Mo sek

MOSEK Fusion API for .NET
Release 10.0.39

MOSEK ApS

20 March 2023

Contents

1 Introduction
1.1 Why the Fusion API for NET? e

2 Contact Information

3 License Agreement

3.1 MOSEK end-user license agreement Lo Lo

3.2 Third party licenses L e
4 Installation

4.1 NET Core o i e e e e e e e e

4.2 Manual installation Lo

4.3 Testing the Installation and Compiling Examples.

4.4 Other platforms, Mono e e e

5 Design Overview

6 Conic Modeling

6.1 Themodel e
6.2 Variables e e
6.3 Expressions and linear operators oL L L Lo
6.4 Constraints and objective L e e
6.5 Matrices e e e e e e
6.6 Parameters L e e e
6.7 Stacking and viewso e e
6.8 Vectorizationo e e
6.9 Reoptimization e e e

7 Optimization Tutorials

7.1 Linear Optimization e e
7.2 Conic Quadratic Optimization
7.3 Power Cone Optimization e
7.4 Conic Exponential Optimization o
7.5 Geometric Programming Lo
7.6 Semidefinite Optimization L e
7.7 Integer Optimization e e
7.8 Disjunctive constraints Lo Lo
7.9 Model Parametrization and Reoptimization
7.10 Problem Modification and Reoptimization
7.11 Parallel optimization L L
7.12 Retrieving infeasibility certificates L
8 Solver Interaction Tutorials
8.1 Accessing the solution L L
8.2 Errors and exceptions Lo e e e e e e
8.3 Input/Output
8.4 Setting solver parameters L L e

10
10
10
11
11

13

15
15
16
16
17
18
19
19
20
21

8.5
8.6
8.7
8.8
8.9

9.1
9.2
9.3
9.4

Retrieving information items
Stopping the solver L
Progress and data callback L o
Optimizer APT Task e
MOSEK OptServer 0o e e e

Debugging Tutorials

Understanding optimizer log L e
Addressing numerical iSSUES L. L e e e e
Debugging infeasibility
Python Console e

10 Technical guidelines

10.1
10.2
10.3
10.4
10.5
10.6
10.7

Limitations o . oL e e
Memory management and garbage collection 0oL,
Names o o e e
Multithreading 0 e e e e e e e e e
Efficiency e e e e
The license system oL L e e e
Deploymento

11 Case Studies

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

Portfolio Optimization e
Primal Support-Vector Machine (SVM) o o
2D Total Variation o . L e
Multiprocessor Scheduling Lo e
Logistic regression L e e e e e e e
Inner and outer Lowner-John Ellipsoids o oo
SUDOKU e e
Travelling Salesman Problem (TSP)
Nearest Correlation Matrix Problem oo,

11.10 Semidefinite Relaxation of MIQCQO Problems

12 Problem Formulation and Solutions

12.1
12.2
12.3

Linear Optimization o o e
Conic Optimization e
Semidefinite Optimization e

13 Optimizers

13.1
13.2
13.3
13.4

Presolve o e e
Linear Optimization e e e
Conic Optimization - Interior-point optimizer
The Optimizer for Mixed-Integer Problems

14 Fusion API Reference

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

Fusion APl conventions e e
Class list L o o e
Parameters grouped by topic e
Parameters (alphabetical list sorted by type) oL
Enumerationso Lo e
Constants i e e e e e e e e e e e e e
Exceptions L e e
Supported domains Lo e e e
Class LinAlg o o 0 e

15 Supported File Formats

15.1
15.2
15.3

The LP File Format
The MPS File Format e
The OPF Format e

ii

76
76
81
83
88

90
90
90
91
92
92
94
94

95

96
111
117
121
124
126
130
134
139
143

147
147
150
153

157
157
159
166
170

180
180
181
264
272
300
302
326
331
333

15.4 The CBF Format
15.5 The PTF Format
15.6 The Task Format
15.7 The JSON Format
15.8 The Solution File Format

16 List of examples

17 Interface changes

17.1 Important changes compared to version 9

17.2 Changes compared to version 9 .

17.3 Parameters compared to version 9 Lo

17.4 Constants compared to version 9
Bibliography
Symbol Index

Index

iii

397

399
399
399
399
400

401

402

405

Chapter 1

Introduction

The MOSEK Optimization Suite 10.0.39 is a powerful software package capable of solving large-scale
optimization problems of the following kind:

e linear,

e conic:

conic quadratic (also known as second-order cone),

involving the exponential cone,

involving the power cone,

semidefinite,
e convex quadratic and quadratically constrained,
e integer.

