables.
Groups Solution information

Task.getskxslice

getskxslice(whichsol,first,last,skx)

getskxslice(whichsol,first,last) -> (skx)

Obtains the status keys for a slice of the scalar variables.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• skx (mosek.stakey []) – Status keys for the variables. (output)

Return skx (mosek.stakey []) – Status keys for the variables.
Groups Solution information

Task.getslc

getslc(whichsol,slc)

getslc(whichsol) -> (slc)

286

Obtains the 𝑠𝑐𝑙 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• slc (float[]) – Dual variables corresponding to the lower bounds on the con-

straints. (output)
Return slc (float[]) – Dual variables corresponding to the lower bounds on the con-

straints.
Groups Solution - dual

Task.getslcslice

getslcslice(whichsol,first,last,slc)

getslcslice(whichsol,first,last) -> (slc)

Obtains a slice of the 𝑠𝑐𝑙 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• slc (float[]) – Dual variables corresponding to the lower bounds on the con-

straints. (output)
Return slc (float[]) – Dual variables corresponding to the lower bounds on the con-

straints.
Groups Solution - dual

Task.getslx

getslx(whichsol,slx)

getslx(whichsol) -> (slx)

Obtains the 𝑠𝑥𝑙 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• slx (float[]) – Dual variables corresponding to the lower bounds on the vari-

ables. (output)
Return slx (float[]) – Dual variables corresponding to the lower bounds on the vari-

ables.
Groups Solution - dual

Task.getslxslice

getslxslice(whichsol,first,last,slx)

getslxslice(whichsol,first,last) -> (slx)

Obtains a slice of the 𝑠𝑥𝑙 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)

287

• last (int) – Last index plus 1 in the sequence. (input)
• slx (float[]) – Dual variables corresponding to the lower bounds on the vari-

ables. (output)
Return slx (float[]) – Dual variables corresponding to the lower bounds on the vari-

ables.
Groups Solution - dual

Task.getsnx

getsnx(whichsol,snx)

getsnx(whichsol) -> (snx)

Obtains the 𝑠𝑥𝑛 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• snx (float[]) – Dual variables corresponding to the conic constraints on the

variables. (output)
Return snx (float[]) – Dual variables corresponding to the conic constraints on the

variables.
Groups Solution - dual

Task.getsnxslice

getsnxslice(whichsol,first,last,snx)

getsnxslice(whichsol,first,last) -> (snx)

Obtains a slice of the 𝑠𝑥𝑛 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• snx (float[]) – Dual variables corresponding to the conic constraints on the

variables. (output)
Return snx (float[]) – Dual variables corresponding to the conic constraints on the

variables.
Groups Solution - dual

Task.getsolsta

getsolsta(whichsol) -> (solutionsta)

Obtains the solution status.

Parameters whichsol (mosek.soltype) – Selects a solution. (input)
Return solutionsta (mosek.solsta) – Solution status.
Groups Solution information

Task.getsolution

288

getsolution(whichsol,
skc,
skx,
skn,
xc,
xx,
y,
slc,
suc,
slx,
sux,
snx) -> (problemsta,solutionsta)

getsolution(whichsol) ->
(problemsta,
solutionsta,
skc,
skx,
skn,
xc,
xx,
y,
slc,
suc,
slx,
sux,
snx)

Obtains the complete solution.

Consider the case of linear programming. The primal problem is given by

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

and the corresponding dual problem is

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢
+(𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,

𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0.

A conic optimization problem has the same primal variables as in the linear case. Recall that the
dual of a conic optimization problem is given by:

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢
+(𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝑠𝑥𝑛 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑠𝑥𝑛 ∈ 𝒦*

The mapping between variables and arguments to the function is as follows:

• xx : Corresponds to variable 𝑥 (also denoted 𝑥𝑥).

• xc : Corresponds to 𝑥𝑐 := 𝐴𝑥.

• y : Corresponds to variable 𝑦.

289

• slc: Corresponds to variable 𝑠𝑐𝑙 .

• suc: Corresponds to variable 𝑠𝑐𝑢.

• slx: Corresponds to variable 𝑠𝑥𝑙 .

• sux: Corresponds to variable 𝑠𝑥𝑢.

• snx: Corresponds to variable 𝑠𝑥𝑛.

The meaning of the values returned by this function depend on the solution status returned in the
argument solsta. The most important possible values of solsta are:

• solsta.optimal : An optimal solution satisfying the optimality criteria for continuous prob-
lems is returned.

• solsta.integer_optimal : An optimal solution satisfying the optimality criteria for integer
problems is returned.

• solsta.prim_feas : A solution satisfying the feasibility criteria.

• solsta.prim_infeas_cer : A primal certificate of infeasibility is returned.

• solsta.dual_infeas_cer : A dual certificate of infeasibility is returned.

In order to retrieve the primal and dual values of semidefinite variables see Task.getbarxj and
Task.getbarsj .

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• skc (mosek.stakey []) – Status keys for the constraints. (output)
• skx (mosek.stakey []) – Status keys for the variables. (output)
• skn (mosek.stakey []) – Status keys for the conic constraints. (output)
• xc (float[]) – Primal constraint solution. (output)
• xx (float[]) – Primal variable solution. (output)
• y (float[]) – Vector of dual variables corresponding to the constraints. (output)
• slc (float[]) – Dual variables corresponding to the lower bounds on the con-

straints. (output)
• suc (float[]) – Dual variables corresponding to the upper bounds on the con-

straints. (output)
• slx (float[]) – Dual variables corresponding to the lower bounds on the vari-

ables. (output)
• sux (float[]) – Dual variables corresponding to the upper bounds on the vari-

ables. (output)
• snx (float[]) – Dual variables corresponding to the conic constraints on the

variables. (output)
Return

• problemsta (mosek.prosta) – Problem status.
• solutionsta (mosek.solsta) – Solution status.
• skc (mosek.stakey []) – Status keys for the constraints.
• skx (mosek.stakey []) – Status keys for the variables.
• skn (mosek.stakey []) – Status keys for the conic constraints.
• xc (float[]) – Primal constraint solution.
• xx (float[]) – Primal variable solution.
• y (float[]) – Vector of dual variables corresponding to the constraints.
• slc (float[]) – Dual variables corresponding to the lower bounds on the con-

straints.
• suc (float[]) – Dual variables corresponding to the upper bounds on the con-

straints.
• slx (float[]) – Dual variables corresponding to the lower bounds on the vari-

ables.

290

• sux (float[]) – Dual variables corresponding to the upper bounds on the vari-
ables.

• snx (float[]) – Dual variables corresponding to the conic constraints on the
variables.

Groups Solution information, Solution - primal , Solution - dual

Task.getsolutioninfo

getsolutioninfo(whichsol) ->
(pobj,
pviolcon,
pviolvar,
pviolbarvar,
pviolcone,
pviolitg,
dobj,
dviolcon,
dviolvar,
dviolbarvar,
dviolcone)

Obtains information about a solution.

Parameters whichsol (mosek.soltype) – Selects a solution. (input)
Return

• pobj (float) – The primal objective value as computed by Task.getprimalobj .
• pviolcon (float) – Maximal primal violation of the solution associated with

the 𝑥𝑐 variables where the violations are computed by Task.getpviolcon .
• pviolvar (float) – Maximal primal violation of the solution for the 𝑥 variables

where the violations are computed by Task.getpviolvar .
• pviolbarvar (float) – Maximal primal violation of solution for the 𝑋 variables

where the violations are computed by Task.getpviolbarvar .
• pviolcone (float) – Maximal primal violation of solution for the conic con-

straints where the violations are computed by Task.getpviolcones.
• pviolitg (float) – Maximal violation in the integer constraints. The violation

for an integer variable 𝑥𝑗 is given by min(𝑥𝑗 − ⌊𝑥𝑗⌋, ⌈𝑥𝑗⌉ − 𝑥𝑗). This number is
always zero for the interior-point and basic solutions.

• dobj (float) – Dual objective value as computed by Task.getdualobj .
• dviolcon (float) – Maximal violation of the dual solution associated with the
𝑥𝑐 variable as computed by Task.getdviolcon .

• dviolvar (float) – Maximal violation of the dual solution associated with the
𝑥 variable as computed by Task.getdviolvar .

• dviolbarvar (float) – Maximal violation of the dual solution associated with
the 𝑆 variable as computed by Task.getdviolbarvar .

• dviolcone (float) – Maximal violation of the dual solution associated with the
dual conic constraints as computed by Task.getdviolcones.

Groups Solution information

Task.getsolutioninfonew

getsolutioninfonew(whichsol) ->
(pobj,
pviolcon,
pviolvar,
pviolbarvar,

(continues on next page)

291

(continued from previous page)

pviolcone,
pviolacc,
pvioldjc,
pviolitg,
dobj,
dviolcon,
dviolvar,
dviolbarvar,
dviolcone,
dviolacc)

Obtains information about a solution.

Parameters whichsol (mosek.soltype) – Selects a solution. (input)
Return

• pobj (float) – The primal objective value as computed by Task.getprimalobj .
• pviolcon (float) – Maximal primal violation of the solution associated with

the 𝑥𝑐 variables where the violations are computed by Task.getpviolcon .
• pviolvar (float) – Maximal primal violation of the solution for the 𝑥 variables

where the violations are computed by Task.getpviolvar .
• pviolbarvar (float) – Maximal primal violation of solution for the 𝑋 variables

where the violations are computed by Task.getpviolbarvar .
• pviolcone (float) – Maximal primal violation of solution for the conic con-

straints where the violations are computed by Task.getpviolcones.
• pviolacc (float) – Maximal primal violation of solution for the affine conic

constraints where the violations are computed by Task.getpviolacc .
• pvioldjc (float) – Maximal primal violation of solution for the disjunctive

constraints where the violations are computed by Task.getpvioldjc .
• pviolitg (float) – Maximal violation in the integer constraints. The violation

for an integer variable 𝑥𝑗 is given by min(𝑥𝑗 − ⌊𝑥𝑗⌋, ⌈𝑥𝑗⌉ − 𝑥𝑗). This number is
always zero for the interior-point and basic solutions.

• dobj (float) – Dual objective value as computed by Task.getdualobj .
• dviolcon (float) – Maximal violation of the dual solution associated with the
𝑥𝑐 variable as computed by Task.getdviolcon .

• dviolvar (float) – Maximal violation of the dual solution associated with the
𝑥 variable as computed by Task.getdviolvar .

• dviolbarvar (float) – Maximal violation of the dual solution associated with
the 𝑆 variable as computed by Task.getdviolbarvar .

• dviolcone (float) – Maximal violation of the dual solution associated with the
dual conic constraints as computed by Task.getdviolcones.

• dviolacc (float) – Maximal violation of the dual solution associated with the
affine conic constraints as computed by Task.getdviolacc .

Groups Solution information

Task.getsolutionnew

getsolutionnew(whichsol,
skc,
skx,
skn,
xc,
xx,
y,
slc,

(continues on next page)

292

(continued from previous page)

suc,
slx,
sux,
snx,
doty) -> (problemsta,solutionsta)

getsolutionnew(whichsol) ->
(problemsta,
solutionsta,
skc,
skx,
skn,
xc,
xx,
y,
slc,
suc,
slx,
sux,
snx,
doty)

Obtains the complete solution. See Task.getsolution for further information.

In order to retrieve the primal and dual values of semidefinite variables see Task.getbarxj and
Task.getbarsj .

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• skc (mosek.stakey []) – Status keys for the constraints. (output)
• skx (mosek.stakey []) – Status keys for the variables. (output)
• skn (mosek.stakey []) – Status keys for the conic constraints. (output)
• xc (float[]) – Primal constraint solution. (output)
• xx (float[]) – Primal variable solution. (output)
• y (float[]) – Vector of dual variables corresponding to the constraints. (output)
• slc (float[]) – Dual variables corresponding to the lower bounds on the con-

straints. (output)
• suc (float[]) – Dual variables corresponding to the upper bounds on the con-

straints. (output)
• slx (float[]) – Dual variables corresponding to the lower bounds on the vari-

ables. (output)
• sux (float[]) – Dual variables corresponding to the upper bounds on the vari-

ables. (output)
• snx (float[]) – Dual variables corresponding to the conic constraints on the

variables. (output)
• doty (float[]) – Dual variables corresponding to affine conic constraints. (out-

put)
Return

• problemsta (mosek.prosta) – Problem status.
• solutionsta (mosek.solsta) – Solution status.
• skc (mosek.stakey []) – Status keys for the constraints.
• skx (mosek.stakey []) – Status keys for the variables.
• skn (mosek.stakey []) – Status keys for the conic constraints.
• xc (float[]) – Primal constraint solution.
• xx (float[]) – Primal variable solution.

293

• y (float[]) – Vector of dual variables corresponding to the constraints.
• slc (float[]) – Dual variables corresponding to the lower bounds on the con-

straints.
• suc (float[]) – Dual variables corresponding to the upper bounds on the con-

straints.
• slx (float[]) – Dual variables corresponding to the lower bounds on the vari-

ables.
• sux (float[]) – Dual variables corresponding to the upper bounds on the vari-

ables.
• snx (float[]) – Dual variables corresponding to the conic constraints on the

variables.
• doty (float[]) – Dual variables corresponding to affine conic constraints.

Groups Solution information, Solution - primal , Solution - dual

Task.getsolutionslice

getsolutionslice(whichsol,solitem,first,last,values)

getsolutionslice(whichsol,solitem,first,last) -> (values)

Obtains a slice of one item from the solution. The format of the solution is exactly as in Task.
getsolution . The parameter solitem determines which of the solution vectors should be returned.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• solitem (mosek.solitem) – Which part of the solution is required. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• values (float[]) – The values in the required sequence are stored sequentially

in values. (output)
Return values (float[]) – The values in the required sequence are stored sequentially

in values.
Groups Solution - primal , Solution - dual , Solution information

Task.getsparsesymmat

getsparsesymmat(idx,subi,subj,valij)

getsparsesymmat(idx) -> (subi,subj,valij)

Get a single symmetric matrix from the matrix store.

Parameters
• idx (int) – Index of the matrix to retrieve. (input)
• subi (int[]) – Row subscripts of the matrix non-zero elements. (output)
• subj (int[]) – Column subscripts of the matrix non-zero elements. (output)
• valij (float[]) – Coefficients of the matrix non-zero elements. (output)

Return
• subi (int[]) – Row subscripts of the matrix non-zero elements.
• subj (int[]) – Column subscripts of the matrix non-zero elements.
• valij (float[]) – Coefficients of the matrix non-zero elements.

Groups Problem data - semidefinite, Inspecting the task

Task.getstrparam

294

getstrparam(param) -> (len,parvalue)

Obtains the value of a string parameter.

Parameters param (mosek.sparam) – Which parameter. (input)
Return

• len (int) – The length of the parameter value.
• parvalue (str) – Parameter value.

Groups Names, Parameters

Task.getstrparamlen

getstrparamlen(param) -> (len)

Obtains the length of a string parameter.

Parameters param (mosek.sparam) – Which parameter. (input)
Return len (int) – The length of the parameter value.
Groups Names, Parameters

Task.getsuc

getsuc(whichsol,suc)

getsuc(whichsol) -> (suc)

Obtains the 𝑠𝑐𝑢 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• suc (float[]) – Dual variables corresponding to the upper bounds on the con-

straints. (output)
Return suc (float[]) – Dual variables corresponding to the upper bounds on the

constraints.
Groups Solution - dual

Task.getsucslice

getsucslice(whichsol,first,last,suc)

getsucslice(whichsol,first,last) -> (suc)

Obtains a slice of the 𝑠𝑐𝑢 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• suc (float[]) – Dual variables corresponding to the upper bounds on the con-

straints. (output)
Return suc (float[]) – Dual variables corresponding to the upper bounds on the

constraints.
Groups Solution - dual

Task.getsux

295

getsux(whichsol,sux)

getsux(whichsol) -> (sux)

Obtains the 𝑠𝑥𝑢 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• sux (float[]) – Dual variables corresponding to the upper bounds on the vari-

ables. (output)
Return sux (float[]) – Dual variables corresponding to the upper bounds on the

variables.
Groups Solution - dual

Task.getsuxslice

getsuxslice(whichsol,first,last,sux)

getsuxslice(whichsol,first,last) -> (sux)

Obtains a slice of the 𝑠𝑥𝑢 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• sux (float[]) – Dual variables corresponding to the upper bounds on the vari-

ables. (output)
Return sux (float[]) – Dual variables corresponding to the upper bounds on the

variables.
Groups Solution - dual

Task.getsymmatinfo

getsymmatinfo(idx) -> (dim,nz,mattype)

MOSEK maintains a vector denoted by 𝐸 of symmetric data matrices. This function makes it
possible to obtain important information about a single matrix in 𝐸.

Parameters idx (int) – Index of the matrix for which information is requested. (input)
Return

• dim (int) – Returns the dimension of the requested matrix.
• nz (int) – Returns the number of non-zeros in the requested matrix.
• mattype (mosek.symmattype) – Returns the type of the requested matrix.

Groups Problem data - semidefinite, Inspecting the task

Task.gettaskname

gettaskname() -> (taskname)

Obtains the name assigned to the task.

Return taskname (str) – Returns the task name.
Groups Names, Inspecting the task

296

Task.gettasknamelen

gettasknamelen() -> (len)

Obtains the length the task name.

Return len (int) – Returns the length of the task name.
Groups Names, Inspecting the task

Task.getvarbound

getvarbound(i) -> (bk,bl,bu)

Obtains bound information for one variable.

Parameters i (int) – Index of the variable for which the bound information should be
obtained. (input)

Return
• bk (mosek.boundkey) – Bound keys.
• bl (float) – Values for lower bounds.
• bu (float) – Values for upper bounds.

Groups Problem data - linear part , Inspecting the task , Problem data - bounds, Problem
data - variables

Task.getvarboundslice

getvarboundslice(first,last,bk,bl,bu)

getvarboundslice(first,last) -> (bk,bl,bu)

Obtains bounds information for a slice of the variables.

Parameters
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• bk (mosek.boundkey []) – Bound keys. (output)
• bl (float[]) – Values for lower bounds. (output)
• bu (float[]) – Values for upper bounds. (output)

Return
• bk (mosek.boundkey []) – Bound keys.
• bl (float[]) – Values for lower bounds.
• bu (float[]) – Values for upper bounds.

Groups Problem data - linear part , Inspecting the task , Problem data - bounds, Problem
data - variables

Task.getvarname

getvarname(j) -> (name)

Obtains the name of a variable.

Parameters j (int) – Index of a variable. (input)
Return name (str) – Returns the required name.
Groups Names, Problem data - linear part , Problem data - variables, Inspecting the

task

297

Task.getvarnameindex

getvarnameindex(somename) -> (asgn,index)

Checks whether the name somename has been assigned to any variable. If so, the index of the
variable is reported.

Parameters somename (str) – The name which should be checked. (input)
Return

• asgn (int) – Is non-zero if the name somename is assigned to a variable.
• index (int) – If the name somename is assigned to a variable, then index is the

index of the variable.
Groups Names, Problem data - linear part , Problem data - variables, Inspecting the

task

Task.getvarnamelen

getvarnamelen(i) -> (len)

Obtains the length of the name of a variable.

Parameters i (int) – Index of a variable. (input)
Return len (int) – Returns the length of the indicated name.
Groups Names, Problem data - linear part , Problem data - variables, Inspecting the

task

Task.getvartype

getvartype(j) -> (vartype)

Gets the variable type of one variable.

Parameters j (int) – Index of the variable. (input)
Return vartype (mosek.variabletype) – Variable type of the 𝑗-th variable.
Groups Inspecting the task , Problem data - variables

Task.getvartypelist

getvartypelist(subj,vartype)

getvartypelist(subj) -> (vartype)

Obtains the variable type of one or more variables. Upon return vartype[k] is the variable type
of variable subj[k].

Parameters
• subj (int[]) – A list of variable indexes. (input)
• vartype (mosek.variabletype []) – The variables types corresponding to the

variables specified by subj. (output)
Return vartype (mosek.variabletype []) – The variables types corresponding to the

variables specified by subj.
Groups Inspecting the task , Problem data - variables

Task.getxc

298

getxc(whichsol,xc)

getxc(whichsol) -> (xc)

Obtains the 𝑥𝑐 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• xc (float[]) – Primal constraint solution. (output)

Return xc (float[]) – Primal constraint solution.
Groups Solution - primal

Task.getxcslice

getxcslice(whichsol,first,last,xc)

getxcslice(whichsol,first,last) -> (xc)

Obtains a slice of the 𝑥𝑐 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• xc (float[]) – Primal constraint solution. (output)

Return xc (float[]) – Primal constraint solution.
Groups Solution - primal

Task.getxx

getxx(whichsol,xx)

getxx(whichsol) -> (xx)

Obtains the 𝑥𝑥 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• xx (float[]) – Primal variable solution. (output)

Return xx (float[]) – Primal variable solution.
Groups Solution - primal

Task.getxxslice

getxxslice(whichsol,first,last,xx)

getxxslice(whichsol,first,last) -> (xx)

Obtains a slice of the 𝑥𝑥 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)

299

• xx (float[]) – Primal variable solution. (output)
Return xx (float[]) – Primal variable solution.
Groups Solution - primal

Task.gety

gety(whichsol,y)

gety(whichsol) -> (y)

Obtains the 𝑦 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• y (float[]) – Vector of dual variables corresponding to the constraints. (output)

Return y (float[]) – Vector of dual variables corresponding to the constraints.
Groups Solution - dual

Task.getyslice

getyslice(whichsol,first,last,y)

getyslice(whichsol,first,last) -> (y)

Obtains a slice of the 𝑦 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• y (float[]) – Vector of dual variables corresponding to the constraints. (output)

Return y (float[]) – Vector of dual variables corresponding to the constraints.
Groups Solution - dual

Task.infeasibilityreport

infeasibilityreport(whichstream,whichsol)

Prints the infeasibility report to an output stream.

Parameters
• whichstream (mosek.streamtype) – Index of the stream. (input)
• whichsol (mosek.soltype) – Selects a solution. (input)

Groups Infeasibility diagnostic

Task.initbasissolve

initbasissolve(basis)

initbasissolve() -> (basis)

Prepare a task for use with the Task.solvewithbasis function.

This function should be called

• immediately before the first call to Task.solvewithbasis , and

300

• immediately before any subsequent call to Task.solvewithbasis if the task has been modi-
fied.

If the basis is singular i.e. not invertible, then the error rescode.err_basis_singular is reported.

Parameters basis (int[]) – The array of basis indexes to use. The array is interpreted
as follows: If basis[𝑖] ≤ 𝑛𝑢𝑚𝑐𝑜𝑛 − 1, then 𝑥𝑐

basis[𝑖] is in the basis at position 𝑖,
otherwise 𝑥basis[𝑖]−numcon is in the basis at position 𝑖. (output)

Return basis (int[]) – The array of basis indexes to use. The array is interpreted
as follows: If basis[𝑖] ≤ 𝑛𝑢𝑚𝑐𝑜𝑛 − 1, then 𝑥𝑐

basis[𝑖] is in the basis at position 𝑖,
otherwise 𝑥basis[𝑖]−numcon is in the basis at position 𝑖.

Groups Solving systems with basis matrix

Task.inputdata

inputdata(maxnumcon,
maxnumvar,
c,
cfix,
aptrb,
aptre,
asub,
aval,
bkc,
blc,
buc,
bkx,
blx,
bux)

Input the linear part of an optimization problem.

The non-zeros of 𝐴 are inputted column-wise in the format described in Section Column or Row
Ordered Sparse Matrix .

For an explained code example see Section Linear Optimization and Section Matrix Formats.

Parameters
• maxnumcon (int) – Number of preallocated constraints in the optimization task.

(input)
• maxnumvar (int) – Number of preallocated variables in the optimization task.

(input)
• c (float[]) – Linear terms of the objective as a dense vector. The length is the

number of variables. (input)
• cfix (float) – Fixed term in the objective. (input)
• aptrb (int[]) – Row or column start pointers. (input)
• aptre (int[]) – Row or column end pointers. (input)
• asub (int[]) – Coefficient subscripts. (input)
• aval (float[]) – Coefficient values. (input)
• bkc (mosek.boundkey []) – Bound keys for the constraints. (input)
• blc (float[]) – Lower bounds for the constraints. (input)
• buc (float[]) – Upper bounds for the constraints. (input)
• bkx (mosek.boundkey []) – Bound keys for the variables. (input)
• blx (float[]) – Lower bounds for the variables. (input)
• bux (float[]) – Upper bounds for the variables. (input)

Groups Problem data - linear part , Problem data - bounds, Problem data - constraints

301

Task.isdouparname

isdouparname(parname) -> (param)

Checks whether parname is a valid double parameter name.

Parameters parname (str) – Parameter name. (input)
Return param (mosek.dparam) – Returns the parameter corresponding to the name, if

one exists.
Groups Parameters, Names

Task.isintparname

isintparname(parname) -> (param)

Checks whether parname is a valid integer parameter name.

Parameters parname (str) – Parameter name. (input)
Return param (mosek.iparam) – Returns the parameter corresponding to the name, if

one exists.
Groups Parameters, Names

Task.isstrparname

isstrparname(parname) -> (param)

Checks whether parname is a valid string parameter name.

Parameters parname (str) – Parameter name. (input)
Return param (mosek.sparam) – Returns the parameter corresponding to the name, if

one exists.
Groups Parameters, Names

Task.linkfiletostream

linkfiletostream(whichstream,filename,append)

Directs all output from a task stream whichstream to a file filename.

Parameters
• whichstream (mosek.streamtype) – Index of the stream. (input)
• filename (str) – A valid file name. (input)
• append (int) – If this argument is 0 the output file will be overwritten, otherwise

it will be appended to. (input)
Groups Logging

Task.onesolutionsummary

onesolutionsummary(whichstream,whichsol)

Prints a short summary of a specified solution.

Parameters
• whichstream (mosek.streamtype) – Index of the stream. (input)
• whichsol (mosek.soltype) – Selects a solution. (input)

Groups Logging , Solution information

302

Task.optimize

optimize() -> (trmcode)

Calls the optimizer. Depending on the problem type and the selected optimizer this will call one of
the optimizers in MOSEK. By default the interior point optimizer will be selected for continuous
problems. The optimizer may be selected manually by setting the parameter iparam.optimizer .

Return trmcode (mosek.rescode) – Is either rescode.ok or a termination response
code.

Groups Optimization

Task.optimizermt

optimizermt(address,accesstoken) -> (trmcode)

Offload the optimization task to an instance of OptServer specified by addr, which should be a
valid URL, for example http://server:port or https://server:port. The call will block until
a result is available or the connection closes.
If the server requires authentication, the authentication token can be passed in the accesstoken
argument.
If the server requires encryption, the keys can be passed using one of the solver parameters sparam.
remote_tls_cert or sparam.remote_tls_cert_path .

Parameters
• address (str) – Address of the OptServer. (input)
• accesstoken (str) – Access token. (input)

Return trmcode (mosek.rescode) – Is either rescode.ok or a termination response
code.

Groups Remote optimization

Task.optimizersummary

optimizersummary(whichstream)

Prints a short summary with optimizer statistics from last optimization.

Parameters whichstream (mosek.streamtype) – Index of the stream. (input)
Groups Logging

Task.primalrepair

primalrepair(wlc,wuc,wlx,wux)

The function repairs a primal infeasible optimization problem by adjusting the bounds on the
constraints and variables where the adjustment is computed as the minimal weighted sum of re-
laxations to the bounds on the constraints and variables. Observe the function only repairs the
problem but does not solve it. If an optimal solution is required the problem should be optimized
after the repair.
The function is applicable to linear and conic problems possibly with integer variables.
Observe that when computing the minimal weighted relaxation the termination tolerance specified
by the parameters of the task is employed. For instance the parameter iparam.mio_mode can be
used to make MOSEK ignore the integer constraints during the repair which usually leads to a
much faster repair. However, the drawback is of course that the repaired problem may not have
an integer feasible solution.
Note the function modifies the task in place. If this is not desired, then apply the function to a
cloned task.

303

Parameters
• wlc (float[]) – (𝑤𝑐

𝑙)𝑖 is the weight associated with relaxing the lower bound
on constraint 𝑖. If the weight is negative, then the lower bound is not relaxed.
Moreover, if the argument is NULL, then all the weights are assumed to be 1.
(input)

• wuc (float[]) – (𝑤𝑐
𝑢)𝑖 is the weight associated with relaxing the upper bound

on constraint 𝑖. If the weight is negative, then the upper bound is not relaxed.
Moreover, if the argument is NULL, then all the weights are assumed to be 1.
(input)

• wlx (float[]) – (𝑤𝑥
𝑙)𝑗 is the weight associated with relaxing the lower bound

on variable 𝑗. If the weight is negative, then the lower bound is not relaxed.
Moreover, if the argument is NULL, then all the weights are assumed to be 1.
(input)

• wux (float[]) – (𝑤𝑥
𝑙)𝑖 is the weight associated with relaxing the upper bound

on variable 𝑗. If the weight is negative, then the upper bound is not relaxed.
Moreover, if the argument is NULL, then all the weights are assumed to be 1.
(input)

Groups Infeasibility diagnostic

Task.primalsensitivity

primalsensitivity(subi,
marki,
subj,
markj,
leftpricei,
rightpricei,
leftrangei,
rightrangei,
leftpricej,
rightpricej,
leftrangej,
rightrangej)

primalsensitivity(subi,marki,subj,markj) ->
(leftpricei,
rightpricei,
leftrangei,
rightrangei,
leftpricej,
rightpricej,
leftrangej,
rightrangej)

Calculates sensitivity information for bounds on variables and constraints. For details on sensitivity
analysis, the definitions of shadow price and linearity interval and an example see Section Sensitivity
Analysis.

The type of sensitivity analysis to be performed (basis or optimal partition) is controlled by the
parameter iparam.sensitivity_type .

Parameters
• subi (int[]) – Indexes of constraints to analyze. (input)
• marki (mosek.mark []) – The value of marki[i] indicates for which bound of

constraint subi[i] sensitivity analysis is performed. If marki[i] = mark.up
the upper bound of constraint subi[i] is analyzed, and if marki[i] = mark.
lo the lower bound is analyzed. If subi[i] is an equality constraint, either

304

mark.lo or mark.up can be used to select the constraint for sensitivity analysis.
(input)

• subj (int[]) – Indexes of variables to analyze. (input)
• markj (mosek.mark []) – The value of markj[j] indicates for which bound of

variable subj[j] sensitivity analysis is performed. If markj[j] = mark.up the
upper bound of variable subj[j] is analyzed, and if markj[j] = mark.lo the
lower bound is analyzed. If subj[j] is a fixed variable, either mark.lo or mark.
up can be used to select the bound for sensitivity analysis. (input)

• leftpricei (float[]) – leftpricei[i] is the left shadow price for the bound
marki[i] of constraint subi[i]. (output)

• rightpricei (float[]) – rightpricei[i] is the right shadow price for the
bound marki[i] of constraint subi[i]. (output)

• leftrangei (float[]) – leftrangei[i] is the left range 𝛽1 for the bound
marki[i] of constraint subi[i]. (output)

• rightrangei (float[]) – rightrangei[i] is the right range 𝛽2 for the bound
marki[i] of constraint subi[i]. (output)

• leftpricej (float[]) – leftpricej[j] is the left shadow price for the bound
markj[j] of variable subj[j]. (output)

• rightpricej (float[]) – rightpricej[j] is the right shadow price for the
bound markj[j] of variable subj[j]. (output)

• leftrangej (float[]) – leftrangej[j] is the left range 𝛽1 for the bound
markj[j] of variable subj[j]. (output)

• rightrangej (float[]) – rightrangej[j] is the right range 𝛽2 for the bound
markj[j] of variable subj[j]. (output)

Return
• leftpricei (float[]) – leftpricei[i] is the left shadow price for the bound
marki[i] of constraint subi[i].

• rightpricei (float[]) – rightpricei[i] is the right shadow price for the
bound marki[i] of constraint subi[i].

• leftrangei (float[]) – leftrangei[i] is the left range 𝛽1 for the bound
marki[i] of constraint subi[i].

• rightrangei (float[]) – rightrangei[i] is the right range 𝛽2 for the bound
marki[i] of constraint subi[i].

• leftpricej (float[]) – leftpricej[j] is the left shadow price for the bound
markj[j] of variable subj[j].

• rightpricej (float[]) – rightpricej[j] is the right shadow price for the
bound markj[j] of variable subj[j].

• leftrangej (float[]) – leftrangej[j] is the left range 𝛽1 for the bound
markj[j] of variable subj[j].

• rightrangej (float[]) – rightrangej[j] is the right range 𝛽2 for the bound
markj[j] of variable subj[j].

Groups Sensitivity analysis

Task.putacc

putacc(accidx,domidx,afeidxlist,b)

Puts an affine conic constraint. This method overwrites an existing affine conic constraint number
accidx with new data specified in the same format as in Task.appendacc .

Parameters
• accidx (int) – Affine conic constraint index. (input)
• domidx (int) – Domain index. (input)
• afeidxlist (int[]) – List of affine expression indexes. (input)

305

• b (float[]) – The vector of constant terms added to affine expressions. Optional,
can be NULL. (input)

Groups Problem data - affine conic constraints

Task.putaccb

putaccb(accidx,b)

Updates an existing affine conic constraint number accidx by putting a new vector 𝑏.

Parameters
• accidx (int) – Affine conic constraint index. (input)
• b (float[]) – The vector of constant terms added to affine expressions. Optional,

can be NULL. (input)
Groups Problem data - affine conic constraints

Task.putaccbj

putaccbj(accidx,j,bj)

Sets one value 𝑏[𝑗] in the 𝑏 vector for the affine conic constraint number accidx.

Parameters
• accidx (int) – Affine conic constraint index. (input)
• j (int) – The index of an element in b to change. (input)
• bj (float) – The new value of 𝑏[𝑗]. (input)

Groups Problem data - affine conic constraints

Task.putaccdoty

putaccdoty(whichsol,accidx,doty)

putaccdoty(whichsol,accidx) -> (doty)

Puts the 𝑦̇ vector for a solution (the dual values of an affine conic constraint).

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• accidx (int) – The index of the affine conic constraint. (input)
• doty (float[]) – The dual values for this affine conic constraint. The array

should have length equal to the dimension of the constraint. (output)
Return doty (float[]) – The dual values for this affine conic constraint. The array

should have length equal to the dimension of the constraint.
Groups Solution - dual , Problem data - affine conic constraints

Task.putacclist

putacclist(accidxs,domidxs,afeidxlist,b)

Puts affine conic constraints. This method overwrites existing affine conic constraints whose num-
bers are provided in the list accidxs with new data which is a concatenation of individual constraint
descriptions in the same format as in Task.appendacc (see also Task.appendaccs).

Parameters
• accidxs (int[]) – Affine conic constraint indices. (input)
• domidxs (int[]) – Domain indices. (input)

306

• afeidxlist (int[]) – List of affine expression indexes. (input)
• b (float[]) – The vector of constant terms added to affine expressions. Optional,

can be NULL. (input)
Groups Problem data - affine conic constraints

Task.putaccname

putaccname(accidx,name)

Sets the name of an affine conic constraint.

Parameters
• accidx (int) – Index of the affine conic constraint. (input)
• name (str) – The name of the affine conic constraint. (input)

Groups Names, Problem data - affine conic constraints

Task.putacol

putacol(j,subj,valj)

Change one column of the linear constraint matrix 𝐴. Resets all the elements in column 𝑗 to zero
and then sets

𝑎subj[𝑘],j = valj[𝑘], 𝑘 = 0, . . . , nzj− 1.

Parameters
• j (int) – Index of a column in 𝐴. (input)
• subj (int[]) – Row indexes of non-zero values in column 𝑗 of 𝐴. (input)
• valj (float[]) – New non-zero values of column 𝑗 in 𝐴. (input)

Groups Problem data - linear part

Task.putacollist

putacollist(sub,ptrb,ptre,asub,aval)

Change a set of columns in the linear constraint matrix 𝐴 with data in sparse triplet format. The
requested columns are set to zero and then updated with:

for 𝑖 = 0, . . . , 𝑛𝑢𝑚− 1
𝑎asub[𝑘],sub[𝑖] = aval[𝑘], 𝑘 = ptrb[𝑖], . . . , ptre[𝑖] − 1.

Parameters
• sub (int[]) – Indexes of columns that should be replaced, no duplicates. (input)
• ptrb (int[]) – Array of pointers to the first element in each column. (input)
• ptre (int[]) – Array of pointers to the last element plus one in each column.

(input)
• asub (int[]) – Row indexes of new elements. (input)
• aval (float[]) – Coefficient values. (input)

Groups Problem data - linear part

Task.putacolslice

putacolslice(first,last,ptrb,ptre,asub,aval)

307

Change a slice of columns in the linear constraint matrix 𝐴 with data in sparse triplet format. The
requested columns are set to zero and then updated with:

for 𝑖 = first, . . . , last− 1
𝑎asub[𝑘],𝑖 = aval[𝑘], 𝑘 = ptrb[𝑖− first], . . . , ptre[𝑖− first] − 1.

Parameters
• first (int) – First column in the slice. (input)
• last (int) – Last column plus one in the slice. (input)
• ptrb (int[]) – Array of pointers to the first element in each column. (input)
• ptre (int[]) – Array of pointers to the last element plus one in each column.

(input)
• asub (int[]) – Row indexes of new elements. (input)
• aval (float[]) – Coefficient values. (input)

Groups Problem data - linear part

Task.putafebarfblocktriplet

putafebarfblocktriplet(afeidx,barvaridx,subk,subl,valkl)

Inputs the 𝐹 matrix data in block triplet form.

Parameters
• afeidx (int[]) – Constraint index. (input)
• barvaridx (int[]) – Symmetric matrix variable index. (input)
• subk (int[]) – Block row index. (input)
• subl (int[]) – Block column index. (input)
• valkl (float[]) – The numerical value associated with each block triplet. (in-

put)
Groups Problem data - affine expressions, Problem data - semidefinite

Task.putafebarfentry

putafebarfentry(afeidx,barvaridx,termidx,termweight)

This function sets one entry 𝐹 𝑖𝑗 where 𝑖 = afeidx is the row index in the store of affine expressions
and 𝑗 = barvaridx is the index of a symmetric variable. That is, the expression

⟨𝐹 𝑖𝑗 , 𝑋𝑗⟩

will be added to the 𝑖-th affine expression.

The matrix 𝐹 𝑖𝑗 is specified as a weighted sum of symmetric matrices from the symmetric matrix
storage 𝐸, so 𝐹 𝑖𝑗 is a symmetric matrix, precisely:

𝐹 afeidx,barvaridx =
∑︁
𝑘

termweight[𝑘] · 𝐸termidx[𝑘].

By default all elements in 𝐹 are 0, so only non-zero elements need be added. Setting the same
entry again will overwrite the earlier entry.

The symmetric matrices from 𝐸 are defined separately using the function Task.
appendsparsesymmat .

Parameters
• afeidx (int) – Row index of 𝐹 . (input)
• barvaridx (int) – Semidefinite variable index. (input)
• termidx (int[]) – Indices in 𝐸 of the matrices appearing in the weighted sum

for the 𝐹 entry being specified. (input)

308

• termweight (float[]) – termweight[k] is the coefficient of the termidx[k]-th
element of 𝐸 in the weighted sum the 𝐹 entry being specified. (input)

Groups Problem data - affine expressions, Problem data - semidefinite

Task.putafebarfentrylist

putafebarfentrylist(afeidx,
barvaridx,
numterm,
ptrterm,
termidx,
termweight)

This function sets a list of entries in 𝐹 . Each entry should be described as in Task.
putafebarfentry and all those descriptions should be combined (for example concatenated) in the
input to this method. That means the 𝑘-th entry set will have row index afeidx[k], symmetric
variable index barvaridx[k] and the description of this term consists of indices in 𝐸 and weights
appearing in positions

ptrterm[𝑘], . . . ,ptrterm[𝑘] + lenterm[𝑘] − 1

in the corresponding arrays termidx and termweight. See Task.putafebarfentry for details.

Parameters
• afeidx (int[]) – Row indexes of 𝐹 . (input)
• barvaridx (int[]) – Semidefinite variable indexes. (input)
• numterm (int[]) – The number of terms in the weighted sums that form each

entry. (input)
• ptrterm (int[]) – The pointer to the beginning of the description of each entry.

(input)
• termidx (int[]) – Concatenated lists of indices in 𝐸 of the matrices appearing

in the weighted sums for the 𝐹 being specified. (input)
• termweight (float[]) – Concatenated lists of weights appearing in the weighted

sums forming the 𝐹 elements being specified. (input)
Groups Problem data - affine expressions, Problem data - semidefinite

Task.putafebarfrow

putafebarfrow(afeidx,
barvaridx,
numterm,
ptrterm,
termidx,
termweight)

This function inputs one row in 𝐹 . It first clears the row, i.e. sets 𝐹 afeidx,* = 0 and then sets the new
entries. Each entry should be described as in Task.putafebarfentry and all those descriptions
should be combined (for example concatenated) in the input to this method. That means the 𝑘-th
entry set will have row index afeidx, symmetric variable index barvaridx[k] and the description
of this term consists of indices in 𝐸 and weights appearing in positions

ptrterm[𝑘], . . . ,ptrterm[𝑘] + numterm[𝑘] − 1

in the corresponding arrays termidx and termweight. See Task.putafebarfentry for details.

Parameters
• afeidx (int) – Row index of 𝐹 . (input)

309

• barvaridx (int[]) – Semidefinite variable indexes. (input)
• numterm (int[]) – The number of terms in the weighted sums that form each

entry. (input)
• ptrterm (int[]) – The pointer to the beginning of the description of each entry.

(input)
• termidx (int[]) – Concatenated lists of indices in 𝐸 of the matrices appearing

in the weighted sums for the 𝐹 entries in the row. (input)
• termweight (float[]) – Concatenated lists of weights appearing in the weighted

sums forming the 𝐹 entries in the row. (input)
Groups Problem data - affine expressions, Problem data - semidefinite

Task.putafefcol

putafefcol(varidx,afeidx,val)

Change one column of the matrix 𝐹 of affine expressions. Resets all the elements in column varidx
to zero and then sets

𝐹afeidx[𝑘],varidx = val[𝑘], 𝑘 = 0, . . . , numnz− 1.

Parameters
• varidx (int) – Index of a column in 𝐹 . (input)
• afeidx (int[]) – Row indexes of non-zero values in the column of 𝐹 . (input)
• val (float[]) – New non-zero values in the column of 𝐹 . (input)

Groups Problem data - affine expressions

Task.putafefentry

putafefentry(afeidx,varidx,value)

Replaces one entry in the affine expression store 𝐹 , that is it sets:

𝐹afeidx,varidx = value.

Parameters
• afeidx (int) – Row index in 𝐹 . (input)
• varidx (int) – Column index in 𝐹 . (input)
• value (float) – Value of 𝐹afeidx,varidx. (input)

Groups Problem data - affine expressions

Task.putafefentrylist

putafefentrylist(afeidx,varidx,val)

Replaces a number of entries in the affine expression store 𝐹 , that is it sets:

𝐹afeidxs[𝑘],varidx[𝑘] = val[𝑘]

for all 𝑘.

Parameters
• afeidx (int[]) – Row indices in 𝐹 . (input)
• varidx (int[]) – Column indices in 𝐹 . (input)
• val (float[]) – Values of the entries in 𝐹 . (input)

Groups Problem data - affine expressions

Task.putafefrow

310

putafefrow(afeidx,varidx,val)

Change one row of the matrix 𝐹 of affine expressions. Resets all the elements in row afeidx to
zero and then sets

𝐹afeidx,varidx[𝑘] = val[𝑘], 𝑘 = 0, . . . , numnz− 1.

Parameters
• afeidx (int) – Index of a row in 𝐹 . (input)
• varidx (int[]) – Column indexes of non-zero values in the row of 𝐹 . (input)
• val (float[]) – New non-zero values in the row of 𝐹 . (input)

Groups Problem data - affine expressions

Task.putafefrowlist

putafefrowlist(afeidx,numnzrow,ptrrow,varidx,val)

Clears and then changes a number of rows of the matrix 𝐹 of affine expressions. The 𝑘-th of the
rows to be changed has index 𝑖 = afeidx[𝑘], contains numnzrow[𝑘] nonzeros and its description as
in Task.putafefrow starts in position ptrrow[𝑘] of the arrays varidx and val. Formally, the row
with index 𝑖 is cleared and then set as:

𝐹𝑖,varidx[ptrrow[𝑘]+𝑗] = val[ptrrow[𝑘] + 𝑗], 𝑗 = 0, . . . ,numnzrow[𝑘] − 1.

Parameters
• afeidx (int[]) – Indices of rows in 𝐹 . (input)
• numnzrow (int[]) – Number of non-zeros in each of the modified rows of 𝐹 .

(input)
• ptrrow (int[]) – Pointer to the first nonzero in each row of 𝐹 . (input)
• varidx (int[]) – Column indexes of non-zero values. (input)
• val (float[]) – New non-zero values in the rows of 𝐹 . (input)

Groups Problem data - affine expressions

Task.putafeg

putafeg(afeidx,g)

Change one element of the vector 𝑔 in affine expressions i.e.

𝑔afeidx = gi.

Parameters
• afeidx (int) – Index of an entry in 𝑔. (input)
• g (float) – New value for 𝑔afeidx. (input)

Groups Problem data - affine expressions

Task.putafeglist

putafeglist(afeidx,g)

Changes a list of elements of the vector 𝑔 in affine expressions i.e. for all 𝑘 it sets

𝑔afeidx[𝑘] = glist[𝑘].

Parameters
• afeidx (int[]) – Indices of entries in 𝑔. (input)

311

• g (float[]) – New values for 𝑔. (input)
Groups Problem data - affine expressions

Task.putafegslice

putafegslice(first,last,slice)

Modifies a slice in the vector 𝑔 of constant terms in affine expressions using the principle

𝑔j = slice[j− first], 𝑗 = first, .., last − 1

Parameters
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• slice (float[]) – The slice of 𝑔 as a dense vector. The length is last-first.

(input)
Groups Problem data - affine expressions

Task.putaij

putaij(i,j,aij)

Changes a coefficient in the linear coefficient matrix 𝐴 using the method

𝑎𝑖,𝑗 = aij.

Parameters
• i (int) – Constraint (row) index. (input)
• j (int) – Variable (column) index. (input)
• aij (float) – New coefficient for 𝑎𝑖,𝑗 . (input)

Groups Problem data - linear part

Task.putaijlist

putaijlist(subi,subj,valij)

Changes one or more coefficients in 𝐴 using the method

𝑎subi[k],subj[k] = valij[k], 𝑘 = 0, . . . , 𝑛𝑢𝑚− 1.

Duplicates are not allowed.

Parameters
• subi (int[]) – Constraint (row) indices. (input)
• subj (int[]) – Variable (column) indices. (input)
• valij (float[]) – New coefficient values for 𝑎𝑖,𝑗 . (input)

Groups Problem data - linear part

Task.putarow

putarow(i,subi,vali)

Change one row of the linear constraint matrix 𝐴. Resets all the elements in row 𝑖 to zero and
then sets

𝑎i,subi[𝑘] = vali[𝑘], 𝑘 = 0, . . . , nzi− 1.

312

Parameters
• i (int) – Index of a row in 𝐴. (input)
• subi (int[]) – Column indexes of non-zero values in row 𝑖 of 𝐴. (input)
• vali (float[]) – New non-zero values of row 𝑖 in 𝐴. (input)

Groups Problem data - linear part

Task.putarowlist

putarowlist(sub,ptrb,ptre,asub,aval)

Change a set of rows in the linear constraint matrix 𝐴 with data in sparse triplet format. The
requested rows are set to zero and then updated with:

for 𝑖 = 0, . . . , 𝑛𝑢𝑚− 1
𝑎sub[𝑖],asub[𝑘] = aval[𝑘], 𝑘 = ptrb[𝑖], . . . , ptre[𝑖] − 1.

Parameters
• sub (int[]) – Indexes of rows that should be replaced, no duplicates. (input)
• ptrb (int[]) – Array of pointers to the first element in each row. (input)
• ptre (int[]) – Array of pointers to the last element plus one in each row. (input)
• asub (int[]) – Column indexes of new elements. (input)
• aval (float[]) – Coefficient values. (input)

Groups Problem data - linear part

Task.putarowslice

putarowslice(first,last,ptrb,ptre,asub,aval)

Change a slice of rows in the linear constraint matrix 𝐴 with data in sparse triplet format. The
requested rows are set to zero and then updated with:

for 𝑖 = first, . . . , last− 1
𝑎𝑖,asub[𝑘] = aval[𝑘], 𝑘 = ptrb[𝑖− first], . . . , ptre[𝑖− first] − 1.

Parameters
• first (int) – First row in the slice. (input)
• last (int) – Last row plus one in the slice. (input)
• ptrb (int[]) – Array of pointers to the first element in each row. (input)
• ptre (int[]) – Array of pointers to the last element plus one in each row. (input)
• asub (int[]) – Column indexes of new elements. (input)
• aval (float[]) – Coefficient values. (input)

Groups Problem data - linear part

Task.putatruncatetol

putatruncatetol(tolzero)

Truncates (sets to zero) all elements in 𝐴 that satisfy

|𝑎𝑖,𝑗 | ≤ tolzero.

Parameters tolzero (float) – Truncation tolerance. (input)
Groups Problem data - linear part

Task.putbarablocktriplet

313

putbarablocktriplet(subi,subj,subk,subl,valijkl)

Inputs the 𝐴 matrix in block triplet form.

Parameters
• subi (int[]) – Constraint index. (input)
• subj (int[]) – Symmetric matrix variable index. (input)
• subk (int[]) – Block row index. (input)
• subl (int[]) – Block column index. (input)
• valijkl (float[]) – The numerical value associated with each block triplet.

(input)
Groups Problem data - semidefinite

Task.putbaraij

putbaraij(i,j,sub,weights)

This function sets one element in the 𝐴 matrix.

Each element in the 𝐴 matrix is a weighted sum of symmetric matrices from the symmetric matrix
storage 𝐸, so 𝐴𝑖𝑗 is a symmetric matrix. By default all elements in 𝐴 are 0, so only non-zero
elements need be added. Setting the same element again will overwrite the earlier entry.

The symmetric matrices from 𝐸 are defined separately using the function Task.
appendsparsesymmat .

Parameters
• i (int) – Row index of 𝐴. (input)
• j (int) – Column index of 𝐴. (input)
• sub (int[]) – Indices in 𝐸 of the matrices appearing in the weighted sum for
𝐴𝑖𝑗 . (input)

• weights (float[]) – weights[k] is the coefficient of the sub[k]-th element of
𝐸 in the weighted sum forming 𝐴𝑖𝑗 . (input)

Groups Problem data - semidefinite

Task.putbaraijlist

putbaraijlist(subi,
subj,
alphaptrb,
alphaptre,
matidx,
weights)

This function sets a list of elements in the 𝐴 matrix.

Each element in the 𝐴 matrix is a weighted sum of symmetric matrices from the symmetric matrix
storage 𝐸, so 𝐴𝑖𝑗 is a symmetric matrix. By default all elements in 𝐴 are 0, so only non-zero
elements need be added. Setting the same element again will overwrite the earlier entry.

The symmetric matrices from 𝐸 are defined separately using the function Task.
appendsparsesymmat .

Parameters
• subi (int[]) – Row index of 𝐴. (input)
• subj (int[]) – Column index of 𝐴. (input)
• alphaptrb (int[]) – Start entries for terms in the weighted sum that forms 𝐴𝑖𝑗 .

(input)

314

• alphaptre (int[]) – End entries for terms in the weighted sum that forms 𝐴𝑖𝑗 .
(input)

• matidx (int[]) – Indices in 𝐸 of the matrices appearing in the weighted sum
for 𝐴𝑖𝑗 . (input)

• weights (float[]) – weights[k] is the coefficient of the sub[k]-th element of
𝐸 in the weighted sum forming 𝐴𝑖𝑗 . (input)

Groups Problem data - semidefinite

Task.putbararowlist

putbararowlist(subi,
ptrb,
ptre,
subj,
nummat,
matidx,
weights)

This function replaces a list of rows in the 𝐴 matrix.

Parameters
• subi (int[]) – Row indexes of 𝐴. (input)
• ptrb (int[]) – Start of rows in 𝐴. (input)
• ptre (int[]) – End of rows in 𝐴. (input)
• subj (int[]) – Column index of 𝐴. (input)
• nummat (int[]) – Number of entries in weighted sum of matrixes. (input)
• matidx (int[]) – Matrix indexes for weighted sum of matrixes. (input)
• weights (float[]) – Weights for weighted sum of matrixes. (input)

Groups Problem data - semidefinite

Task.putbarcblocktriplet

putbarcblocktriplet(subj,subk,subl,valjkl)

Inputs the 𝐶 matrix in block triplet form.

Parameters
• subj (int[]) – Symmetric matrix variable index. (input)
• subk (int[]) – Block row index. (input)
• subl (int[]) – Block column index. (input)
• valjkl (float[]) – The numerical value associated with each block triplet.

(input)
Groups Problem data - semidefinite

Task.putbarcj

putbarcj(j,sub,weights)

This function sets one entry in the 𝐶 vector.

Each element in the 𝐶 vector is a weighted sum of symmetric matrices from the symmetric matrix
storage 𝐸, so 𝐶𝑗 is a symmetric matrix. By default all elements in 𝐶 are 0, so only non-zero
elements need be added. Setting the same element again will overwrite the earlier entry.

The symmetric matrices from 𝐸 are defined separately using the function Task.
appendsparsesymmat .

Parameters

315

• j (int) – Index of the element in 𝐶 that should be changed. (input)
• sub (int[]) – Indices in 𝐸 of matrices appearing in the weighted sum for 𝐶𝑗

(input)
• weights (float[]) – weights[k] is the coefficient of the sub[k]-th element of
𝐸 in the weighted sum forming 𝐶𝑗 . (input)

Groups Problem data - semidefinite, Problem data - objective

Task.putbarsj

putbarsj(whichsol,j,barsj)

Sets the dual solution for a semidefinite variable.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• j (int) – Index of the semidefinite variable. (input)
• barsj (float[]) – Value of 𝑆𝑗 . Format as in Task.getbarsj . (input)

Groups Solution - semidefinite

Task.putbarvarname

putbarvarname(j,name)

Sets the name of a semidefinite variable.

Parameters
• j (int) – Index of the variable. (input)
• name (str) – The variable name. (input)

Groups Names, Problem data - semidefinite

Task.putbarxj

putbarxj(whichsol,j,barxj)

Sets the primal solution for a semidefinite variable.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• j (int) – Index of the semidefinite variable. (input)
• barxj (float[]) – Value of 𝑋𝑗 . Format as in Task.getbarxj . (input)

Groups Solution - semidefinite

Task.putcfix

putcfix(cfix)

Replaces the fixed term in the objective by a new one.

Parameters cfix (float) – Fixed term in the objective. (input)
Groups Problem data - linear part , Problem data - objective

Task.putcj

putcj(j,cj)

316

Modifies one coefficient in the linear objective vector 𝑐, i.e.

𝑐j = cj.

If the absolute value exceeds dparam.data_tol_c_huge an error is generated. If the absolute
value exceeds dparam.data_tol_cj_large , a warning is generated, but the coefficient is inputted
as specified.

Parameters
• j (int) – Index of the variable for which 𝑐 should be changed. (input)
• cj (float) – New value of 𝑐𝑗 . (input)

Groups Problem data - linear part , Problem data - objective

Task.putclist

putclist(subj,val)

Modifies the coefficients in the linear term 𝑐 in the objective using the principle

𝑐subj[t] = val[t], 𝑡 = 0, . . . , 𝑛𝑢𝑚− 1.

If a variable index is specified multiple times in subj only the last entry is used. Data checks are
performed as in Task.putcj .

Parameters
• subj (int[]) – Indices of variables for which the coefficient in 𝑐 should be

changed. (input)
• val (float[]) – New numerical values for coefficients in 𝑐 that should be mod-

ified. (input)
Groups Problem data - linear part , Problem data - variables, Problem data - objective

Task.putconbound

putconbound(i,bkc,blc,buc)

Changes the bounds for one constraint.

If the bound value specified is numerically larger than dparam.data_tol_bound_inf it is consid-
ered infinite and the bound key is changed accordingly. If a bound value is numerically larger than
dparam.data_tol_bound_wrn , a warning will be displayed, but the bound is inputted as specified.

Parameters
• i (int) – Index of the constraint. (input)
• bkc (mosek.boundkey) – New bound key. (input)
• blc (float) – New lower bound. (input)
• buc (float) – New upper bound. (input)

Groups Problem data - linear part , Problem data - constraints, Problem data - bounds

Task.putconboundlist

putconboundlist(sub,bkc,blc,buc)

Changes the bounds for a list of constraints. If multiple bound changes are specified for a constraint,
then only the last change takes effect. Data checks are performed as in Task.putconbound .

Parameters
• sub (int[]) – List of constraint indexes. (input)
• bkc (mosek.boundkey []) – Bound keys for the constraints. (input)

317

• blc (float[]) – Lower bounds for the constraints. (input)
• buc (float[]) – Upper bounds for the constraints. (input)

Groups Problem data - linear part , Problem data - constraints, Problem data - bounds

Task.putconboundlistconst

putconboundlistconst(sub,bkc,blc,buc)

Changes the bounds for one or more constraints. Data checks are performed as in Task.
putconbound .

Parameters
• sub (int[]) – List of constraint indexes. (input)
• bkc (mosek.boundkey) – New bound key for all constraints in the list. (input)
• blc (float) – New lower bound for all constraints in the list. (input)
• buc (float) – New upper bound for all constraints in the list. (input)

Groups Problem data - linear part , Problem data - constraints, Problem data - bounds

Task.putconboundslice

putconboundslice(first,last,bkc,blc,buc)

Changes the bounds for a slice of the constraints. Data checks are performed as in Task.
putconbound .

Parameters
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• bkc (mosek.boundkey []) – Bound keys for the constraints. (input)
• blc (float[]) – Lower bounds for the constraints. (input)
• buc (float[]) – Upper bounds for the constraints. (input)

Groups Problem data - linear part , Problem data - constraints, Problem data - bounds

Task.putconboundsliceconst

putconboundsliceconst(first,last,bkc,blc,buc)

Changes the bounds for a slice of the constraints. Data checks are performed as in Task.
putconbound .

Parameters
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• bkc (mosek.boundkey) – New bound key for all constraints in the slice. (input)
• blc (float) – New lower bound for all constraints in the slice. (input)
• buc (float) – New upper bound for all constraints in the slice. (input)

Groups Problem data - linear part , Problem data - constraints, Problem data - bounds

Task.putcone Deprecated

putcone(k,ct,conepar,submem)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

318

Parameters
• k (int) – Index of the cone. (input)
• ct (mosek.conetype) – Specifies the type of the cone. (input)
• conepar (float) – For the power cone it denotes the exponent alpha. For other

cone types it is unused and can be set to 0. (input)
• submem (int[]) – Variable subscripts of the members in the cone. (input)

Groups Problem data - cones (deprecated)

Task.putconename Deprecated

putconename(j,name)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Parameters
• j (int) – Index of the cone. (input)
• name (str) – The name of the cone. (input)

Groups Names, Problem data - cones (deprecated)

Task.putconname

putconname(i,name)

Sets the name of a constraint.

Parameters
• i (int) – Index of the constraint. (input)
• name (str) – The name of the constraint. (input)

Groups Names, Problem data - constraints, Problem data - linear part

Task.putconsolutioni

putconsolutioni(i,whichsol,sk,x,sl,su)

Sets the primal and dual solution information for a single constraint.

Parameters
• i (int) – Index of the constraint. (input)
• whichsol (mosek.soltype) – Selects a solution. (input)
• sk (mosek.stakey) – Status key of the constraint. (input)
• x (float) – Primal solution value of the constraint. (input)
• sl (float) – Solution value of the dual variable associated with the lower bound.

(input)
• su (float) – Solution value of the dual variable associated with the upper bound.

(input)
Groups Solution information, Solution - primal , Solution - dual

Task.putcslice

putcslice(first,last,slice)

319

Modifies a slice in the linear term 𝑐 in the objective using the principle

𝑐j = slice[j− first], 𝑗 = 𝑓𝑖𝑟𝑠𝑡, .., 𝑙𝑎𝑠𝑡− 1

Data checks are performed as in Task.putcj .

Parameters
• first (int) – First element in the slice of 𝑐. (input)
• last (int) – Last element plus 1 of the slice in 𝑐 to be changed. (input)
• slice (float[]) – New numerical values for coefficients in 𝑐 that should be

modified. (input)
Groups Problem data - linear part , Problem data - objective

Task.putdjc

putdjc(djcidx,
domidxlist,
afeidxlist,
b,
termsizelist)

Inputs a disjunctive constraint. The constraint has the form

𝑇1 or 𝑇2 or · · · or 𝑇numterms

For each 𝑖 = 1, . . .numterms the 𝑖-th clause (term) 𝑇𝑖 has the form a sequence of affine expressions
belongs to a product of domains, where the number of domains is termsizelist[𝑖] and the number of
affine expressions is equal to the sum of dimensions of all domains appearing in 𝑇𝑖.

All the domains and all the affine expressions appearing in the above description are arranged
sequentially in the lists domidxlist and afeidxlist, respectively. In particular, the length of
domidxlist must be equal to the sum of elements of termsizelist, and the length of afeidxlist
must be equal to the sum of dimensions of all the domains appearing in domidxlist.

The elements of domidxlist are indexes of domains previously defined with one of the append..
.domain functions.

The elements of afeidxlist are indexes to the store of affine expressions, i.e. the 𝑘-th affine
expression appearing in the disjunctive constraint is going to be

𝐹afeidxlist[𝑘],:𝑥 + 𝑔afeidxlist[𝑘]

If an optional vector b of the same length as afeidxlist is specified then the 𝑘-th affine expression
appearing in the disjunctive constraint will be taken as

𝐹afeidxlist[𝑘],:𝑥 + 𝑔afeidxlist[𝑘] − 𝑏𝑘

Parameters
• djcidx (int) – Index of the disjunctive constraint. (input)
• domidxlist (int[]) – List of domain indexes. (input)
• afeidxlist (int[]) – List of affine expression indexes. (input)
• b (float[]) – The vector of constant terms added to affine expressions. (input)
• termsizelist (int[]) – List of term sizes. (input)

Groups Problem data - disjunctive constraints

Task.putdjcname

320

putdjcname(djcidx,name)

Sets the name of a disjunctive constraint.

Parameters
• djcidx (int) – Index of the disjunctive constraint. (input)
• name (str) – The name of the disjunctive constraint. (input)

Groups Names, Problem data - disjunctive constraints

Task.putdjcslice

putdjcslice(idxfirst,
idxlast,
domidxlist,
afeidxlist,
b,
termsizelist,
termsindjc)

Inputs a slice of disjunctive constraints.

The array termsindjc should have length idxlast − idxfirst and contain the number of terms in
consecutive constraints forming the slice.

The rest of the input consists of concatenated descriptions of individual constraints, where each
constraint is described as in Task.putdjc .

Parameters
• idxfirst (int) – Index of the first disjunctive constraint in the slice. (input)
• idxlast (int) – Index of the last disjunctive constraint in the slice plus 1.

(input)
• domidxlist (int[]) – List of domain indexes. (input)
• afeidxlist (int[]) – List of affine expression indexes. (input)
• b (float[]) – The vector of constant terms added to affine expressions. Optional,

may be NULL. (input)
• termsizelist (int[]) – List of term sizes. (input)
• termsindjc (int[]) – Number of terms in each of the disjunctive constraints in

the slice. (input)
Groups Problem data - disjunctive constraints

Task.putdomainname

putdomainname(domidx,name)

Sets the name of a domain.

Parameters
• domidx (int) – Index of the domain. (input)
• name (str) – The name of the domain. (input)

Groups Names, Problem data - domain

Task.putdouparam

putdouparam(param,parvalue)

Sets the value of a double parameter.

Parameters

321

• param (mosek.dparam) – Which parameter. (input)
• parvalue (float) – Parameter value. (input)

Groups Parameters

Task.putintparam

putintparam(param,parvalue)

Sets the value of an integer parameter.

Parameters
• param (mosek.iparam) – Which parameter. (input)
• parvalue (int) – Parameter value. (input)

Groups Parameters

Task.putmaxnumacc

putmaxnumacc(maxnumacc)

Sets the number of preallocated affine conic constraints in the optimization task. When this
number is reached MOSEK will automatically allocate more space. It is never mandatory to call
this function, since MOSEK will reallocate any internal structures whenever it is required.

Parameters maxnumacc (int) – Number of preallocated affine conic constraints. (input)
Groups Environment and task management , Problem data - affine conic constraints

Task.putmaxnumafe

putmaxnumafe(maxnumafe)

Sets the number of preallocated affine expressions in the optimization task. When this number
is reached MOSEK will automatically allocate more space for affine expressions. It is never
mandatory to call this function, since MOSEK will reallocate any internal structures whenever it
is required.

Parameters maxnumafe (int) – Number of preallocated affine expressions. (input)
Groups Environment and task management , Problem data - affine expressions

Task.putmaxnumanz

putmaxnumanz(maxnumanz)

Sets the number of preallocated non-zero entries in 𝐴.

