Mo SekK

MOSEK Optimizer API for Java
Release 10.0.39

MOSEK ApS

20 March 2023

Contents

1 Introduction

1.1

Why the Optimizer API for Java?

2 Contact Information

3 License Agreement

3.1 MOSEK end-user license agreement Lo Lo
3.2 Third party licenses L e
4 Installation
4.1 Building Examples and Testing the Installation.
5 Design Overview
51 Modeling e e
5.2 “Hello World!” in MOSEK e
6 Optimization Tutorials
6.1 Linear Optimization e e
6.2 From Linear to Conic Optimization
6.3 Conic Quadratic Optimization e
6.4 Power Cone Optimization 0o i
6.5 Conic Exponential Optimization L o
6.6 Geometric Programming Lo
6.7 Semidefinite Optimization L
6.8 Integer Optimization L e
6.9 Disjunctive constraints Lo e e
6.10 Quadratic Optimization e
6.11 Problem Modification and Reoptimization
6.12 Parallel optimization Lo
6.13 Retrieving infeasibility certificates L L oo
7 Solver Interaction Tutorials
7.1 Environment and task oL L Lo
7.2 Accessing the solutiono
7.3 Errors and exceptions L
7.4 Input/Output e
7.5 Setting solver parameters e
7.6 Retrieving information items oL oL o
7.7 Progress and data callback oL o o
7.8 MOSEK OptServero ittt e e e e
8 Debugging Tutorials
8.1 Understanding optimizer log L
8.2 Addressing numerical iSsueso Lo
8.3 Debugging infeasibility
8.4 Python Console e

10
11

13
13
13

16
17
23
33
38
42
45
49
99
64
71
79
84
85

9 Advanced Numerical Tutorials
9.1 Solving Linear Systems Involving the Basis Matrix
9.2 Calling BLAS/LAPACK Routines from MOSEK
9.3 Computing a Sparse Cholesky Factorization

10 Technical guidelines
10.1 Memory management and garbage collection00,
10.2 Names oo e e
10.3 Multithreading oL e
10.4 Efficiency e e
10.5 The license system oL e
10.6 Deployment L e

11 Case Studies
11.1 Portfolio Optimization e
11.2 Logistic regression Lo e
11.3 Concurrent optimizer Lo e e e e e

12 Problem Formulation and Solutions
12.1 Linear Optimization o e e
12.2 Conic Optimization e e
12.3 Semidefinite Optimization L e
12.4 Quadratic and Quadratically Constrained Optimization

13 Optimizers
13.1 Presolve o e e
13.2 Linear Optimization e
13.3 Conic Optimization - Interior-point optimizer
13.4 The Optimizer for Mixed-Integer Problems

14 Additional features
14.1 Problem Analyzer
14.2 Automatic Repair of Infeasible Problems,
14.3 Sensitivity Analysis L e e

15 API Reference
15.1 API Conventions o . . o e e e e
15.2 Functions grouped by topico L e
153 Class Env o0 o e
15.4 Class Task e e e
15.5 Exceptions e e e e
15.6 Parameters grouped by topico L
15.7 Parameters (alphabetical list sorted by type) Lo L.
15.8 Response codes o e e e e e e e e
15.9 Enumerations L e e e e e
15.10 Class typPes « v v v v v v e e e e e e e e e
15.11 Supported domains oL L e

16 Supported File Formats
16.1 The LP File Format e
16.2 The MPS File Format e
16.3 The OPF Format e e e e e e e
16.4 The CBF Format e e e e e e e
16.5 The PTF Format e e e e e e e e e e
16.6 The Task Format
16.7 The JSON Format e
16.8 The Solution File Format e

17 List of examples

ii

121
121
129
130

134
134
135
135
135
137
137

138
138
166
170

175
175
178
181
183

186
186
188
195
199

210
210
211
215

223
223
228
238
249
385
385
397
444
465
491
492

495
496
500
512
522
539
545
546
552

555

18 Interface changes

18.1 Important changes compared to version 9

18.2 Changes compared to version 9
18.3 Functions compared to version 9
18.4 Parameters compared to version 9 . . .
18.5 Constants compared to version 9

18.6 Response Codes compared to version 9
Bibliography
Symbol Index

Index

iii

557
557
558
958
561
562
564

567

568

585

Chapter 1

Introduction

The MOSEK Optimization Suite 10.0.39 is a powerful software package capable of solving large-scale
optimization problems of the following kind:

e linear,

e conic:

conic quadratic (also known as second-order cone),

involving the exponential cone,

involving the power cone,

semidefinite,
e convex quadratic and quadratically constrained,
e integer.

In order to obtain an overview of features in the MOSEK Optimization Suite consult the product
introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all rela-
tions are linear. The tremendous success of both applications and theory of linear optimization can be
ascribed to the following factors:

e The required data are simple, i.e. just matrices and vectors.

e Convexity is guaranteed since the problem is convex by construction.

e Linear functions are trivially differentiable.

e There exist very efficient algorithms and software for solving linear problems.
e Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the
advantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

Ax —b> 0.
In conic optimization this is replaced with a wider class of constraints

Az —-be K

where KC is a convexr cone. For example in 3 dimensions K may correspond to an ice cream cone. The
conic optimizer in MOSEK supports a number of different types of cones K, which allows a surprisingly
large number of nonlinear relations to be modeled, as described in the MOSEK Modeling Cookbook,
while preserving the nice algorithmic and theoretical properties of linear optimization.

https://docs.mosek.com/10.0/intro/index.html
https://docs.mosek.com/10.0/intro/index.html
https://docs.mosek.com/modeling-cookbook/index.html

1.1 Why the Optimizer API for Java?

The Optimizer API for Java provides an object-oriented interface to the MOSEK optimizers. This
object oriented design is common to Java, Python and .NET and is based on a thin class-based interface
to the native C optimizer API. The overhead introduced by this mapping is minimal.

Optimizer API

Python Java .NET

The Optimizer API for Java can be used with any application running on the Oracle Java platform
(and possibly other Java implementations). It consists of a single class library mosek. jar and a set of
library files that must be available at runtime.

The Optimizer API for Java provides access to:

e Linear Optimization (LO)

Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)

Power Cone Optimization

Conic Exponential Optimization (CEO)

Convex Quadratic and Quadratically Constrained Optimization (QO, QCQO)

Semidefinite Optimization (SDO)
e Mixed-Integer Optimization (MIO)
as well as to additional functions for
e problem analysis,

e sensitivity analysis,

e infeasibility diagnostics,

e BLAS/LAPACK linear algebra routines.

Chapter 2

Contact

Information

Phone +45 7174 9373

Website mosek.com

Email
sales@mosek.com Sales, pricing, and licensing
support@mosek.com Technical support, questions and bug reports
info@mosek.com Everything else.

Mailing Address
MOSEK ApS

Fruebjergvej 3

Symbion Science Park, Box 16

2100 Copenhagen O

Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger

https://blog.mosek.com

Google Group | https://groups.google.com/forum /#!forum /mosek

Twitter https://twitter.com /mosektw
Linkedin https: //www.linkedin.com /company /mosek-aps
Youtube https://www.youtube.com /channel /UCvlyect EVLP31NXeD5mIbEw

In particular Twit

ter is used for news, updates and release announcements.

https://mosek.com/
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com
https://blog.mosek.com/
https://groups.google.com/forum/#!forum/mosek
https://twitter.com/mosektw
https://www.linkedin.com/company/mosek-aps
https://www.youtube.com/channel/UCvIyectEVLP31NXeD5mIbEw

Chapter 3

License Agreement

3.1 MOSEK end-user license agreement
Before using the MOSEK software, please read the license agreement available in the distribution

at <MSKHOME>/mosek/10.0/mosek-eula.pdf or on the MOSEK website https://mosek.com/products
license-agreement. By using MOSEK you agree to the terms of that license agreement.

3.2 Third party licenses
MOSEK uses some third-party open-source libraries. Their license details follow.

zlib

MOSEK uses the zlib library obtained from the zlib website. The license agreement for zlib is shown
in Listing 3.1.

Listing 3.1: zlib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

https://mosek.com/products/license-agreement
https://mosek.com/products/license-agreement
http://zlib.org

fplib

MOSEK uses the floating point formatting library developed by David M. Gay obtained from the netlib
website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/KK KoK KK oK oK KoK KoK oK ok oK oK K oK KoK o Kok K oK o oK K ok oK ok K ok sk ok oK ok K ok Kok ok ok oK ok oK ok ok Kok ok
The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*
*
*
b3
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting

* documentation for such software.

*

*

*

*

*

£ 3

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. 1IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

***/

{fmt}

MOSEK uses the formatting library {fmt} developed by Victor Zverovich obtained form github/fmt
and distributed under the MIT license. The license agreement fot {fmt} is shown in Listing 3.3.

Listing 3.3: {fmt} license.

Copyright (c) 2012 - present, Victor Zverovich

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation

the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR

A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER

IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN

CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

http://www.netlib.org
http://www.netlib.org
https://github.com/fmtlib/fmt

Zstandard

MOSEK uses the Zstandard library developed by Facebook obtained from github/zstd. The license
agreement for Zstandard is shown in Listing 3.4.

Listing 3.4: Zstandard license.

BSD License
For Zstandard software
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name Facebook nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

OpenSSL

MOSEK uses the LibReSSL library, which is build on OpenSSL. OpenSSL is included under the
OpenSSL license, Listing 3.5, and the LibReSSL additions are licensed under the ISC license, Listing
3.6.

Listing 3.5: OpenSSL license

Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in

(continues on next page)

https://github.com/facebook/zstd
https://www.libressl.org/

(continued from previous page)

the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ~“AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Listing 3.6: ISC license

Copyright (C) 1994-2017 Free Software Foundation, Inc.
Copyright (c) 2014 Jeremie Courreges-Anglas <jca@openbsd.org>
Copyright (c) 2014-2015 Joel Sing <jsing@openbsd.org>
Copyright (c) 2014 Ted Unangst <tedu@openbsd.org>

Copyright (c) 2015-2016 Bob Beck <beck@openbsd.org>

Copyright (c) 2015 Marko Kreen <markokr@gmail.com>

Copyright (c) 2015 Reyk Floeter <reyk@openbsd.org>

Copyright (c) 2016 Tobias Pape <tobias@netshed.de>

Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all
copies.

(continues on next page)

(continued from previous page)

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

mimalloc

MOSEK uses the mimalloc memory allocator library from github/mimalloc. The license agreement for
mimalloc is shown in Listing 3.7.

Listing 3.7: mimalloc license.

MIT License
Copyright (c) 2019 Microsoft Corporation, Daan Leijen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
0UT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

BLASFEO

MOSEK uses the BLASFFEO linear algebra library developed by Gianluca Frison, obtained from
github /blasfeo. The license agreement for BLASFEQ is shown in Listing 3.8.

Listing 3.8: blasfeo license.

BLASFEO -- BLAS For Embedded Optimization.

Copyright (C) 2019 by Gianluca Frison.

Developed at IMTEK (University of Freiburg) under the supervision of Moritz Diehl.
All rights reserved.

The 2-Clause BSD License

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this

(continues on next page)

https://github.com/microsoft/mimalloc
https://github.com/giaf/blasfeo

(continued from previous page)

list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

oneTBB

MOSEK uses the oneTBB parallelization library which is part of oneAPI developed by Intel, obtained
from github/oneTBB, licensed under the Apache License 2.0. The license agreement for oneTBB can be
found in https://github.com /oneapi-src/oneTBB /blob/master/ LICENSE.txt .

https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB/blob/master/LICENSE.txt

Chapter 4

Installation

In this section we discuss how to install and setup the MOSEK Optimizer API for Java.

Important: Before running this MOSEK interface please make sure that you:

e Installed MOSEK correctly. Some operating systems require extra steps. See the Installation
guide for instructions and common troubleshooting tips.

e Set up a license. See the Licensing guide for instructions.

Compatibility

The Optimizer API for Java is compatible with Java version 1.8 or later on 64bit platforms (Linux,
Windows, macOS).

Locating files in the MOSEK Optimization Suite

The relevant files of the Optimizer API for Java are organized as reported in Table 4.1.

Table 4.1: Relevant files for the Optimizer API for Java.

Relative Path Description Label
<MSKHOME>/mosek/10.0/tools/platform/<PLATFORM>/bin | Libraries and jar file | <JARDIR>
<MSKHOME>/mosek/10.0/tools/examples/java Examples <EXDIR>
<MSKHOME>/mosek/10.0/tools/examples/data Additional data <MISCDIR>
where

e <MSKHOME> is the folder in which the MOSEK Optimization Suite has been installed,
e <PLATFORM> is the actual platform among those supported by MOSEK, i.e. win64x86, 1inux64x86
or osx64x86.
Setting up paths

To compile and run a Java program using MOSEK the correct path to <JARDIR>/mosek. jar must be
provided in the Java classpath. This is usually set with the command line option

javac -d . -classpath <JARDIR>/mosek.jar lol.java
java -classpath .:<JARDIR>/mosek.jar com.mosek.example.lol

Alternatively, this can be set with the environment variable CLASSPATH. For more information about
specifying class libraries and compiling applications, see the full Java documentation at http://java.sun.
com/.

10

https://docs.mosek.com/10.0/install/index.html
https://docs.mosek.com/10.0/install/index.html
https://docs.mosek.com/10.0/licensing/index.html
http://java.sun.com/
http://java.sun.com/

4.1 Building Examples and Testing the Installation

This section describes how to verify that MOSEK has been installed correctly, and how to build and
execute the Java examples distributed with MOSEK.
4.1.1 Windows

Building and executing a program

To compile the example lol. java distributed with MOSEK:
e Open a DOS prompt and go to the examples directory <EXDIR>.

e To compile a Java program and produce the class files in the current directory, type

javac -classpath <JARDIR>\mosek.jar -d . lol.java

e To run the compiled program, type

java -classpath .:<JARDIR>\mosek.jar com.mosek.example.lol

Compiling with Microsoft NMake

The distributed examples can also be compiled using Microsoft NMake. This requires that paths and
environment is set up for Visual Studio tools (usually, the sub-menu containing Visual Studio also
contains a Visual Studio Command Prompt which take care of all the necessary setup).

To build the examples, open a DOS box and change directory to the examples directory <EXDIR>.
To compile all examples type

nmake /f Makefile

This will compile all the classes into a jar file. To run all the examples type

nmake /f Makefile test

4.1.2 macOS and Linux

Building and executing a program

To compile the example lol. java distributed with MOSEK:
e Open a console and go to the examples directory <EXDIR>.

e To compile a Java program and produce the class files in the current directory, type

javac -classpath <JARDIR>/mosek.jar -d . lol.java

e To run the compiled program, type

java -classpath .:<JARDIR>/mosek.jar com.mosek.example.lol

11

Compiling examples using make

The example directory contains makefiles for use with GNU Make. To build the examples, open a prompt
and change directory to the examples directory <EXDIR>. To compile all examples type

make -f Makefile

This will compile all the classes into a jar file. To run all the examples type

make test

12

Chapter 5

Design Overview

5.1 Modeling

Optimizer API for Java is an interface for specifying optimization problems directly in matrix form. It
means that an optimization problem such as:

minimize ¢’z
subject to Az < b,
rek

is specified by describing the matrix A, vectors b, ¢ and a list of cones IC directly.
The main characteristics of this interface are:

e Simplicity: once the problem data is assembled in matrix form, it is straightforward to input it
into the optimizer.

e Exploiting sparsity: data is entered in sparse format, enabling huge, sparse problems to be
defined and solved efficiently.

e Efficiency: the Optimizer API incurs almost no overhead between the user’s representation of the
problem and MOSEK’s internal one.

Optimizer API for Java does not aid with modeling. It is the user’s responsibility to express the
problem in MOSEK’s standard form, introducing, if necessary, auxiliary variables and constraints. See
Sec. 12 for the precise formulations of problems MOSEK solves.

5.2 “Hello World!” in MOSEK

Here we present the most basic workflow pattern when using Optimizer API for Java.

Creating an environment and task

Optionally, an interaction with MOSEK using Optimizer API for Java can begin by creating a MOSEK
environment. It coordinates the access to MOSEK from the current process.

In most cases the user does not interact directly with the environment, except for creating optimiza-
tion tasks, which contain actual problem specifications and where optimization takes place. In this case
the user can directly create tasks without invoking an environment, as we do here.

13

Defining tasks

After a task is created, the input data can be specified. An optimization problem consists of several
components; objective, objective sense, constraints, variable bounds etc. See Sec. 6 for basic tutorials on
how to specify and solve various types of optimization problems.

Retrieving the solutions

When the model is set up, the optimizer is invoked with the call to Task.optimize. When the opti-
mization is over, the user can check the results and retrieve numerical values. See further details in Sec.
7.
We refer also to Sec. 7 for information about more advanced mechanisms of interacting with the

solver.
Source code example
Below is the most basic code sample that defines and solves a trivial optimization problem

minimize x

subject to 2.0 <z < 3.0.

For simplicity the example does not contain any error or status checks.

Listing 5.1: “Hello World!” in MOSEK

/777
// Copyright: Copyright (c) MOSEK ApS, Demmark. All rights reserved.

//
// File: helloworld. java

//
// The most basic exzample of how to get started with MOSEK.

package com.mosek.example;
import mosek.*;

public class helloworld {
public static void main(String[] args) {

double[] x = new double[1];

Env env = null;

Task task = null;

try {
env = new Env(); // Create Environment
task = new Task(env, 0, 1); // Create Task
task.appendvars(1); // 1 variable z
task.putcj(0, 1.0); // c_0 = 1.0
task.putvarbound(0, boundkey.ra, 2.0, 3.0); // 2.0 <=z <= 3.0
task.putobjsense(objsense.minimize) ; // minimize
task.optimize(); // Optimize
task.getxx(soltype.itr, x); // Get solution
System.out.println("Solution x = " + x[0]); // Print solution

}

finally { // Dispose of env and task just to be sure

task.dispose();

(continues on next page)

14

(continued from previous page)

}
}

}

env.dispose();

15

Chapter 6

Optimization Tutorials

In this section we demonstrate how to set up basic types of optimization problems. Each short tutorial
contains a working example of formulating problems, defining variables and constraints and retrieving
solutions.

e Model setup and linear optimization tutorial (LO)

— Sec. 6.1. Linear optimization tutorial, recommended first reading for all users. Apart from
setting up a linear problem it also demonstrates how to work with an optimizer task: initialize
it, add variables and constraints and retrieve the solution.

e Conic optimization tutorials (CO)

— Sec. 6.2. A step by step introduction to programming with affine conic constraints (ACC).
Explains all the steps required to input a conic problem. Recommended first reading for users
of the conic optimizer.

Further basic examples demonstrating various types of conic constraints:

— Sec. 6.3. A basic example with a quadratic cone (CQO).

Sec. 6.4. A basic example with a power cone.

Sec. 6.5. A basic example with a exponential cone (CEO).

Sec. 6.6. A basic tutorial of geometric programming (GP).
e Semidefinite optimization tutorial (SDO)

— Sec. 6.7. Examples showing how to solve semidefinite optimization problems with one or more
semidefinite variables.

e Mixed-integer optimization tutorials (MIO)

— Sec. 6.8. Shows how to declare integer variables for linear and conic problems and how to set
an initial solution.

— Sec. 6.9. Demonstrates how to create a problem with disjunctive constraints (DJC).
e Quadratic optimization tutorial (QO, QCQO)
— Sec. 6.10. Examples showing how to solve a quadratic or quadratically constrained problem.
¢ Reoptimization tutorials
— Sec. 6.11. Various techniques for modifying and reoptimizing a problem.
¢ Parallel optimization tutorial
— Sec. 6.12. Shows how to optimize tasks in parallel.
e Infeasibility certificates

— Sec. 6.13. Shows how to retrieve and analyze a primal infeasibility certificate for continuous
problems.

16

6.1 Linear Optimization

The simplest optimization problem is a purely linear problem. A linear optimization problem is a problem
of the following form:
Minimize or maximize the objective function

n—1
Z Ty + !
§=0
subject to the linear constraints
n—1
I < Zakﬂj <uf, k=0,....m-—1,
j=0

and the bounds

l;” <z Suf, j=0,...,n—1.
The problem description consists of the following elements:
e m and n — the number of constraints and variables, respectively,

e r — the variable vector of length n,

e ¢ — the coefficient vector of length n

Co
c= ,
Cn—1

e ¢/ — fixed term in the objective,

e A — an m x n matrix of coefficients

ao,0 T ag,(n—1)
A= : ,
A(m-1),0 " A(m-1),(n—1)

e [and u® — the lower and upper bounds on constraints,
e [T and u® — the lower and upper bounds on variables.

Please note that we are using 0 as the first index: x(is the first element in variable vector x.

6.1.1 Example LO1

The following is an example of a small linear optimization problem:

maximize 3xzg + lz; + Ddxe + lag

subject to 3xp + 1lxz; + 2x9 = 30, 6.1)
2¢g + lay + 322 + 1lzg > 15, ’
221 + 3z3 < 25,
under the bounds
0 S Zo S 0,
0 < =z < 10,
0 S) S o0,
0 < z3 < oo

17

Solving the problem

To solve the problem above we go through the following steps:

—

. (Optionally) Create an environment.
2. Create an optimization task.

3. Load a problem into the task object.
4. Optimization.

5. Extracting the solution.

Below we explain each of these steps.

Create an environment.

The user can start by creating a MOSEK environment, but it is not necessary if the user does not need
access to other functionalities, license management, additional routines, etc. Therefore in this tutorial
we don’t create an explicit environment.

Create an optimization task.

We create an empty task object. A task object represents all the data (inputs, outputs, parameters,
information items etc.) associated with one optimization problem.

try (mosek.Task task = new Task()) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

We also connect a call-back function to the task log stream. Messages related to the task are passed
to the call-back function. In this case the stream call-back function writes its messages to the standard
output stream. See Sec. 7.4.

Load a problem into the task object.

Before any problem data can be set, variables and constraints must be added to the problem via calls to
the functions Task. appendcons and Task.appendvars.

// Append 'numcon' empty constraints.
// The constraints will initially have no bounds.
task.appendcons (numcon) ;

// Append 'numvar' variables.
// The wvariables will initially be fized at zero (z=0).
task.appendvars (numvar) ;

New variables can now be referenced from other functions with indexes in 0, . .., numvar — 1 and new
constraints can be referenced with indexes in 0, ...,numcon — 1. More variables and/or constraints can
be appended later as needed, these will be assigned indexes from numvar/numcon and up.

Next step is to set the problem data. We loop over each variable index j = 0, ..., numvar — 1 calling
functions to set problem data. We first set the objective coefficient ¢; = ¢[j] by calling the function
Task.putcy.

task.putcj(j, c[jD);

18

Setting bounds on variables

The bounds on variables are stored in the arrays

mosek.boundkey

bkx[] = {mosek.boundkey.lo,
mosek.boundkey.ra,
mosek.boundkey.lo,
mosek.boundkey.lo
s
double blx[] = {0.0,
0.0,
0.0,
0.0
3
double bux[] = { +infinity,
10.0,
+infinity,
+infinity
3

and are set with calls to Task.putvarbound.

// Set the bounds on wariable j.
// blzlg] <= z_j5 <= buz[j]
task.putvarbound(j, bkx[jl, blx[j], bux[jl);

The Bound key stored in bkx specifies the type of the bound according to Table 6.1.

Table 6.1: Bound keys as defined in the enum boundkey.

Bound key Type of bound | Lower bound | Upper bound

boundkey. fx | u; =1; Finite Identical to the lower bound
boundkey. fr | Free —00 +00

boundkey.lo | l; <--- Finite +00

boundkey.ra | l; <--- <y Finite Finite

boundkey. up <y —00 Finite

For instance bkx [0]= boundkey. lo means that xp > [§. Finally, the numerical values of the bounds
on variables are given by

17 =blx[j]
and
uf = bux[j].

Defining the linear constraint matrix.

Recall that in our example the A matrix is given by

A:

SN W
DO =
S W N
w = O

This matrix is stored in sparse format in the arrays:

asub[]1[] = {
1},

int
{0,
{0, 1, 2%},
{0, 1},
{1, 2}

(continues on next page)

19

(continued from previous page)

};

double avall[][] = {
{3.0, 2.0},
{1.0, 1.0, 2.0},
{2.0, 3.0},
{1.0, 3.0}

};

The array aval[j] contains the non-zero values of column j and asub[j] contains the row indices
of these non-zeros.
Using the function Task.putacol we set column j of A

task.putacol(j, /* Variable (column) index.*/
asubl[j], /% Row index of mon-zeros in column j.*/
aval[jl); /* Non-zero Values of column j. */

There are many alternative formats for entering the A matrix. See functions such as Task.putarow,
Task.putarowlist, Task.putatjlist and similar.

Finally, the bounds on each constraint are set by looping over each constraint index ¢ =
0,...,numcon — 1

// Set the bounds on constraints.

// blc[i] <= constraint_i <= bucl[i]

for (int i = 0; i < numcon; ++i)
task.putconbound (i, bkc[il, blc[i], buclil);

Optimization

After the problem is set-up the task can be optimized by calling the function Task.optimize.

task.optimize();

Extracting the solution.

After optimizing the status of the solution is examined with a call to Task.getsolsta. If the solution
status is reported as solsta.optimal the solution is extracted in the lines below:

double[] xx = task.getxx(mosek.soltype.bas); // Request the bastic solution.

The Task.getzz function obtains the solution. MOSEK may compute several solutions depending
on the optimizer employed. In this example the basic solution is requested by setting the first argument
to soltype.bas.

Catching exceptions

We catch any exceptions thrown by MOSEK in the lines:

catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;

}

The types of exceptions that MOSEK can throw can be seen in Sec. 15.5. See also Sec. 7.3.

20

Source code

The complete source code lol.java of this example appears below. See also 1o2.java for a version
where the A matrix is entered row-wise.

Listing 6.1: Linear optimization example.

package com.mosek.example;
import mosek.*;

public class lol {
static final int numcon
static final int numvar

3;
4;

public static void main (String[] args) {
// Since the wvalue of infinity is ignored, we define it solely
// for symbolic purposes
double infinity = O;

double c[] = {3.0, 1.0, 5.0, 1.0};
int asub[][] = {

{0, 13},

{0, 1, 2},

{0, 13},

{1, 2}

};
double avall][]
{3.0, 2.0},

{1.0, 1.0, 2.03%},
{2.0, 3.0},
{1.0, 3.0}
};
mosek.boundkey []
bkc = {mosek.boundkey.fx,
mosek.boundkey.lo,
mosek.boundkey.up
}s;
double blcl[]

Il
~

{30.0,
15.0,
-infinity

};

{30.0,
+infinity,

25.0

};

double bucl[]

mosek.boundkey

bkx[] = {mosek.boundkey.lo,
mosek.boundkey.ra,
mosek.boundkey.lo,
mosek.boundkey.lo

};

double blx[] = {0.0,
0.0,
0.0,
0.0
;5
double bux[] = { +infinity,
10.0,

(continues on next page)

21

(continued from previous page)

+infinity,
+infinity

};

try (mosek.Task task = new Task()) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }1});

// Append 'numcon' empty constraints.
// The constraints will initially have no bounds.
task.appendcons (numcon) ;

// Append 'numvar' wvariables.
// The wvariables will initially be fized at zero (z=0).
task.appendvars (numvar) ;

for (int j = 0; j < numvar; ++j) {
// Set the linear term c_j in the objective.
task.putcj(j, cl[jl);

// Set the bounds on variable j.
// blzlg] <= z_j <= buz[j]
task.putvarbound(j, bkx[jl, blx[jl, bux[jl);

// Input column j of A

task.putacol(j, /% Variable (column) index.*/
asubl[j], /% Row index of mon-zeros in column j.*/
avalljl); /* Non-zero Values of column j. */

3

// Set the bounds on constraints.

// blc[i] <= constraint_i <= buc[i]

for (int i = 0; i < numcon; ++i)
task.putconbound(i, bkc[il, blc[i], buc[il);

// Input the objective sense (minimize/maxzimize)
task.putobjsense(mosek.objsense.maximize) ;

// Solve the problem
task.optimize();

// Print a summary containing tnformation
// about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg) ;

// Get status information about the solution
mosek.solsta solstal[] = new mosek.solstal[l];
task.getsolsta(mosek.soltype.bas, solsta);

switch (solstal0]) {
case optimal:
double[] xx = task.getxx(mosek.soltype.bas); // Request the bastic solution.

(continues on next page)

22

(continued from previous page)

System.out.println("Optimal primal solution\n");
for (int j = 0; j < numvar; ++j)
System.out.println ("x[" + j + "]:" + xx[j1);
break;
case dual_infeas_cer:
case prim_infeas_cer:
System.out.println("Primal or dual infeasibility certificate found.\n");
break;
case unknown:
System.out.println("Unknown solution status.\n");
break;
default:
System.out.println("Other solution status");
break;
}
}
catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;
}
}
}

6.2 From Linear to Conic Optimization

In Sec. 6.1 we demonstrated setting up the linear part of an optimization problem, that is the objective,
linear bounds, linear equalities and inequalities. In this tutorial we show how to define conic constraints.
We recommend going through this general conic tutorial before proceeding to examples with specific
cone types.

MOSEK accepts conic constraints in the form

Fx+geD

where
e 1 € R" is the optimization variable,

e D C R” is a conic domain of some dimension k, representing one of the cone types supported by
MOSEK,

o F c RF¥*™ and g € RF are data which constitute the sequence of k affine expressions appearing
in the rows of Fz + g.

Constraints of this form will be called affine conic constraints, or ACC for short. Therefore in
this section we show how to set up a problem of the form

minimize T+l
subject to ¢ < Ax < uc,
< T < u®,
Fr+g € Dyx---xD,y,

with some number p of affine conic constraints.
Note that conic constraints are a natural generalization of linear constraints to the general nonlinear
case. For example, a typical linear constraint of the form

Az +b>0

23

can be also written as membership in the cone of nonnegative real numbers:
Az +beRY,
and that naturally generalizes to
Fx+geD
for more complicated domains D from Sec. 15.11 of which D = R%o is a special case.

6.2.1 Running example

In this tutorial we will consider a sample problem of the form

maximize Lz
subject to) . x; =1, (6.2)
v = |Gz + Rz,

where 2 € R” is the optimization variable and G' € R**™, h € R¥, ¢ € R™ and v € R. We will use the
following sample data:

- _ 3 _ 1T _ |15 01 0 10
n=3, k=2 =zeR’, ¢=][2,3,-1]", ~=0.03, G_[OB 0 21 | h = .

To be explicit, the problem we are going to solve is therefore:

maximize 2xg+ 3x1 — T2
subject to g+ z1 + 22 =1, (6.3)
0.03 > \/(1.520 + 0.1x1)2 + (0.3z0 + 2.172 + 0.1)2.

Consulting the definition of a quadratic cone Q we see that the conic form of this problem is:

maximize 2xg+ 3xr1 — T2
subject to g+ 1 + 22 =1, (6.4)
(0037 1.5zg + 0.121, 0.32¢ 4+ 2.1x2 + 0].) S QB.

The conic constraint has an affine conic representation F'xz + g € D as follows:

0 0 0 0.03
1.5 01 0 |z+]| 0 |eQ (6.5)
03 0 21 0.1

Of course by the same logic in the general case the conic form of the problem (6.2) would be

maximize Tz

subject to Y, x; =1, (6.6)
(v,Gx + h) € Qk+1

and the ACC representation of the constraint (v, Gz + h) € Q¥+ would be

{g}x+[Z]eQHK

Now we show how to add the ACC (6.5). This involves three steps:
e storing the affine expressions which appear in the constraint,
e creating a domain, and

e combining the two into an ACC.

24

6.2.2 Step 1: add affine expressions

To store affine expressions (AFE for short) MOSEK provides a matrix F and a vector g with the
understanding that every row of

Frx+g

defines one affine expression. The API functions with infix afe are used to operate on F and g, add
rows, add columns, set individual elements, set blocks etc. similarly to the methods for operating on the
A matrix of linear constraints. The storage matrix F is a sparse matrix, therefore only nonzero elements
have to be explicitly added.

Remark: the storage F,g may, but does not have to be, equal to the pair F,g appearing in the
expression Fx + g. It is possible to store the AFEs in different order than the order they will be used
in F, g, as well as store some expressions only once if they appear multiple times in Fxz 4+ g. In this first
turorial, however, we will for simplicity store all expressions in the same order we will later use them, so
that (F,g) = (F,g).

In our example we create only one conic constraint (6.5) with three (in general k4 1) affine expressions

0.03,
1.5z + 0.124,
0.31’0 + 2.11‘2 + 0.1.

Given the previous remark, we initialize the AFE storage as:

0 0 0 0.03
F=|15 01 0 |, g=| 0 |. (6.7)
03 0 21 0.1

Initially F and g are empty (have 0 rows). We construct them as follows. First, we append a number of
empty rows:

// Append empty AFE rows for affine expression storage
task.appendafes(k + 1);

We now have F and g with 3 rows of zeros and we fill them up to obtain (6.7).

// F matiz in sparse form

longl[] Fsubi = {1, 1, 2, 2}; // The G matriz starts in F from row 1
int[] Fsubj = {0, 1, 0, 2};

double[] Fval {1.5, 0.1, 0.3, 2.1};

// Other data

double[] h {0, 0.1};

double gamma = 0.03;

// Fill in F storage
task.putafefentrylist(Fsubi, Fsubj, Fval);

// Fill in g storage;
task.putafeg(0, gamma);
task.putafegslice(l, k+1, h);

We have now created the matrices from (6.7). Note that at this point we have not defined any ACC
yet. All we did was define some affine expressions and place them in a generic AFE storage facility to
be used later.

25

6.2.3 Step 2: create a domain

Next, we create the domain to which the ACC belongs. Domains are created with functions with infix
domain. In the case of (6.5) we need a quadratic cone domain of dimension 3 (in general k + 1), which
we create with:

// Define a conic quadratic domain
quadDom = task.appendquadraticconedomain(k + 1);

The function returns a domain index, which is just the position in the list of all domains (potentially)
created for the problem. At this point the domain is just stored in the list of domains, but not yet used
for anything.

6.2.4 Step 3: create the actual constraint

We are now in position to create the affine conic constraint. ACCs are created with functions with
infix acc. The most basic variant, Task. appendacc will append an affine conic constraint based on the
following data:

e the list afeidx of indices of AFEs to be used in the constraint. These are the row numbers in F, g
which contain the required affine expressions.

e the index domidx of the domain to which the constraint belongs.

Note that number of AFEs used in afeidx must match the dimension of the domain.

In case of (6.5) we have already arranged F,g in such a way that their (only) three rows contain
the three affine expressions we need (in the correct order), and we already defined the quadratic cone
domain of matching dimension 3. The ACC is now constructed with the following call:

// Create the ACC
long[] afeidx = {0, 1, 2};

task.appendacc(quadDom, // Domain index
afeidx, // Indices of AFE rows [0,...,k]
null); // Ignored

This completes the setup of the affine conic constraint.

6.2.5 Example ACC1

We refer to Sec. 6.1 for instructions how to set up the objective and linear constraint xg + x1 + zo = 1.
All else that remains is to set up the MOSEK environment, task, add variables, call the solver with
Task.optimize and retrieve the solution with Task.getzz. Since our problem contains a nonlinear
constraint we fetch the interior-point solution. The full code solving problem (6.3) is shown below.

Listing 6.2: Full code of example ACCI.

package com.mosek.example;
import mosek.*;

public class accl {
/* Data dimensions */
static final int n = 3;
static final int k = 2;

public static void main (String[] args) throws java.lang.Exception {
// Since the value infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = O;
int i,j;
long quadDom;

(continues on next page)

26

(continued from previous page)

// create a new environment and task object
try (Env env = new Env();
Task task = new Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }1});

// Create n free wvartables
task.appendvars(n) ;
task.putvarboundsliceconst (0, n, mosek.boundkey.fr, -infinity, infinity);

// Set up the objective
double[] ¢ = {2, 3, -1};
int[] cind = {0, 1, 2};
task.putobjsense(mosek.objsense.maximize) ;
task.putclist(cind, c);

// One linear constraint - sum(z) = 1
task.appendcons (1) ;

task.putconbound (0, mosek.boundkey.fx, 1.0, 1.0);
for(i = 0; i < n; i++) task.putaij(0, i, 1.0);

// Append empty AFE rows for affine expression storage
task.appendafes(k + 1);

// F matiz in sparse form

longl[] Fsubi = {1, 1, 2, 2}; // The G matriz starts in F from row 1
int[] Fsubj = {0, 1, 0, 2};

double[] Fval {1.5, 0.1, 0.3, 2.1};

// Other data

double[] h {0, 0.1};

double gamma = 0.03;

// Fill in F storage
task.putafefentrylist(Fsubi, Fsubj, Fval);

// Fill in g storage;
task.putafeg(0, gamma) ;
task.putafegslice(1l, k+1, h);

// Define a conic quadratic domain
quadDom = task.appendquadraticconedomain(k + 1);

// Create the ACC
long[] afeidx = {0, 1, 2};

task.appendacc (quadDom, // Domain index
afeidx, // Indices of AFE rows [0, ...,k]
null); // Ignored

/* Solve the problem */
mosek.rescode r = task.optimize();

(continues on next page)

27

(continued from previous page)

System.out.println (" Termination code: " + r.toString());
// Print a summary containing tnformation

// about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg) ;

mosek.solsta solstal] = new mosek.solstall];

/% Get status information about the solution */
task.getsolsta(mosek.soltype.itr, solsta);

switch (solstal0]) {
case optimal:
// Fetch solution
double[] xx = new double[n];
task.getxx(mosek.soltype.itr, // Interior solution.
XX) ;
System.out.println("Optimal primal solution");
for (j = 0; j < n; ++j)
System.out.println ("x[" + j + "]:" + xx[j]1);

// Fetch doty dual for the ACC

double[] doty = new doublel[k+1];

task.getaccdoty(mosek.soltype.itr, // Interior solution.
0, // ACC index
doty);

System.out.println("Dual doty value for the ACC");

for (j = 0; j <k + 1; ++j)

System.out.println ("doty[" + j + "]:" + doty[jl);

// Fetch ACC activity
double[] activity = new double[k+1];
task.evaluateacc(mosek.soltype.itr, // Interior solution.
0, // ACC indez
activity);
System.out.println("Activity for the ACC");
for (j = 0; j <k + 1; ++j)
System.out.println ("activity[" + j + "]:" + activityl[jl);
break;
case dual_infeas_cer:
case prim_infeas_cer:
System.out.println("Primal or dual infeasibility.\n");
break;
case unknown:
System.out.println("Unknown solution status.\n");
break;
default:
System.out.println("Other solution status");
break;
X
} catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;

28

The answer is

[-0.07838011145615721, 1.1289128998004547, -0.0505327883442975]

The dual values g of an ACC can be obtained with Task.getaccdoty if required.

// Fetch doty dual for the ACC

double[] doty = new double[k+1];

task.getaccdoty(mosek.soltype.itr, // Interior solution.
0, // ACC indezx
doty) ;

System.out.println("Dual doty value for the ACC");

for (j = 0; j <k + 1; ++j)

System.out.println ("doty[" + j + "]:" + doty[jl);

6.2.6 Example ACC2 - more conic constraints

Now that we know how to enter one affine conic constraint (ACC) we will demonstrate a problem with
two ACCs. From there it should be clear how to add multiple ACCs. To keep things familiar we will
reuse the previous problem, but this time cast it into a conic optimization problem with two ACCs as
follows:

. . T
maximize cx (68)

subject to (3, x; — 1, v, Ga + h) € {0} x QFF!
or, using the data from the example:

maximize 2xg 4+ 3x1 — T2
subject to a9+ x1 + 22 — 1 € {0},
(0.03,1.529 + 0.121,0.379 + 2.125 + 0.1) € Q3

In other words, we transformed the linear constraint into an ACC with the one-point zero domain.
As before, we proceed in three steps. First, we add the variables and create the storage F, g containing
all affine expressions that appear throughout all off the ACCs. It means we will require 4 rows:

11 1 -1
0 0 0 0.03

F=119501 0] 85| o (6.9)
03 0 21 0.1

// Set AFE rows representing the linear constraint
task.appendafes(1);

task.putafeg(0, -1.0);

for(i = 0; i < n; i++) task.putafefentry(0, i, 1.0);

// Set AFE rows representing the quadratic constraint

// F matiz in sparse form

longl[] Fsubi = {2, 2, 3, 3}; // The G matriz starts in F from row 2
int[] Fsubj = {0, 1, 0, 2};

double[] Fval = {1.5, 0.1, 0.3, 2.1};

// Other data

double[] h = {0, 0.1};

double gamma = 0.03;

task.appendafes(k + 1);
task.putafefentrylist(Fsubi, Fsubj, Fval);
task.putafeg(l, gamma);
task.putafegslice(2, k+2, h);

Next, we add the required domains: the zero domain of dimension 1, and the quadratic cone domain
of dimension 3.

29

// Define domatins
zeroDom = task.appendrzerodomain(1);
quadDom = task.appendquadraticconedomain(k + 1);

Finally, we create both ACCs. The first ACCs picks the 0-th row of F,g and places it in the zero
domain:

// Create the linear ACC
long[] afeidxZero = {0};

task.appendacc(zeroDom, // Domain index
afeidxZero, // Indices of AFE rows
null); // Ignored

The second ACC picks rows 1,2,3 in F, g and places them in the quadratic cone domain:

// Create the quadratic ACC
long[] afeidxQuad = {1, 2, 3};

task.appendacc(quadDom, // Domain index
afeidxQuad, // Indices of AFE rows
null); // Ignored

The completes the construction and we can solve the problem like before:

Listing 6.3: Full code of example ACC2.

package com.mosek.example;
import mosek.*;

public class acc2 {
/* Data dimensions */
static final int n = 3;
static final int k = 2;

public static void main (String[] args) throws java.lang.Exception {
// Since the value infinity ts never used, we define
// 'infinity' symbolic purposes only
double infinity = O;
int 1,j;
long quadDom, zeroDom;

// create a new environment and task object
try (Env env = new Env();
Task task = new Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

// Create n free wartables
task.appendvars(n) ;
task.putvarboundsliceconst (0, n, mosek.boundkey.fr, -infinity, infinity);

// Set up the objective
double[] ¢ = {2, 3, -1};
int[] cind = {0, 1, 2};
task.putobjsense(mosek.objsense.maximize) ;

(continues on next page)

30

(continued from previous page)

task.putclist(cind, c¢);

// Set AFE rows representing the linear constraint
task.appendafes(1);

task.putafeg(0, -1.0);

for(i = 0; i < n; i++) task.putafefentry(0, i, 1.0);

// Set AFE rows representing the quadratic constraint

// F matiz in sparse form

longl[] Fsubi = {2, 2, 3, 3}; // The G matriz starts in F from row 2
int[] Fsubj = {0, 1, 0, 2};

double[] Fval {1.5, 0.1, 0.3, 2.1};

// Other data
double[] h
double gamma

{0, 0.1};
0.03;

task.appendafes(k + 1);
task.putafefentrylist(Fsubi, Fsubj, Fval);
task.putafeg(l, gamma);
task.putafegslice(2, k+2, h);

// Define domains
zeroDom = task.appendrzerodomain(1);
quadDom = task.appendquadraticconedomain(k + 1);

// Create the linear ACC
long[] afeidxZero = {0};

task.appendacc(zeroDom, // Domain index
afeidxZero, // Indices of AFE rows
null); // Ignored

// Create the quadratic ACC
long[] afeidxQuad = {1, 2, 3};

task.appendacc (quadDom, // Domain index
afeidxQuad, // Indices of AFE rows
null); // Ignored

/* Solve the problem */

mosek.rescode r = task.optimize();

System.out.println (" Termination code: " + r.toString());
// Print a summary containing information

// about the solution for debugging purposes
task.solutionsummary (mosek.streamtype.msg) ;

mosek.solsta solstal[] = new mosek.solstal[l];

/* Get status information about the solution */
task.getsolsta(mosek.soltype.itr, solsta);

switch (solstal[0]) {
case optimal:
// Fetch solution
double[] xx = new doubleln];
task.getxx(mosek.soltype.itr, // Intertor solution.
XX);

(continues on next page)

31

(continued from previous page)

System.out.println("Optimal primal solution");
for (j = 0; j < n; ++j)
System.out.println ("x[" + j + "]:" + xx[j]1);

// Fetch doty dual for the ACC

double[] doty = new double[k+1];

task.getaccdoty(mosek.soltype.itr, // Interior solution.
1, // ACC index
doty) ;

System.out.println("Dual doty value for the ACC");

for (j = 0; j <k + 1; ++j)

System.out.println ("doty[" + j + "]:" + doty[jl);

// Fetch ACC activity
double[] activity = new double[k+1];
task.evaluateacc(mosek.soltype.itr, // Interior solution.
1, // ACC indez
activity);
System.out.println("Activity for the ACC");
for (j = 0; j <k + 1; ++j)
System.out.println ("activity[" + j + "]:" + activityl[jl);
break;
case dual_infeas_cer:
case prim_infeas_cer:
System.out.println("Primal or dual infeasibility.\n");
break;
case unknown:
System.out.println("Unknown solution status.\n");
break;
default:
System.out.println("Other solution status");
break;
}
} catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;

We obtain the same result:

[-0.07838011145615721, 1.1289128998004547, -0.0505327883442975]

6.2.7 Summary and extensions

In this section we presented the most basic usage of the affine expression storage F,g to input affine
expressions used together with domains to create affine conic constraints. Now we briefly point out
additional features of his interface which can be useful in some situations for more demanding users.
They will be demonstrated in various examples in other tutorials and case studies in this manual.

e It is important to remember that F, g has only a storage function and during the ACC construction
we can pick an arbitrary list of row indices and place them in a conic domain. It means for example
that:

— It is not necessary to store the AFEs in the same order they will appear in ACCs.

32

— The same AFE index can appear more than once in one and/or more conic constraints (this
can be used to reduce storage if the same affine expression is used in multiple ACCs).

— The F, g storage can even include rows that are not presently used in any ACC.
e Domains can be reused: multiple ACCs can use the same domain. On the other hand the same

type of domain can appear under many domidx positions. In this sense the list of created domains
also plays only a storage role: the domains are only used when they enter an ACC.

e Affine expressions can also contain semidefinite terms, ie. the most general form of an ACC is in
fact

Fr+ (F,X)+g€eD

These terms are input into the rows of AFE storage using the functions with infix afebarf, creating
an additional storage structure F.

e The same affine expression storage F, g is shared between affine conic and disjunctive constraints
(see Sec. 6.9).

e If, on the other hand, the user chooses to always store the AFEs one by one sequentially in the
same order as they appear in ACCs then sequential functions such as Task.appendaccseq and
Task. appendaccsseq make it easy to input one or more ACCs by just specifying the starting AFE
index and dimension.

e It is possible to add a number of ACCs in one go using Task.appendaccs.

e When defining an ACC an additional constant vector b can be provided to modify the constant
terms coming from g but only for this particular ACC. This could be useful to reduce F storage
space if, for example, many expressions f’x + b; with the same linear part f7z, but varying
constant terms b;, are to be used throughout ACCs.

6.3 Conic Quadratic Optimization

The structure of a typical conic optimization problem is

minimize e+ cf
subject to ¢ < Ax < wuc,
r < T < u®,
Fx+g € D,

(see Sec. 12 for detailed formulations). We recommend Sec. 6.2 for a tutorial on how problems of that
form are represented in MOSEK and what data structures are relevant. Here we discuss how to set-up
problems with the (rotated) quadratic cones.

MOSEK supports two types of quadratic cones, namely:

e Quadratic cone:

e Rotated quadratic cone:

n—1
o = xeR":Qmowlzzx?, x>0, x>0
Jj=2

For example, consider the following constraint:
(I’47 anxz) € QS
which describes a convex cone in R? given by the inequality:

xy >\ 2d + 23

For other types of cones supported by MOSEK, see Sec. 15.11 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

33

6.3.1 Example CQO1

Consider the following conic quadratic problem which involves some linear constraints, a quadratic cone
and a rotated quadratic cone.

minimize Ty + x5 + T4
subject to x1 + o+ 2x3 = 1,
L1,T2,T3 Z Oa (610)
T4 > V .’IJ% + x%7
2r5x6 > x%
The two conic constraints can be expressed in the ACC form as shown in (6.11)
000100 x 0
1 00 00O Z2 0
01 00 0O x3 0 3 3
000010 24 + 0 € Q% x Qr. (6.11)
000001 x5 0
001 00O Z 0

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

In order to append the conic constraints we first input the matrix F and vector g appearing in (6.11).
The matrix F is sparse and we input only its nonzeros using Task.putafefentrylist. Since g is zero,
nothing needs to be done about this vector.

Each of the conic constraints is appended using the function Task.appendacc. In the first case we
append the quadratic cone determined by the first three rows of F and then the rotated quadratic cone
depending on the remaining three rows of F'.

/* Create a matriz F such that F * z = [x(3),z2(0),2(1),z(4),z(5),z(2)] */

task.appendafes(6);

task.putafefentrylist(new long[]{0, 1, 2, 3, 4, 5}, /* Rows */
new int[]{3, 0, 1, 4, 5, 2}, /* Columns */
new double[]{1.0, 1.0, 1.0, 1.0, 1.0, 1.0});

/* Quadratic cone (x(3),x(0),z(1)) \in QUAD_3 */

long quadcone = task.appendquadraticconedomain(3);
task.appendacc(quadcone, /* Domain */
new long[]1{0, 1, 2}, /* Rows from F */
null); /* Unused */

/* Rotated quadratic cone (z(4),z(5),z(2)) \in RQUAD_3 +*/
long rquadcone = task.appendrquadraticconedomain(3);

task.appendacc(rquadcone, /* Domain */
new long[]1{3, 4, 5}, /* Rows from F */
null); /* Unused */

The first argument selects the domain, which must be appended before being used, and must have
the dimension matching the number of affine expressions appearing in the constraint. Variants of this
method are available to append multiple ACCs at a time. It is also possible to define the matrix F using
a variety of methods (row after row, column by column, individual entries, etc.) similarly as for the
linear constraint matrix A.

For a more thorough exposition of the affine expression storage (AFE) matrix F and vector g see
Sec. 6.2.

34

Source code

Listing 6.4: Source code solving problem (6.10).

package com.mosek.example;
import mosek.*;
public class cqol {

static final int numcon = 1;
static final int numvar 6;

public static void main (String[] args) throws java.lang.Exception {
// Since the walue infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = O;

mosek.boundkey[] bkc = { mosek.boundkey.fx };
double[] blc = { 1.0 };
double[] buc = { 1.0 }

b

mosek.boundkey[] bkx
= {mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey.fr,
mosek.boundkey.fr,
mosek.boundkey.fr

+;
double[] blx = { 0.0,
0.0

)

0.0,
-infinity,
-infinity,
-infinity
+
double[] bux = { +infinity,
+infinity,
+infinity,
+infinity,
+infinity,
+infinity
3
double[] ¢ = { 0.0,
0.0,
0.0,
1.0,
1.0,
1.0
};
double[][] aval = {
{1.0},
{1.03,
{2.0}
};

(continues on next page)

35

(continued from previous page)

int [][] asub = {
{03},
{02},
{0}
};

int[] csub = new int[3];

// create a new environment object
try (Env env = new Env();
Task task = new Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

/% Give MOSEK an estimate of the size of the tinput data.
Thts is done to increase the speed of inputting data.
However, it is optional. */
/* Append 'numcon' empty constraints.

The constraints will initially have no bounds. */
task.appendcons (numcon) ;

/* Append 'numvar' variables.
The wvariables will initially be fized at zero (z=0). */
task.appendvars (numvar) ;

/% Optionally add a constant term to the objective. */
task.putcfix(0.0);
for (int j = 0; j < numvar; ++j) {
/* Set the linear term c_j in the objective.*/
task.putcj(j, c[jl);
/% Set the bounds on variable j.
blal[g] <= z_7 <= buzx[j] */
task.putvarbound(j, bkx[jl, blx[jl, bux[jl);
}

for (int j = 0; j < aval.length; ++j)
/* Input column 7 of A */

task.putacol(j, /* Variable (column) index.*/
asub[j], /* Row index of mon-zeros in column j.*/
avalljl); /* Non-zero Values of column j. */

/* Set the bounds on constraints.
for =1, ...,numcon : blc[i] <= constraint ¢ <= buc[i] */
for (int i = 0; i < numcon; ++i)

task.putconbound(i, bkc[i], blc[i], buc[il);

/* Create a matriz F such that F + ¢ = [x2(3),z(0),2(1),z(4),z(5),z(2)] */

task.appendafes(6);

task.putafefentrylist(new long[]l{0, 1, 2, 3, 4, 5}, /* Rows */
new int[]{3, 0, 1, 4, 5, 2}, /* Columns */
new double[]{1.0, 1.0, 1.0, 1.0, 1.0, 1.0});

(continues on next page)

36

(continued from previous page)

/* Quadratic cone (x(3),x(0),z(1)) \in QUAD_3 */

long quadcone = task.appendquadraticconedomain(3);
task.appendacc(quadcone, /* Domain */
new long[]{0, 1, 2}, /* Rows from F */
null); /* Unused */

/* Rotated quadratic cone (z(4),z(5),z(2)) \in RQUAD_3 +*/
long rquadcone = task.appendrquadraticconedomain(3);

task.appendacc(rquadcone, /% Domain */
new long[]1{3, 4, 5}, /* Rows from F */
null); /* Unused */

task.putobjsense(mosek.objsense.minimize);
System.out.println ("optimize");

/* Solve the problem */

mosek.rescode r = task.optimize();

System.out.println (" Mosek warning:" + r.toString());
// Print a summary containing tinformation

// about the solution for debugging purposes
task.solutionsummary (mosek.streamtype.msg) ;

/% Get status information about the solution */
mosek.solsta solsta = task.getsolsta(mosek.soltype.itr);

double[] xx = task.getxx(mosek.soltype.itr); // Interior solution.

switch (solsta) {
case optimal:
System.out.println("Optimal primal solution\n");
for (int j = 0; j < numvar; ++j)
System.out.println ("x[" + j + "]J:" + xx[j1);
break;
case dual_infeas_cer:
case prim_infeas_cer:
System.out.println("Primal or dual infeasibility.\n");
break;
case unknown:
System.out.println("Unknown solution status.\n");
break;
default:
System.out.println("Other solution status");
break;
}
catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;

37

6.4 Power Cone Optimization

The structure of a typical conic optimization problem is

minimize e+l
subject to ¢ < Ax < wuc,
r < T < u®,
Fx+g € D,

(see Sec. 12 for detailed formulations). We recommend Sec. 6.2 for a tutorial on how problems of that
form are represented in MOSEK and what data structures are relevant. Here we discuss how to set-up
problems with the primal/dual power cones.

MOSEK supports the primal and dual power cones, defined as below:

e Primal power cone:

ne—1

Pk =(xeR" : fo’ Zo...,Tp,—1 =0
i=0

where s =), a; and f; = /s, so that). 3; = 1.

e Dual power cone:

ng—1) Bi
(,ng): reR"™ : H (?) > To..., Tny—1 >0
[

=0

where s =). a; and §; = /s, so that), 3; = 1.
Perhaps the most important special case is the three-dimensional power cone family:
P?’l_a = {:c € R3: afal™ > |aal, zo, 21 > 0}.

which has the corresponding dual cone:

For example, the conic constraint (z,y,2z) € Py>>"™ is equivalent to 20247 > |z|, or simply
xy3 > 2% with z,y > 0.

For other types of cones supported by MOSEK, see Sec. 15.11 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

6.4.1 Example POW1

Consider the following optimization problem which involves powers of variables:
maximize 232298 + 294 — 2
subject to To+ T1 + 220 2, (6.12)

zg,r1,72 = 0.

We convert (6.12) into affine conic form using auxiliary variables as bounds for the power expressions:

maximize T3 + T4 — o
subject to xg+ x1 + %xz _
6.13
(vo,x1,23) € PyHOE (6.13)
(22,1.0,24) € 'p:())l470.6-

The two conic constraints shown in (6.13) can be expressed in the ACC form as shown in (6.14):

38

1 00 00 . 0
01000 xo 0

00010 ! 0 0.2,0.8 _ 10.4,0.6

00 10 0 w2 |+ o | €Ps x Py 0o, (6.14)
0000 0 3 1

00001 T4 0

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

In order to append the conic constraints we first input the matrix F and vector g which together
determine all the six affine expressions appearing in the conic constraints of (6.13)

/% Add conic constraints */

/* Append two power cone domains */

long pcl = task.appendprimalpowerconedomain(3, new double[]{0.2, 0.8});
long pc2 = task.appendprimalpowerconedomain(3, new double[]{4.0, 6.0});

/* Create data structures F,g so that

Fxaxz+g=(x(0), (1), z(3), z(2), 1.0, z©(4))
*/
task.appendafes(6);
task.putafefentrylist(new long[]{0, 1, 2, 3, 5}, /* Rows */
new int[]1{0, 1, 3, 2, 4}, /% Columns */
new double[]{1.0, 1.0, 1.0, 1.0, 1.0});
task.putafeg(4, 1.0);

/* Append the two conic constraints */

task.appendacc(pcl, /* Domain */
new long[]1{0, 1, 2}, /* Rows from F */
null); /* Unused */
task.appendacc(pc2, /* Domain */
new long[]1{3, 4, 5}, /* Rows from F */
null); /* Unused */

Following that, each of the affine conic constraints is appended using the function Task.appendacc.
The first argument selects the domain, which must be appended before being used, and must have the
dimension matching the number of affine expressions appearing in the constraint. In the first case we
append the power cone determined by the first three rows of F and g while in the second call we use the
remaining three rows of F and g.

Variants of this method are available to append multiple ACCs at a time. It is also possible to define
the matrix F using a variety of methods (row after row, column by column, individual entries, etc.)
similarly as for the linear constraint matrix A.

For a more thorough exposition of the affine expression storage (AFE) matrix F and vector g see
Sec. 6.2.

