maosek

MOSEK Rmosek package
Release 10.0.29

MOSEK ApS

21 November 2022

Contents

1 Introduction

1.1 Why the Rmosek package? e

2 Contact Information

3 License Agreement

3.1 MOSEK end-user license agreement Lo Lo
3.2 Third party licenses L e
4 Installation
4.1 System requirements L oL e e e
4.2 Imstallation oL e
4.3 Testing the Installation oL
5 Design Overview
5.1 Modeling e
5.2 “Hello World!” in MOSEK e
6 Optimization Tutorials
6.1 Linear Optimization L e
6.2 From Linear to Conic Optimization
6.3 Conic Quadratic Optimization e
6.4 Power Cone Optimization e
6.5 Conic Exponential Optimization
6.6 Geometric Programmingo oL
6.7 Semidefinite Optimization L
6.8 Integer Optimization e
6.9 Quadratic Optimization e
6.10 Problem Modification and Reoptimization,
6.11 Retrieving infeasibility certificates Lo oL
7 Solver Interaction Tutorials
7.1 Accessing the solution
7.2 Errors and exceptions Lo e
7.3 Input/Output e
7.4 Setting solver parameters e e e e
7.5 Retrieving information items oL oL

8 Debugging Tutorials

8.1 Understanding optimizer log L e
8.2 Addressing numerical issues Lo Lo e
8.3 Debugging infeasibility

8.4 Python Console

9 Technical guidelines

9.1 Multithreading

9.2 Parallel optimization using the Multicore package
9.3 The license system L Lo e e e e

10
10
11
11

12
12
12

14
15
17
20
23
25
27
30
37
40
42
46

49
49
52
o4
95
56

58
98
63
65
70

10 Case Studies
10.1 Portfolio Optimization e
10.2 Least Squares and Other Norm Minimization Problems
10.3 Logistic regression oL L e e e

11 Problem Formulation and Solutions
11.1 Linear Optimization o e
11.2 Conic Optimization e e
11.3 Semidefinite Optimization o
11.4 Quadratic and Quadratically Constrained Optimization

12 Optimizers
12.1 Presolve o o e
12.2 Linear Optimization L i e
12.3 Conic Optimization - Interior-point optimizer
12.4 The Optimizer for Mixed-Integer Problems

13 Rmosek API Reference
13.1 Command Reference e e e
13.2 Parameters grouped by topico L
13.3 Parameters (alphabetical list sorted by type) Lo L.
13.4 Response codes.o e e e e e e
13.5 Enumerations e e e e e e
13.6 Supported domains L e

14 Supported File Formats
14.1 The LP File Format e e e e e e e e
14.2 The MPS File Format e
14.3 The OPF Format e e
14.4 The CBF Format e e e e e
14.5 The PTF Format e e
14.6 The Task Format e e
14.7 The JSON Format e
14.8 The Solution File Formato

15 List of examples

16 Interface changes
16.1 Important changes compared to version 9 L oo L
16.2 Changes compared to version 9 Lo
16.3 Parameters compared to version 9 L. L e e
16.4 Constants compared to version 9 Lo oL
16.5 Response Codes compared to version 9 Lo o

Bibliography
Symbol Index

Index

ii

74
74
90
95

98
98
101
104
106

109
109
111
118
122

132
132
136
147
188
209
235

238
239
243
255
265
282
288
289
295

298

299
299
299
299
300
301

305

306

320

Chapter 1

Introduction

The MOSEK Optimization Suite 10.0.29 is a powerful software package capable of solving large-scale
optimization problems of the following kind:

e linear,

e conic:

conic quadratic (also known as second-order cone),

involving the exponential cone,

involving the power cone,

semidefinite,
e convex quadratic and quadratically constrained,
e integer.

In order to obtain an overview of features in the MOSEK Optimization Suite consult the product
introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all rela-
tions are linear. The tremendous success of both applications and theory of linear optimization can be
ascribed to the following factors:

e The required data are simple, i.e. just matrices and vectors.

e Convexity is guaranteed since the problem is convex by construction.

e Linear functions are trivially differentiable.

e There exist very efficient algorithms and software for solving linear problems.
e Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the
advantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

Ax —b> 0.
In conic optimization this is replaced with a wider class of constraints

Az —-be K

where KC is a convexr cone. For example in 3 dimensions K may correspond to an ice cream cone. The
conic optimizer in MOSEK supports a number of different types of cones K, which allows a surprisingly
large number of nonlinear relations to be modeled, as described in the MOSEK Modeling Cookbook,
while preserving the nice algorithmic and theoretical properties of linear optimization.

https://docs.mosek.com/10.0/intro/index.html
https://docs.mosek.com/10.0/intro/index.html
https://docs.mosek.com/modeling-cookbook/index.html

1.1 Why the Rmosek package?

The Rmosek package provides access to most functionalities of MOSEK from an R-language software
environment. The package is adjusted for the typical R user.
The Rmosek package provides access to:

e Linear Optimization (LO)

e Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)
e Power Cone Optimization

e Conic Exponential Optimization (CEO)

e Convex Quadratic Optimization (QO)

e Semidefinite Optimization (SDO)

e Mixed-Integer Optimization (MIO)

Chapter 2

Contact

Information

Phone +45 7174 9373

Website mosek.com

Email
sales@mosek.com Sales, pricing, and licensing
support@mosek.com Technical support, questions and bug reports
info@mosek.com Everything else.

Mailing Address
MOSEK ApS

Fruebjergvej 3

Symbion Science Park, Box 16

2100 Copenhagen O

Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger

https://blog.mosek.com

Google Group | https://groups.google.com/forum /#!forum /mosek

Twitter https://twitter.com /mosektw
Linkedin https: //www.linkedin.com /company /mosek-aps
Youtube https://www.youtube.com /channel /UCvlyect EVLP31NXeD5mIbEw

In particular Twit

ter is used for news, updates and release announcements.

https://mosek.com/
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com
https://blog.mosek.com/
https://groups.google.com/forum/#!forum/mosek
https://twitter.com/mosektw
https://www.linkedin.com/company/mosek-aps
https://www.youtube.com/channel/UCvIyectEVLP31NXeD5mIbEw

Chapter 3

License Agreement

3.1 MOSEK end-user license agreement
Before using the MOSEK software, please read the license agreement available in the distribution

at <MSKHOME>/mosek/10.0/mosek-eula.pdf or on the MOSEK website https://mosek.com/products
license-agreement. By using MOSEK you agree to the terms of that license agreement.

3.2 Third party licenses
MOSEK uses some third-party open-source libraries. Their license details follow.

zlib

MOSEK uses the zlib library obtained from the zlib website. The license agreement for zlib is shown
in Listing 3.1.

Listing 3.1: zlib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

https://mosek.com/products/license-agreement
https://mosek.com/products/license-agreement
http://zlib.org

fplib

MOSEK uses the floating point formatting library developed by David M. Gay obtained from the netlib
website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/KK KoK KK oK oK KoK KoK oK ok oK oK K oK KoK o Kok K oK o oK K ok oK ok K ok sk ok oK ok K ok Kok ok ok oK ok oK ok ok Kok ok
The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*
*
*
b3
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting

* documentation for such software.

*

*

*

*

*

£ 3

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. 1IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

***/

{fmt}

MOSEK uses the formatting library {fmt} developed by Victor Zverovich obtained form github/fmt
and distributed under the MIT license. The license agreement fot {fmt} is shown in Listing 3.3.

Listing 3.3: {fmt} license.

Copyright (c) 2012 - present, Victor Zverovich

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation

the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR

A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER

IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN

CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

http://www.netlib.org
http://www.netlib.org
https://github.com/fmtlib/fmt

Zstandard

MOSEK uses the Zstandard library developed by Facebook obtained from github/zstd. The license
agreement for Zstandard is shown in Listing 3.4.

Listing 3.4: Zstandard license.

BSD License
For Zstandard software
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name Facebook nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

OpenSSL

MOSEK uses the LibReSSL library, which is build on OpenSSL. OpenSSL is included under the
OpenSSL license, Listing 3.5, and the LibReSSL additions are licensed under the ISC license, Listing
3.6.

Listing 3.5: OpenSSL license

Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in

(continues on next page)

https://github.com/facebook/zstd
https://www.libressl.org/

(continued from previous page)

the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ~“AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Listing 3.6: ISC license

Copyright (C) 1994-2017 Free Software Foundation, Inc.
Copyright (c) 2014 Jeremie Courreges-Anglas <jca@openbsd.org>
Copyright (c) 2014-2015 Joel Sing <jsing@openbsd.org>
Copyright (c) 2014 Ted Unangst <tedu@openbsd.org>

Copyright (c) 2015-2016 Bob Beck <beck@openbsd.org>

Copyright (c) 2015 Marko Kreen <markokr@gmail.com>

Copyright (c) 2015 Reyk Floeter <reyk@openbsd.org>

Copyright (c) 2016 Tobias Pape <tobias@netshed.de>

Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all
copies.

(continues on next page)

(continued from previous page)

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

mimalloc

MOSEK uses the mimalloc memory allocator library from github/mimalloc. The license agreement for
mimalloc is shown in Listing 3.7.

Listing 3.7: mimalloc license.

MIT License
Copyright (c) 2019 Microsoft Corporation, Daan Leijen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
0UT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

BLASFEO

MOSEK uses the BLASFFEO linear algebra library developed by Gianluca Frison, obtained from
github /blasfeo. The license agreement for BLASFEQ is shown in Listing 3.8.

Listing 3.8: blasfeo license.

BLASFEO -- BLAS For Embedded Optimization.

Copyright (C) 2019 by Gianluca Frison.

Developed at IMTEK (University of Freiburg) under the supervision of Moritz Diehl.
All rights reserved.

The 2-Clause BSD License

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this

(continues on next page)

https://github.com/microsoft/mimalloc
https://github.com/giaf/blasfeo

(continued from previous page)

list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

oneTBB

MOSEK uses the oneTBB parallelization library which is part of oneAPI developed by Intel, obtained
from github/oneTBB, licensed under the Apache License 2.0. The license agreement for oneTBB can be
found in https://github.com /oneapi-src/oneTBB /blob/master/ LICENSE.txt .

https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB/blob/master/LICENSE.txt

Chapter 4

Installation

In this section we discuss how to install and setup the MOSEK Rmosek package.

Important: Before running this MOSEK interface please make sure that you:

e Installed MOSEK correctly. Some operating systems require extra steps. See the Installation
guide for instructions and common troubleshooting tips.

e Set up a license. See the Licensing guide for instructions.

Compatibility

The Rmosek package can be used with R version at least 3.6.

Locating files in the MOSEK Optimization Suite

The relevant files for the Rmosek package are organized as reported in Table 4.1.

Table 4.1: Relevant files for the Rmosek package.

Relative Path Description Label

<MSKHOME>/mosek/10.0/tools/platform/<PLATFORM>/ Rmosek install files | <RMOSEKDIR>

rmosek

<MSKHOME>/mosek/10.0/tools/examples/rmosek Examples <EXDIR>

<MSKHOME>/mosek/10.0/tools/examples/data Additional data <MISCDIR>
where

e <MSKHOME> is the folder in which the MOSEK Optimization Suite has been installed,

e <PLATFORM> is the actual platform among those supported by MOSEK, i.e. win32x86, win64x86,
1inux64x86 or osx64x86.

4.1 System requirements

There are no pre-compiled binary versions of the Rmosek package available, so the system must be able
compile C++ source code and have access to a few command line tools. The summary of relevance to
the Rmosek package given below is based on the official guide, R Installation and Administration, for
installing packages in source form.

10

https://docs.mosek.com/10.0/install/index.html
https://docs.mosek.com/10.0/install/index.html
https://docs.mosek.com/10.0/licensing/index.html
https://cran.r-project.org/doc/manuals/R-admin.html#Installing-packages

Windows

e Download Rtools (not an R package). You will need to install the R toolset, the Cygwin DLLs,
and the toolchain.

e Make sure you have mosek and the executables of Rtools on the PATH environment variable.

MacOS

e Make sure you have Xcode installed.

Linux

e On Ubuntu (and Debian) you may install the r-base-dev package.

4.2 Installation

To install the Rmosek package you may run the install.rmosek function of the script <RMOSEKDIR>/
builder.R. This is a wrapper around the install.packages function with recommended default ar-
gument values (e.g., to a compatible MOSEK repository), cross-platform support of configurations
variables, and helpers to resolve Rtools on Windows. As example, if called with no arguments, it will
attempt an autoconfigured installation:

source ("<RMOSEKDIR>/builder.R")
attachbuilder ()
install.rmosek()

You can inspect the autoconfigured defaults by typing show(install.rmosek). Apart from the
typical arguments of install.packages, a user might want to change:

e MSK_BINDIR: The location of the MOSEK library to compile against; e.g., mosek/<MSKVER>/
tools/platform/<PLATFORM>/bin.

e using_pkgbuild: Whether to run the installation in the build-friendly environment of package
pkgbuild (helps, e.g., to resolve Rtools on Windows).

e using_sysenv: Whether to transmit configuration variables via Sys.setenv() as opposed to
configure.vars (depends on platform support).

4.3 Testing the Installation

First of all, to check that the Rmosek package was properly installed, start R and try

require ("Rmosek")

The installation can further be tested by running some of the enclosed examples. Open a terminal,
change folder to <EXDIR> and use R to run a selected example, for instance:

R -f lol.R

11

http://cran.r-project.org/bin/windows/Rtools/

Chapter 5

Design Overview

5.1 Modeling

Rmosek package is an interface for specifying optimization problems directly in matrix form. It means
that an optimization problem such as:

minimize Tz

subject to Az < b,
rzek
or
minimize Tz
subject to Az < b,
Fr+gek

is specified by describing the matrices A, F', vectors b, ¢, g and a list of cones K directly.
The main characteristics of this interface are:

e Simplicity: once the problem data is assembled in matrix form, it is straightforward to input it
into the optimizer.

o Exploiting sparsity: data is entered in sparse format, enabling huge, sparse problems to be
defined and solved efliciently.

e Efficiency: the API incurs almost no overhead between the user’s representation of the problem
and MOSEK’s internal one.

Rmosek package does not aid with modeling. It is the user’s responsibility to express the problem in
MOSEK’s standard form, introducing, if necessary, auxiliary variables and constraints. See Sec. 11 for
the precise formulations of problems MOSEK solves.

5.2 “Hello World!” in MOSEK

Here we present the most basic workflow pattern when using Rmosek package.

Create a problem structure

Optimization problems using Rmosek package are specified using a problem structure that describes the
numerical data of the problem. In most cases it consists of matrices of floating-point numbers.

12

Retrieving the solutions

When the problem is set up, the optimizer is invoked with the call to mosek. The call will return a
response and a structure containing the solution to all variables. See further details in Sec. 7.

We refer also to Sec. 7 for information about more advanced mechanisms of interacting with the
solver.

Source code example
Below is the most basic code sample that defines and solves a trivial optimization problem

minimize x
subject to 2.0 <z < 3.0.

For simplicity the example does not contain any error or status checks.

Listing 5.1: “Hello World!” in MOSEK

##

Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
#

File: helloworld.R

#

The most basic example of how to get started with MOSEK.

library("Rmosek")

prob <- list(sense="min" # Minimization problem
prob$A <- Matrix(nrow=0, ncol=1) # 0 constraints, 1 wvariable
prob$bx <- rbind(blx=2.0, bux=3.0) # Bounds on the only wvariable
prob$c <- c(1.0) # The objective coefficient
Optimize

r <- mosek(prob)

Print answer
r$solditrPxx

13

Chapter 6

Optimization Tutorials

In this section we demonstrate how to set up basic types of optimization problems. Each short tutorial
contains a working example of formulating problems, defining variables and constraints and retrieving
solutions.

e Model setup and linear optimization tutorial (LO)

— Sec. 6.1. Linear optimization tutorial, recommended first reading for all users. Apart from
setting up a linear problem it also demonstrates how to work with the optimizer: initialize
data structures, pass them to the solver and retrieve the solutions.

e Conic optimization tutorials (CO)

— Sec. 6.2. A step by step introduction to programming with affine conic constraints (ACC).
Explains all the steps required to input a conic problem. Recommended first reading for users
of the conic optimizer.

Further basic examples demonstrating various types of conic constraints:

Sec. 6.3. A basic example with a quadratic cone (CQO).

Sec. 6.4. A basic example with a power cone.

— Sec. 6.5. A basic example with a exponential cone (CEO).

Sec. 6.6. A basic tutorial of geometric programming (GP).

Semidefinite optimization tutorial (SDO)

— Sec. 6.7. Examples showing how to solve semidefinite optimization problems with one or more
semidefinite variables.

Mixed-integer optimization tutorials (MIO)

— Sec. 6.8. Shows how to declare integer variables for linear and conic problems and how to set
an initial solution.

e Quadratic optimization tutorial (QO)

— Sec. 6.9. Examples showing how to solve a quadratic problem.

Reoptimization tutorials

— Sec. 6.10. Various techniques for modifying and reoptimizing a problem.

Infeasibility certificates

— Sec. 6.11. Shows how to retrieve and analyze a primal infeasibility certificate for continuous
problems.

14

6.1 Linear Optimization

The simplest optimization problem is a purely linear problem. A linear optimization problem is a problem
of the following form:
Minimize or maximize the objective function

n—1
E Cixj + !
J=0

subject to the linear constraints

n—1
lggZakja:j <wug, k=0,...,m—1,
=0

and the bounds
7 <z; <wuj, j=0,...,
The problem description consists of the following elements:
e m and n — the number of constraints and variables, respectively,
e z — the variable vector of length n,

e ¢ — the coeflicient vector of length n

Co
¢ =)
Cn—1

e ¢/ — fixed term in the objective,

e A — an m x n matrix of coefficients

ao,0 cee Qao,(n—1)
A= ,
A(m-1),0 “°° Q(m-1),(n—1)

e [and u® — the lower and upper bounds on constraints,
e [” and u® — the lower and upper bounds on variables.

Please note that we are using 0 as the first index: xg is the first element in variable vector x.

6.1.1 Example LO1

The following is an example of a small linear optimization problem:

maximize 3xzg + lxz; + Hdxs + lxg

subject to 3z + lz; + 29 = 30, 6.1)
2%0 —+].SUl + 31’2 -+ 1.’£3 Z 15, ’
221 + 3wz < 25,
under the bounds
0 S Zo S 0,
O S X1 S 10,
0 S Z2 S o0,
0 < 23 < oo

This is easily programmed in R as shown in Listing 6.1. The first line overwrites any previous definitions
of the variable lo1, preparing for the new problem description. The problem is then defined and finally
solved on the last line.

15

Listing 6.1: R implementation of problem (6.1).

lol <- function()

{

prob <- list()

Objective sense (maxzimize or minimize)
prob$sense <- "max"

Objective coefficients
prob$c <- c(3, 1, 5, 1)

Specify matrixz 'A' in sparse format.
asubi <- c(1, 1, 1, 2, 2, 2, 2, 3, 3)
asubj <- c(1, 2, 3, 1, 2, 3, 4, 2, 4)
aval <- c¢c(3, 1, 2, 2, 1, 3, 1, 2, 3)

prob$A <- sparseMatrix(asubi,asubj,x=aval)

Bound wvalues for constraints
prob$bc <- rbind(blc=c(30, 15, -Inf),
buc=c(30, Inf, 25))

Bound values for wartables
prob$bx <- rbind(blx=rep(0,4),
bux=c(Inf, 10, Inf, Inf))

Solve the problem
r <- mosek(prob)

Return the solution
stopifnot(identical (r$response$code, 0))
r$sol

Notice how the R value Inf is used in both the constraint bounds (blc and buc) and the variable

upper bound (bux), to avoid the specification of an actual bound.

From this example the input arguments for the linear program follows easily.

e Objective The string is the objective goal and could be either minimize, min, maximize or max.

The dense numeric vector specifies the coefficients in front of the variables in the linear objective
function, and the optional constant scalar (reads: ¢ zero) is a constant in the objective correspond-
ing to ¢/, that will be assumed zero if not specified.

e Constraint Matrix The sparse matrix is the constraint matrix of the problem with the constraint

coefficients written row-wise. Notice that for larger problems it may be more convenient to define
an empty sparse matrix and specify the non-zero elements one at a time A(4,7) = aj;, rather
than writing out the full matrix as done in the example. E.g. Matrix(0,nrow=30,ncol=50,
sparse=TRUE).

e Bounds The constraint bounds with rows blc (constraint lower bound) and buc (constraint upper

bound), as well as the variable bounds with rows blx (variable lower bound) and bux (variable
upper bound), are both given as dense numeric matrices. These are equivalent to the bounds of
problem, namely [¢, u¢, I and u”.

16

6.2 From Linear to Conic Optimization

In Sec. 6.1 we demonstrated setting up the linear part of an optimization problem, namely the objective,
linear bounds and linear (in)equalities. In this tutorial we show how to define conic constraints.
A single conic constraint in MOSEK is constructed in the following form

Fiﬂf + g; S Di (62)
where

e z € R" is the optimization variable vector of length n,

e F; € R¥™" is a d x n matrix of coefficients (problem data), where d is the number of affine
expressions (AFEs) in the conic constraint,

e g; € R? is a vector of constants (problem data). Thus, the affine combination Fjz + g; results in a
d-vector where each element is a scalar-valued AFE,

e D; C R? is a conic domain of dimension d, representing one of the cone types supported by
MOSEK.

Constraints of this form are called affine conic constraints, or ACC for short. Therefore, in this
section we show how to set up a problem of the form

minimize e+ ef
subject to ¢ < Ax < uc,
o< - Z 0 (6.3)

Fr+geDy x---xDy,

where F € R¥*" g e RF k= 22:1 d; and d; = dim(D;). The problem in (6.3) consists of [affine conic
constraints. The first ACC is made by restricting the first d; affine expressions (out of the total k) to the
D; domain. The dy AFEs thereafter belong to the Dy domain, forming the second ACC, and so on. The
complete ACC data of a problem is therefore obtained by stacking together the descriptions of I ACCs.

Generalization of linear constraints

Conic constraints are a natural generalization of linear constraints to the general nonlinear case. For
example, a typical linear constraint of the form

Az +b>0

can also be written as membership in the cone of nonnegative real numbers (also called the positive
orthant cone):

Az +be R%m
and that naturally generalizes to
Fr+geD
for more complicated domains D from Sec. 13.6.
6.2.1 Example AFFCO1
Consider the following simple optimization problem:
maximize xi/g + (21 + 22 +0.1)1/4

subject to (z1 — 0.5)? + (22 — 0.6)
Tr1 — T2

INIA
—_

17

Adding auxiliary variables we convert this problem into an equivalent conic form:

maximize t1 4 to
subject to (1,21 —0.5,20 — 0.6) € Q3,
(x1,1,t) € P2 (6.5)
(z14+ 22 +0.1,1,t5) € P,
T — Ty < 1.

Note that each of the vectors constrained to a cone is in a natural way an affine combination of the
problem variables.

We first set up the linear part of the problem, including the number of variables, objective and
all bounds precisely as in Sec. 6.1. Affine conic constraints will be defined using the field cones in
the problem structure. We construct the matrices F, g for each of the three cones. For example, the
constraint (1,21 — 0.5, 29 — 0.6) € Q3 is written in matrix form as

000 0 il 1
10 0 0 t2 + | —05 | € Q%
010 0 ! —0.6

to

Below we set up the matrices and define the cone type as a "MSK_DOMAIN_QUADRATIC_CONE" of length
3. The conic domain for each affine conic constraint is specified as a column in a matrix with rows
corresponding to each associated detail of the domain. The last row for the quadratic cone is set to NULL
because it is a non-parametric cone (unlike the power cones).

The quadratic cone

FQ <- rbind(c(0,0,0,0), <(1,0,0,0), c(0,1,0,0))

gQ <- c(1, -0.5, -0.6)

cQ <- matrix(list("QUAD", 3, NULL), nrow=3, ncol=1)

Next we demonstrate how to do the same for the second of the power cone constraints. Its affine
representation is:

1100 0.1
00 00| P |+ 1 |er/™n
00 0 1 ! 0

to

The power cone is defined by its type, length, and the additional parameter which is a vector of exponents
a, 1—« appearing in the cone definition. In fact any pair of positive real numbers proportional to («, 1 —a)
may be used. They will be normalized to add up to 1:

The power cone for (z_1+z_2+0.1, 1, t_2) \in POW3~(1/4,3/4)
FP2 <- rbind(c(1,1,0,0), c(0,0,0,0), <(0,0,0,1))

gP2 <- c(0.1, 1, 0)

cP2 <- matrix(list("PPOW", 3, c(1.0, 3.0)), nrow=3, ncol=1)

Once affine conic descriptions of all cones are ready it remains to stack them vertically into the matrix
F and vector g and concatenate the cone descriptions in one matrix, one column per cone. Below is the
full code for problem (6.5).