MOSEK stores only the non-zero elements in the linear coefficient matrix 𝐴 and it cannot predict
how much storage is required to store 𝐴. Using this function it is possible to specify the number
of non-zeros to preallocate for storing 𝐴.

If the number of non-zeros in the problem is known, it is a good idea to set maxnumanz slightly
larger than this number, otherwise a rough estimate can be used. In general, if 𝐴 is inputted in
many small chunks, setting this value may speed up the data input phase.

It is not mandatory to call this function, since MOSEK will reallocate internal structures whenever
it is necessary.

The function call has no effect if both maxnumcon and maxnumvar are zero.

Parameters maxnumanz (int) – Number of preallocated non-zeros in 𝐴. (input)
Groups Environment and task management , Problem data - linear part

322

Task.putmaxnumbarvar

putmaxnumbarvar(maxnumbarvar)

Sets the number of preallocated symmetric matrix variables in the optimization task. When this
number of variables is reached MOSEK will automatically allocate more space for variables.

It is not mandatory to call this function. It only gives a hint about the amount of data to preallocate
for efficiency reasons.

Please note that maxnumbarvar must be larger than the current number of symmetric matrix
variables in the task.

Parameters maxnumbarvar (int) – Number of preallocated symmetric matrix variables.
(input)

Groups Environment and task management , Problem data - semidefinite

Task.putmaxnumcon

putmaxnumcon(maxnumcon)

Sets the number of preallocated constraints in the optimization task. When this number of con-
straints is reached MOSEK will automatically allocate more space for constraints.

It is never mandatory to call this function, since MOSEK will reallocate any internal structures
whenever it is required.

Please note that maxnumcon must be larger than the current number of constraints in the task.

Parameters maxnumcon (int) – Number of preallocated constraints in the optimization
task. (input)

Groups Environment and task management , Problem data - constraints

Task.putmaxnumcone Deprecated

putmaxnumcone(maxnumcone)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Sets the number of preallocated conic constraints in the optimization task. When this number of
conic constraints is reached MOSEK will automatically allocate more space for conic constraints.

It is not mandatory to call this function, since MOSEK will reallocate any internal structures
whenever it is required.

Please note that maxnumcon must be larger than the current number of conic constraints in the
task.

Parameters maxnumcone (int) – Number of preallocated conic constraints in the opti-
mization task. (input)

Groups Environment and task management , Problem data - cones (deprecated)

Task.putmaxnumdjc

putmaxnumdjc(maxnumdjc)

Sets the number of preallocated disjunctive constraints in the optimization task. When this number
is reached MOSEK will automatically allocate more space. It is never mandatory to call this
function, since MOSEK will reallocate any internal structures whenever it is required.

323

Parameters maxnumdjc (int) – Number of preallocated disjunctive constraints in the
task. (input)

Groups Environment and task management , Problem data - disjunctive constraints

Task.putmaxnumdomain

putmaxnumdomain(maxnumdomain)

Sets the number of preallocated domains in the optimization task. When this number is reached
MOSEK will automatically allocate more space. It is never mandatory to call this function, since
MOSEK will reallocate any internal structures whenever it is required.

Parameters maxnumdomain (int) – Number of preallocated domains. (input)
Groups Environment and task management , Problem data - domain

Task.putmaxnumqnz

putmaxnumqnz(maxnumqnz)

Sets the number of preallocated non-zero entries in quadratic terms.

MOSEK stores only the non-zero elements in 𝑄. Therefore, MOSEK cannot predict how much
storage is required to store 𝑄. Using this function it is possible to specify the number non-zeros to
preallocate for storing 𝑄 (both objective and constraints).

It may be advantageous to reserve more non-zeros for 𝑄 than actually needed since it may improve
the internal efficiency of MOSEK, however, it is never worthwhile to specify more than the double
of the anticipated number of non-zeros in 𝑄.

It is not mandatory to call this function, since MOSEK will reallocate internal structures whenever
it is necessary.

Parameters maxnumqnz (int) – Number of non-zero elements preallocated in quadratic
coefficient matrices. (input)

Groups Environment and task management , Problem data - quadratic part

Task.putmaxnumvar

putmaxnumvar(maxnumvar)

Sets the number of preallocated variables in the optimization task. When this number of variables
is reached MOSEK will automatically allocate more space for variables.

It is not mandatory to call this function. It only gives a hint about the amount of data to preallocate
for efficiency reasons.

Please note that maxnumvar must be larger than the current number of variables in the task.

Parameters maxnumvar (int) – Number of preallocated variables in the optimization
task. (input)

Groups Environment and task management , Problem data - variables

Task.putnadouparam

putnadouparam(paramname,parvalue)

Sets the value of a named double parameter.

Parameters
• paramname (str) – Name of a parameter. (input)
• parvalue (float) – Parameter value. (input)

324

Groups Parameters

Task.putnaintparam

putnaintparam(paramname,parvalue)

Sets the value of a named integer parameter.

Parameters
• paramname (str) – Name of a parameter. (input)
• parvalue (int) – Parameter value. (input)

Groups Parameters

Task.putnastrparam

putnastrparam(paramname,parvalue)

Sets the value of a named string parameter.

Parameters
• paramname (str) – Name of a parameter. (input)
• parvalue (str) – Parameter value. (input)

Groups Parameters

Task.putobjname

putobjname(objname)

Assigns a new name to the objective.

Parameters objname (str) – Name of the objective. (input)
Groups Problem data - linear part , Names, Problem data - objective

Task.putobjsense

putobjsense(sense)

Sets the objective sense of the task.

Parameters sense (mosek.objsense) – The objective sense of the task. The values
objsense.maximize and objsense.minimize mean that the problem is maximized
or minimized respectively. (input)

Groups Problem data - linear part , Problem data - objective

Task.putoptserverhost

putoptserverhost(host)

Specify an OptServer URL for remote calls. The URL should contain protocol, host and port in
the form http://server:port or https://server:port. If the URL is set using this function, all
subsequent calls to any MOSEK function that involves synchronous optimization will be sent to the
specified OptServer instead of being executed locally. Passing NULL deactivates this redirection.

Has the same effect as setting the parameter sparam.remote_optserver_host .

Parameters host (str) – A URL specifying the optimization server to be used. (input)
Groups Remote optimization

325

Task.putparam

putparam(parname,parvalue)

Checks if parname is valid parameter name. If it is, the parameter is assigned the value specified
by parvalue.

Parameters
• parname (str) – Parameter name. (input)
• parvalue (str) – Parameter value. (input)

Groups Parameters

Task.putqcon

putqcon(qcsubk,qcsubi,qcsubj,qcval)

Replace all quadratic entries in the constraints. The list of constraints has the form

𝑙𝑐𝑘 ≤ 1

2

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑖=0

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑗=0

𝑞𝑘𝑖𝑗𝑥𝑖𝑥𝑗 +

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑗=0

𝑎𝑘𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1.

This function sets all the quadratic terms to zero and then performs the update:

𝑞
qcsubk[t]
qcsubi[t],qcsubj[t] = 𝑞

qcsubk[t]
qcsubj[t],qcsubi[t] = 𝑞

qcsubk[t]
qcsubj[t],qcsubi[t] + qcval[t],

for 𝑡 = 0, . . . , 𝑛𝑢𝑚𝑞𝑐𝑛𝑧 − 1.

Please note that:

• For large problems it is essential for the efficiency that the function Task.putmaxnumqnz is
employed to pre-allocate space.

• Only the lower triangular parts should be specified because the 𝑄 matrices are symmetric.
Specifying entries where 𝑖 < 𝑗 will result in an error.

• Only non-zero elements should be specified.

• The order in which the non-zero elements are specified is insignificant.

• Duplicate elements are added together as shown above. Hence, it is usually not recommended
to specify the same entry multiple times.

For a code example see Section Quadratic Optimization

Parameters
• qcsubk (int[]) – Constraint subscripts for quadratic coefficients. (input)
• qcsubi (int[]) – Row subscripts for quadratic constraint matrix. (input)
• qcsubj (int[]) – Column subscripts for quadratic constraint matrix. (input)
• qcval (float[]) – Quadratic constraint coefficient values. (input)

Groups Problem data - quadratic part

Task.putqconk

putqconk(k,qcsubi,qcsubj,qcval)

Replaces all the quadratic entries in one constraint. This function performs the same operations
as Task.putqcon but only with respect to constraint number k and it does not modify the other
constraints. See the description of Task.putqcon for definitions and important remarks.

Parameters
• k (int) – The constraint in which the new 𝑄 elements are inserted. (input)

326

• qcsubi (int[]) – Row subscripts for quadratic constraint matrix. (input)
• qcsubj (int[]) – Column subscripts for quadratic constraint matrix. (input)
• qcval (float[]) – Quadratic constraint coefficient values. (input)

Groups Problem data - quadratic part

Task.putqobj

putqobj(qosubi,qosubj,qoval)

Replace all quadratic terms in the objective. If the objective has the form

1

2

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑖=0

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑗=0

𝑞𝑜𝑖𝑗𝑥𝑖𝑥𝑗 +

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑗=0

𝑐𝑗𝑥𝑗 + 𝑐𝑓

then this function sets all the quadratic terms to zero and then performs the update:

𝑞𝑜qosubi[t],qosubj[t] = 𝑞𝑜qosubj[t],qosubi[t] = 𝑞𝑜qosubj[t],qosubi[t] + qoval[t],

for 𝑡 = 0, . . . , 𝑛𝑢𝑚𝑞𝑜𝑛𝑧 − 1.

See the description of Task.putqcon for important remarks and example.

Parameters
• qosubi (int[]) – Row subscripts for quadratic objective coefficients. (input)
• qosubj (int[]) – Column subscripts for quadratic objective coefficients. (input)
• qoval (float[]) – Quadratic objective coefficient values. (input)

Groups Problem data - quadratic part , Problem data - objective

Task.putqobjij

putqobjij(i,j,qoij)

Replaces one coefficient in the quadratic term in the objective. The function performs the assign-
ment

𝑞𝑜𝑖𝑗 = 𝑞𝑜𝑗𝑖 = qoij.

Only the elements in the lower triangular part are accepted. Setting 𝑞𝑖𝑗 with 𝑗 > 𝑖 will cause an
error.

Please note that replacing all quadratic elements one by one is more computationally expensive
than replacing them all at once. Use Task.putqobj instead whenever possible.

Parameters
• i (int) – Row index for the coefficient to be replaced. (input)
• j (int) – Column index for the coefficient to be replaced. (input)
• qoij (float) – The new value for 𝑞𝑜𝑖𝑗 . (input)

Groups Problem data - quadratic part , Problem data - objective

Task.putskc

putskc(whichsol,skc)

Sets the status keys for the constraints.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• skc (mosek.stakey []) – Status keys for the constraints. (input)

327

Groups Solution information

Task.putskcslice

putskcslice(whichsol,first,last,skc)

Sets the status keys for a slice of the constraints.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• skc (mosek.stakey []) – Status keys for the constraints. (input)

Groups Solution information

Task.putskx

putskx(whichsol,skx)

Sets the status keys for the scalar variables.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• skx (mosek.stakey []) – Status keys for the variables. (input)

Groups Solution information

Task.putskxslice

putskxslice(whichsol,first,last,skx)

Sets the status keys for a slice of the variables.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• skx (mosek.stakey []) – Status keys for the variables. (input)

Groups Solution information

Task.putslc

putslc(whichsol,slc)

Sets the 𝑠𝑐𝑙 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• slc (float[]) – Dual variables corresponding to the lower bounds on the con-

straints. (input)
Groups Solution - dual

Task.putslcslice

putslcslice(whichsol,first,last,slc)

Sets a slice of the 𝑠𝑐𝑙 vector for a solution.

328

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• slc (float[]) – Dual variables corresponding to the lower bounds on the con-

straints. (input)
Groups Solution - dual

Task.putslx

putslx(whichsol,slx)

Sets the 𝑠𝑥𝑙 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• slx (float[]) – Dual variables corresponding to the lower bounds on the vari-

ables. (input)
Groups Solution - dual

Task.putslxslice

putslxslice(whichsol,first,last,slx)

Sets a slice of the 𝑠𝑥𝑙 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• slx (float[]) – Dual variables corresponding to the lower bounds on the vari-

ables. (input)
Groups Solution - dual

Task.putsnx

putsnx(whichsol,sux)

Sets the 𝑠𝑥𝑛 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• sux (float[]) – Dual variables corresponding to the upper bounds on the vari-

ables. (input)
Groups Solution - dual

Task.putsnxslice

putsnxslice(whichsol,first,last,snx)

Sets a slice of the 𝑠𝑥𝑛 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)

329

• snx (float[]) – Dual variables corresponding to the conic constraints on the
variables. (input)

Groups Solution - dual

Task.putsolution

putsolution(whichsol,
skc,
skx,
skn,
xc,
xx,
y,
slc,
suc,
slx,
sux,
snx)

Inserts a solution into the task.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• skc (mosek.stakey []) – Status keys for the constraints. (input)
• skx (mosek.stakey []) – Status keys for the variables. (input)
• skn (mosek.stakey []) – Status keys for the conic constraints. (input)
• xc (float[]) – Primal constraint solution. (input)
• xx (float[]) – Primal variable solution. (input)
• y (float[]) – Vector of dual variables corresponding to the constraints. (input)
• slc (float[]) – Dual variables corresponding to the lower bounds on the con-

straints. (input)
• suc (float[]) – Dual variables corresponding to the upper bounds on the con-

straints. (input)
• slx (float[]) – Dual variables corresponding to the lower bounds on the vari-

ables. (input)
• sux (float[]) – Dual variables corresponding to the upper bounds on the vari-

ables. (input)
• snx (float[]) – Dual variables corresponding to the conic constraints on the

variables. (input)
Groups Solution information, Solution - primal , Solution - dual

Task.putsolutionnew

putsolutionnew(whichsol,
skc,
skx,
skn,
xc,
xx,
y,
slc,
suc,
slx,
sux,
snx,
doty)

330

Inserts a solution into the task.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• skc (mosek.stakey []) – Status keys for the constraints. (input)
• skx (mosek.stakey []) – Status keys for the variables. (input)
• skn (mosek.stakey []) – Status keys for the conic constraints. (input)
• xc (float[]) – Primal constraint solution. (input)
• xx (float[]) – Primal variable solution. (input)
• y (float[]) – Vector of dual variables corresponding to the constraints. (input)
• slc (float[]) – Dual variables corresponding to the lower bounds on the con-

straints. (input)
• suc (float[]) – Dual variables corresponding to the upper bounds on the con-

straints. (input)
• slx (float[]) – Dual variables corresponding to the lower bounds on the vari-

ables. (input)
• sux (float[]) – Dual variables corresponding to the upper bounds on the vari-

ables. (input)
• snx (float[]) – Dual variables corresponding to the conic constraints on the

variables. (input)
• doty (float[]) – Dual variables corresponding to affine conic constraints. (in-

put)
Groups Solution information, Solution - primal , Solution - dual

Task.putsolutionyi

putsolutionyi(i,whichsol,y)

Inputs the dual variable of a solution.

Parameters
• i (int) – Index of the dual variable. (input)
• whichsol (mosek.soltype) – Selects a solution. (input)
• y (float) – Solution value of the dual variable. (input)

Groups Solution information, Solution - dual

Task.putstrparam

putstrparam(param,parvalue)

Sets the value of a string parameter.

Parameters
• param (mosek.sparam) – Which parameter. (input)
• parvalue (str) – Parameter value. (input)

Groups Parameters

Task.putsuc

putsuc(whichsol,suc)

Sets the 𝑠𝑐𝑢 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)

331

• suc (float[]) – Dual variables corresponding to the upper bounds on the con-
straints. (input)

Groups Solution - dual

Task.putsucslice

putsucslice(whichsol,first,last,suc)

Sets a slice of the 𝑠𝑐𝑢 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• suc (float[]) – Dual variables corresponding to the upper bounds on the con-

straints. (input)
Groups Solution - dual

Task.putsux

putsux(whichsol,sux)

Sets the 𝑠𝑥𝑢 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• sux (float[]) – Dual variables corresponding to the upper bounds on the vari-

ables. (input)
Groups Solution - dual

Task.putsuxslice

putsuxslice(whichsol,first,last,sux)

Sets a slice of the 𝑠𝑥𝑢 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• sux (float[]) – Dual variables corresponding to the upper bounds on the vari-

ables. (input)
Groups Solution - dual

Task.puttaskname

puttaskname(taskname)

Assigns a new name to the task.

Parameters taskname (str) – Name assigned to the task. (input)
Groups Names, Environment and task management

Task.putvarbound

332

putvarbound(j,bkx,blx,bux)

Changes the bounds for one variable.

If the bound value specified is numerically larger than dparam.data_tol_bound_inf it is consid-
ered infinite and the bound key is changed accordingly. If a bound value is numerically larger than
dparam.data_tol_bound_wrn , a warning will be displayed, but the bound is inputted as specified.

Parameters
• j (int) – Index of the variable. (input)
• bkx (mosek.boundkey) – New bound key. (input)
• blx (float) – New lower bound. (input)
• bux (float) – New upper bound. (input)

Groups Problem data - linear part , Problem data - variables, Problem data - bounds

Task.putvarboundlist

putvarboundlist(sub,bkx,blx,bux)

Changes the bounds for one or more variables. If multiple bound changes are specified for a variable,
then only the last change takes effect. Data checks are performed as in Task.putvarbound .

Parameters
• sub (int[]) – List of variable indexes. (input)
• bkx (mosek.boundkey []) – Bound keys for the variables. (input)
• blx (float[]) – Lower bounds for the variables. (input)
• bux (float[]) – Upper bounds for the variables. (input)

Groups Problem data - linear part , Problem data - variables, Problem data - bounds

Task.putvarboundlistconst

putvarboundlistconst(sub,bkx,blx,bux)

Changes the bounds for one or more variables. Data checks are performed as in Task.putvarbound .

Parameters
• sub (int[]) – List of variable indexes. (input)
• bkx (mosek.boundkey) – New bound key for all variables in the list. (input)
• blx (float) – New lower bound for all variables in the list. (input)
• bux (float) – New upper bound for all variables in the list. (input)

Groups Problem data - linear part , Problem data - variables, Problem data - bounds

Task.putvarboundslice

putvarboundslice(first,last,bkx,blx,bux)

Changes the bounds for a slice of the variables. Data checks are performed as in Task.
putvarbound .

Parameters
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• bkx (mosek.boundkey []) – Bound keys for the variables. (input)
• blx (float[]) – Lower bounds for the variables. (input)
• bux (float[]) – Upper bounds for the variables. (input)

Groups Problem data - linear part , Problem data - variables, Problem data - bounds

333

Task.putvarboundsliceconst

putvarboundsliceconst(first,last,bkx,blx,bux)

Changes the bounds for a slice of the variables. Data checks are performed as in Task.
putvarbound .

Parameters
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• bkx (mosek.boundkey) – New bound key for all variables in the slice. (input)
• blx (float) – New lower bound for all variables in the slice. (input)
• bux (float) – New upper bound for all variables in the slice. (input)

Groups Problem data - linear part , Problem data - variables, Problem data - bounds

Task.putvarname

putvarname(j,name)

Sets the name of a variable.

Parameters
• j (int) – Index of the variable. (input)
• name (str) – The variable name. (input)

Groups Names, Problem data - variables, Problem data - linear part

Task.putvarsolutionj

putvarsolutionj(j,whichsol,sk,x,sl,su,sn)

Sets the primal and dual solution information for a single variable.

Parameters
• j (int) – Index of the variable. (input)
• whichsol (mosek.soltype) – Selects a solution. (input)
• sk (mosek.stakey) – Status key of the variable. (input)
• x (float) – Primal solution value of the variable. (input)
• sl (float) – Solution value of the dual variable associated with the lower bound.

(input)
• su (float) – Solution value of the dual variable associated with the upper bound.

(input)
• sn (float) – Solution value of the dual variable associated with the conic con-

straint. (input)
Groups Solution information, Solution - primal , Solution - dual

Task.putvartype

putvartype(j,vartype)

Sets the variable type of one variable.

Parameters
• j (int) – Index of the variable. (input)
• vartype (mosek.variabletype) – The new variable type. (input)

Groups Problem data - variables

334

Task.putvartypelist

putvartypelist(subj,vartype)

Sets the variable type for one or more variables. If the same index is specified multiple times in
subj only the last entry takes effect.

Parameters
• subj (int[]) – A list of variable indexes for which the variable type should be

changed. (input)
• vartype (mosek.variabletype []) – A list of variable types that should be

assigned to the variables specified by subj. (input)
Groups Problem data - variables

Task.putxc

putxc(whichsol,xc)

putxc(whichsol) -> (xc)

Sets the 𝑥𝑐 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• xc (float[]) – Primal constraint solution. (output)

Return xc (float[]) – Primal constraint solution.
Groups Solution - primal

Task.putxcslice

putxcslice(whichsol,first,last,xc)

Sets a slice of the 𝑥𝑐 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• xc (float[]) – Primal constraint solution. (input)

Groups Solution - primal

Task.putxx

putxx(whichsol,xx)

Sets the 𝑥𝑥 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• xx (float[]) – Primal variable solution. (input)

Groups Solution - primal

Task.putxxslice

335

putxxslice(whichsol,first,last,xx)

Sets a slice of the 𝑥𝑥 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• xx (float[]) – Primal variable solution. (input)

Groups Solution - primal

Task.puty

puty(whichsol,y)

Sets the 𝑦 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• y (float[]) – Vector of dual variables corresponding to the constraints. (input)

Groups Solution - primal

Task.putyslice

putyslice(whichsol,first,last,y)

Sets a slice of the 𝑦 vector for a solution.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• first (int) – First index in the sequence. (input)
• last (int) – Last index plus 1 in the sequence. (input)
• y (float[]) – Vector of dual variables corresponding to the constraints. (input)

Groups Solution - dual

Task.readbsolution

readbsolution(filename,compress)

Read a binary dump of the task solution.

Parameters
• filename (str) – A valid file name. (input)
• compress (mosek.compresstype) – Data compression type. (input)

Groups Input/Output

Task.readdata

readdata(filename)

Reads an optimization problem and associated data from a file.

Parameters filename (str) – A valid file name. (input)
Groups Input/Output

Task.readdataformat

336

readdataformat(filename,format,compress)

Reads an optimization problem and associated data from a file.

Parameters
• filename (str) – A valid file name. (input)
• format (mosek.dataformat) – File data format. (input)
• compress (mosek.compresstype) – File compression type. (input)

Groups Input/Output

Task.readjsonsol

readjsonsol(filename)

Reads a solution file in JSON format (JSOL file) and inserts it in the task. Only the section
Task/solutions is taken into consideration.

Parameters filename (str) – A valid file name. (input)
Groups Input/Output

Task.readjsonstring

readjsonstring(data)

Load task data from a JSON string, replacing any data that already exists in the task object. All
problem data, parameters and other settings are resorted, but if the string contains solutions, the
solution status after loading a file is set to unknown, even if it is optimal or otherwise well-defined.

Parameters data (str) – Problem data in text format. (input)
Groups Input/Output

Task.readlpstring

readlpstring(data)

Load task data from a string in LP format, replacing any data that already exists in the task
object.

Parameters data (str) – Problem data in text format. (input)
Groups Input/Output

Task.readopfstring

readopfstring(data)

Load task data from a string in OPF format, replacing any data that already exists in the task
object.

Parameters data (str) – Problem data in text format. (input)
Groups Input/Output

Task.readparamfile

readparamfile(filename)

Reads MOSEK parameters from a file. Data is read from the file filename if it is a nonempty
string. Otherwise data is read from the file specified by sparam.param_read_file_name .

337

Parameters filename (str) – A valid file name. (input)
Groups Input/Output , Parameters

Task.readptfstring

readptfstring(data)

Load task data from a PTF string, replacing any data that already exists in the task object. All
problem data, parameters and other settings are resorted, but if the string contains solutions, the
solution status after loading a file is set to unknown, even if it is optimal or otherwise well-defined.

Parameters data (str) – Problem data in text format. (input)
Groups Input/Output

Task.readsolution

readsolution(whichsol,filename)

Reads a solution file and inserts it as a specified solution in the task. Data is read from the file
filename if it is a nonempty string. Otherwise data is read from one of the files specified by sparam.
bas_sol_file_name , sparam.itr_sol_file_name or sparam.int_sol_file_name depending on
which solution is chosen.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• filename (str) – A valid file name. (input)

Groups Input/Output

Task.readsolutionfile

readsolutionfile(filename)

Read solution file in format determined by the filename

Parameters filename (str) – A valid file name. (input)
Groups Input/Output

Task.readsummary

readsummary(whichstream)

Prints a short summary of last file that was read.

Parameters whichstream (mosek.streamtype) – Index of the stream. (input)
Groups Input/Output , Inspecting the task

Task.readtask

readtask(filename)

Load task data from a file, replacing any data that already exists in the task object. All problem
data, parameters and other settings are resorted, but if the file contains solutions, the solution
status after loading a file is set to unknown, even if it was optimal or otherwise well-defined when
the file was dumped.

See section The Task Format for a description of the Task format.

Parameters filename (str) – A valid file name. (input)

338

Groups Input/Output

Task.removebarvars

removebarvars(subset)

The function removes a subset of the symmetric matrices from the optimization task. This implies
that the remaining symmetric matrices are renumbered.

Parameters subset (int[]) – Indexes of symmetric matrices which should be removed.
(input)

Groups Problem data - semidefinite

Task.removecones Deprecated

removecones(subset)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Removes a number of conic constraints from the problem. This implies that the remaining conic
constraints are renumbered. In general, it is much more efficient to remove a cone with a high
index than a low index.

Parameters subset (int[]) – Indexes of cones which should be removed. (input)
Groups Problem data - cones (deprecated)

Task.removecons

removecons(subset)

The function removes a subset of the constraints from the optimization task. This implies that the
remaining constraints are renumbered.

Parameters subset (int[]) – Indexes of constraints which should be removed. (input)
Groups Problem data - constraints, Problem data - linear part

Task.removevars

removevars(subset)

The function removes a subset of the variables from the optimization task. This implies that the
remaining variables are renumbered.

Parameters subset (int[]) – Indexes of variables which should be removed. (input)
Groups Problem data - variables, Problem data - linear part

Task.resizetask

resizetask(maxnumcon,
maxnumvar,
maxnumcone,
maxnumanz,
maxnumqnz)

339

Sets the amount of preallocated space assigned for each type of data in an optimization task.

It is never mandatory to call this function, since it only gives a hint about the amount of data to
preallocate for efficiency reasons.

Please note that the procedure is destructive in the sense that all existing data stored in the task
is destroyed.

Parameters
• maxnumcon (int) – New maximum number of constraints. (input)
• maxnumvar (int) – New maximum number of variables. (input)
• maxnumcone (int) – New maximum number of cones. (input)
• maxnumanz (int) – New maximum number of non-zeros in 𝐴. (input)
• maxnumqnz (int) – New maximum number of non-zeros in all 𝑄 matrices. (input)

Groups Environment and task management

Task.sensitivityreport

sensitivityreport(whichstream)

Reads a sensitivity format file from a location given by sparam.sensitivity_file_name and
writes the result to the stream whichstream. If sparam.sensitivity_res_file_name is set to a
non-empty string, then the sensitivity report is also written to a file of this name.

Parameters whichstream (mosek.streamtype) – Index of the stream. (input)
Groups Sensitivity analysis

Task.set_InfoCallback

set_InfoCallback(callback)

Receive callbacks with solver status and information during optimization.

For example:

task.set_InfoCallback(lambda code,dinf,iinf,liinf: print("Called from: {0}".
→˓format(code)))

Parameters callback (callbackfunc) – The callback function. (input)

Task.set_Progress

set_Progress(callback)

Receive callbacks about current status of the solver during optimization.

For example:

task.set_Progress(lambda code: print("Called from: {0}".format(code)))

Parameters callback (progresscallbackfunc) – The callback function. (input)

Task.set_Stream

set_Stream(whichstream, callback)

Directs all output from a task stream to a callback function.

Parameters
• whichstream (streamtype) – Index of the stream. (input)

340

• callback (streamfunc) – The callback function. (input)

Task.setdefaults

setdefaults()

Resets all the parameters to their default values.

Groups Parameters

Task.solutiondef

solutiondef(whichsol) -> (isdef)

Checks whether a solution is defined.

Parameters whichsol (mosek.soltype) – Selects a solution. (input)
Return isdef (bool) – Is non-zero if the requested solution is defined.
Groups Solution information

Task.solutionsummary

solutionsummary(whichstream)

Prints a short summary of the current solutions.

Parameters whichstream (mosek.streamtype) – Index of the stream. (input)
Groups Logging , Solution information

Task.solvewithbasis

solvewithbasis(transp,numnz,sub,val) -> (numnzout)

If a basic solution is available, then exactly 𝑛𝑢𝑚𝑐𝑜𝑛 basis variables are defined. These 𝑛𝑢𝑚𝑐𝑜𝑛
basis variables are denoted the basis. Associated with the basis is a basis matrix denoted 𝐵. This
function solves either the linear equation system

𝐵𝑋 = 𝑏 (15.3)

or the system

𝐵𝑇𝑋 = 𝑏 (15.4)

for the unknowns 𝑋, with 𝑏 being a user-defined vector. In order to make sense of the solution
𝑋 it is important to know the ordering of the variables in the basis because the ordering specifies
how 𝐵 is constructed. When calling Task.initbasissolve an ordering of the basis variables is
obtained, which can be used to deduce how MOSEK has constructed 𝐵. Indeed if the 𝑘-th basis
variable is variable 𝑥𝑗 it implies that

𝐵𝑖,𝑘 = 𝐴𝑖,𝑗 , 𝑖 = 0, . . . , 𝑛𝑢𝑚𝑐𝑜𝑛− 1.

Otherwise if the 𝑘-th basis variable is variable 𝑥𝑐
𝑗 it implies that

𝐵𝑖,𝑘 =

{︂
−1, 𝑖 = 𝑗,
0, 𝑖 ̸= 𝑗.

The function Task.initbasissolve must be called before a call to this function. Please note that
this function exploits the sparsity in the vector 𝑏 to speed up the computations.

341

Parameters
• transp (bool) – If this argument is zero, then (15.3) is solved, if non-zero then

(15.4) is solved. (input)
• numnz (int) – The number of non-zeros in 𝑏. (input)
• sub (int[]) – As input it contains the positions of non-zeros in 𝑏. As output

it contains the positions of the non-zeros in 𝑋. It must have room for 𝑛𝑢𝑚𝑐𝑜𝑛
elements. (input/output)

• val (float[]) – As input it is the vector 𝑏 as a dense vector (although the
positions of non-zeros are specified in sub it is required that val[𝑖] = 0 when
𝑏[𝑖] = 0). As output val is the vector 𝑋 as a dense vector. It must have length
𝑛𝑢𝑚𝑐𝑜𝑛. (input/output)

Return numnzout (int) – The number of non-zeros in 𝑋.
Groups Solving systems with basis matrix

Task.strtoconetype Deprecated

strtoconetype(str) -> (conetype)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Obtains cone type code corresponding to a cone type string.

Parameters str (str) – String corresponding to the cone type code conetype. (input)
Return conetype (mosek.conetype) – The cone type corresponding to the string str.
Groups Names

Task.strtosk

strtosk(str) -> (sk)

Obtains the status key corresponding to an abbreviation string.

Parameters str (str) – A status key abbreviation string. (input)
Return sk (mosek.stakey) – Status key corresponding to the string.
Groups Names

Task.toconic Deprecated

toconic()

This function tries to reformulate a given Quadratically Constrained Quadratic Optimization prob-
lem (QCQO) as a Conic Quadratic Optimization problem (CQO). The first step of the reformula-
tion is to convert the quadratic term of the objective function, if any, into a constraint. Then the
following steps are repeated for each quadratic constraint:

• a conic constraint is added along with a suitable number of auxiliary variables and constraints;

• the original quadratic constraint is not removed, but all its coefficients are zeroed out.

Note that the reformulation preserves all the original variables.

The conversion is performed in-place, i.e. the task passed as argument is modified on exit. That
also means that if the reformulation fails, i.e. the given QCQP is not representable as a CQO, then
the task has an undefined state. In some cases, users may want to clone the task to ensure a clean
copy is preserved.

Groups Problem data - quadratic part

342

Task.updatesolutioninfo

updatesolutioninfo(whichsol)

Update the information items related to the solution.

Parameters whichsol (mosek.soltype) – Selects a solution. (input)
Groups Information items and statistics

Task.writebsolution

writebsolution(filename,compress)

Write a binary dump of the task solution.

Parameters
• filename (str) – A valid file name. (input)
• compress (mosek.compresstype) – Data compression type. (input)

Groups Input/Output

Task.writedata

writedata(filename)

Writes problem data associated with the optimization task to a file in one of the supported formats.
See Section Supported File Formats for the complete list.

The data file format is determined by the file name extension. To write in compressed format
append the extension .gz. E.g to write a gzip compressed MPS file use the extension mps.gz.

Please note that MPS, LP and OPF files require all variables to have unique names. If a task
contains no names, it is possible to write the file with automatically generated anonymous names
by setting the iparam.write_generic_names parameter to onoffkey.on .

Data is written to the file filename if it is a nonempty string. Otherwise data is written to the
file specified by sparam.data_file_name .

Parameters filename (str) – A valid file name. (input)
Groups Input/Output

Task.writedatastream

writedatastream(format, compress, stream)

Writes problem data associated with the optimization task to a stream in one of the supported
formats.

The stream should have a write method accepting a byte-like object, typically an instance of
io.BytesIO will be suitable. Examples:

task.writedatastream(dataformat.ptf, compresstype.none, sys.stdout.buffer)
task.writedatastream(dataformat.task, compresstype.none, open("outfile.task",

→˓ "wb"))

Parameters
• format (mosek.dataformat) – Data format. (input)
• compress (mosek.compresstype) – Selects compression type. (input)
• stream (iostream) – The output stream. (input)

343

Task.writejsonsol

writejsonsol(filename)

Saves the current solutions and solver information items in a JSON file. If the file name has the
extensions .gz or .zst, then the file is gzip or Zstd compressed respectively.

Parameters filename (str) – A valid file name. (input)
Groups Input/Output

Task.writeparamfile

writeparamfile(filename)

Writes all the parameters to a parameter file.

Parameters filename (str) – A valid file name. (input)
Groups Input/Output , Parameters

Task.writesolution

writesolution(whichsol,filename)

Saves the current basic, interior-point, or integer solution to a file.

Parameters
• whichsol (mosek.soltype) – Selects a solution. (input)
• filename (str) – A valid file name. (input)

Groups Input/Output

Task.writesolutionfile

writesolutionfile(filename)

Write solution file in format determined by the filename

Parameters filename (str) – A valid file name. (input)
Groups Input/Output

Task.writetask

writetask(filename)

Write a binary dump of the task data. This format saves all problem data, coefficients and param-
eter settings. See section The Task Format for a description of the Task format.

Parameters filename (str) – A valid file name. (input)
Groups Input/Output

344

15.5 Exceptions

MosekException
Base exception class for all MOSEK exceptions.

Error
Exception class used for all error response codes from MOSEK.

Implements MosekException

15.6 Parameters grouped by topic

Analysis

• dparam.ana_sol_infeas_tol

• iparam.ana_sol_basis

• iparam.ana_sol_print_violated

• iparam.log_ana_pro

Basis identification

• dparam.sim_lu_tol_rel_piv

• iparam.bi_clean_optimizer

• iparam.bi_ignore_max_iter

• iparam.bi_ignore_num_error

• iparam.bi_max_iterations

• iparam.intpnt_basis

• iparam.log_bi

• iparam.log_bi_freq

Conic interior-point method

• dparam.intpnt_co_tol_dfeas

• dparam.intpnt_co_tol_infeas

• dparam.intpnt_co_tol_mu_red

• dparam.intpnt_co_tol_near_rel

• dparam.intpnt_co_tol_pfeas

• dparam.intpnt_co_tol_rel_gap

345

Data check

• dparam.data_sym_mat_tol

• dparam.data_sym_mat_tol_huge

• dparam.data_sym_mat_tol_large

• dparam.data_tol_aij_huge

• dparam.data_tol_aij_large

• dparam.data_tol_bound_inf

• dparam.data_tol_bound_wrn

• dparam.data_tol_c_huge

• dparam.data_tol_cj_large

• dparam.data_tol_qij

• dparam.data_tol_x

• dparam.semidefinite_tol_approx

• iparam.check_convexity

• iparam.log_check_convexity

Data input/output

• iparam.infeas_report_auto

• iparam.log_file

• iparam.opf_write_header

• iparam.opf_write_hints

• iparam.opf_write_line_length

• iparam.opf_write_parameters

• iparam.opf_write_problem

• iparam.opf_write_sol_bas

• iparam.opf_write_sol_itg

• iparam.opf_write_sol_itr

• iparam.opf_write_solutions

• iparam.param_read_case_name

• iparam.param_read_ign_error

• iparam.ptf_write_parameters

• iparam.ptf_write_solutions

• iparam.ptf_write_transform

• iparam.read_debug

• iparam.read_keep_free_con

• iparam.read_mps_format

346

• iparam.read_mps_width

• iparam.read_task_ignore_param

• iparam.sol_read_name_width

• iparam.sol_read_width

• iparam.write_bas_constraints

• iparam.write_bas_head

• iparam.write_bas_variables

• iparam.write_compression

• iparam.write_data_param

• iparam.write_free_con

• iparam.write_generic_names

• iparam.write_generic_names_io

• iparam.write_ignore_incompatible_items

• iparam.write_int_constraints

• iparam.write_int_head

• iparam.write_int_variables

• iparam.write_json_indentation

• iparam.write_lp_full_obj

• iparam.write_lp_line_width

• iparam.write_mps_format

• iparam.write_mps_int

• iparam.write_sol_barvariables

• iparam.write_sol_constraints

• iparam.write_sol_head

• iparam.write_sol_ignore_invalid_names

• iparam.write_sol_variables

• iparam.write_task_inc_sol

• iparam.write_xml_mode

• sparam.bas_sol_file_name

• sparam.data_file_name

• sparam.debug_file_name

• sparam.int_sol_file_name

• sparam.itr_sol_file_name

• sparam.mio_debug_string

• sparam.param_comment_sign

• sparam.param_read_file_name

347

• sparam.param_write_file_name

• sparam.read_mps_bou_name

• sparam.read_mps_obj_name

• sparam.read_mps_ran_name

• sparam.read_mps_rhs_name

• sparam.sensitivity_file_name

• sparam.sensitivity_res_file_name

• sparam.sol_filter_xc_low

• sparam.sol_filter_xc_upr

• sparam.sol_filter_xx_low

• sparam.sol_filter_xx_upr

• sparam.stat_key

• sparam.stat_name

• sparam.write_lp_gen_var_name

Debugging

• iparam.auto_sort_a_before_opt

Dual simplex

• iparam.sim_dual_crash

• iparam.sim_dual_restrict_selection

• iparam.sim_dual_selection

Infeasibility report

• iparam.infeas_generic_names

• iparam.infeas_report_level

• iparam.log_infeas_ana

Interior-point method

• dparam.check_convexity_rel_tol

• dparam.intpnt_co_tol_dfeas

• dparam.intpnt_co_tol_infeas

• dparam.intpnt_co_tol_mu_red

• dparam.intpnt_co_tol_near_rel

• dparam.intpnt_co_tol_pfeas

• dparam.intpnt_co_tol_rel_gap

• dparam.intpnt_qo_tol_dfeas

348

• dparam.intpnt_qo_tol_infeas

• dparam.intpnt_qo_tol_mu_red

• dparam.intpnt_qo_tol_near_rel

• dparam.intpnt_qo_tol_pfeas

• dparam.intpnt_qo_tol_rel_gap

• dparam.intpnt_tol_dfeas

• dparam.intpnt_tol_dsafe

• dparam.intpnt_tol_infeas

• dparam.intpnt_tol_mu_red

• dparam.intpnt_tol_path

• dparam.intpnt_tol_pfeas

• dparam.intpnt_tol_psafe

• dparam.intpnt_tol_rel_gap

• dparam.intpnt_tol_rel_step

• dparam.intpnt_tol_step_size

• dparam.qcqo_reformulate_rel_drop_tol

• iparam.bi_ignore_max_iter

• iparam.bi_ignore_num_error

• iparam.intpnt_basis

• iparam.intpnt_diff_step

• iparam.intpnt_hotstart

• iparam.intpnt_max_iterations

• iparam.intpnt_max_num_cor

• iparam.intpnt_max_num_refinement_steps

• iparam.intpnt_off_col_trh

• iparam.intpnt_order_gp_num_seeds

• iparam.intpnt_order_method

• iparam.intpnt_purify

• iparam.intpnt_regularization_use

• iparam.intpnt_scaling

• iparam.intpnt_solve_form

• iparam.intpnt_starting_point

• iparam.log_intpnt

349

License manager

• iparam.cache_license

• iparam.license_debug

• iparam.license_pause_time

• iparam.license_suppress_expire_wrns

• iparam.license_trh_expiry_wrn

• iparam.license_wait

Logging

• iparam.log

• iparam.log_ana_pro

• iparam.log_bi

• iparam.log_bi_freq

• iparam.log_cut_second_opt

• iparam.log_expand

• iparam.log_feas_repair

• iparam.log_file

• iparam.log_include_summary

• iparam.log_infeas_ana

• iparam.log_intpnt

• iparam.log_local_info

• iparam.log_mio

• iparam.log_mio_freq

• iparam.log_order

• iparam.log_presolve

• iparam.log_response

• iparam.log_sensitivity

• iparam.log_sensitivity_opt

• iparam.log_sim

• iparam.log_sim_freq

• iparam.log_storage

350

Mixed-integer optimization

• dparam.mio_djc_max_bigm

• dparam.mio_max_time

• dparam.mio_rel_gap_const

• dparam.mio_tol_abs_gap

• dparam.mio_tol_abs_relax_int

• dparam.mio_tol_feas

• dparam.mio_tol_rel_dual_bound_improvement

• dparam.mio_tol_rel_gap

• iparam.log_mio

• iparam.log_mio_freq

• iparam.mio_branch_dir

• iparam.mio_conic_outer_approximation

• iparam.mio_construct_sol

• iparam.mio_cut_clique

• iparam.mio_cut_cmir

• iparam.mio_cut_gmi

• iparam.mio_cut_implied_bound

• iparam.mio_cut_knapsack_cover

• iparam.mio_cut_lipro

• iparam.mio_cut_selection_level

• iparam.mio_data_permutation_method

• iparam.mio_feaspump_level

• iparam.mio_heuristic_level

• iparam.mio_max_num_branches

• iparam.mio_max_num_relaxs

• iparam.mio_max_num_root_cut_rounds

• iparam.mio_max_num_solutions

• iparam.mio_memory_emphasis_level

• iparam.mio_node_optimizer

• iparam.mio_node_selection

• iparam.mio_numerical_emphasis_level

• iparam.mio_perspective_reformulate

• iparam.mio_probing_level

• iparam.mio_propagate_objective_constraint

• iparam.mio_qcqo_reformulation_method

351

• iparam.mio_rins_max_nodes

• iparam.mio_root_optimizer

• iparam.mio_root_repeat_presolve_level

• iparam.mio_seed

• iparam.mio_symmetry_level

• iparam.mio_vb_detection_level

Output information

• iparam.infeas_report_level

• iparam.license_suppress_expire_wrns

• iparam.license_trh_expiry_wrn

• iparam.log

• iparam.log_bi

• iparam.log_bi_freq

• iparam.log_cut_second_opt

• iparam.log_expand

• iparam.log_feas_repair

• iparam.log_file

• iparam.log_include_summary

• iparam.log_infeas_ana

• iparam.log_intpnt

• iparam.log_local_info

• iparam.log_mio

• iparam.log_mio_freq

• iparam.log_order

• iparam.log_response

• iparam.log_sensitivity

• iparam.log_sensitivity_opt

• iparam.log_sim

• iparam.log_sim_freq

• iparam.log_sim_minor

• iparam.log_storage

• iparam.max_num_warnings

352

Overall solver

• iparam.bi_clean_optimizer

• iparam.infeas_prefer_primal

• iparam.license_wait

• iparam.mio_mode

• iparam.optimizer

• iparam.presolve_level

• iparam.presolve_max_num_reductions

• iparam.presolve_use

• iparam.primal_repair_optimizer

• iparam.sensitivity_all

• iparam.sensitivity_optimizer

• iparam.sensitivity_type

• iparam.solution_callback

Overall system

• iparam.auto_update_sol_info

• iparam.license_wait

• iparam.log_storage

• iparam.mt_spincount

• iparam.num_threads

• iparam.remove_unused_solutions

• iparam.timing_level

• sparam.remote_optserver_host

• sparam.remote_tls_cert

• sparam.remote_tls_cert_path

Presolve

• dparam.presolve_tol_abs_lindep

• dparam.presolve_tol_aij

• dparam.presolve_tol_primal_infeas_perturbation

• dparam.presolve_tol_rel_lindep

• dparam.presolve_tol_s

• dparam.presolve_tol_x

• iparam.mio_presolve_aggregator_use

• iparam.presolve_eliminator_max_fill

353

• iparam.presolve_eliminator_max_num_tries

• iparam.presolve_level

• iparam.presolve_lindep_abs_work_trh

• iparam.presolve_lindep_rel_work_trh

• iparam.presolve_lindep_use

• iparam.presolve_max_num_pass

• iparam.presolve_max_num_reductions

• iparam.presolve_use

Primal simplex

• iparam.sim_primal_crash

• iparam.sim_primal_restrict_selection

• iparam.sim_primal_selection

Progress callback

• iparam.solution_callback

Simplex optimizer

• dparam.basis_rel_tol_s

• dparam.basis_tol_s

• dparam.basis_tol_x

• dparam.sim_lu_tol_rel_piv

• dparam.simplex_abs_tol_piv

• iparam.basis_solve_use_plus_one

• iparam.log_sim

• iparam.log_sim_freq

• iparam.log_sim_minor

• iparam.sensitivity_optimizer

• iparam.sim_basis_factor_use

• iparam.sim_degen

• iparam.sim_detect_pwl

• iparam.sim_dual_phaseone_method

• iparam.sim_exploit_dupvec

• iparam.sim_hotstart

• iparam.sim_hotstart_lu

• iparam.sim_max_iterations

354

• iparam.sim_max_num_setbacks

• iparam.sim_non_singular

• iparam.sim_primal_phaseone_method

• iparam.sim_refactor_freq

• iparam.sim_reformulation

• iparam.sim_save_lu

• iparam.sim_scaling

• iparam.sim_scaling_method

• iparam.sim_seed

• iparam.sim_solve_form

• iparam.sim_stability_priority

• iparam.sim_switch_optimizer

Solution input/output

• iparam.infeas_report_auto

• iparam.sol_filter_keep_basic

• iparam.sol_filter_keep_ranged

• iparam.sol_read_name_width

• iparam.sol_read_width

• iparam.write_bas_constraints

• iparam.write_bas_head

• iparam.write_bas_variables

• iparam.write_int_constraints

• iparam.write_int_head

• iparam.write_int_variables

• iparam.write_sol_barvariables

• iparam.write_sol_constraints

• iparam.write_sol_head

• iparam.write_sol_ignore_invalid_names

• iparam.write_sol_variables

• sparam.bas_sol_file_name

• sparam.int_sol_file_name

• sparam.itr_sol_file_name

• sparam.sol_filter_xc_low

• sparam.sol_filter_xc_upr

• sparam.sol_filter_xx_low

• sparam.sol_filter_xx_upr

355

Termination criteria

• dparam.basis_rel_tol_s

• dparam.basis_tol_s

• dparam.basis_tol_x

• dparam.intpnt_co_tol_dfeas

• dparam.intpnt_co_tol_infeas

• dparam.intpnt_co_tol_mu_red

• dparam.intpnt_co_tol_near_rel

• dparam.intpnt_co_tol_pfeas

• dparam.intpnt_co_tol_rel_gap

• dparam.intpnt_qo_tol_dfeas

• dparam.intpnt_qo_tol_infeas

• dparam.intpnt_qo_tol_mu_red

• dparam.intpnt_qo_tol_near_rel

• dparam.intpnt_qo_tol_pfeas

• dparam.intpnt_qo_tol_rel_gap

• dparam.intpnt_tol_dfeas

• dparam.intpnt_tol_infeas

• dparam.intpnt_tol_mu_red

• dparam.intpnt_tol_pfeas

• dparam.intpnt_tol_rel_gap

• dparam.lower_obj_cut

• dparam.lower_obj_cut_finite_trh

• dparam.mio_max_time

• dparam.mio_rel_gap_const

• dparam.mio_tol_rel_gap

• dparam.optimizer_max_time

• dparam.upper_obj_cut

• dparam.upper_obj_cut_finite_trh

• iparam.bi_max_iterations

• iparam.intpnt_max_iterations

• iparam.mio_max_num_branches

• iparam.mio_max_num_root_cut_rounds

• iparam.mio_max_num_solutions

• iparam.sim_max_iterations

356

Other

• iparam.compress_statfile

• iparam.ng

• iparam.remote_use_compression

15.7 Parameters (alphabetical list sorted by type)

• Double parameters

• Integer parameters

• String parameters

15.7.1 Double parameters

dparam
The enumeration type containing all double parameters.

dparam.ana_sol_infeas_tol
If a constraint violates its bound with an amount larger than this value, the constraint name, index
and violation will be printed by the solution analyzer.

Default 1e-6
Accepted [0.0; +inf]
Example task.putdouparam(dparam.ana_sol_infeas_tol, 1e-6)
Generic name MSK_DPAR_ANA_SOL_INFEAS_TOL
Groups Analysis

dparam.basis_rel_tol_s
Maximum relative dual bound violation allowed in an optimal basic solution.

Default 1.0e-12
Accepted [0.0; +inf]
Example task.putdouparam(dparam.basis_rel_tol_s, 1.0e-12)
Generic name MSK_DPAR_BASIS_REL_TOL_S
Groups Simplex optimizer , Termination criteria

dparam.basis_tol_s
Maximum absolute dual bound violation in an optimal basic solution.

Default 1.0e-6
Accepted [1.0e-9; +inf]
Example task.putdouparam(dparam.basis_tol_s, 1.0e-6)
Generic name MSK_DPAR_BASIS_TOL_S
Groups Simplex optimizer , Termination criteria

dparam.basis_tol_x
Maximum absolute primal bound violation allowed in an optimal basic solution.

Default 1.0e-6
Accepted [1.0e-9; +inf]
Example task.putdouparam(dparam.basis_tol_x, 1.0e-6)
Generic name MSK_DPAR_BASIS_TOL_X
Groups Simplex optimizer , Termination criteria

357

dparam.check_convexity_rel_tol
This parameter controls when the full convexity check declares a problem to be non-convex. In-
creasing this tolerance relaxes the criteria for declaring the problem non-convex.

A problem is declared non-convex if negative (positive) pivot elements are detected in the Cholesky
factor of a matrix which is required to be PSD (NSD). This parameter controls how much this non-
negativity requirement may be violated.

If 𝑑𝑖 is the pivot element for column 𝑖, then the matrix 𝑄 is considered to not be PSD if:

𝑑𝑖 ≤ −|𝑄𝑖𝑖|check_convexity_rel_tol

Default 1e-10
Accepted [0; +inf]
Example task.putdouparam(dparam.check_convexity_rel_tol, 1e-10)
Generic name MSK_DPAR_CHECK_CONVEXITY_REL_TOL
Groups Interior-point method

dparam.data_sym_mat_tol
Absolute zero tolerance for elements in in symmetric matrices. If any value in a symmetric matrix
is smaller than this parameter in absolute terms MOSEK will treat the values as zero and generate
a warning.

Default 1.0e-12
Accepted [1.0e-16; 1.0e-6]
Example task.putdouparam(dparam.data_sym_mat_tol, 1.0e-12)
Generic name MSK_DPAR_DATA_SYM_MAT_TOL
Groups Data check

dparam.data_sym_mat_tol_huge
An element in a symmetric matrix which is larger than this value in absolute size causes an error.

Default 1.0e20
Accepted [0.0; +inf]
Example task.putdouparam(dparam.data_sym_mat_tol_huge, 1.0e20)
Generic name MSK_DPAR_DATA_SYM_MAT_TOL_HUGE
Groups Data check

dparam.data_sym_mat_tol_large
An element in a symmetric matrix which is larger than this value in absolute size causes a warning
message to be printed.

Default 1.0e10
Accepted [0.0; +inf]
Example task.putdouparam(dparam.data_sym_mat_tol_large, 1.0e10)
Generic name MSK_DPAR_DATA_SYM_MAT_TOL_LARGE
Groups Data check

dparam.data_tol_aij_huge
An element in 𝐴 which is larger than this value in absolute size causes an error.

Default 1.0e20
Accepted [0.0; +inf]
Example task.putdouparam(dparam.data_tol_aij_huge, 1.0e20)
Generic name MSK_DPAR_DATA_TOL_AIJ_HUGE
Groups Data check

dparam.data_tol_aij_large
An element in 𝐴 which is larger than this value in absolute size causes a warning message to be
printed.

358

Default 1.0e10
Accepted [0.0; +inf]
Example task.putdouparam(dparam.data_tol_aij_large, 1.0e10)
Generic name MSK_DPAR_DATA_TOL_AIJ_LARGE
Groups Data check

dparam.data_tol_bound_inf
Any bound which in absolute value is greater than this parameter is considered infinite.

Default 1.0e16
Accepted [0.0; +inf]
Example task.putdouparam(dparam.data_tol_bound_inf, 1.0e16)
Generic name MSK_DPAR_DATA_TOL_BOUND_INF
Groups Data check

dparam.data_tol_bound_wrn
If a bound value is larger than this value in absolute size, then a warning message is issued.

Default 1.0e8
Accepted [0.0; +inf]
Example task.putdouparam(dparam.data_tol_bound_wrn, 1.0e8)
Generic name MSK_DPAR_DATA_TOL_BOUND_WRN
Groups Data check

dparam.data_tol_c_huge
An element in 𝑐 which is larger than the value of this parameter in absolute terms is considered to
be huge and generates an error.

Default 1.0e16
Accepted [0.0; +inf]
Example task.putdouparam(dparam.data_tol_c_huge, 1.0e16)
Generic name MSK_DPAR_DATA_TOL_C_HUGE
Groups Data check

dparam.data_tol_cj_large
An element in 𝑐 which is larger than this value in absolute terms causes a warning message to be
printed.

Default 1.0e8
Accepted [0.0; +inf]
Example task.putdouparam(dparam.data_tol_cj_large, 1.0e8)
Generic name MSK_DPAR_DATA_TOL_CJ_LARGE
Groups Data check

dparam.data_tol_qij
Absolute zero tolerance for elements in 𝑄 matrices.

Default 1.0e-16
Accepted [0.0; +inf]
Example task.putdouparam(dparam.data_tol_qij, 1.0e-16)
Generic name MSK_DPAR_DATA_TOL_QIJ
Groups Data check

dparam.data_tol_x
Zero tolerance for constraints and variables i.e. if the distance between the lower and upper bound
is less than this value, then the lower and upper bound is considered identical.

Default 1.0e-8
Accepted [0.0; +inf]

359

Example task.putdouparam(dparam.data_tol_x, 1.0e-8)
Generic name MSK_DPAR_DATA_TOL_X
Groups Data check

dparam.intpnt_co_tol_dfeas
Dual feasibility tolerance used by the interior-point optimizer for conic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_co_tol_dfeas, 1.0e-8)
See also dparam.intpnt_co_tol_near_rel
Generic name MSK_DPAR_INTPNT_CO_TOL_DFEAS
Groups Interior-point method , Termination criteria, Conic interior-point method

dparam.intpnt_co_tol_infeas
Infeasibility tolerance used by the interior-point optimizer for conic problems. Controls when the
interior-point optimizer declares the model primal or dual infeasible. A small number means the
optimizer gets more conservative about declaring the model infeasible.

Default 1.0e-12
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_co_tol_infeas, 1.0e-12)
Generic name MSK_DPAR_INTPNT_CO_TOL_INFEAS
Groups Interior-point method , Termination criteria, Conic interior-point method

dparam.intpnt_co_tol_mu_red
Relative complementarity gap tolerance used by the interior-point optimizer for conic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_co_tol_mu_red, 1.0e-8)
Generic name MSK_DPAR_INTPNT_CO_TOL_MU_RED
Groups Interior-point method , Termination criteria, Conic interior-point method

dparam.intpnt_co_tol_near_rel
Optimality tolerance used by the interior-point optimizer for conic problems. If MOSEK cannot
compute a solution that has the prescribed accuracy then it will check if the solution found satisfies
the termination criteria with all tolerances multiplied by the value of this parameter. If yes, then
the solution is also declared optimal.

Default 1000
Accepted [1.0; +inf]
Example task.putdouparam(dparam.intpnt_co_tol_near_rel, 1000)
Generic name MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
Groups Interior-point method , Termination criteria, Conic interior-point method

dparam.intpnt_co_tol_pfeas
Primal feasibility tolerance used by the interior-point optimizer for conic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_co_tol_pfeas, 1.0e-8)
See also dparam.intpnt_co_tol_near_rel
Generic name MSK_DPAR_INTPNT_CO_TOL_PFEAS
Groups Interior-point method , Termination criteria, Conic interior-point method

dparam.intpnt_co_tol_rel_gap
Relative gap termination tolerance used by the interior-point optimizer for conic problems.

360

Default 1.0e-8
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_co_tol_rel_gap, 1.0e-8)
See also dparam.intpnt_co_tol_near_rel
Generic name MSK_DPAR_INTPNT_CO_TOL_REL_GAP
Groups Interior-point method , Termination criteria, Conic interior-point method

dparam.intpnt_qo_tol_dfeas
Dual feasibility tolerance used by the interior-point optimizer for quadratic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_qo_tol_dfeas, 1.0e-8)
See also dparam.intpnt_qo_tol_near_rel
Generic name MSK_DPAR_INTPNT_QO_TOL_DFEAS
Groups Interior-point method , Termination criteria

dparam.intpnt_qo_tol_infeas
Infeasibility tolerance used by the interior-point optimizer for quadratic problems. Controls when
the interior-point optimizer declares the model primal or dual infeasible. A small number means
the optimizer gets more conservative about declaring the model infeasible.

Default 1.0e-12
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_qo_tol_infeas, 1.0e-12)
Generic name MSK_DPAR_INTPNT_QO_TOL_INFEAS
Groups Interior-point method , Termination criteria

dparam.intpnt_qo_tol_mu_red
Relative complementarity gap tolerance used by the interior-point optimizer for quadratic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_qo_tol_mu_red, 1.0e-8)
Generic name MSK_DPAR_INTPNT_QO_TOL_MU_RED
Groups Interior-point method , Termination criteria

dparam.intpnt_qo_tol_near_rel
Optimality tolerance used by the interior-point optimizer for quadratic problems. If MOSEK
cannot compute a solution that has the prescribed accuracy then it will check if the solution found
satisfies the termination criteria with all tolerances multiplied by the value of this parameter. If
yes, then the solution is also declared optimal.

Default 1000
Accepted [1.0; +inf]
Example task.putdouparam(dparam.intpnt_qo_tol_near_rel, 1000)
Generic name MSK_DPAR_INTPNT_QO_TOL_NEAR_REL
Groups Interior-point method , Termination criteria

dparam.intpnt_qo_tol_pfeas
Primal feasibility tolerance used by the interior-point optimizer for quadratic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_qo_tol_pfeas, 1.0e-8)
See also dparam.intpnt_qo_tol_near_rel
Generic name MSK_DPAR_INTPNT_QO_TOL_PFEAS
Groups Interior-point method , Termination criteria

361

dparam.intpnt_qo_tol_rel_gap
Relative gap termination tolerance used by the interior-point optimizer for quadratic problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_qo_tol_rel_gap, 1.0e-8)
See also dparam.intpnt_qo_tol_near_rel
Generic name MSK_DPAR_INTPNT_QO_TOL_REL_GAP
Groups Interior-point method , Termination criteria

dparam.intpnt_tol_dfeas
Dual feasibility tolerance used by the interior-point optimizer for linear problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_tol_dfeas, 1.0e-8)
Generic name MSK_DPAR_INTPNT_TOL_DFEAS
Groups Interior-point method , Termination criteria

dparam.intpnt_tol_dsafe
Controls the initial dual starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly and/or the constraint or variable bounds are very large, then it might
be worthwhile to increase this value.

Default 1.0
Accepted [1.0e-4; +inf]
Example task.putdouparam(dparam.intpnt_tol_dsafe, 1.0)
Generic name MSK_DPAR_INTPNT_TOL_DSAFE
Groups Interior-point method

dparam.intpnt_tol_infeas
Infeasibility tolerance used by the interior-point optimizer for linear problems. Controls when the
interior-point optimizer declares the model primal or dual infeasible. A small number means the
optimizer gets more conservative about declaring the model infeasible.

Default 1.0e-10
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_tol_infeas, 1.0e-10)
Generic name MSK_DPAR_INTPNT_TOL_INFEAS
Groups Interior-point method , Termination criteria

dparam.intpnt_tol_mu_red
Relative complementarity gap tolerance used by the interior-point optimizer for linear problems.

Default 1.0e-16
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_tol_mu_red, 1.0e-16)
Generic name MSK_DPAR_INTPNT_TOL_MU_RED
Groups Interior-point method , Termination criteria

dparam.intpnt_tol_path
Controls how close the interior-point optimizer follows the central path. A large value of this
parameter means the central path is followed very closely. On numerically unstable problems it
may be worthwhile to increase this parameter.

Default 1.0e-8
Accepted [0.0; 0.9999]
Example task.putdouparam(dparam.intpnt_tol_path, 1.0e-8)

362

Generic name MSK_DPAR_INTPNT_TOL_PATH
Groups Interior-point method

dparam.intpnt_tol_pfeas
Primal feasibility tolerance used by the interior-point optimizer for linear problems.

Default 1.0e-8
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_tol_pfeas, 1.0e-8)
Generic name MSK_DPAR_INTPNT_TOL_PFEAS
Groups Interior-point method , Termination criteria

dparam.intpnt_tol_psafe
Controls the initial primal starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly and/or the constraint or variable bounds are very large, then it may be
worthwhile to increase this value.

Default 1.0
Accepted [1.0e-4; +inf]
Example task.putdouparam(dparam.intpnt_tol_psafe, 1.0)
Generic name MSK_DPAR_INTPNT_TOL_PSAFE
Groups Interior-point method

dparam.intpnt_tol_rel_gap
Relative gap termination tolerance used by the interior-point optimizer for linear problems.

Default 1.0e-8
Accepted [1.0e-14; +inf]
Example task.putdouparam(dparam.intpnt_tol_rel_gap, 1.0e-8)
Generic name MSK_DPAR_INTPNT_TOL_REL_GAP
Groups Termination criteria, Interior-point method

dparam.intpnt_tol_rel_step
Relative step size to the boundary for linear and quadratic optimization problems.

Default 0.9999
Accepted [1.0e-4; 0.999999]
Example task.putdouparam(dparam.intpnt_tol_rel_step, 0.9999)
Generic name MSK_DPAR_INTPNT_TOL_REL_STEP
Groups Interior-point method

dparam.intpnt_tol_step_size
Minimal step size tolerance. If the step size falls below the value of this parameter, then the
interior-point optimizer assumes that it is stalled. In other words the interior-point optimizer does
not make any progress and therefore it is better to stop.

Default 1.0e-6
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.intpnt_tol_step_size, 1.0e-6)
Generic name MSK_DPAR_INTPNT_TOL_STEP_SIZE
Groups Interior-point method

dparam.lower_obj_cut
If either a primal or dual feasible solution is found proving that the optimal objective value is outside
the interval [dparam.lower_obj_cut , dparam.upper_obj_cut], then MOSEK is terminated.

Default -1.0e30
Accepted [-inf; +inf]
Example task.putdouparam(dparam.lower_obj_cut, -1.0e30)

363

See also dparam.lower_obj_cut_finite_trh
Generic name MSK_DPAR_LOWER_OBJ_CUT
Groups Termination criteria

dparam.lower_obj_cut_finite_trh
If the lower objective cut is less than the value of this parameter value, then the lower objective
cut i.e. dparam.lower_obj_cut is treated as −∞.

Default -0.5e30
Accepted [-inf; +inf]
Example task.putdouparam(dparam.lower_obj_cut_finite_trh, -0.5e30)
Generic name MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH
Groups Termination criteria

dparam.mio_djc_max_bigm
Maximum allowed big-M value when reformulating disjunctive constraints to linear constraints.
Higher values make it more likely that a disjunction is reformulated to linear constraints, but also
increase the risk of numerical problems.

Default 1.0e6
Accepted [0; +inf]
Example task.putdouparam(dparam.mio_djc_max_bigm, 1.0e6)
Generic name MSK_DPAR_MIO_DJC_MAX_BIGM
Groups Mixed-integer optimization

dparam.mio_max_time
This parameter limits the maximum time spent by the mixed-integer optimizer. A negative number
means infinity.

Default -1.0
Accepted [-inf; +inf]
Example task.putdouparam(dparam.mio_max_time, -1.0)
Generic name MSK_DPAR_MIO_MAX_TIME
Groups Mixed-integer optimization, Termination criteria

dparam.mio_rel_gap_const
This value is used to compute the relative gap for the solution to an integer optimization problem.