39

Source code

Listing 6.5: Source code solving problem (6.12).

package com.mosek.example;
import mosek.*;

public class powl {

static final int numcon = 1;

static final int numvar 5; // z,y,z and 2 auziliary variables for conicy
—constraints

public static void main (String[] args) throws java.lang.Exception {
// Since the walue infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = O;

double[] val {1.0, 1.0, -1.0 };

int[] sub =93, 4, 0 };
double[] aval = { 1.0, 1.0, 0.5 };
int [] asub = { 0, 1, 2 };

int 1i;

// create a new environment object
try (Env env = new Env();
Task task = new Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

/* Append 'numcon' empty constraints.
The constraints will initially have no bounds. */
task.appendcons (numcon) ;

/* Append 'numvar' wvariables.
The wvariables will initially be fized at zero (z=0). */
task.appendvars (numvar) ;

/* Define the linear part of the problem */

task.putclist(sub, val);

task.putarow(0, asub, aval);

task.putconbound (0, mosek.boundkey.fx, 2.0, 2.0);
task.putvarboundsliceconst (0, numvar, mosek.boundkey.fr, -infinity, infinity);

/* Add conic constraints */

/* Append two power cone domains */

long pcl = task.appendprimalpowerconedomain(3, new double[]{0.2, 0.8});
long pc2 = task.appendprimalpowerconedomain(3, new double[]{4.0, 6.0});

/* Create data structures F,g so that

(continues on next page)

40

(continued from previous page)

Fxaz+g=(200), (1), =(3), =(2), 1.0, z(4))
*/
task.appendafes(6);
task.putafefentrylist(new long[]{0, 1, 2, 3, 5}, /* Rows */
new int[]{0, 1, 3, 2, 4}, /* Columns */
new double[]{1.0, 1.0, 1.0, 1.0, 1.0});
task.putafeg(4, 1.0);

/* Append the two conic constraints */

task.appendacc(pcl, /* Domain */
new long[]1{0, 1, 2}, /* Rows from F */
null); /* Unused */
task.appendacc(pc2, /% Domain */
new long[]1{3, 4, 5}, /* Rows from F */
null); /* Unused */

task.putobjsense(mosek.objsense.maximize) ;

System.out.println ("optimize");

/% Solve the problem */

mosek.rescode r = task.optimize();

System.out.println (" Mosek warning:" + r.toString());
// Print a summary containing tnformation

// about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg) ;

/* Get status information about the solution */
mosek.solsta solsta = task.getsolsta(mosek.soltype.itr);

double[] xx = task.getxx(mosek.soltype.itr); // Interior solution.

switch (solsta) {
case optimal:
System.out.println("Optimal primal solution\n");
for (int j = 0; j < 3; ++j)
System.out.println ("x[" + j + "]J:" + xx[j1);
break;
case dual_infeas_cer:
case prim_infeas_cer:
System.out.println("Primal or dual infeasibility.\n");
break;
case unknown:
System.out.println("Unknown solution status.\n");
break;
default:
System.out.println("Other solution status");
break;
}
catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;

41

6.5 Conic Exponential Optimization

The structure of a typical conic optimization problem is

minimize e+l
subject to ¢ < Ax < wuc,
r < T < u®,
Fx+g € D,

(see Sec. 12 for detailed formulations). We recommend Sec. 6.2 for a tutorial on how problems of that
form are represented in MOSEK and what data structures are relevant. Here we discuss how to set-up
problems with the primal/dual exponential cones.

MOSEK supports two exponential cones, namely:

e Primal exponential cone:

Kexp = {x € R : zg > zy exp(a/21), 0,21 > O}.

e Dual exponential cone:

K:xp = {s eR?: 59> —s9e ! exp(s1/s2), s2 <0,s0 > 0}.
For example, consider the following constraint:
(24,20, 22) € Kexp
which describes a convex cone in R? given by the inequalities:
x4 > xoexp(ra/x0), To,x4 > 0.

For other types of cones supported by MOSEK, see Sec. 15.11 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

6.5.1 Example CEO1

Consider the following basic conic exponential problem which involves some linear constraints and an
exponential inequality:

minimize Ty + x1
subject to zo+x1+2x2 = 1,
6.15
o) 2 T exp(xg/xl), ()
Zo, L1 > 0.
The affine conic form of (6.15) is:
minimize Ty + 21
subject to zg+x1+x2 = 1,
Iz € Kep, (6.16)
r € RS

where I is the 3 x 3 identity matrix.

42

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

In order to append the conic constraints we first input the sparse identity matrix F as indicated by
(6.16).

The affine conic constraint is then appended using the function Task.appendacc, with the primal
exponential domain and the list of F rows, in this case consisting of all rows in their natural order.

/* Create a 3z3 identity matriz F */

task.appendafes(3);

task.putafefentrylist(new long[]{0, 1, 2}, /* Rows */
new int[]{0, 1, 2}, /* Columns */
new double[]{1.0, 1.0, 1.0});

/* Ezponential cone (z(0),z(1),z(2)) \in EXP */

long expdomain = task.appendprimalexpconedomain();
task.appendacc (expdomain, /* Domain */
new long[]{0, 1, 2}, /* Rows from F */
null); /* Unused */

The first argument selects the domain, which must be appended before being used, and must have
the dimension matching the number of affine expressions appearing in the constraint. Variants of this
method are available to append multiple ACCs at a time. It is also possible to define the matrix F using
a variety of methods (row after row, column by column, individual entries, etc.) similarly as for the
linear constraint matrix A.

For a more thorough exposition of the affine expression storage (AFE) matrix F and vector g see
Sec. 6.2.

Source code

Listing 6.6: Source code solving problem (6.15).

package com.mosek.example;
import mosek.*;

public class ceol {
static final int numcon = 1;
static final int numvar = 3;

public static void main (String[] args) throws java.lang.Exception {
// Since the walue infinity %is never used, we define
// 'infinity' symbolic purposes only
double infinity = O;

mosek.boundkey bkc = mosek.boundkey.fx ;
double blc = 1.0 ;
double buc = 1.0 ;

mosek.boundkey[] bkx = { mosek.boundkey.fr,
mosek.boundkey.fr,
mosek.boundkey.fr

};

(continues on next page)

43

(continued from previous page)

double[] blx

{ -infinity,

-infinity,
-infinity
3
double[] bux = { +infinity,
+infinity,
+infinity
};
double[] ¢ = { 1.0,
1.0,
0.0
+
double[] a = { 1.0,
1.0,
1.0
};
int[] asub = {0, 1, 2};

int[] csub

new int[numvar];

// create a new environment object
try (Env env = new Env();

Task task = new Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

/* Append 'numcon' empty constraints.
The constraints will initially have no bounds. */
task.appendcons (numcon) ;

/% Append 'numvar' wvariables.
The wvariables will initially be fized at zero (z=0). */
task.appendvars (numvar) ;

/* Define the linear part of the problem */
task.putcslice(o, numvar, c);

task.putarow(0, asub, a);

task.putconbound (0, bkc, blc, buc);
task.putvarboundslice (0, numvar, bkx, blx, bux);

/% Add a conic constraint */

/* Create a 3z3 identity matriz F */

task.appendafes(3);

task.putafefentrylist(new long[]{0, 1, 2}, /* Rows */
new int[]{0, 1, 2}, /* Columns */
new double[]{1.0, 1.0, 1.03});

/* Ezponential cone (z(0),z(1),z(2)) \in EXP */

long expdomain = task.appendprimalexpconedomain();
task.appendacc (expdomain, /* Domain */
new long[]1{0, 1, 2}, /* Rows from F */

(continues on next page)

44

(continued from previous page)

null); /* Unused */
task.putobjsense(mosek.objsense.minimize) ;

System.out.println ("optimize");

/* Solve the problem */

mosek.rescode r = task.optimize();

System.out.println (" Mosek warning:" + r.toString());
// Print a summary containing tinformation

// about the solution for debugging purposes
task.solutionsummary (mosek.streamtype.msg) ;

mosek.solsta solstal] = new mosek.solstall];

/* Get status information about the solution */
task.getsolsta(mosek.soltype.itr, solsta);

double[] xx = task.getxx(mosek.soltype.itr); // Interior solution.

switch (solstal0]) {
case optimal:
System.out.println("Optimal primal solution\n");
for (int j = 0; j < numvar; ++j)
System.out.println ("x[" + j + "]I:" + xx[j1);
break;
case dual_infeas_cer:
case prim_infeas_cer:
System.out.println("Primal or dual infeasibility.\n");
break;
case unknown:
System.out.println("Unknown solution status.\n");
break;
default:
System.out.println("Other solution status");
break;
}
} catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;

6.6 Geometric Programming

Geometric programs (GP) are a particular class of optimization problems which can be expressed in
special polynomial form as positive sums of generalized monomials. More precisely, a geometric problem
in canonical form is

minimize fo(z)

subject to fi(z) <1, i=1,...,m, (6.17)
z; >0, i=1...,n,
where each fy, ..., f,n is a posynomial, that is a function of the form

f(a:) _ Z Cerlxmmgka o mgxm
k

45

with arbitrary real ay; and ¢ > 0. The standard way to formulate GPs in convex form is to introduce
a variable substitution

x; = exp(y;).
Under this substitution all constraints in a GP can be reduced to the form

log(D _exp(afy +bx)) <0 (6.18)
k

involving a log-sum-exp bound. Moreover, constraints involving only a single monomial in x can be even
more simply written as a linear inequality:

afy—!—bkg()

We refer to the MOSEK Modeling Cookbook and to [BKVH07] for more details on this reformulation. A
geometric problem formulated in convex form can be entered into MOSEK with the help of exponential
cones.

6.6.1 Example GP1

The following problem comes from [BKVH07|. Consider maximizing the volume of a h X w X d box
subject to upper bounds on the area of the floor and of the walls and bounds on the ratios h/w and d/w:

maximize hwd
subject to 2(hw + hd) < Ayan,
wd < Aﬂoor, (6]‘9)
« S h/w S ﬁa
v <d/w<é.

The decision variables in the problem are h,w,d. We make a substitution
h = exp(z),w = exp(y),d = exp(z)
after which (6.19) becomes

maximize x4y + 2

subject to log(exp(z + y + log(2/Awan)) + exp(z + z + log(2/Awan))) < 0,
Yy +z S log(Aﬁoor)a (620)
log(@) < 2 —y <log(f),
log(y) < z —y < log(d).

Next, we demonstrate how to implement a log-sum-exp constraint (6.18). It can be written as:

wy, > exp(a;{y +br), (equiv. (ug,1, a;fy +br) € Kexp),
Zk ur = 1.
This presentation requires one extra variable uy, for each monomial appearing in the original posynomial
constraint. In this case the affine conic constraints (ACC, see Sec. 6.2) take the form:

(6.21)

00010 . 0
0000 0 y 1

1100 0 log(2/Awan)

O 0 0 O 1 V4 + 0 GKeprKexp
00000 Zl 1

1010 0 2 log(2/Awan)

As a matter of demonstration we will also add the constraint
ur+uy—1=0

as an affine conic constraint. It means that to define the all the ACCs we need to produce the following
affine expressions (AFE) and store them:

uy, U2, ¢ +y—+10g(2/Avan), =+ z +log(2/Awan), 1.0, us +us — 1.0.
We implement it by adding all the affine expressions (AFE) and then picking the ones required for each
ACC:

46

https://docs.mosek.com/modeling-cookbook/index.html

Listing 6.7: Implementation of log-sum-exp as in (6.21).

// Affine expressions appearing in affine conic constraints
// in this order:

// uwl, u2, ztytlog(2/Awall), z+z+log(2/Awall), 1.0, ul+u2-1.0
long numafe = 6;

int ul = 3, u2 = 4; // Indices of slack wvariables
long[] afeidx = {0, 1, 2, 2, 3, 3, 5, 5};
int [] varidx = {ul, u2, x, y, x, z, ul, u2};

double[] fval
double[] gfull

{t.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0%};
{0, 0, Math.log(2/Aw), Math.log(2/Aw), 1.0, -1.0};

// New wariables ul, u2
task.appendvars(2) ;
task.putvarboundsliceconst(ul, u2+1, boundkey.fr, -inf, inf);

// Append affine expresstions
task.appendafes (numafe) ;
task.putafefentrylist(afeidx, varidx, fval);
task.putafegslice(0, numafe, gfull);

// Two affine conic constraints
long expdom = task.appendprimalexpconedomain();

// (ul, 1, z+y+log(2/Awall)) \in EXP
task.appendacc(expdom, new long[]{0, 4, 2}, null);

// (u2, 1, z+ztlog(2/Awall)) \in EXP
task.appendacc(expdom, new long[]{1, 4, 3}, null);

// The constraint ul+u2-1 \in \ZERO ts added also as an ACC
task.appendacc(task.appendrzerodomain(1), new long[]{5}, null);

We can now use this function to assemble all constraints in the model. The linear part of the problem
is entered as in Sec. 6.1.

Listing 6.8: Source code solving problem (6.20).

public static double[] max_volume_box(double Aw, double Af,
double alpha, double beta, double gamma,,,
—,double delta)

{
// Basic dimensions of our problem
int numvar = 3; // Vartables in original problem
int x=0, y=1, 2z=2; // Indices of wvariables
int numcon = 3; // Linear constraints in original problem

// Linear part of the problem involving z, y, z

double[] cval = {1, 1, 1};

int [] asubi {0, o, 1, 1, 2, 2%};

int[] asubj = {y, z, x, ¥, z, y};

double[] aval {1.0, 1.0, 1.0, -1.0, 1.0, -1.0%};

boundkey[] bkc = {boundkey.up, boundkey.ra, boundkey.ra};
double[] blc {-inf, Math.log(alpha), Math.log(gamma)};
double[] buc {Math.log(Af), Math.log(beta), Math.log(delta)l};

try (Env env = new Env();

(continues on next page)

47

(continued from previous page)

Task task = new Task(env, 0, 0))

// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
streamtype. log,
new Stream()
{ public void stream(String msg) { System.out.print(msg); }});

// Add wvariables and constraints
task.appendvars (numvar) ;
task.appendcons (numcon) ;

// Objective is the sum of three first wvariables
task.putobjsense(objsense.maximize) ;

task.putcslice(0, numvar, cval);

task.putvarboundsliceconst (0, numvar, boundkey.fr, -inf, inf);

// Add the linear constraints
task.putaijlist(asubi, asubj, aval);
task.putconboundslice(0, numcon, bkc, blc, buc);

// Affine expresstions appearing in affine conic constraints
// in this order:
// ul, u2, ztytlog(2/Awall), ztz+log(2/Awall), 1.0, ul+ul-1.0

long numafe = 6;

int ul = 3, u2 = 4; // Indices of slack wvariables
longl[] afeidx = {0, 1, 2, 2, 3, 3, 5, 5};

int[] varidx = {ul, u2, x, y, x, z, ul, u2};

double[] fval
double[] gfull

{1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.03};
{0, 0, Math.log(2/Aw), Math.log(2/Aw), 1.0, -1.0};

// New wariables ul, u2
task.appendvars(2) ;
task.putvarboundsliceconst(ul, u2+1, boundkey.fr, -inf, inf);

// Append affine expresstons
task.appendafes (numafe) ;
task.putafefentrylist(afeidx, varidx, fval);
task.putafegslice(0, numafe, gfull);

// Two affine conic constraints
long expdom = task.appendprimalexpconedomain();

// (ul, 1, z+ytlog(2/Awall)) \in EXP
task.appendacc(expdom, new long[]{0, 4, 2}, null);

// (w2, 1, ztz+log(2/Awall)) \in EXP
task.appendacc(expdom, new long[]{1, 4, 3}, null);

// The constraint ul+u2-1 \in \ZERO ts added also as an ACC
task.appendacc(task.appendrzerodomain(1), new long[]{5}, null);

// Solve and map to original h, w, d
task.optimize();
double[] xyz = task.getxxslice(soltype.itr, O, numvar);

(continues on next page)

48

(continued from previous page)

double[] hwd = new double[numvar];
for(int i = 0; i < numvar; i++) hwd[i] = Math.exp(xyz[il);
return hwd;
}
}

Given sample data we obtain the solution h,w, d as follows:

Listing 6.9: Sample data for problem (6.19).

public static void main(String[] args)

{
double Aw = 200.0;
double Af = 50.0;
double alpha = 2.0;
double beta = 10.0;
double gamma = 2.0;

double delta = 10.0;

double[] hwd = max_volume_box(Aw, Af, alpha, beta, gamma, delta);

System.out.format ("h=7.4f w=),.4f d=J,.4f\n", hwd[0], hwd[1], hwd[2]);

6.7 Semidefinite Optimization

Semidefinite optimization is a generalization of conic optimization, allowing the use of matrix variables
belonging to the convex cone of positive semidefinite matrices

={X eS8 :2TXz>0, VzeR"},

where 8" is the set of r X r real-valued symmetric matrices.
MOSEK can solve semidefinite optimization problems stated in the primal form,

minimize é(C’j,X >+Z] Ocjx]—l-c
subject to [§ < Z < ijs >—|—ZJ OaUmJ < wf, i=0,....,m—1,
<F”, X;)+ 302 o firitg € Ki, i=0,...,q-1, (6.22)
S K7 < wj, j=0,...,n—1,
ek, X; eS8, j=0,....,p—1

where the problem has p symmetric positive semidefinite variables Yj € S:j of dimension r;. The
symmetric coefficient matrices éj € 8" and Z@j € 8" are used to specify PSD terms in the linear
objective and the linear constraints, respectively. The symmetric coefficient matrices Fi,j € 877 are used
to specify PSD terms in the affine conic constraints. Note that ¢ ((6.22)) is the total dimension of all
the cones, i.e. ¢ =dim(K; x ... x Ky), given there are k ACCs. We use standard notation for the matrix
inner product, i.e., for A, B € R™*" we have

<A,B> = Z ZAZJBU
i=0 j=0

In addition to the primal form presented above, semidefinite problems can be expressed in their dual
form. Constraints in this form are usually called linear matrix inequalities (LMIs). LMIs can be
easily specified in MOSEK using the vectorized positive semidefinite cone which is defined as:

e Vectorized semidefinite domain:

49

Si,voc _ {(I1, Sy a(as1)/2) €R™ ¢ sMat(z) € Si} ,
where n = d(d + 1)/2 and,

T T2 /V2 e ma/V2
Mar(a) = | V2wV

Tq/V2 Tag1/V2 - Td(d+1)/2
or equivalently
Si’vec = {sVec(X) : X € 8{},
where

SVeC(X) - (X117 \/§X213 ety \/iXd17X227 \/§X32a . ade)'

In other words, the domain consists of vectorizations of the lower-triangular part of a positive semidef-
inite matrix, with the non-diagonal elements additionally rescaled. LMIs can be expressed by restricting
appropriate affine expressions to this cone type.

For other types of cones supported by MOSEK, see Sec. 15.11 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

We demonstrate the setup of semidefinite variables and their coefficient matrices in the following
examples:

e Sec. 6.7.1: A problem with one semidefinite variable and linear and conic constraints.
e Sec. 6.7.2: A problem with two semidefinite variables with a linear constraint and bound.

e Sec. 6.7.3: A problem with linear matrix inequalities and the vectorized semidefinite domain.

6.7.1 Example SDO1

We consider the simple optimization problem with semidefinite and conic quadratic constraints:

2 1 0
minimize < 1 2 1 ,X>—|—9c0
0 1 2
1 0 0]
subject to 01 0|,X)+4+xo = 1,
< 0 0 1 > (6.23)
f1 01 1]
< 1 1 1 ,X>+x1+ac2 = 1/2,
1 1 1

xO_Z \/33124—57?7 Ytoa

The problem description contains a 3-dimensional symmetric semidefinite variable which can be written
explicitly as:

o Xoo X100 Xao
X=| Xy X1 Xo | € 83,
Xoo Xo1 Xoo

and an affine conic constraint (ACC) (zg, z1,72) € Q2. The objective is to minimize
2(Xo0 + X 10 + X11 + X21 + Xa2) + o,
subject to the two linear constraints

o o ZOO +Yi1 +732+9607 = 1,
Xoo+ X114+ Xoo +2(X10+ Xoo+ Xo1) a1 +22 = 1/2.

50

Setting up the linear and conic part

The linear and conic parts (constraints, variables, objective, ACC) are set up using the methods described
in the relevant tutorials; Sec. 6.1, Sec. 6.2. Here we only discuss the aspects directly involving semidefinite
variables.

Appending semidefinite variables

First, we need to declare the number of semidefinite variables in the problem, similarly to the number
of linear variables and constraints. This is done with the function Task.appendbarvars.

task.appendbarvars(dimbarvar) ;

Appending coefficient matrices

Coefficient matrices éj and Zij are constructed as weighted combinations of sparse symmetric matrices
previously appended with the function Task.appendsparsesymmat.

idx[0] = task.appendsparsesymmat(dimbarvar[0],
barc_i,
barc_j,
barc_v) ;

The arguments specify the dimension of the symmetric matrix, followed by its description in the
sparse triplet format. Only lower-triangular entries should be included. The function produces a unique
index of the matrix just entered in the collection of all coefficient matrices defined by the user.

After one or more symmetric matrices have been created using Task. appendsparsesymmat, we can
combine them to set up the objective matrix coefficient éj using Task.putbarcy, which forms a linear
combination of one or more symmetric matrices. In this example we form the objective matrix directly,
i.e. as a weighted combination of a single symmetric matrix.

task.putbarcj(0, idx, falpha);

Similarly, a constraint matrix coefficient 4;; is set up by the function Task.putbaraij.

task.putbaraij(0, 0, idx, falpha);

Retrieving the solution

After the problem is solved, we read the solution using Task.getbarzy:

double[] barx = task.getbarxj(mosek.soltype.itr, 0); /* Request the,
—interior solution. */

The function returns the half-vectorization of Yj (the lower triangular part stacked as a column
vector), where the semidefinite variable index j is passed as an argument.

Source code

Listing 6.10: Source code solving problem (6.23).

package com.mosek.example;
import mosek.*;

public class sdol {
public static void main(String[] argv) {

int numcon = 2; /* Number of constraints. */
int numvar = 3; /* Number of scalar variables */
int dimbarvar[] = {3}; /* Dimension of semidefinite cone */

int lenbarvar[] = {3 * (3 + 1) / 2}; /* Number of scalar SD wvartables */

(continues on next page)

51

(continued from previous page)

mosek.boundkey bkc[]

{ mosek.boundkey.fx,
mosek.boundkey.fx

};
double[] blc ={1.0, 0.5 };
doublel[] buc ={1.0, 0.5 };
int [] barc_i = {0, 1, 1, 2, 2},

barc_j = {0, 0, 1, 1, 2};
{2.0, 1.0, 2.0, 1.0, 2.0};

double[] barc_v =

int [][] asub = {{0}, {1, 2}}; /* column subscripts of 4 */

double[] [] aval = {{1.0}, {1.0, 1.0}};

1nt[] [:l bara_i = { {0’ 1’ 2}; {O: 1 > 2: 1: 2’ 2 } }:
bara_j ={{o, ¢, 2%, {o, o, O, 1, 1, 2%} 1}

double[] [] bara_v = { {t.0, 1.0, 1.0}, {1.0, 1.0, 1.0, 1.0, 1.0, 1.0}};

try (Env env = new Env();
Task task = new Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }1});

/* Append 'NUMCON' empty constraints.
The constraints will initially have no bounds. */
task.appendcons (numcon) ;

/* Append 'NUMVAR' wariables.
The wvariables will initially be fized at zero (z=0). */
task.appendvars (numvar) ;

/* Append 'NUMBARVAR' semidefinite wvariables. */
task.appendbarvars (dimbarvar) ;

/* Optionally add a constant term to the objective. */
task.putcfix(0.0);

/* Set the linear term c_j in the objective.*/
task.putcj(0, 1.0);

for (int j = 0; j < numvar; ++j)
task.putvarbound(j, mosek.boundkey.fr, -0.0, 0.0);

/* Set the linear term barc_j in the objective.*/
{

long[] idx = new longl[1];

double[] falpha = { 1.0 };

idx[0] = task.appendsparsesymmat (dimbarvar [0],
barc_i,
barc_j,
barc_v) ;

(continues on next page)

52

(continued from previous page)

}

task.putbarcj(0, idx, falpha);

/* Set the bounds on constraints.
for i=1, ...,numcon : blc[i] <= constraint i <= buc[i] */

for (int i = 0; i < numcon; ++i)

task.putconbound (i, /* Index of constraint.*/
bkcl[i], /* Bound key.*/
blc[i], /* Numerical value of lower bound.*/
buc[il); /* Numerical value of upper bound.*/

/* Input A row by row */
for (int i = 0; i < numcon; ++i)

task.putarow(i,
asubl[i],
avallil);

/* Append the contic quadratic constraint */
task.appendafes(3);

// Diagonal F matriz
task.putafefentrylist(new long[]{0,1,2}, new int[]{0,1,2}, new double[]{1.0,1.0,

~1.01);

task.appendaccseq(task.appendquadraticconedomain(3), 0, null);

/* Add the first row of bard */

{

}

long[] idx = new long[1];

double[] falpha = {1.03};

task.appendsparsesymmat (dimbarvar [0],
bara_i[0],
bara_j[0],
bara_v[0],
idx);

task.putbaraij(0, 0, idx, falpha);

long[] idx = new longl[1];

double[] falpha = {1.0%};

/% Add the second row of bard */

task.appendsparsesymmat (dimbarvar [0],
bara_i[1],
bara_j[1],
bara_v[1],
idx) ;

task.putbaraij(l, 0, idx, falpha);

/* Run optimizer */
task.optimize();

/* Print a summary containing tinformation

about the solution for debugging purposes#*/

53

(continues on next page)

(continued from previous page)

task.solutionsummary (mosek.streamtype.msg);
mosek.solsta solsta = task.getsolsta (mosek.soltype.itr);

switch (solsta) {
case optimal:

double[] xx = task.getxx(mosek.soltype.itr);

double[] barx = task.getbarxj(mosek.soltype.itr, 0); /* Request the,
—1interior solution. */

System.out.println("Optimal primal solution");

for (int i = 0; i < numvar; ++i)

System.out.println("x[" + i + "] "+ xx[i]);

for (int i = 0; i < lembarvar[0]; ++i)
System.out.println("barx[" + i + "]: " + barx[i]);
break;
case dual_infeas_cer:
case prim_infeas_cer:
System.out.println("Primal or dual infeasibility certificate found.");
break;
case unknown:
System.out.println("The status of the solution could not be determined.");
break;
default:
System.out.println("Other solution status.");
break;

6.7.2 Example SDO2

We now demonstrate how to define more than one semidefinite variable using the following problem with
two matrix variables and two types of constraints:

minimize (Cy, X1) + (Ca, X2)
subject to (A1, X1) + (Ag, X3)

= b
2) 6.24
(X2)o1 < K, (6.24)
X, X2 = 0.
In our example dim(X;) = 3, dim(X2) =4, b =23, k = —3 and
1 0 0] [1 0 1
ci=100 o0, 4=|00 0],
00 6| 10 2
1 -3 0 0] o 1 0 0
-3 2 0 0 1 -1 0 0
“=109 o 10" 0o 0 0 0|
0 0 0 0] 0 0 0 -3

are constant symmetric matrices.

Note that this problem does not contain any scalar variables, but they could be added in the same
fashion as in Sec. 6.7.1.

Other than in Sec. 6.7.1 we don’t append coefficient matrices separately but we directly input
all nonzeros in each constraint and all nonzeros in the objective at once. Every term of the form

(Ai)k1(X)k, is determined by four indices (i, j, k,1) and a coefficient value v = (4; ;). Here i

54

is the number of the constraint in which the term appears, j is the index of the semidefinite vari-
able it involves and (k,l) is the position in that variable. This data is passed in the call to Task.
putbarablocktriplet. Note that only the lower triangular part should be specified explicitly, that is
one always has k > [. Semidefinite terms (C;)x;(X;)x, of the objective are specified in the same way in
Task.putbarcblocktriplet but only include (4, k,1) and v.

For explanations of other data structures used in the example see Sec. 6.7.1.

The code representing the above problem is shown below.

Listing 6.11: Implementation of model (6.24).

try (Env env = new Env();
Task task = new Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }1});

/* Append numcon empty constraints.
The constraints will initially have no bounds. */
task.appendcons (numcon) ;

/* Append numbarvar semidefinite variables. */
task.appendbarvars (dimbarvar) ;

/* Set objective (6 nonzeros).*/
task.putbarcblocktriplet(Cj, Ck, Cl, Cv);

/* Set the equality constraint (6 nonzeros).*/
task.putbarablocktriplet (Ai, Aj, Ak, Al, Av);

/% Set the inequality constraint (1 nonzero).*/
task.putbarablocktriplet (A2i, A2j, A2k, A21, A2v);

/* Set constraint bounds */
task.putconboundslice(0, 2, bkc, blc, buc);

/% Run optimizer */
task.optimize();
task.solutionsummary (mosek.streamtype.msg) ;

mosek.solsta[] solsta = new mosek.solstal[l];
task.getsolsta (mosek.soltype.itr, solsta);

switch (solstal[0]) {
case optimal:

/* Retrieve the soution for all symmetric variables */
System.out.println("Solution (lower triangular part vectorized):");
for(int i = 0; i < numbarvar; i++) {

int dim = dimbarvar[i] * (dimbarvar[i] + 1) / 2;

double[] barx = new double[dim];

task.getbarxj(mosek.soltype.itr, i, barx);

System.out.print ("X" + (i+1) + ": ");
for (int j = 0; j < dim; ++j)

(continues on next page)

55

(continued from previous page)

System.out.print(barx[j]l + " ");
System.out.println();
}

break;
case dual_infeas_cer:
case prim_infeas_cer:
System.out.println("Primal or dual infeasibility certificate found.");
break;
case unknown:
System.out.println("The status of the solution could not be determined.");
break;
default:
System.out.println("Other solution status.");
break;

6.7.3 Example SDO_LMI: Linear matrix inequalities and the vectorized semidef-
inite domain

The standard form of a semidefinite problem is usually either based on semidefinite variables (primal
form) or on linear matrix inequalities (dual form). However, MOSEK allows mixing of these two forms,
as shown in (6.25)

minimize (1) (1) X VY +xzo+a+1
subject to 01 X)) —zp— € RI
) 10| oo = (6.25)
0 1 3 1 1 0
x0[1 3]*“[1 0] [01} = 0
X>0

The first affine expression is restricted to a linear domain and could also be modelled as a linear constraint
(instead of an ACC). The lower triangular part of the linear matrix inequality (second constraint) can be
vectorized and restricted to the domaintype.svec_psd_cone. This allows us to express the constraints
in (6.25) as the affine conic constraints shown in (6.26).

<Hé],x> + [-1 -1]z + [0] € RL,
0 3 -1 (6.26)
V2 V2 |z o+ 0 e Shvee
3.0 ~1

Vectorization of the LMI is performed as explained in Sec. 15.11.

56

Setting up the linear part

The linear parts (objective, constraints, variables) and the semidefinite terms in the linear expressions
are defined exactly as shown in the previous examples.

Setting up the affine conic constraints with semidefinite terms

To define the affine conic constraints, we first set up the affine expressions. The F' matrix and the g
vector are defined as usual. Additionally, we specify the coefficients for the semidefinite variables. The
semidefinite coefficients shown in (6.26) are setup using the function Task.putafebarfblocktriplet.

/% barF block triplets */
task.putafebarfblocktriplet(barf_i, barf_j, barf_k, barf_1, barf_v);

These affine expressions are then included in their corresponding domains to construct the affine
conic constraints. Lastly, the ACCs are appended to the task.

/* Append R+ domain and the corresponding ACC */
task.appendacc(task.appendrplusdomain(1), new long[]{0}, null);

/* Append SVEC_PSD domain and the corresponding ACC */
task.appendacc(task.appendsvecpsdconedomain(3), new long[]{1,2,3}, null);

Source code

Listing 6.12: Source code solving problem (6.25).

package com.mosek.example;
import mosek.*;

public class sdo_lmi {
public static void main(String[] argv) {

int numafe = 4; /* Number of affine expressions. */
int numvar = 2; /* Number of scalar variables */

int dimbarvar[] = {2}; /* Dimension of semidefinite cone */

int lenbarvar([] = {2 * (2 + 1) / 2}; /* Number of scalar SD wariables */

int[] barc_j = {0, 0},
barc_k = {0, 1},
barc_1 = {0, 13};

double[] barc_v = {1.0, 1.0};

longl[] afeidx = {0, 0, 1, 2, 2, 3};

int[] varidx = {0, 1, 1, 0, 1, 0};

double[] f_val = {-1, -1, 3, Math.sqrt(2), Math.sqrt(2), 3},

g = {O’ _1’ O’ _1};

longl] barf_i = {0, 0};

int[] barf_j = {0, 0},
barf_k = {0, 13},
barf_1 = {0, 0};

double[] barf_v = {0.0, 1.0};

try (Env env = new Env();
Task task = new Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,

(continues on next page)

57

(continued from previous page)

new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

/* Append 'NUMAFE' empty affine expressions. */
task.appendafes (numafe) ;

/* Append 'NUMVAR' wariables.
The wvariables will initially be fized at zero (z=0). */
task.appendvars (numvar) ;

/* Append 'NUMBARVAR' semidefinite wvariables. */
task.appendbarvars (dimbarvar) ;

/% Optionally add a constant term to the objective. */
task.putcfix(1.0);

/* Set the linear term c_j in the objective.*/
task.putcj(0, 1.0);
task.putcj(1l, 1.0);

for (int j = 0; j < numvar; ++j)
task.putvarbound(j, mosek.boundkey.fr, -0.0, 0.0);

/% Set the linear term barc_j in the objective.*/
task.putbarcblocktriplet(barc_j, barc_k, barc_1l, barc_v);

/* Set up the affine conic constraints */

/* Construct the affine expressions */

/% F matriz */

task.putafefentrylist(afeidx, varidx, f_val);
/* g vector */

task.putafegslice(0, 4, g);

/% barF block triplets */
task.putafebarfblocktriplet(barf_i, barf_j, barf_k, barf_1, barf_v);

/* Append R+ domain and the corresponding ACC */

task.appendacc (task.appendrplusdomain(1l), new long[]{0}, null);

/* Append SVEC_PSD domain and the corresponding ACC */
task.appendacc(task.appendsvecpsdconedomain(3), new long[]{1,2,3}, null);

/* Run optimizer */
task.optimize();

/% Print a summary containing tnformation
about the solution for debugging purposes+*/
task.solutionsummary (mosek.streamtype.msg);

mosek.solsta solsta = task.getsolsta (mosek.soltype.itr);

switch (solsta) {
case optimal:
double[] xx = task.getxx(mosek.soltype.itr);
double[] barx = task.getbarxj(mosek.soltype.itr, 0); /* Request the,
—interior solution. */

(continues on next page)

58

(continued from previous page)

System.out.println("Optimal primal solution");
for (int i = 0; i < numvar; ++i)
System.out.println("x[" + i + "] "+ xx[i]);

for (int i = 0; i < lembarvar[0]; ++i)
System.out.println("barx[" + i + "]: " + barx[i]);
break;
case dual_infeas_cer:
case prim_infeas_cer:
System.out.println("Primal or dual infeasibility certificate found.");
break;
case unknown:
System.out.println("The status of the solution could not be determined.");
break;
default:
System.out.println("Other solution status.");
break;

6.8 Integer Optimization

An optimization problem where one or more of the variables are constrained to integer values is called a
(mixed) integer optimization problem. MOSEK supports integer variables in combination with linear,
quadratic and quadratically constrtained and conic problems (except semidefinite). See the previous
tutorials for an introduction to how to model these types of problems.

6.8.1 Example MILO1

We use the example

maximize xg + 0.64x,

subject to 50xg + 31z < 250,
3.130 — 23?1 Z —4,
Tg, 1 >0 and integer

(6.27)

to demonstrate how to set up and solve a problem with integer variables. It has the structure of a linear
optimization problem (see Sec. 6.1) except for integrality constraints on the variables. Therefore, only
the specification of the integer constraints requires something new compared to the linear optimization
problem discussed previously.

First, the integrality constraints are imposed using the function Task.putvartype:

for (int j = 0; j < numvar; ++j)
task.putvartype(j, mosek.variabletype.type_int);

Next, the example demonstrates how to set various useful parameters of the mixed-integer optimizer.
See Sec. 13.4 for details.

/* Set mazx solution time */
task.putdouparam(mosek.dparam.mio_max_time, 60.0);

The complete source for the example is listed Listing 6.13. Please note that when Task.
getsolutionslice is called, the integer solution is requested by using soltype.<itg. No dual solution
is defined for integer optimization problems.

59

Listing 6.13: Source code implementing problem (6.27).

package com.mosek.example;
import mosek.*;

public class milol {
static final int numcon
static final int numvar

2;
2;

public static void main (String[] args) {
// Since the walue infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = O;

mosek.boundkey[] bkc

= { mosek.boundkey.up, mosek.boundkey.lo };
double[] blc = { -infinity, -4.0 };
double[] buc = { 250.0, infinity };

mosek.boundkey[] bkx
= { mosek.boundkey.lo, mosek.boundkey.lo };

double[] blx = { 0.0, 0.0 };
double[] bux = { infinity, infinity };
double[] ¢ = {1.0, 0.64 };

int[][] asub
double[] [] aval

{ {o, 1}, {0, 13 3}
{ {50.0, 3.0}, {31.0, -2.0} };

int[] ptrb = { 0, 2 };

int[] ptre = { 2, 4 };

double[] xx = new double[numvar];
try (Env env = new Env();

Task task = new Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});
task.set_ItgSolutionCallback(
new mosek.ItgSolutionCallback() {
public void callback(double[] xx) {
System.out.print("New integer solution: ");
for (double v : xx) System.out.print("" + v + " ");
System.out.println("");
}
19N
/* Append 'numcon' empty constraints.
The constraints will initially have no bounds. */
task.appendcons (numcon) ;

/* Append 'numvar' wvariables.
The variables will initially be fized at zero (z=0). */
task.appendvars (numvar) ;

60

(continues on next page)

(continued from previous page)

for (int j = 0; j < numvar; ++j) {
/% Set the linear term c_j in the objective.*/
task.putcj(j, c[jl);
/* Set the bounds on wvariable j.
blal[j] <= z_j <= buz[j] */
task.putvarbound(j, bkx[jl, blx[j], bux[jl);
/* Input column 7 of A */

task.putacol(j, /* Variable (column) index.*/
asub[j], /* Row indexz of mon-zeros in column j.*/
avalljl); /* Non-zero Values of column j. */
}
/* Set the bounds on constraints.
for 4=1, ...,numcon : blc[i] <= constraint ¢ <= buc[i] */

for (int i = 0; i < numcon; ++i)
task.putconbound(i, bkc[il, blc[i], bucl[il);

/* Specify integer variables. */
for (int j = 0; j < numvar; ++j)
task.putvartype(j, mosek.variabletype.type_int);

/* Set maz solution time */
task.putdouparam(mosek.dparam.mio_max_time, 60.0);

/* A mazimization problem */
task.putobjsense(mosek.objsense.maximize) ;
/* Solve the problem */

try {
task.optimize();

} catch (mosek.Warning e) {
System.out.println (" Mosek warning:");
System.out.println (e.toString ());

}

// Print a summary containing tinformation

// about the solution for debugging purposes

task.solutionsummary (mosek.streamtype.msg) ;

task.getxx(mosek.soltype.itg, // Integer solution.
XX) ;

mosek.solsta solstal] = new mosek.solstal[l];

/* Get status information about the solution */

task.getsolsta(mosek.soltype.itg, solsta);

switch (solstal0]) {
case integer_optimal:
System.out.println("Optimal solution\n");
for (int j = 0; j < numvar; ++j)
System.out.println ("x[" + j + "]J:" + xx[jl);
break;
case prim_feas:
System.out.println("Feasible solution\n");
for (int j = 0; j < numvar; ++j)
System.out.println ("x[" + j + "J:" + xx[j1);
break;

(continues on next page)

61

(continued from previous page)

case unknown:
mosek.prosta prostal] = new mosek.prostal[l];
task.getprosta(mosek.soltype.itg, prosta);
switch (prostal0]) {
case prim_infeas_or_unbounded:
System.out.println("Problem status Infeasible or unbounded");
break;
case prim_infeas:
System.out.println("Problem status Infeasible.");
break;
case unknown:
System.out.println("Problem status unknown.");
break;
default:
System.out.println("Other problem status.");
break;
}
break;
default:
System.out.println("Other solution status");
break;
3
}
catch (mosek.Exception e) {
System.out.println ("An error or warning was encountered");
System.out.println (e.getMessage ());
throw e;

}

6.8.2 Specifying an initial solution

It is a common strategy to provide a starting feasible point (if one is known in advance) to the mixed-
integer solver. This can in many cases reduce solution time.
There are two modes for MOSEK to utilize an initial solution.

e A complete solution. MOSEK will first try to check if the current value of the primal variable
solution is a feasible point. The solution can either come from a previous solver call or can be
entered by the user, however the full solution with values for all variables (both integer and con-
tinuous) must be provided. This check is always performed and does not require any extra action
from the user. The outcome of this process can be inspected via information items Zinfitem.
mio_initial_feasible_solution and dinfitem.mio_initial_feasible_solution_obj, and
via the Initial feasible solution objective entry in the log.

e A partial integer solution. MOSEK can also try to construct a feasible solution by fixing
integer variables to the values provided by the user (rounding if necessary) and optimizing over
the remaining continuous variables. In this setup the user must provide initial values for all
integer variables. This action is only performed if the parameter iparam.mio_construct_sol
is switched on. The outcome of this process can be inspected via information items Zinfitem.
mio_construct_solution and dinfitem.mio_construct_solution_obj, and via the Construct
solution objective entry in the log.

In the following example we focus on inputting a partial integer solution.

maximize Tz -+ 10x1 + x2 + 5x3

subject to g+ 1 +x2 + 23 < 2.5
0, %1,%2 € Z
x0, 21, 2,23 > 0

(6.28)

62

Solution values can be set using Task.putsolution .

Listing 6.14: Implementation of problem (6.28) specifying an initial
solution.

// Assign values to integer wvariables
// We only set that slice of zx
task.putxxslice(mosek.soltype.itg, 0, 3, new double[]{1.0, 1.0, 0.0});

// Request constructing the solution from integer variable values
task.putintparam(mosek.iparam.mio_construct_sol, mosek.onoffkey.on.value);

The log output from the optimizer will in this case indicate that the inputted values were used to
construct an initial feasible solution:

Construct solution objective : 1.950000000000e+01

The same information can be obtained from the API:

Listing 6.15: Retrieving information about usage of initial solution

int constr = task.getintinf(mosek.iinfitem.mio_construct_solution);

double constrVal = task.getdouinf (mosek.dinfitem.mio_construct_solution_obj);
System.out.println("Construct solution utilization: " + constr);
System.out.println("Construct solution objective: " + constrVal);

6.8.3 Example MICO1

Integer variables can also be used arbitrarily in conic problems (except semidefinite). We refer to the
previous tutorials for how to set up a conic optimization problem. Here we present sample code that
sets up a simple optimization problem:

minimize 2 + y?
subject to x> e¥ + 3.8, (6.29)

x,y integer.

The canonical conic formulation of (6.29) suitable for Optimizer API for Java is

minimize ¢

subject to (t,z,y) € Q3 (t > /22+1y2)
(x—38,1,y) € Kexp (r—3.8>¢Y) (6.30)
x,y integer,
teR.

Listing 6.16: Implementation of problem (6.30).

public class micol {
public static void main (Stringl[] args) {
try (Env env = new Env();
Task task = new Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

task.appendvars(3); /) z, Yy, t
int x=0, y=1, t=2;

(continues on next page)

63

(continued from previous page)

task.putvarboundsliceconst (0, 3, mosek.boundkey.fr, -0.0, 0.0);

// Integrality constraints for z, y
task.putvartypelist(new int[]{x,y},
new mosek.variabletype[]{mosek.variabletype.type_int, mosek.
—variabletype.type_int});

// Set up the affine expressions
// z, z-3.8, y, t, 1.0
task.appendafes(5);
task.putafefentrylist(new long[]1{0,1,2,3},
new int[]{x,x,y,t},
new double[]{1,1,1,1});
task.putafegslice(0, 5, new double[]{0, -3.8, 0, 0, 1.0});

// Add constraint (z-3.8, 1, y) \in \EXP
task.appendacc(task.appendprimalexpconedomain(), new long[]{1, 4, 2}, null);

// Add constraint (t, z, y) \in \QUAD
task.appendacc(task.appendquadraticconedomain(3), new long[]{3, 0, 2}, null);

// Objective
task.putobjsense (mosek.objsense.minimize);
task.putcj(t, 1);

// Optimize the task
task.optimize();
task.solutionsummary (mosek.streamtype.msg) ;

double[] xx = task.getxxslice(mosek.soltype.itg, 0, 2);
System.out.println("x = " + xx[0] + " y =" + xx[1]);

Error and solution status handling were omitted for readability.

6.9 Disjunctive constraints

A disjunctive constraint (DJC) involves of a number of affine conditions combined with the logical
operators or (V) and optionally and (A) into a formula in disjunctive normal form, that is a disjunction
of conjunctions. Specifically, a disjunctive constraint has the form of a disjunction

Ty or Ty or--- or T; (6.31)

where each T; is written as a conjunction
T,=T;1 and T; 5 and--- and T (6.32)
and each T} ; is an affine condition (affine equation or affine inequality) of the form D;;z+d;; € D;; with

D;; being one of the affine domains from Sec. 15.11.1. A disjunctive constraint (DJC) can therefore be
succinctly written as

\/ /\ T ; (6.33)

i=1j=1

where each Tj ; is an affine condition.

64

Each T; is called a term of the disjunctive constraint and ¢ is the number of terms. Each condition
T; ; is called a simple term and s; is called the size of the i-th term.

A disjunctive constraint is satisfied if at least one of its terms is satisfied. A term is satisfied if all of
its constituent simple terms are satisfied. A problem containing DJCs will be solved by the mixed-integer
optimizer.

Note that nonlinear cones are not allowed as one of the domains D;; inside a DJC.

6.9.1 Applications

Disjunctive constraints are a convenient and expressive syntactical tool. Then can be used to phrase
many constructions appearing especially in mixed-integer modelling. Here are some examples.

e Complementarity. The condition zy = 0, where x, y are scalar variables, is equivalent to
rz=0o0ry=0.
It is a DJC with two terms, each of size 1.

e Semicontinuous variable. A semicontinuous variable is a scalar variable which takes values in
{0} U [a, +00]. This can be expressed as

z=0o0orzx>a.

It is again a DJC with two terms, each of size 1.

e Exact absolute value. The constraint ¢ = |z| is not convex, but can be written as
(x>0andt==z)or (z <0andt=—x)
It is a DJC with two terms, each of size 2.

e Indicator. Suppose z is a Boolean variable. Then we can write the indicator constraint z =1 =
T
atr <bas

(z=1and aTz <b) or (z=0)
which is a DJC with two terms, of sizes, respectively, 2 and 1.

e Piecewise linear functions. Suppose a; < - < agy1 and [: [a1,ak4+1] — R is a piecewise
linear function, given on the i-th of k intervals [a;, a;41] by a different affine expression f;(x). Then
we can write the constraint y = f(x) as

k
\/ (ai <yandy<ajy1 and y — fi(z) =0)

i=1
making it a DJC with k terms, each of size 3.

On the other hand most DJCs are equivalent to a mixed-integer linear program through a big-M
reformulation. In some cases, when a suitable big-M is known to the user, writing such a formulation
directly may be more efficient than formulating the problem as a DJC. See Sec. 13.4.6 for a discussion
of this topic.

Disjunctive constraints can be added to any problem which includes linear constraints, affine conic
constraints (without semidefinite domains) or integer variables.

6.9.2 Example DJC1
In this tutorial we will consider the following sample demonstration problem:

minimize 2xg+ x1 + 322 + x3
subject to xg+ z1 + 22 + x5 > —10,

Z‘o—2.’1)1§—1 1‘2—31‘3§—2
and or and , (6.34)
xe =23 =0 zg=x1 =0

x; = 2.5 for at least one ¢ € {0,1,2,3}.

65

The problem has two DJCs: the first one has 2 terms. The second one, which we can write as \/?Zo(xi =
2.5), has 4 terms.

We begin by expressing problem (6.34) in the format where all simple terms are of the form D;jz+d;; €
D;;, that is of the form a sequence of affine expressions belongs to a linear domain:

minimize 2xg 4+ x1 + 3T2 + x3
subject to zg + x1 + 29 + 13 > —10,

zo —2x1 +1 € R, vy — 3z +2 € Ry (6.35)
and or and)
(w2, 23) € 07 (20, 21) € 02

(rg —2.5€0Y) or (z1 — 2.5 €0!) or (w2 —2.5 € 0') or (x5 — 2.5 € 01),

where 0" denotes the n-dimensional zero domain and RZ, denotes the n-dimensional nonpositive orthant,
as in Sec. 15.11. -
Now we show how to add the two DJCs from (6.35). This involves three steps:

e storing the affine expressions which appear in the DJCs,
e creating the required domains, and
e combining the two into the description of the DJCs.

Readers familiar with Sec. 6.2 will find that the process is completely analogous to the process of
adding affine conic constraints (ACCs). In fact we would recommend Sec. 6.2 as a means of familiarizing
with the structures used here at a slightly lower level of complexity.

6.9.3 Step 1: add affine expressions

In the first step we need to store all affine expressions appearing in the problem, that is the rows of the
expressions D;;x + d;;. In problem (6.35) the disjunctive constraints contain altogether the following
affine expressions:

(0) o — 21‘1 + 1

(1) zo—3z3+2

(2) o

(3) x

Eg; Z (6.36)
(6) To — 2.5

(7) 1 — 2.5

(8) x9—25

(9) r3 — 2.5

To store affine expressions (AFE for short) MOSEK provides a matrix F and a vector g with the
understanding that every row of

Fr+g

defines one affine expression. The API functions with infix afe are used to operate on F and g, add
rows, add columns, set individual elements, set blocks etc. similarly to the methods for operating on the
A matrix of linear constraints. The storage matrix F is a sparse matrix, therefore only nonzero elements
have to be explicitly added.

Remark: the storage F', g may, but does not have to be, kept in the same order in which the expressions
enter DJCs. In fact in (6.36) we have chosen to list the linear expressions in a different, convenient order.
It is also possible to store some expressions only once if they appear multiple times in DJCs.

Given the list (6.36), we initialize the AFE storage as (only nonzeros are listed and for convenience

66

we list the content of (6.36) alongside in the leftmost column):

(0) Tog —2x1 + 1 —2 1

(1) To — 3x3+ 2 1 -3 2

(2) o

(3) Ty 1

Egg Z F = ! L |oe= (6.37)
(6) x0—25 —2.5

(7) z1—25 1 —2.5

(8) z9—25 1 —2.5

(9) z3—25 i 1] L —2.5 i

Initially F and g are empty (have 0 rows). We construct them as follows. First, we append a number of
empty rows:

long numafe = 10;
task.appendafes (numafe) ;

We now have F and g with 10 rows of zeros and we fill them up to obtain (6.37).

longl] fafeidx = new long[l{0, O, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9};

int [] fvaridx = new int[]{0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3};

double[] fval = new double[]{1.0, -2.0, 1.0, -3.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0};

double[] g = new double[]{1.0, 2.0, 0.0, 0.0, 0.0, 0.0, -2.5, -2.5, -2.5,,
—-2.5%};

task.putafefentrylist(fafeidx, fvaridx, fval);
task.putafegslice(0, numafe, g);

We have now created the matrices from (6.37). Note that at this point we have not defined any DJCs
yet. All we did was define some affine expressions and place them in a generic AFE storage facility to
be used later.

6.9.4 Step 2: create domains

Next, we create all the domains D;; appearing in all the simple terms of all DJCs. Domains are created
with functions with infix domain. In the case of (6.35) there are three different domains appearing:

0', 0%, RL,.

We create them with the corresponding functions:

task.appendrzerodomain(1);
task.appendrzerodomain(2) ;
task.appendrminusdomain (1) ;

long zerol =
long zero2
long rminusl =

The function returns a domain index, which is just the position in the list of all domains (potentially)
created for the problem. At this point the domains are just stored in the list of domains, but not yet
used for anything.

67

6.9.5 Step 3: create the actual disjunctive constraints

We are now in position to create the disjunctive constraints. DJCs are created with functions with infix
djc. The function Task.appenddjcs will append a number of initially empty DJCs to the task:

long numdjc = 2;
task.appenddjcs (numdjc) ;

We can then define each disjunction with the method Task.putdjc. It will require the following
data:

e the list termsizelist of the sizes of all terms of the DJC,

e the list afeidxlist of indices of AFEs to be used in the constraint. These are the row numbers in
F, g which contain the required affine expressions.

e the list domidx1list of the domains for all the simple terms.

For example, consider the first DJC of (6.35). Below we format this DJC by replacing each affine
expression with the index of that expression in (6.37) and each domain with its index we obtained in
Step 2:

(xo —2r1+1¢ ngo and (x2,x3) € 02) or (xg —3x3+2¢€ ngo and (xg,z1) € 02)
((0) € rminus1 and ((4),(5)) € zero2) or ((1) € rminusl and ((2),(3)) € zero2) (6.38)

term of size 2 term of size 2

It implies that the DJC will be represented by the following data:

e termsizelist = [2, 2],

e afeidxlist = [0, 4, 5, 1, 2, 3],

e domidxlist = [rminusil, zero2, rminusil, zero2].

The code adding this DJC will therefore look as follows:

task.putdjc(0, // DJC index
new long[]{rminusl, zero2, rminusl, zero2}, // Domains 0
< (domidxlist)
new long[]1{0, 4, 5, 1, 2, 3}, // AFE indices,
< (afeidzlist)
null, // Unused
new long[]1{2, 2}); // Term sizes |,

— (termsizelist)

Note that number of AFEs used in afeidxlist must match the sum of dimensions of all the domains
(here: 6 == 1+ 2+ 1+ 2) and the number of domains must match the sum of all term sizes (here:
4==2+2).

For similar reasons the second DJC of problem (6.35) will have the description:

x0—25€0! or z;—25€0 or a,—25€0' or z3—25¢€0!

(6) € zerol or (7)€ zerol or (8)€zerol or (9)€ zerol (6.39)
—_——— ——— ———— ~—_——
term of size 1 term of size 1 term of size 1 term of size 1

e termsizelist = [1, 1, 1, 1],
e afeidxlist = [6, 7, 8, 9],

[zerol, zerol, zerol, zeroill].

Il

e domidxlist

68

task.putdjc(1,

// DJC indezx

new long[]{zerol, zerol, zerol, zerol}, // Domains U
< (domidxlist)

new long([l{6, 7, 8, 9}, // AFE indicesy
< (afeidzlist)

null, // Unused

new long[]{1, 1, 1, 1}); // Term sizes |,

- (termidzlist)

This completes the setup of the disjunctive constraints.

6.9.6 Example DJC1 full code

We refer to Sec. 6.1 for instructions how to initialize a MOSEK session, add variables and set up the
objective and linear constraints. All else that remains is to call the solver with Task.optimize and
retrieve the solution with Task.getzz. Since our problem contains a DJC, and thus is solved by the
mixed-integer optimizer, we fetch the integer solution. The full code solving problem (6.34) is shown

below.

Listing 6.17: Full code of example DJC1

package com.mosek.example;
import mosek.*;

public class djcl {
static double inf = 0.0; // Infintty for symbolic purposes

public static void main (Stringl[] args) {
// Make an environment and task
try (mosek.Env env = new Env();
mosek.Task task = new Task(env, 0, 0)) {

// Append free variables

int numvar = 4;

task.appendvars (numvar) ;

task.putvarboundsliceconst (0, numvar, mosek.boundkey.fr, -inf, inf);

// The linear part: the linear constraint

task.appendcons (1) ;

task.putarow(0, new int[]1{0, 1, 2, 3}, new double[]{1, 1, 1, 1});
task.putconbound (0, mosek.boundkey.lo, -10.0, -10.0);

// The linear part: objective
task.putobjsense(mosek.objsense.minimize) ;
task.putclist(new int[]{0, 1, 2, 3}, new double[]{2, 1, 3, 1});

// Fill in the affine exzpression storage F, g
long numafe = 10;
task.appendafes (numafe) ;

long[] fafeidx

int[] fvaridx

double[] fval
1.0, 1.0, 1.0};

new long(l{0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9};
new int([]{0, 1, 2, 3, 0, 1, 2, 3, 0, 1 ;
new double[]{1.0, -2.0, 1.0, -3.0, 1.0,

double[] g = new double[]{1.0, 2.0, 0.0, 0.0, 0.0, 0.0, -2.5, -2.5, -2.5,,,

task.putafefentrylist(fafeidx, fvaridx, fval);

(continues on next page)

69

(continued from previous page)

task.putafegslice(0, numafe, g);

// Create domatins

long zerol = task.appendrzerodomain(1l);
long zero2 = task.appendrzerodomain(2);
long rminusl = task.appendrminusdomain(1);

// Append disjunctive constraints
long numdjc = 2;

task.appenddjcs (numdjc) ;

// First disjunctive constraint

task.putdjc(0, // DJC index
new long[]{rminusl, zero2, rminusl, zero2}, // Domains U
< (domidzlist)
new long[]{0, 4, 5, 1, 2, 3}, // AFE indicesy
< (afeidzlist)
null, // Unused
new long[]1{2, 2}); // Term sizes |,

< (termsizelist)

// Second disjunctive constraint

task.putdjc(1, // DJC index
new long[]{zerol, zerol, zerol, zerol}, // Domains U
— (domidzlist)
new long([l{6, 7, 8, 9}, // AFE indices,
< (afeidzlist)
null, // Unused
new long([]{1, 1, 1, 1}); // Term sizes |

< (termidzlist)

// Useful for debugging
task.writedata("djc.ptf"); // Write file in human-
—readable format
// Attach a log stream printer to the task
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

// Solve the problem
task.optimize();

// Print a summary containing tnformation
// about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg) ;

// Get status information about the solution
mosek.solsta solsta = task.getsolsta(mosek.soltype.itg);

switch (solsta) {
case integer_optimal:
double[] xx = task.getxx(mosek.soltype.itg);

System.out.println("Optimal primal solution\n");
for (int j = 0; j < numvar; ++j)

(continues on next page)

70

(continued from previous page)

System.out.println ("x[" + j + "]:" + xx[j1);
break;
default:
System.out.println("Another solution status");
break;
}
3
catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;

}

The answer is

[0, 0, -12.5, 2.5]

6.9.7 Summary and extensions

In this section we presented the most basic usage of the affine expression storage F,g to input affine
expressions used together with domains to create disjunctive constraints (DJC). Now we briefly point
out additional features of his interface which can be useful in some situations for more demanding users.
They will be demonstrated in various examples in other tutorials and case studies in this manual.

e It is important to remember that F', g has only a storage function and during the DJC construction
we can pick an arbitrary list of row indices and place them in a domain. It means for example that:

— It is not necessary to store the AFEs in the same order they will appear in DJCs.