Listing 6.2: Script implementing conic version of problem (6.4).

library("Rmosek")

affcol <- function()

{

prob <- list(sense="max")

(continues on next page)

18

(continued from previous page)

Variables [xz1; z2; t1; t2]
prob$c <- c(0, 0, 1, 1)

Linear inequality z_1 - z_2 <= 1

prob$A <- Matrix(c(i, -1, 0, 0), nrow=1, sparse=TRUE)
prob$bc <- rbind(blc=-Inf, buc=1)

prob$bx <- rbind(blx=rep(-Inf,4), bux=rep(Inf,4))

The quadratic cone

FQ <- rbind(c(0,0,0,0), <(1,0,0,0), c(0,1,0,0))

gQ <- c(1, -0.5, -0.6)

cQ <- matrix(list("QUAD", 3, NULL), nrow=3, ncol=1)

The power cone for (z_1, 1, t_1) \in POW3~(1/3,2/3)

FP1 <- rbind(c(1,0,0,0), <(0,0,0,0), <(0,0,1,0))

gP1l <- c(0, 1, 0)

cP1 <- matrix(list("PPOW", 3, c(1/3, 2/3)), nrow=3, ncol=1)

The power cone for (z_1+x_2+0.1, 1, t_2) \in POW3~(1/4,3/4)
FP2 <- rbind(c(1,1,0,0), <(0,0,0,0), <(0,0,0,1))

ghP2 <- ¢(0.1, 1, 0)

cP2 <- matrix(list("PPOW", 3, c(1.0, 3.0)), nrow=3, ncol=1)

All cones

prob$F <- rbind(FQ, FP1, FP2)

prob$g <- cbind(gQ, gPl, gP2)

prob$cones <- cbind(cQ, cP1, cP2)

rownames (prob$cones) <- c("type","dim","conepar")

r <- mosek(prob, list(soldetail=1))
stopifnot(identical (r$response$code, 0))

print (rsolitr$pobjval)
print (rsolitr$xx[1:2])

6.2.2 Example AFFCO2

Consider the following simple linear dynamical system. A point in R™ moves along a trajectory given by
z(t) = z(0) exp(At), where z(0) is the starting position and A = Diag(as,...,a,) is a diagonal matrix
with a; < 0. Find the time after which z(t) is within euclidean distance d from the origin. Denoting the
coordinates of the starting point by z(0) = (z1,..., 2,) we can write this as an optimization problem in
one variable t:

minimize t

subject to \/Zi(ziexp(ait))Q <

which can be cast into conic form as:
minimize t
subject to (d, 2191, - .-, 2nyn) € Q"L (6.6)
(i, L,a;t) € Kexp, i=1,...,nm,
with variable vector = = [t,y1,...,yn]"
We assemble all conic constraints in the form

Frtge Q" x (Kexp)™

19

For the conic quadratic constraint this representation is

0 0r t d _—

For the i-th exponential cone we have

0 el ¢ 0
0 o, [}+ 1| € Ko,
a; On

where e; denotes a vector of length n with a single 1 in position i.

Listing 6.3: Script implementing problem (6.6).

firstHittingTime <- function(n, z, a, d)
{
prob <- list(sense="min"
Variables [t, y1, ..., yn]
prob$A <- Matrix(nrow=0, ncol=n+1)
prob$bx<- rbind(rep(-Inf,n+1), rep(Inf,n+1))
prob$c <- c(1, rep(0, n))

Quadratic cone
FQ <- Diagonal(n+1, c(0, z))
gQ <- c(d, rep(0, n))

All exponential cones
FE <- sparseMatrix(c(seq(1,3*n,by=3), seq(3,3*n,by=3)),
c(2:(n+1), rep(1,n)),
x=c(rep(1,n), t(a)))
gE <- rep(c(0, 1, 0), n)

Assemble input data

prob$F <- rbind(FQ, FE)

prob$g <- c(gQ, gE)

prob$cones <- cbind(matrix(list("QUAD", 1+n, NULL), nrow=3, ncol=1),
matrix(list ("PEXP", 3, NULL), nrow=3, ncol=n))

rownames (prob$cones) <- c("type","dim","conepar")

Solwve
r <- mosek(prob, list(soldetail=1))
stopifnot(identical (r$response$code, 0))

rsolitrdxx[1]

6.3 Conic Quadratic Optimization

The structure of a typical conic optimization problem is

minimize e +ef
subject to ¢ < Ax < wuc,
< T < u®,
Fx+g € D,

(see Sec. 11 for detailed formulations). We recommend Sec. 6.2 for a tutorial on how problems of that
form are represented in MOSEK and what data structures are relevant. Here we discuss how to set-up
problems with the (rotated) quadratic cones.

MOSEK supports two types of quadratic cones, namely:

20

e Quadratic cone:

e Rotated quadratic cone:
n—1
oy = xeR":2xoxlzzx?, r0>0, x1>0
j=2
For example, consider the following constraint:

(24,70, 22) € Q°

which describes a convex cone in R? given by the inequality:

xy > /22 + 23

For other types of cones supported by MOSEK, see Sec. 13.6 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

6.3.1 Example CQO1

Consider the following conic quadratic problem which involves some linear constraints, a quadratic cone
and a rotated quadratic cone.

minimize Ty + x5 + T4
subject to x1 + o+ 223 = 1,
T1,T2,T3 > 0, (6.7)
Ty Z \Y4 .’L'% + x%v
2r5x6 > x§
The two conic constraints can be expressed in the ACC form as shown in (6.8)
00 01 00 x 0
100 0 0O x2 0
01 00O0O x3 0 3 3
000010 e | Tl o €Q’x Q. (6.8)
000 0O0°1 x5 0
001 00O Z 0

Setting up the linear part

The linear parts (constraints, variables, objective) are set up exactly the same way as for linear problems,
and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such as defining an
optimization problem, retrieving the solution and so on.

Setting up the conic constraints

To define the conic constraints, we start by setting prob$F equal to the matrix shown in (6.8). Note
that F will internally be converted to the sparse triplet form (dgTMatrix) but the user may directly
construct it as such by setting giveCsparse=FALSE (or repr="T" for newer Matrix package versions) in
the sparseMatrix call. The vector prob$g is set to zero. Lastly, the domains are specified as columns
in a list-typed matrix called cones, with rows for each associated detail. In example (6.7) we have two
conic constraints:

21

NOTE: The F matriz ts internally stored in the sparse

triplet form. Use 'giveCsparse' or 'repr' option
in the sparseMatriz() call to construct the F

matriz directly in the sparse triplet form.
prob$F <- sparseMatrix(i=c(1, 2, 3, 4, 5, 6),

j=c(4, 1, 2, 5, 6, 3),
x=c(1, 1, 1, 1, 1, 1),
dims = ¢(6,6))

probsg <- c(1:6)*0

prob$cones <- matrix(list(), nrow=3, ncol=2)

rownames (prob$cones) <- c("type","dim","conepar")

prob$cones[,1] <- 1list("QUAD", 3, NULL)
prob$cones[,2] <- list("RQUAD",3, NULL)

The first row in prob$cones selects the "type" of cone, such as "MSK_DOMAIN_QUADRATIC_CONE" or

"MSK_DOMAIN_RQUADRATIC_CONE" (note that QUAD, QUADRATIC_CONE and RQUAD, RQUADRATIC_CONE are
valid aliases for each domain, respectively). The second row specifies the dimension ("dim") of each
domain, here set to 3. The third row sets the parameters ("conepar") for parametric domains, but
because the quadratic cones are not parameterized, we set this value as NULL.

Source code

Listing 6.4: Source code solving problem (6.7).

library("Rmosek")

cqol <- function()

{

Specify the mon-conic part of the problem.

prob <- list(sense="min"

prob$c <- c(0, 0, 0, 1, 1, 1)

prob$A <- Matrix(c(l, 1, 2, 0, 0, 0), nrow=1, sparse=TRUE)

prob$bc <- rbind(blc=1,
buc=1)

prob$bx <- rbind(blx=c(rep(0,3), rep(-Inf,3)),
bux=rep(Inf,6))

Specify the affine conic constraints.
NOTE: The F matriz ts internally stored in the sparse

triplet form. Use 'giveCsparse' or 'repr' option
in the sparseMatriz() call to construct the F

matriz directly in the sparse triplet form.
prob$F <- sparseMatrix(i=c(1, 2, 3, 4, 5, 6),

j=c(4, 1, 2, 5, 6, 3),
x=c(1, 1, 1, 1, 1, 1),
dims = c¢(6,6))

probsg <- c(1:6)*0

prob$cones <- matrix(list(), nrow=3, ncol=2)

rownames (prob$cones) <- c("type","dim","conepar")

prob$cones[,1] <- 1list("QUAD", 3, NULL)
prob$cones[,2] <- 1list("RQUAD",3, NULL)

#
Use cbind to extend this chunk of ACCs, if needed:
#

(continues on next page)

22

(continued from previous page)

oldcones <- probf$cones
probfcones <- cbind(oldcones, newcones)
#

Solve the problem
r <- mosek(prob)

Return the solution
stopifnot(identical (r$response$code, 0))
r$sol

}

cqol()

6.4 Power Cone Optimization

The structure of a typical conic optimization problem is

minimize e+ cf
subject to ¢ < Ax < s,
r < T < u®,
Fz+g € D,

(see Sec. 11 for detailed formulations). We recommend Sec. 6.2 for a tutorial on how problems of that
form are represented in MOSEK and what data structures are relevant. Here we discuss how to set-up
problems with the primal/dual power cones.

MOSEK supports the primal and dual power cones, defined as below:

e Primal power cone:

Pk =(¢xeR™ :

where s =)", a; and §; = /s, so that), 8; = 1.

e Dual power cone:

n—1

2
g T, Loy Tpy—1 >0

Jj=ng

ng—1 . Bi
(Pry=dzer :][(;) >

=0

where s =), a; and f; = /s, so that). 3; = 1.
Perhaps the most important special case is the three-dimensional power cone family:
Pyl = {z e R®:] > |22, o, 21 >0} .

which has the corresponding dual cone:

For example, the conic constraint (z,y,z) € ’Pg'25’0'75 is equivalent to 29259%75 > |z|, or simply
xy3 > 24 with x,y > 0.

For other types of cones supported by MOSEK, see Sec. 13.6 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

23

6.4.1 Example POW1

Consider the following optimization problem which involves powers of variables:

maximize 232298 + 294 —
subject to To + x1 + %xz
Zo,T1,T2

2, (6.9)
0.

vVl

We convert (6.9) into affine conic form using auxiliary variables as bounds for the power expressions:

maximize T3 + T4 — o
subject to xg+ x1 + %xz _
6.10
(vo,21,23) € P§HOE (6.10)
(22,1.0,24) € fpg.4,0.6_

The two conic constraints shown in (6.10) can be expressed in the ACC form as shown in (6.11):

100 00 . 0
01000 xo 0

0 00 10 ! 0 0.2,0.8 0.4,0.6

00 10 0 z2 |+ | | €Ps x P06, (6.11)
00000 if” 1

000 01 4 0

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

To define the conic constraints, we start by setting prob$F equal to the matrix shown in (6.11). Note
that F will internally be converted to the sparse triplet form (dgTMatrix) but the user may directly
construct it as such by setting giveCsparse=FALSE (or repr="T" for newer Matrix package versions) in
the sparseMatrix call. The vector prob$g is also set to the value shown in (6.11). Lastly, the domains
are specified as columns in a list-typed matrix called cones, with rows for each associated detail. In
example (6.10) we have two conic constraints:

NOTE: The F matriz ts internally stored in the sparse

triplet form. Use 'giveCsparse' or 'repr' option
in the sparseMatriz() call to construct the F

matriz directly in the sparse triplet form.
prob$F <- sparseMatrix(i=c(1, 2, 3, 4, 6),

j=c(1, 2, 4, 3, 5),
x=c(1, 1, 1, 1, 1),
dims = c¢(6,5))

prob$g <- ¢(0, 0, 0, 0, 1, 0)

prob$cones <- matrix(list(), nrow=3, ncol=2)

rownames (prob$cones) <- c("type","dim","conepar")

prob$cones[,1] <- 1list("PPOW", 3, c(0.2, 0.8))
prob$cones[,2] <- 1list("PPOW", 3, c(0.4, 0.6))

The first row in prob$cones selects the "type" of cone, i.e. the power cone
"MSK_DOMAIN_PRIMAL_POWER_CONE" (note that PPOW and PRIMAL_POWER_CONE are valid aliases). The
second row specifies the dimension ("dim") of each domain, here set to 3. The third row selects the cone
parameters ("conepar") where each entry is a vector of parameter values.

24

Source code

Listing 6.5: Source code solving problem (6.9).

library("Rmosek")

powl <- function()

{

}

Specify the mon-conic part of the problem.
prob <- list(sense="max")
prob$c <- c(-1, 0, 0, 1, 1)
prob$A <- Matrix(c(l, 1, 0.5, 0, 0), nrow=1, sparse=TRUE)
prob$bc <- rbind(blc=2,
buc=2)
prob$bx <- rbind(blx=c(rep(-Inf,5)),
bux=c(rep(Inf,5)))

Specify the affine conic constraints.
NOTE: The F matriz ts internally stored in the sparse
triplet form. Use 'giveCsparse' or 'repr' option
in the sparseMatriz() call to construct the F
matriz directly in the sparse triplet form.
prob$F <- sparseMatrix(i=c(1, 2, 3, 4, 6),

j=c(1, 2, 4, 3, 5),

x=c(1, 1, 1, 1, 1),

dims = c(6,5))
probsg <- c(0, 0, 0, 0, 1, 0)
prob$cones <- matrix(list(), nrow=3, ncol=2)

rownames (prob$cones) <- c("type","dim","conepar")

prob$cones[,1] <- 1list("PPOW", 3, c(0.2, 0.8))
prob$cones[,2] <- list("PPOW", 3, c(0.4, 0.6))

Solve the problem
r <- mosek(prob)

Return the solution
stopifnot(identical (r$response$code, 0))
r$sol

powl ()

6.5 Conic Exponential Optimization

The structure of a typical conic optimization problem is

(see Sec. 11 for detailed formulations). We recommend Sec. 6.2 for a tutorial on how problems of that
form are represented in MOSEK and what data structures are relevant. Here we discuss how to set-up

minimize e+
subject to ¢ < Ax < uc,
r < T < u”,
Fx+g € D,

problems with the primal/dual exponential cones.

MOSEK supports two exponential cones, namely:

e Primal exponential cone:

25

Kexp = {m eR®:xp > 2y exp(za/x1), To,x1 > 0} .
e Dual exponential cone:
Ky = {s ER3: 59 > —spe Lexp(si/sy), s2 < 0,80 > 0})
For example, consider the following constraint:
(24,20, 22) € Kexp
which describes a convex cone in R? given by the inequalities:
x4 > xoexp(re/x0), To,x4 > 0.

For other types of cones supported by MOSEK, see Sec. 13.6 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

6.5.1 Example CEO1

Consider the following basic conic exponential problem which involves some linear constraints and an
exponential inequality:

minimize Ty + X1
subject to zg+x1+2x2 = 1,
6.12
xo > wpexp(zp/1), (612)
Zo,T1 2 0.
The affine conic form of (6.12) is:
minimize Ty + 21
subject to zg+z1+x2 = 1,
Ir € Koy, (6.13)
r € RS

where [is the 3 x 3 identity matrix.

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

To define the conic constraints, we start by setting prob$F equal to the identity matrix in (6.13). The
prob$g vector is set to zero. Lastly, the conic domain is specified as columns in a list-typed matrix called
cones, with rows for each associated detail. In example (6.13) we have one conic constraint:

prob$F <- rbind(c(1,0,0),c(0,1,0),c(0,0,1))

prob$g <- c(0, 0, 0)

prob$cones <- matrix(list("PEXP", 3, NULL), nrow=3, ncol=1)
rownames (prob$cones) <- c("type","dim", "conepar")

The first row in prob$cones selects the "type" of conic domain, in this case the exponential cone
"MSK_DOMAIN_PRIMAL_EXP_CONE" (note that PEXP, PRIMAL_EXP_CONE are valid aliases for this conic
domain). The second row is used to provide the dimension ("dim") of the conic domain, which in this
case has to be 3. The third row sets the parameters ("conepar") for parametric conic domains, but
because the exponential cone is not parameterized we set this value as NULL.

26

Source code

Listing 6.6: Source code solving problem (6.12).

library("Rmosek")

ceol <- function()

{
Specify the mon-conic part of the problem.
prob <- list(sense="min")
prob$c <- c(1, 1, 0)
prob$A <- Matrix(c(l, 1, 1), nrow=1, sparse=TRUE)
prob$bc <- rbind(blc=1,
buc=1)
prob$bx <- rbind(blx=rep(-Inf,3),
bux=rep(Inf,3))
Specify the affine conic constraints.
prob$F <- rbind(c(1,0,0),c(0,1,0),c(0,0,1))
prob$g <- c(0, 0, 0)
prob$cones <- matrix(list("PEXP", 3, NULL), nrow=3, ncol=1)
rownames (prob$cones) <- c("type","dim", "conepar")
Solve the problem
r <- mosek(prob)
Return the solution
stopifnot(identical (r$response$code, 0))
r$sol
}
ceol()

6.6 Geometric Programming

Geometric programs (GP) are a particular class of optimization problems which can be expressed in
special polynomial form as positive sums of generalized monomials. More precisely, a geometric problem
in canonical form is

minimize fo(z)

subject to fi(z) <1, i=1,...,m, (6.14)
$j>0, j=1,...,n,
where each fy, ..., f,n is a posynomial, that is a function of the form
flz) = Z CRTFLGRE L g Qen
k

with arbitrary real ay; and ¢ > 0. The standard way to formulate GPs in convex form is to introduce
a variable substitution

x; = exp(y;).
Under this substitution all constraints in a GP can be reduced to the form

log()_exp(afy +bx)) <0 (6.15)
k

involving a log-sum-exp bound. Moreover, constraints involving only a single monomial in z can be even
more simply written as a linear inequality:

afy+b, <0

27

We refer to the MOSEK Modeling Cookbook and to [BKVHO07] for more details on this reformulation. A
geometric problem formulated in convex form can be entered into MOSEK with the help of exponential
cones.

6.6.1 Example GP1

The following problem comes from [BKVH07]. Consider maximizing the volume of a h X w X d box
subject to upper bounds on the area of the floor and of the walls and bounds on the ratios h/w and d/w:

maximize hwd
subject to 2(hw + hd) < Ayan,
wd < Afoor, (6.16)
a <h/w<p,
v <d/w<é.

The decision variables in the problem are h,w,d. We make a substitution
h = exp(z),w = exp(y), d = exp(z)
after which (6.16) becomes

maximize = +vy+ 2

subject to log(exp(x + y + log(2/Awan)) + exp(x + z + log(2/Awan))) <0,
y + 2 < log(Agoor)s (6.17)
log(a) <z —y < log(p),
log(v) < z —y < log(d).

Next, we demonstrate how to implement a log-sum-exp constraint (6.15). It can be written as:

wy, > exp(agy +br), (equiv. (ug,1, agy +b) € Kexp)s

Zkuk =1.

This presentation requires one extra variable uy, for each monomial appearing in the original posynomial
constraint. The explicit representation of affine conic constraints (ACC, see Sec. 6.2) in this case is:

(6.18)

00010 0

0000 0 gy” 1

11000 log(2/Awan)

0000 1 0 € Kexp X Kexp.
0000 0 Zl 1

1 0100 2 log(2/Awan)

We can now use this representation to assemble all constraints in the model. The linear part of the
problem is entered as in Sec. 6.1.

Listing 6.7: Source code solving problem (6.17).

Input data
Awall <- 200.0
Afloor <- 50.0
alpha <- 2.0
beta <- 10
gamma <- 2
delta <- 10

Objective
prob <- list(sense="max"

prob$c <- c(1, 1, 1, 0, 0)

Linear constraints:

(continues on next page)

28

https://docs.mosek.com/modeling-cookbook/index.html

(continued from previous page)

#[0 0 0 1 17 == 1
[0 1 1 0 0] <= log(Afloor)
#[1-1 0 0 0] in [log(alpha), log(beta)]
#[0-1 1 0 01] in [log(gamma), log(delta)]
#
prob$A <- rbind(c(0, 0, 0, 1, 1),
c(0, 1, 1, 0, 0),
C(]-)_l, O: O, 0):
C(O’_l, 13 O’ O))
prob$bec <- rbind(c(l, -Inf, log(alpha), log(gamma)),

c(1, log(Afloor), log(beta), log(delta)))

prob$bx <- rbind(c(-Inf, -Inf, -Inf, -Inf, -Inf),
c(Inf, Inf, Inf, Inf, Inf))

NOTE: The F matriz is internally stored in the sparse
triplet form. Use 'giveCsparse' or 'repr' option
in the sparseMatriz() call to construct the F
matriz directly in the sparse triplet form.

prob$F <- sparseMatrix(i = c(1, 3, 3, 4, 6, 6),

j=c(4, 1, 2,5,1, 3),

x=c(1, 1, 1, 1, 1, 1),

dims = c(6,5))

The conic part FX+g \in Kezp z Kexp

T Yy z u v

[0 0 0 1 017 0

[0 0 0 0 01] 1 in Kexp
#[1 1 0 0 0] log(2/4wall)

#

[0 0 0 1] 0

[0 0 0 0] 1 in Kexp
#[1 0 1 0 0171+ 1log(2/Awall)

#

#

#

#

#

prob$g <- c(0, 1, log(2/Awall), 0, 1, log(2/Awall))

prob$cones <- matrix(rep(list("PEXP", 3, NULL), 2), ncol=2)
rownames (prob$cones) <- c("type","dim","conepar")

Optimize and print results
r <- mosek(prob, list(soldetail=1))
print (exp(rsolitr$xx[1:3]))

29

6.7 Semidefinite Optimization

Semidefinite optimization is a generalization of conic optimization, allowing the use of matrix variables
belonging to the convex cone of positive semidefinite matrices

={Xe8:2"Xz>0, VzeR"},

where S is the set of r x r real-valued symmetric matrices.
MOSEK can solve semidefinite optimization problems stated in the primal form,

minimize <CJ,X> Z] Ocjac]—i—c
subject to I§ < <AU,X >—|—ZJ Oaumj < wé i=0,...,m—1,
j=0 <szan>+Z] Ofl]xj +gz S]Cu iio,...,Q*l, (619)
S T < wj, j=0,...,n—1,
ek, X; eS8, j=0,...,p—1

where the problem has p symmetric positive semidefinite variables Yj € Sf of dimension r;. The
symmetric coefficient matrices C; € 8" and A; ; € 8™ are used to specify PSD terms in the linear
objective and the linear constraints, respectively. The symmetric coefficient matrices Fi_,j € 877 are used
to specify PSD terms in the affine conic constraints. Note that ¢ ((6.19)) is the total dimension of all
the cones, i.e. ¢ =dim(KC; x ... x Kj), given there are k¥ ACCs. We use standard notation for the matrix
inner product, i.e., for A, B € R™*" we have

m—1n—1

i=0 j=0

In addition to the primal form presented above, semidefinite problems can be expressed in their dual
form. Constraints in this form are usually called linear matrix inequalities (LMIs). LMIs can be
easily specified in MOSEK using the vectorized positive semidefinite cone which is defined as:

e Vectorized semidefinite domain:

Si,voc = {(931, R zd(d+1)/2) eR™ : SM&t }
where n = d(d + 1)/2 and,

1 3102/\/? xd/\/i

Mar(z) = | V2w V2

Ta/V2 T /V2 o Taainy)e
or equivalently
Si’vec = {sVec(X) : X € S},
where
sVece(X) = (X11,V2Xo1, ..., V2Xa1, Xo2,V2Xs, ..., Xaq).

In other words, the domain consists of vectorizations of the lower-triangular part of a positive semidef-
inite matrix, with the non-diagonal elements additionally rescaled. LMIs can be expressed by restricting
appropriate affine expressions to this cone type.

For other types of cones supported by MOSEK, see Sec. 13.6 and the other tutorials in this chapter.
Different cone types can appear together in one optimization problem.

We demonstrate the setup of semidefinite variables and their coefficient matrices in the following
examples:

e Sec. 6.7.1: A problem with one semidefinite variable and linear and conic constraints.
e Sec. 6.7.2: A problem with two semidefinite variables with a linear constraint and bound.

e Sec. 6.7.3: A problem with linear matrix inequalities and the vectorized semidefinite domain.

30

6.7.1 Example SDO1

We consider the simple optimization problem with semidefinite and conic quadratic constraints:

2 10
minimize < 1 2 1 ,X>+x0
0 1 2
1.0 0]
subject to 0 1 0|,X)4z = 1,
< 0 0 1 > (6.20)
11 1]
< 111 ,X>+x1+:c2 = 1/2,
1 1 1

‘TO_E VI'12+‘_'ZZ?, Yioa

The problem description contains a 3-dimensional symmetric semidefinite variable which can be written
explicitly as:

- Xoo XIO Xzo
X = {10 {11 {21 € Si,
Xoo Xo1 Xoo

and an affine conic constraint (ACC) (zg, 71, 72) € Q2. The objective is to minimize
2(Xo0 + X10 + X114+ Xo1 + X22) + 10,
subject to the two linear constraints

o o XOO +YE +Y£2 + o = 1,
Xoo+ X114+ Xoo +2(X10+Xoo+ Xo1) +a1 +22 = 1/2.

Setting up the linear and conic part

The linear and conic parts (constraints, variables, objective, ACC) are set up using the methods described
in the relevant tutorials; Sec. 6.1, Sec. 6.2. Here we only discuss the aspects directly involving semidefinite
variables.

Appending semidefinite variables

The dimensions of semidefinite variables are passed in prob$bardim.

Coefficients of semidefinite terms.

Every term of the form (A4; ;)k:(X)k, is determined by four indices (i, 7, k,!) and a coefficient value
v = (A;j)k,. Here i is the number of the constraint in which the term appears, j is the index of the
semidefinite variable it involves and (k,l) is the position in that variable. This data is passed in the
structure prob$barA. Note that only the lower triangular part should be specified explicitly, that is one
always has k > [.