Default 1.0e-10
Accepted [1.0e-15; +inf]
Example task.putdouparam(dparam.mio_rel_gap_const, 1.0e-10)
Generic name MSK_DPAR_MIO_REL_GAP_CONST
Groups Mixed-integer optimization, Termination criteria

dparam.mio_tol_abs_gap
Absolute optimality tolerance employed by the mixed-integer optimizer.

Default 0.0
Accepted [0.0; +inf]
Example task.putdouparam(dparam.mio_tol_abs_gap, 0.0)
Generic name MSK_DPAR_MIO_TOL_ABS_GAP
Groups Mixed-integer optimization

dparam.mio_tol_abs_relax_int
Absolute integer feasibility tolerance. If the distance to the nearest integer is less than this tolerance
then an integer constraint is assumed to be satisfied.

Default 1.0e-5
Accepted [1e-9; +inf]

364

Example task.putdouparam(dparam.mio_tol_abs_relax_int, 1.0e-5)
Generic name MSK_DPAR_MIO_TOL_ABS_RELAX_INT
Groups Mixed-integer optimization

dparam.mio_tol_feas
Feasibility tolerance for mixed integer solver.

Default 1.0e-6
Accepted [1e-9; 1e-3]
Example task.putdouparam(dparam.mio_tol_feas, 1.0e-6)
Generic name MSK_DPAR_MIO_TOL_FEAS
Groups Mixed-integer optimization

dparam.mio_tol_rel_dual_bound_improvement
If the relative improvement of the dual bound is smaller than this value, the solver will terminate
the root cut generation. A value of 0.0 means that the value is selected automatically.

Default 0.0
Accepted [0.0; 1.0]
Example task.putdouparam(dparam.mio_tol_rel_dual_bound_improvement,

0.0)
Generic name MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT
Groups Mixed-integer optimization

dparam.mio_tol_rel_gap
Relative optimality tolerance employed by the mixed-integer optimizer.

Default 1.0e-4
Accepted [0.0; +inf]
Example task.putdouparam(dparam.mio_tol_rel_gap, 1.0e-4)
Generic name MSK_DPAR_MIO_TOL_REL_GAP
Groups Mixed-integer optimization, Termination criteria

dparam.optimizer_max_time
Maximum amount of time the optimizer is allowed to spent on the optimization. A negative number
means infinity.

Default -1.0
Accepted [-inf; +inf]
Example task.putdouparam(dparam.optimizer_max_time, -1.0)
Generic name MSK_DPAR_OPTIMIZER_MAX_TIME
Groups Termination criteria

dparam.presolve_tol_abs_lindep
Absolute tolerance employed by the linear dependency checker.

Default 1.0e-6
Accepted [0.0; +inf]
Example task.putdouparam(dparam.presolve_tol_abs_lindep, 1.0e-6)
Generic name MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP
Groups Presolve

dparam.presolve_tol_aij
Absolute zero tolerance employed for 𝑎𝑖𝑗 in the presolve.

Default 1.0e-12
Accepted [1.0e-15; +inf]
Example task.putdouparam(dparam.presolve_tol_aij, 1.0e-12)
Generic name MSK_DPAR_PRESOLVE_TOL_AIJ

365

Groups Presolve

dparam.presolve_tol_primal_infeas_perturbation
The presolve is allowed to perturbe a bound on a constraint or variable by this amount if it removes
an infeasibility.

Default 1.0e-6
Accepted [0.0; +inf]
Example task.putdouparam(dparam.presolve_tol_primal_infeas_perturbation,

1.0e-6)
Generic name MSK_DPAR_PRESOLVE_TOL_PRIMAL_INFEAS_PERTURBATION
Groups Presolve

dparam.presolve_tol_rel_lindep
Relative tolerance employed by the linear dependency checker.

Default 1.0e-10
Accepted [0.0; +inf]
Example task.putdouparam(dparam.presolve_tol_rel_lindep, 1.0e-10)
Generic name MSK_DPAR_PRESOLVE_TOL_REL_LINDEP
Groups Presolve

dparam.presolve_tol_s
Absolute zero tolerance employed for 𝑠𝑖 in the presolve.

Default 1.0e-8
Accepted [0.0; +inf]
Example task.putdouparam(dparam.presolve_tol_s, 1.0e-8)
Generic name MSK_DPAR_PRESOLVE_TOL_S
Groups Presolve

dparam.presolve_tol_x
Absolute zero tolerance employed for 𝑥𝑗 in the presolve.

Default 1.0e-8
Accepted [0.0; +inf]
Example task.putdouparam(dparam.presolve_tol_x, 1.0e-8)
Generic name MSK_DPAR_PRESOLVE_TOL_X
Groups Presolve

dparam.qcqo_reformulate_rel_drop_tol
This parameter determines when columns are dropped in incomplete Cholesky factorization during
reformulation of quadratic problems.

Default 1e-15
Accepted [0; +inf]
Example task.putdouparam(dparam.qcqo_reformulate_rel_drop_tol, 1e-15)
Generic name MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL
Groups Interior-point method

dparam.semidefinite_tol_approx
Tolerance to define a matrix to be positive semidefinite.

Default 1.0e-10
Accepted [1.0e-15; +inf]
Example task.putdouparam(dparam.semidefinite_tol_approx, 1.0e-10)
Generic name MSK_DPAR_SEMIDEFINITE_TOL_APPROX
Groups Data check

366

dparam.sim_lu_tol_rel_piv
Relative pivot tolerance employed when computing the LU factorization of the basis in the simplex
optimizers and in the basis identification procedure. A value closer to 1.0 generally improves
numerical stability but typically also implies an increase in the computational work.

Default 0.01
Accepted [1.0e-6; 0.999999]
Example task.putdouparam(dparam.sim_lu_tol_rel_piv, 0.01)
Generic name MSK_DPAR_SIM_LU_TOL_REL_PIV
Groups Basis identification, Simplex optimizer

dparam.simplex_abs_tol_piv
Absolute pivot tolerance employed by the simplex optimizers.

Default 1.0e-7
Accepted [1.0e-12; +inf]
Example task.putdouparam(dparam.simplex_abs_tol_piv, 1.0e-7)
Generic name MSK_DPAR_SIMPLEX_ABS_TOL_PIV
Groups Simplex optimizer

dparam.upper_obj_cut
If either a primal or dual feasible solution is found proving that the optimal objective value is outside
the interval [dparam.lower_obj_cut , dparam.upper_obj_cut], then MOSEK is terminated.

Default 1.0e30
Accepted [-inf; +inf]
Example task.putdouparam(dparam.upper_obj_cut, 1.0e30)
See also dparam.upper_obj_cut_finite_trh
Generic name MSK_DPAR_UPPER_OBJ_CUT
Groups Termination criteria

dparam.upper_obj_cut_finite_trh
If the upper objective cut is greater than the value of this parameter, then the upper objective cut
dparam.upper_obj_cut is treated as ∞.

Default 0.5e30
Accepted [-inf; +inf]
Example task.putdouparam(dparam.upper_obj_cut_finite_trh, 0.5e30)
Generic name MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH
Groups Termination criteria

15.7.2 Integer parameters

iparam
The enumeration type containing all integer parameters.

iparam.ana_sol_basis
Controls whether the basis matrix is analyzed in solution analyzer.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.ana_sol_basis, onoffkey.on)
Generic name MSK_IPAR_ANA_SOL_BASIS
Groups Analysis

iparam.ana_sol_print_violated
A parameter of the problem analyzer. Controls whether a list of violated constraints is printed. All
constraints violated by more than the value set by the parameter dparam.ana_sol_infeas_tol
will be printed.

367

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.ana_sol_print_violated, onoffkey.off)
Generic name MSK_IPAR_ANA_SOL_PRINT_VIOLATED
Groups Analysis

iparam.auto_sort_a_before_opt
Controls whether the elements in each column of 𝐴 are sorted before an optimization is performed.
This is not required but makes the optimization more deterministic.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.auto_sort_a_before_opt, onoffkey.off)
Generic name MSK_IPAR_AUTO_SORT_A_BEFORE_OPT
Groups Debugging

iparam.auto_update_sol_info
Controls whether the solution information items are automatically updated after an optimization
is performed.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.auto_update_sol_info, onoffkey.off)
Generic name MSK_IPAR_AUTO_UPDATE_SOL_INFO
Groups Overall system

iparam.basis_solve_use_plus_one
If a slack variable is in the basis, then the corresponding column in the basis is a unit vector with
-1 in the right position. However, if this parameter is set to onoffkey.on , -1 is replaced by 1.

This has significance for the results returned by the Task.solvewithbasis function.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.basis_solve_use_plus_one, onoffkey.off)
Generic name MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE
Groups Simplex optimizer

iparam.bi_clean_optimizer
Controls which simplex optimizer is used in the clean-up phase. Anything else
than optimizertype.primal_simplex or optimizertype.dual_simplex is equivalent to
optimizertype.free_simplex .

Default free
Accepted free , intpnt , conic , primal_simplex , dual_simplex , free_simplex ,

mixed_int (see optimizertype)
Example task.putintparam(iparam.bi_clean_optimizer, optimizertype.free)
Generic name MSK_IPAR_BI_CLEAN_OPTIMIZER
Groups Basis identification, Overall solver

iparam.bi_ignore_max_iter
If the parameter iparam.intpnt_basis has the value basindtype.no_error and the interior-
point optimizer has terminated due to maximum number of iterations, then basis identification is
performed if this parameter has the value onoffkey.on .

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.bi_ignore_max_iter, onoffkey.off)
Generic name MSK_IPAR_BI_IGNORE_MAX_ITER

368

Groups Interior-point method , Basis identification

iparam.bi_ignore_num_error
If the parameter iparam.intpnt_basis has the value basindtype.no_error and the interior-
point optimizer has terminated due to a numerical problem, then basis identification is performed
if this parameter has the value onoffkey.on .

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.bi_ignore_num_error, onoffkey.off)
Generic name MSK_IPAR_BI_IGNORE_NUM_ERROR
Groups Interior-point method , Basis identification

iparam.bi_max_iterations
Controls the maximum number of simplex iterations allowed to optimize a basis after the basis
identification.

Default 1000000
Accepted [0; +inf]
Example task.putintparam(iparam.bi_max_iterations, 1000000)
Generic name MSK_IPAR_BI_MAX_ITERATIONS
Groups Basis identification, Termination criteria

iparam.cache_license
Specifies if the license is kept checked out for the lifetime of the MOSEK environ-
ment/model/process (onoffkey.on) or returned to the server immediately after the optimization
(onoffkey.off).

By default the license is checked out for the lifetime of the MOSEK environment by the first call
to Task.optimize .

Check-in and check-out of licenses have an overhead. Frequent communication with the license
server should be avoided.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.cache_license, onoffkey.on)
Generic name MSK_IPAR_CACHE_LICENSE
Groups License manager

iparam.check_convexity
Specify the level of convexity check on quadratic problems.

Default full
Accepted none , simple , full (see checkconvexitytype)
Example task.putintparam(iparam.check_convexity, checkconvexitytype.

full)
Generic name MSK_IPAR_CHECK_CONVEXITY
Groups Data check

iparam.compress_statfile
Control compression of stat files.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.compress_statfile, onoffkey.on)
Generic name MSK_IPAR_COMPRESS_STATFILE

iparam.infeas_generic_names
Controls whether generic names are used when an infeasible subproblem is created.

369

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.infeas_generic_names, onoffkey.off)
Generic name MSK_IPAR_INFEAS_GENERIC_NAMES
Groups Infeasibility report

iparam.infeas_prefer_primal
If both certificates of primal and dual infeasibility are supplied then only the primal is used when
this option is turned on.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.infeas_prefer_primal, onoffkey.on)
Generic name MSK_IPAR_INFEAS_PREFER_PRIMAL
Groups Overall solver

iparam.infeas_report_auto
Controls whether an infeasibility report is automatically produced after the optimization if the
problem is primal or dual infeasible.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.infeas_report_auto, onoffkey.off)
Generic name MSK_IPAR_INFEAS_REPORT_AUTO
Groups Data input/output , Solution input/output

iparam.infeas_report_level
Controls the amount of information presented in an infeasibility report. Higher values imply more
information.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.infeas_report_level, 1)
Generic name MSK_IPAR_INFEAS_REPORT_LEVEL
Groups Infeasibility report , Output information

iparam.intpnt_basis
Controls whether the interior-point optimizer also computes an optimal basis.

Default always
Accepted never , always , no_error , if_feasible , reservered (see basindtype)
Example task.putintparam(iparam.intpnt_basis, basindtype.always)
See also iparam.bi_ignore_max_iter , iparam.bi_ignore_num_error , iparam.

bi_max_iterations , iparam.bi_clean_optimizer
Generic name MSK_IPAR_INTPNT_BASIS
Groups Interior-point method , Basis identification

iparam.intpnt_diff_step
Controls whether different step sizes are allowed in the primal and dual space.

Default on
Accepted

• on : Different step sizes are allowed.
• off : Different step sizes are not allowed.

Example task.putintparam(iparam.intpnt_diff_step, onoffkey.on)
Generic name MSK_IPAR_INTPNT_DIFF_STEP
Groups Interior-point method

370

iparam.intpnt_hotstart
Currently not in use.

Default none
Accepted none , primal , dual , primal_dual (see intpnthotstart)
Example task.putintparam(iparam.intpnt_hotstart, intpnthotstart.none)
Generic name MSK_IPAR_INTPNT_HOTSTART
Groups Interior-point method

iparam.intpnt_max_iterations
Controls the maximum number of iterations allowed in the interior-point optimizer.

Default 400
Accepted [0; +inf]
Example task.putintparam(iparam.intpnt_max_iterations, 400)
Generic name MSK_IPAR_INTPNT_MAX_ITERATIONS
Groups Interior-point method , Termination criteria

iparam.intpnt_max_num_cor
Controls the maximum number of correctors allowed by the multiple corrector procedure. A neg-
ative value means that MOSEK is making the choice.

Default -1
Accepted [-1; +inf]
Example task.putintparam(iparam.intpnt_max_num_cor, -1)
Generic name MSK_IPAR_INTPNT_MAX_NUM_COR
Groups Interior-point method

iparam.intpnt_max_num_refinement_steps
Maximum number of steps to be used by the iterative refinement of the search direction. A negative
value implies that the optimizer chooses the maximum number of iterative refinement steps.

Default -1
Accepted [-inf; +inf]
Example task.putintparam(iparam.intpnt_max_num_refinement_steps, -1)
Generic name MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS
Groups Interior-point method

iparam.intpnt_off_col_trh
Controls how many offending columns are detected in the Jacobian of the constraint matrix.

0 no detection
1 aggressive detection
> 1 higher values mean less aggressive detection

Default 40
Accepted [0; +inf]
Example task.putintparam(iparam.intpnt_off_col_trh, 40)
Generic name MSK_IPAR_INTPNT_OFF_COL_TRH
Groups Interior-point method

iparam.intpnt_order_gp_num_seeds
The GP ordering is dependent on a random seed. Therefore, trying several random seeds may lead
to a better ordering. This parameter controls the number of random seeds tried.

A value of 0 means that MOSEK makes the choice.

Default 0
Accepted [0; +inf]

371

Example task.putintparam(iparam.intpnt_order_gp_num_seeds, 0)
Generic name MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS
Groups Interior-point method

iparam.intpnt_order_method
Controls the ordering strategy used by the interior-point optimizer when factorizing the Newton
equation system.

Default free
Accepted free , appminloc , experimental , try_graphpar , force_graphpar , none

(see orderingtype)
Example task.putintparam(iparam.intpnt_order_method, orderingtype.free)
Generic name MSK_IPAR_INTPNT_ORDER_METHOD
Groups Interior-point method

iparam.intpnt_purify
Currently not in use.

Default none
Accepted none , primal , dual , primal_dual , auto (see purify)
Example task.putintparam(iparam.intpnt_purify, purify.none)
Generic name MSK_IPAR_INTPNT_PURIFY
Groups Interior-point method

iparam.intpnt_regularization_use
Controls whether regularization is allowed.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.intpnt_regularization_use, onoffkey.on)
Generic name MSK_IPAR_INTPNT_REGULARIZATION_USE
Groups Interior-point method

iparam.intpnt_scaling
Controls how the problem is scaled before the interior-point optimizer is used.

Default free
Accepted free , none (see scalingtype)
Example task.putintparam(iparam.intpnt_scaling, scalingtype.free)
Generic name MSK_IPAR_INTPNT_SCALING
Groups Interior-point method

iparam.intpnt_solve_form
Controls whether the primal or the dual problem is solved.

Default free
Accepted free , primal , dual (see solveform)
Example task.putintparam(iparam.intpnt_solve_form, solveform.free)
Generic name MSK_IPAR_INTPNT_SOLVE_FORM
Groups Interior-point method

iparam.intpnt_starting_point
Starting point used by the interior-point optimizer.

Default free
Accepted free , guess , constant , satisfy_bounds (see startpointtype)
Example task.putintparam(iparam.intpnt_starting_point, startpointtype.

free)
Generic name MSK_IPAR_INTPNT_STARTING_POINT

372

Groups Interior-point method

iparam.license_debug
This option is used to turn on debugging of the license manager.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.license_debug, onoffkey.off)
Generic name MSK_IPAR_LICENSE_DEBUG
Groups License manager

iparam.license_pause_time
If iparam.license_wait is onoffkey.on and no license is available, then MOSEK sleeps a
number of milliseconds between each check of whether a license has become free.

Default 100
Accepted [0; 1000000]
Example task.putintparam(iparam.license_pause_time, 100)
Generic name MSK_IPAR_LICENSE_PAUSE_TIME
Groups License manager

iparam.license_suppress_expire_wrns
Controls whether license features expire warnings are suppressed.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.license_suppress_expire_wrns, onoffkey.

off)
Generic name MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS
Groups License manager , Output information

iparam.license_trh_expiry_wrn
If a license feature expires in a numbers of days less than the value of this parameter then a warning
will be issued.

Default 7
Accepted [0; +inf]
Example task.putintparam(iparam.license_trh_expiry_wrn, 7)
Generic name MSK_IPAR_LICENSE_TRH_EXPIRY_WRN
Groups License manager , Output information

iparam.license_wait
If all licenses are in use MOSEK returns with an error code. However, by turning on this parameter
MOSEK will wait for an available license.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.license_wait, onoffkey.off)
Generic name MSK_IPAR_LICENSE_WAIT
Groups Overall solver , Overall system, License manager

iparam.log
Controls the amount of log information. The value 0 implies that all log information is suppressed.
A higher level implies that more information is logged.

Please note that if a task is employed to solve a sequence of optimization problems the value of
this parameter is reduced by the value of iparam.log_cut_second_opt for the second and any
subsequent optimizations.

Default 10

373

Accepted [0; +inf]
Example task.putintparam(iparam.log, 10)
See also iparam.log_cut_second_opt
Generic name MSK_IPAR_LOG
Groups Output information, Logging

iparam.log_ana_pro
Controls amount of output from the problem analyzer.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.log_ana_pro, 1)
Generic name MSK_IPAR_LOG_ANA_PRO
Groups Analysis, Logging

iparam.log_bi
Controls the amount of output printed by the basis identification procedure. A higher level implies
that more information is logged.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.log_bi, 1)
Generic name MSK_IPAR_LOG_BI
Groups Basis identification, Output information, Logging

iparam.log_bi_freq
Controls how frequently the optimizer outputs information about the basis identification and how
frequent the user-defined callback function is called.

Default 2500
Accepted [0; +inf]
Example task.putintparam(iparam.log_bi_freq, 2500)
Generic name MSK_IPAR_LOG_BI_FREQ
Groups Basis identification, Output information, Logging

iparam.log_check_convexity
Controls logging in convexity check on quadratic problems. Set to a positive value to turn logging
on. If a quadratic coefficient matrix is found to violate the requirement of PSD (NSD) then a list
of negative (positive) pivot elements is printed. The absolute value of the pivot elements is also
shown.

Default 0
Accepted [0; +inf]
Example task.putintparam(iparam.log_check_convexity, 0)
Generic name MSK_IPAR_LOG_CHECK_CONVEXITY
Groups Data check

iparam.log_cut_second_opt
If a task is employed to solve a sequence of optimization problems, then the value of the log levels
is reduced by the value of this parameter. E.g iparam.log and iparam.log_sim are reduced by
the value of this parameter for the second and any subsequent optimizations.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.log_cut_second_opt, 1)
See also iparam.log , iparam.log_intpnt , iparam.log_mio , iparam.log_sim
Generic name MSK_IPAR_LOG_CUT_SECOND_OPT
Groups Output information, Logging

374

iparam.log_expand
Controls the amount of logging when a data item such as the maximum number constrains is
expanded.

Default 0
Accepted [0; +inf]
Example task.putintparam(iparam.log_expand, 0)
Generic name MSK_IPAR_LOG_EXPAND
Groups Output information, Logging

iparam.log_feas_repair
Controls the amount of output printed when performing feasibility repair. A value higher than one
means extensive logging.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.log_feas_repair, 1)
Generic name MSK_IPAR_LOG_FEAS_REPAIR
Groups Output information, Logging

iparam.log_file
If turned on, then some log info is printed when a file is written or read.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.log_file, 1)
Generic name MSK_IPAR_LOG_FILE
Groups Data input/output , Output information, Logging

iparam.log_include_summary
If on, then the solution summary will be printed by Task.optimize , so a separate call to Task.
solutionsummary is not necessary.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.log_include_summary, onoffkey.off)
Generic name MSK_IPAR_LOG_INCLUDE_SUMMARY
Groups Output information, Logging

iparam.log_infeas_ana
Controls amount of output printed by the infeasibility analyzer procedures. A higher level implies
that more information is logged.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.log_infeas_ana, 1)
Generic name MSK_IPAR_LOG_INFEAS_ANA
Groups Infeasibility report , Output information, Logging

iparam.log_intpnt
Controls amount of output printed by the interior-point optimizer. A higher level implies that
more information is logged.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.log_intpnt, 1)
Generic name MSK_IPAR_LOG_INTPNT
Groups Interior-point method , Output information, Logging

375

iparam.log_local_info
Controls whether local identifying information like environment variables, filenames, IP addresses
etc. are printed to the log.

Note that this will only affect some functions. Some functions that specifically emit system infor-
mation will not be affected.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.log_local_info, onoffkey.on)
Generic name MSK_IPAR_LOG_LOCAL_INFO
Groups Output information, Logging

iparam.log_mio
Controls the log level for the mixed-integer optimizer. A higher level implies that more information
is logged.

Default 4
Accepted [0; +inf]
Example task.putintparam(iparam.log_mio, 4)
Generic name MSK_IPAR_LOG_MIO
Groups Mixed-integer optimization, Output information, Logging

iparam.log_mio_freq
Controls how frequent the mixed-integer optimizer prints the log line. It will print line every time
iparam.log_mio_freq relaxations have been solved.

Default 10
Accepted [-inf; +inf]
Example task.putintparam(iparam.log_mio_freq, 10)
Generic name MSK_IPAR_LOG_MIO_FREQ
Groups Mixed-integer optimization, Output information, Logging

iparam.log_order
If turned on, then factor lines are added to the log.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.log_order, 1)
Generic name MSK_IPAR_LOG_ORDER
Groups Output information, Logging

iparam.log_presolve
Controls amount of output printed by the presolve procedure. A higher level implies that more
information is logged.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.log_presolve, 1)
Generic name MSK_IPAR_LOG_PRESOLVE
Groups Logging

iparam.log_response
Controls amount of output printed when response codes are reported. A higher level implies that
more information is logged.

Default 0
Accepted [0; +inf]
Example task.putintparam(iparam.log_response, 0)

376

Generic name MSK_IPAR_LOG_RESPONSE
Groups Output information, Logging

iparam.log_sensitivity
Controls the amount of logging during the sensitivity analysis.

• 0. Means no logging information is produced.

• 1. Timing information is printed.

• 2. Sensitivity results are printed.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.log_sensitivity, 1)
Generic name MSK_IPAR_LOG_SENSITIVITY
Groups Output information, Logging

iparam.log_sensitivity_opt
Controls the amount of logging from the optimizers employed during the sensitivity analysis. 0
means no logging information is produced.

Default 0
Accepted [0; +inf]
Example task.putintparam(iparam.log_sensitivity_opt, 0)
Generic name MSK_IPAR_LOG_SENSITIVITY_OPT
Groups Output information, Logging

iparam.log_sim
Controls amount of output printed by the simplex optimizer. A higher level implies that more
information is logged.

Default 4
Accepted [0; +inf]
Example task.putintparam(iparam.log_sim, 4)
Generic name MSK_IPAR_LOG_SIM
Groups Simplex optimizer , Output information, Logging

iparam.log_sim_freq
Controls how frequent the simplex optimizer outputs information about the optimization and how
frequent the user-defined callback function is called.

Default 1000
Accepted [0; +inf]
Example task.putintparam(iparam.log_sim_freq, 1000)
Generic name MSK_IPAR_LOG_SIM_FREQ
Groups Simplex optimizer , Output information, Logging

iparam.log_sim_minor
Currently not in use.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.log_sim_minor, 1)
Generic name MSK_IPAR_LOG_SIM_MINOR
Groups Simplex optimizer , Output information

iparam.log_storage
When turned on, MOSEK prints messages regarding the storage usage and allocation.

Default 0

377

Accepted [0; +inf]
Example task.putintparam(iparam.log_storage, 0)
Generic name MSK_IPAR_LOG_STORAGE
Groups Output information, Overall system, Logging

iparam.max_num_warnings
Each warning is shown a limited number of times controlled by this parameter. A negative value
is identical to infinite number of times.

Default 10
Accepted [-inf; +inf]
Example task.putintparam(iparam.max_num_warnings, 10)
Generic name MSK_IPAR_MAX_NUM_WARNINGS
Groups Output information

iparam.mio_branch_dir
Controls whether the mixed-integer optimizer is branching up or down by default.

Default free
Accepted free , up , down , near , far , root_lp , guided , pseudocost (see

branchdir)
Example task.putintparam(iparam.mio_branch_dir, branchdir.free)
Generic name MSK_IPAR_MIO_BRANCH_DIR
Groups Mixed-integer optimization

iparam.mio_conic_outer_approximation
If this option is turned on outer approximation is used when solving relaxations of conic problems;
otherwise interior point is used.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.mio_conic_outer_approximation,

onoffkey.off)
Generic name MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION
Groups Mixed-integer optimization

iparam.mio_construct_sol
If set to onoffkey.on and all integer variables have been given a value for which a feasible mixed
integer solution exists, then MOSEK generates an initial solution to the mixed integer problem
by fixing all integer values and solving the remaining problem.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.mio_construct_sol, onoffkey.off)
Generic name MSK_IPAR_MIO_CONSTRUCT_SOL
Groups Mixed-integer optimization

iparam.mio_cut_clique
Controls whether clique cuts should be generated.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.mio_cut_clique, onoffkey.on)
Generic name MSK_IPAR_MIO_CUT_CLIQUE
Groups Mixed-integer optimization

iparam.mio_cut_cmir
Controls whether mixed integer rounding cuts should be generated.

378

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.mio_cut_cmir, onoffkey.on)
Generic name MSK_IPAR_MIO_CUT_CMIR
Groups Mixed-integer optimization

iparam.mio_cut_gmi
Controls whether GMI cuts should be generated.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.mio_cut_gmi, onoffkey.on)
Generic name MSK_IPAR_MIO_CUT_GMI
Groups Mixed-integer optimization

iparam.mio_cut_implied_bound
Controls whether implied bound cuts should be generated.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.mio_cut_implied_bound, onoffkey.on)
Generic name MSK_IPAR_MIO_CUT_IMPLIED_BOUND
Groups Mixed-integer optimization

iparam.mio_cut_knapsack_cover
Controls whether knapsack cover cuts should be generated.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.mio_cut_knapsack_cover, onoffkey.off)
Generic name MSK_IPAR_MIO_CUT_KNAPSACK_COVER
Groups Mixed-integer optimization

iparam.mio_cut_lipro
Controls whether lift-and-project cuts should be generated.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.mio_cut_lipro, onoffkey.off)
Generic name MSK_IPAR_MIO_CUT_LIPRO
Groups Mixed-integer optimization

iparam.mio_cut_selection_level
Controls how aggressively generated cuts are selected to be included in the relaxation.

• −1. The optimizer chooses the level of cut selection

• 0. Generated cuts less likely to be added to the relaxation

• 1. Cuts are more aggressively selected to be included in the relaxation

Default -1
Accepted [-1; +1]
Example task.putintparam(iparam.mio_cut_selection_level, -1)
Generic name MSK_IPAR_MIO_CUT_SELECTION_LEVEL
Groups Mixed-integer optimization

iparam.mio_data_permutation_method
Controls what problem data permutation method is appplied to mixed-integer problems.

379

Default none
Accepted none , cyclic_shift , random (see miodatapermmethod)
Example task.putintparam(iparam.mio_data_permutation_method,

miodatapermmethod.none)
Generic name MSK_IPAR_MIO_DATA_PERMUTATION_METHOD
Groups Mixed-integer optimization

iparam.mio_feaspump_level
Controls the way the Feasibility Pump heuristic is employed by the mixed-integer optimizer.

• −1. The optimizer chooses how the Feasibility Pump is used

• 0. The Feasibility Pump is disabled

• 1. The Feasibility Pump is enabled with an effort to improve solution quality

• 2. The Feasibility Pump is enabled with an effort to reach feasibility early

Default -1
Accepted [-1; 2]
Example task.putintparam(iparam.mio_feaspump_level, -1)
Generic name MSK_IPAR_MIO_FEASPUMP_LEVEL
Groups Mixed-integer optimization

iparam.mio_heuristic_level
Controls the heuristic employed by the mixed-integer optimizer to locate an initial good integer
feasible solution. A value of zero means the heuristic is not used at all. A larger value than 0 means
that a gradually more sophisticated heuristic is used which is computationally more expensive. A
negative value implies that the optimizer chooses the heuristic. Normally a value around 3 to 5
should be optimal.

Default -1
Accepted [-inf; +inf]
Example task.putintparam(iparam.mio_heuristic_level, -1)
Generic name MSK_IPAR_MIO_HEURISTIC_LEVEL
Groups Mixed-integer optimization

iparam.mio_max_num_branches
Maximum number of branches allowed during the branch and bound search. A negative value
means infinite.

Default -1
Accepted [-inf; +inf]
Example task.putintparam(iparam.mio_max_num_branches, -1)
Generic name MSK_IPAR_MIO_MAX_NUM_BRANCHES
Groups Mixed-integer optimization, Termination criteria

iparam.mio_max_num_relaxs
Maximum number of relaxations allowed during the branch and bound search. A negative value
means infinite.

Default -1
Accepted [-inf; +inf]
Example task.putintparam(iparam.mio_max_num_relaxs, -1)
Generic name MSK_IPAR_MIO_MAX_NUM_RELAXS
Groups Mixed-integer optimization

iparam.mio_max_num_root_cut_rounds
Maximum number of cut separation rounds at the root node.

Default 100

380

Accepted [0; +inf]
Example task.putintparam(iparam.mio_max_num_root_cut_rounds, 100)
Generic name MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS
Groups Mixed-integer optimization, Termination criteria

iparam.mio_max_num_solutions
The mixed-integer optimizer can be terminated after a certain number of different feasible solutions
has been located. If this parameter has the value 𝑛 > 0, then the mixed-integer optimizer will be
terminated when 𝑛 feasible solutions have been located.

Default -1
Accepted [-inf; +inf]
Example task.putintparam(iparam.mio_max_num_solutions, -1)
Generic name MSK_IPAR_MIO_MAX_NUM_SOLUTIONS
Groups Mixed-integer optimization, Termination criteria

iparam.mio_memory_emphasis_level
Controls how much emphasis is put on reducing memory usage. Being more conservative about
memory usage may come at the cost of decreased solution speed.

• 0. The optimizer chooses

• 1. More emphasis is put on reducing memory usage and less on speed

Default 0
Accepted [0; +1]
Example task.putintparam(iparam.mio_memory_emphasis_level, 0)
Generic name MSK_IPAR_MIO_MEMORY_EMPHASIS_LEVEL
Groups Mixed-integer optimization

iparam.mio_mode
Controls whether the optimizer includes the integer restrictions and disjunctive constraints when
solving a (mixed) integer optimization problem.

Default satisfied
Accepted ignored , satisfied (see miomode)
Example task.putintparam(iparam.mio_mode, miomode.satisfied)
Generic name MSK_IPAR_MIO_MODE
Groups Overall solver

iparam.mio_node_optimizer
Controls which optimizer is employed at the non-root nodes in the mixed-integer optimizer.

Default free
Accepted free , intpnt , conic , primal_simplex , dual_simplex , free_simplex ,

mixed_int (see optimizertype)
Example task.putintparam(iparam.mio_node_optimizer, optimizertype.free)
Generic name MSK_IPAR_MIO_NODE_OPTIMIZER
Groups Mixed-integer optimization

iparam.mio_node_selection
Controls the node selection strategy employed by the mixed-integer optimizer.

Default free
Accepted free , first , best , pseudo (see mionodeseltype)
Example task.putintparam(iparam.mio_node_selection, mionodeseltype.

free)
Generic name MSK_IPAR_MIO_NODE_SELECTION
Groups Mixed-integer optimization

381

iparam.mio_numerical_emphasis_level
Controls how much emphasis is put on reducing numerical problems possibly at the expense of
solution speed.

• 0. The optimizer chooses

• 1. More emphasis is put on reducing numerical problems

• 2. Even more emphasis

Default 0
Accepted [0; +2]
Example task.putintparam(iparam.mio_numerical_emphasis_level, 0)
Generic name MSK_IPAR_MIO_NUMERICAL_EMPHASIS_LEVEL
Groups Mixed-integer optimization

iparam.mio_perspective_reformulate
Enables or disables perspective reformulation in presolve.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.mio_perspective_reformulate, onoffkey.

on)
Generic name MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE
Groups Mixed-integer optimization

iparam.mio_presolve_aggregator_use
Controls if the aggregator should be used.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.mio_presolve_aggregator_use, onoffkey.

on)
Generic name MSK_IPAR_MIO_PRESOLVE_AGGREGATOR_USE
Groups Presolve

iparam.mio_probing_level
Controls the amount of probing employed by the mixed-integer optimizer in presolve.

• −1. The optimizer chooses the level of probing employed

• 0. Probing is disabled

• 1. A low amount of probing is employed

• 2. A medium amount of probing is employed

• 3. A high amount of probing is employed

Default -1
Accepted [-1; 3]
Example task.putintparam(iparam.mio_probing_level, -1)
Generic name MSK_IPAR_MIO_PROBING_LEVEL
Groups Mixed-integer optimization

iparam.mio_propagate_objective_constraint
Use objective domain propagation.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.mio_propagate_objective_constraint,

onoffkey.off)
Generic name MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT

382

Groups Mixed-integer optimization

iparam.mio_qcqo_reformulation_method
Controls what reformulation method is applied to mixed-integer quadratic problems.

Default free
Accepted free , none , linearization , eigen_val_method , diag_sdp , relax_sdp

(see miqcqoreformmethod)
Example task.putintparam(iparam.mio_qcqo_reformulation_method,

miqcqoreformmethod.free)
Generic name MSK_IPAR_MIO_QCQO_REFORMULATION_METHOD
Groups Mixed-integer optimization

iparam.mio_rins_max_nodes
Controls the maximum number of nodes allowed in each call to the RINS heuristic. The default
value of -1 means that the value is determined automatically. A value of zero turns off the heuristic.

Default -1
Accepted [-1; +inf]
Example task.putintparam(iparam.mio_rins_max_nodes, -1)
Generic name MSK_IPAR_MIO_RINS_MAX_NODES
Groups Mixed-integer optimization

iparam.mio_root_optimizer
Controls which optimizer is employed at the root node in the mixed-integer optimizer.

Default free
Accepted free , intpnt , conic , primal_simplex , dual_simplex , free_simplex ,

mixed_int (see optimizertype)
Example task.putintparam(iparam.mio_root_optimizer, optimizertype.free)
Generic name MSK_IPAR_MIO_ROOT_OPTIMIZER
Groups Mixed-integer optimization

iparam.mio_root_repeat_presolve_level
Controls whether presolve can be repeated at root node.

• −1. The optimizer chooses whether presolve is repeated

• 0. Never repeat presolve

• 1. Always repeat presolve

Default -1
Accepted [-1; 1]
Example task.putintparam(iparam.mio_root_repeat_presolve_level, -1)
Generic name MSK_IPAR_MIO_ROOT_REPEAT_PRESOLVE_LEVEL
Groups Mixed-integer optimization

iparam.mio_seed
Sets the random seed used for randomization in the mixed integer optimizer. Selecting a different
seed can change the path the optimizer takes to the optimal solution.

Default 42
Accepted [0; +inf]
Example task.putintparam(iparam.mio_seed, 42)
Generic name MSK_IPAR_MIO_SEED
Groups Mixed-integer optimization

iparam.mio_symmetry_level
Controls the amount of symmetry detection and handling employed by the mixed-integer optimizer
in presolve.

383

• −1. The optimizer chooses the level of symmetry detection and handling employed

• 0. Symmetry detection and handling is disabled

• 1. A low amount of symmetry detection and handling is employed

• 2. A medium amount of symmetry detection and handling is employed

• 3. A high amount of symmetry detection and handling is employed

• 4. An extremely high amount of symmetry detection and handling is employed

Default -1
Accepted [-1; 4]
Example task.putintparam(iparam.mio_symmetry_level, -1)
Generic name MSK_IPAR_MIO_SYMMETRY_LEVEL
Groups Mixed-integer optimization

iparam.mio_vb_detection_level
Controls how much effort is put into detecting variable bounds.

• −1. The optimizer chooses

• 0. No variable bounds are detected

• 1. Only detect variable bounds that are directly represented in the problem

• 2. Detect variable bounds in probing

Default -1
Accepted [-1; +2]
Example task.putintparam(iparam.mio_vb_detection_level, -1)
Generic name MSK_IPAR_MIO_VB_DETECTION_LEVEL
Groups Mixed-integer optimization

iparam.mt_spincount
Set the number of iterations to spin before sleeping.

Default 0
Accepted [0; 1000000000]
Example task.putintparam(iparam.mt_spincount, 0)
Generic name MSK_IPAR_MT_SPINCOUNT
Groups Overall system

iparam.ng
Not in use.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.ng, onoffkey.off)
Generic name MSK_IPAR_NG

iparam.num_threads
Controls the number of threads employed by the optimizer. If set to 0 the number of threads used
will be equal to the number of cores detected on the machine.

Default 0
Accepted [0; +inf]
Example task.putintparam(iparam.num_threads, 0)
Generic name MSK_IPAR_NUM_THREADS
Groups Overall system

iparam.opf_write_header
Write a text header with date and MOSEK version in an OPF file.

384

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.opf_write_header, onoffkey.on)
Generic name MSK_IPAR_OPF_WRITE_HEADER
Groups Data input/output

iparam.opf_write_hints
Write a hint section with problem dimensions in the beginning of an OPF file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.opf_write_hints, onoffkey.on)
Generic name MSK_IPAR_OPF_WRITE_HINTS
Groups Data input/output

iparam.opf_write_line_length
Aim to keep lines in OPF files not much longer than this.

Default 80
Accepted [0; +inf]
Example task.putintparam(iparam.opf_write_line_length, 80)
Generic name MSK_IPAR_OPF_WRITE_LINE_LENGTH
Groups Data input/output

iparam.opf_write_parameters
Write a parameter section in an OPF file.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.opf_write_parameters, onoffkey.off)
Generic name MSK_IPAR_OPF_WRITE_PARAMETERS
Groups Data input/output

iparam.opf_write_problem
Write objective, constraints, bounds etc. to an OPF file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.opf_write_problem, onoffkey.on)
Generic name MSK_IPAR_OPF_WRITE_PROBLEM
Groups Data input/output

iparam.opf_write_sol_bas
If iparam.opf_write_solutions is onoffkey.on and a basic solution is defined, include the basic
solution in OPF files.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.opf_write_sol_bas, onoffkey.on)
Generic name MSK_IPAR_OPF_WRITE_SOL_BAS
Groups Data input/output

iparam.opf_write_sol_itg
If iparam.opf_write_solutions is onoffkey.on and an integer solution is defined, write the
integer solution in OPF files.

Default on
Accepted on , off (see onoffkey)

385

Example task.putintparam(iparam.opf_write_sol_itg, onoffkey.on)
Generic name MSK_IPAR_OPF_WRITE_SOL_ITG
Groups Data input/output

iparam.opf_write_sol_itr
If iparam.opf_write_solutions is onoffkey.on and an interior solution is defined, write the
interior solution in OPF files.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.opf_write_sol_itr, onoffkey.on)
Generic name MSK_IPAR_OPF_WRITE_SOL_ITR
Groups Data input/output

iparam.opf_write_solutions
Enable inclusion of solutions in the OPF files.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.opf_write_solutions, onoffkey.off)
Generic name MSK_IPAR_OPF_WRITE_SOLUTIONS
Groups Data input/output

iparam.optimizer
The parameter controls which optimizer is used to optimize the task.

Default free
Accepted free , intpnt , conic , primal_simplex , dual_simplex , free_simplex ,

mixed_int (see optimizertype)
Example task.putintparam(iparam.optimizer, optimizertype.free)
Generic name MSK_IPAR_OPTIMIZER
Groups Overall solver

iparam.param_read_case_name
If turned on, then names in the parameter file are case sensitive.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.param_read_case_name, onoffkey.on)
Generic name MSK_IPAR_PARAM_READ_CASE_NAME
Groups Data input/output

iparam.param_read_ign_error
If turned on, then errors in parameter settings is ignored.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.param_read_ign_error, onoffkey.off)
Generic name MSK_IPAR_PARAM_READ_IGN_ERROR
Groups Data input/output

iparam.presolve_eliminator_max_fill
Controls the maximum amount of fill-in that can be created by one pivot in the elimination phase
of the presolve. A negative value means the parameter value is selected automatically.

Default -1
Accepted [-inf; +inf]
Example task.putintparam(iparam.presolve_eliminator_max_fill, -1)
Generic name MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL

386

Groups Presolve

iparam.presolve_eliminator_max_num_tries
Control the maximum number of times the eliminator is tried. A negative value implies MOSEK
decides.

Default -1
Accepted [-inf; +inf]
Example task.putintparam(iparam.presolve_eliminator_max_num_tries, -1)
Generic name MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
Groups Presolve

iparam.presolve_level
Currently not used.

Default -1
Accepted [-inf; +inf]
Example task.putintparam(iparam.presolve_level, -1)
Generic name MSK_IPAR_PRESOLVE_LEVEL
Groups Overall solver , Presolve

iparam.presolve_lindep_abs_work_trh
Controls linear dependency check in presolve. The linear dependency check is potentially compu-
tationally expensive.

Default 100
Accepted [-inf; +inf]
Example task.putintparam(iparam.presolve_lindep_abs_work_trh, 100)
Generic name MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH
Groups Presolve

iparam.presolve_lindep_rel_work_trh
Controls linear dependency check in presolve. The linear dependency check is potentially compu-
tationally expensive.

Default 100
Accepted [-inf; +inf]
Example task.putintparam(iparam.presolve_lindep_rel_work_trh, 100)
Generic name MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH
Groups Presolve

iparam.presolve_lindep_use
Controls whether the linear constraints are checked for linear dependencies.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.presolve_lindep_use, onoffkey.on)
Generic name MSK_IPAR_PRESOLVE_LINDEP_USE
Groups Presolve

iparam.presolve_max_num_pass
Control the maximum number of times presolve passes over the problem. A negative value implies
MOSEK decides.

Default -1
Accepted [-inf; +inf]
Example task.putintparam(iparam.presolve_max_num_pass, -1)
Generic name MSK_IPAR_PRESOLVE_MAX_NUM_PASS
Groups Presolve

387

iparam.presolve_max_num_reductions
Controls the maximum number of reductions performed by the presolve. The value of the parameter
is normally only changed in connection with debugging. A negative value implies that an infinite
number of reductions are allowed.

Default -1
Accepted [-inf; +inf]
Example task.putintparam(iparam.presolve_max_num_reductions, -1)
Generic name MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS
Groups Overall solver , Presolve

iparam.presolve_use
Controls whether the presolve is applied to a problem before it is optimized.

Default free
Accepted off , on , free (see presolvemode)
Example task.putintparam(iparam.presolve_use, presolvemode.free)
Generic name MSK_IPAR_PRESOLVE_USE
Groups Overall solver , Presolve

iparam.primal_repair_optimizer
Controls which optimizer that is used to find the optimal repair.

Default free
Accepted free , intpnt , conic , primal_simplex , dual_simplex , free_simplex ,

mixed_int (see optimizertype)
Example task.putintparam(iparam.primal_repair_optimizer, optimizertype.

free)
Generic name MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER
Groups Overall solver

iparam.ptf_write_parameters
If iparam.ptf_write_parameters is onoffkey.on , the parameters section is written.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.ptf_write_parameters, onoffkey.off)
Generic name MSK_IPAR_PTF_WRITE_PARAMETERS
Groups Data input/output

iparam.ptf_write_solutions
If iparam.ptf_write_solutions is onoffkey.on , the solution section is written if any solutions
are available, otherwise solution section is not written even if solutions are available.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.ptf_write_solutions, onoffkey.off)
Generic name MSK_IPAR_PTF_WRITE_SOLUTIONS
Groups Data input/output

iparam.ptf_write_transform
If iparam.ptf_write_transform is onoffkey.on , constraint blocks with identifiable conic slacks
are transformed into conic constraints and the slacks are eliminated.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.ptf_write_transform, onoffkey.on)
Generic name MSK_IPAR_PTF_WRITE_TRANSFORM

388

Groups Data input/output

iparam.read_debug
Turns on additional debugging information when reading files.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.read_debug, onoffkey.off)
Generic name MSK_IPAR_READ_DEBUG
Groups Data input/output

iparam.read_keep_free_con
Controls whether the free constraints are included in the problem.

Default off
Accepted

• on : The free constraints are kept.
• off : The free constraints are discarded.

Example task.putintparam(iparam.read_keep_free_con, onoffkey.off)
Generic name MSK_IPAR_READ_KEEP_FREE_CON
Groups Data input/output

iparam.read_mps_format
Controls how strictly the MPS file reader interprets the MPS format.

Default free
Accepted strict , relaxed , free , cplex (see mpsformat)
Example task.putintparam(iparam.read_mps_format, mpsformat.free)
Generic name MSK_IPAR_READ_MPS_FORMAT
Groups Data input/output

iparam.read_mps_width
Controls the maximal number of characters allowed in one line of the MPS file.

Default 1024
Accepted [80; +inf]
Example task.putintparam(iparam.read_mps_width, 1024)
Generic name MSK_IPAR_READ_MPS_WIDTH
Groups Data input/output

iparam.read_task_ignore_param
Controls whether MOSEK should ignore the parameter setting defined in the task file and use
the default parameter setting instead.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.read_task_ignore_param, onoffkey.off)
Generic name MSK_IPAR_READ_TASK_IGNORE_PARAM
Groups Data input/output

iparam.remote_use_compression
Use compression when sending data to an optimization server.

Default zstd
Accepted none , free , gzip , zstd (see compresstype)
Example task.putintparam(iparam.remote_use_compression, compresstype.

zstd)
Generic name MSK_IPAR_REMOTE_USE_COMPRESSION

389

iparam.remove_unused_solutions
Removes unused solutions before the optimization is performed.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.remove_unused_solutions, onoffkey.off)
Generic name MSK_IPAR_REMOVE_UNUSED_SOLUTIONS
Groups Overall system

iparam.sensitivity_all
If set to onoffkey.on , then Task.sensitivityreport analyzes all bounds and variables instead
of reading a specification from the file.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.sensitivity_all, onoffkey.off)
Generic name MSK_IPAR_SENSITIVITY_ALL
Groups Overall solver

iparam.sensitivity_optimizer
Controls which optimizer is used for optimal partition sensitivity analysis.

Default free_simplex
Accepted free , intpnt , conic , primal_simplex , dual_simplex , free_simplex ,

mixed_int (see optimizertype)
Example task.putintparam(iparam.sensitivity_optimizer, optimizertype.

free_simplex)
Generic name MSK_IPAR_SENSITIVITY_OPTIMIZER
Groups Overall solver , Simplex optimizer

iparam.sensitivity_type
Controls which type of sensitivity analysis is to be performed.

Default basis
Accepted basis (see sensitivitytype)
Example task.putintparam(iparam.sensitivity_type, sensitivitytype.

basis)
Generic name MSK_IPAR_SENSITIVITY_TYPE
Groups Overall solver

iparam.sim_basis_factor_use
Controls whether an LU factorization of the basis is used in a hot-start. Forcing a refactorization
sometimes improves the stability of the simplex optimizers, but in most cases there is a performance
penalty.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.sim_basis_factor_use, onoffkey.on)
Generic name MSK_IPAR_SIM_BASIS_FACTOR_USE
Groups Simplex optimizer

iparam.sim_degen
Controls how aggressively degeneration is handled.

Default free
Accepted none , free , aggressive , moderate , minimum (see simdegen)
Example task.putintparam(iparam.sim_degen, simdegen.free)
Generic name MSK_IPAR_SIM_DEGEN

390

Groups Simplex optimizer

iparam.sim_detect_pwl
Not in use.

Default on
Accepted

• on : PWL are detected.
• off : PWL are not detected.

Example task.putintparam(iparam.sim_detect_pwl, onoffkey.on)
Generic name MSK_IPAR_SIM_DETECT_PWL
Groups Simplex optimizer

iparam.sim_dual_crash
Controls whether crashing is performed in the dual simplex optimizer. If this parameter is set to
𝑥, then a crash will be performed if a basis consists of more than (100− 𝑥) mod 𝑓𝑣 entries, where
𝑓𝑣 is the number of fixed variables.

Default 90
Accepted [0; +inf]
Example task.putintparam(iparam.sim_dual_crash, 90)
Generic name MSK_IPAR_SIM_DUAL_CRASH
Groups Dual simplex

iparam.sim_dual_phaseone_method
An experimental feature.

Default 0
Accepted [0; 10]
Example task.putintparam(iparam.sim_dual_phaseone_method, 0)
Generic name MSK_IPAR_SIM_DUAL_PHASEONE_METHOD
Groups Simplex optimizer

iparam.sim_dual_restrict_selection
The dual simplex optimizer can use a so-called restricted selection/pricing strategy to choose the
outgoing variable. Hence, if restricted selection is applied, then the dual simplex optimizer first
choose a subset of all the potential outgoing variables. Next, for some time it will choose the
outgoing variable only among the subset. From time to time the subset is redefined. A larger value
of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e.
a value of 0 implies that the restriction strategy is not applied at all.

Default 50
Accepted [0; 100]
Example task.putintparam(iparam.sim_dual_restrict_selection, 50)
Generic name MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION
Groups Dual simplex

iparam.sim_dual_selection
Controls the choice of the incoming variable, known as the selection strategy, in the dual simplex
optimizer.

Default free
Accepted free , full , ase , devex , se , partial (see simseltype)
Example task.putintparam(iparam.sim_dual_selection, simseltype.free)
Generic name MSK_IPAR_SIM_DUAL_SELECTION
Groups Dual simplex

iparam.sim_exploit_dupvec
Controls if the simplex optimizers are allowed to exploit duplicated columns.

391

Default off
Accepted on , off , free (see simdupvec)
Example task.putintparam(iparam.sim_exploit_dupvec, simdupvec.off)
Generic name MSK_IPAR_SIM_EXPLOIT_DUPVEC
Groups Simplex optimizer

iparam.sim_hotstart
Controls the type of hot-start that the simplex optimizer perform.

Default free
Accepted none , free , status_keys (see simhotstart)
Example task.putintparam(iparam.sim_hotstart, simhotstart.free)
Generic name MSK_IPAR_SIM_HOTSTART
Groups Simplex optimizer

iparam.sim_hotstart_lu
Determines if the simplex optimizer should exploit the initial factorization.

Default on
Accepted

• on : Factorization is reused if possible.
• off : Factorization is recomputed.

Example task.putintparam(iparam.sim_hotstart_lu, onoffkey.on)
Generic name MSK_IPAR_SIM_HOTSTART_LU
Groups Simplex optimizer

iparam.sim_max_iterations
Maximum number of iterations that can be used by a simplex optimizer.

Default 10000000
Accepted [0; +inf]
Example task.putintparam(iparam.sim_max_iterations, 10000000)
Generic name MSK_IPAR_SIM_MAX_ITERATIONS
Groups Simplex optimizer , Termination criteria

iparam.sim_max_num_setbacks
Controls how many set-backs are allowed within a simplex optimizer. A set-back is an event where
the optimizer moves in the wrong direction. This is impossible in theory but may happen due to
numerical problems.

Default 250
Accepted [0; +inf]
Example task.putintparam(iparam.sim_max_num_setbacks, 250)
Generic name MSK_IPAR_SIM_MAX_NUM_SETBACKS
Groups Simplex optimizer

iparam.sim_non_singular
Controls if the simplex optimizer ensures a non-singular basis, if possible.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.sim_non_singular, onoffkey.on)
Generic name MSK_IPAR_SIM_NON_SINGULAR
Groups Simplex optimizer

iparam.sim_primal_crash
Controls whether crashing is performed in the primal simplex optimizer. In general, if a basis
consists of more than (100-this parameter value)% fixed variables, then a crash will be performed.

392

Default 90
Accepted [0; +inf]
Example task.putintparam(iparam.sim_primal_crash, 90)
Generic name MSK_IPAR_SIM_PRIMAL_CRASH
Groups Primal simplex

iparam.sim_primal_phaseone_method
An experimental feature.

Default 0
Accepted [0; 10]
Example task.putintparam(iparam.sim_primal_phaseone_method, 0)
Generic name MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD
Groups Simplex optimizer

iparam.sim_primal_restrict_selection
The primal simplex optimizer can use a so-called restricted selection/pricing strategy to choose
the outgoing variable. Hence, if restricted selection is applied, then the primal simplex optimizer
first choose a subset of all the potential incoming variables. Next, for some time it will choose the
incoming variable only among the subset. From time to time the subset is redefined. A larger value
of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e.
a value of 0 implies that the restriction strategy is not applied at all.

Default 50
Accepted [0; 100]
Example task.putintparam(iparam.sim_primal_restrict_selection, 50)
Generic name MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION
Groups Primal simplex

iparam.sim_primal_selection
Controls the choice of the incoming variable, known as the selection strategy, in the primal simplex
optimizer.

Default free
Accepted free , full , ase , devex , se , partial (see simseltype)
Example task.putintparam(iparam.sim_primal_selection, simseltype.free)
Generic name MSK_IPAR_SIM_PRIMAL_SELECTION
Groups Primal simplex

iparam.sim_refactor_freq
Controls how frequent the basis is refactorized. The value 0 means that the optimizer determines
the best point of refactorization. It is strongly recommended NOT to change this parameter.

Default 0
Accepted [0; +inf]
Example task.putintparam(iparam.sim_refactor_freq, 0)
Generic name MSK_IPAR_SIM_REFACTOR_FREQ
Groups Simplex optimizer

iparam.sim_reformulation
Controls if the simplex optimizers are allowed to reformulate the problem.

Default off
Accepted on , off , free , aggressive (see simreform)
Example task.putintparam(iparam.sim_reformulation, simreform.off)
Generic name MSK_IPAR_SIM_REFORMULATION
Groups Simplex optimizer

393

iparam.sim_save_lu
Controls if the LU factorization stored should be replaced with the LU factorization corresponding
to the initial basis.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.sim_save_lu, onoffkey.off)
Generic name MSK_IPAR_SIM_SAVE_LU
Groups Simplex optimizer

iparam.sim_scaling
Controls how much effort is used in scaling the problem before a simplex optimizer is used.

Default free
Accepted free , none (see scalingtype)
Example task.putintparam(iparam.sim_scaling, scalingtype.free)
Generic name MSK_IPAR_SIM_SCALING
Groups Simplex optimizer

iparam.sim_scaling_method
Controls how the problem is scaled before a simplex optimizer is used.

Default pow2
Accepted pow2 , free (see scalingmethod)
Example task.putintparam(iparam.sim_scaling_method, scalingmethod.pow2)
Generic name MSK_IPAR_SIM_SCALING_METHOD
Groups Simplex optimizer

iparam.sim_seed
Sets the random seed used for randomization in the simplex optimizers.

Default 23456
Accepted [0; 32749]
Example task.putintparam(iparam.sim_seed, 23456)
Generic name MSK_IPAR_SIM_SEED
Groups Simplex optimizer

iparam.sim_solve_form
Controls whether the primal or the dual problem is solved by the primal-/dual-simplex optimizer.

Default free
Accepted free , primal , dual (see solveform)
Example task.putintparam(iparam.sim_solve_form, solveform.free)
Generic name MSK_IPAR_SIM_SOLVE_FORM
Groups Simplex optimizer

iparam.sim_stability_priority
Controls how high priority the numerical stability should be given.

Default 50
Accepted [0; 100]
Example task.putintparam(iparam.sim_stability_priority, 50)
Generic name MSK_IPAR_SIM_STABILITY_PRIORITY
Groups Simplex optimizer

394

iparam.sim_switch_optimizer
The simplex optimizer sometimes chooses to solve the dual problem instead of the primal problem.
This implies that if you have chosen to use the dual simplex optimizer and the problem is dualized,
then it actually makes sense to use the primal simplex optimizer instead. If this parameter is on
and the problem is dualized and furthermore the simplex optimizer is chosen to be the primal
(dual) one, then it is switched to the dual (primal).

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.sim_switch_optimizer, onoffkey.off)
Generic name MSK_IPAR_SIM_SWITCH_OPTIMIZER
Groups Simplex optimizer

iparam.sol_filter_keep_basic
If turned on, then basic and super basic constraints and variables are written to the solution file
independent of the filter setting.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.sol_filter_keep_basic, onoffkey.off)
Generic name MSK_IPAR_SOL_FILTER_KEEP_BASIC
Groups Solution input/output

iparam.sol_filter_keep_ranged
If turned on, then ranged constraints and variables are written to the solution file independent of
the filter setting.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.sol_filter_keep_ranged, onoffkey.off)
Generic name MSK_IPAR_SOL_FILTER_KEEP_RANGED
Groups Solution input/output

iparam.sol_read_name_width
When a solution is read by MOSEK and some constraint, variable or cone names contain blanks,
then a maximum name width much be specified. A negative value implies that no name contain
blanks.

Default -1
Accepted [-inf; +inf]
Example task.putintparam(iparam.sol_read_name_width, -1)
Generic name MSK_IPAR_SOL_READ_NAME_WIDTH
Groups Data input/output , Solution input/output

iparam.sol_read_width
Controls the maximal acceptable width of line in the solutions when read by MOSEK.

Default 1024
Accepted [80; +inf]
Example task.putintparam(iparam.sol_read_width, 1024)
Generic name MSK_IPAR_SOL_READ_WIDTH
Groups Data input/output , Solution input/output

iparam.solution_callback
Indicates whether solution callbacks will be performed during the optimization.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.solution_callback, onoffkey.off)

395

Generic name MSK_IPAR_SOLUTION_CALLBACK
Groups Progress callback , Overall solver

iparam.timing_level
Controls the amount of timing performed inside MOSEK.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.timing_level, 1)
Generic name MSK_IPAR_TIMING_LEVEL
Groups Overall system

iparam.write_bas_constraints
Controls whether the constraint section is written to the basic solution file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_bas_constraints, onoffkey.on)
Generic name MSK_IPAR_WRITE_BAS_CONSTRAINTS
Groups Data input/output , Solution input/output

iparam.write_bas_head
Controls whether the header section is written to the basic solution file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_bas_head, onoffkey.on)
Generic name MSK_IPAR_WRITE_BAS_HEAD
Groups Data input/output , Solution input/output

iparam.write_bas_variables
Controls whether the variables section is written to the basic solution file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_bas_variables, onoffkey.on)
Generic name MSK_IPAR_WRITE_BAS_VARIABLES
Groups Data input/output , Solution input/output

iparam.write_compression
Controls whether the data file is compressed while it is written. 0 means no compression while
higher values mean more compression.

Default 9
Accepted [0; +inf]
Example task.putintparam(iparam.write_compression, 9)
Generic name MSK_IPAR_WRITE_COMPRESSION
Groups Data input/output

iparam.write_data_param
If this option is turned on the parameter settings are written to the data file as parameters.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_data_param, onoffkey.off)
Generic name MSK_IPAR_WRITE_DATA_PARAM
Groups Data input/output

396

iparam.write_free_con
Controls whether the free constraints are written to the data file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_free_con, onoffkey.on)
Generic name MSK_IPAR_WRITE_FREE_CON
Groups Data input/output

iparam.write_generic_names
Controls whether generic names should be used instead of user-defined names when writing to the
data file.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_generic_names, onoffkey.off)
Generic name MSK_IPAR_WRITE_GENERIC_NAMES
Groups Data input/output

iparam.write_generic_names_io
Index origin used in generic names.

Default 1
Accepted [0; +inf]
Example task.putintparam(iparam.write_generic_names_io, 1)
Generic name MSK_IPAR_WRITE_GENERIC_NAMES_IO
Groups Data input/output

iparam.write_ignore_incompatible_items
Controls if the writer ignores incompatible problem items when writing files.

Default off
Accepted

• on : Ignore items that cannot be written to the current output file format.
• off : Produce an error if the problem contains items that cannot the written to

the current output file format.
Example task.putintparam(iparam.write_ignore_incompatible_items,

onoffkey.off)
Generic name MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS
Groups Data input/output

iparam.write_int_constraints
Controls whether the constraint section is written to the integer solution file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_int_constraints, onoffkey.on)
Generic name MSK_IPAR_WRITE_INT_CONSTRAINTS
Groups Data input/output , Solution input/output

iparam.write_int_head
Controls whether the header section is written to the integer solution file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_int_head, onoffkey.on)
Generic name MSK_IPAR_WRITE_INT_HEAD
Groups Data input/output , Solution input/output

397

iparam.write_int_variables
Controls whether the variables section is written to the integer solution file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_int_variables, onoffkey.on)
Generic name MSK_IPAR_WRITE_INT_VARIABLES
Groups Data input/output , Solution input/output

iparam.write_json_indentation
When set, the JSON task and solution files are written with indentation for better readability.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_json_indentation, onoffkey.off)
Generic name MSK_IPAR_WRITE_JSON_INDENTATION
Groups Data input/output

iparam.write_lp_full_obj
Write all variables, including the ones with 0-coefficients, in the objective.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_lp_full_obj, onoffkey.on)
Generic name MSK_IPAR_WRITE_LP_FULL_OBJ
Groups Data input/output

iparam.write_lp_line_width
Maximum width of line in an LP file written by MOSEK.

Default 80
Accepted [40; +inf]
Example task.putintparam(iparam.write_lp_line_width, 80)
Generic name MSK_IPAR_WRITE_LP_LINE_WIDTH
Groups Data input/output

iparam.write_mps_format
Controls in which format the MPS is written.

Default free
Accepted strict , relaxed , free , cplex (see mpsformat)
Example task.putintparam(iparam.write_mps_format, mpsformat.free)
Generic name MSK_IPAR_WRITE_MPS_FORMAT
Groups Data input/output

iparam.write_mps_int
Controls if marker records are written to the MPS file to indicate whether variables are integer
restricted.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_mps_int, onoffkey.on)
Generic name MSK_IPAR_WRITE_MPS_INT
Groups Data input/output

iparam.write_sol_barvariables
Controls whether the symmetric matrix variables section is written to the solution file.

Default on

398

Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_sol_barvariables, onoffkey.on)
Generic name MSK_IPAR_WRITE_SOL_BARVARIABLES
Groups Data input/output , Solution input/output

iparam.write_sol_constraints
Controls whether the constraint section is written to the solution file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_sol_constraints, onoffkey.on)
Generic name MSK_IPAR_WRITE_SOL_CONSTRAINTS
Groups Data input/output , Solution input/output

iparam.write_sol_head
Controls whether the header section is written to the solution file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_sol_head, onoffkey.on)
Generic name MSK_IPAR_WRITE_SOL_HEAD
Groups Data input/output , Solution input/output

iparam.write_sol_ignore_invalid_names
Even if the names are invalid MPS names, then they are employed when writing the solution file.

Default off
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_sol_ignore_invalid_names,

onoffkey.off)
Generic name MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES
Groups Data input/output , Solution input/output

iparam.write_sol_variables
Controls whether the variables section is written to the solution file.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_sol_variables, onoffkey.on)
Generic name MSK_IPAR_WRITE_SOL_VARIABLES
Groups Data input/output , Solution input/output

iparam.write_task_inc_sol
Controls whether the solutions are stored in the task file too.

Default on
Accepted on , off (see onoffkey)
Example task.putintparam(iparam.write_task_inc_sol, onoffkey.on)
Generic name MSK_IPAR_WRITE_TASK_INC_SOL
Groups Data input/output

iparam.write_xml_mode
Controls if linear coefficients should be written by row or column when writing in the XML file
format.