— The same AFE index can appear more than once in one and/or more conic constraints (this
can be used to reduce storage if the same affine expression is used in multiple DJCs).

— The F, g storage can even include rows that are not presently used in any DJC.

e Domains can be reused: multiple DJCs can use the same domain. On the other hand the same
type of domain can appear under many domidx positions. In this sense the list of created domains
also plays only a storage role: the domains are only used when they enter a DJC.

e The same affine expression storage F, g is shared between disjunctive constraints and affine conic
constraints (ACCs, see Sec. 6.2).

e When defining an DJC an additional constant vector b can be provided to modify the constant
terms coming from g but only for this particular DJC. This could be useful to reduce F storage
space if, for example, many expressions DTz + b; with the same linear part DTz, but varying
constant terms b;, are to be used throughout DJCs.

6.10 Quadratic Optimization

MOSEK can solve quadratic and quadratically constrained problems, as long as they are convex. This
class of problems can be formulated as follows:

minimize %xTQ"x +cTr+cf
subject to I < %zTQk:r + Z;L:_Ol agz; < uf, k=0,...,m—1, (6.40)
S Z; < wj, j=0,....,n—1

Without loss of generality it is assumed that Q° and Q* are all symmetric because
1
2" Qu = 5aT(Q+Q")a.

71

This implies that a non-symmetric @) can be replaced by the symmetric matrix %(Q + Q7).
The problem is required to be convex. More precisely, the matrix Q° must be positive semi-definite
and the kth constraint must be of the form

n—1

c 1 k

i < 52" QFx + ZO a1, (6.41)
iz

with a negative semi-definite Q* or of the form

—1
1 T Nk S c
Z% QT+ E L g < uj.
iz

with a positive semi-definite Q*. This implies that quadratic equalities are not allowed. Specifying a
non-convex problem will result in an error when the optimizer is called.

A matrix is positive semidefinite if all the eigenvalues of () are nonnegative. An alternative statement
of the positive semidefinite requirement is

Qx> 0, V.

If the convexity (i.e. semidefiniteness) conditions are not met MOSEK will not produce reliable results
or work at all.

6.10.1 Example: Quadratic Objective

We look at a small problem with linear constraints and quadratic objective:

minimize 2?2 +0.123 + 23 — x123 — T2
subject to 1< xy + a9+ 3 (6.42)
0< =

The matrix formulation of (6.42) has:

2 0o -1 0
Q=] 0 02 0 |,e=|-1]|,A=[11 1],
-1 0 2 0
with the bounds:
0 00
fF=1Lu"=00,1"=| 0 | andu” = | o0
0 00

Please note the explicit % in the objective function of (6.40) which implies that diagonal elements must
be doubled in @, i.e. Q11 = 2 even though 1 is the coefficient in front of 2% in (6.42).

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the quadratic objective

The quadratic objective is specified using the function Task.putgobj. Since Q° is symmetric only the
lower triangular part of Q° is inputted. In fact entries from above the diagonal may not appear in the
input.

The lower triangular part of the matrix Q° is specified using an unordered sparse triplet format (for
details, see Sec. 15.1.4):

72

};
};
.0};

B

>

int[] gsubi = {0, 1, 2 2
int[] gsubj = {0, 1, 0, 2
double[] qval = {2.0, 0.2, -1.0, 2

Please note that

e only non-zero elements are specified (any element not specified is 0 by definition),
e the order of the non-zero elements is insignificant, and

e only the lower triangular part should be specified.

Finally, this definition of Q° is loaded into the task:

task.putqobj(gsubi, gsubj, qval);

Source code

Listing 6.18: Source code implementing problem (6.42).

package com.mosek.example;
import mosek.*;

public class qol {

static final int numcon = 1; /* Number of constraints. */
static final int numvar = 3; /* Number of wvariables. */
static final int NUMANZ = 3; /* Number of numzeros in 4. */
static final int NUMQNZ = 4; /* Number of monzeros in {. */

public static void main (String[] args) {
// Since the walue infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = O;
double[] ¢ = {0.0, -1.0, 0.0};

mosek.boundkey[] bkc = { mosek.boundkey.lo };
double[] blc = {1.0};
double[] buc = {infinity};

mosek.boundkey[] bkx = { mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey.lo
};
double[] blx

Il
-~
o O O
o O O

-

};
{infinity,
infinity,

double[] bux

infinity

};

{ {0}, {0}, {0} };
{ {1.0}, {1.0}, {1.0} 3};

int [][] asub
double[] [] aval

double[] xx = new double[numvar];
try (Env env = new Env();
Task task = new Task(env, 0, 0)) {

(continues on next page)

73

(continued from previous page)

// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(

mosek.streamtype.log,

new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});
/* Give MOSEK an estimate of the size of the input data.
Thts is done to increase the speed of wnputting data.
However, it is optional. */
/* Append 'numcon' empty constraints.
The constraints will initially have no bounds. */
task.appendcons (numcon) ;

/* Append 'numvar' wvariables.
The variables will initially be fized at zero (z=0). */
task.appendvars (numvar) ;

for (int j = 0; j < numvar; ++j) {
/% Set the linear term c_j in the objective.*/
task.putcj(j, cljl);
/* Set the bounds on wvariable j.
blal[j] <= z_j <= buz[j] */
task.putvarbound(j, bkx[jl, blx[j], bux[jl);
/* Input column 7 of A */

task.putacol(j, /% Variable (column) index.*/
asub[j], /* Row index of mon-zeros in column j.*/
avalljl); /* Non-zero Values of column j. */
}
/* Set the bounds on constraints.
for 4=1, ...,numcon : blc[i] <= constraint ¢ <= buc[i] */

for (int i = 0; i < numcon; ++i)
task.putconbound(i, bkc[il, blc[i], bucl[il);

/*
The lower triangular part of the ¢
matrixz in the objective 1s specified.

*/

int[] gsubi = {0, 1, 2, 2 3}
int[] gsubj = {0, 1, 0, 2 3}
double[] qval = {2.0, 0.2, -1.0, 2.0};

/* Input the § for the objective. */
task.putqobj(gsubi, gsubj, qval);

/% Solve the problem */

mosek.rescode r = task.optimize();

System.out.println (" Mosek warning:" + r.toString());
// Print a summary containing tnformation

// about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg) ;

mosek.solsta solstal] = new mosek.solstal[l];
/* Get status information about the solution */
task.getsolsta(mosek.soltype.itr, solsta);

(continues on next page)

74

(continued from previous page)

/* Get the solution */
task.getxx(mosek.soltype.itr, // Interior solution.
XX) ;

switch (solstal0]) {
case optimal:
System.out.println("Optimal primal solution\n");
for (int j = 0; j < numvar; ++j)
System.out.println ("x[" + j + "]:" + xx[j1);
break;
case dual_infeas_cer:
case prim_infeas_cer:
System.out.println("Primal or dual infeasibility\n");
break;
case unknown:
System.out.println("Unknown solution status.\n");
break;
default:
System.out.println("Other solution status");
break;
}
}
catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString());
throw e;
}
} /* Main */
}

6.10.2 Example: Quadratic constraints

In this section we show how to solve a problem with quadratic constraints. Please note that quadratic
constraints are subject to the convexity requirement (6.41).
Consider the problem:

minimize x% + O.Img + x% — X113 — T2
subject to 1 < a1+ 22+ 23— 33% — 33% — O.lx% + 0.2z 23,
x> 0.

This is equivalent to

minimize 227Q°% + Lz

subject to %xTQOx—&—Ax > b, (6.43)
x>0,
where
2 0 -1 ,
Q=0 02 0 |,e=[0 -1 0] ,A=[1 1 1],b=1

-1 0 2
-2 0 02
Q=] 0 -2 0
02 0 -0.2

The linear parts and quadratic objective are set up the way described in the previous tutorial.

(0]

Setting up quadratic constraints

To add quadratic terms to the constraints we use the function Task.putgconk.

int [] gsubi = {0, 1, 2, 2 1}
int [] gsubj = {0, 1, 2, 0 1}
double[] qval = { -2.0, -2.0, -0.2, 0.2};

/¥ put @0 in constraint with index 0. */

task.putqconk (O,
qsubi,
gsubj,
qval);

While Task.putqconk adds quadratic terms to a specific constraint, it is also possible to input all

quadratic terms in one chunk using the Task.putqcon function.

Source code

Listing 6.19: Implementation of the quadratically constrained

problem (6.43).

package com.mosek.example;
import mosek.*;

public class qcqol {
static final int numcon =
static final int numvar
static final int NUMANZ =
static final int NUMQNZ =

/* Number of constraints.

; /* Number of wariables.

5 /* Number of numzeros in A.
; /* Number of nonzeros in {.

.o

|
W w -

public static void main (Stringl[] args) {
// Since the value infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = O;
double[] ¢ = {0.0, -1.0, 0.0};

mosek.boundkey [] bkc = {mosek.boundkey.lo};
double[] blc = {1.0};
double[] buc = {infinity};

mosek.boundkey[] bkx

= {mosek.boundkey.1lo,
mosek.boundkey.lo,
mosek.boundkey.lo
s

double[] blx

{0.0,
0.0,
0.0
};
double[] bux = {infinity,
infinity,
infinity

};

{ {0y, {0y, Ao} };
{ {1.0}, {1.0}, {1.0} };

int [][] asub
double[] [] aval

*/
*/
*/
*/

76

(continues on next page)

(continued from previous page)

double[] xx = new double[numvar];

try (mosek.Env env = new mosek.Env();
mosek.Task task = new mosek.Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

/* Give MOSEK an estimate of the size of the tinput data.
This 1is done to increase the speed of inputting data.
However, it is optional. */

/* Append 'numcon' empty constraints.

The constraints will tnitially have no bounds. */
task.appendcons (numcon) ;

/* Append 'numvar' wvariables.
The variables will initially be fized at zero (z=0). */
task.appendvars (numvar) ;

for (int j = 0; j < numvar; ++j) {
/* Set the linear term c_j in the objective.*/
task.putcj(j, cl[jl);
/% Set the bounds on variable j.
blelj] <= z_j <= buzx[j] */
task.putvarbound(j, bkx[jl, blx[jl, bux[jl);
/* Input column 7 of A */

task.putacol(j, /* Variable (column) index.*/
asub[j], /* Row index of mon-zeros in column j.*/
avall[jl); /* Non-zero Values of column j. */
}
/* Set the bounds on constraints.
for i=1, ...,numcon : blc[i] <= constraint i <= buc[i] */

for (int i = 0; i < numcon; ++i)
task.putconbound(i, bkc[i], blc[i], buc[il);
/*
* The lower triangular part of the {
* matriz in the objective ts specified.

*/
int[] qosubi = { 0, 1, 2, 2 };
int[] qosubj = {0, 1, O, 2 3};
double[] qoval = { 2.0, 0.2, -1.0, 2.0 };

/* Input the § for the objective. */
task.putqobj(qosubi, qosubj, qoval);

/¥
* The lower triangular part of the §~0
* matriz in the first constraint is spectified.
* This corresponds to adding the term

(continues on next page)

7

(continued from previous page)

¥ ¢0°2 - xl1°2 - 0.1 z2°2 + 0.2 =0 z2

*/
int [] gsubi = {0, 1, 2, 2 1}
int [] gsubj = {0, 1, 2, 0 1}
double[] qval = { -2.0, -2.0, -0.2, 0.2};

/% put @0 in constraint with index 0. */

task.putqconk (O,
qsubi,
qsubj,
qval);

task.putobjsense(mosek.objsense.minimize) ;
/* Solve the problem */

try {
mosek.rescode termcode = task.optimize();
} catch (mosek.Warning e) {
System.out.println (" Mosek warning:");
System.out.println (e.toString ());
}
// Print a summary containing tinformation
// about the solution for debugging purposes
task.solutionsummary (mosek.streamtype.msg) ;

mosek.solsta solstal] = new mosek.solstall];
/% Get status information about the solution */
task.getsolsta(mosek.soltype.itr, solsta);

task.getxx(mosek.soltype.itr, // Intertor solution.
XX) ;
switch (solstal[0]) {
case optimal:
System.out.println("Optimal primal solution\n");
for (int j = 0; j < numvar; ++j)
System.out.println ("x[" + j + "]:" + xx[j]1);
break;
case dual_infeas_cer:
case prim_infeas_cer:
System.out.println("Primal or dual infeasibility.\n");
break;
case unknown:
System.out.println("Unknown solution status.\n");
break;
default:
System.out.println("Other solution status");
break;

}
catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");

(continues on next page)

78

(continued from previous page)

System.out.println (e.msg);
throw e;
}
Y /* Main */
}

6.11 Problem Modification and Reoptimization

Often one might want to solve not just a single optimization problem, but a sequence of problems, each
differing only slightly from the previous one. This section demonstrates how to modify and re-optimize
an existing problem.

The example we study is a simple production planning model.

Problem modifications regarding variables, cones, objective function and constraints can be grouped
in categories:

e add/remove,
e coefficient modifications,

e bounds modifications.

Especially removing variables and constraints can be costly. Special care must be taken with respect
to constraints and variable indexes that may be invalidated.

Depending on the type of modification, MOSEK may be able to optimize the modified problem more
efficiently exploiting the information and internal state from the previous execution. After optimization,
the solution is always stored internally, and is available before next optimization. The former optimal
solution may be still feasible, but no longer optimal; or it may remain optimal if the modification of the
objective function was small. This special case is discussed in Sec. 14.3.

In general, MOSEK exploits dual information and availability of an optimal basis from the previous
execution. The simplex optimizer is well suited for exploiting an existing primal or dual feasible solution.
Restarting capabilities for interior-point methods are still not as reliable and effective as those for the
simplex algorithm. More information can be found in Chapter 10 of the book [Chvatal83].

Parameter settings (see Sec. 7.5) can also be changed between optimizations.

6.11.1 Example: Production Planning

A company manufactures three types of products. Suppose the stages of manufacturing can be split into
three parts: Assembly, Polishing and Packing. In the table below we show the time required for each
stage as well as the profit associated with each product.

Product no. | Assembly (minutes) | Polishing (minutes) | Packing (minutes) | Profit ($)
0 2 3 2 1.50
1 4 2 3 2.50
2 3 3 2 3.00

With the current resources available, the company has 100,000 minutes of assembly time, 50,000
minutes of polishing time and 60,000 minutes of packing time available per year. We want to know how

many items of each product the company should produce each year in order to maximize profit?

Denoting the number of items of each type by xg,x; and x5, this problem can be formulated as a
linear optimization problem:

and

maximize 1.5z9 + 2.5x1 + 3.0x2

subject to 2x9 4+ 4x; 4+ 3z < 100000, (6.44)
3z + 221 + 3z < 50000, '
209 4+ 3x1 + 2z < 60000,

Zo,T1,T2 Z 0.

Code in Listing 6.20 loads and solves this problem.

79

Listing 6.20: Setting up and solving problem (6.44)

// Since the walue infinity is never used, we define
// 'infinity' symbolic purposes only

double infinity = 0;
int numcon = 3;
int numvar = 3;
double cl] = {1.5, 2.5, 3.0 };

mosek.boundkey bkc[] = { mosek.boundkey.up,
mosek.boundkey.up,
mosek.boundkey.up
I
double blc[l = { -infinity,
-infinity,
-infinity
3
double buc[] = { 100000,
50000,
60000
s
mosek.boundkey bkx[] = { mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey.lo

};
double blx[] = { 0.0, 0.0, 0.0 };
double bux[] = { +infinity,
+infinity,
+infinity
};
int asub[][] = {
{0, 1, 23},
{0, 1, 2},
{0, 1, 2}
};
double avall[][] = {
{ 2.0, 3.0, 2.0 },
{4.0, 2.0, 3.0 },
{3.0, 3.0, 2.0 %}
};
double[] xx = new double[numvar];
try (Env env = new Env();
Task task = new Task(env, 0, 0)) {

/* Append the constraints. */
task.appendcons (numcon) ;

/* Append the wvariables. */
task.appendvars (numvar) ;

/* Put C. */
for (int j = 0; j < numvar; ++j)
task.putcj(j, c[jl);

80

(continues on next page)

(continued from previous page)

/* Put constraint bounds. */
for (int i = 0; i < numcon; ++i)
task.putconbound(i, bkcl[il, blc[i], buclil);

/* Put wvariable bounds. */
for (int j = 0; j < numvar; ++j)
task.putvarbound(j, bkx[jl, blx[j], bux[jl);

/* Put 4. */
if (numcon > 0) {
for (int j = 0; j < numvar; ++j)
task.putacol(j,
asub[j],
avall[jl);
}

/* A mazimization problem */
task.putobjsense (mosek.objsense.maximize);
/* Solve the problem */

mosek.rescode termcode = task.optimize();

task.getxx(mosek.soltype.bas, // Request the basic solution.
XX) ;

6.11.2 Changing the Linear Constraint Matrix

Suppose we want to change the time required for assembly of product 0 to 3 minutes. This corresponds
to setting ag,o = 3, which is done by calling the function Task.putaij as shown below.

task.putaij(0, 0, 3.0);

The problem now has the form:

and

maximize 1.5z9 + 2.5x1 + 3.0x2

subject to 3x9 + 4x; 4+ 3z < 100000, (6.45)
3z + 221 + 3z < 50000, '
200 4+ 3x1 + 2z < 60000,

Lo, L1, T2 2 0.

After this operation we can reoptimize the problem.

6.11.3 Appending Variables

We now want to add a new product with the following data:

Product no. | Assembly (minutes) | Polishing (minutes) | Packing (minutes) | Profit ($)

3 4 0 1 1.00

This corresponds to creating a new variable x3, appending a new column to the A matrix and setting
a new term in the objective. We do this in Listing 6.21

Listing 6.21: How to add a new variable (column)

JRERFRAFRAFFAFRAFRAFRF AAd a4 mew VaATTable FFFKKKFKFKFFKKKKKFKFFRKKKKKKAN])
/* Get index of new wvariable. */

(continues on next page)

81

(continued from previous page)

int[] varidx = new int[1];
task.getnumvar (varidx) ;

/* Append a new variable z_3 to the problem */
task.appendvars(1);
numvar++;

/* Set bounds on new varaible */
task.putvarbound(varidx[0],
mosek.boundkey.lo,
0,
+infinity);

/% Change objective #*/
task.putcj(varidx[0], 1.0);

/* Put new wvalues in the 4 matriz */
int[] acolsub = new int[] {0, 2};
double[] acolval new double([] {4.0, 1.0};

task.putacol(varidx[0], /# column index */
acolsub,
acolval);

After this operation the new problem is:

and

maximize 1.5z9 + 2521 + 3.0zy + 1.0x3

subject to 3z9 + 41 + 3z + 4xs < 100000, (6.46)
3rg + 21 + 3xo < 50000, ’
2xg 4+ 3x + 225 4+ lxs < 60000,

To,T1,T2,x3 > 0.

6.11.4 Appending Constraints

Now suppose we want to add a new stage to the production process called Quality control for which
30000 minutes are available. The time requirement for this stage is shown below:

Product no. | Quality control (minutes)
0 1
1 2
2 1
3 1

This corresponds to adding the constraint

xo + 221 + 22 + x3 < 30000

to the problem. This is done as follows.

Listing 6.22: Adding a new constraint.

JREERKKEFARRE AR RFA N RR* Add @ NEW CONSTTAINT ¥ ¥k * kKKK K KKKKKKKKKKKKKKN K/
/* Get index of new constraint. */

int[] conidx = new int[1];

task.getnumcon (conidx) ;

(continues on next page)

82

(continued from previous page)

/* Append a new constraint */
task.appendcons (1) ;
numcon-++;

/* Set bounds on new constraint */
task.putconbound(conidx [0],
mosek.boundkey.up,
-infinity,
30000) ;

/* Put new wvalues in the 4 matriz */
int[] arowsub = new int[] {0, 1, 2, 3}
double[] arowval = new double[] {1.0, 2.0, 1.0, 1.0};

task.putarow(conidx[0], /# row index */
arowsub,
arowval) ;

Again, we can continue with re-optimizing the modified problem.

6.11.5 Changing bounds

One typical reoptimization scenario is to change bounds. Suppose for instance that we must operate
with limited time resources, and we must change the upper bounds in the problem as follows:

Operation Time available (before) | Time available (new)
Assembly 100000 80000
Polishing 50000 40000
Packing 60000 50000
Quality control | 30000 22000

That means we would like to solve the problem:

maximize 1.5z9 + 2.5x;1 + 3.0xs + 1.0x3

subject to 3z9 + 4x; + 3x2 + 4dxz < 80000,
3z + 221 + 319 < 40000, (6.47)
2rg + 3z + 222 + lxg < 50000,
) + 2x + X9 + xs < 22000.

In this case all we need to do is redefine the upper bound vector for the constraints, as shown in the next
listing.

Listing 6.23: Change constraint bounds.

JRAAFKKAKKRAAFRAA KR AN, ChaNge CONSTTAINT DOUNAS ***k KAk kKX AKKKAKKKAK/
mosek.boundkey[] newbkc = {mosek.boundkey.up,
mosek.boundkey.up,
mosek.boundkey.up,
mosek.boundkey.up
I
{ -infinity,
-infinity,

double[] newblc

-infinity,
-infinity
};
{ 80000, 40000, 50000, 22000 };

double[] newbuc

task.putconboundslice (0, numcon, newbkc, newblc, newbuc);

83

Again, we can continue with re-optimizing the modified problem.

6.11.6 Advanced hot-start

If the optimizer used the data from the previous run to hot-start the optimizer for reoptimization, this
will be indicated in the log:

Optimizer - hotstart : yes

When performing re-optimizations, instead of removing a basic variable it may be more efficient to
fix the variable at zero and then remove it when the problem is re-optimized and it has left the basis.
This makes it easier for MOSEK to restart the simplex optimizer.

6.12 Parallel optimization

In this section we demonstrate the method Env.optimizebatch which is a parallel optimization mech-
anism built-in in MOSEK. It has the following features:

e One license token checked out by the environment will be shared by the tasks.

o It allows to fine-tune the balance between the total number of threads in use by the parallel solver
and the number of threads used for each individual task.

o It is very efficient for optimizing a large number of task of similar size, for example tasks obtained
by cloning an initial task and changing some coefficients.

In the example below we simply load a few different tasks and optimize them together. When all
tasks complete we access the response codes, solutions and other information in the standard way, as if
each task was optimized separately.

Listing 6.24: Calling the parallel optimizer.

/*¥* Ezample of how to use env.optimizebatch().
Optimizes tasks whose names were read from command line.

*/
public static void main(String[] argv)
{
int n = argv.length;
mosek.Task[] tasks = new mosek.Task[n];
mosek.rescode[] res = new mosek.rescode([n];

mosek.rescode[] trm new mosek.rescode[n];
mosek.Env env = new mosek.Env();

// Stze of thread pool avatilable for all tasks
int threadpoolsize = 6;

// Create an example list of tasks to optimize
for(int i = 0; i < n; i++)

{

tasks[i] = new mosek.Task(env);

tasks[i] .readdata(argv([il);

// We can set the number of threads for each task

tasks[i] .putintparam(mosek.iparam.num_threads, 2);
}
// Optimize all the given tasks in parallel
env.optimizebatch(false, // No race

-1.0, // No time limit

(continues on next page)

84

(continued from previous page)

threadpoolsize,

tasks, // Array of tasks to optimize
trm,

res);

for(int 1 = 0; i < nj; i++)
System.out.printf("Task %d res %s trm %s obj_val %f time %f\n",
i,
res([i],
trm[i],
tasks[i] .getdouinf (mosek.dinfitem.intpnt_primal_obj),
tasks[i] .getdouinf (mosek.dinfitem.optimizer_time));

}

Another, slightly more advanced application of the parallel optimizer is presented in Sec. 11.3.

6.13 Retrieving infeasibility certificates

When a continuous problem is declared as primal or dual infeasible, MOSEK provides a Farkas-type
infeasibility certificate. If, as it happens in many cases, the problem is infeasible due to an unintended
mistake in the formulation or because some individual constraint is too tight, then it is likely that
infeasibility can be isolated to a few linear constraints/bounds that mutually contradict each other. In
this case it is easy to identify the source of infeasibility. The tutorial in Sec. 8.3 has instructions on
how to deal with this situation and debug it by hand. We recommend Sec. 8.3 as an introduction to
infeasibility certificates and how to deal with infeasibilities in general.

Some users, however, would prefer to obtain the infeasibility certificate using Optimizer API for Java,
for example in order to repair the issue automatically, display the information to the user, or perhaps
simply because the infeasibility was one of the intended outcomes that should be analyzed in the code.

In this tutorial we show how to obtain such an infeasibility certificate with Optimizer API for Java
in the most typical case, that is when the linear part of a problem is primal infeasible. A Farkas-type
primal infeasibility certificate consists of the dual values of linear constraints and bounds. The names
of duals corresponding to various parts of the problem are defined in Sec. 12.1.2. Each of the dual
values (multipliers) indicates that a certain multiple of the corresponding constraint should be taken
into account when forming the collection of mutually contradictory equalities/inequalities.

6.13.1 Example PINFEAS

For the purpose of this tutorial we use the same example as in Sec. 8.3, that is the primal infeasible
problem

minimize To + 2x1 + OSx2 + 2x3 + x4y + 25 + zH6
subject to sg: ®g + 11 < 200,
S1: To + z3 < 1000,
So : rs + x5 + x¢ < 1000,
do N e} + x4 = 1100, (648)
dy : 1 = 200,
ds : To + x5 = 500,
ds: xr3 + rg = 500,
iz Z 0

85

Checking infeasible status and adjusting settings

After the model has been solved we check that it is indeed infeasible. If yes, then we choose a threshold
for when a certificate value is considered as an important contributor to infeasibility (ideally we would
like to list all nonzero duals, but just like an optimal solution, an infeasibility certificate is also subject
to floating-point rounding errors). All these steps are demonstrated in the snippet below:

// Check problem status, we use the interior point solution

if (task.getprosta(soltype.itr) == prosta.prim_infeas) {
// Set the tolerance at which we consider a dual value as essential
double eps = le-7;

Going through the certificate for a single item

We can define a fairly generic function which takes an array of lower and upper dual values and all other
required data and prints out the positions of those entries whose dual values exceed the given threshold.
These are precisely the values we are interested in:

// Analyzes and prints infeasibility contributing elements
// sl - dual wvalues for lower bounds
// su - dual values for upper bounds
// eps - tolerance for when a nunzero dual value ts significant
public static void analyzeCertificate(double[] sl, double[] su, double eps) {
for(int i = 0; i < sl.length; i++) {
if (Math.abs(sl[i]) > eps)
System.out.printf ("#)d, lower, dual
if (Math.abs(suli]) > eps)
System.out.printf ("#%d, upper, dual

%e\n", i, sl[il);

%e\n", i, sulil);

Full source code

All that remains is to call this function for all variable and constraint bounds for which we want to know
their contribution to infeasibility. Putting all these pieces together we obtain the following full code:

Listing 6.25: Demonstrates how to retrieve a primal infeasibility
certificate.

package com.mosek.example;
import mosek.*;

public class pinfeas {
static double inf = 0.0; // Infinity for symbolic purposes

// Set up a simple linear problem from the manual for test purposes
public static mosek.Task testProblem() {
mosek.Task task = new mosek.Task();
task.appendvars(7);
task.appendcons(7);
task.putclist(new int[]{0,1,2,3,4,5,6}, new double[]{1,2,5,2,1,2,1});
task.putaijlist(new int[]{0,0,1,1,2,2,2,3,3,4,5,5,6,6},
new int[]{0,1,2,3,4,5,6,0,4,1,2,5,3,6},
new double[]{1,1,1,1,1,1,1,1,1,1,1,1,1,1});
mosek.boundkey up = mosek.boundkey.up,
fx = mosek.boundkey.fx,
lo = mosek.boundkey.lo;
task.putconboundslice(0, 7, new mosek.boundkey[]{up,up,up,fx,fx,fx,fx},

(continues on next page)

86

(continued from previous page)

new double[]{-inf, -inf, -inf, 1100, 200, 500, 500},
new double[]{200, 1000, 1000, 1100, 200, 500, 500});
task.putvarboundsliceconst(0, 7, lo, 0, +inf);
return task;

3

// Analyzes and prints infeasibility contributing elements
// sl - dual wvalues for lower bounds
// su - dual values for upper bounds
// eps - tolerance for when a nunzero dual value ts significant
public static void analyzeCertificate(double[] sl, double[] su, double eps) {
for(int i = 0; i < sl.length; i++) {
if (Math.abs(sl[i]) > eps)
System.out.printf ("#)d, lower, dual
if (Math.abs(sul[i]) > eps)
System.out.printf ("#/%d, upper, dual

%he\n", i, s1[il);

Y%e\n", i, sulil);
}
}

public static void main (Stringl[] args) {
// In this exzample we set up a simple problem
// One could use any task or a task read from a file
mosek.Task task = testProblem();

// Useful for debugging
task.writedata("pinfeas.ptf"); // Write file in human-
—readable format
// Attach a log stream printer to the task
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }1});

// Perform the optimization.
task.optimize();
task.solutionsummary(mosek.streamtype.log);

// Check problem status, we use the interior point solution

if (task.getprosta(soltype.itr) == prosta.prim_infeas) {
// Set the tolerance at which we consider a dual value as essential
double eps = le-7;

System.out.println("Variable bounds important for infeasibility: ");
analyzeCertificate(task.getslx(soltype.itr), task.getsux(soltype.itr), eps);

System.out.println("Constraint bounds important for infeasibility: ");
analyzeCertificate(task.getslc(soltype.itr), task.getsuc(soltype.itr), eps);
}
else {
System.out.println("The problem is not primal infeasible, no certificate to show
=");
}
X
}

Running this code will produce the following output:

87

Variable bounds important for infeasibility:
#6: lower, dual = 1.000000e+00

#7: lower, dual 1.000000e+00

Constraint bounds important for infeasibility:
#1: upper, dual = 1.000000e+00

#3: upper, dual = 1.000000e+00

#4: lower, dual = 1.000000e+00

#5: lower, dual 1.000000e+00

indicating the positions of bounds which appear in the infeasibility certificate with nonzero values.
For a more in-depth treatment see the following sections:

e Sec. 11 for more advanced and complicated optimization examples.
e Sec. 11.1 for examples related to portfolio optimization.

e Sec. 12 for formal mathematical formulations of problems MOSEK can solve, dual problems and
infeasibility certificates.

88

Chapter 7

Solver Interaction Tutorials

In this section we cover the interaction with the solver.

7.1 Environment and task

All interaction with Optimizer API for Java proceeds through one of two entry points: the MOSEK
tasks and, to a lesser degree the MOSEK environment .

7.1.1 Task

The MOSEK task Task provides a representation of one optimization problem. It is the main interface
through which all optimization is performed. Many tasks can be created and disposed of in one process.
A typical scenario for working with a task is shown below:

/* Create an optimization task */

try (mosek.Task task = new mosek.Task()) {
VA
// ... optimization ...
/7

}

If a task is created outside of a context that ensures automatic garbage collection then it can be
disposed of manually using Task.dispose.

7.1.2 Environment

The MOSEK environment Env coordinates access to MOSEK from the current process. It provides
various general functionalities, in particular those related to license management, linear algebra, parallel
optimization and certain other auxiliary functions. All tasks are explicitly or implicitly attached to some
environment. It is recommended to have at most one environment per process.

Creating an environment is optional and only recommended for those users who will require
some of the features it provides. Most users will NOT need their own environment and can skip
this object. In this case MOSEK will internally create a global environment transparently for the user.
This environment will not be accessible for the user.

A typical scenario for working with MOSEK through an explicit environment is shown below:

/* Create an environment */
try (mosek.Env env = new mosek.Env()) {

/* Create one or more optimization tasks with this env */
try (mosek.Task task = new mosek.Task(env)) {

/)

// ... optimization ...

/o

(continues on next page)

89

(continued from previous page)

If an environment is created outside of a context that ensures automatic garbage collection then it
can be disposed of manually using Env. dispose.

7.2 Accessing the solution

This section contains important information about the status of the solver and the status of the solution,
which must be checked in order to properly interpret the results of the optimization.

7.2.1 Solver termination
The optimizer provides two status codes relevant for error handling:

e Response code of type rescode. It indicates if any unexpected error (such as an out of memory
error, licensing error etc.) has occurred. The expected value for a successful optimization is
rescode. ok.

e Termination code: It provides information about why the optimizer terminated, for instance if
a predefined time limit has been reached. These are not errors, but ordinary events that can be
expected (depending on parameter settings and the type of optimizer used).

If the optimization was successful then the method Task.optimize returns normally and its output
is the termination code. If an error occurs then the method throws an exception, which contains the
response code. See Sec. 7.3 for how to access it.

If a runtime error causes the program to crash during optimization, the first debugging step is to
enable logging and check the log output. See Sec. 7.4.

If the optimization completes successfully, the next step is to check the solution status, as explained
below.

7.2.2 Available solutions
MOSEK uses three kinds of optimizers and provides three types of solutions:
e basic solution from the simplex optimizer,
e interior-point solution from the interior-point optimizer,
e integer solution from the mixed-integer optimizer.
Under standard parameters settings the following solutions will be available for various problem types:

Table 7.1: Types of solutions available from MOSEK

Simplex opti- | Interior-point opti- | Mixed-integer opti-
mizer mizer mizer

Linear problem soltype.bas soltype.itr

Nonlinear continuous prob- soltype.itr

lem

Problem with integer vari- soltype.itg

ables

For linear problems the user can force a specific optimizer choice making only one of the two solutions
available. For example, if the user disables basis identification, then only the interior point solution will
be available for a linear problem. Numerical issues may cause one of the solutions to be unknown even
if another one is feasible.

Not all components of a solution are always available. For example, there is no dual solution for
integer problems and no dual conic variables from the simplex optimizer.

The user will always need to specify which solution should be accessed.

90

7.2.3 Problem and solution status

Assuming that the optimization terminated without errors, the next important step is to check the
problem and solution status. There is one for every type of solution, as explained above.

Problem status

Problem status (prosta) determines whether the problem is certified as feasible. Its values can roughly
be divided into the following broad categories:

e feasible — the problem is feasible. For continuous problems and when the solver is run with
default parameters, the feasibility status should ideally be prosta.prim_and_dual_feas.

e primal/dual infeasible — the problem is infeasible or unbounded or a combination of those.
The exact problem status will indicate the type of infeasibility.

e unknown — the solver was unable to reach a conclusion, most likely due to numerical issues.

Solution status

Solution status (solsta) provides the information about what the solution values actually contain. The
most important broad categories of values are:

e optimal (solsta.optimal) — the solution values are feasible and optimal.

e certificate — the solution is in fact a certificate of infeasibility (primal or dual, depending on the
solution).

e unknown/undefined — the solver could not solve the problem or this type of solution is not
available for a given problem.

Problem and solution status for each solution can be retrieved with Task.getprosta and Task.
getsolsta, respectively.

The solution status determines the action to be taken. For example, in some cases a suboptimal
solution may still be valuable and deserve attention. It is the user’s responsibility to check the status
and quality of the solution.

Typical status reports

Here are the most typical optimization outcomes described in terms of the problem and solution statuses.
Note that these do not cover all possible situations that can occur.

Table 7.2: Continuous problems (solution status for interior-point
and basic solution)

Outcome Problem status Solution status
Optimal prosta. solsta.optimal
prim_and_dual_feas

Primal infeasible prosta.prim_infeas solsta.
prim_infeas_cer

Dual infeasible (unbounded) prosta.dual_infeas solsta.
dual_infeas_cer

Uncertain (stall, numerical issues, etc.) | prosta.unknown solsta.unknown

Table 7.3: Integer problems (solution status for integer solution,
others undefined)

Outcome Problem status Solution status

Integer optimal prosta.prim_feas solsta.integer_optimal
Infeasible prosta.prim_infeas | solsta.unknown

Integer feasible point | prosta.prim_feas solsta.prim_feas

No conclusion prosta.unknown solsta.unknown

91

7.2.4 Retrieving solution values

After the meaning and quality of the solution (or certificate) have been established, we can query for the
actual numerical values. They can be accessed using:

e Task.getprimalobyj, Task.getdualobj — the primal and dual objective value.
e Task.getzz — solution values for the variables.
e Task.getsolution — a full solution with primal and dual values

and many more specialized methods, see the API reference.

7.2.5 Source code example

Below is a source code example with a simple framework for assessing and retrieving the solution to a
conic optimization problem.

Listing 7.1: Sample framework for checking optimization result.

package com.mosek.example;
import mosek.*;

public class response {
public static void main(String[] argv) {
StringBuffer symname = new StringBuffer();
StringBuffer desc = new StringBuffer();

String filename;
if (argv.length >=1) filename = argv[0];
else filename = "../data/cqol.mps";

// Create the task and environment
try (Env env = new Env();
Task task = new Task(env, 0, 0)) {
// (Optionally) attach the log handler to receive log information

// (Optionally) uncomment this line to experience solution status Unknown
// task.putintparam(iparam.intpnt_maz_iterations, 1);

// On this example we read an optimization problem from a file
task.readdata(filename) ;

// Perform optimization.
rescode trm = task.optimize();
task.solutionsummary(streamtype.log) ;

// Handle solution status. We expect Optimal
solsta solsta = task.getsolsta(soltype.itr);

switch (solsta) {
case optimal:
// Fetch and print the solution
System.out.println("An optimal interior point solution is located.");
int numvar = task.getnumvar();
double[] xx = new double[numvar];
task.getxx(soltype.itr, xx);
for(int i = 0; i < numvar; i++)
System.out.println("x[" + i + "] = " + xx[i]);
break;

(continues on next page)

92

(continued from previous page)

case dual_infeas_cer:
System.out.println("Dual infeasibility certificate found.");
break;

case prim_infeas_cer:
System.out.println("Primal infeasibility certificate found.");
break;

case unknown:
// The solutions status is unknown. The termination code
// indicates why the optimizer terminated prematurely.
System.out.println("The solution status is unknown.");
Env.getcodedesc(trm, symname, desc);

System.out.printf (" Termination code: %s %s\n", symname, desc);
break;

default:
System.out.println("Unexpected solution status " + solsta + "\n");
break;

}
}
catch (mosek.Error e) {
System.out.println("Unexpected error (" + e.code + ") " + e.msg);
}
}
}

7.3 Errors and exceptions

Exceptions

Almost every function in Optimizer API for Java can throw an exception informing that the requested
operation was not performed correctly, and indicating the type of error that occurred. This is the case
in situations such as for instance:

e referencing a nonexisting variable (for example with too large index),
e defining an invalid value for a parameter,

e accessing an undefined solution,

e repeating a variable name, etc.

It is therefore a good idea to catch exceptions of type Error. The one case where it is extremely
important to do so is when Task.optimize is invoked. We will say more about this in Sec. 7.2.

The exception contains a response code (element of the enum rescode) and short diagnostic messages.
They can be accessed as in the following example.

try {
task.putdouparam(mosek.dparam. intpnt_co_tol_rel_gap, -1.0e-7);
}
catch (mosek.Exception e) {
mosek.rescode res = e.code;
System.out.println("Response code " + res + "\nMessage "+ e.msg);

}

It will produce as output:

93

Response code rescode.err_param_is_too_small
Message The parameter value -1e-07 is too small for parameter 'MSK_DPAR_INTPNT_
—CO_TOL_REL_GAP'.

Another way to obtain a human-readable string corresponding to a response code is the method Env.
getcodedesc. A full list of exceptions, as well as response codes, can be found in the API reference.

Optimizer errors and warnings

The optimizer may also produce warning messages. They indicate non-critical but important events,
that will not prevent solver execution, but may be an indication that something in the optimization
problem might be improved. Warning messages are normally printed to a log stream (see Sec. 7.4). A
typical warning is, for example:

MOSEK warning 53: A numerically large upper bound value 6.6e+09 is specified for,
—constraint 'C69200' (46020) .

Warnings can also be suppressed by setting the iparam.maz_num_warnings parameter to zero, if
they are well-understood.

Error and solution status handling example

Below is a source code example with a simple framework for handling major errors when assessing and
retrieving the solution to a conic optimization problem.

Listing 7.2: Sample framework for checking optimization result.

package com.mosek.example;
import mosek.*;

public class response {
public static void main(Stringl[] argv) {
StringBuffer symname = new StringBuffer();
StringBuffer desc = new StringBuffer();

String filename;
if (argv.length >=1) filename = argv[0];
else filename = "../data/cqol.mps";

// Create the task and environment
try (Env env = new Env();
Task task = new Task(env, 0, 0)) {
// (Optionally) attach the log handler to receive log information

// (Optionally) uncomment this line to experience solution status Unknown
// task.putintparam(iparam.intpnt_maz_iterations, 1);

// On this example we read an optimization problem from a file
task.readdata(filename) ;

// Perform optimization.
rescode trm = task.optimize();
task.solutionsummary (streamtype.log) ;

// Handle solution status. We expect Optimal
solsta solsta = task.getsolsta(soltype.itr);

switch (solsta) {
case optimal:

(continues on next page)

94

(continued from previous page)

// Fetch and print the solution
System.out.println("An optimal interior point solution is located.");
int numvar = task.getnumvar();
double[] xx = new double[numvar];
task.getxx(soltype.itr, xx);
for(int i = 0; i < numvar; i++)
System.out.println("x[" + i + "] = " + xx[i]);
break;

case dual_infeas_cer:
System.out.println("Dual infeasibility certificate found.");

break;

case prim_infeas_cer:
System.out.println("Primal infeasibility certificate found.");
break;

case unknown:
// The solutions status is unknown. The termination code
// indicates why the optimizer terminated prematurely.
System.out.println("The solution status is unknown.");
Env.getcodedesc(trm, symname, desc);

System.out.printf(" Termination code: %s %s\n", symname, desc);
break;
default:
System.out.println("Unexpected solution status " + solsta + "\n");
break;
}
}

catch (mosek.Error e) {
System.out.println("Unexpected error (" + e.code + ") " + e.msg);
}
}
}

7.4 Input/Output

The logging and I/O features are provided mainly by the MOSEK task and to some extent by the
MOSEK environment objects.

7.4.1 Stream logging

By default the solver runs silently and does not produce any output to the console or otherwise. However,
the log output can be redirected to a user-defined output stream or stream callback function. The log
output is analogous to the one produced by the command-line version of MOSEK.

The log messages are partitioned in three streams:

e messages, streamtype.msg
e warnings, streamtype.wrn
e crrors, streamtype.err

These streams are aggregated in the streamtype. log stream. A stream handler can be defined for
each stream separately.

95

The Stream class is used to receive text strings emitted to MOSEK'‘s output streams. Extending
Stream is the way to customize the solver output. When a Stream object is attached to a Task stream,
any text that is printed to that stream will be passed to the Stream. stream method. For example:

task.set_Stream(mosek.streamtype.log,
new mosek.Stream()

{
public void stream(String msg)
{
System.out.print (msg) ;
}
b

The stream can be detached by calling

task.set_Stream(mosek.streamtype.log,
(mosek.Stream)null);

After optimization is completed an additional short summary of the solution and optimization process
can be printed to any stream using the method Task.solutionsummary.

7.4.2 Log verbosity

The logging verbosity can be controlled by setting the relevant parameters, as for instance
e iparam.log,
e iparam.log_intpnt,
e iparam.log_mio,
e iparam.log_cut_second_opt,
e iparam.log_sim, and
e iparam.log_sim_minor.

Each parameter controls the output level of a specific functionality or algorithm. The main switch is
iparam. Log which affect the whole output. The actual log level for a specific functionality is determined
as the minimum between iparam.log and the relevant parameter. For instance, the log level for the
output produce by the interior-point algorithm is tuned by the iparam. log_intpnt; the actual log level
is defined by the minimum between iparam.log and iparam.log_intpnt.

Tuning the solver verbosity may require adjusting several parameters. It must be noticed that verbose
logging is supposed to be of interest during debugging and tuning. When output is no more of interest,
the user can easily disable it globally with <param. log. Larger values of Zparam. log do not necessarily
result in increased output.

By default MOSEK will reduce the amount of log information after the first optimization on a given
problem. To get full log output on subsequent re-optimizations set iparam.log_cut_second_opt to
Zero.

7.4.3 Saving a problem to a file

An optimization problem can be dumped to a file using the method Task.writedata. The file format
will be determined from the extension of the filename. Supported formats are listed in Sec. 16 together
with a table of problem types supported by each.

For instance the problem can be written to a human-readable PTF file (see Sec. 16.5) with

task.writedata("data.ptf");

All formats can be compressed with gzip by appending the .gz extension, and with ZStandard by
appending the .zst extension, for example

96

task.writedata("data.task.gz");

Some remarks:

e Unnamed variables are given generic names. It is therefore recommended to use meaningful variable
names if the problem file is meant to be human-readable.

e The task format is MOSEK’s native file format which contains all the problem data as well as
solver settings.

7.4.4 Reading a problem from a file

A problem saved in any of the supported file formats can be read directly into a task using Task.
readdata. The task must be created in advance. Afterwards the problem can be optimized, modified,
etc. If the file contained solutions, then are also imported, but the status of any solution will be set to
solsta.unknown (solutions can also be read separately using Task.readsolution). If the file contains
parameters, they will be set accordingly.

task = new mosek.Task(env, 0, 0);
try {
task.readdata("file.task.gz");
task.optimize();
} catch (mosek.Exception e) {
System.out.println("Problem reading the file");
}

7.5 Setting solver parameters

MOSEK comes with a large number of parameters that allows the user to tune the behavior of the
optimizer. The typical settings which can be changed with solver parameters include:

e choice of the optimizer for linear problems,

e choice of primal/dual solver,

e turning presolve on/off,

e turning heuristics in the mixed-integer optimizer on/off,
e level of multi-threading,

e feasibility tolerances,

e solver termination criteria,

e behaviour of the license manager,

and more. All parameters have default settings which will be suitable for most typical users.
The API reference contains:

e Full list of parameters

e List of parameters grouped by topic

97

Setting parameters

Each parameter is identified by a unique name. There are three types of parameters depending on the
values they take:

o Integer parameters. They take either either simple integer values or values from an enumeration
provided for readability and compatibility of the code. Set with Task.putintparam.

e Double (floating point) parameters. Set with Task.putdouparam.
e String parameters. Set with Task.putstrparam.

There are also parameter setting functions which operate fully on symbolic strings containing generic
command-line style names of parameters and their values. See the example below. The optimizer will
try to convert the given argument to the exact expected type, and will error if that fails.

If an incorrect value is provided then the parameter is left unchanged.

For example, the following piece of code sets up parameters which choose and tune the interior point
optimizer before solving a problem.

Listing 7.3: Parameter setting example.

// Set log level (integer parameter)

task.putintparam(mosek.iparam.log, 1);

// Select interior-point optimizer... (integer parameter)
task.putintparam(mosek.iparam.optimizer, mosek.optimizertype.intpnt.value);
// ... without basis identification (integer parameter)
task.putintparam(mosek.iparam.intpnt_basis, mosek.basindtype.never.value);
// Set relative gap tolerance (double parameter)
task.putdouparam(mosek.dparam.intpnt_co_tol_rel_gap, 1.0e-7);

// The same using explicit string names
task.putparam ("MSK_DPAR_INTPNT_CO_TOL_REL_GAP", "1.0e-7");
task.putnadouparam("MSK_DPAR_INTPNT_CO_TOL_REL_GAP", 1.0e-7);

// Incorrect value
try {
task.putdouparam(mosek.dparam.intpnt_co_tol_rel_gap, -1.0);
}
catch (mosek.Error e) {
System.out.println("Wrong parameter value");

}

98

Reading parameter values

The functions Task. getintparam, Task.getdouparam, Task.getstrparam can be used to inspect the
current value of a parameter, for example:

double param = task.getdouparam(mosek.dparam.intpnt_co_tol_rel_gap);
System.out.println("Current value for parameter intpnt_co_tol_rel_gap = " +,
—param) ;

7.6 Retrieving information items

After the optimization the user has access to the solution as well as to a report containing a large amount
of additional information items. For example, one can obtain information about:

e timing: total optimization time, time spent in various optimizer subroutines, number of iterations,
etc.

e solution quality: feasibility measures, solution norms, constraint and bound violations, etc.
e problem structure: counts of variables of different types, constraints, nonzeros, etc.
e integer optimizer: integrality gap, objective bound, number of cuts, etc.

and more. Information items are numerical values of integer, long integer or double type. The full
list can be found in the API reference:

e Double
e Integer
e Long

Certain information items make sense, and are made available, also during the optimization process.
They can be accessed from a callback function, see Sec. 7.7 for details.

Remark

For efficiency reasons, not all information items are automatically computed after optimization. To force
all information items to be updated use the parameter <param. auto_update_sol_info.

Retrieving the values

Values of information items are fetched using one of the methods
e Task.getdouinf for a double information item,
e Task.getintinf for an integer information item,
e Task.getlintinf for a long integer information item.

Each information item is identified by a unique name. The example below reads two pieces of data
from the solver: total optimization time and the number of interior-point iterations.

Listing 7.4: Information items example.

double tm
int iter

task.getdouinf (mosek.dinfitem.optimizer_time);
task.getintinf (mosek.iinfitem.intpnt_iter);

System.out.println("Time: " + tm);
System.out.println("Iterations: " + iter);

99

7.7 Progress and data callback

Callbacks are a very useful mechanism that allow the caller to track the progress of the MOSEK
optimizer. A callback function provided by the user is regularly called during the optimization and can
be used to

e obtain a customized log of the solver execution,

e collect information for debugging purposes or

e ask the solver to terminate.

Optimizer API for Java has the following callback mechanisms:

e progress callback, which provides only the basic status of the solver.

e data callback, which provides the solver status and a complete set of information items that
describe the progress of the optimizer in detail.

e integer solution callback, for reporting progress on a mixed-integer problem.

Warning

The callbacks functions must not invoke any functions of the solver, environment or task. Otherwise the
state of the solver and its outcome are undefined. The only exception is the possibility to retrieve an
integer solution, see below.

Retrieving mixed-integer solutions

If the mixed-integer optimizer is used, the callback will take place, in particular, every time an improved
integer solution is found. In that case it is possible to retrieve the current values of the best integer
solution from within the callback function. It can be useful for implementing complex termination
criteria for integer optimization. Note that there is a specialized callback class for retrieving only the
integer solution anyway.

7.7.1 Data callback

In the data callback MOSEK passes a callback code and values of all information items to a user-defined
function. The callback function is called, in particular, at the beginning of each iteration of the interior-
point optimizer. For the simplex optimizers iparam. log_sim_freq controls how frequently the call-back
is called. Note that the callback is done quite frequently, which can lead to degraded performance. If
the information items are not required, the simpler progress callback may be a better choice.

The callback is set by calling the method Task.set_InfoCallback. The callback function
must be implemented by extending the abstract class DataCallback and implementing the method
DataCallback.callback.

Non-zero return value of the callback function indicates that the optimizer should be terminated.

7.7.2 Progress callback

In the progress callback MOSEK provides a single code indicating the current stage of the optimization
process.
The callback is set by calling the method Task.set_Progress. The callback function must be imple-
mented by extending the abstract class Progress and implementing the method Progress.progress.
Non-zero return value of the callback function indicates that the optimizer should be terminated.

100

7.7.3 Integer solution callback

In this type of callback the user-defined callback function receives an updated solution every time the
mixed-integer optimizer improves the objective value. It can be useful for implementing complex termi-
nation criteria for integer optimization.

Syntax

The callback is set by calling the method Task.set_ItgSolutionCallback. The callback function must
be implemented by extending the abstract class ItgSolutionCallback and implementing the method
ItgSolutionCallback.callback.

7.7.4 Working example: Data callback

The following example defines a data callback function that prints out some of the information items. It
interrupts the solver after a certain time limit.

Listing 7.5: An example of a data callback function.

private static DataCallback makeUserCallback(final double maxtime) {
return new DataCallback() {
public int callback(callbackcode caller,

double[] douinf,

int [] intinf,

long[] lintinf) {
double opttime = 0.0;

int itrn;
double pobj, dobj, stime;

Formatter f = new Formatter(System.out);
switch (caller) {
case begin_intpnt:
f.format("Starting interior-point optimizer\n");

break;

case intpnt:
itrn = intinf[iinfitem.intpnt_iter.value 1;
pobj = douinf [dinfitem.intpnt_primal_obj.value];
dobj = douinf [dinfitem.intpnt_dual_obj.value];
stime = douinf[dinfitem.intpnt_time.value 1

opttime = douinf[dinfitem.optimizer_time.value 1];

f.format("Iterations: %-3d\n", itrn);
f.format(" Time: %6.2f(%.2f) ", opttime, stime);
f.format(" Primal obj.: %-18.6e Dual obj.: %-18.6e\n", pobj, dobj);
break;
case end_intpnt:
f.format("Interior-point optimizer finished.\n");
break;
case begin_primal_simplex:
f.format ("Primal simplex optimizer started.\n");

break;
case update_primal_simplex:
itrn = intinf[iinfitem.sim_primal_iter.value];
pobj = douinf [dinfitem.sim_obj.value 1;
stime = douinf[dinfitem.sim_time.value 1;
]

opttime = douinf[dinfitem.optimizer_time.value

f.format("Iterations: %-3d\n", itrn);
f.format(" Elapsed time: %6.2f(%.2f\n", opttime, stime);

(continues on next page)

101

(continued from previous page)

f.format(" Obj.: %-18.6e", pobj);
break;
case end_primal_simplex:
f.format("Primal simplex optimizer finished.\n");
break;
case begin_dual_simplex:
f.format("Dual simplex optimizer started.\n");

break;

case update_dual_simplex:
itrn = intinf[iinfitem.sim_dual_iter.value 1;
pobj = douinf [dinfitem.sim_obj.value 1;
stime = douinf[dinfitem.sim_time.value 1;
opttime = douinf[dinfitem.optimizer_time.value];

f.format("Iterations: %-3d\n", itrn);
f.format(" Elapsed time: %6.2f(%.2f)\n", opttime, stime);
f.format(" Obj.: %-18.6e\n", pobj);
break;
case end_dual_simplex:
f.format("Dual simplex optimizer finished.\n");
break;
case begin_bi:
f.format("Basis identification started.\n");
break;
case end_bi:
f.format("Basis identification finished.\n");
break;
default:
}
System.out.flush();
if (opttime >= maxtime)
// mosek is spending too much time. Terminate it.
return 1;

return O;
¥
};
}

Assuming that we have defined a task task and a time limit maxtime, the callback function is attached
as follows:

102

Listing 7.6: Attaching the data callback function to the model.

task.set_InfoCallback(makeUserCallback(maxtime)) ;

7.8 MOSEK OptServer

MOSEK provides an easy way to offload optimization problem to a remote server. This section demon-
strates related functionalities from the client side, i.e. sending optimization tasks to the remote server
and retrieving solutions.

Setting up and configuring the remote server is described in a separate manual for the OptServer.

7.8.1 Synchronous Remote Optimization

In synchronous mode the client sends an optimization problem to the server and blocks, waiting for the
optimization to end. Once the result has been received, the program can continue. This is the simplest
mode all it takes is to provide the address of the server before starting optimization. The rest of the
code remains untouched.

Note that it is impossible to recover the job in case of a broken connection.

Source code example

Listing 7.7: Using the OptServer in synchronous mode.

package com.mosek.example;
import mosek.*;

public class opt_server_sync {
public static void main (String[] args) {
if (args.length == 0) {
System.out.println ("Missing argument, syntax is:");
System.out.println (" opt_server_sync inputfile addr [certpath]");

} else {
String inputfile = args[0];
String addr = args([1];

String cert args.length < 3 7 null : args[2];

rescode trm;

try (Env env = new Env();
Task task = new Task(env, 0, 0)) {
task.set_Stream (mosek.streamtype.log,
new mosek.Stream() {
public void stream(String msg) { System.out.print(msg); }
I

// Load some data into the task
task.readdata (inputfile);

// Set OptServer URL
task.putoptserverhost (addr) ;

// Path to certificate, if any
if (cert != null)
task.putstrparam(sparam.remote_tls_cert_path, cert);

(continues on next page)

103

(continued from previous page)

// Optimize remotely, mo access token
trm = task.optimize ();

task.solutionsummary (mosek.streamtype.log);
}
}
X
b

7.8.2 Asynchronous Remote Optimization

In asynchronous mode the client sends a job to the remote server and the execution of the client code
continues. In particular, it is the client’s responsibility to periodically check the optimization status and,
when ready, fetch the results. The client can also interrupt optimization. The most relevant methods
are:

e Task.asyncoptimize : Offload the optimization task to a solver server.
e Task.asyncpoll : Request information about the status of the remote job.
e Task.asyncgetresult : Request the results from a completed remote job.

e Task.asyncstop : Terminate a remote job.

Source code example

In the example below the program enters in a polling loop that regularly checks whether the result of
the optimization is available.

Listing 7.8: Using the OptServer in asynchronous mode.

package com.mosek.example;
import mosek.*;

public class opt_server_async {
public static void main (String[] args) throws java.lang.Exception {
if (args.length == 0) {
System.out.println ("Missing argument, syntax is:");
System.out.println (" opt_server_async inputfile host:port numpolls");
} else {

String inputfile = args[0];

String addr = args[1];
int numpolls = Integer.parselnt(args([2]);
String cert = args.length < 4 7 null : args[3];

try (Env env = new Env()) {
String token;

try(Task task = new Task(env, 0, 0)) {
task.readdata (inputfile);
if (cert != null)
task.putstrparam(sparam.remote_tls_cert_path,cert);
token = task.asyncoptimize (addr,"");

}

System.out.printf ("Task token = %s\n", token);

(continues on next page)

104

(continued from previous page)

try(Task task = new Task(env, 0, 0)) {
System.out.println("Reading input file...");

task.readdata (inputfile);

if (cert !'= null)
task.putstrparam(sparam.remote_tls_cert_path,cert);

System.out.println("Setting log stream...");

task.set_Stream (mosek.streamtype.log,
new mosek.Stream() {

public void stream(String msg) { System.out.print(msg); }

b

long start = System.currentTimeMillis();

System.out.println("Starting polling loop...");

int i = 0;

while (true) {
Thread.sleep(100);

System.out.printf("poll %d...\n", i);

rescode trm[] = new rescodell];
rescode resp[] = new rescodel[1];

boolean respavailable = task.asyncpoll(addr,
nn
token,
resp,
trm) ;

System.out.println("polling done");

if (respavailable) {
System.out.println("solution available!");

task.asyncgetresult(addr,

nn
b

token,
resp,
trm) ;

task.solutionsummary (mosek.streamtype.log);
break;

3

i++;

B

if (i == numpolls) {

105

(continues on next page)

(continued from previous page)

System.out.println("max num polls reached, stopping host.");
task.asyncstop (addr, "", token);
break;

3

}
} catch (java.lang.Exception e) {
System.out.println("Something unexpected happend...");

throw e;

106

Chapter 8

Debugging Tutorials

This collection of tutorials contains basic techniques for debugging optimization problems using tools
available in MOSEK: optimizer log, solution summary, infeasibility report, command-line tools. It is
intended as a first line of technical help for issues such as: Why do I get solution status unknown and
how can I fix it? Why is my model infeasible while it shouldn’t be? Should I change some parameters?
Can the model solve faster? etc.