Semidefinite terms (C;)x1(X)k, of the objective are specified in the same way in prob$barc but
only include (4, ,1) and v.

Source code

Listing 6.8: R implementation of model (6.20).

library ("Rmosek")

getbarvarMatrix <- function(barvar, bardim)

{

(continues on next page)

31

(continued from previous page)

N <- as.integer(bardim)
new("dspMatrix", x=barvar, uplo="L", Dim=c(N,N))

}
sdol <- function()
{
Specify the nmon-matriz variable part of the problem.
prob <- list(sense="min")
prob$c <- ¢c(1, 0, 0)
prob$A <- sparseMatrix(i=c(1, 2, 2),
j=c(1, 2, 3),
x=c(1, 1, 1), dims=c(2, 3))
prob$bc <- rbind(blc=c(1, 0.5),
buc=c(1, 0.5))
prob$bx <- rbind(blx=rep(-Inf,3),
bux=rep(Inf,3))
NOTE: The F matriz ts internally stored in the sparse
triplet form. Use 'giveCsparse' or 'repr' option
in the sparseMatriz() call to construct the F
matriz directly in the sparse triplet form.
prob$F <- sparseMatrix(i=c(1,2,3),
j=c(1,2,3),
x=c(1,1,1),
dims = ¢(3,3))
prob$g <- ¢c(1:3)%0
prob$cones <- cbind(list("QUAD", 3, NULL))
Spectify semidefinite matriz variables (one 3z3 block)
prob$bardim <- c(3)
Block triplet format specifying the lower triangular part
of the symmetric coefficient matrixz 'barc':
prob$barc$j <- c(1, 1, 1, 1, 1)
prob$barc$k <- c(1, 2, 3, 2, 3)
prob$barc$l <- c(1, 2, 3, 1, 2)
prob$barc$v <- c(2, 2, 2, 1, 1)
Block triplet format specifying the lower triangular part
of the symmetric coefficient matrixz 'bard':
prob$barA$i <- c(1, 1, 1, 2, 2, 2, 2, 2, 2)
prob$barA$j <- c(1, 1, 1, 1, 1, 1, 1, 1, 1)
prob$barA$k <- c(1, 2, 3, 1, 2, 3, 2, 3, 3)
prob$barA$l <- c(1, 2, 3, 1, 2, 3, 1, 1, 2)
prob$barA$v <- c(1, 1, 1, 1, 1, 1, 1, 1, 1)
Solve the problem
r <- mosek(prob)
Print matrixz variable and return the solution
stopifnot(identical (r$response$code, 0))
print(list(barx=getbarvarMatrix(rsolitr$barx[[1]], prob$bardim[1])))
r$sol
}
sdo1()

32

The numerical values of Xj are returned in the list r§solitrbarx; the j-th element of the list is
the lower triangular part of each X; stacked column-by-column into a numeric vector. Similarly, the
dual semidefinite variables S; are recovered through rsolitr$bars.

6.7.2 Example SDO2

We now demonstrate how to define more than one semidefinite variable using the following problem with

two matrix variables and two types of constraints:

minimize <01,X1> +(Cy, X3)

subject to <A1, X1> + <A2, X2

fag

1 00 1
Cy = 0 0|,4,=1]0
00 6 | |1

1 =30 0] [0

-3 2 00 1
=19 o0 1 0 Az = 0
0 0 0 0| | 0

are constant symmetric matrices.

= b
< K
= 0.
0 1
0 ;
0 2
1 o
-1 0
0 0
0 0

o O O

-3

(6.21)

Note that this problem does not contain any scalar variables, but they could be added in the same

fashion as in Sec. 6.7.1.

For explanations of data structures used in the example see Sec. 6.7.1. Note that the field bardim is

used to specify that we have two semidefinite variables of dimensions 3 and 4.

The code representing the above problem is shown below.

Listing 6.9: Implementation of model (6.21).

library ("Rmosek")

getbarvarMatrix <- function(barvar, bardim)
{
N <- as.integer(bardim)
new("dspMatrix", x=barvar, uplo="L", Dim=c(N,N))

}

sdo2 <- function()

{

Sample data in sparse lower-triangular triplet form

Cl_k <- c(1, 3);
C1_1 <- c(1, 3);
Cl_v <- c(1, 6);

Al_k <- c(1, 3, 3);
A1_1 <- c(1, 1, 3);
Al_v <- c(1, 1, 2);
C2_k <- c(1, 2, 2, 3);
C2_1 <- c(1, 1, 2, 3);

C2_v <- c(1, -3, 2, 1);
A2 _k <- c(2, 2, 4);
A2_1 <- c(1, 2, 4);
A2_v <- c(1, -1, -3);
b <- 23.0;

k <- -3.0;

33

(continues on next page)

(continued from previous page)

Specify the dimenstions of the problem
prob <- list(sense="min");
Two constraints
prob$A <- Matrix(nrow=2, ncol=0); # 2 constraints
prob$c <- numeric(0);
prob$bx <- rbind(blc=numeric(0),
buc=numeric(0));

Dimensions of semidefintite matriz variables
prob$bardim <- c(3, 4);
Constraint bounds
prob$bc <- rbind(blc=c(b, -Inf),
buc=c(b, k));

Block triplet format specifying the lower triangular part
of the symmetric coefficient matrixz 'barc':
prob$barc$j <- c(rep(l, length(Ci_v)),

rep(2, length(C2_v))); # Which PSD wariable (j)
prob$barc$k <- c(Ci_k, C2_k); # Entries: (k,1)->v
prob$barc$l <- c(C1_1, C2_1);
prob$barc$v <- c(Cl_v, C2_v);

Block triplet format specifying the lower triangular part
of the symmetric coefficient matriz 'bard':
prob$barA$i <- c(rep(l, length(Al_v)+length(A2_v)), 2); # Which constraint (%)
prob$barA$j <- c(rep(l, length(Al_v)),
rep(2, length(A2_v)),
2); # Which PSD wvariabley,

— (])

}

prob$barA$k <- c(Al_k, A2_k, 2); # Entries: (k,1)->v
prob$barA$l <- c(A1_1, A2_1, 1);
prob$barA$v <- c(Al_v, A2_v, 0.5);

Solve the problem
r <- mosek(prob);

Print matriz variable and return the solution

stopifnot(identical (r$response$code, 0));

print(list(Xl=getbarvarMatrix(rsolitr$barx[[1]], prob$bardim[1])));
print(list(X2=getbarvarMatrix(rsolitr$barx[[2]], prob$bardim[2])));

sdo2();

The numerical values of Xj are returned in the list rsolitr$barx; the j-th element of the list is

the lower triangular part of each Yj stacked column-by-column into a numeric vector. Similarly, the
dual semidefinite variables S; are recovered through rsolitr$bars.

34

6.7.3 Example SDO _LMI: Linear matrix inequalities and the vectorized semidef-
inite domain
The standard form of a semidefinite problem is usually either based on semidefinite variables (primal

form) or on linear matrix inequalities (dual form). However, MOSEK allows mixing of these two forms,
as shown in (6.22)

minimize (1) (1) X)) 4ag4x +1
bject t 0 1 X)) —zy— e R
subject to RE Ty — X1 S0 (6.22)
0 1 3 1 10
m0{13]+$1[10] [01} = 0,
X >0

The first affine expression is restricted to a linear domain and could also be modelled as a linear constraint
(instead of an ACC). The lower triangular part of the linear matrix inequality (second constraint) can be
vectorized and restricted to the "MSK_DOMAIN_SVEC_PSD_CONE" . This allows us to express the constraints
in (6.22) as the affine conic constraints shown in (6.23).

<Hé]x>+ (1 1]z + [0] e R,
0 3 -1 (6.23)
V2 V2 T+ 0 e Spve
3 0 —1

Vectorization of the LMI is performed as explained in Sec. 13.6.

Setting up the linear part

The linear parts (objective, constraints, variables) and the semidefinite terms in the linear expressions
are defined exactly as shown in the previous examples.

Setting up the affine conic constraints with semidefinite terms

To define affine conic constraints, we set prob$F and prob$g to the values that are shown in (6.23). The
coefficient for the semidefinite variable is defined by setting prob$barF equal to the symmetric matrix
shown in (6.23).

prob$barF$i <- c(1, 1)
prob$barF$j <- c(1, 1)
prob$barF$k <- c(1, 2)
prob$barF$l <- c(1, 1)
prob$barF$v <- c(0, 1)

The domains are specified as columns in prob$cones where the first row selects the "type" of cone,
such as "MSK_DOMAIN_RPLUS" or "MSK_DOMAIN_SVEC_PSD_CONE" (note that RPLUS and SVEC_PSD_CONE
are valid aliases for each domain, respectively). The second row specifies the dimension ("dim"), here
set to 1 and 3, respectively. The third row sets the parameters ("conepar") for parametric domains but
here it is set to NULL.

prob$F <- sparseMatrix(i=c(1, 1, 2, 3, 3, 4),
j=c(1, 2, 2, 1, 2, 1),
x=c(-1, -1, 3, sqrt(2), sqrt(2), 3), dims=c(4, 2))
probsg <- c(0, -1, 0, -1)
prob$cones <- matrix(list(), nrow=3, ncol=2)
prob$cones[,1] <- list("RPLUS", 1, NULL)
prob$cones[,2] <- 1list("SVEC_PSD_CONE", 3, NULL)

35

Source code

Listing 6.10: Source code solving problem (6.22).

library("Rmosek")

getbarvarMatrix <- function(barvar, bardim)
{
N <- as.integer(bardim)
new("dspMatrix", x=barvar, uplo="L", Dim=c(N,N))

}

sdo_lmi <- function()
{
Specify the nmon-matriz variable part of the problem.
prob <- list(sense="min"
prob$c <- c(1, 1)
prob$cO <-1

Specify wvariable bounds

prob$bx <- rbind(blx=rep(-Inf,2), bux=rep(Inf,2))

The following two entries must always be defined, even if set to zero.
prob$A <- Matrix(c(0, 0), nrow=1, sparse=TRUE)

prob$bc <- rbind(blc=rep(-Inf,1),buc=rep(Inf, 1))

prob$F <- sparseMatrix(i=c(1, 1, 2, 3, 3, 4),
j=c(i, 2, 2, 1, 2, 1),
x=c(-1, -1, 3, sqrt(2), sqrt(2), 3), dims=c(4, 2))
probsg <- ¢c(0, -1, 0, -1)
prob$cones <- matrix(list(), nrow=3, ncol=2)
prob$cones[,1] <- 1list("RPLUS", 1, NULL)
prob$cones[,2] <- list("SVEC_PSD_CONE", 3, NULL)

Specify semidefinite matriz variables (one 2z2 block)
prob$bardim <- c(2)

Block triplet format specifying the lower triangular part
of the symmetric coefficient matrixz 'barc':

prob$barc$j <- c(1, 1, 1)

prob$barc$k <- c(1, 2, 2)

prob$barc$l <- c(1, 1, 2)

prob$barc$v <- c(1, 0, 1)

Block triplet format specifying the lower triangular part
of the symmetric coefficient matriz 'barF' for the ACC:
prob$barF$i <- c(1, 1)

prob$barF$j <- c(1, 1)

prob$barF$k <- c(1, 2)

prob$barF$l <- c(1, 1)

prob$barF$v <- c(0, 1)

Solve the problem
r <- mosek(prob)

Print matrixz variable and return the solution
stopifnot(identical (r$response$code, 0))
print(list(barx=getbarvarMatrix(rsolitr$barx[[1]], prob$bardim[1]), xx=r$sol

$itrdx)r—) i
& XK} (continues on next page)

36

(continued from previous page)

r$sol
}

sdo_1mi()

6.8 Integer Optimization

An optimization problem where one or more of the variables are constrained to integer values is called a
(mixed) integer optimization problem. MOSEK supports integer variables in combination with linear,
quadratic and quadratically constrtained and conic problems (except semidefinite). See the previous
tutorials for an introduction to how to model these types of problems.

6.8.1 Example MILO1

We use the example

maximize xg + 0.64x,

subject to 50xg + 31z < 250,
300 — 21, > —A4, (6.24)
zg,x1 >0 and integer

to demonstrate how to set up and solve a problem with integer variables. It has the structure of a linear
optimization problem (see Sec. 6.1) except for integrality constraints on the variables. Therefore, only
the specification of the integer constraints requires something new compared to the linear optimization
problem discussed previously.

This is easily programmed in R using the piece code shown in Listing 6.11,

Listing 6.11: R implementation of problem (6.24).

##

Copyright : Copyright (c) MOSEK ApS, Denmmark. All rights rTeserved.

#

Fale : milol.R

#

Purpose : To demonstrate how to solve a small mized integer linear
optimization problem using the Emosek package.

##
library ("Rmosek")

milol <- function()
{
Specify the continuous part of the problem.
prob <- list(sense="max"
prob$c <- c(1, 0.64)
prob$A <- Matrix(rbind(c(50, 31),
c(3, -2)), sparse=TRUE)
prob$bc <- rbind(blc=c(-Inf, -4),
buc=c(250, Inf))
prob$bx <- rbind(blx=c(O, 0),
bux=c(Inf, Inf))

Specify the integer constraints
prob$intsub <- c(1 ,2)

Solve the problem
r <- mosek(prob)

(continues on next page)

37

(continued from previous page)

Return the solution
stopifnot(identical (r$response$code, 0))
r$sol

}

milol ()

where z; and x5 are pointed out as integer variables.

The input arguments follow those of a linear or conic program with the additional identification of
the integer variables. The column vector intsub should simply contain indexes to the subset of variables
for which integrality is required. For instance if = should be a binary {0,1}-variable, its index in the
problem formulation should be added to intsub, and its bounds 0 < z < 1 should be specified explicitly.

If executed correctly you should be able to see the log of the interface and optimization process printed
to the screen. The output structure will only include an integer solution int, since we are no longer in
the continuous domain for which the interior-point algorithm operates. The structure also contains the
problem status as well as the solution status based on certificates found by the MOSEK optimization
library.

6.8.2 Specifying an initial solution

It is a common strategy to provide a starting feasible point (if one is known in advance) to the mixed-
integer solver. This can in many cases reduce solution time.
There are two modes for MOSEK to utilize an initial solution.

e A complete solution. MOSEK will first try to check if the current value of the pri-
mal variable solution is a feasible point. = The solution can either come from a previ-
ous solver call or can be entered by the user, however the full solution with values for
all variables (both integer and continuous) must be provided. This check is always per-
formed and does not require any extra action from the user. The outcome of this process
can be inspected via information items "MSK_IINF_MIO_INITIAL_FEASIBLE_SOLUTION" and
"MSK_DINF_MIO_INITIAL_FEASIBLE_SOLUTION_0BJ", and via the Initial feasible solution
objective entry in the log.

e A partial integer solution. MOSEK can also try to construct a feasible solution by fixing
integer variables to the values provided by the user (rounding if necessary) and optimizing over
the remaining continuous variables. In this setup the user must provide initial values for all in-
teger variables. This action is only performed if the parameter MSK_IPAR_MIO_CONSTRUCT_SOL
is switched on. The outcome of this process can be inspected via information items
"MSK_IINF_MIO_CONSTRUCT_SOLUTION" and "MSK_DINF_MIO_CONSTRUCT_SOLUTION_0OBJ", and via
the Construct solution objective entry in the log.

In the following example we focus on inputting a partial integer solution.

maximize Tzo 4+ 1021 + 22 + dx3
subject to xg+ 1 + 22+ 23 < 2.5
Xo,21,T2 € Z
Lo, X1,T2,T3 Z 0

(6.25)

Solution values can be set using the appropriate fields in the problem structure.

Listing 6.12: Implementation of problem (6.25) specifying an initial
solution.

Specify start guess for the integer wariables.
probsolint$xx <- c(1, 1, 0, NaN)

Request constructing the solution from integer wvariable values
prob$iparam <- 1ist(MIO_CONSTRUCT_SOL=1)

38

The log output from the optimizer will in this case indicate that the inputted values were used to
construct an initial feasible solution:

Construct solution objective : 1.950000000000e+01

The same information can be obtained from the API:

Listing 6.13: Retrieving information about usage of initial solution

print (r$iinfo$MI0_CONSTRUCT_SOLUTION)
print (r$dinfo$MI0_CONSTRUCT _SOLUTION_OBJ)

6.8.3 Example MICO1

Integer variables can also be used arbitrarily in conic problems (except semidefinite). We refer to the
previous tutorials for how to set up a conic optimization problem. Here we present sample code that
sets up a simple optimization problem:
minimize 22 + y?
subject to x> e¥ + 3.8, (6.26)
x,y integer.

The canonical conic formulation of (6.26) suitable for Rmosek package is

minimize ¢

subject to (t,z,y) € Q3 (t > /22+1y2)
(x—38,1,y) € Kexp (r—3.8>¢Y) (6.27)
x,y integer,
teR.

Listing 6.14: Implementation of problem (6.27).

library ("Rmosek")

micol <- function()

{
Specify the continuous part of the problem.

Variables are [t; z; y]

prob <- list(sense="min"

prob$c <- c(1, 0, 0)

prob$A <- Matrix(nrow=0, ncol=3) # 0 constraints, 3 variables
prob$bx <- rbind(blx=rep(-Inf,3), bux=rep(Inf,3))

Conic part of the problem

prob$F <- rbind(diag(3), c(0,1,0), ¢(0,0,0), c(0,0,1))

prob$g <- c(0, 0, 0, -3.8, 1, 0)

prob$cones <- cbind(matrix(list("QUAD", 3, NULL), nrow=3, ncol=1),
matrix(list ("PEXP", 3, NULL), nrow=3, ncol=1))

rownames (prob$cones) <- c("type","dim","conepar")

Specify the integer constraints
prob$intsub <- c(2 ,3)

Solve the problem
r <- mosek(prob)

Return the solution
stopifnot(identical (r$response$code, 0))
print (rsolint$xx[2:3])

39

Error and solution status handling were omitted for readability.

6.9 Quadratic Optimization

MOSEK can solve quadratic and quadratically constrained problems, as long as they are convex. This
class of problems can be formulated as follows:

minimize %xTQOx +cTr+¢f
subject to I < %mTka + Z?:_Ol agjr; < uf, k=0,...,m—1, (6.28)
7 < x; < wj, j=0,....,n—1

Without loss of generality it is assumed that Q° and Q* are all symmetric because
1
2T Qx = ixT(Q + Q1.

This implies that a non-symmetric Q can be replaced by the symmetric matrix 1(Q + Q7).
The problem is required to be convex. More precisely, the matrix (J° must be positive semi-definite
and the kth constraint must be of the form

n—1
1 k
i < 5o QFx + ZO a1, (6.29)
iz

with a negative semi-definite Q¥ or of the form

—1
1 T Nk K c
5:1: Q x—|—jzoak,j:cj < uy.

with a positive semi-definite Q¥. This implies that quadratic equalities are not allowed. Specifying a
non-convex problem will result in an error when the optimizer is called.

A matrix is positive semidefinite if all the eigenvalues of) are nonnegative. An alternative statement
of the positive semidefinite requirement is

xTQx >0, Vx.

If the convexity (i.e. semidefiniteness) conditions are not met MOSEK will not produce reliable results
or work at all.

6.9.1 Example: Quadratic Objective

We look at a small problem with linear constraints and quadratic objective:

minimize z3 +0.123 + 23 — 125 — 12
subject to 1< x1 + x9 + 23 (6.30)
0< =

The matrix formulation of (6.30) has:

2 0o -1 0
Q° = 0 02 0 ,ce=| —1 7A:[l 1 1},
-1 0 2 0
with the bounds:
0 00
I°=1Lu"=00,l"=| 0| andu”= | o0
0 00

Please note the explicit 1 in the objective function of (6.28) which implies that diagonal elements must
be doubled in @, i.e. Q11 = 2 even though 1 is the coefficient in front of 22 in (6.30).

40

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for
linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such
as defining an optimization task, retrieving the solution and so on.

Setting up the quadratic objective

The quadratic objective is specified in a list called gobj containing the numerical vectors 4, j and v. These
vectors specify the (row,column,value)-entries for the lower triangular part of the matrix Q° using an
unordered sparse triplet format. In case of example (6.30) we get:

prob$qobj$i <- c(1, 3, 2, 3)
prob$qobj$j <- c(1, 1, 2, 3)
prob$qobj$v <- c(2, -1, 0.2, 2)

Please note that

e only non-zero elements are specified (any element not specified is 0 by definition),
e the order of the non-zero elements is insignificant, and

e only the lower triangular part should be specified.

Source code

Listing 6.15: Script implementing problem (6.30)

##

Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
#

File : qol.R

#

Purpose : To demonstrate how to solve a small quadratic

optimization problem using the Emosek package.

##
library ("Rmosek")

qol <- function()
{
Specify the non-quadratic part of the problem.
prob <- list(sense="min"
prob$c <- c(0, -1, 0)
prob$A <- Matrix(c(1l, 1, 1), nrow=1, sparse=TRUE)
prob$bc <- rbind(blc=1,
buc=Inf)
prob$bx <- rbind(blx=rep(0,3),
bux=rep(Inf,3))

Specify the quadratic objective matriz in triplet form.
prob$qobj$i <- c(1, 3, 2, 3)
prob$qobj$j <- c(1, 1, 2, 3)
prob$qobj$v <- c(2, -1, 0.2, 2)

Solve the problem
r <- mosek(prob)

Return the solution
stopifnot(identical (r$response$code, 0))
r$sol

(continues on next page)

41

(continued from previous page)

}

qo10)

6.9.2 Quadratic constraints

Quadratic constraints are not currently supported in Rmosek. You have the following options:

e Use a conic reformulation of the quadratic constraints (see the Modeling Cookbook).
o Use another MOSEK interface.

e Edit the open-source Rmosek interface to add the features you want.

6.10 Problem Modification and Reoptimization

Often one might want to solve not just a single optimization problem, but a sequence of problems, each
differing only slightly from the previous one. This section demonstrates how to modify and re-optimize
an existing problem.

The example we study is a simple production planning model.

Problem modifications regarding variables, cones, objective function and constraints can be grouped
in categories:

e add/remove,
e coefficient modifications,
e bounds modifications.

Especially removing variables and constraints can be costly. Special care must be taken with respect
to constraints and variable indexes that may be invalidated.

Depending on the type of modification, MOSEK may be able to optimize the modified problem more
efficiently exploiting the information and internal state from the previous execution. After optimization,
the solution is always stored internally, and is available before next optimization. The former optimal
solution may be still feasible, but no longer optimal; or it may remain optimal if the modification of the
objective function was small.

In general, MOSEK exploits dual information and availability of an optimal basis from the previous
execution. The simplex optimizer is well suited for exploiting an existing primal or dual feasible solution.
Restarting capabilities for interior-point methods are still not as reliable and effective as those for the
simplex algorithm. More information can be found in Chapter 10 of the book [Chvatal83].

Parameter settings (see Sec. 7.4) can also be changed between optimizations.

6.10.1 Example: Production Planning

A company manufactures three types of products. Suppose the stages of manufacturing can be split into
three parts: Assembly, Polishing and Packing. In the table below we show the time required for each
stage as well as the profit associated with each product.

Product no. | Assembly (minutes) | Polishing (minutes) | Packing (minutes) | Profit ($)
0 2 3 2 1.50
1 4 2 3 2.50
2 3 3 2 3.00

With the current resources available, the company has 100,000 minutes of assembly time, 50,000
minutes of polishing time and 60,000 minutes of packing time available per year. We want to know how
many items of each product the company should produce each year in order to maximize profit?

42

https://docs.mosek.com/modeling-cookbook/qcqo.html

Denoting the number of items of each type by xg,z; and x5, this problem can be formulated as a
linear optimization problem:

maximize 1.5z9 + 2527 4+ 3.0z9

subject to 2z + 4z + 3x2 < 100000,
3rg + 2x1 + 3z < 50000,
2x0 + 3T + 219 < 60000,

(6.31)

and
o, T1,T2 Z 0
Code in Listing 6.16 loads and solves this problem.

Listing 6.16: Setting up and solving problem (6.31)

Specify the c wvector.
prob <- list(sense="max")
prob$c <- c(1.5, 2.5, 3.0)

Specify a in sparse format.

subi <-c(, 1,1, 2, 2, 2, 3, 3, 3)
subj <- ¢c(1, 2, 3, 1, 2, 3, 1, 2, 3)
valij <- c(2, 4, 3, 3, 2, 3, 2, 3, 2)

prob$A <- sparseMatrix(subi,subj,x=valij);

Specify bounds of the comstraints.
prob$bc<- rbind(blc=rep(-Inf, 3),
buc=c (100000, 50000, 60000))

Specify bounds of the wvariables.
prob$bx<- rbind(blx=rep(0,3),
bux=rep(Inf,3))

Perform the optimization.
prob$iparam <- 1list(OPTIMIZER="OPTIMIZER_DUAL_SIMPLEX")
r <- mosek(prob)

Show the optimal = solution.
print (rsolbas$xx)

6.10.2 Changing the Linear Constraint Matrix

Suppose we want to change the time required for assembly of product 0 to 3 minutes. This corresponds
to setting ag,0 = 3, which is done by directly modifying the A matrix of the problem, as shown below.

prob$A[1,1] <- 3.0

The problem now has the form:

maximize 1.5zg + 2521 + 3.0x2

subject to 3xzg + 4x; + 3xo < 100000, (6.32)
3z + 2x1 + 3x2 < 50000, '
29 + 31 + 2x5 < 60000,

and
Zo,T1, T2 Z 0.