Default row
Accepted row , col (see xmlwriteroutputtype)
Example task.putintparam(iparam.write_xml_mode, xmlwriteroutputtype.

row)
Generic name MSK_IPAR_WRITE_XML_MODE
Groups Data input/output

399

15.7.3 String parameters

sparam
The enumeration type containing all string parameters.

sparam.bas_sol_file_name
Name of the bas solution file.

Accepted Any valid file name.
Example task.putstrparam(sparam.bas_sol_file_name, "somevalue")
Generic name MSK_SPAR_BAS_SOL_FILE_NAME
Groups Data input/output , Solution input/output

sparam.data_file_name
Data are read and written to this file.

Accepted Any valid file name.
Example task.putstrparam(sparam.data_file_name, "somevalue")
Generic name MSK_SPAR_DATA_FILE_NAME
Groups Data input/output

sparam.debug_file_name
MOSEK debug file.

Accepted Any valid file name.
Example task.putstrparam(sparam.debug_file_name, "somevalue")
Generic name MSK_SPAR_DEBUG_FILE_NAME
Groups Data input/output

sparam.int_sol_file_name
Name of the int solution file.

Accepted Any valid file name.
Example task.putstrparam(sparam.int_sol_file_name, "somevalue")
Generic name MSK_SPAR_INT_SOL_FILE_NAME
Groups Data input/output , Solution input/output

sparam.itr_sol_file_name
Name of the itr solution file.

Accepted Any valid file name.
Example task.putstrparam(sparam.itr_sol_file_name, "somevalue")
Generic name MSK_SPAR_ITR_SOL_FILE_NAME
Groups Data input/output , Solution input/output

sparam.mio_debug_string
For internal debugging purposes.

Accepted Any valid string.
Example task.putstrparam(sparam.mio_debug_string, "somevalue")
Generic name MSK_SPAR_MIO_DEBUG_STRING
Groups Data input/output

sparam.param_comment_sign
Only the first character in this string is used. It is considered as a start of comment sign in the
MOSEK parameter file. Spaces are ignored in the string.

Default
%%

Accepted Any valid string.
Example task.putstrparam(sparam.param_comment_sign, "%%")

400

Generic name MSK_SPAR_PARAM_COMMENT_SIGN
Groups Data input/output

sparam.param_read_file_name
Modifications to the parameter database is read from this file.

Accepted Any valid file name.
Example task.putstrparam(sparam.param_read_file_name, "somevalue")
Generic name MSK_SPAR_PARAM_READ_FILE_NAME
Groups Data input/output

sparam.param_write_file_name
The parameter database is written to this file.

Accepted Any valid file name.
Example task.putstrparam(sparam.param_write_file_name, "somevalue")
Generic name MSK_SPAR_PARAM_WRITE_FILE_NAME
Groups Data input/output

sparam.read_mps_bou_name
Name of the BOUNDS vector used. An empty name means that the first BOUNDS vector is used.

Accepted Any valid MPS name.
Example task.putstrparam(sparam.read_mps_bou_name, "somevalue")
Generic name MSK_SPAR_READ_MPS_BOU_NAME
Groups Data input/output

sparam.read_mps_obj_name
Name of the free constraint used as objective function. An empty name means that the first
constraint is used as objective function.

Accepted Any valid MPS name.
Example task.putstrparam(sparam.read_mps_obj_name, "somevalue")
Generic name MSK_SPAR_READ_MPS_OBJ_NAME
Groups Data input/output

sparam.read_mps_ran_name
Name of the RANGE vector used. An empty name means that the first RANGE vector is used.

Accepted Any valid MPS name.
Example task.putstrparam(sparam.read_mps_ran_name, "somevalue")
Generic name MSK_SPAR_READ_MPS_RAN_NAME
Groups Data input/output

sparam.read_mps_rhs_name
Name of the RHS used. An empty name means that the first RHS vector is used.

Accepted Any valid MPS name.
Example task.putstrparam(sparam.read_mps_rhs_name, "somevalue")
Generic name MSK_SPAR_READ_MPS_RHS_NAME
Groups Data input/output

sparam.remote_optserver_host
URL of the remote optimization server in the format (http|https)://server:port. If set, all
subsequent calls to any MOSEK function that involves synchronous optimization will be sent to
the specified OptServer instead of being executed locally. Passing empty string deactivates this
redirection.

Accepted Any valid URL.
Example task.putstrparam(sparam.remote_optserver_host, "somevalue")

401

Generic name MSK_SPAR_REMOTE_OPTSERVER_HOST
Groups Overall system

sparam.remote_tls_cert
List of known server certificates in PEM format.

Accepted PEM files separated by new-lines.
Example task.putstrparam(sparam.remote_tls_cert, "somevalue")
Generic name MSK_SPAR_REMOTE_TLS_CERT
Groups Overall system

sparam.remote_tls_cert_path
Path to known server certificates in PEM format.

Accepted Any valid path.
Example task.putstrparam(sparam.remote_tls_cert_path, "somevalue")
Generic name MSK_SPAR_REMOTE_TLS_CERT_PATH
Groups Overall system

sparam.sensitivity_file_name
If defined Task.sensitivityreport reads this file as a sensitivity analysis data file specifying the
type of analysis to be done.

Accepted Any valid string.
Example task.putstrparam(sparam.sensitivity_file_name, "somevalue")
Generic name MSK_SPAR_SENSITIVITY_FILE_NAME
Groups Data input/output

sparam.sensitivity_res_file_name
If this is a nonempty string, then Task.sensitivityreport writes results to this file.

Accepted Any valid string.
Example task.putstrparam(sparam.sensitivity_res_file_name, "somevalue")
Generic name MSK_SPAR_SENSITIVITY_RES_FILE_NAME
Groups Data input/output

sparam.sol_filter_xc_low
A filter used to determine which constraints should be listed in the solution file. A value of 0.5 means
that all constraints having xc[i]>0.5 should be listed, whereas +0.5 means that all constraints
having xc[i]>=blc[i]+0.5 should be listed. An empty filter means that no filter is applied.

Accepted Any valid filter.
Example task.putstrparam(sparam.sol_filter_xc_low, "somevalue")
Generic name MSK_SPAR_SOL_FILTER_XC_LOW
Groups Data input/output , Solution input/output

sparam.sol_filter_xc_upr
A filter used to determine which constraints should be listed in the solution file. A value of 0.5
means that all constraints having xc[i]<0.5 should be listed, whereas -0.5 means all constraints
having xc[i]<=buc[i]-0.5 should be listed. An empty filter means that no filter is applied.

Accepted Any valid filter.
Example task.putstrparam(sparam.sol_filter_xc_upr, "somevalue")
Generic name MSK_SPAR_SOL_FILTER_XC_UPR
Groups Data input/output , Solution input/output

sparam.sol_filter_xx_low
A filter used to determine which variables should be listed in the solution file. A value of “0.5” means
that all constraints having xx[j]>=0.5 should be listed, whereas “+0.5” means that all constraints
having xx[j]>=blx[j]+0.5 should be listed. An empty filter means no filter is applied.

402

Accepted Any valid filter.
Example task.putstrparam(sparam.sol_filter_xx_low, "somevalue")
Generic name MSK_SPAR_SOL_FILTER_XX_LOW
Groups Data input/output , Solution input/output

sparam.sol_filter_xx_upr
A filter used to determine which variables should be listed in the solution file. A value of “0.5”
means that all constraints having xx[j]<0.5 should be printed, whereas “-0.5” means all constraints
having xx[j]<=bux[j]-0.5 should be listed. An empty filter means no filter is applied.

Accepted Any valid file name.
Example task.putstrparam(sparam.sol_filter_xx_upr, "somevalue")
Generic name MSK_SPAR_SOL_FILTER_XX_UPR
Groups Data input/output , Solution input/output

sparam.stat_key
Key used when writing the summary file.

Accepted Any valid string.
Example task.putstrparam(sparam.stat_key, "somevalue")
Generic name MSK_SPAR_STAT_KEY
Groups Data input/output

sparam.stat_name
Name used when writing the statistics file.

Accepted Any valid XML string.
Example task.putstrparam(sparam.stat_name, "somevalue")
Generic name MSK_SPAR_STAT_NAME
Groups Data input/output

sparam.write_lp_gen_var_name
Sometimes when an LP file is written additional variables must be inserted. They will have the
prefix denoted by this parameter.

Default xmskgen
Accepted Any valid string.
Example task.putstrparam(sparam.write_lp_gen_var_name, "xmskgen")
Generic name MSK_SPAR_WRITE_LP_GEN_VAR_NAME
Groups Data input/output

15.8 Response codes

Response codes include:

• Termination codes

• Warnings

• Errors

The numerical code (in brackets) identifies the response in error messages and in the log output.
rescode

The enumeration type containing all response codes.

403

15.8.1 Termination

rescode.ok (0)
No error occurred.

rescode.trm_max_iterations (100000)
The optimizer terminated at the maximum number of iterations.

rescode.trm_max_time (100001)
The optimizer terminated at the maximum amount of time.

rescode.trm_objective_range (100002)
The optimizer terminated with an objective value outside the objective range.

rescode.trm_mio_num_relaxs (100008)
The mixed-integer optimizer terminated as the maximum number of relaxations was reached.

rescode.trm_mio_num_branches (100009)
The mixed-integer optimizer terminated as the maximum number of branches was reached.

rescode.trm_num_max_num_int_solutions (100015)
The mixed-integer optimizer terminated as the maximum number of feasible solutions was reached.

rescode.trm_stall (100006)
The optimizer is terminated due to slow progress.

Stalling means that numerical problems prevent the optimizer from making reasonable progress
and that it makes no sense to continue. In many cases this happens if the problem is badly scaled
or otherwise ill-conditioned. There is no guarantee that the solution will be feasible or optimal.
However, often stalling happens near the optimum, and the returned solution may be of good
quality. Therefore, it is recommended to check the status of the solution. If the solution status is
optimal the solution is most likely good enough for most practical purposes.

Please note that if a linear optimization problem is solved using the interior-point optimizer with
basis identification turned on, the returned basic solution likely to have high accuracy, even though
the optimizer stalled.

Some common causes of stalling are a) badly scaled models, b) near feasible or near infeasible
problems.

rescode.trm_user_callback (100007)
The optimizer terminated due to the return of the user-defined callback function.

rescode.trm_max_num_setbacks (100020)
The optimizer terminated as the maximum number of set-backs was reached. This indicates serious
numerical problems and a possibly badly formulated problem.

rescode.trm_numerical_problem (100025)
The optimizer terminated due to numerical problems.

rescode.trm_lost_race (100027)
Lost a race.

rescode.trm_internal (100030)
The optimizer terminated due to some internal reason. Please contact MOSEK support.

rescode.trm_internal_stop (100031)
The optimizer terminated for internal reasons. Please contact MOSEK support.

15.8.2 Warnings

rescode.wrn_open_param_file (50)
The parameter file could not be opened.

rescode.wrn_large_bound (51)
A numerically large bound value is specified.

rescode.wrn_large_lo_bound (52)
A numerically large lower bound value is specified.

rescode.wrn_large_up_bound (53)
A numerically large upper bound value is specified.

rescode.wrn_large_con_fx (54)
An equality constraint is fixed to a numerically large value. This can cause numerical problems.

rescode.wrn_large_cj (57)
A numerically large value is specified for one 𝑐𝑗 .

404

rescode.wrn_large_aij (62)
A numerically large value is specified for an 𝑎𝑖,𝑗 element in 𝐴. The parameter dparam.
data_tol_aij_large controls when an 𝑎𝑖,𝑗 is considered large.

rescode.wrn_zero_aij (63)
One or more zero elements are specified in A.

rescode.wrn_name_max_len (65)
A name is longer than the buffer that is supposed to hold it.

rescode.wrn_spar_max_len (66)
A value for a string parameter is longer than the buffer that is supposed to hold it.

rescode.wrn_mps_split_rhs_vector (70)
An RHS vector is split into several nonadjacent parts in an MPS file.

rescode.wrn_mps_split_ran_vector (71)
A RANGE vector is split into several nonadjacent parts in an MPS file.

rescode.wrn_mps_split_bou_vector (72)
A BOUNDS vector is split into several nonadjacent parts in an MPS file.

rescode.wrn_lp_old_quad_format (80)
Missing ‘/2’ after quadratic expressions in bound or objective.

rescode.wrn_lp_drop_variable (85)
Ignored a variable because the variable was not previously defined. Usually this implies that a
variable appears in the bound section but not in the objective or the constraints.

rescode.wrn_nz_in_upr_tri (200)
Non-zero elements specified in the upper triangle of a matrix were ignored.

rescode.wrn_dropped_nz_qobj (201)
One or more non-zero elements were dropped in the Q matrix in the objective.

rescode.wrn_ignore_integer (250)
Ignored integer constraints.

rescode.wrn_no_global_optimizer (251)
No global optimizer is available.

rescode.wrn_mio_infeasible_final (270)
The final mixed-integer problem with all the integer variables fixed at their optimal values is
infeasible.

rescode.wrn_sol_filter (300)
Invalid solution filter is specified.

rescode.wrn_undef_sol_file_name (350)
Undefined name occurred in a solution.

rescode.wrn_sol_file_ignored_con (351)
One or more lines in the constraint section were ignored when reading a solution file.

rescode.wrn_sol_file_ignored_var (352)
One or more lines in the variable section were ignored when reading a solution file.

rescode.wrn_too_few_basis_vars (400)
An incomplete basis has been specified. Too few basis variables are specified.

rescode.wrn_too_many_basis_vars (405)
A basis with too many variables has been specified.

rescode.wrn_license_expire (500)
The license expires.

rescode.wrn_license_server (501)
The license server is not responding.

rescode.wrn_empty_name (502)
A variable or constraint name is empty. The output file may be invalid.

rescode.wrn_using_generic_names (503)
Generic names are used because a name is not valid. For instance when writing an LP file the
names must not contain blanks or start with a digit.

rescode.wrn_invalid_mps_name (504)
A name e.g. a row name is not a valid MPS name.

rescode.wrn_invalid_mps_obj_name (505)
The objective name is not a valid MPS name.

rescode.wrn_license_feature_expire (509)
The license expires.

405

rescode.wrn_param_name_dou (510)
The parameter name is not recognized as a double parameter.

rescode.wrn_param_name_int (511)
The parameter name is not recognized as a integer parameter.

rescode.wrn_param_name_str (512)
The parameter name is not recognized as a string parameter.

rescode.wrn_param_str_value (515)
The string is not recognized as a symbolic value for the parameter.

rescode.wrn_param_ignored_cmio (516)
A parameter was ignored by the conic mixed integer optimizer.

rescode.wrn_zeros_in_sparse_row (705)
One or more (near) zero elements are specified in a sparse row of a matrix. Since, it is redundant
to specify zero elements then it may indicate an error.

rescode.wrn_zeros_in_sparse_col (710)
One or more (near) zero elements are specified in a sparse column of a matrix. It is redundant to
specify zero elements. Hence, it may indicate an error.

rescode.wrn_incomplete_linear_dependency_check (800)
The linear dependency check(s) is incomplete. Normally this is not an important warning unless
the optimization problem has been formulated with linear dependencies. Linear dependencies may
prevent MOSEK from solving the problem.

rescode.wrn_eliminator_space (801)
The eliminator is skipped at least once due to lack of space.

rescode.wrn_presolve_outofspace (802)
The presolve is incomplete due to lack of space.

rescode.wrn_presolve_primal_pertubations (803)
The presolve perturbed the bounds of the primal problem. This is an indication that the problem
is nearly infeasible.

rescode.wrn_write_changed_names (830)
Some names were changed because they were invalid for the output file format.

rescode.wrn_write_discarded_cfix (831)
The fixed objective term could not be converted to a variable and was discarded in the output file.

rescode.wrn_duplicate_constraint_names (850)
Two constraint names are identical.

rescode.wrn_duplicate_variable_names (851)
Two variable names are identical.

rescode.wrn_duplicate_barvariable_names (852)
Two barvariable names are identical.

rescode.wrn_duplicate_cone_names (853)
Two cone names are identical.

rescode.wrn_write_lp_invalid_var_names (854)
LP file will be written with generic variable names.

rescode.wrn_write_lp_duplicate_var_names (855)
LP file will be written with generic variable names.

rescode.wrn_write_lp_invalid_con_names (856)
LP file will be written with generic constraint names.

rescode.wrn_write_lp_duplicate_con_names (857)
LP file will be written with generic constraint names.

rescode.wrn_ana_large_bounds (900)
This warning is issued by the problem analyzer, if one or more constraint or variable bounds are
very large. One should consider omitting these bounds entirely by setting them to +inf or -inf.

rescode.wrn_ana_c_zero (901)
This warning is issued by the problem analyzer, if the coefficients in the linear part of the objective
are all zero.

rescode.wrn_ana_empty_cols (902)
This warning is issued by the problem analyzer, if columns, in which all coefficients are zero, are
found.

rescode.wrn_ana_close_bounds (903)
This warning is issued by problem analyzer, if ranged constraints or variables with very close upper

406

and lower bounds are detected. One should consider treating such constraints as equalities and
such variables as constants.

rescode.wrn_ana_almost_int_bounds (904)
This warning is issued by the problem analyzer if a constraint is bound nearly integral.

rescode.wrn_no_infeasibility_report_when_matrix_variables (930)
An infeasibility report is not available when the problem contains matrix variables.

rescode.wrn_no_dualizer (950)
No automatic dualizer is available for the specified problem. The primal problem is solved.

rescode.wrn_sym_mat_large (960)
A numerically large value is specified for an 𝑒𝑖,𝑗 element in 𝐸. The parameter dparam.
data_sym_mat_tol_large controls when an 𝑒𝑖,𝑗 is considered large.

rescode.wrn_modified_double_parameter (970)
A double parameter related to solver tolerances has a non-default value.

rescode.wrn_large_fij (980)
A numerically large value is specified for an 𝑓𝑖,𝑗 element in 𝐹 . The parameter dparam.
data_tol_aij_large controls when an 𝑓𝑖,𝑗 is considered large.

15.8.3 Errors

rescode.err_license (1000)
Invalid license.

rescode.err_license_expired (1001)
The license has expired.

rescode.err_license_version (1002)
The license is valid for another version of MOSEK.

rescode.err_license_old_server_version (1003)
The version of the FlexLM license server is too old. You should upgrade the license server to one
matching this version of MOSEK. It will support this and all older versions of MOSEK.

This error can appear if the client was updated to a new version which includes an upgrade of the
licensing module, making it incompatible with a much older license server.

rescode.err_size_license (1005)
The problem is bigger than the license.

rescode.err_prob_license (1006)
The software is not licensed to solve the problem.

rescode.err_file_license (1007)
Invalid license file.

rescode.err_missing_license_file (1008)
MOSEK cannot find license file or a token server. See the MOSEK licensing manual for details.

rescode.err_size_license_con (1010)
The problem has too many constraints to be solved with the available license.

rescode.err_size_license_var (1011)
The problem has too many variables to be solved with the available license.

rescode.err_size_license_intvar (1012)
The problem contains too many integer variables to be solved with the available license.

rescode.err_optimizer_license (1013)
The optimizer required is not licensed.

rescode.err_flexlm (1014)
The FLEXlm license manager reported an error.

rescode.err_license_server (1015)
The license server is not responding.

rescode.err_license_max (1016)
Maximum number of licenses is reached.

rescode.err_license_moseklm_daemon (1017)
The MOSEKLM license manager daemon is not up and running.

rescode.err_license_feature (1018)
A requested feature is not available in the license file(s). Most likely due to an incorrect license
system setup.

407

rescode.err_platform_not_licensed (1019)
A requested license feature is not available for the required platform.

rescode.err_license_cannot_allocate (1020)
The license system cannot allocate the memory required.

rescode.err_license_cannot_connect (1021)
MOSEK cannot connect to the license server. Most likely the license server is not up and running.

rescode.err_license_invalid_hostid (1025)
The host ID specified in the license file does not match the host ID of the computer.

rescode.err_license_server_version (1026)
The version specified in the checkout request is greater than the highest version number the daemon
supports.

rescode.err_license_no_server_support (1027)
The license server does not support the requested feature. Possible reasons for this error include:

• The feature has expired.

• The feature’s start date is later than today’s date.

• The version requested is higher than feature’s the highest supported version.

• A corrupted license file.

Try restarting the license and inspect the license server debug file, usually called lmgrd.log.
rescode.err_license_no_server_line (1028)

There is no SERVER line in the license file. All non-zero license count features need at least one
SERVER line.

rescode.err_older_dll (1035)
The dynamic link library is older than the specified version.

rescode.err_newer_dll (1036)
The dynamic link library is newer than the specified version.

rescode.err_link_file_dll (1040)
A file cannot be linked to a stream in the DLL version.

rescode.err_thread_mutex_init (1045)
Could not initialize a mutex.

rescode.err_thread_mutex_lock (1046)
Could not lock a mutex.

rescode.err_thread_mutex_unlock (1047)
Could not unlock a mutex.

rescode.err_thread_create (1048)
Could not create a thread. This error may occur if a large number of environments are created
and not deleted again. In any case it is a good practice to minimize the number of environments
created.

rescode.err_thread_cond_init (1049)
Could not initialize a condition.

rescode.err_unknown (1050)
Unknown error.

rescode.err_space (1051)
Out of space.

rescode.err_file_open (1052)
Error while opening a file.

rescode.err_file_read (1053)
File read error.

rescode.err_file_write (1054)
File write error.

rescode.err_data_file_ext (1055)
The data file format cannot be determined from the file name.

rescode.err_invalid_file_name (1056)
An invalid file name has been specified.

rescode.err_invalid_sol_file_name (1057)
An invalid file name has been specified.

408

rescode.err_end_of_file (1059)
End of file reached.

rescode.err_null_env (1060)
env is a NULL pointer.

rescode.err_null_task (1061)
task is a NULL pointer.

rescode.err_invalid_stream (1062)
An invalid stream is referenced.

rescode.err_no_init_env (1063)
env is not initialized.

rescode.err_invalid_task (1064)
The task is invalid.

rescode.err_null_pointer (1065)
An argument to a function is unexpectedly a NULL pointer.

rescode.err_living_tasks (1066)
All tasks associated with an enviroment must be deleted before the environment is deleted. There
are still some undeleted tasks.

rescode.err_blank_name (1070)
An all blank name has been specified.

rescode.err_dup_name (1071)
The same name was used multiple times for the same problem item type.

rescode.err_format_string (1072)
The name format string is invalid.

rescode.err_sparsity_specification (1073)
The sparsity included an index that was out of bounds of the shape.

rescode.err_mismatching_dimension (1074)
Mismatching dimensions specified in arguments

rescode.err_invalid_obj_name (1075)
An invalid objective name is specified.

rescode.err_invalid_con_name (1076)
An invalid constraint name is used.

rescode.err_invalid_var_name (1077)
An invalid variable name is used.

rescode.err_invalid_cone_name (1078)
An invalid cone name is used.

rescode.err_invalid_barvar_name (1079)
An invalid symmetric matrix variable name is used.

rescode.err_space_leaking (1080)
MOSEK is leaking memory. This can be due to either an incorrect use of MOSEK or a bug.

rescode.err_space_no_info (1081)
No available information about the space usage.

rescode.err_dimension_specification (1082)
Invalid dimension specification

rescode.err_axis_name_specification (1083)
Invalid axis names specification

rescode.err_read_format (1090)
The specified format cannot be read.

rescode.err_mps_file (1100)
An error occurred while reading an MPS file.

rescode.err_mps_inv_field (1101)
A field in the MPS file is invalid. Probably it is too wide.

rescode.err_mps_inv_marker (1102)
An invalid marker has been specified in the MPS file.

rescode.err_mps_null_con_name (1103)
An empty constraint name is used in an MPS file.

rescode.err_mps_null_var_name (1104)
An empty variable name is used in an MPS file.

409

rescode.err_mps_undef_con_name (1105)
An undefined constraint name occurred in an MPS file.

rescode.err_mps_undef_var_name (1106)
An undefined variable name occurred in an MPS file.

rescode.err_mps_invalid_con_key (1107)
An invalid constraint key occurred in an MPS file.

rescode.err_mps_invalid_bound_key (1108)
An invalid bound key occurred in an MPS file.

rescode.err_mps_invalid_sec_name (1109)
An invalid section name occurred in an MPS file.

rescode.err_mps_no_objective (1110)
No objective is defined in an MPS file.

rescode.err_mps_splitted_var (1111)
All elements in a column of the 𝐴 matrix must be specified consecutively. Hence, it is illegal to
specify non-zero elements in 𝐴 for variable 1, then for variable 2 and then variable 1 again.

rescode.err_mps_mul_con_name (1112)
A constraint name was specified multiple times in the ROWS section.

rescode.err_mps_mul_qsec (1113)
Multiple QSECTIONs are specified for a constraint in the MPS data file.

rescode.err_mps_mul_qobj (1114)
The Q term in the objective is specified multiple times in the MPS data file.

rescode.err_mps_inv_sec_order (1115)
The sections in the MPS data file are not in the correct order.

rescode.err_mps_mul_csec (1116)
Multiple CSECTIONs are given the same name.

rescode.err_mps_cone_type (1117)
Invalid cone type specified in a CSECTION.

rescode.err_mps_cone_overlap (1118)
A variable is specified to be a member of several cones.

rescode.err_mps_cone_repeat (1119)
A variable is repeated within the CSECTION.

rescode.err_mps_non_symmetric_q (1120)
A non symmetric matrix has been speciefied.

rescode.err_mps_duplicate_q_element (1121)
Duplicate elements is specfied in a 𝑄 matrix.

rescode.err_mps_invalid_objsense (1122)
An invalid objective sense is specified.

rescode.err_mps_tab_in_field2 (1125)
A tab char occurred in field 2.

rescode.err_mps_tab_in_field3 (1126)
A tab char occurred in field 3.

rescode.err_mps_tab_in_field5 (1127)
A tab char occurred in field 5.

rescode.err_mps_invalid_obj_name (1128)
An invalid objective name is specified.

rescode.err_mps_invalid_key (1129)
An invalid indicator key occurred in an MPS file.

rescode.err_mps_invalid_indicator_constraint (1130)
An invalid indicator constraint is used. It must not be a ranged constraint.

rescode.err_mps_invalid_indicator_variable (1131)
An invalid indicator variable is specfied. It must be a binary variable.

rescode.err_mps_invalid_indicator_value (1132)
An invalid indicator value is specfied. It must be either 0 or 1.

rescode.err_mps_invalid_indicator_quadratic_constraint (1133)
A quadratic constraint can be be an indicator constraint.

rescode.err_opf_syntax (1134)
Syntax error in an OPF file

410

rescode.err_opf_premature_eof (1136)
Premature end of file in an OPF file.

rescode.err_opf_mismatched_tag (1137)
Mismatched end-tag in OPF file

rescode.err_opf_duplicate_bound (1138)
Either upper or lower bound was specified twice in OPF file

rescode.err_opf_duplicate_constraint_name (1139)
Duplicate constraint name in OPF File

rescode.err_opf_invalid_cone_type (1140)
Invalid cone type in OPF File

rescode.err_opf_incorrect_tag_param (1141)
Invalid number of parameters in start-tag in OPF File

rescode.err_opf_invalid_tag (1142)
Invalid start-tag in OPF File

rescode.err_opf_duplicate_cone_entry (1143)
Same variable appears in multiple cones in OPF File

rescode.err_opf_too_large (1144)
The problem is too large to be correctly loaded

rescode.err_opf_dual_integer_solution (1146)
Dual solution values are not allowed in OPF File

rescode.err_lp_incompatible (1150)
The problem cannot be written to an LP formatted file.

rescode.err_lp_empty (1151)
The problem cannot be written to an LP formatted file.

rescode.err_lp_dup_slack_name (1152)
The name of the slack variable added to a ranged constraint already exists.

rescode.err_write_mps_invalid_name (1153)
An invalid name is created while writing an MPS file. Usually this will make the MPS file unread-
able.

rescode.err_lp_invalid_var_name (1154)
A variable name is invalid when used in an LP formatted file.

rescode.err_lp_free_constraint (1155)
Free constraints cannot be written in LP file format.

rescode.err_write_opf_invalid_var_name (1156)
Empty variable names cannot be written to OPF files.

rescode.err_lp_file_format (1157)
Syntax error in an LP file.

rescode.err_write_lp_format (1158)
Problem cannot be written as an LP file.

rescode.err_read_lp_missing_end_tag (1159)
Syntax error in LP file. Possibly missing End tag.

rescode.err_lp_indicator_var (1160)
An indicator variable was not declared binary

rescode.err_write_lp_non_unique_name (1161)
An auto-generated name is not unique.

rescode.err_read_lp_nonexisting_name (1162)
A variable never occurred in objective or constraints.

rescode.err_lp_write_conic_problem (1163)
The problem contains cones that cannot be written to an LP formatted file.

rescode.err_lp_write_geco_problem (1164)
The problem contains general convex terms that cannot be written to an LP formatted file.

rescode.err_writing_file (1166)
An error occurred while writing file

rescode.err_invalid_name_in_sol_file (1170)
An invalid name occurred in a solution file.

rescode.err_lp_invalid_con_name (1171)
A constraint name is invalid when used in an LP formatted file.

411

rescode.err_json_syntax (1175)
Syntax error in an JSON data

rescode.err_json_string (1176)
Error in JSON string.

rescode.err_json_number_overflow (1177)
Invalid number entry - wrong type or value overflow.

rescode.err_json_format (1178)
Error in an JSON Task file

rescode.err_json_data (1179)
Inconsistent data in JSON Task file

rescode.err_json_missing_data (1180)
Missing data section in JSON task file.

rescode.err_ptf_incompatibility (1181)
Incompatible item

rescode.err_ptf_undefined_item (1182)
Undefined symbol referenced

rescode.err_ptf_inconsistency (1183)
Inconsistent size of item

rescode.err_ptf_format (1184)
Syntax error in an PTF file

rescode.err_argument_lenneq (1197)
Incorrect length of arguments.

rescode.err_argument_type (1198)
Incorrect argument type.

rescode.err_num_arguments (1199)
Incorrect number of function arguments.

rescode.err_in_argument (1200)
A function argument is incorrect.

rescode.err_argument_dimension (1201)
A function argument is of incorrect dimension.

rescode.err_shape_is_too_large (1202)
The size of the n-dimensional shape is too large.

rescode.err_index_is_too_small (1203)
An index in an argument is too small.

rescode.err_index_is_too_large (1204)
An index in an argument is too large.

rescode.err_index_is_not_unique (1205)
An index in an argument is is unique.

rescode.err_param_name (1206)
The parameter name is not correct.

rescode.err_param_name_dou (1207)
The parameter name is not correct for a double parameter.

rescode.err_param_name_int (1208)
The parameter name is not correct for an integer parameter.

rescode.err_param_name_str (1209)
The parameter name is not correct for a string parameter.

rescode.err_param_index (1210)
Parameter index is out of range.

rescode.err_param_is_too_large (1215)
The parameter value is too large.

rescode.err_param_is_too_small (1216)
The parameter value is too small.

rescode.err_param_value_str (1217)
The parameter value string is incorrect.

rescode.err_param_type (1218)
The parameter type is invalid.

rescode.err_inf_dou_index (1219)
A double information index is out of range for the specified type.

412

rescode.err_inf_int_index (1220)
An integer information index is out of range for the specified type.

rescode.err_index_arr_is_too_small (1221)
An index in an array argument is too small.

rescode.err_index_arr_is_too_large (1222)
An index in an array argument is too large.

rescode.err_inf_lint_index (1225)
A long integer information index is out of range for the specified type.

rescode.err_arg_is_too_small (1226)
The value of a argument is too small.

rescode.err_arg_is_too_large (1227)
The value of a argument is too large.

rescode.err_invalid_whichsol (1228)
whichsol is invalid.

rescode.err_inf_dou_name (1230)
A double information name is invalid.

rescode.err_inf_int_name (1231)
An integer information name is invalid.

rescode.err_inf_type (1232)
The information type is invalid.

rescode.err_inf_lint_name (1234)
A long integer information name is invalid.

rescode.err_index (1235)
An index is out of range.

rescode.err_whichsol (1236)
The solution defined by whichsol does not exists.

rescode.err_solitem (1237)
The solution item number solitem is invalid. Please note that solitem.snx is invalid for the
basic solution.

rescode.err_whichitem_not_allowed (1238)
whichitem is unacceptable.

rescode.err_maxnumcon (1240)
The maximum number of constraints specified is smaller than the number of constraints in the
task.

rescode.err_maxnumvar (1241)
The maximum number of variables specified is smaller than the number of variables in the task.

rescode.err_maxnumbarvar (1242)
The maximum number of semidefinite variables specified is smaller than the number of semidefinite
variables in the task.

rescode.err_maxnumqnz (1243)
The maximum number of non-zeros specified for the 𝑄 matrices is smaller than the number of
non-zeros in the current 𝑄 matrices.

rescode.err_too_small_max_num_nz (1245)
The maximum number of non-zeros specified is too small.

rescode.err_invalid_idx (1246)
A specified index is invalid.

rescode.err_invalid_max_num (1247)
A specified index is invalid.

rescode.err_unallowed_whichsol (1248)
The value od whichsol is not allowed.

rescode.err_numconlim (1250)
Maximum number of constraints limit is exceeded.

rescode.err_numvarlim (1251)
Maximum number of variables limit is exceeded.

rescode.err_too_small_maxnumanz (1252)
The maximum number of non-zeros specified for 𝐴 is smaller than the number of non-zeros in the
current 𝐴.

413

rescode.err_inv_aptre (1253)
aptre[j] is strictly smaller than aptrb[j] for some j.

rescode.err_mul_a_element (1254)
An element in 𝐴 is defined multiple times.

rescode.err_inv_bk (1255)
Invalid bound key.

rescode.err_inv_bkc (1256)
Invalid bound key is specified for a constraint.

rescode.err_inv_bkx (1257)
An invalid bound key is specified for a variable.

rescode.err_inv_var_type (1258)
An invalid variable type is specified for a variable.

rescode.err_solver_probtype (1259)
Problem type does not match the chosen optimizer.

rescode.err_objective_range (1260)
Empty objective range.

rescode.err_basis (1266)
An invalid basis is specified. Either too many or too few basis variables are specified.

rescode.err_inv_skc (1267)
Invalid value in skc.

rescode.err_inv_skx (1268)
Invalid value in skx.

rescode.err_inv_skn (1274)
Invalid value in skn.

rescode.err_inv_sk_str (1269)
Invalid status key string encountered.

rescode.err_inv_sk (1270)
Invalid status key code.

rescode.err_inv_cone_type_str (1271)
Invalid cone type string encountered.

rescode.err_inv_cone_type (1272)
Invalid cone type code is encountered.

rescode.err_invalid_surplus (1275)
Invalid surplus.

rescode.err_inv_name_item (1280)
An invalid name item code is used.

rescode.err_pro_item (1281)
An invalid problem is used.

rescode.err_invalid_format_type (1283)
Invalid format type.

rescode.err_firsti (1285)
Invalid firsti.

rescode.err_lasti (1286)
Invalid lasti.

rescode.err_firstj (1287)
Invalid firstj.

rescode.err_lastj (1288)
Invalid lastj.

rescode.err_max_len_is_too_small (1289)
A maximum length that is too small has been specified.

rescode.err_nonlinear_equality (1290)
The model contains a nonlinear equality which defines a nonconvex set.

rescode.err_nonconvex (1291)
The optimization problem is nonconvex.

rescode.err_nonlinear_ranged (1292)
Nonlinear constraints with finite lower and upper bound always define a nonconvex feasible set.

rescode.err_con_q_not_psd (1293)
The quadratic constraint matrix is not positive semidefinite as expected for a constraint

414

with finite upper bound. This results in a nonconvex problem. The parameter dparam.
check_convexity_rel_tol can be used to relax the convexity check.

rescode.err_con_q_not_nsd (1294)
The quadratic constraint matrix is not negative semidefinite as expected for a constraint
with finite lower bound. This results in a nonconvex problem. The parameter dparam.
check_convexity_rel_tol can be used to relax the convexity check.

rescode.err_obj_q_not_psd (1295)
The quadratic coefficient matrix in the objective is not positive semidefinite as expected for a
minimization problem. The parameter dparam.check_convexity_rel_tol can be used to relax
the convexity check.

rescode.err_obj_q_not_nsd (1296)
The quadratic coefficient matrix in the objective is not negative semidefinite as expected for a
maximization problem. The parameter dparam.check_convexity_rel_tol can be used to relax
the convexity check.

rescode.err_argument_perm_array (1299)
An invalid permutation array is specified.

rescode.err_cone_index (1300)
An index of a non-existing cone has been specified.

rescode.err_cone_size (1301)
A cone with incorrect number of members is specified.

rescode.err_cone_overlap (1302)
One or more of the variables in the cone to be added is already member of another cone. Now
assume the variable is 𝑥𝑗 then add a new variable say 𝑥𝑘 and the constraint

𝑥𝑗 = 𝑥𝑘

and then let 𝑥𝑘 be member of the cone to be appended.
rescode.err_cone_rep_var (1303)

A variable is included multiple times in the cone.
rescode.err_maxnumcone (1304)

The value specified for maxnumcone is too small.
rescode.err_cone_type (1305)

Invalid cone type specified.
rescode.err_cone_type_str (1306)

Invalid cone type specified.
rescode.err_cone_overlap_append (1307)

The cone to be appended has one variable which is already member of another cone.
rescode.err_remove_cone_variable (1310)

A variable cannot be removed because it will make a cone invalid.
rescode.err_appending_too_big_cone (1311)

Trying to append a too big cone.
rescode.err_cone_parameter (1320)

An invalid cone parameter.
rescode.err_sol_file_invalid_number (1350)

An invalid number is specified in a solution file.
rescode.err_huge_c (1375)

A huge value in absolute size is specified for one 𝑐𝑗 .
rescode.err_huge_aij (1380)

A numerically huge value is specified for an 𝑎𝑖,𝑗 element in 𝐴. The parameter dparam.
data_tol_aij_huge controls when an 𝑎𝑖,𝑗 is considered huge.

rescode.err_duplicate_aij (1385)
An element in the A matrix is specified twice.

rescode.err_lower_bound_is_a_nan (1390)
The lower bound specified is not a number (nan).

rescode.err_upper_bound_is_a_nan (1391)
The upper bound specified is not a number (nan).

rescode.err_infinite_bound (1400)
A numerically huge bound value is specified.

415

rescode.err_inv_qobj_subi (1401)
Invalid value in qosubi.

rescode.err_inv_qobj_subj (1402)
Invalid value in qosubj.

rescode.err_inv_qobj_val (1403)
Invalid value in qoval.

rescode.err_inv_qcon_subk (1404)
Invalid value in qcsubk.

rescode.err_inv_qcon_subi (1405)
Invalid value in qcsubi.

rescode.err_inv_qcon_subj (1406)
Invalid value in qcsubj.

rescode.err_inv_qcon_val (1407)
Invalid value in qcval.

rescode.err_qcon_subi_too_small (1408)
Invalid value in qcsubi.

rescode.err_qcon_subi_too_large (1409)
Invalid value in qcsubi.

rescode.err_qobj_upper_triangle (1415)
An element in the upper triangle of 𝑄𝑜 is specified. Only elements in the lower triangle should be
specified.

rescode.err_qcon_upper_triangle (1417)
An element in the upper triangle of a 𝑄𝑘 is specified. Only elements in the lower triangle should
be specified.

rescode.err_fixed_bound_values (1420)
A fixed constraint/variable has been specified using the bound keys but the numerical value of the
lower and upper bound is different.

rescode.err_too_small_a_truncation_value (1421)
A too small value for the A trucation value is specified.

rescode.err_invalid_objective_sense (1445)
An invalid objective sense is specified.

rescode.err_undefined_objective_sense (1446)
The objective sense has not been specified before the optimization.

rescode.err_y_is_undefined (1449)
The solution item 𝑦 is undefined.

rescode.err_nan_in_double_data (1450)
An invalid floating point value was used in some double data.

rescode.err_inf_in_double_data (1451)
An infinite floating point value was used in some double data.

rescode.err_nan_in_blc (1461)
𝑙𝑐 contains an invalid floating point value, i.e. a NaN.

rescode.err_nan_in_buc (1462)
𝑢𝑐 contains an invalid floating point value, i.e. a NaN.

rescode.err_invalid_cfix (1469)
An invalid fixed term in the objective is speficied.

rescode.err_nan_in_c (1470)
𝑐 contains an invalid floating point value, i.e. a NaN.

rescode.err_nan_in_blx (1471)
𝑙𝑥 contains an invalid floating point value, i.e. a NaN.

rescode.err_nan_in_bux (1472)
𝑢𝑥 contains an invalid floating point value, i.e. a NaN.

rescode.err_invalid_aij (1473)
𝑎𝑖,𝑗 contains an invalid floating point value, i.e. a NaN or an infinite value.

rescode.err_invalid_cj (1474)
𝑐𝑗 contains an invalid floating point value, i.e. a NaN or an infinite value.

rescode.err_sym_mat_invalid (1480)
A symmetric matrix contains an invalid floating point value, i.e. a NaN or an infinite value.

416

rescode.err_sym_mat_huge (1482)
A symmetric matrix contains a huge value in absolute size. The parameter dparam.
data_sym_mat_tol_huge controls when an 𝑒𝑖,𝑗 is considered huge.

rescode.err_inv_problem (1500)
Invalid problem type. Probably a nonconvex problem has been specified.

rescode.err_mixed_conic_and_nl (1501)
The problem contains nonlinear terms conic constraints. The requested operation cannot be applied
to this type of problem.

rescode.err_global_inv_conic_problem (1503)
The global optimizer can only be applied to problems without semidefinite variables.

rescode.err_inv_optimizer (1550)
An invalid optimizer has been chosen for the problem.

rescode.err_mio_no_optimizer (1551)
No optimizer is available for the current class of integer optimization problems.

rescode.err_no_optimizer_var_type (1552)
No optimizer is available for this class of optimization problems.

rescode.err_final_solution (1560)
An error occurred during the solution finalization.

rescode.err_first (1570)
Invalid first.

rescode.err_last (1571)
Invalid index last. A given index was out of expected range.

rescode.err_slice_size (1572)
Invalid slice size specified.

rescode.err_negative_surplus (1573)
Negative surplus.

rescode.err_negative_append (1578)
Cannot append a negative number.

rescode.err_postsolve (1580)
An error occurred during the postsolve. Please contact MOSEK support.

rescode.err_overflow (1590)
A computation produced an overflow i.e. a very large number.

rescode.err_no_basis_sol (1600)
No basic solution is defined.

rescode.err_basis_factor (1610)
The factorization of the basis is invalid.

rescode.err_basis_singular (1615)
The basis is singular and hence cannot be factored.

rescode.err_factor (1650)
An error occurred while factorizing a matrix.

rescode.err_feasrepair_cannot_relax (1700)
An optimization problem cannot be relaxed.

rescode.err_feasrepair_solving_relaxed (1701)
The relaxed problem could not be solved to optimality. Please consult the log file for further details.

rescode.err_feasrepair_inconsistent_bound (1702)
The upper bound is less than the lower bound for a variable or a constraint. Please correct this
before running the feasibility repair.

rescode.err_repair_invalid_problem (1710)
The feasibility repair does not support the specified problem type.

rescode.err_repair_optimization_failed (1711)
Computation the optimal relaxation failed. The cause may have been numerical problems.

rescode.err_name_max_len (1750)
A name is longer than the buffer that is supposed to hold it.

rescode.err_name_is_null (1760)
The name buffer is a NULL pointer.

rescode.err_invalid_compression (1800)
Invalid compression type.

417

rescode.err_invalid_iomode (1801)
Invalid io mode.

rescode.err_no_primal_infeas_cer (2000)
A certificate of primal infeasibility is not available.

rescode.err_no_dual_infeas_cer (2001)
A certificate of infeasibility is not available.

rescode.err_no_solution_in_callback (2500)
The required solution is not available.

rescode.err_inv_marki (2501)
Invalid value in marki.

rescode.err_inv_markj (2502)
Invalid value in markj.

rescode.err_inv_numi (2503)
Invalid numi.

rescode.err_inv_numj (2504)
Invalid numj.

rescode.err_task_incompatible (2560)
The Task file is incompatible with this platform. This results from reading a file on a 32 bit
platform generated on a 64 bit platform.

rescode.err_task_invalid (2561)
The Task file is invalid.

rescode.err_task_write (2562)
Failed to write the task file.

rescode.err_lu_max_num_tries (2800)
Could not compute the LU factors of the matrix within the maximum number of allowed tries.

rescode.err_invalid_utf8 (2900)
An invalid UTF8 string is encountered.

rescode.err_invalid_wchar (2901)
An invalid wchar string is encountered.

rescode.err_no_dual_for_itg_sol (2950)
No dual information is available for the integer solution.

rescode.err_no_snx_for_bas_sol (2953)
𝑠𝑥𝑛 is not available for the basis solution.

rescode.err_internal (3000)
An internal error occurred. Please report this problem.

rescode.err_api_array_too_small (3001)
An input array was too short.

rescode.err_api_cb_connect (3002)
Failed to connect a callback object.

rescode.err_api_fatal_error (3005)
An internal error occurred in the API. Please report this problem.

rescode.err_api_internal (3999)
An internal fatal error occurred in an interface function.

rescode.err_sen_format (3050)
Syntax error in sensitivity analysis file.

rescode.err_sen_undef_name (3051)
An undefined name was encountered in the sensitivity analysis file.

rescode.err_sen_index_range (3052)
Index out of range in the sensitivity analysis file.

rescode.err_sen_bound_invalid_up (3053)
Analysis of upper bound requested for an index, where no upper bound exists.

rescode.err_sen_bound_invalid_lo (3054)
Analysis of lower bound requested for an index, where no lower bound exists.

rescode.err_sen_index_invalid (3055)
Invalid range given in the sensitivity file.

rescode.err_sen_invalid_regexp (3056)
Syntax error in regexp or regexp longer than 1024.

418

rescode.err_sen_solution_status (3057)
No optimal solution found to the original problem given for sensitivity analysis.

rescode.err_sen_numerical (3058)
Numerical difficulties encountered performing the sensitivity analysis.

rescode.err_sen_unhandled_problem_type (3080)
Sensitivity analysis cannot be performed for the specified problem. Sensitivity analysis is only
possible for linear problems.

rescode.err_unb_step_size (3100)
A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes
unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen
only if the problem is badly formulated. Please contact MOSEK support if this error occurs.

rescode.err_identical_tasks (3101)
Some tasks related to this function call were identical. Unique tasks were expected.

rescode.err_ad_invalid_codelist (3102)
The code list data was invalid.

rescode.err_internal_test_failed (3500)
An internal unit test function failed.

rescode.err_xml_invalid_problem_type (3600)
The problem type is not supported by the XML format.

rescode.err_invalid_ampl_stub (3700)
Invalid AMPL stub.

rescode.err_int64_to_int32_cast (3800)
A 64 bit integer could not be cast to a 32 bit integer.

rescode.err_size_license_numcores (3900)
The computer contains more cpu cores than the license allows for.

rescode.err_infeas_undefined (3910)
The requested value is not defined for this solution type.

rescode.err_no_barx_for_solution (3915)
There is no 𝑋 available for the solution specified. In particular note there are no 𝑋 defined for the
basic and integer solutions.

rescode.err_no_bars_for_solution (3916)
There is no 𝑠 available for the solution specified. In particular note there are no 𝑠 defined for the
basic and integer solutions.

rescode.err_bar_var_dim (3920)
The dimension of a symmetric matrix variable has to be greater than 0.

rescode.err_sym_mat_invalid_row_index (3940)
A row index specified for sparse symmetric matrix is invalid.

rescode.err_sym_mat_invalid_col_index (3941)
A column index specified for sparse symmetric matrix is invalid.

rescode.err_sym_mat_not_lower_tringular (3942)
Only the lower triangular part of sparse symmetric matrix should be specified.

rescode.err_sym_mat_invalid_value (3943)
The numerical value specified in a sparse symmetric matrix is not a floating point value.

rescode.err_sym_mat_duplicate (3944)
A value in a symmetric matric as been specified more than once.

rescode.err_invalid_sym_mat_dim (3950)
A sparse symmetric matrix of invalid dimension is specified.

rescode.err_invalid_file_format_for_sym_mat (4000)
The file format does not support a problem with symmetric matrix variables.

rescode.err_invalid_file_format_for_cfix (4001)
The file format does not support a problem with nonzero fixed term in c.

rescode.err_invalid_file_format_for_ranged_constraints (4002)
The file format does not support a problem with ranged constraints.

rescode.err_invalid_file_format_for_free_constraints (4003)
The file format does not support a problem with free constraints.

rescode.err_invalid_file_format_for_cones (4005)
The file format does not support a problem with conic constraints.

419

rescode.err_invalid_file_format_for_quadratic_terms (4006)
The file format does not support a problem with quadratic terms.

rescode.err_invalid_file_format_for_nonlinear (4010)
The file format does not support a problem with nonlinear terms.

rescode.err_invalid_file_format_for_disjunctive_constraints (4011)
The file format does not support a problem with disjunctive constraints.

rescode.err_invalid_file_format_for_affine_conic_constraints (4012)
The file format does not support a problem with affine conic constraints.

rescode.err_duplicate_constraint_names (4500)
Two constraint names are identical.

rescode.err_duplicate_variable_names (4501)
Two variable names are identical.

rescode.err_duplicate_barvariable_names (4502)
Two barvariable names are identical.

rescode.err_duplicate_cone_names (4503)
Two cone names are identical.

rescode.err_duplicate_domain_names (4504)
Two domain names are identical.

rescode.err_duplicate_djc_names (4505)
Two disjunctive constraint names are identical.

rescode.err_non_unique_array (5000)
An array does not contain unique elements.

rescode.err_argument_is_too_small (5004)
The value of a function argument is too small.

rescode.err_argument_is_too_large (5005)
The value of a function argument is too large.

rescode.err_mio_internal (5010)
A fatal error occurred in the mixed integer optimizer. Please contact MOSEK support.

rescode.err_invalid_problem_type (6000)
An invalid problem type.

rescode.err_unhandled_solution_status (6010)
Unhandled solution status.

rescode.err_upper_triangle (6020)
An element in the upper triangle of a lower triangular matrix is specified.

rescode.err_lau_singular_matrix (7000)
A matrix is singular.

rescode.err_lau_not_positive_definite (7001)
A matrix is not positive definite.

rescode.err_lau_invalid_lower_triangular_matrix (7002)
An invalid lower triangular matrix.

rescode.err_lau_unknown (7005)
An unknown error.

rescode.err_lau_arg_m (7010)
Invalid argument m.

rescode.err_lau_arg_n (7011)
Invalid argument n.

rescode.err_lau_arg_k (7012)
Invalid argument k.

rescode.err_lau_arg_transa (7015)
Invalid argument transa.

rescode.err_lau_arg_transb (7016)
Invalid argument transb.

rescode.err_lau_arg_uplo (7017)
Invalid argument uplo.

rescode.err_lau_arg_trans (7018)
Invalid argument trans.

420

rescode.err_lau_invalid_sparse_symmetric_matrix (7019)
An invalid sparse symmetric matrix is specfified. Note only the lower triangular part with no
duplicates is specifed.

rescode.err_cbf_parse (7100)
An error occurred while parsing an CBF file.

rescode.err_cbf_obj_sense (7101)
An invalid objective sense is specified.

rescode.err_cbf_no_variables (7102)
No variables are specified.

rescode.err_cbf_too_many_constraints (7103)
Too many constraints specified.

rescode.err_cbf_too_many_variables (7104)
Too many variables specified.

rescode.err_cbf_no_version_specified (7105)
No version specified.

rescode.err_cbf_syntax (7106)
Invalid syntax.

rescode.err_cbf_duplicate_obj (7107)
Duplicate OBJ keyword.

rescode.err_cbf_duplicate_con (7108)
Duplicate CON keyword.

rescode.err_cbf_duplicate_var (7110)
Duplicate VAR keyword.

rescode.err_cbf_duplicate_int (7111)
Duplicate INT keyword.

rescode.err_cbf_invalid_var_type (7112)
Invalid variable type.

rescode.err_cbf_invalid_con_type (7113)
Invalid constraint type.

rescode.err_cbf_invalid_domain_dimension (7114)
Invalid domain dimension.

rescode.err_cbf_duplicate_objacoord (7115)
Duplicate index in OBJCOORD.

rescode.err_cbf_duplicate_bcoord (7116)
Duplicate index in BCOORD.

rescode.err_cbf_duplicate_acoord (7117)
Duplicate index in ACOORD.

rescode.err_cbf_too_few_variables (7118)
Too few variables defined.

rescode.err_cbf_too_few_constraints (7119)
Too few constraints defined.

rescode.err_cbf_too_few_ints (7120)
Too few ints are specified.

rescode.err_cbf_too_many_ints (7121)
Too many ints are specified.

rescode.err_cbf_invalid_int_index (7122)
Invalid INT index.

rescode.err_cbf_unsupported (7123)
Unsupported feature is present.

rescode.err_cbf_duplicate_psdvar (7124)
Duplicate PSDVAR keyword.

rescode.err_cbf_invalid_psdvar_dimension (7125)
Invalid PSDVAR dimension.

rescode.err_cbf_too_few_psdvar (7126)
Too few variables defined.

rescode.err_cbf_invalid_exp_dimension (7127)
Invalid dimension of a exponential cone.

421

rescode.err_cbf_duplicate_pow_cones (7130)
Multiple POWCONES specified.

rescode.err_cbf_duplicate_pow_star_cones (7131)
Multiple POW*CONES specified.

rescode.err_cbf_invalid_power (7132)
Invalid power specified.

rescode.err_cbf_power_cone_is_too_long (7133)
Power cone is too long.

rescode.err_cbf_invalid_power_cone_index (7134)
Invalid power cone index.

rescode.err_cbf_invalid_power_star_cone_index (7135)
Invalid power star cone index.

rescode.err_cbf_unhandled_power_cone_type (7136)
An unhandled power cone type.

rescode.err_cbf_unhandled_power_star_cone_type (7137)
An unhandled power star cone type.

rescode.err_cbf_power_cone_mismatch (7138)
The power cone does not match with it definition.

rescode.err_cbf_power_star_cone_mismatch (7139)
The power star cone does not match with it definition.

rescode.err_cbf_invalid_number_of_cones (7140)
Invalid number of cones.

rescode.err_cbf_invalid_dimension_of_cones (7141)
Invalid number of cones.

rescode.err_cbf_invalid_num_psdcon (7200)
Invalid number of PSDCON.

rescode.err_cbf_duplicate_psdcon (7201)
Duplicate CON keyword.

rescode.err_cbf_invalid_dimension_of_psdcon (7202)
Invalid PSDCON dimension.

rescode.err_cbf_invalid_psdcon_index (7203)
Invalid PSDCON index.

rescode.err_cbf_invalid_psdcon_variable_index (7204)
Invalid PSDCON index.

rescode.err_cbf_invalid_psdcon_block_index (7205)
Invalid PSDCON index.

rescode.err_cbf_unsupported_change (7210)
The CHANGE section is not supported.

rescode.err_mio_invalid_root_optimizer (7700)
An invalid root optimizer was selected for the problem type.

rescode.err_mio_invalid_node_optimizer (7701)
An invalid node optimizer was selected for the problem type.

rescode.err_mps_write_cplex_invalid_cone_type (7750)
An invalid cone type occurs when writing a CPLEX formatted MPS file.

rescode.err_toconic_constr_q_not_psd (7800)
The matrix defining the quadratric part of constraint is not positive semidefinite.

rescode.err_toconic_constraint_fx (7801)
The quadratic constraint is an equality, thus not convex.

rescode.err_toconic_constraint_ra (7802)
The quadratic constraint has finite lower and upper bound, and therefore it is not convex.

rescode.err_toconic_constr_not_conic (7803)
The constraint is not conic representable.

rescode.err_toconic_objective_not_psd (7804)
The matrix defining the quadratric part of the objective function is not positive semidefinite.

rescode.err_server_connect (8000)
Failed to connect to remote solver server. The server string or the port string were invalid, or the
server did not accept connection.

422

rescode.err_server_protocol (8001)
Unexpected message or data from solver server.

rescode.err_server_status (8002)
Server returned non-ok HTTP status code

rescode.err_server_token (8003)
The job ID specified is incorrect or invalid

rescode.err_server_address (8004)
Invalid address string

rescode.err_server_certificate (8005)
Invalid TLS certificate format or path

rescode.err_server_tls_client (8006)
Failed to create TLS cleint

rescode.err_server_access_token (8007)
Invalid access token

rescode.err_server_problem_size (8008)
The size of the problem exceeds the dimensions permitted by the instance of the OptServer where
it was run.

rescode.err_duplicate_fij (20100)
An element in the F matrix is specified twice.

rescode.err_invalid_fij (20101)
𝑓𝑖,𝑗 contains an invalid floating point value, i.e. a NaN or an infinite value.

rescode.err_huge_fij (20102)
A numerically huge value is specified for an 𝑓𝑖,𝑗 element in 𝐹 . The parameter dparam.
data_tol_aij_huge controls when an 𝑓𝑖,𝑗 is considered huge.

rescode.err_invalid_g (20103)
𝑔 contains an invalid floating point value, i.e. a NaN or an infinite value.

rescode.err_invalid_b (20150)
𝑏 contains an invalid floating point value, i.e. a NaN or an infinite value.

rescode.err_domain_invalid_index (20400)
A domain index is invalid.

rescode.err_domain_dimension (20401)
A domain dimension is invalid.

rescode.err_domain_dimension_psd (20402)
A PSD domain dimension is invalid.

rescode.err_not_power_domain (20403)
The function is only applicable to primal and dual power cone domains.

rescode.err_domain_power_invalid_alpha (20404)
Alpha contains an invalid floating point value, i.e. a NaN or an infinite value.

rescode.err_domain_power_negative_alpha (20405)
Alpha contains a negative value or zero.

rescode.err_domain_power_nleft (20406)
The value of 𝑛left is not in [1, 𝑛− 1] where 𝑛 is the dimension.

rescode.err_afe_invalid_index (20500)
An affine expression index is invalid.

rescode.err_acc_invalid_index (20600)
A affine conic constraint index is invalid.

rescode.err_acc_invalid_entry_index (20601)
The index of an element in an affine conic constraint is invalid.

rescode.err_acc_afe_domain_mismatch (20602)
There is a mismatch between between the number of affine expressions and total dimension of the
domain(s).

rescode.err_djc_invalid_index (20700)
A disjunctive constraint index is invalid.

rescode.err_djc_unsupported_domain_type (20701)
An unsupported domain type has been used in a disjunctive constraint.

rescode.err_djc_afe_domain_mismatch (20702)
There is a mismatch between the number of affine expressions and total dimension of the domain(s).

423

rescode.err_djc_invalid_term_size (20703)
A termize is invalid.

rescode.err_djc_domain_termsize_mismatch (20704)
There is a mismatch between the number of domains and the term sizes.

rescode.err_djc_total_num_terms_mismatch (20705)
There total number of terms in all domains does not match.

rescode.err_undef_solution (22000)
MOSEK has the following solution types:

• an interior-point solution,
• a basic solution,
• and an integer solution.

Each optimizer may set one or more of these solutions; e.g by default a successful optimization
with the interior-point optimizer defines the interior-point solution and, for linear problems, also
the basic solution. This error occurs when asking for a solution or for information about a solution
that is not defined.

rescode.err_no_doty (22010)
No doty is available

15.9 Enumerations

basindtype
Basis identification

basindtype.never
Never do basis identification.

basindtype.always
Basis identification is always performed even if the interior-point optimizer terminates abnor-
mally.

basindtype.no_error
Basis identification is performed if the interior-point optimizer terminates without an error.

basindtype.if_feasible
Basis identification is not performed if the interior-point optimizer terminates with a problem
status saying that the problem is primal or dual infeasible.

basindtype.reservered
Not currently in use.

boundkey
Bound keys

boundkey.lo
The constraint or variable has a finite lower bound and an infinite upper bound.

boundkey.up
The constraint or variable has an infinite lower bound and an finite upper bound.

boundkey.fx
The constraint or variable is fixed.

boundkey.fr
The constraint or variable is free.

boundkey.ra
The constraint or variable is ranged.

mark
Mark

mark.lo
The lower bound is selected for sensitivity analysis.

mark.up
The upper bound is selected for sensitivity analysis.

424

simdegen
Degeneracy strategies

simdegen.none
The simplex optimizer should use no degeneration strategy.

simdegen.free
The simplex optimizer chooses the degeneration strategy.

simdegen.aggressive
The simplex optimizer should use an aggressive degeneration strategy.

simdegen.moderate
The simplex optimizer should use a moderate degeneration strategy.

simdegen.minimum
The simplex optimizer should use a minimum degeneration strategy.

transpose
Transposed matrix.

transpose.no
No transpose is applied.

transpose.yes
A transpose is applied.

uplo
Triangular part of a symmetric matrix.

uplo.lo
Lower part.

uplo.up
Upper part.

simreform
Problem reformulation.

simreform.on
Allow the simplex optimizer to reformulate the problem.

simreform.off
Disallow the simplex optimizer to reformulate the problem.

simreform.free
The simplex optimizer can choose freely.

simreform.aggressive
The simplex optimizer should use an aggressive reformulation strategy.

simdupvec
Exploit duplicate columns.

simdupvec.on
Allow the simplex optimizer to exploit duplicated columns.

simdupvec.off
Disallow the simplex optimizer to exploit duplicated columns.

simdupvec.free
The simplex optimizer can choose freely.

simhotstart
Hot-start type employed by the simplex optimizer

simhotstart.none
The simplex optimizer performs a coldstart.

simhotstart.free
The simplex optimize chooses the hot-start type.

simhotstart.status_keys
Only the status keys of the constraints and variables are used to choose the type of hot-start.

intpnthotstart
Hot-start type employed by the interior-point optimizers.

425

intpnthotstart.none
The interior-point optimizer performs a coldstart.

intpnthotstart.primal
The interior-point optimizer exploits the primal solution only.

intpnthotstart.dual
The interior-point optimizer exploits the dual solution only.

intpnthotstart.primal_dual
The interior-point optimizer exploits both the primal and dual solution.

purify
Solution purification employed optimizer.

purify.none
The optimizer performs no solution purification.

purify.primal
The optimizer purifies the primal solution.

purify.dual
The optimizer purifies the dual solution.

purify.primal_dual
The optimizer purifies both the primal and dual solution.

purify.auto
TBD

callbackcode
Progress callback codes

callbackcode.begin_bi
The basis identification procedure has been started.

callbackcode.begin_conic
The callback function is called when the conic optimizer is started.

callbackcode.begin_dual_bi
The callback function is called from within the basis identification procedure when the dual
phase is started.

callbackcode.begin_dual_sensitivity
Dual sensitivity analysis is started.

callbackcode.begin_dual_setup_bi
The callback function is called when the dual BI phase is started.

callbackcode.begin_dual_simplex
The callback function is called when the dual simplex optimizer started.

callbackcode.begin_dual_simplex_bi
The callback function is called from within the basis identification procedure when the dual
simplex clean-up phase is started.

callbackcode.begin_infeas_ana
The callback function is called when the infeasibility analyzer is started.

callbackcode.begin_intpnt
The callback function is called when the interior-point optimizer is started.

callbackcode.begin_license_wait
Begin waiting for license.

callbackcode.begin_mio
The callback function is called when the mixed-integer optimizer is started.

callbackcode.begin_optimizer
The callback function is called when the optimizer is started.

callbackcode.begin_presolve
The callback function is called when the presolve is started.

426

callbackcode.begin_primal_bi
The callback function is called from within the basis identification procedure when the primal
phase is started.

callbackcode.begin_primal_repair
Begin primal feasibility repair.

callbackcode.begin_primal_sensitivity
Primal sensitivity analysis is started.

callbackcode.begin_primal_setup_bi
The callback function is called when the primal BI setup is started.

callbackcode.begin_primal_simplex
The callback function is called when the primal simplex optimizer is started.

callbackcode.begin_primal_simplex_bi
The callback function is called from within the basis identification procedure when the primal
simplex clean-up phase is started.

callbackcode.begin_qcqo_reformulate
Begin QCQO reformulation.

callbackcode.begin_read
MOSEK has started reading a problem file.

callbackcode.begin_root_cutgen
The callback function is called when root cut generation is started.

callbackcode.begin_simplex
The callback function is called when the simplex optimizer is started.

callbackcode.begin_simplex_bi
The callback function is called from within the basis identification procedure when the simplex
clean-up phase is started.

callbackcode.begin_solve_root_relax
The callback function is called when solution of root relaxation is started.

callbackcode.begin_to_conic
Begin conic reformulation.

callbackcode.begin_write
MOSEK has started writing a problem file.

callbackcode.conic
The callback function is called from within the conic optimizer after the information database
has been updated.

callbackcode.dual_simplex
The callback function is called from within the dual simplex optimizer.

callbackcode.end_bi
The callback function is called when the basis identification procedure is terminated.

callbackcode.end_conic
The callback function is called when the conic optimizer is terminated.

callbackcode.end_dual_bi
The callback function is called from within the basis identification procedure when the dual
phase is terminated.

callbackcode.end_dual_sensitivity
Dual sensitivity analysis is terminated.

callbackcode.end_dual_setup_bi
The callback function is called when the dual BI phase is terminated.

callbackcode.end_dual_simplex
The callback function is called when the dual simplex optimizer is terminated.

callbackcode.end_dual_simplex_bi
The callback function is called from within the basis identification procedure when the dual
clean-up phase is terminated.