The major steps when debugging a model are always:

e Enable log output. See Sec. 7.4.1 for how to do it. In the simplest case:

Create a log handler function:

task.set_Stream(mosek.streamtype.log,

new mosek.Stream()

{
public void stream(String msg)
{

System.out.print (msg) ;

}

I9N

and include solution summary after the call to optimize:

task.optimize();
task.solutionsummary (mosek.streamtype.log) ;

e Run the optimization and analyze the log output, see Sec. 8.1. In particular:

— check if the problem setup (number of constraints/variables etc.) matches your expectation.

— check solution summary and solution status.
e Dump the problem to disk if necessary to continue analysis. See Sec. 7.4.3.

— use a human-readable text format, preferably *.ptf if you want to check the problem structure
by hand. Assign names to variables and constraints to make them easier to identify.

task.writedata("data.ptf");

— use the MOSEK native format *.task.gz when submitting a bug report or support question.

task.writedata("data.task.gz");

e Fix problem setup, improve the model, locate infeasibility or adjust parameters, depending on the
diagnosis.

See the following sections for details.

107

8.1 Understanding optimizer log

The optimizer produces a log which splits roughly into four sections:
1. summary of the input data,
2. presolve and other pre-optimize problem setup stages,
3. actual optimizer iterations,
4. solution summary.

In this tutorial we show how to analyze the most important parts of the log when initially debugging
a model: input data (1) and solution summary (4). For the iterations log (3) see Sec. 13.3.4 or Sec.
13.4.4.

8.1.1 Input data

If MOSEK behaves very far from expectations it may be due to errors in problem setup. The log file
will begin with a summary of the structure of the problem, which looks for instance like:

Problem
Name
Objective sense : minimize
Type : CONIC (conic optimization problem)
Constraints 1 234
Affine conic cons. : 5348
Disjunctive cons. : 0
Cones : 0
Scalar variables : 20693
Matrix variables : 0
Integer variables : 0

This can be consulted to eliminate simple errors: wrong objective sense, wrong number of variables
etc. Note that some modeling tools can introduce additional variables and constraints to the model and
perturb the model even further (such as by dualizing). In most MOSEK APIs the problem dimensions
should match exactly what the user specified.

If this is not sufficient a bit more information can be obtained by dumping the problem to a file (see
Sec. 8) and using the anapro option of any of the command line tools. It can also be done directly with
the function Task.analyzeproblem. This will produce a longer summary similar to:

** Variables
scalar: 20414 integer: O matrix: O
low: 2082 up: 5014 ranged: O free: 12892 fixed: 426

*x Constraints
all: 20413
low: 10028 up: O ranged: O free: 0 fixed: 10385

** Affine conic constraints (ACC)
QUAD: 1 dims: 2865: 1
RQUAD: 2507 dims: 3: 2507

** Problem data (numerics)

lcl nnz: 10028 min=2.09e-05 max=1.00e+00
|A] nnz: 597023 min=1.17e-10 max=1.00e+00
blx fin: 2508 min=-3.60e+09 max=2.75e+05
bux fin: 5440 min=0.00e+00 max=2.94e+08
blc fin: 20413 min=-7.61e+05 max=7.61e+05
buc fin: 10385 min=-5.00e-01 max=0.00e+00

(continues on next page)

108

(continued from previous page)

|FI nnz: 612301 min=8.29e-06 max=9.31e+01
gl nnz: 1203 min=5.00e-03 max=1.00e+00

Again, this can be used to detect simple errors, such as:
e Wrong type of conic constraint was used or it has wrong dimension.

e The bounds for variables or constraints are incorrect or incomplete. Check if you defined bound
keys for all variables. A variable for which no bound was defined is by default fixed at 0.

e The model is otherwise incomplete.
e Suspicious values of coefficients.
e For various data sizes the model does not scale as expected.

Finally saving the problem in a human-friendly text format such as LP or PTF (see Sec. 8) and
analyzing it by hand can reveal if the model is correct.

Warnings and errors

At this stage the user can encounter warnings which should not be ignored, unless they are well-
understood. They can also serve as hints as to numerical issues with the problem data. A typical
warning of this kind is

MOSEK warning 53: A numerically large upper bound value 2.9e+08 is specified for,
—variable 'absh[107]' (2613).

Warnings do not stop the problem setup. If, on the other hand, an error occurs then the model will
become invalid. The user should make sure to test for errors/exceptions from all API calls that set up
the problem and validate the data. See Sec. 7.3 for more details.

8.1.2 Solution summary

The last item in the log is the solution summary. In the Optimizer API it is only printed by invoking
the function Task.solutionsummary.

Continuous problem

Optimal solution

A typical solution summary for a continuous (linear, conic, quadratic) problem looks like:

Problem status : PRIMAL_AND_DUAL_FEASIBLE

Solution status : OPTIMAL

Primal. obj: 8.7560516107e+01 nrm: 1le+02 Viol. con: 3e-12 var: 0e+00
—acc: 3e-11

Dual. obj: 8.7560521345e+01 nrm: 1e+00 Viol. con: 5e-09 var: 9e-11 U
—acc: 0e+00

It contains the following elements:
e Problem and solution status. For details see Sec. 7.2.3.

e A summary of the primal solution: objective value, infinity norm of the solution vector and maximal
violations of variables and constraints of different types. The violation of a linear constraint such
as a’r < b is max(a’x — b,0). The violation of a conic constraint is the distance to the cone.

e The same for the dual solution.

The features of the solution summary which characterize a very good and accurate solution and a
well-posed model are:

e Status: The solution status is OPTIMAL.

109

e Duality gap: The primal and dual objective values are (almost) identical, which proves the
solution is (almost) optimal.

e Norms: Ideally the norms of the solution and the objective values should not be too large. This of
course depends on the input data, but a huge solution norm can be an indicator of issues with the
scaling, conditioning and/or well-posedness of the model. It may also indicate that the problem is
borderline between feasibility and infeasibility and sensitive to small perturbations in this respect.

e Violations: The violations are close to zero, which proves the solution is (almost) feasible. Observe
that due to rounding errors it can be expected that the violations are proportional to the norm
(nrm:) of the solution. It is rarely the case that violations are exactly zero.

Solution status UNKNOWN

A typical example with solution status UNKNOWN due to numerical problems will look like:

Problem status : UNKNOWN

Solution status : UNKNOWN

Primal. obj: 1.3821656824e+01 nrm: le+01 Viol. con: 2e-03 var: 0e+00 U
—acc: 0e+00

Dual. obj: 3.0119004098e-01 nrm: 5e+07 Viol. con: 4e-16 var: le-01 U
—acc: 0e+00

Note that:

e The primal and dual objective are very different.

e The dual solution has very large norm.

e There are considerable violations so the solution is likely far from feasible.

Follow the hints in Sec. 8.2 to resolve the issue.

Solution status UNKNOWN with a potentially useful solution

Solution status UNKNOWN does not necessarily mean that the solution is completely useless. It only means
that the solver was unable to make any more progress due to numerical difficulties, and it was not able
to reach the accuracy required by the termination criteria (see Sec. 13.3.2). Consider for instance:

Problem status : UNKNOWN

Solution status : UNKNOWN

Primal. obj: 3.4531019648e+04 nrm: 1le+05 Viol. con: 7e-02 var: 0e+00
—acc: 0e+00

Dual. obj: 3.4529720645e+04 nrm: 8e+03 Viol. con: 1e-04 var: 2e-04 U
—acc: 0e+00

Such a solution may still be useful, and it is always up to the user to decide. It may be a good enough
approximation of the optimal point. For example, the large constraint violation may be due to the fact
that one constraint contained a huge coefficient.

Infeasibility certificate

A primal infeasibility certificate is stored in the dual variables:

Problem status : PRIMAL_INFEASIBLE

Solution status : PRIMAL_INFEASIBLE_CER

Dual. obj: 2.9238975853e+02 nrm: 6e+02 Viol. con: 0e+00 var: le-11 U
—acc: 0e+00

It is a Farkas-type certificate as described in Sec. 12.2.2. In particular, for a good certificate:

e The dual objective is positive for a minimization problem, negative for a maximization problem.
Ideally it is well bounded away from zero.

110

e The norm is not too big and the violations are small (as for a solution).

If the model was not expected to be infeasible, the likely cause is an error in the problem formulation.
Use the hints in Sec. 8.1.1 and Sec. 8.3 to locate the issue.

Just like a solution, the infeasibility certificate can be of better or worse quality. The infeasibility
certificate above is very solid. However, there can be less clear-cut cases, such as for example:

Problem status : PRIMAL_INFEASIBLE

Solution status : PRIMAL_INFEASIBLE_CER

Dual. obj: 1.6378689238e-06 nrm: 6e+05 Viol. con: 7e-03 var: 2e-04 U
—acc: 0e+00

This infeasibility certificate is more dubious because the dual objective is positive, but barely so in
comparison with the large violations. It also has rather large norm. This is more likely an indication
that the problem is borderline between feasibility and infeasibility or simply ill-posed and sensitive to
tiny variations in input data. See Sec. 8.3 and Sec. 8.2.

The same remarks apply to dual infeasibility (i.e. unboundedness) certificates. Here the primal
objective should be negative a minimization problem and positive for a maximization problem.

8.1.3 Mixed-integer problem

Optimal integer solution

For a mixed-integer problem there is no dual solution and a typical optimal solution report will look as
follows:

Problem status : PRIMAL_FEASIBLE

Solution status : INTEGER_OPTIMAL

Primal. obj: 6.0111122960e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-14 U
—itg: be-15

The interpretation of all elements is as for a continuous problem. The additional field itg denotes
the maximum violation of an integer variable from being an exact integer.
Feasible integer solution

If the solver found an integer solution but did not prove optimality, for instance because of a time limit,
the solution status will be PRIMAL_FEASIBLE:

Problem status : PRIMAL_FEASIBLE

Solution status : PRIMAL_FEASIBLE

Primal. obj: 6.0114607792e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-13
—itg: 4e-15

In this case it is valuable to go back to the optimizer summary to see how good the best solution is:

31 35 1 0 6.0114607792e+06 6.0078960892e+06 0.06
- 4.1

Objective of best integer solution : 6.011460779193e+06
Best objective bound : 6.007896089225e+06

In this case the best integer solution found has objective value 6.011460779193e+06, the best proved
lower bound is 6.007896089225e+06 and so the solution is guaranteed to be within 0.06% from optimum.
The same data can be obtained as information items through an API. See also Sec. 13.4 for more details.

111

Infeasible problem

If the problem is declared infeasible the summary is simply

Problem status : PRIMAL_INFEASIBLE

Solution status : UNKNOWN

Primal. obj: 0.0000000000e+00 nrm: 0e+00 Viol. con: 0e+00 var: 0e+00
—itg: 0e+00

If infeasibility was not expected, consult Sec. 8.3.

8.2 Addressing numerical issues

The suggestions in this section should help diagnose and solve issues with numerical instability, in
particular UNKNOWN solution status or solutions with large violations. Since numerically stable models
tend to solve faster, following these hints can also dramatically shorten solution times.

We always recommend that issues of this kind are addressed by reformulating or rescaling the model,
since it is the modeler who has the best insight into the structure of the problem and can fix the cause
of the issue.

8.2.1 Formulating problems

Scaling

Make sure that all the data in the problem are of comparable orders of magnitude. This applies especially
to the linear constraint matrix. Use Sec. 8.1.1 if necessary. For example a report such as

|A] nnz: 597023 min=1.17e-6 max=2.21e+5

means that the ratio of largest to smallest elements in A is 10!, In this case the user should rescale
or reformulate the model to avoid such spread which makes it difficult for MOSEK to scale the problem
internally. In many cases it may be possible to change the units, i.e. express the model in terms of
rescaled variables (for instance work with millions of dollars instead of dollars, etc.).

Similarly, if the objective contains very different coefficients, say

maximize 10%2 + y

then it is likely to lead to inaccuracies. The objective will be dominated by the contribution from z and
y will become insignificant.

Removing huge bounds

Never use a very large number as replacement for co. Instead define the variable or constraint as
unbounded from below /above. Similarly, avoid artificial huge bounds if you expect they will not become
tight in the optimal solution.

Avoiding linear dependencies

As much as possible try to avoid linear dependencies and near-linear dependencies in the model. See
Example 8.3.

112

Avoiding ill-posedness

Avoid continuous models which are ill-posed: the solution space is degenerate, for example consists of a
single point (technically, the Slater condition is not satisfied). In general, this refers to problems which
are borderline between feasible and infeasible. See Example 8.1.

Scaling the expected solution

Try to formulate the problem in such a way that the expected solution (both primal and dual) is not
very large. Consult the solution summary Sec. 8.1.2 to check the objective values or solution norms.

8.2.2 Further suggestions

Here are other simple suggestions that can help locate the cause of the issues. They can also be used as
hints for how to tune the optimizer if fixing the root causes of the issue is not possible.

Remove the objective and solve the feasibility problem. This can reveal issues with the objective.

Change the objective or change the objective sense from minimization to maximization (if appli-
cable). If the two objective values are almost identical, this may indicate that the feasible set is
very small, possibly degenerate.

Perturb the data, for instance bounds, very slightly, and compare the results.

For linear problems: solve the problem using a different optimizer by setting the parameter iparam.
optimizer and compare the results.

Force the optimizer to solve the primal/dual versions of the problem by setting the parameter
iparam. intpnt_solve_form or iparam.sim_solve_form. MOSEK has a heuristic to decide
whether to dualize, but for some problems the guess is wrong an explicit choice may give better
results.

Solve the problem without presolve or some of its parts by setting the parameter iparam.
presolve_use, see Sec. 13.1.

Use different numbers of threads (iparam.num_threads) and compare the results. Very different
results indicate numerical issues resulting from round-off errors.

If the problem was dumped to a file, experimenting with various parameters is facilitated with the
MOSEK Command Line Tool or MOSEK Python Console Sec. 8.4.

8.2.3 Typical pitfalls

Example 8.1 (Ill-posedness). A toy example of this situation is the feasibility problem

(x—1)2<1, (z+1)°<1

whose only solution is * = 0 and moreover replacing any 1 on the right hand side by 1 — ¢ makes
the problem infeasible and replacing it by 1 4 € yields a problem whose solution set is an interval
(fully-dimensional). This is an example of ill-posedness.

Example 8.2 (Huge solution). If the norm of the expected solution is very large it may lead to
numerical issues or infeasibility. For example the problem

(107%,2,10%) € @3

may be declared infeasible because the expected solution must satisfy x > 5-10°.

113

Example 8.3 (Near linear dependency). Counsider the following problem:

minimize
subject to T1 + X2 = 1,
r3 + x4 = 1,
- — I3 = —1l+4e¢,
- To — T4 = —1,
T, o, T3, T4 Z O

If we add the equalities together we obtain:
0=¢

which is infeasible for any € # 0. Here infeasibility is caused by a linear dependency in the constraint
matrix coupled with a precision error represented by the ¢. Indeed if a problem contains linear
dependencies then the problem is either infeasible or contains redundant constraints. In the above
case any of the equality constraints can be removed while not changing the set of feasible solutions.
To summarize linear dependencies in the constraints can give rise to infeasible problems and therefore
it is better to avoid them.

Example 8.4 (Presolving very tight bounds). Next consider the problem

minimize
subject to x1 — 0.01x2 0,
T — 0.01.133 = O7
Tr3 — 001$4 = O7
1 > —1079,
T < 1079,
X4 > 10~4.

Now the MOSEK presolve will, for the sake of efficiency, fix variables (and constraints) that have
tight bounds where tightness is controlled by the parameter dparam.presolve_tol_z. Since the
bounds

1072 <23 <107

are tight, presolve will set 1 = 0. It easy to see that this implies x4 = 0, which leads to the incorrect
conclusion that the problem is infeasible. However a tiny change of the value 10~ makes the problem
feasible. In general it is recommended to avoid ill-posed problems, but if that is not possible then one
solution is to reduce parameters such as dparam.presolve_tol_z to say 1071, This will at least
make sure that presolve does not make the undesired reduction.

8.3 Debugging infeasibility

When solving an optimization problem one typically expects to get an optimal solution, but in some
cases, either by design, or (most frequently) due to an error in the formulation, the problem may become
infeasible (have no solution at all).

This section

e describes the intuitions behind infeasibility,

e helps to debug (unexpectedly) infeasible problems using the command line tool and by inspecting
infeasibility reports and problem data by hand,

e gives some hints for how to modify the formulation to identify the reasons for infeasibility.

If, instead, you want to fetch an infeasibility certificate directly using Optimizer API for Java, see
the tutorial in Sec. 6.13.

114

An infeasibility certificate is only available for continuous problems, however the hints in Sec. 8.3.4
apply to a large extent also to mixed-integer problems.

8.3.1 Numerical issues

Infeasible problem status may be just an artifact of numerical issues appearing when the problem is
badly-scaled, barely feasible or otherwise ill-conditioned so that it is unstable under small perturbations
of the data or round-off errors. This may be visible in the solution summary if the infeasibility certificate
has poor quality. See Sec. 8.1.2 for how to diagnose that and Sec. 8.2 for possible hints. Sec. 8.2.3
contains examples of situations which may lead to infeasibility for numerical reasons.

We refer to Sec. 8.2 for further information on dealing with those sort of issues. For the rest of this
section we concentrate on the case when the solution summary leaves little doubt that the problem solved
by the optimizer actually is infeasible.

8.3.2 Locating primal infeasibility

As an example of a primal infeasible problem consider minimizing the cost of transportation between a
number of production plants and stores: Each plant produces a fixed number of goods, and each store
has a fixed demand that must be met. Supply, demand and cost of transportation per unit are given in
Fig. 8.1.

Supply Demand
1100
200
200
1000 ‘
500
1000
500

Fig. 8.1: Supply, demand and cost of transportation.
The problem represented in Fig. 8.1 is infeasible, since the total demand
2300 = 1100 + 200 + 500 + 500
exceeds the total supply
2200 = 200 + 1000 + 1000

If we denote the number of transported goods from plant 7 to store j by z;;, the problem can be

115

formulated as the LP:

minimize r11 + 21‘12 + 51’23 + 2.’1324 + 31 + 21333 + T34

subject to sg: x11 + X192 < 200,
S1 ¢ 23 + T24 < 1000,
So x31 + w33 + w3 < 1000,
di: x11 + X331 = 1100,
dg . xr12 = 200,
ds : T2z + x33 = 500,
dy : To4a + x34 = 500,

Tij Z 0.

(8.1)

Solving problem (8.1) using MOSEK will result in an infeasibility status. The infeasibility certificate
is contained in the dual variables an can be accessed from an API. The variables and constraints with
nonzero solution values form an infeasible subproblem, which frequently is very small. See Sec. 12.1.2 or
Sec. 12.2.2 for detailed specifications of infeasibility certificates.

A short infeasibility report can also be printed to the log stream. It can be turned on by setting the
parameter iparam.infeas_report_auto to onoffkey.on. This causes MOSEK to print a report on
variables and constraints which are involved in infeasibility in the above sense, i.e. have nonzero values
in the certificate. The parameter iparam.infeas_report_level controls the amount of information
presented in the infeasibility report. The default value is 1. For the above example the report is

MOSEK PRIMAL INFEASIBILITY REPORT.
Problem status: The problem is primal infeasible

The following constraints are involved in the primal infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper

0 s0 NONE 2.000000e+002 0.000000e+000 1.000000e+000
2 s2 NONE 1.000000e+003 0.000000e+000 1.000000e+000
3 d1i 1.100000e+003 1.100000e+003 1.000000e+000 0.000000e+000
4 d2 2.000000e+002 2.000000e+002 1.000000e+000 0.000000e+000

The following bound constraints are involved in the infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper
8 x33 0.000000e+000 NONE 1.000000e+000 0.000000e+000
10 x34 0.000000e+000 NONE 1.000000e+000 0.000000e+000

The infeasibility report is divided into two sections corresponding to constraints and variables. It
is a selection of those lines from the problem solution which are important in understanding primal
infeasibility. In this case the constraints s0, s2, d1, d2 and variables x33, x34 are of importance because
of nonzero dual values. The columns Dual lower and Dual upper contain the values of dual variables
s, 85, s and s in the primal infeasibility certificate (see Sec. 12.1.2).

In our example the certificate means that an appropriate linear combination of constraints s0, s1
with coefficient s;, = 1, constraints d1 and d2 with coefficient sj, — sf = 0 — 1 = —1 and lower bounds
on x33 and x34 with coefficient —sf = —1 gives a contradiction. Indeed, the combination of the four
involved constraints is x33 4+ 34 < —100 (as indicated in the introduction, the difference between supply
and demand).

It is also possible to extract the infeasible subproblem with the command-line tool. For an infeasible
problem called infeas.1lp the command:

mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.lp -info rinfeas.lp

will produce the file rinfeas.bas.inf.1lp which contains the infeasible subproblem. Because of its
size it may be easier to work with than the original problem file.

Returning to the transportation example, we discover that removing the fifth constraint x5 = 200
makes the problem feasible. Almost all undesired infeasibilities should be fixable at the modeling stage.

116

8.3.3 Locating dual infeasibility

A problem may also be dual infeasible. In this case the primal problem is usually unbounded, meaning
that feasible solutions exists such that the objective tends towards infinity. For example, consider the
problem

maximize 200y; + 1000y + 1000y3 + 1100y, + 200ys5 + 500y + 500y~
subject to Y1+ya <L, y1+ys <2, yo+ys <5, y2+yr <2
ys+ys <1, ys+ys <2, ys+yr <1

Y1,Y2,y3 <0

which is dual to (8.1) (and therefore is dual infeasible). The dual infeasibility report may look as follows:

MOSEK DUAL INFEASIBILITY REPORT.
Problem status: The problem is dual infeasible

The following constraints are involved in the infeasibility.

Index Name Activity Objective Lower bound Uppery,
—bound

5 x33 -1.000000e+00 NONE 2.
—000000e+00

6 x34 -1.000000e+00 NONE 1.
—000000e+00

The following variables are involved in the infeasibility.

Index Name Activity Objective Lower bound Uppery,
—bound

0 yi -1.000000e+00 2.000000e+02 NONE 0.
—000000e+00

2 y3 -1.000000e+00 1.000000e+03 NONE 0.
—000000e+00

3 y4 1.000000e+00 1.100000e+03 NONE NONE
4 y5 1.000000e+00 2.000000e+02 NONE NONE

Interior-point solution summary
Problem status : DUAL_INFEASIBLE
Solution status : DUAL_INFEASIBLE_CER
Primal. obj: 1.0000000000e+02 nrm: 1e+00 Viol. con: 0e+00 var: 0e+00

In the report we see that the variables y1, y3, y4, y5 and two constraints contribute to infeasibility
with non-zero values in the Activity column. Therefore

(yla e 797) = (_17 07 _13 17 1) 070)
is the dual infeasibility certificate as in Sec. 12.1.2. This just means, that along the ray
(0,0,0,0,0,0,0) + t(y1,...,y7) = (—t,0,—t,t,t,0,0), t > 0,

which belongs to the feasible set, the objective value 100t can be arbitrarily large, i.e. the problem is
unbounded.
In the example problem we could

e Add a lower bound on y3. This will directly invalidate the certificate of dual infeasibility.

e Increase the objective coefficient of y3. Changing the coefficients sufficiently will invalidate the
inequality ¢”y* > 0 and thus the certificate.

117

8.3.4 Suggestions

Primal infeasibility

When trying to understand what causes the unexpected primal infeasible status use the following hints:

Remove the objective function. This does not change the infeasibility status but simplifies the
problem, eliminating any possibility of issues related to the objective function.

Remove cones, semidefinite variables and integer constraints. Solve only the linear part of the
problem. Typical simple modeling errors will lead to infeasibility already at this stage.

Consider whether your problem has some obvious necessary conditions for feasibility and examine
if these are satisfied, e.g. total supply should be greater than or equal to total demand.

Verify that coefficients and bounds are reasonably sized in your problem.

See if there are any obvious contradictions, for instance a variable is bounded both in the variables
and constraints section, and the bounds are contradictory.

Consider replacing suspicious equality constraints by inequalities. For instance, instead of 15 = 200
see what happens for x12 > 200 or x12 < 200.

Relax bounds of the suspicious constraints or variables.

For integer problems, remove integrality constraints on some/all variables and see if the problem
solves.

Remember that variables without explicitly initialized bounds are fixed at zero.

Form an elastic model: allow to violate constraints at a cost. Introduce slack variables and add
them to the objective as penalty. For instance, suppose we have a constraint

minimize Tz,

subject to aTz < b.

which might be causing infeasibility. Then create a new variable y and form the problem which
contains:

minimize o +y,
subject to aTx < b+y.

Solving this problem will reveal by how much the constraint needs to be relaxed in order to become
feasible. This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

If you think you have a feasible solution or its part, fix all or some of the variables to those values.
Presolve will propagate them through the model and potentially reveal more localized sources of
infeasibility.

Dump the problem in PTF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Dual infeasibility

When trying to understand what causes the unexpected dual infeasible status use the following hints:

Verify that the objective coefficients are reasonably sized.

Check if no bounds and constraints are missing, for example if all variables that should be nonneg-
ative have been declared as such etc.

Strengthen bounds of the suspicious constraints or variables.

Remember that constraints without explicitly initialized bounds are free (no bound).

118

e Form an series of models with decreasing bounds on the objective, that is, instead of objective

minimize ¢’z

solve the problem with an additional constraint such as

e =-10°
and inspect the solution to figure out the mechanism behind arbitrarily decreasing objective values.
This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

e Dump the problem in PTF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Please note that modifying the problem to invalidate the reported certificate does not imply that the
problem becomes feasible — the reason for infeasibility may simply move, resulting a problem that is
still infeasible, but for a different reason. More often, the reported certificate can be used to give a hint
about errors or inconsistencies in the model that produced the problem.

8.4 Python Console

The MOSEK Python Console is an alternative to the MOSEK Command Line Tool. It can be used for
interactive loading, solving and debugging optimization problems stored in files, for example MOSEK
task files. It facilitates debugging techniques described in Sec. 8.

8.4.1 Usage

The tool requires Python 3. The MOSEK interface for Python must be installed following the instal-
lation instructions for Python API or Python Fusion API. The easiest option is

pip install Mosek

The Python Console is contained in the file mosekconsole.py in the folder with MOSEK binaries. It
can be copied to an arbitrary location. The file is also available for download here (mosekconsole.py).
To run the console in interactive mode use

python mosekconsole.py

To run the console in batch mode provide a semicolon-separated list of commands as the second
argument of the script, for example:

python mosekconsole.py '"read data.task.gz; solve form=dual; writesol data"

The script is written using the MOSEK Python API and can be extended by the user if more specific
functionality is required. We refer to the documentation of the Python API.

8.4.2 Examples

To read a problem from data.task.gz, solve it, and write solutions to data.sol, data.bas or data.itg:

read data.task.gz; solve; writesol data

To convert between file formats:

read data.task.gz; write data.mps

To set a parameter before solving:

read data.task.gz; param INTPNT_CO_TOL_DFEAS 1e-9; solve"

To list parameter values related to the mixed-integer optimizer in the task file:

119

read data.task.gz; param MIO

To print a summary of problem structure:

read data.task.gz; anapro

To solve a problem forcing the dual and switching off presolve:

read data.task.gz; solve form=dual presolve=no

To write an infeasible subproblem to a file for debugging purposes:

read data.task.gz; solve; infsub; write inf.opf

8.4.3 Full list of commands

Below is a brief description of all the available commands. Detailed information about a specific command

cmd and its options can be obtained with

help cmd

Table 8.1: List of commands of the MOSEK Python Console.

Command

Description

help [command]

Print list of commands or info about a specific command

log filename

Save the session to a file

intro

Print MOSEK splashscreen

testlic Test the license system
read filename Load problem from file
reread Reload last problem file
solve Solve current problem
[options]

write filename

Write current problem to file

param [name

Set a parameter or get parameter values

[valuel]

paramdef Set all parameters to default values
paramdiff Show parameters with non-default values

info [name] Get an information item

anapro Analyze problem data

hist Plot a histogram of problem data

histsol Plot a histogram of the solutions

spy Plot the sparsity pattern of the data matrices
truncate Truncate small coefficients down to 0

epsilon

resobj [fac] Rescale objective by a factor

anasol Analyze solutions

removeitg Remove integrality constraints

removecones Remove all cones and leave just the linear part
infsub Replace current problem with its infeasible subproblem
writesol Write solution(s) to file(s) with given basename
basename

delsol Remove all solutions from the task

optserver Use an OptServer to optimize

[url]

exit Leave

120

Chapter 9

Advanced Numerical Tutorials

9.1 Solving Linear Systems Involving the Basis Matrix

A linear optimization problem always has an optimal solution which is also a basic solution. In an optimal
basic solution there are exactly m basic variables where m is the number of rows in the constraint matrix
A. Define

B c Rmxm

as a matrix consisting of the columns of A corresponding to the basic variables. The basis matrix B is
always non-singular, i.e.

det(B) # 0
or, equivalently, B! exists. This implies that the linear systems
Br=w (9.1)

and

each have a unique solution for all w.
MOSEK provides functions for solving the linear systems (9.1) and (9.2) for an arbitrary w.
In the next sections we will show how to use MOSEK to

e identify the solution basis,

e solve arbitrary linear systems.

9.1.1 Basis identification

To use the solutions to (9.1) and (9.2) it is important to know how the basis matrix B is constructed.
Internally MOSEK employs the linear optimization problem

T

maximize cx
subject to Ax —2¢ = 0,
c < ¢ < wc.

where
z¢ € R™ and x € R".
The basis matrix is constructed of m columns taken from

(A4 -1].

If variable x; is a basis variable, then the j-th column of A, denoted a. ;, will appear in B. Similarly,
if ¢ is a basis variable, then the i-th column of —I will appear in the basis. The ordering of the basis
variables and therefore the ordering of the columns of B is arbitrary. The ordering of the basis variables
may be retrieved by calling the function Task.initbastissolve. This function initializes data structures
for later use and returns the indexes of the basic variables in the array basis. The interpretation of the
basis is as follows. If we have

basis[i| < numcon

then the i-th basis variable is
x‘tc)asis[i]'

Moreover, the i-th column in B will be the i-th column of —I. On the other hand if

basis[i] > numcon,
then the i-th basis variable is the variable

Tbasis[i]—numcon

and the i-th column of B is the column

A, (vasis[i]—nuncon)-

For instance if basis[0] = 4 and numcon = 5, then since basis[0] < numcon, the first basis variable is z§.
Therefore, the first column of B is the fourth column of —I. Similarly, if basis[l] = 7, then the second
variable in the basis is Tyasis[1]—numcon = T2. Hence, the second column of B is identical to a. ».

An example

Consider the linear optimization problem:

minimize To + 21
subject to xo+2z; < 2,
To + X1 < 67 (94)
To,T1 Z 0.

Suppose a call to Task.initbasissolve returns an array basis so that

basis[0] =1,
basis[1] 2.

Then the basis variables are z§ and zy and the corresponding basis matrix B is

0 1
-1 1|
Please note the ordering of the columns in B .

Listing 9.1: A program showing how to identify the basis.

package com.mosek.example;
import mosek.*;

public class solvebasis {
public static void main(String[] args) {
// Since the value infinity ts never used, we define
// 'infinity' symbolic purposes only
double
infinity = 0;

(continues on next page)

122

(continued from previous page)

double[] ¢

{1.0, 1.0};

int [] ptrb = {0, 2};

int [] ptre = {2 , 4};
int [] asub = {0, 1,
0,
}
double[] aval = {1.0, 1.0,
2.0, 1.0
};

mosek.boundkey[] bkc = {
mosek.boundkey.up,
mosek.boundkey.up

};
double[] blc = { -infinity,
-infinity
};
double[] buc = {2.0,
6.0
}

mosek.boundkey[] bkx = {
mosek.boundkey.lo,
mosek.boundkey.lo

};

double[] blx = {0.0,
0.0
};

double[] bux = { +infinity,

+infinity

};

int numvar = 2;

int numcon = 2;

double[] w1l = {2.0, 6.0};
double[] w2 = {1.0, 0.0};

try (Env env = new Env();

Task task = new Task(env, 0, 0)) {

task.inputdata(numcon, numvar,

c,

0.0,
ptrb,
ptre,
asub,
aval,
bkc,
blc,
buc,

123

(continues on next page)

(continued from previous page)

bkx,

blx,

bux) ;
task.putobjsense(mosek.objsense.maximize) ;

System.out.println("optimize");

try {
task.optimize();

} catch (mosek.Warning e) {
System.out.println("Mosek warning:");
System.out.println(e.toString());

}

int[] basis = new int[numcon];
task.initbasissolve(basis);

//List basis wvariables corresponding to columns of B
int[] varsub = {0, 1};
for (int i = 0; i < numcon; i++) {
System.out.println("Basis i:" + i + " Basis:" + basis[i]);
if (basis[varsub[i]] < numcon) {
System.out.println("Basis variable no " + i + " is xc" +
basis[i]);
} else {
int index = basis[i] - numcon;
System.out.println("Basis variable no " + i + " is x" +
index) ;
}
}

// solve Bz = wl

// varsub contains indexz of non-zeros in b.
// 0On return b contains the solution z and
// varsub the tindex of the nmon-zeros in x.

int nz = 2;
nz = task.solvewithbasis(false, nz, varsub, wl);
System.out.println("nz =" + nz);

System.out.println("\nSolution to Bx = wil:\n");

for (int i = 0; i < nz; i++) {
if (basis[varsub[i]] < numcon) {

System.out.println("xc" + basis[varsub[i]l] + "=" + wi[varsub[ill);
} else {
int index = basis[varsubl[il]] - numcon;
System.out.println("x" + index + " = " + wil[varsub[i]]);
}
}
// Solve B~Tz = w2
nz = 2;
varsub[0] = 0;
varsub[1] = 1;

nz = task.solvewithbasis(true, nz, varsub, w2);

(continues on next page)

124

(continued from previous page)

System.out.println("\nSolution to B~Tx = w2:\n");

for (int i = 0; i < nz; i++) {
if (basis[varsub[i]] < numcon) {

System.out.println("xc" + basis[varsub[il] + " = " + w2[varsub[i]]);
} else {

int index = basis[varsubl[il]] - numcon;

System.out.println("x" + index + " =" + w2[varsubl[ill);
¥

3

} catch (mosek.Exception e)
/% Catch both Error and Warning */

{
System.out.println("An error was encountered");
System.out.println(e.getMessage());
throw e;
}
b

}

In the example above the linear system is solved using the optimal basis for (9.4) and the original
right-hand side of the problem. Thus the solution to the linear system is the optimal solution to the
problem. When running the example program the following output is produced.

basis[0] =1
Basis variable no 0 is xcl.
basis[1] = 2

Basis variable no 1 is xO.

Solution to Bx = b:

x0 = 2.000000e+00
xcl = -4.000000e+00

Solution to B"Tx = c:

x1 = -1.000000e+00
x0 = 1.000000e+00

Please note that the ordering of the basis variables is

)

and thus the basis is given by:

It can be verified that

is a solution to

9.1.2 Solving arbitrary linear systems

MOSEK can be used to solve an arbitrary (rectangular) linear system
Axr=1b

using the Task.solwvewithbasis function without optimizing the problem as in the previous example.
This is done by setting up an A matrix in the task, setting all variables to basic and calling the Task.
solvewithbasis function with the b vector as input. The solution is returned by the function.

An example

Below we demonstrate how to solve the linear system

][] o

with two inputs b = (1, —2) and b = (7,0) .

package com.mosek.example;
import mosek.*;

public class solvelinear {

static public void setup(
mosek.Task task,
double[] [] aval,

int [][] asub,
int[] ptrb,
int[] ptre,

int numvar,
int[] basis) {

// Since the walue infinity is never used, we define
// 'infinity' symbolic purposes only

double

infinity = 0;

mosek.stakey[] skx = new mosek.stakey [numvar];
mosek.stakey[] skc = new mosek.stakey [numvar];

for (int i = 0; i < numvar ; ++i) {
skx[i] = mosek.stakey.bas;
skc[i] = mosek.stakey.fix;

|

}

task.appendvars (numvar) ;
task.appendcons (numvar) ;

for (int i = 0; i < numvar ; ++i)
task.putacol(i,
asub[i],
avallil);

for (int i = 0 ; i1 < numvar ; ++i)
task.putconbound(
i,
mosek.boundkey.fx,
0.0,
0.0);

(continues on next page)

126

(continued from previous page)

3

for (int 1 = 0 ; i < numvar ; ++i)
task.putvarbound(
i,
mosek.boundkey.fr,
-infinity,
infinity);
/* Define a basic solution by specifying
status keys for wvartables & constraints. */

task.deletesolution(mosek.soltype.bas);

task.putskcslice(mosek.soltype.bas, 0, numvar, skc);
task.putskxslice(mosek.soltype.bas, 0, numvar, skx);

task.initbasissolve(basis);

public static void main (String[] argv) {

int numcon = 2;

int numvar = 2;
double[][] aval = {

{-1.013},

{ 1.0, 1.0 }
}s
int[]1[] asub = {

{ 113,

{ 0, 1}
};
int [] ptrb = new int[] {0, 1};
int [] ptre = new int[] {1, 3};
int [] bsub = new int[numvar];
doublel] b = new double[numvar] ;
int[] basis = new int[numvar];
try (Env env = new Env();

Task task = new Task(env, 0, 0)) {
// Directs the log task stream to the user specified
// method task_msg_obj.streamCB
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()

{ public void stream(String msg) { System.out.print(msg); }});

/% Put 4 matriz and factor 4.
Call this function only once for a given task. */

setup(
task,
aval,
asub,
ptrb,
ptre,
numvar,

127

(continues on next page)

(continued from previous page)

basis

)

/* now solve Ths */

b[0] = 1;

b[1] = -2;

bsub[0] = 0;

bsub[1] = 1;

int nz;

nz = task.solvewithbasis(false, 2, bsub, b);
System.out.println("\nSolution to Bx = b:\n");

/* Print solution and show correspondents
to original variables in the problem */
for (int i = 0; i < nz; ++i) {
if (basis[bsub[il] < numcon)
System.out.println ("This should never happen");

else
System.out.println("x" + (basis[bsub[i]] - numcon) + " = " + b[bsub[i]]);
¥
b[0] = 7;
bsub[0] = 0;

nz = task.solvewithbasis(false, 1, bsub, b);

System.out.println ("\nSolution to Bx = b:\n");
/* Print solution and show correspondents
to original variables in the problem */
for (int i = 0; i < nz; ++i) {
if (basis[bsub[i]] < numcon)
System.out.println("This should never happen");
else
System.out.println("x" + (basis[bsub[i]] - numcon) + " = " + bl[bsub[i]]);

The most important step in the above example is the definition of the basic solution, where we define
the status key for each variable. The actual values of the variables are not important and can be selected
arbitrarily, so we set them to zero. All variables corresponding to columns in the linear system we want
to solve are set to basic and the slack variables for the constraints, which are all non-basic, are set to
their bound.

The program produces the output:

Solution to Bx = b:

x1 =1
x0 = 3
Solution to Bx = b:
x1 =7
x0 =7

128

9.2 Calling BLAS/LAPACK Routines from MOSEK

Sometimes users need to perform linear algebra operations that involve dense matrices and vectors.
Also MOSEK extensively uses high-performance linear algebra routines from the BLAS and LAPACK
packages and some of these routines are included in the package shipped to the users.

The MOSEK versions of BLAS/LAPACK routines:

e use MOSEK data types and return value conventions,
e preserve the BLAS/LAPACK naming convention.

Therefore the user can leverage on efficient linear algebra routines, with a simplified interface, with
no need for additional packages.

List of available routines

Table 9.1: BLAS routines available.

BLAS Name | MOSEK function | Math Expression
AXPY Env. azpy y=axr+vy

DOT Env.dot Ty

GEMV Env.gemv y = Az + By
GEMM Env.gemm C =aAB+ pC
SYRK Env.syrk C = aAAT + BC

Table 9.2: LAPACK routines available.

LAPACK Name | MOSEK function | Description

POTRF Env.potrf Cholesky factorization of a semidefinite symmetric matrix
SYEVD Env.syevd Eigenvalues and eigenvectors of a symmetric matrix
SYEIG Env.syeig Eigenvalues of a symmetric matrix

Source code examples
In Listing 9.2 we provide a simple working example. It has no practical meaning except showing how to

organize the input and call the methods.

Listing 9.2: Calling BLAS and LAPACK routines from Optimizer
API for Java.

package com.mosek.example;

public class blas_lapack {
static final int n = 3, m = 2, k = 3;

public static void main (String[] args) {

double alpha = 2.0, beta = 0.5;
double[] x = {1., 1., 1.};
double[] y = {1., 2., 3.3};
double[] z = {1.0, 1.0};

/*4 has m=2 rows and k=3 cols*/

double[] A ={1., 1., 2., 2., 3., 3.};

/*B has k=3 rows and n=3 cols*/

double[] B={1., 1., 1., 1., 1., 1., 1., 1., 1.};
double[] ¢ ={ 1., 2., 3., 4., 5., 6.3};

double[] D = {1.0, 1.0, 1.0, 1.0};

(continues on next page)

129

(continued from previous page)

double[] Q
double[] v

{1.0, 0.0, 0.0, 2.0};
new double[2];

double[] xy = {0.};

try (mosek.Env env = new mosek.Env()) {
/* routines*/

env.dot(n, x, y, Xy);
env.axpy(n, alpha, x, y);
env.gemv(mosek.transpose.no, m, n, alpha, A, x, beta, z);
env.gemm(mosek.transpose.no, mosek.transpose.no, m, n, k, alpha, A, B, beta, C);
env.syrk(mosek.uplo.lo, mosek.transpose.no, m, k, alpha, A, beta, D);
/% LAPACK routines*/
env.potrf (mosek.uplo.lo, m, Q);
env.syeig(mosek.uplo.lo, m, Q, v);
env.syevd(mosek.uplo.lo, m, Q, v);
} catch (mosek.Exception e) {

System.out.println ("An error/warning was encountered");
System.out.println (e.toString());

9.3 Computing a Sparse Cholesky Factorization
Given a positive semidefinite symmetric (PSD) matrix

A e R
it is well known there exists a matrix L such that

A=LL".

If the matrix L is lower triangular then it is called a Cholesky factorization. Given A is positive definite
(nonsingular) then L is also nonsingular. A Cholesky factorization is useful for many reasons:

e A system of linear equations Ax = b can be solved by first solving the lower triangular system
Ly = b followed by the upper triangular system LTz = y.

e A quadratic term 7 Az in a constraint or objective can be replaced with yTy for y = LTz,

potentially leading to a more robust formulation (see [And13]).

Therefore, MOSEK provides a function that can compute a Cholesky factorization of a PSD matrix.
In addition a function for solving linear systems with a nonsingular lower or upper triangular matrix is
available.

In practice A may be very large with n is in the range of millions. However, then A is typically sparse
which means that most of the elements in A are zero, and sparsity can be exploited to reduce the cost

130

of computing the Cholesky factorization. The computational savings depend on the positions of zeros in
A. For example, below a matrix A is given together with a Cholesky factor up to 5 digits of accuracy:

4 1 11 2.0000 0 0 0
1100 0.5000 0.8660 0 0

A= 101 0|’ L= 0.5000 —0.2887 0.8165 0 ' (9:6)
1 0 0 1 0.5000 —0.2887 —0.4082 0.7071

However, if we symmetrically permute the rows and columns of A using a permutation matrix P

0100 100 1
oo 10 o r |0 101
P=lo oo 1| A=PAP =109 091 1]

1000 111 4

then the Cholesky factorization of A’ = L'L'T is

L' =

— o o =
e =
-0 O
_ o oo

which is sparser than L.

Computing a permutation matrix that leads to the sparsest Cholesky factorization or the minimal
amount of work is NP-hard. Good permutations can be chosen by using heuristics, such as the minimum
degree heuristic and variants. The function Env.computesparsecholesky provided by MOSEK for
computing a Cholesky factorization has a build in permutation aka. reordering heuristic. The following
code illustrates the use of Env. computesparsecholesky and Env.sparsetriangularsolvedense.

Listing 9.3: How to use the sparse Cholesky factorization routine
available in MOSEK.

env.computesparsecholesky (0, //Mosek chooses number of threads
1, //Apply reordering heuristic
1.0e-14, //Singularity tolerance
anzc, aptrc, asubc, avalc,
perm, diag,
lnzc, lptrc, lensubnval, lsubc, lvalc);

printsparse(n, perm[0], diag[0], 1lnzc[0], lptrc[0], lensubnval[0], lsubc[0],,,
—1valc[0]);

/* Permuted b 1s stored as x=. */
double[] x = new doubleln];
for (int i = 0; i1 < n; i++) x[i] = blperm[0] [i]];

/*Compute inv(L)*z.*/

env.sparsetriangularsolvedense (mosek.transpose.no, lnzc[0], lptrc[0],
—~1subc[0], 1lvalc[0], x);

/*Compute inv(L"T)*x.*/

env.sparsetriangularsolvedense (mosek.transpose.yes, lnzc[0], lptrc[0],
—1subc[0], lvalc[O], x);

System.out.print("\nSolution A x = b, x = [");
for (int i = 0; 1 < n; i++)
for (int j = 0; j < mn; j++) if (perm[0][j] == i) System.out.print(x[j] + "
‘4}");

System.out.println("]\n");

We can set up the data to recreate the matrix A from (9.6):

131

//0bserve that anzc, aptrc, asubc and avalc only specify the lower triangular,

—part.
int n = 4,
int[] anzc ={4, 1, 1, 1};
int[] asubc =q{0, 1, 2, 3, 1, 2, 3};
long[] aptrc = {0, 4, 5, 6};
double[] avalc ={4.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};

double[] b

{13.0, 3.0, 4.0, 5.0};

and we obtain the following output:

Example with positive definite A.
P=[3201]

diag(D) = [0.00 0.00 0.00 0.00]
L=

1.00 0.00
0.00 1.00
1.00 1.00
0.00 0.00

~N PDd O O
= = O O
o O O O

o

O r OO
~N O O O
o O

[uy

Solution A x = b, x = [1.00 2.00 3.00 4.00]

The output indicates that with the permutation matrix

-0 o o
o= O O
S O O
o o= O

there is a Cholesky factorization PAPT = LLT, where

1 0 0 0
I — 0 1 0 0
1 1 1.4142 0
0 0 0.7071 0.7071

The remaining part of the code solvers the linear system Az = b for b = [13,3,4,5]7. The solution is
reported to be x = [1,2, 3, 4], which is correct.

The second example shows what happens when we compute a sparse Cholesky factorization of a
singular matrix. In this example A is a rank 1 matrix

111 1 117
A=|1 1 1| =|1 1 (9.7)
1 1 1 1 1
int n = 3;
int[] anzc = {3, 2, 13};
int[] asubc = {0, 1, 2, 1, 2, 2};
long[] aptrc = {0, 3, 5, };
double[] avalc = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0};

Now we get the output

P =
diag(D
L=

1.00e+00 0.00e+00 0.00e+00
1.00e+00 1.00e-07 0.00e+00
1.00e+00 0.00e+00 1.00e-07

021]
) = [0.00e+00 1.00e-14 1.00e-14]

132

which indicates the decomposition

PAPT =LLT - D

where
10 0 1 0 0 1 0 0
P=|00 1|, L=|1 1007 0 ., D=0 107 0
010 1 0 1077 0 0 1074

Since A is only positive semdefinite, but not of full rank, some of diagonal elements of A are boosted
to make it truely positive definite. The amount of boosting is passed as an argument to Env.
computesparsecholesky, in this case 10714, Note that

PAPT =LLT - D

where D is a small matrix so the computed Cholesky factorization is exact of slightly perturbed A. In
general this is the best we can hope for in finite precision and when A is singular or close to being
singular.

We will end this section by a word of caution. Computing a Cholesky factorization of a matrix that
is not of full rank and that is not suffciently well conditioned may lead to incorrect results i.e. a matrix
that is indefinite may declared positive semidefinite and vice versa.

133

Chapter 10

Technical guidelines

This section contains some more in-depth technical guidelines for Optimizer API for Java, not strictly
necessary for basic use of MOSEK.

10.1 Memory management and garbage collection

Users who experience memory leaks, especially:
e memory usage not decreasing after the solver terminates,
e memory usage increasing when solving a sequence of problems,

should make sure that the Task objects are properly garbage collected. Since each Task object links
to a MOSEK task resource in a linked library, it is sometimes the case that the garbage collector is
unable to reclaim it automatically. This means that substantial amounts of memory may be leaked. For
this reason it is very important to make sure that the Task object is disposed of, either automatically
or manually, when it is not used any more.

It is recommended to use a construction such as

try {
env = new mosek.Env();
task = new mosek.Task(env, 0,0);

/7
// ... optimization ...
VA
}
finally {
if (task != null) task.dispose();
if (env != null) env.dispose();
}

This construction assures that the Task. dispose method is called when the object goes out of scope,
even if an exception occurred. If this approach cannot be used, e.g. if the Task object is returned by a
factory function, one should explicitly call the Task. dispose method when the object is no longer used.
The same applies to the environment object.

Both classes implement the Closeable interface.

134

10.2 Names

All elements of an optimization problem in MOSEK (objective, constraints, variables, etc.) can be given
names. Assigning meaningful names to variables and constraints makes it much easier to understand
and debug optimization problems dumped to a file. On the other hand, note that assigning names can
substantially increase setup time, so it should be avoided in time-critical applications.

Names of various elements of the problem can be set and retrieved using various functions listed in
the Names section of Sec. 15.2.

Note that file formats impose various restrictions on names, so not all names can be written verbatim
to each type of file. If at least one name cannot be written to a given format then generic names and
substitutions of offending characters will be used when saving to a file, resulting in a transformation of
all names in the problem. See Sec. 16.

10.3 Multithreading

Thread safety

Sharing a task between threads is safe, as long as it is not accessed from more than one thread at a time.
Multiple tasks can be created and used in parallel without any problems.

Parallelization

The interior-point and mixed-integer optimizers in MOSEK are parallelized. By default MOSEK will
automatically select the number of threads. However, the maximum number of threads allowed can
be changed by setting the parameter tparam.num_threads and related parameters. This should never
exceed the number of cores.

The speed-up obtained when using multiple threads is highly problem and hardware dependent. We
recommend experimenting with various thread numbers to determine the optimal settings. For small
problems using multiple threads may be counter-productive because of the associated overhead. Note
also that not all parts of the algorithm can be parallelized, so there are times when CPU utilization is
only 1 even if more cores are available.

Determinism

By default the optimizer is run-to-run deterministic, which means that it will return the same answer
each time it is run on the same machine with the same input, the same parameter settings (including
number of threads) and no time limits.

Setting the number of threads

The number of threads the optimizer uses can be changed with the parameter iparam.num_threads.

10.4 Efficiency

Although MOSEK is implemented to handle memory efficiently, the user may have valuable knowledge
about a problem, which could be used to improve the performance of MOSEK This section discusses
some tricks and general advice that hopefully make MOSEK process your problem faster.

135

Reduce the number of function calls and avoid input loops

For example, instead of setting the entries in the linear constraint matrix one by one (Task.putaij)
define them all at once (Task.putaijlist) or in convenient large chunks (Task.putacollist etc.)
Use one environment only

If possible share the environment between several tasks. For most applications you need to create only
a single environment.

Read part of the solution

When fetching the solution, data has to be copied from the optimizer to the user’s data structures.
Instead of fetching the whole solution, consider fetching only the interesting part (see for example Task.
getzzslice and similar).

Avoiding memory fragmentation

MOSEK stores the optimization problem in internal data structures in the memory. Initially MOSEK
will allocate structures of a certain size, and as more items are added to the problem the structures are
reallocated. For large problems the same structures may be reallocated many times causing memory
fragmentation. One way to avoid this is to give MOSEK an estimated size of your problem using the
functions:

e Task.putmaznumvar. Estimate for the number of variables.

e Task.putmaznumcon. Estimate for the number of constraints.

e Task.putmaznumbarvar. Estimate for the number of semidefinite matrix variables.
e Task.putmaznumanz. Estimate for the number of non-zeros in A.

e Task.putmaznumgnz. Estimate for the number of non-zeros in the quadratic terms.

None of these functions changes the problem, they only serve as hints. If the problem ends up growing
larger, the estimates are automatically increased.

Do not mix put- and get- functions

MOSEK will queue put- requests internally until a get- function is called. If put- and get- calls are
interleaved, the queue will have to be flushed more frequently, decreasing efficiency.
In general get- commands should not be called often (or at all) during problem setup.

Use the LIFO principle

When removing constraints and variables, try to use a LIFO (Last In First Out) approach. MOSEK
can more efficiently remove constraints and variables with a high index than a small index.

An alternative to removing a constraint or a variable is to fix it at 0, and set all relevant coefficients
to 0. Generally this will not have any impact on the optimization speed.

Add more constraints and variables than you need (now)

The cost of adding one constraint or one variable is about the same as adding many of them. Therefore,
it may be worthwhile to add many variables instead of one. Initially fix the unused variable at zero, and
then later unfix them as needed. Similarly, you can add multiple free constraints and then use them as
needed.

136

Do not remove basic variables

When performing re-optimizations, instead of removing a basic variable it may be more efficient to fix
the variable at zero and then remove it when the problem is re-optimized and it has left the basis. This
makes it easier for MOSEK to restart the simplex optimizer.

10.5 The license system

MOSEK is a commercial product that always needs a valid license to work. MOSEK uses a third
party license manager to implement license checking. The number of license tokens provided determines
the number of optimizations that can be run simultaneously.

By default a license token remains checked out from the first optimization until the end of the
MOSEK session, i.e.

e a license token is checked out when Task.optimize is first called, and
e it is returned when the MOSEK environment is deleted.

Calling Task.optimize from different threads using the same MOSEK environment only consumes
one license token.

Starting the optimization when no license tokens are available will result in an error.

Default behaviour of the license system can be changed in several ways:

e Setting the parameter iparam.cache_license to onoffkey.off will force MOSEK to return
the license token immediately after the optimization completed.

e Setting the license wait flag with the parameter iparam. license_wait will force MOSEK to wait
until a license token becomes available instead of returning with an error. The wait time between
checks can be set with Env.putlicensewait.

e Additional license checkouts and checkins can be performed with the functions Env.
checkinlicense and Env.checkoutlicense.

e Usually the license system is stopped automatically when the MOSEK library is unloaded. How-
ever, when the user explicitly unloads the library (using e.g. FreeLibrary), the license system
must be stopped before the library is unloaded. This can be done by calling the function Env.
licensecleanup as the last function call to MOSEK.

10.6 Deployment

When redistributing a Java application using the MOSEK Optimizer API for Java 10.0.39, the following
shared libraries from the MOSEK bin folder are required:

e Linux : libmosek64, libmosekxx, libmosekjava, 1libtbb,
e Windows : mosek64, mosekxx, mosekjava, tbb, svml_dispmd,
e OSX : libmosek64, 1ibmosekxx, libmosekjava, 1ibtbb,

and the JAR file mosek.jar. By default the Java interface will look for the binaries in the same
directory as the . jar file, so they should be placed in the same directory when redistributing. They can
also be pre-loaded with loadLibrary.

137

Chapter 11

Case Studies

In this section we present some case studies in which the Optimizer API for Java is used to solve real-life
applications. These examples involve some more advanced modeling skills and possibly some input data.
The user is strongly recommended to first read the basic tutorials of Sec. 6 before going through these
advanced case studies.

e Portfolio Optimization

— Keywords: Markowitz model, variance, risk, efficient frontier, factor model, transaction cost,
market impact cost

— Type: Conic Quadratic, Power Cone, Mixed-Integer Optimization

e Logistic regression

— Keywords: machine learning, logistic regression, classifier, log-sum-exp, softplus, regulariza-
tion

— Type: Exponential Cone, Quadratic Cone
Concurrent Optimizer

— Keywords: Concurrent optimization

— Type: Linear Optimization, Mixed-Integer Optimization

11.1 Portfolio Optimization

In this section the Markowitz portfolio optimization problem and variants are implemented using Opti-
mizer API for Java.

Familiarity with Sec. 6.2 is recommended to follow the syntax used to create affine conic constraints
(ACCs) throughout all the models appearing in this case study.

Basic Markowitz model
Efficient frontier

Factor model and efficiency
Market impact costs
Transaction costs

Cardinality constraints

138

11.1.1 The Basic Model

The classical Markowitz portfolio optimization problem considers investing in n stocks or assets held
over a period of time. Let z; denote the amount invested in asset j, and assume a stochastic model
where the return of the assets is a random variable r with known mean

uw=Er
and covariance

S=E(r-pr-m

T2 with mean (or expected return)

The return of the investment is also a random variable y = r
Ey= "z
and variance
E(y — Ey)? = 27>z
The standard deviation
VaTSe

is usually associated with risk.

The problem facing the investor is to rebalance the portfolio to achieve a good compromise between

risk and expected return, e.g., maximize the expected return subject to a budget constraint and an upper
bound (denoted 7) on the tolerable risk. This leads to the optimization problem

maximize 'z
subject to eTe = w+elal,
T < A2 (11.1)
z > 0.

The variables x denote the investment i.e. x; is the amount invested in asset j and x? is the initial
holding of asset j. Finally, w is the initial amount of cash available.

A popular choice is 2% = 0 and w = 1 because then z; may be interpreted as the relative amount of
the total portfolio that is invested in asset j.

Since e is the vector of all ones then

n
T — .
e r= g T;
Jj=1

is the total investment. Clearly, the total amount invested must be equal to the initial wealth, which is

w + eTxO.