In order to obtain an overview of features in the MOSEK Optimization Suite consult the product
introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all rela-
tions are linear. The tremendous success of both applications and theory of linear optimization can be
ascribed to the following factors:

e The required data are simple, i.e. just matrices and vectors.

e Convexity is guaranteed since the problem is convex by construction.

e Linear functions are trivially differentiable.

e There exist very efficient algorithms and software for solving linear problems.
e Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the
advantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

Ax —b> 0.
In conic optimization this is replaced with a wider class of constraints

Az —-be K

where KC is a convexr cone. For example in 3 dimensions K may correspond to an ice cream cone. The
conic optimizer in MOSEK supports a number of different types of cones K, which allows a surprisingly
large number of nonlinear relations to be modeled, as described in the MOSEK Modeling Cookbook,
while preserving the nice algorithmic and theoretical properties of linear optimization.

https://docs.mosek.com/10.0/intro/index.html
https://docs.mosek.com/10.0/intro/index.html
https://docs.mosek.com/modeling-cookbook/index.html

1.1 Why the Fusion API for .NET?

Fusion is an object oriented API specifically designed to build conic optimization models in a simple and
expressive manner, using mainstream programming languages.

Fusion API

Python C++ Java .NET

With focus on usability and compactness, it helps the user focus on modeling instead of coding.

Typically a conic optimization model in Fusion can be developed in a fraction of the time compared
to using a low-level C API, but of course Fusion introduces a computational overhead compared to
customized C code. In most cases, however, the overhead is small compared to the overall solution
time. Moreover, parametrization makes it possible to construct a Fusion model once and then solve it
repeatedly for different inputs with almost no overhead.

We generally recommend that Fusion is used as a first step for building and verifying new models.
Often, the final Fusion implementation will be directly suited for production code, and otherwise it
readily provides a reference implementation for model verification. Fusion always yields readable and
easily portable code.

The Fusion API for .NET provides access to Conic Optimization, including;:

e Linear Optimization (LO)

Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)

e Power Cone Optimization

Conic Exponential Optimization (CEO)

Semidefinite Optimization (SDO)
e Mixed-Integer Optimization (MIO)

as well as to an auxiliary linear algebra library.

Convex Quadratic and Quadratically Constrained (QCQO) problems can be reformulated as Conic
Quadratic problems and subsequently solved using Fusion. This is the recommended approach, as
described in the MOSEK Modeling Cookbook and this whitepaper.

https://docs.mosek.com/modeling-cookbook/cqo.html#convex-quadratic-sets
https://docs.mosek.com/whitepapers/qmodel.pdf

Chapter 2

Contact

Information

Phone +45 7174 9373

Website mosek.com

Email
sales@mosek.com Sales, pricing, and licensing
support@mosek.com Technical support, questions and bug reports
info@mosek.com Everything else.

Mailing Address
MOSEK ApS

Fruebjergvej 3

Symbion Science Park, Box 16

2100 Copenhagen O

Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger

https://blog.mosek.com

Google Group | https://groups.google.com/forum /#!forum /mosek

Twitter https://twitter.com /mosektw
Linkedin https: //www.linkedin.com /company /mosek-aps
Youtube https://www.youtube.com /channel /UCvlyect EVLP31NXeD5mIbEw

In particular Twit

ter is used for news, updates and release announcements.

https://mosek.com/
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com
https://blog.mosek.com/
https://groups.google.com/forum/#!forum/mosek
https://twitter.com/mosektw
https://www.linkedin.com/company/mosek-aps
https://www.youtube.com/channel/UCvIyectEVLP31NXeD5mIbEw

Chapter 3

License Agreement

3.1 MOSEK end-user license agreement
Before using the MOSEK software, please read the license agreement available in the distribution

at <MSKHOME>/mosek/10.0/mosek-eula.pdf or on the MOSEK website https://mosek.com/products
license-agreement. By using MOSEK you agree to the terms of that license agreement.

3.2 Third party licenses
MOSEK uses some third-party open-source libraries. Their license details follow.

zlib

MOSEK uses the zlib library obtained from the zlib website. The license agreement for zlib is shown
in Listing 3.1.