427

callbackcode.end_infeas_ana
The callback function is called when the infeasibility analyzer is terminated.

callbackcode.end_intpnt
The callback function is called when the interior-point optimizer is terminated.

callbackcode.end_license_wait
End waiting for license.

callbackcode.end_mio
The callback function is called when the mixed-integer optimizer is terminated.

callbackcode.end_optimizer
The callback function is called when the optimizer is terminated.

callbackcode.end_presolve
The callback function is called when the presolve is completed.

callbackcode.end_primal_bi
The callback function is called from within the basis identification procedure when the primal
phase is terminated.

callbackcode.end_primal_repair
End primal feasibility repair.

callbackcode.end_primal_sensitivity
Primal sensitivity analysis is terminated.

callbackcode.end_primal_setup_bi
The callback function is called when the primal BI setup is terminated.

callbackcode.end_primal_simplex
The callback function is called when the primal simplex optimizer is terminated.

callbackcode.end_primal_simplex_bi
The callback function is called from within the basis identification procedure when the primal
clean-up phase is terminated.

callbackcode.end_qcqo_reformulate
End QCQO reformulation.

callbackcode.end_read
MOSEK has finished reading a problem file.

callbackcode.end_root_cutgen
The callback function is called when root cut generation is terminated.

callbackcode.end_simplex
The callback function is called when the simplex optimizer is terminated.

callbackcode.end_simplex_bi
The callback function is called from within the basis identification procedure when the simplex
clean-up phase is terminated.

callbackcode.end_solve_root_relax
The callback function is called when solution of root relaxation is terminated.

callbackcode.end_to_conic
End conic reformulation.

callbackcode.end_write
MOSEK has finished writing a problem file.

callbackcode.im_bi
The callback function is called from within the basis identification procedure at an interme-
diate point.

callbackcode.im_conic
The callback function is called at an intermediate stage within the conic optimizer where the
information database has not been updated.

callbackcode.im_dual_bi
The callback function is called from within the basis identification procedure at an interme-
diate point in the dual phase.

428

callbackcode.im_dual_sensivity
The callback function is called at an intermediate stage of the dual sensitivity analysis.

callbackcode.im_dual_simplex
The callback function is called at an intermediate point in the dual simplex optimizer.

callbackcode.im_intpnt
The callback function is called at an intermediate stage within the interior-point optimizer
where the information database has not been updated.

callbackcode.im_license_wait
MOSEK is waiting for a license.

callbackcode.im_lu
The callback function is called from within the LU factorization procedure at an intermediate
point.

callbackcode.im_mio
The callback function is called at an intermediate point in the mixed-integer optimizer.

callbackcode.im_mio_dual_simplex
The callback function is called at an intermediate point in the mixed-integer optimizer while
running the dual simplex optimizer.

callbackcode.im_mio_intpnt
The callback function is called at an intermediate point in the mixed-integer optimizer while
running the interior-point optimizer.

callbackcode.im_mio_primal_simplex
The callback function is called at an intermediate point in the mixed-integer optimizer while
running the primal simplex optimizer.

callbackcode.im_order
The callback function is called from within the matrix ordering procedure at an intermediate
point.

callbackcode.im_presolve
The callback function is called from within the presolve procedure at an intermediate stage.

callbackcode.im_primal_bi
The callback function is called from within the basis identification procedure at an interme-
diate point in the primal phase.

callbackcode.im_primal_sensivity
The callback function is called at an intermediate stage of the primal sensitivity analysis.

callbackcode.im_primal_simplex
The callback function is called at an intermediate point in the primal simplex optimizer.

callbackcode.im_qo_reformulate
The callback function is called at an intermediate stage of the conic quadratic reformulation.

callbackcode.im_read
Intermediate stage in reading.

callbackcode.im_root_cutgen
The callback is called from within root cut generation at an intermediate stage.

callbackcode.im_simplex
The callback function is called from within the simplex optimizer at an intermediate point.

callbackcode.im_simplex_bi
The callback function is called from within the basis identification procedure at an interme-
diate point in the simplex clean-up phase. The frequency of the callbacks is controlled by the
iparam.log_sim_freq parameter.

callbackcode.intpnt
The callback function is called from within the interior-point optimizer after the information
database has been updated.

429

callbackcode.new_int_mio
The callback function is called after a new integer solution has been located by the mixed-
integer optimizer.

callbackcode.primal_simplex
The callback function is called from within the primal simplex optimizer.

callbackcode.read_opf
The callback function is called from the OPF reader.

callbackcode.read_opf_section
A chunk of 𝑄 non-zeros has been read from a problem file.

callbackcode.solving_remote
The callback function is called while the task is being solved on a remote server.

callbackcode.update_dual_bi
The callback function is called from within the basis identification procedure at an interme-
diate point in the dual phase.

callbackcode.update_dual_simplex
The callback function is called in the dual simplex optimizer.

callbackcode.update_dual_simplex_bi
The callback function is called from within the basis identification procedure at an interme-
diate point in the dual simplex clean-up phase. The frequency of the callbacks is controlled
by the iparam.log_sim_freq parameter.

callbackcode.update_presolve
The callback function is called from within the presolve procedure.

callbackcode.update_primal_bi
The callback function is called from within the basis identification procedure at an interme-
diate point in the primal phase.

callbackcode.update_primal_simplex
The callback function is called in the primal simplex optimizer.

callbackcode.update_primal_simplex_bi
The callback function is called from within the basis identification procedure at an interme-
diate point in the primal simplex clean-up phase. The frequency of the callbacks is controlled
by the iparam.log_sim_freq parameter.

callbackcode.update_simplex
The callback function is called from simplex optimizer.

callbackcode.write_opf
The callback function is called from the OPF writer.

checkconvexitytype
Types of convexity checks.

checkconvexitytype.none
No convexity check.

checkconvexitytype.simple
Perform simple and fast convexity check.

checkconvexitytype.full
Perform a full convexity check.

compresstype
Compression types

compresstype.none
No compression is used.

compresstype.free
The type of compression used is chosen automatically.

compresstype.gzip
The type of compression used is gzip compatible.

430

compresstype.zstd
The type of compression used is zstd compatible.

conetype
Cone types

conetype.quad
The cone is a quadratic cone.

conetype.rquad
The cone is a rotated quadratic cone.

conetype.pexp
A primal exponential cone.

conetype.dexp
A dual exponential cone.

conetype.ppow
A primal power cone.

conetype.dpow
A dual power cone.

conetype.zero
The zero cone.

domaintype
Cone types

domaintype.r

R.

domaintype.rzero
The zero vector.

domaintype.rplus
The positive orthant.

domaintype.rminus
The negative orthant.

domaintype.quadratic_cone
The quadratic cone.

domaintype.rquadratic_cone
The rotated quadratic cone.

domaintype.primal_exp_cone
The primal exponential cone.

domaintype.dual_exp_cone
The dual exponential cone.

domaintype.primal_power_cone
The primal power cone.

domaintype.dual_power_cone
The dual power cone.

domaintype.primal_geo_mean_cone
The primal geometric mean cone.

domaintype.dual_geo_mean_cone
The dual geometric mean cone.

domaintype.svec_psd_cone
The vectorized positive semidefinite cone.

nametype
Name types

nametype.gen
General names. However, no duplicate and blank names are allowed.

431

nametype.mps
MPS type names.

nametype.lp
LP type names.

symmattype
Cone types

symmattype.sparse
Sparse symmetric matrix.

dataformat
Data format types

dataformat.extension
The file extension is used to determine the data file format.

dataformat.mps
The data file is MPS formatted.

dataformat.lp
The data file is LP formatted.

dataformat.op
The data file is an optimization problem formatted file.

dataformat.free_mps
The data a free MPS formatted file.

dataformat.task
Generic task dump file.

dataformat.ptf
(P)retty (T)ext (F)format.

dataformat.cb
Conic benchmark format,

dataformat.json_task
JSON based task format.

solformat
Data format types

solformat.extension
The file extension is used to determine the data file format.

solformat.b
Simple binary format

solformat.task
Tar based format.

solformat.json_task
JSON based format.

dinfitem
Double information items

dinfitem.ana_pro_scalarized_constraint_matrix_density
Density percentage of the scalarized constraint matrix.

dinfitem.bi_clean_dual_time
Time spent within the dual clean-up optimizer of the basis identification procedure since its
invocation.

dinfitem.bi_clean_primal_time
Time spent within the primal clean-up optimizer of the basis identification procedure since
its invocation.

dinfitem.bi_clean_time
Time spent within the clean-up phase of the basis identification procedure since its invocation.

dinfitem.bi_dual_time
Time spent within the dual phase basis identification procedure since its invocation.

432

dinfitem.bi_primal_time
Time spent within the primal phase of the basis identification procedure since its invocation.

dinfitem.bi_time
Time spent within the basis identification procedure since its invocation.

dinfitem.intpnt_dual_feas
Dual feasibility measure reported by the interior-point optimizer. (For the interior-point
optimizer this measure is not directly related to the original problem because a homogeneous
model is employed.)

dinfitem.intpnt_dual_obj
Dual objective value reported by the interior-point optimizer.

dinfitem.intpnt_factor_num_flops
An estimate of the number of flops used in the factorization.

dinfitem.intpnt_opt_status
A measure of optimality of the solution. It should converge to +1 if the problem has a primal-
dual optimal solution, and converge to −1 if the problem is (strictly) primal or dual infeasible.
If the measure converges to another constant, or fails to settle, the problem is usually ill-posed.

dinfitem.intpnt_order_time
Order time (in seconds).

dinfitem.intpnt_primal_feas
Primal feasibility measure reported by the interior-point optimizer. (For the interior-point
optimizer this measure is not directly related to the original problem because a homogeneous
model is employed).

dinfitem.intpnt_primal_obj
Primal objective value reported by the interior-point optimizer.

dinfitem.intpnt_time
Time spent within the interior-point optimizer since its invocation.

dinfitem.mio_clique_separation_time
Separation time for clique cuts.

dinfitem.mio_cmir_separation_time
Separation time for CMIR cuts.

dinfitem.mio_construct_solution_obj
If MOSEK has successfully constructed an integer feasible solution, then this item contains
the optimal objective value corresponding to the feasible solution.

dinfitem.mio_dual_bound_after_presolve
Value of the dual bound after presolve but before cut generation.

dinfitem.mio_gmi_separation_time
Separation time for GMI cuts.

dinfitem.mio_implied_bound_time
Separation time for implied bound cuts.

dinfitem.mio_initial_feasible_solution_obj
If the user provided solution was found to be feasible this information item contains it’s
objective value.

dinfitem.mio_knapsack_cover_separation_time
Separation time for knapsack cover.

dinfitem.mio_lipro_separation_time
Separation time for lift-and-project cuts.

dinfitem.mio_obj_abs_gap
Given the mixed-integer optimizer has computed a feasible solution and a bound on the
optimal objective value, then this item contains the absolute gap defined by

|(objective value of feasible solution) − (objective bound)|.

Otherwise it has the value -1.0.

433

dinfitem.mio_obj_bound
The best known bound on the objective function. This value is undefined until at least one
relaxation has been solved: To see if this is the case check that iinfitem.mio_num_relax is
strictly positive.

dinfitem.mio_obj_int
The primal objective value corresponding to the best integer feasible solution. Please note
that at least one integer feasible solution must have been located i.e. check iinfitem.
mio_num_int_solutions .

dinfitem.mio_obj_rel_gap
Given that the mixed-integer optimizer has computed a feasible solution and a bound on the
optimal objective value, then this item contains the relative gap defined by

|(objective value of feasible solution) − (objective bound)|
max(𝛿, |(objective value of feasible solution)|)

.

where 𝛿 is given by the parameter dparam.mio_rel_gap_const . Otherwise it has the value
−1.0.

dinfitem.mio_probing_time
Total time for probing.

dinfitem.mio_root_cutgen_time
Total time for cut generation.

dinfitem.mio_root_optimizer_time
Time spent in the contiuous optimizer while processing the root node relaxation.

dinfitem.mio_root_presolve_time
Time spent presolving the problem at the root node.

dinfitem.mio_root_time
Time spent processing the root node.

dinfitem.mio_time
Time spent in the mixed-integer optimizer.

dinfitem.mio_user_obj_cut
If the objective cut is used, then this information item has the value of the cut.

dinfitem.optimizer_time
Total time spent in the optimizer since it was invoked.

dinfitem.presolve_eli_time
Total time spent in the eliminator since the presolve was invoked.

dinfitem.presolve_lindep_time
Total time spent in the linear dependency checker since the presolve was invoked.

dinfitem.presolve_time
Total time (in seconds) spent in the presolve since it was invoked.

dinfitem.presolve_total_primal_perturbation
Total perturbation of the bounds of the primal problem.

dinfitem.primal_repair_penalty_obj
The optimal objective value of the penalty function.

dinfitem.qcqo_reformulate_max_perturbation
Maximum absolute diagonal perturbation occurring during the QCQO reformulation.

dinfitem.qcqo_reformulate_time
Time spent with conic quadratic reformulation.

dinfitem.qcqo_reformulate_worst_cholesky_column_scaling
Worst Cholesky column scaling.

dinfitem.qcqo_reformulate_worst_cholesky_diag_scaling
Worst Cholesky diagonal scaling.

dinfitem.read_data_time
Time spent reading the data file.

434

dinfitem.remote_time
The total real time in seconds spent when optimizing on a server by the process performing
the optimization on the server

dinfitem.sim_dual_time
Time spent in the dual simplex optimizer since invoking it.

dinfitem.sim_feas
Feasibility measure reported by the simplex optimizer.

dinfitem.sim_obj
Objective value reported by the simplex optimizer.

dinfitem.sim_primal_time
Time spent in the primal simplex optimizer since invoking it.

dinfitem.sim_time
Time spent in the simplex optimizer since invoking it.

dinfitem.sol_bas_dual_obj
Dual objective value of the basic solution. Updated if iparam.auto_update_sol_info is set
or by the method Task.updatesolutioninfo .

dinfitem.sol_bas_dviolcon
Maximal dual bound violation for 𝑥𝑐 in the basic solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_bas_dviolvar
Maximal dual bound violation for 𝑥𝑥 in the basic solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_bas_nrm_barx
Infinity norm of 𝑋 in the basic solution.

dinfitem.sol_bas_nrm_slc
Infinity norm of 𝑠𝑐𝑙 in the basic solution.

dinfitem.sol_bas_nrm_slx
Infinity norm of 𝑠𝑥𝑙 in the basic solution.

dinfitem.sol_bas_nrm_suc
Infinity norm of 𝑠𝑐𝑢 in the basic solution.

dinfitem.sol_bas_nrm_sux
Infinity norm of 𝑠𝑋𝑢 in the basic solution.

dinfitem.sol_bas_nrm_xc
Infinity norm of 𝑥𝑐 in the basic solution.

dinfitem.sol_bas_nrm_xx
Infinity norm of 𝑥𝑥 in the basic solution.

dinfitem.sol_bas_nrm_y
Infinity norm of 𝑦 in the basic solution.

dinfitem.sol_bas_primal_obj
Primal objective value of the basic solution. Updated if iparam.auto_update_sol_info is
set or by the method Task.updatesolutioninfo .

dinfitem.sol_bas_pviolcon
Maximal primal bound violation for 𝑥𝑐 in the basic solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_bas_pviolvar
Maximal primal bound violation for 𝑥𝑥 in the basic solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itg_nrm_barx
Infinity norm of 𝑋 in the integer solution.

dinfitem.sol_itg_nrm_xc
Infinity norm of 𝑥𝑐 in the integer solution.

435

dinfitem.sol_itg_nrm_xx
Infinity norm of 𝑥𝑥 in the integer solution.

dinfitem.sol_itg_primal_obj
Primal objective value of the integer solution. Updated if iparam.auto_update_sol_info is
set or by the method Task.updatesolutioninfo .

dinfitem.sol_itg_pviolacc
Maximal primal violation for affine conic constraints in the integer solution. Updated if
iparam.auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itg_pviolbarvar
Maximal primal bound violation for 𝑋 in the integer solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itg_pviolcon
Maximal primal bound violation for 𝑥𝑐 in the integer solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itg_pviolcones
Maximal primal violation for primal conic constraints in the integer solution. Updated if
iparam.auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itg_pvioldjc
Maximal primal violation for disjunctive constraints in the integer solution. Updated if
iparam.auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itg_pviolitg
Maximal violation for the integer constraints in the integer solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itg_pviolvar
Maximal primal bound violation for 𝑥𝑥 in the integer solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itr_dual_obj
Dual objective value of the interior-point solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itr_dviolacc
Maximal dual violation for the affine conic constraints in the interior-point solution. Updated
if iparam.auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itr_dviolbarvar
Maximal dual bound violation for 𝑋 in the interior-point solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itr_dviolcon
Maximal dual bound violation for 𝑥𝑐 in the interior-point solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itr_dviolcones
Maximal dual violation for conic constraints in the interior-point solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itr_dviolvar
Maximal dual bound violation for 𝑥𝑥 in the interior-point solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itr_nrm_bars
Infinity norm of 𝑆 in the interior-point solution.

dinfitem.sol_itr_nrm_barx
Infinity norm of 𝑋 in the interior-point solution.

dinfitem.sol_itr_nrm_slc
Infinity norm of 𝑠𝑐𝑙 in the interior-point solution.

dinfitem.sol_itr_nrm_slx
Infinity norm of 𝑠𝑥𝑙 in the interior-point solution.

436

dinfitem.sol_itr_nrm_snx
Infinity norm of 𝑠𝑥𝑛 in the interior-point solution.

dinfitem.sol_itr_nrm_suc
Infinity norm of 𝑠𝑐𝑢 in the interior-point solution.

dinfitem.sol_itr_nrm_sux
Infinity norm of 𝑠𝑋𝑢 in the interior-point solution.

dinfitem.sol_itr_nrm_xc
Infinity norm of 𝑥𝑐 in the interior-point solution.

dinfitem.sol_itr_nrm_xx
Infinity norm of 𝑥𝑥 in the interior-point solution.

dinfitem.sol_itr_nrm_y
Infinity norm of 𝑦 in the interior-point solution.

dinfitem.sol_itr_primal_obj
Primal objective value of the interior-point solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itr_pviolacc
Maximal primal violation for affine conic constraints in the interior-point solution. Updated
if iparam.auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itr_pviolbarvar
Maximal primal bound violation for 𝑋 in the interior-point solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itr_pviolcon
Maximal primal bound violation for 𝑥𝑐 in the interior-point solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itr_pviolcones
Maximal primal violation for conic constraints in the interior-point solution. Updated if
iparam.auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.sol_itr_pviolvar
Maximal primal bound violation for 𝑥𝑥 in the interior-point solution. Updated if iparam.
auto_update_sol_info is set or by the method Task.updatesolutioninfo .

dinfitem.to_conic_time
Time spent in the last to conic reformulation.

dinfitem.write_data_time
Time spent writing the data file.

feature
License feature

feature.pts
Base system.

feature.pton
Conic extension.

liinfitem
Long integer information items.

liinfitem.ana_pro_scalarized_constraint_matrix_num_columns
Number of columns in the scalarized constraint matrix.

liinfitem.ana_pro_scalarized_constraint_matrix_num_nz
Number of non-zero entries in the scalarized constraint matrix.

liinfitem.ana_pro_scalarized_constraint_matrix_num_rows
Number of rows in the scalarized constraint matrix.

liinfitem.bi_clean_dual_deg_iter
Number of dual degenerate clean iterations performed in the basis identification.

liinfitem.bi_clean_dual_iter
Number of dual clean iterations performed in the basis identification.

437

liinfitem.bi_clean_primal_deg_iter
Number of primal degenerate clean iterations performed in the basis identification.

liinfitem.bi_clean_primal_iter
Number of primal clean iterations performed in the basis identification.

liinfitem.bi_dual_iter
Number of dual pivots performed in the basis identification.

liinfitem.bi_primal_iter
Number of primal pivots performed in the basis identification.

liinfitem.intpnt_factor_num_nz
Number of non-zeros in factorization.

liinfitem.mio_anz
Number of non-zero entries in the constraint matrix of the problem to be solved by the mixed-
integer optimizer.

liinfitem.mio_intpnt_iter
Number of interior-point iterations performed by the mixed-integer optimizer.

liinfitem.mio_num_dual_illposed_cer
Number of dual illposed certificates encountered by the mixed-integer optimizer.

liinfitem.mio_num_prim_illposed_cer
Number of primal illposed certificates encountered by the mixed-integer optimizer.

liinfitem.mio_presolved_anz
Number of non-zero entries in the constraint matrix of the problem after the mixed-integer
optimizer’s presolve.

liinfitem.mio_simplex_iter
Number of simplex iterations performed by the mixed-integer optimizer.

liinfitem.rd_numacc
Number of affince conic constraints.

liinfitem.rd_numanz
Number of non-zeros in A that is read.

liinfitem.rd_numdjc
Number of disjuncive constraints.

liinfitem.rd_numqnz
Number of Q non-zeros.

liinfitem.simplex_iter
Number of iterations performed by the simplex optimizer.

iinfitem
Integer information items.

iinfitem.ana_pro_num_con
Number of constraints in the problem. This value is set by Task.analyzeproblem .

iinfitem.ana_pro_num_con_eq
Number of equality constraints. This value is set by Task.analyzeproblem .

iinfitem.ana_pro_num_con_fr
Number of unbounded constraints. This value is set by Task.analyzeproblem .

iinfitem.ana_pro_num_con_lo
Number of constraints with a lower bound and an infinite upper bound. This value is set by
Task.analyzeproblem .

iinfitem.ana_pro_num_con_ra
Number of constraints with finite lower and upper bounds. This value is set by Task.
analyzeproblem .

iinfitem.ana_pro_num_con_up
Number of constraints with an upper bound and an infinite lower bound. This value is set by
Task.analyzeproblem .

438

iinfitem.ana_pro_num_var
Number of variables in the problem. This value is set by Task.analyzeproblem .

iinfitem.ana_pro_num_var_bin
Number of binary (0-1) variables. This value is set by Task.analyzeproblem .

iinfitem.ana_pro_num_var_cont
Number of continuous variables. This value is set by Task.analyzeproblem .

iinfitem.ana_pro_num_var_eq
Number of fixed variables. This value is set by Task.analyzeproblem .

iinfitem.ana_pro_num_var_fr
Number of free variables. This value is set by Task.analyzeproblem .

iinfitem.ana_pro_num_var_int
Number of general integer variables. This value is set by Task.analyzeproblem .

iinfitem.ana_pro_num_var_lo
Number of variables with a lower bound and an infinite upper bound. This value is set by
Task.analyzeproblem .

iinfitem.ana_pro_num_var_ra
Number of variables with finite lower and upper bounds. This value is set by Task.
analyzeproblem .

iinfitem.ana_pro_num_var_up
Number of variables with an upper bound and an infinite lower bound. This value is set by
Task.analyzeproblem .

iinfitem.intpnt_factor_dim_dense
Dimension of the dense sub system in factorization.

iinfitem.intpnt_iter
Number of interior-point iterations since invoking the interior-point optimizer.

iinfitem.intpnt_num_threads
Number of threads that the interior-point optimizer is using.

iinfitem.intpnt_solve_dual
Non-zero if the interior-point optimizer is solving the dual problem.

iinfitem.mio_absgap_satisfied
Non-zero if absolute gap is within tolerances.

iinfitem.mio_clique_table_size
Size of the clique table.

iinfitem.mio_construct_solution
This item informs if MOSEK constructed an initial integer feasible solution.

• -1: tried, but failed,
• 0: no partial solution supplied by the user,
• 1: constructed feasible solution.

iinfitem.mio_initial_feasible_solution
This item informs if MOSEK found the solution provided by the user to be feasible

• 0: solution provided by the user was not found to be feasible for the current problem,
• 1: user provided solution was found to be feasible.

iinfitem.mio_node_depth
Depth of the last node solved.

iinfitem.mio_num_active_nodes
Number of active branch and bound nodes.

iinfitem.mio_num_branch
Number of branches performed during the optimization.

iinfitem.mio_num_clique_cuts
Number of clique cuts.

439

iinfitem.mio_num_cmir_cuts
Number of Complemented Mixed Integer Rounding (CMIR) cuts.

iinfitem.mio_num_gomory_cuts
Number of Gomory cuts.

iinfitem.mio_num_implied_bound_cuts
Number of implied bound cuts.

iinfitem.mio_num_int_solutions
Number of integer feasible solutions that have been found.

iinfitem.mio_num_knapsack_cover_cuts
Number of clique cuts.

iinfitem.mio_num_lipro_cuts
Number of lift-and-project cuts.

iinfitem.mio_num_relax
Number of relaxations solved during the optimization.

iinfitem.mio_num_repeated_presolve
Number of times presolve was repeated at root.

iinfitem.mio_numbin
Number of binary variables in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numbinconevar
Number of binary cone variables in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numcon
Number of constraints in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numcone
Number of cones in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numconevar
Number of cone variables in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numcont
Number of continuous variables in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numcontconevar
Number of continuous cone variables in the problem to be solved by the mixed-integer opti-
mizer.

iinfitem.mio_numdexpcones
Number of dual exponential cones in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numdjc
Number of disjunctive constraints in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numdpowcones
Number of dual power cones in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numint
Number of integer variables in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numintconevar
Number of integer cone variables in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numpexpcones
Number of primal exponential cones in the problem to be solved by the mixed-integer opti-
mizer.

iinfitem.mio_numppowcones
Number of primal power cones in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numqcones
Number of quadratic cones in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_numrqcones
Number of rotated quadratic cones in the problem to be solved by the mixed-integer optimizer.

440

iinfitem.mio_numvar
Number of variables in the problem to be solved by the mixed-integer optimizer.

iinfitem.mio_obj_bound_defined
Non-zero if a valid objective bound has been found, otherwise zero.

iinfitem.mio_presolved_numbin
Number of binary variables in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numbinconevar
Number of binary cone variables in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numcon
Number of constraints in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numcone
Number of cones in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numconevar
Number of cone variables in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numcont
Number of continuous variables in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numcontconevar
Number of continuous cone variables in the problem after the mixed-integer optimizer’s pre-
solve.

iinfitem.mio_presolved_numdexpcones
Number of dual exponential cones in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numdjc
Number of disjunctive constraints in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numdpowcones
Number of dual power cones in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numint
Number of integer variables in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numintconevar
Number of integer cone variables in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numpexpcones
Number of primal exponential cones in the problem after the mixed-integer optimizer’s pre-
solve.

iinfitem.mio_presolved_numppowcones
Number of primal power cones in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numqcones
Number of quadratic cones in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numrqcones
Number of rotated quadratic cones in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_presolved_numvar
Number of variables in the problem after the mixed-integer optimizer’s presolve.

iinfitem.mio_relgap_satisfied
Non-zero if relative gap is within tolerances.

iinfitem.mio_total_num_cuts
Total number of cuts generated by the mixed-integer optimizer.

iinfitem.mio_user_obj_cut
If it is non-zero, then the objective cut is used.

iinfitem.opt_numcon
Number of constraints in the problem solved when the optimizer is called.

iinfitem.opt_numvar
Number of variables in the problem solved when the optimizer is called

441

iinfitem.optimize_response
The response code returned by optimize.

iinfitem.presolve_num_primal_perturbations
Number perturbations to thhe bounds of the primal problem.

iinfitem.purify_dual_success
Is nonzero if the dual solution is purified.

iinfitem.purify_primal_success
Is nonzero if the primal solution is purified.

iinfitem.rd_numbarvar
Number of symmetric variables read.

iinfitem.rd_numcon
Number of constraints read.

iinfitem.rd_numcone
Number of conic constraints read.

iinfitem.rd_numintvar
Number of integer-constrained variables read.

iinfitem.rd_numq
Number of nonempty Q matrices read.

iinfitem.rd_numvar
Number of variables read.

iinfitem.rd_protype
Problem type.

iinfitem.sim_dual_deg_iter
The number of dual degenerate iterations.

iinfitem.sim_dual_hotstart
If 1 then the dual simplex algorithm is solving from an advanced basis.

iinfitem.sim_dual_hotstart_lu
If 1 then a valid basis factorization of full rank was located and used by the dual simplex
algorithm.

iinfitem.sim_dual_inf_iter
The number of iterations taken with dual infeasibility.

iinfitem.sim_dual_iter
Number of dual simplex iterations during the last optimization.

iinfitem.sim_numcon
Number of constraints in the problem solved by the simplex optimizer.

iinfitem.sim_numvar
Number of variables in the problem solved by the simplex optimizer.

iinfitem.sim_primal_deg_iter
The number of primal degenerate iterations.

iinfitem.sim_primal_hotstart
If 1 then the primal simplex algorithm is solving from an advanced basis.

iinfitem.sim_primal_hotstart_lu
If 1 then a valid basis factorization of full rank was located and used by the primal simplex
algorithm.

iinfitem.sim_primal_inf_iter
The number of iterations taken with primal infeasibility.

iinfitem.sim_primal_iter
Number of primal simplex iterations during the last optimization.

iinfitem.sim_solve_dual
Is non-zero if dual problem is solved.

442

iinfitem.sol_bas_prosta
Problem status of the basic solution. Updated after each optimization.

iinfitem.sol_bas_solsta
Solution status of the basic solution. Updated after each optimization.

iinfitem.sol_itg_prosta
Problem status of the integer solution. Updated after each optimization.

iinfitem.sol_itg_solsta
Solution status of the integer solution. Updated after each optimization.

iinfitem.sol_itr_prosta
Problem status of the interior-point solution. Updated after each optimization.

iinfitem.sol_itr_solsta
Solution status of the interior-point solution. Updated after each optimization.

iinfitem.sto_num_a_realloc
Number of times the storage for storing 𝐴 has been changed. A large value may indicates
that memory fragmentation may occur.

inftype
Information item types

inftype.dou_type
Is a double information type.

inftype.int_type
Is an integer.

inftype.lint_type
Is a long integer.

iomode
Input/output modes

iomode.read
The file is read-only.

iomode.write
The file is write-only. If the file exists then it is truncated when it is opened. Otherwise it is
created when it is opened.

iomode.readwrite
The file is to read and write.

branchdir
Specifies the branching direction.

branchdir.free
The mixed-integer optimizer decides which branch to choose.

branchdir.up
The mixed-integer optimizer always chooses the up branch first.

branchdir.down
The mixed-integer optimizer always chooses the down branch first.

branchdir.near
Branch in direction nearest to selected fractional variable.

branchdir.far
Branch in direction farthest from selected fractional variable.

branchdir.root_lp
Chose direction based on root lp value of selected variable.

branchdir.guided
Branch in direction of current incumbent.

branchdir.pseudocost
Branch based on the pseudocost of the variable.

miqcqoreformmethod
Specifies the reformulation method for mixed-integer quadratic problems.

443

miqcqoreformmethod.free
The mixed-integer optimizer decides which reformulation method to apply.

miqcqoreformmethod.none
No reformulation method is applied.

miqcqoreformmethod.linearization
A reformulation via linearization is applied.

miqcqoreformmethod.eigen_val_method
The eigenvalue method is applied.

miqcqoreformmethod.diag_sdp
A perturbation of matrix diagonals via the solution of SDPs is applied.

miqcqoreformmethod.relax_sdp
A Reformulation based on the solution of an SDP-relaxation of the problem is applied.

miodatapermmethod
Specifies the problem data permutation method for mixed-integer problems.

miodatapermmethod.none
No problem data permutation is applied.

miodatapermmethod.cyclic_shift
A random cyclic shift is applied to permute the problem data.

miodatapermmethod.random
A random permutation is applied to the problem data.

miocontsoltype
Continuous mixed-integer solution type

miocontsoltype.none
No interior-point or basic solution are reported when the mixed-integer optimizer is used.

miocontsoltype.root
The reported interior-point and basic solutions are a solution to the root node problem when
mixed-integer optimizer is used.

miocontsoltype.itg
The reported interior-point and basic solutions are a solution to the problem with all integer
variables fixed at the value they have in the integer solution. A solution is only reported in
case the problem has a primal feasible solution.

miocontsoltype.itg_rel
In case the problem is primal feasible then the reported interior-point and basic solutions are
a solution to the problem with all integer variables fixed at the value they have in the integer
solution. If the problem is primal infeasible, then the solution to the root node problem is
reported.

miomode
Integer restrictions

miomode.ignored
The integer constraints are ignored and the problem is solved as a continuous problem.

miomode.satisfied
Integer restrictions should be satisfied.

mionodeseltype
Mixed-integer node selection types

mionodeseltype.free
The optimizer decides the node selection strategy.

mionodeseltype.first
The optimizer employs a depth first node selection strategy.

mionodeseltype.best
The optimizer employs a best bound node selection strategy.

mionodeseltype.pseudo
The optimizer employs selects the node based on a pseudo cost estimate.

444

mpsformat
MPS file format type

mpsformat.strict
It is assumed that the input file satisfies the MPS format strictly.

mpsformat.relaxed
It is assumed that the input file satisfies a slightly relaxed version of the MPS format.

mpsformat.free
It is assumed that the input file satisfies the free MPS format. This implies that spaces are
not allowed in names. Otherwise the format is free.

mpsformat.cplex
The CPLEX compatible version of the MPS format is employed.

objsense
Objective sense types

objsense.minimize
The problem should be minimized.

objsense.maximize
The problem should be maximized.

onoffkey
On/off

onoffkey.on
Switch the option on.

onoffkey.off
Switch the option off.

optimizertype
Optimizer types

optimizertype.conic
The optimizer for problems having conic constraints.

optimizertype.dual_simplex
The dual simplex optimizer is used.

optimizertype.free
The optimizer is chosen automatically.

optimizertype.free_simplex
One of the simplex optimizers is used.

optimizertype.intpnt
The interior-point optimizer is used.

optimizertype.mixed_int
The mixed-integer optimizer.

optimizertype.primal_simplex
The primal simplex optimizer is used.

orderingtype
Ordering strategies

orderingtype.free
The ordering method is chosen automatically.

orderingtype.appminloc
Approximate minimum local fill-in ordering is employed.

orderingtype.experimental
This option should not be used.

orderingtype.try_graphpar
Always try the graph partitioning based ordering.

orderingtype.force_graphpar
Always use the graph partitioning based ordering even if it is worse than the approximate
minimum local fill ordering.

445

orderingtype.none
No ordering is used.

presolvemode
Presolve method.

presolvemode.off
The problem is not presolved before it is optimized.

presolvemode.on
The problem is presolved before it is optimized.

presolvemode.free
It is decided automatically whether to presolve before the problem is optimized.

parametertype
Parameter type

parametertype.invalid_type
Not a valid parameter.

parametertype.dou_type
Is a double parameter.

parametertype.int_type
Is an integer parameter.

parametertype.str_type
Is a string parameter.

problemitem
Problem data items

problemitem.var
Item is a variable.

problemitem.con
Item is a constraint.

problemitem.cone
Item is a cone.

problemtype
Problem types

problemtype.lo
The problem is a linear optimization problem.

problemtype.qo
The problem is a quadratic optimization problem.

problemtype.qcqo
The problem is a quadratically constrained optimization problem.

problemtype.conic
A conic optimization.

problemtype.mixed
General nonlinear constraints and conic constraints. This combination can not be solved by
MOSEK.

prosta
Problem status keys

prosta.unknown
Unknown problem status.

prosta.prim_and_dual_feas
The problem is primal and dual feasible.

prosta.prim_feas
The problem is primal feasible.

prosta.dual_feas
The problem is dual feasible.

446

prosta.prim_infeas
The problem is primal infeasible.

prosta.dual_infeas
The problem is dual infeasible.

prosta.prim_and_dual_infeas
The problem is primal and dual infeasible.

prosta.ill_posed
The problem is ill-posed. For example, it may be primal and dual feasible but have a positive
duality gap.

prosta.prim_infeas_or_unbounded
The problem is either primal infeasible or unbounded. This may occur for mixed-integer
problems.

xmlwriteroutputtype
XML writer output mode

xmlwriteroutputtype.row
Write in row order.

xmlwriteroutputtype.col
Write in column order.

rescodetype
Response code type

rescodetype.ok
The response code is OK.

rescodetype.wrn
The response code is a warning.

rescodetype.trm
The response code is an optimizer termination status.

rescodetype.err
The response code is an error.

rescodetype.unk
The response code does not belong to any class.

scalingtype
Scaling type

scalingtype.free
The optimizer chooses the scaling heuristic.

scalingtype.none
No scaling is performed.

scalingmethod
Scaling method

scalingmethod.pow2
Scales only with power of 2 leaving the mantissa untouched.

scalingmethod.free
The optimizer chooses the scaling heuristic.

sensitivitytype
Sensitivity types

sensitivitytype.basis
Basis sensitivity analysis is performed.

simseltype
Simplex selection strategy

simseltype.free
The optimizer chooses the pricing strategy.

simseltype.full
The optimizer uses full pricing.

447

simseltype.ase
The optimizer uses approximate steepest-edge pricing.

simseltype.devex
The optimizer uses devex steepest-edge pricing (or if it is not available an approximate steep-
edge selection).

simseltype.se
The optimizer uses steepest-edge selection (or if it is not available an approximate steep-edge
selection).

simseltype.partial
The optimizer uses a partial selection approach. The approach is usually beneficial if the
number of variables is much larger than the number of constraints.

solitem
Solution items

solitem.xc
Solution for the constraints.

solitem.xx
Variable solution.

solitem.y
Lagrange multipliers for equations.

solitem.slc
Lagrange multipliers for lower bounds on the constraints.

solitem.suc
Lagrange multipliers for upper bounds on the constraints.

solitem.slx
Lagrange multipliers for lower bounds on the variables.

solitem.sux
Lagrange multipliers for upper bounds on the variables.

solitem.snx
Lagrange multipliers corresponding to the conic constraints on the variables.

solsta
Solution status keys

solsta.unknown
Status of the solution is unknown.

solsta.optimal
The solution is optimal.

solsta.prim_feas
The solution is primal feasible.

solsta.dual_feas
The solution is dual feasible.

solsta.prim_and_dual_feas
The solution is both primal and dual feasible.

solsta.prim_infeas_cer
The solution is a certificate of primal infeasibility.

solsta.dual_infeas_cer
The solution is a certificate of dual infeasibility.

solsta.prim_illposed_cer
The solution is a certificate that the primal problem is illposed.

solsta.dual_illposed_cer
The solution is a certificate that the dual problem is illposed.

solsta.integer_optimal
The primal solution is integer optimal.

448

soltype
Solution types
soltype.bas

The basic solution.
soltype.itr

The interior solution.
soltype.itg

The integer solution.
solveform

Solve primal or dual form
solveform.free

The optimizer is free to solve either the primal or the dual problem.
solveform.primal

The optimizer should solve the primal problem.
solveform.dual

The optimizer should solve the dual problem.
stakey

Status keys
stakey.unk

The status for the constraint or variable is unknown.
stakey.bas

The constraint or variable is in the basis.
stakey.supbas

The constraint or variable is super basic.
stakey.low

The constraint or variable is at its lower bound.
stakey.upr

The constraint or variable is at its upper bound.
stakey.fix

The constraint or variable is fixed.
stakey.inf

The constraint or variable is infeasible in the bounds.
startpointtype

Starting point types
startpointtype.free

The starting point is chosen automatically.
startpointtype.guess

The optimizer guesses a starting point.
startpointtype.constant

The optimizer constructs a starting point by assigning a constant value to all primal and dual
variables. This starting point is normally robust.

startpointtype.satisfy_bounds
The starting point is chosen to satisfy all the simple bounds on nonlinear variables. If this
starting point is employed, then more care than usual should employed when choosing the
bounds on the nonlinear variables. In particular very tight bounds should be avoided.

streamtype
Stream types
streamtype.log

Log stream. Contains the aggregated contents of all other streams. This means that a message
written to any other stream will also be written to this stream.

streamtype.msg
Message stream. Log information relating to performance and progress of the optimization is
written to this stream.

449

streamtype.err
Error stream. Error messages are written to this stream.

streamtype.wrn
Warning stream. Warning messages are written to this stream.

value
Integer values

value.max_str_len
Maximum string length allowed in MOSEK.

value.license_buffer_length
The length of a license key buffer.

variabletype
Variable types

variabletype.type_cont
Is a continuous variable.

variabletype.type_int
Is an integer variable.

15.10 Function Types

callbackfunc

callbackfunc(code, dinf, iinf, liinf) -> stop

The progress and information callback function is a user-defined function which will be called by
MOSEK occasionally during the optimization process. In particular, the callback function is
called at the beginning of each iteration in the interior-point optimizer. For the simplex optimizers
iparam.log_sim_freq controls how frequently the callback is called.

The user must not call any MOSEK function directly or indirectly from the callback function.
The only exception is the possibility to retrieve an integer solution, see Progress and data callback .

Parameters
• code (callbackcode) – Callback code indicating current operation of the solver.

(input)
• dinf (float[]) – Array of double information items. (input)
• iinf (int[]) – Array of integer information items. (input)
• liinf (int[]) – Array of long integer information items. (input)

Return stop (int) – Non-zero if the optimizer should be terminated; zero otherwise.

progresscallbackfunc

progresscallbackfunc(code) -> stop

The progress callback function is a user-defined function which will be called by MOSEK occasion-
ally during the optimization process. In particular, the callback function is called at the beginning
of each iteration in the interior-point optimizer. For the simplex optimizers iparam.log_sim_freq
controls how frequently the callback is called.

The user must not call any MOSEK function directly or indirectly from the callback function. If
the progress callback function returns a non-zero value, the optimization process is terminated.

Parameters code (mosek.callbackcode) – Callback code indicating the current status
of the solver. (input)

Return stop (int) – Non-zero if the optimizer should be terminated; zero otherwise.

streamfunc

450

streamfunc(msg)

The message-stream callback function is a user-defined function which can be linked to any of the
MOSEK streams. Doing so, the function is called whenever MOSEK sends a message to the
stream.

The user must not call any MOSEK function directly or indirectly from the callback function.

Parameters msg (str) – A string containing the message. (input)

15.11 Supported domains

This section lists the domains supported by MOSEK. See Sec. 6 for how to apply domains to specify
affine conic constraints (ACCs) and disjunctive constraints (DJCs).

15.11.1 Linear domains
Each linear domain is determined by the dimension 𝑛.

• Task.appendrzerodomain : the zero domain, consisting of the origin 0𝑛 ∈ R𝑛.

• Task.appendrplusdomain : the nonnegative orthant domain R𝑛
≥0.

• Task.appendrminusdomain : the nonpositive orthant domain R𝑛
≤0.

• Task.appendrdomain : the free domain, consisting of the whole R𝑛.

Membership in a linear domain is equivalent to imposing the corresponding set of 𝑛 linear constraints,
for instance 𝐹𝑥+ 𝑔 ∈ 0𝑛 is equivalent to 𝐹𝑥+ 𝑔 = 0 and so on. The free domain imposes no restriction.

15.11.2 Quadratic cone domains
The quadratic domains are determined by the dimension 𝑛.

• Task.appendquadraticconedomain : the quadratic cone domain is the subset of R𝑛 defined
as

𝒬𝑛 =

{︂
𝑥 ∈ R𝑛 : 𝑥1 ≥

√︁
𝑥2
2 + · · · + 𝑥2

𝑛

}︂
.

• Task.appendrquadraticconedomain : the rotated quadratic cone domain is the subset of R𝑛

defined as

𝒬𝑛
𝑟 =

{︀
𝑥 ∈ R𝑛 : 2𝑥1𝑥2 ≥ 𝑥2

3 + · · · + 𝑥2
𝑛, 𝑥1, 𝑥2 ≥ 0

}︀
.

15.11.3 Exponential cone domains

• Task.appendprimalexpconedomain : the primal exponential cone domain is the subset of R3

defined as

𝐾exp =
{︀

(𝑥1, 𝑥2, 𝑥3) ∈ R3 : 𝑥1 ≥ 𝑥2 exp(𝑥3/𝑥2), 𝑥1, 𝑥2 ≥ 0
}︀
.

• Task.appenddualexpconedomain : the dual exponential cone domain is the subset of R3

defined as

𝐾*
exp =

{︀
(𝑥1, 𝑥2, 𝑥3) ∈ R3 : 𝑥1 ≤ −𝑥3 exp(𝑥2/𝑥3 − 1), 𝑥1 ≥ 0, 𝑥3 ≤ 0

}︀
.

451

15.11.4 Power cone domains
A power cone domain is determined by the dimension 𝑛 and a sequence of 1 ≤ 𝑛𝑙 < 𝑛 positive real
numbers (weights) 𝛼1, . . . , 𝛼𝑛𝑙

.

• Task.appendprimalpowerconedomain : the primal power cone domain is the subset of R𝑛

defined as

𝒫(𝛼1,...,𝛼𝑛𝑙
)

𝑛 =

{︃
𝑥 ∈ R𝑛 :

𝑛𝑙∏︁
𝑖=1

𝑥𝛽𝑖

𝑖 ≥
√︁

𝑥2
𝑛𝑙+1 + · · · + 𝑥2

𝑛, 𝑥1, . . . , 𝑥𝑛𝑙
≥ 0

}︃
.

where 𝛽𝑖 are the weights normalized to add up to 1, ie. 𝛽𝑖 = 𝛼𝑖/(
∑︀

𝑗 𝛼𝑗) for 𝑖 = 1, . . . , 𝑛𝑙.
The name 𝑛𝑙 reads as “n left”, the length of the product on the left-hand side of the definition.

• Task.appenddualpowerconedomain : the dual power cone domain is the subset of R𝑛 defined
as

(︁
𝒫(𝛼1,...,𝛼𝑛𝑙

)
𝑛

)︁*
=

{︃
𝑥 ∈ R𝑛 :

𝑛𝑙∏︁
𝑖=1

(︂
𝑥𝑖

𝛽𝑖

)︂𝛽𝑖

≥
√︁
𝑥2
𝑛𝑙+1 + · · · + 𝑥2

𝑛, 𝑥1, . . . , 𝑥𝑛𝑙
≥ 0

}︃
.

where 𝛽𝑖 are the weights normalized to add up to 1, ie. 𝛽𝑖 = 𝛼𝑖/(
∑︀

𝑗 𝛼𝑗) for 𝑖 = 1, . . . , 𝑛𝑙.
The name 𝑛𝑙 reads as “n left”, the length of the product on the left-hand side of the definition.

• Remark: in MOSEK 9 power cones were available only in the special case with 𝑛𝑙 = 2 and weights
(𝛼, 1 − 𝛼) for some 0 < 𝛼 < 1 specified as cone parameter.

15.11.5 Geometric mean cone domains
A geometric mean cone domain is determined by the dimension 𝑛.

• Task.appendprimalgeomeanconedomain : the primal geometric mean cone domain is the
subset of R𝑛 defined as

𝒢ℳ𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 :

(︃
𝑛−1∏︁
𝑖=1

𝑥𝑖

)︃1/(𝑛−1)

≥ |𝑥𝑛|, 𝑥1, . . . , 𝑥𝑛−1 ≥ 0

⎫⎬⎭ .

It is a special case of the primal power cone domain with 𝑛𝑙 = 𝑛−1 and weights 𝛼 = (1, . . . , 1).

• Task.appenddualgeomeanconedomain : the dual geometric mean cone domain is the subset
of R𝑛 defined as

(𝒢ℳ𝑛)* =

⎧⎨⎩𝑥 ∈ R𝑛 : (𝑛− 1)

(︃
𝑛−1∏︁
𝑖=1

𝑥𝑖

)︃1/(𝑛−1)

≥ |𝑥𝑛|, 𝑥1, . . . , 𝑥𝑛−1 ≥ 0

⎫⎬⎭ .

It is a special case of the dual power cone domain with 𝑛𝑙 = 𝑛−1 and weights 𝛼 = (1, . . . , 1).

15.11.6 Vectorized semidefinite domain
• Task.appendsvecpsdconedomain : the vectorized PSD cone domain is determined by the

dimension 𝑛, which must be of the form 𝑛 = 𝑑(𝑑 + 1)/2. Then the domain is defined as

𝒮𝑑,vec
+ =

{︀
(𝑥1, . . . , 𝑥𝑑(𝑑+1)/2) ∈ R𝑛 : sMat(𝑥) ∈ 𝒮𝑑

+

}︀
,

452

where

sMat(𝑥) =

⎡⎢⎢⎣
𝑥1 𝑥2/

√
2 · · · 𝑥𝑑/

√
2

𝑥2/
√

2 𝑥𝑑+1 · · · 𝑥2𝑑−1/
√

2
· · · · · · · · · · · ·

𝑥𝑑/
√

2 𝑥2𝑑−1/
√

2 · · · 𝑥𝑑(𝑑+1)/2

⎤⎥⎥⎦ ,

or equivalently

𝒮𝑑,vec
+ =

{︀
sVec(𝑋) : 𝑋 ∈ 𝒮𝑑

+

}︀
,

where

sVec(𝑋) = (𝑋11,
√

2𝑋21, . . . ,
√

2𝑋𝑑1, 𝑋22,
√

2𝑋32, . . . , 𝑋𝑑𝑑).

In other words, the domain consists of vectorizations of the lower-triangular part of a positive
semidefinite matrix, with the non-diagonal elements additionally rescaled.

453

Chapter 16

Supported File Formats

MOSEK supports a range of problem and solution formats listed in Table 16.1 and Table 16.2.
The most important are:

• the Task format, MOSEK‘s native binary format which supports all features that MOSEK
supports. It is the closest possible representation of the internal data in a task and it is ideal for
submitting problem data support questions.

• the PTF format, MOSEK‘s human-readable format that supports all linear, conic and mixed-
integer features. It is ideal for debugging. It is not an exact copy of all the data in the task, but
it contains all information required to reconstruct it, presented in a readable fashion.

• MPS, LP, CBF formats are industry standards, each supporting some limited set of features, and
potentially requiring some degree of reformulation during read/write.

Problem formats

Table 16.1: List of supported file formats for optimization prob-
lems.

Format Type Ext. Binary/Text LP QCQO ACC SDP DJC Sol Param
LP lp plain text X X
MPS mps plain text X X
PTF ptf plain text X X X X X
CBF cbf plain text X X X
Task format task binary X X X X X X X
Jtask format jtask text/JSON X X X X X X X
OPF (deprecated for conic problems) opf plain text X X X X

The columns of the table indicate if the specified file format supports:

• LP - linear problems,

• QCQO - quadratic objective or constraints,

• ACC - affine conic constraints,

• SDP - semidefinite cone/variables,

• DJC - disjunctive constraints,

• Sol - solutions,

• Param - optimizer parameters.

454

Solution formats

Table 16.2: List of supported solution formats.
Format Type Ext. Binary/Text Description
SOL sol plain text Interior Solution

bas plain text Basic Solution
int plain text Integer

Jsol format jsol text/JSON All solutions

Compression

MOSEK supports GZIP and Zstandard compression. Problem files with extension .gz (for GZIP) and
.zst (for Zstandard) are assumed to be compressed when read, and are automatically compressed when
written. For example, a file called

problem.mps.zst

will be considered as a Zstandard compressed MPS file.

16.1 The LP File Format

MOSEK supports the LP file format with some extensions. The LP format is not a completely well-
defined standard and hence different optimization packages may interpret the same LP file in slightly
different ways. MOSEK tries to emulate as closely as possible CPLEX’s behavior, but tries to stay
backward compatible.

The LP file format can specify problems of the form

minimize/maximize 𝑐𝑇𝑥 + 1
2𝑞

𝑜(𝑥)
subject to 𝑙𝑐 ≤ 𝐴𝑥 + 1

2𝑞(𝑥) ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥𝒥 integer,

where

• 𝑥 ∈ R𝑛 is the vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear term in the objective.

• 𝑞𝑜 :∈ R𝑛 → R is the quadratic term in the objective where

𝑞𝑜(𝑥) = 𝑥𝑇𝑄𝑜𝑥

and it is assumed that

𝑄𝑜 = (𝑄𝑜)𝑇 .

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

• 𝑞 : R𝑛 → R is a vector of quadratic functions. Hence,

𝑞𝑖(𝑥) = 𝑥𝑇𝑄𝑖𝑥

where it is assumed that

𝑄𝑖 = (𝑄𝑖)𝑇 .

• 𝒥 ⊆ {1, 2, . . . , 𝑛} is an index set of the integer constrained variables.

455

16.1.1 File Sections
An LP formatted file contains a number of sections specifying the objective, constraints, variable bounds,
and variable types. The section keywords may be any mix of upper and lower case letters.

Objective Function

The first section beginning with one of the keywords

max
maximum
maximize
min
minimum
minimize

defines the objective sense and the objective function, i.e.

𝑐𝑇𝑥 +
1

2
𝑥𝑇𝑄𝑜𝑥.

The objective may be given a name by writing

myname:

before the expressions. If no name is given, then the objective is named obj.
The objective function contains linear and quadratic terms. The linear terms are written as

4 x1 + x2 - 0.1 x3

and so forth. The quadratic terms are written in square brackets ([]/2) and are either squared or
multiplied as in the examples

x1^2

and

x1 * x2

There may be zero or more pairs of brackets containing quadratic expressions.
An example of an objective section is

minimize
myobj: 4 x1 + x2 - 0.1 x3 + [x1^2 + 2.1 x1 * x2]/2

Please note that the quadratic expressions are multiplied with 1
2 , so that the above expression means

minimize 4𝑥1 + 𝑥2 − 0.1 · 𝑥3 + 1
2 (𝑥2

1 + 2.1 · 𝑥1 · 𝑥2)

If the same variable occurs more than once in the linear part, the coefficients are added, so that 4 x1 +
2 x1 is equivalent to 6 x1. In the quadratic expressions x1 * x2 is equivalent to x2 * x1 and, as in the
linear part, if the same variables multiplied or squared occur several times their coefficients are added.

Constraints

The second section beginning with one of the keywords

subj to
subject to
s.t.
st

defines the linear constraint matrix 𝐴 and the quadratic matrices 𝑄𝑖.
A constraint contains a name (optional), expressions adhering to the same rules as in the objective

and a bound:

456

subject to
con1: x1 + x2 + [x3^2]/2 <= 5.1

The bound type (here <=) may be any of <, <=, =, >, >= (< and <= mean the same), and the bound
may be any number.

In the standard LP format it is not possible to define more than one bound per line, but MOSEK
supports defining ranged constraints by using double-colon (::) instead of a single-colon (:) after the
constraint name, i.e.

−5 ≤ 𝑥1 + 𝑥2 ≤ 5 (16.1)

may be written as

con:: -5 < x_1 + x_2 < 5

By default MOSEK writes ranged constraints this way.
If the files must adhere to the LP standard, ranged constraints must either be split into upper

bounded and lower bounded constraints or be written as an equality with a slack variable. For example
the expression (16.1) may be written as

𝑥1 + 𝑥2 − 𝑠𝑙1 = 0, −5 ≤ 𝑠𝑙1 ≤ 5.

Bounds

Bounds on the variables can be specified in the bound section beginning with one of the keywords

bound
bounds

The bounds section is optional but should, if present, follow the subject to section. All variables
listed in the bounds section must occur in either the objective or a constraint.

The default lower and upper bounds are 0 and +∞ . A variable may be declared free with the keyword
free, which means that the lower bound is −∞ and the upper bound is +∞ . Furthermore it may be
assigned a finite lower and upper bound. The bound definitions for a given variable may be written in
one or two lines, and bounds can be any number or ±∞ (written as +inf/-inf/+infinity/-infinity)
as in the example

bounds
x1 free
x2 <= 5
0.1 <= x2
x3 = 42
2 <= x4 < +inf

Variable Types

The final two sections are optional and must begin with one of the keywords

bin
binaries
binary

and

gen
general

Under general all integer variables are listed, and under binary all binary (integer variables with
bounds 0 and 1) are listed:

457

general
x1 x2
binary
x3 x4

Again, all variables listed in the binary or general sections must occur in either the objective or a
constraint.

Terminating Section

Finally, an LP formatted file must be terminated with the keyword

end

16.1.2 LP File Examples

Linear example lo1.lp

\ File: lo1.lp
maximize
obj: 3 x1 + x2 + 5 x3 + x4
subject to
c1: 3 x1 + x2 + 2 x3 = 30
c2: 2 x1 + x2 + 3 x3 + x4 >= 15
c3: 2 x2 + 3 x4 <= 25
bounds
0 <= x1 <= +infinity
0 <= x2 <= 10
0 <= x3 <= +infinity
0 <= x4 <= +infinity

end

Mixed integer example milo1.lp

maximize
obj: x1 + 6.4e-01 x2
subject to
c1: 5e+01 x1 + 3.1e+01 x2 <= 2.5e+02
c2: 3e+00 x1 - 2e+00 x2 >= -4e+00
bounds
0 <= x1 <= +infinity
0 <= x2 <= +infinity

general
x1 x2

end

458

16.1.3 LP Format peculiarities

Comments

Anything on a line after a \ is ignored and is treated as a comment.

Names

A name for an objective, a constraint or a variable may contain the letters a-z, A-Z, the digits 0-9 and
the characters

!"#$%&()/,.;?@_'`|~

The first character in a name must not be a number, a period or the letter e or E. Keywords must
not be used as names.

MOSEK accepts any character as valid for names, except \0. A name that is not allowed in LP file
will be changed and a warning will be issued.

The algorithm for making names LP valid works as follows: The name is interpreted as an utf-8
string. For a Unicode character c:

• If c==_ (underscore), the output is __ (two underscores).

• If c is a valid LP name character, the output is just c.

• If c is another character in the ASCII range, the output is _XX, where XX is the hexadecimal code
for the character.

• If c is a character in the range 127-65535, the output is _uXXXX, where XXXX is the hexadecimal
code for the character.

• If c is a character above 65535, the output is _UXXXXXXXX, where XXXXXXXX is the hexadecimal
code for the character.

Invalid utf-8 substrings are escaped as _XX', and if a name starts with a period, e or E, that character
is escaped as _XX.

Variable Bounds

Specifying several upper or lower bounds on one variable is possible but MOSEK uses only the tightest
bounds. If a variable is fixed (with =), then it is considered the tightest bound.

16.2 The MPS File Format

MOSEK supports the standard MPS format with some extensions. For a detailed description of the
MPS format see the book by Nazareth [Naz87].

16.2.1 MPS File Structure
The version of the MPS format supported by MOSEK allows specification of an optimization problem
of the form

maximize/minimize 𝑐𝑇𝑥 + 𝑞0(𝑥)
𝑙𝑐 ≤ 𝐴𝑥 + 𝑞(𝑥) ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ 𝒦,
𝑥𝒥 integer,

(16.2)

where

• 𝑥 ∈ R𝑛 is the vector of decision variables.

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

459

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

• 𝑞 : R𝑛 → R is a vector of quadratic functions. Hence,

𝑞𝑖(𝑥) =
1

2
𝑥𝑇𝑄𝑖𝑥

where it is assumed that 𝑄𝑖 = (𝑄𝑖)𝑇 . Please note the explicit 1
2 in the quadratic term and that 𝑄𝑖

is required to be symmetric. The same applies to 𝑞0.

• 𝒦 is a convex cone.

• 𝒥 ⊆ {1, 2, . . . , 𝑛} is an index set of the integer-constrained variables.

• 𝑐 is the vector of objective coefficients.

An MPS file with one row and one column can be illustrated like this:

* 1 2 3 4 5 6
*23456789012345678901234567890123456789012345678901234567890
NAME [name]
OBJSENSE

[objsense]
OBJNAME [objname]
ROWS
? [cname1]

COLUMNS
[vname1] [cname1] [value1] [cname2] [value2]

RHS
[name] [cname1] [value1] [cname2] [value2]

RANGES
[name] [cname1] [value1] [cname2] [value2]

QSECTION [cname1]
[vname1] [vname2] [value1] [vname3] [value2]

QMATRIX
[vname1] [vname2] [value1]

QUADOBJ
[vname1] [vname2] [value1]

QCMATRIX [cname1]
[vname1] [vname2] [value1]

BOUNDS
?? [name] [vname1] [value1]

CSECTION [kname1] [value1] [ktype]
[vname1]

ENDATA

Here the names in capitals are keywords of the MPS format and names in brackets are custom defined
names or values. A couple of notes on the structure:

• Fields: All items surrounded by brackets appear in fields. The fields named “valueN” are numerical
values. Hence, they must have the format

[+|-]XXXXXXX.XXXXXX[[e|E][+|-]XXX]

where

X = [0|1|2|3|4|5|6|7|8|9].

• Sections: The MPS file consists of several sections where the names in capitals indicate the begin-
ning of a new section. For example, COLUMNS denotes the beginning of the columns section.

460

• Comments: Lines starting with an * are comment lines and are ignored by MOSEK.

• Keys: The question marks represent keys to be specified later.

• Extensions: The sections QSECTION and CSECTION are specific MOSEK extensions of the MPS
format. The sections QMATRIX, QUADOBJ and QCMATRIX are included for sake of compatibility with
other vendors extensions to the MPS format.

• The standard MPS format is a fixed format, i.e. everything in the MPS file must be within certain
fixed positions. MOSEK also supports a free format. See Sec. 16.2.5 for details.

Linear example lo1.mps

A concrete example of a MPS file is presented below:

* File: lo1.mps
NAME lo1
OBJSENSE

MAX
ROWS
N obj
E c1
G c2
L c3

COLUMNS
x1 obj 3
x1 c1 3
x1 c2 2
x2 obj 1
x2 c1 1
x2 c2 1
x2 c3 2
x3 obj 5
x3 c1 2
x3 c2 3
x4 obj 1
x4 c2 1
x4 c3 3

RHS
rhs c1 30
rhs c2 15
rhs c3 25

RANGES
BOUNDS
UP bound x2 10

ENDATA

Subsequently each individual section in the MPS format is discussed.

NAME (optional)

In this section a name ([name]) is assigned to the problem.

461

OBJSENSE (optional)

This is an optional section that can be used to specify the sense of the objective function. The OBJSENSE
section contains one line at most which can be one of the following:

MIN
MINIMIZE
MAX
MAXIMIZE

It should be obvious what the implication is of each of these four lines.

OBJNAME (optional)

This is an optional section that can be used to specify the name of the row that is used as objective
function. objname should be a valid row name.

ROWS

A record in the ROWS section has the form

? [cname1]

where the requirements for the fields are as follows:

Field Starting Position Max Width required Description
? 2 1 Yes Constraint key
[cname1] 5 8 Yes Constraint name

Hence, in this section each constraint is assigned a unique name denoted by [cname1]. Please note
that [cname1] starts in position 5 and the field can be at most 8 characters wide. An initial key ? must
be present to specify the type of the constraint. The key can have values E, G, L, or N with the following
interpretation:

Constraint type 𝑙𝑐𝑖 𝑢𝑐
𝑖

E (equal) finite = 𝑙𝑐𝑖
G (greater) finite ∞
L (lower) −∞ finite
N (none) −∞ ∞

In the MPS format the objective vector is not specified explicitly, but one of the constraints having
the key N will be used as the objective vector 𝑐 . In general, if multiple N type constraints are specified,
then the first will be used as the objective vector 𝑐, unless something else was specified in the section
OBJNAME.

COLUMNS

In this section the elements of 𝐴 are specified using one or more records having the form:

[vname1] [cname1] [value1] [cname2] [value2]

where the requirements for each field are as follows:

Field Starting Position Max Width required Description
[vname1] 5 8 Yes Variable name
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

Hence, a record specifies one or two elements 𝑎𝑖𝑗 of 𝐴 using the principle that [vname1] and [cname1]
determines 𝑗 and 𝑖 respectively. Please note that [cname1] must be a constraint name specified in the

462

ROWS section. Finally, [value1] denotes the numerical value of 𝑎𝑖𝑗 . Another optional element is specified
by [cname2], and [value2] for the variable specified by [vname1]. Some important comments are:

• All elements belonging to one variable must be grouped together.

• Zero elements of 𝐴 should not be specified.

• At least one element for each variable should be specified.

RHS (optional)

A record in this section has the format

[name] [cname1] [value1] [cname2] [value2]

where the requirements for each field are as follows:

Field Starting Position Max Width required Description
[name] 5 8 Yes Name of the RHS vector
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

The interpretation of a record is that [name] is the name of the RHS vector to be specified. In general,
several vectors can be specified. [cname1] denotes a constraint name previously specified in the ROWS
section. Now, assume that this name has been assigned to the 𝑖 -h constraint and 𝑣1 denotes the value
specified by [value1], then the interpretation of 𝑣1 is:

Constraint 𝑙𝑐𝑖 𝑢𝑐
𝑖

E 𝑣1 𝑣1
G 𝑣1
L 𝑣1
N

An optional second element is specified by [cname2] and [value2] and is interpreted in the same
way. Please note that it is not necessary to specify zero elements, because elements are assumed to be
zero.