This leads to the first constraint

eer=w-+e x.

The second constraint

tTYr < A2

139

ensures that the variance, is bounded by the parameter 2. Therefore, v specifies an upper bound of
the standard deviation (risk) the investor is willing to undertake. Finally, the constraint

Z‘JZO

excludes the possibility of short-selling. This constraint can of course be excluded if short-selling is
allowed.

The covariance matrix X is positive semidefinite by definition and therefore there exist a matrix
G € R™** such that

¥ =GGT. (11.2)

In general the choice of G is not unique and one possible choice of G is the Cholesky factorization of X.
However, in many cases another choice is better for efficiency reasons as discussed in Sec. 11.1.3. For a
given G we have that

'Y = 2TGGTz
= |l67a|”.
Hence, we may write the risk constraint as
3> |6

or equivalently
(’Y,GTIE) c Qk-i-l7

where QF*! is the (k + 1)-dimensional quadratic cone. Note that specifically when G is derived using
Cholesky factorization, k = n.
Therefore, problem (11.1) can be written as

maximize ula
subject to eTe = w+elal,
(’)/ GT.CL') c Qk+1 (11'3)
z > 0,

which is a conic quadratic optimization problem that can easily be formulated and solved with Optimizer
API for Java. Subsequently we will use the example data
= [0.0720,0.1552,0.1754,0.0898, 0.4290, 0.3929, 0.3217,0.1838]T

and

[0.0946 0.0374 0.0349 0.0348 0.0542 0.0368 0.0321 0.0327 |
0.0374 0.0775 0.0387 0.0367 0.0382 0.0363 0.0356 0.0342
0.0349 0.0387 0.0624 0.0336 0.0395 0.0369 0.0338 0.0243
0.0348 0.0367 0.0336 0.0682 0.0402 0.0335 0.0436 0.0371
0.0542 0.0382 0.0395 0.0402 0.1724 0.0789 0.0700 0.0501
0.0368 0.0363 0.0369 0.0335 0.0789 0.0909 0.0536 0.0449
0.0321 0.0356 0.0338 0.0436 0.0700 0.0536 0.0965 0.0442

| 0.0327 0.0342 0.0243 0.0371 0.0501 0.0449 0.0442 0.0816

Using Cholesky factorization, this implies

[0.3076 0.1215 0.1134 0.1133 0.1763 0.1197 0.1044 0.1064]
0. 0.2504 0.0995 0.0916 0.0669 0.0871 0.0917 0.0851
0. 0.1991 0.0587 0.0645 0.0737 0.0647 0.0191

0.
ar — 0. 0. 0. 0.2088 0.0493 0.0365 0.0938 0.0774
- 0. 0. 0. 0. 0.3609 0.1257 0.1016 0.0571
0. 0. 0. 0. 0. 0.2155 0.0566 0.0619
0. 0. 0. 0. 0. 0. 0.2251 0.0333
0. 0. 0. 0. 0. 0. 0. 0.2202

In Sec. 11.1.3, we present a different way of obtaining G based on a factor model, that leads to more
efficient computation.

140

Why a Conic Formulation?

Problem (11.1) is a convex quadratically constrained optimization problem that can be solved directly
using MOSEK. Why then reformulate it as a conic quadratic optimization problem (11.3)? The main
reason for choosing a conic model is that it is more robust and usually solves faster and more reliably. For
instance it is not always easy to numerically validate that the matrix ¥ in (11.1) is positive semidefinite
due to the presence of rounding errors. It is also very easy to make a mistake so 3 becomes indefinite.
These problems are completely eliminated in the conic formulation.

Moreover, observe the constraint

16" <~
more numerically robust than
tT8r <42

for very small and very large values of 7. Indeed, if say v ~ 10* then 72 ~ 10, which introduces a
scaling issue in the model. Hence, using conic formulation we work with the standard deviation instead
of variance, which usually gives rise to a better scaled model.

Example code

Listing 11.1 demonstrates how the basic Markowitz model (11.3) is implemented.

Listing 11.1: Code implementing problem (11.3).

package com.mosek.example;
public class portfolio_1_basic {

public static void main (String[] args) {
// Since the walue infinity is never used, we define
// 'infinity' for symbolic purposes only
int n = 8;
double infinity = O;
double gamma = 36.0;
double[] mu = {0.07197349, 0.15518171, 0.17535435, 0.0898094 , 0.42895777, O.
39291844, 0.32170722, 0.18378628};
double[][] GT = {

{0.30758, 0.12146, 0.11341, 0.11327, 0.17625, 0.11973, 0.10435, 0.10638},
{0. , 0.25042, 0.09946, 0.09164, 0.06692, 0.08706, 0.09173, 0.08506},
{o. , 0. , 0.19914, 0.05867, 0.06453, 0.07367, 0.06468, 0.01914},
{o. , 0. , 0. , 0.20876, 0.04933, 0.03651, 0.09381, 0.07742},
{o. , 0. , 0. , 0 , 0.36096, 0.12574, 0.10157, 0.0571 1},
{o. , 0. , 0. , O , O. , 0.21552, 0.05663, 0.06187},
{0. , 0. , 0. , O , 0. , 0. , 0.22514, 0.03327},
{o. , 0. , 0. , O , 0. , 0. , 0. , 0.2202 }

};

int k = GT.length;

double[] x0 = {8.0, 5.0, 3.0, 5.0, 2.0, 9.0, 3.0, 6.0};
double w = 59;

double totalBudget;

//0ffset of wariables into the API wariable.
int numvar = n;
int voff_x = 0;

// Constraints offsets
int numcon = 1;

(continues on next page)

141

(continued from previous page)

int coff_bud = O;

try (mosek.Env env = new mosek.Env ();
mosek.Task task = new mosek.Task (env, 0, 0))

{
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }}
)3

// Holding variable z of length n
// No other auziliary variables are needed in this formulation
task.appendvars (numvar) ;

// Setting up vartable
for (int j = 0; j < n; ++j)
{
/* Optionally we can give the variables names */
task.putvarname(voff_x + j, "x[" + (j + 1) + "1");
/% No short-selling - "l = 0, z"u = inf */
task.putvarbound(voff_x + j, mosek.boundkey.lo, 0.0, infinity);
}

// One linear constraint: total budget
task.appendcons (1) ;
task.putconname (coff_bud, "budget");
for (int j = 0; j < nj; ++j)
{
/* Coefficients in the first row of A */
task.putaij(coff_bud, voff_x + j, 1.0);
}
totalBudget = w;
for (int i = 0; i < n; ++1i)
{
totalBudget += x0[i];
}
task.putconbound(coff_bud, mosek.boundkey.fx, totalBudget, totalBudget);

// Input (gamma, GTz) in the AFE (affine expression) storage

// We need k+1 rows

task.appendafes(k + 1);

// The first affine expression = gamma

task.putafeg(0, gamma);

// The remaining k expressions comprise GT+x, we add them row by row

// In more realisic scenarios it would be better to extract nonzeros and inputy
—1n sparse form

int[] vslice_x = new int[n];

for (dnt 1 = 0; i < n; ++1i)

{

vslice_x[i] = voff_x + 1i;
}
for (int i = 0; i < k; ++1i)
{

(continues on next page)

142

(continued from previous page)

task.putafefrow(i + 1, vslice_x, GT[i]);
}

// Input the affine conic constraint (gamma, GT*x) \in {Cone
// Add the quadratic domain of dimension k+1

long qdom = task.appendquadraticconedomain(k + 1);

// Add the constraint

task.appendaccseq(qdom, O, null);

task.putaccname (0, "risk");

// Objective: mazimize expected return mu~T z
for (int j = 0; j < n; ++j)
{
task.putcj(voff_x + j, mul[jl);
}

task.putobjsense(mosek.objsense.maximize) ;
task.optimize();

/* Display solution summary for quick inspection of results */
task.solutionsummary(mosek.streamtype.log) ;

task.writedata("dump.ptf");

/* Read the results */

double expret = 0.0;

double[] xx = new double[n + 1];
task.getxxslice(mosek.soltype.itr, voff_x, voff_x + n, xx);
for (int j = 0; j < nj; ++j)

expret += mul[j] * xx[voff_x + jl;

System.out.printf ("\nExpected return e for gamma %e\n", expret, gamma);

The code is organized as follows:

e We have n optimization variables, one per each asset in the portfolio. They correspond to the
variable z from (11.1) and their indices as variables in the task are from 0 to n — 1 (inclusive).

e The linear part of the problem: budget constraint, no-short-selling bounds and the objective are
added in the linear data of the task (A matrix, ¢ vector and bounds) following the techniques
introduced in the tutorial of Sec. 6.1.

e For the quadratic constraint we follow the path introduced in the tutorial of Sec. 6.2. We add
the vector (v, GTx) to the affine expression storage (AFE), create a quadratic domain of suitable
length, and add the affine conic constraint (ACC) with the selected affine expressions. In the
segment

// Input the affine conic constraint (gamma, GT*x) \in {Cone
// Add the quadratic domain of dimension k+1

long qdom = task.appendquadraticconedomain(k + 1);

// Add the constraint

task.appendaccseq(qdom, 0, null);

we use Task.appendaccseq to append a single ACC with the quadratic domain qdom and with
a sequence of affine expressions starting at position 0 in the AFE storage and of length equal to

143

the dimension of qdom. This is the simplest way to achieve what we need, since previously we also
stored the required rows in AFE in the same order.

11.1.2 The Efficient Frontier

The portfolio computed by the Markowitz model is efficient in the sense that there is no other portfolio
giving a strictly higher return for the same amount of risk. An efficient portfolio is also sometimes called
a Pareto optimal portfolio. Clearly, an investor should only invest in efficient portfolios and therefore it
may be relevant to present the investor with all efficient portfolios so the investor can choose the portfolio
that has the desired tradeoff between return and risk.

Given a nonnegative a the problem

maximize pTz — oz’ Xx
subject to eTx = w + eT2?, (11.4)

x > 0.

is one standard way to trade the expected return against penalizing variance. Note that, in contrast to
the previous example, we explicitly use the variance (||GT x||3) rather than standard deviation (||GTz|2),
therefore the conic model includes a rotated quadratic cone:

maximize e —as
subject to eTe = wHelaf, (11.5)
(5,0.5,GTz) € QF+2 (equiv. to s > ||GTz|)2 = 2T%x), ‘
x > 0.

The parameter « specifies the tradeoff between expected return and variance. Ideally the problem (11.4)
should be solved for all values a > 0 but in practice it is impossible. Using the example data from Sec.
11.1.1, the optimal values of return and variance for several values of « are shown in the figure.
Example code

Listing 11.2 demonstrates how to compute the efficient portfolios for several values of a.

Listing 11.2: Code for the computation of the efficient frontier
based on problem (11.4).

package com.mosek.example;
import mosek.*;

public class portfolio_2_frontier {
public static void main (String[] args) {
// Since the walue infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = O;
int n = 8;
double[] mu

{0.07197, 0.15518, 0.17535, 0.08981, 0.42896, 0.39292, 0.32171, 0.

—18379%};

double[][] GT = {
{0.30758, 0.12146, 0.11341, 0.11327, 0.17625, 0.11973, 0.10435, 0.10638},
{0. , 0.25042, 0.09946, 0.09164, 0.06692, 0.08706, 0.09173, 0.08506},
{0. , 0. , 0.19914, 0.05867, 0.06453, 0.07367, 0.06468, 0.01914},
{0. , O. , O. , 0.20876, 0.04933, 0.03651, 0.09381, 0.07742},
{0. , O. , O. , O. , 0.36096, 0.12574, 0.10157, 0.0571 },
{o0. , O. , O. , O. , O. , 0.21552, 0.05663, 0.06187},
{0. , 0. , O. , O. , O. , 0. , 0.22514, 0.03327},
{0. , 0. , 0. , O. , 0. , 0. , 0. , 0.2202 }

};

int k = GT.length;

(continues on next page)

144

0.11

0.105 A

0.095 A

0.085 A

0.08 4

0.075 A

0.07 4

I I
0 0.005 0.01 0.015 0.02 0.025 0.03

0.065

Fig. 11.1: The eflicient frontier for the sample data.

145

(continued from previous page)

double[] x0 = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0%};

double w=1.0;

double[] alphas = {0.0, 0.01, 0.1, 0.25, 0.30, 0.35, 0.4, 0.45, 0.5, 0.75, 1.0, 1.
-5, 2.0, 3.0, 10.0%};

int numalphas = 15;

double totalBudget;

//0ffset of wariables into the API wariable.
int numvar = n + 1;

int voff_x = 0;

int voff_s = n;

// Offset of constraints
int coff_bud = 0;

try (Env env = new mosek.Env ();
Task task = new mosek.Task (env, 0, 0))

{

// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

task.appendvars (numvar) ;

// Setting up vartable z

for (int j = 0; j < n; ++j)

{
/* Optionally we can give the variables names */
task.putvarname(voff_x + j, "x[" + (j + 1) + "1");
/% No short-selling - 2"l = 0, z"u = inf */
task.putvarbound(voff_x + j, mosek.boundkey.lo, 0.0, infinity);

}

task.putvarname (voff_s, "s");

task.putvarbound(voff_s, mosek.boundkey.fr, -infinity, infinity);

// One linear constraint: total budget
task.appendcons(1);
task.putconname (coff_bud, "budget");
for (int j = 0; j < m; ++j)
{
/% Coefficients in the first row of 4 */
task.putaij(coff_bud, voff_x + j, 1.0);
}
totalBudget = w;
for (int i = 0; i < n; ++1i)
{
totalBudget += x0[i];
}
task.putconbound(coff_bud, mosek.boundkey.fx, totalBudget, totalBudget);

// Input (gamma, GTz) in the AFE (affine exzpression) storage
// We butld the following F and g for wvariables [z, s]:

(continues on next page)

146

(continued from previous page)

// [o, 1] [o 1]
// F = 1[0, 0], g = [0.5]
// [6T,0] o 7

// We need k+2 Tows
task.appendafes(k + 2);
// The first affine expression is variable s (last wvariable, index n)
task.putafefentry(0, n, 1.0);
// The second affine expression is constant 0.5
task.putafeg(l, 0.5);
// The remaining k expressions comprise GT+x, we add them row by row
// In more realisic scenarios it would be better to extract nonzeros and inputy
—1n sparse form

int[] vslice_x = new int[n];
for (dnt 1 = 0; i < n; ++i)
{

vslice_x[i] = voff_x + 1i;
}
for (int 1 = 0; i < k; ++i)
{

task.putafefrow(i + 2, vslice_x, GT[i]);

}

// Input the affine conic constraint (gamma, GT*x) \in {Cone
// Add the quadratic domain of dimension k+l

long rqdom = task.appendrquadraticconedomain(k + 2);

// Add the constraint

task.appendaccseq(rqdom, 0, null);

task.putaccname (0, "risk");

// Objective: maxzimize expected return mu~T x
for (int j = 0; j < nj; ++j)
{
task.putcj(voff_x + j, mul[jl);
}

task.putobjsense(mosek.objsense.maximize) ;
task.writedata("dump.ptf");

try {
//Turn all log output off.
task.putintparam(mosek.iparam.log, 0);

System.out.printf("%-12s %-12s %-12s\n", "alpha", "exp ret", "std. dev.");
for (int j = 0; j < numalphas; ++j)
{

task.putcj(voff_s, -alphas[j]l);

task.optimize();

task.solutionsummary (mosek.streamtype.log) ;

double expret = 0.0, stddev = 0.0;
double[] xx = new double[numvar] ;

task.getxx(mosek.soltype.itr, xx);

(continues on next page)

147

(continued from previous page)

for (int jj = 0; jj < m; ++jj)
expret += muljj] * xx[jj + voff_x];

System.out.printf("%-12.3e %-12.3e %-12.3e\n", alphas[j], expret, Math.
—sqrt(xx[voff_s]));

}
System.out.println("");

} catch (mosek.Warning mw) {
System.out.println (" Mosek warning:");
System.out.println (mw.toString ());

}

} catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString ());
throw e;

}

}
}

Note that we changed the coefficient « of the variable s in a loop. This way we were able to reuse the
same model for all solves along the efficient frontier, simply changing the value of o between the solves.

11.1.3 Factor model and efficiency

In practice it is often important to solve the portfolio problem very quickly. Therefore, in this section
we discuss how to improve computational efficiency at the modeling stage.

The computational cost is of course to some extent dependent on the number of constraints and
variables in the optimization problem. However, in practice a more important factor is the sparsity: the
number of nonzeros used to represent the problem. Indeed it is often better to focus on the number of
nonzeros in G see (11.2) and try to reduce that number by for instance changing the choice of G.

In other words if the computational efficiency should be improved then it is always good idea to start
with focusing at the covariance matrix. As an example assume that

L=D+VVT

where D is a positive definite diagonal matrix. Moreover, V is a matrix with n rows and k columns.
Such a model for the covariance matrix is called a factor model and usually &k is much smaller than n.
In practice k tends to be a small number independent of n, say less than 100.

One possible choice for G is the Cholesky factorization of > which requires storage proportional to
n(n + 1)/2. However, another choice is

G=[DY? V]
because then
GGT=D+VvVvT,

This choice requires storage proportional to n 4+ kn which is much less than for the Cholesky choice of
G. Indeed assuming k is a constant storage requirements are reduced by a factor of n.

The example above exploits the so-called factor structure and demonstrates that an alternative choice
of G may lead to a significant reduction in the amount of storage used to represent the problem. This
will in most cases also lead to a significant reduction in the solution time.

The lesson to be learned is that it is important to investigate how the covariance matrix is formed.
Given this knowledge it might be possible to make a special choice for G that helps reducing the storage
requirements and enhance the computational efficiency. More details about this process can be found in
[And13].

148

Factor model in finance

Factor model structure is typical in financial context. It is common to model security returns as the
sum of two components using a factor model. The first component is the linear combination of a small
number of factors common among a group of securities. The second component is a residual, specific
to each security. It can be written as R = > y B;F; + 0, where R is a random variable representing the
return of a security at a particular point in time, F} is the random variable representing the common
factor j, B; is the exposure of the return to factor j, and 6 is the specific component.

Such a model will result in the covariance structure

Y =%y + BSrpT,

where X g is the covariance of the factors and Xy is the residual covariance. This structure is of the form
discussed earlier with D = Xy and V = SP, assuming the decomposition X = PPT. If the number of
factors k is low and Yy is diagonal, we get a very sparse G that provides the storage and solution time
benefits.

Example code

Here we will work with the example data of a two-factor model (k = 2) built using the variables

[0.4256 0.1869
0.2413 0.3877
0.2235 0.3697
| 01503 0.4612
A=1 15325 —0.2633 |
1.2741 —0.2613
0.6939 0.2372
| 0.5425 02116

6 = [0.0720,0.0508,0.0377,0.0394, 0.0663, 0.0224, 0.0417, 0.0459],
and the factor covariance matrix is

v _ [00620 0.0577
F=10.0577 0.0908 |’

giving

p_[02400 0.
02316 0.1928 |

Then the matrix G would look like

[01493 0.0360 0.2683 0 0 0. 0. 0 0.
0.1499 0.0747 0. 02254 0. 0. 0. 0 0.
0.1413 00713 0. 0. 01942 0. 0. 0 0.
L 0.1442 00889 0. 0. 0. 01985 0. 0 0.
G = [513 S5/] = | 0.3207 —0.0508 0. 0. 0 0. 02576 0. 0.
0.2568 —0.0504 0. 0. 0 0. 0. 01497 0.
0.2277 0.0457 0. 0. 0 0. 0. 0. 0.2042
01841 0.0408 0. 0. 0 0. 0. 0 0. 0.

This matrix is indeed very sparse.

In general, we get an n X (n+ k) size matrix this way with & full columns and an n x n diagonal part.
In order to maintain a sparse representation we do not construct the matrix G explicitly in the code but
instead work with two pieces of data: the dense matrix Geactor = BP of shape n x k and the diagonal
vector 6 of length n.

149

CELLeee

N
=
=~
[N}

Example code

In the following we demonstrate how to write code to compute the matrix Giactor Of the factor model.
We start with the inputs

Listing 11.3: Inputs for the computation of the matrix Geactor from
the factor model.

// Factor exposure matriz

double[][] B =

{
{0.4256, 0.1869},
{0.2413, 0.3877},
{0.2235, 0.3697},
{0.1503, 0.4612},
{1.5325, -0.2633},
{1.2741, -0.2613},
{0.6939, 0.2372},
{0.5425, 0.2116%}

};

// Factor covariance matric
double[][] S_F =

{

{0.0620, 0.0577%},
{0.0577, 0.0908%}

};

// Specific risk components
double[] theta = {0.0720, 0.0508, 0.0377, 0.0394, 0.0663, 0.0224, 0.0417, 0.0459};

Then the matrix Gfactor is obtained as:

double[][] P = cholesky(S_F);
double[][] G_factor = matrix_mul(B, P);

The functions used above to operate on matrices are defined in the source file that can be downloaded
from Listing 11.3.

The code for computing an optimal portfolio in the factor model is very similar to the one from the
basic model in Listing 11.1 with one notable exception: we construct the expression G* 2 appearing in

the conic constraint by stacking together two separate vectors GI, . x and E;/ %

// Input (gamma, G_factor_T =z, diag(sqrt(theta))*z) in the AFE (affine,
—expression) storage

// We need k+n+l rows and we fill them in in three parts

task.appendafes(k + n + 1);

// 1. The first affine expresston = gamma, will be spectified later

// 2. The next k expressions comprise G_factor_T*z, we add them row by row

// transposing the matriz G_factor on the fly

int[] vslice_x = new int[n];

double[] G_factor_T_row = new double[n];

for (dnt 1 = 0; i < n; ++1i)

{

vslice_x[i] = voff_x + 1i;
}
for (int i = 0; i < k; ++1i)
{

for (int j = 0; j < n; ++j) G_factor_T_row[j] = G_factor[jl[i];
task.putafefrow(i + 1, vslice_x, G_factor_T_row);

(continues on next page)

150

(continued from previous page)

}
// 3. The remaining n rows contain sqrt(theta) on the diagonal
for (dnt 1 = 0; i < n; ++i)
{

task.putafefentry(k + 1 + i, voff_x + i, Math.sqrt(thetalil));
}

The full code is demonstrated below:

Listing 11.4: Implementation of portfolio optimization in the factor
model.

public static void main (String[] args) {
// Since the walue infinity is never used, we define
// 'infinity' for symbolic purposes only
double infinity = O;
int n = 8;
double W =1.0;
double[] mu {0.07197, 0.15518, 0.17535, 0.08981, 0.42896, 0.39292, 0.
32171, 0.18379};
double[] x0 = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
// Factor exposure matriz
double[][] B =
{

{0.4256, 0.1869%},
{0.2413, 0.3877},
{0.2235, 0.3697},
{0.1503, 0.4612},
{1.5325, -0.2633},
{1.2741, -0.2613},
{0.6939, 0.2372},
{0.5425, 0.2116%}
};

// Factor covariance matriz
double[] [] S_F =

{

{0.0620, 0.0577},
{0.0577, 0.0908%}

};

// Spectific risk components
double[] theta = {0.0720, 0.0508, 0.0377, 0.0394, 0.0663, 0.0224, 0.0417, 0.0459};

double[][] P = cholesky(S_F);
double[] [] G_factor = matrix_mul(B, P);

int k = G_factor[0].length;
doublel] gammas = {0.24, 0.28, 0.32, 0.36, 0.4, 0.44, 0.48};
double totalBudget;

//0ffset of wariables into the API wariable.
int numvar = n;
int voff_x = 0;

// Constraint offset
int coff_bud = O;

(continues on next page)

151

(continued from previous page)

try (mosek.Env env = new mosek.Env ();
mosek.Task task = new mosek.Task (env, 0, 0))

{

// Directs the log task stream to the user specified

// method task_msg_obj.stream

task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }}
)3

// Holding variable z of length n
// No other auziliary variables are needed in this formulation
task.appendvars (numvar) ;

// Setting up variable z
for (int j = 0; j < n; ++j)
{
/* Optionally we can give the variables names */
task.putvarname(voff_x + j, "x[" + (j + 1) + "1");
/% No short-selling - "L = 0, z"u = inf */
task.putvarbound(voff_x + j, mosek.boundkey.lo, 0.0, infinity);
}

// One linear constraint: total budget
task.appendcons (1) ;
task.putconname (coff_bud, "budget");
for (int j = 0; j < n; ++j)
{
/* Coefficients in the first row of 4 */
task.putaij(coff_bud, voff_x + j, 1.0);
}
totalBudget = w;
for (dnt 1 = 0; i < n; ++1i)
{
totalBudget += x0[i];
}
task.putconbound(coff_bud, mosek.boundkey.fx, totalBudget, totalBudget);

// Input (gamma, G_factor_T z, diag(sqrt(theta))*z) in the AFE (affine,
—expression) storage

// We need k+n+1 rows and we fill them in in three parts

task.appendafes(k + n + 1);

// 1. The first affine expresston = gamma, will be spectified later

// 2. The next k expressions comprise G_factor_T+*z, we add them row by row

// transposing the matriz G_factor on the fly

int[] vslice_x = new int[n];

double[] G_factor_T_row = new double[n];

for (int i = 0; i < n; ++1i)

{

vslice_x[i] = voff_x + i;
}
for (int i = 0; i < k; ++1i)
{

for (int j = 0; j < n; ++j) G_factor_T_row[j] = G_factor[jl[i];

(continues on next page)

152

(continued from previous page)

task.putafefrow(i + 1, vslice_x, G_factor_T_row);
}
// 3. The rematining n rows contain sqrt(theta) on the diagonal
for (int i = 0; i < n; ++1i)
{
task.putafefentry(k + 1 + i, voff_x + i, Math.sqrt(thetali]));
}

// Input the affine conic constraint (gamma, G_factor_T z, diag(sqrt(theta))*z)y,
{Cone

// Add the quadratic domain of dimension k+n+1

long qdom = task.appendquadraticconedomain(k + n + 1);

// Add the constraint

task.appendaccseq(qdom, O, null);

task.putaccname (0, "risk");

// Objective: mazimize expected return mu~T x
for (int j = 0; j < mn; ++j)
{
task.putcj(voff_x + j, mul[jl);
}

task.putobjsense (mosek.objsense.maximize);
for (int 1 = 0; i < gammas.length; i++)
{

double gamma = gammas[i];

// Spectify gamma in ACC
task.putafeg(0, gamma);

task.optimize();

/* Display solution summary for quick inspection of results */
task.solutionsummary (mosek.streamtype.log) ;

task.writedata("dump.ptf");

/* Read the results */

double expret = 0.0;

double[] xx = new double[n];
task.getxxslice(mosek.soltype.itr, voff_x, voff_x + n, xx);
for (int j = 0; j < mnj; ++j)

expret += mul[j] * xx[voff_x + jl;

System.out.printf ("\nExpected return %e for gamma %e\n", expret, gamma) ;

153

11.1.4 Slippage Cost

The basic Markowitz model assumes that there are no costs associated with trading the assets and that
the returns of the assets are independent of the amount traded. Neither of those assumptions is usually
valid in practice. Therefore, a more realistic model is

T

maximize wex
subject to e’ + 31 Tj(Az;) = w+ea,
Ty < 42 (11.6)
z > 0.

Here Az; is the change in the holding of asset j i.e.

_ 0
Azj =x; —x;
and T;(Axz;) specifies the transaction costs when the holding of asset j is changed from its initial value.
In the next two sections we show two different variants of this problem with two nonlinear cost functions
T.

11.1.5 Market Impact Costs

If the initial wealth is fairly small and no short selling is allowed, then the holdings will be small and the
traded amount of each asset must also be small. Therefore, it is reasonable to assume that the prices
of the assets are independent of the amount traded. However, if a large volume of an asset is sold or
purchased, the price, and hence return, can be expected to change. This effect is called market impact
costs. It is common to assume that the market impact cost for asset j can be modeled by

Ti(Azj) = mj|Az;]*/?

where m; is a constant that is estimated in some way by the trader. See [GKO00] [p. 452] for details.
From the Modeling Cookbook we know that t > |2]3/2 can be modeled directly using the power cone

7);/3,1/3:
{(t,2) :t > |2P?y = {(t.2) : (t,1,2) € 7)5/3,1/3}

Hence, it follows that Y7, Tj(Ax;) = Y7 myla; — 29]3/% can be modeled by Y7 m;t; under the
constraints

0 el
(tj.1,2z;) P>

Unfortunately this set of constraints is nonconvex due to the constraint

zj = |z; — x?| (11.7)
but in many cases the constraint may be replaced by the relaxed constraint

zj > |xj — x?|, (11.8)
For instance if the universe of assets contains a risk free asset then

zj > |y — x?| (11.9)
cannot hold for an optimal solution.

If the optimal solution has the property (11.9) then the market impact cost within the model is larger
than the true market impact cost and hence money are essentially considered garbage and removed by
generating transaction costs. This may happen if a portfolio with very small risk is requested because
the only way to obtain a small risk is to get rid of some of the assets by generating transaction costs.
We generally assume that this is not the case and hence the models (11.7) and (11.8) are equivalent.

154

https://docs.mosek.com/modeling-cookbook/index.html

The above observations lead to

maximize ul'z
subject to efe+mTt = w+elal,
(v,G"z) € Q" (11.10)
2/3,1/3 .
(tj,1,2; —a9) € 773/ Bi=1,...,n,
x > 0.

The revised budget constraint
el +mTt=w+ela

specifies that the initial wealth covers the investment and the transaction costs. It should be mentioned
that transaction costs of the form

ty > |z
where p > 1 is a real number can be modeled with the power cone as
1/p,1—-1
(tj,1,2) € Py/P 1P,

See the Modeling Cookbook for details.

Example code

Listing 11.5 demonstrates how to compute an optimal portfolio when market impact cost are included.

Listing 11.5: Implementation of model (11.10).

package com.mosek.example;
public class portfolio_3_impact {

public static void main (String[] args) {
// Since the walue infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = O;
int n = 8;
double[] mu

{0.07197, 0.15518, 0.17535, 0.08981, 0.42896, 0.39292, 0.32171, O.

18379};

double[][] GT = {
{0.30758, 0.12146, 0.11341, 0.11327, 0.17625, 0.11973, 0.10435, 0.10638%},
{0. , 0.25042, 0.09946, 0.09164, 0.06692, 0.08706, 0.09173, 0.08506},
{o. , 0. , 0.19914, 0.05867, 0.06453, 0.07367, 0.06468, 0.01914},
{0. , 0. , 0. , 0.20876, 0.04933, 0.03651, 0.09381, 0.07742},
{0. , 0. , 0. , 0 , 0.36096, 0.12574, 0.10157, 0.0571 },
{0. , 0. , 0. , 0 , 0. , 0.21552, 0.05663, 0.06187%},
{0. , 0. , 0. , 0 , 0. , 0. , 0.22514, 0.03327},
{o. , 0. , 0. , 0 , 0. , 0. , 0 , 0.2202 }

};

int k = GT.length;

double[] x0 = {0.0, 0.0, 0.0,
double w=1.0;

double gamma = 0.36;

double totalBudget;

(@]

.0, 0.0, 0.0, 0.0, 0.0%};

double[] m = new double[n];
for (int i = 0; i < n; ++1i)

{

(continues on next page)

155

https://docs.mosek.com/modeling-cookbook/index.html

(continued from previous page)

m[i] = 0.01;
}

// Offset of wariables into the API wartable.
int numvar = 3 * n;

int voff_x = 0;

int voff_c = n;

int voff_z = 2 * n;

// Offset of constraints.
int numcon = 2 * n + 1;
int coff_bud = O;

int coff_absl = 1;

int coff_abs2 1 + n;

try (mosek.Env env = new mosek.Env ();
mosek.Task task = new mosek.Task (env, 0, 0))
{
// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

// Variables (vector of =, c, z)

task.appendvars (numvar) ;

for (int j = 0; j < n; ++j)

{
/% Optionally we can give the variables names */
task.putvarname(voff_x + j, "x[" + (j + 1) + "1");
task.putvarname(voff_c + j, "c[" + (j + 1) + "I");
task.putvarname(voff_z + j, "z[" + (j + 1) + "1");
/* Apply variable bounds (z >= 0, c and z free) */
task.putvarbound(voff_x + j, mosek.boundkey.lo, 0.0, infinity);
task.putvarbound(voff_c + j, mosek.boundkey.fr, -infinity, infinity);
task.putvarbound(voff_z + j, mosek.boundkey.fr, -infinity, infinity);

3

// Linear constraints

// - Total budget

task.appendcons (1) ;

task.putconname (coff_bud, "budget");

for (int j = 0; j < mn; ++j)

{
/* Coefficients in the first row of 4 */
task.putaij(coff_bud, voff_x + j, 1.0);
task.putaij(coff_bud, voff_c + j, m[jl);

}

totalBudget = w;

for (dnt 1 = 0; i < n; ++1i)

{
totalBudget += x0[i];

}

task.putconbound(coff_bud, mosek.boundkey.fx, totalBudget, totalBudget);

(continues on next page)

156

(continued from previous page)

// - Absolute value

task.appendcons(2 * n);

for (dnt 1 = 0; i < n; ++i)

{
task.putconname (coff_absl + i, "zabs1i[" + (1 + i) + "]1");
task.putaij(coff_absl + i, voff_x + i, -1.0);
task.putaij(coff_absl + i, voff_z + i, 1.0);
task.putconbound(coff_absl + i, mosek.boundkey.lo, -xO0[i], infinity);
task.putconname (coff_abs2 + i, "zabs2[" + (1 + i) + "I");
task.putaij(coff_abs2 + i, voff_x + i, 1.0);
task.putaij(coff_abs2 + i, voff_z + i, 1.0);
task.putconbound(coff_abs2 + i, mosek.boundkey.lo, x0[i], infinity);

}

// ACCs
int aoff_q = 0;
int aoff_pow = k + 1;
// - (gamma, GTz) in §(k+1)
// The part of F and g for vartable x:
// [o, o, ol [gamma]
// F = [6T, 0, 0], g = [0]
task.appendafes(k + 1);
task.putafeg(aoff_q, gamma);
int[] vslice_x = new int[n];
for (dnt 1 = 0; i < n; ++i)
{

vslice_x[i] = voff_x + 1ij;
}
for (int i = 0; i < k; ++1i)
{

task.putafefrow(aoff_q + i + 1, vslice_x, GT[i]);

}
long qdom = task.appendquadraticconedomain(k + 1);
task.appendaccseq(qdom, aoff_q, null);
task.putaccname(aoff_q, "risk");

// - (c_j, 1, z_j) in P3(2/3, 1/3)
// The part of F and g for wartables [c, z]:

// [o, 1, 0] [o]
// F = 1[0, 0, I], g = [0]
// [o, o, ol [1]

task.appendafes(2 * n + 1);
for (int i = 0; i < n; ++1i)
{
task.putafefentry(aoff_pow + i, voff_c + i, 1.0);
task.putafefentry(aoff_pow + n + i, voff_z + i, 1.0);
3
task.putafeg(aoff_pow + 2 * n, 1.0);
// We use one row from F and g for both c_j and z_j, and the last row of F andy,
—g for the constant 1.
// NOTE: Here we reuse the last AFE and the power cone n times, but we storey
—them only once.
double[] exponents = {2, 1};
long powdom = task.appendprimalpowerconedomain(3, exponents) ;
long[] flat_afe_list = new long[3 * n];
long[] dom_list = new long[n];

(continues on next page)

157

(continued from previous page)

for (int i = 0; i < n; ++1i)

{
flat_afe_list[3 * i + 0] = aoff_pow + 1ij;
flat_afe_list[3 * 1 + 1] = aoff_pow + 2 * n;
flat_afe_list[3 * i + 2] = aoff_pow + n + ij;
dom_list[i] = powdom;

}

task.appendaccs(dom_list, flat_afe_list, null);

for (dnt 1 = 0; i < n; ++i)

{
task.putaccname(i + 1, "market_impact[" + i + "]");

}

// Objective: maxzimize expected return mu~T x
for (int j = 0; j < nj; ++j)
{
task.putcj(voff_x + j, mul[jl);
}

task.putobjsense(mosek.objsense.maximize) ;

/* Solve the problem */

try {
//Turn all log output off.
//task.putintparam(mosek. iparam.log,0);

task.writedata("dump.ptf");
task.optimize();
task.solutionsummary(mosek.streamtype.log) ;

double expret = 0.0, stddev = 0.0;
double[] xx = new double[numvar];

task.getxx(mosek.soltype.itr, xx);

for (int j = 0; j < nj; ++j)
expret += mul[j] * xx[j + voff_x];

System.out.printf ("Expected return %e for gamma %e\n\n", expret, gamma) ;
// Ezpected return: 4.1657e-01 Std. deviation: 3.6000e-01 Market impact cost:
—7.6305e-03

} catch (mosek.Warning mw) {
System.out.println (" Mosek warning:");
System.out.println (mw.toString ());

}

} catch (mosek.Exception e) {

System.out.println ("An error/warning was encountered");

System.out.println (e.toString ();

throw e;

Note that in the following part of the code:

158

task.putafeg(aoff_pow + 2 * n, 1.0);
// We use one row from F and g for both c_j and z_j, and the last row of F andy,
—g for the constant 1.
// NOTE: Here we reuse the last AFE and the power cone m times, but we store,
—them only once.
double[] exponents = {2, 1};
long powdom = task.appendprimalpowerconedomain(3, exponents);
long[] flat_afe_list = new longl[3 * n];
long[] dom_list = new long[n];
for (int i = 0; i < n; ++1i)
{
flat_afe_list[3 * i + 0] = aoff_pow + 1i;
flat_afe_list[3 * i + 1] aoff_pow + 2 * n;
flat_afe_list[3 * i + 2] = aoff_pow + n + i;
dom_list[i] = powdom;
}
task.appendaccs(dom_list, flat_afe_list, null);
for (int i = 0; i < n; ++1i)
{
task.putaccname(i + 1, "market_impact[" + i + "]");

}

we create a sequence of power cones of the form (¢, 1,z — 29) € P§/3’1/3. The power cones are
determined by the sequence of exponents (2,1); we create a single domain to account for that.

Moreover, note that the second coordinate of all these affine conic constraints is the same affine
expression equal to 1, and we use the feature that allows us to define this affine expression only once (as
AFE number aoff_pow + 2 * n) and reuse it in all the ACCs.

11.1.6 Transaction Costs

Now assume there is a cost associated with trading asset j given by

_ 0, Am] =0,
Tj(A:Cj) = { fi+ gj\ijL otherwise.

Hence, whenever asset j is traded we pay a fixed setup cost f; and a variable cost of g; per unit traded.
Given the assumptions about transaction costs in this section problem (11.6) may be formulated as

maximize ulz
subject to eTx + fTy+g¢T2z = w4+ e’z
(’y,GTl‘) c Qk+17
z; 2 l’j*l‘?, 7=1,...,n, (11.11)
zj 2 x?—xj, j=1...)n, ’
Zj < ijj, jzl,...,n,
y; € {0,1}, ji=1,...,n,
z > 0.
First observe that
2j 2 |z; — 23] = |Azjl.

We choose U; as some a priori upper bound on the amount of trading in asset j and therefore if z; > 0
then y; = 1 has to be the case. This implies that the transaction cost for asset j is given by

fiyj + 952

159

Example code

The following example code demonstrates how to compute an optimal portfolio when transaction costs
are included.

Listing 11.6: Code solving problem (11.11).

package com.mosek.example;
public class portfolio_4_transcost {

public static void main (Stringl[] args) {
// Since the wvalue infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = O;

int n = 8;
double[] mu = {0.07197, 0.15518, 0.17535, 0.08981, 0.42896, 0.39292, 0.32171, O.
-18379};

double[][] GT = {
{0.30758, 0.12146, 0.11341, 0.11327, 0.17625, 0.11973, 0.10435, 0.10638%},
{o. , 0.25042, 0.09946, 0.09164, 0.06692, 0.08706, 0.09173, 0.08506},
{0. , 0. , 0.19914, 0.05867, 0.06453, 0.07367, 0.06468, 0.01914},
{0. , 0. , 0. , 0.20876, 0.04933, 0.03651, 0.09381, 0.07742},
{o. , 0. , 0. , 0 , 0.36096, 0.12574, 0.10157, 0.0571 },
{o0. , 0. , 0. , 0 , 0. , 0.21552, 0.05663, 0.06187%},
{0. , 0. , 0. , 0 , 0. , 0. , 0.22514, 0.03327},
{o. , 0. , 0. , 0 , 0. , 0. , 0. , 0.2202 }

};

int k = GT.length;

double[] x0 = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
double w=1.0;

double gamma = 0.36;

double totalBudget;

double[] £
double[] g
for (int i

{

new double[n];
new double[n];
0; i < n; ++1i)

flil =
glil]

|
o

.01;
.001;

I
o

3

// Offset of wariables.
int numvar = 3 * n;

int voff_x 0;

int voff_z = n;

int voff_y = 2 * n;

// Offset of constraints.
int numcon = 3 * n + 1;
int coff_bud = O;

int coff_absl = 1;

int coff_abs2 = 1 + n;
int coff_swi = 1 + 2 * n;

try (mosek.Env env = new mosek.Env ();
mosek.Task task = new mosek.Task (env, 0, 0))

{

(continues on next page)

160

(continued from previous page)

// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});

// Variables (vector of z, z, y)

task.appendvars (numvar) ;

for (int j = 0; j < nj; ++j)

{
/* Optionally we can give the variables names */
task.putvarname(voff_x + j, "x[" + (j + 1) + "1");
task.putvarname(voff_z + j, "z[" + (§ + 1) + "1");
task.putvarname(voff_y + j, "y[" + (j + 1) + "1");
/* Apply variable bounds (z >= 0, z free, y binary) */
task.putvarbound(voff_x + j, mosek.boundkey.lo, 0.0, infinity);
task.putvarbound(voff_z + j, mosek.boundkey.fr, -infinity, infinity);
task.putvarbound(voff_y + j, mosek.boundkey.ra, 0.0, 1.0);
task.putvartype(voff_y + j, mosek.variabletype.type_int);

}

// Linear constraints

// - Total budget

task.appendcons(1);

task.putconname (coff_bud, "budget");

for (int j = 0; j < m; ++j)

{
/* Coefficients in the first row of 4 */
task.putaij(coff_bud, voff_x + j, 1.0);
task.putaij(coff_bud, voff_z + j, gljl);
task.putaij(coff_bud, voff_y + j, £[jl);

}

double U = w;

for (dnt 1 = 0; i < n; ++1i)

{
U += x0[i];

}

task.putconbound(coff_bud, mosek.boundkey.fx, U, U);

// - Absolute value

task.appendcons(2 * n);

for (int i = 0; i < n; ++1i)

{
task.putconname (coff_absl + i, "zabsi[" + (1 + i) + "]1");
task.putaij(coff_absl + i, voff_x + i, -1.0);
task.putaij(coff_absl + i, voff_z + i, 1.0);
task.putconbound(coff_absl + i, mosek.boundkey.lo, -x0[i], infinity);
task.putconname (coff_abs2 + i, "zabs2[" + (1 + i) + "]1");
task.putaij(coff_abs2 + i, voff_x + i, 1.0);
task.putaij(coff_abs2 + i, voff_z + i, 1.0);
task.putconbound(coff_abs2 + i, mosek.boundkey.lo, x0[i], infinity);

}

// - Switch
task.appendcons(n) ;

(continues on next page)

161

(continued from previous page)

for (int i = 0; i < n; ++1i)

{
task.putconname (coff_swi + i, "switch[" + (1 + i) + "]1");
task.putaij(coff_swi + i, voff_z + i, 1.0);
task.putaij(coff_swi + i, voff_y + i, -U);
task.putconbound(coff_swi + i, mosek.boundkey.up, -infinity, 0.0);

}

// ACCs
int aoff_q = 0;
// - (gamma, GTz) in Q(k+1)
// The part of F and g for vartable z:
// o, o, oj [gamma]
// F = [GT, 0, 0], g = [0]
task.appendafes(k + 1);
task.putafeg(aoff_q, gamma);
int[] vslice_x = new int[n];
for (int i = 0; i < n; ++1i)
{

vslice_x[i] = voff_x + i;
}
for (int i = 0; i < k; ++1i)
{

task.putafefrow(aoff_q + i + 1, vslice_x, GT[il);

}
long qdom = task.appendquadraticconedomain(k + 1);
task.appendaccseq(qdom, aoff_q, null);
task.putaccname (aoff_q, "risk");

// Objective: maxzimize expected return mu~T x
for (int j = 0; j < nj; ++j)
{
task.putcj(voff_x + j, mul[jl);
}

task.putobjsense(mosek.objsense.maximize) ;

/% Solve the problem */

try {
//Turn all log output off.
//task.putintparam(mosek. iparam.log,0);
task.writedata("dump.ptf");
task.optimize();

task.solutionsummary(mosek.streamtype.log);

double expret = 0.0, stddev = 0.0;
double[] xx = new double[numvar];

task.getxx(mosek.soltype.itg, xx);

for (int j = 0; j < nj; ++j)
expret += mul[j] * xx[j + voff_x];

System.out.printf ("Expected return %e for gamma %e\n\n", expret, gamma) ;

(continues on next page)

162

(continued from previous page)

} catch (mosek.Warning mw) {
System.out.println (" Mosek warning:");
System.out.println (mw.toString ());

}

} catch (mosek.Exception e) {
System.out.println ("An error/warning was encountered");
System.out.println (e.toString ();
throw e;

}

}
}

11.1.7 Cardinality constraints

Another method to reduce costs involved with processing transactions is to only change positions in a
small number of assets. In other words, at most K of the differences |Az;| = |z; — 29| are allowed to be
non-zero, where K is (much) smaller than the total number of assets n.

This type of constraint can be again modeled by introducing a binary variable y; which indicates if
Az; # 0 and bounding the sum of y;. The basic Markowitz model then gets updated as follows:

maximize ul'z
subject to eTe = w+eTal,
(v,G"z) e QM
z; 2 :Uj—x?, 7=1,...,n,
zj > aY—z;, j=1,...,n, (11.12)
Zj < ijj, j:l,...,n,
y; € {0,1}, 7=1,...,n,
'y < K,
z > 0,

were U; is some a priori chosen upper bound on the amount of trading in asset j.

Example code

The following example code demonstrates how to compute an optimal portfolio with cardinality bounds.

Listing 11.7: Code solving problem (11.12).

public static double[] markowitz_with_card(int n,
int k,
double[] x0,
double w,
double gamma,

double[] mu,
double[] [] GT,
int K)

// Since the walue infinity is never used, we define
// 'infinity' symbolic purposes only
double infinity = 0;

// Offset of wariables.
int numvar = 3 * n;
int voff_x = 0;

(continues on next page)

163

(continued from previous page)

int voff_z = n;

int voff_y

2 * n;

// Offset of constraints.
int numcon = 3 * n + 2;
int coff_bud = O;

int coff_absl = 1;

int coff_abs2 = 1 + n;

int coff_swi = 1 + 2 * n;
int coff_card = 1 + 3 * n;

try (mosek.Env env = new mosek.Env ();

{

mosek.Task task = new mosek.Task (env, 0, 0))

// Directs the log task stream to the user specified
// method task_msg_obj.stream
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }1});

// Variables (vector of z, z, y)

task.appendvars (numvar) ;

for (int j = 0; j < n; ++j)

{
/* Optionally we can give the variables names */
task.putvarname (voff_x + j, "x[" + (G + 1) + "1");
task.putvarname(voff_z + j, "z[" + (j + 1) + "1");
task.putvarname(voff_y + j, "y[" + (j + 1) + "1");
/* Apply variable bounds (z >= 0, z free, y binary) */
task.putvarbound(voff_x + j, mosek.boundkey.lo, 0.0, infinity);
task.putvarbound(voff_z + j, mosek.boundkey.fr, -infinity, infinity);
task.putvarbound(voff_y + j, mosek.boundkey.ra, 0.0, 1.0);
task.putvartype(voff_y + j, mosek.variabletype.type_int);

}

// Linear constraints
// - Total budget
task.appendcons (1) ;
task.putconname (coff_bud, "budget");
for (int j = 0; j < nj; ++j)
{
/* Coefficients in the first row of 4 */
task.putaij(coff_bud, voff_x + j, 1.0);
}
double U = w;
for (int i = 0; i < n; ++1i)
{
U += x0[i];
}
task.putconbound(coff_bud, mosek.boundkey.fx, U, U);

// - Absolute value
task.appendcons(2 * n);
for (int i = 0; i < n; ++1i)

(continues on next page)

164

(continued from previous page)

task.putconname (coff_absl + i, "zabsi[" + (1 + i) + "]1");
task.putaij(coff_absl + i, voff_x + i, -1.0);

task.putaij(coff_absl + i, voff_z + i, 1.0);
task.putconbound(coff_absl + i, mosek.boundkey.lo, -x0[i], infinity);
task.putconname (coff_abs2 + i, "zabs2[" + (1 + i) + "]1");
task.putaij(coff_abs2 + i, voff_x + i, 1.0);

task.putaij(coff_abs2 + i, voff_z + i, 1.0);
task.putconbound(coff_abs2 + i, mosek.boundkey.lo, x0[i], infinity);

3

// - Switch

task.appendcons(n) ;

for (dnt 1 = 0; i < n; ++i)

{
task.putconname (coff_swi + i, "switch[" + (1 + i) + "]1");
task.putaij(coff_swi + i, voff_z + i, 1.0);
task.putaij(coff_swi + i, voff_y + i, -U);
task.putconbound(coff_swi + i, mosek.boundkey.up, -infinity, 0.0);

}

// - Cardinality
task.appendcons (1) ;
task.putconname (coff_card, "cardinality");
for (dnt 1 = 0; i < n; ++i)
{
task.putaij(coff_card, voff_y + i, 1.0);
}
task.putconbound(coff_card, mosek.boundkey.up, -infinity, K);

// ACCs
int aoff_q = 0;
// - (gamma, GTz) in Q(k+1)
// The part of F and g for vartable z:
// [o, o0, 0] [gamma]
// F = [GT, 0, 0], g = [0]
task.appendafes(k + 1);
task.putafeg(aoff_q, gamma);
int[] vslice_x = new int[n];
for (dnt 1 = 0; i < n; ++1i)
{

vslice_x[i] = voff_x + 1ij;
}
for (int i = 0; i < k; ++1i)
{

task.putafefrow(aoff_q + i + 1, vslice_x, GT[il);

}
long qdom = task.appendquadraticconedomain(k + 1);
task.appendaccseq(qdom, aoff_q, null);
task.putaccname (aoff_q, "risk");

// Objective: mazimize expected return mu"T x
for (int j = 0; j < mn; ++j)
{
task.putcj(voff_x + j, mul[jl);
}

(continues on next page)

165

(continued from previous page)

task.putobjsense (mosek.objsense.maximize) ;
task.writedata("dump.ptf");

task.optimize();
task.solutionsummary (mosek.streamtype.log) ;

double[] xx = new double[n];
task.getxxslice(mosek.soltype.itg, voff_x, voff_x + n, xx);
return xx;
}
}

If we solve our running example with K = 1,...,n then we get the following solutions, with increasing
expected returns:

Bound 1 Solution: 0.0000e+00 0.0000e+00 1.0000e+00 0.0000e+00 0.0000e+00 |
—0.0000e+00 0.0000e+00 0.0000e+00
Bound 2 Solution: 0.0000e+00 0.0000e+00 3.5691e-01 0.0000e+00 0.0000e+00
—6.4309e-01 -0.0000e+00 0.0000e+00
Bound 3 Solution: 0.0000e+00 0.0000e+00 1.9258e-01 0.0000e+00 0.0000e+00 |
.5.4592e-01 2.6150e-01 0.0000e+00
Bound 4 Solution: 0.0000e+00 0.0000e+00 2.0391e-01 0.0000e+00 6.7098e-02 |
-+4.9181e-01 2.3718e-01 0.0000e+00
Bound 5 Solution: 0.0000e+00 3.1970e-02 1.7028e-01 0.0000e+00 7.0741e-02 |
—4.9551e-01 2.3150e-01 0.0000e+00
Bound 6 Solution: 0.0000e+00 3.1970e-02 1.7028e-01 0.0000e+00 7.0740e-02 ||
—4.9551e-01 2.3150e-01 0.0000e+00
Bound 7 Solution: 0.0000e+00 3.1970e-02 1.7028e-01 0.0000e+00 7.0740e-02 |
—+4.9551e-01 2.3150e-01 0.0000e+00
Bound 8 Solution: 1.9557e-10 2.6992e-02 1.6706e-01 2.9676e-10 7.1245e-02 |
—4.9559e-01 2.2943e-01 9.6905e-03

11.2 Logistic regression

Logistic regression is an example of a binary classifier, where the output takes one two values 0 or 1 for
each data point. We call the two values classes.

Formulation as an optimization problem

Define the sigmoid function

1

S@) = 1+ exp(—z)

Next, given an observation z € R? and a weights § € R? we set

1
ho(x) = S(0Tx) = T eoxp(C0T)

The weights vector 6 is part of the setup of the classifier. The expression hg(z) is interpreted as the
probability that x belongs to class 1. When asked to classify z the returned answer is

xH{ 1 he(z) > 1/2,
0 h9($)<1/2.

When training a logistic regression algorithm we are given a sequence of training examples z;, each
labelled with its class y; € {0,1} and we seek to find the weights § which maximize the likelihood

166

function

H ho ()Y (1 — hg(a;)) Y.

Of course every single y; equals 0 or 1, so just one factor appears in the product for each training data
point. By taking logarithms we can define the logistic loss function:

J(O) ==Y log(hg(w:)) = D log(1 — hg(;)).

1y;=1 Y=

The training problem with regularization (a standard technique to prevent overfitting) is now equivalent
to

mein J(0) + X||0]|2-

This can equivalently be phrased as

minimize) . t; + Ar

subject to t; > —log(he()) = log(1 +exp(~07w;)) if i =1, (11.13)
fo > —log(l - ho(x) = log(1+oxp(67a)) if g =0, |
r = 6.

Implementation

As can be seen from (11.13) the key point is to implement the softplus bound ¢ > log(1 + e*), which is
the simplest example of a log-sum-exp constraint for two terms. Here ¢ is a scalar variable and u will be
the affine expression of the form 67 z;. This is equivalent to

exp(u —t) + exp(—t) <1

and further to

(z1,L,u—1t) € Kep (21> exp(u—1t)),
(22,1, —t) € Kexp (29 > exp(—t)), (11.14)
21+ 29 S 1.

This formulation can be entered using affine conic constraints (see Sec. 6.2).

Listing 11.8: Implementation of ¢ > log(1 + e*) as in (11.14).

// Adds ACCs for t_i >= log (1 + exp((1-2¥y[i]) * theta' * X[i]))
// Adds auziliary variables, AFE rows and constraints
public static void softplus(Task task, int d, int n, int theta, int t, doublel[][] X,
— boolean[] y)
{
int nvar = task.getnumvar();
int ncon = task.getnumcon();
long nafe = task.getnumafe();
task.appendvars(2*n); // z1, 22
task.appendcons(n) ; // 21 + 22 = 1
task.appendafes (4#*n) ; //theta * X[i] - t[<i], -t[<], z1[i], 2z2[4]
int zl1 = nvar, z2 = nvar+n;

int zcon = ncon;
long thetaafe = nafe, tafe = nafe+n, zlafe = nafe+2+*n, z2afe = nafe+3*n;
int k = 0;

// Linear constraints
int [] subi = new int[2*n];

(continues on next page)

167

(continued from previous page)

int[] subj = new int[2*n];
double[] aval = new double[2*n];

for(int i = 0; i < nj; i++)
{
// 2zl + 22 = 1
subil[k] = zcon+i; subj[k] z1+i; avall[k] 1; k++;
subil[k] = zcon+i; subjlk] = z2+i; avallk] = 1; kt++;
}
task.putaijlist(subi, subj, aval);
task.putconboundsliceconst(zcon, zcon+n, boundkey.fx, 1, 1);
task.putvarboundsliceconst(nvar, nvar+2*n, boundkey.fr, -inf, inf);

// Affine conic expressions

long[] afeidx = new long[d*n+4*n];
int [] varidx = new int[d*n+4x*n];
double[] fval new double[d*n+4#*n] ;
k = 0;

// Thetas
for(int i = 0; i < n; i++) {
for(int j = 0; j < d; j++) {
afeidx[k] = thetaafe + i; varidx[k] = theta + j;
fvallk] = ((y[i]) 7 -1 : 1) * X[il[j];

k++;
}
}
// -tli]
for(int i = 0; i < m; i++) {
afeidx[k] = thetaafe + i; varidx[k] =t + i; fvallk] = -1; k++;
afeidx[k] = tafe + i; varidx([k] = t + i; fvallk] = -1; k++;
}
// z1, 22

for(int i = 0; i < mn; i++) {
afeidx[k] zlafe + i; varidx[k] = z1 + i; fvallk] = 1; k++;
afeidx[k] = z2afe + i; varidxl[k] z2 + i; fvallk] 1; k++;
}

// Add the expressions
task.putafefentrylist(afeidx, varidx, fval);

// Add a single row with the constant expression "1.0"
long oneafe = task.getnumafe();

task.appendafes(1);

task.putafeg(oneafe, 1.0);

// Add an exponential cone domain
long expdomain = task.appendprimalexpconedomain();

// Conic constraints

long numacc = task.getnumacc();
for(int 1 = 0; i < nj; i++)

{

task.appendacc(expdomain, new long[]{zlafe+i, oneafe, thetaafe+i}, null);

(continues on next page)

168

(continued from previous page)

task.appendacc(expdomain, new long[]{z2afe+i, oneafe, tafe+i}, null);
task.putaccname (numacc+i*2, String.format("zl:thetal%d]",1));
task.putaccname (numacc+i*2+1,String.format ("z2:t[%d]",1));
}
}

Once we have this subroutine, it is easy to implement a function that builds the regularized loss
function model (11.13).

Listing 11.9: Implementation of (11.13).