Listing 3.1: zlib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

https://mosek.com/products/license-agreement
https://mosek.com/products/license-agreement
http://zlib.org

fplib

MOSEK uses the floating point formatting library developed by David M. Gay obtained from the netlib
website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/KK KoK KK oK oK KoK KoK oK ok oK oK K oK KoK o Kok K oK o oK K ok oK ok K ok sk ok oK ok K ok Kok ok ok oK ok oK ok ok Kok ok
The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*
*
*
b3
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting

* documentation for such software.

*

*

*

*

*

£ 3

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. 1IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

***/

{fmt}

MOSEK uses the formatting library {fmt} developed by Victor Zverovich obtained form github/fmt
and distributed under the MIT license. The license agreement fot {fmt} is shown in Listing 3.3.

Listing 3.3: {fmt} license.

Copyright (c) 2012 - present, Victor Zverovich

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation

the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR

A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER

IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN

CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

http://www.netlib.org
http://www.netlib.org
https://github.com/fmtlib/fmt

Zstandard

MOSEK uses the Zstandard library developed by Facebook obtained from github/zstd. The license
agreement for Zstandard is shown in Listing 3.4.

Listing 3.4: Zstandard license.

BSD License
For Zstandard software
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name Facebook nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

OpenSSL

MOSEK uses the LibReSSL library, which is build on OpenSSL. OpenSSL is included under the
OpenSSL license, Listing 3.5, and the LibReSSL additions are licensed under the ISC license, Listing
3.6.

Listing 3.5: OpenSSL license

Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in

(continues on next page)

https://github.com/facebook/zstd
https://www.libressl.org/

(continued from previous page)

the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ~“AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Listing 3.6: ISC license

Copyright (C) 1994-2017 Free Software Foundation, Inc.
Copyright (c) 2014 Jeremie Courreges-Anglas <jca@openbsd.org>
Copyright (c) 2014-2015 Joel Sing <jsing@openbsd.org>
Copyright (c) 2014 Ted Unangst <tedu@openbsd.org>

Copyright (c) 2015-2016 Bob Beck <beck@openbsd.org>

Copyright (c) 2015 Marko Kreen <markokr@gmail.com>

Copyright (c) 2015 Reyk Floeter <reyk@openbsd.org>

Copyright (c) 2016 Tobias Pape <tobias@netshed.de>

Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all
copies.

(continues on next page)

(continued from previous page)

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

mimalloc

MOSEK uses the mimalloc memory allocator library from github/mimalloc. The license agreement for
mimalloc is shown in Listing 3.7.

Listing 3.7: mimalloc license.

MIT License
Copyright (c) 2019 Microsoft Corporation, Daan Leijen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
0UT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

BLASFEO

MOSEK uses the BLASFFEO linear algebra library developed by Gianluca Frison, obtained from
github /blasfeo. The license agreement for BLASFEQ is shown in Listing 3.8.

Listing 3.8: blasfeo license.

BLASFEO -- BLAS For Embedded Optimization.

Copyright (C) 2019 by Gianluca Frison.

Developed at IMTEK (University of Freiburg) under the supervision of Moritz Diehl.
All rights reserved.

The 2-Clause BSD License

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this

(continues on next page)

https://github.com/microsoft/mimalloc
https://github.com/giaf/blasfeo

(continued from previous page)

list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

oneTBB

MOSEK uses the oneTBB parallelization library which is part of oneAPI developed by Intel, obtained
from github/oneTBB, licensed under the Apache License 2.0. The license agreement for oneTBB can be
found in https://github.com /oneapi-src/oneTBB /blob/master/ LICENSE.txt .

https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB/blob/master/LICENSE.txt

Chapter 4

Installation

In this section we discuss how to install and setup the MOSEK Fusion API for .NET.

Important: Before running this MOSEK interface please make sure that you:

e Installed MOSEK correctly. Some operating systems require extra steps. See the Installation
guide for instructions and common troubleshooting tips.

e Set up a license. See the Licensing guide for instructions.

Compatibility

The Fusion API for .NET is compatible with the Microsoft .NET framework version 4.5 and later and
.NETStandard2.0.

4.1 .NET Core

The Fusion API for .NET can be installed as a cross-platform 64bit .NET Core package. The NuGet
package Mosek.10.0.39.nupkg is available for download from:

e our website https://mosek.com/downloads
e the NuGet repository https://www.nuget.org/packages/Mosek,

Follow the instructions for your .NET Core toolchain to install the package from the repository.