RANGES (optional)

A record in this section has the form

[name] [cname1] [value1] [cname2] [value2]

where the requirements for each fields are as follows:

Field Starting Position Max Width required Description
[name] 5 8 Yes Name of the RANGE vector
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

The records in this section are used to modify the bound vectors for the constraints, i.e. the values
in 𝑙𝑐 and 𝑢𝑐 . A record has the following interpretation:[name] is the name of the RANGE vector and
[cname1] is a valid constraint name. Assume that [cname1] is assigned to the 𝑖-th constraint and let
𝑣1 be the value specified by [value1], then a record has the interpretation:

463

Constraint type Sign of 𝑣1 𝑙𝑐𝑖 𝑢𝑐
𝑖

E − 𝑢𝑐
𝑖 + 𝑣1

E + 𝑙𝑐𝑖 + 𝑣1
G − or + 𝑙𝑐𝑖 + |𝑣1|
L − or + 𝑢𝑐

𝑖 − |𝑣1|
N

Another constraint bound can optionally be modified using [cname2] and [value2] the same way.

QSECTION (optional)

Within the QSECTION the label [cname1] must be a constraint name previously specified in the ROWS
section. The label [cname1] denotes the constraint to which the quadratic terms belong. A record in
the QSECTION has the form

[vname1] [vname2] [value1] [vname3] [value2]

where the requirements for each field are:

Field Starting Position Max Width required Description
[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value
[vname3] 40 8 No Variable name
[value2] 50 12 No Numerical value

A record specifies one or two elements in the lower triangular part of the 𝑄𝑖 matrix where [cname1]
specifies the 𝑖 . Hence, if the names [vname1] and [vname2] have been assigned to the 𝑘-th and 𝑗-th
variable, then 𝑄𝑖

𝑘𝑗 is assigned the value given by [value1] An optional second element is specified in
the same way by the fields [vname1], [vname3], and [value2].

The example

minimize −𝑥2 + 1
2 (2𝑥2

1 − 2𝑥1𝑥3 + 0.2𝑥2
2 + 2𝑥2

3)
subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,

𝑥 ≥ 0

has the following MPS file representation

* File: qo1.mps
NAME qo1
ROWS
N obj
G c1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0

QSECTION obj
x1 x1 2.0
x1 x3 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Regarding the QSECTIONs please note that:

• Only one QSECTION is allowed for each constraint.

464

• The QSECTIONs can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QSECTION must already be specified in the COLUMNS section.

• All entries specified in a QSECTION are assumed to belong to the lower triangular part of the
quadratic term of 𝑄 .

QMATRIX/QUADOBJ (optional)

The QMATRIX and QUADOBJ sections allow to define the quadratic term of the objective function. They
differ in how the quadratic term of the objective function is stored:

• QMATRIX stores all the nonzeros coefficients, without taking advantage of the symmetry of the 𝑄
matrix.

• QUADOBJ stores the upper diagonal nonzero elements of the 𝑄 matrix.

A record in both sections has the form:

[vname1] [vname2] [value1]

where the requirements for each field are:

Field Starting Position Max Width required Description
[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value

A record specifies one elements of the 𝑄 matrix in the objective function . Hence, if the names
[vname1] and [vname2] have been assigned to the 𝑘-th and 𝑗-th variable, then 𝑄𝑘𝑗 is assigned the value
given by [value1]. Note that a line must appear for each off-diagonal coefficient if using a QMATRIX
section, while only one entry is required in a QUADOBJ section. The quadratic part of the objective
function will be evaluated as 1/2𝑥𝑇𝑄𝑥.

The example

minimize −𝑥2 + 1
2 (2𝑥2

1 − 2𝑥1𝑥3 + 0.2𝑥2
2 + 2𝑥2

3)
subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,

𝑥 ≥ 0

has the following MPS file representation using QMATRIX

* File: qo1_matrix.mps
NAME qo1_qmatrix
ROWS
N obj
G c1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0

QMATRIX
x1 x1 2.0
x1 x3 -1.0
x3 x1 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

or the following using QUADOBJ

465

* File: qo1_quadobj.mps
NAME qo1_quadobj
ROWS
N obj
G c1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0

QUADOBJ
x1 x1 2.0
x1 x3 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Please also note that:

• A QMATRIX/QUADOBJ section can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QMATRIX/QUADOBJ section must already be specified in the
COLUMNS section.

QCMATRIX (optional)

A QCMATRIX section allows to specify the quadratic part of a given constraint. Within the QCMATRIX the
label [cname1] must be a constraint name previously specified in the ROWS section. The label [cname1]
denotes the constraint to which the quadratic term belongs. A record in the QSECTION has the form

[vname1] [vname2] [value1]

where the requirements for each field are:

Field Starting Position Max Width required Description
[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value

A record specifies an entry of the 𝑄𝑖 matrix where [cname1] specifies the 𝑖. Hence, if the names
[vname1] and [vname2] have been assigned to the 𝑘-th and 𝑗-th variable, then 𝑄𝑖

𝑘𝑗 is assigned the value
given by [value1]. Moreover, the quadratic term is represented as 1/2𝑥𝑇𝑄𝑥.

The example

minimize 𝑥2

subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,
1
2 (−2𝑥1𝑥3 + 0.2𝑥2

2 + 2𝑥2
3) ≤ 10,

𝑥 ≥ 0

has the following MPS file representation

* File: qo1.mps
NAME qo1
ROWS
N obj
G c1
L q1

COLUMNS
(continues on next page)

466

(continued from previous page)

x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0
rhs q1 10.0

QCMATRIX q1
x1 x1 2.0
x1 x3 -1.0
x3 x1 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Regarding the QCMATRIXs please note that:

• Only one QCMATRIX is allowed for each constraint.

• The QCMATRIXs can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QSECTION must already be specified in the COLUMNS section.

• QCMATRIX does not exploit the symmetry of 𝑄: an off-diagonal entry (𝑖, 𝑗) should appear twice.

BOUNDS (optional)

In the BOUNDS section changes to the default bounds vectors 𝑙𝑥 and 𝑢𝑥 are specified. The default bounds
vectors are 𝑙𝑥 = 0 and 𝑢𝑥 = ∞ . Moreover, it is possible to specify several sets of bound vectors. A
record in this section has the form

?? [name] [vname1] [value1]

where the requirements for each field are:

Field Starting Position Max Width Required Description
?? 2 2 Yes Bound key
[name] 5 8 Yes Name of the BOUNDS vector
[vname1] 15 8 Yes Variable name
[value1] 25 12 No Numerical value

Hence, a record in the BOUNDS section has the following interpretation:[name] is the name of the
bound vector and [vname1] is the name of the variable for which the bounds are modified by the record.
?? and [value1] are used to modify the bound vectors according to the following table:

?? 𝑙𝑥𝑗 𝑢𝑥
𝑗 Made integer (added to 𝒥)

FR −∞ ∞ No
FX 𝑣1 𝑣1 No
LO 𝑣1 unchanged No
MI −∞ unchanged No
PL unchanged ∞ No
UP unchanged 𝑣1 No
BV 0 1 Yes
LI ⌈𝑣1⌉ unchanged Yes
UI unchanged ⌊𝑣1⌋ Yes

Here 𝑣1 is the value specified by [value1].

467

CSECTION (optional)

The purpose of the CSECTION is to specify the conic constraint

𝑥 ∈ 𝒦

in (16.2). It is assumed that 𝒦 satisfies the following requirements. Let

𝑥𝑡 ∈ R𝑛𝑡

, 𝑡 = 1, . . . , 𝑘

be vectors comprised of parts of the decision variables 𝑥 so that each decision variable is a member of
exactly one vector 𝑥𝑡, for example

𝑥1 =

⎡⎣ 𝑥1

𝑥4

𝑥7

⎤⎦ and 𝑥2 =

⎡⎢⎢⎣
𝑥6

𝑥5

𝑥3

𝑥2

⎤⎥⎥⎦ .

Next define

𝒦 :=
{︀
𝑥 ∈ R𝑛 : 𝑥𝑡 ∈ 𝒦𝑡, 𝑡 = 1, . . . , 𝑘

}︀
where 𝒦𝑡 must have one of the following forms:

• R set:

𝒦𝑡 = R𝑛𝑡

.

• Zero cone:

𝒦𝑡 = {0} ⊆ R𝑛𝑡

. (16.3)

• Quadratic cone:

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 𝑥1 ≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=2

𝑥2
𝑗

⎫⎬⎭ . (16.4)

• Rotated quadratic cone:

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 2𝑥1𝑥2 ≥
𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ . (16.5)

• Primal exponential cone:

𝒦𝑡 =
{︀
𝑥 ∈ R3 : 𝑥1 ≥ 𝑥2 exp(𝑥3/𝑥2), 𝑥1, 𝑥2 ≥ 0

}︀
. (16.6)

• Primal power cone (with parameter 0 < 𝛼 < 1):

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 𝑥𝛼
1𝑥

1−𝛼
2 ≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ . (16.7)

• Dual exponential cone:

𝒦𝑡 =
{︀
𝑥 ∈ R3 : 𝑥1 ≥ −𝑥3𝑒

−1 exp(𝑥2/𝑥3), 𝑥3 ≤ 0, 𝑥1 ≥ 0
}︀
. (16.8)

• Dual power cone (with parameter 0 < 𝛼 < 1):

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

:
(︁𝑥1

𝛼

)︁𝛼(︂ 𝑥2

1 − 𝛼

)︂1−𝛼

≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ . (16.9)

468

In general, membership in the R set is not specified. If a variable is not a member of any other cone
then it is assumed to be a member of the R cone.

Next, let us study an example. Assume that the power cone

𝑥
1/3
4 𝑥

2/3
5 ≥ |𝑥8|

and the rotated quadratic cone

2𝑥3𝑥7 ≥ 𝑥2
1 + 𝑥2

0, 𝑥3, 𝑥7 ≥ 0,

should be specified in the MPS file. One CSECTION is required for each cone and they are specified as
follows:

* 1 2 3 4 5 6
*23456789012345678901234567890123456789012345678901234567890
CSECTION konea 3e-1 PPOW
x4
x5
x8
CSECTION koneb 0.0 RQUAD
x7
x3
x1
x0

In general, a CSECTION header has the format

CSECTION [kname1] [value1] [ktype]

where the requirements for each field are as follows:

Field Starting Position Max Width Required Description
[kname1] 15 8 Yes Name of the cone
[value1] 25 12 No Cone parameter
[ktype] 40 Yes Type of the cone.

The possible cone type keys are:

[ktype] Members [value1] Interpretation.
ZERO ≥ 0 unused Zero cone (16.3).
QUAD ≥ 1 unused Quadratic cone (16.4).
RQUAD ≥ 2 unused Rotated quadratic cone (16.5).
PEXP 3 unused Primal exponential cone (16.6).
PPOW ≥ 2 𝛼 Primal power cone (16.7).
DEXP 3 unused Dual exponential cone (16.8).
DPOW ≥ 2 𝛼 Dual power cone (16.9).

A record in the CSECTION has the format

[vname1]

where the requirements for each field are

Field Starting Position Max Width required Description
[vname1] 5 8 Yes A valid variable name

A variable must occur in at most one CSECTION.

469

ENDATA

This keyword denotes the end of the MPS file.

16.2.2 Integer Variables
Using special bound keys in the BOUNDS section it is possible to specify that some or all of the variables
should be integer-constrained i.e. be members of 𝒥 . However, an alternative method is available. This
method is available only for backward compatibility and we recommend that it is not used. This method
requires that markers are placed in the COLUMNS section as in the example:

COLUMNS
x1 obj -10.0 c1 0.7
x1 c2 0.5 c3 1.0
x1 c4 0.1
* Start of integer-constrained variables.
MARK000 'MARKER' 'INTORG'
x2 obj -9.0 c1 1.0
x2 c2 0.8333333333 c3 0.66666667
x2 c4 0.25
x3 obj 1.0 c6 2.0
MARK001 'MARKER' 'INTEND'
* End of integer-constrained variables.

Please note that special marker lines are used to indicate the start and the end of the integer variables.
Furthermore be aware of the following

• All variables between the markers are assigned a default lower bound of 0 and a default upper
bound of 1. This may not be what is intended. If it is not intended, the correct bounds
should be defined in the BOUNDS section of the MPS formatted file.

• MOSEK ignores field 1, i.e. MARK0001 and MARK001, however, other optimization systems require
them.

• Field 2, i.e. MARKER, must be specified including the single quotes. This implies that no row can
be assigned the name MARKER.

• Field 3 is ignored and should be left blank.

• Field 4, i.e. INTORG and INTEND, must be specified.

• It is possible to specify several such integer marker sections within the COLUMNS section.

16.2.3 General Limitations
• An MPS file should be an ASCII file.

16.2.4 Interpretation of the MPS Format
Several issues related to the MPS format are not well-defined by the industry standard. However,
MOSEK uses the following interpretation:

• If a matrix element in the COLUMNS section is specified multiple times, then the multiple entries are
added together.

• If a matrix element in a QSECTION section is specified multiple times, then the multiple entries are
added together.

470

16.2.5 The Free MPS Format
MOSEK supports a free format variation of the MPS format. The free format is similar to the MPS file
format but less restrictive, e.g. it allows longer names. However, a name must not contain any blanks.

Moreover, by default a line in the MPS file must not contain more than 1024 characters. By modifying
the parameter iparam.read_mps_width an arbitrary large line width will be accepted.

The free MPS format is default. To change to the strict and other formats use the parameter iparam.
read_mps_format .

Warning: This file format is to a large extent deprecated. While it can still be used for linear
and quadratic problems, for conic problems the Sec. 16.5 is recommended.

16.3 The OPF Format

The Optimization Problem Format (OPF) is an alternative to LP and MPS files for specifying optimiza-
tion problems. It is row-oriented, inspired by the CPLEX LP format.

Apart from containing objective, constraints, bounds etc. it may contain complete or partial solutions,
comments and extra information relevant for solving the problem. It is designed to be easily read and
modified by hand and to be forward compatible with possible future extensions.

Intended use

The OPF file format is meant to replace several other files:

• The LP file format: Any problem that can be written as an LP file can be written as an OPF file
too; furthermore it naturally accommodates ranged constraints and variables as well as arbitrary
characters in names, fixed expressions in the objective, empty constraints, and conic constraints.

• Parameter files: It is possible to specify integer, double and string parameters along with the
problem (or in a separate OPF file).

• Solution files: It is possible to store a full or a partial solution in an OPF file and later reload it.

16.3.1 The File Format
The format uses tags to structure data. A simple example with the basic sections may look like this:

[comment]
This is a comment. You may write almost anything here...
[/comment]

This is a single-line comment.

[objective min 'myobj']
x + 3 y + x^2 + 3 y^2 + z + 1
[/objective]

[constraints]
[con 'con01'] 4 <= x + y [/con]
[/constraints]

[bounds]
[b] -10 <= x,y <= 10 [/b]

[cone quad] x,y,z [/cone]
[/bounds]

A scope is opened by a tag of the form [tag] and closed by a tag of the form [/tag]. An opening
tag may accept a list of unnamed and named arguments, for examples:

471

[tag value] tag with one unnamed argument [/tag]
[tag arg=value] tag with one named argument [/tag]

Unnamed arguments are identified by their order, while named arguments may appear in any order,
but never before an unnamed argument. The value can be a quoted, single-quoted or double-quoted
text string, i.e.

[tag 'value'] single-quoted value [/tag]
[tag arg='value'] single-quoted value [/tag]
[tag "value"] double-quoted value [/tag]
[tag arg="value"] double-quoted value [/tag]

16.3.2 Sections
The recognized tags are

[comment]

A comment section. This can contain almost any text: Between single quotes (’) or double quotes (")
any text may appear. Outside quotes the markup characters ([and]) must be prefixed by backslashes.
Both single and double quotes may appear alone or inside a pair of quotes if it is prefixed by a backslash.

[objective]

The objective function: This accepts one or two parameters, where the first one (in the above example
min) is either min or max (regardless of case) and defines the objective sense, and the second one (above
myobj), if present, is the objective name. The section may contain linear and quadratic expressions.

If several objectives are specified, all but the last are ignored.

[constraints]

This does not directly contain any data, but may contain subsections con defining a linear constraint.

[con]

Defines a single constraint; if an argument is present ([con NAME]) this is used as the name of the
constraint, otherwise it is given a null-name. The section contains a constraint definition written as
linear and quadratic expressions with a lower bound, an upper bound, with both or with an equality.
Examples:

[constraints]
[con 'con1'] 0 <= x + y [/con]
[con 'con2'] 0 >= x + y [/con]
[con 'con3'] 0 <= x + y <= 10 [/con]
[con 'con4'] x + y = 10 [/con]
[/constraints]

Constraint names are unique. If a constraint is specified which has the same name as a previously
defined constraint, the new constraint replaces the existing one.

472

[bounds]

This does not directly contain any data, but may contain subsections b (linear bounds on variables) and
cone (cones).

[b]

Bound definition on one or several variables separated by comma (,). An upper or lower bound on a
variable replaces any earlier defined bound on that variable. If only one bound (upper or lower) is given
only this bound is replaced. This means that upper and lower bounds can be specified separately. So
the OPF bound definition:

[b] x,y >= -10 [/b]
[b] x,y <= 10 [/b]

results in the bound −10 ≤ 𝑥, 𝑦 ≤ 10.

[cone]

Specifies a cone. A cone is defined as a sequence of variables which belong to a single unique cone. The
supported cone types are:

• quad: a quadratic cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of the form

𝑥2
1 ≥

𝑛∑︁
𝑖=2

𝑥2
𝑖 , 𝑥1 ≥ 0.

• rquad: a rotated quadratic cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of the form

2𝑥1𝑥2 ≥
𝑛∑︁

𝑖=3

𝑥2
𝑖 , 𝑥1, 𝑥2 ≥ 0.

• pexp: primal exponential cone of 3 variables 𝑥1, 𝑥2, 𝑥3 defines a constraint of the form

𝑥1 ≥ 𝑥2 exp(𝑥3/𝑥2), 𝑥1, 𝑥2 ≥ 0.

• ppow with parameter 0 < 𝛼 < 1: primal power cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint
of the form

𝑥𝛼
1𝑥

1−𝛼
2 ≥

⎯⎸⎸⎷ 𝑛∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0.

• dexp: dual exponential cone of 3 variables 𝑥1, 𝑥2, 𝑥3 defines a constraint of the form

𝑥1 ≥ −𝑥3𝑒
−1 exp(𝑥2/𝑥3), 𝑥3 ≤ 0, 𝑥1 ≥ 0.

• dpow with parameter 0 < 𝛼 < 1: dual power cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of
the form

(︁𝑥1

𝛼

)︁𝛼(︂ 𝑥2

1 − 𝛼

)︂1−𝛼

≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0.

• zero: zero cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of the form

𝑥1 = · · · = 𝑥𝑛 = 0

A [bounds]-section example:

473

[bounds]
[b] 0 <= x,y <= 10 [/b] # ranged bound
[b] 10 >= x,y >= 0 [/b] # ranged bound
[b] 0 <= x,y <= inf [/b] # using inf
[b] x,y free [/b] # free variables
Let (x,y,z,w) belong to the cone K
[cone rquad] x,y,z,w [/cone] # rotated quadratic cone
[cone ppow '3e-01' 'a'] x1, x2, x3 [/cone] # power cone with alpha=1/3 and name 'a'
[/bounds]

By default all variables are free.

[variables]

This defines an ordering of variables as they should appear in the problem. This is simply a space-
separated list of variable names.

[integer]

This contains a space-separated list of variables and defines the constraint that the listed variables must
be integer-valued.

[hints]

This may contain only non-essential data; for example estimates of the number of variables, constraints
and non-zeros. Placed before all other sections containing data this may reduce the time spent reading
the file.

In the hints section, any subsection which is not recognized by MOSEK is simply ignored. In this
section a hint is defined as follows:

[hint ITEM] value [/hint]

The hints recognized by MOSEK are:

• numvar (number of variables),

• numcon (number of linear/quadratic constraints),

• numanz (number of linear non-zeros in constraints),

• numqnz (number of quadratic non-zeros in constraints).

[solutions]

This section can contain a set of full or partial solutions to a problem. Each solution must be specified
using a [solution]-section, i.e.

[solutions]
[solution]...[/solution] #solution 1
[solution]...[/solution] #solution 2
#other solutions....
[solution]...[/solution] #solution n
[/solutions]

The syntax of a [solution]-section is the following:

[solution SOLTYPE status=STATUS]...[/solution]

where SOLTYPE is one of the strings

• interior, a non-basic solution,

• basic, a basic solution,

474

• integer, an integer solution,

and STATUS is one of the strings

• UNKNOWN,

• OPTIMAL,

• INTEGER_OPTIMAL,

• PRIM_FEAS,

• DUAL_FEAS,

• PRIM_AND_DUAL_FEAS,

• NEAR_OPTIMAL,

• NEAR_PRIM_FEAS,

• NEAR_DUAL_FEAS,

• NEAR_PRIM_AND_DUAL_FEAS,

• PRIM_INFEAS_CER,

• DUAL_INFEAS_CER,

• NEAR_PRIM_INFEAS_CER,

• NEAR_DUAL_INFEAS_CER,

• NEAR_INTEGER_OPTIMAL.

Most of these values are irrelevant for input solutions; when constructing a solution for simplex
hot-start or an initial solution for a mixed integer problem the safe setting is UNKNOWN.

A [solution]-section contains [con] and [var] sections. Each [con] and [var] section defines
solution information for a single variable or constraint, specified as list of KEYWORD/value pairs, in any
order, written as

KEYWORD=value

Allowed keywords are as follows:

• sk. The status of the item, where the value is one of the following strings:

– LOW, the item is on its lower bound.
– UPR, the item is on its upper bound.
– FIX, it is a fixed item.
– BAS, the item is in the basis.
– SUPBAS, the item is super basic.
– UNK, the status is unknown.
– INF, the item is outside its bounds (infeasible).

• lvl Defines the level of the item.

• sl Defines the level of the dual variable associated with its lower bound.

• su Defines the level of the dual variable associated with its upper bound.

• sn Defines the level of the variable associated with its cone.

• y Defines the level of the corresponding dual variable (for constraints only).

A [var] section should always contain the items sk, lvl, sl and su. Items sl and su are not required
for integer solutions.

A [con] section should always contain sk, lvl, sl, su and y.
An example of a solution section

475

[solution basic status=UNKNOWN]
[var x0] sk=LOW lvl=5.0 [/var]
[var x1] sk=UPR lvl=10.0 [/var]
[var x2] sk=SUPBAS lvl=2.0 sl=1.5 su=0.0 [/var]

[con c0] sk=LOW lvl=3.0 y=0.0 [/con]
[con c0] sk=UPR lvl=0.0 y=5.0 [/con]
[/solution]

• [vendor] This contains solver/vendor specific data. It accepts one argument, which is a vendor
ID – for MOSEK the ID is simply mosek – and the section contains the subsection parameters
defining solver parameters. When reading a vendor section, any unknown vendor can be safely
ignored. This is described later.

Comments using the # may appear anywhere in the file. Between the # and the following line-break
any text may be written, including markup characters.

16.3.3 Numbers
Numbers, when used for parameter values or coefficients, are written in the usual way by the printf
function. That is, they may be prefixed by a sign (+ or -) and may contain an integer part, decimal part
and an exponent. The decimal point is always . (a dot). Some examples are

1
1.0
.0
1.
1e10
1e+10
1e-10

Some invalid examples are

e10 # invalid, must contain either integer or decimal part
. # invalid
.e10 # invalid

More formally, the following standard regular expression describes numbers as used:

[+|-]?([0-9]+[.][0-9]*|[.][0-9]+)([eE][+|-]?[0-9]+)?

16.3.4 Names
Variable names, constraint names and objective name may contain arbitrary characters, which in some
cases must be enclosed by quotes (single or double) that in turn must be preceded by a backslash.
Unquoted names must begin with a letter (a-z or A-Z) and contain only the following characters: the
letters a-z and A-Z, the digits 0-9, braces ({ and }) and underscore (_).

Some examples of legal names:

an_unquoted_name
another_name{123}
'single quoted name'
"double quoted name"
"name with \\"quote\\" in it"
"name with []s in it"

476

16.3.5 Parameters Section
In the vendor section solver parameters are defined inside the parameters subsection. Each parameter
is written as

[p PARAMETER_NAME] value [/p]

where PARAMETER_NAME is replaced by a MOSEK parameter name, usually of the form MSK_IPAR_.
.., MSK_DPAR_... or MSK_SPAR_..., and the value is replaced by the value of that parameter; both
integer values and named values may be used. Some simple examples are

[vendor mosek]
[parameters]
[p MSK_IPAR_OPF_MAX_TERMS_PER_LINE] 10 [/p]
[p MSK_IPAR_OPF_WRITE_PARAMETERS] MSK_ON [/p]
[p MSK_DPAR_DATA_TOL_BOUND_INF] 1.0e18 [/p]
[/parameters]
[/vendor]

16.3.6 Writing OPF Files from MOSEK
To write an OPF file then make sure the file extension is .opf.

Then modify the following parameters to define what the file should contain:

iparam.opf_write_sol_bas Include basic solution, if defined.
iparam.opf_write_sol_itg Include integer solution, if defined.
iparam.opf_write_sol_itr Include interior solution, if defined.
iparam.
opf_write_solutions

Include solutions if they are defined. If this is off, no solutions are
included.

iparam.opf_write_header Include a small header with comments.
iparam.opf_write_problem Include the problem itself — objective, constraints and bounds.
iparam.
opf_write_parameters

Include all parameter settings.

iparam.opf_write_hints Include hints about the size of the problem.

16.3.7 Examples
This section contains a set of small examples written in OPF and describing how to formulate linear,
quadratic and conic problems.

Linear Example lo1.opf

Consider the example:

maximize 3𝑥0 + 1𝑥1 + 5𝑥2 + 1𝑥3

subject to 3𝑥0 + 1𝑥1 + 2𝑥2 = 30,
2𝑥0 + 1𝑥1 + 3𝑥2 + 1𝑥3 ≥ 15,

2𝑥1 + 3𝑥3 ≤ 25,

having the bounds

0 ≤ 𝑥0 ≤ ∞,
0 ≤ 𝑥1 ≤ 10,
0 ≤ 𝑥2 ≤ ∞,
0 ≤ 𝑥3 ≤ ∞.

In the OPF format the example is displayed as shown in Listing 16.1.

477

Listing 16.1: Example of an OPF file for a linear problem.

[comment]
The lo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 4 [/hint]
[hint NUMCON] 3 [/hint]
[hint NUMANZ] 9 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2 x3 x4

[/variables]

[objective maximize 'obj']
3 x1 + x2 + 5 x3 + x4

[/objective]

[constraints]
[con 'c1'] 3 x1 + x2 + 2 x3 = 30 [/con]
[con 'c2'] 2 x1 + x2 + 3 x3 + x4 >= 15 [/con]
[con 'c3'] 2 x2 + 3 x4 <= 25 [/con]

[/constraints]

[bounds]
[b] 0 <= * [/b]
[b] 0 <= x2 <= 10 [/b]

[/bounds]

Quadratic Example qo1.opf

An example of a quadratic optimization problem is

minimize 𝑥2
1 + 0.1𝑥2

2 + 𝑥2
3 − 𝑥1𝑥3 − 𝑥2

subject to 1 ≤ 𝑥1 + 𝑥2 + 𝑥3,
𝑥 ≥ 0.

This can be formulated in opf as shown below.

Listing 16.2: Example of an OPF file for a quadratic problem.

[comment]
The qo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 3 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 3 [/hint]
[hint NUMQNZ] 4 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2 x3

[/variables]

(continues on next page)

478

(continued from previous page)

[objective minimize 'obj']
The quadratic terms are often written with a factor of 1/2 as here,
but this is not required.

- x2 + 0.5 (2.0 x1 ^ 2 - 2.0 x3 * x1 + 0.2 x2 ^ 2 + 2.0 x3 ^ 2)
[/objective]

[constraints]
[con 'c1'] 1.0 <= x1 + x2 + x3 [/con]

[/constraints]

[bounds]
[b] 0 <= * [/b]

[/bounds]

Conic Quadratic Example cqo1.opf

Consider the example:

minimize 𝑥3 + 𝑥4 + 𝑥5

subject to 𝑥0 + 𝑥1 + 2𝑥2 = 1,
𝑥0, 𝑥1, 𝑥2 ≥ 0,

𝑥3 ≥
√︀
𝑥2
0 + 𝑥2

1,
2𝑥4𝑥5 ≥ 𝑥2

2.

Please note that the type of the cones is defined by the parameter to [cone ...]; the content of the
cone-section is the names of variables that belong to the cone. The resulting OPF file is in Listing 16.3.

Listing 16.3: Example of an OPF file for a conic quadratic problem.

[comment]
The cqo1 example in OPF format.

[/comment]

[hints]
[hint NUMVAR] 6 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 3 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2 x3 x4 x5 x6

[/variables]

[objective minimize 'obj']
x4 + x5 + x6

[/objective]

[constraints]
[con 'c1'] x1 + x2 + 2e+00 x3 = 1e+00 [/con]

[/constraints]

[bounds]
We let all variables default to the positive orthant
[b] 0 <= * [/b]

...and change those that differ from the default
(continues on next page)

479

(continued from previous page)

[b] x4,x5,x6 free [/b]

Define quadratic cone: x4 >= sqrt(x1^2 + x2^2)
[cone quad 'k1'] x4, x1, x2 [/cone]

Define rotated quadratic cone: 2 x5 x6 >= x3^2
[cone rquad 'k2'] x5, x6, x3 [/cone]

[/bounds]

Mixed Integer Example milo1.opf

Consider the mixed integer problem:

maximize 𝑥0 + 0.64𝑥1

subject to 50𝑥0 + 31𝑥1 ≤ 250,
3𝑥0 − 2𝑥1 ≥ −4,
𝑥0, 𝑥1 ≥ 0 and integer

This can be implemented in OPF with the file in Listing 16.4.

Listing 16.4: Example of an OPF file for a mixed-integer linear
problem.

[comment]
The milo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 2 [/hint]
[hint NUMCON] 2 [/hint]
[hint NUMANZ] 4 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2

[/variables]

[objective maximize 'obj']
x1 + 6.4e-1 x2

[/objective]

[constraints]
[con 'c1'] 5e+1 x1 + 3.1e+1 x2 <= 2.5e+2 [/con]
[con 'c2'] -4 <= 3 x1 - 2 x2 [/con]

[/constraints]

[bounds]
[b] 0 <= * [/b]

[/bounds]

[integer]
x1 x2

[/integer]

480

16.4 The CBF Format

This document constitutes the technical reference manual of the Conic Benchmark Format with file
extension: .cbf or .CBF. It unifies linear, second-order cone (also known as conic quadratic), expo-
nential cone, power cone and semidefinite optimization with mixed-integer variables. The format has
been designed with benchmark libraries in mind, and therefore focuses on compact and easily parsable
representations. The CBF format separates problem structure from the problem data.

16.4.1 How Instances Are Specified
This section defines the spectrum of conic optimization problems that can be formulated in terms of the
keywords of the CBF format.

In the CBF format, conic optimization problems are considered in the following form:

min /max 𝑔𝑜𝑏𝑗

𝑔𝑖 ∈ 𝒦𝑖, 𝑖 ∈ ℐ,
s.t. 𝐺𝑖 ∈ 𝒦𝑖, 𝑖 ∈ ℐ𝑃𝑆𝐷,

𝑥𝑗 ∈ 𝒦𝑗 , 𝑗 ∈ 𝒥 ,
𝑋𝑗 ∈ 𝒦𝑗 , 𝑗 ∈ 𝒥 𝑃𝑆𝐷.

(16.10)

• Variables are either scalar variables, 𝑥𝑗 for 𝑗 ∈ 𝒥 , or matrix variables, 𝑋𝑗 for 𝑗 ∈ 𝒥 𝑃𝑆𝐷. Scalar
variables can also be declared as integer.

• Constraints are affine expressions of the variables, either scalar-valued 𝑔𝑖 for 𝑖 ∈ ℐ, or matrix-
valued 𝐺𝑖 for 𝑖 ∈ ℐ𝑃𝑆𝐷

𝑔𝑖 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹𝑖𝑗 , 𝑋𝑗⟩ +
∑︁
𝑗∈𝒥

𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖,

𝐺𝑖 =
∑︁
𝑗∈𝒥

𝑥𝑗𝐻𝑖𝑗 + 𝐷𝑖.

• The objective function is a scalar-valued affine expression of the variables, either to be minimized
or maximized. We refer to this expression as 𝑔𝑜𝑏𝑗

𝑔𝑜𝑏𝑗 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹 𝑜𝑏𝑗
𝑗 , 𝑋𝑗⟩ +

∑︁
𝑗∈𝒥

𝑎𝑜𝑏𝑗𝑗 𝑥𝑗 + 𝑏𝑜𝑏𝑗 .

As of version 4 of the format, CBF files can represent the following non-parametric cones 𝒦:

• Free domain - A cone in the linear family defined by

{𝑥 ∈ R𝑛}, for 𝑛 ≥ 1.

• Positive orthant - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 ≥ 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

• Negative orthant - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 ≤ 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

• Fixpoint zero - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 = 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

481

• Quadratic cone - A cone in the second-order cone family defined by

{︂(︂
𝑝
𝑥

)︂
∈ R× R𝑛−1, 𝑝2 ≥ 𝑥𝑇𝑥, 𝑝 ≥ 0

}︂
, for 𝑛 ≥ 2.

• Rotated quadratic cone - A cone in the second-order cone family defined by

⎧⎨⎩
⎛⎝ 𝑝

𝑞
𝑥

⎞⎠ ∈ R× R× R𝑛−2, 2𝑝𝑞 ≥ 𝑥𝑇𝑥, 𝑝 ≥ 0, 𝑞 ≥ 0

⎫⎬⎭ , for 𝑛 ≥ 3.

• Exponential cone - A cone in the exponential cone family defined by

cl(𝑆1) = 𝑆1 ∪ 𝑆2

where,

𝑆1 =

⎧⎨⎩
⎛⎝ 𝑡

𝑠
𝑟

⎞⎠ ∈ R3, 𝑡 ≥ 𝑠𝑒
𝑟
𝑠 , 𝑠 ≥ 0

⎫⎬⎭ .

and,

𝑆2 =

⎧⎨⎩
⎛⎝ 𝑡

𝑠
𝑟

⎞⎠ ∈ R3, 𝑡 ≥ 0, 𝑟 ≤ 0, 𝑠 = 0

⎫⎬⎭ .

• Dual Exponential cone - A cone in the exponential cone family defined by

cl(𝑆1) = 𝑆1 ∪ 𝑆2

where,

𝑆1 =

⎧⎨⎩
⎛⎝ 𝑡

𝑠
𝑟

⎞⎠ ∈ R3, 𝑒𝑡 ≥ (−𝑟)𝑒
𝑠
𝑟 , −𝑟 ≥ 0

⎫⎬⎭ .

and,

𝑆2 =

⎧⎨⎩
⎛⎝ 𝑡

𝑠
𝑟

⎞⎠ ∈ R3, 𝑒𝑡 ≥ 0, 𝑠 ≥ 0, 𝑟 = 0

⎫⎬⎭ .

• Radial geometric mean cone - A cone in the power cone family defined by

⎧⎪⎨⎪⎩
(︂

𝑝
𝑥

)︂
∈ R𝑘

+ × R1,

⎛⎝ 𝑘∏︁
𝑗=1

𝑝𝑗

⎞⎠ 1
𝑘

≥ |𝑥|

⎫⎪⎬⎪⎭ , for 𝑛 = 𝑘 + 1 ≥ 2.

• Dual radial geometric mean cone - A cone in the power cone family defined by

⎧⎪⎨⎪⎩
(︂

𝑝
𝑥

)︂
∈ R𝑘

+ × R1,

⎛⎝ 𝑘∏︁
𝑗=1

𝑘𝑝𝑗

⎞⎠ 1
𝑘

≥ |𝑥|

⎫⎪⎬⎪⎭ , for 𝑛 = 𝑘 + 1 ≥ 2.

482

and, the following parametric cones:

• Radial power cone - A cone in the power cone family defined by

⎧⎪⎨⎪⎩
(︂

𝑝
𝑥

)︂
∈ R𝑘

+ × R𝑛−𝑘,

⎛⎝ 𝑘∏︁
𝑗=1

𝑝
𝛼𝑗

𝑗

⎞⎠ 1
𝜎

≥ ‖𝑥‖2

⎫⎪⎬⎪⎭ , for 𝑛 ≥ 𝑘 ≥ 1.

where, 𝜎 =
∑︀𝑘

𝑗=1 𝛼𝑗 and 𝛼 = R𝑘
++.

• Dual radial power cone - A cone in the power cone family defined by

⎧⎪⎨⎪⎩
(︂

𝑝
𝑥

)︂
∈ R𝑘

+ × R𝑛−𝑘,

⎛⎝ 𝑘∏︁
𝑗=1

(︂
𝜎𝑝𝑗
𝛼𝑗

)︂𝛼𝑗

⎞⎠ 1
𝜎

≥ ‖𝑥‖2

⎫⎪⎬⎪⎭ , for 𝑛 ≥ 𝑘 ≥ 1.

where, 𝜎 =
∑︀𝑘

𝑗=1 𝛼𝑗 and 𝛼 = R𝑘
++.

16.4.2 The Structure of CBF Files
This section defines how information is written in the CBF format, without being specific about the type
of information being communicated.

All information items belong to exactly one of the three groups of information. These information
groups, and the order they must appear in, are:

1. File format.

2. Problem structure.

3. Problem data.

The first group, file format, provides information on how to interpret the file. The second group,
problem structure, provides the information needed to deduce the type and size of the problem instance.
Finally, the third group, problem data, specifies the coefficients and constants of the problem instance.

Information items

The format is composed as a list of information items. The first line of an information item is the
KEYWORD, revealing the type of information provided. The second line - of some keywords only - is the
HEADER, typically revealing the size of information that follows. The remaining lines are the BODY holding
the actual information to be specified.

KEYWORD
BODY

KEYWORD
HEADER
BODY

The KEYWORD determines how each line in the HEADER and BODY is structured. Moreover, the number
of lines in the BODY follows either from the KEYWORD, the HEADER, or from another information item
required to precede it.

483

File encoding and line width restrictions

The format is based on the US-ASCII printable character set with two extensions as listed below. Note,
by definition, that none of these extensions can be misinterpreted as printable US-ASCII characters:

• A line feed marks the end of a line, carriage returns are ignored.

• Comment-lines may contain unicode characters in UTF-8 encoding.

The line width is restricted to 512 bytes, with 3 bytes reserved for the potential carriage return, line
feed and null-terminator.

Integers and floating point numbers must follow the ISO C decimal string representation in the
standard C locale. The format does not impose restrictions on the magnitude of, or number of significant
digits in numeric data, but the use of 64-bit integers and 64-bit IEEE 754 floating point numbers should
be sufficient to avoid loss of precision.

Comment-line and whitespace rules

The format allows single-line comments respecting the following rule:

• Lines having first byte equal to ’#’ (US-ASCII 35) are comments, and should be ignored. Comments
are only allowed between information items.

Given that a line is not a comment-line, whitespace characters should be handled according to the
following rules:

• Leading and trailing whitespace characters should be ignored.

– The seperator between multiple pieces of information on one line, is either one or more whites-
pace characters.

• Lines containing only whitespace characters are empty, and should be ignored. Empty lines are
only allowed between information items.

16.4.3 Problem Specification

The problem structure

The problem structure defines the objective sense, whether it is minimization and maximization. It also
defines the index sets, 𝒥 , 𝒥 𝑃𝑆𝐷, ℐ and ℐ𝑃𝑆𝐷, which are all numbered from zero, {0, 1, . . .}, and empty
until explicitly constructed.

• Scalar variables are constructed in vectors restricted to a conic domain, such as (𝑥0, 𝑥1) ∈ R2
+,

(𝑥2, 𝑥3, 𝑥4) ∈ 𝒬3, etc. In terms of the Cartesian product, this generalizes to

𝑥 ∈ 𝒦𝑛1
1 ×𝒦𝑛2

2 × · · · × 𝒦𝑛𝑘

𝑘

which in the CBF format becomes:

VAR
n k
K1 n1
K2 n2
...
Kk nk

where
∑︀

𝑖 𝑛𝑖 = 𝑛 is the total number of scalar variables. The list of supported cones is found in
Table 16.3. Integrality of scalar variables can be specified afterwards.

• PSD variables are constructed one-by-one. That is, 𝑋𝑗 ⪰ 0𝑛𝑗×𝑛𝑗 for 𝑗 ∈ 𝒥 𝑃𝑆𝐷, constructs a
matrix-valued variable of size 𝑛𝑗 ×𝑛𝑗 restricted to be symmetric positive semidefinite. In the CBF
format, this list of constructions becomes:

484

PSDVAR
N
n1
n2
...
nN

where 𝑁 is the total number of PSD variables.

• Scalar constraints are constructed in vectors restricted to a conic domain, such as (𝑔0, 𝑔1) ∈ R2
+,

(𝑔2, 𝑔3, 𝑔4) ∈ 𝒬3, etc. In terms of the Cartesian product, this generalizes to

𝑔 ∈ 𝒦𝑚1
1 ×𝒦𝑚2

2 × · · · × 𝒦𝑚𝑘

𝑘

which in the CBF format becomes:

CON
m k
K1 m1
K2 m2
..
Kk mk

where
∑︀

𝑖 𝑚𝑖 = 𝑚 is the total number of scalar constraints. The list of supported cones is found
in Table 16.3.

• PSD constraints are constructed one-by-one. That is, 𝐺𝑖 ⪰ 0𝑚𝑖×𝑚𝑖 for 𝑖 ∈ ℐ𝑃𝑆𝐷, constructs a
matrix-valued affine expressions of size 𝑚𝑖 ×𝑚𝑖 restricted to be symmetric positive semidefinite.
In the CBF format, this list of constructions becomes

PSDCON
M
m1
m2
..
mM

where 𝑀 is the total number of PSD constraints.

With the objective sense, variables (with integer indications) and constraints, the definitions of the
many affine expressions follow in problem data.

Problem data

The problem data defines the coefficients and constants of the affine expressions of the problem instance.
These are considered zero until explicitly defined, implying that instances with no keywords from this
information group are, in fact, valid. Duplicating or conflicting information is a failure to comply with
the standard. Consequently, two coefficients written to the same position in a matrix (or to transposed
positions in a symmetric matrix) is an error.

The affine expressions of the objective, 𝑔𝑜𝑏𝑗 , of the scalar constraints, 𝑔𝑖, and of the PSD constraints,
𝐺𝑖, are defined separately. The following notation uses the standard trace inner product for matrices,
⟨𝑋,𝑌 ⟩ =

∑︀
𝑖,𝑗 𝑋𝑖𝑗𝑌𝑖𝑗 .

• The affine expression of the objective is defined as

𝑔𝑜𝑏𝑗 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹 𝑜𝑏𝑗
𝑗 , 𝑋𝑗⟩ +

∑︁
𝑗∈𝒥

𝑎𝑜𝑏𝑗𝑗 𝑥𝑗 + 𝑏𝑜𝑏𝑗 ,

in terms of the symmetric matrices, 𝐹 𝑜𝑏𝑗
𝑗 , and scalars, 𝑎𝑜𝑏𝑗𝑗 and 𝑏𝑜𝑏𝑗 .

485

• The affine expressions of the scalar constraints are defined, for 𝑖 ∈ ℐ, as

𝑔𝑖 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹𝑖𝑗 , 𝑋𝑗⟩ +
∑︁
𝑗∈𝒥

𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖,

in terms of the symmetric matrices, 𝐹𝑖𝑗 , and scalars, 𝑎𝑖𝑗 and 𝑏𝑖.

• The affine expressions of the PSD constraints are defined, for 𝑖 ∈ ℐ𝑃𝑆𝐷, as

𝐺𝑖 =
∑︁
𝑗∈𝒥

𝑥𝑗𝐻𝑖𝑗 + 𝐷𝑖,

in terms of the symmetric matrices, 𝐻𝑖𝑗 and 𝐷𝑖.

List of cones

The format uses an explicit syntax for symmetric positive semidefinite cones as shown above. For scalar
variables and constraints, constructed in vectors, the supported conic domains and their sizes are given
as follows.

Table 16.3: Cones available in the CBF format
Name CBF keyword Cone family Cone size
Free domain F linear 𝑛 ≥ 1
Positive orthant L+ linear 𝑛 ≥ 1
Negative orthant L- linear 𝑛 ≥ 1
Fixpoint zero L= linear 𝑛 ≥ 1
Quadratic cone Q second-order 𝑛 ≥ 1
Rotated quadratic cone QR second-order 𝑛 ≥ 2
Exponential cone EXP exponential 𝑛 = 3
Dual exponential cone EXP* exponential 𝑛 = 3
Radial geometric mean cone GMEANABS power 𝑛 = 𝑘 + 1 ≥ 2
Dual radial geometric mean cone GMEANABS* power 𝑛 = 𝑘 + 1 ≥ 2
Radial power cone (parametric) POW power 𝑛 ≥ 𝑘 ≥ 1
Dual radial power cone (parametric) POW* power 𝑛 ≥ 𝑘 ≥ 1

16.4.4 File Format Keywords

VER

Description: The version of the Conic Benchmark Format used to write the file.
HEADER: None
BODY: One line formatted as:

INT

This is the version number.
Must appear exactly once in a file, as the first keyword.

POWCONES

Description: Define a lookup table for power cone domains.
HEADER: One line formatted as:

INT INT

This is the number of cones to be specified and the combined length of their dense parameter vectors.

BODY: A list of chunks each specifying the dense parameter vector of a power cone.
CHUNKHEADER: One line formatted as:

486

INT

This is the parameter vector length.

CHUNKBODY: A list of lines formatted as:

REAL

This is the parameter vector values. The number of lines should match the number stated in the
chunk header.

The cone specified at index k (with 0-based indexing) is registered under the CBF name @k:POW.

POW*CONES

Description: Define a lookup table for dual power cone domains.
HEADER: One line formatted as:

INT INT

This is the number of cones to be specified and the combined length of their dense parameter vectors.

BODY: A list of chunks each specifying the dense parameter vector of a dual power cone.
CHUNKHEADER: One line formatted as:

INT

This is the parameter vector length.

CHUNKBODY: A list of lines formatted as:

REAL

This is the parameter vector values. The number of lines should match the number stated in the
chunk header.

The cone specified at index k (with 0-based indexing) is registered under the CBF name @k:POW*.

OBJSENSE

Description: Define the objective sense.
HEADER: None
BODY: One line formatted as:

STR

having MIN indicates minimize, and MAX indicates maximize. Upper-case letters are required.
Must appear exactly once in a file.

PSDVAR

Description: Construct the PSD variables.
HEADER: One line formatted as:

INT

This is the number of PSD variables in the problem.
BODY: A list of lines formatted as:

INT

This indicates the number of rows (equal to the number of columns) in the matrix-valued PSD
variable. The number of lines should match the number stated in the header.

487

VAR

Description: Construct the scalar variables.
HEADER: One line formatted as:

INT INT

This is the number of scalar variables, followed by the number of conic domains they are restricted
to.

BODY: A list of lines formatted as:

STR INT

This indicates the cone name (see Table 16.3), and the number of scalar variables restricted to this
cone. These numbers should add up to the number of scalar variables stated first in the header. The
number of lines should match the second number stated in the header.

INT

Description: Declare integer requirements on a selected subset of scalar variables.
HEADER: one line formatted as:

INT

This is the number of integer scalar variables in the problem.
BODY: a list of lines formatted as:

INT

This indicates the scalar variable index 𝑗 ∈ 𝒥 . The number of lines should match the number stated
in the header.

Can only be used after the keyword VAR.

PSDCON

Description: Construct the PSD constraints.
HEADER: One line formatted as:

INT

This is the number of PSD constraints in the problem.
BODY: A list of lines formatted as:

INT

This indicates the number of rows (equal to the number of columns) in the matrix-valued affine
expression of the PSD constraint. The number of lines should match the number stated in the header.

Can only be used after these keywords: PSDVAR, VAR.

CON

Description: Construct the scalar constraints.
HEADER: One line formatted as:

INT INT

This is the number of scalar constraints, followed by the number of conic domains they restrict to.
BODY: A list of lines formatted as:

STR INT

This indicates the cone name (see Table 16.3), and the number of affine expressions restricted to this
cone. These numbers should add up to the number of scalar constraints stated first in the header. The
number of lines should match the second number stated in the header.

Can only be used after these keywords: PSDVAR, VAR

488

OBJFCOORD

Description: Input sparse coordinates (quadruplets) to define the symmetric matrices 𝐹 𝑜𝑏𝑗
𝑗 , as used in

the objective.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT INT REAL

This indicates the PSD variable index 𝑗 ∈ 𝒥 𝑃𝑆𝐷, the row index, the column index and the coefficient
value. The number of lines should match the number stated in the header.

OBJACOORD

Description: Input sparse coordinates (pairs) to define the scalars, 𝑎𝑜𝑏𝑗𝑗 , as used in the objective.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT REAL

This indicates the scalar variable index 𝑗 ∈ 𝒥 and the coefficient value. The number of lines should
match the number stated in the header.

OBJBCOORD

Description: Input the scalar, 𝑏𝑜𝑏𝑗 , as used in the objective.
HEADER: None.
BODY: One line formatted as:

REAL

This indicates the coefficient value.

FCOORD

Description: Input sparse coordinates (quintuplets) to define the symmetric matrices, 𝐹𝑖𝑗 , as used in the
scalar constraints.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT INT INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ, the PSD variable index 𝑗 ∈ 𝒥 𝑃𝑆𝐷, the row index,
the column index and the coefficient value. The number of lines should match the number stated in the
header.

489

ACOORD

Description: Input sparse coordinates (triplets) to define the scalars, 𝑎𝑖𝑗 , as used in the scalar constraints.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ, the scalar variable index 𝑗 ∈ 𝒥 and the coefficient
value. The number of lines should match the number stated in the header.

BCOORD

Description: Input sparse coordinates (pairs) to define the scalars, 𝑏𝑖, as used in the scalar constraints.
HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ and the coefficient value. The number of lines should
match the number stated in the header.

HCOORD

Description: Input sparse coordinates (quintuplets) to define the symmetric matrices, 𝐻𝑖𝑗 , as used in
the PSD constraints.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as

INT INT INT INT REAL

This indicates the PSD constraint index 𝑖 ∈ ℐ𝑃𝑆𝐷, the scalar variable index 𝑗 ∈ 𝒥 , the row index,
the column index and the coefficient value. The number of lines should match the number stated in the
header.

DCOORD

Description: Input sparse coordinates (quadruplets) to define the symmetric matrices, 𝐷𝑖, as used in
the PSD constraints.

HEADER: One line formatted as

INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

INT INT INT REAL

This indicates the PSD constraint index 𝑖 ∈ ℐ𝑃𝑆𝐷, the row index, the column index and the coefficient
value. The number of lines should match the number stated in the header.

490

16.4.5 CBF Format Examples

Minimal Working Example

The conic optimization problem (16.11) , has three variables in a quadratic cone - first one is integer -
and an affine expression in domain 0 (equality constraint).

minimize 5.1𝑥0

subject to 6.2𝑥1 + 7.3𝑥2 − 8.4 ∈ {0}
𝑥 ∈ 𝒬3, 𝑥0 ∈ Z.

(16.11)

Its formulation in the Conic Benchmark Format begins with the version of the CBF format used, to
safeguard against later revisions.

VER
4

Next follows the problem structure, consisting of the objective sense, the number and domain of
variables, the indices of integer variables, and the number and domain of scalar-valued affine expressions
(i.e., the equality constraint).

OBJSENSE
MIN

VAR
3 1
Q 3

INT
1
0

CON
1 1
L= 1

Finally follows the problem data, consisting of the coefficients of the objective, the coefficients of the
constraints, and the constant terms of the constraints. All data is specified on a sparse coordinate form.

OBJACOORD
1
0 5.1

ACOORD
2
0 1 6.2
0 2 7.3

BCOORD
1
0 -8.4

This concludes the example.

491

Mixing Linear, Second-order and Semidefinite Cones

The conic optimization problem (16.12), has a semidefinite cone, a quadratic cone over unordered
subindices, and two equality constraints.

minimize

⟨⎡⎣ 2 1 0
1 2 1
0 1 2

⎤⎦ , 𝑋1

⟩
+ 𝑥1

subject to

⟨⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ , 𝑋1

⟩
+ 𝑥1 = 1.0 ,

⟨⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ , 𝑋1

⟩
+ 𝑥0 + 𝑥2 = 0.5 ,

𝑥1 ≥
√︀
𝑥2
0 + 𝑥2

2 ,
𝑋1 ⪰ 0 .

(16.12)

The equality constraints are easily rewritten to the conic form, (𝑔0, 𝑔1) ∈ {0}2, by moving constants such
that the right-hand-side becomes zero. The quadratic cone does not fit under the VAR keyword in this
variable permutation. Instead, it takes a scalar constraint (𝑔2, 𝑔3, 𝑔4) = (𝑥1, 𝑥0, 𝑥2) ∈ 𝒬3, with scalar
variables constructed as (𝑥0, 𝑥1, 𝑥2) ∈ R3. Its formulation in the CBF format is reported in the following
list

File written using this version of the Conic Benchmark Format:
| Version 4.
VER
4

The sense of the objective is:
| Minimize.
OBJSENSE
MIN

One PSD variable of this size:
| Three times three.
PSDVAR
1
3

Three scalar variables in this one conic domain:
| Three are free.
VAR
3 1
F 3

Five scalar constraints with affine expressions in two conic domains:
| Two are fixed to zero.
| Three are in conic quadratic domain.
CON
5 2
L= 2
Q 3

Five coordinates in F^{obj}_j coefficients:
| F^{obj}[0][0,0] = 2.0
| F^{obj}[0][1,0] = 1.0
| and more...
OBJFCOORD
5

(continues on next page)

492

(continued from previous page)

0 0 0 2.0
0 1 0 1.0
0 1 1 2.0
0 2 1 1.0
0 2 2 2.0

One coordinate in a^{obj}_j coefficients:
| a^{obj}[1] = 1.0
OBJACOORD
1
1 1.0

Nine coordinates in F_ij coefficients:
| F[0,0][0,0] = 1.0
| F[0,0][1,1] = 1.0
| and more...
FCOORD
9
0 0 0 0 1.0
0 0 1 1 1.0
0 0 2 2 1.0
1 0 0 0 1.0
1 0 1 0 1.0
1 0 2 0 1.0
1 0 1 1 1.0
1 0 2 1 1.0
1 0 2 2 1.0

Six coordinates in a_ij coefficients:
| a[0,1] = 1.0
| a[1,0] = 1.0
| and more...
ACOORD
6
0 1 1.0
1 0 1.0
1 2 1.0
2 1 1.0
3 0 1.0
4 2 1.0

Two coordinates in b_i coefficients:
| b[0] = -1.0
| b[1] = -0.5
BCOORD
2
0 -1.0
1 -0.5

493

Mixing Semidefinite Variables and Linear Matrix Inequalities

The standard forms in semidefinite optimization are usually based either on semidefinite variables or
linear matrix inequalities. In the CBF format, both forms are supported and can even be mixed as
shown.

minimize
⟨[︂

1 0
0 1

]︂
, 𝑋1

⟩
+ 𝑥1 + 𝑥2 + 1

subject to
⟨[︂

0 1
1 0

]︂
, 𝑋1

⟩
− 𝑥1 − 𝑥2 ≥ 0.0 ,

𝑥1

[︂
0 1
1 3

]︂
+ 𝑥2

[︂
3 1
1 0

]︂
−
[︂

1 0
0 1

]︂
⪰ 0 ,

𝑋1 ⪰ 0 .

(16.13)

Its formulation in the CBF format is written in what follows

File written using this version of the Conic Benchmark Format:
| Version 4.
VER
4

The sense of the objective is:
| Minimize.
OBJSENSE
MIN

One PSD variable of this size:
| Two times two.
PSDVAR
1
2

Two scalar variables in this one conic domain:
| Two are free.
VAR
2 1
F 2

One PSD constraint of this size:
| Two times two.
PSDCON
1
2

One scalar constraint with an affine expression in this one conic domain:
| One is greater than or equal to zero.
CON
1 1
L+ 1

Two coordinates in F^{obj}_j coefficients:
| F^{obj}[0][0,0] = 1.0
| F^{obj}[0][1,1] = 1.0
OBJFCOORD
2
0 0 0 1.0
0 1 1 1.0

Two coordinates in a^{obj}_j coefficients:
(continues on next page)

494

(continued from previous page)

| a^{obj}[0] = 1.0
| a^{obj}[1] = 1.0
OBJACOORD
2
0 1.0
1 1.0

One coordinate in b^{obj} coefficient:
| b^{obj} = 1.0
OBJBCOORD
1.0

One coordinate in F_ij coefficients:
| F[0,0][1,0] = 1.0
FCOORD
1
0 0 1 0 1.0

Two coordinates in a_ij coefficients:
| a[0,0] = -1.0
| a[0,1] = -1.0
ACOORD
2
0 0 -1.0
0 1 -1.0

Four coordinates in H_ij coefficients:
| H[0,0][1,0] = 1.0
| H[0,0][1,1] = 3.0
| and more...
HCOORD
4
0 0 1 0 1.0
0 0 1 1 3.0
0 1 0 0 3.0
0 1 1 0 1.0

Two coordinates in D_i coefficients:
| D[0][0,0] = -1.0
| D[0][1,1] = -1.0
DCOORD
2
0 0 0 -1.0
0 1 1 -1.0

495

The exponential cone

The conic optimization problem (16.14), has one equality constraint, one quadratic cone constraint and
an exponential cone constraint.

minimize 𝑥0 − 𝑥3

subject to 𝑥0 + 2𝑥1 − 𝑥2 ∈ {0}
(5.0, 𝑥0, 𝑥1) ∈ 𝒬3

(𝑥2, 1.0, 𝑥3) ∈ 𝐸𝑋𝑃.

(16.14)

The nonlinear conic constraints enforce
√︀

𝑥2
0 + 𝑥2

1 ≤ 0.5 and 𝑥3 ≤ log(𝑥2).

File written using this version of the Conic Benchmark Format:
| Version 3.
VER
3

The sense of the objective is:
| Minimize.
OBJSENSE
MIN

Four scalar variables in this one conic domain:
| Four are free.
VAR
4 1
F 4

Seven scalar constraints with affine expressions in three conic domains:
| One is fixed to zero.
| Three are in conic quadratic domain.
| Three are in exponential cone domain.
CON
7 3
L= 1
Q 3
EXP 3

Two coordinates in a^{obj}_j coefficients:
| a^{obj}[0] = 1.0
| a^{obj}[3] = -1.0
OBJACOORD
2
0 1.0
3 -1.0

Seven coordinates in a_ij coefficients:
| a[0,0] = 1.0
| a[0,1] = 2.0
| and more...
ACOORD
7
0 0 1.0
0 1 2.0
0 2 -1.0
2 0 1.0
3 1 1.0
4 2 1.0
6 3 1.0

(continues on next page)

496

(continued from previous page)

Two coordinates in b_i coefficients:
| b[1] = 5.0
| b[5] = 1.0
BCOORD
2
1 5.0
5 1.0

Parametric cones

The problem (16.15), has three variables in a power cone with parameter 𝛼1 = (1, 1) and two power cone
constraints each with parameter 𝛼0 = (8, 1).

minimize 𝑥3

subject to (1.0, 𝑥1, 𝑥1 + 𝑥2) ∈ 𝑃𝑂𝑊𝛼0

(1.0, 𝑥2, 𝑥1 + 𝑥2) ∈ 𝑃𝑂𝑊𝛼0

𝑥 ∈ 𝑃𝑂𝑊𝛼1 .

(16.15)

The nonlinear conic constraints enforce 𝑥3 ≤ 𝑥1𝑥2 and 𝑥1 + 𝑥2 ≤ min(𝑥
1
9
1 , 𝑥

1
9
2).

File written using this version of the Conic Benchmark Format:
| Version 3.
VER
3

Two power cone domains defined in a total of four parameters:
| @0:POW (specification 0) has two parameters:
| alpha[0] = 8.0.
| alpha[1] = 1.0.
| @1:POW (specification 1) has two parameters:
| alpha[0] = 1.0.
| alpha[1] = 1.0.
POWCONES
2 4
2
8.0
1.0
2
1.0
1.0

The sense of the objective is:
| Maximize.
OBJSENSE
MAX

Three scalar variable in this one conic domain:
| Three are in power cone domain (specification 1).
VAR
3 1
@1:POW 3

Six scalar constraints with affine expressions in two conic domains:
| Three are in power cone domain (specification 0).
| Three are in power cone domain (specification 0).

(continues on next page)

497

(continued from previous page)

CON
6 2
@0:POW 3
@0:POW 3

One coordinate in a^{obj}_j coefficients:
| a^{obj}[2] = 1.0
OBJACOORD
1
2 1.0

Six coordinates in a_ij coefficients:
| a[1,0] = 1.0
| a[2,0] = 1.0
| and more...
ACOORD
6
1 0 1.0
2 0 1.0
2 1 1.0
4 1 1.0
5 0 1.0
5 1 1.0

Two coordinates in b_i coefficients:
| b[0] = 1.0
| b[3] = 1.0
BCOORD
2
0 1.0
3 1.0

16.5 The PTF Format

The PTF format is a human-readable, natural text format suuporting all of MOSEK optimization
problems in conic form, possibly with integer variables and disjunctive constraints.

16.5.1 The overall format
The format is indentation based, where each section is started by a head line and followed by a section
body with deeper indentation that the head line. For example:

Header line
Body line 1
Body line 1
Body line 1

Section can also be nested:

Header line A
Body line in A
Header line A.1

Body line in A.1
Body line in A.1

Body line in A

498

The indentation of blank lines is ignored, so a subsection can contain a blank line with no indentation.
The character # defines a line comment and anything between the # character and the end of the line is
ignored.

In a PTF file, the first section must be a Task section. The order of the remaining section is arbitrary,
and sections may occur multiple times or not at all.

MOSEK will ignore any top-level section it does not recognize.

Names

In the description of the format we use following definitions for name strings:

NAME: PLAIN_NAME | QUOTED_NAME
PLAIN_NAME: [a-zA-Z_] [a-zA-Z0-9_-.!|]
QUOTED_NAME: "'" ([^'\\\r\n] | "\\" ([\\rn] | "x" [0-9a-fA-F] [0-9a-fA-F]))* "'"

Expressions

An expression is a sum of terms. A term is either a linear term (a coefficient and a variable name, where
the coefficient can be left out if it is 1.0), or a matrix inner product.

An expression:

EXPR: EMPTY | [+-]? TERM ([+-] TERM)*
TERM: LINEAR_TERM | MATRIX_TERM

A linear term

LINEAR_TERM: FLOAT? NAME

A matrix term

MATRIX_TERM: "<" FLOAT? NAME ([+-] FLOAT? NAME)* ";" NAME ">"

Here the right-hand name is the name of a (semidefinite) matrix variable, and the left-hand side is a
sum of symmetric matrixes. The actual matrixes are defined in a separate section.

Expressions can span multiple lines by giving subsequent lines a deeper indentation.
For example following two section are equivalent:

Everything on one line:
x1 + x2 + x3 + x4

Split into multiple lines:
x1

+ x2
+ x3
+ x4

16.5.2 Task section
The first section of the file must be a Task. The text in this section is not used and may contain
comments, or meta-information from the writer or about the content.

Format:

Task NAME
Anything goes here...

NAME is a the task name.

499

16.5.3 Objective section
The Objective section defines the objective name, sense and function. The format:

"Objective" NAME?
("Minimize" | "Maximize") EXPR

For example:

Objective 'obj'
Minimize x1 + 0.2 x2 + < M1 ; X1 >

16.5.4 Constraints section
The constraints section defines a series of constraints. A constraint defines a term 𝐴 · 𝑥 + 𝑏 ∈ 𝐾. For
linear constraints A is just one row, while for conic constraints it can be multiple rows. If a constraint
spans multiple rows these can either be written inline separated by semi-colons, or each expression in a
separete sub-section.

Simple linear constraints:

"Constraints"
NAME? "[" [-+] (FLOAT | "Inf") (";" [-+] (FLOAT | "Inf"))? "]" EXPR

If the brackets contain two values, they are used as upper and lower bounds. It they contain one
value the constraint is an equality.

For example:

Constraints
'c1' [0;10] x1 + x2 + x3
[0] x1 + x2 + x3

Constraint blocks put the expression either in a subsection or inline. The cone type (domain) is
written in the brackets, and MOSEK currently supports following types:

• SOC(N) Second order cone of dimension N

• RSOC(N) Rotated second order cone of dimension N

• PSD(N) Symmetric positive semidefinite cone of dimension N. This contains N*(N+1)/2 elements.

• PEXP Primal exponential cone of dimension 3

• DEXP Dual exponential cone of dimension 3

• PPOW(N,P) Primal power cone of dimension N with parameter P

• DPOW(N,P) Dual power cone of dimension N with parameter P

• ZERO(N) The zero-cone of dimension N.

"Constraints"
NAME? "[" DOMAIN "]" EXPR_LIST

For example:

Constraints
'K1' [SOC(3)] x1 + x2 ; x2 + x3 ; x3 + x1
'K2' [RSOC(3)]

x1 + x2
x2 + x3
x3 + x1

500

16.5.5 Variables section
Any variable used in an expression must be defined in a variable section. The variable section defines
each variable domain.