After this operation we can reoptimize the problem.

43

6.10.3 Appending Variables

We now want to add a new product with the following data:

Product no. | Assembly (minutes) | Polishing (minutes) | Packing (minutes) | Profit ($)
3 4 0 1 1.00

This corresponds to creating a new variable x3, appending a new column to the A matrix and setting
a new term in the objective. We do this in Listing 6.17

Listing 6.17: How to add a new variable (column)

probs$c <- c(prob$c, 1.0)
prob$A <- cbind(prob$A, c(4.0, 0.0, 1.0))
prob$bx <- cbind(prob$bx, c(0.0,Inf))

After this operation the new problem is:

maximize 1.5z9 + 2521 + 3.0zs + 1.0x3

subject to 3xz¢9 + 4x; 4+ 3xzo + 4dxzz3 < 100000, (6.33)
3z + 2x1 + 319 < 50000, ’
2x9 + 3z + 219 + lxg < 60000,

and
X, L1,T2,T3 Z 0.

6.10.4 Appending Constraints

Now suppose we want to add a new stage to the production process called Quality control for which
30000 minutes are available. The time requirement for this stage is shown below:

Product no. | Quality control (minutes)
0 1
1 2
2 1
3 1

This corresponds to adding the constraint
To + 221 + 22 + x3 < 30000
to the problem. This is done as follows.

Listing 6.18: Adding a new constraint.

prob$A <- rbind(prob$A, c(1.0, 2.0, 1.0, 1.0))
prob$bc <- cbind(prob$bc, c(-Inf, 30000.0))

Again, we can continue with re-optimizing the modified problem.

6.10.5 Changing bounds

One typical reoptimization scenario is to change bounds. Suppose for instance that we must operate
with limited time resources, and we must change the upper bounds in the problem as follows:

Operation Time available (before) | Time available (new)
Assembly 100000 80000
Polishing 50000 40000
Packing 60000 50000
Quality control | 30000 22000

44

That means we would like to solve the problem:

maximize 1.5z9 + 2.5x;7 + 3.0xs + 1.0x3

subject to 3z9 + 4x; + 3x2 + 4dxz < 80000,
3z + 221 + 3x9 < 40000, (6.34)
2rg + 3z + 222 + lxg < 50000,
) + 2x + X9 + xs < 22000.

In this case all we need to do is redefine the upper bound vector for the constraints, as shown in the next
listing.

Listing 6.19: Change constraint bounds.

prob$bc<- rbind(blc=rep(-Inf, 4),

buc=c (80000, 40000, 50000, 22000))
r <- mosek(prob)
print (rsolbas$xx)

Again, we can continue with re-optimizing the modified problem.

6.10.6 Advanced hot-start

In order to exploit the possibility of hot-starting the simplex algorithms it is necessary to pass the old
basic solution when the modified problem is re-optimized. Without this operation the optimizer will
simply start from scratch. Any subset of the basic solution may be provided, but to achieve the best
results all fields of res.sol.bas should be present, that is xx,xc,slx,sux,slc,suc,skx,skc.

Listing 6.20: Passing the full basic solution.

Reoptimize with changed coefficient

Use previous solution to perform wvery simple hot-start.

This part can be skipped, but then the optimizer will start
from scratch on the nmnew problem, ©.e. without any hot-start.
prob$sol <- list(bas=r$sol$bas)

r <- mosek(prob)

print (rsolbas$xx)

If the dimensions of the problem (number of variables, constraints) have changed, the lengths of all
fields have to be adjusted to be compatible with the reformulated problem. For example, here is an
adjustment when adding a new variable:

Listing 6.21: Adjusting lengths in the solution fields related to
variables.

Reoptimize with a new wvariable and hot-start

All parts of the solution must be extended to the new dimensions.
prob$sol <- list(bas=r$sol$bas)

probsolbas$xx <- c(prob$solbasxx, 0.0)

probsolbas$slx <- c(prob$solbasslx, 0.0)

probsolbas$sux <- c(prob$solbassux, 0.0)

probsolbas$skx <- c(prob$solbasskx, "UN")

r <- mosek(prob)

print (rsolbas$xx)

If the optimizer used the data from the previous run to hot-start the optimizer for reoptimization,
this will be indicated in the log:

Optimizer - hotstart : yes

When performing re-optimizations, instead of removing a basic variable it may be more efficient to
fix the variable at zero and then remove it when the problem is re-optimized and it has left the basis.
This makes it easier for MOSEK to restart the simplex optimizer.

45

6.11 Retrieving infeasibility certificates

When a continuous problem is declared as primal or dual infeasible, MOSEK provides a Farkas-type
infeasibility certificate. If, as it happens in many cases, the problem is infeasible due to an unintended
mistake in the formulation or because some individual constraint is too tight, then it is likely that
infeasibility can be isolated to a few linear constraints/bounds that mutually contradict each other. In
this case it is easy to identify the source of infeasibility. The tutorial in Sec. 8.3 has instructions on
how to deal with this situation and debug it by hand. We recommend Sec. 8.3 as an introduction to
infeasibility certificates and how to deal with infeasibilities in general.

Some users, however, would prefer to obtain the infeasibility certificate using Rmosek package, for
example in order to repair the issue automatically, display the information to the user, or perhaps simply
because the infeasibility was one of the intended outcomes that should be analyzed in the code.

In this tutorial we show how to obtain such an infeasibility certificate with Rmosek package in
the most typical case, that is when the linear part of a problem is primal infeasible. A Farkas-type
primal infeasibility certificate consists of the dual values of linear constraints and bounds. The names
of duals corresponding to various parts of the problem are defined in Sec. 11.1.2. Each of the dual
values (multipliers) indicates that a certain multiple of the corresponding constraint should be taken
into account when forming the collection of mutually contradictory equalities/inequalities.

6.11.1 Example PFEAS

For the purpose of this tutorial we use the same example as in Sec. 8.3, that is the primal infeasible
problem

minimize ro + 2x1 + OSx2 + 2x3 + x4y + 25 + zg
subject to sg: ®y + 1 < 200,
S1: To + z3 < 1000,
So : Ty + x5 + x¢ < 1000,
do . X + x4 = 1100, (635)
d1 : 1 = 200,
ds : To + x5 = 500,
ds: xr3 + rg = 500,
€Ty Z 0

Checking infeasible status and adjusting settings

After the model has been solved we check that it is indeed infeasible. If yes, then we choose a threshold
for when a certificate value is considered as an important contributor to infeasibility (ideally we would
like to list all nonzero duals, but just like an optimal solution, an infeasibility certificate is also subject
to floating-point rounding errors). All these steps are demonstrated in the snippet below:

Check problem status

if (rsolitr$prosta == 'PRIMAL_INFEASIBLE') {
Set the tolerance at which we consider a dual value as essential
eps <- le-7

Going through the certificate for a single item

We can define a fairly generic function which takes an array of lower and upper dual values and all other
required data and prints out the positions of those entries whose dual values exceed the given threshold.
These are precisely the values we are interested in:

Analyzes and prints infeasibility contributing elements

analyzeCertificate <- function(sl, # dual values for lower bounds
su, # dual values for upper bounds
eps) # tolerance determining when a dual value %5,

—considered important

{

(continues on next page)

46

(continued from previous page)

n <- length(sl)

for(i in 1:n) {
if (abs(sl[i]) > eps) print(sprintf("#Jd: lower, dual = Je", i, sl[i]))
if (abs(suli]) > eps) print(sprintf("#)d: upper, dual = %e", i, sulil))

Full source code

All that remains is to call this function for all variable and constraint bounds for which we want to know
their contribution to infeasibility. Putting all these pieces together we obtain the following full code:

Listing 6.22: Demonstrates how to retrieve a primal infeasibility
certificate.

pinfeas <- function()

{

In this example we set up a simple problem

prob <- testProblem()

Perform the optimization.

r <- mosek(prob)

Use the line below instead to disable log output

#r <- mosek(prob, list(verbose=0))

Check problem status

if (rsolitr$prosta == 'PRIMAL_INFEASIBLE') {
Set the tolerance at which we constder a dual value as essential
eps <- le-7
print("Variable bounds important for infeasibility: ")
analyzeCertificate(rsolitrslx, rsolitrsux, eps)
print ("Constraint bounds important for infeasibility: ")
analyzeCertificate(rsolitrslc, rsolitrsuc, eps)

}

else {
print ("The problem is not primal infeasible, no certificate to show")

}

}

Running this code will produce the following output:

Variable bounds important for infeasibility:
#6: lower, dual = 1.000000e+00

#7: lower, dual = 1.000000e+00

Constraint bounds important for infeasibility:
#1: upper, dual = 1.000000e+00

#3: upper, dual = 1.000000e+00

#4: lower, dual 1.000000e+00

#5: lower, dual = 1.000000e+00

Il

I

indicating the positions of bounds which appear in the infeasibility certificate with nonzero values.
For a more in-depth treatment see the following sections:

e Sec. 10 for more advanced and complicated optimization examples.

e Sec. 10.1 for examples related to portfolio optimization.

47

e Sec. 11 for formal mathematical formulations of problems MOSEK can solve, dual problems and
infeasibility certificates.

48

Chapter 7

Solver Interaction Tutorials

In this section we cover the interaction with the solver.

7.1 Accessing the solution

This section contains important information about the status of the solver and the status of the solution,
which must be checked in order to properly interpret the results of the optimization.

7.1.1 Solver termination

The optimizer provides a response code of type rescode, relevant for error handling. It indicates if
any errors occurred in any phase of optimization (including processing input data). It will also indicate
system-related errors (such as an out of memory error, licensing error etc.). Finally, it will also indicate
if the optimizer terminated correctly, but for a non-standard reason, for example because it reached a
time limit or met another criterion set by the user. Such termination codes are not errors. The expected
value for a typical successful optimization without any special settings is "MSK_RES_0K".

If a runtime error causes the program to crash during optimization, the first debugging step is to
enable logging and check the log output. See Sec. 7.3.

If the optimization completes successfully, the next step is to check the solution status, as explained
below.

7.1.2 Available solutions

MOSEK uses three kinds of optimizers and provides three types of solutions:
e basic solution from the simplex optimizer,
e interior-point solution from the interior-point optimizer,
e integer solution from the mixed-integer optimizer.
Under standard parameters settings the following solutions will be available for various problem types:

Table 7.1: Types of solutions available from MOSEK

Simplex opti- | Interior-point opti- | Mixed-integer opti-
mizer mizer mizer

Linear problem rsolbas rsolitr

Nonlinear continuous prob- r$solitr

lem

Problem with integer vari- rsolint

ables

For linear problems the user can force a specific optimizer choice making only one of the two solutions
available. For example, if the user disables basis identification, then only the interior point solution will
be available for a linear problem. Numerical issues may cause one of the solutions to be unknown even
if another one is feasible.

49

Not all components of a solution are always available. For example, there is no dual solution for
integer problems and no dual conic variables from the simplex optimizer.
The user will always need to specify which solution should be accessed.

7.1.3 Problem and solution status

Assuming that the optimization terminated without errors, the next important step is to check the
problem and solution status. There is one for every type of solution, as explained above.

Problem status

Problem status (prosta) determines whether the problem is certified as feasible. Its values can roughly
be divided into the following broad categories:

e feasible — the problem is feasible. For continuous problems and when the solver is run with
default parameters, the feasibility status should ideally be "MSK_PRO_STA_PRIM_AND_DUAL_FEAS".

e primal/dual infeasible — the problem is infeasible or unbounded or a combination of those.
The exact problem status will indicate the type of infeasibility.

e unknown — the solver was unable to reach a conclusion, most likely due to numerical issues.

Solution status

Solution status (solsta) provides the information about what the solution values actually contain. The
most important broad categories of values are:

e optimal ("MSK_SOL_STA_OPTIMAL") — the solution values are feasible and optimal.

e certificate — the solution is in fact a certificate of infeasibility (primal or dual, depending on the
solution).

e unknown/undefined — the solver could not solve the problem or this type of solution is not
available for a given problem.

Problem and solution status can be found in the fields prosta and solsta of a solution structure
solution_info, for instance rsolitr$prosta, r$sol$itrPsolsta for the interior-point solution.

The solution status determines the action to be taken. For example, in some cases a suboptimal
solution may still be valuable and deserve attention. It is the user’s responsibility to check the status
and quality of the solution.

Typical status reports

Here are the most typical optimization outcomes described in terms of the problem and solution statuses.
Note that these do not cover all possible situations that can occur.

Table 7.2: Continuous problems (solution status for interior-point
and basic solution)

'ER

'ER

Outcome Problem status Solution status
Optimal "MSK_PRO_STA_PRIM_AND_DUAL_FEASMSK_SOL_STA_OPTIMAL"
Primal infeasible "MSK_PRO_STA_PRIM_INFEAS"

"MSK_SOL_STA_PRIM_INFEAS_(
Dual infeasible (unbounded) "MSK_PRO_STA_DUAL_INFEAS"

"MSK_SOL_STA_DUAL_INFEAS_(
Uncertain (stall, numerical is- | "MSK_PRO_STA_UNKNOWN" "MSK_SOL_STA_UNKNOWN"
sues, etc.)

50

Table 7.3: Integer problems (solution status for integer solution,
others undefined)

Outcome Problem status Solution status

hwegeropthnal "MSK_PRO_STA_PRIM_FEAS" "MSK_SOL_STA_INTEGER_OPTIMAL"
Infeasible "MSK_PRO_STA_PRIM_INFEAS" "MSK_SOL_STA_UNKNOWN"

Integer feasible point | "MSK_PRO_STA_PRIM_FEAS" "MSK_SOL_STA_PRIM_FEAS"

No conclusion "MSK_PRO_STA_UNKNOWN" "MSK_SOL_STA_UNKNOWN"

7.1.4 Retrieving solution values

After the meaning and quality of the solution (or certificate) have been established, we can query for the
actual numerical values. They can be accessed using:

e rsolitr$pobjval, r$solitrdobjval — the primal and dual objective value.
e rsolitr$xx — solution values for the variables.
o rsolitrdy, rsolitr$slx and so on — dual values for the linear constraints

and many other fields of the solution_info structure (replace itr with bas or int for other solution
types). Note that if the optimization failed then the r$sol field may not exist and attempting to access
it will cause an error.

7.1.5 Source code example

Below is a source code example with a simple framework for assessing and retrieving the solution to a
conic optimization problem.

Listing 7.1: Sample framework for checking optimization result.

response <- function()

{
In thts example we set up a simple problem
prob <- setupProblem()

(Opttonally) Uncomment the next line to get solution status Unknown
prob$iparam <- 1ist(INTPNT_MAX_ITERATIONS=1)

Perform the optimization.

r <- mosek(prob, list(verbose=0))

Use the line below tnstead to get more log output
#r <- mosek(prob, list(verbose=10))

Expected result: The solution status of the interior-point solution is optimal.

Check ©f there was a fatal error
if (r$response$code != 0 && startsWith(r$response$msg, "MSK_RES_ERR"))
{

print (sprintf ("Optimization error: %s (%d),", r$response$msg, r$response
—$code))

}

else

{
if (rsolitr$solsta == 'OPTIMAL')
{

print('An optimal interior-point solution is located:')
print (rsolitr$xx)

(continues on next page)

51

(continued from previous page)

else if (rsolitr$solsta == 'DUAL_INFEASIBLE_CER')
{
print('Dual infeasibility certificate found.')
}
else if (rsolitr$solsta == 'PRIMAL_INFEASIBLE_CER')
{
print ('Primal infeasibility certificate found.')
}
else if (rsolitr$solsta == 'UNKNOWN')
{
The solutions status is unknown. The termination code
indicates why the optimizer terminated prematurely.
print('The solution status is unknown.')
print (sprintf ('Termination code: %s (%d).', r$response$msg, r$response
—$code))
¥
else
{
printf ('An unexpected solution status is obtained.')
}

7.2 Errors and exceptions

Response codes

The function mosek returns a response code (and its human-readable description), informing if opti-
mization was performed correctly, and if not, what error occurred. The expected response, indicating
successful execution, is always "MSK_RES_OK". Typical errors include:

e referencing a nonexisting variable (for example with too large index),

e incompatible dimensions of input data matrices,

NaN in the input data,

duplicate conic variable,
e error in the optimizer.

A full list of response codes, error, warning and termination codes can be found in the A PI reference.
For example, if the objective vector contains a NaN then

r <- mosek(prob)
r$response

will produce as output:

$code
[1] 1470

$msg
[1] "MSK_RES_ERR_NAN_IN_C: c contains an invalid floating point value, i.e. a NaN."

52

Optimizer errors and warnings

The optimizer may also produce warning messages. They indicate non-critical but important events,
that will not prevent solver execution, but may be an indication that something in the optimization
problem might be improved. Warning messages are normally printed to a log stream (see Sec. 7.3). A
typical warning is, for example:

MOSEK warning 53: A numerically large upper bound value 6.6e+09 is specified for
—.constraint 'C69200' (46020).

Warnings can also be suppressed by setting the MSK_IPAR_MAX_NUM_WARNINGS parameter to zero, if
they are well-understood.

Error and solution status handling example

Below is a source code example with a simple framework for handling major errors when assessing and
retrieving the solution to a conic optimization problem.

Listing 7.2: Sample framework for checking optimization result.

response <- function()

{
In this example we set up a simple problem
prob <- setupProblem()

(Optionally) Uncomment the next line to get solution status Unknown
prob$iparam <- list(INTPNT_MAX_ITERATIONS=1)

Perform the optimization.

r <- mosek(prob, list(verbose=0))

Use the line below instead to get more log output
#r <- mosek(prob, list(verbose=10))

Exzpected result: The solution status of the interior-point solution is optimal.

Check ©f there was a fatal error
if (r$response$code != 0 && startsWith(r$response$msg, "MSK_RES_ERR"))
{
print (sprintf ("Optimization error: %s (%d),", r$response$msg, r$response
—$code))

}
else
{
if (rsolitr$solsta == 'OPTIMAL')
{
print('An optimal interior-point solution is located:')
print (rsolitrdxx)
}
else if (rsolitr$solsta == 'DUAL_INFEASIBLE_CER')
{
print('Dual infeasibility certificate found.')
¥
else if (rsolitr$solsta == 'PRIMAL_INFEASIBLE_CER')
{
print('Primal infeasibility certificate found.')
}
else if (rsolitr$solsta == 'UNKNOWN')
{

The solutions status is unknown. The termination code

(continues on next page)

53

(continued from previous page)

indicates why the optimizer terminated prematurely.
print ('The solution status is unknown.')

print(sprintf ('Termination code: %s (%d).', r$response$msg, r$response
—$code))
¥
else
{
printf ('An unexpected solution status is obtained.')
}
}
}

7.3 Input/Output

7.3.1 Stream logging

By default the solver prints a log output analogous to the one produced by the command-line version of
MOSEK. Logging may be turned off using the option verbose, for example:

r <- mosek(prob, list(verbose=0))

7.3.2 Log verbosity

The logging verbosity can be controlled by setting the relevant parameters, as for instance
o MSK_IPAR_LOG,
e MSK_IPAR_LOG_INTPNT,
e MSK_IPAR_LOG_MIO,
o MSK_IPAR_LOG_CUT_SECOND_OPT,
e MSK_IPAR_LOG_SIM, and
e MSK_IPAR_LOG_SIM_MINOR.

Each parameter controls the output level of a specific functionality or algorithm. The main switch
is MSK_IPAR_LOG which affect the whole output. The actual log level for a specific functionality is
determined as the minimum between ¥SK_IPAR_LOG and the relevant parameter. For instance, the log
level for the output produce by the interior-point algorithm is tuned by the ¥SK_IPAR_LOG_INTPNT; the
actual log level is defined by the minimum between MSK_IPAR_LOG and MSK_IPAR_LOG_INTPNT.

Tuning the solver verbosity may require adjusting several parameters. It must be noticed that verbose
logging is supposed to be of interest during debugging and tuning. When output is no more of interest, the
user can easily disable it globally with ¥SK_ITPAR_LOG. Larger values of MSK_IPAR_L0OG do not necessarily
result in increased output.

By default MOSEK will reduce the amount of log information after the first optimization on a given
problem. To get full log output on subsequent re-optimizations set MSK_IPAR_LOG_CUT_SECOND_OPT to
Z€ro.

54

7.3.3 Saving a problem to a file

An optimization problem can be dumped to a file using the function mosek_write. The file format will
be determined from the filename’s extension. Supported formats are listed in Sec. 14 together with a
table of problem types supported by each.

For instance the problem can be written to a human-readable PTF file (see Sec. 14.5) with

r <- mosek_write(prob, "dump.ptf");

All formats can be compressed with gzip by appending the .gz extension, and with ZStandard by
appending the .zst extension, for example

r <- mosek_write(prob, "dump.task.gz");

Some remarks:
e The problem is written to the file as it is represented in the underlying optimizer task.

e Unnamed variables are given generic names. It is therefore recommended to use meaningful variable
names if the problem file is meant to be human-readable.

e The task format is MOSEK’s native file format which contains all the problem data as well as

solver settings.

7.3.4 Reading a problem from a file

A problem saved in any of the supported file formats can be read directly into a problem structure using
the function mosek_read. Afterwards the problem can be optimized, modified, etc.

r <- mosek_read("dump.ptf");
r$prob

7.4 Setting solver parameters

MOSEK comes with a large number of parameters that allows the user to tune the behavior of the
optimizer. The typical settings which can be changed with solver parameters include:

e choice of the optimizer for linear problems,

e choice of primal/dual solver,

e turning presolve on/off,

e turning heuristics in the mixed-integer optimizer on/off,
e level of multi-threading,

e feasibility tolerances,

e solver termination criteria,

e behaviour of the license manager,

and more. All parameters have default settings which will be suitable for most typical users.
The API reference contains:

e Full list of parameters

e List of parameters grouped by topic

55

Setting parameters

Each parameter is identified by a unique name and it can accept either integers, floating point values,
symbolic strings or symbolic values. Parameters are set in the lists iparam, dparam and sparam of the
structure problem and passed with the problem to mosek.

Some parameters can accept symbolic strings from a fixed set. The set of accepted values for every
parameter is provided in the API reference.

For example, the following piece of code sets up parameters which choose and tune the interior point
optimizer before solving a problem.

Listing 7.3: Parameter setting example.

Set log level (integer parameter)

and select interior-point optimizer... (integer parameter)

... without basis identification (integer parameter)

prob$iparam <- 1ist(L0OG=0, OPTIMIZER="OPTIMIZER_INTPNT", INTPNT_BASIS="BI_NEVER")

Set relative gap tolerance (double parameter)
prob$dparam <- 1list(INTPNT_CO_TOL_REL_GAP=1.0e-7)

Solve the problem
r <- mosek(prob)

7.5 Retrieving information items

After the optimization the user has access to the solution as well as to a report containing a large amount
of additional information items. For example, one can obtain information about:

e timing: total optimization time, time spent in various optimizer subroutines, number of iterations,
etc.

e solution quality: feasibility measures, solution norms, constraint and bound violations, etc.
e problem structure: counts of variables of different types, constraints, nonzeros, etc.
e integer optimizer: integrality gap, objective bound, number of cuts, etc.

and more. Information items are numerical values of integer, long integer or double type. The full
list can be found in the API reference:

e Double
e Integer

e Long

Retrieving the values

Values of information items are only returned if the getinfo option is set to TRUE. They are available in
the fields:

e r$dinfo for a double information item,
e r$iinfo for an integer or long integer information item.

Each information item is identified by a unique name. The example below reads two pieces of data
from the solver: total optimization time and the number of interior-point iterations.

56

Listing 7.4: Information items example.

opts <- list(getinfo=TRUE)
r <- mosek(prob, opts)

print (r$dinfo$0PTIMIZER_TIME)
print (r$iinfo$INTPNT_ITER)

57

Chapter 8

Debugging Tutorials

This collection of tutorials contains basic techniques for debugging optimization problems using tools
available in MOSEK: optimizer log, solution summary, infeasibility report, command-line tools. It is
intended as a first line of technical help for issues such as: Why do I get solution status unknown and
how can I fix it? Why is my model infeasible while it shouldn’t be? Should I change some parameters?
Can the model solve faster? etc.

The major steps when debugging a model are always:

e Consult the log output. It is enabled by default, but if neccessary switch it on explicitly with:

r <- mosek(prob, list(verbose=10))

e Run the optimization and analyze the log output, see Sec. 8.1. In particular:

— check if the problem setup (number of constraints/variables etc.) matches your expectation.

— check solution summary and solution status.
e Dump the problem to disk if necessary to continue analysis. See Sec. 7.3.3.

— use a human-readable text format, preferably *.ptf if you want to check the problem structure
by hand. Assign names to variables and constraints to make them easier to identify.

r <- mosek_write(prob, "dump.ptf");

— use the MOSEK native format *.task.gz when submitting a bug report or support question.

r <- mosek_write(prob, "dump.task.gz");

e Fix problem setup, improve the model, locate infeasibility or adjust parameters, depending on the
diagnosis.

See the following sections for details.

8.1 Understanding optimizer log

The optimizer produces a log which splits roughly into four sections:
1. summary of the input data,
2. presolve and other pre-optimize problem setup stages,
3. actual optimizer iterations,
4. solution summary.