4.2 Manual installation

Locating files in the MOSEK Optimization Suite

The relevant files of the Fusion API for .NET are organized as reported in Table 4.1.
Table 4.1: Relevant files for the Fusion API for .NET.

Relative Path Description Label

<MSKHOME>/mosek/10.0/tools/platform/<PLATFORM>/bin | Libraries <LIBDIR>

<MSKHOME>/mosek/10.0/tools/examples/fusion/dotnet Examples <EXDIR>

<MSKHOME>/mosek/10.0/tools/examples/fusion/data Additional data | <MISCDIR>
where

e <MSKHOME> is the folder in which the MOSEK Optimization Suite has been installed,

e <PLATFORM> is the actual platform among those supported by the MOSEK, i.e. win32x86,
win64x86.

10

https://docs.mosek.com/10.0/install/index.html
https://docs.mosek.com/10.0/install/index.html
https://docs.mosek.com/10.0/licensing/index.html
https://mosek.com/downloads
https://www.nuget.org/packages/Mosek/

Setting up paths

To compile a .NET program using MOSEK the correct path to mosekdotnet.dll must be provided.
For example, using the Microsoft .NET compiler this is done with the command line option

csc /r:"<LIBDIR>\mosekdotnet.dll" lol.cs

To run applications the system must be able to locate mosekdotnet.d1l, either in the current direc-
tory or in the Global Assembly Cache.

4.3 Testing the Installation and Compiling Examples

This section describes how to verify that MOSEK has been installed correctly, and how to build and
execute the NET examples distributed with MOSEK.

Compiling and running from the command line

To compile an example, say lol, with the Microsoft .NET compiler, open a DOS box with paths for
Visual Studio set up (usually in the Start menu, the sub-menu for Visual Studio contains an entry that
starts a DOS box with everything set up).

To compile the example 1o1.cs distributed with MOSEK:

e Go to the examples directory <EXDIR>.

e To compile the code and produce an executable, type:

csc /r:"<LIBDIR>\mosekdotnet.dll" lol.cs

or for Visual Basic:

vbc /r:"<LIBDIR>\mosekdotnet.dll" lol.vb

e Copy mosekdotnet.dll into the directory where lol.exe was created, and run the program with:

lo1

Compiling the examples using nmake

A makefile for use with nmake, named Makefile is available in <EXDIR>. To compile all examples using
this makefile use the command

make /f Makefile all

4.4 Other platforms, Mono

The library mosekdotnet.dll may be used from any .NET compatible language such as Visual Basic,
Microsoft C# or Microsoft Managed C++ and with Mono and IronPython. Both the examples and
the library should also work with Mono on most 32-bit platforms. If the file mosekdotnet.d1l is not
included in the MOSEK distribution for your platform, use mosekdotnet.dll included in the Windows
distribution.

Note that the library accesses methods in the native MOSEK library, which is considered unsafe
from a .NET point of view. This means that use of the library in certain restricted contexts is not
possible — building an ordinary application and running it from a local drive should not be a problem.

11

4.4.1 MOSEK and .NET Core

The MOSEK NuGet package Mosek.10.0.39.nupkg is a complete cross-platform .NET Core compatible
distribution that works on Windows, Linux and OS X. Assuming that the Mosek.10.0.39.nupkg file
has been downloaded in a directory local-nupkgs, modify the configuration file *.csproj to add the
following entry

<PropertyGroup>
<RestoreSources>$(RestoreSources) ; local-nupkgs</RestoreSources>
</PropertyGroup>

Now, add the dependency on MOSEK to the project:

dotnet add package Mosek

and the project using MOSEK API can be built:

dotnet build
dotnet run

Installation instructions for different .NET Core compatible environments may vary.

12

Chapter 5

Design Overview

Fusion is a result of many years of experience in conic optimization. It is a dedicated API for users
who want to enjoy a simpler experience interfacing with the solver. This applies to users who regularly
solve conic problems, and to new users who do not want to be too bothered with the technicalities of a
low-level optimizer. Fusion is designed for fast and clean prototyping of conic problems without suffering
excessive performance degradation.

Note that Fusion is an object-oriented framework for conic-optimization but it is not a general
purpose modeling language. The main design principles of Fusion are:

e Expressiveness: we try to make it nice! Despite not being a modeling language, Fusion yields
readable, easy to maintain code that closely resembles the mathematical formulation of the problem.

e Seamlessly multi-language : Fusion code can be ported across C+—+, Python, Java, .NET and
with only minimal adaptations to the syntax of each language.

e What you write is what MOSEK gets: A Fusion model is fed into the solver with (almost)
no additional transformations.