"Variables"
NAME "[" [-+] (FLOAT | "Inf") (";" [-+] (FLOAT | "Inf"))? "]"
NAME "[" DOMAIN "]" NAMES

For example, a linear variable

Variables
x1 [0;Inf]

As with constraints, members of a conic domain can be listed either inline or in a subsection:

Variables
k1 [SOC(3)] x1 ; x2 ; x3
k2 [RSOC(3)]

x1
x2
x3

16.5.6 Integer section
This section contains a list of variables that are integral. For example:

Integer
x1 x2 x3

16.5.7 SymmetricMatrixes section
This section defines the symmetric matrixes used for matrix coefficients in matrix inner product terms.
The section lists named matrixes, each with a size and a number of non-zeros. Only non-zeros in the
lower triangular part should be defined.

"SymmetricMatrixes"
NAME "SYMMAT" "(" INT ")" ("(" INT "," INT "," FLOAT ")")*
...

For example:

SymmetricMatrixes
M1 SYMMAT(3) (0,0,1.0) (1,1,2.0) (2,1,0.5)
M2 SYMMAT(3)

(0,0,1.0)
(1,1,2.0)
(2,1,0.5)

501

16.5.8 Solutions section
Each subsection defines a solution. A solution defines for each constraint and for each variable exactly
one primal value and either one (for conic domains) or two (for linear domains) dual values. The values
follow the same logic as in the MOSEK C API. A primal and a dual solution status defines the meaning
of the values primal and dual (solution, certificate, unknown, etc.)

The format is this:

"Solutions"
"Solution" WHICHSOL

"ProblemStatus" PROSTA PROSTA?
"SolutionStatus" SOLSTA SOLSTA?
"Objective" FLOAT FLOAT
"Variables"

Linear variable status: level, slx, sux
NAME "[" STATUS "]" FLOAT (FLOAT FLOAT)?
Conic variable status: level, snx
NAME

"[" STATUS "]" FLOAT FLOAT?
...

"Constraints"
Linear variable status: level, slx, sux
NAME "[" STATUS "]" FLOAT (FLOAT FLOAT)?
Conic variable status: level, snx
NAME

"[" STATUS "]" FLOAT FLOAT?
...

Following values for WHICHSOL are supported:

• interior Interior solution, the result of an interior-point solver.

• basic Basic solution, as produced by a simplex solver.

• integer Integer solution, the solution to a mixed-integer problem. This does not define a dual
solution.

Following values for PROSTA are supported:

• unknown The problem status is unknown

• feasible The problem has been proven feasible

• infeasible The problem has been proven infeasible

• illposed The problem has been proved to be ill posed

• infeasible_or_unbounded The problem is infeasible or unbounded

Following values for SOLSTA are supported:

• unknown The solution status is unknown

• feasible The solution is feasible

• optimal The solution is optimal

• infeas_cert The solution is a certificate of infeasibility

• illposed_cert The solution is a certificate of illposedness

Following values for STATUS are supported:

• unknown The value is unknown

• super_basic The value is super basic

502

• at_lower The value is basic and at its lower bound

• at_upper The value is basic and at its upper bound

• fixed The value is basic fixed

• infinite The value is at infinity

16.5.9 Examples

Linear example lo1.ptf

Task ''
Written by MOSEK v10.0.13
problemtype: Linear Problem
number of linear variables: 4
number of linear constraints: 3
number of old-style A nonzeros: 9

Objective obj
Maximize + 3 x1 + x2 + 5 x3 + x4

Constraints
c1 [3e+1] + 3 x1 + x2 + 2 x3
c2 [1.5e+1;+inf] + 2 x1 + x2 + 3 x3 + x4
c3 [-inf;2.5e+1] + 2 x2 + 3 x4

Variables
x1 [0;+inf]
x2 [0;1e+1]
x3 [0;+inf]
x4 [0;+inf]

Conic example cqo1.ptf

Task ''
Written by MOSEK v10.0.17
problemtype: Conic Problem
number of linear variables: 6
number of linear constraints: 1
number of old-style cones: 0
number of positive semidefinite variables: 0
number of positive semidefinite matrixes: 0
number of affine conic constraints: 2
number of disjunctive constraints: 0
number scalar affine expressions/nonzeros : 6/6
number of old-style A nonzeros: 3

Objective obj
Minimize + x4 + x5 + x6

Constraints
c1 [1] + x1 + x2 + 2 x3
k1 [QUAD(3)]

@ac1: + x4
@ac2: + x1
@ac3: + x2

k2 [RQUAD(3)]
@ac4: + x5
@ac5: + x6
@ac6: + x3

Variables
(continues on next page)

503

(continued from previous page)

x4
x1 [0;+inf]
x2 [0;+inf]
x5
x6
x3 [0;+inf]

Disjunctive example djc1.ptf

Task djc1
Objective ''

Minimize + 2 'x[0]' + 'x[1]' + 3 'x[2]' + 'x[3]'
Constraints

@c0 [-10;+inf] + 'x[0]' + 'x[1]' + 'x[2]' + 'x[3]'
@D0 [OR]

[AND]
[NEGATIVE(1)]

+ 'x[0]' - 2 'x[1]' + 1
[ZERO(2)]

+ 'x[2]'
+ 'x[3]'

[AND]
[NEGATIVE(1)]

+ 'x[2]' - 3 'x[3]' + 2
[ZERO(2)]

+ 'x[0]'
+ 'x[1]'

@D1 [OR]
[ZERO(1)]

+ 'x[0]' - 2.5
[ZERO(1)]

+ 'x[1]' - 2.5
[ZERO(1)]

+ 'x[2]' - 2.5
[ZERO(1)]

+ 'x[3]' - 2.5
Variables

'x[0]'
'x[1]'
'x[2]'
'x[3]'

16.6 The Task Format

The Task format is MOSEK‘s native binary format. It contains a complete image of a MOSEK task,
i.e.

• Problem data: Linear, conic, semidefinite and quadratic data

• Problem item names: Variable names, constraints names, cone names etc.

• Parameter settings

• Solutions

There are a few things to be aware of:

504

• Status of a solution read from a file will always be unknown.

• Parameter settings in a task file always override any parameters set on the command line or in a
parameter file.

The format is based on the TAR (USTar) file format. This means that the individual pieces of data
in a .task file can be examined by unpacking it as a TAR file. Please note that the inverse may not
work: Creating a file using TAR will most probably not create a valid MOSEK Task file since the order
of the entries is important.

16.7 The JSON Format

MOSEK provides the possibility to read/write problems and solutions in JSON format. The official
JSON website http://www.json.org provides plenty of information along with the format definition.
JSON is an industry standard for data exchange and JSON files can be easily written and read in most
programming languages using dedicated libraries.

MOSEK uses two JSON-based formats:

• JTASK, for storing problem instances together with solutions and parameters. The JTASK for-
mat contains the same information as a native MOSEK task task format , that is a very close
representation of the internal data storage in the task object.

You can write a JTASK file specifying the extension .jtask. When the parameter iparam.
write_json_indentation is set the JTASK file will be indented to slightly improve readability.

• JSOL, for storing solutions and information items.

You can write a JSOL solution file using Task.writejsonsol . When the parameter iparam.
write_json_indentation is set the JSOL file will be indented to slightly improve readability.

You can read a JSOL solution into an existing task file using Task.readjsonsol . Only the Task/
solutions section of the data will be taken into consideration.

16.7.1 JTASK Specification
The JTASK is a dictionary containing the following sections. All sections are optional and can be omitted
if irrelevant for the problem.

• $schema: JSON schema.

• Task/name: The name of the task (string).

• Task/INFO: Information about problem data dimensions and similar. These are treated as hints
when reading the file.

– numvar: number of variables (int32).

– numcon: number of constraints (int32).

– numcone: number of cones (int32, deprecated).

– numbarvar: number of symmetric matrix variables (int32).

– numanz: number of nonzeros in A (int64).

– numsymmat: number of matrices in the symmetric matrix storage E (int64).

– numafe: number of affine expressions in AFE storage (int64).

– numfnz: number of nonzeros in F (int64).

– numacc: number of affine conic constraints (ACCs) (int64).

– numdjc: number of disjunctive constraints (DJCs) (int64).

– numdom: number of domains (int64).

– mosekver: MOSEK version (list(int32)).

• Task/data: Numerical and structural data of the problem.

505

http://www.json.org

– var: Information about variables. All fields present must have the same length as bk. All or
none of bk, bl, and bu must appear.

∗ name: Variable names (list(string)).
∗ bk: Bound keys (list(string)).
∗ bl: Lower bounds (list(double)).
∗ bu: Upper bounds (list(double)).
∗ type: Variable types (list(string)).

– con: Information about linear constraints. All fields present must have the same length as
bk. All or none of bk, bl, and bu must appear.

∗ name: Constraint names (list(string)).
∗ bk: Bound keys (list(string)).
∗ bl: Lower bounds (list(double)).
∗ bu: Upper bounds (list(double)).

– barvar: Information about symmetric matrix variables. All fields present must have the same
length as dim.

∗ name: Barvar names (list(string)).
∗ dim: Dimensions (list(int32)).

– objective: Information about the objective.

∗ name: Objective name (string).
∗ sense: Objective sense (string).
∗ c: The linear part 𝑐 of the objective as a sparse vector. Both arrays must have the same

length.
· subj: indices of nonzeros (list(int32)).
· val: values of nonzeros (list(double)).

∗ cfix: Constant term in the objective (double).
∗ Q: The quadratic part 𝑄𝑜 of the objective as a sparse matrix, only lower-triangular part

included. All arrays must have the same length.
· subi: row indices of nonzeros (list(int32)).
· subj: column indices of nonzeros (list(int32)).
· val: values of nonzeros (list(double)).

∗ barc: The semidefinite part 𝐶 of the objective (list). Each element of the list is a list
describing one entry 𝐶𝑗 using three fields:

· index 𝑗 (int32).
· weights of the matrices from the storage 𝐸 forming 𝐶𝑗 (list(double)).
· indices of the matrices from the storage 𝐸 forming 𝐶𝑗 (list(int64)).

– A: The linear constraint matrix 𝐴 as a sparse matrix. All arrays must have the same length.

∗ subi: row indices of nonzeros (list(int32)).
∗ subj: column indices of nonzeros (list(int32)).
∗ val: values of nonzeros (list(double)).

– bara: The semidefinite part 𝐴 of the constraints (list). Each element of the list is a list
describing one entry 𝐴𝑖𝑗 using four fields:

∗ index 𝑖 (int32).
∗ index 𝑗 (int32).
∗ weights of the matrices from the storage 𝐸 forming 𝐴𝑖𝑗 (list(double)).
∗ indices of the matrices from the storage 𝐸 forming 𝐴𝑖𝑗 (list(int64)).

– AFE: The affine expression storage.

∗ numafe: number of rows in the storage (int64).
∗ F: The matrix 𝐹 as a sparse matrix. All arrays must have the same length.

· subi: row indices of nonzeros (list(int64)).
· subj: column indices of nonzeros (list(int32)).

506

· val: values of nonzeros (list(double)).
∗ g: The vector 𝑔 of constant terms as a sparse vector. Both arrays must have the same

length.
· subi: indices of nonzeros (list(int64)).
· val: values of nonzeros (list(double)).

∗ barf: The semidefinite part 𝐹 of the expressions in AFE storage (list). Each element of
the list is a list describing one entry 𝐹 𝑖𝑗 using four fields:

· index 𝑖 (int64).
· index 𝑗 (int32).
· weights of the matrices from the storage 𝐸 forming 𝐹 𝑖𝑗 (list(double)).
· indices of the matrices from the storage 𝐸 forming 𝐹 𝑖𝑗 (list(int64)).

– domains: Information about domains. All fields present must have the same length as type.

∗ name: Domain names (list(string)).
∗ type: Description of the type of each domain (list). Each element of the list is a list

describing one domain using at least one field:
· domain type (string).
· (except pexp, dexp) dimension (int64).
· (only ppow, dpow) weights (list(double)).

– ACC: Information about affine conic constraints (ACC). All fields present must have the same
length as domain.

∗ name: ACC names (list(string)).
∗ domain: Domains (list(int64)).
∗ afeidx: AFE indices, grouped by ACC (list(list(int64))).
∗ b: constant vectors 𝑏, grouped by ACC (list(list(double))).

– DJC: Information about disjunctive constraints (DJC). All fields present must have the same
length as termsize.

∗ name: DJC names (list(string)).
∗ termsize: Term sizes, grouped by DJC (list(list(int64))).
∗ domain: Domains, grouped by DJC (list(list(int64))).
∗ afeidx: AFE indices, grouped by DJC (list(list(int64))).
∗ b: constant vectors 𝑏, grouped by DJC (list(list(double))).

– MatrixStore: The symmetric matrix storage 𝐸 (list). Each element of the list is a list
describing one entry 𝐸 using four fields in sparse matrix format, lower-triangular part only:

∗ dimension (int32).
∗ row indices of nonzeros (list(int32)).
∗ column indices of nonzeros (list(int32)).
∗ values of nonzeros (list(double)).

– Q: The quadratic part 𝑄𝑐 of the constraints (list). Each element of the list is a list describing
one entry 𝑄𝑐

𝑖 using four fields in sparse matrix format, lower-triangular part only:

∗ the row index 𝑖 (int32).
∗ row indices of nonzeros (list(int32)).
∗ column indices of nonzeros (list(int32)).
∗ values of nonzeros (list(double)).

– qcone (deprecated). The description of cones. All fields present must have the same length
as type.

∗ name: Cone names (list(string)).
∗ type: Cone types (list(string)).
∗ par: Additional cone parameters (list(double)).
∗ members: Members, grouped by cone (list(list(int32))).

507

• Task/solutions: Solutions. This section can contain up to three subsections called:

– interior

– basic

– integer

corresponding to the three solution types in MOSEK. Each of these sections has the same structure:

– prosta: problem status (string).

– solsta: solution status (string).

– xx, xc, y, slc, suc, slx, sux, snx: one for each component of the solution of the same name
(list(double)).

– skx, skc, skn: status keys (list(string)).

– doty: the dual 𝑦̇ solution, grouped by ACC (list(list(double))).

– barx, bars: the primal/dual semidefinite solution, grouped by matrix variable
(list(list(double))).

• Task/parameters: Parameters.

– iparam: Integer parameters (dictionary). A dictionary with entries of the form name:value,
where name is a shortened parameter name (without leading MSK_IPAR_) and value is either
an integer or string if the parameter takes values from an enum.

– dparam: Double parameters (dictionary). A dictionary with entries of the form name:value,
where name is a shortened parameter name (without leading MSK_DPAR_) and value is a
double.

– sparam: String parameters (dictionary). A dictionary with entries of the form name:value,
where name is a shortened parameter name (without leading MSK_SPAR_) and value is a string.
Note that this section is allowed but MOSEK ignores it both when writing and reading JTASK
files.

16.7.2 JSOL Specification
The JSOL is a dictionary containing the following sections. All sections are optional and can be omitted
if irrelevant for the problem.

• $schema: JSON schema.

• Task/name: The name of the task (string).

• Task/solutions: Solutions. This section can contain up to three subsections called:

– interior

– basic

– integer

corresponding to the three solution types in MOSEK. Each of these section has the same structure:

– prosta: problem status (string).

– solsta: solution status (string).

– xx, xc, y, slc, suc, slx, sux, snx: one for each component of the solution of the same name
(list(double)).

– skx, skc, skn: status keys (list(string)).

– doty: the dual 𝑦̇ solution, grouped by ACC (list(list(double))).

– barx, bars: the primal/dual semidefinite solution, grouped by matrix variable
(list(list(double))).

• Task/information: Information items from the optimizer.

508

– int32: int32 information items (dictionary). A dictionary with entries of the form name:
value.

– int64: int64 information items (dictionary). A dictionary with entries of the form name:
value.

– double: double information items (dictionary). A dictionary with entries of the form name:
value.

16.7.3 A jtask example

Listing 16.5: A formatted jtask file for a simple portfolio opti-
mization problem.

{
"$schema":"http://mosek.com/json/schema#",
"Task/name":"Markowitz portfolio with market impact",
"Task/INFO":{"numvar":7,"numcon":1,"numcone":0,"numbarvar":0,"numanz":6,"numsymmat

→˓":0,"numafe":13,"numfnz":12,"numacc":4,"numdjc":0,"numdom":3,"mosekver":[10,0,0,3]},
"Task/data":{

"var":{
"name":["1.0","x[0]","x[1]","x[2]","t[0]","t[1]","t[2]"],
"bk":["fx","lo","lo","lo","fr","fr","fr"],
"bl":[1,0.0,0.0,0.0,-1e+30,-1e+30,-1e+30],
"bu":[1,1e+30,1e+30,1e+30,1e+30,1e+30,1e+30],
"type":["cont","cont","cont","cont","cont","cont","cont"]

},
"con":{

"name":["budget[]"],
"bk":["fx"],
"bl":[1],
"bu":[1]

},
"objective":{

"sense":"max",
"name":"obj",
"c":{

"subj":[1,2,3],
"val":[0.1073,0.0737,0.0627]

},
"cfix":0.0

},
"A":{

"subi":[0,0,0,0,0,0],
"subj":[1,2,3,4,5,6],
"val":[1,1,1,0.01,0.01,0.01]

},
"AFE":{

"numafe":13,
"F":{

"subi":[1,1,1,2,2,3,4,6,7,9,10,12],
"subj":[1,2,3,2,3,3,4,1,5,2,6,3],
"val":[0.166673333200005,0.0232190712557243,0.0012599496030238,0.

→˓102863378954911,-0.00222873156550421,0.0338148677744977,1,1,1,1,1,1]
},
"g":{

"subi":[0,5,8,11],
"val":[0.035,1,1,1]

(continues on next page)

509

(continued from previous page)

}
},
"domains":{

"type":[["r",0],
["quad",4],
["ppow",3,[0.6666666666666666,0.33333333333333337]]]

},
"ACC":{

"name":["risk[]","tz[0]","tz[1]","tz[2]"],
"domain":[1,2,2,2],
"afeidx":[[0,1,2,3],

[4,5,6],
[7,8,9],
[10,11,12]]

}
},
"Task/solutions":{

"interior":{
"prosta":"unknown",
"solsta":"unknown",
"skx":["fix","supbas","supbas","supbas","supbas","supbas","supbas"],
"skc":["fix"],
"xx":[1,0.10331580274282556,0.11673185566457132,0.7724326587076371,0.

→˓033208600335718846,0.03988270849469869,0.6788769587942524],
"xc":[1],
"slx":[0.0,-5.585840467641202e-10,-8.945844685006369e-10,-7.815248786428623e-

→˓11,0.0,0.0,0.0],
"sux":[0.0,0.0,0.0,0.0,0.0,0.0,0.0],
"snx":[0.0,0.0,0.0,0.0,0.0,0.0,0.0],
"slc":[0.0],
"suc":[-0.046725814048521205],
"y":[0.046725814048521205],
"doty":[[-0.6062603164682975,0.3620818321879349,0.17817754087278295,0.

→˓4524390346223723],
[-4.6725842015519993e-4,-7.708781121860897e-6,2.24800624747081e-4],
[-4.6725842015519993e-4,-9.268264309496919e-6,2.390390600079771e-4],
[-4.6725842015519993e-4,-1.5854982159992136e-4,6.159249331148646e-4]]

}
},
"Task/parameters":{

"iparam":{
"LICENSE_DEBUG":"ON",
"MIO_SEED":422

},
"dparam":{

"MIO_MAX_TIME":100
},
"sparam":{
}

}
}

510

16.8 The Solution File Format

MOSEK can output solutions to a text file:

• basis solution file (extension .bas) if the problem is optimized using the simplex optimizer or basis
identification is performed,

• interior solution file (extension .sol) if a problem is optimized using the interior-point optimizer
and no basis identification is required,

• integer solution file (extension .int) if the problem is solved with the mixed-integer optimizer.

All solution files have the format:

NAME : <problem name>
PROBLEM STATUS : <status of the problem>
SOLUTION STATUS : <status of the solution>
OBJECTIVE NAME : <name of the objective function>
PRIMAL OBJECTIVE : <primal objective value corresponding to the solution>
DUAL OBJECTIVE : <dual objective value corresponding to the solution>

CONSTRAINTS
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER
? <name> ?? <a value> <a value> <a value> <a value> <a value>

AFFINE CONIC CONSTRAINTS
INDEX NAME I ACTIVITY DUAL
? <name> <a value> <a value> <a value>

VARIABLES
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER ␣
→˓[CONIC DUAL]
? <name> ?? <a value> <a value> <a value> <a value> <a value> ␣
→˓[<a value>]

SYMMETRIC MATRIX VARIABLES
INDEX NAME I J PRIMAL DUAL
? <name> <a value> <a value> <a value> <a value>

The fields ?, ?? and <> will be filled with problem and solution specific information as described
below. The solution contains sections corresponding to parts of the input. Empty sections may be
omitted and fields in [] are optional, depending on what type of problem is solved. The notation below
follows the MOSEK naming convention for parts of the solution as defined in the problem specifications
in Sec. 12.

• HEADER In this section, first the name of the problem is listed and afterwards the problem and
solution status are shown. Next the primal and dual objective values are displayed.

• CONSTRAINTS

– INDEX: A sequential index assigned to the constraint by MOSEK
– NAME: The name of the constraint assigned by the user or autogenerated.
– AT: The status key bkc of the constraint as in Table 16.4.
– ACTIVITY: the activity xc of the constraint expression.
– LOWER LIMIT: the lower bound blc of the constraint.
– UPPER LIMIT: the upper bound buc of the constraint.
– DUAL LOWER: the dual multiplier slc corresponding to the lower limit on the constraint.
– DUAL UPPER: the dual multiplier suc corresponding to the upper limit on the constraint.

• AFFINE CONIC CONSTRAINTS

511

– INDEX: A sequential index assigned to the affine expressions by MOSEK

– NAME: The name of the affine conic constraint assigned by the user or autogenerated.

– I: The sequential index of the affine expression in the affine conic constraint.

– ACTIVITY: the activity of the I-th affine expression in the affine conic constraint.

– DUAL: the dual multiplier doty for the I-th entry in the affine conic constraint.

• VARIABLES

– INDEX: A sequential index assigned to the variable by MOSEK

– NAME: The name of the variable assigned by the user or autogenerated.

– AT: The status key bkx of the variable as in Table 16.4.

– ACTIVITY: the value xx of the variable.

– LOWER LIMIT: the lower bound blx of the variable.

– UPPER LIMIT: the upper bound bux of the variable.

– DUAL LOWER: the dual multiplier slx corresponding to the lower limit on the variable.

– DUAL UPPER: the dual multiplier sux corresponding to the upper limit on the variable.

– CONIC DUAL: the dual multiplier skx corresponding to a conic variable (deprecated).

• SYMMETRIC MATRIX VARIABLES

– INDEX: A sequential index assigned to each symmetric matrix entry by MOSEK

– NAME: The name of the symmetric matrix variable assigned by the user or autogenerated.

– I: The row index in the symmetric matrix variable.

– J: The column index in the symmetric matrix variable.

– PRIMAL: the value of barx for the (I, J)-th entry in the symmetric matrix variable.

– DUAL: the dual multiplier bars for the (I, J)-th entry in the symmetric matrix variable.

Table 16.4: Status keys.
Status key Interpretation
UN Unknown status
BS Is basic
SB Is superbasic
LL Is at the lower limit (bound)
UL Is at the upper limit (bound)
EQ Lower limit is identical to upper limit
** Is infeasible i.e. the lower limit is greater than the upper limit.

Example.

Below is an example of a solution file.

Listing 16.6: An example of .sol file.

NAME :
PROBLEM STATUS : PRIMAL_AND_DUAL_FEASIBLE
SOLUTION STATUS : OPTIMAL
OBJECTIVE NAME : OBJ
PRIMAL OBJECTIVE : 0.70571049347734
DUAL OBJECTIVE : 0.70571048919757

CONSTRAINTS
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT ␣
→˓ DUAL LOWER DUAL UPPER

(continues on next page)

512

(continued from previous page)

AFFINE CONIC CONSTRAINTS
INDEX NAME I ACTIVITY DUAL
0 A1 0 1.0000000009656 0.54475821296644
1 A1 1 0.50000000152223 0.32190455246225
2 A2 0 0.25439922724695 0.4552417870329
3 A2 1 0.17988741850378 -0.32190455246178
4 A2 2 0.17988741850378 -0.32190455246178

VARIABLES
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT ␣
→˓ DUAL LOWER DUAL UPPER
0 X1 SB 0.25439922724695 NONE NONE ␣
→˓ 0 0
1 X2 SB 0.17988741850378 NONE NONE ␣
→˓ 0 0
2 X3 SB 0.17988741850378 NONE NONE ␣
→˓ 0 0

SYMMETRIC MATRIX VARIABLES
INDEX NAME I J PRIMAL DUAL
0 BARX1 0 0 0.21725733689874 1.1333372337141
1 BARX1 1 0 -0.25997257078534 0.
→˓67809544651396
2 BARX1 2 0 0.21725733648507 -0.
→˓3219045527104
3 BARX1 1 1 0.31108610088839 1.1333372332693
4 BARX1 2 1 -0.25997257078534 0.
→˓67809544651435
5 BARX1 2 2 0.21725733689874 1.1333372337145
6 BARX2 0 0 4.8362272828127e-10 0.
→˓54475821339698
7 BARX2 1 0 0 0
8 BARX2 1 1 4.8362272828127e-10 0.
→˓54475821339698

513

Chapter 17

List of examples

List of examples shipped in the distribution of Optimizer API for Python:

Table 17.1: List of distributed examples
File Description
acc1.py A simple problem with one affine conic constraint (ACC)
acc2.py A simple problem with two affine conic constraints (ACC)
blas_lapack.py Demonstrates the MOSEK interface to BLAS/LAPACK linear algebra routines
callback.py An example of data/progress callback
ceo1.py A simple conic exponential problem
concurrent1.py Implementation of a concurrent optimizer for linear and mixed-integer problems
cqo1.py A simple conic quadratic problem
djc1.py A simple problem with disjunctive constraints (DJC)
feasrepairex1.
py

A simple example of how to repair an infeasible problem

gp1.py A simple geometric program (GP) in conic form
helloworld.py A Hello World example
lo1.py A simple linear problem
lo2.py A simple linear problem
logistic.py Implements logistic regression and simple log-sum-exp (CEO)
mico1.py A simple mixed-integer conic problem
milo1.py A simple mixed-integer linear problem
mioinitsol.py A simple mixed-integer linear problem with an initial guess
opt_server_async.
py

Uses MOSEK OptServer to solve an optimization problem asynchronously

opt_server_sync.
py

Uses MOSEK OptServer to solve an optimization problem synchronously

parallel.py Demonstrates parallel optimization using a batch method in MOSEK
parameters.py Shows how to set optimizer parameters and read information items
pinfeas.py Shows how to obtain and analyze a primal infeasibility certificate
portfolio_1_basic.
py

Portfolio optimization - basic Markowitz model

portfolio_2_frontier.
py

Portfolio optimization - efficient frontier

portfolio_3_impact.
py

Portfolio optimization - market impact costs

portfolio_4_transcost.
py

Portfolio optimization - transaction costs

portfolio_5_card.
py

Portfolio optimization - cardinality constraints

portfolio_6_factor.
py

Portfolio optimization - factor model

continues on next page

514

Table 17.1 – continued from previous page
File Description
pow1.py A simple power cone problem
qcqo1.py A simple quadratically constrained quadratic problem
qo1.py A simple quadratic problem
reoptimization.
py

Demonstrate how to modify and re-optimize a linear problem

response.py Demonstrates proper response handling
sdo1.py A simple semidefinite problem with one matrix variable and a quadratic cone
sdo2.py A simple semidefinite problem with two matrix variables
sdo_lmi.py A simple semidefinite problem with an LMI using the SVEC domain.
sensitivity.py Sensitivity analysis performed on a small linear problem
simple.py A simple I/O example: read problem from a file, solve and write solutions
solutionquality.
py

Demonstrates how to examine the quality of a solution

solvebasis.py Demonstrates solving a linear system with the basis matrix
solvelinear.py Demonstrates solving a general linear system
sparsecholesky.
py

Shows how to find a Cholesky factorization of a sparse matrix

Additional examples can be found on the MOSEK website and in other MOSEK publications.

515

Chapter 18

Interface changes

The section shows interface-specific changes to the MOSEK Optimizer API for Python in version 10.0
compared to version 9. See the release notes for general changes and new features of the MOSEK
Optimization Suite.

18.1 Important changes compared to version 9

• Parameters. Users who set parameters to tune the performance and numerical properties of the
solver (termination criteria, tolerances, solving primal or dual, presolve etc.) are recommended to
reevaluate such tuning. It may be that other, or default, parameter settings will be more beneficial
in the current version. The hints in Sec. 8 may be useful for some cases.

• Multithreading. In the interior-point optimizer it is posible to set the number of threads with
iparam.num_threads before each optimization, and not just once per process. The parameter
MSK_IPAR_INTPNT_MULTI_THREAD and the function Env.setupthreads are no longer relevant and
were removed.

• Sparse Cholesky. In the function Env.computesparsecholesky the argument previously indi-
cating whether to use multiple threads or not is now an integer denoting the number of threads to
use, with 0 meaning that MOSEK makes the choice.

• Solve with basis. The function Task.solvewithbasis changed interface: it separates the input
and output number of nonzeros.

• OptServer. The arguments used in remote calls from the MOSEK API change from (server,
port) to (addr, accesstoken), where addr is the full URL such as http://server:port or
https://server:port. See the documentation of the relevant functions.

• MIO initial solution. In order for the mixed-integer solver to utilize a partial integer solution
the parameter iparam.mio_construct_sol must be set. See Sec. 6.8.2 for details. In version 9
this action happened by default.

• Conic constraints. The interface introduces affine conic constraints (ACC) as a way of writing
directly

𝐹𝑥 + 𝑔 ∈ 𝒟

where 𝒟 is a conic domain, without having to introduce a slack variable 𝐹𝑥 + 𝑔 − 𝑦 = 0, 𝑦 ∈ 𝒟.
See Sec. 6.2 for a tutorial. The current interface through variable cones is still supported but
deprecated.

516

https://docs.mosek.com/10.0/releasenotes/index.html

18.2 Changes compared to version 9

18.3 Functions compared to version 9

Added

• Env.expirylicenses

• Env.optimizebatch

• Env.resetexpirylicenses

• Task.appendacc

• Task.appendaccs

• Task.appendaccseq

• Task.appendaccsseq

• Task.appendafes

• Task.appenddjcs

• Task.appenddualexpconedomain

• Task.appenddualgeomeanconedomain

• Task.appenddualpowerconedomain

• Task.appendprimalexpconedomain

• Task.appendprimalgeomeanconedomain

• Task.appendprimalpowerconedomain

• Task.appendquadraticconedomain

• Task.appendrdomain

• Task.appendrminusdomain

• Task.appendrplusdomain

• Task.appendrquadraticconedomain

• Task.appendrzerodomain

• Task.appendsvecpsdconedomain

• Task.emptyafebarfrow

• Task.emptyafebarfrowlist

• Task.emptyafefcol

• Task.emptyafefcollist

• Task.emptyafefrow

• Task.emptyafefrowlist

• Task.evaluateacc

• Task.evaluateaccs

517

• Task.generateaccnames

• Task.generatebarvarnames

• Task.generatedjcnames

• Task.getaccafeidxlist

• Task.getaccb

• Task.getaccbarfblocktriplet

• Task.getaccbarfnumblocktriplets

• Task.getaccdomain

• Task.getaccdoty

• Task.getaccdotys

• Task.getaccfnumnz

• Task.getaccftrip

• Task.getaccgvector

• Task.getaccn

• Task.getaccname

• Task.getaccnamelen

• Task.getaccntot

• Task.getaccs

• Task.getafebarfblocktriplet

• Task.getafebarfnumblocktriplets

• Task.getafebarfnumrowentries

• Task.getafebarfrow

• Task.getafebarfrowinfo

• Task.getafefnumnz

• Task.getafefrow

• Task.getafefrownumnz

• Task.getafeftrip

• Task.getafeg

• Task.getafegslice

• Task.getatrip

• Task.getdjcafeidxlist

• Task.getdjcb

• Task.getdjcdomainidxlist

518

• Task.getdjcname

• Task.getdjcnamelen

• Task.getdjcnumafe

• Task.getdjcnumafetot

• Task.getdjcnumdomain

• Task.getdjcnumdomaintot

• Task.getdjcnumterm

• Task.getdjcnumtermtot

• Task.getdjcs

• Task.getdjctermsizelist

• Task.getdomainn

• Task.getdomainname

• Task.getdomainnamelen

• Task.getdomaintype

• Task.getdviolacc

• Task.getnumacc

• Task.getnumafe

• Task.getnumdjc

• Task.getnumdomain

• Task.getpowerdomainalpha

• Task.getpowerdomaininfo

• Task.getpviolacc

• Task.getpvioldjc

• Task.getsolutioninfonew

• Task.getsolutionnew

• Task.infeasibilityreport

• Task.putacc

• Task.putaccb

• Task.putaccbj

• Task.putaccdoty

• Task.putacclist

• Task.putaccname

• Task.putafebarfblocktriplet

519

• Task.putafebarfentry

• Task.putafebarfentrylist

• Task.putafebarfrow

• Task.putafefcol

• Task.putafefentry

• Task.putafefentrylist

• Task.putafefrow

• Task.putafefrowlist

• Task.putafeg

• Task.putafeglist

• Task.putafegslice

• Task.putdjc

• Task.putdjcname

• Task.putdjcslice

• Task.putdomainname

• Task.putmaxnumacc

• Task.putmaxnumafe

• Task.putmaxnumdjc

• Task.putmaxnumdomain

• Task.putsolutionnew

• Task.readbsolution

• Task.readjsonsol

• Task.readsolutionfile

• Task.writebsolution

• Task.writesolutionfile

Removed

• Env.setupthreads

18.4 Parameters compared to version 9

Added

• dparam.mio_djc_max_bigm

• dparam.presolve_tol_primal_infeas_perturbation

• iparam.mio_construct_sol

• iparam.mio_cut_lipro

520

• iparam.mio_data_permutation_method

• iparam.mio_memory_emphasis_level

• iparam.mio_numerical_emphasis_level

• iparam.mio_presolve_aggregator_use

• iparam.mio_qcqo_reformulation_method

• iparam.mio_symmetry_level

• iparam.ng

• iparam.ptf_write_parameters

• iparam.ptf_write_solutions

• iparam.remote_use_compression

• iparam.sim_detect_pwl

• iparam.write_json_indentation

• sparam.remote_optserver_host

• sparam.remote_tls_cert

• sparam.remote_tls_cert_path

Removed

• iparam.intpnt_multi_thread

• iparam.read_lp_drop_new_vars_in_bou

• iparam.read_lp_quoted_names

• iparam.write_lp_quoted_names

• iparam.write_lp_strict_format

• iparam.write_lp_terms_per_line

• iparam.write_precision

• sparam.remote_access_token

• sparam.stat_file_name

18.5 Constants compared to version 9

Added

• callbackcode.begin_solve_root_relax

• callbackcode.end_solve_root_relax

• callbackcode.update_simplex

• dinfitem.ana_pro_scalarized_constraint_matrix_density

• dinfitem.mio_initial_feasible_solution_obj

• dinfitem.mio_lipro_separation_time

521

• dinfitem.mio_root_time

• dinfitem.presolve_total_primal_perturbation

• dinfitem.read_data_time

• dinfitem.remote_time

• dinfitem.sol_itg_pviolacc

• dinfitem.sol_itg_pvioldjc

• dinfitem.sol_itr_dviolacc

• dinfitem.sol_itr_pviolacc

• dinfitem.write_data_time

• iinfitem.mio_initial_feasible_solution

• iinfitem.mio_num_lipro_cuts

• iinfitem.mio_numdjc

• iinfitem.mio_presolved_numdjc

• iinfitem.presolve_num_primal_perturbations

• liinfitem.ana_pro_scalarized_constraint_matrix_num_columns

• liinfitem.ana_pro_scalarized_constraint_matrix_num_nz

• liinfitem.ana_pro_scalarized_constraint_matrix_num_rows

• liinfitem.mio_num_dual_illposed_cer

• liinfitem.mio_num_prim_illposed_cer

• liinfitem.rd_numacc

• liinfitem.rd_numdjc

• liinfitem.simplex_iter

Removed

• constant.callbackcode.begin_full_convexity_check

• constant.callbackcode.end_full_convexity_check

• constant.callbackcode.im_full_convexity_check

• constant.dinfitem.rd_time

• constant.scalingtype.aggressive

• constant.scalingtype.moderate

522

18.6 Response Codes compared to version 9

Added

• rescode.err_acc_afe_domain_mismatch

• rescode.err_acc_invalid_entry_index

• rescode.err_acc_invalid_index

• rescode.err_afe_invalid_index

• rescode.err_argument_is_too_small

• rescode.err_axis_name_specification

• rescode.err_cbf_duplicate_psdcon

• rescode.err_cbf_invalid_dimension_of_psdcon

• rescode.err_cbf_invalid_num_psdcon

• rescode.err_cbf_invalid_psdcon_block_index

• rescode.err_cbf_invalid_psdcon_index

• rescode.err_cbf_invalid_psdcon_variable_index

• rescode.err_cbf_unsupported_change

• rescode.err_dimension_specification

• rescode.err_djc_afe_domain_mismatch

• rescode.err_djc_domain_termsize_mismatch

• rescode.err_djc_invalid_index

• rescode.err_djc_invalid_term_size

• rescode.err_djc_total_num_terms_mismatch

• rescode.err_djc_unsupported_domain_type

• rescode.err_domain_dimension

• rescode.err_domain_dimension_psd

• rescode.err_domain_invalid_index

• rescode.err_domain_power_invalid_alpha

• rescode.err_domain_power_negative_alpha

• rescode.err_domain_power_nleft

• rescode.err_duplicate_djc_names

• rescode.err_duplicate_domain_names

• rescode.err_duplicate_fij

• rescode.err_huge_fij

• rescode.err_index_is_not_unique

• rescode.err_inf_in_double_data

• rescode.err_invalid_b

523

• rescode.err_invalid_cfix

• rescode.err_invalid_fij

• rescode.err_invalid_file_format_for_affine_conic_constraints

• rescode.err_invalid_file_format_for_disjunctive_constraints

• rescode.err_invalid_file_format_for_quadratic_terms

• rescode.err_invalid_g

• rescode.err_license_old_server_version

• rescode.err_lp_indicator_var

• rescode.err_mismatching_dimension

• rescode.err_mps_invalid_bound_key

• rescode.err_mps_invalid_con_key

• rescode.err_mps_invalid_indicator_constraint

• rescode.err_mps_invalid_indicator_quadratic_constraint

• rescode.err_mps_invalid_indicator_value

• rescode.err_mps_invalid_indicator_variable

• rescode.err_mps_invalid_key

• rescode.err_mps_invalid_sec_name

• rescode.err_mps_write_cplex_invalid_cone_type

• rescode.err_no_doty

• rescode.err_not_power_domain

• rescode.err_opf_dual_integer_solution

• rescode.err_opf_duplicate_bound

• rescode.err_opf_duplicate_cone_entry

• rescode.err_opf_duplicate_constraint_name

• rescode.err_opf_incorrect_tag_param

• rescode.err_opf_invalid_cone_type

• rescode.err_opf_invalid_tag

• rescode.err_opf_mismatched_tag

• rescode.err_opf_syntax

• rescode.err_opf_too_large

• rescode.err_ptf_incompatibility

• rescode.err_ptf_inconsistency

• rescode.err_ptf_undefined_item

• rescode.err_server_access_token

• rescode.err_server_address

• rescode.err_server_certificate

524

• rescode.err_server_tls_client

• rescode.err_sparsity_specification

• rescode.err_unallowed_whichsol

• rescode.trm_lost_race

• rescode.wrn_invalid_mps_name

• rescode.wrn_invalid_mps_obj_name

• rescode.wrn_large_fij

• rescode.wrn_modified_double_parameter

• rescode.wrn_no_infeasibility_report_when_matrix_variables

• rescode.wrn_presolve_primal_pertubations

• rescode.wrn_write_lp_duplicate_con_names

• rescode.wrn_write_lp_duplicate_var_names

• rescode.wrn_write_lp_invalid_con_names

• rescode.wrn_write_lp_invalid_var_names

Removed

• rescode.err_lp_format

• rescode.err_mps_inv_bound_key

• rescode.err_mps_inv_con_key

• rescode.err_mps_inv_sec_name

• rescode.err_opf_format

• rescode.err_opf_new_variable

• rescode.wrn_exp_cones_with_variables_fixed_at_zero

• rescode.wrn_pow_cones_with_root_fixed_at_zero

• rescode.wrn_quad_cones_with_root_fixed_at_zero

• rescode.wrn_rquad_cones_with_root_fixed_at_zero

525

Bibliography

[AA95] E. D. Andersen and K. D. Andersen. Presolving in linear programming. Math. Programming,
71(2):221–245, 1995.

[AGMeszarosX96] E. D. Andersen, J. Gondzio, Cs. Mészáros, and X. Xu. Implementation of interior
point methods for large scale linear programming. In T. Terlaky, editor, Interior-point meth-
ods of mathematical programming, pages 189–252. Kluwer Academic Publishers, 1996.

[ART03] E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual interior-point
method for conic quadratic optimization. Math. Programming, February 2003.

[AY96] E. D. Andersen and Y. Ye. Combining interior-point and pivoting algorithms. Management
Sci., 42(12):1719–1731, December 1996.

[And09] Erling D. Andersen. The homogeneous and self-dual model and algorithm for linear opti-
mization. Technical Report TR-1-2009, MOSEK ApS, 2009. URL: http://docs.mosek.com/
whitepapers/homolo.pdf.

[And13] Erling D. Andersen. On formulating quadratic functions in optimization models. Technical
Report TR-1-2013, MOSEK ApS, 2013. Last revised 23-feb-2016. URL: http://docs.mosek.
com/whitepapers/qmodel.pdf.

[BKVH07] S. Boyd, S.J. Kim, L. Vandenberghe, and A. Hassibi. A Tutorial on Geomet-
ric Programming. Optimization and Engineering, 8(1):67–127, 2007. Available at
http://www.stanford.edu/ boyd/gp_tutorial.html.

[Chvatal83] V. Chvátal. Linear programming. W.H. Freeman and Company, 1983.

[CCornuejolsZ14] M. Conforti, G. Cornu/'ejols, and G. Zambelli. Integer programming. Springer, 2014.

[GK00] Richard C. Grinold and Ronald N. Kahn. Active portfolio management. McGraw-Hill, New
York, 2 edition, 2000.

[Naz87] J. L. Nazareth. Computer Solution of Linear Programs. Oxford University Press, New York,
1987.

[RTV97] C. Roos, T. Terlaky, and J. -Ph. Vial. Theory and algorithms for linear optimization: an
interior point approach. John Wiley and Sons, New York, 1997.

[Ste98] G. W. Stewart. Matrix Algorithms. Volume 1: Basic decompositions. SIAM, 1998.

[Wal00] S. W. Wallace. Decision making under uncertainty: is sensitivity of any use. Oper. Res.,
48(1):20–25, January 2000.

[Wol98] L. A. Wolsey. Integer programming. John Wiley and Sons, 1998.

526

http://docs.mosek.com/whitepapers/homolo.pdf
http://docs.mosek.com/whitepapers/homolo.pdf
http://docs.mosek.com/whitepapers/qmodel.pdf
http://docs.mosek.com/whitepapers/qmodel.pdf

Symbol Index

Classes
Env, 219
Env.Task, 219
Env.syrk, 228
Env.syevd, 227
Env.syeig, 227
Env.sparsetriangularsolvedense, 226
Env.set_Stream, 226
Env.resetexpirylicenses, 226
Env.putlicensewait, 226
Env.putlicensepath, 225
Env.putlicensedebug, 225
Env.putlicensecode, 225
Env.potrf, 225
Env.optimizebatch, 224
Env.linkfiletostream, 224
Env.licensecleanup, 224
Env.getversion, 224
Env.getcodedesc, 223
Env.gemv, 223
Env.gemm, 222
Env.expirylicenses, 222
Env.Env, 219
Env.echointro, 222
Env.dot, 221
Env.computesparsecholesky, 220
Env.checkoutlicense, 220
Env.checkinlicense, 220
Env.checkinall, 219
Env.axpy, 219
Env.__del__, 219
Task, 228
Task.writetask, 344
Task.writesolutionfile, 344
Task.writesolution, 344
Task.writeparamfile, 344
Task.writejsonsol, 343
Task.writedatastream, 343
Task.writedata, 343
Task.writebsolution, 343
Task.updatesolutioninfo, 342
Task.toconic, 342
Task.Task, 228
Task.strtosk, 342
Task.strtoconetype, 342
Task.solvewithbasis, 341
Task.solutionsummary, 341
Task.solutiondef, 341

Task.setdefaults, 341
Task.set_Stream, 340
Task.set_Progress, 340
Task.set_InfoCallback, 340
Task.sensitivityreport, 340
Task.resizetask, 339
Task.removevars, 339
Task.removecons, 339
Task.removecones, 339
Task.removebarvars, 339
Task.readtask, 338
Task.readsummary, 338
Task.readsolutionfile, 338
Task.readsolution, 338
Task.readptfstring, 338
Task.readparamfile, 337
Task.readopfstring, 337
Task.readlpstring, 337
Task.readjsonstring, 337
Task.readjsonsol, 337
Task.readdataformat, 336
Task.readdata, 336
Task.readbsolution, 336
Task.putyslice, 336
Task.puty, 336
Task.putxxslice, 335
Task.putxx, 335
Task.putxcslice, 335
Task.putxc, 335
Task.putvartypelist, 335
Task.putvartype, 334
Task.putvarsolutionj, 334
Task.putvarname, 334
Task.putvarboundsliceconst, 334
Task.putvarboundslice, 333
Task.putvarboundlistconst, 333
Task.putvarboundlist, 333
Task.putvarbound, 332
Task.puttaskname, 332
Task.putsuxslice, 332
Task.putsux, 332
Task.putsucslice, 332
Task.putsuc, 331
Task.putstrparam, 331
Task.putsolutionyi, 331
Task.putsolutionnew, 330
Task.putsolution, 330
Task.putsnxslice, 329
Task.putsnx, 329

527

Task.putslxslice, 329
Task.putslx, 329
Task.putslcslice, 328
Task.putslc, 328
Task.putskxslice, 328
Task.putskx, 328
Task.putskcslice, 328
Task.putskc, 327
Task.putqobjij, 327
Task.putqobj, 327
Task.putqconk, 326
Task.putqcon, 326
Task.putparam, 325
Task.putoptserverhost, 325
Task.putobjsense, 325
Task.putobjname, 325
Task.putnastrparam, 325
Task.putnaintparam, 325
Task.putnadouparam, 324
Task.putmaxnumvar, 324
Task.putmaxnumqnz, 324
Task.putmaxnumdomain, 324
Task.putmaxnumdjc, 323
Task.putmaxnumcone, 323
Task.putmaxnumcon, 323
Task.putmaxnumbarvar, 322
Task.putmaxnumanz, 322
Task.putmaxnumafe, 322
Task.putmaxnumacc, 322
Task.putintparam, 322
Task.putdouparam, 321
Task.putdomainname, 321
Task.putdjcslice, 321
Task.putdjcname, 320
Task.putdjc, 320
Task.putcslice, 319
Task.putconsolutioni, 319
Task.putconname, 319
Task.putconename, 319
Task.putcone, 318
Task.putconboundsliceconst, 318
Task.putconboundslice, 318
Task.putconboundlistconst, 318
Task.putconboundlist, 317
Task.putconbound, 317
Task.putclist, 317
Task.putcj, 316
Task.putcfix, 316
Task.putbarxj, 316
Task.putbarvarname, 316
Task.putbarsj, 316
Task.putbarcj, 315
Task.putbarcblocktriplet, 315
Task.putbararowlist, 315
Task.putbaraijlist, 314
Task.putbaraij, 314
Task.putbarablocktriplet, 313
Task.putatruncatetol, 313

Task.putarowslice, 313
Task.putarowlist, 313
Task.putarow, 312
Task.putaijlist, 312
Task.putaij, 312
Task.putafegslice, 312
Task.putafeglist, 311
Task.putafeg, 311
Task.putafefrowlist, 311
Task.putafefrow, 310
Task.putafefentrylist, 310
Task.putafefentry, 310
Task.putafefcol, 310
Task.putafebarfrow, 309
Task.putafebarfentrylist, 309
Task.putafebarfentry, 308
Task.putafebarfblocktriplet, 308
Task.putacolslice, 307
Task.putacollist, 307
Task.putacol, 307
Task.putaccname, 307
Task.putacclist, 306
Task.putaccdoty, 306
Task.putaccbj, 306
Task.putaccb, 306
Task.putacc, 305
Task.primalsensitivity, 304
Task.primalrepair, 303
Task.optimizersummary, 303
Task.optimizermt, 303
Task.optimize, 303
Task.onesolutionsummary, 302
Task.linkfiletostream, 302
Task.isstrparname, 302
Task.isintparname, 302
Task.isdouparname, 301
Task.inputdata, 301
Task.initbasissolve, 300
Task.infeasibilityreport, 300
Task.getyslice, 300
Task.gety, 300
Task.getxxslice, 299
Task.getxx, 299
Task.getxcslice, 299
Task.getxc, 298
Task.getvartypelist, 298
Task.getvartype, 298
Task.getvarnamelen, 298
Task.getvarnameindex, 298
Task.getvarname, 297
Task.getvarboundslice, 297
Task.getvarbound, 297
Task.gettasknamelen, 296
Task.gettaskname, 296
Task.getsymmatinfo, 296
Task.getsuxslice, 296
Task.getsux, 295
Task.getsucslice, 295

528

Task.getsuc, 295
Task.getstrparamlen, 295
Task.getstrparam, 294
Task.getsparsesymmat, 294
Task.getsolutionslice, 294
Task.getsolutionnew, 292
Task.getsolutioninfonew, 291
Task.getsolutioninfo, 291
Task.getsolution, 288
Task.getsolsta, 288
Task.getsnxslice, 288
Task.getsnx, 288
Task.getslxslice, 287
Task.getslx, 287
Task.getslcslice, 287
Task.getslc, 286
Task.getskxslice, 286
Task.getskx, 286
Task.getskn, 286
Task.getskcslice, 285
Task.getskc, 285
Task.getreducedcosts, 285
Task.getqobjij, 284
Task.getqobj, 284
Task.getqconk, 284
Task.getpviolvar, 283
Task.getpvioldjc, 283
Task.getpviolcones, 282
Task.getpviolcon, 282
Task.getpviolbarvar, 281
Task.getpviolacc, 281
Task.getprosta, 281
Task.getprobtype, 281
Task.getprimalsolutionnorms, 280
Task.getprimalobj, 280
Task.getpowerdomaininfo, 280
Task.getpowerdomainalpha, 280
Task.getobjsense, 280
Task.getobjnamelen, 279
Task.getobjname, 279
Task.getnumvar, 279
Task.getnumsymmat, 279
Task.getnumqobjnz, 279
Task.getnumqconknz, 279
Task.getnumparam, 278
Task.getnumintvar, 278
Task.getnumdomain, 278
Task.getnumdjc, 278
Task.getnumconemem, 278
Task.getnumcone, 278
Task.getnumcon, 277
Task.getnumbarvar, 277
Task.getnumbarcnz, 277
Task.getnumbarcblocktriplets, 277
Task.getnumbaranz, 277
Task.getnumbarablocktriplets, 277
Task.getnumanz64, 276
Task.getnumanz, 276

Task.getnumafe, 276
Task.getnumacc, 276
Task.getmemusage, 276
Task.getmaxnumvar, 276
Task.getmaxnumqnz, 275
Task.getmaxnumcone, 275
Task.getmaxnumcon, 275
Task.getmaxnumbarvar, 275
Task.getmaxnumanz, 275
Task.getlintinf, 274
Task.getlenbarvarj, 274
Task.getintparam, 274
Task.getintinf, 274
Task.getinfeasiblesubproblem, 273
Task.getdviolvar, 273
Task.getdviolcones, 272
Task.getdviolcon, 272
Task.getdviolbarvar, 272
Task.getdviolacc, 271
Task.getdualsolutionnorms, 271
Task.getdualobj, 270
Task.getdouparam, 270
Task.getdouinf, 270
Task.getdomaintype, 270
Task.getdomainnamelen, 270
Task.getdomainname, 270
Task.getdomainn, 269
Task.getdjctermsizelist, 269
Task.getdjcs, 268
Task.getdjcnumtermtot, 268
Task.getdjcnumterm, 268
Task.getdjcnumdomaintot, 268
Task.getdjcnumdomain, 268
Task.getdjcnumafetot, 267
Task.getdjcnumafe, 267
Task.getdjcnamelen, 267
Task.getdjcname, 267
Task.getdjcdomainidxlist, 267
Task.getdjcb, 266
Task.getdjcafeidxlist, 266
Task.getdimbarvarj, 266
Task.getcslice, 266
Task.getconnamelen, 265
Task.getconnameindex, 265
Task.getconname, 265
Task.getconenamelen, 265
Task.getconenameindex, 264
Task.getconename, 264
Task.getconeinfo, 264
Task.getcone, 264
Task.getconboundslice, 263
Task.getconbound, 263
Task.getclist, 263
Task.getcj, 262
Task.getcfix, 262
Task.getc, 262
Task.getbarxslice, 262
Task.getbarxj, 261

529

Task.getbarvarnamelen, 261
Task.getbarvarnameindex, 261
Task.getbarvarname, 261
Task.getbarsslice, 260
Task.getbarsj, 260
Task.getbarcsparsity, 260
Task.getbarcidxj, 260
Task.getbarcidxinfo, 259
Task.getbarcidx, 259
Task.getbarcblocktriplet, 259
Task.getbarasparsity, 258
Task.getbaraidxinfo, 258
Task.getbaraidxij, 258
Task.getbaraidx, 257
Task.getbarablocktriplet, 257
Task.getatruncatetol, 256
Task.getatrip, 256
Task.getarowslicetrip, 256
Task.getarowslicenumnz, 255
Task.getarowslice, 255
Task.getarownumnz, 255
Task.getarow, 254
Task.getapiecenumnz, 254
Task.getaij, 254
Task.getafegslice, 254
Task.getafeg, 253
Task.getafeftrip, 253
Task.getafefrownumnz, 253
Task.getafefrow, 253
Task.getafefnumnz, 253
Task.getafebarfrowinfo, 252
Task.getafebarfrow, 251
Task.getafebarfnumrowentries, 251
Task.getafebarfnumblocktriplets, 251
Task.getafebarfblocktriplet, 250
Task.getacolslicetrip, 250
Task.getacolslicenumnz, 250
Task.getacolslice, 249
Task.getacolnumnz, 249
Task.getacol, 249
Task.getaccs, 248
Task.getaccntot, 248
Task.getaccnamelen, 248
Task.getaccname, 248
Task.getaccn, 248
Task.getaccgvector, 247
Task.getaccftrip, 247
Task.getaccfnumnz, 247
Task.getaccdotys, 246
Task.getaccdoty, 246
Task.getaccdomain, 246
Task.getaccbarfnumblocktriplets, 246
Task.getaccbarfblocktriplet, 245
Task.getaccb, 245
Task.getaccafeidxlist, 245
Task.generatevarnames, 244
Task.generatedjcnames, 244
Task.generateconnames, 244

Task.generateconenames, 243
Task.generatebarvarnames, 243
Task.generateaccnames, 243
Task.evaluateaccs, 243
Task.evaluateacc, 242
Task.emptyafefrowlist, 242
Task.emptyafefrow, 242
Task.emptyafefcollist, 242
Task.emptyafefcol, 242
Task.emptyafebarfrowlist, 242
Task.emptyafebarfrow, 241
Task.dualsensitivity, 241
Task.deletesolution, 240
Task.commitchanges, 240
Task.chgvarbound, 240
Task.chgconbound, 239
Task.checkmem, 239
Task.basiscond, 239
Task.asyncstop, 239
Task.asyncpoll, 238
Task.asyncoptimize, 238
Task.asyncgetresult, 238
Task.appendvars, 237
Task.appendsvecpsdconedomain, 237
Task.appendsparsesymmatlist, 236
Task.appendsparsesymmat, 236
Task.appendrzerodomain, 236
Task.appendrquadraticconedomain, 236
Task.appendrplusdomain, 235
Task.appendrminusdomain, 235
Task.appendrdomain, 235
Task.appendquadraticconedomain, 235
Task.appendprimalpowerconedomain, 235
Task.appendprimalgeomeanconedomain, 234
Task.appendprimalexpconedomain, 234
Task.appenddualpowerconedomain, 234
Task.appenddualgeomeanconedomain, 234
Task.appenddualexpconedomain, 234
Task.appenddjcs, 233
Task.appendcons, 233
Task.appendconesseq, 233
Task.appendconeseq, 232
Task.appendcone, 231
Task.appendbarvars, 231
Task.appendafes, 231
Task.appendaccsseq, 231
Task.appendaccseq, 230
Task.appendaccs, 230
Task.appendacc, 229
Task.analyzesolution, 229
Task.analyzeproblem, 229
Task.analyzenames, 229
Task.__del__, 229

Enumerations
basindtype, 424
basindtype.reservered, 424
basindtype.no_error, 424

530

basindtype.never, 424
basindtype.if_feasible, 424
basindtype.always, 424
boundkey, 424
boundkey.up, 424
boundkey.ra, 424
boundkey.lo, 424
boundkey.fx, 424
boundkey.fr, 424
branchdir, 443
branchdir.up, 443
branchdir.root_lp, 443
branchdir.pseudocost, 443
branchdir.near, 443
branchdir.guided, 443
branchdir.free, 443
branchdir.far, 443
branchdir.down, 443
callbackcode, 426
callbackcode.write_opf, 430
callbackcode.update_simplex, 430
callbackcode.update_primal_simplex_bi, 430
callbackcode.update_primal_simplex, 430
callbackcode.update_primal_bi, 430
callbackcode.update_presolve, 430
callbackcode.update_dual_simplex_bi, 430
callbackcode.update_dual_simplex, 430
callbackcode.update_dual_bi, 430
callbackcode.solving_remote, 430
callbackcode.read_opf_section, 430
callbackcode.read_opf, 430
callbackcode.primal_simplex, 430
callbackcode.new_int_mio, 429
callbackcode.intpnt, 429
callbackcode.im_simplex_bi, 429
callbackcode.im_simplex, 429
callbackcode.im_root_cutgen, 429
callbackcode.im_read, 429
callbackcode.im_qo_reformulate, 429
callbackcode.im_primal_simplex, 429
callbackcode.im_primal_sensivity, 429
callbackcode.im_primal_bi, 429
callbackcode.im_presolve, 429
callbackcode.im_order, 429
callbackcode.im_mio_primal_simplex, 429
callbackcode.im_mio_intpnt, 429
callbackcode.im_mio_dual_simplex, 429
callbackcode.im_mio, 429
callbackcode.im_lu, 429
callbackcode.im_license_wait, 429
callbackcode.im_intpnt, 429
callbackcode.im_dual_simplex, 429
callbackcode.im_dual_sensivity, 429
callbackcode.im_dual_bi, 428
callbackcode.im_conic, 428
callbackcode.im_bi, 428
callbackcode.end_write, 428
callbackcode.end_to_conic, 428

callbackcode.end_solve_root_relax, 428
callbackcode.end_simplex_bi, 428
callbackcode.end_simplex, 428
callbackcode.end_root_cutgen, 428
callbackcode.end_read, 428
callbackcode.end_qcqo_reformulate, 428
callbackcode.end_primal_simplex_bi, 428
callbackcode.end_primal_simplex, 428
callbackcode.end_primal_setup_bi, 428
callbackcode.end_primal_sensitivity, 428
callbackcode.end_primal_repair, 428
callbackcode.end_primal_bi, 428
callbackcode.end_presolve, 428
callbackcode.end_optimizer, 428
callbackcode.end_mio, 428
callbackcode.end_license_wait, 428
callbackcode.end_intpnt, 428
callbackcode.end_infeas_ana, 428
callbackcode.end_dual_simplex_bi, 427
callbackcode.end_dual_simplex, 427
callbackcode.end_dual_setup_bi, 427
callbackcode.end_dual_sensitivity, 427
callbackcode.end_dual_bi, 427
callbackcode.end_conic, 427
callbackcode.end_bi, 427
callbackcode.dual_simplex, 427
callbackcode.conic, 427
callbackcode.begin_write, 427
callbackcode.begin_to_conic, 427
callbackcode.begin_solve_root_relax, 427
callbackcode.begin_simplex_bi, 427
callbackcode.begin_simplex, 427
callbackcode.begin_root_cutgen, 427
callbackcode.begin_read, 427
callbackcode.begin_qcqo_reformulate, 427
callbackcode.begin_primal_simplex_bi, 427
callbackcode.begin_primal_simplex, 427
callbackcode.begin_primal_setup_bi, 427
callbackcode.begin_primal_sensitivity, 427
callbackcode.begin_primal_repair, 427
callbackcode.begin_primal_bi, 426
callbackcode.begin_presolve, 426
callbackcode.begin_optimizer, 426
callbackcode.begin_mio, 426
callbackcode.begin_license_wait, 426
callbackcode.begin_intpnt, 426
callbackcode.begin_infeas_ana, 426
callbackcode.begin_dual_simplex_bi, 426
callbackcode.begin_dual_simplex, 426
callbackcode.begin_dual_setup_bi, 426
callbackcode.begin_dual_sensitivity, 426
callbackcode.begin_dual_bi, 426
callbackcode.begin_conic, 426
callbackcode.begin_bi, 426
checkconvexitytype, 430
checkconvexitytype.simple, 430
checkconvexitytype.none, 430
checkconvexitytype.full, 430

531

compresstype, 430
compresstype.zstd, 430
compresstype.none, 430
compresstype.gzip, 430
compresstype.free, 430
conetype, 431
conetype.zero, 431
conetype.rquad, 431
conetype.quad, 431
conetype.ppow, 431
conetype.pexp, 431
conetype.dpow, 431
conetype.dexp, 431
dataformat, 432
dataformat.task, 432
dataformat.ptf, 432
dataformat.op, 432
dataformat.mps, 432
dataformat.lp, 432
dataformat.json_task, 432
dataformat.free_mps, 432
dataformat.extension, 432
dataformat.cb, 432
dinfitem, 432
dinfitem.write_data_time, 437
dinfitem.to_conic_time, 437
dinfitem.sol_itr_pviolvar, 437
dinfitem.sol_itr_pviolcones, 437
dinfitem.sol_itr_pviolcon, 437
dinfitem.sol_itr_pviolbarvar, 437
dinfitem.sol_itr_pviolacc, 437
dinfitem.sol_itr_primal_obj, 437
dinfitem.sol_itr_nrm_y, 437
dinfitem.sol_itr_nrm_xx, 437
dinfitem.sol_itr_nrm_xc, 437
dinfitem.sol_itr_nrm_sux, 437
dinfitem.sol_itr_nrm_suc, 437
dinfitem.sol_itr_nrm_snx, 436
dinfitem.sol_itr_nrm_slx, 436
dinfitem.sol_itr_nrm_slc, 436
dinfitem.sol_itr_nrm_barx, 436
dinfitem.sol_itr_nrm_bars, 436
dinfitem.sol_itr_dviolvar, 436
dinfitem.sol_itr_dviolcones, 436
dinfitem.sol_itr_dviolcon, 436
dinfitem.sol_itr_dviolbarvar, 436
dinfitem.sol_itr_dviolacc, 436
dinfitem.sol_itr_dual_obj, 436
dinfitem.sol_itg_pviolvar, 436
dinfitem.sol_itg_pviolitg, 436
dinfitem.sol_itg_pvioldjc, 436
dinfitem.sol_itg_pviolcones, 436
dinfitem.sol_itg_pviolcon, 436
dinfitem.sol_itg_pviolbarvar, 436
dinfitem.sol_itg_pviolacc, 436
dinfitem.sol_itg_primal_obj, 436
dinfitem.sol_itg_nrm_xx, 435
dinfitem.sol_itg_nrm_xc, 435

dinfitem.sol_itg_nrm_barx, 435
dinfitem.sol_bas_pviolvar, 435
dinfitem.sol_bas_pviolcon, 435
dinfitem.sol_bas_primal_obj, 435
dinfitem.sol_bas_nrm_y, 435
dinfitem.sol_bas_nrm_xx, 435
dinfitem.sol_bas_nrm_xc, 435
dinfitem.sol_bas_nrm_sux, 435
dinfitem.sol_bas_nrm_suc, 435
dinfitem.sol_bas_nrm_slx, 435
dinfitem.sol_bas_nrm_slc, 435
dinfitem.sol_bas_nrm_barx, 435
dinfitem.sol_bas_dviolvar, 435
dinfitem.sol_bas_dviolcon, 435
dinfitem.sol_bas_dual_obj, 435
dinfitem.sim_time, 435
dinfitem.sim_primal_time, 435
dinfitem.sim_obj, 435
dinfitem.sim_feas, 435
dinfitem.sim_dual_time, 435
dinfitem.remote_time, 435
dinfitem.read_data_time, 434
dinfitem.qcqo_reformulate_worst_cholesky_diag_scaling,

434
dinfitem.qcqo_reformulate_worst_cholesky_column_scaling,

434
dinfitem.qcqo_reformulate_time, 434
dinfitem.qcqo_reformulate_max_perturbation,