// Model logistic regression (regularized with full 2-norm of theta)
// X - nzdmatriz of data points
// y - length n vector classifying training points
// lamb - regularization parameter
public static double[] logisticRegression(Env env,
double[] [] X,
boolean[] vy,
double lamb)

int n = X.length;
int d = X[0].length; // nmum samples, dimension

try (Task task = new Task(env, 0, 0))
{
// Variables [r; theta; t]
int nvar = 1+d+n;
task.appendvars (nvar) ;
task.putvarboundsliceconst (0, nvar, boundkey.fr, -inf, inf);
int r = 0, theta = 1, t = 1+d;
task.putvarname(r,"r");
for (int i = 0; i < d; ++i) task.putvarname(theta+i,String.format("thetal%d]",
=1));

for (int i = 0; i < n; ++i) task.putvarname(t+i,String.format("t[%d]",1i));

// Objective lambda*r + sum(t)
task.putobjsense(mosek.objsense.minimize) ;
task.putcj(r, lamb);
for(int i = 0; i < n; i++)

task.putcj(t+i, 1.0);

// Softplus function constraints
softplus(task, d, n, theta, t, X, y);

// Regularization
// Append a sequence of linear expressions (r, theta) to F
long numafe = task.getnumafe();
task.appendafes(1+d);
task.putafefentry(numafe, r, 1.0);
for(int i = 0; i < d; i++)
task.putafefentry(numafe + i + 1, theta + i, 1.0);

// Add the constraint
task.appendaccseq(task.appendquadraticconedomain(l+d), numafe, null);

// Solution
task.optimize();

(continues on next page)

169

(continued from previous page)

return task.getxxslice(soltype.itr, theta, theta+d);
}
}

Example: 2D dataset fitting

In the next figure we apply logistic regression to the training set of 2D points taken from the example
ex2data2.txt . The two-dimensional dataset was converted into a feature vector x € R?® using monomial
coordinates of degrees at most 6.

Fig. 11.2: Logistic regression example with none, medium and strong regularization (small, medium,
large A). Without regularization we get obvious overfitting.

11.3 Concurrent optimizer

The idea of the concurrent optimizer is to run multiple optimizations of the same problem simulta-
neously, and pick the one that provides the fastest or best answer. This approach is especially useful for
problems which require a very long time and it is hard to say in advance which optimizer or algorithm
will perform best.

The major applications of concurrent optimization we describe in this section are:

e Using the interior-point and simplex optimizers simultaneously on a linear problem. Note that
any solution present in the task will also be used for hot-starting the simplex algorithms. One
possible scenario would therefore be running a hot-start simplex in parallel with interior point,
taking advantage of both the stability of the interior-point method and the ability of the simplex
method to use an initial solution.

e Using multiple instances of the mixed-integer optimizer to solve many copies of one mixed-integer
problem. This is not in contradiction with the run-to-run determinism of MOSEK if a different
value of the MIO seed parameter iparam.mio_seed is set in each instance. As a result each setting
leads to a different optimizer run (each of them being deterministic in its own right).

The downloadable file contains usage examples of both kinds.

11.3.1 Common setup

We first define a method that runs a number of optimization tasks in parallel, using the standard
multithreading setup available in the language. All tasks register for a callback function which will
signal them to interrupt as soon as the first task completes successfully (with response code rescode.
ok).

170

https://www.r-bloggers.com/logistic-regression-regularized-with-optimization/

Listing 11.10: Simple callback function which signals the optimizer
to stop.

VAL
Defines a Mosek callback function whose only function
15 to indicate 1f the optimizer should be stopped.
*/
public static class CallbackProxy extends mosek.Progress
{
public boolean stop;
public int firstStop;
public CallbackProxy()
{
stop = false;
firstStop = -1;
}

public int progress(mosek.callbackcode caller)

{
// Return non-zero implies terminate the optimizer
return stop 7 1 : 0

}
}

When all remaining tasks respond to the stop signal, response codes and statuses are returned to the
caller, together with the index of the task which won the race.

Listing 11.11: A routine for parallel task race.

public static int optimize(mosek.Taskl[] tasks,
mosek.rescode[] res,
mosek.rescode[] trm)

int n = tasks.length;
Thread[] jobs = new Thread[n];

// Set a callback function
final CallbackProxy cb = new CallbackProxy() ;
for (int i = 0; i < n; ++1i)

tasks[i] .set_Progress(cb);

// Initialize

for (int i = 0; i < n; ++1i)

{
res[i] = mosek.rescode.err_unknown;
trm[i] mosek.rescode.err_unknown;

}

// Start parallel optimizations, one per task
for (int i = 0; i < n; ++1i)

{
int num = i;
jobs[i] = new Thread() { public void run() {
try
{

trm[num] = tasks[num].optimize();
res[num] = mosek.rescode.ok;

3

(continues on next page)

171

(continued from previous page)

catch (mosek.Exception e)

{
trm[num] = mosek.rescode.err_unknown;
res[num] = e.code;
¥
finally
{
// If this fintished with success, inform other tasks to interrupt
if (res[num] == mosek.rescode.ok)
{
if (!cb.stop) cb.firstStop = num;
cb.stop = true;
}
}
I3
jobs[i].start();
}
// Join all threads
try {
for (Thread j: jobs)
j.joinQ);
}

catch (InterruptedException e) {}
// For debugging, print res and trm codes for all optimizers
for (int i = 0; i < n; ++1i)

System.out.println("Optimizer " + i + " res " + res[i] + " trm " + trm[i]);

return cb.firstStop;

11.3.2 Linear optimization

We use the multithreaded setup to run the interior-point and simplex optimizers simultaneously on a
linear problem. The next methods simply clones the given task and sets a different optimizer for each.
The result is the clone which finished first.

Listing 11.12: Concurrent optimization with different optimizers.

public static int optimizeconcurrent (mosek.Task task,
mosek.optimizertype[] optimizers,
mosek.Task[] winTask,
mosek.rescode[] winTrm,
mosek.rescode[] winRes)

{

int n = optimizers.length;

mosek.Task([] tasks = new mosek.Task[n];
mosek.rescode[] res = new mosek.rescode[n];
mosek.rescode[] trm = new mosek.rescode[n];

// Clone tasks and choose warious optimizers
for (int i = 0; i < n; ++1i)
{
tasks[i] = new mosek.Task(task);
tasks[i] .putintparam(mosek.iparam.optimizer, optimizers[i].value);

(continues on next page)

172

(continued from previous page)

}

// Solve tasks in parallel
int firstOK = optimize(tasks, res, trm);

if (firstOK >= 0)

{
winTask[0] = tasks[firstOK];
winTrm[0] = trm[firstOK];
winRes[0] = res[firstOK];

}

return firstOK;

}

It remains to call the method with a choice of optimizers, for example:

Listing 11.13: Calling concurrent linear optimization.

mosek.optimizertypel[] optimizers = {
mosek.optimizertype.conic,
mosek.optimizertype.dual_simplex,
mosek.optimizertype.primal_simplex

};

idx = optimizeconcurrent(task, optimizers, t, trm, res);

11.3.3 Mixed-integer optimization

We use the multithreaded setup to run many, differently seeded copies of the mixed-integer optimizer.
This approach is most useful for hard problems where we don’t expect an optimal solution in reasonable
time. The input task would typically contain a time limit. It is possible that all the cloned tasks reach
the time limit, in which case it doesn’t really mater which one terminated first. Instead we examine all
the task clones for the best objective value.

Listing 11.14: Concurrent optimization of a mixed-integer problem.

public static int optimizeconcurrentMIO(mosek.Task task,
int[] seeds,
mosek.Task[] winTask,
mosek.rescode[] winTrm,
mosek.rescode[] winRes)
{

int n = seeds.length;

mosek.Task[] tasks = new mosek.Task[n];
mosek.rescode[] res = new mosek.rescode[n];
mosek.rescode[] trm = new mosek.rescode[n];

// Clone tasks and choose wvarious seeds for the optimizer
for (int i 0; i < n; ++1i)
{

tasks[i] = new mosek.Task(task);

tasks[i] .putintparam(mosek.iparam.mio_seed, seeds[i]);

}

// Solve tasks in parallel
int firstOK = optimize(tasks, res, trm);

(continues on next page)

173

(continued from previous page)

if (firstO0K >= 0)

{
// Pick the task that ended with res = ok
// and contains an integer solution with best objective value
mosek.objsense sense = task.getobjsense();
double bestObj = (sense == mosek.objsense.minimize) 7 1.0e+10 : -1.0e+10;
int bestPos = -1;

for (dnt 1 = 0; i < n; ++i)
System.out.println(i + " " + tasks[i].getprimalobj(mosek.soltype.itg));

for (int i = 0; i < n; ++1i)

if ((res[i] == mosek.rescode.ok) &&
(tasks[i] .getsolsta(mosek.soltype.itg) == mosek.solsta.prim_feas ||
tasks[i] .getsolsta(mosek.soltype.itg) == mosek.solsta.integer_optimal) &&
((sense == mosek.objsense.minimize) 7

(tasks[i] .getprimalobj(mosek.soltype.itg) < bestObj)
(tasks[i] .getprimalobj(mosek.soltype.itg) > bestObj)))
{
best0bj = tasks[i].getprimalobj(mosek.soltype.itg);
bestPos = 1i;

}

if (bestPos != -1)

{
winTask[0] = tasks[bestPos];
winTrm[0] = trm[bestPos];
winRes[0] = res[bestPos];
return bestPos;

}

}

return -1;

}

It remains to call the method with a choice of seeds, for example:

Listing 11.15: Calling concurrent integer optimization.

int[] seeds = { 42, 13, 71749373 };

idx = optimizeconcurrentMIO(task, seeds, t, trm, res);

174

Chapter 12

Problem Formulation and Solutions

In this chapter we will discuss the following topics:

e The formal, mathematical formulations of the problem types that MOSEK can solve and their
duals.

e The solution information produced by MOSEK.
e The infeasibility certificate produced by MOSEK if the problem is infeasible.

For the underlying mathematical concepts, derivations and proofs see the Modeling Cookbook or any
book on convex optimization. This chapter explains how the related data is organized specifically within
the MOSEK API.

12.1 Linear Optimization

MOSEK accepts linear optimization problems of the form

minimize e+ cf
subject to ¢ < Az < (12.1)
r < T < u®,

where
e m is the number of constraints.
e n is the number of decision variables.
e z € R" is a vector of decision variables.
e ¢ € R” is the linear part of the objective function.
e ¢/ € R is a constant term in the objective

e A c R™*™ js the constraint matrix.

[¢ € R™ is the lower limit on the activity for the constraints.

u® € R™ is the upper limit on the activity for the constraints.
e [€ R" is the lower limit on the activity for the variables.
e y” € R" is the upper limit on the activity for the variables.

Lower and upper bounds can be infinite, or in other words the corresponding bound may be omitted.

A primal solution () is (primal) feasible if it satisfies all constraints in (12.1). If (12.1) has at least
one primal feasible solution, then (12.1) is said to be (primal) feasible. In case (12.1) does not have a
feasible solution, the problem is said to be (primal) infeasible

175

https://docs.mosek.com/modeling-cookbook/index.html

12.1.1 Duality for Linear Optimization
Corresponding to the primal problem (12.1), there is a dual problem
maximize (1¢)7s¢ — (u)Ts¢ + (1%)Ts? — (u®) s + cf

AT T _ T
. Y s = sy C’ (12.2)
subject to —y+si—s, = 0,
5058w s: 8y = 0,
where
e sj are the dual variables for lower bounds of constraints,

o s¢ are the dual variables for upper bounds of constraints,

e s7 are the dual variables for lower bounds of variables,

x

~ are the dual variables for upper bounds of variables.

® S

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at
0, and we use the convention that the product of the bound value and the corresponding dual variable is
0. This is equivalent to removing the corresponding dual variable from the dual problem. For example:

lj=-0c0 = (sf)j=0and[j-(s}); =0.

A solution

(87, 505 575 54)

to the dual problem is feasible if it satisfies all the constraints in (12.2). If (12.2) has at least one feasible
solution, then (12.2) is (dual) feasible, otherwise the problem is (dual) infeasible.
A solution

(%47 (s0)", (s)", (s1)"5 (s3)7)

is denoted a primal-dual feasible solution, if (z*) is a solution to the primal problem (12.1) and
(y*, (s)*, (s5)*, (s7)*, (st)*) is a solution to the corresponding dual problem (12.2). We also define
an auxiliary vector

()" = Ax™

containing the activities of linear constraints.
For a primal-dual feasible solution we define the duality gap as the difference between the primal and
the dual objective value,

Tt of = {7 ()" = ()" (52)" + (1) (s7)" = (u) " (s5)" + '}
= X [(@) = 19) + (07 (uf = (@9)")] (12.3)
2000 [(s7)5 (@ — 12) + (s2)5(ug —27)] > 0

where the first relation can be obtained by transposing and multiplying the dual constraints (12.2) by
z* and (z°)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

It is well-known that a linear optimization problem has an optimal solution if and only if there exist
feasible primal-dual solution so that the duality gap is zero, or, equivalently, that the complementarity
conditions

sp)i((@f)"=1f) = 0, i=0,....m—1,
(s0)i(uf — (2f)") = 0, i=0,....m—1,
(sp)i(uj —2r) = 0, j=0,...,n—1,

are satisfied.
If (12.1) has an optimal solution and MOSEK solves the problem successfully, both the primal and
dual solution are reported, including a status indicating the exact state of the solution.

176

12.1.2 Infeasibility for Linear Optimization

Primal Infeasible Problems

If the problem (12.1) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (1¢)7s¢ — (u®)TsS + (1%)TsF — (u®) T2
subject to
ATy + sF — s =0, (12.4)
-y + 57 — 55, =0,
81> 8u 5155y 2 0,

such that the objective value is strictly positive, i.e. a solution
(7 (s1)75 (50)% (s7)7 (s3)")
to (12.4) so that
) (s)" = () (s5)" + (1) (s7)" = (u”) " (s5)" > 0.
Such a solution implies that (12.4) is unbounded, and that (12.1) is infeasible.

Dual Infeasible Problems

If the problem (12.2) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize c'x
subject to ¢ < Az < 4° (12.5)
o< oz <o
where
- 0 if I§ > —o0 0 ifuf <o
[(3 ’ 5C . — K3 ?
ki { —oo0 otherwise, } and - d; : { oo otherwise, }
and
- 0 if 17 > —o0 0 ifu? <oo
T — J ’ AL J ’
L { —oo otherwise, } and - a; : { oo otherwise, }
such that

Tx <.

Such a solution implies that (12.5) is unbounded, and that (12.2) is infeasible.

In case that both the primal problem (12.1) and the dual problem (12.2) are infeasible, MOSEK
will report only one of the two possible certificates — which one is not defined (MOSEK returns the
first certificate found).

12.1.3 Minimalization vs. Maximalization

When the objective sense of problem (12.1) is maximization, i.e.

maximize e+ ef
subject to ¢ < Ax < uc,
< T < u”,

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (12.2). The dual problem thus takes the form
minimize (1¢)7s¢ — (u®)TsS + (1%)Ts¥ — (u®) s + ¢f
subject to
ATy + s7 — 5% =,
-y + 57 — 55, =0,
87,585,857, 85 < 0.
This means that the duality gap, defined in (12.3) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system
ATy +sF — s =0,
—y+s7—s;, =0, (12.6)
Slc7 Sfl.’ Sf’ 57:5, S 07

such that the objective value is strictly negative
)T ()" = ()T (s5)* + ()T (s7)* — (u™) T (s5)" <0

Similarly, the certificate of dual infeasibility is an = satisfying the requirements of (12.5) such that
T
cx>0.

12.2 Conic Optimization

Conic optimization is an extension of linear optimization (see Sec. 12.1) allowing conic domains to be
specified for affine expressions. A conic optimization problem to be solved by MOSEK can be written
as

minimize e+ cf
; ¢ c
subject to llm i /;x i Zm: (12.7)
Fx+g € D,
where
e m is the number of constraints.
e 1 is the number of decision variables.
e z € R" is a vector of decision variables.
e ¢ € R" is the linear part of the objective function.
e ¢/ € R is a constant term in the objective
e A € R™*™ ig the constraint matrix.
e [€ R™ is the lower limit on the activity for the constraints.
e y° € R™ is the upper limit on the activity for the constraints.
e [® € R” is the lower limit on the activity for the variables.
e u” € R" is the upper limit on the activity for the variables.
is the same as in Sec. 12.1 and moreover:
e F € R¥*™ is the affine conic constraint matrix.,
e g € R” is the affine conic constraint constant term vector.,
e D is a Cartesian product of conic domains, namely D = D; x --- X D,, where p is the number of

individual affine conic constraints (ACCs), and each domain is one from Sec. 15.11.

The total dimension of the domain D must be equal to k, the number of rows in F' and g. Lower and
upper bounds can be infinite, or in other words the corresponding bound may be omitted.

MOSEK supports also the cone of positive semidefinite matrices. In order not to obscure this section
with additional notation, that extension is discussed in Sec. 12.3.

178

12.2.1 Duality for Conic Optimization
Corresponding to the primal problem (12.7), there is a dual problem

maximize (1¢)7s¢ — (u®)TsS + (1%)Ts¥ — (u®)Ts% — g7y + ¢/
subject to
ATy + s — st + Fly =c,
-y + 7 — 55 =0,
ST> Sus 815 50 = 0
y € D",

(12.8)

where

e s7 are the dual variables for lower bounds of constraints,

c

¢ are the dual variables for upper bounds of constraints,

® S

e s7 are the dual variables for lower bounds of variables,

8

e s* are the dual variables for upper bounds of variables,

u

e ¢y are the dual variables for affine conic constraints,
e the dual domain D* =D X --- x D} is a Cartesian product of cones dual to D;.

One can check that the dual problem of the dual problem is identical to the original primal problem.

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at
0, and we use the convention that the product of the bound value and the corresponding dual variable
is 0. This is equivalent to removing the corresponding dual variable (s{'); from the dual problem. For
example:

[j=-0c0 = (sf)j=0and[j-(s); =0.

A solution

c . T T
(y,sl75u731,5u7y)

to the dual problem is feasible if it satisfies all the constraints in (12.8). If (12.8) has at least one feasible
solution, then (12.8) is (dual) feasible, otherwise the problem is (dual) infeasible.
A solution

(@97, (s7)" (s)", (s7)7 (s3)", (9)7)

is denoted a primal-dual feasible solution, if (z*) is a solution to the primal problem (12.7) and
(y*, (s7)*, (sS)*, (s7)*, (s2)*, (9)*) is a solution to the corresponding dual problem (12.8). We also define
an auxiliary vector

(z)* := Az™

containing the activities of linear constraints.
For a primal-dual feasible solution we define the duality gap as the difference between the primal and
the dual objective value,

et el = {197 (57)7 = (u)7(55)" + ()7 ()" = ()" (57)" = g7 ()" + ¢/}

ST D (@)™ —19) + (s0)5(ug — (x5)*)] (12.9)
S (575 (g — 1) + (23 ut — 27)] ‘
(g *)T(Fx +9)>0

+ + |

where the first relation can be obtained by transposing and multiplying the dual constraints (12.2) by
2* and (2¢)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

179

It is well-known that, under some non-degeneracy assumptions that exclude ill-posed cases, a conic
optimization problem has an optimal solution if and only if there exist feasible primal-dual solution so
that the duality gap is zero, or, equivalently, that the complementarity conditions

sp)i((x§)* =1§) = 0, i=0,...,m—1,

(s6)i(u§ — (25)*) = 0, i=0,...,m—1,

(s7)5(z; —15) = 0, j=0,....,n—1, (12.10)
(sp)i(uf —a3) = 0, j=0,....,n—1,

((©)) (Fz*+g) = 0,

are satisfied.
If (12.7) has an optimal solution and MOSEK solves the problem successfully, both the primal and
dual solution are reported, including a status indicating the exact state of the solution.

12.2.2 Infeasibility for Conic Optimization

Primal Infeasible Problems

If the problem (12.7) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (1¢)7s§ — (u®)TsS 4+ (17)Ts7 — (u*)T'sZ — gTy
subject to
ATy + s — s+ FTy =0,
-y + s — 55 =0,
ST> Sus 81550 2 0
y € D",

(12.11)

such that the objective value is strictly positive, i.e. a solution
(", (s0)" (s2)™ (s7)75 (s2)", (9)7)
to (12.11) so that
)T (sP)" = (u) T (s5)™ + (1) (s7)" = (™) (s1)" = 97§ > 0.
Such a solution implies that (12.11) is unbounded, and that (12.7) is infeasible.

Dual Infeasible Problems

If the problem (12.8) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize Ly
. AC < < ~c
subject to { < Az < Zf , 12.12)
v < x < 4",
Fx €D
where
e_] 0 if If > —oo, e)0 ifuf <oo,
I —{ —oo otherwise, } and .—{ % otherwise, } (12.13)
and
- 0 if ¥ > —o0 0 ifuf <oo
T _ J ? AT j s
" { —oco otherwise, } and ;- { oo otherwise, } (12.14)

180

such that
Tz <.

Such a solution implies that (12.12) is unbounded, and that (12.8) is infeasible.

In case that both the primal problem (12.7) and the dual problem (12.8) are infeasible, MOSEK
will report only one of the two possible certificates — which one is not defined (MOSEK returns the
first certificate found).

12.2.3 Minimalization vs. Maximalization

When the objective sense of problem (12.7) is maximization, i.e.

maximize T +cf
subject to ¢ < Ax < s,
r < T < u®,
Fx+g € D,

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (12.2). The dual problem thus takes the form

minimize (1°)Tsf — (u®)TsS + (1%)Ts¥ — (u®)Ts2 — g7y + cf
subject to ATy +s7 —s2+ Fly=c,
-y + 57 —s5, =0,
sy, 85,87, 58 <0,
—y € D*

This means that the duality gap, defined in (12.9) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system

ATy + s — s+ FTy =0,
-y + s —s5 =0,
Sl’suaslv uSO

—y € D*

(12.15)

such that the objective value is strictly negative
) ()" = ()T (s5)* +)T (s7)* = (u™) T (s3)* — 9Ty < 0.

Similarly, the certificate of dual infeasibility is an x satisfying the requirements of (12.12) such that
T
cx>0.

12.3 Semidefinite Optimization

Semidefinite optimization is an extension of conic optimization (see Sec. 12.2) allowing positive semidefi-
nite matrix variables to be used in addition to the usual scalar variables. All the other parts of the input
are defined exactly as in Sec. 12.2; and the discussion from that section applies verbatim to all properties
of problems with semidefinite variables. We only briefly indicate how the corresponding formulae should
be modified with semidefinite terms.

A semidefinite optimization problem can be written as

minimize Tz +(C,X) +¢f
subject to ¢ < Ax + (A, X) < s,
< T < u”,
Fr+(F,X)+g € D,
YJ’ € S:_j,jil,...,s

where

181

as

m is the number of constraints.

n is the number of decision variables.

x € R™ is a vector of decision variables.

¢ € R™ is the linear part of the objective function.

¢/ € R is a constant term in the objective

A € R™*" is the constraint matrix.

[¢ € R™ is the lower limit on the activity for the constraints.
u® € R™ is the upper limit on the activity for the constraints.
[* € R™ is the lower limit on the activity for the variables.
u® € R™ is the upper limit on the activity for the variables.
F € RF*™ is the affine conic constraint matrix.,

g € RF is the affine conic constraint constant term vector.,

D is a Cartesian product of conic domains, namely D = Dy x - x D, where p is the number of
individual affine conic constraints (ACCs), and each domain is one from Sec. 15.11.

the same as in Sec. 12.2 and moreover:
there are s symmetric positive semidefinite variables, the j-th of which is X; € S:J of dimension
’I‘j,

C = (éj)jzl,‘..,s is a collectiongfﬂrmmetric coefficient matrices in the objective, with 6j e 8",
and we interpret the notation (C, X) as a shorthand for

<6’Y> = Z<CJ7YJ>

j=1

g = (Zij)izlw,m’jzlwﬁs is a collection oijgmetric coefficient matrices in the constraints, with
A;; € 877, and we interpret the notation (A, X) as a shorthand for the vector

F = (Fij)i=1,:k7j=1,_“7s is a collection of symmetric cogfﬁiient matrices in the affine conic con-
straints, with F';; € 8", and we interpret the notation (F, X) as a shorthand for the vector

(F.X) = | Y (Fi;, X;)

j=1 i=1,...k

In each case the matrix inner product between symmetric matrices of the same dimension r is defined

i=1j=1

To summarize, above the formulation extends that from Sec. 12.2 by the possibility of including
semidefinite terms in the objective, constraints and affine conic constraints.

182

Duality
The definition of the dual problem (12.8) becomes:

maximize (1¢)7s§ — (u®)TsS + (1%)Ts¥ — (u®)Ts% — gTy + ¢/
subject to
Aly+ s —si+ FTj=c,
-y +sj —s5 =0,

_ m = o . (12.16)
Cj—> i1yl — > 1 0iFi; =S, j=1...,s,
SlcV SZ, va Si 2 07
yeD,
S; eS8y, j=1,...,s.
Complementarity conditions (12.10) include the additional relation:
(X;,8;)=0 j=1,...,s. (12.17)
Infeasibility
A certificate of primal infeasibility (12.11) is now a feasible solution to:
maximize (1°)Ts¢ — (u®)TsS + (1%)Ts¥ — (u®)TsZ — gTy
subject to
ATy +s7 —sZ+ FTy =0,
—y+ s —s5, =0,
m k- . 12.18
= ic Yilij — Y i UiFiy = Sj, J=1...s, ()
8107 857 s;ca Si > 07
yeD,
S;esy, j=1,...,s.
such that the objective value is strictly positive.
Similarly, a dual infeasibility certificate (12.12) is a feasible solution to
minimize e+ (C,X)
subject to ¢ < Ax+ (A, X) < af,
< z < (12.19)
Fz+ (F,X) € D,
Y]’ S Srj,jzl,...,s

where the modified bounds are as in (12.13) and (12.14) and the objective value is strictly negative.

12.4 Quadratic and Quadratically Constrained Optimization

A convex quadratic and quadratically constrained optimization problem has the form

minimize %xTQ‘)x +cTx+cf
subject to 1§ < 32TQFz+ Y Japm; < o, k=0,...,m—1, (12.20)
l;/’ < Z; < uf, 7=0,....,n—1,

where all variables and bounds have the same meaning as for linear problems (see Sec. 12.1) and Q° and
all Q% are symmetric matrices. Moreover, for convexity, ° must be a positive semidefinite matrix and
Q" must satisfy

—oo < Iy = QF is negative semidefinite,
up < oo = QF is positive semidefinite,
—oo < lf <uj <o = QF=o0.

The convexity requirement is very important and MOSEK checks whether it is fulfilled.

183

12.4.1 A Recommendation

Any convex quadratic optimization problem can be reformulated as a conic quadratic optimization prob-
lem, see Modeling Cookbook and [And13]. In fact MOSEK does such conversion internally as a part
of the solution process for the following reasons:

e the conic optimizer is numerically more robust than the one for quadratic problems.

e the conic optimizer is usually faster because quadratic cones are simpler than quadratic functions,
even though the conic reformulation usually has more constraints and variables than the original
quadratic formulation.

e it is easy to dualize the conic formulation if deemed worthwhile potentially leading to (huge)
computational savings.

However, instead of relying on the automatic reformulation we recommend to formulate the problem
as a conic problem from scratch because:

e it saves the computational overhead of the reformulation including the convexity check. A conic
problem is convex by construction and hence no convexity check is needed for conic problems.

e usually the modeler can do a better reformulation than the automatic method because the modeler
can exploit the knowledge of the problem at hand.

To summarize we recommend to formulate quadratic problems and in particular quadratically con-
strained problems directly in conic form.

12.4.2 Duality for Quadratic and Quadratically Constrained Optimization

The dual problem corresponding to the quadratic and quadratically constrained optimization problem
(12.20) is given by

maximize (1°)7s§ — (u®)TsS + (1%)Tsf — (u®)Ts2 + SaT {Z;n:_ol yQF — QO} z+cf

subject to ATy +s7 — s% + {ZZS yQF — QO} r=c (12.21)
—y+si— s, =0,
sy, s0,87,80 > 0.

The dual problem is related to the dual problem for linear optimization (see Sec. 12.1.1), but depends
on the variable x which in general can not be eliminated. In the solutions reported by MOSEK, the
value of x is the same for the primal problem (12.20) and the dual problem (12.21).

12.4.3 Infeasibility for Quadratic Optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of infeasibility. We write them
out explicitly for quadratic problems, that is when Q* = 0 for all k and quadratic terms appear only
in the objective °. In this case the constraints both in the primal and dual problem are linear, and
MOSEK produces for them the same infeasibility certificate as for linear problems.

The certificate of primal infeasibility is a solution to the problem (12.4) such that the objective value
is strictly positive.

The certificate of dual infeasibility is a solution to the problem (12.5) together with an additional
constraint

Q°r=0

such that the objective value is strictly negative.
Below is an outline of the different problem types for quick reference.

184

https://docs.mosek.com/modeling-cookbook/index.html

Continuous problem formulations

e Linear optimization (LO)

minimize e+ of
subject to ¢ < Ax < uc,
*r < T < u®.

e Conic optimization (CO)

Conic optimization extends linear optimization with affine conic constraints (ACC):

minimize e+ cf
subject to ¢ < Ax < uf,
" < T < u®,
Fx+g € D,

where D is a product of domains from Sec. 15.11.

e Semidefinite optimization (SDO)

A conic optimization problem can be further extended with semidefinite variables:

minimize e+ (C,X) +cf
subject to 1¢ < Az + (A, X) < u,
r < T < u®,
Fr+(F,X)+g9 € D,
X S S_A,_,

where D is a product of domains from Sec. 15.11 and &4 is a product of PSD cones meaning that
X is a sequence of PSD matrix variables.

e Quadratic and quadratically constrained optimization (QO, QCQO)

A quadratic problem or quadratically constrained problem has the form

minimize %I’TQOI +cTr+¢f
subject to ¢ < %xTch + Ax < s,
r < T < u”.

Mixed-integer extensions

Coninuous problems can be extended with constraints requiring the mixed-integer optimizer. We outline
them briefly here. The continuous part of a mixed-integer problem is formulated according to one of the
continuous types above, however only the primal information and solution fields are relevant, there are
no dual values and no infeasibility certificates.

e Integer variables. Specifies that a subset of variables take integer values, that is
ry €Z
for some index set I. Available for problems of type LO, CO, QO and QCQO.
e Disjunctive constraints. Appends disjunctions of the form
t Sq
\/ /\ (Dijl‘ + dij € Dij>
i=1j=1

ie. a disjunction of conjunctions of linear constraints, where each D;;x + d;; is an affine expression
of the optimization variables and each D;; is an affine domain. Available for problems of type LO
and CO.

185

Chapter 13

Optimizers

The most essential part of MOSEK are the optimizers:

e primal simplex (linear problems),

o dual simplex (linear problems),

e interior-point (linear, quadratic and conic problems),

e mized-integer (problems with integer variables).

The structure of a successful optimization process is roughly:

e Presolve

1. Elimination: Reduce the size of the problem.
2. Dualizer: Choose whether to solve the primal or the dual form of the problem.

3. Scaling: Scale the problem for better numerical stability.

e Optimization

1. Optimize: Solve the problem using selected method.
2. Terminate: Stop the optimization when specific termination criteria have been met.

3. Report: Return the solution or an infeasibility certificate.

The preprocessing stage is transparent to the user, but useful to know about for tuning purposes.
The purpose of the preprocessing steps is to make the actual optimization more efficient and robust. We
discuss the details of the above steps in the following sections.

13.1 Presolve

Before an optimizer actually performs the optimization the problem is preprocessed using the so-called
presolve. The purpose of the presolve is to

1.
2.

- W

remove redundant constraints,

eliminate fixed variables,

remove linear dependencies,

substitute out (implied) free variables, and

reduce the size of the optimization problem in general.

186

After the presolved problem has been optimized the solution is automatically postsolved so that the
returned solution is valid for the original problem. Hence, the presolve is completely transparent. For
further details about the presolve phase, please see [AA95] and [AGMeszarosX96].

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If presolve consumes
too much time or memory compared to the reduction in problem size gained it may be disabled. This is
done by setting the parameter iparam.presolve_use to presolvemode.off.

In the following we describe in more detail the presolve applied to continuous, i.e., linear and conic
optimization problems, see Sec. 13.2 and Sec. 13.3. The mixed-integer optimizer, Sec. 13.4, applies similar
techniques. The two most time-consuming steps of the presolve for continuous optimization problems
are

e the eliminator, and
e the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.

Numerical issues in the presolve

During the presolve the problem is reformulated so that it hopefully solves faster. However, in rare
cases the presolved problem may be harder to solve then the original problem. The presolve may also
be infeasible although the original problem is not. If it is suspected that presolved problem is much
harder to solve than the original, we suggest to first turn the eliminator off by setting the parameter
iparam.presolve_eliminator_maz_num_tries to 0. If that does not help, then trying to turn entire
presolve off may help.

Since all computations are done in finite precision, the presolve employs some tolerances when con-
cluding a variable is fixed or a constraint is redundant. If it happens that MOSEK incorrectly concludes
a problem is primal or dual infeasible, then it is worthwhile to try to reduce the parameters dparam.
presolve_tol_z and dparam.presolve_tol_s. However, if reducing the parameters actually helps
then this should be taken as an indication that the problem is badly formulated.

Eliminator

The purpose of the eliminator is to eliminate free and implied free variables from the problem using
substitution. For instance, given the constraints

Y
Y,z

Zj Ly
0,

vVl

y is an implied free variable that can be substituted out of the problem, if deemed worthwhile. If the
eliminator consumes too much time or memory compared to the reduction in problem size gained it may
be disabled. This can be done by setting the parameter iparam. presolve_eliminator_maz_num_tries
to 0. In rare cases the eliminator may cause that the problem becomes much hard to solve.

Linear dependency checker

The purpose of the linear dependency check is to remove linear dependencies among the linear equalities.
For instance, the three linear equalities

X1 + o + T3 = 1,
1 + 05(52 = 05,
0.520 +23 = 0.5.

contain exactly one linear dependency. This implies that one of the constraints can be dropped without
changing the set of feasible solutions. Removing linear dependencies is in general a good idea since it
reduces the size of the problem. Moreover, the linear dependencies are likely to introduce numerical
problems in the optimization phase. It is best practice to build models without linear dependencies,
but that is not always easy for the user to control. If the linear dependencies are removed at the
modeling stage, the linear dependency check can safely be disabled by setting the parameter iparam.
presolve_lindep_use to onoffkey.off.

187

Dualizer

All linear, conic, and convex optimization problems have an equivalent dual problem associated with
them. MOSEK has built-in heuristics to determine if it is more efficient to solve the primal or dual
problem. The form (primal or dual) is displayed in the MOSEK log and available as an information
item from the solver. Should the internal heuristics not choose the most efficient form of the problem it
may be worthwhile to set the dualizer manually by setting the parameters:

e iparam.intpnt_solve_form: In case of the interior-point optimizer.
e iparam.sim_solve_form: In case of the simplex optimizer.

Note that currently only linear and conic (but not semidefinite) problems may be automatically
dualized.

Scaling

Problems containing data with large and/or small coefficients, say 1.0e + 9 or 1.0e — 7, are often hard
to solve. Significant digits may be truncated in calculations with finite precision, which can result in
the optimizer relying on inaccurate data. Since computers work in finite precision, extreme coefficients
should be avoided. In general, data around the same order of magnitude is preferred, and we will refer to
a problem, satisfying this loose property, as being well-scaled. If the problem is not well scaled, MOSEK
will try to scale (multiply) constraints and variables by suitable constants. MOSEK solves the scaled
problem to improve the numerical properties.

The scaling process is transparent, i.e. the solution to the original problem is reported. It is important
to be aware that the optimizer terminates when the termination criterion is met on the scaled problem,
therefore significant primal or dual infeasibilities may occur after unscaling for badly scaled problems.
The best solution of this issue is to reformulate the problem, making it better scaled.

By default MOSEK heuristically chooses a suitable scaling. The scaling for interior-point and
simplex optimizers can be controlled with the parameters tparam.intpnt_scaling and <param.
sim_scaling respectively.

13.2 Linear Optimization

13.2.1 Optimizer Selection

Two different types of optimizers are available for linear problems: The default is an interior-point
method, and the alternative is the simplex method (primal or dual). The optimizer can be selected using
the parameter iparam.optimizer.

The Interior-point or the Simplex Optimizer?

Given a linear optimization problem, which optimizer is the best: the simplex or the interior-point
optimizer? It is impossible to provide a general answer to this question. However, the interior-point
optimizer behaves more predictably: it tends to use between 20 and 100 iterations, almost independently
of problem size, but cannot perform warm-start. On the other hand the simplex method can take
advantage of an initial solution, but is less predictable from cold-start. The interior-point optimizer is
used by default.

The Primal or the Dual Simplex Variant?

MOSEK provides both a primal and a dual simplex optimizer. Predicting which simplex optimizer
is faster is impossible, however, in recent years the dual optimizer has seen several algorithmic and
computational improvements, which, in our experience, make it faster on average than the primal version.
Still, it depends much on the problem structure and size. Setting the iparam.optimizer parameter to
optimizertype. free_simplez instructs MOSEK to choose one of the simplex variants automatically.

To summarize, if you want to know which optimizer is faster for a given problem type, it is best to
try all the options.

188

13.2.2 The Interior-point Optimizer

The purpose of this section is to provide information about the algorithm employed in the MOSEK
interior-point optimizer for linear problems and about its termination criteria.

The homogeneous primal-dual problem

In order to keep the discussion simple it is assumed that MOSEK solves linear optimization problems
of standard form

minimize T
subject to Ax = b, (13.1)
xz > 0.

This is in fact what happens inside MOSEK; for efficiency reasons MOSEK converts the problem to
standard form before solving, then converts it back to the input form when reporting the solution.

Since it is not known beforehand whether problem (13.1) has an optimal solution, is primal infeasible
or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason
why MOSEK solves the so-called homogeneous model

Axr —br = 0,
ATy+s—cr = 0,

—cTe4+bTy—x = 0, (13.2)
z,s, 7,k > 0

)

where y and s correspond to the dual variables in (13.1), and 7 and k are two additional scalar variables.
Note that the homogeneous model (13.2) always has solution since

(z,y,s,71,k) = (0,0,0,0,0)
is a solution, although not a very interesting one. Any solution
(@*, 4", 85, 75, K*)
to the homogeneous model (13.2) satisfies
zist=0and 7°k* = 0.

Moreover, there is always a solution that has the property 7* + £* > 0.
First, assume that 7* > 0 . It follows that

AZ b,
ATy* 5
Yy 45 — ¢
Tz 7:_ T;I 0’
c = =y =)
T T
¥ s, k* > 0.

This shows that f—* is a primal optimal solution and (3—*, ;—1
as the optimal interior-point solution since

* y* s*
(z,y,s) = gt R s

is a primal-dual optimal solution (see Sec. 12.1 for the mathematical background on duality and opti-
mality).
On other hand, if k* > 0 then

) is a dual optimal solution; this is reported

o
H*
|

ATy* +S*
_ch* +bTy*
T 8%, T K

|
ox o0

IVl

189

This implies that at least one of

cl'z* <0 (13.3)
or

bly* >0 (13.4)

is satisfied. If (13.3) is satisfied then z* is a certificate of dual infeasibility, whereas if (13.4) is satisfied
then y* is a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information re-
quired for a solution to the original problem is obtained. A solution to the homogeneous model can be
computed using a primal-dual interior-point algorithm [And09].

Interior-point Termination Criterion

For efficiency reasons it is not practical to solve the homogeneous model exactly. Hence, an exact optimal
solution or an exact infeasibility certificate cannot be computed and a reasonable termination criterion
has to be employed.

In the k-th iteration of the interior-point algorithm a trial solution

ko, k b k Kk
(:I:) y) S) T) K)
to homogeneous model is generated, where

s8R k> 0.

Optimal case

Whenever the trial solution satisfies the criterion

k
|aze—b| < e+,

k k
HATZ—k +3r | < ca(l+ell,). and (13.5)
i 2T sk | Tk T,k min(|cTz®],|6Ty*
mm(((Tl)2 N ng |) < €ymax <1,w>a

the interior-point optimizer is terminated and
(=%, y", ")
Tk

is reported as the primal-dual optimal solution. The interpretation of (13.5) is that the optimizer is
terminated if

° f—: is approximately primal feasible,

° {Z—Z, :—:} is approximately dual feasible, and
e the duality gap is almost zero.

Dual infeasibility certificate

On the other hand, if the trial solution satisfies

Tk el k
> oy 14

then the problem is declared dual infeasible and z* is reported as a certificate of dual infeasibility. The
motivation for this stopping criterion is as follows: First assume that HAkaoo =0 ; then 2" is an exact
certificate of dual infeasibility. Next assume that this is not the case, i.e.

||Akaoo > O’

190

and define

max (1,.)
T4z el

T =€

It is easy to verify that

~max (1, [b]|)

lAZ|| . =€ and —c’'z > 1,
el

which shows Z is an approximate certificate of dual infeasibility, where &; controls the quality of the
approximation. A smaller value means a better approximation.

Primal infeasibility certificate

Finally, if

b
ebTyF > 116/l) ||ATyk+sk||oo

max (L, [l]|
then y* is reported as a certificate of primal infeasibility.

Adjusting optimality criteria

It is possible to adjust the tolerances €, €4, €4 and €; using parameters; see table for details.

Table 13.1: Parameters employed in termination criterion

ToleranceParameter | name

Ep dparam.intpnt_tol_pfeas
€d dparam.intpnt_tol_dfeas
Eg dparam.intpnt_tol_rel_gap
€; dparam.intpnt_tol_infeas

The default values of the termination tolerances are chosen such that for a majority of problems
appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the
tolerances usually is not worthwhile. However, an inspection of (13.5) reveals that the quality of the
solution depends on [|b]|, and ||c||; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal
and dual feasibility at the same rate [And09|. This means that if the optimizer is stopped prematurely
then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that
in most cases all the tolerances, €, €4, €4 and ¢;, have to be relaxed together to achieve an effect.

The basis identification discussed in Sec. 13.2.2 requires an optimal solution to work well; hence basis
identification should be turned off if the termination criterion is relaxed.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

Basis Identification

An interior-point optimizer does not return an optimal basic solution unless the problem has a unique
primal and dual optimal solution. Therefore, the interior-point optimizer has an optional post-processing
step that computes an optimal basic solution starting from the optimal interior-point solution. More
information about the basis identification procedure may be found in [AY96]. In the following we provide
an overall idea of the procedure.

There are some cases in which a basic solution could be more valuable:

e a basic solution is often more accurate than an interior-point solution,
e a basic solution can be used to warm-start the simplex algorithm in case of reoptimization,

e a basic solution is in general more sparse, i.e. more variables are fixed to zero. This is partic-
ularly appealing when solving continuous relaxations of mixed integer problems, as well as in all
applications in which sparser solutions are preferred.

191

To illustrate how the basis identification routine works, we use the following trivial example:

minimize T+y
subject to zx+y = 1,
z,y > 0.

It is easy to see that all feasible solutions are also optimal. In particular, there are two basic solutions,
namely

(xf,yi‘) = (170)a

The interior point algorithm will actually converge to the center of the optimal set, i.e. to (z*,y*) =
(1/2,1/2) (to see this in MOSEK deactivate Presolve).

In practice, when the algorithm gets close to the optimal solution, it is possible to construct in
polynomial time an initial basis for the simplex algorithm from the current interior point solution. This
basis is used to warm-start the simplex algorithm that will provide the optimal basic solution. In most
cases the constructed basis is optimal, or very few iterations are required by the simplex algorithm to
make it optimal and hence the final clean-up phase be short. However, for some cases of ill-conditioned
problems the additional simplex clean up phase may take of lot a time.

By default MOSEK performs a basis identification. However, if a basic solution is not needed, the
basis identification procedure can be turned off. The parameters

e iparam.intpnt_basis,
e iparam.bi_ignore_maz_iter, and
e iparam.bi_ignore_num_error

control when basis identification is performed.

The type of simplex algorithm to be used (primal/dual) can be tuned with the parameter
iparam.bi_clean_optimizer, and the maximum number of iterations can be set with iparam.
bi_maz_iterations.

Finally, it should be mentioned that there is no guarantee on which basic solution will be returned.

The Interior-point Log

Below is a typical log output from the interior-point optimizer:

Optimizer - threads 01

Optimizer - solved problem : the dual

Optimizer - Constraints : 2

Optimizer - Cones : 0

Optimizer - Scalar variables : 6 conic : 0
Optimizer - Semi-definite variables: O scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 3 after factor : 3
Factor - dense dim. : 0 flops : 7.
—00e+001

ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU U
— TIME

0 1.0e+000 8.6e+000 6.1e+000 1.00e+000 0.000000000e+000 -2.208000000e+003 1.
—0e+000 0.00

1 1.1e+000 2.5e+000 1.6e-001 0.00e+000 -7.901380925e+003 -7.394611417e+003 2.
—5e+000 0.00

2 1.4e-001 3.4e-001 2.1e-002 8.36e-001 -8.113031650e+003 -8.055866001e+003 3.3e-
—001 0.00

3 2.4e-002 5.8e-002 3.6e-003 1.27e+000 -7.777530698e+003 -7.766471080e+003 5.7e-
—002 0.01

4 1.3e-004 3.2e-004 2.0e-005 1.08e+000 -7.668323435e+003 -7.668207177e+003 3.2e-
—004 0.01

(continues on next page)

192

(continued from previous page)

5 1.3e-008 3.2e-008 2.0e-009 1.00e+000 -7.668000027e+003 -7.668000015e+003 3.2e-
—008 0.01
6 1.3e-012 3.2e-012 2.0e-013 1.00e+000 -7.667999994e+003 -7.667999994e+003 3.2e-
-012 0.01

The first line displays the number of threads used by the optimizer and the second line indicates if
the optimizer chose to solve the primal or dual problem (see iparam.intpnt_solve_form). The next
lines display the problem dimensions as seen by the optimizer, and the Factor... lines show various
statistics. This is followed by the iteration log.

Using the same notation as in Sec. 13.2.2 the columns of the iteration log have the following meaning:

e ITE: Iteration index k.

e PFEAS: HA:JC’~C - kaHOO . The numbers in this column should converge monotonically towards zero
but may stall at low level due to rounding errors.

e DFEAS: HATyk + sk —erk Hoo . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

e GFEAS: | —cT2% +bTy* — k¥| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

e PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to —1 if that is not the case.

e POBJ: cT'z% /7%, An estimate for the primal objective value.

e DOBJ: bT'y*/7%. An estimate for the dual objective value.

MU (wk)TSkJerlik

— . The numbers in this column should always converge to zero.

TIME: Time spent since the optimization started.

13.2.3 The Simplex Optimizer

An alternative to the interior-point optimizer is the simplex optimizer. The simplex optimizer uses a
different method that allows exploiting an initial guess for the optimal solution to reduce the solution
time. Depending on the problem it may be faster or slower to use an initial guess; see Sec. 13.2.1 for a
discussion. MOSEK provides both a primal and a dual variant of the simplex optimizer.

Simplex Termination Criterion

The simplex optimizer terminates when it finds an optimal basic solution or an infeasibility certificate.
A basic solution is optimal when it is primal and dual feasible; see Sec. 12.1 for a definition of the primal
and dual problem. Due to the fact that computations are performed in finite precision MOSEK allows
violations of primal and dual feasibility within certain tolerances. The user can control the allowed
primal and dual tolerances with the parameters dparam.basis_tol_z and dparam.bastis_tol_s.

Setting the parameter iparam.optimizer to optimizertype. free_simplez instructs MOSEK to
select automatically between the primal and the dual simplex optimizers. Hence, MOSEK tries to
choose the best optimizer for the given problem and the available solution. The same parameter can also
be used to force one of the variants.

193

Starting From an Existing Solution

When using the simplex optimizer it may be possible to reuse an existing solution and thereby reduce
the solution time significantly. When a simplex optimizer starts from an existing solution it is said to
perform a warm-start. If the user is solving a sequence of optimization problems by solving the problem,
making modifications, and solving again, MOSEK will warm-start automatically.

By default MOSEK uses presolve when performing a warm-start. If the optimizer only needs very
few iterations to find the optimal solution it may be better to turn off the presolve.

Numerical Difficulties in the Simplex Optimizers

Though MOSEK is designed to minimize numerical instability, completely avoiding it is impossible
when working in finite precision. MOSEK treats a ‘numerically unexpected behavior” event inside the
optimizer as a set-back. The user can define how many set-backs the optimizer accepts; if that number
is exceeded, the optimization will be aborted. Set-backs are a way to escape long sequences where the
optimizer tries to recover from an unstable situation.

Examples of set-backs are: repeated singularities when factorizing the basis matrix, repeated loss
of feasibility, degeneracy problems (no progress in objective) and other events indicating numerical
difficulties. If the simplex optimizer encounters a lot of set-backs the problem is usually badly scaled; in
such a situation try to reformulate it into a better scaled problem. Then, if a lot of set-backs still occur,
trying one or more of the following suggestions may be worthwhile:

e Raise tolerances for allowed primal or dual feasibility: increase the value of

— dparam.basis_tol_z, and

— dparam.basts_tol_s.
e Raise or lower pivot tolerance: Change the dparam.simplez_abs_tol_piv parameter.
e Switch optimizer: Try another optimizer.
e Switch off crash: Set both iparam.sim_primal_crash and iparam.sim_dual_crash to 0.
e Experiment with other pricing strategies: Try different values for the parameters

— tparam.sim_primal_selection and

— 4param.sim_dual_selection.

e If you are using warm-starts, in rare cases switching off this feature may improve stability. This is
controlled by the iparam.sim_hotstart parameter.

e Increase maximum number of set-backs allowed controlled by Zparam.sim_maz_num_setbacks.

e If the problem repeatedly becomes infeasible try switching off the special degeneracy handling. See
the parameter iparam.sim_degen for details.

The Simplex Log

Below is a typical log output from the simplex optimizer:

Optimizer - solved problem : the primal

Optimizer - Constraints 1 667

Optimizer - Scalar variables 1 1424 conic : 0
Optimizer - hotstart ! no

ITER DEGITER(%) PFEAS DFEAS POBJ DOBJ U
- TIME TOTTIME

0 0.00 1.43e+05 NA 6.5584140832e+03 NA U
- 0.00 0.02

1000 1.10 0.00e+00 NA 1.4588289726e+04 NA U
- 0.13 0.14

2000 0.75 0.00e+00 NA 7.3705564855e+03 NA U
- 0.21 0.22

(continues on next page)

194

(continued from previous page)

3000 0.67 0.00e+00 NA 6.0509727712e+03 NA U
- 0.29 0.31

4000 0.52 0.00e+00 NA 5.5771203906e+03 NA U
- 0.38 0.39

4533 0.49 0.00e+00 NA 5.5018458883e+03 NA U
. 0.42 0.44

The first lines summarize the problem the optimizer is solving. This is followed by the iteration log,
with the following meaning:

e ITER: Number of iterations.
e DEGITER(%): Ratio of degenerate iterations.

e PFEAS: Primal feasibility measure reported by the simplex optimizer. The numbers should be 0 if
the problem is primal feasible (when the primal variant is used).

e DFEAS: Dual feasibility measure reported by the simplex optimizer. The number should be 0 if the
problem is dual feasible (when the dual variant is used).

e POBJ: An estimate for the primal objective value (when the primal variant is used).
e DOBJ: An estimate for the dual objective value (when the dual variant is used).
e TIME: Time spent since this instance of the simplex optimizer was invoked (in seconds).

e TOTTIME: Time spent since optimization started (in seconds).

13.3 Conic Optimization - Interior-point optimizer

For conic optimization problems only an interior-point type optimizer is available. The same optimizer
is used for quadratic optimization problems which are internally reformulated to conic form.

13.3.1 The homogeneous primal-dual problem

The interior-point optimizer is an implementation of the so-called homogeneous and self-dual algorithm.
For a detailed description of the algorithm, please see [ART03]. In order to keep our discussion simple
we will assume that MOSEK solves a conic optimization problem of the form:

minimize T
subject to Az = b, (13.6)
rek

where K is a convex cone. The corresponding dual problem is

maximize by
subject to ATy+s = ¢, (13.7)
s e K*

where IC* is the dual cone of K. See Sec. 12.2 for definitions.

Since it is not known beforehand whether problem (13.6) has an optimal solution, is primal infeasible
or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason
that MOSEK solves the so-called homogeneous model

Ax —br = 0,
ATy4+s—cr = 0,
T T
—cr+by—rk = 0,
: e K (13.8)
s € K
T7 K Z 07

195

where y and s correspond to the dual variables in (13.6), and T and k are two additional scalar variables.
Note that the homogeneous model (13.8) always has a solution since

(x,y,s,7,k) = (0,0,0,0,0)
is a solution, although not a very interesting one. Any solution
(&, y*, %, 7%, K¥)
to the homogeneous model (13.8) satisfies
(z)Ts* + 7%K* = 0

i.e. complementarity. Observe that z* € K and s* € * implies

and therefore

since 7%, k* > 0. Hence, at least one of 7* and k* is zero.
First, assume that 7* > 0 and hence £* = 0. It follows that

AL b,
ATYL + & ¢,
Tz | Ty _
- E+0 L = 0,
/" € K,
s*/t* e K*.

This shows that i— is a primal optimal solution and (ﬁ—, j—*) is a dual optimal solution; this is reported
as the optimal interior-point solution since

.T* y* S*
z,y,8)=|—,—=,—
(@) = (5.2,
is a primal-dual optimal solution.
On other hand, if * > 0 then

Ax* = 0,
ATy* 4 s* 0,
—CT.’E* +bTy* — I{*,
z* e K,
s* e K
This implies that at least one of
cl'z* <0 (13.9)
or
by* >0 (13.10)

holds. If (13.9) is satisfied, then z* is a certificate of dual infeasibility, whereas if (13.10) holds then y*
is a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information re-
quired for a solution to the original problem is obtained. A solution to the homogeneous model can be
computed using a primal-dual interior-point algorithm [And09].

196

13.3.2 Interior-point Termination Criterion

Since computations are performed in finite precision, and for efficiency reasons, it is not possible to solve
the homogeneous model exactly in general. Hence, an exact optimal solution or an exact infeasibility
certificate cannot be computed and a reasonable termination criterion has to be employed.

In every iteration k of the interior-point algorithm a trial solution

E o,k & k Kk
(@, y", 8", TV KY)
to the homogeneous model is generated, where
F e K, " e K*, 7%, kF > 0.

Therefore, it is possible to compute the values:

. k
o = argmin, {p| [|a2r —b]| <1+ 00}
. k k
ph = axgming {p| 472 + 2% o< peal1 + el
. kT gk T k T, k ; T k|, [pT 4"
p’; = arg min, {p ((””(Tl)j 7 cT:]f _ kay |> < pe, max (17mm(|czrk||y)>},
pp = argming {p| AT o5 < peidTy”, bTy* > 0} and
Pai = arg minp {p | Akaoo é _pEiCTxka CT‘T’C < 0} .

Note €y, e4,€4 and €; are nonnegative user specified tolerances.

Optimal Case

Observe p’; measures how far z* /7% is from being a good approximate primal feasible solution. Indeed

if p]; <1, then

zk

|

. bH < ep(1+ [1bll.0)- (13.11)

This shows the violations in the primal equality constraints for the solution ¥ /7% is small compared to
the size of b given ¢, is small.

Similarly, if p% < 1, then (y*, s*)/7* is an approximate dual feasible solution. If in addition p, < 1,
then the solution (z*, y*, s¥) /7% is approximate optimal because the associated primal and dual objective
values are almost identical.

In other words if max(p’;, ok, p};) < 1, then

(z%,y", s)

Tk

is an approximate optimal solution.
Dual Infeasibility Certificate
Next assume that p’;i <1 and hence
HAkaOO < —EiCTCL'k and —cTzF >0

holds. Now in this case the problem is declared dual infeasible and z* is reported as a certificate of dual
infeasibility. The motivation for this stopping criterion is as follows. Let

. aF
Ti= g
and it is easy to verify that
|AZ|| <& and 'z = —1

which shows Z is an approximate certificate of dual infeasibility, where ¢; controls the quality of the
approximation.

197

Primal Infeasiblity Certificate

Next assume that p’;i < 1 and hence
HATyk + skHoo < g;bTy* and bTy* >0

holds. Now in this case the problem is declared primal infeasible and (y*, s*) is reported as a certificate
of primal infeasibility. The motivation for this stopping criterion is as follows. Let

y = yk ds:.= s*
= and 5 :=
Y by by

and it is easy to verify that

HATQ + §Hoo <gand blg=1
which shows (y*,s*) is an approximate certificate of dual infeasibility, where &; controls the quality of
the approximation.

13.3.3 Adjusting optimality criteria

It is possible to adjust the tolerances €,, €4, €4 and €; using parameters; see the next table for details.
Note that although this section discusses the conic optimizer, if the problem was originally input as a
quadratic or quadratically constrained optimization problem then the parameter names that apply are
those from the third column (with infix QO instead of C0).

Table 13.2: Parameters employed in termination criterion

ToleranceParameter | Name (for conic problems) Name (for quadratic problems)

Ep dparam. intpnti_co_tol_pfeas dparam.intpnt_qo_tol_pfeas
€d dparam.intpnt_co_tol_dfeas dparam.intpnt_qo_tol_dfeas
Eg dparam.intpnt_co_tol_rel_gap | dparam.intpnt_qo_tol_rel_gap
€; dparam.intpnt_co_tol_infeas dparam. intpnt_qo_tol_infeas

The default values of the termination tolerances are chosen such that for a majority of problems
appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the
tolerances usually is not worthwhile. However, an inspection of (13.11) reveals that the quality of the
solution depends on ||b]| and ||¢||..; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal
and dual feasibility at the same rate [And09]. This means that if the optimizer is stopped prematurely
then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that
in most cases all the tolerances, €,, €4, €4 and ¢;, have to be relaxed together to achieve an effect.

If the optimizer terminates without locating a solution that satisfies the termination criteria, for exam-
ple because of a stall or other numerical issues, then it will check if the solution found up to that point sat-
isfies the same criteria with all tolerances multiplied by the value of dparam. intpnt_co_tol_near_rel.
If this is the case, the solution is still declared as optimal.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

13.3.4 The Interior-point Log

Below is a typical log output from the interior-point optimizer:

Optimizer - threads : 20

Optimizer - solved problem : the primal

Optimizer - Constraints 1

Optimizer - Cones : 2

Optimizer - Scalar variables : 6 conic : 6
Optimizer - Semi-definite variables: O scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00

(continues on next page)

198

(continued from previous page)

Factor
Factor
—70e+01
ITE PFEAS
— TIME

0 1.0e+00
— 0.01

1 2.7e-01
-~ 0.01

2 6.5e-02
- 0.01

3 1.7e-03
-~ 0.01

4 1.4e-08
- 0.01

nonzeros before factor : 1
dense dim.