In this tutorial we show how to analyze the most important parts of the log when initially debugging
a model: input data (1) and solution summary (4). For the iterations log (3) see Sec. 12.3.4 or Sec.
12.4.4.

58

8.1.1 Input data

If MOSEK behaves very far from expectations it may be due to errors in problem setup. The log file
will begin with a summary of the structure of the problem, which looks for instance like:

Problem
Name
Objective sense : minimize
Type : CONIC (conic optimization problem)
Constraints 1 234
Affine conic cons. : 5348
Disjunctive cons. : 0
Cones : 0
Scalar variables : 20693
Matrix variables : 0
Integer variables : 0

This can be consulted to eliminate simple errors: wrong objective sense, wrong number of variables
etc. Note that some modeling tools can introduce additional variables and constraints to the model and
perturb the model even further (such as by dualizing). In most MOSEK APIs the problem dimensions
should match exactly what the user specified.

If this is not sufficient a bit more information can be obtained by dumping the problem to a file
(see Sec. 8) and using the anapro option of any of the command line tools. This will produce a longer
summary similar to:

*x Variables
scalar: 20414 integer: 0 matrix: O
low: 2082 up: 5014 ranged: O free: 12892 fixed: 426

*x Constraints
all: 20413
low: 10028 up: O ranged: O free: O fixed: 10385

**x Affine conic constraints (ACC)
QUAD: 1 dims: 2865: 1
RQUAD: 2507 dims: 3: 2507

** Problem data (numerics)

lcl nnz: 10028 min=2.09e-05 max=1.00e+00
|A] nnz: 597023 min=1.17e-10 max=1.00e+00
blx fin: 2508 min=-3.60e+09 max=2.75e+05
bux fin: 5440 min=0.00e+00 max=2.94e+08
blc fin: 20413 min=-7.61e+05 max=7.61e+05
buc fin: 10385 min=-5.00e-01 max=0.00e+00
|F| nnz: 612301 min=8.29e-06 max=9.31e+01
gl nnz: 1203 min=5.00e-03 max=1.00e+00

Again, this can be used to detect simple errors, such as:

e Wrong type of conic constraint was used or it has wrong dimension.
e The bounds for variables or constraints are incorrect or incomplete.
e The model is otherwise incomplete.

e Suspicious values of coefficients.

e For various data sizes the model does not scale as expected.

Finally saving the problem in a human-friendly text format such as LP or PTF (see Sec. 8) and
analyzing it by hand can reveal if the model is correct.

59

Warnings and errors

At this stage the user can encounter warnings which should not be ignored, unless they are well-
understood. They can also serve as hints as to numerical issues with the problem data. A typical
warning of this kind is

MOSEK warning 53: A numerically large upper bound value 2.9e+08 is specified for,
—variable 'absh[107]' (2613).

Warnings do not stop the problem setup. If, on the other hand, an error occurs then the model will
become invalid. The user should make sure to test for errors/exceptions from all API calls that set up
the problem and validate the data. See Sec. 7.2 for more details.

8.1.2 Solution summary

The last item in the log is the solution summary.

Continuous problem
Optimal solution

A typical solution summary for a continuous (linear, conic, quadratic) problem looks like:

Problem status : PRIMAL_AND_DUAL_FEASIBLE

Solution status : OPTIMAL

Primal. obj: 8.7560516107e+01 nrm: 1le+02 Viol. con: 3e-12 var: 0e+00
—acc: 3e-11

Dual. obj: 8.7560521345e+01 nrm: 1e+00 Viol. con: 5e-09 var: 9e-11 U
—acc: 0e+00

It contains the following elements:
e Problem and solution status. For details see Sec. 7.1.3.

e A summary of the primal solution: objective value, infinity norm of the solution vector and maximal
violations of variables and constraints of different types. The violation of a linear constraint such
as alz < bis max(a®x — b,0). The violation of a conic constraint is the distance to the cone.

e The same for the dual solution.

The features of the solution summary which characterize a very good and accurate solution and a
well-posed model are:

e Status: The solution status is OPTIMAL.

e Duality gap: The primal and dual objective values are (almost) identical, which proves the
solution is (almost) optimal.

e Norms: Ideally the norms of the solution and the objective values should not be too large. This of
course depends on the input data, but a huge solution norm can be an indicator of issues with the
scaling, conditioning and/or well-posedness of the model. It may also indicate that the problem is
borderline between feasibility and infeasibility and sensitive to small perturbations in this respect.

e Violations: The violations are close to zero, which proves the solution is (almost) feasible. Observe
that due to rounding errors it can be expected that the violations are proportional to the norm
(nrm:) of the solution. It is rarely the case that violations are exactly zero.

60

Solution status UNKNOWN

A typical example with solution status UNKNOWN due to numerical problems will look like:

Problem status : UNKNOWN

Solution status : UNKNOWN

Primal. obj: 1.3821656824e+01 nrm: 1le+01 Viol. con: 2e-03 var: 0e+00 U
—acc: 0e+00

Dual. obj: 3.0119004098e-01 nrm: 5e+07 Viol. con: 4e-16 var: le-01 U
—acc: 0e+00

Note that:

e The primal and dual objective are very different.

e The dual solution has very large norm.

e There are considerable violations so the solution is likely far from feasible.

Follow the hints in Sec. 8.2 to resolve the issue.

Solution status UNKNOWN with a potentially useful solution

Solution status UNKNOWN does not necessarily mean that the solution is completely useless. It only means
that the solver was unable to make any more progress due to numerical difficulties, and it was not able
to reach the accuracy required by the termination criteria (see Sec. 12.3.2). Consider for instance:

Problem status : UNKNOWN

Solution status : UNKNOWN

Primal. obj: 3.4531019648e+04 nrm: 1le+05 Viol. con: 7e-02 var: 0e+00 U
—acc: 0e+00

Dual. obj: 3.4529720645e+04 nrm: 8e+03 Viol. «con: 1le-04 var: 2e-04 U
—acc: 0e+00

Such a solution may still be useful, and it is always up to the user to decide. It may be a good enough
approximation of the optimal point. For example, the large constraint violation may be due to the fact
that one constraint contained a huge coeflicient.

Infeasibility certificate

A primal infeasibility certificate is stored in the dual variables:

Problem status : PRIMAL_INFEASIBLE

Solution status : PRIMAL_INFEASIBLE_CER

Dual. obj: 2.9238975853e+02 nrm: 6e+02 Viol. con: 0e+00 var: le-11 U
—acc: 0e+00

It is a Farkas-type certificate as described in Sec. 11.2.2. In particular, for a good certificate:

e The dual objective is positive for a minimization problem, negative for a maximization problem.
Ideally it is well bounded away from zero.

e The norm is not too big and the violations are small (as for a solution).

If the model was not expected to be infeasible, the likely cause is an error in the problem formulation.
Use the hints in Sec. 8.1.1 and Sec. 8.3 to locate the issue.

Just like a solution, the infeasibility certificate can be of better or worse quality. The infeasibility
certificate above is very solid. However, there can be less clear-cut cases, such as for example:

Problem status : PRIMAL_INFEASIBLE

Solution status : PRIMAL_INFEASIBLE_CER

Dual. obj: 1.6378689238e-06 nrm: 6e+05 Viol. con: 7e-03 var: 2e-04 U
—acc: 0e+00

61

This infeasibility certificate is more dubious because the dual objective is positive, but barely so in
comparison with the large violations. It also has rather large norm. This is more likely an indication
that the problem is borderline between feasibility and infeasibility or simply ill-posed and sensitive to
tiny variations in input data. See Sec. 8.3 and Sec. 8.2.

The same remarks apply to dual infeasibility (i.e. unboundedness) certificates. Here the primal
objective should be negative a minimization problem and positive for a maximization problem.

8.1.3 Mixed-integer problem

Optimal integer solution

For a mixed-integer problem there is no dual solution and a typical optimal solution report will look as
follows:

Problem status : PRIMAL_FEASIBLE

Solution status : INTEGER_OPTIMAL

Primal. obj: 6.0111122960e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-14
—itg: be-15

The interpretation of all elements is as for a continuous problem. The additional field itg denotes
the maximum violation of an integer variable from being an exact integer.
Feasible integer solution

If the solver found an integer solution but did not prove optimality, for instance because of a time limit,
the solution status will be PRIMAL_FEASIBLE:

Problem status : PRIMAL_FEASIBLE

Solution status : PRIMAL_FEASIBLE

Primal. obj: 6.0114607792e+06 nrm: 1e+03 Viol. «con: 2e-13 var: 2e-13 U
—itg: 4e-15

In this case it is valuable to go back to the optimizer summary to see how good the best solution is:

31 35 1 0 6.0114607792e+06 6.0078960892e+06 0.06
. 4.1

Objective of best integer solution : 6.011460779193e+06
Best objective bound : 6.007896089225e+06

In this case the best integer solution found has objective value 6.011460779193e+06, the best proved
lower bound is 6.007896089225e+06 and so the solution is guaranteed to be within 0.06% from optimum.
The same data can be obtained as information items through an API. See also Sec. 12.4 for more details.

Infeasible problem

If the problem is declared infeasible the summary is simply

Problem status : PRIMAL_INFEASIBLE

Solution status : UNKNOWN

Primal. obj: 0.0000000000e+00 nrm: 0e+00 Viol. con: 0e+00 var: 0e+00
—itg: 0e+00

If infeasibility was not expected, consult Sec. 8.3.

62

8.2 Addressing numerical issues

The suggestions in this section should help diagnose and solve issues with numerical instability, in
particular UNKNOWN solution status or solutions with large violations. Since numerically stable models
tend to solve faster, following these hints can also dramatically shorten solution times.

We always recommend that issues of this kind are addressed by reformulating or rescaling the model,
since it is the modeler who has the best insight into the structure of the problem and can fix the cause
of the issue.

8.2.1 Formulating problems
Scaling

Make sure that all the data in the problem are of comparable orders of magnitude. This applies especially
to the linear constraint matrix. Use Sec. 8.1.1 if necessary. For example a report such as

|A] nnz: 597023 min=1.17e-6 max=2.21e+5

means that the ratio of largest to smallest elements in A is 10'. In this case the user should rescale
or reformulate the model to avoid such spread which makes it difficult for MOSEK to scale the problem
internally. In many cases it may be possible to change the units, i.e. express the model in terms of
rescaled variables (for instance work with millions of dollars instead of dollars, etc.).

Similarly, if the objective contains very different coefficients, say

maximize 102 +y

then it is likely to lead to inaccuracies. The objective will be dominated by the contribution from x and
y will become insignificant.

Removing huge bounds

Never use a very large number as replacement for co. Instead define the variable or constraint as
unbounded from below /above. Similarly, avoid artificial huge bounds if you expect they will not become
tight in the optimal solution.

Avoiding linear dependencies

As much as possible try to avoid linear dependencies and near-linear dependencies in the model. See
Example 8.3.

Avoiding ill-posedness

Avoid continuous models which are ill-posed: the solution space is degenerate, for example consists of a
single point (technically, the Slater condition is not satisfied). In general, this refers to problems which
are borderline between feasible and infeasible. See Example 8.1.

Scaling the expected solution

Try to formulate the problem in such a way that the expected solution (both primal and dual) is not
very large. Consult the solution summary Sec. 8.1.2 to check the objective values or solution norms.

63

8.2.2 Further suggestions

Here are other simple suggestions that can help locate the cause of the issues. They can also be used as
hints for how to tune the optimizer if fixing the root causes of the issue is not possible.

Remove the objective and solve the feasibility problem. This can reveal issues with the objective.

Change the objective or change the objective sense from minimization to maximization (if appli-
cable). If the two objective values are almost identical, this may indicate that the feasible set is
very small, possibly degenerate.

Perturb the data, for instance bounds, very slightly, and compare the results.

For linear problems: solve the problem using a different optimizer by setting the parameter
MSK_IPAR_OPTIMIZER and compare the results.

Force the optimizer to solve the primal/dual versions of the problem by setting the parameter
MSK_IPAR_INTPNT_SOLVE_FORM or MSK_IPAR_SIM_SOLVE_FORM. MOSEK has a heuristic to decide
whether to dualize, but for some problems the guess is wrong an explicit choice may give better
results.

Solve the problem without presolve or some of its parts by setting the parameter
MSK_IPAR_PRESOLVE_USE, see Sec. 12.1.

Use different numbers of threads (¥SK_IPAR_NUM_THREADS) and compare the results. Very different
results indicate numerical issues resulting from round-off errors.

If the problem was dumped to a file, experimenting with various parameters is facilitated with the
MOSEK Command Line Tool or MOSEK Python Console Sec. 8.4.

8.2.3 Typical pitfalls

Example 8.1 (Ill-posedness). A toy example of this situation is the feasibility problem

(x—1)2<1, (z+1)*<1

whose only solution is x = 0 and moreover replacing any 1 on the right hand side by 1 — ¢ makes
the problem infeasible and replacing it by 1 + € yields a problem whose solution set is an interval
(fully-dimensional). This is an example of ill-posedness.

Example 8.2 (Huge solution). If the norm of the expected solution is very large it may lead to
numerical issues or infeasibility. For example the problem

(1074, 2,10%) € @3

may be declared infeasible because the expected solution must satisfy x > 5-10°.

Example 8.3 (Near linear dependency). Consider the following problem:

minimize
subject to r1 + X9 = 1,
I3 + Xrq = 1,
- x1 — 3 = —1+c¢,
— To — T4 = —1,
1, o, s, Ty Z 0

If we add the equalities together we obtain:

64

which is infeasible for any ¢ # 0. Here infeasibility is caused by a linear dependency in the constraint
matrix coupled with a precision error represented by the ¢. Indeed if a problem contains linear
dependencies then the problem is either infeasible or contains redundant constraints. In the above
case any of the equality constraints can be removed while not changing the set of feasible solutions.
To summarize linear dependencies in the constraints can give rise to infeasible problems and therefore
it is better to avoid them.

Example 8.4 (Presolving very tight bounds). Next consider the problem

minimize
subject to x7; —0.0lzy = 0,
zo — 0.0l = 0,
r3 —0.0lxy = 0,
T1 > —1079,
X < 1077,
T4 > 10~

Now the MOSEK presolve will, for the sake of efficiency, fix variables (and constraints) that have
tight bounds where tightness is controlled by the parameter ¥SK_DPAR_PRESOLVE_TOL_X. Since the
bounds

—107% <z, <1077

are tight, presolve will set 1 = 0. It easy to see that this implies x4, = 0, which leads to the incorrect
conclusion that the problem is infeasible. However a tiny change of the value 10~° makes the problem
feasible. In general it is recommended to avoid ill-posed problems, but if that is not possible then one
solution is to reduce parameters such as MSKk_DPAR_PRESOLVE_TOL_X to say 10710, This will at least
make sure that presolve does not make the undesired reduction.

8.3 Debugging infeasibility

When solving an optimization problem one typically expects to get an optimal solution, but in some
cases, either by design, or (most frequently) due to an error in the formulation, the problem may become
infeasible (have no solution at all).

This section

e describes the intuitions behind infeasibility,

e helps to debug (unexpectedly) infeasible problems using the command line tool and by inspecting
infeasibility reports and problem data by hand,

e gives some hints for how to modify the formulation to identify the reasons for infeasibility.

If, instead, you want to fetch an infeasibility certificate directly using Rmosek package, see the tutorial
in Sec. 6.11.

An infeasibility certificate is only available for continuous problems, however the hints in Sec. 8.3.4
apply to a large extent also to mixed-integer problems.

65

8.3.1 Numerical issues

Infeasible problem status may be just an artifact of numerical issues appearing when the problem is
badly-scaled, barely feasible or otherwise ill-conditioned so that it is unstable under small perturbations
of the data or round-off errors. This may be visible in the solution summary if the infeasibility certificate
has poor quality. See Sec. 8.1.2 for how to diagnose that and Sec. 8.2 for possible hints. Sec. 8.2.3
contains examples of situations which may lead to infeasibility for numerical reasons.

We refer to Sec. 8.2 for further information on dealing with those sort of issues. For the rest of this
section we concentrate on the case when the solution summary leaves little doubt that the problem solved
by the optimizer actually is infeasible.

8.3.2 Locating primal infeasibility

As an example of a primal infeasible problem consider minimizing the cost of transportation between a
number of production plants and stores: Each plant produces a fixed number of goods, and each store
has a fixed demand that must be met. Supply, demand and cost of transportation per unit are given in
Fig. 8.1.

Supply Demand
1100
200
200
1000 ‘
500
1000
500

Fig. 8.1: Supply, demand and cost of transportation.
The problem represented in Fig. 8.1 is infeasible, since the total demand
2300 = 1100 + 200 + 500 + 500
exceeds the total supply
2200 = 200 + 1000 + 1000

If we denote the number of transported goods from plant 7 to store j by z;;, the problem can be
formulated as the LP:

minimize 11 + 2x12 4+ Dxrey + 2T04 + x31 + 2133 + T3s
subject to sp: w1 + T2 < 200,
S1 ¢ I3 + Tog S 1000,
So : 31 + w33 + w3a < 1000,
di: 11 + x31 = 1100,
d2 : X192 = 200,
d3 : T3 + I33 = 500,
d4 : Toq + T34 = 500,
zi; 2> 0
(8.1)

66

Solving problem (8.1) using MOSEK will result in an infeasibility status. The infeasibility certificate
is contained in the dual variables an can be accessed from an API. The variables and constraints with
nonzero solution values form an infeasible subproblem, which frequently is very small. See Sec. 11.1.2 or
Sec. 11.2.2 for detailed specifications of infeasibility certificates.

A short infeasibility report can also be printed to the log stream. It can be turned on by setting
the parameter ¥MSK_IPAR_INFEAS_REPORT_AUTO to "MSK_ON". This causes MOSEK to print a report on
variables and constraints which are involved in infeasibility in the above sense, i.e. have nonzero values
in the certificate. The parameter MSK_IPAR_INFEAS_REPORT_LEVEL controls the amount of information
presented in the infeasibility report. The default value is 1. For the above example the report is

MOSEK PRIMAL INFEASIBILITY REPORT.
Problem status: The problem is primal infeasible

The following constraints are involved in the primal infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper

0 s0 NONE 2.000000e+002 0.000000e+000 1.000000e+000
2 s2 NONE 1.000000e+003 0.000000e+000 1.000000e+000
3 d1 1.100000e+003 1.100000e+003 1.000000e+000 0.000000e+000
4 d2 2.000000e+002 2.000000e+002 1.000000e+000 0.000000e+000

The following bound constraints are involved in the infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper
8 x33 0.000000e+000 NONE 1.000000e+000 0.000000e+000
10 x34 0.000000e+000 NONE 1.000000e+000 0.000000e+000

The infeasibility report is divided into two sections corresponding to constraints and variables. It
is a selection of those lines from the problem solution which are important in understanding primal
infeasibility. In this case the constraints s0O, s2, d1, d2 and variables x33, x34 are of importance because
of nonzero dual values. The columns Dual lower and Dual upper contain the values of dual variables
s7, s, s and s% in the primal infeasibility certificate (see Sec. 11.1.2).

In our example the certificate means that an appropriate linear combination of constraints s0, si
with coefficient s{, = 1, constraints d1 and d2 with coefficient s, — sf = 0 —1 = —1 and lower bounds
on x33 and x34 with coefficient —s7 = —1 gives a contradiction. Indeed, the combination of the four
involved constraints is x33 + x34 < —100 (as indicated in the introduction, the difference between supply
and demand).

It is also possible to extract the infeasible subproblem with the command-line tool. For an infeasible
problem called infeas.1p the command:

mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.lp -info rinfeas.lp

will produce the file rinfeas.bas.inf.1lp which contains the infeasible subproblem. Because of its
size it may be easier to work with than the original problem file.

Returning to the transportation example, we discover that removing the fifth constraint x5 = 200
makes the problem feasible. Almost all undesired infeasibilities should be fixable at the modeling stage.

8.3.3 Locating dual infeasibility

A problem may also be dual infeasible. In this case the primal problem is usually unbounded, meaning
that feasible solutions exists such that the objective tends towards infinity. For example, consider the
problem

maximize
subject to

200y; + 1000ys + 1000y3 + 1100y4 + 200y5 + 500ys + 500y~
Yi+ya <L, y1+ys <2, ya+ys <95, y2+yr <2,

Ys+ya <1, ys+ys <2, ys+ys <1

Y1,92,y3 <0

which is dual to (8.1) (and therefore is dual infeasible). The dual infeasibility report may look as follows:

67

MOSEK DUAL INFEASIBILITY REPORT.
Problem status: The problem is dual infeasible

The following constraints are involved in the infeasibility.

Index Name Activity Objective Lower bound Uppery,
—bound

5 x33 -1.000000e+00 NONE 2.
—000000e+00

6 x34 -1.000000e+00 NONE 1.
—000000e+00

The following variables are involved in the infeasibility.

Index Name Activity Objective Lower bound Uppery,
—bound

0 yi -1.000000e+00 2.000000e+02 NONE 0.
—000000e+00

2 y3 -1.000000e+00 1.000000e+03 NONE 0.
—000000e+00

3 y4 1.000000e+00 1.100000e+03 NONE NONE
4 y5 1.000000e+00 2.000000e+02 NONE NONE

Interior-point solution summary
Problem status : DUAL_INFEASIBLE
Solution status : DUAL_INFEASIBLE_CER
Primal. obj: 1.0000000000e+02 nrm: 1e+00 Viol. con: 0e+00 var: 0e+00

In the report we see that the variables y1, y3, y4, y5 and two constraints contribute to infeasibility
with non-zero values in the Activity column. Therefore

(yla e 797) = (_17 07 _17 17 17 070)
is the dual infeasibility certificate as in Sec. 11.1.2. This just means, that along the ray
(0,0,0,0,0,0,0) + t(y1,--.,y7) = (—t,0,—¢,t,t,0,0), ¢ > 0,

which belongs to the feasible set, the objective value 100t can be arbitrarily large, i.e. the problem is
unbounded.
In the example problem we could

e Add a lower bound on y3. This will directly invalidate the certificate of dual infeasibility.
e Increase the objective coefficient of y3. Changing the coefficients sufficiently will invalidate the
inequality ¢Ty* > 0 and thus the certificate.
8.3.4 Suggestions
Primal infeasibility
When trying to understand what causes the unexpected primal infeasible status use the following hints:

e Remove the objective function. This does not change the infeasibility status but simplifies the
problem, eliminating any possibility of issues related to the objective function.

e Remove cones, semidefinite variables and integer constraints. Solve only the linear part of the
problem. Typical simple modeling errors will lead to infeasibility already at this stage.

e Consider whether your problem has some obvious necessary conditions for feasibility and examine
if these are satisfied, e.g. total supply should be greater than or equal to total demand.

68

e Verify that coefficients and bounds are reasonably sized in your problem.

e See if there are any obvious contradictions, for instance a variable is bounded both in the variables
and constraints section, and the bounds are contradictory.

e Consider replacing suspicious equality constraints by inequalities. For instance, instead of 15 = 200
see what happens for x12 > 200 or x12 < 200.

e Relax bounds of the suspicious constraints or variables.

e For integer problems, remove integrality constraints on some/all variables and see if the problem
solves.

e Form an elastic model: allow to violate constraints at a cost. Introduce slack variables and add
them to the objective as penalty. For instance, suppose we have a constraint

minimize clx,

subject to aTx < b.

which might be causing infeasibility. Then create a new variable y and form the problem which
contains:

minimize Tz +y,
subject to aTz < b+y.

Solving this problem will reveal by how much the constraint needs to be relaxed in order to become
feasible. This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

e If you think you have a feasible solution or its part, fix all or some of the variables to those values.
Presolve will propagate them through the model and potentially reveal more localized sources of
infeasibility.

e Dump the problem in PTF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Dual infeasibility
When trying to understand what causes the unexpected dual infeasible status use the following hints:

e Verify that the objective coefficients are reasonably sized.

e Check if no bounds and constraints are missing, for example if all variables that should be nonneg-
ative have been declared as such etc.

e Strengthen bounds of the suspicious constraints or variables.
e Form an series of models with decreasing bounds on the objective, that is, instead of objective
minimize ¢’z
solve the problem with an additional constraint such as
e =-10°

and inspect the solution to figure out the mechanism behind arbitrarily decreasing objective values.
This is equivalent to inspecting the infeasibility certificate but may be more intuitive.

e Dump the problem in PTF or LP format and verify that the problem that was passed to the
optimizer corresponds to the problem expressed in the high-level modeling language, if any such
was used.

Please note that modifying the problem to invalidate the reported certificate does not imply that the
problem becomes feasible — the reason for infeasibility may simply move, resulting a problem that is
still infeasible, but for a different reason. More often, the reported certificate can be used to give a hint
about errors or inconsistencies in the model that produced the problem.

69

8.4 Python Console

The MOSEK Python Console is an alternative to the MOSEK Command Line Tool. It can be used for
interactive loading, solving and debugging optimization problems stored in files, for example MOSEK
task files. It facilitates debugging techniques described in Sec. 8.

8.4.1 Usage

The tool requires Python 3. The MOSEK interface for Python must be installed following the instal-
lation instructions for Python API or Python Fusion API. The easiest option is

pip install Mosek

The Python Console is contained in the file mosekconsole.py in the folder with MOSEK binaries. It
can be copied to an arbitrary location. The file is also available for download here (mosekconsole.py).
To run the console in interactive mode use

python mosekconsole.py

To run the console in batch mode provide a semicolon-separated list of commands as the second
argument of the script, for example:

python mosekconsole.py '"read data.task.gz; solve form=dual; writesol data"

The script is written using the MOSEK Python API and can be extended by the user if more specific
functionality is required. We refer to the documentation of the Python API.