Expressiveness

Suppose you have a conic quadratic optimization problem like the efficient frontier in portfolio optimiza-
tion:

maximize plx — oy
subject to e’z = w,
v > [|GT],
x> 0.

where p, G are input data and « is an input parameter whose value we want to change between many
optimizations. Its representation in Fusion is a direct translation of the mathematical model and could
look as follows:

Variable x = M.Variable(n);
Variable gamma = M.Variable();
Parameter alpha = M.Parameter();

M.Objective(ObjectiveSense.Maximize, Expr.Sub(Expr.Dot(mu, x), Expr.Mul(alpha,
—gamma))) ;

M.Constraint (Expr.Sub(Expr.Sum(x), w), Domain.EqualsTo(0.0));
M.Constraint (Expr.Vstack(gamma, Expr.Mul(G.Transpose(), x)), Domain.InQCone());
M.Constraint(x, Domain.GreaterThan(0.0));

13

Seamless multi-language API

Fusion can easily be ported across the five supported languages. All functionalities and naming conven-
tions remain the same in all of them. This has some advantages:

e Simplifies code sharing between developers working in different languages.
e Improves code reusability.

e Simplifies the transition from R&D to production (for instance from fast-prototyping languages
used in R&D to more efficient ones used for high performance).

Here is the same code snippet (creation of a variable in the model) in all languages supported by
Fusion. Careful code design can generate models with only the necessary syntactic differences between
implementations.

auto x= M->variable("x", 3, Domain::greaterThan(0.0)); // C++
x = M.variable('x', 3, Domain.greaterThan(0.0)) # Python
Variable x = M.variable("x", 3, Domain.greaterThan(0.0)) // Java
Variable x = M.Variable("x", 3, Domain.GreaterThan(0.0)) // C#

What You Write is What MOSEK Gets

Fusion is not a modeling language. Instead it clearly defines the formulation the user must adhere to
and only provides functionalities required for that formulation. Users familiar with the concept of DCP
(Disciplined Convex Programming) can think of Fusion as a language for VDCP - Very Disciplined
Convex Programming.

An important upshot is that Fusion will not modify the problem provided by the user any more that
is required to fit it into the form accepted by the low-lever optimizer. In other words, the problem that
is actually solved is as close as possible to what the user writes. For example, Fusion will transform a
multi-dimensional constraint into a sequence of scalar constraints for the linear constraint matrix A, and
so on. So, in effect, the Fusion mechanism only automates operations that the user would have to carry
out anyway (using pencil and paper, presumably). Otherwise the optimizer model is a direct copy of the
Fusion model.

The main benefits of this approach are:

e The user knows what problem is actually being solved.
e Dual information is readily available for all variables and constraints.
e Only the necessary overhead.

e Better control over numerical stability.

14

Chapter 6

Conic Modeling

6.1 The model

A model built using Fusion is always a conic optimization problem and it is convex by definition. These
problems can be succinctly characterized as

minimize ¢’z

subject to Ax+beK (6.1)

where K is a product of domains supported by MOSEK, in particular:
e linear: R, Ry, {0},
quadratic: Q" = {x € R™ : x; > /a3 + - + 22},
rotated quadratic: Q" = {x € R™ : 2x129 > 2% + -+ + 22, 21,72 > 0},
primal power cone: PL1 = {x € R" : xfxy * > /22 + -+ 22, 21,72 > 0}, or its dual,

primal exponential: Kep = {x € R3 : 21 > 29 exp(x3/12), 21,72 > 0}, or its dual,

semidefinite:: ST = {X € R™*™ : X is symmetric positive semidefinite}.
e and others, see Sec. 14.8 for a full list.

The main thing about a Fusion model is that it can be specified in a convenient way without explicitly
constructing the representation (6.1). Instead the user has access to variables which are used to construct
linear operators that appear in constraints. The cone types described above are the domains of those
constraints. A Fusion model can potentially contain many different building blocks of that kind. To
facilitate manipulations with a large number of variables Fusion defines various logical views of parts
of the model. To facilitate reoptimizing the same problem with varying input data Fusion provides
parameters.