434
dinfitem.primal_repair_penalty_obj, 434
dinfitem.presolve_total_primal_perturbation,

434
dinfitem.presolve_time, 434
dinfitem.presolve_lindep_time, 434
dinfitem.presolve_eli_time, 434
dinfitem.optimizer_time, 434
dinfitem.mio_user_obj_cut, 434
dinfitem.mio_time, 434
dinfitem.mio_root_time, 434
dinfitem.mio_root_presolve_time, 434
dinfitem.mio_root_optimizer_time, 434
dinfitem.mio_root_cutgen_time, 434
dinfitem.mio_probing_time, 434
dinfitem.mio_obj_rel_gap, 434
dinfitem.mio_obj_int, 434
dinfitem.mio_obj_bound, 433
dinfitem.mio_obj_abs_gap, 433
dinfitem.mio_lipro_separation_time, 433
dinfitem.mio_knapsack_cover_separation_time,

433
dinfitem.mio_initial_feasible_solution_obj,

433
dinfitem.mio_implied_bound_time, 433
dinfitem.mio_gmi_separation_time, 433
dinfitem.mio_dual_bound_after_presolve, 433
dinfitem.mio_construct_solution_obj, 433
dinfitem.mio_cmir_separation_time, 433
dinfitem.mio_clique_separation_time, 433

532

dinfitem.intpnt_time, 433
dinfitem.intpnt_primal_obj, 433
dinfitem.intpnt_primal_feas, 433
dinfitem.intpnt_order_time, 433
dinfitem.intpnt_opt_status, 433
dinfitem.intpnt_factor_num_flops, 433
dinfitem.intpnt_dual_obj, 433
dinfitem.intpnt_dual_feas, 433
dinfitem.bi_time, 433
dinfitem.bi_primal_time, 433
dinfitem.bi_dual_time, 432
dinfitem.bi_clean_time, 432
dinfitem.bi_clean_primal_time, 432
dinfitem.bi_clean_dual_time, 432
dinfitem.ana_pro_scalarized_constraint_matrix_density,

432
domaintype, 431
domaintype.svec_psd_cone, 431
domaintype.rzero, 431
domaintype.rquadratic_cone, 431
domaintype.rplus, 431
domaintype.rminus, 431
domaintype.r, 431
domaintype.quadratic_cone, 431
domaintype.primal_power_cone, 431
domaintype.primal_geo_mean_cone, 431
domaintype.primal_exp_cone, 431
domaintype.dual_power_cone, 431
domaintype.dual_geo_mean_cone, 431
domaintype.dual_exp_cone, 431
dparam, 357
feature, 437
feature.pts, 437
feature.pton, 437
iinfitem, 438
iinfitem.sto_num_a_realloc, 443
iinfitem.sol_itr_solsta, 443
iinfitem.sol_itr_prosta, 443
iinfitem.sol_itg_solsta, 443
iinfitem.sol_itg_prosta, 443
iinfitem.sol_bas_solsta, 443
iinfitem.sol_bas_prosta, 442
iinfitem.sim_solve_dual, 442
iinfitem.sim_primal_iter, 442
iinfitem.sim_primal_inf_iter, 442
iinfitem.sim_primal_hotstart_lu, 442
iinfitem.sim_primal_hotstart, 442
iinfitem.sim_primal_deg_iter, 442
iinfitem.sim_numvar, 442
iinfitem.sim_numcon, 442
iinfitem.sim_dual_iter, 442
iinfitem.sim_dual_inf_iter, 442
iinfitem.sim_dual_hotstart_lu, 442
iinfitem.sim_dual_hotstart, 442
iinfitem.sim_dual_deg_iter, 442
iinfitem.rd_protype, 442
iinfitem.rd_numvar, 442
iinfitem.rd_numq, 442

iinfitem.rd_numintvar, 442
iinfitem.rd_numcone, 442
iinfitem.rd_numcon, 442
iinfitem.rd_numbarvar, 442
iinfitem.purify_primal_success, 442
iinfitem.purify_dual_success, 442
iinfitem.presolve_num_primal_perturbations,

442
iinfitem.optimize_response, 441
iinfitem.opt_numvar, 441
iinfitem.opt_numcon, 441
iinfitem.mio_user_obj_cut, 441
iinfitem.mio_total_num_cuts, 441
iinfitem.mio_relgap_satisfied, 441
iinfitem.mio_presolved_numvar, 441
iinfitem.mio_presolved_numrqcones, 441
iinfitem.mio_presolved_numqcones, 441
iinfitem.mio_presolved_numppowcones, 441
iinfitem.mio_presolved_numpexpcones, 441
iinfitem.mio_presolved_numintconevar, 441
iinfitem.mio_presolved_numint, 441
iinfitem.mio_presolved_numdpowcones, 441
iinfitem.mio_presolved_numdjc, 441
iinfitem.mio_presolved_numdexpcones, 441
iinfitem.mio_presolved_numcontconevar, 441
iinfitem.mio_presolved_numcont, 441
iinfitem.mio_presolved_numconevar, 441
iinfitem.mio_presolved_numcone, 441
iinfitem.mio_presolved_numcon, 441
iinfitem.mio_presolved_numbinconevar, 441
iinfitem.mio_presolved_numbin, 441
iinfitem.mio_obj_bound_defined, 441
iinfitem.mio_numvar, 440
iinfitem.mio_numrqcones, 440
iinfitem.mio_numqcones, 440
iinfitem.mio_numppowcones, 440
iinfitem.mio_numpexpcones, 440
iinfitem.mio_numintconevar, 440
iinfitem.mio_numint, 440
iinfitem.mio_numdpowcones, 440
iinfitem.mio_numdjc, 440
iinfitem.mio_numdexpcones, 440
iinfitem.mio_numcontconevar, 440
iinfitem.mio_numcont, 440
iinfitem.mio_numconevar, 440
iinfitem.mio_numcone, 440
iinfitem.mio_numcon, 440
iinfitem.mio_numbinconevar, 440
iinfitem.mio_numbin, 440
iinfitem.mio_num_repeated_presolve, 440
iinfitem.mio_num_relax, 440
iinfitem.mio_num_lipro_cuts, 440
iinfitem.mio_num_knapsack_cover_cuts, 440
iinfitem.mio_num_int_solutions, 440
iinfitem.mio_num_implied_bound_cuts, 440
iinfitem.mio_num_gomory_cuts, 440
iinfitem.mio_num_cmir_cuts, 439
iinfitem.mio_num_clique_cuts, 439

533

iinfitem.mio_num_branch, 439
iinfitem.mio_num_active_nodes, 439
iinfitem.mio_node_depth, 439
iinfitem.mio_initial_feasible_solution, 439
iinfitem.mio_construct_solution, 439
iinfitem.mio_clique_table_size, 439
iinfitem.mio_absgap_satisfied, 439
iinfitem.intpnt_solve_dual, 439
iinfitem.intpnt_num_threads, 439
iinfitem.intpnt_iter, 439
iinfitem.intpnt_factor_dim_dense, 439
iinfitem.ana_pro_num_var_up, 439
iinfitem.ana_pro_num_var_ra, 439
iinfitem.ana_pro_num_var_lo, 439
iinfitem.ana_pro_num_var_int, 439
iinfitem.ana_pro_num_var_fr, 439
iinfitem.ana_pro_num_var_eq, 439
iinfitem.ana_pro_num_var_cont, 439
iinfitem.ana_pro_num_var_bin, 439
iinfitem.ana_pro_num_var, 438
iinfitem.ana_pro_num_con_up, 438
iinfitem.ana_pro_num_con_ra, 438
iinfitem.ana_pro_num_con_lo, 438
iinfitem.ana_pro_num_con_fr, 438
iinfitem.ana_pro_num_con_eq, 438
iinfitem.ana_pro_num_con, 438
inftype, 443
inftype.lint_type, 443
inftype.int_type, 443
inftype.dou_type, 443
intpnthotstart, 425
intpnthotstart.primal_dual, 426
intpnthotstart.primal, 426
intpnthotstart.none, 425
intpnthotstart.dual, 426
iomode, 443
iomode.write, 443
iomode.readwrite, 443
iomode.read, 443
iparam, 367
liinfitem, 437
liinfitem.simplex_iter, 438
liinfitem.rd_numqnz, 438
liinfitem.rd_numdjc, 438
liinfitem.rd_numanz, 438
liinfitem.rd_numacc, 438
liinfitem.mio_simplex_iter, 438
liinfitem.mio_presolved_anz, 438
liinfitem.mio_num_prim_illposed_cer, 438
liinfitem.mio_num_dual_illposed_cer, 438
liinfitem.mio_intpnt_iter, 438
liinfitem.mio_anz, 438
liinfitem.intpnt_factor_num_nz, 438
liinfitem.bi_primal_iter, 438
liinfitem.bi_dual_iter, 438
liinfitem.bi_clean_primal_iter, 438
liinfitem.bi_clean_primal_deg_iter, 438
liinfitem.bi_clean_dual_iter, 437

liinfitem.bi_clean_dual_deg_iter, 437
liinfitem.ana_pro_scalarized_constraint_matrix_num_rows,

437
liinfitem.ana_pro_scalarized_constraint_matrix_num_nz,

437
liinfitem.ana_pro_scalarized_constraint_matrix_num_columns,

437
mark, 424
mark.up, 424
mark.lo, 424
miocontsoltype, 444
miocontsoltype.root, 444
miocontsoltype.none, 444
miocontsoltype.itg_rel, 444
miocontsoltype.itg, 444
miodatapermmethod, 444
miodatapermmethod.random, 444
miodatapermmethod.none, 444
miodatapermmethod.cyclic_shift, 444
miomode, 444
miomode.satisfied, 444
miomode.ignored, 444
mionodeseltype, 444
mionodeseltype.pseudo, 444
mionodeseltype.free, 444
mionodeseltype.first, 444
mionodeseltype.best, 444
miqcqoreformmethod, 443
miqcqoreformmethod.relax_sdp, 444
miqcqoreformmethod.none, 444
miqcqoreformmethod.linearization, 444
miqcqoreformmethod.free, 443
miqcqoreformmethod.eigen_val_method, 444
miqcqoreformmethod.diag_sdp, 444
mpsformat, 444
mpsformat.strict, 445
mpsformat.relaxed, 445
mpsformat.free, 445
mpsformat.cplex, 445
nametype, 431
nametype.mps, 431
nametype.lp, 432
nametype.gen, 431
objsense, 445
objsense.minimize, 445
objsense.maximize, 445
onoffkey, 445
onoffkey.on, 445
onoffkey.off, 445
optimizertype, 445
optimizertype.primal_simplex, 445
optimizertype.mixed_int, 445
optimizertype.intpnt, 445
optimizertype.free_simplex, 445
optimizertype.free, 445
optimizertype.dual_simplex, 445
optimizertype.conic, 445
orderingtype, 445

534

orderingtype.try_graphpar, 445
orderingtype.none, 446
orderingtype.free, 445
orderingtype.force_graphpar, 445
orderingtype.experimental, 445
orderingtype.appminloc, 445
parametertype, 446
parametertype.str_type, 446
parametertype.invalid_type, 446
parametertype.int_type, 446
parametertype.dou_type, 446
presolvemode, 446
presolvemode.on, 446
presolvemode.off, 446
presolvemode.free, 446
problemitem, 446
problemitem.var, 446
problemitem.cone, 446
problemitem.con, 446
problemtype, 446
problemtype.qo, 446
problemtype.qcqo, 446
problemtype.mixed, 446
problemtype.lo, 446
problemtype.conic, 446
prosta, 446
prosta.unknown, 446
prosta.prim_infeas_or_unbounded, 447
prosta.prim_infeas, 446
prosta.prim_feas, 446
prosta.prim_and_dual_infeas, 447
prosta.prim_and_dual_feas, 446
prosta.ill_posed, 447
prosta.dual_infeas, 447
prosta.dual_feas, 446
purify, 426
purify.primal_dual, 426
purify.primal, 426
purify.none, 426
purify.dual, 426
purify.auto, 426
rescode, 403
rescodetype, 447
rescodetype.wrn, 447
rescodetype.unk, 447
rescodetype.trm, 447
rescodetype.ok, 447
rescodetype.err, 447
scalingmethod, 447
scalingmethod.pow2, 447
scalingmethod.free, 447
scalingtype, 447
scalingtype.none, 447
scalingtype.free, 447
sensitivitytype, 447
sensitivitytype.basis, 447
simdegen, 425
simdegen.none, 425

simdegen.moderate, 425
simdegen.minimum, 425
simdegen.free, 425
simdegen.aggressive, 425
simdupvec, 425
simdupvec.on, 425
simdupvec.off, 425
simdupvec.free, 425
simhotstart, 425
simhotstart.status_keys, 425
simhotstart.none, 425
simhotstart.free, 425
simreform, 425
simreform.on, 425
simreform.off, 425
simreform.free, 425
simreform.aggressive, 425
simseltype, 447
simseltype.se, 448
simseltype.partial, 448
simseltype.full, 447
simseltype.free, 447
simseltype.devex, 448
simseltype.ase, 447
solformat, 432
solformat.task, 432
solformat.json_task, 432
solformat.extension, 432
solformat.b, 432
solitem, 448
solitem.y, 448
solitem.xx, 448
solitem.xc, 448
solitem.sux, 448
solitem.suc, 448
solitem.snx, 448
solitem.slx, 448
solitem.slc, 448
solsta, 448
solsta.unknown, 448
solsta.prim_infeas_cer, 448
solsta.prim_illposed_cer, 448
solsta.prim_feas, 448
solsta.prim_and_dual_feas, 448
solsta.optimal, 448
solsta.integer_optimal, 448
solsta.dual_infeas_cer, 448
solsta.dual_illposed_cer, 448
solsta.dual_feas, 448
soltype, 448
soltype.itr, 449
soltype.itg, 449
soltype.bas, 449
solveform, 449
solveform.primal, 449
solveform.free, 449
solveform.dual, 449
sparam, 400

535

stakey, 449
stakey.upr, 449
stakey.unk, 449
stakey.supbas, 449
stakey.low, 449
stakey.inf, 449
stakey.fix, 449
stakey.bas, 449
startpointtype, 449
startpointtype.satisfy_bounds, 449
startpointtype.guess, 449
startpointtype.free, 449
startpointtype.constant, 449
streamtype, 449
streamtype.wrn, 450
streamtype.msg, 449
streamtype.log, 449
streamtype.err, 449
symmattype, 432
symmattype.sparse, 432
transpose, 425
transpose.yes, 425
transpose.no, 425
uplo, 425
uplo.up, 425
uplo.lo, 425
value, 450
value.max_str_len, 450
value.license_buffer_length, 450
variabletype, 450
variabletype.type_int, 450
variabletype.type_cont, 450
xmlwriteroutputtype, 447
xmlwriteroutputtype.row, 447
xmlwriteroutputtype.col, 447

Exceptions
Error, 345
MosekException, 345

Parameters
Double parameters, 357
dparam.ana_sol_infeas_tol, 357
dparam.basis_rel_tol_s, 357
dparam.basis_tol_s, 357
dparam.basis_tol_x, 357
dparam.check_convexity_rel_tol, 357
dparam.data_sym_mat_tol, 358
dparam.data_sym_mat_tol_huge, 358
dparam.data_sym_mat_tol_large, 358
dparam.data_tol_aij_huge, 358
dparam.data_tol_aij_large, 358
dparam.data_tol_bound_inf, 359
dparam.data_tol_bound_wrn, 359
dparam.data_tol_c_huge, 359
dparam.data_tol_cj_large, 359
dparam.data_tol_qij, 359
dparam.data_tol_x, 359

dparam.intpnt_co_tol_dfeas, 360
dparam.intpnt_co_tol_infeas, 360
dparam.intpnt_co_tol_mu_red, 360
dparam.intpnt_co_tol_near_rel, 360
dparam.intpnt_co_tol_pfeas, 360
dparam.intpnt_co_tol_rel_gap, 360
dparam.intpnt_qo_tol_dfeas, 361
dparam.intpnt_qo_tol_infeas, 361
dparam.intpnt_qo_tol_mu_red, 361
dparam.intpnt_qo_tol_near_rel, 361
dparam.intpnt_qo_tol_pfeas, 361
dparam.intpnt_qo_tol_rel_gap, 362
dparam.intpnt_tol_dfeas, 362
dparam.intpnt_tol_dsafe, 362
dparam.intpnt_tol_infeas, 362
dparam.intpnt_tol_mu_red, 362
dparam.intpnt_tol_path, 362
dparam.intpnt_tol_pfeas, 363
dparam.intpnt_tol_psafe, 363
dparam.intpnt_tol_rel_gap, 363
dparam.intpnt_tol_rel_step, 363
dparam.intpnt_tol_step_size, 363
dparam.lower_obj_cut, 363
dparam.lower_obj_cut_finite_trh, 364
dparam.mio_djc_max_bigm, 364
dparam.mio_max_time, 364
dparam.mio_rel_gap_const, 364
dparam.mio_tol_abs_gap, 364
dparam.mio_tol_abs_relax_int, 364
dparam.mio_tol_feas, 365
dparam.mio_tol_rel_dual_bound_improvement,

365
dparam.mio_tol_rel_gap, 365
dparam.optimizer_max_time, 365
dparam.presolve_tol_abs_lindep, 365
dparam.presolve_tol_aij, 365
dparam.presolve_tol_primal_infeas_perturbation,

366
dparam.presolve_tol_rel_lindep, 366
dparam.presolve_tol_s, 366
dparam.presolve_tol_x, 366
dparam.qcqo_reformulate_rel_drop_tol, 366
dparam.semidefinite_tol_approx, 366
dparam.sim_lu_tol_rel_piv, 366
dparam.simplex_abs_tol_piv, 367
dparam.upper_obj_cut, 367
dparam.upper_obj_cut_finite_trh, 367
Integer parameters, 367
iparam.ana_sol_basis, 367
iparam.ana_sol_print_violated, 367
iparam.auto_sort_a_before_opt, 368
iparam.auto_update_sol_info, 368
iparam.basis_solve_use_plus_one, 368
iparam.bi_clean_optimizer, 368
iparam.bi_ignore_max_iter, 368
iparam.bi_ignore_num_error, 369
iparam.bi_max_iterations, 369
iparam.cache_license, 369

536

iparam.check_convexity, 369
iparam.compress_statfile, 369
iparam.infeas_generic_names, 369
iparam.infeas_prefer_primal, 370
iparam.infeas_report_auto, 370
iparam.infeas_report_level, 370
iparam.intpnt_basis, 370
iparam.intpnt_diff_step, 370
iparam.intpnt_hotstart, 370
iparam.intpnt_max_iterations, 371
iparam.intpnt_max_num_cor, 371
iparam.intpnt_max_num_refinement_steps, 371
iparam.intpnt_off_col_trh, 371
iparam.intpnt_order_gp_num_seeds, 371
iparam.intpnt_order_method, 372
iparam.intpnt_purify, 372
iparam.intpnt_regularization_use, 372
iparam.intpnt_scaling, 372
iparam.intpnt_solve_form, 372
iparam.intpnt_starting_point, 372
iparam.license_debug, 373
iparam.license_pause_time, 373
iparam.license_suppress_expire_wrns, 373
iparam.license_trh_expiry_wrn, 373
iparam.license_wait, 373
iparam.log, 373
iparam.log_ana_pro, 374
iparam.log_bi, 374
iparam.log_bi_freq, 374
iparam.log_check_convexity, 374
iparam.log_cut_second_opt, 374
iparam.log_expand, 375
iparam.log_feas_repair, 375
iparam.log_file, 375
iparam.log_include_summary, 375
iparam.log_infeas_ana, 375
iparam.log_intpnt, 375
iparam.log_local_info, 375
iparam.log_mio, 376
iparam.log_mio_freq, 376
iparam.log_order, 376
iparam.log_presolve, 376
iparam.log_response, 376
iparam.log_sensitivity, 377
iparam.log_sensitivity_opt, 377
iparam.log_sim, 377
iparam.log_sim_freq, 377
iparam.log_sim_minor, 377
iparam.log_storage, 377
iparam.max_num_warnings, 378
iparam.mio_branch_dir, 378
iparam.mio_conic_outer_approximation, 378
iparam.mio_construct_sol, 378
iparam.mio_cut_clique, 378
iparam.mio_cut_cmir, 378
iparam.mio_cut_gmi, 379
iparam.mio_cut_implied_bound, 379
iparam.mio_cut_knapsack_cover, 379

iparam.mio_cut_lipro, 379
iparam.mio_cut_selection_level, 379
iparam.mio_data_permutation_method, 379
iparam.mio_feaspump_level, 380
iparam.mio_heuristic_level, 380
iparam.mio_max_num_branches, 380
iparam.mio_max_num_relaxs, 380
iparam.mio_max_num_root_cut_rounds, 380
iparam.mio_max_num_solutions, 381
iparam.mio_memory_emphasis_level, 381
iparam.mio_mode, 381
iparam.mio_node_optimizer, 381
iparam.mio_node_selection, 381
iparam.mio_numerical_emphasis_level, 382
iparam.mio_perspective_reformulate, 382
iparam.mio_presolve_aggregator_use, 382
iparam.mio_probing_level, 382
iparam.mio_propagate_objective_constraint,

382
iparam.mio_qcqo_reformulation_method, 383
iparam.mio_rins_max_nodes, 383
iparam.mio_root_optimizer, 383
iparam.mio_root_repeat_presolve_level, 383
iparam.mio_seed, 383
iparam.mio_symmetry_level, 383
iparam.mio_vb_detection_level, 384
iparam.mt_spincount, 384
iparam.ng, 384
iparam.num_threads, 384
iparam.opf_write_header, 384
iparam.opf_write_hints, 385
iparam.opf_write_line_length, 385
iparam.opf_write_parameters, 385
iparam.opf_write_problem, 385
iparam.opf_write_sol_bas, 385
iparam.opf_write_sol_itg, 385
iparam.opf_write_sol_itr, 386
iparam.opf_write_solutions, 386
iparam.optimizer, 386
iparam.param_read_case_name, 386
iparam.param_read_ign_error, 386
iparam.presolve_eliminator_max_fill, 386
iparam.presolve_eliminator_max_num_tries,

387
iparam.presolve_level, 387
iparam.presolve_lindep_abs_work_trh, 387
iparam.presolve_lindep_rel_work_trh, 387
iparam.presolve_lindep_use, 387
iparam.presolve_max_num_pass, 387
iparam.presolve_max_num_reductions, 388
iparam.presolve_use, 388
iparam.primal_repair_optimizer, 388
iparam.ptf_write_parameters, 388
iparam.ptf_write_solutions, 388
iparam.ptf_write_transform, 388
iparam.read_debug, 389
iparam.read_keep_free_con, 389
iparam.read_mps_format, 389

537

iparam.read_mps_width, 389
iparam.read_task_ignore_param, 389
iparam.remote_use_compression, 389
iparam.remove_unused_solutions, 389
iparam.sensitivity_all, 390
iparam.sensitivity_optimizer, 390
iparam.sensitivity_type, 390
iparam.sim_basis_factor_use, 390
iparam.sim_degen, 390
iparam.sim_detect_pwl, 391
iparam.sim_dual_crash, 391
iparam.sim_dual_phaseone_method, 391
iparam.sim_dual_restrict_selection, 391
iparam.sim_dual_selection, 391
iparam.sim_exploit_dupvec, 391
iparam.sim_hotstart, 392
iparam.sim_hotstart_lu, 392
iparam.sim_max_iterations, 392
iparam.sim_max_num_setbacks, 392
iparam.sim_non_singular, 392
iparam.sim_primal_crash, 392
iparam.sim_primal_phaseone_method, 393
iparam.sim_primal_restrict_selection, 393
iparam.sim_primal_selection, 393
iparam.sim_refactor_freq, 393
iparam.sim_reformulation, 393
iparam.sim_save_lu, 393
iparam.sim_scaling, 394
iparam.sim_scaling_method, 394
iparam.sim_seed, 394
iparam.sim_solve_form, 394
iparam.sim_stability_priority, 394
iparam.sim_switch_optimizer, 394
iparam.sol_filter_keep_basic, 395
iparam.sol_filter_keep_ranged, 395
iparam.sol_read_name_width, 395
iparam.sol_read_width, 395
iparam.solution_callback, 395
iparam.timing_level, 396
iparam.write_bas_constraints, 396
iparam.write_bas_head, 396
iparam.write_bas_variables, 396
iparam.write_compression, 396
iparam.write_data_param, 396
iparam.write_free_con, 396
iparam.write_generic_names, 397
iparam.write_generic_names_io, 397
iparam.write_ignore_incompatible_items, 397
iparam.write_int_constraints, 397
iparam.write_int_head, 397
iparam.write_int_variables, 398
iparam.write_json_indentation, 398
iparam.write_lp_full_obj, 398
iparam.write_lp_line_width, 398
iparam.write_mps_format, 398
iparam.write_mps_int, 398
iparam.write_sol_barvariables, 398
iparam.write_sol_constraints, 399

iparam.write_sol_head, 399
iparam.write_sol_ignore_invalid_names, 399
iparam.write_sol_variables, 399
iparam.write_task_inc_sol, 399
iparam.write_xml_mode, 399
String parameters, 400
sparam.bas_sol_file_name, 400
sparam.data_file_name, 400
sparam.debug_file_name, 400
sparam.int_sol_file_name, 400
sparam.itr_sol_file_name, 400
sparam.mio_debug_string, 400
sparam.param_comment_sign, 400
sparam.param_read_file_name, 401
sparam.param_write_file_name, 401
sparam.read_mps_bou_name, 401
sparam.read_mps_obj_name, 401
sparam.read_mps_ran_name, 401
sparam.read_mps_rhs_name, 401
sparam.remote_optserver_host, 401
sparam.remote_tls_cert, 402
sparam.remote_tls_cert_path, 402
sparam.sensitivity_file_name, 402
sparam.sensitivity_res_file_name, 402
sparam.sol_filter_xc_low, 402
sparam.sol_filter_xc_upr, 402
sparam.sol_filter_xx_low, 402
sparam.sol_filter_xx_upr, 403
sparam.stat_key, 403
sparam.stat_name, 403
sparam.write_lp_gen_var_name, 403

Response codes
Termination, 404
rescode.ok, 404
rescode.trm_internal, 404
rescode.trm_internal_stop, 404
rescode.trm_lost_race, 404
rescode.trm_max_iterations, 404
rescode.trm_max_num_setbacks, 404
rescode.trm_max_time, 404
rescode.trm_mio_num_branches, 404
rescode.trm_mio_num_relaxs, 404
rescode.trm_num_max_num_int_solutions, 404
rescode.trm_numerical_problem, 404
rescode.trm_objective_range, 404
rescode.trm_stall, 404
rescode.trm_user_callback, 404
Warnings, 404
rescode.wrn_ana_almost_int_bounds, 407
rescode.wrn_ana_c_zero, 406
rescode.wrn_ana_close_bounds, 406
rescode.wrn_ana_empty_cols, 406
rescode.wrn_ana_large_bounds, 406
rescode.wrn_dropped_nz_qobj, 405
rescode.wrn_duplicate_barvariable_names,

406
rescode.wrn_duplicate_cone_names, 406

538

rescode.wrn_duplicate_constraint_names, 406
rescode.wrn_duplicate_variable_names, 406
rescode.wrn_eliminator_space, 406
rescode.wrn_empty_name, 405
rescode.wrn_ignore_integer, 405
rescode.wrn_incomplete_linear_dependency_check,

406
rescode.wrn_invalid_mps_name, 405
rescode.wrn_invalid_mps_obj_name, 405
rescode.wrn_large_aij, 404
rescode.wrn_large_bound, 404
rescode.wrn_large_cj, 404
rescode.wrn_large_con_fx, 404
rescode.wrn_large_fij, 407
rescode.wrn_large_lo_bound, 404
rescode.wrn_large_up_bound, 404
rescode.wrn_license_expire, 405
rescode.wrn_license_feature_expire, 405
rescode.wrn_license_server, 405
rescode.wrn_lp_drop_variable, 405
rescode.wrn_lp_old_quad_format, 405
rescode.wrn_mio_infeasible_final, 405
rescode.wrn_modified_double_parameter, 407
rescode.wrn_mps_split_bou_vector, 405
rescode.wrn_mps_split_ran_vector, 405
rescode.wrn_mps_split_rhs_vector, 405
rescode.wrn_name_max_len, 405
rescode.wrn_no_dualizer, 407
rescode.wrn_no_global_optimizer, 405
rescode.wrn_no_infeasibility_report_when_matrix_variables,

407
rescode.wrn_nz_in_upr_tri, 405
rescode.wrn_open_param_file, 404
rescode.wrn_param_ignored_cmio, 406
rescode.wrn_param_name_dou, 405
rescode.wrn_param_name_int, 406
rescode.wrn_param_name_str, 406
rescode.wrn_param_str_value, 406
rescode.wrn_presolve_outofspace, 406
rescode.wrn_presolve_primal_pertubations,

406
rescode.wrn_sol_file_ignored_con, 405
rescode.wrn_sol_file_ignored_var, 405
rescode.wrn_sol_filter, 405
rescode.wrn_spar_max_len, 405
rescode.wrn_sym_mat_large, 407
rescode.wrn_too_few_basis_vars, 405
rescode.wrn_too_many_basis_vars, 405
rescode.wrn_undef_sol_file_name, 405
rescode.wrn_using_generic_names, 405
rescode.wrn_write_changed_names, 406
rescode.wrn_write_discarded_cfix, 406
rescode.wrn_write_lp_duplicate_con_names,

406
rescode.wrn_write_lp_duplicate_var_names,

406
rescode.wrn_write_lp_invalid_con_names, 406
rescode.wrn_write_lp_invalid_var_names, 406

rescode.wrn_zero_aij, 405
rescode.wrn_zeros_in_sparse_col, 406
rescode.wrn_zeros_in_sparse_row, 406
Errors, 407
rescode.err_acc_afe_domain_mismatch, 423
rescode.err_acc_invalid_entry_index, 423
rescode.err_acc_invalid_index, 423
rescode.err_ad_invalid_codelist, 419
rescode.err_afe_invalid_index, 423
rescode.err_api_array_too_small, 418
rescode.err_api_cb_connect, 418
rescode.err_api_fatal_error, 418
rescode.err_api_internal, 418
rescode.err_appending_too_big_cone, 415
rescode.err_arg_is_too_large, 413
rescode.err_arg_is_too_small, 413
rescode.err_argument_dimension, 412
rescode.err_argument_is_too_large, 420
rescode.err_argument_is_too_small, 420
rescode.err_argument_lenneq, 412
rescode.err_argument_perm_array, 415
rescode.err_argument_type, 412
rescode.err_axis_name_specification, 409
rescode.err_bar_var_dim, 419
rescode.err_basis, 414
rescode.err_basis_factor, 417
rescode.err_basis_singular, 417
rescode.err_blank_name, 409
rescode.err_cbf_duplicate_acoord, 421
rescode.err_cbf_duplicate_bcoord, 421
rescode.err_cbf_duplicate_con, 421
rescode.err_cbf_duplicate_int, 421
rescode.err_cbf_duplicate_obj, 421
rescode.err_cbf_duplicate_objacoord, 421
rescode.err_cbf_duplicate_pow_cones, 421
rescode.err_cbf_duplicate_pow_star_cones,

422
rescode.err_cbf_duplicate_psdcon, 422
rescode.err_cbf_duplicate_psdvar, 421
rescode.err_cbf_duplicate_var, 421
rescode.err_cbf_invalid_con_type, 421
rescode.err_cbf_invalid_dimension_of_cones,

422
rescode.err_cbf_invalid_dimension_of_psdcon,

422
rescode.err_cbf_invalid_domain_dimension,

421
rescode.err_cbf_invalid_exp_dimension, 421
rescode.err_cbf_invalid_int_index, 421
rescode.err_cbf_invalid_num_psdcon, 422
rescode.err_cbf_invalid_number_of_cones,

422
rescode.err_cbf_invalid_power, 422
rescode.err_cbf_invalid_power_cone_index,

422
rescode.err_cbf_invalid_power_star_cone_index,

422

539

rescode.err_cbf_invalid_psdcon_block_index,
422

rescode.err_cbf_invalid_psdcon_index, 422
rescode.err_cbf_invalid_psdcon_variable_index,

422
rescode.err_cbf_invalid_psdvar_dimension,

421
rescode.err_cbf_invalid_var_type, 421
rescode.err_cbf_no_variables, 421
rescode.err_cbf_no_version_specified, 421
rescode.err_cbf_obj_sense, 421
rescode.err_cbf_parse, 421
rescode.err_cbf_power_cone_is_too_long, 422
rescode.err_cbf_power_cone_mismatch, 422
rescode.err_cbf_power_star_cone_mismatch,

422
rescode.err_cbf_syntax, 421
rescode.err_cbf_too_few_constraints, 421
rescode.err_cbf_too_few_ints, 421
rescode.err_cbf_too_few_psdvar, 421
rescode.err_cbf_too_few_variables, 421
rescode.err_cbf_too_many_constraints, 421
rescode.err_cbf_too_many_ints, 421
rescode.err_cbf_too_many_variables, 421
rescode.err_cbf_unhandled_power_cone_type,

422
rescode.err_cbf_unhandled_power_star_cone_type,

422
rescode.err_cbf_unsupported, 421
rescode.err_cbf_unsupported_change, 422
rescode.err_con_q_not_nsd, 415
rescode.err_con_q_not_psd, 414
rescode.err_cone_index, 415
rescode.err_cone_overlap, 415
rescode.err_cone_overlap_append, 415
rescode.err_cone_parameter, 415
rescode.err_cone_rep_var, 415
rescode.err_cone_size, 415
rescode.err_cone_type, 415
rescode.err_cone_type_str, 415
rescode.err_data_file_ext, 408
rescode.err_dimension_specification, 409
rescode.err_djc_afe_domain_mismatch, 423
rescode.err_djc_domain_termsize_mismatch,

424
rescode.err_djc_invalid_index, 423
rescode.err_djc_invalid_term_size, 423
rescode.err_djc_total_num_terms_mismatch,

424
rescode.err_djc_unsupported_domain_type,

423
rescode.err_domain_dimension, 423
rescode.err_domain_dimension_psd, 423
rescode.err_domain_invalid_index, 423
rescode.err_domain_power_invalid_alpha, 423
rescode.err_domain_power_negative_alpha,

423
rescode.err_domain_power_nleft, 423

rescode.err_dup_name, 409
rescode.err_duplicate_aij, 415
rescode.err_duplicate_barvariable_names,

420
rescode.err_duplicate_cone_names, 420
rescode.err_duplicate_constraint_names, 420
rescode.err_duplicate_djc_names, 420
rescode.err_duplicate_domain_names, 420
rescode.err_duplicate_fij, 423
rescode.err_duplicate_variable_names, 420
rescode.err_end_of_file, 408
rescode.err_factor, 417
rescode.err_feasrepair_cannot_relax, 417
rescode.err_feasrepair_inconsistent_bound,

417
rescode.err_feasrepair_solving_relaxed, 417
rescode.err_file_license, 407
rescode.err_file_open, 408
rescode.err_file_read, 408
rescode.err_file_write, 408
rescode.err_final_solution, 417
rescode.err_first, 417
rescode.err_firsti, 414
rescode.err_firstj, 414
rescode.err_fixed_bound_values, 416
rescode.err_flexlm, 407
rescode.err_format_string, 409
rescode.err_global_inv_conic_problem, 417
rescode.err_huge_aij, 415
rescode.err_huge_c, 415
rescode.err_huge_fij, 423
rescode.err_identical_tasks, 419
rescode.err_in_argument, 412
rescode.err_index, 413
rescode.err_index_arr_is_too_large, 413
rescode.err_index_arr_is_too_small, 413
rescode.err_index_is_not_unique, 412
rescode.err_index_is_too_large, 412
rescode.err_index_is_too_small, 412
rescode.err_inf_dou_index, 412
rescode.err_inf_dou_name, 413
rescode.err_inf_in_double_data, 416
rescode.err_inf_int_index, 412
rescode.err_inf_int_name, 413
rescode.err_inf_lint_index, 413
rescode.err_inf_lint_name, 413
rescode.err_inf_type, 413
rescode.err_infeas_undefined, 419
rescode.err_infinite_bound, 415
rescode.err_int64_to_int32_cast, 419
rescode.err_internal, 418
rescode.err_internal_test_failed, 419
rescode.err_inv_aptre, 413
rescode.err_inv_bk, 414
rescode.err_inv_bkc, 414
rescode.err_inv_bkx, 414
rescode.err_inv_cone_type, 414
rescode.err_inv_cone_type_str, 414

540

rescode.err_inv_marki, 418
rescode.err_inv_markj, 418
rescode.err_inv_name_item, 414
rescode.err_inv_numi, 418
rescode.err_inv_numj, 418
rescode.err_inv_optimizer, 417
rescode.err_inv_problem, 417
rescode.err_inv_qcon_subi, 416
rescode.err_inv_qcon_subj, 416
rescode.err_inv_qcon_subk, 416
rescode.err_inv_qcon_val, 416
rescode.err_inv_qobj_subi, 415
rescode.err_inv_qobj_subj, 416
rescode.err_inv_qobj_val, 416
rescode.err_inv_sk, 414
rescode.err_inv_sk_str, 414
rescode.err_inv_skc, 414
rescode.err_inv_skn, 414
rescode.err_inv_skx, 414
rescode.err_inv_var_type, 414
rescode.err_invalid_aij, 416
rescode.err_invalid_ampl_stub, 419
rescode.err_invalid_b, 423
rescode.err_invalid_barvar_name, 409
rescode.err_invalid_cfix, 416
rescode.err_invalid_cj, 416
rescode.err_invalid_compression, 417
rescode.err_invalid_con_name, 409
rescode.err_invalid_cone_name, 409
rescode.err_invalid_fij, 423
rescode.err_invalid_file_format_for_affine_conic_constraints,

420
rescode.err_invalid_file_format_for_cfix,

419
rescode.err_invalid_file_format_for_cones,

419
rescode.err_invalid_file_format_for_disjunctive_constraints,

420
rescode.err_invalid_file_format_for_free_constraints,

419
rescode.err_invalid_file_format_for_nonlinear,

420
rescode.err_invalid_file_format_for_quadratic_terms,

419
rescode.err_invalid_file_format_for_ranged_constraints,

419
rescode.err_invalid_file_format_for_sym_mat,

419
rescode.err_invalid_file_name, 408
rescode.err_invalid_format_type, 414
rescode.err_invalid_g, 423
rescode.err_invalid_idx, 413
rescode.err_invalid_iomode, 417
rescode.err_invalid_max_num, 413
rescode.err_invalid_name_in_sol_file, 411
rescode.err_invalid_obj_name, 409
rescode.err_invalid_objective_sense, 416
rescode.err_invalid_problem_type, 420

rescode.err_invalid_sol_file_name, 408
rescode.err_invalid_stream, 409
rescode.err_invalid_surplus, 414
rescode.err_invalid_sym_mat_dim, 419
rescode.err_invalid_task, 409
rescode.err_invalid_utf8, 418
rescode.err_invalid_var_name, 409
rescode.err_invalid_wchar, 418
rescode.err_invalid_whichsol, 413
rescode.err_json_data, 412
rescode.err_json_format, 412
rescode.err_json_missing_data, 412
rescode.err_json_number_overflow, 412
rescode.err_json_string, 412
rescode.err_json_syntax, 411
rescode.err_last, 417
rescode.err_lasti, 414
rescode.err_lastj, 414
rescode.err_lau_arg_k, 420
rescode.err_lau_arg_m, 420
rescode.err_lau_arg_n, 420
rescode.err_lau_arg_trans, 420
rescode.err_lau_arg_transa, 420
rescode.err_lau_arg_transb, 420
rescode.err_lau_arg_uplo, 420
rescode.err_lau_invalid_lower_triangular_matrix,

420
rescode.err_lau_invalid_sparse_symmetric_matrix,

420
rescode.err_lau_not_positive_definite, 420
rescode.err_lau_singular_matrix, 420
rescode.err_lau_unknown, 420
rescode.err_license, 407
rescode.err_license_cannot_allocate, 408
rescode.err_license_cannot_connect, 408
rescode.err_license_expired, 407
rescode.err_license_feature, 407
rescode.err_license_invalid_hostid, 408
rescode.err_license_max, 407
rescode.err_license_moseklm_daemon, 407
rescode.err_license_no_server_line, 408
rescode.err_license_no_server_support, 408
rescode.err_license_old_server_version, 407
rescode.err_license_server, 407
rescode.err_license_server_version, 408
rescode.err_license_version, 407
rescode.err_link_file_dll, 408
rescode.err_living_tasks, 409
rescode.err_lower_bound_is_a_nan, 415
rescode.err_lp_dup_slack_name, 411
rescode.err_lp_empty, 411
rescode.err_lp_file_format, 411
rescode.err_lp_free_constraint, 411
rescode.err_lp_incompatible, 411
rescode.err_lp_indicator_var, 411
rescode.err_lp_invalid_con_name, 411
rescode.err_lp_invalid_var_name, 411
rescode.err_lp_write_conic_problem, 411

541

rescode.err_lp_write_geco_problem, 411
rescode.err_lu_max_num_tries, 418
rescode.err_max_len_is_too_small, 414
rescode.err_maxnumbarvar, 413
rescode.err_maxnumcon, 413
rescode.err_maxnumcone, 415
rescode.err_maxnumqnz, 413
rescode.err_maxnumvar, 413
rescode.err_mio_internal, 420
rescode.err_mio_invalid_node_optimizer, 422
rescode.err_mio_invalid_root_optimizer, 422
rescode.err_mio_no_optimizer, 417
rescode.err_mismatching_dimension, 409
rescode.err_missing_license_file, 407
rescode.err_mixed_conic_and_nl, 417
rescode.err_mps_cone_overlap, 410
rescode.err_mps_cone_repeat, 410
rescode.err_mps_cone_type, 410
rescode.err_mps_duplicate_q_element, 410
rescode.err_mps_file, 409
rescode.err_mps_inv_field, 409
rescode.err_mps_inv_marker, 409
rescode.err_mps_inv_sec_order, 410
rescode.err_mps_invalid_bound_key, 410
rescode.err_mps_invalid_con_key, 410
rescode.err_mps_invalid_indicator_constraint,

410
rescode.err_mps_invalid_indicator_quadratic_constraint,

410
rescode.err_mps_invalid_indicator_value,

410
rescode.err_mps_invalid_indicator_variable,

410
rescode.err_mps_invalid_key, 410
rescode.err_mps_invalid_obj_name, 410
rescode.err_mps_invalid_objsense, 410
rescode.err_mps_invalid_sec_name, 410
rescode.err_mps_mul_con_name, 410
rescode.err_mps_mul_csec, 410
rescode.err_mps_mul_qobj, 410
rescode.err_mps_mul_qsec, 410
rescode.err_mps_no_objective, 410
rescode.err_mps_non_symmetric_q, 410
rescode.err_mps_null_con_name, 409
rescode.err_mps_null_var_name, 409
rescode.err_mps_splitted_var, 410
rescode.err_mps_tab_in_field2, 410
rescode.err_mps_tab_in_field3, 410
rescode.err_mps_tab_in_field5, 410
rescode.err_mps_undef_con_name, 409
rescode.err_mps_undef_var_name, 410
rescode.err_mps_write_cplex_invalid_cone_type,

422
rescode.err_mul_a_element, 414
rescode.err_name_is_null, 417
rescode.err_name_max_len, 417
rescode.err_nan_in_blc, 416
rescode.err_nan_in_blx, 416

rescode.err_nan_in_buc, 416
rescode.err_nan_in_bux, 416
rescode.err_nan_in_c, 416
rescode.err_nan_in_double_data, 416
rescode.err_negative_append, 417
rescode.err_negative_surplus, 417
rescode.err_newer_dll, 408
rescode.err_no_bars_for_solution, 419
rescode.err_no_barx_for_solution, 419
rescode.err_no_basis_sol, 417
rescode.err_no_doty, 424
rescode.err_no_dual_for_itg_sol, 418
rescode.err_no_dual_infeas_cer, 418
rescode.err_no_init_env, 409
rescode.err_no_optimizer_var_type, 417
rescode.err_no_primal_infeas_cer, 418
rescode.err_no_snx_for_bas_sol, 418
rescode.err_no_solution_in_callback, 418
rescode.err_non_unique_array, 420
rescode.err_nonconvex, 414
rescode.err_nonlinear_equality, 414
rescode.err_nonlinear_ranged, 414
rescode.err_not_power_domain, 423
rescode.err_null_env, 409
rescode.err_null_pointer, 409
rescode.err_null_task, 409
rescode.err_num_arguments, 412
rescode.err_numconlim, 413
rescode.err_numvarlim, 413
rescode.err_obj_q_not_nsd, 415
rescode.err_obj_q_not_psd, 415
rescode.err_objective_range, 414
rescode.err_older_dll, 408
rescode.err_opf_dual_integer_solution, 411
rescode.err_opf_duplicate_bound, 411
rescode.err_opf_duplicate_cone_entry, 411
rescode.err_opf_duplicate_constraint_name,

411
rescode.err_opf_incorrect_tag_param, 411
rescode.err_opf_invalid_cone_type, 411
rescode.err_opf_invalid_tag, 411
rescode.err_opf_mismatched_tag, 411
rescode.err_opf_premature_eof, 410
rescode.err_opf_syntax, 410
rescode.err_opf_too_large, 411
rescode.err_optimizer_license, 407
rescode.err_overflow, 417
rescode.err_param_index, 412
rescode.err_param_is_too_large, 412
rescode.err_param_is_too_small, 412
rescode.err_param_name, 412
rescode.err_param_name_dou, 412
rescode.err_param_name_int, 412
rescode.err_param_name_str, 412
rescode.err_param_type, 412
rescode.err_param_value_str, 412
rescode.err_platform_not_licensed, 407
rescode.err_postsolve, 417

542

rescode.err_pro_item, 414
rescode.err_prob_license, 407
rescode.err_ptf_format, 412
rescode.err_ptf_incompatibility, 412
rescode.err_ptf_inconsistency, 412
rescode.err_ptf_undefined_item, 412
rescode.err_qcon_subi_too_large, 416
rescode.err_qcon_subi_too_small, 416
rescode.err_qcon_upper_triangle, 416
rescode.err_qobj_upper_triangle, 416
rescode.err_read_format, 409
rescode.err_read_lp_missing_end_tag, 411
rescode.err_read_lp_nonexisting_name, 411
rescode.err_remove_cone_variable, 415
rescode.err_repair_invalid_problem, 417
rescode.err_repair_optimization_failed, 417
rescode.err_sen_bound_invalid_lo, 418
rescode.err_sen_bound_invalid_up, 418
rescode.err_sen_format, 418
rescode.err_sen_index_invalid, 418
rescode.err_sen_index_range, 418
rescode.err_sen_invalid_regexp, 418
rescode.err_sen_numerical, 419
rescode.err_sen_solution_status, 418
rescode.err_sen_undef_name, 418
rescode.err_sen_unhandled_problem_type, 419
rescode.err_server_access_token, 423
rescode.err_server_address, 423
rescode.err_server_certificate, 423
rescode.err_server_connect, 422
rescode.err_server_problem_size, 423
rescode.err_server_protocol, 422
rescode.err_server_status, 423
rescode.err_server_tls_client, 423
rescode.err_server_token, 423
rescode.err_shape_is_too_large, 412
rescode.err_size_license, 407
rescode.err_size_license_con, 407
rescode.err_size_license_intvar, 407
rescode.err_size_license_numcores, 419
rescode.err_size_license_var, 407
rescode.err_slice_size, 417
rescode.err_sol_file_invalid_number, 415
rescode.err_solitem, 413
rescode.err_solver_probtype, 414
rescode.err_space, 408
rescode.err_space_leaking, 409
rescode.err_space_no_info, 409
rescode.err_sparsity_specification, 409
rescode.err_sym_mat_duplicate, 419
rescode.err_sym_mat_huge, 416
rescode.err_sym_mat_invalid, 416
rescode.err_sym_mat_invalid_col_index, 419
rescode.err_sym_mat_invalid_row_index, 419
rescode.err_sym_mat_invalid_value, 419
rescode.err_sym_mat_not_lower_tringular,

419
rescode.err_task_incompatible, 418

rescode.err_task_invalid, 418
rescode.err_task_write, 418
rescode.err_thread_cond_init, 408
rescode.err_thread_create, 408
rescode.err_thread_mutex_init, 408
rescode.err_thread_mutex_lock, 408
rescode.err_thread_mutex_unlock, 408
rescode.err_toconic_constr_not_conic, 422
rescode.err_toconic_constr_q_not_psd, 422
rescode.err_toconic_constraint_fx, 422
rescode.err_toconic_constraint_ra, 422
rescode.err_toconic_objective_not_psd, 422
rescode.err_too_small_a_truncation_value,

416
rescode.err_too_small_max_num_nz, 413
rescode.err_too_small_maxnumanz, 413
rescode.err_unallowed_whichsol, 413
rescode.err_unb_step_size, 419
rescode.err_undef_solution, 424
rescode.err_undefined_objective_sense, 416
rescode.err_unhandled_solution_status, 420
rescode.err_unknown, 408
rescode.err_upper_bound_is_a_nan, 415
rescode.err_upper_triangle, 420
rescode.err_whichitem_not_allowed, 413
rescode.err_whichsol, 413
rescode.err_write_lp_format, 411
rescode.err_write_lp_non_unique_name, 411
rescode.err_write_mps_invalid_name, 411
rescode.err_write_opf_invalid_var_name, 411
rescode.err_writing_file, 411
rescode.err_xml_invalid_problem_type, 419
rescode.err_y_is_undefined, 416

543

Index

A
ACC, 22
affine conic constraints, 22
analysis

infeasibility, 192
asset, see portfolio optimization
attaching

streams, 19

B
basic

solution, 82
basis identification, 111, 172
basis type

sensitivity analysis, 198
big-M, 188
BLAS, 118
bound

constraint, 16, 156, 159, 163
linear optimization, 16
variable, 16, 156, 159, 163

Branch-and-Bound, 181

C
callback, 91
cardinality constraints, 146
CBF format, 480
ceo1

example, 38
certificate, 83

dual, 158, 161
infeasibility, 78
infeasible, 78
primal, 158, 161

Cholesky factorization, 120, 135
column ordered

matrix format, 207
complementarity, 157, 161
concurrent optimizer, 152
cone

dual, 160
dual exponential, 38
exponential, 38
power, 34
quadratic, 29
rotated quadratic, 29
semidefinite, 44

conic exponential optimization, 38
conic optimization, 22, 29, 34, 38, 159

interior-point, 176
mixed-integer, 187
termination criteria, 178

conic problem
example, 30, 35, 38

conic quadratic optimization, 29
constraint

bound, 16, 156, 159, 163
linear optimization, 16
matrix, 16, 156, 159, 163
quadratic, 164

constraint programming, 59
correlation matrix, 128
covariance matrix, see correlation matrix
cqo1

example, 30
cuts, 185
cutting planes, 185

D
defining

objective, 19
determinism, 124
disjunction, 59
disjunctive constraint, 188
disjunctive constraints, 59
DJC, 59
domain, 451
dual

certificate, 158, 161
cone, 160
feasible, 157
infeasible, 157, 158, 161
problem, 157, 160, 164
solution, 84
variable, 157, 160

duality
conic, 160
linear, 157
semidefinite, 164

dualizer, 168

E
efficient frontier, 132
eliminator, 168
error

optimization, 82
errors, 85
example

544

ceo1, 38
conic problem, 30, 35, 38
cqo1, 30
lo1, 19
pow1, 35
qo1, 66
quadratic objective, 66

exceptions, 85
exponential cone, 38

F
factor model, 135
feasibility

integer feasibility, 183
feasible

dual, 157
primal, 156, 170, 177
problem, 156

format, 88
CBF, 480
json, 505
LP, 455
MPS, 459
OPF, 471
PTF, 498
sol, 511
task, 504

full
vector format, 206

G
geometric programming, 41
GP, 41

H
heuristic, 184
hot-start, 174

I
I/O, 88
infeasibility, 83, 158, 161

analysis, 192
linear optimization, 158
repair, 192
semidefinite, 164

infeasibility certificate, 78
infeasible

dual, 157, 158, 161
primal, 156, 158, 161, 170, 177
problem, 156, 158, 164

information item, 90, 91
installation, 9

Conda, 10
PIP, 10
requirements, 9
setup script, 11
troubleshooting, 9

integer

solution, 82
variable, 54

integer feasibility, 183
feasibility, 183

integer optimization, 54, 59
initial solution, 57
parameter, 54

interior-point
conic optimization, 176
linear optimization, 170
logging, 173, 179
optimizer, 170, 176
solution, 82
termination criteria, 171, 178

J
json format, 505

L
LAPACK, 118
license, 125
linear

objective, 19
linear constraint matrix, 16
linear dependency, 168
linear optimization, 16, 156

bound, 16
constraint, 16
infeasibility, 158
interior-point, 170
objective, 16
simplex, 174
termination criteria, 171, 174
variable, 16

linearity interval, 197
lo1

example, 19
log-sum-exp, 149
logging, 87

interior-point, 173, 179
mixed-integer optimizer, 186
optimizer, 173, 175, 179
simplex, 175

logistic regression, 148
LP format, 455

M
machine learning

logistic regression, 148
market impact cost, 140
Markowitz model, 128
matrix

constraint, 16, 156, 159, 163
semidefinite, 44
symmetric, 44

matrix format
column ordered, 207
row ordered, 207

545

triplets, 207
memory management, 123
MI(QC)QO, 188
MICO, 187
MIP, see integer optimization
mixed-integer, see integer

conic optimization, 187
optimizer, 180
presolve, 184
quadratic, 188

mixed-integer optimization, see integer opti-
mization, 180

mixed-integer optimizer
logging, 186

modeling
design, 12

MPS format, 459
free, 470

N
numerical issues

presolve, 168
scaling, 169
simplex, 175

numpy, 124

O
objective, 156, 159, 163

defining, 19
linear, 19
linear optimization, 16

OPF format, 471
optimal

solution, 83
optimality gap, 182
optimization

conic, 22, 159
conic quadratic, 159
error, 82
integer, 59
linear, 16, 156
semidefinite, 162

optimizer
concurrent, 152
conic, 22
determinism, 124
interior-point, 170, 176
interrupt, 91
logging, 173, 175, 179
mixed-integer, 59, 180
parallel, 77
selection, 168, 169
simplex, 174
termination, 182

P
parallel optimization, 77, 152
parallelization, 124

parameter, 89
integer optimization, 54
simplex, 175

Pareto optimality, 128
portfolio optimization, 127

cardinality constraints, 146
efficient frontier, 132
factor model, 135
market impact cost, 140
Markowitz model, 128
Pareto optimality, 128
slippage cost, 139
transaction cost, 143

positive semidefinite, 66
pow1

example, 35
power cone, 34
power cone optimization, 34
presolve, 167

eliminator, 168
linear dependency check, 168
mixed-integer, 184
numerical issues, 168

primal
certificate, 158, 161
feasible, 156, 170, 177
infeasible, 156, 158, 161, 170, 177
problem, 157, 160, 164
solution, 84, 156

primal heuristics, 184
primal-dual

problem, 170, 176
solution, 157

problem
dual, 157, 160, 164
feasible, 156
infeasible, 156, 158, 164
load, 88
primal, 157, 160, 164
primal-dual, 170, 176
save, 88
status, 82
unbounded, 158, 162

PTF format, 498

Q
qo1

example, 66
quadratic

constraint, 164
mixed-integer, 188

quadratic cone, 29
quadratic objective

example, 66
quadratic optimization, 164

R
regression

546

logistic, 148
relaxation, 181
repair

infeasibility, 192
response code, 85
rotated quadratic cone, 29
row ordered

matrix format, 207

S
scaling, 169
semidefinite

cone, 44
infeasibility, 164
matrix, 44
variable, 44

semidefinite optimization, 44, 162
sensitivity analysis, 196

basis type, 198
setup script, 11
shadow price, 197
simplex

linear optimization, 174
logging, 175
numerical issues, 175
optimizer, 174
parameter, 175
termination criteria, 174

slippage cost, 139
sol format, 511
solution

basic, 82
dual, 84
file format, 511
integer, 82
interior-point, 82
optimal, 83
primal, 84, 156
primal-dual, 157
retrieve, 82
status, 19, 83

solving linear system, 115
sparse

vector format, 206
sparse vector, 206
status

problem, 82
solution, 19, 83

streams
attaching, 19

symmetric
matrix, 44

T
task format, 504
termination, 82

optimizer, 182
termination criteria, 91, 182

conic optimization, 178
interior-point, 171, 178
linear optimization, 171, 174
simplex, 174
tolerance, 172, 179

thread, 124
time limit, 91
tolerance

termination criteria, 172, 179
transaction cost, 143
triplets

matrix format, 207
troubleshooting

installation, 9

U
unbounded

problem, 158, 162
user callback, see callback

V
valid inequalities, 185
variable, 156, 159, 163

bound, 16, 156, 159, 163
dual, 157, 160
integer, 54
linear optimization, 16
semidefinite, 44

vector format
full, 206
sparse, 206

547

	Introduction
	Why the Optimizer API for Python?

	Contact Information
	License Agreement
	MOSEK end-user license agreement
	Third party licenses

	Installation
	Anaconda
	PIP and Wheels
	Manual installation
	Testing the Installation
	Troubleshooting

	Design Overview
	Modeling
	“Hello World!” in MOSEK

	Optimization Tutorials
	Linear Optimization
	Example LO1

	From Linear to Conic Optimization
	Running example
	Step 1: add affine expressions
	Step 2: create a domain
	Step 3: create the actual constraint
	Example ACC1
	Example ACC2 - more conic constraints
	Summary and extensions

	Conic Quadratic Optimization
	Example CQO1

	Power Cone Optimization
	Example POW1

	Conic Exponential Optimization
	Example CEO1

	Geometric Programming
	Example GP1

	Semidefinite Optimization
	Example SDO1
	Example SDO2
	Example SDO_LMI: Linear matrix inequalities and the vectorized semidefinite domain

	Integer Optimization
	Example MILO1
	Specifying an initial solution
	Example MICO1

	Disjunctive constraints
	Applications
	Example DJC1
	Step 1: add affine expressions
	Step 2: create domains
	Step 3: create the actual disjunctive constraints
	Example DJC1 full code
	Summary and extensions

	Quadratic Optimization
	Example: Quadratic Objective
	Example: Quadratic constraints

	Problem Modification and Reoptimization
	Example: Production Planning
	Changing the Linear Constraint Matrix
	Appending Variables
	Appending Constraints
	Changing bounds
	Advanced hot-start

	Parallel optimization
	Retrieving infeasibility certificates
	Example PINFEAS

	Solver Interaction Tutorials
	Environment and task
	Task
	Environment

	Accessing the solution
	Solver termination
	Available solutions
	Problem and solution status
	Retrieving solution values
	Source code example

	Errors and exceptions
	Input/Output
	Stream logging
	Log verbosity
	Saving a problem to a file
	Reading a problem from a file

	Setting solver parameters
	Retrieving information items
	Progress and data callback
	Data callback
	Progress callback
	Working example: Data callback

	MOSEK OptServer
	Synchronous Remote Optimization
	Asynchronous Remote Optimization

	Debugging Tutorials
	Understanding optimizer log
	Input data
	Solution summary
	Continuous problem

	Mixed-integer problem

	Addressing numerical issues
	Formulating problems
	Further suggestions
	Typical pitfalls

	Debugging infeasibility
	Numerical issues
	Locating primal infeasibility
	Locating dual infeasibility
	Suggestions

	Python Console
	Usage
	Examples
	Full list of commands

	Advanced Numerical Tutorials
	Solving Linear Systems Involving the Basis Matrix
	Basis identification
	Solving arbitrary linear systems

	Calling BLAS/LAPACK Routines from MOSEK
	Computing a Sparse Cholesky Factorization

	Technical guidelines
	Memory management and garbage collection
	Names
	Multithreading
	Efficiency
	The license system
	Deployment

	Case Studies
	Portfolio Optimization
	The Basic Model
	The Efficient Frontier
	Factor model and efficiency
	Slippage Cost
	Market Impact Costs
	Transaction Costs
	Cardinality constraints

	Logistic regression
	Concurrent optimizer
	Common setup
	Linear optimization
	Mixed-integer optimization

	Problem Formulation and Solutions
	Linear Optimization
	Duality for Linear Optimization
	Infeasibility for Linear Optimization
	Primal Infeasible Problems
	Dual Infeasible Problems

	Minimalization vs. Maximalization

	Conic Optimization
	Duality for Conic Optimization
	Infeasibility for Conic Optimization
	Primal Infeasible Problems
	Dual Infeasible Problems

	Minimalization vs. Maximalization

	Semidefinite Optimization
	Quadratic and Quadratically Constrained Optimization
	A Recommendation
	Duality for Quadratic and Quadratically Constrained Optimization
	Infeasibility for Quadratic Optimization

	Optimizers
	Presolve
	Linear Optimization
	Optimizer Selection
	The Interior-point Optimizer
	The homogeneous primal-dual problem
	Interior-point Termination Criterion
	Adjusting optimality criteria
	Basis Identification
	The Interior-point Log

	The Simplex Optimizer
	Simplex Termination Criterion
	Starting From an Existing Solution
	Numerical Difficulties in the Simplex Optimizers
	The Simplex Log

	Conic Optimization - Interior-point optimizer
	The homogeneous primal-dual problem
	Interior-point Termination Criterion
	Adjusting optimality criteria
	The Interior-point Log

	The Optimizer for Mixed-Integer Problems
	Branch-and-Bound
	Solution quality and termination criteria
	Solution quality in terms of optimality
	Solution quality in terms of feasibility
	Further controlling optimizer termination

	Additional components of the mixed-integer Optimizer
	Presolve
	Primal Heuristics
	Cutting Planes

	The Mixed-Integer Log
	Mixed-Integer Nonlinear Optimization
	MI(QC)QO

	Disjunctive constraints
	Randomization
	Further performance tweaks

	Additional features
	Problem Analyzer
	Automatic Repair of Infeasible Problems
	Automatic repair
	Using the automatic repair tool

	Sensitivity Analysis
	Sensitivity Analysis for Linear Problems
	The Optimal Objective Value Function
	Equality Constraints

	The Basis Type Sensitivity Analysis
	Example: Sensitivity Analysis

	Sensitivity Analysis with MOSEK

	API Reference
	API Conventions
	Function arguments
	Bounds
	Vector Formats
	Matrix Formats
	Unordered Triplets
	Column or Row Ordered Sparse Matrix

	Functions grouped by topic
	Class Env
	Class Task
	Exceptions
	Parameters grouped by topic
	Parameters (alphabetical list sorted by type)
	Double parameters
	Integer parameters
	String parameters

	Response codes
	Termination
	Warnings
	Errors

	Enumerations
	Function Types
	Supported domains
	Linear domains
	Quadratic cone domains
	Exponential cone domains
	Power cone domains
	Geometric mean cone domains
	Vectorized semidefinite domain

	Supported File Formats
	The LP File Format
	File Sections
	Objective Function
	Constraints
	Bounds
	Variable Types
	Terminating Section

	LP File Examples
	LP Format peculiarities
	Comments
	Names
	Variable Bounds

	The MPS File Format
	MPS File Structure
	NAME (optional)
	OBJSENSE (optional)
	OBJNAME (optional)
	ROWS
	COLUMNS
	RHS (optional)
	RANGES (optional)
	QSECTION (optional)
	QMATRIX/QUADOBJ (optional)
	QCMATRIX (optional)
	BOUNDS (optional)
	CSECTION (optional)
	ENDATA

	Integer Variables
	General Limitations
	Interpretation of the MPS Format
	The Free MPS Format

	The OPF Format
	The File Format
	Sections
	Numbers
	Names
	Parameters Section
	Writing OPF Files from MOSEK
	Examples
	Linear Example lo1.opf
	Quadratic Example qo1.opf
	Conic Quadratic Example cqo1.opf
	Mixed Integer Example milo1.opf

	The CBF Format
	How Instances Are Specified
	The Structure of CBF Files
	Problem Specification
	File Format Keywords
	VER
	POWCONES
	POW*CONES
	OBJSENSE
	PSDVAR
	VAR
	INT
	PSDCON
	CON
	OBJFCOORD
	OBJACOORD
	OBJBCOORD
	FCOORD
	ACOORD
	BCOORD
	HCOORD
	DCOORD

	CBF Format Examples
	Minimal Working Example
	Mixing Linear, Second-order and Semidefinite Cones
	Mixing Semidefinite Variables and Linear Matrix Inequalities
	The exponential cone
	Parametric cones

	The PTF Format
	The overall format
	Names
	Expressions

	Task section
	Objective section
	Constraints section
	Variables section
	Integer section
	SymmetricMatrixes section
	Solutions section
	Examples

	The Task Format
	The JSON Format
	JTASK Specification
	JSOL Specification
	A jtask example

	The Solution File Format

	List of examples
	Interface changes
	Important changes compared to version 9
	Changes compared to version 9
	Functions compared to version 9
	Parameters compared to version 9
	Constants compared to version 9
	Response Codes compared to version 9

	Bibliography
	Symbol Index
	Index