8.4.2 Examples

To read a problem from data.task.gz, solve it, and write solutions to data.sol, data.bas or data.itg:

read data.task.gz; solve; writesol data

To convert between file formats:

read data.task.gz; write data.mps

To set a parameter before solving:

read data.task.gz; param INTPNT_CO_TOL_DFEAS le-9; solve"

To list parameter values related to the mixed-integer optimizer in the task file:

read data.task.gz; param MIO

To print a summary of problem structure:

read data.task.gz; anapro

To solve a problem forcing the dual and switching off presolve:

read data.task.gz; solve form=dual presolve=no

To write an infeasible subproblem to a file for debugging purposes:

read data.task.gz; solve; infsub; write inf.opf

70

8.4.3 Full list of commands

Below is a brief description of all the available commands. Detailed information about a specific command

cmd and its options can be obtained with

help cmd

Table 8.1: List of commands of the MOSEK Python Console.

Command

Description

help [command]

Print list of commands or info about a specific command

log filename

Save the session to a file

intro

Print MOSEK splashscreen

testlic Test the license system
read filename Load problem from file
reread Reload last problem file
solve Solve current problem
[options]

write filename

Write current problem to file

param [name

Set a parameter or get parameter values

[valuel]

paramdef Set all parameters to default values
paramdiff Show parameters with non-default values

info [name] Get an information item

anapro Analyze problem data

hist Plot a histogram of problem data

histsol Plot a histogram of the solutions

spy Plot the sparsity pattern of the data matrices
truncate Truncate small coefficients down to 0

epsilon

resobj [fac] Rescale objective by a factor

anasol Analyze solutions

removeitg Remove integrality constraints

removecones Remove all cones and leave just the linear part
infsub Replace current problem with its infeasible subproblem
writesol Write solution(s) to file(s) with given basename
basename

delsol Remove all solutions from the task

optserver Use an OptServer to optimize

[url]

exit Leave

71

Chapter 9

Technical guidelines

This section contains some more in-depth technical guidelines for Rmosek package, not strictly necessary
for basic use of MOSEK.

9.1 Multithreading

Parallelization

The interior-point and mixed-integer optimizers in MOSEK are parallelized. By default MOSEK will
automatically select the number of threads. However, the maximum number of threads allowed can be
changed by setting the parameter MSK_IPAR_NUM_THREADS and related parameters. This should never
exceed the number of cores.

The speed-up obtained when using multiple threads is highly problem and hardware dependent. We
recommend experimenting with various thread numbers to determine the optimal settings. For small
problems using multiple threads may be counter-productive because of the associated overhead. Note
also that not all parts of the algorithm can be parallelized, so there are times when CPU utilization is
only 1 even if more cores are available.

Determinism

By default the optimizer is run-to-run deterministic, which means that it will return the same answer
each time it is run on the same machine with the same input, the same parameter settings (including
number of threads) and no time limits.

Setting the number of threads

The number of threads the optimizer uses can be changed with the parameter ¥SK_IPAR_NUM_THREADS .

9.2 Parallel optimization using the Multicore package

The multicore package works by copying the full memory state of the R session to new processes. While
this seems like a large overhead, in practice, the copy is delayed until modification assuring a smooth
parallel execution. The downside is that this low-level memory state copy is not safe for all types of
resources. As an example, parallel interactions with the GUI or on-screen devices can cause the R session
to crash. It is thus recommended only to use the multicore package in console R.

In the Rmosek package a license is an externally acquired resource, and attempts to simply copy
the memory state of this resource will provoke a session crash. Thus, licenses should always be released
before the time of parallelization.

Always call mosek_clean() before a parallelizing operator. Failure to do so is likely to provoke session
crashes.

A consequence of this is that each new process will be using a separate license. That is, your license
system should allow as many licenses to be checked out simultaneously, as many parallel optimizations
you want to run. Please note that unlimited academic and commercial licenses are available at MOSEK.

72

9.3 The license system

MOSEK is a commercial product that always needs a valid license to work. MOSEK uses a third
party license manager to implement license checking. The number of license tokens provided determines
the number of optimizations that can be run simultaneously.

By default a license token remains checked out from the first optimization until the end of the
MOSEK session, i.e.

e a license token is checked out when mosek is called the first time and
e it is returned when R is terminated, or mosek_clean is called.

Starting the optimization when no license tokens are available will result in an error.
Default behaviour of the license system can be changed in several ways:

e Setting the parameter ¥SK_IPAR_CACHE_LICENSE to "MSK_OFF" will force MOSEK to return the
license token immediately after the optimization completed.

e Setting the parameter MSK_IPAR_LICENSE_WAIT will force MOSEK to wait until a license token
becomes available instead of returning with an error.

e The license can be manually released by calling mosek_clean.

73

Chapter 10

Case Studies

In this section we present some case studies in which the Rmosek package is used to solve real-life
applications. These examples involve some more advanced modeling skills and possibly some input data.
The user is strongly recommended to first read the basic tutorials of Sec. 6 before going through these
advanced case studies.

e Portfolio Optimization

— Keywords: Markowitz model, variance, risk, efficient frontier, factor model, transaction cost,
market impact cost, cardinality constraints

— Type: Conic Quadratic, Power Cone, Mixed-Integer

e Least squares and other norm minimization problems

— Keywords: Least squares, regression, 2-norm, 1-norm, p-norm, ridge, lasso

— Type: Conic Quadratic, Power Cone

e Logistic regression

— Keywords: machine learning, logistic regression, classifier, log-sum-exp, softplus, regulariza-
tion

— Type: Exponential Cone, Quadratic Cone

10.1 Portfolio Optimization

In this section the Markowitz portfolio optimization problem and variants are implemented using Rmosek
package.

Familiarity with Sec. 6.2 is recommended to follow the syntax used to create affine conic constraints
(ACCs) throughout all the models appearing in this case study.

Basic Markowitz model
Efficient frontier

Factor model and efficiency
Market impact costs
Transaction costs

Cardinality constraints

74

10.1.1 The Basic Model

The classical Markowitz portfolio optimization problem considers investing in n stocks or assets held
over a period of time. Let z; denote the amount invested in asset j, and assume a stochastic model
where the return of the assets is a random variable r with known mean

uw=Er
and covariance

S=E(r-pr-m

T2 with mean (or expected return)

The return of the investment is also a random variable y = r
Ey= "z
and variance
E(y — Ey)? = 27>z
The standard deviation
VaTSe

is usually associated with risk.

The problem facing the investor is to rebalance the portfolio to achieve a good compromise between

risk and expected return, e.g., maximize the expected return subject to a budget constraint and an upper
bound (denoted 7) on the tolerable risk. This leads to the optimization problem

maximize 'z
subject to eTe = w+elal,
T < A2 (10.1)
z > 0.

The variables x denote the investment i.e. x; is the amount invested in asset j and x? is the initial
holding of asset j. Finally, w is the initial amount of cash available.

A popular choice is 2% = 0 and w = 1 because then z; may be interpreted as the relative amount of
the total portfolio that is invested in asset j.

Since e is the vector of all ones then

n
T — .
e r= g T;
Jj=1

is the total investment. Clearly, the total amount invested must be equal to the initial wealth, which is

w + eTxO.

This leads to the first constraint

eer=w-+e x.

The second constraint

tTYr < A2

(0]

ensures that the variance, is bounded by the parameter 2. Therefore, v specifies an upper bound of
the standard deviation (risk) the investor is willing to undertake. Finally, the constraint

Z‘JZO

excludes the possibility of short-selling. This constraint can of course be excluded if short-selling is
allowed.

The covariance matrix X is positive semidefinite by definition and therefore there exist a matrix
G € R™** such that

¥ =GaGT. (10.2)

In general the choice of G is not unique and one possible choice of G is the Cholesky factorization of X.
However, in many cases another choice is better for efficiency reasons as discussed in Sec. 10.1.3. For a
given G we have that

'Y = 2TGGTz
= |l67a|”.
Hence, we may write the risk constraint as
3> |6

or equivalently
(’Y,GTIE) c Qk-i-l7

where QF*! is the (k + 1)-dimensional quadratic cone. Note that specifically when G is derived using
Cholesky factorization, k = n.
Therefore, problem (10.1) can be written as

maximize ula
subject to eTe = w+elal,
(’)/ GT.CL') c Qk+1 (10'3)
z > 0,

which is a conic quadratic optimization problem that can easily be formulated and solved with Rmosek
package. Subsequently we will use the example data
w= [0.0720,0.1552,0.1754,0.0898, 0.4290, 0.3929, 0.3217,0.1838]T

and

[0.0946 0.0374 0.0349 0.0348 0.0542 0.0368 0.0321 0.0327 |
0.0374 0.0775 0.0387 0.0367 0.0382 0.0363 0.0356 0.0342
0.0349 0.0387 0.0624 0.0336 0.0395 0.0369 0.0338 0.0243
0.0348 0.0367 0.0336 0.0682 0.0402 0.0335 0.0436 0.0371
0.0542 0.0382 0.0395 0.0402 0.1724 0.0789 0.0700 0.0501
0.0368 0.0363 0.0369 0.0335 0.0789 0.0909 0.0536 0.0449
0.0321 0.0356 0.0338 0.0436 0.0700 0.0536 0.0965 0.0442

| 0.0327 0.0342 0.0243 0.0371 0.0501 0.0449 0.0442 0.0816

Using Cholesky factorization, this implies

[0.3076 0.1215 0.1134 0.1133 0.1763 0.1197 0.1044 0.1064]
0. 0.2504 0.0995 0.0916 0.0669 0.0871 0.0917 0.0851
0. 0.1991 0.0587 0.0645 0.0737 0.0647 0.0191

0.
ar — 0. 0. 0. 0.2088 0.0493 0.0365 0.0938 0.0774
- 0. 0. 0. 0. 0.3609 0.1257 0.1016 0.0571
0. 0. 0. 0. 0. 0.2155 0.0566 0.0619
0. 0. 0. 0. 0. 0. 0.2251 0.0333
0. 0. 0. 0. 0. 0. 0. 0.2202

In Sec. 10.1.3, we present a different way of obtaining G based on a factor model, that leads to more
efficient computation.

76

Why a Conic Formulation?

Problem (10.1) is a convex quadratically constrained optimization problem that can be solved directly
using MOSEK. Why then reformulate it as a conic quadratic optimization problem (10.3)? The main
reason for choosing a conic model is that it is more robust and usually solves faster and more reliably. For
instance it is not always easy to numerically validate that the matrix ¥ in (10.1) is positive semidefinite
due to the presence of rounding errors. It is also very easy to make a mistake so 3 becomes indefinite.
These problems are completely eliminated in the conic formulation.

Moreover, observe the constraint

6] <+
more numerically robust than
2I'Yr < 72
for very small and very large values of 7. Indeed, if say v ~ 10* then 72 ~ 10, which introduces a

scaling issue in the model. Hence, using conic formulation we work with the standard deviation instead
of variance, which usually gives rise to a better scaled model.

Example code

Listing 10.1 demonstrates how the basic Markowitz model (10.3) is implemented.

Listing 10.1: Code implementing problem (10.3).

BasicMarkowitz <- function(

n, # Number of assets

mu, # An n-dimmensional vector of expected returns

GT, # A matriz with n columns so (GT')*GT = covariance matric
x0, # Initial holdings

W, # Initial cash holding

gamma) # Maximum risk (=std. dev) accepted

prob <- list(sense="max"

prob$c <- mu

prob$A <- Matrix(1.0, ncol=n)

prob$bc <- rbind(blc=w+sum(x0),
buc=w+sum(x0))

prob$bx <- rbind(blx=rep(0.0,n),
bux=rep(Inf,n))

Specify the affine conic constraints.
NUMCONES <- 1
prob$F <- rbind(
Matrix(0.0,ncol=n),
GT
)
prob$g <- c(gamma,rep(0,n))
prob$cones <- matrix(list(), nrow=3, ncol=NUMCONES)
rownames (prob$cones) <- c("type","dim","conepar")

prob$cones[-3,1] <- list("QUAD", n+1)
Solve the problem
r <- mosek(prob,list(verbose=1))

stopifnot(identical (r$response$code, 0))

Return the solution

(continues on next page)

7

(continued from previous page)

x <- rsolitrdxx
list(expret=drop(mu %*}, x), stddev=gamma, x=x)

The source code should be self-explanatory except perhaps for

NUMCONES <- 1
prob$F <- rbind(
Matrix(0.0,ncol=n),
GT
)
prob$g <- c(gamma,rep(0,n))
prob$cones <- matrix(list(), nrow=3, ncol=NUMCONES)
rownames (prob$cones) <- c("type","dim","conepar")

prob$cones[-3,1] <- list("QUAD", n+1)

where the constraint
(’Y,GTZ‘) c Qk+1

is created as an affine conic constraint format of the form Fz + g € K, in this specific case:

&[5

10.1.2 The Efficient Frontier

The portfolio computed by the Markowitz model is efficient in the sense that there is no other portfolio
giving a strictly higher return for the same amount of risk. An efficient portfolio is also sometimes called
a Pareto optimal portfolio. Clearly, an investor should only invest in efficient portfolios and therefore it
may be relevant to present the investor with all efficient portfolios so the investor can choose the portfolio
that has the desired tradeoff between return and risk.

Given a nonnegative a the problem

maximize plz — oz’ Xx
subject to elz =w +eT2?, (10.4)
x > 0.

is one standard way to trade the expected return against penalizing variance. Note that, in contrast to
the previous example, we explicitly use the variance (||GT z||%) rather than standard deviation (||GTz||2),
therefore the conic model includes a rotated quadratic cone:

maximize e —as
subject to eTe = wHela?, (10.5)
(5,0.5,GTx) € QF+? (equiv. to s > ||GTx|3 = 27%x), '
x > 0.

The parameter « specifies the tradeoff between expected return and variance. Ideally the problem (10.4)
should be solved for all values @ > 0 but in practice it is impossible. Using the example data from Sec.
10.1.1, the optimal values of return and variance for several values of « are shown in the figure.

78

0.11

0.105 A

0.095 A

0.085 A

0.08 4

0.075 A

0.07 4

I I
0 0.005 0.01 0.015 0.02 0.025 0.03

0.065

Fig. 10.1: The efficient frontier for the sample data.

79

Example code

Listing 10.2 demonstrates how to compute the efficient portfolios for several values of a.

Listing 10.2: Code for the computation of the efficient frontier
based on problem (10.4).

EfficientFrontier <- function(

Number of assets

An n-dimmensional wvector of expected returns

4 matriz with n columns so (GT')*GT = covariance matric
Initial holdings

Initial cash holding

List of risk penalties (we mazimize expected return - alpha *_

n,
mu,
GT,
x0,
W,
alphas)
—variance)

{

H R OB R R ®

prob <- list(sense="max")

prob$A <- cbind(Matrix(1.0, ncol=n), 0.0)

prob$bc <- rbind(blc=w+sum(x0),
buc=w+sum(x0))

prob$bx <- rbind(blx=c(rep(0.0,n), -Inf),
bux=rep(Inf,n+1))

Specify the affine conic constraints.
NUMCONES <- 1
prob$F <- rbind(
cbind(Matrix(0.0,ncol=n), 1.0),
rep(0, n+1),
cbind (GT , 0.0)
)
prob$g <- c(0, 0.5, rep(0, n))
prob$cones <- matrix(list(), nrow=3, ncol=NUMCONES)
rownames (prob$cones) <- c("type","dim","conepar")

prob$cones[-3,1] <- list("RQUAD", n+2)

frontier <- matrix(NaN, ncol=3, nrow=length(alphas))
colnames(frontier) <- c("alpha","exp.ret.","variance")

for (i in seq_along(alphas))
{
prob$c <- c(mu, -alphas[i])

r <- mosek(prob, list(verbose=1))
stopifnot(identical (r$response$code, 0))

X <- rsolitr$xx[1:n]
gamma <- rsolitr$xx[n+1]

frontier[i,] <- c(alphas[i], drop(mu%*%x), gamma)

3

frontier

80

10.1.3 Factor model and efficiency

In practice it is often important to solve the portfolio problem very quickly. Therefore, in this section
we discuss how to improve computational efficiency at the modeling stage.

The computational cost is of course to some extent dependent on the number of constraints and
variables in the optimization problem. However, in practice a more important factor is the sparsity: the
number of nonzeros used to represent the problem. Indeed it is often better to focus on the number of
nonzeros in G see (10.2) and try to reduce that number by for instance changing the choice of G.

In other words if the computational efficiency should be improved then it is always good idea to start
with focusing at the covariance matrix. As an example assume that

Y=D+VvVVT

where D is a positive definite diagonal matrix. Moreover, V' is a matrix with n rows and k columns.
Such a model for the covariance matrix is called a factor model and usually &k is much smaller than n.
In practice k tends to be a small number independent of n, say less than 100.

One possible choice for G is the Cholesky factorization of ¥ which requires storage proportional to
n(n + 1)/2. However, another choice is

G=[DY? V]
because then
GGT =D+ VvVT,

This choice requires storage proportional to n + kn which is much less than for the Cholesky choice of
G. Indeed assuming k is a constant storage requirements are reduced by a factor of n.

The example above exploits the so-called factor structure and demonstrates that an alternative choice
of G may lead to a significant reduction in the amount of storage used to represent the problem. This
will in most cases also lead to a significant reduction in the solution time.

The lesson to be learned is that it is important to investigate how the covariance matrix is formed.
Given this knowledge it might be possible to make a special choice for G that helps reducing the storage
requirements and enhance the computational efficiency. More details about this process can be found in
[And13].

Factor model in finance

Factor model structure is typical in financial context. It is common to model security returns as the
sum of two components using a factor model. The first component is the linear combination of a small
number of factors common among a group of securities. The second component is a residual, specific
to each security. It can be written as R =) y B;F; + 0, where R is a random variable representing the
return of a security at a particular point in time, F} is the random variable representing the common
factor j, B; is the exposure of the return to factor j, and 6 is the specific component.

Such a model will result in the covariance structure

Y =3y + BSrp7,

where Y r is the covariance of the factors and Xy is the residual covariance. This structure is of the form
discussed earlier with D = ¥y and V = SP, assuming the decomposition ¥z = PPT. If the number of
factors k is low and ¥y is diagonal, we get a very sparse GG that provides the storage and solution time
benefits.

81

Example code
Here we will work with the example data of a two-factor model (k = 2) built using the variables

[0.4256 0.1869
0.2413 0.3877
0.2235 0.3697

~ | 0.1503 0.4612

B= 1.5325 —0.2633 |’
1.2741 —0.2613
0.6939 0.2372

| 0.5425 0.2116

6 = [0.0720,0.0508,0.0377,0.0394, 0.0663, 0.0224, 0.0417, 0.0459],
and the factor covariance matrix is

v _ [00620 0.0577
E=10.0577 0.0908 |°

giving

p_[02401 0.
02316 0.1928 |

Then the matrix G would look like

[0.1493 0.0360 0.2683 0. 0 0. 0. 0 0.
0.1499 0.0747 0. 0.2254 0. 0. 0. 0 0.
0.1413 0.0713 0. 0. 0.1942 0. 0. 0 0.
1/2 0.1442 0.0889 0. 0. 0 0.1985 0. 0 0.
¢= [BP 29/] | 0.3207 —0.0508 0. 0. 0 0. 0.2576 0. 0.
0.2568 —0.0504 0. 0. 0 0. 0. 0.1497 0.
0.2277 0.0457 0. 0. 0 0. 0. 0 0.2042
| 0.1841 0.0408 0. 0. 0 0. 0. 0 0. 0.

This matrix is indeed very sparse.

In general, we get an n X (n+ k) size matrix this way with & full columns and an n x n diagonal part.
In order to maintain a sparse representation we do not construct the matrix G explicitly in the code but
instead work with two pieces of data: the dense matrix Geactor = BP of shape n x k and the diagonal
vector 0 of length n.

Example code
In the following we demonstrate how to write code to compute the matrix Gfactor Of the factor model.

We start with the inputs

Listing 10.3: Inputs for the computation of the matrix Geactor from
the factor model.

[\
—_

B <- rbind(c(0.4256, 0.1869),
c(0.2413, 0.3877),
c(0.2235, 0.3697),
c(0.1503, 0.4612),
c(1.5325, -0.2633),
c(1.2741, -0.2613),
c(0.6939, 0.2372),
c(0.5425, 0.2116))

S_F <- rbind(c(0.0620, 0.0577),
c(0.0577, 0.0908))

theta <- ¢(0.0720, 0.0508, 0.0377, 0.0394, 0.0663, 0.0224, 0.0417, 0.0459)

82

Ceeeeee

Then the matrix Geactor 1S Obtained as:

P <- t(chol(S8_F))

G_factor <- B YxY%

G_factor_T <- t(G_

P
factor)

The code for computing an optimal portfolio in the factor model is very similar to the one from the
basic model in Listing 10.1 with one notable exception: we construct the expression G”z appearing in

1/2

the conic constraint by stacking together two separate vectors Gg;ctor:c and X, "x:

NUMCONES <- 1

prob$F <- rbind(
Matrix(0.0,ncol=n),
G_factor_T,
diag(sqrt(theta))

)

prob$g <- c(gamma,rep(0,k+n))
prob$cones <- matrix(list(), nrow=3, ncol=NUMCONES)
rownames (prob$cones) <- c("type","dim","conepar")

prob$cones[-3,

1] <- 1ist("QUAD", k+n+1)

The full code is demonstrated below:

Listing 10.4: Implementation of portfolio optimization in the factor
model.

BasicMarkowitz <-
n,
mu,
G_factor_T,
theta,
x0,
w,
gamma)

HOH R O™ R R ®

function(

Number of assets

An n-dimmensional wvector of expected returns
The factor (dense) part of the factorized risk
specific risk wvector

Initial holdings

Initial cash holding

Mazimum risk (=std. dev) accepted

k <- dim(G_factor_T) [1]
prob <- list(sense="max"

prob$c <- mu

prob$A <- Matrix(1.0, ncol=n)
prob$bc <- rbind(blc=w+sum(x0),

buc=w+sum(x0))

prob$bx <- rbind(blx=rep(0.0,n),

Specify the
NUMCONES <- 1

bux=rep(Inf,n))

affine conic constraints.

prob$F <- rbind(
Matrix(0.0,ncol=n),
G_factor_T,
diag(sqrt(theta))

)

prob$g <- c(gamma,rep(0,k+n))
prob$cones <- matrix(list(), nrow=3, ncol=NUMCONES)

rownames (prob$cones) <- c("type","dim","conepar")

prob$cones[-3,

1] <- 1list("QUAD", k+n+1)

Solve the problem

(continues on next page)

83

(continued from previous page)

r <- mosek(prob,list(verbose=1))
stopifnot(identical (r$response$code, 0))

Return the solution
x <- rsolitrdxx
list(expret=drop(mu %*% x), stddev=gamma, x=x)

10.1.4 Slippage Cost

The basic Markowitz model assumes that there are no costs associated with trading the assets and that
the returns of the assets are independent of the amount traded. Neither of those assumptions is usually
valid in practice. Therefore, a more realistic model is
maximize uTz
subject to eTx + 31 Tj(Ax;) = , (10.6)
2T8r < 42,
r 2

Here Ax; is the change in the holding of asset j i.e.

.. .0
Azx; =z T;

and T;(Az;) specifies the transaction costs when the holding of asset j is changed from its initial value.
In the next two sections we show two different variants of this problem with two nonlinear cost functions
T.

10.1.5 Market Impact Costs

If the initial wealth is fairly small and no short selling is allowed, then the holdings will be small and the
traded amount of each asset must also be small. Therefore, it is reasonable to assume that the prices
of the assets are independent of the amount traded. However, if a large volume of an asset is sold or
purchased, the price, and hence return, can be expected to change. This effect is called market impact
costs. It is common to assume that the market impact cost for asset j can be modeled by

T(Axj) = m;|Ax;[*/?

where m; is a constant that is estimated in some way by the trader. See [GKO00] [p. 452] for details.
From the Modeling Cookbook we know that ¢ > \z|3/ 2 can be modeled directly using the power cone
P§/3,1/3:

{(t,2) : t > |2)*?} ={(t,2) : (t,1,2) € p§/371/3}

Hence, it follows that Y7, Tj(Ax;) = Y7 myla; — 29]3/% can be modeled by Y7 m;t; under the
constraints

5 byl
3,1/
(tjaLZj) 6733 .

Unfortunately this set of constraints is nonconvex due to the constraint

zj = |zj — af] (10.7)
but in many cases the constraint may be replaced by the relaxed constraint

2 > |aj — af), (10.8)

For instance if the universe of assets contains a risk free asset then

zj > |zj — af| (10.9)

84

https://docs.mosek.com/modeling-cookbook/index.html

cannot hold for an optimal solution.

If the optimal solution has the property (10.9) then the market impact cost within the model is larger
than the true market impact cost and hence money are essentially considered garbage and removed by
generating transaction costs. This may happen if a portfolio with very small risk is requested because
the only way to obtain a small risk is to get rid of some of the assets by generating transaction costs.
We generally assume that this is not the case and hence the models (10.7) and (10.8) are equivalent.