DFEAS

2.9e-01

7.9e-02

1.9e-02

5.0e-04

4.2e-09

GFEAS

3.4e+00

2.2e+00

1.2e+00

2.2e-01

4.9e-08

PRSTATUS

0.00e+00

8.83e-01

1.16e+00

1.12e+00

1.00e+00

after factor
flops

POBJ

2.414213562e+00

6.969257574e-01

7.606090061e-01

7.084385672e-01

7.071067941e-01

DOBJ

0.000000000e+00

-9.685901771e-03

6.046141322e-01

7.045122560e-01

7.071067599e-01

1
1.

MU U

1.0e+00,

2.7e-01,,

6.5e-02,

1.7e-03,

1.4e-08,

The first line displays the number of threads used by the optimizer and the second line indicates if
the optimizer chose to solve the primal or dual problem (see iparam.intpnt_solve_form). The next
lines display the problem dimensions as seen by the optimizer, and the Factor... lines show various
statistics. This is followed by the iteration log.

Using the same notation as in Sec. 13.3.1 the columns of the iteration log have the following meaning:

e ITE: Iteration index k.

e PFEAS: ||Azh —br*||

but may stall at low level due to rounding errors.

o DFEAS: ||ATy* + s

|
o'}

zero but may stall at low level due to rounding errors.

. The numbers in this column should converge monotonically towards zero

. The numbers in this column should converge monotonically towards

e GFEAS: | —cTz% 4+ bTy* — k*| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

e PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to —1 if that is not the case.

e POBJ: cT'z% /7%, An estimate for the primal objective value.

e DOBJ: bTy*/7%. An estimate for the dual objective value.

o MU: &

k)TSk_,’_Tka
n+1

e TIME: Time spent since the optimization started (in seconds).

. The numbers in this column should always converge to zero.

13.4 The Optimizer for Mixed-Integer Problems

Solving optimization problems where one or more of the variables are constrained to be integer valued is
called Mixed-Integer Optimization (MIO). For an introduction to model building with integer variables,
the reader is recommended to consult the MOSEK Modeling Cookbook, and for further reading we
highlight textbooks such as [Wol98| or [CCornuejolsZ14].

MOSEK can perform mixed-integer

e linear (MILO),

e quadratic (MIQO) and quadratically constrained (MIQCQO), and
e conic (MICO)

199

https://docs.mosek.com/modeling-cookbook/mio.html

optimization, except for mixed-integer semidefinite problems.

By default the mixed-integer optimizer is run-to-run deterministic. This means that if a problem is
solved twice on the same computer with identical parameter settings and no time limit, then the obtained
solutions will be identical. The mixed-integer optimizer is parallelized, i.e., it can exploit multiple cores
during the optimization.

In practice, a predominant special case of integer variables are binary variables, taking values in
{0,1}. Mixed- or pure binary problems are important subclasses of mixed-integer optimization where all
integer variables are of this type. In the general setting however, an integer variable may have arbitrary
lower and upper bounds.

13.4.1 Branch-and-Bound

In order to succeed in solving mixed-integer problems, it can be useful to have a basic understanding of
the underlying solution algorithms. The most important concept in this regard is arguably the so-called
Branch-and-Bound algorithm, employed also by MOSEK. In order to comprehend Branch-and-Bound,
the concept of a relaxation is important.

Consider for example a mixed-integer linear optimization problem of minimization type

T

*

z* = minimize c T
subject to Ax = b
2>0 (13.12)
z; € Z, vieJ.
It has the continuous relaxation
Z = minimize cTr
subject to Az = b (13.13)
x>0,

obtained simply by ignoring the integrality restrictions. The first step in Branch-and-Bound is to solve
this so-called root relaxation, which is a continuous optimization problem. Since (13.13) is less constrained
than (13.12), one certainly gets

z< 2",

and z is therefore called the objective bound: it bounds the optimal objective value from below.

After the solution of the root relaxation, in the most likely outcome there will be one or more integer
constrained variables with fractional values, i.e., violating the integrality constraints. Branch-and-Bound
now takes such a variable, z; = f; € R\Z with j € 7, say, and creates two branches leading to relaxations
with the additional constraint z; < [f;| or «; > [f;], respectively. The intuitive idea here is to push
the variable away from the fractional value, closer towards integrality. If the variable was binary, say,
branching would lead to fixing its value to 0 in one branch, and to 1 in the other.

The Branch-and-Bound process continues in this way and successively solves relaxations and cre-
ates branches to refined relaxations. Whenever a relaxation solution Z does not violate any integrality
constraints, it is feasible to (13.12) and is called an integer feasible solution. Clearly, its solution value

z:=cT'% is an upper bound on the optimal objective value,

z¥ <z

Since refining a relaxation by adding constraints to it can only increase its solution value, the objective
bound z, now defined as the minimum over all solution values of so far solved relaxations, can only
increase during the algorithm. If as upper bound Z one records the solution value of the best integer
feasible solution encountered so far, the so-called incumbent solution, Z can only decrease during the
algorithm. Since at any time we also have

z2<z"<Z,

objective bound and incumbent solution value are encapsulating the optimal objective value, eventually
converging to it.

The Branch-and-Bound scheme can be depicted by means of a tree, where branches and relaxations
correspond to edges and nodes. Figure Fig. 13.1 shows an example of such a tree. The strength of
Branch-and-Bound is its ability to prune nodes in this tree, meaning that no new child nodes will be
created. Pruning can occur in several cases:

200

e A relaxation leads to an integer feasible solution Z. In this case we may update the incumbent and
its solution value Z, but no new branches need to be created.

e A relaxation is infeasible. The subtree rooted at this node cannot contain any feasible relaxation,
so it can be discarded.

e A relaxation has a solution value that exceeds z. The subtree rooted at this node cannot contain
any integer feasible solution with a solution value better than the incumbent we already have, so
it can be discarded.

Fig. 13.1: An examplary Branch-and-Bound tree. Pruned nodes are shown in light blue.

Having objective bound and incumbent solution value is a quite fundamental property of Branch-
and-Bound, and helps to asses solution quality and control termination of the algorithm, as we detail
in the next section. Note that the above explanation is coined for minimization problems, but the
Branch-and-bound scheme has a straightforward extension to maximization problems.

13.4.2 Solution quality and termination criteria

The issue of terminating the mixed-integer optimizer is rather delicate. Recalling the Branch-and-Bound
scheme from the previous section, one may see that mixed-integer optimization is generally much harder
than continuous optimization; in fact, solving continuous sub-problems is just one component of a mixed-
integer optimizer. Despite the ability to prune nodes in the tree, the computational effort required to
solve mixed-integer problems grows exponentially with the size of the problem in a worst-case scenario
(solving mixed-integer problems is NP-hard). For instance, a problem with n binary variables, may
require the solution of 2" relaxations. The value of 2™ is huge even for moderate values of n. In
practice it is often advisable to accept near-optimal or appproximate solutions in order to counteract
this complexity burden. The user has numerous possibilities of influencing optimizer termination with
various parameters, in particular related to solution quality, and the most important ones are highlighted
here.

Solution quality in terms of optimality

In order to assess the quality of any incumbent solution in terms of its objective value, one may check
the optimality gap, defined as

€ = |(incumbent solution value) — (objective bound)| = |z — z|.

It measures how much the objectives of the incumbent and the optimal solution can deviate in the
worst case. Often it is more meaningful to look at the relative optimality gap

201

|z — 2]
€rel = — -
LT max (6, |2))

This is essentially the above absolute optimality gap normalized against the magnitude of the incum-
bent solution value; the purpose of the (small) constant d; is to avoid overweighing incumbent solution
values that are very close to zero. The relative optimality gap can thus be interpreted as answering the
question: “Within what fraction of the optimal solution is the incumbent solution in the worst case?”

Absolute and relative optimality gaps provide useful means to define termination criteria for the
mixed-integer optimizer in MOSEK. The idea is to terminate the optimization process as soon as the
quality of the incumbent solution, measured in absolute or relative gap, is good enough. In fact, whenever
an incumbent solution is located, the criterion

zZ — z < max(d9, 3 max(dy, |z|))

is checked. If satisfied, i.e., if either absolute or relative optimality gap are below the thresholds ds
or J3, respectively, the optimizer terminates and reports the incumbent as an optimal solution. The
optimality gaps can always be retrieved through the information items dinfitem.mio_obj_abs_gap
and dinfitem.mio_obj_rel_gap.

The tolerances discussed above can be adjusted using suitable parameters, see Table 13.3. By default,
the optimality parameters o and d3 are quite small, i.e., restrictive. These default values for the absolute
and relative gap amount to solving any instance to (almost) optimality: the incumbent is required to
be within at most a tiny percentage of the optimal solution. As anticipated, this is not tractable in
most practical situations, and one should resort to finding near-optimal solutions quickly rather than
insisting on finding the optimal one. It may happen, for example, that an optimal or close-to-optimal
solution is found very early by the optimizer, but it does not terminate because the objective bound z
is of poor quality. Instead, the vast majority of computational time is spent on trying to improve z: a
typical situation that practioneers would want to avoid. The concept of optimality gaps is fundamental
for controlling solution quality when resorting to near-optimal solutions.

MIO performance tweaks: termination criteria

One of the first things to do in order to cut down excessive solution time is to increase the relative
gap tolerance dparam.mio_tol_rel_gap to some non-default value, so as to not insist on finding optimal
solutions. Typical values could be 0.01,0.05 or 0.1, guaranteeing that the delivered solutions lie within
1%,5% or 10% of the optimum. Increasing the tolerance will lead to less computational time spent by
the optimizer.

Solution quality in terms of feasibility

For an optimizer relying on floating-point arithmetic like the mixed-integer optimizer in MOSEK, it
may be hard to achieve exact integrality of the solution values of integer variables in most cases, and it
makes sense to numerically relax this constraint. Any candidate solution & is accepted as integer feasible
if the criterion

min(afj — I_]?jJ, ’—fj-‘ — Jf]) <4 Vj eJ

is satisfied, meaning that «; is at most d, away from the nearest integer. As above, d4 can be adjusted
using a parameter, see Table 13.3, and impacts the quality of the acieved solution in terms of integer
feasibility. By influencing what solution may be accepted as imcumbent, it can also have an impact on
the termination of the optimizer.

MIO performance tweaks: feasibility criteria

Whether increasing the integer feasibility tolerance dparam.mio_tol_abs_relaz_int leads to less
solution time is highly problem dependent. Intuitively, the optimizer is more flexible in finding new
incumbent soutions so as to improve Z. But this effect has do be examined with care on indivuidual
instances: it may worsen solution quality with no effect at all on the solution time. It may in some cases
even lead to contrary effects on the solution time.

202

Table 13.3: Tolerances for the mixed-integer optimizer.

Tolerance | Parameter name Default value
01 dparam.mio_rel_gap_const 1.0e-10

0 dparam.mio_tol_abs_gap 0.0

03 dparam.mio_tol_rel_gap 1.0e-4

04 dparam.mio_tol_abs_relazx_int | 1.0e-5

Further controlling optimizer termination

There are more ways to limit the computational effort employed by the mixed-integer optimizer by simply
limiting the number of explored branches, solved relaxations or updates of the incumbent solution. When
any of the imposed limits is hit, the optimizer terminates and the incumbent solution may be retrieved.
See Table 13.4 for a list of corresponding parameters. In contrast to the parameters discussed in Sec.
13.4.2, interfering with these does not maintain any guarantees in terms of solution quality.

Table 13.4: Other parameters affecting the integer optimizer ter-
mination criterion.

Parameter name Explanation

iparam.mio_maz_num_branches Maximum number of branches allowed.
iparam.mio_mazr_num_relaxs Maximum number of relaxations allowed.
iparam.mio_maz_num_solutions | Maximum number of feasible integer solutions allowed.

13.4.3 Additional components of the mixed-integer Optimizer

The Branch-and-Bound scheme from Sec. 13.4.1 is only the basic skeleton of the mixed-integer optimizer
in MOSEK, and several components are built on top of that in order to enhance its functionality and
increase its speed. A mixed-integer optimizer is sometimes referred to as a “giant bag of tricks”, and
it would be impossible to describe all of these tricks here. Yet, some of the additional components are
worth mentioning to the user. They can be influenced by various user parameters, and although the
default values of these parameters are optimized to work well on average mixed-integer problems, it may
pay off to adjust them for an individual problem, or a specific problem class.

Presolve

Similar to the case of continuous problems, see Sec. 13.1, the mixed-integer optimizer applies various
presolve reductions before the actual solution process is initiated. Just as in the continuous case, the use
of presolve can be controlled with the parameter iparam.presolve_use.

Primal Heuristics

Solving relaxations in the Branch-and-bound tree to an integer feasible solution & is not the only way
to find new incumbent solutions. There is a variety of procedures that, given a mixed-integer problem
in a generic form like (13.12), attempt to produce integer feasible solutions in an ad-hoc way. These
procedures are called Primal Heuristics, and several of them are implemented in MOSEK. For example,
whenever a relaxation leads to a fractional solution, one may round the solution values of the integer
variables, in various ways, and hope that the outcome is still feasible to the remaining constraints.
Primal heuristics are mostly employed while processing the root node, but play a role throughout the
whole solution process. The goal of a primal heuristic is to improve the incumbent solution and thus the
bound Z, and this can of course affect the quality of the solution that is returned after termination of
the optimizer. The user parameters affecting primal heuristics are listed in Table 13.5.

MIO performance tweaks: primal heuristics

o If the mixed-integer optimizer struggles to improve the incumbent solution z, see Sec. 13.4.4, it can
be helpful to intensify the use of primal heuristics.

— Set parameters related to primal heuristics to more aggressive values than the default ones, so
that more effort is spent in this component. A List of the respective parameters can be found

203

in Table 13.5. In particular, if the optimizer has difficulties finding any integer feasible solution
at all, indicated by NA in the column BEST_INT_0BJ in the mixed-integer log, one may try to
activate a construction heuristic like the Feasibility Pump with <param.mio_ feaspump_level.

— Specify a good initial solution: In many cases a good feasible solution is either known or
easily computed using problem-specific knowledge that the optimizer does not have. If so, it
is usually worthwhile to use this as a starting point for the mixed-integer optimizer. See Sec.
6.8.2.

— For feasibility problems, i.e., problems having a constant objective, the goal is to find a single
integer feasible solution, and this can be hard by itself on some instances. Try setting the
objective to something meaningful anyway, even if the underlying application does not require
this. After all, the feasible set is not changed, but the optimizer might benefit from being able
to pursue a concrete goal.

e In rare cases it may also happen that the optimizer spends an excessive amount of time on primal
heuristics without drawing any benefit from it, and one may try to limit their use with the respective

parameters.

Table 13.5: Parameters affecting primal heuristics
Parameter name Explanation
iparam.mio_heuristic_level | Primal heuristics aggressivity level.
iparam.mio_rins_mar_nodes Maximum number of nodes allowed in the RINS heuristic.
iparam.mio_ feaspump_level Way of using the Feasibility Pump heuristic.

Cutting Planes

Cutting planes (cuts) are simply constraints that are valid for a mixed-integer problem, for example
in the form (13.12), meaning they do not remove any integer feasible solutions from the feasible set.
Therefore they are also called valid inequalities. They do not have to be valid for the relaxation (13.13)
though, and of interest and potentially useful are those cuts that do remove solutions from the feasible
set of the relaxation. The latter is a superset of the feasible region of the mixed-integer problem, and
the rationale behind cuts is thus to bring the integer problem and its relaxation closer together in terms
of their feasible sets.
As an example, take the constraints

201 + 320 + 23 <4, x1,19 € {0, 1}, z3 > 0. (13.14)

One may realize that there cannot be a feasible solution in which both binary variables take on a value
of 1. So certainly

is a valid inequality. In fact, there is no integer solution satisfying (13.14), but violating (13.15). The
latter does cut off a portion of the feasible region of the continuous relaxation of (13.14) though, obtained
by replacing x1, 25 € {0,1} with 21,29 € [0, 1]. For example, the fractional point (z1, 22, 23) = (0.5,1,0)
is feasible to the relaxation, but violates the cut (13.15).

There are many classes of general-purpose cuttting planes that may be generated for a mixed-integer
problem in a generic form like (13.12), and MOSEK’s mixed-integer optimizer supports several of them.
For instance, the above is an example of a so-called clique cut. The most effort on generating cutting
planes is spent after the solution of the root relaxation, but cuts can also be generated later on in the
Branch-and-Bound tree. Cuts aim at improving the objective bound z and can thus have significant
impact on the solution time. The user parameters affecting cut generation can be seen in Table 13.6.

MIO performance tweaks: cutting planes

e If the mixed-integer optimizer struggles to improve the objective bound z, see Sec. 13.4.4, it can
be helpful to intensify the use of cutting planes.

204

— Some types of cutting planes are not activated by default, but doing so may help to improve

the objective bound.

The parameters dparam.mio_tol_rel_dual_bound_improvement and tparam.
mio_cut_selection_level determine how aggressively cuts will be generated and
selected.

If some valid inequalities can be deduced from problem-specific knowledge that the optimizer
does not have, it may be helpful to add these to the problem formulation as constraints.
This has to be done with care, since there is a tradeoff between the benefit obtained from an
improved objective boud, and the amount of additional constraints that make the relaxations
larger.

e In rare cases it may also be observed that the optimizer spends an excessive amount
of time on cutting planes, see Sec. 13.4.4, and one may limit their use with <param.
mio_maz_num_root_cut_rounds, or by disabling a certain type of cutting planes.

Table 13.6: Parameters affecting cutting planes

Parameter name Explanation
iparam.mio_cut_clique Should clique cuts be enabled?
iparam.mio_cut_cmir Should mixed-integer rounding cuts be enabled?
iparam.mio_cut_gmi Should GMI cuts be enabled?
iparam.mio_cut_implied_bound Should implied bound cuts be enabled?
iparam.mio_cut_knapsack_cover Should knapsack cover cuts be enabled?
iparam.mio_cut_lipro Should lift-and-project cuts be enabled?
iparam.mio_cut_selection_level Cut selection aggressivity level.
iparam.mio_maz_num_root_cut_rounds Maximum number of root cut rounds.
dparam.mio_tol_rel_dual_bound_imprddiamemim required objective bound improvement during
root cut generation.

13.4.4 The Mixed-Integer Log

Below is a typical log output from the mixed-integer optimizer:

Presolved problem: 1176 variables, 1344 constraints, 4968 non-zeros
Presolved problem: 328 general integer, 392 binary, 456 continuous
Clique table size: 55

BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_0BJ BEST_RELAX_0BJ REL_GAP(
~%) TIME

0 0 1 0 8.3888091139e+07 NA NA U
- 0.0

0 1 1 0 8.3888091139e+07 2.5492512136e+07 69.61
. 0.1

0 1 1 0 3.1273162420e+07 2.5492512136e+07 18.48
- 0.1

0 1 1 0 2.6047699632e+07 2.5492512136e+07 2.13
- 0.2

Cut generation started.

0 1 1 0 2.6047699632e+07 2.5492512136e+07 2.13
- 0.2

0 2 1 0 2.6047699632e+07 2.5589986247e+07 1.76
- 0.2

Cut generation terminated. Time = 0.05

0 4 1 0 2.5990071367e+07 2.5662741991e+07 1.26
- 0.3

0 8 1 0 2.5971002767e+07 2.5662741991e+07 1.19
- 0.5

(continues on next page)

205

(continued from previous page)

0 11 1 0 2.5925040617e+07 2.5662741991e+07 1.01
< 0.5
0 12 1 0 2.5915504014e+07 2.5662741991e+07 0.98
- 0.5
2 23 1 0 2.5915504014e+07 2.5662741991e+07 0.98
- 0.6
14 35 1 0 2.5915504014e+07 2.5662741991e+07 0.98
< 0.6
[...]
Objective of best integer solution : 2.578282162804e+07
Best objective bound : 2.569877601306e+07
Construct solution objective : Not employed
User objective cut value : Not employed
Number of cuts generated : 192
Number of Gomory cuts : 52
Number of CMIR cuts 1 137
Number of clique cuts : 3
Number of branches 1 29252
Number of relaxations solved : 31280
Number of interior point iterations: 16
Number of simplex iterations : 105440
Time spend presolving the root : 0.03
Time spend optimizing the root : 0.07

Mixed integer optimizer terminated. Time: 6.46

The first lines contain a summary of the problem after mixed-integer presolve has been applied. This
is followed by the iteration log, reflecting the progress made during the Branch-and-bound process. The
columns have the following meanings:

e BRANCHES: Number of branches / nodes generated.

RELAXS: Number of relaxations solved.

ACT_NDS: Number of active / non-processed nodes.

e DEPTH: Depth of the last solved node.

BEST_INT_0BJ: The incumbent solution / best integer objective value, z.

BEST_RELAX_0BJ: The objective bound, z.
e REL_GAP(%): Relative optimality gap, 100% - €ye]
e TIME: Time (in seconds) from the start of optimization.

The beginning and the end of the root cut generation is highlighted as well, and the number of log
lines in between reflects to the computational effort spent here.

Finally there is a summary of the optimization process, containing also information on the type of
generated cuts and the total number of iterations needed to solve all occuring continuous relaxations.

When the solution time for a mixed-integer problem has to be cut down, it can sometimes be useful to
examine the log in order to understand where time is spent and what might be improved. In particular,
it might happen that the values in either of the colums BEST_INT_0BJ or BEST_RELAX_OBJ stall over a
long period of log lines, an indication that the optimizer has a hard time improving either the incumbent
solution, i.e., Z, or the objective bound z, see also Sec. 13.4.3 and Sec. 13.4.3.

206

13.4.5 Mixed-Integer Nonlinear Optimization

Due to the involved non-linearities, MI(QC)QO or MICO problems are on average harder than MILO
problems of comparable size. Yet, the Branch-and-Bound scheme can be applied to these probelm
classes in a straightforward manner. The relaxations have to be solved as conic problems with the
interior point algorithm in that case, see Sec. 13.3, opposed to MILO where it is often beneficial to solve
relaxations with the dual simplex method, see Sec. 13.2.3. There is another solution approach for these
types of problems implemented in MOSEK, namely the Outer-Approximation algorithm, making use
of dynamically refined linear approximations of the non-linearities.

MICO performance tweaks: choice of algorithm

Whether conic Branch-and-Bound or Outer-Approximation is applied to a mixed-integer conic prob-
lem can be set with iparam.mio_conic_outer_approzimation. The best value for this option is highly
problem dependent.

MI(QC)QO

MOSEK is specialized in solving linear and conic optimization problems, both with or without mixed-
integer variables. Just like for continuous problems, mixed-integer quadratic problems are converted
internally to conic form, see Sec. 12.4.1

Contrary to the continuous case, MOSEK can solve certain mixed-integer quadratic problems where
one or more of the involved matrices are not positive semidefinite, so-called non-convex MI(QC)QO prob-
lems. These are automatically reformulated to an equivalent convex MI(QC)QO problem, provided that
such a reformulation is possible on the given instance (otherwiese MOSEK will reject the problem and
issue an error message). The concept of reformulations can also affect the solution times of MI(QC)QO
problems.

MI(QC)QO performance tweaks: applying a reformulation method

There are several reformulation methods for MI(QC)QO problems, available through the parameter
iparam.mio_qcqo_reformulation_method. The chosen method can have significant impact on the
mixed-integer optimizer’s speed on such problems, both convex and non-convex. The best value for this
option is highly problem dependent.

13.4.6 Disjunctive constraints

Problems with disjunctive constraints (DJC) see Sec. 6.9 are typically reformulated to mixed-integer
problems, and even if this is not the case they are solved with an algorithm that is based on the mixed-
integer optimizer. In MOSEK, these problems thus fall into the realm of MIO. In particular, MOSEK
automatically attempts to replace any DJC by so called big-M constraints, potentially after transforming
it to several, less complicated DJCs. As an example, take the DJC

[Z = 0} vV [Z =1,21+x9 > 1000],

where z € {0,1} and x1, 22 € [0,750]. This is an example of a DJC formulation of a so-called indicator
constraint. A big-M reformulation is given by

x1 4+ 29 >1000 — M - (1 — 2),

where M > 0 is a large constant. The practical difficulty of these constructs is that M should always
be sufficiently large, but ideally not larger. Too large values for M can be harmful for the mixed-integer
optimizer. During presolve, and taking into account the bounds of the involved variables, MOSEK auto-
matically reformulates DJCs to big-M constraints if the required M values do not exceed the parameter
dparam.mio_djc_maz_bigm. From a performance point-of-view, all DJCs would ideally be linearized
to big-Ms after presolve without changing this parameter’s default value of 1.0e6. Whether or not this
is the case can be seen by retrieving the information item iinfitem.mio_presolved_numdjc, or by a
line in the mixed-integer optimizer’s log as in the example below. Both state the number of remaining
disjunctions after presolve.

207

Presolved problem: 305 variables, 204 constraints, 708 non-zeros
Presolved problem: O general integer, 100 binary, 205 continuous
Presolved problem: 100 disjunctions

Clique table size: O

BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_OBJ BEST_RELAX_OBJ REL_GAP(
~%) TIME

0 1 1 0 NA 0.0000000000e+00 NA U
. 0.0

0 1 1 0 5.0574653969e+05 0.0000000000e+00 100.00
< 0.0

[...]

DJC performance tweaks: managing variable bounds

e Always specify the tightest known bounds on the variables of any problem with DJCs, even if they
seem trivial from the user-perspective. The mixed-integer optimizer can only benefit from these
when reformulating DJCs and thus gain performance; even if bounds don’t help with reformulations,
it is very unlikely that they hurt the optimizer.

e Increasing dparam.mio_djc_maz_bigm can lead to more DJC reformulations and thus increase
optimizer speed, but it may in turn hurt numerical solution quality and has to be examined with
care. The other way round, on numerically challenging instances with DJCs, decreasing dparam.
mio_djc_maz_bigm may lead to numerically more robust solutions.

13.4.7 Randomization

A mixed-integer optimizer is usually prone to performance variability, meaning that a small change in
either

e problem data, or
e computer hardware, or
e algorithmic parameters

can lead to significant changes in solution time, due to different solution paths in the Branch-and-
Bound tree. In extreme cases the exact same problem can vary from being solvable in less than a second
to seemingly unsolvable in any reasonable amount of time on a different computer.

One practical implication of this is that one should ideally verify whether a seemingly beneficial set
of parameters, established experimentally on a single problem, is still beneficial (on average) on a larger
set of problems from the same problem class. This protects against making parameter changes that had
positive effects only due to random effects on that single problem.

In the absence of a large set of test problems, one may also change the random seed of the optimizer to
a series of different values in order to hedge against drawing such wrong conclusions regarding parameters.
The random seed, accessible through iparam.mio_seed, impacts for example random tie-breaking in
many of the mixed-integer optimizer’s components. Changing the random seed can be combined with a
permutation of the problem data to further incite randomness, accessible through the parameter iparam.
mio_data_permutation_method.

208

13.4.8 Further performance tweaks

In addition to what was mentioned previously, there may be other ways to speed up the solution of a
given mixed-integer problem. For example, there are further user parameters affecting some algorithmic
settings in the mixed-integer optimizer. As mentioned above, default parameter values are optimized to
work well on average, but on individual problems they may be adjusted.

MIO performance tweaks: miscellaneous

e When relaxations in the the Branch-and-Bound tree are linear optimization problems (e.g., in
MILO or when solving MICO probelms with the Outer-Approximation method), it is usually best
to employ the dual simplex method for their solution. In rare cases the primal simplex method may
actually be the better choice, and this can be set with the parameter iparam.mio_node_optimizer.

e Some problems are numerically more challenging than others, for example if the ratio between the
smallest and the largest involved coefficients is large, say > 1€9. An indication of numerical issues
are, for example, large violations in the final solution, observable in the solution summery of the
log output, see Sec. 8.1.3. Similarly, a problem that is known to be feasible by the user may be
declared infeasible by the optimizer. In such cases it is usually best to try to rescale the model.
Otherwise, the mixed-integer optimizer can be instructed to be more cautios regarding numerics
with the parameter iparam.mio_numerical_emphasis_level. This may in turn be at the cost of
solution speed though.

e Improve the formulation: A MIO problem may be impossible to solve in one form and quite easy
in another form. However, it is beyond the scope of this manual to discuss good formulations for
mixed-integer problems. For discussions on this topic see for example [Wol98].

209

Chapter 14

Additional features

In this section we describe additional features and tools which enable more detailed analysis of optimiza-
tion problems with MOSEK.

14.1 Problem Analyzer

The problem analyzer prints a survey of the structure of the problem, with information about linear
constraints and objective, quadratic constraints, conic constraints and variables.

In the initial stages of model formulation the problem analyzer may be used as a quick way of
verifying that the model has been built or imported correctly. In later stages it can help revealing special
structures within the model that may be used to tune the optimizer’s performance or to identify the
causes of numerical difficulties.

The problem analyzer is run using Task.analyzeproblem. It prints its output to a log stream. The
output is similar to the one below (this is the problem survey of the aflow30a problem from the MIPLIB
2003 collection).

Analyzing the problem

**x Structural report

Dimensions
Constraints Variables Matrix var. Cones
479 842 0 0

Constraint and bound types

Free Lower Upper Ranged Fixed
Constraints: O 0 421 0 58
Variables: O 0 0 842 0

Integer constraint types

Binary General
421 0
**x* Data report
Nonzeros Min Max
lcjl: 421 1.1e+01 5.0e+02
[Aij|: 2091 1.0e+00 1.0e+02
finite Min Max
|blcil: 58 1.0e+00 1.0e+01
|bucil|: 479 0.0e+00 1.0e+01
[plxjl: 842 0.0e+00 0.0e+00
[buxjl: 842 1.0e+00 1.0e+02

(continues on next page)

210

(continued from previous page)

*** Done analyzing the problem

The survey is divided into a structural and numerical report. The content should be self-explanatory.

14.2 Automatic Repair of Infeasible Problems

MOSEK provides an automatic repair tool for infeasible linear problems which we cover in this section.
Note that most infeasible models are so due to bugs which can (and should) be more reliably fixed
manually, using the knowledge of the model structure. We discuss this approach in Sec. 8.3.

14.2.1 Automatic repair

The main idea can be described as follows. Consider the linear optimization problem with m constraints
and n variables

minimize e+ ef
subject to ¢ < Ax < uc,
r < T < u*

which is assumed to be infeasible.

One way of making the problem feasible is to reduce the lower bounds and increase the upper bounds.
If the change is sufficiently large the problem becomes feasible. Now an obvious idea is to compute the
optimal relaxation by solving an optimization problem. The problem

minimize p(vlc, Vg, U vfﬁ)
subject to 1¢—ovf < Ax < uf oy, (14.1)
| x < w4l '

C C X X
vy, vg, v, vy > 0

does exactly that. The additional variables (vf);, (vS)s, (vf); and (vS); are elasticity variables because
they allow a constraint to be violated and hence add some elasticity to the problem. For instance, the
elasticity variable (vf); controls how much the lower bound (I°); should be relaxed to make the problem
feasible. Finally, the so-called penalty function

Py’ v, V5 vy,)

is chosen so it penalizes changes to bounds. Given the weights

e wi € R™ (associated with [¢),

o w’ € R™ (associated with u®),

e wi € R" (associated with [7),

o w? € R™ (associated with u®),

a natural choice is

P, 05, o 08) = ()T + ()0 + () Tof + ()Tt

Hence, the penalty function p() is a weighted sum of the elasticity variables and therefore the problem
(14.1) keeps the amount of relaxation at a minimum. Please observe that

e the problem (14.1) is always feasible.

e a negative weight implies problem (14.1) is unbounded. For this reason if the value of a weight is
negative MIOSEK fixes the associated elasticity variable to zero. Clearly, if one or more of the
weights are negative, it may imply that it is not possible to repair the problem.

A simple choice of weights is to set them all to 1, but of course that does not take into account that
constraints may have different importance.

211

Caveats
Observe if the infeasible problem

minimize x4+ 2
subject to T =
T > 0

is repaired then it will become unbounded. Hence, a repaired problem may not have an optimal solution.

Another and more important caveat is that only a minimal repair is performed i.e. the repair that
barely makes the problem feasible. Hence, the repaired problem is barely feasible and that sometimes
makes the repaired problem hard to solve.

Using the automatic repair tool

In this subsection we consider an infeasible linear optimization example:

minimize —10z; —9x9,
subject to 7/10x; + laxs < 630,
1/2331 + 5/6$2 S 6007
ley 4+ 2/3zy < 708, (14.2)
1/10z1 + 1/4z, < 135,
x1, 2 > 0
To > 650.

The function Task.primalrepair can be used to repair an infeasible problem. This can be used for
linear and conic optimization problems, possibly with integer variables.

Listing 14.1: An example of feasibility repair applied to problem
(14.2).

package com.mosek.example;
import mosek.*;
public class feasrepairexl {
public static void main (String[] args) {
String filename = "../data/feasrepair.lp";
if (args.length >= 1) filename = args[0];
try (Env env = new Env();
Task task = new Task(env, 0, 0)) {
task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()
{ public void stream(String msg) { System.out.print(msg); }});
task.readdata(filename) ;
task.putintparam(mosek.iparam.log_feas_repair, 3);
task.primalrepair(null, null, null, null);
double sum_viol = task.getdouinf (mosek.dinfitem.primal_repair_penalty_obj);

System.out.println("Minimized sum of violations = " + sum_viol);

task.optimize();

(continues on next page)

212

(continued from previous page)

task.solutionsummary (mosek.streamtype.msg) ;
b
b
}

The above code will produce the following log report:

MOSEK Version 9.0.0.25(ALPHA) (Build date: 2017-11-7 16:11:50)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86

Open file 'feasrepair.lp'
Reading started.
Reading terminated. Time: 0.00

Read summary
Type : LO (linear optimization problem)
Objective sense : min
Scalar variables
Matrix variables
Constraints
Cones
Time

O O ON

Problem
Name
Objective sense : min
Type : LO (linear optimization problem)
Constraints
Cones
Scalar variables
Matrix variables
Integer variables

O O N O b

Primal feasibility repair started.
Optimizer started.

Presolve started.

Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.

Freed constraints in eliminator : 2
Eliminator terminated.

Eliminator - tries 01 time : 0.00
Lin. dep. - tries 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem

Name

Objective sense : min

Type : L0 (linear optimization problem)

Constraints : 8

Cones : 0

Scalar variables : 14

Matrix variables : 0

Integer variables : 0
Optimizer - threads : 20

(continues on next page)

213

(continued from previous page)

Optimizer - solved problem : the primal

Optimizer - Constraints : 2

Optimizer - Cones : 0

Optimizer - Scalar variables : 5 conic : 0
Optimizer - Semi-definite variables: 0O scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 3 after factor : 3
Factor - dense dim. : 0 flops : 5.
—00e+01

ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU U
— TIME

0 2.7e+01 1.0e+00 4.0e+00 1.00e+00 3.000000000e+00 0.000000000e+00 1.0e+00,

— 0.00

1 2.5e+01 9.1e-01 1.4e+00 0.00e+00 8.711262850e+00 1.115287830e+01 2.4e+00,

— 0.00

2 2.4e+00 8.8e-02 1.4e-01 -7.33e-01 4.062505701e+01 4.422203730e+01 2.3e-01;,

— 0.00

3 9.4e-02 3.4e-03 5.5e-03 1.33e+00 4.250700434e+01 4.258548510e+01 9.1e-03,

- 0.00

4 2.0e-05 7.2e-07 1.1e-06 1.02e+00 4.249996599e+01 4.249998669e+01 1.9e-06,

— 0.00

5 2.0e-09 7.2e-11 1.1e-10 1.00e+00 4.250000000e+01 4.250000000e+01 1.9e-10,,

- 0.00

Basis identification started.

Basis identification terminated. Time: 0.00
Optimizer terminated. Time: 0.01

Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 4.2500000000e+01 nrm: 6e+02 Viol. con: 1le-13
Dual. obj: 4.2499999999e+01 nrm: 2e+00 Viol. con: 0e+00
Optimal objective value of the penalty problem: 4.250000000000e+01

Repairing bounds.

var: 0e+00
var: 9e-11

Increasing the upper bound 1.35e+02 on constraint 'c4' (3) with 2.25e+01.
Decreasing the lower bound 6.50e+02 on variable 'x2' (4) with 2.00e+01.

Primal feasibility repair terminated.
Optimizer started.
Optimizer terminated. Time: 0.00

Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -5.6700000000e+03 nrm: 6e+02 Viol. con: 0e+00
Dual. obj: -5.6700000000e+03 nrm: 1le+01 Viol. con: 0e+00

Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -5.6700000000e+03 nrm: 6e+02 Viol. con: 0e+00
Dual. obj: -5.6700000000e+03 nrm: 1le+01 Viol. con: 0e+00

Optimizer summary

var: 0e+00
var: 0e+00

var: 0e+00
var: 0e+00

214

(continues on next page)

(continued from previous page)

Optimizer - time: 0.00
Interior-point - iterations : O time: 0.00
Basis identification - time: 0.00
Primal - iterations : O time: 0.00
Dual - iterations : O time: 0.00
Clean primal - iterations : O time: 0.00
Clean dual - iterations : O time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : O time: 0.00
Dual simplex - iterations : O time: 0.00
Mixed integer - relaxations: O time: 0.00

It will also modify the task according to the optimal elasticity variables found. In this case the
optimal repair it is to increase the upper bound on constraint c4 by 22.5 and decrease the lower bound
on variable x2 by 20.

14.3 Sensitivity Analysis

Given an optimization problem it is often useful to obtain information about how the optimal objective
value changes when the problem parameters are perturbed. E.g, assume that a bound represents the
capacity of a machine. Now, it may be possible to expand the capacity for a certain cost and hence it is
worthwhile knowing what the value of additional capacity is. This is precisely the type of questions the
sensitivity analysis deals with.

Analyzing how the optimal objective value changes when the problem data is changed is called
sensitivity analysis.

References

The book [Chvatal83] discusses the classical sensitivity analysis in Chapter 10 whereas the book [RTV97]
presents a modern introduction to sensitivity analysis. Finally, it is recommended to read the short paper
[Wal00] to avoid some of the pitfalls associated with sensitivity analysis.

Warning: Currently, sensitivity analysis is only available for continuous linear optimization
problems. Moreover, MOSEK can only deal with perturbations of bounds and objective function
coefficients.

14.3.1 Sensitivity Analysis for Linear Problems
The Optimal Objective Value Function

Assume that we are given the problem

z(1¢uc 1", u*,¢) = minimize Tz
subject to I < Ax < wuf, (14.3)
o< x < Ut

and we want to know how the optimal objective value changes as [{ is perturbed. To answer this question
we define the perturbed problem for I§ as follows

fie(B) = minimize T
subject to c+ fe; < Az < uf
= < z< Ut
where e; is the i-th column of the identity matrix. The function
fie(B) (14.4)

215

shows the optimal objective value as a function of 8. Please note that a change in § corresponds to a
perturbation in ¢ and hence (14.4) shows the optimal objective value as a function of varying [§ with
the other bounds fixed.

Tt is possible to prove that the function (14.4) is a piecewise linear and convex function, i.e. its graph
may look like in Fig. 14.1 and Fig. 14.2.

f(B) A

A
\J

P 0 B, B
Fig. 14.1: 8 =0 is in the interior of linearity interval.

Clearly, if the function fi¢(3) does not change much when 3 is changed, then we can conclude that
the optimal objective value is insensitive to changes in [{. Therefore, we are interested in the rate of
change in fie(53) for small changes in 3 — specifically the gradient

which is called the shadow price related to [{. The shadow price specifies how the objective value changes
for small changes of § around zero. Moreover, we are interested in the linearity interval

B € [B1,]
for which
11:(8) = £1:(0).

Since fe is not a smooth function fj. may not be defined at 0, as illustrated in Fig. 14.2. In this case
we can define a left and a right shadow price and a left and a right linearity interval.

The function fie considered only changes in If. We can define similar functions for the remaining
parameters of the z defined in (14.3) as well:

fie(B) = 2(1°+ Bes,us, 1%, u”¢), i=1,...,m,
fue(B) = 2(16u®+ Be;, 1%, u”,c), i=1,...,m,
fl;(ﬁ) = z(l°,u", 1" 4+ Bej,u”,c), j=1,...,n,
fu;,v(ﬂ) = z(I°u® 1", u” + Pej,c), j=1,...,n,
Je; (B) z(I%us 1%, u®, c+ Bey), j=1,...,n.

Given these definitions it should be clear how linearity intervals and shadow prices are defined for the
parameters u$ etc.

216

f(B) A

A
\J

B1 0 Bz B

Fig. 14.2: 8 =0 is a breakpoint.

Equality Constraints

In MOSEK a constraint can be specified as either an equality constraint or a ranged constraint. If
some constraint e is an equality constraint, we define the optimal value function for this constraint as

fef(ﬁ) = Z(lc + Bei, u® + Beivlmaugg?C)

Thus for an equality constraint the upper and the lower bounds (which are equal) are perturbed simul-
taneously. Therefore, MOSEK will handle sensitivity analysis differently for a ranged constraint with
¢ = u§ and for an equality constraint.

The Basis Type Sensitivity Analysis

The classical sensitivity analysis discussed in most textbooks about linear optimization, e.g. [Chvatal83],
is based on an optimal basis. This method may produce misleading results [RTV97] but is computation-
ally cheap. This is the type of sensitivity analysis implemented in MOSEK.

We will now briefly discuss the basis type sensitivity analysis. Given an optimal basic solution which
provides a partition of variables into basic and non-basic variables, the basis type sensitivity analysis
computes the linearity interval [51, f2] so that the basis remains optimal for the perturbed problem. A
shadow price associated with the linearity interval is also computed. However, it is well-known that an
optimal basic solution may not be unique and therefore the result depends on the optimal basic solution
employed in the sensitivity analysis. If the optimal objective value function has a breakpoint for g =0
then the basis type sensitivity method will only provide a subset of either the left or the right linearity
interval.

In summary, the basis type sensitivity analysis is computationally cheap but does not provide complete
information. Hence, the results of the basis type sensitivity analysis should be used with care.

217

Example: Sensitivity Analysis

As an example we will use the following transportation problem. Consider the problem of minimizing the
transportation cost between a number of production plants and stores. Each plant supplies a number of
goods and each store has a given demand that must be met. Supply, demand and cost of transportation
per unit are shown in Fig. 14.3.

Supply Demand

800
400
100
1200 ‘ AN
500
1000
500

Fig. 14.3: Supply, demand and cost of transportation.

If we denote the number of transported goods from location i to location j by z;;, problem can be
formulated as the linear optimization problem of minimizing

1IE11 + 2$12 + 5LE23 + 25024 + 11’31 + 2:7333 + 11‘34

subject to

400,
1200,
1000,
800,
100,
500,
500,

11 + 12
T2z + T4
T31 + ®33 + T34
T11 + x31
T12

I IAIAIA

(14.5)

T2z + T33
Toa + T34
T11, T12, x23, T24, Z31, 33, T34

vVl
o

The sensitivity parameters are shown in Table 14.1 and Table 14.2.

218

Table 14.1: Ranges and shadow prices related to bounds on con-
straints and variables.

Con. | B1 B2 01 02

1 —300.00 0.00 3.00 | 3.00
2 —700.00 +o00 0.00 | 0.00
3 —500.00 0.00 3.00 | 3.00
4 —0.00 500.00 | 4.00 | 4.00
5 —0.00 300.00 | 5.00 | 5.00
6 —0.00 700.00 | 5.00 | 5.00
7 —500.00 700.00 | 2.00 | 2.00
Var. | 1 B2 o1 02

T11 —00 300.00 | 0.00 | 0.00
T12 —00 100.00 | 0.00 | 0.00
To3 —00 0.00 0.00 | 0.00
Loy —00 500.00 | 0.00 | 0.00
T3] —00 500.00 | 0.00 | 0.00
33 —00 500.00 | 0.00 | 0.00
T34 —0.000000 | 500.00 | 2.00 | 2.00

Table 14.2: Ranges and shadow prices related to the objective co-

efficients.

Var. | B B2 o1 o2

c1 —00 3.00 | 300.00 | 300.00
Co —00 00 100.00 | 100.00
c3 —2.00 | oo 0.00 0.00
Cq —00 2.00 | 500.00 | 500.00
cs —-3.00 | oo 500.00 | 500.00
Cg —00 2.00 | 500.00 | 500.00
cr —2.00 | oo 0.00 0.00

Examining the results from the sensitivity analysis we see that for constraint number 1 we have
g1 = 3 and ﬁl = —300, 62 =0.
If the upper bound on constraint 1 is decreased by

B € [0, 300]
then the optimal objective value will increase by the value

0‘15 = 36

14.3.2 Sensitivity Analysis with MOSEK

MOSEK provides the functions Task.primalsensitivity and Task.dualsensitivity for performing
sensitivity analysis. The code in Listing 14.2 gives an example of its use.

Listing 14.2: Example of sensitivity analysis with the MOSEK
Optimizer API for Java.

package com.mosek.example;
import mosek.*;

(continues on next page)

219

(continued from previous page)

public class sensitivity {
public static void main (String[] args) {

// Since the walue infinity is never used, we

// 'infinity' symbolic purposes only

double
infinity = O;

try (Env env =
Task task
mosek.boundkey []
mosek.boundkey.

new Env();
new Task(env, 0, 0)) {

bkc = {
up,

mosek.boundkey.

up,

mosek.boundkey.up, mosek.boundkey.fx,
mosek.boundkey.fx, mosek.boundkey.fx,
mosek.boundkey.fx

3

mosek.boundkey[] bkx = {
mosek.boundkey.lo, mosek.boundkey.lo,
mosek.boundkey.lo, mosek.boundkey.lo,
mosek.boundkey.lo, mosek.boundkey.lo,
mosek.boundkey.lo

3

int[] ptrb = {0, 2, 4, 6, 8, 10, 12};

int[] ptre = {2, 4, 6, 8, 10, 12, 14};

int[] sub = {0, 3, 0, 4, 1, 5, 1, 6, 2,

double[] blc

{ -infinity, -infinity,

-infinity, 800, 100, 500,
};
double[] buc = {400, 1200, 1000, 800, 100,
double[] ¢ = {1.0, 2.0, 5.0, 2.0, 1.0, 2.
double[] blx = {0.0, 0.0, 0.0, 0.0, 0.0, O.
double[] bux = {infinity, infinity,
infinity, infinity,
infinity, infinity,
infinity
};
double[] val = {1.0, 1.0, 1.0, 1.0, 1.0, 1
1.0, 1.0, 1.0, 1.0, 1.0, 1
};
int numcon = 7; /* Number of constraints.

int numvar
int NUMANZ

// Directs

= T7; /* Number of variables.
14; /* Number of non-zeros in

the log task stream to the user

// method task_msg_obj.print

task.set_Stream(
mosek.streamtype.log,
new mosek.Stream()

define

2, 5, 2, 6};
500
500, 500%};

0, 1.0};
0, 0.0%};

-

o O

*/
*/

specified

{ public void stream(String msg) { System.out.print(msg); }});

task.inputdata(numcon, numvar,
C,
0.0,
ptrb,
ptre,
sub,

220

(continues on next page)

(continued from previous page)

val,
bkc,
blc,
buc,

bux) ;

/% A mazimization problem */
task.putobjsense(mosek.objsense.minimize) ;

task.optimize();

/* Analyze upper bound on cl and the equality constraint on c4 */
int subil[l = {0, 3};
mosek.mark marki[] = {mosek.mark.up, mosek.mark.up};

/* Analyze lower bound on the wvartables z12 and x31 */
int subjl] = {1, 4};
mosek.mark markj[] = {mosek.mark.lo, mosek.mark.lo};

double[] leftpricei = new double[2];
double[] rightpricei = new doublel[2];
double[] leftrangei new double[2];
double[] rightrangei = new doublel[2];
double[] leftpricej new double[2];
double[] rightpricej = new double[2];
double[] leftrangej new double[2];
double[] rightrangej = new double[2];

task.primalsensitivity(subi,
marki,
subj,
markj,
leftpricei,
rightpricei,
leftrangei,
rightrangei,
leftpricej,
rightpricej,
leftrangej,
rightrangej);

System.out.println("Results from sensitivity analysis on bounds:\n");

System.out.println("For constraints:\n");
for (int i = 0; i < 2; ++1)

System.out.print("leftprice = " + leftpriceil[i] +
" rightprice = " + rightpriceil[i] +
" leftrange = " + leftrangeili] +
" rightrange = " + rightrangeil[i] + "\n");

System.out.print ("For variables:\n");
for (int i = 0; i < 2; ++1i)
System.out.print("leftprice = " + leftpricej[i] +

(continues on next page)

221

(continued from previous page)

" rightprice = " + rightpricej[i] +
" leftrange = " + leftrangej[i] +
" rightrange = " + rightrangej[i] + "\n");

double[] leftprice new double[2];
double[] rightprice = new double[2];
double[] leftrange = new doublel[2];
double[] rightrange = new doublel[2];
int subc[] = {2, 5};

task.dualsensitivity(subc,
leftprice,
rightprice,
leftrange,
rightrange
)3

System.out.println(
"Results from sensitivity analysis on objective coefficients:"

)

for (int i = 0; i < 2; ++1i)

System.out.print("leftprice = " + leftpricel[i] +
" rightprice = " + rightpricel[i] +
" leftrange = " + leftrange[i] +
" rightrange = " + rightrange[i] + "\n");

catch (mosek.Exception e)
/% Catch both mosek.Error and mosek.Warning */

System.out.println ("An error or warning was encountered");
System.out.println (e.getMessage ());
throw e;

222

Chapter 15

API Reference

This section contains the complete reference of the MOSEK Optimizer API for Java. It is organized as
follows:

o General API conventions.

e Methods:

— Class Env (The MOSEK environment)
— Class Task (An optimization task)

— Browse by topic

e Optimizer parameters:
— Double, Integer, String
— Full list
— Browse by topic

e Optimizer information items:

— Double, Integer, Long
e Optimizer response codes
o Fnumerations
e Fxceptions
o User-defined class types

e List of supported domains

15.1 API Conventions

15.1.1 Function arguments

Naming Convention

In the definition of the MOSEK Optimizer API for Java a consistent naming convention has been used.
This implies that whenever for example numcon is an argument in a function definition it indicates the
number of constraints. In Table 15.1 the variable names used to specify the problem parameters are
listed.

223

Table 15.1: Naming conventions used in the MOSEK Optimizer
API for Java.

API name | API type Dimension Related problem parameter
numcon int m
numvar int n
numcone int t

aptrb int[] numvar a;j

aptre int[] numvar ai;

asub int [] aptre[numvar-1] | ay;

aval double[] | aptre[numvar-1] | a;;

c double[] | numvar c;j

cfix double ol

blc double[] | numcon i

buc double[] | numcon ug,

blx double[] | numvar g

bux double[] | numvar uj,
numgonz int 4
qosubi int[] numgonz 4
qgosubj int[] numgonz 4

qoval double[] | numgonz 4
numgcnz int qu
qcsubk int[] numgcnz qu
qcsubi int[] numgcnz qu
qcsubj int[] numgcnz qu

qcval double[] | numgcnz qu

bkc int [] numcon I and uf
bkx int[] numvar ¥ and uf

The relation between the variable names and the problem parameters is as follows:

e The quadratic terms in the objective: qgosubi[t]’qosubj] = qovallt], t=0,...,numqonz — 1.

e The linear terms in the objective : ¢; = c[j], j=0,...,numvar —1

e The fixed term in the objective : ¢/ = cfix.

e The quadratic terms in the constraints: quzzsf[[t]])qcsubj] = qcvallt], t=0,...,numgcnz — 1

e The linear terms in the constraints: aaswpy),; = avallt], ¢ = ptrb[j],...,ptre[j] — 1, j =

0,...,numvar — 1

Passing arguments by reference

An argument described as T by reference indicates that the function interprets its given argument as a
reference to a variable of type T. This usually means that the argument is used to output or update a
value of type T. For example, suppose we have a function documented as

void foo (..., int[] nzc, ...)

e nzc (int by reference) — The number of nonzero elements in the matrix. (output)

Then it could be called as follows.

int nzc = new int[1];
foo (..., nzc, ...)
System.out.println("The number of nonzero elements: ", nzc[0])

224

Information about input/output arguments

The following are purely informational tags which indicate how MOSEK treats a specific function
argument.

e (input) An input argument. It is used to input data to MOSEK.

e (output) An output argument. It can be a user-preallocated data structure, a reference, a string
buffer etc. where MOSEK will output some data.

e (input/output) An input/output argument. MOSEK will read the data and overwrite it with
new /updated information.

15.1.2 Bounds

The bounds on the constraints and variables are specified using the variables bkc, blc, and buc. The
components of the integer array bkc specify the bound type according to Table 15.2

Table 15.2: Symbolic key for variable and constraint bounds.

Symbolic constant

Lower bound

Upper bound

boundkey. fx

finite

identical to the lower bound

boundkey. fr

minus infinity

plus infinity

boundkey. lo

finite

plus infinity

boundkey.ra

finite

finite

boundkey. up

minus infinity

finite

For instance bkc [2]=boundkey. Lo means that —oco < [§ and u§ = co. Even if a variable or constraint
is bounded only from below, e.g. x > 0, both bounds are inputted or extracted; the irrelevant value is
ignored.

Finally, the numerical values of the bounds are given by

L =Dblclk], k=0,...,numcon — 1

uf, =buclk], k=0,...,numcon — 1.

The bounds on the variables are specified using the variables bkx, blx, and bux in the same way. The
numerical values for the lower bounds on the variables are given by

I =vlx[j], j=0,...,numvar — 1.

uf = bux[j],

] 7 =0,...,numvar — 1.

15.1.3 Vector Formats
Three different vector formats are used in the MOSEK API:

Full (dense) vector

This is simply an array where the first element corresponds to the first item, the second element to the
second item etc. For example to get the linear coeflicients of the objective in task with numvar variables,
one would write

double([] c =
task.getc(c);

new double[numvar] ;

225

Vector slice

A vector slice is a range of values from first up to and not including last entry in the vector, i.e.
for the set of indices i such that first <= i < last. For example, to get the bounds associated with
constrains 2 through 9 (both inclusive) one would write

double[] upper_bound = new double[8];
double[] lower_bound = new double[8];
mosek.boundkey bound_key[]
= new mosek.boundkey[8];
task.getconboundslice (2,10,
bound_key,lower_bound,upper_bound);

Sparse vector

A sparse vector is given as an array of indexes and an array of values. The indexes need not be ordered.
For example, to input a set of bounds associated with constraints number 1, 6, 3, and 9, one might write

int[] bound_index ={1, 6, 3, 9 };
mosek.boundkey[] bound_key
= { mosek.boundkey.fr,
mosek.boundkey.lo,
mosek.boundkey.up,
mosek.boundkey.fx };
double[] lower_bound = { 0.0, -10.0, 0.0, 5.0 };
double[] upper_bound = { 0.0, 0.0, 6.0, 5.0 }
task.putconboundlist (bound_index,
bound_key,1ower_bound,upper_bound);

>

15.1.4 Matrix Formats

The coefficient matrices in a problem are inputted and extracted in a sparse format. That means only
the nonzero entries are listed.

Unordered Triplets

In unordered triplet format each entry is defined as a row index, a column index and a coefficient. For
example, to input the A matrix coefficients for a1 2 = 1.1,a33 = 4.3 , and a5 4 = 0.2, one would write
as follows:

int[] subi = { 1, 3, 5%};
int [] subj = { 2, 3, 43}
double[] cof ={ 1.1, 4.3, 0.2 }
task.putaijlist(subi,subj,cof);

>

Please note that in some cases (like Task.putaijlist) only the specified indexes are modified — all
other are unchanged. In other cases (such as Task.putgconk) the triplet format is used to modify all
entries — entries that are not specified are set to 0.

226

Column or Row Ordered Sparse Matrix

In a sparse matrix format only the non-zero entries of the matrix are stored. MOSEK uses a sparse
packed matrix format ordered either by columns or rows. Here we describe the column-wise format. The
row-wise format is based on the same principle.

Column ordered sparse format

A sparse matrix in column ordered format is essentially a list of all non-zero entries read column by
column from left to right and from top to bottom within each column. The exact representation uses
four arrays:

e asub: Array of size equal to the number of nonzeros. List of row indexes.

e aval: Array of size equal to the number of nonzeros. List of non-zero entries of A ordered by
columns.

e ptrb: Array of size numcol, where ptrb[j] is the position of the first value/index in aval/ asub
for the j-th column.

e ptre: Array of size numcol, where ptre[j] is the position of the last value/index plus one in aval
/ asub for the j-th column.

With this representation the values of a matrix A with numcol columns are assigned using:
Qasun[k],; = avallk] for j=0,...,numcol —1, k = ptrb[j],...,ptre[j] — 1.

As an example consider the matrix

1.1 1.3 14
2.2 2.5
4= 3.1 3.4 (15.1)

4.4

which can be represented in the column ordered sparse matrix format as

ptrb = [0,2,3,5,7],

ptre = [2,3,5,7,8],

asub = 10,2,1,0,3,0,2,1],

aval [1.1,3.1,2.2,1.3, 4.4,1.4,3.4,2.5]

Fig. 15.1 illustrates how the matrix A in (15.1) is represented in column ordered sparse matrix format.

ptrb 0 2 3 5 ¢« o o

ptre(] 2 I(s 5 7 o o e
; \

asub | © 2 1 0 3 0 1 2

aVal 1.1 3.1 22 1.3 44 1.4 34 25 o o o

Column 0 Column 1

Fig. 15.1: The matrix A (15.1) represented in column ordered packed sparse matrix format.

227

Column ordered sparse format with nonzeros

Note that nzc[j] := ptrel[jl-ptrb[j] is exactly the number of nonzero elements in the j-th column
of A. In some functions a sparse matrix will be represented using the equivalent dataset asub, aval,
ptrb, nzc. The matrix A (15.1) would now be represented as:

ptrb = [0,2,3,5,7],

nze = [2,1,2,2,1],

asub = [0,2,1,0,3,0,2,1],

aval = [1.1,3.1,2.2,1.3,4.4,1.4,3.4,2.5].

Row ordered sparse matrix

The matrix A (15.1) can also be represented in the row ordered sparse matrix format as:

ptrb = [07 3’ 57 7]’

ptre = [3,5,7,8],

asub = [0,2,3,1,4,0,3 2],

aval = [L1.1,1.3,1.4,2.2,2.5,3.1,3.4,4.4].