This section briefly summarizes the constructions and techniques available in Fusion. See Sec. 7 for a
basic tutorial and Sec. 11 for more advanced case studies. This section is only an introduction: detailed
specification of the methods and classes mentioned here can be found in the API reference.

A Fusion model is represented by the class Model and created by a simple construction

using (Model M = new Model())
{

The model object is the user’s interface to the optimization problem, used in particular for
e formulating the problem by defining variables, parameters, constraints and objective,
e solving the problem and retrieving the solution status and solutions,

e interacting with the solver: setting up parameters, registering for callbacks, performing I/0, ob-
taining detailed information from the optimizer etc.

Almost all elements of the model: variables, parameters, constraints and the model itself can be
constructed with or without names. If used, the names for each type of object must be unique. Choosing
a good naming convention can make the problem more readable when dumped to a file.

15

6.2 Variables

Continuous variables can be scalars, vectors or higher-dimensional arrays. The are added to the model
with the method Model. Variable which returns a representing object of type Vartzable. The shape of a
variable (number of dimensions and length in each dimension) has to be specified at creation. Optionally
a variable may be created in a restricted domain (by default variables are unbounded, that is in R). For
instance, to declare a variable z € R’} we could write

Variable x = M.Variable("x",n, Domain.GreaterThan(0.0));

A multi-dimensional variable is declared by specifying an array with all dimension sizes. Here is an
n X n variable:

Variable x = M.Variable(new int[]{n,n}, Domain.Unbounded()) ;

The specification of dimensions can also be part of the domain, as in this declaration of a symmetric
positive semidefinite variable of dimension n:

Variable v = M.Variable(Domain.InPSDCone(n));

Integer variables are specified with an additional domain modifier. To add an integer variable z €
[1,10] we write

Variable z = M.Variable("z", Domain.Integral(Domain.InRange(1.0,10.0))
)

The function Domain.Binary is a shorthand for binary variables often appearing in combinatorial
problems:

Variable y = M.Variable("y", Domain.Binary());

Integrality requirement can be switched on and off using the methods Variable.MakeInteger and
Vartable.MakeContinuous.

A domain usually allows to specify the number of objects to be created. For example here is a
definition of m symmetric positive semidefinite variables of dimension n each. The actual variable x will
be of shape m x n x n where each slice with fixed first coordinate is an n x n PSD:

Variable x = M.Variable(Domain.InPSDCone(n, m));

The Variable object provides the primal (Variable.Level) and dual (Variable.Dual) solution
values of the variable after optimization, and it enters in the construction of linear expressions involving
the variable.

6.3 Expressions and linear operators

Linear expressions are constructed combining variables, parameters, matrices and other constant values
by linear operators. The result is an object that represents the linear expression itself. Fusion only
allows for those combinations of operators and arguments that yield linear functions of the variables.
Expressions have shapes and dimensions in the same fashion as variables. For instance, if z € R™ and
A € R™*™ then Az is a vector expression of length m. Note, however, that the internal size of Ax is
mmn, because each entry is a linear combination for which m coefficients have to be stored.

Expressions are concrete implementations of the virtual interface Ezpression. In typical situations,
however, all operations on expressions can be performed using the static methods and factory methods
of the class Ezpr.

16

Table 6.1: Linear Operators

Method Description

Ezpr.Add Element-wise addition of two matrices
Ezpr. Sub Element-wise subtraction of two matrices
Ezpr. Mul Matrix or matrix-scalar multiplication
Ezpr.Neg Sign inversion

Ezpr. Outer Vector outer-product

Ezpr.Dot Dot product

Ezpr. Sum Sum over a given dimension
Ezpr.MulElm Element-wise multiplication
Ezpr.MulDiag Sum over the diagonal of a matrix which is the result of a matrix multiplication
Ezpr.ConstTerm | Return a constant term

Operations on expressions must adhere to the rules of matrix algebra regarding dimensions; otherwise
a DimensionError exception will be thrown.

Expression can be composed, nested and used as building blocks in new expressions. For instance
Ax + By can be implemented as:

Expr.Add(Expr.Mul(A,x), Expr.Mul(B,y));

For operations involving multiple variables and expressions the users should consider list-based meth-
ods. For instance, a clean way to write z + y + 2z + w would be:

Expr.Add(new Variable[]l{x, y, z, w});

Note that a single variable (object of class Variable) can also be used as an expression. Once
constructed, expressions are immutable.