The above observations lead to

maximize ul'z
subject to efe+mTt = w+elad,
(v,GTz) e Q1 (10.10)
(tj,1,z; —x?) € 73;/3’1/3, 1,...,n,
x > 0.

The revised budget constraint
ele+mTt=w+ela

specifies that the initial wealth covers the investment and the transaction costs. It should be mentioned
that transaction costs of the form

tj > |zl"
where p > 1 is a real number can be modeled with the power cone as
(1, 2) € PL/PAVD.
See the Modeling Cookbook for details.

Example code

Listing 10.5 demonstrates how to compute an optimal portfolio when market impact cost are included.

Listing 10.5: Implementation of model (10.10).

MarkowitzWithMarketImpact <- function(

n, # Number of assets

mu, # An n-dimmensional vector of expected returns

GT, # A matriz with n columns so (GT')*GT = covariance matric
x0, # Initial holdings

W, # Inttial cash holding

gamma, # Mazimum risk (=std. dev) accepted

m) # Market tmpacts (we use m_jlz_j-z0_75/"3/2 for j'th asset)

prob <- list(sense="max"

prob$c <- c(mu, rep(0,n))

prob$A <- cbind(Matrix(1.0,ncol=n), t(m))

prob$bc <- rbind(blc=w+sum(x0),
buc=w+sum(x0))

prob$bx <- rbind(blx=rep(0.0,2*n),
bux=rep(Inf,2*n))

Specify the affine conic constraints.
1) Risk
Fr <- rbind(
Matrix(0.0,nrow=1,ncol=2%n),
cbind (GT, Matrix(0.0,nrow=n,ncol=n))
)

gr <- c(gamma,rep(0,n))

(continues on next page)

85

https://docs.mosek.com/modeling-cookbook/index.html

(continued from previous page)

Kr <- matrix(1list("QUAD", 1+n, NULL), nrow=3, ncol=1)

2) Market impact (t_j >= |ax_j-z0_j5/°3/2)
#L tg]

[1] \in PPOW(2,1)

[z 7 -20_5]

Fm <- sparseMatrix(
i=c(seq(from=1,by=3,len=n), seq(from=3,by=3,len=n)),
j=c(seq(from=n+1,len=n), seq(from=1,len=n)),
x=c(rep(1.0,n), rep(1.0,n)),
dims=c(3*n, 2#%n))

gm <- rep(c(0,1,0), n)

gm[seq(from=3,by=3,len=n)] <- -x0

Km <- matrix(list("PPOW", 3, c(2,1)), nrow=3, ncol=n)

prob$F <- rbind(Fr, Fm)

prob$g <- c(gr, gm)

prob$cones <- cbind(Xr, Km)

rownames (prob$cones) <- c("type","dim","conepar")

Solve the problem
r <- mosek(prob,list(verbose=1))
stopifnot(identical (r$response$code, 0))

Return the solution

x <- rsolitr$xx[1:n]

tx <- rsolitr$xx[(n+1):(2%n)]

list(expret=drop(mu %*}, x), stddev=gamma, cost=drop(m 7*} tx), x=x)

In the last part of the code we extend the affine conic constraint with triples of the form (¢, 1,z —22).
Such a triple is constructed as an affine conic constraint with:

el n . 0
o]
T _

0
€k

T,

where e; denotes the vector of length 2n with 1 at position j and 0 otherwise. Membership of a sequence

73??/3,1/3

of triples in power cones is specified with the syntax:

Km <- matrix(list("PPOW", 3, c(2,1)), nrow=3, ncol=n)

Note that the construction list("PPOW", d, c(a,b)) creates a power done of dimension d with
exponents

a+b a+b

10.1.6 Transaction Costs

Now assume there is a cost associated with trading asset j given by

Oa ij = O’
f; +9j|lAz;|, otherwise.

s~

Hence, whenever asset j is traded we pay a fixed setup cost f; and a variable cost of g; per unit traded.
Given the assumptions about transaction costs in this section problem (10.6) may be formulated as

86

First observe that

maximize ulz
subject to ez + fTy+9gTz = w+elal,
(’y?GTx) € Qk+17
zj 2 xj—az?, j=1...,n,
zj = x?—xj, j=1...,n,
zi < Ujyy, j=1...,n,
Yy; € {071}7 j=1...,n,
x > 0.
zj 2 |z — af| = |Azy].

(10.11)

We choose U; as some a priori upper bound on the amount of trading in asset j and therefore if z; > 0
then y; = 1 has to be the case. This implies that the transaction cost for asset j is given by

Example code

Tivi + 952

The following example code demonstrates how to compute an optimal portfolio when transaction costs

are included.

Listing 10.6: Code solving problem (10.11).

MarkowitzWithTransactionCosts <- function(

n,
mu,
GT,
x0,

w,
gamma,
f,

g)

HORH O R R R R W

Number of assets

An n-dimmensional vector of expected returns
4 matriz with n columns so (GT')*GT =
Initial holdings

Initial cash holding

Mazimum risk (=std. dev) accepted
Fized transaction cost

Linear part of transaction cost

covartance matric

Upper bound on the traded amount

u <- w+sum(x0)

prob <- list(sense="max"
prob$c <- c(mu, rep(0,2+n))

Specify linear constraints

[e g' f'] [z] = w+ e'*z0
[I -I 0]J*[z] <= z0

[I I o0 1 [y] > =0

[0 I -U] <= 0

prob$A <- rbind(cbind(Matrix(1.0,ncol=n), t(g),

t(£)),

cbind(Diagonal(n, 1.0),
cbind(Diagonal(n, 1.0),
cbind(Matrix(0,n,n),

Diagonal(n, 1.0),
Diagonal(n, 1.0),

prob$bc <- rbind(blc=c(w+sum(x0), rep(-Inf,n), x0, rep(-Inf,n)),

buc=c (w+sum(x0), x0, rep(Inf,n), rep(0.0,n)))

No shortselling and the linear bound 0 <=y <=1
prob$bx <- rbind(blx=c(rep(0.0,n), rep(-Inf,n), rep(0.0,n)),

bux=c(rep(Inf,n), rep(Inf, n), rep(1.0,n)))

-Diagonal(n, 1.0), Matrix(O,n,n)),
Matrix(0,n,n)),
Diagonal(n, -u)))

(continues on next page)

87

(continued from previous page)

Specify the affine conic constraints for risk
prob$F <- rbind(
Matrix(0.0,nrow=1,ncol=3*n),
cbind (GT, Matrix(0.0,nrow=n,ncol=2%n))
)
prob$g <- c(gamma,rep(0,n))
prob$cones <- matrix(list("QUAD", 1+n, NULL), nrow=3, ncol=1)

rownames (prob$cones) <- c("type","dim","conepar")

Demand y to be integer (hence binary)
prob$intsub <- (2#n+1):(3*n);

Solve the problem
r <- mosek(prob,list(verbose=1))
stopifnot(identical (r$response$code, 0))

Return the solution

x <- rsolint$xx[1:n]

z <- rsolint$xx[(n+1):(2%n)]

y <- rsolint$xx[(2*n+1): (3*n)]

list(expret=drop(mu %*% x), stddev=gamma, cost = drop(f ’%x% y)+drop(g %*% z), x=Xx)

10.1.7 Cardinality constraints

Another method to reduce costs involved with processing transactions is to only change positions in a
small number of assets. In other words, at most K of the differences |Az;| = |z; — 29| are allowed to be
non-zero, where K is (much) smaller than the total number of assets n.

This type of constraint can be again modeled by introducing a binary variable y; which indicates if
Az; # 0 and bounding the sum of y;. The basic Markowitz model then gets updated as follows:

maximize ul'z
subject to eTe = w+elaf,
(% GTx) c Qk+1’
z; 2 xjfx?, 7=1,...,n,
zj > aY—z;, j=1,...,n, (10.12)
Zj < ijj, j:17...,n,
y; € {0,1}, i=1,...,n,
ey < K,
z > 0,

were U; is some a priori chosen upper bound on the amount of trading in asset j.

Example code

The following example code demonstrates how to compute an optimal portfolio with cardinality bounds.

Listing 10.7: Code solving problem (10.12).

MarkowitzWithCardinality <- function(

n, # Number of assets

mu, # An n-dimmensional vector of expected returns

GT, # A matriz with n columns so (GT')*GT = covariance matric
x0, # Initial holdings

W, # Initial cash holding

(continues on next page)

88

(continued from previous page)

gamma, # Mazimum risk (=std. dev) accepted
k) # Cardinality bound
{

Upper bound on the traded amount

u <- wt+sum(xO0)

prob <- list(sense="max")

prob$c <- c(mu, rep(0,2+n))

Specify linear constraints

#[e" 0 0] = w + e'*z0

[1 -I 0] [z] <= =z0

[1 I 0]x*[2z] > z0

[0 I -U 1 [y] <= 0

[0 0 e'] <= k

prob$A <- rbind(cbind(Matrix(1.0,ncol=n), Matrix(0.0,ncol=2*n)),
cbind(Diagonal(n, 1.0), -Diagonal(n, 1.0), Matrix(O,n,n)),
cbind(Diagonal(n, 1.0), Diagonal(n, 1.0), Matrix(O,n,n)),
cbind(Matrix(0,n,n), Diagonal(n, 1.0), Diagonal(n, -u)),
cbind(Matrix(0.0,ncol=2*n), Matrix(1.0,ncol=n)))

prob$bc <- rbind(blc=c(w+sum(x0), rep(-Inf,n), x0, rep(-Inf,n), 0.0),
buc=c (w+sum(x0), x0, rep(Inf,n), rep(0.0,n), k))

No shortselling and the linear bound 0 <=y <= 1

prob$bx <- rbind(blx=c(rep(0.0,n), rep(-Inf,n), rep(0.0,n)),
bux=c(rep(Inf,n), rep(Inf, n), rep(1.0,n)))

Specify the affine conic constraints for risk

prob$F <- rbind(

Matrix(0.0,nrow=1,ncol=3*n),
cbind (GT, Matrix(0.0,nrow=n,ncol=2%n))

)

prob$g <- c(gamma,rep(0,n))

prob$cones <- matrix(list("QUAD", 1+n, NULL), nrow=3, ncol=1)

rownames (prob$cones) <- c("type","dim","conepar")

Demand y to be integer (hence binary)

prob$intsub <- (2%n+1):(3*n);

Solve the problem

r <- mosek(prob,list(verbose=1))

stopifnot(identical (r$response$code, 0))

Return the solution

x <- rsolint$xx[1:n]

list(card=k, expret=drop(mu %*% x), x=x)

}

If we solve our running example with K = 1,...,n then we get the following solutions, with increasing
expected returns:

Bound 1 Solution: 0.0000e+00 0.0000e+00 1.0000e+00 0.0000e+00 0.0000e+00
—0.0000e+00 0.0000e+00 0.0000e+00
Bound 2 Solution: 0.0000e+00 0.0000e+00 3.5691e-01 0.0000e+00 0.0000e+00
—6.4309e-01 -0.0000e+00 0.0000e+00
Bound 3 Solution: 0.0000e+00 0.0000e+00 1.9258e-01 0.0000e+00 0.0000e+00 |,
—5.4592e-01 2.6150e-01 0.0000e+00

(continues on next page)

89

(continued from previous page)

Bound 4 Solution: 0.0000e+00 0.0000e+00 2.0391e-01 0.0000e+00 6.7098e-02 |
4.9181e-01 2.3718e-01 0.0000e+00
Bound 5 Solution: 0.0000e+00 3.1970e-02 1.7028e-01 0.0000e+00 7.0741e-02 ||
-»4.9551e-01 2.3150e-01 0.0000e+00
Bound 6 Solution: 0.0000e+00 3.1970e-02 1.7028e-01 0.0000e+00 7.0740e-02
4.9551e-01 2.3150e-01 0.0000e+00
Bound 7 Solution: 0.0000e+00 3.1970e-02 1.7028e-01 0.0000e+00 7.0740e-02 |,
—4.9551e-01 2.3150e-01 0.0000e+00
Bound 8 Solution: 1.9557e-10 2.6992e-02 1.6706e-01 2.9676e-10 7.1245e-02
—4.9559e-01 2.2943e-01 9.6905e-03

10.2 Least Squares and Other Norm Minimization Problems

A frequently occurring problem in statistics and in many other areas of science is a norm minimization
problem

minimize ||Fz — g||,

subject to Az = b, (10.13)

where x € R™ and of course we can allow other types of constraints. The objective can involve various
norms: infinity norm, l-norm, 2-norm, p-norms and so on. For instance the most popular case of
the 2-norm corresponds to the least squares linear regression, since it is equivalent to minimization of
[Fz - g]|3.

10.2.1 Least squares, 2-norm
In the case of the 2-norm we specify the problem directly in conic quadratic form
minimize ¢,
subject to (t, Fx — g) € QF 1 (10.14)
Ax =b.

The first constraint of the problem can be represented as an affine conic constraint. This leads to the
following model.

Listing 10.8: Script solving problem (10.14)

Least squares regression
minimize \[Fz-g\/_2
norm_lse <- function(F,g,A,b)
{

n <- dim(F) [2]

k <- length(g)

m <- dim(A) [1]

Linear constraints in [z; t]

prob <- list(sense="min"

prob$A <- cbind(A, rep(0, m))

prob$bx <- rbind(rep(-Inf, n+1), rep(Inf, n+1))
prob$bc <- rbind(b, b)

prob$c <- c(rep(0, n), 1)

Affine conic constraint
prob$F <- rbind(c(rep(O,n), 1),
cbind(F, rep(0, k)))
probs$g <- c(0, -g)
prob$cones <- matrix(list("QUAD", k+1, NULL))

(continues on next page)

90

(continued from previous page)

rownames (prob$cones) <- c("type","dim","conepar")

Solwe

r <- mosek(prob, list(verbose=1))
stopifnot(identical (r$response$code, 0))
rsolitr$xx[1:n]

10.2.2 Ridge regularisation

Regularisation is classically applied to reduce the impact of outliers and to control overfitting. In the
conic version of ridge (Tychonov) regression we consider the problem

minimize ||Fz — gl|2 + 7|z||2,

subject to Ax = b, (10.15)
which can be written explicitly as

minimize ¢ + yto,

subject to (ty, Fx — g) € Q1 (10.16)

(tQaZE) S Qn+17
Ax =b.

The implementation is a small extension of that from the previous section.

Listing 10.9: Script solving problem (10.16)

Least squares regression with regularization
minimize \[Fz-g\[/_2 + gamma*\/z\/[_2
norm_lse_reg <- function(F,g,A,b,gamma)
{

n <- dim(F) [2]

k <- length(g)

m <- dim(A) [1]

Linear constraints in [xz; t1; t2]

prob <- list(sense="min"

prob$A <- cbind(A, rep(0, m), rep(0, m))
prob$bx <- rbind(rep(-Inf, n+2), rep(Inf, n+2))
prob$bc <- rbind(b, b)

prob$c <- c(rep(0, n), 1, gamma)

Affine conic constraint
prob$F <- rbind(c(rep(O,n), 1, 0),
cbind (F, rep(0, k), rep(0, k)),
c(rep(O,n), O, 1),
cbind(diag(n), rep(0, n), rep(0, n)))
prob$g <- c(0, -g, rep(0, n+l))
prob$cones <- cbind(matrix(list("QUAD", k+1, NULL)),
matrix(list("QUAD", n+1, NULL)))

rownames (prob$cones) <- c("type","dim","conepar")

Solwe

r <- mosek(prob, list(verbose=1))
stopifnot(identical (r$response$code, 0))
rsolitr$xx[1:n]

91

Note that classically least squares problems are formulated as quadratic problems and then the
objective function would be written as

1z — gll3 + 7l 3.

This version can easily be obtained by replacing the quadratic cone with an appropriate rotated quadratic
cone in (10.16). Then they core of the implementation would change as follows:

Listing 10.10: Script solving classical quadratic ridge regression

Affine conic constraint

prob$F <- rbind(c(rep(O,n), 1, 0),
c(rep(0, nt+2)),
cbind (F, rep(0, k), rep(0, k)),
c(rep(0,n), O, 1,

c(rep(0, nt+2)),
cbind(diag(n), rep(0, n), rep(0, n)))
prob$g <- c(0, 0.5, -g, 0, 0.5, rep(0, n))
prob$cones <- cbind(matrix(list("RQUAD", k+2, NULL)),
matrix(list ("RQUAD", n+2, NULL)))
rownames (prob$cones) <- c("type","dim","conepar")

Fig. 10.2 shows the solution to a polynomial fitting problem for a few variants of least squares
regression with and without ridge regularization.

-0.94 -
-0.96

-0.98

-1.02
-1.04
-1.06
-1.08

-1.1

-1.12

-1.14

Fig. 10.2: Three fits to a dataset at various levels of regularization.

10.2.3 Lasso regularization

In lasso or least absolute shrinkage and selection operator the regularization term is the 1-norm of the
solution

minimize ||[Fxz — g2 + 7|21,

subject to Az =b. (10.17)

This variant typically tends to give preference to sparser solutions, i.e. solutions where only a few elements
of x are nonzero, and therefore it is used as an efficient approximation to the cardinality constrained
problem with an upper bound on the 0-norm of z. To see how it works we first implement (10.17) adding
the constraint ¢ > ||z||; as a series of linear constraints

Uj 2 —T4, Ui = Ti, T2 Zum

92

so that eventually the problem becomes

minimize ¢ + yto,
subject to u+4x >0,

u—x >0,
to —eTu > 0,
Ax =0,

(t1, Fx — g) € QFFL.

Listing 10.11: Script solving problem (10.17)

Least squares regression with lasso regularization
minimize \[/Fz-g\/_2 + gammax\/z\/_1
norm_lse_lasso <- function(F,g,A,b,gamma)

{

n <- dim(F) [2]

k <- length(g)

m <- dim(A) [1]

Linear constraints in [z; u; t1; t2]

prob <- list(sense="min"

prob$A <- rbind(cbind(A, matrix(0, m, n+2)),
cbind(diag(n), diag(n), matrix(0, n, 2)),
cbind(-diag(n), diag(n), matrix(0, n, 2)),
c(rep(0, n), rep(-1, n), 0, 1))

prob$bx <- rbind(rep(-Inf, 2*n+2), rep(Inf, 2+%n+2))

prob$bc <- rbind(c(b, rep(0, 2#n+1)), c(b, rep(Inf, 2*n+1)))

prob$c <- c(rep(0, 2#n), 1, gamma)

Affine conic constraint

prob$F <- rbind(c(rep(0, 2*n), 1, 0),
cbind(F, matrix(0, k, n+2)))

prob$g <- c(0, -g)

prob$cones <- matrix(list("QUAD", k+1, NULL))

rownames (prob$cones) <- c("type","dim","conepar")

Solwe

r <- mosek(prob, list(verbose=1))

stopifnot(identical (r$response$code, 0))

rsolitr$xx[1:n]

}

The sparsity pattern of the solution of a large random regression problem can look for example as
follows:

Lasso regularization

Gamma 0.0100 density 99% |Fx-gl|_2: 54.3722
Gamma 0.1000 density 87% |Fx-g|_2: 54.3939
Gamma 0.3000 density 67)% |Fx-gl|_2: 54.5319
Gamma 0.6000 density 40% |Fx-gl_2: 54.8379
Gamma 0.9000 density 26% |Fx-gl|_2: 55.0720
Gamma 1.3000 density 12% |Fx-gl_2: 55.1903

93

10.2.4 p-norm minimization

Now we consider the minimization of the p-norm defined for p > 1 as

1/p
lyll, = (Z .wl”) : (10.18)

We have the optimization problem:

minimize ||Fz — g||p,

subject to Az = b. (10.19)

Increasing the value of p forces stronger penalization of outliers as ultimately, when p — oo, the p-norm
ly|l, converges to the infinity norm ||y||oc of y. According to the Modeling Cookbook the p-norm bound
t > ||Fx — g/, can be added to the model using a sequence of three-dimensional power cones and we
obtain an equivalent problem

minimize t
subject to (r;, t, (Fx — g);) € 73;/1;:,1—1/1;)7

elr = t,
Az =b.

(10.20)

The power cones can be added one by one to the structure representing affine conic constraints. Each
power cone will require one r;, one copy of ¢t and one row from F' and g. An alternative solution is to
create the vector
[ri;..57k5t; ..t Flo — g
and then reshuffle its elements into
(P13t F1e — g15 .7 & Flow — gy

using an appropriate permutation matrix. This approach is demonstrated in the code below.

Listing 10.12: Script solving problem (10.20)

P-norm minimization

minimize \[Fz-g\/_p

norm_p_norm <- function(F,g,A,b,p)

{
n <- dim(F) [2]
k <- length(g)
m <- dim(A) [1]

Linear constraints in [z; r; t]

prob <- list(sense="min"

prob$A <- rbind(cbind(A, matrix(0, m, k+1)),
c(rep(0, n), rep(l, k), -1))

prob$bx <- rbind(rep(-Inf, n+k+1), rep(Inf, ntk+1))

prob$bc <- rbind(c(b, 0), c(b, 0))

prob$c <- c(rep(0, n+k), 1)

Permutation matriz which picks triples (r_<, t, F_iz-g_t)

M <- cbind(sparseMatrix(seq(1,3*k,3), seq(l,k), x=rep(l,k), dims=c(3x*k,k)),
sparseMatrix(seq(2,3%k,3), seq(l,k), x=rep(l,k), dims=c(3*k,k)),
sparseMatrix(seq(3,3%k,3), seq(l,k), x=rep(l,k), dims=c(3*k,k)))

Affine conic constraint
prob$F <- M %x*J rbind(cbind(matrix(0, k, n), diag(k), rep(0, k)),

(continues on next page)

94

https://docs.mosek.com/modeling-cookbook/index.html

(continued from previous page)

cbind (matrix(0, k, n+k), rep(l, k)),
cbind(F, matrix(0, k, k+1)))
prob$g <- as.numeric(M %+, c(rep(0, 2*k), -g))
prob$cones <- matrix(list("PPOW", 3, c(il, p-1)), nrow=3, ncol=k)
rownames (prob$cones) <- c("type","dim","conepar")

Solwe

r <- mosek(prob, list(verbose=1))

stopifnot(identical (rsolitr$prosta, "PRIMAL_AND_DUAL_FEASIBLE"))
rsolitr$xx[1:n]

Fig. 10.3: p-norm minimizing fits of a polynomial of degree at most 5 to the data for various values of p.

10.3 Logistic regression

Logistic regression is an example of a binary classifier, where the output takes one two values 0 or 1 for
each data point. We call the two values classes.

Formulation as an optimization problem

Define the sigmoid function

1

S@)= ——.
(z) 1+ exp(—z)
Next, given an observation 2 € R? and a weights 6 € R? we set

1

ho(z) = S(6Tx) = T exp(C0T)

The weights vector 6 is part of the setup of the classifier. The expression hy(z) is interpreted as the
probability that x belongs to class 1. When asked to classify = the returned answer is

e { 0 helz) < 1/2.

When training a logistic regression algorithm we are given a sequence of training examples z;, each
labelled with its class y; € {0,1} and we seek to find the weights 6 which maximize the likelihood
function

H hg(xz)y’ (1 — hg(xi))l_yi.

95

Of course every single y; equals 0 or 1, so just one factor appears in the product for each training data
point. By taking logarithms we can define the logistic loss function:

J0) = - 3 log(ha(as) — 3 log(1 - ho(a.)-
0

y;=1 Y=

The training problem with regularization (a standard technique to prevent overfitting) is now equivalent
to

min J () + AJ|6]|2.

This can equivalently be phrased as

minimize). t; + Ar

subject to ti > —log(he(x)) = log(1 +exp(=67x)) if y; =1, (10.21)
ti > —log(l —he(x)) =log(l+exp(@Tz;)) if yi =0, '
r 2|02

Implementation

As can be seen from (10.21) the key point is to implement the softplus bound ¢ > log(1 + €*), which is
the simplest example of a log-sum-exp constraint for two terms. Here ¢ is a scalar variable and u will be
the affine expression of the form +67z;. This is equivalent to

exp(u —t) +exp(—t) <1

and further to

(z1,L,u—t) € Kep (21> exp(u—1)),
(22,1, —t) € Kexp (22 > exp(—t)), (10.22)
21+ 29 < 1.

This formulation can be entered using affine conic constraints (see Sec. 6.2).

Listing 10.13: Implementation of (10.21).

logisticRegression <- function(X, y, lamb)
{

prob <- list(sense="min"

n <- dim(X) [1];

d <- dim(X) [2];

Variables: r, theta(d), t(n), z1(n), z2(n)
prob$c <- c(lamb, rep(0,d), rep(il, n), rep(O,n), rep(O,n));
prob$bx <-rbind(rep(-Inf,1+d+3#*n), rep(Inf,1+d+3+*n));

z1 + 22 <=1

prob$A <- sparseMatrix(rep(l:m, 2),
c((1:n)+1+d+n, (1:n)+1+d+2%*n),
x = rep(l, 2#n));

prob$bc <- rbind(rep(-Inf, n), rep(i, n));

(r, theta) \in \@
FQ <- cbind(diag(rep(l, d+1)), matrix(0, d+1, 3*n));
gQ <- rep(0, 1+d);

(21(4), 1, -t(i)) \in \EXP,
(22(4), 1, (1-2y(i))*X(i,) - t(i)) \in \EXP
FE <- Matrix(nrow=0, ncol = 1+d+3%*n);

(continues on next page)

96

(continued from previous page)

for(i in 1:n) {
FE <- rbind(FE,
sparseMatrix(c(1, 3, 4, rep(6, d), 6),

c(1+d+n+i, 1+d+i, 1+d+2*n+i, 2:(d+1), 1+d+i),
x = c(l, -1, 1, (1-2%y[i])*X[i,], -1),
dims = c(6, 1+d+3*n)));

}

gE <- rep(c(0, 1, 0, 0, 1, 0), n);

prob$F <- rbind(FQ, FE)

probs$g <- c(gQ, gE)

prob$cones <- cbind(matrix(list("QUAD", 1+d, NULL), nrow=3, ncol=1),
matrix(list ("PEXP", 3, NULL), nrow=3, ncol=2*n));

rownames (prob$cones) <- c("type","dim","conepar")

Solve, mo error handling!
r <- mosek(prob, list(soldetail=1))

Return theta
r$solditrdxx[2:(d+1)]

Example: 2D dataset fitting

In the next figure we apply logistic regression to the training set of 2D points taken from the example
ex2data2.txt . The two-dimensional dataset was converted into a feature vector 2 € R?® using monomial
coordinates of degrees at most 6.