9

15.2 Functions grouped by topic

Callback

e Task.set_InfoCallback — Receive callbacks with solver status and information during optimiza-
tion.

e Task.set_Progress — Receive callbacks about current status of the solver during optimization.
e Task.set_Stream — Directs all output from a task stream to a callback object.

e Task.unset_Progress — Deactivates all user callback functions.

Infrequent: Task.set_ItgSolutionCallback, Env.set_Stream

Environment and task management

e Env.Env — Constructor of a new environment.

e Task.Task — Constructor of a new optimization task.
e Task.dispose — Free the underlying native allocation.
e Envu.dispose — Free the underlying native allocation.
e Task.puttaskname — Assigns a new name to the task.

o Infrequent: Task.commitchanges, Task.deletesolution, Task.putmaznumacc, Task.
putmaznumafe, Task.putmaznumanz, Task.putmarnumbarvar, Task.putmaznumcon, Task.
putmaznumdjc, Task.putmaxznumdomain, Task.putmaznumgnz, Task.putmaznumvar, Task.
resizetask

o Deprecated: Task—putmaznumeone

228

Infeasibility diagnostic

Task.getinfeasiblesubproblem — Obtains an infeasible subproblem.
Task.infeasibilityreport — Prints the infeasibility report to an output stream.

Task.primalrepair — Repairs a primal infeasible optimization problem by adjusting the bounds
on the constraints and variables.

Information items and statistics

Task.getdouinf — Obtains a double information item.

Task.getintinf — Obtains an integer information item.

Task.getlintinf — Obtains a long integer information item.
Task.updatesolutioninfo — Update the information items related to the solution.

Infrequent: Task.getinfindex, Task.getinfmaz, Task.getinfname

Input/Output

Task.uwritedata — Writes problem data to a file.
Task.writedatastream — Write problem data to a stream.
Task.writesolution — Write a solution to a file.

Infrequent: Task.readbsolution, Task.readdata, Task.readdataformat, Task.readjsonsol,
Task.readjsonstring, Task.readlpstring, Task.readopfstring, Task.readparamfile,
Task.readptfstring, Task.readsolution, Task.readsolutionfile, Task.readsummary,
Task.readtask, Task.writebsolution, Task.writejsonsol, Task.writeparamfile, Task.
writesolutionfile, Task.writetask

Inspecting the task

Task.analyzeproblem — Analyze the data of a task.

Task. getnumcon — Obtains the number of constraints.

Task. getnumvar — Obtains the number of variables.

Infrequent: Task.analyzesolution, Task.getaccafeidzlist, Task.getaccb, Task.
getaccbarfnumblocktriplets, Task.getaccdomain, Task.getaccfnumnz, Task.getaccftirip,
Task.getaccguvector, Task.getaccn, Task.getaccname, Task.getaccnamelen, Task.
getaccntot, Task.getaccs, Task.getacol, Task.getacolnumnz, Task.getacolslice,

Task.getacolslicenumnz, Task.getacolslicetrip, Task.getafebarfnumblocktriplets,
Task.getafebarfnumrowentries, Task.getafebarfrow, Task.getafebarfrowinfo, Task.
getafefnumnz, Task.getafefrow, Task.getafefrownumnz, Task.getafeftrip, Task.
getafeg, Task.getafegslice, Task.getatrj, Task.getapiecenumnz, Task.getarow, Task.
getarownumnz, Task.getarowslice, Task.getarowslicenumnz, Task.getarowslicetrip,
Task.getatrip, Task.getbarablocktriplet, Task.getbaraidz, Task.getbaraidzij, Task.
getbaraidzinfo, Task.getbarasparsity, Task.getbarcblocktriplet, Task.getbarcidz,
Task.getbarcidzinfo, Task.getbarcidzj, Task.getbarcsparsity, Task.getbarvarname,
Task.getbarvarnameindex, Task.getbarvarnamelen, Task.getc, Task.getcfiz, Task.
getcy, Task.getclist, Task.getconbound, Task.getconboundslice, Task.getconname,
Task.getconnameindex, Task.getconnamelen, Task.getcslice, Task.getdimbarvaryj, Task.
getdjcafeidzlist, Task.getdjcb, Task.getdjcdomainidzlist, Task.getdjcname, Task.
getdjcnamelen, Task.getdjcnumafe, Task.getdjcnumafetot, Task.getdjcnumdomain, Task.
getdjcnumdomaintot, Task.getdjcnumterm, Task.getdjcnumtermtot, Task.getdjcs, Task.
getdjctermsizelist, Task.getdomainn, Task.getdomainname, Task.getdomainnamelen,

229

Task.getdomaintype, Task.getlenbarvarj, Task.getmaznumanz, Task.getmaznumbarvar,
Task. getmaznumcon, Task.getmaznumgnz, Task.getmaznumvar, Task.getnumacc, Task.
getnumafe, Task.getnumanz, Task.getnumanz64, Task.getnumbarablocktriplets, Task.
getnumbaranz, Task.getnumbarcblocktriplets, Task.getnumbarcnz, Task.getnumbarvar,
Task.getnumdjc, Task.getnumdomain, Task.getnumintvar, Task.getnumparam, Task.

getnumgconknz, Task.getnumgobjnz, Task.getnumsymmat, Task.getobjname, Task.
getobjnamelen, Task.getpowerdomainalpha, Task.getpowerdomaininfo, Task.getprobtype,
Task.getqgconk, Task.getqgoby, Task.getgobjiyj, Task.getsparsesymmat Task.

getsymmatinfo, Task.gettaskname, Task.gettasknamelen, Task.getvarbound, Task.
getvarboundslice, Task.getvarname, Task.getvarnameindex, Task.getvarnamelen, Task.
getvartype, Task.getvartypelist, Task.readsummary

Deprecated: Task—getecone, Task-—geteoneinfo, Task-—getconename, Task-—getconenameindes,

Task-getconenameten, Faskgetmaenumcone, Task—getnumeone, Fask—getnumeconemen

License system

Env. checkoutlicense — Check out a license feature from the license server ahead of time.
Env.putlicensedebug — Enables debug information for the license system.
Env.putlicensepath — Set the path to the license file.

Env.putlicensewait — Control whether mosek should wait for an available license if no license is
available.

Infrequent: Env.checkinall, Env.checkinlicense, Env.exzpirylicenses, Env.
licensecleanup, Env.putlicensecode, Env.resetexpirylicenses

Linear algebra

Infrequent: Env.azpy, Env.computesparsecholesky, Env.dot, Env.gemm, Env.gemv, Env.
potrf, Env.sparsetriangularsolvedense, Env.syetg, Env. syevd, Env.syrk

Logging

Task.linkfiletostream — Directs all output from a task stream to a file.
Task.onesolutionsummary — Prints a short summary of a specified solution.

Task.optimizersummary — Prints a short summary with optimizer statistics from last optimiza-
tion.

Task.set_Stream — Directs all output from a task stream to a callback object.
Task.solutionsummary — Prints a short summary of the current solutions.

Infrequent: Env.echointro, Env. linkfiletostream, Env.set_Stream

Names

Env.getcodedesc — Obtains a short description of a response code.
Task.putaccname — Sets the name of an affine conic constraint.
Task.putbarvarname — Sets the name of a semidefinite variable.
Task.putconname — Sets the name of a constraint.
Task.putdjcname — Sets the name of a disjunctive constraint.

Task.putdomainname — Sets the name of a domain.

230

Task.putobjname — Assigns a new name to the objective.

Task.puttaskname — Assigns a new name to the task.

Task.putvarname — Sets the name of a variable.

o Infrequent: Task.analyzenames, Task.generateaccnames, Task.generatebarvarnames,
Task.generateconnames, Task.generatedjcnames, Task.generatevarnames, Task.
getaccname, Task.getaccnamelen, Task.getbarvarname, Task.getbarvarnameindez,

Task.getbarvarnamelen, Task.getconname, Task.getconnameindex, Task.getconnamelen,
Task.getdjcname, Task.getdjcnamelen, Task.getdomainname, Task.getdomainnamelen,

Task.getinfname, Task.getobjname, Task.getobjnamelen, Task.getparamname,
getstrparam, Task.getstrparamlen, Task.gettaskname, Task.gettasknamelen,
getvarname, Task.getvarnameindex, Task.getvarnamelen, Task.isdouparname,
1sintparname, Task.isstrparname, Task.strtosk

Task.
Task.
Task.

e Deprecated: Task-gererateconenames, Task-getcornename, Task-getconenametndes,

Task—geteconenamelen, Task-putconename, Task—strtoconetype

Optimization

e Task.optimize — Optimizes the problem.

e Env.optimizebatch — Optimize a number of tasks in parallel using a specified number of threads.

Parameters

e Task.putdouparam — Sets a double parameter.

e Task.putintparam — Sets an integer parameter.

e Task.putparam — Modifies the value of parameter.
e Task.putstrparam — Sets a string parameter.

e Task.setdefaults — Resets all parameter values.

e Infrequent: Task.getatruncatetol, Task.getdouparam, Task.getintparam,
getnumparam, Task.getparammaz, Task.getparamname, Task.getstrparam,
getstrparamlen, Task.isdouparname, Task.isintparname, Task.isstrparname,
putnadouparam, Task.putnaintparam, Task.putnastrparam, Task.readparamfile,
writeparamfile

Problem data - affine conic constraints

e Task.appendacc — Appends an affine conic constraint to the task.
e Task.getaccdoty — Obtains the doty vector for an affine conic constraint.
e Task.putaccname — Sets the name of an affine conic constraint.

o Infrequent: Task.appendaccs, Task.appendaccseq, Task.appendaccsseq,
evaluateacc, Task.evaluateaccs, Task.getaccafeidzlist, Task.getacch,

Task.
Task.
Task.
Task.

Task.
Task.

getaccbarfnumblocktriplets, Task.getaccdomain, Task.getaccdotys, Task.getaccfnumnz,

Task.getaccftrip, Task.getaccgvector, Task.getaccn, Task.getaccname,
getaccnamelen, Task.getaccntot, Task.getaccs, Task.getnumacc, Task.putacc,
putaccd, Task.putaccdbj, Task.putaccdoty, Task.putacclist, Task.putmaznumacc

231

Task.
Task.

Problem data - affine expressions

Task.appendafes — Appends a number of empty affine expressions to the optimization task.
Task.putafebarfentry — Inputs one entry in barF.

Task.putafebarfentrylist — Inputs a list of entries in barF.

Task.putafebarfrow — Inputs a row of barF.

Task.putafefcol — Replaces all elements in one column of the F matrix in the affine expressions.
Task.putafefentry — Replaces one entry in F.

Task.putafefentrylist — Replaces a list of entries in F.

Task.putafefrow — Replaces all elements in one row of the F matrix in the affine expressions.

Task.putafefrowlist — Replaces all elements in a number of rows of the F' matrix in the affine
expressions.

Task.putafeg — Replaces one element in the g vector in the affine expressions.
Task.putafegslice — Modifies a slice of the vector g.

Infrequent: Task.emptyafebarfrow, Task.emptyafebarfrowlist, Task.emptyafefcol,
Task.emptyafefcollist, Task.emptyafefrow, Task.emptyafefrowlist, Task.
getaccbarfblocktriplet, Task.getafebarfblocktiriplet, Task.getafebarfnumrowentries,
Task.getafebarfrow, Task.getafebarfrowinfo, Task.getafefnumnz, Task.getafefrow,
Task.getafefrownumnz, Task.getafeftrip, Task.getafeg, Task.getafegslice, Task.
getnumafe, Task.putafebarfblockiriplet, Task.putafeglist, Task.putmaznumafe

Problem data - bounds

Task.putconbound — Changes the bound for one constraint.
Task.putconboundslice — Changes the bounds for a slice of the constraints.
Task.putvarbound — Changes the bounds for one variable.
Task.putvarboundslice — Changes the bounds for a slice of the variables.

Infrequent: Task.chgconbound, Task.chgvarbound, Task.getconbound, Task.
getconboundslice, Task.getwvarbound, Task.getvarboundslice, Task.inputdata, Task.
putconboundlist, Task.putconboundlistconst, Task.putconboundsliceconst, Task.
putvarboundlist, Task.putvarboundlistconst, Task.putvarboundsliceconst

Problem data - cones (deprecated)

Deprecated: Task-apperndcone, Task-appendconeseq, Task-appendconessey,

232

Problem data - constraints

Task.appendcons — Appends a number of constraints to the optimization task.
Task. getnumcon — Obtains the number of constraints.

Task.putconbound — Changes the bound for one constraint.
Task.putconboundslice — Changes the bounds for a slice of the constraints.
Task.putconname — Sets the name of a constraint.

Task.removecons — Removes a number of constraints.

Infrequent: Task.chgconbound, Task.generateconnames, Task.getconbound, Task.
getconboundslice, Task.getconname, Task.getconnameindez, Task.getconnamelen,
Task.getmaznumcon, Task. getnumgconknz, Task.getqgconk, Task.inputdata, Task.
putconboundlist, Task.putconboundlistconst, Task.putconboundsliceconst, Task.
putmazrnumcon

Problem data - disjunctive constraints

Task.appenddjcs — Appends a number of empty disjunctive constraints to the task.
Task.putdjc — Inputs a disjunctive constraint.
Task.putdjcname — Sets the name of a disjunctive constraint.

Task.putdjcslice — Inputs a slice of disjunctive constraints.

Infrequent: Task.getdjcafeidzlist, Task.getdjcb, Task.getdjcdomainidzlist,
Task.getdjcname, Task.getdjcnamelen, Task.getdjcnumafe, Task.getdjcnumafetot,
Task.getdjcnumdomain, Task.getdjcnumdomaintot, Task.getdjcnumterm, Task.

getdjcnumtermtot, Task.getdjcs, Task.getdjctermsizelist, Task.getnumdjc, Task.
putmaznumdjc

Problem data - domain

Task. appenddualexpconedomain — Appends the dual exponential cone domain.

Task. appenddualgeomeanconedomain — Appends the dual geometric mean cone domain.

Task. appenddualpowerconedomain — Appends the dual power cone domain.
Task.appendprimalezpconedomain — Appends the primal exponential cone domain.

Task. appendprimalgeomeanconedomain — Appends the primal geometric mean cone domain.
Task. appendprimalpowerconedomain — Appends the primal power cone domain.

Task. appendquadraticconedomain — Appends the n dimensional quadratic cone domain.
Task.appendrdomain — Appends the n dimensional real number domain.

Task. appendrminusdomain — Appends the n dimensional negative orthant to the list of domains.
Task.appendrplusdomain — Appends the n dimensional positive orthant to the list of domains.
Task. appendrquadraticconedomain — Appends the n dimensional rotated quadratic cone domain.
Task.appendrzerodomain — Appends the n dimensional 0 domain.
Task.appendsvecpsdconedomain — Appends the vectorized SVEC PSD cone domain.
Task.putdomainname — Sets the name of a domain.

Infrequent: Task.getdomainn, Task.getdomainname, Task.getdomainnamelen,
Task.getdomaintype, Task. getnumdomain, Task.getpowerdomainalpha, Task.
getpowerdomaininfo, Task.putmaznumdomain

233

Problem data - linear part

Task.appendcons — Appends a number of constraints to the optimization task.
Task.appendvars — Appends a number of variables to the optimization task.

Task. getnumcon — Obtains the number of constraints.

Task.putacol — Replaces all elements in one column of the linear constraint matrix.
Task.putacolslice — Replaces all elements in a sequence of columns the linear constraint matrix.
Task.putaij — Changes a single value in the linear coefficient matrix.
Task.putaijlist — Changes one or more coeflicients in the linear constraint matrix.
Task.putarow — Replaces all elements in one row of the linear constraint matrix.
Task.putarowslice — Replaces all elements in several rows the linear constraint matrix.
Task.putcfiz — Replaces the fixed term in the objective.

Task.putcj — Modifies one linear coefficient in the objective.

Task.putconbound — Changes the bound for one constraint.
Task.putconboundslice — Changes the bounds for a slice of the constraints
Task.putconname — Sets the name of a constraint.

Task.putcslice — Modifies a slice of the linear objective coefficients.
Task.putobjname — Assigns a new name to the objective.
Task.putobjsense — Sets the objective sense.

Task.putvarbound — Changes the bounds for one variable.
Task.putvarboundslice — Changes the bounds for a slice of the variables
Task.putvarname — Sets the name of a variable.
Task.removecons — Removes a number of constraints.

Task.removevars — Removes a number of variables.

Infrequent: Task.chgconbound, Task.chgvarbound, Task.generatebarvarnames, Task.
generateconnames, Task.generatevarnames, Task.getacol, Task.getacolnumnz,
Task.getacolslice, Task.getacolslicenumnz, Task.getacolslicetrip, Task.getaij,
Task.getapiecenumnz, Task.getarow, Task.getarownumnz, Task.getarowslice, Task.
getarowslicenumnz, Task.getarowslicetrip, Task.getatrip, Task.getatruncatetol,
Task.getc, Task.getcfixz, Task.getcj, Task.getclist, Task.getconbound, Task.
getconboundslice, Task.getconname, Task.getconnameindex, Task.getconnamelen,
Task.getcslice, Task.getmaznumanz, Task. getmaznumcon, Task. getmaznumvar,
Task.getnumanz, Task.getnumanz64, Task.getobjsense, Task.getvarbound, Task.

getvarboundslice, Task.getvarname, Task.getvarnameindexz, Task.getvarnamelen, Task.
tnputdata, Task.putacollist, Task.putarowlist, Task.putatruncatetol, Task.putclist,
Task.putconboundlist, Task.putconboundlistconst, Task.putconboundsliceconst,
Task.putmaznumanz, Task.putvarboundlist, Task.putvarboundlistconst, Task.
putvarboundsliceconst

234

Problem data - objective

e Task.putbarcj — Changes one element in barc.

e Task.putcfiz — Replaces the fixed term in the objective.

e Task.putcj — Modifies one linear coeflicient in the objective.

e Task.putcslice — Modifies a slice of the linear objective coeflicients.

e Task.putobjname — Assigns a new name to the objective.

e Task.putobjsense — Sets the objective sense.

e Task.putqobj — Replaces all quadratic terms in the objective.

e Task.putqgobjij — Replaces one coefficient in the quadratic term in the objective.

o Infrequent: Task.putclist

Problem data - quadratic part

e Task.putqcon — Replaces all quadratic terms in constraints.

e Task.putqconk — Replaces all quadratic terms in a single constraint.

e Task.putqobj — Replaces all quadratic terms in the objective.

e Task.putqobjij — Replaces one coeflicient in the quadratic term in the objective.

o Infrequent: Task.getmaznumgnz, Task.getnumgconknz, Task.getnumgobjnz, Task.getgconk,
Task.getqobj, Task.getqobjij, Task.putmaznumgnz

e Deprecated: Task-—toconie

Problem data - semidefinite

e Task.appendbarvars — Appends semidefinite variables to the problem.

e Task.appendsparsesymmat — Appends a general sparse symmetric matrix to the storage of sym-
metric matrices.

e Task.appendsparsesymmatlist — Appends a general sparse symmetric matrix to the storage of
symmetric matrices.

e Task.putafebarfentry — Inputs one entry in barF.

e Task.putafebarfentrylist — Inputs a list of entries in barF.
e Task.putafebarfrow — Inputs a row of barF.

e Task.putbaraij — Inputs an element of barA.

e Task.putbaraijlist — Inputs list of elements of barA.

e Task.putbararowlist — Replace a set of rows of barA

e Task.putbarcj — Changes one element in barc.

e Task.putbarvarname — Sets the name of a semidefinite variable.

235

Infrequent: Task.emptyafebarfrow, Task.emptyafebarfrowlist, Task.

getaccbarfblocktriplet, Task.getaccbarfnumblocktriplets, Task.
getafebarfblocktriplet, Task.getafebarfnumblocktriplets, Task.
getafebarfnumrowentries, Task.getafebarfrow, Task.getafebarfrowinfo, Task.

getbarablocktriplet, Task.getbaraidz, Task.getbaraidzij, Task.getbaraidzinfo, Task.
getbarasparsity, Task.getbarcblocktriplet, Task.getbarcidz, Task.getbarcidzinfo,
Task.getbarcidzj, Task.getbarcsparsity, Task.getdimbarvarj, Task.getlenbarvary,
Task.getmaznumbarvar, Task.getnumbarablockiriplets, Task.getnumbaranz, Task.
getnumbarcblocktriplets, Task.getnumbarcnz, Task.getnumbarvar, Task.getnumsymmat,
Task.getsparsesymmat, Task.getsymmatinfo, Task.putafebarfblocktriplet, Task.
putbarablocktriplet, Task.putbarcblocktriplet, Task.putmaznumbarvar, Task.
removebarvars

Problem data - variables

Task.appendvars — Appends a number of variables to the optimization task.
Task.getnumvar — Obtains the number of variables.

Task.putvarbound — Changes the bounds for one variable.
Task.putvarboundslice — Changes the bounds for a slice of the variables.
Task.putvarname — Sets the name of a variable.

Task.putvartype — Sets the variable type of one variable.

Task.removevars — Removes a number of variables.

Infrequent: Task.chgvarbound, Task.generatebarvarnames, Task.generatevarnames,
Task.getc, Task.getcj, Task.getmaznumvar, Task.getnumintvar, Task.getvarbound,
Task.getvarboundslice, Task.getvarname, Task.getwvarnameindex, Task.getvarnamelen,
Task.getvartype, Task.getvartypelist, Task.putclist, Task.putmaznumvar, Task.
putvarboundlist, Task.putvarboundlistconst, Task.putvarboundsliceconst, Task.
putvartypelist

Remote optimization

Task.asyncgetresult — Request a solution from a remote job.

Task.asyncoptimize — Offload the optimization task to a solver server in asynchronous mode.
Task.asyncpoll — Requests information about the status of the remote job.

Task.asyncstop — Request that the job identified by the token is terminated.
Task.optimizermt — Offload the optimization task to a solver server and wait for the solution.

Task.putoptserverhost — Specify an OptServer for remote calls.

Responses, errors and warnings

Env.getcodedesc — Obtains a short description of a response code.

236

Sensitivity analysis

Task.dualsensitivity — Performs sensitivity analysis on objective coefficients.
Task.primalsensitivity — Perform sensitivity analysis on bounds.

Task.sensitivityreport — Creates a sensitivity report.

Solution - dual

Task.getaccdoty — Obtains the doty vector for an affine conic constraint.
Task.getdualobj — Computes the dual objective value associated with the solution.
Task.gety — Obtains the y vector for a solution.

Task.getyslice — Obtains a slice of the y vector for a solution.

Infrequent: Task.getaccdotys, Task.getreducedcosts, Task.getslc, Task.getslcslice,
Task.getslxz, Task.getslzslice, Task.getsnz, Task.getsnzslice, Task.getsolution,
Task.getsoluttonnew, Task.getsolutionslice, Task.getsuc, Task.getsucslice, Task.
getsux, Task.getsuxzslice, Task.putaccdoty, Task.putconsolutioni, Task.putslc, Task.
putslcslice, Task.putslxz, Task.putslzslice, Task.putsnz, Task.putsnzslice, Task.
putsolution, Task.putsolutionnew, Task.putsolutionyi, Task.putsuc, Task.putsucslice,
Task.putsuz, Task.putsuzslice, Task.putvarsolutionj, Task.putyslice

Solution - primal

Task.getprimalobs — Computes the primal objective value for the desired solution.
Task.getzz — Obtains the xx vector for a solution.

Task.getzzslice — Obtains a slice of the xx vector for a solution.

Task.putzz — Sets the xx vector for a solution.

Task.putzzslice — Sets a slice of the xx vector for a solution.

Infrequent: Task.evaluateacc, Task.evaluateaccs, Task.getsolution, Task.
getsolutionnew, Task.getsolutionslice, Task.getzc, Task.getzcslice, Task.
putconsolutioni, Task.putsolution, Task.putsolutionnew, Task.putvarsolutiony,

Task.putzc, Task.putzcslice, Task.puty

Solution - semidefinite

Task.getbarsj — Obtains the dual solution for a semidefinite variable.
Task.getbarsslice — Obtains the dual solution for a sequence of semidefinite variables.
Task.getbarzj — Obtains the primal solution for a semidefinite variable.
Task.getbarzslice — Obtains the primal solution for a sequence of semidefinite variables.

Infrequent: Task.putbarsy, Task.putbarzy

237

Solution information

Task.getdualobj — Computes the dual objective value associated with the solution.
Task.getprimalobj — Computes the primal objective value for the desired solution.
Task.getprosta — Obtains the problem status.

Task.getpuiolcon — Computes the violation of a primal solution associated to a constraint.
Task. getpviolvar — Computes the violation of a primal solution for a list of scalar variables.
Task.getsolsta — Obtains the solution status.

Task.getsolutioninfo — Obtains information about of a solution.
Task.getsolutioninfonew — Obtains information about of a solution.
Task.onesolutionsummary — Prints a short summary of a specified solution.
Task.solutiondef — Checks whether a solution is defined.

Task.solutionsummary — Prints a short summary of the current solutions.

Infrequent: Task.analyzesolution, Task.deletesolution, Task.getdualsolutionnorms,
Task.getdviolacc, Task.getdviolbarvar, Task.getdviolcon, Task.getdviolvar, Task.
getprimalsolutionnorms, Task.getpviolacc, Task.getpviolbarvar, Task.getpuvioldjc,
Task.getskc, Task.getskcslice, Task.getskn, Task.getskx, Task.getskxslice, Task.
getsolution, Task.getsoluttionnew, Task.getsoluttonslice, Task.putconsolutioni, Task.
putskc, Task.putskcslice, Task.putskx, Task.putskzslice, Task.putsolution, Task.
putsolutionnew, Task.putsolutionyi, Task.putvarsolutiony

Deprecated: Fask—getdvioteones, Task-getpviotecones

Solving systems with basis matrix

Infrequent: Task.basiscond, Task.initbasissolve, Task.solvewithbasis

System, memory and debugging

Infrequent: Task.checkmem, Task.getmemusage

Versions

Env. getversion — Obtains MOSEK version information.

15.3 Class Env

mosek.Env

The MOSEK global environment.

Env.Env

Env()

Env(String dbgfile)

Constructor of a new environment.

Parameters dbgfile (String) — File where the memory debugging log is written. (in-
put)

238

Env.axpy

public synchronized void axpy
(int n,
double alpha,
double[] x,
double[] y)

Adds ax to y, i.e. performs the update
Y i=oar+y.

Note that the result is stored overwriting y. It must not overlap with the other input arrays.

Parameters
e n (int) — Length of the vectors. (input)
e alpha (double) — The scalar that multiplies z. (input)
e x (double[]) — The x vector. (input)
e y (double[]) — The y vector. (input/output)
Groups Linear algebra

Env.checkinall

public synchronized void checkinall()

Check in all unused license features to the license token server.
Groups License system

Env.checkinlicense

public synchronized void checkinlicense(feature feature)

Check in a license feature to the license server. By default all licenses consumed by functions using
a single environment are kept checked out for the lifetime of the MOSEK environment. This
function checks in a given license feature back to the license server immediately.

If the given license feature is not checked out at all, or it is in use by a call to Task.optimize,
calling this function has no effect.

Please note that returning a license to the license server incurs a small overhead, so frequent calls
to this function should be avoided.

Parameters feature (feature) — Feature to check in to the license system. (input)
Groups License system

Env.checkoutlicense

public synchronized void checkoutlicense(feature feature)

Checks out a license feature from the license server. Normally the required license features will be
automatically checked out the first time they are needed by the function Task.optimize. This
function can be used to check out one or more features ahead of time.

The feature will remain checked out until the environment is deleted or the function Enwv.
checkinlicense is called.

If a given feature is already checked out when this function is called, the call has no effect.

Parameters feature (feature)— Feature to check out from the license system. (input)

239

Groups License system

Env.computesparsecholesky

public synchronized void computesparsecholesky
(int numthreads,
int ordermethod,
double tolsingular,
int[] anzc,
long[] aptrc,
int[] asubc,
double[] avalc,
int[][] perm,
double[][] diag,
int[][] 1nzc,
long[][] 1lptrc,
long[] lensubnval,
int[]J[] 1lsubc,
double[][] 1valc)

The function computes a Cholesky factorization of a sparse positive semidefinite matrix. Sparsity
is exploited during the computations to reduce the amount of space and work required. Both the
input and output matrices are represented using the sparse format.

To be precise, given a symmetric matrix A € R™*" the function computes a nonsingular lower
triangular matrix L, a diagonal matrix D and a permutation matrix P such that

LLT — D= PAPT.

If ordermethod is zero then reordering heuristics are not employed and P is the identity.

If a pivot during the computation of the Cholesky factorization is less than
—p-max((PAPT);;,1.0)

then the matrix is declared negative semidefinite. On the hand if a pivot is smaller than
p-max((PAPT);;,1.0),

then Dj; is increased from zero to
p- max((PAPT)jj, 1.0).

Therefore, if A is sufficiently positive definite then D will be the zero matrix. Here p is set equal
to value of tolsingular.

Parameters

e numthreads (int) — The number threads that can be used to do the computation.
0 means the code makes the choice. NOTE: API change in version 10: in versions
up to 9 the argument in this position indicated whether to use multithreading
or not. (input)

e ordermethod (int) — If nonzero, then a sparsity preserving ordering will be
employed. (input)

e tolsingular (double) — A positive parameter controlling when a pivot is de-
clared zero. (input)

e anzc (int[]) — anzc[j] is the number of nonzeros in the j-th column of A.
(input)

e aptrc (longl]) — aptrc[j] is a pointer to the first element in column j of A.
(input)

240

asubc (int [1) — Row indexes for each column stored in increasing order. (input)
avalc (double[]) — The value corresponding to row indexed stored in asubc.
(input)

perm (int[1 by reference) — Permutation array used to specify the permutation
matrix P computed by the function. (output)

diag (double[] by reference) — The diagonal elements of matrix D. (output)
lnzc (int[1 by reference) — 1nzc[j] is the number of non zero elements in
column j of L. (output)

lptrc (Long[] by reference) — lptrc[j] is a pointer to the first row index and
value in column j of L. (output)

lensubnval (long by reference) — Number of elements in lsubc and lvalc.
(output)

lsubc (int[]1 by reference) — Row indexes for each column stored in increasing
order. (output)

lvalc (double[] by reference) — The values corresponding to row indexed stored
in 1subc. (output)

Groups Linear algebra

Env.dispose

void dispose()

Free the underlying native allocation.

Env.dot

public synchronized void dot
(int n,
double[] x,
doublel] vy,
double[] xty)

Computes the inner product of two vectors z,y of length n > 0, i.e

n
T-y= leyz
i=1

Note that if n = 0, then the result of the operation is 0.

Parameters

n (int) — Length of the vectors. (input)
x (double[]) — The z vector. (input)
y (double[]) — The y vector. (input)

xty (double by reference) — The result of the inner product between x and y.
(output)

Groups Linear algebra

Env.echointro

public synchronized void echointro(int longver)

Prints an intro to message stream.

Parameters longver (int) — If non-zero, then the intro is slightly longer. (input)

Groups Logging

241

Env.expirylicenses

public synchronized void expirylicenses(long[] expiry)

Reports when the first license feature expires. It reports the number of days to the expiry of the
first feature of all the features that were ever checked out from the start of the process, or from
the last call to Env.resetezpirylicenses, until now.

Parameters expiry (long by reference) — If nonnegative, then it is the minimum num-
ber days to expiry of any feature that has been checked out. (output)
Groups License system

Env.gemm

public synchronized void gemm
(transpose transa,
transpose transb,
int m,
int n,
int k,
double alpha,
double[] a,
double[] b,
double beta,
double[] c)

Performs a matrix multiplication plus addition of dense matrices. Given A, B and C of compatible
dimensions, this function computes

C := aop(A)op(B) + BC

where «, 8 are two scalar values. The function op(X) denotes X if transX is transpose.no, or
XT if set to transpose.yes. The matrix C' has m rows and n columns, and the other matrices
must have compatible dimensions.

The result of this operation is stored in C. It must not overlap with the other input arrays.

Parameters
e transa (transpose) — Indicates whether the matrix A must be transposed.
(input)
e transb (transpose) — Indicates whether the matrix B must be transposed.
(input)

e m (int) — Indicates the number of rows of matrix C. (input)
e n (int) — Indicates the number of columns of matrix C. (input)

e k (int) — Specifies the common dimension along which op(A) and op(B) are
multiplied. For example, if neither A nor B are transposed, then this is the
number of columns in A and also the number of rows in B. (input)

e alpha (double) — A scalar value multiplying the result of the matrix multiplica-
tion. (input)

e a (double[]) — The pointer to the array storing matrix A in a column-major
format. (input)

e b (double[]) — The pointer to the array storing matrix B in a column-major
format. (input)

e beta (double) — A scalar value that multiplies C. (input)

e c (double[]) — The pointer to the array storing matrix C' in a column-major
format. (input/output)

Groups Linear algebra

242

Env.gemv

public synchronized void gemv
(transpose transa,
int m,
int n,
double alpha,
double[] a,
double[] x,
double beta,
double[] y)

Computes the multiplication of a scaled dense matrix times a dense vector, plus a scaled dense
vector. Precisely, if trans is transpose.no then the update is

y = aAx + Py,
and if trans is transpose.yes then
y:=aATz + By,

where «, 8 are scalar values and A is a matrix with m rows and n columns.

Note that the result is stored overwriting y. It must not overlap with the other input arrays.

Parameters

e transa (transpose) — Indicates whether the matrix A must be transposed.
(input)
m (int) — Specifies the number of rows of the matrix A. (input)

n (int) — Specifies the number of columns of the matrix A. (input)
alpha (double) — A scalar value multiplying the matrix A. (input)

a (double[]l) — A pointer to the array storing matrix A in a column-major
format. (input)
x (double[1) — A pointer to the array storing the vector x. (input)

beta (double) — A scalar value multiplying the vector y. (input)
y (double[]) — A pointer to the array storing the vector y. (input/output)

Groups Linear algebra

Env.getcodedesc

public static void getcodedesc
(rescode code,
StringBuffer symname,
StringBuffer str)

Obtains a short description of the meaning of the response code given by code.

Parameters
e code (rescode) — A valid MOSEK response code. (input)
e symname (StringBuffer) — Symbolic name corresponding to code. (output)
e str (StringBuffer) — Obtains a short description of a response code. (output)

Groups Names, Responses, errors and warnings

Env.getversion

243

public static void getversion
(int[] major,
int[] minor,
int[] revision)

Obtains MOSEK version information.

Parameters
e major (int by reference) — Major version number. (output)
e minor (int by reference) — Minor version number. (output)
e revision (int by reference) — Revision number. (output)

Groups Versions

Env.licensecleanup

public static void licensecleanup()

Stops all threads and deletes all handles used by the license system. If this function is called, it
must be called as the last MOSEK API call. No other MOSEK API calls are valid after this.

Groups License system

Env.linkfiletostream

public synchronized void linkfiletostream
(streamtype whichstream,
String filename,
int append)

Sends all output from the stream defined by whichstream to the file given by filename.

Parameters
e whichstream (streamtype) — Index of the stream. (input)
e filename (String) — A valid file name. (input)

e append (int) — If this argument is 0 the file will be overwritten, otherwise it will
be appended to. (input)

Groups Logging

Env.optimizebatch

public synchronized void optimizebatch
(boolean israce,
double maxtime,
int numthreads,
Task[] task,
rescode[] trmcode,
rescode[] rcode)

Optimize a number of tasks in parallel using a specified number of threads. All callbacks and log
output streams are disabled.

Assuming that each task takes about same time and there many more tasks than number of threads
then a linear speedup can be achieved, also known as strong scaling. A typical application of this
method is to solve many small tasks of similar type; in this case it is recommended that each of
them is allocated a single thread by setting <param.num_threads to 1.

If the parameters israce or maxtime are used, then the result may not be deterministic, in the
sense that the tasks which complete first may vary between runs.

244

The remaining behavior, including termination and response codes returned for each task, are the
same as if each task was optimized separately.

Parameters

e israce (boolean) — If nonzero, then the function is terminated after the first
task has been completed. (input)

e maxtime (double)— Time limit for the function: if nonnegative, then the function
is terminated after maxtime (seconds) has expired. (input)

e numthreads (int) — Number of threads to be employed. (input)

e task (Task [1) — An array of tasks to optimize in parallel. (input)

e trmcode (rescode [1) — The termination code for each task. (output)

e rcode (rescode [1) — The response code for each task. (output)
Groups Optimization

Env.potrf

public synchronized void potrf
(uplo uplo,
int n,
double[] a)

Computes a Cholesky factorization of a real symmetric positive definite dense matrix.

Parameters
e uplo (uplo) — Indicates whether the upper or lower triangular part of the matrix
is stored. (input)
e n (int) — Dimension of the symmetric matrix. (input)

e a (double[]) — A symmetric matrix stored in column-major order. Only the
lower or the upper triangular part is used, accordingly with the uplo parameter.
It will contain the result on exit. (input/output)

Groups Linear algebra

Env.putlicensecode

public synchronized void putlicensecode(int[] code)

Input a runtime license code.

Parameters code (int[]) — A runtime license code. (input)
Groups License system

Env.putlicensedebug

public synchronized void putlicensedebug(int licdebug)

Enables debug information for the license system. If 1licdebug is non-zero, then MOSEK will
print debug info regarding the license checkout.

Parameters licdebug (int) — Whether license checkout debug info should be printed.
(input)
Groups License system

Env.putlicensepath

public synchronized void putlicensepath(String licensepath)

245

Set the path to the license file.

Parameters licensepath (String) — A path specifying where to search for the license.
(input)
Groups License system

Env.putlicensewait

public synchronized void putlicensewait(int licwait)

Control whether MOSEK should wait for an available license if no license is available. If 1icwait
is non-zero, then MOSEK will wait for 1icwait-1 milliseconds between each check for an available
license.

Parameters licwait (int) — Whether MOSEK should wait for a license if no license
is available. (input)
Groups License system

Env.resetexpirylicenses

public synchronized void resetexpirylicenses()

Reset the license expiry reporting startpoint.
Groups License system

Env.set_Stream

void set_Stream
(mosek.streamtype whichstream,
mosek.Stream callback)

Directs all output from an environment stream to a callback object.

Can for example be called as:

env.set_Stream(mosek.streamtype.log, new Stream() { public void stream(String s)
—q{ System.out.print(s); } });

Parameters
e whichstream (streamtype) — Index of the stream. (input)
e callback (Stream) — The callback object. (input)

Env.sparsetriangularsolvedense

public synchronized void sparsetriangularsolvedense
(transpose transposed,
int[] 1nzc,
long[] 1ptrc,
int[] 1lsubc,
double[] 1lvalc,
double[] b)

The function solves a triangular system of the form
Lx=b

or

where L is a sparse lower triangular nonsingular matrix. This implies in particular that diagonals
in L are nonzero.

Parameters
e transposed (transpose) — Controls whether to use with L or LT. (input)
e Inzc (int[1) — 1nzc[j] is the number of nonzeros in column j. (input)
e lptrc (longl[l) — 1lptrc[j] is a pointer to the first row index and value in
column j. (input)
e 1lsubc (int[]) — Row indexes for each column stored sequentially. Must be
stored in increasing order for each column. (input)
e lvalc (double[]) — The value corresponding to the row index stored in lsubc.
(input)
e b (double[]) — The right-hand side of linear equation system to be solved as a
dense vector. (input/output)
Groups Linear algebra

Env.syeig

public synchronized void syeig
(uplo uplo,
int n,
double[] a,
double[] w)

Computes all eigenvalues of a real symmetric matrix A. Given a matrix A € R™*" it returns a
vector w € R™ containing the eigenvalues of A.

Parameters
e uplo (uplo) — Indicates whether the upper or lower triangular part is used.
(input)
e n (int) — Dimension of the symmetric input matrix. (input)
e a (double[]) — A symmetric matrix A stored in column-major order. Only the
part indicated by uplo is used. (input)
e w (double[]) — Array of length at least n containing the eigenvalues of A. (out-
put)
Groups Linear algebra

Env.syevd

public synchronized void syevd
(uplo uplo,
int n,
double[] a,
double[] w)

Computes all the eigenvalues and eigenvectors a real symmetric matrix. Given the input matrix
A € R™ ™ this function returns a vector w € R"™ containing the eigenvalues of A and it also
computes the eigenvectors of A. Therefore, this function computes the eigenvalue decomposition
of A as

A=UVUT,

where V = diag(w) and U contains the eigenvectors of A.

Note that the matrix U overwrites the input data A.

Parameters

247

uplo (uplo) — Indicates whether the upper or lower triangular part is used.
(input)
n (int) — Dimension of the symmetric input matrix. (input)

a (double[]) — A symmetric matrix A stored in column-major order. Only the
part indicated by uplo is used. On exit it will be overwritten by the matrix U.
(input/output)

w (double[]) — Array of length at least n containing the eigenvalues of A. (out-
put)
Groups Linear algebra

Env.syrk

public synchronized void syrk
(uplo uplo,
transpose trams,
int n,
int k,
double alpha,
double[] a,
double beta,
double[] ¢)

Performs a symmetric rank-k update for a symmetric matrix.

Given a symmetric matrix C' € R™*" two scalars «, § and a matrix A of rank k < n, it computes
either

C = aAAT 4+ BC,
when trans is set to transpose.no and A € R"*F or
C:=aAT A+ BC,

when trans is set to transpose.yes and A € RFX™,

Only the part of C indicated by uplo is used and only that part is updated with the result. It
must not overlap with the other input arrays.

Parameters
e uplo (uplo) — Indicates whether the upper or lower triangular part of C'is used.
(input)
e trans (transpose) — Indicates whether the matrix A must be transposed. (in-
put)

e n (int) — Specifies the order of C. (input)

e k (int) — Indicates the number of rows or columns of A, depending on whether
or not it is transposed, and its rank. (input)

e alpha (double) — A scalar value multiplying the result of the matrix multiplica-
tion. (input)

e a (double[]) — The pointer to the array storing matrix A in a column-major
format. (input)

e beta (double) — A scalar value that multiplies C'. (input)

e ¢ (double[]) — The pointer to the array storing matrix C' in a column-major
format. (input/output)

Groups Linear algebra

248

15.4 Class Task

mosek.Task
Represents an optimization task.
Task.Task

Task ()

Task (
int numcon,
int numvar)

Task (mosek.Env env)

Task(
mosek.Env env,
int numcon,
int numvar)

Task (mosek.Task task)

Constructor of a new optimization task.

Parameters
e numcon (int) — An optional hint about the maximal number of constraints in
the task. (input)
e numvar (int) — An optional hint about the maximal number of variables in the
task. (input)
e env (Env) — Parent environment. (input)
o task (Task) — A task that will be cloned. (input)

Task.analyzenames

public synchronized void analyzenames
(streamtype whichstream,
nametype nametype)

The function analyzes the names and issues an error if a name is invalid.

Parameters

e whichstream (streamtype) — Index of the stream. (input)

e nametype (nametype) — The type of names e.g. valid in MPS or LP files. (input)
Groups Names

Task.analyzeproblem

public synchronized void analyzeproblem(streamtype whichstream)

The function analyzes the data of a task and writes out a report.

Parameters whichstream (streamtype) — Index of the stream. (input)
Groups [nspecting the task

Task.analyzesolution

249

public synchronized void analyzesolution
(streamtype whichstream,
soltype whichsol)

Task

Print information related to the quality of the solution and other solution statistics.
By default this function prints information about the largest infeasibilites in the solution, the
primal (and possibly dual) objective value and the solution status.

Following parameters can be used to configure the printed statistics:

e iparam.ana_sol_basis enables or disables printing of statistics specific to the basis solution
(condition number, number of basic variables etc.). Default is on.

e iparam.ana_sol_print_violated enables or disables listing names of all constraints (both
primal and dual) which are violated by the solution. Default is off.

e dparam.ana_sol_infeas_tol is the tolerance defining when a constraint is considered vio-
lated. If a constraint is violated more than this, it will be listed in the summary.

Parameters
e whichstream (streamtype) — Index of the stream. (input)
e whichsol (soltype) — Selects a solution. (input)

Groups Solution information, Inspecting the task

.appendacc

public synchronized void appendacc
(long domidx,
long[] afeidxlist,
double[] b)

Appends an affine conic constraint to the task. The affine constraint has the form a sequence of
affine expressions belongs to a domain.

The domain index is specified with domidx and should refer to a domain previously appended with
one of the append. . .domain functions.

The length of the affine expression list afeidx1list must be equal to the dimension n of the domain.
The elements of afeidxlist are indexes to the store of affine expressions, i.e. the affine expressions
appearing in the affine conic constraint are:

Fateidxtist[k],:T T Gafeidxlistk] for k=0,...,n—1.

If an optional vector b of the same length as afeidxlist is specified then the expressions appearing
in the affine constraint will instead be taken as:

Fateiaxtist[],: + Gateidxlist(k) — 0k for k=10,...,n—1.

Parameters
e domidx (long) — Domain index. (input)
e afeidxlist (long[]) — List of affine expression indexes. (input)
e b (double[]) — The vector of constant terms added to affine expressions. Op-
tional, can be NULL. (input)

Groups Problem data - affine conic constraints

Task.appendaccs

public synchronized void appendaccs
(long[] domidxs,
long[] afeidxlist,

double[] b)

250

Task.

Appends numaccs affine conic constraint to the task. Each single affine conic constraint should be
specified as in Task.appendacc and the input of this function should contain the concatenation of
all these descriptions.

In particular, the length of afeidxlist must equal the sum of dimensions of domains indexed in
domainsidxs.

Parameters
e domidxs (long[]) — Domain indices. (input)
e afeidxlist (long[]) — List of affine expression indexes. (input)
e b (double[]) — The vector of constant terms added to affine expressions. Op-
tional, can be NULL. (input)

Groups Problem data - affine conic constraints

appendaccseq

public synchronized void appendaccseq
(long domidx,
long afeidxfirst,
double[] b)

Task.

Appends an affine conic constraint to the task, as in Task.appendacc. The function assumes
the affine expressions forming the constraint are sequential. The affine constraint has the form a
sequence of affine expressions belongs to a domain.

The domain index is specified with domidx and should refer to a domain previously appended with
one of the append. . .domain functions.

The number of affine expressions should be equal to the dimension n of the domain. The affine
expressions forming the affine constraint are arranged sequentially in a contiguous block of the affine
expression store starting from position afeidxfirst. That is, the affine expressions appearing in
the affine conic constraint are:

Fafeidxﬁrst+k,:1' + Gafeidxfirst+k for k = 0,...,n—1

If an optional vector b of length numafeidx is specified then the expressions appearing in the affine
constraint will instead be taken as

Fafeidxﬁrst—i—k,:x + Jafeidxfirst+k — bk for k = 07 e, 1.

Parameters
e domidx (long) — Domain index. (input)
e afeidxfirst (long) — Index of the first affine expression. (input)

e b (double[]) — The vector of constant terms added to affine expressions. Op-
tional, can be NULL. (input)

Groups Problem data - affine conic constraints

appendaccsseq

public synchronized void appendaccsseq
(long[] domidxs,
long numafeidx,
long afeidxfirst,
double[] b)

Appends numaccs affine conic constraint to the task. It is the block variant of Task.appendaccs,
that is it assumes that the affine expressions appearing in the affine conic constraints are sequential
in the affine expression store, starting from position afeidxfirst.

Parameters

251

domidxs (long[]l) — Domain indices. (input)

numafeidx (long) — Number of affine expressions in the affine expression list
(must equal the sum of dimensions of the domains). (input)

afeidxfirst (long) — Index of the first affine expression. (input)

b (double[]) — The vector of constant terms added to affine expressions. Op-
tional, can be NULL. (input)

Groups Problem data - affine conic constraints

Task.appendafes

public synchronized void appendafes(long num)

Appends a number of empty affine expressions to the task.

Parameters num (long) — Number of empty affine expressions which should be ap-
pended. (input)
Groups Problem data - affine expressions

Task.appendbarvars

public synchronized void appendbarvars(int[] dim)

Appends positive semidefinite matrix variables of dimensions given by dim to the problem.

Parameters dim (int[]) — Dimensions of symmetric matrix variables to be added.
(input)
Groups Problem data - semidefinite

Task-appendeone Deprecated

public synchronized void appendcone
(conetype ct,
double conepar,
int[] submem)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Appends a new conic constraint to the problem. Hence, add a constraint
zTelk

to the problem, where K is a convex cone. Z is a subset of the variables which will be specified by
the argument submem. Cone type is specified by ct.

Define

T= T submen[0] - - - » L submem[nummem—1] -
Depending on the value of ct this function appends one of the constraints:

e Quadratic cone (conetype. quad, requires nummen > 1):

252

e Rotated quadratic cone (conetype.rquad, requires nummen > 2):

e Primal exponential cone (conetype.pezp, requires nummem = 3):
Zo > Ty exp(T2/%1), To,T1 >0

e Primal power cone (conetype.ppow, requires nummen > 2):

where « is the cone parameter specified by conepar.

e Dual exponential cone (conetype.dexp, requires nummem = 3):

Zo Z —32‘26_1 exp(i‘l/.’fﬁg), ./%2 S 0,.”2'0 Z 0

e Dual power cone (conetype. dpow, requires nummem > 2):

where « is the cone parameter specified by conepar.

e Zero cone (conetype.zero):

Z; = 0 for all 4

Please note that the sets of variables appearing in different conic constraints must be disjoint.

For an explained code example see Sec. 6.3, Sec. 6.5 or Sec. 6.4.

Parameters
e ct (conetype) — Specifies the type of the cone. (input)

e conepar (double) — For the power cone it denotes the exponent alpha. For other
cone types it is unused and can be set to 0. (input)

e submem (int[]) — Variable subscripts of the members in the cone. (input)
Groups Problem data - cones (deprecated)

Task-appendeconeseq Deprecated

public synchronized void appendconeseq
(conetype ct,
double conepar,
int nummem,
int j)

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Appends a new conic constraint to the problem, as in Fesk-appendeorne. The function assumes
the members of cone are sequential where the first member has index j and the last j+nummem-1.

Parameters
e ct (conetype) — Specifies the type of the cone. (input)

253

e conepar (double) — For the power cone it denotes the exponent alpha. For other
cone types it is unused and can be set to 0. (input)

e nummen (int) — Number of member variables in the cone. (input)
e j (int) — Index of the first variable in the conic constraint. (input)
Groups Problem data - cones (deprecated)

Task-appendeconesseq Deprecated

public synchronized void appendconesseq
(conetypel] ct,
double[] conepar,
int[] nummem,
int j)

Task.

NOTE: This interface to conic optimization is deprecated and will be removed in a future major
release. Conic problems should be specified using the affine conic constraints interface (ACC), see
Sec. 6.2 for details.

Appends a number of conic constraints to the problem, as in Fesk—appendecore. The kth cone is
assumed to be of dimension nummem[k]. Moreover, it is assumed that the first variable of the first
cone has index j and starting from there the sequentially following variables belong to the first
cone, then to the second cone and so on.

Parameters
e ct (conetype [1) — Specifies the type of the cone. (input)
e conepar (double[]) — For the power cone it denotes the exponent alpha. For
other cone types it is unused and can be set to 0. (input)
e nummen (int[]) — Numbers of member variables in the cones. (input)
e j (int) — Index of the first variable in the first cone to be appended. (input)
Groups Problem data - cones (deprecated)

appendcons

public synchronized void appendcons(int num)

Task.

Appends a number of constraints to the model. Appended constraints will be declared free. Please
note that MOSEK will automatically expand the problem dimension to accommodate the addi-
tional constraints.

Parameters num (int) — Number of constraints which should be appended. (input)

Groups Problem data - linear part, Problem data - constraints

appenddjcs

public synchronized void appenddjcs(long num)

Task.

Appends a number of empty disjunctive constraints to the task.

Parameters num (long) — Number of empty disjunctive constraints which should be
appended. (input)
Groups Problem data - disjunctive constraints

appenddualexpconedomain

public synchronized void appenddualexpconedomain(long[] domidx)

254

public synchronized long appenddualexpconedomain()

Appends the dual exponential cone {x eR3 : o> —mge_lell/”, Tog >0, T2 < O} to the list of
domains.

Parameters domidx (long by reference) — Index of the domain. (output)
Return (long) — Index of the domain.
Groups Problem data - domain

Task.appenddualgeomeanconedomain

public synchronized void appenddualgeomeanconedomain
(long n,
long[] domidx)

public synchronized long appenddualgeomeanconedomain(long n)

I)1/(71—1)

Appends the dual geometric mean cone {x eER™ : (n—1) (Hi:o x; > |xn-1|, Toy.. s Tpo > 0}

to the list of domains.

Parameters

e n (long) — Dimmension of the domain. (input)

e domidx (long by reference) — Index of the domain. (output)
Return (long) — Index of the domain.
Groups Problem data - domain

Task.appenddualpowerconedomain

public synchronized void appenddualpowerconedomain
(long n,
double[] alpha,
long[] domidx)

public synchronized long appenddualpowerconedomain
(long n,
double[] alpha)

Appends the dual power cone domain of dimension n, with n, variables appearing on the left-hand

side, where ny is the length of «, and with a homogenous sequence of exponents oy, ..., an,—1.
Formally, let s =). o and 3; = a;/s, so that), f; = 1. Then the dual power cone is defined as
follows:
ne—1 n—1
reR" : H ZI?, 0. Ty,—1 >0
i=0

Parameters
e n (long) — Dimension of the domain. (input)
e alpha (double[]) — The sequence proportional to exponents. Must be positive.
(input)
e domidx (long by reference) — Index of the domain. (output)
Return (long) — Index of the domain.
Groups Problem data - domain

Task.appendprimalexpconedomain

255

public synchronized void appendprimalexpconedomain(long[] domidx)

public synchronized long appendprimalexpconedomain()

Appends the primal exponential cone {x ER? : zg > €™/ 29,11 > 0} to the list of domains.

Parameters domidx (long by reference) — Index of the domain. (output)
Return (long) — Index of the domain.

Groups Problem data - domain

Task.appendprimalgeomeanconedomain

public synchronized void appendprimalgeomeanconedomain
(long n,
long[] domidx)

public synchronized long appendprimalgeomeanconedomain(long n)

o)1/(n—1)

Appends the primal geometric mean cone {x cR™ (Hi:O T; > |xn-1], To. . Tp_o > O}

to the list of domains.

Parameters

e n (long) — Dimmension of the domain. (input)

e domidx (long by reference) — Index of the domain. (output)
Return (long) — Index of the domain.
Groups Problem data - domain

Task.appendprimalpowerconedomain

public synchronized void appendprimalpowerconedomain
(long n,
double[] alpha,
long[] domidx)

public synchronized long appendprimalpowerconedomain
(long n,
double[] alpha)

Appends the primal power cone domain of dimension n, with n, variables appearing on the left-hand

side, where ny is the length of «, and with a homogenous sequence of exponents ap, ..., an,—1.
Formally, let s = >, a; and 8; = a;/s, so that) . 3; = 1. Then the primal power cone is defined
as follows:
ng—1 n—1
z €R"™ : foz Zx?, Zo.wyTyy—1 >0
i=0 j=ny¢

Parameters
e 1 (long) — Dimension of the domain. (input)
e alpha (double[]) — The sequence proportional to exponents. Must be positive.
(input)
e domidx (long by reference) — Index of the domain. (output)
Return (long) — Index of the domain.

Groups Problem data - domain

256

Task.appendquadraticconedomain

public synchronized void appendquadraticconedomain
(long n,
long[] domidx)

public synchronized long appendquadraticconedomain(long n)

Appends the n-dimensional quadratic cone {x ER™ : ¢ > \/Z;L:_ll :1312} to the list of domains.

Parameters

e n (long) — Dimmension of the domain. (input)

e domidx (long by reference) — Index of the domain. (output)
Return (long) — Index of the domain.
Groups Problem data - domain

Task.appendrdomain

public synchronized void appendrdomain
(long n,
long[] domidx)

public synchronized long appendrdomain(long n)

Appends the n-dimensional real space {z € R™} to the list of domains.

Parameters

e n (long) — Dimmension of the domain. (input)

e domidx (long by reference) — Index of the domain. (output)
Return (long) — Index of the domain.
Groups Problem data - domain

Task.appendrminusdomain

public synchronized void appendrminusdomain
(long n,
long[] domidx)

public synchronized long appendrminusdomain(long n)

Appends the n-dimensional negative orthant {z € R™ : x < 0} to the list of domains.

Parameters

e n (long) — Dimmension of the domain. (input)

e domidx (long by reference) — Index of the domain. (output)
Return (long) — Index of the domain.
Groups Problem data - domain

Task.appendrplusdomain

public synchronized void appendrplusdomain
(long n,
long[] domidx)

257

public synchronized long appendrplusdomain(long n)

Appends the n-dimensional positive orthant {x € R™ : & > 0} to the list of domains.

Parameters

e n (long) — Dimmension of the domain. (input)

e domidx (long by reference) — Index of the domain. (output)
Return (long) — Index of the domain.
Groups Problem data - domain

Task.appendrquadraticconedomain

public synchronized void appendrquadraticconedomain
(long n,
long[] domidx)

public synchronized long appendrquadraticconedomain(long n)

Appends the n-dimensional rotated quadratic cone {J; eR™ : 2xgx > Z?:—Ql 2?2, xo, w1 > 0} to
the list of domains.

Parameters

e n (long) — Dimmension of the domain. (input)

e domidx (long by reference) — Index of the domain. (output)
Return (long) — Index of the domain.
Groups Problem data - domain

Task.appendrzerodomain

public synchronized void appendrzerodomain
(long n,
long[] domidx)

public synchronized long appendrzerodomain(long n)

Appends the zero in n-dimensional real space {z € R" : x = 0} to the list of domains.

Parameters

e n (long) — Dimmension of the domain. (input)

e domidx (long by reference) — Index of the domain. (output)
Return (long) — Index of the domain.
Groups Problem data - domain

Task.appendsparsesymmat

public synchronized void appendsparsesymmat
(int dim,
int[] subi,
int[] subj,
double[] valij,
long[] idx)

258

public synchronized long appendsparsesymmat
(int dim,
int[] subi,
int[] subj,
double[] valij)

Task.

MOSEK maintains a storage of symmetric data matrices that is used to build C and A. The
storage can be thought of as a vector of symmetric matrices denoted E. Hence, E; is a symmetric
matrix of certain dimension.

This function appends a general sparse symmetric matrix on triplet form to the vect