6.4 Constraints and objective

Constraints are declared within an optimization model using the method Model.Constraint. Every
constraint in Fusion has the form

] Ezpression belongs to a Domain. ‘

Objects of type Domain correspond roughly to the types of convex cones K mentioned at the beginning
of this section. For instance, the following set of linear constraints

r1 + 219 =0
+ x + x3 =0 (62)
X1 =0

could be declared as

double [,]A = new double[,] { { 1.0, 2.0, 0.0%},
{0.0, 1.0, 1.0},
{1.0, 0.0, 0.0} };

Variable x = M.Variable("x",3,Domain.Unbounded());
Constraint c¢ = M.Constraint(Expr.Mul(A,x), Domain.EqualsTo(0.0));

Note that the scalar domain Domain. EqualsTo consisting of a single point 0 scales up to the dimension
of the expression and applies to all its elements. This allows many constraints to be comfortably expressed
in a vectorized form. See also Sec. 6.8.

The Constraint object provides the dual (Constraint.Dual) value of the constraint after optimiza-
tion and the primal value of the constraint expression (Constraint.Level).

The typical domains used to specify constraints are listed below. Note that they can also be used
directly at variable creation, whenever that makes sense.

17

Type Domain
Linear equality Domain.EqualsTo
inequality < Domain.LessThan
inequality > Domain.GreaterThan
two-sided bound Domatin.InRange
Conic Quadratic | quadratic cone Domain. InfCone
rotated quadratic cone | Domain. InRotatedfCone
Other Conic exponential cone Domain. InPEzpCone
power cone Domain. InPPowerCone
geometric mean Domain. InPGeoMeanCone
Semidefinite PSD matrix Domain. InPSDCone
Integral Integers in domain D Domain. Integral (D)
{0,1} Domain.Binary

See Sec. 14.8 and the API reference for Domain for a full list.

Having discussed variables and constraints we can finish by defining the optimization objective with
Model.Objective. The objective function is an affine expression that evaluates to a scalar (that is,
of shape () or (1)) and the objective sense is specified by the enumeration 0bjectiveSense as either
minimize or mazimize. The typical linear objective function ¢’z can be declared as

M.Objective(ObjectiveSense.Minimize, Expr.Dot(c,x));

6.5 Matrices

At some point it becomes necessary to specify linear expressions such as Az where A is a (large) constant
data matrix. Such coefficient matrices can be represented in dense or sparse format. Dense matrices can
always be represented using the standard data structures for arrays and two-dimensional arrays built into
the language. Alternatively, or when sparsity can be exploited, matrices can be constructed as objects
of the class Matriz. This can have some advantages: a more generic code that can be ported across
platforms and can be used with both dense and sparse matrices without modifications.

Dense matrices are constructed with a variant of the static factory method Matriz.Dense. The
values of all entries must be specified all at once and the resulting matrix is immutable. For example the

matrix
1 2 3 4
4= [5 6 7 8]

can be defined with:

double[,] A= new doublel[,]{ {1.0,2.0,3.0,4.0}, {5.0,6.0,7.0,8.0} };
Matrix Ad= Matrix.Dense(A);

or from a flattened representation:

double[] Af={ 1,2,3,4,5,6,7,8 };
Matrix Aff= Matrix.Dense(2,4,Af);

Sparse matrices are constructed with a variant of the static factory method Matriz. Sparse. This is
both speed- and memory-efficient when the matrix has few nonzero entries. A matrix A in sparse format
is given by a list of triples (i, j,v), each defining one entry: A;; = v. The order does not matter. The
entries not in the list are assumed to be 0. For example, take the matrix

~[10 00 00 20

A= 0.0 3.0 0.0 40 |-

Assuming we number rows and columns from 0, the corresponding list of triplets is:
A ={(0,0,1.0),(0,3,2.0),(1,1,3.0),(1,3,4.0)}

The Fusion definition would be:

18

int[] rows = {0, 0 1 1
int[] cols = { 0, 3, 1, 3
double[] values= { 1.0, 2.0, 3 4

B

Matrix ms = Matrix.Sparse(2, 4, rows, cols, values);

The Matriz class provides more standard constructions such as the identity matrix, a constant value
matrix, block diagonal matrices etc.

6.6 Parameters

A parameter (Parameter) is a placeholder for a constant whose value should be specified before the model
is optimized. Parameters can have arbitrary shapes, just like variables, and can be used in an