Fig. 10.4: Logistic regression example with none, medium and strong regularization (small, medium,
large). Without regularization we get obvious overfitting,.

97

https://www.r-bloggers.com/logistic-regression-regularized-with-optimization/

Chapter 11

Problem Formulation and Solutions

In this chapter we will discuss the following topics:

e The formal, mathematical formulations of the problem types that MOSEK can solve and their
duals.

e The solution information produced by MOSEK.
e The infeasibility certificate produced by MOSEK if the problem is infeasible.

For the underlying mathematical concepts, derivations and proofs see the Modeling Cookbook or any
book on convex optimization. This chapter explains how the related data is organized specifically within
the MOSEK API.

11.1 Linear Optimization

MOSEK accepts linear optimization problems of the form

minimize e+ cf
subject to ¢ < Az < (11.1)
r < T < u®,

where
e m is the number of constraints.
e n is the number of decision variables.
e z € R" is a vector of decision variables.
e ¢ € R” is the linear part of the objective function.
e ¢/ € R is a constant term in the objective

e A c R™*™ js the constraint matrix.

[¢ € R™ is the lower limit on the activity for the constraints.

u® € R™ is the upper limit on the activity for the constraints.
e [€ R" is the lower limit on the activity for the variables.
e y” € R" is the upper limit on the activity for the variables.

Lower and upper bounds can be infinite, or in other words the corresponding bound may be omitted.

A primal solution () is (primal) feasible if it satisfies all constraints in (11.1). If (11.1) has at least
one primal feasible solution, then (11.1) is said to be (primal) feasible. In case (11.1) does not have a
feasible solution, the problem is said to be (primal) infeasible

98

https://docs.mosek.com/modeling-cookbook/index.html

11.1.1 Duality for Linear Optimization
Corresponding to the primal problem (11.1), there is a dual problem
maximize (1¢)7s¢ — (u)Ts¢ + (1%)Ts? — (u®) s + cf

AT T _ T
. Y s = sy C’ (11.2)
subject to —y+si—s, = 0,
5058w s: 8y = 0,
where
e sj are the dual variables for lower bounds of constraints,

o s¢ are the dual variables for upper bounds of constraints,

e s7 are the dual variables for lower bounds of variables,

x

~ are the dual variables for upper bounds of variables.

® S

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at
0, and we use the convention that the product of the bound value and the corresponding dual variable is
0. This is equivalent to removing the corresponding dual variable from the dual problem. For example:

lj=-0c0 = (sf)j=0and[j-(s}); =0.

A solution

(87, 505 575 54)

to the dual problem is feasible if it satisfies all the constraints in (11.2). If (11.2) has at least one feasible
solution, then (11.2) is (dual) feasible, otherwise the problem is (dual) infeasible.
A solution

(%47 (s0)", (s)", (s1)"5 (s3)7)

is denoted a primal-dual feasible solution, if (z*) is a solution to the primal problem (11.1) and
(y*, (s)*, (s5)*, (s7)*, (st)*) is a solution to the corresponding dual problem (11.2). We also define
an auxiliary vector

()" = Ax™

containing the activities of linear constraints.
For a primal-dual feasible solution we define the duality gap as the difference between the primal and
the dual objective value,

Tt of = {7 ()" = ()" (52)" + (1) (s7)" = (u) " (s5)" + '}
= X [(@) = 19) + (07 (uf = (@9)")] (11.3)
2000 [(s7)5 (@ — 12) + (s2)5(ug —27)] > 0

where the first relation can be obtained by transposing and multiplying the dual constraints (11.2) by
z* and (z°)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

It is well-known that a linear optimization problem has an optimal solution if and only if there exist
feasible primal-dual solution so that the duality gap is zero, or, equivalently, that the complementarity
conditions

sp)i((@f)"=1f) = 0, i=0,....m—1,
(s0)i(uf — (2f)") = 0, i=0,....m—1,
(sp)i(uj —2r) = 0, j=0,...,n—1,

are satisfied.
If (11.1) has an optimal solution and MOSEK solves the problem successfully, both the primal and
dual solution are reported, including a status indicating the exact state of the solution.

99

11.1.2 Infeasibility for Linear Optimization

Primal Infeasible Problems

If the problem (11.1) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (1¢)7s¢ — (u®)TsS + (1%)TsF — (u®) T2
subject to
ATy + sF — s =0, (11.4)
-y + 57 — 55, =0,
81> 8u 5155y 2 0,

such that the objective value is strictly positive, i.e. a solution
(7 (s1)75 (50)% (s7)7 (s3)")
to (11.4) so that
) (s)" = () (s5)" + (1) (s7)" = (u”) " (s5)" > 0.
Such a solution implies that (11.4) is unbounded, and that (11.1) is infeasible.

Dual Infeasible Problems

If the problem (11.2) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize c'x
subject to ¢ < Az < 4° (11.5)
o< oz <o
where
- 0 if I§ > —o0 0 ifuf <o
[(3 ’ 5C . — K3 ?
ki { —oo0 otherwise, } and - d; : { oo otherwise, }
and
- 0 if 17 > —o0 0 ifu? <oo
T — J ’ AL J ’
L { —oo otherwise, } and - a; : { oo otherwise, }
such that

Tx <.

Such a solution implies that (11.5) is unbounded, and that (11.2) is infeasible.

In case that both the primal problem (11.1) and the dual problem (11.2) are infeasible, MOSEK
will report only one of the two possible certificates — which one is not defined (MOSEK returns the
first certificate found).

11.1.3 Minimalization vs. Maximalization

When the objective sense of problem (11.1) is maximization, i.e.

maximize e+ ef
subject to ¢ < Ax < uc,
< T < u”,

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (11.2). The dual problem thus takes the form
minimize (1¢)7s¢ — (u®)TsS + (1%)Ts¥ — (u®) s + ¢f
subject to
ATy + s7 — 5% =,
-y + 57 — 55, =0,
87,585,857, 85 < 0.
This means that the duality gap, defined in (11.3) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system
ATy +sF — s =0,
—y+s7—s;, =0, (11.6)
Slc7 Sfl.’ Sf’ 57:5, S 07

such that the objective value is strictly negative
)T ()" = ()T (s5)* + ()T (s7)* — (u™) T (s5)" <0

Similarly, the certificate of dual infeasibility is an = satisfying the requirements of (11.5) such that
T
cx>0.

11.2 Conic Optimization

Conic optimization is an extension of linear optimization (see Sec. 11.1) allowing conic domains to be
specified for affine expressions. A conic optimization problem to be solved by MOSEK can be written
as

minimize e+ cf
; ¢ c
subject to llm i /;x i Zm: (11.7)
Fx+g € D,
where
e m is the number of constraints.
e 1 is the number of decision variables.
e z € R" is a vector of decision variables.
e ¢ € R" is the linear part of the objective function.
e ¢/ € R is a constant term in the objective
e A € R™*™ ig the constraint matrix.
e [€ R™ is the lower limit on the activity for the constraints.
e y° € R™ is the upper limit on the activity for the constraints.
e [® € R” is the lower limit on the activity for the variables.
e u” € R" is the upper limit on the activity for the variables.
is the same as in Sec. 11.1 and moreover:
e F € R¥*™ is the affine conic constraint matrix.,
e g € R” is the affine conic constraint constant term vector.,
e D is a Cartesian product of conic domains, namely D = D; x --- X D,, where p is the number of

individual affine conic constraints (ACCs), and each domain is one from Sec. 13.6.

The total dimension of the domain D must be equal to k, the number of rows in F' and g. Lower and
upper bounds can be infinite, or in other words the corresponding bound may be omitted.

MOSEK supports also the cone of positive semidefinite matrices. In order not to obscure this section
with additional notation, that extension is discussed in Sec. 11.3.

101

11.2.1 Duality for Conic Optimization
Corresponding to the primal problem (11.7), there is a dual problem

maximize (1¢)7s¢ — (u®)TsS + (1%)Ts¥ — (u®)Ts% — g7y + ¢/
subject to
ATy + s — st + Fly =c,
-y + 7 — 55 =0,
ST> Sus 815 50 = 0
y € D",

(11.8)

where

e s7 are the dual variables for lower bounds of constraints,

c

¢ are the dual variables for upper bounds of constraints,

® S

e s7 are the dual variables for lower bounds of variables,

8

e s* are the dual variables for upper bounds of variables,

u

e ¢y are the dual variables for affine conic constraints,
e the dual domain D* =D X --- x D} is a Cartesian product of cones dual to D;.

One can check that the dual problem of the dual problem is identical to the original primal problem.

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at
0, and we use the convention that the product of the bound value and the corresponding dual variable
is 0. This is equivalent to removing the corresponding dual variable (s{'); from the dual problem. For
example:

[j=-0c0 = (sf)j=0and[j-(s); =0.

A solution

c . T T
(y,sl75u731,5u7y)

to the dual problem is feasible if it satisfies all the constraints in (11.8). If (11.8) has at least one feasible
solution, then (11.8) is (dual) feasible, otherwise the problem is (dual) infeasible.
A solution

(@97, (s7)" (s)", (s7)7 (s3)", (9)7)

is denoted a primal-dual feasible solution, if (z*) is a solution to the primal problem (11.7) and
(y*, (s7)*, (sS)*, (s7)*, (s2)*, (9)*) is a solution to the corresponding dual problem (11.8). We also define
an auxiliary vector

(z)* := Az™

containing the activities of linear constraints.
For a primal-dual feasible solution we define the duality gap as the difference between the primal and
the dual objective value,

et el = {197 (57)7 = (u)7(55)" + ()7 ()" = ()" (57)" = g7 ()" + ¢/}

ST D (@)™ —19) + (s0)5(ug — (x5)*)] (11.9)
S (575 (g — 1) + (23 ut — 27)] ‘
(g *)T(Fx +9)>0

+ + |

where the first relation can be obtained by transposing and multiplying the dual constraints (11.2) by
2* and (2¢)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

102

It is well-known that, under some non-degeneracy assumptions that exclude ill-posed cases, a conic
optimization problem has an optimal solution if and only if there exist feasible primal-dual solution so
that the duality gap is zero, or, equivalently, that the complementarity conditions

spi((x5)* =1§) = 0, i=0,...,m—1,

(s6)i(u§ — (25)*) = 0, i=0,...,m—1,

(s7)5(z; —15) = 0, j=0,....,n—1, (11.10)
(sp)i(uf —a3) = 0, j=0,....,n—1,

((©)) (Fz*+g) = 0,

are satisfied.
If (11.7) has an optimal solution and MOSEK solves the problem successfully, both the primal and
dual solution are reported, including a status indicating the exact state of the solution.

11.2.2 Infeasibility for Conic Optimization

Primal Infeasible Problems

If the problem (11.7) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (1¢)7s§ — (u®)TsS 4+ (17)Ts7 — (u*)T'sZ — gTy
subject to
ATy + s — s+ FTy =0,
-y + s — 55 =0,
ST> Sus 81550 2 0
y € D",

(11.11)

such that the objective value is strictly positive, i.e. a solution
(", (s0)" (s2)™ (s7)75 (s2)", (9)7)
to (11.11) so that
)T (sP)" = (u) T (s5)™ + (1) (s7)" = (™) (s1)" = 97§ > 0.
Such a solution implies that (11.11) is unbounded, and that (11.7) is infeasible.

Dual Infeasible Problems

If the problem (11.8) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize Ly
. AC < < ~c
subject to { < Az < Zf , 1112)
v < x < 4",
Fx €D
where
e_] 0 if If > —oo, e)0 ifuf <oo,
I —{ —oo otherwise, } and .—{ % otherwise, } (11.13)
and
5 0 if ¥ > —o0 0 ifuf <oo
T — J ’ AL J ’
" { —oco otherwise, } and ;- { oo otherwise, } (11.14)

103

such that
Tz <.

Such a solution implies that (11.12) is unbounded, and that (11.8) is infeasible.

In case that both the primal problem (11.7) and the dual problem (11.8) are infeasible, MOSEK
will report only one of the two possible certificates — which one is not defined (MOSEK returns the
first certificate found).

11.2.3 Minimalization vs. Maximalization

When the objective sense of problem (11.7) is maximization, i.e.

maximize T +cf
subject to ¢ < Ax < s,
r < T < u®,
Fx+g € D,

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (11.2). The dual problem thus takes the form

minimize (1°)Tsf — (u®)TsS + (1%)Ts¥ — (u®)Ts2 — g7y + cf
subject to ATy +s7 —s2+ Fly=c,
-y + 57 —s5, =0,
sy, 85,87, 58 <0,
—y € D*

This means that the duality gap, defined in (11.9) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system

ATy + s — s+ FTy =0,
-y + s —s5 =0,
Sl’suaslv uSO

—y € D*

(11.15)

such that the objective value is strictly negative
) ()" = ()T (s5)* +)T (s7)* = (u™) T (s3)* — 9Ty < 0.

Similarly, the certificate of dual infeasibility is an x satisfying the requirements of (11.12) such that
T
cx>0.

11.3 Semidefinite Optimization

Semidefinite optimization is an extension of conic optimization (see Sec. 11.2) allowing positive semidefi-
nite matrix variables to be used in addition to the usual scalar variables. All the other parts of the input
are defined exactly as in Sec. 11.2; and the discussion from that section applies verbatim to all properties
of problems with semidefinite variables. We only briefly indicate how the corresponding formulae should
be modified with semidefinite terms.

A semidefinite optimization problem can be written as

minimize Tz +(C,X) +¢f
subject to ¢ < Ax + (A, X) < s,
< T < u”,
Fr+(F,X)+g € D,
YJ’ € S:_j,jil,...,s

where

104

as

m is the number of constraints.

n is the number of decision variables.

x € R™ is a vector of decision variables.

¢ € R™ is the linear part of the objective function.

¢/ € R is a constant term in the objective

A € R™*" is the constraint matrix.

[¢ € R™ is the lower limit on the activity for the constraints.
u® € R™ is the upper limit on the activity for the constraints.
[* € R™ is the lower limit on the activity for the variables.
u® € R™ is the upper limit on the activity for the variables.
F € RF*™ is the affine conic constraint matrix.,

g € RF is the affine conic constraint constant term vector.,

D is a Cartesian product of conic domains, namely D = Dy x - x D, where p is the number of
individual affine conic constraints (ACCs), and each domain is one from Sec. 13.6.

the same as in Sec. 11.2 and moreover:
there are s symmetric positive semidefinite variables, the j-th of which is X; € S:J of dimension
’I‘j,

C = (éj)jzl,‘..,s is a collectiongfﬂrmmetric coefficient matrices in the objective, with 6j e 8",
and we interpret the notation (C, X) as a shorthand for

<6’Y> = Z<CJ7YJ>

j=1

g = (Zij)izlw,m’jzlwﬁs is a collection oijgmetric coefficient matrices in the constraints, with
A;; € 877, and we interpret the notation (A, X) as a shorthand for the vector

F = (Fij)i=1,:k7j=1,_“7s is a collection of symmetric cogfﬁiient matrices in the affine conic con-
straints, with F';; € 8", and we interpret the notation (F, X) as a shorthand for the vector

(F.X) = | Y (Fi;, X;)

j=1 i=1,...k

In each case the matrix inner product between symmetric matrices of the same dimension r is defined

i=1j=1

To summarize, above the formulation extends that from Sec. 11.2 by the possibility of including
semidefinite terms in the objective, constraints and affine conic constraints.

105

Duality
The definition of the dual problem (11.8) becomes:

maximize (1¢)7s§ — (u®)TsS + (1%)Ts¥ — (u®)Ts% — gTy + ¢/
subject to
Aly+ s —si+ FTj=c,
-y +sj —s5 =0,

_ m = o . (11.16)
Cj—> i1yl — > 1 0iFi; =S, j=1...,s,
SlcV SZ, va Si 2 07
yeD,
S; eS8y, j=1,...,s.
Complementarity conditions (11.10) include the additional relation:
(X;,8;)=0 j=1,...,s. (11.17)
Infeasibility
A certificate of primal infeasibility (11.11) is now a feasible solution to:
maximize (1°)Ts¢ — (u®)TsS + (1%)Ts¥ — (u®)TsZ — gTy
subject to
ATy +s7 —sZ+ FTy =0,
—y+ s —s5, =0,
m k- . 11.18
= ic Yilij — Y i UiFiy = Sj, J=1...s, ()
8107 857 s;ca Si > 07
yeD,
S;esy, j=1,...,s.
such that the objective value is strictly positive.
Similarly, a dual infeasibility certificate (11.12) is a feasible solution to
minimize e+ (C,X)
subject to ¢ < Ax+ (A, X) < af,
< z < (11.19)
Fz+ (F,X) € D,
Y]’ S Srj,jzl,...,s

where the modified bounds are as in (11.13) and (11.14) and the objective value is strictly negative.

11.4 Quadratic and Quadratically Constrained Optimization

A convex quadratic and quadratically constrained optimization problem has the form

minimize %xTQ‘)x +cTx+cf
subject to I < %zTQk:r + Z;:Ol agjr; < uf, k=0,...,m—1, (11.20)
l;/’ < Z; < uf, 7=0,....,n—1,

where all variables and bounds have the same meaning as for linear problems (see Sec. 11.1) and Q° and
all Q% are symmetric matrices. Moreover, for convexity, ° must be a positive semidefinite matrix and
Q" must satisfy

—oo < Iy = QF is negative semidefinite,
up < oo = QF is positive semidefinite,
—oo < lf <uj <o = QF=o0.

The convexity requirement is very important and MOSEK checks whether it is fulfilled.

106

11.4.1 A Recommendation

Any convex quadratic optimization problem can be reformulated as a conic quadratic optimization prob-
lem, see Modeling Cookbook and [And13]. In fact MOSEK does such conversion internally as a part
of the solution process for the following reasons:

e the conic optimizer is numerically more robust than the one for quadratic problems.

e the conic optimizer is usually faster because quadratic cones are simpler than quadratic functions,
even though the conic reformulation usually has more constraints and variables than the original
quadratic formulation.

e it is easy to dualize the conic formulation if deemed worthwhile potentially leading to (huge)
computational savings.

However, instead of relying on the automatic reformulation we recommend to formulate the problem
as a conic problem from scratch because:

e it saves the computational overhead of the reformulation including the convexity check. A conic
problem is convex by construction and hence no convexity check is needed for conic problems.

e usually the modeler can do a better reformulation than the automatic method because the modeler
can exploit the knowledge of the problem at hand.

To summarize we recommend to formulate quadratic problems and in particular quadratically con-
strained problems directly in conic form.

11.4.2 Duality for Quadratic and Quadratically Constrained Optimization

The dual problem corresponding to the quadratic and quadratically constrained optimization problem
(11.20) is given by

maximize (1°)7s§ — (u®)TsS + (1%)Tsf — (u®)Ts2 + SaT {Z;n:_ol yQF — QO} z+cf

subject to ATy +s7 — s% + {ZZS yQF — QO} r=c (11.21)
—y+ sy — s, =0,
55,85, 57, 5% > 0.

The dual problem is related to the dual problem for linear optimization (see Sec. 11.1.1), but depends
on the variable x which in general can not be eliminated. In the solutions reported by MOSEK, the
value of x is the same for the primal problem (11.20) and the dual problem (11.21).

11.4.3 Infeasibility for Quadratic Optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of infeasibility. We write them
out explicitly for quadratic problems, that is when Q* = 0 for all k and quadratic terms appear only
in the objective °. In this case the constraints both in the primal and dual problem are linear, and
MOSEK produces for them the same infeasibility certificate as for linear problems.

The certificate of primal infeasibility is a solution to the problem (11.4) such that the objective value
is strictly positive.

The certificate of dual infeasibility is a solution to the problem (11.5) together with an additional
constraint

Q°r=0

such that the objective value is strictly negative.
Below is an outline of the different problem types for quick reference.

107

https://docs.mosek.com/modeling-cookbook/index.html

Continuous problem formulations

e Linear optimization (LO)

minimize e+ of
subject to ¢ < Ax < uc,
*r < T < u®.

e Conic optimization (CO)

Conic optimization extends linear optimization with affine conic constraints (ACC):

minimize e+ cf
subject to ¢ < Ax < uf,
" < T < u®,
Fx+g € D,

where D is a product of domains from Sec. 13.6.

e Semidefinite optimization (SDO)

A conic optimization problem can be further extended with semidefinite variables:

minimize e+ (C,X) +cf
subject to 1¢ < Az + (A, X) < u,
r < T < u®,
Fr+(F,X)+g9 € D,
X S S_A,_,

where D is a product of domains from Sec. 13.6 and &4 is a product of PSD cones meaning that
X is a sequence of PSD matrix variables.

e Quadratic and quadratically constrained optimization (QO, QCQO)

A quadratic problem or quadratically constrained problem has the form

minimize %I’TQOI +cTr+¢f
subject to ¢ < %xTch + Ax < s,
r < T < u”.

Mixed-integer extensions

Coninuous problems can be extended with constraints requiring the mixed-integer optimizer. We outline
them briefly here. The continuous part of a mixed-integer problem is formulated according to one of the
continuous types above, however only the primal information and solution fields are relevant, there are
no dual values and no infeasibility certificates.

e Integer variables. Specifies that a subset of variables take integer values, that is
ry €Z

for some index set I. Available for problems of type LO, CO, QO and QCQO.

108

Chapter 12

Optimizers

The most essential part of MOSEK are the optimizers:

e primal simplex (linear problems),

o dual simplex (linear problems),

e interior-point (linear, quadratic and conic problems),

e mized-integer (problems with integer variables).

The structure of a successful optimization process is roughly:

e Presolve

1. Elimination: Reduce the size of the problem.
2. Dualizer: Choose whether to solve the primal or the dual form of the problem.

3. Scaling: Scale the problem for better numerical stability.

e Optimization

1. Optimize: Solve the problem using selected method.
2. Terminate: Stop the optimization when specific termination criteria have been met.

3. Report: Return the solution or an infeasibility certificate.

The preprocessing stage is transparent to the user, but useful to know about for tuning purposes.
The purpose of the preprocessing steps is to make the actual optimization more efficient and robust. We
discuss the details of the above steps in the following sections.

12.1 Presolve

Before an optimizer actually performs the optimization the problem is preprocessed using the so-called
presolve. The purpose of the presolve is to

1.
2.

- W

remove redundant constraints,

eliminate fixed variables,

remove linear dependencies,

substitute out (implied) free variables, and

reduce the size of the optimization problem in general.

109

After the presolved problem has been optimized the solution is automatically postsolved so that the
returned solution is valid for the original problem. Hence, the presolve is completely transparent. For
further details about the presolve phase, please see [AA95] and [AGMeszarosX96].

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If presolve consumes
too much time or memory compared to the reduction in problem size gained it may be disabled. This is
done by setting the parameter ¥SK_IPAR_PRESOLVE_USE to "MSK_PRESOLVE_MODE_OFF".

In the following we describe in more detail the presolve applied to continuous, i.e., linear and conic
optimization problems, see Sec. 12.2 and Sec. 12.3. The mixed-integer optimizer, Sec. 12.4, applies similar
techniques. The two most time-consuming steps of the presolve for continuous optimization problems
are

e the eliminator, and
e the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.

Numerical issues in the presolve

During the presolve the problem is reformulated so that it hopefully solves faster. However, in rare
cases the presolved problem may be harder to solve then the original problem. The presolve may also
be infeasible although the original problem is not. If it is suspected that presolved problem is much
harder to solve than the original, we suggest to first turn the eliminator off by setting the parameter
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES to 0. If that does not help, then trying to turn entire
presolve off may help.

Since all computations are done in finite precision, the presolve employs some tolerances when con-
cluding a variable is fixed or a constraint is redundant. If it happens that MOSEK incorrectly con-
cludes a problem is primal or dual infeasible, then it is worthwhile to try to reduce the parameters
MSK_DPAR_PRESOLVE_TOL_X and MSK_DPAR_PRESOLVE_TOL_S. However, if reducing the parameters ac-
tually helps then this should be taken as an indication that the problem is badly formulated.

Eliminator

The purpose of the eliminator is to eliminate free and implied free variables from the problem using
substitution. For instance, given the constraints

Y
Yy,

Zj Ly
0,

vVl

y is an implied free variable that can be substituted out of the problem, if deemed worthwhile. If the elim-
inator consumes too much time or memory compared to the reduction in problem size gained it may be
disabled. This can be done by setting the parameter MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
to 0. In rare cases